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PREFACE

In the spring semester, 1969, I taught a course at

Rice University on Rieraann surfaces. The students were

primarily seniors who had taken one semester of complex

variables and had been exposed at least to the language

of general topology. I made detailed lecture notes at

the time, and this volume contains those notes with minor

changes

.

The purpose of the course was to introduce the

various ideas of surfaces , sheaves , algebraic functions ,

and potential theory in a rather concrete setting, and

to show the usefulness of the concepts the students had

learned abstractly in previous courses. As a result, I

discussed the material carefully and leisurely, and for

example did not even attempt to discuss the notions of

covering surface, differential forms, Fuchsian groups,

etc. Therefore, these notes are quite incomplete. For

comprehensive treatments of the subject, please consult

the bibliography.

I gratefully acknowledge some of the standard books

which I consulted, especially M. H. Heins ' Complex Function

Theory , G. Springer's Introduction to Riemann Surfaces , and

H. Weyl's The Concept of a Riemann Surface . Also, I relied

heavily on L. Bers ' lecture notes, Riemann Surfaces, and

especially on his Lectures 15-18.



One of the students was Joseph Becker, to whom I ow«

special thanks. He helped and prodded me over and over

and gave me tremendous encouragement.

Thanks also go to the typists, Janet Gordon, Kathy

Vigil, and Barbara Markwardt , and to Rice University for

publishing the notes.

Houston, July 12, 1971
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is an extension of f. But this is not the kind of dif-

ficulty that we wish to consider.

Rather, the basic problem is that of multiple-

valued "functions." Phrased in terms of continuations,

there is not always a largest region to which a holo-

morphic function can be extended. As an example let

D = [z: |z-l|<l] and f(z) = principal determination of

log z

1
J

n=1

defined on D . Of course, we also

have f(z) = logjzj 4- i arg z,

where arg z is between - S and -j. Now f can be extended

to a holomorphic function on the plane C with the negative

real axis removed, the extension being log|z| + i arg z,

where -rr < arg z < rr. But there are other regions which

can be considered as largest regions of extension; e.g.,

the plane C with the positive imaginary axis removed and

the extension being log|z| + i arg z, where - -J^-arg z<5.

It is admittedly frequently useful to "cut" the plane

C along a line from to » as visualized in the above

cases, and to consider there a single-valued "branch"

or "determination" of log z, and such a technique is ex-

ploited e.g. in contour integrals.

But from the point of view of this course the cut-

ting of C really enables one to evade the issue, which

is namely how can one speak of log z and face up to its



multiple-valuedness in a fearless way. And the same

question for other functions. The answer given by Rie-

mann is that the plane C is too deficient to admit such

functions, so we consider other surfaces where functions

can be defined which are single-valued and still exhibit

the essential behavior of (in our example) log z.

Let us now consider an explicit method for building

such a surface for log z. Take an infinite sequence of

planes minus the origin, which are to be considered as

distinct: call them C', where n is any integer. On C'
' n' J b n

define a function f by
n J

f (z) = log|z| + i arg z + 2nrri
,

where -tt < arg z <, n. Now we "glue" the planes C' in a

reasonable way. This "gluing" is tantamount to defining

a topology on the union of the (disjoint) sets C
;

. To

define this topology we shall describe a neighborhood

basis of each point. For a point z € C' which does notr r n

lie on the negative real axis a neighborhood basis shall

consist of all open disks in C' with center at z. Ifr n

z 6 C' and z is a negative real number, a neighborhood

basis shall consist of all sets

fw€C': |w-z|<c, Im wsO) u fw€C', ,: |w-zj<e, Im w<0] ,n ' n+1 ii' >

where < e < |z |

.



C
n

c'
n+1

JL

It is then easily checked that the set S = U C becomes
n=-» n

a topological space with a neighborhood basis for each

point of S being described as above. Also, if f is the

function from S to C which equals f on C' for each n,' n n

then f becomes a continuous function on S. Indeed, it

suffices to check continuity at points z € C' which areJ r n

negative real numbers. In the semidisk in C' depicted

above f = f takes values close to logJz| + in + 2nni,

and in the semidisk in C',, f = f ,, takes values close
n+1 n+1

to log
|
z

|

- in + 2(n+l)rri, so in the whole neighborhood

of z f is close to log|z| + irr + 2nni = f(z). Thus, f

is continuous.

Thus , we have succeeded in defining a set S which

carries a single-valued function f which obviously is

closely related to log z. We shall later point out the

essential feature of S which allows us to call it a Rie-

mann surface (definition to be given in Chapter II)

.

We remark that it is easy to visualize S as a col-

lection of planes glued together as indicated and forming

3
in R an infinite spiral. The next surface we construct

will not have so simple a form.



For this construction consider the function z '
,

where m is an integer >2. Since each z £ has m dis-

tinct m roots, this is a multiple-valued "function."

In order to treat this function consider distinct

copies of the plane minus the origin, C-/ ,0/ , • • >C '

.

Define a function f on C ' by the formula:
n n J

i fi

if z = re , r>0, -tt<9^tt
,

f (z) = r
l/n»

e
i9/m

e
2iT7(n-l)/r

m
Let T = lJ C ' and define a topology on T exactly as be-

n=l
n

fore, except that a neighborhood basis of a negative

real number z £ C ' is treated a little differently. Them J

same situation obtains as in the figure on p . 4, with

C' , replaced by £'
. Note that an attempt to visualize

T as a spiral in R is doomed, since the "top" level C

'

m

has to be glued to the "bottom" level C-,' along their

negative real axes , and this without crossing any of the

intermediate levels C^,..., C* -* and also without crossing

the seam where C-/ is joined to C^ (in case m = 2) . As

before, define a function f on T by the formula f = f* n

on C'. As in the figure on p . 4 , if z € C ' is a negative
n o r- j n °

real number, then in the semidisk in C ' f takes values
' n

, fc , il/m in/m 2irr(n-l)/m , . ., .....
close to |z| e e v

a an° in tne semidisk in

C^ f takes values close to | z |

lAvin/m^iTrn/i^ so f

stays close to fz 1

1 /me
±Tr (2n- 1) /m = f^ in a neighborhood

of z. And this holds even if n = m, in which case C ' ,



is replaced by C,'. Thus, f is continuous on T and gives

a reasonable representation of z ' m
.

Now a very interesting addition can be made to T.

Namely, consider each C' to have its origin replaced,

but with the origins in each C representing a single

point to be added to T. Thus, consider TufO] (the orig-

inal set with one point added) and let a neighborhood

basis of consist of sets of the form

m
{0} U U [z€C^: |z|<e]

n=l

for 0<e< m . Extend f by f (0) =0. Then f is again con-

tinuous on TU{0}. In the very same way, the point <*> can

be added. Let

t = Tu{0}ur»] ,

let a neighborhood basis of OT consist of sets of the form

m
i>] u u [

z ^ c
n

:
I

Z IH:} >

n=l

and let f( m ) = co
. Then f is a continuous function from

T to the extended complex plane (Riemann sphere) C. Ob-

viously the points and m are in some sense different

from the other points in T. They are called branch

points , and are said to have order m-1.

Although T is somewhat difficult to visualize as

3situated in P , we shall now easily see that it is homeo-

A ~ A
morphic to the sphere C.' In fact, the mapping f: T • C

is a homeomorphism. We have shown that it is continuous;



it is onto since every complex number is an m root;

it is 1-1 since different complex numbers definitely

have different m roots and also the same complex

number z * has m distinct m roots. General topol-

ogy then shows f is continuous since T is compact and

A
C is Hausdorff; but it is quite easy to see directly

that f is continuous. Indeed, f (z) is essentially

z (positioned on the correct C ')

.

The nature of this homeomorphism and the geometry

involved in the construction of T are perhaps better

seen when one considers the Riemann sphere C instead of

C as the basic region from which f is to be built. If

a 2 2 2
one regards C as the Euclidean sphere {(x,y,z): x +y +z =1}

3
in R by means of s tereographic projection and uses m

distinct copies C,,...,C with the gluing described
t- 1 ' ' m & o

above to be done along the meridians corresponding to

the negative real axis , then an essentially equivalent

surface T is obtained. Now consider the action of the

A
function f. On C it is given by the determination

f of the m root and maps C onto a portion of C cut
n r n r

off by two meridians which correspond to rays in the

plane with an included angle of 2rr/m. In other words
,

it "spreads open" the cut in C from a hole with open-

ing to a hole with (1 - —)2tt opening. Here is a picture,

a "top" view looking "down" on the north pole, <*>:



A A
C „ . ^rrr. C
n

f >
image of

u under f
n

Thus, the image of T under f consists of m "slices" of

C, and the gluing in T shows that these slices of C are

pieced together in such a way that T is mapped homeo-

morphically onto C.

If one is interested only in the topological prop-

erties of T, then the procedure discussed in the above

paragraph can be considerably shortened by ignoring

the specific nature of the cuts and of the function f.

We illustrate with the case m = 2. Since we shall only

discuss topological properties , we replace the cut along

a meridian by any old cut on the sphere which looks

reasonable, and take two copies of the sphere:

.
- - • A „ A

•

Cl N c
2

The gluing is to be done in such a way that the shaded

areas are to be attached, as are the unshaded areas.

The action of the function f is now replaced by a con-

tinuous opening of the two holes :



/

It is then obvious how to attach these spheres with holes;

the resulting figure looks like

a figure which is obviously homeo-

morphic to a sphere.

Now we shall briefly indicate the construction of

some other Riemann surfaces. For example, suppose a

and b are distinct complex numbers and consider the

multiple-valued "function" ,/(z-a) (z-b) . The same pro-

cedure which works for Jz can be applied here if C or

C is cut between a and b. In trying to define this func-

tion one finds that the sign changes when a circuit is

made around either a or b, so two copies of C can be

joined along the cut as before to provide a surface on

which a function which is single-valued and has the prop-

erties of V(z-a) (z-b) can be defined; the figure is

exactly that which appears at the bottom of p. 8, where

the two slits go from a to b on each sphere. Here it

should be remarked that either branch of y(z-a) (z-b) is

meromorphic at », since one branch is approximately z

at oo and the other branch approximately -z. The branch

points on the surface we have constructed are a and b,
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A
and the surface is again homeomorphic to C. However

note that the function ,/(z-a) (z-b) is not the homeo-

morphism in this case. Indeed, this function assumes
A

every value in C exactly twice. A natural homeomorphism

in this case is the function on this surface corresponding

A
function and two copies of C cut from a to b , we obtain

the same surface.

Using the same process, we shall now construct a

Riemann surface which is not homeomorphic to a sphere.

For this consider the expression ./(z-a) (z-b) (z-c) , where

a,b,c are distinct complex numbers. In order to attempt

to define a single-valued function from this formula,

consider two copies of the sphere each having two

cuts , say from a to b and from c to »; these cuts should

not intersect

:

In defining continuously the square root in this case, a

change of sign results in going around a, or b, or c, or

00
. The cuts we have provided prohibit this, and we

also see just how to glue in order to obtain a continuous

function: the shaded areas along the cuts from a to b
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are to be attached, and likewise along c to oc
. Now let

S denote the resulting surface with the four branch

points ajbjC, 00 included, the topology being defined in

the by now usual manner. This surface is not homeo-

morphic to a sphere. To see this we will exhibit a

closed curve on S which does not separate S into two

components . This is the curve shown on the left sphere

which encircles the cut from a to b. To see that this

curve does not disconnect S consider the typical example

of the curve (shown by a dotted line) which connects two

points which at first glance might be separated by the

given closed curve.

Probably the best way to see this topological prop-

erty is to apply the method sketched on p. 8. After

the first step we obtain the following spaces to be

glued:



12

After the gluing, the resulting figure appears as shown:

This figure is clearly homeomorphic

to a torus or a sphere with "one f

handle." The same topological

type of surface arises from the function

y<fe-a) (z-b) (z-c) (z-d) , where a,b,c,d are distinct. The

only difference is that the cuts on C go from a to b

and from c to d.

This same argument allows the treatment of the

function v'(z-a.j ) (z-a„) . . . (z-a ) , where a, ,. . . ,a are

distinct. Two copies of C are used with cuts from a.

to a j , a~ to a , , etc. If m is even, the last cut is

from a , to a , and if m is odd, from a to <=. The
m-1 m' ' m

same gluing procedure gives a topological type as il-

lustrated:

there are -^ connecting

. . . c . m+1
tubes if m is even, —*—

if m is odd.

This is homeomorphic to a sphere with "handles"
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. , m- 2 m-

1

there are —y- or —k—

handles if m is even or

odd, respectively. This

is said to be a surface

having genus equal to the

number of handles

.

Local coordinates.

In preparation for the definition of abstract Rie-

mann surfaces to be given in the next chapter, we shall

now examine a common property of all the surfaces we

have constructed. Namely, each point on the surface

has a neighborhood homeomorphic to an open subset of

C--the essential defining property for a surface. This

assertion is of course completely trivial except where

we have made cuts and where we have inserted branch

points , for outside these exceptional points the neigh-

borhoods can just be taken to be disks on the various

copies of C and the homeomorphism essentially the

identity mapping onto the same disk, now regarded as

lying in some other fixed copy of C. The situation

for points on the cuts which are not branch points is

not much more involved. Refer to the neighborhood de-

fined and depicted on pp. 3,4; call this neighborhood

U(z) and let h be the. disk [w€C: jw-z|<e}. Then define

cp: U(z)
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by the obvious relation

cp(w) = w.

The effect of cp is obviously to attach the two semi-

disks used to make up U(z). It is now trivial to check

that each point which is not a branch point has a neigh-

borhood homeomorphic to an open set (a disk) in C, and

this is true for all the surfaces we have constructed.

If =° is not a branch point and does not lie on a cut,

a neighborhood can be taken to be the complement of a

large closed disk in the appropriate copy of C and the

mapping into C the function ^(z) = z

Now for the branch points. It should be no surprise

that the branch points can be treated, for we have

pointed out how the surface with branch points added

is homeomorphic to a sphere or a sphere with handles

(in the cases we have considered) , making the neighbor-

hoods of the branch points look not very special at all.

Now we write down this homeomorphism explicitly in the

case of the Riemann surface for z , since all the

other branch points we have considered have the same

behavior as is exhibited in this case (for m = 2) . In

fact, the homeomorphism is exactly the "function" z

(which has been made s ingle-valued) . In terms of the

notation of p. 5, this is the function f. A similar

construction works when the branch points at » are

considered.
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Finally, consider how these various homeomorphisms

are related. That is, suppose given two overlapping

neighborhoods U-, and U2 on the surface with correspon-

ding homeomorphisms cp, and cp~ . Then the function

X'.;, :?-, is defined on an open subset of C and has values

in another open subset of C, and is clearly a homeo-

morphism. The thing to be noted is that it is holo-

morphic . Except where U-, or U- involves a branch point

this is trivial, as the map cp^ocp, is the identity where

it is defined. If U-, involves a branch point with m
— 1 t~V->

sheets, then x>, is essentially the m power, and

- 1 m
ep^ocp, (z) = z , which is holomorphic. If U^ involves

a branch point, then cp^ocp, is a holomorphic determi-

nation of the m root.

The observation made above will be used to give a

definition of Riemann surface in the next chapter.
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Chapter II

ABSTRACT RIEMANN SURFACES

In the introduction we have considered one method

of constructing Riemann surfaces and have pointed out

various properties. In the rest of the course several

other methods will be given, especially the extremely

important sheaf of germs of meromorphic functions in

Chapter III and its generalization, the analytic con-

figuration , in Chapter IV. Other examples will be con-

sidered in the present chapter. All of these Riemann

surfaces have one feature that cries out for attention,

so before coming to the concrete examples we shall

define this characteristic feature and call any object

which possesses it a Riemann surface.

DEFINITION 1 . A surface is a Hausdorff space S

such that V p€S 3 an open neighborhood U of p and an

open set W c C and a homeomorphism cp: U - W. Such a

mapping cp is called a chart or a coordinate mapping .

DEFINITION 2. Let S be a surface. An atlas for

S is a collection of charts {cp } , where a runs through

some index set, such that every point of S belongs to

the domain of some co . If cp : U - W , then we are
a a a a

'
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saying that

s = u u

Note that if U and U meet, then both cp and cp are

defined on the intersection U fl U and these mappings

provide homeomorphisms between this intersection and

the open sets cp (U flu* ) and cp, (U fflj ) in C , respectively.r a v a 3 3 a 3
r J

Therefore, there is defined the function

V*B : VW - ^a<
U
a
nU,)

a\ i W.

For brevity we shall frequently speak of cp ocp without
Q. p

mentioning that it is defined only on cp (U HU ) . The

functions cp ocp^ are called coordinate transition func-va ' 9

tions of the atlas , because if cc and cp are thought of

as defining coordinates on U HU the mapping cp c cp

determines how to change from one coordinate system to

another.
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DEFINITION 3. An atlas fcp } is analytic if each====== l+a J l

coordinate transition function cp ocp is analytic.

Just note that this definition makes good sense,

as cp ocp
a

is a complex-valued function on an open set

in C and thus the usual meaning of analytic function

is what is meant.

DEFINITION 4 . Two charts cp, and cp
2

on a surface S

are compatible if the functions cp, °<p" and cp„ocp are

analytic. A chart cp is compatible with an analytic

atlas {ep } if cp and cp are compatible for all a.

DEFINITION 5 . An analytic atlas is complete if it

contains every chart compatible with it.

We are now almost ready to define a Riemann surface

as a surface together with an analytic atlas . But there

is a slight technical problem which must be overcome.

Namely, there is almost never a convenient canonical

atlas , and we therefore either need to define some

sort of canonical atlas or need to define an equivalence

relation between analytic atlases. Since these ap-

proaches are really the same, we arbitrarily pick the

former possibility. This is the reason for Definition 5,

Now we give a lemma which actually relates these con-

cepts .
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LEMMA 1 . For any analytic atlas [cp } on a sur -

face S, there exists exactly one complete analytic

atlas containing it . This complete analytic atlas is

the collection of all charts compatible with (cp }

.

ex

Proof: Let G be the set of all charts compat-

ible with {cp }. We first prove that G is an atlas,

then that it is complete. Suppose then that cp,cp'€ C
Thus, cp:U - W and cp

'
: u' - W are homeomorphisms

from open sets in S to open sets in C. Suppose U

and u' meet and let p 6Unu'. Since {cp } is anr o ^a

atlas, there exists cp :U - W such that p €U .

^a a a r o a

Then

cp'ocp = (cp'°cp
a

)°(;o
a
°cp )

and cp'°cp and cp °cp~ are both holomorphic since

cp,cp' are compatible with cp . Thus, cp'om" is
ex

holomorphic. Thus, G is an analytic atlas. To prove

that G is complete, suppose i|i is compatible with

G. Since G contains {cp } (since {cp } is itself

an analytic atlas), i|i is compatible with [cp }.

That is, iKG. Thus, G is complete.

Finally, to prove that G is unique, suppose ft

is a complete analytic atlas containing icp } . If
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eoSB, then cp is compatible with {cp }, and thus

cp€G. This proves BOG. Now suppose cp£G. Let

•J16S. Arguing as above, we find

CP° Uf = (iP CPa )°(cPa
°1tF~ ) ,

l)l°Cp = (ty°CD )o (cp
a

°ip ) ,

and thus tp and $ are compatible. Thus, cp is

compatible with 3. As 8 is complete, cp?8. Thus

GcS. Hence, G = 8.

QED

As a result of this lemma, we see that two analytic

atlases are contained in the same complete analytic

atlas if and only if each chart from one atlas is com-

patible with each chart from the other atlas, or if

and only if the union of the two atlases is itself an

analytic atlas.

DEFINITION 6. A Riemann surface is a surface to-

gether with a complete analytic atlas.

Thus, to specify an abstract Riemann surface, we

must specify a surface and a complete analytic atlas.
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The effective purpose of Lemma 1 is to enable us to

forget about the rather cumbersome completeness assump-

tion. So when we wish to construct a Riemann surface,

we will be satisfied to exhibit one analytic atlas,

keeping in the back of our minds that Lemma 1 implies

the existence of a unique larger complete analytic

atlas. This is quite helpful, as it will usually be

more or less obvious what can be chosen to be an

analytic atlas,

It is most important for beginners in this sub-

ject not to be beguiled by Definition 6. The crux

of the theory of Riemann surfaces is not this definition.

This definition just gives a convenient term in a book-

keeping sense to keep track of the structure implied

in the definition of complete analytic atlas. Thus,

this chapter has been called " abstract Riemann surfaces."

It will be up to us to verify for the many concrete

Riemann surfaces we find that the above definition obtains

Now we pass to some examples.

Examples.

1. This is by far the most trivial example. Let

S be any open subset of C; the atlas con-

sists of the single chart cp which is the
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identity mapping on S. In this case cp

is obviously a homeomorphism and the only

transition function is cpocp" = identity on

S.

A most important example is the Riemann

sphere . We take this to be the topological

space C = CUf™}, where points in C have

their usual neighborhoods and a neighborhood

basis of 0= consists of the sets {z:|z|>a}

U{°°3 f° r 0<a<°=. This is clearly a topo-

logical space and stereographic projection

is a homeomorphism of C onto the unit

3Euclidean sphere in R . The atlas we pick

will consist of two charts. Let Ui = W, = C

and cp-itU-i "* W-. be the identity. Let

U 2
= C - {0}, w~2 = C, and cp2 : U2 "* W2 be

given by cpo(z) = z ,
^(oo) = 0. These are

clearly charts, and cp2 or
P i ( z )

= cpo(z) = z ,

cp-iocpo (z) = z~ , which shows the coordinate

transition functions are holomorphic.

As we mentioned above, c is homeomorphic

3
to the unit sphere in R . It is a fact that

any topological space homeomorphic to a Riemann

surface can itself be made into a Riemann sur-

face. To see this, suppose S is a Riemann
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surface with analytic atlas {3 } and thatJ a J

T is a topological space and I : T -> S a

homeomorphism. Then the maps {cp °?} form

an analytic atlas for T with transition

functions

(cp
a
o§)o (cPgol ) = CPa

oCp
g

4. All the surfaces constructed in Chapter I are

Riemann surfaces. The verification was briefly

indicated on pp. 13-15.

5. Any open subset of a Riemann surface can be

made into a Riemann surface in a natural way:

If T is an open set in the Riemann surface

S, then for a chart cp :U -* W on S let
^a a a

the mapping
ty

be the restriction of cp

to U flT. Then an analytic atlas fcp } on

S gives rise to an analytic atlas { \Ji } on

T.

6. The torus. Of course, the examples mentioned

in 4 include a Riemann surface homeomorphic

to a torus; cf. p. 12. Here is another way

to make a torus into a Riemann surface.
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Problem 1 . Let u^ and ou be nonzero complex

numbers whose ratio is not real. Let

- {n-^uu^ + n2U)2: n^r^ integers},

and for any z£C let [z] = z + Q.

Prove that 3 6 > such that

In-juu, + n~ui)o
|

£ 6 if n, , n~ are

integers which are not both zero. Let

c/0 be the set of all [z] for zee,

noting that [z] = [z'] » z - z'GO* For

any [z] define a neighborhood basis

of [z] to consist of all sets

UgCfzl) = {[wl: jz - w|<e)

for e>0. Prove that C/Q becomes a

Hausdorff space. For es^/2 let

r :U ([zi) - A. = (C C C:
j C | <e] be defined

by co([w]) = w-z. Prove that these form

charts in an analytic atlas for c/n.

The relation to a torus is that c/n is

homeomorphic to a torus in a natural way.

This can perhaps best be seen by considering

the set A = [t^ + t
2

0)
2

: 0st
1
<l,0^t

2
<l}cc, which

is obviously in one-to-one correspondence with

c/n.
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JJ-J+UU2

The topology in A is

determined in a natural

fashion: a neighborhood

basis of a point t, uu-. +

t
2
oi2 with < t, < 1,

< t« < 1, can be taken

to be sufficiently small

disks centered at that

point. For a point p

as indicated in the figure,

a neighborhood basis can

be taken to be sets

{z^A: ]z-p|<e}u{zeA: ]
z-p- aj

1
1
< e }

for all sufficiently small e. And a neighbor-

hood basis of can be described in a similar

fashion, corresponding to the four smaller

sectors in the figure. Of course, this top-

ology just corresponds to a gluing in the sense

of Chapter I and one easily sees that now A

is homeomorphic to C/Q, the homeomorphism

being the mapping A - c/n which sends z

to [z]. Finally, if one imagines this gluing

carried out with a strip of paper the shape

of A, it becomes clear that A is homeomorphic
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to a torus

.

7 . The sheaf of germs of moromorphic functions

to be discussed at length in Chapter III will

be a Riemann surface in a natural way.

DEFINITION 7 . A path in a topological space S

is a continuous function y from I = [0,11 into S.

The initial point of y is y(0) and the terminal

point of y is y(l). And y is said to be a path

from y(0) to y(l).

DEFINITION 8 . A topological space S is disconnected

if 3 open sets A,BcS such that S = AUB, A and

B are disjoint, and neither A nor B is empty. A

topological space S is connected if it is not dis-

connected .

PROPOSITION 1 . A Riemann surface S is connected

if and only if for any points Pq and p-, in S there

exists a path in S from Pq to_ p-,.

Proof : Suppose S is disconnected, and let A

and B be the corresponding sets of Definition 8.

Let Pq£A and p-i c B. If there is a path y in S
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from p n to p-, , then y(I) is connected (it is a

general result that a continuous image of a connected

space is connected). However, the sets A-, = Y(l)nA

and B-, = y(I)hB show that in the sense of Definition

8 y(I) is disconnected.

Conversely, suppose S is connected and let p^,

p-.cS. Let A = {p$S:3 path in S from p~ to p}.

Then A contains p~ and is thus not empty. Also,

A is open: if p^A then using an open neighborhood

U of p and a chart cp
'• U - A from U onto a disk

A, then U^A. For if p 'gu and if y is the path

from p.-. to p, then a path Yi from p„ to p' is

Yl (t) =
(Y (2t), 0*ts%,

(

p" 1 ((2-2t)cp(p) + (2t-l)cp(p')), ^t 5l
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Thus, A is open. A similar proof shows that A is

closed: if p' is a limit point of A, then we can

use the same picture as above, except that U is

now picked to be a neighborhood of p' homeomorphic

to a disk A. Since p' is a limit point of A,

there is a point p<=unA. Then the same construction

as above shows that there is a path in S from p~

to p' ; i.e., p'€A. Thus, A contains all its limit

points and is therefore a closed set. Since A is

open and closed and nonempty, and S is connected,

we have A = S. Thus, Pi€A.

SID

Remark . Note that the above proof is entirely

topological. In general topology this theorem states

that a connected, locally arcwise connected space is

arcwise connected.

Now we turn to the important concept of analytic

functions.

DEFINITION 9 . Let S, and S
2

be Riemann sur-

faces, U an open subset of S^ and f a continuous

function from U to S
2

. Then f is analytic if

for every chart cp,:!^ - W^ on S
1

and everv chart

cp 2
-U

2
- W

2
on S

2
, the function cp 2

°f°cp
1

is holo-

morphic (Here and elsewhere when we use a phrase



II 29

like "every chart cp," we mean every chart cpi in

the complete analytic atlas for S,.)

Remark . Since the coordinate transition functions

are holomorphic, to check the analytic ity of f in a

neighborhood of a point Pq€U it is sufficient to

check the analyticity of cp2°f°<?i f° r some chart cp,

in a neighborhood of pQ
and some chart cp 2

^n a neighbor-

hood of f(p ). This remark also immediately leads to

PROPOSITION 2 . In the notation of Definition 9

f is analytic on U if and only if f is analytic

in some neighborhood of each point of U.

Proof is left to the reader.

PROPOSITION 3. If f:SIf f:S, - S2 is analytic and

g:S2 - S~ is analytic , then g°f:S, -» S~ is analytic

Proof : Let p^gS,. Choose a chart cpo:U, - W-,

in a neighborhood of gof(p~). Choose a chart

cpy'.^n ~* ^9 i-n a neighborhood of f(Pr\) such that

g(U2)cUo- Choose a chart cp-pU-j - W, in a neighbor-

hood of p Q
such that f(U-j)<=u

2
. Then



30 II

cp3 °S
ofo

cpi = (cp3
°gocp2 )°(cp2 ofo cp]_ )

is a composition of holomorphic functions and is thus

holomorphic. Thus, g°f is analytic in a neighborhood

of p~ and Proposition 2 shows this suffices.

QED

Examples .

1. If S-, is an open subset of the Riemann

surface C and S
2

= C, then f:S-, - r

is analytic according to Definition 9 « f

is analytic in the usual sense (satisfies

the Cauchy-Riemann equation)

.

2. If S-, = t and f is continuous from a

neighborhood of <= into So, then f is

analytic in a neighborhood of <= » the

function z - f(z~ ) is analytic in a

neighborhood of 0. This follows because a

chart near » on € is the mapping

co(z) = z~ .

3. Likewise, if S
2

= t and f:S-, - c is

continuous in a neighborhood of Pq and

f(Pn) = °°3 then f is analytic in a neighbor-

hood of Pn " T -*-s ana ly t;i-c from a neighbor-
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;

4. An analytic function from a Riemann surface

to C is said to be holomorphic ; an analytic

function from a Riemann surface to C is

said to be meromorphic .

5. Any chart in the complete analytic atlas of

a Riemann surface is holomorphic.

6. Consider the torus C/fi as discussed in 6

on p. 24. Let tt:C - C/q be the canonical

mapping n(z) = [z] . Then n is analytic.

To see this consider <p:U ([z]) - A„ as in

Problem 1. Then in a neighborhood of the

fixed point z we have ep°n(w) = cp([w]) = w-z,

a holomorphic function of w.

7. Again for the torus c/fi considered in 6,

we show that if S is a Riemann surface

and f:C/n - S, then f is analytic

» 3 F:C - S analytic such that

F = fo-rr.

First, if f is analytic and F is defined

this way, then F is a composition of

analytic functions and is thus analytic.
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Now suppose F is analytic and F = fon.

We shall then prove that f is analytic in

a neighborhood of any point fz]^C/Q. Take

cp:U ([z]) - A as in Problem 1. Then for

p€U,([z]) we can write p = [w], where

jw-z| < e and cp(p) = w-z. Thus

f(p) = f(rr(w)) = F(w) - F(z +~,(p)),

and we have exhibited f as a composition

of analytic functions, so that f is analytic

near p
Q

= [z]

.

This example really indicates the importance

of the notion of analytic functions, since

we see that there is a natural identification

of analytic functions on c/fi with analytic

functions F on C which are doubly periodic
,

i.e., which satisfy

F(z+uj
1

) = F(z),

F(z+a)
2 ) = F(z).

When S = c these are the elliptic functions.

For the Riemann surfaces constructed in the
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introduction there are corresponding analytic

functions. For example, consider the Riemann

surface S for log z and the function f

on S corresponding to log z (pp. 3-4).

Then f is holomorphic on S. Likewise,

consider the Riemann surface T for z

and the corresponding function f (pp. 5-6).

Then f is meromorphic on T. This really

follows from 5 above since near the branch point

the function f is a chart and likewise

near the branch point =>, and away from the

branch points the verification is obvious.

9. The analytic functions from c to £ are

the rational functions.

10. The analytic functions from c to C are

the constant functions (Liouville's theorem).

Now we shall develop some general properties of

analytic functions. The main thing to note is the

fact that local properties of analytic functions of

a complex variable usually go over to corresponding

properties in the general case in an obvious and trivial

fashion. For example, we have
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PROPOSITION 4 . An analytic function f:S
1

- S
2

which is not constant on any neighborhood is an open

mapping .

Proof : We must show that if Pn€S-, and u, is

a neighborhood of p^, then f(U-i) contains a neighbor-

hood of fCpj-j). We can assume cp-, : II, - W-, is a chart

for S, and cp2 : U? " w ? a cnart f° r ^9 anc^ f(U-i)cU 9 .

Then ep2 c f°CD-j is a nonconstant holomorphic function

on W-, and by the known property that a holomorphic

function of a complex variable is open if not constant

we see that cpoofocpn (W-, ) contains a neighborhood G

of cp„of(p„). As cp„ is a homeomorphism, this implies

f(u\) contains a neighborhood cp" (G) of f(p
n ).

OED

also, global topological properties of Riemann

surfaces can be combined with local properties of analytic

functions in a decisive manner.

PROPOSITION 5 . If S, is a connected Riemann

surface and if

f :S
X

- S
2 ,

g:S
L

- S
2 ,
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are analytic functions such that f and g coincide

on some set which has a limit point in S-. , then

f =

Proof : Let A = {peS-, : f and g coincide in a

neighborhood of p}. Clearly, A is open by its very

definition. Also, A t 0, for if f(p ) = g(p )

with p
n

- p Q (pn
jt p ), then Pq^A; to see this let

cp
j
_:U

i
- W

i
be charts for S

± , PgCUp f(p
Q
) = g(p

Q
)€U

2
.

Then cp2°f°cp^ and cp^ogocp-, are holomorphic in w\

and agree on a sequence in W, tending to cp-i (p n )<EW, ,

and thus by the known property for holomorphic functions

of a complex variable, cp
2
°f°cp^ and cp2°g°cpT coin-

cide in a neighborhood of cp
1 (p Q

). Thus, f and g

coincide in a neighborhood of p~, and we see that

Pq(=A. A similar proof shows that A is closed;

just use the previous argument with p
ft

taking the

role of a limit point of A. As S-. is connected,

A = S, .

QED

PROPOSITION 6 . If S is a connected Riemann

surface and if f:S - C is holomorphic , then Jf! has

no relative maximum in S unless f is constant.
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Proof : Suppose |f| has a relative maximum at

P :
!

f (p)| £
l

f (P )| for P near Po- Then the

maximum principle for holomorphic functions of a

complex variable implies f is constant in a neigh-

borhood of Pq. Proposition 5 implies f is constant

on S.

QED

PROPOSITION 7 . If f is a holomorphic function

on a Riemann surface minus a point , S - {Pq}j and

if f is bounded in a neighborhood of p~, then f

has a unique extension to a holomorphic function on

S.

Proof: Apply the usual theorem on removable

singularities to show that if cp:U - W is a chart in

a neighborhood of p^, then there is a holomorphic

function g on W such that f°cp = g on

W - (cp(Pfl)}. The extension of f near p« is then

g°cp •

QED

PROPOSITION 8 . If S is a compact connected

Riemann surface , the only holomorphic functions on

S are constants .

Proof : Suppose f:S - C is analytic. Since S

is compact, the continuous function |f| assumes its
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maximum at some point of S. Since S is connected,

Proposition 6 implies f is constant.

QED

Now let us examine in some detail the local pro-

perties of meromorphic functions. Let f be mero-

morphic in a neighborhood of p^. in a Riemann surface

S. If ;p : U - W is a chart in the complete analytic

atlas for S and u is a neighborhood of p~, then

a translation of the set W in C allows us to

assume cp(p n ) = 0. Thus, fo^ is meromorphic in

a neighborhood of in C. Thus, focp" has a

Laurent expansion

-Ik
foco (z) - Z aw z , aN $ 0.

k=N k W

If i|cU-j -• W-, is another chart in the complete analytic

atlas for S, Ui a neighborhood of p~, t(Pr)) = u
>

then cpo^, and its inverse are holomorphic and map

to 0, and thus near w =

<Poi|r "(w) = E c, w , c-. £ 0,
k=l k I

Therefore,
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f o lj! (w) = focp o(po\|( (w)

N N ,

aN
c
l
w +

where the additional terms involve higher powers of

w. Therefore,

-1 k
fo-k (w) £ b,w , b„ ^ 0.

k=N K N

Thus, the number N does not depend on the particular

chart used, but depends only on the function f. It

is called the divisor of f at p~ and is written

n = a f (p ).

There is another integer associated with f

which is perhaps more important. Suppose f is not

constant near p~. If the divisor N of f at p^

is negative, then the multiplicity of f at p« is

said to be -N. Now suppose 3^(p ) £ 0. Then the

multiplicity of f at p~ is the divisor of f - f(Pn)

at Pq. Thus, we have for m^(p ), the multiplicity

of f jat p , the formula
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m
f (p Q ) = -o f (P ) if 3 f(P(P < °»

m
f (p ) = s

f _ f( p o
)(p ) if a f (p > * °-

Thus, rn^Cpj-.) is a positive integer which is completely

determined by f.

In terms of m^p^) we can obtain a simple

representation for f by choosing an appropriate

chart near p„. Thus, let m = m^(p
n ) and consider

two cases:

9f(P(-)) s . In this case the Laurent expansion

appears in the form

foco
_1

(z) = f(p n ) + a z
m + . . . , a 7* 0.v ' VK m ' m

Let a be one of the m— roots of a and note thatm

m . m+1 . m m/T , _ k k>.
a z + am , -, z +...=az(l + E — z ) .m m+1 v

, -. ak=l m

oo fl

Let h(z) be the principal m— root of 1 + E — z
k=lam

near z = 0, so that

foq,-
1
(z) = f(p n ) + (azh(z))

m
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Now define a new chart near p« by the equation

Hp) " acp(p)h(cp(p)), p near pQ
.

Then f is a chart in the complete analytic atlas

for S since the mapping z - azh(z) is a conformal

equivalence near 0; and

f° 1lf~

1
(w) = f°cp"

1
°cp il(~

1
(w)

-1/ N L / ,-1/ nxnUI- f(P ) + (acp i|f (w)h(cp°ilf" (w)))

0'

o-

= f(P ) + UU~ l
(»)))

m

= f (Pn ) + w
ra

.

df(Pf>) < 0. Now the Laurent expansion is

j- -1/ \ -m . 1-m . , f,

*°V (z) = a_mz + ai _mz + ..., a_m t 0,

a,
-m,, 1-m , >.

= a z (1 + z + . . . ) •

-m v a-m

In this case choose a such that a = a and h

-m a
l-m

holomorphic near with h(0) = 1, h(z) = 1 + -——z +a
-m

Then

f°cp" (z) = (azh(z))
_tn
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so a similar argument shows that there is a chart ^

at pn
such that

f o ijr (w) = w

Summarizing, if m = m^Cp^), then there is a

chart y in a neighborhood of p such that

fo*"1 (w) = f(p ) + w
m

if af (p ) > o ,

fo^-i(w ) = w
-m

if a f (p ) < o.

We note that it is easy to prove that

mgof (p ) = m
g
(f(p ))m

f (p ).

DEFINITION 10 . Two Riemann surfaces S, and

S^ are equivalent if there are analytic functions

f:S
l

"* S
2

and §:S
2

"* S
l

sucn tnat f0 § = the identity

on S2 and gof = the identity on S,. Thus, each

mapping f and g is bijective, analytic, and h&s analytic

inverse

.

It is routine to check that we have defined an

equivalence relation. Note that equivalent Riemann

surfaces are homeomorphic. The converse is not valid.

We shall see that among the tori c/Q constructed in
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6 on pp. 23-25 there are infinitely many nonequivalent

Riemann surfaces. However, if a Riemann surface is

homeomorphic to fc, then it is equivalent to t

with its usual complete analytic atlas. This will

be proved in Chapter VII.

Here is perhaps the simplest example of two

homeomorphic nonequivalent Riemann surfaces. Let

S-, be C with the usual analytic atlas. Let

A = {z:|z| < 1} and define a homeomorphism cp : C - A.

E.g.,

cp(z) =

A+|z| 2

Let A have the usual analytic atlas and define S^

to be the Riemann surface induced on C by the homeo-

morphism cp, as in 3 on p. 22 • In other words,

S~ has an analytic atlas consisting of the single

chart cp . Then S-, and S~ are not equivalent. For

suppose f:S-, - S
?

is analytic. Then by definition

"o°f is a holomorphic function from C to A and

is therefore constant by Liouville's theorem. Thus,

f is constant.
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We wish to consider a final feature of analytic

functions. Suppose S and T are Riemann surfaces

and that f:S -* T is analytic. If qcT we say that

f takes the value q n times if f~ ({q^) = (p-i»-.-P, 1

is finite and

I
I m

f (pk ) = n
k=l

(thus we are counting "according to multiplicity").

If f ({q}) =0 we have n = 0. If this situation

occurs, then there are charts :pi,:U, ~ W, in the

complete analytic atlas for S with p, pU, and a

chart cp:U - W in the complete analytic atlas for

T such that the collection of sets fU, } is disioint

-1 m
f^ pk'and cp°f°cp (z) = z for zcW, . By diminishing

k
k

the sizes of the U, (if necessary) we can also

assume that each U. is contained in a compact set

in S. Also, the explicit form for cpofo^" given

above shows that there exists a neighborhood V of

q such that the restriction of f to U\ takes

each value in V exactly m.p(p, ) times. Therefore,
I

the restriction of f to U U, takes each value in
k=l R

V exactly n times. Using this background information,
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we can prove

PROPOSITION 9. Let S and T be Riemann surfaces

and f:S - T an analytic function which is not constant

on any neighborhood ,

1 . If S is compact and T is connected , then

f takes every value in T the same number

oft ime

s

. Also , it follows that T is compact .

2 . If f takes every value in T the same (finite)

number of times , then f is proper . I.e

.

,

^-1
f of any compact set is compact . In parti

ular , if also T is compact , then S is compact .

Proof : The rest of the proof is just topology.

Assume the hypothesis of 1. Since f(S) is a

continuous image of a compact set, f(S) is compact.

Since T is Hausdorff, f(S) is closed. Proposition

4 implies f(S) is open. Since T is connected,

f(S) = T. (Thus, T is itself compact.) If f takes

any value infinitely often, then since S is compact

there is a limit point in S of the set where f

takes this value, and Proposition 5 implies f is

constant in a neighborhood of this limit point. Thus,
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f takes every value q in T a finite number N(q)

times. Now we use the argument just preceding this

proposition with no change in notation. Since f

does not take the value q on the compact set
I

S - U U, , there exists a neighborhood G of q such
k=l K

i

that the compact and thus closed set f(S - u U, ) is
k=l K

disjoint from G. Thus, the restriction of f to
I

U U takes each value in VnG exactly N(q)

times, and outside u U, f takes no value in
k-1 k

VnG. Thus, N(q') = N(q) for q'^VflG. Thus, the

integer-valued function q -• N(q) is continuous on

T. Since T is connected, N is constant and part

1 ic proved.

Now we prove 2. Let f take every value in

T n times. If q^T, the analysis preceding the

proposition again shows that f takes each value
I

in V exactly n times in U \J.. Therefore, by= k=l
hypothesis f

-1
(V) c U Uv . Therefore, f

_1
(V) is

k=l
k

contained in a compact set in S since the U. 's

are contained in compact sets in S. If FcT is

m
icompact, then Fcyv., where f _i (V.) is contained

j=l J
,

J

in a compact set in S. Thus, f" (F) is contained in

a compact set S, and since f~ (F) is closed, it is

compact.

QED
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Chapter III

THE WEIERSTRASS CONCEPT OF A RIEMANN SURFACE

In this chapter we shall consider the process of

analytic continuation and obtain the Weierstrass defi-

nition of analytic function. As we shall see, a concise

language can be given to this process which brings us to

construct a Riemann surface as a replacement for

("multiple-valued") analytic function.

The basic idea and the basic difficulty have been

indicated on p . 1. Given a holomorphic or even a mero-

morphic function defined on an open set, we want to extend

it as far as possible and somehow take care of the multi-

ple-valuedness that arises

.

What we shall basically consider is analytic con-

tinuation along paths. First, we shall describe the clas-

sical concept and then we shall fix everything up with

lots of notation so that we end up with a Riemann sur-

face and so that the problems of analytic continuation

go over into statements about topological and other prop-

erties of Riemann surfaces. Analytic continuation is

classically considered in the following way: suppose f

is meromorphic in a disk A and has a Laurent expansion

about the center a of A converging in A:
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f(z) = I a (z-a)
k

, z 6 A,

k=-» K

If b € A, it then makes sense to consider the Laurent

expansion of f about b. This can be done in at least

two ways ; we can write

(z-a)
k = (z-b + b-a)

k

- (b-*)
k
(l + B^)

k

n
= (b-a)

k
E & &=&

n=0
'n

(b-a)
n

by the binomial theorem, and then we insert this into

the formula for f, rearrange terms (permissible if z is

near b) , and thus obtain for b * a a Taylor series ex-

pansion for f in a neighborhood of b. The other proce-

dure would be simply to write

°° f(
n)rM n

f(z) = S
r

,
^ (z-b)

11
, z near b

n=0 n -

If it so happens that the new series has radius of con-

vergence larger than the distance from b to the boundary

of A, we then have what is termed a direct or an immediate

analytic continuation of f. Taking the new function in

the new disk, we can again apply this process, etc. We

can thus arrive at a "sequence A-. ,Ao,... of disks and cor-

responding meromorphic functions f,,f ,-,,... such that
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f , is meromorphic in A, ,

the center of A, belongs to A, , ,

f, is a direct analytic continuation of f^-i •

Our first adjustment of this process will be to ignore

a definite procedure for direct analytic continuation.

Thus, instead of considering f, to be constructed from

f by a definite process, we shall just require

f, , = f, in A, , fl A, - Also, there is then no reason

to require the center of A. to be in A, -. .

DEFINITION 1 . Let y: [0,1] - C be a path. An

analytic continuation along y 1S a collection of disks

A-, ,A , . . . ,A and meromorphic functions f, , f „ , . . . ,*f
i z n i z n

such that

f, is meromorphic in A, ,

f
k-i

H f
k

in Vi n A
k'

and such that there exist = t n<t,<...<t = 1 with
1 n

Y([tk-l
5t
k ]) c Ak 5 k = lj2 ,n.

We clearly wish to consider all possible analytic

continuations along paths , usually starting with a given

meromorphic function f, in a given disk A-, . This will

define a meromorphic function f in A , but the valuer n n'

f (y(l)) is not in general independent of y, so that we

cannot in general define a meromorphic function in C
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which extends f -, . For example, if

A
]
_

= {z: lz-lj < 1}

and f, is the principal determination of z 2 in A,

f (z) = (l+(z-l))^ = A(z-l)'
1 n=0 n

then analytic continuations along paths from 1 to -1

definitely depend on the path. Consider the figure

analytic continuation along

Y-, yields a holomorphic func-

tion near -1 whose value at

-1 is i; but analytic con-

tinuation along Yo yields

the value -i.

These statements are trivial to justify since we can

write z = re 1
- with -rr < 6 < n (except on the negative

real axis) and then z 2 = r 2e . Along y-i 8 increases

to n and along Yo B decreases to -rr , and thus the two

different values at -1 result.

Therefore, if we wish to define some meromorphic

function which is a largest possible analytic continua-

tion of f, , or which is derived from f-, by analytic

continuation on all paths for which continuation is
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possible, we shall have to have something other than C

on which to define the extended function. So we now

begin to introduce the Riemann surface on which these

continuations will be defined.

By the principle of the uniqueness of analytic con-

tinuation (p. 1) , it suffices to know the original func-

tion in an arbitrarily small open neighborhood. Such a

"germ" of a function uniquely will determine the function

everywhere. So we make the following definitions.

DEFINITION 2 . Let a € C and suppose f and g are

functions which are meromorphic in neighborhoods of a.

Then f is equivalent to g, written f ~ g, if f = g in

some neighborhood of a.

Clearly this is an equivalence relation, and we

then make the following

DEFINITION 3 . Let a £ C. Then M
a

is the collection

of equivalence classes of functions meromorphic in a

neighborhood of a. Any element of M is called a germ

of a meromorphic function . If f is a meromorphic function

in a neighborhood of a, then [f!a is the germ to which f

belongs. We say Tf] is the germ of f a_t a.

Bv definition, [f]_ =
f g 1 *» f = g near a.
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DEFINITION 4. M = U M . We also define the=== a€C a

obvious mapping tt: M - C by n([f] ) = a.

Below we shall make M into a topological space in

a natural way and then M will be called the sheaf of germs

of meromorphic functions , and M the stalk over the

point a.

We shall define a topology on M by exhibiting a

neighborhood basis for each point in M. Simple con-

siderations then show that if we define a set in M to

be open if it contains one of these special neighbor-

hoods of each of its points , then the class of open sets

in M forms a topology for which each point has the given

neighborhood basis as a basis of open neighborhoods in

this topology if the given neighborhood bases satisfy

the following conditions:

1 . any two neighborhoods of a point contain

a third neighborhood of that point;

2 . any neighborhood contains a neighborhood

of each of its points

.

Furthermore, the topology of M is Hausdorf

f

if also

3. any two distinct points of M are contained

in disjoint neighborhoods.

The topology on M . Suppose [f]„ € M. Then there

exists a disk A centered at a such that f is meromorphic
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on A. Define

U(a,f,A) « {Cf]b : b€A}.
J

A neighborhood basis of [f!L is defined to be all sets

U(a,f,A) such that f is meromorphic on A. Although

the definition is quite simple, we have already in-

corporated into it the notion of direct analytic con-

tinuation, for the definition states that the germs "close"

to [f] are just the germs of the function f itself at

points close to a. Now we check the various require-

ments for neighborhood bases:

1. U(a,f,A
1 ) n U(a,f ,A

2
) z>u(a,f,A

3 )

if a c A-, n Ao ;

2. suppose [f], € U(a,f,A). Then let A' be

a disk centered at b such that A ' c A , and

note that

U(b,f ,A') c U(a,f,A) ;

3. now we check that M is Hausdorff . Suppose

that Tf]„ and [g]_ t are distinct points in

M. If a 4 a ' , then take L and A' to be



Ill 53

disjoint disks centered at a and a',

respectively, and note that U(a,f,A) and

U(a',g,A') are obviously disjoint. If

a = a', then choose a disk A such that f

and g are meroraorphic in A. Then U(a,f ,a)

andU(a,g,A) are disjoint. For otherwise

there would exist a point r f]^ = _gJw f°r

some b c A, and thus f = g in a neighbor-

hood of b. By the uniqueness of analytic

continuation, f = g in A , contradicting

[f]a - [gl a
.

Now M is a topological space. Note how much information

is contained in the statement of the validity of the

Hausdorff separation axiom--namely , this property re-

flects the uniqueness of analytic continuation.

M is a surface. The charts are almost obvious.

Just use the mapping tt restricted to the various neigh-

borhoods U(a,f,A). Suppose we call cp the restriction of

tt to U(a ,f ,A) . Then

cp: U(a,f,A) - A

is given by cp([f],) = b, and cp" (b) = [f]v. Thus, cp is

a bijection. Also, if U(b,f,A') cTJ(a,f,A), then clearly

cp(U(b,f,A')) - o'.
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Thus, rp induces a one-to-one correspondence between a

neighborhood basis of [flL and a neighborhood basis of

-u(rf], ) = b. Thus, cp is a homeomorphism. This proves

that M is a surface.

Moreover, we now have a nice atlas on M and we

claim it is an analytic atlas and thus

M is a Riemann surface . Suppose cp is the restriction

of tt to U(a,f,A) and ,) is the restriction of rr to

U(b,g,A')« If z € A and ^p" 1 (z) £ U(a,f,A) n U(b,g,A'),

then x~ (z) = [f] = [gl , and thus vlr (cp~ (z)) = z. Thus,

where it is defined we have

il/o cp = identity!

The coordinate transition functions are thus trivially

holomorphic and M is a Riemann surface.

The mapping rr:-M - C is holomorphic. This really

needs no checking at all, since n restricted to any neigh-

borhood u(a,f,A) is a chart in the analytic atlas we have

constructed, and such charts are always holomorphic

(p. 31, no. 5).

Problem 2 . Define V: M - C by the formula

V([f]
a ) = f(a).

Prove that V is meromorphic

.
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Thus , we have two meromorphic functions n and V on

M which are quite natural and simple functions to con-

sider. We shall in the next chapter define an extension

of M which is quite a bit more complicated, and again

will be able to single cut two natural meromorphic func-

tions , which we shall again designate n and V. In

that context these functions will appear very much alike,

although on M the function rr seems to be somewhat simpler

than V.

In terms of M we can give a characterization of

analytic continuation along paths (see Definition 1)

.

PROPOSITION 1 . Let [f]
fl

€ M be given , and let y

be a path in C starting at a . A necessary and sufficient

condition that there exists an analytic continuation

along y with f, = f in a disk A, containing a (using

the notation of Definition 1) is that there exists a

path y in M such that

TToy = Y,

y(0) = [f]
a

.

Proof : The necessity is quite clear. Using the

notation of Definition 1 we define

<*>
= [f

k ] v(t) Vl * * * tj
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Since y(t
k_ ±

) £ ^.-^ and f
fc-1

, f
fc

in ^_^\, we

have [f
k. 1 3

Y(tk_ i)
= Cfk 3

Y(Vl>'.
ThUS

'
Y ^ Unam"

biguously defined, and clearly n(y(t)) = y(t),

y(0) = [fi],/
fi
\ = Lfla - The continuity of y is im-

mediate from the definition of the topology of M and

the continuity of y.

The proof of sufficiency relies on a compactness

argument. The continuity of y and the definition of the

topology of M show that for each t € [0,1] there exists

an open interval I (open relative to [0,1]) containing

t and a meromorphic function f defined on a disk ^

centered at y(t) such that

y(l t ) c U(y(t),f
t
,A

t ) = U
t
c M.

The compactness result we need is that there exists

<: > such that any interval in [0,1] of length not

exceeding z is contained in some one of the intervals

I . The proof proceeds in the following manner. For

each s € [0,1] there exists r(s) > such that

r0,l]n(s-r(s) ,s+r(s)) c l
g

.

As [0,1 J is compact, there exist points s,,...,s, such

that

k
[0,1] c U (s.-%r(s.),s.+%r(s.)).

T=l J J J J

Let e = minfr(s.): lsj^k}. Then if x € [0,1] choose j

such that |x-s .
|
< %r(s.). If |y-x] £ \ rZ }

then
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y-s.
|

£ |y-x| + |x-Sj| < %s+%r(Sj) < r( Sj )

so

y € (s -r(s ),s +r(s )) c I .

J j J J ° A

Thus
,

[0,1] n [x-% e ,x+%e ] c I ,

j

as required.

Now choose points t«,...,t such that = t <t,<. . ,<t

= 1, t,-t, , ^ e, 1 ^ k ^ n. By choice of e, the inter-

val r t, i ,t, ] is contained in some set I constructed
" k-1' k T

k
above. Thus, we are given a collection of disks A and

T
k

meromorphic functions f on A , and we have to check
T
k Tk

that we have thereby obtained an analytic continuation

along y- Since v(lt, _, ,t, ]) c y(I ) <= U , we obtain

Y([tk. ls tk 3) = n(Y([Vl ,tk])) c nCU^) - A^ .

If z € A HA , then the corresponding points in
T
k-1 Tk

U and U are [f ] and [f ] , respectively.
Tk-1

T
k Tk-1

z Tk
z

In particular for z = y(t, _, ) we have

k-1 k

so that f = f in a neighborhood of y(t, -, ) , and by
Tk-1 Tk •

tc
~ i

analytic continuation f s f in A P, A Finally,
Ik-1

T
k Tk-1 Tk

it is clear that since y(0) = [f] , we have f = f in



58 III

A, f. A , so the analytic continuation along y which

we have constructed begins with the given meromorphic

function f in a neighborhood of a.

QED

DEFINITION 5 . If y and y are paths into C and M,

respectively, such that y = tto y > then v is said to be a

lifting of y

.

PROPOSITION 2 . "The uniqueness of analytic con-

tinuation" (Topologically speaking, "The unique lifting

theorem") . I_f y-i and y? are paths in M such that

He y-, = no \„ , then either

Yx
(t) = Y

2 ( t ) for every t € [0,1] ,

or

Y 1
(t) = Y

2 ( t ) for no t € [0,1] .

Proof : Let A = [t€[0,l]: Yx
(t) = Y 2 ( t )}- BY con_

tinuity of y-, and v-, A is a closed set. It is also an

open set, for consider any t~ € A. Let a = noy-(tn) and

y.(t n ) = [f]„. Then f is meromorphic on a disk A centered
l u a

at a and a neighborhood U(a,f,A) of [f]a is defined. By

continuity of y •
, Y-(t) i- s contained in U(a,f,A) for t

sufficiently near t^ and thus for those values of t

viw - r fv;l(t )
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and since tto y-, - tt°Y
2
we obtain y-,(t) = Y

2
(t), or, t€A.

Since A is both open and closed and [0,1] is con-

nected, we have either A = [0,1] or A is empty.

QED

Thus , although in the sense of Definition 1

analytic continuation is not a uniquely defined con-

struction (since different choices could be made for

the t, ' s and the disks A,), yet viewed as a lifting

problem we do have a strong uniqueness statement.

Moreover, we see now that the natural choice we have

used in the proof of necessity of Proposition 1 was

really forced upon us . There was no other way to

choose y(t)

.

This discussion definitely does not imply that

the unique continuation property along paths leads to

a germ at the end point of the path which is uniquely

determined by the end point. The discussion on p . 49

makes this clear. In terms of the example of the

square root mentioned there, observe that if f-, is the

J.

principal determination of z 2 near 1 and if y is the

path y(t) = e , 0^t<L
}
then y can be lifted to a

path y such that y(0) = [f-jL, but y(l) = [-£-,]•,• Thus,

y(0) i v(l) , although y(0) = y(1). Another way of

stating this is that rf-,]-, and [-f, ], are "far apart"

in the topology of M, and yet both lie in M-, and can

be connected by a path in M.
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Now we begin to prove the famous "monodromy

theorem," which essentially states that the phenomenon

just discussed cannot occur on simply connected regions.

A consequence will be the fact that on any simply con-

nected region in C which does not contain the origin

one can define a (single-valued) analytic determination

1 /m
of z ,l°g z > etc. First we introduce the notation

I = [0,1] ,

I
2

= [0,l]x[0,l] .

2LEMMA 1 . Let f: I - C be continuous , and let

2
P: I - M satisfy nor = 7.

Assume that for each fixed u t I, r(t,u) is a continu-

ous function of t; and also that r(0,u) is a continuous

function of u. Then T is continuous .

Proof : This follows in a purely topological man-

ner from the unique lifting theorem (Proposition 2) and

the description of lifting in terms of analytic continua-

tion given in Proposition 1. Let € I. We shall then

prove that there exists e > such that T is continuous

on I x (In(a-.;,H;)), and the lemma will then be proved.

For each fixed u define for t € I

vu
(t) = :(t,u)

,

vu
(t) = r(t,u) .

Then v and v are continuous and no v = v • Now we
u u u u
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apply Proposition 1, which guarantees the existence of a

collection of disks A-.,..., A , meromorphic f, defined in

A, , l^k^n, and points t, such that = t A<t-,< . . .<t = 1
k' '

r k 1 n

and

Ys^Vl'^ C Ak »

f
k-l

s f
k

°n Ak-1 n A
k >

and

7
3
<t) = Cfk ]

YB ( t) , Vi^^k •

the latter choice being forced as follows from the proof

of Proposition 1 and the unique lifting theorem. Note

that we have fixed 3 and applied Proposition 1 to the

paths v and y„.

Since r is uniformly continuous, there exists e-. >

such that

Yu^ tk-l' tk^ c A
k

if
'

u~ 6
'

< G
l '

u€I

(recall that Ai is an open disk). Also, since r(0,u) is

a continuous function of u, there exists e„ > such that

7(0, u) 6 U(a,f
1
,a

1 ) if
|
u- 3 ' < e

2 ' u€I

(a = center of A-,). Thus, if e = min(<r-| , s
? ) ,

vu (0)
« [f^

(0)
if |u-p| < , , u€I.
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The unique lifting theorem now implies that

YU < t >
= [f

k 3 Y„(t) Vlit$t
k

|U" 9 I°
'
U€I

That is

,

ii

r(t,u) = [f
k] r(tjU: > t. , ^t^t. , |u-3 |<€ , u6I,

i) ' k-1 k '

But the continuity of I"(t,u) in the indicated range im-

plies that of r(t,u) in the same range.

QED

DEFINITION 6 . If T is a topological space and

Yp : I - T and y-i : I -» T are paths in T having the same

end points , then Yq and y-i are homo topic with fixed end

p oints if there exists a continuous

2
r: I - T

such that

r(t,o) = Y (t)
,

r(t,i) = v
1
(t) ,

r(o,u) =
y (0) = Yl (0) ,

r(i,u) =
y (i) = y

x
(i) •

The function T is called a homotopy between Yn an<^ y, .

If there is possibility of confusion we will say v and

Y-i are T-homotopic with fixed end points .
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DEFINITION 7 . A connected topological space T is

simply connected if each pair of paths Yn and y-i i-n T

having the same end points are homotopic with fixed end

points

.

Now we can state various trivial consequences of

Lemma 1

.

2Covering Homotopy Theorem . Let F: I -* C be a

homotopy in C and let p € M such that rr(p) = r(0,u)

(O^u^l) , and suppose for each u € I the path t - ^(t,u)

can be lifted to a path in M starting at p , say F(t ,u)

,

so that

nor = r .

Then r is a homotopy in M.

Proof : For each u t I the function t -. r(t,u) is

continuous, by hypothesis. And 7(0, u) = p is constant

and thus a continuous function of u. Therefore, Lemma 1

implies F is continuous. Finally, consider the two

paths

Y(u) = ?(l,u)
,

Y '(u) = f(l,0) .

We then have

Y(0) = y'(0)
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and

ttoy(u) = r(l,u) = r(l,0) = uoy'(u).

Thus Proposition 2 implies y = y'- That is, r(l,u)

= 7(1,0), and thus r is a homotopy.

QED

Monodromy Theorem . Let D be a simply connected

region in C , a € D , and f a meromorphic function in a

neighborhood of a . Assume that f has an analytic con-

tinuation along every path in D which starts at a . Then

there exists a meromorphic function F on D such that

f = F in a neighborhood of a

.

Proof : The hypothesis means that for every path y

in D such that y(0) = a, there exists a path y in M such

that r,o y = y and y(0) = Lf]a . If Yq and Yn are paths

in D from a to z , then y- and y-i ar e D-homotopic with

fixed end points , and by the covering homotopy theorem

the paths Yn an<3 y-i are homotopic with fixed end points;

in particular, v n (l) =
y-, (1) . Thus, we can define un-

ambiguously

F(z) = V(y(1))
,

where y is a path in M such that y(0) = [f]a
and no y is

a path in D from a to z . Now we must check the properties
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of F. First, suppose y(1) = l"g] , where g is holomorphic

in a disk A centered at z. For w € A we use the path

which goes from a to z along y and then from z to w

along a line segment. The lifting from a to z is y

and the lifting from z to w is just the germ of g at

points on the segment from z to w. Since F is unambig-

uously defined, F(w) = V([g] ) = g(w) . Thus, F is mero-

morphic in A and this proves F is meromorphic in D. In

particular, if z = a we can take g = f and we obtain

F(w) = f(w) for w near a.

QED

One application of the monodromy theorem has al-

ready been mentioned. Namely, on a simply connected

region D c C - {0} , there exists a holomorphic deter-

mination of log z. The only hypothesis which needs to

be checked is that log z can be analytically continued

along all paths in D. This can be verified in a simple

manner, but we omit the proof now since a slightly dif-

ferent version of the same result will be given in the

discussion of algebraic functions in Chapter V.

We next want to give an example pertinent to the

monodromy theorem, but we shall first give a rather

simple but important theorem on analytic continuation,

the so-called "permanence of functional relations."

This is a generalization of a familiar result on single-

valued functions , an example of which is the fact that

the identity sin 2z = 2 sinz cosz follows from its
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validity for real z and the analyticity of all the

functions involved. The theorem we shall give is

really a generalization of usual theorems on unique

analytic continuation because we are not here dealing

with single-valued functions. Also, a more general

theorem could be stated.

Permanence of Functional Relations . Let A(z,w)

be a holomorphic function for z in a region D c C and

all w f C . Let y be a path in M such that y = no y is

a path in D and each t t I yields y ( t ) = [

f

t ] , t v

,

where f is a holomorphic function in a neighborhood

of v(t). I_f A(z ,f„(z)) = in a neighborhood of y(0),

then for each t <E I, A(z,f (z)) = in a neighborhood

of Y (t).

Remark . We have not given a definition for a

function A to be holomorphic in two complex variables.

One definition states that for any (z ,w ) in the do-J N o o

main of definition of A , A has a power series expansion

i kA(z,w) = i a ,(z-z )
J (w-w )

j ,k=0 JK ° °

converging absolutely for z near z and w near w . The° ° J o o

important property we need is that if f is a holomorphic

function of one variable near z , then A(z,f(z)) is holo-

morphic for z near z . For the most important case we

shall consider this is quite obvious; namely, the case
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in which the function A(z,w) is a polynomial in w with

coefficients holomorphic functions of z:

A(z,w) = a
Q
(z)w

n
+. . .+a

n _ 1
(z)w+a

n
(z)

.

Proof : Since f is holomorphic near y(t), the

function A(z,f (z)) is holomorphic near y(t) and thus

defines a germ at v(t) which we denote

Yx
(t) = [A(z,f

t
(z))]

v(t)
.

Since «(t) = [f^] /. N , it follows that v
n is a path inv ' <- t y(t) ' 1

M (i.e., y-i i s continuous) and obviously n y-i = Y-

Also define

VZW =
[ ° ]

Y(t)
•

Then Yo is a path in M with ^=Yo =
Y- By hypothesis,

Y-i (0) = Yo(0). Thus, Proposition 2 implies y-, = Yo and

this implies the result.

QED

Before giving the example, let us make one important

observation about analytic continuation. This is the

fact that if two germs at a point a are different, then

they remain different under analytic continuation along

any fixed path. This is another consequence of Proposi-

tion 2, which in this" case would read that if

Yx
(l) = y

2
(1), then y

x
(0) = y 2

(0). Also, if [f\
&

is a
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germ at a and if f can be continued analytically along

every path in a region D and if the continuation of f

depends only on the terminal point of the path and not

on the path itself, then there is a meromorphic F

defined in D such that F = f near a. The proof of

this is exactly like the proof of the monodromy the-

orem was once we knew that analytic continuation did

not depend on the path (see pp. 64-65).

The monodromy theorem has of course two critical

hypotheses. We have already indicated the reason for

assuming D is simply connected, and now we shall ex-

amine the other main hypothesis, that f has an analytic

continuation along every path in D. Note especially

that the hypothesis does not state that f can be con-

tinued analytically to each point of D along some path

in D. We shall now give an example to refute such a

possibility for a weakening of the hypothesis of the

theorem.

This example will be the Riemann surface for the

"inverse" of the function G(w) = w -3w, and the analytic

continuation process will reduce to finding paths on

2
the surface. As G'(w) = 3w -3, the inverse function

theorem of complex analysis will apply if w = 1 and

w i -1. Since G(l) - -2 and G(-l) = 2, we conclude

that if G(w ) = z f ±2 , then there exists a unique

holomorphic function f in a neighborhood of z such
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that G(f(z)) = z near z and f(z ) = w . But for each

z ^ ±2 there are three distinct corresponding values

of w and thus three distinct solutions f of G(f(z)) = z

defined near z . We shall make this multiple-valued
o r

correspondence z - w into a single- valued function on

an appropriate Riemann surface by the technique of the

introduction, even though we no longer possess an

explicit formula for w in terms of z. Thus, we select

three copies of the z-plane cut along the real axis

from 2 to °= and from -2 to »:

Each of these slit planes is

simply connected, so the mono-

dromy theorem applies to show

^ '_y k a that in each plane we can

define a global solution f

to the equation G(f(z)) = z

and f is holomorphic in the

slit plane.

In order to accomplish the corresponding gluing we must

see what happens to these functions at the slits. So

we wish to examine carefully the values of w corresponding

to real z such that 2<|z|<=°. To do this we introduce

coordinates z = x+iy, w = u+iv and compute from

3
(u+iv) - 3 (u+iv) = x+iy .

We find
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u - 3uv - 3u = x
,

3u v-v -3v = y .

1) = 0.Along the slits we have y = 0, or 3v(u - -^

2 v
2

Thus, v = or u - -«- = 1. This locus in the w-plane

looks like the real axis and a hyperbola:

x<-2

x>2 f

;X<-2

3For v = we have x = u -3u. Thus, x>2 « u>2 and

x<-2 « u<-2, as one easily sees by considering the

graph of u -3u. For u - ->r- = 1 we have

3 2 -3
x = u -3u(3u -3)-3u = -8u +6u. Again, it is easily

seen that x>2 <=> u<-l and x<-2 » u>l.

Now we distinguish three regions in the w-plane:

?
2

A = {(u,v): u-^>l, u>0] - f(u,0): 2^u<»]
,

9 2
o r / \ 2 V n ,

B = i(u,v) : u -^ <1] ,

2 v
C = {(u,v): u -^ >1, u<0] - {(u,0): -<^u^-2]
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Then one easily sees that the function G maps A ,B , and C

each onto a copy of the z-plane, cut as described. Sup-

pose we use three copies of the z-plane, labeled C» , CR ,

and C p . In order to see how these should be glued along

the cuts, we just need to check the sign of y near the

boundaries of A,B, and C in the w-plane. This is in-

dicated in the figure.

/

/ y>0

y<0

o / 2 v
y = Jv(u T D

w-plane

Now we can easily indicate the method of gluing the

planes CA
,C

B
,C

C
:

-2 2

\
\

•2 2 2 2
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Note in particular that the cuts from 2 to °° in C. and

from -2 to m in Cr
can now be erased. This is the

basic reason this example has been introduced . "Over"

the point z = 2 lie two points of our Riemann surface,

one a branch point, the other not. Likewise for z = -2.

Now we have a function f defined on this Riemann

surface which represents all the solutions of G(w) = z

for any z. Now suppose we start at z = with the

solution f of the equation G(f (z)) = z near z = 0,

f (0) = 0, f holomorphic . Given any complex number

a, there is some path y from to a along which f has

an analytic continuation. If a * ±2, one can indeed

go along any path from to a which does not pass through

±2. If a = 2, use the path:

Y

Here is the reason. The start-

ing point corresponds to z = 0,

(
\ "w = and thus to the origin in

\ -2 "'*2 cr* In order to get to the point

^.^^"-^ 2 in C. (where this is not a

branch point) , we pass through

the cut joining CR
to C .

.

Likewise, if a = -2, use the path

V
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But the conclusion of the monodromy theorem fails.

Otherwise, by the permanence of functional relations

there would exist a function F holomorphic in all of

C such that G(F(z)) = z, z € C. It is rather clear

that this cannot happen since by its very nature the

relation z - w must be multiple valued. A direct

proof would be this . Since F - 3F = z , we have

F(z) - » as z - <=. Thus, F has a pole at °> and so

the Laurent expansion of F at « shows that F(z) = az

+ . . . (smaller powers of z) , where a 4 and n is a

positive integer. But then F - 3F = a z + ...

and there is no way this can behave like z near ».

We shall return to this example in Chapter V,

where algebraic functions in general are treated. But

it should even be noted here that the branch point 2

lying in C and C„ and the branch point -2 lying in

C. and CR
can be added to the surface in the way

described in Chapter 1, and likewise * in C«,CR ,
and

Cr can be added, all three sheets being joined there.

The resulting surface is a Riemann surface and the

function f on it corresponding to the mapping z - w is

meromorphic. Also, f is easily seen to be one-to-one

since the inverse mapping w - z is single- valued. There-

fore, since f is also onto, f is an analytic equivalence
A A

with f, so this Riemann surface is equivalent to C.
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Theorem of Poincare and Volterra. Let S be a

connected open subset of M. Then for any a € C the

set

{[f]
a

: [f]
a

€ S] = S n TT

-1
(a)

is countable or finite

Proof : Since S is connected we can consider some

fixed [gJ-u £ S and then note that each element of

S n T7 (a) can be connected to [g!L by a path y in S
,

by Proposition 1 of Chapter II. That is, if y = rr° y j

then analytic continuation of g along v results in f

,

if [f]„ is the point we are considering. By Propo-
3.

sition I it follows that if y' is another path such

that for a sufficiently small e>0

lY'OO - Y (t)|< e , 0^1 ,

then [g] //q\ can be analytically continued along y ' and

the resulting germ is [f] / ,-. x. We have again appealed

to the unique lifting theorem and the argument used in

the proof of Lemma 1. Now there is such a \ ' with

initial point b and terminal point a, such that y' is

a polygon with vertices (except for a and b) at rational

complex numbers (i.e. , complex numbers whose real and

imaginary parts are both rational) . Thus , S " n (a)

consists of germs [f]_ which come from analytic con-

tinuation from [g]v along paths which are polygons with
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rational vertices . There are only countably many such

paths so the theorem is proved.

QED

Of course, the example which is immediately sug-

gested by this theorem is the Riemann surface for log z,

which has countably many sheets. In the language of

germs, we have over a point a 4 0,°=, the germs

[log z + Zn^ri] , where log z represents an arbitrary

determination of the logarithm near a , and n is any

integer

.

DEFINITION 8 . Let f be a meromorphic function in a

neighborhood of a point a € C. The Riemann surface ( in M)

of f is the component of [f] in M.

Here we have used a topological word "component,"

which by definition is a maximal connected set--a con-

nected set contained in no strictly larger connected set.

Since M is a surface, in this case the component containing

[f] (the component of ^f] ) is the collection of germs
a.

~~~ a.

which can be joined to [f] by a path (in M)

.

For example, the Riemann surface of any determination

of z near a point a £ consists of all germs [f]^

such that f(z) = z near b, b ± 0. By the permanence of

functional relations "all the germs in this Riemann sur-

face must satisfy this identity, and we thus need only
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verify that any germ satisfying the identity can be

joined to any other such germ. This can of course be

easily checked directly, but an argument will be given

in Chapter V for a general theorem along these lines.

There is an obvious deficiency in the Riemann

surface for z . Namely, the branch points and ro

are missing. This situation is true in general for M--

it has been constructed without branch points (a phrase

which we haven't even yet defined), and also it does not

contain germs of functions meromorphic at °°. The latter

is not a serious omission and indeed we could have con-

sidered from the start germs of meromorphic functions

on any fixed Riemann surface. But in the next chapter

we shall construct a Riemann surface which contains M

in a very precise sense and has all the branch points

and also the germs at ». Then we shall give a satisfac-

tory definition of the Riemann surface of a meromorphic

function, replacing Definition 8.



IV 77

Chapter IV

BRANCH POINTS AND ANALYTIC CONFIGURATIONS

Before going to the definitions we give some

motivating thoughts. The basic thing we want to do

is give up the special role played by the independent

variable. So consider [f] . This germ of course is

determined by a meromorphic function f defined

near a, the correspondence being written z - f(z).

We could also consider z as depending on a complex

parameter t and write for example a + t - f(a + t)

as the correspondence, where now t is near zero.

But also we could write a + sin t - f(a + sin t),

3t 3t
or a + e - 1 - f(a + e - 1), etc. All these

would be legitimate representations of f because

the correspondence t - z indicated in each case

is a conformal equivalence of a neighborhood of t =

onto a neighborhood of z = a. Thus, in general we

could consider a pair of meromorphic functions

P(t) = a + p(t),

Q(t) = f(a + p(t)),

where t is a conformal equivalence of a neighborhood

of onto a neighborhood of 0. Thus, each small
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parameter value t corresponds uniquely to a value

of z (=P(t)) near a and the corresponding value

Q(t) of f. We would not like to allow a representation

of the form

P(t) = a + t
2

,

Q(t) = f(a + t
2
),

however. The reason is basically because two different

values of t can give the same value of P. However,

the thing that is really wrong here is that two dif-

ferent values of t can give the same value both of

P and of Q. This will be an important observation

in our preparation for the definition.

Now consider the Riemann surface in M for the

function z
' m

. This consists of germs [f] , a^O,

such that f is some determination of z near a.

So we have a representation

P(t) = a + t,

Q(t) = (a + t) (some determination),

for t near 0. Suppose Q(0) = a so that a is

one of the m— roots of a. Then

a new parameter t by the equation

one of the m— roots of a. Then we can introduce



IV 79

a + t = (a + T)
m

In fact, -t—(t=0) = ma ^ 0. Thus, we can also re-

present [f] by the pair of functions

P^t) - (a + r)
m

Qt(t) - a + t

In our desire to obtain a representation near the

branch point, we would like to use a pair P(t) = t,

Q(t) = t . Of course, this is not allowed, but the

answer to the dilemma is obtained by just formally

setting a = in the above formulas to obtain the

pair

Pi<T) = ^ ,

Q
X
(t) = T .

Note how useful such a pair is. We obtain all the

values of z just by using the m different

solutions of t = z. These yield the same value of

P, (regarded as the independent variable) for the

m different corresponding values of Q-, . Thus in a

very real sense we have introduced a point corresponding

to the branch point 0, and it fits in very well with
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the regular points near 0. Of course, we again

would allow parameter changes as before, so that the

pair

P(t) = oCt)*
1

,

Q(t) = P (t)

is regarded as equivalent to the pair P,, Q-, if D

is a conformal equivalence, with p(0) = 0. And as

before we do not allow a pair such as

P(t) = t
2m

Q(t) = t
2

because different values of t can yield rhe same values

cor both P and Q.

Finally, we exhibit pairs which we want to

imagine as germs at ». If f is meromorphic in a

neighborhood of <=o
5

then we use the parameter t near

and let the independent variable be z = — . Thus

we have

P(t) = t"
1

,

Q(t) = f(t
_1

) ,

defined for t near 0. More generally, we can also
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consider a as a branch point, yielding for the

Riemann surface for z ' the pair of functions

P(t) = t"
m

Q(t) = t"
1

Now we are ready for the formal development.

DEFINITION 1 . A parameter change is a function

p holomorphic in a neighborhood of such that

p(0) =
,

p'(0) jt .

Equivalently, we could say that o(0) = and D

is one-to-one in a neighborhood of 0.

DEFINITION 2 . A pair is an ordered couple of

functions P, Q meromorphic in a neighborhood of

such that in a sufficiently small neighborhood of

1. P is not constant,

2. the mapping t - (P(t),Q(t)) is

one-to-one

.

Examples of pairs have already been given. Here
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are some other examples. First, (sin t, sin t) is

a pair, although the points t = and t = n give

the same value to both P and Q. Second, (t
m
,t

n
)

is a pair if and only if m t , and either n =

and m = +1 or n ^ and m and n are relatively

prime. The only thing which really needs checking

here is that if m and n are relatively prime, then

(t ,t ) is a pair. This follows because the Euclidean

algorithm (see Chapter V) shows there exist integers

m' and n' such that mm' + nn ' = 1. Now suppose

f . m jn*. /.m . n%
(t p t

±
) = (t

2
, t

2 )

t,, mm ^mm , nn ^_nn M , . . iThen t, = t
?

and t-, = t
2

Multiplying, we

obtain

mm '+nn ' mm '+nn

'

C
l * C

2

tl - t
2

DEFINITION 3 . Let (P,Q) and (P
1 ,Q ]

_) be pairs

Then (P,Q) is equivalent to (P -,
,
Q-, ) if there exist!

a parameter change p such that the equations

P
x

= P°P ,

Q x
- Qc p ,
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are valid in a neighborhood of 0. If (P,Q) is

equivalent to (P-pQ-i), this will be written

(P,Q)~(P
1 ,Q1 ).

PROBLEM 3 . Suppose (P,Q) and (PpQ^ are

pairs. Prove that if there exists a function p

holomorphic in a neighborhood of such that

p(0) = and ?
±

= P° p , Q x
= Qc

P near 0, then p

must be a parameter change. Also, p is uniquely

determined (near 0) by these equations.

LEMMA 1 . ~ is an equivalence relation .

Proof : Reflexive : (P,Q) ~ (P,Q) since D (t) = t

works

.

Symmetric : If (P,Q) „ (PpQp and p

satisfies

P
x

= Po

Qi = Q°P ,

then also

P = P
1
op~

1

Q = Q^o
-1

near and o~ is holomorphic,
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proving (P
1 ,Q 1

) ~ (P,Q).

Transitive : If (P,Q) ~ (PpQi) and

(PpQ-,) ~ (PojQo) and we have

parameter changes p and p,

satisfying P
1

= Po p , P
2

= P;l Pi>

likewise for the Q's, then

?2 = P
]/ °i

= P ° P" Pi '

Q 2 - Q^Px - Q°p° Pl ,

and pc-p-i is also a parameter

change, showing that

(P,Q) . (P
2 ,Q 2

).

(2ED

DEFINITION 4 . An equivalence class of pairs is

a meromorphic element . The meromorphic element containing

a pair (P,Q) is designated e(P,0). Thus,

e(P,Q) = {(PpQ^rCPpQi) is a pair and

(P,Q) „ (PpQ^j.

Define M to be the collection of all meromorphic

elements

.

DEFINITION 5 . The two functions n:M - £,

V:M £,
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are given by the formulas

TT(e(P,Q)) = P(0),

V(e(P,Q)) = Q(0).

We simply remark that tt and V are well defined

since if (P,Q) „ (P
]
_,Q 1

), then clearly P(0) = P-,(0)

and Q(0) =
Q-j^ (0) . The number n(e(P,Q)) is sometimes

called the center of e(P,Q), and V(e(P,Q)) is

called the value of e(P,Q).

Another remark which is simple but useful is that

if (P,Q) is a pair and p is a parameter change,

then (P°p,Q°p) is also a pair and is therefore

equivalent to (P,Q).

As has been indicated in the motivation for M,

we definitely wish to consider M c M in a natural

manner. Of course, the way we do this is to define a

function on M with values in M and prove this

function is one-to-one. This means that each element

of M is identified with an element of M in a one-

to-one fashion, and the identification is this: to

a germ [f] we associate the meromorphic element

e(a + t,f(a + t)). Now we prove this is a one-to-

one function. Suppose [g!v is another germ and

that e(a + t,f(a + t)) = e (b + t,g(b + t)). This

means that there exists a parameter change p such



86 IV

that for t near

a + t = b + (t)
,

f(a + t) = g(b + p(t)) .

The first equation implies a - b and p(t) = t, and

then the second equation implies f(a + t) = g(a + t)

for t near 0. Thus, [f] = [g]
fe

.

We now begin to topologize M, then make M a

surface, then a Riemann surface. We remark that as

sets the inclusion M c M is an isomorphism of M

onto its image in M (this we have just proved),

and we will eventually see that as Riemann surfaces

this is still true: the mapping of M onto its image

in M will be seen to be an analytic equivalence.

Before beginning this program we wish to spell

out a notational convenience. Frequently we shall

write

e(P,Q) = e(P(t),Q(t))

to designate a meromorphic element. We have already

used this type of notation in the discussion of M c M,

where we wrote e(a + t,f(a + t)). Of course, this

means e(P,Q), where P(t) = a + t, Q(t) = f(a + t),

but it would seem pedantic to be so strict with the
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notation and certainly would be confusing. We couldn't

2
even use notation such as e(t , t) . In order to

attempt to be consistent we shall try to use t for

the dummy variable in an expression such as the above.

Thus, for example,

e(P(t
Q
+ t), Q(t

o
+ t))

stands for the meromorphic element e(P-,,Q-,), where

for small t

P
x
(t) = P(t

Q
+ t)

Q
1
(t) = Q(t

Q
+ t)

DEFINITION 6 . Let (P,Q) be a pair and assume

P and Q are both meromorphic on a disk A. Then

let U(P,Q,A) be the collection of meromorphic elements

according to the formula

U(P,Q,A) = {e(P(t
Q
+ t),Q(t

Q
+ t)):t

Q€A).

We have assumed A sufficiently small that the mapping

t - (P(t),Q(t)) is one-to-one on A (cf. Definition 2)

Note that by this latter assumption each couple

(P(t + t), Q(t
Q
+ t>) for t £A is indeed a pair,

and thus U(P,Q,a) makes sense.
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The sets U(3?,Q,A) will form a neighborhood basis

of e(P,Q) when A is allowed to vary over all suffi-

ciently small disks centered at 0. Since U(P,Q,A)

is not defined in terms of the equivalence class

e(P,Q) but rather in terms of the particular pair

(P,Q)^e (P ,Q) , we shall need a lemma comparing two

neighborhoods constructed with different but equivalent

pairs

.

LEMMA 2 . Suppose (P,Q) ^ (P
]L
,Q 1

). If U(P,Q,a)

is defined , then there exists a disk A, centered at

such that

U(P
1 ,Q 1

,A
1
) c U(P,Q,A).

Proof : By definition there exists a parameter

change p such that P-, = P° p , Q-i = Q° o in a disk

A-i centered at 0. We choose A-i sufficiently small

that p' never vanishes in A-, and p(Ai)cA, and

also that U (P,,Q,, A-, ) is defined. Now let

e€U(P
1 ,Q 1

,A
1
). Then e = e(P

1
(t

£)
+ t), Q 1

(t
Q

+ t))

for some t
. £A-.. Now

P
1
(t

Q
+ t) = P(p(t

Q
+ t)) = P ( (t

o ) +
0l

(t))

where
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Pl (t)
= p (t + t) - D (t ) .

Note that p^CO) = and p-^O) = p '(t ) ± and thus

p, is a parameter change. Since also

i

Q 1
(t

Q
+ t) = Q(p(t

Q ) + Pl (t)) ,

we conclude that (P
x
(t

o
+ t),Q

1
(t

Q
+ t)) „ (P(p(t

Q ) + t),

Q(p(t
Q ) + t)). Thus,

e = e(P( P (t o
) + t),Q(p(t

Q
) + t)) 6 U(P,Q,£)

and this proves the lemma.

PROPOSITION 1 . The collection of sets U(P,Q,A)is

a system of basic neighborhoods for a topology on M.

Proof: Clearly any point e(P,Q) in M belongs

to U(P,Q,zO, and just as on p. 52 we have two things

to check:

1. Suppose there are given U(P,Q,a) and

U(P, ,Q, , £,), basic sets defined in terms

of pairs (P,Q) ^ (P-
L
,Q 1

). By Lemma 2

there exists- a disk A« centered at

such that A
2
c=a

1
and U(P

1 ,Q 1 ,^2 ) cU(P,Q,A).

Thus,
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U(P,Q,A) .? U(P
1 ,Q 1

,A
1
) 3 U(P

1 ,Q1
,i

2 )

2. Suppose e(P,Q)€ U(P,Q,A). Then for a point

t
Q
€A, (P,Q) ~ (P(t

Q
+ t),Q(t

o
+ t)). If

A ' is the disk centered at whose radius

is the radius of A minus It I , then it

is clear that

U(P(t
o
+ t) ,Q(t

Q
+ t) ,A') c U(P,Q,A)

By Lemma 2 there exists a disk A centered at

such that U(P,Q,A) c U(P(t +t) ,Q(t +t) ,A ')
,

Thus
,

U(P,Q,Z) c U(P,Q,A).

Before proving that M is a Hausdorff space, we

introduce some normal representations for meromorphic

elements. Suppose we consider an element e(P,Q).

The discussion of pp. 37-41 defines the multiplicity

m of P at and shows a particularly simple form

P has in terms of a judiciously chosen chart for the

Riemann surface (a neighborhood of in this case)

.

Thus, in the present framework we conclude that there

exists a parameter change q such that near t =

P(t(t)) - P(0) + t
m

if P(0) ^ CD
,

P(p(t)) = t"
m

if P(0) = « .

Thus, if Q-, = Q ? , we see that
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e(P,Q) = e(P(0) + t
m
,Q 1

) if P(0) j- »,

e(P,Q) = e(t"
m
,Q1 ) if P(0) = -.

Note that the integer m is well defined, being the

multiplicity of P. For if P, is derived from P

by means of any parameter change, then P, has the

same multiplicity m.

A point of M of the form e(a + t ,Q) or

e(t ,Q) is called a branch point of order m-1.

It should be remarked that the normal form is not

unique if m>l. In fact, if uu is any root of id = 1,

then for example

(a + t
ra
,Q(t)) „ (a + t

m
,Q(wt))

as the parameter change t - ujt shows. Thus, e.g.

2 2
e(t ,t) = e(t ,-t) . This is the only possible type of

ambiguity.

PROPOSITION 2 . M is a Hausdorff space .

Proof ; Compare pp. 52-53. The fact that M is

Hausdorff is an obvious and immediate consequence of

the uniqueness of analytic continuation. The present

proof is surprisingly more involved. Suppose that

e(P,Q) and e(P-,,Q-,) are not contained in disjoint
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neighborhoods. We can assume both these elements to

be in normal representation , so that

ti t x. \ i
*.m x.~mP(t) = a + t or t

and

P^Ct) = b + t
n

or t"
n

Let Ak be the disk centered at with radius k~ .

Then for any sufficiently large k the neighborhoods

U(PjQ,Av_) anc* U(P-.,Q-.,^ ) have a common point, say

e(P(s
k
+ t),Q(s

k
+ t)) = e(P

]
_(tk

+ t),Q
1
(t
k
+ t)),

where s
u stk^k* "'"n Part icu l ar n an(^ V have the

same value at these two points, so

P^"W- Q(sk ) = Qx (tk)

.

If ever sk
= t

k
= 0, then e(P,Q) - e(P

;L
,Q 1

), which

is what we're trying to prove. Thus, we can assume

s, or t, ^ 0. Now letting k - « implies first

P(0) = P^O), so we have either

P(t) = a + t
m

and P^t) = a + t
n

,
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or

P(t) = t"
m

and P^t) = t"
n

We shall eventually prove that m = n, so then P = P, ,

Also, we see immediately that in either case s, = tj\

Choose arbitrary n— roots of s, , say

Then

n
ak

= s
k

m \ ~ ~m

ck J t?

m
akSince there are only n choices for each number —

.

r
k

we can choose a subsequence of k's such that these

numbers are all equal to a common n— root of 1,

say uu . Renaming this subsequence, it follows that

we can assume

^k = fc

k

Then

Q(aJ) - Q 1
(u.a")
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Since this equation is valid for o\ - 0, a-. ^ 0, we

can now apply the uniqueness of analytic continuation

to conclude

Q(s
n

) = Q 1
(-jus

m
), s small .

Thus, note that

n N ~ , n
(P(s

ll
),Q(s

u
)) s (P

1
(uUs

ul

),Q1 (u)S
m
)), s small.

Since the mapping t - (P(t),Q(t)) is one-to-one (small

t), then the mapping s -(P(s ),Q(s )) is exactly ,

n-to-one (small s). Likewise, the mapping s - (P, (uus ),

Qi (jus )) is exactly m- to-one. Since these mappings

are identical, we must have m = n !

Thus, Q(s ) = Q-, (uus ) and we conclude

Q(t) = Q
1
(uut).

Since P(t) s P-. (uut) (as uu =1), we have

(P,Q) „ (P
1 ,Q 1

),

the parameter change being just p(t) = uut. Thus,

e(P,Q) = e(P
1 ,Q 1

).

QED
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Now we have certain obvious charts for M. Namely,

we define the mapping

cp:U(P,Q,A) - A

by the formula

co(e(P(t
o

+ t),Q(t
o
+ t))) = t

Q

or

cp"
1
(tn ) = e(P(t + t),Q(t + t))

The definition of cp is of course clear enough,

but for cp to be well defined something must be checked.

Namely, if two points in U(P,Q,a) are the same, then

they correspond to the same t . Another way of saying

this is that cp~ is one-to-one. But if cp~ (t ) = rp~ (t'),

then Tr(<p"
1
(t )) = rrCcp"

1^)) and V^" 1^)) = Vfo
-1^) )

,

so that P(t
Q ) = P(t^) and Q(t

Q ) = Q(t^). Since the

mapping t - (P(t),Q(t)) is one-to-one for tfA, this

implies t = t ' . This shows that at least cp maps

U(PjQ>A) to A in a bijective fashion (one-to-one

and onto).

It is now easy to see that cp is a homeomorphism.

In fact, if e
Q

= e(P(t
Q

+ t),Q(t
Q

+ t)) is any point

in U(P,Q,A), then a neighborhood basis for e consists
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of the sets U(P(t + t),Q(t + t),A') = [e(P(t + t-, + t)

Q(t + t-^ + t)):t,€A'}, where A' is a sufficiently

small disk centered at 0. The image of a set like

this under the mapping cp is precisely {t + t-, : t-|£A'},

and these sets form a neighborhood basis for the point

t -A. Thus, x induces a one-to-one correspondence

between a neighborhood basis for e and a neighbor-

hood basis for cp (e ). Thus, cp is a homeomorphism.

Thus, M is a surface.

PROPOSITION 3 . The given charts form an analytic

atlas for M . Thus , M is a Riemann surface .

Proof : Suppose two neighborhoods U(P,Q,a) and

U(P-i ,Qi , A-i ) meet. Let cp and cpi be the respective

charts. Let e be a common point in these neighbor-

hoods and cp (e ) = t , cpi(e )= t-,. We need to check

the analyticity of cp-i°cp in a neighborhood of t .

Now by definition

e
Q

= e(P(t
Q
+ t),Q(t

o
+ t)) = e(P

1
(t

1
+ t),Q

1
(t

] _

+ t)).

Therefore there exists a parameter change _ such that

for t near

P(t
Q
+ t) = P

]
_(t

1
+ p(t)) ,

Q(t
Q
+ t) = Q1

(t
1
+ p(t)).
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For z near t we have

cp

_1
(z) = e(P(z + t),Q(z + t))

We need tc express this in terms of P, and Q, , rather

than P and Q. So we compute as follows:

P(z + t) = P(t
Q
+ (z-t

Q
+t)) = P

1
(t

1
+ p(z-t

Q
+t))

= P
1
(t

1
+ p(z-t

Q ) + [p(z-t +t) - o(z-t
o
)l).

The function

Pl (t) = p(z-tQ+t)
- p(z-t )

satisfies p-i(O) = and p-f(O) = p'(z - t )„ Thus,

p^(0) ^'0 if z - t is sufficiently small, so p,

is also a parameter change. Since the same computation

is valid for Q and Q, , we obtain

cp

_1
(z) = e(P

1
(t

1
+ p(z - t

Q
) + t),Q

1
(t

1
+ D (z - t

Q
) + t))

Therefore,

cp^cp" (z) = t
1
+ p (z - t

Q
),

which holds for all z sufficiently near t . Since
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P is holomorphic, we have now proved that cpi°cp

is holomorphic near t .

QED

Now we list various properties of M.

PROPOSITION 4. M - M is a discrete set. That

is , each point of M has a neighborhood consisting

only of itself and points of M.

Proof : Suppose e(P,Q)eM and that A is a

disk centered at such that U(P,Q,A) is defined

and for tea - [0], P' (t) ? 0, P(t) ^ ». Then

U(P,Q,A) is a neighborhood of e(P,Q) having the

required properties. Indeed, if e €U(P,Q,a) but

e £ e(P,Q), then for some t gA - {0}

e
Q

= e(P(t
Q

+ t),Q(t
Q

+ t)).

Now t - P(t + t) is holomorphic and one-to-one near

t = 0, so

p(t) = P(tL + t) - P(tn )

is a coordinate change. Thus, if a = P(t )

e
Q

= e(P(t
Q
) + t,Q(t

Q
+ p^Ct)))
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= CQ(tQ
+ P

-1
(z - a)l

a ,

that is, e is the germ of the meromorphic function

z - Q(t + p" (z - a)) at a. Thus, e
o
?M.

QED

PROBLEM 4 . Prove that tt and V are meromorphic

functions on M. Prove that the mapping which identifies

M as a subset of M is an analytic equivalence of

M onto its image in M.

The second half of this problem completely

justifies regarding M as a subset of M. Of course,

we previously could only consider M c M as sets, but

now also as Riemann surfaces. Also, M is open in

M, as is implied by Proposition 4.

PROPOSITION 5 . _If efE, then e is a branch

point of order m - 1 if and only if m (e) = m

(definition on p. 38).

Proof : Suppose e = e(a + t ,Q), and cp: U(a+t ,Q,A) - A

is a related chart. Then

rrocp (t ) = a + t ,v
. o o '

so that the multiplicity of n°cp~ at is m. A
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similar computation applies if e = e(t~
m
,Q)

QED

PROPOSITION 6 . Any two points in the same component

of M can be joined by a path in M every point of

which except the initial and terminal points lies in

M.

P roof : This is a topological consequence of

Proposition 4. Suppose y is a path. Since y(I)

is compact and M - M is discrete and closed,

y(I)n(M - M) is finite. Let e be a point in this

set which is not an initial or terminal point of y.

Let tn be the smallest and t-, the largest numbers

t in (0.1) such that y(t) = e . Choose a neighbor-

hood u of e and a chart cp:U - A, where AeC

is a disk

/>-,'

e
o

Choose < ti < t
Q

«£ t-^ < ti < 1

such that v(t£)cu, y(tpfU.

Choose a path 6 in a joining

cp°Y(t(}) anc* cp°y(tj) and missing

tp(e ). Then let

Y (t), Ostst^,

! -l ft-ta \

Yl (t) =Vp ^Ep^j' *&****{>

y '.y(t), t^stsl.



IV 101

Then yi i- s a path in M having the same end points

as y> but yi does not pass through e . Since we

need to remove only finitely many points like e , the

theorem follows.

QED

PROPOSITION 7. There is a natural one-to-one

correspondence between components of M and components

of M. Namely , if S is a component of M, S is

contained in a unique component of M, which is the

closure of S _in M; conversely , if S is a component

of M, then S contains a unique component of M, which

is SnM.

Proof: Let S be a component of M. Certainly

S is contained in a unique component S of M.

Since components are closed, S contains the closure

of S. But also any eeS can be joined to a fixed

eQ
gS by a path y such that y(0) = e

Q , y(1) = e,

y([0,1))cM, by Proposition 6. Since y([0,1)) is

connected and y(0)pS, it follows that v([0,l))cS

(since S is a component). Thus, e is a limit

point of S and thus belongs to the closure of S,

showing S is contained in the closure of S.

Conversely, let. S be a component of M. If a

component of M is contained in S, this component

is also contained in Sp,M. Thus, it suffices to show
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SnM is a component of M, Proposition 6 shows that

SfiM is connected, for if e and e are in SfiM,

they can be joined by a path in M. Since the end

points are in S, the entire path is in S (S is

a component ) and thus is in SnM. And if a point of

M can be joined by a path in M to a point in SnM,

that point must be in S and thus in SnM. Thus,

SrM is a component.

QED

DEFINITION 7. A component of M is called an

analytic configuration . This is a translation of the

term "analytische Gebilde" used by Weyl. Another

term is analytic entity .

DEFINITION 8 . Let f be a meromorphic function

in a neighborhood of a point a<=C. The Riemann sur -

face of f is the analytic configuration containing

rf] •J a

This definition is finally the complete idea which

was begun in Definition 8 of Chapter III. We have now

included the branch points in the surface and nothing

else needs to be added.

It is important to observe that the nice analytic

continuation or lifting properties of M do not hold

in M. For example, Proposition 2, the unique lifting
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theorem, of Chapter III would be false if phrased for

M. Just consider a neighborhood of a branch point

to see this. For example, let

V-.(s) = e((s+t)
2

, s+t), -lsssl

2
Y
2
(s) = e(|s|+t)

,
|s|+t), -lsssl

2
Then tt°Yi( s ) = n Yo( s )

= s
>

but

Y
1
(s) = y 2 ( s ) for 0ss<l

,

Yi(s) jL Yo( s ) for -lss<0

We thus are led to a pictoral idea of branch point:

two liftings of a given path in C which begin at a

common point in M must be the same until a branch

point is reached. But then the liftings can branch

into several different paths in M.

If f is a meromorphic function which is not

one-to-one, it of course has no inverse. But we can

easily consider the Riemann surface inverse to its

Riemann surface, as follows.

PROPOSITION 8 . -Let S be an open connected sub -

set of M such that V is not constant on S. Then

the mapping
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i:S - M (i for "inverse")

defined by

i(e(P,Q)) = e(Q,P)

is an analytic equivalence of S with i(S).

Proof : First, note that i is well defined.

This depends on the obvious fact that if (P,Q) ^ (P, ,Q-, )

then (Q,P) ~ (Q-. ,P-i). Now we prove i is analytic. To

do this we introduce charts in the canonical way:

cp:U(P,Q,A) - li ,

:U(Q,P,A) - & ,

where

cp"
1
(t ) = e(P(t +t),Q(t +t)),

f l
(t
Q ) = e(Q(t

o
+t),P(t

o
+t)).

Then

i^cp"
1
(t

o
) = v(e(Q(t

o
+t),P(t

o
+t))) = t

Q ,

so that trivially i|/°i°cp" is analytic. Thus, i is
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analytic

.

Since i is analytic, i(S) is an open connected

subset of M, and n is not constant on i(S) since

V is not constant on S. Furthermore, i:i(S) -. S

is analytic by what we have already proved and

is i = identity. Thus, the inverse of i is analytic.

QJED

We now give an interesting and rather surprising

application of some of these ideas.

DEFINITION 9 . Let f be meromorphic on an

open set Dec and let w?u. Then w is an asymptotic

value of f if there exists a path of the form

y:[0,a) -D (where 0<as»)

such that

lim f(y(s)) = w
s-o

and y - SD, meaning that for every compact set K c D

,

there exists s such that y(( so>°)) c D_K -

THEOREM 1 . If f is holomorphic on an open set

Dec, then there exists an asymptotic value of f.
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Proof : Clearly it suffices to treat the case

in which D is connected and f is not constant on

D. Now define

S = {Tf1
a
:acD}

Clearly, S is an open subset of the sheaf of germs

M, and the mapping rr.S - D is an analytic equivalence

Now we complicate the situation by regarding ScM

and letting T = i(S) in the sense of Proposition 8.

Then V:T - D is an analytic equivalence since

V = tto i . According to the definition of McM, we

have

T = (e(f(a+t),a + t):a<=D} .

Thus, foV = tt on T. That is, we have a commutative

diagram

X
A
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and V represents the multiple-valued inverse of f.

Note that a point e(f(a+t),a + t) is a branch point

(order at least 1) if and only if f'(a) = 0, and this

holds only for a discrete and thus countable set of

points a€D. Let E = {a€D:f'(a) = 0} and note

that f(E) is a countable subset of f. Choose arbi-

trarily a £D - E. Since f(E) is countable and there

are uncountably many rays from f(a ) to a>
t

it

follows that there exists a ray from f(a ) to ~

which contains no point of f(E). Let this ray be

represented by a path a:[0,») - C, so that a(0) = f(a ),

a(s)(^f(E), lira a(s) = ».

Now we consider the process of lifting a to

T by the mapping n. Note that if e<=T and n(e)^f(E),

then V(e)<£E and thus e^M. Thus, lifting a is a

problem of lifting to M, not merely M, and the

unique lifting theorem obtains. Let s be the

supremum of all numbers s, such that there exists a

lifting a on [O.s,) with a(0) = e(f(a +t), a + t).

Then there is a unique path d corresponding to the

maximal s ,o '

a:[0,s
o

) - T

such that ttocl = a and a(0) = e(f(a +t), a + t),

Then define y = Voa
}

so that y Is a path in D
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such that

lim f(y(s)) = lim f°V°a(s) = lim rroa(s)
s-s„ s-s_ s-s„

= lim a(s) - a(s Q ) .

s-s

Here ct(s Q ) = « if s = » . Thus, the theorem follows

if we Know that y leaves every compact set in D.

If s Q
= » this is perfectly clear since lim. f( Y (s)) = ».

S-»«

Suppose sQ
< co, and suppose that for some compact KcD

,

y does not eventually leave K. By the Bolzano- Weierstrass

theorem, there exists a point zQ
c K- and a sequence

s, < Sy < ..., s - s , such that y(s ) - z . Since

V:T • D is a homeomorphism , a(s ) - V (zQ )
= e(f(z +t),z +t)

Since tt is continuous, f( z
Q )

= li-m n°a(s ) = lim a(sn )

= a(so )^f(E), so e
Q

= e(f(z
Q

+ t),z
Q
+ t)*TnM. This

contradicts the maximality of s , for the topology

of M implies that a neighborhood U of e is homeo-

morphic by a homeomorphism cp to a disk A centered

at f( z ) and cp is just the restriction of tt to U

.

Therefore, if n is chosen such that a (s )ca, . then

for sufficiently small e > we can define

a(s) = cp~ oa(s), s
n

s s < s
Q

+ e

and we obtain a lifting of the required sort past the
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supposedly maximal s . This contradiction shows that

leaves every compact set in D.

QM

A comprehensive reference to questions of this

sort can be found in MacLane, G. R., "Asymptotic values

of holomorphic functions ," Rice University Studies

49 (No. 1) 1963, pp. 1-83. The example we have just

treated can be found on page 7 of MacLane 's monograph.
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Chapter V

ALGEBRAIC FUNCTIONS

What we are going to study in this section is

solutions of an algebraic equation in two complex

variables; i.e., equations of the form

A(z,w) = 0,

where A is a polynomial in z and w. The viewpoint

is that we want to regard w as a function of z satis-

fying A(z,w(z)) =0. Of course, we expect w to be

multiple-valued and then we construct a Riemann surface

on which a function like w can be defined. Examples

of this procedure were given in the introduction. There

we treated the following examples of A:

m
w - z,

2
w - (z-a) (z-b)

,

(z-b)w - (z-a)

,

w - (z-ap (z-a
2 ) . . . (z-am) ;

also on pp. 68 f f. we discussed the polynomial

w - 3w - z

.

All the Riemann surfaces associated with these examples

can be easily visualized as subsets of M and as such enjoy

the topological property of compactness . The main fact
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to come out of this section is that algebraic equations

always lead to compact surfaces and that, conversely,

every compact analytic configuration has a unique alge-

braic equation associated with it.

It follows from general topological considerations

that every compact orientable surface (as Riemann surfaces

are) is homeomorphic to a sphere with a certain number

g of handles and g is called the genus of the surface;

cf. p. 13. Before analyzing algebraic equations,

we shall discuss heuristically a remarkable formula

involving the genus, the number of sheets, and the

branching of a compact Riemann surface.

The Riemann-Hurwitz formula . Consider a compact

analytic configuration S. We first discuss its Euler

characteristic . This can be defined in terms of a

"triangulation" of S. We do not wish to pause to

define triangulation, but if f is the number of tri-

angles (faces), e the number of edges, and v the number

of vertices, then the Euler charactersitic is v-e+f

.

A theorem of topology is that this number is a topo-

logical invariant of the surface and equals 2-2g:

v-e+f = 2-2g.

Now S has certain branch points e,,...,e of orders

b-,,...,b , respectively, b. s 1. Define
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V = lb.
J-l J

The number V is called the ramification index or

total branching order of S. Also S has a certain

number n of sheets when viewed as spread over C;

this is the number such that n takes every value

a
in C n times ... see pp. 43-44. The Riemann-Hurwitz

formula is

nv = „ + i.

To prove this formula consider a triangulation of

the sphere C such that every point rr(e.) is a vertex.

Let f,e, and v be the number of faces, edges, and

vertices. Since C has genus 0, we have the Euler

formula

v-e+f = 2.

Now consider the preimage by tt of these triangles.

By lifting the triangulation of C to S we obtain nf

faces and ne edges in the triangulation of S, since

S has n sheets. And each vertex which is not a rr(e.)

is lifted to n new vertices. But each vertex rr(e.)

does not get lifted to n new vertices. Rather, if

z Q
is one of these values, then rr (i z }) consists of

exactly
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n - I b.

distinct points. Thus, the number of vertices in the

triangulation of S is

nv - V.

Therefore,

(nv-V) - ne + nf = 2-2g.

Since v-e+f = 2 we can write this relation as

In - V = 2-2g,

and the assertion is proved.

Let us test this formula on some of the cases we

have considered. For example, on d. 12 we treated

w - (z-a, ) . . .(z-a),

a,,..., a distinct. If m is even there are branch
1 m

points of order 1 at each a. and nowhere else, so

V = m and thus

m-=n + g-l = 2 + g- 1,

m-2

If m is odd then also. «> is a branch point of order 1

rn t

and so V = m+1 and g = —^— . These results agree with

p. 13.
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3
Next, consider the example w -3w-z discussed on

pp. 68 - 73. There the points 2 and -2 are

branch points of order 1 and a> is a branch point of

order 2, so V = 4. Since n = 3, we find g = and

the Riemann surface is homeoraorphic to a sphere. This

again agrees with our earlier findings, for on p. 73

we discussed an analytic equivalence of the surface

. , A
with C.

Of course, we have not rigorously derived the

formula, but we have given a sketch of a rigorous

proof. But the formula should prove useful as a

check in working out other examples. Every time one

sees a compact Riemann surface, he should try out

this formula on it. Two things in the formula deserve

special attention. One is that V is always an even

integer. The other is that a purely topological number

g is equal to the number -j - n + 1 which depends very

much on features of the surface which are not purely

topological

.

Now we proceed to the analytical discussion of

algebraic equations.

Problem 5 . In the spirit of pp. 68-73,

discuss the algebraic equation (w -1) - z = 0.

Lemma 1 . Let a, , . . . ,a be holomorphic on an open

set D c £ and A(z,w) =? w
n + a, (z)w

n ~ +. . .+a , (z)w +a (z)
1 n-1 n v J
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Suppose z € D and

A(zo,w ) = 0,

"A,

dw (Zo^o> * °

Then there exists a function f holomorphic in a neighbor-

hood of z c such that

A ( z , f ( z ) ) =0, z near z ,

f(z ) - w0J

A(z,w) = 0, z near zQ , w_near_wQ => w = f (z) .

Proof : This is merely an implicit function theorem

and could be derived from the general implicit function

theorem of differential calculus - we would just have

to check the validity of the Cauchy-Riemann equation.

However, the proof is much simpler in the present case

than the proof of the general theorem and is even almost

elegant, so we present it.

Since A is not constant in w, the zeros of A(z ,w)

are isolated. Thus, there exists e > such that

A(z ,w) ^ for < |w-w
|

< e. Let y be the path

Y(t) =w +ee TTl ,0<;t5l. Since the image of y

Y
is compact and A(z ,w) ^

there, there exists 6 > such

that
w
o

A(z,w) + for |z-zj <{

w-w
o
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Therefore, the residue theorem implies that for each

fixed z, |z-z
j

< 6,

SW
dw

Zni y A(z,w)

is equal to the number of zercs of A(z,w) (minus the

number of poles of A(z,w)) for |w-w | < e- And it is

clear that this number is a continuous function of

z for jz-z
|

< 6, and is therefore constant. For

z = z Q we are counting the number of zeros of A(z ,w)

in |w-w Q ]< e. Since A(zQ ,w) -• only at w = wQ and

since w is a first order zero (-— (z ,w ) ^ 0), we have

proved that the above integral is equal to 1 for |z-z |<c

Thus, j z-z j < 6 implies there exists a unique f(z)

such that |f(z)-w j < e and A(z,f(z)) = 0. Again, the

residue theorem implies

i lr< 2 >">
f(2) = si' w

T77^T
du

'

|z " z
° !

<6 '

Y A(.z,w;

From this formula it follows immediately that f is holo-

morphic. Of course, f(z ) = w_.

To prove uniqueness, suppose g is holomorphic near

z Q and A(z,g(z)) = 0, g(z ) = w_ . Then by continuity of

g it follows that there exists < 6, <. 5 such that for

lz-% |
< 6

1 , |g(z)-w
|

< e. Therefore, g(z) = f(z) for
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|M
e l

< H-
QED

COROLLARY . Suppose z € D and chat there exists

no w satisfying

A(zOJ w) = 0,

Then there exist unique holomorphic functions f-,,..., f

in a neighborhood of z such that

A(z.,f, (z)) = near z , 1 s k < n ,

for each z near Zq , the numbers f , (z) , . . .

f (z) are distinct,
n

Proof ; Since A(Zq,w) is a polynomial in w of

degree n, it has n zeros. By hypothesis these zeros

are distinct, say A(z ,w,) =0, 1 <. k s n, w, , . . . ,w dis-

tinct. Apply Lemma 1 to w = w, to obtain the holomorphic

solutions f, . Since f, (z ),..., f (z
Q ) are distinct, it

follows by continuity that for z sufficiently near z
,

f, (z), . . . ,f (z) are distinct.

QED

LEMMA 2 . Let A be defined as in Lemma 1 . Assume

that for every z € D there exists no w satisfying
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A(z,w) - 0,

$w v
'

J

Let f be a holomorphic function in a neighborhood of

z c e D satisfying

A(z,f(z)) s near z 0>

Then f can be analytically continued along any path in

D starting at z Q .

Proof : Let y. [0,1] - D be a path with Y (0) = z -

We are trying to prove the existence of a path v: [0,1]->m

such that y(0) = [f] and n° > = \ • By the general
z o

discussion of analytic continuation we know that -, exists

on some interval [0,t o ]j t > 0, and that , is uniquely

determined (Proposition 2 of Chapter III) . Let s be the

supremem of such t Q
. Then y exists on the interval [0,s )

Now we apply the above corollary to the point v (s ).

obtaining holomorphic functions f -.,...,£ in a neighbor-

hood of v(s ) satisfying the conclusion of the corollary

on a disk A centered at v(s )• Choose any s, < s such
p

J 1 o

that y( s
i) 6 A. Then y( s t)

=

^X [g] , *., where g is holomorphic
- ^v( Sl ) \ vCs x ;

""-» )~>~ in a neighborhood of y( s -i) an&

v(s ) / Y
° / by the permanence of functional

L relations (p. 66)
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A(z,g(z)) s near y(s
x
).

Thus, g(z) is one of the n zeros of the polynomial A(z,w)

and must therefore be equal to one of the f, (z). Thus,

by Lemma 1 and its corollary we find that for a unique k,

g(z) = f, (z), z near y(s-i ) • By the uniqueness of analytic

continuation

,

Y (s) = [f
k ] , s

1
s s < Sq .

v(s)

This formula serves to define y for s = s as well and

even for s > s , s-s sufficiently small, if sQ < 1.

Thus we conclude that s = 1 and that y exists on [0,1].

QED

COROLLARY . In addition to the hypothesis of Lemma

2, assume that D is a simply connected region. Then

there exist holomorphic function s f -,,..., f on D such

that

A(z,f,(z)) = for z € D, 1 g k «s n.,

for each z € D, the numbers f-,(z),...,

f (z) are distinct.
n v

'

Proof ; Use the corollary of Lemma 1 to obtain

f -,,..., f near some point in D, say z . Use Lemma 2In r J

and the monodromy theorem (p. 64) to obtain holomorphic

extensions on all of D, noting that A(z,f, (z)) = on D

follows from the permanence of functional relations. If

for some z £D, f.(z) = f, (z), Lemma 1 implies f . = f

,



120

near z and then f. = f, in D by analytic continuation,

contradicting f.(z ) 4 fv.Cz ) if j ^ k. Thus, j = k.JO K O

QED

The above corollary is about as far as we can

go without really analyzing what happens near points

z such that A(z,w) has a multiple zero. To carry out

such an analysis will require a little algebraic

background, which we now begin.

First of all, what we shall be considering is

functions A which are polynomials in z and w. It is

always possible and frequently useful to arrange A

according to powers of w or according to powers of z.

Thus, we write

A(z,w) = a
Q
(z)w

n
-I- a-

L
(z)w

n ~ +...+a n (z)w + a
n
(z),

where a,-,, a,,..., a are polynomials in z, and we assume
u 1 n

a~ ^ 0. We then say that A has degree n with respect

to w. We say that a polynomial B is a factor of A if

there exists another polynomial C such that A = BC . If

A has no factors other than constants or constant multi-

ples of A, we say that A is irreducible . It will

also frequently be useful to factor a~ from A, writing

A(z,w) = a
Q
(z) [w

n
+a

1
(z)w

n " 1
+. . .+a

n _ 1
(z)w+a

n
(z)],
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a,

where <x
= — is a rational function of z. Conversely,

R a

given rational functions of z, av ...,a , we can let a n° 1 n u

be the least common multiple of the denominators of

a,,..., a , and use the above formula to define a poly-

nomial A. This innocent statement will prove to be

extremely useful in constructing polynomials. We shall

frequently be able to construct holomorphic functions

a. on c minus a finite set, and by some argument show

that a.K. has no essential singularities in c. Then we

use the fact that a meromorphic function a, on C must

be rational; cf. p. 33, no. 9.

LEMMA 3 . Let A and B be polynomials in z and w which

have no common nontrivial factor , and assume A, B ^ 0.

Then there are at most finitely many z such that there

exists w such that

A(z,w) = 0,

B(z,w) = 0.

Proof : We shall use the Euclidean algorithm. To

do this it is most convenient to regard A and B as

polynomials in w. Then we employ the factorization

mentioned above to write

A = a
Q
(z)A

B = b
Q
(z)B

where
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A'(z,w) = w 11 + a
1
(z)w

n_1 + ...+ a
n
(z),

B'(z,w) = w
m + p^z)^-1

+...+ 3m (z),

and a-i , • • • , a > 3..,...,j3 are rational functions of z.

We rely heavily on the fact that the rational functions

of z form a field. Also, we write for short deg A' = n

and deg B = m. By long division we have uniquely

A' = B'Q
1
+ Rp deg R, < deg B'.

Here Q-, and R-, are polynomials in w with coefficients

in the field of rational functions of z, and if R, =

we set deg R, = -co. If R, ^ 0, we apply this again

to obtain

B' - R
]_Q2

+ R
2

, deg R
2

< deg R
±

.

Continue this division process:

R, = R..Q- + R,, deg R < deg R.
; ,

\-2
= \-l\ + V de§ R

k
< de§ Rk-1

R
k-1

= \Qk+l '

As indicated in this scheme, the process eventually

terminates (R^ji = 0) since the degrees of the R.'s

keep decreasing. We assume of course that R, ^ .

Note that if R, = 0, then B' is a factor of both A'

and B '
, thus B is a polynomial in z alone and the con-

clusion of the lemma is trivial. Thus, we can assume
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R-. ^ 0. Working up through the above scheme, we see

successively that R, is a factor of R, , , thus R, .,,...,

and finally R, is a factor of B', and thus of A'. By

hypothesis, R, must have degree in w, so R, is just a

rational function of z. Now we eliminate finitely many

z by requiring that a
n
(z) 4 0, bn (z) 4 0, and z is not

a pole of any of the coefficients of any of the poly-

nomials Q, , . . . , (X, and R^(z) 4 0. Then we claim that

there does not exist w such that A(z,w) = 0, B(z,w) = 0.

For suppose such w exists. Then also A'(z,w) = 0,

B'(z,w) = 0, since a~ (z) 4 0, b
fl
(z) 4- 0. Since Q, (z,w)4°°,

the first equation in our division scheme implies R-, (z,w)

= 0. Likewise, R^(z,w) = 0, and on down the line until

we reach the contradiction R^.(z) = 0.

QED

Remark. Perhaps a cleaner way of giving this argu-

ment is to work up through the above equations to write

R
k

= CA' + DB',

where C and D are polynomials in w with coefficients which

are rational function of z. By clearing all the fractions

out of this expression, we obtain

R = EA + FB,

where R is a not identically vanishing polynomial in z

alone, and E and F are polynomials in z and w. Then if

A(z,w) = and B(z,w) = 0, it follows that R(z) = 0. Since

R has only finitely many zeros, this proves the lemma.
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For our purposes the most important applications

of this lemma occur when the polynomial A is irreducible .

Then A and B have no common nontrivial factor except

perhaps A itself. Thus, if A is not a factor of B,

Lemma 3 is in force. The most important example is

the case in which the degree of B with respect to w is

lower than that of A.

DEFINITION 1 . Let A be a polynomial,

A(z,w) = a (z)w + a-, (z)w +. . .+a (z) , a-, £

Then a point z € C is a critical point for A if one of

the following conditions holds:

•1- . Z = CD
J

2. a
Q
(z) = 0;

3. there exists w € C such that

A(z,w) = 0,

If z is not critical, then z is a regular point for A.

PROPOSITION 1. If A is irrreducible . then there

are only finitely many critical points for A

.

Proof : Since a.-, has only finitely many zeros,

there are only finitely many z satisfying 1 or 2.

Since the degree of — with respect to w is less than
fc ^w K

dA
n, A and -r— have no nontrivial factor in common, and

ow
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Lemma 3 implies that at most finitely many z satisfy

condition 3.

Of course^ what we are aiming for is an analytic

description of the solutions of A(z,w) = 0. If we wish

to do this in a neighborhood of a regular point z , the

corollary to Lemma 1 contains all the information we need,

namely that there are n distinct holomorphic solutions

f, , . . . ,f nearz : A(Zjf.(z)) = . Viewed as points inIn o k r

M, we have found

e, = e(z +t, f, (z +t))
k v

o k v
o

such that

A(z +t, i'

k
(z +t)) s 0, t near 0.

Another way of expressing this relation is that

A(n(e) ,V(e)) - for e near e, .

Likewise, for the simplest example of critical point we

have

A(z,w) = w -z

and the element

e - e(tn ,t)

satisfies A(tn ,t) = near 0, or

A(rr(e), V(e)) s for e near e .

o
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Thus, we make the following definition.

DEFINITION 2 . The Riemann surface of the polynomial

A(z,w) is the largest open subset of M on which A(rr,V) =

Thus, a meromorphic element e(P,Q) belongs to the Riemann

surface of A if and only if A(P(t), Q(t)) = for t near

0.

This latter assertion follows from the fact that

if m is a chart defined on \](?,Q,L) in the canonical

way indicated on p. 95, then

P(t ) = nor/
1
(t ),

Q(t ) = Vocp"
1
(t^) J

so that

e(P,Q) = e(n «" 1
, Voce"

1
)

Notation . S. is the Riemann surface of A.

The first main result we shall obtain is that if A

is irreducible and has degree n in w, then S. is compact,

connected, and rr restricted to S. takes every value in

A

C n times. First, we need a lemma on polynomials and

their zeros.

LEMMA 4 . I_f w, a-, , . . . , a are complex numbers such

that
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n ,
n-1

n-1 n
w ~ + ai« + • • •+ i_ i« + a_ = 0.

then

wl < I a.-, |
+• • •+

|
a

|
+ 1.

1

' 1 n

'

Proof : If | w | < 1, the result holds. If |w| ;> 1,

then

|w|
n

* |a
1 !| W |

n " 1
+...+|a

n _ 1 || W |
+ |a

n |

£ (laj +...+ |a
n |)M

n-\

so that

w| £ h 1
|
+ ... + |a

n

QED

THEOREM 1 . If A is irreducible , then S
A

is an

analytic configuration .

Proof : By Proposition I, if D is the set of reg-

ular points for A, then T-D is finite. We shall first

prove that S» tt (D) is connected; this assertion

forms the main point of the proof. Note that

sA
n tt

-1
(D) c M.

For suppose e(P,Q) € S A (1 tt (D), and let z = 7(0),

w = Q(0) . Then zQ € D and A(z ,w
o ) = 0. Since z

Q
is

a regular point, — (z ,w ) ^ 0. Thus, Lemma 1 implies

there is a unique holomorphic f near z such that
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A(z,f(z)) = 0, f(z D) = w
Q

. Since A(P(t), Q(t)) s

and P(t) is near z , Q(t) near w Q for small t, we then

have Q(t) = f(P(t)). If the mapping t- (P(t), Q(t))

is to be one-to-one (as it must), then the mapping

t - P(t) must be one-to-one, showing that P has mul-

tiplicity 1 at 0. Thus, e(P,Q) f M.

So we must now prove that if z,, and z..€D and [f j

and [g] € S. , then there is a path in S. H rT~ (D)

'0

A
connecting these two germs. Since C-D is finite, D

is connected, and thus there is a path v in D with

initial point z, and terminal point z„. By Lemma 2

there exists a (unique) path \ in M such that r y = v

and /(Q) = [gj . By the permanence of functional
Z
l

relations, ;(t) is in S for every t. In particular,

v(l) € S. and thus is represented by a holomorphic

function near z, which forms zeros of A. By the

corollary to Lemma 1, there are unique holomorphic

functions f ,,.... f in a neighborhood of z n such thatIn °

[f, ] € S A and f-,(z),...,f (z) are the distinct zeros

of the function A(z,w), if z is near z,-,. Thus,

[£] = [f.l and Y (l) = [f,]_ for some j and k.
z J

To finish the proof that S. " tt (D) is connected,

it suffices to prove that for any j and k there exists

a path Y in D from Zq to Zq such that analytic continu-

ation of f. along v leads to f , . Let us suppose that in
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all such analytic continuations f, can be analytically

continued to f, , f . -,,..., f , but not to f ,,,..., f (wherer /.' ' m m+1' n v

we have renumbered the f.'s). Here 1 <. m <, n. and we
J

want to prove m = n

.

Now consider the function
m

B(z,w) = Tf (w-f
k
(z))

k=l

defined for all w £ C and for z in a neighborhood of z„

.

For each fixed w the function B(z,w) can be analytically

continued along all paths in D with initial point z~

(Lemma 2), and analytic continuation along a closed path

of this nature must simply lead to a permutation of

f ,,..., f : such a continuation could not lead to any ofI'm J

the f . . f . and two different f 's could not bem+1 n j

continued to the same f, , by the unique lifting theorem.

Therefore, B(z,w) is analytically continued into itself

along any closed path in D from z^ to z
n , since B is a

symmetric function of f ,,..., f . Another way of looking

at this is to perform the indicated multiplication in B

and write near z^

B(z,w) = w
m
+ a

1
(z)w

m " + ... + 9-m ( z )>

whe re

ak
(z) = (-1) v f f ... f .

i
1
<i

2
<. ..<i

k
H L

2
L
k

By the same reasoning, each ex, is symmetric in f n f .

K 1 m
so ak has the property that it can be analytically
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continued along all paths in D and analytic continuation

along closed paths leads back to a, • Thus each <x, can

be extended to a single -valued holomorphic function in D

Now for a trick that will be used over and over.

The function a, is holomorphic in C except at finitely

many points. We shall now estimate the growth of a.

at these points to conclude a, does not possess any

essential singularity. Suppose now that a is one of the

critical points( oneof the points in C-D) . Then for

some sufficiently large integer N we have near a

|a (z)| > |z-aj
N

, |a
k
(z)| < C (1 <; k g n)

(C is some constant) if a ^ »; if a = » we have near a

|aQ.(z)| > c, |a (z)| s |z| (1 s k ^ n)

(c is some positive constant). Thus, for z near a

and A(z,w) = 0, Lemma 4 implies:

if a ^ oo, |w| < nC|z-a|
L + 1,

if a = co. w < — z + 1

.

11 c '

'

Since A(z,f, (z)) = 0, we thus obtain for z near a,

i c t \ I j i
-N

|
iN

|
f , (z)

I

<, const|z-a| or const |z|

if a ^ - or a = oo, respectively. Thus, the formula

for o.^ shows that for z near a.
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-Nk Nk
|
ou (z)

|
<, const |z-a| or const |z|

in the two cases. Thus, a, has either a pole or a

removable singularity at a. Since this is true at

each critical point, a, is meromorphic in C ana is

thus a rational function.

Let t>Q be the least common multiple of all the

denominators of the a. 's expressed as fractions without

common factors, and let

B(z,w) = b (z)B(z,w)

= b
Q
(z)w

m + b
1
(z)w

m * + ...+ bm (z),

a polynomial in z,w of degree m in w. Since for z

near z~

B(z,f,(z)) = A(z,f,(z)) - 0,

the conclusion of Lemma 3 does not hold for the poly-

nomials A and B. Thus, A and B possess a common non -

trivial factor. Since A is irreducible, this factor

must be A itself. Thus, the degree of B must be at

least the degree of A, so m = n

.

We have now completed the proof that S. (1 rr (D) is

connected. The rest is easy. Suppose e(P,Q) £ S. . Then

for 4 sufficiently small disk A centered at 0, U(P,Q, A)

consists only of points in S. D rr (D) with the possible

exception of e(P,Q), since c-D is finite. Thus, e(P,Q)



132

-1 •
—

can be joined to a point in S, D rr (D) by a path in M.

Thus, S. is connected.

To prove S. is a component we show it is both open

and closed in M. It is trivially open by Definition 2.

Suppose e(P-,Q) is in the closure of S. and let cp: U(P,Q, A)

A be a canonical chart. Then there exists t € A such
o

that cp" (t
o ) € SA . Thus, since co" (tQ ) = e(P(t +t),

Q(t +t)), we have

A(P(t
Q
+t),Q(t

o
+t)) h for t small.

Thus, since A(P(t),Q(t)) is a meromorphic function for

t € A which vanishes for t near t , A(P(t),Q(t)) = in

A. That is, e(P,Q) € SA , proving S. is closed.

£ED

WARNING It is tempting to think that if z is a

critical point of the type 3, that is, if the equation

A(z
Q
,w) = has a double root; and if e(P,Q) e S.,

P(0) = z , and Q(0) is a double zero, then e(P,Q) is a

branch pdint of order at least 1. This is not true in

general. For example, let

k( \ 2 2 3A(z,w)=w -z -z.

Then A is irreducible and z = is a critical point, the

zeros of A(0,w) - w both vanishing. There are two point

in S. lying near z = 0, and these are given by
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e(t, t/l+t), e(t, -tv'l+t),

where JT+t is the principal determination of the square

root for t small. Clearly, neither of those meromorphic

elements is a branch point of order s 1.

THEOREM 2 . S. is compact .

Proof: We again write

A(z,w) = a
Q
(z)w

n + ... + a
n
(z).

Consider the function tt: S
a

-. X, . By Proposition 9.2 of

Chapter II, it suffices to prove that the restriction of

tt to S, takes everv value in c n times. Of course,
A

it suffices to consider the case in which A is irreducible

Let D be the set of regular points for A; by Proposition

1 the set C-D is finite,

sufficiently small that

1 the set C-D is finite. Let a € C and choose e >

A = [z:
|
z-a

|
< ej (A = {z: |z| > e" } if a = 0=)

contains only points of D except possibly for a itself

Let a' be the set A with a line from a to the circum-

ference removed; for def initeness, let

A' = [z: z € A, z-a not a nonnegative real

number }

.

Since A' is simply connected and contains

no critical points for A, the corollary to
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lemma 2 implies that there are functions £.,...,£In
holomorphic in A' such that for each z € A',

f,(z)j...,f (z) are the distinct solutions of A(z,w) = 0.

Likewise, there are functions g, ,...,g holomorphic

in the region A" as illustrated:

,. a Now just below the slit in A'

the function f, must coin-
k

cide with a unique g.. In
/

v
a

i

\ / turn, g. must coincide with

a unique f just above the

slit in A'. Let us denote I = o(k) . Thus, f ,, N is the
a(k)

result of analytically continuing f, in a counterclock-

wise manner around A'. By the unique lifting theorem,

the function a is a permutation of the integers l,2,...,n

This permutation has a unique decomposition into cycles.

Let us consider a cycle of length m and let us renumber

the functions f, so that this cycle is represented by

-(1) = 2, cr(2) = 3, ...,o(m-l) = m, a(m) = 1. Define

for small t

f
]
_(a+t ), < arg t < —

,

f.,(a+t
m
), ^ < arg t < 2 ^,

Q(t) = \ 2 v ' ' m & m '

f (a+t
m
), (m-l)^i < arg t < 2

-m

TT.

(If a = =o replace a + t by t throughout.) By the

definition of j and the particluar enumeration of this
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cycle, Q has an obvious extension to a holomorphic

function defined for < |t| < e . Also, since

each f, (a + t ) is a solution of A(a + t , w) = 0,

Lemma 4 can be applied exactly as on p . 130 to

show that
|
f, (a + t )| <; const |t| as t - 0, for

some positive integer N. Therefore, Q cannot have an

essential singularity at 0, and thus Q is meromorphic
.. i

|
1/m

for
I

t| < e .

Now we prove that (a+t
, Q(t)) is a pair . Suppose

that for small s and t, a + t = a + s , Q(t) = Q(s)

.

Then t
m

= s™ . If (k-1)— <; arg t < k— andv y m & m

(j-l)~ s arg s < j-^, then

Q(t) = f,(a+t
m

) (= lim f (a + t
m
e
i6

)),K 6^0+ k

Q(s) - f^a+s 111

).

Since t = s , f, (a+t ) = f.(a+t ). Since the functions

f, ,....£ represent distinct solutions (and likewise
1 n r

,g ), we must have j = k. By the inequalities

for arg t and arg s, the equation t = s now implies

t = s. Thus, the mapping t - (a+t , Q(t)) is one-to-one.

Since A(a+t , Q(t)) = 0, this argument finds an

element

e(a+t
m

, Q(t))

belonging to S.
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If the permutation a is decomposed into cycles of

lengths m-, , ..., m , then by the same argument we produce

elements in S. of the forms

m
e(a + t \ Q,(t)),

m
e(a + t ^, Q^(t)).

m.
Since the multiplicity of n at each point e(a+t L

, Q.(t))

is m. (Proposition 5 of Chapter IV), it follows that tt

takes the value a a_t least m-,-f. . .+m = n times. The same

is true if a = a, though we of course need to use slightly

different notation.

An obvious remark shows that ri takes each value at

most n times... of course, we speak of the restriction of

tt to S. . In fact, if a is a regular point for A, then

the points in S. D n ((a)) are in M (cf. p. 128 ) and

these elements are exactly the germs of the n holomorphic

solutions near a by the corollary to Lemma 1. Thus, tt

takes on the value a exactly n times in S. . By the

argument on p. 43, if tt takes some value (a

critical value) more than n times in S., then n takes

every neighborhing value more than n times in S. , which

implies n takes some regular value more than n times in

QED

S., a contradiction
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Remarks. 1. One sees finally the reason for

discussing M - it contains precisely enough points to

discuss branch points in general, and in particular to

discuss all the solutions of algebraic, equations. If

e(P,Q) € S. and cp: U(P,Q,A) - A is the canonical chart,

the function & is called a uniformizer for A near the

point P(0). It replaces the multiple-valued solutions

of A = by two single-valued meromorphic functions.

It is of course only defined locally.

m

.

2. The elements e(a + t
x

, Q. (t)) produced in the

above proof are obviously different. The only possi-

bility for two of them to coincide is for two of the

multiplicities m. and m. to coincide and for Q.(t) = Q.(uut)

for some root of unity uu . But this would force the

corresponding cycles to overlap, as can be easily

checked.

3. The function Q on p . 134 is meromorphic and

thus has a Laurent expansion:

Q(t) = I a t\
k=N K

1/m
Substituting formally z=a+t,ort= (z-a)

} gives
a series

1 a, (z-a)
k=N K

.

with a similar series

k/m
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-k/m
S a z

k=N K

in case a = «. These are called Puiseaux series, and

have the property that for any determination of z

the sum of the series gives a solution of A(z,w) = 0,

1 /m
and differeint determinations of z yield different

solutions. Of course, all this information is contained

in the idea of the corresponding meromorphic element.

4. It is almost amazing how easy it was to find the
m.

elements e(a+t 1
, Q,(t)) in S. . However, when one

observes what had to be known, it is quite obvious that

it should be easy. Namely, we had to have completely

solved the equation A(z,w) = away from the critical

points, and then it was a simple matter of checking

what S. looks like above these finitely many critical

points. But this sort of procedure can almost never

be carried out in practice for rather obvious reasons.

We can't even usually hope to solve the equation near

a critical point and observe how the zeros behave under

analytic continuation around the critical point.

5. Even without knowing Proposition 9.2 of Chapter

II, it is almost obvious why S. is compact. For S. consists

essentially of n copies of the (compact) sphere C branched

above certain finitely many points. The only way S.

could fail to be compact would be for certain of these

branch points not to be included in S. . Essentially the
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proof shows they are indeed all included and this state-

ment is phrased in the perhaps deceptive statement that

the restriction of n to S. takes every value n times.
A J

3 3Problem 6 . Let A(z,w) = w -3zw+z . Prove that A

is irreducible. Find its critical points and discover

the types of meromorphic elements which belong to S.

.

Compute the genus of S. by the Riemann-Hurwitz formula

(p. 112).

3 aProblem 7 . Same for A(z^w) = zw -3w+2z , where a

is any integer (positive or negative) . Of course, if

a < then this is interpreted to be the problem for

the polynomial

1-a 3 „ -a , .,

z w - 3z w + I

.

Now we pass to the converse of Theorem 2. This

states that every compact analytic configuration is the

Riemann surface of a unique (to within a constant factor)

irreducible algebraic function. In Chapter VI this state-

ment will be improved considerably and will state that

any compact connected Riemann surface is analytically

equivalent to a compact analytic configuration (and thus

has an associated irreducible polynomial)

.

Before stating this converse of Theorem I, we

make a useful observation about S. . First, divide out

the leading coefficient ap(z) to write A(z,w) = a^ (z )A ' (z,w) >

where
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A'(z,w) = wn + a, (z)w +. . ,+a (z)
i n

and n.,...,a are rational functions of z . We assume

A (and thus A') to be irreducible. If a is a regular

point for A, then the corollary to Lemma 2 shows the

existence of the holomorphic zeros f,,..., f as usual.

Thus,

e
k

= e(a+t, f
k
(a+t))

is a point in S., 1 5 k g n, and the elements e, are

the only ones in S fl it" ({a}). Also, V(e ) = f
k
(a),

so the numbers V(e, ) are the n solutions of A'(a,w)=0.

Thus, we obtain a factorization

n

A'(a,w) = J[ (w-V(e
k ))

k=l

= IT (w-V(e)).
e€S

A
n(e)=a

THEOREM 3 . Let S be a compact analytic configuration

Then there exists a unique (up to constant factor) irre -

ducible polynomial A such that S = S.

.

Proof : Since S is compact and n: S - C is analytic,

Proposition 9.1 of Chapter II shows that the restriction

of tt to S takes every value the same number n of times.

Let D be the subset of C defined by

£-D = irr(e): e € S, m (e) > 1 or V(e) = a,}
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Thus, if e € S and n(e) € D, then m (e) = 1 and V(e) 4- »•

Since S is compact, the set of elements e such that e € S

and m (e) > 1 or V(e) = » is finite . A fortiori , C-D
TT

is finite. We now take our clue from the discussion on

p. 140 and define for z € D, w € C

= TTA'(z,w) =
I \ (w-V(e)).

ees
n(e)=z

That discussion implies that if S = S» for some A, then

this must be the formula for A'(z,w) for regular points

z, since all the regular points must be contained in D.

Thus, the uniqueness assertion of the theorem is estab-

lished. Moreover, we have an explicit formula for A'

and we now just have to check various details.

First, if z € D then there are exactly n elements
o J

e,,...,e € S with n(e, ) = z , since n takes the value

z n times and rr must have multiplicity 1 at each e, .

Suppose e, = e(P(t) , Q,(t) ) , where P(t) = z +t if z f »

and P(t) = t~ if z - ». Let cp,: U(P,Q
k ,£i ) - A be

a canonical chart. For small t ,
o

snn"
1
({P(t

o
)})= t^1

(t
o
),...,^

1
(t

o )},

so that
n

A'(P(t
o
),w) =7]'(w-Q

k
(t

o ))
k=l

since V(rD
~ (t )) = Q, (t ). This equation shows that if
k ° K °
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we expand

A'(z,w) = w + a, (z)w +...+ a (z),

then a1 ,...,a are holomorphic on D.in
Now we examine the behavior of cu at the isolated)

points of C-D. Suppose a € £-D . Let e(a+tm , Q(t))

be one of the points in S (1 tt (j_a})5 in case a = co this

must be replaced by e(t ,Q(t)). Then for z near a but

not equal to a, there are m points in S Pi tt ({z})

determined by this one element, namely,

e(a+(t
k
+ t)

m
, Q(t

k
+ t)), where t™ = z-a.

(We now discuss the case a 4- m ', the case a = co is

handled entirely similarly.) The corresponding values

of V(e) are Q(t, ), 1 < k s m. Thus, for some N we have

|V(e)| s |t
k
|"N - Iz-a|-

N/m

for these m points e £ S n n (z) . Treating the other

points in S fl tt (z ) in a similar fashion, we obtain for

some integer M

-M -1
|V(e)| <.

|
z-a

|
if e € S A n (z), z near a.

Thus

-Mk
|ak (z)| < const |z-a| if z is near a;

if a = co this estimate should read

Mk
|

a

k (z) | < const |

z



143

Therefore,, ctv. is meromorphic on C and thus a-i, is rational .

Now that we have produced a polynomial A we must show

that A is irreducible and that its Riemann surface is S.

This will essentially be done all at once. Suppose that

there exists a factorization of A in the form A = BC,

where B and C are polynomials and B is irreducible ... in

fact; there is always such a factorization with a poly-

nomial B of degree at least one in w (perhaps C is constant)

Then B has a Riemann surface SR which is a compact analytic

configuration. Let e be an element in S,, such that m (e) = l
d rr

and V(e) 4- <*>; this includes all but finitely many points

in S„ . We also assume n(e) £ D, eliminating again at

most finitely many points. Then if rr(e) = z we let

P(t) =z +tifz ^co and P(t) = t"
1

if z = ». Then
o o v

o

e = e(P,Q), and B(P(t), Q(t)) = for t near 0. Thus,

since A = BC we have

A'<P(t),Q(t)) = for t near 0.

The formula for A' at the bottom of p. 141 implies

n
.

TT (Q(t)-Q (t)) =0 for t near 0.
k=l R

Since each factor Q-Q^ which is not identically zero can

have only isolated zeros, it follows that for some k,

Q = Qk
-

Thus, e = e(P,Q
k ) = e, 6 S. Thus, except for finitely many
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points SR c S . Since S is compact in the Hausdorff space

M, S is closed and thus

S„ - S.

Since S„ is a component of M and since S is connected,
D

it follows that S„ = S.
15

Now it is all done. For., n assumes (when restricted

to S_) every value the same number of times, this number

being the degree of B as a polynomial in w. But n assumes

(when restricted to S) every value n times. Thus, B has

degree n in w . Thus, C has degree in w and thus is just

a polynomial in z. Therefore, if we discard all the

common polynomial factors in z from the polynomial A(z,w),

we must have C s const. This shows that A is irreducible,

its only possible nontrivial factor turning out to be

itself. And S. = S = S

.

QED

We thus see that on any compact analytic configuration

S the two meromorphic functions n and V are related by

an algebraic equation. These two functions of course

allow us to construct other meromorphic functions on S;

namely any rational func tion of tt and V is meromorphic

on S. The amazing fact is that there are no other mero-

morphic functions on S . In fact, we have
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THEOREM 4 . Let S be a compact analytic configuration

on which n assumes every value n times Let f be any

meromorphic function on S . Then there exist unique rational

functions " ns -'-, ri i
such that

n-1

n-1 .

f = I a. n-V J
.

j=0 J

Proof : Suppose z is a regular point for A, the

polynomial is such that A is irreducible, and S = S. • If the

the formula for f is to hold, then we must have

f(e) = I a.(z)V(e) J if e € S, n(e) = z.

Now S n ({z}) = [e ,...,e ] has exactly n points and

the numbers V(e, ) are distinct. The above equations read

n-1 .

f(e, ) = L a.(z) V(e, )
J

, 1 £ k < n.
k

j-0 J
k

These are n equations in n "unknowns", a (z),...,a -i(z),

and the determinant of the system is

det
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This is a so-called Vandermonde determinant and its

value is well known and easily seen to be

7T (V(e
k
)-V(e^)),

ls-t<k<n

which is not zero. Thus, a
f
,(z),...,a -> (z) are uniquely

determined. It is also clear that these numbers a-(z)

really depend only on z and not on a particular ordering

e,,...,e of the points in n ({z}). Thus, a ,...,a _-

are uniquely determined at the regular points for A, and

thus are unique since they are to be rational functions.

Knowing what a. must be, we now prove that they

exist. By Cramer's rule, we can write down a formula

for a-(z) in terms of a determinant involving f(e, ) and
J K

V(e, ), divided by the Vandermonde determinant. Near a

fixed regular point we can choose the e, in terms of

charts to be analtyic functions and thus f(e,) and V(e, )

become analytic functions, proving a. is holomorphic on

the set of regular points. As usual, we now prove that

a. cannot have any essential singularities. Since we

obtain upper bounds for f(e, ) and V(e, ) in the standard

manner we are used to by now, it remains to obtain a

lower bound for the Vandermonde.

Suppose then that a is a critical point. We assume

in the following that a # »; the case a = co is treated by

mere formal changes in the analysis. The points in

S n rr ([a]) have the forms
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m , J
e(a+t J

, Q.(t)), 1 < j s J, S m. = n,
J

i = l J

where Q. is meromorphic near 0. Let the positive

integer m be the least common multiple of the integers

m. • If z is a number sufficiently near a but not equa'

to i, choose an arbitrary s € C such that

m
z-a = s .

Let

2ni/m
. = €

J
a 4 - e J

Then for <. I <, m -1,

m/m. m.
z-a = (uj. s 3

)
3

,

„ m/m.
and the numbers id ."'s

J are different for <, I s m.-l.
J J

Thus, S fl rr ((zj) consists of the points

m/m. m. m/m.
e., = e(a+(uur s J + t) J

. Q. («)? s J + t))

for < I < m.-l, 1 < j < J. Thus, V(e. ,) = Q. (ojIs J)
.

The Vandermonde contains terms of the form

. m/m . / m/m ,

V(e )-V(e., ,) = Q (ffl *s
J

) - Q.,(tD*,s J
) ;

J "w J "^ JJ JJ
which is a meromorphic function of s, not vanishing for

small s ^ since z is regular for a. Thus, there exist:

an integer N such that
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N N/m
|V(e ) - V(e,, ,)| * |s| = |z-a|

so the Vandermonde has modulus bounded below by

N n(n-l)
I i

m "2
z-a

Thus, we have proved that each a- is rational and

by definition

n-1 .

f(e) = E a .(TT(e))V(e)
J

j=0 J

for all but finitely many e <E S (those such that rr(e) is

a critical point for A). Thus, these two meromorphic

functions on S coincide.

QED
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Chapter VI

EXISTENCE OF MEROMORPHIC FUNCTIONS

The thrust of this chapter is the proof that

there exist nonconstant meromorphic functions on any

Riemann surface. It will take a tremendous amount

of machinery to achieve this result; in particular,

we will need to give a careful and fairly complete

discussion of harmonic functions on Riemann surfaces.

But before beginning this topic, we shall exhibit one

problem which can be solved using the existence of

meromorphic functions.

First, we introduce a lemma which really logic-

ally belongs in Chapter IV, but has not been needed be-

fore now.

LEMMA 1 . Let m be a positive integer and Q a_

meromorphic function near having Laurent expansion

CO

Q(s) = £ a-s j
,

3-— J

and assume that no positive integer except 1 is a common

factor of all j such that a. ?* 0. Let n be an integer

relatively prime to m. Then (t
m

, Q(t
n
)) is a pair .

Proof : We have to prove that the mapping t - (t ,Q(t ))

is one-to-one near 0. If this is not the case, then

there exist s, - and t, -» such that s, ^ t, and s, = t, ,
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Q(s£) - Q(t{J). Thus, (s
k
/t

k )

m
- 1, and by taking a

subsequence we can assume that there exists a fixed uu

such that uu ^ 1, uu = 1, s, = uut, (cf. p. 93).

Therefore, Q(uo
n
t
k ) = Q(t

k ), so that the two functions

Q(iu s) and Q(s) agree on a sequence s = t, - 0. Since

they are both meromorphic , they must be identical:

l, a.'ju s J = L a- s , s near 0.

Therefore the coefficients must agree: a-«J -* = a. for

all j. This means that a. f implies u;
-* = 1 . It

follows easily that ju = 1. For the set i j : uj
n

-^ = 1}

is an additive subgroup of the integers and the Euclidean

algorithm implies that any subgroup equals the integer

multiples of a fixed positive integer j . Thus, a- ^

implies j contains j as a factor. By hypothesis,

i = 1 and therefore u = 1. Since n and m are relativelyJ o J

prime, the Euclidean algorithm again implies there

exist integers p and q such that pm + qn = 1 . Thus,

_ pm+qn _ / m,p. n
q

a contradiction.

^ED

THEOREM 1 . Let S be any connected Riemann surface .

Let f and g be meromorphic functions on S such that f ^

constant . Then there exists a unique analytic $ : S - M
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such that

f = TTo $ }

g = Vof.

It is convenient to draw a diagram to indicate

these two equations:

^M

f,g TT,V

A A
C X C

The statement of the theorem is then exactly that there

exists an analytic $ making this diagram commutative.

Proof : Uniqueness : Suppose p 6 S and that m.p(p)

= 1. Since f = rtoi, it follows that m^p) = 1. Let

i|i be any compatible chart in a neighborhood of p.

Suppose |(p) = e(P,Q) and let ®: U(P,Q.,A) - A be a

canonical chart. We assume iji(p) = 0.

,u(p,q,a;

'
§(p)

/

.
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Recall from p. 126 that

p - - 1
r - Uocp ,

Q = Voce"
1

.

Now the mapping -ooSoH-' is a parameter change , since it

is one-to-one near and maps to 0. Thus, we consider

P ° ( cp ° § ° <jr ) = TT° $ ° f fo \|l ,

Q°(» f°i|(~ ) = V°$°ili" = g°v"

and we thus have

(P,Q) ~ (f°y
1

, go Mr"
1

) .

Therefore, if m
f (p)

= 1 we have

(p) = e(fo f , gof ) .

This proves that £ is uniquely determined except on the

discrete set where the multiplicity of f is greater

than 1. Since § is continuous on S, then | is also

uniquely determined everywhere.

Existence : We already know how to define $ at

points where m
f

= 1 . Therefore, we so define $ at those

points, just noting that the definition §(p) = e(f°u; }

g°'Ji ) really is independent of the particular chart

o; a different selection of the chart merely gives a
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parameter change.

Now suppose p € S and m
f (p ) = m. Choose a

chart $ near p such that $(p ) = and

fot"
1
(t) - f(p

Q
) + t

m

if f (p ) 4- ». As usual, if f (p ) = <» we have instead

fof" 1
(t) = t

_m
.

Then consider the Laurent expansion of go ty :

goi|f (t) = £ a,t

Let n be the largest positive integer which is a factor

of all k such that a, ^ 0; in case a, = for all k, let

n = in. Then we can let k = nj in the above series and

we obtain

-1
(t) • S a

nj
t
nj

= Q(t
n
),

oo

where
00

Q(s) = £ a.s J

and r,
. = a .. Thus, either n = for all i or there

is no common factor of all j with a- ^ except 1 (and

-1). Let a be the positive integer which is the

greatest common divisor of m and n and define

m n

$(p ) = e(f(p
o

) + t», Q(t^))
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(replace f(p ) + tw by t ^ if f(p ) * «>) . We have to

check that this is really a meromorphic element, i.e.,

that

is a pair. If a. = for all j, then — = 1 and it is
J u

obvious. Otherwise, Lemma 1 applied to the relatively

prime integers — and — shows that we do have a pair.
U u

Thus, $(p ) makes sense; we do not need to check that

we have defined it independently of the choice of f

(there are only m choices to make) since we can regard

the choice of f to be an arbitrary "function" of p •

We now observe that this definition of *(p ) works

even when m = 1; then ^ = 1 and the definition agrees

with the earlier definition of § at points where f has

multiplicity 1. Note that obviously

TT°*(PQ ) f (P )>

Vo?(p
o

) - Q(0) = gov
_1

(0) = g(pQ
).

Thus, the required commutativity of the diagram is

proved. We thus need to check the analyticity of $

in order to finish the proof. We prove that $ is

analytic in a neighborhood of p , using the above

notation

.

Let z be near 0, z ^ 0, and let p =
v (z) . Then

for sufficiently small z, p is a point where f has multi-
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plicity 1. Define the chart f, = \|r-z, so that iiu (p) =

and

*i
(t) = f (z+t)

•

Therefore^ according to our first definition of §,

$(v" (z)) = e(fo*"
,
go^ )

= e(fo^" 1
(z+t), goif

1
(z+t))

= e(f(p
o

) + (z+t)
m

, Q((z+t)
n
))

Now we introduce the canonical chart near $ (p ):r o

call it cp: U - A, where
m n

.f
1
(t

o
) = e(f(p

o
) + (t

Q
+t)

U
, Q((t

o
+t)

U
))

We introduce next the parameter change p defined by

o(t) = (z+t) W - z^;

since z 7^ 0, this is. a parameter change. And we have
m

m u
(z+t) = (z +p(t)) (and a similar formula

w i th n )

,

showing that
m ri

$(f
1
(z)) = e(f(p )+(z^+p(t))^, Q((zM+ p ( t

))U))

m n.

= e(f(p )+(zW+t)^ Q((z"+t)"))

=.^
_1

(z^).

Thus,
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30 $oy (z) = Z^,

_1
so c°^'°i is holornorphic near 0. This proves that ?

is analytic near p .ro

QED

COROLLARY . Let S be any compact connected Riemann

surface and f
,
g meromorphic functions on S such that

f ^ constant . Then there exist a unique compact

analytic configuration T and analytic function ? from

S onto T such that the diagram commutes :

S
* > T

f >g \ / n,V

1 x 1

Proof : This is trivial. We just let T = §(S).

Since S is compact and connected and § is continuous,. T

is also compact and connected. Since § is analytic and

nonconstant, Proposition 4 of Chapter II implies T is

an open subset of M. As T is thus closed and open and

connected, it is an analytic configuration.

QED

COROLLARY . Under the hypothesis of the previous

corollary, there exis ts a unique irreducible polynomial

A(z,w) such that
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A(f( P ). g(p)) = for p € S.

Proof: We first prove uniqueness. If A has the

required properties, then A(rr($(p)), V(§(p))) = for

p £ S. Since 5 is onto, this implies A(rr(e), V(e)) =

for e ST. Therefore the Riemann surface for A satisfies

S A
=> T. Since T is a component of M and S is connected,

Pi A

S. = T. Thus, Theorem 3 of Chapter V shows A is unique.

Existence is trivial. Simply let A be chosen by

Theorem 3 of Chapter V such that SA
= T. The above

argument worked the other direction proves A(f,g) = 0.

QED

We are most interested in the possibility that the

mapping $ of S onto T is also one-to-one. For then we

will have an analytic equivalence of the compact Riemann

surface S with an analytic configuration. The next theorem

gives some equivalent conditions.

THEOREM I . Let S be a compact connected Riemann

surface and f
,
g meromorphic functions on S such that

f £ constant . Let a, T, A be the objects of the two

previous corollaries . Assume that f takes every value

n times . The the following conditions are equivalent .

1

.

$ is an analytic equivalence of S onto T

2

.

There exists

f(p) = z} has n points

3

.

For all excep

f(p) = zj has n points

2, There exists a point z € C such that tg(p):

3. For all except finitely many z £ r
, ig(p):
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4 i The polynomial A has degree n _in w

.

Proof : 1 => 4 : Since § is an analytic equivalence

and f = no? ; rr also takes every value n times. The results

of Chapter V, especially Theorem 3, imply that A has

degree n in w

.

4 => 3 : If z is a regular point for A (and this

is true for all but the finitely many critical points),

then T n ( {z}) = {e, , . .
.
,e } and the numbers

V(e, ) , . .

.

, V(e ) are distinct, being the solutions of

A(z,w) = 0. Since § is onto, there exist p , ...,p € S

such that |(pk ) = e
k>

Then g(Pk ) - v ( ek ) and f ^k^
=

Tr(e
k ) = z, so

ig(p) : f (p) = z)

has at least n points V(e, ) , . . . , V(e ). Since f takes

every value n times, this set can contain no more than

n points.

3^2 : Trivial.

2 => 1 : Finally we come to an interesting

proof. By hypothesis there are n points p,,...,p such

that f(p^.) = z and the numbers g(p-, ),..., g(p ) are distinct.

In particular, since f takes the value z n times, m
f (p,)

= 1

Since f = r^f, m (p, ) = 1. Let e = $(p,). We shall show
$ l 1

that $ takes the value e one time. Suppose then that

$(p) - e. Then f(p) - -r(e) = noiCp^ = f(p
x
) = z, so
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p = p for seme k. Then g(pk ) = V(e) = V°§(p
1
) = g(p

1
),

so p, = p, . Thus $(p) = e if and only if p = p, . Since

moreover m (p, ) = 1, we have now proved that $ takes the
§ 1

value e one time. But Proposition 9.1 of Chapter II

implies $ takes every value one time. That is, $ is one-

to-one. Thus, <£ is an analytic equivalence.

QED

Let us comment on 4. Suppose that the mapping §

takes every value k times, and that rr: T -> C takes every

value m times . Then since f = n *, it is easy to see

that f takes every value mk times. In the notation of

Theorem 2. this means n = mk and A has degree m In w.

Thus, in general the degree of A is a factor of n. For

example, consider the trivial case in which S = C . f(z) = z

and g(z) - z . Tl

corollary implies

and g(z) z . The uniqueness assertion of the previous

A(z,w) = w - z

.

2

For, A is irreducible and A(f(z),g(z)) = g(z) - f(z) =

4 ^
z -z '

= 0. Thus, f takes every value 4 times, the

degree of A is 2, so we conclude that $ takes every value

2 times. In fact, our explicit construction shows that

for z ^ 0,oo,

4 2
$(z) - e((z+t)

, (z+t) ).

s(-z) = e((-z+t)
4

,
(-z+t)

2
)

= e((z-t) 4
, (z-t)

2
)
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= e((z+t)
4

,
(z+t)

2
)

= $(z)

by the parameter change t -> -t.

Now we state the main theorem of this section and

show how it can be used to produce functions f and g

which satisfy the criteria of Theorem 2. Note that we

must at least produce a nonconstant meromorphic

function f on S; the following theorem allows us to do

even better.

THEOREM 3 . Let S be any connected Riemann surface

and let p , q € S . p --}= q • Then there exists a meromorphic

function f oin S such that f(p) ^ f(q)-

We are nowhere near being able to prove this yet.

But assuming its validity for the moment we prove

COROLLARY . Let S be a compact connected Riemann

surface . Then S is analytically equivalent to an analytic

configuration .

Proof ; First apply Theorem 3 to find a nonconstant

meromorphic f on S . Now we show how to construct

another meromorphic g on S which satisfies criterion 2

of Theorem 2. Assume that f takes every value n times.
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If n = 1, take g = 0. Suppose n > 1. Since the points

of S where the multiplicity of f is greater than 1 are

isolated., there exists z € C such that f Qz}) consists

of n distinct points p,,...,p . Theorem 3 implies that

if j ^ 1, there exists a meromorphic h on S such that

h(p.) 4- h(p-, ) . Choose a complex number a 4 l n (Pi

)

, • • •
,

h(p )1. Then there exists a Mobius transformation

„ t v aw + bF(w) = -r—tv ' cw + d

such that F(h(p
1
)) = 1, F(h(p.)) = 0, F(a) = ». Thus,

there exists a meromorphic h. = Foh such that

h
j
(p1

) = 1,

h.( P .)=0 3

h.(p, ) is in C for 1 <. k <. n.
J

pk y

n

Define g, = i\ h.. Then g, is meromorphic on S and
1 j=2 J l

gl ( Pl ) = 1,

g 1 (p,)
=0, 2 s j <; n.

Repeating this construction, there exist meromorphic

functions g,, ...,g on S such that

gk (Pk ) - 1,

gk ( P .) = if j + k.

Now define
n

£ kg,.
k=l R
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Then g is meromorphic on S and g(p^) = k, 1 < k s n. There-

fore,

g(p) : f (p) = z = 1,2 n

has n points. So criterion 3 of Theorem 2 is satisfied

and therefore S is analytically equivalent to an analytic

configuration (criterion 1 of Theorem 2).

QED

Now we shall begin to introduce the machinery needed

to prove Theorem 3. The basis is the idea of ha rmonic

functions on Riemann surfaces. First, we recall that a

function u on an open set in C is said to be harmonic if

2 5
2
u ?/u

u is of class C and —j + —n =0. A convenient way of
3x dy

discussing this is to define the differential operators

»„ _ 1 Su 1 du
Su = 7 lx"

+ 71 ^ '

- 1 du 1 du
Su = 7 "5x • 7T 17 •

Then

3lu = lau = k(r-% + -^-7 ) •

5x =>,y

Now the equation If = is exactly the Cauchy-Riemann

equation. Thus, f is holomorphic if and only if If = 0;

moreover, in this case af = £', the ordinary complex

derivative of f. Thus, if u is of class C , then u is

harmonic if and only if du is holomorphic. In particular,
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if u is harmonic then au has derivatives of all orders.

Likewise, u is harmonic so that Su = du has derivatives

of all orders. Thus, — = ou + au has derivatives of
ox

all orders, and the same is true for -r— . Thus, harmonicAy

functions have derivatives of all orders.

Chain rule . There is a chain rule for these

differential operators, which we now describe. Suppose

V and W are open sets in C and h: V - W is a class C

mapping of V into W.

Let u: W - C be of class C . Then u<?h is a] so of

class C and if we let D-, denote partial differentiation

with respect to the first argument and D., with respect to

the second argument, the usual chain rule reads

D-^uch) = (D
1
u)ch D-^Reh) + (D

2
u)rh D-^Imh).

D
2
(uoh) = (D u)oh D

z
(Reh) + (D

2
u)?h D^Clmh).

Therefore

.

d(u°h) = (D-,u)oh a(Reh) + (D^u^h d(Imh)

/^ \ i. Bh+ah
, /t\ \ u oh- dh= (D-,u)oh , + (D

2
u)oh —j-.

1 1 1 I

= (7D u + ^HD
2
u)oh ah + (2D

;

,u j-,- D
2
u)oh3h

= (Su)oh dh + (Bu)eh ah.

The corresponding formula for o(ush) follows the same way

We thus obtain
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a(uoh) = (dh)oh dh + (du)oh 3h,

"3~(u°h) = (Su)oh ~bh 4- (3u)ohdh~.

As a special case, suppose h is holomorphic . Then 3h = h',

dh = 0, so we obtain

d(u°h) = (3u)oh h',

(1)

S(uoh) = (3u)oh F .

2 2
a ft

Now define A = —j + —j (the Laplacian ) ; as we
3x fty

have seen, A = 4 33 - 433. Thus, if h is holomorphic,

the above chain rule implies

A(uoh) = 4l[(3u)°h h']

= 4"i[(ftu)oh]h' + 4(*u)oh "ih' (Leibnitz'

rule)

= 4(3ftu)oh"h 7h / + 0,

so we obtain

2

(2) A(uoh) = (Au)oh |h'| .

We need one more formula involving 3. Suppose f is

holomorphic. Then

5Ref =il+-d". f/ + °
,

so we have
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(3) 3 Ref = \1'

DEFINITION 1. Let u be a real-valued function

defined on a Riemann surface S. Then u is harmonic

if for every chart -; u - W in the complete analytic

atlas for S,, u >$ is harmonic on W.

PROPOSITION 1. Let S be a Riemann surface and

u: S - ?,. Then the following conditions are equivalent .

1

.

u is harmonic .

2

.

For each p € S there exists a chart rD : U -• W

in the complete analytic atlas for S such

that p € U and u°cp is harmonic in a

neighborhood of cp(p) .

3

.

In a neighborhood of each point of S

there exist holomorphic functions f and

g such that u = f + g.

4

.

In a neighborhood of each point of S there

exists a holomorphic function F such that

u = ReF.

Proof ; 1 => 2 : Trivial.

2 =» 1 : If u°cp is harmonic near rc(p) as

in condition 2, and if i|i is any compatible chart near p,

then

UO\|) =UO!p 0((£0\|j ) ,

so uof is also harmonic by formula (2) on p. 164 . This
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proves 1

2 =» 3 : Since uo^ is harmonic, d(u° c ) is

holomorphic. Locally, any holomorphic function has a

primitive, so there exists a holomorphic function f

near p such that near <s(p)

aCuoof
1
) = (foa,"

1)'

Define g = u-f. Then

d(go^) ) =5>(g°cp ) - 5(uocp" ) - d(f°cp~ )

= o(uo,4 ) - (fo
_1

)
'

= 0.

Thus, gc- is holomorphic, proving g is holomorphic

3 = 4 : Using u = f + g, we have since u is

real, u = Reu = Ref + Reg = Ref + Reg, so we merely

take F = f + g-

4 => 2 : We have u ^ = Re(Fo^ ) is harmonic

near tp(p) .

QED

PROPOSITION 2 . Let S and T be Riemann surfaces ,

F : S - T an analytic mapping . If u is a harmonic function

on T, then uoF is harmonic on S.



VI 167

Proof : If 33 is a chart on S and v a chart on T.

then we must investigate (uoF)oc • This is

(uoF)o-; = ue,' o(\jJoFocp )

and we know uo i) is harmonic and tyoFog is holomorphic

Therefore,, formula (2) of p. 164 obtains.

3£D

PROPOSITION 3. Let S be a connected Riemann surface

and u a harmonic function on S . If u van ishe s on a

neighborhood of some point of S , then u = .

Proof : Define A =
L p £ S: u = in a neighborhood

of p}. Then A is open by definition and A £ by hypothesis

We now demonstrate that A is closed: suppose p is a

limit point of A. By criterion 4 of Proposition 1. there

exists a holomorphic function F near p such that

u = ReF near p . Thus, ReF vanishes on some open set

near p , namely on the intersection of A with any

neighborhood of p where F is defined. But then F must

be constant on this open set and by the uniqueness

of analytic continuation F is constant. Thus, u is

constant near p and thus p € A. Since A is open and
*o r o v

closed and not empty, and since S is connected, A = S.

SED

The fundamental Theorem 3 actually follows from a

theorem on the existence of harmonic functions , which we

now state

.
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THEOREM 4 . Let S be any connected Riemann surface

and let p £ S . Let ©: U - W be a chart in the complete

analytic atlas for S with p € U and cp(p) = 0. Let n be

a positive integer . Then there exists a harmonic function

u on S - [p j such that for z near

uocrj (z) = c logjzj + Ref(z),

where c is some real constant and f is meromorphic in

a neighborhood of and has a pole of order n at 0.

Thus., Theorem 4 guarantees the existence of a

harmonic function on S - {p} with prescribed singularity

at p. For emphasis., we repeat that the order of the

pole of f at is exactly n: in the notation of p. 38,.

&
f
<0) = -n.

Now we shall indicate how the knowledge of Theorem

4 leads to a proof of Theorem 3. Let p ,q be ther *o ^o

distinct points on S mentioned in the hypothesis of

Theorem 3. Let u be harmonic on S - ipj with repre-

sentation near p as prescribed by Theorem 4 with

(say) n = I:

uonj (z) = c log|z| + Ref(z),

f (z) = — + ... (Laurent expansion

near 0) , a # 0.

Let i|i be a chart near q , i|f(q ) = 0, and let v be a

harmonic function on S - {q } with expansion near
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of the form

169

voiji" (z) = d logjzj + Reg(z),

g(z) = ^ + ..., p t

Using these two harmonic functions we shall construct

the meromorphic function required in Theorem 3.

Here is how it is done: let p, € S and let o be a

chart near p, (in the complete analytic atlas for S)

.

Near p, we define

F(p)

B(voa" )(a(p))

First, we show this definition to be independent of a.

Let a-, be another chart near p
1
and let h = aoa, , so

that h is holomorphic and has a holomorphic inverse.

Then formula (1) of p. 164 implies

a(uo a
J

1
)(a

1
(p)) = S(uoa"

1 oh)(a
1
(p))

= &(uo a
" 1

)(h(a
1
(p)))h

/

(a
1 (p))

- B(u=a"
1
)(a(p))h

/

(a
1
(p)).

Therefore,

3(uoa^
1
)(a

1 (p))
a(uoa

_1
)(a(p))

- — _
}

d(v°c^
1
)(a

1
(p)) 5(voa" 1

)(a(p))

since the common nonzero factor h'(a-,(p)) cancels after

division. Thus, the definition of F is independent of
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the choice of chart

Next, since uo<t and voo are harmonic, the

functions d(u°j ) and $(voa ) are holomorphic, and

not identically zero since otherwise e.g. v»a would

be holomorphic (Cauchy-Riemann equation) and thus

constant (since it is real-valued) . But then Proposition

3 would imply that v is constant on S - [q }., which

manifestly contradicts its singular behavior near q .

Thus, the zeros of d(v°o ) are isolated, so the for-

mula for F exhibits F as the quotient of two holomorphic

functions near p, , the denominator not vanishing iden-

tically, and thus F is meromorphic near p., . Thus, F

is meromorphic on S - [p } - (q }.

Finally, we must examine the behavior of F near

p and q . Near p we use the chart & and compute

according to (3) of p. 165

SCuosf 1 ^)) = J^ + £f'(z)

2z

so that F°co has a pole of order at least 2 at 0.

Thus, F(p ) = oo. Likewise, near q we use the chartvt o no

is
and compute

d(vov (z)) S_ + . . .

,

2z
Z

so that F° ty has a zero of order at least 2 at 0.
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Thus, F(q ) = 0. This concludes the proof of Theorem

3.

We have therefore finally reduced the problem

to that of demonstrating Theorem 4. It will take a

considerable amount of machinery and technique in the

area of harmonic function theory to accomplish this,

so we now begin a discussion of the relevant properties

we need.

Proposition 4 . Let u be continuous on &, the

closure of an open disk a c C, and harmonic in £.

Suppose l has center z and radius r. Then

1
2rT in

u(z ) = +- r u(z + re
b
)dQ.

o 2tt Jq o

Proof : Let < p < r. Then the divergence

theorem implies

o = r (-£-£ + -^-§)dxdy = j |a dS,

lz-z
o i< P

*x *y |z-z
o i= P

v

where dS is the element of arc length on the circle

I z-z I
= p and —= is the directional derivative in the

direction of the outer normal. Another way of writing

this is

- lJ^^ z
o
+ P

ei9 ))P d e.
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Dividing by p and then moving -r— outside the sign of
o p

integration implies

a
2 n

i a
= -I- f u(z + pe

lb
)de.

dp oq o

Therefore, the continuous function of p fe [0, r] given

by

1 ^ n i9
p - -sr- f u(z + pe )da

2n J o

is constant. Since its value at p = is u(z ), the

result follows.

QED

Now we show how to apply this simple property of

harmonic functions to obtain a representation of u in

all of A, not just at the center. First, we take A

to be the unit disk, [z: |z| < 1} for simplicity of

computations. Let a € a and consider the Mobius

transformation

T(z) =

1-az

T maps A onto a conformally, A onto A, and T(a) =

Thus uoT is harmonic on ,

that Proposition 4 implies

Thus uoT is harmonic on A, continuous on A, so

uoT
_1

(0) = 4-
f

n
uoT

_1
(e

ir5
)dK .

2

Now we introduce the change of variable
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e
ie = T

-i
(e

ic
)

Then e c = T(e ), so that a simple computation yields

iG - i9
dcp _ e ae "

e - a 1-ae

10
+

io -ie -
e - a e -a

, - ie.- i9 -
1-ae +ae -aa
, in w -ie -

N
(e -a)(e -a)

l-|«|
2

ie |2 •

e -a

Therefore,

2 2

u < a >
=
2T J

n

^ll*
1 ^ u <

ei9
) d 9

Ztt J
e
l8-ar

Define

2

(4) P(z,e ie
) - * ^

|
z

|
2 , |z| < 1;

|
e -z

|

this is the so-called Poisson kernel. We want to observe

certain things about it

1. P a 0;

•2tt„/_ ie.
2. r^PCz^^^de = 1, |z| < 1;

i 9.

3. P(z.,e ) is a harmonic function of z;

4

.

for any 6 > 0,



174 VI

lim T

ie i6 i9 P'(z,e
1B

)de = o
z-e ° |e -e °| ^6

The first property is obvious and the second follows

from formula (4) applied to the harmonic function u = 1.

The third follows from the formula for 7?. which reads
d9

i-9 - 16
i9v e ° ze

2rrP(z,e
J
) = -f— +

19 , - 11
e -z 1-ze

exhibiting P as a sum of two harmonic functions of z.

ie
To prove the fourth, assume j z-e °| < 6/2. Then

ifl
ie ie ie

|e -z| s |e -e °|-|e °-z| > 6-6/2 = 5/2, so that

2

I P(z,e
l9

)d9 g j~
1-

I

ZL • 2 n < 4^(1-1 zl)

ie ie
2tt u727

and this clearly tends to zero as z - e

These four properties are all we need to establish

the following converse to formula (4)

.

PROPOSITION 5. Let f be a continuous function on

the circle z = 1. Define

f

2n P(z,e
ie

)f(e
i9

)d9, |z| < 1,

« <( °

f(z), |z| = 1.

Then u is harmonic for | z | < 1 and continuous for \z\ < 1 •
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Proof : The fact that u is harmonic for jz| < 1 fol-

lows from 3 by differentiation under the integral sign.
i9

Clearly., we need only prove that lim u(z) = f(e °) for
i9

|z| < 1, z - e , in order to finish the proof. Let
18

e > 0. By continuity of f at e , there exists 6 >

19 c
ie ie

such that IfCe
1 ^) - f(e °)

|
< j- if

|
e -e °| < 5.

Now 2 implies

19 2 tt 1a ia 19
u(z) - f(e °) =

f
P(z,e

l9
)[f(e

ld
)-f(e °)]di

Choose a constant C such that |f(e "')
|

<; C for all 9-

Then

ie .

|u(z)-f(e °)| £ f J
P(z,e

l8
)d9

id ie
Ie -e °|<5

+ 2C
J

P(z,e
lB

)d6

ie ie
ie -e °bfi

Since the first integral is bounded by 1, and property

4 implies there exists 6' > such that the second inte-
i6

gral is bounded by -f^ if
|
z-e °| < 5

'

'

, we obtain

i8
|u(z)-f(e °)| < c

18
if I z-e °| < 6'

QED

Of course, it is not necessary to restrict our

attention to the unit disk. If we consider functions
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in the disk A of center z and radius r. the formula
o

analogous to that of Proposition 5 is

, 2tt r -
j
z-z |

.

u(z) = ^r- f
*-*—2 f( z + re

lb
)d6.

Z * J
!re

l6
-(z-z

o )|
Z °

This can be derived in the same manner,, or merely

by considering the change of variable z-z = rw and

using Proposition 5 as it stands.

The Poisson integral formula we have just derived

has several immediate applications which will be of

great importance to us. For example, we have

PROPOSITION 6 . Let D be an open set in C and K

a compact subset of D . Then there exists a constant C

which depends only on K and D such that if u is har -

monic in D then

sup|~| * C sup |u| .

K ax
D

A similar result holds with — replaced by any deri -

vative of any order

Proof : For any z € K there exists a disk A of

center z and radius r such that the closure of A is
o

contained in D. For |z-z
|

< -jr , the Poisson integral

formula implies

where

l-^(z) |
5 c sup|u| ,



VI 177

2
I I

2

. r - z-z
I

' O '
I

C = SUP -r— — r
-i

dx | 13/ viz '

I

I ^ 1 re - (z-z )z-z < -?rr '

v o x
'

' o 2

is easily seen to be finite. Since K can be covered by

finitely many such disks as [z: j z-z
|
<— r], the result

follows

.

QED

PROPOSITION 7 . Let D be an open set in C and UpU^, . . .

a sequence of harmonic functions in D which converge uni -

formly on compact subsets of D to a function u . Then u
cu .

is harmonic in D and the sequence n converges to —

.

also uniformly on compact sets in D

.

Proof : If a is a disk whose closure is contained in

D, then u has a Poisson integral representation in A of
n or

the form
2

, 2 n r -z-z
ia

u (z) = 4- f '
2 u (z + re

Ld
)d9.

re - (z-z )

For fixed z <= A let n - co in this formula and use the

uniform convergence to pass the limit under the integral

sign to obtain 2 ?

u < z > - h L r: —: »<« +»18
>«.

|re
10

-(z-z
o )|

2

Therefore, u is harmonic in is. Therefore, u is harmonic in D

Now suppose K is a compact subset of D. Choose an

open set D-, such that K c D, and the closure of D, is a

compact subset of D. Let C be the constant of Proposition

6 relative to K and D-, . Then
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OU -,

SUP 'lE "SF * C SUP l

Un"U
K

a ?X
D n

By hypothesis, sup
J

u -u| -> as n - <*,. and therefore
D

i

n

-^r- - -^7 uniformly on K. As K is arbitrary, the

result follows.

PROPOSITION 8 . Let D be an open set in C and

u n
• u ,, . . . a sequence of harmonic functions in D which

i ^ —

—

'

are uniformly bounded on every compact subset of D

.

Then there exists a subsequence n-, < n
?

< ... such that

lim u

exists uniformly on compact subsets of D

.

Proof : If A is a disk such that its closure is a

compact subset of D, then there exists a constant C

depending only on a such that |u (z)
j

<, C for z € k,

n s 1. Therefore, Proposition 6 implies that if \l

is the concentric disk with half the radius of L,

then for some other constant C

du 3u

l-srl * cv l-#l * c
i

on **

Now we apply the mean value theorem on the disk \L (details

omitted) to conclude that for z, z' € \k>
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|u
n
(z)-u

n
(z')| s 2C

1
|z-z'| •

This proves that the family of functions u,,u...... is

equicontinuous on %A. Since A was arbitrary, it follows

that the family u. , u^,... is equicontinuous on each

compact subset of D. By the Arzela -Ascoli theorem,

there exists a subsequence with the required property

that u converges uniformly on compact subsets of D.

QED

DEFINITION I . An open subset D of a Riemann

surface is an analytic disk if there exists a chart

cp: U - W in the complete analytic atlas such that

c(D) is a disk whose closure is a (compact) subset

of W.

Notation . If A is a subset of a topological space,

A denotes the closure of A and BA denotes the

boundary of A.

PROPOSITION 9 • Let D be an analytic disk in a

Riemann surface S and let f : 3D - n be continuous .

Then there exists a unique function P^ on D such that

P.p is continuous on D , harmonic in D, and P^ = f

on ^D.

Proof : Let $: U - W be a chart in the complete

analytic atlas for S satisfying the condition of

Definition 2. If : (D) = [z: |z-z
|

< r], then
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PfoiiT must be continuous on r(D) • harmonic on <£>(D),

and P
f
°c&"" = foqT on 5qj(D) (= ep(dD)). Thus, if

z € a(D), then

2 r
2
-lz-z [

2

P
f
8 T

_1
(z) - JZ J"

"
,

r

i9

'

Z Z
°

,2 f^_1
(2 +re ie )d9

Therefore, P
f

is uniquely determined and Proposition 5

implies that P as defined by th

the conditions of Proposition 9.

implies that P as defined by this formula satisfies

QED

DEFINITION 3 . If D is an analytic disk in a

Riemann surface S and if u: S -» R is continuous, u^

is the unique continuous function on S which agrees

with u on S-D and is harmonic in D. The existence

and uniqueness of u^ are guaranteed by Proposition 9

LEMMA 2 . Let S be a Riemann surface and p £ S

Let <c > . Then there exists a neighborhood U of p

such that for all functions u which are harmonic and

nonnegative on S , and for all p , q g U

u(p> < (l+e)u(q).

Proof ; There exists a chart cc: U - W in the com-

plete analytic atlas for S such that W contains (z: |z|<l}

and cp(p ) = 0. This can obviously be achieved by com-

posing an arbitrary chart with a suitable linear trans-

formation of C onto itself. Let v = u°rp . Then
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according to p. 173.,

2rr

v(z) = i" P(z,e
l9

)v(e
l0

-)de J \z\ < 1
"0

Now l-|z| <, |
e
1

-z| < 1 + |zl so we obtain

1- z __ 1- z

1

' (l+|zj) |e -z| (l-|z|)

= i±Ui
l-|z|

i-j.
Therefore, since v(e ) > 0,

1-lzl 1 ,2rr 1+1 zl 1 „2tt , i8.

1+ z Iji

—
I

v(e )d6 < v(z) < '

—

L -5—
f v(e )de

1- z

By Proposition 4 this pair of inequalities can be

written in the form

I V (0) < V (z) ,™.v(0)
1+ z 1- z

If < 6 < 1 and |zj < 6, we obtain

^ v(0) < v(z) ^ ±±± v(0) .

1+6 1-6

Therefore, if jz| < 6 and |w| < 5,

v<0) £ (-±±V
1-5 1-6

v(z) < ^v<0) s (±±^) v(w)
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Pick 5 such that

(1T5) £ 1 + «•

Then let U = cc~ ({z: |z| < 6}). This is a neighborhood

of p = '5 (0) and for p,q f U,

u(p) = v(cp(p)) s (l+e)v(ro(q)) = (l+c)u(q).

QED

Harnack's Inequality . Let S be a connected Riemann

surface and K a compact subset of S. Then there exists

a constant C depending only on K and S such that for

all nonnegative harmonic functions u on S and all p,q € K^

u(p) • Cu(q).

Proof : It obviously suffices to consider the class

,! of functions which are harmonic and positive on S ; if

u is harmonic and u > 0, then for every e > 0, u+e £ H

and if the inequality is true for functions in u then

u(p) + e < C(u(q) + e) . Then let e-*0. Of course, we

are debating a triviality anyw.ay, because Harnack's

inequality implies that if u a and u is harmonic,

then either u = or u > 0. Now choose some fixed

point p £ S and define
o

u(p) U (P„)
F(p) = sup max (^_

}

.

-tfjj)
: u € I

o'
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We are going to prove F is continuous. Let p, f S and

let e > 0. Let U be a neighborhood of p, satisfying the

condition of Lemma 2. Then for u € d and p,q € U,

$1, , (l+e) Hgij
. (1+0F(q) .

u(pn ) u (pJ_°- s (1+s) _°_ s (l+ e )F(q)
u(p) u(q)

Therefore,

(5) F(p) < (1+e) F(q) for p,q 6 U.

In particular, if F(p,) < « we choose q = p, to conclude

that F(p) < m for all p 6 U; if F(p.,) = « we choose

p = p-, to conclude that F(q) = a. for all q £ U. Therefore,

the sets

[p € S: F(p) < }, [p € S: F(p) - »}

are open. As they are obviously disjoint and their union

is obviously S, the connectedness of S implies one of

these sets is S, the other empty. Since F(p ) = 1, p

belongs to the first of the sets, and thus we have

proved that F < a everywhere on S.

Now we obtain the continuity. Taking q = p, in

(5),

taking p = p^,

F(p)-F( Pl ) < eF(p
T

) if p € U;

-eF(Pl ) s (l+e)(F(q)-F(Pl )) if q 6 U.
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Thus, we obtain

" 1+7 F(p
l
} " F (P)-F (P!) * eF( Pl ) if p € U,

and since e is arbitrary, this proves that F is

continuous at p,

.

Since F is continuous on S and K is compact, there

exists a constant c such that F(p) < c for p 6 K. There-

fore, if p, q £ K

u(p) < F(p)u(p
o

) s F(p)F(q)u(q) <c 2
u(q).

Harnack's Convergence Theorem . Let S be a connected

Riemann surface and 3 a nonvoid family of harmonic

functions on S which is directed upwards , i.e., if

u,v € 0, there exists w £ 3 such that w 2 u, w 2 v.

Let U = sup 3, i.e., for p € S

U(p) = sup[u(p) : u € 3}

•

Then there exists a sequence u-. < u.. <. u„ «j . . . such that

u € 3 for all n and u - U uniformly on compact subsets

of S . Moreover , either U = 00 o_r U is harmonic on S

.

Proof : Let u be an arbitrary function in 3 and

let

0' = [u e 3: u s u }

.

Then sup 3' = sup 3. Indeed, since 3' c 3 the inequality

sup 3' <. sup 3 is obvious, and if u € 3 then there exists

v € 3 such that v s u and v s u ; therefore, v 6 3' and
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v s u, proving that sup 3' 2 sup r*.

For any compact set K c S let C„ be the corres-

ponding constant in the conclusion of Harnack's inequality

Then for u € 3
' , u-u is a nonnegative harmonic function,

so for all p,q € K it follows that

u(p) ~ U ^P) * c
K (u(q)

- u (q))

* C
R
(U(q) - u

o
(q)).

Taking the supremum over all u € $' implies

(6) U(p) - U
o (p) g C

K
(U(q) - U

Q (q))

It fellows that if U(q) < =0, then U(p) < <*, and here p,q

can be any points in S (just take K to be the compact set

Cp,q)). Therefore, either U s » or U < ».

Let p € S be fixed and choose a sequence u/.u^u^, ..

from 3 such that u ' (p ) -• U(p ). By hypothesis, we

can let u-, = u-,' and then find inductively u € such thatli J n

u 2 u
' , u s u , .

n n n n-1

Then we have a sequence u, ^Uo <u.,s. . . from 3 such that

u (p ) - U(p ). Note that (6) holds for an arbitrary

u € 3, so we can take u = u in (6) . If U(p ) = »,
o on vr o

then for any compact set K containing p Harnack's in-

equality implies

U
n (po } ' U

l
(p o

} " C
K
(u

n (q) " u
l
(q))

>
q € K >
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and therefore u (q) -» « uniformly on K. This proves

the result in case U = ». If U(p ) < », then (6) implies

U(p) - u
n (p) < c

K
(u(p

o
) - u

n (pQ )), p eK,

and therefore u (p) - U(p) uniformly for p € K. Finally,

Proposition 7 shows that U is harmonic in this case.

QED

Now we need to introduce the basic building block

other than the Poisson integral, which is subharmonic

functions. The basic theory is contained in the following

proposition

.

PROPOSITION 10. Let u be a continuous real-valued

function on a connected Riemann surface S . Then the

following conditions are equivalent.

1. For every analytic disk D c S, u <. u~. (Cf.

Definition 3 .)

2. If s is a proper open subset of S, if & is

compact, if h is continuous on © and harmonic

in <s, and if u <. h on S^, then u & h in &.

3. For each p € S there exists a chart ®: U - W

in the complete analytic atlas for S such

that p £ U and

1 -1 i 9
u(p) s -j— f uojp (ep(p)+re )de

for small positive r

,
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4. For each p € S and every chart -: U - W

in the complete analytic atlas for S

such that p € U and every z sufficiently

close to co(p)j

-1 1
2rr -1 ie

uo :i (z) s o—
i

u-2 (z+re )d9
2TT J

Q

for small positive r

.

Proof : We are going to establish four implications,

three of which are absolutely trivial.

2=1 ; Assume that 2 holds and let D be an

analytic disk. Use 2 with & = D and h = u_. restricted

to & . Then u = h on ^D so we obtain u sh in D, i.e.,

u < un in D . Since u = u„ outside D, 1 follows.

1=4 : Assume that 1 holds and consider the

analytic disk

D = cp~ ( {w: |
z-w| <r})

for sufficiently small r. Then u < u„, so in particular

UOep (z) < UpOcr, (z) .

Since u^or is continuous on j_w : |z-w| s r} and har-

monic in the interior, the mean value property of

Proposition 4 implies

V^" 1(z) =
-7^

i

u
D
o,'

1
(z+re

ie
) de

= i-
f

2n uo cp

" 1
(z+re

i6
)d6
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since Up. = u on dD . Thus, 4 follows.

4=>3 : Completely trivial: we allow every chart in

4 and moreover 3 is just 4 at the single point z = >.o(p) •

3=>2 : Finally here is something which requires

thought. Assume that 3 holds and assume we have the

hypothesis of 2. Define v = u-h in 9 . Let M = sup _v.

Since Q is compact and v is continuous, the supremum

is attained, so the set

A = {p e <$: v(p) = M}

is either nonvoid or v = M somewhere on S&. In the

latter case, since v < on fiS we obtain M < and the

result follows. So we assume v < M everywhere on B",

in which case A is not empty. Since v is continuous,

the set A is closed relative to &. We use 3 to show that

A is open : suppose p £A. Pick a chart co according to

3 with respect to the point p. Then for small positive r

u(P> < TZ r

TT

u r

" 1
(co(p) + re

i9
)de.

Since h is harmonic, it satisfies the similar relation

with equality instead of inequality (Proposition 4) and

thus we obtain by subtraction

v(p) *T-[
2ri vo,/ 1

( cp(p) + re
i9

)de.

But the left side is v(p) = M and the integrand
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- 1 i0
v°co (;x(p)+re

J
) ^ M by definition of M. Thus, we con-

clude that equality holds everywhere, so

vocd"
1

(.p (p) + re
19

) = M

for < 9 ^ 2 n and small positive r. Thus, v = M near

p, so A is open.

It is now a simple topological argument to show

that SA and S3 have a point in common. To see this,

let Pq £ A and p, £ S-<§ be chosen arbitrarily, and

use the connectedness of S to conclude that there

exists a path y 1° S from p^ to p,. Since p.-. £ A

and p, | A and the image of y is connected, there exists

a point p.-, in the image of y such that P2 € dA . If a

neighborhood of p., were disjoint from ©, it would also

be disjoint from A, contradicting p~ € A . Therefore,

p^, € (s . If p., € ©,• then since A is closed in &,

p^ t A; since A is open, this contradicts the fact

that p 2 g (S-A)~. Thus p 2 € &©• Since p 2
£ dA,

v (p 2 ) = M by continuity of v. Since p.. £ a©, v(p
2 )<0

by hypothesis. Therefore, M s 0, and the conclusion of

2 follows.

QED

DEFINITION 4 . A continuous real-valued function u

on a Riemann surface -S is subharmonic if it satisfies

condition 4 of Proposition 10.
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Strong Maximum Principle . Let u be a subharmonic

function on a connected Riemann surface S such that usO . Then

either u <0onSoru=0onS.

Proof : This is contained in the proof of 3 => 2 of

Proposition 10. For the set A = [p€S: u(p) =0} is

closed since u is continuous and is open by Condition

4 of Proposition 10, and thus either A = S or A is

empty

.

QED

Weak Maximum Principle . Let S be a connected

Riemann surface , and & a proper open subset of S such

that & is compact . Let u be continuous on is and

subharmonic on &. Assume u <, on 9&. Then u <, 0.

Proof : This is again contained in the proof of 3=>2

of Proposition 10. If M = max -u and if M > 0. let

A = [p £ &: u(p) = M}. Then the argument proving

3 => 2 shows that 3A and 33 have a point in common

and thus M < 0, a contradiction.

QED

COROLLARY . If G is a proper open subset of a

connected Riemann surface S such that & is compact ,

and if u is harmonic on & and continuous on & , then

sup _ | u| = sup | u|

.
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Proof : Let M = sup |u| . Then -M+u and -M-u

are subharmonic in © and nonpositive on 3S, so the

weak maximum principle implies -M+u <; and -M-u <,

in &. That is, -M <, u <; M.

PROPOSITION 11. Let u be a continuous real-valued

function on a Riemann surface S . Then u is harmonic if

and only if u and -u a re subha rmon ic .

Proof : We only have to prove the "if" part of

the assertion. Since the proposition deals with local

properties, we can assume S is connected. By part 1

of Proposition 10, if D is an analytic disk, then

u <, u
Q

and -u <; (-u)D
- But clearly (~u) n

= -u^, so

we have u <, u_ and -u <, -uD
- Thus, u s uD . Therefore,

u is harmonic in D. Since every point of S is contained

in an analytic disk, u is harmonic in S.

QED

PROPOSITION 12. Let u ,ul3 ...,u be subharmonic====== — 1' n

on a Riemann surface S, and let a-, ,a , . . . , a be non-^ 2' n

negative real numbers . Then the functions

a,u, + ... + a u ,11 n n

maxfu, , . . . ,u )v 1 n'

are subharmonic . Also , if D is an analytic disk, un is

subharmonic

.
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Proof : This follows directly from the definition.

Condition 4 of Proposition 10 asserts in that notation

that for small positive r

2

V^O) < ^- J
\o^_1

(z+re i0 )de.

Multiplying by a, and adding, the function a.,u, + . . .+a u

is seen to satisfy condition 4. If u = max(u, ,...,u ),

then we have

":tt2,i

Ui ecc (z) < ~— a
uopxi (z+re )d9, 1 £ k s n

K ZfTJ

Therefore,

-l l ^ n -l ie
uo'j) (z) <; =— P uoco (z+re )dQ,

2tt Jq

proving that u is subharmonic. The last statement will

be proved on p. 196.
O^ED

The basic theorem we need is the following.

THEOREM 5. Let S be a connected Riemann surface

and j? a nonempty family of subharmonic functions on S

such that

1. if u,v eg, then max(u,v) € n,

2

.

If. u - 3 and D is an analytic disk in

S, then Up € a-

Then supo is either harmonic in S or' sup g s ».



VI 193

Proof : Let U = sup 3. If D is an analytic disk

in S, let IV be the functions on D defined by

Hq - (u
D : u e o)-

Then ,-l is a family of harmonic functions on D and

sup 3^ = U in D

.

For, u € implies Uj, € 3, so that any function in £j_

is the restriction to D of a function in 3 and thus

sup 1. s U in D. On the other hand, u € implies

u s u„ by Proposition 10.1. Therefore, U < sup ju

in D.

Now we apply Harnack's convergence theorem to

the family x. on the Riemann surface D. We have to

check that ru is directed upwards. So suppose u,v € r<.

Let w = max(u,v), so that w € 3 by property 1. Then

u £ w implies u~ <> w_ and v ^ w implies v-. «j w~, so

that we have found w^ £ 3_. such that wn 2 tu, w^ 2 v_..

Thus 3n is directed upwards. Thus, Harnack's conver-

gence theorem implies that either sup jl. is harmonic or

sup 3^ = =0. Therefore, either U is harmonic on D or

U = co on D

.

Finally, we have the familiar connectivity argu-

ment: if A = ip € S: U(p) = w} and B = {p € S: U(p) < »}.

then A and B are disjoint open sets with union S. Since
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S is connected, either A is empty or A = S. Thus,

either U < » on S or U = <a on S. If U < » on S, we

have shown that U is harmonic in every analytic disk

in S. Therefore, U is harmonic.

QED

Problem 8 . (The Dirichlet problem for an annulus)

1. Prove the Weierstrass approximation theorem

for a circle. That is, if f is a contin-

uous complex-valued function on the circle

|z| = 1 and e > 0, then there exists a

finite sum

g(z) = "a z (positive and

negative n)

such that |f(z)-g(z)| < e for |z| = 1.

Hint : Use Proposition 5 and Proposition 1,

with the obvious remark that the proof of 1 => 3 for

the disk |z| < 1 gives two holomorphic functions defined

on the entire disk.

2. Consider the annulus r < |z| < 1, where

< r < 1 is fixed. Let n be an integer.

Exhibit the (unique) harmonic function

which equals z for |z| =1 and equals

for I zl = r.
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3. Combine 1 and 2 to conclude that there

exists a function u which is harmonic
e

for r < |z| < 1, continuous for r s |z| ^ 1

(in fact, it will be harmonic for

< |z| < oo) such that

|u (z)-f(z)| < e for |z| = 1,

u (z) = for |z| = r.
e

4. By a limiting argument, prove there exists

a function u which is harmonic for r < |z| < 1.

continuous for r <. |z| < 1, such that

u(z) = f(z) for |z| = 1,

u(z) = for |z| = r.

5. Use this result and an appropriate conformal

mapping to treat any continuous boundary

values on |z| = r as well.

Now we state a corollary, and we use the obvious

terminology that a function w is superharmonic if -w is

subharmonic

.

COROLLARY . Let w be a superharmonic function on a

connected Riemann surface S . Let

= [v: v subharmonic on S, v < w}.

Then sup p is either harmonic in S o_r sup LT s -«.
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Proof : We have sup 3 = -« if and only if 3 is empty,,

so we assume from now on that 3 is not empty. We verify

the two properties required in Theorem 5. First, if v-^v^

€ 3, then clearly max(v-, ,v~) s w and Proposition 12 implies

max(v, , v.-,) is subharmonic; thus, max(v,,vJ € 3. If D is

an analytic disk in S, then for v € 3,

v
D

< w
D * w

,

the latter inequality being a consequence of criterion 1

of Proposition 10 for superharmonic functions. So we

need only check v~ is subharmonic. This amounts to

checking the local criterion 3 of Proposition 10. This

mean value criterion clearly holds at any point p e D (since

vn is harmonic near p) and at any point p in S-D (since

v„ = v is subharmonic near p) . So we consider p € §D and

a chart cp in the complete analytic atlas for S, ^ defined

near p. Since v is subharmonic and v < v~, we obtain for

small positive r

1
2tt -1 ifl

V
D (P) = V (P) « 27fJ

v °tp (cp(p) + re )de

< h r ^D^'^cpCp) + re
i9

)de,

establishing the criterion in this case as well. Thus,

v~ is subharmonic on S. Now Theorem 5 implies sup 3 = »

(which is impossible in this case) or sup 3 is harmonic.

QED
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DEFINITION 5 . Let w be a superharmonic function on

a connected Riemann surface. The function

u = supt.v: v subharraonic on S, v^w}

is called the greatest harmonic minorant of w. This

terminology agrees 'with the obvious fact that if v is

harmonic on S and v g w, then v < u. Moreover, if w

has any harmonic minorant at all, then u is harmonic

(not =-«=). Of course, our corollary shows that actually

u is the greatest subharmonic minorant of w, and is

itself harmonic. We shall use the abbreviation

u = GHM of w.

As an application of these ideas, we show how to

solve a certain kind of Dirichlet problem.

PROPOSITION 13 . Let D be an analytic disk in a

connected Riemann surface S and f : 3D - R a continuous

function . Then there exists a function u which is

continuous in S-D, harmonic in S-D , and such that

u s f on SD . Moreover, we can assume

%% ?£>

inf u = inf f
S-D SD

Remark. Nothing is claimed about the uniqueness of

u. As we shall see, u is unique for certain S and not

unique for other S.
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Proof : By Definition 2 of analytic disk, there

exists a chart cp: U - W in the complete analytic atlas

for S such that x(D) is a disk A. Since A~ c W, there

exists a concentric disk A, with A c A-, , A-, c W

\
\ u

V

w

Let D, =

1' "1

-1
(A

1
). If c c ?

then by Problem 8 there ex-

ists a unique function h

which is continuous on A-i-A,

harmonic in A, -A , and such

that

h s c on SA, j

h s fojrj on SA.
c

Define a function v on
c

S-D by the formula

h 0|
c

in D,-D,

c in S-D-

Then v is continuous on S-D, v s f on SD. and v is
c c c

harmonic in S-D, and in D-.-D If c <. inf f, then v
SD

is subharmonic on S-D ; for. the only points where we

need to check the mean value criterion 3 of Proposition

10 are on SD, , and there v takes the value c. But
1 c

the minimum principle implies h 2 c in A-, - A, and

thus v 2 c in S-D. Therefore, criterion 3 of Propo-

sition 10 is trivially satisfied at a point of 9D-, .

Thus, v is subharmonic in S-D Likewise, if c 2 sup f,
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then v is superharmonic in S-D .

c

Let A = inf £, B = sup f . Then vA is subharmonic
3D 3D

A

in S-D , vR is superharmonic in S-D , and v. <; v in

S-D. This last inequality follows from the maximum

principle , since h_-h. is continuous in A, -Aj harmonic

in A-.-A , = B-A on 3A-, , = on 3lA, and thus h
R
-h

A
s 0.

Let u be GHM of v_ . Then since v. is a subharmonic

minorant of v^^ we have
a

(7) vA & u s v
R

and u is defined and harmonic on S-D . We have of

course applied the corollary of Theorem 5 to the

connected Riemann surface S-D , which is why u is

defined only on S-D . But the inequalities (7) imply

that u can be extended to a continuous function on S-D

in exactly one way, namely by taking u = v. s vR = f on

3D.

Finally the last assertion of the proposition

follows from

A ^vA <. u <vR sB.

QED

Remark. The above analysis is typical in the

sense that even when we wish to have boundary values for

a certain harmonic function, the corollary to Theorem 5

does not by itself give anything more than a harmonic
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function on an open set. Some other consideration,

e.g. (7), is needed to obtain information about the

function at the boundary. We shall see more instances

of this phenomenon later.

To complete the preliminary material, we need to

obtain a representation for harmonic functions in an

annuluSj analogous to the Laurent expansion of a holo-

morphic function.

PROPOSITION 14. Let u be a real harmonic function

in an annulus a <
j
z

|
< b . whe re <, a < b < m . Then

there exist unique complex numbers c, (a } , such that

for a < I z I < b

u(z) = c log|z| + Re(_E a z )

,

and a is real . Furthermore , if a < a' < b' < b, then

there exist constants K and {K } depending only on a

'

and b ' ( and n ) such that

|c| <; K supi |u(z)|: a' <- |z| <; b'},

|a
n l ^ l^supiluCz)! : a' 5 |z| < b'j.

Proof : The discussion on p. 162 implies 9u is holo-

morphic for a < |z| < b. Therefore, the Laurent expan-

sion of du exists, say

Su= 2cz, a<|z|<b.- oo n
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By formula (3) of p. 165 , for n ^ -1 we have

• i n+1

c z = -3— c rr = 2 g Re ( n ) >
n dz n n+I v n+1

c_
1
z" = c_

1 ££ log z = c_
1
2d log|z|

.

Now the Laurent expansion for >u converges uniformly

on compact subsets of the annulus., and therefore the

same is true for the integrated series, so we obtain

c z

Su = 2c_
1
3 log|z| + I 23 Re( n

)

n^-1

n
c z

= 2s(c . log|z|) + a L 2Re( "^ )_i
nfO

n

= d(c log | z| + Re E a z
n

) ,

n^O
n

2c
where c = 2c n and a = . The Cauchy-Riemann-Inn J

equation

a(u - c log|z| - Re I an z
n

) =

follows and shows there exists a function g holomorphic

in a < | z | < b such that

u = c log |z|+Re £ az +g(z).
n^O n

Taking imaginary parts,

Im g = (Im c) log] z|

.

Since i log z = -arg z + i log | z |
, this shows that

g = i(Im c)log z, and thus g is defined only if Im c

= 0. Then g is a real holomorphic function, and thus
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is constant. Thus, if g = a~, we have

u(z) = c log|z| + Re r a z
n

, c, a~ real,

a representation of the desired form.

Nov; we obtain the uniqueness: if a < r < b, then

, iBv . . 1 °° nin9.1«— n-ine
u(re ) = c log r + -*• ^ a r e +77 rarev y & 2n 2 -as n- 03

1
'

, 1 OT
/ n

,
-ri\ in9= c log r + t 1 (a r + a r )e

Since this series converges uniformly for 0^6^ 'In, we

obtain by integration

1
2^ lfl

-r—
J

1

u(re )de = c log r + su ,z
'

u

(8)

I
J
"uCre^Je^^e - a^r™ +^ r"

m
, m * 0.

Here we have used the orthogonality relation

1 r

2;T

e
ine

e
-im9

de
f if m + n,

~

I^~'
[ 1 if m = n.

If we use the relations (8) for two different values

r, r € (a,b), we can solve for all coefficients;

L
T '[u(re

i6
)-u(r'e ie )]dq.

log r-log r Z...
q

aA =
-t

^ r -r-r [u(r'e
i9

)log r-u(re 18 )log r']d0
log r-log r 2ttj q

e & J

1 1 (i p / iS N /~m //iBN-mi-imGj^
a = — — f Lu(re )r -u(r e )r je dP,m „ m . m

Op-) -<f-)
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m ^ . This proves that the coefficients are uniquely

determined by u, and at the same time shows easily how

to obtain the estimates stated in the last half of the

proposition

.

£ED

COROLLARY . "Removable singularity theorem" Let u

be harmonic and bounded in an annulus < | z | < b . Then

there exists a harmonic function in the disk \z\ < b

which agrees with u in the annulus <
j z J < b

.

Proof : By Proposition 14 we have

u(z) = c log |z| + Re(_| a z
n

) , < |zj < b

In formula (8) we let r - and we read off the relations

c log r is bounded,

a r + a r is bounded, m f .m -m

Therefore, c = and m < implies a =0. Thus ther m

expansion for u reads

u(z) - Re( I a z
n

) . < |z| < b.
n

The right side of this expression is harmonic in the

disk | z | < b.

QED

COROLLARY . If u is harmonic and bounded for

a < |z| < co and continuous for a <. |z| < », and if



204 VI

u(z) s for \z\ = a, then u = 0.

Proof : In formula (8) let r - a to obtain c log a

n m ,
—— -m ~ „ .

,

.+ Sq = 0, a a +a a =0. By the reasoning given

in the previous corollary, a =0 for m > and c = 0.r J m

Therefore, a _ = and a =0 for rn < . Thus, u = 0.
m

We are now almost ready to prove Theorem 4. But

something rather strange will arise in the proof.

Namely, we shall see that there is a certain dichotomy

of Riemann surfaces which requires that the proof of

Theorem 4 be quite dependent on this classification,

although the statement of the theorem is the same in

both cases. We present this phenomenon in the form

of a proposition.

PROPOSITION 15 . The following conditions on a

connected Riemann surface S are equivalent.

1. Every bounded subharmonic function on

S is constant.

2

.

If D is any analytic disk and u is a

bounded continuous nonnegative function

in S-D which is harmonic in S-D and

which vanishes identically on 3D, then

u = 0.
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3. If D is any analytic disk and u is a

bounded continuous function in S-D which

is harmonic in S-D , then

sup u = sup u.
S-D SD

4

.

Same as 3 with "harmonic" replaced by

1
' subharmonic .

'

'

2 '
. Condition 2 holds for some analytic disk

D.

3
' . Condition 3 holds for some analytic disk

D.

4
' . Condition 4 holds for some analytic disk

D.

Proof : We shall prove 1 => 2 =» 3 =» 4 and I' => 3
' =» 4'

=> 1. Since the assertions 2 => 2

'

, 3=3', and 4 =* 4
' are

trivial, the proposition will follow. The proof that

2 =» 3 is identical to the proof that 2' => 3' and like-

wise for 3 =» 4 and 3' => 4 '

.

3 => 4 : As in the proof of Proposition 13, we choose

a "concentric" analytic disk D-, with D c D. . Suppose u

is a bounded continuous function in S-D which is sub-

harmonic in S-D . Choose a constant C such that sup u^-C
S-D

Let w be the unique function which is continuous in S-D,

harmonic in D,-D , such that
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w = u on 3D,

w - C in S-D, .

Then w is superharmonic in S-D and criterion 2 of

Proposition 10 implies u < w in D-, -D and therefore u ^ w

in S-D. Let v = GHM of w (cf. p. 197). Then v is har-

monic in S-D and u s v <, w. Therefore, we can naturally

extend v to be continuous in S-D by setting v = u = w on

dD . Condition 3 applies to v and thus

sup u < sup v = sup v = sup u
S-D S-D 3D SD

4
/

=» 1 : Suppose u is a bounded subharmonic

function on S. Let D be an analtyic disk on S for

which condition 4 holds. Then

sup u = sup u.

S-D BD

Therefore,

sup u = sup u ,

S D"

and since D is compact, we see that u assumes its

maximum. By the strong maximum principle, u = constant

1 => 2 : Let u be the function in the hypothesis of

2. Define v on S by

v = u in S-D,

v = in D.
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Then v is subharmonic and bounded on S, so 1 implies

v = constant. Thus, v = and it follows that u s 0.

2^3 Let u be the function in the hypothesis

of 3. Define

A = inf u, B = sup u, C = sup u.
S-D S-D ?D

Then A <, C s B and we want to prove B = C. As in the

proof of Proposition 13 and also the current proof that

3 =» 4 we take a disk D.. and define v. to be continuous

in S-D, harmonic in D -D , such that

v. = u on ?D,

v. = A in S-D, .

We define v the same way with A replaced by B. Then
B

v. is subharmonic. v„ is superharmonic in S-D , and
A D

v. <, C, v. <, u, u < v-ui all of which follow from the
A A d

maximum principle. Let

w, = GHM of min (u,C),

w = GHM of v„

.

Note that minCu^C) is superharmonic by Proposition 12

.

Then the inequalities we have obtained for v. and v„ show

V
A

£ W
X

£ U £ W
2

S V
fi

.

Thus j, w, and w
?
have continuous extensions to S-D with

w, = w- = u on SD . Therefore,, w~-w, satisfies the hypothe-
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sis of 2, the required boundedness following from

w,-w, < vR -v. s B-A. Thus, condition 2 implies ^-w-i-O.

Thus

B = sup u = sup v/-, < C .

S-D S-D i

^ED

DEFINITION 6 . A noncompact connected Riemann

surface satisfying the conditions of Proposition 15

is a parabol ic Riemann surface. A noncompact connected

Riemann surface not satisfying these condition is hyper -

bolic .

Examples .

1. If S is compact and connected, S satisfies

the conditions of Proposition 15. For

suppose u is a bounded subharmonic function

on S. Then u assumes its maximum, so the

strong maximum principle implies u is

constant

.

2. C is parabolic. We verify condition 2' for

D - [z: |z| <1}. Suppose u is a function

satisfying the hypothesis of Proposition 15.

criterion 2'. By the second corollary on

p. 203, u = 0.

3. If S = {z: |z| < 1} has its usual complete
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analytic atlas, then S is hyperbolic.

This is obvious, a nonconstant subhar-

monic function which is bounded on S

being, for example, z -> Rez.

Finally , the stage is set for the proof of Theorem

4. In the statement of the theorem, on p. 168, there is

a given chart &: U - W in the complete analytic atlas

for S, where U contains the given point p and ^(p) = 0.

By a simple change of variable, we can assume that

[z: |z| <; 2] c W.

Let A = [z: |z| < r} and D = x~ (A ) for < r < 2.

Proof of Theorem 4 in case S does not satisfy

the conditions of Proposition 15 : By criterion 2',

there exists a bounded continuous nonnegative function

v in S-D, which is harmonic in S-DT and which is

identically zero on SD, , and yet v ^ 0. The strong

maximum principle implies that v > in S-D7. The

function cp is holomorphic on U, and therefore

Re(rp -qj ) is harmonic on U-fp} and in particular

is harmonic on D
2

• On 6D-, , |cp| =1 so that cd =ip

and thus cp -cp is purely imaginary and thus

Re(cp
n
-ro ) = 0. Since v > on the compact set 3D

2 , it

is bounded below by a. positive constant there.

Therefore, there exists a constant C such that
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Re(rD~
n
--c

n
) I

s Cv on SD.

The same inequality holds trivially on 3D, , both sides

vanishing, and therefore the weak maximum principle

implies

(9) |Re(co"
n
-co

n
)| <, Cv in Do - D, .

Now we define

•Cv in S-D,,

1

t Re(cp"
n
-cp

n
) in B

±
- {p]

f Cv in S-D,
1

1'

." „ / -n n>
^ Ke^cp ~rp ) ill li.I Re(.^ -rn ) in D, - Lp]

Then w, and w~ are clearly continuous on S - [p] and (9)

implies w, is superharmonic and w^ is subharmonic in

S - {p}: it suffices to check the mean value property

of Proposition 10.3 at points on SD, and at such a point

w, = = Re(cp -co ) = the mean value of Re(co to ) on

small circles centered at the point s the corresponding

mean value of w., (since Re(rr
n
-co

n
) £ - Cv on the part of

the circle lying outside D-. ) . Thus, w, is superharmonic

and a similar proof shows w- is subharmonic.

Choose a constant A > 2C sup v. Let u = GHM of
S-D,
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w + A. Note that trivially w^-w < A, and therefore

Wo <; u <, w, + A

.

We have of course used here the existence of GHM on the

Riemann surface S - {p } . Therefore, u is harmonic on

S - [p] and our inequalities show

<; u-Re( ¥
" n

-^
n

) ^ A in D
x

- ip}.

Therefore, the function u-Re(<c -cp ) is harmonic and

bounded in D, - [p } , so the removable singularity theorem

of p. 203 shows that there is a harmonic function h in

D, such that

u = Re(c2"
n

) + h in D-
1

Since h = ReF for some holomorphic function F in D,

(Proposition 1.4), we have proved Theorem 4 in this case,

and we can even assert that no term log |tpj appears in

the representation for u.

Proof of Theorem 4 in case S does satisfy the con -

ditions of Proposition 15 : By Proposition 13, there

exists for < r < 1 a bounded continuous function u in
r

S-D such that u = Re(.£ ) on 3D and u is harmonic in
r r V4/ ' r r

S-D . If u is constant on 3D-,, then Proposition 15.3

implies u is constant in S-D-, (apply the criterion 3

both to u and -u ) and thus u is constant in S-D by

Proposition 3, which is not true. Thus u is not constant

on 3D-. , and therefore there exist unique coefficients a

and 3 such that if v = a u + j3 • then
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max v = 1, min v =

SD-
L

r
SD

1

r

Proposition 15.3 implies =s v s 1 in S-D, .

By Proposition 8 there exists a sequence r, - such

that v converges uniformly on compact subsets of D..-D, .

rk * l

Moreover, Proposition 15.3 applied to Do/o implies that

v converses uniformly on S-D-,/,. If v = lim v , then
r, ° J 3/2. ,

r,k k-oo k

Proposition 7 implies v is harmonic in S-DT .

We now -write down the Laurent expansion of Propo-

sition 14 for v in the set D-,-D :

r 2 r

>^" 1
(z) = c(r)log

|
as

|
+ Re I a.(r)z J

,
v o,
r

r <
|
z

|
< 2,

where c(r) and a
Q
(r) are real, and formula (8) of p. 202

shows

c(r)iog s + a n (r) = f f
" v

T
.o

r/ 1
( se

i9
)d9,

(10)
° lv

' "0 r

ai (r)s j + a (r) s" j = I j^ v o
(p

- 1
( 8e

i9
)e"iJed8,

J n

j ^ 0,

for r < s < 2.



VI 213

-1/ i9\ n/~n-in9\,„
Now v o^ (re ) = a

r
Re(r e ) + 3 r

-n e
in9-fe-^ 9

,= a
r
r j + p r

.

and therefore if we let s - r in the second part of (10)

we obtain

a (r)r-3 + a (r) r" j = if j 2 1, j + n

.

Taking s = 1 in (10),

|a (r) + a (r)| <. 2 if j s 1.

Therefore, for j s 1 and j ^ n,

2 ;>
| 3j (r) + a (r)| =

|
aj (r) - aj(r)r2j

|

2
=

|

aj (r)|(l-r^) * £ l
aj< r >l if ° < r < 7'

thus,
I

a . (r)
I

<, 4 and therefore

|a (r)| s 4r2j

Now the estimates in Proposition 14 imply that as

r, - 0, the coefficients in the Laurent expansion for

v converge to the coefficients in the Laurent expansion
r
k

for v. Therefore,

voq) (2) = c loglzl + Re(a z + £ a . z-* )

,

^ ^7^ = n 1 ocr I r? I 4- Rofa Z~
n + £ a Z^

1 j

1 < Izl < 2,
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since a (r, ) - for j s 1, j ^ n. Nov? we define u

on S - [p] by

u = v in S-D, ,

uocp" (z) = c log |z| + Re(a_
n
z"

n + I a.z^),

< |z| < 2.

It is clear that u is harmonic on S - {p}. The theorem

will be proved once we establish that a ^ 0. Thisv -n

involves a rather delicate argument.

Suppose that a =0. Then the formula for u nearrr -n

p shows that there exists

t = 1 im u ( q ) ,

q-p

where -v> < I < «. By Proposition 15.3 applied to u and

-u and small analytic disks containing p, we conclude

that u = I on S - [p } ; therefore, -»<£<<». Now we

shall prove that v - u uniformly on SD-, , and therefore
k

that max u = 1, min u = 0, contradicting the fact that

u is constant. Again. Proposition 15.3 shows that it

is sufficient to prove that v - u uniformly on SDi

.

r
k $

For |z| = j and < r < *
.

|v
r
ocp" (z) - uo r£

" (z)| <|c(r)-c|log 2 + |a_
n
(r)-a_

j

N
+ £ |a.(r)-a.| + £ (4 + 4)2~ J

J J N+l
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+ E 4r" 2j 2" j

N
C [|c(r)-c| + |a

n
(r)-a

j
+ S |a (r)-a |]n ii 11 q j j

+ 8-2 + -2^ .

l-2r

Therefore, if e > we can choose a fixed N such that

8r^
8'2"N < -I and a kn such that z < t and r < 7

3 U 1-2r1 " r
k

for k a k - Then we choose k^ s k^ such that

N
C [|c(r,)-c| + | a (r, )-a | + E |a.(r.)-a.|] <4n L| v W *

' -n v k' n 1

n ' j k j 3

if k s k, . Therefore, if k s k,

,

j
v -u| < e on 3Di ,

r -1

QED

Thus, we have completed the proof of Theorem 4.

We have already indicated the use of this theorem in

establishing the existence of meromorphic functions,

shown on pp. 168-171 in the proof of Theorem 3. In the

next section we shall give further applications.

Remark. In the above proof in the second case,

the second part of (10) in the case j = n was not used.

But we get additional information by using this formula
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/ v n , 7—r- -n 1 ,-. -1/ i9v -inS ,,a(r)s +a (r)s = —
;

vpm (se )e d
n v/ -n v/ rr 1q y *

Letting s = r, we obtain

2
/ \ n _l

—~7—v ~ n „-n 1 [»

TT /„in8. -in8\ -in6, ra (r)r + a (r) r = a r ->

—

(e -fe )e d8
n -n r ^ n j

^

+ * r I r

2V-9 d9
r w .'

- a
r
r

We already know from s = 1 that

Therefore,

a (r) + a (r) £ 2
n v y -n v ' '

a - a (r) + a (r) r I < 2r
r -n v

' -n '

Taking imaginary parts, we conclude

| In a_
n
(r)l (l-r

2n
) < 2r

2n
,

showing that Im a_ (r) - as r - 0. Therefore, letting

r = r, , we have
k

a = lim a (r, ) is real.

We obtain from this remark the following result:

COROLLARY TO THEOREM 4 . Let S be any connected

Riemann surface and let p € S. Let ©: U - W be a chart

in the complete analytic atlas for S with p 6 U and rp(p)=0
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Let n be a positive integer . Then there exists a

harmonic function u £n S - {p} such that for z near

uov
" 1

(z) = ReC^g-) + Ref(z),

where a is a nonzero complex number and f is holomorphic

in a neighborhood of 0. Moreover , u can be taken to be

bounded outside a neighborhood of p

.

Proof : If S is hyperbolic, our proof on pp. 209-211

already contained this result with a = 1. The boundedness

of u away from p has also been shown in this case.

If S is compact or parabolic, the assertion about

the boundedness of u is automatic. What we must do is

eliminate the term involving log |z| . By the previous

remark, we have obtained a harmonic function v on

S - [p] such that near

v°af (z) c log |zj + Re (-—) + Re g(z),
z

where g is holomorphic near 0, c is real, and a ^ is

real. If c = 0, we are through. Otherwise, we replace

m by the chart ourx., where uu is a fixed complex number

with uu = i. Applying our result in this case, we

obtain a harmonic function w on S - {pi such that near

w°«f
1
(z) = d log|z| + Re(-\) + Reh(z),

iz

where h is holomorphic near 0, d is real, and b 4- is

real. We have left out a trivial intermediate calculation
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here. Now define

d
U = W - — V

c

Then u is harmonic on S -
L pj. and near

uoqf 1 ^) = Re (4-) + Re(h(z) -"£ g(z)),
n' x v ' c

z

whe re

a -5 - ^ * 0.u 1 c

.QED

Also in the next section we shall require the

existence of a Green's function on a parabolic Riemann

surface

.

DEFINITION 7. Let S be a connected Riemann sur-

face and p € S. A function g defined on S - {p} is a

Green ' s function if

1. g is positive and harmonic in S-{pj;

2. if -j is an analtyic chart near p with

c(p) = 0, then g + log|cp| is harmonic

in a neighborhood of p;

3. if h has properties 1 and 2, then g < h.

We first remark that condition 2 is independent of

the particular chart x- since any other analtyic chart

V can be expressed as
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sji
= a-(l + E ak cp ),

and so

log
|

i|i| = loj

1

k

and we see that log |i|i| - log |cp| is harmonic in a

neighborhood of p.

PROPOSITION 16 . Let S be a connected hyperbolic

Riemann surface and p € S. Then there exists a unique

Green's function on S - {p}.

Proof : Uniqueness is clear by property 3 of a

Green's function. The proof of existence is like the

proof of Theorem 4 in the hyperbolic case. We set the

problem in the framework of all the notation on the top

of p. 209 . Thus,, v is a bounded continuous function

on S-D, , v > and v is harmonic in S-D, , and v = on

3D, . As before, there exists a constant C > such

that

log
| cd

I

^ Cv in D^ - D-j.

As before, the function

f -Cv in S-D,

,

{ -log| ml in D
1

,

is superharmonic in S-{pl. Much more trivially, the

function
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w-
f in S-D,,

log |cp| in D
1

is subharmonic in S-(p}. Let g be the least harmonic

majo rant of w., • As in Definition 5, g is harmonic on

S - [p] and if A «> C sup v, then w ?
<, w, + A. so that

S-D
1

z L

w2 ^ g < ^ + A.

By the removable singularity theorem, g + log
| cp I

is

harmonic in D, , so property 2 follows. Also since

Wo > 0, also g s and since g is not constant, the

strong maximum principle implies property 1. To check

property 3. suppose h has properties 1 and 2. Then

h + log
| c| is harmonic in D, and is positive on dD,

,

so the minimum principle for harmonic functions implies

h + log
| £ 1

> in D, . Therefore, h > w on S - ip},

and the definition of g therefore implies g <, h.

QED

Rema rk . We can prove even more. Namely, if h is

positive and superharmonic on S - {p} and h + log 1^1 is

superharmonic near p, then g s h. It's exactly the

same proof.

Problem 9 . Find the Green's function for the unit

disk [z: |z| < 1}.
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Chapter VII

CLASSIFICATION OF SIMPLY CONNECTED RIEMANN SURFACES

As an application of the results of the previous

chapter, we are going to prove that every simply connected

Riemann surface is analytically equivalent to the sphere

C, the complex plane c, or the unit disk z: |z| < 1} c c.

These cases are exclusive, of course, since the compact-

ness of the sphere shows it is not even homeomorphic to

the plane or disk; and the plane and disk, though homeo-

morphic, are not analytically equivalent (Liouville's

theorem) (see p. 42 ) .

We shall require some slight generalizations of

some of the basic results of Chapter III. Namely, we

shall require a permanence of func tional relations

generalizing that of p. 66, and a monodromy theorem

generalizing that of p. 64. in addition, we shall

require a generalization of Lemma 2 on p . 117 which

deals with unrestricted analytic continuation.

The framework for this discussion has just been

mentioned - the analytic continuation of meromorphic

functions defined on arbitrary Riemann surfaces, rather

than C. Given a Riemann surface S, we can form defini-

tions as at the beginning of Chapter III and speak of M_.

the sheaf of germs of . meromorphic functions on S. All

the material of pp. 46-64 can be discussed with

very little change. The applications we have in mind

are given in the next two lemmas.
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LEMMA 1 . Let p € S, a simply connnected Riemann

surface . Let u be harmonic on S - {p} such that if $

is an analytic chart near p with cp(p) = 0, then

-1 °°

k
uoco (z) = Re( Z a, z ), z near 0,

k=N k

where a ^ . Here -co < N < « . Then there exists

a meromorphic function f on S such that

(1) Re(f) S u.

Proof : It is obvious that we may define f near

p by setting

-1 °° k
fore (z) = I a,z , z near 0.

k=N K

It is now a question of continuing f analytically to

all of S. The generalized principle of the permanence

of functional relations implies that the analytic

continuation will always satisfy the identity (1).

Briefly, the reason is that if f is meromorphic in an

analytic disk D and Re(f) = u in a neighborhood of

some point of D, then Re(f) = u holds throughout D

(see Proposition 3 of p. 167).

The second point is that analytic continuation is

possible along every path in S with initial point p.

The reason is that Proposition 1.4 of p. 165 shows that

(1) holds locally, this and the permanence of functional
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relations combine as in the proof of Lemma 2 on p . 117

to show that the process of analytic continuation never

"stops . "'

Now we have the hypothesis needed to apply the

monodromy theorem, and the lemma is proved.

QED

LEMMA 2 . Let p € S., a simply connected Riemann

surface . Let u be harmonic on S -
L pj such that if cp

is an analytic chart near p with co(p) = 0> then

1
°°

\e

Uoco (z) = log |z| + Re( E a, z ),
k=0

K

z near .

Then there exists a holomorphic function f on S

such that

(2) |f| = e
U

.

Proof ; The outline of the proof is the same as

in the previous lemma. First, we prove that f exists

near p. Using e °' ' =
| z |

, we naturally choose

foco (z) - z exp( I a,z ) , z near 0.

k=0
k

Then (2) obviously holds near p. Second, we apply the

permanence of functional relations to show that (2)

remains valid under analytic continuation of f . The
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point to be checked is that if f is holomorphic in an

analytic disk and (2) holds in a neighborhood of some point,

then (2) holds throughout the disk. This follows as

before since log |fj is harmonic. One might think

there is trouble here at zeros of f; by (2), however,

if f has a zero along some path of analytic continuation,

then (2) will have been violated before the zero is

reached

,

Third, (2) holds locally at least. For locally

we can write u = ReF, F holomorphic (we are not new

treating neighborhoods of the exceptional point p)

.

Then we set f - e , implying (2) . Therefore, as

before, analytic continuation is possible along every

path from p. We are also using in this step the fact

that (2) determines f locally essentially uniquely.

That is, any other choice of f is just f multiplied

by a constant of modulus 1, since holomorphic functions

with constant modulus must be constant. (A similar

fact about (1) was used implicitly in the proof of

Lemma 1; in that case functions satisfying (1) have

constant differences

)

Fourth, the monodromy theorem finishes the

proof.

QED

Next, a technicality.
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LEMMA 3 . Let E be any bounded nonempty set in

C . Then there exist complex numbers a and 3 , a ^ ,

such that if

E = {az + p: z £ E) ,

then

sup [ I w I : w 6 E } - 1

,

inf
{

I w I : w € E} = \.

Proof : Let a = inf j.Rez: z € E} and choose b such

that a 4- ib € E (using the boundedness of E) . Let

E
l

= (z-a-ib: z ? E } . so that inf (Rez: z 6 E, } = 0,

e E~. Define for t 2

m(t) = inf {j z+t| : z 6 E, },

M(t) = sup [j z+t| : z f E }.

Then m and M are continuous increasing functions,

m(0) = 0, and the boundedness of E, implies tj - 1

as t - 90. Choose t such that !! = \. Let c = M(t)

and

E = [5±£ : z € E
1
}.

Then E satisfies the conditions of the lemma, and

1 , t-a-ib
a =

c ' 3
:

c
'

jQED

Classification Theorem . Any connected , simply
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connected Riemann surface is analytically equivalent to

the Riemann sphere , the complex plane , or the unit disk .

Proof : Let S be the connected, simply connected

Riemann surface. We have three cases to consider.

S is compact : By the corollary to Theorem 4 on

p. 216 , if p f s, then there exists a harmonic function

u on S -
L p] such that in terms of a given analytic

chart c near p with cp(p) = 0,

u n

-1
(z) = Re(-) + ReF(z), z near 0,

a + 0,

where F is holomorphic near 0. By Lemma 1 there exists

a meromorphic function f on S such that

Re(f) = u.

Now the only pole of f is the point p, and this is a

pole of order 1. Thus, f takes the value co exactly one

time. By Proposition 9.1 of p. 44 , f takes every value

in C exactly one time. That is, f: S - £ is an analytic

equivalence between S and C, proving the result in this

case .

S is parabolic
:

If p 6 S , and qj is an analytic

chart in a neighborhood of p, then by the corollary to

Theorem 4 on p . 216, there exists a harmonic function

u on S - {p} such that

uo-'^z) = Re(-|) + ReF(z), z near 0,

a * 0,
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where F is holomorphic near 0. We are assuming cp(p) = 0.

The construction of u shows that u is bounded outside

any neighborhood of p. For this see p. 212, where

< v < 1 in S-D^; p. 214 showing that u = v in S-D n ;

and p. 218, showing that our function u is a linear

combination of two functions bounded in S-D-, . Note that

we are tacitly assuming that cp is rescaled if necessary

to guarantee the existence of Dp, the analytic disk given

by
|
cp| < 2.

By Lemma 1 there exists a meromorphic function f

on S such that

Re(f) = u.

Note that f has a pole only at p, that p is a simple

pole, and that Ref is bounded outside any neighborhood

of p. We wish to obtain another function with the

stronger property that |f| is bounded outside any neighbor-

hood of p

.

To do this let a-.< a^ < a-. <• • • be a sequence of

positive integers. Since these are real numbers tending

to oo and the real part of f is bounded outside any

neighborhood of p, and since f is one-to-one in a neigh-

borhood of p, it follows that for sufficiently large n

there exists a unique p £ S such that f (p ) = a . By

eliminating the first few terms in the sequence, we can

assume this holds for all n. Also, it is clear that p -p.

Since Ref is bounded outside any neighborhood U of p, we
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obtain for sufficiently large n

I
f -a I > a -Ref s \a outside U,

1 n' n z n

and therefore since we can assume f is one-to-one in

Uj p - has a simple pole exactly at p and is bounded

outside any neighborhood of p • By Lemma 3 there exist

constants a and 8 such that if
n ' n

then

f = -z-— + 3 >n f-a H n

sup I f I
= 1

,

1 i n i

VD
i

inf |f
|

= \
D 2-D

l

Since S is parabolic. Proposition 15.4 on p . 205 implies

sup |f| - 1

S-D
1

n

(|f
|

is subharmonic)

.

By Proposition 8 on p . 178, there exists a subsequence

n-, < n , < • • - such that lim f exists uniformly on compact
k-»3o k

subsets of D
2
-Dp and then Proposition 15.4 on p. 205 again

implies lim f exists uniformly on S-D /0 . Let
k— nk 3/2

h = lim f in S - D. .

k-„ nk l
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Then h is holomorphic on S-D, and |hj < 1. By renaming

all the sequences, we can assume n, = k

.

Now we consider f in D^, where f has a simple
n 2' n v

pole at p and no other pole. Thus, we may write

gn
f = LJ in D„
n cp-cp(P ) 2

where g is holomorphic in D
2

• Note that in D
2
~DT

|gn
-g
m l - lWPn

)Jf
n

- [«r«p<Pn>]fJ

* l«r«p(Pn)Mfn-fJ + lv(Pn ) - q»Cpm) 1
1

fm l

<; 4|f -f
| + |a>(pj " cp(p )\,

' n m ' ^ r n ^ rm '

and therefore the sequence g converges uniformly on,

say, SD^,
2

(since p -» p, ep(p ) - 0) . By the maximum

principle, g converges uniformly in D-w 2 , say

lim g = g, holomorphic in D^/o*

Now define

f h in S-D" ,

fp =

J f
in D

3/2 •

Then we see that f is well defined, is meromorphic on

S } and has at most a pole of first order at p and no other

poles. Since g - g uniformly in D~ /^ and f - h uniformly

in S-D0/9, we obtain the result that f - f uniformly in
3/2 n p

3

D^-D,. Therefore,
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sup
|
f

|

= 1

,

P
D2-D

l

D
2
-D

1

proving that f is not constant. Since S is parabolic,

the nonconstant function If I cannot be bounded, and

since If I < 1 in S-D7, it follows that f really does
P l P

have a pole at p.

Summarizing the construction thus far, we have

shown that for every p £ S there exists a meromorphic

function f on S such that f has a pole of order 1 at
P P

p and f is bounded outside every neighborhood of p.

These conditions essentially uniquely determine

f . For if f has the same properties, then there is
p p _

a unique complex number a 4- such that f - af has

no pole at p, and is therefore a bounded meromorphic

function on all of S. Since S is parabolic, f - afv
P P

is constant, and thus

f
p

- af
p
+ 3-

Conversely, for any constants a and 3, a ^ 0, the

function af + 3 has properties similar to those of f .

P P

Also, as we have previously discussed at the top

of p. 228 , for a given fixed p, the function g _ r—7—-r
p" P

has a simple pole at q if q is in a sufficiently small
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neighborhood of p, and a _ r
—

j

—
x has no other poles.

P" P
q

Futhermore, this function is bounded outside any neigh-

borhood of q, if q is sufficiently near p. Thus, by

the remark above,

f -f (q) q

P P
H

where a and 3 are constants depending only on q. Thus,

for q sufficiently near p there exists a Mobius trans-

formation T such that
q

f = T of .

q q p

Now let p be a fixed point in S and letr o

A = [p € S: 3 Mobius transformation T

such that f = Tof } .

P Pr r o

Then p £ A, and the argument just given shows that A is

open . The same argument shows that A is closed . In both

cases we rely on the fact that the Mobius transformations

form a group under composition. Since S is connected,

A = S.

Now we prove that f is one-to-one . Suppose
Po

f
P

<p> - f
P

<i> •

*o Ko

Then there exists a Mo'bius transformation T such that

f = Tof .

P P^
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Therefore,

- = f (p) = T(f (p)) = T(f (q)) = f (q).
" *o *o v

Since f has pole at p only, q = p

.

Now we prove that C - f (S) cannot have more than
^o

one point. Otherwise, there are two complex numbers

<z,p 4 f (S) - note that definitely co € f (S) . Since
^o ^o

f (S) is simply connected, the monodromy theorem implies
^o
there exists a holomorphic determination of

w-g
W-0

for w € f (S); choose that determination which is 1 at
^o

w = co . Define

F =

Then F is holomorphic on S and F(p ) = 1. Furthermore,

F never takes the value zero and it is impossible for

F(p) = -F(p'). For if this holds, then F(p)
2

= F(p')
2

,

which implies f (p) = f (p') and p = p', since f
^o - o ^o

is one-to-one. Since F is not constant and takes the

value 1, F takes every value z for |z-l| < e, some e >

Therefore,

|F(p) + 1| a e for all p € S.

Thus, tttt is a bounded holomorphic function on S and is

therefore constant since S is parabolic. This is a
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contradiction

.

Now we cannot have f (S) = f by Proposition 9.2
^o

on p. 44, since S is not compact. Therefore, there

is a unique complex y such that f (S) = C - iy) •

^o
Therefore,

is a one-to-one analytic mapping of S onto C, and thus

forms the desired analytic equivalence between S and C,

S is hyperbolic : Here we use Proposition 16 and

let g be the unique Green's function on S - [p}. By

Lemma 2 there exists a holomorphic function f on S
P

such that

If
I

=- e"
8
P.

i

p
1

Then

1. f
p
(p) = 0,

2. |f |
< 1.

1

P
1

3. f is holomorphic on S,

4. f does not vanish on S - ip},

5. if h is a function on S satisfying 1,2,3

then |h| <_ |f
p
|.
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We have to prove the last statement. By 1, if cp is an

analytic chart with tp(p) = 0, then near p

h = arp
n
(1 + 3 cp + . . . ) ,

where we can assume a ^ and n s 1. Thus, near p we

have

log|hj = n log
j co| + log|a| + log|l+p<xH- ...|,

showing that

-lojdJiU log u
n

is harmonic near p. Also, —°J—L > by 2 and is

harmonic away from zeros of h. Let

h = min ( g ,
zi2lM).

Then h is superharmonic on S - [p], h > 0, and near p

h + log
| cp| = min (g + log

| cp| ,
n

+ log
' ^ ^

is superharmonic, being the minimum of two harmonic

functions near p. By the minimal property of the Green's

function,

g
p

* h.

Thus
f

6
p n '

so iloglhl I
~g n n

|f
p

l

= e P s e = |h| ,
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and thus

ih * if r < if i.ii i pi i p

i

This proves property 5.

Now let p,q € S and set

f - f (q)
h --£ £— .

P
H

P

Then since all numbers involved have modulus less

than 1, we see that h(q) = 0, jhj < 1, h is holo-

morphic on S. Therefore, property 5 above implies

M * if
q

i •

Since h(p) = -f (q) , we obtain in particular

|f
p
(q)l « |£ (P)|.

By symmetry we conclude

|f
p
(q)l = If

q
(p)l for all p,q € S.

(In terms of the Green's functions ^ this relation

states

g
p
(q) = s

q
(p)- )

Thus, we conclude that the holomorphic function

Jl_ satisfies
f
q
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1
5-1 ^ 1 on S,

q

h(p)

f
q

( P )

= l

By the strong maximum principle., it follows that J2_

q

is constant, and in particular

(3) |-|-| S 1 on S.
x

q

Now we prove that f is one-to-one . Suppose f (q) = f (q')

Then h(q') = and by (3) f (q') = 0. By property 4

of f , we conclude that q' = q.
q

h h

Therefore, for any p € S, f is a one-to-one
P

analytic mapping of S into the unit disk A = iz: | z | <1 }

.

We now prove that f (S) = L. If this is not the case,

then a simple topological argument shows that there

exists

a € af (S), |a| < 1.

Since f (S) is open, a | f (S) . Choose p, ,p^,p„ , . . . in

S such that

f (p ) -a.
p vt n 7

Since f (S) is simply connected and a & f (S) , the
p p

monodromy theorem implies there exists an analytic

determination of log(w-a) for w € f (S) . Note that
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Re log(f - a) = log |f - a| < log 2

.

Let T be a Mdbius transformation mapping

{z: Rez < log 2}

onto & and such that T(log(-a)) = 0. Consider the func-

tion

F = T°log(f -a)

.

Then F is holomorphic on S and |F| < 1, F(p) = T(log(-<x))=0

By property 5 of f ,

F S f .ii I

p
i

We therefore conclude successively that

f
p
(Pn ) - a - ,

log (f (pn
)-a) - »,

Tolog(f (pn
)-a) - a£,

i.e.,

|F(p
n )| - 1,

and thus

|f (p )| - 1.

Thus,
|

ex j =1, a contradiction.

.QED

COROLLARY .
" THE RIEMANN MAPPING THEOREM" Let S be

a connected , simply connected open subset of C with S j> C.
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Then there exists an analytic equivalence of S and the

unit disk .

Proof ; We have only to show that the Riemann surface

S is hyperbolic. We proceed as on p. 232. If a € C - S,

then there exists a holomorphic determination of Jw-a.

for w € S. Define F(w) = vw ~ ex • Then one shows that

F(xaj) = -F(w') implies w = w' by squaring both sides, so

that it is impossible that F(w) = -F(w'). Suppose w € S.

Since F is an open mapping, there exists e > such that

F(S) includes the set [z: jz-F(w )
| <e } . Therefore, F(S)

O'

bounded, nonconstant holomorphic function on S, proving

that S is hyperbolic.

QED

Now we want to indicate some applications of the

classification theorem. The first of these is a trivial

application, but answers the question of which Riemann

surfaces are homeomorphic to a sphere. Cf. p. 42.

THEOREM 1 . Let S be a connected compact Riemann

surface . Then the following conditions are equivalent .

A
1

.

S is analytically equivalent to C

.

2. S is homeomorphic to C.

3

.

S is simply connected .
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4

.

There exists a meromorphic function f

on S such that every meromorphic function

on S is a rational function of f

.

5

.

There exists a meromorphic functio n f on

S having a simple pole at some point and

no other pole .

Proof : 1 => 2 : Trivial.

2 => 3 : Trivial, since a sphere is simply-

connected .

3 => 1 : Follows from the classification theorem,

A
1 =» 4: We can assume S = C and we then take

f(z) = z. The result is immediate.

4^5 : We prove that tne function f of 4

must be one-to-one. Suppose p,q 6 S, p 4- q- By Theorem

3 of Chapter VI, there exists a meromorphic function g on

S such that g(p) ^ g(q) • By condition 4, there exists

a rational function A such that g = A°f. Thus, A(f(p))

^ A(f(q)), which implies f(p) ^ f (q) • By Proposition 9-2

of Chapter II, f takes every value the same number (one)

of times, so f takes the value » one time.

5^1 : By Proposition 9.2 of Chapter II

A .

:o C m a one-to-one \

analytic equivalence of S onto C

f maps S onto C in a one-to-one fashion. Thus, f is an

QED
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We are now going to discuss the next easiest case.

Theorem 1 is concerned with a compact surface of genus 0.

We shall next discuss the compact surfaces of genus 1.

This case is already so involved that we shall devote a

separate chapter to it.
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Chapter VIII

THE TORUS

Our use of the classification theorem in proving

Theorem 1 of the previous chapter is rather disappointing.

For we have applied the classification theorem in the

compact case only, and the proof of this case occupies

only half of p. 226,, whereas the proof of the other

two cases requires eleven more pages. Essentially all that

has been used is Theorem 4 of Chapter VI and its corol-

lary. In this chapter we shall get to use the full

force of the classification theorem in discovering what

all the "analytic" tori are. I.e., we shall "classify"

the analytic tori.

At first glance, it perhaps seems that the classi-

fication theorem, which is addressed to simply connected

surfaces, could not be used on tori, which are mani-

festly not simply connected. In any case, the utility

of the classification theorem would be minute if it

had no application to anything but simply connected

surfaces. Indeed, the theorem states essentially that

simply connected Riemann surfaces are trivial in a

certain sense.

One of the primary applications of the classification

theorem is to the universal covering surface of an
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arbitrary connected Riemann surface. The universal

covering surface is a connected Hausdorff space, and

can be made into a Riemann surface in a natural way,

as we shall see in Lemma 1. Also, it is simply con-

nected, so the classification theorem applies. Once

we know that the universal covering surface is analyt-

ically equivalent to the sphere, plane, or disk, then

standard topological methods can be invoked to obtain

analytic information about the original surface. Ac-

tually, in the case of a torus the universal covering

surface is obviously the plane, topologically ; the

"covering map" is also rather obvious; and as a result

in this chapter not even the definitions of the concepts

mentioned in this paragraph will be given. But the

topologically alert reader will know the general

setting of what follows.

DEFINITION 1 . If T and S are topological spaces and

f: T - S , then f is a local homeomorphism if for every

point p € T there exist a neighborhood U of p and a

neighborhood V of f(p) such that f is a homeomorphism

of U onto V.

LEMMA 1 . Let T be a Hausdorff topological space and

S a Riemann surface . Let f : T - S be a local homeomor -

phism . Then there exists a unique complete analytic

atlas on T such that f is an analytic function from the

Riemann surface T to S

.
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Proof : First we prove uniqueness , so we suppose

first that T is a Riemann surface. If p £ T, there

exist a neighborhood U of p and a neighborhood V of f(p)

such that f : U -» V is a homeomorphism and V is the do-

main of an analytic chart cp: V - cp(V) on S. Let f-, be

the restriction of f to U. Then since f is analytic,

f, is an analytic equivalence of U onto V, so cpo f , must

be an analytic chart on U. Knowing an analytic chart in

a neighborhood of each point of T implies that we know

the complete analytic atlas for T, so the uniqueness

follows

.

Conversely, we use the above procedure to define

charts cpof, on T. We now show these charts form an

analytic atlas. If we have another choice, U, V, cp,

and f, (the restriction of f to U) , then where the

composition is defined we have

~~ _x ~~ -l -l *** -1
Cpof o(cpof ) = Cpof of ocp = Cpocp

since f,oL = identity (we might have to decrease the

sizes of everything to achieve this) . Since S is a

Riemann surface, cpocp" is holomorphic , and thus we have

an analytic atlas for T. We have to show that f is now

analytic, but this is clear. For, on U we have

f = f, = co o (cpo f .. )
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and this is a composition of two analytic functions.

Thus , f is analytic in a neighborhood of any point of T.

QED

LEMMA 2. Let T and S be Riemann surfaces and

f : T - S an analytic local homeomorphism . Let T-, be a

Riemann surface and g: T-, -. T a continuous function

such that fcg is analytic . Then g is analytic .

T
1

-g ^ T

fog

\ '

S

Proof : Given p € T, , there exist neighborhoods U-,

of p, U of g(p) , and V of f(g(p)) such that g : IL -» U

and f : U -» V is an analytic equivalence. Then on U-, we

have

g = f^o(fog)
,

where f-, is the restriction of f to U. Thus, g is ana-

lytic.

QED

Now that the preliminaries are finished, we are

ready to discuss tori. The situation is this: S is a

Riemann surface which is homeomorphic to a torus .
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The problem is to discover what kind of

analytic atlas S can have. What we shall do is prove

that S is analytically equivalent to one of the c/g

discussed in Problem 1 of Chapter II, p. 24- The

problem is essentially to find the complex numbers

<jj, and m« such that Q = [n-, uk-Hi^'ju^ : n, ,n« integers}.

To start with it is convenient to choose a topolog -

ical representation of S as c/fi for some q which we can

pick arbitrarily. Thus, choose arbitrary complex r

and on whose ratio is not real. Then we suppose that

S is the set of all cosets [z] = [z+n, p-i+n-09 : n
1
,n~

integers } , and S is made into a Hausdorff space in the

way described in Problem 1. We thus have a concrete

representation of S as a topological space, but the

analytic atlas for S is unknown. In particular, it is

probably not the analytic atlas described in Problem 1,

unless we happened to choose p, and
p 9

correctly. We

reiterate that we are going to prove it is_ such an

analytic atlas with the proper choice of c-i and o„.

Now we are ready to apply Lemmas 1 and 2. First,

let C be the complex plane as a topological space with-

out the usual complete analytic atlas and let

tt: C - S

be the natural mapping defined by tt(z) - [z]. Clearly,

n is a local homeomorphism, so Lemma 1 shows there is a
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unique way to make C a Riemann surface such that rr is

analytic. Let C denote this Riemann surface; C is

homeomorphic but not necessarily analytically equivalent

to C as we usually consider it as a Riemann surface.

There are obvious translations on c". For example,

let

* *
t,: c - c

be defined by

t, (z) Z+c

Then since n(z+p-,) = [z+p,] = [z] = tt(z), we have

not-, = n .

Or, we have a commutative diagram.

tl
C* >- C*

\ i

\ TT ;
IT

i

X f

s

By Lemma 2, t, is analytic. Likewise, t2 is analytic,

where t
?
(z) - z+p

?
. Two obvious facts about these trans-

lations are that t, and t
?

commute:

t
l°

t
2

= t 2° t
l '

and that t-. and t
2
generate an Abelian group: if n-^ and
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x\j are any integers , the mapping

n
l

n
2tot

which stands for n-,-fold composition of t, composed with

n--fold composition of t~ , is just the mapping

z -. z+n-, c-i+n2P2 •

Now we apply the classification theorem to C , which

is simply connected, connected and not compact. Thus,

c" is analytically equivalent to C or the disk

A = [z: |z|<lj. In spite of appearances, it does not

seem obvious that c" is equivalent to C and not A, which

is indeed the case. It is clear that this question must

be faced; cf. p. 42. Let ? = C or A as the case may be,

and let f be the analytic equivalence:

Using t, and t„ , we now define corresponding mappings

of ? to itself:

A
1

= f"
1

t
x
of

,

A
2

= f_1 t2° f
*

Then the properties of t, and t« are obviously reflected

in A, and A« : A, and A« are analytic maps of ? onto ?,

they are both one-to-one, they commute, for
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A
1
°A

2
- (f"

1 ot
1
=f)o(f" 1 ot

2
of)

= f"
1
°t

1
ot

2
cf

= f"
1
°t

2
°t

1
of

= A oA

and they generate an Abelian group, with the formula

Now we remark that the only analytic equivalences of A

onto A or of C onto C are Mobius transformations. Thus,

A, and A~ are both Mobius transformations.

It turns out that the thing relevant to our discus-

sion is the fixed point structure of A, and A~. Suppose

now that A is a Mobius transformation of the form

A(z) = ^~k , ad-bc 4 .v ' cz+d '

A point z € C is a fixed point of A if A(z) = z. That is,

az+b _
cz+d

Observe that ^ is a fixed point if and only if c = 0.

If c i 0, the above equation can be written

?
az+b = cz +dz

,

a quadratic equation for z, which has either two roots

or one root. Thus, every Mobius A has one or two fixed
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points in C (note that if c=0 , we can write

A(z) = az+b . and then A has two fixed points if and

only if a ^ 1)

.

Now if A is Mobius and an equivalence of A

onto A, and if z is a fixed point of A, then the

con/jugate of z with respect to SA is also a fixed

point of A. For suppose w is the conjugate of z

(that is, w = l/z) . Then a property of Mobius transforma-

tion is that they preserve conjugacy - thus, A(z) and

A(w) must be conjugate with respect to A (a A) . But

A(z) = z and A(BA) = SA, so we see that z and A(w)

are conjugate with respect to gA. Thus, A(w) = w.

It is obvious that t-, has no fixed points in

C*. Thus, A-, has no fixed points in ?. If ? = C,

we must have therefore

A
1
(z) = z+w

1 ,

and likewise

A2(z) = Z+UO2

Here u;^ and [*)„ are nonzero complex numbers.

If ?=A, then if A. has only one fixed point,

it must be on SA. This follows since A, has no

fixed points in A and since the conjugate with respect

to SA of a fixed point of A-, is also a fixed point

of A-, . Likewise, if A-. has two fixed points, they

both lie on 3 A.
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Proof that ?=C . Suppose the contrary, that ?=A.

There are two cases to consider. Suppose first that A,

has two fixed points, a and 3. Then

A
]
_(A

2
(a)) =A

2
(A

1
(a)) = A

2
(a)

,

so A
2
(a) is a fixed point of A, . Likewise, A

2 (s)

is a fixed point of A, . So either Ao(a) = a and

A
2
(s) = S, or A

2
(a) = 3 and A

2 (b) = a. Now define

the Mobius transformation

Then the transformation

moA, om

maps to and °= to °° , and thus is multiplication

by a complex number a-, . Since m(sA) is a straight

line through 0, it follows that m(A) is a half plane

bounded by a straight line through 0. And the mapping

z -> a,z maps this half plane onto itself. Thus, a,

is a positive real number. That is,

m°A om" (z) = a, z , 0<a,<»

If we have A
?
(cc) = a and A

?
(s) = B, then also

m°A
2
°m~ (z) = a

2
z, 0<a

2
<=°

On the other hand, if A
2
(a) = 3 and A

2 (8) = a, then
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mcA^om maps to °= and °° to 0. Thus, for some

nonzero complex b,

a -1/ \ bmoA °m (z) = —
z N ' z

Then it follows that

(m°A
2
°nf )o(moA

2
°m" ) (z) = ^-^ = z

so that also

A
2
°A

2
= identity .

But then also t^tj = identity, a contradiction since

tpot^ is translation by 2p ?
. Therefore, we conclude

that

moA.om (z) = a.z, j=l,2

Now we need a lemma.

LEMMA 3 . Let x,y€R. Then there exist integers

m, , n, such that for each k , m, and n, are not

both zero , and

lim (m, x + n, y) =

Proof : We can obviously assume x and y are not

both zero and that — = e is irrational. Let N be an
y

positive integer. For l^j^N+1 there exists a unique
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integer I. such that

< j? - I. < 1 .

Among the N intervals (0,i), (^, |) , . .., (^1, 1)

there must be one which contains two of the numbers

2% - -t . , say for j, and j 9 . Then

lOis-t^) - o 2
;- 4

J2
)i <s •

Now we apply this lemma to the real numbers

log a, and log a
9 to obtain m, log a, -f n, log a 9

-> 0.
m, n.

Exponentiating
3

a,
<;

a
9

- 1. Thus, for each z we

have

m, n, ,

moA
1

KoA
2

K
°m"

1
(z) - z .

Therefore, since m and m are continuous,

m, n,

A
1

°A
2

K
(z) - z

for each z , and thus

m, n,

ti t
2
k
(z) - z

for each z. This says z + m, c-, + n, p« - z , and thus

m,p n +n,^ -0. This contradicts the fact that n,
k K l k. 2 1

and 2 have a nonreal ratio; cf. the discussion under

Problem 1

.

The only other case is the case in which A-, and
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A
9

each have only one fixed point. Suppose A, (a) = a.

As we saw on p. 250 , A (a) is a fixed point of A,
,

so also A
9
(a) = a. Let m be the Mobius transformation

iG
/ \ e

m(z) =
v J z-ct

The m(o) = <= and m(^£>) is a straight line. We choose

9 to force this straight line to be parallel to the

real axis. Then moA, °m "" maps °° to °° and has no

other fixed point , so

m r-A, om (z) = z4a.

Since m^A c rn maps the associated half plane onto itself,

a -.(EH. Likewise,

moA-cm (z) = z + a„ , a^6R

By Lemma 3, there exist integers m, and n, such that

m,a, + n,a„ - 0. Therefore, as in the argument above

we obtain m, c - + a Co -0, a contradiction.

Thus , we have now completely contradicted the

assumption that ?=A. The only other possibility must

hold. Thus, ?=C .

Now from p. 249 we know that A.(z) z+,x. , j=l,2.

Exactly as in the above discussion, it follows that

ju-, and <\jry have a nonreal ratio. Thus, if we define

Q = [n,uj, + n
?

(ju

?
: n-, ,'n^ integers}, we have a Riemann

surface C/n as defined in Problem 1.
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Consider the diagram

C*

|
tt jn,

y y
F

s -*- — C/q

where the map n-. is z - z + Q. What we want to do is

obtain an analytic function F from c/fi to S. First,

we can define a function F by

F(z + n) = TT°f(z).

This makes sense, for if z + = z' + Q, then

z = z ' + n, u, + n., jj„ for some integers n, and n„,

and thus

TT°f(z) = nof(z' + n,'ju. + n.pWn)

n
l

n
2

= nofCA^oA^Cz'))

n n
2

= not
1

i ot
2
Z
(f(z'))

= nof(z').

Thus, F is uniquely defined such that F°tt-, = rrof. Since

n-, is locally an analytic equivalence, we have F = rrofon-,

locally and thus F is analytic. Since n and f are

surjec tions, so is Forr-, and thus so is F. Finally, F is

one-to-one. For, suppose F(z+Q) = F(z'+q). Then rr°f(z) =

nof(z'), so that there exist integers n-, and n- such that

f(z) = f(z') + n
1 P

1
+ n

2 P
2

n
l -

n 2
= t

1

iot
2

Z
°f(z').
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Thus,

z = f
i ot

1

1 =t
2

2 of(z /

)

n n.
?

= a/oa/Cz')

= z ' + ri-, a, + n^ jj«

Thus, z + a = z' + n, proving F is one-to-one.

We shall now formally state a theorem which

includes the above discussion. We need to recall

Definition 2 of Chapter V.

THEOREM 1 . Let S be a compact , connected Riemann

surface . Then the following conditions are equivalent .

1 . S is analytically equivalent to the

Riemann surface of a polynomial

2
w - 4(z-e

1
)(z-e

2
) ( z " e

3
);

where e, ,e
?
,e, are distinct complex numbers

2 . S is analytically equivalent to the

Riemann surface of a polynomial

2

whe

(z-a-j^) (z-a
2 ) (z-a 3 ) (z-a^),

re a, , a^ a-, a, are distinct complt

numbers .

3

.

S is homeomorphic to a torus .

4. S is analytically equivalent to a torus

of the form c/Q of Problem 1.
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Proof : 1 => 2 ; This is simple algebra. We can

assume S c m is the Riemann surface of the polynomial

1. Let a € C, a 4- e, or e 9
or e . Define

f--i.

where tt and V are the functions on M discussed in

Chapter IV, restricted to S. Thus,

2
V = 4(n-e

1
)( TT-e

2 )(
TT-e

3
);

fV = 4f(f(n-a) + (a-e
1
)f)(f(n-a)+(a-e

2
)f)(f(rr-a)

+ (a-e
3
)f)

= 4f(l + (a-e
1
)f)(l 4- ( a-e 2

)f)(l + (a-e
3
)f)

- 4(a-e
1
)(a-e

2
)(a-e

3
)f(f-i-^)(f-

-L.) (f-^
Choose a complex number 3 = v

,4(a-e,)(a-e )(a-e
3 ) and let

f
2
v

Thus,

s
2 = f ( f-i^>< f-i^M f-^>-

Nov? f and g are meromorphic on S and f takes every value

2 times, since the same is true of tt. Nov? consider

the diagram of p. 156
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f,g\ A,v

6x6

The polynomial equation satisfied by f and g is easily

seen to be irreducible and it is of degree 2 in g.

Therefore, Theorem 2 of Chapter VI implies $ is an

analytic equivalence. This proves 1 =» 2.

2 => 3 : This follows trivially from the cutting

and gluing process described on pp. 9-13 . Also,

it follows from the Riemann-Hurwitz formula of p. 112.

In this case V = 4 and n = 2, so that g = 1.

3 => 4 : This is the content of the discussion

preceding this theorem.

4 =» 1 ' Now we have to do some work. In fact, we

need to introduce some rather classical and famous

concepts of the theory of elliptic functions. Suppose

that uu-j , uuo € C have nonreal ratio and define as usual

n = [n-, uu, + n.pUy: n,,n2 integers). Define

^ z
Z

C €Q (z-C) C

We must first prove this series converges. If K is

a compact subset of C-Q, then for z € K
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|-3^-4l- \-
z2+2

fi *e|c|-
3

•

(z-c)
2

c
2

l<*-oVl

We now check that the series of constants

s Id"
3

cVo

converges. Since uk and ^ have nonreal ratio, it

follows that for any 8€[0,2rr], id-, cos 9 + Wo sin 9 ^ 0.

Since this is a continuous function of 9, there exists

a positive constant 5 such that

|uj, cos + u)« sin fi| s *, , 0^9 ^2rf

Multiplying both sides of this inequality by a positive

number, we obtain

/ 9 9
|xuu, + y^2 1

s ^x +y '
x anc* y rea i

2
Therefore, summing on squares in H , we obtain

Z kl"
3

« 6" 3
E (n^)" 3 '2

C^n n, ,n 9
^r not both

zero

- 5 IE (n
1
+n

2 )

k=l max(|
n;L | ,

jn
2
|)=k

£ *" 3
S 4(2k+l)k' 3

< » .

k=l

Therefore, the series defining /"^converges uniformly on

any compact subset of C-Q, and one sees likewise that
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for any lattice point '
, the series for/"5(z) -

^
(2- Co)

converges uniformly on any compact subset of C-(fi-[£ ]).

Therefore ,
(- is meromorphic on C and has poles of order

2 at each C6Q. The function/^) is called the Weierstrass

pe- function .

The first remark to be made is that/^ is an even

function. For,

(Pi-*) = V £ (-1— 2 - \)
z
Z

£€fl (-2-C) £

Replacing the "dummy" £ by -;, we therefore obtain

(p(-z) = \+ Z (~J—^ - K)
z
z

ren (z-c) £

Next, we compute^); since the series for ££> converges

uniformly locally, this can be done formally:

£/f>(z) = ^§ + £
" 2

3
z CGQ (z-C)

c*o

= -2
7—775(z- )

Thus, if £ Q
c

/£'(z+0 = -2

cen (z+r -:)
3
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- -2 I. 1

where we have replaced the "dummy" r by Z+C . This

implies that

J5(z+x-,) -(fc(z.) s constant.

e tl

^ is even,

"1
We evaluate this constant by setting z = -y-. Since

<£Cjl) -^(-^) - o ,

and thus the constant is zero. Therefore, using the

same argument for ju2 ,

(

^/(z+,ju
1
) =<£(z)

,

/^6(z+uj
2

) =^6(z).

These relations imply that we can regard^? as a

meromorphic function on C/q, whose value at z+Q is just

/fc)( z ) • To keep track of the notation, lety/) be this

function:

Then since^) has double poles at the points in Q and i..

other points , we see that^ has a double pole at 0-Kz

and no other pole. Since c/fi is a compact Riemann
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surface
, /£> takes every value 2 times .

Likewise, if we define

then <^> takes every value 3 times , since^> has triple

poles at the points of Q. We shall be interested in

particular in the zeros of /p . If ; ?o but j>

then since/p is odd , being the derivative of an even

function

,

Since ^Co^^^Cq)- 00
'
and thus^ (jCj = 0. Thus,

<£ <lV^ =
° '

Now define

jb(^
2
+Q) = e

2 ,

/£? (-juu^+2X2+0) = e
3

Since X-< takes every value 3 times , we have found
/

all of its zeros. And these must therefore also be

simple zeros of L . Also, we see that /t> takes the value

e-^ 2 times at Tp-j+fi (a zero of t> ) and likewise for e„
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and e~. In particular, e, ,e„,e- are distinct.

Now consider the meromorphic function

on C/o. The numerator and denominator have poles only

at 0+0, and near there we have the Laurent development

(
2 + ^

2 4 +

-=4+... .

f
1

4- ^
3 l +(~2+...) -g+---

z z

Thus, the function has no pole at 0+Q , and in fact is

equal to 4 at O+o. The only other possibilities for
X]_ liJ

2
,JJ

1
'

,}

2
poles are at y- + Q, j- + a, and j h -~ 1- Q. But

at these points the numerator has zeros of order 2 and

the denominator has zeros of order 2. Thus, the function

has no pole at all, and is thus constant. Therefore,

ck
K
- 4

<J5-
ei>Ur e2Kir e 3> •

This is the classical differential equation for^>

As on p. 257, consider the diagram

C/q -- ^ T

6x6
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Since A-> takes every value 2 times and the algebraic

equation relating A3 and Ap has degree 2 in Ad and is

irreducible, Theorem 2 of Chapter VI implies § is an

analytic equivalence. And T is the Riemann surface of

w z
"-4(z-e-

1
) (z-e~) (z-eO •

QED

Even among the tori C/o there are lots of equivalences

We now treat this problem.

THEOREM 2 . Two tori C/o and C/fl are analytically

equivalent if and only if there exists a nonzero complex

a such that

Q = aQ .

Proof : If a = afi, then we can define a mapping

C/ .. -> t'Vi by the formula z+Q - az+Q , and this is easily

seen to be an analytic equivalence.

Conversely, suppose F:C/q - C/fi is an analytic

equivalence. If F(0+Q) = a+o , then let

t: c/n -» c/n

be defined by

t(z+Q) = z-a+n .

Then t is an analytic equivalence and

toF(0+fi) = t(a+Q) - O+o .
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8y considering t°F instead of F, we see that there is

no loss of generality in assuming

F(0+Q) = O+o .

Given z €C choose arbitrarily w €C such that
o J o

F(z
Q+fi)

= w
q
+Q .

Let n : C -* C/fi and rr:C -. C/q be the canonical mappings and

choose a neighborhood U of w such that ff is one-to-

one on U. Then for z near z consider the mapping

g^ (z) = ff^CFCz+n)) .

wo

This is a holomorphic function in a neighborhood of z,

and if we choose a different w' such that F(z +q) = w '+Q

,

then w' = w + C , where C~€Q, and the associated ft

o o b o o '

is thus equal to the original ff + ? . Thus
,

g^oo - g„ («) + : •

o o

It follows that

Hz" §w < z >

o

is well defined near z in the sense that it is independent

of the choice w . Thus , we can define a function h on
o '

C by the formula

h(z) =
Iz"^ < z)

'
z near z

o
•

o



VIII 265

Then h is holomorphic on C and since for z' = z + "
,r o o o

r €fi, we can take w to be the same and thus for z near
o ' o

z'
o

g^ (z) = n
_1

(F(z+n))
o

= n"
1
(F(z-C

o
+Q))

o

it follows that h(z) = h(z-'" ) for z near z '. Hence,N
o o

h(z ') = h(z'-f ) = h(z ). so h represents a meromorphic
o o "o o

function on C/q. But h is holomorphic and thus constant,

say h=a

.

Therefore, following the above notation we have

g^ (z) = az 4 b
o

for z near z . Applying rf to both sides we obtain

F(z+n) = az+b+Q for z near z .

o

Here b is a constant which can depend on z . By a

connectivity argument it is easy to see that the constants

b which can appear here must differ from each other

only by elements of Q. Since F(0+Q) = 0+Q, the b assoc-

iated with z = must itself belong to Q. Therefore,

we have proved

F(z+q) = az+o
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This much has been done assuming only that F is analytic

and not necessarily one-to-one.

If we assume that F:C/q - C/q is one-to-one and

onto, then since F(0+q) = 0+n, we have

z+o = O-Ki « F(z+Q) = F(0+n)

» az+n = 0+Q

That is

,

z€q « az€Q

But this means that Q = aQ.

QED

Of course, we can describe the relation Q = aQ

algebraically rather than geometrically. If

Q = [n, lo, +n
?

!jLv
?

: n, ,n~ integers] ,

Q = [n, ju-i+t^um 1 n, ,n2 integers]
,

then we have

aw, = n-.
-,
ij-|+n, 2^0

a'jj« — n«-| jj-j +n^ ^ uuo

for certain integers n ., . Also
,jk

S-i = m-,
-,
aioj,+m-|

2
a -^2

Si2
= mn\ax-i+m22aijj

2
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for integers m., . Therefoi-e, we have the product of

matrices

n
ll

n
12\ f

m
ll

m
12\ A °

n
21

n
22/ V

m
21

m
22/ \° l

Therefore, the product of the determinants is 1, or

n
ll

n
22 " n

21
n
12

= ±X *

Conversely, if this equation holds, then the relations

expressing ajj-, and a-xo in terms of £, and 1
?

can be

inverted, and thus fi = a .

Almost as an afterthought we mention that if S is

a compact, connected Riemann surface, then a necessary

and sufficient condition that there exist a meromorphic

function on S which takes every value 2 times is that

S be analytically equivalent to the Riemann surface of

a polynomial

2w - (z-a
1
)(z-a

2
)...(z-a

t )

where a.. ,a„ , . . . ,a are distinct.

The proof is almost trivial. If S is the Riemann

surface of the above polynomial , then the function rr

takes every value 2 times since the polynomial has degree

2 in w. Conversely, suppose f is a meromorphic function

on S which takes every value 2 times. By the proof of

the corollary on p. 160, there exists a meromorphic
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function g on S such that f and g satisfy a polynomial

equation which is irreducible and has degree 2 in g.

Thus, for certain rational functions a and b,

g
2

- 2a(f)g + b(f) = .

Completing the square,

(g-a(f)) 2 = a(f) 2
- b(f) .

Let g x
= g-a(f) and f x = a(f) 2

- b(f). Then

Si " f
l •

Since f, is a rational function of f , we can write

m .-, n
n (f-ak )

z
n (f-e-)

2 _ 2 k=i k
., j=i J

§1 " a IP ~ x
n 7 '

n (f-a')
z

n (f-B,0
k-i K j-i J

where the a's and g's are complex constants and the

numbers 9. and B .' are distinct. Let
J 3

m'
n (f-ap

n
,

n (f-a.) J_1

k=l *

Then

g
z = n (f- B .) n (f-e/)

j-i J j-i J

Thus, we have produced distinct complex numbers a-, , . . . ,a

(>t=n+n ') and a meromorphic function g„ such that



VIII 269

2
l

gi - n (f-cu )'?
k=l

This type of Riemann surface is called hyperelliptic .



270

Appendix

FINAL EXAMINATION

1. Let a and b be relatively prime positive integers.

Analyze the Rieraann surface of the polynomial

A(z,w) = w2a - 2z
bwa + 1 .

Do the same for the polynomial

B(z,w) = z
2a

- 2w
b
z
a + 1 .

Be sure to compute the genus in each case and check

that they are equal.

2. Let A(z,w) be an irreducible polynomial of degree

at least 2 in w. Prove that there does not exist

a rational function f such that

A(z,f(z)) = .

3. If A(z,w) is an irreducible polynomial and S is the

Riemann surface of A, prove that S cannot have

exactly one branch point (of possibly high order)

.

3 3
4. The Riemann surface of the polynomial w + z - 1

is easily seen to have genus 1. Thus, it is homeo-

morphic to a torus and by our general theorem is

analytically equivalent to the Riemann surface of

a polynomial of the form

w - 4(z-e, ) (z-e~) (z-e.,)

Find such a polynomial explicitly.



271

Hint . Use algebra only.

5. Prove that the sum of two algebraic functions is

algebraic. Compute explicitly a polynomial A(z,w)

such that

ACz.z^ + z
1 /3

) , .

6. Are the following (noncompact) Riemann surfaces

parabolic or hyperbolic?

a. A compact Riemann surface minus a point.

b. A Riemann surface minus the closure of an

analytic disk.

c. A Riemann surface on which a Green's function

exists .

SOLUTIONS TO PROBLEMS 6 AND 7

3 3Problem 6 (p. 139)- Analysis of A(z,w) = w - 3zw + z

Irreducible : If not, A must have a linear factor, so

o
A = (w+a) (w +3w+y)

,

where a,3,y are polynomials in z which must satisfy

a + B = ,

a 8 + Y = - 3z
s

ay = z

The third relation shows that a = cz , where c ^ and

k€ {0 ,1 ,2 ,3 j ; solving for a and s and using the second

relation shows that
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2 2k , -1,3-k ,„C Z + C Z = -JZ

an impossible identity.

Critical points : By definition, z=°° is critical. Since

3A(0,w) = w , z-0 is critical. For other z, we look for

solutions of the pair of equations A(z,w) = and

f£
- 3w

2
- 3z - .

That is,

( 3 3
! w - 3zw + z

J = ,

2w = z

Thus, w - 3w + w =0, sow =2w and since w^O we

have w = 2
1 ' 3

u>
k

, where 2
1/3

> and w = e
2nl/3

, k = 0,1,2

Thus
,

z = 2
2/3

jj

2k
, k=0,l,2.

Puiseaux expansions :

z=0 . First, we argue heuristically . If w-. ,w„ ,w. are

the zeros of A , then

w. + w~ + w„ =
,

(*) J w
i
w
? + W

2
W
3 + w

3
w
i

= ~3z
,

1 3W
1
W
2
W
3

=
" z

*

If there is no branching, these are all holomorphic near

z=0 and |w, |£C|z|, contradicting the second line of (*)

.

If the branching is of order 2, then each |w,
|

is
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1/3asymptotic to const jzl for some integer I. The

third line of (*) shows 1=3, again contradicting the

second line. The only other possibility is a branch

point of order 1 and a holomorphic solution e(t,tQ).

For this solution we have

t
3
Q
3

- 3t
2
Q + t

3 - .

Thus
,

tQ
3

- 3Q + t = .

Thus, Q(0) = 0, so we let Q - tQ
1
and find

t
4
Q
3

- 3tQ
1
+ t = .

Thus
,

t
3
Q
3

-
3Q-L

+ 1 = .

The derivative of this polynomial with respect to Q-,

equals -3 at t=0, so the implicit function theorem

implies Q-. exists with Q-,(0) =1/3. Thus, the Riemann

surface has an element

e(t,t 2 /3 + . . .) .

o
The branched element we represent as e(t ,tQ) and

find

t Q - 3t
J
Q + t = .

Thus ,
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Q
3

- 3Q + t
3 =

At t=0 there is a solution Q(0) = ,J3 and the implicit

function theorem again can be applied to provide an

element

e(t 2
, v/3t + ...) .

z= m . The heuristic analysis is similar. Now we try

e(-r,~*) and obtain

- 3 3 -2 - 3
t

J
Q
J

-3t Q + t
J = 0;

Q
3

-3tQ +1=0.

At t=0 we obtain 3 distinct solutions Q(0) = -ur , so

we find 3 unbranched solutions

•<i =l + .. .)

2

z=2 ju (k=0,l,2) Again we omit the heuristics,

1 /3 kexcept to note that w=2 u, is exactly a double root,

so there is at least one unbranched solution ,' and the

1 /3 kcorresponding root is -2-2 ju . Thus, there is an element

e(22/Vk + t, -2-21/3 ,,

k + ...) .

Now we see whether the other two solutions are branched,

If not , then there is an element
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,,,2/3 2k . . l/3 k , .<, . .
e(2 a + t, 2 (u + ct + . . .)

where c^O and £sl. Then

<2
1/3

u,
k + ct

4 + ...)
3

-3(2 2/Vk + t)(2
l/3

«,
k + ct* +

+ (2
2/3

a
2k + t)

3
= .

Expanding and simplifying, the coefficient of t on the

left side is

o.ol/3 k
, ,. 4/3 4k _ ,. l/3 k / n

(this holds even if <t=l) . Thus , the other two solutions

are branched and we obtain the element

e(2 2/V k + t
2

,
2
l 'hk + ...) .

Observation : The total branching order is V=4 (first

order branch points at 0, 2 m ) and n=3, so the genus

is (recall V = 2(n+g-l)).

Another example of an algebraic function .

Let

A(z,w) = 2zw 5
- 5w

2 + 3z
2

.

Then

as = lOzw^ - lOw .

Sw

Now the critical points are z=0 , z=°° , and for the others

we obtain
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|£ = = 10w(zw3
-l) .

dW N

If w=0, then A=0 => z=0, which we are not now considering.

Thus
,

zw3
=l and A = = 2w2 - 5w

2 + 3z
2

,

so

z
2=w2 . Therefore, z

2w 6=l=w8 .

Thus, if uu = e
2ni ^8

, w=ujk ,
^ k * 7 , and z = uu~

3k
. We

still must check z = w : uu = uj , which is valid. So we have

found all the critical points, and we now analyze them.

-3k k
z - uu . The only possible multiple value for w is uu

and at these points

A 3^-j = 40zw - 10 = 30 d 0.

aw

We guess a branch point occurs , so we try for an element

e(oT
3k

-i-t
2

, uu
k
-rtQ) . Then

2(uf
3k

-H:
2
)(aj

k
+tQ) 5

-5(uu
k
+tQ)

2
+3('if

3k+t
2
)
2

^ .

Expanding

,

2(uf
3k+t 2

) (u)
5k

+5u)
4k

tQ+10«Ju
3k

t
2
Q
2
+. . .)

-5(w
2k+2,Ao+t 2

Q
2
) +3(uf 6k+2uf

3k
t
2+t4) s o;

10 J
k
tQ+20t 2

Q
2
+2,JJ

5k
t
2
+10x

4k
t
3
Q+. . .

-10<ju
k
tQ-5t 2

Q
2
+6uf

3k
t
2+3t

4
^ 0;

2dividing by t ,

15Q + 8uj + IOju
K
tQ + . . . + 3t

z
= ,
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where the omitted terms vanish at t=0. At t=0 we can

let

Q(0)
/ g, 5k

= V

—

r-r- (either determination)

and note that at t=0 and for this value of Q(0) the

above expression has its derivative with respect to Q

equal to

30Q * .

Thus , the implicit function theorem is in force and we

obtain branch points

-3k. Jl k^/jJuj;
5k

e(au
Jrv+t^, d:^4V--j5- t+. ..)> 0^k^7

In order to treat the critical points and °° we

look for meromorphic elements of the form

e(t ,t Q) ,

where m and I are integers (m^O) and Q is holomorphic

near 0, Q(0)^0. Then

2t
m+5i

Q
5 _ 5t

2^
Q
2 + 3t

2m
g Q _

We now try to juggle m and i, to obtain some definite

information as t->0. Thus, we would like to have at

least two exponents of t in this equation coincide and

to correspond to the dominant terms near t=0. Obviously

it is impossible to have all three exponents coincide.

Thus, the various possibilities in this case are
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(a) m + 51 = 21 < 2m
,

(b) 21 - 2m <_m + 51 ,

(c) m + 51 = 2m < 21 .

In case (a) we have m -3-t > <t, so i < 0. Thus, we must

have I = -1, m = 3, and the equation for Q becomes

20
5

- 5Q
2 + 3t

8
= .

3
Thus, 2Q(0) = 5 and the derivative with respect to Q

is 10Q
4

- 10Q = 15Q ^ for Q(0) . Thus, the implicit

function theorem shows we obtain the branch point

3 5
1/3

1e(f, (|) ^+ ...) .

In case (b) we have m=l<3lsol>0. Choosing m = I = 1

gives

2t
4
Q
5

- 5Q
2 + 3 i .

Again we obtain solutions corresponding to either choice

of Q(0) and we get two regular elements

1/2 1/2
e(t,(|) ' t+...), e(t,-(|) ' t+...)

In case (c) we have m = 51 < K so I < 0. Thus, we must

l--\ , m=-5, and we obtain

2Q
5

- 5t
8
Q
2 +3=0.

Again we obtain the branch point

-5 3
1/5 -1

e(t \ -(|) t
l
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This completes the analysis of this example except

for the observation that the branch point corresponding

to z=°° is of order 4 and thus all five "sheets" of the

Riemann surface are branched at e in a single cycle.

This proves that A is irreducible .

Notice the total branching order here is V = 8 + 2

+ 4 = 14 , so the genus g satisfies

7 = n + g - 1 = 4 + g,

or g=3.

3 aProblem 7 (p. 139). Analysis of A(z,w) = zw - 3w + 2z
,

cA 2
a any integer. Now ¥— = 3zw - 3, so critical points

oW r

other than z^O, 00
, come from solving

2
zwz = 1,

-2w + 2z
a

= .

a ?a+l
So w=z and thus z =1. Let b=2a+l and

2ni/b
uu = e .

Then we have the critical points z =
uj , £ k s

1
2a+l |

- 1;

ak
the corresponding double value of w is «j . Here is a

good place to present a criterion for branching: suppose

z
o
^«= is a critical point for a polynomial A and that

A(z .wo ) = M( z w ) = o but ^~(z ,w )*0. Then anyN O / BW x O' o' ?»z v o o' ^

element e(z +t ,Q(t)) in the Riemann surface for A

must be a branch point if Q(0) = w . That is, m>2.

For suppose m=l . Then for t near
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A(z
Q
+t,Q(t)) = 0.

Differentiate this identity with respect to t and set

t=0 to obtain

= 4^(z ,w ) + |4(z 5
w )Q'(0) = |~(z ,w ) ^ 0,

hz K o' o y dw v o' o' x v ' Bz v o' o y '

a contradiction.

k ak
In the present case we have z = uo , w = oj , and

dA, N 3 . a-1 3ak
, „ (a-l)k n^(z

o
,w

o ) = w
Q
+ 2az

Q
= oj + 2a «A 0.

Here we also have more information. Namely,
2

- (z ,w ) = 6z w / 0, so w is exactly a double root.
2 s

- o> o' o o 7
' o L

c*W

Thus, the meromorphic element in this case has m=2 , and

we can express it as

e(ok + t
2

, w
ak + ...), o £ k * |2a+l| - 1.

To examine the critical points z=0 and » consider

elements

e<t
m

,t
4
Q), Q(0) ^ 0.

Then

t
m+34

Q
3 _ 3t

^
Q + 2t

am
m Q

For these exponents to be equal we require m = -2-t = -2am,

so bm=0, and thus m=0, which is not allowed.

Case (a) . m+3£ = £<am

Here m=-2-t so we must have £=1 , m=-2, and

l+2a<0, or -t=-l, m=2 , and l+2a>0. We obtain
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in either case

Q
3

- 3Q + 2t'
b

' =
,

and we have the branch point

e(t~ 2
, ,/3 t*

1
*...) (

top signS if a>0

[bottom signs if a<0 .

Case (b) . m+3-t = am<i

Here 2>l = (a-l)m and m+2-t<0. The equation is

Q
3

- 3t"
m_2^Q +2=0,

so

Q(0)
3

= -2 .

We note that 0>3m+6<t = 3m+(2a-2)m brn. We

can take m=+l if and only if asl(mod 3), and

we thus obtain smooth solutions only:

e(t
+i

j
_ 2

1/V
a
-;r + ...) J top signs if a2°

[bottom signs if a<0
,

1/3where we use all three determinations of 2 '
.

If a^l (mod 3) , we must choose m=+3 and we have

a branch point of order 2.

Case (c) . £=arn<nH-34

Thus , am<m+3am , or bm>0 . We can take m=+l

,

<t=+a and obtain the smooth solution

„/v±l 2.±a , ,
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Summary .

If a > 0, z = corresponds to a first order branch point,

z = oo corresponds to a second order branch

point if a | l(mod 3), to no branch point

if a s l(rnod 3) '.

If a < 0, z - °° corresponds to a first order branch point,

z = corresponds to a second order branch

point if a 4 l(mod 3), to no branch point

if a s l(mod 3)

.

Thus, V = |2a+l| + 1 + {
2 if a

^ 1 (mod 3 >

[0 if a = l(mod 3) ,

a if a ^ l(mod 3) , a > 0,

r. J a - 1 if a = l(mod 3) , a => 0,- tj - z. - <^

|a| - 1 if a 4 l(mod 3), a < 0,

|a| - 2 if a = l(rnod 3) , a < 0.
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SOLUTIONS TO FINAL EXAM PROBLEMS

1 . A(z ,w) = w2a 2z w + 1

^ dA „ 2a- 1 b a-1*— = 2aw - 2az w

| = 2a(2a-l)w2a
" 2

- 2a (a-l)zV1 " 2

V

;W

f§ = - 2bz
b-V

Sz

Critical points : z = » by definition is critical

rA 3 b
Suppose — = and A = 0. Then w = z so

a 2b 2b , , 2b
,

.A=z - 2z +l=-z +1.

Let uu = e

TTl

b Then z = s k s 2b - 1, and

a b bk / i \kw = z = uu = (-1) .

Thus, for each z = uu there are a distinct solutions
2

of A(z,w) = 0. Since -^-4 = 2a
2w2a

" 2
d , we have

Sw
?A 2b-

1

no more than double roots. And since ~~ = - 2bz t 0,

we have a branch point of order 1 (cf. p. 279 )

associated with each solution w of A(uu ,w) = 0.

Thus , there are a branch points of order 1 lying over

each z = u) , so the branching associated with these

critical points is 2ab

.

Now consider z = ». Look for elements of M

of the form

e(t-
m
,t*Q)
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where m > and Q(0) i 0. Substituting,

t
2a^

Q
2a . 2t

a^-bm
Q
2 + ± m Q

As on p. 280 , we have 3 cases:

Case (a) . 2a£ = al - bm <

Here I < and aK, = - bm. If we choose m = a

and K> = - b , we obtain

Q
2a

- 2Q
a + t

2ab
,

and thus

Q(0)
a = 2.

Then we obtain

e(t-
a

, 2
l/a

t-
b + ...)•

Since a and b are relatively prime, this is

an element of M.

Case (b) . al - bm = < 2a<t,

Here K> > and aK, = bm. Choose m = a and I = b

,

obtaining

t
2ab

Q
2a _ 2Q

a + 1 s ,

a 1
so that Q(0) = £. Then we obtain

_1

e(t~
a

,2
a
t
b + ...).

Case (c) . 2a£ = < aj, - bm

Here K, * and bm <
, which is impossible.

Summarizing, at z = « we have two branch points,

each of order a - 1. Thus, V = 2ab + 2(a-l)
,
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so

or

ab + a - 1 = 2a +

g = ab - a

.

2a b a
Second part . B = z - 2w z +1

The equation B = is

, 2a,, a, -a
b z 4-1 z +zW = =

7y

„ a l
2z

Thus, we simply obtain branch points at z = 0, z = <=,

1/b

2a
and where w = 0, which is z +1=0. Since

"&*)
the branch points at finite z are of order b - 1

and at z = or °° are of order b - 1 as well, since

a and b are relatively prime. Thus,

V = 2a(b-l) + 2(b-l) , so

a(b-l)+b-l = b + g-l,

g = a(b-l) = ab - a.

Alternate solution : Solve for w :

w = z + Vz -1 (either determination).

By inspection there are branch points over the roots

of z =1, each .of order 1. This gives 2ba to the

total branching. Then near z = *> we have w ^ z ± z
,

or w - 2z on half the sheets and
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a b b n 1 -2b , v 1W =Z - Z ( 1 - -s-Z +...)= —C + • • •

z
2z

D

on the other half. Thus, w a 2 z ' gives a

branch point of order a - 1 and w a: 2 -l/a
z
_b/a

of

order a - 1. So

V = 2ba + 2 (a - 1) ,

and

ab + a-l = 2a + g-l, or g = ab - a.

2. Let n be the degree of A with respect to w. Let

S. be the Riemann surface of A. Let S be the com-

ponent of M which contains all the germs

[f ] =e(a+t ,f (a+t)) , assuming f is rational. By

hypothesis, ScS*. Clearly, n:S - t is an analytic

equivalence, so S is compact. As S. is connected,

S = Sa. Thus, n:S. - t is an analytic equivalence.

But tt restricted to S. takes every value n times.

Thus , n = 1

.

Alternate solution : Suppose f is rational: f(z) =
Q

)"(

in lowest terms. Let

B(z,w) = Q(z)w - P(z) .

Then A(z,f(z)) - B(z,f(z)) = V z. Thus, Lemma

3 on p . 121 implies A and B have a common factor.

Since A is irreducible and B is linear in w, this

implies that A = const B, which shows A has degree 1

3. We prove something more general. We have tt:S - U,
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taking every value n times. Here n > 1, since

otherwise tt is an analytic equivalence and there

are no branch points. Suppose S has branch points

e, , . . . ,e and that rr( e i )
=

• • •
= "(e ) = z , Since

C - fz } is simply connected, the corollary on

p. 119 implies there exists a meromorphic function

f on t - [z } such that A(z,f(z)) = 0. (Actually,

the corollary is stated for regions in C and

holomorphic f, but the generalization to this case

is easy.) By familiar estimates, f grows at most

like a power of z - z as z - z . Thus , f isv o o '

rational and the previous problem implies n = 1,

a contradiction.

3 3Let S be the Riemann surface of w + z - 1. Then

tt and V restricted to S satisfy V + tt = 1.

Let

1-BV=
f

so that f = tt— and g = y^- are meromorphic on S

Then

3 / \3 2
2+6gi-m+M

so that

Now

- g
2

= ^(f 3
-2).

let g
x

= 2V<5"g 5
obtaining
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g
2 = 4(f 3

-2).

Now apply the argument which appears on p. 256 and

P-262 » concluding that S is analytically equivalent

2 3
to the Riemann surface of the polynomial w - 4(z -2)

A little care seems to be needed at this step.

Namely, we need to know that f takes every value

2 times in order to be able to apply Theorem 2.4

on p. 158 . We do this by checking that f takes the

value 2 times , or that V + tt takes the value °°

2 times. This is easy. The surface S has 3 smooth
/ ^

sheets over °°, and if uu = e
171

' (cube root of -1) ,

then on these three sheets we have respectively

„ /. -3.1/3
V = lutt(1 - tt ) ,

„ 2 n -3x1/3
V = UU TT(1 - TT ) ,

,, _ 3,, -3.1/3
V = (JUTT(1-TT ) ,

- 3 1/3where (1 - tt ) ' is the principal determination

near tt = °°. Thus, in the first two cases we have

V + tt = tt[1 + <ju+...]

and

V + tt = tt[1 + uu

2 + . . .]

and thus V + tt takes the value « one time on each

sheet. On the third sheet

V + tt = n[l -(1-tt"
3
)
1/3

]
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= ^ + ... ,

3tt

and thus V + rr takes the value on this sheet (at

the point lying over z = ») . Thus , V + n takes

the value <*> exactly 2 times.

Alternate solution : Define

F - a y±^ on S,
1-TT

so also F takes every value 3 times . Then

F - Ftt = a + an

,

F-a
11 =

F+£ '

Thus
,

v3 + 11=5)1 a l

(F+a)
J

((F+a)V) 3 + (F-a)
3

= (F+a) 3

((F+a)V)
3

= 2(3F2a + a
3
) .

Let

Then

G = (F+a)V

(24a) 1/3

24aG 3
= 6aF2 + 2a

3
;

F
2 = 4G

3
- *i

.

5. We write the hypothesis in the following way.

On a disk AcrC are given meromorphic functions f

and g such that for certain polynomials A(z,w)

and B(z ,w)
,
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A(z,f(z)) = B(z,g(z)) = 0, z<EA.

We can assume A and B are irreducible. Let

z, ,...,zN be the critical points of either A or

B. Then define for z *' z.
J

C(z,w) =
| |

(w - a - 3)

A(z,a)=0
B(z,3)=0

By the usual symmetry argument, C is a polynomial

in w with coefficients which are holomorphic functions

of z€t - [z, , ...z-j,}. By the usual estimates, these

coefficients have polynomial growth at these exceptional

points, and thus are rational functions of z. Ob-

viously, C(z,f(z) + g(z)) = for z€A.

To do the second part we use the above formula.

The required polynomial is therefore

r( \ t 1/2 1/3W , 1/2 1/3W 1/2 ,1/3)C(z,w) - (w-z ' -z ) (w+z ' -z ) (w-z -(JUZ '

> . 1/2 1/3W 1/2 2 1/3W . 1/2 2 1/3.
x (w+z - x-z ) (w- z - x z ) (w+z - x z )

o*/q i / o t'q
where x = e and z and z are any values

of the roots. After multiplying all these terms

together we are bound to get a polynomial. Here is

the arithmetic: take the terms #1,3,5 together and

likewise #2,4,6 to obtain

C(z,w) = [(w-zl/2 )

3-z][(w+z1/2 )

3
-z]

= [w
3-3z l/2w 2+3zw-z 3/2-z]

x
[w 3+3zl/2w

2+3zw+z 3 / 2 -z]
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, 3,, ,2 /Q 1/2 2^ 3/2.2= (w +3zw-z) - (3z w +z )

- w 6 + (6z-9z)w4 + (-2z)w 3 + (9z
2-6z 2)w2

- 6z^w + z - z
J

= w 6
- 3zw4 - 2zw 3 + 3z

2w 2
- 6z

2w + z
2

- z
3

.

.a. Parabolic . We check Proposition 15.2 of p. 204.

If S is the compact Riemann surface and pGS

,

let D be an analytic disk in S - {p}, and let u

be a bounded continuous nonnegative function in

S - fp] - D which is harmonic in S - {p} - D and

= on 3D. Since u is bounded near p, u has a

unique extension to a harmonic function in S - D .

As S - D is compact, the maximum principle holds

and implies that sup u= sup u= 0, so u ^ 0.

S-D 3D
Thus , us 0.

b. Hyperbolic . Choose a nonconstant function f which

is continuous and real-valued on the boundary of

the analytic disk in question. By Proposition 13

on p. 197 , there exists a harmonic function u in

the Riemann surface minus the closed disk, continuous

up to the boundary, where it equals f. Moreover,

u is bounded. Since f is not constant, u is not

constant. Thus, u is a bounded nonconstant subharmonic

function, and we apply Proposition 15.1 of p. 204.

c. Hyperbolic . By definition (p. 218 ) there is a point

pGS and a function g on S - {p} satisfying the

conditions of Definition 7 of Chapter VI. Since
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g - =° as one approaches p, if A is a sufficiently

large constant the function u = min (g,A) is super-

harmonic and not constant. In fact, u is super-

harmonic on S since u = A near p. As < u ^ A

,

u is also bounded. Apply Proposition 15.1 of Chapter

VI.
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