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PREFACE

The principal steps in the progress of the Calculus of

Variations during the last thirty years may be characterized

as follows:

1. A critical revision of the foundations and demonstra-

tions of the older theory of the first and second variation

according to the modern requirements of rigor, by Weier-

STEASS, Erdmann, Du Bois-Eeymond, Scheeffer, Schwarz,

and others. The result of this revision was: a sharper for-

mulation of the problems, rigorous proofs for the first three

necessary conditions, and a rigorous proof of the sufficiency

of these conditions for what is now called a "weak" extre-

nium.

2. Weieestrass's extension of the theory of the first and

second variation to the case where the curves under consid-

eration are given in parameter-representation. This was an

advance of great importance for all geometrical applications

of the Calculus of Variations; for the older method implied

—for geometrical problems— a rather artificial restriction.

3. Weiersteass's discovery of the fourth necessary con-

dition and his sufficiency proof for a so-called "strong"

extremum, which gave for the first time a complete solution,

at least for the simplest type of problems, by means of an

entirely new method based upon what is now known as

" Weierstrass's construction."

These discoveries mark a turning-point in the history of

the Calculus of Variations. Unfortunately they were given

by Weierstrass only in his lectures, and thus became

known only very slowly to the general mathematical public.

Chiefly under the influence of Weierstrass's theory a

vigorous activity in the Calculus of Variations has set in
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Pkeface

during the last few years, which has led— apart from exten-

sions and simplifications of Weierstrass's theory— to the

following two essentially new developments:

4. Kneser's theory, which is based upon an extension of

certain theorems on geodesies to extremals in general. This

new method furnishes likewise a complete system of suffi-

cient conditions and goes beyond Weierstrass's theory,

inasmuch as it covers also the case of variable end -points.

5. Hilbert's (I priori existence proof for an extremum

of a definite integral— a discovery of far-reaching impor-

tance, not only for the Calculus of ^^ariations, but also for the

theory of differential equations and the theory of functions.

To give a detailed account of this development was the

object of a series of lectures which I delivered at the Collo-

quium held in connection with the summer meeting of the

American Mathematical Society at Ithaca, N. Y., in August,

1901. And the present volume is, in substance, a reproduc-

tion of these lectures, with such additions and modifications

as seemed to me desirable in order that the book could serve

as a treatise on that part of the Calculus of Variations to

which the discussion is here confined, viz., the case in which

the function under the integral sign depends upon a plane

curve and involves no his/her derivatives than the first.

With this view I have throughout supplied the detail argu-

mentation and introduced examples in illustration of the gen-

eral principles. The emphasis lies entirely on the theoretical

side: I have endeavored to give clear definitions of the fun-

damental concepts, sharp formulations of the problems, and

rigorous demonstrations. Difficult points, such as the proof

of the existence of a "field," the details in Hilbert's exist-

ence proof, etc., have received special attention.

For a rioforous treatment of the Calculus of Variations

the principal theorems of the modern theory of functions of

a real variable are indispensable; these I had therefore to
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presuppose, the more so as I deviate from Weiersteass and

Kneser in not assuming the function under the integral sign to

be analytic. In order, however, to make the book accessible

to a larger circle of readers, I have systematically given ref-

erences to the following standard works: Encyclopdedie dev

mathematischen Wissenschaftcn (abbreviated £".), especially

the articles on ''Allgemeine Functionslehre" (Prixgsheim)

and ''Differential- und Integralrechnung'' (Voss); Jordan,

Coins <rAnalyse, second edition (abbreviated J.) ; Genocchi-

Peano, Differcnticdt'echnung mid Grundziigc dcr Iidcgird-

recJmung, translated by Bohlmann and Schepp (abbreviated

P.); occasionally also to Dini, Theoric der Fnnctioncu eiiicr

verdnderlicJtca reelleii Grossc, translated by Luroth and

Schepp; Stolz, Grundzugc der Differential- luid Integral-

rechnung. The references are given for each theorem where

it occurs for the first time ; they may also be found by means

of the index at the end of the book.

Certain developments have been given in smaller print in

order to indicate, not that they are of minor importance, but

that they may be passed over at a first reading and taken up

only when referred to later on.

A few remarks are necessary concerning my attitude

toward Weierstrass's lectures. Weierstrass's results and

methods may at present be considered as generally known,

partly through dissertations and other publications of his

pupils, partly through Kneser\s Lelirbi(ch der Variations-

rechniiiig (Braunschweig, 1900), partly through sets of notes

("Ausarbeitungen") of which a great number are in circula-

tion and copies of which are accessible to everyone in the

library of the Mathematische Verein at Berlin, and in the

Mathematische Lesezimmer at Gottingen.

Under these circumstances I have not hesitated to make

use of Weierstrass's lectures just as if they had been pub-

lished in print.
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My principal source of information concerning "Weiek-

STRASs's theory has been the course of lectures on the Cal-

culus of Variations of the Summer Semester, 1879, which

I had the good fortune to attend as a student in the Uni-

versity of Berlin. Besides, I have had at my disposal sets

of notes of the courses of 1877 (by Mr. G. Schulz) and of

1882 (a copy of the set of notes in the '-Lesezimmer" at

Gottingen for which I am indebted to Professor Tanner), a

copy of a few pages of the course of 1872 (from notes taken

by Mr. Ott), and finally a set of notes (for which I am

indebted to Dr. J. C. Fields) of a course of lectures on the

Calculus of Variations by Professor H. A. Schwarz

(1898-99).

I regret very much that I have not been able to make

use of the articles on the Calculus of Variations in the

EncDclopaedie dcr mcdhe.matisclien Wissenschaftcn by

Kneser, Zermelo, and Hahn. When these articles ap-

peared, the printing of this volume was practically com-

pleted. For the same reason no reference could be made to

Hancock's Lectures on the CalcuJiis of Variations.

In concluding, I wish to express my thanks to Professor

G. A. Bliss for valuable suggestions and criticisms, and to

Dr. H. E. Jordan for his assistance in the revision of the

proof-sheets.
OSKAR BoLZA.

The University op Chicago.

August 28, 1904.
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CHAPTER I

THE FIRST VARIATION

§1, INTRODUCTION

The Calculus of Variations deals with problems of maxima
and minima. But while in the ordinary theory of maxima

and minima the problem is to determine those values of the

independent variables for which a given function of these

variables takes a maximum or minimum value, in the Cal-

culus of Variations definite integrals^ involving one or more

unknown functions are considered, and it is required so to

determine these unknown functions that the definite inte-

grals shall take maximum or minimum values.

The following example will serve to illustrate the char-

acter of the problems with which we are here concerned, and

its discussion will at the same time bring out certain points

which are important for an exact formulation of the general

problem :

Example I : In a plane tJiere are (jicen tivo points A, B
and a straight line S. It is required to determine, among all

curves which can he drawn in this plane beticeen A and B,

the one luhich, if revolved around the line 2, generates the

surface of minimum area.

We choose the line S for the ic-axis of a rectangular

system of co-ordinates, and denote the co-ordinates of the

points A and B hj Xq, iJq
and x^, y^ respectively. Then for

a curve

y=f{x)

1 The problem of the Calculus of Variations has, however, been extended beyond
the domain of definite integrals (viz., to functions defined by differential equations)

by A. Mayer, Leipziger Bei-ichte, 1878 and 1895. Compare Knesek, Lehrbuch, chap. vii.

1



2 Calculus of Variations |Chap. I

joining the two points A and B, the area in question is given

by the definite integral
^

J=27r f \jVl-^ij'-dx
,

where ij' stands for the derivative f'{jr). For different

curves the integral will take, in general, different values
;

and our problem is then analytically : among all functions

/ [jr) which take for x= Xq and x = Xi the prescribed values

ijq and iji respectively, to determine the one which furnishes

the smallest value for the integral J.

This formulation of the problem implies, however, a

number of tacit assumptions, which it is important to state

explicitly

:

a) In the first place, we must add some restrictions con-

cerning tlie nature of the fmictions f {x) which we admit to

consideration. For, since the definite integral contains the

derivative y

'

, it is tacitly supposed that / (.r) has a deriva-

tive ; the function / (j") and its derivative must, moreover,

be such that the definite integral has a determinate finite

value. Indeed, the problem becomes definite only if we
confine ourselves to curves of ci certain class, characterized

by a well-defined system of conditions concerning continuity,

existence of derivative, etc.

For instance, we might admit to consideration only func-

tions /' (x) with a continuous first derivative ; or functions

with continuous first and second derivatives ; or analytic

functions, etc.

b) Secondly, by assuming the curves representable in tlie

form y ^=f{x), where /(a;) is a single-valued function of x,

we have tacitly introduced an important restriction, viz., that

we consider only those curves which are met by every ordi-

nate between Xq and Xi at but one point.

la being a real positive quantity, y a will always be understood to represent

the positive value of the square root.
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We can free ourselves from this restriction by assuming

the curve in parameter-representation :

'

x= <i>{t) , U = ^{t) .

The integral which we have to minimize becomes then

J=27r C '

yVx'-~\- y'-'dt ,

where .r'= <^'(/), })' ^^ "^ \t), and where /q and i^ are the

values of / which correspond to the two end-points.

c) It is further to be observed that our definite integral

represents the area in question only when ij ^ throughout

the interval of integration. The problem implies, there-

fore, the condition that ilic ciirrcs shall lie in a ccvtaui

region' of the -x, //-plane (viz., the upper half-plane).

d) Our formulation of the problem tacitly assumes that

there exists a curve which furnishes a minimum for the area.

But the existence of such a curve is by no means self-

evident. We can only be sure that there exists a lower

limit ^ for the values of the area; and the decision whether

this lower limit is actually reached or not forms part of the

solution of the problem.

The problem may be modified in various ways. For

instance, instead of assuming both end-points fixed, we may

assume one or both of them movable on given curves.

An essentially different class of problems is represented

by the following example :

1 Compare chap. iv. Even in this generalized form the analytic problem is not

quite so general as the original geometrical problem. For the area in question may
exist and be finite, and yet not be representable by the above definite integral. This

suggests an extension of the problem of the Calculus of Variations, first considered

by Weieesteass. Compare §§ 31 and 44.

- A restriction of the same nature, but from other reasons, occurs in the problems

of the brachistochrone and of the geodesic; compare §26.

3 Compare E. I A, p. 72, and II A, p. 9; J. I, No. 25; and P., No. 20.
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Example II : Aviong all closed plane curves of given

perimeter to determine the one lohicJi contains the maximvin

area.

If we use parameter-representation, the problem is to

determine among all curves /or which the definite integral

i V^x'- + y'-dt

lias a given value, the one which maximizes the integral

'J=\
I (-i"//'- x' y)dt .

JtQ

Here the curves out of which the maximizing curve is to be

selected are subject— apart from restrictions of the kind

which we have mentioned before— to the new condition of

furnishing a given value for a certain definite integral.

Problems of this kind are called "isoperimetric problems;"

they will be treated in chaj). vi.

The preceding examples are representatives of the simplest

— and, at the same time, most important— type of problems

of the Calculus of Variations, in which are considered defi-

nite integrals depending upon a plane curve and containing

no higher derivatives than the first. To this type we shall

almost exclusively confine ourselves.

The problem may be generalized in various directions

:

1. Higher derivatives may occur under the integral.

2. The integral may depend upon a system of unknown

functions, either independent or connected by finite or

differential relations.

3. Extension to multiple integrals.

For these generalizations we refer the reader to C. Jordan,

Cours d'Analyse, 2eed., Vol. Ill, chap, iv ;
Pascal-(Schepp),

Die Variationsrechnung (Leipzig, 1899) ; and Kneser, Lelir-

buch der Variationsrechnung (Braunschweig, 1900), Ab-

schnitt VI, VII, VIII.
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§2. agreements* concerning notation and terminology

a) We consider exclasively real variables. The ''inter-

val (a 6)" of a variable x— where the notation always

implies rt<6— is the totality of values x satisfying the

inequality a^x^b. The ^^vicinitu (5) of a point Xi=ai.

X2,^=(i-2, ' ' '
, Xn^o,n^ is the totality of points a"i, .ro, • • • . ./„

satisfying the inequalities:

I

-^'i
— "i

1

< S
J

I

a:'2 — a2
[

< S , • • •
, |

a^,,— a„
|

< 8 .

The word "(/o»^rt^^" will be used in the same sense as

the German Bereich, L e., synonymous with "set of points"

(compare E. II A, p. 44). The word ''region " will be used :

(a) for a "continuum," i. e., a set of points which is "con-

nected" and made up exclusively of "inner" points; in this

case the boundary does not belong to the region ("open"

region)
; (6) for a continuum together with its boundary

("closed" region)
;

(c) for a continuum together with part

of its boundary. The region may be finite or infinite ; it

may also comprise the whole /i-dimensional space.

When we say : a curve lies "/u" a region, we mean : each

one of its points is a point of the region, not necessarily an

inner point.

For the definition of "inner" point, "boundary point"

{frontiere), and "connected" {cVun seal tenant) we refer to

E. II A, p. 44 ; J. I, Nos. 22, 31 ; and Hurwitz, Verhand-

luncjen des ersten internationalen Mathematilxercongresses

in Zurich, p. 94.

h) By a "function''' is always meant a real single-valued

function.

The substitution of a particular value x=Xq in a function

^{x) will be denoted by

(t>(x)\ =
<f> (xo) ;

iThe reader is advised to proceed directly to §3 and to use §2 only for reference.
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similarly

also

L Jj-o

Instead we shall also use the simpler notation

<^(.r)f, <f>{x,y)\^', {<f>U)l

where it can be done without ambiguity, compare e).

We shall say: a function has a certain property in' a

domain ^ of the independent variables, if it has the property

in (juestion at all points of the domain #. no matter whether

they are interior or boundary points.

A function of a'l, x-,,- , x^ has a certain property in flic

vicinity of a point Xx=ax, 0C2= 02, • • , ic„= a„, if there exists

a positive quantity S such that the function has the property

in question in the vicinity (S) of the point a^, Oo,---, «„.

If L<^{Jt)^0, we shall say: <f>{Ii) is an ^^ iufinitesimar''

(for Lh= 0); such an infinitesimal will in a general way

be denoted by (//). Also an independent variable // which

in the course of the investigation is made to approach zero,

will be called an '•infinitesimal."

c) Derivatives of functions of one variable will be denoted

by accents, in the usual manner

:

df{x) dy{x)
f («^) = 1 ? / (^) = , o ,

etc.
• ^ ^ dx ^ ^ dx^

For brevity we shall use the following terminology" for

various classes of functions which will frequently occur in

the sequel. We shall say that a function f{x) which is

defined in an interval {xqXi) is

1 Or, with more emphasis, " throughout."

2 The letters C, D are to suggest "continuous," "discontinuous; " the accents

the order of the derivative involved.
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of class C7 if/(a.^) is continuous 1

of class C' it fix) and/'(x) are continuous i

. /
. ^\

of class C<"' if f{x) , f {x),- • and /""(.<) are continuous J

with the understanding concerning the extremities of the

interval that the definition of f{x) can be so extended

beyond (-^o-*'!)
^^'^^^ ^^^ above properties still hold at

Xq and x^.

If f{x) itself is continuous, and if the interval (j'V'i) ^'^n

be divided into a finite number of subintervals

\X^)Cl) ,
(C1C2) J • • •

, \Cn-\-^i) >

such that in each subinterval f{x) is of class C (C"), whereas

f'{x) {f"{x)) is discontinuous at c^, Co,- • , c„_i. we shall say

that/(.r) is of class D'(D"). We consider class C'(C") as

contained in D'(D"), viz., for ii^l.

From these definitions it follows that, for a function of
-t-

class -D'. the progressive^ and regressive derivatives /'(c^,),

/'(Cy) exist, are finite and equal to the limiting values'

/' (c. + 0), /' (c,- 0) respectively.

d) Partial derivatives of functions of several variables

will be denoted by literal subscripts (Kneser):

F,j{x, I/, p) = q'^'

'

,

FyA^^y^p) = ^\ ^ j' ^tc.
;

also

J. ( ,
^F{x,y,p)

y=vi)

dy

Also of a function of several variables we shall say that

it is of class C^'"-^ in a domain ^ if all its partial derivatives

IE. II A, p. 61; DiNi, Grutidlaf/en, etc., §68: and Stolz, GrundzUge, etc.. Vol.

I, p. 31.

•^E. II A, p. 13.
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up to the-91*^ order inclusive exist and are continuous in'

the domain ^.

e) The letters x, y will always be used for rectangular

co-ordinates with the usual orientation of the positive axes,

i. e., the positive y-a.xis to the left of the positive a'-axis. It

will frequently be convenient to designate points by num-

bers : 0, 1, 2, • • • ; the co-ordinates of these points will then

always be denoted by .Tq? 2/o 5 ^i? 2/i 5 ^2? 2/2 j

' '

" respectively;

their parameters, if they lie on a curve given in parameter-

representation, by /q? ^ij hi' ' '•

A curve^ (arc of curve)

will be said to be of class C, C, etc., if the function / (.i;)

is of class C, C", etc., in [xoor^). In particular, a curve of

class D' is continuous and made up of a finite number of

arcs with continuously turning tangents, not parallel to the

y-axis. The points of the curve whose abscissoe are the points

of discontinuity C\, C2, • •

,

C^-i of/'(;r), • • • will be called

its corners. At a corner the

/ i\ curve has a progressive and a

regressive tangent, and.

_^
+

tana

X
FIG. 1

:/'(c) , tana=/'(c) .

(See Fig. 1.)

/) The integral

J=\ F{^, y, y')dx

taken along the curve

6

:

y=f{x) , Xo

iWhen ^ contains boundary points, an agreement similar to tliat in the case

of one variable is necessary with respect to these points.

2 The corresponding definitions for curves in parameter-representation will be

given in §24.
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from the point A{jrQ, jJq) to the point B {.r^, j/i), i. e., the

integral

f
' f(x, f{x), f\x))dx

will be denoted by J^ {^B) (more briefly J^^ or J {AB)^ ; or

by J^y, if the end-points are designated by numbers: ^l, v.

(j) The disfancc between the two points P and Q will be

denoted by
|

PQ |, the circle with center O and radius r by

(O, r) (Harkness and Morley). The angle which a vector

makes with the positive a^-axis will be called its amplitude.

§3. GENERAL FORMULATION OF THE PROBLEM*

a) After these preliminary explanations, the simplest

problem of the Calculus of Variations may be formulated in

the most general way, as follows

:

There is given

:

1. A well-defined infinitude M of curves, representable

in the form
y =f(x) , Xo^x'^Xi ;

the end-points and their abscisses Xq , x^ may vary from curve to

curve. We shall refer to these curves as "admissible curves."

2. A function F{x, y, 2^) of three independent variables

such that for every admissible curve 6, the definite integral

F{x,y,y')dx (1)
-0

has a determinate finite value.

1 Until rather recently a certain vagueness has prevailed with respect to the

fundamental concepts of the Calculus of Variations. The most important contribu-

tions toward clear definitions and sharp formulations of the problems are due to

Du Bois-Reymond, '"Erlauterungen zu den Aufangsgriinden der Variationsrech-

nung," Mathemutische Annalen, Vol. XV (1879), p. 283; Scheeffee, " Ueber die

Bedeutung der Begriffe 'Maximum und Minimum' in der Variationsrechnung,"

ibid.. Vol. XXVI (1886), p. 197; Weieksteass, Lectures on the Calculus of Variation,

especially those since 1879. Compare also Zermelo, Untersuchungen zur Varia-

tionsrechnung, Dissertation (Berlin, 1894 1, p. 24; Kn'eser, Lehrbuch.%Vi, and Osgood,
"Sufficient Conditions in the Calculus of Variations," Annals of Mathematics (2),

Vol.11 (1901), p. 105.



10 Calculus of Variations [Chap, i

The set' of values J",, thus defined has always a lower

limit, K, and an upper limit, G (finite or infinite"). If the

lower (upper) limit is finite, and if there exists an admissible

curve 6 such that

J^ = K , (t/,( = 6r)
,

the curve 6 is said to furnish fhe absolute minimum (ma.vi-

mitm) for the integral J (with respect to M). For everv

other admissible curve ^ we have then

Jz^^J, ,
(J^^J,) . (2)

The word ''extremum" ^ will be used for maximum and mini-

mum alike, when it is not necessary to distinguish between

them.

Hence the pvohlem arises : to determine all admissi])le

curves which, in this sense, minimize or maximize the inte-

gral ./.

6) As in the theory of ordinary maxima and minima, the

problem of the absolute extremum, which is the ultimate

aim of the Calculus of Variations, is reducible to another

problem which can be more easily attacked, viz. , the problem

of the relative extremum:

An admissible curve 6 is said to furnish a rcJaflrc mini-

mum* [maximum) if there exists a '' neighborliood II of fJie

curve 6," however small, such that the curve 6 furnishes an

absolute minimum with respect to the totality Mi of those

curves of M which lie in this neighborhood ; and by a

neighborhood II of the curve 6 we understand any region'

which contains 6 in its interior.

1 By "set" we translate the German Punktmenge, the French ensemble, J. I,

No. 20.

2 The upper limit is +oo, if for every preassigned positive quantity .-1 there

exist curves g for which J(^ > A; see E. II A, p. 9.

3 Du Bois-Reymond, Mathematische Amialen, Vol. XV, p. 564.

*In the use of t^e words "absolute" and " relative" I follow Voss in E. II A,

p. 80. Many authors call the isoperimetric problems "problems of relative maxima
and minima."

'For the definition of the term " region," see p. 5.
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According to Stolz, the relative minimum (maximum)

will be called proper, if there exists a neighborhood M such

that in (2) the sign > (<) holds for all curves 6 different

from (5: improper if, however the neighborhood II may be

chosen, there exists some curve (S different from 6 for which

the equality sign has to be taken.

A curve which furnishes an absolute extremum evidently

furnishes a fortiori also a relative extremum. Hence the

oriiJ-inal problem is reducible' to the problem: fo defermine

all flios^e cni-res witicli fnriiislt o, relative minim mii ; and in

this form we shall consider the problem in the sequel.

We shall henceforth always use the words "minimum,"'

"maximum"' in the sense of relative minimum, maximum;

antl we shall confine ourselves to the case of a minimum,

since every curve which minimizes J, at the same time maxi-

mizes — ./, and vice I'ersa.

c) In the abstract formulation given above, the problem

would hardly be accessible to the methods of analysis; to

make it so, it is necessary to specify some concrete assump-

tions concerning the admissible curves and the function F.

For the present, we shall make the following assumptions:

A. The infinitude M of admissible curves shall be the

totality of all curves satisfying the following conditions:

1. They pass through two given points A (xq, ijq) and

B{xi,?h)'

2. Thev are representable in the form

y =/(.r) , x^^x^Xi ,

f{x) being a single-valued function of x.

3. They are coiitiirHoio^ and consist of a finite number of

1 After the relative problem has been solved, it merely remains to pick out among

its solutions those which furnish the smallest or largest value for J. Only if the

relative problem should have an infinitude of solutions, new difficulties would arise.

For a direct treatment of the problem of the absolute extremum compare Hilbert's

existence proof (chap, vii) ; Daeboux, TMorie des surfaces, Vol. Ill, p. 89; and Zer-

MELO, Jahresbericht der Deutschen Mathematiker-Verehugung, Vol. XI (.1902), p. 184.
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arcs with continuously turning tangents, not parallel to the

y-axis; i. e., in the terminology of §2, c),f[x) is of class D'

.

4. They lie in a given region* ?S of the x, ?/-plane.

B. The function F{x,y,p) shall be continuous" and

admit continuous partial derivatives of the first, second, and

third orders in a domain^ QI which consists of all points*

(x, y, p) for which (x, y) is a point of U, and^; has a finite value.

Under these assumptions the definite integral t/g taken

along any admissible curve 6 is always finite and determi-

nate,' provided we define, in the case of a curve with corners,

the integral as the sum of integrals taken between two suc-

cessive corners. Since we suppose the end-points A and B
fixed and the curves representable in the form y=f(x), the

curves 6 all lie between the two lines x= Xq and x=Xi,
with the exception of the end-points, which lie on these

lines.

Hence it follows that we may, in the present case, give

the following simpler definition of a minimum : An admis-

sible curve 6 : // ^/ [x) minimizes the integral J, if '^ there

1 Compare §2, a).

21 follow here the example of Pascal, loc. clt., p. 21, and Osgood, loc. cit., p. 105.

W^EIERSTRASS, JORDAN, and Kneser suppose the function F {x, y,p) to be analytic.

3 If we interpret p as a third co-ordinate perpendicular to the x, 2/-plano, Qt is the

cylinder, infinite in both directions, whose base is the region R.

1" Point" in the sense of the theory of "point-sets." Compare E. II A, p. 44,

and J. I, No. 20.

5 If the curve has no corners, this follows at once from elementary theorems on

continuous functions (J. I, Nos. 60, 66). If the curve has corners, the integral Jg has

no immediate meaning. But the two integrals

F(x,f(x),f{.c))dx and I F(x,f{x),f'ix))dx

are finite and determinate and equal to each other, and at the same time equal to the

sum of integrals mentioned in the text. Compare Dini, loc. cit., §62; §187, 2; §190,9;

and §190, 2.

6 In admitting the equality sign in the inequality (2), I deviate from the conven-

tions generally adopted in the Calculus of Variations and follow Stolz {Grundzuge

der Differenzialrechnung, Vol. I, p. 199), whose definition is more consistent with

the usual definition of absolute minimum. If the equality sign were omitted, it

could not be said that every curve which furnishes an absolute minimum furnishes

a fortiori also a relative minimum.
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exists a positive quantity p such that J^.^J^, for every

admissible curve 6: //=/(,/•) which satisfies the inequality

\y — y\<P ior .r^ ^x^Xi . (3)

This means geometrically that the curve (S lies in the interior'

of the strip of the ./", ^-plaue between the two curves

y=fi'^) + p , y=f{jc)-

9

on the one liand. and the two

lines ./=
£("o, x= j\ on the

other hand. This strip we

shall call "the neighborhood'

(p) of the curve ^," the points

A and B being included, the

rest of the boundary excluded. FIG. 2

§A VANISHING OF THE FIRST VARIATION

We now suppose we have found a curve (5 : y^fipc) which

minimizes the integral

J = ( F{x, y, y')dx

in the sense explained in the last section. We further sup-

pose, for the present,^ that f {x) is continuous in (a"o-<"i) and

that 6 lies entirely in the interior of the region S.

From the last assumption it follows that we can construct*

a neighborhood (p) of 6 which lies entirely in the interior

of IJ.

1 Except, of course, the points A and B.

2 Compare Osgood, loc. cit., p. 107.

3 These restrictions will be dropped in g§9 and 10.

* About any point P of t^ we can construct a circle (P, ?•) which lies entirely in

S, since P is an inner point of S. Let pp be the upper limit of the values of r for

which this takes place. Then pp varies continuously as P describes the curve G
(Weiekstrass, Werke, Vol. II, p. 204) and reaches therefore a positive minimum
value pj, (compare E. II A, p. 19 and J. I, No. 6-4, Cor.), If we choose p < p^) the neigh-

borhood (p) of (i will lie in the interior of SI.
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We then replace' the curve 6 by another admissible curve

6: Z/=7(.r),
I

lying entirely in the neighborhood (p).

The increment

\, ^iJ=~U — !J=f ( •^) - / (•'«•)
,

which we shall denote by co, is called the total van'atiuu of ij.

Since S and 6 pass through A and B, we have

(o(^j = , a,(.r,) = , (4)

and since 6 lies in (/j),

\<»{x)\ < p in (a-oa:"i) . (4a)

The corresponding increment of the integral,

is called the total variation of the integral J ; it may be written

:

AJ= C '\F{x,y + .^,u'+u>')-F{:x,y,y')\dx .

Since 6 is supposed to minimize ./, we shall have

AJ^O
,

provided that p has been chosen sufficiently small.

For the next step in the discussion of this inecpiality two

different methods have been proposed:

a) Application of Taylor's formula: If we a})ply Tay-

lor's^ formula to the integrand of A ,/, we obtain, in the nota-

tion of §2, (I),

1 The process of replacing 15 by (5 is called " a variation of the curve G ;
" the same

term is frequently applied to the curve S itself, which is sometimes also called "the

varied curve," or " a neighboring curve."'

2The conditions for the applicability of Taylor's formula are fulfilled, com-

pare E. II A, p. 77, and J. I, No. 253. F^., Fyy-, etc., are synonymous with F^^, F^^.titc,

The method here used was first given by Lageange. See Oeuvrcs, Vol. IX, p. 297.

Compare also Du Bois-Reymond, Mathematische Annalen, Vol. XV (1879), p. 292, aud
Pascal-Schepp, Die Variationxrechnung, p. 22.

Instead of Taylor's formula with the remainder-term, Weieesteass (Lee.

tures), Knesee (Lehrbuch der Variationsrechnung, §8), and C. Joedan (Cours

crAnalyse,YoLIJI, No. .350), who suppose Fix, y , p) to be analytic, use Taylor's
expansion into an infinite series. Here, however, the question of integration by

terms should be considered. .
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+ \f' {^\u
^' + 2 F„, coo, ' + F,.,. <.'')dx

,

where the arguments of Fy and Fy^ are x, y, jj', those of

Fyy, Fyy, Fyy : X, y + eco,
ij' + eco', e being a quantity

between and 1.

We now consider, with Lagrange,' speciaP variations of

the form
W = €7} , (5)

where i] is a function of x of class D' which vanishes for

£c= .ro and x^^x-^, and e a constant whose absolute value is

taken so small that (4a) is satisfied.

Then A,/ takes the form'

J^e] r\F,r}^F,.r}')dx + {c) (6)

where (e) denotes an intinitesimal for Z.€= 0.

Hence we infer that we must have

f \F,^ri + F„r,')dx = (7)

for all functions i] of class D' which vanish at ^o and x^;

1 Oeuvres, Vol. IX, p. 298.

2For the purpose of deriving necessary conditions, we may specialize the

variations as much as convenient. It will be different when we come to sufficient

conditions (comijare §17).

i Proof̂ We suppose first that i\' (a-) is continuous in (vt\)a'i) and denote by m and
/li' the maxima of

1 1 (a-) | and | i\'{x) \
in {.Xf^{), and by g a quantity greater than the

maximum of \f'{x) \ in (.rnj-,). Having once chosen the function r\ (.r), we can then
determine a positive (juantity h such that the point (.c, y ) lies in the neighborhood (p)

of (; and that ~q<'li <.1 for every x in (.(Vi-,), provided that |
e

|
< 6. On the other

hand, the three functions | F
-vanfinite fixed quantity G. Hence, by the mean

I (f 1? ^'IF . low' +^ <»') f/j

remain, in this domain, below a
ue theorem,

^ e^ G (/+ 2/01 M+f*^) (.<-i
-Xj

If ri'(x) is not continuous in (xqX^), apply the same reasoning to the integrals

taken between two successive corners of 6.

X
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for otherwise we could make A ,/ negative as well as positive

by giving e once negative and once positive sufficiently small

values.

6) Differeniixdion icith respect io e: The same result (7)

as well as formula ((3) can be obtained by the remark, due

to Lagrange,' that by the substitution of er] for co, the inte-

gral J becomes a function of e. say J (e), which must have a

minimum for e= 0. Hence we must have''' ./'(O) 0. If

r](.r) is of class C in (.roO^i), it follows from our assumptions

concerning the function F and the curve 6 that

dF{x,y (x) H- €77 (•^)> y
' i^) + ^^

'

(^))

is a continuous function of x and e in the domain,

Xq'^x'^X]^, |e|^eQ, eg being a sufficiently small positive

quantity, and therefore the ordinary rule' for the differen-

tiation of a definite integral with respect to a parameter may

be applied. Hence we obtain

dJ(e)

ch

This proves (7) and at the same time ((V), since by the defi-

nition of the derivative,

A J = J (e) - J (0) = e (
J

' (0) + {€)) .

If r){x) is of class D' , decompose the integral J in the

manner described in §3, c), and then proceed as above.

c) The STjmbol B: We now make use of the following

permanent notation introduced by Lagrange* (1760).

Let (f>{x, y, y', y","-) he a function oi x,y and some of

the derivatives of y, whose partial derivatives with respect

1 Oeuvres, Vol. X, p. 400. This method has been adopted by LindelOf-Moigno,

DiEXGEE, and Osgood.

2 Moreover J"(0) must be g 0. This condition will be discussed in chap. ii.

3 Compare E. II A, p. 102; J. I, No. 83.

i Oeuvres, Vol. I, p. 336. Compare also J. Ill, No. 348.
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to //. //'. //"•••• up to the ]i^^ order exist and are continuous

in a certain domain. Then if we replace // by //
= //-]-ej/,

and accordinii:ly //' l)y //'=//' :£»;'. etc.. we can expand the

function

<f) = <t> ' "* •// + «>?•//' + e ^ '.•• )

accordiuii; to powers of e and obtain an expansion of the form

2 »

^ = cf>-\-\cf>,+ ^d>,^ \-^<f>„ + ^"i^) ,.

J. -J > /v.

where (e) denotes as usual an infinitesimal, and

The quantities ecf)^, e-ify-i, • • • are called fJie frsf. second,

• . • ran'afio)i of cf) and are denoted by 8(f), 8-(f). respect-

ively.

It is easily seen that

Again, if
(f>

does not contain e. S'^'cf) may be detined by

=

c^-

Similarly. B'^'J is defined as the term of order /.-. multi])lied

by k!, in the expansion of

J = I i^ (a\ /y + e t; , ?/
' + £7?

'

) fir

according to powers of e, the possibility of this expansion up to

terms of order A- being, of course, presupposed. Accoitlingly

8y
"'-''"

ch"
t'-
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It follows immediately' that

In particular

8j=e ('^\F„r, + F,_,.rj')<h- . (8)

We may therefore formulate the result reached above as

follows : For an cxtremuni if is necessary iliaf Ihc Jirsi

variation of the integral J sliaU vanisli for all (((hiiissihie

variations of the function //.

d) More general type of variations : For many investigations

it is necessary to extend the important formula (6) to variations of

the following more general type :-'

' (.r , e)
, (5a)CO = W I

where w(a', e) is a function of x and e which vanishes identically

for e==0. We suppose that '»'(.r, e) together with the partial deriva-

tives w.c, Wt, W(.« are continuous in the domain

e„ being a sufficiently small positive quantity.

Moreover, in the case when Ijoth end-points are hxed

to (ajo , e) =0 and to {.x\ , e) =

for every |
e

[ ^ e„ . If we denote ^^(aj, 0) by i?(a7), formula (6) holds

also for variations of type (5a). This can be most easily proved by

the method explained under 6).

For the function

Fix, y{x) + i>y{x, e), y'{x) + ia^{x, c)) dx

must have a minimum for e= 0, and therefore J'(0) = 0. From the

above assumptions concerning w (x, e) it follows that differentiation

ander the sign is allowed and that Uex exists and is equal ^ to w.,e

.

1 Provided always that the limits are fixed and that the ordinary rules for the

differentiation of a definite integral with respect to a parameter are applicable.

2 Such variations were already considered by Lagkange, Oeuvres, Vol. X, p. 400.

3 Compare E. II A, p. 73.
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Hence we ol^tain' also in the present case

J'(0)= (
'

{F,^-n + F„rt')dx ,

which leads immediately to (6).

For variations of type (5a) the definition of the s3'mbol 5 nnist

be modified. In order to cover also the case of variable end-points,

we suppose that av and I'l are functions of e which reduce to .r„ and
Xi respectively, for e = 0. Putting then as before

we define - " '^
^'

^'"^ = 717^)
F{x,y,Tj')dx

and similarly if 4> is a function oi x, y, y' ,
•• and I'u, Xi,

e =
^ 9^<^ (a- , y ,

y'
,
••

, x^,, a-,)

a,
.A-

e^-

The definition of the symbol 5 given under b) is a special case

of this general definition.

The method of differentiation with respect to e, especially when
combined with the consideration of variations of type (5a), seems

to reduce the problem of the Calculus of Variations to a prol)lem of

the theory of ordinary maxima and minima ; only ajsparently, how-

ever ; for, as will be seen later, the method furnishes only necessary

1 For variations of the special type (5) equation (6) may also be written

(6a)

This formula remains true for variations of the more general type (oa'). For from
the properties of w (.c, e) it follows that the quotients

(<o(x, €)-u,(a-,0))/e and (<-j;(-r, «) - "j;(a-, 0))/«

approach for Le = Q their respective limits a)^(a;,0) and <^j.^(-f,0) uniformly fov all

values of x in the interval (.ryj-i) (compare E. II A, pp. 18, 49, 52, 65; .7. I, Nos. 62, 78

and P., Nos. 45, 100). Hence it follows that

{FyO>+ Fy.<o')dx=e I ^Fyr,+ F,i.r,')dx+ ^(^) ,

which proves the above statement.

2 Always under the assumption that all the derivatives occurring in the process

exist and are continuous.
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conditions, but is inadequate for the discussion of sufficient condi-

tions, whereas the method based iqDon Taylor's formula, though less

elegant, furnishes not only necessary but also sufficient conditions,

at least for a so-called weak minimum (compare §17, b).

r) Ti'diisfoniiafioii of flic Jirxt rorlafloii hij iiif('(/i-(iii<>ii

hij jxuis:

For the further discussion of equation (7) it is customary

to integrate the second term of Bj by parts:

8./ = .|[,F,J + X>('-.-,^^.)"'-| (9)

Since t) vanishes at .-t'o and .r^, this leads to the result that

for an extremum it is necessary that

for all functions rj of class D' which vanish at x'q and .rj.

The integration by parts presupposes, however, that not

only ij' but also ij" exists and is coiifiinions in (^o^i)? fi"^^

for the present we shall make this further restricting assum[)-

tion' concerning the minimizing curve.

§5. THE FUNDAMENTAL LEMMA AND EULER's EQUATION

To derive further conclusions from the last equation we

need the following theorem, which is known as the Funda-

mental Lemma of the Calculus of Variations :

If M is a function of x which is coutinuons in {xxyr^},

and if

riMdx = (11)
^0

iThe necessity of this assumption was first emphasized by Du Bois-Reymond in

the paper referred to on p. 9). If y" does not exist, the existence of— F^, becomes

doubtful. The restriction will be dropped in §6. Discontinuities of rj' of the kind

here admitted do not interfere with the above results (9) and (10), since ij itself is

continuous. For the principles involved in the integration by parts, compare E. II A,

p. 99, and J. I, Nos. 81, 84.
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for all functions rj icJiich vanish at .Vq and .t\ and icJiicJi

admit a continuous derivative in {or(fii\), flicii

... M = (12)

For suppose Ji" (d?
'
) =1= , say > , at a point .r ' of the

interval (j"of'i) 5 then we can, on account' of the continuity

of M, assign a subinterval (|oli) o^ (^o^i) containing .r' and

such that Jf>0 throughout (^oli)- Now choose 7; = out-

side of (foil) and 7/ = (a-— |o)^(^— fi)" "^ (lofi) ; this function

admits a continuous derivative in {X(fc-^, vanishes at .Tq and .Vy.

and nevertheless makes

£^\ rjMdxyO
,

contrary to the hypothesis (11); therefore Jf (a:"')=t=0 is

impossible.^

The conditions of this lemma are fulfilled for equation

(10); for, since we suppose y" to exist and to be continuous

in (xryr-,), the function d

is continuous^ in {X(fiCy).
^^

1 Compare P., Xo. 17.

2This proof is due to Du Bois-Retmond {Mathematische Annalen, Vol. XV
(1879), pp. 297, 300). In the same paper he proves that the conclusion ilf = remains

valid even if the equation (11) is known to hold only :

1. For all functions r/ having continuous derivatives up to the nti> order, inclusive

:

proceed as above and choose, for (f(j^i),

2. For all functions having ctU their derivatives continuous.

H. A. ScHWARZ goes still farther and proves the conclusion valid if the rj's are

supposed regular iti (Xn-r,), i. e., developable into ordinary power series J {x - .r ) in

the vicinity of every point x' of the interval (.ruJ-j) Lectures on the Calrulus of Varia-

tions, Berlin, 1898-99, unpublished.)

On the other hand, the proof given in most text-books, in which

rt-i.X- Xo) {Xy -x)M

is used, assumes that (11) holds for all continuous functions ») vanishing at .>„ , j-,

,

or else, if the assumptions of the lemma concerning rj are not changed, that M' exists

and is continuous. This last assumption would, in our case, imply that y" exists

and is continuous.

Also Heine's proof (Mathemntische Annalen, Vol. II (1870), p. 189) could be

applied to our case only after further restricting assumptions concerning y,

3 Compare J. I, Xo. 60, and P., Xo. 99.
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Hence we obtain the frsf ncccssari/ coiidi/ion for an

extremum

:

Fundamental Theorem I:' Everij fundion // n-hich min-

imizes or maximizes f/ie integr'ol

J= f
'

Fi,r,y,y').

must saiisfi/ the (Ji(ferenfi(il ('(jiuttion

F,-I^F, = i,. (I)

This differential equation was first discovered by Euler"

/ in 1744, and will be referred to as Euler''s {(lijfereniiol)

equation.^

*» §0. DU bois-reymond's and hilbert's proofs of euler's

^ EQUATION

The preceding method, which was ]:>ased upon the integration

by parts of §4, furnishes only those solutions of our problem which

admit a continuous second derivative. The question arises: Do
there exist any other solutions and if so, how can we
find them?

In order to answer this question, we return to the equation

SJ-0 in the original form (7) and, with Du Bois-Reymond and
HiLBEET, integrate tJie first, instead of the second, term by parts.

Since -n vanishes at both end-points, we get

:

v'i^y- 1 Fydx)dx = . (13)

1 We have prored this theorem only for functions y having a continuous second
derivative. The extension to functions having only a continuous first derivative

follows in g6, to functions of class Z)' in §9.

2EuLER, Methodus inveniendi lineas curvas maximi minimive proprietafe

gaiide7i1es, chap, ii, art. 21 ; in Stackel's translation in Ostwald's Klasiiker der
exakten Wissenschaften, No. 46, p. 54,

sKneser, HiLBERT, and others call it "Lagrange's Equation." Lagrange him-
self attributes it to Euler. See Oeuvres de Lagrange, Vol. X, p. 397 :

" cette 6quati<)ii

est celle qu'EuLER a troutee le premier."
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This iutegratiou by parts is leg-itimate, even ii y" should not exist,

since it presupposes only the continuity' of Fy and v'

.

We are thus led to the problem

:

If N{x) be continuous i)i (.ru^'i), and if

I X

C r)'Ndx = (14)

for all fnucfions v of class C which vanish at .r„ andoTi, what

follows w'ith respect to iV ?

The answer is that N ynust be constant in (x,j.r'i).

a) Du Bois-Reymond- reaches this result ))y the following

device

:

Let f be any function which is continuous in (.ru-j^i) and satisfies

the condition

\dx = ; (15)

then the function

dx

is of class C in (a'uJ^i) and vanishes for x — x^ and x = .»,, and

therefore, according to our hypothesis, satisfies (14), that is.

£ CNdx = . (16)

Thus it follows from our hypothesis that every continuous func-

tion which satisfies (15) necessarily satisfies (16) also.

Now let fi be any continuous function of x ; and c the following

constant

:

c

then the function

Xi Xq •^.Tq

^ = C.

is continuous and satisfies (15), hence it must satisfy also (16),

therefore

1 The continuity of F follows from the continuity (compare the beginuingof §4)

of y' and from our assumption {B) concerning F; and v' may be supposed continuous,

since (9) must hold for all functions rj of class D' which vanish at Xq and .r, . and

therefore a fortiori for all functions r) of class C which vanish at Xq and .r,

.

2Loc.cit., p. 313.
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f \Ndx=: C \i{N~X)dx = , (17)

if we denote bv X the constant

X =:
I

Ndx/(Xi — X^))
*' r,.

But from (17) it follows by the Fundamental Lemma that'

N = \
,

i. c, constant, Q. E. D.

b) Another, more direct, proof has been given by Hilbert" in

his lectures (summer 1899). He selects arbitrarily foiu* values,

a. /3. a . /3 satisfying the inequalities

£ro<a</3<a'<y8'<X, ,

and then builds up a function' v of class C which is equal to zero

in (a*oa); increases from to a posi-

tive value k as X increases from a

'• • ^ • ^ '. to /3; remains constant, = A; in (/3a');

decreases from A; to as a* increases

from a to /i . and finally is equal to zero in {^'Xi):

Substituting this function in (1-4), we obtain

r)'Ndx-\- I r]'Ndx = ;

v' being positive in the first, and negative in the second, integral

we can apply to both the first mean-value theorem* which fiu-nishes

k^N{a^e{(i-a))-N(a'-\-d'{(3'-a'))l =0 ,

where O<0<1 and 0<e'<l.
Finall}', let /3 and ^' approach a and a' respectively; then it

follows, since A' is continuous, that

1 This result is a special case of the isoperimetric modification of the Funda-
mental Lemma, see below chap. vi.

2 See Whittemoee, Annals of Mathematics (2), Vol. II (1901), p. 1.32.

•* Nothing more than the existence of such a function— which is a priori clear— is

needed for the proof: Hilbert gives a simple example, see Whittemoee's presenta-

tion.

* Compare E. II A, p. 97; J. I, No. 49; and P., No. 191, IV.
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N{a) = N(a'),

i. €., N is constant in (a^o^^i).'

c) Applying this lemma to (13) we get

a constant ; or

The right-hand side of this equation is differentiable and its

derivative is I<\j ; hence the same must be true of the left-hand

side, i. e., the function

is differentiable in (.ivri) and

±F. = F
dx " "

'

Tlius we find the important corollary to Theorem I that every

sol lit ion of our problem u'ith contimtous fir.'^t derivative— not

only those admitting a second derivative— »i»s^ satisfy Euler's

equation.

From the fact that F,y is differential:)le folloics the existenee'

of the second derivative y" for all values of x for ivhich

F,y(.v,y{,x^,y'(x))^0 . (19)

For, if we put

y{x + h)- y{x) = k
,

y'{x + h)-y'(x) = l ,

then, since the theorem on total differentials' is applicable under

our assumptions, and since y
' is continuous, we have

1 Hilbert's proof can easily be extended to the case where iV, while finite in

(.(,-f,Xj), has a finite number of discontinuities. For, if a and a' are points of con-

tinuity, we can always choose P and fi' so near to a and a' respectively that N is

continuous in (aP) and (a/3') ; it follows then as above that iV^(a) =N{a.'), i. e., under

the present (tssumiHions N has the same constant value in all points of continuity.

Hence it follows further that in a point of discontinuity, c:

N{c-0)-N{c+ 0) .

2 First pointed out and emphasized by Hilbert in his lectures; see Whitte-
MOHE. loc. cit.

3 Compare E. II A. pp. 71. 7.3; J. I, Nos. 86, 127; and P., No. 10.").
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where a, |3, 7 apj^roacli zero as // approaches zero. Hence it follows

that if (19) is satisfied,

exists, and that

F — F — 11'Fy"= " 1-: " ""
; (20)

moreover, (20) shows that y" is coniinuous iu (.r„j-]).

^7. MISCELLANEOUS EEMARKS CONCERNING THE INTEGRATION
OF euler's equation

a) Euler's differential equation (Ij is of the second

order^ as can be seen from the developed form

F,-F,,,-y'F,,^-,j"F,.,. = ^
; (21)

its general solution contains, therefore, two arbitrary con-

stants,

ij=fU-,a,li) . (22)

The constants a. I3 have to be determined^ by the condition

that the curve is to pass through the two points A and B :

y,=f{x,, a, (3)

yi=f(Xi, a- ^) •

Every solution of Euler's equation (curve as well as

1 Unless i^.. (.r, y, J/) should be identically zero. In this case Euler's differ-

ential equation degenerates either into a finite equation or into the identity : =
but never into a differential equation of the first order. For if F .

= 0, F must be of

the form : L(x , y^-r ^lyx , y) y' and (21) reduces to :i — J/_j, = 0. See also below,

under d).

If Euler's differential equation degenerates into a finite equation, it is in

general impossible to satisfy the initial conditions when the end-points are fixed.

Also in the general case when F contains higher derivatives, Euler's differ-

ential equation can never degenerate into a differential equation of odd order;

compare Frobexius, JoMr?ia[/iir J/«^/ieniafifc, Vol. LXXXV (1878), p. 206, and Hirsch,

Malhematische Annalen, Vol. XLIX (.1897), p. 50,

2 This determination may be impossible ; in this case there exists no solution of

the problem which is of class C and lies in the interior of S.
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ftinction) is called, according to Kneser, an extremal; there

is then a double infinitude of extremals in the plane.

In the S2)ecial case ichoi F does not contain x explicifJij,

a first integral of (I) can be found immediately.' For, if F
does not contain x explicitly, we have

and therefore every solution of (I) also satisfies

F - y'F,,. = cons\. (24)

, Vice versa, every solution of (2-1:), except ?/= const., also

satisfies (I).

b) Example I (see p. 1):

F=yVl-i-y" .

Hence

and E u 1 e r ' s equation becomes :

d yij'

or. after performing the differentiation,

By putting -r^ =J>, the integration of this differential equation

is reduced to two successive quadratm-es, and the general integral

is easilv found to be

11 ^ a cosh—-—
- .^ a

The extremal!^ are therefore catenaries n-ith the X-axisfor rlirectrix.

Since F does not contain x, a first integral could have been

obtained directly by the corollary (24);

F-y' F,,.^ ,

^^ = a .

' Vl + y''

1 Noticed already by Euler, loc. cit., p. 56, in St.\ckel's translation.
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If a =j= 0, this leads to the same resiih as above; for a = we obtain

y = 0, which, however, though a sohition of (24), is not a sohitiou

of Euler's equation.

The general solution of (I) being found, the next step would be

so to determine the two constants of integration that the catenary

passes through the two given points.'

c) Tlir()ii(/Ji a (jiven point a, b in the interior of the

region' iS one and hut oiw e.rtrcnifiJ of class C can hedrairn

in a (jircn direction of anipIitiKle^ <« ( =t= — ^), provided tliat

F,„{a,h,h')^0 , (2.-,)

ivliere It' — tan (o .

For, if we solve (I) with respect to^", we obtain for /y" a

function of or, [/, ij' which, according to our assumptions (B|.

is continuous and has continuous partial derivatives with

respect to y, y' at all points of the domain' 01 which satisfy

(25). Hence the statement follows from Cauchy's general

existence theorem* for differential equations. :

1 For this interesting problem we refer to: Lixdelof-Moigno, Joe. rit.. No. 103;

DiENGER, loc. cit., pp. 15-19; Todhuxter, Researches in the Culrulus of Variatio>ui.

pp. 55-58 ; Caeul,A Treatise on the Calculus of Variations, Nos. 60, 61. For Schwarz's
solution see Hancock, '"On the Number of Catenaries through Two Fixed Point>;."'

Annals of Mathematics (1), Vol. X (1896), pp. 159-174.

!See§3, c). •iSee§2,sr).

*" Suppose the functions/,. U' , !/i, i/o- ' ' ' • ^n^ ^"'^ their first partial tlerivatives

with respect to y^, y2,- • • • l/„to be continuous in the domain

1 X - a
I ^ P . //, - 6i ;

^ r , • • • , I !/„ - ^„ ,
5 '•

;

let M be the maximum of the absolute values of the functions f- in this domain, and

let I denote the smaller of the two quantities p and r M.
Then there exists one, and but one, system of functions y, (x), i/jCa-).- - • , //„ i.')

which in the interval \ x — a
\
< / are continuous and differentiable, satisfy the differ-

ential equations

-^=/,U-,!/i,i/,>- ••••'/„)
> (' = 1,2. ••.«)

and the inequalities
\ y^M —b^\ ^ r , and take for x = a the values

Compare E. II A, pp. 193 and 199, and .J. Ill, Nos. 77-80; also Picakd, Tr<u,e

d'Analyse, Vol. II, chap. xi.

In order to apply the theorem in the present case, replace (21 ) by the equivalent

system.
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If, therefore,

for every finite value of 2>, one extremal can be drawn from

[a, b) in every direction, except the direction of the ^-axis.

A problem for which

at every point [x, ij) of the region jR for every finite value of

p, is called, according to Hilbert, a regular prohlet)!.

d) We consider next the exceptional case in whicJi Eiilevs

differe)itial equation degenerates into an identiti/.

Suppose the left-hand side of (21) vanishes for every system of

values X, y, y , u . Then, since y ' does not occur in the three first

terms, it follows that the coefficient oi y" must vanish identically,

so that we must have separately

i/ , = F — F — ii'F =

for every x, y, y . From the first identity it follows that F must

he an integral linear function oiy', say

F{x,y,y')=M{x,y)+N{,r,y)y' .

Substituting this value in the second identity, we get

the well-known integrability condition for the differential expression

Mdx -\- Ndy .

Hence we infer : If M and N and their first partial derivatives are

single-valued and continuous in a simply-connected region ^ of

the X, 7/-plane, then there exists* a function V{x, y), single-valued

and of class C in ^ and such that

y, = M , V, = N
,

and therefore

F{x, y, y') = F,+ V,y' = ^ V{x, y) .

Hence if S : y=f(oo) be any curve of class C drawn in S> between

the points A{Xo, y^) and B{xi, y/i) our integral Jy^ has the value

1 See PiCARD, TraiU cfAnalyse, 2d ed., Vol. I, p. 93.
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F{x, y, y')dx= F(.r,, y^} — V{xo, //o) ,

and is therefore iudepeudent of the i^ath of integration (S and

depends only upon the position of the two end-points.

On account of the continuity of V{x,y), the result remains

true for ciuves 6 with a finite numljer of corners, as is at once seen

by decomposing the integral J in the usual manner.'

Vice versa : If the value of the integral Jq is independent of

the path of integration 6 as long as 6 remains in the interior of a

region g* contained in S, then the function F must be of the form

31(x, y)^X{.v, y)y' , where M„==Xj., for every point {x, y) in the

interior of ^ for which a^o ^ •*' < -^"i •

For let (^2. Vi) be any inner point of §> whose abscissa Xi lies

between a'o and a^i and yi, yi' two arbitrarily prescribed values;

then we can always draw in g> a curve Q.y = f{jc), of class C which

passes through (.^o, ^o), (.ri, v/i), (jc-i, 7/2). and for which f'{jc.^ = ij2,

f"'{jc2) = y2 •

According to our hypothesis, AJ must vanish for every admis-

sible variation of 6, whence we infer by the method of §§ 4, 5 that

y=zf(^x) must satisfy Euler's differential equation. The left-

hand side of the latter must therefore vanish for the arbitrary

.system of values x = X2, y= 1/2, y' - yl ,
y" ^y-i , which proves the

above statement.

We thus reach the result :

-

In order that the value of the integral

F{x, y, y')dx

may he independent of the x>ath of integration it is necessary and

sufficient^ that Euler's differential equation degenerate into an

identity.

It is clear that in this case there exists no proper* extremum of

the integral J.

e) We conclude these remarks by considering briefly the inverse

problem : Given a doubly infinite system of curves {functions)

y=f{^, «> /3) ,

1 Compare p. 12.

2 Compare J. Ill, Nos. 362, 363, aud Kxesek, Lehrbuch, §51.

3 Sufficient only if the region ^ is simply-connected.

Compare §3, b).
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to determine a function F(x, y,y') ^^^ ^/'«^ '^e given system of

vnrres shall he the e.vtrenials for the integral

J= C 'F{jc,y,y')~

This problem has always an infinitude of solutions which can

be obtained by quadratures.^

For if

y"=G{x,y,y') (26)

is the differential equation of the second order" whose general

solution is the given function y=f{x, a, ^,) (with a, /3 as constants

of integration), then we must so determine the function F{x, y, y')

that (26) becomes identical with Euler's differential equation for

F, i. €., according to (21)

F,~F,,,-F,,,yy'=GF,^,, . (27)

If we differentiate (27) with respect io y' , we get for M=Fyy-
a linear partial differential equation of the first order, viz.,

If

a = (}>{.r,y,y')
, ^ = i}j (,r, y, y')

is the solution of the two equations

y=f{x,a,f3), y' =f:c{x,a., IB)

with respect to a and ^, and if further

and

x(-^' y^ y') = ^(«^> </>('^. y, v')^ ^{-^^ y> y')) »

1 Daeboux, TMorie des surfaces. Vol. Til, Nos. 604, 605. For the analogoiis problem

in the more general case when F contains hij^her derivatives, compare Hirsch, Mathe-

matische Annalen, Vol. XLIX (1897), p. 49.

2 Obtained by eliminating a, p between the three equations

compare, for inst., J. I, N'o. 1G6.
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the general integral of (28) is found to be, according to the general

theory' of linear partial differential equations of the first order,

-1/X = ^{cf>U-, y, y'), xl>{.v, y, y'
)) ,

where * is an arbitrary function of <f> and --f.

After the function M has been found, F is obtained ])y two

successive quadratures from the differential equation

.^--, = M(x. y, y ) .

Finally the two constants of integration X, m (which are functions

of X and y), introduced by the latter process, must be so determined

that F satisfies the original partial differential equation (27) from

which (28) was derived by differentiation.

Example:- To determine all functions F for which the ex-

tremals are straight lines

y = ft.r -\- /? .

The differential equation (26) becomes, in this case,

y" = .

Accordingly, we obtain

ct>^ y'
, i{, = y- .ry' , x = ^^onst.

Hence
M = ^{y'

, y - .ry')
,

and therefore

F=
j

{y' - t) ^ {t
, y - xt) (It -j- y X {x , y) + h- {x, y) .

The condition for X and m becomes in this case

9X 9/A

dx dy

The most general expression for X and m- is therefore

dv 9v

^^Vy^ ^" = 91''

where v is an arbitrary function of x and y.

1 Compare, for inst., J. Ill, Xo. 242.

2 Compare DAEBorx, loc. cit.. No. 606.
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§8. WEIERSTRASS'S LEMMA AND THE E-FUNCTION

Before proceeding to the consideration of so-called

discontinuous solutions, we must derive a lemma, due to

Weierstrass,^ which is of fundamental importance for many

investigfations in the Calculus of Variations.

Suppose there are given, in the region H, an extremal ©

of class'^C": >J=f{^'), and a curve 6 of class C : //
/(r).

meeting G at a point ^ 2 : (.ro, >/>). Besides there is given a

point 0: (.ro, 2/o) on @, before 2, that is, Xq<j-2. Let 3 be

that point of 6 whose abscissa is a-o + Z', h being a positive

infinitesimal, and select arbitrarily a function v of class C"

satisfying the conditions

Then we can so deter-

mine e that the curve
-- -

,

FIG. 4

which necessarily passes through the point 0, also passes

through the point 3. For this purpose we have to solve the

equation

f{X2 + h) + er) ( .r, + h) = f{x,+ //)

with respect to e. Since /(j-o) =/(j"2)? we have

f(x, + h) -f{.c, + h) = (jj: - U-l ) h-t h (// ) ,

where ijo =/'(^2), Th^I" (•^'2) and (//) is an infinitesimal for

Lh=0. Hence we obtain

= /-[^+w]
It is proposed to compute the difference

-^ '-/ = Jffi — ( " 02 I "23) J

iThe lemma here given is a modification of the correspond ing lemma given by

"Weieesteass in his lectures U879) for the case of parameter-representation ; see §2.S.

2 This assumption must be made on account of the integration by parts which

occurs below ; compare §4.

3 For the notation compare §2, e).



84 Calculus of Variations [Chap. I

the integrals J, J, J being taken along the curves (5", (5, ^

respectively, from the point represented by the first index to

the point represented by the second.

A./ may be written

^
' (F - F) dx+ i

' {F - F) dx
,

whereF,F,F or F[x],F[x],F[x] stand for F(x,ij{x),y'{x)),

F{x, y{x), y'{.r)\ F[x, Tj(.r), y'{x)) respectively.

The first integral, treated by the method of §4, becomes,

since G is an extremal,

X, '
^^' ~ ^'^ '''' = '"'^ ^^' t^-^^] + ' * '-'

= h[{y.:-y;)F,,[.v,-\ + {h)] .

To the second integral we apply the first mean-value

theorem and obtain, on account of the continuity of i^^[.i"]

and -F[.r],

J[
' (F-F) dx = h [f [x,'] - F [.r,] + (/«)] .

Collecting the terms, we reach the result

Jo:. - (Jo2 + J23) = h
\

{]/: -yi)F^. [.r,] + FM - F [.n] + {h)\.

Similarly let 4 be that point of 6 whose abscissa is

X2— 1i , and determine e ' so that the curve

6 : y = y + ^'v

passes through 4. Then we obtain by the same process

J,u+ 'J.2- J02 = - /' )
(5/2' - 2/2 ) Fy. [x,-] +F [x,-] - F [x,-] + (h)

I

.

If we put for brevity

F{x, y,p)- F{x, y,p) - (p - p) Fy.{x, y , p>)

= E{x,y; p,p) , (29)

X, y,2^jP being considered as four independent variables,

thp preceding results may be written:
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Jo, - {Jo-2 + ^2.) = - /<
}
E {x,

, !J,; v/;
, 7/; ) + (/') {

'

I ^^j.

J.,+ {'l:-J.2) = ^h\E(j-,,!j,; y2,U2) + {l>)\-\

We shall refer to these two formulae as Weiersfrass's

Lemnid. The function E(.r. ij; p,p) defined by (29) will

play a most im})ortant part in the sequel ; it is called Weicr-

strass's 'E-fntiction}

The same results (80) -hold if the curves 03 and 04 are of

the more general type (5a):

y=f{:r)-^ia{x, e)
,

where the function <w(.t, e) vanishes identically for e= 0, has

the continuity properties enumerated on p. 18, and satisfies

besides the conditions:

a)(j"u, e) = for every e, and oy^[,x'2, 0) =p .

For the determination of e we have, in this case, theequation

:

/ {x,+ //) + (u {x, + h , e) - fix, + A) = .

The resulting value of e is of the same form as above.

This follows from the theorem^ on implicit functions; for if

1 Compare Zermelo, Dissert aition, p. 66.

-"If f(x, y) is of class C in the vicinity of {.r„, j/^) and

then a positive quantity A; being chosen arbitrarily but sufficiently small, another
positive quantity h^. can be determined such that for every x in the interval (xu— h/^,

x„-\-hfJ) the equation /(.1-, 2/) =0 has one and but one solution y between y^— fc and

The single-valued function 2/-=i//(a') thus implicitly defined by the equation:

fix . //I = 0, is of class C in the interval (.Cq— hj., ^q+Zi^.) and

dy _ fx

Hence
<lx f,j

!/-y,)= (^--eo)

where i o=:0.''
x=x„
(Compare E. II A, p. 72; J. I, No. 91; P., No. 110).

If f{x, y) is regular in the vicinity of (a; , j/ ), also the function 2/- i/* [x) is regu-

lar in the vicinity of x^,. (Compare E. IT B, \>. 103, and Harkness andMorley,
Introduction to the Theory of Analytic Functions, No. 156.) For the extension of the
theorem to a system of m equations between m-]-n unknown quantities, see the ref-

erences just given.
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we denote the left-hand side of the preceding equation by

F{li, e), this function is of class C" in the vicinity of A = 0.

e= 0; further: F(0, 0)= and finally jPJO, 0)=^0.

Incidentally we notice here the formula

{F-F)dx+ Fdx

= /' \iK - //; ) F,^. [a-,] + F [.r,] + (7^)] ,

which holds for negative as well as for positive values of It.

Hence it follows that if the arc 02 of the extremal Q mini-

mizes the integral ./, the end-point being fixed while the

end-point 2 is movable on the curve ^, then the co-ordinates

of the point 2 must satisfy the condition

F + ry'-u')F/=0 .

{''Condition of transvcrsalittj," compare the detailed treat-

ment of the problem with variable end-points in ^28.)

§1>. DISCONTINUOUS SOLUTIONS

We must now free ourselves from the restriction' imposed

upon the minimizing curve at the beginning of ^4, viz., tV t

ij' should be continuous in (^Vi)? ^^^ we propose to deter-

mine in this section all those solutions of our problem which

present corners—so-called "(lisco)itinuous solutions."

(i) In the first place, the theorem holds that (dso (lisrf)ii-

tinuous solutions must satisfi/ Uuler's differential equation.

Suppose for simplicity" that the minimizing curve 6 has

only one corner C(x2, }Jz) between A and B. According to

§3, c) the integral J",, is then defined by

J,= P F{x, ij. y')d.r+ P.Fic:, ij
,
y')dx . (31)

iThe assumption that the curve shall lie entirely iu the interior of the re^cn

S will still be retained in this section.

^The results can be extended at once to the case of several corners.
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the notation indicating that Ij'U'^) is defined in the tirst

integral by y' {.r^— 0). in the second by u'{x2,-\-Q).

The theorem in question is most easily proved by the

wliich is very nseful in

FIG. -)

method of partial variation

many investigations of the Cal-

culus of Variations:

We consider first such spe-

cial' variations ADC of type

(•")) as leave the arc CB un-

changed and vary only A C.

To such variations all the con-

clusions of ^'i^4:-() can be applied, and it follows as before

that for the interval (.r^, .ro— 0) Euler's equation must

hold. The sam*^' result follows for (.r2 — ^*.
••"i) from the

consideration of variations which leave A C unchanged;

hence it is true for the whole interval (-ro^i)."

h) A discontinuous solution with one corner is therefore

composed of two extremals involving in general different

constants of integration:

y =f{.r, a,, /3i) iu (.r„, a-,— 0) ,

y =f(.r, a,, 13,) in (.ro + 0,a",) .

For the determination of x-> and of the constants of inteo^ra-

tioii we have in the first place the initial conditions

fnrther the condition that y is continuous at x-i'.

f{,i\, a,, /?,) =/(.«•.,, a.,, p.j) ;

and finally two further conditions which are furnished by the

following: theorem due to Weierstrass and Erdmanx:^

J Compare the remark on p. 15, footnote 2).

2Withthe same understanding as iu (31) concerning the meaning of y' at the

corner.

:i Weierstrass, Lec/wres at least as early as 1877; Erdmaxx, Journal fur Mathe-
iixitik, Vol. LXXXII (1X77), p. 21. Another demonstration has been deduced by
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Theorem: At every corner of a minimizing curve the

two limiting values of Fy- are equal.
-^

F — F ,

a;2+0

)



§9] First Variation 30

and on account of (32) this is equivalent to (33).

c) Example' III: To minimize the integral

Here

Hence a first integral of Euler's differential equation is

4^" + %"+ 2//' = const. ;

therefore

rj = a.r + /3

.

i.e., the extremals are straight lines, and the line AB joining the

two given jDoints is a possible continuous solution.

In order to obtain all discontinuous solutions with one

corner, we have to find all solutions pi, m of the two equations

ky\ + ^lA + 2i>, = ^pi + h^\ + 2p, .

-^p\-4.p\-p\=-'^p\- Apl-iA ,

where

Pi = ^/ ' (c — 0) and p2=ij' (c -\-0) and p^ 4= p^ .

Dividing out hy pi— p^ and putting

i>i+ P2 = » . in + Piih + pi = ^t-'

we get
2h- + 3(f + 1 =

-3u' + 6aH- + 4H-+ *( =0 .

These equations have one real solution, // = — 1 , ?c = + 1 , from

which we obtain

Pi = , p2 = - 1 ,

or

jpi = — 1
, pi = .

1 A special case of the example given by Erdmann, loc. cit., p. 24.
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Every discontinuous soluUou must therefore be composed of

straiglit lines making the angles or 2>-n-/4c with the positive x-a,vis.

If the slope m, = ( ^i — !/„)/{-)Ci — x„) of the line AB lies between and
- 1, there are indeed two such solutions, Ad JBand A CiB with one

corner and an infinity with n ^ 2

corners.

Since F = y'^ {y' -\-Yf, these

discontinuous solutions furnish

B for J the value zero and there-

fore the absolute minimum}

FIG. 6

d) In many cases the impos-

sibility of discontinuous solu-

tions can be inferred from the following

CoroUarij :~ If {xo, 2/2)
'^' " corHer of a minimizing curve,

then the function

J'^nri'*'^, !h,p)

must canisli for some finite value of p.

For the function

is a continuous function of j) admitting a finite derivative

for all finite values oi j); further, if we put

y
' {X2 - 0) = 2h ,

y
' (^2 + 0) = p-2 ,

we have px^ p-y, find, according to (32),

<^ (Pl) = "^ {P-2) •

Hence by Rolle's Theorem the derivative

<^'{p) ^ F,j.,y{x.2, y2,p)

must vanish for some value of 2^ between 2^1 and P2 •

If therefore the problem is a "regular problem," /. e., if

for every point in the interior of 2J and for all finite values

'The minimum is, however, " improper " (compare §3, b)), because in every

neighborhood of AC^B (or A C^ B) broken lines can be drawn, joining A and 6, whose

segments have alternately the slopes and - 1. For such a curve A J = .

2 Compare also Whittemoee, loc. cit., p. 136.
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of j>. we infer that no discontinuous solutions are possible in

the interior of U.

Example I (see p. 1) : F =ii V \-\-y"\''B>. is the upper half-plane

{y^O).' Here

F..= y
II u

is =1=0 in the interior of S. and consequently no discontinuous

solutions are possible in the interior- of S.

§10. BOrXDARY CONDITIONS

In all the preceding developments it was assumed" that the

minimizing curve should lie entirely in the interior of the region

S. But there may also exist solutions of the problem as formulated

in §3 which have points in common with the boundary of S. To
determine these solutions is the oliject of the present section.

For this investigation it is convenient to make use of the idea of

a point by point variation, of a curve which played an important

part in the eai'lier history of the Calculus of Variations.

Between the points of the two curves

and 6: y^y^Ay
we may establish a one-to-one correspondence by letting two points

correspond which have the same abscissa x. And we may think

of the second curve as being derived from the first by a continuous

deformation in which each individual point moves along its ordinate

according to some law, for instance, if in

we let a increase from to 1.

A point of 6 whose abscissa is x', is called a point of free

variation if ^.y{x') may take any sufficiently small value; other-

wise, a point of unfree variation.

For a curve 6 vihich lies entireh' in the interior of S al]

points except the end-points are points of free variation.* and this

freedom was essential in the conclusions of §§4 and 5.

1 Compare §1, c). 3 See the beginning of §4.

2 Compare the next section. *Iu our formulation of the problem, §3.
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This is not true for a curve which has points in common with

the boundary. For simplicity let us suppose that the ]x)undary of

S contains an arc 6 representable in the form

d=fU) ,

f(x) being of class C". In order to fix the ideas suppose that S
lies above 6. Then if 6 has a point P in common with (5. the

variation of P is unfree and restricted l^y the condition

A^/^O. (34)

Suppose the minimizing curve 0231 has the segment 23 in com-

mon with the boundary.

Then the method of partial varia-

.tion applied to 02 and to 31 shows that

these two arcs must be extremals.

Consider next a variation of type (5

)

which leaves 02 and 31 unchanged and

varies only 23. Since A// — e?; must be

^0, V cannot change sign and if we
choose v^O then e must be taken posi-

fire ; hence we can no longer infer from

(6) that 5j- = 0, but only that

SJ^O . (35)

After the integration by parts of § 4 we obtain therefore

d

£'{f^-t^^
for all functions v of class D ' which vanish at x^ and x-, and satisfy

besides the condition

7?^0 .

The lemma of § 5, slightly modified, leads in the present case

to the

1 Moreover at the end-points 2 and 3 the following condition must be satisfied

:

E(J-.2,2/2; 2/2''»2') = 0; E(>3,2/3; yi,y^') = Q.

The proof follows easily from Weierstrass's Lemma (see Fig. 7). Compare also

the treatment of the problem in parameter-representation, §29. The question of

sufficient conditions for one-sided variations has recently been considered by Bliss in

a paper read before the Chicago section of the American Mathematical Society. He
finds that for a so-called regular problem (§7, c) the arc 23 of the curve T furnishes a
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Theorem:^ If the minimizing curve has a segment^ 23 in

common xcith the boundary of S, then along this segment tlie

folloti'i)ig condition must be satisfied .•

:Fy-~F,,.^0 , if a lies above 23
, (3Ga)

(XdC

F,j-^F„.^0 , if a lies below 23 . (36b)

smaller value for the integral J than any other curve of class D' ji .i.:ii«' the two
points 2 and 3, lying in a certain neighborhood of the arc 23 and saf"ifijinij the comli-

tion A 2/50, provided that the condition

u dx y

is fulfilled along the arc 23.

The proof is based uiDon the construction of a "field " (see §§19, 20, 21) of extrem-
als each one of which is tangent to the curve Q and lies entirely on one side of 'e.

1 Of the properties specified above.



CHAPTER II

THE SECOND VARIATION

^11. legendre's condition

The integration of Euler's differential equation and the

subsequent determination of the constants of integration'

yield in general a certain niimber" of curves 6 as the only

possible solutions of our problem; that is, if there exist at

all curves which minimize the integral J, they mu^t be con-

tained among these curves.

We have now to examine each one of these curves sepa-

rately and to decide whether it actually furnishes a minimum

or not.

We confine ourselves in this investigation to curves which

lie entirely in the interior of the region U and have no

corners.

a) Goieyulities concern in (j the second variation.

We suppose then we have found an extremal

©0 : y=M'^), Xo^jc^x^ (1)

of class C which passes through the two points A and B,

and which lies entirely in the interior of the region U.

Then we replace, as in § 4, the curve @o t>y ^neighboring curve

y = y + ^

and apply to the increment A J" Taylor's formula,^ stopping,

iBy the initial conditions (23), the corner conditions (32) and (33), and the

boundary conditions.

2 The number may be infinite (see Example III, p. 40) ; but it may also be impos-

sible so to determine the constants as to satisfy the conditions imposed upon them ;

this happens, for instance, in Example I for certain positions of the two given points

;

see the references given on p. 28.

3If jP is an analytic function, regular in the domain ST, expansion into an infinite

series may be used instead.

44
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however, at the terms of the third order. If we put for

brevity

Fyy {x,f,{x),f;{x))=P'

Fyy\x,f,{x),n{x)) = Q I-

(2)

Fy;j\x
, /o {x) , fo {x))=R

and remember that Si/:=0, since G^ is an extremal, we obtain

A J = 1
)

{Pio' + 2^0)0)'+ J?a)'2) da- + ( (oy, io'), dx
, (3)

(o), a)')3 being a homogeneous function of dimension three

of CO, 0)'
.

Considering again special variations of the type (o= €r] and

reasoning as in §4, we obtain

AJ = r [i f ' {Prj' + 2Qr,r,'+ Br}") dx + (ej]
, (4)

where (e) is again an infinitesimal.

Hence we infer the theorem:

For a miiii)iium {inaximu)n) if is necessary that the

second variation he positive (tiegatire) or zero:

SV^O (^0) (5)

for (lU functions v of class D' irlticJi vanisJi at Xq and x^.

For according to the definition given in ^4, c),

gV = £2 r '

^p^2 _^ 2(^)r,r,'+ Pri'-) dx . (oa)

The same result can also be obtained by the method of differ-

entiation with respect to e, explained in §4, h); see p. ll),

footnote 2.

From our assumptions concerning the functions -F(.j"
, /j , j))

and /o(.r) it follows' that the three functions P, Q, R are

continuous in the interval (a^oTi). We suppose in the sequel

that they are not all three identically zero in {X(yX\).

1 Compare J. I, Xo. 60, and P., No. 99.
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h) Legendre's condifioit.

For the discussion of the sign of the second variation,

Legendre' uses the following artifice: He adds to the second

variation the integral

I
[2rjr]'ir + r]'tc')dx ,

where ir is an arbitrary function of jt of class C in (jTcyri).

This integral is equal to zero ;" for it is equal to

• '^11 </.< L J-i-ii

and r] vanishes at ,/o and .r^.

He thus obtains S-J in the form

8M = e' i
''

\(P + 'r') rj' + 2 ((? + W) -qrj' + i?r,"^1 d.V .

And now he determines the arbitrary function u) by the con-

dition that the discriminant of the quadratic form in ?;. t)'

under the integral shall vanish, /. c.

This reduces S'-,7 to the form

from which he infers that R must not change sign in {x(fc^)

and that S-,/ has then always the same sign as R.

These conclusions are, however, open to objections. For,

as Lagrange-^ had already remarked, Legendre' s trans-

formation tacitly presupposes that the differential equation

1 Legendre: "M6moire sur la manifere de distinguer les maxima des minima

dans le calcul des variations," Mimoires de VAcadimle des Sciences, 1786; in

Stackel's translation in Ostwald's Klassiker der exacten Wissenschaften. No. 47,

p. 59.

^This holds true also when >j has discontinuities of the kind which we have

admitted (§3, c)); compare p. 12, footnote 5), and remember that rj and w are con-

tinuous in (.ry.rji.

3 In 1797; see Oeiwres, yol. IX, p. 303.
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(()) has an integral which is finite and continuous in the

interval {JCffiCi), and that B does not vanish in {oC(fCi).

Nevertheless, by a slight modification' of the reasoning,

the first part of Legendre's conclusion can be rigorously

proved, /. c, the

Fundamental Theorem II: For a minhiniiii [mcurimum)

it is necessavn fix if

R{x) = F,y^.ix,Mx),f:{x))^0{^0) in {x,x,) . (II)

For, suppose jR{c) < for some value c in (.>Vi) ; then we

can assign a subinterval (lo^i) of (xf^i) for which the follow-

ing two conditions are simultaneously fulfilled:

1. R(,r) < throughout (fnli )

:

2. There exists a particular integral w of ((i) which is of

class C in (loli)-

For, since B{x) is coxitiniious in (.ro-Ti) and i?(c)<0, we

can determine a vicinity {c— ^, c -r ^) of c in which i?(a^)< 0.

Hence it follows that if we write the differential equation (G)

in the form

^=_P + (£±i£)!, (P,a)
dx R

the right-hand side, considered as a function of .r and //', is

continuous and has a continuous partial derivative with

respect to w in the vicinity of the point x-=c, ir= WQ, iuq

beincr an arbitrary initial value for ir.

Hence there exists, according to Cauchy's existence

theorem/ an integral of (6) which takes for .r= c the value

. u-= Wq, and which is of class C in a certain vicinity (c— S',

c-rS') of r. The interval (fo^i) in question is the smaller

of the two intervals (c— S, c r 8) and (c— S', c-^S').

This point being established, we choose for -?; a function

which is identically zero outside of (fo^i), ^^^^^ eqnnl to

iThe proi>f in the text follows Weieestbass's exposition, Lectures, 1879.

2 Compare p. 28, footnote i.
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(.r— ^o) (<^— li) i^^ (loll)- The function -q thus defined fur-

nishes an admissible variation of the curve @o> since it is of

class D' in {-r^^x), and vanishes

at .r,) and .rj.

For this particular function

?;. ^'J becomes

To this integral Legendre's transformation is aj^plicable.

FIG. 8

Accordinglv

^--''XX^'+^f^-
The function -q

' H ^— 77 is certainly not identically zero

throughout (loli)* f<^i' it is different from zero for .r=^^o and

Hence if i? (c) were negative, a variation of @o could l3e

found for which S2J"< 0, which is impossible if @o minimizes

the integral J. Therefore i?(j")^0 in {.r^^, Q. E. D.

Leaving aside the exceptional case^ in which R{x) has

zeros in the interval {x^x\, we assume in the sequel that for

the extremal ©0 the condition

i?> in {x^^ (II')

is fulfilled.

A consequence of this assumption is that not only f^{.r)

but also/Q'(ip) is continuous in {x^fic^)^ as follows immediately

from equation (20) at the end of ^6. Hence we infer that

not only the functions P, Q, R themselves but also their

first derivatives are continuous in (a:v'i)-

Example^ I (see p. 27): F—yVl+ y-; hence

1 An example of this exceptional case is considered by Eedmann, Zeitschriff filr

Mathematikund Physik\ Vol. XXIII (1878), p. 369. viz.,

F = y cos X and Jy < ,3 < .I'j .

2 All the square roots are to be taken positive, see p. 2, footnote 1.
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F —0
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If we write (9) in the form

d:?+Rd^- + -I^"=''' (^">

the coefficients are continuous in (./Vj). Hence it follows,

according to the general existence theorem' on linear dif-

ferential equations, that every integral of (10) is con-

tinuous and admits continuous first and second derivatives

in (./V'l)-

Hence we can infer that if the condition ; i? > in {X(^i)

is s((tisfic(l (111(1 if tlic dijfcreniial equation (9) has an

infegi'al n n-Jtich is (liffcrcnt from zero ttn'OHf/hont (a^o^i),

tJicii 8-./>"0 for evcri/ (idmissibte function i] not ideniicaUy

zero.

For if n is such an integral, then (8) furnishes an inte-

gral u- of (t)) of class C in {X(yi\), and therefore h-J^i). In

order to show that the equality sign must be excluded, we

introduce n instead of ir in (7), and obtain

This shows that 3-,/ can be equal to zero only when

1]' II
— T)ii' = throughout (.ro-ri), /. e., when 77 = Const. 11,

which is impossible since r] vanishes at Xq and j\, and n

does not.

If, on the contrary, every integral of (9) vanishes at least

at one point of (.ro-rj), Legendre's tranformation is not

applicable to the whole interval. We shall see (in §!<))

that in this case h-J can. in general, be made negative.

1 Compare E. II A, p. 194, aud Picard, Traiti d'Analyse, Vol. Ill, pp. 91, 92. If

F and consequently also P, Q, R are analytic functions, the existence theorems

for analytic diEEerential equations may be used instead. For linear differential

equations in particular, sec ScuhESlSGER, Haitdbuch der Theorie der linearen Differ-

enUalgleichungen, Vol. I, p. 21.
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i^l"2. .TACOBl's TRANSFORMATION OF THE SECOND VARIATION

The proof of the statement made at the end of the pre-

ceding section is ))ased upon a second transformation of

S-J due to Jacobi.'

(() Let (|,i^i) be either the interval (j^V'i ) itself or a sub-

interval of (•'o'l). and let ?/ be identically zenj outside of

(lo^i), and in (^y^i) equal to some function of class C" which

vanishes at fo and Ij.

Then if we denote by 211 the quadratic form of i], i]'

:

and ap})ly Euler"s theorem on homogeneous functions, we

may write 8'-J in the form

The second term can be integrated by parts since rj" Ls con-

tinuous, and we obtain

,,(r dny^ rh /an d an\

1 Journal fitr Mathematik, Vol. XVII (1837). p. 6x. Jac obi derives (8) as well as

the iiitejrratiou of (10) from the remark that S'J = S(SJ), hence

\ r '• f'"'

Jo )

where

M= r - -^ F . .

." d.r y

But
&M=*[&!/) = £*(>) "I .

Jacobi's paper, which is not confined to the simple case which we are here

considering, but which also treats the case in which the function F contains higher

derivatives of y of any order, marks a turning point in the history of the Calculus of

Variations. It gives, however, only very short indications concerning the proofs:

the details of the proofs have been supplied in a series of articles by Delauxay.
Spitzer, Hesse and others (see the list given by Pascal, loc. cit., p. 6.3). Among
these commentaries on Jacobi's paper, the most complete is that by Hesse
{Journal fiir Mathematik, Vol. LIV (18.57), p. 2.55), whose presentation we follow in

this section.

Jacobi's results have been extended to the most general problem involving

simple definite integrals by Clebsch and X. Mayer (lee the references given in

Pascal, loc. cit., pp. 64, 6.5, and C. Jordan', Cour.s cfAyialyse^Xol. Ill, Nos. 373-91).
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But 'q vanishes at ^^) and fj, and

drj dx Or) dx ^

'

Hence we obtain Jacobi's expression for the second

variation :

S-'J = e2 \\^P{r,)cl.r , (12)

which leads at once to the following result:

// there exists an integral n of the differential eqH(d{()ii

(.9) icliich vanishes at tiro })(>ints |o «'"' li <'f (^'o**!), we can

niake^ B'^J^^O, viz., by choosing

_ ( n in (Li^) ,

''"(() outside of iUi) .

/*) In th(» sequel we shall need an extension of form n la

(/V) to the ease wJien i] is of class D" . Let Cj, rv, • • •. r„ be

the points of discontinuity of t]' or ?;", Then the integral

for ^-J must be broken up into a sum of integrals from ^q ^o

c,, from Cj to c-j, etc., before the integration by parts is

applied. Hence we' obtain in this case

ao
or, if we substitute for tt-^ its value and remember that ??,

oiq

Q, R are continuous at c^, co, • • •, c,^

:

+ I q<if{r))dx[ . (12a)
»' so 1

c) From (12) a second proof' of (11) can be derived ; this

proof is based upon the following property of the differen-

1 It will be seen later on that it follows from this result that, in general, there can

be no extremuni in this case, see s§l+ and 16.

2 Due to .Jacobi. see the references on p. 51, footnote 1, in particular to Hesse.
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tial operator ^: If u and /• are any two functions of class

C", then

u<lf{v)-r^{n)=-~R{nr- ~n'c) . (13)

Heuce if it satisfies the differential equation

we get

*(r) r= -Aji{uv'-u'v)
,dx

...^"tand if we imt , \^

J) being any function of class C" , and multiply by p, we

obtain

(2,u)^{pu)= -pj^(Rp'ir)

= ^£(Rpp'ur)+R(p'Hr-. (14)

But since

Pv'+ 2^ri-'+ Re'- = c * (c) + ^'v ((^r + i^f')

we obtain from (14):

= i?(p'»)^ + -'|.(yr^,((^H + i?H')) . (15)

Now suppose moreover t1t(d ii is different from zero

fhrouf/houf (luli). Then we may substitute in (15) for the

arbitrary function j) the quotient

^' = «'

and since 77 vanishes at f,, and ^,. also j) will vanish at
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fo and ^1. Hence, on integrating (15) between the limits

^0 and ^i, and substituting for ^) its value, we obtain'

c I
7,

—-—-dx . (ii'i)8-J = e-

§13. JACOBl's THEOREM

By the developments of the last two sections, the decision

reofardinij the sig^n of the second variation is reduced to

the discussion of Jacobi's differential equation (U). It is

therefore a theorem of fundamental importance, discovered

by Jacobi'^ in 1837. that the general solution of the differ-

ential equation "^(^fj^Q can Vje obtained l^y mere processes

of differentiation, as soon as the general solution of Euler's

differential equation is known.

a) Assum2:)tious^co)iC(')-itiii[/ fJu'i/cncrnl solution f{.r. a . /3)

of EuJei's differi'iiiial ('(jiictfioii

:

We suppose for this investigation that the extremal Qq is

derived from the general solution by giving the constants

a. /3 the special values a^). /3^^. so that

Further, we suppose that the function f(x, a, ^), its first

1 Notice that iu the present proof we have to suppose -q to be of class C" ia <.^„li)

.

It can, however, be easily proved that the result is true also for functions r) of class

C and even D . iu accordance with the results of §11, c). This follows from the fact

that ;j does not occur in the identity (15) and that p'^u {Qu-^Ru) is continuous even

at the points of discontinuity of r;' or jj".

2 See the reference on p. 51, footnote.

3If the interval {x^^^) is sufficiently small, these assumptions are a conse-

quence of our previous assumptions concerning the function F (p. 12), the

extremal ('„ (p. 44) and the function R (p. 48). This follows from the theorems con-

cerning the dependence of the general solution of a system of differential equations

upon the constants of integration; compare Paisleve in E. II A, pp. 195 and "200,

and the references there given to Picard, Bexdixsox, Peaxo, Xicoletti, and

V. Escheeich; also Xicoletti. Atti della R. Ace. dei Lincei Rendiconti, 1895, p. 81ii.

For the case when F is an analytic function, compare E. II A, p. 202, and

Kn"Eser, -Leftrdw:?!., §27.

For certain special investigations concerning the "conjugate points." the addi-

tional assumption is necessary that also/<ia,/a^./^(3 exist and are continuous in A;
compare p. 59, footnote 1, and p. 62, footnote 4.
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partial derivatives and the cross-derivatives fj-a^fx^ ai't^ <-"<>ii-

tiiinous. and that/,.j. exists in a certain domain

A : A'n ^ u- ^ A', , I
a — a„

j

^ d
,

I

/3 — /3„^ r/
,

where Xq<^Xq, ^Y^ >./'i and (/ is a positive quantity.

From these assumptions, together with our previous

assumptions concerning the function F, the assumption that

©Q lies in the interior of the region U and the assuni[)tiou

that i?(.r)>0 in (./Vi) it follows:

1. That' also the partial derivatives /„,.,/j3,. exist, are con-

tinuous and equal iof^,^,/,.^ respectively, throughout A;
2. That if we replace in the first and second partial deriva-

tives of F the arguments ij , //' l)y /(•', a. ^),f\.{.i\ a. /3),

these pai'tial derivatives are changed into functions of j-, a. /9

which are continuous and have continuous first partial deriva-

tives with respect to a and /S;

3. That-

F,.„.(.r,/(.r, a, fi),fjj-, a, ^))>0 , (16)

the last two statements being true throughout the domain

A provided that the quantity d and the differ-

ences Xq— Xq, J^i— j'l be taken sufficiently small;

4. The quantities d, jTq— Xq, Xi — .ri being so selected,

it follows further from equation (20) in ^6 that also the

partial derivatives /j.^,, f[,._,.a, fxx? exist and are continuous

in A.

h) The general intcyrdl of Jacohi's (lijjfereiifidl eqiia-

Hon (9) can now be obtained according to Jacobi {ioc. cif.)

as follows

:

If we substitute in Euler's differential equation for ij

the general integral f{x, a. ^) we obtain

1 Compare E. II A, p. 73, and Stolz, GrundzUge der DifferentUxl- und InteqraU

rechnung. Vol. I, p. 150.

2Since R{x) has a positive minimum value iu (-Vi) and F^y^y (.r,/(.r, a,^),

f^ix^a.^^) is uniformly continuous in A.
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-£^F^[.r,f{.V, a, ft).fj.r, a, ft)) = ,

an identity which is satisfied for all values of j'
,
a

, /3 in the

domain A and which may therefore be differentiated with

respect to a or yS. On account of the preceding assumptions,

the order of differentiation with respect to j- and a (or /3)

mav be reversed' and we obtain

where the accents denote again differentiation with respect

to j:

If we o-ive in (17) to a. /3 the particular values a= a^y

^= ^0 and remember the definition of F. Q. B in ^11

equation (2), we obtain

Jacobi"s Theorem : If

y=f(.V,a,ft)

Is the (jeneral solution of Eider's differeniidl rqudtiou, iheii

the (liffevential equation

^{h) = (P-Q')u--^(Ru') =

admits the two particidar int('(/)-(ds

^'2 = fp U' >
a,,

. A. I •

Corotlarijr Tlie tiro imrticular integrals r^ and r-. are.

in general, linearhj independent.

For, in order that r^ and r^ may be linearly independent,

iFrom the existence and continuity of ^ (-Fy^/a^) and li^u'W
^o^^""^'* ^^^

existence and continuity of f„^^ on account of (16).

2 See Pascal, loc. cit., p. 75.
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it is necessary and sufficient that their ''Wronskian deter

D{.r)

minaiit"'

I

y-i (./•) -r, (.r)

'/ (^) '2' (^)
I

be nut identically zero.

On the other hand, since /(./, a, /3) is sup[)osed to be the

general solution of Euler's differential equation, it must

be possible so to determine a and yS that y and //' take

arbitrarily prescribed values /j-> and 2/2 ft)r a given non-

singular value of a', say .I'j.

The two functions /(d'-o, a, /3) and/,.(.r2, a, /3) of a. /3 must

therefore ))e independent, and consequently' their Jacobiau

9 (/./.,.

Jxa /.rfl
9(a, /«)

cannot be identically zero for all values of a, ^. But for

a- ttQ, /3--^^Q, this Jacobiau is identical with the determi-

nant D(.t), since fax'^La, /^^•=fx^, and therefore r^ and r.2

are linearly independent, except, possibly, for singular sys-

tems of values a^, /S^, /. r., for singular positions of the two

given })oints A and B.

We exclude in the sequel such exceptional cases and

assume that )\ and Vo are linearly independent. Then fJie

(ji'iicnil iiitcgral of JacobTs (liff'crenfial equation is

tt = CV: + C,r,
,

_
(19)

C\, C-2. being two arbitrary constants.

^14. JACOBI'S CRITERION

By J ac obi's theorem the further discussion of the sign

of S'-'J is reduced to the question: Under what conditions is

it possible so to determine the two constants C\, C-> that the

function u= Ci?'i + CoVo shall not vanish in {xqXi) ?

1 Compare E. II A, p. 2fil, and J. Ill, No. 122.

2Compare P., No. Vl'l, IV and J. I, No. 94.
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In order to answer this question, we construct the expres-

sion'

A (,r , ,r„) = )\ (.r) n (.r,) — r.^ (.r) /, (.r„)
; (20)

it is a particular integral of (9) and vanishes for x= ji-q; if

it vanishes at all for values of ./ > j-q, let Xq be the zero next*

greater than .Tq, so that

A {xq , Xo) = ,

A (x , .ro) ^ () for x, < x < x^
, (21)

A(^;, .r„) = .

Then it follows from a well-known theorem on homosene-

ous linear differential equations of the second order dues to

Sturm'" that every integral of (9) independent of A (./•. Xq)

vanishes at one and but one point between ./-(j and .ro

.

We have now to distinguish two cases

:

Case I : Xq ^ Xi .

Then every integral of (9) vanishes at some point of (./Vi)

and we obtain according to §12, a) the

Theorem: I/xq^Xi, it is j^ossible to })i((ke 8'-J:=0 hi/ a

proper choice of the function v-

1 Compare Hesse, loc. cit., i). 258, and A. Mayer, Journal fiir Matheinaiik, Vol.

LXIX (1868), p. 250.

2 "If iij , M.2 are two linearly iudependent integrals of

d u , du
,

where p and q are functions of j-, then between two consecutive zeros of u^ there is

contained one and but one zero of u.^, provided that these zeros are comprised in an

interval in which p and q are continuous." See Sturm, " M6moire sur les Equations

diH:'6rentielles du second ordre" {Journal de Liouville, Vol. I (1H.36), p. 131); also

Sturm, Coui-s d'Analyse, 12th ed.. Vol. II, No. 609. The theorem follows easily from

the well-known formula
du

I ^ -fpdx (2''*)
' dx ' dx

where Cis a constant =1=0. From the same formula it follows that if, and Mj cannot

dMj
vanish at the same point, and that Mj and —r- cannot vanish at the same point.

Compare also Darboux, TMorie des Surfaces, Vol. Ill, No. 628, and Bochee,

Transactions of the American Mathematical Society, Vol. II (1901), pp. 150, 428.

It seems that W'eiersteass was the first who used Sturm's theorem in this

connection. Hesse (loc. cit., p. 2.57) reaches the same results in a less elegant way
by making use of the relation (22).

^ Compare Addenda at end of book.
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For instance, by taking 77=A (,r, Xq) in f./Vo' ) and identi-

cally zero in (xQ.ri).

Hence Jacobi inferred that an extremum is impossible if

•^"o'^A ;
foi'j ^'^ ^iid ^"'^ being zero, the sign of AJ depends

npon the sign of 8^J which can be made negative as well as

positive by choosing the sign of e properly. This conclusion

is, however, legitimate only after it has been ascertained'

that the particular variation which causes S-J" to vanish does

not at the same time make 8^J=0.

Case II: Xq >d^i or else Xq non-existent.

In this case the particular integral

A (x, X,) = )\ (x) i\ (j-i)
- /•, (x) r, (.r,)

of (9) is linearly independent of A(.r,.ro) since A(j'o, j^o)
— 0,

whereas
A (Xo, x,)= — A (a-i , X^) :^ .

Hence it follows from Sturm's theorem that A(^-, Xjj4=0

for XQ^x<ixi, and therefore also (on account of the con-

tinuity of A(j-, a-i)) for Xq— S^j-<ri, h being a sufficiently

small positive quantity. Now choose x^ between Xq— S and

Xq and so near to ^'0 that' Jro<j"^< j-g. Then we can apply

Sturm's theorem to the two particular integrals A (.r, a^j)

and A {x , x^)= r-^ [x) Vo (x^)

— Voix) ri(x^) and obtain

the result that

A (x, J7°) =t= iu {x„Xi) .

iThe value of sl/ for this particular function t; has been computed by Erdmaxx
{Zeitschrift fur Mathematik und Physik, Vol. XXII (1877), p. 327). He finds, in the

notation of § 1.")

6''J = - ^^R {>„' ) '<t>y (a-„', 7o) <t>yy{^(i\ y„) ; ( 23

)

R(x^')and<t>yU\,'.,yQ) are always different from zero; and i<>yy (j;(,', y,,) is also different

from zero except when the envelope of the set (28) has a cusp at A' or degenerates

into a i>oint. With the exception of these two cases then, Jacobi's result is correct.

Compare also §1(5.

2See §13, a). On account of (16), R{x)>0 and, therefore. r^[.r) and r,i.r) are

continuous not only in (.r„.rj ) but also in the larger interval uY|,A',).
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We obtain, therefore, according to §11 c), the

Theorem: 7/i?>0 throKgJioiii (d"o*"i), and either Xi<.Xq

or j'o non-existent, then S'J is 2)osifire for all admissible

functions tj.

Hence Jacobi inferred that in this case a minimum

actually exists, and this was generally believed until Weier-

STRASS showed the fallacy of the conclusion (1879) (see §17).

The above two theorems constitute " Jacobi's Criterion."

The value Xq is called tJie conjugate of the vcdue x^^; and the

point A' of the extremal ©o whose abscissa is Xq, the con-

jiigote of the point A whose abscissa is x^^.

§1.-). GEOMETRICAL INTERPRETATION OF THE CONJUGATE
POINTS

Jacobi' has given a very elegant geometrical interpreta-

tion of the conjugate points, which is based upon the con-

sideratioii of the set of extremals through the 'point A.

(I) This set is detined by the two equations

y =f{.v, a. ^) ,

y„=fU\n «•, A) •

The second equation is satisfied by a

at least one of the two partial derivatives

fa i-r, , a„
, p,) = 7-1 (x„) aud /p {x^ ,

<

is 4=0 since r^ix) and r.^ix) are two independent integrals of

(0) and E{xq)^0 (see p. 58, footnote 2). According to the

theorem- on implicit functions we can therefore solve (25)

either with respect to a or with respect to yS. But we

obtain a more symmetrical result if we express a and /3 in

terms of a third parameter 7.

If we choose, for instance,

^Loc. cif., and VorlesungenUber Dynamik, p. 46; also Hesse, loc. ciL, p. 258.

2 Compare p. 33, footnote 2.
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y=A(.ro,a,/8) (20)

and denote by 7o the value

we can solve' the two equations (25) and (20)) witli respect

to a and /3, and obtain a unique solution

a = a(y) . /3 = fS{y) ,

which is continuous in the vicinity of the point 7= 7o and

satisfies the condition

«o = « (y<) , -^11 = /3 (ju)

Moreover the functions a (7), /3(7) admit, in the vicinity of

of 7o, continuous first derivatives.

Hence it follows that if we put

f(x,a(y). (i(y)) = <^ (.r , y) ,

the function (^(r. 7), its first partial derivatives and the

derivatives" ^,.,., (f),.y
will be continuous in the domain

X^^x^ X^ ,
I y — y„

I

^ di ,

di being a sufficiently small positive quantity. Further-'

more, the equation

//„ = <^ (;r„ , y) (27)

is satisfied for all sufficiently small values of [7— 70 |

.

The equation

// = <^(.r.y) (28)

represents, therefore, the set of extremals through A in a

certain vicinity f)f the extremal (?o- ^b^ latter itself being

represented by
(v„:

!/ = <t>{.r. y„) . (29)

By differentiation with respect to 7 we get

'All the conditions of the theorem on implicit functions are fulfilled at the

point a = aj|, j3=^^|, y = 7,|. In particular, the .Jacobian of the two functions

/'(x„, a, ^)-y,|andf_p(J•(,,a,^)-7with^espect toaand/3 is +Of<)ra = an, p =p„,y^y,,,
its value beinj? D (j-,,) =rj (j-q) j-j' (.Cq) — rgC-i'o) rj' (.r|j), which is different from zero,

since r, , r.2 are linearly independent and x^ is a non-singular point of the differential

equation (9).

2Also<|) will be continuous if /aa- fafi^f^a "'' continuous in A.
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and thei-efore, on putting 7^7o,

<P7 l-^ ' y- ~
^,^ (^^^ ^^/ ^^^^ _ j.^ ^^^^

^-'
(^^^^

The functions </)y('', 7o) f^nd ^Us '''o)
differ, therefore, only

by a constant factor:'

^y {x
, y„) = C A (.r , a-,,) , C =^ (30)

and consequently the conJiKjufc raliic .r,, 7*/r^// (dso he

defined' as the root next grecdcr ihaii .i\^of the cqudfioii

«^y(^-,yn) = . (80a)

From (30) and the properties' of A(r, .ro) it follows further

that

'^yx (.-^'o , To) ^ 4>^, {
.r,: . y„ ) 4= (31)

//) According to the" preceding results, the co-ordinates

irj,
<7o'

of the conjugate point A' satisfy the two equations

^ (•<,', z/u, y..) = <l>
(•'»', y,,) — i/„'

= ,
•

% [x',
, Z/n' . y,) = <^v

(a-,,'
, y,j) = ,

and the determinant

is different from zero for x= Xq, y= Uo, 7=^7o5 its value

being ^^^•(•^'05 7o)- Hence we obtain, according to the theory

of envelopes,* the following geometriccd interpretation:

1 The same results concerning <t> (.c, 7) hold if, instead of the particular parame-

ter y chosen above, we introduce another parameter 7' connected with 7 by a relation

of till' form
7 = X(7') 1

where x (7) and its first derivative are continuous in the vicinity of 7,,, and x'(y^,) +0.

-Compare Eedmann, Zeitschrift filr Mathematik und Physik, Vol. XXII (1877),

p. 32.J.

'•' Compare p. ")8, footnote 2.

^Compare E. Ill D, p. 47. The proof presupposes the continuity orf

* , * . "t^. *^,. . *v,;' *vv i" t^^ vicinity of the point x = j-\,, y = y\^, 7 = 7o- These
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Consider the extremal

e,.: y = <!>(''. y,>)

and a neighboring extremal of the set (28):

G: y = <f^U,y„-\-k) .

Then if 'A'! ^^ chosen sufficiently small, the curve G will

meet Gq at one and bnt one point P in the vicinity^ of ^'.

And as k approaches zero, the

point P approaches A' as lim-

iting position. Hence we have

the

TlicorcDi : The conjugate A'

of fhejioint A is ihe j)oini ii'liere

tJie exfremal Gq meets for the

firxt time tJte envelope of the set of extreinats tItroiKjh A.

d) ExAJiPLE IV : F— g(y').-d function of y' alone.

The extremals are straight lines ; the set of extremals (28) is the

pencil of straight lines through A : hence there exists no conjugate

point.

The same result follows analytically: The general .solution of

Euler's equation is

FIG. 10

hence
y = a.r + (3 ,

r, = or 1

conditions are satisfied in our case provided that Xq' lies in the interval (XqXj),

and provided that we suppose that not only the derivatives mentioned on p. 55, but

also faa > faB //3/3
^""^ continuous in A (compare p. 54, footnote 3).

'This means: If we choose a positive quantity S arbitrarily but sufficiently

small, and denote by J/j and J/2 the points of Pj, whose abscissae are a\,~S and

.c +& then another positive quantity <r can be determined such that every extremal

Cr for which ', A- 1< <r meets Py at one and but one point P between Jtfj and Mo

.

Compare p. 35, footnote 2.

If, on the contrary, j-j be any value in the interval (XyX,) for which

•fiyi-ro, y(,)*0 .

then two positive quantities S' and a can be determined such that no extremal C' for

which \k]<<T' meets ('0 between the points whose abscissae are .i-j - S' and X2+ S\

For in this case the difference

^ (X2+ h , y(,+ l-) - <!> i-ro+ h , yo) =Jc<t>y{x2 + h
, y^+ ek) ,

where < 9 < 1 is different from zero for all sufficiently small values of ' 7i
1
and

1
k I
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and A(r, x„) = x — x„ .

ExAMPT.E I (seep. 27): From the general sohition of Euler's

equation

?/ = tt cosh

we get

A {.r, Xo) = sinh c cosh t\, — sinh i\ cosh r + {v — i\) sink v sinh Vq ,

where ^r - /3„ _x„-(3n
V =

Ofl

Hence we obtain (if r^ =t= (^) i^v the determination of ;ro the tran-

scendental eqiiation

coth V — r = coth r„ — r^ . (32)

Since the function coth r — r decreases from + oo to -co as v

increases from — oo to 0, and from -\-cc to -co as v increases from

to + 00 , the equation (32) has, besides the trivial solution v = Vo

,

one other solution v^ , and Vo and fu have opposite signs.

Hence if i\> > , /. e., if A lies on the ascending branch of the

catenary, there exists vo conjugate x>oint : A(x, o-o) =^ for every

a- > .To . The same result follows for ro = .

If, on the contrary, ro< 0, i. e., if A lies on the descending

branch of the catenary, there always exists a conjugate point A

'

situated on the ascending branch. It can be determined geomet-

rically by the following property, discovered by Lindelof:^ The

tangents to the catenary at A and at A' meet on the x-axis.

For the abscissae of the points of intersection of these two

tangents with the £r-axis are

a-» — /3,iX = .r„ — a^, coth

and

X' = x^ — Uu coth
')^(\ Pn

and they are equal on account

of (32).

ILindelOf-Moigno, loc. cit., p. 2t)9, and LindelOf, Mathematische Annulen,

Vol. IT (1S70), p. 160. Compare also tho references given on p. 28, footnote 1.
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4^1(). necessity of jacobl\s condition

It lias already been i)ointed out that the two theorems

of ^14 which constitute Jac obi's Criterion, thougfh ofiviuir

important information concerning the sign of the second

variation, contain neither a necessary nor a sufficient condi-

tion for a minimum or maximum.

But at least a necessary condition can be derived from

the first of the two theorems by a slio^ht modification of the

reasoning: If Xq < jr^, then B-J can be made not only zero

but even negative.

This was first proved by Weieesteass in his lectures

:

the first published proof is due to Eedmann.' The fol-

lowing is essentially Erdmann's proof :

1 Zeitschriftfur Mathemat'ik und Physik, Vol. XXIII (1878) , p. 367. Scheeffer's
proof (Mathematische Annalen, Vol. XXV (1885), p. 548), is not esseutially difiFereiit

from Eedmaxx's.
Weiekstrass writes the second variation in the form

^^•^= '0 I
[(P+ h)v^+ 2Qr,r,-+Er,2]dx-k i V^dw [ ,

A- beiuic a small positive constant, and applies to the first integral Jacob i's trans-

formation:

5V = e-
-] I

>) * ^ ^

)

d.c-k \ v-d.r
[ ,

where _ \ d*W={(P^k)-Q)v-^{Rv) .

Then he shows that there exist admissible functions tj which satisfy the differ-

ential equation * (ri) = 0. For such a function tj, &'J is evidently negative.

H. A. ScHWAEZ {_Lectures, 1898-99) uses the following function t) :

A(x,Xf)) + ku> in (xqXq-) ,

kuj in (.Cu'a-i) ,

where k is a small constant and lo is a function of class C which vanishes at j^, and .r,

but not at u.-^,'. The corresponding value of fi-J is of the form :

8^J= e2^2fc2e(a-o-)A(.ro-,.ro)a>(ro')-ffc2r|
,

which can be made negative by a proper choice of k. (Compare Sommerfeld,
Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. VIII (1900), p. 189.)

All these proofs presuppose. j"|j'<.C| ; for the case a'Q'= x, , so far as it is not cov-

ered by Erdmann's formula (2.3) for 6^J, compare Kneser, 3/a//ie«ta?/se?!eJn«aJ('>i,

Vol. L (1897), p. .50, and Osgood, Transactions of the American Mathematical Society,

Vol. II (1901), p. 166. This case will be treated in parameter-representation in

chap. V, §.3S.

,-S
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Take jcl so that

•x-o < JC.2 < .r, and A {x2 , .r„) 4= ,

and ]mt

V = pA (.r , x.i ) ,

where /a= + 1 or — 1 ; ii and v are particular integrals of

(\}) and linearly independent; hence the relation (22) holds

and takes the following form for the differential equation (9):

Riiiv'- n'r) = K
, (33)

K beine a constant different from zero.

We choose p so that i^> ; this is always possible, for,

if r is rei)laced by — r, K is changed into —A".

Further, since also ii and ii
— v are linearly independent.

it follows from Sturm's theorem (see p. 58, footnote 2) that

ii — r vanishes for one value of x, say x= c, between d"oand

.i\l ; hence
a ((•) = V (c) .

Now define 77 as follows:

1' u in (x^ c ) ,

7]= < V in (c x-i ) ,

TIG. 12 ( in (x.2 Xi ) .

This function rj fulfils the conditions under which the

formula (12a) for B'-J holds, and since '^{r))^=0 for each of

the three segments, formula (12a) becomes:

S'J = e"i? {ua' — vv')
'f ,

which may be written, since ?^(c) = r(c):

SV =: - €'R (uv' - u'v) f = - €-i^
,

and this is negative according to ovy agreements concerning

the sign of r.

Thus we have proved the

Fundamental Theorem III: TJte ihird iiecessiirij con-

(lifionfor (( miuinuim (maxiiuum) Is tluit
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A (.«•,.r„) + (III)

fof 'ill rahics of .r in the ojx'ii nilcmil .r,)< .r <
./'i

.

('(ii-()ll(iri] : The same condition may also be written

•^"i ^ •*!'
, or else .<•„' non-existent . (HI)

/. c, if ihc cii(l-})()liif B licst J)('//(>ii(l flic ('oiijnijdfc point A'

,

there is 'no miiiiiiiinn or iiKi.riiinnii.

We shall refer to this condition as Jacobis eoiulitioii.
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CHAPTER III

SUFFICIENT CONDITIONS

§17. SUFFICIENT CONDITIONS FOR A "WEAK MINIMUM'

We suppose hencefortli that for our extremal ©^ the

conditions

R>0 (II')

A (jj, Xo) =1= for .r„ < x ^ ir,
^ (III')

are fulfilled, and we ask: Are these conditions sufficient

for- a minimum?

a) It seems so, and until rather recently it was gener-

ally believed to be so : For the reasoning of § 1 1 shows that

after an admissible function y has been chosen, AJ will be

positive for all sufficiently small values of
|
e

[

; hence within

the set of curves with parameter e:

U = U + ^V (1)

the curve ©q does furnish a minimum. On the other hand,

every curve 6 niay be considered as an individual of such a

set, and therefore it seems as if we must actually have a

minimum.

But a closer analysis shows that the conclusion is

wrong. For all we have proved so far is this: After a

function r) has been selected we can assign a positive

quantity^ /3, such that A,/>0 for every |e|</)^. And if

1 Compare for this section Scheeffee, " Uebor die Bedeutimg: der Begriffc

Maximum uud Minimum in der Variationsrechnuug," Muthfiiiat.ische An7ialen, Vol.

XXVI (1886), p. 197. This paper has been of the greatest importance in clearing up
the fundamental conceptions in the Calculus of Variations.

2 Notice the equality sign which distinguishes (Til') from (III); for the case

^1 ~ *"o ' which we omit here, compare the references on p. 60, footnote,

3 The notation p^ indicates that p depends on the function i?; compare E, H.
MoOEE, Transactions of the American Mathematical Societi/, Vol. I (1900), p. .500.

68
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Ave denote by iii,i the inaximnni of 77 iu (./'„.ri) aiul put

^^'n^fi'riPr,, we have

I
^//

I
< f^'r,

f(jr all curves of the set (1) for which
|
e < p^ ; and vice

rcrsci, if we draw in the neighborhood (k^) of ®o ^i^Y curve of

this particular set, the corresponding e satisfies the inequality

e\<C Pr, and therefore A.7> 0.

Now consider the totality of all admissible functions 77

:

the corresponding set of values A'^ has a lower limit ko^O.
If it could be proved that /.•o> (>, then we could infer that

AJ> for every admissible variation Tj for which
|
A^

|

< k^,

and we would actually have a minimum. But it cannot be

]n-oved that k^;,> and therefore we cannot infer that ©q

minimizes J.

It is even a priori clear that the method which we
have followed so far can never lead to a proof of

the sufficiency of this or any other set of con-

ditions.^

For, if we apply Taylor's expansion (either infinite or

with the remainder term) to the difference

\F^F{x, y + \u, y'+ ^y') - F{x, y, y'

)

and integrate, we can only draw conclusions concernig the

sign of A J" from the sign of the first terms, if not only
\

Ay ']

hut also
I

Ay'
|
remains sufficiently small, or geometrically:

if for corresponding points of ©q ^^^^ 6 not only the distance

but also the difference of the directions of the tangents is

sufficiently small.

h) If there exists a positive quantity k such that AJ^O
for all admissible variations for which

\Ay\ <: k and I-^jy'l < k
,

Kneser (LeJirbucJi, §17) says that the curve ©0 furnishes a

' Weak Minimum,^'' from which he distinguishes the mini-

1 First emphasized by Weieestkass.
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muiii as we have defined' it according to Weierstrass, as

''Strong Minimum.'''' If a curve furnishes a strong minimum,

it alwavs furnishes a forfio)-/ also a weak minimum, but not

vice versa.

If we adopt temporarily this terminology, we can enun-

ciate the following

Theorem: An e.rfrciiKil (S\^ for irln'ch ihc c())i'lifi<)ns

R>0 (II')

A (j-, .»„) dp f„r X, < .r ^ .r, (III')

(t)'e fulfilled, furnishes <ii Icosi a '• h-<'(iI< inininuiiii" for llie

integral J.

The first proof of this theorem was given by Weierstrass

(Lectures, 1H1\}), the first published proof by Scheeffer

{Joe. cif., 1886). The following proof is due to Kneser:"

We return to equation (3) of ^11 which we write in the

form

:

AJ = 1 f (Po)- + 2 (^coto' + B<o'') d.r + Jr (
' {Loy + No,") d.r

,

where (o=^Aij, and L, X are infinitesimals in the following

sense: corresponding to e\ery positive quantity o- another

positive (juantity p^^ can be assigned such that:

\L\ < a , \N\ < a ill (jc,,Xi) ,

provided that

< Pff and |w'| < po- in (-Ar'f'i) •w

By Legendre's transformation,^ the first integral may

be thrown into the form

:

1 Compare §3, h).

^ Jahresberlcht der Deutschen Mafhematiker-Vereinipunf/, Vol. VI (1899), )>. 9.".

The theorem can also be proved by meaus of We iers trass's Theorem (§20) ; com-

pare Kneser, Lehrbuch, §§20-22.

3 Compare §11, b).
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Since the conditions (II') and ('III') are fultilltHl. there

exist' sohitions of the ditferential equation

which are of cLass C in (r(yt\); hence it follows" that, pro-

vided the constant c be taken sufficiently small, there also

exist integrals of the differential equation

which are of class C" in (.ro./'i): let ic be such an integral, and

introduce

instead of u>' . Then A./ takes the iorui

A./ = V n [(c- + A) w' + 2,x.oi + (R + v) r1 d.r
,

where \. fi, v are infinitesimals in the same sense as L and

A'. But this may be written

X7 = V,("'[.« + r> {i + --^^.,) + (,.' + X -^J „] I..

and since X. ^i. v are infinitesimals, we can choose a positive

quantity /> so that J? — t- >( ) and r- X— /x-/(R -~v)>{) in

(i'cfX'i). and consequently A./X), provided that co < /,• and

ity'|<A-, Q. E. D.

RoiKirJ:: We have given this theorem cliiefl}' f(n" its

historical interest: It marks the farthest point which the

Calculus of Variations had reached before Weierstrass'k

iThis follows from the connection between Le«eu(ire"s and Jacubi's <lirt('ientiat

equations; see equation (8) in §11, b).

-'According to a theorem due to Poin'care (M^canique relcxte. Vol. I, ii. jS;

compare also E. II A, p. 205, and Picard, Trtiife, etc.. Vol. Ill, p. 157). .V similar

theorem was given by Weierstrass in his lectures in connection with his proof of

the necessitj- of J a c o b i ' s condition, see p. ti5, footnote.
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epoch-making discoveries concerning the sufficient condi-

tions for a "strong minimum."

After these discoveries, only a secondary importance

attaches itself to the "weak minimum;"" for the restriction

imposed upon the derivative in the "weak minimum" is

indeed a very artificial one, only suggested and justified by

the former inability of the Calculus of Variations to dis-

pense with it.

c) The terms "weak"' and "strong" are sometimes also

applied to the variations. A variation conf(iinin<i a 'parani-

cfci- e

Ay = w{x, e)

is called ircak if not only

L <D (x , e) = Ijut also L Mj. (jc , e) =
€=0 " e—

uniformly in (ro.ri), strong if this condition is not satisfied.

The variations of the form

as well as the more general variations which we have men-

tioned in §4, f/), are weak variations.

Weieestrass gives the following example" of a strong

variation

:

\y = €SMi\^ j ,

11. a positive integer; here the condition

/.A7/r=0

1 Especially if we think of geometrical problems, for instance, the problem of the

shortest curve on a given surface between two points.

For the more general problem, however, where higher derivatives occur under

the integral sign, such restrictions are of greater importance; compare Zermklo,
Dissertation, pp. 26-31.

2 The following modification of Weierstrass's example has the advantage of

vanishing at both end-points

:

1 /(.r-a-,|)m"7r^
Aw= — sin

rn and n being positive integers.

/(.r-a-,i)m n\
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is satisfied, but not the condition

Z.A/y'=() .

Other examples of strong' variations will occur in ^^^18

and '2-2.

i^lS. INSUFFICIENCY OF THE PRECEDING CONDITIONS FOR A

STRONG MINIMUM, AND FOURTH NECESSARY CONDITION

From the introductory remarks of the previous section,

it follows that we have no reason to expect that the con-

ditions (I), (11), (III) are sufficient for a minimum in

the sense in which we have defined it according to Weier-

STRASS (a "strong minimum'' in Kxeser's terminology).

(i) As a matter of fact fJte three conditions (I), {II' ) and

{III') ore NOT sufficient for a strong minimum, and it is

easv to construct examples' which prove this statement:

Example III- (see p. 39):

F=,r-{!/+\f

.

Here ti\, is the straight line joiuiug the two g-iveu points A and

B, say
G„ : ii

~ iii.r + }i .

Further

:

-R = 2 (G//r + i)m + 1) ,

A \X
f Xij) ^^^ X Xq

l

hence Xq' non-existent. Let m , , m2 be the two roots of the equation

6*//- + Cym + 1=0 , viz.,

m=K-'+r5) = -''-'"'-

iThe first example of this kind was the problem of the solid of revolution of

least resistance; already Legexdre had shown that the resistance can be made as

small as we please by a properly chosen zigzag line; see Legendee, Ioc. cit., p. 73, in

Stackel's translation, and Pascal, lor. cit., p. 113.

2Compare Bolza, " Some Instructive Examples in the Calculus of Variations,"

Bulletin of the American Mathematical Society (2), Vol. IX (1902), p. 3.
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tih K— 7l)-" 788^

then i? > if (;/ > J//, or }ii < iii-i
,

JR <^0 if III. < ;// < nil .

Ill the former case, the first three necessary conditions for a mini-

m um , in the latter for a ni a x im nm , are satisfied. Nevertheless, if

-1 < III < ()
,

neither a maximum nor a minimum takes place. For, in this case.

if any neighborhood (p) of (E'.i l)e given, however small, we can

always join A and B hj a broken

line 6 made np of segments of
'^^ straight lines of slope and

— 1, and contained in (p). But

for such a l)roken line J = (),

whereas for @„ the integral J
is positive. This proves that

Q„ cannot furnish a minimum.
That it cannot furnish a maxi-

mum will be seen later, in § 18, c).

FIG. 13

Example V: To minimize

'^0

the given end-points liaving tlin co-ordinates (.r„, //„) = (0, 0).

(.«•,,//,) = ( 1,0).

The extremals are straight lines, and (v,, is the segment (0 1) of

the j"-axis. Further,

K = 2
,

A (x , x„) = X — .ro .

Hence the conditions (I), (11), III) for a minimum are satisfied.

Nevertheless AJ can be made
negative. For, if we choose for

(S the broken lineA Pi?, the co-

ordinates of P being (! — ;:>, q),

where <p < 1 , and </ > 0, we
obtain

.2

P

<)

e.

FIG. 14
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Any neigliljorhood (p) of (So being- given, choose q <Cp: then /i v;n\

always be taken so small that A,7< 0,

h) The insufficiency of the preceding three conditions

being thns established, further conditions must be added

before we can be certain that the curve Go minimizes the

integral J.

A fourth neccssarij condition was discovered by Weier-

STKASS in 1879 and derived by him in the following

manner

:

Through an arbitrary ])oint 2 : (./), //j) of C?,, we draw

arbitrarily a curve (5 : !i^=/{>).

of class C.
Denoting by 4: that point of

6 whose abscissa is ./-j— h . It

being a small positive quantity,

we draw, as in §8, a curve

(5. : ij ^= ij ~- er) of class C from -f

to 4 and replace the arc 02 of Gq
^^J tl^e curve 042. ^

By taking It sufficiently small we can make the curve

042 lie in the neighborhood (p) of ©q.

For this variation of @q we obtain in the notation of i^8:

A.7 = .7^„ + J,,-.7„, . (3)

But according to i^S, equation (•iO). this is equal to

A J- = /( E (.r, . u, ; //; . 7/.; ) + // (h ) . (4)

where (A) denotes as usual an intinitesimal. and the E-

function is defined l)y

E(^,
Z/ ; 1^,P) =F{x, y, p) —F(-r, //, j>) - (p -j>)F,J.r. //. ,>) .

Hence follows the

Fundamental Theorem IV: The foiirih ncccssdr/j con-

dition for (( inininiuni. {jnxwimnni) is th(d
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E(u-, //; !/',p)^0{^0) (IV)

along^ the curve ^ofor every fin He value of p.

We shall refer to this condition as Weiersteass's

condition.

c) Applying Taylor's formula to the difPerence

F{x.,y,p) - F{x, y,p) ,

we obtain the following important relation'^ between the E-

function and Fy^y-:

E(.r, y, P,p) = ^-^-^F,.A'^-, Z/,P*) (5)

where

This proves

Corollary I: Condition (IV) is always satisfied if for

every point {.r, y) on ©o and for every finite value ofp

i^,„-(^-,2/,p)^0 . (Ila)

Furthermore, if we define the function'* Ei{x, y; j^, p)

by the equation

^i{x,y; p,p) =—(p-pf
—

^^>

when p^p, and by

El (.r ,y;p,I>) = L El {x ,y;p,p) = \ F,r,r (•**
' y ' P) (6a)

when p=J) , we obtain

Corollary II: Condition (IV) is equivalent to the

condition

^i(x, u; y',p)^0 (IVa)

along Qq for every finite p.

d) Zermelo* has given the following geometrical

1 1, e., if (x , y) is any point of So and y' the slope of Go at (x ,y).

2 Due to Zermelo, loc. cit., p. 67,

3 Compare Zekmelo, Zoc. cjf., p. 60. *Loc. cit., p. 61. M
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FIG. 16

interpretation of the relation between the E-function

and Fyy'.

Let F[p) denote the function i^(.r, //, p) considered as a

function of p alone, x, y being regarded as constant, and

consider the curve

u = F{p) . (7)

Draw the tangent PqT at

the point Pq whose abscissa is

p= y' ; and let P and Q be the

points of intersection with the

line p=^p of the curve and of

the tangent PqT respectively.

Then

^{x,y; u', ~p) = F{p) - F{y') - [p - y') F {,/)

is represented by the vector QP , and the condition

^{x,y; y',p)^0 (IV)

means therefore geometrically that the curce (7) lies entirely

above— or at least not heJoiv—the tangent PqT.

In order that (IV) may hold it is therefore:

a) Necessary that the curve shall turn its convex side

downward at p=^y', i- e., that

F"{y')^() .

This is our old condition (II), which is consequently con-

tained in the new condition (IV).

/3) Sufficient that the curve shall everywhere turn

its convex side downward, /. e., that

F'{p)^0

for every p, which is the above condition (Ila).

But neither is the first condition sufficient, nor the

second necessary.

e) Example I (see p. 49):

F=yVr\^' ;
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lieuce y

Since ^>0 along the catenary, condition (Ila), and therefore also

(IV). is satisfied.

Example III (see \)Y>. 39, 73):

hence

(v„ is the straight line joining the two points and 1 , say : y = w .r+ u ;

hence along G',, , ij' = m .

The quadratic in p

I?+ 2/> (y» + 1 ) + 3 y/r + 4 m + 1

is always positive if />/(;« +1)>0: it can change sign if /;;O»+l)<0;

and it reduces to a complete square if 7*/ (/u+l) = <••

Hence we obtain the result

:

If m g: or m.^ — 1 , condition (IV) is satisfied; if — 1 < m < 0,

condition (IV) is not satisfied, and the line 01 furnishes no ex-

tremum, in accordance with the results of §18, a).

Example V (see p. 7-4):

^^ =//+// ,:

hence along the curve ©u : ^ = we have

E(.r,//: //',i3)=pHl+I^) .

which can change sign at every point of ©„. Condition (IV) is

therefore not satisfied.

§19. EXISTENCE or A "FIELD OF EXTKEMALS"

Before we can take up the question of sufficient con-

ditions, w^e must introduce the important concept of a ''field

of extremals."

a) Drp'iiitioii of a ''fielcV

Consider any one-parameter set of extremals'

y = <f>{x, y) ,
(S)

1 Here the ;;ymbol 4> (.'•. y) is used in a more general ^piisp than in §15.

i
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in whk-li our extremal ©q is contained, say for 7= 7,). Su})-

])ose (f>{r. 7), its first partial derivatives and the derivatives

<j>^._,.. (f),.y
to be continuous functions of .r and 7 in the domain

^/o beini,^ a positive quantity and A'o, -AT^ having the same

signiiication as in §11. Let k denote a positive quantity less

than (/,), and ^^. the set of points (,/•, /y) furnished by (8) as

.r and 7 take all the values in the domain

HJa- : '^i ^ ^*' ^ -i'l , \y — yo ^ ^" •

^^. may also be defined as the strip of the ,r. //-plane swept out

by the extremals (S) as 7 increases from 7,, — /, to 7(, r A",

J- being restricted to the interval (/Vi).

Then ^;^ is called ' a ^[ficld of c.rfrentals aboiii flic arc

@o" if t1iroiir/Jt ercrif point (.r, //) o/^^ there passes but one

EXTREMAL of the Set (S) for irli ieh
|
7 — 70 1 ^ /.

.

This means analytically that there exists a single-valued

function
, / \ ^

^n^^^that y = ct>(.v,^U,!j))\
' ^^^

^"^^
i'/'(-r,^) -y„,^A'

for every (.r, //) in g*;^..

In addition to this princi[)al property we shall include in

the definition of a field the further conditions that the inverse

function yjr(.r, //) shall be of class C in ^j., and that it shall

be possible to choose a positive quantity p so small that the

domain ^^. contains the neighborhood {p) of the extremal 6\).

/>) With respect to tJie existence of a jichi the following

theorem holds:

WJienever

<^y (j-, y„) =}= throughout (-foi^i) , (10)

1 According to Kxeser, Lelirbuch, §14; the notion of a field is due, in a more
special sense, to Weierstrass ; iu its most general sense to H. A. Schwarz, Werhe,

Vol. I, p. 225. Compare also Osgood, luc. cit., p. 112.
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/r can be talxoi >«) ,<<W(il] Hint Hie e.rfreiiials (S) fiiniisJi a fiehJ

B^. about Qq.

Proof :^ From (10) it follows that 4>y{.t', 7o)— l)eiiig con-

tinuous in {.Tcpc-^)—cannot change sign in (.r(y)\). In order

to fix the ideas suppose that

^v('*", yo)> ill {x,,a\) .

Then it follows, according to well-known theorems^ on con-

tinuous functions, that k can ])e taken so small that

^y{x, 7)>0 ill 1, . <11)

Hence if we give x any fixed value .r.j contained in (jt'o-^'i)

and let 7 increase from 70— A" to 7o- A", (^(r-i, 7) increases

continually from ^('o, 7o— A) to ^{-To, 70: A) and therefore

passes once and but once through every intermediate value.

Hence if 79 be any value of 7 in (70— /.-, 7o+A') ^ii^tl we jmt

(f>{x2, J-?)^^!/-!^ then the equation lJi'=4^{-'C2, 'V) has in

(7o— A:,7o+Aj no other solution but 7= 72, which means

geometrically that through the point (x2, Hi)—which is any

point of ^^.— there passes but one extremal of the set (8)

for which [7— 7o 1
^ A-

.

The existence of the single-valued function 7=^ "^(-^S v)

being thus established, the existence and continuity of its

first partial derivatives follows from the theorem^ on implicit

fvmctions, since

</>yU-, y)=i=^' hi 1^. .

1 Another proof is given by Osgood, loc. cit., p. 113.

2 Viz., the theorems on "uniform continuity" and on the existence of a mini-

mum. Compare E. II A, pp. 18, 19, 49; J, I, Nos. 62, 63, 61, and P., Xos. 19 VI. VII, and

100 VI, VII.

3 See p. 35, footnote 2.

The values of these partial derivatives are obtained from (9) by the ordinary

rules for the differentiation of implicit functions:

In case the function </> (a- , v) is r e gu 1 a r in 25^. , also the function ^ (x , y) will be regu-

lar in g-^.; compare E. II B, p. 103, and Haekness and Moeley, Introduction, to the

Theory of Analytic Functions, No. ir)6.
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FIG. 17

At the same time we see that the set of points ^;r. is

identical with the stri}) of the .r, //-plane bonnded by the

two non-intersecting: curves

// = (f>
(.<

, y„ — /.) and // = <^ (.r
, y„ + A-)

on the oiu' liand, and tht^ two lines .r= .r,| and ./ .r^ on the

other hand.

Finally, a neighb<^rhood

ip) of the arc ©q can be

assigned which is wholly

contained in ^j^.

For each of the two

continuons functions

( '% To n- /»)— </> (^"
' 7o) a iitl

4> [^'
, 7o) — <^ (('

, 7o— /') lifis

a positive minimum value in (ro.ri); hence if p l)e the smaller

of these two minimum values, the neighborhood {p) of (Jq is

entirely contained in ^^..

The region ^j^ has therefore the three characteristic prop-

erties of a "field," and the above theorem is proved.

CoroUar/j I: The slope at a point (.r, //) of the uni<pic

extremal of the field passing through (.r, ij) is likewise a

single-valued function of ./, //, which we denote by ^^f./-, ij).

It is defined analytically by the two equations

p U, y) — ^x (*-
- y ) ' y = "A U - //) , (.13/

which show at the same time that j>{r. //) has continuous

tirst partial derivatives in S>i^..

In case 4> ("f"
, 7) is regular in Mk , also j> { .r . // ) is regular in ^,^.

.

Corollarij II: The slope p(.r, y) satisfies the fotloiriixj jHirfiol

differential equation of tJie first order

:

'

file arguments of tlie partial derirafirfs of F heiuy ,r, i/,j>{-i\ //)

iThis corollary forms part of Hilbert's proof of Wi- ic rs t rass 's theorem;
see below, §21, and the references there given.
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Proof : From (13) we obtain Ijy differentiation

hence if we make use of (12) we get

Px+PPy= ^xx

But since (a*, 7) satisfies Euler's equation for every value of 7,

we have, for every vahie of x and 7.

^xx^ y y 1^ Vx-' y y \^ ^ y -f V -'

the arguments of the partial derivatives of F being x, <t>{x, 7),

0.,.(.r. 7). Hence, if we express 7 in terms of ;r, // l)y means of (9),

we obtain (14).

(•) ApplicdiioH to the set of extremals ttirouyii the

2)0 int^ A.

We can now establish the following

Theoi'em: Iffor the extremal Qq ttie conditions

R>0 , (XT')

A (.r , .r„) 4: for ,r„ < x^Xi (HI')

(rre fulfilled, and if a point A be chosen on tlie continuatioir

of ©0 hejjond A, but snfficienihj near to A, then the set of

extremals tlirough A furnisJies afield about ©o-

It is only necessary to choose the point A (x-,, y^) so near

to A that

1 • Ay <! x^ <C x^, ,

2. A (a-, 0^5)4=0 in {XqXi) .

The possibility of such a choice of x^ has been established

in §14.

Under these circumstances, it follows by the method

employed in §15 that there exists a set of extremals

I

through ^4.

y^<f>{x,y), (15)

iThe introduction of the set of extremals through A instead of the set through

A, which considerably simplifies the proofs, is due to Zeemelo, Dissertation, pp. 87,

88; compare also Kxeser, Lehrbuch, §§14, 17 and Osgood, loc. ctt., p. 115.

^Compare the assumptions in §13 a).
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where' <f>{x, 7), its first partial derivatives and the derivatives

<^,, . <^^.^ are continuous in the domain

^i) < ^ < -^1 )
I y yo

I
< cto J

<Jq l)ein«^ a sufficiently small positive quantity.

Moreover

<l>y(x, y„) 4= iu (.roa-,) ,

since, corresponding to ecjuation (30) of §15, we have in the

present case

<i>y(-r, yu) = C. A(a?, x^)
,

where C is a constant different from zero.

Hence the set of extremals through" A satisfies the con-

ditions of the lemma given under 6) and furnishes therefore

indeed a field about (So-

'Notice that in §15 the symbol 4>{.r, y) was used with a slightly different

meaning, viz., for the set of extremals through A.

-'To the set of extremals through the r>oint A itself the lemma cannot be applied,

since for this set </>y (-'o, yii)
= 0. Nevertheless it can be proved that in this case

through every point of g>^., except the point A itself, a unique extremal of the set can

be drawn. For in the present case we have: <f>{.r„,y) = yQ for every y and therefore

<t>y {^t, 5 v)=0. Honco it follows that if we define

yj;(-'-0,Y) ,

when
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§20. WEIERSTRASS'S THEOREM

We are now prepared to prove a fundamental theorem

whose discovery by Weierstrass in 1879 marks a turnini>-

point in the history of the Calculus of Variations. It gives

an expression for the total variation of the integral J in

terms of the E-function, from which sutficient conditions for

an extremum can be derived.

a) The gist of Weierstr ass's method can be best under-

stood from a simple example, in which the difficulties con-

cerning the existence of a tield, which complicate the proof

of Weierstrass's theorem in the general case, can be

entirely avoided.

Example VI: In order to prove that the straight line'

01 actually minimizes the integral

we draw from the point to the point 1 any curve 6:

S: y=f{'X-) ,

not coinciding with the straight line 01. "We suppose for

simplicity that S is of class (".

Through an arbitrary point

- : [jco,
>J>)

of CS we can draw one

and but one extremal of the set

of extremals through the point

0, viz., the straight line 02.

We now consider the integral J taken from along the

straight line 02 to 2 and from 2 along the curve 6 to 1, that

is, we form, in the notation of §2, /).

t/ii2 ~r «^-'i >

the stroke always indicating* integration along the curve (S.

1 For the notation compare §2, e).

2 Notation according to Weierstrass ; Kneser, on the contrary, uses the stroke

to indicate integration along au extremal.
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The valiTe of this integral is a single-valued function of

.r-., which will be denoted by S(.r-,), As the point 2 describes

the curve <2 from to 1, SiJCo) varies continuously' from the

initial value _ _
S (xo) = J,, (along 6)

to the end value

/S (x,) = J,i (along G„) .

Hence the total variation

A t/ = J
ill fJiii

is expressible in terms of the function S(x) in the form

AJ= - [s (.,,) -5' (.*;)] ;

and we shall have proved that AJ"^0 if we can show that

Si-vo) always decreases or at least does not increase as X2

increases from opq to iTj.

For this purpose we form the derivative of Sixo).

The integral J02 is the length of the straight line 02:

hence dJp^ _ (a-g - Xq) + {1/2 — Vo)/' {^2}

since ?/2=/(^2) •

If we denote the slopes of the straight line 02 and of the

curve (S at 2 respectively by 7)2 and />_,, /. e.,

the previous result may be written

dJpo _ 1 -\-p2P2

dXi ~
V T+pl

'

On the other hand,

'X2

'See the explicit expressions for J^.^ and J.21 below.
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and therefore dJ.21
dx.

= -Vl+p..

Hence we obtain the result

dS{x.^

dxr,

I+P2P2

( 1 l+i>n I+Pi
from which we easily infer that

dS(x,) \<0 i^Th^lh ,

dx2 ? = if p,=lh •

The latter alternative cannot take place' all al()n<^ the

curve 6. Hence it follows that

AJ>0 .

The reasoning can easily be extended to the case in which

the curve 6 has a finite number of corners.

It is thus proved that the straight line 01 fiiniishcs a
proper^ absolute^ minimum for the integral ,/.

The preceding construction may be modified^ as follows:

On the continuation of the line ©q beyond the point

choose a point 5, and replace

in the preceding construc-

tion the line 02 by the line

52. Accordingly the func-

tion ^(0^2) is now defined by

:

and therefore

'S' (^0) = "50 ~\~ Jill J

Hence we have aarain

' If
p-i
= P2 for every a-.y in (XqXj) it would follow that fix) satisfies the differ-

ential equation
fM-7/Q=(x-Xa)fix) ,

and therefore a must be a straight line through 0, which could be no other than the
line Sq , since e is to pass through 1.

=* Compare §3, o) and b). 3 Compare p. 82, footnote 1.

S{xj) = J51 = J-o+ J,01 •

I
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For the derivative of S (.ro) we obtain the same expression

as before, if we let, in the present case, 2h denote the slope

of the extremal 52.

b) We now proceed to the general case. We suppose

that for the extremal @o the conditions (II') and (III ) are

fulfilled. Then we constrnct as in §19, (/) a field §>^. about

®o by means of the set of extremals (15) through the point

^4, chosen as indicated in §19, d) on the continuation of ©o

beyond ^4. Since the extremal ©g is supy)osed to lie in the

interior* of the region iJ, we can take k so small that ^^ is

entirely contained in U.

For our present purpose it will be convenient to use the

numbers 0, 1, 5 to denote the points A, B, A respectively.

Let now ^ be any curve of class C joining the two points

and 1 (see Fig. 19), and lying wholly in the field ^k, and

let 2 be an arbitrary point of 6. Through the point 2 we

can draw one and but one extremal of the field, /. e., one

extremal of the set (15) for which |7— 7o|^/v; let it be

denoted by

We then consider the integral J taken from 5 to 2 along Q-,

and from 2 to 1 along 6, and denote its value by /^(j'oj-

S (a-a) = J,, + J21 = r
' -Fdx + f ' Fdx

, (16)
,/X5 .'-Co

the arguments of F being

X , y = <^(.«, y.,) ,
y'= <f>^{x, 72) ,

those of F:

^ . 1/ =/(-^) , V — fi-r)

For X2=^Xq and X' = Xi, S^Xo) takes the values'

S (xo) = J50+ Jo. , S (x,) = J,,
, (17)

1 See §11.

2 Properly sj leaking, SCu^') is not defiued for X2 = ^'i. Hut in order that S(.X2)

may be continuous also at ar2=a-i, we must define iS(a:j) =/S(a;j— 0) ; andSCxj— 0) is

easily seen to be equal to Jjj

.
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so that ^j ^ J _
_ ,^^ = -[s (.r,)— S (x,)] . (18)

The function >S'(j';.) /s contiiinoKs and aduiits in (.^V'l) ^'

(Icrirdfifc ir/iOf<(' Vdliie is

S'i-Ti) = -E (,r.,, y, 2>2, P2) , (19)

where j)^ denotes the slope of 6, j)., that of Go, at the point 2.

Weierstrass' i-eaches these results in the following way:

Let 3 denote that point of 6 whose abscissa is ^"2 + //,

Ji Ixnng a small positive quantity; and let

l)e the unique extremal of the field which ])asses through the

point ;^. Then

5' (.n+ // ) - >S U-,) = (J;, + e/„ )
- (./,, + /s, ) = Jra - (J,2 + J2,)

But this is precisely the difference which has been computed"'

in ^8, equation (30), the curves Go? ®35 ^ corresponding to

the curves there denoted by (5, (S, 6. Accordingly we

obtain

S U, + /O - S (x,) = -h[E (x,
, u, ; 2h , Ih) + {h)\

, (20)

(It) denoting an infinitesimal.

Similarly, if 4 be that point of 6 whose abscissa is

iTo — /( , we obtain

S (ar'2 — h) — S (x^) = J54+ ^42 — ^52 ,

which, according to the lennna of §8, is eqnal to

S(x,- In - S{x.;} = + h\ E(x„ y,: P2,P2) + (h)] . (20a)

Hence the derivative of S exists and its value is indeed

given by (19).

^ Lectures, 1819; the proof here given isWeierstrass's original proof with tlie

necessary adaptations to the case where x is the independent variable, and with the

substitution of the set of extremals through 3 for the set through 0.

-In applying the lemma of §8 to the present case, we have to make use of the

remarks on p. 18 and p. 35. The variation

^!l = 4> (•'•
, 7-2+ ') " * ^•'"

'
>'2)

is indeed a variation of the typo [Tva) of §4, d).

i
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As the point 2 describes the curve Q. from to 1, the

function E(.ro, t/o
; ih^ P-i) varies continuously. For, on the

one hand the E-function is a continuous function of its f(jur

arguments, provided that the point [x, y) remains in the

region S, and the field ^j. is contained in IS ; on the other

hand, //2=/(*"2) ^^^^ Pz^f (-^'i)
^^'^ continuous in (.rod",} and

the slope 7^2 "^ ®2 ^^ - i^' according to §18, />), a continuous

function of Xo, iJ->.

Integrating (19) between the limits .r,) and ir^, and

remembering (18), we obtain therefore for the total varia-

tion AJ the expression^

A J" = I E (a-,
, y, ; p^ , pi) dx^ . (21)

We shall refer to this important formula as "Weier-
STRass's theorem."'

The theorem remains true for curves ^ of class /)'. For,

sup[)ose the curve (S to have a corner at the point 2. Then

(20) and (2C)a) still hold if we understand by Jh the progres-

sive and regressive derivatives of f[x^ respectively. The
function S{x) is therefore continuous at d^'o and admits a

progressive and a regressive derivative. Hence it follows"

that (21) still holds when (S has a finite number of corners.

c) Instead of first computing the increments S{x-2, ±h) —
S{xo), Kneser (Lehrhiich, §20) and Osgood (Joe. cit, p. 116)

compute directly the derivative S'ixo) by applying the

theorem on the differentiation of a definite integral irith

respect to a parameter. Supposing for sim})licity that 6 is

of class C, it follows from the properties of the function

^{x, 7) that S{x-2) is continuous and differentiable in the

1 The theorem remains true also for the " improper field " &^. formed by the set

of extremals through the point 0, and for a curve 5 which lies entirely in this field &^ .

For formula (19) holds also in this case at every point of i^ with the exception of the
point 0. Integrating (19) from x^-\-h to x^, and passing to the limit h = Q, we
obtain (21) since P2 approaches a determinate finite limit ; compare footnote 2, p. 83.

2 Compare E. II A, p. 100, and DiNi, §194.
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interval (ifV'!) ^i^d that the derivative can be obtained l)y

applying to the definite integrals J:^^ ^nd J-^x the ordinary

rules' for the differentiation of a definite intesfral with

respect to a parameter and with respect to the limits.

Accordingly we obtain in the first place

^=-F(.r,,^,,p,). (22)

In differentiating the integral

J-.X2Fix, <^(.r, y,), <i>^{x, 72)) dx ,

we must remember that 7., is a function of Xo defined by the

equation
<^(^2, V.) =/>2) , (28)

which expresses the fact that the curves ©2 and (S both pass

through the point 2.

Accordingly we obtain:

^^ = F{x„y,,p,)+fJ\F„cf>^+F^,<f>_,,)'^^dx ,

the arguments of (f)y, (f>j.y
being ,r, 7.,.

From our assumptions concerning 4>(x, 7) it follows that

<^xy(a^> y2) = <l>yx 0^, 72) •

Applying then to the second term under the integral sign

the integration by parts of §4, and remembering that the

function y= (f)(x, 70) is an integral of Euler's differential

equation ,

F —--F. =
'' dx "

'

we obtain the result:

-^ = F(x,,y,, p,) +^ [f,,. (x^
, 2/2 , P2) <f>y (a?2

, 72)

— Fy (^5 , y-. , P5) «^y(av. , 7i)] '

where jDr^= (j>^{x-„ 70).

1 Compare E. II A, p. 102, and J. I, No. 83.
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But since the extremals of the set (15) all pass throiigh

the point 5 : (a--,, ^5), we have

y^=ct>{x^, y)

for every 7 ; hence

<^r(a^5, y) =0

for every 7, and therefore in particular

<f*y{X5, 72) =0 .

On the other hand, if we differentiate (23) with respect to

^2.. we get

therefore

at/ 52

CtJbo

I / \ dy2 —
't>y{i^2,y2)-^ = p2-P2 •>

F {X2 , 7/2 , 2h) + (p2 — P2) Fy {^2 , 2/2 , P2) ' (24)

Combining (22) and (24) we obtain again the fundamental

formula (19).

§21. hilbert's peoof of weierstrass's theorem

Weierstrass's theorem can be extended' to any set of

extremals constituting a field about the arc @o, /. r..

Whenever tlie extremal @o crtw he surrounded bij afield,

the total variation AJ^=J^— J^, for any admissible eurve 6

lying wholly in the field, is expressible by Weierstrass's

formula:

E{x,y; p,p) dx
,

where {x, y) is a point of (S,p the slope of (S at (x, y), and

p the slope at {x, y) of the unique extremal of the field

passing thi'ough (x, y).

iThe extension seems to be due to H. A. Schwarz, who has siven the general-

ized theorem in a course of lectures in 1898-99.
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The following elegant proof of the generalized theorem

is due to HiLBEET.'

Suppose ^1^. is a field of extremals about our extremal Q^.

Ill §>;;. we draw any curve (S of class D' : ij ^=f(x), joining A
and B. Now let p{.r, Jj) be an arbitrary function of x, y

which is of class C in ^i^., and consider the integral

J*=
j

[f{x, y,p{3c,y))

+ (y'-p(''<',y))J^,j(^,y,p(x,y))] dx (25)

taken along the curve 6 from A to B. The value of ,7* will,

in general, depend upon the choice of the curve 6 ; we ask

:

How must we choose the function p(.r, /y) in order that the

value of J* may be independent of the choice of the curve 6

and dependent only upon the position of the two end-points

.4 and B ?

Our integral J* is of the form

I
\M{x, y) +N{x, y)y'^, dx

,

and it has been seen in ^7, d) that the necessary and suffi-

cient" condition that such an integral should be independent

of the path of integration is that

In the present case we have

M{x, y) = F{x,y,iS)—pFy.{x,y,p) ,

N{x, y) = F^.{x, y,p) ;

^^^^^
My = F,-p{F,,,^+ p,F„^) ,

N — F 4- » F

iSee GSttinger Nachrichten, 1900, pp. 253-297, and Archiv der Mathematik und
Physik l3). Vol. I (1901), p. 231 ; also the English translation by Mrs. Xewson, in the

Bulletin of the American Mathematical Society (2), Vol. VIII (1902\ p. 473; further,

Osgood's presentation in the Annals of Mathematics (2), Vol. II (IWl), p. 121, and

Hedrick, Bulletin of the American Mathematical Society (2), Vol. IX (1902), p. 11.

2 Notice that the region gi^., to which the curves e are confined, is simply con-

nected.
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Hence, in order that the value of the intci/rol J* niaij he

Independent of the path of integration 6, it is necessorf/

and sufficie)d tlud the fmiction j){.r, ij) sidixfjj the ])arfi<(l

differential eqnation

(p.+ PPy) F,-y +pF,fy + F„,, - F,, = , ( 2r,)

the arguments of the partial derivatives of F being

But this differential equation is identical with the ditfer-

ential equation (14) which is satisfied by the slope at fa", y) of

the extremal of the field passing through (.r, //). Hence the

value of J* will be independent of the choice of the curve (5,

if we select for the function p the slope just defined. In

the sequel p will have this special meaning.

The invariance of the integral J* being established, we

select for the curve (5 first the extremal @q ; then we have all

along (Sq :

y'= p{x, ij)
,

because (Sq is the unique extremal of the field which passes

through a point of ©q- Therefore (25) reduces to

J*=j 'f{x, ij, >/')d.r = J,.^^

On the other hand, if we select for (5 any curve 6 of class

D'
,
dilferent from (?o- ^^^^^ j'^i^^i^^g -^ ^^^^ •^^ ^^'^

K'^^

J*=
j

[F{x,7/,2^) + {p-p)F,j.{x,y,p)\dx
,

where p^ ij' denotes the slope of 6 at the point (.r, y). Both

values of J* being equal on account of the invariance of J*,

we obtain an expression for J,, in terms of a definite inte-

gral taken along Q. This expression we use in forming

the total variation

A t/ ^ t/^ t/ej, •

Then we obtain
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- {P - P) Fy. (x, y,p)j dx
,

which is the desired extension of Weierstrass's theorem,

since the integrand is equal to E(j", 7/ ; jj, J>).

§22. SUFFICIENT CONDITIONS FOR A STRONG MINIMUM

'

Weierstrass's theorem leads now immediately to suf-

ficient conditions for a strong minimum:

<i) Suppose there exists a field ^^. about ©y such that at

every point of ^^^

E(x,y; p{x,ij),p)^<> (27)

for every finite value of J), j) {x , ij) denoting again the slope

at (.r, y) of the extremal of the field passing through (x, y).

Then it follows from Weierstrass's theorem that

A./^O for every curve 6 of class D' drawn in ^^ from A to

B, and moreover that At/_>0 unless

^{x,y;p{x,y),Tj')=Q (28)

all along the curve 6.

From the definition of the E-function it follows that (28)

holds at a point {x^ y) of 6 whenever

y' = p{«^,y) ,

i. e., whenever the extremal through [x, y) is tangent to 6

at {j', y). This can, however, not take place at every

point of &, unless 6 completely coincides with ©q- For^ the

value of the parameter 7 of the extremal of the field passing

through that point of 6 whose abscissa is x, is determined

by the equation

f{3c)^^{x,y) ,

1 Compare for this section also Hedeick, Bulletinof the American Mathematicat
Society, Vol. IX (1901), p. 11.

2 This proof is due to Kntsser, Lehrhurh. §22 ; see also Osgood, loc. cit., p. 118.
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from which we derive by difPerentiation

fi^c) = <f>Jx, y) + <ky {x, y)^ ,

or according to (13)

y'-p{sc, y) = <f>y{x, y)^ .

But according to (11), ^y{or, 7)4=0 ; if therefore y'=:p(oc, y)

at every point of (S, we should have

dy— = throughout {x^x^
,

or 7 = const., i. e., 6 would itself be an extremal of the field,

which could be no other than Gg, since 6 passes through the

point (j"i, /yi) and ©q is the only extremal of the field which

passes through (;ri, 2/1).

Hence, if instead of (27) the stronger condition'

^,{a-,y; p{:x,y),p)>0 (29)

is satisfied at every point (a*, y) of ^;,. and for every finite j3, it

follows that A./>0 for every admissible curve (S drawn in

the field ^^,.

In the terminology of §3 we have therefore the result

that whenever [27) is satisjied, ^q furnishes a minimum for

the integral J; if moreover {28) is satisfied^ the 7ninimum is

a '^proper minimum.''''

Example III (see pp. 73, 78):

The set of straight lines

y = mx + y

parallel to the extremal AB furnishes evidently a field about @o,

and for this field

p{x, y) =m .

Therefore

1 Compare (6) and (6a).

2 It is even sufKcient that (27) and (29) be satisfied in a neighborhood (p) of e^

inscribed in g>^, ; the same remark applies later on to (lib').
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When m > or m < - 1 , condition (29) is fulfilled, and therefore

the straight line AB actually minimizes the integral

dx

in these two cases.

b) The sufficient conditions thus immediately following

from Weiers trass's theorem are, however, in general

inconvenient for applications, and it is therefore important

to remark that they can be replaced, under certain addi-

tional assumptions either concerning the curves 6 or con-

cerning the function F, by simpler conditions.

From the relation (5) between the E-function and F^y.,

it follows that both conditions (27) and (29) are always

satisfied when rr. /- „ rA -^ n /tti '\
^y V ('^' y^p) > U (lib

)

at every point' (x, y) of ^^ and for every finite value of /;.

Hence if we remember the theorem concerning the exist-

ence of a field (§l-\ h)), we can state the following theorem:

Fundamental Theorem V:'- If the oxfremal (Sq.AB
does not contain tJte conjugate point to A, and If fln'ther

F,J,,{.l , y, p) >() (lib')

at every point {x, y) of a certain neighborhood of Cr,, for

every p'nite value of p, then Gq ((ctually minimizes the

integral ^^\
J — i F{x, y, y')dx .

Corollary : The minimum is moreover a ^'proper mini-

mum,'''' i. e., AJ>0 for every admissible variation of the

curve ©0 in ^ certain neighborhood of ©q-

1 It is even sufficient that (27) and (29) be satisfied in a neighborhood (p) of c^

inscribed in g>j, ; the same remark applies later on to (lib ).

2 See Osgood, loc. cif., p. 118; compare, however, below, the remark on p. 90,

footnote 1.
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For a so-called rcf/itldr jtrohJem (compare §7, c)) it is

therefore sufficient for an extremum that the arc AB does

not contain the conjugate to the point A.

Example VII :

'

F = g{.v,y)Vl + u" ,

g(x, y) being- a function of x and y aloQe, of class C" in a certain

region S . Here
g{x, y)

Hence every extremal A B which lies in the interior of S and which

does not contain the conjugate point to A, furnishes a minimum
provided that (j{x, y) > along AB. For g{x, ?/),being continu-

ous in a certain neightorhood of yl-B and positive along AB, will

also be positive in a certain neighborhood oi AB, so that (lib) is

satisfied.

This covers the case of Examples I and VI, in which

<j{-i-, U) = y .
and 1 (1)

respectively; and also the case of the "'brachistochrone'' in which

1

^(''' ^) = ,, =rT •

All three functions are positive along the respective extremals.

On account of the extension of Weier stress's theorem

given in §21, Theorem Y may be replaced by the following

:

If the extremal Gq can he surrounded hij a field and if

Condition (lib') is fulfilled, then ®q aetuallij minimizes the

integral J.

Frequently the existence of some particular field about

the arc Qq is geometrically evident ; in such cases the second

form of the theorem is more convenient.

1 Geometrical Interpretation (Erdmavn) : Let a straight line move perpendicu-

larly to the J-, y-plane along the curve y=f{x) from A to B, The area of thac por-

tion of the cylindric jiurface thus generated which lies between the ar, (/-plane and
the surface : z = g{x

, ;/} is equal to

!i[-i--,y) 1 l-ry"^dx.
^0
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Example VIII :

' To minimize the integral

•^-r« y

the admissible curves being confiued to the upper half-plane {y > 0).

Here the extremals are semi-circles having their centers on the

a'-axis. If ,
/—7

;—;—

5

is the particular semi-circle passing through the two given points,

the set of concentric circles

U = 1 — (jc - a^f + Y = <l>{.v, y)

evidently furnishes afield about (So. Moreover (lib) is fulfilled

throughout the upper half-plane. Hence the semi-circle thi'ough

the two given points actually minimizes the integral J.

.Remark: Though the above theorem is the one which is

most important for applications, it should be observed that

it assumes much more than is necessary. Indeed, the con-

dition {lib') is bij no means necessarij. not even the milder

condition ^^^,^, (^ ^ ^ ^
-^ = (lla)

at crcrij point (./', /y) of ©0 and for every finite p.

This is illustrated by Example III (see pp. 73, 78, 95). For

^^'^
F„,. {x,y,p) = 2 (6F' + (Sp + 1)

can take negative as well as positive values at every point (x, 2/), and

nevertheless, as we have seen above, a minimum takes place when

m > or »i < — 1

.

c) Question of necessary and sufficient conditions.

From Weierstrass's results concerning the sufficient

conditions for the problem in parameter-representation (see

§28), one is led to expect that the conditions" (I), (III'),

1 Given by Osgood, loc. cit., pp. 109, 11."), where also a geometrical interpretation

will be found.

2 The accent indicates the omission of the equality sign in conditions (III) and

(IVa); compare pp. 68, 76. (.II) may be omitted, since it is contained in (.IVa');

compare §18, equation (6a J.
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(IVa') are sufficient for a minimum. Leaving aside the

exceptional case when in one of the inequalities (III), (IVa)

the equality sign takes place, we should then have reached

a system of necessary and sufficient conditions.

The analogy of the problem in parameter-representation

is, however, misleading in this case. As a matter of fact

the three conditions (/), (III'), [IVa') are not' sufficient

for (I, minimum ivithout some additional assiimptio)is, not

even if [IVa') he replaced htj the stronger condition

l\,,,{x,y,p)>0 (Ila')

(d ererij point [.r, y) of (Sq for every finite value of p.

To prove this statement it suffices to construct a single

example in which the conditions in question are fulfilled and

in which, nevertheless, no minimum takes place. Such an

example is the following :

Example IX :^ To minimize the integral

J= { laif - -Lbuy'' + 'Ib.ri/"] dx
,

•

<i, h being two positive constants, with the initial conditions

y = for x = 0, and ?/ = for x = 1 .

Here liluler's equation reduces to

-.'/"^Vv = <>.

^^'''''''
F,,, = 2a - 246^/y '+ 24.bx>r •

The only extremal through the two given points -.1.(0, 0)

and B[l, 0) is the straight line :

do-. z/=0.

iThis statement seems to contradict directly the theorem given in Osgood's
article, loc. cit., p. 118. But it is to be remembered that Osgood makes (p. 108) the

assumption that F , ,{x ,y,p) +0 in a certain neiqhborhood of (*,). This assump-

tion, together with (Ila), is equivalent to (lib')-

2 See BOLZA, "Some Instructive Examples in the Calculus of Variations," Bulle-

tin of the American Mathematical Society (2), Vol. IX, p. 9.



100 Calculus of Variations [Chap. Ill

The set of extremals through A is the pencil of straight

lines through A; hence there exists no conjugate point, and

condition (III') is fulfilled.

Further

E,(a-, y; I/', p) = (a - ^byu'+ 6bxy")

-\-p(-iby + 4:bxy') + 2bu-p

hence along ©(,:

El {x , Mx) ; n {x), p) = a+ 2bxp' > . (IVa')

TJie iliree conditions (I), {HI'), {IVa) are therefore mtis-

jied, even the stronger condition

F,y,- (x , /, (x), p) = 2a + 24.bxP > . (Ila')

Nevertheless the line ©o '^^x'-"^ ^'^^ minimize the inte-

r -
j^^zS ') fjral J.

For, if we replace the line

ABhj the broken lineAPE,
the co-ordinates of P being

FIG. 20 £r= /i>0 and y-=l\ the

total variation of J is easily found to be

A J = /.•^[- ^V^ + « +^^ + {h)
,

where {h) is an infinitesimal.

Now let /o > be given, as small as we please, then choose

I

/v |</3 and let h approach zero, keeping k fixed. Then since

6>0 it follows that A,/<0 for all sufficiently small values

of A, which proves that the line AB does not minimize the

integral J.

The complete solution of the general problem which we

have considered in these three chapters would require the

establishment of a system of necessary and sufficient condi-

tions. The above example shows that it will be necessary

to add a fifth necessary condition before the complete solu-
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tion of the problem is reached. We have therefore to con-

clude this chapter with the statement of a gap in the theory

so far as it has been already developed.'

(/) We add a table of ihe various conditions which have

occurred in the problem to minimize the integral

J = 1 F(x, y, y')dx
,

the end-points being fixed:

1) The minimizing curve @o-^=/o('^) niust satisfy the

differential equation

n-^^V = 0. (I)

[Euler''s equation, p. 22 ; assumptions concerning its general

solution, p. 54.)

2) Fy.^. (x,Mx), /; (x)) ^ , in {x,x,) . (II)

{Legendre''s condition, p. 47)

F,y,,.(x,fjx),p)^0 ,
(Ila)

in {x(^i) for every finite p (pp. 76 and V)8).

F^.,Jx,y,p)^0 , (lib)

ilf we modify the problem by the addition of a slope restriction, i. e., by sub-

jecting the admissible curves to the further condition that their slope shall not

exceed a finite fixed quantity, say

then the three conditions (I), (III), (IVa) are sufficient for a minimum.
For the function

Bi{x,<j>{x,y); <t>x(-e,y),p)

is continuous in the domain

and positive for y = yq .

Since the domain 33^, is cloned, it follows from the theorem on uniform continuity

that we can take k so small that

^l{x,<f>{x,y); <f>j:(-«,y),p)>0

throughout the domain B/^ , which proves the above statement.
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for every {x, y) in a certain neighborhood of ©q and for every

finite p (p. 9()).

3) ^.^^0 ,
(HI)

a-Q being the conjugate of .r^. [JacobPs condition, pp. 08,

59, ()7.)

4) E {x,Mx) /: [x), p) ^ ,
(IV)

in (xfyTi) for every finite J>.
(Wcierstrass's cotKlifion, ]>. 70.)

E.{a-,/„(,r); /„'(a"),f>)^0 ,
(IVa)

in [xfyV^) for every finite p (p. 7(>).

The omission of the equality sign in (Il)-(IVa) is indi-

cated by an accent.

Conditions (I), (II), (III) are necessary, conditions (I),

(II'), (III') are sufficient, for a weak minimum.

Conditions (I), (II), (III), (IV) are necessary, conditions

(I), (lib'), (III') are sufficient, for a strong minimum.

^23. THE CASE OF VARL\BLE END-POINTS'

We have so far always supposed that the two end-points

1 Three essentially difPerent methods have been proposed for the discussion of

problems with variable end-points

:

1. The method of the Calculus of Variations proper: It consists in computing

SJ and a-J either by means of Taylor's formula or by the method of differentia-

tion with respect to e, explained in §4, b) and d), and discussing the conditions

aj= 0, sV^O. The method was first used by Lagrange (1760) ; see Oeuvres, Vol. I,

pp. S.'JS, .343. He gives the general expression for SJ when the end-points are vari-

able, viz.:

U= C '

Sy (f^- £.F„) rfx + [fB. + F,^.Sy]l ,

and derives the conditions arising from 5J= 0.

The second variation for the case of variable end-points was first developed by

Eedmann {Zeitschriftfur Mathematik und Physik, Vol. XXIII (1878), p. 364). He finds

^2^^ r''"' j;(M8y'-it'8y)^to

.-11
+ ^FS'x + F,^.B'>j + 2F,/.rSy + 2F^^. SxSy+ g' Sx^-f (ir,^,„+ F,^.^. '^) &y-\^ ,

where u is an integral of .Jacobi's differential equation. By considering such spe-
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of the required curve are fixed. Tii this section we propose

to consider the modification of the problem in which one of

the end-points, say 0, is fixed, whilst the other, 1, is movable

on a given curve 6.

Suppose the curve

—which we suppose to be of class C and to lie in the inte-

rior of the region S— minimizes the integral J with these

cial variations for which Sy= Cu , he makes the integral vanish and thus reduces the

question to the discussion of the sign of the remaining function of the variations

Sx^., Sy.^ ^ Xp ^'.Vj. These variations are connected by relations which depend
upon the special nature of the initial conditions. For instance, for the initial con-

ditions considered in the text the expression for S J reduces to the expression (36)

for J"(.rj) multiplied by Sx^

.

For the general integral

x: -^^••'•,
.'/n 2/2' • • • ' Z/j, ' 2/1', Z/o', • . . ,.'/,/)t7.B

where t/j , 2/2 j/„ are connected by a number of finite or differential relations,

the second variation in the case of variable end-points was studied by A. Mayer,
Leipziger Berichte (1896), p. 4.36; for the integral in parameter-representation

f"J= I F{,x,y,x\y')dt

by Bliss, Transactious of the American Mathematical Society, Vol. Ill (1902), p. 1.32

(comijare §.30).

2. The method of Differential Calculun: This method is explained in a general

way in Dienger's Grundriss der Variationsrechnung (1867). It decomposes the

problem into two problems by first considering variations which leave the end-

points fixed, and then variations which vary the end-points, the neighboring curves

considered being themselves extremals. The second part of the problem reduces to

a problem of the theory of ordinary maxima and minima. This method has been
used by A. Mater in an earlier paper on the second variation in the case of variable

end-points for the general type of integrals mentioned above {Leipziger Berichte

(1884), p. 99). It is superior to the first metliod not only on account of its greater

simplicity and its more elementary character, but because— by utilizing the well-

known sufficient conditions for ordinary maxima and minima— it leads, in a certain

sense, to sufficient conditions if combined with Weierstrass's sufficient conditions

for the case of fixed end-points. For these reasons I have adopted this method in

the text.

3. Kneser's method: This metliod, which has been develop(>d by Kneser in his

Lehrbuch, is based ujwn an extension of certain well-known tlieorems on geodesies.

It leads in the simplest way to sufficient conditions, but must be supplemented by
one of the two preceding methods for an exhaustive treatment of the necessary con-

ditions. A detailed account of this method will be given in Chapter v.
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initial conditions. Then we must have AJ^i) for every

curve (S of class D' which begins at the point and ends at

a point of the curve 6 and which lies moreover in a certain

neighborhood' M of Qq.

a) Among the totality of these

"admissible curves" we consider in

the first place those which end at the

point 1. For these also the inequality
FIG. 21 ^j^() must hold, and therefore all

the conditions which we have found to be necessary in the

case of iixed end-points must be fultilled in the present

case.

The arc (Sq must fhcrcfurc be an ('.rircmal. L,c(jc)i(lvvs

condition

F,.:r^O (II)y u

must he satisfied along Qq, and the rf>iijiif/ate point (>' ta

must -not lie between ojid 1.

We suppose in the sequel that the arc Qq is an extremal,

that the condition

F^,,{'^,y,p)>0 (lib')

is fulfilled at every point (x, y) of a certain neighborhood of

(E'q for every finite value of p and that the arc Qq does not

contain the conjugate point 0' (Condition III').

b) Further necessary conditions are obtained by consid-

ering variations which do vary the end-point 1. Various

methods" have been proposed for this purpose. The follow-

ing elementary method reduces the further discussion to a

problem of ordinary maxima and minima:

If the extremal ©q minimizes the integral J in the sense

explained above, then ©g must, in particular, furnish a smaller

1 Compare §3, 6) ; we may for instance choose for H the special neighborhood (p)

used in the problem with fixed end-points (§3, c)), increased by a semi-circle of radius

p with the point 1 for center.

2Compare footnote 1, p. 102.
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value than (or at most the same value as) every extremal

which can be drawn from the point to the curve 6 and

which lies in a certain neighborhood of ©q.

And since under the above assumptions (lib') and (III')

each of these extremals— (when its end-points are consid-

ered ac fixed)—minimizes the integral J^ it seems' self-

evident that also the converse is true.

Let then

y = cl>{x,y) (30)

represent the set of extremals through the point 0, and let

7o denote again the value of 7 which corresponds to @q.

From the above assumptions (lib') and (III') it follows that

this set furnishes for I7 — Jo\^k an (improper) field^ ^;^

about the arc @q if k is taken sufficiently small.

Hence, if 2 : (x2, 2/2) b© ^^J point of the curve 6 in a

certain vicinity of the point 1, then there passes one and

but one extremal

^2- y = <t>(x,y2)

of the field through the point 2. The parameter 7^ is a

single-valued function of x^, y-i of class C : 72= '«/^(a"2, ,'72)-

If

y=f{x)

is the equation of the given curve, which we suppose to be of

class C" , then yo =f{x-^ and 72= ''/^ (j"2 , fipc-i)) •

Hence the integral J taken along the extremal ©2 fI'om the

point to the point 2 is a single-valued function of ^v, say

lit will be seen under e) how far this conclusion is correct.

2 Compare p. 83, footnote 2. lu the present case the fiold g-^. consists of all

points {x
, y) furnished by (30), when .r, y are restricted to the domain

«(, S a; ^ Xj
,

I

V - 7q
I

^ A;

,

where Xj is some value greater than x^ ; fc is supposed to be taken so small that (lib')

holds throughout S"/^ and that "^^ (a:, y) +0 throughout the domain

aru<a-5Xi, ly-Vol^fc-
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J{x^) = I F(x, (t>{x, y.,), cf>_^{x, y2))dx .

And this function Jixy) must have a minimum for X2=^0Ci.

Therefore we must have

J'{x,) = 0, J"(x,)^0 . (31)

c) The derivative of the integral J^X2) has already been

computed' in §20, c) (equation (24)). Accordingly

J'ix^) = F{x2,y2, P2) + {Th — 2h) Fy. (.^2 > 2/2 , Pi) ,
(3'2)

where ])2^=4'x{^2j J2) is the slope of the extremal ©2, and

p2'^f'i'y2) the slope of the curve (S, at the point 2.

Hence we obtain the result

:

The co-ordinates x, y of the movable end-point must

satisfy the condition^

F{x„y„y[)-\-{yl-y[)Fy.{x„y„yi) = , (33)

where y[ and y[ refer to the extremal @o ^^^ to the curve S

respectively.

If this condition is satisfied we shall say that the curve 6

is TRANSVERSE^ to the extremal @o f*^ i^^^ point 1.

Equation (33) together with the two equations

/(a-o, a, IS) = y^ , f{x,, a, /?) =f(x,) ,

determine in general the two constants of integration a, /3 in

the general solution of Euler's differential equation, as well

as the abscissa Xi of the point 1.

We suppose in the sequel that condition (83) is fulfilled.

d) We next proceed to the computation oi J" {X2) . From

(32) we obtain

iWe suppose that the co-ordinates of the movable end-point do not occur
explicitly in the function F{x, y,y'); if they do occur, another term must be added
to the expression of J'(Xo). Compare for this case Kneser, Lehrhuch, §12. An
example of this exceptional case is the brachistochrone; compare LindelOf-
MoiGNO, Calcul des variations. No. 113, and the references given in Pascal, Varia-

tionsrechmuig, §.31.

2 In accordance vyith §8, end.

3In the use of the word "transverse" I follow Osgood, Ioc. cit., p. 112.

Kneseb, who first introduced the term {Lehrbuch, §10), used it with a slightly differ-

ent meaning; he says: the extremal (Sq is transverse to the curve 6 if (33) is satisfied.
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But

hence

^72
and -— is determined by

Substitutinij these values for

fly2 dp.2 dp2

and remembering that on account of Euler's equation

we obtain for x=^Xi the following result:'

Let Ai and B^ denote the expi^essions

:

A, = F,+ i2!j,-y;)F,^+yrF^+(V:-yiyF^y , (35)

-Si = {yl- yifFyy. ,

the arguments of the derivatives of F being x^, ?/i , y{ ; then

97 Ui, 7u)

For the further discussion of the inequality J"{xi)^0, we

leave aside the exceptional case where y\=y\, i. c, we sup-

pose that the extremal ©q cmd the curve 6 arc not tangent to

each other at the point 1. Then Pi>0, since we have

moreover already supposed that Fyy-^0.

'Given, in a slightly different form, by Bliss, Mathematische Annalen, Vol.

LVIII (190S 1, p. 77.
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According to equation (30) of §15, we have in the nota-

tion of §§13 and 11:

and therefore

<l>yx{^i> yo) = c—^— .

Now let ii{xi, x) denote the function

H {x, , x) = AA (^. , ^0 + B, ^^^Q^'"^^
, (37)

then the expression for J"(xi) may be written

^ '^ A{x,, X,)

The function

A (.r, . x) = r, (x,) i\ {x) — v., (x,) ?•, (,r)

is an integral of Jacobi's differential equation and van-

ishes for ic= rf"! . The function H [x^ , x) is likewise an inte-

gral of Jacobi's differential equation, since it is linearly

expressible in terms of ri[x) and ro(x). Since 5i>0 and

r, (x,) r: (x,) - r, (x,) r/ (x,) ^ (38)

(see pp. 57, 58),

H(^,,xO + 0. (39)

Hence if we denote by x^ the root of the equation

A (x, , a-) =
"

next smaller than x^ and by x'l the root next smaller than x^,

of the equation
H (j-, , x) = ,

it follows from Sturm's theorem^ that

At x= Xi' , ii{xi, x) changes sign.

1 Compare p. 58, footnote 2. This remark is due to Bliss, Transactions, etc.

p. 138.
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Again from (38) it follows that

L {x, - x) ^ ''

/ A (o-i, x) = 1
x=Xi oXi I

and therefore

L{A,-{-B, ^^^^/A(a^i,a;)) = +oo .

a;=Xi-0 "'^1
/

Hence we infer that

r > when a-," < cTq < a?i ,

J"{Xi) i = when «*„ = xl' ,

( < when a-,' < a-o < a*/' .

For reasons which will appear later on (under /), the

point of the extremal @o whose abscissa is a-/' is called, accord-

ing to Kneser,' the
^^
focal poinV of the curve 6 on the

extremal ©q.

We have therefore reached the theorem: For a minimum
it is necessary that the focal point of the curve 6 on the

extremal ©o shall not lie between the points and 1.

e) It remains to consider the question of the sufficiency

of these conditions.

If in addition to (lib') and (33) the condition

xl' < A, (41)

is satisfied, then
J'{x,) = , J"(.r,)>0

,

and therefore the function t/(a'2) ^^^^ ^ minimum for £r2= iCi.

Let now 6 be any curve of class D' which begins at the

point and ends at some point 2 of 6, and which lies more-

over in the improper field ^j. about Gq defined under 6).

Let @2 be the extremal of the field from the point to the

point 2 (see Fig. 21), then we have

'Tlie discovery of the focal poiut (" Brenupunkt ") is duo to Knesek, see Lehr-
hurh, §24. For the special case of the straight line, the focal point occurs already in

Erdmanx's paper referred to above. Bliss uses "critical point " for " Brennpunkt."
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On the other hand, since we have supposed k so small that

<^,(a-, 7)4=0 for

Xo < X :^ Xi ,
I
y — 7u

I

< A;
,

the region ^^ is at the same time an (improper) field' about

the extremal ©9 find therefore since (lib') holds throughout ^i^.,

according to §22, ?>). Hence

The extremal ©o furnishes therefore a smaller value for the

integral J than any other curve of class D' which can be

drawn in the region ^j. from the point to the curve ^, and

in this sense the exirenud (Sq minimizes' the intcf/iril J if the

conditions (lib'), (33) and (41) are fnlfillcd.

Example Via: To drair Ihe cnrrc of sliorfest lenyfli. from a

giro 11 point to a given ciirce.

Here

:

^ = i/] -\- y"
;

hence we obtain for the condition of transversality

1 + //i' //]' = ,

?. <\,the minimizing straight line must be normal to the curve S at

the point 1.

Further we get easily

H(.,,x) = 4£=,(x,-x)+ ^^^-^'^^

therefore
^^ ^ ^ y'gj^Y')

1 In the discussion concerning the construction of a field about (?„ in §19, we have

for simplicity restricted y to an interval (v,, - fc , 7o+ '^') whose middle point is 7 = y,,.

We might just as well have taken an interval of the more general form ( y,)
— A;, ^y^^+ lc^).

In the present case the term field must be understood in this slightly more general

sense.

2 It should, however, be observed that the region g-^ does not. strictly speaking,

constitute a neighborhood (see §.3, b)) of the arc (?„ since its width approaches zero

as X approaches the value .r^. The proof that (?„ minimizes the integral J is there-

fore not quite complete. Knesee's sufficiency proof, which will be given in chap, v

for the problem in parameter-representation, is not open to this objection.
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Hence it follows that ihe center of curvature 1" of the curve 6
at the point 1 must not lie between the point and the jmint J.

Couvei'sely : If this condition is fulfilled and if moreover 1" does

not coincide with the point 0, then the straight line 01 actually

fiu'nishes a minimum.

Entirely analogous results are obtained in the case when

the point 1 is fixed and the point movable on a given curve.

The condition of transversality must be satisfied at the point

0. Again, if ^4o, Bq have the same meaning for the point

as the constants A^, B^ for the point 1, and if ./",)" denotes

the root next' greater than jcq of the equation

H (a-o, x) = AA (^0, ^) + ^o--^r^^ = , (42)

then Xq must not be less than x^.

/) Geometrical interj^refatioii of flie focal point. Let us

consider the problem to construct through a point 2 of the

curve 6 in the vicinity of the point 1 an extremal which

shall be cut transversely at the point 2 by the curve 6. Let

y =f{x, a, /3)

be the required extremal. Then we have for the determina-

tion of a and /3 the two equations

M = f{x„a,/3)-f(x,) = ,

N = F {x.,
, y-i , q.) + (P2 - ^2) ^y (^2 , ^2 , %) = ,

where

Ui=fiXi) , Pi—f'{x^ , g2=/x(>^2, a, ^) •

The two equations (43) are satisfied for X2= x-i, a=^aQ. ;S= /3^^,

since 6 is transverse to Qq at the point 1 ; the left-hand sides

of the two equations (43) are functions of x-y, a, /3 of class

C in the vicinity of X2= Xi, a^=a^^, ^~-^o ^^^^^ their

Jacobian with respect to a and 6 is different from zero for

X2=^Xi, a = aQ, /3^ /3q, if ?// — yi^^O as we have supposed
;

for it reduces to

id'- Ui ) ^%i, { '-1 (-^i) 'V (-^"i) — ''2 U\) '•/ (^1)) •

1 Compare the Addenda at the end of the book.
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Hence the equations (43) admit, according to the theorem

on implicit functions/ a unique solution :

a = a (,r,)
, /? = /3 (^^2) ,

which is of class (" in the vicinity of jcg^-'^i and satisfies

the initial conditions

a (a-,) =a„ , /3{.ri) =^0 •

If we denote

/(.r, a(.r,), f3(x2)) =g{x,X2) ,

the required extremal is therefore

y = y{x, 0C2)
,

(-t4)

and if we consider x-y as a variable parameter, this equation

represents a set of extremals each of which is cut transversely

by the curve 6 ; the extremal @o is itself contained in the

set and corresponds to X2= x\.

The envelope ^- of the set (14) is defined by the two

equations

y = g(x, 0C2) , </^2 (^. ^"2) = ,

and the abscissae of the points at which the extremal @o

meets this envelope are the roots of the equation

a:2=xi

To obtain this equation we compute the derivatives

da cJ£

(XQC^ CIOC2

from the two equations <12I/dx2= 0, dN/dx.,= ^, substitute

their values in the equation

and finally put X2= Xi, a= aQ, fi= /3Q.

Carrying out this process, we are led to the three equa-

tions

1 Compare footnote 2, p. 35.
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r, (x) a' (.r,) + /'a (a') /3' (.r,) = ,

'•i (<'i)
«'

(^•i) + >-2 (^i) /3' (J'l) = Tj! — U\ ,

from which, by eliminating «'(.'i). /3'{ji-^), we obtain the result

H(a-,, .r) = , /. e..

The focal jioliit^ Is llic point of irhlcli flic ('.rlroiud (S'q )iu'cts

for the Jirsf Ihiic— couidiiKj fro))i flic point 1 toward the

point — the eiirclope of the set of extremals which are cut

traiisrerselij hij the curve (S.

Example Via : The set (44) consists of the normals to the

curve 6 ; the envelope '^ is the evolute of the curve 6

.

(j) Case of tiro niorahlc end-points: We add a few

remarks concerning the case when the point is movable

on a curve Sq and at the same time the point 1 movable on

a curve G^.

The consideration of special variations leads at once to

the result that the minimizing curve must be an extremal,

that the condition of transversality must hold at both end-

points, and that the inequalities

:= .

"

— /'

must be satisfied.

But still another condition must he added : If .r[
'

' denotes

the root next greater than 'j\ of the equation

H(;r,,aO = ,

then the fottowinii liiequaJiti) must Jje s(disfied
.-'^

'This Keometrical interpretation of the focal point is due to Kxeser; see Lehr-

hiirh, §24.

^Tliis result is clue to Bliss; see ^fatheinafische Aitnalcn,Yol.'L\IIl (19031, p.

70. He also proves that for a regular problem the condition .Tj <;rj"<jy', together

with the two transversality conditions and the condition that the minimizing curve is

an extremal, are sufficient for a minimum. His proof is based upon Kneser's theory

of the problem with one variable end-point.

For the example of the curve of shortest length between two given curves, the

inequality (1.")) had already been given by Eedmann {loc. cit.). Another important
example with botli end-points variable (the special isoperimetric problem) has been
completely discussed by Kxeser {Mafhematische Annalen, Vol. LVI (1902), p. 169).
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-^i< a'i'"<^u" • (45)

The problems on variable end-points which we have dis-

cussed in this section are special cases of the problem: To

minimize the integfral J when the co-ordinates of the two

end-points are connected by a number of relations
:

'

*..(.*•.,, Z/o. •*'i, y^) = ^^

The "method of differential calculus'' used in this section

can be applied also to this case.

The number of independent relations cannot exceed four ;

if it is exactly equal to four, we have the case of fixed end-

points. If both end-points are perfectly unrestricted, the

vanishinir of the first variation leads to the four conditions

F , F = , F.. = , F,. = ,

which are in general incompatible.

I Compare Knesek, Lehrhuch, §10.



CHAPTER IV

WEIERSTRASS'S THEORY OP THE PROBLEM IN

PARAMETER-REPRESENTATION ^

§24. FORMULATION OF THE PROBLEM

Ix the previous chapters M'e have confined ourselves to

curves which are representable in the form ij^f{x), a

restriction of a very artificial character in all truly geomet-

rical problems. We are now going to remove this restriction

by assuming henceforth all curves expressed in parameter-

representation.

a) Generalities concerning curves in parameter-repre-

sentation.^

A "continuons curve'''' S is defined by a system of two

equations

G: x = 4>{t)
, y = ip{t) , t.^t^U , (1)

<j> and yjr being functions of /, defined and continuous in

(/o/i). As t increases from /q to Z^, the curve is described in

1 The treatment of the problems of the Calculus of Variations in ijarameter-repre-

sentation is entirely due to Weieesteass; he used it in his lectures at least as early

as 1872. In order to avoid repetitions, wo shall discuss in detail only those points in

which the new treatment differs essentially from the old one. For the rest, we shall

confine ourselves to an account of the results.

As regards the relative merits of the tiro methods, one is inclined to consider the

older method— in which x is taken for the independent variable— as antiquated and

imperfect when compared with Weierstrass's method; unjustly, however, for the

two methods deal with two clearly distinct problems, and which of the two deserves

the preference, depends upon the nature of the special problem under consideration.

Generally speaking one may say that in all truly geometrical problems the method

of parameter-representation is not only preferable, but is the only one which fur-

nishes a complete solution. On the other hand, the older method has to be applied

whenever a function of minimizing properties is to be determined (for instance,

DirichleVs problem).

For examples illustrating the relation between the two methods, see Bolza,

Bulletin of the American Mathematical Society (2), Vol. IX (.1903), p. 6.

2 Compare J. I, Xos. 96-113.

115
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a certain sense, called the "))Ositive sense," from its origin,

say 0, to its end-point, say 1.

If we make the ^'-parameter-transformaiion''''

:

t = x{r), (2)

where %(t) is a continuous function of r which constantly

increases from /q to /j as t increases from Tq to r^, the equa-

tions (1) are changed into

X = <l>{xir))=^{r) , ^ = ^(x(T))=*(r) . (la)

Vice versa, the equations (la) are again transformed into

(1) by the inverse transformation

T = x-'(0- (2a)

We agree to consider the two curves defined by (1) and

(la) as identical, and conversely two curves will be consid-

ered as identical only' when their equations can be trans-

formed into each other by a parameter-transformation of the

above properties.

The curve (5 will be said to be of class C'{C") if the

parameter t can be so selected that <fi(f) and -^(f) have con-

tinuous first {and second) derivatives in (fofi), and if more-

over
(f>'

and yjr' do not vanish simultaneously in (fot^) so that

^'2 + ^"2^0 in (40 • (3)

A curve of class C has at every point a continuously

turning tangent; the amplitude 6 of its positive direction

is given by the equations

cos 6 = ,

*^
, sin 6 = '^

. (4)

Every curve of class C is rectifiable," and the length s of

the arc V is expressible by the definite integral

1 According to this agreement, a curve (more exactly '" path-curve," E. H. MooreI

is not simply the totality of points defined by (1) but the totality of these points

taken in the order defined hy {1).

2 Compare J. I, Nos. lOS-Ul.
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dt . (5)

By an '^ordinarjj curve''' will be understood a continuous

curve which is either of class C or else made up of a finite

number of arcs of class C. A point where two diflferent arcs

meet will be called a "corner" if the direction of the positive

tangent undergoes a discontinuity at that point. A curve

will be said to be regular at a point t= t' , if for sufficiently

small values of |f

—

1'\, x and y are expansible into con-

vergent power-series

:

x = ct + a,{f-i') + a,{t-tj^ ,

y^h + b,(t-t') + h,{f-t'f+... ,

and if moreover a^ and h^ are not both zero.

b) Iritegrals taken along a curve; conditions for their

invariance under a 2Kirameter-transforma.tion.

Let F(oc, y, x', ij') be a function of four independent

variables which is of class C" in a domain © which consists

of all points x, y, x'
,
y' for which a) x, y lies in a certain

region 1R of the x, v/-plane, 6) x'
,
y' are not both zero.

We suppose that the curve 6 defined by (1) lies entirely

in 2J, and select two points 2 and 3 (/2< 4) ^^ ^- Then we
consider the definite integral

J= I F(x, y, x', y') dt

in which ,r, //, ,r', y' are replaced by ^(/), ir(t), (/>'(/), ^' (t)

respectively, and ask : Under what conditions will the value

of the integral J depend 07ily on the arc 23 and not on the

choice of the iJarameter t?

The simplest example of an integral which is independent

of the choice of the parameter is the length of the arc 23,

which is always expressed by the definite integral

X Vx"'+y'^dt
2
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no matter what quantity has been selected for the independ-

ent variable f, provided that ^9 < f-s, so that if we pass from

the parameter / to another parameter r by any admissible

transformation (2), we must have

Returning now to the general case, our question may be

formulated explicitly as follows :

Under what conditions is

with the understanding that this relation is to hold

:

a) For every transformation / =%(t) of the properties

indicated above
;

/S) For all positions of the two points 2 and 8 on the

curve (S
;

7) For all possible curves (S of class C, lying in ?i ?

On account of /3) we may differentiate (6) with respect to

T;^ ; writing for brevity /, r instead of f^, T3, we obtain

„/ dx du\ (It , / dx dy\

dx _ dx dt dy _dy dt

dr ~ dt dr
'

dr ~ dt dr
'

(dx diAdt ^1 dx dt dy dt\ ,_.

On account of a) this must hold for the special trans-

formation

k being a positive constant. Hence

„/ , dx , dii\
, ^/ dx dy\
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But by properly choosing the curve (1) (see assumption 7) j

and the parameter /, we can give the four quantities

dx dy

^''^'di'di

anv arbitrary system of values in the domain 01, and there-

fore the relation

F{x, y, kx', ky') = kF{x, y, x, y') (8)

must hold identically for all values of the independent

variables x, y, x
,

,?/' in (U and for all positive values of k, or

as we shall say: F{.r, y, x\ y') must he "positively homo-

geneous'''' and of dimension one icitJi i-espect to x'
,
y'

.

Vice verso, if this condition is satisfied, (7) holds since

we suppose
dt „

dr

and therefore also (6) , as follows by integrating (7) between

the limits Tg and Tg. This shows that the homogeneity con-

dition (8) is necessary and sufficient for the invariance of

the integral J}

We shall in the sequel always suppose that the function

F satisfies the homogeneity condition (8), and we shall

denote the value of the integral

£^' F{ct>{t),^{t),i>'{t),r{t))dt

indiiferently by J^ or Jqi, and call it the integral of the

function F(x, y, x, y') taken along the curve 6.

If we wish to reverse^ the direction of integration we

must first introduce a new parameter which increases as the

1 Weieesteass, Lectures; also Knesee, Lehrbtich, §3.

This lemma has been extended to the case where J' contains higher derivatives

of X and y by Zeemelo, Dissertation, pp. 2-23; to the case of double integrals by

KOBB, Acta Matfiematica, Vol. XVI (1892), p. 67.

2 Compare Knesee, Lehrbuch, p. 9.
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curve is described from the point 1 to the point 0, for

instance: ii = — /. The equations

g-': x = cji{—u)
, u — ii,(—u), «fu^«^"i ,

where Uq^^ — /j, iii^^ — /q, represent the same totality of

points as (1), but the sense is reversed.

The integral of F{.r, y, ./•', ij' ) taken along 6~^ has the

value

r"' ^/ ^^" '/'A ,

Jn,= I
Fl.r, y, - , -h]da ,

=
J„

^'(*^<- '"' "Al- "), - <^'(- «)' -^'{-ti))du
,

If the relation (<S) holds also for negative values of /,•, as

happens, for instance, when i^ is a rational function of .r\ ij\

then
F{.r, ij, —y, — y')= — F{x, y, x'

, y'),

and therefore : J^q= — Jqi •

But the relation (8) need not hold for negative values of

/> : tluTs in the example of the length we have for negative

values of k

F(.r, /y. k.r'. ky') = - kFU, y, x'
,
y')

;

hence in this case ^io= ^oi-

In other cases the relation is more complicated, for instance,

when „ , '
I \ , ~^~i—

^

F = xu - ,r y + A1 x -+y '
.

From the homogeneity condition (S) follow a niimber of

important relations hettrccn fJie partial dcriratircs of F.

Differentiating (8) with respect to k and then putting

A;= 1 , we get

x'F,. + y'F^, = F . (9)

Differentiating this relation with respect to x and y, we obtain

F, = x'F,., + y'F„, , F, = x'F,.,^ + y'F,,„ . (10)
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Differentiating (9) with respect to x and y' we get

^'i^.x- + y'Fy.' = , x'F.,;, + T/'i'V,. = ;

hence if x and ij' are not both zero,

F,.,. : F,.,. : F^.^. = y" : - ^'t/' : x"
; (11)

there exists therefore a function F-^oi x, y, x'
,
y' such that

F..,^ = y"F, , F,.,, = - x'u'F, , F^.,, = x"F, . (11a)

The function F^ thus defined is of class C in the domain

OF, even when one of the two variables x\ y' is zero; but

Fi becomes in general infinite when x' and y' vanish simul-

taneously, even if F itself should remain finite and continu-

ous for x' ^0, y'= 0.

For instance

:

F = y Vx" + ij"
, F, = y—=J=^,.

{} x'-\-y-)

c) Definition of a Minimum:^ Two points A{.Vq, y^ and

B{xi, yi) being given in the region U, we consider the totality

m of all ordinary^ curves which can be drawn in iS from A
to B. Then a curve 6 of ilH is said to minimize the integral

J= I F(x, y, x', y')dt
,

if there exists a neighborhood II of 6 such that

^s^^e (12)

for every ordinary curve S which can be drawn in H from

A to B.

We may, without loss of generality, choose for H the

strip^ of the x, ^-plane swept over by a circle of constant

radius p whose center moves along the curve S from A to B.

This strip will be called "the neighborhood (p) of 6."

1 Compare §3. The definition is due to Weierstrass, Lectures, 1879; compare
also Zekmelo, Dissertation, pp. 2r)-29, and Kneser, Lehrbuch, §17.

2 An extension of the problem to a still more general class of curves will be con-

sidered in §.31.

3 In case different portions of the strip should overlap, the plane has to be

imagined as multiply covered in the manner of a Riemanu- surface (Weierstrass),
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§25. THE riEST VARIATION

We suppose that we have found an ordmary curve

6: x = <f>(t) ,
y^^(t)

, t„^t^U ,

contained in the interior of U, which minimizes the inte-

gral ./. We replace the curve 6 by a Jieighboring curve

6 : X = x-\-i , y = y + v >

where ^ and tj are arbitrary functions of / of class D' , which

vanish at /q ^nd /j

:

${to) = 0, vito) = ; ^(M=0, v{td = 0. (13)

The consideration of special variations of the form

i = €j) , v = ^a > (1^)

where e is a constant, and p and q are functions of t of class

D' , which are independent of e and vanish at /q and /j, leads

as in §4: to the result' that

AJ=Sj+£(e)
, (15)

where (e) is an infinitesimal and

8J= r{Fj + F,^ri + F,.e+F^.r,')dt , (15a)

whence we infer again that Sj must vanish for all admis

sible functions ^, V-

Considering first special variations for which 77 = 0, and

secondly special variations for which f^ , we see that we

must have separately

CiFj + F^-ndt^O , C {F,y) + F^.rj')dt = . (16)

iThe same results hold for variations of the more general type

where the functions l(<, «), ')(^, «), their first partial derivatives and the cross-

derivatives #f£
, fif^ are continuous in the domain ^q ^ f ^ fj , I

«
| 5 ^q , Eq being a suffi-

ciently small positive quantity. Moreover

f(^0,e)=0, l)(f„,e)=0,

1(^1, €)=0, »,«i,e)=0.
Compare §4, d).
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To these two equations the methods of §'^^4-9 can be

applied with the following results

:

a) Wcierst)riss''s form of Eider'' s equation: The func-

tions X and y must satisfy the two differential equations

(1 f1

F ——F =0 F —--F. — O (M)^^ dt "^ ' ^ dt "
'

^ ^

these two differential equations are however not independ-

ent ; for, if we carry out the differentiation with respect to /

and make use of the relations (10) and (11a) we obtain

F..-J^F^. = U'T , F,~-'j^F^.= -x'T (18)

where T= F^„ - F^^. + F,{x'y"- x"y')
, (19)

oc"
,
y" denoting the second derivatives of x and y with

respect to /. Since x' and y' do not vanish simultaneously

(see §24, a)), the two differential equations (17) are equiva-

lent to the one differential equation

T=F.,,,-F,,. + F,{x'y"-x"y') = . (I)

This is Weierstrass's fo7-m of Euler's differential equa-

tion.^ Every curve satisfying (I) will again be called an

extremal.

The same result can also be derived from a transforma-

tion' of 8J which will be useful in the sequel.

If we perform in the expression (15a) for 8J the well-

known integration by parts, and make use of (18), we obtain

8j=\iF,.+ riF,T+ pTwdt
,

(15b)

where ic=^y'^— x'r).

1 Weierstrass, Lectures; compare Zeemelo, Dissertation, p. 37.

If we introduce the curvature

1 _ x'y" — x"y'

the differential equation may also be written

X \l XII1 F^.,-F^

F,{Vx'^+y')
3

• (la)
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The differential equation (I) together with the initial

conditions determines the minimizing curve, but not the

functions x and /y of /. In order to determine the latter,

we must add a second equation or differential equation

between /, ,r, y. This additional relation (which is equiva-

lent to some definite choice of the parameter /) must be

such that X and y come out as single-valued functions of

i of class D' satisfying (3) ; otherwise it is arbitrary. The

best selection depends largely upon the nature of the par-

ticular example under consideration (see the examples in §2(j).

If we add to (I) a finite relation between /, ,r, y we

obtain as the general solution a pair of functions of / con-

taining two constants of integration :

a-=/(f,a,,J)
, y = g{t,a,(3) . (20)

The constants a. /3 together with the unknown values /g

and /i have to be determined from the condition that the

curve must pass through the two given points

:

a'o=/(/„, a, ^j , Z/u = ^(Ai. a, /?) ,

Xi=f(t,,a, (3) , y, = (7(/,. a, ^) .

b) Extremal through a given point in a given direction:

In order to construct an extremal through a given point

Oia, b) of S in a given direction of amplitude 7, we select

the arc of the curve measured from the given point for the

parameter / and have then to solve the simultaneous system

T = 0, x" + y"=l (22)

with the initial conditions

X = a
, y = b ,

x'= cos y ,
y' = siu y

for /=^0. Differentiating the second differential equation

we obtain the new system

F,{y'x"- x'u") = F,^. - F,,.
,

XX +y y =0 .
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Solving with respect to or" , i/" we obtain j-", y" expressed

as functions of x, y, x'
,
y' which are of class C in the

vicinity of ,r= a, y^^h, a?' =^ cos 7, y'^^siny provided that

Fi(a, 6, cos y, sin y) =1= . (23)

Hence' there exists a unique solution

x = ^{t; a,b,y) , y = ^ (f ; a, b
, y)

of the system (22a) satisfying the initial conditions and of

class C in the vicinity of t= 0.

This solution satisfies also the original system (22). For,

by integrating the second equation of (22a) we get

:

x"- -\- y"-= const., and the value of this constant is found to

be 1 from the particular value /= 0. Thus we reach the

result:^

If Fi (a , b, cos y , sin y) 4=

one and l)iif qhc exiremal of cIcls.^ C rait, he drawn through

tlw point (rt, 6) in the direction 7.

Hence, if (23) is satisfied for every value of 7, a

unique extremal of class C can be drawn from O in every
direction.

If (23) is satisfied at every point [a, h) of the region |J

for every value of 7, the problem will be called a regular

problem (compare §7, c)).

c) ^^ Discontiniioiis solutions
:'''' As in §1), oj we infer by

the method of partial variation that every "discontinuous

solution"^ must be made up of a finite number of arcs of

extremals of class C

.

Furthermore, the method of §9, h) applied to the two

equations (16) leads to the result:^

1 Accordingr to Cauchy's existence-theorem ; compftre p. 28, footnote 4.

2See Kneser, Lehrbuch, §§27, 29.

3/. e., a solution which has a finite number of corners; compare §24, a).

*Weierstkass, Lectures; compare also Kneser, Lehrbuch, §43.
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At a corner #= ^2 of the minimizing curve, the two con-

ditions

F
to—0

= F
lo+O

F
/9-0

F .

'2+0

(24)

must he satisfied, i. e., the two fiincfions F^^ and Fy nmst

remain continuous even at the coi'iicrs.

We add here the following corollary, though its proof

can be given only later (§ 28)

:

At a corner {x^
, 2/2) of ^^^ minimizing curve, the function

Fi {x.2
, 2/2 > cos 6 , sin 0)

must vanish for some value of the angle 6.

Hence it follows : If (d everij point (.r, ij) of the region jR

F,{x, y, cos e, sin ^) =t=

for every value of 6 , no ^^discontinuous solutions''' are pos-

sible.

§26. EXAMPLES

In applications it is frequently convenient to use one of the two

equations (17) instead of (I), especially when F does not contain x

or y, in which case one of the two equations (17) yields at once a

first integral. It must, however, be borne in mind that each of

these two equations contains a foreign solution' (// = const, and

^ = const, respectively), and that only their combination is equiva- \
lent to (I).

a) Example X: To determine for a heavy particle the curve

of quickest descent hi a vertical plane between tivo given points

(" Brachistochrone "^)

.

1 This happens, for instance, in Example I:

F=y^^x'^+ y'^
,

where a first integral is obtained from (17)

;

yx'

l/ ,2 1 ,2

when a — , y = is such a foreign solution.

2Compare LindelOf-Moigno, loc. cit.. No. 112; Pascal, loc. cit., §31; Knesee,

Lehrbuch, p. 37.
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If we take the positive //-axis vertically downward and denote

by g the constant of gravity, by ru the initial velocity, which we
suppose different from zero, we have to minimize the integral

^^ r'^ Vx'' + y"dt

y u — u^^ + k
where

The curves are restricted to the region

S: u-y. + k->0.

Since i^^. = 0, we obtain the first integral

F^. =
,

^^^= = aX (25)

The theorem on discontinuous solutions shows that the constant a

must have the same value all along the ctu've.

If a = 0, we obtain a' = const., which is the solution of the prob-

lem when the two given f)oints A and B lie in the same vertical line.

If a=|rO, we choose for the parameter i the amplitude of the

positive tangent to the curve ; then we have the additional relation

= cos t ,

V X ^-\- y

which reduces (25) to

y — ij^ + k = v{l + cos 2t) ,

where
1

la

Hence
2/'= — 2r sin 2t ,

and
cr'= z± -tr cos^^ .

If we finally make the substitution

2t = T-7r ,

we get the result

X — X(,-\- h ^ ± r[T — sin t)
,

y — yo + k= r (1 — cos t)
,

(26)
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h being the second constant of integration. The extremals are

therefore cycloids^ generated by a circle of radius r rolling upon
the horizontal line y — y(,-{-k = 0.

Among this double infinitude of cycloids there exists^ one and
but one which passes through the two given points A and B and
has no cusp between A and B, provided only that the co-ordinates

of the two given points satisfy the inequalities

^•i =1= ^0 , yi — y,, + A.- ^ <^ •

b) Example XI: To determine the curiae of shortest length

tvhich can be drawn on a given surface between two given

points.

If the rectangular co-ordinates x, y, z of a point of the sui-face

are given as functions of two parameters u, v and the curves on

the surface are expressed in parameter-representation

n=<l>{t), r = ^(t), (27)

the problem is to minimize the integral

J= \^ Eu"-\-2Fu'v'-\-Gv'^dt
,

where
E = 'S.xl , F = 2 j->„ , G = 2.r^,

,

the summation sign referring to a cyclic i^ermutation ot x, y, z. .

The ciirves must be restricted to such a portion ^ of the surface
|

that the correspondence between S> and its image 2J in the u , y-plane i

is a one-to-one correspondence. We further supi^ose that E, F, G
^

are of class C " in S and that g» is free from singular points, i. e.,

EG-F'>0 .

a) If we use Weierstrass's form (I) of Euler's equation, and

denote by ^(F) the differential expression

iThis result is due to Johann Bernoulli (1696) ; see Ostwald's Klassiker, etc.,

No. 46, p. 3.

2See Heffter, "Zum Problem der Brachistochrone," Zeitschrift fur Mathe-

matik und Physik\\ol.XKXI\ (1889), p. 313; Bolza, "The Determination of the

Constants in the Problem of the Brachistochrone," Bulletin of the American
Mathematical Society (2), Vol. X (1904), p. 185; and E. H. Moore, "On Doubly Infinite

Systems of Directly Similar Convex Arches with Common Base Line," Bulletin of

the American Mathem,atical Society (2), Vol. X (1904), p. 337.
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^(F) = F,,^. - F„,. + F.U'ij"- .r"ij') ,

we obtain easily

^(VEu"+2Fu'v'+Gv'-)= . ,, , , .vo (28)^ ^ {v Eu'' + 2Fu'v'+Gv'^y '

where

V = {EG-F''){h'v"-u"v')

+ {Ea'+ Fv') [(i^„ - 1 E,) ir- + G„u'v'+\ G„v"'] (29)

- {Fn'+ Gv')[^Ey' + E,u'o'+ {F,-\G,)v"-'\ .

The extremals satisfy, therefore, the differential equation'

r = o . r29a)

This differential equation admits of a simple geometrical interpre-

tation :

The geodesic curvature of the cvirve (27) at the point t is given

by the expression

-

1 r- = -7
,3 . (30)

Py \ EG-F'{\ Eir + ^Fu'v+Gv"") '

Hence the curve of shortest length has the characteristic property

that its geodesic curvature is constantly zero, i. e., it is a geodesic.

In passing we notice the relation

* ( \^Eu'' + 2Fu'v'-}-Gv") = ^
^^~^^'

,
(28a)

Pi/

which will be useful in the sequel.

/3) If instead of (I) we use the two differential equations (17)

and, moreover, select the arc s for the parameter t , we obtain for

the extremals the two differential equations :*

iThat (29a) is the differential equation of the geodesies might be taken directly

from the treatises on ditt'erontial geometry: Knoblacch, Fldchentheorie, p. 140;

Bianchi-Ldkat, Different iabjeoinetrie, p. 154; Darboux, TMoric dcs Surfaces, Vol.

II, p. 403.

2 See Laurent. Traiti d'Analyse, Vol. VII, p. 132,

For an elementary proof see Bolza, " Concerning the Isoperimetric Problem on
a Given Surface," Decennial Publications of the University of Chicago, Vol. IX, i>. 13.

:* Compare Knoblauch, loc. cit., p. 142; Bianchi, loc. at., p. 153; Darboux, lo<\

cit., p. 405.
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They have likewise a simple geometrical meaning : From the

definition oi E , F, G it follows that

dH f^clv _^ dx

^di( , ^dv 'sr^ d.r

ds ds ^-^ ds

Differentiating with respect to s we obtain

d'j-

hence on account of (31)

^.r„S = 0,

and similarly

d-JL

^.. — = 0.
" ds'

Therefore

Ci 7' flu fiZ

d7 '

li'
' d?^ (y»^. - yv^..) i^u^r - ^v^u) (i\,2/r " -^r?/,,) • (32)

The geometrical meaning of this proportion is that at every point

of the curve the principcd vorwal coincides vith the vornial to

the s«r/ace, which is another characteristic property of the geodesic

lines.

§27. THE SECOND VARIATION

Let
X= fit, a„, /3„) = /(/) , . = , = , /qq.

y = g{t, (h,, P..) = g{f)
,

represent an extremal of class C" passing through the two

given points A and B , derived from the general solution (20

)

by giving the constants the particular values a= ao, ^= /3,).

We suppose that the functions /(/, a, y3) and f/(/, a, /3),

their first partial derivatives and the following higher deriva-

tives,

ftt 5 fta - ftp ' ftta ' fitfi ; if11 • Ula. ' 'J
I^ > Utla ' iltt^ >
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are coiitiimous in a domain

Z,^t^T,, ,a-a„|^r/, |y8-/?„|^d.

where T'o</(). Ty^f^, and d is a snfficieiitly small positive

quantity. >

Then we infer, as in §11, that in case of a minimum the

second variation of J must be positive or zero. The second

variation is defined by the integral

S'J= I 8'Fdt
,

where * '"

h'F = F,J^ + 2F,,Jri + i'V.r + '^K.'^^'+ 2F.,, VV'

the arguments of the partial derivatives of F being

J^=f{t) ,
y=--(j(f), y= f'{f) , i/'=y'(f) •

a) Weierstrars's Transformaiion of the second varia-

tion:^ This transformation proceeds by the following steps:

1. Express F, .-,., Fy,y, Fy y in terms of F^^ by means of

(11a) and introduce the abbreviations

iC = ii'^
— x'r] ,

L = F,,. - i,'y' 'F, ,
N = i';,, - r'x' 'F, , (35)

.1/ = F,„ + yy"F, = i^;,.. + ij'x'F, ;

the two expressions for M are equal since x and y satisfy

+he differential equation (I).

We thus obtain

^'F = F, ('jA'+ 2i:^r+ 2.1/(t>'+ 7?r) 4- ^N-q-n'

+ (F,,, - u"'F,) e + 2 {F^, + y'ij"F,) $r] + {F,^,^ - x"^F,) r,^ .

2. Observe that

2L$i'-\- 2M{$rj'-\-y]i'} + 2Nr,r)'

' Weierstrass, Lectures, at least as early as 1872.
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and introduce the abbreviations

M,^F^„ + y'u"F,-'^ , (36)

Then the above expression for B-F becomes

8'F = F, (^)"+ L,e + 2M,$v + i\W

8. The three functions L^, J/j, X^ have the important

property of being proportional to y"-, — r'//', jr'-.

Proof: From the definition of L, 31, N and the relations

(10) follows

Lx'+My'=F, , Mx'+Nu'=F„ .

Differentiating the first of these relations we get

dL , dM "
I ir "

= F^^x'^ F,,y+ F,,.x"+ F,, y" .

But
Lx"^My"=F_,,.x"+F^^,.y" ,

and from (I) it follows that

Fyx- — Ky = F, ix'y"- x"y') .

Substituting these values we obtain

L^x'-\- Miy'= ;

similarly

M,x'+A\y'=0

whence we infer that indeed

I-i : Ml : A'l = y'^
: — x'y' : x"^ .

There exists therefore a function Fo of / such that

A = ij"F, , M,= - x'y'F, , V, = x"F, . (37)
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This reduces the expression for 8-J to the final f(jrm

+ [Le + 2M$ri + Nrj'T . (38)
*- A,

If, as we suppose for the present, the two end-points are

fixed, then f and rj vanish at /q and /j and the expression for

S'\T reduces to

«'''=X'[^''(f)+^«"']"'- ('">

This definite integral must then be ^0, for all functions iv

of class D' which vanish at both end-points.

From the assumptions made at the beginning of this

section with respect to the functions /(/, a, ^S), g{t,a,l3)

together with our assumptions concerning the function

i^(see §24, 6j), it follows that F^ and F.. are of class C in

the interval {TqTi) ; we suppose that they are not both

identically zero.

b) Weierstrass's form of Legendre's and Jacobi's

conditions: The second variation being now exactly of the

same form as in the previous problem (§11), we can directly

apply the results of Chapter II.

Accordingly we infer in the first place, as in § 1 1

:

The second necessari/ conditionfor a minimum (^maximum)

"'"*"'
F.^O (F.^0) (II)

along the curve @o-

\Ye suppose in the sequel that this condition is satisfied

in the slightly stronger form

F,>0
,

along©,. (II')

Again, Jacobi's differential equation (equation (D) of

§11) becomes

*W = ^,«-^,(i",^) = 0. (40)
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Jacobi's thenre III conceruing the integration of this dif-

ferential equation takes now a slightly different form. If

we substitute in the differential equation

^' -:>'="

for jc and // the general solution

X=f{f,a, fi) , y =y{t,a, P)

and differentiate with respect to a we get

In this equation we express the second j)artial derivatives of

F in terms of L, M, X. F,, F. by means of (lla), (35), (36),

(37) and obtain, after some simple reductions,

.'"[^>-.M^'^)]-«'
where

<^ = Utfa — ftfja •

If we operate in the same manner upon the differential

equation
^j

we obtain

^„-,„n. = o.

-/'[---^(-'^)]=«

Therefore, since ft and (jf
are not both zero, we find that

dt (-^)-'-

An analoofous result is reached if we differentiate with

respect to ^. Finally, giving a, /S the particular values

«o- A)? we obtain Weierstrass's modification of Jacobi's

theorem

:
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The (lijferential equoHon

*(«)iE^>-;;^(/.-*)=o

has flic firo pcnilciihir iiifiujrah

OAt)^gf{t)fp{t)-.f)(t)g^{t)
,

(41)

which are in general linearly independent.

Reasoning now as in §§14 and 16 we obtain the result:

Let

@{t,U = 0, (0 0, (A,) - e, (t) 0, {Q (42)

then Jacobi's coiiditioji takes the following form :'

The third necessary condition for an extrennnn is fliat

®{t, t„)^() for f„<t<f, . (Ill)

If we denote by /q the zero next greater than /^ (jf the equa-

tion

©(^ /„) =0
,

Condition (III) may also be written:

^1 < 'o ;

to is the parameter of the '•cnnjnuate point"" to the point A.

Example XMseep. 126).

We suppose that the two end-points A and B lie between the

two consecutive cusps t = and t = 27r of the e^x'loid (26), so that

the vahies t= r^, and t = tj corresponding to A and B respectively,

satisfy the inequality

< To < Ti < 27r .

For the function Fi we obtain

1 1

i'\

1 V - Vo + h(\ x" + try 8 y 2 r' 1 ' r sin* ^

Hence Fi is indeed positive along the arc AB.

1 Weieestrass, Lectures; compare also Kneser, Lehrbuch, §31.

2L1XDELOF-M01GXO, loc. cit., p. 231.
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Again, we obtain from (26)

© ( T , T„) = zh 4r^ sin ^ cos ^ sin -7^ cos -^

rT-2tan^-r„ + 2tan5l •

The parameter r^ of the conjugate point ^l ' is therefore determined
by the transcendental equation

T T
T — 2 tan ^ = T„ — 2 tan -^ ,

2

As T increases from to tt and then from tt to 27r, the function
T

T — 2 tan n decreases continually from to — co and then from +00

to +27r. Hence r = r,, is the only root of the equation between and
27r. There exists, therefore, no conjugate 2)oint on the arc AB.

f) Kneser's foDii of JacobVs condition : As in §15 the exist-

ence of a set of extremals through the point A can be proved,' rep-

resentable in the form

x = <jy{t, a)
, y ^^{t, a)

, (43)

1 Weierstrass obtains the set of extremals through A as follows {Lectures, 1882)

:

Let

represent the extremal passing- tliroiish ^4 and making at A a given small angle m
with the extremal

Let further t denote that valus of t which corresponds on (- to the point A. Then
we have for the determination ot t , a, ^ the three equations

:

where the argument of J-', y' is ^q, that of x', y' : /", and where

a~(x "
-\-y ) sin w .

The three equations are satisfied for t'^ = <„ , a = a,,
, ^ = /S^^ ; the functions on the left-

hand sidfe are continuous and have continuous partial derivatives in the vicinity of

t = Jq , a = tty
, /3 = ^Q , and their Jacobian with respect to i'^', a , ^ is different from zero

at this point, since it is equal to

ei(*0)«2'«0)-«2(^0)«l'«0)'

which is different from zero if, as we suppose, 0j (t) and ^2 (0 are linearly independent.
There exists, therefore, according to the theorem on implicit functions, a unique

solution t ,
a

, p of the above equations, which leads to two functions <#> ( i , a ) , i// (f , a)
having the properties stated in the text.
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where <t>(f , a) aud i/{t, a) are continuous with continiioxis partial

derivatives of the first and second orders with the possible excep-

tion of (t>aa, i^aa.— ill the doiiiaiii

t :^T^ , 1
a — c<u

I

< f/,
)

<i,< being the value of a which corresponds to the extremal (f'„ through

A and B, and </„ Ijeiug a suificienth' small i^ositive quantity.

Again, the Jacobian

d(i,a)

differs ' for a = a,, from the function ©(/ . A,) only by a constant factor:

A(^ a„) = C-©(/, f„)
, (44)

where C'4=0.

Furthermore the value t^f which corresponds on the extremal

(43) to the point A , and which satisfies therefore the equations

a'„=c/>(f\«)
, y, = ^(f,a)

, (45)

is a function of a, which is, in the vicinity of a,,, of class C .

From (44) follows Ivxeser's-'/o/'^; of Jacobis conditiou :

\{t,a,)^() for f„<t<fi (III)

Further, if Ai denotes the value of t corresponding to the conju-

gate point A
'
, we have

A (t; , cto) = , (46)
and at the same time

A,(C,«o) + 0, (47)

provided that Fi , i^2 are of class C in the vicinity of U and Fi 4=

at tfl. The inequality (47) follows* from the fact that A(f, a,,) is an

integral of Jacobi's differential equation (40).

From this second form of Jacobi's condition it follows* easily

that the conjugate point A' has the same geometrical meaning as

in the simpler case of § 15.

' This follows either by direct computation from the equations which define

t , a, ^ as functions of a, or else from the fact that A (t, «y) and © {t , f^) are integrals

of Jacobi's differential equation and vanish for i= <Q.

2 See Knesee, Lehrbuch, §31.

3 Compare p. 58, footnote 2,

See Knesee, Lehrbuch, §24, and the references given in E. Ill D, p. 48, foot-

note 117.
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Chap. IV

§28. THE FOURTH NECESSARY CONDITION AND SUFFICIENT

CONDITIONS

We suppose in the sequel that for our extremal (i"u the

conditions

F,>0 (ID
and

®{f,Q4.0 for t,<t^t,
,

(III')

are fulfilled.

a) These conditions are not yet sufficient for a (strong)

minimum; a fourth condition must be added.

Lot E(.r, // ; ,r', //' ; x'
, Jj') be defined' as the following

function of six independent variables

:

E{x,y; x', y' ; 7v\ 7)') = F{x, //, x , Ij')

- \x'F^.{x, y, x', y') -\-y'F,j.{x, y, .«•', y')^ , (48)

or, as we may write on account of (9),

E{x, y; x', y' ; x' ,
y')=

^'[f^(^, V, ~i-'- U') - F^ix, y, x', 7/')
I

+ y'[F, {.X-, y,x',y') - F,,{x, y, x\ y')] . (48a)

Let further (x, //) be any point of the extremal Gq, j>, <]

the direction-cosines of the positive tangent to d'^ at {x . //).

and p, ~i
the direction-cosines of any direction.

Then the fourth necessary condition for <i minimum
[maximum) is that

'E.{x,y; p,q; p, q) ^ (^ 0) (IV)

for everij point [x, y) of ©q and for every direction p, Tp

The proof follows^ immediately ivom.Weierstrass''slemma^

on a special class of varicdions:

Let I
iThis is Weieestrass's original definition; Kxesee writes — E instead of

Weierstrass's 4-E, Lehrbuch, p. To

2 Compare §18, b).

^The reasoning is the same as in §8; compare also §4, d).
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be any extremal of class C" lying in the interior of the

region ®, and let 2: (/A,) ^^^ f^ii arlntrary point of ©.

Through the point 2 draw an arbitrary curve of class C :

6: .7- = <?(t)
, ij

= «/^(r)
,

the value of r~ r., corresponding to the point 2.

Let 3 : {x-i-r^z, !J->^rV-i) be the point of (^ corresponding

to T= T2 + A, where h is a sufficiently small positive quan-

tity. Finally, from a point 0: (/= /o<^2) of ® ^^o the point

3 draw a curve (S representable in the form

6 : J. z= .r + ^ , T/ = y-^rj
,

where ^ and t; are functions of / and ]i which vanish identi-

cally for /i = 0, and which satisfy the following conditions':

1. 1,7/ themselves, their first partial derivatives and the

cross derivatives f^/, , }](,, , are continuous in the domain

JiQ being a sufficiently small positive quantity.

2. au,h) = , r]{t, h) = ()

$(f,, h) =i, , rjiU, h) =ri,

for every O^A^/?o. Then the

difference"

has the following value :

J,:: - ( '/o2 + J^2:d = - h [e {x, , y, ; .r; , t/./ ; j; , y.^ ) + (A j] . (49)

Similarly, if we denote by -4 the point of ^ corresponding to

I Functions f , -q satisfying these conditions are, for instance, the followiui;:

if It, V are two functions of t of class f which vanish for t = /„ and an; equal Ui 1 for

t^t,.

'-F*>r the notation compare §§2,/), 24 a), and 8.
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T= T2— h and draw a curve 6 from to 4 of the same char-

acter as 6 , we obtain :

^04 + Jr2 — </o2 = + it [e i-^-i . 2/2 ;
*'2

, Vi ;
i?2'

, Z/2' ) + (/i)] • (49a)

By the same method and under analogous assumptions

we further obtain the following

,
results, which are sufficiently ex-

's'^'* plained by the adjoining dia-

FIG. 23 gram

:

J23+ J-si — J-n = /' [e {Xi , 2/2 ;
a-2

, yl ; ^2 , ^2 ) + (/o] . (50)

'lu
— ('/«+ ^21) = — /' [e (.^2 , 7/2 ; a-; ,

7/2' ; x^
, ^2 ) + (^O] • (^^a)

From the relation (8) it foHows that

E(x,y; kx',ky'; kx', ky') = kE{x, y; x'
,
y' ; x',y')

, (51)

if A^>0 and A;>0.

Hence if we set

P = =r=:z = COS 6 . q = =z==:r = slu
,

} x"^y" Vx^ + y"

^ z ^ V^= = cos tf
y g = — -

(52)

we get

E{x, y; x', y';x',y') = Vx'^ + y"''E{x, y; p, q; P,q) , (53)

which reduces the second and the third pair of arguments of

the E-function to direction-cosines.

If we choose for the parameter r on the curve (S the arc,

we may replace in the above formulae x^, 2/2 and x^, yi by

the direction-cosines p2? Q2 and fu, q-z of the positive tan-

gents at 2 to @ and to 6 respectively,

6) Relatioyi between the 'E-function and the function i\

:

If the angles 6 and o are defined by (52), we have, accord-

ing to (48),
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E(.«', y; P,q; p, q)

= COS O^F^. {x, y, cos 6, siu 0} — F^(x, y, cos 6, sin ^)1

+ siu 6 yFy. (x, y, cos ^, sin 6) — i^^^,. (x, y , cos ^ , sin ^)1 .

But

^xi"^'} y > cos 6 , sin ^) — Fy..{x, y , cos ^. sin ^)

= i'^ 't-F^.{,v, y,cos(^ + T), sin(^ + r)).^r
,

where (o= 6— 6: and an analogous formula holds ior Fy.

If we perform the differentiation with respect to t and

then make use of the relations (11a), we get

E(a', y; p, q; p. q)

= 1 F^(x, y, cos {6 + t), sin ( ^ + t) ) sin (w — t) cIt .

By adding to 6 a proper multiple of 27r, we can alwaj's

cause (o to lie in the interval

TT <C to ^ TT ,

so that sin (to

—

t) does not change sign between the limits

of integration. We may then apply the first mean-value

theorem and obtain the following relation^ between the

E-function and the function F^:

E {x
, y ; cos 6 , sin 6 ; cos d , sin 6)

= (l - cos (6 - ej) F, {x
,
y,cos 6*, siu 6*) , (51)

where 6^ is a mean value between 6 and 6.

From this theorem follow a number of important conse-

quences :

1. If we let approach 6, we obtain

Ejx, y; p , q; p, q) , ..^.
-'-
—

~^ 7s
—

7r~ = ^' (^^, !J-}>, q) • ('>'^)

= e 1 — cosf6' — (9)

Hence it follows that Condition {IT) is contained in Con-

dition (IV).

1 Weieestkass, Lecturer, 1882.
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2. Condition (IV) is always satisfied when

F^ {.X-
, // , cos y , sin y) ^ (Ila)

for every })oint (.r, >/) on ©q ^^^^ ^'^^' every value of 7.

3. The E-function vanishes whenever 6= 6 ("ordinary

vanishing")^; for a value ^=|=^ it can only vanish' (''extra-

ordinary vanishing") if J^\{r, //, C0S7, sin7) vanishes for

some value y^=6* between 6 and 6.

c) Example XII :^ To minimize the integral

y

The value of the E-functiou is (>asily foinid to be

E(.T, //; p, q; p, q) =
(^+ g-)- (j7^ + r)

= y sin' (0-6) sin (2^ + ^) .

Apart from the exceptional case when both end-points lie on m
the .r-axis, E can ])e made negative as well as positive by choos-

"

ing d suitably; and therefore no minimum can take place.

More generally, whenever the homogeneity condition (8) "

holds not only for positive but also for negative values of /.•,

as happens, for instance, when F is a rational function of

x' , ij\ no extremum can— in general— take place.

For in this case (51) holds also for negative values of A', so

that

^{x, y; p, q; — p, —q) = —E(.r, y; p, q; -\-p,+q)

.Condition (lY) can therefore be fulfilled only if

E(.^7, y;p,q: p, q) =

1 Kneser's terminology, Lehrbuch, p. 78.

2 Hence follows the corollary on discontinuous solutions stated on p. 126. For

from (24) follows

E(j-, y; p, q; p,q)=0.

'To this definite integral leads Newton's celebrated ijroblem : To determine the

solid of revolution of minimum i-esistance. Compare Pascal, loc. cit., p. Ill ; Knesee,
Lehrbuch, §§11, 18, 26; the above expression for E was given by Weiersteass (1882).

i



§28] Weieesteass's Theoey 143

along Ci'o for every directiou J>, q, which, on account of (S-t),

is possible only in the exceptional case when jPi= along G^q-

d) Sufficicncjj of the four preccdin<] condift'oiis:^ The

four conditions which so far have been shown to be iicccs-

sary for a minimum of the integral ./. are— apart from cer-

tain exceptional cases'—also snfficicid.

Let us suppose

1. That ©0 (or AB) is an arc of an extremal of

class C" without multiple points, lying wholly in the (I')

interior of the region^ IS ;

2. F^{x, u,p,q)>0 along* Q^ \
(H')

3. The arc (Sq does not contain the conjugate point

.4' of the point .4. (Ill')

-t. E(.r,
II : p, q: p. ri)>0 along* G, (IV)

for every direction p, q different from tlie direction j). <[ of

the positive tangent to @o at [x^ y).

Moreover we retain the assumptions made in §27 con-

cerning the general integral of Euler's differential equa-

tion.

We propose to prove that under these circumstances the

extremal (Eo actually minimizes the integral

J= I F{x, ij, x , u )dt
•y '0

From the assumptions (III) follows the existence of a field

of extremals about the arc Gy. /. c, there exists^ a neighbor-

1 Weieesteass, Lectures, 1879 and 1882; Zeemelo, Dissertation, pp. 77-ii4; and
KxESEE, Lehrbxich, §20.

-The exceptional cases are

1. I'll has multiple points or corners, or meets the boundary of iR;

2. i^j — at certain ijoiuts of P„

:

3. A' coincides with B; this case will be considered in §.38.

i. E = at points of (r^ for certain directions j7, q not coinciding with />,</.

3 Compare §21, h).

*That is, for every point (x, y) of t'^, p , q denotiuy the directiou-cosiues of the
positive tangent to e^ at (x, y).

^Compare §19. A sharper ff)rmulation and a detailed proof of these statements
will be given in §34 in connection with Kneser's theory.
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hood [p) of ©0 such that to every point P of (p) there can be

drawn from the point ^ A a uniquely defined extremal which

varies continuously with the position of the point P and

coincides with ©q when P coincides with B.

Let now

be any ordinary curve drawn from ^4 to B and lying wholly

in the neighborhood {p) of ©o, -s' denoting the arc of the

curve 6 measured from some fixed point of (S, and let AJ
denote the total variation

Then a reasoning' analogous to that employed in §20 leads

to the foliowing expression for A,/ (Weierstress's Theorem):

r'l _ _ _ _
Ae/= I E{x, y; p. (i: p, (j)d.s

, (56)

where (j-. Tj) denotes a point of (S, /j, 7^ the direction-cosines

of the positive tangent to 6 at (j-, //), and p, q the direction-

cosines of the positive tangent to the unique extremal of the

field passing through (.r, ij).

It now only remains to show that, as a conseqvience of

our assumptions (II') and (IV), the integrand in {)(')) is

never negative* along the curve (S.

Let (x, y) be any 2:>oint of the above defined neighborhood

(p) of ©0 ^ncl let, as before, p, q denote the direction-cosines

of the positive tangent at {x, y) to the unique extremal of the

field passing through (x, ?/), and p, q the direction-cosines of

any direction o, and define

1 Or better from a point A in the vicinity of A on the continuation of i'„ beyond

A, as in §19, c).

2 The lemma of §8 must be replaced by the lemma of §28, a). Other proofs of

Weiers trass's theorem will be given in §37 in connection with Kneser's theory.

3 It is in this last conclusion that the problem in parameter-representation differs

essentially from the problem with x as independent variable ; compare §22, c).

i
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Ei(.r, yi p, q; p, q)

( E{x,y; p, q; p,q) . / ~
i

~
, ^ ,\

\ , ~
I

:^T— > when 1 -(^>7. +yr/)^() ,

( i'\ (a:, ?/, p, g) ,
when 1 - ( j^Ji + qq) = ,

/. ('., p =p , q =q .

The direction-cosines p, q are single-valned and continuous'

functions of a-, ij in the neighborhood {p) of S,,. Hence it

follows, on account of (54), that Ej is a continuous function

of .r, u, 6 in the domain

{x,y) in {p) , 0^0 ^2,iTT

and since, according to our assumptions (II') and (IV), E^

is positive along ©o for every value of 6, it follows from

general theorems on continuous functions that Ej is positive

throuijhout the domain

{X,!J) in (p) ,
0^6^^ 27r ,

provided that p has been taken sufficiently small.

The integrand of (56) is therefore positive at all points

of 6 at which the direction J), q does not coincide with the

direction p, q, and zero where these two directions do coin-

cide. Hence AJ">0 unless it should happen that j> ^p, q—q
all along 6, in which case we should have At/=0.

But the latter alternative is impossible" unless 6 be iden-

tical with ©Q. This proves that the arc @o cictually minimizes

the integral J if the four conditions enumerated at the

beginning of ^^6', d) arefidfiUed.

Example VII (see p. 97)

:

F = g{.r,y)Vx" + y" .

Here
Ei(^, y; p, q; p> '/) = f/(-^"> u) ,

1 Compare §34, Corollary 4.

-The proof is similar to that given in §22, a) ; for the details compare Kneser.
ie/ir/mc7i, §22.
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and therefore Condition (IV' ) is satisfied if

along- (£•„.

This shows that in the prolilem of the l)rachistochrone an arc

AB oi the cycloid (26) actually furnishes a mininuini if it contains

no cusp (compare p. 136)

.

Corollary : If the condition

F]^{x, y , cos y, sin y) > (H'l
)

is satisfied for every point [x, y) of @o ^^^ fa'' ct'c^'H ruliic

of 7, then (II') and (IV') are a fortiori satisfied, the latter

on account of (e54).

Example XI (see p. 128) : Tlie Geodesies.

Here
EG-F^

F,=
{VEir' + 2Fu'v'+Gv"'y'

Hence under the assumptions made on p. 128 concerning the nature

of the jjortion of the surface to which the geodesies are restricted,

Condition (Ila ) is always satisfied.

e) Existence of a minimum ^^im Kleinen'': We add here an

important theorem which has been used, without proof, by several

authors' in various investigations of the Calculus of Variations,

viz., the theorem that under certain conditions two points can

always be joined by a minimizing extremal, provided only that the

two points are sufficiently near to each other. An exact formula-

tion and a proof of this theorem have first been given by Bliss.-

His results are as follows

:

We suppose that in addition to our assumptions concerning the

function F (see §24, bj) the condition

Fi{x, y, cos y , sin y) > (58)

1 Weibrstrass (Lectures, 1879) in his extension of the sufficiency proof to curves

without a tangent, see §31: Hilbert in his existence proof (see the references siveii

in chap, vii); Osgood in his proof of the identity of Weierstrass 's and Hil-

bert's extension of the meaning of the definite integral J to curves without a tan-

gent (Transactions of the American Mathematical Society, Vol. II (1901), p. 29.>).

^Transactions of the American Mathematical Society, Vol. V (1904), p. 113. His

proof is based upon an extension of a theorem of Picaed's concerning the exist-

ence of an integral of a diiferential equation of the second order, taking for two

given values of the independent variable two arbitrarily prescribed values {Traits

dfAnalyse, Vol. Ill, p. 91).
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is fulfilled for every point (x,y)in a finite closed region So con-

tained in the interior of S, and for every value of 7.

Since Fi(x, y, cost, sin 7) is continuous at every point (x, y) of

S and for every value of 7, a finite closed region, S, , contained in S

and containing So in its interior, can be determined such that the

inequality (58) still holds for every point {x, y) of S^ and for every

value of 7.

Under these circumstances, if a positive quantity e be assigned

arbitrarily, a second positive quantity p^ can be determined such

that from every point Piixi, ?/,) of So to every point Piix^, yi) in

the circle (Pi. p), where 0<p^pe, an extremal of class C can be

drawn which lies entirely in the circle (Pi, p), and which has the

property that at every one of its points the slope with respect to

the direction P1P2 is numerically less than e. Moreover the circle

(Pi, p) lies entirely in the region Sj

.

This extremal is at the same time the only extremal of class C
which can l)e drawn from P, to Pj and which lies entirely in the

circle (Pi . p )

.

Let this extremal be represented by

y = ^(t; Xi, yr, *2. Z/2) >

^ f ^ f.

Then there exists a positive quantity ?, independent of Xi, y^, X2, y-z,

such that the fvmctions *, ^, *f, ^t iire continuoiis and have con-

tiniious first partial derivatives with respect to t, Xi, yi, x-2, yi

throughout the domain

^
1 < T; { -^'i . Ui) ill SL. ; < 1

'

{x., — x,f + {y. — y,f < p

Finally also the value t = t-i which corresponds to the point Pt

is a continuous function with continuous first partial derivatives of

./•i. //i, Xi, yi for all iDOsitious of the two points Pi, Pi here consid-

ered.

For the parameter t of a point P of the extremal we may choose

the projection of the vector PiP upon the vector P1P2.

This unique extremal P1P2 furnislies for the integral J a

.'^waller value than any other ordinary curve (£ n-Jtich can be

drawn from Pi to Po and u-ltich lies entirely in. tlic circle (Pi, p).

If in addition to the inequality (lib ) the further condition

F{x, y , cos y, sin y) >
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is fulfilled for every point (x, y) of the region S,, and for every value

of 7, and if both points Pi and P2 lie in ffiu, then the unique

extremal P1P2 furnishes for the integral J even a smaller value

than any ordinary curve, different from the extremal P1P2, which

can l)e drawn from P, to Pi^nd which lies entirely in So, provided

that IP1P2' 5aj, where Po is a certain positive quantity less than p

and independent of the position of Pi and P2

.

,,>i

§29. BOUNDARY CONDITIONS

(i) Condition along a scr/ment of ihe honndary: If the

minimizing curve 0231 has a segment 23 in common with

the boundary of the region S to which the admissible

curves are confined (see Fig. 7), we obtain the condition

which must hold along the boundary

as follows

:

In order to fix the ideas, we sup-

pose that as we go along the boun-

dary 6 from 2 to 3, i. e., in the

positive direction of the minimizing

curve, the region U lies to our left.

Let the curve (S be represented by

6: x = ^{s), y = (f{s),

s denoting the arc, and suppose that the first and second

derivatives of ^(s) and •^(s) are continuous along 23.

Then if we construct at a point (.r, 7/) of 23 a vector of

leno-th u , normal to 23 and directed toward the interior of

S, the co-ordinates of its end-points are

X = X + $ , y = y + 7] ,

uy' iix'

FIG. 7

where
i = V =

Vx' + y"'
• vx^ + y"

Hence if we substitute for u a function of s of the form

u = tp
,

1 Due to "Weieestrass, Lectures, 1S79; compare §10 and Knesee, Lehrbuch. §44.
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where e is a positive constant and p a function of s of class

D' which is ^0 in (.'*2^3) and vanishes at So and S3, the pre-

ceding formulae represent for sufficiently small values of e a

curve wdiicli remains in the reijion 1R and which is therefore

an admissible variation of the arc 23.

For this variation we obtain, if we apply (15a), for A,/

the expression

A J = e[-£ fp l/r^+r ds + (e)

J
, (59)

from which we infer, by the method of ^5, that in case of <(

minimum ire )iiiisf have

f^O along 23
, (60)

where T is the expression (19) in which x, y are replaced

by J-, y.

If Fi is positive not only along the arcs 02 and 31 but

also along 23, the preceding condition admits of a simple

geometrical interpretaiion :^ For, if we introduce in the

expression for T the curvature 1/r of 6 at a point P, and

denote by 1/r the curvature at the same point P of the

extremal which passes through P and is tangent to S at P,

then (60) may be written, according to equation (la) of p, 123,

footnote 1,

^^l . (61)
r r

Hence if r>0, i. c, if the vector from the point P to the

center of curvature 71/ of 6 lies to the left of the positive

tangent to 6 at P, also r must be positive and the center of

curvature M of the extremal must lie between P and M or

coincide with M.
If, on the contrary, r<0, i. e., if the vector PM lies to

the right of the positive tangent, M must lie either on the

iThis is an extension of the results given for the special case F=Vx +yby
Kneser, Lehrbuch, p. 178.



l-jO Calculus of Vaeiations [Chap. IV

opposite side of the tangent to M (when ?• > 0) , or else on

the same side as, but beyond, M (or coincide with M).
If, as we go along the boundary from 2 to 3, the region

U lies to the right, the condition becomes:

r^O along 23 (60a)

or

-^i
. (61a)

r r ^

h) Conditioiii^ (if ihe poiiifx. of ffansition: An additional

condition must hold at the point 2 where the minimizing

curve meets the boundary, and likewise at the point 3 where

it leaves the boundary. To obtain the first, let h be a posi-

tive infinitesimal and let 4 be the point of 6 whose parameter

is s= S2 + //; join the points and 4 by a curve 6 of the

type defined in §28, a), and consider the variation 0431 of

the minimizing curve. For this variation we obtain, accord-

ing to (41)) and (53)

:

A J = J„i — (J„2 + J-u) = — /i [e (.r,
, y.2 ; 2h , (h > Pi > <i2) + (^O] ,

where _/92, Q2 ^^^ Pij Q.2 ^i'® the direction-cosines of the posi-

tive tangents at 2 to the curves 02 and 23 respectively.

Similarly, if we join the point 5 (s= S2— h) of 6 with

the point by a curve 6, we get, according to (49a),

A J" = ,7„5 -f J^2 — ^u2 = + /i [e (,r.
, 2/2 ; 2>2 , Qi-, P2, q^) + ('O] »

whence we infer in the usual manner that at the pomt 2 the

folloLving condition must he satisfied:

E Ca , y. ; 2h , q-i ; pi , ^2) = . (62)

Applying similar reasoning to the point 3 and making

use of (50) and (50a), we reach the result that at the point 3

the analogous condition

E (x-i , y., ; Pi , 0-3 ; P3,qi) = (63)

must he satisfied, where ^^3, q^ and p^, q^ are the direction-

cosines of the positive tangents at 3 to 31 and 23 respectively.
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The two conditions (62) and (63), together with the con-

dition that the minimizing curve must pass through the

given points and 1, determine in general the constants of

inteirration of the two extremals 02 and 31.

If the problem is a "regular"' one, /. c, if the condition

Fi{x, y , cos y , sin y ) =t=

is satisfied at every point (-r, y) of the region B and for

every value of 7, it follows from (51) that (62) and (63) can

only be satisfied if

i>2 = j>2 , g2 = (i2 ; 75s = p3 , <ii = qs

This means geometrically that fite arcs 02 (tiid 31 niiisf

iouch the bouii(J((rij of flic points 2 and 3 in such a manner

that their positive tangents coincide with the positive

tangents of the boundary.

c) Case ichere the minimizing cnrve tias onlij one point

in common icitJi the boiinda)-!): Sup-

pose that the minimizing curve has

only the point 2 in common with

the boundary 6. Then the arcs 02

and 21 must be extremals. To find

the point 2, let 3 be the point of 6

whose parameter is s= S2+ /^ and

consider a variation 031 of the curve 021 (see Fig. 24).

For this variation we obtain

which, according to (49) and (19a), is equal to:

A J = /i [E(a'2, Ui ; Pi, ^2 ; Pt, §2)

— E U\ , iji ; Jh, ^2 ; p2, Qi) + (^0] »

where p2, q..; po, (h\ Pi^ 92 are the direction-cosines of the

positive tangents to the arcs 02, 21, 23 respectively at the

Doint 2.

FIG. 24
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Similarly, if 4 be the point o'f 6 whose parameter is

,s = ,s'2— //, and we consider a variation 041 of the curve 021,

we obtain

A J = [Jo4 - J^n + Ji'l
J
+ ['^4, - (^42 + ^2.)]

= - h [E {x.2
, y.2 ; ih , q-i ; ]h , q^

— E (,r2
, //, ; Pi,q2; fh , 52) + {h)~\ •

Hence we infer that (if llic jtoiitt 2 the condiiioti

_ + +

E {.r^
, Vi ; Pi , qi ; Ih , ^2) = E {.r., , ij.,

; p., , q., ; p., , ^2) (64)

uiiisl he satisJiciL

d) Example VI' (see p. 84)

:

F = Vx'^+tr

.

Suppose the region 2J to be the whole plane with the exception

of the interior of a simply closed curve of class C", and suppose

that the straight line joining and 1 passes through the excluded

region.

The minimizing curve must be com-

posed of segments of straight lines and

segments of the boundary, the latter

3 turning their convex side outward

since in this case 1/r = and therefore

or

FIG. 2.5

according as 23 is described positively

or negatively with respect to 15 . The
lines 02 and 31 must touch the arc 23

positively at 2 and 3 since F-iix
, y, cost, sin 7) = 1.

Again,

E {x, y ; cos 0, sin ; cos 6 , sin ^) = 1 — cos (9 — 6)

Hence if the minimizing curve is to

have one point 2 in common with the

boimdary, the condition

cos {O2 — 62) = cos (6.2 — 62)

must be satisfied at 2. This means
that the lines 02 and 21 must make
equal angles with the tangent to the

boundary at 2

.

1 Compare Knesee, Lehrbuch, p. 178.

FIG. 26
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e) Example I (see p. 1):

F = y\ .r'-+y"' >

the region S is the upper half-phrue :

The extremals are here

a) The catenaries

X — t ,

P) The straight lines

1
^-l^

y =z a cosh ;

X = a.

Since the catenaries never meet the ,<'-axis,

the only possil^le solution containing a seg-

ment of the boundary consists of the ordi- /^

nates of the two given points :

/y» .-v» and X = X
FIG. 27

1 )

together with the segment 23 of the a^-axis between them.

Since along the j:'-axis

T=-l .

condition (60) is satisfied along 23 ; and since

^ {x, y ; cos 6 , sin 6 ; cos d , sin ^) = ^1 — cos {d

conditions (62) and (63) are satisfied at 2 and 3.

^})u ,

§30. the case of variable end-points

The methods explained in §23, slightly modified, can be

applied to the case when all curves considered are expressed

in parameter-representation. In one respect the treatment

of the problem in parameter-representation is even consid-

erably simpler, viz.: the variation of the limits of the inte-

gral J can be completely avoided. For let

@o: x = cl>{t) , y = il^{t) , t.^t^t, , (65)

be the minimizing curve, and

g : X = <^(t)
, 7/ = iJ/(t) , To ^ T ^ T,

, (66)
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a neighboring curve. If we then apply to 6 the "parameter-

transformation'' (see §24, (())

,^ (/-4)(r-r.)

we obtain for 6 a representation in terms of the parameter

t for which the end-values are /q and f^, the same as for ©q-

We consider briefly the case where the point 1 is fixed

and the point movable on a given curve of class C

'

:

6; I- = <?(a)
, .(/

= «A(«) • (67)

The minimizing curve (65) must again be an extremal; it

begins at a point of the curve (S whose parameter on 6 we

denote by (Iq. Let 2 : [fi ^^ Oq -\ e) be a point of (l in the

vicinity of 0, d"o + ^o? Z/o + ^o i^s co-ordinates; then

,^=e[^'(«.) + (^)] ' '?" = " [f(«o) + (e)]

An admissible variation CS of sufficient generality which^—
-^ passes through 2 and 1, can easily

§-. ^—~>i
I

^® constructed analytically in the

/^K'''^^^'^^'^'^ y form

vl,-'^ where7^ FIG. 28 •

. .

u, V being two arbitrary functions of / of class C which

vanish for t=^ti and are equal to 1 for /^/q.

For this variation of the curve @j we obtain, according

to (15b),

Substituting the values of f , ?; at /q and f^ and remembering

that ^=0 along the extremal ©o? we get^

where

1 Weierstkass, Lectures, 1882.



§30] Weiersteass's Theory 155

^, dx ^, dy

da da

We obtain, therefore, the condition of fransversali'fjj in

the form

x'F,.{x, y, x, y') + ~y'F,,{,v, y, x'
, y') f

= (68)
I

where x
,
y' refer to the extremal @o?

^'
> D' to the given

curve 6.

Example XI (see j). 128) : The Geodesies. The condition of

transversa lity is

u(Eu'+Fv')-^d'{Fu'-\-Gv')=0
; (69)

its geometrical meaning' is that the geodesic must ])e orthogonal

to the given curve.

The focal point is determined by the following formulae :^

Let Aq and Bq denote the following two constants

_ x"F^.+ y"F,j,-{-Lx'^+2Mx'Ti'+ Ny"

_ (x'y'-y'xyF,
"

— ;^'2 _j_ r.'-i

(70)

x' + y

where the arguments of i^_,.., Fy-, F^ are a'o, //o, '"o, //o ^^^f^

iv, JjT, iV" are defined by (35). Bq is different from zero if

we suppose, as in §23, that @o ^^^^ ^ ^^^ ^^t tangent to each

other at the point 0. Let further

H {t„ , t) = A,® {U , t) + B, ^-^j^ , (71)

the function © being defined by (42). Then the parameter

/q' of the focal point is given by the equation

H(f„0=0. (72)

If

x = (i>{t, a)
, y = ij,(t, a)

1 Compare Bianchi-(Lukat), Differentlalgeometrie, p. 65.

2 See Bliss, Transactions of the American Mathematical Society, Vol. Ill (1902)

p. 136.
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is the extremal which passes throu<Th the point a of the

curve 6 and is cut transversely by 6 at that point, and if

A(/, a) denotes the Jacobian of the two functions ^, i/^ with

respect to /, a, then'

A(/,a) = CH(A,,/) (73)

which proves the geometrical meaning of the focal point.

The question of sufficient conditions will be discussed in

detail in connection with Kneser's theory in chap. v.

§31. WEIERSTRASS'S EXTENSION OF THE MEANING OF THE
DEFINITE INTEGRAL

I
Fix, y, ,r',u') dt

We have confined- oiurselves in all the preceding investigations

to "ordinary" curves. This limitation was indeed necessary for

most of our proofs, but it is not implied in the nature of the

problem

.

The most general class of curves for which the problem has a

meaning would be the totality of cui'ves for which the integral

e/= I F(x, y, x', y') dt
'0

is finite and determinate.

In many problems of a geometrical origin, however, a still

further generalization is desirable.

a) Example of the lengtli of a curve : Thus, for instance, the

problem to determine the curve of shortest length between two

given points A and B, is not exactly equivalent to the problem to

minimize the integral

J = f ' Vx" + tj" dt
,

because the length of a cmwe cannot in all cases be expressed by

this integral.

The length of a continuous ciu've

iSee Bliss, loc. cit., p. 140.

2 Compare §24, a) and c).
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£: jc = <b{t)
, u = ^{f)

, U^t^t, (74)

is defined ' as folious :

Consider any partition n of the interval (Vi) into n subintervals

by points of division t,, tj, . . ., t„_,, where

to < Tl < T.^ • < T„_, < f,
,

and denote by A, Pi, P2, -, P„_i, B the corresponding- points

of 2, by A'o, To; A,^i; ^'2,^2; • • •; .r„_i, ?/„_,; A',, F, their

co-ordinates. Then the length of the polygon '^n inscribed in the

cui've 6 whose successive vertices are these points, is

I' =11

where ^

AXy = Xp_)_i J',. , A //,, =:
.//,._{_,

— ?/^ .

If Sn approaches a determinate finite limit'* J as all the differ-

ences (t,,_|_i — T^) approach zero :

J ^ L Su ,

the curve 2 is said to have a finite length whose value is J.

If the first derivatives (/),'/''(/) exist and are continuous in

(foti), the above limit always exists and can be expressed by the

definite integral*-&'

f" T x''-\- y'-df

b) Extension of the meaning of the general integral .• In an

entirely analogous manner Weierstrass'' has generalized the mean-

ing of the definite integral

1 See Jordan, Cotirs iVAnalyse, Vol. I, Nos. lOo-lll. This is the definition which
is most convenient for our present purpose ; compare also §44, n), end.

2With the understanding that T|| = f||, .rf|=XQ, j/q^Yq and 'r„=ti , a'„= X] , y„-^Y^.

3That is, corresponding to every positive e, another positive quantity S^ can
be assigned such that

for all partitions n in which all the difPerences {^r^,\^ — t^) are less than S^.

'Compare Jordax, loc. cif.. No. Ill, and Stolz, Transactions of the American
Mathematical Society, Vol. Ill (1902), pp. 28 and 303.

^Lccturex, 1879; compare also Osgood, Transactions of the American Mathemat-
ical Society, Vol. II (1901), pp. 275 and 293.
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J = 1 F{x, ij, y, !i')dt ,

taken along a continuous curve S (defined ]>y (74)) which lies

entirely in the interior of the region S of § 24, b).

Consider as before a partition n of the interval {Utx) and denote

by TFii the sum

Then, if the curve 2 is of class ^ C , this sum Wu approaches a

determinate finite limit as all the differences (t„_j_i — t,,) approach

zero, viz., the definite integral^ Ji{AB):

LWn= r F{x,u,y,v')dt . (76)

This remains true when S has a finite number of corners.

We now agree to define the definite integral

I F{.v, y, x', y')dt
,

iThis implies tliat (/>'" (?) + >/'^(<) +0 in («(,<,); compare §24, a).

2 For the definite integral may be written

» — 1 H — 1

where t|, is some intermediate value between T^, and >,,_[_ j . On the other hand

where r^ and t]'' are again intermediate values between t^ and Tj,
, j. Hence we

have, on account of the homogeneity of F,

From the theorem on uniform continuity applied to the function F (x, y, x', y') on

the one hand, and to the functions <i> (t), 'I' (t) and their derivatives on the other hand,

it follows that corresponding to every positive quantity e another positive quantity

6j. can be determined such that

I

F{<f, (t„), ^|J (tJ, </.-(t-), ^'(r;')) -f(<i, K), ^ (t;,), 4>\t[,), 4>-{tI,))
\
<€

fori'= 0,l,2, • • •,?! — 1, provided that all the differences (Tj, ,

j
— t^) are less than

6^ . Hence

which proves our statement.
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takt'ii along' the curve 2, as the limit of Wn in all cases in which

this limit exists and is finite : and we denote its value by J*(AB) :

J*{AB)=LWn . (77)

This is a natural extension of the definition of the definite inte-

gral since it coincides with the ordinary definition for all "ordi-

nary" ciu'ves.

c) First modification of Weirrstrass's definition: Various

modifications of this definition will be of importance in the sequel:

Since the curve 8 is supposed to lie in the interior of the region

S, the rectilinear polygon whose vertices are the points A, Pi, P2,

, P,i-i, B will likewise lie in the interior of S, provided that

the differences (t^4_i — r^,) have been taken sufficiently small. Let

Vn denote the value of the integral J taken along this polygon

fi'om A to jB.

If, then, the curve 2 is rectifiable, and if one of the two sums
Fii and TFn approaches * for LAt = a determinate finite limit, the

other approaches the same limit,^ so that we may also define

Jf{AB) = LVn . (78)

d.) Second modification of Weierstrass's definition: If the

curve 2 is rectifiable and lies in a finite closed region So {con-

tained in the interior of the region S) in luhich the condition

Fi {x , 7/ , cos y , sin y ) > (58)

is fulfilled for every value of 7, then the preceding extension of

the meaning of the definite integral J may be modified as follows :

Let a positive quantity e be chosen arbitrarily. Then deter-

mine for the region %, the quantity Pe defined in § 28, e) and choose

a positive quantity p^ Pe arbitrarily. Further select, according to

1 See Osgood, Transactions of the American Mathematical Society, \ol. II (1901),

p. 293. If Z^^] and y^^_i denote the length and the amplitude of the vector P^P^ i j

,

the difference ^u~^^^n "^^y be written in the form

»—

1

^U - ^'^H = ^ ^ I
[-F'(-?v-)-i , ^iz+i , cos 7,,_j.i , sin Vj.-fi)

where x^_,_ j =.c^+ s cos 7,.4-i , y,,.i^i- 'Jy+ s sin y^_^^ .

The above statement follows, then, from the theorem on uniform continuity
applied to the function F{x, y, x', y).
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the theorem on uniform continuity, another positive quantity 5 so

small that

!</.(r)-c^(r')i<p//2 ,
\4;{t')~^{t")\<p/^ 2

for every two values /', /" of the interval (/,/i) for which

\t" -f'\<S .

Finally choose the partition II so that

T„ — T,, < 8

for >'=0, 1,2, . , H -1.

Then the distance | P„P„+il is less than p. and therefore we can,

according to §28, e), inscribe in the cnvve 'il a unique polygon of

minimizing exirevials with the points A, Pi, P^, • • , P»-i, B for

vertices, i. e., we can draw from P,. to P^+i a unique extremal (5', -i

of class C which lies entirely in the circle (P„, p) and which fur-

nishes for the integral J a smaller value than any other ordinary

curve which can be drawn from P„ to P^+i and which lies entirely

in the circle (Pv , p) , Moreover, at every point of Q^+i the slope

with respect to the direction P„P,.+i is less than c

We denote by L^n the value of the integral J taken along this

j)olygon of extremals, /. e.,

Un=^J.,.^,(P.P.+,) . (79)

Then if we pass, as before, to the limit Z. Ar = 0, and if one of the

iivo sums Un cmd Wn approaches a finite and determinate tim.it,

theotlier approaches ttie same limit,^ so tliat we may also define

1 First remarked by Osgood, Transact ions of the American Mathematical Societi/,

Vol. II (1901), p. 293. The statement can be proved as follows:

Let the extremal <?;,^_i be represented by

where, as in §28, e), the parameter < of a point P of e,._^i is the projection P^Q of the

vector P^P upon the vector P^P^_|_, , and lv-\-i is again the distance
| Pi,Pi,_^^ | . If

we denote by y^r j the amplitude of the vector P^P^^i and by u the perpendicular

QP with the sign + or — according as the point P lies to the left or to the right of

the vector P,,P^ i

i
, then we have

*i.-l-i it) = .tv+« cos 7;,_,_i
- u sin Vr+i ' 'Pi'+i W = !/v + t sin 7,.+i + " cos v^_j_,

,

*»>+! (0 = cos Vy_,_] - tr sin 7i,_Li , >^;,_|.i (0 = sin 7,,_|_j + m' cos y^_j.i .

Hence if we write
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Jf{AB) = L r„. (80)

We shall call the totality of rectifiable curves for which the sum
Wn approaches a determinate finite limit, '* the class (K).^'

e) Extension of the sufficiencij i^roof to curves of class {K):

After these preliminaries, let (S,, denote an extremal of class C
dratni from A to B and lying icliolhj in. the interior of the region

S. We suppose that Qn does not contain the conjugate A' to the

point A, and that for every point {x, y) of @,j and for every

value of y the condition

we have for every / in the interval (01^ , j)

! fV I 5 P , ! 'J^ ! 5 P ,

since (?^ i j lies in the circle (P^, p) ; and

KJ < e
, I J < e

,

since the slope u' of (?j, , , at the point P with respect to the directiou P»'Pp4_] is

numerically less than e .

Apnlying now to the integral J,? the first mean-value theorem we obtain
v-\-l

J^(-^^,(Pr-P^-fO= h'^iFi-i-y+ i^. 2/^-f ?^,cos7^_{_l + r,,,sin v^_(_i+5'y) ,

where the argument of ^y.Vy, 4V . ^^ is some value of t between and 1^^^

.

On the other hand, we have on account of the homogeneity of F,

P(.<V, 2/^. A.C,,, A
2/ J,) - l^,_^Fi.r^,. :v. COS 7v_j_i, sin y^_|.i) .

The extremal of p,._^] — though it need not lie entirely in the region S^— certainly

lies in the larger region S) defined in §28, e).

Further, the function Fix, y , .<•', 2/) is uniformly continuous in the domain;

(.-,//) in Si , \-a^Vx-'^+ /^^\ + a
,

wherr- a is any positive quantity less than 1.

Hence if a positive quantity <t be assigned arbitrarily, the (quantities «, p and S

can be chosen so small that

lPUV-r€''l/.'+ '^ri cos v^^i + r,,, sin 7,,_;_,
+5"^)

- F (.IV . Hi, , cos y^_^j , sin Y;,_|_, ) I< o- ,

f)r>' = 0,l, • •, /I — 1 , and therefore
,

II — I

ICn-Tr-n'<<r^?^+, .

r=(i

But if, as we suppose, the curve v lias a finite length /, we have

H-l

s
and therefore

which proves the above statement.

1 Without multiple points.



162 Calculus of Variations [Chap. IV

F,(.r, ?/, cos y, sin y) > (Ha')
is fnlfiUed.

Then we can construct, according to § 28, d) and § 34:, about the

extremal @o a field ^^ which lies in the interior of S ; and if we take

k sufficiently small the inequality (Ha') will be satisfied throug-h-

out the region ^^ •

Now let S he any curve of class (K), not coinciding with (^o,

beginning at A and ending at B, and lying entirely in the inte-

rior of S'i ; let it be represented by (74), We 2>ropose to }>rore

that

J.,<Jf, (Si)

Jf hexng defined as in b).

Proof .-^ We may apply to the cm've S the results of d), the field

B,, taking the place of the region there denoted by S,,

.

Accordingly we can choose a partition n of the inteiTal (Ai/i),

whose points of division P.. do not all lie on Go, so that the distance

P.P.+,!<p/3 , (v = 0,l,--- ,n-r)
,

and that at the same time the arc P, P^+i of id lies entirely in the

circle (Pv, p/3), where p has the same signification as in d), and is,

moreover, chosen so small that the circle (Pv , p) lies entirely in the

interior of Bj,

.

We may then, on the one hand, inscribe in S a polygon of mini-

mizing extremals with the vertices A, Pi, P2, • • -, P„_i, B. This

polygon is an ordinary curve; it lies entirely in the interior of ^t,
and it does not coincide with ©,, . Hence we have, according to

§28, d),

Un > t/(?„
>

say

Un-J,,=P>0 . (82)

On the other hand, let n be a partition derived from 11 by subdivi-

sion of the intervals, and so chosen that

\Un-Jf\<l^ , (83)

which is always possible on account of (80). Let Qi, Q2, • • •, ^,„_i

be the points of division interpolated between the points Pv and

• The outlines of this proof were given by Weiersteass in his Lectures, 1879_

Another proof has been given by Osgood, Traivsactions of the American Mathemat-
ical Society, Vol. II (1901), p. 292, by means of the theorem given in §36, c).
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Pv+i of the partition n . These points lie in the circle {Pv , p/S)

and therefore

I Q, (^,^, ;
^ 2p/8 , (i = 0,\,-..,m-l; Q, = P,, Q,„ = P,^,) .

Hence the minimizing extremal from Qj to ^,+1 lies in the circle

( {), , 2p/3) aud therefore also in the circle (Py , p) . Hence it follows,

according to d), that the minimizing extremal from Pv to Pv+\ f^^^'-

nishes for the integral J a smaller value than the polygon of min-
imizing extremals P^QiQo • • Q,„-iPv+i, or at most the same
value.' Therefore

Un' ^ Uu . (84)

But from (82), (83) and (84) follows (81), since we may write

Jf - 'h„ = iJf - Uu) + (Un - Un) + (Uu - J>.j •

iViz., when the two curves are identical.



CHAPTER V

KXESER'S THEORY

§32. gauss's theoeems on geodesics

Kneser has given, in his '^LchrhiicJi <lcr V(in'((t(0)is-

rccliniing'"' a new theory of the extremum of the integral

J'= ( F{x, y, X ,
y' ,)dt ,

essentially different from Weierstrass's theory and reach-

ing farther in its results, inasmuch as it furnishes sufficient

conditions also for the case when one end-point is movable

on a given curve.

Kneser 's theory is based upon an extension of certain

well-known theorems on geodesics, of which we give— by
way of introduction— a brief account in this section.

(i) Suppose on a surface there is given a curve @o whose

points are determined by a parameter v. At a point M{v)
of Sq we construct the geodesic @ normal to (Sq and lay off

on (S an arc MP =u? The position of the end-point P is

uniquely determined by the two

_j (juantities ^f , r.

If we restrict ourselves to such

FIG. 29 a region ^ of the surface that also

conversely P determines uniquely

the values of u and v, these two quantities may be intro-

duced as curvilinear co-ordinates on the surface ("geodesic

parallel-co-ordinates''). According to a well-known theorem

due to Gauss,^ the lines u=^ const, are ortliogoncd to the geo-

desies v^= const.

1 1, e., the length of the arc is
| w

|
, its direction is determined by the sign of u.

2 Gauss, Disquisltioues genet-ales circa superficies curvas, art. 16.

164
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li) Hence it follows that the square of the line element

takes, for this special system of co-ordinates, the form'

ds^ = dit^-j- m^dv^ .

We consider now a particular geodesic, ©q? o^ ^^^^ set

vr:=r const., saj v= Vq, and on it two points : (^fo^ ^'o) ^^^^

1 : (?^i, /•„), where ?/o< '^i-

We join the points and 1 by an arbitrary curve

g : u=u (t)
,

V = v (t)
,

(t„ ^t^t^) .

nite integral

©0 is

Then the length of the arc 01 of 6 is given by the defi-

On the other hand, the length of the arc 01 of the geodesic

J = «i — Wo •

r^^du

and therefore the total variation becomes^

This may be written

J= I ^dr

A J= J-

J

The integrand is never negative, and can be zero throughout

the whole interval {tqT^ only when 6 coincides with ©q-

Hence it follows that among all curves which can be drawn

in ^ between the two points and 1, the geodesic @o has the

sho}i<:sf U'lujth.^

It should be noticed that the assumption that the geo-

desic ©0 belongs to a set of geodesies satisfying the condi-

1 Gauss, loc. cH., art. 19.

2 Compare Darbotjx, ThSorie des surfaces, Vol. II, No. 521.

3 The conclusion can easily be extended to the case where the point 0, instead of

being fixed, is movable on a given curve orthogonal to the set of geodesies.
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tions imposed upon the region ^, is equivalent to Jac obi's

condition.

c) The necessity of Jacobi's condition follows from a

well-known^ theorem on the envelope of a set of geodesies:

If the set of geodesies through the point has an envelope

%, and 02 and 03 are two geo-

desies of the set touchinof the

envelope at the points 2 and 3,

then

arc 02 + arc 23 = arc 03 .

The point 3 is the conjugate to on the geodesic 03. Now.

if 2 be taken sufficiently near to 3 on the envelope %, the

compound arc 023 is an admissible variation of 03 for which

AJ=0. And since the envelope % is never itself a geo-

desic/ the arc 23 can be replaced by a shorter arc 23, and

therefore A.J can even be made negative.

Hence the arc 03 does not* furnish a minimum, still less

an arc 01 of the same geodesic whose end-point 1 lies beyond

the conjugate point 3.

The method whose outlines have just been given applies

with only slight modifications to the case where only one of

the two end-points is given, while the other is movable on a

given curve on the surface.

§33. kneser's theorem on transversals and the theorem
ON the envelope of a set of extremals

We consider in this section Kneser's extension to any

set of extremals of the two fundamental theorems on sets of

geodesies given in the preceding section.

1 Darboux, Theorie rfes surfaces. Vol. II, No. 526, aud Vol. Ill, No. 622.

2 See Daeboux, loc. cit.. Vol. Ill, p. 88.

3 Apart from a certain exceptional cas3; see §38.

I
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(() Construction of a iransversal to a set of extremals:

Let
x = (fi{t, a) , U = ^{f, a) (1)

be a set of extremals for the integral

J= f -F{.r, y, X-', i/)dt ,

containing the particular extremal

@o: x = <f>{t, tto) , y = ^{t, a,)) , t^f^ti ,

whose minimizing properties are to be investigated. A and

B are again the end-points of @o-

We suppose that the functions </>(/, a) and "^(t, <i} are of

class C" in the domain

1

:

3; — £ ^ f ^ T, + e
,

I

a — a„
,
^ d ,

where /q
— Tq, T^— t^, e and d are positive quantities.

We suppose further that for the extremal ©q

4>]{t, a,) + ^U^ «u) + iu {tj,) . (2)

It follows, then,, from the continuity of 0;(/, o) and ^i{t a),

that the quantities ^o— ^O) ^i— hi ^i <^ can be chosen so

small that also

<^H^a) + .A?(^") + (2a)

throughout the domain IS.

We denote by U^ the rectangle

in the /, r/-plane, and by ^i^. its image in the ,r. //-plane

defined by the transformation ( 1)

.

To every point (/, a) of 1E;u corresponds a unique point

[x, y) of ^i- which we shall call "the point [/, «].'" To a

continuous curve

in iSfc corresponds a unique curve in ^i^

:
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~ x = <l>(g{T),ii{T)) = <k(T) .

which we calP the curve [/^.^C^), a=^h{r)].

The point t of 6 coincides with the point /= r/ (t) of the

extremal a= h{T) of the set (1). If for every value of r

the curve 6 is transverse^ to the extremal a=^h{T) at their

point of intersection, we shall say that 6 is a trdiisversal

to ihe set of extremals [^1).

We write for brevity

F{<l>{t,a), i(f{t,a^, <}>,(f,a), il;,{f, a)) =¥{t, a)
, (3)

and use the analagons notation for the partial derivatives of

F and the function F^. Then the condition of transversality

may be written

But
dx . df

, , da dJi ,
dt

, ,
da

hence, remembering the relation (D) of §24:, we get

F(f,«)^+[F,,.(«,a)<^„(f,a) + F,.(^«)^.,(/,a)]^ = . (5)

This differential equation for the functions t and (< of t is

the necessary and sufficient condition that the curve ^ may

be a transversal to the set (1).

We now introduce the further restricting assumption*

that

F(f,a„)^0 iu (foO • (6)

1 For the deductions of this section it is not necessary to assume that also

conversely to every point (x, y) of ^j. corresponds a unique point (t , a) of S^. , pro-

vided that we consider the points and curves of ^;i only in so far as they are the

images of definite points and curves of 1&^., and this is what our notation is to indi-

cate. Accordingly two points [r, a ] and [f , a"] of g-^. are considered as distinct-

even if they should have the same co-ordinates .r, 2/— if the points (t\ a ) and (r, a")

of i&i^ are distinct.

i Compare §30. 3 W'e shall free ourselves from this restriction in §37, r).
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It follows, then, from the continnity of F(7. d). that wo can

take To, T^ so near to /q, ^i and /,• so small that

F(^a)4=0 (6a)

throughout the region S/..

If the condition [6a) is satisfied, it follows from Cauchy's

existence theorem' on differential equations that throiujli

every point [/', a' J of tlie region ^^. a uniquehf defined

transversal of the set (1) of extremals can be drawn, rep-

resentable in tlie form

y = ijj{f, a)
j

X(<'i) being single-valued and of class C" in the vicinity of

a= a', and taking for a^^a the prescribed value t= t'

.

The curve S may degeyieraie^ into a point, viz., when the

functions <^(t), ^(t) reduce to constants, say oc^, if. For

such a degenerate curve the condition of transversality (4)

is evidently always satisfied.

Conversely, if any point (x^, if) in the interior of the

region S of §24, b) is given for which

i^:(x-°, /, cosy, siny) +

for every 7, and if we construct by the method of §§15 and

27, c) the set of extremals through the point [x^, y^), this

point may always be considered as a degenerate transversal

to the set of extremals. For there exists, according to

§27, c), a function t^[a) of class C , such that for every a

within certain limits

the point {x^, //^) is therefore indeed the image of the curve

t^^t^(a) in the /, rt-plane.

1 Compare p. 28, footnote 4.

2Compare footnote 1, p. 1G8. 3 See Kneser, Lchrhuch, p. 47.
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b) The function ii(f, a): Let A^ be a point on the con-

tinuation of @o beyond A, corresponding to an arbitrary

value t= f^ between Tq and /„, and let'

/ = f{a)

be the transversal %^ passing through the point [/«, ciq].

We suppose k taken so small that in the interval

(aQ— h\ (iQ^k) the function /o(a) is of class C and

To<t^{a)<Ti. The curve /= ^"(o), interpreted in the

/, (/-plane, divides the rectangle Sfc into two regions ; we denote

by Sfc that one for which

and by ^^ its image'' in the

X, //-i)lane.

We consider now any point

F:[{,(i]ol^^.. Theextremal

of the set (1) which passes through P, meets the curve %^

at the point PO; [/«, a].

Now denote by u or n (/, a) the value of the definite integral

a = a„ + fc

a ^ la — k

u — 1
^
F(f, a) dt = n{t, a) . 0)

The function v{f, a) is single-valued and of class C in

the domain S^ ; moreover it represents,** in Ea:, the value of

our integral

J= j F{.r, y,x',y')clt

taken along the extremal © from the point P^ to the point P:

u{t,a)=J^iP'P) .

iWhen the transversal z" shrinks to a point, the function ^(a) becomes iden-

tical with the function so denoted at the end of a).

2In Fig. 31 S>'^. is the non-shaded part of §;_,.

3 Only in S;^., since we always suppose that the lower limit of the integral J is

less than the upper limit; compare §24, b).
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The partial derivatives of u{t, a) are :

^|= F(^a), (8)

9w ^/.o ...df
,

r'9F(f,a)^^

But

^~^j~^ = F. <^„ + F, ^„ + F,. <^,„ + F,. ^,,

= I [F.. <^„ + F,. ^„] + <!>„ [f,. - I F,..] + V'.,
[f„ -

g^
F„ ] ,

since <j>ta
= 4>at , ^ta= ^at ^OW

F,- g-^F,. = and F, - g^F,. = U
,

since ^(/, a) and i/r(/, a) satisfy Euler 's differential equation.

Hence we obtain

= (F,, «^„ + F,. ^„) - (f^ + F,. <^„ + F,. tj
I

.

du

da

But the second term disappears since /= /°(r() represents a

transversal and therefore satisfies the differential equation (5)

.

Thus we finally obtain

^= F,. {t , a) ct>^, if , a) + F,, (/ , a) t. if , o) . (9)

If the point P : [/, «] moves along a curve (S defined by^

t =g{T)
,

a = // (t)
,

/. e.,

U = <^(</(T),/i(T))=^(r)
,

71 becomes a function of r whose derivative is, according to

(8) and (9)

:

1 The functions g (t) and h (t) are supposed to be of class C ' and to furnish points

{t, a) in a^. so long as t is restricted to a certain interval (tt") to which we confine

ourselves in the following discussion.
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^ = F(^ a) ^ + [F. (^ c,)<l>,,{t, a) + F,.(/, a) ^„(f , «) 1 '1^
,

cIt
^

(It L J clT

The extensions of the two theorems on geodesies of §32
follow immediately from this formula by specializing the

curve 6.

c) Kneser's Tlieoix'm on Transversals: In the first place

we suppose that the curve 6 is a transversal to the set (1).

Then it follows from (4) and (10) that

dr

and therefore it= const.

Thus we obtain the

Theorem I : Two iransversals %^ and %^ to fhe same set

of extremals intercept on the extremals arcs along ivhich the

intef/ral J has a constant value.

More explicitly: If ©' and S" are two extremals of the

set (1) meeting the transversals %^, %^ at the points Pq, P{

I
and Pq , P[' respectively, then

J^.{P',P[) = J,..{P','P[') . (11)
i

Conversehj: If along the curve

^ ^.^ _ l. ^^ the function u{t. a) is constant,
1° FIG. 32 ^ V /

'

then %^ is a transversal of the set (1)

.

In the special case of the geodesies, transversality is iden-

tical with orthogonality/ and therefore Kneser's theorem

is indeed a generalization of Gauss's theorem on geodesic

parallels.

The theorem remains true if one or both of the two

transversals shrink to a point ;^ thus we obtain the following

corollaries :

1 Compare §30, a). 2 Compare the remark at the end of a).

Pi^ e- ^—'^.

p; \ a- -J ^i"
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Corollru'ij /.' If X^ is a transversal to the set of extrem-

als through a point Pq, then the integral J has the same

value if taken along the different extremals from the point

Pq to the curve %^, and vice versa.

Corollarij II: If 'X^ is a transversal to a set of extremals

passing through a point Pj , then the integral J has the same

value if taken along the different extremals from the curve

S^to the point Pi.

CoroUarij III : If the extremals passing through a })oint

Pq all pass through a second point P^, then the integral J
has the same value if taken along the different extremals

from Pq to P^.

(/) Theorem, on the envelope of a set of extremals: In

the second place, we suppose that the curve 6 is tangent to

all the extremals of the set (1), and therefore is the envelope

of the set.

More explicitly : As it has been remarked before, the

point T of 6 coincides with the point t^=g (t) of the extremal

a = li (t) of the set (1 )
; we suppose that for every value of

T, at least in a certain interval (t't") in which

m^m*'
the curve CS and the corresponding extremal are tangent to

each other at this common point, so that

dx

dy

dr

4>t

=

It follows, then, that there exists a fTinction ni of r such that

dydx
i/'f = m.

dr

1 Applied to geodesies, this is Gauss's theorem on geodesic polar co-ordinates,

Gauss, loc. cit., art. 15.
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w is continuous in (t't") and can not change sign.^ We
may without loss of generality" suppose that

m > in (t't")
,

/. c, that the positive directions of tlie tdiu/cnfs io the tiro

curves coincide.

From the homogeneity properties of F it follows, then, that

^"^^
. r, /- ~ dx dy\

and therefore, according to (10),

du , /_ _ dx d])\

d-r=^V''d^^ dr)

Hence, integrating from t= t' to t=-t" (t < t" ) and

remembering the meaning of v{t, a), we obtain the

Theorem II :^ Let %^ he a transversal to the set of

extremals (1) and % tlie envelojje of the set; let, furtlter,

P' Q'
, P" Q" he two extremals

of the set starting from the

points P' , P" of '^^^ and touch-

ing % at tJie points Q'
,
Q'\ then*

J,..{P"Q")=J,{P'Q')

+ JMQ") , (12)

iThis follows from (2a) and the assumption that

(lf) + (f)'*» ""')

2 If m is negative, introduce a new parameter

T = — <r on 6 .

3 The theorem in the special case when 2 shrinks to a point is due to Zeemelo,
who proves it by means of Weierstrass's expression for A J in terms of the

E-function (Dissertation, p. 96). The theorem in its general form and the above

proof are due to Knesee; see Knesee, Lehrbuch, §25, and also idem, Mathe-
matische Annalen, Tol. L (1898), p. 27. The simplest case of the theorem is the

theorem on the evolute of a plane curve.

*By a limiting process it can be shown that the theorem remains true if the

assumption
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with the understanding that the positive direction Q' Q" <>n

% has been chosen as indicated above.

The theorem remains true if the transversal X^ shrinks

to a point, in which case we obtain tf;,___^ /

the corollary:
/^"^''^t %

PqQ\ PqQ" being two extremals of the set through Fq, and

% the envelope of the set.'

§34. CONSTRUCTION OF A FIELD

Before we can extend to the general case of extremals the

results given in §32, b) concerning geodesic parallel co-ordi-

nates, it is necessary to impose upon the set of extremals (1)

such further conditions that the correspondence between the

two regions H^ and ^;^ defined in §33, o) becomes a one-to-

(ff)>(fr*»
ceases to be satisfied at Q", i.e., if the curve Tv ha> a "cmp" at Q', provided that

there exists a positive quantity m such that

-
/ (r -r)>^ and - / (r - x)

approach, for Lt = t"—0, finite determinate limiting values not both zero (a condi-

tion which is, for instance, always fulfilled if ST and ff are regular in the vicinity

of t"). The proof follows immediately from the homogeneity property of the func-

tion F; see §24, (8).

iThe two theorems on sets of extremals proved in this section can be derived

by still a different method indicated for the case of the geodesies by Daeboux
(Theorie des Surfaces, Vol. II, No. 536). Let

be a particular extremal derived from the general solution of Euler's equation,

and let M^f{.t=%, x= a^,y = h^;) and ^I^(t=t^, x= a^,y = b^) be two points on (?„

which are not conjugate in the more general sense that {.t^ , <„) + . Then it follows

from the theorem on implicit functions that if we take two points -PoC-iV,, ^„) and

Pi (•'"i 1 2/i)
sufficiently near to J/q and M^ respectively, a uniquely defined extremal

can be drawn through Pq and Pj

:

g: x=f{t,<t,^) , y = fj(t,a,p) .

The constants a
, 3 , the two values of / which correspond on if to the two points
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one correspondence, or in other words that the set of extrem-

als (1) furnishes a field about the arc ©q.

The proof of the existence of a field is based ui)oii the

following

Tlu'orcm : Let

x = MUa) , y = ^(f,a) (15)

be a one-parameter-set of curves satisfying the following

conditions

:

A) The functions cf) and yfr are of class C in the domain

T„ — c ^ t ^ Ti -\- €
,

\a — a„ \^d
,

€ and (I being two positive quantities.

B) The particular curve

x = <j>(f,a,)
, y^^{f,a„) (16)

has no multiple points for Tq— e^/^ Tj +e.

C) If we denote by A(/, a) the Jacobian

then ^(^«)

A(f.a„)^0 m (To-£, T, + e) . (17)

P(i and Pj, and consequently also the value of the integral .J taken from Pj, to Pj
along- (f are single-valued functions of a-,, , j/q, Xj , y^ which are continuous and have
continuous partial derivatives in the vicinity of a^, b,,. a, , b^. We denote this inte-

gral J(i; ( P(, P[) considered as a function of x^
, 2/,, , .»•] , (/, , by

it is a generalization of the .greorfes/cd/stonce6c<(t'eewt;('oiJo/»ifs (see Dakboux, loc.cit.).

The total differential of this function can be obtained by precisely the same
method as that which Darbodx applies to the geodesic distance, and the result is

dJUi,, 2/0 ' •«'i ' I/O = ^x'^-^i ' Vi ' ^1'' -Vi') dXi+ Fy.{Xj^ , 2/1 ,
x{, y{) dy^

- l^x'^^u ' Vo ' -^o'' yo') rf-'"o - ^y(-^'Q ' //(I ' -'Vm 2/0 ' ^^0 ' (14)

the derivatives x^', j/q' and x{, y^' referring to the extremal c.

Now suppose that Pq and Pj move along two curves Pf, and ly, whose co-ordinate ;

are expressed in terms of the same parameter t. Then the extremals joining corre-

sponding points of P,) and (;, form a set of extremals with the parameter t, and

"^(^"oi ^05 -''i ! Vi) changes into a function of t whose derivative is obtained immedi-
ately from (14). By specializing the curves iS^ and P, the two theorems I and II are

obtained.

iKneser's proof {Lehrbuch, §14) must be supplemented by a lemma such as

that given below under a) and 6). Compare also Osgood, Transactions of the AmeV'
ican Mathematical Society, Vol. II (1901), p. 277, and Bolza, ibid., Vol. II (1901), p. 424.
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Umh'i- tJiese circumsf<inces a positive quant if ij k<Cd can he

taken so small tliat the transformation [15) establisties a

one-to-one corre>ipoii(1eiice hetireen tlie domaiii

*A-- 7; ^ /
1 )

a — a,. k

ill file f . a-phine, and its ima(/e ^^. in tlie x, y-plane.

£.

n„ — k

T.t,

FIG. 35 PIG. 36

Proof: We suppose it were not so ; that is, we siippose

that however small A: may be taken, there always exists in

^y. at least one pair of distinct points (/', a'), (/", a") whose

images coincide at a point {x^ y) of ^j^, and we show that

this hypothesis leads to a contradiction to our assumptions.

a) We first select a sequence of decreasing positive quan-

tities

k> lc,> k^> • • • Av > • • • > ,

beginning with /v and approaching the limit zero, subject to

the following rule : After A'j has been chosen, we select in

the rectangle ^f. a pair of distinct points P[{t[, a[) and

P['{t,[' a[' ) whose images coincide; this is always possible

according to our hypothesis. According to B), a^ and a['

cannot both be equal to ^'^g ; we may therefore choose A^

smaller than at least one of the two quantities ja^— ao|,

\a['— ao|' so that at least one of the two points P[, P^' lies

outside of Sl^- •

Next we select in IS^- a pair of distinct points Pq (/j, a-i)

and Po {t'l , a'z ) whose images coincide. As before, we can
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V

choose fcs smaller than at least one of the two quantities

\a2 — ao| >
I
(h —f'o\^ etc., etc.

Proceeding in this manner, we obtain corresponding to

the sequence \k,,\ an infinite sequence of distinct pairs

of points

p:{t:, a:) , p:.'{t:\ <) , v = i, 2. • • oo
;

the two points P^', Fl' lie in S^^, and their images coincide

at a point {x^, JJ^)
of ^j,.

We consider now the set of points

in the four-dimensional space (/', a'; /", a"). The set Z

contains an infinitude of distinct points all lying in the finite

domain

5 : fo < ^ < j^i ;
— A; < a a,i < « ;

it has therefore at Icdst one accnmiiUdioii point^

I = (t', u'; t", a")
,

which belongs itself to 1 since 1 is closed ("abgeschlossen").

6) We are going to prove that

Out of the sequence \z^\ we can select'-^ a 'subsequence \z^,\

(/= 1, 2, • • • X ; i^J4-i>i'0 such that

L z,.. = ^ , i. e.,

Z.C = t', /.a;. = a', Lt'' = r", Lal' = a".
(= 30

But since L l\.= and

it follows that

1 Compare E. I A, p. 185, aud II A, p. « ; J. I, No. 27. 2 See J. I, No. 28.
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a'= tto ,
a." — a^, ;

besides t' and r" are contained in (ToT,).

On the other hand, let D{f', a' ;
/", ((") denote the dis-

tance between the two points (.r', //' ) and (./", y") corre-

sponding to (/', d') and (/", d"). Then we have

i;(/J. al ;
/,'/, a'p') = .

Bnt since D{f', a'; /", a") is a continuous function of

its four arguments, we have

D{t', a,,; t", a,)) = L B(fl., «,'. ; tl'., a'/.) = ,

that is, the images (f, v' ) fiiid (|", v") «f the two points

(r', Oq) and (t", Oq) coincide. According to B), this is only

possible if
r ft

T =T , say

There e.rists therefore a point (t, Oq) in ISa-, '" erer/j vicitiifi/

of which pairs of distinct poinis (/', <i'), (/", o") con be

found whose images /u the ./, y-plane coincide.

c) The theorem on implicit functions' leads now immedi-

ately to a contradiction. For, let (^, v) denote the image of

the point (t, (l^^) ; take (x, y) in the vicinity of (f, ij) and

consider the problem of solving the system of equations

jc = cf>{t, a)
, y = ^(f, a)

with respect to {f , a). Since A(t, «o)=^^* it follows from

the theorem on implicit functions that after a positive quan-

tity € has been chosen arbitrarily but sufficiently small, a

second positive quantity S, can be determined such that, if

(.r, //) be taken in the vicinity (8,) of (|, ??), the above two

equations have one and but one solution (t, a) in the vicinity

(e) of (t, Oo) .

Further, we can determine, on account of the continuity

of
(f)

and -v/r, a positive quantity e'^e such that the image

1 Compare p. 35, footnote 2.
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of every point (/, (i) in the vicinity (e') of (t, a,)) lies in the

vicinity (SJ of (|, ?;). Hence if (/', ((') and (/", a") are

any two distinct points in the vicinity (e') of (t, Oq), their

images {x
,
y') and (.r", //") must lie in the vicinity (S,) of

(|, 77) and can therefore not coincide, according to the defi-

nition of S^.

But this is contrary to the result reached under }>) ; the

hypothesis from which we started must therefore be wrong

and our theorem is proved.

Corolhiries: 1. From the continuity of the functions

4>{f, (i), "^{f, o) and the one-to-one correspondence between

iS;t and ^;^, it follows that the image S' of the boundary ? of

the' rectangle ^j. is a continuous closed curve without mul-

tiple points (a so-called ''^Jordan-curve''') . It divides, there-

fore,^ the oc, ?/-plane into an interior and an exterior.

According to a theorem due to Schoenfliess" the set of

points §>j. is identical ivitli the interior of 2' together witli

the houndarji 2'.

2. Let /q, iy be two values of / satisfying the inequality

and let @o denote the arc of the curve (10) corresponding to

the interval (/o, ti). Since the line: 0.^:0^, to^t^t^ lies

in the interior of iSj^., its image @o li^s in the interior of ^^.

and has, therefore, no point in common with the boundary
2'. The two curves ®o ^^^^ ^' being continuous, it follows,'"

therefore, that a neighborhood (/o) of the arc @o c^in he con-

structed which is entirely contained in ^f..

3. Since A(/, Oo)=t=0 in {TqTi) and A(/, a) is continuous

in iSfc, it follows from the theorem on uniform continuity*

that k can he taken so smcdl that

1 Compare J. I, No. 102. The interior as well as the exterior is a " continuum."
"^ Gottinger Narhrichten,1899, p. 282; compare also Osgood, ihid., 1900, p. 94; and

Bernstein, ibid., 1900, p. 98.

ii Compare p. 13, footnote 4.

* Compare E. II A, pp. 18 and 49; P., Nos. 21 and 100; J. I, No. 62.
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A(f,a)^0 iu iB, . (18)

We suppose in the sequel that A- has been selected so small

that IS;;, and ^^. are in a one-to-one correspondence, and

that at the same time (18) is satisfied. Under these cir-

cumstances the region ^j^ is called a field about the arc Qq,

formed by the set of curves (15).

1. The one-to-one correspondence (15) between S^. and

^^. defines / and ft, as single-valued functions of x and
//

which are of class C throughout §>i.; we denote these

inverse functions by

t = f{x,y), a = a{x,y). (19)

Their derivatives are obtained by the ordinary rules for the

differentiation of implicit functions, according to which

df da
,

^^
I ,

^^
(20)

§35. kneser's curvilinear co-ordinates^

Our next object is to extend to the general case the

results given in §32, 6) concerning the introduction of geo-

desic parallel co-ordinates.

a) Curvilinear co-ordinates in general: Let us intro-

duce, instead of the rectangular co-ordinates x, y, any sys-

tem of curvilinear co-ordinates

xt=U{x,!j) , v= V(x,y) (21)

where the functions Uix, ij) and T (,r, //) are of class C" in

a region ^ contained in the region iR of §21, h) ; in the

same region their Jacobian is supposed to be different from

zero.

We interpret u, v as the rectangular co-ordinates of a

1 Compare Kneser, Lehrbuch, gl6.
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point in a u, r-plane and denote by QI the image in the

u, r-plane of the region B. "NVe suppose, further, that the

correspondence established by (21) between # and 51 is a

one-to-one correspondence. The inverse functions

x = X{u,v)
, y = Y(n,v) (22)

will then likewise be single-valued and of class C" in the

region ® and moreover their Jacobian

We consider now the integral

taken along an ordinary curve

Q: X ^ <t>{T) , y = iI/{t)

from a point A{tq) to a point B{t^), the curve 6 being sup-

posed to lie in the interior of the region ^.

If we introduce the new co-ordinates u, v into the inte-

gral J, it will be changed into

f 1 / da dr\ ,^^^

the function G of the four arguments ii , v, n' , v' being

defined by

G{u, V, u', v') = F {X, Y, X„a'+ X,v', r„H'+ Y,.v') . (26)

The inteorral J' is taken along the image d' of 6 in the

u , t'-plane

:

g'

:

u = U (> (t) , il; (r)) ,
f = y (<^ (r)

, ^ (

r))

from the point A' (image of A) to the point B' (image of B).

From the equality

J'=J (27)

it follows that if the curve 6 minimizes* the integral J, its

1 With the understanding that only such curves are admitted as lie in the regions

S and 0; respectively.
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image 6' necessarily minimizes ,/', and vice versci. Hence

the problem to minimize the integral J and the problem to

minimize the integral J' may be called equivalent problems.

The following properties of the function 0(u, r, fi\ v')

can immediately be derived from its definition (26)

:

1. Gin, V, n', r') is positively homogeneous' of dimen-

sion 1 in ii', r'

.

2. By differentiation we get

G .= F X -\- F . Y
(t,,.= FyX„ + F,j. 1',, .

Hence if

y ^= X^fli' -\- X^x>' , .r = Xji -\- Xj'
,

y'= ^^n«'+ ^^vv' , y = yj' + i'.^'
>

the following identity holds :

uG„.{n, r, u', r') + vG^iii, v, u' , r')

= }-F^.{,r, y, x', y') + yh\f{x, y, x'
,
y')

, (28)

from which we infer that the E-function is an absolute

invariant for the transformation (21), /'. r., if we denote the

new E-function by E'(/f . ?' ; u' , v' ; u, r) we have

E'(", r; u', v'; h, t-) = ^{x, y ; x'
,

y'
• x, y) . (29)

3. Also Fi is an invariant ; if we denote the correspond-

ing function derived from G hj G^, we obtain easily

G, = D'F,
, (30)

where D is defined by (23),

4. Also the left-hand side of Euler's equation is an

invariant ; after an easy computation, we obtain

Guv — G'hu+ Giitt'r"— n"v')

= D \f,,, - F_,„+F,{x'y"- x"y')\ . (31)

The image of an extremal of the old problem is therefore an

extremal for the new problem ; and the same relation holds

for the transversals, as follows from (28).

ICoinparc §24, equation (8).
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All these results are in accordance with, and can partly

be derived (( 'priori from, the equivalence of the two prob-

lems.

h) Dcjiiiifioii of Kncsei'\'^ curvilinear co-ordinates: To

the assumptions concerning the set of extremals (1) enumer-

ated in ^38, a), we add the further assumption that

A(f,«.,)4=0 in (tj,) , (32)

where A(/, a) denotes again the Jacobian

d{t,a)

It follows, then, from the continuity of A(/, a), that the

quantities /q— ^o? ^^i
—

^i- ^^' ^^^^ ^^^ taken so small that

A(/,f/)=^0 (33)

throughout the region ^,..

According to §34, the correspondence between the

domains jR^ and ^j^ defined by (1) is then a one-to-one

correspondence, and the inverse functions

f = H-^''U) ' a = a(x,u) (34)

are single-valued and of class C" in the domain §>^..

We now combine with the transformation (34) the trans-

formation
H =^ u{f, a) , f = a (35)

between the /, rt-plane and the u, f-plane, u[f, a) being

defined by (7).

Since, according to (Oa) and (S),

g|
= F(f,a)=#0 in Sfc ,

it follows that the correspondence between the region jS;^ and

its image (Ua- in the u, t;-plane, defined by (35), is a one-to-

one correspondence and moreover that the Jacobian

9 (v , v)

d{t, a)
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Hence, if we combine the two transformations (35) and (34),

we obtain a transformation of the form (21) which estab-

lishes a one-to-one correspondence between the region ^j. in

the ,r, //-plane and the region ©a- in the n, r-plane, and

which satisfies all the conditions imposed under a) upon tlie

transformation (21). For every point [x, y) in the region

^'k defined in §33, h), the function u= U{x, y) represents,

according to the definition of 7({f, a) given in §33, the value

of the integral J taken along the unique extremal of the set

(1) passing through the point {.r, y), from the transversal of

reference X^ to the point (jc
, y)

.

c) Properties of Kneser^s curvilinear co-ordinates: For

Kneser's curvilinear co-ordinates, the images of the

extremals are the lines v= const.; the images of the

transversals^ the lines u^ const. Moreover, tlie function

G{u, r, u' , v') Jias the following characteristic properties

:

G(u, V, u', 0) = u'
,

(ob)
(?„.(«, V, u', 0) = 1 , G,..{h, V, u', 0) = ,

which hold for every u, r and for every u' which has the

same sign" as F(/, a).

For the proof of these statements it is convenient to rep-

resent a curve 6 in the region ^,^ of the x, //-plane in the

form
x = (i>(t, a)

, ) t — g (r)
,

y — ij/ {t, a) , \ a= h (t)
,

which is always possible on account of the one-to-one corre-

spondence between iS^. and ^j^. The image 6' of (5 in the

u, r-plane is then represented by

u = «(f, a
, ] t =g{T)

,

V = a ,]« = /< (t)
,

and on account of ( 20) the following identity holds

:

1 Again with the restriction that the transversal must lie in the region &^.,

-Since F(i, a) =f=0 and is ronf inuous in Sj. , it has a constant sifjn in S^.

.



18() Calculus of Variations [Chap. V

If 6 is an extremal of the set (I), it can be defined by the

equations

t = T . <(=(('.

a constant.' Hence the above formula becomes:

F(t, a') = g(u(t, a'), <i\ )ir(T, d') , O)
,

and therefore, on account of (8) :

iirir, a') ~ G {uir, a'), u' . Hjir , <i'). 0) .

Since r and <i' are arbitrary and, moreover,

G{u, i\ pii\ 0) = pG{n. V, n\ 0)

for every positive p. the iirst of the three equations (-it)) is

proved.

The second follows immediately by means of the identity

ti'G^-\-v'G,.= G .

To prove the third, let

define a transversal ; then, according to §38, <)

:

n {g{cr) , 0-) = const.

Hence the condition of transversality, which must be sat-

isfied at the point of intersection of this transversal with the

extremal t^r, (i^=a', reduces to

— G,{u(t, a'), a', Urir, a'), 0) = ,

from which we infer the third of the equations (36), since

da-

iJts image is the line Q' : u = u{t, a), v = a' and the angle S' which the positive

direction of e' makes with the positive w-axis is or tt, according as the constant

sign of F (i, a) is -j- or —
.
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The relations (8(5) lead to two important consequences

:

In the first place, we obtain immediately from the defiiu-

tion of the E'- function on a])plying (3()):

E'(», r ; n\ 0; h . r) = G{u , r . h . r) — 7i . (37)

In the second place, we get by Taylor's theorem :

G{u, i\ II , v) — G (u . i\ u' . i))

= {ii — u')G„.(>(, r, u'. 0) -\-cG,A". r. u\ 0)

+ 1 [(" - >'y(l..r + 2 (7, - >,') rG,,,, + l^G,..,. ] ,

where the arguments of (^r^^ „ , etc., are

i(,c, n'=H'+e{h-ii')
,

V'^dr
,

and < ^ < 1 .

If we simplify the remainder-term liy the introduction of

Gi, and make use of (3(>), w^e obtain:

G{n, 17, h, v) — ?t — ^-u'^rtri . (38)

From the preceding equation we see that whenever (/^ and

If are both positive (negative), also G{ii, r, a, v) is positive

(negative). Hence, if for a given point {u , ?•), the functions

G[u, V, u , r) and Gi{u, v, u , r) are difPerent from zero (and

therefore do not change sign) for all values of u, v (except

possibly u^O, v= 0), they must both have the same sign.

Remembering now the relations (26) and (30), we obtain

the following result,' which will be useful in the sequel

:

If at a poini (.r, y) ihc functions F(x, ij, cos 7, sin 7)

(uid i^i(-f, y, cos 7, sin 7) (O'c, both different from zero for

all values of y, tJten tlunj must both Jiave ilie same sign.

§3(). SUFFICIENT CONDITIONS FOE A MINIMUM IN THE CASE

OF ONE MOVABLE END-POINT

The introduction of Kneser's curvilinear co-ordinates

leads to a number of important consequences

:

a) Kneser''s snfficieid conditions : Through the point ^4

ISee Kneser, Lehrhuch, p. 53.
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(xq, yo) of the extremal ©q (compare Fig. 31, p. 170) we con-

struct the unique transversaP ^: [/= %('^')]; and from an

arbitrary point A of X we draw any ordinary curve 6, join-

ing the points A and B and remaining in the region ^l. :

The image of C"^ in the ii , r-plane is the line v= ((q; the

images of Xq and X are the lines u= and ii = Uq= U(xq, ijq);

the imao^e of the curve 6 is an ordinarv curve 6'

:

The abscissae Uq and //^ of the images A' and B' of ^1 and

i? are

and according to the defi-

nition^ of TJ{jc, y) we have

J,. (AB) = III — »„ .

FIG. 37 On the other hand

But since* ^('^o)^ "o? ^i'^i) = "i- ^'^ have

'1 dn
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If flic ('()ll(lffi<)))S

nw sdfisjicd foi- /o^/^/i. 'iiid if. iiiorcorcr,

Fi {x
, //, cos y, sin y) > (Ha')

a loin/ flic crfrcmal ®ofoi' crcrij nihic of 7, then the extremal

@o furnishes for the integral J a smaller value than every

other ordinary curve which can be drawn in ^l from the

transversal X to the point B, provided that A" be taken sutfi-

ciently small; and therefore ilw exfronal (Eq mininiizes^ flic

infegi'dl J if fhc ciid-poiiif B is to rcnidiii fixed irliilc f/ic

ofJicr end-point /s niorahle on the curve %.

Ji) Wcierstrass' s fftcoreiii, for flic case of one roriohte

end-point: Still another important conclusion can be de-

rived from (39). On account of (37) we obtain from (3',l)

AJ= I E (u, r; v',0: -
, ~-)<It

,

'^^u \ dr (It/

where n' is any quantity having the same sign as F(/, o).

We may therefore " write the last equation

:

I
'e'ITi. v\ cos $', sin 0'

, -- , '-rhlr . (40)
•Ai \ f/r dr/ '

where 0' is the angle detined on p. 186, footnote 1, and whose

value is or tt. But since the E-function is, according

to (29), an absolute invariant for the transformation (21),

we obtain, by returning to the original variables ./•, /y, the

extension of Weicrsfrosss theorem to the case of one

movable end-point

:

AJ= ( 'e (x,1j; y,!j'; y.Tj')dT , (41)
•""0

iTo make the connection with the problem: To minimize the integral ./ by a
curve joining a given curve ~ with the point B, the I'ollowius remark is necessary:

After an extremal i\) of class C has been found which passes througli B, is cut trans-

versely by "iT at A, not touched by is at 4, then it is always possible, according to §23,/)

and §30, to determine a set of extremals which has the properties assumed in §33 of

the set (1) and to which the curve ~ is a transversal. The transversal 1 of the pr&.

ceding theory will then coincide with the given curve IT.

2 Compare §28, equation (.">!).

AJ
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where (ir, y) is a point of the curve 6: Ic' .y' refer to the

curve 6; x'
,
y' to the unique extremal of the set (1)

passing through the point {x
, y).

Reasoning now as in §28, (/), we infer that in the al)ove

enumeration of sufficient conditions flic condifloii (I la')

may he replaced by the ui'ddev condition

E(.r, y; p,q: T>.Tj)> along ©„ ,
(IV)

understood in the same sense as in §28, f/)..

c) Osgood's tlieoreni concevniiui a characteristic prop-

erty of a strong minimnin: The introduction of Kneser's

curvilinear co-ordinates leads to a theorem due to Osgood'

concerning the character of the minimum of the integral ./,

in case the stronger condition (Ila') is satisfied.

If we denote by the angle which the positive tangent

to ^' at the point (u, /;) makes with the positive 7f-axis, and

introduce on 6' instead of the parameter t the arc 8 of 6',

we may write (10) in the form"

{•«i _ _ _
E'{u, v; cos ^'. sin 6': cos 6 , siu d)d>< .

- II

Applying the theorem^ on the connection between the

E-function and Fx to E' and Gj. we get

E'(«, r; cos^', siu^'; cos ^, siu ^)

= (1 - cos {0 - 0')) G, {Ti, V, cos 6*, siu 6*) ,

where 6* is some intermediate value between 6' and 6.

Since ^'= or tt. the first factor on the right is

Iq^cos^.

But if we suppose that (Ha') is satisfied, we can always

take 1: so small that

Fi {x, y, cos 7 , sin y) >

for every x, y in ^^ and for every 7.

'See Transactions of the American Mathematical Society, Vol. II (1901), p. 273.

For the following proof see Bolz.a., ibid., Vol. II (1901), p. 422.

2Coinpare §28, equation (ol). sCompare §28, equation (U).

1
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From the relation (30) between F^ and G^, and from the

continuity of G^, it follows, then, that a positive quantity m
can be assigned such that

6r, {ii , V , cos (D, sin w) ^ m

for every ii, v in (3^. and for every oo. Accordingly we obtain

A t/ ^ w
I (1 =p cos 6) ds

,

or, since (/7,

cos y = ---
,

A J ^ 7?i [/ =P (»i — tto)] ,

Z beint; the leno^th of the curve (£' from A' to i?'.

Now suppose that the curve S in the a-, ?/-plane passes

through a point P of the extremal a^^^ciQ-^-h of the set (1),

where
<

1
/i I < Ar . g]-~--^^C^ ^ " = " + "

(i' will then pass through a
i

point P' whose ordinate is ^i s'
^

,
" = «. FIG. 38

r= do + /' •

Let Q' he the foot of the perpendicular from P' upon

the line ii^^iiq. Then

l^\Q'P'\ + \P'B'\^\Q'B'\
,

that is. , _ / , .,
, ,

r^

and therefore

A J ^ m \^^lr + {>,,- n,r -T ('<. - ",)] > . (42)

Hence, if we use the symbol ^j[ in the sense analogous to

that of ^/., we may formulate the result as follows:

Under oti)- present assiiimjtioiis concerning the extremal

©0 (t'^d the functions F <ind F^, it is aiivdijs jyossible to

determine, corresponding to evcrij positive quantity h

numericnlly less than k. a })ositive quantity e^^ such tJiat

AJ=.J^ (AB) - J. {A B) ^ £;. (43)
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for evcrij ordinarfj cin-rc (S which joins ike transversal H
with the point B, and reinains within B[. but not wholly

IN THE INTERIOR OF ^/'.

Osgood' derives from his theorem a sim[)le proof of

Weierstrass's extension" of the sufficiency proof to curves

without a tangent

:

Let, in the notation and terminology of §31, d),

2 : .r = <^ ( t) , U — ^ '"t)
,

Tu^r^T^
,

be a curve of class {K), not coinciding with Gq, joining the

points A and B, and lying wholly in the interior of the

region ^j.. Let 11 be a partition of the interval {JqTx) whose

subintervals are chosen so small that the corresponding rec-

tilinear polygon %n, inscribed in ^', lies in the interior of ^^..

The polygon being an ordinary curve, we have, if Kneser's

sufficient conditions of §36, a) are fulfilled for the extremal ©q.

Vn > J,

if T'n denotes, as in §31, c), the value of the integral ./ taken

along the polygon -^n.

Hence if we pass to the limit and remember equation

(78) of §31, we obtain

It remains to show that the equality sign cannot take place.

Let Q be any point of S not situated on the extremal ®o,

and denote by Oq+ ^' the value of the parameter a of the

extremal of the field passing through Q. Then : <
j

//
j

< A*.

Now consider in the above limiting process only such parti-

tions n for which Q is one of the points of division. There

exists, then, according to Osgood's theorem, a positive quan-

tity €}^ such that

'^Loc. cit., p. 292. 2 Compare §31, e).
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Hence if we ])ass to the limit.

and therefore

Jf > J.^, , Q E. D.

^dl. VARIOUS PROOFS OF WEIERSTRASS's THEOREM.
THE ASSUMPTION F(/, o)4=0

The function

u= U{x,y)

introduced in §35, h) was derived from ii(f, a) by substitut-

ing for / and a the inverse functions (34)

:

f = t(x, y) , a = a (.r , y) .

Hence flic partial (lo-icatircs of U{r, y) with respect to ./•

and y are, on account of (8) and {'.•)

:

8Z7 dt
,

da

Remembering that

and that l)y detinition

4> (/ i-f
, y) ,

fi (•^'
, u)) = -^^

>
^{t P' ' u) ' « i-^' , y))^y ^

we obtain the important result :^

^ =. F, = P (.r , //) : 1^- = F,, = Q{x,y) , ( 44)

where P{r, y) and Q(.r
, y) denote those functions of x and

ij into which F^. (/, a) and F^.(/, a) are transformed when

the variables /, a are replaced by their expressions in terms

of X, y.

From these expressions of the partial derivatives of U

Kneser, Lehrhuch, p, 47; compare also p. 175, footnote 1.
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FIG. 39

two further proofs of Weierstrass's theorem for the case

of one variable end-point, can be derived.

a) K)i('S(')-'s proof :^ We repeat the construction of

§36, (t). denoting, however, the points Aq, A, A, B hj num-
bers : 5, 0, 0, 1 respectively.

Then we ap[)ly Wcicrstrass^s

ronstrtiction' slightly modified:

Through an arbitrary point

2(t= T2) of 6 we draw the

unique extremal of the set (1).

It meets the transversal X° at

a unique point, 7. Now we consider the integral J taken

from 7 along the extremal 72 to 2, and from 2 along the

curve 6 to 1, and call its value S'It.,) :

using the same notation as in §§20 and 28.

In particular we have (see Fig. 39):

But according to Kneser's theorem (§33, c))

hence

A J = jj, - j,„ = - [s (T,) - s{n)\ .

According to the definition of the function U(x, y) given in

§35, />). we have

on the other hand

<^2i— I F{J-,lj, x\ y')dr .

Hence, making use of (^ii), we get as in the case of fixed

end-points

:

1 Kneser, Lehrhuch, §20. -'Compare §§20 and 28.
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- y-^ = — E U.,, //,; .r,
, y, ; u-,

, U^) • i +->)

(I To

Integrating with respect to T;, from r,, to r, . wt^ obtain

IFr'iersfras.s's flicoron (4:1).

The above deduction leads to the following f/cometrical

interpretation of the E-fnnction, due to Kneser :

Let 3 be the point of 6 corresponding to T^^To-j-Jt, and

draw the extremal 83 through the point 3, and the transversal

•J 4- through the point 2 (see Fig. 40) . Then

S(t2 + // )
- S{t.,) = JSi + ^4:) - ^72 " ^2:i i

and since

"Si = " 72 >

Sir, + //) — N(t,) = J,:; - J,, .

Hence we obtain, on account of (45), the result:'

J23 - ^« = h[E( X, , Ji, ; .r,' , 7/,' ; J-,/ , y/,' ) + (70] . (40

)

h) Proof htj means of IIiibert''s invariant integral: The

important formula (44) leads immediately to Hilbert"s

invariant integral^' for the case of parameter-representation.

The integral

J* r= (
'

I

P {x , 7j) x'+ (^ (J-
, u) y'\<lr

, (47)

taken along 6 from to 1 is, according to (44), equal to

J*= ~yV(.r, uXir ;

lience

J*z= f/(,r, , //,)
— U{7v^, '//„) ,

J-Q, //,) denoting the co-ordinates of the point 0.

The value of the integral J"* is therefore independent of

tJie curve 6 and depends only upon the position of the end-

I KxESER, Lchrbuch, p. 79 ; compare footnote 1, p. 138.

^Tompare §21. Another proof of the invariauce of the integral J*, followiuy:

more closely the reasoning of Hilbeet's original proof, is given by Bliss, Transac-

tioiMofthe American Mathematical Society, Vol. V (1904), p. 121.
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points; it even remains inr/in'diif wltcii Hie point ))wves

along the transversal 2:, since U{x, ^)=^ const, along every

transversal.

Hence, by letting coincide with and (S with ©o "^'^

obtain

The integral J^i can therefore be expressed by an integral

taken along the curve (5. viz.,

Joi= 1 \^F^.(7v.Ti. .v\ y')7v'+ Fy.{x,y, x', y')y\<iT .

Substituting this value of Jq^ in the difference : A ./:= Jq^— ./^„

we obtain immediately Weierstr ass's theorem.

(•) The assumption F(/, 0)4=0: It is important to notice

that in the preceding two proofs of Wei erst r ass's theorem

no use has been made of the assumption (0) that F(/, f/o)=l=**

at all points of the interval (tJi), but only of the two special

assumptions^

F(/;;,rg^O
,

¥{f,,rQdp() (6b)

which, according to §33, a), are necessary for the construc-

tion of the two transversals %^ and 2^.

Hence, also in the sufficient conditions derived from

Weierstrass's theorem, the condition (6) may be replaced

by the milder condition (6b), whereas, in the former deduc-

tion of sufficient conditions by means of Kneser's curvi-

linear co-ordinates, the assumption (6) was essential.

This apparent discrepancy" between the two methods can

be removed as follows

:

iThe first of these may be replaced by F(<, a,,) ^0, because for t^ any value of t

between T^ and ^q may be chosen. Only in very exceptional cases can J^ vanish all

along an extremal, since the differential equation J^=0 is, in general, incompatible

with Euler's differential equation.

2The discrepancy is still more striking in Kneser's own presentation, since he

makes, instead of (6), the stronger assumption

F(x, y, siny, cosyT+

along Py for every y (compare Lehrbuch, pp. 49 and 53).
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Compare tlie two ])roblems

:

(I) To minimize the integral

J = F{.r, u, y, !J
)dt

,

and

(II) To minimize the integral

where '"

F'\x,y,x',y') = F{x,y,y,y')

+ ^M,y)y-{-^,U,y)u' , (48)

<J> (.r
, u) being a function of ,r

, ^ alone, of class C in g*/^. . Since

J<»' = J + $ (o-i , ^i) - ^ (.r,
, ^„) , (49)

we obtain
A J*"' = A J

for all variations which leave the end-points fixed.

If, on the other hand, the integrals are to be minimized

with one end-point, say (.Tj
, y^), fixed, while {xq, ^/o) is movable

on a given curve %, the same result holds, provided that

<!>(./•
, y) remains constant along this curve.

With this condition imposed upon <I>, the lira prohlems

are equivalent; that is, every solution of the one is also a

solution of the other. Hence it follows that every extremal

for the one is also an extremal for the other.' In particular,

our set of curves

x = <i>{t,a) , y = i{;(f,a) (1)

is a set of extremals also for J'^^^

We now suppose that the function F satisfies the two

conditions (Gl)), but not (6), and we propose to show that it

is alivays 2^ossible so to select the function ^(.r, y) that

F'°'(^ a)>0

throughout the region M/,. defined in §33, a).

iThc analogous statemeut for transversals is, in ff(Micral, not. true.
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Let )ii be the minimum of F(/, a) in the region S^, and

let 3£ be a positive constant greater than |m|.

Further let, as before,

t — t (x , I/) , a^a (.r
, y)

denote the inverse functions defined in 'j^35, ecjuation (34).

1. Case of fixed end-jwinfs: In this case we select

^{x,y) = Mt{.x-, y) . (:>())

Then
g

F""(/,a) = F(/, a) + M^^t[<t>{f, a). ^ {f , u)) .

But by the definition of the inverse functions we have

hence
F'°MY. a) = F(/. a)-\-M ,

which is positive in |&^..

2. Case of one variahle end-point : Suppose (.rj. ^i) fixed

and (.ro, iJq) movable along the curve 2 . which is a transversal

of the set (1) for the problem (I) and represented, as in

§36, a), in the form

x = <i>{t,a) ,)

y = ^p{f, a) . I

In this case we select

^{x,y) = M [t (.(•
, // )

- X (" (•<•
> y))] ; (51)

then ^{.r, y) = along 2', and

^{cl>(t,a),if{t,a))=M{t-x(aj) .

Hence we obtain, as before,

F'"' (f , a) = F it , a) +M>0 in S,. .

It follows, further, that % is a transversal of the set (i) also

for prohlem {II). For
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The first term on the right vanishes for / ~%(<f), since X is

a transversal of the set (1) for problem (I) ; the second term

vanishes likewise for /^=%(rt), and therefore also the left-

hand side, which proves our statement.

The assumption (G), upon which the introduction of

Kneser's curvilinear co-ordinates depends, may therefore

be made without loss of generality ; for, if it should not be

satisfied, we can always replace the given problem l)y an

equivalent problem for which it is satisfied.

i^3S. THE FOCAL POINTS

The assumption

A(f,a,)z^O in (fj,) (32)

was indispensable in the previous sufficiency proofs for the

construction of a field ; but our deductions give no indica-

tion whether it is at the same time a necessary condition for

a minimum.

We are going to prove, according to Kne8ER.' that at

least in the milder form

A(f, a,)^0 for f„<t<f,
,

(32a)

which corresponds to Jacobi's condition in the case of

fixed end-points, the condition is indeed necessary for a

minimum.

We retain all the assumptions of §33 concerning the set

of extremals (1), and we suppose moreover that, in the nota-

tion of §33, a),

FAt,a,)>0 in (fj,)
; (52)

iKneser, Mathcmatische Annalen, Vol. L, p. 27, and Lehrbucli, ^%'H, 25.
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hut we drop the assumption (82) and suppose, on the con-

trarv, that
, ^ ,^ /--ox

A(/.:,a,) = , (53)

where ^o< ^o < ''i'
^^^'^^^ moreover, that /„ is the smallest value

of /, greater than to, for which (53) takes place. The corre-

sponding point A'i-TQ, ijo) of @o is then the focal point' of

the transversal 'X on the extremal ©y

a) Existence of the envelope: We propose to find all

points^ [/, a] of the x, 2/-plane in the vicinity of [/q, Oq] for

which
/ ^ /^ i\A{t,a)=0 . (o4)

For this purpose we notice in the first place that the function

A(/, Oq) is an integral of Jacobi's differential equation

dt\ dtf

This is proved exactly as the similar statement in §27 1)

and c) by substituting in Euler's differential equation

x^^(f>{t, a), y^'^it, (i), differentiating with respect to a

and then putting ci^aQ.

Since i^i;=Fi(^, ciq) is continuous in the vicinity of t^^t^,

and. according to (52), different from zero for /= /o, it fol-

lows that^
, ^ __,

Hence it follows, according to the theorem* on implicit

functions, that there exists a unique solution

t = t{a)

of (54) which is of class C in the vicinity of a = ao, and

takes for a= ciq the value t^^to.

The curve^ [t^=t{a)] in the x, ^-plane, /. e., the curve

1 Compare ^23 and 30. If Z shrinks to the point .4, the focal point A' becomes

the "conjugate" point to A.

2 For the notation compare §33, a). * Compare p. 35, footnote 2.

3 Compare p. 58, footnote 2. SFor the notation, see §33, a).
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;y : x = cl> (t{a) , a) = ^ (a) , // = '/' (^(«) , ^0 = "^ ('')

is the envelope^ of the set of extremals (1).

For, since

dx ,
dt dJi (If

da da da da

it follows that

^ ^, - ''^
<^, = - A ( r(a) , a ) = . (r.(i

)

aa c/a

This shows, apart from the points at which

that the curve ^- touches all the extremals of the set (1) for

which (I is sufficiently near to Uq, and therefore % is indeed

the envelope of the set,

h) Application of flic theorem on oivelopes: We must

now distinguish two cases

:

Case I : The envelope % does not degenerate into a point,

i. e., «^(o) and ^(a) do not both reduce to constants.

Let us suppose that the functions 4^ {a) and "(/^(o) are of

class C^''> in the vicinity of a=^ao, that for a.^=(io their

derivatives up to the order r— 1 vanish, but that the r^^

derivatives do not both vanish. Then we obtain by Tay-

lor's formula

'E = (a - a,)'-' L^ + "] ' ? = (« - «o)'-' lB + 13] , (57)
da da

where A and B are constants which are not both zero, and

a and approach zero as a approaches Oq.

Substituting these values in (56) we get

A = n(f>f{t',, ao) ,
B= }ixpt(f^, ftu) , (58)

where n is a factor of proportionality which is different

from zero.

1 Compare E., Ill D, p. 47, footnote 117.
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tiiipt (59)

We now introduce on J a new parameter t by the trans-

formation a — a„ = £T
,

where e= dz 1 will be chosen later on. Since, according to

(2) and (2a) the functions <j)t(f, (') and >/^^(^ a) do not both

vanish at (i= aQ, it follows from (50) that we may write

dx
,

dlj

dr dr

where m is a function of t, which is continuous in the vicinity

of T— 0, and, on account of (oT) and (oS), is representable

in the form
,,, ^ ,,-.,,•-' (u + v)

,

where L f-=0.
T=

"Whenever it is possible so to select the sign e that tn is

positive for all sufficiently small negative values of t, we

can construct, according to the theorem II of §33, (/), an

admissible variation of the arc A A' of ©^ for which A./= 0.

*
3 Subcase A): r odd.^ If we

choose e equal to the sign of n,

)it is positive for all sufficiently

small values of |ti
; see Fig. 41.

Subcase B): r even, m has the same ^ *

sign as nr, no matter how we choose e.

Therefore

1. If «<0, m is positive for nega- \ '

five values of t ; see Fig. 42. ^^^" *"

2. If /i>0, )n is negative for

negative values of r r see Fig.

In subcase A) and subcase Bj)

FIG. 41

s we have

iThis covers the "general" case in which 5 has no singular point at .-l(»-= 1).

2 If we draw a straight line S through the point A' not tangent to (?q, then g

crosses the line £ in case A) ; it lies all on one side of £ in case B) . on the same side

as the arc A A' in case Bj), on the opposite side in case B2). This follows easily

from (57).
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A,7 = J,(PQ) + J;,{QA') - J.^A') =
,

according to theorem II of §33, d), and therefore the arc

A A' of the extremal @o certainly furnishes no proper^ iiiiiii-

mum, and still less the extremal ©„ (or AB) itself.

But it furnishes not even an improper miiilminti. For"

the envelope % cannot at the same time be itself an extremal,

and therefore the integral J{(^A') can be further diminished

—and consequently A,/ can be made negative—by a suit-

able variation of the arc ^^4'.

The statement that % itself cannot be an extremal can be

proved most conclusively by substituting in the left-hand

side of Euler's differential equation for .r, ij the functions

X = <^ (t, (() , y = ,p(t, a) .

and making use of the characteristic property (•")*.•) of the

envelope.

If we remember the homogeneity properties of F and its

derivatives, and the fact that (f>(f, o), -«/r(/, a) as functions

of t alone satisfy Euler's differential equation, we obtain

after an easy reduction :

F,-~F,. = cT,\4.,
,

dr
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are different from zero for t^fo, a=^aQ, they remain differ-

ent from zero in a certain vicinity of this point. Moreover,

(f>t_
and -yjrf are not both zero. Hence the envelope 5 does

not satisfy Euler's differential equation.^

In subcase B2) the same construction cannot be applied,

and therefore the question cannot be decided by this

method.

Case II : % degenerates into a point. In this case all

the extremals of the set pass through the point A' , and we

can directly apply Corollary II of the theorem on trans-

versals, §33, c).

Accordingly, we have for every

extremal © of the set

:

FIG. 44 A .7 = J,.(PA
'
) - J",,^ (AA

'
) = ,

and therefore the arc A A' of the extremal @o certainly fur-

nishes )io proper minimum.

Summing up the difPerent cases, we may state the

result

:

If the end-point B of the extremal AB coincides icith

tlie focal point A' {and a fortiori, therefore, if B lies beyond

^' ' ^i> /o) //*e arc AB ceases to furnish a minimum, except

in thefolloimng two cases:

1. When the ejivelope % has at A' a cusp of the special

kind defined under subcase B^), the present method fails to

give a decision.^

2. When the envelope degenerates into a point, the arc

A A' furnishes no proper minimum, but it may furnish an

1 Another more geometrical proof can be derived from the fact (see §25, b)) that

only one extremal can be drawn through a given point in a given direction if

i?'j(a;, 2/,a; , 2/) 4=0 for the given point and direction; compare Darboux's proof

(toe. cit.) for the case of the geodesic.

2 Under the restricting assumption that FC.r,,', ?/„', cos y, sin 7) +0 for every 7,

Osgood has shown that the arc A A' actually furnishes a minimum, if the other

suiEcient conditions of §36 are satisfied, Transactions of the American Mathematical

Society, Vol. II (1901), p. 182,
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improper minimum.' If, however, B lies beyond A\ the

arc AB furnishes not even an improper minimum.^

Thus the necessity of the condition

A(f,a„)4=0 for U<t<U (32a)

is proved for all cases with the one exception just mentioned/

1 The set of geodesies on a spliere which pass through a point affords an example
of this kind.

2 For, from Fj (f,,', n,i) +0 it follows that if a is sufficiently near to «,,, the "dis-

continuous solution" PA'B (see Fig. 44) cannot satisfy the corner condition (24) f)f

§25, c) (compare footnote 2, p. 142), and therefore a variation P ^f NB can b(^ found for

which AJ<0.
3 This agrees with the result derived by Bliss from the second variation (com-

pare §3D) ; the latter method proves the necessity of (32a) also iu the exceptional case.



CHAPTER VI

ISOPERIMETRIC PROBLEMS'

§31). euler's rule

The special example which has given the name to this

class of problems has already been mentioned in §1.

More generally, we nnderstand l)y an isoperimetric prob-

lem one of the following type:

Among all curves joining/' fivo given pointf^ and 1 for

which the definite integral

K= C \j(.c, !i,x', u')dt

talces a given value I, to determine the one luhicli minimizes

(or maximizes) anothar definite integral

J= I F(x, y, x', y')dt .

Concerninsf the two functions F and (} we make the same

assumption as in §24, h) concerning F alone. The "admis-

sible curves" are here the totality of ordinary curves which

join the two points and 1 , lie in the domain iR of the fuuc.

tions i'^ and O, and for lohich tlie integral K has the given

indue J . Aside from this one modification, the definition of

a minimum is the same as in the unconditioned problem,

§24, c). We suppose that a solution has been found

:

6: x = cl>(t) , y = ^{t) , t.^t^f,
;

and we replace the curve 6 by a neighboring curve

6: X=X-\-$ , y — y ^r,
,

1 This chapter is based chiefly on Weieestkass's Lectures of 1879 aud 1882, and
on chap, iv of Knesee's book.

-Or: joining a given point and a given curve, etc.

206
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I

where ^ and ?; are functions of / of class /)' satisfying the

following conditions

:

1. They vanish for / = /q and /^ /i

;

2. In the interval (Vi), they remain in absolute value

below a certain limit p.

3. The integral K taken along CS from ^q t<3 ti has the

same value as if taken along 6 (viz., =1), or, as we write it,

^K = K,,~K,, =
; (1)

a) Admissible varidtions: Our next object is to obtain

an analytic expression for functions |, rj satisfying these con-

ditions, not necessarily the most general expression but one

of sufficient generality for the purpose of deriving necessary

conditions for the minimizing curve.

Such an analytic expression can be obtained, according

to Weierstrass, as follows :

Let j?i, p>, qi-, q> be four arbitrary functions of t of class

D' vanishing at /q ^.nd /j. Then we consider the functions

where e^, e., are constants, and propose so to determine e^ as

a function of e^ that the condition (1) is satisfied for every

sufficiently small value of e^.

For this purpose we notice that the integral Kqi is a func-

tion of e^ , eo which is of class C in the vicinity of e^^ , €9= 0)

and which is equal to Kqi for €i = 0, eo^O. Further, for

Cj^^O, €.,= its partial derivative with respect to e^ has the

value fj

Nc = i (G^Ih + Gy q< + G,.p: + G,. g,' ) dt .

Hence if we introduce the assiimjition^ fliaf the curve Q- is

not an extremal for the integral K, the functions p-,, q^ can

ilf G were an extremal for the integral A', the curve 6 (ur at least sufficiently

small segments of it) would in general minimize or maximize the integral K, and it

would therefore be impossible to vary these segments without changing the value of K.
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be so chosen that No^O, and the conditions of the theorem

on implicit functions are fulfilled for the equation (1) in the

vicinity of the point e^^O, e^^O. Accordingly, we obtain

a unique solution e^ of the form'

where (ey) denotes, as usual, an infinitesimal. Substituting

this value in f . ?/ we get

(4)

These functions ^, t; have all the required properties for

sufficiently small values of |ei|. The same argumentation

applies to '"partial variations" which vary the curve only

along a subinterval {ft") of (tJi). It is only necessary to

take the functions jJi, 2?2^ Qij <1z equal to zero in the whole

interval (/cA) with the exception of the interior of the sub-

interval {ft").

h) Eulers rule: According" to §25, the total variation

A J^ for the variations (4) may be written

».' t,,

For an extremum it is therefore necessary that

After a definite choice of the functions pii Q-i ^as once been

made the quotient M^/y^ is a certain numerical constant

which we denote by ^— X :

'Compare p. 35, footnote 2. 2 Compare, in particular, the footnote on p. 122.
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We have then the result that the equation

71/, +A.V, = {('))

must be satisfied for all functions 2)i, Qi of class D' which

vanish at /q ^^^^^ h This shows at the same time that the

value of the constant X is independent of the choice of the

functions jjo^ Qz-

If we put H = F + XG, (7)

equation (()) becomes

Hence we infer exactly as in i^25 by the method of §G, that

X (did !i
must satisfu ihe differential equations

which are equivalent to the one differential equation

if,,, - H,.„+H,{.v'!j"- y'y') = , (I)

where H^ is defined by :

-"1 — To— — } 7
— To" • UV

y
^ X y X-

We call, again, every curve which satisfies (I) an extremal

for our problem (Kneser).

The above deduction applies t(j so-called "discontinuous

solutions''' as well as to solutions of class C, and shows

that the isoperimetric constant \ has the same constant

value along the different segments of a '^discontinuoiis

solution.''' Moreover we obtain, exactly as in §§*J and 25,

at a corner t^^t?, the ^^corner-condition:'''

1 Compare §9, in particular footnote 3, p. 37.

2 This important remark is clue to A. Mayer, Mathematischt Annalcn, Vol. XIII

(18771, p. 65, footnote; and Weierstkass, Lectures. Even if the minimizing curve

contains unfree points or segments, all those segments of the curve whose variation

is unrestricted (apart from the condition AA: = 0) must satisfy the differential equa-

tion (I) with the same value of the constant A.
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H^. = H^

t.j +-II

^. H.. (10)

All these results may be summarized in the statement

that, so far as the first variation is concerned, our problem

is equivalent to the problem of minimizing the integral

{F-\-XG)dt
,

the curves being subject to no isoperimetric condition.

This simple rule, which is the analogue of a well-known

theorem in the theory of ordinary maxima and minima, is

usually called Enlers rule, according to Euler,' who first

discovered it.

The rule still holds in the case where the point , instead

of being fixed, is movable on a given curve

g: .T- = ^(t)
, ^ = 'A(r) .

For, a reasoning similar to that employed in §30, combined

with the remark that for all admissible curves

leads" to the condition ,= tg

H^x'-\- Hyu'
-'''0

= 0. (11)

c) Example XIII : Among all curves of given length joining

tiro given points A and B, to determine the one which, together

with, the chord AB, hounds the viaximnm area.

Taking the straight line joining A aud B for the a'-axis, with

BA for positive direction, we have to maximize the integraP

=i£('«''' = i ),
{ry-yti)''t

lEuJjER, J/et/iodits inveniendi linens curvas luaximi mininiive proprietute guu-

dentes, 1744; see Stackel's translatiou, p. 101. The first rigorous proof is due to

Weierstrass, Lectures, and Du Bois-Reymond, Mathematische Annalen, Vol. XV
(1879), p. 310. The proof given in the text is due to Weierstrass.

2 For details of the proof we refer to Kneser, Lehrbuch, §33.

•i We substitute this analytical problem for the given geometrical one. without

entering upon a discussion of the question how far the two are really equivalent.

Compare J. I, Nos. 102, 112, and II, Nos. 129-33.
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while

has a given value, say /, which we siipjDOse greater than the

distance AB.
Since

we get

H = \(xy'-.x--u)+\\ y'+ir ,

Hi=~\- ,

^
, (12)

{V x^-\-y -)

and therefore the differential equation (I) becomes

X y — oc y _ 1

(13)

Hence the radius of curvature of the maximizing curve is constant

and has the value jX;, while its direction is determined by the sign

of X.

Again, since H), never vanishes, there can be no corners,' and
therefore the curve must be an arc of a circle of radius |X! . The
center and the radius of the circle are determined by the condi-

tions that the arc shall pass through the two given points and
shall have the given length I . There are two arcs satisfying these

conditions, symmetrioal with respect to the ^--axis.

d) ExAJiPLE XIV : To draw in a vertical plane behreen two
ijiren poi^its a curve of given length such that its center of gravity

shall be as low as itossible.-

Taking the positive yaxis vertically upward, we have to mini-

mize the integral

J= C '//I y'+y"dt

while at the same time

K= C \ x' + y-'dt
J In

has a given value, say /

.

Here
^ = (^ + A)Va- + 7/'-^

1 Compare §25, c) and §28, 6) ; in particular footnote 2, p. 142.

2 Position of equilibrium of a uniform cord suspended at its two extremities.
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Using the first of the two diflfereutial equations (8), we obtain at

once a first integral

Vx" + y"
= c .

On account of (10), c must have the same constant vakie all along

the cur\e.

If c = , we obtain ' the solution

X = const. ,

which is possible only if the two given points lie in the same ver-

tical line.

If r=|=0, we obtain as general solution of Euler's equation

two systems of catenaries

:

(14)
y -\- \ = zL fi cosh t .

Determination of the constants/ If we suppose .ro<,ri, the

constant /3 must be positive in order that we may have fo< ^i •

Since the curve is to pass through the two given points, the

following equations must be satisfied :

iTo = a + (3t„
, //„ + A = zt /3 cosh A, ,

x^ = a-\- fifi , !ji-\- \ = ± ft cosh /, .

Moreover, the curve must have the given length I ; this furnishes

the further equation
(J (sinh ti — sinh t^) = I .

From these five equations we have to determine the five constants

a, /3, X, /o, ^1-

If we introduce instead of Ai and /i the two quantities^

_ ^i + ^n _ -Ti -}- g-Q — 2a
'^~

2 ~ '2/3

we derive from the above equations the following

:

i2/4-A = is not a solution, since it does not satisfy the second differential equa-

tion (8).

2WEIBESTRA9S, Lectures, 1879.



§iOJ ISOPERIMETRIC PeOBLEAIS 213

Z/i
—

Z/o
= ±2(3 sinh

fj.
sinh v

,

I ^ 2/3 cosh /A siiih i' .

Hence we s:et

(15)

o^

tanh/x= ±^^L_J^
. (16)

Since we suppose

^^ 1 (^1 — ^'o)" + (i/i — ^o)' >\yi— Uo\ ,

each of the two equations comprised in (16) has a unique solution m.

Further, we obtain from (15)

:

and therefore

sinhv_W^-(^,-.,J^^
say = A:. (17)

Since A-> 1 the transcendental equation (17) has one positive root v.

After M and f have been determined, the values of a, i3, X, f„, f,

follow immediately.

Each of the two systems of catenaries (11) contains, therefore,

one catenary satisfying the initial conditions.

§40. THE SECOND NECESSARY CONDITION

We suppose that the general solution' of the diiferential

equation (1) has been found :

x=f{f,a,p,\) , y = g(t,a,^,X) . (18)

It contains, besides the two constants of integration a, /3,

the isoperimetric constant \.

Moreover, we suppose that a particular system of values

of these constants

a = ay, (3 = (3^ ^ A=\o

has been determined" so that the extremal

1 Compare the remarks in §25, a).

2 There are five equations for the determination of the five unknown quantities
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u = g{U ttu, p„, A„)
,

passes through the two given points () and 1 ( for /= /q and

/= /j respectively), and furnishes for the integral A' the

prescribed value /

:

We suppose that the functions f, y, ft^ Ut^ ftt^ Utt ^i^d

their first partial derivatives with respect to a, ^, X are con-

tinuous functions of their four arguments in a domain

where ro</oand Ti>ti.

Further, we assume that for the particular extremal Cr,,

/,2 + g?=^() in {T„T,)
,

I'o (20;
ftfjK-f\g,\ 4=0 ,

and that ft(U—fa(lt ^^^fdl^—MJt are linearly independent.'

Finally we retain the assumption introduced in §31) that

®o is not an extremal for the integral K.

a) A lemma on a ccrfdiii fi/jx' of cahnissihlc variations:

In §39 the existence of admissible variations of the form

^ = i{t,c) , 7? = 7?(f, e) (21)

has been established, satisfying the conditions enumerated

on p. 122, footnote 1, and besides the isoperimetric condition

AK =

for every suflSciently small value of |e|.

From the latter condition it follows that also

oe

Hence we obtain in particular for e= :

1 Compare § 13, end.
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f
'

( (i.-l> + (^','1 + ^4 i>'+ ^-u<l') dt = , (22,

where
^> = ,^(Y,0,

,
q=r,,{t,Q) . (23)

If we transform the left-hand side of (22) by integration by

parts, and remember that, as in §25, a),

where

d _ , ,
rf _

u ^ G,^„- G^.^+G,(yu"-'^"y') ,

6 1 ^-^x'x' ^-^x']i' mm'

\j X y X

we obtain

where

f
' Uwc(f = ,

tv = y p — X q

Since p and q vanish at to and /j , the same is true of ir

.

Vice versa, the following leiiima^ holds:

Let to be any function of class D' which satisfies the con-

ditions

w{t,) = (), w(t,) = (), (24)

(
' Uwdt = () ; (25)

then it is always possible to construct an admissible varia-

tion of type (21) for which

a
^yi-x'r}) = IV .

Proof: Since @o is not an extremal for the integral K, it

follows that U^O; it is therefore always possible so to

select a function iVi, of class D\ and vanishing at /o and f^,

that

'Due to Weierstkass; sec Kxesee, Muthauatische Aitnaleu, Vol. LV, p. 100.
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Now let

o) = ell- -f- Ci H"|
,

and choose
, y'w — x'(o
^ '-'I ''2 5 / '2l '9*

a; -+ ^
-^ X ^ -\- !/

^

These functions vanish at /o and /^ for all values of the con-

stants e, ej ; they represent admissible variations if, more-

over, the condition

AA' = (1)

is satisfied.

But by the same process as above, we find

:

="= r '

Un-dt = , (26)
^^K

e =0

-h-"= (
' UH\dt^O . (26a)

On account of (26a) we can apply the theorem on implicit

functions to the equation ( 1 ) , and obtain for e^ a unique solu-

tion which, on account of (26), is of the form^

ci=(e)e .

Hence
y'^ — x'-q = w = £W + (e) e ,

which proves our statement.

6) Weiei'strass' s expression for the second variation :

Since Ai^T^O, we may write

AJ=: A J + A„AA' . (27)

Hence if we apply to the increment AF-^\AG Taylor's

formula, we obtain for every admissible variation of type (21)

AJ= f \hJ + H„r] + H,.^'+ H,^.r}')dt

+ 1 r '

{H,J' + • • • + H,.,.r]") dt + (c) e^ ,

'0 .

1 Compare p. 35, footnote 2.
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^^^^^^•^ H = F + KG .

The first integral is zero since @o is an extremal.

To the second integral we apply the transformation of

^27, a). We thus obtain the result

:

^•^ = gX"(^-(^) + «^''-')"' + W-'- (28)

where H^ and H2 are derived from H in the same manner

as h\ and F^. from F ; see §24, 6) and §27, o). We shall

denote the first term on the right-hand side by ^^-J.

For a minimum if is iherefore necessanj that

X"(^'(^T+^'"'')'"^''^ *29)

and on account of the lemma proved under a) this condition

must be fulfilled for everu function w of class D' icliich sat-

isjies the equations {24) and {25).

c) The second necessarij condition: Since we can con-

struct admissible variations' which vary the arc ©q only

along any given subinterval {ft") of (/q^i), we can apply to

the above integral the reasoning of §11, b). Hence the sec-

ond necessarij condition for a minimum {maximum) is ttiat

H,^0 (^0) (II)

(don<i the arc ©q-

This is tJie ancdogne of Legendre's condition. Also the

second necessary condition for the isoperimetric problem

coincides, therefore, with the second necessary condition in

the problem to minimize the integral

H{x, y, x', y')dt

without an isoperimetric condition.

1 Compare §39, a).



218 Calculus of Variations [Chap. VI

§41. THE THIRD NECESSARY CONDITION AND THE CONJUGATE
POINT

We assume in the sequel that (II) is satisfied in the

stronger form

H, > along e„ . (II')

It follows, then, by the method of §11, ?>), that (29) is sat-

isfied, provided that the point 1 is sufficiently near to the

point 0.

We have next to determine how near the point 1 must

be taken to the point in order that the inequality (21)) may

remain true. And // is at this point that the equivalence of

the liro prohlems, which ire hare been comparing, ceases.'

In the unconditioned problem the inequality (29) must be

fulfilled for all functions ir of class D' which vanish at /q

and /j ; in the isoperimetric problem only for those which

besides satisfy the equation (25). It is therefore a priori

clear that the condition (29) is certainly fulfilled for the

isoperimetric problem if it is fulfilled for the unconditioned

problem. Hence if we denote by T the upper limit of the

values of ti for which the inequality (29) remains true in

the isoperimetric problem, by T" the corresponding upper

limit for the unconditioned problem, then T is at least equal

to T", but it may be greater, and in general it actually is

greater, as will be seen later.

a) Determination of the conjugate point : The point T
can be determined by a proper modification, due to Weier-

STRASS, of the method for the determination of the conjugate

point in the unconditioned problem:" Since we consider

only those functions w for which

1 This has first been discovered by LundsteOm, '• Distinction des maxima et des

minima dans un problfeme isoperimetrique," Nova acta rty. soc. sr. Upsaliensis, Ser.

3, Vol. Vll (1869) ; compare also A. Mayek, Mathematische Aimalen, Vol. XIII (1878),

p. 54.

2Compare §gl2, 13, 16, 27, b).
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X
we may write B'-J in the form

/Li being an arbitrary constant. Transforming the first term

by integration by parts (see §12) and remembering that ir

vanishes at /q a^i^ 'i^ we obtain, if ic' is continuous in (/,)/]),

5V = e- r '

ir
I

^ (w) +tiU~]fJf , (30)

^^^^^'"
v,(,,) = i/,,,_^^(if,,0 . (31)

To obtain the general integral of the differential equation

* {w) + ;a £7 = (32)

we substitute in the differential equation'

for j^ and y the general integral (18), differentiate with respect

to a, y8, X respectively, and finally put a = aQ, ^^ fSfy, X =^ Xq.

If we denote

^i{t) = gtfa-f,9a

^2(0 =9tf^-ftgp r

0,(t) = (Jtf\-ft9>.)

{t)=0tfa-f,9a\

(0 = 9tf^ — ft9p I
{<^ = ^0 , /5 = A , -^ = '^0) ,

the result" is as follows

:

Iff means here: i^+ AG.

2 For the computation compare §27, b). In thp differentiation with respect to A

an additional term appears on account of the factor A which occurs explicitly in

F+KG . The immediate result of the differentiation is

2/*(«3W)+(Ga.-|G^) = ;

bu*^ af-^firding to §2j, equation (18),

hence the above result.
«--Jt«-=^'^'
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* (t?, (t)) =0 , * (^,(0) = , ^ {e,{t)) + £7 = 0. (33)

Hence we infer that the function

in which c^ and ('2 are arbitrary constants, is the general

integral of the differential equation (32).

Now if it were })ossible to find values for q, Co, M and a

value /' such that

IV (to) = cA(fo) + ^2^2(^0) + t^OM = ,

IV (t) = c,d,{t') + cAin + H-W) = ,

, r Uivdt = c, r ue,dt-\-c, f U6,dt + fji i U6.idt = ,

»//„ "^^O ^'^'i' ^'u

the second variation could be made equal to zero (and there-

fore presumably At7<0) by choosing iv equal to zero in

(/7i), and equal to this particular integral in {t(jt')-

In order that 8-,/>0 for all admissible functions w, it

is therefore necessary^ that

D{t,t.) =

for

0, (fo)

0. (t)

ue.df

o,{to)

I
ue.dt

t^<t^U

o.{t,)

ue.dt

+ (34)

1 Weierstkass, iec<M)-es, 1872. This condition, together with 77,4=0 in {t^^t^). is

al^o sufficient for a permanent sign of &^J (Mayer, Mat/iematischc Aniiaten, Vol. XIII

(1878), p. 53). The proof is based upon tlie following extension of Jacobi's for-

mula (14) of §12 for the unconditioned problem:
^2(pu -\- qv) ir {pu -jr qv) = Hi(p'ii + q'v) — 2q {p'm-\-q'n)

-^\H•^(p^l + qv){p -q'v) - (pm + gn)f/]
,

where u,v,m,n are the functions introduced below, under b), and p and q are two
arbitrary functions. Compare Bolza, "Proof of the Sufficiency of Jacobi's Condi-

tion for a Permanent Sign of the Second Variation in the So-called Isoperimetric

Problems," Transactions of the American Mathematical Society, Vol. Ill (1902), p.

305, and Decennial Publications of the University of Chicago, Vol. IX, p, 21.
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If we denote by /J the root next greater than /„ of the

equation'

D{t,t„) = ,

the above inequality (34) may also be written

The point /J of the extremal ©q is again called the coiijiKidte

of the 2^01 nf /o.

b) The third )wcessc(rij condition : The preceding result

makes it highly probable' that the minimum cannot exist

beyond the conjugate point. And indeed it can be proved^

by a modification of the method employed by Weieestrass

for the analogous purpose in the unconditionetl problem/

that if fo-\ti, the second variation, and therefore also A./,

can be made nejjative.

For the proof it is convenient to throw the determinant

D{t, to) into another form in which its properties can be

more easily discussed.

Let
ti = e.it,) e,(t) - o,(t) ejt) = » (/ , i) ,

V = C\e,(t) + C,0,if) - 0,(f) = r(f, A,) ,

where the constants C^, Co satisfy the equation

These two functions^ satisfy the two differential equations

^ D{t, tff) cauuot vanish identically; see below, under b).

-Compare remarks in §14, p. 59.

3 The proof has been given by Kxesee, Mdthematische Annalen. Vol. LV (1902),

p. 86. From the statements iu HoRiiAXx's Dissertation (GOttingen. 1887) it appears
that Weieesteass was in possession of essentially ';he same proof, but I have been
unable to ascertain whether he has ever given it in his lectures. I reproduce in the

text Kxeser's proof in a slightly simplified form. In §40 of his Lehrbuch, Kxesee
gives another proof which, however, presupposes that DfKt-^ , fg) +0

* Compare §16, p. 65, footnote 1.

^Xeither m nor r can be identically zero. For since, according to (20), 9j {t) and
0_,(0 are linearly independent and ff, ^^Oin {t„t^). ^iCq) and ^-i^t^^^ are not both zero,

and therefore m^O. it cannot be identicaUy zero since U^Q.
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^(>,) =0 ,
vi,(,-) = u (35)

respectively, and both vanish at Iq :

Hence the determinant D{f, /q) reduces, after an easy trans-

formation, to
D{t, Q = mv — VII . (37)

where

m =1 Uiidt , n = \ Ucdt .

From (35) follows

:

v<i!{u) - u'^{v) =--Hi{iw'—u'v) = -uU .

Integrating and remembering (30) we get

Hi{uv'— u'v) = — ill . (38)

Again, we obtain by differentiating (37) with respect to /

:

D = mv — nu
,

and therefore' 2

Du'-D'u=—r (39)

From the preceding equation it follows that D has af

tQ a. zero' of an odd order, except ivlien m(/o)=^0.

After these preliminaries, we write the second variation

in the form

8V = - £-^•
1^

'

iv' c/f + €^

J"
'

IV \y (w) + ixU]df ,

ilf we denote by ?q' the root next greater than t^^ of the equatiou uit) =0, the
relation (39) shows that fy g t[^. For, since u has at t^ a zero only of the first order,

the quotient D/u vanishes for f„ , and therefore

D__C m'^dt

which proves that D 4= for t^j<t< f„.

2Z) cannot vanish identically; otherwise m and therefore also u would vanish
identically, which is incompatible with our assumptions.
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where A' is an arbiti'ary positive constant and

Now let u and v denote those particular integrals of the

differential equations

^{n) = () , ^{v) = U

respectively, which satisfy the initial conditions:

then it follows from a general theorem' on differential equa-

tions containing a parameter that

L iu{i) - u (/)) = . L (f (f) - v{i)) = ,

unifornilij in'tli rcsjjccf to ilie intcvcal (/o^i) ^{f ^

Hence, if we put

m =
I

Utidt
,

Ti = I Uvdt
,

IJ (t , ti,} = )7ir — Tin .

we have also

Ln{f,U)=D{t,ft>), unifonnly in {f^, fi) .

Now suppose that

tv < U

and that

Then D{i, /q) changes sign at /(,', as has been shown above;

we can therefore choose two quantities t,^ and /^ satisfying

the inequalities

U < h <u<u<u ,.

iPoiNCARE, Mecanique cMeste, Vol. I, p. 38; Picaed, TraitS cfAnalyse, Vol. Ill,

p. 137; and E. II A, p. 205. The assumption i7i 4=0 in (t^^t^) is essential for this con-

clusion.
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and so near to /q that D{f, Iq) has opposite signs at f^ and f^.

Now select k so small that also D{f , /q) has opposite signs at

f:i and f^; then D{f, /„) vanishes at least once at a point

Jq between ^3 and f^.

But since D{fQ, /q) is equal to zero, we can determine two

constants c^, C2, not both zero, so that

Ci>7i(A,') +c'2»(C) = .

Now if we choose

ic = cji + r.J- ill {tj^)
,

and give the arbitrary constant /u. the value — Co? then ir sat-

isfies the differential equation

and the conditions (24) and (25).

This function w makes h'-J negative, viz.

:

8-J= -ck
I

u^dt .

It remains to consider the exceptional case^ when ^/ (/q) =^ ^^•

This can only happen when at the same time m(fo)=^0 and

?"(/o')
= 0, as follows at once from (39) and (38), if we remem-

ber that i?^i4=0 in (/q^i) and that 11 and u' cannot vanish

simultaneously.

In this case we can make h'-J -^0 \)\ choosing /u,^=() and

w=u in (/oAi) .
»• = in (/o'^i) :

and by a slight modification of the method used by Schwaez"

for the proof of the necessity of Jacobi's condition in the

unconditioned problem, it can be shown that S-./ can be

made negative by choosing

iFor this exceptional case, see Bolza, Mathematische Annalen,\o\. LVII (1903),

p. 44.

2 Compare §16, p. 65, footnote 1.
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?(• = /c -f A-.s in {fj',) . ic = ks in (fuf,) .

wliere

(t = i)

"We tlms reach in all cases the result that f/ic ihird iieccs-

sarij roiidiiioii for a iiiiiiiiiiiini is fliaf

Bit, g4z() for U<t<t, ,
(III)

or
K ^ i,

c) Knesers form of the determinant D{f, tn): Let 5(f = f-,o) be

a point on the continuation of the extremal Qa bej'ond the point 0,

taken sufficiently near to 0, or else the point itself. Then it fol-

lows from our assumptions concerning the general solution (18) of

the differential equation (I) that there exists^ a doubly infinite sys-

tem S of extremals passing through the point 5

:

.r = <l>{t,o, h) . l/
= ^{f, a, b)

, (40)

and satisfying the following conditions :

1. The extremal (So i^ contained in the system 2, say for

a = cti, , 6 = 6o

.

2. The functions

(f>- ^, i^i, ^t, 4>fi' 4'tt

and their first partial derivatives with respect to a and b are con-

tinuous in a domain

n ^f^T, ,
\a- a„! ^ rf,

,
\b- b„\ ^ f/, . (41)

where 7\ < t^ < f„ <ti< 1\ and di is a sufficiently small positive

constant.

3. <^2 4_ ^^ -|- in the domain (41)

.

4. The value f = /.5, to which corresponds on the extremal (a, b)

ilf .r= /"(#. a. 3. Ai, y = c)[t,a.p.\) represents an extremal passing through the

point 5 (say for t = ^,). the quantities a , (3 . A , f. must satisfy the t\vo equations

S,«g,a,p,A)-<;(fgf,,o„,p„,A(,)=0.

Solving with respect to t-^ and A and remembering (20), we obtain the results stated

in the text.
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the point 5, is a function of a and h . of class C in the vicinity of

From the definition of f-,, according to which.

it follows by differentiation that

<l>t

<f>t

dh

da

86

' + <^„ = , rp,

'du

da
:+^„ =

+ «^6 = ^t

(42)

5. X is a function of a, b of class C in the vicinity of a„, foo,

and the two derivatives

Xi = A„(ao, 6,,) . ^2 = K{(^Ui, h)

are not both zero, since 0^{f) and ^2(0 '^^^^ *^"o linearly independent

integrals of ^(h) = (compare (33)).

We shall denote by

Y{t,a,b) ,
G{t,a.b) , K(t,a,b). G^{t,a,b), etc.

the functions of t, a, b into which F, G, H, G^, etc., change on

substituting

x = 4>(t, a,b)
, y — xpit, a,b)

,

x'=<i>,{t, a,b)
,

y'=ij/f(f, a, b) .

The integral K taken along any extremal (a , b) of the system S

from the point 5(^ = ^5) to an arbitrary point ^, is a function of

/, a, b, which we denote by x(^. a, 6)

:

(t, a, b)= f G(^ a, b) dt (43)

Finally we denote by A( f , a , 6) the Jacobian of ^, t/-, x :

d(/,a,6),

T/iew TFeiers/ras6'.s function. D(t, t^,,) differs from the Jacobian

A{t, ao, bo) only by a constant factor

:

D{t,t,,)=C^{t,a„b,) . (44)
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Proof: For the partial derivatives of x(t . f(.l>) we obtain the

followiiiii: vahu^s

Ba

Xi = ^ = 'i>i^.r- + ^iG,r ,

Applying the usual integration by parts and remembering that

'

0\ %G^' = y'u, o,-l-^G, = -yu,
we get

x„ = f uiii^^cf^,, - <i>,^j at + Fg,, c/.,, + G,. .aJ' - G

The terms outside of the sign of integration reduce to

'9^

9a

on account of (42)

.

A similar transformation applies to Xb •

We substitute these values of X(, x«, Xb in ^ ('> a? b) and then

put a = a,j, b = b„, which makes 4 = /50

.

Writing for brevity

^ — ^,^., — ^t^a\
\b= b,,

B = 4), (f>i,
— (p, ^,,

a=a(,

b= b,'0

M = j UAdt
,

A^=
j

UBdt
,

we obtain for the Jacobian the expression

-

A(^ a,,, bo) --MB -NA (45)

It is now easy to establish the relation (44) ; for if we substi-

tute in one of the differential equations (8) for x, y the functions

4){t, a,b),i'(t, a, b), differentiate with respect to a and then put

a = ao, b — bo, we get
* (A) f A, L^ = ;

similarly

:

* (5) 4- A, f/ = .

'Compare equation (18) of §25.

^KxESER, Mathcmatischc Annalen, Vol. LV (1002), p. 93.
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Hence if we set

u = X.2A — X^B ,

U and V satisfy the same differential equations as the functions

u,v introduced under h). Moreover, 77 and v vanish for t^^t^,

since, on account of {42),

Hence it follows that

77 = cii (t, f,„) , V = r if, t,„) + c'lt (/, f,,l

where c and e' are constants. Taking^ now D(f, fjo) in the form

corresponding to (37) we obtain immediatel}' the relation (44).

(I) Mayer i< lair of reciprocif
[j for isopfrunetric proh-

lems : The problem : To maximize or minimize the integral

J while the integral K remains constant, and the "reciprocal

problem"' : To maximize or minimize K while J remains

constant, lead to ihe same totalifu of extremals.^

For, if we distinguish the quantities referring to the sec-

ond problem by a stroke and make the substitution

1
A =

we have

A = -
, (46)

which shows that the differential equations for the two prol>

lems become identical by the substitution \ ^^ 1/A

.

Now suppose that in both problems the given end-points

are the same and that, moreover, the values prescribed in

the two problems for the second integral are such that one

and the same extremal @o? fo^ which XQ=t=0, satisfies the

iThis remark had already been made by Eulek; see Stackel, Abhandlungen
aus der i ariationsrechnung, I, p. 102.
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initial conditions for lioth problems. Then iJic ('([iiivalence

of the iiro problems stilJ holds for the second varmtion.

For since

H. = ^ , (47)

Hi has a permanent sign so long as H^ has, and vice versa.

The sign is the same if X is positive, the opposite if X is

negative.

Further, the conjugate to the point is the same in both

problems

:

t; = n . (48)

For the system S of extremals through the point is the

same in both problems.

Besides _
U=T ;

lience since the extremal ®o satisfies the differential equation

T+A„f7 = ,

we have, along Qq :

and therefore, according to (45),

A(t, a, ,&„) = - K^ {f , «o , &o) , (49)

which proves our statement.

This result is due to A. Mayer, and has been called by

him the Uiiv of reciprocifij for isoperimefric problems}

e) Example XIII (see p. 210) : From the expression (12) for Hi

it follows that X must be negative in case of a maximum. Equa-

tion (13) shows, then, that the vector from any point of the curve to

the center must be to the left- of the positive tangent. Of the two

arcs which satisfy the differential equation and the initial condi-

i Mathematische Annalen, Vol. XIII (1878), p. 60; compare also Knesek, Lehr-

buth, pp. 131 and 1-36.

- If, as we always suppose, the positive 2/-axis lies to the left of the positive j--ax'S.
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tions only the one above the .r-axis satisfies this condition. Tliis

arc may be represented in the form

X = a„ — \o COS / ) , , ^ ,.~r.^'

. -/„^*</, <A,+ 2^ . (oO)
ij — ^„ — X„ sni / )

Hence we obtain

e^ (t) = - A„ cos / ,

e,{f)= -A„sin^ ,

e,(t)= K .

Again,

FIG. 4.-.

{vx^ + y'^y
'

which is equal to — 1/Xo along (^'„, according to (13). This leads

to the following expression for D{t , /„)

:

D (/, t^ = 4X" sin o) (sin (a — ta cos w)
, (51)

where

Hence we easily infer that the parameter t^, of the conjugate

point is

:

n = fo + 27r . (52)

The arc (So satisfies, therefore, the condition

/. < ^o' •

On the other hand, in the problem to maximize the integral

(
' r L {xi/- x'y) + K Vx"+ y"^ dt

,

without an isoperimetric condition, the conjugate point t^' is

determined by the equation

0(f, A,)= -A;^ sin (f- = ,

whence

'

iThe same result follows from the geometrical interpretation of Jacobi's cri-

terion: The extremals through A are circles of radius A^; their envelope is a circle

about A of radius 2Aq, which is touched by each circle ^ through A at the point dia-

metrically opposite to 4 on g.
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HO that, in accordance with the general theory,

t-O ^ 'll

/) Example XIV (see p. 211) : We have here

H, = ^~Jl±L^.
; (53)

hence for a niininuun it is necessary that

7/ + A > .

Of the two sohitions (14) of the differential equation (I) which sat-

isfy the initial conditions, only the one in which the ii^jper sign is

taken in the expression for ^+^, fulfils this condition.

For this solution we obtain

6, (t) = ySo sinh t , $., {f) = /3,(t sinh t - cosh f) , 6.,{f) = /i?„
,

X ij -X \j 1

Hence follows

{Vx"'-^xry A. cosh- ^
'

Jf,) ' L t-osh i X^'

Jfo ^ L cosh /J,'

f L^^3df = r tanhH'^

and the expression for Z)(f , /„) reduces to

'

D {t, U) = f^ (2 cosh {f - /„) - 2 - (/ - A,) sinh (f - A,)) , (54)

or, if we put
f-L 2co

D (t , /,,) = 4ji3i; sinh w (sinh oj — w cosh w) . (54a)

The function sinh cj is positive for every positive w, and the

function

<^ (oj) = sinh CO — (u cosh o)

is negative for every positive to, since </>(w) = and

<fi' (oj) =: — o) sinh OJ .

1 First given by A. Mayer, Mathcmutische Annakn, Vol. XIII (1878), p. 67.
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Hence there exists uo co)iJiiyafe point, and the third necessary

coudition is always satisfied.

The same result is even more easily obtained by usin;»- Kxeser's

method :

'

If we let the point 5 coincide" with the point and choose for

the two parameters a . b the quantities

a = t:, . /> = /?,

the system of extremals through the point is represented by the

equations

,r — .t'l, = b[t — a) , y — y„ — b (cosh / — cosh a)
, (55)

Hence we obtain

•)(^{t , a , b) —
I

1 x'- + ij"' fit = b (sinh t — sinh a)
, (56)

and therefore

A {f . a , b) = b' [2 cosh (f -a) -2- (f - a) sinh {t - a)]
,

which for a = ao{=t„),b = b„{— ^„) reduces to the expression (54)

for D(t,t,).

§42. SUFFICIENT CONDITIONS

The argumentation of §2S applies, with slight modifica-

tions,^ to the present problem, and leads to a fourth necessary

condition for a minimum:

1 Compare Kxesee, Lehrbuch,v. 14;}. -Compare the introductory lines of §41, c).

These modifications are:

1. The variations ^, tj must now satisfy tlie isoperimetric condition:

in addition to the conditions stated in g2S, a). To obtain sucq variations, let

be arbitrary functions of i of class C satisfying the conditions

:

/>j(*o) = 0, <//'^,)=0. p,(f2l=0. Qi(^,)=0,

P-i (h) 13 «2) ~P3 ('2) 1-2 ('2) +0 '
-V, + ,

^V^- having the same signification as in §39, a). Then the functions

f= ejPj+ e2P2+ ^3P3 • 1 = ^1914-^292+ ^333

will satisfy all the required conditions if ^1,^2' *3 ^'^^ determined by the equations

which is always possible under the above assumptions concernic.g jj , q..

2. A J has to be replaced by AJ+ A^AA'.
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If we denote by E(.r, // ; j), <] ; p, ?i\\) the function de-

rived from H ^^F
\
XG exactly in the same manner in which

the E-function for the unconditioned problem is dei-ived from

the function F (see ecjuation (-1:8) of ^2S), then the Jhiirlli

ncccA^arjj condiiioii for a iitiniiinniiconsii^ls in the iiicqncilitij'

E (.'•, !j; p.q; P, q\K) ^0 (IV)

which must be fultilled along" the arc ©q for every direction

p. q.

The question arises now whether the four conditions

(I)-(IV) are sufficient for a minimum.

(i) W('ierstrass''s consfruciion: Let

6

:

x=^{s)
, y = ^{s) , So ^ -s ^ Si , (57)

he any curve of class ( '', different from @q, joining the points

{) and 1, lying in the region' U and satisfying likewise the

isoperimetric condition

K,„ = I

for s we take for simplicity the arc of the curve (5.

We propose to express the difference

A t/ := J^,^ — Jdi

in terms of the E-function.

For this purpose we take a point 5 on the continuation of

the arc @o beyond 0, but not on (£, and consider with Kneser*

the doubly infinite system S of extremals through the point 5 :

@: x = <j>{t,a,h)
, y = ^{f,a,h) (58)

introduced in §41, c), the arc @q .being given by

x = <f>
(t , eta , h) . ^ = <A (^ «o , h,) , fv^t^ti

1 Weierstrass, Lectures, 1879.

2In the same sense as in §28, a). sCompare §24, h) and §39.

* Weierstrass considers instead tha sot of extreiiials through 0. Compare p.

3-10, footnote 1.
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We shall say that for the curve (S Weicrstvass's cnusfnicfion

/.s- posnihlc^ if the point 5 can be so chosen that the follow-

ing conditions are fulfilled :

A) Through every point 2 of the curve (E there passes a

uniquely defined extremal Go of the system 2 :

C5,

:

.c = cf>(t, a, . K) , if^ip it , a, , 6.) , (59)

lying wholly in the regic^n U and such that the integral K
taken alon^: ©•> from 5 to 2 has the same value as when taken

from 5 to along @o and then from

to 2 alonof 6

:

-K52 — K-^i)+ K 0̂2 > (60)

FIG. 46

and when 2 coincides with or 1 , the

extremal ©o coincides with ©o*

This means analytically : There

exists a system of three single-valued functions

such that

t = t (s)
,

a = a (s)
, h{s)

(61)

<f>{t{s),a{8),h{s))=4>{s)
,

il^{t{s),a{s),h{s)) = 'ip{><)
,

where %(/, a, b) has the same signification as in equation

(43), and

X(s) = r G (^(.s), ^(.s-), ^'(.s'), r{^)) ^'« •

Moreover

:

t (so) = A, ,
a (so) = «o ,

b (So) = &o ,

f (si) = ti , a (si) = ao , 6 (si) = h .

(62)

B) The three functions /(s), «(s), 6(s) are of class 6'' m
(SflSi).

1 Compare Knesek, Lehrbuch, p. 133.
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C) If ^2 be any value of s of the inteTvnl (-Vi) and we

denote :

'

f., = f (.s-.,) . a.2 = a {s.>)
,

b2 = b (.Sj) , t:,-, = t-, (a, , ho) ,

then the functions

4>, ^, 4>i, 4'i^ 4>ii, "Ptt

and their tirst partial derivatives with respect to (i and b are

continuous in the domain

(l? being a sufficiently small positive quantity, and moreover

the function" A.(rt, b) is continuous at (oo, Im).

These conditions admit of the followiniy sfeometrical

interpretation :

*

We adjoin to the two equations (58) the equation

z = x{f, ((, b). (58a)

Interpreting then x, y, z as rectangular co-ordinates in

space, the equations (58) and (58a) represent a curve in

space, ©', whose projection upon the x, ?/-plane is the ex-

tremal (S, and whose ^-co-ordinate indicates at every point /

the value of the integral K taken along ® from the })oint 5

to the point /.

We thus obtain, corresponding to the system 2 , a doubly

infinite system S' of curves in space, all passing through the

point 5 :

a:- = a-3
, U = y, , z = .

The particular curve ©J adjoined to the curve Q^) passes,

besides, through the two points 0' and 1':

0'

:

x = Xo , y = y^ , z = z^, = Km ,

1/

:

X = Xi , y — yi , z = Zi = K-,,,-^1 .

In like manner we adjoin to the curve (i a curve in space,

iFor the notation soe §41, c). 2Conipare §41, c).

SWeieksteass, Lectures, 1879; compare also Knesee, Lehrl.nch, p. 140.
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6'. by combining with the two equations (57) the third equa-

tion

z = x(:^) + K,. . (57a)

The curve 6' passes likewise through the points 0' and 1'.

The above assumptions A) and B) may then be couched

in geometrical language as follows

:

Through every point 2' of the curve G' there passes a

uniquely defined curve of the set S' ; it changes continu-

ously as the point 2' describes the curve &' from 0' to 1' and

coincides with Qq when 2' coincides with 0' or 1'.

Under the assumption that Weierstrass's construction

is possible for the curve (i, we consider as in §20, b) and

§28, (1) the integral J taken from 5 to an arbitrary point

2(3= 82) of 6 along the uniquely defined extremal ©_>, and

from 2 to 1 along (S, and denote its value regarded as a

function of ,so by 8(82) :

Then as in §20, />)

AJ=-[s(s,)->S(.So)] .

The integral K taken along the same path has the constant

value 1 + Kr^Q

:

_

since KQi= KQ2-\- K2i= l and K-^2=^Ko2^ ^50- Hence it

follows that we may write

im = ('1^ + ,, 'L^A +('H^+ ,,.^) . (03)
ds2 \ ds.2 dso / \ d,§2 ds.2 )

Proceeding now as in §28, d) and remembering that the

extremal ©2 satisfies the differential equations

^^~dt^^'^-^ ' ^"-Jt^^^=^ '

where

we obtain the result
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dS(.%) ^,- - - - ,x .

.^

" = - E(^-,, ^2.: i>2, g^; P2, q2\h) ,

the direction-cosines po, q> and ];2 5 ^2 referring to the curves

©2 and 6 respectively.

The result can again easily be extended to curves G hav-

ing a finite number of corners.

Thus we finally reach the result' that wlienever IVcicr-

sfrass^s construction is jwssible for thr cm- re 6. JVcici--

strass's theorem also Jiohls :

A J = I E (^"2 , //,, ; p, , q., ; 2h , q-2
1 h) ds^ . (64)

h) Hence we infer that AJ^^O whenever

E {J-2 , ^2 ; Ih , ^2 ; P2, ^2 1 ^2) ^ throughout (s^> Sj) .

If, moreover, the E-function vanishes only icJten p>^^Pii

^i — 'li^ ''"'t/ if besides

A [to, a.2, bo) =t= along (S ,

A./ cannot be zero, and therefore

AJ> .

Proof:' If we differentiate equations (Gl) with respect to

6', we obtain

^ df
,

da
,

db
9f -j- + (p., -r ~r ^1, T = (f> ,

(is as (Ifi

.
dt

,
da

,
db -,

"^f ;7 + '^' 77 +'/''' ,^ = "A ,

(IS (Is (Is

df
,

da db

'^^ds'^^"ds^^"ds=^

Xow if p2=^Pi, ^i^^'li, we have at the point 2 :

and therefore, since*

• Weierstrass, Lectures, 1879; compare Knesee, Lehrbuch, ii. 134.

-Due to Kneser, Lehrbuch, p. 134. 3 Compare §41, c).
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x'=G , Xt=G >

also'

x'= l^'Xt '

on account of the homogeneity of (jf.

Substituting these values in the above equations, we see

that either

A (^2 , a-i , b,) = ,

or else

da , db „— — u
,

—— — u .

ds ds

Hence if __

A(/., a^, ?>.^) 4: along- 6,

a? and b-^ must be constant along (S, and, on account of (02),

their constant values must be

a (s) — a,, , b (s) = % ,

that is: 6 is identical with the extremal %, which is in con-

tradiction to our assumption that 6 shall not coincide with

©0. Hence the statement is proved.

c) In many examples the above theorem is sufficient to

establish the existence of an extremum.

Example XIII (see p. 229) : The system 2 is the totalifij of

circles through the 2^omt 5 :

a- — Xj = 6 (cos f — cos a)
,

y — yr> ^ b (sm f — sm a) ,

the parameters being a = tr,, b= — X

.

The ordinate z erected at the point t of the circle (a , b) is the

length of the arc of this circle from the point b(t = a) to the point t

:

z = \b{t-a)\ . (66)

The system S' of curves in space is therefore a sj^stem of helices.

Through every point {x,y,z) for which

z > V{x-jc^ + {y-yr,f > , (67)

iThis means geometrically: If c?2 touches 5, then also (J.,' touches G'.

2 The result remains true if A (fg. ('21 ''2) =0 at a finite number of points.
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thrre passes one and but one curve of the system 2 foi" which

a<f<a + 27r, h>0 . (68)

Moreover the inverse functions /, a, b of a-, y, z thus defined are

regular^ in the vicinit}- of every point (.rg, y^, z<^ satisfying the ine-

quality (fiT), and take, at the points (.ro, //n, 2;,,) and (.r, , //,. Zi) the

values /„, t/„, 60 and fi, Oo, 6u respectiveh.-

Now we join the two points and 1 by an ordinary curve 6,

whose length has the given value / and which does not pass

through 5.

Then for every point 2 of (S the sum of the lengths of the arc

50 of the circle Q,» and of the arc 02 of (I is greater than— never

equal to— the distance between the two points 5 and 2, which in

its turn is greater than zero, since (5 does not pass through 5, /. e.,

the condition

1 Proof : Ou setting
f+a t—a

the equations for the determination of t , <i , b become

X — .(5 = — 26 sin y sin w ,

2/ -2/5= 26 cos 7 sin u>, (69)

z = 26w .

Hence if we put

and suppose

/ '•
iV (a; -a-j)' -;-((/- (/-I =u.

0<co<7r, we get It = 26 sin u),

and therefore we obtain for the determination of w and y tlie equations:

sin w • / (V rr.n\= r, y-ij^-t(.c-Xr^)-ue'. ((0)

where r = u z . Since, according to equation (67) , < c < 1 , the transcendental equa-

tion for 10 has one and but one solution in the interval : < w < n-

.

Moreover if 0<i'2<l be any particular value of r, this solution o> is regular in

the vicinity of V = r.j, since the derivative of the function sinio'w is +0 for 0<(o<7r.

Similarly the equation for y has a unique solution in the interval 05y<2ir,
which is a regular function of .c . y in the vicinity of every point (.x^

, V2) different from

(':, y-J-
The values of w and 7 being found, the quantities t,a, h are obtained immedi-

ately. They satisfy the inequalities (68) and are regular functions of .r, y , z in the

domain (67).

2 For, of the two arcs of circles of the system 2 which pass through the point (.c , y)

and have the given length z, the one is described in the positive sense (so that the

center is to the left) if we start from the point .5, the other in the negative sense.

For the former the inequalities (681 are fulfilled, for the latter, they are not.

On the other hand the arcs 50 and 51 of e,, are, according to §41, e), described in

the positive sense, and are therefore contained in the above system of uniquely de-

fined solutions.
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-2> y {.r,-.r,f +(>/,- u,f>0
is fulfilled.'

Hence it follows that Weierstrass's construction is possible

for the curve 6

.

Fiu'ther we find easily that

E {x2, 1)2 ; ih, Qi ; Th> <h !
K) = 'V^fl — cos a,,) . (71)

where a.2 is the angle between the positive tangents to the two

curves @2 and (i at the point 2

.

X2 is negative in (soSi) (since it is equal to — bo)^ and 02 cannot

vanish identically in (.s'„.s,)

.

For, according to (51),

A ( fo , a.i, b-i) = 4 A.2 sin W2(sin cd., — Wjcos io.^)
,

and therefore

A (fj , «., , 62) =(= in (So6'i) ,

since < w.2< tt .

Hence it follows that

AJ<0,

and thus we reach the result that the arc of circle @„ furnishes a

greater value for the area J than any other ordinary euvve of the

same length u-hich can be drau-n betu-een the two points and I.

The same reasoning, slightly modified,- leads to the theorem

1 If we had taken, instead of the system of extremals through 5 . the system

through 0, the above inequality would be true only with certain exceptions which

would require a special discussion. Compare p. 233, footnote 4.

2The curve is now closed; accordingly the points and 1 coincide. If we let

also the point 5 coincide with and consider two points 3 and 4 of i for which

•'*o'^'^:i*^'^4'^'''i • ^^^ obtain by the same reasoning as above

S{s^)-S{s.,

Now let .s, and s^ approach s,, and s, respectively, then we get

-I A.^ ( 1 — cos aj) ds.2 ,

J,ii being the area of a circle of the given perimeter I. Hence

The previous method is not applicable when the curve iT begins at the point

with a segment of a straight line, because then the inequality (67) is not satisfied for

th(^ point 3. In this case, take the point 3 beyond the end-point 6 of this rectilinoiir

segment and let 3 approach 6. Then ^(s^) approaches again Jq, with the same result

as before.
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that among all closed cnrrcs of givoi Ipugth the circle i)icludes

the ma.riinum area.

Example XIV (see p. 231) : Any admissible curve 6 l)eiug

given, we choose the point 5 so that for every point 2 of 6

X2 > .Tj .

Then through every point 2' of the space curve (§,' one and ])ut

one curve of the system ' 2 '

:

X — x-^= h(t — a)
,

?/ — ^5 = 5 (cosh t — cosh a)
, (72)

z =: b (sinh / — sinh a)
,

can be di'awn for which ^iq 47

t>a , 6 > .

This follows from the determination of constants given in

§39, d). At the same time it is easily seen, in the same manner as

in the preceding example, that all the conditions for Weier-
strass's construction are fulfilled.

Further we find

E (0-2
, z/2 ; p2, q-i-, p2,q2\ K) = (2/2 + \') d — fos a.,) . ( 73

>

where a., has the same signification as in (71). But. according to

§41,/),
ij., -\- A., = 5., cosh to > ,

since 62 >0, and a^ cannot vanish identically along 6 since

A(f,, a,, 62)4=0

alousr (5 • Heuce we infer that

^01 > '-^ui ,
i- c-,

the catenary @,, lias its center of gravity lower than, any other

ordinary curve of equal length which can be drawn between the

two points and 1.

d) ^^FiehV about the (irc Qq : Returning now to tlie

general case, we meet with a peculiar difficulty which has

1 Compare equations (55) and (56).
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no analogue in the unconditioned problem. Sn})pose that

for the are @q, which we assume to be free from multiple

points, the conditions

i/i>o (in
and

^<^u' (III';

are fulfilled.

Does it follow, then, that the arc ©q can be surrounde('

by a neighborhood (p) such that for every admissible curve

6 which lies wholly in this neighborhood, Weierstrass's

construction is possible '?

In the unconditioned problem and under the analogous

assumptions, this question could be answered in the affirma-

tive;' fo)' flic isopcfiuicfric pj'ohJrm fhc (jii<'>ffi<)ii lias )iof

yet been ((HSircrcd.

Only the following milder statement can be })roved

:

If conditions (II') and (III') are fulfilled, a neighbor-

hood^ (p') of the space curve @o' adjoined to the arc ©^ can

be assigned such that JVeiei'strctss^s constriictioyi is jMfssihIc

for every adiuissible ciirre S ivJiose corresponding space

ciirrc lies icliolly in f/ie neighborhood {p' ) of ©J.

The proof proceeds by the following steps

:

1. If conditions (II') and (III') are fulfilled, we can take

the point 5 so near to that for the system of extremals

through the point 5 not only the conditions enumerated in

§41, c) are satisfied, but, besides, the following:^

A (t, «,,, b,) ^ for U^t^f, . (74)

1 Compare §28, d) and §.34.

-We understand by the neighborhood (p) of the arc e,,' the portion of space
swept out by a sphere of radius p' whose center describes the arc i',/.

3 For the proof remember (44), and notice that the condition for a permanent
sign of S J may also be written

D{ti.t)^0 for t^,^t<f^,

(compare §41, a)). The statement follows then by a slight modification of the

analogous proof given by C. Jordan. Cours cVAnalyse, Vol. Ill, No. 393.
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12. Bv an extension of the method of §34 we can now

prove the existence of a "ticld"' §>;[. about the arc ©'

:

If 53 j;. denotes the domain

A,
— e ^ / ^ f

, + e , \a — ao\^k , \b — b„\^k
,

and §»/,. the image of 'B/^- in the .r, ij, ^-space detined by the

transformation

X = cf>{f, a, b)
,

ij = \lj(t, a,b)
,

2: = x(^«,^>),

then the two positive quantities A: and e can be taken so

small that the correspondence between S;^. and ^l is a one-

to-one correspondence, and that at the same time

A(/, a, 6)4-0 (75)

in S,..

The sintrle-valued functions i, <i,h of ,r, /y, z thus de-

fined are of class C in ^^., and a neighborhood (p ) of the

arc G"o' can be inscribed in ^/..

It follows now easil}" that for every admissible curve 6

irliosc (idjoiiicd .^jxtcc curi'c lies ichollij in the ''fichV ^l,

Weierstr ass's construction is possible.

(') SiiJlficiciif conditions for <i soni-sh'ong niiiiiiiiiun :

Suppose iK)W that in addition to the conditions (II') and

(III') the inequality

E(.*', /y; p,q; P,q\K)>0 (IV)

holds along the arc ©^ for every direction /), q except

I>=p,q=q.
Then it follows from continuity considerations that we

can take /i"-so small that

E {J--2 , y-i ; i>2 , (h ; Ih , q^ \
K) >

along every admissible curve (S satisfying the above addi-

tional condition, except at the points where P2=P2^ ^2='Q2)

at which E vanishes.
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From Weierstrass's theorem and the ineqilality (75)

it follows now that for every such curve (S

AJ> .

Hence, if we modifv our orimnal definition of a minimum

and say : "The arc @o furnishes a semi-stroiir/ minimum for

the integral J if there exists a neighborhood {p') of the

adjoined arc Go such that AJ^O for every admissible curve

(£ whose adjoined space curve 6' lies wholly in this neigh-

borhood (p')/' we can enunciate the

Theorem y The ejctrenial Qq {which ice suppose free from

)iu(1fij)le points) furnishes a semi-stroiKj ininimum for the

infegrol J ivith tlie isoperiynetric condifion K^^l, if ihe

eondiiions (//'), (///'), {IV') are fulfiUed.

It must, however, be admitted that the restriction which

we impose in the "semi-strong" minimum upon the varia-

tions of the arc CS",,, is rather artificial and alters completely

the character of the original problem."

1 Weieesteass, Lectures. 1X82; compare Knesee, Lehrlntch. %%'\C-) and 38.

Mayer's hiir of reciprocity extends to the sntHcient conditions for a semi-stronp

extremum, since, in the notation of J;+li''i, 1^ = 1 AE. Coniparo Kneser, Lehr-

buch, § 36.

2 As a matter of fact the i^recodiug theorem does not contain a solution of the

isoperimetric problem originally proposed, but a solution of the following problem,

which is usually (but unjustly I considered as e(iuivalent to the isoperimetric prob-

lem, viz.

:

Among all curves in space which pass through the two points

x = .i\,, // = 2/,j, 2 = and j- = x^. y = y^. z = l

and satisfy the diflerential equation

— = fT(.<-, y.x,y),

to determine the one which maximizes or minimizes the integral

J= I i-'i.f, ;v, >-', y') ^ft .



CHAPTER VII

HILBERT'S EXISTENCE THEOREM

§43. INTRODUCTORY REMARKS

If a function f{oc) is defined for an interval {ah), it has

in this interval a lower (upper) limit, finite or infinite, which

may or may not be reached. If, however, the function is

continuous in [oh), then the lower (upper) limit is always

finite and is always reached at some point of the inter-

val : the function has a minimum (maximum) in the interval.

Similarly, if the integral

J= \ F{.r,y,x',y')dt

is defined for a certain manifoldness M of curves, we can, in

general, not say <(, priori whether the values of the integral

have a minimum or maximum. But the question arises

whether it is not perhaps possible to impose such restric-

tions either upon the function F or upon the manifoldness

M, (or upon both), that the existence of an extremum can be

ascertained a 'priori.

In a communication to the "Deutsche Mathematiker-

Vereinigung" {Jahresherichte, Vol, VIII (1899), p. 18-1),

HiLBERT has answered this question in the affirmative. He
makes the following general statement

:

"Eine jede Aufgabe der Variationsrechnung besitzt eine

Losung, sobald hinsichtlich der Natur der gegebenen Grenz-

bedingungen geeignete Annahmen erfullt sind und notigen-

falls der Begriff der Losung eine sinngemasse Erweiterung

erfahrt," and illustrates the gist of his method by the ex-

ample of the shortest line upon, a surface and by Dirichlet's

245
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problem. In a subsequent course of lectures (Grottingen.

summer, 1000) lie gave the details of his method for the

shortest line on a surface, and some indications' concerning

its extension to the problem (^f minimizing the integral

J= { ' F{ji-, y. !j')il,r .

• -A)

We propose to apply, in this last chapter, Hilbert"

s

method to the problem of minimizing the integral

J'= I F{x, y, x', y')dt
,

with fixed end-points, under the following assumptions,

where S denotes, as before, a region of the .r, //-plane, and

Uq a finite closed region contained in the interior of S

:

A) The function F{x, y, x', y') is of class C" and sat-

isfies the homogeneiiy coiKlitioii

F{a-, !,, k.r', ky') = kF{x, y, x', y') , k\>

throughout the domain

SI: ix,y) ill a ,
.r'^ + /y'^4=0 .

B) The function F(x, y, cos 7, sin 7) is positive through-

out the domain

S„: (oc, y) in IS„ , ^ y ^ 27r .

C) Tlic function Fi{x, //, cos 7. sin j) is positi re ihrowgh-

out the domain QIq-

iln his thesis, Eine neuc Methodc inder Variationsrechnung (GOttingen, 1901),

§§5-14, Noble has discussed the details of the iiroof for this case. But his con-

clusions do uot possess the degree of rigor which is indispensable in an investiga-

tion of this kind. In particular, the reasoning in §§9, 10 and 1.3 is open to serious

objections.

2For the special case where F is of the form /(.i-, y)\ x"-— y"-, Lebesgue has

given a rigorous existence proof by an elegant modification of Hilbert's method

in a recent paper, "Integrale, longueur, aire," AniuiU di Matematica (.3), Vol. VII

(1902), pp. .312-359. Lebesgce applies Hilbert' s method also to the more difficult

case of a double integral of the form

i J VEG-F^ dudv .
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D) The region ISo is coiirex (i. c, the straight line join-

ing any two points of Uo li*?s entirely in the region ISq) and

contains the two given points whieh we denote' with HiL-

BERT by A^ and A^.

Under these assumptions we propose to prove

1. That for every rcdijiaWc curve £ in the region ISq the

gmeralized infcgral J* (according to Weierstrass's defini-

tion) Itas (I. deicrminate finite inhie.

2. That there always exists, in the region ISo, at least one

rectifiable curve 2q, joining the two given points A'^^ and A\
which furnishes for the generalized integral ^7* an ahsolnfc

)iiiiti)in()H trifli respect to the totalitij of all rectijiabh' citrres

tcJiich can be di-oini hi ^S^ofrotu A^ to A^.

3. That this minimizing curve i'o is either a single arc of

an e.rtre))i(d of class C\ or else is made up of a finite

number or of a numerable infinitude of such arcs separated
Jl

by points or segments of the boundary of th^^ region Ho.

§44. theorems concerning the generalized integral Jf

In §31 we have considered Weiers trass's extension of

the meaning of the definite intesrral

r''J= F(,v, y,y, y')dt

to curves havin^: no tangfent.

Another definition of the generalized inteo^ral has been

given by Hilbert^ in his lectures. This definition, while

' The advautage of this notation will appear in §45.

2Hilbert's own deflnitiou is as follows (see Noble, loc. cit., p. IS). Let 11 , be a

partition of the arc AB of a continuous curve into segments. Consider the totality

of all analytic curves which can be drawn from AtoB and which have at least one
point in common with each of the segments. Let J, denote the lower limit of the

values of the integral J taken along these curves. Next, let n._, be a new partition

derived from 11, by subdivision, Jo the corresponding lower limit, and so on. Then
HiLBERT defines the upper limit of the quantities: Jj , J2, J3, • •

, J„ .
• • • if it be

finite, as the value of the definite integral J taken along the arc .-1 B

.
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leading to the same value for the generalized integral as

Weierstr ass's definition, is better adapted to our present

])urpose, especially in the simplified form which has been

given to it by Osgood.'

n) Hilhcrf-Osgood''s (Icjiin'tioii of ilw (jcncralizcd inie-

(irol : We shall use the following notation: P' and P"
l)eing any two points of the region U^, we denote by

iH(P'P") the totality of all ordinary curves which can be

drawn in the region ISq from P' to P", and by i[P'P") the

lower limit of the values which the integral

J= fF{x, y, x', !/')(lf

takes along the various curves of M{P'P").
This loiver Jim it is cdwaijs positive. For, according to

A) and B), the function F{jc, y . cos 7, sin 7) has a positive

minimum value 7// in the closed domain SIq- Hence, if 6 be

any curve of M,{P'P"), we obtain, by taking the arc as

independent variable on the curve 6,

0<m\P'P"\^v,l^J^{P'P")
, (1)

where I denotes the length of the curve 6 and |P'P"| the

distance between the two points P', P". Hence it follows

that
0<m|P'P"l^/(P'P") . (2)

After these preliminaries, let

S: x = <l>{t) , y = tp{t) , to^t^t,

be a continuous curve lying wholly in the region So- If

the functions <^(/), '^{t) are not differentiable, the integral J
taken along S has no meaning. In order to give it a mean-

ing also in this case, we consider any partition H of the

interval (/q/i)

'Osgood, Transactions of the American Mathematical Society, Vol. II (1901), p.

294, footnote.
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11: /„ < T, < r. • • • < T„_, < f,
,

and denote by

the corresponding points of the cnrve ^.

Then we form the sum

» —

1

The upper limit of the vahies of S^ for all possible parti-

tions n we define as the value of the integral J taken

along the curve S from A to B, and we denote it by

J**{AB), or simply J**.

It is easily seen that ^S'n uiay also be detined' as the lower

limit of the values of the integral J taken along all ordinary

curves which can be drawn in Sq from ^ to J5 and which

pass in succession through the points P^, P-,, • • •, Pn-i-

Hence it follows that it is always possible to select a

sequence \^^,\ of ordinary curves joining A and B, lying in

Sq, and such that

LJ,=Jf* .

v=oo

The above definition of the generalized integral is a

direct g^eneralization of Peaxo's" definition of the length of

a curve. For, in the particular case

the sum >S^n reduces to the length of the rectilinear polygon

with the vertices A, P^, P2, • • • , P^ -\^ B.

We must next investiojate under what conditions the gen-

eralized integral t/f * is finite, and show that for ordinary

1 This is the form which Osgood gives to Hilbert's definition; see the refer-

ence on p. 248, footnote ]

.

2Pean'o, Appliciizioiii geometriche del Calcolo Infinitesinuile, p. 161.



2e50 Calculus of Vaeiations [Chap, vil

curves the generalized integral is identical with thr ordi-

nary definite integral.

h) Coiidifioiis for flic Jiiiitcitc.^s of fitc (jciicrdlizcd infv-

(jrol: The function F{.r, //, cos 7, sin 7) has a iinite maxi-

mum value M in the domain (Uq. Hence it follows that for

every curve 6 of M{P'P")

i(F'P")^JAP'P")^Ml
, (2a)

/ denoting again the length of the curve (5. AVe may choose

for the curve 6 the straight line P'P" , since, according to

assumption D), the line P'P" lies wholly in the region 21,,.

Then we obtain the further inequality

i{P'P")^M\P'P"\ . ()})

From (2) and (3) follows at once

11-1 n — 1

ni 2^ I P.. P.,^,
, ^ ^'ii ^ ^1/ 2) I

P.. P.+i
I

• (4)

But the upper limit of the sum

II— 1

is, according to Peano's definition, the length of the eurve

i^ Hence we obtain the

Lemma: In order that f/ie gciieroh'zcd iiitcijnd Jf* nioij

he finite, it is necesscu-ij ond sujjicivnt that the curiae S shall

have a finite length (in Peano's sense).

We confine ourselves, therefore, in the sequel to continu-

ous curves S having a finite length ("rectifiable curves" in

Jordan's terminology).' From (4) it follows further that

m\AB\^ J ** (A B) ^ ML , (5)

where L denotes the length of the curve S.

U. I, No. 110.
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c) Properties of ilie generalized integral : From the two

characteristic properties of the lower limit it follows readily

that for any three points P, P', P" of iS,, the inequality

holds

:

i{PP') + i {P'P") ^i {P P") . (6)

Hence it follows that if TTj denotes a partition derived from

n by subdivision of the intervals of 11 . then

Hence we easily infer that we get the same upper limit ./f
*

for the values of S^ if we confine ourselves to those parti-

tions n for which

Tv-f-l — T,, < 8 ,

(v = , 1 , 2 , • • • , ;/ — 1 ; T„ = f, , T„ = /i) ,

h being an arbitrary positive quantity.

Following now step by step the same reasoning which

Jordan uses in his discussion of the length of a curve, we

can easily establish the following properties of the general-

ized integral, always under the assumption that the curve "i

is rectifiable

:

1. The generalized integral Jf^ {AE) is at the same time

the limit which the sum >S'ii approaches as all the differences

T^^.1— T^ approach zero.'

Combining this result with the inequality (4) we obtain

the new inequality

wi^ Jp(AB) . (7)

2. If P be a point on the curve ii between A and P,

dividing the arc S into the two arcs S^ and So. then also the

integrals J**(J.P) and Jf*{PB) are finite, and"

J** (A B) = J** {A P) + J** (P B) . (8)

3. The generalized integral Jf^{AP) is a continuous^

1 Compare J. I, No. 107. 2Comparo .J. I. No. 108. ^ Apply (S) and (.-)).
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function of the parameter / of the point P and increases

continuallv as P describes the arc AB from ^ to jB.

(/) Comparison tcifh W\'ierstrass''s definition of the gen-

eralized integral : If P' and P" are two points of Uq whose

distance from each other is less than the quantity Pq defined

at the end of §28, e), P' and P" can be joined by an extremal

@ of class C which furnishes for the integral J a smaller value

than any other ordinary curve which can be drawn in the

region Sq from P' to P". If the extremal (S itself lies

entirely in the region SIq, the value which it furnishes for

the integral J" is equal to i{P'P"); if @ lies partly outside

of iSq. this value is equal to or less than i{P' P").

Now consider any partition 11 for which

T^+l — T^, < 8
,

(l/ = , 1 , • • •
, Ji — 1) ,

S being chosen so small that |P'P"| </Oo for any two points

P', P" of S whose parameters /', /" satisfy the inequality

\t'— r'|<S. Then we can inscribe in the curve 2 a 2^olij-

gon of minimizing cxtreinah with the vertices

As in §31, (/), let U^i denote the value of the integral J
taken along this polygon of extremals.

If the curve 8 lies entirely in the interior of Eo- ^ can be

taken so small that the polygon lies in the region iSy, and

therefore

Un=Su .

Hence Jf* may in this case also be defined as the limit

of Uu.

If 8 has points in common with the boundary of S^, Un
may be less than S^.

Nevertheless, also in this case the limit of Un for

LAt^O is Jf*.

In order to prove this statement we ccuisider, along with
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the two sums Su and Uu, the sum V^ defined in i^^^l, fj,

/. e., the value of the integral J taken along the rectilinear

polygon AP^P-i- • • Pn-iB. Since the region Eo is convc.r,

this polygon lies entirely in iSq, find therefore we have the

double inequality

Uu ^ Sn ^ Fn . (9)

From the first part of this inequality it follows that Uu has

a finite upper limit ^-/f*. This upper limit is at the same

time the limit which Uu approaches for Z.At= 0, as can be

inferred' from the fact (proved in §31, e)\ that if 11' be a

partition derived from IT by subdivision, then Uu'^ Uw
Hence it follows, according to §31, c) and (/), that Vu ap-

proaches the same limit as Uu ',
therefore we obtain, on

account of (9), and remembering the equations (77) and (SO)

of §31

:

Jf* = J* , (10)

i. e., we have the result that Hilhert-Osgood's definition

leads for the generalized integral to the same value as

Weierstrass''s definition.

Hence it follows, according to §31, 6), that /or an, "ordi-

nary'" curve the generalized integral coincides loith the

ordinary definite integral.

§45. hilbert's construction

We are now prepared to apply Hilbert's method to the

integral" ^7*.

Accordingly we consider the totality of all rectifi'able

curves S which can be drawn in the region iSo from the

point A'^ to the point A^. The corresponding values of the

integral Jf have a positive* lower limit. We propose to

1 Compare J. I, No. 107.

20n account of (10) we may use the symbol Jt iustcad of J^*.

s According to (o).
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prove that under the assumptions A)-D) enumerated in

§43, ihere exists at least one rectijiahle curve So drairii in

^from A^ to A^ fo7- whicJi the integral J* adualhj reaches

its lower limit.

a) Construction of the point A-' : We consider the totality

of ordinary curves M(A^A^) which can be drawn in the region

®o from A^ to A^, and denote the lower limit i{^A^A^) of the

corresponding values of the integral J by K'

i {A"A) = K .

We can then select' an infinite sequence of curves

(Si , 1^2 ' » ^vi >

belonging to M{A^A^) such that the corresponding sequence

of values of the integral </, which we denote by

approaches K as limit

:

L J, = K .

v=.aa

On the curve G^ there exists" one and but one point Al such that

'^^v V"-'^' ^'J = 2^^

These points Al are infinite in number;^ they lie in the finite*

1 Compare Jordan's definition of "point limite,' loc. rit.. No. 20, and an analo-

gous remark in E. II A, p. 14.

2 Since F is positive along 0„ the integral J taken along the curve (>„ from A' to

a variable iJointP, increases continually as P describes the curve i!^ from ^ to ^ ;

hence it passes through every value between and J^ once and but once.

if They need not all be distinct; the conclusion holds even if there are only a

finite number of distinct points among them. For in this case an infinitude of the

points A^ must coincide with at least one of the distinct points; this point has then
I' \

the properties of the point A^ .

*The existence of the accumulation point A'' can also be proved tinthout making

use of the finiteness of ffi^ . From (1) it follows that

2m

Hence if we select G> J^Cv = 1 , 2, 3, • - •), which is always possible since L J^, is

finite, the points A^, lie in the interior of the circle (A , G '2m), and therefore have

an accumulation point.
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closed region Uq ; hence there must exist at least one

})oint A^ in So such that every vicinity of A^ contains an

infinitude of the points Al. Moreover, we can select a sub-

sequence \Q„ } of the sequence \(l^l such that

LAi =Ai .

h) Hilberfs Jcuima conccrniufi the point A'-: We con-

sider next the totality of curves

Then the fundamental lemma holds that the lower limit of

the corresponding values of the integral »/ is ^K:

i (A"A^) = I i (A"A') = hK . (11)

Proof: We denote by 6^ the curve made up of the arc

A^Al oi the curve 6^ and of the straight line ^4^, ^'; the

latter lies entirely in So since So is convex.

According to (2a) the integral J taken along the straight

line Al A^ is at most equal to M' A\ _A^\. Therefore

Z.J,. {A'Al)^^K
k=:f: 'A-

since
LlJ,^ =^K and L \

A' Ai 1=0.

Hence it follows from the characteristic properties of the

lower limit that

i{A'A'^)^^K .

In the same way we prove that

i{AiA')^\K .

But, on the other hand, according to (t5)

:

i {A'Ai) + i (AiA') ^ i {A"A') .

The three inequalities are compatible only if separately:

/ (A^Ai) = \K and / {AK\') =\K .
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c) TJic points A'i'"' : Repeating the process of section a)

with the points A^ and A^ we obtain a new point, A*, lying in

the region iSo and having the characteristic property that

In like manner we derive from the two points A'^ and A^ a

point, A^, satisfying the relation

i {A^Ai) = i (AU') = \ i {AiA') = \K .

By an indefinite repetition of this process we obtain an

infinite set of points

]^^1' !

g = 0, 1, 2, -..,2"

'-0,1,2,..

all lying in the region Eo and having the characteristic

property that
y jl <i±l\

i (A2»A 2« j = i„ iiT . (12)

More generally
i{A'-A-' ) = {T'--r')K , (13)

it '=^ "— ^

where n' , n" are integers, q ,
7" odd integers, and

0^t'<t"^1 .

For, reducing r' and r" to the same denominator

/_^ ,,_ q + r
''

2" ' '" 2" '

we obtain, according to (6) and (12),

/ yAA^") ^ ^ i (a2«A 2-)=^^K,

A2«A 2"
/ ^ 'S^ i (^A2"A 2« j = ^^ ff

,

2M_

(a 2" A'j ^ T] i VA2"A 2» j = -| i:

H=g-*-/-
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/ ( A"A2'7 + i (^A2»A 2"
) + / \A 2» A') ^ iv .

But on flu* other hand, we have, on account of ((>).

K = i [a^A') ^ i {a"A^) + ' [a^'A^') + t (a^^ A') .

The two inequalities are compatible only if in each of the

above three formulae the equality sign holds, which ])roves

(13).

From (2) and (V-\) follows the important inequality

lA-A-'|^(r"-r')-- , (14)

where A^ A"^' \
denotes as^ain the distance between the two

points A''., A''".

Let us now denote by

Jc{r)
,

!j(t)

the rectangular co-ordinates of the point A^, r being one of

the fractions q/2^'' considered above. Then

\x(r')-.r(r")'^\A'-A'''\
, |

^ (V) -
//
(r")

| ^ |

A^ A-"
| ,

and therefore on account of (14)

|^(r')-a^(T")|^(T"-r')- ,
j

V (15)

(?) The remaining points of Hilberfs curve: The mean-

ing of the two functions £c(/), !j{t), which so far have been

defined only for values of t of the set

, _) q{ g = 0, 1, 2. •••,2»-l
,

^~) 2^ (
' >/=0,l,2,..-,

can now be extended to all values of t in the interval

O^/^l
as follows:

From the inequalities (15) we infer by means of the gen-
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eral criterion' for the existence of a limit, that if the inde-

pendent variable / approaches in ihc set S any particular

value t= a of the interval (01), then the functions .r(/), //(/)

approach determinate finite limits. In symbols, the limits''

L X (f) and L ij (f)

exist and are finite.

Moreover, if a itself belongs to the set *S', then

Lx{t) = x{a) , Ly{t) = y{a) . (16)
t\s t\s
t=a t=ii

Tf (I does not heloiuf to the set S, ivc define, according to

Hilbert, the fimctions x(f) (did i/{t) for t ^^a h/j the eqiici-

tioiis {10).

The two functions .r(/), y{t) thus defined for the whole

interval (01) are continuous and "o/ limited variation.''''^

For, the two inequalities (15), which have been proved for

values t' <iT" of ttie set S, can easily be shown to hold for

any two values f <t" of the interval (01), by considering

two sequences \tI\ and \tI' \ belonging to the set S and

such that

Lrl=f' , L tI' = t" .

From the inequalities (15) thus extended, it follows at once

that the two functions x{t), //(/) are continuous and "of

limited variation."'

1 Compare E. II A, p. i:i.

2 The notatiou accordiQK to E. H. Moore, Transactions of the American Mathe-

matical Society, Vol. I (1900), p, 500.

:i Compare .J. I, No. 67. Let f(t) be finite in the interval (t^yt^), and let

n: t^,<r,<r, • - • <r^^_,<t,

be a partition of this interval. If then the upper limit of the sum

n--l

^= 11

for all possible partitions n is finite,/(<) is said to be "of limited variation."
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Hence the curve S,, defined by the two equations

So: .r = x(f)
, !J

= y{t) ,
O^t^l (17)

is continuous and has a finite length/ /. c, it is a rcrlijidhle

rnrre. As / increases from to 1 the point (.r, y) describes

the curve Sq from the point A^ to the point A^. Moreover,

the curve Sq lies eniirely in fhc region ^q, since Sq is clo.^ed.

^-16. properties of hilbert's curve

It remains now to prove that the curve Sq actually mini-

mizes the integral J* and has the further properties stated

in §43.

a) Minimizing property of HiJherfs curve: The funda-

mental equation (13) which has been proved for values

t', t" of the set S only, can easily be extended" to any two

values /'< /" of the interval (01)

:

i{A'A'")^(f"-t')K . (13a)

But from (13a) it follows immediately that tJic ijciierdlized

iutegral

I Compare J. I, Nos 105, 110.

-' For the proof, we introduce the same two sequences j
t,,

| , |
t;, { as above.

Then we have, on account of (61,

/ (a' a"'') + i (a'^^'a'"'' ) + i iA^'" a'" ) 5 M a''a'") .

Passing to the limit 1"= =o we obtain, on account of the continuity of tlie functions

x(t),y{t).

L a' a""'' =0 . L\ a""'' a'"\ =0 ,

and therefore, on account of i3),

Moreover

L i (a''a''") = , Li (a'"'' a'") =

Li(A'''A''n = (.t'~t)K ,

on account of (13). Thus we obtain

i {a'' a' )^ (f-'-f^K .

And by the method employed in proving U3) wc finally show that the inequality sign

is impossible.
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tdken aloitfi Hilbert's cur re I'o 's finite (ind ihat its value

is cqiKil to i(A^A^).

For let n be any partition of the interval (01)

:

11: T„ = < T, < To • •• < T„_, < 1 = T„ .

Then we obtain, according to (13a),

H-l

.S'n = V ' (A^^'A^"^') =K = i {A'A') .

Hence also the upper limit of the values of aS„ is equal to

K, that is Jt^{A°A' ) = /
(
AW ) . ( 18)

From the definition of the symbol i{A^A^) as lower limit

it follows now that if 6 be any ordinary curve drawn in So

from A^ to A^, then

J*(A»A')^J,(A»A') .

Moreover, if ^ be any rectifiable curve drawn in Eo

from A^ to A^, and e any preassigned positive quantity, we

can always find, according to §44, a), an ordinary curve 6

of MiA^A'^) such that

I

Jf{A'A') - J,{A"A')
I

< e .

Hence it follows that

J*{A'A')^Jf{A"A') . (19)

This proves the theorem enunciated at the beginning of this

section

:

If the conditions A)-D) enumerated in %43 are fulfilled,

then tJiere cdways exists at least one redifable curve join-

ing the two points A^ and A^ and lying entirely in tlie region

iSo, whicli furnishes for the integral

J = j F{x,y, x', y')dt
,

generalized, an absolute minimum luith respect to the totality

of rectifiable curves which can he drawn in %^from A^ to A^.
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b) Analytic characfei' of Hilbcrfs cin-rc: Let T' denote

the totality of those values of / in the interval (01) which

furnish points of the curve Sq in the interior of the region

Uo, T" the totality of those which furnish points of 2q on

the boundary of IS,,. From the continuity of ^q it follows

that every point' /' of T' is an inner' point of T' . Hence

an interval (a/S) contained in (01) and containing /' in its

interior can be determined such that all points in the inte-

rior of (a/3) belong to J", whereas the end-points belong to

T" except when they coincide with the points or 1. The

set T' consists, therefore, of a finite or infinite number of

such intervals (a/3) which do not overlap. According to a

theorem of Cantor's,^ the totality of these intervals is

numerable, so that we may denote them by

The curve 2q consists, therefore, either of a finite number or

of a numerable infinitude of interior arcs separated by points

of the boundary of So

We are going to prove, according to Hilbert, that each

interior arc of Sq is an arc of an extremal of class* C".

For let P(f) be a point of Hilbert's curve Sg in the

interior of the region iR,,- Then according to §28, e) a

circle (P, a) can be constructed' about P such that any two

points P', P" in the interior of the circle can be joined by

an extremal G of class C" which lies entirely in the region

Uo and which furnishes a smaller value for the integral J
than any other ordinary curve which can be drawn in Uq

from P' to P".

1 Except the end-points of the interval (01) in case they should belong to T'.

2 Compare J. I, No. 22. 3 Mathematische Annalen, Vol. XX, p. 118.

*From our assumption C) it follows according to §6, c) that every arc of an

extremal of class C which lies in ?So, is ipsofacto also of class C".

5 Let d be a positive quantity, taken so small that the circle (P, e) lies in the

interior of S,,, and let Pq be defined for the region 51^ as in §28, e). Then choose for

<T the smaller of the two quantities d/Z and Py 3.
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FIG. 48

On account of the continuity of the functions -rit), y{f)

there exists a vicinity (/— S, / + 8) of / such that the arc of

the curve Sq corresponding to the interval' (/— S, / + S) lies

wholly in the interior of the circle (P, a). Let Pi(fi) and

Pgf/g) be two points of this arc (/i< f^).

\ and denote by ©2 the minimizing ex-

p\ __a, tremal joining P^ and P3.

We propose to prove fin if f/ic arc

P1P3 of Hilbert's curve Sq ^•'^ identi-

cdl icith the extremal Qo-

Consider any point Poit-i) of the arc

P1P3 of £0 a»tl denote by ©3, d^ the

minimizing extremals joining Pj, Po and Po, P3 respectively.

Then it follows from the minimizing properties of the

extremals ®i, ®2, ©3 and from (13a) that

J^^iP.P,) = i{P,P,) = {U -fOK ,

J,^{P,P,) = i{P,P,) = if,-QK ,

J^JP.P,) = i{P,P,) = {t,-t,)K

hence, adding:

J^^{P,P:d = J^,{P,P,} + J,^,{P,P,) .

The extremal 60 furnishes therefore the same value for

the integral J as the curve made up of the two arcs ii^ and

©1. But this is in contradiction to the minimizing prop-

erty of ©2 ^^idess the compound curve 63, ©| coincides with

©o. Therefore the point P2 must be a point of (£"0 ; moreover

J,^ {P,P,) = i {P,P,) = (f, - f,) K .

Conversely, every point of the extremal do belongs at the

same time to the arc P1P3 of Sq- For, let P4 be any point

of @2 between P^ and P3, and let

u = J,..^{P^P,) .

Then

iQr (0, S), or (1 - 8, 1) in case P coincides with the point A or A ,
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< u < J.,,(P,P,) = (f, -t,)K .

Hence if we define ti l)y the relation

i( = (/, - /,) K ,

/^ lies between /^ and f-^ and is therefore the parameter of

some point P4 of Sq between i\ and Pg. The point 1\ be-

longs therefore also to ©2 ^^^ we have

JrjP, P,) = (f, -t,)K = J^JP, P,) .

Hence it follows that P4 must coincide with P4 since F is

positive along ©o-

Prom the relation between f^ and the quantity // (which

may be taken as the parameter on ©o), it follows, moreover,

that the points are ordered on both arcs in the same manner,

which completes the proof that the arc P1P3 of 2^y is iden-

tical with the extremal ©2-

Hence it follows that Hilbert's curve 2q is of class C"
and satisfies Euler's differential equation in the vicinity

of every interior point P, and therefore every interior arc of

Sq is indeed an arc of an extremal of class C"

.

From the assumption B) that F is always positive it fol-

lows finally that Hilbert's curve 2^) can have tio iimUiple

points.





ADDENDA

P. 58, 1. 5: lu order to justify the terms "next greater," "next

smaller," it must be shown that an integral u of a homog'eneous

linear differential equation of the second order

d'u , cln
,

,,

can have only a finite uuniber of zeros in an interval (ab) in

which 2^ iiiid q are continuous.

Proof: According' to the existence theorem (compare footnote

1, p, 50), u is of class C" in (ab). Suppose ti had an infinitude of

zeros in (ab); then there would exist in (ab) at least one accumu-

lation point (comjjare footnote 1, p. 178) for these zeros. Now
either it (c) =t= ; then a viciuit}- of c can be assigned in which

i({x)=^0. Or else u{c) = 0; then ii (c) =^ (compare footnote 3,

p. 58), and

n{c+h)=h{u'{c) + (h))
;

hence a vicinity of c can be assigned in which c is the only zero of

u{x). In both cases we reach therefore a contradiction with the

assumption that c is an accumulation-point.

The same lemma has to be used, p. 108, 1. 6 up; p. 135. 1. 13;

p. 200, 1. 4; p. 221, 1. 1.

P. 59, 1. 11. Simpler as follows:

Choose X2 so that Xi < a?2 < Xo and at the same time X2 < Xi (the

quantity introduced on p. 55). Then A(j?, X2) and A(.r, x<,) are two

linearly independent integrals of (9). Applying Sturm's theorem

to these two functions we ol^tain the result that

A (x , Xo) =t= in {Xf, , Xi) .

P. 62, 1. 6. Simpler proof: <Py{x, 7o) and A(x, Xo) are integrals

of Jacobi's differential equation; both vanish for x = Xo without

being identically zero. Hence they can differ only by a constant

factor. Compare footnote 2, p. 58, and footnote 1, p. 137.

P. 81, 1. 18. From what has been proved in the first paragraph

of p. 81, it follows that ^& is indeed a region in the specific sense

of §2, a).

265
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P. 83, 1. 13. Add:

d) The Field-Integral for the set of extremaU through the

point A.

Let P(a"2, y-i) be any point in the field ^^ formed by the set of

extremals through the point A{Xf,, >/-,), and let 7.' = '/'(•A, y-i) be the

value of 7 for the unique extremal of the field which passes through

the point P. Then the integral J taken along this extremal

@2'- y = <f>(x, y,)

from the point A to the point P is a single-valued finiction of

X2, J/2 which we denote by J{X2, t/2). Its value is

JioPo, y2)= I Fix,(i> (x
, y,) , <^,.

(

X . y_)) dx ,

where it is understood that 72 is replaced by its expression f (X2, yz)

in terms of X2 and yo

The partial derivatives of J{x2, yi) with respect to ^'2 and yz

have the following values:

'^^'l'"''^^' = P(^2 , Z/2 , Ih) - lhF,j. {x. , ?/2 , Ih) ,

"
(15a)

O J^H'K-J^lf y2f I>2) )

where jfj^
denotes the slope of the extremal Q,2 at the point P.

For

^-^^^-^ = F{X2, y2, P2) + ^^£^' (i^.</>v + F„<t>.y)dx ,

9^/2 9(/2./^-

If we transform the integral as iu §20, c), and make use of (12) we

obtain (15a).

In many respects it would have been preferable first to prove

the formulae (15a) and to make use of them in the demonstration of

Weierstrass's theorem.

Compare the analogous formulae (44) in §37, and the still more

general formula? (14) in §34.

P. 142, 11. 4 and 5. After e insert: -\-2mTr where m is an integer.



Addenda litw

F. 151, 1. 14. Add: This result is due to Erdmann; compare
Journal fur Mafheinaiik, Vol. LXXXIT (1877), p. 29.

P. 152, 1. 8. Weierstrass himself gives the couditiou iu the

follovviug slightly different form

:

+

Let §2 and h denote the numerical values of the angles which

the directions p2, ^2 and^)2? </? respectively make with the diiection

p2 -, (J2, SO measured that 5^ and S2 are < tt . Then

- + + + _ _
sin 8. ; sin 82 = E (.r.^

, y.^; P2,q2; P2, ^2) :

E (j"2 , i/2 ; Th , ^2 ; ih , q-i) • ('-ia)

This form of the condition follows immediately from (64). For on

account of (48) equation (64) may be written

lhl^\' {^2 > 2/2 > Ih , qd + q-iF",. (.ra , y.^ , fh , q^ —

PiK' ("^2 , 2/2 , 2h , q^) + q2i^\ (^2 , 2/2 , p-2 , q^) .

But _ + _ ^

p2 = I [sin S2i>2 + sin 82^>2]

.
* - '- +

q2 = I [sin 82 q2 + sin 82 (/j] >

where Z is a factor of proportionality. Substituting these values in

the last equation, we obtain (64a).

F. 169, 1. 7, and p. 175, 1. 15. Instead of "region" read "domain.'

Compare 5:; 2, a).

P. 169, 1. 8. Instead of: "of the set," read: "to the set."

F. 172, 1. 13. Add reference to Kneseb, Lehrbuch, p. 48.

F. 178, 1. 18. After " abgeschlos.sen " add the reference: E. I,

p. 195.

F. 180, 1. 18. x\dd: Hence it follows that S'^ is a region in the

specific sense of ^2, a).

F. 182, 1. 7, and p. 185, 11. 4 and 6. The image of a region by a

transformation of the kind here considered is again a region.

Hence SI, (S^, ^Ic are indeed regions.

F. 200, 1. 7. Add: /,; is therefore identical with the quantity des-

ignated on p. 155 by t'u' . The use of the notation /o in the present

discussion is justified by the fact that in Kneser's theory the con-

jugate point appears as a special case of the focal point correspond-

ing to the case when the transversal X degenerates into the point A.

F. 246, 1. 1. HiLBERT has published the details of his proof of
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Diiichlet's principle in the Festschrift zur Feier des 150-jdhrigen

Bestehens der konigl. Gesellschaft der Wissenschaften zii Gottin-

gen 1901, and in the Mathematische Annalen, Vol. LIX (1904), p.

161.

P. 246, 1. 2. I had at my disposal a set of notes of this course

for which I am indebted to Professor J. I. Hutchinson.

P. 247, 1. 17. After "numerable" add the reference: E. I, A,

p. 186.

P. 253, 1. 17. After "result" add: due to Osgood; see the ref-

erence on p. 248, footnote.
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Absolute maximum, minimum, 10.

Accumulation-point, of a set of points.

Admissible cuetes, 9, 11, 101, 121, 206.

Amplitude, of a vector, 9.

Bliss's condition, for the case of two
variable eud-poiuts, 113.

Boundary conditions: along segment
of boundary. 43, 149; at points of tran-

sition, 42, iSO, 267; when minimizing
curve has one point in common with
boundary, 152, 267.

Boundary, of set of points, 5.

Beachistocheone, 126, 13."), 146; determi-
nation of constants, 128., ; case of one
variable end-point, 106i.

Catenoid (see Surface of revolution of

minimum area).

CiECLE, notation for, 9.

Class C,C,C/' D,D'..: functions

of, 7; curves of, 8, 116; curves of class

K, 161.

Closed: region, 5; set of points, 178, 267.

Conjugate points, 60; for the case of
parameter-representation, 135; for iso-

perimetric problems, 221 ; geometrical
interpretation, 63, 1.37 ; case where the

two end-points are conjugate, 65,, 204.

Connected set of points, 5.

Continuous functions: definitions and
theorems on: existence of maximum
and minimum, 1.34, ^02 ; sign, 21,; uni-

form continuity, 80o; continuity of com-
pound functions,2l3; integrability, I'l.^.

Continuum, 5.

Convex eegion, 247.

Co-oedinates: agreement concerning
positive direction of axes, S.

Coenee: defined, 8, 117; corner-condi-
tions, 38, 126, 210.

Ceitical point, 109,.

Cueves : (a) representable in form
«=/(«), 8; of class C,C',.. D, 8; (h)

in parameter- representation, 115.,: of
class C, C". 116; ordinary, 117 ; regular,

117; rectiiiable, 116,; of class K, 161;

Jordan curves, 180.

Curvilinear co-ordinates: ingeneral,
181 ; Kneser's, 184.

Definite integrals : theorems on : in-

tegrable functions, 12.,, 89j ; first mean-
value theorem, 'H^; connection with
indefinite integral. 89., : integration by
parts, 20, ; differentiation with respect
to a parameter, I63.

Derivatives: notation, 6, 7; progres-
sive and regressive, 7, ; reversion of the
order of differentiation in partial de-
rivatives of higher order, I83.

Differential equ.vtions: existence
theorem, 284; dependence of the gen-
eral integral upon the constants of in-

tegration, 543; upon parameters, 71..,

223,.

Discontinuous solutions, 36, 125, 209.

Distance: between two ijoints, nota-
tion, 9.

Domain, 5.

End-points, variable (.see Variable end-
points).

Envelope: of a set of plane curves in

general, 624, 1.374 ; of a set of extremals.
62; theorem on the envelope of a set of
geodesies, 166; extension of this tin

-

orem to extremals, 174; case when the
envelope has cusps. 201 ; case when the
envelope degenerates into a point, 204.

Equilibeium, of cord suspended at its

two extremities, 211, 231, 241.

Equivalent peoblems, 183, 197, 228.

Erdmann's coenee condition, 38.

Euler's (differential) equation, 22;
Du Bois-Reymond's proof of, 23; Hil-
bert's proof of, 24 ; Weierstrass's form
of, 123; assumptions concerning its

general integral, .54, 130; cases of re-

duction of order, 26,, 29.

Euler's isoperimeteic rule, 2in.

Evolute, of plane curve, 1743.

Existence theorem: for a minimum
" ini Kleinen," 146; for a minimum " ini

Grossen," 245; for differential equa-
tions, 2X; in particular for linear dif-

ferential equations, .50.

Extraordinary vanishing of the E-
function, 142.

Extremal: defined, 27, 123, 209; cdm-
structiou of extremal through given
point in given direction, 28, 124; set of
extremals through given point, 60; sft

of extrenials cut transversely by a
given curve, HI ; construction of ex-

tremal through two points, sufficiently

near to each other, 146; problems with
given extremals, 30.

Extremum: defined 10 (compare Mini-
mum, Maximum 1.

Field: defined, 79; theorem concerning
existence of, 79; applied to set of ex-

tremals througli .4,82; improper, S3.,

;

for case of parameter-representation,
!44, 176; for isoperimetric problems,
241; field-integral, "266.

First necessary condition (seeEuler s

differential ecjuation).

First variation : defined, 17; vanishing
of the, 18; transformation by integra-
tion by parts, 20, "22; for case of
variable eud-points, 102, ; for case of

269
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parameter-representation, 122, 123; for

isoperimetric problems, 209.

Focal point : of a transverse curve on
an extremal: defined, 109; equation
for its determination, according to
Bliss, 10^, 155 ; according to Kneser, 200

;

geometrical interpretation. 111, 156:

case where end-point B coincides with
focal point, 201.

Fourth necessary condition (see

under Weierstrass).

Free variation, points of, 41.

Function Ef.j-, ?/: p, p): defined_34, 75;

relation between E (.<•, y; p, p) and
Fify-, 76; geometrical interpretation
of this relation, 77.

Function Ei (.c, 2/ ; p, p ), 76.

Function E(.r, ;/; p,q; /*, ?): defined,

i:-W; homogeneity properties, UO; rela-

tion between E-fuuction and F,. Ill;

ordinary and extraordinary vanishing,
142; Kneser's geometrical interpreta-

tion, 195.

Function Ei (.r, y; ]>, q; P, g ), 145.

Function F^, 121.

Function F^, 1.32.

Fundamental lemma, of the Calculus
of Variations, 20.

Generalized integral. 157, 248 (com-
pare Integral taken along a curve).

Geodesic curvature, 129.

Geodesic distance, 176.

Geodesic parallel co-okdinates, 164.

Geodesics, 128, 146, 155; Gauss's theo-
rems on, 164, 165; theorem on the en-

velope of a set of, 166.

Hilbert's: construction, 253: existence
theorem, 245; invariant integral, 92, 195.

Homogeneity condition, 119; conse-
(luences of, 120.

Implicit functions, theorem on, 35™.

Improper: field, 83.; maximum, mini-
mum, 11.

In a domain, use of the word explained,
.5,6.

Infinitesimal, 6.

Inner point, 5.

Integeability condition, 29.

Integrable functions, theorems on,

125. 89„.

Integr.al, taken along a curve, defini-

tion and notation. 8; for case of par-
ameter-representation, 117; condition
for invariance under parameter-repre-
sentation, 119; extension to curves
without a tangent, (a) Weierstrass's,

157, (6) Hilbert-Osgood's, 248.

Integration, by parts, 20, 20i.

Interval, defined, 5.

Invariance, of E and Fi, 183.

IsoPERiMETEic constant, 209; Mayer's
theorem for case of discontinuous solu-

tions, 209i.

IsopERiMETRic PROBLEMS : in general.
206-44; special, 4, 210, 229, 238; with
variable end-points, 1132.

.Iacobian, 572.

Jacobi's condition. 67 : proofs of its

necessity, 65,, 66; Weierstrass's form
of, 135; Kneser's form of, 136; for case
of one variable end-point, 109, 155, 200;
for isoperimetric problems, 225, 226.

Jacobi's: criterion, 60,135; differential
equation, 49, 133; theorem concerning
the integration of Jacobi's ditterential
equation, 54, 1.35; transformation of
the second variation, 51.

Jordan curve, 180.

Kneser's: theory, 164-205; curvilinear
co-ordinates. 184 ; sufficient conditions,
187; theorem on transversals, 172.

Lagrange's differential equation,
•>>

Legendre's condition, 47; Weier-
strass's form of, 133; for isoperimetric
problems, 217; Legendre's differential
equation, 46.

Length of a curve: Jordan's defini-

tion, 157, ; Peano's definition, 2492.

Limit: definition and notation, 1^; uni-
form convergence to a, 19i ; criterion
for the existence of, 258,.

Limited variation, functions of, 2583.

Limit : lower and upper. 83, lOj ; attained
by continuous function, 134, 8O2.

Limit-point (see Accumulation-point),

Lindelof's construction, 64.

Linear differential equations of
the second order : existence theo-
rem, hOi ; .Abel's theorem, 582 ; Sturm's
theorem, SSj.

Lower limit, 83, 10,.

Maximum (see Minimum).
Mayer's law of reciprocity for isoperi-

metric problems. 229, 244,.

Mean-value theorem, first, for definite

integrals. 24^.

Minimum : of a continuous function, 184,

8O0 ; of a definite integral, absolute and
relative, 10; proper and improper, 11:

weak and strong, 69, 70; for case of
parameter-representation, 121; semi-
strong in case of isoperimetric prob-
lems, 244; existence of a minimum "im
Kleinen," 146; Hilbert's a-priori exis-

tence proof of a minimum "im Gros-
sen," 245-63.

Neighborhood of a curve, 10; neigh-

borhood(p) of a curve, 1.3, 121.

Neighboring curve, 14,.

Numerable set of points, 261, 268.

One-sided variations (see also Boun-
dary conditions) : analytic expression

for, 42, 148; necessary conditions for a
minimum with respect to, 42, 149; suf-

ficient conditions, 42.

Open region, 5.

Ordinary curves, defined, 117.
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Oedinaky vanishing of the E- func-
tion, 142, 206.

Osgood's theorem concerning a char-
acteristic property of a strong mini-
mum, 190.

Parameter eepeesentation, curves in,

115.

Parametee-teansfoemation, 116.

Paetial derivatives (see Derivatives).

Partial variation, of a curve, .37.

Point-by-point variation, of a curve,
41.

Point of a set, 124.

Positively homogeneous, 119.

Progressive derivative, 7,.

Proper minimum, 11.

Rectifiable curves, II60, 250i, 251i,
25I2, 2.')l3 (compare Length).

Region: defined, 5; open, .5; closed, 5.

Regressive derivative, 7,.

Regular curves, 117; functions, 2I2;
problems, 2',i, 40, 97, 125.

Relative maximum or minimum, 10, IO4.

Second necessary condition (see Le-
gendre's condition).

Second variation, 44-67; Lesendre's
transformation of, 46; Jacobi's trans-
formation of, 51 ; for case of variable
end-points, 102, ; Weierstrass's trans-
formation of, for case of parameter-
representation, 131 ; for case of variable
end-points in parameter-representa-
tion, 102, 155; for isoperimetric prob-
lems, 216-25.

Semi-steong exteemum, 244; sufficient

conditions for, 244.

Set of points: definition, 10,; inner
point of, 5 ; boundary point of, 5 ; accu-
mulation points of, 178i ; closed, 178,

267; numerable, 261, 268; upper and
lower limits of one-dimensional set, 83,

IO2; connected, 5; continuum, 5.

Sign of square roots, agreement con-
cerning, 2,.

Slope eesteictions, 101].

Solid of eevolution, of minimum re-

sistance, 73 1, 1423.

Steong exteemum: defined, 70; sufiS-

cient conditions for (see Sufficient con-
ditions).

Strong variation, 72.

Sturm's theorem, on homogeneous lin-

ear differential equations of the second
order, 58^.

Substitution symbol, 5, 6.

Sufficiency proof, for geodesies, 165.

Sufficient conditions for weak mini-
mum, 70.

Sufficient conditions foe strong
minimum: when x independent vari-

able, in terms of E- function, 95; in

terms of Fy ;/, 96; for one-sided varia-

tions, 42, ; in case of one movable end-
point, 109; in case of two movable
end-points, llSo.

Sufficient conditions for strong
minimum : for case of paranif^ter-repre-
sentatiou, Weierstrass's, 14.3-46; exten-
sion to curves without a tangent,
Weierstrass's proof, 161, Osgood's
proof, 192; Kneser's sufficient condi-
tions for case of one movable end-
point, 1X7; for isoperimetric problems,
Weierstrass's, 237, 243.

Surface of revolution of jnNiMUM
AREA, 1, 27, 48, 64, 97, 153.

Taylor's theorem, ll,.

Third necessary condition (see Ja-
cobi's condition).

Third variation, 59,.

Total differential, 253.

Total variation, 14.

Transverse; curve transverse to an ex-
tremal, 106; condition of transversality.
36, 106; in parameter-representation,
155 ; for isoperimetric problems, 210.

Transversal: to set of extremals, 168;
degenerate, 169; Kneser's theorem on
transversals, 172,,

Unfree variation, points of, 41.

Uniform continuity, 80,.

Uniform convergence, to a limit, 19,.

Upper limit, 83, 10,,.

Variable end-points: general expres-
sion of first variation for case of, 102,

;

of second variation, 102, ; one end-point
fixed, the other movable on given curve,
treated (a) by the method of differen-
tial calculus, 102-113, (b) by Kneser's
method, 164-205 (for details see Trans-
versality, Focal ijoint. Sufficient con-
ditions) ; case when both end-points
movable on given curves, 113.

Variation: of a curve, 14,; total, 14;
definition for first, second, etc., 16:
special variation of type e>), 15; of type
«o(x, e).18; for case of parameter-repre-
sentation, 122, 122, ; weak and strong, 72.

Varied curve, 14,.

Vicinity (5) of a point, 5.

Weak exteemum: defined, 69; sufficient
condition for, 70.

Weak variations, 72.

Weieesteass's: construction, 84, 144,

234; corner-condition, 126; E-function,
35, 1.38; form of Euler's equation, 123, of
Legendre's condition, 133, of Jacobi's
criterion, 135; fourth necessary condi-
tion, 75, 1.38, 233; lemma on a special
class of variations, 33, 1.39; transforma-
tion of second variation, 131.

Weierstrass's sufficient conditions,
95, 96, 143; extension to curves without
a tangent, 161; for isoperimetric prob-
lems, 237, 243.

Weierstrass's theorem (expression of
A,/ in terms of the E-function), 89, 144;

Hilbert's proof of, 91 ; for case of vari-

able end-points, 189, 194, 195; for iso-

perimetric problems, 237.

Wronskian determinant, 57,.

Zermelo's theorem, on the envelope of
a set of extremals, 174.
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