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PREFACE

THE present volume has been written in the same spirit that

animated the first. The author has not intended to write a

treatise or a manual ; he has aimed rather to reproduce his uni

versity lectures with necessary modifications, hoping that the

freedom in the choice of subjects and in the manner of presenta

tion allowable in a lecture room may prove helpful and stimulating
to a larger audience.

A distinctive feature of these Lectures is an attempt to develop
the theory of functions with reference to a general domain of

definition. The first functions to be considered were simple
combinations of the elementary functions. Riemann in his great

paper of 1854,
&quot; Ueber die Darstellbarkeit einer Function (lurch

eine trigonometrische Reihe,&quot; was the first to consider seriously

functions whose singularities ceased to be intuitional. The re

searches of later mathematicians have brought to light a collection

of such functions, whose existence so long unsuspected has revolu

tionized the older notion of a function and made imperative the

creation of finer tools of research. But while minute attention

was paid to the singular character of these functions, practically

none was accorded to the domain over which a function may be

defined. After the epoch-making discoveries inaugurated in 1874

by G. Cantor in the theory of point sets, it was no longer neces

sary to consider a function of one variable as defined in an in

terval, a function of two variables as defined over a field bounded

by one or more simple curves, etc. The first to make use of this

new freedom was C. Jordan in his classic paper of 1892. He
has had, however, but few imitators. In the present Lectures the

author has endeavored to develop this broader view of Jordan,

persuaded that in so doing he is merely carrying a step farther

the ideas of Dirichlet and Riemann.

Often such an endeavor leads to nothing new, a mere statement

for any n of what is true for n = 1, or 2. A similar condition
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prevails in the theory of determinants. One may prefer to treat

only two and three rowed determinants, but he surely has no

ground of complaint if another prefers to state his theorems and

demonstrations for general n. On the other hand, the general
case may present unexpected and serious problems. For example,
Jordan has introduced the notion of functions of a single variable

having limited variation. How is this notion to be extended to

two or more variables ? An answer is far from simple. One was

given by the author in Volume I
; its serviceableness has since

been shown by B. Camp. Another has been essayed by Lebesgue.
The reader must be warned, however, against expecting to find

the development always extended to the general case. This,

in the first place, would be quite impracticable without greatly

increasing the size of the present work. Secondly, it would often

be quite beyond the author s ability.

Another feature of the present work to which the author would

call attention is the novel theory of integration developed in

Chapter XVI of Volume I and Chapters I and II of Volume II.

It rests on the notion of a cell and the division of space, or in fact

any set, into unmixed partial sets. The definition of improper

multiple integrals leads to results more general in some respects

than yet obtained with Riemann integrals.

Still another feature is a new presentation of the theory of

measure. The demonstrations which the author has seen leave

much to be desired in the way of completeness, not to say rigor.

In attempting to find a general and rigorous treatment, he was

at last led to adopt the form given in Chapter XI.

The author also claims as original the theory of Lebesgue

integrals developed in Chapter XII. Lebesgue himself considers

functions such that the points e at which a &amp;lt;f(x) &amp;lt;6,
for all a, b

form a measurable set. His integral he defines as

lim 2lme
r

m
W= 1

where lm &amp;lt;f(x)&amp;lt;lm+l in em whose measure is em,
and each

lm+1 lm= 0, as n = oo. The author has chosen a definition which

occurred to him many years ago, and which to him seems far

more natural. In Volume I it is shown that if the metric field ^
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be divided into a finite number of metric sets Sv S
2

of norm d,

then

= Min

where m^ M, are the minimum and maximum of/ in S
t
. What

then is more natural than to ask what will happen if the cells

Bv S
2

&amp;gt;&quot; are infinite instead of finite in number? From this

apparently trivial question results a theory of ^-integrals which

contains the Lebesgue integrals as a special case, and which,

furthermore, has the great advantage that riot only is the relation

of the new integrals to the ordinary or Riemannian integrals

perfectly obvious, but also the form of reasoning employed in

Riemann s theory may be taken over to develop the properties

of the new integrals.

Finally the author would call attention to the treatment of

the area of a curved surface given at the end of this volume.

Though the above are the main features of novelty, it is hoped
that the experienced reader will discover some minor points, not

lacking in originality, but not of sufficient importance to em

phasize here.

It is now the author s pleasant duty to acknowledge the in

valuable assistance derived from his colleague and former pupil,

Dr. W. A. Wilson. He has read the entire manuscript and

proof with great care, corrected many errors and oversights in

the demonstrations, besides contributing the substance of 372,

373, 401-406, 414-424.

Unstinted praise is also due to the house of Ginn and Com

pany, who have met the author s wishes with unvarying liberality,

and have given the utmost care to the press work.

JAMES PIERPONT
NEW HAVEN, December, 1911
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FUNCTION THEORY OF REAL
VARIABLES

: v^ U ;

CHAPTER I

POINT SETS AND PROPER INTEGRALS

1. In this short chapter we wish to complete our treatment of

proper multiple integrals and give a few theorems on point sets

which we shall either need now or in the next chapter where we
take up the important subject of improper multiple integrals.

In Volume I, 702, we have said that a limited point set whose

upper and lower contents are the same is measurable. It seems

best to reserve this term for another notion which has come into

great prominence of late. We shall therefore in the future call

sets whose upper and lower contents are equal, metric sets. When
a set 51 is metric, either symbol

I or 51

expresses its content. In the following it will be often con
venient to denote the content of 51 by

a.

This notation will serve to keep in mind that 51 is metric, when
we are reasoning with sets some of which are metric, and some
are not.

The frontier of a set as 51, may be denoted by

Front 51.

2. 1. In I, 713 we have introduced the very general notion of

cell, division of space into cells, etc. The definition as there

1
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given requires each cell to be metric. For many purposes this

is not necessary ; it suffices that the cells form an unmixed divi

sion of the given set 51. Such divisions we shall call unmixed di

visions of norm 8. [I, 711.] Under these circumstances we have

now theorems analogous to I, 714, 722, 723, viz :

2. Let 3? contain the limited point set 51. Let A denote an un

mixed division of $8 of norm 8. Let 515 denote those cells of 33 con

taining points of 5L Then

8=0

The proof is entirely analogous to I, 714.

3. Let $8 contain the limited point set 51. Let f(x^ xm) be

limited in 51. Let A be an unmixed division of ^Q of norm 8 into

cells Sr S
2 , . Let 9ft t , m t

be respectively the maximum and mini

mum off in S
t . Then

lim A = lira 29HA = f/, (1
6=0 8=0 */SI

lira flA = lim 2mA = f/* (2
5=0 S=0 ^H

Let us prove 1) ; the relation 2) may be demonstrated in a similar

manner. In the first place we show in a manner entirely analo

gous to I, 722, that

. (3

The only modifications necessary are to replace 8
t , 8[, S

l)C , by their

upper contents, and to make use of the fact that A is unmixed, to

establish 5).

To prove the other relation

, (4

we shall modify the proof as follows. Let E be a cubical division

of space of norm e
&amp;lt;

e
Q

. We may take e
Q
so small that
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The cells of E containing points of 21 fall into two classes.

1 the cells e ltt containing points of the cell S
t but of no other cell

of A ;
2 the cells e( containing points of two or more cells of A.

Thus we have

where MM M(, are the maxima of / in e
t(C , e[. Then as above we

have

if e
Q

is taken sufficiently small.

On the other hand, we have

Now we may suppose S , e
Q
are taken so small that

differ from 51 by as little as we choose. We have therefore for

properly chosen S
, e ,

This with 6) gives

which with 5) proves 4).

4. Let f(xl
- xm) be limited in the limited field 21. Let A be

an unmixed division oftyiof norm 8, into cells Sv S
2

. Let

where as usual m t , Jf[ are the minimum and maximum of f in 8t .

Then
= Max A, yrfa = Min S*.

The proof is entirely similar to I, 723, replacing the theorem

there used by 2, 3.

5. In connection with 4 and the theorem I, 696, 723 it may be

well to caution the reader against an error which students are apt
to make. The theorems I, 696, 1, 2 are not necessarily true if /
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has both signs in 51. For example, consider a unit square S
whose center call O. Let us effect a division E of S into 100

equal squares and let 51 be formed of the lower left-hand square s

and of (7. Let us define / as follows :

/= 1 within s

= - 100 at 0.

For the division E,

Hence, Min ^ &amp;lt;
_

On the other hand, ^m g __ _\
d=0

The theorems I, 723, and its analogue- 4 are not necessarily true

for unmixed divisions of space. The division A employed must

be unmixed divisions of the field of integration 51. That this is

so, is shown by the example just given.

6. In certain cases the field 51 may contain no points at all.

In such a case we define

f/=o.
J%

7. From 4 we have at once :

Let A be an unmixed division of 51 into cells Sv 2, Then

% = Min 2 t ,

with respect to the class of all divisions A.

8. We also have the following :

Let D be an unmixed division of space. Let d, d^-- denote those

cells containing points of 51. Then

^ = Min 24,

with respect to the class of the divisions D.

For if we denote by S, the points of 51 in d, we have obviously

5&amp;lt;2,.

Also by I, 696, S = Min 2et
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with respect to the class of rectangular division of space E =
\e,\.

But the class E is a subclass of the class D.

Thus
Min 28t

&amp;lt; Min 2^ &amp;lt;Min 2 c.

A D E

Here the two end terms have the value 51.

3. Let/^j zm), g(x^ xm) be limited in the limited field 51.

We have then the following theorems :

1. Letf = g in 51 except possibly at the points of a discrete set ).

Then, _ _

//=//
For let

|
/ 1, \g\&amp;lt;M.

Let D be a cubical division of norm d.

Let MU N, denote the maximum of/, g in the cell d,. Let A de

note the cells containing points of ), while A may denote the

other cells of
5l/&amp;gt;.

Then,

Hence, ^ _ ^-^ &amp;lt; 2 -flf,
- # dt

&amp;lt; 2

and the term on the right = as d = 0.

2. Letf &amp;gt; g in 51 except possibly at the points of a discrete set

Then

Forlet

But in J., f&amp;gt;g,
hence

The theorem now follows at once.
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,_.,,

For in any cell d
t

,- Max cf=c Max/; Min cf = c Min/

when c
&amp;gt; ; while

Max
&amp;lt;/

=
&amp;lt;?Min/;

Min
&amp;lt;?/=&amp;lt;? Max/

when c
&amp;lt;

0.

4. If g is integrable in 51,

For from

Max / + Min g &amp;lt; Max (/ + g) &amp;lt; Max/ + Max g,

we have

(2

But g being integrable,

Hence 2) gives

which is the first half of 1). The other half follows from the

relation

Min/ + Min g&amp;lt;M
m (/ + g) &amp;lt; Min / + Max g.

5. The integrands /, g being limited,

For in any cell d,
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6. Let f = g + h, \h\&amp;lt;H
a constant, in 51 Then,

Then by 2 and 4

or

fff&amp;lt; /&amp;lt; &amp;lt;7
+ ftf,

^/2i ^l ~2l J%

r
g&amp;lt; \ f&amp;lt;

4. Letf(xl
a:TO) be limited in limited 51. Then,

|/ 1

&amp;lt; Jf, wg have also,

fl/l&amp;lt;.JrtC

(2

(3

(4

(5

Let us effect a cubical division of space of norm S.

To prove 1) let JVt
= Max|/| in the cell d

L
. Then using the

customary notation,

Hence

Letting 8=0, this gives

\vhich is 1).

&amp;lt;
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To prove 3), we use the relation

-I/I &amp;lt;/&amp;lt;!/!

Hence

from which 3) follows on using 3, 3.

The demonstration of 4) is similar.

To prove 5), we observe that

5. 1. Let
f&amp;gt;

be limited in the limited fields 33, (L Let 91 be

the aggregate formed of the points in either 33 or (L Then

This is obvious since the sums

may have terms in common. Such terms are therefore counted

twice on the right of 1) and only once on the left, before passing

to the limit.

Remark. The relation 1) may not hold when / is not
&amp;gt;

0.

Example. Let $ = (0, 1), 55 = rational points, and ( = irra

tional points in $. Let/= 1 in 55, and - 1 in g. Then

and 1) does not now hold.

2. Let 51 be an unmixed partial aggregate of the limited field

Let (5 = 55 - 51. If
g =/ in 51

= in (5,
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For * * *

J 0=J 7+JL*
/23 */2i (

But

and obviously

3. The reader should note that the above theorem need not be

true if 51 is not an unmixed part of 33.

Example. Let 51 denote the rational points in the unit square

8.
Let

/ = 9 = ~ *-

Then

^M
=- L

4. Let Vibe a part of the limited field $. Letf^O be limited in

. Let g=f in 51 and = in (
= 33

-
51.

//&amp;gt;
r^. (2

aar ^s

For let Jft, JVt be the maxima of/, g in the cell c?t
. Then

21

Passing to the limit we get 1).

To prove 2) we note that in an}^ cell containing a point of 51

Min/&amp;gt; Min &amp;lt;/.

6. 1. Letf(x^ &quot;- xm) be limited in the limited field 51. Let

be an unmixed part of 51 such that M
== 51 as u = 0. Then

f/=Hmf/.
/2l &quot;^J^Su



10 POINT SETS AND PROPER INTEGRALS

For let /&amp;lt; Jfin^l. Let = 51 - $. Then

But

by 4, 1), 5).

Hence passing to the limit u = in 2) we get 1).

2. We note that 1 may be incorrect if the $&u are not unmixed.

For let 51 be the unit square. Let $QU be the rational points in a

concentric square whose side is 1 u. Let/= 1 for the rational

points of 51 and = 2 for the other points. Then

ff-2 lim ff-lL/-- =*! /-i.

7. In I, 716 we have given a uniform convergence theorem

when each 33M &amp;lt; 5(. A similar theorem exists when each 33 M &amp;gt;.

viz. :

33 M &amp;lt; 33M , ^7 M &amp;lt; t/. .L^ 51 be a part of each $ u . Let
&amp;lt;gM=

as u == 0. Then for each e&amp;gt; 0, there exists a pair %
,
d
Q
such that

For S
tto

&amp;lt; 1 + ^, % sufficiently small.
2

Also for any division D of norm ^
&amp;lt;

some d .

^ z&amp;gt;&amp;lt;# +
|-

But

Hence

8. 1. Let 51 be a point set in m = r + s way space. Let us set

certain coordinates as xr+l . xm = in each point of 51. The

resulting points 53 we call a projection of 51- The points of 51
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belonging to a given point b of 33, we denote by ( 6 or more shortly

by (5- We write

*= ,

and call 33, & components of 51.

We note that the fundamental relations of I, 733

hold not only for the components , $, etc., as there given, but

also for the general components 21, 33.

In what follows we shall often give a proof for two dimensions

for the sake of clearness, but in such cases the form of proof will

admit an easy generalization. In such cases 33 will be taken as

the ^-projection or component of 21-

2. 7f 21 = 33 ( is limited and 33 is discrete, 21 is also discrete.

For let 21 lie within a cube of edge J (7
&amp;gt;

1 in m r + s way

space. Then for any d
&amp;lt;

some d^

Then 1^ &amp;lt;

s

D &amp;lt; e.

3. That the converse of 2 is not necessarily true is shown by
the two following examples, which we shall use later :

Example 1. Let 2( denote the points re, y in the unit square
determined thus :

For

0~, n=l, 2, 3, ..-, m odd and &amp;lt; 2n,

let

Here 21 is discrete, while 33 = 1, where 33 denotes the projection
of 21 on the z-axis.

4. Example 2. Let 21 denote the points x&amp;lt; y in the unit square
determined thus :



12 POINT SETS AND PROPER INTEGRALS

For
/yy*

x = , m, n relatively prime,
ft

let
1

o&amp;lt;,&amp;lt;l.

Then, 33 denoting the projection of 5l on the #-axis, we have

f=0, # = 1.

9. 1. Let 91= $ ( be a limited point set. Then

For let/=l in 5L Let g = l at each point of 51 and at the

other points of a cube A = B -

containing 51, let g = 0. Then

By I, 733,

But by 5, 4,

Thus

which gives 1), since

2. 7/i case 51 ^s metric we have

S=J8S, (2

is an integrable function over 3$.

This follows at once from 1).
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3. In this connection we should note, however, that the converse

of 2 is not always true, i.e. if ( is integrable, then 51 has content

and 2, 2) holds. This is shown by the following :

Example. In the unit square we define the points x, y of 51 thus :

For rational x,

For irrational x, 1
&amp;lt; &amp;lt; 1

Then ( = J for every x in 23. Hence

But
51 = 0, 51 = 1.

10. 1. Letf(xl x^ be limited in the limited field 51 = 23

Let us first prove 1). Let 51, 23, lie in the spaces 9?m , 9^ 9?a ,

r + s = m. Then any cubical division D divides these spaces into

cubical cells c?
t , d[, d[ of volumes d, cZ , d&quot; respectively. Ob

viously d = d d&quot;. D also divides 23 and each Q. into unmixed cells

8
,

8&quot;. Let t̂
= Max/ in one of the cells d while JtfJ = Max/

in the corresponding cell &[ . Then by 2, 4,

since M M &amp;gt; 0. Hence

p jT/&amp;lt;|

Letting the norm of D converge to zero, we get 1). We get

2) by similar reasoning or by using 3, 3 and 1).
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2. To illustrate the necessity of making/ &amp;gt;0 in 1), let us take

51 to be the Pringsheim set of I, 740, 2, while / shall = - 1 in 51.

Then

On the other hand

Hence

and the relation 1) does not hold here.

Iterable Fields

11. 1. There is a large class of limited point sets which do not

have content and yet

=(*. (1

Any limited point set satisfying the relation 1) we call iterable,

or more specifically iterable with respect to 33-

Example 1. Let 51 consist of the rational points in the unit

square. Obviously _
8= f&amp;lt;= fgl,

ji/33 ji/Q

so that 5( is iterable both with respect to 33 and (.

Example 2. Let 51 consist of the points x, y in the unit square

defined thus :

For rational x let &amp;lt; y &amp;lt; 1.

For irrational x let &amp;lt; y &amp;lt; 1.

Here 1 = 1.

Thus 51 is iterable with respect to ( but not with respect to 33-
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Example 3. Let 51 consist of the points in the unit square de

fined thus: ,, .
i -I . A ^ ^ o

b or rational x let &amp;lt; y &amp;lt;

|.

For irrational a; let
-J

&amp;lt; ?/ &amp;lt; 1.

Here 51 = 1, while -

Hence 51 is iterable with respect to d but not with respect to 33.

Example 4- Let 51 consist of the sides of the unit square and

the rational points within the square.

Here 51 = 1, while

and similar relations for (L Thus 51 is not iterable with respect

to either 33 or (.

Example 5. Let 51 be the Pringsheim set of I, 740, 2.

Here 51 = 1, while

Hence 51 is not iterable with respect to either 33 or Q.

2. Every limited metric point set is iterable with respect to any of

its projections.

This follows at once from the definition and 9, 2.

12. 1. Although 51 is not iterable it may become so on remov

ing a properly chosen discrete set ).

Example. In Example 4 of 11, the points on the sides of the

unit square form a discrete set ) ;
on removing these, the deleted

set 51* is iterable with respect to either 33 or (.

2. The reader is cautioned not to fall into the error of suppos

ing that if 5lx
and 5^ are unmixed iterable sets, then 51 = 5lj + 512

is also iterable. That this is not so is shown by the Example in 1.

For let 5ti
= 51*, 512

= 1) in that example. Then 5 being dis

crete has content and is thus iterable. But 5( = 5^ -h 512
is not

iterable with respect to either 33 or (L
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13. 1. Let 51 be a limited point set lying in the m dimensional

space ffim . Let 33, ( be components of 51 in 9?r, 9^, r + s = m.

A cubical division D of norm 8 divides 3?OT into cells of volume

d and 9?r and 9?s
into cells of volume dr, d# where d = drds . Let

b be any point of 33, lying in a cell dr . Let ^d
s
denote the sum

6

of all the cells ds, containing points of 51 whose projection is b.

Let 2c?5 denote the sum of all the cells containing points of 51
dr

whose projection falls in dr,
not counting two da cells twice.

We have now the following theorem :

If 51 is iterable with respect to
33&amp;gt;

F r

Hence

Let now 8=0. The first and third members = 51, using I, 699,

since 51 is iterable. Thus, the second and third members have

the same limit, and this gives 1).

2. If 51 is iterable with respect to 33

lim 2dr2d. = g.
fi=o 33 6

This follows at once from 1).

3. Let 51 = 33 (5 be a limited point set, iterable with respect to 33-

Then any unmixed part & of 51 is also iterable with respect to the

^-component o

For let b = a point of 33 ; (5 points of 51 not in (5 ; Cb
= points

of @j in (5, (7^
= points of (E6 in ( . Then for each @&amp;gt;Q there

exist a. pair of points, bv 5
2 ,

distinct or coincident in any cell dr

such that as b ranges over this cell,

+ /3 , C = Max Ob + 13&quot;,
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Let S denote, as in 13, l, the cells of 2c, which contain points of G? ,

and F the cells containing points of both (5, & whose projections
fall in dr . Then from

Cb^C^&amp;lt;Cb^S&amp;lt;Cb

we have

5*,
&amp;lt; O

bi
+ C

bi
&amp;lt; Min Cb + /3 + #&amp;lt; Max

Multiplying by c?r and summing over 33 we have,

i

&amp;lt; 2 rfr Min ^ + 2 ;dr 4- (!i &amp;lt; 2 dr Max &amp;lt;76

Passing to the limit, we have

+ 7;&quot; + S&amp;lt;i, (2

the limit of the last term vanishing since (5, ($ are unmixed parts
of 21. Here r) , rj

rf are as small as we please on taking sufficiently

small. From 2) we now have

f (7=S-(! =
J

4. Let 51 = 33 e iterable with respect to 33. Ze be a part

of 33 a/ic?^l aZ those points of 21 wA0S projection falls on B. Then
A is iterable with respect to B.

For let D be a cubical division of space of norm d. Then

where the sum on the right extends over those cells containing
no point of A. Also

where the second sum on the right extends over those cells dr

containing no point of B.

Subtracting 1), 2) gives

= lim
{
AD

- ZdM] + lim { ^drds
-

d=U I B d=& ^r.s



18 POINT SETS AND PROPER INTEGRALS

As each of the braces is &amp;gt; we have

14. We can now generalize the fundamental inequalities of I,

733 as follows :

Let /(#! ... xm) be limited in the limited field $ = 23 (5, iterable

with respect to 33- Then

For let us choose the positive constants A, B such that

,
n 31.

Let us effect a cubical division of the space of $ftm of norm 8 into

cells d. As in 13, this divides 9^., $ts into cells which we denote,

as well as their contents, by c?r, ds
. Let b denote any point of 33.

As usual let w, M denote the minimum and maximum of / in the

cell d containing a point of 31. Let ra , M be the corresponding
extremes of / when we consider only those points of 51 in d whose

projection is b. Let |/| &amp;lt; F in $.

Then for any b, we have by I, 696,

or
- B(^ds

- g) + ^mds
&amp;lt; )J, (2

since m^m 1
.

In a similar manner

-&amp;lt;) (3

Thus for any b in 33, 2), 3) give

6

Let /3 &amp;gt;
be small at pleasure. There exist two points bv b% dis

tinct or coincident in the cell dr, for which
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where
| ^ , /32 1

&amp;lt;
and 6 X, and Ct2 stand for ( v @

6j
, and finally

where

, J-=MaxJ/
for all points b in &amp;lt;fr .

Let c = Min in dr, then 4) gives

,
-

c) + 2widf &amp;lt; y + /?!
&amp;lt; &amp;lt;7+ /32 &amp;lt; ^Mds + 4(2d, - c)11 22

where the indices 1, 2 indicate that in 2 we have replaced b by

Multiplying by dr and summing over all the cells dr containing

points of 33, the last relation gives

- 0. (5
20 50 33 2 33 2

NOW aS 8 = 0, V,7V7 O? V 7 V,7 W 1,-IQoZdrz,a s
= 51, 2,a r2,as

= VI, by lo, 2.

33 1 33 2

= 1 S = 5t, since 51 is iterable.

Thus the first and last sums in 5) are evanescent with 8. On
the other hand

2(dr2d,wi - 2&amp;lt;*,w)
I

&amp;lt; F^dr(^ds
- 2d

s)
% df I 33 ds 1

= as 8=0, by 13, 1.

Thus ^
lim 2rfr2d,w =| /. (6

(7

Hence passing to the limit 3=0 in 5) we get 1), since 2
1
dfr,

2/32t?r have limits numerically &amp;lt;yQ(5
which may be taken as small

as we please as /3 is arbitrarily small.
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2. If 51 is not iterable with respect to 33, let it be so on remov

ing the discrete set T). Let the resulting field A have the com

ponents B, 0. Then 1 gives

since - -

(/=/&amp;gt;c/51 JA

3. The reader should guard against supposing 1) is correct if

only 51 is iterable on removing a discrete set ). For consider

the following :

Example. Let the points of 51 = 5l
x + T) lie in the unit square.

Let 5lj
consist of all the points lying on the irrational ordinates.

Let ) lie on the rational ordinates such that, wrhen

m, n relatively prime,

Let us define/ over 51 thus :

&amp;lt;&amp;lt;!

/= in 5Ir

/=0 in ).

The relation 1) is false in this case. For

//=!,^21
while

f f/=-*/s */e

15. 1. Let /(ajj #TO) be limited in the limited point set 51.

Let D denote the rectangular division of norm d. All the points

of
5t/&amp;gt; except possibly those on its surface are inner points of 51.

[1,702.]

The limits Hm Cf ,
nm f/ (1

rf=o /9i rf=o /2f
-D -D

exist and will be denoted by

/*/ , JV , (2
-^ ^21

and are called the inner, lower and upper integrals respectively.
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To show that 1) exist we need only to show that for each 6 &amp;gt;

there exists a d
Q
such that for any rectangular divisions D 1

, D f
of

norms
&amp;lt;
d

(

- -
&amp;lt;.

To this end, we denote by E the division formed by superimpos

ing D&quot; on D f

. Then E is a rectangular division of norm
&amp;lt;
d .

T pf

,-!,, = 4 , *,-,, = 4&quot;.

If d is sufficiently small, ., .

-A , A. &amp;lt; ^

an arbitrarily small positive number. Then

A = |ff -/ V-(f -f
|V-

;^ Jjyy Wgy j5

if
97 is taken small enough.

2. The integrals

Cf, f/,
%/2I Jw

heretofore considered may be called the outer, lower and upper in

tegrals, in contradistinction.

3. Let f be limited in the limited metric field 51. Then the inner

and outer lower (upper) integrals are equal.

For W.D is an unmixed part of 51 such that

Then by 6, l, r r
limj /-//rf=o J%D J%

But the limit on the left is by definition

4. When 51 has no inner points,

JV=o.t/SM
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For each
$/&amp;gt;

= 0, and hence each

Point Sets

16. -Le 51 = 33 + &amp;gt;e metric. Then

g = 33 + g. (1

For let .Z) be a cubical division of space of norm d. The cells

of 51^ fall into three classes : 1, cells containing only points of 33;

these form
33/&amp;gt;. 2, cells containing points of ( ;

these form &D .

3, cells containing frontier points of 33, not already included in 1

or 2. Call these
\D . Then

^ = %D + &D + \D . (2

Let now d = 0. As 51 is metric, f^ = 0, since \D is a part of

Front 51 and this is discrete. Thus 2) gives 1).

17. 1. Let 51, 33, G - (1

be point sets, limited or not, and finite or infinite in number.

The aggregate formed of the points present in at least one of the

sets 1) is called their union, and may be denoted by

U(K, 33, (5 ),

or more shortly by ,&amp;lt;* ^ x

If 51 is a general symbol for the sets 1), the union of these sets

may also be denoted by 77 5 91 [

or even more briefly by
r^&amp;gt;

If no two of the sets 1) have a point in common, their union

may be called their sum, and this may be denoted by

51 + 33 + S+ -

The set formed of the points common to all the sets 1) we call

their divisor and denote by
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if 51 is a general symbol as before.

2. Examples.

Let 51 be the interval (0, 2); S3 the interval (1, oo). Then

Z7(2l, )
=

(0, oo), Dv($(, 33) = (1, 2).

Let ^ =
(0, 1), 5I2

=
(1, 2).-.

Then

Let
^=(1, i), 5i2 =(i j), 5

Then
^(512,512 -0 = (0*, 1),

!)(!, a -)= 0.

Let
*i =

Then

3 Let

Let

Let
21 =^ + ^, 2li

= ^2 +^-
Then

21 = -D + (E! + ( 2 H- -

Let us first exclude the = sign in 1). Then every element of

51 which is not in ) is in some 5ln but not in 5ln+r It is therefore

in (EB+1 but not in n+2 &amp;gt; n+3 ^
&quot; The rest now follows easily.

4. Some writers call the union of two sets 51, 53 their sum,

whether 51, 33 have a point in common or not. We have not done

this because the associative property of sums, viz. :

does not hold in general for unions.
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Example. Let 51 = rectangle (1234),

&amp;lt;8

= (5678),

( = (5 8 /3)
=

Then 0W
and

(OX* )-&amp;lt;), (2

are different.

Thus if we write -f- for
7&quot;, 1), 2) give

18. 1. -Le 51 1 &amp;gt;512 &amp;gt;513
&quot;* ^ e a 8e^ / limited complete point

aggregates. Then

33 = ^(51!, 512
- OX)

Moreover 33 as complete.

Let an be a point of 3ln, w = 1, 2, ... and 51 = p 2 ^3
**

Any limiting point a of 51 is in every 5ln . For it is a limit

ing point of

But all these points lie in 5lm , which is complete. Hence a lies in

5lm, and therefore in every y(v $[2 , Hence a lies in 23, and

&amp;gt;
0.

33 i* complete. For let /3 be one of its limiting points. Let

V 2 3
-

As each bm is in each 2ln,
and 5(n is complete, y8 is in 5ln - Hence ft

is in 33-

2. Let W. be a limited point set of the second species. Then

s complete.

For 5(
(n) is complete and &amp;gt;

0. Also 5l
(n)

.&amp;gt;

19. i 5lr 212
& *^ 33; let 51 = ^7S5ln i. i&amp;lt; An be the com

plement of 5ln with respect to
33&amp;gt;

so that An + 2In = 33- ^
^1 = Dv\An \

. Then A and 51 are complementary, so that A 4- 51 = 33
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For each point b of 33 lies in some 5ln , or it lies in no 5In , and

hence in every An . In the first case b lies in 51, in the second in

A. Moreover it cannot lie in both A and 51-

20. 1. Let 2lj &amp;lt;512
&amp;lt; 51

3 (1

be an infinite sequence of point sets whose union call 51. This

fact may be more briefly indicated by the notation

Obviously when 51 is limited,

1 &amp;gt; lim ln . (2

That the inequality may hold as well as the equality in 2) is

shown by the following examples.

Example 1. Let 5ln = the segment (-, 1
]

\H I
Then

5l = Z7j5U = (0*, 1).

Example 2. Let an denote the points in the unit interval whose

abscissae are given by

x = ,
m &amp;lt; n = 1, 2, 3, m, n relatively prime.

n
Let

5ln = a + - + an .

Here
2i

is the totality of rational numbers in (0*, 1*).
A c

21 = 1 and 5ln = 0, we see

51 &amp;gt; lim ln .

2. Let
i&amp;gt;_ 2

&amp;gt;-

Let 33 be their divisor. This we may denote briefly by

Obviously when 33
X

is limited,

8 &amp;lt; lim Sn .
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Example 1. Let 33 n = the segment ( 0, -V

Then ^ = ^533^ =
(0), the origin.

Here 1

n
and S = lim gn .

Example 2. Let 2ln be as in 1, Example 2. Let bn = 21 2ln .

$A f~\ 9^\ _l_ fi

Here ^ _ the gegment (^ 2) and = 2.

Hence g &amp;lt; lim ..

3. ie^ 33j &amp;lt; 332 &amp;lt; ^^ unmixed parts of 21. -e Sn
= 21.

LJ. Then ( = 21 33 i* discrete.

For let 31 = $n + ( n ; then (5n is an unmixed part of 21. Hence

s=sw +c.

Passing to the limit n = oo, this gives

limgn =0.

Hence (5 is discrete by 2.

4. We may obviously apply the terms monotone increasing,

monotone decreasing sequences, etc. [Cf. 1, 108, 211] to sequences

of the type 1), 3).

21. Let& = 2( + 33. If 51, 33 are complete,

= S+S. (1

For
S = Dist (21, 33) &amp;gt; 0,

since 21, 33 are complete and have no point in common. Let D be

a cubical division of space of norm d. If d is taken sufficiently

small 2l/), 33/&amp;gt;
have no cells in common. Hence

Letting d= we get 1).
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22. 1. If 51, 33 fl/*e complete, so are also

=(21,33), )

Let us first show that is complete. Let c be a limiting point

of . Let Cj, 2 , be points of (5 which = c. Let us separate

the cn into two classes, according as they belong to 51, or do not.

One of these classes must embrace an infinite number of points

which = c. As both 51 and 33 are complete, c lies in either 51 or

33- Hence it lies in g.

To show that ) is complete. Let dv d
2 , be points of ) which

= d. As each dn is in both 5( and 33, their limiting point d is in

51 and 33, since these are complete. Hence d is in ).

2. If 51, 23 are metric so are

For the points of Front lie either in Front 51 or in Front 33,

while the points of Front ) &amp;lt; Front 51 and also &amp;lt; Front 33. But

Front 5( and Front 33 are discrete since 51, 33 are metric.

23. Let the complete set 51 have a complete part 33. Then hoiv-

ever small e
&amp;gt;

is taken, there exists a complete set & in 51, having no

point in common with 33 such that

&amp;gt;5(-5-e. (1

Moreover there exists no complete set d, having no point in common

with 33 such that

The second part of the theorem follows from 21. To prove 1)

let D be a cubical division such that

5^=51 + 6 , ^ = 2) + e
&quot;,

0&amp;lt;e
, &quot;&amp;lt;e. (2

Since 33 is complete, no point of 33 lies on the frontier of
33z&amp;gt;-

Let denote the points of 51 lying in cells containing no point of

33. Since 51 is complete so is (S, and 33, ( have no point in common.

Thus
. (3
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But the cells of &D may be subdivided, forming a new division A,

which does not change the cells of $QD, so that $8D = $3A ,
but so that

1A =! + &quot;,
0&amp;lt;e &quot;&amp;lt;. (4

. Thus 2), 3), 4) give

24. Let 51, 33 be complete. Let

Forlet
II = 51 + A.

Then A contains complete sets (7, such that

^&amp;gt;U-S-e, (2

but no complete set such that

c&amp;gt;u-a, (3

by 23. On the other hand,

*A+ $.

Hence ^4 contains complete sets (7, such that

a&amp;gt;-s&amp;gt;-, (4

but no complete set such that

&amp;lt;7&amp;gt;S-. (5

From 2), 3), and 4), 5) we have 1), since 6 is arbitrarily small.

25. Let

each $n being complete and such that 5ln &amp;gt; some constant k.

Then
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For suppose l = k-&amp;gt;0.

Let
Z = e+7,; e, 7,&amp;gt;0.

Then by 23 there exists in
5lj

a complete set Q^, having no point

in common with ) such that

Sj &amp;gt; Sj
- T) - e ;

or as 5tj
&amp;gt;

A:, such that
^ &amp;gt;

Let
(5,), U = (2I2 , eO-

by 24,

Thus

Thus $2 contains the non-vanishing complete set @2 having no

point in common with ). In this way we may continue. Thus

5Ir $2 ,
contain a non-vanishing complete component not in ),

which is absurd.

Corollary. Let 31 =
(5Ij&amp;lt;

512 &amp;lt; ) Je complete. Then Sn = 3.

This follows easily from 23, 25.



CHAPTER II

IMPROPER MULTIPLE INTEGRALS

26. Up to the present we have considered only proper multiple

integrals. We take up now the case when the integrand f(x1
- xm )

is not limited. Such integrals are called improper. When m = 1,

we get the integrals treated in Vol. I, Chapter 14. An important

application of the theory we are now to develop is the inversion

of the order of integration in iterated improper integrals. The

treatment of this question given in Vol. I may be simplified and

generalized by making use of the properties of improper multiple

integrals.

27. Let 51 be a limited point set in w-way space $lm . At each

point of 51 let f(x1
#m) have a definite value assigned to it.

The points of infinite discontinuity of / which lie in 51 we shall

denote by $. In general $ is discrete, and this case is by far the

most important. But it is not necessary. We shall call $ the

singular points.

Example. Let 51 be the unit square. At the point # = ,

y = -, these fractions being irreducible, let f=ns. At the other
s

points of 51 let /= 1. Here every point of 51 is a point of infinite

discontinuity and hence Q = 51-

Several types of definition of improper integrals have been

proposed. We shall mention only three.

28. Type I. Let us effect a division A of norm 8 of 9?m into

cells, such that each cell is complete. Such divisions may be

called complete. Let 515 denote the cells containing points of 51,

but no point of Q ,
while 5l may denote the cells containing a

point of $ Since A is complete, / is limited in 5ls- Hence /
admits an upper and a lower proper integral in 5ls The limits,

when they exist, -^

lim f /, lim
) /, (1

6=0 c/2l 5=0 ^21
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for all possible complete divisions A of norm S, are called the

lower and upper integrals of / in 51, and are denoted by

CfdK, (2
l *

or more shortly by

/
When the limits 1) are finite, the corresponding integrals 2)

are convergent. We also say/ admits a lower or an upper improper

integral in 51- When the two integrals 2) are equal, we say that

/ is integrable in 51 and denote their common value by

or by J/. (3

We call 3) the improper integral of f in 51 ; we also say that

/ admits an improper integral in 51 and that the integral 3) is

convergent.

The definition of an improper integral just given is an extension

of that given in Vol. I, Chapter 14. It is the natural develop
ment of the idea of an improper integral which goes back to the

beginnings of the calculus.

It is convenient to speak of the symbols 2) as upper and lower

integrals, even when the limits 1) do not exist. A similar remark

applies to the symbol 3).

Let us replace /by l/| in one of the symbols 2), 3). The

resulting symbol is called the adjoint of the integral in question.

We write

(4

When the adjoint of one of the integrals 2), 3) is convergent,
the first integral is said to be absolutely convergent. Thus if 4) is

convergent, the second integral in 2) is absolutely convergent, etc.

29. Type II. Let X, /u,&amp;gt;0.
We introduce a truncated func

tion/Afx
defined as follows :

/AM =/Oi #) when - X
&amp;lt;/&amp;lt; /*

= X when/ &amp;lt; X

= p when / &amp;gt; fjL.
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We define now the lower integral as

c c
J f = Iim J /AM .

A similar definition holds for the upper integral. The other

terms introduced in 28 apply here without change.

This definition of an improper integral is due to de la Vallee

Poussin. It has been employed by him and R. G-. D. Richardson

with great success.

30. Type III. Let a, /3 &amp;gt; 0. Let 5l
a/3

denote the points of 51

We define now

f/ = Iim f f ; f/ = Km f /. (1
tl2l a,/3

= o^l
a/3

^21
,0&amp;gt;*

/*0

The other terms introduced in 28 apply here without change.

This type of definition originated with the author and has been

developed in his lectures.

31. When the points of infinite discontinuity -3 are discrete

and the upper integrals are absolutely convergent, all three defini

tions lead to the same result, as we shall show.

When this condition is not satisfied, the results may be quite

different.

Example. Let 51 be the unit square. Let 5lr 512
denote respec

tively the upper and lower halves. At the rational* points 53,

x = , y = ~, in 5L, let/= ns. At the other points ( of 5lr let

n s

/=-2. In 51

1 Definition. Here

Hence

2 Definition. Here

T .- + oo.

* Here as in all following examples of this sort, fractions are supposed to be

irreducible.
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3 Definition. Here 3l
a/3

embraces all the points of 2J2 , and a

finite number of points of 33 for a &amp;gt; 2, /3 arbitrarily large. Hence

//=-!, //=-!,*i ^n
and thus

32. In the following we shall adopt the third type of definition,

as it seems to lead to more general results when treating the im

portant subject of inversion of the order of integration in iterated

integrals.

We note that if/is limited in 21,

lim I / = the proper integral 1 /.
a, /3=_2l ^l2l

For a, ft being sufficiently large, 2l
a/J
= 21-

Also, if 31 is discrete,

//=//= -

For 2la8 is discrete, and hence

r

Hence the limit of these integrals is 0.

33. Let m=|Min/| , JJf=|Max/| in 51.

Then - -

lim I /= lim I /, m finite.
a,/3=oc^2laj3 ft-*?Mm,p

lim f /=lim f /, Mfinite.
+fi-&amp;lt;*!mmj

a=^2ia)J/

For these limits depend only on large values of a, ft, and when
is finite.

$ OT ^
= $a^ , for all a &amp;gt; 7/1.

Similarly, when Mis finite

^.6 = 3L* for all /3 &amp;gt; M.
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Thus in these cases we may simplify our notation by replacing
CUT (\f

2U, Jit 2im
/3

bj 3L. , %
ft

,

respectively.

2. Thus we have:

Xf = lim I /, when Min/ is finite.j *~A
&amp;gt;

J / = lim
J / , when Max/ i finite.

3. Sometimes we have to deal with several functions /,#,
In this case the notation 5la/3

is ambiguous. To make it clear we
let 21/, a&amp;gt; p denote the points of 51 where

Similarly, 51^, a&amp;gt; ^ denotes the points where

34. I f is a monotone decreasing function of a for each ft.

*f*i

I f is a monotone increasing function of ft for each a.

J**fi

If Max/ is finite

| / are monotone decreasing functions of a.

/-

If Uinfit finite

I / are monotone increasing functions of ft.

J*e

Let us prove the first statement. Let a &amp;gt; a.

Let D be a cubical division of space of norm d.

Then ft being fixed,

( /= lirn 2 w t c?t , (1
fM &amp;lt;*= 2la/3

f /=lim2w;^;, (2
/tU /l

rf= a ^

using the notation so often employed before.
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But each cell dt of 5la/3
lies among the cells dj of 2L /s.

Thus we
can break up the sum 2), getting

Here the second term on the right is summed over those cells

not containing points of 5l a/3
. It is thus &amp;lt; 0. In the first term

on the right ml &amp;lt;m L
. It is thus less than the sum in 1). Hence

Thus

L^L: &amp;gt;.

In a similar manner we may prove the second statement ; let

us turn to the third.

We need only to show that

| / is monotone decreasing.J
2l_ a

Let &amp;gt;. Then
= lim SJIf^. (3

As before S.M d = ^M d + ^Mndn f5

*- -/

But in the cells d,, MJ =ML
. Hence the first term of 5) is

the same as 2 in 3). The second term of 5) is &amp;lt;0. The proof

follows now as before.

35. If Max / is finite and I fare limited, I f is convergent and
_5tt ^_2l

f/&amp;lt; f /.
/ j/2T_ a

If Min f is finite and I are limited, I tf t convergent and
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For by 34 -

f / , f /
JL. J**

are limited monotone functions. Their limits exist by I, 277, 8.

36. IfM= Max/ is finite, andJf is convergent, the correspond

ing upper integral is convergent and

wheref &amp;gt;_

a in 5L tt
.

Similarly, if m = Min / is finite and J f is convergent, the corre

sponding lower integral is convergent and

Let us prove the first half of the theorem.

We have /* 7*

I /= lim I

Jjf a=J5l_a

Now

We have now only to pass to the limit.

37. If if is convergent, and $8 &amp;lt; 51,

&quot;

does not need to converge. Similarly

_

does not need to converge, although I / does.

Example. Let 21 be the unit square ; let 8 denote the points

for which x is rational.
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when x is irrational

when x is rational

37

Then

/= 1

= -
y

r r
I /=! ; hence I /=!.J/ Jtf

On the other hand,

Hence

is divergent.

X= lim I = lim log & = + oo
i s=* ^s

38. 1. In the future it will be convenient to let ty denote the

points of 51 where
/&amp;gt; 0, and 9? the points where/ &amp;lt;.

0. We may
call them the positive and negative components

2. IfJ /converges, so do \ f.

If I / converges, so do I /.
*/H *AR

For let us effect a cubical division of space of norm d. Let

fi &amp;gt; /3. Let e denote those cells containing a point of ^ ; e

those cells containing a point of ^ but no point of ^ ;
5 those

cells containing a point of 9l
a/3

but none of ^,.

Then

= limJS^f.
*/2la/3

d=0
SJ.

Obviously

Hence

, M,,&amp;lt;0.

~ ~
\ -\ li

^2l ^
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We find similarly

f - f =lim{2(^-Jf.&amp;gt; + 2JfXi-
*Ap/3/ ^?B d=

Now
I

-
ML*

&amp;lt;

for a sufficiently large a, and for any & &amp;gt; j3Q
.

Hence the same is true of the left side of 1).

As corollaries we have :

3. If the upper integral off is convergent in 51, then

If the lower integral off is convergent in

For
&amp;lt; etc.

4. -?// &amp;gt;:

ancZ I / is convergent, so is
/5l

(1

Moreover the second integral is &amp;lt; the first.

This follows at once from 3, as 51 = ty.

39. IfJ / and J f converge, so do J /.

We show that I / converges ; a similar proof holds for I .

*/2t ?2l

this end we have only to show that

e&amp;gt;0; L -L &amp;lt;e; &amp;lt; &amp;lt;&quot;,

To

(1
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Let D be a cubical division of space of norm d. Let typ , typ-

denote cells containing at least one point of 2la |8 , 2la
&quot;/j&quot;

at which

/&amp;gt;0.
Let tta- i tla&quot;

denote cells containing only points of 2la -/3 ,

2la -0&quot;
at which/&amp;lt; 0. We have

Subtracting,

(2

Let jjf[
= Max / for points of ^ in c? t . Then since / has one

sign in 9fc,

|

. (3

Letting d = 0, 2) and 3) give

&quot;

Now if 13 is taken sufficiently large, the first term on the right is

&amp;lt; 6/2. On the other hand, sincej / is convergent, so is J / by

36. Hence for a sufficiently large, the last term on the right is

&amp;lt;e/2.
Thus 4) gives 1).

40. Iff is integrable in 21, it is in any $3 &amp;lt; 21-

Let us first show it is integrable in any 2l
aj3

.

Let D be a cubical division of space of norm d.

Then Aap
= lira 2o&amp;gt;A , &amp;lt;*&amp;gt;,

= DSC/ in dt
.

&amp;lt;*=o 2l
a/3

Let a &amp;gt; a, &amp;gt; 0. Then

A &amp;gt;

- A = lim 2a&amp;gt;W:
- 2A.
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Now any cell dt of 5l
aj8

is a cell of 5la
-

j3 , and in d^ co( &amp;gt; co,.

Hence Aa
&amp;gt;p

&amp;gt; Aap. Thus Aa$ is a monotone increasing function

of a, /3. On the other hand

lim Aap
= 0,

by hypothesis. Hence A
aft
= and thus/is integrable in 5la/3-

Next let / be limited in 33, then
|/|&amp;lt;some 7 in 33. Then

33 &amp;lt; 5lv , r But / being integrable in 5ly , Y, it is in 33 by I, 700, 3.

Let us now consider the general case. Since/ is integrable in 51

f/ , f /,J J.

both converge by 38. Let now P, N be the points of ^P, %l lying
in 33. Then

both converge. Hence by 39,

both converge. But if 33a , 6
denote the points of 33 at which

-&amp;lt;/&amp;lt;&,

r/= iim r /,
JjQ a,b=*J ab

by definition.

But as just seen, C _
*#

//-
and /is integrable in 33.

41. As a corollary of 40 we have :

1 . Iff is integrable in 51, it admits a proper integral in any part

of 51 in whichf is limited.

2. Iff is integrable in any part of 51 in whichf is limited, and if

either the lower or upper integral off in 51 is convergent, f is integra

ble in 51.
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For let T: ^
J /=lim j / (1
JK .tfJiM

exist. Since

necessarily

exists and 1), 2) are equal.

42. 1. In studying the function/ it is sometimes convenient to

introduce two auxiliary functions defined as follows :

g=f where/&amp;gt;0,

= where /&amp;lt;0.

h=-f where/&amp;lt;0,

= where /&amp;gt;0.

Thus #, h are both &amp;gt; and

We call them the associated non-negative functions.

2. As usual let 5L/s denote the points of 51 at which a
&amp;lt;f&amp;lt;@.

Let 510 denote the points where
g&amp;lt;&,

and 5la the points where h&amp;lt;a.

Then - -
I g = lim I g, (1
SI a,^=oo

/
$l

aj3

f A = lim f h. (2
C/QT /&amp;gt; y 91

For - -

I 9= I ^ by 5, 4.

^% ^2la^

Letting a, /Q = oo, this last gives 1).

A similar demonstration establishes 2).

3. We cannot say always

C C C 7 C
J # = lim J g ; t A lim I A,

as the following example shows.
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Let / = 1 at the irrational points in 21 = (0, 1),

= n, for x = in 21.

n

Then ~ ~

^ ^2ta/3

Again let / = 1 for the irrational points in 21,

= n for the rational points x = - -

n

Then

43. 1.

f A=0. f A=l.
JM* J.Kap

1) f&amp;lt;/=f/; /&amp;lt;/&amp;lt;//; (2
^2t *7^ ^ ^

3) f A = - f/; f^&amp;lt;- f/; (4
c/21 Jsjj

17

c/^ ^/g(j

provided the integral on either side of the equations converges, or

provided the integrals on the right side of the inequalities converge.

Let us prove 1); the others are similarly established. Effecting

a cubical division of space of norm d, we have for a fixed ft,

= lim 2Jft* = f /. (5
d=Q ^ ^0

Thus if either integral in 1) is convergent, the passage to the

limit ft = QO in 5), gives 1).

2. If I f is convergent, I g converge.
J&amp;lt; v/21

If I f is convergent, \ h converge.
*/2l c/21

This follows from 1 and from 38.



GENERAL THEORY 43

3. If I / is convergent, we cannot say that I / is always con-
/g *Syi

vergent. A similar remark holds for the lower integral.

For let
jf=:l at the rational points of 51 = (0, 1)

= at the irrational points.
x

Then

4. That the inequality sign in 2) or 4) may be necessary is

shown thus :

Let
-I

/= -L for rational x in 51 = (0, 1)

= for irrational x.

Then r r
J&amp;gt;=0

, J/-i.

44. 1. ff=fg- lim f A, (1
*^2I *^2I a fi= x c 2I

f/ = lim f 0- (\ (2
^2t a i3= x*^2t **

provided, 1 ^e integral on the left exists, or 2 fAe integral and the

limit on the right exist.

For let us effect a cubical division of norm d. The cells con

taining points of 51 fall into two classes :

a) those in which /is always &amp;lt; 0,

5) those in which /is &amp;gt;0 for at least one point.

In the cells a), since/= g A,

Max/ = Max (g-h)= Max g - Min h, (3

as Max# = 0. In the cells b) this relation also holds as Min h = 0.

Thus 3) gives
f /= f -J A. (4
^a? &quot;X0 -^
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Let now a, /3 = oo. If the integral on the left of 1) is conver

gent, the integral on the right of 1^ is convergent by 43, 2. Hence

the limit on the right of 1) exists. Using now 42, 2, we get 1).

Let us now look at the 2 hypothesis. By 42, 2,

lim g 1 g.
* *V

Thus passing to the limit in 4), we get 1).

2. A relation of the type

--/.*
does not always hold as the following shows.

Example. Let/ = n at the points x
A n

f m= n for x =
22W-4-1

= 1 at the other points of 51 = (0, 1).

Then f/=-l f# = fA = 0.

Ja JsT J

45. If ( f is convergent, it is in any unmixed part 33 0/21.
c/2t

Let us consider the upper integral first. By 43, 2,

exists. Hence a fortiori,

Jt

exists. Since 51 = 48 -f ( is an unmixed division,

C h= C h+ C h.

J*+ Jafi JSafi

Hence C h&amp;lt; C h.
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As the limit of the right side exists, that of the left exists also.

From this fact, and because 1) exists,

exists by 44, 1.

A similar demonstration holds for the lower integral over $3.

46. If&v 212 ^im form an unmixed division 0/51, then

f/= f/+ -+ f /,
JKm

provided the integral on the left exists or all the integrals on the

right exist.

For if 2lm a/3
denote the points of 2l a/3

in 5lm , we have

JL-JU--+.L- &amp;lt;

2

Now if the integral on the left of 1) is convergent, the integrals
on the right of 1) all converge by 45. Passing to the limit in 2)

gives 1). On the other hypothesis, the integrals on the right of

1) existing, a passage to the limit in 2) shows that 1) holds in

this case also.

47. If if and ( f converge, so does C I/I, and
Jty Jyi c/21

fl/l&amp;lt; f/- f/ (i
si 9s yi

&amp;lt;g + Jh. (2

For let AB denote the points of 51 where

Then since

X i i =1*/A B /A
&amp;lt; C g+ Ch
JA B *^A B

&amp;lt;fff+ f* (3
c/21 c/5(

&amp;lt;f/-f/ by 43,1. (4
Jy JM

Passing to the limit in 3), 4), we get 1), 2).
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48. 1. If | I/ 1 converges, loth f/ converge.
*% JK

For as usual let ^3 denote the points of 5( where /&amp;gt;0.

Then

is convergent by 38, 3, since f
\f\ is convergent.

Similarly,

f (-/)=- f/% */3?

is convergent. The theorem follows now by 39.

2. If \
| /| converges, so do

fff , f*. (i
Ji/2t j^2t

For by 1,

J%
both converge. The theorem now follows by 43, 2.

3. For

f/ (2V*
converge it is necessary and sufficient that

is convergent.

For if 3) converges, the integrals 2) both converge by 1.

On the other hand if both the integrals 2) converge,

converge by 38, 2. Hence 3) converges by 47.

4. If/is integrable in 21, so is
\f\.

For let A
ft
denote the points of 5( where &amp;lt;

|/|
&amp;lt;

f}. Then

and the limit on the right exists by 3.
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But by 41, I,/ is integrable in A^. Hence |/| is integrable in

ft by I, 720. Thus

49. From the above it follows that if both integrals

.
b

converge, they converge absolutely. Thus, in particular, if

converges, it is absolutely convergent.

We must, however, guard the reader against the error of sup

posing that only absolutely convergent upper and lower integrals

exist.

Example. At the rational points of 31 = (0, 1) let

At the irrational points let

Here

A,)-!

//
Thus, / admits an upper, but not a lower integral. On the

other hand the upper integral of / does not converge absolutely.

For obviously

50. We have just noted that if

J|/|
= + 00 .

is convergent, it is absolutely convergent. For m = 1, this result

apparently stands in contradiction with the theory developed in

Vol. I, where we often dealt with convergent integrals which do

not converge absolutely.
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Let us consider, for example,

sin-

If we set x = -, we get

sinu -,

u

which converges by I, 667, but is not absolutely convergent by

I, 646.

This apparent discrepancy at once disappears when we observe

that according to the definition laid down in Vol. I,

J= R Km I fdx,
a=0 *^a

while in the present chapter

7= lim J fdx.

Now it is easy to see that, taking a large at pleasure but fixed,

J fdx = 00 as y3 = oo,

so that &amp;lt;7does not converge according to our present definition.

In the theory of integration as ordinarily developed in works

on the calculus a similar phenomenon occurs, viz. only absolutely

convergent integrals exist when m
&amp;gt;

1.

51. 1. If
j |/| is convergent,

I// X l/!
-

:

(1

For 5l
a/3 denoting as usual the points of 51 where

&amp;lt;/&amp;lt;/3

we have - - -

f / &amp;lt; J |/|&amp;lt; f I/I-
.5/21 ^21 21

Passing to the limit, we get 1).
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2. If l/l is convergent, Cf are convergent for any 33 &amp;lt;2(.

Ja J%

For
I (/I is convergent by 38, 4.

*/$

Hence

converge by 48, 3.

3. If, 1,
f&quot;

|
/ 1

is convergent and Min/ is finite, or if, 2, f/ is

convergent and Max/ is finite, then

is convergent.

This follows by 36 and 48, 3.

52. Letf&amp;gt;Q inW. Let the integral

converge. If

then for any unmixed part 33 &amp;lt; 51,

(2

&amp;lt; &amp;lt;. (3

For let 21 = 55 4- G&amp;gt;. Then 51^
=^ + ^/3 is an unmixed division.

Also

*/9I */ c/ff

= f + by 1)
s!*fi

=/V + +.
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Hence

From 2)

C + C = C + C + a.

.5/33 :& %$p /3

- -
a =

f
-

fJ

(4

by4)

which establishes 3).

53, If the integral

converges, then

&amp;lt; 31

J&quot;
I/I

that

&amp;gt;&amp;lt;r.

C1

(2

(3

Let us suppose first that/&amp;gt;0. If the theorem is not true,

there exists, however small
o-&amp;gt;0 is taken, a 53 satisfying 3) such

that

Then there exists a cubical division of space such that those

points of 51, call them (, which lie in cells containing a point of

53, are such that (5&amp;lt;&amp;lt;r also. Moreover ( is an unmixed part of 51.

Then from 4) follows, as/_&amp;gt;0, that

also.

Let us now take /3 so that

Then

and

by 52. But

1=1+
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Let now
/3&amp;lt;r &amp;lt; e, then

/ &amp;lt;

*/CFo

which contradicts 5).

Let us now make no restrictions on the sign of/. We have

/
But since 1) converges, the present case is reduced to the pre

ceding.

54. 1. Let I |/ 1 converge.
%/g

Let as usual 2l
a/3

denote the points of^at which
&amp;lt;/&amp;lt;#.

Let

Aab be such that each 5l
a/3

lies in some Aab in which latterf is limited.

Let )
a/3
= Aab 2l a/3

and let a, b = ac with a, /3. Then

lim )
a/3
= 0.

a, 0=30

For if not, let

a, /3=a&amp;gt;

Then for any &amp;lt; X &amp;lt; Z, there exists a monotone sequence \an , ftn \

such that

W &amp;gt;
X for n

&amp;gt;
some w.

Let /in=Min(an , y8n), then \f &amp;gt;

fj,n in X)an/3n^ an(l Mn^ 00 *

Hence ^
J |/|&amp;gt;ASX^oo. (1
^D^fc

X)an/3n being a part of 31

by 38, 3. This contradicts 1).

2. Definition. We say .A
fli 6 is conjugate to 5l

a/3
with respect to/.

55. 1. J.s wswaZ let - a
&amp;lt;/

&amp;lt; /3 m 3la^. Let 0&amp;lt;f&amp;lt;/3
in 51^.

i^^ ^4.^ 5e conjugate to 2(a ^^A reference to f ; and Ab conjugate
to 51^ with respect to |/|.
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V, 1,

or (f, 2,

lim f /= f/.
a, 6=00 *d^a, 6 ^l

For, if 2 holds, 1 holds also, since

Thus case 2 is reduced to 1. Let then the 1 limit exist.

We have

f / f tf- f * (2J
2W J*./ s4g

as 4) in 44, 1 shows. Let now

&amp;gt;,*.&amp;lt;-4*-**
Then,

But ^^ = 0, as , ft = oo, by 54. Let us now pass to the limit

a, yS = QO in 3). Since the limit of the last term is by 53, 54, we
- -

lim L #= lim
) 9- (4

, 0=00^^ a, 6=ao ^Aa, b

Similarly, ~ ~
lim I h = lim I h. (5

o, 0=c ^a/3 a, 5=0= ?Z^a6

Passing to the limit in 2), we get, using 4), 5),

f /= lim | f a- f h I

Ax/ ,6=oo (^/ ll^ J

= lim f /
a , ft

= ao ^^aft

In a similar manner we may establish 1) for the lower integrals.
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2. The following example is instructive as showing that when
the conditions imposed in 1 are not fulfilled, the relation 1) may
not hold.

Example. Since ^ ,

I =+oo,
/0 X

there exists, for any bn &amp;gt; 0, a
&amp;lt;

bn+1 &amp;lt;
5n , such that if we set

then n ^ n
Cr

1
&amp;lt;Cr2 &amp;lt;

* =00,
as bn = 0. Let now

/ = 1 for the rational points in 51 = (0, 1),

= - for the irrational.
x

Then

Let

Let An denote the points of 51 in
(&amp;gt;n , 1) and the irrational points

Then C r ^
JA

&amp;gt;
^n+l

But obviously the set An is conjugate to 510. On the other hand,

while /

lim 1 /= + .

56. Jf fo integral

. //
converges, then

e &amp;gt; 0, a- &amp;gt; 0,

/or aw/ unmixed part $8 of 51

/!&amp;lt; (2v
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Let us establish the theorem for the upper integral ; similar

reasoning may be used for the lower. Since 1) is convergent,

// (3

and X= lim C h (4
a

( 0==o/5l
a/3

exist by 44, l. Since 3) exists, we have by 53,

for any 33 &amp;lt; 5t such that 33 &amp;lt; some cr .

Since 4) exists, there exists a pair of values a, b such that

X=f h + r) ,
0&amp;lt;77&amp;lt;^-,

(6
2ta6

since the integral on the right side of 4) is a monotone increasing

function of a, b.

Since 51 = 53 + ( is an unmixed division of 51,

C h= C h-}- C h.

^5l
al8
^

a/3
^&amp;lt;

aj3

Since h &amp;gt; 0, and the limit 4) exists, the above shows that

p = lim
j

h , v = lim I h
a, /3=ao ^SJ3a|3

a, /3=co ^_(Sa(3

exist and that

x= M +&quot;. a
Then a, ft being the same as in 6),

M =J A + V, (8

and we show that
n ^ ^ (Q
\j

&amp;lt;^
77 &amp;lt;, 77 ^-

as in 52. Let now c
&amp;gt; a, ft

;
then

if we take
&amp;lt;

_e

4
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Thus,
M&amp;lt;1

: fe B

(n

But ry = f^_^

by 44, 1. Thus 2) follows on using 5), 11) and taking a-
&amp;lt;&amp;lt;/,

cr&quot;.

57. If the integral ( f converges and $&u is an unmixed part of

21 such that $$ u
= 21 as u = 0, then

limf/=f/. (1
u= *Aw *^9I

For if we set 21 = 93U 4- u, the last set is an unmixed part of 21

and ( = 0. Now

J%u J.S*

Passing to the limit, we get 1) on using 56.

58. 1. Let
afi

If, 1, the upper contents of

f P
^ ^/a^

-
&amp;gt;a0

? 9a^
= ^ a,3

~
^a^ &amp;gt; ^a^

= ^/+* a/3

~ ^a

= as a, /3 =00 ,

(f, 2, fAe upper integrals off, g,f+g are convergent, then

7/^1 Ao?c?s, awe? {f, 3, ^Ae Zower integrals off, g,f+ g are conver

gent, then

Let us prove 2) ;
the relation 3) is similarly established. Let

Z)a
, ft

be a cubical division of space. Let (5
a/3

denote the points of

)a|8 lying in cells of Z&amp;gt;

a/3 , containing no point of the sets 1). Let
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Then D
aft may be chosen so that gaj3

= 0.

Now

since the fields are unmixed. By 56, the second integral on the

right = as a, & = oo . Hence

lim
JT /= lim / /.

i,H-Daua ,^- /

Similar reasoning applies to

Again,

Thus, letting a, @ =00 we get 2).

2. TTAe/i fAe singular points off, g are discrete, the condition 1

holds.

3. 7/# is integrable and the conditions 1, 2, 3 are satisfied^

4. If f, g are integrable and condition 1 es satisfied,f+ g is in

tegrate and

5.

provided the integral off in question converges or is definitely infinite.

LV+C^LS+L
Also

lim )
a/J
= lim 2l

a/J

where 2l
a/3

refers to/.

6. When condition 1 is not satisfied, the relations 2) or 3)
may not hold.
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Example. Let 51 consist of the rational points in (0, 1).

Let /.
.,

. ..

/= \+n , g = \ n

at the point x = . Then
n

f + g=2 in 21.

Now qr w
*fi /i *&amp;gt; /5

embrace only a finite number of points for a given a, /9. On the

other hand,

Thus the upper content of the last set in 1) does not = as

, ft = oo and condition 1 is not fulfilled. Also relation 2) does

not hold in this case. For

, jT/=o ,

59. #c&amp;gt;0, Om-fjf; (1

(2

provided the integral on either side is convergent.

For

/ ifo&amp;lt;0. (4

Let c&amp;gt; 0. Since

therefore ~

--&amp;lt;/&amp;lt;- in this set.

Hence any point of Hc/,
ap, is a point of

SI/,
-. ^ and conversely.

Thus
2&amp;lt;cAa,= 2l,,^ whenoO.
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Similarly
^=SI,,?,| when c

&amp;lt;
0.

Thus 3), 4) give

f e/=ef / c&amp;gt;0J

? ,,
/ c&amp;lt;0 -

c c

We now need only to pass to the limit a, =
&amp;lt;x&amp;gt; .

60. Let one of the integrals

converge. Iff = #, arc?^ a a discrete set ) m 51, 60^ integrals

converge and are equal. A similar theorem holds for the lower

integrals.

For let us suppose the first integral in 1) converges. Let

*-.
then

Now
= lim = m g

f, a/3

Thus the second integral in 1) converges, and 2), 3) show that

the integrals in 1) are equal.

61. 1. Let f /, f g (18 ~2l

converge. Let f &amp;gt; g except possibly at a discrete set. Let

,,,*) ; .f
=

2l/,aa-3X0 ; Qa
= 21^ -3V

V - -
fojs
= 0, ga^ =0, as a, yQ = oo,

then _
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For let (S a/3
be defined as in 58, 1. Then

Let a, ft
=

&amp;lt;x&amp;gt;,

we get 2) by the same style of reasoning as in

58.

2. If the integrals 1) converge, and their singular points are dis

crete, the relation 2) holds.

This follows by 58, 2.

3. If the conditions of 1 do not hold, the relation 2) may not

be true.

Example. Let 51 denote the rational points in (0*, 1*). Let

/ m caf=n at x = in 51.

n

g=l in 51.

Then
f&amp;gt;g

in 51.

But

Relation betioeen the Integrals of Types I, //, ///

62. Let us denote these integrals over the limited field 51 by

, V* , At

respectively. The upper and lower integrals may be denoted by

putting a dash above and below them. When no ambiguity arises,

we may omit the subscript 51. The singular points of the inte

grand/, we denote as usual by $

63. If one of the integrals P is convergent, and $ is discrete, the

corresponding integral converges, and both are equal.
T7^

*

1

P% = p%s
+ paj, using the notation of 28,

= e* + pj.
Now

o as a = by 56.
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Hence p _
j. Q
5=0

5

== C%, by definition.

64. If O is convergent, we cannot say that P converges. A
similar remark holds for tjie lower integrals.

Example. For the rational points in 51 = (0, 1) let

for the irrational points let

/oo = - -
x

Then

a=0

On the other hand, _

PH = lim f /

does not exist. For however large /3 is taken and then fixed,

I /= oo as a = oo.

65. If O is absolutely convergent and $ is discrete, then both P
converge and are equal to the corresponding integrals.

For let D be any complete division of 51 of norm 8. Then

/~Jt&amp;gt;j[L
(1

using the notation of 28. Now since

k |/| converges, C%
& |/|

= as 8 = 0.

But

Again, D being fixed, if /3 are sufficiently large,

f f=C^f &amp;gt; , /S&amp;gt;/3 .

*/9Il M
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Hence 1), 2) give

f /= #a, + e le
j

&amp;lt;
- for any 8

&amp;lt;
some S .

J
2lap

2

On the other hand, if S is sufficiently small,

ft=
&amp;lt;,

+ &quot;

|e&quot;|&amp;lt;|

for 8&amp;lt;S .

Hence f /=&amp;lt;7a + &quot;

|e &quot;|&amp;lt;e.

^ajS

Passing to the limit a, /3
= GO, we get

66. 7/ Fa/ ^s absolutely convergent, the singular points $ are

discrete.

For suppose 3 &amp;gt;
0. Let 53 denote the points of 51 where

\f\&amp;gt;0.
Then g &amp;gt; ^ for any ^. Hence

as 13 = QO unless 3 = 0.

67. If V%f is absolutely convergent, so is C.

For let D be a cubical division of space of norm d.

Then

|/ 1

&amp;lt; some /3in 2ld .

Hence

Hence (7 is absolutely convergent.

68. Letf&amp;gt;0. If VyJ is convergent, there exists for each e&amp;gt;0,

a a-
&amp;gt;

such that

for any 53 such that

. (2



62 IMPROPER MULTIPLE INTEGRALS

for X sufficiently large. Let X be so taken, then

P/=jQ/*+
&quot;

,

0&amp;lt;&amp;lt;|.
(3

AIso&amp;gt;

if o- is taken sufficiently small in 2).

From 3), 4) follows 1).

69. If V^f is absolutely convergent, both converge and are

equal to the corresponding V integrals.

For by 67, is absolutely convergent. Hence (/converge by 65.

Thus
(!&amp;lt;f= I f 4- . \n. &amp;lt;?

Also

=
1 /+

|

&amp;lt;- for some d.

d 3

L 4- /3 , I /3 1

&amp;lt; | for some X, ,

Hence

Now

But

and 7 &amp;lt; | if d is sufficiently small, and for any X, /A, by 68.
o

Taking a division of space having this norm, we then take X,

so large that

/AM=/ mSIc,.

Then
T;
= _ p - 7,

and hence
|77|&amp;lt;e.

From this and 1) the theorem now follows at once.
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Iterated Integrals

70. 1. We consider now the relations which exist between the

integrals

and -
?

If/, (2
~.&amp;lt;BZe

where 51 = 53 (5 lies in a space 9?m , m = p -f ^, and 53 is a projection
of 51 in the space 9?p .

It is sometimes convenient to denote the last q coordinates of a

point x = (o^ xp xp+l xp+q ) by yl
--&amp;gt; yq

. Thus the coordinates

x
1

xp refer to 53 and y^ yg
to (5. The section of 51 correspond

ing to the point x in 53 may be denoted by ( x when it is desirable

to indicate which of the sections ( is meant.

2. Let us set

*(*!

then the integral 2) is

It is important to note at once that although the integrand / is

defined for each point in 51, the integrand &amp;lt;f&amp;gt;

in 4) may not be.

Example. Let 51 consist of the points (z, y) in the unit square :

771 A ^ ^ I
x = -

, 0&amp;lt;y&amp;lt;-.

?i n

Then 51 is discrete. At the point (x, y)in 51, let

Then i * A
by 32

On the other hand

for each point of 53- Thus the integrals 2) are not defined.
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To provide for the case that
&amp;lt;f&amp;gt; may not be defined for certain

points of 53 we give the symbol 2) the following definition.

f ( /= lim f I/, (5
JJ&amp;lt;r a,0=ooJ|8a0Jr

where F = ( when the integral 3) is convergent, or in the con

trary case F is such a part of ( that

-&amp;lt;/*/&amp;lt;
A (6

^r

and such that the integral in 6) .is numerically as large as 6) will

permit.

Sometimes it is convenient to denote F more specifically by F
a/3

.

The points 53a are the points of 53 at which 6) holds. It will

be noticed that each 53a/3
in 5) contains all the points of 53 where

the integral 3) is not convergent. Thus

Hence when 53 is complete or metric,

lim Sais=S. (7
a, /3=ao

Before going farther it will aid the reader to consider a few

examples.

71. Example 1. Let 51 be as in the example in 70, 2, while/ = n2

at x = -. We see that
n

On the other hand 53a/s
contains but a finite number of points

for any a, @. Thus

Thus the two integrals 1), 2) exist and are equal.

Example 2. The fact that the integrals in Ex. 1 vanish may
lead the reader to depreciate the value of an example of this kind.

This would be unfortunate, as it is easy to modify the function so

that thee.e integrals do not vanish.
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Let 21 denote all the points of the unit square. Let us denote

the discrete point set used in Ex. 1 by ). We define / now as

follows : / shall have in ) the values assigned to it at these points

in Ex. 1. At the other points A = 21 ),/ shall have the value 1.

Then C C C C

On the other hand 33 a/3
consists of the irrational points in $3 and

a finite number of other points. Thus

= 1.
_

(4

Hence again the two 3), 4) exist and are equal.

Let us look at the results we get if we use integrals of types I

and II. We will denote them by C and F as in 62.

We see at once that

Let us now calculate the iterated integrals

$B Od, (5

and Fs F&amp;lt;. (6

We observe that

&amp;lt;7e
= 1 for x irrational

= + oo for x rational.

Thus the integral 5) either is not defined at all since the field

33s does not exist, or if we interpret the definition as liberally as

possible, its value is 0. In neither case is

Let us now look at the integral 6). We see at once that

-

does not exist, as Fe = 1 for rational #, and = +00 for irrational

x. On the other hand

Hence in this case
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Example 3. Let 51 be the unit square.

Let

/ f m= n tor x = n even
n

= - n for x = ~ n odd.

At the other points of 51 let/= 1.

Then r

//=/Je /=1 -

Here every point of 51 is a point of infinite discontinuity and
thus $ = 51.

Here (7^ is not defined, as 515 does not exist ; or giving the

definition its most liberal interpretation,

&amp;lt;7st=0.

The same remarks hold for O^Og.

On the other hand f^
FSI = 4- 00,

while jr y

does not exist, since Jr f m
Vg = n for x =

n

= 1 for irrational x.

Moreover
77 TA V V

Example 4. Let 51 denote the unit square. Let

~ 9 m A^^l
f = n* lor a? = , 7i even, 0&amp;lt;y&amp;lt;n n

= n2 for # = , n odd, &amp;lt; y &amp;lt;

-
.

n n

At the other points of 5Ilet/= 1.

Then
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Let us look at the corresponding C and V integrals.

We see at once that
n -- v ica- v*~ *

Again the integral C^Cg does not exist, or on a liberal interpre

tation it has the value 0. Also in this example

(7^ and C9 Cz

do not exist or on a liberal interpretation, they = 0.

Turning to the F integrals we see that

while
V&amp;lt;g Fjg

does not exist finite or infinite.

Example 5. Let our field of integration 51 consist of the unit

square considered in Ex. 4, let us call it Gr, and another similar

square g, lying to its right. Let / be defined over (S as it was
defined in Ex. 4, and let/= 1 in g.

Then

Also
. &amp;lt;t-*k-*

Then
1

^^B^S
~ *

while Fs Fg does not exist,

and

72. 1. In the following sections we shall restrict ourselves as

follows:

1 51 shall be limited and iterable with respect to 53.

2 53 shall be complete or metric.

3 The singular points $ of the integrand /shall be discrete.

2. Let us effect a sequence of superposed cubical divisions of

space

A A*
whose norms dn = 0.
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Let 5ln = 33n ( n denote the points of 31 lying in cells of Dn

which contain no point of $. We observe that we may always

take without loss of generality

=.
For let us adjoin to 51 a discrete set ) lying at some distance

from 51 such that the projection of ) on $ftp is precisely 33.

Let ^ = 5l4-) = 33-&amp;lt;7 , (?=+c , c = 0.

We now set
^ =/ in ^

=0 in ).

JL hen
7* 7*

J 4,=j
4

1 ^-^

=//
Similarly

Hence
~

3. The set ^n being as in 2, we shall write

73. Ze B
tT&amp;lt;

n denote the points of 33 at which cn &amp;gt;
cr. Then if 51

is iterable, with respect to 33,

lim^.^O. (1
n=ao

For since 51 is iterable,

8 = rS by definition.

Hence (5 considered as a function of x is an integrable function

in 33.

Similarly

and ( is an integrable function in 33.
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We have now 7? 7? - - ^ n= @n + cn , cn &amp;gt;0

as ( n , cn are unmixed. Hence cn is an integrable function in 53.

But

As the left side = as n = oo
,

limj.= 0. (2

But

As the left side = 0, we have for a given a

lim S^ = 0,

which is 1).

74. Let % = &amp;lt;$&amp;gt;& be iterable. Let the integral

/^ a
be convergent and limited in complete 53. Let (gn denote the points
of 53 at which

lim (gn
= S. (3

For let .=0.

Since jB^ B = as n = oo by 48, we may take v
1

so large, and
then a cubical division of $RP of norm so small that those cells con

taining points of S
ViVi

have a content
&amp;lt;rj/

2. Let the points of

53 lying in these cells be called Bv and let ^ = SB - Bv Then
Bv 53X form an unmixed division of 53 and

is complete since 53 is.
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,
We may now reason on ^ as we did on $, replacing 7?/2 by ??/2

2
.

We get a complete set 332 &amp;lt;$$i
such that

Continuing we get ^

Thus

Let now b

Then
b&amp;gt;23-77 (4

by 25.

Let bn denote those points of b for which 2) does hold. Then

b = Jbn (. For let b be any point of b. Since 1) is convergent,

there exists a o~ L such that

at , f/&amp;lt;,
^c

for any c such that c &amp;lt;cr t . Thus b is a point of b^ and hence of

{bj. Thus B~n =Fas b is complete. But (Sn &amp;gt;bn .

Hence
lim&quot;gn &amp;gt;&quot;b,

which with 4), gives 3).

75. LetW = 53 ( 5e iterable. Let the integral

convergent and limited in complete 53.

Then /* -^

lim I
( /=0. (1

For let D be a cubical division of $RP of norm d.

Then C C C

Let d( denote those cells of D containing a point of (5n where

is defined as in 74.
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Let d[ denote the other cells containing points of 53. Then

St&amp;lt;Zd* + 2d?M,
where

0&amp;lt; \f&amp;lt;M.

35

Hence

Letting d = 0, we get

JJ&amp;gt;c/33 Jc

Letting now n == oo and using 3) of 74, we get 1), since e is

small at pleasure.

76. Let 51 = 33 (E be iterable with respect to $3, which last is com

plete or metric. Let the singular points $ off be discrete. Then

;
:: .if, f&amp;lt;

Here any one of the members in 1) may be infinite. Then all

that follow are also infinite. A similar remark applies to 2).

Let us first suppose :

f&amp;gt; , 33 is complete ,
j j f is convergent.

We have by 14,

Passing to the limit gives

f f &amp;lt; lim f f / (3Jr7

.J^^s/
and also r T r&quot;

lim I I / &amp;lt; I / , finite or infinite. (4

Now e&amp;gt;0 being small at pleasure, there exists a GrQ such that

^ ff- (5
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But for a fixed n
Î is limited in 53.

*/(

Hence for 6r sufficiently large,

f
f&amp;lt;jf

,
at each point of 53, G-

Q &amp;lt;G-. (6

Then

where Fn, yn are points of F in (, cn .

Hence

J&amp;lt;?J&amp;gt;

Now 330 may not be complete ; if not let B be completed 53^.

As 53 is complete,

We may therefore write 8), using 5)

- . + f/ &amp;lt;/ / + f / &amp;lt;//+//-c/5B^ J&oJS* JLB G^n ^^Sn J.B G J.yn

By 75, the last term on the right = as n = oo. Thus passing

to the limit,

n/&amp;lt;lim
f f/, (9_._y -n=ao/33^S/

since e
&amp;gt;

is small at pleasure.

On the other hand, passing to the limit G- = oo in 7), and then

n = QO, we get

lim f f &amp;lt; f f . (10
n^JjQj&n Jj&J&

Thus 3), 10), 9), and 4) give 1).

Let us now suppose that the middle term of 1) is divergent.

We have as before

f fciim f
&amp;lt;(/

Jj8 G JT n=*&amp;gt;
J%Jn JK

Hence the integral on the right of 1) is divergent.
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Let us now suppose 33 is metric. We effect a cubical division

of ftp of norm rf, and denote by Bd those cells containing only

points of 23. Then Bd is complete and

Let Ad denote those points of 31 whose projections fall on Bd .

Then Ad is iterable with respect to Ed by 13, 3, and we have as

in the preceding case

/&amp;lt;//&amp;lt;/ en^Ad ^Bd
^ ^Ad

If the middle integral in 11) is divergent, I is divergent and 1)
*/2f

holds, also if the last integral in 11) is divergent, 1) holds. Sup

pose then that the two last integrals in 11) are convergent.
Then by 57

r=r f.J J

Iimf = f.
d=t)JAd **

Thus passing to the limit e?= in 11) we get 1).

Let us now supposef &amp;gt; (r, G &amp;gt;
0.

Then

and we can apply 1) to the new function g.

Now
(13

by 58, 5, since 3 is discrete. Also by the same theorem,

Cg=, Cf+G- lim fT
= f/ + GT, (14

J& J& y= V J_(l

denoting by (Ey
the points of ( where

and setting

T = lim gy.
y= x
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Now for any n

Hence &% = lim f f #=#li
n= oo c/58 *ASn =

or a = lim fSn . (15
^= 00 /33

Now for a fixed w, 7 may be taken so large that for all points

of 33,

Hence

S &amp;gt; lim

Hence

Hence

31

and thus F is integrable in 58.

This result in 14) gives, on using 58, 3,

= c r
*/58 Jg

From 12), 13), and 17) follows 1).

77. As corollaries of the last theorem we have, supposing H to

be as in 76,

1. Iffis integrable in 51 andf&amp;gt; Gr, then

Iff&amp;lt; ^ then f/= f f/.
*/2l -/5I3 -^(S

2. J?// &amp;gt; ^ #nd
I

is divergent, then

are divergent,
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3. If f~&amp;gt;
G- and one of the integrals I I f is convergent, thenJJ

is convergent.

78. Let 51 = 33 (E he iterable with respect to 33, which last is com

plete or metric. Let the singular points Q be discrete. If

f/, (i
Ja

f f* &amp;lt;

2
/*/(

both converge, they are equal.

For let Dr D2
- be a sequence of superimposed cubical divisions

as in 72, 2. We may suppose as before that each $3 re
= 33-

Since 1) is convergent

e&amp;gt;0, , f/_f/&amp;lt;l &amp;lt;. (3

(4

(5

Since /is limited in 5ln , which latter is iterable,

This shows that *

&amp;lt;2

&amp;gt;r

is an integrable function in 58, and hence in any part of

From 3), 4) we have

f-ff*/2l *^23 Jdr

We wish now to show that

JJ-IX*^33*^C S3^Sj

When this is done, 6) and 7) prove the theorem.

To establish 7) we begin by observing that

(6

n &amp;gt; nn .

ff=lim C f.
J%J&amp;lt;Z ..s^oo^as^r
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Now for a fixed n, a, may be taken so that T shall embrace all
the points of (gw for every point of $. Let us set

Then

JVM
(8

As

lira f (
a,^=oo^J

On the other hand,

I 724-

Thus 7) is established when we show that

,jj/l&amp;lt;!
&quot;&amp;gt;&quot; (9

To this end we note that |/| is integrable in 31 by 48, 4. Hence
by 77, l,

Also by I, 734,

-C |/|
=
-CX &amp;gt;|/! (i1

From 10), 11) we have for n
&amp;gt;

n
,

since the left side == 0.

But as in 8)

. LI i/i
=4J&amp;gt;

+jr
o.j[i/i

Passing to the limit (7= oo gives

This in 12) gives 9).



CHAPTER III

SERIES

Preliminary Definitions and Theorems

79. Let av a
2 , a

g be an infinite sequence of numbers.

The symbol An ^1J JL = a
l + 2 + a

3 H- (1

is called an infinite series. Let

A n =a 1 + a
2 + - + an . (2

If
lim A n (3n=w

is finite, we say the series 1) is convergent. If the limit 3) is infi

nite or does not exist, we say 1) is divergent. When 1) is conver

gent, the limit 3) is called the sum of the series. It is customary
to represent a series and its sum by the same letter, when no con

fusion will arise. Whenever practicable we shall adopt the fol

lowing uniform notation. The terms of a series will be designated

by small Roman letters, the series and its sum will be denoted by
the corresponding capital letter. The sum of the first n terms of a

series as A will be denoted by An . The infinite series formed by
removing the first n terms, as for example,

4- a ,,+2 + #+3+ &quot; 4

will be denoted by An , and will be called the remainder after n
terms.

The series formed by replacing each term of a series by its nu
merical value is called the adjoint series. We shall designate it

by replacing the Roman letters by the corresponding Greek or

German letters. Thus the adjoint of 1) would be denoted by

A =
! -f- 2 -f- 3 + . . = Adj A (5

where =
77
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If all the terms of of a series are 5 it is identical with its

adjoint.

A sum of p consecutive terms as

an+l + an+2+ f-n+p
we denote by An , p

.

Let B̂= a
tl
+ #4 + a

t3 + , t
1 &amp;lt;*2&amp;lt;*&quot;

g Ae 8irie* obtained from A by omitting all its terms that vanish.

Then A and B converge or diverge simultaneously, and when conver

gent they have the same sum.

For B --A
&amp;lt;&*

-*

Thus if the limit on either side exists, the limit of the other side

exists and both are equal.

This shows that in an infinite series we may omit its zero terms

without affecting its character or value. We shall suppose this

done unless the contrary is stated.

A series whose terms are all
&amp;gt; we shall call a positive term

series; similarly if its terms are all &amp;lt; 0, we call it a negative term

series. If an &amp;gt; 0, n &amp;gt; m we shall say the series is essentially a pos
itive term series. Similarly if an &amp;lt; 0, n&amp;gt;m we call it an essen

tially negative term series.

If A is an essentially positive term series and divergent,

lim An
= + QO

; if it is an essentially negative term series and di

vergent, lim An
= -co.

When lim An 00, we sometimes say A is 00.

80. 1. For A to converge, it is necessary and sufficient that

e&amp;gt;0, m, \A n&amp;lt;p \&amp;lt;e, n&amp;gt;m, ^ = 1,2, (1

For the necessary and sufficient condition that

lim An
72= 30

exists is ~ .

,

,

&amp;gt;0, m, \A V
- An

\
&amp;lt;e, v, n&amp;gt; m. (2

But if v = n+ p

A
v
- An = A

n&amp;lt;p

=an+1 + a-n+2 + +an+p .

Thus 2) is identical with 1).
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2. The two series A, A, converge and diverge simultaneously.

When convergent,
A = A, + A.. (3

For obviously if either series satisfies theorem 1, the other

must, since the first terms of a series do not enter the relation 1).

On the other hand, .

A A
-&quot;+p

&quot; T ***, p&quot;

Letting p = oo we get 3).

3. If A is convergent, An = Q.

For
lim A n = lim (A - A n)

A lim An
= A A

= 0.

For A to converge it is necessary that an
== 0.

For in 1) take p = 1 ;
it becomes

e n &amp;gt; m

We cannot infer conversely because an = 0, therefore A is con

vergent. For as we shall see in 81, 2,

1 + J + 1+ -

is divergent, yet lim an
= 0.

4. The positive term series A is convergent if An is limited.

For then lim An exists by I, 109.

5. A series whose adjoint converges is convergent.

For the adjoint A of A being convergent,

e&amp;gt;0, m, |AB|P &amp;lt;, n&amp;gt;m, p =1, 2, 3

But

Thus
l^d&amp;lt;

and ^1 is convergent.

Definition. A series whose adjoint is convergent is called

absolutely convergent.
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Series which do not converge absolutely may be called, when

necessary to emphasize this fact, simply convergent.

6. Let A = a
l + a^+

be absolutely convergent.

Let B = a^ + a
lt
+ ;

i
1

&amp;lt;i2 &amp;lt;

be any series whose terms are taken from A, preserving their relative

order. Then B is absolutely convergent and

choosing n so large that An contains every term in Bm . Moreover
for m &amp;gt; some m ,

An Bm &amp;gt; some term of A. Thus passing to the

limit in 1), the theorem is proved.

7. Let A = a
1 + a

z + The series B = ka
1 + ka

2 + -

converges or diverges simultaneously with A. When convergent,

B = kA.

We have now only to pass to the limit.

From this we see that a negative or an essentially negative term

series can be converted into a positive or an essentially positive
term series by multiplying its terms by k = 1.

8. If A is simply convergent, the series B formed of its positive

terms taken in the order they occur in A, and the series Cformed of the

negative terms, also taken in the order they occur in A, are both

divergent.

If B and are convergent, so are B, F. Now

An = B
nv + F

na, n = ^ + n
2

.

Hence A would be convergent, which is contrary to hypothesis.
If only one of the series B, is convergent, the relation

shows that A would be divergent, which is contrary to hypothesis.
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9. The following theorem often affords a convenient means of

estimating the remainder of an absolutely convergent series.

Let A = a
l -f- #2 ~f~

&quot; ^ e an o^^olutely convergent series. Let

B = b
l + b2 + - be a positive term convergent series whose sum is

known either exactly or approximately. Then if
\

an
\

&amp;lt; bn , n &amp;gt; m

&amp;lt;Bn &amp;lt;B.

For

&amp;lt;Bn &amp;lt;B.

Letting p == oo gives the theorem.

EXAMPLES

81. 1. The geometric series is defined by

The geometric series is absolutely convergent when
|#|&amp;lt;1

and di

vergent when |$r|&amp;gt;l.
When convergent,

a=~ (2

Hence
.,

ft- &~~

When
|#|&amp;lt;1,

lim g
n = 0, and then

When
|0|&amp;gt;1, lim#

ra
is not 0, and hence by 80, 3, 6r is not conver

gent.

2. The series ff= 1
1. J_ 1_ ^. (3
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is called the general harmonic series of exponent /x. When
/-i
= 1,

it becomes J=l + i + . + { + ...
(4

the harmonic series. We show now that

The general harmonic series is convergent ivhen IJL &amp;gt;
1 and is di

vergent for fJL
&amp;lt; 1.

Let /*&amp;gt;!. Then

Let n &amp;lt; 2&quot;. Then

Thus limHn exists, by I, 109, and

J&amp;lt;iI5 C5

Let /*&amp;lt;!.
Then

1 -,

Thus 3) is divergent for fi &amp;lt; 1, if it is for
/z,
= 1.

But we saw, I, 141, that

lim Jn = oo,

hence J is divergent.

It is sometimes useful to know that

hm-^-=l. (6
log n

In fact, by I, 180, 1

log n log n - log O -
1) loef

*\n-n-l,

= 1.
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Since * n &amp;gt; log n &amp;gt; l
z
n - we have

lim 5=0
; lim - = oo

, r
&amp;gt;

1. (7n lrn

Another useful relation is

11 1
ffn = 1 -h - + - -h h -

&amp;gt;log(7i -h 1). (8
2 6 n

For log(l + TW) Iog7w = logf 1 H )&amp;lt;
.

\ mj m

Let 7/1 = 1, 2---71. If we add the resulting inequalities we

get 8).

3. Alternating Series. This important class of series is defined

as follows. Let a
1

&amp;gt; a2 &amp;gt; a3 &amp;gt;
=0.

Then ^ = a
1
-a

2 + a
3
-a

4 + ... (9

whose signs are alternately positive and negative, is such a series.

The alternating series 9) is convergent and

\An \&amp;lt;an+1 . (10

For let p &amp;gt; 3. We have

If p is even,

P = On-fl
-

n+2) + &quot; + On+P-l
~ ^

If p is odd,

Thus in both cases,

P
Again, if p is even,

P =
n+1
-

(an+2
-

n+a) ( n+p_2
- #n+P-i)

~
n+P -

* In I, 461, the symbol
&quot; lim &quot; in the first relation should be replaced by Urn.
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If p is odd,

P = an+1 ( n+2 aB+3) ...
( n+p_! an+p).

Thus in both cases,

From 11), 12) we have

&amp;lt; an+1 - an+2

Hence passing to the limit p= oo,

&amp;lt; an+1 - an+2 &amp;lt;
|

A n
, p |

&amp;lt; an+l
-

moreover, . n
n+l
= 0-

Example 1. The series

i-i+t-l+.v-
being alternating, is convergent. The adjoint series is

which being the harmonic series is divergent. Thus 13) is an

example of a convergent series which is not absolutely convergent.

Example 2. The series

_ _1_
V2 - 1 V2 + 1 V3 - 1 V3 + 1

is divergent, although its terms are alternately positive and nega
tive, and an = 0.

m

If now ^4. were convergent,

lim A = lim

by I, 103, 2.

n
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4. Telescopic Series. Such series are

A=(a l
- a

a) + (aa
-

3) + ( 8
- a

4) + -
We note that

A n =(a 1 -az) + - + (a-an41)

=
i -&amp;lt;W (14

Thus the terms of any An cancelling out in pairs, An reduces to

only two terms and so shuts up like a telescope.
The relation 14) gives us the theorem :

A telescopic series is convergent when and only ivhen lim an exists.

Let
,

,A = a
l + 2 + ... denote any series.

Then
an = A n

- An_^ , A = 0.

Hence

This shows us that

-Awy se?*^s can be written as a telescopic series.

This fact, as we shall see, is of great value in studying the

general theory of series.

Example!. A = I
- u -i____^^^

in
Thus A is a telescopic series and

n

Example 2. Let av av a
8 ,

-
&amp;gt; 0. Then

(1 + a,)
...

is telescopic. Thus

and J. is convergent and &amp;lt; 1.
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Examples. A = ^] #=^0, 1, 2,
-* *^ /&quot; . i i \ f i \

4- n 1 a: H- n
is telescopic.

^ - 1 1 - 1
.

- i
,

^ *

x x 4- n x

82. Dini s Series. Let A = a
l -\-a2 -\- 6e a divergent positive

term series. Then

is divergent.

For _ m+l
,

.

&amp;gt; , ^r =1
^ p Am+p

Letting m remain fixed and _p
= oo, we have Dm &amp;gt;l, since

+p == - Hence D is divergent.

Lefc

Hence
2) = i + i + i + ...is divergent.

Let A-1 + J.4-J+.-:
Then - -

-&amp;lt;

is divergent, and hence, a fortiori,

v_l

But -^-n-l &amp;gt; log W

Hence -.
-,

-.V _J__ = _JL_ 4.
1

_t_

^7 n log ^ 2 log 2 3 log 3

is divergent, as J.5e/ first showed.
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83. 1. Abels Series.

An important class of series have the form

As Abel first showed how the convergence of certain types of

these series could be established, they may be appropriately called

in his honor. The reasoning depends on the simple identity

(Abel s identity),

p~l\fn+p-l~ ^n+p) H~ ^n+p-^n, pi (^

where as usual An
^
m is the sum of the first m terms of the re

mainder series An . From this identity we have at once the fol

lowing cases in which the series 1) converges.

2. Let the series A = a^ + a
2 + and the series 2 tn+l tn

\

converge. Let the tn be limited. Then B = afa + #
2 2 4- converges.

For since A is convergent, there exists an m such that

An , p \&amp;lt;e\ n&amp;gt;m, j0
= 1, 2, 3 .-

Hence

3. Z/e^ the series A =
a^ + a% 4- converge. Let tr t

z , t
3
- be a

limited monotone sequence. Then B is convergent.

This is a corollary of 2.

4. Let A = a
l + a

2 + 5e swcA iAa*
|

An &amp;lt; (7, w = 1, 2,

2
1

^n+1 ^w
| converge and tn

= 0. Then B is convergent.

For by hypothesis there exists an m such that

I

tn+i tn+z |

4-
|

tn+2 tn+ z
|
H- + t

n+Ji &amp;lt; e

for any n&amp;gt;m.

5. Let \An \&amp;lt;&
and ^ &amp;gt;

2
&amp;gt; t

s
&amp;gt;

&amp;gt;- =0. Then B is convergent.

This is a special case of 4.
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6. As an application of 5 we see the alternating series

is convergent. For as the A series we may take A = l 1+1
1 + as \An \&amp;lt;l.

84. Trigonometric Series.

Series of this type are

(7= + a
1
cos x + a% cos 2 x + a

B cos 3 x+ (1
S = a

l
sin x + a

2
sin 2 x + a

z
sin 3 x + (2

As we see, they are special cases of Abel s series. Special cases

of the series 1), 2) are

r = J + cos x + cos 2 x + cos 3 2; -f-
. .

2 = sin x + sin 2 z + sin 3 x +
It is easy to find the sums Tn , Sn as follows. We have

2 sin mx sin j-a?
= cos

m ~
x - cos

2

Letting w = 1, 2, ... w and adding, we get

2 sin 1 x 2n
= cos

|
2: cos

^ n +
a:. (5

Keeping x fixed and letting n = oo, we see Sn oscillates between
fixed limits when x ^= 0, 2 TT,

Thus 2 is divergent except when x = 0, TT,
...

Similarly we find when x = 2 WTT,

r _ sin O- j)a? /1
71 ;: :

-r^^ ( D
2 sin

I
#

Hence for such values Tn oscillates between fixed limits. For
the values x = 2 rmr the equation 3) shows that I\ = + oo.

From the theorems 4, 5 we have at once now

V 2
1

an+l an
\ converges and an

= 0, and hence in particular if
a

i&amp;gt;
a2~ &quot; == 0, the series 1) converges for every x, and 2) converges

for x^2 mir.

If in 3) we replace x by x 4- TT, it goes over into

A = \ cos # -J- cos 2 a; cos 3 x + ...
(7
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Thus An oscillates between fixed limits if x = (2 m 1) TT,

when n = GO . Thus

7f 2
|

B+1 + an converges and an
= 0, arcd Aewce in particular if

a
1

&amp;gt;a
2 &amp;gt; =0, the series a a

x
cos x + 2

cos 2 z a
3
cos 3 x -f

converges for x j= (2 m 1) TT.

85. Power Series.

An extremely important class of series are those of the type

called power series. Since P reduces to a
Q
if we set x = a, we see

that every power series converges for at least one point. On the

other hand, there are power series which converge at but one

point, e.g.
a + l!(*-tf) + 2!(:r -a) 2 + 3!(*-a) 3 + ... (2

For if x = a, lim n\ x a
\

n
ao, and thus 2) is divergent.

1. If the power series P converges for x = b, it converges absolutely

within -^ , , , ,VK(a) , \=\a-b\.

If P diverges for x=b, it diverges without DA(a).

Let us suppose first that P converges at b. Let # be a point in

Z&amp;gt;A, and set
|

x a
\

f . Then the adjoint of P becomes for this

point

But T Alim nX
n = 0,

since series P is convergent for x = b.

Hence . ,,.-

and II is convergent. X

If P diverges at x = 5, it must diverge for all 5 such that

|

b a
|

&amp;gt;
X. For if not, P would converge at b by what we have

just proved, and this contradicts the hypothesis.
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2. Thus we conclude that the set of points for which P con

verges form an interval (a p, a + p) about the point #, called

the interval of convergence ; p is called its norm. We say P is

developed about the point a. When a = 0, the series 1) takes on

the simpler form
a

which for many purposes is just as general as 1). We shall

therefore employ it to simplify our equations.
We note that the geometric series is a simple case of a power

series.

86. Cauchy s Theorem on the Interval of Convergence.

The norm p of the interval of convergence of the power series,

is given by i- = hmVan an =

We show H diverges if f &amp;gt; p. For let

Then by I, 338, 1, there exist an infinity of indices iv i
2

for

which

Hence

and thus

since 3&amp;gt;l. Hence v fcln^a
in

71

is divergent and therefore II.

We show now that II converges if f &amp;lt; p. For let

Then there exist only a finite number of indices for which

Let m be the greatest of these indices. Then

V n &amp;lt;/3 n&amp;gt;m.
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Hence

d
.?

Thus

and H is convergent.

Example 1. 2 *

Here
-V^ = _L = by I, 185, 4.

-faTf

Hence p = ao and the series converges absolutely for every x.

Example 2. * *

f-f +f--1 O c&amp;gt;

Here
V^&quot;n = -^L

= 1 by I, 185, 3.

Hence /o= 1, and the series converges absolutely for
|

x
|&amp;lt;

1.

Tests of Convergence for Positive Term Series

87. To determine whether a given positive term series

is convergent or not, we may compare it with certain standard

series whose convergence or divergence is known. Such com

parisons enable us also to establish criteria of convergence of

great usefulness.

We begin by noting the following theorem which sometimes

proves useful.

1. Let A, B be two series which differ only by a finite number of

terms. Then they converge or diverge simultaneously.

This follows at once from 80, 2. Hence if a series A whose

convergence is under investigation has a certain property only



92 SERIES

after the mill term, we may replace A by Am, which has this

property from the start.

2. The fundamental theorem of comparison is the following :

Let A = a
l + #

2 + -, B = b
1 + 6

2 -f
;

be two positive term series.

Let r&amp;gt;0 denote a constant. If an &amp;lt; rbn , A converges if B does and

A &amp;lt; rB. If an &amp;gt; rbn, A diverges if B does.

For on the first hypothesis

An &amp;lt;rBn .

On the second hypothesis

An &amp;gt;rBn .

The theorem follows on passing to the limit.

3. From 2 we have at once :

Let A = a
1 -f 2 -f- , B = b

l + b
z + be two positive term series.

Let r, s be positive constants. If

a/n .,
&quot;i o

lim -^

exists and is 3=- 0, A and B converge or diverge simultaneously. If

B converges and = 0, A also converges. If B diverges and -r=^

A also diverges.

4. Let A = a
1 -f- a2 -f , B = b^ + b

2 + be positive term series.

If B is convergent and

an+l ^ n+l _ 1 O Q .,
&amp;lt; n= i, ^, o

A converges. If B is divergent and

an
~~

n

A diverges.

For on the first hypothesis



TESTS OF CONVERGENCE FOR POSITIVE TERM SERIES 93

We may, therefore, apply 3. On the second hypothesis, we
have

and we may again apply 3.

Exanplel. A =
2̂

is convergent. For

&amp;lt;

&quot;

n n -f

and V is convergent. The series A was considered in 81, 4, Ex. 1.^ n2

Example 2. A = e~x cos x + e~2x cos 2 x -f

is absolutely convergent for x &amp;gt; 0.

For

which is thus &amp;lt; the nth term in the convergent geometric series

= V 1
log

is convergent.

For

&amp;lt;
= -

&amp;lt;.

n2
\ n y w2

Thus ^4. is comparable with the convergent series 2~V~~
l TL

88. We proceed now to deduce various tests for convergence
and divergence. One of the simplest is the following, obtained

by comparison with the hyperharmonic series.

Let A = a
l + a

2 + be a positive term series. It is convergent if

lim ann^ &amp;lt;
oo

, JJL &amp;gt; 1,

and divergent if
lim nan &amp;gt;

0.
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For on the first hypothesis there exists, by I, 338, a constant

Gr &amp;gt; such that

Thus each term of A is less than the corresponding term of the

convergent series GrZ^

On the second hypothesis there exists a constant c such that

an &amp;gt;- ft = l, 2, ...

n

and each term of A is greater than the corresponding term of the

divergent series eV -.^ n

Example 1. A = V- w&amp;gt;0.^
log n

Here ^=-^ = + 00, by I, 463.

log ^

Hence A is divergent.

Example 2. A = V - .

^* n log ft

Here
nan=^- = 0.

log ft

Thus the theorem does not apply. The series is divergent

by 82.

Example 8.

where /A is a constant and
|

6n &amp;lt;
Gr.

From I, 413, we have, setting r = 1 + *,

Hence
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and L is divergent. If ^ &amp;gt; 0, L is an essentially positive term

series. Hence L = + 00. If /* &amp;lt; 0, L = oo.

Let = 0. Then

which is comparable with the convergent series

Thus Z is convergent in this case.

Example 4- The harmonic series

1 + J + J+
is divergent. For

limnan = l.

Example 5. -,

A = 2 *i a ^ arbitrary.^^ Wa
lOg

p 71

Here
wl

_ a

nan = - - = 00
,

a
&amp;lt;

1

by I, 463, 1. Hence A is divergent for a&amp;lt; 1.

Example 6.
-,

A = v

Here -&amp;lt;

wan = -fb
= 1 by I, 185, Ex. 3.

vn

7.

Here, if /i &amp;gt; 0,

log(l
+ i

\ /-

log n log

Hence A is divergent.

l\ n

since n* &amp;gt; loe^ n and
(
1 H ]

== e

nj
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89. D Alemberfs Test. The positive term series A = a + #
2+

converges if there exists a constant r
&amp;lt;

1 for which

^l&amp;lt;r, 71= 1, 2, .-
an

/ diverges if
al&amp;gt;l.

This follows from 87, 4, taking for B the geometric series

Corollary. Let 2ala^.f. J/* /
&amp;lt; 1, ^4. converges. If

diverge*.

Example 1. The Exponential Series.

Let us find for what values of x the series

is convergent. Applying D Alembert s test to its adjoint, we find

xn n-ll

Thus ^converges absolutely for every x.

Let us employ 80, 9 to estimate the remainder En . Let x
&amp;gt;

0.

The terms of E are all &amp;gt; 0. Since

^4-j[? 9^ fft

we have

xn f x V
-yl T~i~J

(2

However large x may be, we may take n so large that x&amp;lt;n+ 1.

Then the series on the right of 2) is a convergent geometric series.

Let x &amp;lt; 0. Then however large |

z
|

is, En is alternating for

some m. Hence by 81, 3 for n&amp;gt;^m,

\W\^\ X &quot;

C\
-#nl&amp;lt;

J

r- 0*
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Example 2. The Logarithmic Series.

Let us find for what values of x the series

is convergent. The adjoint gives

&quot;tn *+i
Thus L converges absolutely for any |z|&amp;lt;l,

and diverges for

When x = 1, L becomes

which is simply convergent by 81, 4.

When x = 1, L becomes

which is the divergent harmonic series.

Example 3. A = + + +
-

an \n + ij

As A is convergent when
/x&amp;gt;l

and divergent if p&amp;lt;1, we see

that D Alembert s test gives us no information when 1 = 1. It is,

however, convergent for this case by 81, 2.

Example 4-

Here
an 4.i -h

a n n + 1 + x

and D Alembert s test does not apply.

Example, 5.

A = 2
Here

*!Y|-
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Thus A converges for
|#|&amp;lt;1

and diverges for \x\ &amp;gt; 1. For

\x\ =1 the test does not apply. For x = 1 we know by 81, 2

that A is convergent for
/-i &amp;lt; 1, and is divergent for /t

&amp;gt; 1.

For x 1, A is divergent for /i &amp;gt;
0, since an does not = 0. A

is an alternating series for p &amp;lt;0, and is then convergent.

90. Cauchy s Radical Test. Let A = a
l + 2 -f be a positive

term series. If there exists a constant r &amp;lt; 1 such that

A is convergent. If, on the other hand,

A is divergent.

For on the first hypothesis,
an &amp;lt;r

n

so that each term of A is &amp;lt;, the corresponding term in

r _|_ r2 _j_ rs _j_
. . . a convergent geometric series. On the second

hypothesis, this geometric series is divergent and an &amp;gt;^r

n
.

Corollary. If lim \/an = I, and I &amp;lt; 1, A is convergent. Ifl&amp;gt;\,

A is divergent.

Example 1. The series

oo 1

mr \
-*-

\ sv j

Alogn
7l

2

is convergent. For

1
=0.

log 71

Example 2.

A.

is convergent. For

n - nn 1 ^1
e

Example 3. In the elliptic functions we have to consider series

of the type

6(v) = 1 + 2 i0
n cos ZTrnv

0&amp;lt;q&amp;lt;l.
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This series converges absolutely if

q + q* + q*+ &quot;-

does. But here

Va* = Vq* = q
n = Q.

Thus 6(v) converges absolutely for every v.

Example 4- Let
&amp;lt; a &amp;lt;6 &amp;lt; 1. The series

n = 2 m
is convergent. For if

If w = 2m-f-l, n _ 2m+i

Thus for all n
Va~n &amp;lt;b&amp;lt;l.

Let us apply D Alernbert s test. Here

Thus the test gives us no information.

91. Cauchy s Integral Test.

Let
&amp;lt;/&amp;gt;(#)

be a positive monotone decreasing function in the interval

(, QO ). The series

is convergent or divergent according as

is convergent or divergent.

For in the interval (n, n + 1), n&amp;gt;m&amp;gt;a,
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Hence rn+l
&amp;lt;#&amp;gt;O

+ 1)&amp;lt; I ^dx&amp;lt;4)(n).
\s n

Letting n = m, m + 1, m + j?,
and adding, we have

Passing to the limit p = GO, we get

*&amp;lt; fV*^*-!. (1
*^m

which proves the theorem.

Corollary. When &amp;lt; is convergent

Example 1. We can establish at once the results of 81, 2. For,

taking *(

is convergent or divergent according as /i &amp;gt; 1, or
/-i

&amp;lt;

1, by I,

635, 636.

We also note that if

A- JL J_ . J_ .~

(* 1 11
then ^&amp;lt; I JL.i-.JL,

*^n a;
1+ x

/x w**

Example 2. The logarithmic series

1 _ 1 9

wZfw
&quot;I *V ^ fl\YVf\

JN

are convergent if /A &amp;gt;
1

; divergent if /4&amp;lt;1.
t ^f1

^ ^43
We take here

and apply I, 637, 638.
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92. 1. One way, as already remarked, to determine whether

a given positive term series A = a
l + a

2 + is convergent or

divergent is to compare it with some series whose convergence or

divergence is known. We have found up to the present the

following standard series S:

The geometric series

The general harmonic series

1 + 1 + 1+- (21 n )(*. QJU,
^

The logarithmic series

We notice that none of these series could be used to determine

by comparison the convergence or divergence of the series follow

ing it.

In fact, let an ,
bn denote respectively the nth terms in 1), 2).

Then for g &amp;lt; 1, p &amp;gt; 0,

A_ = J_ = ^I!!= 00 by I, 464,
n+i ng n

or using the injinitary notation of I, 461,

bn &amp;gt; an .

Thus the terms of 2) converge to infinitely slower than the

terms of 1), so that it is useless to compare 2) with 1) for conver

gence. Let#&amp;gt;l. Then

.&amp;gt;..

This shows we cannot compare 2) with 1) for divergence.



102 SERIES

Again, if n, bn denote the nth terms of 2), 3) respectively, we

have, if /i &amp;gt; 1,

^ = -^- = 00 by I, 463,
an log

* n
or 7 ,

^5
= log n = QO,

Thus the convergence or divergence of 3) cannot be found

from 2) by comparison. In the same way we may proceed with

the others.

2. These considerations lead us to introduce the following

notions. Let A = a
l + a2 + ,

B = b
l + 6

2 + be positive term

series. Instead of considering the behavior of an/bn , let us gen
eralize and consider the ratios An : Bn for divergent and An : Bn

for convergent series. These ratios obviously afford us a measure

of the rate at which An and Bn approach their limit. If now A,

B are divergent and . ^An
~ J5n -&amp;gt;

we. say A, B diverge equally fast ;
if

A n &amp;lt;Bn ,

A diverges slower than B, and B diverges faster than A. From

I, 180, we have :

Let A, B be divergent and

According as I is 0, =0, oo, A diverges slower, equally fast, or

faster than B.

If A, B are convergent and

we say A, B converge equally fast ;
if A converges and
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B converges faster than A, and A converges slower than B. From

I, 184, we have :

Let A, B be convergent and

lira ^=1
on

According as I is 0, = 0, oc, A converges faster, equally fast, or slower

than B.

Returning now to the set of standard series #, we see that each

converges (diverges) slower than any preceding series of the set.

Such a set may therefore appropriately be called a scale of con

vergent (divergent) series. Thus if we have a decreasing positive

term series, whose convergence or divergence is to be ascertained,

we may compare it successively with the scale S, until we arrive

at one which converges or diverges equally fast. In practice such

series may always be found. It is easy, however, to show that there

exist series which converge or diverge slower than any series

in the scale S or indeed any other scale.

Forlet
A, S, 0,... (2

be any scale of positive term convergent or divergent series.

Then, if convergent,

if divergent, An &amp;gt;
Bn &amp;gt; Cn &amp;gt;

...

Thus in both cases we are led to a sequence of functions of the

Thus to show the existence of a series ft which converges (di

verges) slower than any series in 2, we have only to prove the

theorem :

3. (Du Bois Reymond.^) In the interval (a, oo) let

denote a set of positive increasing functions which =00 as x = oo .

Moreover, let /.

J\
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Then there exist positive increasing functions which = oc slower than

anyfn .

Foras/1 &amp;gt;/2
there exists an a

1 &amp;gt;a such that /1 &amp;gt;/2 + l for

x&amp;gt; ar Since /2 &amp;gt;/3, there exists an a
2 &amp;gt;

a
1
such that /2 &amp;gt;/3 + 2

for
x&amp;gt;a%.

And in general there exists an an &amp;gt;an_ 1
such that

fn &amp;gt;fn+l + n f r X
&amp;gt;

an Let HOW

g(x) =fn(x)+n-l in (an_ x , &amp;lt;*)

Then g is an increasing unlimited function in (a, oo) which

finally remains below anyfm(x) + m 1, w arbitrary but fixed.

Thus
Q&amp;lt;ijm yvv = ijm y\^i

&amp;lt; lim j m+ i-r&quot; =
0&amp;gt;

Hence
g&amp;lt;fm -

93. From the logarithmic series we can derive a number of

tests, for example, the following :

1. (Bertram s Tests.) Let A = a
l + a

2 + be a positive term

series.

Let
log- -1-

y

ft(M)=
n^- l.-in s== l, 2, ... I n=l.

Iffor some s and m,

Q8 (.
n) ^ A1 &amp;gt; 1 71 &amp;gt; w, (1

^4. ^s convergent. If, however,

&O)&amp;lt;1, (2
^1 ^s divergent.

For multiplying 1) by Z8+1n, we get

i

Hence

or
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Thus A is convergent.

The rest of the theorem follows similarly.

2. For the positive term series A=a
l + a% + --to converge it is

necessary that, for n = oo,

lim an = 0, lim nan = 0, lira na^n = 0, lim^naj^nl^n
= 0,

We have already noted the first two. Suppose now that

lim nanl^n l,n &amp;gt;
0.

Then by I, 338 there exists an m and a c
&amp;gt; 0, such that

naj-^n l,n &amp;gt;
c ,

n
&amp;gt; m,

or

Hence A diverges.

Example 1.

&amp;gt;^-r
nl^n l,n

-
na

log*
3 n

We saw, 88, Ex. 5, that A is divergent for a
&amp;lt;

1. For = 1,

A is convergent for fi &amp;gt;
1 and divergent if yS ^ 1, according to

91, Ex. 2.

If a &amp;gt;1, let
a =a + a&quot; a&quot;&amp;gt;l

Then if /3
&amp;gt; 0,

-, -,

&amp;lt;

, n &amp;gt; 2,

and A is convergent since ^ is. If ft &amp;lt; 0, let

Then
1

,

n 1
a

&quot;~

n - n?

But log^ n&amp;lt;n by I, 463, 1
;

and A is convergent since 2 ~ is-
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Example 2.
-, .,

A \^ 1 ^ 1^ = x : jT
=
2, F

I 1 -f- -4 ...-!__ 1
^^ -&amp;gt;i

^/&amp;gt; tl

^?M/? 2 ^

Here .

^ aMft -
log n + A* log 7i+ IT,

Vl ;
~

^
6
2
ft t

2
/l

/x-14--^}^^^ by 81, 6).
log ft J

Hence J. is convergent for ft &amp;gt; and divergent for /A &amp;lt; 0. No
test for fi

= 0.

But for /i
= 0,

1
log

_
/Tf ^77 &amp;gt;7, // __r / M / ,vi

2 Lw Z ^

since I
2
n &amp;gt; I

3
n. Thus A is divergent for /a

= 0.

94, A very general criterion is due to Kummer, viz. :

Let A = a
l + a

2
4- &amp;gt; be a positive term series. Let kv &

2 , be a

set of positive numbers chosen at pleasure. A is convergent, if for
some constant k &amp;gt; 0.

&amp;lt;w . = 1 9 .

*+!

^4. ^s divergent if

is divergent and

For on the first hypothesis

1,
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Hence adding,

and A is convergent by 80, 4.

On the second hypothesis,

^ 1&amp;gt; 1

&quot;^n
1

Hence JL diverges since ^ is divergent.

95. 1. From Rummer s test we may deduce D Alembert s test

at once. For take

k
1
= kt= ..- =1.

Then A =
a^ + 2 -f- converges if

t.. if

?2

Similarly A diverges if ^i
&amp;gt;^1.

2. To derive Raabe s test we take

~kn n.

Then A converges if

j. if

Similarly A diverges if
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96. 1. Let A = a
1 + a

2 + be a positive term series. Let

X
2O) = I

2
n

Then A converges if there exists an s such that

\(n) &amp;gt; S &amp;gt; 1 for some n&amp;gt;m\

it diverges if ^ / N . ^ /.

We have already proved the theorem for X (w). Let us show
how to prove it for Xj(^). The other cases follow similarly.

For the Kummer numbers kn we take

kn = n log n.

Then A converges if

As

-
log(

l 4-
-

1V+1

n)

Thus ^1 converges if Xj(^) &amp;gt; 8
&amp;gt;

1 for n&amp;gt;m.

In this way we see that .A diverges if \(n) &amp;lt; 1, n&amp;gt;m.

2. Oahens Test. For the positive term series to converge it is

necessary that
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For if this upper limit is not + oo,

for all n. Hence

But the right side =0. Hence X
1 (^)&amp;lt;1

for w&amp;gt;some w, and

A is divergent by 1.

Example. We note that Raabe s test does apply to the harmonic

series
i 4. i _i_ i 4. (\

Here

Hence Pn
= 0, and

lim Pn
= 0.

Hence the series 1) is divergent.

97. Grauss Test. Let A =
j + 2 -f be a positive term series

such that ,

an = ns + aji*-
i+ + a,

where s, a^ b
1

do not depend on n. Then A is convergent if

a
l

b
l &amp;gt; 1, and divergent if a

l
b
1

&amp;lt; 1.

Using the identity I, 91, 2), we have

T _L ( 1

Thus lim X (V) = a
1

br Hence, if a
1

b
1

&amp;gt; 1, A is Conver
gent ;

if a
1 #!&amp;lt;!,

it is divergent. If a
l

b
1
= 1, Raabe s test

does not always apply. To dispose of this case we may apply
the test corresponding to ^(V). Or more simply we may use

Cahen s test which depends on X^n). We find at once

lim Pn #
2

b
2

b
l

&amp;lt;
QO

;

and A is divergent.
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98. Let A = a -f #
2 -f- be a positive term series such that

.A * convergent if a
&amp;gt; 1 cwd divergent if a&amp;lt; 1.

For
_^L__1 = + J^ =
an^ J n^ 1

and A converges if a
&amp;gt; 1 and diverges if a

&amp;lt;
1. If a = 1,

and A is divergent.

EXAMPLES

99. The Binomial Series. Let us find for what values of x and

Ai the series

converges. If ft is a positive integer, B is a polynomial of degree ft,

For ft
= 0, 5=1. We now exclude these exceptional values of ft.

Applying D Alembert s test to its adjoint we rind

n+ 1
* = \x .

Thus 5 converges absolutely for x
\

&amp;lt;
1 and diverges for \x\ &amp;gt;

1

Letx = l. Then

Here D Alembert s test applied to its adjoint gives

As this gives us no information unless
p&amp;lt; 1, let us apply

Raabe s test. Here

, for sufficiently large n

n
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Thus B converges absolutely if /* &amp;gt; 0, and its adjoint diverges

if
fi&amp;lt;

0. Thus B does not converge absolutely for ft &amp;lt; 0.

But in this case we note that the terms of B are alternately

positive and negative. Also

1-
n

so that the |an |

form a decreasing sequence from a certain term.

We investigate now when an = 0. Now

In I, 143, let a = /*, /3
= 1. We thus find that lim an = only

when
/*&amp;gt;

1. Thus -B converges when
/*&amp;gt;

1 and diverges

when
/!&amp;lt;

!.

= -l. Then

1-2 1-2.3

If /A &amp;gt; 0, the terms of B finally have one sign, and

&quot;(fc- &amp;gt;-

Hence B converges absolutely.

If n &amp;lt; 0, let
fj,
= - X. Then B becomes

.* ,
X-X + 1

,
X-X

~r A, -| 1

1-2 1.2-3

Here

Hence ^ diverges in this case. Summing up :

The binomial series converges absolutely for \x\&amp;lt;1
and diverges

for \x\ &amp;gt;
1. When x = \ it converges for p &amp;gt;

1 and diverges for

fji
&amp;lt; 1

;
it converges absolutely only for /JL &amp;gt; 0. When x = 1, &

converges absolutely for p &amp;gt;
awd diverges for p &amp;lt;

0.
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100. The Hypergeometric Series

A 7, *)=l + s +

o

Let us find for what values of x this series converges. Passing
to the adjoint series, we find

X = X .

Thus .F converges absolutely for x
\

&amp;lt;
1 and diverges for

|

x
\

&amp;gt;
1.

Let x=1. The terms finally have one sign, and

qn+1 _ n2 + n(l + 7) + 7

Applying Gauss , test we find ^ converges when and only when

a; = 1. The terms finally alternate in sign. Let us find

when an = 0. We have

Now

m

) ,

mj
Thus

K+2
|

=n^
But by I, 91, 1),

1 1

mj\ m

m

1 + m 1+^ m&amp;lt;

where crm = 1, rm = 7
2 as w = oo.
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Hence

m
Hence

and thus

Z = lira log
i

Now for an to = it is necessary that Ln
= so. In 88, Ex. 3,

we saw this takes place when and only when + /3 7 1&amp;lt;0.

Let us find now when an+l \

&amp;lt;
|

a n \.
Now 1) gives

Thus when + /3 7 1&amp;lt;0,
| n+2

1

&amp;lt;

|

an+l . Hence in this

case F is an alternating series. We have thus the important
theorem :

The hypergeometric series converges absolutely when
x\&amp;lt;\

and

diverges when
\x\&amp;gt;\.

When x = \, F converges only when a + /3

7&amp;lt;0
and then absolutely. When x = 1, F converges only

when ct + /3 7 1&amp;lt;0, and absolutely if a. -f- @ 7 &amp;lt; 0.

Pnngsheims Theory

101. 1. In the 35th volume of the Mathematische Annalen

(1890) Pringsheim has developed a simple and uniform theory oi

convergence which embraces as special cases all earlier criteria,

and makes clear their interrelations. We wish to give a brief

sketch of this theory here, referring the reader to his papers for

more details.

Let Mn denote a positive increasing function of n whose limit

is 4- oo for n = DO . Such functions are, for example, p &amp;gt; 0,

n , log
1 n , l$n , l-^nl^n Ig^nl^n
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A^t where A is any positive term divergent series.

Bn
~* where B is any positive term convergent series.

It will be convenient to denote in general a convergent positive
term series by the symbol

0=^+%+ ...

and a divergent positive term series by

D = d
l + di + ...

2. The series

is convergent, and conversely every positive term convergent series

may be brought into this form.

For

and C is convergent.
Let now conversely C c

l -f- c
2 4- ..-be a given convergent

positive term series. Let

tf-l =

Then

3.

r
n M.+1

1-^n) - (2

i* divergent, and conversely every positive term divergent series may
be brought into this form.

For
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Let now conversely D = d
l + d^-{- be a given positive term

divergent series. Let M - T)

Then
d =M -M

102. Having now obtained a general form of all convergent
and divergent series, we now obtain another general form of a

convergent or divergent series, but which converges slower than

1) or diverges slower than 101, 2). Let us consider first con

vergence. Let Mn &amp;lt; Mn, then

-&amp;lt; \

(i

is convergent, and if Mn is properly chosen, not only is each

term of 1) greater than the corresponding term of 101, 1), but 1)

will converge slower than 101, 1). For example, for Mn let us

take M*, &amp;lt; /* &amp;lt;
1. Then denoting the resulting series by

C = 2c , we have

n urn nr* w MO n M^M*+l lYLn+l Mn

= ^

^n&quot;
M r =

&amp;lt;
I* (2

1 - r Mn+1

Thus C converges slower than 0. But the preceding also

shows that and ,.. ,-

^ ~M*
H

(B

converge equally fast. In fact 2) states that

Since Mn is any positive increasing function of n whose limit

is oo, we may replace Mn in 3) by lrMn so that

is convergent and a fortiori

^lrMn+]
-lrMn r = 1 2 .. (4A Q

+
&quot;3f.+1

is convergent.
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Now by I, 413, for sufficiently large n,

logMu+l
-

logMn = -
log(l

-
V -&quot;

Replacing here Mn by log 7ffn , we get

Z Mfc

2^&quot;+l
~

and in general

Thus the series

V f f\

V

converges as is seen by comparing with 4). We are thus led to

the theorem :

MnMa+l

.=

form, an infinite set of convergent series; each series converging
slower than any preceding it.

The last statement follows from I, 463, l, 2.

Corollary 1 {Abel). Let D =
d-^ + d

2 -f- denote a positive term

divergent series. Then

is convergent.

Follows from 3), setting Mn+1
= Dn .

Corollary 2. If we take Mn = n we get the series 91, Ex. 2.

Corollary 3. Being given a convergent positive term series

C = c
l + c

2 4- we can construct a series which converges slower

than C.
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For by 101, 2 we may bring Q to the form

Then any of the series 7) converges slower than 0.

103. 1. Let us consider now divergent series. Here our

problem is simpler and we have at once the theorem :

The series TUT ^
J&amp;gt;-|^^=?4,

a
diverges sloiver than

(2

That 1) is divergent is seen thus : Consider the product

fA
i M

which obviously = oc.

Now

Hence Dn = oo and Z&amp;gt; is divergent.

As ^ = JL=
di Mn

we see that 1) converges slower than 2).

2. Any given positive term series D =
d^ + d

2 + .- caw

the form -Z).

For taking J^ &amp;gt; at pleasure, we determine Jf2 , J[f
3

... by the

relations T
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Then Mn+1 &amp;gt;Mn and
, _Mn+l Mn

n/r
L J-n

Moreover Mn = oo. For

&amp;gt;! + !&amp;gt; by I, 90, 1.

But Dn = oo.

3. The series

t^m = 1 2 &quot;

form an infinite set of divergent series, each series divergent slower

than any preceding it. l^Mn =Mn .

For
logMn+l

-
log Mn = log

(l
+ Mn^~ Mn

^

Mn

This proves the theorem for r = 0. Hence as in 102 we find,

replacing repeatedly Mn by logMm

Corollary 1. If we take Mn = n, we get the series 91, Ex. 2.

Corollary 2 {Abel). Let D = d
1 4- d2 + be a divergent positive

term series. Then ,

is divergent.

We take here Jlfn = Dw .

Corollary 3. Being given a positive term divergent series D, we

can construct a series which diverges slower than D.

For by 101, 3 we may bring D to the form

Then 1) diverges slower than D.
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104. In Ex. 3 of I, 454, we have seen thatMn+i is not always ~
Mn . In case it is we have

1. The series

^s convergent.

Follows from 102, 3).

2. The series

is convergent if \i &amp;gt; ; # ? s divergent if /x&amp;lt;
0.

For ^
&amp;gt; I /iWn

2 - Ml p&amp;gt;
0.

Thus

If/i&amp;lt;0

3. jy J^+1
~Mn ,

we have

I M -I M
For by 102, 5), 103, 3),

7 W 7 AT
~~

7
TI^- 7 AT

r+l n+l
~

r+l n

Now since Mn+l
~Mn , we have also obviously

lmMn ~lmMn+l m=l,2,-r.

105. Having obtained an unlimited set of series which converge
or diverge more and more slowly, we show now how they may be

employed to furnish tests of ever increasing strength. To ob

tain them we go back to the fundamental theorems of comparison
of 87. In the first place, if A= a^ + a

2 -f is a given positive

term series, it converges if
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It diverges if

(2
**

In the second place, A converges if

^i_na&amp;lt;0, (3
n Cn

and diverges if ,

an dn

The tests 1), 2) involve only a single term of the given series

and the comparison series, while the tests 3), 4) involve two

terms. With Du Bois Reymond such tests we may call respec

tively tests of the first and second kinds. And in general any
relation between p terms

&ni ^+l *&quot;* an+p-l

of the given series and p terms of a comparison series,

Cn+p-\ &amp;gt;

Or
n&amp;gt; &amp;lt;+i

&quot;

&amp;lt;+p-l

which serves as a criterion of convergence or divergence may be

called a test of the p
th kind.

Let us return now to the tests 1), 2), 3), 4), and suppose we
are testing A for convergence. If for a certain comparison
series

not always &amp;lt;_6r ,
n

&amp;gt;
m

cn

it might be due to the fact that cn = too fast. We would then

take another comparison series (7 = ^cf

n which converges slower

than (7. As there always exist series which converge slower than

any given positive term series, the test 1) must decide the con

vergence of A if a proper comparison series is found. To find

such series we employ series which converge slower and slower.

Similar remarks apply to the other tests. We show now how
these considerations lead us most naturally to a set of tests which

contain as special cases those already given.

106. 1. G-eneral Criterion of the First Kind. The positive term

series A =
a^ -f 2 4- converges if
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It diverges if }[m
Mn

&amp;gt; Q&amp;lt; 2-Mn+1 -Mn

This follows at once from 105, 1), 2); and 101, 2; 103, 1.

2. To get tests of greater power we have only to replace the

^ nr M
series

just employed in 1), 2) by the series of 102 and 103, 3 which con

verge (diverge) slower. We thus get from 1 :

The positive term series A converges if

It diverges if ^ Mnl,Mn .- lrMn^ &amp;gt; ^Mn^ - Mn

Bonnets Test. The positive term series A converges if

lira n^n lr-^nl}.
+ttn an &amp;lt; oo , IJL &amp;gt;

0.

It diverges if
ihp^ ... ^ .

fln &amp;gt;0.

Follows from the preceding setting Mn = n.

3. The positive term series A converges or diverges according as

^&quot;&quot;V
&amp;lt; 1 , M&amp;gt;0, (3Mn+l-Mn Mn+1~Mn .

&amp;lt;1 , /*&amp;lt;0.

For in the first case

and in the second case

The theorem follows now by 104, 2.

4. The positive term series A converges if

log
#.+!-%. loff

- _
- g
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It diverges if

,

t

p- n
&amp;lt;() orl rnn

hm-TUT
-

&amp;lt;() or inn--

-j^
-

&amp;lt;o.

2U n (,r+l lUn

Here r = 0, 1, 2, awe? as 6e/0re / M&quot;n = 7ffn .

For taking the logarithm of both sides of 3) we have for con

vergence Mn+l
-Mn

As p is an arbitrarily small but fixed positive number, A con

verges if lim q &amp;gt; 0. Making use of 104, 3 we get the first part
of the theorem. The rest follows similarly.

Remark. If we take Mn n we get Cauchy s radical test 90

and Bertram s tests 93.

Forif
log!

.

it is necessary that

Also if

annll
n~-lrn_
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Pringsheims Criterion. Let pr p2
--- be a set of positive numbers

chosen at pleasure, and let Pn p^ + + pn . The positive term

series A converges if

For A converges if

lim_^L&amp;gt;0. (1
*

lim ^
&amp;gt; , by 106, 4. (2

But Mn+1 Mn
= dn is the general term of the divergent series

Thus 2) may be written

~#T
Moreover A converges if

an
~

that is, if v cn ^lim
&amp;gt;Q,

where as usual 0= c
l -\- c

2 + is a convergent series.

Hence A converges if
Cn

lim^&amp;gt;0.
(4

But now the set of numbers pv p2 gives rise to a series

P = p 1 -f p2 + which must be either convergent or divergent.
Thus 3), 4) show that in either case 1) holds.

108. 1. Let us consider now still more briefly criteria of the

second kind. Here the fundamental relations are 3), 4) of 105,

which may be written :

cn+l cn &amp;gt; for convergence; (1

dn+l dn &amp;lt;^0
for divergence. (2
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Or in less general form :

The positive term series A converges if

___. (3
+i /

It diverges if

(4

Here as usual 0=^+%+ is a convergent, and D=d
1+ d%-\

----

a divergent series.

2. Although we have already given one demonstration of

Rummer s theorem we wish to show here its place in Pringsheim s

general theory, and also to exhibit it under a more general form.

Let us replace &amp;lt;?n , cn+l in 1) by their values given in 101, 2.

We get
Jfn - JEf a M-M_

an+1 Mn

or snce

or by 103, 2

Mn+l an+1 Mn

where Z&amp;gt;
= a

1 -fc?2 + is any divergent positive term series.

Since any set of positive numbers &
x , &2 , gives rise to a series

&! + &
2 -f which must be either convergent or divergent, we see

from 1) that 5) holds when we replace the cTs by the & s. We
have therefore:

The positive term series A converges if there exists a set of positive
numbers &

x , &2 such that

kn+
lf*k*&amp;gt;0.

(&amp;lt;3

It diverges if

where as usual
6?j + d% -f denotes a divergent series.
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Since the Fs are entirely arbitrary positive numbers, the rela

tion 6) also gives

A converges if

as is seen by writing

* =FK n

reducing, and then dropping the accent.

3. From Rummer s theorem we may at once deduce a set of

tests of increasing power, viz. :

The positive term series A is convergent or divergent according as

M-M a M -M
L

an+1 Mnl^Mn ... Zr n̂

is &amp;gt;Q or is
&amp;lt;^

0.

For k
l , &2

... we have used here the terms of the divergent
series of 103, 3.

Arithmetic Operations on Series

109. 1. Since an infinite series

is not a true sum but the limit of a sum

A= lim J.n ,

we now inquire in how far the properties of polynomials hold for

the infinite polynomial 1). The associative property is expressed
in the theorem :

Let A = a
l
4- a

2 + be convergent. Let b^
= a

1 -j- -f am ,

)̂
2

am
1+i+

&quot;

+/,!- Then the series = b
l + b

2 -}-
&amp;gt; is con

vergent and A = B. Moreover the number of terms which bn em
braces may increase indefinitely with n.

For B -A
and

lim A =A by I, 103, 2.
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This theorem relates to grouping the terms of A in parentheses.

The following relate to removing them.

2. Let B = b
1 + b

2 + be convergent and let b
1
= a

l+ + am ,

6
2
= a

nh+l + + am^
- If 1 A = a

1 + a
2 + is convergent,

A = B. 2 Jf *Ae terms an &amp;gt;0, J. i convergent. 3 7f ea^A

m n mn _i &amp;lt;_p
a constant, and an = 0, A is convergent.

On the first hypothesis we have only to apply 1, to show

A B. On the second hypothesis

e &amp;gt; 0, m, Bn &amp;lt; e, n&amp;gt;m.

Then
5-^.&amp;lt;e, *&amp;gt;*.

On the third hypothesis we may set

A, = Br+Vr+l

where br+1 denotes a part of the a-terms in br+l . Since br+l con

tains at most p terms of A, br+l
= 0.

Hence
lim ^1. = lira J9r ,

or A = B.

Example 1. The series

JB=(l-l) + (l-l) + (l-l)+-
is convergent. The series obtained by removing the parentheses

4 = 1-1 + 1-1+ ...

is divergent.

Example 2.

As ^ is comparable with *?. , it is convergent. Hence A is
&quot;&quot;* nz

convergent by 3.

110. 1. Let us consider now the commutative property.

Here Riemann has established the following remarkable

theorem :



ARITHMETIC OPERATIONS OX SERIES 127

The terms of a simply convergent series A = a
l + a

2 -f- can be

arranged to form a series S, for which lim Sn is any prescribed

number, or 00.

For let 7? i , iB = o
l + o

2 +
(7=

&amp;lt;?!

+
&amp;lt;?,,+

be the series formed respectively of the positive and negative

terms of A, the relative order of the terms in A being preserved.

To fix the ideas let I be a positive number ;
the demonstration

of the other cases is similar. Since Bn
= +00, there exists an m

1

such that

Bmi &amp;gt; I. (1

Let m
l
be the least index for which 1) is true. Since Cn= oo,

there exists an m^ such that

Bmi +C^&amp;lt;l. (2

Let m
2
be the least index for which 2) is true. Continuing,

we take just enough terms, say m3
terms of B, so that

Then just enough terms, say m terms of (7, so that

J^+0+^* +&amp;lt;&.&amp;lt; 4

etc. In this way we form the series

whose sum is I. For

|

aa
|

&amp;lt; e s
&amp;gt;

&amp;lt;r

;

rn = m
l + wa + +

A = a
l + a

2 + * be absolutely convergent. Let the terms

of A be arranged in a different order, giving the series B. Then B
is absolutely convergent and A = B.

For we may take m so large that

Am &amp;lt; e.
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We may now take n so large that An Bn contains no term

whose index is
&amp;lt;_

m. Thus the terms of An Bn taken with

positive sign are a part of A TO and hence

An Bn n &amp;gt; m.

Thus B is convergent and B = A.

The same reasoning shows that B is convergent, hence B is

absolutely convergent.

3. If A =
tfj -h a

2 -f &amp;gt; enjoys the commutative property, it is

absolutely convergent.

For if only simply convergent we could arrange its terms so as

to have any desired sum. But this contradicts the hypothesis.

Addition and Subtraction

111. Let A = a
1 + a

2 + --
, B = b

l + b
2 4- be convergent.

The series

are convergent and O=AB.

For obviously Cn = An Bn . We have now only to pass to the

limit.

Example. We saw, 81, 3, Ex. 1, that

^=1-1 + 1-1 + ...

is a simply convergent series. Grouping its terms by twos and

by fours [109, l] we get

^\2n 1 2nJ ?\-n 3 4n 2 4 n 1 4fi/

Let us now rearrange A, taking two positive terms to one nega
tive. We get
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We note now that

n _a 4n-2 4n-l 4n/ --U - 2

n
n - 1 4 n - 3 2

= B by 109, 2.

Thus B = I A.

This example, due to Dirichlet, illustrates the non-commutative

property of simply convergent series. We have shown the con

vergence of B by actually determining its sum. As an exercise let

us proceed directly as follows :

The series 1) may be written :

Sn- 3 ^1 ~n

n

Comparing this with

we see that it is convergent by 87, 3. Since 1) is convergent, B
is also by 109, 2.

112. 1. Multiplication. We have already seen, 80, 7, that we

may multiply a convergent series by any constant. Let us now
consider the multiplication of two series. As customary let

2a t^ i, * = 1, 2, 3,
- (1

IK

denote the infinite series whose terms are all possible products

a, bK without repetition. Let us take two rectangular axes as in

analytic geometry ;
the points whose coordinates are x = t, y = K

are called lattice points. Thus to each term aJbK of 1), cor-
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responds a lattice point t, K and conversely. The reader will find

it a great help here and later to keep this correspondence in mind.

Let A =
! -f #

2 H----
&amp;gt;

& ^i + ^2 + &quot; be absolutely convergent.

Then O = ^LaJ)K is absolutely convergent and A B = C.

Let m be taken large at pleasure ; we may take n so large that

Tn Am Bm contains no term both of whose indices are
&amp;lt;.

m.

Then
Tn
- ATOBm &amp;lt; 1

Bm + 2
BOT + .. . + mBro

AmBm

&amp;lt;
e for m sufficiently large.

Hence limr

and C is absolutely convergent.
To show that 0= A - B, we note that

\Cn -AmBm &amp;lt;Tn -AmBm &amp;lt;

2. We owe the following theorem to Mertens.

If A converges absolutely and B converges (not necessarily abso

lutely), then

= a
1
b
1

is convergent and = A B.

We set C c
1 -\- &amp;lt;?2 +

where c
l
= a

1
b
1

4-

Adding these equations gives
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But
Bm = B-Bm w = l, 2,

-.

Hence _

where

The theorem is proved when we show dn = 0. To this end let

us consider the two sets of remainders

s
l ,

= n.

Let * each one in the first set be
|

&amp;lt; Mv and each in the second
set &amp;lt; M. Then since

Now for each e
&amp;gt;

there exists an n^ such that

also a i/, such that

Thus 1) shows that
,

, ,

I

da
|

&amp;lt;
e.

3. When neither A nor B converges absolutely, the series C
may not even converge. The following example due to Cauchy
illustrates this.

VI V2 V3 V4

5 = J= -^-_ + A__JL + ... =A
VI V2 V3 V4

*The symbols |
&amp;lt; |, |

&amp;lt;
|

mean numerically &amp;lt;, numerically &amp;lt;.
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The series A being alternating is convergent by 81, 3. Its

adjoint is divergent by 81, 2, since here
/LI
= 1. Now

VI VI VV1V2 V2V1

^J_J
VVlVS V2V2 VSV

= c
2 + c

8 + 4 + -

and

Vw-1 VI

By I, 95,

Hence
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B(m) all terms whose index is the product of m primes. We ask

now what is the relation between the original series A and the

series B ,
B&quot; &amp;gt;~

If A = a
1 + #

2 -h is absolutely convergent, we may break it up
into a finite or infinite number of series B f

, B&quot;, B frf
, Each of

these series converges absolutely and

&quot;

That each B (m}
converges absolutely was shown in 80, 6. Let

us suppose first that there is only a finite number of these series,

say p of them. Then

An
=

nt
+ JB + - 4- B$ n = n, + ... 4- ,.

As n=oo, each nr 7i
2
-..=oo. Hence passing to the limit

n = oo
,
the above relation gives

= + + ...

Suppose now there are an infinite number of series B(m)
.

Set B = B + &quot; + &quot; + ...

We take v so large that A Bn , n&amp;gt;v, contains no term an of

index &amp;lt; m, and m so large that

Am &amp;lt;e.

Then
I
A Bn |

&amp;lt; Am &amp;lt; . n
&amp;gt;

v.

Two-way Series

114. 1. Up to the present the terms of our infinite series have

extended to infinity only one way. It is, however, convenient

sometimes to consider series which extend both ways. They are

of the type
a_ 3 + a_ 2 + a_! H- a + a

1 + a
2 + 3 -f-

...

which may be written

or
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Such series we called two-way series. The series is convergent

if

lim Zan (2

is finite. If the limit 2) does not exist, A is divergent. The ex

tension of the other terms employed in one-way series to the

present case are too obvious to need any comment. Sometimes

n = is excluded in 1) ;
the fact may be indicated by a dash,

thus 2 an .

00

2. Let m be an integer ;
then while n ranges over

o o 1 1 ^ Q
O, 4, JL) v, 1, *j, O

v = n + m will range over the same set with the difference that v

will be m units ahead or behind n according as m ^ 0. This

shows that

Similarly, So. = fa...
fl=-GC 7J=-00

3. Examine 1. @ = |^x+an2

ao

4-

This series is fundamental in the elliptic functions,

Example 2..
^

/
-^ -^x

a; ^ Va; + w n/

The sum of this series as we shall see is TT cot TTX.
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115. For a two way series A to converge, it is necessary and

sufficient that the series Bformed with the terms with negative indices

and the series C formed with the terms with non-negative indices be

convergent. IfA is convergent, A = B 4- C.

It is necessary. For A being convergent,

\A-Br -Cs \&amp;lt;e/
2

, \A-Br
- C8 ,

&amp;lt;e/2

if s, s &amp;gt; some a- and r
&amp;gt;

some p. Hence adding,

\C,-C, &amp;lt;e,

which shows C is convergent. Similarly we may show that B is

convergent.
It is sufficient. For B, C being convergent,

B-BT &amp;lt;
e/2 , \0-0.\&amp;lt;t/-2

for r, s
&amp;gt;
some p. Hence

r\ T

Thus lim2a.= B+C.

Example 1. The series

rr&amp;gt;

^&quot;^ \ &amp;gt; i_ vi /vix ^ \x-\- n n&amp;gt;

is absolutely convergent if x ^ 0, 1, 2,

For
I a. I

=
+ n n

Hence *
,

~ J

2an and Zan
o -

are comparable with V
7*

Example 2. The series

(a;) = igna;+a &quot;

2

rr arbitrary (2

is convergent absolutely if a &amp;lt; 0. It diverges if a &amp;gt; 0.
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Here
n &amp;gt; 0, Van = e*ean = if a

&amp;lt;

== QO if a
&amp;gt; ;

n = n ,n
r

&amp;gt;0

n
^/~an = e~ x

ean = ifa&amp;lt;0

= 00 if a
&amp;gt;

0.

The case a = is obvious.

Thus the series defines a one-valued function of x when a
&amp;lt;

0.

As an exercise in manipulation let us prove two of its properties.

1 &amp;lt;H)(V) is an even function.

For
(-20=2-*+

&quot;*. (3- 00

If we compare this series with 2) we see that the terms corre

sponding to n = m and n = m have simply changed places, as the

reader will see if he actually writes out a few terms of 2), 3).

Of. 114, 2.

2
&amp;lt;8&amp;gt;O

+ 2ma-)= e-^x+ma^x). m=l, 2, ...

For we can write 2) in the form

_x* ^ (.r+2na)
2

e(aO=e 4a 2e 4a
(4

n= oo

(#+2/na) 2
,. (r+2(m+n)o) 8

g
4a ^^ 4a

f= 00

which with 4) gives 3).



CHAPTER IV

MULTIPLE SERIES

116. Let x = xr &quot; xm be a point in ra-way space 9?m . If the

coordinates of x are all integers or zero, x is called a lattice point,

and any set of lattice points a lattice system. If no coordinate of

any point in a lattice system is negative, we call it a non-negative

lattice system, etc. Let f(x^ z-m) be denned over a lattice

system 1= ^,...^. The set {/(vOJ is called an

sequence. It is customary to set

Then the sequence is represented by

The terms Um A ,
IfS A ,

lim

as
tj

im converges to an ideal point have therefore been denned

and some of their elementary properties given in the discussion

of I, 314-328 ; 336-338.

Let x = x
1

xn y = yi-~ym be two points in Wm . If

y\
&amp;gt; x

\
&quot; Vm &amp;gt; xm we shall write more shortly y &amp;gt; x. If x

ranges over a set of points x &amp;gt; x&quot; &amp;gt; x &quot; we shall say that x is

monotone decreasing. Similar terms apply as in I, 211.

Ifnow
/(* y.)&amp;gt;/(*,~&amp;lt;0

when y _&amp;gt; a?, we sayf is a monotone increasing function. If

we sayf is a monotone decreasing function.

Similar terms apply as in I, 211.

137
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117. A very important class of multiple sequences is connected

with multiple series as we now show. Let
tl

... tm be defined over

a non-negative lattice system. The symbol

or 2a
tl

... lm , or A
Vl ...;m

denotes the sum of all the a s whose lattice points lie in the rec

tangular cell
Q&amp;lt; XI

&amp;lt;

VI
-0&amp;lt;xm &amp;lt;vm .

Let us denote this cell by RVl ... vn or by Rv . The sum 1) may be

effected in a variety of ways. To fix the ideas let m = 3. Then

A, =

etc. In the first sum, we sum up the terms in each plane and

then add these results. In the second sum, we sum the terms on

parallel lines and then add the results. In the last sum, we sum
the terms on the parallel lines lying in a given plane and add the

results; we then sum over the different planes.

Returning now to the general case, the symbol

A = 2a
ll

... tn
iv im = 0, 1, oo,

00

or 4 = 2^...^
o

is called an w-tuple infinite series. For m = 2 we can write it

out more fully thus

^12+

In general, we may suppose the terms of any m-tuple series dis

played in a similar array, the term a
tl

... lw occupying the lattice

point t = (i 1
--tm). This affords a geometric image of great

service. The terms in the cell Rv may be denoted by A v .

If lim A
Vl

... Vm
= lim A, (2
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is finite, A is convergent and the limit 2) is called the sum of the

series^.. When no confusion will arise, we may denote the series

and its sum by the same letter. If the limit 2) is infinite or does

not exist, we say A is divergent.

Thus every w-tuple series gives rise to an ra-tuple sequence

{AVl ... Vm \. Obviously if all the terms of A are &amp;gt; and A is diver

gent, the limit 2) is -f oo. In this case we say A is infinite.

Let us replace certain terms of A by zeros, the resulting series

may be called the deleted series. If we delete A by replacing all

the terms of the cell R
Vl

... VM by zero, the resulting series is called

the remainder and is denoted by A Vl
... vm or by Av . Similarly if

the cell Rv contains the cell R^ the terms lying in Rv and not in

Rp may be denoted by A^ .

The series obtained from A by replacing each term of A by its

numerical value is called the adjoint series. In a similar manner

most of the terms employed for simple series may be carried over

to m-tuple series. In the series 2a
tl

... llB
the indices t all began

with 0. There is no necessity for this; they may each begin with

any integer at pleasure.

118. The Geometric Series. We have seen that

= 1 -f a + a2 + a
&amp;lt; 1,

1- b

Hence
1

for all points a, b within the unit square.
In general we see that

1 &quot;2
*

is absolutely convergent for any point x within the unit cube

and
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119. 1. It is important to show how any term of A = 2a
tl

... lm can

be expressed by means of the A Vr .. Vn .

Let D
l/il/2

... %_ i

= A
VlVt

... Vm A v^... Vm_^ (1

Then D^2
. ..

I/m_ 1
_

1
= A

VlVt
... ,m ^ Vm

- A
VlVs ... VM_^ lt ,m_r (2

Let &w. i m - 2
= A^-^-i - ^w^-i-r (3

Similarly

&quot;,-,-n

(5

Finally ^ = D
ViVf
-

!&amp;gt;,,_!, (6

and
IV,...I/M

= A
t

D
Vl -i* (7

If now we replace ,the D s by their values in terms of the As,
the relation 7) shows that

,... may be expressed linearly in

terms of a number of A
IJLl

...
IJim

where each pr
= vr or vr 1. .

For m = 2 we find

a
VlVa
= A

VtVf + ^-1,^-1 A
Vlt V2

_
x

A
Vl _^ Vf

. (8

2. From 1 it follows that we may take any sequence \A lt
...

ltlt \

to form a multiple series

-^i ^^ij im *

This fact has theoretic importance in studying the peculiarities

that multiple series present.

120. We have now the following theorems analogous to 80.

1. For A to be convergent it is necessary and sufficient that

2. If A is convergent, so is A^ and

A -A \ 1 1 tv 1

-/Xj^ ^1. ^~
*^-*-/x

~~&quot; ^**1I -*jLix j/

Conversely if A^ is convergent, so is A.
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3. For A to converge it is necessary and sufficient that

lim A v
= 0.

4. A series ivhose adjoint converges is convergent.

5. Let A be absolutely convergent. Any deleted series B of A is

absolutely convergent and
\

B
\

&amp;lt;
A.

6. If A = 2a
ti

... lm is convergent, so is B 2&
ti ...,,n

and

B = kA, k a constant.

121. 1. For A to converge it is necessary that

-A^...,.*,-! ,
-Z&amp;gt;

ri, 2 ...,m_ 2 , Dvi ,
a

vil
.

2
. ..,,

=
(), as v = cc .

For by 120, l A ,

I

yl
A,

A m ^fM- Mm |
V c

if X
1
..-A ro , /*! .../*m &amp;gt;jo.

Thus by 119, 1)

Hence passing to the limit p = 00
,

IrniA,..., _,&amp;lt;.*.

As e is small at pleasure, this shows that D
Vl

... Vm_^
= 0. In this

way we may continue.

2. Although ,. nlim a v ... ,,m
=

i &amp;gt; m=

when A converges, we must guard against the error of supposing

that a v
= when v = (yl

vm) converges to an ideal point, all of

whose coordinates are not cc as they are in the limits employed
in 1.

This is made clear by the following example due to Pringsheim.

Then by 119, 8)
I ^,-1+1ar as
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AS
lim A-,.

=
r, 5=

A is convergent. But

lim a
ftS \

=
, lim

|

a rs \

=-.
r=x&amp;gt; a s= ar

That is when the point (r, s) converges to the ideal point

(oo, s), or to the ideal point (r, GO ), ars does not = 0.

3. However, we do have the theorem :

Let . ~ ^ ~A = 2a
t ... l

a
t

&amp;gt;

converge. Then for each e &amp;gt; ^m? e:ms a X swcA that
tl

... t
&amp;lt; e

/or ?i?/ t outside the rectangular cell R^.

This follows at once from 120, 1, since

***
122. 1. Letf(x^ xm) be monotone. Then

^ xm) =1 x
l &amp;lt;

av xm &amp;lt; am ,
a may be ideal. (1

exists, finite or infinite. Iff is limited, I is finite. If f is unlim

ited, I = 4- QO when f is monotone increasing, and I = GO whenf is

monotone decreasing.

For, let/ be limited. Let A =
:

&amp;lt; &amp;lt;*

2 &amp;lt;
= a.

Then T /&amp;gt;x N 7

l]m/( n )
= I

n=cc

is finite by I,. 109.

Let now B = ftv /32 ,
= a be any other sequence.

T pf

lim/G8n) = I lim f(&) = f.~~
^

&quot;

Then there exists by I, 338 a partial sequence of B, say

O=j1 , 72 such that

also a partial sequence D S
1 ,

S
2

such that

lim/(S,,) = I
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But for each an there exists a yln _&amp;gt;

an ;

/(7J &amp;gt;/()

and therefore J &amp;gt; I- (2

Similarly, for each dn there exists an a,a
&amp;gt; Sn ;

hence
/(8.) &amp;lt;/(,.)

and therefore
7 &amp;lt; Z (3

Thus 2), 3) give lim/(~) =/.
.8

Hence by I, 316, 2 the relation 1) holds.

The rest of the theorem follows along the same lines.

2. As a corollary we have

The positive term series A = ^,a
li

,.. ln
is convergent if Av^ tfl ,m

is

limited.

123. 1. Let A=2a
ll

...
ls
= 2a

t ,
B = 26

tl ... t-
= 2J

4
be tivo non-

negative term series. If they differ only by a finite number of

terms, they converge or diverge simultaneously.

This follows at once from 120, 2.

2. Let A, B be two non-negative term series. Let r
&amp;gt;

denote

a constant. If aL
&amp;lt; rb

L , A converges if B is convergent and A &amp;lt; rB.

If a, &amp;gt; rb L , A diverges if B is divergent.

For on the first hypothesis

AK

and on the second AA*

3. Let A, B be two positive term series. Let r, s be positive

constants. If

r fl|hm l

1=00 6t

exists and is = 0, A and B converge or diverge simultaneously. If

B converges and = 0, A is convergent. If B diverges and -* =
&amp;lt;,

bn
bn

A is divergent.
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4. The infinite non-negative term series

2#
t ,... lg

and 2 log (1

converge or diverge simultaneously.

This follows from 2.

5. Let the potver series

P S/&amp;gt; rw7irm, .; ^^- --
converge at the point a = (j, a), then it converges absolutely for
all points x within the rectangular cell R whose center is the origin,
and one of whose vertices is a; that is for

\
x,

\

&amp;lt;
|
a, , i=l, 2, a.

For since P converges at a,

lim cmim2 ...ai &amp;lt;

= 0.

Thus there exists an J^such that each term

I c a 7

!* 1 &quot; am*
I

&quot;^ ]\T
| TO! &quot;~l &quot;j |

&amp;lt; -

Hence

, nm\ nm *
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be the terms of A arranged in order lying in R^ R\^ and so on

indefinitely.

Then
SI = ^ 4- a + - + a. v

+ a.l+1 + -
is an associate simple series of A.

2. Conversely associated with any simple series 51 = 2an are an

infinity of associate m-tuple series. In fact we have only to arrange
the terms of 51 over the non-negative lattice points, and call now
the term an which lies at the lattice point ^ im the term a

tl
... lw

.

3. Let 51 be an associate series of A = 2ah ...
l|B

. If 51 is convergent,

so is A and
J. = 51

For A
Vl ... Vm

= %n .

Let now v = oo, then n = &amp;lt;x&amp;gt;. But 5l
7i
=

51, hence ^ ... Vm
= 51.

4. If the associate series 51 is absolutely convergent, so is A.

Follows from 3.

5 IfA = 2a
ri ...

Vfn
is a non-negative term convergent series, all its

associate series 51 converge.

For, any 51^^ lies among the terms of some A^ v . But for X

sufficiently large A* 9 &amp;lt;* \&amp;lt;n&amp;lt;v.

Hence ar

*.*&amp;lt;
m&amp;gt;mQ

.

6. Absolutely convergent series are commutative.

For let B be the series resulting from rearranging the given
series A.

Then any associate 53 of B is simply a rearrangement of an

associate series 51 of A. But 51 = SB, hence A = B.

7. A simply convergent m-tuple series A can be rearranged,

producing a divergent series.

For let 51 be an associate of A. 51 is not absolutely convergent,
since A is not. We can therefore rearrange 51, producing a series

53 which is divergent. Thus for some 53

lim $
does not exist. Let 53 be the series formed of the positive, and

53&quot; the series formed of the negative, terms of 53 taken in order.
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Then either Wn
= + oo or ^ = -00, or both. To fix the ideas

suppose the former. Then we can arrange the terms of 33 to

form a series ( such that &n
= -h oo. Let now ( be an associate

series of O. Then
t; = cv,... ,

=
&amp;lt;

and thus
Km Cv

= lim ( = + oo.

Hence is divergent.

8. If the, multiple series A is commutative, it is absolutely con

vergent.

For if simply convergent, we can rearrange A so as to make the

resulting series divergent, which contradicts the hypothesis.

9. In 121, 2 we exhibited a convergent series to show that

tl ... lw does not need to converge to if ^ im converges to an ideal

point some of whose coordinates are finite. As a counterpart we
have the following :

Let A be absolutely convergent. Then for each e
&amp;gt;

there exists

a \, such that any finite set of terms B lying without E^ satisfy the

relation

and conversely.

For let 51 be an associate simple series of Adj A. Since 51 is

convergent there exists an n, such that

But if X is taken sufficiently large, each term of B lies in 5ln ,

which proves 1).

Suppose now A were simply convergent. Then, as shown in 7,

there exists an associate series ) which is infinite.

Hence, however large n is taken, there exists a p such that

Hence, however large X is taken, there exist terms J?= )Wip which

do not satisfy 1).

10. We have seen that associated with any m-tuple series
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extended over a lattice system 2ft in 9f

?m is a simple series in 9?r
We can generalize as follows. Let 2ft = \i\ be associated with a

lattice system 2ft = \j\ in ^Rn such that to each i corresponds a,j and

conversely.

If i ~y we set
4i ... lm

=
a^ ... jn

.

Then A gives rise to an infinity of w-tuple series as

We say B is a conjugate n-tuple series.

We have now the following :

Let A be absolutely convergent. Then the series B is absolutely

convergent and A = B.

For let A\ B be associate simple series of A, B. Then A ,
B 1

are absolutely convergent and hence A =B . But A = A\ B = B .

Hence A = B, and B is absolutely convergent.

11. Let A = 2a
tl

... tm be absolutely convergent. Let B= Sa^...^
be any p-tuple series formed of a part or all the terms of A. Then
B is absolutely convergent and

Ad A.

For let A , B be associate simple series of A and B. Then B
converges absolutely and

|

B
\

&amp;lt; Adj A.

125. 1. Let 4 = 2
ll ...... (1

Set

in the cell

Then
(2

Let 72 denote that part of 9?m whose points have non-negative
coordinates. Let ^

J=\ fdX,:-dXm . (3
X ^2

If 7is convergent, A = J. We cannot in general state the con

verse, for A is obtained from A v by a special passage to the limit, viz.
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by employing a sequence of rectangular cells. If, however,

a v &amp;gt;_
we may, and we have

For the non-negative term series 1) to converge it is necessary and

sufficient that the integral 3) converges.

2. Let /(#! XM) &amp;gt; be a monotone decreasing function of

x in R, the aggregate of points all of whose coordinates are non-

negative. Let

The series A =^
is convergent or divergent with

J fdxl
&quot;- dxm .

R

For let R}, R2 , be a sequence of rectangular cubes each R n

contained in Rn+ i.

Let RntS
=Rt

-Ra s&amp;gt;n.

Then X, ft being taken at pleasure but
&amp;gt;

some v, there exist an

Z, m such that

But the integral on the right can be made small at pleasure if J
is convergent on taking I &amp;gt; m &amp;gt; some n. Hence A is convergent
if J&quot;is. Similarly the other half of the theorem follows.

Iterated Summation of Multiple Series

126. Consider the finite sum

One way to effect the summation is to keep all the indices but

one fixed, say all but t
x , obtaining the sum

Then taking the sum of these sums when only *
2 is allowed to

vary obtaining the sum
2 2ah ... tm

ia=0 j=0
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and so on arriving finally at

m
l

...^ (2

whose value is that of 1). We call this process iterated summa
tion. We could have taken the indices ^ im in any order

instead of the one just employed ;
in each case we would have

arrived at the same result, due to the commutative property of

finite sums.

Let us see how this applies to the infinite series,

^i = 2a
ti ...,m , ij

tm =0, 1, ...oo. (3

The corresponding process of iterated summation would lead us

to a series 31= 2 2 fa (4
_..

ll
* * &quot;

lm ^

which is an m-tuple iterated series. Now by definition

&quot;m &quot;m 1 &quot;i

31 = lim 2 lim 2 lim 2a
ti

... (m (5

= lim lim lim A
Vi

... Vm ^ (6

while A ,. /rjA= lim A
Vi

... Vm
. (J

Thus A is defined by a general limit while 31 is defined by an

iterated limit. These two limits may be quite different. Again
in 6) we have passed to the limit in a certain order. Changing
this order in 6) would give us another iterated series of the type

4) with a sum which may be quite different. However in a large
class of series the summation may be effected by iteration and this

is one of the most important ways to evaluate 3).

The relation between iterated summation and iterated integra
tion will at once occur to the reader.

127. 1. Before going farther let us note some peculiarities of

iterated summation. For simplicity let us restrict ourselves to

double series. Obviously similar anomalies will occur in m-tuple
series.
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^ =
00 + a

01 + S2+ -+10+ a
ll +

be a double series. The mih row forms a series

and the wth
column, the series

i=0

7M=0 MJ=O =0

are the series formed by summing by rows and columns, respec

tively.

2. A double series may converge although every row and every

column is divergent.

This is illustrated by the series considered in 121, 2. For A
00 00

is convergent while 2ar,, 2a r, are divergent, since their terms are
r=0 s=Q

not evanescent.

3. A double series A may be divergent although the series R ob

tained by summing A by rows or the series C obtained by summing

by columns is convergent.

For let Ars =0 if r or s =

r .= if r, s&amp;gt;0.

r -f s

Obviously by I, 318, lim A rs does not exist and A = 2#ra is di

vergent.
On the other hand,

R = lim lim Ars 0,
r=oo 5=3

(7= lim lim A rs
= 1.

S=00 r=3

Thus both R and (7 are convergent.
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4. In the last example R and C converged but their sums were

different. We now show :

A double series may diverge although both R and C converge and

have the same sum.

For let A
rt ,
= if r or s =

rs
if r, &amp;gt;

0.

Then by I, 319, lim A,, does not exist and A is divergent. On
the other hand, R = \{m \{m Ar,

= 0,

(7= lim lim A ra
= 0.

Then R and S both converge and have the same sum.

128. We consider now some of the cases in which iterated sum

mation is permissible.

Let A = 2a
ti ... ,w be convergent. Let

i\,
i
2,-~ im be any permutation

of the indices ir iv im . If all the m - l-tuple series

. =0 t =0
are convergent, A =

This follows at once from I, 324. For simplicity the theorem

is there stated only for two variables ;
but obviously the demon

stration applies to any number of variables.

129. 1. Let f(x1
-&quot;Xm ) be a limited monotone function. Let the

point a= (04 #,) be finite or infinite. When f is limited, all the

s-tuple iterated limits

exist. When s = m, these limits equal

..-^). (2

In these limits we suppose x&amp;lt;a.
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For if/is limited, Hm/ &amp;gt; ^^
exists by 122, l. Moreover 3) is a monotone function of the re

maining m 1 variables.

Hence similarly ]im Hm f
JTia _ l

=ai s _ l xi s=ctis

exists and is a monotone function of the remaining m 2 vari

ables, etc. The rest of the theorem follows as in I, 321.

2. As a corollary we have

Let Abe a non-negative term m-tuple series. If A or any one of
its m-tuple iterated series is convergent, A and all the ml iterated

m-tuple series are convergent and have the same sum. If one of these

series is divergent, they all are.

3. Let a be a non-negative term m-tuple series. Let s&amp;lt;m. All

the s-tuple iterated series of A are convergent if A is, and if one of
these iterated series is divergent, so is A.

130. 1. Let A = 2a
ti

... tm be absolutely convergent. Then all its

s-tuple iterated series s = l, 2 m, converge absolutely and its

m-tuple iterated series all = A.

For as usual let
ti

... lm
= a

tl
... im \.

Since A = Adj A is con

vergent, all the s-tuple iterated series of A are convergent.
OD ao

Thus s
l
= 2 fl

tl
...im is convergent since 2 a

tl
. .

(TO
= tr

1
. Moreover

II=Q
l

4=0
00 00

I

s
l I

&amp;lt; crr Similarly 2 2
lf

... lm
= 2s

t
is convergent since

i,=0 4=0 i?
OO QO

2 2
M ... ,w =20-^8 convergent; etc. Thus every s-tuple iter-

2=0 4=0 i2

ated series of ^4. is absolutely convergent. The rest follows now

by 128.

2. Let A = 2a
lt ...,m . /f one of i^e m-tuple iterated series B

formed from the adjoint A of A is convergent, A is absolutely con

vergent.

Follows from 129, 2.

3. The following example may serve to guard the reader against

a possible error.
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Consider the series

and R = e
a + e*

a + e3a -h

This is a geometric series and converges absolutely for a &amp;lt; 0.

Thus one of the double iterated series of A is absolutely conver

gent. We cannot, however, infer from this that A is convergent,
for the theorem of 2 requires that one of the iterated series formed

from the adjoint of A should converge. Now both those series

are divergent. The series A is divergent, for
|

arg
\

=
&amp;lt;x&amp;gt;

, as

r, s = oo .

131. 1. Up to the present the series

2*.,..... (1

have been extended only over non-negative lattice points. This

restriction was imposed only for convenience ;
we show now how

it may be removed. Consider the signs of the coordinates of a

point x= (xv xm). Since each coordinate can have two signs,

there are 2m combinations of signs. The set of points x whose

coordinates belong to a given one of these combinations form a

quadrant for m = 2, an octant for m = 3, and a 2m-tant or polyant

in 9?m . The polyant consisting of the points all of whose coordi

nates are &amp;gt; may be called the first or principal polyant.

Let us suppose now that the indices i in 1) run over one or more

polyants. Let R^ be a rectangular cell, the coordinates of each of

its vertices being each numerically &amp;lt; \. Let A^ denote the terms

of A lying in 72A . Then I is the limit of A^ for X = oo, if for each

e &amp;gt; there exists a \ such that

\A,-A,n \&amp;lt;e
X&amp;gt;\ . (2
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If lim At (3
A=ao

exists, we say A is convergent, otherwise A is divergent. In a

similar manner the other terms employed in multiple series may
be extended to the present case. The rectangular cell 72Ao which

figures in the above definition may without loss of generality be

replaced by the cube

Moreover the condition necessary and sufficient for the exist

ence of the limit 3) is that

|
A - 4* I

&amp;lt; e X, p &amp;gt; X .

132. The properties of series lying in the principal polyant

may be readily extended to series lying in several polyants. For

the convenience of the reader we bring the following together,

omitting the proof when it follows along the same lines as before.

1. For A to converge it is necessary and sufficient that

lim AI = 0.
A=oo

2. A series whose adjoint converges is convergent.

3. Any deleted series B of an absolutely convergent series A is

absolutely convergent and

\B\&amp;lt; Adj A.

4. IfA =
Sdtij ... ,n is convergent, so is B = 2&#

(J
..., M and A= kB.

5. The non-negative term series A is convergent if A^ is limited,

X = oo.

6. If the associate simple series 51 of an m-tuple series A converges,

A is convergent. Moreover if 21 is absolutely convergent, so is A.

Finally if A converges absolutely, so does 21.

7. Absolutely convergent series are commutative and conversely.

8. Let f(x1
a;m )&amp;gt;.0

be a monotone decreasing function of the

distance of xfrom the origin.

Let ~
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Then A = Za t .

1 m

converges or diverges ivith

the integration extended over all space containing terms of A.

133. 1. Let B, (7, D denote the series formed of the terms ofA
lying in the different polyants. For A to converge it is sufficient

although not necessary that B, C, converge. When they do,

For if i?A , &amp;lt;7A denote the terms of B, C which lie in a

rectangular cell 72A,

AI = BL+CI + -

Passing to the limit we get 1).

That A may converge when B, (?, do not is shown by the

following example. Let all the terms of A = 2a
tl

...
tm

vanish ex

cept those lying next to the coordinate axes. Let these have the

value +1 if ir L
2
-~ im &amp;gt;0 and let two # s lying on opposite sides

of the coordinate planes have the same numerical value but opposite

signs. Obviously, Ax = 0, hence A is convergent. On the other

hand, every B, C is divergent.

2. Thus when B, C converge, the study of the given series

A may be referred to series whose terms lie in a single polyant.

But obviously the theory of such series is identical with that of

the series lying in the first polyant.

3. The preceding property enables us at once to extend the

theorems of 129, 130 to series lying in more than one polyant.

The iterated series will now be made up, in general of two-way

simple series.



CHAPTER V

SERIES OF FUNCTIONS

134. 1. Let i (tr i
2 ip) run over an infinite lattice system &.

Let the one-valued functions

/.,... .POi *) = /&amp;lt;=/.

be denned over a domain 51, finite or infinite. If the jt?-tuple series

F=F(x)=F(xi aw) =2/., ...(*! *,) (1

extended over the lattice system % is convergent, it defines a one-

valued function F(x1
#m) over 51. We propose to study the

properties of this function with reference to continuity, differen

tiation and integration.

2. Here, as in so many parts of the theory of functions depend

ing on changing the order of an iterated limit, uniform convergence
is fundamental.

We shall therefore take this opportunity to develop some of its

properties in an entirely general mariner so that they will apply
not only to infinite series, but to infinite products, multiple inte

grals, etc.

3. In accordance with the definition of I, 325 we say the series

1) is uniformly convergent in 51 when F^ converges uniformly to its

Kmit F. Or in other words when for each e&amp;gt;0 there exists a X
such that

|J--j;|&amp;lt; M&amp;gt;X,

for any x in 51. Here, as in 117, F^ denotes the terms of 1) lying
in the rectangular cell 72M ,

etc.

As an immediate consequence of this definition we have :

Let 1) converge in 51. For it to converge uniformly in 51 it is

necessary and sufficient that
\

F^ is uniformly evanescent in 51, or in

other words that for each e &amp;gt; 0, there exists a \ such that F^ &amp;gt; e for
x in 51, and /JL&amp;gt;\.

166
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135. 1. Let

in 51. Here 51, T may be finite or infinite. If there exists an

77 &amp;gt;0 such that f = (f&amp;gt; uniformly in ^(V), a finite or infinite, we
shall say f converges uniformly at a ; if there exists no 77 &amp;lt;

0. \ve

say / does not converge uniformly at a.

2. Let now a range over 51. Let 53 denote the points of 51 at

which no ?? exists or those points, they may lie in 51 or not, in

whose vicinity the minimum of 77 is 0. Let D denote a cubical

division of space of norm d. Let $8D denote as usual the cells of

D containing points of 53. Let &D denote the points of 51 not in

53^. Then/=&amp;lt; uniformly in &D however small d is taken, but

then fixed. The converse is obviously true.

3. Iff converges uniformly in 51, and if moreover it converges at a

finite number of other points -03, it converges uniformly in 51 + 53.

For if/ = (f&amp;gt; uniformly in 51,

f-&amp;lt;f&amp;gt;\&amp;lt;e
x in 51, t in F

5o*(r).

Then also at each point b, of 53,

\f -4&amp;gt;\&amp;lt;
e x=bt &amp;lt;inFif*(T).

If now 8 &amp;lt; S , 8V S
2 these relations hold for any x in 51 + 53

and any t in V
s*(r).

4. Let /(#! xm , fj
tn)

= $ (xl
xm ^ uniformly in 51. Let

f be limited in 51 for each t in F
6*(r). Then

&amp;lt;f&amp;gt;

is limited in 51-

For
&amp;lt;/&amp;gt;=/(*, +

| |&amp;lt; C1

for any x in 51 and t in F
5*(r). Let us therefore fix t. The

relation 1) shows that
(f&amp;gt;

is limited in 51.

5. If 2 \f^ ... i (tfj
#m)

| converges uniformly in 51, so c?oes 2/ti
... t .

For any remainder of a series is numerically &amp;lt; than the corre

sponding remainder of the adjoint series.

6. Let the s-tuple series
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converge uniformly in 51. Then for each e &amp;gt; there exists a X
such that , _.

\^\&amp;lt;
e (1

for any Rv &amp;gt; R^ &amp;gt; R^. When s = 1, these rectangular cells re

duce to intervals, and thus we have in particular

I /Oi aw)
|

&amp;lt; e for any n &amp;gt; n .

When s
&amp;gt;

1 we cannot infer from 1) that

\f^ t.^i-xm )\&amp;lt; , in 51, (2

for any i lying outside the above mentioned cell Rk .

A similar difference between simple and multiple series was
mentioned in 121, 2.

However iffL
&amp;gt; in 51, the relation does hold. Cf. 121, 3.

136. 1. Let f(xv ~xm ^ t
1

&quot;- tn) be definedfor each x in 51, and t

T finite or infinite. The convergence is uniform iffor any x in 51

I/
-

&amp;lt;t&amp;gt; I

&amp;lt;

V&amp;lt;*i O tin Vt* (r), B fixed

while Km
-fy
= 0.

t=T

For taking e&amp;gt;0 at pleasure there exists an
?;&amp;gt;0 such that

|VI&amp;lt;*
^ in ^,*(T).

But then if S
&amp;lt; T/,

l/-*l&amp;lt;

for any ^ in V&*(r) and any 2: in 51.

Example.
sin a; sin n . Qr . N= * m 51 = (0, oo).

Is the convergence uniform ?

Let

y
then u = 0, as ^ = -
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Then f_ A | _ |

sin x cos u
\
_

\

sin x cos u sin2 u
\

I + x cot2 u
I

sin2 u + x cos2 w
|

^ sin x sin2 w I ^ , . A
&amp;lt; &amp;lt; tan2 u = 0.

Hence the convergence is uniform in 51-

2. As a corollary we have

Weierstrass&quot;
1

Test. For each point in 51, let l/^... tp |
^Mtl

...
lp

The series ^/^...^(^ #,) is uniformly convergent in 51 if ^Mtl
...

ip

is convergent.

Example 1.

Here

and _F is uniformly convergent in 51 since

2-on
is convergent.

Example 2.

F(x) = ^a n sin An

is uniformly convergent for ( 00, QO) if

Z.|o.|
is convergent.

137. 1. 7%e power series P = 2amt ... mp a;j

l
i x v

converges

uniformly in any rectangle R lying within its rectangle of con

vergence.

For let b = (6r 6P) be that vertex of R lying in the principal

polyant. Then P is absolutely convergent at 6, i.e.

is convergent. Let now x be any point of R. Then each term in

2&amp;lt;V...,n P ?-&&quot;

is &amp;lt; than the corresponding term in 1).
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2. If the power series P a
Q + a^x + a

2
x2 + converges at an

end point of its interval of convergence, it converges uniformly at

this point.

Suppose P converges at the end point x = R &amp;gt; 0. Then

however large n is taken. But for
&amp;lt;

x &amp;lt; R

&amp;lt; e by Abel s identity, 83, i.

Thus the convergence is uniform at x R. In a similar

manner we may treat x = R.

3. Let/n^j xm), n = 1, 2 be denned over a set 5L If each

\fn &amp;lt; some constant cn in 21, fn is limited in 51. If moreover the

cn are all &amp;lt; some constant 0, we say the fn (x) are uniformly
limited in 51. In general if each function in a set of functions

\f\ denned over at point set 51 satisfy the relation

\f \

&amp;lt;
a fixed constant 0, x in 51,

we say the jf s are uniformly limited in 51.

The seriesF= ^gnhn is uniformly convergent in 51, if G =ffi -h
&amp;lt;/2 -f-

is uniformly convergent in 51, while 2
1

ha+1 hn \

and h n \

are

uniformly limited in 51.

This follows at once from Abel s identity as in 83, 2.

4. The series F=2gnhn is uniformly convergent in 51, if in 51,

2
| h,l+l hn

|

is uniformly convergent, hn is uniformly evanescent,

and the Grn uniformly limited.

Follows from Abel s identity, 83, l.

5. The series F= ^gnhn is uniformly convergent in 51 if

Gr = gl -f- g% + is uniformly convergent in 51 while hv h
2

are

uniformly limited in 51 and \hn \
is a monotone sequence for each

point of 51.

For by 83, l, , ^ ,
, ^ , n .

** &amp;lt;J** &n&amp;lt;
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6. The series F = ^gnhn is uniformly convergent in 51 if Gl
= gv

6r
2
= gl + &amp;lt;72 ,

~- are uniformly limited in 51 and if hr A
2 , not only

form a monotone decreasing sequence for x in 51 but also are uni

formly evanescent.

For by 83,1,
| J^, |

&amp;lt;
|^ G.

.

Example. Let A = a
l + a

2 -f- be convergent. Let 5r 6
2

- ^
be a limited monotone sequence. Then

converges uniformly in any interval 51 which does not contain a

point of
|

[

For obviously the numbers

form a monotone sequence at each point of 51. We now apply 5.

7. As an application of these theorems we have, using the re

sults of 84,

The series
fl -f !

cos x + a
2
cos 2 x +

converges uniformly in any complete interval not containing one of

the points 2 mir provided 2 an+l an is convergent and an = 0,

and hence in particular if a^^ #
2 _&amp;gt;

= 0.

8. The series ^
a

1
cos x + a

2
cos 2 #

converges uniformly in any complete interval not containing one of

the points (2 m I)TT provided 2
|

an+1 + an is convergent and

an = 0, and hence in particular if a
l

&amp;gt; a%
&amp;gt; = 0.

9. The series . . .

a
l
sin x + 2 sin is 2T 4- ^3 sin 00:+

converges uniformly in any complete interval not containing one of

the points 2 mir provided 2
|

an+l a n
\

is convergent and an
= 0,

and hence in particular if a
&amp;gt;^ 2 21 = 0.
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10. The series
^ sill ^ _^ 2 * + ^sin 3* - ...

converges uniformly in any complete interval not containing one of

the points (2w I)TT provided |

an+l + an is convergent and

an = 0, and hence in particular if a
1^a2 &amp;gt;_

=0.

138. 1. Let F= ^...^Xl
... Xm)

be uniformly convergent in 51. Let A, B be two constants and

4*)&amp;lt;^&amp;lt;X&amp;gt;&amp;lt;^/.&amp;lt;X&amp;gt;
m

Then
(? = 2^..,.(^...^)

is uniformly convergent in 51.

For then j T-T ^ ^ ^AJb
A, M

&amp;lt; Cr
A? M

&amp;lt;

But ^ being uniformly convergent,

2. =
l ,... l8 ^

converge uniformly in 51. Then

is uniformly convergent in 31. Moreover if F is limited in 51, so

is L.

For /t
&amp;gt; in 51, hence

l/i|&amp;lt;

for any i outside some rectangular cell M\.

Thus for such i

Af&amp;lt;
&amp;lt; log (1 +/) &amp;lt; / in .

139. 1. Preserving the notation of 136, let g 1 , #2 , ^m fo chosen

such that if we set

formly in 51,

lim A = lim ... * M. - - ^n S
= 0.
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For if /= &amp;lt;f&amp;gt; uniformly in 31,

e&amp;gt;0, S&amp;gt;0 |/_&amp;lt;| &amp;lt;

for any x in 51 and any t in FS*(T), 8 independent of x.

But then
|

A
|

&amp;lt;
e tin Fi*(r).

2. As a corollary we have :

Let
j,

#
2 ,

... = a. Ze ^= l/a fo uniformly convergent at a.

Then
.

JU&amp;lt;o=o.

140. Example 1.

lim/=lim _8muBin2tL ,

(
[2 for*=0,

=o =o sin2 -M + # cos2 M [ for x ^= 0.

The convergence is not uniform at 2; = 0. For

/._ 2cosw
1 + ^ cot2 w

Hence if we set x = u2

lim/= 1, since u2 cot2u= 1.
w=

Thus on this assumption

Example 2. F= l- x + x (l- x^ + X2(l _ x)+ ^(1 - a:) +
Here _

^=1(1-^) -2:&quot;.

o

Hence F is uniformly convergent in any ( r, r), &amp;lt; r &amp;lt; 1, by
136, 2.

We can see this directly. For

Hence F is convergent for 1&amp;lt;#&amp;lt;1, and then .F(V)=1,

except at x = 1 where F= 0.

Thus
|

Fn (x)
|

=
|

x
|

n
, except at x = 1.

But we can choose m so large that rm &amp;lt;e.

Then
| ^,(2:) |

&amp;lt;
e for any x in ( r, r).
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We show now that F does not converge uniformly at x=\
For let

n

Then

and F does not converge uniformly at x 1, by 139, 2.

Example 3. 2

Here
-^ -^

^B
=

l + na;2 ~l+0i +

and F is telescopic. Hence

x,

=
,

a; = 0.

Thus
-,

Let us take

Then

and JP is not uniformly convergent at x = 0. It is, however, in

(00, co ) except at this point. For let us take x at pleasure

such, however, that
|

x
\

&amp;gt; &. Then

We now apply 136, 1.

Example 4.
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Here .
-, T

= x __*_ n + 1

11 + 7iV 1 +(7i+ I)
2*2

J

and F is telescopic. Hence

F _
x O

1 + (W + 1)2^2

in 51 = (-R,

if

1 +

The convergence is not uniform at x = 0.

For set an
= -. Then
71+1

I ^(O I

=
I,

does not = 0.

It is, however, uniformly convergent in 51 except at 0. For

(* + l (n
=-1 + (W + 1)22

&amp;lt;
e for 7i &amp;gt; some m.

141. Let us suppose that the series F converges absolutely and

uniformly in 51. Let us rearrange F, obtaining the series 6r.

Since F is absolutely convergent, so is 6r and F = (7. We can

not, however, state that 6r is uniformly convergent in 51, as Bocher

has shown.

Example.
jl- 1 +x- x

Here

Hence F is uniformly convergent in 31 = (0, 1).

Let .

Then
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Let
1

n

Then

as n ==i oo.-Yi- 1
^A ~e)

Hence Gr does not converge uniformly at x = 1.

142. 1. Let
/==&amp;lt;#&amp;gt; uniformly in a finite set of aggregates 5l

x ,

512
&quot;

^P- Thenf converges uniformly in their union (5Ij, 5lp).

For by definition

&amp;gt; 0, Bs &amp;gt; 0, |/
-

&amp;lt;f&amp;gt; I

&amp;lt; 6 a: in 5I8 ,
in F

5a*(r). (1

Since there are only p aggregates, the minimum B of S^ 8
p

is &amp;gt; 0. Then 1) holds if we replace 8
8 by S.

2. The preceding theorem may not be true when the number

of aggregates 5f x , 512
is infinite. For consider as an example

F= 2(1- sX,

which converges uniformly in 51 = (0, 1) except at x = 1. Let

-19.
s s +

Then .F is uniformly convergent in each 5la but is not in their

union, which is 5l-

3. Letf= &amp;lt;/&amp;gt;, g = &amp;gt;/r uniformly in 51.

TAew / # ==
&amp;lt;#&amp;gt; ^ uniformly.

If ^&amp;gt;, ^ remain limited in 51,

fg = (^^ uniformly. (1

Jf moreover
\ ^r \

&amp;gt; some positive number in 51,

= 2. uniformly. (2

The demonstration follows along the lines of I, 49, 50, 51.
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4. To show that 1), 2) may be false if
&amp;lt;, ty are not limited.

Let -

/j ap *+*1 2l = (0*, 1), r = 0.

QC&amp;gt;

Then &amp;lt;

=
-^
= - and the convergence is uniform.
x

But 9 .

Let x = t. Then A = 2 as t = 0, and fg does not

uniformly.

Again, let
-^

the rest being as before.

Then

But setting x = ,

Al = = oo as t ==

9

and - does not converge uniformly to -

^ t

143. 1. As an extension of I, 317, 2 we have :

Let

uniformly in 51.

lim^C^ tn)
=

ij

t=T

Let y ^ rj
in F*(T). Then

t=T

= ^(^ m), uniformly.

The demonstration is entirely analogous to that of I, 292.

uniformly in 51. ie^ ^Ae points

v= (vv vv vp)
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form a limited set 33. Let F^ up) be continuous in a complete
set containing 33. Then

Mj
... up) = F(v^^ Vp)

uniformly in 51.

For F, being continuous in the complete set containing 33, is

uniformly continuous. Hence for a given e
&amp;gt;

there exists a

fixed a-
&amp;gt; 0, such that

| F(u) - F(v) &amp;lt;e u in V9(v) , v in 2$.

But as w
t
=

t\ uniformly there exists a fixed 8
&amp;gt;

such that

K - v
t |

&amp;lt; ,
x in 51 , t in

Thus if e is sufficiently small, w=(wj, MP) lies in

when x is in 51 and t in Fi*(r).

144. 1. Let

t-r

uniformly in 51. 5T. v ,lim e7 =
t=T

uniformly in 51, if
(j&amp;gt;

is limited.

This is a corollary of 143, 2.

-. Let

uniformly in 51. X^^
&amp;lt;/&amp;gt;

6g greater than some positive constant in 51-

TOert ..
|

-
,lim log/ = log &amp;lt;p,

/=T

uniformly in 51, if
c/&amp;gt;

remains limited in 51.

Also a corollary of 143, 2.

3. Letf = c awe? g = ^ uniformly, as t == T.

ig^
&amp;lt;/&amp;gt;, i/r

5g limited in 5t, an(i
(/&amp;gt;

&amp;gt; some positive number. Then

fa = ^ uniformly in 51. (1

For
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But by 2), log/=log$ uniformly in 21; and by 142, 3

g log/= T/T log &amp;lt;, uniformly in 21. Hence 2) gives 1) by 1.

145. 1. The definition of uniform convergence may be given a

slightly different form which is sometimes useful. The function

is a function of two sets of variables x and t, one ranging in an 9?m

the other in an 9?n .

Let us set now w = (x^ xm, ^ n) and consider w as a point in

m -fp way space.

As x ranges over 21 and t over FS*(T) &amp;gt;

let w range over $&&.

Then

t=T

uniformly in 21 when and only when

e&amp;gt;0, S&amp;gt;0
|/-&amp;lt;

&amp;lt;e winSBa, 8 fixed.

By means of this second definition we obtain at once the follow

ing theorem:

2. Instead of the variables x
l

xm, fj
tn let us introduce the

variables y^ ym , u un so that as w ranges over 58s,

z = (y 1 ~-ym,u 1
...un)

ranges over (Es, the correspondence between 33s, (5s being uniform.

Thenf= &amp;lt;f&amp;gt; uniformly in 21 when and only when

e&amp;gt;0, ^&amp;gt;0 \f &amp;lt;f&amp;gt;\&amp;lt;e
, zmgfi, 8 fixed.

3. Example. Let /(#, TI)
=

where
a

/

Then
^(a;) = lim/(2J, ri)=Q ,

in 21 = (0, oo).

Let us investigate whether the convergence is uniform at the

point x in 21-

First let x
&amp;gt;

0. If
&amp;lt;

a &amp;lt; x &amp;lt; b, we have
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As the term on the right = as n = oo
,
we

see/=&amp;lt;/&amp;gt; uniformly
in (#, b).

When, however, a = 0, or b = oo
, this reasoning does not hold.

In this case we set _ nfixp

which gives
^ logl/|3 t

n*&

As the point (x, ri) ranges over denned by

z^&amp;gt;0 , n&amp;gt;\,

the point (, ?i) ranges over a field defined by

and the correspondence between and X is uniform. Here

The relation 2) shows that when # &amp;gt; 0, t = en asw-^oo; also

when x = 0, = 1 for any n. Thus the convergence at x = is

uniform when

H-
The convergence is not uniform at x = when 3) is not satisfied.

For take
-,-JL

, n=l,2,...
n\/a.

For these values of a: ^

which does not = as n = oo .

146. 1. (Moore, Osgood.) Let

uniformly in 3(. Let a be a limiting point of 21 and

lim/
a-=a

/or gac^ f iw Fi*(r).

c^lim
ar=a

exist and are equal. Here a, T are finite or infinite.
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We first show &amp;lt;I&amp;gt; exists. To this end we show that

&amp;gt;0 , S&amp;gt;0 ,
| &amp;lt;&amp;lt;V)

-
&amp;lt;&amp;lt;V ) |

&amp;lt; a/, x&quot; in F6 *( (1

Now since /(a:, ) converges uniformly, there exists an 77 &amp;gt;0

such that for any x
,

x&quot; in 51

) (2

On the other hand, since/= -\/r
there exists a & &amp;gt;0 such that

/(* ,
= ^(0+* &quot;

(4

for any a; , x
rl

in V&*(a) ; t fixed.

From 2), 3), 4), 5) we have at once 1). Having established

the existence of
&amp;lt;l&amp;gt;,

we show now that 3&amp;gt;
= \f. For since / con

verges uniformly to 0, we have

/O, - O) I
&amp;lt;

|
* in , t in r,*(r). (6

Since/= i/r,
we have

| /(z,
- ^ (0 I

&amp;lt;

I
* in TV (a) , t fixed in F,* (T). (7

Since
&amp;lt;f&amp;gt;

=
&amp;lt;,

I*W~*
&amp;lt;|

*^(a). (8

Thus 7), 8) hold simultaneously for 8 &amp;lt; 8 , 8&quot;.

Hence , , , ,s _ -
,

or lim

2. Thus under the conditions of 1)

lim lim / = lim lim / ;

x=a t=r t=r xa

in other words, we may interchange the order of passing to the

limit.
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3. The theorem in 1 obviously holds when we replace the un
restricted limits, by limits which are subjected to some condition

;

e.g. the variables are to approach their limits along some curve.

4. As a corollary we have :

Let F = 2/80*i %m) t&amp;gt; e uniformly convergent in 21, of which x = a

is a limiting point. Let Iimf8
= 18 ,

and set L = ^L18 . Then
X=(l

Urn F= L ; a finite or infinite,
x=a

or in other words
lim 2jf,= 2 limft .

Example 1.

** %nenx

converges uniformly in 51 = (0, oo) as we saw 136, 2, Ex. 1. Here

iimA=i=?n) I ;

i -r &quot;? 7 X^ 1 ^and L = 2L = &amp;gt;, =1.

Hence lim F(x) = 1.
a?=oo

Also 1

hence R\\mF(x)=Q.

Example 2.

in x

converges uniformly in any interval finite or infinite, excluding
x 0, where F is not defined. For

and
-j y\

1 _^ n !

Hence lim JYaf) = e.
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Example 3.

= forz=0.

Here
limJ(a
*=0

while Slim /.(*)= 20 = 0.

Thus here Hm
=0 35=

But F does not converge uniformly at x = 0. On the other

hand, it does converge uniformly at x oo.

Now

and
lim 2/n (V&amp;gt;

= 2 lim /(*),
a?=x at

=j-x&amp;gt;

as the theorem requires.

Example 4- Wf \ _ V f
nx2 (--

which converges about x = but not uniformly.

However,
iim 2/j|(!B)

= 2 lim /.(*) = 0.

Thus the uniform convergence is not a necessary condition.

147. 1. Let lim /(^^ffl , ^ O =
&amp;lt;0i #,) uniformly at

t-T

x = a. Let /(#, f) 6^ continuous at x= a for each t in
Vf&amp;gt;*(r).

Then
&amp;lt;f&amp;gt;

is continuous at a.

This is a corollary of the Moore-Osgood theorem.

For by 146, 1

lim lim /(a + h, f)
= lim lim /(a + h,t).

h=o t=r t=r h=o

Hence
]im ^^ + A) = lim /(a, f)

=
&amp;lt;(a). Q.E.D.
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A direct proof may be given as follows :

/(, =
j&amp;gt;(x) + e

| |

&amp;lt; c, x in

&amp;lt;K^-&amp;lt;K^ )=/&amp;lt;X, -/(*&quot;, 0+6
But

|/(*&quot;,0-/&amp;lt;y&amp;gt;0 &amp;lt;* , if
I

* -

2. Ze F= ^fSl
...

Sp (^x1
&quot; xm) be uniformly convergent at x=a.

Let each fSl
...

Sp
be continuous at a. Then F(xl

xm *)
is continuous

at x = a.

Follows at once from 1).

3. In Ex. 3 of 140 we saw that

= V_?L_
is discontinuous at x = and does not converge uniformly there.

In Ex. 4 of 140 we saw that

does not converge uniformly at x = and yet is continuous there.

We have thus the result : The condition of uniform convergence in

1, is sufficient but not necessary.

Finally, let us note that

xa

is a series which is not uniformly convergent at x = 0, although

F(x) is continuous at this point.

4. Let each term, of F= ^fSi
... Sp (^x^

xm) be continuous at x = a

while F itself is discontinuous at a. Then F is not uniformly

convergent.

For if it were, F would be continuous at a, by 2.

Remark. This theorem sometimes enables us to see at once

that a given series is not uniformly convergent. Thus 140,

Exs. 2, 3.
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5. The power series P= 2a
Sl

... Sm afr x is continuous at any

inner point of its rectangular cell of convergence.

For we saw P converges uniformly at this point.

6. The power series P = a
Q + a^x + a

2
x2 + is a continuous

function of x in its interval of convergence.

For we saw P converges uniformly in this interval. In par

ticular we note that if P converges at an end point x = e of its

interval of convergence, P is continuous at e.

This fact enables us to prove the theorem on multiplication of

two series which we stated 112, 4, viz. :

148. Let A = ^ + fli + a
^ + _

^
5 = & + &! + ft

a + -

0= a
Q
b
Q + (fl^j + a^) + (0 2 + afa + a

2
6 ) + ...

converge. Then AB = C.

For consider the auxiliary series

F(x) = a + ! + atf? +

x) = a
Q
b -f (a/ 1 + aj^x + &quot;

Since A, E, converge, F, G-, H converge for x = 1, and hence

absolutely for
|

x
\

&amp;lt; 1. But for all
|

x
\

&amp;lt; 1,

Thus L lim H(x) = L lira F(x) L lira G- (x),
x=\ x=l x= i

or

149. 1. We have seen that we cannot say that/= $ uniformly

although / and &amp;lt; are continuous. There is, however, an impor

tant case noted by Dini.

Let f(x xm , ^ tn) be a function of two sets of variables

such that x ranges over 51, and t over a set having r as limiting

point, T finite or ideal. Let

lim/O, f)= &amp;lt;/&amp;gt;O)

in 51.

t=r

Then we can set ... ,. ,, ^ , , f ,,

f(x,t)=4&amp;gt;(x)++(x, 0-
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Suppose now
| ty(x, t

)\&amp;lt;\ ^(x, t)
\

for any t in the rectangu
lar cell one of whose vertices is t and whose center is r. We say
then that the convergence of / to &amp;lt; is steady or monotone at x.

If for each x in 51, there exists a rectangular cell such that the

above inequality holds, we say the convergence is monotone or

steady in 51.

The modification in this definition for the case that T is an ideal

point is obvious. See I, 314, 315.

2. We may now state Dini s theorem.

Let /(#! zm i *i )== 0(^i xm) steadily in the limited com

plete field 51 as t = T; T finite or ideal. Let f and
&amp;lt;j&amp;gt;

be continuous

functions of x in 51. Then f converges uniformly to &amp;lt; in 51.

For let x be a given point in 51, and

We may take t so near r that
| *fy(x,

t ) \

&amp;lt;

-
o

Let x be a point in V^x), Then

f(x&amp;lt;, o =
&amp;lt;K* ) + tO , O-

As /is continuous in #,

Similarly,

Thus

Hence
| ./r&amp;lt;V&amp;gt; I

&amp;lt; for any * in F.O)

and for any in the rectangular cell determined by t .

As corollaries we have :

3. Let Gr = 2 |/tl ...ia(^i Xm) | converge in the limited complete

domain 51. Let G- and each ft be continuous in 51- Then G- and

a fortiori F= 2/tl
...

t- converge uniformly in 51, furthermoreftl
...

ls
=

uniformly in 51.

4. Let Gr = 2 |/tl
... ^(^ rrm) | converge in the limited complete

domain 51, having a as limiting point. Let Gr and each f, be con-
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tinuous at a. Then G and a fortiori F= 2/tl
...

la converge uniformly
at a.

5. Let 6r = 2 |/tl ...ta (^i 2&quot;m) | converge in the limited complete

domain 21, having a as limiting point. Let lim Cr and each
lim/&quot;t

x=a x=a
exist. Moreover, let

Then Gr is uniformly convergent at a.

For if in 4 the function had values assigned them at x = a dif

ferent from their limits, we could redefine them so that they are

continuous at a.

150. 1 . Let lim f(xt
a?m , ^ tn~)

=
&amp;lt; (x^ xm) uniformly in

t=r

the limited field 21. Xe be limited in 21.

lim f/= f&amp;lt;

= film/.
t=T J% ju% /g #= T

For let
/=&amp;lt;^ + ^r.

Since /= &amp;lt;#&amp;gt; uniformly
|^| &amp;lt;

for any t in some V*(r) and for any z in 21.

Thus

Remark. Instead of supposing &amp;lt; to be limited we may suppose

that/(#, t) is limited in 21 for each t near r.

2. As corollary we have

Let lim/(^1
xm ,

t
l &quot;-t^)

=
&amp;lt;t&amp;gt;(%i

- xni) uniformly in the limited
t=T

field 2L Letf be limited and integrable in 2f for each t in T
r
5*(r).

Then
&amp;lt;f&amp;gt;

is integrable in 21 and

lim f/= f*= flim/.
=T ^$1 ^21 ^21 t=r

3. From 1, 2, we have at once:

Let F=^flv
.. Ls(xl

&quot;-xm ) be uniformly convergent in the limited

field 21- Let each /tl
...

ls
be limited and integrable in 2(. Then F is

integrable and r /

I F ^ ( f
I * ~

I /!-
Jgt ^
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If the f^...^ are not integrable, we have

Example. J&
7 V~

does not converge uniformly at x = 0. Cf . 140, Ex. 3.

Here
_ J_

and jYr N fl for
~

10 for x = 0.

Hence

**.*= 1- /*/o 1 + nx*

1 _ arctg Vn ^_
.j

Thus we can integrate F termwise although F does not converge

uniformly in (0, 1).

151. That uniform convergence of the series

with integrable terms, in the interval 51 = (a &amp;lt; 5) is a sufficient

condition for the validity of the relation

Xb
fb pbFdx = \ f^dx + I fjdx +

is well illustrated graphically, as Osgood has shown.*

Since 1) converges uniformly in H by hypothesis, we have

and

|

Fn (x) |
&amp;lt;

e n &amp;gt; m (3
for any x in 51.

* Bulletin Amer. Math. Soc. (2), vol. 3, p. 59.
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In the figure, the graph of F(x) is drawn heavy. On either

side of it are drawn the curves F e, F -\- e giving the shaded

band which we call the e-band.

From 2), 3) we see that the graph of

each Fn &amp;lt;

n&amp;gt;m lies in the e-band. The

figure thus shows at once that

and X_
can differ at most by the area of the a

e-band, i.e. by at most

C
b

2edx = 2e(b-
Jo,

152. 1. Let us consider a case where the convergence is not

uniform, as

F(x^ -^ [
nx _ (n-l)x\ _* - -

Here nx

If we plot the curves y = Fn (x), we observe that they flatten

out more and more as n ==
oo, and approach the #-axis except

near the origin, where

they have peaks which

increase indefinitely in

height. The curves
Fn(x), n&amp;gt;m, and m suf

ficiently large, lie within

an e-band about their

limit F(x) in any inter

val which does not in

clude the origin.

If the area of the

region under the peaks
could be made small at

pleasure for m sufficiently large, we could obviously integrate

termwise. But this area is here
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= - as n = QO .

Thus we cannot integrate the F series termwise.

2. As another example in which the convergence is not uniform

let us consider

Here
-r, nx

The convergence of F is uniform in 51 = (0, 1) except at x = 0.

The peaks of the curves Fn(x) all have the height e~ l
.

Obviously the area of the

region under the peaks can be

made small at pleasure if m is

taken sufficiently large. Thus
in this case we can obviously

integrate termwise, although
the convergence is not uniform

in 21.

We may verify this analytically. For

C
X

Fndx= C
X

dx = -- 1 + nx =Q asn = oo.
Jo Jo enx n nenx

3. Finally let us consider

Here
, n**

1 + *M

The convergence is not uniform at x = 0.

The peaks of Fn(x) are at the points x =
&quot;*,

at which points

Fn = l -Vn.
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Their height thus increases indefinitely with n. But at the

same time they become so slender that the area under them = 0.

In fact

We can therefore integrate termwise in (0 &amp;lt; a).

153. 1. Let Urn G-(x, ^ ... fn) =g(x) in 51 = (a, a + $), T /mte
&amp;lt;=T

or infinite. Let each G-x(x, t) be continuous in 51 ; also let Grx(x, )

converge to a limit uniformly in 51 as t = r. Then

Urn ax(x,t)=g (x) m5l, (1
t=T

and g\x} is continuous.

For by 150, 2,

By I, 538, ~,
I (jrxdx = CrCx, t^) GrCa* ).

*/ a

Also by hypothesis, ^ {
& ^ f}

_ &^ ()l=ffi

Hence

g(x)-g(a) = film ^(a;, )&amp;lt;. (2
*^a /=T

But by 147, l, the integrand is continuous in 51.

Hence by I, 537, the derivative of the right side of 2) is this in

tegrand. Differentiating 2), we get 1).

2. Let F(x) = 2/tl
... lt(x) converge in 51 = (a, a + S). Let each

f (x) be continuous, also let

2/; (*)

be uniformly convergent in 51. Then

l?

(ar)
= 2//(aj), in %.

This is a corollary of 1.
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3. The more general case that the terms/4 ...
ls

are functions of

several variables xv xm follows readily from 2.

154. Example.

Here

a function whose uniform convergence was studied, 145, 3. We saw

F(x) = for any x &amp;gt; 0.

Hence F (x) = x&amp;gt;0.

Let
(?O) = ?//,(*) (1

hence J&quot;(^)=2/^), (2

and we may differentiate the series termwise.

If a; = 0, and =1, X&amp;gt;0; (7n(0) = - wx = - oo as n = oo.

In this case 2) does not hold, and we cannot differentiate the

series termwise.

For x=Q, and a&amp;gt;l, 6rn(0)=0, and now 2) holds; we may
therefore differentiate the series termwise. But if we look at the

uniform convergence of the series 1), we see this takes place only

when -l X

/S //

155. 1. (Porter.) Let
F^ =^ ^

converge in 51 = (a, J). For every x in 51 let \fl(x)\ &amp;lt; g^ a constant.

Let G- = ^g, converge. Then F(x) has a derivative in 51 and

F W^-Sf .....(*) i C1

or we may differentiate the given series termwise.
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For simplicity let us take 8 = 1. Let the series on the right of

1) be denoted by &amp;lt;#&amp;gt;(V).

^or eac^ x m ^ we snow

e&amp;gt;0, .,., _ ^ &amp;lt; e, I Az I
&amp;lt;

S.

For

where fn lies in
V?&amp;gt;(x

Thus
D=.

i

But G- being convergent, 6rm &amp;lt; e/3 if m is taken sufficiently large.

Hence

|J&amp;gt;I&amp;lt;
2 i/;a)l+ 2

|/;c*)|&amp;lt;
2

&amp;lt;?.&amp;lt;}.
ff+l m-fl

On the other hand, since = ==/(^) and since there are only ?w
Az

terms in Z)m , we may take 5 so small that

|l&amp;gt;J&amp;lt;e/8.

Thus
|^&amp;gt;

2. Example 1. Let

TO---WtfO -&amp;gt;l

This series converges uniformly in 51 = (0 &amp;lt; 6), since

I / s \ I

Also x -^^
^ n

-.

n ! (1 + r

Hence

As l^rn converges, we may differentiate 1) termwise. In

general we have

valid in 51.
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3. Example 2. The fl functions.

These are defined by

0j (x) = 2 i (
-

1)Y n+i)2 sin (2 n + 1) TO
o

= 2 jl sin THE 2 2* sin 3 THE -f

,V
2 (a;)

== 2 l^n+ =)
2

cos (2/1 + 1) TTX

= 2
&amp;lt;?*

cos vrx + 2q* cos 3 TT.E +

,9
8 (a:)

= 1 4- 2 2?
n2 cos 2

= 14-2^ cos 2 ?ra; + 2 ^* cos 4 TTX -f-

V (a;)
= 1 H- 2 (

-
l)

n n2 cos 2
i

= 1 2
&amp;lt;7

cos 2 THE + 2
g-

4 cos 4 THE

Let us take , .
-^

Then these series converge uniformly at every point x. For

let us consider as an example vr The series

is convergent since the ratio of two successive terms is

9*

and this = 0. Now each term in v
x

is numerically

&amp;lt;\q

(n+
^&amp;lt; q\

n
\

and hence &amp;lt; the corresponding term in T.

Thus &i(x) is a continuous function of x for every x by 147, 2.

The same is true of the other .
(
/ s. These functions were discovered

by Abel, and were used by him to express the elliptic functions.

Let us consider now their derivatives.

Making use of 155, 1 it is easy to show that we may differentiate

these series termwise. Then

d O) = 2 -IT! (
-

l)
n
(2 n + 1) 0&amp;lt;

+
*&amp;gt;* cos (2 w + 1) TTX

o

= 2?r(g* cos TTX
3&amp;lt;2*

cos 3 TTX + ).
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^ (z) = _ 2 TT (2 n + 1) 2&amp;lt;&quot;

+ * )2 sin (2 71 + 1) TTZ

o

= 2^(9! sin TT# +- 3 q$ sin 3 THE + )

00

#
g (a;)

= 4 7r2 w^
n2 sin 2 71772;

i

= 4 TT
(5-

sin 2 TTZ + 2 ^* sin 4 TTX + ) .

,^ (a;)
= - 4 Tr (

-
l)

n
nq^ sin 2

i

= + 4 TT (^ sin 2 TTX 2q* sin 4 TTX + ).

To show the uniform convergence of these series, let us con

sider the first and compare it with

The ratio of two successive terms of this series is

,

2n+1

which = 0. Thus S is convergent. The rest follows now as

before.

156. 1. Let

t=r h

uniformlyfor &amp;lt;
|

A
|

&amp;lt; 17, T finite or infinite.

Let
x(a, ftw*

/or each t near r. Then g (a) exists and

This is a corollary of 146, 1. Here

&O + A, t)-GKa,
A

takes the place of f(x, ).

2. From 1 we have as corollary :
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SERIES OF FUNCTIONS

converge for each x in 51 which has x = a as a proper limiting point.

Letf((a) exist for each i = (iv tn). Let

converge uniformly with respect to h. Then



CHAPTER VI

POWER SERIES

157. On account of their importance in analysis we shall

devote a separate chapter to power series.

We have seen that without loss of generality we may employ
the series

a + alX + a^ + ... (1

instead of the formally more general one

a
Q + a

l(x a)+ a^x-a) 2
-\-
-

We have seen that if 1) converges for x = c it converges abso

lutely and uniformly in (7, 7) where
&amp;lt; 7 &amp;lt;

|

c
|. Finally,

we saw that if c is an end point of its interval of convergence, it

is unilaterally continuous at this point. The series 1) is, of course,

a continuous function of x at any point within its interval of

convergence.

158. 1. Let P(x) = a + a^x + a
2
x2 + converge in the interval

$1 = ( , ) which may not be complete. The series

P.-l . 2 ... M.+ 2 ft (f+ l)an+lx + -

obtained by differentiating each term of P n times is absolutely and

uniformly convergent in $8 = ( A /3), ft&amp;lt; a, and

P.C?), ins.

For since P converges absolutely for x = /3,

an{3
n

&amp;lt;M, n=l,2,...

Let now x lie within 33. Then the adjoint series of P^(x} is

Now its mih term

j _ mctmQm f g\
m~ l . mM

& \) ft\ft
187
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But the series whose general term is the last term of the pre

ceding inequality is convergent.

2. Let P=a + a
1
x + a%x

z +

converge in the interval 21. Then

where
,
x lie in 21. Moreover Q considered as a function of x con

verges uniformly in 21.

For by 137, P is uniformly convergent in (a, x). We may
therefore integrate termwise by 150, 3. To show that Q is uni

formly convergent in 21 we observe that P being uniformly con

vergent in 21 we may set

where
i D&quot; i n i

I

Pm
I

&amp;lt;
&amp;lt;r, m&amp;gt;m ,

o- small at pleasure.

Then

on taking &amp;lt;r sufficiently small.

159. 1. Let us show how the theorems in 2 may be used to

obtain the developments of some of the elementary functions in

power series.

The Logarithmic Series. We have

1 x

for any x in 21 = (- 1*, 1*). Thus

l-x
Hence

This gives also

a; = z- + - -
; a; in
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The series 1) is also valid for x = 1. For the series is conver

gent for x = 1, and log (1 + x) is continuous at x = 1. We now

apply 147, 6.

For x = 1, we get

2. The Development of arcsin x. We have by the Binomial

for x in 51 = (-!*, 1*). Thus

It is also valid for x = 1. For the series on the right is conver

gent for x 1. We can thus reason as in 1.

For x = 1 we get

Zr_ 1 1.3 1.3.5

2~ ^2-3 2.4.5 2.4.6-7

3. The Arctan Series. We have

_J = l_^ +
1+ x2

for x in 51 = (- 1*, 1*). Thus

X . X xo=
*~3-

+
5-

valid in 31. The series 3) is valid for x = 1 for the same reason as

in 2.

For x = 1 we get TT _
-, _ 1

,

1 _ 1
,

4&quot; 3
+

5 7~^

4. The Development of e
x

. We have seen that

converges for any #. Differentiating, we get
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Hence E (x)=E(x) (a)

for any x. Let us consider now the function

by (a). Thus by I, 400,/(V) is a constant. For x = 0,/(V) = 1.

Hence r ^ ~3
?x 1 4- -4- 4- -|- .h

l!
+

2!
+
3!^

valid for any #.

5. Development of cos #, sin x.

The series 9 d r

(7=1-^ + ^-^+...
2 !

^
4 ! 6 !

converges for every x. Hence, differentiating,

Hence adding, (7+ (7&quot; = 0. (b)

Let us consider now the function

f(x) = (7 sin x + C&quot; cos #.

Then
sn ^ _ sn ^ + cos a;

= ((7+ &amp;lt;7&quot;)cosa;

= by (b).

Thus /(V) is a constant. But (7=1, C&quot;
= 0, for a; = 0, hence

/(*)-o,
or C sin a: + C cos 2;= 0. (c)

In a similar manner we may show that

or #0*0= Ccosx sin x= 1. (d)
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If we multiply (c) by sin x and (d) by cos x and add, we get
0= cos x. Similarly we get C sin x. Thus finally

..

valid for any #.

160. 1. Let P = amx
m + am+1x

m+1 + , am = 0, converge in

some interval 51 about the origin. Then there exists an interval

53 &amp;lt; 51 in which P does not vanish except at x = 0.

= xm Q.

Obviously Q converges in 51. It is thus continuous at x = 0.

Since Q = at x = it does not vanish in some interval 33 about

3=0 by I, 351.

In analogy to polynomials, we say P has a zero or root of order

m at the origin.

2. Let P a
Q 4- a^x + a

2
z2 4- vanish at the points b v J

2 ,
... = 0.

Then all the coefficients an = 0. The points bn are supposed to be

differentfrom each other andfrom 0.

For by hypothesis P(bn) = 0. But P being continuous at x = 0,

Hence
P(0)=0,

and thus

Hence p =

Thus P
1

vanishes also at the points bn . We can therefore

reason on P
l
as on P and thus a

1
= 0. In this way we may

continue.

3. If P = a + aiz+-
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be equal for the points of an infinite sequence B whose limit is x = 0,

then an = bn ,
n = 0, 1, 2

For P Q vanishes at the points B.

Hence i A A -i on- bn = v
, w = 0, 1, 2-..

4. Obviously if the two series P, are equal for all x in a

little interval about the origin, the coefficients of like powers are

equal; that is ^ = ^ ?
n = ,l,2...

161. 1. Let
y = ao + &amp;lt;v;

+v3 + ...
(1

converge in an interval 51. As # ranges over 51, let i/ range over

an interval $&. Let
&quot;

(2

converge in 35. Then z may be considered as a function of x de

nned in 51. We seek to develop z in a power series in x.

To this end let us raise 1) to the 2, 3, 4 ... powers ; we get
series o

y =
^20 + a

2l
x + ^22^ + &quot;

wx
* + ~

(3

which converge absolutely within 51.

We note that amn is a polynomial.

in ,
- #n with coefficients which are positive integers.

If we put 3) in 2), we get a double series

D= (b + b) + b^x -f b^x2 +

a
21

7; + *2a222
2 +

si^ + V82232 +

+ .....
. V

V20

If we sum by rows, we get a series whose sum is evidently 0,

since each row of D is a term of z. Summing by columns we get

a series we denote by
C= t + cx + c

z
x* + (5
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c
l
= b

l
a

l
+ 6

2 21 4- Vsi -!
---- (6

We may now state the following theorem, which is a solution of

our problem.

. Let the adjoint y-series,

converge for = to the value T)
=

7/
. Let the adjoint z series

-
(8

converge for 77
=

?;
. T^e/i the z series 2) caw be developed into a

power series in x, viz. the series 5), which is valid for
\

x
\

&amp;lt; .

For in the first place, the series 8) converges for 77 &amp;lt;.TJO
. We

show now that the positive term series

converges for &amp;lt; f . We observe that ^) differs from Adj D,

at most by its first term. To show the convergence of X) we

have, raising 7) to successive powers,

7,2
=

We note that Amn is the same function Fm%n of
, j, n as

amn is of a , aB , i.e.

As the coefficients of Fm ^ n
are positive integers,
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Putting these values of ?;, ??
2

, rf in 8), we get

A = 8 +

Summing by rows we get a convergent series whose sum is ?

or 8). But this series converges for &amp;lt; f since then
rj&amp;lt;rj^

and 8) converges by hypothesis for rj
=

IJQ
. Now by 9) each

term of ) is &amp;lt; than the corresponding term in A. Hence )

converges for f &amp;lt; .

2. As a corollary of 1 we have :

Let
y = c

converge in H, and

converge for all oo &amp;lt; y &amp;lt; -f o 2%ew 2 can 5e developed in a

poiver series in x,

z c
Q + 0^+ c%x

2 + ... = O
for all x within 51.

3. Let the series

y = amx
m

-f am+1x
m+l

H---- ,
w &amp;gt; 1

converge for some x &amp;gt; 0. T/ fAg series

z = b
Q +b ly + btf* +

converges for some y &amp;gt; 0, i caw ft^ developed in a power series

Z= CQ+ CjX + C
2
X2 -\

----

convergentfor some x &amp;gt; 0.

For we may take f =
|

x
\

&amp;gt; so small that

V = mf
m + +if

+1
H- -

has a value which falls within the interval of convergence of

4. Another corollary of 1 is the following :

y= a9 + a
]
x + a^x

2 + ...
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converge in 21 = ( A, A). Then y can be developed in a power
series about any point c of 21,

which is valid in an interval 53 whose center is c and lying within 21.

162. 1. As an application of the theorem 161, l let us take

s^ + jL + ^ + r +
i ! 2 r 3 r

_ z__z^ , ^__y
1 ! 3 ! 5 !

As the reader already knows,

z = ev
, y sin a?,

hence z considered as a function of x is

z =
We have

z = 1 + z + z2 - i r3 + 0.*4 + T|o ^+ -a6
4-

+ -i.^+ -
\x* + +^+..

H-j^-h -iV^5 + + ..

Summing by columns, we get

Z=^n* =1 + ^ + j^_i^__l_^5__l_^...
2. As a second application let us consider the power series

z =

convergent in the interval 21 = (- R, R). Let z be a point in 21.

Let us take 77 &amp;gt; so small that y = x + h lies within 21 for all

|*|&amp;lt;L*

Then ,.
z = a + flj (x + h)

+ a
2 (z

2 + 2 zA + A2)
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This may be regarded as a double series. By 161, l it may be

summed by columns. Hence

P(x + h) = + ap + a
2
x2 + a&* +

+ A(at + 2
2
z + 3 OgZ

2 + )

+ |l(2 a + 2.3a^ + 3.4fl
4
2 J

a + ) (2

+ ............
=

P(x)+hP&amp;gt;(x)+^P&quot;(x)
+
j;P W+.~ (3

on using 158, 1.

This, as the reader will recognize, is Taylor s development of

the series 1) about the point x. We thus have the theorem :

A power series 1) may be developed in Taylor s series 3) about

any point x within its interval of convergence. It is valid for all h

such that x+ h lies within the interval of convergence 0/1).

163. 1. The addition, subtraction, and multiplication of power
series may be effected at once by the principles of 111, 11:2. We
have if P = a + a

converge in a common interval 31 :

P+ Q = (aQ + b
() ) + (a1 + b

1)x

P - Q = (o - Jo) + Oi -

P Q = ^o + (a i
b
o + a

o
b

These are valid within SI, and the first two in 31.

2. Let us now consider the division of P by R. Since

-P.I
R R

the problem of dividing P by R is reduced to that of finding the

reciprocal of a power series.

P = a ax a ^

converge absolutely in R =( -#,

= ^2; +

fo numerically &amp;lt;

\

a
1

m 33 = ( r, r) r &amp;lt; R.
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Then 1/P can be developed in a power series

1

P
valid in 53. The first coefficient C

Q
= .

a
o

For 1111
p

for all x in 53. We have now only to apply 161, 1.

3. Suppose

To reduce this case to the former, we remark that

Then ^\_ I

P~ xm Q

But \/Q has been treated in 2.

164. 1. Although the reasoning in 161 affords us a method of

determining the coefficients in the development of the quotient of

two power series, there is a more expeditious method applicable
also to many other problems, called the method of undetermined

coefficients. It rests on the hypothesis that /(#) can be developed
in a power series in a certain interval about some point, let us say
the origin. Having assured ourselves on this head, we set

f(x) = a
Q + a^x + atf? +

where the a s are undetermined coefficients. We seek enough
relations between the a s to determine as many of them as we
need. The spirit of the method will be readily grasped by the

aid of the following examples.
Let us first prove the following theorem, which will sometimes

shorten our labor.
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2 ^
f(x~) = a + a

l
x + a&amp;lt;

i
x2 + ; -E&amp;lt;x&amp;lt;R, (1

is an even function, the right-hand t&amp;lt;ide can contain only even powers

of x; iff(x) is odd, only odd powers occur on the right.

For if/ is even,
/() -/&amp;lt;-). (2

But
f(-x) = a -a

1z+&amp;lt;V*- ... (3

Subtracting 3) from 1), we have by 2)

= 2(a 1
a; + a#? + a#? + ..-)

for all x near the origin. Hence by 160, 2

i
= 8=6= =-

The second part of the theorem is similarly proved.

165. Example 1.
/(a-) = tan a.

Since gin 3.
tan x = ,

cos x

and ^

we have ^3 ^

Since cos x
&amp;gt;

in any interval 33 = f - + S, S
j

,
S

&amp;gt; 0, it

follows that
| |

&amp;lt;
1 in 33.

Thus by 163, 2, tana; can be developed in a power series about

the origin valid in $&. We thus set

tan x = a^c. + fl^r
3 + a^ -f (2
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since tana: is an odd function. From 1), 2) we have, clearing

fractions,

Comparing coefficients on each side of this equation gives

- a -
3 2!~ FT 3 ~3

a a.

r Q ,

a- --^H a --1 = -- . /._
7

2! 4! 6! 7!
7 315

1 17

7!

__ __. __
9 2!4! 6! 8! 9!

9
2835

Thus 21
(3

)

Example 2.

sin x

\

Since

we see that
I O I

&amp;lt; 1

when 2; is in ^=(-7r + S, TT-^), 3&amp;gt;0. Thus xf(x) =
can be developed in a power series in 58. As f(x) is an odd

function, xf(x} is even, hence its development contains only even

powers of x. Thus we have

xf(x) = rt 4- a^ -}- ax* H----
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Hence

a - + -t _ s + ,

3!5! 7I&amp;gt;

8
3! 5! 7!

+
9!

Comparing like coefficients gives

q-|

8 ! 5 ! 7 ! 3 7

Thus 111 7 QI

sina; a; 6 360 3-7!

valid in ( TT*, TT*).

166. Let
J&amp;lt;&amp;gt;) =/!(*) +/.CO+ -

/.(*) = n0 + .i* + n2^
2 + - = 1, 2

Let the adjoint series

(4

converge for % = R and have
&amp;lt;/&amp;gt;
n as sums for this value of f .

converge. Then ^ converges uniformly in H = ( ^2, ^2) and F
may be developed as a power series, valid in 21, by summing by
columns the double series
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F converges uniformly in 21. For as \x\
&amp;lt;

f,

4 nl + n2 + =
&amp;lt;V

We now apply 136, 2 as 2$n is convergent for % = R.

To prove the latter part of the theorem we observe that

4 R 4

4

is convergent, since summing it by rows it has &amp;lt;E&amp;gt; as sum. Thus

the double series 1) converges absolutely for
|z|&amp;lt;f, by 123, 2.

Thus the series 1) may be summed by columns by 130, l and has

F(x) as sum, since 1) has F as sum on summing by rows.

167. Example.

This series we have seen converges in 51 = (0, 5), b positive and

arbitrarily large.

Since it is impossible to develop thefn(x) in a power series about

the origin which will have a common interval of convergence, let

us develop F in a power series about X
Q &amp;gt;

0.

We have

1 1 1

=F~W 1

1 ~ ^l^a^ +
(14oO 2

~ &quot;

J

where A (!)&quot;&quot;&quot;
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Thus F give rise to the double series

D = A - *

where ,, _( l)
n

A
An* - A.n K .

The adjoint series to/n(a:) is, setting f = [a a;
|,

,

^ ^2-P
T n \.9 / i I

-jnl \1 + c

This is convergent if

^

a
n

&amp;lt; 1 or if

that is, if 02
For any x such that # &amp;lt;#&amp;lt;2# ,

= 2

Then for such an x

*&quot;

=
;ni+a-(L -

and the corresponding series

is evidently convergent, since &amp;lt; n &amp;lt;

7Z 1

We may thus sum D by columns ; we get

K=0

where ^r_l)n+K an

The relation 1) is valid for
&amp;lt;

x
&amp;lt;

2 :r .
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168. Inversion of a Power Series.

Let the series . 7 . . T ,2 . siv = o + b
1
t + If 4- - (1

have 6
X

= 0, and let it converge for t = t
Q

. If we set

t = xt , U=V
7+ *

i
c
o

it goes over into a series of the form

u = x a^x
2 a

3
3? (2

which converges for x = 1. Without loss of generality we may
suppose that the original series 1) has the form 2) and converges
for x 1. We shall therefore take the given series to be 2). By
I, 437, 2 the equation 2) defines uniquely a function x of u which

is continuous about the point u = 0, and takes on the value x= 0,

for u = 0.

We show that this function x may be developed in a power
series in w, valid in some interval about u = 0.

To this end let us set

x = u 4- c
2
u? 4- c

3
ifi 4- (3

and try to determine the coefficient
&amp;lt;?,

so that 3) satisfies 2)

formally. Raising 3) to successive powers, we get

x2 = u? 4- 2 c&* 4- (*2
2 + 2 &amp;lt;?

3 &amp;gt;

4 + (2 c + 2
&amp;lt;y3X + -

a* = M3 + 3 ^4 + (3 ^2 + 3
&amp;lt;g

w5 + ... (4

x^ = u* -f 4 2
w5

-f-

Putting these in 2) it becomes

u = u + (ea
-

&amp;lt;z

2)w
2
-f

(&amp;lt;?8
- 2 a

2
c
2
- a

3)w
3

+ (*4
-

2 (^2
2

4- 2 c
8 )
- 3

3
^
2
- a

4)w*

+
(&amp;lt;?6
- 2 a

2 (c4+ ^
2
^
3)
- 3 a

3 (6-2
2
4- &amp;lt;?

8 )
- 4

4
^
2
- a

6)w
5

(5

4-

Equating coefficients of like powers of w on both sides of this

equation gives c
2 #

2

c
3
= 2 a

2
e
2 4- 8

^4
=

2 (^2
2 + 2 c

8) 4- 3 a^ 4- 4 (6

* = 2 ^ + CC + 3 ^^ 2 + * + 4 ^^ +
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This method enables us thus to determine the coefficient c in

3) such that this series when put in 2) formally satisfies this

relation. We shall call the series 3) where the coefficients c have
the values given in 6), the inverse series belonging to 2).

Suppose now the inverse series 3) converges for some wo9bO;
can we say it satisfies 2) for values of u near the origin ? The
answer is, Yes. For by 161, 3, we may sum by columns the

double series which results by replacing in the right side of 2)

r rr2 &amp;lt;r&

Ox, ^/
, ^/

,

by their values in 3), 4). But when we do this, the right side of

2) goes over into the right side of 5), all of whose coefficients

= by 6) except the first.

We have therefore only to show that the inverse series con

verges for some u = 0. To show this we make use of the fact that

2) converges for x = 1. Then an = 0, and hence

|fln |&amp;lt;some
ft = 2, 3,... (7

On the other hand, the relations 6) show that

*n=/(2, 8 *) (8

is a polynomial with integral positive coefficients. In 8) let us

replace #
2 ,

a
z

&amp;gt;&quot; by a, getting

7=/n(a &amp;gt; ) (9

Obviously |

cn
\

&amp;lt; yn . (10

Let us now replace all the a s in 2) by a
; we get the geometric

series 2^4 x-nu = x ax? ax3 ax* ... (11

The inverse series belonging to 11) is

x = u + y2
u2 + 73

^3 + 74
^4

H (13

where obviously the y s are the functions 9).

We show now that 11) is convergent about u = 0. For let us

solve 12) ; we get

_ 1 + u + VI - 2(2 q +
2(1
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Let us set 1 2(2 a -f l)w +- u2 = 1 v. For u near u = 0,

&amp;lt;
1. Then by the Binomial Theorem

VI - v = 1 + d^v + d
2
v2 H----

Replacing v by its value in w, this becomes a power series in u

which holds for u near the origin, by 161, 3. Thus 14) shows that

x can be developed in a power series about the origin. Thus 13)

converges about u = 0. But then by 10) the inverse series 3)

converges in some interval about u = 0.

We may, therefore, state the theorem :

Let
U== b + b

1
x + b

2
x* + b

3
x* + ...

, fl^O, (15

converge about the point x = 0. TJien this relation defines x as a

function of u which admits the development

x=(u- 5)(i +a l (u-b) + a
2 (u-b)*+ }

I o\ j

about the point u = b. The coefficients a may be obtained from 15)

by the method of undetermined coefficients.

Example. We saw that

T2 r3 r4 ^5
M = log(l + ^) = ^-|+|-| + |-- (1

If we set

u = x + tf
2
z2 + a

s
x3 + a

4
z4 + (2

we have
l l i _ i

2
= -l

,
rt
3
= l

, 4 =-t , 5=i&quot;

If we invert 2), we get

x = u -f- ^
2
w2 + c&amp;gt;

3
^3 +

where c s are given by 6) in 168. Thus

- ^= - Ki + 2 D+3 **-* = - A- ^ = A-

-^=2(-i)(-2L + |.i)+3
= -120-

* C
o =120
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Thus we get

*= M+S + S + + +

But from 1) we have

i+*= &quot;=i + n+f^+-
which agrees with 3).

Taylor s Development

169. 1. We have seen, I, 409, that if f (x) together with its

first n derivatives are continuous in 21 = (a &amp;lt; 6), then

+
^/&quot;&quot;O

+ OK) (1

Where
a&amp;lt; a + A&amp;lt;6 , 0&amp;lt;0&amp;lt;1.

Consider the infinite power series in h.

^=/() + /j/ (*) +
f*/&amp;gt;)+

- (2

We call it the Taylor s series belonging to f(x). The first n

terms of 1) and 2) are the same. Let us set

JZ.= ^/*0
IV

We observe that Rn is a function of n, 7i, a and an unknown
variable lying between and 1.

We have ...
,

,, m , r&amp;gt;

/(a -f A) = rn + ^u .

F&quot;rom this we conclude at once :

//&quot; 1, f(x) and its derivatives of every order are continuous in

51 = (a, 6), and 2

lim JRn = lim -^/
(B)(a+ ^A) = ,

n = ac, (4
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Then 7 TO

/( + A) =/(&quot;) + -/()+
|j/&quot;O)

+ -
(5

The above theorem is called Taylor s theorem; and the equa
tion 5) is the development of f(x) in the interval 51 by Taylor s

series.

Anotherform of 5) ?s

/ O) =/() + ZLo) +
^-/&quot;(a)

+ ... (6

When the point a is the origin, that is, when a = 0, 5) or 6)

gives 2

/(*) =/() + */ (&amp;lt;&amp;gt;)
+

fr/&quot;(0)
+ - (7

This is called Maclauriris development and the right side of 7)
Maclaurirfs series. It is of course only a special case of Taylor s

development.

2. Let us note the content of Taylor s Theorem. It says :

If 1 f(x) can be developed in this form in the interval

2l = (a&amp;lt;&);

2 if f(x) and all its derivatives are known at the point
x = a

;

then the value of / and all its derivatives are known at every

point x within 51.

The remarkable feature about this result is that the 2 condi

tion requires a knowledge of the values of f(x) in an interval

(a, a -h S) as small as we please. Since the values that a func

tion of a real variable takes on in a part of its interval as (a &amp;lt; e),

have no effect 011 the values thatjf(#) may have in the rest of the

interval (c &amp;lt; 6), the condition 1 must impose a condition on f(x)
which obtains throughout the whole interval 51-

v

170. Let f(x) be developable in a power series about the point a,

viz. let

Then ,
(n)

&quot;n ~n^ ?i = 0, 1, ... (2

i.e. the above series is Taylor s series.
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For differentiating 1) n times, we get

/&amp;gt;(*)
= ! + &quot;11 a^(x - a) + ...

Setting here x= a, we get 2).

The above theorem says that if f(x) can be developed in a

power series about x = a, this series can be no other than Taylor s

series.

171. 1. Let f (n
\x) exist and be numerically less than some con

stant M for all a &amp;lt; x &amp;lt; 6, and for every n. Then f(x) can be

developed in Taylor s series for all x in (a, 5).

For then
I 7? I M &quot;

n !

But obviously ^. hn _ ^
n=x&amp;gt; n !

2. The application of the preceding theorem gives at once :

(3

which are valid for every x.

SinCe

we have

*=l+*l + *2
1^ + ...

(4

valid for all x and a
&amp;gt;

0.

172. 1. To develop (1 + #)
x awe? log (1 + #) we need another

expression of the remainder 72n due to Cauchy. We shall con

duct our work so as to lead to a very general form for Rn .

From 169, 1 we have
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We introduce the auxiliary function defined over (a, &amp;gt;).

KO =AO +/ (00* -0 +

Then
&amp;lt;/(*)=/(*)

and

Hence
. .=K*)-K0. (2

(f we differentiate 1), we find the terms cancel in pairs, leaving

-/no- (3

We apply now Cauchy s theorem, I, 448, introducing another

arbitrary auxiliary function &(x) which satisfies the conditions

of that theorem.

Then 9(x)-g(a) = /(g), a
&amp;lt;

c
&amp;lt;

x.

Using 2) and 3), we get, since x = a + A,

where &amp;lt;
^

&amp;lt;
1.

2. If we set
(?&amp;lt;

=
(6-*)&quot;,

we have a function which satisfies our conditions. Then 4) becomes

a formula due to Schlomilch and Roche.

For /A
= 1, this becomes

A-O-^
r&amp;gt; 1 .

which is Cauchy s formula.
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For
IJL
= n, we get from 5)

n l

which is Lagrange s formula already obtained.
k

173. 1. We consider now the development of

(1 + x)* x ^ 1
, p arbitrary.

The corresponding Taylor s series is

We considered this series in 99, where we saw that :

T converges for
|

x
\

&amp;lt;
1 and diverges for

|

x
\

&amp;gt; 1.

When x = 1, T converges only when /*&amp;gt;!; when x = 1^

^converges only when ft^O.

We wish to know when

The cases when T diverges are to be thrown out at once. Con
sider in succession the cases that T converges. We have to

investigate when lim Rn = 0.

Case 1. 0&amp;lt;
|

x
\

&amp;lt; 1. It is convenient to use here Cauchy s

form of the remainder. This gives

1 . 2

setting .,

_^. M -1 . ... M - M + 1
*&quot;

hence lim TFn = 0.
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x,

which is finite. Hence Un is &amp;lt; some constant M.
To show that Km Sn = 0, we make use of the fact that the series

T converges for the values of x under consideration. Thus for

every /*

lim J&quot;M-l--M-n + 2^ =
1 2 - ... n 1

since the limit of the nih term of a convergent series is 0. In

this formula replace /-t by ^ 1, then

1-2 n-l fMx

Hence ,. Ahm Sn = 0.

Thus
n

. Dhm Rn
= 0.

Hence 1) is valid for
|

x
j

&amp;lt;
1.

Case 2. x= 1, IJL&amp;gt;
1. We employ here Lagrange s form of

the remainder, which gives

1(1 + *)*-1.2- ...

setting
TT _

1.2. ...

Consider Wn . Since /i increases without limit, fi n becomes
and remains negative. As 6 &amp;gt;

lim Wn
= 0.

For Z7B , we use I, 143. This shows at once that

lim Un = 0.

Hence ,. ,,hm Rn
=

and 1) is valid in this case, i.e. for x 1, /x &amp;gt;
1.
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Case 3. x = 1, ft ^&amp;gt;
0. We use here for p &amp;gt;

the Schlomilch-

Roche form of the remainder 172, 5) . We set a = 0, h = 1 and get

( _ ly/*- 1 /*-2 .../x-rc+1
&amp;gt; l,2...-n-l

Applying I, 143, we see that lim -Rn = 0.

Hence 1) is valid here if p &amp;gt;
0.

When /i
= equation 1) is evidently true, since both sides

reduce to 1.

Summing up, we have the theorem :

The development of (1 + x)^ in Taylor s series is valid when

|

x
|

&amp;lt;
1 for all /x. When x = -h 1 it is necessary that /a &amp;gt;

1
;

when x= 1 it is necessary that
fJi^&amp;gt;0.

2. We note the following formulas obtained from 1), setting

x = 1 and 1.

174. 1. We develop now log (1 + #). The corresponding

Taylor s series is

* +
1

~~

2&quot;

+ &quot;

We saw, 89, Ex. 2, that T7

converges when and only when

\x\&amp;lt;\
or x = 1.

Let &amp;lt; x &amp;lt; 1. We use Lagrange s remainder, which gives here

=n

Thus

Hence lim Rn = 0.
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Let _ l
&amp;lt;

x &amp;lt; 0. We use here Cauchy s remainder, which

gives, setting x =
, &amp;lt; f &amp;lt; 1,

if

Evidently

Also

Finally 1
lim TFn = since

&amp;lt;
1.

1 6%

We can thus sum up in the theorem :

Taylor s development of log (1 -f x) is valid when and only when

x\ &amp;lt;
1 or x = 1. That is, for such values of x

2. We note the following special case :

i
-

* + \
-

\ + - = log 2.

The series on the left we have already met with.

175. We add for completeness the development of the follow

ing functions for which it can be shown that lim Rn = 0.

which is valid for (1, 1).

arctan x == x \- +... (2

which is valid for ( 1*, 1).

1 a* 1 . 3 * 1.3.52?

which is valid for ( 1*, 1*).
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176. We wish now to call attention to various false notions

which are prevalent regarding the development of a function in

Taylor s series.

Criticism 1. It is commonly supposed, if the Taylor s series T
belonging to a function /(#) is convergent, that then

/(*) = T.

That this is not always true we proceed to illustrate by various

examples.

Example 1. For f(x) take Cauchy s function, I, 335,

-i

*+!,
(700= lime n

w=oo

_JL

Forz=0 O(x)=e
x*

;
for x = (7(a;)=0.

1 derivative. For x * 0, C (x) = - C(x).

For, = 0,
A=O

2 derivative, x * 0,
&quot;

(*) = (7 (a;) ( 4 ~ 4 I
[x*&amp;gt;

x* )

x = 0, &amp;lt;7&quot;0)
= lim ^Wll_^i2) = lim 1 &quot;* = 0.

3 derivative, x * 0, C&quot; (x) = (x) \ -^
- ^ +^

Id;
9

a: z5

* = 0,
C&quot;&quot;(0)=lim-^jp=0.

/TI general we have :

# ^= 0, C(n)
(x) = C (x) |

h terms of lower degree i

I x? J

Thus the corresponding Taylor s series is

&amp;lt;r r*
T (7(0) + &amp;lt;7 (0) + (7&quot;(0) +

1 ! 2 !

= + -x+ -x*+ a^+
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That is, T is convergent for every #, but vanishes identically.
It is thus obvious that C (x) cannot be developed about the origin
in Taylor s series.

Example 2. Because the Taylor s series about the origin be

longing to
&amp;lt;7(#)

vanishes identically, the reader may be inclined

to regard this example with suspicion, yet without reason.

Let us consider therefore the following function,

/&amp;lt;

= C(x)+ &amp;gt; . G(x) + g(x).

Then f(x) and its derivatives of every order are continuous.

Smce
/(n)(a;)

= c&amp;lt;n)^ +
g&amp;lt;n)^

71 = 1, 2 ...

and =0
we have

Hence Taylor s development for f (x) about the origin is

This series is convergent, but it does not converge to the right
value since

rp_ x
-L &

177. 1. Example 3. The two preceding examples leave noth

ing to be desired from the standpoint of rigor and simplicity.

They involve, however, a function, namely, (7(#), which is not

defined in the usual way; it is therefore interesting to have ex

amples of functions defined in one of the ordinary everyday

ways, e.g. as infinite series. Such examples have been given by

Pringsheim.
The infinite series

defines, as we saw, 155, 2, a function in the interval 21 = (0, 5),

b &amp;gt;0 but otherwise arbitrary, which has derivatives in 51 of every

order, viz. :

/
-f ~\n nn\

;p (2
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The Taylor s series about the origin for F(x) is

T(x) =^F^^) ; Xl = lforX=0,
A=0 X

and by 2)

Hence

(3

As
*&amp;gt;0

and lim ^=0, A+I &amp;lt;A, this series is an alternate series

for any x in 51. Hence T converges in 51.

2. Readers familiar with the elements of the theory of func

tions of a complex variable will know without any further reason

ing that our Taylor s series T given in 3) cannot equal the given
function F in any interval 51, however small b is taken. In fact,

F(x) is an analytic function for which the origin is an essentially

singular point, since F has the poles
--- n = 1, 2, 3

, whose

limiting point is 0.

3. To show by elementary means that F(x) cannot be devel

oped about the origin in a Taylor s series is not so simple. We
prove now, however, with Pringsheim :

If we take a^filY4.68 , T(x) does not equal F(x)
\e I/

throughout any interval 51 = (0, 5), however small b
&amp;gt;

is taken.

We show 1 that if F(x) = T(x) throughout 51, this relation is

true in 53 = (0, 25*).
In fact let 0&amp;lt;xQ &amp;lt;b.

By 161, 4 we can develop I7 about # , getting a relation

^0*0 = i&amp;lt;7
JC &amp;lt;&amp;gt;-3b) (1

valid for all x sufficiently near x9 . On the other hand, we saw in

167 that

F(x) = ^BK(x-xY (2
o

is also valid for 0&amp;lt;z&amp;lt;2# . But by hypothesis, the two power
series 1) and 2) are equal for points near x9

. Hence they are
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equal for 0&amp;lt;x&amp;lt;2x . As we can take XQ as near b as we choose,

F=Tin 33.

By repeating the operation often enough, we can show that F =
T in any interval (0, B) where B &amp;gt;

is arbitrarily large.

To prove our theorem we have now only to show F= T for

some one x &amp;gt;0.

Since
1 1 V /I 1 11

we have -.
-,

,FO)&amp;gt;

L L.
1 + x l + ax

On the other hand

Hence
T(x)&amp;lt;--

e

To find a value of x for which Gr^- take x a~*. For this

value of x

Observe that Cr considered as a function of a is an increasing

function. For /
e _j_ -|\

2 ^
&quot;~

\e - lj
~

e

Hence F&amp;gt; T tor x &amp;gt;-*.

178. Criticism 2. It is commonly thought if f(x) and its

derivatives of every order are continuous in an interval H, that

then the corresponding Taylor s series is convergent in 31.

That this is not always so is shown by the following example,
due to Pringsheim.

It is easy to see that

converges for every x
_&amp;gt;0,

and has derivatives of every order for

these values of #, viz. :
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Taylor s series about the origin is

The series T is divergent for x &amp;gt; 0, as is easily seen.

179. Criticism 3. It is commonly thought if f(x) and all its

derivatives vanish for a certain value of x, say for x = a, that

then/(V) vanishes identically. One reasons thus:

The development of/(V) about x a is

/oo^/oo+^fiVoo + (a;
r,

a)2
/&quot;(a)+

-

As/and all its derivatives vanish at a, this gives

f(x) = + - O -
a) + . (x - a)

2 + - -

= whatever x is.

There are two tacit assumptions which invalidate this conclusion.

First, one assumes because / and all its derivatives exist and
are finite at x = a, that therefore f(x) can be developed in

Taylor s series. An example to the contrary is Cauchy s function

C(x). We have seen that C(x) and all its derivatives are at

x = 0, yet 0(x) is not identically ; in fact (7 vanishes only once,

viz. at x = 0.

Secondly, suppose f(x) were developable in Taylor s series in a

certain interval 51 = (a A, a + h). Then / is indeed through
out H, but we cannot infer that it is therefore outside H. In

fact, from Dirichlet s definition of a function, the values that/has
in 51 nowise interferes with our giving / any other values we

please outside of 51.

180. 1. Criticism 4- Suppose f(x) can be developed in Taylor s

series at a, so that

for H =(&amp;lt;*).
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Since Taylor s series I7
is a power series, it converges not only

in H, but also within 53 = (2 a b, a). It is commonly supposed

that f(x) = T also in 53. A moment s reflection shows such an

assumption is unjustified without further conditions on f(x).

2. Example. We construct a function by the method considered

in I, 333, viz.

Then f(x) = cos z, in 5i = (0, 1)

= 1 + sin x, within 53 = (0,
-

1).

We have therefore as a development in Taylor s series valid

in 91 ~2 ~4 ~6

/(
*)-i-f&amp;gt;+fi-f&amp;gt;

+...-*

It is obviously not valid within 53, although T converges in 53.

3. We have given in 1) an arithmetical expression for/ (x).

Our example would have been just as conclusive if we had said :

Let /(#) = cos x in H,

and = 1 + sin # within 53-

181. 1. Criticism 5. The following error is sometimes made.

Suppose Taylor s development

valid in 51 = (a &amp;lt;

It may happen that jT is convergent in a larger interval

One must not therefore suppose that 1) is also valid in 53.

2. Example.
Let

f(x)=e* in 51 = (a, 5),
and = e* + sin (x - b) in SB = (6, 5).

Then Taylor s development

is valid for 51. The series T converging for every x converges in

53 but 1) is not valid for 53.
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182. Let f(x) have finite derivatives of every order in

$[
=

(#&amp;lt; 5). In order that/(V) can be developed in the Taylor s

series
7 2

/(*)=/( + *)=/() + 00 + ^ /&quot;() + -
(1

valid in the interval 51 we saw that it is necessary and sufficient

that
lim Rn = 0.

But Rn is not only a function of the independent variable A, but

of the unknown variable 6 which lies within the interval (0, 1)

and is a function of n and h.

Pringsheim has shown how the above condition may be replaced

by the following one in which 6 is an independent variable.

For the relation 1) to be valid for all h such that
&amp;lt;Ji &amp;lt; H, it is

necessary and sufficient that Cauchy sform of the remainder

the h and being independent variables, converge uniformly to zero

for the rectangle D whose points (h, 6) satisfy

1 It is sufficient. For then there exists for each e &amp;gt;
an m

such that

|

Rn (h, 0)
|

&amp;lt;
e n 5 m

for every point (A, 6) of D.

Let us fix h ;
then Rn

\

&amp;lt; e no matter how 6 varies with n.

2 It is necessary. Let h
Q
be ah arbitrary but fixed number in

H= (0,JJ*&amp;gt;

We have only to show that, from the existence of 1), for h&amp;lt;_hQ ,

it follows that

uniformly in the rectangle Z&amp;gt;,
defined by
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The demonstration depends upon the fact that Rn(h, 0) is h

times the wth term /(, &) of the development of f (x) about the

point a + . In fact let h = a + k. Then by 158

/ (a + A) =/ (&amp;lt;,
+ + *) = / (* + ) + .+

i^/^a+ )+---

whose nth term is

Let = #A, then

.(A,)=A/m(o,*)
as stated.

The image A , of _Z&amp;gt; is the half of a square of side A , below the

diagonal.

To show that Rn converges uniformly to in DQ
we have only

to show that ^^ ^ ^ Q uniformly in A . (2

To this end we have from 1) for all t in H

/ (a + =/ () + (TOO + /&quot; ()+- (3

Its adjoint
/ (a) | +;/() |

+

also converges in 31.

By 161, 4 we can develop 4) about t =
,
which gives

But obviously (r(, Ar) is continuous in A , and evidently all its

terms are also continuous there. Therefore by 149, 3,

( &quot;~ ])() = uniformly in A . (5
n 1 !

But if we show that

|/&amp;lt;&amp;gt;(a
+ ) &amp;lt;_&*- (a) (6

it follows from 5) that 2) is true. Our theorem is then

established.
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To prove 6) we have from 1)

/(n) f f,
I ~\ f(n)(n\ _l_ r/f (w-f-l)/ \ _i

\u i **/ J V^y T&quot; *~/ v^v T

and from 4)

The comparison of 7), 8) proves 6).

Circular and Hyperbolic Functions

183. 1. We have defined the circular functions as the length
of certain lines ; from this definition their elementary properties
may be deduced as is shown in trigonometry.
From this geometric definition we have obtained an arithmeti

cal expression for these functions. In particular

=
F!~37

+
5]~f!

+ Q

cosrr=l +- +... /.?

2 ! 4 ! 6 !
l

valid for every x.

As an interesting and instructive exercise in the use of series

we propose now to develop some of the properties of these func
tions purely from their definition as infinite series. Let us call

these series respectively 8 and O.

Let us also define tan x = sm x
,
sec x = -

, etc.
cos x cos x

2. To begin, we observe that both #and C converge absolutely
for every x, as we have seen. They therefore define continuous
one-valued functions for every x. Let us designate them by the
usual symbols .

We could just as well denote them by any other symbols, as

4&amp;gt;O) , *(*).
3. Since n ^

, (7=1 forz = 0,

we have .
ft AsmO =

, cos = 1.
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4. Since S involves only odd powers of x, and C only even

powers,
sin x is an odd, cos x is an even function.

5. Since S and C are power series which converge for every x,

they have derivatives of every order. In particular

dC = _z,??__3?_,&__ _ c f

dx&quot; 18! 5! 7!

Hence
dsinx dcoxx= cos x ,

= sin #. (3

6. To get the addition theorem, let an index as x, y attached to

S, C indicate the variable which occurs in the series. Then

__ _

7!5!2!8!4! 6! )

7! o!2! 314!

Adding,

1

= x + y _ (a; + y )
3

(^ + 5)
5

&quot;

1! 3! 5!

Thus for every x, y

sin (a; -f- y) = sin # cos y -f- cos # sin y .

In the same way we find the addition formula for cos x.
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7. We can get now the important relation

sin2 x -h cos2 x = 1 (4

directly from the addition theorem. Let us, however, find it by
aid of the series. We have

11 11
+ + +

11 11 11
l

+
6!2!

+
4!4!

+
6!2!

+
8!

Hence

Now by I, 96,

Thus 2 O2 = ^2 x cofc
2 x = 1

8. In 2 we saw sin #, cos 2; were continuous for x\ 4) shows

that they are limited and indeed that they lie between 1.

For the left side of 4) is the sum of two positive numbers and

thus neither can be greater than the right side.

9. Let us study the graph of sin #, cos #, which we shall call 2
and F, respectively.

Since sin x = 0,
s n x = cos x = 1, for x = 0, 2 cuts the #-axis at
ax

under an angle of 45 degrees.
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Similarly we see y 1 for x = 0. F crosses the #-axis there

and is parallel to the #-axis.

and each parenthesis is positive for
&amp;lt; x2 &amp;lt; 6,

sin.r&amp;gt;0 for 0&amp;lt;:r&amp;lt;Vti= 2.449 ...

Since ,_ l __ l

21^4!^
T 1 7p OO Ck

cosa:&amp;gt;0 for 0&amp;lt;*&amp;lt;V2 = 1.414
Since

cosa;&amp;lt;0 for x = 2.

Since Dx cos a: = sin # and sin x &amp;gt; for &amp;lt; x &amp;lt; V6, we see

cos x is a decreasing function for these values of x. As it is con

tinuous and &amp;gt; for x = V2, but &amp;lt; for x = 2, cos x vanishes once

and only once in (V2, 2).

This root, uniquely determined, of cos x we denote by - As a

first approximation, we have

From 4) we have sin2 ?= ! As we saw sin#&amp;gt;0 for x&amp;lt; V6,
we have

Thus sin x increases constantly from to 1 while cos x decreases

from 1 to in the interval ( 0, ^ )=
Ir We thus know how sin #,

cos x behave in Ir

From the addition theorem

sin
(

~ + x
)

= sin ^ cos x + cos ^ sin x = cos z.

\&amp;lt;A / 2 J

-|- a;= cos cos a: sin sin a; = sin a:.
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Knowing how sin#, cosx march in 7j, these formulae tell us

how they march in J
2
=
(-, 77-).

From the addition theorem,

sin (TT + x) = sin x, cos (TT + x) = cos x.

Knowing how sin x, cos x march in (0, TT), these formulae inform
us about their march in (0, 2 TT).

The addition theorem now gives

sin (x + 2 TT) = sin x, cos (x + 2 TT)
= cos x.

Thus the functions sin ar, cos # are periodic and have 2 TT as period.
The graph of sin x cos x for negative x is obtained now by

recalling that sin x is odd and cos x is even.

10. As a first approximation of TT we found

V2 &amp;lt;

|
&amp;lt; 2.

By the aid of the development given 159, 3

= *-
!

+
i-+- 5)

we can compute TT as accurately as we please.

In fact, from the addition theorem we deduce readily

n
4

==

vl
&amp;gt;S

4
=
vl

Hence TT
tan = 1.

This in 5) gives Leibnitz s formula,

4
= ~

3
+

5
~

7
+

The convergence of this series is extremely slow. In fact by
81, 3 we see that the error committed in stopping the summation

at the nth term is not greater than . How much less the

error is, is not stated. Thus to be sure of making an error less

than it would be necessary to take | (10
W + 2) terms.
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11. To get a more rapid means of computation, we make use

of the addition theorem.

To start with, let ,

a = arctg .

Then 5) gives 1^11^11 11
~5 35S

+
555 757

^

a rapidl}
7

converging series.

The error Ea committed in breaking off the summation at the

wth term is
., _,

By virtue of the formula for duplicating the argument

2 tan
tan 2 a = -

,

1

wehave

Similarly
.

tan 4 =
if-o.

Let

^ = 4-|. (7

The addition theorem gives

tan 4 a - 1 1
tan 13

1 + tan 4 239

Then 5) gives 111 11
r) |

-I xo
~~

289 3239* 5289*

also a very rapidly converging series.

We find for the error

&quot;2w-12392&quot;-i

The formula 7) in connection with 6) and 8) gives
-

. The

error on breaking off the summation with the wth term is
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184. The Hyperbolic Functions. Closely related with the cir

cular functions are the hyperbolic functions. These are defined

by the equations

&amp;gt;X
I a - X

cosh x = - - -

(2

tanh x =

2

sinh x ex e~ x

cosh a; e
x + e~ x

sech x = : , cosech x-
cosh x sinh x

Since

we have , ,

=_ + |j+ |I+
... .

. (3

=l + g + i + ...
-

. (4

valid for every x. From these equations we see at once :

sinh ( x) = sinh x ; cosh ( x) = cosh x.

sinh = 0. coshO= 1.

- sinh a; =1+ + ^7+ = cosh x. (5dx 214!

Let us now look at the graph of these functions. Since sinh #,

cosh x are continuous functions, their graph is a continuous curve.

For x
&amp;gt; 0, sinh x

&amp;gt;
since each term in 3) is &amp;gt; 0. The relation

4) shows that cosh x is positive for every x.

If x
&amp;gt;

x
&amp;gt; 0, sinh x

&amp;gt; sinh #, since each term in 3) is greater
for x than for x. The same may be seen from 5).
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Evidently from 3), 4)

lim sinh x = + oo
,

lim cosh x = + oo .

X=+30 X=+X&amp;gt;

At x = 0, cosh 2: has a minimum, and sinh x cuts the 2&amp;gt;axis

at 45.

For x &amp;gt; 0, cosh x
&amp;gt;

sinh # since

The two curves approach each other asymptotically as x= -hoc .

For the difference of their ordinates is e~ x which = as x = + oo .

The addition theorem is easily obtained from that of ex . In fact

. , , e* e~ x

sinh x cosh y =----

-)imi ar y = ^ y ex
~
v + e~ x+v e~ x ~

v
).

Hence

sinh x cosh y+ cosh 2: sinh y = \(e
x^ v e~ (x+y)

) = sinh (x +
Similarly we find

cosh (2: + ?/)
= cosh a: cosh ?/ + sinh x sinh y.

In the same way we may show that

cosh2 x sinh2 x = 1.

Hypergeometric Function

185. This function, although known to &quot;Wallis, Euler, and the

earlier mathematicians, was first studied in detail by Gauss. It

may be defined by the following power series in x:

-

The numbers a, /3, 7 are called parameters. We observe that

a, (B enter symmetrically, also when a. = 1, ft = 7 it reduces to

the geometric series. Finally let us note that 7 cannot be zero or

a negative integer, for then all the denominators after a certain

term = 0.
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The convergence of the series F was discussed in 100. The
main result obtained there is that F converges absolutely for all

|

x
|

&amp;lt; 1, whatever values the parameters have, excepting of course

7 a negative integer or zero.

186. For special values of the parameters, F reduces to ele

mentary functions in the following cases :

1. If a or /? is a negative integer n, F is a polynomial of

degree n.

2. ^(1,1, 2; -x)= log (1 + rc). (1

Also

The relation 1) is now obvious.

Similarly we have

,l, 2; *) = log (I-*)-

4. s-FC}, -|-, |,
a:
2
)
= arcsin x.

5.
2^(1&amp;gt;

1 f ^2
)
= arctan ^.

6. Km jpf , 1, 1, -}
= e*. (2

a=+oo \ Ct/

For

2 1 2

t
t* - t* j

- i*
i

* - /I I

~1 . 2 . 3
&quot;

1 .2-8W
&quot;
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Let &amp;lt; Gr &amp;lt; 0. Then

is convergent since its argument is numerically &amp;lt; 1. Comparing
3), 4) we see each term of 3) is numerically &amp;lt; the corresponding
term of 4) for any \x &amp;lt; G- and any a &amp;gt; 0. Thus the series 3)
considered as a function of a is uniformly convergent in the

interval (/3 + co ) by 136, 2 ; and hereby x may have any value

in ( G, G-). Applying now 146, 4 to 3) and letting a= + 00,

we see 3) goes over into 2).

7. lim xF( ,,-; - -

]

= sin x. (5
a=+ \ A 4 arj

For

Let x = G- &amp;gt; and a = a. Then

is convergent by 185. We may now reason as in 6.

8. Similarly we may show :

/ &quot;I 2 \

lim F( , a, -
;
- -5] = cos x.

a=+oo \ 2 4 2
/

lim El a, ,
1

,
-

)
= sinh x.

a=+oo \ 2 4 a2/

lim F(a, , -, T i) = cosh ^.
a=+30 V 2 4V

187. Contiguous Functions. Consider two F functions

-F(a,& 7 ; x) , JT(
f

, /3 , 7 ; *).

If a differs from a!, by unity, these two functions are said to be

contiguous. The same holds for 0, and also for 7 . Thus to

F (afiyx) correspond 6 contiguous functions,

-F(al,l, 7 1; x).
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Between F and two of its contiguous functions exists a linear

relation. As the number of such pairs of contiguous functions is

6-5,,
172-

L5

there are 15 such linear relations. Let us find one of them.

We set
4- 1 a -I- 2 a 4- 1 S R 4-1 fl 4- 9

1 2 ft 7 7 4- 1 74-71 1

Then the coefficient of xn in F(a.@vx} is

in F(a + 1, ft 7, x) it is

in ^(, ft 7 1, x) it is

I
n

,

Thus the coefficient of #n in

(7 _ _ 1)^(, ft 7, x) + a.F(a + 1, ft 7, z)

+ (l-7)JF(a, ft 7-1,

is 0. This being true for each n, we have

(7 _ _
1)Jf(a, ft 7, z) + JP (a + 1, ft 7, x)

a, ft 7-1, aO=

Again, the coefficient of a;
n in JP(a, /3 1, 7, a;) is (/3

in a?^(a -f- 1, ft 7, a;) it is 71(7 + w 1) n .

Hence using the above coefficients, we get

, ft 7, ) + (1
-

a;)F(a + 1, ft 7, )

From these two we get others by elimination or by permuting
the first two parameters, which last does not alter the value of

the function

Thus permuting , ft in 1) gives

(7
- - 1)^(, ft % s) +ft*

T

( 1 + 1, 7, s)

ft 7 ~ 1, *0 = 0. (3
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Eliminating F (&amp;lt;*,
/3, 7 1, x) from 1), 3) gives

(-a)jF(, & 7, a-) + .F(a + l, & 7, z)
- AF(a, + 1, 7, a:)

= 0. (4

Permuting a, /9 in 2) gives

OX- *- /3)^(, , 7, *) + (1
- x)F(a, + 1, 7, *0

a -l, , 7,2r) = 0. (5

From 3), 5) let us eliminate jP(, /S + 1, 7, a;), getting

(
_ 1 _ (7

_
ff
_

1^(&amp;gt;, A 7, a;) + (7
-

)JP(
-

1, A 7, a;)

+ (l_7)(l_aOJF
T

(, /3, 7-l,af)=0. (6

In 1) let us replace a by a 1 and 7 by 7 + 1
; we get

(7
- a + 1)^( -

1, & 7 + 1* *) + O - 1)^( A 7 + 1, a)
_ 7^(-l, A 7, x)=Q. (a)

In 6) let us replace 7 by 7 + 1
;
we get

/3,7, aO = 0. (b)

Subtracting (b) from (a), eliminates F(^a 1, /8, 7 + 1, a;) and

gives

7(1 - aO^O/^z) - 7^( -
1, A 7, a;)

+ (7
- /8)^(, A 7 + 1, *) = 0. (7

From 6), 7) we can eliminate F(a 1, /?, 7, z), getting

7!7-l+CH-/8+l-27&amp;gt;S JF(, A 7,3;)

+ (7
- )(7 - P)zF(a, /3, 7 + 1. *0

+ 7(1 - 7)(1 - aO^Ca, A 7 - 1,) = 0. (8

In this manner we may proceed, getting the remaining seven.

188. Conjugate Functions. From the relations between con

tiguous functions we see that a linear relation exists between any
three functions

whose corresponding parameters differ only by integers. Such

functions are called conjugate.
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For let
jo, q, r be any three integers. Consider the functions

JF(a#y30, JF( + 1, ft 7, x) F(a+p, ft 7, x),

+ 2
&amp;gt; 7, *) ^

We have
jt? + q + r + 1 functions, and any 3 consecutive ones

are contiguous. There are thus p + q -f r 1 linear relations

between them. We can thus by elimination get a linear relation

between any three of these functions.

189. Derivatives. We have

1.2. ...

~~r~ ^^ / _i 1 \ i ~,n== X V &quot;l 7 -i ?
~~

-i -i

=^ JF(a + l, /3+1, 7 + 1, x~).

7
Hence

7^// /^.. Q , _N a P Til S~ i 1 /Oil . . i 1 ^,\

^

7 7

and so on for the higher derivatives. We see they are conjugate

functions.

190. Differential Equation for F. Since F, F 1

, F&quot; are conju

gate functions, a linear relation exists between them. It is found

to be

+ {( + 13 4- l)z - 7} ^ + /3^= 0. (1

To prove the relation let us find the coefficient of xn on the left

side of 1). We set

p _ + ! + n-l--ff + l- ff + ro-l_~~
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The coefficient of xn in x2
F&quot; is

n(n-l)PB ,

in xF&quot; it is

7+n
in (a + + l)a;jF it is

w + +
in 7.F it is

in a/3P it is

Adding all these gives the coefficient of xn in the left side of 1).

We find it is 0.

191. Expression of F(a/3yx) as an Integral.

We show that for
|

x
\

&amp;lt; 1,

B(fri-P)-F(ap&amp;lt;ix)= fV-^l -uy-P-id-xu^- du (1
^o

where ^(jt?, ^) is the Beta function of I, 692,

B(p, q) = f nr-i(l
- u)- l du.

For by the Binomial Theorem

N -, .a ,+! .4-l
(1
- zw)-* = 1 + - xu + -y-1-

A2 + -
1 . 2 . 3

for
|

xu
\

&amp;lt; 1. Hence

,7

7 - /?) + ^5(/3 + 1, 7 ~ ^)

2,7-/3)+... (2
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Now from I, 692, 10)

Hence

7+1 ry
.

ry _|_

etc. Putting these values in 2) we get 1).

192. Value of F (a, , 7, x) for x = I.

We saw that the F series converges absolutely for x = 1 if

a + P 7 &amp;lt;
0. The value of F when x = 1 is particularly in

teresting. As it is now a function of a, & 7 only, we may denote
it by .F(, /3, 7). The relation between this function and the T
function may be established, as Gauss showed, by means of 187, 8)
viz *

7!7-l+O + /3 + l-2 7)zJ F(afax)

+ (7
-

) (7 - &)xF(a, #7 + 1, x)

7(1 ~ 7) (1
- *0^(, /3, 7 - 1, *) = 0. (1

Assuming that n A+ - 7 &amp;lt; 0, (2

we see that the first and second terms are convergent for x = 1
;

but we cannot say this in general for the third, as it is necessary
for this that a + /3 (7 1) &amp;lt;

0. We can, however, show that

L lim (1
-

x) JF(, /?, 7 - 1, x) = 0, (3

supposing 2) to hold. For if x\ &amp;lt; 1,

^(, & 7 - 1 *) = + V + a
2
z2 + ...

(4

Now by 100, this series also converges for x = 1. Thus

lim an = 0. (5
n= oo

From 4) we have

, 7 - 1, ) = + O - )^ + (
- ^)^ + &quot;

Let the series on the right be denoted by 6r(. As
6?n+1 (l) = an , we see 6r(l) is a convergent series, by 5), whose
sum is 0. But then by 147, 6, Cr(x) is continuous at x = 1.

Hence
ilirn 6^jc
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and this establishes 3). Thus passing to the limit x = 1 in 1)

gives

7O + /3
- 7) F(, & 7) + (7 - ) (7 - )-F(, /3, 7 + 1) = 0,

*(, A 7) =
7(7 - a-

Replacing 7 by 7 + 1, this gives

etc. Thus in general

7) =

-.?(,& 7 + )

Gauss sets now
71 ! 71^

;

&amp;gt;5 I} =
(+!)(* + 2) ...(* + )

Hence the above relation becomes

jfro ) = n(&amp;gt;i.y-l-)n(n.7--ff-l) J( p } (g

n(w, 7 --i)n(w, 7 -/3-i)
N W

lira J(, A 7 + )
= 1. (7

7l= OC

For the series

)= l + +ILl+ .. (8

converges absolutely when 2) holds. Hence

! *&quot; +1|
In n o n n \ 1

Cr 1 1 - Or Or + 1

is convergent. Now each term in 8) is numerically &amp;lt; the corre

sponding term in 9) for any 7 &amp;gt; 6r. Hence 8) converges uni

formly about the point 7 = -f oc. We may therefore apply 146, 4.

As each term of 8) has the limit as 7 = + oc, the relation 7)

is established.
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We shall show in the next chapter that

lim II (n, x)
n=oo

exists for all x different from a negative integer. Gauss denotes

it by II (x) ;
as we shall see,

rO) =
n&amp;lt;&amp;gt;-l) , fora&amp;gt;0.

Letting n = GO, 6) gives

*(, A 7)
= n c-y

- i)n(7-- 0-1)
n(y--l)n(7 -/3-l)

We must of course suppose that

7, 7 - , 7 - & 7 - a -
,

are not negative integers or zero, as otherwise the corresponding
II or F function are not defined.

Bessel Functions

193. 1. The infinite series

converges for every x. For the ratio of two successive terms of

the adjoint series is \ x 2

which = as s = GO for any given x.

The series 1) thus define functions of x which are everywhere
continuous. They are called Bessel functions of order

n=0, 1, 2 ...

In particular we have

^oW = * -
7772

+
2271^

~
22

. 42 62
+ &quot; ^

j (x\ = %_ x8 x5
tf_

sn

2 22 4 22 42 6 22 42 62 8

Since 1) is a power series, we may differentiate it termwise and

_ V (-lV(
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2. The following linear relation exists between three consecutive

Bessel functions :

For ,. xn
~ l

.1. sr-iv afr+n
~

1

rr
71-1 - - ; +*- 1 -

Hence

1 ,~2a+n 1 (

4-2C IV-_ |
_

-l! i

v y
2 +2*-M8:-

3. We show next that

2^2(8!) = /_!(*) -J-.+1 (*) &amp;gt;0. (8

For subtracting 7) from 6) gives

From 8) we get, on replacing Jn+1 by its value as given by 5) :

Ji(x)= -Vn ( + ^(2:), TI
&amp;gt;

0. (9X

From 5) we also get

(*)= -J
r

,,co-W*) w &amp;gt;- (10X

4. The Bessel function Jn satisfies the following linear homo

geneous differential equation of the 2 order :

n
= o. (ii
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This may be shown by direct differentiation of 1) or more sim

ply thus : Differentiating 9) gives

,. (12
X X

Equation 10) gives

Replacing here Jn_^ by its value as given by 9), we get

Putting this in 12) gives 11).

5. e*-2~ = ^unJn(x) (13
00

for any #, and for u = 0.

For

e 2 = e e

(1
_i_
xu

j_
^u*

1

&quot;T

+
^TTi

Now for any x and for any u = 0, the series in the braces are

absolutely convergent. Their product may therefore be written

in the form
^ (x* 1 \

22 \2y 2! 2! V

3 ! 2 ! V2

Jx _ j^
V2 r\

(
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194. 1. Expression of Jn(x} as an Integral.

(X COS

Hence -r, , _ -, x g

cos (a; cos &amp;lt;)

= ]T
^-

^ a^* cos2*
&amp;lt;/&amp;gt;

o (- s)-
and thus

CC X-
-J

N
8

cos (a: cos
&amp;lt;/&amp;gt;)

sin2n ^ = V ^
~

^ 2^ cos2*
(^ sin2n

&amp;lt;/&amp;gt;.

o (^ s)

As this series converges uniformly in (0, TT) for any value of re,

we may integrate termwise, getting

j[cos (a? cos &amp;lt;/&amp;gt;)

sin2&quot;

&amp;lt;j&amp;gt;d&amp;lt;t&amp;gt;

= ^ ^~ 1)
f

*

&amp;lt;&

j
cos2

(/&amp;gt;

sin2 &quot;

o (2)I

We shall show in 225, 6, that

r(ll).l.8.5....
8 .-l v5 :

Thus the last series above

9

Thus
n

2 )



CHAPTER VII

INFINITE PRODUCTS

195. 1. Let {a^... tj be an infinite sequence of numbers, the

indices i = (t1 -..t8) ranging over a lattice system in s-way

space. The symbol p T\ - TT (1=

g

a
tl ...,,_ ^

is called an infinite product. The numbers a
t
are its factors. Let

PM denote the product of all the factors in the rectangular cell

** &quot;

lirnP, (2

is finite or definitely infinite, we call it the value of P. It is

customary to represent a product and its value by the same letter

when no ambiguity will arise.

When the limit 2) is finite and = or when one of the factors

= 0, we say P is convergent, otherwise P is divergent.

We shall denote by P^ the product obtained by setting all the

factors a, = 1, whose indices t lie in the cell R^. We call this the

co-product of PM .

The products most often occurring in practice are of the type

P = a
1
-a

2
.a

B
. = TLan . (3

The factor P^ is here replaced by

and the co-product PM by

* m == &m+l ^m+2 &quot;

^wi+3
&quot;

Another type is +00

P=Han .
. (4

The products 3), 4) are simple, the product 1) is s-tuple. The

products 3), 4) may be called one-way and tivo-way simple products

when necessary to distinguish them.

242
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p i . 1 . 2 . 3 . 4. . . .* *1 2 3 6

Obviously the product P = 0, as

p. = I = o.
/i

Hence P = 0, although no factor is zero. Such products are

called zero products. Now we saw in I, 77 that the product of a

finite number of factors cannot vanish unless one of its factors

vanishes. For this reason zero products hold an exceptional posi
tion and will not be considered in this work. We therefore have
classed them among the divergent products. In the following
theorems relative to convergence, we shall suppose, for simplicity,
that there are no zero factors.

196. 1. For P = Tla
tl

...
lt

to converge it is necessary that each PM

is convergent. If one of these PM converges, P is convergent and

P P PM -*
fj.

-*
fj.

The proof is obvious.

2. If the simple product P = a
l 2

a
3

&amp;gt; is convergent, its fac
tors finally remain positive.

For, when P is convergent, Pn
j

&amp;gt; some positive number, for

n &amp;gt; some m. If now the factors after am were not all positive, Pn

and Pv could have opposite signs v&amp;gt;n, however large n is taken.

Thus Pn has no limit.

197. 1. To investigate the convergence or divergence of an
infinite product P =

Ila^...,, when a t &amp;gt; 0, it is often convenient to

consider the series

called the associate logarithmic series. Its importance in this con
nection is due to the following theorem :

The infinite product P with positive factors and the infinite series

L converge or diverge simultaneously. When convergent, P = e
L

,

L = log P.

For logPM
=

M , (1

P, = *V (2
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If P is convergent, P^ converges to a finite limit = 0. Hence

L^ is convergent by 1). If L^ is convergent, P^ converges to a

finite limit =?t by 2).

2. Example 1.

p = n (i + -V = nan 7i = i, 2, ...

\ /

is convergent for every x.

For, however large |

x
\

is taken and then fixed, we can take m
so large that

n&amp;gt;m.

n

Instead of P we may therefore consider Pm .

Then

But by I, 413

Hence Lm = 2^Mnz?
m+\ %

which is convergent.

The product P occurs in the expression of sin x as an infinite

product.
Let us now consider the product

Q = nf1 + -}e
n n = 1, 2,

V n)

The associate logarithmic series L is a two-way simple series.

We may break it into two parts U, L&quot;, the first extended over

positive ft, the second over negative n. We may now reason on

these as we did on the series 3), and conclude that Q converges
for every x.

3. Example 2.

n
is convergent for any x different from

0,
-

1,
-

2,
-

3,
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For let p be taken so large that \x\ &amp;lt; p. We show that the

co-product

converges for this 2;. The corresponding logarithmic series is

QO

L = Z, I x logf 1 + 1)
-

logf 1 + ^ 1
j&amp;gt;+i I V n/ V / J

As each of the series on the right converges, so does L. Hence
Gr converges for this value of x.

198. 1. When the associate logarithmic series

Zr=21oga tl
...

lf , a L &amp;gt;0

is convergent, Um log^ _ _ Oj b
121&amp;gt; ^

|
t |=QO

and therefore -,.lima
ti

...
ls
= l.

|l|=00

For this reason it is often convenient to write the factors

a
ti

...
l4
of an infinite product P in the form 1 + 6

tl
...

tj
. When P is

written in the form
p = n(i + ^... ts ),

we shall say it is written in its normal form. The series

2J,,..,,
= 2J.

we shall call the associate normal series of P.

2. The infinite product

z ^s associate normal series

converge or diverge simultaneously.
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For P and = 2 log (1 + .)

converge or diverge simultaneously by 197. But A and L con

verge or diverge simultaneously by 123, 4.

3. If the simple product P a
l

- a
2

a
3

is convergent, an=l.

For by 196, 2 the factors an finally become &amp;gt; 0, say for n &amp;gt; m.

Hence by 197, l the series

oo

2 log an an &amp;gt;

n=m

is convergent. -Hence log an = 0. .-. a n = 1.

199. Let R^ &amp;lt; R^ &amp;lt; X
|

= oo be a sequence of rectangular

cells. Then if P is convergent,

For P is a telescopic series and

200. 1. Let P

We call
(?=n(l + a

ll
...

l8 , t
=

4

the adjoint of P, and write

= Adj P.

2. P converges, if its adjoint is convergent. We show that

&amp;gt; 0, X, \Pp-Pv
\&amp;lt;

p,V&amp;gt;\.

Since $ is convergent,

is also convergent by 199. Hence

0&amp;lt;^,-
(

ipM &amp;lt; \&amp;lt;n&amp;lt;v.

But Pv PM is an integral rational function of the a s with

positive coefficients. Hence

IP, -.p.
i &amp;lt;*,-$, ci
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3. When the adjoint of P converges, we say P is absolutely

convergent.
The reader will note that absolute convergence of infinite

products is defined quite differently from that of infinite

series. At first sight one would incline to define the adjoint of

P = Ha
tl

... 18

to be i __ jj
I

a
I

With this definition the fundamental theorem 2 would be false.

For let P=n(-l);
its adjoint would be, by this definition,

Now $n = 1. .*. $ is convergent. On the other hand,

_Pn =( l)
n and this has no limit, as n=cc. Hence P is

divergent.

4. In order that P= TI(1 + a
tl

...
ls) converge absolutely, it is

necessary and sufficient that ^

converges absolutely.

Follows at once from 198, 2.

Example. / ^
nd--.

converges absolutely for every x.

For
y*

2 . avl^ n2 *~ n2

is convergent.

201. 1. Making use of the reasoning similar to that employed
in 124, we see that with each multiple product

are associated an infinite number of simple products

and conversely.
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We have now the following theorems :

2. If an associate simple product Q is convergent, so is P, and

P=Q.
For since Q is convergent, we may assume that all the a s are

&amp;gt; by 196, 2. Then

_ g2 logCV i. by 124, 3,

= P by 197, 1.

3. If the associate simple product Q is absolutely convergent, so

is P.

Forlet

Since Q is absolutely convergent,

is convergent. Hence 11(1 + a
tl

... t ) is convergent by 2.

4. Let P= H(l H- i
t
...i ) fo absolutely convergent. Then each

associate simple product Q= 11(1 + #n) ^s absolutely convergent and

p=&amp;lt;?.

For since P is absolutely convergent,

2^...^

converges by 200, 4. But then by 124, 5

2 n

is convergent. Hence Q is absolutely convergent.

5. If P= na
tl

...
lg

is absolutely convergent, the factors flj.-i,
&amp;gt;0

^y ^Aei/ ^g outside of some rectangular cell R^.

For since P converges absolutely, any one of its simple associ

ate products Q=lla n converges. But then an &amp;gt;Q for n&amp;gt;m, by

198, 3. Thus a
(i

...
t &amp;gt; if i lies outside of some R^.

6. From 5 it follows that in demonstrations regarding abso

lutely convergent products, we may take all the factors &amp;gt; 0,

without loss of generality.
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For

and all the factors of PM are &amp;gt; 0, if
JJL

is sufficiently large. This

we shall feel at liberty to do, without further remark.

T. 4 =11(1 + *,,...) t &amp;gt;0

converge or diverge simultaneously.

For if A is convergent,

2a,,.....

is convergent by 200, 4. But then L is convergent by 123, 4.

The converse follows similarly.

202. 1. As in 124, 10 we may form from a given m-tuple

product A=Ua
l m

as infinite number of conjugate w-tuple products

*-*~t.
where a, = bj

if i andy are corresponding lattice points in the two

systems.

We have now :

2. If A is absolutely convergent, so is B, and A B.

For by 201, 6, without loss of generality, we may take all the

factors &amp;gt; 0.

Then sioga...

= B.

3. Let A-\\aA - llah ...
lwi

be an absolutely convergent m-tuple product.

be any p-tuple product formed of a part of or all the factors of A.

Then B is absolutely convergent.
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For 2 log a, is convergent.

Hence 2 log fy is.

Arithmetical Operations

203. Absolutely convergent products are commutative, and con

versely.

For let
, , ,

^. = IK... lm

be absolutely convergent. Then its associate simple product

2l=Han

is absolutely convergent and A = 51, by 201, 4. Let us now re

arrange the factors of A, getting the product B. To it corre

sponds a simple associate series 23 and B = $8. But 21 = 23 since

51 is absolutely convergent. Hence A = B.

Conversely, let A be commutative. Then all the factors a
tl ...,

finally become
&amp;gt;

0. For if not, let

E
1 &amp;lt;E2 &amp;lt;

... =00 (1

be a sequence of rectangular cells such that any point of 9?m lies

in some cell. We may arrange the factors a, such that the partial

products corresponding to 1),

1 ^2 3
&quot;&quot;

have opposite signs alternately. Then A is not convergent, which

is a contradiction. We may therefore assume all the a s
&amp;gt;

0.

Then A 2ioga t ... t

*a. e m

remains unaltered however the factors on the left are rearranged.

Hence v n

21og&amp;lt;v.. lwt

is commutative and therefore absolutely convergent by 124, 8.

Hence the associate simple series

= 2 log a, = 2 log (1 + 6.)

is absolutely convergent by 124, 5. Hence

is convergent and therefore A is absolutely convergent.
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204. 1. Let A = u
l l

lt

be absolutely convergent. Then the s-tuple iterated product

is absolutely convergent and A = B where
i\

-
ij

is a permutation of

ir i
a i,.

For by 202, 3 all the products of the type

Ha Ua
LV l l
i&quot;-

i-ii i

are absolutely convergent, and by I, 324

n = nn.
-i i -i i

Similarly the products of the type

n
-l l -2 t -S

are absolutely convergent and hence

n= n n n.

In this way we continue till we reach A and B.

2. We may obviously generalize 1 as follows :

Let
A-IK--

5e absolutely convergent. Let us establish a 1 to 1 correspondence

between the lattice system oi er which i = (i x O ranges, and the

lattice system 9)1 over which

ranges. Then the p-tuple iterated product

B = tt n - ... Ila. ,

1 2 r
;

n&amp;gt;n&quot;

2*s absolutely convergent, and
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3. An important special case of 2 is the following:

Let A = Tlan , w=l,2,...

converge absolutely. Let us throw the an into the rectangular array

an , a
la

...

^21 ^22
* *

converge absolutely, and

4. 7%e convergent infinite product

associative.

Forlet
&quot;&quot;!&amp;lt; OT2 &amp;lt;-..= oo.

L^et -i i z. /&quot;i i \ /^i i

We have to show that

&amp;lt;?=(i+

is convergent and P = Q.

This, however, is obvious. For

= P,, v = m
l + ... +wn .

But when n = oo so does v.

Hence
; lim(?n = limPn .

Remark. We note that mm+1 mm may = oo with n.
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205. Let A = IIa
ti

... t. ,
B =

Tlb^...^

be convergent. Then

C=Ua L
-b t , D=U

f̂t.

are convergent and

C=A.B
, D = 4B

Moreover if A, B are absolutely convergent, so are
&amp;lt;?,

D.

Let us prove the theorem regarding (7; the rest follows simi

larly. We have n D
Cjt
=

^cL^ .o^.

Now by hypothesis A^ = A, B^ = B as p = oo.

Hence
C, = A.B.

To show that O is absolutely convergent when A, B are, let us

write a, = 1 + a
t ,

5
t
= 1 + b

t
and set

|

a t
|

=
t , b t

|

= ft.

Since A, B converge absolutely,

+ O , 2 log (1 + &)

are convergent. Hence

2 {log (1 + &amp;lt;*)
+ log (1 + #) i

= 2 log (1 + t) (1 + &)

is absolutely convergent. Hence C is absolutely convergent

by 201, 7.

206. Example. The following infinite products occur in the

theory of elliptic functions :

&amp;lt;?2
= n (i + j

2 &quot;- 1

)

3 =n (i-j2- 1
).

They are absolutely convergent for all
| q\ &amp;lt;

1.

For the series ^^ ^ ^\q
Zn ~ l

\

are convergent. We apply now 200, 4.

As an exercise let us prove the important relation

P =
&amp;lt;?,&amp;lt;?2&amp;lt;?3

= 1-
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For by 205, p = n (1 + ?
2n
)(l 4- fn~ l

)(l - q
2n~ l

Now all integers of the type 2 w, are of the type 4^ 2 or 4

Hence by 204, 3,

n (i
-

0a) = n (i
-

?
4n

) n (i
- ^-2

),

Thus
p^ n

= 1

Uniform Convergence

207. Jn ^Ae limited or unlimited domain 51, let

uniformly convergent and limited. Then

^8 uniformly convergent in H.

For
LJ Â = e
L
x-

Now LK = L uniformly. Hence by 144, 1, F is uniformly con

vergent.

208. If the adjoint of

is uniformly convergent in 51 (finite or infinite), F is uniformly

convergent.

For if the adjoint product,

is uniformly convergent, we have

|^-^|&amp;lt;e
for any x in 51-
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But as already noticed in 200, 2, 1)

I P P I &amp;lt; $ % I

I

* M -*
v I rV Fr |

Hence .F is uniformly convergent.

209. The product

uniformly convergent in the limited or unlimited domain 51, if

* = 2*., .....Ov..&amp;lt;0 , *.= !/,!

limited and uniformly convergent in 51.

For by 138, 2 the series

is uniformly convergent and limited in 51- Then by 207, the

adjoint of F is uniformly convergent, and hence by 208, F is.

210. Let -p, A TT r
**(*, O = n/H ... t.(*i

... rrm)

fo uniformly convergent at x = a. // eaeA /t t* continuous at a, F
is also continuous at a.

This is a corollary of 147, 1.

211. 1. Let G = S
| /^...^(X zw) | converge in the limited

complete domain 51 having a as a limiting point. Let Gr and each

/t
be continuous at a. Then

is continuous at a.

For by 149, 4, Gr is uniformly convergent. Then by 209, F is

uniformly convergent, and therefore by 210, F is continuous.

2. Let Gr =2 l/i^-i.C*?! #m) | converge in the limited complete
domain 51, having x = a as limiting point. Let

lim/c
=a

t ,
lira G = 2a

t
.

lira
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For by 149, 5, 6r is uniformly convergent at x = a. It is also

limited near x a. Thus by 209,

is uniformly convergent at a. To establish 1) we need now only
to apply 146, l.

212. 1. Let F=TlfLi ...,
a(x) , /&amp;gt;0 (1

converge in 51= (a, a + 8). Then

logJ=i = 21og/.. (2

If we can differentiate this series termwise in 51 we have

Thus to each infinite product 1) of this kind corresponds an infi

nite series 3). Conditions for termwise differentiation of the series

2) are given in 153, 155, 156. Other conditions will be given in

Chapter XVI.

2. Example. Let us consider the infinite product

0(x) =2q*Q sin 7nzfl(l
- 2 q

2n cos 2 TTX + q*
n
) (1

which occurs in the elliptic functions.

Let us set

1 - un= 1 - 2
&amp;lt;f

n cos 2 TTX + (f
n

.

Then \un \&amp;lt;2\q\*

n
+\q\*

n
.

Thus if
| q \

&amp;lt; 1, the product 1) is absolutely convergent for any x.

It is uniformly convergent for any x and for
| q \

&amp;lt; r&amp;lt; 1.

If it is permissible to differentiate termwise the series obtained

by taking the logarithm of both sides of 1), we get

0(x) ^1 2 (f
n COS 2 7TX +

&amp;lt;?

4 &quot;

If we denote the terms under the 2 sign in 2) by vn we have
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Now the series 2an converges if q \

&amp;lt; 1. For setting bn=
\ &amp;lt;?

2n
|,

the series 25
ra is convergent in this case. Moreover,

lira = 1.
7i-=oo Ĥ

Thus we may differentiate termwise.

The Circular Functions

213. 1. Sin z and cos x as Infinite Products.

From the addition theorem

sin (nix -f x) = sin (m -f 1) a: = sin raz cos 2: 4- cos mx sin 2:

m = 1, 2, 3 we see that for an odd n

sin rcz = a sin n z + a
1

sin&quot;&quot;
1

a?+ 4- n-i sin x

where the coefficients a are integers. If we set t = sin x, we get

sin nx = Fn(t) = a
Q
t
n +a^ + . . . + n_^. (1

Now J&quot;n being a polynomial of degree n, it has n roots. They are

0, sin^ sin^, ... isini^,
n n

corresponding to the values of x which make sin nx = 0. Thus

t* - sin2 - . i* - sin* -

\ n

Dividing through by

sin - sin
n n

. n
sin2

n TT

n

and denoting the new constant factor by a, 1), 2) give

sin nx = a sin x I _ sin2 x

77
sm*

n
!1 Il2

..l*i ss!*
1

. 9 7l 1 7T
S1

&quot;^-2j
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To find a we observe that this equation gives

sin nx

sin x
I&quot;.,

sin2 x
a 1

. 2 7T
snr

n_

Letting x = we now get a = n. Thus putting this value of a.

y
in 3), and replacing x by -, we have finally

sin x = n sin - P (x, n)

where

1
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We observe that

lim P (x, ri)
= lim e**&amp;gt;

n) = e = P (x)

259

provided
lim L(x, ti)

= L(x).

We have thus only to prove 7). Let us denote the sum of the

first_w terms in 6) by Ln (x, n) and the sum of the remaining
byZm (z, rc). Then

|ZO, M)-O)|&amp;lt;

Since for

we have

(8

-
&amp;lt; sin x &amp;lt; x,

sin2 -
n 4 n2 x2

n n

and hence for an m
1
so large that - -

&amp;lt; 1, we have,

-log

But the series

1-
sin2 -

n

I TT
sin2

n _

r &amp;gt; m.

is convergent. Hence for a sufficiently large m

m x,n&amp;lt;- , m *&amp;lt;-

Now giving m this fixed value, obviously for all n &amp;gt; some v the

first term on the right of 8) is &amp;lt; e/3, and thus 7) holds.
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2. In algebra we learn that every polynomial

+ a^x + a
2
z2 + ... + anx

n

can be written as a product

O -
i)0*

-
2) O -

),

where a &quot;&quot; are ^s r ts. Now

is the limit of a polynomial, viz. the first n terms of 9). It is

natural to ask, Can we not express sin x as the limit of a product
which vanishes at the zeros of sin x ? That this can be done we
have just shown in 1.

3. If we set x = TT/% in 5), it gives,

2&quot;V 4r*J 2 2r.2r
Hence

TT ,, 2r.2r 2- 2. 4- 4- 6- 6-
2/9 ,. 1 \/9 _|_ 1 \ 1 Q Q e c 7 *

c ^ / j. ) i ^ /
&quot;f&quot;

x) A*O*O*O*O* i
...

a formula due to Wallis.

4. From 5) we can get another expression for sin z, viz. :

sin x = #11(1 }e
rn r=l, 2, (11

V rirj

For the right side is convergent by 197, 2. If now we group
the factors in pairs, we have

rvr,

This shows that the products in 5) and 11) are equal.

5. From 5) or 11) we have

sin x = lim Pn(x) = lim x IT
x+87r

(12
n=oo s=-n 87T

where the dash indicates that s = is excluded.
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214. We now show that

coss = nfi-
4a

;
V (i

To this end we use the relation

sin 2 x == 2 sin x cos x.

Hence

n?r

2

(2-i)

from which 1) is immediate.

From 1) we have, as in 213, 4,

cos x = ul -
n , 1)

g n = 0, 1, 2,
... (2

215. From the expression of sin #, cos x as infinite products,
their periodicity is readily shown. Thus from 213, 12)

sina: = lim Pn(x).

Hence

or
&amp;gt; N

sin (a: -f TT)
= sin a:.

Hence
sin(x + 2 TT)

= sin x

and thus sin a; admits the period 2 TT.

216. 1. Infinite Series for tana:, cosec #, e^c.

If
0&amp;lt;a;&amp;lt;7r, all the factors in the product 213, 5) are positive.

TllUS
log sin x = log x + log l-

, 0&amp;lt;a:&amp;lt;7r. (1
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Similarly 214, 1) gives

log cos. = log l-
2

, 0&amp;lt;,&amp;lt;. (2

To get formulae having a wider range we have only to square
the products 213, 5) and 214, 1). We then get

log sin2 z = log z2 + 2 log (l
-

-f^-Y, (3
i \

valid for any x such that sin x =
; and

A ^,2 \ 2

l-^-M^), (4

validfor any x such that cosx= 0.

If we differentiate 3), 4) we get
.
9-

(5

(6

,

j a;
2 V

*

c? s iw 3), 4).

Remark. The relations 5), 6) exhibit cot x, tan x as a series of

rational functions whose poles are precisely the poles of the given
functions. They are analogous to the representation in algebra
of a fraction as the sum of partial fractions.

2. To get developments of sec #, cosec a?, we observe that

cosec x = tan \ x + cot x.

Hence

1 ^ 4=
~~*~ *j fv _ 1s-l)2

7T
2 -

a^

valid for x^ STT.
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3. To get sec x, we observe that

cosec f ^ x
J

= sec x.

263

Now

Hence

cosec
x i (STT x STT + X]

H.cfe-sV +(-cosec =s.^ J

|_,
,

7T

Let us regroup the terms of S, forming the series

As = o,

: TT a;

we see that T7
is convergent and = S. Thus

wr Zfsec a; 2,^

valid for all a; such that cos a; ^= 0.

217. As an exercise let us show the periodicity of cot x from

216, 5). We have

Now

TO
^

cot a; = lim Fn(x) = lim V a: = STT,

&quot;= ^nx H- *T

1

a; 4- (n+ l)?r x nir

Letting TI = oo we see that

lim ^(2: + TT)
= lim Fn(x)

cot (x 4- ?r)
= cot a;.

and hence
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218. Development of log sin #, tan x, etc., in power series.

From 216, 1)

sn x

If we give to -^-^its limiting value 1 as x = 0, the relation 1)
x

holds for
|

x
\

&amp;lt; TT.

Now for I x I &amp;lt; TT

Thus
sin x x2

.
1 x*

.
1 XQ

22
7T

2 224
7T

4 326
7T

6

^2
i

1 ^
,

1 a*

32 7T
2 234

7T
4 336

7T
6

provided we sum this double series by rows. But since the series

is a positive term series, we may sum by columns, by 129, 2.

Doing this we get

+ ... ,
.

(2

where 1111
^=i + i +i^+- ,;&quot;;;

The relation 2) is validfor
\

x
|

&amp;lt;
TT.

In a similar manner we find

96 ^6
(?

6 +... (3

valid for | | &amp;lt;
Here

VT^ 7T
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The terms of G-n are a part of Hn . Obviously

These coefficients put in 3) give

valid for
|

x
\

&amp;lt;

- If we differentiate 4) and 2), we get
Zt

tan x= 2(22
_

1&amp;gt;F ^ + 2(2
&amp;lt; _ 1)^ + 2(2-1)^ + ... (5

7T* 7T* 7T&quot;

valid for |a?| &amp;lt; ;

2i

eot*=i-2^-2J?i^-2J.g-... (6
7T 7T 7T

valid for &amp;lt; \x\ &amp;lt; TT.

Comparing 5) with the development of tan x given 165, 3)

gives

a,
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From 6), 8) we get

cota H=-|(f^-^- do

valid for &amp;lt;
x

\
&amp;lt;

?r.

219. Recursion formula for the Bernouillian Numbers.

If we set f(x) = tan x,

we have by Taylor s development

o ! 51
where

/ 2n-i,
(0) 2(2

- - I)g2n 22

&quot;(2

2
&quot; - 1) R

(2w-l)! ,T
2

(2re)!
2- 1

Now by I, 408,

/o-i&amp;gt;(0)-
(

2Y
From 1), 2) we get

2

^Y 1

)^^^^,A..(-1) (3

We have already found ^, ^3 , .B., ^7 ; it [s now easy to find

successively :

Thus to calculate J5
9, we have from 3)

2io - 1) B _ ^8 27(28
-

1) J_ 9.8.7.6 25(26-1) ^
5

&quot;

1 2
&quot;

4 30 1 . 2 . 3 . 4 3 42
Q . Q . 7 93/^94 1\ 1 -t_ V O j ^ - JJ J_ 1

1-2.3 2 30
^ C }

6
Thus

512

5 . 7936
_5^

512 . 1023
~

66

~ 2 16
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The B and F Functions

220. In Volume I we defined the B and F functions by means

of integrals: r* u_ 1
-,

B (u, v) = \ (1

r&amp;lt;V)= Ce- xxu ~ ldx (2(u)=
^0

which converge only when u, v
&amp;gt;

0. Under this condition we saw

We propose to show that T(u) can be developed in the infinite

product /
j

(4n

This product converges, as we saw, 197, 3, for any u = 0, 1,

2, From 201, 7 and 207 it is obvious that G- converges abso

lutely and uniformly at any point u different from these singular

points. Thus the expression 4) has a wider domain of definition

than that of 2). Since G- = F^ as we said, for w&amp;gt;0, we shall ex

tend the definition of the F function in accordance with 4), for

negative u.

It frequently happens that a function f(x) can be represented

by different analytic expressions whose domains of convergence
are different. For example, we saw 218, 9), that tan x can be de

veloped in a power series

92/92^ ^~ 92

valid for a?&amp;lt;? On the other hand,

tan x =

X X* X

II 81 51*
&quot;

sin a;

r2 cosz_
214!
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and w x
tanz = 227oT 1x2 ^ 216 6

)

are analytic expressions valid for every x for which the function

tan x is denned.

221. 1. Before showing that Gr and F have the same values for

u &amp;gt; 0, let us develop some of the properties of the product Gr given
in 220, 4). In the first place, we have, by 210:

The function Cr(u) is continuous, except at the points u = 0, 1,

-2, ...

Since the factors of 4) are all positive for u
&amp;gt; 0, we see that

Gr(u) is positive for u
&amp;gt;

0.

2. In the vicinity of the point x = m, m = 0, 1,

x + m

where H(u) is continuous near this point, and does not vanish at

this point.

For
! + -m

m

where If is the infinite product G- with one factor left out. As we

may reason on .ZTas we did on G-, we see .ZT converges at the point
x = m. Hence ff= at this point. But ^Talso converges uni

formly about this point; hence H is continuous about it.

222&amp;gt;

r 1 1.2.-O-1)G- = lim ^ ^ nu . (1
n=* u (u + 1) (u + 2) . - (u + n 1)

To prove this relation, let us denote the product under the limit

sign by Pn . We have

2 3 4 n
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Also

Thus Pn = Grn . But Grn = G-, hence Pn ,
is convergent and Gr =

limPn .

223. Uuler s Constant. This is defined by the convergent series

It is easy to see at once that

\ n.

where C is the Eulerian constant.

For when a &amp;gt; 0, au = e
u loga

.

Hence

1 *
U&amp;lt;

u

Now

and

by 218, 7). By calculation it is found that

C^ .577215

224. Another expression of G- is

&quot; c

. , ^ = 1,2,... (i
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are convergent. Hence

/

from which 1 ) follows at once, using 223.

225. Further Properties of G-.

Let us use the product

P.00-1__fr&quot; 1 &quot;__
u ( + !) ,(+ -?!)

employed in 222. Then

Pn(tt + l) = ^P^i. (2w 4- n
As

= u as w = QO
M 4- n

we get 1) from 2) at once on passing to the limit.

2. #O + rc)=tt(i* + l) ... O + ra-l)#O). (3

This follows from 1) by repeated applications.

3. #00=1.2. ...w-l=(w-l)I (4

where n is a positive integer.

sin TTU

For
G(l-u)=-uG(-u) b 1

=
, by 224, 1).

Hence

n
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We now use 213, 5).

Let us note that by virtue of 1, 2 the value of Gr is known for

all u &amp;gt; 0, when it is known in the interval (0, 1). By virtue of

5) G- is known for u
&amp;lt;

when its value is known for u
&amp;gt;

0.

Moreover the relation 5) shows the value of 6r is known in (J, 1)

when its value is known in (0, J).

As a result of this we see G- is known when its values in the

interval (0, J) are known ;
or indeed in any interval of length J.

Gauss has given a table of log Gr(u) for l&amp;lt;w&amp;lt;1.5 calculated

to 20 decimal places. A four-place table is given in &quot; A Short

Table of Integrals
&quot;

by B. 0. Peirce, for 1 &amp;lt; u &amp;lt; 2.

5. &($) = V^. (6

For in 5) set u = ^. Then

Hence &() =

We must take the plus sign here, since G- &amp;gt; when u &amp;gt; 0, by 221

1-3. 5- ..27i-

where n is a positive integer.

For

226. Expressions for log 6r(w), a?ic? ^8 Derivatives

From 224, 1) we have for w
&amp;gt; 0,

ZO) = log (? O) = - CW

Differentiating, we get

U
l VH M +

That this step is permissible follows from 155, 1.
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We may write 2)

(3

That the relations 2), 3) hold for any u= 0,
-

1,
- 2 follows

by reasoning similar to that employed in 216. In general we have

^-(-lyO- ) ^,1

.!),
. r&amp;gt;L (4

In particular,

- (7. (5

-iyo-i)iSi.(-i) oi

-i)!Jt.

227. Development of log #(%) m a Power Series. If Taylor s

development is valid about the point u = 1, we have

log 0() =

or using 226, 5), and setting u = 1 + #,

log
n

We show now this relation is valid for J &amp;lt; x &amp;lt; 1, by proving
that

converges to 0, as s = oo .

For, if 0&amp;lt;z&amp;lt;l, then

Also if
-i&amp;lt;o;&amp;lt;0,

x

Ox

The relation 1) is really valid for 1
&amp;lt;

a;&amp;lt; 1, but for our pur

pose it suffices to know that it holds in 51 = ( J, 1). Legendre
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has shown how the series 1) may be made to converge more

rapidly. We have for any x in 51

2 n

This on adding and subtracting from 1) gives

log 0(1 + x) = -
log (1 + x) + (1

- C)x + I( - !
2

Changing here x into a; gives

log &amp;lt;?(!

-
T) = -

log (1
-

*)
-

(1
- C)x + 2(J5T.- I)?&quot;

71

Subtracting this from the foregoing gives

log 0(1 + a)
-

log (7(1
-

*)

From 225, 4

log (7(1 + x)
sin TTX

This with the preceding relation gives

log (7(1 + z)

valid in 51.

This series converges rapidly for
0&amp;lt;#&amp;lt;i, and enables us to

compute G-(u) in the interval
l&amp;lt;w&amp;lt;|.

The other values of (7

may be readily obtained as already observed.

228. 1. We show now with Pringsheim* that Gr(u) =r(w),/0r
u&amp;gt;0.

We have for
0&amp;lt;&amp;gt;&amp;lt;ll,

r(w + ?i)
= fVzzu+n

-
1

&amp;lt;fa

. Annalen, vol. 31, p. 455.
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Now for any x in the interval (0, ri),

xu &amp;lt;n
u

, xu &amp;gt;xn
u~ 1

since u &amp;gt; and u 1 &amp;lt;

;
0.

Also for any x in the interval (n, oo )

xu &amp;lt;xn
u ~ l

, xu
&amp;gt;^n

u
.

Hence
/n

n
u-ij

e

r*n s+&amp;lt;*&amp;gt;

&amp;lt;n
u

\ e~ xxn
- ldx+ nu-l

\ e~xxndx.
/0 Jn

Thus

/*ra 1 /^
a

I e-^71
- 1^^- I

^0 ^^/O
I e -*x*dx.

Let us call these integrals ^4, ^, (7 respectively.
We see at once that

= n\ =
n n

Also, integrating by parts,

Thus

Similarly

Hence

where

e*(n-l)\ enn\
Now
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But
svi mm

vn &amp;gt; 1 H T + + 7 ^ , for any mn+l O + l)
... (n + m)

mnm m m
(n + 1) -. O + m) A

+ ^
~

/
t

~
wA f

l + m\n

\ nj \ nj \ n)
Let us take

n&amp;gt;m* or *&amp;lt;

?i 7W

Then m m

Since m may be taken large at pleasure,

lim vn = oo

and hence ,.

lim qn = 0.

Thus

But from T(u + 1) = uT(u) we have

T(u + 1 +ri) _ u + n Y(u + n) __
-,

also, as n = oo . Thus the relation 1) holds for 1 &amp;lt;
u&amp;lt;_ 2, and in

fact for any u &amp;gt;0.

Aa-iXO Tl
/^/i* )

.,_ &quot;\

/\ f I &quot;1 \ /^ I

we have

Hence using 1), 1N . ^.
(M.-l)!n F(M + n)

u(u + 1) .. (w + n- 1) (w-1)!^
Letting w= oo

, we get F(w)= (r(w) for any w&amp;gt;0, making use

of 1) and 222, 1).

2. Having extended the definition of F(w) to negative values

of w, we may now take the relation

as a definition of the B function. This definition will be in

accordance with 220, 1) for w, v
&amp;gt; 0, and will define B for negative

w, v when the right side of 2) has a value.



CHAPTER VIII

AGGREGATES

Equivalence

229. 1. Up to the present the aggregates we have dealt with

have been point aggregates. We now consider aggregates in

general. Any collection of well-determined objects, distinguish

able one from another, and thought of as a whole, may be called

an aggregate or set.

Thus the class of prime numbers, the class of integrable func

tions, the inhabitants of the United States, are aggregates.

Some of the definitions given for point aggregates apply obvi

ously to aggregates in general, and we shall therefore not repeat

them here, as it is only necessary to replace the term point by

object or element.

As in point sets, 51 = shall mean that 51 embraces no elements.

Let 51, 33 be two aggregates sucli that each element a of 51 is

associated with some one element b of 33, and conversely. We say

that 51 is equivalent to 33 and write

51-33.

We also say 51 and 33 are in one to one correspondence or are in

uniform correspondence. To indicate that a is associated with b

in this correspondence we write

a~b.

2. If 51 ~ 33 and 33 ~ 6, then 51 ~ {.

For let a ~ b, b ~ c. Then we can set 51, ( in uniform corre

spondence by setting a ~ c.

3. Let 5( = 33 + + )+ -

A = B + C+D +

// 33 ~ B, 6 ~ C\ ,
then 51 ~ A.

276
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For we can associate the elements of 51 with those of A by

keeping precisely the correspondence which exists between the

elements of 33 and B, of and (7, etc.

Example 1. 51 = 1, 2, 3, ...

33 = aj, &
2 , a

3 ,
...

If we set a n
~ n, 51 and 33 will stand in 1, 1 correspondence.

Example 2. 51 = 1, 2, 3, 4,

33 = 2,4,6,8, -

If we set n of 51 in correspondence with 2 n of 33, 51 and 33 will

be in uniform correspondence.
We note that 33 is a part of 5t ; we have thus this result : An

infinite aggregate may be put in uniform correspondence with a

partial aggregate of itself.

This is obviously impossible if 51 is finite.

Example 3. 51 = 1, 2, 3, 4,
...

33 = 10 1
,
102

,
103

,
104

,
...

If we set n ~ 10n, we establish a uniform correspondence be

tween 51 and 33. We note again that 31 ~ 33 although 51 &amp;gt; 33.

Example 4- Let (E = \% j, where, using the triadic system,

f=-A- f.= 0,2

denote the Cantor set of I, 272. Let us associate with % the point

where xn = when fn =0, and =1 when fn = 2 and read 1) in

the dyadic system.
Then \x\ is the interval (0, 1). Thus we have established a

uniform correspondence between (E and the points of a unit interval.

In passing let us note that if f &amp;lt; f and a;, a/ are the correspond

ing points in \x\, then x &amp;lt; x .

This example also shows that we can set in uniform correspond
ence a discrete aggregate with the unit interval.

We have only to prove that (E is discrete. To this end consider

the set of intervals C marked heavy in the figure of I, 272. Ob-
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viously we can select enough of these deleted intervals so that

their lower content is as near 1 as we choose. Thus

Cont 0=1.

As Cont C &amp;lt; 1, O is metric and its content is 1. Hence ( is

discrete.

230. 1. Let tyi=a + A, 33 = /3 -f .#, where a, b are elements

of SI, 33 respectively. 7/
1

SI ~- 33, then A~B avid conversely.

For, since SI ~ 33, each element a of 51 is associated with some

one element b of 33, and the same holds for 33. If it so happens
that a ~ /3, the uniform correspondence of A, B is obvious. If

on the contrary ~ b and /3
~ a

, the uniform correspondence be

tween A, B can be established by setting a ~ b and having the

other elements in A, B correspond as in 51 ~ 33.

2. We state as obvious the theorems:

No part 33 of a finite set SI can be ~ SI.

No finite part 33 of an infinite set 51 can be ~ SI.

Cardinal Numbers

231. 1. We attach now to each aggregate SI an attribute

called its cardinal number, which is defined as follows :

1 Equivalent aggregates have the same cardinal number.

2 If SI is to a part of 33, but 33 is not ~ SI or to any part

of SI, the cardinal number of SI is less than that of 33, or the

cardinal number of 33 is greater than that of SI. The cardinal

number of SI may be denoted by the corresponding small letter

a or by Card SI.

The cardinal number of an aggregate is sometimes called its

power or potency.
If SI is a finite set, let it consist of n objects or elements.

Then its cardinal number shall be n. The cardinal number of

a finite set is said to be finite, otherwise transfinite. It follows

from the preceding definition that all transfinite cardinal num
bers are greater than any finite cardinal number.
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2. It is a property of any two finite cardinal numbers a, b that

either
a = b ,

or a &amp;gt; b ,
or a &amp;lt; b. (1

This property has not yet been established for transfinite car

dinal numbers. There is in fact a fourth alternative relative to

21, 33, besides the three involved in 1). For until the contrary
has been shown, there is the possibility that :

No part of 21 is ~ 23, and no part of 23 is ~ 21.

The reader should thus guard against expressly or tacitly

assuming that one of the three relations 1) must hold for any
two cardinal numbers.

3. We note here another difference. If 21, 23 are finite with

out common element,

Card (21 + 23) &amp;gt; Card 21. (2

Let now 21 denote the positive even and 23 the positive odd

numbers. Obviously

Card (21 + 23) = Card 21 = Card 23

and the relation 2) does not hold for these transfinite numbers.

4. We have, however, the following :

Let 21 &amp;gt; 23, then

Card 21 &amp;gt; Card 23.

For obviously 23 is ~ to a part of 21, viz. 23 itself.

5. This may be generalized as follows :

Let

If Card 23 &amp;lt; Card B ,
Card &amp;lt;

&amp;lt; Card (7, etc.,

then
Card 21 &amp;lt; Card A.

For from Card 23
&amp;lt;.

Card B follows that we can associate in 1,

1 correspondence the elements of 23 with a part or whole of B.

The same is true for (, (7; $), D ;

Thus we can associate the elements of 21 with a part or the

whole of A.
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Enumerable Sets

232. 1. An aggregate which is equivalent to the system of

positive integers $ or to a part of 3 ig enumerable.

Thus all finite aggregates are enumerable. The cardinal num
ber attached to an infinite enumerable set is K , aleph zero.

At times we shall also denote this cardinal by e, so that

e =V
2. Every infinite aggregate 51 contains an infinite enumerable set $&.

For let a
1
be an element of 51 and

Then 5tj
is infinite ; let a

z
be one of its elements and

Then 512 is infinite, etc.

Then $ = a

is a part of 21 and forms an infinite enumerable set.

3. From this follows that

K is the least transfinite cardinal number.

233. The rational numbers are enumerable.

For any rational number may be written

r = (1
n

where, as usual, m is relatively prime to n.

The equation

admits but a finite number of solutions for each value of

^ = 2,3,4, .-

Each solution m, n of 2), these numbers being relatively prime,

gives a rational number 1). Thus we get, e.g.

p=2 ,
1.

O i O i 1

P = o
&amp;gt; 2, -J.

P = 4: , 3, J.

J&amp;gt;

= 5 , 4, J , | J.
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Let us now arrange these solutions in a sequence, putting those

corresponding to p = q before those corresponding to p = q + 1.

We get
r\ &amp;gt;

r
2 r3

.-
(3

which is obviously enumerable.

234. Let the indices
tj,

t
2 ,

*p range over enumerable sets. Then

VK-^J
z* enumerable.

For the equation
&quot;i
+

&quot;2
+ &quot; +

&quot;*

= w,

where the i/ s are positive integers, admits but a finite number
of solutions for each n = p, jo + 1, p + 2, jt? + 3 Thus the

elements of $_$/, ?

may be arranged in a sequence

by giving to n successively the values p, p + 1, and putting the

elements b
Vl

...
Vp corresponding to n = q+ 1 after those correspond

ing to n = q.

Thus the set 35 is enumerable. Consider now 51. Since each

index im ranges over an enumerable set, each value of im as im is

associated with some positive integer as m and conversely. We
may now establish a 1, 1 correspondence between 31 and 33 by

setting

/x-;~ aiX-v
Hence 21 is enumerable.

235. 1. An enumerable set of enumerable aggregates form an

enumerable aggregate.

For let 5t, 33, ( be the original aggregates. Since they form

an enumerable set, they can be arranged in the order

*!,,**,, -
(1

But each $Im is enumerable ; therefore its elements can be

arranged in the order

am\ &amp;gt; m2 ^m3 ^m*
&quot;
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Thus the a-elements in 1) form a set

\amn \ m, n,= 1, 2,

which is enumerable by 234.

2. The real algebraic numbers form an enumerable set.

For each algebraic number is a root of a uniquely determined

irreducible equation of the form

xn +aiX
n-l + ... +an =0,

the a s being rational numbers. Thus the totality of real algebraic

numbers may be represented by

\Pn, aidf- an \

where the index n runs over the positive integers and a
1

an range
over the rational numbers.

3. Let 51, 33 ^ two enumerable sets. Then

Card 51=

And in general if^, 512
are an enumerable set of enumerable

aggregates, Card (5^ , 512,) = K .

This follows from 1.

236. Every isolated aggregate 91, limited or not, forms an enumer

able set.

For let us divide 9?m into cubes of side 1. Obviously these form

an enumerable set C\, &amp;lt;7

2
. About each point a of 91 in any &amp;lt;7n

as center we describe a cube of side er, so small that it contains no

other point of 91. This is possible since 91 is isolated. There are but

a finite number of these cubes in On of side a- = -, v = 1, 2, 3,
v

for each v. Hence, by 235, l, 91 is enumerable.

237. 1. Every aggregate of the. first species 91, limited or not, is

enumerable.

For let 91 be of order n. Then

91 = 91 + 9i;
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where 5l
t
denotes the isolated points of 51 and 51^ the proper limit

ing points of 51-

Similarly,

Thus,
5i = 5t; + 5i;, t + 5r;, t + - + a?

)
.

But 5l
(n) is finite and

51&amp;lt;;

1)
&amp;lt; 5I

(n)
.

Thus 51 being the sum of n 4- 1 enumerable sets, is enumerable.

2. .Tjf 51 is enumerable, so is 51.

For as in 1,

* X + 9

and
5i;&amp;lt;5{

.

238. 1. Every infinite aggregate 51 contains a part 53 swc?A ^a

53-51.

For let & = (j, a
2 , 3 ) be an infinite enumerable set in 51,

so that

51 = (5 + g.

Let (g = d + .#.

To establish a uniform correspondence between .#, (5 let us

ociate an in

We now set

associate an in @ with an+1 in J^. Thus

Obviously 51 ~ 53 since .Z7~ (5, and the elements of 5 are common
to 51 and 53. -

2. -Zjf 5l~53 are infinite, each contains a part 5lj, 53i such that

For by 1, 51 contains a part 5^ such that 51 51J. Similarly,

53 contains a part 53:
such that 53 53r As 51 33, we have the

theorem.
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239. 1. A theorem of great importance in determining
whether two aggregates are equivalent is the following. It is

the converse of 238, 2.

then ^^^
In the correspondence 3^ ~ 33, let 512

be the elements of
5Ij

associated with 33 X
. Then

5I2
~ $! ~ 31

and hence or &amp;lt;ar /1& v eig* (.1

But as Slj &amp;gt; $12 , we would infer from 1) that also

21 ~V (2

As ^ ~ 33 by hypothesis, the truth of the theorem follows at

once from 2).

To establish 2) we proceed thus. In the correspondence 1), let

5(3
be that part of $12 which ~ ^ in 51. In the correspondence

^ ~ 513 ,
let 514

be that part of 5t3
which ~ 512

in 5l x
.

Continuing in this way, we get the indefinite sequence

51 &amp;gt; 5Ij &amp;gt; 512 &amp;gt; 313 &amp;gt;
.

SUCh that rw rvf afS4 ~ &amp;lt;!12
~ ^1 4

~

3^-213-21,-...
Let now

Then
3l = D + G

1 H-G2 + 68 + C4 + - (3
and similarly

,
= + G, + G, + G 4 + S5 + &quot;

We note that we can also write

2l 1
= )+G3 + l

2 + e6 + G4 + . (4

Now from the manner in which the sets 513 , 514
were obtained,

it follows that

i~ 3 e8 -@6
- (5

Thus the sets in 4) correspond uniformly to the sets directly

above them in 3), and this establishes 1).
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2. In connection with the foregoing proof, which is due to

Bernstein, the reader must guard against the following error. It

does not in general follow from

that ~ (5

which is the first relation in 5).

Example. Let 51 = (1, 2, 3, 4, ).

511= (2, 3, 4, 5&quot;.) , 512 =(3, 4, 5, 6 ...)

513 =(5, 6, 7, 8 ).

Then = 1 6 =
(3, 4).

Now 5(, 51 r 51 2 , 513
are all enumerable sets ;

hence

9T &amp;lt;~ 91 91 ~- 31

But obviously C^ is not equivalent to (E3 , since a set containing

only one element cannot be put in 1 to 1 correspondence with a

set consisting of two elements.

240. 1. If%&amp;gt;$&amp;gt;

For by hypothesis a part of 23, viz. (, is ~2L But a part of

is ~33, viz. 33 itself. We apply now 239.

2. Let a be any cardinal number. If

then a = Card $.

For let Card 51 = . Then from

a &amp;lt; Card 33

it follows that 51 ~ a part or the whole of 33 ;
while from

Card 33 &amp;lt;

it follows that 33 is ~ a part or the whole of 51.

3. Any part 33 of an enumerable set 51 is enumerable.

For if 33 is finite, it is enumerable. If infinite,

Card33&amp;gt;K -

On the other hand

Card 33 &amp;lt; Card 51 = K .
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4. Two infinite enumerable sets are equivalent.

For both are equivalent to $, the set of positive integers.

241. 1. Let ( be any enumerable set in 51 ; set 51 = ( + 23. If
23 ^s infinite, 51 53.

For 23 being infinite, contains an infinite enumerable set g.

Let 23 = g + . Then
51 = (5 + g + ,

8 -.8 + ft

But &amp;lt;g + g ~ g. Hence 51-23.

2. We may state 1 thus :

Card (31 -(S)= Card 51

provided 51 (5 i infinite.

3. From 1 follows at once the theorem :

.Let 51 be any infinite set and (5 an enumerable set. Then

Card (51 + &amp;lt;g)

= Card 51.

Some Space Transformations

242. 1. Let T be a transformation of space such that to each

point x corresponds a single point XT , and conversely.

Moreover, let #, y be awy two points of space. After the trans

formation they go over into XT , y T . If

Dist(&amp;gt;, y)= DistOy, yT)

we call jTa displacement.

If the displacement is defined by

x
1
= x

l + a
l ,

... xm = xm + am

it is called a translation.

If the displacement is such that all the points of a line in space

remain unchanged by T, it is called a rotation whose axis is the

fixed line.



THE CARDINAL c 287

If 9? denotes the original space, and 9? r the transformed space
after displacement, we have, obviously,

2. Let =tx = tx t Q ^

Then when x ranges over the w-way space 3E, y ranges over an

w-way space 9). If we set x ~ y as defined by 1),

Alcn
Dist (0, y) =t Dist (0, x).

We call 1) a transformation of similitude. If t &amp;gt; 1, a figure in

space is dilated ; if t
&amp;lt; 1, it is contracted.

3. Let Q be any point in space. About it as center, let us de

scribe a sphere S of radius R. Let P be any other point. On the

join of P, Q let us take a point P such that

Dist (P , Q) =
Dist (P, Q)

Then P is called the inverse ofP with respect to S. This trans

formation of space is called inversion. Q is the center of inversion.

Obviously points without S go over into points within, and con

versely. As P = x
,
P = Q.

The correspondence between the old and new spaces is uniform,

except there is no point corresponding to Q.

TJie Cardinal c

243. 1. All or any part of space & may be put in uniform cor

respondence with a point set lying in a given cube C.

For let @ t denote the points within and on a unit sphere S about

the origin, while &e denotes the other points of space. By an in

version we can transform @e into a figure @/ lying in S. By a

transformation of similitude we can contract @ t , &f
as much as we

choose, getting ^ , (gy- We may now displace these figures so

as to bring them within C in such a way as to have no points in

common, the contraction being made sufficiently great. The
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correspondence between &amp;lt;S and the resulting aggregate is obviously
uniform since all the transformations employed are.

As a result of this and 240, l we see that the aggregate of all

real numbers is ~ to those lying in the interval (0, 1); for example,

the aggregate of all points of SRm is ~ to the points in a unit cube,

or a unit sphere, etc.

244. 1. The points lying in the unit interval 5t = (0*, 1*) are

not enumerable.

For if they were, they could be arranged in a sequence

i, 2
a
3

&quot; 0-

Let us express the as as decimals in the normal form. Then

an = a
ni
an2ana

&quot;

Consider the decimal
b = &J&2&3

...

also written in the normal form, where

^1^^1,1 ^2^^2,2 ^3^^3,3 i
&quot;

Then b lies in 5( and is yet different from any number in 1).

2. We have (0*, 1*) ~ (0, 1) , by 241, 3,

-(a, 6) , by 243,

where a, b are finite or infinite.

Thus the cardinal number of any interval, finite or infinite,

with or without its end points is the same.

We denote it by c and call it the cardinal number of the recti

linear continuum, or of the real number system $1.

Since 9^ contains the rational number system R, we have

OKo-

3. The cardinal number of the irrational or of the transcendental

numbers in any interval 51 is also c.

For the non-irrational numbers in 51 are the rational which are

enumerable ;
and the non-transcendental numbers in 51 are the

algebraic which are also enumerable.
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4. The cardinal number of the Cantor set ( of I, 272 is c.

For each point a of (E has the representation in the triadic

system nJ a = a-,a9ao ,
a = U, ^.

But if we read these numbers in the dyadic system, replacing

each an = 2 by the value 1, we get all the points in the interval

(0, 1). As there is a uniform correspondence between these two

sets of points, the theorem is established.

245. An enumerable set 51 is not perfect, and conversely a perfect

set is not enumerable.

For suppose the enumerable set

51 = ^, a (1

were perfect. In D^^a^) lies an infinite partial set 51
x

of 51,

since by hypothesis 51 is perfect. Let a^ be the point of lowest

index in
5lj

. Let us take r
2 &amp;lt; r

l
such that D^(a^) lies in

D* (ai)- In -A-fC^mi) ^es an infinite partial set 512
of 5lr Let

am3 be the point of lowest index in 512 , etc.

Consider now the sequence

It converges to a point a by I, 127, 2. But a lies in 51, since this

is perfect. Thus a is some point of 1), say a = a,. But this

leads to a contradiction. For a, lies in every .Z)r
*
n(# n); on the

other hand, no point in this domain has an index as low as mn

which = oo, as n = GO. Thus 51 cannot be perfect.

Conversely, suppose the perfect set 51 were enumerable. This

is impossible, for we have just seen that when 51 is enumerable it

cannot be perfect.

246. Let 51 be the union of an enumerable set of aggregates 5ln

each having the cardinal number c. Then Card 51 = c.

For let 33n denote the elements of 5ln not in 5lj,5l2 5ln _j.

Let ( B denote the interval (w 1, w*). Then the cardinal

number of Q -f- + ... is c.
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But
Card33n

&amp;lt; Card n .

Hence Card 21 &amp;lt; c , by 231, 6. (1
On the other hand,

Card SI &amp;gt; Card 21!
= c. (2

From 1), 2) we have the theorem, by 240, 2.

247. 1. As already stated, the complex x= (2^, #
2 , #n) de

notes a point in n-way space. Let x, #
2 , denote an infinite

enumerable set. We may also say that the complex

x (2^, #
2 ,

in inf.)

denotes a point in oo -way space 9^.

2. Let 21 denote a point set in $Rn , n finite or infinite. Then

Card 21 &amp;lt; c. (1

For let us first consider the unit cube ( whose coordinates xm

range over 33 = (0*, 1*). Let ) denote the diagonal of (L Then

c = Card ) &amp;lt; Card &amp;lt;. (2

On the other hand we show Card ( &amp;lt; c.

For let us express each coordinate xm as a decimal in normal

form. Then

Let us now form the number

obtained by reading the above table diagonally. Let 9) denote the

set of ?/ s so obtained as the # s range over their values. Then

For the point y, for example, in which a
ln
= 0, n = 1, 2, lies

in 33 but not in 9) as otherwise x
l
= 0. Let us now set x ~ y.

Then | ~ 9 and hence
Car(J g &amp;lt; (3

From 2), 3) we have Card
G&amp;gt;

= c.
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Let us now complete (E by adding its faces, obtaining the set C.

By a transformation of similitude T WQ can bring CT within (.

Hence
Card S&amp;gt; Card C.

On the other hand, ( is a part of (7, hence

Card &amp;lt; Card C.

Thus Card C = c. The rest of the theorem follows now easily.

248. Let g = j/J denote the aggregate of one-valued continuous

functions over a unit cube & in 9?n .

Then

Let C denote the rational points of (5, i.e. the points all of

whose coordinates are rational. Then any / is known when its

values over are known. For if a is an irrational point of (5,

we can approach it over a sequence of rational points a
lf

#
2

= a.

But / being continuous, /(a) = lim/(an), and / is known at .

On the other hand, being enumerable, we can arrange its points
in a sequence n

O=c^ c^ ...

Let now 9^ be a space of an infinite enumerable number of

dimensions, and let y = (^, y^ ) denote any one of its points.
Let / have the value v

l
at c

1 , the value 7/2 at c
z and so on for

the points of C. Then the complex T/J, ?;2 ,
...

completely deter

mines / in (. But this complex also determines the point

V = C7
?!^ ^2 &quot;)

in ^x- W now associate / with 77. Thus

Card g &amp;lt;.
Card ft = c.

But obviously Card g &amp;gt; c, for among the elements of g there

is an/ which takes on any given value in the interval (0, 1), at

a given point of (L

249. There exist aggregates whose cardinal number is greater
than any given cardinal number.

Let 33= \b\ be an aggregate whose cardinal number b is given.
Let a be a symbol so related to 33 that it has arbitrarily either

the value 1 or 2 corresponding to each b of 33. Let 51 denote the
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aggregate formed of all possible a s of tins kind, and let a, be its

cardinal number.

Let ft be an arbitrary element of 33. Let us associate with ft

that a which has the value 1 for b = ft and the value 2 for all

other 5 s. This establishes a correspondence between 33 and a

part of 51. Hence
a^b.

Suppose a = b. Then there exists a correspondence which

associates with each b some one a and conversely. This is

impossible.

For call ab that element of 51 which is associated with b. Then

ab has the value 1 or 2 for each ft of 33. There exists, however,

in 51 an element a which for each ft of 33 has just the other

determination than the one ab has. But a is by hypothesis

associated with some element of 33, say that

Then for b = b
r

,
a 1 must have that one of the two values 1, 2

which ab has. But it has not, hence the contradiction.

250. The aggregate of limited integrable functions $ defined over

5( = (0, 1) has a cardinal number f &amp;gt; c.

For let f(x) = in 51 except at the points (5 of the discrete

Cantor set of I, 272, and 229, Ex. 4. At each point of { let /
have the value 1 or 2 at pleasure. The aggregate formed of

all possible such functions has a cardinal number &amp;gt; c, as the

reasoning of 249 shows. But each / is continuous except in (5,

which is discrete. Hence / is integrable. But gf &amp;gt;
. Hence

.

: .&quot;&quot;.. .

;

. f&amp;gt;&amp;lt;-

-
&quot;

.

&quot;

. ,

Arithmetic Operations with Cardinals

251. Addition of Cardinals. Let 51, 33 be two aggregates with

out common element, whose cardinal numbers are a, b. We define

the sum of a and b to be

Card (51, 33)= a + b.
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We have now the following obvious relations:

K + n = K , n a positive integer. (1

+ + K = K , w terw*. (2

+ K + &quot; =
KO , aw. infinite enumerable set of terms. (3

cardinal numbers of 51, 23, (? are a, b, c,

The first relation states that addition is associative, the second
that it is commutative.

252. Multiplication.

1. LetH= {a{, ^3 = J5J have the cardinal numbers a, b. The
union of all the pairs (a, b) forms a set called the product of 51 and
23. It is denoted by 51 23. We agree that (a, 6) shall be the
same as (5, a). Then

51-23 = 23-51.

We define the product of a and b to be

Card 51 - 23 = Card 23 5T = a . b = b - a.

2. We have obviously the following formal relations as in finite
cardinal numbers :

a(b -c) = (a -b)c,

a b = b a,

a(b + c)
= ab + ac,

which express respectively the associative, commutative, and dis-

tripulative properties of cardinal numbers.

Example 1. Let 5l=jaj, %&amp;gt;
=

\l\ denote the points on two
indefinite right lines. Then

If we take a, b to be the coordinates of a point in a plane 9?2 ,

* The reader should note that here, as in the immediately following articles, c is

simply the cardinal number of ( which is any set, like 31, 53
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Example 2. Let 21 = \a\ denote the family of circles

Let 33 = 5^! denote a set of segments of length b. We can

interpret (#, 6) to be the points on a cylinder whose base is 1)

and whose height is I. Then 91-33 is the aggregate of these

cylinders.

253. 1. K = ra.K ,
or nt = t. (1

For let ^ ,
^ _v

( =
(&amp;lt;?!, 2

in inf.)

Then
K--c~&amp;lt;;t, o , (i, a) , (i )

(/7
^ ^ ^/7 /&amp;gt; ^ r/7 ^ &quot;\ . .

2 lx v^ 2^ V M/
2 1 3x

The cardinal number of the set on the left is n , while the

cardinal number of the set on the right is K .

2. ec = c. (2

For let (
=

{c} denote the points on a right line, and (5 = (1, 2,

Then (S

may be regarded as the points on a right line ln . Obviously,

Card JU=c.
Hence

ec = Card (g( = c.

254. Exponents. Before denning this notion let us recall a

problem in the theory of combinations, treated in elementary

algebra.

Suppose that there are 7 compartments

n n n
^ii v

2 5
*&quot;

^y&amp;gt;

and that we have k classes of objects
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Let us place an object from any one of these classes in (7r an

object from any one of these classes in &amp;lt;7

2
--- and so on, for each

compartment. The result is a certain distribution of the objects

from these k classes K, among the y compartments O.

The number of distributions of objects from k classes among y

compartments is &.

For in O
1
we may put an object from any one of the k classes.

Thus
(7j may be tilled in k ways. Similarly (7

2 may be filled in

k ways. Thus the compartments (Tp &amp;lt;72 may be filled in k2
ways.

Similarly (7-p
(7
2 , &amp;lt;73 may be filled in A? ways, etc.

255. 1. The totality of distributions of objects from k classes

K among the 7 compartments form an aggregate which may be

denoted by TTC

We call it the distribution of K over O. The number of distri

bution of this kind may be called the cardinal number of the set,

and we have then Card K = &
2. What we have here set forth for finite and .STmay be ex

tended to any aggregates, 51 = |a|, 33 = \b\ whose cardinal num
bers we call a, b. Thus the totality of distributions of the a s

among the 5 s, or the distribution of 51 over 93, is denoted by

21,

and its cardinal number is taken to be the definition of the symbol
ab - Thus

256. Example 1. Let

X* + djZ*-
1 * &amp;gt; + n = (1

have rational number coefficients. Each coefficient a8 can range
over the enumerable set of elements in the rational number

system R =
jr{, whose cardinal number is K . The n coefficients

form a set 21 = (a t ,
an) = \a\. To the totality of equations 1)

corresponds a distribution of the r s among the a s, or the set

R*
whose cardinal number is

K5
= c.
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As
Card R* = * = e

we have the relation :

K = K , or e
n = e

for any integer n.

On the other hand, the equations 1) may be associated with

the complex
(flj,

... an),

and the totality of equations 1) is associated with

&amp;lt;

=
fOi&amp;gt; n)j-

But
Ki.4)1-fiif*j

JOi, 2
as)i = IOi 2){ \

az\ etc.

N
C^f^^KJvJa.].

Card ( = e e e ,
n times as factor.

But
Card (^ = Card J2*

since each of these sets is associated uniformly with the equations

1). Thus .. -
e
n = e-e--&quot;e ,

n times as factor.

257. Example 2. Any point x in m-way space $Rm depends on

m coordinates x
l ^ x%, xm , each of which may range over the set

of real numbers 9t, whose cardinal number is c. The m coordi

nates x
l

... xm form a finite set

I
=(&amp;gt;!,

-..
a;,,).

Thus to $lm = \x\ corresponds the distribution of the numbers in

$R, among the m elements of
,
or the set

K*
whose cardinal number is

cm .

As
Card M* = c

we have
c
m = c for any integer m. (1

As in Example 1 we show

c
m = c c * c , m times as factor.
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258. a
b+c = a

b
.a

c
. (1

To prove this we have only to show that

and 31
s8

21
s

can be put in 1-1 correspondence. But this is obvious. For

the set on the left is the totality of all the distributions of the

elements of 51 among the sets formed of 33 and (L On the other

hand, the set on the right is formed of a combination of a distri

bution of the elements of 51 among the 93, and among the (. But

such a distribution may be regarded as the distribution first con

sidered.

259. (a*)
= aK (1

We have only to show that we can put in 1-1 correspondence
the elements of

(31
58/ and 2l*-

e
. (2

Let 51= \a\, 33 = {6j, 6= \c\. We note that 51s is a union of

distributions of the as among the J s, and that the left side of 2)

is formed of the distributions of these sets among the c s. These

are obviously associated uniformly with the distributions of the

a s among the elements of 33 (L

260. 1. c
n = (m c

)
n = mn* = m* = c (1

where m, n are positive integers.

For each number in the interval & = (0, 1*) can be represented
in normal form once and once only by

a^a^ in the ra-adic system, (2

where the &amp;lt; a
s &amp;lt; m. [I, 145] .

Now the set of numbers 2) is the distribution of 3ft =(0, 1, 2,

m 1) over (5 = (ax , a2 , 3 ), or

whose cardinal number is

m&amp;lt;

On the other hand, the cardinal number ( is C.
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Hence, mc = c.

As n* = e, we have 1), using 1) in 257.

2. The result obtained in 247, 2 may be stated:

V = c. (3

3. t* = c. (4

For obviously ne
&amp;lt; e c

&amp;lt; ce .

But by 3), c c = c and by 1) n* = c.

261. 1. The cardinal number t of all functionsf (xl
xm) which

take on but two values in the domain of definition 31, of cardinal num
ber a, is 2 2*.

Moreover, 2 21
&amp;gt; a.

This follows at once from the reasoning of 249.

2. Let f be the cardinal number of the class of all functions de

fined over a domain 31 whose cardinal number is c. Then

f
= cc=2c&amp;gt; c . (1

For the class of functions which have but two values in 21 is by

1, 2c.

On the other hand, obviously

f
= cc.

But
cc =

(2e)c, by 260, 1)

=
2&quot;, by 259, 1)

= 2S by 253, 2).

Thus, cc = 2c.

That f &amp;gt; c

follows from 250, since the class of functions there considered lies

in the class here considered.

3. The cardinal number t of the class of limited integrable func
tions in the interval 31 is =

f,
the cardinal number of all limited

functions defined over 31.
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For let & be a Cantor set in 51 [I, 272]. Being discrete, any
limited function defined over ) is integrable. But by 229, Ex. 4,

the points of 51 may be set in uniform correspondence with the

points of ).

4. The set of all functions

/O) =/,(*) +/,(*)+... (2

which are the sum of convergent series, and whose terms are continu

ous in 5(, has the cardinal number c.

For the set g of continuous functions in 51 has the cardinal

number c by 248. These functions are to be distributed among
the enumerable set & of terms in 2). Hence the set of these

functions is ~
u &amp;gt;

whose cardinal number is
c

Remark. Not every integrable function can be represented by
the series 2).

For the class of integrable functions has a cardinal number &amp;gt; c,

by 250.

5. TJie cardinal number of all enumerable sets in an m-way space

Wm is c.

For it is obviously the cardinal number of the distribution of

9?m over an enumerable set (5, or

Card ft = c
e = c.

Numbers of Liouville

262. In I, 200 we have defined algebraic numbers as roots of

equations of the type

where the coefficients a are integers. All other numbers in $ft we
said were transcendental. We did not take up the question
whether there are any transcendental numbers, whether in fact,

not all numbers in 9? are roots of equations of the type 1).
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The first to actually show the existence of transcendental num
bers was Liouville. He showed how to form an infinity of such

numbers. At present we have practical means of deciding
whether a given number is algebraic or not. It was one of the

signal achievements of Hermite to have shown that e = 2.71818

is transcendental.

Shortly after Lindemann. adapting Hermite s methods, proved
that TT = 3.14159 is also transcendental. Thereby that famous

problem the Quadrature of the Circle was answered in the negative.
The researches of Hermite and Lindemann enable us also to form

an infinity of transcendental numbers. It is, however, not our pur

pose to give an account of these famous results. We shall limit

our considerations to certain numbers which we call the numbers
of Liouville.

In passing let us note that the existence of transcendental num
bers follows at once from 285, 2 and 244, 2. fe -X ^ ?

For the cardinal number of the set of real algebraic number is

e, and that of the set of all real numbers is c, and c &amp;gt; e.

263. In algebra it is shown that any algebraic number a is a

root of an irreducible equation,

f- + &amp;lt;i.

= o a
whose coefficients are integers without common divisor. We say
the order of a is ni.

We prove now the theorem

r =
^ , Pn*qm relativelyprime,

= a, an algebraic number of order m, as n = x . Then

]-r.]&amp;gt;-i_ , &amp;gt;. (2

For let a be a root of 1). We may take S&amp;gt;0 so small that

/(x)=#=0 in Dj*(), and * so large that rn lies in ^(a), for n&amp;gt;9.

, (3
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for n &amp;gt; i, since the numerator of the middle member is an integer,
and hence &amp;gt; 1 .

On the other hand, by the Law of the Mean [I,

where lies in
!&amp;gt;&amp;lt;

Now /()=0 and / ()&amp;lt; some M.
Hence -, x -

--&quot;^4- (4

on using 3). Bat however large Jf in, there exists a v, such that

qn &amp;gt;M, for any n &amp;gt;
v. This in 4) gives 2).

264. 1. The numbert

where an &amp;lt; 10, and not aR of them vanish after a certain index, are

transcendental.

For if L is algebraic, let its order be m. Then if Ln denotes

the sum of the first n terms of 1), there exists a v such that

^.li-AOjjjjl- , forn&amp;gt;,. (2

But ^ l

^&quot;lO-
-V: + C

10 (+l&amp;gt;!
&amp;gt;v

;
,

v^ being taken sufficiently large. But 3) contradicts 2).
The numbers 1) we call the numbers of Lioumtte.

2. The set of Lioumlle numbers AM the cardinal number c.

For all real numbers in the interval (0*, 1) can be represented

/i-w+
fe+^+ - ^ 9

where not all the 6
T

s vanish after a certain index. The numbers

*-

can obviously be put in uniform correspondence with the set

Thus Card \\\ =c. But \L\ &amp;gt; }X(, hence Card \L\ &amp;gt;c. On the

other hand, the numbers \L\ form only a part of the numbers in

(0*, 1). Hence Card {L\ &amp;lt; c.



CHAPTER IX

ORDINAL NUMBERS

Ordered Sets

265. An aggregate 51 is ordered, when a, b being any two of

its elements, either a precedes 5, or a succeeds 5, according to some

law ; such that if a precedes 5, and b precedes &amp;lt;?,

then a shall pre

cede c. The fact that a precedes b may be indicated by

a&amp;lt;b.

Then
a&amp;gt;b

states that a succeeds b.

Example 1. The aggregates

1, 2, 3, ...

2,4,6,...

-3, -2, -1,0,1,2,3,

are ordered.

Example 2. The rational number system R can be ordered in

an infinite variety of ways. For, being enumerable, they can be

arranged in a sequence - . *r
i &amp;gt;

ri r
a

* &quot; rn

Now interchange r^ with rn . In this way we obtain an infinity

of sequences.

Example 3. The points of the circumference of a circle may be

ordered in an infinite variety of ways.
For example, let two of its points Pl , P2 make the angles a+6r

a 4- 2
with a given radius, the angle 6 varying from to 2 ?r.

Let P
l precede P2

when 6
1

&amp;lt; 2
.

302
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Example 4&amp;gt;
The positive integers $ may be ordered in an infi

nite variety of ways besides their natural order. For instance, we

may write them in the order

1, 3, 5, ... 2, 4, 6,
-.

so that the odd numbers precede the even. Or in the order

1, 4, 7, 10, ... 2, 5, 8, 11, ... 3, 6, 9, 12, ...

and so on. We may go farther and arrange them in an infinity

of sets. Thus in the first set put all primes ; in the second set

the products of two primes ;
in the third set the products of

three primes; etc., allowing repetitions of the factors. Let any
number in set m precede all the numbers in set n&amp;gt;m. The num
bers in each set may be arranged in order of magnitude.

Example 5. The points of the plane 9?2 may be ordered in an

infinite variety of ways. Let Ly denote the right line parallel to

the z-axis at a distance y from this axis, taking account of the sign
of y. We order now the points of 9?2 by stipulating that any

point on Lv, precedes the points on any L^, when y
1

&amp;lt;y&quot; ,
while

points on any Ly shall have the order they already possess on that

line due to their position.

266. Similar Sets. Let 21, 33 be ordered and equivalent. Let

a ~ b, a ~ y3. If when a &amp;lt; a in 21, b
&amp;lt; /9 in 33, we say 21 is similar

to 33, and write or m
VI 1O

Thus the two ordered and equivalent aggregates are similar

when corresponding elements in the two sets occur in the same

relative order.

Example 1. Let ar 100g = 1, J, d, ...

33 = a
1 , a

2 , az ,

In the correspondence 21 ~ 33, let n be associated with an . Then

31^33-

Example 2. Let or _ 1 9 Q
VI A, ^j, o,

33=
x
a
2

... am , b
1 , 5

2 , b
3
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In the correspondence 21 ~ 33, let ar ~r for r = 1, 2, m; also

let b n ~m + n,n = 1, 2 Then 51 ^ 53.

Example 3. Let
91 1 9 3

53 = ^, 6
2

a
1? 2

... am .

Let the correspondence between 21 and 53 be the same as in

Ex. 2. Then 21 is not similar to 53. For 1 is the first element in

21 while its associated element a
l

is not first in 53.

Example 4. Let w 1 9 q
&amp;lt;\ i,

.&amp;lt;, o,

53= a
1? 2 6j, 5

2
...

Let an ~ 2 w, bn
~ 2 n - 1. Then 21 - 53 but 51 is not a* 53.

267. Let 21 ^53, 53 ^(L 7%^ 21 ^ .

For let a ~ 5, a ~6 in 21-53. Let b ~ c, V ~ c in 53 ~ &. Let

us establish a correspondence 21 ~ S by setting a ~ c, a! ~c . Then
if a &amp;lt;a in 21, &amp;lt;

c in S. Hence 21 ~ (5.

Eutactic Sets

268. Let 21 be any ordered aggregate, and 53 a part of 21, the

elements of 53 being kept in the same relative order as in 21. If 21

and each 53 both have a first element, we say that 21 is well ordered,

or eutactic.

Example 1. 21 = 2, 3, 500 is well ordered. For it has a first

element 2. Moreover any part of 21 as 6, 15, 25, 496 also has a

first element.

Example 2. 21 = 12, 13, 14, ..-in inf. is well ordered. For it

has a first element 12, and any part 53 of 21 whose elements pre
serve the same relative order as in 21, has a first element, viz.

the least number in 53.

The condition that the elements of 53 should keep the same rel

ative order as in 21 is necessary. For B = 28, 26, 24, 22, 20,

21, 23, 25, 27, ... is a partial aggregate having no first element.

But the elements of B do not have the order they have in 21.
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Example 3. Let 51 = rational numbers in the interval (0, 1)

arranged in their order of magnitude. Then 51 is ordered. It

also has a first element, viz. 0. It is not well ordered however.

For the partial set 53 consisting of the positive rational numbers of

51 has no first element.

Example 4- An ordered set which is not well ordered may some

times be made so by ordering its elements according to another

law.

Thus in Ex. 3, let us arrange 51 in a manner similar to 233.

Obviously 51 is now well ordered.

Example 5. 51 = ar a
2

- b^ b% is well ordered. For a
l

is the

first element of 51 ; and any part of 51 as

has a first element.

269. 1. Every partial set 53 of a well-ordered aggregate 51 is well

ordered.

For 53 has a first element, since it is a part of 51 which is well

ordered. If is a part of 53, it is also a part of 51, and hence has

a first element.

2. If a is not the last element of a well-ordered aggregate 51, there

is an element of 51 immediately following a.

For let 53 be the part of 51 formed of the elements after a. It

has a first element b since 51 is well ordered. Suppose now

a
&amp;lt;

c
&amp;lt;

b.

Then b is not the first element of 53, as c &amp;lt; b is in 53.

3. When convenient the element immediately succeeding a may
be denoted by

a + 1.

Similarly we may denote the element immediately preceding a,

when it exists, by
a-1.
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For example, let

5( = a^a2 5j&amp;gt;2

Then an +l = an+1 ,
bm + 1 = bm+1

anl = an-l bm l = bm _ v

There is, however, no b
1

1.

270. 1. If 51 is well ordered, it is impossible to pick out an in

finite sequence of the type

a
1

&amp;gt; a2 &amp;gt; a3 &amp;gt; (1
For

20 = a8 , 0^, Oj

is a part of 51 whose elements occur in the same relative order as

in 51, and 33 has no first element.

2. A sequence as 1) may be called a decreasing sequence, while

a
1 &amp;lt;

a
2 &amp;lt;

a
s

...

may be called increasing.

In every infinite well ordered aggregate there exist increasing

sequences.

3. Let 51, 33, (, be a well ordered set. Let 5l = .JaJ be well

ordered in the a s, -53 = \b\ be well ordered in the b s, etc. The set

U = Sl, , 6 -

is well ordered with regard to the little letters a, b

For U has a first element in the little letters, viz. the first ele

ment of 51. Moreover, any part of U, as S3, has a first element in

the little letters. For if it has not, there exists in 33 an infinite

decreasing sequence
t

&amp;gt;
s

&amp;gt;
r &amp;gt;

This, however, is impossible, as such a sequence would deter

mine a similar sequence in U as

&amp;gt;&amp;lt;S&amp;gt;ft &amp;gt;

which is impossible as U is well ordered with regard to 21, 33

4. Let 9l&amp;lt;33&amp;lt;&amp;lt;
-.. (1

Let each element of 51 precede each element of 33, etc.
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Let each 51, 33, be well ordered.

Let

& = % + + C+ .-

is a well ordered set, 3 preserving the relative order of elements

intact.

For @ has a first element, viz. the first element of 51. Any
part S of & has a first element. For, if not, there exists in @
an infinite decreasing sequence

r
&amp;gt;

q&amp;gt; p &amp;gt; (2

Now r lies in some set of 1) as 9?. Hence
&amp;lt;?, jt?,

also lie in

Sft. But in $ft there is no sequence as 2).

5. Let 5(, 23, S, be an ordered set of well ordered aggre

gates, no two of which have an element in common. The reader

must guard against assuming that 51 + 33 + Q[ + keeping the

relative order intact, is necessarily well ordered.

For let us modify Ex. 5 in 265 by taking instead of all the

points on each Lv only a well ordered set which we denote by 5lj,-

Then the sum , Var
21 =

&amp;lt;fcflg

has a definite meaning. The elements of 51 we supposed arranged
as in Ex. 5 of 265.

Obviously 51 is not well ordered.

Sections

271. We now introduce a notion which in the theory of well-

ordered sets plays a part analogous to Dedekind s partitions in

the theory of the real number system $ft. Cf. I, 128.

Let 51 be a well ordered set. The elements preceding a given
element a of 51 form a partial set called the section of 51 generated

by a. We may denote it by

So,

or by the corresponding small letter a.
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Example 1. Let
51 = 1 2 3

Then
100=1, 2, -99

is the section of 51 generated by the element 100.

Example 2. Let
51 = 1^, a

2
--.

6j, b
2

-&amp;gt;

Then
Sb

5
= a

l
a
2

&quot;b
l
b
2
b
3
b

4i

is the section generated by b
5

.

tSb-^
=

a^a^

that generated by b
1 , etc.

272. 1. Every section of a well ordered aggregate is well ordered.

For each section of 51 is a partial aggregate of 51, and hence

well ordered by 269, 1.

2. In the well ordered set 51, let a&amp;lt;b. Then Sa is a section

ofSb.

3. Let @ denote the aggregate of sections of an infinite well

ordered set 51. If we order such that Sa &amp;lt;
Sb in wAew a &amp;lt; b in

51, @ is well ordered.

For the correspondence between 51 and @ is uniform and similar.

273. ie 51, 93 fo we# ordered and 51^33. If a^b, then

Sa ~ 6.

For in 51 let a&quot;&amp;lt;a &amp;gt;a. Let b ~ a 1 and b&quot;^a
n

. Since

51 ^ 53, we have
&&quot;&amp;lt; &amp;lt;&;

hence the theorem.

274. If 51 is well ordered, 51 is not similar to any one of its

sections.

For if 51 ^ Sa, to a in 51 corresponds an element a
1

&amp;lt; a in Sa.

To a
l
in 51 corresponds an element a

2
in Sa, etc. In this way we

obtain an infinite decreasing sequence

a&amp;gt; a
1 &amp;gt;a2 &amp;gt; ,

which is impossible by 270, 1.
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275- Let 51, 53 be well ordered and 51 =* 53. 2%ew to #a w 31 can

not correspond two sections Sb, S/3 each ^ $a.

For let b
&amp;lt; & and a ^ 6, a ^ /SJS. Then

Sb a* $8, by 267. (1

But 1) contradicts 274.

276. Let 51, 53 be two well ordered aggregates. It is impossible

to establish a uniform and similar correspondence betiveen 51 and 53

in more than one way.

For say Sa ^ Sb in one correspondence, and Sa ^ S/3 in an

other, b, /3 being different elements of 53. Then

Sb ^ Sfr by 267.

This contradicts 275.

277. 1. We can now prove the following theorem, which is

the converse of 273.

Let 51, 53 be well ordered. If to each section of 81 corresponds one

similar section of 53, and conversely, then 53 51.

Let us first show that 51 ~ 53. Since to any Sa of 51 corre

sponds a similar section Sb in 53, let us set a ~ b. No other

a 1 ~
5, and no other b ~ a, as then Sa ^ Sb or Sb ^ Sa, which

contradicts 274. Let the first element of 51 correspond to the

first of 53. Thus the correspondence we have set up between 21

and 53 is uniform and 51 ~ 53.

We show now that this correspondence is similar. For let

a ~ b and a ~~ b
,

a &amp;lt; a.

Then b &amp;lt; b. For a lies in Sa ^ Sb and b
r a lies in Sb.

2. From 1 and 273 we have now the fundamental theorem :

In order that two well-ordered sets 51, 53 be similar, it is necessary
and sufficient that to each section of 51 corresponds a similar section

of 53, and conversely.

278. Let 51, 53 be well ordered. If to each, section of 51 corre

sponds a similar section of 53i but not conversely, then 5( is similar to

a section of 53.
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Let us begin by ordering the sections of 51 and 53 as in 272, 3.

Let B denote the aggregate of sections of 53 to which similar sec

tions of 51 do not correspond. Then B is well ordered and has a

first section, say Sb. Let /9 &amp;lt;
b. Then to

&amp;lt;S/3
in 53 corresponds

by hypothesis a similar section Sa in 5L On the other hand, to

any section Sa of 51 corresponds a similar section Sb of 53. Ob

viously b &amp;lt;
b. Thus to any section of 51 corresponds a similar

section of Sb and conversely. Hence 51^&amp;gt;S7&amp;gt; by 277, 1.

279. Let 51, 53 be well ordered. Either 5t is similar to 53 or one

is similar to a section of the other.

For either :

1 To each section of 51 corresponds a similar section of 53

and conversely ;

or 2 To each section of one corresponds a similar section of

the other but not conversely ;

or 3 There is at least one section in both 51 and 53 to which no

similar section corresponds in the other.

If 1 holds, 51 =* 53 by 277, 1. If 2 holds, either 51 or 53 is similar

to a section of the other.

We conclude by showing 3 is impossible.

For let A be the set of sections of 51 to which no similar section

in 53 corresponds. Let B have the same meaning for 53. If we

suppose 51, 53 ordered as in 272, 3, A will have a first section say

Sa, and B a first section Sft.

Let a &amp;lt; a. Then to Sa in 51 corresponds by hypothesis a sec

tion Sb of Sfl as in 278. Similarly if b
&amp;lt; #, to Sb of 53 corre

sponds a section Sa of Sa. But then Sa^-Sft by 277, l, and this

contradicts the hypothesis.

Ordinal Numbers

280. 1. With each well ordered aggregate 51 we associate an

attribute called its ordinal number, which we define as follows :

1 If 5(^53, they have the same ordinal number.

2 If 5t 2-a section of 53, the ordinal number of 5( is less than

that of 53.
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3 If a section of 51 is ^ 23, the ordinal number of 51 is greater
than that of S3.

The ordinal number of 5( may be denoted by

Orel 51,

or when no ambiguity can arise, by the corresponding small letter a.

As any two well ordered aggregates 51, 53 fall under one and only
one of the three preceding cases, any two ordinal numbers a, b

satisfy one of the three following relations, and only one, viz. :

a = b , a&amp;lt;b , a&amp;gt;b,

and if a &amp;lt; b, it follows that b &amp;gt; a-

Obviously they enjoy also the following properties.

2 IfJ
a = b , b = c , then a = c.

For if c = Ord , the first two relations state that

31^33 , SB^S.

But then ^ g t by267 _

Hence
n= c.

3 IfJ
a &amp;gt; b , b

&amp;gt; c , then a &amp;gt; c.

281. 1. Let 51 be a finite aggregate, embracing say n elements.

Then we set ~ -, wOrd 51 = n.

Thus the ordinal number of a finite aggregate has exactly similar

properties to those of finite cardinal numbers. The ordinal num
ber of a finite aggregate is called finite, otherwise transfinite.

The ordinal number belonging to the well ordered set formed
of the positive integers c\ _ 1 9 Q

x) ^ ^-&amp;gt; **l
&quot;*

we call co.

2. The least transfinite ordinal number is co.

For suppose a = Ord 51 &amp;lt; co, is transfinite. Then 51 is ^ a

section of Q. But every section of $ is finite, hence the

contradiction.
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3. The cardinal number of a set 51 is independent of the order

in which the elements of 51 occur. This is not so in general for

ordinal numbers.

For example, let Qr -, Q&SS 1, Z, $,

33=1,3,5,... 2,4,6, ...

Here
Card 1 = Card % = K .

But Ord 21 &amp;lt; Ord 33,

since 51 is similar to a section of 33, viz. the set of odd numbers,

1, 3, 5,
...

282. 1. Addition of Ordinals. Let 51, 33 be well ordered sets

without common elements. Let ( be the aggregate formed by

placing the elements of 33 after those of 51, leaving the order in 33

otherwise unchanged. Then the ordinal number of ( is called the

sum of the ordinal numbers of 51 and 33, or

Ord
&amp;lt;

= Ord 51 + Ord 33,

or c = a + b.

The extension of this definition to any set of well-ordered aggre

gates such that the result is well ordered is obvious.

2. We note that
a + j &amp;gt; , a + f, &amp;gt; b . . .

.

For 51 is similar to a section of (, and 33 is equivalent to a part

of ft

3. The addition of ordinal numbers is associative.

This is an immediate consequence of the definition of addition.

4. The addition of ordinal numbers is not always commutative.

Thus if a= (^2
... in inf.), Ord 5i = *&amp;gt;,

33 = (^2
... 5n), Ord 33 = rc;

let

$)=:(&!... b nafy ..-), Ord)
Then

c = a +n , b = + &&amp;gt;.
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But 51 a section of (5, viz. :
^

^S^, while ) ^ 51. Hence

a
&amp;lt; c ,

= b,

&amp;lt;w + n
&amp;gt;

&&amp;gt;

,
n + a) = a).

5. Tjf a &amp;gt; b, fAett c -f a &amp;gt; c -f b, and a + c &amp;gt; b 4- c.

For let
a = Ord 5(, b = Ord 33, c = Ord (L

Since a &amp;gt; b, we can take for 53 a section Sb of 51. Then c -f a is

the ordinal number of AT , or /^i^ + zl? V-L

and c + b is the ordinal number of

6 + Sb, (2

preserving the relative order of the elements.

But 2) is a section of 1), and hence c + a &amp;gt; c -h b.

The proof of the rest of the theorem is obvious.

283. 1. The ordinal number immediately following a is a + 1.

For let a = Ord 51. Let 53 be a set formed by adding after all

the elements of 51 another element b. Then

a + 1 = Ord 53 = b.

Suppose now
a&amp;lt;c&amp;lt;b ,

c=Ord. (1

Then (5 is similar to a section of 53. But the greatest section

of 53 is Sb = 51. Hence
c &amp;lt; a,

which contradicts 1).

2. Let a
&amp;gt;

b. Then there is one and only one ordinal number b

such that , ,

a = D + o.

Forlet
a = Ord 51 , b = Ord53.

We may take 53 to be a section Sb of 51. Let X) denote the set

of elements of 51, coming after Sb. It is well ordered and has an

ordinal number b- Then
3l = 53 + ),

preserving the relative order, and hence

a = b + b.

There is no other number, as 282, 5 shows.
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284. 1. Multiplication of Ordinals. Let 51, 53 be well-ordered

aggregates having a, b as ordinal numbers. Let us replace each

element of 51 by an aggregate ^ 53. The resulting aggregate (

we denote by * w
53 21.

As (5 is a well-ordered set by 270, 3 it has an ordinal number c.

We define now the product b a to be c, and write

b a = c.

We say c is the result of multiplying a by b, and call a, b factors.

We write

a a = a
2

, a a a = a
3

, etc.

2. Multiplication is associative.

This is an immediate consequence of the definition.

3. Multiplication is not always commutative.

For example, let

53 = (1, 2, 3 ... in inf.).

-L llGH fv\ CYf / 7 7 7

Hence Ord (53 51)
= a, . 2

&amp;gt; o&amp;gt;,

Ord(H53)= 2 &&amp;gt;
= &).

4. If a &amp;lt; b, ^ew ca &amp;lt; cb.

For (5 51 is a section of 53.

Limitary Numbers

285. 1.
a
l &amp;lt; 2 &amp;lt; 3 &amp;lt;

...
(

&e n infinite increasing enumerable sequence of ordinal numbers

There exists a first ordinal number a greater than every an .

J-^v3u /~\ i rw&quot;

an = Ord5ln .
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Since an_i &amp;lt; n , 2ln_! is similar to a section of 2ln . For simplicity
we may take 2ln _! to be a section of 2ln . Let, therefore,

Consider now w qr
21 = Slj + *B2 + }g + ...

keeping the relative order of the elements intact. Then 21 is well

ordered and has an ordinal number .

As any 5ln is a section of 21,

&amp;lt;.

Moreover any number
y8&amp;lt;

is also
&amp;lt;

some am . For if 33 has

the ordinal number & 33 must be similar to a section of 21. But

there is no last section of 21.

2. The number a we have just determined is called the limit of

the sequence 1). We write

a = Km an ,
or an = a.

We also say that a corresponds to the sequence 1).

All numbers corresponding to infinite enumerable increasing

sequences of ordinal numbers are called limitary.

3. If every an in 1) is &amp;lt; & then a &amp;lt;

ft.

For if
&amp;lt; a, a is not the least ordinal number greater than

every n .

4. If /3&amp;lt;, fi is &amp;lt;
some an .

286. In order that n

define the same number \ it is necessary and sufficient that each

number in either sequence is surpassed by a number in the other.

For let . o Qan
= a

, pn p-

If no Pn is greater than TO , /3 &amp;lt; m &amp;lt; a, by 285, 3, and =
/3.

On the other hand, if each m &amp;lt;
some /3n , a&amp;lt;/3. Similarly
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287. Cantor s Principles of Generating Ordinals. We have now
two methods of generating ordinal numbers. First, by adding 1

to any ordinal number a. In this way we get

a, a + 1, a +2, ...

Secondly, by taking the limit of an infinite enumerable increas

ing sequence of ordinal numbers, as

!
&amp;lt; 2 &amp;lt; 3 &amp;lt;

&quot;

Cantor calls these two methods the first and second principles

of generating ordinal numbers.

Starting with the ordinal number 1, we get by successive appli

cations of the first principle the numbers

1,2,3,4,...

The limit of this sequence is co by 285, l. Using the first prin

ciple alone, this number would not be attained ; to get it requires

the application of the second principle. Making use of the first

principle again, we obtain

&amp;lt;w + l, a&amp;gt; + 2, w + 3, ...

The second principle gives now the limitary number CD -f o&amp;gt;
= a&amp;gt;2

by 285, 1. From this we get, using the first principle, as before,

tt&amp;gt;2 + l, 6)2 + 2, 0)2 + 3,...

whose limit is ft)3. In this way we may obtain the numbers

com + n , m, n finite.

The limit of any increasing sequence of these numbers as

CO ,
ft)2

,
ft)3 , 0)4:,

is a) ft) = a)
2
, by 285, 1.

From a)
2 we can get numbers of the type

caPl + com 4- n Z, m, n finite.

Obviously we may proceed in this way indefinitely and obtain

all numbers of the type

where a
,
a

l
&amp;gt; an are finite ordinals.
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But here the process does not end. For the sequence

O)
&amp;lt;

ft)
2

&amp;lt;
O)

3
&amp;lt;

has a limit which we denote by &)w .

Continuing we obtain

(i)&quot;,
ft)&quot;&quot;

,
etc.

288. It is interesting to see how we may obtain well ordered

sets of points whose ordinal numbers are the numbers just con

sidered.

In the unit interval 51 = (0, 1), let us take the points

:*. .. t * if-- .a

These form a well ordered set whose ordinal number is to.

The points 1) divided 51 into a set of intervals,

*! , a , 213
- (2

In m of these intervals, let us take a set similar to 1). This

gives us a set whose ordinal number is com.

In each interval 2), let us take a set similar to 1). This gives

us a set whose ordinal number is &&amp;gt;

2
. The points of this set

divide 51 into a set of o&amp;gt;

2 intervals. In each of these intervals,

let us take a set of points similar to 1). This gives a set of

points whose ordinal number is &&amp;gt;

3
, etc.

Let us now put in
5Ij

a set of points 33 X
whose ordinal number

is co. In 512
let us put a set 332 whose ordinal number is o&amp;gt;

2
,
and

so on, for the other intervals of 2).

We thus get in 51 the well ordered set

# = 2^ + a + 8 8 + -

whose ordinal number is the limit of

CO
,

ft) 4- CO
2

,
CO + CO

2 + CO
3

,
...

This by 286 has the same limit as

a)
,

co
2

,
w3

,
or co&quot;.

With this set we may now form a set whose ordinal number is

o)
wft&amp;gt;

, etc.
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Classes of Ordinals

289. Cantor has divided the ordinal numbers into classes.

Class 1, denoted by Z^ embraces all finite ordinal numbers.

Class 2, denoted by Z2 ,
embraces all transfinite ordinal numbers

corresponding to well ordered enumerable sets
; that is, to sets

whose cardinal number is K .- For this reason we also write

It will be shown in 293, 1 that Z^ is not enumerable. Moreover
if we set ~ ,

K!
= Card Z

2 ,

there is no cardinal number between K and Kj as will be shown in

294. We are thus justified in saying that Class 3, denoted by

Z% or ^(Kj), embraces all ordinal numbers corresponding to well

ordered sets whose cardinal number is Kj, etc.

Let j3 = Ord 33 be any ordinal number. Then all the numbers

a
&amp;lt; correspond to sections of 33. These sections form a well

ordered set by 272, 3. Therefore if we arrange the numbers

&amp;lt; /3 in an order such that a 1

precedes a when Sa
&amp;lt; Sa, they are

well ordered. We shall call this the natural order. Then the

first number in
Z-^ is 1, the first number of Z% is at. The first

number in Z
3

is denoted by H.

290. As the numbers in Class 1 are the positive integers, they
need no comment here. Let us therefore turn to Class 2.

If a is in Z
2 , so is a -f 1

For let a = Ord 51. Let 53 be the well ordered set obtained

by placing an element b after all the elements of 21. Then

a + 1 = Ord 53.

But 53 is enumerable since 31 is.

Hence a -f 1 lies in Z% .

291. Let ^
1

&amp;lt; 2 &amp;lt; 3 &amp;lt;...

be an enumerable infinite set of numbers in Z
2

. Then a = lim an lies

in Z
2

.
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For using the notation employed in the proof of 285, 1, a is the

ordinal number of

=! + ,+ ,+
But 2lr SBj, 332

&quot;* are eacn enumerable.

Hence 21 is enumerable by 235, 1, and a lies in Zv

292. We prove now the converse of 290 and 291.

Each number a in Z^, except &&amp;gt;,
is obtained by adding 1 to some

number in Z%; or it is the limit of an infinite enumerable increasing

set of numbers in Z^

For, let a = Ord 21. Suppose first, that 21 has a last element,

say a. Since 21 is enumerable, so is Sa. Hence

yS=Ord - Sa

is in Z%. Then a= 8 + 1

Suppose secondly, that 21 has no last element. All the numbers

ft &amp;lt;
a in Z% belong to sections of 21. Since 21 is enumerable, the

numbers ft are enumerable. Let them be arranged in a sequence

/?!, /32 , /V&quot; C 1

Since they have no greatest, let $[ be the tirst number in it

&amp;gt;/?!,
let

ft%
be the first number in it &amp;gt; ft{, etc. We get thus the

sequence ^ ^&amp;lt;^&amp;lt;
... (2

whose limit is X, say.

Then X = . For X is &amp;gt; any number in 1), which embraces all

the numbers of Z^ &amp;lt;
a. Moreover it is the least number which

enjoys this property.

293. 1. The numbers of Z2
are not enumerable.

For suppose they were. Let us arrange them in the sequence

i a
a
s

&quot;

C1

Then, as in 292, there exists in this sequence the infinite enu-

merable sequence ^ &amp;lt;

;
&amp;lt;

^
&amp;lt;

. . . (2

such that there are numbers in 2) greater than any given number

in 1).
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Let
&amp;lt;

= . Then a lies in Z
2 by 291. On the other hand, by

285, a is &amp;gt; any number in 2), and therefore &amp;gt; any number in

1). But 1) embraces all the numbers of Z
2 , by hypothesis. We

are thus led to a contradiction.

2. We set

294. There is no cardinal number between K and $r

For let =Card 5( be such a number. Then 5Hs ~ an infinite

partial aggregate of Z%, which without loss of generality may be

taken to be a section of Z^. But every such section is enumer

able. Hence 51 is enumerable and =X , which is a contradiction.

295. We have just seen that the numbers in Z
2
are not enumer

able. Let us order them so that each number is less than any

succeeding number. We shall call this the natural order.

1. The numbers of Z% when arranged in their natural order form

a well ordered set.

For Z% has a first element co. Moreover any partial set Z, the

relative order being preserved, has a first element. For if it has

not, there exists an infinite enumerable decreasing sequence

This, however, is not possible. For /3, 7, form a part of Sa

which is well ordered.

There is thus one well ordered set having Xj as cardinal num-

ber - Let

Let now 51 be an enumerable well ordered set whose ordinal

number is a. The set ^ w^
2 4- i

the elements of 51 coming after Z^, has the cardinal number Kj by

241, 3. It is well ordered by 270, 3. It lias therefore an ordinal

number which lies in Z
3, viz. n -f by 282, l. Thus Z

3
embraces

an infinity of numbers.

2. The least number in Z% is H.

For to any number a&amp;lt;
H corresponds a section 51 of Z^. Hence

a lies in Z
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296. 1. An aggregate formed of an Kj set of ^
1
sets is an Kj set.

Consider the set

A =
la

&amp;lt;

Here each row is an ^ set. As there are an K
x
set of rows, A

is an Kj set of Xj sets. To show that A is an ^ set, we associate

each a llt
with some number in the first two number classes.

In the first place the elements alK where i tc &amp;lt;
o&amp;gt; may be associ

ated with the numbers 1, 2, 3, &amp;lt;
&amp;lt;w. The elements a

l&amp;lt;0 ,
aM

lying just inside the &&amp;gt;

th
square and which are characterized

by the condition that i = 1, 2, o&amp;gt;; /c=l, 2
&amp;lt;

o&amp;gt; form an

enumerable set and may therefore be associated with the ordinals

co, o&amp;gt; + 1, &amp;lt; G)2. For the same reason the elements just inside

the a) + 1st

square may be associated with the ordinals
o&amp;gt;2,

o&amp;gt;2 + 1,

...
&amp;lt; 6)3. In this way we may continue. For when we have

arrived at the th row and column (edge of the ath square) we

have only used up an enumerable set of numbers in the sequence

i, 2, ... a,... &amp;lt;n (i

in our process of association. There are thus still an K
x
set left

in 1) to continue the process of association.

2. As a corollary of 1 we have :

The ordinal numbers
n2

, n3
,

o4
,

...

lie in Z~ .

297. I. Let a
&amp;lt; /3 &amp;lt; 7 &amp;lt;

be an increasing sequence of numbers in Z
3 having

(1

as cardinal

number and such that any section of 1) has K as its cardinal.

There exists a first ordinal number \ in Z
3 greater than any number

in 1).

For let = Ord 7=Ord6
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Since a &amp;lt; /3 we may take 51 to be a section of 53. Similarly
we may suppose 53 is a section of (, etc.

Let now % = % + B, &amp;lt;5

= +(7,...

Consider now
8 = + .B+ (7+ -

keeping the relative order intact. Then 8 is well ordered by
270, 4. Let

X = Ord 8.

Since Card 8 = K
x , by 296, 1, X lies in Z

3
.

As any 51, 53, is a section of 8,

&amp;lt; /3&amp;lt; &amp;lt; X.

Moreover, any number n &amp;lt;
X is also

&amp;lt;
some a, /3, 7 For if

9ft has ordinal number /A, 9ft must be similar to a section of 8.

But there is no last section in 8.

2. We shall call sequences of the type 1), an Kj sequence.

The number X whose existence we have just established, we shall

call the limit ofV). We shall also w^rite

a
&amp;lt; @&amp;lt; 7 =X

to indicate that a, /3, is an Kj sequence whose limit is X.

298. 1. The preceding theorem gives us a third method of

generating ordinal numbers. We call it the third principle.

We have seen that the first and second principles suffice to gen
erate the numbers of the first two classes of ordinal numbers but

do not suffice to generate even the first number, viz. O in Z
3

. We
prove now the following fundamental theorem :

2. The three principles already described are necessary and suffi

cient to generate the numbers in Z
3

.

For let a = Ord be any number of Z
3

. If 31 has a last element,

reasoning similar to 292, i shows that

= + 1.

If 51 has no last element, all the numbers of Z
3 &amp;lt;a form an X

or K set. In the former case
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where ft lies in Z
2

. In the latter case, reasoning similar to 292, l

shows that we can pick out an Kj increasing sequence

299. 1. The numbers of Z3 form a set whose cardinal number a

is &amp;gt;Kr

The proof is entirely similar to 293, 1. Suppose, in fact, that

a = Kj . Let us arrange the elements of Z
3
in the K

x sequence

i , 2 n (1

As in 292, there exists in this sequence an ^ increasing sequence

a[&amp;lt;ai&amp;lt;

.-. - . (2

Then lies in Z% by 297, l. On the other hand ex! is greater than

any number in 2) and hence greater than any number in 1).

But 1) embraces all the numbers in Z
3 by hypothesis. We are

thus led to a contradiction.

2. We set
K

2

3. There is no cardinal number between Kj and K
2 .

For let a = Card 51 be such a number. Then 31 is equivalent to

a section of Z
3

. But every such section has the cardinal num
ber Xr

300. The reasoning of the preceding paragraphs may be at

once generalized. The ordinal numbers of Zn corresponding to

well ordered sets of cardinal number Kn_2
form a well ordered set

having a greater cardinal number a than Kn_2 Moreover there is

no cardinal lying between Xn_2
and . We may therefore ap

propriately denote a by KB _r The K M_ 2 sequence of ordinal

numbers

lying in Zn has a limit lying in Zn , and this fact embodies the

nth

principle for generating ordinal numbers. The first n prin

ciples are just adequate to generate the numbers of Zn . They do

not suffice to generate even the first number in Zn+l .

Finally we note that an Kn set of K n sets forms an KM set.
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CHAPTER X

POINT SETS

Pantaxis

301. 1. (Borel.) Let each point of the limited or unlimited set

51 lie at the center of a cube (L Then there exists an enumerable set

of non- overlapping cubes \c\ such that each c lies within some (5, and
each point of 51 lies in some c. If 51 is limited and complete, there

is a finite set jc| having this property.

For let D-p D2
be a sequence of superposed cubical divisions

of norms = 0. Any cell of D
l
which lies within some (5 and

which contains a point of 21 we call a black cell ; the other cells

of D we call white. The black cells are not further subdivided.

The division D2 divides each white cell. Any of these subdivided

cells which lies within some ( and contains a point of 51 we call a

black cell, the others are white. Continuing we get an enumer

able set of non-overlapping cubical cells Jc[.

Each point a of 51 lies within some c. For a is the center of

some (5. But when n is taken sufficiently large, a lies in a cell of

Dn , which cell lies within ($.

Let now 51 be limited and complete. Each a lies within a cube c,

or on the faces of a finite number of these c. With a we associ

ate the diagonal 8 of the smallest of these cubes. Suppose
MinS = in 51. As 51 is complete, there is a point a in 51 such

that Min S = 0, in any F^(cc). This is not possible, since if
?? is

taken sufficiently small, all the points of
Vj, lie in a finite number

of the cubes c.

Thus Min S &amp;gt; 0. As the c s do not overlap, there are but a

finite number.

2. In the foregoing theorem the points of 51 are not necessarily

inner points of the cubes c. Let a be a point of 51 on the face of

one of these c. Since a lies within some (5, it is obvious that the

324
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cells of some Dn , n sufficiently large, which surround a form a

cube (?, lying within d. Thus the points of 51 lie within an

enumerable set of cells
J&amp;lt;?j,

each c lying within some (. The
cells c of course will in general overlap. Obviously also, if 51 is

complete, the points of 51 will lie within a finite number of

these &amp;lt;? s.

302. If 51 is dense, 51 is perfect.

For, in the first place, 51 is dense. In fact, let a be a point of

51 . Then in any D*() there are points of 51. Let a be such a

point. Since 51 is dense, it is a limiting point of 51 and hence is a

point of 51 . Thus in any D*(a) there are points of 51 .

Secondly, 51 is complete, by I, 266.

303. Let $8 be a complete partial set of the perfect aggregate 51.

Then 6 = 51 - 53 is dense.

For if ( contains the isolated point c, all the points of 51 in Dr*(c)
lie in 53, if r is taken sufficiently small. But 53 being com

plete, c must then lie in 53.

Remark. We take this occasion to note that a finite set is to be

regarded as complete.

304. 1. J/51 does not embrace all 9?n , it has at least one frontier

point in $ln .

For let a be a point of 51, and b a point of $Rn not in 5(. The

points on the join of a, b have coordinates

2^ = ^ + 0(^-0 = ^(0), 0&amp;lt;0&amp;lt;1, i = l, 2,. ..n.

Let 6 be the maximum of those s such that #(0) belongs to

5t if 9
&amp;lt; . Then x(6 ) is a frontier point of 51.

2. Let 51, 33 have no point in common. If Dist (51, 53) &amp;gt;0, we

say 51, 53 are exterior to each other.

305. 1. Let 51 = \a] be a limited or unlimited point set in $lm .

We say 53 &amp;lt; 51 is pantactic in 51, when in each Dg(a) there is a

point 53.

We say 53 is apantactic in 51 when in each D^a) there is a point
a of 51 such that some D^t) contains no point of 53.
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Example 1. Let 21 be the unit interval (0, 1), and $8 the ra

tional points in 21. Then $8 is pantactic in 21.

Example 2. Let 21 be the interval (0, 1), and 33 the Cantor set

of I, 272. Then 53 is apantactic in 21.

2. If 53 &amp;lt; 21 is pantactic in 21, 21 contains no isolated points not

in.

For let a be a point of 21 not in 53. Then by definition, in any
Z)5 (#) there is a point of 53. Hence there are an infinity of points
of 53 in this domain. Hence a is a limiting point of 21.

306. Let 21 be complete. We say 53 &amp;lt; 21 is of the 1 category

in 21, if 53 is the union of an enumerable set of apantactic sets

in 21.

If 53 is not of the 1 category, we say it is of the 2 category.

Sets of the 1 category may be called Baire sets.

Example. Let 21 be the unit interval, and 53 the rational

points in it. Then 53 is of the 1 category.

For 53 being enumerable, let 53 = \on \. But each bn is a single f k

point and is thus apantactic in 21.

The same reasoning shows that if 53 is any enumerable set in

21, then 53 is of the 1 category.

307. 1. If 53 is of the 1 category in 21, 21 - 53 = B is &amp;gt; 0.

For since 53 is of the 1 category in 21, it is the union of an

enumerable set of apantactic sets {53n j. Then by definition there

exist points a^ a
2 , in 21 such that

where D(a^) contains no point of 53
X , -#( 2) no point of 532 ? etc.

Let b be the point determined by 1). Since 21 is complete by

definition, b is a point of 21. As it is not in any 53n , it is not

in 53. Hence B contains at least one point.

2. Let 21 be the union of an enumerable set of sets J2ln j, each 2ln

being of the 1 category in 53- Then 21 is of the 1 category in 53.

This is obvious, since the union of an enumerable set of enu

merable sets is enumerable.
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3. Let 33 be of the 1 category in 21. Then B = 21 -33 is of the

2 category in 21.

For otherwise $8 + -5 would be of the 1 category in 21- But

51 - (53 + B) = 0,

and this violates 1.

4. It is now easy to give examples of sets of the 2 category.
For instance, the irrational points in the interval (0, 1) form a

set of the 2 category.

308. Let 21 be a set of the 1 category in the cube Q. Then
A = Q 21 Aas the cardinal number c.

If A has an inner point, Da(a), for sufficiently small 8, lies in .A.

As Card D& = c, the theorem is proved.

Suppose that A has no inner point. Let 51 be the union of the

apantactic sets
2lj &amp;lt; 2(2 &amp;lt; in Q. Let An = Q 2ln . Let qn be

the maximum of the sides of the cubes lying wholly in An . Ob

viously qn = 0, since by hypothesis A has no inner points. Let Q
be a cube lying in A

l
. As qn = 0, there exists an n^ such that Q

has at least two cubes lying in A
ni ; call them $ , Qlt

There ex

ists an n
2 &amp;gt; Wj such that $ , Ql

each have two cubes in A^\ call

them Q Q O Q
Vo, o Vo, i &amp;gt; Vi, o i Vi, i

or more shortly (&amp;gt;tli tj
.

Each of these gives rise similarly to two cubes in some A
n&,

which may be denoted by ftit tji ls , where the indices as before have

the values 0, 1. In this way we may continue getting the cubes

Qn ftji, &**&quot;

Let a be a point lying in a sequence of these cubes. It obvi

ously does not lie in 21, if the indices are not, after a certain stage,
all or all 1. This point a is characterized by the sequence

which may be read as a number in the dyadic system. But these

numbers have the cardinal number c.

309. Let 21 be a complete apantactic set in a cube Q. Then there

exists an enumerable set of cubical cells jq} such that each point of

21 lies on a face of one of these q, or is a limit point of their faces.
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For let D^ &amp;gt; D2 &amp;gt; be a sequence of superimposed divisions

of O, whose norms 5n = 0. Let

be the cells of D
l containing no point of 51 within them. Let

dzl ,
d
22 , c7

23
... (2

denote those cells of D
2 containing no point of 51 within them and

not lying in a cell of 1). In this way we may get an infinite se

quence of cells ) = \dmn \, where for each m, the corresponding n

is finite, and m = cc. Eacli point a of A lies in some dm
^
n . For 51

being complete, Dist (a, 51) &amp;gt;
0. As the norms Bn = 0, a must lie

in some cell of Z&amp;gt;n ,
for a sufficiently large n. The truth of the

theorem is now obvious.

310. Let 33 be pantactic in 51. Then there exists an enumerable

set
(&amp;lt;_ 33 which is pantactic in 51.

For let D
1 &amp;gt;

Z&amp;gt;

2 &amp;gt;
be a set of superimposed cubical divisions

of norms dn = 0. In any cell of D
l containing within it a point

of 51, there is at least one point of 53. If the point of 51 lies on

the face of two or more cells, the foregoing statement will hold

for at least one of the cells. Let us now take one of these points

in each of these cells; this gives an enumerable set (S^.
The

same holds for the cells of D2
. Let us take a point in each of

these cells, taking when possible points of @j. Let (52
denote the

points of this set not in (S^. Continuing in this way, let

(S = (
1 + (*

2 + ...

Then (5 is pantactic in 51, and is enumerable, since each (5n is.

Corollary. In any set 51, finite or infinite, there exists an enumer

able set & which is pantactic in 51.

For we have only to set 53 = 51 in the above theorem.

311. 1. The points ( where the continuous function f(xl
xm)

takes on a given value g in the complete set tyi,form a complete set.

For let cv c
2

... be points of (5 which = c. We show c is a

point of (5. For -- -
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As/is continuous, f \^ff\J\Cn) J\C)
Hence

/&amp;lt;*)**

and c lies in (L

2. Letf(xl
&quot; xm) be continuous in the limited or unlimited set 51.

If the value off is known in an enumerable pantactic set & in 51,

which contains all the isolated points of 51, in case there be such, the

value off is known at every point of 5(.

For let a be a limiting point of 51 not in (. Since (5 is pantactic
in 51, there exists a sequence of points e^ e

2
-- in (S which = a.

Since / is continuous, /(#) =/(a). As / is known at each en ,

it is known at a.

3. Let g = J/j be the class of one-valued continuous functions

defined over a limited point set 51. Then

f
= Card g = c .

For let SH^ be a space of an infinite enumerable number of

dimensions, and let A
r (TII #2 )

denote one of its points. Let/ have the value rj l
at e^ the value

?72
at

2
for the points of (5 defined in 2. Then the complex

0?i ^2 )

completely determines /. But this complex determines also a

point 77 in ^ whose coordinates are rjn . We now associate/ with

Hence

On the other hand, f&amp;gt;c,
since in g there is the function

/(#! xm) = g in 51, where g is any real number.

312. Let 53 denote the class of complete or perfect subsets lying in

the infinite set 51, which latter contains at least one complete set.

Then n ^ cu
b = Card 53 = c.

For let a
lt

a
2 ,

= a, all these points lying in 51. Then

But for
tj
we may take any number in ^ =

(1, 2, 3, ) ;
for

i%

we may take any number in $2 = (^ + 1. ^ + 2, ), etc.
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Obviously the cardinal number of the class of these sequences

l)ise&amp;lt;
= c. But

(,^;.;,..)
is a complete set in 51. Hence b.&amp;gt;c. On the other hand, b&amp;lt;c.

Forlet A &amp;gt;-&amp;gt; (2

be a sequence of superimposed cubical division of norms = 0.

Each Dn embraces an enumerable set of cells. Thus the set of

divisions gives an enumerable set of cells. Each cell shall have

assigned to it, for a given set in 53, the sign + or according as

33 is exterior to this cell or not. This determines a distribution

of two things over an enumerable set of compartments.
The cardinal number of the class of these distributions is 2c= c.

But each 53 determines a distribution. Hence b&amp;lt;c.

Transfinite Derivatives

313. 1. We have seen, I, 266, that

% &amp;gt;%&quot;&amp;gt;% &quot;&amp;gt;
.-.

Thus
2l

(n) = Dv(2l , a&quot;
.. 2i

rn)
&amp;gt; (1

Let now 51 be a limited point aggregate of the second species.

It has then derivatives of every finite order. Therefore by 18,

D&amp;lt;21 , 21&quot;, 51
&quot;, ) (2

contains at least one point, and in analogy with 1), we call the

set 2) the derivative of order co of 21, and denote it by

2l
(w)

,

or more shortly by
2K

Now we may reason on 2l
w as on any point set. If it is infinite,

it must have at least one limiting point, and may of course have

more. In any case its derivative is denoted by

(+i) or 5l
w+1

.

The derivative of 5l
w+1 is denoted by

or

Making use of o&amp;gt; we can now state the theorem :
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In order that the point set 51 is of the first species it is necessary

and sufficient that 5l
u; = 0.

2. We have seen in 18 that 51&quot; is complete. The reasoning of

I, 266 shows that 5l
w+1

, 5l
w+2

, , when they exist, are also complete.

Then 18 shows that, if 5l
w+71 n = 1, 2,

... exist,

Dw(a
w

&amp;gt;a
w+1

&amp;gt;a
w+2

&amp;gt;

) (3

exists and is complete. The set 3) is called the derivative of order

ft&amp;gt; 2 and is denoted by
j(2) or 5^

Obviously we may continue in this way indefinitely until we
reach a derivative of order a containing only a finite number of

points. Then
^a+1 = Q

That this process of derivation may never stop is illustrated by

taking for 51 any limited perfect set, for then

3. We may generalize as follows : Let a denote a limitary ordi

nal number. If each 51^ &amp;gt; 0, /3 &amp;lt; a, we set

when it exists.

4. If 5l
a

&amp;gt; 0, while 51
+ 1 = 0, we say 5t is of order a.

314. 1. Let a be a limiting point of 51. Let

Obviously as is monotone decreasing with 8. Suppose that

there exists an a and a B
Q &amp;gt; 0, such that for all &amp;lt;

8 &amp;lt; S

= Card F&amp;lt;.

We shall say that a is a limiting point of rank a.

If every 5
&amp;gt;

a, we shall say that

Rank a &amp;gt; .

If every as &amp;gt; a, we shall say that

Rank a
&amp;gt;

a.



332 POINT SETS

2. Let 51 be a limited aggregate of cardinal number a. Then there

is at least one limiting point of 5(, of rank a.

The demonstration is entirely similar to I, 264. Let S
1

&amp;gt;

2 &amp;gt;
... =0. Let us effect a cubical division of 51 of norm 8^. In

at least one cell lies an aggregate 5l
x having the cardinal num

ber a. Let us effect a cubical division of 5^ of norm
2

. In at

least one cell lies an aggregate 512 having the cardinal number a,

etc. These cells converge to a point #, such that

Card F
5O) = a,

hoAvever small S is taken.

3. If Card 51 &amp;gt; e, there exists a limiting point oftyt of rank &amp;gt; e.

The demonstration is similar to that of 2.

4. If there is no limiting point of 51 of rank &amp;gt; e, 51 is enumerable.

This follows from 3.

5. Let Card 51 be
&amp;gt;

e. Let 33 denote the limiting points of 51

whose ranks are &amp;gt; e. Then 33 is perfect.

For obviously 33 is complete. We need therefore only to show

that it is dense. To this end let b be a point of 33. About b let

us describe a sequence of concentric spheres of radii rn = 0. These

spheres determine a sequence of spherical shells S$n 5, no two of

which have a point in common. If 5ln denote the points of 51 in $n ,

we have y = y^ .= ^ + ^ + ^ + ...

Thus if each 5(m were enumerable, V is enumerable and hence

Rank b is not &amp;gt; e. Thus there is one set 5lm which is not enu

merable, and hence by 3 there exists a point of 33 in Sm . But then

there are points of 33 in any F^*(5), and b is not isolated.

6. A set 51 which contains no dense component is enumerable.

For suppose 51 were not enumerable. Let ty denote the proper

limiting points of 51. Then ^ contains a point whose rank is &amp;gt; e.

But the set of these points is dense. This contradicts the hy

pothesis of the theorem.

315. Let a lie in Zn . -Zf5l
a

&amp;gt; 0, it is complete.

For if a is non-limitary, reasoning similar to I, 266 shows that

5l
a is complete. Suppose then that a is limitary, and 5l

a is not
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complete. The derivatives of 51 of order &amp;lt; a which are not com

plete, form a well ordered set and have therefore a first element

91^, where & is necessarily a limitary number. Then

But every point of 51^ lies in each 5IY . Hence every limiting

point of W is a limiting point of each 51* and hence lies in 2F
3
.

Hence 2C
3
is complete, which is a contradiction.

316. Let a be a limitary number in Zn . If ^ &amp;gt; for each

/3 &amp;lt; , 5l
a exists.

For there exists an Km ,
ra

j&amp;lt;
n 2, sequence

7&amp;lt;
& &amp;lt;e&amp;lt; 77 &amp;lt;

=. (1

Let c be a point of 21?, d a point of 21
s
,

e a point of 51% etc.

Then the set ^ ^ ,,/,...)

has at least one limiting point I of rank XTO . Let e be any number

in 1). Then Hs a limiting point of rank Xm of the set

(./)-
Thus I is a limiting point of every 21^, /3 &amp;lt; ,

and hence of 5l
a

.

317. Let us show how we may form point sets whose order a

is any number in Z
1
or Z2

.

We take the unit interval 51 = (0. 1) as the base of our con

siderations.

In 51, take the points

i-i . I . f tf C1

Obviously $[ = 1, ${ = 0. Hence ^ is of order 1. The set

SBj divides 51 into a set of intervals

5l
x , 5I2 , 513

-. (2

In
5lj
= (0, l) take a set of points similar to 1) which has as

single limiting point, the point J.
In 512

=
Q-, |) take a set of

points similar to 1) which has as single limiting point, the point

|, etc. Let us call the resulting set of points 332 .
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Obviously , l 3
*

^2 = i f t
&quot;*

Hence ^ = ^ = j and $w =

Thus &amp;lt;B2
is of order 2.

In each of the intervals 2) we may place a set of points similar

to 332 , such that the right-hand end point of each interval 5{n is a

limiting point of the set. The resulting set 233 is of order 3, etc.

This shows that we may form sets of every finite order.

Let us now place a set of order 1 in 5l x , a set of order 2 in 512 ,

etc. The resulting set 5L is of order o&amp;gt;. For 33^ has no points

in
Slj, 212

... $_!, while the point 1 lies in every ^?l)
.

Hence
$(.+i&amp;gt;

= o,

and ^w is of order o&amp;gt;.

Let us now place in each 5ln a set similar to $BW , having the

right-hand end point of $ln as limiting point. The resulting set

33W+1 is of order o&amp;gt; -f 1. In this way we may proceed to form sets

of order o&amp;gt; + 2, o&amp;gt; + 3, just as we did for orders 2, 3, We
may also form now a set of order

o&amp;gt;2,
as we before formed a set

of order co.

Thus we may form sets of order

w
,

a) 2
,

a) 3 ,
a) 4

and hence of order &)
2
, etc.

318. 1. Let 51 be limited or not, and let 2l
t

w denote the isolated

points of 2F. Then

ft

For
t i i

.L flUS nfl c\fi . nv; / . CW/ YI-! *

that is, 51 is the sum of the points of 51 not in
51&quot;,

of the points
of 51&quot; not in 2T&quot;, etc. If now there are points common to every
H&amp;lt;-&amp;gt;wehave

&amp;lt;, M ..
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On 5l
w we can reason as on 51 ,

and in general for any a
&amp;lt;

fl we
have

a ,

/3&amp;lt;a

which gives 1).

2. #*5P= 0, 51 tmd 51 are enumerable.

For not every ^ &amp;gt; Q . &amp;lt;ftb

Hence there is a first a, call it 7, such that 51
Y = 0. Then 1)

reducesto

But the summation extends over an enumerable set of terms,

each of which is enumerable by 289. Hence 51 is enumerable.

But then 51 is also enumerable by 237, 2.

3. Conversely, if 51 is enumerable, 5l
n = 0.

For if 51&quot; &amp;gt; 0, there is a non-enumerable set of terms in 1), if

no 5l (^ ) is perfect ; and as each term contains at least one point,

51 is not enumerable. If some 5l (/3) is perfect, 51 contains a per
fect partial set and is therefore not enumerable by 245.

4. From 2, 3, we have :

For 51 to be enumerable, it is necessary and sufficient that there

exists a number a in Z
1
or Z

2
such that 5l

a = 0.

5. If 51 is complete, it is necessary and sufficient in order that 51

be enumerable, that there exists an a in Z^ or Z
2
such that 5l

a = 0.

F r
51 = 5l

t
+ 51 ,

and the first term is enumerable.

6. If 51^= for some ft &amp;lt; H, we say 51 is reducible, otherwise it

is irreducible.

319. If 5I
n

&amp;gt; 0, it is perfect.

By 315 it is complete. We therefore have only to show that

its isolated points 51&quot;
= 0. Suppose the contrary ; let a be an

isolated point of 5l
n

.

Let us describe a sphere S of radius r about a, containing no

other point of 5l
n

. Let 53 denote the points of 51 in S. Let

r &amp;gt;r &amp;gt;r&amp;gt;
= 0.
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Let Sn denote a sphere about a of radius rn . Let 53n denote the

points of 53 lying between /S^, $n , including those points which

may lie on Sn_ lf
Then

-i- a.

Each 53m is enumerable. For any point of
53,&quot;

is a point of

53&quot;
= a. Hence 53&quot;

= and 53TO is enumerable by 318, 2.

Thus 53 is enumerable. This, however, is impossible since

53&quot;
= a, and is thus

&amp;gt;
0.

320. 1. In the relation

5T = S^ + 51&quot; =1,2,-.. &amp;lt;fl,

ft

the first term on the right is enumerable.

For let us set * _ ?9fo) .

r
1&amp;gt;rt

&amp;gt;- =0. V
.

Let 53n denote the points of 53 whose distance B from 5P satis

fies the relation ^ ?&amp;gt; ^
n+1

Then the distance of any point of
53J&amp;gt;

from 51&quot; is &amp;gt; rn+1 . If 53

includes all points of 53 whose distance from $P is
&amp;gt;

r
1 , we have

Each 53n is enumerable. For if not, 53&quot; &amp;gt;
0. Any point of

53 as b lies in 51&quot;. Hence

Dist (5, 51&quot;)
= 0.

On the other hand, as b lies in 53^, its distance from 51 is

&amp;gt; rn+1 , which is a contradiction.

2. If 51 is not enumerable, there exists a first number a in Z
l
or

Z% such that 5l
a

is perfect.

This is a corollary of 1.

3. If 51 is complete and not enumerable, there exists a first number

a in Z
l + Z% such that 5T is perfect.

is complete, .

where (5 is enumerable, and ^ is perfect. If 51 is enumerable, ^ = 0.
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Complete Sets

321. Let us study now some of the properties of complete point
sets. We begin by considering limited perfect rectilinear sets.

Let 51 be such a set. It has a first point a and a last point b. It

therefore lies in the interval /=(, ). If 51 is pantactic in any

partial interval J= (a, /3) of J, 51 embraces all the points of 7,

since 51 is perfect. Let us therefore suppose that 51 is apantactic

in /. .An example of such sets is the Cantor set of I, 272.

Let D =
\
S

I
be a set of intervals no two of which have a point

in common. We say D is pantactic in an interval /, when I con

tains no interval which does not contain some interval 8, or at

least a part of some 8.

It is separated when no two of its intervals have a point in ^/
common.

322. 1. Every limited rectilinear apantactic perfect set 51 deter

mines an enumerable pantactic set of separated intervals D \S\,

whose end points alone lie in 51.

For let 51 lie in /=(, $), where
, ft are the first and last

points of 51. Let 93 = / 51. Each point b of 33 falls in some in

terval S whose end points lie in 51. For otherwise we could

approach b as near as we chose, ranging over a set of points of 51.

But then b is a point of 51, as this is perfect. Let us therefore

take these intervals as large as possible and call them B.

The intervals 8 are pantactic in J, for otherwise 51 could not be

apantactic. They are enumerable, for but a finite set can have

lengths &amp;gt; I/n + 1 and &amp;lt; I/n, n = 1, 2

It is separated, since 51 contains no isolated points.

2. The set of intervals D =
\S\ just considered are said to be I v

adjoint to 51, or determined by 51, or belonging to 51.
I ^1

323. Let 51 be an apantactic limited rectilinear perfect point set, to

ichich belongs the set of intervals D= |8j. Then 51 is formed of the

end points E= \e\ of these intervals, and their limiting points E .

For we have just seen that the end points e belong to 51. More

over, 51 being perfect, E must be a part of 51.
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51 contains no other points. For let a be a point of 51 not in E,
E . Let a be another point of 31. In the interval (a, a) lies an

end point e of some interval of D. In the interval (a, e) lies an

other end point er In the interval (a, gj) lies another end point

2 , etc. The set of points e, e^ e^-- = a. Hence a lies in E ,

which is a contradiction.

324. Conversely, the end points E= \e\ and the limiting points of

the end points of a pantactic enumerable set of separated intervals

D =
j
8

\ form a perfect apantactic set 51.

For in the first place, 51 is complete, since 51 = (E, E ). 51 can

contain no isolated points, since the intervals S are separated.

Hence 51 is perfect. It is apantactic, since otherwise 51 would em
brace all the points of some interval, which is impossible, as D is

pantactic.

325. Since the adjoint set of intervals D =
\S\ is enumerable, it

can be arranged in a 1, 2, 3, order according to size as follows.

Let 8 be the largest interval, or if several are equally large, one

of them. The interval 8 causes Jto fall into two other intervals.

The interval to the left of 8, call I
Q , that to the right of

,
call Ir

The largest interval in /
, call S

,
that in Iv call Sv In this way

we may continue without end, getting a sequence of intervals

S, 8 , Sj, S
00 , S

01 ,
S
10 ,

Sn -.. (1

and a similar series of intervals

*i ^0 1 00 01&quot;*

The lengths of the intervals in 1) form a monotone decreasing

sequence which = 0.

If v denote a complex of indices ij/c
-

326. 1. The cardinal number of every perfect limited rectilinear

point set 51 is c.

For if 51 is not apantactic, it embraces all the points of some in

terval, and hence Card 51 = c. Let it be therefore apantactic.



COMPLETE SETS 339

Let D= JS,; be its adjoint set of intervals, arranged as in 325.

Let ( be the Cantor set of I, 272. Let its adjoint set of intervals

be H= \r] v \, arranged also as in 325. If we set 8V
^&amp;gt;

77,, we have
D^H. Hence Card 51 = Card .

But Card 6 = c by 244, 4.

2. The cardinal number of every limited rectilinear complete set 51

i %o. is either e or c.

For we have seen, 320, 4, that

where ( is enumerable and ^3 is perfect,

If $ = 0, Card 51 = e.

If
$&amp;gt;0, Card 51 = c.

For Card 51 = Card (g + Card $ = e + c = c.

327. The cardinal number of every limited complete set 51 in ^R n is

either e or c. It is c, ^/5^ Aas a perfect component.

The proof may be made by induction.

For simplicity take m = 2. By a transformation of space [242],
we may bring 51 into a unit square S. Let us therefore suppose
51 were in S originally. Then Card 51 &amp;lt; c by 247, 2.

Let ( be the projection of 51 on one of the sides of #, and $3 the

points of 51 lying on a parallel to the other side passing through a

point of . If 33 has a perfect component, Card 33 = c, and hence

Card 51 = c. If 33 does not have a perfect component, the cardinal

number of each 33 is e. Now ( is complete by I, 717, 4. Hence
if (E contains a perfect component, Card (S = c, otherwise Card

(5 = e. In the first case Card 51 = c, in the second it is e.

328. 1. Let 51 be a complete set lying within the cube Q. Let

DI &amp;gt; D% &amp;gt;
... denote a set of superimposed cubical divisions of Q

of norms = 0. Let d
1
be the set of those cubes of D

l containing
no point of 51. Let d

2 be the set of those cubes of D
2
not in d

l ,

which contain no point of 51. In this way we may continue. Let

& = \dn \. Then every point of A = O - 51 lies in 33. For 51 being
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complete, any point a of A is an inner point of A. Hence 2&amp;gt;

p(a)

lies in A, for some p sufficiently small. Hence a lies in some dm .

We have thus the result :

Any limited complete set is uniquely determined by an enumerable

set of cubes \dn \, each of which is exterior to it.

We may call 33 = \dn \
the border of 51, and the cells dn ,

border

cells.

2. The totality of all limited perfect or complete sets has the car

dinal number c.

For any limited complete set (E is completely determined by its

border \dn \. The totality of such sets has a cardinal number

&amp;lt; c
e = c. Hence Card j(S J

&amp;lt; c. Since among the sets (5 is a c-set

of segments, Card ( &amp;gt; c.

329. If 5l t
denote the isolated points of 51, and 5(A its proper

limiting points, we may write

51 = 51 + 5(A .

Similarly we have
5lA =5lAl

51A, = 5U + HA3, etc.

We thus have

51 = 5I t + 5lAt + 5U + - - - + 5IAn-i t + ?1A .

At the end of each step, certain points of 51 are sifted out. They

may be considered as adhering loosely to 51, while the part which

remains may be regarded as cohering more closely to the set. Thus

we may call 2lA -i
t ,

the nih
adherent, and 21A

W the nth coherent.

If the nth coherent is 0, 51 is enumerable.

If the above process does not stop after a finite number of steps,

let 5

If 5lw &amp;gt; 0, we call it the coherent of order &&amp;gt;.

Then obviously 9f &quot;S9f n 4- 9f

We may now sift 5L as we did 51.
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If a is a limitary number, defined by

we set 5la

and call it, when it exists, the coherent of order a. Thus we can

write + 2^ =1, 2, ...&amp;lt;/3 (1

where /3 is a number in Z
2

.

330. 1. When 51 is enumerable,

, 2,
.-.

ivhere $ i the sum f an enumerable set of isolated sets, and ), when

it exists, is dense.

For the adherences of different orders have no point in common
with those of any other order. They are thus distinct. Thus the

sum $ can contain but an enumerable set of adherents, for other

wise 51 could not be enumerable. Thus there is a first ordinal

number j3 for which

5lA = 0.

As now in general

8t^= 2U + 8x0+1,

we have ^ = ^/+1 = ^,+2 = ...

As 21A thus contains no isolated points, it is dense, when not 0,

by I, 270.

2. Wlien 51 is not enumerable, X) &amp;gt;
0. For if not, 21 = 3 and 3

is enumerable.

331. 8 = S . (1

For let D be a cubical division of space. As usual let

or Of
/) 9 &amp;lt;^Z&amp;gt;

denote those cells of D containing a point of 51, 5T respectively.

The cells of 5(i not in 51^ will be adjacent to those of 51^, and
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these may be consolidated with the cells of D, forming a new di

vision A of norm 8 which in general will not be cubical. Then

21A = 211 + 21

The last term is formed of cells that contain only a finite number
of points of 21. These cells may be subdivided, forming a new
division U such that in

%E = 2fi + %E* (2

the last term is &amp;lt; e/3- Now if 8 is sufficiently small,

aA -S&amp;lt;!
, H -

&amp;lt;!
(3

o o

Hence from 2), 3) we have 1).

332. -7f2l&amp;gt;0, Card 21 = c.

For let 93 denote the sifted set of 21 [I, 712]. Then $ is per
fect. Plence Card 53 = c, hence Card 21 = c.

333. Let 21 = JaJ, where each a is metric and not discrete. If no

two of the as have more than their frontiers in common, 21 is an

enumerable set in the d s. 21 may be unlimited.

Let us first suppose that 21 lies in a cube O. Let a denote a on

removing its proper frontier points. Then no two of the a s have

a point in common. Let

where the first term ql
= Q. There can be but a finite number of

sets a, such that their contents lie between two successive ^ s.

For if ^ ^
4 &quot;*~ &amp;gt;q,

we have ^+^+ .~ + tn &amp;gt;nq..

But the sum on the left is &amp;lt; O, for any n.

As n may = oo, this makes O = oo, which is absurd.

If 21 is not limited, we may effect a cubical division of 9?m .

This in general will split some of the a s into smaller sets b. In

each cube of this division there is but an enumerable set of the b s

by what has just been proved.



CHAPTER XI

MEASURE

Upper Measure

334. 1. Let 51 be a limited point set. An enumerable set of

metric sets D= {e?t j, such that each point of 51 lies in some d^ is

called an enclosure of 51. If each point of 51 lies within some c? D
is called an outer enclosure. The sets dt are called cells. To each

enclosure corresponds the finite or infinite series

23, (1

which may or may not converge. In any case the minimum of all

the numbers 1) is finite and
&amp;lt;_0.

For let A be a cubical division

of space, 51A is obviously an enclosure and the corresponding sum

1) is also 51A , since we have agreed to read this last symbol either

as a point set or as its content.

We call ,. v ,Mm 2at,

with respect to the class of all possible enclosures D, the upper
measure of 51, and write

I = Meas 51 = Min 2rf
t

.

D

2. The minimum of the sums 1) is the same when we restrict our

selves to the class of all outer enclosures.

For let D= \dt \
be any enclosure. For each c?

t ,
there exists a

cubical division of space such that those of its cells, call them d^
*~*

containing points of d^ have a content differing from d
t by &amp;lt;

;

Obviously the cells \diK \
form an outer enclosure of 51, and

343
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As e is small at pleasure, Min 2c?
t
over the class of outer en

closures = Min 2c?
t
over the class of all enclosures.

3. Two metric sets whose common points lie on their frontiers

are called non-overlapping. The enclosure D = 2d
t
is called non-

overlapping, when any two of its cells are non-overlapping.

Any enclosure D may be replaced by a non-overlapping enclosure.

For let U(d1 ^ c?
2)
= d

1 4- 2 ,

U(d^ d
z &amp;lt;

d
3)
= d

1 + e
2 + 8 ,

U(dl
d2 d3 d) = d

1 -h e
z + e

3 + 4 ,
etc.

Obviously each en is metric. For uniformity let us set dj
= er

Then E =
\en \

is a non-overlapping enclosure of 31. As

%.&amp;lt;*&

we see that ^# minimum of the sums 1) ^s the same, when we restrict

ourselves to the class of non-overlapping enclosures.

Obviously we may adjoin to any cell en , any or all of its

improper limiting points.

4. In the enclosure E= \en \
found in 3, no two of its cells

have a point in common. Such enclosures may be called distinct.

335. 1. Let D = \dt \, E = \eK \
be tivo non-overlapping enclosures

of%. Let

^ *!&amp;gt;(&amp;lt;, O-
Then

A= 5^1, *,* = !, 2,
...

is a non- overlapping enclosure of 51.

For S
iK

is metric by 22, 2. Two of the S s are obviously non-

overlapping. Each point of 51 lies in some d
L
and in some eK ,

hence a lies in 8
t(C

.

2. We say A is the divisor of the enclosures D, E.

336.

For let E= \e,\ be an enclosure of 53. Those of its cells d
t
con

taining a point of H form an enclosure D = \dt \
of H. Now the

class of all enclosures A = \B^ of 51 contains the class D as a sub

class.
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As 2&amp;lt;2?
t ,

we have

Min 2S
t

&amp;lt; Min Zd
t

&amp;lt; Min
A /&amp;gt;

from which 1) follows at once.

337. If 21 w
21 = 51. (l

For let D be a cubical division of space such that

a/) _a&amp;lt; , a -/&amp;gt;&amp;lt;. (2

Let us set 33 = 1^. Let -#=Je t J
be an outer enclosure of 33.

Since 33 is complete, there exists a finite set of cells in E which

contain all the points of 33 by 301. The volume of this set is

obviously &amp;gt; 33 ;
hence a fortiori

2?
t &amp;gt; 8.

Hence = -
33&amp;gt;33.

BUt
I&amp;gt;i,by336,

&amp;gt; = !i,

&amp;gt;g- ,by2). (3

On the other hand, =
2l&amp;lt;2U&amp;lt;2l + e, by 2). (4

From 3), 4) we have 1), since e is arbitrarily small.

338. If% is complete, =
31 = 21.

For by definition =
21 = Min 2aM

with respect to all outer enclosures D = \dt \. But 21 being com

plete, we can replace D by a finite set of cells F= \f,\ lying in D,

such that F is an enclosure of 21. Finally the enclosure F can be

replaced by a non-overlapping enclosure G- = \g,} by 334, 3.

with respect to the class of enclosures 6r. But this minimum

value is also 21 by 2, 8.
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339. Let the limited set 21 = \Un \
be the union of a finite or infinite

enumerable set of sets 2In . Then

For to each ?Jfn corresponds an enclosure Dn = \
dni \

such that

Sc?m &amp;lt; 2In + &amp;gt;

e &amp;gt; 0, arbitrarily small.

But the cells of all the enclosures Z&amp;gt;n , also form an enclosure.

Hence

This gives 1), as e is small at pleasure.

340. Let n lie in the metric set 2ft. Let A = 2ft - 21, be the

complementary set. Then

For from m = K + A,

follows = _ =
m&amp;lt;K + A, by 339.

But . _
9W = 2ft, by 337.

341. If 51 = 53 + 6, awe? 53, ( are exterior to each other,

1 = S + f. (1

For, if any enclosure D \d^ of 51 embraces a cell containing
a point of 53 and (, it may be split up into two metric cells c?[,

c?[ , each containing points of 53 only, or of ( only. Then

Thus we may suppose the cells of D embrace only cells

D =
\d(\ containing no point of (, and cells D f =

\d[ l
con

taining no point of 53. Then

s5
t
= 25; + 25; . (2
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By properly choosing D, we may crowd the sum on the left

down toward its minimum. Now the class of enclosures D is

included in the class of all enclosures of 33, and a similar remark

holds for D&quot;.

Thus from 2) follows that

This with 339 gives 1).

342. If 51 = 23 + 9ft, 2ft being metric,

For let D be a cubical division of norm d. Let n denote points
of 9ft in the cells containing points of Front 9ft. Let tn denote

the other points of Oft- Then tn and 33 are exterior to each other,

and by 337 and 341,

Meas(33 + m) = i + m.
As

2l = 33 + tn + tt,

Meas(33 + m)&amp;lt;I by 336.

Als
l&amp;lt;i + m + n by 339.

Thus S + m&amp;lt;I&amp;lt;i + m + n. (2

Now if d is sufficiently small,

9ft-e&amp;lt;m ; tt&amp;lt;e.

Thus 2) gives, as rn&amp;lt;9ft,

which gives 1), as e&amp;gt;0 is arbitrarily small.

343. 1. Let 51 lie in the metric set 53, and also in the metric set

Let = %-% , &amp;lt;7=&amp;lt;S-a.

Then -J=-5.
For let

3) =
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Thus
- H = + 81

- (1 + 5) = S - 5

g - &amp;lt;7
= S + Sj

-
(ii 4- 5) = S - S.

2. If 5l&amp;lt;53, the complement of 51 with respect to 53 will

frequently be denoted by the corresponding English letter. Thus

Mod 53

Lower Measure

344. 1. We are now in position to define the notion of lower

measure. Let 51 lie in a metric set 2ft. The complementary set

A = 2ft 51 has an upper measure A. We say now that 2ft 3
is the lower measure of 51, and write

By 343 this definition is independent of the set 2ft chosen.

When | _ ^

we say 51 is measurable, and write

A set whose measure is is called a null set.

2. Let U= [e,]
be an enclosure of A.

Then 51 = Max (* - 25,)

m^ respect to the class of all enclosures E.

3. If (g = |e t }
is an enclosure of 51, the enclosures ^ and &amp;lt;g may

obviously, without loss of generality, be restricted to metric cells

which contain no points not in 2ft. If this is the case, and if @,

^are each non-overlapping, we shall say they are normal enclosures.

If (:, 8 are two normal enclosures of a set 51, obviously their

divisor is also normal.
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345. 1. 51 &amp;gt;0.

For let 51 lie in the metric set $[)?.

Then
/ 2

= -Z
&quot;

.-

But by 336,
2&amp;lt;,

hence
2K-1&amp;gt;0.

2. 5l&amp;lt;i.

For let 51 lie in the metric set 9ft.

Then
by 340.

Hence 51 = ?-

346. 1. For any limited set 51,

51 &amp;lt;

5j[*&amp;lt;

I &amp;lt; 5l (1

For let Z&amp;gt;= dt j
be an enclosure of 51. Then

51 = Min 2&amp;lt;?
t ,

,0

when Z&amp;gt; ranges over the class F of all ^wzVe enclosures. On the

other hand,

I = Min 2d,
D

when D ranges over the class E of all enumerable enclosures.

But the class E includes the class F. Hence I &amp;lt; S.

To show that ^ or f9
21 &amp;lt;

&amp;lt;H, V^

we observe that as just shown

A&amp;gt;I.

Hence, A ^^
sw-A&amp;lt;sw^ = a. (3

A + 5t =% by 16.

This with 3) gives 2).
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2. If 51 is metric, it is measurable, and

This follows at once from 1).

347. Let 51 be measurable and lie in the metric set 9ft. Then A
is measurable, and ,

&amp;gt; ^
For

A = 9ft - 5t. (2

since 51 is measurable. This last gives

This with 2) shows that J = A
; hence ^4. is measurable. From

2) now follows 1).

348. If %&amp;lt;%,then 5T&amp;lt;&amp;lt;8. (1

For as usual let A, B be the complements of 51, 23 with respect
to a metric set 9ft. Since 51 &amp;lt; 53, A &amp;gt; B.

Hence, by 336,
A&amp;gt;B.

Thus, ^ = ^
9ft - 4 &amp;lt; 9ft - B,

which gives 1).

349. For 51 to be measurable, it is necessary and sufficient that

where 9ft is any metric set &amp;gt; 51, and A = 9ft 51.

It is sufficient, for then 1) shows that

! = -!.

But the right side is by definition 51 ; hence 3 = 5(.

It is necessary as 347 shows.

350. Let 51 = {aj be the union of an enumerable set of non

overlapping metric sets. Then 51 is measurable, and

S = 2an . 1
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Let S denote the infinite series on the right of 1). As usual

let Sn denote the sum of the first n terms. Let 5ln = (c^, an).

Then 5ln &amp;lt; 51 and by 336,

n = #n &amp;lt;! ,
for any n. (2

Thus S is convergent and

&amp;lt;I. (3
On the other hand, by 339,

1 &amp;lt; S. (4
From 3), 4) follows that

S = I = lim Sn = lim Sn . (5

We show now that 51 is measurable. To this end, let 9ft be a

metric set &amp;gt; 51, and 2ln + An = 9ft as usual.

Then
I in + 2n = St .

(6

But A &amp;lt; An , hence A &amp;lt; An .

Thus 6) gives = ^ ^
A + 2ln &amp;lt; 3ft,

for any n. Hence

Hence by 339, J +8aafi |.

Thus by 349, 51 is measurable.

351. Let

For let 9ft be a metric set &amp;gt; 51. Let A, B, be the comple
ments of 51, 53, S, with reference to 9ft.

Let E= \em \ , F= \fn \

be normal enclosures of B, C. Let

and D = j^mn |
the divisor of E, F.
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As all the points of A are in B, and also in (7, they are in both

E and F, and hence in the cells of D, which thus forms a normal

enclosure of A. Let

Let us set _ /. _ .

jm ~

/in I t/ wi */ TI in I ?i
*

Then by 350, -
_

- -

By 347, _
!

^ I ^
? = 7m + 9m , /n = ??n + AB .

Hence ^ ^

,

Hence adding,

(^-2/n)

rfmn)]. (2

Thus by 339, the term in [ ] is &amp;lt; 0. Thus 2) gives

Now ^ = U\gm , hn , dmn \ m,n=l, 2,

2 n) &amp;lt;
- 2 wn &amp;lt; a. (3

But ^
33 = Max (2ft

- 2?m)

2
= Max(-

Thus 3) gives 1) at once.

Measurable Sets

352. 1. Let H =$ + (. 7f 53, S are measurable, then 51 i

measurable, and
f = 5 + i. (

For
&amp;lt; + (&amp;lt; 51 , by 351

&amp;lt; I &amp;lt; i + S , by 339.

*D -i.
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2. Let 51 = 33 + (. If 51, 53 are measurable, so is & and

i = i-5. (2

For let 51 lie in the metric set 9}?. Then

2fl - a = 2K - OB + S) = (2
- G) - 53-

Thus A = C-S;
Hence

&amp;lt;7=S + A
Thus (7 is measurable by 1. Hence is measurable by 347,

and
5l = 33 + G.

From this follows 2) at once.

353. 1. Let 51 = 25ln be the sum of an enumerable set of measur

able sets. Then 51 is measurable and

If 51 is the sum of a finite number of sets, the theorem is obvi

ously true by 352, 1. In case 51 embraces an infinite number of

sets, the reasoning of 350 may be employed.

2. Let $1 = \yin ]
be the union of an enumerable set of null sets.

Then $1 is a null set.

Follows at once from 1.

3. Let 51= J5In J
be the union of an enumerable set of measurable

sets whose common points two and two, form null sets. Then 51 is

measurable and
= 25ln .

4. Let G = \t n \
be a non-overlapping enclosure 0/51. Then (: is

measurable, and
S = 2e n .

5. Let 53 &amp;lt; 51. Those cells of ( containing a point of 33 may

be denoted by 33e , and their measure will then be of course

If $ = 51, this will be . This notation is analogous to that

used in volume I when treating content.
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6. If g= \\n \
is another non-overlapping enclosure of some set

then

T) = Dw ((g, g)
is measurable.

For the cells of ) are

&.
Thus S

tlt
is metric, and

354. 1. Harnack Sets. Let 21 be an interval of length I. Let

X = Z
x + Z

2 + ...

be a positive term series whose sum X &amp;gt; is
&amp;lt;_

I. As in defining
Cantor s set, I, 272, let us place a black interval of length ^ in the

middle of 21. In a similar manner let us place in each of the re

maining or white intervals, a black interval, whose total lengths
= Z2

. Let us continue in this way; we get an enumerable set of

black intervals 53, and obviously

=X.

If we omit the end points from each of the black intervals we get
a set 53*, and obviously

The set = 51 - 53*

we call a Harnack set. This is complete by 324 ; and by 338, 347,

When X = Z, ^p is discrete, and the set reduces to a set similar

to Cantor s set. When \&amp;lt;l, we get an apantactic perfect set

whose upper content is I X
&amp;gt; 0, and whose lower content is 0.

2. Within each of the black intervals let us put a set of points

having the end points for its first derivative. The totality of

these points form an isolated set $ anc^ 3 =
&amp;gt; But b}

r 331,

3 = $ If now ^j is not discrete,
&amp;lt;J

is n t- We have thus the

theorem :

There exist isolated point sets which are not discrete.
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3. It is easy to extend Harnack sets to $. For example, in 9?2 ,

let S be the unit square. On two of its adjacent sides let us place

congruent Harnack sets
$&amp;gt;.

We now draw lines through the end

points of the black intervals parallel to the sides. There results

an enumerable set of black squares @ =
\&amp;lt;Sn \. The sides of the

squares @ and their limiting points form obviously an apantactic

perfect set $.

Let
af + a|+... = w

be a series whose sum &amp;lt;
m &amp;lt; 1.

We can choose such that the square corresponding to its larg
est black interval has the area a\ ; the four squares corresponding
to the next two largest black intervals have the total area &\, etc.

Then =

Henoe
...

355. 1. If (g = \tm \
is an enclosure of % such that

it is called an e-enclosure. Let A be the complement of SI with

respect to the metric set 9D?. Let E = \en \
be an e-enclosure of A.

We call (g, E complementarg e-enclosures belonging to SI.

2. //^ SI is measurable, then each pair of complementary e/2
normal enclosures @, ^, wAosg divisor $) =

!5) &amp;lt; e, e small at pleasure. (1

For let (, J^ be any pair of complementary e/2 normal enclo

sures. Then

t-f&amp;lt;{
, !-.!.&amp;lt; f

Adding, we get
&amp;lt; S +2- (84-2)&amp;lt; c;

0&amp;lt;S-h^-^&amp;lt;e. (2

But the points of 9Q? fall into one of three classes : 1 the points
of S) ;

2 those of (g not in ) ;
3 those of j^ not in ). Thus

i + .f = ^ + S.
This in 2) gives 1).
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356. 1. Up to the present we have used only metric enclosures

of a set 21. If the cells enclosing 21 are measurable, we call the

enclosure measurable.

Let ( =
\tn \

be a measurable enclosure. If the points common
to any two of its cells form a null set, we say ( is non-

overlapping. The terms distinct, normal, go over without

change.

2. We prove now that | = Min^ (1

with respect to the class of non-overlapping measurable enclosures.

For, as in 339, there exists a metric enclosure mn = \dnK \
of

each en such that 2dnll
differs from ?n by &amp;lt; e/2

n
. But the set

\mn \
forms a metric enclosure of 21. Tims

&amp;lt; 2
&amp;lt; K &amp;lt;

2 en + = 2 n 4- e,

ft ,
K

which establishes 1).

357. Z0 @ be a distinct measurable enclosure of 21. Let \ denote

those cells containing points of the complement A. If for each e &amp;gt;

there exists an ( such that f &amp;lt; e, Aew 21 ^s measurable.

For let (g = e + f.
Then e &amp;lt; 21. Hence e &amp;lt; 21 by 348. But

Hence l

and thus S = 21

358. 1.
. The divisor ) of two measurable sets 2(, 53 ^

For let ($, ^ be a pair of complementary e/4 normal enclosures

belonging to 21 ; let g, F be similar enclosures of 53. Let

e =
Dt;(&amp;lt;g, J) , f

=
Then

?&amp;lt;e/2 , ?&amp;lt;/:, by 355, 2,
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Now = Dv(&, g) is a normal metric enclosure of ). More

over its cells g which contain points of 3) and (7(3)) lie among
the cells of e, f. Hence

Thus b}
r 357, 2) is measurable.

2. Let 51, $8 be measurable.

Let
) , II =

For

Hence
U = + Meas (53

-

359. Xe/ SI = U
\ 5Im j

be the union of an enumerable set of
measurable cells ; moreover let 51 be limited. Then 51 is measurable.

If we set

For 2) = Dy^, 512 ) is measurable by 358.

T f

51,
= ^ + ^ , 5l2

= + a2 .

Then a
x , a2 are measurable by 352, 2.

AQ
U = (5^,512)

= 2)4-^ + 02,

U is measurable. As U and ^3
1
are measurable, so is 332 . In a

similar manner we show that $3 , 534 are measurable. As

SI is measurable by 353, 1, and the relation 1) holds by the same

theorem.

360. Let
5Tj

&amp;lt; 5I2
&amp;lt; be a set of measurable aggregates whose

union 51 is limited. Then 51 is measurable, and

5=limin .
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For let Qf r w or
a2
= ^2-^i &amp;gt; ^3

= ^3-^2

For uniformity let us set a
:
= 21. Then

a = 2o_.

As each an is measurable
t = 2aw

= lim (aj+ + a n)
n=oo

= lim Sn .

361. .Le Stj, 5I2
&quot;* ^ measurable and their union H limited. If

) = Dv 52IB j
&amp;gt; 0, & is measurable.

For let 21 lie in the metric set $ft;

let 2) + D = 2ft , %n +An = m
as usual.

Now $) denoting the points common to all the 2ln , no point of

D can lie in all of the $(n , hence it lies in some one or more of the

An . Thus
D&amp;lt;\An \. (1

On the other hand, a point of \An \
lies in some Am ,

hence it

does not lie in 2lm . Hence it does not lie in ). Thus it lies in

D. Hence
\An \&amp;lt;D. (2

From 1), 2) we have D = $A \

As each An is measurable, so is D. Hence 3) is.

362. If Hj^E^ is an enumerable set of measurable aggre

gates, their divisor $) is measurable, and

For as usual let D, An be the complements of 2), 2ln with respect

to some metric set 3ft.

Then D=\An \ , An &amp;lt;A +l .

Hence by 360,
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As
$D = m - D,

wehave 5 = ^-5
= lim ?-

363. 1. The points x = (x &amp;gt; xm) such that

form a standard rectangular cell, whose edges have the lengths

e
1
= b

l
a

1 , ,
^m = ^ am .

When e^
= e

z
= = em , the cell is a standard cube. A normal

enclosure of the limited set SI, whose cells S = Je n j
are standard

cells, is called a standard enclosure.

2. For each e &amp;gt; 0, fore are standard e-enclosures of any limited

m*.
For let ( = jen j

be any ry-enclosure of SI. Then

2en -i &amp;lt;)?
. (2

Each en being metric, may be enclosed in the cells of a finite

standard outer enclosure Fn , such that

Fn -t n &amp;lt;-n/l

n
,

= l, 2,...

Then g = \Fn \
is an enclosure of SI, and

&amp;lt;i+27;, by 2).

But the enclosure .F can be replaced by a non-overlapping

standard enclosure =
5g n |,

as in 334, 3. But &amp;lt; ^Fn .

Hence if 2
77 is taken

&amp;lt; e,

and is an e-enclosure.

3. Let =!em j, 8=SW
be two non-overlapping enclosures of the same or of different

sets. Let emn = Dv(tm , fn).
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^m ==
\^m,

!&quot;&amp;gt; ^m.2 1 ^wi, 3
&quot;-V ~^~

^m&quot;&amp;gt; C&quot;

then OT is measurable. By this process the metric or measurable

cell tm falls into an enumerable set of non-overlapping measur

able cells, as indicated in 3). If we suppose this decomposition to

take place for each cell of (, we shall say we have superimposed g
on (.

364.
(IF&quot;.

H. Young.} Let ( be any complete set in limited 21.

2%era

|
= Max &amp;lt;. (1

For let 8 lie within a cube 2ft, and let ^ = 90? - 51, (7= 2ft - (

be as usual the complementary sets.

Let 53= |bB }
be a border set of ( [328]. It is also a non-

overlapping enclosure of (7; we may suppose it is a standard en

closure of C. Let E be a standard e-enclosure of A. Let us

superimpose E on 53, getting a measurable enclosure A of both

and A. Then
(7= (7A &amp;gt;^A .

Hence
& = m-C=m- (7A &amp;lt;9^-^A .

Thus
&amp;lt;

= (, by 338

&amp;lt; Meas (2ft
- ^4A)

!A , by 352, 2

Hence

(&amp;lt;,

and thus

Maxg&amp;lt;|- (2

On the other hand, it is easy to show that

Max&amp;gt;2t. (3

For let AD be an e-outer enclosure of A, formed of standard

non-overlapping cells all of which, after having discarded certain

parts, lie in 2ft.
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Let $ = 9ft - AD + ft, (4

where g denotes the frontier points of AD lying in 21. Obviously

$ is complete. Since each face of D is a null set, g is a null set.

Thus each set on the right of 4) is measurable, hence

I = m - AD +

=m-ID

= 2JJ-2-e , 0&amp;lt;e &amp;lt;e

Thus Max (&amp;gt;$
=&amp;gt;|-e,

from which follows 3), since e is small at pleasure.

365. 1. If 21 is complete, it is measurable, and

8 = 8.

For by 364,

| = 2I.

On the other hand,

S=l, by 338.

2. Let 33 be any measurable set in the limited set 21. Then

| = Max 5. (1

For
|&amp;gt;33

= .

Hence, 21 &amp;gt; Max 5. (2

But the class of measurable components of 21 embraces the

class of complete components (, since each ( is measurable by 1.

Thus Max 5 &amp;gt; Max (3

From 2), 3) we have 1), on using 364.

366. Van Week Sets. Let (E denote the unit interval (0, 1),

whose middle point call M. Let 3 denote the irrational points of

(5. Let the division Dn ,
w = 1, 2, divide (g into equal intervals

$ n of length l/2
n

.
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We throw the points 3 into two classes 51 = \a j, 53 = \b\ having
the following properties :

1 To each a corresponds a point b symmetrical with respect
to M, and conversely.

2 If a falls in the segment & of J9n , each of the other seg
ments B of Dn shall contain a point a of 51 such that a is situated

in S as a is situated in B.

3 Each S of Dn shall contain a point a of 51 such that it is

situated in 8, as any given point a of 51 is situated in (g.

4 51 shall contain a point a situated in ( as any given point
a of 51 is in any 8n .

The 1 condition states that 51 goes over into 53 on rotating &
about M. The 2 condition states that 51 falls into n = 1, 2, 22

,

23
, congruent subsets. The 3 condition states that the subset

2ln of 51 in Bn goes over into 51 on stretching it in the ratio 2n : 1.

The condition 4 states that 51 goes over into 5ln on contracting it

in the ratio 1 : 2n .

We show now that 51, and therefore 53 are not measurable. In

the first place, we note that

1-8,

by 1. As 3 = 51 + 53, if 51 or 53 were measurable, the other would

be, and ^ ^

=*-$.

Thus if we show 51 or 53 = 1, neither 51 nor 53 is measurable.

We show this by proving that if 21 = &amp;lt; 1, then 53 is a measurable

set, and S3 = 1. But when 53 is measurable, $8 =
|-

as we saw, and

we are led to a contradiction.

Let e = e
l + e

2 -}- be a positive term series whose sum e is

small at pleasure. Let ^ =
\en \

be a non-overlapping ej-enclosure

of 51, lying in &amp;lt;g.
Then

i
1
= 2en

= + e;
=

1 ,

Let 53!
= 3 - (gj ; then 53j &amp;lt; 53, and

= 1
j&amp;gt;l
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Each interval en contains one or more intervals 7; nl , ?/n2 ,
... of

some
Z&amp;gt;,,

such that

f*?nm
= en -0-n ,

&amp;lt; (7n

where v& = Zcrn

may be taken small at pleasure.

Now each rjnm has a subset 5lnTO of 21 entirely similar to 21.

Hence there exists an enclosure ( nm of 5lnra , whose measure nm is

such that

But @2
=

{^n&amp;gt;S
is a non-overlapping enclosure of 21, whose

measure v ~ ^^ .

2
=

!
Sr7nW = l^ On - ^n)

if &amp;lt;r is taken sufficiently small.

Let 932 denote the irrational points in (^ C?2 . It is a part of

53, and 332 has no point in common with ^&
l

. We have

In this way we may continue. Thus 53 contains the measurable

component ^ ^
whose measure is

&amp;gt;!-.

As e is small at pleasure, 53 = 1.

367. (If. H. Young.) Let

!,**, V&quot; C1

6e an infinite enumerable set of point sets whose union 51 is limited.

Let 5l n &amp;gt;a&amp;gt;0 , n = 1, 2 Then there exists a set ofpoints each

of which belongs to an infinity of the sets 1) and of lower measure &amp;gt; a.
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For by 365, 2, there exists in the sets 1), measurable sets

G, , &amp;lt;5

2 , 6, . (2

each of whose measures ( n &amp;gt; a. Let us consider the first n of

these sets, viz.:

^ &amp;gt; ^ _ ^ (g

The points common to any two of the sets 3) form a measurable

set 5^ by 358, 1. Hence the union ( ln
=

{ $) l(C
j

is measurable, by
359. The difference of one of the sets 3), as (^ and Dv(&v (Sln),

is a measurable set c
x
which contains no point in common with the

remaining sets of 3). Moreover
/. &amp;lt;K.

c
x

&amp;gt; a - (S
lfl

.

In the same way we may reason with the other sets ( 2 , (E3

of 3). Thus 51 contains w measurable sets Cj, C2 cn no two of

which have a common point.

Hence
c =

Cl + ... + c.

is a measurable set and

The first and last members give

,&amp;gt;- la.n

Thus however small a
&amp;gt; may be, there exists a p such that

Si,, l-. , (4

Let us now group the sets 2) in sets of /a. These sets give rise

to a sequence of measurable sets

such that the points of each set in 5) belong to at least two of the-

sets 1) and such that the measure of each is &amp;gt; the right side of 4).

We may now reason on the sets 5) as we did on those in 2).

We would thus be led to a sequence of measurable sets
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such that the points of each set in 6) lie in at least two of the sets

5), and hence in at least 22 of the sets 1), and such that their

measures are.

In this way we may continue indefinitely. Let now ^3
l
be the

union of all the points of 51, common to at least two of the sets 1).

Let 332 be the union of the points of 51 common to at least 22 of

the sets 1), etc. In this way we get the sequence

!&amp;gt; 2
&amp;gt;

each of which contains a measurable set whose measure is

We have now only to apply 25 and 364.

368. As corollaries of 367 we have:

1. Let Cj, Q2
be an infinite enumerable set of non-overlapping

cubes whose union is limited. Let each Qn &amp;gt;
a &amp;gt; 0. Then there

exists a set of points b whose cardinal number is c, lying in an infin

ity of the On and such that b &amp;gt; a.

2. (Arzeld.) Let ^ , ?/2 =77. On each line yn there exists an

enumerable set of intervals of length . Should the number of inter

vals vn on the lines yn be finite, let vn = cc. In any case Bn &amp;gt;
a

&amp;gt; 0,

n = 1, 2, ... and the projections of these intervals lie in 51 = (a, 5).

Then there exists at least one point x = f in 51, such that the ordinate

through is cut by an infinity of these intervals.

Associate Sets

369. 1. Let e^e^eg =0. (1

Let (gn be a standard en-enclosure of 2l n . If the cells of Q?n+1 lie in

&amp;lt;gn , we write @1
&amp;gt;@2

&amp;gt;-&quot; (2

and call 2) a standard sequence of enclosures belonging to 1).

Obviously such sequences exist. The set

%e
= Vvl n \

is called an outer associated set of 51. Obviously

51&amp;lt;5L.
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2. Each outer associated set 5le is measurable, and

f=ie= limin .

n=x&amp;gt;

For each (gn is measurable; hence 5le is measurable by 362, and

=
,

asen=0.

370. 1. Let A be the complement of 51 with respect to some
cube O containing 5(. Let ,4.e be an outer associated set of A.

Then
a.= o-^.

is called aw inner associated set of 51. Obviously

2. The inner associated set 5I t
is measurable, and

1=2.

For Ae is measurable by 369, 2. Hence 5l t
=G ^4.e is meas

urable. But

A e
= A

by 369, 2. Hence

Separated Sets

371. Let H, 53 be two limited point sets. If there exist

measurable enclosures (, g f H, 53 such that 3) = Dv(@, g) is a

null set, we say 51, 53 are separated.

If we superimpose g on (, we get an enclosure of ( = (51, 53)

such that those cells containing points of both 51, 53 form a null

set, since these cells are precisely ). We shall call such an en

closure of ( a null enclosure.

Let 5l = {5ln } ;
we shall call this a separated division of 51 into

the subsets 5ln , if each pair 5lm , 5ln is separated. We shall also

say the 5ln are separated.
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372. For 21, 53 to be separated, it is necessary and sufficient that

2) = ZH2le , 53e)

is a null set.

It is sufficient. For let

Then
G = (a,b,5

is a measurable enclosure of (, consisting of three measurable

cells. Of these only ) contains points of both 21, 53. But by

hypothesis ) is a null set. Hence 21, 53 are separated.

It is necessary. For let 9D? be a null distinct enclosure of (E,

such that those of its cells 9?, containing points of 21, $8 form a

null set. Let us superimpose 9# on the enclosure ( above, get

ting an enclosure g of 21.

The cells of g arising from a contain no point of 53 ; similarly

the cells arising from b contain no point of 21. On the other

hand, the cells arising from ), split up into three classes

The first contains no point of 53, the second no point of 21, the

cells of the last contain both points of 21, 53. As )a
,
6

&amp;lt; W,

$a.6 = 0. (1
On the other hand,

He
= a + 2&amp;gt;?l;

hence
+*&amp;gt;.+5&amp;gt;*&amp;gt;a.

Thus
a + &amp;gt;S, (2

byl). Also
g.=a + =I by 369, 2.

This with 2) gives ^ ^ ^ ^
a+ :Ta ^&amp;gt;a + :I).

Hence 3^^ (3

But l).&amp;gt;f}a + 6 .

This with 3) gives &amp;gt;

6
= 0.

In a similar manner we find that )a
= 0. Hence 3) is a null

set by 3).
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373. 1. J/ 51, $ are separated, then ) = Dv($l, $8) is a null set.

For S)e
= Dv 23 is a nul1 set b 3 ? 2 - But )

&amp;lt; 2).

2. Let 51, 23 be the Van Vleck sets in 366. We saw there that

1 = 8 = 1. Then by 369, 2, c
= 5e

= 1. The divisor of 5Ie , 23e is

not a null set. Hence by 372, 51, 33 are not separated. Thus the

condition that ^ be a null set is necessary, but not sufficient.

374. 1. Let J51J, \y$n \
oe separated divisions of 51. Let

( IK
= Zhj(5I t , $3*). Then \& IK \

is a separated division
0/&quot;5l also.

We have to show there exists a null enclosure of any two of the

sets &amp;lt;, mn . Now
&amp;lt; lies in 51 and 53. ; also mn lies in 5Tm , 23n .

By hypothesis there exists a null enclosure & of 5l t , 5lm ; and a null

enclosure g of 23*, 23n . Then = Dv(&, g) is a null enclosure of

5I t , 5Im and of 58., 33n . Thus those cells of
,
call them a , con

taining points of both 5I t , 5Tm form a null set; and those of its cells

6 , containing points of both 53K , 23n also form a null set.

Let Gr \g\ denote the cells of that contain points of both

(, (Smn . Then a cell g contains points of 5ft 5TTO 53K 53n . Thus g
lies in @a or 6 . Thus in either case G- is a null set. Hence \&lK \

form a separated division of 51.

2. Let D be a separated division of 51 into the cells d^ d
2

-

Let E be another separated division of 51 into the cells e
1 , e

2
---

We have seen that F = \flK \
where fllt

= Dv(dt ,
eK ~)

is also a sepa
rated division of 51. We shall say that F is obtained by superim

posing E on D or D on ^, and write F = D + E= E+ D.

3. Let E be a separated division of the separated component 53

of 51, while D is a separated division of 51. If d
t
is a cell of D, eK

a cell of E, and c?
t((
= Dv(dL , eK ), then

Thus superposing E on D causes each cell c?
t
to fall into sepa

rated cells e?
tl , c?

tl
S

t
. The union of all these cells, arising from

different d
t , gives a separated division of 5( which we also denote

by D + E.

375. Let J5tn |
be a separated division of 51. Let 23 &amp;lt; 51, and let

23n denote the points of 23 in 5(n . TAew J23n j
^s a separated division

of*.
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For let $) be a null enclosure of 5lm , 5In . Let S)^ denote the

cells of & containing points of both 5im , 5ln . Let ( denote the

cells of 2) containing points of $8 ; let (
a)6 denote the cells con

taining points of both 53m , 53n . Then

As $Da& is a null set, so is (&.

376. 1. Letn = (53, &amp;lt;)
fo a separated division of 51.

i = i + I. (i

For let e
1

&amp;gt; 2 &amp;gt;
= 0. There exist en-measurable enclosures

of 5t, 53, &amp;lt; ; call them respectively An ,
Bn , Cn . Then &n = An +

Bn + (7n is an en-enclosure of 51, 33, (S simultaneously.
Since 53, (S are separated, there exist enclosures B, of 53, &

such that those cells of D = B + containing points of both 53

and (E form a null set. Let us now superpose D on ($n getting
an en-enclosure En =\ena \

of 51, 53, & simultaneously. Let ebn

denote the cells of En containing points of 53 alone
;

ecn those

cells containing only points of ( ; and ebc those cells containing

points of both 53, (. Then

2&quot;ns
= 2?

fen + Zecn + tebc . (2
s

As 2e6c
= 0, we see that as n ==

oo,

Hence passing to the limit w= oo, in 2) we get 1).

2. Let 51 = f53n j
fo a separated division of limited 51. Then

l = 2g.. (1

For in the first place, the series

B = 2 n (2

is convergent. In fact let 5In = (53 X , 532
- 53n).

Then 5IW
&amp;lt;

5T, and hence In &amp;lt; I.
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On the other hand, by 1

in =i1+ ... + =,
the sum of the first n terms of the series 2). Thus

^n&amp;lt;I,

and hence B is convergent by 80, 4. Thus

^&amp;lt;i.

On the other hand, by 339,

&amp;gt;i.

The last two relations give 1).



CHAPTER XII

LEBESGUE INTEGRALS

General Theory

377. In the foregoing chapters we have developed a theory of

integration which rests on the notion of content. In this chapter
we propose to develop a theory of integration due to Lebesgue,
which rests on the notion of measure. The presentation here

given differs considerably from that of Lebesgue. As the reader

will see, the theory of Lebesgue integrals as here presented differs

from that of the theory of ordinary integrals only in employing
an infinite number of cells instead of a finite number.

378. In the following we shall suppose the field of integration

SI to be limited, as also the integrand SI lies in Sftm and for brevity

we set/(#) =f(xl
&amp;gt; xm). Let us effect a separated division of

SI into cells Sj, S
2

. If each cell 8
t
lies in a cube of side d, we

shall say D is a separated division of norm d.

As before, let

,
&&amp;gt;

t
= Osc/= M, - m, in 8

t
.

Then SD = I,Mfg , ^,= 20*A,

the summation extending over all the cells of SI, are called the

upper and lower sums off over SI with respect to D.

The sum

is called the oscillatory sum with respect to D.

379. If m = Min f,M= Max/ in SI, then

m &amp;lt; m
t &amp;lt;M^&amp;lt;M.

371
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Hence

Thus
t

&amp;lt;SD &amp;lt;8j&amp;gt;&amp;lt;

But
2l

t
= l,

by 376, 2.

380. 1. Since /is limited in 51,

Max $0 ,
Min Sj)

with respect to the class of all separated divisions D of 31, are

finite. We call them respectively the lower and upper Lebesgue

integrals of/over the field 51, and write

=U*xSD ; /=Min^.

In order to distinguish these new integrals from the old ones,

we have slightly modified the old symbol ( to resemble somewhat

script L, or I
, in honor of the author of these integrals.

J^i JL^K

we say /is L-integrable over 51, and denote the common value by

which we call the L-integral.

The integrals treated of in Vol. I we will call R-integrals, i.e.

integrals in the sense of Riemann.

2. Letf be limited over the null set 51. Thenf is L-integrable in

51, and

This is obvious from 379.

381. Let 51 be metric or complete. Then
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For let dj, c?
2

be an unmixed metric or complete division of

31 of norm d. Let each cell d
k
be split up into the separated cells

Then since d^ is complete or metric,

(* =: (I = 2-.(1.
i t ue

Hence using the customary notation,

Thus summing over K,

,5.
&amp;lt;

Summing over A gives

2w
t
3

t
&amp;lt;

Thus by definition,

Letting now (^=0, we get 1).

2. Ze H i metric or complete. Iff is R-integrable in 31, it is

L-integrable and

(2

3. In case that H is not metric or complete, the relations 1), 2)

may not hold.

Example 1. Let 31 denote the rational points in the interval

(0, 1).

Let

/= 1, for x = , n even
n

= 2, when n is odd.

Then

f/-l , (T/-2;Ja Jr
while

since 31 is a null set. Thus 1) does not hold.
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Example 2. Let/= 1 at the rational points 51 in (0, 1). Then

= ^Lf&amp;lt; &- (3

Let g= 1 in 51. Then

Thus in 3) the i-integral is less than the ^-integral, while in

4) it is greater.

Example 3. Let /= 1 at the irrational points 51 in (0, 1).

Then

although 51 is neither metric nor complete.

382. Let 2), A be separated divisions of 51. Let

E=D + &= \e t \.

For any cell d, of D splits up into c?
tl

, d
l9

on superimposing

A, and = =

But =
*

=

and = =

Thus
v &amp;lt; v &amp;gt; s

383. 1. Extremal Sequences. There exists a sequence of sepa

rated divisions n r&amp;gt; r&amp;gt; (\
**\ &amp;gt; ^2 ^3 &quot;

each Dn+1 being obtained from Dn by superposition, such that

(2
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For let e
l

&amp;gt; e
2 &amp;gt;

=0. For each en , there exists a division

En such that

Let
JSi + D! = D

a ,
^

3 +D2
=

and for uniformity set E
l
= Dr Then by 382,

s
Dn^&amp;lt;sDn ,

SD^&amp;lt;SE^
Hence

Letting n = oo we get 2).

Thus there exists a sequence \Dn } of the type 1) for 2), and a

sequence \D i \
of the same type for 3). Let now Dn = Dn + #

Obviously 2), 3) hold simultaneously for the sequence \Dn \.

2. The sequence 1) is called an extremal sequence.

3. Let \Dn } be an extremal sequence, and E any separated divi

sion of 2(. Let En = Dn + E. Then E^ E^--- is an extremal

sequence also.

384. Letf be L-integrable in 31. Then for any extremal sequence

MU,

inhere d
t
are the cells of Dn , and any point o/8( in

F r

Passing to the limit we get 1).

385. 1. Let m = Min/, M= Max/ tw 3[.

Jfl.

This follows at once from 379 and 383, 1.

&amp;lt; Af&amp;lt;
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2. Let F = Max \f\in 21, then

//
&amp;lt;

This follows from 1.

386. In order that f be L-integrable in 21, it is necessary that, for

each extremal sequence \
Dn \ ,

lim flD f= 0;

^s sufficient if there exists a sequence of superimposed separated

divisions
\
En \ ,

such that

lim 1EJ = 0.
n=ao

It is necessary. For
/T

lim iS I = lim

As /is X-integrable,

0= f- r=lirn(^n -^n)
= limfl

z)n

JL% 5^21

It is sufficient. For

Both \SEn \, \&sn \
are limited monotone sequences. Their

limits therefore exist. Hence

= lim 1E = lim SE lim SE .

n H . H

Thus

oC ffi ow2l

387. J^i order that f be L-integrable, it is necessary and sufficient

that for each e &amp;gt; 0, there exists a separated division D of H, for

which

It is necessary. For by 386, there exists an extremal sequence
Dn \, such that

&amp;lt;_ fl/&amp;gt; /&amp;lt;
e

,
for any n &amp;gt; some m.

Thus we may take Dm for D.



GENERAL THEORY 377

It is sufficient. For let e
1

&amp;gt;e2 &amp;gt;
= 0. Let \Dn \

be an

extremal sequence for which

Let Aj = D 1 ,
A

2
= A

x + Z&amp;gt;

2 , A 3
= A

2 + D3
Then JAn j

is a

set of superimposed separated divisions, and obviously

Hence / is l/-iiitegrable by 386.

388. In order that f be L-integrable, it is necessary and sufficient

that, for each pair of positive numbers
o&amp;gt;,

cr there exists a separated
division D of 21, such that if 77^ ?;2 , are those cells in which

Osc/&amp;gt; o&amp;gt;,
then

2f. &amp;lt; &amp;lt;r. (1

It is necessary. For by 387 there exists a separated division

D = JSJ for which

flDf = SwA &amp;lt;
G)(T. (2

If ^, ^
2

... denote the cells of D in which Osc/ &amp;lt;.&),

This in 2) gives 1).

It is sufficient. For taking e &amp;gt; small at pleasure, let us then

take

r-A . ^ (4

2^1
where II = Osc /in 51.

From 1), 3), and 4) we have, since CO L
&amp;lt; H,

o-n H- aM = e.

We now apply 387.

389. 1. Iff is L-integrable in H, it is in 53 &amp;lt; H.

For let \Dn \
be an extremal sequence of /relative to SI. Then

by 386,
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But the sequence \Dn \
defines a sequence of superposed sepa

rated divisions of 33, which we denote by \En \. Obviously

nej&amp;lt;
nDj.

Hence by 1),

&amp;lt;W=o,

and / is .L-integrable in 23 by 386.

2. Iff is L-integrable in 51, so is |/|.

The proof is analogous to I, 507, using an extremal sequence
for /.

390. 1. Let j5ln j
be a separated division of 51 into a finite or in

finite number of subsets. Letf be limited in 51. Then

//=//+//+- a
&amp;lt;% 4^ ^2I2

For let us 1 suppose that the subsets 5^ 5(r are finite in num
ber. Let \Dn \

be an extremal sequence of/ relative to 51, and

]Dmn \
an extremal sequence relative to 5Im . Let

En =Dn + Dln + ... +Drn .

Then \En \
is an extremal sequence of /relative to 51, and also

relative to each 51TO .

Now - -
*.JL-f*Wt &quot; +^K^n-

Letting 71 = 00, we get 1), for this case.

Let now r be infinite. We have

i=flm . (2

Let
=(?!! ...?in) , en =?r-93n -

Then 53n , Sn form a separated division of 51, and

S = + !.

If v is taken large enough, 2) shows that

^n&amp;lt;~ , rc&amp;gt;&quot; , jlf=Max|/| in5T.
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Th as by case 1,

(3
2In

where by 385, 2

|e |&amp;lt;Mn &amp;lt;e , n&amp;gt;v.

Thus 1) follows from 3) in this case.

2. Let l^in l
be a separated division 0/51. Then

iffis L integrable in 51, or if it is in each 2In , and limited i

391. 1. Letf = ^ i/i 51 except at the points of a null set

in

:21

Forlefc

//=/,. a
^21 4:21

=8+ ft. Then

f/= f/+f/=//. (2
4:21 ilJ 4 S

J? 4^8

Similarly

//=J/ (3

But/ = ^ in 83. Thus 2), 3) give 1).

392. 1. 7/00;

If e &amp;lt; ;

Jc/
= c

J/,
cf = e

jf.

The proof is similar to 3, 3, using extremal sequences.

2. Iffis L- integrable in 51, so is cf, and

^s a constant.
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393. 1. Let F(x) =fl (x) + +/&amp;lt;, each fm being limited

in 2i. Then

For let jDn j
be an extremal sequence common to F^fv /. In

each cell

dn \ ^n2
of Dn we have

2 Min/m &amp;lt; Min F &amp;lt; Max F &amp;lt; 2 Max/m .

Multiplying by dns , summing over s and then letting w = oo,

gives 1).

2. Iff^x), /() are each L-integrable in 31, so u

and

394. 1.

For using the notation of 393,

Min (/+#) &amp;lt; Min/+

in each cell dns of Dn .

2. Ifg is L-integrable in 51,

f (/+&amp;lt;

^21

Reasoning similar to 3, 4, using extremal sequences.

3-
f(f-g)&amp;lt;ff-fg.
^21 &amp;lt;X2l ^2t

ff- fJLw JLw,

g&amp;lt;
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f (/-*) &amp;lt; f / + / (-&amp;lt;/)
&amp;lt; ff- fg;

&amp;lt;^2l &amp;lt;=L&amp;gt;y( s^2l ^2l ^2l
etc.

4. Iff, g are L-integrable in Si, so isf g, and

L(f ~ 9)=Lf ~
^ . . ^ .

395. -/f/, # are L-integrable in SI, so is./- (/.

J.?so ^eir quotient f/g is L-integrable provided it is limited in 51.

The proof of the first part of the theorem is analogous to I,

505, using extremal sequences common to both / and g. The

proof of the second half is obvious and is left to the reader.

396. 1. Let f, g be limited in SI, andf &amp;lt;^g, except possibly in a

null set yi. Then -^ -^

I f&amp;lt; I g- (i
Xsi ^,21

Let us suppose first that/&amp;lt;: # everywhere in SI.

Let \Dr \
be an extremal sequence common to both / and g.

Then f^ u ,

b/)nj &amp;lt;-&Dng.

Letting n = oo , we get 1).

We consider now the general case. Let SI = 53 4- $1- Then

since

//=// , /,=/^21 ^33 &amp;lt;^2l =^33

lf-fc-*
But in 53, f&amp;lt;g

without exception. We may therefore use the

result of case 1.

2. Letf&amp;gt;Qin%. Then
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397. The relations of 4 also hold for L-integrals, viz. :

Iff &amp;lt;/!/!
(i

l^fca %.

f/&amp;lt; f/- (2
^51 &amp;lt;^2l

&amp;lt;

f/&amp;lt; fl/l- (3
L2l ^21

(4

The proof is analogous to that employed for the 72-integrals,

using extremal sequences.

398. Let 2l = 08u , @) t&amp;gt;e a separated division for each u = 0.

Let l tt
= 0. Then

lim
=0

For by 390, l,

im f /= f/
=0 ^33M 4^21

But by 385, 2, the last integral = 0, since ( = 0, and since /is
limited.

399. Xe^ f be limited and continuous in 51, except possibly at the

points of a null set $ft. Thenf is L-integrable in 5(.

Let us first take 91 = 0. Then/ is continuous in 51. Let 51 lie

in a standard cube }. If Osc/ is not &amp;lt; e in 51, let us divide Q
into 2n cubes. If in one of these cubes

Osc/&amp;lt; e, (1

let us call it a black cube. A cube in which 1) does not hold we
will call white. Each white cube we now divide in 2n cubes.

These we call black or white according as 1) holds for them or

does not. In this way we continue until we reach a stage where

all cubes are black, or if not we continue indefinitely. In the

latter case, we get an infinite enumerable set of cubes

&amp;lt;h&amp;gt; &amp;lt;fe ^3
&quot;

(2
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Each point a of 51 lies in at least one cube 2). For since / is

continuous at x = a,

!/CO-/OOI&amp;lt;/2 , x in r,().

Thus when the process of division has been carried so far that

the diagonals of the corresponding cubes are
&amp;lt; 8, the inequality

1) holds for a cube containing a. This cube is a black cube.

Thus, in either case, each point of 51 lies in a black cube.

Now the cubes 2) effect a separated division D of 51, and in

each of its cells 1) holds. Hence /is .L-integrable in 5T.

Let us now suppose %l &amp;gt;
0. We set

5l = + ft.

Then /is Z-integrable in ( by case 1. It is L-integrable in $1

by 380, 2. Then it is L-integrable in 51 by 390, 1.

2. If / is L-integrable in 51, we cannot say that the points of

discontinuity of/ form a null set.

Example. Let/= 1 at the irrational points $, in 51 = (0, 1) ;

= at the other points 9?, in 51.

Then each point of 51 is a point of discontinuity. But here

since tit is a null set. Thus /is L-integrable.

400. Iff(xl
xni ) has limited variation in 51, it is L-integrable.

For let D be a cubical division of space of norm d. Then by I,

709, there exists a fixed number V, such that

2a&amp;gt;
(
dm

- l
&amp;lt; V

for any D. Let
o&amp;gt;,

cr be any pair of positive numbers. We take

d such that
. a

Let d( denote those cells in which
Osc/&amp;gt;&&amp;gt;,

and let the number

of these cells be v. Let rj, denote the points of 51 in d{ . Then

l
&amp;lt;^,(od

m- l
&amp;lt; V.
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Hence
v&amp;lt;

Thus ox
2),

&amp;lt;V

a
&amp;lt;* . by*)-

Hence /is .L-integrable by 388.

401. Let
&amp;lt;t&amp;gt; =/, in 51 &amp;lt; 33 ;

= 0, in A = 33 - 5t.

f/- /V
-

&amp;lt;X2t els

if 1,
&amp;lt;f)

is L-integrable in 33 ; or 2, / is L-integrable in 51,

are separated parts of 33.

On the 1 hypothesis let J(S S |
be an extremal sequence of

&amp;lt;/&amp;gt;.

Let the cells of @8 be e^, e
z They effect a separated division

of 51 into cells d^ d% Let m
t , M~

t
be the extremes of/in c?

t
and

w
t , JV[ the extremes of

(/&amp;gt;

in e
t
. Then for those cells containing at

least a point of 5(,

is obviously true when e
t

=
d^. Let d

k
&amp;lt; e

t
. If m

t
&amp;lt; 0,

n
t t̂ &amp;lt;^

m
t
c?

t , since m
i

= n
i

. (3

If m
t

&amp;gt; 0, w
t
= 0, and 3) holds.

If M
t &amp;lt;_ 0, Jf

t
c?

t
&amp;lt; Nfc ,

since ^V
t

= 0. (4

If M^ &amp;gt; 0, 4) still holds, since M
L
=N

t
.

Thus 2) holds in all these cases. Summing 2) gives

for the division ($a , since in a cell e of (, containing no point of

&amp;lt;t&amp;gt;

= 0. Letting s = oo, we get 1), since the end members
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On the 2 hypothesis,

f &amp;lt;/&amp;gt;= r*+ r*= r*= r /,
&amp;lt;XB &amp;lt;^2l &amp;lt;^J. &* el/t

since being = in A, is .L-integrable, and we can apply 390.

402. 1. If

/=o,

we call/a null function in 51.

2.
Iff&amp;gt;

is a null function in 51, the points ty wheref &amp;gt; form

o

For let 51 = 3 + ?, so that/= in 3.

By 401, . ^= //=// a
z x*

Let
j &amp;gt; e

2 &amp;gt;
= 0. Let ^3n denote the points of $ where

/&amp;gt; n . Then

%f = 0, byl).

Each &amp;lt;

&amp;gt;pn is a null set. For

Hence ^n = 0.

Then * = J?nJ=Gi+C2 +-
where ^ = ^, $2 =^2 -^, $3 =^33 -$3

...

As each n is a null set, $ is a null set.

Integrand Sets

403. Let 51 be a limited point set lying in an w-way space $ftm .

Let f (xl
xm ) be a limited function denned over 51. Any

point of 21 may be represented by

a =
(flj

... m).
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The point x = ^ amxm+l)

lies in an m + 1 way space $ftm+1 . The set of points J x\ in which

xm+1 ranges from oo to +00 is called an ordinate through a. If

xm+1 is restricted by Q &amp;lt;^^ ^

we shall call the ordinate a positive ordinate of length I ;
if it is re

stricted by _
l&amp;lt; Xm+l &amp;lt;0,

it is a negative ordinate. The set of ordinates through all the

points a of H, each having a length =/(), and taken positively

or negatively, as /(a) is ^ 0, form a point set $ in 9?m+1 which

we call an integrand set. The points of $ f r which xm+1 has a

fixed value xm+1 = e form a section of 3, and is denoted by 3(&amp;lt;?)
or

by a-

404. Z0 21= j#J fo a limited point set in 9?TO . Through each

point , let us erect a positive ordinate of constant length /, getting a

set ), in Wm+1 . Then g = ;fj (\

For let Q?! &amp;gt;
(
2 &amp;gt;

form a standard sequence of enclosures of

O, such that
j^ ^ ^ ^

Let us project each section of ( n corresponding to a given value

of zm+ on $m , and let 5ln be their divisor. Then 5ln &amp;gt; 31. Thus

Letting n = oo ,
and using 2), we get

6 = 1 i.

To prove the rest of 1), let be the complement of D with re

spect to some standard cube Q in 9^TO+1 , of base Q in 9?m .

Then, as just shown,

=IA , where .4 = Q - 51.

Hence
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405. Letf &amp;gt;0 be L-integralle in 21. Then

where $ is the integrand set corresponding to f.

For let
J t j

be a separated division .Z) of 21. On each cell

erect a cylinder (
t
of height Mt

= Max/ in S
t

. Then by 404,

Let (= {(SJ ; the (
t
are separated. Hence, e&amp;gt;0 being small

at pleasure,

for a properly chosen D. Thus

&amp;lt;

f/. (2
^21

Similarly we find

f/&amp;lt;5. (3
^2t

From 2), 3) follows 1).

406. Letf&amp;gt;0 be L-integrable over the measurable field 21. Then
the corresponding integrand set 3 is measurable, and

For by 2) in 405,

&amp;lt; f /
x

Using the notation of 405, let cn be a cylinder erected on 8n of

height mn = Min/ in 8B . Let c = JcJ. Then c &amp;lt; 3, and hence

c&amp;lt;3- (2

But 21 being measurable, each cn is measurable, by 404. Hence
c is by 359. Thus 2) gives

c&amp;lt;3- (3

Now for a properly chosen
Z&amp;gt;,

-*+ r/&amp;lt;27w t
s

t
=T.
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Hence

.

as e is arbitrarily small. From 2), 3), 4)

from which follows 1).

Measurable Functions

407. Let/Oj xm) be limited in the limited measurable set 51.

Let 2(v denote the points of 51 at which

If each 5lxM is measurable, we say/zs measurable in 5(.

We should bear in mind that when /is measurable in 5(, neces

sarily 51 itself is measurable, by hypothesis.

408. 1. Iff is measurable in 51, the points & of 51, at whichf 0,

form a measurable set.

For let 5ln denote the points where

where
l&amp;gt;62&amp;gt;

...=o.

Then by hypothesis, 5ln is measurable. But ^

Hence ( is measurable by 361.

2. Iffis measurable in 51, the set of points where

is measurable, and conversely.

Follows from 1, and 407.

3. If the points 5IA in 51 where f&amp;gt;\ form a measurable set for

each X, / is measurable in 51.

For 51^ having the same meaning as in 407,

5lx,
= 5Tx-5TM .

Each set on the right being measurable, so is 5lxM
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409. 1. Iffis measurable in 21, it is L-integrable.

For setting m = Min /, M= Max / in 21, let us effect a division

D of the interval g = (w, M) of norm c?, by interpolating a finite

number of points
7W

1 &amp;lt;7W2 &amp;lt;Wg &amp;lt;

-

Let us call the resulting segments, as well as their lengths,

d
l , d%, d

3
&quot;-

Let 2l
t
denote the points of 21 in which

m
l -i&amp;lt;f&amp;lt;m l ,

i = l, 2,
...

; mQ
= m.

We now form the sums

SD = 2w
t-ii t , */,

= 2w
t
i

t
.

Obviously

But
t

/&amp;gt; -t^=m151+ A
=

5(i(m i
-

) 4-

=
, asrf = 0. (2

We may now apply 387.

2. Iff is measurable in 21

** A
/=limL

using the notation in 1.

This follows from 1), 2) in 1.

3. The relation 3) is taken by Lebesgue as definition of his

integrals. His theory is restricted to measurable fields and to

measurable functions. For Lebesgue s own development of his

theory the reader is referred to his paper, IntSgrale, Longueur ,

Aire, Annali di Mat., Ser. 3, vol. 7 (1902) ; and to his book,

Lemons sur I
1

Integration. Paris, 1904. He may also consult the

excellent account of it in Nobsons book, The Theory of Functions

of a Real Variable. Cambridge, England, 1907.
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Semi-Divisors and Quasi-Divisors

410. 1. The convergence of infinite series leads to the two

following classes of point sets.

T ofLet F= 2/.C*,
... xj = 2/; + 2/. = Fn

1 n+1

each/t being defined in 21.

Let us take e &amp;gt; small at pleasure, and then fix it.

Let us denote by 2ln the points of H at which

- e &amp;lt; Fn(x) &amp;lt; e. (2

Of course 5ln may not exist. We are thus led in general to the

Sets or or or /*
*| ?

&amp;lt;^2 ^3 v*
3

The complementary set An = 51 5ln will denote the points

where
!&amp;gt;. .. (4

If now F is convergent at #, there exists a i&amp;gt; such that this point

lies in or or or sz
&amp;lt;*v ^+1 ^ -u-v+2 \

The totality of the points of convergence forms a set which has

this property : corresponding to each of its points #, there exists

a v such that x lies in the set 5). A set having this property is

called the semi-divisor of the sets 3), and is denoted by

Sdv J2IJ.

Suppose now, on the other hand, that 1) does not converge at

the point x in 51. Then there exists an infinite set of indices

^i &amp;lt; n% &amp;lt; = oo,

such that =
I

-F
aO) I

&amp;gt; .

Thus, the point x lies in an infinity of the sets

A
l , A

2 , A3 (6

The totality of points such that each lies in an infinity of the

sets 6) is called the quasi-divisor of 6) and is denoted by

QdrM,!.
Obviously,

Hn S + QdvJ^n S
= 3l. (7
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We may generalize these remarks at once. Since F(x) is

nothing but

we can apply these notions to the case that the functions/,^ xm)
are defined in 51, and that

2. We may go still farther and proceed in the following abstract

manner.

The divisor ) of the point sets

HI , v- a
is the set of points lying in all the sets 1).

The totality of points each of which lies in an infinity of the sets

1) is called the quasi-divisor and is denoted by

(2

The totality of points a, to each of which correspond an index m
such that a lies in

forms a set called the semi-divisor of 1), and is denoted by

Sdv
{ .}. (3

If we denote 2), 3) by G and @ respectively, we have, obviously,

) &amp;lt; @ &amp;lt; O. (4

3. In the special case that 2Ij &amp;gt;212 &amp;gt; we have

Q = @ = 5). (5

For denoting the complementary sets by the corresponding
Roman letters, we have

But Q has precisely the same expression.

Thus G = S), and hence by 4), @ = ).
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4. Z^5ln + A =
93&amp;gt;

ra = l,2,... Then

For each point b of 93 lies

either 1 only in a finite number of 5ln , or in none at all,

or 2 in an infinite number of 5ln .

In the 1 case, b does not lie in 518 , 5ls+1 ; hence it lies in

A,, Aa+1 In the 2 case b lies obviously in Qdv [51J.

5. If 5^, 5f2
are measurable, and their union is limited,

n = Qdvj5u , e = sdvj5u
are measurable.

For let S)n = Dw(3Cn , 5In+1 ) . Then @ = j$n j
.

But @ is measurable, as each )n is. Thus Sdv
J
J.n J

is measur

able, and hence Q is by 4.

6. e O = Qdv 55ln | , c(?A Hn 6ezw^ measurable, and their union

limited. If there are an infinity of the 5ln , say

measure is &amp;gt; a,

Q&amp;gt;. (6

For let 53n = (5(ln , 5lln+1 .), then

Let 53 = Dw{} . As n &amp;gt; B+1 ,

S = limSn &amp;gt; (7

by 362. As O&amp;gt;93 we have 6) at once, from 7).

Limit Functions

411. Let

as x ranges over 51, r finite or infinite. Let f be measurable in 51

and numerically &amp;lt;M,for each t near r. Then
&amp;lt;j&amp;gt;

is measurable in

51 also.

To prove this we show that the points 93 of 51 where
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form a measurable set for each X, p. For simplicity let T be finite.

Let 1?
t
2
~. =T; also let

1
&amp;gt;e2 &amp;gt; =0. Let (,, denote the

points of 21 where

.) &amp;lt;/* + (2

Then for each point x of 33, there is an such that 2) holds for

any*,, if s&amp;gt;v Let n = Sdv f( n,J . Then 8 &amp;lt; &amp;lt; B . But the &M

being measurable, (
ft
is by 410, 5. Finally 23 = Dv J(J ,

and hence

53 is measurable.

412. Let

for x in 51, and r finite or infinite. Let t
f

,
t&quot; =T. Let each

fs =/(#, t(9)) be measurable, and numerically &amp;lt; M. Let
&amp;lt;f&amp;gt;=fg + g8 .

Let 8 denote the points where

9.\&amp;gt;*-

Then for each e
&amp;gt; 0, Um ^ =

Q&amp;gt; (1
*=*&amp;gt;

For by 411,
&amp;lt;^&amp;gt;

is measurable, hence gt is measurable in 51, hence

, is measurable.

Suppose now that 1) does not hold. Then

Then there are an infinity of the 8 , as ,t, a2
--- whose

measures are &amp;gt;X&amp;gt;0. Then by 410, 6, the measure of

is &amp;gt; X. But this is not so, since/, = (/&amp;gt;,

at each point of SI.

413. 1. Let v

for x in 51, and T finite or infinite.

Ifeachf,=f(x, #a)

) is measurable, and numerically &amp;lt;M in

each sequence 1), then
/- /-a

0- (2
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For set , /.

=/.+#n
and let

\ \ ^ -\r -in
|&|:$-y , =!, 2 ...

Then as in 412, &amp;lt;
and #8 are measurable in 51. Then by 409,

they are Z-integrable, and

(3

Let $3a denote the points of 51, at which

and let $88 + B8 51. Then 238 , B8 are measurable, since ga is.

Thus by 390, ~

J ^=2 gs+l/8

Hence ., _

i/8 -
ovii

By 412, 58
= 0. Thus

Hence passing to the limit in 3), we get 2), for the sequence

1). Since we can do this for every sequence of points t which
= T, the relation 2) holds.

it*

converge in 51. If each term /t
is measurable, and each

then F is L-integrable, and

Iterated Integrals

414. In Vol. I, 732, seq. we have seen that the relation,

holds when /is 72-integrable in the metric field 51. This result

was extended to iterable fields in 14 of the present volume. We
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wish now to generalize still further to the case that f is j

grable in the measurable field 51. The method employed is due to

Dr. W. A. Wilson,* and is essentially simpler than that employed

by Lebesgue.

1. Let x = (Zj z,) denote a point in s-way space Sft,, s=m+ n.

If we denote the first m coordinates by x
1

xm , and the remaining
coordinates by ^ #, we have

The points *=

range over an ra-way space $Rm , when 2 ranges over 9?8 . We call

x the projection of z on $TO .

Let z range over a point set 51 lying in $Ra , then x will range
over a set 53 in $m , called the projection of 51 o?i 9?m . The points

of 51 whose projection is x is called the section of 51 corresponding
to x. We may denote it by

5l(z), or more shortly by (.

We write =
.&amp;lt;

to denote that 51 is conceived of as formed of the sections (E, cor

responding to the different points of its projection 53.

2. Let O denote a standard cube containing 51, .let q denote its

projection on Sftm . Then 53
&amp;lt;.q. Suppose each section 5I(z) is

measurable. It will be convenient to let 5l(X) denote a function

of x defined over q such that

/, /&amp;gt;

5l(V) = Meas 5l(z) = S when # lies in 53,

= when x lies in q 53.

This function therefore is equal to the measure of the section of

51 corresponding to the point z, when such a section exists ; and

when not, the function = 0.

When each section 5l(#) is not measurable, we can introduce

the functions

* Dr. Wilson s results were obtained in August, 1909, and were presented by me
in the course of an address which I had the honor to give at the Second Decennial

Celebration of Clark University, September, 1909.
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Here the first = ( when a section exists, otherwise it = 0, in q.

A similar definition holds for the other function.

3. Let us note that the sections

where He , 2L are the outer and inner associated sets belonging to 31,

are always measurable.

For 2Ie
= Dv

\
(

\ , where each G?n is a standard enclosure, each

of whose cells tnm is rectangular. But the sections enm(V) are

also rectangular. Hence

being the divisor of measurable sets, is measurable.

415. Let $te be an outer associated set of tyt,both lying in the stand-
0t

ard cube O. Then 2le(V) is L-integrable in q, and

= fioo- a
4/

For let j@n j
be a sequence of standard enclosures of 51, and

@n =5enni ;. Then
n = 2enm (2

m
and

.(*) = 2e(*). (3
TO

Now enm being a standard cell, enm(^) nas a constant value &amp;gt;

for all x contained in the projection of enm on q. It is thus con

tinuous in q except for a discrete set. It thus has an ^-integral,

and

This in 2) gives

enm &amp;lt;, by 413, 2,

f ,0),
oLa

(4

by 3).
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On the other hand, (S(z) is a measurable function by 411. Also

1 = Se
= lim &amp;lt;fn

= Aim in(z), by 413, 1. (5
&amp;lt;X

Thus this in 5) gives 1).

416. Let 51 lie in the standard cube O. Let Hi 50 a/i inner asso

ciated set. Then
t(V) is L-integraUe in q, and

For = 21. + A-
Thus

flCr) = SCO -
A.(x).

Hence H^x) is i-integrable in q, and

f*{x)
= fSO) -

p.(*)
oLq 0Lq q

=S-A , by 415,

= S t
= a by 370, 2.

417. ie measurable 21 foe iw #Ae standard cube O.

For
a.

Hence
^ = T^^) &amp;lt; Tf^) &amp;lt; fi/^) = f, (2~

&amp;lt;Zq iq~ ^q

using 396, 1, and 415, 416. From 2) we conclude 1) at once.

418. Let H = $8 (S ^ measurable. Then S are L-integrable in
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For by 41 7,
~

by 401.

419. If 51 = 53 ( is measurable, the points of 53 at which & is not

measurableform a null set $1.

For by 418, g = f
=
= f

i i

Hence = f
(f-&amp;lt;).

&amp;lt;X$

Thus

is a null function in 53, and by 402, 2, points where
&amp;lt;/&amp;gt;

&amp;gt;
form a

null set.

420. Let 51 = 53 (S &amp;gt;e measurable. Let b denote the points of 53

/or which the corresponding sections ( are measurable. Then

=

For by 419, 53=b +

and 9? is a null set. Hence by 418,

=/s.
&amp;lt;Xb

421. Let f&amp;gt;0
in 51. .Zf Ae integrand set 3s

? corresponding to f
be measurable, thenf is L-integrable in 51,

3-J/
For the points of Q lying in an m -f- 1 way space 9?m+1 may be

denoted by x = (v - y z}

where y = (y l
-

?/m) ranges over 9?m , in which 51 lies. Thus 51

may be regarded as the projection of Q on 9?m . To each point y



ITERATED INTEGRALS 399

of 21 corresponds a section 3G/), which for brevity may be denoted

by $. Thus we may write

$*-*.
As ft is nothing but an ordinate through y of length /Q/), we

have by 419, ^ / =
/Iat*

422. Ze / 6e L-integraUe over the measurable field 21 = 53 (.

ie b denote those points of 33, /or which f is L-integralle over the

corresponding sections (. 2%era

f/=///. a
^21 otb^S

Moreover $ft = 55 b is a null set.

Let us 1 suppose f&amp;gt;
0. Then by 406, 3 is measurable and

=r/. (2

Let denote the points of 23 for which 3(z) is measurable.

Then by 420,

5 = f(*). (3
Jip

By 419, the points
^ = 53 - /3 (4

form a null set.

On the other hand, $(x) is the integrand set of/, for SI (V) = 6.

Hence by 421, for any z in /3,

, (5

and /3 &amp;lt; b. (6

From 2), 3), 5) we have

w. Jlp J*&
From 6) we have

^=33-b&amp;lt;23-/3 = ^,

a null set by 4). Let us set

b = J3 + n.
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Then tt lying in the null set $, is a null set. Hence

JLp JL& JLn JL(s, JL\) cXg

This with 7) gives 1).

Let f be now unrestricted as to sign. We take
&amp;gt; 0, such

that the auxiliary function

ff=f+C&amp;gt;0, in St.

Then /, g are simultaneously Z-integrable over any section (.

Thus by case 1

f (/+&amp;lt;?)= c fcf+o). (8
e/2l oC b ^S

Now r //./-
(9

(10

By 418, ( is Z-integrable in ^3, and hence in b. Thus

/* /* / / /=

Li^f+c^ =Ll f+0
l^&quot;

(11

As b differs from 33 by a null set,

ri=ri=s, (12

by 418. From 8), 9), 10), 11), 12) we have 1).

423. Iff is L-integrable over the measurable set 51 = 53 (, Aew

/* /* /T

J /=///. a
Xx X^3 oC$

For by 422,
/ / /

(2

As ^3 b = yt is a null set,

&quot;/=o
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may be added to the right side of 2) without altering its value.

Thus

JLn JLbJ& LftcL(. JLsQcLd

424. 1. (TF. A. Wilson.) If f (^ - - xm~)
is L-integrable in

measurable 21, f is measurable in 21.

Let us first suppose that/&amp;gt; 0. We begin by showing that the

set of points 21A of 21 at which / &amp;gt; X, is measurable. Then by
408, 3, /is measurable in 21.

Now/ being Z-integrable in 21, its integrand set
3&amp;gt;

is measur

able by 406. Let QA be the section of 3 corresponding to xm+l= \.

Then the projection of 3A on 3tm is 21A . Since 3 is measurable, the

sections 3?A are measurable, except at most over a null set L of

values of X, by 419. Thus there exists a sequence

Xj &amp;lt; \2 &amp;lt;
... =X

none of whose terms lies in L. Hence each 3xM
is measurable, and

hence 2l
Ajt

is also.

As 2lAn+1
&amp;lt; 2lAn , each point of 21A lies in

so that
A &amp;lt;5&amp;gt;. (2

On the other hand, each point d of 3) lies in 21A . For if not,

f(d)&amp;lt;\.

There thus exists an s such that

&amp;lt; X. &amp;lt; X. (3

But then d does not lie in 2IA,, for otherwise f (d) &amp;gt; X,, which

contradicts 3). But not lying in 2IA,, d cannot lie in ), and this

contradicts our hypothesis. Thus

)&amp;lt;21A . (4
From 2), 4) we have

$*A&amp;lt;

But then from 1), 21A is measurable.

Let the sign off be now unrestricted.
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Sincef is limited, we may choose the constant C, such that

Then g is Z-integrable, and hence, by case 1, g is measurable.

Hence/, differing only by a constant from g, is also measurable.

2. Let 51 be measurable. Iff ** L-integrable in 51, i i* measur

able in 51, a/ic? conversely.

This follows from 1 and 409, l.

3. From 2 and 409, 3, we have at once the theorem :

When the field of integration is measurable, an L-integrable func
tion is integrable in Lebesgue s sense, and conversely; moreover, both

have the same value.

Remark. In the theory which has been developed in the fore

going pages, the reader will note that neither the field of integra

tion nor the integrand needs to be measurable. This is not so in

Lebesgue s theory. In removing this restriction, we have been

able to develop a theory entirely analogous to Riemann s theory of

integration, and to extend this to a theory of upper and lower in

tegration. We have thus a perfect counterpart of the theory

developed in Chapter XIII of vol. I.

4. Let 51 be metric or complete. If f\xl
x

ni) is limited and

R-integrable, it is a measurable function in 51.

For by 381, 2, it is .L-integrable. Also since 51 is metric or

complete, 51 is measurable. We now apply 1.

IMPROPER L-INTEGRALS

Upper and Lower Integrals

425. 1. We propose now to consider the case that the integrand

/(#! #w) is not limited in the limited field of integration 51- In

chapter II we have treated this case for ^-integrals. To extend

the definitions and theorems there given to X-integrals, we have

in general only to replace metric or complete sets by measurable

sets; discrete sets by null sets; unmixed sets by separated sets;
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finite divisions by separated divisions ; sequences of superposed
cubical divisions by extremal sequences; etc.

As in 28 we may define an improper .//-integral in any of the

three ways there given, making such changes as just indicated.

In the following we shall employ only the 3 Type of definition.

To be explicit we define as follows :

Let/ (2^
... xm) be defined for each point of the limited set 51.

Let 5la/3
denote the points of 21 at which

The limits
/

-
lim

/ / , lim
/ / (2

a, 0=*cL^p a, 0= *
o^SJa/S

in case they exist, we call the lower and upper (improper) L-in-

tegrals, and denote them by

In case the two limits 2) exist and are equal, we denote their

common value by

and say/ is (improperly) L-integrable in 51, etc.

2. In order to use the demonstrations of Chapter II without too

much trouble, we introduce the term separated function. A func

tion / is such a function when the fields 5la defined by 1) are

separated parts of 51.

We have defined measurable functions in 407 in the case that

/ is limited in 51. We may extend it to unlimited functions by

requiring that the fields 5ltt/3
are measurable however large a, ft are

taken.

This being so, we see that measurable functions are special cases

of separated functions.

In case the field 51 of integration is measurable, 5la is a meas

urable part of 51, if it is a separated part. From this follows the

important result :

Iff is a separated function in the measurable field 51, it is L-in

tegrable in each 5l
a/3

.
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From this follows also the theorem:

Letf be a separated function in the measurable field 51. If either

the lower or upper integral off over 51 is convergent,f is L-integrable

in 51, and / /

/ /= lim
/ /.

JLK , 0-=^2la/3

426. To illustrate how the theorems on improper .72-integrals

give rise to analogous theorems on improper .//-integrals, which

may be demonstrated along the same lines as used in Chapter II,

let us consider the analogue of 38, 2, viz. :

7*

f converges, so do I f.

cly

Let \En \
be an extremal sequence common to both

f , r /3 &amp;gt;/3-

&amp;lt;^2la/3 ^2la/3

Let e denote the cells of En containing a point of ^ ; e* those

cells containing a point of typ ;
8 those cells containing a point of

5I
aj3

but none of ^-. Then

L= lim {2JC e + 1MI e

In this manner we may continue using the proof of 38, and so

establish our theorem.

427. As another illustration let us prove the theorem analogous
to 46, viz. :

Let Sfj, 512 , 5ln form a separated division of 5(. If f is a

separated function m 51, then

//=//+-+//,
4^21 4/2li &amp;lt;?k2l

provided the integral on the left exists, or all the integrals on the

right exist.

For let 51,, aft
denote the points of 5lap in 51,. Then by 390, l,

,a/3 oSLn, aft

In this way we continue with the reasoning of 46.
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428. In this way we can proceed with the other theorems ; in

each case the requisite modification is quite obvious, by a con

sideration of the demonstration of the corresponding theorem in

.R-integrals given in Chapter II.

This is also true when we come to treat of iterated integrals

along the lines of 70-78. We have seen, in 425, 2, that if 31 is

measurable, upper and lower integrals of separated functions do

not exist as such ; they reduce to .//-integrals. We may still

have a theory analogous to iterated 72-integrals, by extending the

notion of iterable fields, using the notion of upper measure. To
this end we define :

A limited point set at 31 = 33 ( is submeasurable with respect
to 33, when

1= f I.f

We do not care to urge this point at present, but prefer to pass
on at once to the much more interesting case of ^-integrals over

measurable fields.

Lrlntegrals

429. These we may define for our purpose as follows :

Let/(a:1
xm) be defined over the limited measurable set 31.

As usual let 3L0 denote the points of 31 at which

-&amp;lt;/&amp;lt;& , &amp;gt;0.

Let each 3l
a/3

be measurable, and let / have a proper Z-integral
in each 3L0- Then the improper integral off over 31 is

f/ = Km C f, (1
Ji%

.0=*&amp;lt;X2U/3

when this limit exists. We shall also say that the integral on

the left of 1) is convergent.

On this hypothesis, the reader will note at once that the dem
onstrations of Chapter II admit ready adaptation ; in fact some
of the theorems require no demonstration, as they follow easily
from results already obtained.
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430. Let us group together for reference the following theo

rems, analogous to those on improper .R-integrals.

1. Iff is (improperly) L-integrable in H, it is in any measurable

part of 21.

2. If g, h denote as usual the non-negative functions associated

withf, then

3. If I f is convergent, so is I \f\, and conversely.
eW$l o*^2l

4. When convergent,

Lf ^L f - (2

5. If I f is convergent, then

e &amp;gt; 0, &amp;lt;r
&amp;gt; 0,

for any measurable 53 &amp;lt; 51, such that $8 &amp;lt; cr.

6. Let $[ = ($(!, H2 5In) be a separated division of 21, each 5l
t

being measurable. Then

f/= r/+- + r/, (3
alf[ JL*l JL%n

provided the integral on the left exists, or all the integrals on the

right exist.

7. Let 51 = \tyin \
be a separated division of 51, into an enumerable

infinite set of measurable sets 5ln . Then

- (4
212

provided the integral on the left exists.

8. Iff&amp;lt;9 in ^ except possibly at a null set, then

ff&amp;lt;
Cff, (5

,, ., ^51 ei*
when convergent.



L-INTEGRALS 407

431. 1. To show how simple the proofs run in the present

case, let us consider, in the first place, the theorem analogous to

38, 2, viz. :

If I f converges, so do I f and I f.
JLyi J* JLm

The rather difficult proof of 38, 2 can be replaced by the follow

ing simpler one. Since

is a separated division of 2la
/s&amp;gt;

we have

/=/+/
&amp;lt;**&amp;lt;#

JL JL^

Hence

\f L =\f-f\%ap aU^r \^ tf^

But the left side is &amp;lt; e, for a sufficiently large a, and /3, /? &amp;gt;

some y
. This shows that

/
is convergent. Similarly we show^

the other integral converges.

2. This form of proof could not be used in 38, 2, since 1) in

general is not an unmixed division of 2fa/3
.

3. In a similar manner we may establish the theorem analo

gous to 39, viz. :

If i f and I f converge, so does I f.

Jiy JL& JL*

4. Let us look at the demonstration of the theorem analogous
to 43, 1, viz. :

provided the integral on either side of these equations converges.
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Let us prove the first relation. Let
53^

denote the points of

at which f&amp;lt;/3. Then

8* R+ ft

is a separated division of
$8^,

and hence

= Cf, etc.

cL

5. It is now obvious that the analogue of 44, l is the relation 1)
in 430.

6. The analogue of 46 is the relation 3) in 430. Its demon
stration is precisely similar to that in 46.

7. We now establish 430, 7. Let

Q&amp;gt;(ftt!fc&amp;lt;lri&amp;gt;.

Then 2t = $m + ^m

is a separated division of 21, and we may take m so large that

Bm &amp;lt;
&amp;lt;r,

an arbitrarily small positive number. Hence by 430, 5,

we may take m so large that

f
JBm

f/=/ /+/t2l J*%m J*B
r*

&amp;lt; .

From this our theorem follows at once.

Iterated Integrals

432. 1. Let us see how the reasoning of Chapter II may be

extended to this case. We will of coarse suppose that the field

of integration 51 = 93 & is measurable. Then by 419, the points
of 58 for which the sections are not measurable form a null set.

Since the integral of any function over a null set is zero, we may
therefore in our reasoning suppose that every ( is measurable.

Since 21 is measurable, there exists a sequence of complete com

ponents Am= BmOm in H, such that the measure of A = \Am \
is S.
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Since An is complete, its projection Bn is complete, by I, 717, 4.

The points of Bm for which the corresponding sections Om are not

measurable form a null set vm . Hence the union \vm \
is a null

set. Thus we may suppose, without loss of generality in our

demonstrations, that 21 is such that every section in each Am is

measurable.

Now from

we see that those points of 53 where ( &amp;gt; C form a null set. We
may therefore suppose that ( = everywhere. Then ( C is a

null set at each point ; we may thus adjoin them to C. Thus we

may suppose that & = C at each point of 53, and that 53 = B is the

union of an enumerable set of complete sets Bm .

As we shall suppose that
/

is convergent, let

!
&amp;lt; 2 &amp;lt;

= oo
,

= 00.

Let us look at the sets 5lan, 53^, which we shall denote by 2In .

These are measurable by 429. Moreover, the reasoning of 72, 2

shows that without loss of generality we may suppose that 21 is

such that 53n = 53. We may also suppose that each ( is measur

able, as above.

2. Let us finally consider the integrals

/ (i

These may not exist at every point of 53, because / does not

admit a proper or an improper integral at this point. It will

suffice for our purpose to suppose that 1) does not exist at a null

set in 53. Then without loss of generality we may suppose in our

demonstrations that 1) converges at each point of 53.

On these assumptions let us see how the theorems 73, 74, 75,

and 76 are to be modified, in order that the proofs there given

may be adapted to the present case.
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433. 1 The first of these may be replaced by this :

Let B^ n denote the points of $8 at which Tn &amp;gt;
a. Then

21= ,

For by 419,

as by hypothesis the sections ( are measurable. Moreover, by
hypothesis

is a separated division of (, each set on the right being measur

able. Thus the proof in 73 applies at once.

2. The theorem of 74 becomes :

Let the integrals

, /&amp;gt;0

be limited in the complete set 53. Let (gn denote the points of 53 at

which

Then
HmS^B.
n=ao

The proof is analogous to that in 74. Instead of a cubical

division of the space 9?p , we use a standard enclosure. The sets

33n are now measurable, and thus

is measurable. Thus bn = IT. The rest of the proof is as in 74.

3. The theorem of 75 becomes :

Let the integral ^
f , /&amp;gt;0

XG

be limited in complete 53. Then

lim T //=0.
n=
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The proof is entirely similar to that in 75, except that we use

extremal sequences, instead of cubical divisions.

4. As a corollary of 3 we have

Let the integral

be limited and L-integrable in 53. Let ^3 = \Sm \
the union of an

enumerable set of complete sets. Then

lira f f/=0.
&quot;JUftatc.

For if 53m = (#!, 2
... Bm), and % = 53m 4- ), we have

/

But for w sufficiently large, )m is small at pleasure. Hence

We have now only to apply 3.

434. 1. We are now in position to prove the analogue of

76, viz. :

Let 51 = 53 ( be measurable. Let I f be convergent. Let the

/ 0^21

integrals I f converge in 53, except possibly at a null set. Then
JL*

ff=f! f&amp;gt; (1
C21 vL$&L($

provided the integral on the right is convergent.

We follow along the line of proof in 76, and begin by taking

/ &amp;gt; in a. By 423, we have

U-LU--
hence ,, ,, ,,

/=limj if. (2
I

n=QO oL33 =(
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Now e &amp;gt; being small at pleasure,

- e+f (/&amp;lt;f Cf , for a
&amp;gt;

some
&amp;lt;% aid aL^G JL*i

Since we have seen that we may regard 33 as the union of an

enumerable set of complete sets, we see that the last term on the

right = 0, as n = oo, by 433, 4. Thus

c r &amp;lt;iim c r = r, (3
JL&amp;lt;$&amp;gt; 0&C JL^& JL&n JUK

by 2). On the other hand,

From 3) and 4) we have 1), when/&amp;gt; 0.

The general case is now obviously true. For

where
f&amp;gt;

in ^P, and &amp;lt; in ft. Here ^ and ft are measurable.

We have therefore only to use 1) for each of these fields and add

the results.

2. The theorem 1 states that if

1 /* /*

/ , / If,

loth converge, they are equal. Hobson* in a remarkable paper on

Lebesgue Integrals has shown that it is only necessary to assume

the convergence of the first integral ; the convergence of the second

follows then as a necessary consequence.

* Proceedings of the London Mathematical Society, Ser. 2, vol. 8 (1909),

p. 31.
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435. We close this chapter by proving a theorem due to

Lebesgue, which is of fundamental importance in the theory of

Fourier s Series.

Letf(x) be properly or improperly L-integrable in the interval

2l = a&amp;lt;5. Then

im r\
=0 JLa

For in the first place,

*)lfc+ r\f\dx&amp;lt;^r\f\dx. (2
JLa JLa

Next we note that

Hence

Or fg&amp;lt;f-g

From 2), 3) we have

J,&amp;lt;J.+2\f-g\d*. (4

Let now
^ =/ fo

&quot;

r |/| &amp;lt; (?,

= for |/| &amp;gt;#.

Then by 4), r

where e is small at pleasure, for Cr sufficiently large. Thus the

theorem is established, if we prove it for a limited function,

\g(*)\&amp;lt;&.

Let us therefore effect a division of the interval F = ( 6r, 6r),

of norm d, by interpolating the points

-
a&amp;lt; c

l
&amp;lt; c

z &amp;lt;

...
&amp;lt;a,

causing F to fall into the intervals

7i&amp;lt; 72 7s
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Let hm = cm for those values of x for which g(x) falls in the in

terval 7m , and = elsewhere in 21. Then

&amp;lt;
2 J^ t + e

, e small at pleasure,

for d sufficiently small.

Thus we have reduced the demonstration of our theorem to a

function h(x) which takes on but two values in 21, say and 7.

Let ( be a
&amp;lt;r/4

enclosure of the points where h = 7, while g may
denote a finite number of intervals of ( such that g ($

&amp;lt; o-/4.

Let &amp;lt;

= 7 in (:, and elsewhere =
; let

i/r
= 7 in g, and else

where = 0. Thus using 4),

since
h=&amp;lt;/)in (a, /3), except at points of measure

&amp;lt; &amp;lt;r/4. Similarly

^ &amp;lt; J^ rf
I

7.

Thus Jh &amp;lt; J^ + 0-7 &amp;lt; J^ + e,

for &amp;lt;r sufficiently small.

Thus the demonstration is reduced to proving it for a
i/r which

is continuous, except at a finite number of points. But for such a

function, it is obviously true.



CHAPTER XIII

FOURIER S SERIES

Preliminary Remarks

436. 1. Let us suppose that the limited function f(x) can be

developed into a series of the type

f(x) = a + #! cos x 4- 2 cos 2 x 4- 3
cos 3 # -f-

4- b
l
sin a: 4- 6

2
sin 2 z + Z&amp;gt;

3
sin 3 x 4- (1

which is valid in the interval 51 = ( TT, TT). If it is also known

that this series can be integrated termwise, the coefficients an , bn

can be found at once as follows. By hypothesis

cosr fdx=a,Tdx+a l
r

JL-K JL-* JL-*

sin xdx 4-
r

As the terms on the right all vanish except the first, we have

I

Let us now multiply 1) by cos nx and integrate.

I /(V) cos nxdx =
/

cos rz^Ja; + a
l

I cos ^ cos nxdx 4-

/^
ff

4- ^! i sin 2; cos wa;4-

/ cos ma: cos nxdx =0 , m=n,

r.

-

cos2 nzcfo =

sin mx cosna:=0.

415



416 FOURIER S SERIES

Thus all the terms on the right of the last series vanish except
the one containing an . Hence

a - /(V)cos nxdx. (2

Finally multiplying 1) by sin 712:, integrating, and using the

relations *

i sin mx sin nxdx = , m^n,

fsi:7T

sin2 nxdx TT,

fJU

we get
bn = - TV (a;) sin nxdx. (2

TToC -TT

Thus under our present hypothesis,

1 /*&quot; 1 /*&quot;/W = o~ l f (u)du + -% cos nx I f(u) cc

^^JL-rr TT 1 ^- r

&quot;

1 oo

H 2 sin
7T l f

/ V* N. * T
/&quot; Q

/^ ^

The series on the right is known as Fourier s series ; the coeffi

cients 2) are called Fourier s coefficients or constants. When the

relation 3) holds for a set of points 33, we say/(#) can be de

veloped in a Fourier s series in 33, or Fourier s development is valid

in $.

2. Fourier thought that every continuous function in 51 could

be developed into a trigonometric series of the type 3). The

demonstration he gave is not rigorous. Later Dirichlet showed

that such a development is possible, provided the continuous

function has only a finite number of oscillations in 51. The func

tion still regarded as limited may also have a finite number of

discontinuities of the first kind, i.e. where

/(a+O) , /(a-0) (4

exist, but one at least is =/(#).

At such a point a, Fourier s series converges to



PRELIMINARY REMARKS 417

Jordan has extended Dirichlet s results to functions having
limited variation in 51. Thus Fourier s development is valid in

certain cases when / has an infinite number of oscillations or

points of discontinuity. Fourier s development is also valid in

certain cases when/ is not limited in 51, as we shall see in the

following sections.

We have supposed that /(#) is given in the interval

31 = ( TT, TT). This restriction was made only for convenience.

For if/(V) is given in the interval 3= (a &amp;lt; b), we have only to

change the variable by means of the relation

b-a

Then when x ranges over 3k u will range over H.

Supposef is an even function in 51; its development in Fourier s

series will contain only cosine terms. For

00

f(x) 2(an cos nx + bn sin nx),
o

GO

/( x) = 2(an cos nx bn sin nx).
o

Adding and remembering that f(x) =/( x) in 51, we get

GO

f(x) = J2#n cos nx, f even.
&quot;

o

Similarly if f is odd, its development in Fourier s series&quot; will

contain only sine terms ;

po

f(x) = -J-S5n sin nx, f odd.
&quot;

i

Let us note that if f(x) is given only in 53 = (0, TT), and has

limited variation in 53, we may develop / either as a sine or a

cosine series in 53. For let

g(.x)=f(x) a: in 93

Then g is an even function in 51 and has limited variation.

Using Jordan s result, we see g can be developed in a cosine

series valid in 51. Hence / can be developed in a cosine series

valid in 53.
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In a similar manner, let

h(x)=f(x) ,
x in $

Then h is an odd function in 21, and Fourier s development
contains only sine terms.

Unless /(0)= 0, the Fourier series will not converge to /(O)
but to 0, on account of the discontinuity at x = 0. The same is

true for x = TT.

If/can be developed in Fourier s series valid in 5l = ( ?r, TT),

the series 8) will converge for all #, since its terms admit the

period 2 TT. Thus 3) will represent f(x) in H, but will not

represent it unless f also admits the period 2 TT. The series 3)

defines a periodic function admitting 2 TT as a period.

EXAMPLES

437. We give now some examples. They may be verified by
the reader under the assumption made in 436. Their justifica

tion will be given later

Example 1. f(x)~x ,
for 7r&amp;lt;x&amp;lt;7r.

Then

I
sin x sin 2 x sin 3 x

\

t 1 ~2~ ~^~ &quot;J

If we set x = , we get Leibnitz s formula,

_ _
4 1 35 7

Example 2. f(x)x ,
0&amp;lt;z&amp;lt;?r

= -X , -7T&amp;lt;Z&amp;lt;0.

Then
* s - TT 4 f cos x cos 3 rr cos 5 a;

If we set x = 0, we get

8 1* 8* 5*
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Example 3. f (V) = 1
, &amp;lt;

x &amp;lt; TT

=
,

x = 0, TT

= -1
, -7T&amp;lt;Z&amp;lt;0.

Then
/. , N _ 4 f sin a;

,
sin 3 a: sin 5 a; 1

/ \x) I ~~q I 5 I r r
&quot;

f*
7T I 1 3 O J

Example 4. f (x) = x ,
&amp;lt; a; &amp;lt; ^

= 7T X

By defining /as an odd function, it can be developed in a sine

series, valid in (0, TT). We find

/Y N_4 fsin a: sin 3 x sin 5 x _ 1 . ;

r

Examples. /(^) = 1
,

.&amp;lt;# &amp;lt;.---

= -1
,

!&amp;lt;*&amp;lt;7r.

By defining / as an even function, we get a development in

cosines,

/, .
^ _ 4 f cos x cos 3 a: cos 5 x _

W iw (0, TT).

Example 6. /() = K71
&quot; ~

*) O&amp;lt;Z&amp;lt;TT.

By defining / as an odd function we get a development in

sines,

/ (x) = sin # + J sin 2 # + J sin 3 a; -f

zc? in ( TT, TT).
&amp;gt; s&quot;! i

A. vExample 7. Letf(x) = -
, &amp;lt; a:

&amp;lt; ^ -; .

3 3

2Z ^)\
3

^ 2?r

3 3



420 FOURIER S SERIES

Developing/ as a sine series, we get

valid in (0, TT).

Example 8. /CO = e* in ( TT, TT),

We find

valid for TT
&amp;lt;
x

&amp;lt;
TT.

Example 9. We find

2 /i
.

f
1 cos :r cos 2 a: cos 3 x

, ]cos /iz = - sin 7r/i
- - - + ----- + ...

TT 1 2 /A
2

/i
2 1 /A

2 22 /i
2 3a J

Let us set x = TT, and replace /* by a; ; we get

1
|

1
|o &quot;^ o 10 &quot;^ o OQs

-i o o 10 &quot; o OQ
2a; 2^ ir

2 I2 r* 22 ar
2 32

a decomposition of cot irx into partial fractions, a result already

found in 216.

Example 10. We find

2 2 cos 2 ^ 2 cos 4 # 2 cos 6 a;

validfor Q &amp;lt; x &amp;lt;TT.

Summation of Fourier s Series

438. In order to justify the development off(x) in Fourier s

series F, we will actually sum the F series and show that it con

verges to /(of) in certain cases. To this end let us suppose that

f(x) is given in the interval 5l = ( TT, TT), and let us extend/ by

giving it the period 2 TT. Moreover, at the points of discontinuity

of the first kind, let us suppose
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Then the function

&amp;lt;K)
=/O + 2 u) 4- /Or - 2 *) - 2/(*)

is continuous at u = 0, and has the value 0, at points of continuity,
and at points of discontinuity of 1 kind of/. Finally let us sup
pose that / is (properly or improperly) Z-integrable in 21 ; this

last condition being necessary, in order to make the Fourier co

efficients aB , bn have a sense.

Let
F=F(x) =

\ 004- a
a
cos x 4- 03 cos 2 x 4-

+ ^sin .r + 5
2 sin 2 2- 4- (1

X
=

\
a 4- 2(am .cos war + 6m sin na:),

where we will now write

1 /***
= -

/
/O)eosw2*Za?, (2

w = ^ r /C^) sin w^- (2
;

Since/(z) is periodic, the coefficients an , 5m have the same value

however c is chosen. If we make c = TT, these integrals reduce

to those given in 436.

We may write

F= I f (f)tfr \ I + 2(cos nx cos nt -h sin nx sin nt) \

2 COS (
-

2&quot;) \f (t)dt. (3

Thus F _i/v. f(0(ft
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ThUS sn - ,
fi

if 5) holds. Let us see what happens when 5) does not hold.

In this case %(t x) is a multiple of TT. As both and x lie in

(&amp;lt;?,

c + 2 TT), this is only possible for three singular values :

t = x ; t = c, x = c -f- 2 TT ;
= c + 2 TT, a; = c.

For these singular values 4) gives

n

As Pn is a continuous function of
, #, the expression on the

right of 6) must converge to the value 7) as #, t converge to these

singular values. We will therefore assign to the expression on

the right of 6) the value 7), for the above singular values. Then

in all cases
1

p*
glP

y2n
+ lX t - aO

/(Q(ft.

irJic 2 sin ^(t x)

Let us set
2 -I- 1 t

Then
Fn ^-\ f(x + 2uY-^^du.

sin

Let us choose c so that
c x = TT,

then ~f

&amp;lt;X_JT J,_7T
2 2

Replacing w by u in the first integral on the right, it becomes

-, o ^ sin vu -,

f(x 2 u) du.
.

&quot;

sin u
Thus we get

7T

TT^io g in W

Let us now introduce the term 2/(z) under the sign of inte

gration in order to replace the brace by &amp;lt;(w).
To this end let us
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give x an arbitrary but fixed value and consider the Fourier s

series for the function

f(x), a constant.

If we denote the Fourier series corresponding to the g function

by = r

4- h
1
sin t + h% sin 2 t +

we have

cos ntdt = 0,
f(x\ /^c+2w

-^L7T ^^

sin ntdt = 0.
7T

Thus the sum of the first n -f 1 terms of the Fourier series

belonging to g(f) reduces to

&amp;lt;?. =/(*) (9

But this sum is also given by 8), if we replace

by
&amp;lt;?(*42

M
;

since g is a constant. We get thus

Sin W

Let us therefore subtract f(x) from both sides of 8), using 9),

10). We get
IT

F.(x) -f(x) =-T {/(* + 2 ) +f(x - 2 t.)
- 2/O) j

b

sin

Settin& AW = Trl^W -/(*)}, (11

We have thus the theorem :

For the Fourier Series to converge to f(x) at the point x, it is

necessary and sufficient that Dn(x) =0, as n == oo.
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Validity of Fourier s Development*

439. The integral on the right side of 438, 12), on which the

validity of Fourier s development at the point x depends, is a

special case of the integral

In fact Jn goes over into Dn ,
if we set

,

sin u 2

To evaluate Jn let us break 23 up into the intervals

-.
r=ar

n

These intervals are equal except the last, which is shorter than

the others unless b a is a multiple of ir/n. We have thus

If we set

v = M + -
71

we see that while v ranges over 3325 , u ranges over 332*-i- This

substitution enables us to replace the integrals over 33
2&amp;lt;s by those

over SBfc-n since

I g (v) sin nvdv I g(u + )
sin nudu.

JL%2S 2s-l * U

Hence grouping the integrals in pairs, we get

Jn= I g(u) sin nudu + 2 I 1 9(.u) ~~
9\ u + ~

) r
s^n ww^w

f O3 ^^^ f c*j I \ M. / I

e^*5 * oL202-l L \ ft/ J

/-

+ I g (u) sin nudu,
JLw

* The presentation given in 439-448 is due in the main to Lebesgue. Cf. his

classic paper, Mathematische Annalen, vol. 61 (1905), p. 251. Also his Lemons sur

les Series Trigonometriques, Paris, 1906.
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where W is 33r or $,._! -f $r , depending on the parity of r. Now

I, (2

du

du.

IsC, {
&amp;lt;-&amp;gt;-

(&quot;

+
i)J

n

\L
Thus Jn = 0, if the three integrals 2), 3), 4) = 0. Moreover,

if these three integrals are uniformly evanescent with respect to

some point set ( &amp;lt; 33, Jn is also uniformly evanescent in (. In

particular we note the theorem

Jn = 0, if g is L-integrable in 53.

We are now in a position to draw some important conclusions

with respect to Fourier s series.

440. 1. Let f(x) be L-integraUe in (c, C + ^TT). Then the

Fourier constants an , bn = 0, as n = oo.

For
-^

/&amp;gt;c+2jr

an = -
f

irJic

cos nxdx

is a special case of the Jn integral. As /is L-integrable, we need

only apply the theorem at the close of the last article. Similar

reasoning applies to bn .

2 . For a given value of x in 51 = ( TT, TT) let

sn u

IT
be L-integrable in 33 = f 0,

j.
Then Fourier s development is valid

at the point x.
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For by 438, Fourier s series = /(#) at the point x, if Dn (x) = 0.

But Dn is a special case of Jn for which the g function is in-

tegrable. We thus need only apply 439.

3. For a given x in 21 = ( vr, TT), let

u
/ \

be L-integrable in 33 = f 0,
j.

Then Fourier s development is valid

at the point x.

^For let S&amp;gt;0, then :

sm u

=
,

as S =
, by hypothesis.

4. For a given x in 51 = ( TT, TT), Ze

)-/C)
(8

fte L-integrable in 51. 2T
Ae?^ Fourier s development is valid at the

point x.
. .

,

f(x-2u)-f(x)x
J u

f 7T\
Thus x ig -Zy-integrable in f 0,

j,
as it is the difference of two

integrable functions.

441. (Lebesgue). For a given x in 5l = ( TT, TT) let

7T

/

= oto

P*
2 Km I |^(w + o) ty(u) \du =

*-aW
/br some y such that
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Then Fourier s development is valid at the point x.

For as we have seen,

\X)\&amp;lt;

sin M

it_

fX.
du

du&amp;lt;D

\srnu

where &, is a certain number which = as n = oo.

us first consider D r

. Since 0&amp;lt;w&amp;lt;
, we have

Hence

z/%4

sin

sin ,u h T
6 24

|t, 0r, T&amp;lt;

= r-

4 7 = V
u -. TM \ ~&amp;gt; . a

~6\Ty ~*?

&amp;lt;z^, provided s&amp;gt;t.

But this is indeed so. For

_ vau ^ -. _ TT

Hence

Thus D f

&amp;lt; v I |0|
C?M = 0, by hypothesis.

eio

w0?# &amp;lt;irw ^o D r
. We have
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Now/ being L-integrable,

*(+?)-*&amp;lt;&amp;gt;

is -integrable in f 77,
1L \ . Thus

lim = 0.

But by condition 2, lim f&quot; =
^oLir

Thus lim IX = 0.
s=o

Finally we consider D fff
. But the integrand is an integrable

function in f /3, ^ J
. Thus it = as n = GO .

442. 1. 7^0 validity of Fourier s development at the point x de

pends only on the nature off in a vicinity of x, of norm $ as small as

we please.

For the conditions of the theorem in 441 depend only on the

value of/in such a vicinity.

2. Let us call a point x at which the function

is continuous at u = 0, and has the value 0, a regular point.

In 438, we saw that if # is a point of discontinuity of the first

kind for /(#), then # is a regular point.

3. Fourier s development is valid at a regular point x, provided

for some ij

lim
6=0

For at a regular point x, $(u) is continuous at u = 0, and =
for u = 0. Now

lim 1
/**! &amp;lt;K) 1

du=
A=o hJio
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7T 77

Thus
du = TT

Hence condition 1 of 441 is satisfied.

Limited Variation

443. 1. Before going farther we must introduce a few notions

relative to the variation of a function f(x) defined over an interval

$1 =(#&amp;lt;&amp;gt;).
Let us effect a division D of 21 into subintervals,

by interpolating a finite number of points a
l &amp;lt;

a
2 &amp;lt; The sum

F,- 2 |/(.) -/(.+!) I (1

is called the variation offin 51 for the division D. If

Max VD (2

is finite with respect to the class of all finite divisions of 21, we say

/ has finite variation in 21. When 2) is finite, we denote its value by

Var/, or Vf ,
or V

and call it the variation off in 31.

We shall show in 5 that finite variation means the same thing

as limited variation introduced in I, 509. We use the term finite

variation in sections 1 to 4 only for clearness.

2. A most important property of functions having finite vari

ation is brought out by the following geometric consideration.

Let us take two monotone increasing curves A, B such that one

of them crosses the other a finite or infinite number of times. If

f(x), g(x) are the continuous functions having these curves as

graphs, it is obvious that

is a continuous function which changes its sign, when the curves

A, B cross each other. Thus we can construct functions in infinite

variety, which oscillate infinitely often in a given interval, and

which are the difference of two monotone increasing functions.
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For simplicity we have taken the curves A, B continuous. A
moment s reflection will show that this is not necessary.

Since d(x) is the difference of two monotone increasing functions,

its variation is obviously finite. Jordan has proved the following

fundamental theorem.

3. If f(x) has finite variation in the interval 51 = (a &amp;lt; 5), there

exists an infinity of limited monotone increasing functions g(x), h(x}

such that
f o _h (\

For let D be a finite division of St. Let

PD = sum of terms J/OWj) /(&amp;lt;OS
which are &amp;gt; 0,

Then VB = 2 l/Ow,) -/(-) \=P +ND . (2

Also

) -/()! + !/&amp;lt;X)-/(i)i + - + \f(V) -f(an)\=PD-ND .

On the left the sum is telescopic, hence

f(V)-f (.&amp;lt;*)=
PD -ND . (3

From 2), 3) we have

VD = 2 PD +/(a)-/(J) = 2 Na +/(6) -/(). (4

Let now MaxPB = P , Max^ = ^
with respect to the class of finite divisions D.

We call them the positive and negative variation of f(x) in 51.

Then 4) shows that

/(a). (5

Adding these, we get jr= p + jy. (6

From 5) we have

-/() = P-JV. (7

Instead of the interval 21 = (&amp;lt;&), let us take the interval

(a &amp;lt; x), where x lies in St. Replacing 5 by a: in 7), we have

/(*)=/() + P(x)-JIT(*). (8
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Obviously P(x), -ZV(#) are monotone increasing functions.

Let p(x) be a monotone increasing function in 21. If we set

(9

we get 1) from 8) at once.

4. From 8) we have

I

&amp;lt;

5. We can now show that when f(x) has finite variation in the

interval 51 = (a &amp;lt; 6) it has limited variation and conversely.

For if / has finite variation in 21 we can set

/CO = *(*) -*(*),

where
&amp;lt;, ty are monotone increasing in 21. Then if 21 is divided

into the intervals S
x ,

S
2

we have

Osc/&amp;lt;

Osc
4&amp;gt;

=
A&amp;lt;

, Osc ^ = A^ ,
in S

t

since these functions are monotone. Hence summing over all the

intervals S,, vrx * ^ &amp;lt;** ^ A2 Osc/&amp;lt; 2A0 H- SA-v/r

&amp;lt; {0(5)- ^(a)} + {^(ft)
- t(a) j

&amp;lt; some $f, for any division.

Hence / has limited variation.

If / has limited variation in 21,

|
A/I &amp;lt;0sc/ ,

in
t

.

Hence
2

| A/ 1

&amp;lt; 2 Osc/ &amp;lt; some M.

Hence /has finite variation.

6. If f(x) has limited variation in the interval 21, its points of

continuity form a pantactic set in 21.

This follows from 5, and I, 508.



432 FOURIER S SERIES

7. Let a&amp;lt;b&amp;lt; c ; then iff has finite variation in (a, c),

JW+ v,J= va,j, (ii

^
&amp;gt;6

means the variation off in the interval (a, 5), efa.

r/= Max VBf

with respect to the class of all finite divisions D of (a, &amp;lt;?).

The
divisions D fall into two classes :

1 those divisions E containing the point 5,

2 the divisions F which do not.

Let A be a division obtained by interpolating one or more

points in the interval. Obviously

Let now Gr be obtained from a division F by adding the point
Then

Hence Max Fi&amp;gt;Max VF .

E F

Hence to find F^fC/, we may consider only the class E. Let

now E^ be a division of (a, 5), and E% a division of (5, &amp;lt;?).

Then

^ + EI is a division of class E. Conversely each division of class

Ogives a division of (a, 5), (5, c). Now

From this 11) follows at once.

444. We establish now a few simple relations concerning the

variation of two functions in an interval 51 = (a &amp;lt; ft).

F r

where for brevity we set /. _ ff .

/i J\aJ

|iy. (2
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3. Letf, g be monotone increasing functions in 21. Then

n/+&amp;lt;7)
= Vf+ Vg. (3

For

4. .For any two functions f, g having limited variation,

Vf+Vg. (4

5. Letf,^ have limited variation in 21 = (, ).

7W
=!/()! , i=l/iO)|.

^(//i) &amp;lt;( + fy)(! + vfo (5

For by 443, 8) we have

where

Thus

Hence by 2, 4,

&amp;lt; ^PA + ^y^ + VPA
l + ...

-) , by 3

But
Vf=P + N , hence, etc.

445. Fourier s development is valid at the regular point x, if there

exists a
&amp;lt; f &amp;lt;~, such that in (0, f) Ae variation V(u) of i/r(V)

-j

m awy (u, f) zs limited^ and such that u V(u) = 0, u = 0.

By 442, we have only to show that

2

is evanescent with B.
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Let us first suppose that ty(u) is monotone in some (0, ), say

monotone increasing. Similar reasoning will apply, if it is mono

tone decreasing. Then, taking &amp;lt; rj + B
&amp;lt; ,

^= r\^u + )-^(u)\du = ( ^(u+S)du- I ^(u)du.

In the second integral from the end, set v = u + S.

Xrj

/*17+5

^(u + tydu = / ty(v)dv.aW

Hence,

r ltl&amp;lt;^

We will consider the integrals on the right separately. Let

^m = Max |^|, in

Then

Hence,
-,

-i

1
-

&amp;lt; some M.= - + o-u
,

sin u u

Thus,

=
,

as 8 = ,
since

&amp;lt;/&amp;gt;(w)

= 0,

as a: is a regular point.

TTe iwrw wow to %. In (17, 77 + 8), 3, ?? sufficiently small,

sin u &amp;gt; M - ^3
&amp;gt; ri(I

-
??
2
).
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Thus, if
&amp;lt;#v

= Max
| |

in
(77, 77 + S), &amp;gt;&amp;gt;*

with S.

Thus, when ty is monotone in some (0, f), Fourier s develop
ment is valid. But obviously when

-ty
is monotone, the condition

that uV(u)=0 is satisfied. Our theorem is thus established in

this case.

Let us now consider the case that the variation r(v) of
i/r

is

limited in (u, f).

From 443, 10), we have

As before we have

By hypothesis there exists for each &amp;gt; 0, a S
&amp;gt; 0, such that

u V(u) &amp;lt; e
, for any &amp;lt; u &amp;lt; 8 .

Hence,

PX*)^1u

s turn now to ^
2

. Since V(u) is the sum of two limited

monotone decreasing functions P, Nin. (u, f) ^ ig integrable.

Thus,
/7

I /
ot T?

is evanescent with
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446. 1. Fourier s development is valid at the regular point x, if

^&amp;gt;(u)
has limited variation in some interval (0 &amp;lt; f), f &amp;lt; .

For let
&amp;lt;
u

&amp;lt; 7 &amp;lt; ?, then

Now
T/r=&amp;lt;f&amp;gt;(X)

-
sm u

Hence Vuy+ &amp;lt;
j V^ +

But sin w b.eing monotone,

__ ___ _
MY

sin w sin w sin 7
Thus

sm

Similarly
r *&amp;lt;S**.vfr sin 7

2
*

Now
0&amp;lt;-^-&amp;lt;^f ,

in (0*, n.
sin w

The theorem now follows by 445. For we may take 7 so small

that T -r ,

Thus for any u &amp;lt; 7,

On the other hand, 3)^ being sufficiently large, and 7 chosen as

in 1) and then fixed,

Thus

for w&amp;lt;some 5 r
. Hence

for &amp;lt; u &amp;lt; some B.

2. (Jordan. ) Fourier s development is valid at the regular point

x, *ff(v) has limited variation in some domain of x.
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For
&amp;lt;K)

= !/(* + 2 )-/O)!+ {/(*- 2 )-/()}

has limited variation also.

3. Fourier s development is valid at every point of 21 = (0, 2 TT),

iff is limited and has only a finite number of oscillations in 21.

Other Criteria

447. Let X=

.Zf X = rts S = 0, so does
&quot;^,

awe? conversely.

For
, ^ x x A , &amp;lt;x x sinfw 4-

U +

/- N
&amp;gt;

sin

Obviously X and &quot;^ are simultaneously evanescent with

provided

R = =
, as 8 = 0.

Let
r*, v Sin U
Z(u) = -

u

Then . f N &amp;lt; r*s . ^^

Now

v cos v sin v

tf

Thus
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Hence

As
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sin u

-

!J&amp;gt;|iO
,

with 8.

448. (Lipschitz-Dini.) At the regular point x, Fourier s devel

opment is valid, iffor each e
&amp;gt; 0, there exists a S

&amp;gt; 0, swcA that for

each &amp;lt;
8 &amp;lt; S ,

For

l
.

log 5
n

,

Now a: being a regular point, there exists an rj
f such that

I $00 I

&amp;lt;
&amp;gt;

f r w in any (^ ^ )

Thus taking ^ ,

^7 &amp;gt; o, V,

&amp;lt;e

Thus

, log B
|

e

VS

&amp;lt;
2 e, for any 8

&amp;lt; ?;.

X = 0, as 8 = 0.

I _1\
o V

Uniqueness of Fourier s Development

449. Suppose /(V) can be developed in Fourier s series

1 /1|r

an = - I /(a?)
T^cX-TT

cos sn , (2
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valid in 51 = ( TT, TT). We ask can/&quot; (V) be developed in a simi-

/ (x) = I a + 2(an cos n# + sin 712:), (3

also valid in 51, where the coefficients are not Fourier s coefficients,

at least not all of them.

Suppose this were true. Subtracting 1), 3) we get

= O -O + 2
{ (an

-
&amp;lt;)

cos war + (&
-

&i) sin r?:r
J
= 0,

? + 2
jtfn cos tt# -f c?n sin /i^j

= 0, in 51. (4

Thus it would be possible for a trigonometric series of the type

4) to vanish without all the coefficients cm , dm vanishing.
For a power series

to vanish in an interval about the origin, however small, we know
that all the coefficients pm in 5) must =&amp;gt; 0.

We propose to show now that a similar theorem holds for a

trigonometric series. In fact we shall prove the fundamental

Theorem 1. Suppose it is known that the series 4) converges to

for all the points of 51 = ( TT, TT), except at a reducible set 9?.

Then the coefficients cm ,
dm are all 0, and the series 4) = at all the

points o/5l.

From this we deduce at once as corollaries :

TJieorem 2. Let $1 be a reducible set in 51. Let the series

+ 2 \an cos nx + @n sin nx\ (6

converge in 51, except possibly at the points Si. Then 6) defines a

function l?(x) in 51 - 3t

If the series
, v &amp;lt;

, Ql .+ 2
\

cos nx + fin sin nx
\

converges to F(x) in 51 9?, its coefficients are respectively equal to

those in 6).

Theorem 3. If f(^x) admits a development in Fourier
1

% series for
the set 51 9?, any other development off(x) of the type 6), valid in

51 9 is necessarily Fourier s series, i.e. the coefficients TO , fim have

the values given in 2).
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In order to establish the fundamental theorem, we shall make
use of some results due to Riemann, Gr. Cantor, Harnack and

Schwarz as extended by later writers. Before doing this let us

prove the easy

Theorem 4- If /(#) admits a development in Fourier s series

which is uniformly convergent in 21 = ( TT, TT), it admits no other

development of the type 3), which is also uniformly convergent in 51.

For then the corresponding series 4) is uniformly convergent
in 21, and may be integrated termwise. Thus making use of the

method employed in 436, we see that all the coefficients in 4)

vanish.

450. 1. Before attempting to prove the fundamental theorem

which states that the coefficients #n ,
bn are 0, we will first show

that the coefficients of any trigonometric series which converges
in 21, except possibly at a point set of a certain type, must be such

that they = 0, as n = oo. We have already seen, in 440, 1, that

this is indeed so in the case of Fourier s series, whether it con

verges or not. It is not the case with every trigonometric series

as the following example shows, viz. :

sin n \ x. (1
i

When x = r^ all the terms, beginning with the r !

th
, vanish,

r I

and hence 1) is convergent at such points. Thus 1) is conver

gent at a pantactic set of points. In this series the coefficients an

of the cosine terms are all 0, while the coefficients of the sine

terms 6n ,
are or 1. Thus bn does not = 0, as n = oo.

2. Before enunciating the theorem on the convergence of the

coefficients of a trigonometric series to 0, we need the notion of

divergence of a series due to Harnack.

Let A=a
1
4- a

2+ (2

be a series of real terms. Let gn , Grn be the minimum and maxi

mum of all the terms

-^n+l -An+2 ,

where as usual An is the sum of the first n terms of 2). Obviously
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Thus the two sequences \gn \, [Grn \
are monotone, and if limited,

their terms converge to fixed values. Let us say

The difference

b = #-&amp;lt;7

is called the divergence of the series 2).

3. For the series 2) to converge it is necessary and sufficient that

its divergence b = 0.

For if A is convergent,

Thus -e + A&amp;lt;gn &amp;lt;G-n &amp;lt;A + .

Thus the limits Gr, g exist, and

G-g&amp;lt;2e ; or G- = g,

as e &amp;gt;
is small at pleasure.

Suppose now b = 0. Then by hypothesis, Gr, g exist and are

equal. There exists, therefore, an n, such that

&amp;lt;7-*&amp;lt;&amp;lt;7n&amp;lt;#n&amp;lt;#
+ e,

or #n -&amp;lt;7n&amp;lt;2e.

Thus \An+p -An \&amp;lt;2e , p=l,2-.

and A is convergent.

451. Let the series
GO

2 (an cos nx + bn sin nx)
o

be such that for each 8 &amp;gt; 0, there exists a subinterval of

Sl = (-ir, TT)

fa divergence b &amp;lt;
S. Men an , 6n = 0, as

= QO.

For, as in 450, there exists for each x an wz , such that

|
n cos nx + 5n sin nx

\
&amp;lt;

-
, n&amp;gt; mx (1
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for any point x in some interval $3 of 21. Thus if b is an inner

point of 23, x=-b + @ will lie in 33, if lies in some interval

B = (p, q). Now

an cos ft (b + /3) + 6n sin n(b + j3)

= (an cos 716 + & sin w&) cos n/3 (an sin nb bn cos ^6) sin n/3.

an cos n(b (3} + bn sin w (6 /3)

v;^ r= (.an cosnb + & sin w5) cos w/3 + ( n sin nb - 5n cos ^6) sin nj3.

Adding and subtracting these equations, and using 1) we have

8
. ,

|. (an cos nb + ;

5n sin nb) cos n/5
|

&amp;lt; -,

^

|
(an sin nb ln cos w5) sin n@ &amp;lt; -,

for all n&amp;gt;mx . Let us multiply the first of these inequalities by
cos nb sin nf$, and the second by sin nb cos nft, and add. We get

|

an sin wJ &amp;lt;
8

, /^ = 2
, n

&amp;gt;
mx . (2

Again if we multiply the first inequality by sin nb sin n/3, and
the second by cos nb cos n/3, and subtract, we get

bn smn/3l \ &amp;lt;S \ n&amp;gt;mx . (3

From 2), 3), we can infer that for any e
&amp;gt;

|

an \
&amp;lt; e y

;,|

bn
|

&amp;lt;
e.

, n
&amp;gt;

some ?w, (4

or what is the same, that an ,
Jn = 0.

For suppose that the first inequality of 4) did not hold. Then
there exists a sequence

n\ &amp;lt; n2 &amp;lt;

... = oo (5
such that on setting

i^1 = +i r ,
e-S = S

we will have

.,
&amp;gt; (6

If this be so, we can show that there exists a sequence

J :
, V.l

&amp;lt;
V
2 &amp;lt;

=

in 5), such that for some ft in B,

\aVr
smvr{3

\

&amp;gt;B, (7
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which contradicts 2). To this end we note that 7 &amp;gt; may be

chosen so small that for any r and any |
7 |

&amp;lt; 7 ,

|

a
Vr |

cos 7 &amp;gt; (B -f ) cos 7 &amp;gt;
B. (8

Let us take the integer v
l
so that

Vl &amp;gt;7L2h. (9
9-f

Then 2^^ N n N -^ r&amp;gt;

-Oi (?-?)- 2 7 )^ 2 -

7T

Thus at least one odd integer lies in the interval determined by
the two numbers

9 9

Let m
l
be such an integer. Then

9 9

j(M + W&amp;lt;%
&amp;lt;

^Oi
- 7 )-

If we set

we see that the interval B
l =(pr q^ lies in B. The length of

B
l

is 270/i/j. Then for any /3 in .B^

&quot;i/
3 = mi^ +

f

&amp;gt; i |7il&amp;lt;7
-

Thus by 8),

|

a
vi

sin
i/j/3 j

= 1^1 cos j 1
&amp;gt; 8. (12

But we may reason on B
l
as we have on B. We determine z&amp;gt;

2

by 9), replacing jt?, q by JPX , ^j. We determine the odd integer m2

by 10), replacing^, q,
v
l by p1 , q 1 , v

2
. The relation 11) deter

mines the new interval B
2
=

(jt?2 , ^2), on replacing m^ v
l by w2 ,

z^
2

.

The length of B
2 is 2jQ/v2 , and 52 lies in ^j. For this relation

of v
2 , and for any /3 in B.

2
we have, similar to 12),

|

a
vt
sin

z/2/3 |

&amp;gt; B.

In this way we may continue indefinitely. The intervals

B
l &amp;gt; ^2 &amp;gt;

... = to a point /3 ,
and obviously for this (S\ the rela-
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tion 7) holds for any x. In a similar manner we see that if bn does

not = 0, the relation 3) cannot hold.

452. As corollaries of the last theorem we have :

1. Let the series
00

bn sin nx) (1

be such that for each & &amp;gt; 0, the points in 5l = ( TT, TT) at which

the divergence of 1) is
&amp;gt;8, form an apantactic set in 51. Then

an , bn = 0, as n = oo .

2. Let the series 1) converge in 51, except possibly at the points of

a reducible set ^R. Then an ,
bn = 0.

For 9t being reducible [318, 6], there exists in 51 an interval 33

in which 1) converges at every point. We now apply 451.

453. Let

at the points of 51 = ( TT, TT), where the series is convergent. At the

other points of 51, let F(x) have an arbitrarily assigned value, lying

between the two limits of indetermination g, Gr of the series. IfF is

R-integrable in 51, the coefficients an ,
bn = 0.

For there exists a division of 51, such that the sum of those in

tervals in which Osc F&amp;gt; o&amp;gt; is
&amp;lt;

cr. There is therefore an interval

3 in which Osc F &amp;lt; o&amp;gt;. If & is an inner interval of 3, the di

vergence of the above series is
&amp;lt;
w at each point of $. We now

apply 451.

454. Riemanrfs Theorem.

Let F(x) = ^ a + 2(an cos nx + bn sin nx) = 2J.n converge at

each point of 51 = ( TT, TT), except possibly at the points of a redu

cible set 9?. The series obtained by integrating Ms series termwise,

we denote by

a(x) = - a^ -
JJ (an cos nx + bn sin nx)= - A

Q
x2 - % -f-

~t -i n M n

Then Q- is continuous in 51.
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Let
&amp;lt;b(u)

= G-(x + 2 u) + #(z - 2 w)
- 2 G(x). (1

eacA point of 33 = 21 9?,

lira ^^ = ^0) ; (2
=o 4 IT

edch point oj 21,

lim^^ = 0. (3
t*=o w

For, in the first place, since 9? is a reducible set, an ,
bn = 0. The

series 6r is therefore uniformly convergent in 21, and is thus a

continuous function.

Let us now compute &amp;lt;l&amp;gt;. We have

an cos n(x + 2 w) + an cos /i(a:
2 w) 2 an cos wa;

= 2 an cos no: (cos 2 nu 1)

= 4 an cos w# sin2 nu.

Also
6n sin n(&amp;gt;

+ 2 w) -f 6n sin w(z - 2 ^)
- 2 on sin wa;

= 2bn sin /ix(cos 2 ww 1)

= 4 bn sin nx sin2 ww.

Thus

4 u2
o \ nu

if we agree to give the coefficient of A^ the value 1. Let us

give x an arbitrary but fixed value in 53. Then for each e &amp;gt; 0,

there exists an w such that -

en , B &amp;lt;, n&amp;gt;i

Thus ^

(4
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The index m being determined as above, let us take u such that

u &amp;lt; , so that m
&amp;lt; ;m u

and break jS into three parts

1 m+l K+I

where K is the greatest integer &amp;lt; TT/U, and then consider each sum

separately, as u = 0.

Obviously lim S
1
= 0.

u=Q

As to the second sum, the number of its terms increases indefin

itely as u = 0.

For any u,

(i

19 i 19 x

p^&amp;gt;-?_r~7mu J KU J J

&amp;lt;, r !2!.P.&amp;lt;
WW

since each term in the brace is positive. In fact

sin v

v

is a decreasing function of v as v ranges from to TT, and

nu &amp;lt; KU
&amp;lt;_TT , n OB we, tn -f- 1, ... *.

Finally we consider Sy We may write the general term as

follows :

[rsin(n-l&amp;gt;&quot;|

2
_rsi

n
lL (n-l)w J

&quot;

L

jTsin (n -
l)^&quot;]

2 fsin nu~V\
n

IL~&quot; nu J L W J J

sin2 (yi 1)u s\ii
2 nu _ sin (2n l)u sin w , ^ , 1
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Thus
&amp;lt;^-T(

O-l) 2 n*\ u

6

since

But K
&amp;gt;_

1
,

or KU
_&amp;gt;

TT w.
M

Thus
I .y &amp;lt; c f

1
i

1
I -

1 (TT w)
2 TT u)

Hence e o ^ - n . , no = Oj -(- o2 + A3
3 u, as u = u,

which proves the limit 2), on using 4).

To prove the limit 3), we have

Let us give wa definite value and break ^Tinto three sums.

m

T = 2,

where m is chosen so that

\An I &amp;lt;
e , n

&amp;gt;
m ;

TO+l

where \ is the greatest integer such that

\U&amp;lt;_1 ,

and

A+l

Obviously for some M,
| Z\| &amp;lt;.w^f.

Also

since



448 FOURIER S SERIES

As to the last sum,

u
A+1

.v

Thus T ^ Q as M = 0.

455. Schwarz-Luroth Theorem.

In ty,
= (a &amp;lt; b} let the continuous functionf(x) be such that

except possibly at an enumerable set & in 51. At the points ($, let

uS(x, u) = as u = 0. (2

Thenf is a linear function in 51.

Let us first suppose with Schwarz that (g = 0. We introduce

the auxiliary function,

where _

?;
= 1, and c is an arbitrary constant.

The function g (V) is continuous in 51, and
&amp;lt;? (a) = &amp;lt;/ (5) = 0.

Moreover ,
&amp;gt;.

, , N / -\

flr(^4-1*)4-Q (^ tt J !Z&amp;lt;7(2?). -ne_v ! : ! ii_i . L _! L =
&amp;lt;?,

as U = U.

Thus for all 0&amp;lt;u&amp;lt; some 8,

(3

From this follows that
g(x)&amp;lt;0

in 51. For if
#(V)&amp;gt;0,

at any

point in 51, it takes on its maximum value at some point f within 51.

Thus

for &amp;lt; w &amp;lt; 8, 8 being sufficiently small. Adding these two in

equalities gives 6r
&amp;lt;_0,

which contradicts 3). Thus
#.&amp;lt;

in 51.

Let us now suppose L=fcO for some x in 51. We take c so small

that T r
sgn# = sgn ?;

=
77 sgn .L.
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But 77 is at pleasure 1, hence the supposition that L = is

not admissible. Hence L = in 21, or

/&amp;lt;X)=/00-f5|j/(i)-/00!
(4

is indeed a linear function.

Let us now suppose with Liiroth that (g&amp;gt;0. We introduce the

auxiliary continuous function.

Thus
A(a)=0 ,

Suppose at some inner point of

This leads to a contradiction, as we proceed to show. For then

provided

We shall take c so that this inequality is satisfied, i.e. c lies in

the interval = (0*, (7*). Thus

Hence A(V) takes on its maximum value at some inner point e

of 31. Hence for B &amp;gt; sufficiently small,

&amp;lt;S. (6

(7

Now if e is a point of H (S,

=o

But this contradicts 7), which requires that

\\mH(e, w)&amp;lt;0.
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Hence e is a point of (. Hence by 2),

h(e + u)-h(e) + AQ
- M) - &(e) ^ Q as w ^ Q.

w w

By 6), both terms have the same sign. Hence each term = 0.

Thus for u &amp;gt;

= lim
h(e M^~ h^ = lim f(e

u u b a

+ 2*0-a).

Thus to each c in the interval (, corresponds an e in (, at which

point the derivative off(x) exists and has the value given on the

right of 8). On the other hand, two different &amp;lt;? s, say c and c
,
in

( cannot correspond to the same e in (S.

For then 8) shows that

c (e a) = c (e #),

or as
&amp;gt;

, _

Thus there is a uniform correspondence between ( whose cardi

nal number is c, and ( whose cardinal number is e, which is absurd.

Thus the supposition 5) is impossible. In a similar manner, the

assumption that L &amp;lt; at some point in 51, leads to a contradiction.

Hence L = in 51, and 4) again holds, which proves the theorem.

456. Cantor s Theorem. Let

J a + 2)(#n cos nx + bn sin nx) (1
i

converge to in 5l = ( TT, TT), except possibly at a reducible set 9?,

where nothing is asserted regarding its convergence. Then it con

verges to at every point in 51, and all its coefficients

For by 452, 2, an ,
5n = 0. Then Riemann s function

^v N i V 1 A */ (V) = -J-
a
Q
x2 V (an cos w# H- 6n sin 712:)^ n^
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satisfies the conditions of the Schwarz-Liiroth theorem, 455, since 9?

is enumerable. Thus f(x) is a linear function of x in 51, and has

the form a + fix. Hence

1
a + fix |

a
Q
x2 =

2, -g ( B cos W2: + ^n sin 712:) . (2

The right side admits the period 2 TT, and is therefore periodic.

Its period o&amp;gt; must be 0. For if &&amp;gt;
&amp;gt; 0, the left side has this

period, which is absurd. Hence co = 0, and the left side reduces

to a constant, which gives /3=0, a = 0. But in 51 9?, the right

side of 1) has the sum 0. Hence = 0. Thus the right side of

2) vanishes in 51. As it converges uniformly in 51, we may deter

mine its coefficients as in 436. This gives



CHAPTER XIV

DISCONTINUOUS FUNCTIONS

Properties of Continuous Functions

457. 1. In Chapter VII of Volume I we have discussed some

of the elementary properties of continuous and discontinuous

functions. In the present chapter further developments will be

given, paying particular attention to discontinuous functions.

Here the results of Baire * are of foremost importance. Le-

besgue f has shown how some of these may be obtained by sim

pler considerations, and we have accordingly adopted them.

2. Let us begin by observing that the definition of a continu

ous function given in I, 339, may be extended to sets having iso

lated points, if we use I, 339, 2 as definition.

Let therefore/0^ xm) be defined over 51, being either limited

or unlimited. Let a be any point of 21. If for each e
&amp;gt; 0, there

exists a 8
&amp;gt; 0, such that

I/O) -/O) |
&amp;lt; e, for any x in F5(a),

we say/ is continuous at a.

By the definition it follows at once that / is continuous at each

isolated point of 21. Moreover, when a is a proper limiting point

of 21, the definition here given coincides with that given in I, 339.

If/is continuous at each point of 21, we say it is continuous in 21.

The definition of discontinuity given in I, 347, shall still hold,

except that we must regard isolated points as points of con

tinuity.

* &quot; Sur les Functions de Variables reeles,&quot; Annali di Mat., Ser. 3, vol. 3

(1899).

Also his Lemons sur les Functions Discontinues. Paris, 1905.

t Bulletin de la Societe Mathematique de France, vol. 32 (1904), p. 229.

452
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3. The reader will observe that the theorems I, 350 to 354

inclusive, are valid not only for limited perfect domains, but also

for limited complete sets.

458. 1. Iff(x^ #m) is continuous in the limited set 51, and its

values are known at the points of 53 &amp;lt; 51, then f is known at all

points of 53 lying in 51.

For let 5j, b
2 ,

b
3

be points of 53, whose limiting point b lies

in 5i. Then

2. If f is known for a dense set 53 in 5(, and is continuous in 51,

/ is known throughout 51.

For
g, &amp;gt; 3,

3. If f(x1
-- xm) is continuous in the complete set 51, the points

53 in 51 where f=c,a constant, form a complete set. If 51 is an

interval, there is a first and a last point 0/53.

For/= c at x=
1? 2

which = a; we have therefore

/(a) = lim/(an)
= c.

459. The points of continuity ( of /(a:1
---^m) in 51 lie in a

deleted enclosure $. Ifty. is complete, ft = (.

For let e
x

&amp;gt; e
2 &amp;gt;

= 0. For each en, and for each point of

continuity c in 51, there exists a cube Q whose center is c, such that

Osc/&amp;lt;en,
in O.

Thus the points of continuity of / lie in an enumerable non-

overlapping set of complete metric cells, in each of which

Osc/&amp;lt; en . Let Qn be the inner points of this enclosure. Then
each point of the deleted enclosure

= I* {CU
which lies in 51 is a point of continuity of /. For such a point c

lies within each Qn .

Hence r\ * ^ - rr s \
Osc/&amp;lt; e, in F

6 O),

for S &amp;gt; sufficiently small and n sufficiently great.
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Oscillation

460 Let
n

This is a monotone decreasing function of S. Hence if o&amp;gt;5 is

finite, for some 8
&amp;gt; 0,

&) = lim o&amp;gt;5

6=0

exists. We call co the oscillation off at x = a, and write

T W v&amp;gt; ^t

Should o)s = -f oo, however small & &amp;gt; is taken, we say o&amp;gt;
= -f &amp;lt;x&amp;gt;.

A I v\&quot;\A^^nen w = ^/ ig continuous at x = a, if a is a point in the domain

of definition of/. When o&amp;gt;
&amp;gt; 0, /is discontinuous at this point.

It is a measure of the discontinuity off at x = a ; we write

461. 1.

at x = a. Then

\d-e\&amp;lt;
Disc (/ ^) &amp;lt; d + e.

xa
For in F5 (a),

|Osc/- Osc^l &amp;lt; Osc(/^) &amp;lt; OSG/+

2. Tf/ is continuous at x = a, while Disc g = d, then

Disc (/ + 9) = d.
j:=a

For /being continuous at a, Disc/ = 0.

Hence
Disc ^ &amp;lt; Disc (/ + g) &amp;lt; Disc g = d.

3. If c is a constant,

Disc (c/) = |

c
|
Disc/ , at x = a.

For
Osc (c/) = ;

c
|
Osc/ ,

in any F(a).

4. When the limits
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exist and at least one of them is different from
/&quot;(a;),

the point x

is a discontinuity of the first kind, as we have already said.

When at least one of the above limits does not exist, the point x

is a point of discontinuity of the second kind.

462. 1. The points of infinite discontinuity 3 of f, defined over

a limited set tyi,form a complete set.

For let
i],

t
2

be points of 3, having k as limiting point.

Then in any V(k) there are an infinity of the points in and hence

in any V(lc), Osc/= + oo. The point k does not of course

need to lie in 51.

2. We cannot say, however, that the points of discontinuity of

a function form a complete set as is shown by the following

Example. In 51 = (0, 1), let f(x) = x when x is irrational, and
= when x is rational. Then each point of 51 is a point of dis

continuity except the point x 0. Hence the points of disconti

nuity of/do not form a complete set.

3. Let f be limited or unlimited in the limited complete set 51.

The points ^of^at ivhich Oscf&amp;gt;^kform a complete set.

For let ar 2
be points of $ which = a. However small

8 &amp;gt;0 is taken, there are an infinity of the an lying in F(a). But

at any one of these points, Oscf~&amp;gt;_k. Hence Qscf&amp;gt;_k in V& (a)
and thus a lies in $.

4. Letf(x^ - :rm) be limited and R-integrable in the limited set 51.

The points ft at which Oscf&amp;gt;^kform a discrete set.

For let D be a rectangular division of space. Let us suppose
$D &amp;gt; some constant c

&amp;gt; 0, however D is chosen. In each cell 8

of D,
Osc/&amp;gt;fc.

Hence the sum of the cells in which the oscillation is
_&amp;gt;

k can

not be made small at pleasure, since this sum is &#. But this

contradicts I, 700, 5.

5. Let f(xl
zm) be limited in the complete set 51. If the points

$ in 51 at which Osc / &amp;gt; k form a discrete set, for each k, then f is

R-integrable in 51.
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For about each point of 51 $ as center, we can describe a cube

& of varying size, such that Osc/&amp;lt; 2 k in (. Let D be a cubical

division of space of norm d. We may take d so small that

&D = 2c?t is as small as we please. The points of 51 lie now within

the cubes ( and the set formed of the cubes d,. By Borel s

theorem there are a finite number of cubes, say

such that all the points of 51 lie within these TJ S. If we prolong

the faces of these ?; s, we effect a rectangular division such that

the sum of those cells in which the oscillation is &amp;gt; 2 k is as small

as we choose, since this sum is obviously &amp;lt; D . Hence by I, 700,

5, / is 72-integrable.

6. Letf(x^ xm*)
be limited in 51; let its points of discontinuity

in 51 be ). If f is R-integrable, 2) is a null set. If 51 is complete

and 2) is a null set,f is R-integrable.

Let / be jR-integrable. Then ) is a null set. For let e
:

&amp;gt; e
2

&amp;gt;

... = 0. Let $) denote the points at which Osc/&amp;gt; en . Then

$) = {)}. But since/ is 72-integrable, each )n is discrete by 4.

Hence ) is a null set.

Let 51 be complete and ) a null set. Then each )n is complete

by 3. Hence by 365, n = ). As ) = 0, we see S)n is discrete.

Hence by 5, /is JZ-integrable.

If 51 is not complete, / does not need to be .R-integrable when

) is a null set.

Example. Let 5I
X
= l , n = 1, 2 ...

; m &amp;lt;
2.

Let 51 = 51} + 5^ .

Let /(V) = , at x = ^
= 1 in 512

.

Then each point of 51 is a point of discontinuity, and 51

But 5lj, 5Lj
are null sets, hence 51 is a null set.
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On the other hand,

J/=l , f/=0,
^31 21

and / is not 72-integrable in 51.

Pointwise and Total Discontinuity

463. Let/^j 2?m) be defined over 51. If each point of 31 is a

point of discontinuity, we say /is totally discontinuous in 51.

We say / is pointwise discontinuous in 51, if / is not continuous

in 51= \a\, but has in any V(a) a point of continuity. If/ is

continuous or pointwise discontinuous, we may say it is at most

pointwise discontinuous.

Example 1. A function/^ zm) having only a finite number

of points of discontinuity in 51 is pointwise discontinuous in 51.

Example 2. Let

f(x) = , for irrational x in 51 = (0, 1)

1
. m= -

, for x
n n

= 1 , for x = 0, 1.

Obviously/ is continuous at each irrational x, and discontinuous

at the other points of 51. Hence / is pointwise discontinuous

in 51.

Example 3. Let ) be a Harnack set in the unit interval

51 = (0, 1). In the associate set of intervals, end points included,

let/(z)=l. At the other points of 51, let /= 0. As S) is

apantactic in 51, / is pointwise discontinuous.

Example 4. In Ex. 3, let $) = (g + g, where ( is the set of end

points of the associate set of intervals. Let /= I/ft at the end

points of these intervals belonging to the nih
stage. Let/= in

g. Here / is defined only over ). The points g are points of

continuity in ). Hence/ is pointwise discontinuous in S).

Example 5. Let/(V) be^irichlfit!s_function,
i.e. /= 0, for the

irrational points 3 in 51 = (0, 1), and = 1 for the rational points.
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As each point of 21 is a point of discontinuity,/ is totally discon

tinuous in 21. Let us remove the rational points in 21 ; the deleted

domain is 3. In this domain/ is continuous. Thus on removing
certain points, a discontinuous function becomes a continuous

function in the remaining point set.

This is not always the case. For if in Ex. 4 we remove the

points g, retaining only the points (, we get a function which is

totally discontinuous in (, whereas before / was only pointwise
discontinuous.

464. 1. Iff(x1
#m) is totally discontinuous in the infinite com

plete set 21, then the points b^ where

Disc/ &amp;gt; co
,

a)
&amp;gt; 0,

form an infinite set, if co is taken sufficiently small.

For suppose bw were finite however small co is taken. Let

o)
1

&amp;gt;ft)2 &amp;gt;... =0. Let Dj, D
2 , be a sequence of superposed

cubical divisions of space of norms dn == 0. We shall only con

sider cells containing points of 21. Then if d
1
is taken sufficiently

small, D
1

contains a cell Sj, containing an infinite number of

points of 21, but no point at which
Disc/&amp;gt;ft&amp;gt;r If d

2 is taken

sufficiently small, D2
contains a cell S

2 &amp;lt;81 , containing no point
at which

Disc/&amp;gt;&amp;lt; 2
. In this way we get a sequence of cells,

which == a point p. As 21 is complete, p lies in 21. But / is

obviously continuous at p. Hence / is not totally discontinuous

in 21.

2. If 21 is not complete, bw .does not need to be infinite for

any co &amp;gt; 0.

Example. Let 21 = ,
n = 1, 2, and m odd and &amp;lt;2&quot;. At

, let
&amp;lt;
/= Then each point of 21 is a point of discontinuity.

But bo, is finite, however small co &amp;gt; is taken.

3. We cannot say /is not pointwise discontinuous in complete

21, when bo&amp;gt;
is infinite.
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Example. At the points |
-

\
= % let / = ; at the other

(n)

points of 51 = (0, 1), let/=l.

Obviously / is pointwise discontinuous in 21. But bw is an

infinite set for &&amp;gt; &amp;lt; 1, as in this case it is formed of $ft, and the

point 0.

Examples of Discontinuous Functions

465. In volume I, 330 seq. and 348 seq., we have given ex

amples of discontinuous functions. We shall now consider a few

more.

Example 1. Riemanns Function.

Let (x) be the difference between x and the nearest integer;
and when x has the form n + J, let (x) = 0. Obviously (V) has

the period 1.

It can be represented by Fourier s series thus :

sin 2 TTX sin 2 2 TTX . sin 3 2 TTX

Riemann s function is now

This series is obviously uniformly convergent in 21 = ( oo, oo).

Since (x) has the period 1 and is continuous within ( J, |),

we see that (nx) has the period -, and is continuous within
n

{
-

,

j.
The points of discontinuity of (nx) are thus

n= \^- + -} ,
= 0, 1, 2,...

( z n n )

Let (g= 5(gn {. Then at any a; not in (, each term of 2) is a con

tinuous function of x. Hence F(x) is continuous at this point.
On the other hand, F is discontinuous at any point e of (. For

F being uniformly convergent,

R lim F(x) = ZR lim (3w

i lim ^(a;) = 2Z lim ^=^ (4
x= ar=e H2
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We show now that 3) has the value

jFO)--^ for e= 2 * + 1
,

e irreducible. (5
16 n2 2n

and 4) the value

||;
F^ +w &amp;lt;

6

Hence 2

-OO- (7

To this end let us see when two of the numbers

1 +, and -L + i2mm 2 n n

are equal. If equal, we have

Thus if we take 2 s + 1 relatively prime to n, no two of the num
bers in ( are equal. Let us do this for each n. Then no two of

the numbers in (g are equal.

Let now x = e = h - Then (mx) is continuous at this point,
2 n n

unless 8) holds; i.e. unless m is a multiple of n, say m= In. In

this case, 8) gives

Thus I must be odd
;

I = 1, 3, 5 In this case (mx) = at e,

while .Rlim (mx)= J. When m is not an odd multiple of w,

obviously R lim (mx) (me).

Thus when m = In, I odd,

7?r (W) 1 1 (map 1 1 1

m2
:

2 W~ m2 2 7*2 p

When 77i is not a multiple of n,

m
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Hence

This establishes 5). Similarly we prove 6). Thus F(x) is

discontinuous at each point of (. As

F is limited. As the points (S form an enumerable set, F is

^-integrable in any finite interval.

466. Example 2. Let/(V)=0 at the points of a Cantor set

(7= m ^#2 ; m = 0, or a positive or negative integer, and the

a s = or 2. Let f(x) = 1 elsewhere. Since / (x) admits the

period I,/ (3 tt#) admits the period
-- Let

1
be the points of

3 n

C which fall in 21 =(0, 1). Let D
l
be the corresponding set of

intervals. Let &amp;lt;7

2
= (7

X + F
x , where. T

l
is obtained by putting a

C
l
set in each interval of D

1
. Let Dz

be the intervals correspond

ing to &amp;lt;7

2
. Let &amp;lt;7

3
= (7

2 + F
2
where F

2
is obtained by putting a &amp;lt;72

set in each interval of .Z&amp;gt;2 ,
etc.

The zeros of/(3nz) are obviously the points of Cn . Let

The zeros of F are the points of (S = \
Cn \. Since each (7n is a null

set, (S is also a null set. Let A = 21 (L The points J., ( are

each pantactic in 51. Obviously F converges uniformly in 51,

since 0&amp;lt;/(3 nx) &amp;lt;1. Since fn(x) is continuous at each point a

of -4, F is continuous at a, and
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We show now that F is discontinuous at each point of (. For

let em be an end point of one of the intervals of Dm+1 but not of

Dm . Then

--

7/1

Hence

As the points ^4. are pantactic in 21, there exists a sequence in

A which = e. For this sequence F = H. Hence

Similarly, if rjm is not an end point of the intervals Dm+1 , but a

limiting point of such end points,

Disc = 5^
*=&amp;gt;?m

The function F is jft-integrable in 21 since its points of discon

tinuity ( form a null set.

467. Let & = S tl
...

la !
be an enumerable set of points lying in the

limited or unlimited set 21, which lies in $ftm . For any x in 21 and

any e
L
in (, let x e^ lie in $8. Let g(x1

#m) be limited in 53 and

continuous, except at x = 0, where

Disc #(V)= b.

Let (7=2c
ti

...
la converge absolutely. Then

is continuous in A = 21 (, and at x= e^

For when # ranges over 21, # e
t
remains in $8, and g is limited

in 33. Hence F is uniformly and absolutely convergent in 21.

Now each g(x ej) is continuous in A
; hence ^ is continuous

in A by 147, 2.
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On the other hand, F is discontinuous at x = e
K

. For

where If is the series F after removing the term on the right of

the last equation. But H, as has just been shown, is continuous

at x = e
K

.

468. Example 1. Let (& = \en \
denote the rational numbers.

JO

=
, x=0.

Then rv \ V* 1 / N -i

^0*0=2, #O-O &amp;gt; /*&amp;gt;!
?
*M

is continuous, except at the points (g. At x = en ,

Disc ^ = -^.
n*

Example 2. Let @ = \en \
denote the rational numbers.

Let &quot;-

=
,

which we considered in I, 331.

Then

is continuous, except at the rational points, and at x = em ,

Disc F(x) = .

m !

469. In the foregoing g(x) is limited. This restriction may be

removed in many cases, as the reader will see from the following
theorem, given as an example.

LetJ2=\e il
...

ls \
be an enumerable apantactic set in $(. Let ( =

(J, E }. For any x in 51, and any e
t
in E, let x e

t
lie within a

cube 53. Letg^ xm) be continuous in 58 except at x=Q, where

9 == + QO, as x= 0. Let 2c
tl

...
t&amp;lt;

be a positive term convergent series.
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Then

is continuous in A = H (. On the other hand, each point of ($ is a

point of infinite discontinuity.

For any given point x = a of A lies at a distance
&amp;gt;

from (g.

Thus

as x ranges over some F^(a), and e
t
over E.

Hence
|0(s- Ol&amp;lt;

some JK;

for a: in V^(a), and e
t
in E. Thus .F is uniformly convergent at

x = a. As each g(x e
t) is continuous at # = a, F is continuous

at a.

.Z/e next x = eK . Then there exists a sequence

x\ x&quot; ... = eK (1

whose points lie in A. Thus the term g(x eK)
== + oo as x ranges

over 1). Hence a fortiori F = + oo. Thus each point of E is a

point of infinite discontinuity.

Finally any limit point of E is a point of infinite discontinuity,

by 462, 1.

470. Example. Let g(x) = -
, an = -- , a &amp;gt; 1.

x an

n

Then

is a continuous function, except at the points

:

:

&quot;

:

o,-i,-^-v- :

a a* a6

which are points of infinite discontinuity.

471. Let us show how to construct functions by limiting

processes, whose points of discontinuity are any given complete
limited apantactic set ( in an m-way space 9?m .
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1. Let us for simplicity take m = 2, and call the coordinates of

a point #, y.

Let Q denote the square wlxose center is the origin, and one of

whose vertices is the point (1, 0).

The edge of Q is given by the points x, y satisfying

|*|+|y| = l. (1

Thus ., f
J,

on the edge

-

LO, outside

of the square Q. Hence

L ( ) = ifl
- lim &quot;tt-M-lyli

] = (
i,
on the edge, g

2
L -=.l+njl-|* -[y|d 10, off the edge.edge.

Thus
ff(*y)=0(*, y) + J(*,y) = {;

in
.e

10, without ().

2. We next show how to construct a function g which shall =
on one or more of the edges of Q. Let us call these sides e^ &amp;lt;?

2 , 3 , e,
as we go around the edge of Q beginning with the first quadrant.
If 6r = on e

t , let us denote it by Gr
l ; if G- = on

t , eK let us

denote it by 6rl(C , etc. We begin by constructing 6rr We observe

that

=oo 1 +
w|&amp;lt; !

10, for tj= 0.

Now the equation of a right line I may be given the form

x cos a + y sin a = p

where 0&amp;lt;a&amp;lt;27r, jt?&amp;gt;0.
Hence

= 1 - lim
n

I

g COS a + y sin a ~ p I = j
1 on Z

n=x 1 + w
|

a; cos a + ?/ sin a p \

( 0, off I.

If now we make I coincide with ev we see that

y) =

Hence

- ^(^ y) =
n

,
0, on e

x
and without Q.
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In the same way,

By introducing a constant factor we can replace Q by a square

Qc whose sides are in the ratio c : 1 to those of Q.

Tnus i
H , on the edge of ft,

Q^ y^
_ iim Trn \~^~\\^

=
1
1 inside,

1 +
( c

+
c)

l utside

We can replace the square Q by a similar square whose center

is #, b on replacing |#|, \y\ by \x a , \y b\.

We have thus this result : by a limiting process, we can con

struct a function g(x, y) having the value 1 inside $, and on any
of its edges, and = outside ft and on the remaining edges.

Q has any point a, b as center, its edges have any length, and its

sides are tipped at an angle of 45 to the axes.

We may take them parallel to the axes, if we wish, by replacing

x
,

| y |

in our fundamental relation 1) by

Finally let us remark that we may pass to w-way space, by re

placing 1) by
|

x
l |

4- |*2 I

+ - + |*m |

= l.

3. Let now Q =
jqn |

be a border set [328], of non-overlapping

squares belonging to the complete apantactic set (, such that

d-f- ( = 9? the whole plane. We mark these squares in the

plane and note which sides qn has in common with the preceding

q s. We take the gn(xy) function so that it is = l in qn , except
on these sides, and there 0. Then

has for each point only one term ^= 0, if #, y lies in O, and no

term ^= if it lies in (.

Hence
_

{
1 f r each point of O,

&quot;

I 0, for each point of &amp;lt;.
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Since & is apantactic, each point of (S is a point of disconti

nuity of the 2 kind ; each point of Q is a point of continuity.

4. Let/(2#) be a function denned over 51 which contains the

complete apantactic set (.

Then

472. 1. Let 51 = (0, 1), $B = the points
2 + l

in 51.

Then 53n , $ have no points in common.

Let/n (
= 1 in n , and = in Bn

= 51 - 23n .

Let=[SBn J. Then

The function J7
is totally discontinuous in 33, oscillating be

tween and 1. The series F does not converge uniformly in

any subinterval of 51.

2. Keeping the notation in 1, let

At each point of 23n , G- = -, while Gr = in ^.
ft

The function 6r is discontinuous at the points of 93, but con

tinuous at the points B. The series G- converges uniformly in

51, yet an infinity of terms are discontinuous in any interval in 51.

473. Let the limitecj. set 51 be the union of an enumerable set

of complete sets 5ln 5. We show how to construct a function/,
which is discontinuous at the points of 51, but continuous else

where in an w-way space.

Let us suppose first that 51 consists of but one set and is com

plete. A point all of whose coordinates are rational, let us call

rational, the other points of space we will call non-rational. If 51

has an inner rational point, let /= 1 at this point, on the frontier

of 51 let /= 1 also
; at all other points of space let /= 0. Then

each point a of 51 is a point of discontinuity. For if x is a fron-
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tier or an inner rational point of 91, f(x) = 1, while in any V(x)
there are points where /= 0. If x is not in 91, all the points of

some D(x) are also not in 91. At these points /= 0. Hence /is
continuous at such points.

We turn now to the general case. We have

where A
1
= 9^, Az points of 912 not in 9l

x , etc. Let/j = 1 at the

rational inner points of A^ and at the frontier points of
9lj ; at all

other points let /x
= 0. Let /2

= 1 at the rational inner points of

A
2 , and at the frontier points of A% not in A

l ;
at all other points

H

let /2
= 0. At similar points of A

z let/3 = J,
and elsewhere = 0,

etc.

Consider now TJ

Let x = a be a point of 91. If it is an inner point of some A,,

it is obviously a point of discontinuity of F. If not, it is a proper

frontier point of one of the A s. Then in any D (#) there are points

of space not in 91, or there are points of an infinite number of the

As. In either case a is a point of discontinuity. Similarly we

see F is continuous at a point not in 91.

2. We can obviously generalize the preceding problem by sup

posing 91 to lie in a complete set 33, such that each frontier point

of 91 is a limit point of A = 33 91.

For we have only to replace our w-way space by 33.

Functions of Class 1

474. 1. Baire has introduced an important classification of

functions as follows :

Let /(#!#,) be defined over 91 ; /and 91 limited or unlimited.

If/is continuous in 91, we say its class is in 91, and write

Class /=0 , orCl/=0 ,
Mod 91.

If ^.

each/n being of class in 91, we say its class is 1, if/ does not lie

in class 0, mod 91.



FUNCTIONS OF CLASS 1 469

2. Let the series
F(x) = ?,fn(x)

converge in 51, each term/n being continuous in 51. Since

we see F is of class 0, or class 1, according as F is continuous, or

not continuous in 51. A similar remark holds for infinite prod-
UCts G(x)=Hgn(x).

3. The derivatives of a function f(x) give rise to functions of

class or 1. For let f(x) have a unilateral differential coeffi

cient g (x) at each point of 51. Both / and 51 may be unlimited.

To fix the ideas, suppose the right-hand differential coefficient

exists. Let h
1 &amp;gt;hz &amp;gt;

= (). Then

is a continuous function of x in 51. But

0O)=lim?.&amp;lt;
n=oo

exists at each x in 51 by hypothesis.

A similar remark applies to the partial derivatives

&amp;lt;tf_ . V_
3*1 dxm

of a function f(xl
#n).

4 -

each/n being of class 1 in 51. Then we say, Cl/= 2 if /does not

lie in a lower class. In this way we may continue. It is of

course necessary to show that such functions actually exist.

475. Example 1.

for x &amp;gt; 0,

for x = 0.

, = Um nx = f 1,

= 1 + nx \ 0,

This function was considered in I, 331. In any interval

51 = (0 &amp;lt; b) containing the origin x = 0, Cl jf = 1
; in any inter

val (a &amp;lt; 6), a
&amp;gt; 0, not containing the origin, Cl/= 0.
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Example 2.

n=oo enx

The class of f(x) is in 51. Although each fn is limited in 51,

the graphs of fn have peaks near x = which = oo, as n = oo.

Example S. If we combine the two functions in Ex. 1, 2, we

get
f art^um J-JL l-lna^l 1 *01 **

&quot;&quot;

n= \ 1 + nx enx
*

J 1 0, for x = 0.

Hence Cl/(z) = 1 for any set 53 embracing the origin ;
=

for any other set.

Example 4-

Let
/&amp;lt;

= liin.*
+

,
in 21 = (0,1).

n=oo

Then
/(aO=0 ,

for ^ =
i

= 2;^* ,
for 2;

&amp;gt;
0.

We see thus that / is continuous in (0*, 1), and has a point of

infinite discontinuity at x = 0.

Hence Class / (a;) =1, in 51

= 0, in(OM).
Example 5.

Let
j^ = Um __! in ^ = (0? ^^

a:
-

Then
f(x)=^ ,

for 2: &amp;gt;

2/

= -foo ,
for x 0.

Here lim/*^)
n=co

does not exist at x = 0. We cannot therefore speak of the class

of /(a?) in 51 since it is not defined at the point x = 0. It is

defined in 53 = (0*, oo), and its class is obviously 0, mod 53.
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Example 6.

Let
f(x) = sin -

,
for x =

x

= a constant c
,

for x = 0.

We show that Cl/= 1 in 51 = (- 0, oo). For let

nx ( 1

712:

sin

=
&amp;lt;7n 0*0

n

Now by Ex. 1,

0, for a;
&amp;gt; 0,

e, for x = ;

lim
sin -, for x

&amp;gt; 0,
x

while nmnnW =
}

0, for 2=0.

As each fn is continuous in 51, and

1* f \ -/?/&quot; *\
* OY

/ TI V. y
~~&quot;

/ V x &quot;*^^

we see its class is &amp;lt; 1. As / is discontinuous at x = 0, its class

is not in 51.

Example 7. Let ... ,. 1 .1
f(x) = lim - sin -

..
n

Here the functions fn(x) under the limit sign are not defined

for x= 0. Thus /is not defined at this point. We cannot there

fore speak of the class of /with respect to any set embracing the

point x 0. For any set 58 not containing this point, Cl /= 0,

since f(x) = in 53.

Let us set

Let

&amp;lt;j&amp;gt;(x)

= sin -
,

for x =

x

= a constant c

g(x) = lim - lim
&amp;lt;f&amp;gt;
n(x).
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Here g is a continuous function in 51 = ( oo, oo). Its class is

thus in 51. On the other hand, the functions &amp;lt; n are each of

class 1 in 5(.

Example 8.

is defined at all the points of (00, oo) except 0, 1, 2, ...

These latter are points of infinite discontinuity. In its domain

of definition, F is a continuous function. Hence Cl F(V) =
with respect to this domain.

476. 1. If 51, limited or unlimited, is the union of an enumerable

set of complete sets, we say 51 is liypercomplete.

Example 1. The points S* within a unit sphere $, form a

hypercomplete set. For let Sr have the same center as S, and

radius r&amp;lt;l. Obviously each 2r is complete, while J2r 5
= A7*, r

ranging over r^ &amp;lt; r2 &amp;lt;

- = 1 .

Example 2. An enumerable set of points a
l ,

a
2

form a hyper-

complete set. For each an may be regarded as a complete set,

embracing but a single point.

2. If 5l
x , 5I2

&quot;* are limited hypercomplete sets, so is their union

For each 5lm is the union of an enumerable set of complete sets

, n . Thus 51= 151^ ( m, n = 1, 2 - is hypercomplete.

Let 51 be complete. If $8 is a complete part of 51, A = 51 53 is

hypercomplete.

For let Q= JqJ be a border set of 53, as in 328. The points

An of A in each qn are complete, since 51 is complete. Thus

A \An \, and A is hypercomplete.

Let 51= J5ln j
be hypercomplete, each 5In being complete. If 53 i*

a complete part of 51, ^. = 51 53 is hypercomplete.

For let An denote the points of 5In not in 53. Then as above,

An is hypercomplete. As A \An \, A is also hypercomplete.
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477. 1. (Se Sets. If the limited or unlimited set 51 is the union

of an enumerable set of limited complete sets, in each of which

Osc/&amp;lt;e, we shall say 51 is an (ie set. If, however small e&amp;gt;0 is

taken, 51 is an ( set, we shall say 51 is an @ set, e = 0, which we

may also express by ( e=o-

2. Let f(x xm) be continuous in the limited complete set 51.

Then 51 is an (g e set, e = 0.

For let &amp;gt;0 be taken small at pleasure and fixed. By I, 353,

there exists a cubical division of space 7), such that if 5ln denote

the points of 51 in one of the cells of D, Osc/&amp;lt; e in 5ln . As 5ln is

complete, since 51 is, 51 is an ( set.

3. An enumerable set of points 51= \an \
is an ( e=y) 8e^-

For each an may be regarded as a complete set, embracing but

a single point. But in a set embracing but one point, Osc/= 0.

4. The union of an enumerable set of (
e
sets 51 = \ 51 j

is an ^ set.

For each 51 is the union of an enumerable set of limited sets

2lm = S5lm , n j, ns=l &amp;gt;

2
&amp;gt;

- and Osc/&amp;lt;e in each 5lmn .

Thus
a = {8LJ , f, n =1,2,...

But an enumerable set of enumerable sets is an enumerable set.

Hence 51 is an (
e
set.

5. Letf(x^ &quot;- xm) be continuous in the complete set 51, except at the

points ) =
c?j,

d
z

... dt . Then 51 is an (^o set.

For let e&amp;gt;0 be taken small at pleasure and fixed. About each

point of ) we describe a sphere of radius p. Let 5lp denote the

points of 51 not within one of these spheres. Obviously 5lp is com

plete. Let p range over r
1

&amp;gt; r2 &amp;gt;
= 0. If we set 5( = A -f- 2),

obviously A =
\$[rn }. As/ is continuous in 5l

fn , it is an (
e

set.

Hence 51, being the union of A and ), is an (
e
set.

478. 1. Let 51 be an @e
set. The points ) of 51 common to the

limited complete set $8 form an (
e
set.

For 51 is the union of the complete sets 5(n , in each of which

Osc/&amp;lt;e. But the points of 5ln in 33 form a complete set An , and

of course Osc/&amp;lt; e in An . As 2) = J
An \, it is an (ge set.
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2. Let 51 be a limited (ge set. Let 23 be a complete part of 51.

Then A = % - S3 is an (ge se.

For 51 is the union of the complete sets 5ln ,
in each of which

Osc
/&amp;lt;e.

The points of 5ln not in 33 form a set An , such that

Osc
/&amp;lt;e

in An also. But J. = \An \,
and each ^4n being hyper-

complete, is an @e set.

3. Let/(^ ... xm} be defined over 51, either/ or 51 being limited

or unlimited. The points of 51 at which

&amp;lt;*&amp;lt;/&amp;lt; (1
may be denoted by

(&amp;lt;/&amp;lt;). (2

If in 1) one of the equality signs is missing, it will of course be

dropped in 2).

479. 1. Let^ ,/2 , be continuous in the limited complete set H.

If at each point of 51, Urn fn exists, 51 is an ( e^ set and so is any
n=oo

complete 53 &amp;lt; 51.

For let lim fn (^ zm) =f(xl
xm) in 51. Let us effect a

division of norm e/2 of the interval ( 00, oo ) by interpolating
the points m_2 , m_ ^ , m = 0, m^ , m2

Let 5l t
= (w t &amp;lt;/&amp;lt;

wl+2), then 51 =
j
51J .

Next let ~
-Dvlm+-&amp;lt;f&amp;lt;m --}

Then ^=\^n
, P l w, jt?

= l, 2- (1

For let a be a point of 5l
t , and say /(#) = a. Then

But a
&amp;lt;/5(a) &amp;lt;+ e ,

and we may take e and n so that

Hence a is in )
ni2?

.

Conversely, let a be a point of 5) w&amp;gt;p j.
Then a lies in some

n
^ p

. Hence,
i

-^ ^ J? /* N ^^&quot;
-^
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But as/n(a) ==/(), we have

Hence if e is sufficiently small,

and thus a is in 5l t
.

Thus 1) is established. But )np is a divisor of complete sets,

and is therefore complete. Thus 51 is the union of an enumerable

set of complete sets j53 t 5i
in each of which Osc/&amp;lt;e, e small at

pleasure.

Let now 53 be any complete part of 51. Let a t
= Dv J53, 53 t j.

Then a t is complete, and Osc/&amp;lt;e, in a t
. Moreover, 53 = \^\.

Hence 53 is an (S ^ set-

2. If Class
/&amp;lt;

1 in limited complete 51, / limited or unlimited,

51 is an (S e set.

This is an obvious result from 1.

3. Let /(#! #m) be a totally discontinuous function in the non-

enumerable set 51. Then Classf is not or 1 in 51, (f b = Disc/a*
0a^ point is &amp;lt; & &amp;gt;

0.

For in any subset 53 of 51 containing the point re, Osc f&amp;gt;k.

Hence Osc /is not
&amp;lt;e,

in any part of 51, if e
&amp;lt;

k. Thus 51 cannot

be an (Se set.

4. If Class /(! zm );&amp;lt;
1 m fAe limited complete set 5(, ^e se

53 = (&amp;lt;/&amp;lt; 5) is a hypercomplete set, a, b being arbitrary numbers.

For we have only to take a = m t ,b = m
i+2

. Then 53 = 5I t , which,

as in 1, is hypercomplete.

480. (Lebesgue.) Let the limited or unlimitedfunctionf^ zm)

be defined over the limited set 51. // 51 may be regarded as an

( e-o set with respect to f, the class of f is &amp;lt; 1.

For let co
l &amp;gt;

o&amp;gt;

2 &amp;gt;

... = 0. By hypothesis 51 is the union of a

sequence of complete sets

5ln , 5I12 , 5I13
... (^

in each of which Osc / &amp;lt;. Wj 51 is also the union of a sequence

of complete sets

, , W&quot; (1
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in each of which Osc/&amp;lt; o&amp;gt;

2
. If we superpose the division 1) of

51 on the division A^, each 5llK will fall into an enumerable set

of complete sets, and together they will form an enumerable

sequence

in each of wThich Osc^^o^- Continuing in this way we see that

21 is the union of the complete sets

such that in each set of Sn , Osc/&amp;lt; o&amp;gt;n , and such that each set lies

in some set of the preceding sequence AS
r

n _
1

.

With each 2l
n&amp;gt;s

we associate a constant (7n .s , such that

&amp;lt;. , in a.., (2

and call &amp;lt;7n, the corresponding field constant.

We show now how to define a sequence of continuous functions

/i 1/2
&quot;* which =/. To this end we effect a sequence of super

imposed divisions of space Dj, D2
of norms = 0. The vertices

of the cubes of Dn we call the lattice points Ln . The cells of Dn

containing a given lattice point I of Ln form a cube Q. Let 5I
lti

be the first set of S
l containing a point of Q. Let 5l 2 i2

be the first

set of iS
7

2 containing a point of jQ lying in 2l
ltl

. Continuing in

this way we get

%H &amp;gt;*W^ &amp;gt;*%

To 5Inln belongs the field constant (7n ,n ; this we associate with

the lattice point I and call it the corresponding lattice constant.

Let now (S be a cell of Dn containing a point of 31. It has 2n

vertices or lattice points. Let P8 denote any product of 8 differ

ent factors 2rn ,
#

r2 , x
rg

. We consider the polynomial

4&amp;gt;

= APn + 25Pn_j + 2 OP,_ + .- + S^Pj + i,

the summation in each case extending over all the distinct

products of that type. The number of terms in
&amp;lt;f&amp;gt;

is, by I, 96,
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We can thus determine the 2n coefficients of &amp;lt; so that the values

of
&amp;lt;/&amp;gt;

at the lattice points of @ are the corresponding lattice con

stants. Thus
c/&amp;gt;

is a continuous function in Q, whose greatest and

least values are the greatest and least lattice constants belonging
to (. Each cube (5 containing a point of 31 has associated with it

a
&amp;lt;f&amp;gt;

function.

We now define fn(%i %) by stating that its value in any
cube ( of Dn , containing a point of 21, is that of the correspond

ing function. Since $ is linear in each variable, two &amp;lt; s belong

ing to adjacent cubes have the same values along their common

points.

We show now that/n(V) =f(x) at any point x of 51, or that

e&amp;gt;0, v, |/ (*)-/&amp;lt;&amp;gt;) I

&amp;lt;* ,
n &amp;gt;v. (3

Let a)e &amp;lt; e/8. Let H
ltl

be the first set in iS^ containing the point #,

H
2ll

the first set of Ss lying in 5I
lti

and containing x. Continuing
we get ^ &amp;gt; ^ &amp;gt; ^ ... &amp;gt; 2l

ete
.

Let ty e be the union of the sets in $j preceding 5I
it ; of the sets in

$
2 preceding 2I

2l2
and lying in 2l

lti
, and so on, finally the sets of

Se preceding 2l
cte , and lying in $He_^ ^^ Their number being

finite, 8= Dist (5l
et&amp;lt;

, ^e) is obviously &amp;gt; 0. We may therefore

take v
&amp;gt; e so large that cubes of Dv about the point x lie wholly

in
-/&amp;gt;,(, if &amp;lt;

S.

Consider now/n(z), n &amp;gt; v, and let us suppose first that x is not

a lattice point of Dn . Let it lie within the cell ( of Dn . Then

fn(x) is a mean of the values of

where I is any one of the 2n vertices of (E, and C
njn

is the corre

sponding lattice constant, which we know is associated with the

Bet**..
We observe now that each of the

^&amp;lt;3te.... (4

For each set in 8n is a part of some set in any of the preceding

sequences. Now 2l
n7n

cannot be a part of 2I
1A: , k &amp;lt; ^, for none of
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these points lie in D^x). Hence HyB
is a part of 5114 . For the

same reason it is a part of 5l2 i 2 , etc., which establishes 4).

Let now x be a point of 5I
7y

-

J(
. Then

I
Cnin

~ C\f |

&amp;lt;

|

O
a/n -/(* ) +

&amp;lt;fi&amp;gt;n
+*&amp;gt;.&amp;lt;!

, by 2). (5

From this follows, sincefn(x) is a mean of these O
njn , that

But now

I f (&amp;lt;r\ f (r\ I &amp;lt; I f (r\ f1
I J- I C1 f ( &amp;lt;r\ (7

\J yGJ ~~Jn\J S I \J \^J ^njn |
T

| ^njn J\XJ \ i

As x lies in 5lete ,

I/GO - i, I &amp;lt; /GO - C. I
+

I ^,.
- cm. I

&amp;lt;+|&amp;lt;|.
(8

by 2), 5). From 6), 8) we have 3) for the present case.

The case that # is a lattice point for some division and hence

for all following, has really been established by the foregoing

reasoning.

481. 1. Letf be defined over the limited set 51. If for arbitrary

a, 5, the sets 53 = ( &amp;lt;/&amp;lt; V) are hypercomplete, then Class
/&amp;lt;

1.

For let us effect a division of norm e/2 of (00, GO) as in

479,1. Then 5T=J5U, where as before 5I t
= (m t

&amp;lt; / &amp;lt; wl+2) .

But as Osc/&amp;lt;e in 5l t , and as each 5l
t

is hypercomplete by

hypothesis, our theorem is a corollary of 480.

2. For /(#! #m) t t&amp;gt;e f class &amp;lt; 1 in the limited complete set

51, it is necessary and sufficient that the sets (a &amp;lt;/&amp;lt; &amp;gt;)

are hyper-

complete, a, b being arbitrary.

This follows from 1 and 479, 2.

3. Let limited 51 be the union of an enumerable set of complete sets

|5ln J,
such that Cl/&amp;lt;

1 in each 5I n , Mew Cl/&amp;lt;
1 in 51.
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For by 479, 1, 5(n is the union of an enumerable set of complete

sets in each of which Oscf &amp;lt; e. Thus 51 is also such a set, i.e. an

l
e
set. We now apply 480, l.

4. If Class/ &amp;lt;1 in the limited complete set 51, its class is&amp;lt;~L,

in any complete part $8 of 51.

This follows from 479, l and 480, 1.

482. 1. Let f(xl
&quot; xm) be defined over the complete set 51, and

have only an enumerable set ( of points of discontinuity in 51.

Then Class/ = 1 in 51.

For the points E of 51 at which Osc/ &amp;gt; e/2 form a complete

part of 51, by 462, 3. But E, being a part of @, is enumerable

and is hence an (ge set by 477, 3. Let us turn to 23 = 51 E. For

each of its points 5, there exists a 8
&amp;gt; 0, such that Osc/&amp;lt; e in

the set b of points of $8 lying in -A(6). As 51 is complete, so is b.

As E is complete, there is an enumerable set of these b, call them

bj, b
2 , such that 33 = fbj. As 51 = 53+ E, it is the union of

an enumerable set of complete sets, in each of which Osc/ &amp;lt;
e.

This is true however small
e&amp;gt;

is taken. We apply now 480, l.

2. We can now construct functions of class 2.

Example. Let fn(x xm ) 1 at the rational points in the

unit cube Q, whose coordinates have denominators &amp;lt; n. Else

where let/n = 0. Sincefn has only a finite number of discontinu

ities in O, Cl/n = 1 in Q. Let now

At a non-rational point, each fn = 0, .-. /=0. At a rational

point, fn = 1 for all n &amp;gt; some s. Hence at such a point /= 1.

Thus each point of O is a point of discontinuity and Disc/= 1.

Hence Cl/is not 1. As / is the limit of functions of class 1, its

class is 2.

483. Let f(x #m) be continuous with respect to each #
t , at each

point of a limited set 51, each of whose points is an inner point.

Then Class
/&amp;lt;!.
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For let 21 lie within a cube Q. Then A = Q H is complete.
We may therefore regard 21 as a border set of A ; that is, a set of

non-overlapping cubes jqn j. We show now that C1/&amp;lt;1 in any
one of these cubes as q. To this end we show that the points $8m
of q at which

m m

form a complete set. For let 6j, 5
2

be points of 33m , which = ft.

We wish to show that ft lies in 23m . Suppose first that 6,, &amp;gt;,+1

have all their coordinates except one, say a?, the same as the coordi

nates of ft. Since

1 1

w~~ m
therefore

-j

-.

As/is continuous in x
1 , and as only the coordinate x

l
varies in

ba+p , we have

Hence /3 lies in 53m .

We suppose next that 68 ,
68+1 have all their coordinates the

same as /? except two, say x
l , #2

.

We may place each bn at the center of an interval t of length 8,

parallel to the x
l axis, such that

since /is uniformly continuous in a^, by I, 352. These intervals

cut an ordinate in the a^, a;
2 plane through y8, in a set of points

ca+p which =
/3. Then as before,

m

As e is small at pleasure, ft lies in 33m . In this way we may
continue.

As Cl/&amp;lt;
1 in each qn ,

it is in 51, by 481, 3.
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484. (Volterra.) Letf^f^ be at most pobitwise discontinuous

in the limited complete set 51. Then there exists a point of 51 at

which all thefn are continuous.

For if 51 contains an isolated point, the theorem is obviously

true, since every function is continuous at an isolated point. Let

us therefore suppose that 51 is perfect.

Let e
1 &amp;gt;e2 &amp;gt;---=0. Let a

1
be a point of continuity of /r

Then
Osc/! &amp;lt;

e ,
in some 5l

:
= F

5l(i)-

In
5lj

there is a point b of continuity of /r Hence Osc/j &amp;lt; e2

in some F^), and we may take b so that F
7? (6)&amp;lt;511

. But in

1^(6) there is a point a
2
at which /2 is continuous. Hence

OSC/L &amp;lt;
e
2 , Osc/2 &amp;lt; ej ,

in some 512
= F

2(a2),

and we may take a
z
such that 512 &amp;lt; 5^ . Similarly there exists a

point a
3
in 512 , such that

e
3 , OsC/2 &amp;lt; 62 SC/3 &amp;lt; e

l &amp;gt;

in S0me ^3= ^3(^3)

and we may take a
3
so that 5I3 &amp;lt; 512

.

In this way we may continue. As the sets 5ln are obviously

complete, Dv\y[n \
contains at least one point a of 51. But at this

point each/m is continuous.

485. 1. Let 51 = ^8 + be complete, let 53, be pantactic with

reference to 51. Then there exists no pair of functions f, g defined

over 51, such that if 53 are the points of discontinuity off in 51, then

53 shall be the points of continuity of g in 51.

This is a corollary of Volterra s theorem. For in any Ffi(a) of

a point of 51, there are points of 53 and of (. Hence there are

points of continuity of/and g. Hence/, g are at most pointwise

discontinuous in 51. Then by 484, there is a point in 51 where/
and g are both continuous, which contradicts the hypothesis.

2. Let 51= 53 +( be complete, and let 53, each be pantactic with

reference to 51. If 53 is hypercomplete, ( is not.

For if 53, @ were the union of an enumerable set of complete

sets, 473 shows that there exists a function / defined over 51

which has 53 as its points of discontinuity ; and also a function g
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which has ( as its points of discontinuity. But no such pair of

functions can exist by 1.

3. The non-rational points 3 in any cube O cannot be hyper-

complete.

For the rational points in O are hypercomplete.

4. As an application of 2 we can state :

The limited function f(x l
--xm) which is &amp;lt; at the irrational

points of a cube G, and
&amp;gt;

at the other points 3 of }, cannot be

of class or 1 in O.

For if Cl/ &amp;lt; 1, the points of O where/ &amp;gt; must form a hyper-

complete set, by 479, 4. But these are the points 3.

486. 1. (Baire.^) If the class off(^xl
&quot;-xm) is 1 in the com

plete set 51, it is at most pointwise discontinuous in any complete

8&amp;lt;H,

If Cl/ = 1 in 51, it is &amp;lt; 1 in any complete $ &amp;lt; 51 by 481, 4
; we

may therefore take 33 = 51. Let a be any point of 51. We shall

show that in any V V^a) there is a point c of continuity of /.

Let e
l &amp;gt; e2 &amp;gt;

= 0. Using the notation of 479, 1, we saw that

the sets 5lt
= (w t &amp;lt;/&amp;lt;

mt+2) are hypercomplete. By 473, we can

construct a function
&amp;lt;/&amp;gt;

t(^i zm), defined over the w-way space

$ftOT which is discontinuous at the points 5ft , and continuous else

where in 9?m . These functions c^, &amp;lt;/&amp;gt;2
are not all at most point-

wise discontinuous in V. For then, by 484, there exists in V a

point of continuity #, common to all the &amp;lt; s. This point b must

lie in some 5lt , whose points are points of discontinuity of $ t
.

Let us therefore suppose that fa is not at most pointwise dis

continuous in V. Then there exists a point c
l
in V, and an rj l

such that V
l
= J^C^i) contains no point of continuity of

&amp;lt;/&amp;gt;y
.

Thus F
1 &amp;lt;.5ly.

But in 5Iy and hence in F
a , Osc

f&amp;lt;e1
. The

same reasoning shows that in V\ there exists a F^= F^^), such

that Osc/&amp;lt; e
2

in F^. As 51 is complete, V^&amp;gt; V^&amp;gt;
defines a

point c in Fat which /is continuous.

2. If the class off(x^ #m) is 1 in the complete set 51, its points

of discontinuity 3) form a set of the first category.
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For by 462, 3, the points ) of 3) at which Osc/&amp;gt;
- form a
n

complete set. Each Dn is apantactic, since / is at most pointwise

discontinuous, and ) is complete. Hence 3) = jOn (
is the union

of an enumerable set of apantactic sets, and is therefore of the 1

category.

487. 1. Let f be defined over the limited complete set 31. If
Classf is not &amp;lt; 1, there exists a perfect set 3) in 31, such that f is

totally discontinuous in 3).

For if Cl/ is not &amp;lt;1 there exists, by 480, an e such that for

this e, 31 is not an ( e set. Let now c be a point of 31 such that

the points a of 31 which lie within some cube q,
whose center is

&amp;lt;?,

form an @ set. Let 53 = {aj, ( = \c\.

Then $8 = (. For obviously ( &amp;lt; 53, since each c is in some

a. On the other hand, 33 &amp;lt; (. For any point b of 53 lies within

some q. Thus b is the center of a cube q within q. Obviously
the points of 31 within q form an (ge set.

By Borel s theorem, each point c lies within an enumerable set

of cubes Jcn |, such that each c lies within some q. Thus the

points an of 31 in cn ,
form an (g e set. As ( = 5an |, ( is an (5 e set.

Let ) = 31 - 6. If 3) were 0, 31 = S and 31 would be an (g. set

contrary to hypothesis. Thus 3) &amp;gt;
0.

3) ^s complete. For if Z were a limiting point of 3) in (, Z must

lie in some c. But every point of 31 in c is a point of ( as we saw.

Thus I cannot lie in (.

We show finally that at any point d of ),

Osc/&amp;gt;, with respect to ).

If not, Osc/&amp;lt;e with respect to the points b of ) within

some cube q whose center is d. Then b is an ( e set. Also the

points e of & in q form an (5 e set. Thus the points b -f c, that is,

the points of 31 in q form an (5 e set. Hence d belongs to (, and

not to ). As Osc/&amp;gt;e at each point of 3), each point of 3) is a

point of discontinuity with respect to 3). Thus/ is totally discon

tinuous in ).

This shows that 3) can .contain no isolated points. Hence 3) is

perfect.
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2. Let f be defined over the limited complete set SI. .Iff is at

most pointwise discontinuous in any perfect 58 &amp;lt; SI, its class is &amp;lt; 1

This is a corollary of 1. For if Class / were not 0, or 1, there

exists a perfect set 2) such that/is totally discontinuous in ).

488. If the class off, g &amp;lt; 1 in the limited complete set SI, the class

of their sum, difference, or product is &amp;lt; 1 . If f &amp;gt; in SI, the class

of
&amp;lt;f&amp;gt;

For example, let us consider the product h =fg. If Cl h is not
&amp;lt; 1, there exists a perfect set ) in SI, as we saw in 487, l, such

that h is totally discontinuous in 2). But/, # being of class
&amp;lt;, 1,

are at most pointwise discontinuous in ) by 486. Then by 484,
there exists a point of ) at which/, g are both continuous. Then
h is continuous at this point, and is therefore not totally discon-

tinous in $).

Let us consider now the quotient &amp;lt;f&amp;gt;.

If Cl &amp;lt; is not &amp;lt; 1, is

totally discontinuous in some perfect set $) in SI. But since
/&amp;gt;

in ),/ must also be totally discontinuous in ). This contradicts

486.

489. 1. Let F= ^f^...,t(xl
#m) converge uniformly in the com

plete set SI. Let the class of each termft be &amp;lt; 1, then Class J?&amp;lt; 1

mSI.

For setting as usual [117],

1=1^ +^ (1

there exists for each e
&amp;gt; 0, a fixed rectangular cell 72A, such that

|
JA

|

&amp;lt; e, as x ranges over SI. (2

As the class of each term in FK is &amp;lt; 1, Cl J^ &amp;lt; 1 in SI. Hence
SI is an (ge set with respect to FK .

From 1), 2) it follows that SI is an (ge set with respect to F.

2. .Letf ^ = II/^...^^ #m) converge uniformly in the complete
set SI. /f the class of eachf^ is &amp;lt; 1, then Cl ^&amp;lt; 1 in SI.
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Semicontinuous Functions

490. Let f(xl
- XM) be defined over 21. If a is a point of 51,

Max/ in F&quot;8(a) exists, finite or infinite, and may be regarded as a

function of 8. When finite, it is a monotone decreasing function

of 8. Thus its limit as 8 = exists, finite or infinite. We call

this limit the maximum off at x= a, and we denote it by

Max/.
x=a

Similar remarks apply to the minimum of/in Fa(a). Its limit,

finite or infinite, as 8 ==
0, we call the minimum off at x = a, and

we denote it by
Min/
x=a

The maximum and minimum of /in Fg(a) niay be denoted by

Max/ , Min/
a, S a, S

Obviously, Max (-/)=- Min/,
x=a x=a

Min (-/)=- Max/.
x=a x=a

491. Example 1.
-,

/O) = in(-l, 1) , for
*c

=
,

forz=0.

Then
Max/=+sc , Min/=-oo.
^=0 r=o

Example 2. -,

/(V) = sin - in ( 1, 1) , for x =

^c/

=
,

for x = 0.

Then
Max/=l , Min/=-l.
;r=o x=Q

Example 3.
/() = l in (_ !, l) ,

for

= 2
,

for x = 0.

Then
Max/=2 . Min/=l.&quot;
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We observe that in Exs. 1 and 2,

Iim/=Max/ , lim/=Min/;
x=Q x=Q x=Q z=o

while in Ex. 3,

lim/= 1
,

and hence Max/ &amp;gt; lim/.
X=Q X=Q X=Q

Also
lim/= Min/.

Example 4- -i

f(x) = (z
2 + 1) sin - in (- 1, 1) , for x*

x

= - 2 , for x = 0.

Here
Max/= 1

, Min/= -
2,

x=0 x=0

lim/=l , lim/== 1.

X=Q #=0

Examples. Let
f^ = x , for rational rr in (0, 1)

= 1
,

for irrational x.

Here
Max/=l , Min/=0,
z=0 x=0

lhn/=l.
2^=0

492. 1. For M to be the maximum off at x = a, it is necessary

and sufficient that

1 e &amp;gt; 0, 8
&amp;gt; 0, /(z) &amp;lt; M+ e, for any x in V8(a) ;

2 there exists for each e &amp;gt; 0, and in any Fg(a), a point a such

that

These conditions are necessary. For M is the limit of Max/
in Fs(a), as B = 0. Hence

e&amp;gt;0, o&amp;gt;0,

a,fi

But for any x in Fs(a),

f(x) &amp;lt; Max/.



SEMICONTINUOUS FUNCTIONS 487

Hence
f^ &amp;lt;M+e ? x in y^

which is condition 1.

As to 2, we remark that for each e &amp;gt; 0, and in any Fi(a),
there is a point a, such that

-e + Max/ &amp;lt;/().
a, 6

But M &amp;lt; Max/.

Hence

which is 2.

These conditions are sufficient. For from 1 we have

a, 8

and hence letting = 0,

since e &amp;gt; is small at pleasure.

From 2 we have

Max/&amp;gt; M-e,
a, 5

and hence letting S = 0,

Max/ &amp;gt; Jtf. (2
x=a

From 1), 2) we have M= Max/.
j^=a

2. For m to be the minimum of f at x = a, it is necessary and

sufficient that

1 e &amp;gt; 0, 8 &amp;gt; 0, m - e &amp;lt;/O), for any x in V&(a) ;

2 that there exists for each e &amp;gt; 0, and in any VI (a), a point a

such that

/() &amp;lt; m + e.

493. When Max/ = /(#), we say / is supracontinuous at x = a.
x=a

When Min/= /(a), we say / is infracontinuous at a. When/ is
x=a

supra (infra) continuous at each point of 51, we say / is supra

(infra) continuous in 51. When / is either supra or infracontinu

ous at a and we do not care to specify which, we say it is semi-

continuous at a.
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The function which is equal to Max /at each point x of 51 we
call the maximal function of/, and denote it by a dash above, viz.

f(x). Similarly the minimal function /(V) is defined as the value

of Min/ at each point of 21.

Obviously Qsc/= Max/ _ M;n/= D
.

sc/
x=a x=a x=a - xa

We call -
&amp;lt;*)=/&amp;lt;&amp;gt;)-/&amp;lt;&amp;gt;)

the oscillatory function.

We have at once the theorem :

Forf to be continuous at x a, it is necessary and sufficient that

/00= 700 =/().
For Min/ &amp;lt; f(a) &amp;lt; Max /.

a, 6 a, 8

Passing to the limit x = a, we have

Min
/&amp;lt;/&amp;lt;

&amp;lt; Max/,
x=a x=a

or

/()&amp;lt;/()&amp;lt;/().

But for / to be continuous at x a, it is necessary and suffi

cient that

(V) = Osc/= 0.
x=a

494. 1. For f to be supracontinuous at x = a, it is necessary and

sufficient thatfor each e &amp;gt; 0, there exists a S
&amp;gt; 0, such that

/O) &amp;lt; /O) + for any x in V^a). (1

Similarly the condition for infracontinuity is

f(a) - e
&amp;lt; /( , for any x in V^a). (2

Let us prove 1). It is necessary. For when /is supracontinu
ous at a,

Then by 492, 1,

&amp;gt;0 , S&amp;gt;0 , /(aO&amp;lt;/(&amp;lt;0 + , for any x in

which is 1).
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It is sufficient. For 1) is condition 1 of 492, l. The condition

2 is satisfied, since for a we may take the point a.

2. The maximal function f(x) in supracontinuous ; the minimal

function f(x) is infracontinuous, in 31.

To prove that /is supracontinuous we use 1, showing that

f(x) &amp;lt; /() + e , for any x in some V^d).

Now by 492, l,

e
&amp;gt; 0, 8 &amp;gt; , f(x) &amp;lt; /(a) + e , for any x in F(a).

Thus if e &amp;lt; e

f(x) &amp;lt; /(a) + e ,
for any x in F, (a) , 17

=
|.

3. jT/ie swm
(&amp;gt;/

^wo supra (infra) continuous functions in 31 is a

supra (infra) continuous function in 31.

For let/, g be supracontinuous in 31 ; let/-f g = h. Then by 1,

for any a; in some Fs(a) ; hence

This, by 1, shows that h is supracontinuous at x= a.

4. If f(x) is supra (infra) continuous at z = a, g(jz)=f(%)
is infra (supra) continuous.

Let us suppose that /is supracontinuous. Then by 1,

/(V)&amp;lt;/(a)-|-
e

,
for any x in some Fs(a).

Hence
-/()-,&amp;lt;-/(*), , .

g(a)
- e &amp;lt; ^(2:) ,

for any x in F(a).

Thus by 1, # is infracontinuous at a.
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495. If /(#! Xm) i8 supracontinuous in the limited complete

set 51, the points 33 of 51 at which
/&amp;gt;

c an arbitrary constant form a

complete set.

For let f &amp;gt; c? at 6j,
b
z

which == b ; we wish to show that b lies

in $.

Since/ is supracontinuous, by 494, l,

/(V) &amp;lt;/(&amp;gt;)
+ e , for any x in some F6(5)= V.

But
&amp;lt;?&amp;lt;/(&), by hypothesis ;

and bn lies in Fi for n&amp;gt; some m.

Hence

*-&amp;lt;/(a).

As e
&amp;gt;

is small at pleasure,

and b lies in 33.

496. 1. The oscillatory function oy(x) is supracontinuous.

For by 493,
(*)= Max/- Min/

= Max/+Max(-/).

But these two maximal functions are supracontinuous by 494, 2.

Hence by 494, 3, their sum a&amp;gt; is supracontinuous.

2. The oscillatory function o&amp;gt; is not necessarily infracon-

tinuous, as is shown by the following

Example. /= 1 in (-1, 1), except for z = 0, where /= 2.

Then co(x) = 0, except at x = 0, where o = 1. Thus

Min
&&amp;gt;(&amp;gt;)

=
, while

o&amp;gt;(0)

= 1.

Hence
&&amp;gt;(a?)

is not infracontinuous at x = 0.

3. Let
o&amp;gt;(V)

be the oscillatory function off(x l
xm) in 51. For

f to be at most pointwise discontinuous in 51, it is necessary that

Min &) = at each point of 51. If 51 is complete, this condition is

sufficient.
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It is necessary. For let a be a point of H. As / is at most

pointwise discontinuous, there exists a point of continuity in any

Ffi(a). Hence Min
o&amp;gt;(V)

= 0, in F6 (a). Hence Min
o&amp;gt;(V)

= 0.
x=a

It is sufficient. For let
1 &amp;gt;e2 &amp;gt;

=0. Since Min 0(2:)
= 0,

jr=a

there exists in any Fs(a) a point a
l

such that
&&amp;gt;(!) &amp;lt;|e1

.

Hence
o&amp;gt;(V) &amp;lt;

e
l
in some ^(aj) &amp;lt;

F
6

. In V
Sl

there exists a point

2
such that

o&amp;gt;O)
&amp;lt; e2

in some F
52() &amp;lt; F

6l , etc. Since 21 is com

plete and since we may let Sn = 0,

V^ &amp;gt; Ffi2 &amp;gt;

= a point of 51,

at which f is obviously continuous. Thus in each Fs(tf) is a point

of continuity of/. Hence /is at most pointwise discontinuous.

497. 1. At each point x of 31,

&amp;lt;#&amp;gt;

= Min \f(x) -/(*)}, and t = Min
j/&amp;lt; -/(*){

= 0.

Let us show that $ = at an arbitrary point a of 51. By 494,

2, /(V) is supracontinuous ; hence by 494, 1,

f(x) &amp;lt;/() + e
,

for any a: in some Fs(a) = F&quot;. (1

Also there exists a point a in Fsuch that

_+/() &amp;lt;/(). (2
Also by definition

/() &amp;lt;/() (3

If in 1) we replace # by a we get

/()&amp;lt;/() + e. (4

From 2), 3), 4) we have

-e +/(a) &amp;lt;/() &amp;lt;/() &amp;lt;/() + e,

or

&amp;lt;/()-/()&amp;lt;
2 .

As e &amp;gt; is small at pleasure, this gives

&amp;lt;/&amp;gt;&amp;lt;

= o.
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2. Iff is semicontinuous in the complete set 51, it is at most point-
wise discontinuous in 51.

CO=/CO-/CO
= [/CO -/CO] + [/co -/CO] (1

To fix the ideas let / be supracontinuous. Then &amp;lt;

== in 51.

Hence 1) gives
Min

o&amp;gt;(V)
= Min ^(z) = 0, by 1.

Thus by 496, 3, / is at most pointwise discontinuous in 51.



CHAPTER XV

DERIVATES, EXTREMES, VARIATION

Derivates

498. Suppose we have given a one-valued continuous function

f(x) spread over an interval 51 = (a&amp;lt;6).
We can state various

properties which it enjoys. For example, it is limited, it takes

on its extreme values, it is integrable. On the other hand, we
do not know 1 how it oscillates in 51, or 2 if it has a differ

ential coefficient at each point of 51. In this chapter we wish to

study the behavior of continuous functions with reference to these

last two properties. In Chapters VIII and XI of volume I this

subject was touched upon ; we wish here to develop it farther.

499. In I, 363, 364, we have defined the terms difference quo
tient, differential coefficient, derivative, right- and left-hand dif

ferential coefficients and derivatives, unilateral differential coeffi

cients and derivatives. The corresponding symbols are

, / (a) ,

Lf(a) ,

The unilateral differential coefficient and derivative may be de

noted by
Uf (a) , Uf (x). (1

When . ,

does not exist, finite or infinite, we may introduce its upper and

lower limits. Thus

A=O
(2

always exist, finite or infinite. We call them the upper and lower

differential coefficients at the point x = a. The aggregate of values

493
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that 2) take on define the upper and lower derivatives of /(#), as

in I, 363.

In a similar manner we introduce the upper and lower right-
and left-hand differential coefficients and derivatives,

Rf&amp;gt; , Rf , Lf , Lf. (3

Thus, for example,

finite or infinite. Cf. I, 336 seq.

If f(x) is defined only in 51 = (a &amp;lt; /3), the points a, a + A must
lie in 51. Thus there is no upper or lower right-hand differential

coefficient at x = fB ; also no upper or lower left-hand differential

coefficient at x = a. This fact must be borne in mind. We call

the functions 3) derivates to distinguish them from the deriva

tives Rf, Lf. When Rf(a)=Ef (a)i finite or infinite,

Rf(cC) exists also finite or infinite, and has the same value. A
similar remark applies to the left-hand differential coefficient.

To avoid such repetition as just made, it is convenient to in

troduce the terms upper and lower unilateral differential coeffi

cients and derivatives, which may be denoted by

Uf&amp;gt; , Uf. (4

The symbol U should of course refer to the same side, if it is

used more than once in an investigation.

When no ambiguity can arise, we may abbreviate the symbols

3), 4) thus:

R , R
,
L , L , U ,

U.

The value of one of these derivates as R at a point x a may
similarly be denoted by

5().
The difference quotient

a-b
may be denoted by

A(a, b).
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1

Example 1. /(V) = zsin- ,
x= in ( 1, 1)

=
, x=0.

li sin -

Here for x = 0,
-^ = . = sin r -

Hence -
&quot;i

Z/ (0) =

Example 2. f(x) = z* sin -
,

a; ^ in (
-

1,
x

=
, a: = 0.

. 1

A/
n
4

Here for x = ,
=

5

Hence

+ QO , Z/ (0)=:-QO,

/ (O) = + oo
,

Example 8. f(x) = a; sin - , for
&amp;lt;

x &amp;lt; 1

= x* sin - ,
for 1 &amp;lt; x

&amp;lt;

x

=
, for x = 0.

Here

500. 1. Before taking up the general theory it will be well

for the reader to have a few examples in mind to show him how

complicated matters may get. In I, 367 seq., we have exhibited

functions which oscillate infinitely often about the points of a set



496 DERIVATES, EXTREMES, VARIATION

of the 1 species, and which may or may not have differential co

efficients at these points.

The following theorem enables us to construct functions which

do not possess a differential coefficient at the points of an enumer

able set.

2. Let @ = \en \
be an enumerable set lying in the interval SI. For

each x in SI, and en in (, let x en lie in an interval 33 containing

the origin. Let g(x) be continuous in 33. Let g\x) exist and be

numerically &amp;lt;_
M in 33, except at x = 0, where the difference quotients

are numerically &amp;lt;.
M. Let A = San converge absolutely. Then

is a continuous function in SI, having a derivative in ( = SI G.

At the points of (, the difference quotient of F behaves essentially as

that of g at the origin.

For g(x) being continuous in 33, it is numerically &amp;lt;
some con

stant in SI. Thus F converges uniformly in SI. As each term

g(x #n) is continuous in SI, F is continuous in SI.

Let us consider its differential coefficient at a point x of (.

Since g (x en) exists and is numerically &amp;lt; M,

^ (20=2n&amp;lt;/(*-O , by 156, 2.

Let now x = em ,
a point of (,

W(x) = amg(x - em) + 2*a^C* - *)
*
i *% M*$

-

The summation in 2* extends over dl\n=^m. Hence by what

has just been shown, G- has a differential coefficient at x = em .

Thus behaves at x = em , essentially as at x = 0. Hence

501. Example 1. Let

^r(V) = a# , a: &amp;gt;

b
&amp;lt; &amp;lt;

a.

= bx
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Then

is continuous in any interval SI, and has a derivative

-$r O-en)

at the points of SI not in (. At the point em ,

r&amp;gt; TT/ / \ . &amp;gt;T^* J- is \H (x) = ama + &amp;gt;

o g(em -en ),

Let & denote the rational points in SI. The graph of F(x) is a

continuous curve having tangents at a pantactic set of points ;

and at another pantactic set, viz. the set (S, angular points (I, 366).

A simple example of a g function is

Example 2. Let g(x) = x2 sin-
,

x =

=
, z=0.

This function has a derivative

# (z) = 2zsin--7rcos- ,

X X

=
, z = 0.

Thus if 2cn is an absolutely convergent series, and Q?= \en \
an

enumerable set in the interval 31 = (0, 1),

is a continuous function whose derivative in SI is

Thus F has a derivative which is continuous in SI (S, and at

the point x = em
Disc F = 2 &amp;lt;?m7r,

since -
(*)= 2-

Mtf. 451
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If ( is the set of rational points in 31, the graph of F(x) is a

continuous curve having at each point of 31 a tangent which does

not turn continuously as the point of contact ranges over the

curve; indeed the points of abrupt change in the direction of the

tangent are pantactic in 31.

Example 3. Let g(x) = x sin log x2 ,
x =

=
, x=0.

Then g (x) = sin log x1 + 2 cos log x2
,

x j= 0.

At x = 0, ^ = sin log h2

which oscillates infinitely often between 1, as h = A# = 0. Let

(g = \en \
denote the rational points in an interval 31. The series

- *% /%P ^ ^ ein Inrp (v _ p ^2== / ( C &quot;r, I olll H.^ii I Js &quot;n I

satisfies the condition of our theorem. Hence F(x) is a continu

ous function in 31 which has a derivative in 31 (. At = em ,

Thus the graph of ^ is a continuous curve which has tangents at

a pantactic set of points in 31, and at another pantactic set it has

neither right- nor left-hand tangents.

502. Weierstrass Function. For a long time mathematicians

thought that a continuous function of x must have a derivative, at

least after removing certain points. The examples just given

show that these exceptional points may be pantactic. Weierstrass

called attention to a continuous function which has at no point a

differential coefficient. This celebrated function is defined by the

series

F (x) = 2 an cos bnirx = cos TTX -f- a cos ITTX + a2 cos WTTX + - (1

where &amp;lt; a &amp;lt; 1 ; b is an odd integer so chosen that

a5l + 7r. (2
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The series F converges absolutely and uniformly in any interval

Hence .F is a continuous function in 2(. Let us now consider

the series obtained by differentiating 1) termwise,

Q(x) = - 7r2(6)
n sin bnirx.

If ab
&amp;lt; 1, this series also converges absolutely and uniformly,

and F (x) = &amp;lt;?O),

by 155, 1. In this case the function has a finite derivative in 21.

Let us suppose, however, that the condition 2) holds. We have

v ^ , c &amp;lt;-hA)
- cos b n7rx\

= Qm + Qm . (3A* 7 A

Now Tn _ 1 n

m = Vs

5
cos bn7r(x + 7t) cos ft

n
7T2:|

&amp;lt;*4 A

/*JT+/i

- I sin bn7rudu.

^ A *
Since

I fx+h I /*x+h

I sin bn7rudu &amp;lt; I I

I &amp;lt;M
&amp;lt; W- - if

Consider now * n

ro
=

2J ^ jcos bnr
jr(x + h) cos l&amp;gt;

n
Trx\.

m ft

Up to the present we have taken h arbitrary. Let us now
take it as follows ;

the reason for this choice will be evident in a

moment.

Let
*-*=i.+f.,

where im is the nearest integer to bmx. Thus

-*&amp;lt;.&amp;lt;!

Then
6-(* + A) = *. + f + Ai- = . + ij. .
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We choose h so that

Vm = m 4- hbm is 1, at pleasure.

Then _*
h = ^m ^m = 0, as m=cc ;

om

moreover
, and _ - . &amp;lt; .

This established, we note that

cos bnTr(x + h) = cos bn
~m

7r - bm(x + h) = cos 6n
~m

(tm -f- rjm)7r

= cos (tm+ ^m )7r , since 6 is odd

=
( l)

l +1
, since T;TO is odd.

Also
cos bn7rx = cos bn

~m
(tm + fm)?r

bn
~m

^m7T.

Thus

where
:;

=
(-i&amp;gt;+ .

Now each
5 j

&amp;gt; and in particular the first is
&amp;gt;

0. Thus

sgn Qm = sgn
e

-f
= sgn emrjm,

h

and , ,x m

i^i&amp;gt;f=^-&amp;gt;iW&quot;^m ^m

Thus if 2) holds,
|

T̂O
|

&amp;gt;

|
Qm |.

Hence from 3),

sgn Q = sgn Qm = sgn ^m?;m ,

and

Let now m = QO . Since ?;m = 1 at pleasure, we can make

Q = -j-oo, or to oo
, or oscillate between oo, without becoming

definitely infinite. Thus F (x) has at no point a finite or infinite

differential coefficient. This does not say that the graph of F does

not have tangents; but when they exist, they must be cuspidal tangents.
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503. 1. Vblterra s Function.

In the interval 51 = (0, 1), let &amp;lt;&amp;gt;

=
\r)l be a Harnack set of

measure 0&amp;lt;A&amp;lt;1. Let A = |8n j
be the associate set of black

intervals. In each of the intervals n = (a &amp;lt; /8), we define an

auxiliary functionfn as follows :

/(*) = (*- )
2 sin- ,

in (*, 7), (1

where 7 is the largest value of x corresponding to a maximum of

the function on the right of 1), such that 7 lies to the left of the

middle point /z of Sn . If the value of /(#) at 7 is g, we now

Finallyfn(a)= 0. This definesfn(x) for one half of the inter

val Sn . We define /(#) for the other half of Sn by saying that if

x&amp;lt;x are two points of Sn at equal distances from the middle

point ft then .

With Volterra we now define a function f(x) in 51 as follows:

f(x) =fn(x) ,
inSn , 7i = l,2,...

=
, in $.

Obviously/^) is continuous in 51.

At a point x of 51 not in &,f(x) behaves as

1 1
2 x sin -- cos-,

x x

as is seen from 1). Thus as x converges in 8n toward one of its

end points a, /3, we see that f(x) oscillates infinitely often be

tween limits which = 1. Thus

similar limits exist for the points $.

Let us now consider the differential coefficient at a point 77
of

&. We have

M = /^ + *)-/W = /0&amp;gt; + *)
, 8ince/(,)=0 .
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If rj + k is a point of ,/(?? + &) = 0. If not, rj -f k lies in some

interval Sm . Let a; = e be the end point of 8m nearest
rj + k.

Then

1*1

Thus/ (??)= 0. Hence Volterra s function f(x) has a differen

tial coefficient at each point of 51; moreover/ (x) is limited in 51.

Each point rj of & is a point of discontinuity of/ (V), and

Disc/ &amp;lt;

&amp;gt; 2.

Hence/ (V) is not 72-integrable, as & = h&amp;gt;0.

We have seen, in I, 549, that not every limited J2-integrable

function has a primitive. Volterra s function illustrates con

versely the remarkable fact that Not every limited derivative is

R-integrable.

2. It is easy to show, however, that The derivative of Volterra s

function is L-integrable.

For let 51A denote the points of 51 at which f (x) &amp;gt; X. Then

when X&amp;gt;l/m,
m = 1, 2, 51A consists of an enumerable set of

intervals. Hence in this case 51A is measurable. Hence 5(A , X&amp;gt;0,

is measurable. Now 51 , X&amp;gt;0, differs from the foregoing by add

ing the points 3n in ea h &n at which/ (x) 0, and the points &amp;gt;.

But each 3n is enumerable, and hence a null set, and is measur

able, as it is perfect. Thus 51A , X&amp;gt;0, is measurable. In the

same way we see 51A is measurable when X is negative. Thus 51A

is measurable for any X, and hence .L-integrable.

504. 1. We turn now to general considerations and begin by

considering the upper and lower limits of the sum, difference, prod

uct, and quotient of two functions at a point x = a.

Let us note first the following theorem :

Letf(xl
- XM) be limited or not in 51 which has x = a as a limiting

point. Let &amp;lt;

fi
= Max/ (f&amp;gt;& Min/m Ffi*(a). Then

This follows at once from I, 338.
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2. Letf(x^ &quot; xm ~), g(x^
- xm) be limited or not in 21 which has

x = a as limiting point.

Let
limf=a , limg =

\imf=A ,
Km g = B

as x= a. Then, these limits being finite,

, (1

- B &amp;lt; Hm (/ - g) &amp;lt; A - 0. (2

For in any F^*(a),

Min / + Min g &amp;lt; Min (/ -f y) &amp;lt; Max (/+#)&amp;lt; Max/ + Max g.

Letting S = 0, we get 1).

Also in

Min / Max g &amp;lt; Min (/ g)
&amp;lt; Max (/ g) &amp;lt;

Max / Min g.

Letting 8 = 0, we get 2).

3 * If

a/3 &amp;lt; lim/#&amp;lt; AS. (3

If

(4

/O)&amp;gt;Q , ^)&amp;gt;*&amp;gt;0,

l^^|- (5

a&amp;lt;Q&amp;lt;A , 2;&amp;gt;^&amp;gt;0,

The relations 3), 4), 5), 6) may be proved as in 2. For exam

ple, to prove 5), we observe that in Fi*(),

g g Min g
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5. + &amp;lt;lim(/ + 0)&amp;lt;a + . (7

a + Jg&amp;lt;Ihn~(/ + #) &amp;lt;.! + . (8

a -.&amp;lt; lim (/-#)&amp;lt;-. (9

A-&amp;lt;Km(f-g)&amp;lt;A-0. (10

J/
/O)&amp;gt;o , &amp;lt;?(*)&amp;gt; o,

a/3 &amp;lt; limfg &amp;lt; *B, (11

(12

(13

6.
T/&quot; lira/ exists,

= lira / + lira #, (15

m^. (16

If
g(x) &amp;gt; & &amp;gt; 0,

11m ^ exists,

Baifl (17

lim 5r. (18

/() &amp;gt; 0, ^r(^)
&amp;gt; 0. ie^ lim ^ ftw*. Then

. lim ^, (19

lim fg lira/ lim g. (20
g(x) &amp;gt; k &amp;gt; 0,

lim //^ = lim //lim ^, (21

Em f/g = En //lim #. (22

505. The preceding results can be used to obtain relations be

tween the derivates of the sum, difference, product, and quotient
of two functions as in I, 373 seq.
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1. Let w2;=tt+va. Tnen

Aw _ Aw Av ,-,

Az Az A#

Thus from 504, 1), we get the theorem:

Uu + v U&amp;lt;Uw &amp;lt; Uu + W. (2

7/ M has a unilateral derivative Uu ,

Uw = Uu1 + Uv
, (3

Uw = CTw + Uv . (4

We get 3), 4) from 1), using 504, 15), 16).

2. In the interval 51, w, v arg continuous, u is monotone increasing,

v is &amp;gt; 0, and v exists. Then, if w = wv,

Uw 1 =uv +vUuf
. (2

For from A^ A A^
- = (M + AM) -h v

,

A^ Ao: Ao:

wehave

/
, rri . w= wv -|- v U lim

Aa:

which gives 1). Similarly we establish 2).

506. 1. We show now how we may generalize the Law of the

Mean, I, 393.

Let f(x) be continuous in
2I=(a&amp;lt;&amp;gt;).

Let m, M be the mini

mum and maximum of one of the four derivates off in 51. Then for

a

To fix the ideas let us take Rf (x) as our derivate. Suppose
now there exists a pair of points a&amp;lt;/3

in SI, such that

/(&amp;gt;=M+e , e&amp;gt;0.
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We introduce the auxiliary function

&amp;lt;/&amp;gt;(*) =/&amp;lt;X&amp;gt;-(^+&amp;lt;0*, (2

where
0&amp;lt;c&amp;lt;e

= c+S.

Then -K/3)
- () = /Q8) -/()

(Jf ;

. _ ^
(3 a /3 a

Henoe

Consider now the equation

&amp;lt;K/3) -&amp;lt;(*)
=

&amp;gt;?

It is satisfied for x = a. If it is satisfied for any other x in the

interval (a/3), there is a last point, say x = 7, where it is satisfied,

by 458, 3.

Thus for *&amp;gt; 7,
&amp;lt;K*0

is
&amp;gt;(/&amp;gt;(&amp;lt;*)

Hence
(3

Now from 2) we have

Hence M is not the maximum of Rf (x) in 51. Similarly the

other half of 1) is established. The case that m or M is infinite

is obviously true.

2. Letf(x) be defined over 51 = (# &amp;lt; b). Let a
1

&amp;lt; 2 &amp;lt; &amp;lt; an lie

in 21. Let m and M denote the minimum and maximum of the dif

ference quotients

A(ar a
2) , A(a2 , a

B) , A(an _ 1 , aj.

Then
m&amp;lt;^^an )&amp;lt;M. (1

For let us first take three points a &amp;lt; @ &amp;lt; 7 in 2(. We have iden

tically * a _
7).

Now the coefficients of A on the right lie between and 1.

Hence 1) is true in this case. The general case is now obvious.
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507. 1. Let f(x) be continuous in H = (a &amp;lt; 6). The four deri-

vates off have the same extremes in 21.

To fix the ideas let

Min L = m ,
Min R = n, in 21.

We wish to show that m = p. To this end we first show that

For there exists an a in 21, such that

L(a) &amp;lt; m + e.

There exists therefore a &amp;lt;
a in 21, such that

a /3

Now by 506, l,

ft
= Min

R&amp;lt;q.

Hence ^ &amp;lt; w,

as e&amp;gt;0 is small at pleasure.

TFe s^o^ wow ^Aa^
m&amp;lt; u, (2

For there exists an a in H, such that

R(a) &amp;lt; fji + .

There exists therefore a /3 &amp;gt; in 21, such that

a /3

Thus by 506, l,

m= Min
^

Hence as before m&amp;lt;p. From 1), 2) we have m = /i.

2. In 499, we emphasized the fact that the left-hand derivates

are not defined at the left-hand end point of an interval, and the

right-hand derivates at the right-hand end point of an interval

for which we are considering the values of a function. The fol

lowing example shows that our theorems may be at fault if this

fact is overlooked.
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Example. Let/(V) = j

x
\.

If we restrict x to lie in 21 = (0, 1), the four derivates = 1 when

they are defined. Thus the theorem 1 holds in this case. If,

however, we regarded the left-hand derivates as denned at x = 0,

and to have the value

i/ (0) = -
1,

as they would have if we considered values of / to the left of 21,

the theorem 1 would no longer be true.

For then Min = - 1
, Min ]R = + 1,

and the four derivates do not have the same minimum in SI.

3. Let f (x) be continuous about the point x= c. If one of its

four derivates is continuous at x = c, all the derivates defined at this

point are continuous, and all are equal.

For their extremes in any Fs(tf) are the same. If now R is

continuous at x = c,

R(c) - e &amp;lt; R(x) &amp;lt; R(c) + e,

for any x in some F5 (c).

4. Let f(x) be continuous about the point x = c. If one of its

four derivates is continuous at x = c, the derivative exists at this

point.

This follows at once from 3.

.Remark. We must guard against supposing that the derivative

is continuous at x = c, or even exists in the vicinity of this point.

Example. Let F(x) be as in 501, Ex. 1. Let

21 = (0, 1) and &amp;lt;g
=

|

-

Let

Then RH (x) = 2 ^(a;) + x*RF (x),

LH (x) = 2 xF(x) + x*LF (x~).

Obviously both 725&quot; and 1/5 are continuous at x = and

5 (0) = 0. But H does not exist at the points of (g, and lience
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does not exist in any vicinity (0, 8) of the origin, however small

S
&amp;gt; is taken.

5. If one of the derivates of the continuous function f(x) is

continuous in an interval El, the derivative fr

(&) exists, and is con

tinuous in El.

This follows from 3.

6. If one of the four derivates of the continuous function f\x) is

= in an interval El, f(x) = const in El.

This follows from 3.

508. 1. If one of the derivates of the continuous function f(x) is

&amp;gt; in El = (a &amp;lt;
&amp;gt;), f(x) is monotone increasing in El.

For then m = Min Rf &amp;gt; 0, in (a &amp;lt; z). Thus by 506, i,

2. If one of the derivates of the continuous function f(x) is
&amp;gt;_

in El, f(%) is monotone decreasing.

3. If one of the derivates of the continuous function f(x) is &amp;gt;

in El, ivithout being constantly in any little interval of El, f(x) is

an increasing function in El. Similarly f is a decreasing function

in El, if one of the derivates is
&amp;lt;^ 0, without being constantly in any

little interval of El.

The proof is analogous to I, 403.

509. 1. Letf(x) be continuous in the interval El, and have a deriv

ative, finite or infinite, within El. Then the points where the deriva

tive is finite form a pantactic set in El.

For let a
&amp;lt; ft be two points of El. Then by the Law of the

Mean,

a

As the right side has a definite value, the left side must have.

Thus in any interval (a, ft) in El, there is a point 7 where the

differential coefficient is finite.
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2. Let f(x) be continuous in the interval 2l = O&amp;lt;6).
Then

Uf (x) cannot be constantly -f oo, or constantly oo in 51.

For consider

which is continuous, and vanishes for x = a, x = b. We observe

that
&amp;lt;O)

differs from f(x) only by a linear function. If now

/f (V)=-f-cc constantly, obviously U&amp;lt;f&amp;gt; (x) = + oo also. Thus
&amp;lt;/&amp;gt;

is a univariant function in 51. This is not possible, since &amp;lt; has

the same value at a and b.

3. ie /(z) fo continuous in 51 = (a &amp;lt; 6), awe? Aave a derivative,

finite or infinite, in 51= (a*, 6).

For the Law of the Mean holds, hence

A

Letting now A = 0, we get the theorem.

Remark. This theorem answers the question : Can a continu

ous curve have a vertical tangent at a point x = a, if the deriva

tives remain &amp;lt; M in V*(a) ? The answer is, No.

4. Let f(x) be continuous in 5t = (a &amp;lt; 5), and have a derivative,

finite or infinite, in &* = (*, b). Iff(a) exists, finite or infinite,

there exists a sequence j
&amp;gt; 2 &amp;gt;

= a in 51, such that

/ () = lim/ ( n)- (1
=

For
/(a+AWfq),

, &amp;lt;,&amp;lt;, + ,. (2

Let now A range over ^ &amp;gt;
A
2 &amp;gt;

= 0. If we set n
=

//n
,
the

relation 1) follows at once from 2), since / (a) exists by

hypothesis.

510. 1. A right-hand derivate of a continuous function f(x)

cannot have a discontinuity of the 1 kind on the right. A similar

statement holds for the other derivates.
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For let R(x} be one of the right-hand derivates. It it has a

discontinuity of the 1 kind on the right at x a, there exists a

number I such that

/
e&amp;lt;_R(x)&amp;lt;^

I -f e ,
in some (a &amp;lt; a -f S) .

Then by 50G, 1,

h

Hence R(a)=l,

and R(jc) is continuous on the right at x = a, which is contrary

to hypothesis.

2. It can, however, have a discontinuity of the 1 kind on the

left, as is shown by the following

Example. Let/(ar) = |

x = + Vx2
, in2I = (-l,l).

Here E(x) = + 1
,

for x &amp;gt; in 21

= - 1
,

for x &amp;lt; 0.

Thus at x = 0, R is continuous on the right, but has a discon

tinuity of the 1 kind on the left.

3. Let f(x) be continuous in 31 = (, 5), and have a derivative,

finite or infinite, in H* =(a*, *). Then the discontinuities off (x)

in 51, if any exist, must be of the second kind.

This follows from 1.

Example.
/0c) = aa 8in l

,
for x* in 51 = (0, 1)

=
,

for x = 0.

Then
-,

-,

f(x) = 2 a: sin - - cos -
, x=^0

x x

=
,

a?=0.

The discontinuity of/ (#) at x = 0, is in fact of the 2 kind.

4. Let f(x) be continuous in 2l = (a&amp;lt;6), except at x= a, which

is a point of discontinuity of the 2 kind. Letf (x) exist, finite or

infinite, in (a*, 6). Then x = a is a point of infinite discontinuity

*// (*&amp;gt;
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For if

p = R lim/O) , q = R lim/(,
x==a *=a

there exists a sequence of points 1 &amp;gt; 2 &amp;gt;=, such that

/(an )=jt&amp;gt;;
and another sequence /^ &amp;gt;y 2 &amp;gt;

=
, such that

/(/3n) = 9. We may suppose

n&amp;gt;/3 , oran &amp;lt;^n , rc=l, 2, ...

Then the Law of the Mean gives

where 7n lies between n , /3n . Now the numerator =p q, while

the denominator = 0. Hence Qn = + oo , or oo
, as we choose.

5. Let f (a?) have a finite unilateral differential coefficient U at

each point of the interval 31. Then U is at most pointwise discon

tinuous in 31.

For by 474, 3, U is a function of class 1. Hence, by 486, l, it is

at most pointwise discontinuous in 31.

511. Let f (x) be continuous in the interval (a &amp;lt; ). Let R(x)
denote one of the right-hand derivates of f(x). If R is not con

tinuous on the right at a, then

Q/JnPYP

I = R lim R(x) , m R lim R(x) , x = a.

To fix the ideas let R be the upper right-hand derivate. Let us

suppose that a = Rf (a) were &amp;gt;m. Let us choose 77, and c such

that

&amp;lt;a. (2

We introduce the auxiliary function

&amp;lt;O)= cx-f(x).
1

)
= c-3f (x). (3

Now if 8
&amp;gt;

is sufficiently small,

Rf (x)&amp;lt;m + r? ,
for any x in 31* = (a*, a + 8).
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Thus 2), 3), show that

R&amp;lt;t&amp;gt; (x)&amp;gt;(T , &amp;lt;r&amp;gt;0.

Hence
&amp;lt;$&amp;gt;(x)

is an increasing function in 51*. But, on the other

hand
4/&quot;oo =/&quot;(),

since a &amp;gt; m. Hence

a=c -
&amp;lt; 0.

Hence
&amp;lt;j&amp;gt;

is a decreasing function at x = a. This is impossible
since

&amp;lt;/&amp;gt;

is continuous at a. Thus a&amp;lt;^m.

Similarly we may show that I &amp;lt; a.

512. 1. Let f(x) be continuous in 51 = (a &amp;lt;

&amp;gt;),

and have a

derivative, finite or infinite. //&quot;=/ (), =/ (), then f (x)
takes on all values between a, yS, as a: ranges over 51.

For let &amp;lt; 7 &amp;lt; /3, and let

h&amp;gt;0.

We can take h so small that

&amp;lt;?O, A)&amp;lt;7 , and

Now
$(6, -). Q(b-h,h).

Hence ^7 z, IN .

(6 -h,h)&amp;gt; 7.

If now we fix A, () (#, ^) is a continuous function of #. As Q
is &amp;lt; 7, for x = a, and &amp;gt; 7, for z = b h, it takes on the value 7
for some a;, say for # =

, between a, b h. Thus

But by the Law of the Mean,

&amp;lt;K6 *)=
where , ,

&amp;lt;f&amp;lt;^&amp;lt;? + ^&amp;lt;^.

Thus/
f

(x) = 7, at x =
77

in 51.

2. ief /(#) 3e continuous in the interval 51, awe? admit a deriva

tive, finite or infinite. If / (x) = in 51, except possibly at an
enumerable set (, ^71 / = a/so tw (S.
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For if / () = 0, and / () = b * 0, then f (x) ranges over all

values in (0, b), as x passes from a to ft. But this set of values

has the cardinal number c. Hence there is a set of values in

(a, ft) whose cardinal number is c, where f (x) = 0. This is

contrary to the hypothesis.

3. Let f(x), g(x) be continuous and have derivatives, finite or

infinite, in the interval 51. // in 51 there is an a for which

/ &amp;gt;
&amp;lt;/(&amp;lt;*)

and a ft for which

then there is a 7 for which

provided gw=/(20
has a derivative, finite or infinite.

For by hypothesis
8

()&amp;gt;0 ,

Hence by 1 there is a point where 8 = 0.

513. 1. If one of the four derivates of the continuous function

f(x) is limited in the interval 51, all four are, and they, have the

same upper and lower R-integrals.

The first part of the theorem is obvious from 507, 1. Let us

effect a division of 51 of norm d. Then

Cli = lim 2M& , M, = Max ^t
in d,.

J% &amp;lt;M)

But the maximum of the three other derivates in d, is also M, by

507, 1. Hence the last part of the theorem.

2. Let f(x) be continuous and have a limited unilateral derivate

m=&. Then

f*&**&amp;lt;/&amp;lt;?) -/() &amp;lt;

J.a

For let a
&amp;lt;

a
l

*
2 &amp;lt; &amp;lt;

b determine a division of 51, of norm d.
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Then by 506, i,

in the interval (am , am+1 ) = dm .

Hence

2dm Min -B&amp;lt;6 -
&amp;lt; 2 Max ^.

Letting &amp;lt;#= 0, we get 1).

3. Iff(x) is continuous, and Uf is limited and R-integrable in

JTI7
=

514. 1. Letf(x) be limited in 51 = (a &amp;lt; 5),

F(x)= ffdx , a&amp;lt;2:&amp;lt;

/a

67 lira
/&amp;lt;

Z/JP (M) &amp;lt; ^ lira/, (1
*= =M

/br a?i^ u within 51.

To fix the ideas let us take a right-hand derivate atx=u. Then

u+k

fdx &amp;lt; h Max / ,
in (11 *, u + A), 7i &amp;gt; 0.

Thus

Letting h = 0, we get

x=u *=u

which is 1) for this case.

2. Let f(x) be limited in the interval 51 = (a &amp;lt; 6). /f/O + 0)

R derivative Cfdx = f(x + 0) ;

*/a

and iff(x 0) exists, a&amp;lt;x&amp;lt;b

L derivative I fdx =/(# 0).
Ja
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3. Let f(x) be limited and R-integrable in 31 =(&amp;lt;#). The

points where

F(x= dx ,
a&amp;lt;x&amp;lt;b

does not have a differential coefficient in tyi/orm a null set.

For
F&amp;lt;x) =/O) by I, 537, 1,

when/ is continuous at x. But by 462, 6, the points where/ is

not continuous form a null set*.

515. In I, 400, we proved the theorem :

Let f(x) be continuous in 31 = (a &amp;lt;
&amp;gt;),

and let its derivative

= within 31. Then /is a constant in 31. This theorem we have

extended in 507, 6, to a derivate of f(x). It can be extended still

farther as follows :

1. (L. Scheefer}. If f(x) is continuous in 31 = (a&amp;lt; 6), and if

one of its derivates = in 31 except possibly at the points of an

enumerable set (g, then f = constant in 31.

If/is a constant, the theorem is of course true. We show that

the contrary case leads to an absurdity, by showing that Card (5

would = c, the cardinal number of an interval.

For if / is not a constant, there is a point c in 31 where

p=f(c)f(a) is =#=0. To fix the ideas let
jt?&amp;gt;0;

also let us

suppose the given derivate is R = Rf (x).

Let
g(x,f)=f(x)-f&amp;lt;ji)-t(x-a) , t&amp;gt;0.

Obviously g \

is the distance/ is above or below the secant line,

y = t(x- )+/().
Thus in particular for any ,

g(a, )=0 , g(c&amp;gt;t)
= p-t(c-a).

Let q &amp;gt; be an arbitrary but fixed number &amp;lt; p. Then

g(c, t)-q=p -q-t(c-a)

if t &amp;lt; T, where
T= ca
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Hence
g(c, &amp;gt; q

for any t in the interval =
(T, T), &amp;lt; T &amp;lt;

T7
. We note that

Card = c.

Since for any in
, #(a, ) = 0, and g(c, t) &amp;gt; q, let x = e

t be

the maximum of the points &amp;lt; c where g(x, t)
=

q. Then e
&amp;lt; &amp;lt;?,

and for any A such that e + h lies in (e, c),

Hence

Thus for any in
, e

t
lies in (g. As t ranges over !, let 0*

range over (^ &amp;lt; (g. To each point e of (^ corresponds but one

point t of X. For

=g(e, f)
-

g(e, * ) = (
- ^ )(

~
)

Hence .

f= r , as e &amp;gt; a.

Thus
Card = Card @

x
&amp;lt; Card

&amp;lt;g,

which is absurd.

2. Let f (x) be continuous in 5( = (a&amp;lt;5). Let denote the

points of 51 wAere owe o/ tfAe derivates has one sign. If exists,

Card (E = c, ZAtf cardinal number of the continuum.

The proof is entirely similar to that in 1. For let c be a point
of (. Then there exists a d

&amp;gt;
c such that

We now introduce the function

(s0=/(*)-/(&amp;lt;0-*&amp;lt;&amp;gt;-&amp;lt;0 , *&amp;gt;o,

and reason on this as we did on the corresponding g in 1, using
here the interval (c, c?) instead of (a, 5). We get

Card ^ = Card = c.

3. Letf(oi), g(x) be continuous in the interval 21. Ze a
jt?az&amp;gt; of

corresponding derivates as Rf, Rg be finite and equal, except pos

sibly at an enumerable set (g. Then f g + C, in 21, where C is a

constant.
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For let
^ =f_ g f ^_/B

Then in A = %-&
R(f&amp;gt;

f
&amp;gt; Rf-Rg = o

, Jfy &amp;gt; o.

But if
R(f&amp;gt;

&amp;lt; at one point in 21, it is
&amp;lt; at a set of points 33

whose cardinal number is c. But $8 lies in (g. Hence
R&amp;lt;f&amp;gt;

is

never
&amp;lt; 0, in 21. The same holds for ty. Hence, by 508,

&amp;lt;/&amp;gt;

and

i/r
are both monotone increasing. This is impossible unless

$ == a constant.

516. The preceding theorem states that the continuous function

/(#) in the interval 21 is known in 21, aside from a constant, when

/ (x) is finite and known in 21, aside from an enumerable set.

Thus f(x) is known in 21 when / is finite and known at each

irrational point of 21.

This is not the case when/ 7
is finite and known at each rational

point only in 21.

For the rational points in 21 being enumerable, let them be

PI* 2
r
s

~ 0-

Let
z = z

1 + /
2 +z3 +...

be a positive term series whose sum I is &amp;lt; 21. Let us place r
x

within an interval ^ of length &amp;lt; ^ . Let r be the first number

in 1) not in Bv Let us place it within a non-overlapping interval

S
2
of length &amp;lt; Z

2 , etc.

We now define a function /(V) in 21 such that the value of /at

any x is the length of all the intervals and part of an interval

lying to the left of x. Obviously f(x) is a continuous function of

x in 21. At each rational point / (x) = 1. But f(x) is not de

termined aside from a constant. For 2 n &amp;lt; I. Therefore when

I is small enough we may vary the position and lengths of the

S-intervals, so that the resulting / s do not differ from each other

only by a constant.

517. 1. Let f(x) be continuous in 21 = (a &amp;lt; 5) and have a finite

derivate, say Rf , at each point of 21. Let S denote the points of 21

where R has one sign, say &amp;gt;
0. If (S exists, it cannot be a null set.
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For let c be a point of (, then there exists a point d
&amp;gt;

c such

that

Let ( n denote the points of ( where

n _ 1 &amp;lt; Rf &amp;lt;
n . (2

Then ( = ^ + (2 4- Let &amp;lt;
&amp;lt;?

&amp;lt; p. We take the positive

constants qv q2
&quot; such that

If now ( is a null set, each ( m is also. Hence the points of ( m

can be inclosed within a set of intervals Smn such that 2Smn &amp;lt;
&amp;lt;?.

n

Let now qm (a:) be the sum of the intervals and parts of intervals

$m, m w = 1, 2 which lie in the interval (a &amp;lt; x). Let

Obviously Q(x) is a monotone increasing function, and

&amp;lt;&amp;lt;?&amp;lt;&amp;lt;? (3
Consider now

p&amp;lt;v&amp;gt;=/O) -/()- (^).

We have at a point of 51 (S,

Hence at such a point

EP

But at a point x of (, jRP &amp;lt; also. For x must lie in some

( m , and hence within some Smn . Thus qm (%) increases by at least

Az when x is increased to x + Az. Hence mqm (x), and thus

(?(V) is increased at least wAz. Thus

&amp;lt;Rf&amp;lt; -m&amp;lt;Q, by 2),
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since x lies in ( m . Thus RP &amp;lt; at any point of 51. Thus P is

a monotone decreasing function in 51, by 508, 2. Hence

P(c)-P(d) &amp;gt; 0.

Hence
/&amp;lt;*)

-
/(&amp;lt;*)- i (0 - QW S

&amp;gt; 0,

or using 1), 3)
p - q &amp;lt; o,

which is not so, as p is &amp;gt;

&amp;lt;?.

2. (Lebesgue.) Let f(x), g (x) be continuous^in
the interval 5(,

and have a pair of corresponding derivates as Rf, Rg which are

finite at each point of 51, and also equal, the equality holding except

possibly at a null set. Thenf(x) g(x) = constant in 51.

The proof is entirely similar to that of 515, 3, the enumerable

set ( being here replaced by a null set. We then make use of 1.

518. Letf(x) be continuous in some interval A = (u S, u -f- 8).

Letf (x) exist, finite or infinite, in A, but be finite at the point x= u.

Then

where

Let us first suppose that/ (V) = 0. We have for 0&amp;lt;h&amp;lt;rj&amp;lt;B,

f(u-h)-f(ju)\
-h }

, u&amp;lt;x &amp;lt;u + h , u-h&amp;lt;x&quot;&amp;lt;u

h

where |e |, | e&quot;|

are &amp;lt; e/2 for ?; sufficiently small.

Now ^ - u ^ -,
I

x&quot;
- u

|

&amp;lt; -,~T ~h~~

while /&quot;(^)
=

, by hypothesis.

Hence \Qf\&amp;lt;
for

and 1) holds in this case.
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Suppose now that
f&quot; (u) = a ^ 0. Let

&amp;lt;/(V) =/(V) q(x) , where q(x) = -J-

ax2 + bx + c.

Since
q&quot;(u)

= a , #&quot;(=0.

Thus we are in the preceding case, and lim Qg = 0.

Bat Qg=Qf-Qq-

Hence lim Qf= a.

Maxima and Minima

519. 1. In I, 466 and 476, we have denned the terms f(x) as

a maximum or a minimum at a point. Let us extend these terms

as follows. Let/^j #m) be defined over 51, and let x= a be an

inner point of 21.

We sayf has a maximum at x = a if I ,/ (a) f(x) &amp;gt; 0, for any
x in some V(a), and 2, f(a) f(x) &amp;gt;

for some x in any F(a).

If the sign
&amp;gt; can be replaced by &amp;gt;

in 1, we will say / has a

proper maximum at a, when we wish to emphasize this fact; and

when &amp;gt; cannot be replaced by &amp;gt;,
we will -say / has an improper

maximum. A similar extension of the old definition holds for

the minimum. A common term for maximum and minimum is

extreme.

2. Iff(x) is a constant in some segment 53, lying in the inter

val 51, 53 is called a segment of invariability, or a constant segment

of/in .

Example. Let f(x) be continuous in 51 = (0, 1*).

Lefc x= flj^ag (1

be the expression of a point of 51 in the normal form in the dyadic

system. Let -

be expressed in the triadic system, where an =an , when an 0,

and =2 when an = l. The points ( = S5 form a Cantor set,

I, 272. Let j3n j
be the adjoint set of intervals. We associate
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now the point 1) with the point 2), which we indicate as usual by
x~%. We define now a function g(x) as follows :

#(O=/O) , when a;- f.

This defines g for all the points of (. In the interval 3 n , let g
have a constant value. Obviously g is continuous, and has a

pantactic set of intervals in each of which g is constant.

3. We have given criteria for maxima and minima in I, 468

seq., to which we may add the following :

Let f(x) be continuous in (a 8, a + ). If Rf (a) &amp;gt; and

Lf ]

(#)&amp;lt; 0, finite or infinite, f(x) has a minimum at x = a.

If Ef (a)&amp;lt;0
and Lf (a)&amp;gt; 0, finite or infinite, f(x) has a maxi

mum at x = a.

For on the 1 hypothesis, let us take a such that R a
&amp;gt;

0.

Then there exists a 8
&amp;gt;

such that

Similarly if fi is chosen so that L + /5&amp;lt; 0, there exists a S&quot; &amp;gt; 0,

suchthat

Hence
^ + ^ in (a

_ 5^, a ).

520. Example 1. Let /(a?) oscillate between the #-axis and the

two lines y = x and y = x, similar to

y
7Tzsm

In any interval about the origin, y oscillates infinitely often, hav

ing an infinite number of proper maxima and minima. At the

point # = 0,/has an improper minimum.

Example 2. Let us take two parabolas Pl ,
P

2
defined by y x*,

y = 2x2
. Through the points x=\, \-~ let us erect ordi-

nates, and join the points of intersection with P
x , P2 , alternately

by straight lines, getting a broken line oscillating between the
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parabolas Pl , P2
. The resulting graph defines a continuous func

tion f(x) which has proper extremes at the points ( =
j

- \

However, unlike Ex. 1, the limit point x= of these extremes is

also a point at which f(x) has a proper extreme.

Example 3. Let \S\ be a set of intervals which determine a

Harnack set ^ lying in 51 = (0, 1). Over each interval S = (a, /3)

belonging to the nih
stage, let us erect a curve, like a segment of

a sine curve, of height hn = 0, as n = oo, and having horizontal

tangents at a, /3, and at 7, the middle point of the interval S. At
the points jf j

of 51 not in any interval 8, let/(V) = 0. The func

tion/ is now defined in 51 and is obviously continuous. At the

points \y[,f has a proper maximum ; at points of the type a, y8,

f, /has an improper minimum. These latter points form the set

& whose cardinal number is c. The function is increasing in each

interval (a, 7), and decreasing in each (7, /3). It oscillates in

finitely often in the vicinity of any point of &.

We note that while the points where / has a proper extreme

form an enumerable set, the points of improper extreme may form

a set whose cardinal number is c.

Example 4- We use the same set of intervals \&\ but change
the curve over S, so that it has a constant segment 77

= (\, JJL)
in its

middle portion. As before /=0, at the points not in the

intervals 8.

The function f (x) has now no proper extremes. At the points
of ^p, / has an improper minimum ;

at the points of the type \, /*, it

has an improper maximum.

Example 5. Weierstrass Function. Let (5 denote the points in

an interval 51 of the type

x = , r, s, positive integers.s

For such an x we have, using the notation of 502,

bmx = im + fm = b- r.

Hence fm = , formes.

Thus e= -l+i= _i+i.
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A Ti
1

Hence sgn = sgn Q = sgn emr)m = sgn (
-

Thus
sgn

if r is even, and reversed if r is odd. Thus at the points @, the

curve has a vertical cusp. By 519, 3, F has a maximum at the

points (, when r is odd, and a minimum when r is even. The

points ( are pantactic in 51.

Weierstrass function has no constant segment 8, for then

f (x) = in B. But ^ does not exist at any point.

521. 1. Let f(xl
&quot;- xm) be continuous in the limited or unlimited

set 51. Let & denote the points of 51 where f has a proper extreme.

Then d: is enumerable.

Let us first suppose that 51 is limited. Let S &amp;gt; be a fixed

positive number. There can be but a finite number of points a in

51 such that

For if there were an infinity of such points, let ft be a limiting

point and 77 &amp;lt; J S. Then in F^(/3) there exist points ,
a&quot; such

that F^(a ), F
g (&quot;) overlap. Thus in one case

and in the other

which contradicts the first.

Let now Sj &amp;gt; S2 &amp;gt;
- =0. There are but a finite number of

points a for which 1) holds for S = Sj, only a finite number for

=
&,,, etc. Hence d: is enumerable. The case that 51 is unlim

ited follows now easily.

2. We have seen that Weierstrass function has a pantactic set

of proper extremes. However, according to 1, they must be

enumerable. In Ex. 3, the function has a minimum at each point
of the non-enumerable set ^p; but these minima are improper. On
the other hand, the function has a proper maximum at the points

57}, but these form an enumerable set.
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522. 1. Let f(x) be continuous in the interval 51. Letf have a

proper maximum at x = a, and x = ft in 51. Then there is a point 7
between a, ft wheref has a minimum, which need not however be a

proper minimum.

For say a
&amp;lt; ft. In the vicinity of a, f(x) is &amp;lt;/() ; also in

the vicinity of ft, f(x) is
&amp;lt;/(/8). Thus there are points 53 in

(a, yS) where /is &amp;lt; either /(a) or/(y). Let
/it

be the minimum
of the values otf(x)i as # ranges over 53. There is a least value

of # in (a, /3) for which f(x) = /z. We may take this as the

point in question. Obviously 7 is neither a nor ft.

2. That at the point 7, / does not need to have a proper mini

mum is illustrated by Exs. 1, or 3.

3. In 51 = (#, 6) let f(x) exist, finite or infinite. The points

within 51 at which f has an extreme proper or improper, lie among
the zeros off (x).

This follows from the proof used in I, 468, 2, if we replace there

&amp;lt; 0, by &amp;lt; 0, and
&amp;gt; 0, by &amp;gt; 0.

4. Let f (x) be continuous in the interval 51, and let f(x) have

no constant segments in 51. The points & of 51 ivhere f has an ex

treme, form an apantactic set in 51. Let 3 denote the zeros off (x)
in 51. If 53 = fbn j

is the border set of intervals lying in 51 corre

sponding to &f(x) is univariant in each bn .

For by 3, the points (g lie in 3- As f (x) is continuous, S *s

complete and determines the border set 53- Within each b n ,

f (x) has one sign. Hence f(x) is univariant in b n .

5. Letf(x) be a continuous function having no constant segment
in the interval 51. If the points Q, ivhere f has an extreme form a

pantactic set in 51, then the points 53 ivhere f(x) does not exist or is

discontinuous, form also a pantactic set in 51.

For if 53 is not pantactic in 51, there is an interval ( in 51

containing no point of 53. Thus f (x) is continuous in (E. But

the points of @ in ( form an apantactic set in (5 by 4. This,

however, contradicts our hypothesis.

Example. Weierstrass function satisfies the condition of the

theorem 5. Hence the points where F (x) does not exist or is
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discontinuous form a pantactic set. This is indeed true, since

F exists at no point.

6. Let f(x) be continuous and have no constant segment in the

interval 51. Let / (#) exist, finite or infinite. The points where

f (x) is finite and is =^0form a pantactic set in 51.

For let a
&amp;lt; ft be any two points in 51. If /() =/(/3), there is

a point a
&amp;lt; 7 &amp;lt; ft such that /() T^/Oy), since / has no constant

segment in 51. Then the Law of the Mean gives

a-y
Thus in the arbitrary interval (a, ft) there is a point f, where

f (x) exists and is = 0.

7. Let f(x) be continuous in the interval 51. Then any interval

53 in 51 which is not a constant segment contains a segment (E in which

f is univariant.

For since / is not constant in 53, there are two points a, b in 53

at which /has different values. Then by the Law of the Mean

/()-/(*)=(- )AO .
cin -

Hence f (c) = 0. As f (x) is continuous, it keeps its sign in

some interval (c 8, c -f 8), and /is therefore univariant.

523. Letf(x) be continuous in the interval 51, and have in any in

terval in 51 a constant segment or a point at which f has an extreme.

If f (x) exists, finite or infinite, it is discontinuous infinitely often in

any interval in 51, not a constant segment. At a point of continuity

of the derivative,f (x) = 0.

For if f (x) were continuous in an interval 53, not a constant

segment, / would be univariant in some interval (:&amp;lt;53, by 522, 7.

But this contradicts the hypothesis, which requires that any inter

val as ( has a constant segment. Hence f (x) is discontinuous

in any interval, however small.

Let now x = c be a point of continuity. Then if c lies in a con

stant segment, / (V) = obviously. If not, there is a sequence of

points e
1 , e

z
= e such that f(x) has an extreme at en . But then

/ (en)=0, by 522,3. As/ &amp;lt;

is continuous at z =
&amp;lt;?,/ (=

also.
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524. (Konig.) Letf^x) be continuous in 51 and have a pantactic

set of cuspidal points (L Then for any interval $8 of $[, there exists

a ft such that f(x) = ft at an infinite set of points in 33. Moreover,

there is a pantactic set of points \%\ in 33, such that k being taken at

For among the points & there is an infinite pantactic set c of

proper maxima, or of proper minima. To fix the ideas, suppose
the former. Let x = c be one of these points within 33. Then

there exists an interval b &amp;lt;.33, containing c, such that

/(&amp;lt;?) &amp;gt;/(#) , for any x in b.

Let fji
= Min/(V), in b.

Then there is a point x where / takes on this minimum value.

The point c divides the interval b into two intervals. Let ( be

that one of these intervals which contains #, the other interval we
denote by m. Within m let us take a point c^ of c. Then in I

there is a point c[ such that

The point c
1
determines an interval bx , just as c determined b.

Obviously bj^tn, and b x
falls into two segments I

x , n^ as before

b did. Within m
l
we take a point of c. Then in ( there is a

point c%, and in (
x
a point c%, such that

In this way we may continue indefinitely. Let

be the points obtained in this way which fall in (. Let c
1 be a

limit point of this set. Let

be the points obtained above which fall in
(j,

and let c
n be a limit

point of this set. Continuing in this way we get a sequence of

limiting points ^ c
u cnr ... (2

lying respectively in (, (
x , I2

...
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Since /is continuous,

- /OO =/(&quot;)=/(&amp;lt;&quot;)=- (3

Thus if we set
/(&amp;lt;? )

= fi we see that /(#) takes on the value (S at

the infinite set of points 2), which lie in 33.

Let 7j, 72
be a set of points in 2) which = 7.

/(y) ~
p.

7 - 7i 7 - 72

Thus if / (#) exists at # = 7, the equations 3) show that

= 0. Iff does not exist at 7, they show that

Let now k be taken at pleasure. Then

g(x)=f(x)-kx
is constituted as/, and

?O) =/(*)-*
This gives 1).

525. 1. Lineo- Oscillating Functions. The oscillations of a con

tinuous function fall into two widely different classes, accord

ing as f(x) becomes monotone on adding a linear function

l(x) = ax + 6, or does not.

The former are called lineo-oscillating functions. A continu

ous function which does not oscillate in 2f, or if it does is lineo-

oscillating, we say is at most a lineo-oscillating function.

Example 1. Let
/( _

e)
= 8ina! , Z(&amp;gt;)

= :r .

Ifwesefc
y =/(*)+*(*)

and plot the graph, we see at once that y is an increasing function.

At the point x = TT, the slope of the tangent to f(x) = sin x is

greatest negatively, i.e. sinx is decreasing here fastest. But the

angle that the tangent to sin x makes at this point is 45, while

the slope of the line l(x) is constantly 45. Thus at x = TT, y has

a point of inflection with horizontal tangent.

If we take l(x) = ax, a
&amp;gt; 1, y is an increasing function, increas

ing still faster than before.
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All this can be verified by analysis. For setting

y = sin x + ax ,
a

&amp;gt; 1,

we sret /

y = a -f- cos #,

and , Q

Thus y is a lineo-oscillating function in any interval.

Example 2. f(x) = z2 sin - , x 3=

=
, x=0.

l(x) = ax + b
, y =f(x) + l(x).

Then
^ 1

ni .
&quot;/ /&amp;gt; QI r-j

_-

(&quot;*(~)G | ft sy* t-~ O
X X

= a
,

x = 0.

Hence, if a
&amp;gt;

1 -f 2 TT, z/ is an increasing function in 51 = ( TT, TT).

The function /oscillates infinitely often in 51, but is a lineo-oscil

lating function.

Example 8. /(#) = # sin -
,

x =

x

=
, x = 0.

Here 111
y = sin cos f- a ,

# ^= 0.

For x=Q, y
r does not exist, finitely or infinitely.

Obviously, however great a is taken, y has an infinity of oscilla

tions in any interval about x = 0. Hence /is not a lineo-oscillat

ing function in such an interval.

2. If on e of the four derivates of the continuous function /(#) is

limited in the interval 51, f(x) is at most lineo-oscillating in 51.

For say Rf &amp;gt;

- a in 51. Let &amp;lt; a &amp;lt; ,
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Then

Hence g is monotone increasing by 508, 1.

3. Letf^x) be at most lineo-oscillating in the interval 31. If Uf
does not exist finitely at a point x in 31, it is definitely infinite at the

point. Moreover, the sign of the oo is the same throughout 31.

For if / is monotone in 31, the theorem is obviously true. If

be monotone. Then
Uf = W -

a,

and this case is reduced to the preceding.

Remark. This shows that no continuous function whose graph
has a vertical cusp can be lineo-oscillating. All its vertical tan

gents correspond to points of inflection, as in

Variation

526. 1. Letf(x) be continuous in the interval 31, and have limited

variation. Let D be a division of 31 of norm d. Then using the no

tation of 443,

\imVDf=Vf ,
\imPDf=Pf , YimNDf=Nf. (1

For there exists a division A such that

where for brevity we have dropped / after the symbol V. Let

now A divide 31 into v segments whose minimum length call X.

Let D be a division of 31 of norm d&amp;lt;d &amp;lt;\. Then not more

than one point of A, say a
K , can lie in any interval as (# t , l+1) of

D. Let E = D + A, the division obtained by superposing A on D.

Then ft denoting some integer &amp;lt;

i&amp;gt;,

V- r-i
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If now dQ
is taken sufficiently small, Osc/ in any interval of D

is as small as we choose, say &amp;lt;
. Then

6 v

But since E is got by superposing A on
Z&amp;gt;,

Hence for any D of norm
&amp;lt;

c? ,

which proves the first relation in 1. The other two follow at

once now from 443.

527. // f(x) is continuous and has limited variation in the in

terval 31 = (a &amp;lt; 6), then

P(x) , N(x) , V(x)

are also continuous functions of x in 31.

Let us show that V(x) is continuous ; the rest of the theorem

follows at once by 443.

By 526, there exists a c? , such that for any division D of norm

d&amp;lt;dQ ,

F&quot;(6)
= Fi(6) + e ,

0&amp;lt;e
&amp;lt;e/3.

Then a fortiori, for any x
&amp;lt;

b in 31,

V(X) = VD(X} + 6j , 0&amp;lt;!&amp;lt;/3. (1

In the division
Z&amp;gt;,

we may take x as one of the end points of

interval, and x + h as the other end point. Then

On the other hand, if d
Q

is taken sufficiently small,

\ffx + A) -f(x) I &amp;lt; ^ ,
for

&amp;lt;
h

&amp;lt;
B. (3

o

From 1), 2), 3) we have

&amp;lt; V(x + A)
- V(x) &amp;lt;

e , for any &amp;lt; h
&amp;lt;

8. (4

an
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But in the division .Z), x is the right-hand end point of some in

terval as (x k,x). The same reasoning shows that

\V(x-K)-V(x)\&amp;lt; , foranyO&amp;lt;&&amp;lt;. (5

From 4), 5) we see V(x) is continuous.

528. 1. If one of the derivates of the continuous functionf (V) is

numerically &amp;lt; M in the interval 51, the variation Voffis &amp;lt;

For by definition y= Max y

with respect to all divisions D=\d i \
of 5L Here

Now by 506, 1,

or

Hence ^ &amp;lt; M^ &amp;lt;

2. Letf(x) be limited and R-integrable in 51 =

has limited variation in 51.

For let D be a division of 51 into the intervals d
t
= (a t ,

Then
a+i) -F(a,) I =2

|
I /(fe

Thus Max VD - F
and F has limited variation.

529. 1. If f (x) has limited variation in the interval 51, the

points $ where Osc/&amp;gt; &, are finite in number.

For suppose they were not. Then however large G- is taken,

we may take n so large that nk
&amp;gt;

G-. There exists a division D
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of H, such that there are at least n intervals, each containing a

point of $ within it. Thus for the division D,

Thus the variation of / is large at pleasure, and therefore is not

limited.

2. Iff has limited variation in the interval 51, its points of dis

continuity form an enumerable set.

This follows at once from 1.

530. 1. Let Dj, D 2
be a sequence of superposed divisions, of

norms dn = 0, of the interval 51. Let lDn be the sum of the oscilla

tions off in the intervals of Dn . If Max flDn is finite, f(x) has

limited variation in 51.

For suppose / does not have limited variation in 51. Then
there exists a sequence of divisions E^, E^ such that if l

En is

the sum of the oscillations of/in the intervals of En , then

n^&amp;lt;n^&amp;lt;
... = +00. (i

Let us take v so large that no interval of Dv contains more than

one interval of En or at most parts of two En intervals. Let

Fn = En + Dv . Then an interval 8 of Dv is split up into at most
two intervals 8

,
8&quot; in Fn . Let

o&amp;gt;, a/, co&quot; denote the oscillation of

/in 8, , 8&quot;. Then the term co in Dv goes over into

a + co &amp;lt; 2 co

in lFn . Hence if Max l
Dn
= M,

n
n

&amp;lt; 2 Q
Dr

&amp;lt; 2 M,
which contradicts 1).

2. Let VDn
= 2 |/(X) /(a t+1) |

, the summation extended
over the intervals (a t ,

a
l+1 ) of the division Dn . If Max VDn is

n

finite with respect to a sequence of superposed divisions \Dn \, we
cannot say that /has limited variation.

Example. For let / (z) = 0, at the rational points in the inter

val 51 = (0, 1), and = 1, at the irrational points. Let Dn be
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f) i

-|

obtained by interpolating the points in 21. Then /=0

at the end points a,, a l+l of the intervals of Dn . Hence VDn = 0.

On the other hand, f(x) has not limited variation in 21 as is

obvious.

531. Let F(x) = lim/(&amp;gt;, t), r finite or infinite, for x in the

interval 21. Let Var f(x, t) &amp;lt; M for each t near r.

Then F(x) has limited variation in 21.

To fix the ideas let T be finite. Let

Then for a division D of 21,

VDF&amp;lt; VDf+ VDg.
But

)
- g (a

where (#m , am+l) are the intervals of D.

But for some t = t near r, each

where is the number of intervals in the division D.

Tlms
.

Hence

and F has limited variation.

532. Let f(x), g(x) have limited variation in the interval 21, then

their sum, difference, and product have limited variation.

If also l#l&amp;gt;7&amp;gt; i
in ^I

thenf/g has limited variation.

Let us show, for example, that h=fg has limited variation.

Forlet Min/=m , Min&amp;lt;7
= n

in the interval d,.

Osc/= (o
,

Osc g = r
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rhen
/ = m + &&amp;gt;

, g = n + r
,

in rf
t ,

0&amp;lt;&amp;lt;1 , 0&amp;lt;&amp;lt;1.

Thus
fg = mn + ra/3r -f wao&amp;gt; -f a/Scwr.

Now
Tim Til r a&amp;gt; car &amp;lt;

&amp;lt;

&amp;lt;
mn + m G&amp;gt;T.

Hence
77
= Osc A &amp;lt; 2 jr |

m
|

-f *&amp;gt; n\ +
a&amp;gt;Tj.

Bufc
|wi|, |w|, r&amp;lt;.some JST.

Thus TA &amp;lt;
4 7f 2a&amp;gt; + 2

&amp;lt; some 6r,

and A has limited variation.

533. 1. Let us see what change will be introduced if we

replace the finite divisions D employed up to the present by
divisions JE, which divide the interval 31 = (a &amp;lt;

&amp;gt;)

into an infinite

enumerable set of intervals ( t , al+i).

and

for the class of finite or infinite enumerable divisions

Obviously
TT&amp;gt; F;

hence if IT is finite, so is F.

We show that if F is finite, so is W. For suppose W were

infinite. Then for any Q- &amp;gt; 0, there exists a division E, and an

w, such that the sum of the first n terms in 1) is &amp;gt; 6r, or

(2

Let now D be the finite division determined by the points #j

a
z

&quot; an+i which figure in 2).

Then VB &amp;gt;a,

hence F= ao, which is contrary to our hypothesis.
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We show now that V and W are equal, when finite. For let

E be so chosen that

W ^ W ^ W~ \ rr f \ V r

Now
6/2

if n is sufficiently large.

Let D correspond to the points a
1
a
2

in WE ^ n . Then

and hence Y A- &amp;gt; W -4- W
Hence

W-Vj,&amp;lt;e.

We may therefore state the theorem :

2. Iff has limited variation in the interval 21 with respect to the

class of finite divisions
Z&amp;gt;,

it has with respect to the class of enumer
able divisions E, and conversely. Moreover

Max VD = Max VE .

534. Let us show that Weierstrass function F, considered in

502, does not have limited variation in any interval 2( = (a &amp;lt; /3)

when ab
&amp;gt;

1. Since F is periodic, we may suppose a.
&amp;gt;

0. Let

be the fractions of denominator bm which lie in 21.

These points effect a division Dm of 21, and

,/=0
bm

- F(
k-L

\

If I is the minimum of the terms F
i
under the S sign,

Now

Hence
bm

- 2.



NON-INTUITIONAL CURVES 537

On the other hand, using the notation and results of 502,

and also
(

x

h

Let us now take

Then r_+/ h _. 1

&quot;W -&
Hence from 3), -^ &amp;gt;

mf%_ ^

V3 ^6 - 1

ThUS r
/&amp;gt;
^ am

(~ )(&&quot;5

-
2) , by 1), 2).

As a &amp;lt; 1, and &amp;gt;

&amp;gt; 1, we see that

VDm = + GO, as w = oo .

Non-intuitional Curves

535. 1. Let /(#) be continuous in the interval 21. The graph
of/ is a continuous curve 0. If / has only a finite number of os

cillations in 21, and has a tangent at each point, we would call an

ordinary or intuitional curve. It might even have a finite num
ber of angle points, i.e. points where the right-hand tangent is

different from the left-hand one [cf. I, 366]. But if there were

an infinity of such points, or an infinity of points in the vicinity

of each of which / oscillates infinitely often, the curve grows less

and less clear to the intuition as these singularities increase in

number and complexity. Just where the dividing point lies be

tween curves whose peculiarities can be clearly seen by the intui

tion, and those which cannot, is hard to say. Probably different

persons would set this point at different places.

For example, one might ask : Is it possible for a continuous

curve to have tangents at a pantactic set of points, and no tangent

at another pantactic set? If one were asked to picture such a

curve to the imagination, it would probably prove an impossibility.
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Yet such curves exist, as Ex. 3 in 501 shows. Such curves might

properly be called non-intuitional.

Again we might ask of our intuition : Is it possible for a con

tinuous curve to have a tangent at every point of an interval SI,

which moreover turns abruptly at a pantactic set of points ? Again
the answer would not be forthcoming. Such curves exist, how

ever, as was shown in Ex. 2 in 501.

We wish now to give other examples of non-intuitional curves.

Since their singularity depends on their derivatives or the nature

of their oscillations, they may be considered in this chapter.

Let us first show how to define curves, which, like Weierstrass

curve, have a pantactic set of cusps. To effect this we will extend

the theorem of 500, 2, so as to allow g(x) to have a cusp at x 0.

536. Let ( = \en \
denote the rational points in the interval

51= (a, a). Let g(x) be continuous in 53 = ( 2 a, 2 a), and
= 0, at x = 0. Let 53* denote the interval 53 after removing the

point x = 0. Let g have a derivative in 53*, such that

M
\g (*)\&amp;lt;

Then

a&amp;gt; 0. (1

is a continuous function in SI, and - - behaves at x = em essentiallyA#

as 9- does at the origin.*A#

To simplify matters, let us suppose that (5 does not contain the

origin. Having established this case, it is easy to dispose of the

general case. We begin by ordering the e n as in 233. Then

obviously if

en = -
t q &amp;gt; , p positive or negative,

we have

Let

p r

q s qs mn (2

* Cf. Dini, Theorie der Functional, etc., p. 192 seq. Leipzig, 1892.
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Let E(x) be the F series after deleting the mth term. Then

We show that E has a differential coefficient at x = em , obtained

by differentiatingE termwise. To this end we show that as h = 0,

(e- + ~
grf*-)

, * (3

converges to
ff = 2a^ (O , m*n. &amp;lt; .

-

(4

That is, we show

e&amp;gt;0 , rj&amp;gt;0 , |D(A)-# &amp;lt;e , 0&amp;lt;|A|&amp;lt;i;. (5

Let us break up the sums 3), 4) which figure in 5), into three

parts r s

2 = 2 + 2 + 2. (6
1 1 r+l 5+1

\D-a\&amp;lt; Dr-ar
\

+ \Dr
,
8 -ar

,
a

\

+ \Dt-aa
\ (7

&amp;lt; A + B + C.

Since g (emn) exists, the first term may be made as small as we
choose for an arbitrary but fixed r ; thus

Let us noiv turn to B. We have

B&amp;lt;\Dr,

j(0 ,

(

provided g
1

(x) exists in the interval (emn , emn +
But by 2),

mn ms

if

Thus by 1),

| ^ (^mn 4- A ) |

&amp;lt; 2aMmn &amp;lt; M^* , ^ a constant.
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Hence a fortiori,

Now the sum
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,

&amp;lt; (9

converges if n &amp;gt; 0. Hence R
p&amp;gt;

q
and Hp may be made as small as

we choose, by taking p sufficiently large. Let us note that by 91,

#,&amp;lt;--. GO
pf&amp;gt;

Thus if /*
= Min (a, /3),

B&amp;lt;
I A.I + Iff,. I

for a sufficiently large r.

We consider finally O. We have

h s+i

From 9) we see that

&amp;lt;78 . -,

for s sufficiently large. Since g(x) is continuous in

Hence
1 JV 2f

if s_&amp;gt;-r , on using 10).
I

h
\

Taking s still larger if necessary, we can make

Thus
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The reader now sees why we broke the sum 6) into three parts.

As h = 0, the middle term contains an increasing number of terms.

But whatever given value h has, * has a finite value.

Thus as J., B, C are each &amp;lt; e/3, the relation 5) is established.

Hence E has a differential coefficient at x = em ,
and as

A(0)
r- am -7

----
T~&amp;gt;

h h h

our theorem is established.

537. Example 1. Let
g(x) = Vz2

.

Then for x * 0, g (x) = . Here

Thus

is a continuous function, and at the rational points em in the in

terval 31,

RF (a;)
= + oo , X^ (a;)

= - oo.

Hence the graph of F has a pantactic set of cuspidal tangents

in 31. The curve is not monotone in any interval of 31, however

small.

^
g (x) = x sin -

, x =
Example 2. Let

Then
1

,
-j

# &amp;lt;

= sin- - -cos- ,XX X

Here a = 1. For x = 0,
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Then
1 1

*(*)- 2 (*-.) sin -J- , /3&amp;gt;0

is a continuous function in 51, and at the rational point e

w

where E is the series obtained from F by deleting the ra
th term.

538. Pompeiu Curves.* Let us now show the existence of

curves which have a tangent at each point, and a pantactic set of

vertical inflectional tangents.
We first prove the theorem (Borel) :

Let Ja

where ( = \en \
is an enumerable set in the interval 51, and

is convergent. Then B converges absolutely and uniformly in a set

53 &amp;lt; 51, and S is as near 51 as we choose.

The points ) where adjoint B is divergentform a null set.

For let us enclose each point en in an interval Sn of length
with en as center.

The sum of these intervals is

for k &amp;gt; sufficiently large. Let now k be fixed. A point x of 51

will not lie in any Sn if

r I r - P \ -&amp;gt;

^an
n

\

Vn
|

^&amp;gt; ~T-

Then at such a point,
k

Adjoint B &amp;lt; 2an =. = 2Van = kA.
Van

* Math. Annalen, v. 03 (1907), p. 326.
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As S &amp;gt; 51 e, the points ) where B does not converge ab

solutely form a null set.

539. 1. We now consider the function

F(x) = I an(x
- erf = Z/O) (1

i

where (5 = \en \
is an enumerable pantactic set in an interval 51, and

A = 2 n (2

is a convergent positive term series.

Then F is a continuous function of x in 51. For
|

x en |* is &amp;lt;

some M in 51.

Let us note that each f n(x) is an increasing function and the

curve corresponding to it has a vertical inflectional tangent at the

point x = en .

We next show that F (x) is an increasing function in 51. For let

x
&amp;lt;

x&quot;. Then

/.(* )&amp;lt;/.(*&quot;)

Hence

Hence

2. Let us now consider the convergence of

obtained by differentiating F termwise at the points of 21 @.

Let 55 denote the points in 31 where

? (4

diverges. We have seen ) is a null set if

(5
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is convergent. Let 51 = ) + (. Let # be a point of (, i.e. a

point where 4) is convergent. We break 3) into two parts

such that in Dr each fn &amp;lt;
1. Then D

2 is obviously convergent,

since each of its terms

where = x e,

tf

and the series 2) is convergent.

The series D
l

is also convergent. For as fn &amp;lt; 1, the term

M &amp;lt;

l^n

and the series 4) converges by hypothesis, at a point x in (.

Hence D(x) is convergent at any point in (, and S, = 51 when 5) is

convergent.

3. Let (7 denote the points in 51 where 3) converges. Let

51= 0+ A.

J7e Tieatf sAow #A F (x) = D(x), for x in 0. For taking a; at

pleasure in (7 but fixed,

We now apply 156, 2, showing that Q is uniformly convergent

in (0*, ?;). By direct multiplication we find that

Thus 6) gives

.OXTX _

Let us set

Then



NOX-INTUITIONAL CURVES 545

for &amp;lt;

|

h
&amp;lt;_?/, 77 sufficiently small. As the series on the right is

independent of A, Q converges uniformly in (0*, 77). Thus

by 156, 2

F 1 = D
,

for any x in C.

4. Let now x be a point of A, not in Q. At such a point we show

that

.F (X)= + oo, (8

and thus the curve F has a vertical inflectional tangent. For as

D is divergent at #, there exists for each M an w, such that

A&amp;gt;2 M.

But the middle term in 7) shows that for
|

h
\

&amp;lt; some rj

r each

term in Qm is
&amp;gt; \ the corresponding term in Dm . Thus

M , 0&amp;lt;|A|&amp;lt;y.

Since each term of Q is
&amp;gt; 0, as 7) shows,

Q(h) &amp;gt; M.
Hence 8) is established.

5. Let us finally consider the points x= em . If &amp;lt;1&amp;gt; denotes the

series obtained from F by deleting the mth
term, we have

As J7
is increasing, the last term is &amp;gt; 0.

Hence
J&quot; (:r)=+oo , ing.

As a result ive see the curve F has at each point a tangent. At an

enumerable pantactic set V, it has points of inflection with vertical

tangents.

7. Let us now consider the inverse of the function F, which we
denote by

x=G(t). (9

As x in 1) ranges over the interval 51, t =F(x) will range over

an interval 53, and by I, 381, the inverse function 9) is a one-

valued continuous function of t in 53 which has a tangent at each
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point of 53. If TTare the points in 53 which correspond to the

points V in 51, then the tangent is parallel to the -axis at the

points W, or Gr () = 0, at these points. The points W are pan-
tactic in 53.

Let Z denote the points of 53 at which Gr (t)
= 0. We show

that Z is of the 2 category, and therefore

Card=c.

For G-
1

() being of class &amp;lt; 1 in 53? its points of discontinuity 5

form a set of the 1 category, by 486, 2. On the other hand, the

points of continuity of Gr form precisely the set Z, since the

points W are pantactic in 53 and Gr = in W. In passing let us

note that the points Z in 53 correspond 1-1 to a set of points 3 afc

which the series 3) diverges. For at these points the tangent to

F is vertical. But at any point of convergence of 3), we saw in

2 that the tangent is not vertical.

Finally we observe that 3) shows that

MinD(aO&amp;gt;- 2an ,
in 51.

3
gf

Hence Q ^2
Max

Summing up, we have this result :

8. Let the positive term series 2V n converge. Let (& = \en \
be

an enumerable pantactic set in the interval 51. The Pompeiu curves

defined by

F(x)=Zan(x- Crf

have a tangent at each point in 51, whose slope is given by

when this series is convergent, i.e. for all x in 51 except a null set.

At a point set 3 of the 2 category which embraces (5, the tangents

are vertical. The ordinates of the curve F increase with x.

540. 1. Faber Curves.* Let F(x) be continuous in the interval

${ == (0, 1). Its graph AVC denote by F. For simplicity let

* Math. Annalen, v. 66 (1908), p. 81.
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i = 0, .F(l) = / . We proceed to construct a sequence of

broken lines or polygons,

which converge to the curve F as follows :

As first line L
Q
we take the segment joining the end points of

F. Let us now divide 21 into n^ equal intervals

of length 1

and having

as end points. As second line L^ we take the broken line or

polygon joining the points on F whose abscissae are the points 3).
We now divide each of the intervals 2) into n2 equal intervals,

getting the n^nz intervals

of length

and having
(5

as end points. In this way we proceed on indefinitely. Let us

call the points

4-K.l
terminal points. The number of intervals in the rth division is

vr
= n

l
- n

2
.- nr .

If Lm(x) denote the one-valued continuous function in 51 whose
value is the ordinate of a point on Lm , we have

, (6

since the vertices of Lm lie on the curve F.

2. For each x in 51,

m(x) = F(x). (7
m=x&amp;gt;

For if x is a terminal point, 7) is true by 6).
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If x is not a terminal point, it lies in a sequence of intervals

i&amp;gt;s2 &amp;gt;

belonging to the 1, 2 division of 21.

Let
5&amp;gt;

,0= (am,m m,tt+l)-

Since F(x) is continuous, there exists an
,
such that

| F(x) -F(am
, ) |

&amp;lt;|,

m&amp;gt;s (8

for any a: in Sm . As Lm(x) is monotone in Sm ,

|

Zm(20 - Lm(amn ~) \

&amp;lt;

|

Lm(amn )
- Xm(aw , n+1) |

. ^| &amp;gt;

by 8).
-

|^(*)-^(*n)|&amp;lt;|-
(9

Hence from 8), 9),

which is 7).

3. Tfe m^ ^r^g 1) as a telescopic series. For

etc. Hence

.F

If we set

)
= lim Z.(a:) = i &amp;lt;

+ 2

we have F(x) = %fn(x) ,

o .

and

The function /n(V), as 10) shows, is the difference between the

ordinates of two successive polygons Ln_^ Ln at the point x. It

may be positive or negative. In any case its graph is a polygon
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fn which has a vertex on the z-axis at the end point of each
interval 8n _lt Let In8 be the value of fn(x) at the point x = ana ,

that is, at a point corresponding to one of the vertices of fn . We
call l^ the vertex differences of the polygon Ln .

Let
p. -Mini/.. |

, ?n
= Max|?n.|.

* 5

Then
l/nOOl&amp;lt;9n , in 51. (13

In the foregoing we have supposed F(x) given. Obviously if

the vertex differences were given, the polygons 1) could be con
structed successively.

We now show :

2&amp;lt;?n (14
is consent,

is uniformly convergent in 51, and is a continuous function in 5T.

For by 13), 14), F converges uniformly in 51. As each fn(x)
is continuous, F is continuous in 51.

The functions so defined may be called Faber functions.

541. 1. We now investigate the derivatives of Faber s functions,
and begin by proving the theorem :

If 2n
1 n.q.=*I,v.qt (1

converge, the unilateral derivatives of F(x) exist in 51 = (0, 1) . More
over they are equal, except possibly at the terminal points A= \amn \.

For let x be a point not in A. Let x
,

x&quot; lie in V= V*(x) ;

lQtx f -x=h ,x&quot; -x=h&quot;.

Let Q -F(x)-F^
V h&quot;

Then F (x) exists at x, if

e&amp;gt;0 , 7;&amp;gt;0 , \Q\&amp;lt;e , for any x
,

x&quot; in V. (2
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Now

1 Q\ &amp;lt;
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Now
.P (a) =+,() ,

Thus Q = 2+i S2 in+1O) -
[Z.(6) +

or
| |

= 4 2nZ
n)8 , supposing a = ana .

Hence 2n?n &amp;lt; JJf,

which establishes 3).

Let us noiv consider 4). By hypothesis there exists a sequence

&amp;lt;

= oc, such that

(r being large at pleasure. Hence at least one of the difference

quotients 5) belonging to this sequence of divisions is numerically

large at pleasure.

3 If X = 2?m. (1

i absolutely convergent, the functions F(x) have limited variation in

&

For/m(#) is monotone in each interval B^. Hence in 8^

Var/m -|C- ^, a+ i I

&amp;lt; Km. |

+
| ?m,.+i I-

Hence in 51, Var /(*)&amp;lt; 2 2^.
Hence

2\ , in 51.

771=1 5

We apply now 531.
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542. Faber Functions without Finite or Infinite Derivatives.

To simplify matters let us consider the following example.
The method employed admits easy generalization

and gives a class of functions of this type. We
use the notation of the preceding sections.

Let / (#) have as graph Fig. 1. We next

divide 21 = (0, 1) into 21!
equal parts 8n , 8

12
and

take f^(x) as in Fig. 2. We now divide 21 into

22!
equal parts 21 , S

22 ,
S
23 ,

S
24 and take /2(x) as

The height of the peaks is 1
2
=in Fig. 3.

In the mth division 21 falls into 2w! equal parts

FIG. 1

in

FIG. 2

one of which may be denoted by

Its length may be denoted by the same letter,

thus

FIG. 3

AAA/^
FIG. 4

In Fig. 4, Sm is an interval of the m 1 st

division.

The maximum ordinate of /m(V) is L = = -. The
10 TO 2 10m

part of the curve whose points have an ordinate &amp;lt; J lm have been

marked more heavily. The x of such points, form class 1. The
other o; s make up class 2. With each x in class 1, we associate

the points am &amp;lt; /3m corresponding to the peaks of fm adjacent to x.

Thus am &amp;lt;x&amp;lt;{3m . If # is in class 2, the points m , /3m are the

adjacent valley points, wherefm = 0.

Let now x be a point of class 1. The numerators in

(1
.-* am - x

have like signs, while their denominators are of opposite sign.

Thus the signs of the quotients 1) are different. Similarly if x

belongs to class 2, the signs of 1) are opposite. Hence for any #,
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the signs of 1) are opposite. It will be convenient to let em denote

either c^ or /3m . We have

Hence, m!

On the other hand, for any x^x in 8TO ,

JU As

Hence setting x = en ,
and letting n

&amp;gt; w,

1 2m! 1 2n
&quot;

1!

1 Am On! 1 i\m On!

(2

(3

10

For if Iog2 a be the logarithm of a with the base 2,

_ n
&amp;gt;

n
I g2

10 ,
for n sufficiently large.n-1

Hence

Thus On!

and this establishes 4).

Let us now extend the definition of the functions fn(x) by giv

ing them the period 1. The corresponding Faber function F(x)

defined by 540, 12) will admit 1 as period. We have now

From 2) we have
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As to T
2 , we have, using 4) and taking n sufficiently large,

Similarly

\T9 \&amp;lt; i

-v_^ v_ __
* *

&quot;

&amp;lt; 2 2
n-fl

Thus finally

As

Thus

sgn - X

il&amp;gt;l*il +

F(x^ = sgn
en x

- F(x)
en x

As gn may be at pleasure n or ^n , and as the signs of 1) are

opposite, we see that

F(x) has neither a finite nor an infinite differential coefficient

at any point.



CHAPTER XVI

SUB- AND INFRA-UNIFORM CONVERGENCE

Continuity

543. In many places in the preceding pages we have seen how

important the notion of uniform convergence is when dealing
with iterated limits. We wish in this chapter to treat a kind of

uniform convergence first introduced by Arzeld, and which we
will call subuniform. By its aid we shall be able to give condi

tions for integrating and differentiating series termwise much
more general than those in Chapter V.

We refer the reader to Arzela s two papers,
&quot; Sulle Serie di

Funzioni,&quot; R. Accad. di Bologna, ser. V, vol. 8 (1899). Also

to a fundamental paper by Osgood, Am. Journ. of Math., vol. 19

(1897), and to another b}^ Hobson, Proc. Lond. Math. Soc., ser. 2,

vol. 1 (1904).

544. 1. Let/^j xm , ^ tn)=f(x, t) be a function of two

sets of variables. Let x = (xl
&amp;gt;~xm } range over Hi in an w-way

space, and t = (tl n) range over in an rc-way space. As x

ranges over Hi and t over , the point (xl ^ ...)
=

(#, ) will

range over a set 51 lying in a space 9?p , p = m + n.

Let r, finite or infinite, be a limiting point of .

Let v f( t t^ = 6C &quot;&amp;gt; in
t=T

Let the point x range over 53 &amp;lt; X, while t remains fixed, then

the point (x, ) will range over a layer of ordinate t, which we
will denote by % t

. We say x belongs to or is associated with this

layer.

We say now that/== &amp;lt;, subuniformly in H when for each e&amp;gt;0,

555
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1 There exists a finite number of layers t
whose ordinates t

lie in F;*(T).

2 Each point x of is associated with one or more of these

layers. Moreover if x = a belongs to the layer ,, all the points

x in some V^a also belon to ?,.

while (#, t) ranges over any one of the layers % t
. When ra= 1,

that is when there is but a single variable # which ranges over an

interval, the layers reduce to segments. For this reason Arzela

calls the convergence uniform in segments.

2. In case that subuniform convergence is applied to the series

convergent in 51, we may state the definition as follows :

F converges subimiformly in 51 when
1 For each e &amp;gt; 0, and for each v there exists a finite set of

layers of ordinates &amp;gt; v, call them

8,, ,- (2

such that each point x of 51 belongs to one or more of them, and if

x = a belongs to m ,
then all the points of 51 near a also belong

as the point (#, w) ranges over any one of the layers 2).

545. Example. Let

EVjA _ y f
MS (n-l&amp;gt;

] in 9J-r
-^iTT^~l+(n-l)VJ

Here

The series converges uniformly in 51, except at x = 0. The

convergence is therefore not uniform in 51 ; it is, however, sub-

uniform. For
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Hence taking m at pleasure and fixed,

Fm \&amp;lt;e ,
a; in

!
= (-$, 8),

sufficiently small. On the other hand,

Thus for w sufficiently large,

Hence we need only three segments s
1 , s

2 , s
3
to get subuniform

convergence.

546. 1. Let /(^ -~xm i V- O^^Oi *) m
, as ? = T,

finite or infinite. Let /(#, t) be continuous in Hi for each t near r.

For
&amp;lt;f&amp;gt;

to be continuous at the point x = a in , it is necessary that

for each e &amp;gt; 0, there exists an 77 &amp;gt; 0, and a d
t for each t in F

n*(r)
such that

for each t in V^ andfor any x in Vd (a).

It is sufficient if there exists a single t=/3 in T/r
T/*(r) for ivhich

the inequality 1) holds for any x in some V^a).
It is necessary. For since

&amp;lt;/&amp;gt;

is continuous at x = a,

| $(x) &amp;lt;() |

&amp;lt; | , for any x in some F^().o

Also since/= c/&amp;gt;,

I/O Q -
&amp;lt;(

|

&amp;lt;

I
, for any f in some r/(r).

Finally, since /is continuous in x for any near r,

I/O&amp;gt; -/O 0|&amp;lt;
jj

^ for any ^ in some 1\(a).

Adding these three inequalities we get 1), on taking
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It is sufficient. For by hypothesis

and hence in particular.

n
o

Also since /O, ) *s continuous in a;,

I/O, )/(, )| &amp;lt; , for any a; in some F6,,(.
6

Thus if 8
&amp;lt;

8
, 8&quot;,

these unequalities hold simultaneously. Add-

ing them we get

&amp;lt;K
a)l &amp;lt; e

&amp;gt;

f r any ^ i

and thus &amp;lt; is continuous at x = a.

2. As a corollary we get :

Let ^O)=2/tl
... lnOi-^)

converge in 21, each term being continuous in 51. For F(x) to be con

tinuous at the point x = a in 21, it is necessary that for each e
&amp;gt; 0,

and for any cell R^_ &amp;gt;
some J2A , there exists a S^ such that

^8 sufficient if there exists an R^ and a 8
&amp;gt;

| ^O)l &amp;lt;
e

-&amp;gt; for anV x in V^(

547. 1. Let limf^xl
&quot;-xm , ^ n)

=
&amp;lt;^&amp;gt;Oi

&quot; ^m) ^ %, r finitex^
or infinite. Letf(x, t) be continuous in Hfor each t near r.

1 Iff= &amp;lt;/&amp;gt; subuniformly in ,
&amp;lt;#&amp;gt;

i* continuous in 3E-

2 ^ 3E ^8 complete, and
&amp;lt;f&amp;gt;

is continuous in ,/== &amp;lt;t&amp;gt; subuniformly

in X.

To prove 1. Let x = a be a point of . Let e &amp;gt;
be taken at

pleasure and fixed. Then there is a layer %
ft
to which the point

a belongs and such that
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when (x, t) ranges over the points of 8^. But then 1) holds for

t = fi and x in some F^(a). Thus the condition of 546, l is satis

fied.

To prove 2. Since
(f&amp;gt;

is continuous at z=a, the relation 1)

holds by 546, l, for each t in Vf(j) and for any x in Vdt (a).

With the point a let us associate a cube Ca^ lying in D^a) and

having a as center. Then each point of lies within a cube.

Hence by Borel s theorem there exists a finite number of these

cubes (7, such that each point of lies within one of them, say

But the cubes 2) determine a set of layers

^ , V (3

such that 1) holds as (x, ) ranges over the points of SI in each

layer of 3). Thus the convergence of/to &amp;lt;f&amp;gt;

is subuniform in .

2. As a corollary we have the theorem :

Let ps . a? ^ = 2f (x x }

converge in , each / fteiVigr
continuous in H. If F converges sub-

uniformly in , F is continuous in . If is complete and F is

continuous in X, F converges subuniformly in H.

548. 1. Let F , , _ 2
-

(x . . x ^* \%) &quot;HMiSi VX1 ^m/

converge in SI.

i^^ ^Ag convergence be uniform in SI except possibly for the points

of a complete discrete set 53 = 55|. .For each b, let there exist a \

swcA thatfor any X &amp;gt; X ,

.F converges subuniformly in SI.

For let D be a cubical division of norm d of the space 9?TO in

which SI lies. We may take d so small that 33^ is small at

pleasure. Let BD denote the cells of D containing points of SI

but none of 33. Then by hypothesis ^converges uniformly in BD .

Thus there exists a /x such that for any ft &amp;gt; /x ,

| Fp (x)
|

&amp;lt;
e ,

for any z of SI in BD .
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At a point b of $8, there exists by hypothesis a Fs(ft) and a X
such that for each X &amp;gt; X

|

JFx (aO !

&amp;lt; , for any x in F(i).

Let (7
ftjX

be a cube lying in D(5), having b as center. Since 33

is complete there exists a finite number of these cubes

such that each point of 23 lies within one of them.

Moreover
l^.(*)li

for any x of 21 lying in tlie /c
th cube of 1).

As 1?^ embraces but a finite number of cubes, and as the same
is true of 1), there is a finite set of layers 8 such that

\Fv (x)\&amp;lt;e ,
in each 8.

The convergence is thus subuniform, as X, p are arbitrarily large.

2. The reasoning of the preceding section gives us also the

theorem :

in
,
r finite or infinite. Let the convergence be uniform in except

possibly for the points of a complete discrete set ( =
\e\. For each

point e&amp;lt;
let there exist an

rj such that setting e(#, t) =/(^, &amp;lt;/&amp;gt;(^)

lim e(x, t)
=

, for any t in F^*(T).
x=e

Thenf= &amp;lt; subuniformly in %.

3. As a special case of 1 we have the theorem :

Let
*(*&amp;gt;

converge in H, and converge uniformly in 51, except at x =
1?

a:= a,.

^4.^ a; = at Z^^ fA^re g^zs^ j/
t

lim J*
ni (a;) =0 , nt

&amp;gt; i/
t ,

i = 1, 2 ... s.

X=a
L

Then F converges subuniformly in 51.
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4. When v ~, ,, . , x
lim/O, = (*)
&amp;lt;=T

we will often set

/(avO~*(*)4XM)i
and call e the residual function.

549. Example 1.

/(^n)^=(a?)=0 ,
for 7i = oo in 21 = (0 z),

gW^.r&quot;

, /3, X &amp;gt;

, /I &amp;gt;
0.

The convergence is suburiiform in 81. For 2; = is the only

possible point of non-uniform convergence, and for any m,

/- ~\ i H)\ OC /\ /\=
,

as x = 0.

Example 2. f(x, ri) = --- = 6 (x) = , as n = oo,
c + n^xP

f

a; in 31 = (0 &amp;lt; a) , a, /S, X, /* &amp;gt; , ^&amp;gt;X ,
&amp;lt;?

&amp;gt;
0.

The convergence is uniform in iB = (e &amp;lt; a), where ^
&amp;gt;

0. For

&quot;

c

a 7^
&quot;

e^ n^

&amp;lt;
e

,
for n

&amp;gt; some m.

Thus the convergence is uniform in 81, except possibly at x = 0.

The convergence is subuniform in 51. For obviously for a given n

lim/(#, n) = 0.

-r=0

550. 1. Let Hm/O^ xm t
l

... fn) = ^(^ .- arm) Hi, r finite
t=T

or infinite.

Let the convergence be uniform in % except at the points

85 =(**,, - J,).
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For the convergence to be sub-uniform in
,
it is necessary that for

each b in 33, and for each e
&amp;gt; 0, there exists a t= fi near r, such that

x=b

For if the convergence is subuniform, there exists for each

and 77 &amp;gt; a finite set of layers t , t in
FV&quot;(r) such that

| e(#, f) |

&amp;lt;
e , re in % t

.

Now the point x= b lies in one of these layers, say in
fy

Then

| e(#, /3) |

&amp;lt; e , for all x in some V*(b).

But then 1) holds.

&quot;

J^jOTCL /YYL Y)i r I^Pt&quot;

This is the series considered in 140, Ex. 2.

F converges uniformly in 21 = ( 1, 1), except at x = 1.

As y ^ = _^
we see that y XT /^ \ _ -i

Hence ^ is not subuniformly convergent in 51.

Integrdbility

551. 1. Infra-uniform Convergence. It often happens that

subuniformly in 36 except possibly at certain points (= \e] form

ing a discrete set. To be more specific, let A be a cubical divi

sion of $ftm in which X lies, of norm 5. Let JTA denote those cells

containing points of X, but none of (. Since (, is discrete,

JTA = 36. Suppose now
/&quot;=(/&amp;gt; subuniformly in any ^TA ; we shall

say the convergence is infra-uniform in . When there are no

exceptional points, infra-uniform convergence goes over into sub-

uniform convergence.
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This kind of convergence Arzela calls uniform convergence by
segments, in general.

2. We can make the above definition independent of the set (g,

and this is desirable at times.

Let = (^T, ) be an unmixed division of X such that may be

taken small at pleasure. If
/=&amp;lt;/&amp;gt; subuniformly in each X, we

say the convergence is infra-uniform in %.

3. Then to each e, 77 &amp;gt;0, and a given Jf, there exists a set of

layers (j, I2 ,
t in

FV&quot;(r),
such that the residual function e(z, f)

is numerically &amp;lt;
e for each of these layers. As the projections of

these layers I do not in general embrace all the points of
, we

call them deleted layers.

4. The points we shall call the residual points.

5. Example 1. ^ y*

This series was studied in 150. We saw that it converges uni

formly in 21= (0, 1), except at x 0.

As .

nx

and as this = 1 as x = for an arbitrary but fixed w, F does not

converge subuniformly in 51, by 550. The series converges infra-

uniformly in 21, obviously.

6. Example X. != L. (I _*).

This series was considered in 550, 2. Although it does not

converge subuniformly in an interval containing the point x = 1,

the convergence is obviously infra-uniform.

552. 1. Let lira / (^ xm ^ ... *n) = ^(^ xm) be limited in X,
x=r

T finite or infinite. For each t near r, letf be limited and R-integrable
in H. For

&amp;lt;/&amp;gt;

to be R-integrable in X, it is sufficient thatf =
&amp;lt;f&amp;gt; infra-

uniformly in Hi. If Hi is complete, this condition is necessary.
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It is sufficient. We show that for each e, co
&amp;gt;

there exists a

division D of 9?m such that the cells in which

Osc
&amp;lt;f&amp;gt;

&amp;gt; co (1

have a volume &amp;lt;
&amp;lt;r. For setting as usual

we have in any point set,

Oscc

Using the notation of 551,

in the finite set of deleted layers (
x , (2 corresponding to

t= t^ t
2

- For each of these ordinates
t ,/(#, Q is integrable

in H. There exists, therefore, a rectangular division D of 9?m ,

such that those cells in which

have a content &amp;lt; f , whichever ordinate tL is used. Let JS be a

division of 9?m such that the cells containing points of the residual

set have a content
&amp;lt;

&amp;lt;r/2.
Let F = D + E. Then those cells

of F in which

Osc/C*,O&amp;gt;!&amp;lt;

or Osc (s, *0 I

&amp;gt;f

t = l, 2 ... have a content &amp;lt;
&amp;lt;r. Hence those cells in which 1)

holds have a content &amp;lt;
cr.

It is necessary, if is complete. For let

&amp;lt;1,

*
2 V-

= T

Since &amp;lt; and/ (z, fn) are integrable, the points of discontinuity of

&amp;lt;O)
and of /(&, n) are null sets by 462, 6. Hence if (, ^ denote

the points of continuity of
&amp;lt;(#)

and /(#, in X,

since 96 is measurable, as it is complete.
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Let =QdvJ&amp;lt;|},

then 5 = f

by 410, 6.

Let ) = Di(6, ),

then f) = S,

as we proceed to show. For if G = X

6T = S)

565

(1

But ^ is a null set. Hence Meas Dy((S, 6r) = 0, and thus

S = = J), which is 1).

Let now f be a point of 5), let it lie in
(/,, (

/2
where ^, ^

2
...

form a monotone sequence = r. Then since

there is an m such that

&amp;lt; ,
for any n

&amp;gt;
w.

o

But f lying in 2), it lies in ( and (, .

Thus

for any a: in

Now

Hence

n (3

Hence from 2), 8),

&amp;lt;e ,
for any a: in

Thus associated with the point f, there is a cube F lying in DS(),
having % as center. As D = 5) is a null set, each of its points
can be enclosed within cubes (7, such that the resulting

1 enclosure
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( has a measure
&amp;lt; &amp;lt;r,

small at pleasure. Thus each point of lies

within a cube. By Borel s theorem there exists a finite set of

these cubes

1 2
&quot;

.f 1 2
&quot;

such that each point of lies within one of them. But corre

sponding to the F s, are layers

81, 8a ,
- 8r

such that in each of them

|O,01&amp;lt;.

Thus/ = &amp;lt;t&amp;gt; subuniformly in X = (I\, T
2
~- Fr). Let be the

residual set. Obviously ji &amp;lt;
&amp;lt;r. Thus the convergence is infra-

uniform.

2. As a corollary we have :

Let ^0^ = 2/tl
... lnOi&quot;-O

converge in 31. Xe^ JP be limited, and each f, be limited and R-in-

tegrable in 31. For F to be R-integrable in 31, it is sufficient that F
converges infra-uniformly in 31.

If 31 is complete, this condition is necessary.

553. Infinite Peaks. 1. Let lira f (x {

&quot; Xm t
1

&quot;-tn)
= $(x) in

,

t=T

T finite or infinite. Although /(a;, t) is limited in for each t

near T, and although &amp;lt;/&amp;gt;(

is also limited in X, we cannot say that

I/O, 01 &amp;lt;
some ^ 0-

for any x in X and an}^ f near T, as is shown by the following

Example. Let/O&amp;gt;
=
-^

= ^O) =
&amp;gt;

as ^^^ for * in

^ = (-00,0)).
It is easy to see that the peak of / becomes infinitely high as

flfssOQ.

In fact, for x = -/=_. Thus the peak is at least as highV e

Vz , .
T

as ,
which = QO .

e
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The origin is thus a point in whose vicinity the peaks of the

family of curves f (x, ) are infinitely high. In general, if the

Peaksof /CV^V -O
in the vicinity Vs

of x = f become infinitely high as t = T, however

small 8 is taken, we say f is a point with infinite peaks.

On the other hand, if the relation 1) holds for all x and t in

volved, we shall say/(#, ) is uniformly limited.

2. If lim /CV^ *
1 -*) = &amp;lt;Kai &quot;*)&amp;gt;

and if ffr
&amp;lt;=T

uniformly limited in ,
fo?w $ z* limited in Hi.

For 2: being taken at pleasure in 36 and fixed, $(x) is a limit

point of the points /(z, ) as t = r. But all these points lie in

some interval (#,#) independent of z. Hence
&amp;lt;j&amp;gt;

lies in this

interval.

3. IfH is complete, the points $ in Hi with infinite peaks also form

a complete set. If these points & are enumerable, they are discrete.

That $ is complete is obvious. But then $ = $ = 0, as $ is

enumerable.

554. 1. Let lim/0^ xm ^ fn) = ^(^ ) in I, metric or

complete. Let f (x, t) be uniformly limited in X, and R-integrable

for each t near T. For the relation

Km

fo hold, it is sufficient thatf=(j&amp;gt; infra-uniformly in I. If X is

for each t complete, this condition is necessary.

For by 552,
&amp;lt;f&amp;gt;

is JZ-integrable if/= iufra-uniformly, and when

X is complete, this condition is necessary. By 424, 4, each f(x, t)

is measurable. Thus we may apply 381, 2 and 413, 2.

2. As a corollary we have the theorem :

Let
m F(x) = -Sfli .....Or,-*.)

converge in the complete or metric field 51. Let the partial sums J\ be

uniformly limited in 51- Let each term/t
fo limited and R-integrable

in 21. Then for the relation
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to hold it is sufficient that F is infra -uniformly convergent in 51. If
51 is complete, this condition is necessary.

555. Example 1. Let us reconsider the example of 150,

We saw that we may integrate termwise in 51 = (0, 1), al

though F does not converge uniformly in 51. The only point of

non-uniform convergence is x ~ 0. In 551, 5, we saw that it con

verges, however, infra-uniformly in 51. As

I ^n(X) I

&amp;lt; 1
&amp;gt;

f r anv x m ^ and for every n,

all the conditions of 554 are satisfied and we can integrate the

series termwise, in accordance with the result already obtained

in 150.

** (n ~* x
Example 2. Let F(x) = V - ~

= 0.^ J ^4
[ enx* e(n-l)x* j

Then ^ ,^ _ nx

^w-p-
We considered this series in 152, i. We saw there that this

series cannot be integrated termwise in 51 = (0 &amp;lt; ). It is, how

ever, subuniformly convergent in 51 as we saw in 549, Ex. 1. We
cannot apply 554, however, as Fn is not uniformly limited. In

fact we saw in 152, l, that x = is a point with an infinite peak.

Example 3. F(x) = 2^(1 -
x).

o

We saw in 551, 6, that F converges infra-uniformly in 51 = (0, 1).

Here Fn (V) =
|

1 - x*
|

&amp;lt;
some M,

for any x in 51 = (0 &amp;lt; w), u
&amp;lt;^ 1, and any n. Thus the Fn are

uniformly limited in 51.

We may therefore integrate termwise by 554, 2. We may
verify this at once. For

=
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Hence C*F(x)dai = u. (1

On the other hand,

Xu
ll
n+ ^

Fndx = u ---- = u , as n = GO. (2
71+1+

From 1), 2) we have

, n + 1 n H- 2

556. 1. // l/Oi &amp;gt; a? !
-O = *(! *.) infra-uniformly

in the metric or complete field 36, as f = r, r ^wite or infinite ;

2 /(#, ^s uniformly limited in H and R-integrable for each t

near r;

uniformly with respect to the set of measurable fields H in X-

If 36 is complete, condition 1 wa^ be replaced by 3
&amp;lt;(#)

is

R-integrable in X.

For by 552, l, when 3 holds, 1 holds ; and when 1 holds,
&amp;lt;f&amp;gt;

is 72-integrable in 36.

Now the points &amp;lt;&t
where

|

e O, tn) &amp;gt;
e

are such that ^
lim @ t

=
, by 412.

Let = ,+ . Then

Ce(x,t)= /*(, 0+ f C
4/;e -t^fc otft

I f

But
lim I, = 0,
?=T

which establishes the theorem.

2. As a corollary we have :

If 1 F(x)= ^fli
... in (^x1

^m) converges infra-uniformly, and

each of its terms f, is R-integrable in the metric or complete field 51;



570 SUB- AND INFRA-UNIFORM CONVERGENCE

2
F&amp;gt;,(x)

is uniformly limited in 51;

Tken r *(*)= 2 r/.,J Jy
and the series on the right converges uniformly with respect to all

measurable SB &amp;lt; 51.

3. Jf 1 lim/(z, ^ ... fn) = &amp;lt;(X)
i R-integrable in the interval

t=T

5( = ( &amp;lt; 6), T finite or infinite ;

2f(x, ) is uniformly limited, and R-integrable for each t near r;

Thpw Cx fx
lim I/O, 0^=1 &amp;lt;KzVz

=
&amp;lt;&amp;lt;&amp;gt;\

*=T / /

uniformly in 51, anc?
&amp;lt;J&amp;gt;(a:)

is continuous in 51.

termfL
are R-integrable in the interval 21 =

(a&amp;lt; 5);

2 jPx(^) ** uniformly limited in 51;

2%eft xy, N v r^-, N 7

^(a;)
= 2 I f,(x)dx , z tw 51

OB

continuous.

For 6r is a uniformly convergent series in 51, each of whose terms

/.*
%x u

i continuous function of x.

Differentiability

557. 1. J/ 1 lhn/(s, &amp;lt;!-)=: ^() m 51 = (a &amp;lt; 6), r finite or

infinite ;

%fx(.xi ** R-integrable for each t near T, a/ic? uniformly limited

3 /j(a;, )= i/r(V) infra-uniformly in 5(, a = T;

^ a^ a point x of continuity of i/r
in 51

^(aO-^OO. (1
or ttwa is ^e same

-f/(*,0- (2
dx
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For by 554,

lim f/J(z, f)dx = F+(x)dx (3
t=r &quot;a /

= lim[/0r, 0-/O, 0] by I, 538
/=T

=
&amp;lt;&amp;lt;-&amp;lt;&amp;lt; , byl.

Now by I, 537, at a point of continuity of
i/r,

(*)** -*co- (4

From 3), 4), we have 1), or what is the same 2).

2. /ft the interval 51, if

1 F(x)= 2/tl
...

lB (a;) converges; (1

2 EacKf[(x) is limited and R-integrable ;

3 .FA (a;) t* uniformly limited ;

4 G(x)= 2// i infra-uniformly convergent;

Then at a point of continuity of 6r(#) m 51, t^e ??i(z?/ differentiate

the series 1) termivise, or F (x)= G(x).

3. J/i the interval 51, if

1 f(x, t
1
- tn)

=
(f&amp;gt;(x)

as t = r, r finite or infinite ;

2 /(#, f) is uniformly limited, and a continuous function of x ;

3 ^(a:) = limy^a;, ) z*8 continuous;

nen
.

* (*)=*(*), a
or w^a^ zs ^6 same

= lim- /(, 0- (2

For by 547, l, condition 3 requires that / =
i|r subuniformly

in K. But then the conditions of 1 are satisfied and 1) and 2)

hold.

4. In the interval 51 let us suppose that

1 F(x) = 2/ti
... tn &amp;lt; converges ; (1
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2 Each termf, is continuous;

3 Fl(x) is uniformly limited ;

4 G(x) = 2/[(a;) is continuous ;

Then we may differentiate 1) termtvise, or F (x) = 6r(#),

558. Example 1. We saw in 555, Ex. 3 that

*a-U). a

The series got by differentiating termwise is

#00 = 2zn(l-20=l Q&amp;lt;z&amp;lt;l

o (2=
,

x = 0.

Thus by 557, 4, ^^ =^^ in (Q#? 1) = 5p&amp;gt; (g

The relation 3) does not hold for x = 0.

Example 2.

H-

l
J

1

Here
^(a:) = arctg x, for any z. (1

Hence (r(^) is continuous in any interval 51, not containing

x = 0. Thus we should have by 557, 4,

Ff

(x)=G-(x), zinH. (3

This relation is verified by 1), 2). The relation 3) does not

hold for x = 0, since
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Example 3.

= 1
log (1 -f x2

) ,
for any x.

In any interval 51, all the conditions of 557, 4, hold.

Hence
, for

In case we did not know the value of the sums 1), 2) we could

still assert that 3) holds. For by 545, G- is subuniformly con

vergent in 51, and hence is continuous.

Example 4-

F( ^ V I
^

&quot;*&quot;
nx 1 +(n + 1)^ } _ 1 + # s-t

Here
* (*)= -5. (2

The series obtained by differentiating jF termwise is

*
(3

7 I gi- e
nx

and hence

/? z&amp;gt;WX

The peaks of the residual function

e(&amp;gt;, n)= x̂
,

are of height = \/e. The convergence of G- is not uniform at

x = 0. The conditions of 557, 4, are satisfied and we can differ

entiate 1) termwise. This is verified by 2), 3).



574 SUB- AND INFRA-UNIFORM CONVERGENCE

559. 1. Ifl lim/O, t
1

&quot;- tn )
=

&amp;lt;$&amp;gt;(x)

is limited and R-integraUe
t= T

in the interval 51 = (a &amp;lt; ft) ;

2 f(x, t) is limited, and R-integrable in 51, for each t near r
;

3 ^(x) = lim P/O, = lim g(x, t)
t=r */a t=r

is a continuous function in 51;

4 The points (g in 51 in whose vicinity the peaks of f(x, t) as

t = T are infinitely high form an enumerable set ;

Then Cx Cx
6(x) = I ^(a;) = lim ( /(*, t)dx = ^O), (1/

&amp;lt;=T ^a

^&quot;

fx rx
lim I /(a;, t)dx = I lim/(^, &amp;lt;)c?a;,

t=T J&amp;lt;* t/a
&amp;lt;=T

ant? the set (S i* complete and discrete.

For (g is discrete by 553, 3.

Let a be a point of A = 51 (g. Then in an interval a about a,

|/(#, t) |

&amp;lt; some M , a; in a, any near r. (2

Now by 556, 3, taking e
&amp;gt;

small at pleasure, there exists an

?? &amp;gt;
such that

for any x in a, and t in F^*(T). If we set x = a 4- h, we have

(3
h

Also by 556, 3, we have

P&amp;gt;O, 0^ =
f*&amp;lt;Kx)dx + e&quot;

,

&quot;

|

&amp;lt; e
*^a ^a

for an?/ 2: in a, and t in FT,*(T). Thus

(4
A h Ax h

From 3), 4) we have

i;

=^ + ^ K| ,|e&quot;|&amp;lt;e.

h Ax h



DIFFERENTIABILITY 575

Now e may be made small at pleasure, and that independent of

h. Thus the last relation gives

forarinA.
z Az

As this holds however small h = Az is taken, we have

* =M for x in A.
dx dx

Hence by 515, 3,

-^(x)
= 6(x) + const ,

in 21.

For x = a,

and thus
,

in 21.

2. J.8 a corollary we have :

If 1 F(x)= 2/4 ... tn(z) is limited and R integrable in the inter-

2 1\(^) ^s limited and each termf, is R-integrable;

3 &(x)=
X

f^ is continuous;

4 The points @ i/i 21 wi ^Aos^ vicinity the peaks of F^(x) are in

finitely high form an enumerable set;

Then

or we may integrate the F series termivise.

560. 1. If 1 lira /(a, j *) = *() *w 51 = ( &amp;lt;
J

&amp;gt; T/w*fe or

&amp;lt;=T

infinite ;

2 /(z, ) i8 limited and R-integrable for each t near r;

3 The points (. of 21 m w^o86 vicinityfx(x, t) has infinite peaks

as t = Tform an enumerable set;

4
&amp;lt;(V)

is continuous at the points (g;

5 -^(a:)
= lim/J(ir, z* limited and R-integrable in 21;
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Then at a point of continuity of ^(V) in 51

$(x) = ^o), (l
or what is the same

-j- lim/(^0 = lim-f/&amp;lt;&amp;gt;, 0-ax t=r t=T ax

For let S = (a &amp;lt; /3) be an interval in 51 containing no point of

($. Then for any x in 8

X*CMfe:-/&Q~/C&amp;lt;Q * b7 2 -

m^ i*

Hence
lim I fx(x, t)dx = lim\f(x, ) ./(, )J

= c(V) -
&amp;lt;/&amp;gt;() , by 1. (2

By 556, 3, &amp;lt;f&amp;gt;(x)

is continuous in S. Thus
&amp;lt;(#)

is continuous

at any point not in (g. Hence by 4 it is continuous in 51.

We may thus apply 559, 1, replacing therein /(#, ) by /,(#, ).

We get
/*x /*x /*x

lim I fx(x,)dx= I lim/^(a;, 0^ =
I ^(x)dx. (3

/=T c/a /a ^/a

Since 2) obviously holds when we replace a by a, this relation

with 3) gives

At a point of continuity, this gives 1) on differentiating.

2. Ifl F(x) = 2/ti
... tn(#) converges in the interval 51;

2 6r(:r)
= 2/[(a;) aw^ ^ac^ o/ ^s ^erws ar^ limited and R-

integrable in 51;

3 TAe points of 51 zVi whose vicinity Gr\(x) has infinite peaks as

X = GO, form an enumerable set at which F(x) is continuous;

Then at a point of continuity of G-(x) we have

or what is the same
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561. Example. ^ /
n** _ (n+1)^ 1 _ z2

TU&quot;*
2

~ *

Hence o

The series obtained by differentiating F termwise is

1

Here ~ _

Hence
2 ^ 9 ^

is a continuous function of x.

The convergence of the Gr series is not uniform at x = 0. For

set an = \/n. Then

I e
n

e
n

J

To get the peaks of the residual function we consider the

points of extreme of

y = f3

We find n(l-5nx*+OnW^
y

r = 2 .

7jj;2

Thus y = when
2 nV - 5 wa^ + 1 = 0,

or when 2; = or - = , a, a constants.
V/i

Putting these values in 3), we find that y has the form

Hence x = is the only point where the residual function has

an infinite peak. Thus the conditions of 560, 2, are satisfied, and

we should have F (JK)
= G-(x) for any x. This is indeed so, as 1),

2) show.



CHAPTER XVII

GEOMETRIC NOTIONS

Plane Curves

562. In this chapter we propose to examine the notions of

curve and surface together with other allied geometric concepts.

Like most of our notions, we shall see that they are vague and

uncertain as soon as we pass the confines of our daily experience.

In studying some of their complexities and even paradoxical

properties, the reader will see how impossible it is to rely on his

unschooled intuition. HB will also learn that the demonstration

of a theorem in analysis which rests on the evidence of our

geometric intuition cannot be regarded as binding until the

geometric notions employed have been clarified and placed on a

sound basis.

Let us begin by investigating our ideas of a plane curve.

563. Without attempting to define a curve we would say on

looking over those curves most familiar to us that a plane curve

has the following properties :

1 It can be generated by the motion of a point.

2 It is formed by the intersection of two surfaces.

3 It is continuous.

4 It has a tangent at each point.

5 The arc between any two of its points has a length.

6 A curve is not superficial.

7 Its equations can be written in any one of the forms

(2

(3

and conversely such equations define curves.

678
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8 When closed it forms the complete boundary of a region.

9 This region has an area.

Of all these properties the first is the most conspicuous and

characteristic to the naive intuition. Indeed many employ this

as the definition of a curve. Let us therefore look at our ideas

of motion.

564. Motion. In this notion, two properties seem to be essen

tial. 1 motion is continuous, 2 it takes place at each instant in

a definite direction and with a definite speed. The direction of

motion, we agree, shall be given by dy/dx, its speed by ds/dt.

We see that the notion of motion involves properties 4, 5, and 7.

Waiving this point, let us notice a few peculiarities which may
arise.

Suppose the curve along which the motion takes place has an

angle point or a cusp as in I, 366. What is the direction of

motion at such a point? Evidently we must say that motion is

impossible along such a curve, or admit that the ordinary idea of

motion is imperfect and must be extended in accordance with the

notion of right-hand and left-hand derivatives.

Similarly ds/dt may also give two speeds, a posterior and an

anterior speed, at a point where the two derivatives of s ==
&amp;lt;()

are different.

Again we will admit that at any point of the path of motion,

motion may begin and take place in either direction. Consider

what happens for a path defined by the continuous function in

I, 367. This curve has no tangent at the origin. We ask how
does the point move as it passes this point, or to make the ques
tion still more embarassing, suppose the point at the origin. In

what direction does it start to move? We will admit that no

such motion is possible, or at least it is not the motion given us

by our intuition. Still more complicated paths of this nature are

given in I, 369, 371, and in Chapter XV of the present volume.

It thus appears that to define a curve as the path of a moving
point, is to define an unknown term by another unknown term,

equally if not more obscure.

565. 2 Property. Intersection of Two Surfaces. This property
has also been used as the definition of a curve. As the notion
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of a surface is vastly more complicated than that of a curve, it

hardly seems advisable to define a complicated notion by one still

more complicated and vague.

566. 3 Property. Continuity. Over this knotty concept philos

ophers have quarreled since the days of Democritus and Aristotle.

As far as our senses go, we say a magnitude is continuous when

it can pass from one state to another by imperceptible gradations.

The minute hand of a clock appears to move continuously, although
in reality it moves by little jerks corresponding to the beats of the

pendulum. Its velocity to our senses appears to be continuous.

We not only say that the magnitude shall pass from one state

to another by gradations imperceptible to our senses, but we also

demand that between any two states another state exists and so

without end. Is such a magnitude continuous ? No less a mathe

matician than Bolzano admitted this in his philosophical tract

Paradoxien des Unendlichen. No one admits it, however, to-day.

The different states of such a magnitude are pantactic, but their

ensemble is not a continuum.

But we are not so much interested in what constitutes a con

tinuum in the abstract, as in what constitutes a continuous curve

or even a continuous straight line or segment. The answer we
have adopted to these questions is given in the theory of irra

tional numbers created by Cantor and Dedekind [see Vol. I,

Chap. II], and in the notion of a continuous function due to

Cauchy and Weierstrass [see Vol. I, Chap. VII].
These definitions of continuity are analytical. With them we

can reason with the utmost precision and rigor. The consequences
we deduce from them are sufficiently in accord with our intuition

to justify their employment. We can show by purely analytic

methods that a continuous function /(V) does attain its extreme

values [I, 354], that if such a function takes on the value a at the

point P, and the value b at the point Q, then it takes on all inter

mediary values between a, b, as x ranges from P to Q [I, 357].

We can also show that a closed curve without double point does

form the boundary of a complete region [cf. 576 seq.].

567. 4 Property. Tangents. To begin with, what is a tangent ?

Euclid defines a tangent to a circle as a straight line which meets
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the circle and being produced does not cut it again. In com

menting on tliis definition Casey says,
&quot; In modern geometry a

curve is made up of an infinite number of points which are

placed in order along the curve, and then the secant through two

consecutive points is a tangent.&quot; If the points on a curve were

like beads on a string, we might speak of consecutive points. As,

however, there are always an infinite number of points between any
two points on a continuous curve, this definition is quite illusory.

The definition we have chosen is given in I, 365. That property
3 does not hold at each point of a continuous curve was brought
out in the discussion of property 1. Not only is it not necessary
that a curve has a tangent at each of its points, but a curve does

not need to have a tangent at a pantactic set of points, as we saw

in Chapter XV.
For a long time it was supposed that every curve has a tangent

at each point, or if not at each point, at least in general. Analytic

ally, this property would go over into the following : every con

tinuous function has a derivative. A celebrated attempt to prove
this was made by Ampere.

Mathematicians were greatly surprised when Weierstrass ex

hibited the function we have studied in 502 and which has no

derivative.

Weierstrass* himself remarks: &quot; Bis auf die neueste Zeit hat

man allgemein angenommen, dass eine eindeutige und continuir-

liche Function einer reellen Verandeiiichen auch stets eine erste

Ableitung habe, deren Werth nur an einzelnen Stellenunbestimmt

oder unendlich gross werden konne. Selbst in den Schriften von

Gauss, Cauchy, Dirichlet findet sich meines Wissens keine

Ausserung, aus der unzweifelhaft hervorginge, dass diese Mathe-

matiker, welche in ihrer Wissenschaft die strengste Kritik iiberall

zu iiben gewohnt waren, anderer Ansicht gewesen seien.&quot;

568. Property 5. Length. We think of a curve as having

length. Indeed we read as the definition of a curve in Euclid s

Elements : a line is length without breadth. When we see two

simple curves we can often compare one with the other in regard
to length without consciously having established a way to measure

* Werke, vol. 2, p. 71.
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them. Perhaps we unconsciously suppose them described at a

uniform rate and estimate the time it takes. It may be that we

regard them as inextensible strings whose length is got by

straightening them out. A less obvious way to measure their

lengths would be to roll a straightedge over them and measure

the distance on the edge between the initial and final points of

contact.

We ask how shall we formulate arithmetically our intuitional

ideas regarding the length of a curve ? The intuitionist says, a

curve or the arc of a curve has length. This length is expressed

by a number L which is obtained by taking a number of points

Pj, P2 ,
P

3
--* on the curve between the end points P, P , and

forming the sum

The limit of this sum as the points became pantactic is the

length L of the arc PP .

Our point of view is different. We would say : Whatever
arithmetic formulation we choose we have no a priori assurance

that it adequately represents our intuitional ideas of length.

With the intuitionist we will, however, form the sum 1) and see if

it has a limit, however the points P t
are chosen. If it has, we will

investigate this number used as a definition of length and see if it

leads to consequences which are in harmony with our intuition.

This we now proceed to do.

569. 1. Let Z

be one-valued continuous functions of t in the interval 21 = (a &amp;lt; 5).

As t ranges over 51 the point x, y will describe a curve or an arc

of a curve O. We might agree to call such curves analytic, in

distinction to those given by our intuition. The interval 51 is

the interval corresponding to O.

Let D be a finite division of 21 of norm c?, defined by

To these values of t will correspond points

p,p,,p,...e (2
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on (7, which may be used to define a polygon PD whose vertices

are 2).

Let (m, TTi + 1) denote the side PmPm+1 , as well as its length.
If we denote the length of PD by the same letter, we have

1

^ PD (B

exists, it is called the length of the arc (7, and C is rectifiable.

2. (Jordan.) For the arc PQ to be rectifiable, it is necessary and

sufficient that the functions c/&amp;gt;, ^ in 1) have limited variation in 51.

For

But the sum on the right is the variation of
&amp;lt;f&amp;gt;

for the division D.

If now
&amp;lt;f&amp;gt;

does not have limited variation in 51, the limit 3) does

not exist. The same holds for ty. Hence limited variation is a

necessary condition.

The condition is sufficient. For

PD &amp;lt; 2
|

Az
|

+ 2
| Ay |

= Var &amp;lt; + Var ^.
D D

As
&amp;lt;f&amp;gt;, T/T

have limited variation, this shows that

P
is finite. We show now that

P = Max PD
D

limPZ)
= P . (4

&amp;lt;f=0

For there exists a division A such that

Let A cause 51 to fall into v intervals, the smallest of which has

the length X. Let D be a division of 51 of norm d&amp;lt;dQ &amp;lt;\.

Then no interval of D contains more than one point of A.

Let E=D + A.

Obviously PE &amp;gt;P or
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Suppose that the point tK of A falls in the interval ( t , t+1) 01

D. Then the chord (t, i -f- 1) in PD is replaced by the two chords

(t, *), (K, i + 1) in PE - Hence

where
. C^) + (&amp;lt;

+ 1^ - &amp;lt;,
V+ 1) .

Obviously as
&amp;lt;, -^ are continuous we may take d

Q
so small that

each

G-K &amp;lt;- , for any d&amp;lt;d .

- V

Hence
Pg -P D&amp;lt;

e
-. (6

From 5), 6) we have

P
Q
-PD &amp;lt; , for any d &amp;lt; d ,

which gives 4).

3. If the arc PQ is rectifiable, any arc contained in PQ is also

rectifiable.

For
(/&amp;gt;, i/r having limited variation in interval 51, have a fortiori

limited variation in any segment of 51.

4. Let the rectifiable arc Cfall into two arcs C
1 ,
C

2
. If s, *j ,

s
2

are the lengths of (7, C\, &amp;lt;72 ,
tf/ew,

S = *j + 8y (T

For we saw that (7
X , (72 are rectifiable since (7 is. Let ^ , 5I2

be the intervals in 51 corresponding to 6\, (7
2

. Let Dv D2
be

divisions of ^, ?12
^ norm ^- Then

!
= lim PD . , s2

= limPn.
d=o rf=o

But Dj, D2
effect a division of 21, and since

s = lim PA, (8
e=0

with respect to the class of all divisions of 51, the limit 8) is the

same when E is restricted to range over divisions of the type of D.

Now
Pj&amp;gt;-Pft+*V

Passing to the limit, we get 7).
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The preceding reasoning also shows that if Cl , (72 are rectifiable

curves, then C is, and 7) holds again.

5. If 1) define a rectifiable curve, its length s is a continuous func
tion s(f) of t.

For
(f&amp;gt;, ^r having limited variation,

where the functions on the right are continuous monotone increas

ing functions of t in the interval 51 = ( &amp;lt; ^).

For a division D of norm d of the interval A21 = (t, t + A) we
have

PD = 2

4-

where B^ = c/&amp;gt; 1 (^ + h) &amp;lt;(0&amp;gt;
an(i similarly for the other func

tions. As
c^j

is continuous, 8^ = 0, etc., as h = 0. We may
therefore take 77 &amp;gt; so small that S^, S(

2 , 8-v^j, 3^2 &amp;lt; e/4, if A
&amp;lt; 77.

Hence As = s(t + k)
-

s(t) &amp;lt; ^lax P^ &amp;lt; e , if
&amp;lt;

h &amp;gt; 77.

Thus s is continuous.

6. The length s of the rectifiable arc C corresponding to the inter

val (a &amp;lt; t) is a monotone increasing function of t.

This follows from 4.

7. If x, y do not have simultaneous intervals of invariability, s(t)

is an increasing function of t. The inverse function is one-valued

and increasing and the coordinates x, y are one-valued functions of s.

That the inverse function t (s) is one-valued follows from I, 214.

We can thus express t in terms of s, and so eliminate t in 1).

570. 1. If &amp;lt;$&amp;gt;
, ty are continuous in the interval 51,

8 = fdt^^ + ^ t. (1

s = Km 2Ac2-f- A^2. (2
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where ^,
&quot;

lie in the interval Af*.

As (//, -*//
are continuous they are uniformly continuous. Hence

for any division D of norm &amp;lt; some c?
,

where
|

K ,
|
/3K |

&amp;lt;
some 77, small at pleasure, for any K. Thus

and we may take

= lim

Hence

j;
&amp;lt;

which establishes 1).

For simplicity we have assumed &amp;lt;

, ^ to be continuous in

This is not necessary, as the following shows.

2. Let ar .. aB , b^ -- bn &amp;gt;0 but not all = 0.

Then ,

For

= 1, 2

Hence

Vaf + V5J

But

This in 5) gives 4).
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Let us apply 4) to prove the following theorem, more general

than 1.

3. (Baire.) If &amp;lt;

, -^ are limited and R integrable, then

8

For by 4),

2
&amp;lt;

4&amp;gt; K
_ yK

= r

where ^j, ??&quot;
are numerically &amp;lt;1. Thus

! S^K^AC ^-&K^K
\

= ^^/e 7?* Osc (&amp;gt; + 28K 7^^ Osc ijr

1

. (6

As &amp;lt;

,
&amp;gt;/r

are integrable, the right side = 0, as d = 0. Now

lira

Thus passing to the limit in 6), we have

Km SA^V( (^)
2 + A/r (t )

2 = f-
^21

This with 2), 3) gives 1) at once.

571. Volterra s Curve. It is interesting to note that there are

rectifiaUe curves for which &amp;lt;

()&amp;gt; V^CO are not both R-integrable.

Such a curve is Volterra s curve, discussed in 503. Let its equa
tion be 2/=/(z). Thenf (x) behaves as

2 x sin -- cos -
X X

in the vicinity of a non null set in 31 = (0, 1). Hence f (x) is

not ^-integrable in 51. But then it is easy to show that

does not exist. For suppose that

VI
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were .R-integrable. Then #
2 = 1 +/ (V)

2
is ,R-integrable, and

hence / (^)
2 also. But the points of discontinuity of f 2 in 51 do

not form a null set. Hence/ 2 is not .K-integrable.

On the other hand, Volterra s curve is rectifiable by 569, 2, and

528, i.

572. Taking the definition of length given in 569, 1, we saw
that the coordinates

must have limited variation for the curve to be rectifiable. But we
have had many examples of functions not having limited variation

in an interval 21. Thus the curve defined by

y =x sin-
, x^

(4

does not have a length in 21 = ( 1, 1) ; while

y = x2 sin -
,

x =

x (5

=0
, x=0

does.

It certainly astonishes the naive intuition to learn that the

curve 4) has no length in any interval 8 about the origin how
ever small, or if we like, that this length is infinite, however small

8 is taken. For the same reason we see that

No arc of Weierstrass curve has a length (or its length is infinite)

however near the end points are taken to each other, ivhen ab&amp;gt;l.

573. 1. 6 Property. Space-filling Curves. We wish now to

exhibit a curve whlcli passes through every point of a square, i.e.

which completely fills a square. Having seen how to define one

such curve, it is easy to construct such curves in great variety, not

only for the plane but for space. The first to show how this may
be done was Peano in 1890. The curve we wish now to define is

due to Hilbert.

We start with a unit interval 51 = (0, 1) over which t ranges,

and a unit square 33 over which the point x, y ranges. We define
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as one-valued continuous functions of t in 51 so that xy ranges over

53 as t ranges over 51. The analytic curve O defined by 1) thus

completely fills the square 53.

We do this as follows. We effect a division of 51 into four

equal segments SJ, B
2 , S

3 , 8, and of 53 into equal squares 77^, 77^,

773, 774,
as in Fig. 1.

We call this the first division or D^. The corre

spondence between 51 and 53 is given in first

approximation by saying that to each point P in

B[ shall correspond some point Q in v[ .

We now effect a second division D
2 by dividing

each interval and square of J)
1

into four equal

parts.

We number them as in Fig. 2,

X&quot; %&quot; W
01 2

&quot; *M

As to the numbering of the rfs we observe the

following two principles : 1 we may pass over the

squares 1 to 16 continuously without passing the

same square twice, and 2 in doing this we pass

over the squares of D
l

in the same order as in FIG. 2.

Fig. 1. The correspondence between 5( and 53 is

given in second approximation by saying that to each point P in

B[
f shall correspond some point Q in rj{ . In this way we continue

indefinitely.

To find the point Q in 53 corresponding to P in 51 we observe

that P lies in a sequence of intervals

8
&amp;gt;S&quot; &amp;gt;B&quot;

r

&amp;gt; =0, (2

to which correspond uniquely a sequence of squares

V &amp;gt;T,&quot; &amp;gt;r&amp;gt;

&quot;

&amp;gt;..- =0. (3

The sequence 3) determines uniquely a point whose coordinates

are one-valued functions of , viz. the functions given in 1).

The functions 1) are continuous in 51.

For let t be a point near t ; it either lies in the same interval as

t in Dn or in the adjacent interval. Thus the point Q
f

corre-
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spending to t either lies in the same square of Dn as the point Q
corresponding to

,
or in an adjacent square. But the diagonal

of the squares = 0, as n = oo. Thus

Thus

both = 0, as t = t.

As t ranges over 51, the point x, y ranges over every point in the

square 53.

For let Q be a given point of 53. It lies in a sequence of

squares as 3). If Q lies on a side or at a vertex of one of the rj

squares, there is more than one such sequence. But having taken

such a sequence, the corresponding sequence 2) is uniquely de

termined. Thus to each Q corresponds at least one P. A more

careful analysis shows that to a given Q never more than four

points P can correspond.

2. The method we have used here may obviously be extended

to space. By passing median planes through a unit cube we
divide it into 23 equal cubes. Thus to get our correspondence
each division Dn should divide each interval and cube of the pre

ceding division Dn _ 1
into 23 equal parts. The cubes of each divi

sion should be numbered according to the 1 and 2 principles of

enumeration mentioned in 1.

By this process we define

as one-valued continuous functions of t such that as t ranges over

the unit interval (0, 1), the point a?, #, z ranges over the unit

cube.

574. 1. Hilbert s Curve. We wish now to study in detail the

correspondence between the unit interval 51 and the unit square

53 afforded by Hilbert s curve denned in 573. A number of inter

esting facts will reward our labor. We begin by seeking the

points P in 51 which correspond to a given Q in 53-

To this end let us note how P enters and leaves an TJ square.

Let B be a square of Dn . In the next division B falls into four
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squares Bl
B and in the n 4- 2d division in 16 squares StJ

.

Of these last, four lie at the vertices of B ; we call them vertex

squares. The other 12 are median squares. A simple considera

tion shows that the rj squares of Dn+2 are so numbered that we

always enter a square B belonging to Dn ,
and also leave it by a

vertex square.

Since this is true of every division, we see on passing to the

limit that the point Q enters and leaves any 77 square at the ver

tices of ?;. We call this the vertex law.

Let us now classify the points P, Q.

If P is an end point of some division Dn &amp;gt;
we call it a terminal

point, otherwise an inner point, because it lies within a sequence
of 8 intervals B

&amp;gt;
B&quot;

&amp;gt;

= 0.

The points Q we divide into four classes :

1 vertex points, when Q is a vertex of some division.

2 inner points, when Q lies within a sequence of squares

y&amp;gt;7/ &amp;gt;... =o.

3 lateral points, when Q lies on a side of some 77 square but

never at a vertex.

4 points lying on the edge of the original square 33. Points

of this class also lie in 1, 3.

We now seek the points P corresponding to a Q lying in one of

these four classes.

Class 1. Q a Vertex Point. Let Dn be the first division such

that Q is at a vertex. Then Q lies in four squares TJ L , ?/,, TJK , ^ of

!&amp;gt;,.

There are 5 cases :

a) ij k I are consecutive.

yS) ij k are consecutive, but not I.

7) ij are consecutive, but not k I.

8) ij, also k I, are consecutive,

e) no two are consecutive.

A simple analysis shows that a), /3) are not permanent in the

following divisions ; 7), 8) may or may not be permanent ; e) is

permanent.
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Now, whenever a case is permanent, we can enclose Q in a se

quence of 7] squares whose sides = 0. To this sequence corre

sponds uniquely a sequence cf & intervals of lengths = 0. Thus

to two consecutive squares will correspond two consecutive inter

vals which converge to a single point P in 21. If the squares are

not consecutive, the corresponding intervals converge to two dis

tinct points in 31. Thus we see that when 7) is permanent, to Q

correspond three points P. When 8) is permanent, to Q corre

spond two points P. While when Q belongs to e), four points P
correspond to it.

Class 2. Q an Inner Point. Obviously to each Q corresponds

one point P and only one.

Glass 3. Q a Lateral Point. To fix the ideas let Q lie on a ver

tical side of one of the T/ S. Let it lie between ?? t , r;;
- of Dn . There

are two cases :

a) j = i + 1.

We see easily that a) is not permanent, while of course ft) is.

Thus to each Q in class 3, there correspond two points P.

Class 4. Q lies on the edge of 33. If Q is a vertex point, to it

may correspond one or two points P. If Q is not a vertex point,

only one point P corresponds to it.

To sum up we may say :

To each inner point Q corresponds one inner point P.

To each lateral point Q correspond two points P.

To each edge point Q correspond one or two points P.

To each vertex point Q, correspond two, three, or four points P.

2. As a result of the preceding investigation we show easily

that :

To the points on a line parallel to one of the sides of 23 correspond

in 51 an apantactic perfect set.

3. Let us now consider the tangents to Hilbert s curve which

we denote by H.
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an equation of the type 1), /(V) would have to take on every
value between and 1 for each value of x in 51 = (0, 1). No such

. ^ functions are considered in analysis.

WVXf u\ Again, we saw that to any value x = a in 21 corresponds a perfect

apantactic set of values \ta \ having the cardinal number c. Thus
the inverse function of x =

&amp;lt;()
is a many-valued function of x

whose different values form a set whose cardinal number is c.

^
-A Such functions have not yet been studied in analysis.

How is it possible in the light of such facts to say that we may
pass from 3) to 1) or 2) by eliminating t from 3). And if we

cannot, how can we say a curve can be represented equally well

by any of the above three equations, or if the curve is given by
one of these three equations, we may suppose it replaced by one

of the other two whenever convenient. Yet this is often done.

In this connection we may call attention to the loose way
elimination is treated. Suppose we have a set of equations

We often see it stated that one can eliminate ^ tn and obtain

a relation involving the # s alone. Any reasoning based on such

a procedure must be regarded as highly unsatisfactory, in view of

what we have just seen, until this elimination process has been

established.

576. Property 8. Closed Curves. A circle, a rectangle, an

ellipse are examples of closed curves. Our intuition tells us that

it is impossible to pass from the inside to the outside without

crossing the curve itself. If we adopt the definition of a closed

curve without multiple point given in I, 362, we find it no easy

matter to establish this property which is so obvious for the simple

closed curves of our daily experience. The first to effect the

demonstration was Jordan in 1892. We give here * a proof due

to de la ValUe-Poussin.-\

Let us call for brevity a continuous curve without double point

* The reader is referred to a second proof due to Brouwer and given in 598 seq.

t Cours tf Analyse, Paris, 1903, Vol. 1, p. 307.
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a Jordan curve. A continuous closed curve without double point
will then be a closed Jordan curve. Cf. I, 362.

577. Let be a closed Jordan curve. However small &amp;lt;r
&amp;gt; is

taken, there exists a polygonal ring R containing C and such that

1 Each point of R is at a distance
&amp;lt;

a from 0.

2 Each point of C is at a distance &amp;lt; a- from the edges of R.

For let x = 0(0 , y = i/r(0 (1

be continuous one-valued functions of t in T
=(#&amp;lt;&amp;gt;) defining C.

Let D = (a, a
x , &amp;lt;z

2 6) be a division of T of norm d. Let

a, j, 2
be points of corresponding to a, a

l
If d is suffi

ciently small, the distance between two points on the arc

&amp;lt;7t
= (a t _i, a

t) is &amp;lt;e , small at pleasure. Let A be a quadrate
division of the x, y plane of norm 8. Let us shade all cells con

taining a point of (7
t

. These form a connected domain since C, is

continuous. We can thus go around its outer edge without a

break.* If this shaded domain contains unshaded cells, let us

shade these too. We call the result a link A, . It has only one

edge En and the distance between any two points of E
t is ob

viously &amp;lt; e + 2V2 8. We can choose d, & so small that

e + 2V2 8 &amp;lt; 0-, arbitrarily small. (1

Then the distance between any two points of A, is
&amp;lt;

er. Let e&quot;

be the least distance between non-consecutive arcs CL . We take

8 so small that we also have

-

(2

Then two non-consecutive links A
L , Aj have no point in common.

For then their edges would have a. common point P. As P lies

on E
L its distance from OL is &amp;lt; V2 5. Its distance from C

y
- is also

&amp;lt; V2 8. Thus there is a point Pt on (7t ,
and a point Pj on C

f
such

that

* Here and in the following, intuitional properties of polygons are assumed as

known.
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But by hypothesis e&quot;
&amp;lt;_ rj.

Hence

e&quot;&amp;lt;2V2S,

which contradicts 2).

Thus the union of these links form a ring R whose edges are

polygons without double point. One of the edges, say Gt ,
lies

within the other, which we call Gr . The curve lies within R.

The inner polygon 6r
t
must exist, since non-consecutive links have

no point in common.

578. 1. Interior and Exterior Points. Let &amp;lt;r

1 &amp;gt;
&amp;lt;r

2 &amp;gt;
= 0.

Let R
l ,
R

2
~- be the corresponding rings, and let

be their inner and outer edges. A point P of the plane not on

which lies inside some Gr, we call an interior or inner point of C.

HP lies outside some Gre , we call it an exterior or outer point of C.

Each point P not on C must belong to one of these two classes.

For let p = Dist (P, (7); then p is &amp;gt; some &amp;lt;rn . It therefore lies

within 6r(

t

n) or without 6r&amp;lt;

n)
,
and is thus an inner or an outer point.

Obviously this definition is independent of the sequence of rings

\Rn \ employed. The points of the curve Care interior to each

G- and exterior to each G-(
n)

.

Inner points must exist, since the inner polygons exist as al

ready observed. Let us denote the inner points by 3 and the

outer points by O. Then the frontiers of 3 and ) are the curve C.

2. We show now that

1 Two inner points can be joined by a broken line L
l lying in $.

2 Two outer points can be joined by a broken line Le lying in ).

3 Any continuous curve joining an inner point i and an outer

point e has a point in common with C.

To prove 3, let

be the equations of $, the variable t ranging over an interval

, t=a corresponding to i and t=@ to e. Let t beT =
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such that a&amp;lt;t&amp;lt;t gives inner points, while t = t
f does not give an

inner point. Thus the point corresponding to t = t is a frontier

point of 3 and hence a point of O.

To prove 1. If A, B are inner points, they lie within some 6r t
.

We may join A, B, 6r t by broken lines Za , Z& meeting (7t at the

points A , B , say. Let G-^ be the part of 6rt lying between A ,

B 1
. Then

La + aab + Lb

is a broken line joining A to B.

The proof of 2 is similar.

579. 1. Let P , P&quot; correspond to t = t
r

,
t =

t&quot;,
on the curve

defined by 577, l). If t
&amp;lt;t&quot;,

we say P precedes P&quot; and write

P &amp;lt;P&quot;.

Any set of points on C corresponding to an increasing set of

values of t is called an increasing set.

As t ranges from a to
&amp;gt;,

the point P ranges over C in a direct

sense.

We may thus consider a Jordan curve as an ordered set, in the

sense of 265.

2. (De la Vallee-Poussin.) On each arc Ot of the curve C, there

exists at least one point Pj such that

Jp
1

&amp;lt;p2 &amp;lt;p3 &amp;lt;... a
may be regarded as the vertices of a closed polygon without double

point and whose sides are all &amp;lt; e.

For in the first place we may take S
&amp;gt; so small that no square

of A contains a point lying on non-consecutive arcs (7t of C. Let

us also take A so that the point a corresponding to t = a lies

within a square, call it S^ of A. As t increases from t = #, there

is a last point Pl
on C where the curve leaves Sr The point P^

lies in another square of A, call it S
2 &amp;lt; containing other points of

C. Let P
2
be the last point of C in S

2
. In this way we may

continue, getting a sequence 1).

There exists at least one point of 1) on each arc C, . For other

wise a square of A would contain points lying on non-consecutive

arcs OK . The polygon determined by 1) cannot have a double
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point, since each side of it lies in one square. The sides are
&amp;lt; e,

provided we take SV2 &amp;lt; e, since the diagonal is the longest line

we can draw in a square of side S.

580. Existence of Inner Points. To show that the links form a

ring with inner points, Schonfliess* has given a proof which may
be rendered as follows :

Let us take the number of links to be even, and call them Z^,

L
2 ,--L2n . Then L^ L

3 ,
L

5
~- lie entirely outside each other.

Since L^ L
2 overlap, let P be an inner common point. Simi

larly let Q be an inner common point of Z2 , L3
. Then P, Q

lying within L2 may be joined by a finite broken line b lying

within L2
. Let 6

2
be that part of it lying between the last point

of leaving L^ and the following point of meeting L3
. In this

way the pairs of links
T T T T
X/j^g , ^3^5 I

define finite broken lines

No two of these can have a common point, since they lie in

non-consecutive links. The union of the points in the sets

we call a ring, and denote it by $. The points of the plane not

in $ fall into two parts, separated by $. Let 2 denote the part

which is limited, together with its frontier. We call X the inte

rior of 9t That X has inner points is regarded as obvious since

it is defined by the links

which pairwise have no point in common, and by the broken lines

fi
2 ,

Z&amp;gt;

4 ,
#
6

each of which latter lies entirely within a link.

Let = l&amp;gt;v ( ) m = 1, 2, ...

* Die Entwickelung der Lehre von den Punktmannigfaltigkeiten. Leipzig, 1908,

Part 2, p. 170.
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Then these have pairwise no point in common since the L2m

have not.

Let = ?a + ?4+- +82n + fl.

Then $ &amp;gt;
0. For let us adjoin L2

to Sft, getting a ring 9?2 whose

interior call 2
. That

2
aas inner points follows from the fact

that it contains ?4, 6
Let us continue adjoining the links

L&amp;lt; L6
- Finally we reach Z2n ,

to which corresponds the

ring $R2n , whose interior, if it exists, is 2n . If 2n does not exist,

^2n-2 contains only 2n . This is not so, for on the edge of L^

bounding &amp;lt;,
is a point P, such that some D

p(P) contains points

of no L except Lr In fact there is a point P on the edge of L
l

not in either L2
or Z2n, as otherwise these would have a point in

common. Now, if however small p &amp;gt;
is taken, 7&amp;gt;

P(P) contains

points of some L other than L^ the point P must lie in LK which

is absurd, since L^ has only points in common with 2 , L2n , and

P is not in either of these. Thus the adjunction of L
2 , L,

L2n produces a ring 9?2n whose interior 2n does not reduce to ;

it has inner points.

581.
Prggerti^

9. Area. That a figure defined by a closed

curve without double point, i.e. the interior of a Jordan curve,

has an area, has long been an accepted fact in intuitional geometry.
Thus Lindemann, Vorlesungen uber G-eometrie, vol. 2, p. 557, says
&quot; einer allseitig umgrenzten Figur kommt ein bestimmter Flachen-

inhalt zu.&quot; The truth of such a statement rests of course on

the definition of the term area. In I, 487, 702 we have given a

definition of area for any limited plane point set 51 which reduces

to the ordinary definition when 51 becomes an ordinary plane figure.

In our language 51 has an area when its frontier points form a

discrete set. Let

define a Jordan curve (, as t ranges over T=(a&amp;lt;b). The

figure 51 defined by this curve has the curve as frontier. In I,

708, 710, we gave various cases in which ( is discrete. The

reasoning of I, 710, gives us also this important case :

If one of the continuous functions ^&amp;gt;, -fy defining the Jordan curve

(, has limited variation in T, then ( is discrete.
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It was not known whether ( would remain discrete if the con

dition* of limited variation was removed from both coordinates,

until Osgood
* exhibited a Jordan curve which is not discrete.

This we will now discuss.

. 582. 1. Osgood s Curve. We start with a unit segment
T = (0, 1) on the t axis, and a unit square S in the xy plane.

We divide jTinto 17 equal parts

.12345 1C 17
rjj F7J rn s~\

d

and the square $ into 9 equal

squares

by drawing 4 bands J?
x

which

are shaded in the figure. On
these bands we take 8 segments,

marked heavy in the figure.

Then as t is ranging from left

to right over the even or black

intervals T
2 , T4 , Tu marked heavy in the figure, the point x, y

on Osgood s curve, call it ), shall range univariantly over the

segments 3).

While t is ranging over the odd or white intervals 2\, T
3

T
17

the point xy on ) shall range over the squares 2) as determined

below.

Each of the odd intervals 1) we will now divide into 17 equal

intervals T^ and in each of the squares 2) we will construct

horizontal and vertical bands E2
as we did in the original square

$. Thus each square 2) gives rise to 8 new segments on )

corresponding to the new black intervals in T, and 9 new squares

jS
LJ

&amp;gt; corresponding to the white intervals. In this way we may
continue indefinitely.

The points which finally get in a black interval call /3, the

others are limit points of the /3 s and we call them X. The point

* Trans. Am. Math. Soc., vol. 4 (1903), p. 107.
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on D corresponding to a (3 point has been defined. The point of

O corresponding to a point X is defined to be the point lying in

the sequence of squares, one inside the other, corresponding to the

sequence of white intervals, one inside the other, in which X falls,

in the successive divisions of T.

Thus to each t in T corresponds a single point #, y in 8. The

aggregate of these points constitutes Osgood s curve. Obviously
the #, y of one of its points are one-valued functions of t in T, say

(4

The curve D has no double point. This is obvious for points of

) lying in black segments. Any other point falls in a sequence
of squares

S,&amp;gt;S^&amp;gt;S^^

to which correspond intervals

in which the corresponding fs lie. But only one point t is thus

determined.

The functions 4) are continuous. This is obvious for points j3

lying within the black intervals of T. It is true for the points X.

For X lies within a sequence of white intervals, and while t ranges
over one of these, the point on ) ranges in a square. But these

squares shut down to a point as the intervals do. Thus $, i/r
are

continuous at t = X. In a similar manner we show they are con

tinuous at the end points of the black intervals.

We note that to t = corresponds the upper left-hand corner

of S, and to t = 1, the diagonally opposite point.

2. Up to the present we have said nothing as to the width of

the shaded bands D
-E&amp;gt;1

&amp;gt; B\
&quot;

introduced in the successive steps. Let

A = a
1 + a

2 +

be a convergent positive term series whose sum A&amp;lt;1. We
choose B

l
so that its area is a

1 ^ B^ so that its area is #
2 , etc.

Then
c-&amp;gt; A cS 1 i /
) =0,j = l -A, (o
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as we now show. For ) has obviously only frontier points ;

hence Q = 0. Since ) is complete, it is measurable and

5 = 6.

Let 0= #-O, and B= \Bn \. Then &amp;lt; B. For any point
which does not lie in some Bn lies in a sequence of convergent

squares ^ &amp;gt; /S
r

t/
&amp;gt; which converge to a point of ). Now

S=S
1 +S2 + ... =A.

On the other hand, B contains a null set of points of O, viz. the

black segments. Thus

= S = A , and hence 5 = 1 A

and 5) is established.

Thus OsgoocTs curve is continuous, has no double point, and its

upper content is 1 A.

3. To get a continuous closed curve C without double point
we have merely to join the two end points a, ft of Osgood s curve

by a broken line which does not cut itself or have a point in com
mon with the square S except of course the end points a, ft.

Then C bounds a figure g whose frontier is not discrete, and g
does not have an area. Let us call such curves closed Osgood
curves.

Thus we see that there exist regions bounded by Jordan curves

which do not have area in the sense current since the Greek

geometers down to the present day.

Suppose, however, we discard this traditional definition, and

employ as definition of area its measure. Then we can say :

A figure g formed of a closed Jordan curve J and its interior ^
has an area, viz. Meas g.

For Front g = J. Hence g is complete, and is therefore rneas-

ureable.

We note that & T , ^
tf
= / + J-

We have seen there are Jordan curves such that

J&amp;gt;0.
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We now have a definition of area which is in accordance with the

promptings of our geometric intuition. It must be remembered,

however, that this definition has been only recently discovered,

and that the definition which for centuries has been accepted leads

to results which flatly contradict our intuition, which leads us to

say that a figure bounded by a continuous closed curve has an

area.

583. At this point we will break off our discussion of the

relation between our intuitional notion of a curve, and the con

figuration determined by the equations

where $, ty are one-valued continuous functions of t in an interval

T. Let us look back at the list of properties of an intuitional

curve drawn up in 563. We have seen that the analytic curve

1) does not need to have tangents at a pantactic set of points on

it; no arc on it needs have a finite length; it may completely fill

the interior of a square ; its equations cannot always be brought
in the forms y=f(x) or F(xy)=Q, if we restrict ourselves to

functions /or F employed in analysis up to the present; it does

not need to have an area as that term is ordinarily understood.

On the other hand, it is continuous, and when closed and with

out double point it forms the complete boundary of a region.

Enough in any case has been said to justify the thesis that

geometric reasoning in analysis must be used with the greatest

circumspection.

Detached and Connected Sets

584. In the foregoing sections we have studied in detail some

of the properties of curves defined by the equations

Now the notion of a curve, like many other geometric notions, is

independent of an analytic representation. We wish in the fol

lowing sections to consider some of these notions from this point

of view.
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585. 1. Let 51, 53 be point sets in w-way space 9?m . If

we say 51, 53 are detached. If 51 cannot be split up into two parts

53, ( such that they are detached, we say 51 has no detached parts.

If 51 = 53 + ( and Dist (53, )&amp;gt; 0, we say 53, ( are detached parts

of a.

Let the set of points, finite or infinite,

a, a
x , 2 ,

6 (1

be such that the distance between two successive ones is &amp;lt; e. We
call 1) an e-sequence between a, b

;
or a sequence with segments

( t , t+1) of length &amp;lt; e. We suppose the segments ordered so

that we can pass continuously from a to b over the segments without

retracing. If 1) is a finite set, the sequence is finite, otherwise

infinite.

2. Let 51 have no detached parts. Let a, b be two of its points.

For each e &amp;gt; 0, there exists a finite e-sequence between a, b, and lying
c\v

in 51.

For about a describe a sphere of radius e. About each point of

5( in this sphere describe a sphere of radius e. About each point

of 51 in each of these spheres describe a sphere of radius e. Let

this process be repeated indefinitely. Let 53 denote the points of

51 made use of in this procedure. If 53 &amp;lt; 51, let ( = 51 53. Then

Dist (53, )&amp;gt;,
an(^ 51 has detached parts, which is contrary to

hypothesis. Thus there are sets of e-spheres in 51 joining a and b.

Among these sets there are finite ones. For let g denote the

set of points in 51 which may be joined to a by finite sequences ; let

= 51 - g. Then Dist (g, ) &amp;gt; e. For if
&amp;lt; e, there is a point /

in g, and a point g in whose distance is
&amp;lt;

e. Then a and g can

be joined by a finite e-sequence, which is contrary to hypothesis.

3. If 51 has no detached parts, it is dense.

For if not dense, it must have at least one isolated point a.

But then a, and 51 a are detached parts of 51, which contradicts

the hypothesis.

4. Let 51, 53, S be complete and 51 = (53, 6). If 51 has no de

tached parts, 53, (5 ^ave at least one common point.
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For if 23, ( have no common point, 8 = Dist (23, d) is &amp;gt; 0.

But 8 cannot &amp;gt; 0, -since 23, ( would then be detached parts of 21.

Since & = and since 23, ( are complete, they have a point in

common.

5. If 21 i sw&amp;lt;?A A any two of its points may be joined by an

e-sequence lying in 21, where e
&amp;gt; is small at pleasure, 21 has no

detached parts.

For if 21 had 23, &amp;lt; as detached parts, let Dist (23, &amp;lt;)

= 8. Then
8

&amp;gt;
0. Hence there is no sequence joining a point of 23 with a

point of ( with segments &amp;lt;
8.

6. If 21 is complete and has no detached parts, it is said to be

connected. We also call 21 a connex.

As a special case, a point may be regarded as a connex.

7. If 21 is connected, it is perfect.

For by 3 it is dense, and by definition it is complete.

8. If 21 is a rectilinear connex, it has a first point a and a last

point /3, and contains every point in the interval (a, /3).

For being limited and complete its minimum and maximum
lie in 21 and these are respectively a and 0. Let now

There exists an ersequence C
l
between a, 0. Each segment has

an e
2-sequence (72 . Each segment of (7

2
has an e

3-sequence (73 ,

etc. Let O be the union of all these sequences. It is pantactic
in (a, yS). As 21 is complete,

Images

586. Let ^./W-U *-n=/n(*i-O (1

be one-valued functions of t in the point set . As t ranges over

X, the point x = (xl
xn) will range over a set 21 in an w-way

space 9JB . We have called 21 the image of X. Cf. I, 238j 3.
^ |4

If the functions / are not one-valued, to a point t may correspond
several images x r

,
x&quot; finite or infinite in number. Conversely
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to the point x may correspond several values of t. If to each

point t correspond in general r values of #, and to each x in

general s values of
, we say the correspondence between

, 31 is

r to s. If r = s = 1 the correspondence is 1 to 1 or unifold ; if

r &amp;gt; 1, it is manifold. If r = 1, 31 is a simple image of
, other

wise it is a multiple image. If the functions 1) are one-valued

and continuous in , we say 31 is a continuous image of .

587. Transformations of the Plane. Example 1. Let

u = x sin y , v = x cos y. (1

We have in the first place

u^ + v2 = x2 .

This shows that the image of a line x = a, a = 0, parallel to the

?/-axis is a circle whose center is the origin in the u, v plane, and

whose radius is a. To the ^/-axis in the a?, y plane corresponds
the origin in the u, v plane.

From 1) we have, secondly,

- = tan y.
v

This shows that the image of a line y = 6, is a line through the

origin in the u, v plane.

From 1) we have finally that w, v are periodic in y, having the

period 2 TT. Thus as x, y ranges in the band B, formed by the

two parallels y= TT, or TT &amp;lt; y &amp;lt; TT, the point u, v ranges over

the entire u, v plane once and once only.

The correspondence between B and the u, v plane is unifold,

except, as is obvious, to the origin in the it, v plane corresponds
the points on the y-axis.

Let us apply the theorem of I, 441, on implicit functions. The
determinant A is here

x.
sin ?/, cos y

x cos y, x sin y

As this is = when x, y is not on the /-axis, we see that the

correspondence between the domain of any such point and its

image is 1 to 1. This accords with what we have found above.
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It is, however, a much more restricted result than we have found
;

for we have seen that the correspondence between any limited

point set 21 in B which does not contain a point of the y-axis and

its image is unifold.

588. Example 2. Let

u

the radical having the positive sign. Let us find the image of the

first quadrant Q in the #, y plane.
From 1) we have at once

Hence the image of Q is a band B parallel to the v-axis.

From 1) we get secondly

y = uv , x = wVl u2
. (2

Hence

Thus the image of a circle in Q whose center is the origin and
whose radius is a is a segment of a right line v = a.

When x = y = 0, the equations 1) do not define the correspond

ing point in the u, v plane. If we use 2) to define the corre

spondence, we may say that to the line v = in B corresponds the

origin in the x, y plane. With this exception the correspondence
between Q and B is uniform, as 1), 2) show.

The determinant A of 1) is, setting

r =

d(w, v) _ r3 r3 x

for any point x, y different from the origin.

589. Example 3. Reciprocal Radii. Let be the origin in the

x, y plane and H the origin in the u, v plane. To any point
P =

(#, y) in the x, y plane different from the origin shall cor

respond a point Q = (u, v) in the w, v plane such that n Q has
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the same direction as OP and such that OP IQ = 1. Analyti

cally we have

x=\y ,
u = \v , \

&amp;gt; 0,

and

From these equations we get

u v f+
x =

~2 2 y = ~TT~2 v
and also

The correspondence between the two planes is obviously unifold

except that no point in either plane corresponds to the origin in

the other plane. We find for any point a?, y different from the

origin that
a(M , v} J
d(x,y) -(J + fyf

Obviously from the definition, to a line through the origin in

the #, y plane corresponds a similar line in the w, v plane. As xy
moves toward the origin, w, v moves toward infinity.

Let x, y move on the line x = a = 0. Then 1) shows that w, v

moves along the circle

a
(&amp;gt;

2 + v2)
- u =

which passes through the origin. A similar remark holds when

z, y moves along the line y = b = 0.

590. Such relations between two point sets 51, 33 as defined in

586 may be formulated independently of the functions /. In fact

with each point a of H we may associate one or more points 5
1?

b
z

of 55 according to some law. Then 33 may be regarded as the

image of SI. We may now define the terms simple, manifold, etc.,

as in 586. When b corresponds to a we may write b ~ a.

We shall call 33 a continuous image of 51 when the following con

ditions are satisfied. 1 To each a in 51 shall correspond but one

b in 33, that is, 33 is a simple image of H. 2 Let b ~ a, let a
t , 2

be any sequence of points in 51 which = #. Let bn
~ an . Then

bn must = Z&amp;gt; however the sequence \an \
is chosen.
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When 53 is a simple image of 51, the law which determines

which b of 53 is associated with a point a of 51 determines obviously
n one-valued functions as in 586, 1), where ^ tm are the m co

ordinates of a, and x
l

xn are the n coordinates of b. We call these

functions 1) the associated functions. Obviously when 53 is a

continuous image, the associated functions are continuous in 51.

591. 1. Let 53 be a simple continuous image of the limited complete
set 5(. Then 1 53 is limited and complete. If 2 51 is perfect and

only a finite number of points of 51 correspond to any point 0/53, then

53 is perfect. -5^3 51 is a connex, so is 53.

To prove 1. The case that 53 is finite requires no proof. Let

ftj, 2
&quot; be points of 53 which = /9. We wish to show that lies

in 53. To each bn will correspond one or more points in 51; call

the union of all these points a. Since 53 is a simple image, a is an

infinite set. Let av #
2

&quot; be a set of points in a which =
,
a

limiting point of 51. As 51 is complete, a lies in 51. Let b ~ a.

Let b,n
~ an . As an = a, b

ln
=

/3. But 53 being continuous, b^
must = b. Thus /3 lies in 53. That 53 is limited follows from the

fact that the associated functions are continuous in the limited

complete set 51. To prove 2. Suppose that 53 had an isolated

point b. Let b ~ a. Since 51 is perfect, let a^ a
2

&amp;gt;~ = a. Let

bn
~ an . Then as 53 is continuous, bn = 5, and b is not an isolated

point. To prove 3. We have only to show that there exists

an e-sequence between any two points a, /3 of 53, e small at pleasure.
Let a ~ a, @ ~ b. Since 51 is connected there exists an ^-sequence
between a, b. Also the associated functions are uniformly con

tinuous in 51, and hence 77 may be taken so small that each segment
of the corresponding sequence in 53 is &amp;gt; e.

2. Let f{t1 TO) be one-valued and continuous in the connex 51,

then the image of 51 is an interval including its end points.
This follows from the above and from 585, 8.

3. Let the correspondence between 51, 53 be unifold. If 53 is a

continuous image of 51, then 51 is a continuous image of 53.

For let \bn \
be a set of points in 53 which = b. Let an ~ 5n ,

a ~ b. We have only to show that an = a. For suppose that it

does not, suppose in fact that there is a sequence a
ti

, a
ti

which
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= a 3= a. Let {3
~ a. Then 5

tl
, ba

= /3. But any partial se

quence of jfin j
must = b. Tims & = /3, hence a =

, hence an
= a.

4. w4 Jordan curve J is a unifold continuous image of an interval

T. Conversely if J is a unifold continuous image of an interval T,

there exist two one-valued continuous functions

such that as t ranges over T, the point x, y ranges over J. In case

J is closed it may be regarded as the image of a circle F.

All but the last part of the theorem has been already established.

To prove the last sentence we have only to remark that if we set

x = r cos t , y = r sin t

we have a unifold continuous correspondence between the points

of the interval (0, 2 TT*) and the points of a circle.

5. The first part of 4 may be regarded as a geometrical definition

of a Jordan curve. The image of a segment of the interval T or

of the circle F, will be called an arc of J.

592. Side Lights on Jordan Curves. These curves have been

defined by means of the equations

As t ranges over the interval T = (a &amp;lt; 5), the point P = (x, y)

ranges over the curve J. This curve is a certain point set in the

#, y plane. We may now propose this problem : We have given
a point set ( in the a?, y plane ; may it be regarded as a Jordan

curve ? That is, do there exist two continuous one-valued func

tions 1) such that as t ranges over some interval T, the point P
ranges over the given set ( without returning on itself, except

possibly for t = a, t = b, when the curve would be closed?

Let us look at a number of point sets from this point of view.

593. Example 1.

L Let
y = sin -

, x in the interval % = (- 1, 1), but ^
x

= for x = Q.
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Is this point set ( a Jordan curve ? The answer is, No. For a

Jordan curve is a continuous image of an interval 51. By 591, 1,

it is complete. But (E is not complete, as all the points on the

y axis, 1 &amp;lt; y &amp;lt; 1 are limiting points of (, and only one of them

belongs to (, viz. the origin.

2. Let us modify ( by adjoining to it all these missing limiting

points, and call the resulting point set (7. Is C a Jordan curve ?

The answer is again, No. For if it were, we can divide the inter

val T into intervals 8 so small that the oscillation of c, ^ in any
one of them is &amp;lt;

&&amp;gt;. To the intervals 8, will correspond arcs Ot
on

the curve, and two non-consecutive arcs Ct
are distant from each

other by an amount &amp;gt; some e, small at pleasure. This shows that

one of these arcs, say CK , must contain the segment on the y-axis
~~ 1 ^ V ^ ! But then Osc ^r

= 2 as t ranges over the correspond

ing 8K interval. Thus the oscillation of
i/r

cannot be made &amp;lt; e,

however small K is taken.

3. Let us return to the set ( defined in 1. Let A, B be the

two end points corresponding to x = 1, x = 1. Let us join them

by an ordinary curve, a polygon if we please, which does not cut

itself or (. The resulting point set $ divides all the other points
of the plane into two parts which cannot be joined by a contin

uous curve without crossing $. For this point of view $ must be

regarded as a closed configuration. Yet $ is obviously not complete.
On the other hand, let us look at the curve formed by removing

the points on a circle between two given points a, b on it. The

remaining arc % including the end points a, b is a complete set, but

as it does not divide the other points of the plane into two sepa
rated parts, we cannot say is a closed configuration.
We mention this circumstance because many English writers

use the term closed set where we have used the term complete.

Cantor, who first introduced this notion, called such sets abge-

schlossen, which is quite different from geschlossen = closed.

_!
594. Example 2. Let p = e

e
, for 6 in the interval 31 = (0, 1)

except 6 = 0, where p = 0. These polar coordinates may easily be

replaced by Cartesian coordinates
-i -1

e cos 6
,

= e
9
sin d

,
in 51,
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except 6 = 0, when x, y both = 0. The curve thus denned is a

Jordan curve.

Let us take a second Jordan curve

with p = for 6 = 0. If we join the two end points on these

curves corresponding to 6 = 1 by a straight line, we get a closed

Jordan curve
J&quot;,

which has an interior
&amp;lt;J,

and an exterior O.
The peculiarity of this curve J is the fact that one point of it,

viz. the origin # =
;z/
= 0, cannot be joined to an arbitrary point

f 3s

ky a finite broken line lying entirely in $ ; nor can it be

joined to an arbitrary point in ) by such a line lying in )

595. 1. It will be convenient to introduce the following terms.

Let 31 be a limited or unlimited point set in the plane. A set

of distinct points in 21

i 2 &amp;lt;V&quot; (1

determine a broken line. In case 1) is an infinite sequence, let an

converge to a fixed point. If this line has no double point, we call

it a chain, and the segments of the line links. In case not only the

points 1) but also the links lie in 21, we call the chain a path. If

the chain or path has but a finite number of links, it is called

finite.

Let us call a precinct a region, i.e. a set all of whose points are

inner points, limited or unlimited, such than any two of its points

may be joined by a finite path.

2. Using the results of 578, we may say that,

A closed Jordan curve J divides the other points of the plane into

two precincts, an inner $ and an outer ) Moreover, they have a

common frontier which is J.

3. The closed Jordan curve considered in 594 shows that not

every point of such a closed Jordan curve can always be joined to

an arbitrary point of 3 or O by a finite path.

Obviously it can by an infinite path. For about this point, call

it P, we can describe a sequence of circles of radii r = 0. Between

any two of these circles there lie points of Q and of ), if r is suf-
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liciently small. In this way we may get a sequence of points in 3,

viz. /j, /2 ... = P. Any two of these Im , Im+1 may be joined by a

path which does not cut the path joining /j to Im . For if a loop
were formed, it could be omitted.

4. Any arc & of a closed Jordan curve J can be joined by a path
to an arbitrary point of the interior or exterior, which call 51.

For let 7= $ -f- Let & be a point of $ not an end point.

Let S = Dist(&, ), let a be a point of 51 such that Dist(a, &)
&amp;lt; ^ B. Then ~. ox 1

.

??= Dist(a, ) &amp;gt; Jo.

Hence the link I = (a, &) has no point in common with . Let

b be the first point of I in common with $. Then the link

m = (a, ) lies in 31. If now a is any point of 21, it may be joined
to a by a path p. Then p + m is a path in 51 joining the arbi

trary point a to a point b on the arc $.

596. Example 3. For d in 51 = (0*, 1) let

and -O^iX
p = a(H-

v

&amp;lt;&quot;).

These equations in polar coordinates define two non-intersecting

spirals jS^ Sz
which coil about p = a as an asymptotic circle F.

Let us join the end points of the spirals corresponding to = 1

by a straight line L. Let denote the figure formed by the

spirals S^ $
2 , the segment L and the asymptotic circle F. Is

a closed Jordan curve ? The answer is, No. This may be seen

in many ways. For example, does not divide the other points
into two precincts, but into three, one of which is formed of points
within F.

Another way is to employ the reasoning of 593, 2. Here the

circle F takes the place of the segment on the y-axis which figures
there.

Still another way is to observe that no point on F can be joined
to a point within S by a path.

597. Example 4- Let d be formed of the edge & of a unit

square, together with the ordinates o erected at the points
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x = ,
of length ^, ft = 1, 2 - Although ( divides the other

points of the plane into two precincts 3 and D, we can say that

($ is not a closed Jordan curve.

For if it were, 3 and ) would have to have ( as a common

frontier. But the frontier of ) is (, while that of 3 is (.

That ( is not a Jordan curve is seen in other ways. For

example, let 7 be an inner segment of one of the ordinates o.

Obviously it cannot be reached by a path in ).

Brouwers Proof of Jordan s Theorem

598. We have already given one proof of this theorem in 577

seq., based on the fact that the coordinates of the closed curve are

expressed as one-valued continuous functions

Brouwer s proof
*

is entirely geometrical in nature and rests

on the definition of a closed Jordan curve as the unifold continu

ous image of a circle, cf. 591, 5.

If 51, 53, are point sets in the plane, it will be convenient to

denote their frontiers by g^, g^ so that

%^ = Front H , etc.

We admit that any closed polygon ty having a finite number of

sides, without double point, divides the other points of the plane

into an inner and an outer precinct $ t , tye respectively. In the

following sections we shall call such a polygon simple, and usu

ally denote it by ty.

We shall denote the whole plane by (.

Then
&amp;lt;g= ?+$.+?..

Let 51 be complete. The complementary set A is formed, as

we saw in 328, of an enumerable set of precincts, say A = \An \.

* Math. Annalen, vol. 69 (1910), p. 169.
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599. 1. If a precinct 31 and its complement* A each contain a

point of the connex (, then g^ contains a point of (L

For in the contrary case c = Dv(2I, () is complete. In fact

33 = 21 + Sgi
is complete. As ( is complete, Dv($8, (S) is com

plete. But if
21

does not contain a point of Q, c = Dv(33, ().

Thus on this hypothesis, c is complete. Now c = Dv(A, (E) is

complete in any case. Thus ( = c + &amp;lt;?,

which contradicts 585, 4.

2. If ^^ ^$e , the interior and exterior of a simple polygon ty each

contain a point of a connex (, then ty contains a point of (L

3. Let $ be complete and not connected. There exists a simple

polygon $ such that no point of $ lies on $, while a part of $ lies in

$ t and another part in tye .

For let $j, $2
be two non-connected parts of $ whose distance

from each other is p &amp;gt; 0. Let A be a quadrate division of the

plane of norm 8, so small that no cell contains a point of $j and

$2
. Let A! denote the cells of A containing points of $j. It is

complete, and the complementary set A2
= @ Aj is formed of one

or more precincts. No point of ^
l
lies in A

2
or on its frontier.

Let Pj, P2 be points in $j, $2 respectively. Let D be that

precinct containing P2
. Then g^ embraces a simple polygon ^3

which separates Pl
and P2

.

4. Let
1 , $2

be two detached connexes. There exists a simple

polygon $ which separates them. One of them is in ^ the other in

$e , and no point of either connex lies on ^3.

For the previous theorem shows that there is a simple polygon

$ which separates a point Pl
in

1
from a point P2

in $2
and no

point of $j or f2 lies on $. Call this fact F.

Let now P
l
lie in $ t . Then every point of $

x
lies in % . For

otherwise ^ and $e each contain a point of the connex $j . Then
2 shows that a point of $j lies on $, which contradicts F.

5. Let 53 be a precinct determined by the connex (L Then

b = Front 53 is a connex.

* Since the initial sets are all limited, their complements may be taken with ref

erence to a sufficiently large square O ;
and when dealing with frontier points, points

on the edge of O may be neglected.
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For suppose b is not a connex. Then by 3, there exists a simple

polygon ty which contains a part of b in ^ and another in ^3e ,

while no point of b lies on ty. Hence a point fi of b lies in $ t ,

and another point /3&quot;
in $. As 53 is a precinct, let us join /3 ,

fi
f

by a path v in 53- Thus ty contains at least one point of v,

that is, a point of 53 lies on $. As b and ty have no point in

common, and as one point of ty lies in
53&amp;gt;

all the points of ^ lie

in 53. Hence ^ (^ e) = 0&amp;gt; (1

As b is a part of ( and hence some of the points of ( are in $e

and some in ^^ it follows from 2 that a part of $ lies in (. This

contradicts 1).

6. Let $ 1? $2
be two connexes without double point. By 3

there exists a simple polygon ty which separates them and has

one connex inside, the other outside ^3.

Now $ = $j + $2
is complete and defines one or more precincts.

One of these precincts contains ty.

For say $ lay in two of these precincts as 51 and 53. Then the

precinct 51 and its complement (in which 53 lies) each contain a

point of the connex $. Thus g^ contains a point of $. But g^
is a part of $, and no point of $ lies on $.

That precinct in Coinp $ which contains ^3 we call the inter

mediate precinct determined by $ x , $2 , or more shortly the pre

cinct between $
x , $2

and denote it by Inter ($r $2).

7. Let $j, $2
be two detached connexes, and let ! = Inter ($r $2).

Then $!, $2
can I e joined by a path lying in I, except its end points

which lie on the frontiers of $v $2 respectively.

For by hypothesis p = Dist($j, $2)&amp;gt;0.
Let P

1
be a point of

5^ such that some domain b of P
l
contains only points of $j and

of I. Let Q! be a point of f in b. Join P
x , Ql by a right line, let

it cut g^j first at the point P . In a similar way we may reason

on $2 , obtaining the points P&quot;, Q2
. Then P Q^P&quot; is the path

in question. If we denote it by v, we may let v* denote this

path after removing its two end points.

8. Let $j, $2
t&amp;gt;e ^wo detached connexes. A path v joining $

x ,

$2 and lying in 1= Inter ($j, $2), end points excepted, determines

one and only one precinct in f .
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For from an arbitrary point P in !, let us draw all possible

paths to v. Those paths ending on the same side (left or right)

of v certainly lie in one and the same precinct fr or !j in f. Then

since one end point of v is inside, the other end point outside ^)3,

there must be a part of ty which is not met by v and which joins

the right and left sides of v. We take this as an evident property

of finite broken lines and polygons without double points.

Thus !j and !r are not detached ; they are parts of one precinct.

9. Two paths v^ v
2
without common point, lying in I and joining

$j, $2 , split t into two precincts.

Let i = ! v
l ; this we have just seen is a precinct. From any

point of it let us draw paths to i&amp;gt;

2
. Those paths ending on the

same side of v
2
determine precincts tj, tr which may be identical.

Suppose they are. Then the two sides of v
2
can be joined by a

path lying in I, which does not touch v
2 (end points excepted),

has no point in common with v
1 , and together with a segment of

v% forms a simple polygon ty which has one end point of v
l
in ^P t ,

the other end point in ty e . Thus by 2, $ contains a point of the

connex vr This is contrary to hypothesis.

Similar reasoning shows that

10. The n paths v^ vn pairwise without common point, lying in

f, and joining the connexes $j, $2 split ! into n precincts.

Let us finally note that the reasoning of 595, 4, being independ
ent of an analytic representation of a Jordan curve, enables us to

use the geometric definition of 591, 5, and we have therefore the

theorem

11. Let 51 be a precinct whose frontier g is a Jordan curve. Then

there exists a path in $t joining an arbitrary point of 5( with any arc

0/8-

Having established these preliminary theorems, we may now

take up the body of the proof.

600. 1. Let 51 be a precinct determined by a closed Jordan curve

J. Then g = Front 51 is identical with J.

If J determines but one precinct 51 which is pantactic in (, we
have obviously 5 = J,
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Suppose then that 51 is a precinct, not pantactic in (. Let 53

be a precinct = 21 determined by g. Let b = Front 53. Then
b

&amp;lt;_ g &amp;lt;^J. Suppose now b &amp;lt;
J. As J&quot; is a connex by 591, 1, g is a

connex by 599, 5. Similarly since g is a connex, b is a connex.

Since b &amp;lt; &amp;lt;/,

let b ~ b on the circle F whose image is J. We
divide b into three arcs 5

X ,
&amp;gt;

2 ,
6
3
to which ~ b 1? b2 , b3 in b.

Let
/3= Inter (b x , b3).

Then by 599, 11, we can join b
x , b3 by a path v

l
in 51, and by a

path v
z

in 53. By 599, 9, these paths split /2 into two precincts

ffii A- We can join v
1?

#
2 by a path w

x lying in /3X , and by a

path w
2 lying in /32

.

Now the precinct 53 and its complement each contain a point of

the connex Wj. Hence by 599, l, b contains a point of ur Simi

larly b contains a point of u2
. Thus u^ u

2
cut b, and as they

do not cut b
x , b

3 by hypothesis, they cut b2 . Thus at least one

point of fit
and one point of 2

lie in b2 .

Let p be a point of /^ lying in b2 , let p ~p on the circle. Let

b be an arc of b
2 containing p. Let b ~ b . As the connex b

has no point in common with Front /3X , b must lie entirely in /31

by 599, 1. This is independent of the choice of b , hence the

connex b
2 , except its end points, lies in @v Thus /32 can contain

no point of b
2 , which contradicts the result in italics above.

Thus the supposition that b &amp;lt;
J is impossible. Hence b = J,

and therefore g = J.

As a corollary we have :

2. A Jordan curve is apantactic in (.

3. A closed Jordan curve J cannot determine more than two

precincts.

For suppose there were more than two precincts

&quot;a,, a,, a,- (i

Let us divide the circle T into four arcs whose images call 7j, J%,

Ji,/4-
Then by 1, the frontier of each of the precincts 1) is J. Thus

by 599, 9, there is a path in each of the precincts 2l
x , ^ join

ing Jj and J&quot;

3
. These paths split
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! = Inter (Jv &amp;lt;7

3)

into precincts fj,
I2

Now as in 1, we show on the one hand that each lt must contain

a point of 7
2
or &amp;lt;7

4 ,
and on the other hand neither J

2
nor J~

4
can

lie in more than one !t
.

4. A dosed Jordan curve J must determine at least tivo precincts.

Suppose that J determines but a single precinct 21. From a

point a of 21 we may draw two non-intersecting paths M
15
w
2

to

points 6j, #
2
of J.

Since the point a may be regarded as a connex, a and J are two
detached connexes. Hence by 599, 9, the paths u^ u

z split 21 into

two precincts 2l
x , 2Lj- Let j = (w19

w
2 , J&quot;).

The points 6
X ,

b
2

divide J&quot;into two arcs 7
X ,

J&quot;

2 ,
and

are closed Jordan curves. Regarding a and Jj as two detached

connexes, we see y\ determines two precincts, j, o^. By 599, l, a

path which joins a point a
x
of a

x
with a point a

z
of Og must cut jl

and hence y. It cannot thus lie altogether in ^ or in 212
. Thus

both
j,

a
2
do not lie in

2lj,
nor both in 212

. Let us therefore

say for example that
2lj

lies in
x , and 2^ in

2
. Hence by 2,

2lj
is pantactic in

j,
and 2(2

in 2- -^7 ^ eac^ Pint of jl
is com

mon to the frontiers of
ctj

and of Og, and hence of 2I
X
and of 212 ,

as these are pantactic.

Let P be a point of J
2

. It lies either in
j
or

ct^. Suppose it

lies in Oj. Then it lies neither in c^ nor on Front a^ and hence

neither in 212
nor on Front 2I2

.. But every point of /2 and also

every point of jl
lies on Front 212

. We are thus brought to a

contradiction. Hence the supposition that J determines but a

single precinct is untenable.

Dimensional Invariance

601. 1. In 247 we have seen that the points of a unit interval

/, and of a unit square S may be put in one to one correspondence.
This fact, due to Cantor, caused great astonishment in the mathe

matical world, as it seemed to contradict our intuitional views
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regarding the number of dimensions necessary to define a figure.

Thus it was thought that a curve required one variable to define

it, a surface two, and a solid three.

The correspondence set up by Cantor is not continuous. On
the other hand the curves invented by Peano, Hilbert, and others

(cf. 573) establish a continuous correspondence between /and S,

but this correspondence is not one to one. Various mathemati

cians have attempted to prove that a continuous one to one corre

spondence between spaces of m and n dimensions cannot exist.

We give a very simple proof due to Lebesgue.*

It rests on the following theorem :

2. Let 51 be a point set in 9?m . Let O &amp;lt; 21 be a standard cube

aL
&amp;lt;

2&amp;lt;T
, 4=1, 2-~m.

Let
(Sj, ^-&quot;be

a finite number of complete sets so small that each

lies in a standard cube of edge a. If each point of 51 lies in one of

the (S s, there is a point of 51 ivhich lies in at least m + 1 of them.

Suppose first that each ( t is the union of a finite number of

standard cubes. Let (^ denote those (Ts containing a point of

the face \ l
of Q lying in the plane x

l
= ar The frontier gx

of (^
is formed of a part of the faces of the GTs. Let F

l
denote that

part of gj which is parallel to
fj. Let O x

= i)y(O, .Fj). Any
point of it lies in at least two (Ts.

Let @2
denote those of the GTs not lying altogether in @

x
and

containing a point of the face f2
of Q determined by x%

= a
2

. Let

JP
2

denote that part of Front @2
which is parallel to

f2
. Let

O2
= Dt^Qj, F^). Any point of it lies in at least three of the (Ts.

In this way we may continue, arriving finally at Om , any point
of which lies in at least m -\- 1 of the GTs.

Let us consider now the general case. We effect a cubical

division of space of norm d&amp;lt;a. Let O, denote those cells of D
which contain a point of (

t
. Then by the foregoing, there is a

point of 51 which lies in at least m + 1 of the (7 s. As this is true,

however small d is taken, and as the ( s are complete, there is at

least one point of 51 which lies in m + 1 of the GTs.

* Math Annalen, vol. 70 (1911), p. 166.
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3. We now note that the space $lm may be divided into congruent

cells so that no point is in more than m -h 1 cells.

For m = 1 it is obvious. For m = 2 we may
use a hexagonal pattern. We may also use

a quadrate division of norm B of the plane.

These squares may be grouped in horizontal

bands. Let every other band be slid a distance

^ 8 to the right. Then no point lies in more

than 3 squares. For m = 3 we may use a

cubical division of space, etc.

In each case no point of space is in more than m + 1 cells.

Let us call such a division a reticulation of 9?m .

4. Let 51 be a point set in $?OT having an inner point a. There is

no continuous unifold image $8 of 51 in 9?n , n^=m, such that b~a is

an inner point of $8.

For let n
&amp;gt;

m. Let us effect a reticulation R of 9?m of norm p.

If B
&amp;gt; is taken sufficiently small A = Z&amp;gt;

26 (a) lies in 51. Let

E = D^d) ;
if p is taken sufficiently small, the cells

o^o.-.o. (i

of R which contain points of E, lie in A. Let the image of E be

(, and that of the cells 1) be

SpG.-C.. (2

These are complete. Each point of (5 lies in one of the sets 2).

Hence by 2, they contain a point /3 which lies in n + 1 of them.

Then a~/3 lies in n 4- 1 of the cells 1). But these, being part of

the reticulation R, are such that no point lies in more than m + 1

of them. Hence the contradiction.

602. 1. Schotifliesi Theorem. Let

u =/O, #) ,
v = g(x, y*) (1

be one-valued and continuous in a unit square A whose center is

the origin. These equations define a transformation T. If T is

regular, we have seen in I, 742, that the domain Z&amp;gt;

P(P) of a point
P = (x, y} within A goes over into a set E such that if Q~P
then -Z&amp;gt;a((?) lies in E, if cr

&amp;gt;0 is sufficiently small.



622 GEOMETRIC NOTIONS

These conditions on /, g which make T regular are sufficient,

but they are much more than necessary as the following theorem

due to Schonfliess
* shows.

2. Let A = B -f- c be a unit square in the x, y plane, whose center

is the origin and whose frontier is c.

u =/(?* y) , v = g(x, y)

be one-valued continuous functions in A. As (x, y} ranges over A,
let (w, v) range over 21 = 53 + c where c ~ c. Let the correspondence
between A and 51 be uniform. Then c is a closed Jordan curve and
the interior c, of c is identical with 53.

That c is a closed Jordan curve follows from 576 seq., or 598

seq. Obviously if one point of 53 lies in C all do. For if &, j3e

are points of 53, one within c and the other without, let J
t ~&,

be~@e - Then 5
t ,

be lying in B can be joined by a path in B
which has no point in common with c. The image of this path is

a continuous curve which has no point in common with c, which
contradicts 578, 2.

Let

be the equation of c in polar coordinates.

If &amp;lt; ft &amp;lt; 1, the equation

P = 14(0)

defines a square, call it CM , concentric with c and whose sides are

in the ratio /* : 1 with those of c. The equations of CM
~

c^ are

v=g\- .-....... j= 00, 0).

These CM curves have now the following property :

If a point (p, q) is exterior {interior) to c
Mo , it is exterior (in

terior) to CM , for all fA such that

I
/* MO I

^ some e &amp;gt; 0.

For let
/3M be the distance of (/?, &amp;lt;?)

from a point (w, v) on CM .

Then

*Goettingen Nachrichten, 1899. The demonstration here given is due to Osgood,
Goett. Nachr., 1900.
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is a continuous function of 6, p which does not vanish for
//,
=

/* ,

when &amp;lt; 6 &amp;lt; 2 TT. But being continuous, it is uniformly con

tinuous. It therefore does not vanish in the rectangle

- e + /i &amp;lt; AC &amp;lt; AIO + e , &amp;lt; &amp;lt; 2 TT.

We can now show that if 53&amp;lt;c it is identical with c t
. To this

end we need only to show that any point ft of c t
lies on some CM .

In fact, as /x
= 0, CM contracts to a point. Thus ft is an outer point

of some CM ,
and an inner point of others. Let /u be the maximum

of the values of n such that ft is exterior to all cu ,
if ft &amp;lt; /v

Then ft lies on cMo
. For if not, ft is exterior to cMo+, by what we

have just shown, and /x is not the maximum of ft.

Let us suppose that 23 lay without c. We show this leads to a

contradiction. For let us invert with respect to a circle f, lying
in c

t
. Then c goes over into a curve

f,
and 51 goes over into

3) = (S -}- f . Then & lies inside f. Let f , 77 be coordinates of a

point of ). Obviously they are continuous functions of z, y in

A, and
&amp;lt;TN iA~x) ,

c ~ f , uniformly.

By what we have just proved, ( must fill all the interior of f.

This is impossible unless 51 is unlimited.

3. We may obviously extend the theorem 2 to the case

u
\ =/iOi O &quot; um =/(*!*)

and A is a cube in m-way space 9?m , provided we assume that c, the

image of the boundary of J., divides space into two precincts
whose frontier is c.

Area of Curved Surfaces

603. 1. TJie Inner Definition. It is natural to define the area of a

curved surface in a manner analogous to that employed to define

the length of a plane curve, viz. by inscribing and circumscrib

ing the surface with a system of polyhedra, the area of whose

faces converges to 0. It is natural to expect that the limits of

the area of these two systems will be identical, and this common
limit would then forthwith serve as the definition of the area of

the surface. The consideration of the inner and the outer sys-
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terns of polyhedra afford thus two types of definitions, which

may be styled the inner and the outer definitions. Let us look

first at the inner definition.

Let the equations of the surface S under consideration be

x = v) y = ^r(w, v) z = xO, v), (1

the parameters ranging over a complete metric set 21, and a?, y, z

being one-valued and continuous in 21.

Let us effect a rectangular division D of norm d of the u, v

plane. The rectangles fall into triangles t
K
on drawing the

diagonals. Such a division of the plane we call quasi rectangular.

Let P =( , ) , P, = Oo + M) , P2
= O , fo + O

be the vertices of tK . To these points in the u, v plane corre

spond three points $. = (#t , y^ t ), t=l, 2, 3, of which form the

vertices of one of the triangular faces TK of the inscribed polyhe
dron 11^ corresponding to the division D. Here, as in the follow

ing sections, we consider only triangles lying in 21. We may do

this since 21 is metric.

Let XK , YK , ZK be the projections of T
K
on the coordinate planes.

Then, as is shown in analytic geometry,

where

2/2 2/2-2/0

A y , A z

and similar expressions for y&quot;K , ZK .

Thus the area of II ^ is

the summation extending over all the triangles tK lying in the

set 21.

Let x, y, z have continuous first derivatives in 21- Then

dx
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with similar expressions for the other increments. Let

A = du

*y
dv

dz

du

dz

dv

Then

X=(^K + K)^

dz

du

dz

~dv

dz_

du

dz

dv

dz

du

dx_

~dv

du

dv

YK

where aK /3K yK are uniformly evanescent with d in 3(. Thus if

^., .6, C do not simultaneously vanish at any point of 21, we have

as area of the surface S

2. An objection which at once arises to this definition lies in

the fact that we have taken the faces of our inscribed polyhedra
in a very restricted manner. We cannot help asking, Would we

get the same area for S if we had chosen a different system of

polyhedra ?

To lessen the force of this objection we observe that by replac

ing the parameters u, v by two new parameters u
,

v we may
replace the above quasi rectangular divisions which correspond to

the family of right lines u= constant, v= constant by the infinitely
richer system of divisions corresponding to the family of curves

u = constant, v = constant. In fact, by subjecting u , v to cer

tain very general conditions, we may transform the integral 3)
to the new variables u , v without altering its value.

But even this does not exhaust all possible ways of dividing 51

into a system of triangles with evanescent sides. Let us there

fore take at pleasure a system of points in the u, v plane having
no limiting points, and join them in such a way as to cover the

plane without overlapping with a set of triangles tK . If each

triangle lies in a square of side d, we may call this a triangular
division of norm d. We may now inquire if SD still converges
to the limit 3). as d = 0, for this more general system of divisions.

It was generally believed that such was the case, and standard

treatises even contained demonstrations to this effect. These
demonstrations are wrong ; for Schwarz * has shown that by

* Werke, vol. 2, p. 309.
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properly choosing the triangular divisions D, it is possible to

make SD converge to a value large at pleasure, for an extensive

class of simple surfaces.

604. 1. Schwarzs Example. Let Q be a right circular cylin-

der of radius 1 and height 1. A set of planes parallel to the base

at a distance - apart cuts out a system of circles r
x , F2 Let

us divide each of these circles into m equal

arcs, in such a way that the end points of

the arcs on F
x ,
F

3 , F6
lie on the same

vertical generators, while the end points of

F
2 ,

F
4 , F

6
lie on generators halfway

between those of the first set. We now
inscribe a polyhedron so that the base of

one of the triangular facets lies on one

circle while the vertex lies on the next circle above or below, as

in the figure.

The area t of one of these facets is

t = 1 bh

Thus
m

= \ A:+ 1 cos
m

m w* 2m
There are 2 m such triangles in each layer, and there are n

layers. Hence the area of the polyhedron corresponding to this

triangular division D is

84 = 2^ = 2 mn sin \ h 4 sin4 .

m * M? 2m
Since the integers w, n are independent of each other, let us

consider various relations which may be placed on them.

Case 1. Let n = \m. Then

S =
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Case 2. Let n = \m*. Then

+ 4 ^f-4

sin
7T

= 2
Try/1 + X2 , as w = x.

Case 3. Let w = Xw 3
. Then

sin -
m
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each cell dK as base, we erect a right cylinder (7, which cuts out an

element of surface 8K from S. Let *$ be an arbitrary point of SK

and ! the tangent plane at this point. The cylinder O cuts out

of XK an element ASK . Let VK be the angle that the normal to K

makes with the z-axis. Then

1
C S

&quot;*

=
I 7]Tx2 -f^i

^(IHD:
and

COS VK

The area of & is now defined to be

lim 2A#K (2
5=0

when this limit exists. The derivatives being continuous, we have

at once that this limit is

which agrees with the result obtained by the inner definition in

603, 3).

The advantages of this form of definition are obvious. In the

first place, the nature of the divisions A is quite arbitrary ; however

they are chosen, one and the same limit exists. Secondly, the most

general type of division is as easy to treat as the most narrow, viz.

when the cells dK are squares.

Let us look at its disadvantages. In the first place, the elements

A/S^ do not form a circumscribing polyhedron of S. On the con

trary, they are little patches attached to S at the points tyK , and

having in general no contact with one another. Secondly, let us

suppose that S has tangent planes parallel to the z-axis. The de

rivatives which enter the integral 603, 3) are no longer continuous,
and the reasoning employed to establish the existence of the limit

2) breaks down. Thirdly, we have the case that z is not one-

valued, or that the tangent planes to S do not turn continuously,
or do not even exist at certain points.
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To get rid of these disadvantages various other forms of outer

definitions have been proposed. One of these is given by G-oursat

in his Cours d*Analyse. Instead of projecting an arbitrary
element of surface on a fixed plane, the xy plane, it is projected on

one of the tangent planes belonging to that element. Hereby the

more general type of surfaces defined by 603, 1) instead of those

defined by 1) above is considered. The restriction is, however,
made that the normals to the tangent planes cut the elements of

surface but once, also the first derivatives of the coordinates are

assumed to be continuous in 21. Under these conditions we get
the same value for the area as that given in 603, 3).

When the first derivatives of #, y, z are not continuous or do

not exist, this definition breaks down. To obviate this difficulty

de la ValUe-Poussin has proposed a third form of definition in his

Cours dAnalyse, vol. 2, p. 30 seq. Instead of projecting the

element of surface on a tangent plane, let us project it on a plane
for which the projection is a maximum. In case that S has a con

tinuously turning tangent plane nowhere parallel to the 2-axis, de

la Vallee-Poussin shows that this definition leads to the same
value of the area of S as before. He does not consider other cases

in detail.

Before leaving this section let us note that Jordan in his Cours

employs the form of outer definition first noted, using the paramet
ric form of the equations of S. In the preface to this treatise the

author avows that the notion of area is still somewhat obscure, and
that he has not been able &quot;a definir d une maniere satisfaisante

1 aire d une surface gauche que dans le cas ou la surface a un plan

tangent variant suivant une loi continue.&quot;

606. 1. Regular Surfaces. Let us return to the inner definition

considered in 603. We have seen in 604 that not every system of

triangular divisions can be employed. Let us see, however, if we
cannot employ divisions much more general than the quasi rec

tangular. We suppose the given surface is defined by

x =
&amp;lt;/&amp;gt;(&amp;gt;, v) , y = \lr(u, v) , z =

%(&amp;gt;, v) (1

the functions
&amp;lt;/&amp;gt;, i/r, ^ being one-valued, totally differentiate func

tions of the parameters u, v which latter range over the complete
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metric set SI. Surfaces characterized by these conditions we
shall call regular. Let

be the vertices of one of the triangles tK ,
of a triangular division

2&amp;gt; of norm ^ of SI. As before let $ , ^ x , $2
be the corresponding

points on the surface S. Then

and similar expressions hold for the other increments. Also

du dv

+ 2 jr. ,

where X* denotes the sum of several determinants, involving the

infinitesimals

i ,
&amp;lt;

, ft , ft.

Similar expressions hold for J^, ZK . We get thus

XK = AJK+XK , YK
= &+! , Z^C^ + Zt

where ^., 5, (7 are the determinants 2) in 603. Then the area of

the inscribed polyhedron corresponding to this division D is

Let us suppose that

as w, v ranges over SI. Also let us assume that

VI V? *7f
^&amp;lt; *K ^K
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remain numerically &amp;lt; e for any division D of norm d&amp;lt; c?
, e small

at pleasure, except in the vicinity of a discrete set of points, that

is, let 3) be in general uniformly evanescent in 51, as d = 0. Then

BI
where in general

If now A, B, Q are limited and ^-integrable in 2(, we have at

once

lim8D=fdudvJA*~ ^a
as in 603.

2. We ask now under what conditions are the expressions 3)
in general uniformly evanescent in 51 ? The answer is pretty evi

dent from the example given by Schwarz. In fact the equation
of the tangent plane X at ^3 is

A(x - a- ) + B(y - # ) + C(z - z )
= 0.

On the other hand the equation of the plane T= ($ , $j, &amp;lt;$%)

is
- y

^o v z
(

or finally

Thus for 3) to converge in general uniformly to zero, it is nec

essary and sufficient that the secant planes T converge in general

uniformly to tangent planes. Let us call divisions such that the

faces of the corresponding inscribed polyhedra converge in general

uniformly to tangent planes uniform triangular divisions. For

such divisions the expressions 3) are in general uniformly evanes

cent, as c?= 0. We have therefore the following theorem :

3. Let 51 be a limited complete metric set. Let the coordinates

x, y, 2 be one-valued totally differentiable functions of the parame-
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ters u, v in 51, such that A2 + IP + O 2 is greater than some positive

constant, and is limited and H-integrable in 51. Then

tf = lim SD = V^2+^2 + C*dudv,
rf=o ^21

D denoting the class of uniform triangular divisions of norms d.

This limit we shall call the area of S. From this definition we
have at once a number of its properties. We mention only the

following :

4. Let 5Ij, 5lw be unmixed metric sets whose union is 51. Let

$!, Sm be the pieces of S corresponding to them. Then each SK

has an area and their sum is S.

5. Let 51A be a metric part of 51, depending on a parameter X= 0,

such that SA
= S. Then

6. The area of S remains unaltered when S is subjected to a dis

placement or a transformation of the parameters as in I, 744 seq.

607. 1. Irregular Surfaces. We consider now surfaces which

do not have tangent planes at every point, that is, surfaces for

which one or more of the first derivatives of the coordinates #, y, z

do not exist, and which may be styled irregular surfaces. We
prove now the theorem :

Let the coordinates x, y, z be one-valued functions of w, v having
limited total difference quotients in the metric set 51. Let D be a

positive triangular division of norm d&amp;lt;d
Q

. Then

Max *S^

is finite and evanescent with 51.

For let the difference quotients remain
&amp;lt;/JL.

We have

But

cosec
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where K is the angle made by the sides P$PI, ^V^V As D is a

positive division, one of the angles of tK is such that cosec 6K is

numerically less than some positive number M. Thus

where /-i, M are independent of K and d. Similar relations hold

for Y, ,
ZK . Hence

77)

where 77 &amp;gt;
is small at pleasure, for d

Q sufficiently small.

2. Let 31 and x, y, z be as in 606, 3, except at certain points form

ing a discrete set a, the first partial derivatives do not exist. Let

their total difference quotients be limited in 31. Then

= C
J

ivhere D denotes a positive triajiyular division of norm d.

Let us first show that the limit on the left exists. We may
choose a metric part 55 of 51 such that ( = 51 53 is complete and

exterior to 31 and such that 53 is as small as we please. Let /Sg

denote the area of the surface corresponding to (5. The triangles

tK fall into two groups : G
1 containing points of 53 ; 6r2 containing

only points of ( Then

SD = 2 VX2 + 17 + Z 2 = v + 2 .

,
ff

But 53 may be chosen so small that the first sum is &amp;lt; e/4 for

any d&amp;lt;dQ
. Moreover by taking d still smaller if necessary, we

have

|2-SC &amp;lt;e/4.

0,

HenCC
|^-^|&amp;lt;6/2 , d&amp;lt;d . (1

Similarly for any other division D of norm d ,

\SD ,-Sg&amp;gt;\&amp;lt;/2 , d &amp;lt;d

decreasing d
Q

still farther if necessary. Thus

|^-^|&amp;lt; , d,d &amp;lt;dQ
.
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Hence lim SD exists, call it S. Since S exists we may take d
Q

so small that

\S-SD \&amp;lt;/2

This with 1) gives

|tf

that is,

S = lim &k = lim fV^ + ^
/S

= C ^/A? +& + (Fdudv
c/2l

by I, 724.

608. 1. The preceding theorem takes care of a large class of

irregular surfaces whose total difference quotients are limited.

In case they are not limited we may treat certain cases as follows:

Let us effect a quadrate division of the u, v plane of norm d,

and take the triangles tK so that for any triangular division D
associated with c?, no square contains more than n triangles, and

no triangle lies in more than v squares ; n, v being arbitrarily

large constants independent of d. Such a division we call a

quasi quadrate division of norm d. If we replace the quadrate by
a rectangular division, we get a quasi rectangular division.

We shall also need to introduce a new classification of functions

according to their variation in 51, or along lines parallel to the

u, v axes. Let D be a quadrate division of the w, v plane of norm

d &amp;lt; dQ
. Let

COK = Osc/(w, v) , in the cell dK .

Then Max ^a)Kd

is the variation of / in 51. If this is not only finite, but evanes

cent with 51, we say/ has limited fluctuation in 51. Obviously this

may be extended to any limited point set in m-way space.

Let us now restrict ourselves to the plane. Let a denote the

points of 51 on a line parallel to the w-axis. Let us effect a divi

sion D of norm d f
. Let co

K
= Osc/(w, v) in one of the intervals

of D . Then
?7a
= Max

2o&amp;gt;^

is the variation of/in a-
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Let us now consider all the sets a lying on lines parallel to the

M-axis, and let

a
&amp;lt;_

a- ,
(7 = 0.

If now there exists a constant G- independent of a such that

1&amp;lt;*#,

that is, if ?7a
is uniformly evanescent with

&amp;lt;r,

we say that/(w, v)

has limited fluctuation in 51 with respect to u.

With the aid of these notions we may state the theorems :

2. Let the coordinates x, y, z be one-valued limited functions in

the limited complete set 51. Let x, y have limited total difference

quotients, while z has limited variation in 51. Let D denote a quasi

quadratic division of norm d&amp;lt;dQ
. Then

Max SD
D

is finite.

For, as before,

But p denoting a sufficiently large constant,

| A; .,
| A; |

are &amp;lt; pd.

Let ft&amp;gt;

t
=Osc2 in the square s t . If the triangle tK lies in the

squares *
tl , s

tjfc
,

I A; i, i

A i&amp;lt;.,+
- +...

Thus, n denoting a sufficiently large constant,

the summation extending over those squares containing a triangle

of D. But z having limited variation,

2&) tc? &amp;lt;
some M.

Hence
*\XK

\

,
2

|

YK
\

are &amp;lt;

Finally, as in 607,
2 |Z |

&amp;lt;some M .

The theorem is thus established.
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3. The coordinates x, y, z, being as in 2, except that z has limited

fluctuation in 51, and D denoting a quasi quadrate division of

norm d &amp;lt; ^

D

is finite and evanescent with 51.

The reasoning is the same as in 2 except that now M, M are

evanescent with 51.

4. Let the coordinates x, y, z have limited total difference quo
tients in 51, while the variation of z along any line parallel to the u
or v axis is

&amp;lt;
M. Let 51 lie in a square of side s = 0. Then

Max/S^ &amp;lt; sG-,
D

where G is some constant independent of s, and D is a quasi rectan

gular division of norm d &amp;lt; d
Q

.

For here

2
| Ay |

A z
|

where M denotes a sufficiently large constant; du , dv denote the

length of the sides of one of the triangles t
K parallel respectively

to the u, v axes, and a)u , a)
v the oscillation of z along these sides.

Since the variation is &amp;lt; M in both directions,

Ms.

Similarly

2o&amp;gt;A &amp;lt; M8 .

The rest of the proof follows as before.

5. The symbols having the same meaning as before, except that z

has limited fluctuation with respect to u, v,

The demonstration is similar to the foregoing. Following the

line of proof used in establishing 607, 2 and employing the

theorems just given, we readily prove the following theorems :
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6. Let 51 be a metric set containing the discrete set a. Let b be

a metric part of 31, containing a such that 33 = 51 b is exterior to a,

and t&amp;gt;

= 0. Let the coordinates x, y, z be one-valued totally differ-

entiable functions in 33, such that A2 + IP + C2 never sinks below a

positive constant in any 33, is properly R-integrable in any 53, and

improperly integrable in 51. Let x, y have limited total difference

quotients, and z limited fluctuation in b. Then

lim S# = I V^i 2 + B2 + 2dudv
d= J%

where A, B, C are the determinants in 603, 2), and D is any quasi

quadrate division of norm d.

7. Let the symbols have the same meaning as in 6, except that

1 a reduces to a finite set.

2 z has limited variation along any line parallel to the u, v axes.

3 D denotes a uniform quasi rectangular division. Then

\\mSD = VA2 + 7&amp;gt;

2 + CPdudv.
d=o %/*

8. The symbols having the same meaning as in 6, except that

1 z has limited fluctuation with respect to w, v in b.

2 D denotes a uniform quasi rectangular division. Then

lim SD = I VA* + B2
-f C2dudv.

9. If we call the limits in theorems 6, 7, 8, area, the theorems

606, 3, 4, 5 still hold.





INDEX

(Numbers refer to pages)

-x

tf

AbeVs identity, 87

series, 87

Absolutely convergent integrals, 31
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Addition of cardinals, 292
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series, 128

Adherence, 340

Adjoint product, 247

series, 77, 139

set of intervals, 337

Aggregates, cardinal number, 278

definition, 276

distribution, 295

enumerable, 280

equivalence, 276

eutactic, 304

exponents, 294

ordered, 302

power or potency, 278

sections, 307

similar, 303

transfinite, 278

uniform or 1-1 correspondence, 2&quot;

Alternate series, 83

Analytical curve, 582

Apantactic, 325

Area of curve, 599, 602

surface, 623

Arzela, 365, 555

Associated simple series, 144

products, 247

multiple series, 145

normal series, 245

logarithmic series, 243

inner sets, 365

Associated, outer sets, 365

non-negative functions, 41

Baire, 326, 452, 482, 587

Bernovillian numbers, 265

Bertram s test, 104

Bessel functions, 238

Beta functions, 267

Binomial series, 110

Bocher, 165

Bonnet s test, 121

Borel, 324, 542

Brouwer, 614

Cohen s test, 340

Cantors 1 and 2 principle, 316

theorem, 450

Category of a set, 326

Cauchy s function, 214

integral test, 99

radical test, 98

theorem, 90

Cell of convergence, 144

standard rectangular, 359

Chain, 612

Class of a function, 468, 469

Conjugate functions, 238

series, 147

products, 249

Connex, 605

Connected sets, 605

Contiguous functions, 231

Continuity, 452

infra, 487

semi, 487

supra, 487

Continuous image, 608
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Contraction, 287

Convergence, infra-uniform, 562

monotone, 176

uniform, 156

at a point, 157

in segments, 556

sub-uniform, 555

Co-product, 242

Curves, analytical, 582

area, 599, 602

Faber, 546

Jordan, 595, 610

Hilbert, 590

length, 579

non-intuitional, 537

Osgood, 600

Pompeiu, 542

rectifiable, 583

space-filling, 588

D Alembert, 96

Deleted series, 139

Derivates, 494

Derivative of a set, 330

order of, 331

Detached sets, 604

Dilation, 287

Dim, 176, 185, 438, 538

series, 86

Discontinuity, 452

at a point, 454

of 1 kind, 416

of 2 kind, 455

pointwise, 457

total, 457

Displacement, 286

Distribution, 295

Divergence of a series, 440

Division, complete, 30

separated, 366, 371

unmixed, 2

of series, 196

of products, 253

Divisor of a set, 23

quasi, 390

Divisor, semi, 390

Du Bois Reymond, 103

473

Elimination, 594

Enclosures, complementary e-, 355

deleted, 452

distinct, 344

divisor of, 344

e, 355

measurable, 356

non-overlapping, 344

null, 366

outer, 343

standard, 359

Enumerable, 280

Equivalent, 276

Essentially positive series, 78

negative series, 78

Euler s constant, 269

Eutactic, 304

Exponents, 294

Exponential series, 96

Extremal sequence, 374

Faber curves, 546

Fluctuation, 634, 635

Fourier s coefficient, 416

constants, 416

series, 416

Function, associated non-negative func

tions, 41

Bessel s, 238

Beta, 267

Cauchy s, 214

class of, 468, 469

conjugate, 233

contiguous, 231

continuous, 452

infra, 487

semi, 487

supra, 487

discontinuous, 452

of 1 kind, 416

of 2 kind, 455
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Function, Gamma, 267

Gauss HO), 238

hyperbolic, 228

hypergeometric, 228

lineo-oscillating, 528

maximal, 488

measurable, 338

minimal, 488

monotone, 137

null, 385

oscillatory, 488

pointwise discontinuous, 457

residual, 561

Riemann s, 459

totally discontinuous, 457

truncated, 27

uniformly limited, 160, 567

Volterra s, 501, 583

Weierstrass , 498, 523, 581, 588

Gamma function, 267

Gauss function !!(, 238

test, 109

Geometric series, 81, 139

Harnack, divergence of series, 440

sets, 354

Hermite, 300

Httbert s curves, 590

Hobson, 389, 412, 555

Hyperbolic functions, 228

Hypercomplete sets, 472

Hypergeometric functions, 229

series, 112

Images, simple, multiple, 606

unifold, manifold, 606

continuous, 606, 608

Integrals, absolutely convergent, 31

L- or Lebesgue, proper, 372

improper, 403, 405

improper, author s, 32

classical, 26

de la Vallee-Poussin, 27

inner, 20

Integrals, R- or Riemannian, 372

Integrand set, 385

Intervals, of convergence, 90

adjoint set of, 337

set of, belonging to, 337

Inversion, geometric, 287

of a series, 204

Iterable sets, 14

Iterated products, 251

series, 149

Jordan curves, 595, 610

variation, 430

theorem, 436

Kdnig, 527

Rummer s test, 106, 124

Lattice points, 137

system, 137

Law of Mean, generalized, 505

Layers, 555

deleted, 563

Lebesque or L- integrals, 372

theorems, 413, 424, 426, 452, 475,

520, 619

Leibnitz s formula, 226

Length of curve, 579 ,

Lindermann, 300, 599

Lineo-oscillating functions, 528

Link, 612

Liouville numbers, 301

Lipschitz, 438

Logarithmic series, 97

Liiroth, 448

Maclaurin s series, 206

Maximal, minimal functions, 488

Maximum, minimum, 521

at a point, 485

Measure, 348

lower, 348

upper, 343

Mertens, 130

Metric sets, 1
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Monotone convergence, 176

functions, 137

Moore-Osgood theorem, 170

Motion, 579

Multiplication of series, 129

cardinals, 293

ordinals, 314

infinite products, 253

Normal form of infinite product, 245

Null functions, 385

sets, 348

Numbers, Bernouillian, 265

cardinal, 278

class of ordinal numbers, 318

limitary, 314.

Liouville, 301

ordinal, 310

rank of limitary numbers, 331

Ordered sets, 302

Order of derivative of a set, 331

Oscillation at a point, 454

Oscillatory function, 488

Osyood curves, 600

-Moore theorem, 170

theorems, etc., 178, 555, 622

Pantactic, 325

Path, 612

Peaks, 179

infinite, 566

Polyant, 153

Point sets, adherence, 340

adjoint set of intervals, 337

apantactic, 325

associated inner set, 365

outer set, 365

Baire sets, 326

category 1 and 2, 326

coherence, 340

conjugate, 51

connected, 605

convex, 605

detached, 604

Point sets, divisor, 23

Ilarnack sets, 354

hypercomplete, 472

images, 605, 606

integrand sets, 385

iterable, 14

measurable, 343, 348

metric, 1

negative component, 37

null, 318

-^ pantactic, 325

positive component, 37

potency or power, 278

projection, 10

quasidivisor, 390

reducible, 335

reticulation, 621

semidivisor, 390

separated intervals, 337

sum, 22

transfinite derivatives, 330

union, 27

well-ordered, 304

Polntwise discontinuity, 457

Pompeiu, curves, 542

Potency or power of a set, 278

Power series, 89, 144, 187, 191

Precinct, 612

Pringsheim, theory of convergence, 113

theorems, etc., 141, 215, 216, 217,

220, 273

Projection, 10

Products, absolute convergence, 247

adjoint, 247

associate simple, 247

conjugate, 249

co-product, 242

iterated, 251

normal form, 245

Quasidivisor, 390

Raabe s test, 107

Rank of limitary numbers, 331
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Rate of convergence or divergence, 102

Ratio test, 96

Reducible sets, 335

Remainder series, 77

of Taylor s series, 209, 210

Rectifiable curves, 583

Regular points, 428

Residual function, 561

Reticulation, 621

Richardson, 32

Riemann s function, 459

theorem, 444

R- or Riemann integrals, 372

Rotation, 286

Scheefer, theorem, 516

Schonfliess, theorems, 598, 621

Schicarz, theorem, etc., 448, 626

Section of an aggregate, 307

Segment, constant, or of invariability,

521

Semidii-isor, 390

Separated divisions, 366, 371

functions, 403

sets, 366

of intervals, 337

Sequence, extremal, 374

m-tuple, 137

Series, Abel s, 87

absolute convergent, 79

adjoint, 77, 139

alternate, 83

associate logarithmic, 243

normal, 245

simple, 144

multiple, 144

Bessels, 238

binomial, 110

cell of convergence, 144

conjugate, 147

deleted, 139

Dini s, 86

divergence of, 440

essentially positive or negative, 78

exponential, 96

Series, Fourier s, 416

geometric, 81, 139

harmonic, 82

general of exponent /A,
82

hypergeometric, 112

interval of convergence, 90

inverse, 204

iterated, 149

logarithmic, 97

Maclaurin s, 206

power, 89, 114, 187

rate of convergence or divergence,

102

remainder, 77

simple convergence, 80

Taylor s, 206

tests of convergence, see Tests

telescopic, 85

trigonometric, 88

two-way, 133

Similar sets, 303

Similitude, 287

Simple convergence of series, 80

Singular points, 26

Space-filling curves, 588

Steady convergence, 176

Submeasurable, 405

Sum of sets, 22

Surface, area, 623

irregular, 632

regular, 629

Taylor s series, 206

Telescopic series, 85

Tests of convergence, Bertram, 104

Bonnet, 121

Cahen, 108

Cauchy, 98, 99

d Alembert, 96

Gauss, 109

Rummer, 106, 124

Pringsheim, 123

Raabe, 107

radical, 98

ratio, 96
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Tests of convergence, tests of 1 and 2 Uniformly limited function, 160, 567

kind, 120 Union of sets, 22

Weierstrass, 120

Theta functions, 135, 184, 256 Vallee-Poussin (de la), 27, 594

Total discontinuity, 457 Van Vleck sets, 361

Transjinite cardinals, 278 Variation, limited or finite, 429, 530

derivatives, 330 positive and negative, 430

Translation, 286 Volterra curves, 501, 587

Trigonometric series, 88

Truncated function, 27 WaWs tonnolo, 26

Two-way series, 133 Weierstrats function, 498, 523, 588

test, 120

Undetermined coefficients, 197 Well-ordered sets, 304

Unifold image, 606 Wilson, W. A., vii, 395, 401

Uniform convergence, 156 youn^ w H theoremSj 360&amp;gt;
363

at a point, 157

correspondence, 276 Zeros of power series, 191
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Front 31, 1. Fa ,
614 Xr K2 , 318, 323

2o Z,, Zg-,318
gj()

-
2jw? 330

; 9i&amp;lt;a)

-
s^a ?

331

fl, 1 1 = Meas 2t, 343
;

= Meas 5t, 348

U
&amp;gt;{ I 22 S = Meas a, 348

,,22 r r r
Ad,J,81 / J, J,

372, 403, 405

/A, M 31
Sdv, Qdv, 390

2laij3 ,
32.

3(/, af p,
34

j/^ 429; Var/= F/, 429

31^,
s#_a ,

34 Q SC j-
_ oscillation in a given set.

A
,
A n,

Ad
j
A

,
77. A

, p, 78 QSC y; 454

f&amp;gt;

_ 139 Disc/, 454

51 ~ 53, 276
; 31 a* 53, 303 (S , @t0 473

Card 51, 278 J(x) y^) 433
e = K 280; c.287 / (^./ (x), 493
j/i^, jyu

Ord 31, 311 .ff(^), 494

w, 311
; , 318 A(a, ft), 494
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The following symbols are defined in Volume I and are repeated here for

the convenience of the reader.

Dist(a, x) is the distance between

a and x

Z^(a), called the domain of the point
a of norm 8 is the set of points a:,

such that Dist (a, x) &amp;lt; 8

Fg(rt), called the vicinity of the point

a of norm 8, refers to some set 31,

and is the set of points in D^(a)
which lie in 31

Z&amp;gt;6*(tt), V$*(a) are the same as the

above sets, omitting a. They are

called deleted domains, deleted vi

cinities

an = a means an converges to a

f(x) = a, means /(z) converges to a
A line of symbols as :

c
&amp;lt; 0, wz,

|

a - an |
&amp;lt; e, n

&amp;gt;
m

is of constant occurrence, and is to

be read : for each e &amp;gt; 0, there exists

an index m, such that
|

a an \ &amp;lt; e,

for every n
&amp;gt;
m

Similarly a line of symbols as :

00, S&amp;gt;0, !/(*)
-

a|&amp;lt;,
x in F*()

is to be read : for each e &amp;gt; 0, there

exists a 8
&amp;gt; 0, such that

I /GO -|&amp;lt;,

for every x in P
r
5*(a)
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