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PREFACE TO THE SECOND EDITION.

I fear I cannot defend the title of this volume

as very accurately describing its contents. The title

" Lessons Introductory" applied well enough to the

former edition, which grew out of Lectures given

some years ago to my Class, and which was not

intended to do more than to supply students with

the preliminary information necessary to enable them

to read with advantage the original memoirs whence

my materials were derived. That edition has, how-

ever, been for a long time out of print, and in re-

printing it now I found so many additions necessary

to bring it up to the present state of science, that

the book has become doubled in size, and might

fairly assume the less modest title of a " Treatise"

on the subjects with which it deals. Neither does

the name " Modern Higher Algebra" very precisely

define the nature of these subjects. The Theory of

Elimination and that of Determinants cannot be

said to be very modern
;
and I do not meddle with

some parts of Higher Algebra, for which much has

been done in modern times; as, for instance, the
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Theory of Numbers, or the General Theory of- the

Resolution of Equations. But it is no great abuse

of language to give, in a special sense, the name

"Modern Higher Algebra" to that which forms the

principal subject of this volume—the Theory of

Linear Transformations. Since Mr. Cayley's dis-

covery of Invariants, quite a new department of

Algebra has been created; and there is no part of

Mathematics in which an able mathematician, who

had turned his attention to other subjects some

twenty years ago, would find more difficulty in

reading a memoir of the present day, and would

more feel the want of an elementary guide to inform

him of the meaning of the terms employed, and to

establish the truth of the theorems assumed to be

known.

With respect to the use of new words I have

tried to steer a middle course. In this part of

Algebra combinations of ideas require to be fre-

quently spoken of which were not of important use

in the older Algebra. This has made it necessary

to employ some new words, in order to avoid an

intolerable amount of circumlocution. But feeling

that every strange term makes the science more

repulsive to a beginner, I have generally preferred

the use of a periphrasis to the introduction of a new

word which I was not likely often to have occasion

to employ. Students who may be disappointed by
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not finding in this volume the explanation of some

words which occur in modern algebraical memoirs,

will be likely to find the desired information in the

Glossary added to Mr. Sylvester's paper (Philosophical

Transactions
, 1853, p. 543).

The first four or five Lessons in this volume were

printed a year or two ago, it having been at that

time my intention to publish separately the Lessons

on Determinants as a manual for the use of Students.

At the time when these Lessons were written I had

not met Baltzer's Treatise on Determinants
,

a work

remarkable for the rigorous and scientific manner in

which its principles are evolved. But I most re-

gretted not to have met with it earlier, on account

of his careful indication of the original authorities

for the several theorems. Although very sensible of

the value of these historical notices, I have, in the

text of these Lessons, too often omitted to assign

the theorems to their original authors, because my
knowledge not having been obtained by any recent

course of study, I did not find it easy to name the

sources whence I had derived it, nor had I mathe-

matical learning enough to be able to tell whether

these sources were the originals. I have now tried

to supply the references omitted in the text by

adding a few historical notes
; following Baltzer's

guidance as far as it would serve me. Where I

have had only my own reading to trust to, it is
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only too likely that I have in several eases failed

to trace theorems back to their first discoverers,

and I must ask the indulgence of any living authors

to whom I have in this way unwittingly done

injustice.

I have to thank my friends Dr. Hart, Mr. Traill,

and Mr. Burnside, for help given me at various times

in the revision of the proofs of this work, though,

in justice to these gentlemen, I must add that there

is a considerable part of it which was printed under

circumstances where I could not have the benefit

of their assistance, and for the errors in which they

are not responsible. I have already intimated that

my obligations to Messrs. Cayley and Sylvester are

not merely those which every one must owe who

writes on a branch of Algebra which they have done

so much to create. I was in constant correspondence

with them at the time when some of their most

important discoveries were made, and I owe my
knowledge of these discoveries as much to their

letters as to any printed papers. I must also ex-

press my thanks to M. Hermite for his obliging

readiness to remove by letter difficulties which oc-

curred to me in my study of his published memoirs.

Trinity College, Dublin,

October \Qth, 1866.



PREFACE TO THE THIRD EDITION.

In the prefaces to the last editions of my Higher

Plane Curves and my Geometry of Three Dimensions

I have explained the difficulties which I found in

bringing out new editions of these works now that

other engagements have rendered me unable to

keep pace with the progress of mathematical dis-

covery, and how, through the generous help afforded

me by Professor Cayley, these difficulties were re-

moved. I have now to acknowledge the continuance

of the same assistance in the preparation of the

present volume. I have been thus enabled to make

a few important additions or corrections, although

I have not been able to carry out the idea of com-

pletely re-casting the work, which I at one time

entertained. I have not thought it worth while to

reprint the long expression E for the skew invariant

of a sextic given in the former edition
;

but I wish

to note here two errata in the formula as there

given, viz. p. 259, col. 3, line 6, the coefficient

-96 should be + 24; and p. 265, col. 3, line 13,

the coefficient -360 should be +20300.
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I have to thank my friends Mr. Cathcart for

assistance given me in reading the proof sheets, and

Dr. Fiedler for a list of errata which he had noted.

Trinity College, Dublin,

September 8th, 1876.
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Errata.

PAOK

35, line 2, for a12a2i ,
read a12aM .

52, line 12, for — 3p 1 (p^
3

,
read — 3p x (pf.

„ 13, Jor 2 (p x

2
,
read 2 (pf.

56, line 6, /or
— ms

l
sm~2i read — mSjSm-i*

60, line 9, /or page 48, read page 57.

62, line 21, /or "the eliminant," read "the vanishing of the eliminant."

85, line 8 from bottom, /or a„ and an-v read b„, &»-,,.

89, line 8 at end, for <£", read <£"'.

102, line 22,/or Art. 105, read Art. 109.

105, line 3 from bottom, /or b'd/', read b'c'd'.

Ill, line 1, a/ter &c., insert "where there as many functions as variables."

113, line 9, at end add = 0.

116, line 15, for "article," read "example."

126, last line, /or
" see Appendix," read "see p. 277."

132, line 9 from bottom, for ac, read ae.

150, line 18, for \, reaol^.

153, In determinant, /or b
lr

c2 ,
d3 ,

e4,/5 ,
substitute av a2 ,

a3 ,
a4 . <r5.

167, line I, /or ac, read ac'.

178, line 8 from bottom,/or (0, 2), read (0, 1).

179, line 2 from bottom,/or 4ab3
,
read 4=db3 .

190, line 3,/or Art. 195, read Art. 196.

„ line 2 from bottom, /or 2c3
,
read 2d3

.

200, line 9, /or - 2c2), read - 3c2).

209, line 2, /or a/
3b3e, read a/^&c.

210, line 16,/or
- 112 (atbWcf), read- 112 (a

2bc*ei/)-

„ line 5 from bottom, /or 222 (ac
i
de), read 222 (ac^e).

216, line 8 from bottom, /or — bcd2
e, read — bcde2.

„ line 7 from bottom, /or 4:b
2c3e2

,
read 4b2c2e2.

221, note, line 3 from bottom, for "is of the recurring form," read "is capable of

being linearly transformed to the recurring form."

224, line 10, remove semicolon at end.

224, line 6 from bottom, the word " not" has been omitted.

231, line^ 17, /or Art. 137, read Art. 141.

„ line 26,/or Art. 233, read Art. 223.

233, line 4 from bottom, /or — 3cde, read — 3cd2
e.

237, line 15 from bottom, /or Art. 235, read Art. 234.

245, line 9,/or — (a, read + (a.

255, line 7, /or us', road uv'.

272, Ex. 5, line 3 at end,/or (be), read (be)
2

.

274, line 1, /or.(be)?read (be).

^ ,. Z ^ d T d2

„ Ex. line 6, /or— ,read^.
277, lines 6, 8, 13, 24, omit comma before &c.

278, line 13, a/ter
" the order," insert m.

280, line 6,/or (3iUjc + fikUi, read pifxk + /3t/*i.

283, line 12, /or (acb), read aab).

286, line 5 from bottom,/or an_2, read a"-2.
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LESSONS ON HIGHER ALGEBRA.

LESSON I.

DETERMINANTS.—PRELIMINARY ILLUSTRATIONS.

1. If we are given ri homogeneous equations of the first

degree between n variables, we can eliminate the variables, and

obtain a result involving the coefficients only, which is called the

determinant of .those, equations. We shall, in what follows,

give rules for the formation of these determinants, and shall

state some. of their principal properties; but,we think that the

general theory will be better understood if we first give illus-

trations of its application to the simplest examples. .

Let us commence, then, with two equations between two

variables

a
1
x+b

1y = Q
J

a
2
x + \y = Q.

The variables are eliminated by adding the first equation multi-

plied by b
2

to the second multiplied by
—

&„ when we get
aA " aA =

fy the left-hand member of which is the determinant

required. The ordinary notation for this determinant is

«,,\ !

We shall, however, ©ften, for brevity, write (atb^ to express
this determinant, leaving the reader to supply the term with

the negative sign; and in this notation it is obvious that

(
aA) = i~i

a
2^i)'

The coefficients a„ b^ &c, which enter into

the expression of a determinant, are called the constituents of

that determinant, and the products afi^ &c, are called the

elements of the determinant.
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2. It can be verified at once that we should have obtained

the same result if we had eliminated the variables between

the equations
a

x
x + a

2y — 0, b
x
x + b,zy — 0.

In other words

a
2l K

or the value of the determinant is not altered if we write the

horizontal rows vertically, and vice versa.

3. If we are given two homogeneous equations between

three variables,

a
x
x + a

2y + a
z
z = 0, b

x
x + 6

2# + b
3
z -

;

these equations are sufficient to determine the mutual ratios of

cr, y, ef. Thus, by eliminating 3/
and ce alternately, we can

express x and
3/

in terms of s, when we find

i
aA) x = («A) z

-> («A) y = («A) «j

In other words, x
) y, z are proportional respectively to [ajb^

(a86,), (a^2). Substituting these values in the original equations,

we obtain the identical relations

ft («A) + % (
aA) + «

8 (°A) = °> &. («A) + K («&) + ^ (aA) = °
;

relations which are verified at once by writing them at full

length, as for instance

a
i (flA

~ aA) + a
2 (
aA ~ aA) + a

$ i
aA ~ °A) = °-

The notation
a

1?
a

2 ,
a

%

(wHere the number of columns is greater than the number of

rows) is used to express the three determinants which can be

obtained by suppressing in turn each one of the columns, vh.

the three determinants of which we have been speaking, («„&,),

(«A)? (
aA)«

4. Let us now proceed to a system of three equations

a
x

x + b
xy + c

x
z = 0, ajc + b

2y + c
%
z = 0, ap + b

?y + c
n
z = 0.

Then, if we multiply the first by .(a3
ft
3),

the second by {aj>^ the

third by («/>J, and add, the coefficients of x and y will vanish
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in virtue of the identical relations of Art. 3, and the deter-

minant required is

c, («A) + c«Wi) + c8(aA);

or, writing at full length,

&
xafiz

- c^\ + tpj>\
- c

2aj)3
+ c

9
a

x
b
9
- c^.

It may also be written in either of the forms,

«, Ac
3)
+ % ACJ + ** ft&)

-

) K (^) + K i<$) * KM-
This determinant is expressed by the notation

though we shall often use for it the abbreviation (aAc
s)'

It is useful to observe that

KVO = («Aa)> but («ACJ = -
(«A<0-

For, by analogy of notation,

(«Ac
i)
= a

2 (53cJ + a
s (b^) + «

x (52c3), which is the same as (pA<0j

while

(aAc
s)
= a

r (b3
c
2) + a

3 (^c,) + a
2 (5 t

c
3),

which is the same as - [aj)^).

5. We should have obtained the same result of elimination

if we had eliminated between the three equations

a
x
x + a

tiy + a
3
z = 0, b

x

x -f b$ + b
3
z = 0, c

x
x + c

2 ?/ -f c
3
s = 0.

For
if, proceeding on the same system as before, we multiply the

first equation by (§2e3), the second by (c2
a
3),

and the third by

. (
aA)> an(^ aa-^ *nen tno coefficients of y and a vanisli, and the

determinant is obtained in the form

«t (52cs) + &
i (

CA) + c
i («A)>

which, expanded, is found to be identical with (a x
b
2
c
3).

Hence

°u
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6. Using the notation

«u
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we have only to multiply the first by (ajb3
c
4),

the second by
-

(flg^cj, the third by (aj^cj, the fourth by
-

(afccj, and add,

when the coefficients of
a;, y, z vanish identically, and the deter-

minant is found to be

d
x («A<0

- d
2 (

fl.W + d
s («Ac») - d

* Wa) ;

or, writing it at full length,

aA°A - ahCA + «ACA " aAC8^4 + °ACA ~
°8W4

+ aAcA - axhcA + «A2
CA - a

4^i
cA + «AC4^8

- ahcA
+ °8*4CA ~°AM + °4JM ~

«4&8
CA + aA^2 ~ «^4^8

+ flAC
8^l
~ aA°A + «4&8

CA - ahCA + °8JjM ~ ^A^!'

8. There is no difficulty in extending to any number of equa-

tions the process here employed; and the reader will observe

that the general expression for a determinant is 2,±a
l
b

l2

c
3
d

i &c,
where each product must include all the varieties of the n letters

and of the n suffixes, without repetition or omission, and the

determinant contains all the 1.2.3...W possible such products

which can be formed. With regard to the sign to be affixed

to each element of the determinant, the following is the rule :

We give the sign + to the term afi2c3d± &c, obtained by read-

ing the determinant from the left-hand top to the right-hand

bottom corner
;
and then "

the sign + or - is affixed to each

other product according as it is derived from this leading term

by an even or odd number of permutations of suffixes." Thus,
in the last example, the second term a

1
b
3
c
2
d

i
differs from the

first only by a permutation of the suffixes of b and c
;

it there-

fore has an opposite sign. The third term, ajb^d^ differs from

the second by a permutation of the suffixes of a and c
;

it

therefore has an opposite sign to the second, but it has the

same sign with the first term, since it can only be derived from

it by twice permuting suffixes.

Ex. In the determinant {cijb^d^), what sign is to be affixed to the element

afi&dft ?

From the first term, permuting the suffixes of a and c, we get ff352c 1
(Z4e5 ,

the first

constituent of which is the same as that in the given term; next permuting the

suffixes of b and e, we get «3Jac1
cZ4e2 ,

which has two constituents the same as the

given term
; next, permuting c and e, we get a^b^d^ ; lastly, permuting d and e, we

get the given term a^b^d^. Since, then, there has been an even number (four) of

permutations, the sign of the term is +. In fact, the signs of the series of terms are
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The rule of signs may otherwise be presented thus : we

take for each suffix so often as it comes after a superior suffix

the sign
—

,
and compound these into a single sign -f or —

.

Thus comparing the elements afi^d^e^ &}>£$£& it will be

seen that the suffix 1 which came first in the former element,

is in the latter preceded by three constituents
;
that the suffix 2

is preceded by two which came after it before, and the suffix 4

by one. The total number of displacements is therefore sixr

and this being an even number, the sign of the term is positive.

Thus the rule
is,

that the sign of the term is positive when

the total number of displacements, as compared with the order

in the leading term, is even, and vice versa. The same results

will be obtained if writing the suffixes always in the order

1, 2, 3, &c, we permute the letters, giving to each arrange-

ment of the letters its proper sign + or —
according to the

rule of signs. Thus the determinant of Art. 7 might be written

ahGA ~ a
x
cAd

4 + c
x
aAd

4
~ &c -

9. A cyclic interchange of suffixes alters the sign when the

number of terms in the product is even, but not so when the

number of terms is odd. Thus a
2
b

x) being got from a
t
b
2 by one

interchange of suffixes, has a different sign ;
but ap3

c
x
has the

same sign with a
t
&
2
c
8 ,

from which it is derived by a double

permutation. For, changing the suffixes of a and &, a
}

b
2
c
s

becomes aj) x
c
3 ,
and changing the suffixes of b and

c,
this again

becomes a}>3
c

x
. In like manner a

2
b
3
c
4
d

l
has an opposite sign

to afi2
c
3
d

4) being derived from it by a triple permutation, viz.

through the steps aj? t

c
s
d

4j ajb^d^ aj>%oAdx.

This rule enables us easily to write down the terms of a

determinant with their proper signs, viz. by taking the cyclic

permutations of each arrangement. Thus, for three rows the

arrangements of suffixes are evidently + 123, +231, +312, and
—

213,
—

132,
— 321. For four rows the arrangements are

+ 1234 - 2341 + 3412 - 4123
;

- 1243 + 2431 - 4312 + 3124
;

- 1324 + 3241 - 2413 + 4132
;
+ 1423 - 4231 + 2314 - 3142.

10. We are now in a position to replace our former de-

finition of a determinant by another, which we make the foun-
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dation of the subsequent theory. In fact, since a determinant

is only a function of its constituents a
t ,

5
1?

c
1? &c, and does not

contain the variables x
y y, z, &c, it is obviously preferable to

give a definition which does not introduce any mention of

equations between these quantities x, y, z.

*Let there be w2

quantities arrayed in a square of n columns

and n rows, then the sum with proper signs (as explained, Art. 9)

of all possible products of n constituents, one constituent being
taken from each horizontal and each vertical row, is called the

determinant of these quantities, and is said to be of the n
th

order.

Constituents are said to be conjugate to each other, when the

place which either occupies in the horizontal rows is the same as

that which the other occupies in the vertical rows. A deter-

minant is said to be symmetrical when the conjugate constituents

are equal to each other
;
for example,

«, ^
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where, in the sum, the suffixes are interchanged in all possible

ways. The preceding notation is occasionally modified by the

omission of the letter a, and the determinant is written

(1,1), 0,2), (1,3)



LESSON II.

REDUCTION AND CALCULATION OF DETERMINANTS.

12. We have in the last Lesson given the rule for the forma-

tion of determinants, and exemplified some of their properties in

particular cases. We shall in this Lesson prove these pro-

perties in general, together with some others, which are most

frequently used in the reduction and calculation of determinants.

The value of a determinant is not altered if the vertical rows

be written horizontally, and vice versa (see Arts. 2, 5).

This follows immediately from the law of formation (Art. 10),

which is perfectly symmetrical with respect to the columns and

rows. One of the principal advantages of the notation with

double suffixes is that it exhibits most distinctly the symmetry
which exists between the horizontal and vertical lines.

13. If any two rows [or two columns) be interchanged, the sign

of the determinant is altered.

For the effect of the change is evidently a single permutation
of two of the letters (or of two of the suffixes), which by the

law of formation causes a change of sign.*

14. If two rows [or if two columns) be identical, the de-

terminant vanishes.

For these two rows being interchanged, we ought (Art. 13)
to have a change of sign, but the interchange of two identical

lines can produce no change in the value of the determinant.

* It may be remarked that a determinant is ti function which is determined

(except for a common factor) by the properties that it is linear in respect of the

;
constituents of each row and of each column, and that it merely changes sign if two
rows or columns be interchanged. Thus for two rows, the most general lineo-linear

function of the rows and columns is •

&! (Aa , + Ba2) + b2 {Ca x + Da2) ;

and the condition that it is to change sign when we interchange a, and bu a2 and b2 ,

gives A = D = 0, B + C'= 0. The function is therefore C K&2
-

a-A), and if we

agree that the coefficient of a
x
&2 is to be unity, the function is afi2

— a.2b i
as before.

C
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Its value, then, does not alter when its sign is changed ;
that is

to say, it is = 0.

This theorem also follows immediately from the definition of

a determinant, as the result of elimination between n linear

equations. For that elimination is performed by solving for the

variables from n — 1 of the equations, and substituting the values

so found in the w
th

. But if this ??
tu

equation be the same as one

of the others, it must vanish identically when these values are

substituted in it.

I

15. If every constituent in any row [or in any column) be

multiplied by the same factor ^
then the determinant is multiplied

by that factor.

This follows at once from the fact that every term in the ex-

pansion of the determinant contains as a factor, one, and but one,

constituent belonging to the same row or to the same column.

Thus, for example, since every element of the determinant

«.)
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column may be called first minors
;
those formed by erasing two

rows and two columns, second minors, and so on.

We have, in the last article, observed that if the constituents

of one column of a determinant be a
x1
a
g1

a
3 , &c, the deter-

minant may be written in the form a
x
A

x
+ a

2
A

2 + a
3
A

3 + &c.

And it is evident that A
x
is the minor obtained by erasing the

line and column which contain cl. &c. For every element of

the determinant which contains a
x
can contain no other con-

stituent from the column a or the line (1) ;
and a

x
must be

multiplied by all possible combinations of products of w-1
constituents, taken one from each of the other rows and

columns. But the aggregate of these form the minor A
x
.

Compare Art. 7. In like manner the determinant may be

written a
x
A

x
+ l\Bx

+ c
x
C

x
+ &c, where B

x
is the minor formed

by erasing the row and column which contain b
x
.

17. If all the constituents but one vanish in any row or column

of a determinant of the n
m

order
,
its calculation is reduced to the

calculation of a determinant of the n — l
tn

order. For, evidently,

if o
2 ,

a
3 , &c, all vanish, the determinant a

x
A

x
+ a

2
A

2 + &c., re-

duces to the single term a
l
A

1 ;
and J, is a determinant having

one row and one column less than the given determinant.

18. If every constituent in any row [or in any column) be re-

solvable into the sum of two others^ the determinant is resolvable

into the sum of two oilers.

This follows from the principle used in Art. 16. Thus, if in

the Example there given, we write a
x
4- a, for a

x ;
b

x
+ /3X

for b
x ;

c
x
+ 7, for

c, ;
then the determinant becomes

[ax
+ a

t )
A

x
-f [b x

+ £) Bx
+ [cx

+ yx )
C

x

=
{ax
A

x
+ b

x
B

x
+ c

x
C

x ]
+ [a x

A
x
4 (3X

B
X
+ y x

C
x }.

Thus we have

a
x
+ a

x ,
a

2 ,
a

3
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19. If again, in the preceding, the terms in the second

column were also each the sum of others
(if,

for instance, we
were to write for a

2 ,
a

2 + a
2 ;

for 6
2 ,

b
%
+ /32 ;

for c
2 ,

c
2
+ 7J, then

each of the determinants on the right-hand side of the last

equation could be resolved into the sum of others
;
and we see,

without difficulty, that

fa + a„ \ + A, cj
= fa58

c
8)
+ fa/32

c
3) 4- fa62

c
3) + fag,c8).

And if each of the constituents in the first column could be re-

solved into the sum of m others, and each of those of the second

into the sum of n others, then the determinant could be resolved

into the sum of mn others. For we should first, as in the last

Article, resolve the determinant into the sum of m others, by-

taking, instead of the first column, each one of the m partial

columns; and then, in like manner, resolve each of these into n

others, by dealing similarly with the second column. And so, in

general, if each of the constituents of a determinant consist of

the sum of a number of terms, so that each of the columns can

be resolved into the sum of a number of partial columns (the

first into m partial columns, the second into «, the third into

p, &c), then the determinant is equal to the sum of all the deter-,

minants which can be formed by taking, instead of each column,
one of its partial columns

;
and the number of such determinants

will, be the product of the numbers m, ft, p, &.c.

20-. If the constituents of one row or column are respectively

equal to- the sum of the corresponding constituents of other rows

or columns, multiplied respectively by constant factors, the deter-

minant vanishes. For in this case the determinant can be re-

solved into the sum. of others which separately vanish. Thus

ka
2 + lab a

2r
a

3

%

But the last two determinants vanish (Cor., Art. 15).

21'. A determinant is not altered if toe add to each constituent

of any row or column the corresponding constituents of any of the

ka
2 ,
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other rows or columns multiplied respectively by constant factors.
Thus

a
x
+ Jca

2
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«"—»i'**

The first transformation is made by subtracting double the third row from the second,

and adding the sum of the second and third to the fourth. In the next step it will

be observed, that since the sign of the term a
1
52c4rf3 is opposite to that of a^c^,

when c4 is the only constituent of the last column which does not vanish, the deter-

minant becomes — c4 (a t
b2d3). In the next step, we add the second and third columns,

we take out the factor 5 common to the second column, and the sign
— common to

the second row. We then subtract the first row from the second, and eight times

the first row from the last, and the remainder is obvious.

Ex. 3. 7, -2, 0, 5

-
2, 6,

-
2, 2

0,
-

2, 5, 3

5, 2, 3, 4

Ex. 4. 25,
-

15, 23,
- 5

15,
-

10, 19, 5

23, 19,
-

15, 9

0« Oj «/•

Ex. 5. Given n quantities a, (3, y, &c, to find the value of

1, 1, 1, 1," &c.

a, p, y, S, &c.

a2
, (P, y

2
, 3*, &c.

— 972 (Solid Geometry, p. 177).

194400 (Solid Geometry, p. 184).

an~\ p*-\ y
n
~\ o"- 1

,
&c.

It is evident (Art. 14) that this determinant would vanish if a = (3, therefore a — p
is a factor in it. In like manner so is every other difference between any two' of the

quantities a, /3, &c. The determinant is therefore

= ± (a- ft (a- y) (a-S) ((3
-

y) ((3
-

Z) (y
-

8) &c.

For the determinant is either equal to this product or to the product multiplied by
some factor. But there can be no factor containing a, p, &c, since the product con-

tains an~ l

, /8*
-1

,
&c.

;
and the determinant can contain no higher power of a, p, &c. ;

and by comparing the coefficients of a11- 1 it will be seen that the determinant con-

tains no numerical factor. This example may also be treated in the same way as

the next example.

Ex.6. To calculate 1, 1, 1, 1

, P, V, s

'; P
2

, y
2

,
32

', p\ y\ 6*

Subtract the last column from each of the first three and the determinant becomes

divisible by (a
-

o) (/3
-

<5) (y
-

d), the quotient being

1. 1, 1

a + 6, p + S, y + S

z
3 + a2o + ao°- + c 3

, /3
3 + P

2S + /35
2 + <5

3
, y3 + y2d + yo

2 + a3

Subtract again the last column from the two preceding and the determinant is seen

to be divisible by (a
—

y) (p
—

y), and its value is thus at once found to be

(a -6)(P- S) (y
-

8) (a
-

y) (p
-

y) (a
-

p) (a + /3 + y + <$).*

* On the general- theory of which this and the preceding example form part, rag

note at end on rational functional determinants.
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Ex. 7. In the solution of a geometrical problem it became necessary to determine

X from the equation
aA

,
b6

,
c3

(a + xy (b + xy, (c + xy

(2a + xy, (2b + xy, {2c + X)
3 = o.

Subtract the first row from the second, and divide by X
;
subtract 8 times the first

row from the last and divide by X; then subtract the second row from the third

and divide by 3
; and, lastly, subtract this last row from the second and divide by X,

when the determinant becomes

a3
,

&
t

c3

2a + X, 2b + X, 2c + X

3a2 + aX, Sb2 + bX, 3c2 + cX =0.

Again, subtract the first column from the second and third, and divide by b — a,

c — a; then subtract the second from the third, and divide by c — b
;
and then from

the first column subtract a times the second and add ab times the last; and from

the second column take (a + b) times the last, and we have finally

which reduced

Ex. 8.

Ex.9.

abc,
—

(ab + be + ca), a + b + c

X,
v

2,

0, X, 3 = 0,

(a + b + c) X2 + 3 (ab + be + ca) X + 6abc = 0.

(b + cY,

b\

a', a-

(c + ay, b*

c2
, (a + by = 2abc (a + b + c)

3

1, 1, 1

sin a, sin
/3,

sin y
cos a, cos /3, cosy 4 sin J-

(a
—

(3) sin£ (/3
-

y) sin£ (a
—

y).

Ex. 10.

Ex. 11.

COs£(a-/3), cosJ(/3-y), cosi(y-a)

cos,}(a+/3), cos£ (/3+y), cosi(y+a)

sin|(a+/3), sin£(/3+y), sini(y+a) = 2 sin£(a-/8) sin£(£-y) sin^(a-y).

sin a, sin /3, sin y
cos a, cos/3, cosy

sin a cos a, sin/3 cos/3, sin y cosy

= 2 sin J
(a
-

p) sin£ (/3
-

y) sin^ (a
-

y) {sin(a + /3) + sin (/3 + y) + sin (y + a)}.

Ex. 12. Many of these examples may be applied to the calculation of areas of

triangles, it being remembered that the double area of the triangle formed by three

points is

1, 1, 1

x\ x", x'"

y', y", v'"

and by three fines ax+ by + c, &c, is a, b, c

a', b
r

,
c'

a", b", c" divided by (ab'—a'b)(ac'—ea')(bc'—cb')

(see Conic Sections, p. 33). For example, the area of the triangle formed by the
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centres of curvature of three points on a parabola is (the coordinates of a centre of

curvature being ±p + 3a;',

, i; i
I

jjS

4/3

'"'
3

,

= -
z (y'-y")(y"-y"')Lv' y') Wy" + y"y'" + y'"y')-

In like manner may be investigated the area of the triangle formed by three normals,

or any other three lines connected with the curve.

Ex. 13. 0, c, b

\ c, 0, a

I b, a,

Ex. 14. Prove

Ex. 15.

2abc

0, c, b, d

c, 0, a, e

b, a, 0, /
d, e, /,

0, 1, 1, 1
|

1, 0, #, y
2

j

1, z2
, 0, x2

j

1, y
2

,
x2

,
I

(x + y + z) (y + z - x) (z + a

a, X, \, X, &c.

r aH2+ b2e2+ c2/2- 2abde- 2bcef- 2adtf.

0, x, y, z

x, 0, z, y

y, z, 0, x

z, y, x,

y) (x + y- z).

\, b, X, X, <fec.

X, X, c, X, &c.

X, X, X, d, &c.

&c.

where all the constituents are equal except those in the principal diagonal, is

<f> (X)
- X—

j
where <p (X) is the continued product (a

—
X) (6

—
X), <fec.

Ex. 16. Let u be a homogeneous function of the ntu order in any number of

variables
;
and let uv u2 ,

u3, &c, denote its differential coefficients with regard to

the variables x, &c.
; and, in like manner, let uni um u13 denote the differ-

ential coefficients of uu &c. Then, by Euler's theorem of homogeneous functions,

we have

nu — u
x
xx + u2x2 + u3x3 + &c, (n

—
1) u

x

— x
1
un + x2u12 + x3ul3 + &c, &c.

We shall hereafter speak at length of the determinant (called the Hessian)

formed with the second differential coefficients, whose rows are un ,
u12,

u13 ,
&c.

;

u2l ,
u22 ,

u23 , &c, &c. At present our object is to shew how to reduce a class of

determinants of frequent occurrence, viz. those which are formed by bordering the

matrix of the Hessian, either with the first differential coefficients, or with other

quantities, as for example
«1U
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H\u a)
while we use to denote the determinants of four rows, formed

by bordering the matrix of the Hessian with a single row and column, either both

us or both a's, or one u and the other a. We also write a^ + a2x2 + a3.T3
= a.

If now we multiply the first column of. the above written determinant by xu the

second by x2,
the third by x3,

and subtract from n — 1 times the fourth column,
the first three terms vanish, the fourth becomes —

nu, and the fifth — a. Again,

multiply the fourth row by n — 1, and subtract in like manner the first, second, and

third rows multiplied by xu x2,
x3 respectively, and the first.three terms vanish, the

fourth remains unchanged, and the last becomes — a. Thus then (n — l)
2 times the

determinant originally written is proved to be equal to

U1V M12>
M

13>
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Determinants in which all the constituents vanish except those in the principal

diagonal and the two bordering minor diagonals, have been studied by Mr. Muir

under the name of continuants (Proceedings of the Royal Soc, Edinb., 1873—4). The

above determinant may be written in the abbreviated form (a, b, c, d, e) ;
and taking

out the constituents in the first row (as in Art. 16), the value of the determinant is

seen to be a (b, c, d, e) f (c, d, e). In this way we can easily form the series of

value of continuants of two, three rows, &c, viz.

ab + 1, abc + c + a, abed + cd + ad + ab + 1,

abode + abc + abe + ade + cde + a + c + e, &c.

The rule of formation is, take the product abode of all the elements, and omit from

it in eveiy possible way the pairs of consecutive elements. Thus, in the last case

the omitted pairs are de, cd, be, ab, (be, de), (ab, de), (ab, cd).

Determinants of the class here described occur in the theory of continued frac-

tions; for it is obvious that the successive approximations to the value of the

continued fraction a + -
, $c., are

b+ c +

/„v («, *) («, b, c) (a, b, c, d)
{a): ~T *

"(bVey
'

~!KcTd)
'
^

Ex. 18. Find the number of terms in a continuant of the nth order. From the

equation (a, b, c, d, e) = a (b, c, d, e) + (c, d, e), it is obvious that if (n) be the number

required, we have the relation (n) = (n
-

1) + (n
—

2) ;
and that therefore for the

orders 1, 2, 3, &c, we have the series of numbers 1, 2, 3, 5, 8, 13, &c.
;
and generally

if \
—

q
—

[ = A n + Bn 4(5),* the number required is A» + Bn .

LESSON III.

MULTIPLICATION OF DETERMINANTS.

22. We shall in this lesson shew that the product of two

determinants may be expressed as a determinant.

The product of two determinants is the determinant whose con-

stituents are the sums of the products of the constituents in any row

of one by the corresponding constituents in any row of the other.

For example, the product of the determinants (afi2c3) and

«,«, + &,£, + c
,7i> "A + ^A + c./y,, "a + ^A-Kt, •
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The proofs which we shall give for this particular case will

apply equally in general. Since the constituents of the deter-

minant just written are each the sum of three terms, the de-

terminant can (by Art. 19) be resolved into the sum of the 27

determinants, obtained by taking any one partial column of the

first, second, and third columns. We need not write down the

whole 27, but give two or three specimen terms :

a a„ a a
,
anaV*i> 2 J

«i«n <vy.j
hA

a^ <vy*j *>A
«

3«,> Wu hA
+ &C.

a
l9

a a
t
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Now if we write

ol
x
x + a

2y + a
3
z = X,

the three preceding equations may be written

a,X+ b
l
Y+c

lZ=0,

a
2X+b2 Y+c2Z=0,

aX + hY+coZ=0,

from which eliminating X, Y
1
Z

%
we see at once that {afi2

c
3)

must be a factor in the result. But also a system of values of

x, y 1
z can be found to satisfy the three given equations, provided

that a system can be found to satisfy simultaneously the equa-
tions X=0, r=0, Z=0. Hence (afys )

=
0, which is the

condition that the latter should be possible, is also a factor in the

result. And since we can see without difficulty that the degree

of the result in the coefficients is exactly, the same as that of the

product of these quantities, the result is (afi2
c
3) (a,/32Y3).

It appears from the present Article that the theorem con-

cerning the multiplication of determinants can be expressed in

the following form, in whieh we shall frequently employ it:

If a system of equations

a
l
X+b

l
Y+c

1Z=0, a
2X+b2 Y+ 0.^=0, a

3
X+ b

3 Y+ c
3
Z=0

be transformed by the substitutions

X= a,x 4aj + a
3s,

Y= (3 x
x + /32y + £3z,

Z= y x

x 4- %2y + ?3z,

then the determinant of the transformed system will be equal to

(afi2
c
3)

the determinant of the original system, multiplied by

(
aip2%) which we shall call the modulus of transformation.

24. The theorems of the last Articles may be extended as*

follows : We might have two sets of constituents, the number

of rows being different from the number of columns
;

for

example
K c

i

«.1 K c
2

a
2l ft* % \
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and from these we could form, in the same manner as In the last

Articles, the determinant

«,«2 + ^ift + Cl72 ,
a2«2 + ^ft + W«

whose value we purpose to investigate.

Now, first, let the number of columns be greater than the

number of rows, as in the example just written, so that each

constituent of the new determinant is the sum of a number of

terms greater than the number of rows
;
then proceeding as in

Art. 22, the value of the determinant is

«,«!) «.«!
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26. A useful particular case of Art. 22
is,

that the square of

a determinant is a symmetrical determinant (see Art. 10). Thus

the square of («Ac
s)

is

°1«.+ hfo + CAJ «.' + K + C
./>

«
8«8 + JA + C

2°3

«l«3+¥3 + C
l
C
3 5 «A+¥3 + C

2
C
3) «3

2

*"V + ^
Again, it appears by Art. 24 that the sum of the squares of the

determinants [afi^ + (bjCj* + (c^J'
2

is the determinant

a;
2 + z>

1

2
+ c/

2

,
a

1
«

2 + ^A+ ci°2

a
i
a
2 + hA + C

l
C
2l < +V + C

2

2

Ex. 1. If av b
lf C! ;

a2,
b2,

c2 be the direction-cosines of two lines in space, and 6

their inclination to each other, cos 6 = a
x
a2 + b^b2 + c

x
c2 ;

and the identity last proved

gives sin2 = (a^f + (b^)
2 + (c,^)

2
.

Ex. 2. In the theory of equations it is important to express the product of the

squares of the differences of the roots
;
now the product of the differences of n

quantities has been expressed as a determinant (Ex. 5, p. 14), and if we form the

square of this determinant we obtain

S l> S21 S3

S2> S35 *4

S„,

»— lj Sjj, Stni...Son-2

where sp denotes the sum of the p
tb

powers of the quantities a, (3, &c.

Ex. 3. In like manner it is proved by Art. 24 that the determinant

I

S°' Sl
I = 2 (a

-
/3)

2
,

S
, $!, S2

S
l>

S
2>

S3

S2> S3) S4

S(«-0)2
(/3-y)

2
(y -«)2

.

We thus form a series of determinants, the last of which is the product of the

squares of the differences of a, /3, &c.
;
all similar determinants beyond this vanish-

ing identically by Art. 25. This series of determinants is of great importance in the

theory of algebraic equations.

Ex. 4. Let the origin be taken at the centre of the circle circumscribing a triangle,

whose radius is R
;
and let M be the~area of the triangle, then

x', y', R x', y', -R
2MR= x", y", R and - 2MR = x", y", -R

x'", y"', R x'", y'",
- R

Multiply these determinants according to the rule, and the first term x"- + y"
1 - A>2
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vanishes
;

the second x'x" + y'y"
— R2 —

c is a side of the triangle. Hence then

whence R
abc

UI2R2

as is well known.

o,
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Substitute the coordinates of each, point in the general equation of a circle

x2 + y
2 - 2Ax - 2By + C = 0,

and eliminate A, B, C, when we get a determinant with four rows such as

x'2 + y'
2
, -2x', -2y', 1.

Multiply this by the determinant (which only differs by a numerical factor from the

preceding) whose four rows are such as 1, x', y', x"1 + y'
2

,
and the first term of the

product determinant vanishes, the second being (x'
—

x")
2 + (y'

—
y")

2
. If then the

square of the distance between two of the points be (12)
2

,
the product determinant is

0, (12)2, (13) 2, (14)2

(21)
2
, -0, (23)

2
, (24)

2

(31)
2

, (32)2, o, (34)2

(41)
2
, (42)2, (43)2, o = 0,

which is the relation required. As has been already seen, this determinant expanded

gives the Well-known relation (12) (34) ± (13) (24) ± (14) (23) = 0. The relation

connecting five points on a sphere is the corresponding determinant with five rows.

Ex. 8. To find a relation connecting the mutual distances of three points on a line,

four points on a plane, or five points in space. "We prefix a unit and cyphers to the

two determinants which we multiplied in the last example, thus

1,0, 0,

s
'2 + y

>2
}

_
2x',

-
2y', 1

cfec.

0, 0, 0, 1

1, x', y', x'2 + y'
2

We have now got five rows and only four columns, therefore the product formed, as

in Art. 25, will vanish identically. But this is the determinant

0, 1, 1, 1, 1

1, 0, (12)2, (13)2; (14)
2

1, (21)2, 0, (23)2, (24)2

1, (31)2, (32) 2, o, (34)2

1, (41)2, (42)2, (43)2> o = 0,

which is the relation required. If we erase the outside row and column, we have the

relation connecting three points on a line
;
and if we add another row, 1, (51)

2
, (52)

2
, &c,

we get the relation connecting the mutual distances of five points in space. We
might proceed to calculate these determinants by subtracting the second column from

each of these succeeding, and then the first row from those succeeding, when we get

2 (12)2, (
12)2 + (

13)2
_

(23) 2> (
12)2 + (

14)2
_

(24)2

(12)2 + (13)2
_

(
23)2, 2 (13)2, (

13)2 + (14)2
_

(34)2

(12)2 + (
14)2

_
(24)2, (13)2 + (

14)2
_

(34)2, 2 (14)2

Now the determinants might have been obtained directly in this reduced but un-

symmetrical form by taking the origin at the point (1), and forming, as in Art. 25,

with the constituents x'y', x"y", &6., the determinant which vanishes identically.

x'i + y'i^ x 'x" _|_ y'y" ,
x'x'" + y'y'"

x'x" + y'y", x"2 + y"
2

,
x"x'" + y"y"

x'x'" + y'y'", x"x'" + y"y'", x'"2 + y"'
2

which it will readily be seen is equivalent to that last written.

Ex. 9. To find the relation connecting the arcs which join four points on a sphere.

Take the origin at the centre of the sphere, and form with the direction-cosines of



MINOR AND RECIPROCAL DETERMINANTS. 25

the radii vectdres to each point, cos a', cos /3', cos y' ;
cos a", &c, a determinant which

vanishes identically, and it will be

1, cob ab, cos ac, cos ad

cos 5a, 1, cos be, cos bd

cos ca, cos cb, 1, cosed

cos da, cos db, cos dc, 1

If we substitute for each cosine, cos ab, 1
(aby
2r2

&c
,
and then suppose r the radius

,
calculate <£ (X) .<£ (- X). The deter-

of the sphere to be infinite, we derive from the determinant of this article, that of

the last article connecting four points on a plane.

a - X, h, g,

Ex. 10. If
<j> (X) = h, b- X, /,

ff> ft « - x
>

minant is one of like form with X2 instead of X, the first line being A — X2
, H, G, &c,

where
A-tfi + h* + 0*, B = b*+f*+h*, C=c* + g

2 +f2
,

F = gh+f (b + c), G = hf+ g{c + a), II =fg + h (a + b),

and the expanded determinant equated to cypher gives X
6 - XX4 + 31X2 — N— 0, where

L = «2 + 62 + c2 + 2 {J
2 + f + h2

),

M = {be -f2
)

2 + {ca
-

<?
2
)
2 + (ab

- A2
)

2 + 2 («/- ^A)
2 + 2(bg- Tiff + 2 (cA -fg)

2
,

and Ar
is the square of the original determinant with X in it =

; L, M, K are then

all essentially positive quantities. In like manner if
<f> (X) be formed similarly from

any symmetrical determinant, <£ (X) <p (— X) equated to nothing, gives an equation for

X2
,
whose signs are alternately positive and negative, which therefore by Des Cartes's

rule cannot have a negative root. The above constitutes Sylvester's proof that

the roots of the equation cf> (X) = are aH real. It is evident, from what has been

just said, that no root can be of the form (Hi,* and in order to see that no root

can be of the form a + fii, it is only necessary to write, a — a — a', b — a-V,
c - a = c' when the case is reduced to the preceding.

LESSON IV

MINOR AND RECIPROCAL DETERMINANTS.

27. We have seen (Art. 16) that the minors of any deter-

minant are connected with the corresponding constituents by
the relation

a
t
A

t
+ a

2
A

2 + o^A z + &c. = A,

* We write as usual rfor „/(— 1).
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and these minors are connected with the other constituents by
the identical relations

^A +M 2 +M3 + &c.=:0,

c
t
A

t
+ c A

2 + c
3
A

3 + &c. = 0, &c.

For since the determinant is equal to a
l
A

x
+ a

2
A

2
+ &c, and since

-4,, A^ &c, do not contain a
x ,
a

2 , &c, therefore b
t
A

t
+ 6

2
.4

2 + &c,
is what the determinant would become if we were to make in it

a
x

— J
l5
a
2
= 5

8 ,
&c.

;
but the determinant would then have two

columns identical, and would therefore vanish (Art. 14).

28. From the above can be deduced useful identical equations

connecting the products of determinants formed with the same

constituents. Thus writing down the two identical equations

(Art. 3)

a (be) + b (ca) -f c (ab')
=

0,

a (be') + V (ca) + c (ab')
=

;

multiplying the first by d\ the second by d] and, subtracting,

we have

(ad') (be) + (bd') (ca!) + (cd') (ab')
= 0.

Similarly from the three equations

a (bed")
— b (cd'a") + c (dab")

— d (ab'c")
=

0,

a (bed")
— V (cd'a") + c (dab")

— d' (ab'c")
=

0,

a" (be'd")
- b" (cd'a") + c" (dab")

- d" (ab'c")
=

0,

multiplying these respectively by (e'f"), (e"/), (<?/'),
and adding,

we deduce the identity

(ae'f) (be'd")
-

(be'f) (cd'a") -f (ce'f) (da'b")
-

(de'f") (ab'c")
=

;

and so om

29. We can now briefly write the solution of a system of

linear equations

a
x
x + by + c

t
z + &c. = f,

a
2
x + b,jj + c

2
z + &c. = ?;,

a
3
x + b

3y + c
3
z -+ &c. = f, &c,

*&<
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for, multiply the first by A xl
the second by A 2) &c, and add, and

the coefficients of y, z, &c, will vanish identically, while the

coefficient of x will be a
x
A

x
+ a

2
A

2 -\ &c, which is the deter-

minant formed out of the coefficients on the left-hand side of

the equation, which we shall call A. Thus we get

Ax = A£ + A2V + A£+&c. r

Az = C
1Z+C2V +C£+&c.,&c.

30. The reciprocal of a given determinant is the determinant

whose constituents are the minors corresponding to each con-

stituent of the given one. Thus the reciprocal of {afi.jc3)
is

where -4,, J5,, &c, have the meaning already explained. If we

call .this reciprocal A', and multiply it by the original deter-

minant A, by the rule of Art. 22, we get

aAi + tA + cAi a*A + hA + cAi aAx + hA^ cAx
|

«A+4A + *,£;, «A+*A +*A a
3
A

2
+ b

aB^c3
C

2
I

«A + JA + C
X 3.J «A + ^3 + % C* ^A +V. + ^3 ^3 I

•

But (Art. 27) a
x
A

x
+ b

x
B

x
+ c

x
C

x
= A, «

t
A

a +'^A + ^ C2
=

0, &c.

This determinant, therefore, reduces to

A, 0,

0, A,

0, 0, A
A3

.

Hence (a x
kA) (A X

B
2
C

3 ) -(«&*)<; therefore (A x
B

2Q =
(a x

b
2
c
3)\

And in general, A'A = An

;
therefore A' = A" \

31. If we take the second system of equations in Art. 29,

and solve these back again for f , 77, &c, in terms of Ax
r A?/, &c,

we get

A'f = a
x
Ax + h

xAy + c,Az + &c,

where a
l7

b
l7

c
x
are the minors of the reciprocal determinant.

But these values for f, ??, f, &c, must be identical vv,ith the ex-
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pressions originally given ; hence, remembering that A' = A""
1

,

we get, by comparison of coefficients,

a,
=

A***a„ bj
= A*

-2

^, c
x

= AM"a
c„ &c,

which express, in terms of the original coefficients, the first

minors of the reciprocal determinant.

32. We have seen that, considering any one column a of a

determinant, every element contains as a factor a constituent

from that column, and therefore the determinant can be written

in the form lLa
p
Ar In like manner, considering any two

columns «, b of the determinant, it can be written in the form

S [apbg)
A

P} ?,
where the sum 2 {apbq)

is intended to express all

possible determinants which can be formed by taking two rows

of the given two columns.

For every element of the determinant contains as factors a

constituent from the column «, and another from the column b
;

and any term a
p
b
q
c
r
d

s1 &c, must, by the rule of signs, be accom-

panied by another,
— a

q
b
p
c
r
d

sJ
&c. Hence we see that the -form

of the determinant is 2 (apbq)
A

p q ; and, by the same reasoning

as in Art. 16, we see that the multiplier Ap q
is the minor formed

by omitting the two rows and columns in which a
p1

b
q
occur.

In like manner, considering any p columns of the deter-

minant, it can be expressed as the sum of all possible deter-

minants that can be formed by taking anyp rows of the selected

columns, and multiplying the minor formed with them, by the

complemental minor
;
that is to say, the minor formed by erasing

these rows and columns. For example,

KWa) = C«A)Ma) -WWMa) + («A) (
CA%) - («A)Ma)

+ («A)Ma) - Ah) (
CA%) + Ah)(<vW + Ah)M&)

-(^JMaH («AXci<W-

The sign of each term in the above is determined without diffi-

culty by the rule of signs (Art. 8).

It is evident, as in Art. 27, that if we write in the above a

c for every b
1
the sum 2 (ax

c
2) (c3

d
4
e
6)

must vanish identically,

since it is what the determinant would become if the c column

were equal to the b column.



MINOR AND RECIPROCAL DETERMINANTS. 29

33. The theorem of Art. 31 may be extended as follows:

Any minor of the order p which can be formed out of the inverse

constituents A
}1 B^ &c.

}
is equal to the complementary of the cor-

responding minor of the original determinant, multiplied\by the

(p—])
th

power of that determinant.

For example, in the case where the original determinant is

of the fifth order,

(45.) = A M/5), (Afifi3) - A* {djX &c

The method in which the general theorem is proved will be

sufficiently understood from the proof of this example. We
have

Ax = A£ + Aji + A£+ Ajo + A 5v,

Ay = B* + B
2v + B£ + Bj* + B5

v.

Therefore

*Bj» - &Aj = (Afii f + (4.5J ?+ (A tB,) » + (4ft) "•

But we can get another expression for x in terms of the same

five quantities, y, f , J, w, v. For, consider the original equations,

f = fl^cc + b
ty + c

x
z + e^w + e,w,

?= «
3
aj -f% + c

3
z + e?

3
w + e

3w,

co = a
4
x + hj/ + c

4
z + d

A
w + e

4w,

f = a
h
x + h^y -f c

5
2 + 6̂

w + £
5w,

and eliminate £, w, w, when we get

(«Me> + (Wa) y
= Ma) f

-
(
cA«i) ?+ (vW w - M&) "

;

and since (a xc^dAe^ is by definition = 2?
, comparing these equa-

tions with those got already, we find (A XB^ — A (c3
c?

4
e
5 ), &c,

Q.E.D.

Ex. i. If a determinant vanish, its minors A u A 2 , &c, are respectively proportional
to 2?

1}
B2 ,

&c. For we have just proved that A
1
B2

— A2BX

—
AC, where C is the

second minor obtained by suppressing the first two rows and columns. If then

A =
0, we have A

l
: A2 : : B

l
: B2 ,

&c.

Ex. 2. A particular example of the above, which is of frequent occurrence, is

obtained by applying these principles to the determinant considered, Ex. 16, p. 16. We

thus find, using the notation of that example fj y J

-
(

"

)

= A (
a

^ J
; (see Solid

Geometry, p. 50).
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'LESSON V.

SYMMETRICAL AND SKEW SYMMETRICAL DETERMINANTS.

34. In this lesson it is convenient to employ the double

suffix notation, and to write the constituents anl o
12 ,

&c.
;
and

we, therefore, begin by expressing in this notation some of the

results already obtained* We denote the constituents of the

reciprocal determinant by an ,
a

]2 , &c, where, if a
rs
be any con-

stituent of the original, a
rs

is the minor obtained by erasing the

row and column which contain that constituent. The equations

of Art. 27 may then be written

anarl
+ a

r2
a
r2 + a

r3
a
r3 + &c. = A,

or more briefly 2
sars

a
rs
— A, 2

s
a

rs
ar

'

s
=

;
that is to say, the sum

of the products a„ar% (where we give every value to s from

1 to n) is ==
0, when r and r are different, and = A when r = r.

Since any constituent an enters into the determinant only in

the first degree, it is obvious that the factor a
rg ,

which multiplies

it,
is the differential coefficient of the determinant taken with

respect to a
rs ; similarly, that the second minor (Art. 32), which

multiplies the product of/two constituents amn ,
a

rs1
is the second

differential coefficient of the determinant taken with respect to

these two constituents, &c.

If any of the constituents be functions of any variable
a?,

the entire differential of the determinant, with regard to that

variable, is evidently a.. -~ l
-f a,„ -^ + &c.

11 ax 12 dx

Ex. If uv vv &c, denote the first differentials of u
t v, &c, with respect to x

; it.,, v.,

the second differentials, &c, prove

d

ix
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The differential is the sum of the nine products of the differential of each term by the

minor obtained by suppressing that term,

(«11«1 + «12V 1 + «13Wl) + («21M2 + «22V2 + «23«>2) + («31«3 + «32V3 + "sS^s)'

But the first three terms denote the result of changing in the given determinant the

first row into uv v lf
wu and therefore vanish; the second three terms vanish as

denoting the result of changing the second row into u2 ,
v2,

w2 ;
and there only

remain the last three terms which denote the result of changing the last row into

«3 ,
v3 ,

w3 . The same proof evidently applies to the similar determinant of the

nih order formed with n functions.

35. The determinant is said to be symmetrical (Art. 10)

when every two conjugate constituents are equal {ars
— a

S)). In

this case it is to be observed, that the corresponding minors will

also be equal (arf
= aJ ;

for it easily appears that the deter-

minant got by suppressing the r
th
row and the sih column, differs

only by an interchange of rows for columns, from that got by

suppressing the sih row and the rth column. It appears from

the last article, that if any constituent a„ were given as any
function of its conjugate aM ,

the differential coefficient of the

determinant, with regard to ort, would be a
rs -f a

sr
-—*

. In the
da

rs

present case then where a
rs
= a

sr,
arJ
= a

gr,
the differential coeffi-

cient of the determinant, with regard to a
rs1

is 2a„. The diffe-

rential coefficient, however, with respect to one of the terms in

the leading diagonal a
rr)

remains as before a,.r,
since such a term

has no conjugate distinct from itself.

36. If, as before, a
rs

denote the first minor of any deter-

minant answering to any constituent a
rg,

and if (3ik denote the

first minor of the determinant a
rs answering to any constituent

ttm which will, of course, be a second minor of the original

determinant, then this last may be written

where we are to give i every value except r, and h every value

except s. For any element of the determinant which does not

contain the constituent a
rs
must contain some other constituent

from the rth row, and some other from the s
tk column

;
that is to

say, must contain a product such as a
ri
a

is
where i and h are

two numbers different from r and s respectively. But as we
have already seen the aggregate of all the terms which multiply
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an is ars ;
and the coefficient of a

rk
a

is (by Art. 32) differs only
in sign from that of a

rs
a

ik ;
that is to say, differs only in sign

from the coefficient of a
ik

in a
ra

. Therefore —
fiik is the value

of the coefficient in question.

Thus then if we have calculated a symmetric determinant

of the n— 1
th

order, we can see what additional terms occur

in the determinant of the n
th

order. Let A be the determinant,
D that obtained by suppressing the outside row and column,

/3r/ any minor of the latter, and we have

A m Dann
- ^

ra\Ar ~ 22AaA,
where r is supposed to be different from

s,
and every value is

to be given to r and s from 1 to n - 1.

Again, we have occasion often, as at p. 16, to deal with

determinants such as

aw> %i <*»? h
aiv aMi °M» \
a

i35
a

23) ^33? \
\i \, \ o

obtained by bordering a symmetric determinant horizontally

and vertically with the same constituents. This is in fact a

symmetric determinant of the order one higher, the last term

vanishing, and is

or generally
- S^rV - 2S„a„\r\.

37. J^any symmetric determinant vanishes, the same deter-

minant bordered as in the last article is, with sign changed if

need be, a perfect square, when considered as a function of

A,, A2 ,
\

8 ,
&c. We saw (Art. 33, Ex. 1) that when the deter-

minant vanishes aua22
= a

12

a

, &c, whence it is evident that

ani a
22 >
&c

>
must nave a^ tne sa^e sign, and we have generally

ctrs
= ±^/(arrOLss). Further, since it was shewn in the same ex-

ample that when a determinant vanishes, the constituents in the

second row are proportional to those in the first, it follows

that the signs to be given to the radicals are not all arbi-

trary. If, for instance, in the above we write a
12
= + V(a„Oi

a
i3
= + VfanOj tnen wc arc f°rced to give the positive sign
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also to the square root in a
23
= VOvO- Substituting, then,

these values in the result of the last article, it becomes, if

an ,
&c. be positive, the negative square,

-
{\ V(0 +\ V(«J + \ V(«J + &c.)

2

,

and if an ,
&c. be negative the determinant is a positive square.

What has been just proved may be stated a little differently.

We may consider the bordered determinant as the original de-

terminant
;
of which, that obtained by suppressing the row and

column containing A- is a first minor, and a
33

obtained by sup-

pressing the next outside row and column is a second minor.

And what we have proved with respect to any symmetrical
determinant wanting the last term a

nn1 is,
that if the first minor

obtained by erasing the outside row and column vanish, then

the determinant itself and the second minor, similarly obtained,

must have opposite signs. And this will be equally true if ann
does not vanish. For in the expansion of the determinant, ann
is multiplied by the first minor, which vanishes by hypothesis,

and therefore the presence or absence of ann does not affect the

truth of the result.

38. A shew symmetric determinant is one in .which every
term is equal to its conjugate with its sign changed. The
terms a

rr
in the leading diagonal, being each its own conjugate,

must in this case vanish
;
otherwise each could not be equal to

itself with sign changed.
A shew symmetrical determinant of odd degree vanishes. For

if we multiply each row by — 1
;

in other words, if we change
the sign of every term, it is easy to see that we get the

same result as if we were to read the columns of the original

determinant as rows, and vice versa. Thus, then, a skew

symmetrical determinant is not altered when multiplied by
(-])"; and, therefore, when n is odd, such a determinant must

vanish.

It is easy to see that the minor asr differs by the sign of

every term from the minor a,s ,
and therefore a

sr
= (- l)""

1

**,,.

Hence a.,
= a

r,
when n is odd, and is equal with contrary

sign when n is even. a
rr

is itself a skew symmetric deter-

F
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minant, and therefore vanishes when the original determinant

is of even degree.

The differential coefficient of the determinant, with regard

to any constituent a
rs1 being a

rt -f air
-—-is ars

- asr
. When

therefore n is even it is = 2a,.g
and when n is odd it vanishes.

39. Every shew
s symmetrical determinant of even degree is

a perfect square.

We have seen (Art. 36) that any determinant is

and in the present case ann vanishes, as does also a
nn1

which is

a skew symmetric of odd degree. On this account therefore

we have, as in Art. 37, /3,.,

2 = ftA j
aud therefore exactly as

in that article, the determinant is shown to be

K V(/3„) + «M V(£J + «s,, V(/3J + &c.}\

The determinant is therefore a perfect square if /3nJ /522
are

perfect squares, but these are skew symmetries of the order

n — 2. Hence the theorem of this article is true for deter-

minants of order n if true for those of order n -
2, and so on.

But it is evidently true for a determinant of the second order

,
which is as a

12
\ Hence it is generally true.

0, an
-«

12 >
°

40. We have seen that the square root of the determinant

contains one term a
n_hn v

/

(/5„_1 ,,l
_ t),

where ft(
_lw_

l
contains no

terms with either of the suffixes n — 1 or n. But taking any
two of the remaining suffixes, such as n — 3, n — 2, we see that

y^«-i,i*-i)
contains a term a

n_StH_2 v
/

(% !
-3,n-3) ?

where 7^-. cow-

tains no term with any of the four suffixes, of which account has

already been taken. Proceeding in this manner we see that

the square root will be the sum of a number of terms such

as «
12
«
34
«
B6
«..a

M_1)W ;
each of which is the product of \n con-

stituents, and in which no suffix is repeated twice. The form

however obtained in the last article a
Ui V(^u ) ± ««,, V(ft2 ) + &c.

does not show what sign is to be affixed to each term. Thus
if the method of the last article be applied to the skew sym-
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metric of the fourth order, its square root appears to be

a
12cL^ ± auau ± «

14
«
23 ;

but it has not been shown which signs we
are to choose. This however will appear from the following

considerations : If in the given determinant we interchange

any two suffixes 1, 2
;
since this amounts to a transposition of

the first and second row, and also of the first and second column,
the determinant is not altered. Its square root then must be

a function, such that if we interchange any two suffixes it will

remain unaltered, or at most change sign. But that it will

change sign is evident on considering any term «
12
^

34 ,
&c.

which, if we interchange the suffixes 1 and 2, becomes a
21
a
34 ,

&c.
;
that is to say, changes sign, since a

21
= — an . It follows

then, in the particular example just considered, that the signs

of the terms are ana34
- a

13
a
24 + aua23

• for if we give the second

term a positive sign, the interchange of 2 and 3, which alters

the sign of the last term, would leave the first two unchanged.
And generally the rule

is,
that the square root is the sum of

all possible terms derived from «
12
«
34

. ..«„_, n by interchange of

the suffixes 2, 3, ...«, where, as in determinants, we change sign
with every permutation. But it is possible, and the better

course
is, to effect the interchanges in such manner that the

signs shall be each of them +
; thus, in the particular example

the expression may be written o,^ -f «13
«
42 4 au«23

.

41. We can reduce to the calculation of skew symmetric
determinants the calculation of what Prof. Cayley calls a skew

determinant, viz. where, though the conjugate terms are equal
with opposite signs, a

ik
= - a

ki , yet the leading terms am am &c.

do not vanish. We shall suppose, for simplicity, that these

leading terms all have a common value \. We prefix the

following lemma: If in any determinant we denote by D the

result of making all the leading terms =0, by Dt what the

minor corresponding to an becomes when the leading terms are

all made = 0, by Dik
what the second minor corresponding to

auakk becomes when the leading terms vanish, &c, then the

given determinant, expanded as far as the leading terms are

concerned, is

A = D + "SauDi 4 ^a
{i
a
kk
D

ik +. . .+ ana22
. . ,aun1
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where in the first sum % has any value from 1 to w, where in the

second sum
t,
k are any binary combinations of these numbers, &c.

For the part of the determinant which contains no leading
term is evidently D: the terms which contain an are auAny
where An is the corresponding minor, hence the terms which

contain an and no other leading term are got by making the

leading terms = in An] and so for the other terms.

42. If this lemma be applied to the case of the skew deter-

minant defined in the last article, all the terms D-, Dik ,
&c.

are skew symmetric determinants
;
of which, those of odd order

vanish, while those of even order are perfect squares. The

term aua22
...ann is X", and the determinant is

A = X" + \*-*2D
s + \n^D

4 + &c,

where D
2 ,
D

4 ,
&c. denote skew symmetrical determinants of the

second, fourth, &c. orders formed from the original in the

manner explained in the last article.

Ex.1. A, a
l2 ,

a13
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It is also useful (in studying the theory of rotation for example)

instead of using nine quantities a, 6, c, &e. connected by six

relations, to express all in terms of three independent variables.

Now all this may be generalized as follows: If we have a

function of any number of variables, it can be transformed by
a linear substitution by writing

x = anX+ a
X2Y+ a

X3Z+ &c, y = a
2l
X+ a

22Y+ aJZ+ &c, &c.,-

and the substitution is called orthogonal if we have

which implies the equations

au + °» + &c. = 1, ana l2
+ anan + &c. = 0, &c.

Thus the ri
l

quantities an) &c. are connected by \n(n-\-\) re-

lations and there are only \n (ft
—

1) of them independent.
We have then conversely

X= anx + a
2ly + a

3X
z + &c, Y= a

X2
x + a

22y + a
32
z + &c, &c,

equations which are immediately verified by substituting on the

right-hand side of the equations for x
1 y, s, &c. their values.

And hence, the equation X* + Y2 + &c. = x* + y* -f &c. gives us

the new system of relations

an + avl + &c. = 1, aua2X
+ a

X2
a
22 + &c. = 0.

Lastly, forming by the ordinary rule for multiplication of

determinants, the square of the determinant formed with the

ri
l

quantities au1 &c, every term of the square vanishes except
the leading terms, which are all = 1. The value of the square
is therefore =1. Thus the theorems which we know to be

true in the case of determinants of the third order are gene-

rally true, and it only remains to shew how to express the ft
2

quantities in terms of \n [n
—

1) independent quantities. This

we shall effect by a method employed by M. Hermite for the

more general problem of the transformation of a quadric
function into itself. See his paper 'Kemarques,' &c, Camb.

and Dub. Math. Jour., vol. IX. (1854), p. 63.

44. Let us suppose that we have a skew determinant of the

(n
-

l)
th

order, 5n ,
5

12 ,
&c. where b

ik
— - b

ki)
and bn

= b
22
— bu = 1

;
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and let us suppose that we form with these constituents two

different sets of linear substitutions, viz.

* = bj + &„, + bj+ &c, X= bj + bnV + bj+ &c,

y = hi + Kn + K£+ &c
-,
Y= hJ + Kfl + hJ+ &c

-,

* -M + ?v? + 5„f+&*, 2 = bj + baV + bj+ See.,

from adding which equations we have, in virtue of the given

relations between Z>n ,
Z>
12 , &c,

cc + X=2f, y + Y=2r),&c.

If now the first set of equations be solved for f , 17,
&c. in terms

of
jc, y, &c, we find, by Art. 29,

Af = £na> + ftjf + £8l
« + &c, Av = fi

aj + /322?/ + &c.

(where /3U) fiu1 &c. are minors of the determinant in question) ;

and putting for 2f ,
x + X, &c, these equations give

AX= (2/3„
-

A) x + 2£„y + 2/331* + &c,

A F= 2/312
x + [2j322

- A)y + 2/332s 1 &c, &c,

which express X, F, &c. in terms of
cc, ?/,

&c. But if we had

solved from the second set of equations f, 77,
&c. in terms of

X and F, we should have got

A? = t3„X+ /3Mr+ /3, s^+ &c, A, = /321X+ /8MF+ y323Z+ &c,

whence, as before,

Ax = (2/3„
-
A) X+ 2/312r+ 2/313

Z+ &c,

Ay = 2/321X+ (2/322
-
A) F+ 2/323Z+ &c.

Thus, then, if we write

2^n~A _ 2^-A _ .
2/3 2/3

A 1l '

'

A
~

' A 12 ' A
~

*'

we have #, ?/,
&c. connected with X, F, &c. by the relations

x = anX+ a
X2 F-h &c, y = a

2l
X+ a

22
F+ &c, &c,

X=anx -f a2ly +&c, F=«
]2
.t + a

22y +&c, &c.

We have then
a?, ?/, &c, X, F, &c. connected by an orthogonal

substitution, for if we substitute in the value of #, the values
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of X, I
7

,
&c. given by the second set of equations, in order that

our results may be consistent, we must have

< + an + aJ + &c =
1, auan + ana„ + a

l3
a

25 + &c. = 0, &c.

Thus then we have seen that taking arbitrarily the ^n(n- 1)

quantities, Z>
12 ,

6
13 , &c, we are able to express in terms of these

the coefficients of a general orthogonal transformation of the

nih order.

Ex. 1. To form an orthogonal transformation of the second order. Write

A =
\ 1, \ I

I

-
X, 1

I

= 1 + X2
,

then j3n = /322
=

1, /312
= X, (32l

= -X, and our transformation is

(1 + X2
)
x = (1

- X2
) X+2XY, (1 + X2

)
X =

(1
- X2

)
x -

2\y,

(1 + X2
)*/ = - 2XX + (1

- X2
) F. (1 + X2)F= 2Xx + (1

- X2
) y.

Ex. 2. To form an orthogonal tranformation of the third order. Write

A = 1, v, -ii

fx, -X, 1 = 1 + X2 + m2 + "2-
1

Then the constituents of the reciprocal system are

1+A2
,

V + \fl,
-

fx + Xv

v + \/y 1 + /x
2
,

X + fxv

H + Xv, ~X + X/x, 1 + v2

consequently the coefficients of the orthogonal substitution hence derived are

1 + X2 -
v?
- v2

, 2(v + X/x), 2 {Xv
-

ft),

2 (Xfx -i/), 1 + fx
2 - X2 - v2

,
2 {fxv + X),

2 (Xv + fx), 2(jxv-X), l + v2 -X2 -
fx
2
,

where each term is to be divided by 1 + X2 + fx
2 + v2.*

45 It is easy to see that for a symmetrical determinant of the

orders 1, 2, 3, 4 the number of distinct terms is =1, 2, 5, 17

respectively, and the question thus arises what is the number

of distinct terms in a symmetrical determinant of the order n.

This number has been calculated as follows by Professor Cayley :

* The geometric meaning of these coefficients may be stated as follows: Write

X = a tan £0, fx
= b tan £d, v — c tan £0, then the new axes may be derived from the

old by rotating the system through an angle round an axis whose direction-cosines

are a, b, c. The theory of orthogonal substitutions was first investigated by Euler,

(Nov. Comm. Petrop., vol. xv., p. 75, and vol. XX., p. 217) who gave formulas for the

transformation as far as the fourth order. The quantities X, /x, v, in the case of the

third order, were introduced by Rodrigues, Liouville, vol. v., p.. 405. The general

theory, explained above, connecting linear transformations with skew determinants

was given by Cayley, Crelle, vol. xxxii., p. 119.
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Consider a partially symmetrical determinant represented (see

Art. 11) by the notation

aa

bb

cc

pp

where in general fg=gf, but all the letters p, a, ... are distinct

from all the lettersp , q, ... so that these letters give rise to no

equalities of conjugate terms; say if in the bicolumn there are

m rows aa, bb, ... and n rows pp, qq, ... this is a determinant

(ra, n) ;
and in the case n= 0, a symmetrical determinant. And let

<f> (m, n) be the number of distinct terms in a determinant
(7/2, n).

Consider first a determinant (n not = 0), for instance

aa
,

=
aa, ab, ap, aq

bb ba, bb, bp , bq

pp pa, pb, pp, pq

qq qa, qb, qp , qq

then aa, qb, qp, qq are distinct from each other and from every
other term of the determinant, and the whole determinant is

(disregarding signs) the sum of these each multiplied into a

minor determinant
;
the minors which multiply qa, qb are each

of the form (1, 2) ;
those which multiply qp, qq are each of the

form (2, 1) ;
and we thus obtain

4>(2, 2)
=

24, (1,2) + 2,£ (2,

and so in general

<f> [m, n)
=

m(f> [m

whence in particular

(p (m, 1)
=

m<j> [m - 1, 1) + <f> (m, 0).

Next if rc=0, let us take for instance the symmetrical de-

terminant %

,1),

1, n) +n(fi> (7/2,
n — 1),

aa
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We have here terms multiplied by dd\ ad.da, bd.db, cd.dc;

and by the pairs of equal terms ad.db + bd.da, ad.dc + cd.da,

bd.dc + cd.db, the other factors being in the three cases minors

of the forms (3, 0), (2, 0), and (1, I) respectively ;
thus we have

0(4,0) = *(3,0) + 30 (2,0) + 30 (1,1),

and so in general

(
w

, 0)
= [m - 1, 6) + [m

-
1) (m - 2, 0)

+ 4(w-l)(w-2)0(«i-3, 1),

which last equation combined with the foregoing

(m, 1)
=

m<f> (m
—

1, 1) + (w, 0)

gives the means of calculating (w, 0), (m, 1) ;
and then the

general equation (m, n)
= m§ [m- 1, ri)-\- n(p (m, n—l) gives

the remaining quantities (#i, ft).

It is easy to derive the equation

20(m, O)-0 (m-1, O)-(m-l) 0(wi-2, 0)= 0(m-l, 0)

+ (w-l)0(ra-2,O)

+ (m-l)(m-2) (»t-3, 0)

+

+ (m-l)... 3.2.1 0(0,0).

And hence, using the method of generating functions, and

assuming

« = *(<>, o) + \ 4> (t, 0) 4-
~ (a, 0) ... + j—^ <t> («., 0) +... ,

„ , du u
we find at once 2

-^
u - xu =

,

that is 2 — =
(
1 +j?+ )dx1

u \ 1-xJ

or, integrating and determining the constant, so that for x =

u shall become = 1, we have

v(i-*r
whence («i, 0), the number of terms in a symmetrical deter-

minant of the order rn
1

is

1.2...m coefficient
V(l-a>)'
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The numerical calculation by this formula is, however, somewhat

complicated; and it is practically easier to use the equations

of differences directly. We thus obtain not only the values of

£ i
m

i 0)> Dut tne series of values
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*LESSON VI.

SYMMETRICAL DETERMINANTS.

46. If we add the quantity X to each of the leading terms

of a symmetrical determinant, and equate the result to 0, we

have an equation of considerable importance in analysis.* We
have already given one proof (Sylvester's) that the roots of

this equation are all real (Ex. 10, p. 25), and we purpose in

this Lesson to give another proof by Borchardt (see Liouville,

vol. xii., p. 50) chiefly because the principles involved in this

proof are worth knowing for their own sake.. First, however,
we may remark that a simple proof may be obtained by the

application of a principle proved in Art. 37. Take the de-

terminant

n+\
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that if X be taken so as to make any of these minors vanish,

the two adjacent functions in the series will have opposite signs.

It follows, then, precisely as in the proof of Sturm's theorem,

that if we diminish X regularly from -f go to — go
,
then as X

passes through a root of any of these minors, the number of

variations in the series will not be affected
;
and that a change

in the number of variations can only take place when X passes

through a root of the first equation, namely, that in which X

enters in the nt]l

degree. The total number of variations, there-

fore, cannot exceed the number of real roots of this equation.

But obviously, in all these functions the sign of the highest

power of X is positive ; hence, when we substitute + co
,
we get

no variation
;
when we substitute — go

,
the terms become alter-

nately positive and negative, and we get n variations; the

equation we are discussing must, therefore, have n real roots.

It is easy to see, in like manner, that the roots of each function

of the series are all real, and that the roots of each are in-

terposed as limits between the roots of the function next above

it in the series.

47. It will be perceived that in the preceding Article we
have substituted, for the functions of Sturm's theorem, another

series of functions possessing the same fundamental property,

viz. that when one vanishes, the two adjacent to it have

opposite signs. M. Borchardt's proof, however, which we now

proceed to give, depends on a direct application of Sturm's

theorem.

The first principle which it will be necessary to use is

a theorem given by Sylvester {Philosophical Magazine, De-

cember, 1839), that the several functions in Sturm's series,

expressed in terms of the roots of the given equation, differ

only by positive square multipliers from the following. The first

two (namely, the function itself, and the first derived function)

are of course, (x
-

a) (x
-

/3) [x
-

7) &c, 2
(as
-

ft) (x
-

7) &c.^
and the remaining ones are

2 {*-P)\x- 7) (x- 8) &c. ; 2(a -/3r(/3-7)
2

(7
- a?(x- 8) &c, &c,

where we take the product of any k factors of the given equa-
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tion, and multiplying by the product of the squares of the diffe-

rences of all the roots not contained in these factors, form the

corresponding symmetric function. We commence by proving

this theorem.*

48. In the first place, let U be the function, V its first

derived function, B2l
i2

3 , &c, the series of Sturm's remainders;

then it is easy to see that any one of them can be expressed

in the form AV—BU. For, from the fundamental equations

U=Q,V-R» V=Q2
R

2
-R

3 ,
R

2=Q3
R

2
-R

l,&c,

we have

R
2=QJ-U,

R
i=QA-V={Q2Q1 -l)V-Q2 U,

k=(Q,Q,-i)Z,* Q,v*{QAQ,r Q>-Q.) v-[q,q,-i)d,
and so on. We have then in generalf Bk

= A V— BIT, where,
since all the Q's are of the first degree in

a?,
it is easy to see that

A is of the degree k— 1, and B of the degree k — 2, while Bk

is of the degree n — k.

But this property would suffice to determine B
2l R^ &c,

directly. Thus, if in the equation B
2
— Ql

V—U we assume

Qx
= ax + b, where a and b are unknown constants, the condition

that the coefficients of the highest two powers of x on the right-

hand side of the equation must vanish (since B2
is only of the

degree w-2) is sufficient to determine a and b. And so in

* I suppose that Sylvester must have originally divined the form of these

functions from the characteristic property of Sturm's functions, viz. that if the

equation has two equal roots a — /3, every one of them must become divisible by
x — a. Consequently, if we express any one of these functions as the sum of a

number of products (x
—

a) (x
—

(B), &c, every product which does not include

either x - a or x — /3 must be divisible by (a
—

/3)
2

;
and it is evident in this way

that the theorem ought to be true. The method of verification here employed does

not differ essentially from Sturm's proof, Liouvilh, vol. VII., p. 356.

t The theory of continued fractions which we are virtually applying here shows

that if we have Rh = A^V - Bk U, Rk+l = Akn V - Bk+1 U, then AkBk+1
- Ak+lBk is

constant and = 1. In fact, since Bk+1 = QkRk — i4-i, we have

Ak+1
= QkAk - Ak- X ,

Bk+1 = QkBk - Bk-V

whence A kBkn - A k+1Bk = Ak- x
Bk - AkBk- x ,

and by taking the values in the first two equations above, namely, where k = 2

and k ± 3, we see that the constant value = 1.
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general, if in the function AV—BU we write for A the most

general function of the (k
—

l)
tu

degree containing k constants,

and for B the most general function of the {k
—

2)
th

degree, con-

taining k - 1 constants, we appear to have in all 2k — 1 constants

at our disposal, and have in reality one less, since one of the

coefficients may by division be made = 1.* We have then just

constants enough to be able to make the first 2k — 2 terms of

the equation vanish, or to reduce it from the degree n + k — 2

to the degree n — k. The problem, then, to form a function of

the degree n — k, and expressible in the form AV- BU, where

A and B are of the degrees k — 1, &- 2, is perfectly definite,

and admits but of one solution. If, then, we have ascertained

that any function R
k

is expressible in the form AV— BU, where

A and B are of the right degree, we can infer that Rk must be

identical with the corresponding Sturm's remainder, or at least

only differ from it by a constant multiplier. It is in this way
that we shall identify with Sturm's remainders the expressions
in terms of the roots, Art. 47.

49. Let us now, to fix the ideas, take any one of these

functions, suppose

2 («
-

£)• (0
-

y)« (7
- af (x -S)(x- e) &c,

and we shall prove that it is of the form AV— BU, where A
is of the second degree, and B of the first in x. Now we can

immediately see what we are to assume for the form of A, by

making x = a on both sides of the equation. The right-hand
side of the equation will then become

A{a-p)(a- 7) (a
-

8) (a
-

e) &c,

since U vanishes
;
and the left-hand side will become

25 (a
- py (/3

- yf (7
-

«)* («
~ S

) («
" £

)
&c -

It follows, then, that the supposition x = a must reduce A to the

form 2 {13
—

y)
2

(a- /3) (a- 7), and it is at once suggested that

we ought to take for A the symmetric function

2(/3-7)>-£)0*-7).
* Just as the six constants in the most general equation of a conic are only-

equivalent to five independent constants, and only enable us to make the curve

satisfy five conditions.
, ,,
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And in like manner, in the general case, we are to take for A
the symmetric function of the product of k — 1 factors of the

original equation multiplied by the product of the squares of the

differences of all the roots which enter into these factors. It

will not be necessary to our purpose actually to determine the

coefficients in B, which we shall therefore write down in its

most general form. Let us then write down

S(a-/3)
2

(/3-7)
2

(7-a)
2

(aj-S)&c. = S(a- iS)
2

^-a)(^- /8)

x 2 (x - j3) (x
-

7) &c. + (ax + b)(x- a) (x
-

ft) &c,

which we are to prove is an identical equation. Now, since an

equation of the p
th

degree can only have p roots, if such an

equation is satisfied by more than p values of
a?,

it must be an

identical equation, or one in which the coefficients of the several

powers of x separately vanish. But the equation we have

written down is satisfied for.each of the n values #=a, as=/3, &c,
no matter what the values of a and b may be. And if we sub-

stitute any other two values of
a?, then, by solving for a and b

from the equations so obtained, we can determine a and &, so

that the equation may be satisfied for these two values. It is,

therefore, satisfied for n + 2 values of x
1
and since it is only an

equation of the (n + l)
th

degree, it must be an identical equation.

And the corresponding equation in general, which is of the

degree n + k - 1, is satisfied immediately for any of the n values

x = a, &c.
;
while B being of the degree k — I we can determine

the k constants which occur in its general expression, so that

the equation may be satisfied for k other values
;
the equation

is, therefore, an identical equation.

50. We have now proved that the functions written in

Art. 48 being of the form AV-BU&VQ either identical with

Sturm's remainders, or only differ from them by constant factors.

It remains to find out the value of these factors, which is an

essential matter, since it is on the signs of the functions that

everything turns. Calling Sturm's remainders, as before,

i2
2 ,

i?
3, &c, let Sylvester's forms (Art. 47) be T

2 ,
T

a1 &c,
then we have proved that the latter are of the form T

2
= \B2l

r
3
= X

3
i?

3 , &c, and we want to determine X
2 ,
X

3 ,
&c. We can
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at once determine \ by comparing the coefficients of the

highest powers of x on both sides of the identity T2
= A

2
V- B

2 U\
for x

n
does not occur in T

2 ,
while in V the coefficient of x

n~x
is n

y

and the coefficient of x is also n in A
2 ,
which = 2 {x

—
a) ;

hence

J9
2
= ri\ But the equation T

2
= A

2
V- B

2
U must be identical

with the equation B
2
= Qt

F- U multiplied by \ ;
we have,

therefore, \ = n\

To determine in general \, it is to be observed that since

any equation T
k
= A kV—Bk

U is \k times the corresponding

equation for R
k ,

and since in the latter case it was proved

(note, p. 45) that A
k
B

k+l
— A

k+l
Bk =l, the corresponding quan-

tity for T
kl
T

k+1
must =\k

X
k+l

. Now from the equations

Tk
= A

kV-Bt U, TiH = AUlV-BtH U,
we have

AMTh
- A

h
Tm = (AtBM - AhHBt)

U~ \\m U.

Now, comparing the coefficients of the highest powers of x on

both sides of the equation, and observing that the highest power
does not occur in A

k
T

k+l1
we have the product of the leading

coefficients of A
k+i

and T
h
— W+i* But if we write

S (a
-

/9)
! -

p,, 2 (a
-

/S)" (a
- 7)

s

ffi
- vY =p„ &c,

we have, on inspection of the values in Arts. 47, 49, the

leading coefficient in T
2 =j?2 ,

in T
s =pB , &c., and in A

2
=

7i,
in

A
3 —p^ in A^ =Pm &c Hence

F>Wi Ps=Wi P*=Wi &c
->
whence \ =£±

,
X

4
=^f ,

&c.

The important matter then
is,

that these coefficients are all

positive squares, and, therefore, as in using Sturm's theorem

we are only concerned with the signs of the functions, we may
omit them altogether.

51. When we want to know the total number of imaginary
roots of an equation, it is well known that we are only con-

cerned with the coefficients of the highest powers of x in

Sturm's functions, there being as many pairs of imaginary roots

as there are variations in the signs of these leading terms.

And since the signs of the leading terms of jT
2 , T^ &c. are the

same as those of R
2 ,

i?
3 , &c, it follows that an equation has as
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S
o, «l> »



50 SYMMETRICAL DETERMINANTS.

from which eliminating a?, ?/, a, we have a determinant of form

exactly similar to that which we are discussing, and which

may be written

&„-*',
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from this by the method of Art. 24, and which expresses

the sum of all possible squares of determinants which can be

formed by taking any two of the nine columns written above.

The determinant

sum of the squares

is thus seen to be resolvable into the

(
flu + (««

- aJ + fa»
- aJ + 6 {aJ + aj + a

12 />

and is therefore essentially positive. Again, if we write down

h h 1, 0, 0, 0, 0, 0,, V, V,, Vj

a„„, «„„, «„,, a. «„o, «, «.^lH w
22> "US) ^23) "'SlJ "^ ""23? ^31)

w
\%

hm K, Ki Ki Ki Kt K, Km K
where &n ,

&c. have the meaning already explained, it will be

easily seen from the values we have found that

5
o>
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viz. ^-^ =
0, «

9-M + ^ti0) h-VA+PA-*Pz = % &c *

whence s
x =p^ *

% **p*
-

2p,*
s
3 =^,

3 -
Sp,/?, + 3p3 ,

&c.
;

and with the formulae

Sof^Y =V/f
- Sm+pSg

- 5
m+9

5
p
-

^.<?m + 2s
ro+p+9,

&c.

"We thus calculate 2a
wl

/3
p

,
&c. first in terms of the sums s

l5
s
2,

&c, and ultimately in terms of the coefficients p,,^? &c *

55. But this process is a very bad one, in fact s
l5

«
8,

s
3 being

as just mentioned, then if it were employed throughout, we should

have for instance to calculate 2a/?7, that is p3
from the formula

62a£7 = s* = p?
~ 3*A ~

tyx (P*~ 2A)

+ 2*
3 +2(p1

*3
-3^i?2 + 3p8)

= 6^3 ,
which is right,

but the process introduces terms p* and p xp^ each of a higher

order than p3 (reckoning the order of each coefficient as unity)

with numerical coefficients which destroy each other. And so

again 2aa

/3 would be calculated from the formula

2a*/3= »A=
?,(*,' -2ft)

- s
s -(?,'-¥,?,+ 3ri
~

P\Pi~ ^s j
wmcn is right,

but there is here also a term p* of a higher order, with nume-

rical coefficients which destroy each other. And the order in

which the several expressions are derived, the one from the

* It may be remarked that we can get determinant expressions for the sums of

powers in terms of the coefficients, or vice versa, by solving, as in Art. 29, the system
of linear equations above written, for s1} s2, &c, orpv p2 ,

&c. Thus we have

Pi I,

2Pv Pi

1.2.^ =
H) s

i
1.2.3.1)3 =

Pi, 1, o

2P2 , Pi, 1

ty3 , p» Pi

hi h o

S2> si, 2

S
3, S2, S

l

Pi, i, o,

3P* Pi, *i

3/>3 > Pi, Pi, 1

4p« Pz, P2, Pi

&c.

1.2.3.4.^4

Sj, 1, 0,

52> s
i, 2,

S3> 52> S l,
3

l<!4! ^3; •*•_>>
,S>

1

etc.
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other is a non-natural one
;

.<?

3
is required for the determination

of 2a2

/3,
whereas (as will be seen) it is properly 2a2

/3 which

leads to the value of s
9
.

The true method is as follows : we have

2arpa 2a£ = /?„, 2a/37 =p3 , &c,
and we thence derive the sets of equations

Pi
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we shall understand the sum of the suffixes attached to each

factor. Thus, if any term were p x

r

p^p^ the weight of the

function would be r + 2s + St
; or, again, if any term were

PrPsPti tn *s term would be of the third order, while its weight
would be r + s + t. In the case of every function, with which we
shall be concerned, the weight will be the same for every term.

57. On inspecting the expressions given above for s
]5
s
2 ,

s
3,
&c.

in terms of the coefficients, it is obvious that the weight of every
term in s

2
is two, in s

3
is three, and it is easy to conclude by

induction that the weight of every term in sn is n. In like

manner, it 'is evident that the weight of Sa^ is m-\-p, of

So^jS^y is m -+-p 4 #, &c.

This may be proved in general as follows: If for every
root a, /3, 7, &c. we substitute X times a, X times )3, X times 7,

&c, we evidently multiply the function 2am/3V by Xws. But

it is known that if we multiply every root by X, we multiply

px by X, p% by X'
2

, p^ by X3

,
&c. It follows then that SoT/SV

expressed in terms of the coefficients must be such that if we
substitute for^, \p x1 forp2 , X'^2 ,

and so on, we shall multiply

every term by \m+p *9 » and this, in other words, is saying that

the weight of every term is m +p + q.

58. Since

£> 1

= a + /3+7 + &c, p>z

= a (/3 + 7 + &c.) + £7 + &c, &c,

and none of the coefficients, p3l p^ &c. contains any power
of a beyond the first, it is plain that the order of any symmetric
function ^am/3py

q

(where m is supposed to be greater than p
or q) must be at least m. For of course, unless there are at

least m factors, each containing a, a™ cannot appear in the pro-

duct. But, conversely, any symmetric function, whose order is

wi, will contain some terms involving a
m

. For if qn q^ q3l
&c.

be the sum, sum of products in pairs, in threes, &c. of
/3, 7, 5,

&c, we have p x

= a + qx , p2
= aq x

-f q^ pz
= a#2 + qs, &c, and the

coefficient of the highest power of a in such a term as p^p^p^
will be q x

rq^ ] and, conversely, the multiplier qlq^ql can only

arise from the term p2

r

pa

s

p^ It therefore cannot be made to

vanish by the addition of other terms. It follows then that
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the order of any symmetric function 2oFffrf is equal to the

greatest of the numbers ra, ^?, q ;
for we have proved that it

cannot be less than that number, and that it cannot be greater,

since functions of a higher order would contain higher powers
of a than a*

1

.

By the help of the two principles just proved (viz. that the

weight is the degree in the roots, and the order the highest

degree in any one root), we can write down the literal part of

any symmetric function, and it only remains to determine the

coefficients. Thus if it were required to form 2a'
2

(/3
—

7)*, we
see on inspection that this is a function whose weight is four,

and that it is of the second order
;
that is to say, there cannot

be more than two factors in any term. The only terms then

that can enter into such a function are p^pzp^p^ and the

calculation would be complete if we knew with what coefficients

these terms are to be affected.*

59. Symmetric functions of the differences of the roots of

equationsf being those with which we shall have most to deal,

it may not be amiss to give a theorem by which the sum of

any powers of the differences can be expressed in terms of

the sums of the powers of the roots of the given equation.

Expanding (x — a)
m
by the binomial theorem, and adding the

similar expansions for (x
—

/3)

m
,
&c

,
we have at once

2 [x
-

a)
m = s x

m - ms
x
x
m~x + \m (m

-
1) s

2
x
m ~2 - &c.

Now if we substitute a for x in 2 (x
—

a)
w

it becomes

(a
-

/3)

m
+ (a

—
<y)

m + &c.
; similarly if we substitute /3 for x it

beccomes [j3
-

a)
m

-f (J3
-

j)
m
+ &c, and so on

;
and if we add

the results of all these substitutions, if m be odd, the sum

vanishes, since the terms (a-/3)
m

, (/3-a)
wl

cancel each other.

If m be even, the result is 22 (a
-
@)

m
. But when the same

substitutions are made on the right-hand side of the equation
last written, and the results added together, we get

S
o
Sm
~ W^-i + \m (™>

~ 1
) V«-i

~ &C «

* The foregoing example of the calculation of 2aj3y, "Sa^p, 2a3
,
in effect shows

how we can in every case obtain for the determination of the coefficients the required
number of linear relations.

t Such functions have been called critical functions.
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If m be odd, the last term will be — sms0l which will cancel the

first term, and, in like manner, all the other terms will destroy
each other. But if m be even, the last term will be identical

with the first, and so on, and the equation will be divisible by
two. Thus, then, when m is even, we have

2 (a
-

/3)

w m s
Q
sm
- m

Sl
sm_2 + \m [m - l) s

2
sm_2

- &c,

where the coefficients are those of the binomial until we come
to the middle term with which we stop, and which must be

divided by two. Thus

2(a-/3)
4=V -4Va+3s2

2

, 2(a-/3)
6=v6

- 6V5+ 15V4-10^, &c.

60. Any function of the differences will of course be un-

changed if we increase or diminish all the roots by the same

quantities, as, for instance, if we substitute x—X for x in the

given equation. It then becomes

x
n -

(p t
+ nX) x

1-1 + [pt
+ (n

-
1) \Pl -f \n [n

-
1) X

2

}
x
n ~*

-
{p» + (*

- 2
)
x^2

+ &c
-l
^
n"3

+ &c - - o.

Now any function
<f>

of the coefficients p^ p2 ,
&c. will, when

we alter p x
into px

+ $p t , p2
into p2 + 5p2 , &c, become

If then, in any function of p l7 £>2 , &c, we substitute p x
+ nX for

J?ii Pi +{n — l) Xp x
+ \n (n

—
1) X* for

j!?2 , &c, and arrange the

result according to the powers of A,, it becomes

* +^f|i +("-l)A|i

+
(«-2)R|

+ fe
]
+X,(fe')=0-

But since we have seen that any function of the differences is

unchanged by the substitution, no matter how small A be, it is

necessary that any function of the differences, when expressed

in terms of the coefficients, should satisfy the differential equation

Ex. 1. Let it be required to form 2 (a
—

/3)
2

. We know that its order and weight
are both = 2. It must therefore be of the form Ap2 + Bpf. Applj-ing the differential

equation, we have {(ft
—

1) A + 2nB} p x
= 0, whence B is proportional to n — 1 and

A to - 2n. The function then can only differ by a factor from (w
-

I) pi
1 -

2np.,.
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The factor may be shewn to be unity by supposing a = 1 and all the other

roots = 0, when pt
= 1, p2

—
0, and the value just written reduces to n — 1, as it

ought to do.

Ex. 2. To form for a cubic the product of the squares of the differences

(a
-

(3)- (f3
-

y)
2
(y
-

a)
2

. This is a function of the order 4 and weight 6. It must

therefore be of the form

ApJ + Bp3 p,jh + Cjwh3 + DP* + Eih-pf.

Operating with 3 -—f- 2». -—|- »2 -r- it becomes

(2A + 3B) lhp2 + (25 + 9C) VzPx + (B+6D + $E) p.?lh + (C + ±E) p2p x*,

and as this is to vanish identically, we must have C — — 4E, B = 18E, A — — 27E,

D~ —
4tE, or the function can only differ by a factor from

PiW + 18PiPsJP«
-W -

4p»J>i«
-

27p3
2

.

The factor may be shewn to be unity by supposing y and consequentlypz to be = 0.

61. We shall in future usually employ homogeneous equa-

tions. Thus, writing
- for x, and clearing of fractions, the

equation we have used becomes

x -p.x^y +^x
n

-y . . . ±pny
H = 0.

We give x
n
a coefficient for the sake of symmetry ;

and we find

it convenient to give the terms the same coefficients as in the

binomial theorem
;
and so write the equation

a
Q
x
n
+ na^x^y + \n [n

—
1) a x

n~2
y* + . . .4 na

n_ xxy
n~ x

-f any
n =

0,

or, as this may be for shortness represented

(
ao>«i> '•• «.)&*)= 0;

One advantage of using the binomial coefficients
is,

that thus

all functions of the differences of the roots will, when expressed
in terms of the coefficients, be such that the sum of the numerical

coefficients will be nothing. For we get the sum of the nume-

rical coefficients by making a = a
l

= a
2
= &c. = 1

;
but on this

supposition all the roots of the original equation become equal.,

and all the differences vanish.

When we speak of a symmetric function of the roots of the

homogeneous equation, we understand that the equation having
been divided by a y\ the corresponding symmetric function has

been formed of the coefficients —
,
—2

, &c. of the equation in -
,

and that it has been cleared of fractions by multiplying by the

I
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highest power of a in any denominator. In this way, every

symmetric function will be a homogeneous function of the co-

efficients a
0l

a
t ,
&c.

;
for before it was cleared of fractions, it was

a homogeneous function of the degree 0, and it remains homo-

geneous when every term is multiplied by the same quantity.

Or we may state the theory for the symmetric functions of the

roots of the homogeneous equation, without first transforming it

to an equation in -
. If one of the roots of the latter equation

y
be a, that

is,
if a factor of the function is x - ay, then it is

evident that the homogeneous equation is satisfied by any

system of values x\ y for which we have x =ay', since it

is manifest that we are only concerned with the ratio x : y '.

And since the equation divided by y
n

is resolvable into factors,

so the homogeneous equation is plainly reducible to a product
of factors (y'x

—
yx) (y"x —yx") (y'"x

—
yx"), &c. Actually mul-

tiplying and comparing with the original equation, we get

a = y'y'y" &c, na
1
=—

2x'y"y'" &c, \n (n
—

1) a
2
= Hx'x'y'" &c,

a
n
= ± x'x'x" &c, na

n_ A

= + 2y'x"x" &c.

By making all the y's
= 1

,
these expressions become the ordinary

expressions for the coefficients of an equation in terms of its

roots, x\ x'\ &c. And conversely, any symmetric function ex-

pressed in the ordinary way in terms of the roots x\ x\ may
be reduced to the other form, by imagining each x divided by
the corresponding y\ and then the whole multiplied by such

a power of y'y", &c.
t
as will clear it of fractions. Thus the

sum of the squares of the differences 2 [x — x')
1 becomes

2 [x'y"
—

y'x"y
2

y'"
2

y""* &c. And generally any function of

the differences will consist of the sum of products of deter-

minants of the form (x'y" —y'x") {x'y'" —y'x") &c, by powers
of y\ y'\ &c.

62. The differential equation which we have given for

functions of the differences of the roots requires to be modified

when the equation has been written with binomial coefficients.

Thus, if in the equation a x
n
+ na

x
xn~l

y -f &c. = 0, we write x + \

for a?,
the new a

t
becomes a

x
-f \a^ a

2
becomes a

2 -f 2a
1
\ + a X\
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a
H
becomes a

3
+ 3\a

2
+ %X1

a
1
4 X3

a
, &c, and any function

</>
of

the coefficients is altered by this substitution into

* +x
(

fl

-2;
-^'2a^+ Sa2^+ &C «

)
+ &C '

Any function then of the differences, since it remains unaltered

when for x we substitute x + X, must satisfy the equation

In like manner any function which remains unaltered, when for

y we substitute y -f X, must satisfy the equation

Functions of the latter kind are functions of the differences of

the reciprocals of the roots, and in the homogeneous notation

consist of products of determinants of the form xy" —y'x\ &c,
by powers of x\ x\ &c. Functions of the determinants

x'y"
—
y'x" alone, and not multiplied by any powers of the a?'s

or the
2/'s,

will satisfy both the differential equations.

63. It is to be observed that the condition

aa
}

] aa
2

2 aa
3

is not only necessary but sufficient, in order that <£ should be

unaltered by the transformation x + X for x. We have seen

that the coefficient of X in the transformed equation then

vanishes, and the coefficient of X2

is,
without difficulty, found

to be

„/* +3J± + 6
J* +&c . + ±(a

J
+2a

*
+&c

"da. 'da.
2
du. l.'2\"da. 'da )\

where, considering the second term as denoting—— A.A(£, the

a
0l tfj,

&c. which appear explicitly in Acj* are not to be differen-

tiated. But this being so, the two terms together are = —-
_ A . A<£,

JL»iS

where A.A</> denotes now the complete effect of the operation A

upon A<j>. For when we operate with the symbol on itself,
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the result will be the sum of the terms got by differentiating

the a
t1
a

2 , &c., which appear explicitly, together with the result

on the supposition that these a,, «2 , &c, are constant. Thus, then,

Ac/) vanishing identically, we have A.A<£ = 0, viz. the coefficient

of X* vanishes. So in like manner, for the coefficients of the

other powers of \.

Ex. To form for the cubic a^ + Za^y + Za^xy
1 + a^3

,
the function

2 (*!&
-
x#i)

2
(x#s

-
xjy2y (x^ -

xtf-)
2
.

This can be derived from Ex. 2, p. 48, or else directly as follows. The function is to

be of the order 4 and weight 6. It must therefore be of the form

Aa3a3a a + Ba3a^a t
a + Ca^^a^ai + Da2a2a2av + Ea^ty&flp »

Operate with a -r- + 2a, -=— + 3a2 -v— , and we get
a«!

* da2
' da3

&

(B+ 6A) a3a2a a + (3C+ 25) a3al
a

l
a +(2E+GD+ 3B) a2ata l

a + (4-E+3C) a2a 1
a

l
n

l
= 0.

Equating separately to the coefficient of each term, and taking A = 1, we find

B = -6, C=4, Z> = 4, E = -3.

64. M. Serret writes the operation a
-j- + &c. in a compact

form, which is sometimes convenient. If we imagine a fictitious

variable
£, of which the coefficients a

, a„ &c, are such func-

tions, that

da. da„ da. s

di
=a«

z?
=2^

af
-****

then evidently -?=an ^
>
- + 2a, /- + 3a„

-~- + &c.J
dg

°

da^
' l da

2

2 da
3

In like manner na. -~ + &c. may be written in the compact

form -j- ,
where ij is a variable, of which a

,
a

x ,
&c. are sup-

posed to be such functions, that

da da . . p

65. The above operators

d n d d , ,, d
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may be represented by

{»«„!, Kl
respectively, viz. the first of them operating on (a ,

a
i
... «J (a?, y)"

produces the same effect as yhK ,
the second the same effect as

xS
y

. If the function be expressed in terms of its roots

= a (x- mj)(x-fy) ...
,

then the two operators may be transformed into symbols

operating on the roots, viz. we have

the proof of which may be supplied without difficulty.

LESSON VIII.

ORDER AND WEIGHT OF ELIMINANTS.

66. When we are given k homogeneous equations in k

variables (or, what comes to the same thing, k non-homoge-
neous equations in k—1 variables) it is always possible so to

combine the equations as to obtain from them a single equation

A = 0, in which these variables do not appear. We are then

said to have eliminated the variables, and the quantity A is

called the Eliminant* of the system of equations. Let us take

the simplest example, that which we have already considered in

the first lesson, where we are given two equations of the first

degree ax + b = 0, ax + V = 0. If we multiply the first equation

by a', and the second by a, and subtract the first equation from

the second, we get ab' — a'b = 0, and the quantity ab' - a'b is the

eliminant of the two equations. Now it will be observed, that

we cannot draw the inference ab' - a'b = unless the two given

equations are supposed to be simultaneous, that is to say, unless

it is supposed that both can be satisfied by the same value

of x. For evidently when we combine two equations (a?)
=

0,

Y [x)
=

0, and draw such an inference as l<p (x) -f myjr [x)
=

0,

* Eliminanis are also called resultants.
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it is assumed that x means the same thing in both equations.
It follows then that ati -db = is the condition, that the two

equations can be satisfied by the same value of x, as may
also be seen immediately by solving both equations for x,

and equating the resulting values. And so generally, if we
are given any number of equations Z7= 0, V= 0, W= 0, &c,
we may proceed to combine them, and draw an inference such

as IU+ mV+nW=0
} only if the variables have the same values

in all the equations. And, if by combining the equations, we
arrive at a result not containing the variables, this will vanish if

the equations can be satisfied by a common system of values

of the variables, and not otherwise. Hence for any such system
of equations the eliminant may in general be defined as that

function of the coefficients, whose vanishing expresses that the equa-

tions can be satisfied by a common systein of values of the variables. )

67. We have now to show how elimination can be performed,
and what is the nature of the results arrived at. We commence

with two equations written in the non-homogeneous form

x
m - pt

x*~x

+pa
at*~* — &c. = 0, or

<f> [x)
=

0,

*" - q,x~
x 4 q,x

n-'z - &c. = 0, or ^ [x]
= 0.

The eliminant of these equations is,
as we have seen, the condi-

tion that they should have a common root. If this be the case,

some one of the roots of the first equation must satisfy the

second. Let the roots of the first equation be a, /3, 7, &c,
and let us substitute these values successively in the second

equation, then some one of the results
yfr (a), -yjr (/3),

&c. must

vanish, and therefore the product of all must certainly vanish.

But this product is a symmetric function of the roots of the first

equation, and therefore can be expressed in terms of its coeffi-

cients, in which state it is the eliminant required. The rule

then for elimination by this method, is to take the m factors

yjr (a)
- a

w -
^a"

-1
-f q2

a~* - &c,

ir(8)=fi
n

-qfi
n- i

+q2
8n

-*-&C,

yjr (y)
= y

n - q^ 1 + qry
n~2 - &C, &C,

to multiply all together, and then substitute for the symmetric
functions (a£y)

n

, &c, their values in terms of the coejficicnts of

the first equation.
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Ex. To eliminate a; between x2 — p x
x +p2

— 0, x2 —
qx
x + q2 = 0. Multiplying

(a
2 -

fta + ft) (£
2 -

ft/3 + ft), we get

a2
/3

2 -
fta/3 (a + /3) + ft (a

2 + /3
2
) + ft

2
a/3

-
ftft (a + (3) + q

2
;

and then substituting a + /3 =j?1} a/3 =^2 ,
a2 + /3

2 =
/>!

2 — 2p2,
we have

i>2
2
-PiPtfi + ftW ~

2p2) +iMi2 -
2iftj>i + ?2

2
»

or (A -
ft)

2 + CPi
-

ft) CPi&
~

Psfc).

which is the eliminant required.

68. We obtain in this way the same result (or at least

results differing only in sign), whether we substitute the roots

of the first equation in the second, or those of the second in the

first. In other words, if
a', /3', 7', &c. be the roots of the

second equation, the eliminant may be written at pleasure as

the continued product of
</> (a), <$> (/3'), </> (7'), &c, or as the

product of
yfr (a), ^ (/3), yjr (7), &c. For remembering that

<j) [x)
=

{x
—

a) (x
—

yS) (x
—

7), &c, the first form is

(a'
-

a) (a'
-
0) (a'

-
7) &c. {&

-
a) (/3'

-
/3) (/3'

-
7) &c,

and the second is

(«
_

«') (
a _ p) (

a _ yj &c. (0
-

«') 09
- P) [0

-
i) &c.

In either case we get the product of all possible differences

between a root of the first equation and a root of the second
;

and the two products can at most differ in sign.

69. If the equations had been given in the homogeneous

form, with or without binomial coefficients,

a xm + ma
x
x

nx~x

y 4- \m (m
—

1) a
2
x
m~2

y'
2 + &c. = 0,

b x
tl + nb^-'y + \n [n

-
1) \x

n

~Y + etc. = 0,

we can reduce them to the preceding form by dividing them re-

spectively by a
Qy'\ b y\ when we have p%

= l

, qt

= —
-j-

1

,
&c.

We substitute then these values for j>^ q x1
&c. in the result

obtained by the method of the last article, and then clear of

fractions by multiplying by the highest power of a
,
or b in

any denominator. Thus the eliminant of a x* + 2a^y + a^y
2

,

b x2 + 2\xy + b
2y\ obtained in this manner from the result of

Ex., Art. 67, is

(«<&
- aAT + ± («A - aJ\) («A -

«A)-
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It is evident thus that the eliminant is always a homogeneous

function of the coefficients of each equation. For before we
cleared of fractions, it was evidently a homogeneous function

of the degree 0, and it remains homogeneous when every term

is multiplied by the same quantity.

The same thing may be seen by applying to the equations

directly the process of Art. 67. Let the values which satisfy

the first equation be xy\ x'y'\ &c.
; then, if the equations have

a common factor, some one of these values must satisfy the

second equation. We must then multiply together

{bQ
x'

n
4 nb^hj + &c.) (h x"

n
+ n\x"

n

-y + &c.) (&c),

which is a homogeneous function of the coefficients b
0l b^ ... ot

the second equation, and of course remains so after substituting

for the symmetric functions [x'x" &c.)
n
&c. their values in terms

of the coefficients of the first equation. And in the same manner

the function is homogeneous as regards the coefficients of the

first equation.

70. The. eliminant o^ two equations of the mtb
and n

th
orders

respectively ,
is of the n

b
order in the coefficients of the first equa^

tion, and of the mth
in the coefficients of the second.

For it may be written either as the product of m factors

y\r (a), yjr (/3), &c, each containing the coefficients of the second

equation in the first degree, or else as the product of n factors

<f> (a), <f) (/3'), &c, each containing in the first degree the coeffi-

cients of the first equation. Or confining our attention to the

form
(yfra) (-v/r/5),

&c. we can see that this form, which obviously
contains the coefficients of the second equation in the degree

w?, contains those of the first in the degree ft,
since the sym-

metric functions which occur in it may contain the ft
th

,
and no

higher, power of any root (Art. 58).

71. The weight of the eliminant is mn ; that is to say,
the sum of the suffixes in every term is constant and =mn.
For if each of the roots a, (3

•

a', /3',
&c. be multiplied by the

same factor X, then since each of the mn differences a — a' (see
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Art. 68) is multiplied by this factor X, the eliminant will be

multiplied by \mn . But the roots of the two equations will be

multiplied by X if for^> t , qx
we substitute Xp Xq t ; for^><2 , q2 ;

\*J>9,
X'

2

^ 2 ;
&c. We see then, that if we make this substitution

in the eliminant, the effect will be that every term will be

multiplied by \mn
; or, in other words, the sum of the suffixes

in every term will be ran. The same thing may also be seen

to follow from the principle of Art. 57. In
yfr (x) the sum of

the index of every term and the suffix of the corresponding
coefficient is n

;
that is to say, yjr (x) consists of the sum of a

number of terms, each of the form Qn_f&» If, then, we take any
term at random in each of the factors

yjr (a), yjr (/3), &c, the

corresponding term in the product will be ^,,_,^t_j?M_*av3-y, &c,
and if we combine with this all other term3 in which the same co-

efficients of the second equation occur, we get qn. i^n^jqn..^0L
i

j3
jf
y
k

1

&c. The sum of the suffixes of the ^'s is n - i+n-j+n-k+&c. i

or since there are m factors, the sum is mn — {i-\-j-\-h + &c).

But, by Art. 57, the sum of the suffixes of the j?'s in the ex-

pression for SoOSV) &c. is i+j-\-7c + &c. Therefore the sum
of both sets of suffixes is mn, which was to be proved.

The result at which we have arrived may be otherwise stated

thus:* Ifp^ q t
contain any new variable z in the first degree ;

tfPtf °2 con tain & in the second and lower degrees ; if p^ q3
in

the third, and so on ; then the eliminant will in general contain

this variable in the mnm degree.

It is evident that the results of this and of the last article are

equally true if the equations had been written in the homo-

geneous form a x
m
+ &c, because the suffixes in the two forms

mutually correspond. And again, from symmetry, it follows that

the result of this article would be equally true if the equations
had been written in the form a^1

-+ ma^x^y -f &c, where the

suffix of any coefficient corresponds to the power of x which

it multiplies, instead of to the power of y.

* Or again thus : if in the eliminant we substitute for each coefficient pa ,
the term

x* which it multiplies in the original equation, every term of the eliminant will be

divisible by xmn . Or, in the homogeneous form, if we substitute for each coefficient

aa the term xxy™-
a

,
which it multiplies, every term of the eliminant will be divisible

by xmny
mn

.

K
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72. Since the eliminant is a function of the differences

between a root of one equation and a root of the other, it

will be unaltered if the roots of each equation be increased by
the same quantity j

that is to say, if we substitute x -f- \ for x

in each equation. It follows then, as in Art. 60, that the elimi-

nant must satisfy the differential equation

dA
,

. dA ,
. dA e«^ + («

-
1)A d

~ + («
-

2) P,^ + &c

dA ,
. dA p

or, as in Art. 62, if the equations had been written with

binomial coefficients, we have

dA n dA p t dA ^ dA

73. Given two homogeneous equations between three variables,

of the mth and nih
degrees respectively, the number of systems of

values of the variables which can befound to satisfy simultaneously

the two equations is ?nn.%

Let the two equations, arranged according to powers of x, be

ax
m
+ (by + cz) x

m~x

+ [dif + eyz + fz
2

)
xm

~2 + &c. = 0,

ax 1

+ (b'y + cz) x
n-x

-f (d'lf + eyz +fz'
2

)
x"~* + &c. = 0.

If now we eliminate x between these equations, since the co-

efficient of x
1"'1

is a homogeneous function of y and z of the first

degree, that of xni~2
is a similar function of the second degree,

and so on,
—it follows from the last Article that the eliminant

will be a homogeneous function of y and z of the m?i
tu

degree.

It follows then that mn values of?/ and z^[ can be found whieh

will make the eliminant = 0. If we substitute any one of these

in the given equations, they will now have a common root when

* These equations may be considered as representing two curves of the mth and

nth degrees respectively; the geometrical interpretation of the proposition of this

Article being, that two such curves intersect in mn points. The equations are re-

duced to ordinary Cartesian equations by making z — 1.

f The reader will remember that when we use homogeneous equations, the ratio

of the variables is all with which we are concerned. Thus here, z may be taken

arbitrarily, the corresponding value of y being determined by the equation in y : z.
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solved for x (since their eliminant vanishes) ;
and this value of

a?,

combined with the values of y and z already found, gives one

system of values satisfying the given equations. So we plainly

have in all mn such systems of values. We shall, in Lesson X.,

give a method by which, when two equations have a common

root, that common root can immediately be found.

Ex. To find the coordinates of the four points of intersection of the two conies

ax2 + by
2 + cz2 + 2fyz + 2gzx + 2hxy = 0, a'x2 + b'y

2 + c'z2 + 2f'yz + 2g'zx + 2h'xy = 0.

Arrange the equations according to the powers of x, and eliminate that variable,

as in Art. 67
;
then the result is

!«&')
y
2 + 2 (a/') yz + (ac') z2

}

2

+ 4 [(ah') y + {ay') z] [(bh') f + {(by') + 2 (fh')} y
2z + {(ch') + 2 (fg')} z2y + (eg') «•]

= 0,

where, as in Lesson I., we have written (ab') for ah' — a'b. This equation, solved for

y : z, determines the values corresponding to the four points of intersection. Having
found these, by substituting any one of them in both equations, and finding their

common root, we obtain the corresponding value of x : z. "We might have at once

got the four values of x : z by eliminating y between the equations, but substitution

in the equations is necessary in order to find which value of y corresponds to each

value of x. By making z = 1, what has been said is translated into the language of

ordinary Cartesian coordinates.

74. Any symmetric functions of the mn values which simul-

taneously satisfy the two equations can be expressed in terms of
the coefficients of those equations.

In order to be more easily understood, we first consider

non-homogeneous equations in two variables. Then it is plain

enough that we can so express symmetric functions involving

^
either variable alone. For, eliminating y, we have an equation
in x, in terms of whose coefficients can be expressed all sym-
metric functions of the mn values of x which satisfy both equa-
tions. Similarly for y. Thus, for example, in the case of two

conies, xty t
&c. being the coordinates of their points of intersec-

tion, we see at once how to express such symmetric functions as

x
,
+ xu + K, + *i„,i y\ + tf„ + V\u + tfuu, &o.,

and the only thing requiring explanation is how to express sym-
metric functions into which both variables enter, such as

X,y, + XuVu + XmVm + Xiu,ytiu*

To do
this, we introduce a new variable, t = \x + fiy, and by the

help of this assumed equation eliminate both x and y from the

given equations. Thus y is immediately eliminated by substi-
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tuting in both its value derived from t = \x + py, and then we

have two equations of the mth and n{h
degrees in

se,
the eliminant

of which will be of the rnn^ degree in
t,

and its roots will be

obviously \x
t

-f- /jLyt1
\xu + fxyu1 &c, where x

ty t ,
xuytl

are the

values of x and y common to the two equations. The coeffi-

cients of this equation in t will of course involve X and /*. We
next form the sum of the kih

powers of the roots of this equa-
tion in t

1
which must plainly be = (\x t

-\- fiyt)

k+ (\x
ti
+ f*>yn )

k+ &c.

The coefficient, then, of \* in this sum will be 2a?,* * the coeffi-

cient of %i~
l

p gives us 2x
i

k~1

yn and so on.

Little need be said in order to translate the above into the

language of homogeneous equations. We see at once how to

form symmetric functions involving two variables only, such as

Sy#
*

l(
«Wi*uiii f°r these are found, as explained, Art. 61, from the

homogeneous equation obtained on eliminating the remaining
variable

;
the only thing requiring explanation is how to form

symmetric functions involving all these variables, and this is

done precisely as above, by substituting t = \x + fiy.

Ex. To form the symmetric functions of the coordinates of the four points

common to two conies. The equation in the last Example gives at once

y.VuV,,,]),,,,
=

{ac'f + 4 iP-9') ic9
f

) i *A<*«A«j = (ah'f + 4
{
a]l

') {!>¥) ;

and from symmetry, x
,
x

4,
x

l ,i
x

ll„ — {be')
2 + 4 ibf) {cf),

- 2 (yty,ylll
*

lJ = ± K«0 W) + («*0 W) + W)W + 2 {ay') {Jy% &e.

To take an example of a function involving three variables, let us form

which corresponds to 2 {x'y') when the equations are written in the non-homogeneous
form.

By the preceding theory we are to eliminate between the given equations, and

t = Xx + fiy ;
and the required function will be half the coefficient of Xp in

2 (<W*,„e*,„,)i If the result of elimination be

At* + {BX + Cfi) t
3z + (m2 + EKfi + />2

)
f-z 1 + &c.

2 1ffj*»jPuui = (BX + cv)2 ~ 2A i™ + £V + Ff\
and 2 {xlyl

zl
ll
z

,-
lll
z l

lll ')
= BC'- AE.

By actual elimination

A = (ab'f + 4 {ah') {bh'), 5 = 4 {{ba') {be/') + (&/') {ah') + {bh') (of) + 2 (bh') {yh%
(7=4 {{ab') {af>) + {ay') {bh') + {ah') {by') + 2 {aV) {Jh%

E = 4 {{ac') {bh') + {be') {ah')
- 2 (aj ') (A/0

- 2 {by') {hy') + 4 (hf) {hy%

75. To form the eliminant of three homogeneous equations in

three variables of the mth
,
nth

,
and p

xh
degrees respectively.

The vanishing of the eliminant is the condition that a system
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of values of
a*, ?/,

z can be found to satisfy all three equations.*

When this, then, is the case, if we solve from any two of the

equations, and substitute successively in the remaining one the

values so found for
a?, y, z, some one of these sets of values must

satisfy that equation, and therefore the product of all the results

of substitution must vanish. Let, then, x\ y\ z'
; x'\ y'\ z\ &c.

be the systems of values which satisfy the last two equations, and

which (Art. 73) are np in number: we substitute these values

in the first, and multiply together the np results <£ (x, ?/, s'),

jf> [x'\ y'\ »"), &c. The product will plainly involve, only sym-
metric functions of x\ y\ z\ &c, which (Art. 74) can all be

expressed in terms of the coefficients of the last two equations ;

and, when they are so expressed, it is the eliminant required.

76. The eliminant is a homogeneous function of the np
th order

in the coefficients of the first equation ; of the mp
th in those of the

second ; and of the mnth in those of the third.

For each of the np factors
<f> [x\ y\ z) is a homogeneous

function of the first degree in the coefficients of the first equation;

and the expression of the symmetric functions in terms of the

coefficients only involves coefficients of the last two equations,

from solving which x\ y\ z\ &c. were obtained. The eliminant

is therefore of the np
th

degree in the coefficients of the first

equation; and in like manner its degree in the coefficients of

the others may be inferred.

77. The weight of the eliminant will be mnp ; that is to say,

If all the coefficients'in the equations which multiply the first power

of one of the variables, z, he affected with a suffix 1, those which

multiply z
l
with a suffix 2, and so on; the sum of all the suffixes

in each term of the eliminant will be equal to mnp. In other

words: If all the coefficients which multiply z contain a new

variable in the first degree ;
—

if those which multiply z
l
contain it

in the second and lower degreesy and so on; then the eliminant

will contain this variable in the degree mnp.

* If the three equations represent curves, the vanishing of the eliminant is the

condition that all three curves shall pass through a common point.
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This is proved as in Art. 71. In the first place, it is evident

that if a homogeneous equation of the mth
degree be satisfied by-

values
a?', y\ z

;
and if the equation be altered by multiplying

each coefficient by a power of X, equal to the power of z,
which

the coefficient multiplies, then the equation so transformed will

be satisfied by the values Xx
', Xy\ z

; or, in general, that the

result of substituting Xx\ Xy\ z in the transformed equation is

Xm times the result of substituting x\ y\ z in the untransformed.

Thus, take the equation xA + y
3 — z

3 — z
lx — zy\ the transformed

is x3 + y
3 - XV — X2

z
2x — Xzy* ;

and obviously the result of sub-

stituting Xx, Xy\ z in the second is X3
times the result of

substituting x\ y\ z in the given equation. If, then, the three

given equations be all transformed by multiplying each coeffi-

cient by a power of X equal to the power of £, which the

coefficient multiplies, then it follows, that \ix\y\z be one of

the system of values which satisfy the two last of the original

equations, then the transformed equations will be satisfied by

fix, Xy\ z') 1
and the result of substituting these values in the

first will be \m
(f> (x\ y\ z). The eliminant, then, which is the

product of np factors of the form
<f> (x\ y\ z) will be multiplied

by Xmnp . If, then, any term in the eliminant be afip^ &c,
where the suffix corresponds to the power of z,

which the

coefficient multiplies, since the alteration of ak into Xk

a^ h
l

into Xl

b[, &c, multiplies the term by Vmp
,
we must have

k-\- l + &c. = mnp. Q.E.D.

78. It is proved, in like manner, that three equations are in

general satisfied by mnp common values
;
that any symmetric

function of these values can be expressed in terms of their co-

efficients
;
and that we can form the eliminant of four equations

by solving from any three of them, substituting successively in

the fourth each of the systems of values so found, forming the

product of the results of substitution, and then, by the method

of symmetric functions, expressing the product in terms of the

coefficients of the equations. In this way we can form the

eliminant of any number of equations ;
and we have the follow-

ing general theorems: The eliminant of k equations in k- 1

indent variables is a homogeneous function of the coefficients
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of each equation, whose order is equal to the product of the degrees

of all the remaining equations. If each coefficient in all the

equations he affected with a suffix equal to the power of any one

variable which it multiplies, then the sum of the suffixes in every

term of the eliminant will be equal to the product of the degrees

of all the equations. And, again, if we are given k equations

in h variables, the number of systems of common values of the

variables, which can be found to satisfy all the equations, will be

equal to the product of the orders of the equations.

LESSON IX.

EXPRESSION OF ELIMINANTS AS DETERMINANTS.

79. The method of elimination by symmetric functions is,

in a theoretical point of view, perhaps preferable to any other,

it being universally applicable to equations in any number^of

variables
; yet as (in the absence of tables of symmetric func-

tions)^ it is not very expeditious in practice, and does not

yield its results in the most convenient form, we shall in

this Lesson give an account of some other methods of elimi-

nation. The following is the method which most obviously

presents itself. It is in substance identical with what is called

elimination by the process of finding the greatest common
measure. We have already seen that the eliminant of two

linear equations ax + b = 0, ax + b' = is the determinant

ab' — bd = 0. If now we have two quadratic equations

<x(ax
A

+ bx + c)= 0, (ax
1 + b'x + c =

0^)

^

multiplying the first by a', the second by a, and subtracting,
we get ct*b ¥+afc«.-o-*. b'^aac'

[ab') x + (ac')
=

;

and, again, multiplying the first by c, the second by c, sub-

tracting, and dividing by x, we get

(ac) x + (be)
= 0.
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The problem is now reduced to elimination between two linear

equations, and the result is

(ac')
2

+(ba')(lc')=0.

80. So, again, if we have two cubic equations

ax3 + bx'
2

-f ex -+ d = 0, ax3
+ JV + c a? + c?' = 0,

we multiply the first by a, the second by #, and subtract;

and also multiply the first by d\ the second by d, subtract and

divide by x. The problem is thus reduced to elimination be-

tween the two quadratics

(ab') x
2
-f (ad) x + (ad')

=
0, (ad') x

l + (bd') x + (cd')
= 0.

By the last article the result is

{(ad'f-(ab') (cd') Y+{ (ad') (ad)
-

(ab') (bd') } {(ad') (db')
-
(ad) (dd) }=0.

Now it is to be observed that the equation

(ab') (cd') + (ad) (db') + (ad') (be)
=

is identically true. Consequently when we multiply out, the

preceding result becomes divisible by (ad), and the reduced

result is

(ad')
3 - 2

(act) (ab') (cd')
-

(ad') (ad) (bd')

+ (ac'f (cd
1

) + (bd'f (ab')
-

(ab') (bd) (cd')
= 0.

The reason that in this process the irrelevant factor (ad') is in-

troduced is that, if ad' = dd, and therefore a to a in the same

ratio as d to d\ we must get results differing only by a factor,

if from the first equation multiplied by a we subtract the second

equation multiplied by a, or, if from the first equation multiplied

by d\ we subtract the second equation multiplied by d. Thus,
on the supposition (ad')

—
0, even though the original two cubics

have not a common factor, the two quadratics fo which we
reduce them would have a common factor. la general then,

when we eliminate by this process, irrelevant factors are intro-

duced, and therefore other methods are preferable.

81. EuJer^s Method. If two equations of the mi)x and nth '

degrees respectively have a common factor of the first degree,

we must obtain -identical results, whether we multiply the first
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equation by the remaining n — 1 factors of the second, or the

second by the remaining m - 1 factors of the first. If then we

multiply the first by an arbitrary function of the (n
—

l)
th

degree,

which, of course, introduces n arbitral constants; if we multiply

the second by an arbitrary function of the [in- l)
th

degree, intro-

ducing thus m constants; and if we then equate, term by term,

the two equations of the [m + n — l)
th

degree so formed, we shall

have ?n -f n equations, from which we can eliminate the m + n

introduced constants, which all enter into those equations only

in the first degree ;
and we shall thus obtain, in the form of

a determinant, the eliminant of the two given equations.

Ex. To eliminate between ax2 + bxy + cy
2 —

0, a'x2 + b'xy + c'y
2 — 0.

We are to equate, term by term,

{Ax + By) {ax
2 + bxy + cy

2
)
and {A'x + B'y) {a'x

2 + b'xy + c'y
2
).

The four resulting equations are

Aa - A'a! = 0,

Ab + Ba - A'b' - B'a' = 0,

Ac + Bb - A'c' - B'b' = 0,

Be -B'c' =0,

from which eliminating A, B, A', B', the result is the determinant

a,
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Ex. To find the conditions that

ax3 + bx2y + cxy
2 + dy

3 = 0, a'x3 + b'x2y + c'xy
2 + d'y

3 = 0,

should have two common factors. Equating

(Ax + By) (ax
3 + bx2y + cxy

2 + dy
3
)
= (A'x + B'y) (a'x

3 + b'x2y + c'xy
1 + d'y

3
),

we have Aa — A'a' = 0,

Ab + Ba - A'b' - B'a' = 0,

Ac + Bb - A'c' - B'V = 0,

Ad + Bc - A'd' - B'c' = 0,

Bd -B'd'-O,

from which, eliminating A, B, A', B', we have the system of determinants [for the

notation used, see Art. 3J,

. b, c, d,

a, b, c, d

', b', c', d',

, a', b', c', d'

83. Sylvester's dialytic method. This method is identical in

its results with Euler's, but simpler in its application, and more

easily capable of being extended. Multiply the equation of the

mth

degree by x~ \ x
n~'2

y, x
n~3
y\ &c.

;
and the second equation

by a?'""
1

, x'^y, xm
~3
y\ &c., and we thus get m-fw equations,

from which we can eliminate linearly the m +n quantities

xm+n'\ xvmy, xm+n~y, &c, considered as independent un-

knowns. Thus, in the case of two quadratics, multiply both

by x and by ?/,
and we get the equations

ax3 + bx*y •+ cxy
2 —

0,

axl

y + bxy
2

-f cy
s =

0,

a'x
3 + b'x

2

y + c'xy
2 =

0,

a'x^y + b'xy
2 + c'y

3 =
0,

from which, eliminating .t
3

, x^y, xy
2

, y
3

,
we get the same deter-

minant as before

a, 5, c,

#, bj c

a', b\ c

a', b\ c

In general, it is evident by this method, that the eliminant

is expressed as a determinant of which n rows contain the coeffi-

cients of the first equation, and m rows contain the coefficients
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of the second. Thus we obtain the rule already stated for the

order of the eliminant in the coefficients of each equation.

84. Bezout^s method. This process also expresses the elimi-

nant in the form of a determinant, but one which can be more

rapidly calculated than the preceding. The general method

will, perhaps, be better understood if we apply it first to the

particular case of the two equations of the fourth degree

ax4+ bx
3

y+ cx
2

y
2+ dxy

3+ ey
4=

0, a'x
4+ b'x

3

y+ c'x*y*+ d'xy
3+ e'y

4= 0.

Multiplying the first by a, the second by a, and subtracting,

the first term in each is eliminated, and the result, being divisible

ty y, gives

(ab') x
3 + (ac') x

2

y + (ad!) xy
2 + (ae) y

3 = 0.

Again, multiply the first by ax + b'y, and the second by ax + by,

and the two first terms in each are eliminated, and the result,

being divided by y
2

, gives

(cut) x
3 + {(ad') + (be')}

x'
2

y + {(ae) + (bd')} xtf + (be) if
= 0.

Next, multiply the first by ax2 + b'xy + cy
l

;
and the second by

ax* + bxy -f cif ; subtract, and divide by y
3

;
when we get

(ad') x
3 + {(ae') + (bd)} x

2

y + {(be') + (cd')} xy'
2

-f (ce') f = 0.

Lastly, multiply the first by ax3
-f b'x

l

y + c'xy
2 + d'y

3

;
the second

by ax3 + bx
l

y + cxy
2 + dy

3

; subtract, and divide by y
4

;
when we

get

(ae) x
3 + (be) x

2

y + (ce) xy
2 + (de) y

3 = 0.

From the four equations thus formed, we can eliminate linearly

the four quantities, x3

,
x2

y, xy\ y
3

,
and obtain for our result the

determinant

(ab'), (ac) , [ad') , (ae)

(ac'), (ad') + (be') } (ae) + (bd') , (be')

(ad'), (ae) +(bd'), (be) + (cd'), (ce)

(ae'), (be'), (ce'), (de')

85. The process here employed is so evidently applicable to

any two equations, both of the n
tb

degree, that it is unnecessary
to make a formal statement of the general proof. On inspection

of the determinant obtained in the last article, the law of its
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formation is apparent, and we can at once write down the deter-

minant which is the eliminant between two equations of the

fifth degree by simply- continuing the series of terms, writing an

[af) after every (ae') 1
&c. Thus the eliminant is

[ab'),(ac') ,K) ,K) , (of)

(ac') y (ad')+(bc\ (ae')+(bd
f

) , (a/) + (&') , [If)

{ad'), (ae
,

)+(W),(a/)+ (be')+ (cd\ (bf)+(ce') , (cf)

M,(«/)+W (¥')+ feO, (cfH(de'),(df)

(«/), (¥'), (<?, WTJiWJ
It appears hence that in the eliminant every term must con-

tain a or a'
;

as was evident beforehand, since if both of these

were =0, the equations would evidently haVe the common

factor y = 0.

It appears also that those terms which contain a or a only in

the first degree are [ah') multiplied by the eliminant of the equa-
tions got by making a and a = in the given equations. For

every element in the determinant written above must contain a

constituent from the first row, and also one from the first column
;

but as all the constituents of the first row or column contain a or

a, the only terms which contain a and d in only the first degree
are [ah') multiplied by the corresponding minor; and this, when
a and a! are made = 0, is the next lower eliminant.

86. It only remains to shew that the process here employed
is applicable when the equations are of different dimensions;

and, as before, we commence with a particular example, viz.,

the equations

ax* + bx
3

y + cx
z

y
2

-f dxy
s
4- ey*

=
0, aV -f b'xy + cy

l — 0.

Multiply the first by a', the second by ace
2

,
and subtract, when

we have

(ba) x
3 + (ca) xhj f (dd) xtf + (ed) y

3 = 0.

In like manner, multiply the first by dx-\ b'y, and the second by
[ax + by) .t

2

,
and we get

[ca') x
3 + {[cb') + (da!)} x*y + {[db') + (ed)} xy

2 + (eb') f = 0.

This process can be carried no further
;
but if we join to the

two equations just obtained the two equations got by multiply-
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ing the second of the original equations by x and by y 1
we have

four equations from which to eliminate a?
3

,
xl

y, xy\ y*.

And in general, when the degrees of the equations are un-

equal, m being the greater, it will be found that the process of

Art. 84 gives us n equations of the (ra-])
th

degree, each of

these equations being of the first order in the coefficients of each j

equation : to which we are to add the m - n equations found by

multiplying the second equation by x
m~n~1

,
x

l ~n

~*y, &c, and we
can then eliminate the m quantities cc

M_1
,
x
m
~*y, &c, from the m

equations we have formed. Every row of the determinant con-

tains the coefficients of the second equation, but only n rows

contain the coefficients of the first. The eliminant is, therefore,

as it ought to be, of the n
b

degree in the coefficients of the first,

and of the mth
in those of the second equation.

87. Cayley's statement of Bezout's method. If two equations

<j> (xj y) 1 yjr (as, y) have a common root, then it must be possible

to satisfy any equation of the form
<£>

-f \yjr
—

0, independently
of any particular value of X. Take then the equation

$ (x, y) yjr [x\ y')
-

<f> (x\ y') ^ {a?, y) -*0 ;

which, if
<j)

and
yfr

have a common factor, can be satisfied inde-

pendently of any particular values of x and y'. We may in the

first place divide it by xy
—
yx\ which is obviously a factor : then

|

equate to the coefficients of the several powers of x\ y ;
and

then eliminate the powers of x and y as if they were independent

variables, when the result comes out in precisely the same form

as by the method of Art. 84.

Ex. To eliminate between ax2 + bxy + cy
2 = 0, a'x2 + Vxy + c'y

2 = 0,

(ax* + bxy + cy
2
) (aV2 + b'x'y' + c'y'

2
)
-

(a'x
2 + b'xy + c'y

2
) (ax'

2 + bx'y' + cy'
2
),

when divided by xy'
—

yx' gives

{(ab') x + (ac') y) x + {(ac') x + (be') y} y'
=

;

and eliminating #, y between the coefficients of x' and y\ separately equated to 0,

we get the eliminant

(ac')
2 + (ba') (be')

= 0.

88. We proceed now to the theory of functions of three

variables, the eliminant of which, however, except in particular

cases, has not been expressed as a determinant, though it can
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always be expressed as the quotient of one determinant divided

by another. We shall shew, in the first place, how to form

a function of great importance in the theory of elimination.

Given h equations in k variables, u = 0, v = 0, w = 0, &c, if we

write u
xi
w

2 ,
w

3 ,
&c. for =-

, j- , -j , &c, then the determinant

'**r*+
u&
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we see that the supposition u = 0, v = 0, w = (in consequence of

which J is also = 0) makes -*-
, -y- also to vanish.

90. We can now express as a determinant the eliminant of

three equations, each of the second degree. For their Jacobian

is of the third degree, and therefore its differentials are of the

second. We have thus three new equations of the second

degree, which will be also satisfied by any system of values

common to the given equations. From the six equations,

then, m, v, Wj -=-
, -7- ,

-=-
,
we can eliminate the six quantities

x'\ y\ z'\ yx, zx, xy, and so form the determinant required.

Again, if the equations are all of the third degree, «/is of the

sixth, and its differentials of the fifth, and if we multiply each

of the three given equations by a:
2

, y\ z\ yz, zx, xy, we obtain

eighteen equations, which, combined with the three differentials

of the Jacobian, enable us to eliminate dialytically the twenty-
one quantities, a?

5

,
x4

y, &c, which enter into an equation of the

fifth degree. This process, however, cannot, without modifi-

cation, be extended further.

91.* Dr. Sylvester has shewn that the eliminant can always
be expressed as a determinant when the three equations are of

the same degree. Let us take, for an example, three equa-
tions of the fourth degree. Multiply each by the six terms

(#
2

, xy, y'\ &c.) of an equation of the second degree [or gene-

rally by the \n (n
—

1) terms of an equation of the degree (n
—

2)].

We thus form eighteen [§n [n
—

1)] equations. But since these

equations, being now of the sixth [2w
—

2] degree, consist of

twenty-eight [n (2n— 1)] terms, we require ten [_\n (n + 1)] ad-

ditional equations to enable us to eliminate dialytically all the

powers of the variables. These equations are formed as follows :

The first of the three given equations can be written in the

form Ax* + By + Cz, the second and third in the form

A'x* 4 By + C'z, A"x* + B"y -f C"z
;

* The beginner may omit the rest of this Lesson.
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and the determinant [AEG") which is of the sixth degree in

the variables must obviously be satisfied by any values which

satisfy all the given equations. We should form two similar

determinants by decomposing the equations into the form

Ay* + Bx + Cz, Az
4
-+ Bx + Cy. So again we might decompose

the equations into the forms Axs + By* + Cz, A'x6 + Eif + C'z,

A"x3 + B"y
2 + C"z (for every term not divisible by x3

or y
l must

be divisible by z) ;
and then we obtain another determinant

[ABC") which will be satisfied when the equations vanish

together. There are six determinants of this form got by inter-

changing x, ?/,
and z in the rule for decomposing the equations.

Lastly, decomposing into the form Ax* -f- By* + Cz\ &c. we

get a single determinant, which, added to the nine equations

already found, makes the ten required. In general, we decom-

pose the equations into the form Ax* + Byp
-f Czy

,
such that

a + /3 + 7 = 7i-f2, and form the determinant [AB G")
• and it can

be very easily proved that the number of integer solutions of

the equation a + + y = n + 2 is \n [n -I- 1), exactly the number

required.

92. When the degrees of the equations are different, it is

not possible to form in this way a determinant, which shall give
the eliminant clear of extraneous factors. The reason why
such factors are introduced, and the method by which they are

to be got rid of, will be understood from the following theory,
due to Prof. Cayley : Let us take for simplicity three equations,

w, v, w, all of the second degree. If we attempt to eliminate

dialytically by multiplying each by x, y, z, we get nine equa-
tions, which are not sufficient to eliminate the ten quantities
#3

, x'y, &c. Again, if we multiply each equation by the six

quantities, x\ xy, y\ &c, we have eighteen equations, which are
more than sufficient to eliminate the fifteen quantities x% xs

y, &c.
If we take at pleasure any fifteen of these equations, and form
their determinant, we shall indeed have the eliminant, but it will

be multiplied by an extraneous factor, since the determinant is of
the fifteenth degree in the

coefficients, while the eliminant is only
of the twelfth (Art. 76, mn + np +pm = 12, when m = n=p =

2).
The reason of this

is, that the eighteen equations we have formed
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are not independent, but are connected by three linear relations.

In fact, if we write the identity uv = vu
}
and then replace the

first u by its value, ax1 + by
1 + &c, and in like manner, with the

v on the right-hand side of the equation, we get

ax*v + by*v 4- cz
2
v + 2fyzv + &c. = dx*u + b'y^u + &c.

In like manner, from the identities vw— wv^ wu—uw^ we get two

other identical relations connecting the quantities xtu
1 y*u, x2

v
1

x*w, &c. The question then comes to this :
" If there be m +ji

linear equations in m variables, but these equations connected by

p linear relations so as to be equivalent only to m independent

equations, how to express most simply the condition that all

the equations can be made to vanish together. In the present

case m — 15,^>
= 3.

93. Let us, for simplicity, take an example with numbers

not quite so large, for instance, m = 3, p = l. That is to say,
let us consider four equations, s, £, w, 3, where s = a

x
x 4- b

xy -f c
xz,

t=a
2x+b2y+c<i

z
1 &c, these equations not being independent, but

satisfying the relation, D x
s -f D2

t 4- D3
u + D4

v = 0. Now I say,
in the first place, that if we form the determinant {a x

b
2
c
3)

of any
three of these equations, s, £, w, this must contain Z>

4
as a factor.

For if Z>
4
=

0, we shall have s, £,
u connected by a linear rela-

tion, so that any values which satisfied both s and t should satisfy

u also
;
and therefore the supposition D4

= would cause the

determinant (ax
b
2
c
H)

to vanish. And, in the second place, I

say that we get the same result (or, at least, one differing

only in sign) whether we divide (afi>fz ) by D4
or (a^cj by

D
3

. For (Art. 15) 2>
4 (a^cj is the same as the determinant

whose first row is a
xJ b^ c

a ,
the second, a^ b

2l
c
2 ,

and the third,

D
4
a
4l DJ)^ D

4
c
4 ;

but we may substitute for D
4
a
4

its value
- Da. — Da — Dei. and in like manner for DAbA . DAcA . The
determinant would then (Art. 18) be resolvable into the sum
of three others; but two of these would vanish, having two

rows the same, and there would remain D
4 (a x

&
2
c
4)
~-D

3 {ax
b
2
c
3 ).

It follows then that the eliminant of the system may be ex-

pressed in any of the equivalent forms obtained by forming the

M
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determinant {afi^) of any three of the equations, and dividing

b}
7 the remaining constant D

4
.

Suppose now that we had five equations s, £, w, u, w, con-

nected by two linear relations D
x
s + Dj +DA

u + D4
v + D5

w = 0,

E
A
s +E9

t +Ea
u + E4

v + E6
w = 0. Eliminating w from these

relations, we have (Dx
E

6)s+ (D9
E

6) t-\ {D^Eh)u+ (D4
E

5)v
=

0,

and we see, precisely as before, that the supposition (D4
E

5 )
=

would cause the determinant {afi^) to vanish; and that we

get the same result whether we divide {afi2c^ by {D4E^} or

divide the determinant of any other three of the equations by
the complemental determinant answering to {D4

E
6).

This

reasoning may be extended to any number of equations con-

nected by any number of relations, and we are led to the

following general rule for finding the eliminant of the system
in its simplest form. Write down the constants in the m-\-p

equations, and complete them into a square form by adding
the constants in the p relations

;
thus

*; 0*j K c
i A» K

'; <*.» K c
2 A> K

w
;
a* K c

s A» E
*

v
; «*> h c

4
d

4 ,
e

4

«>f «5> \, % A) E
B

then the eliminant in its most reduced form is the determinant

of any m rows of the left-hand or equation columns, divided

by the determinant got by erasing these rows in the right-hand
columns.

Thus, then, in the example of the last Article, we take
the determinant of any fifteen of the equations, and, dividing
it by a determinant formed with three of the relation rows,
obtain the eliminant, which is of the twelfth degree, as it

ought to be.

94. And, in general, given three equations of the m* n%
andyh

degrees, we form a number of equations of the degreem + n +P- 2
i
by multiplying the first equation by all the terms

xn+p-% x^y, and so on. We should in this manner have"

4(*+/>-l)(n+jp)-f i(^ + w-l)(^4m) + J(7n + «-l)(fw + n)
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equations. But the number of terms, a?
m+n+p"2

, &c, to be elimi-

nated from the equations formed, is \{m + n -f p — 1) (m + n +p),

or, in general, less than the number of equations. But again,

if we consider the identity uv = vu, which is of the degree m + w,

and multiply it by the several terms a?
p
"2

, &c, we get \{p — l)p
identical relations between the system of equations we have

formed
;
and in like manner £ (n

— 1
)
n + \ [m

—
1) m other iden-

tities
;
and the number of identities subtracted from the number

of equations leaves exactly the number of variables to be elimi-

nated, and gives the eliminant in the right degree.

95. If we had four equations in four variables, we should pro-

ceed in like manner, and it would be found then that the case

would arise of our having m + n linear equations in m variables,

these equations not being independent, but connected by n +p
relations

;
,
these latter relations again not being independent,

but connected by p other relations. And in order to find the

reduced eliminant of such a system, we should divide the deter-

minant of any m of the equations by a quantity which is itself

the quotient of two determinants. I think it needless to go into

further details, but I thought it necessary to explain so much of

the theory, the above being, as far as I know, the only general

theory of the expression of eliminants as determinants; since

whenever, in the application of the dialytic method, any of the

equations is multiplied by terms exceeding its own degree, we
shall be sure to have a number of equations greater than the

number of quantities which we want to eliminate.
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LESSON X.

DETERMINATION OE COMMON ROOTS.

96. When the eliminant of any number of equations

vanishes, these equations can be satisfied by a common system
of values, and we purpose in this Lesson to shew how that

system of values can be found without actually solving the

equations. The method is the same whatever be the number

of the variables
;
but for greater simplicity we commence with

the system of two equations, <f>
=

0, yjr
=

0, where

<£
=«X + ^n-^'

1

+ aw^ + &c. = 0,

t = b
n
x
n
+ b^x"-

1 + bm_#T* + &c. = 0.

Let us suppose that some root of the second equation, x — ol

satisfies the
first, and therefore that R the eliminant of the system

vanishes. Now in
<f>
we may alter the coefficients (am into am+AmJ

am_t
into am_x

+ Am_t , &c.) ;
and the transformed equation

«J
n
+ «,„-^

w"1

+ &o. + AmaT + A m_^ + &c. =

will obviously still be. satisfied by the value cc = a, provided only
that the increments Am, A^, &c. are connected by the single

relation

A^ +A^-H&c^o,
since the remaining part of the equation, by hypothesis, vanishes

for x = a. The transformed equation then has a root common
with ^r, and therefore the eliminant between ^ and that trans-

formed equation vanishes. But this eliminant is obtained from

.#, the eliminant of
<j>
and

i|r, by altering in it a into a +A , &c.
1 he eliminant so transformed is

We have R = by hypothesis ;
and since the increments Am ,

&c.

may be as small as we please, the terms containing the first

powers of these increments must vanish separately. We have
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then A -=—\- Am ,
. -f- &c. = 0. This relation must be iden-

nl

da,
m~1 da

,
.

tical with the relation Ama
m

-t- ^^a™
-1 + &c. = 0, which we have

seen is the only relation that the increments need satisfy. It

follows then that the several differential coefficients are pro-

portional to a\ a
1'1

j &c, aod therefore that a can be found

by taking the quotient of any two consecutive differential co-

efficients.

Cor. 1. If an a
q
be any two coefficients in

<£,
we must have,

. „ . dR dR dR dR . , . „when ii = 0, -=- : -=— :: -=— : -: : since the quotient as well
aa

p dap_k da
q

da
q_k

x

of the first by the second as of the third by the fourth will = a*.

It follows that -= = ^— -=—: vanishes when R = 0. and
dap da

q_k da
q
dap_k

'

therefore must contain R as a factor; or, in other words,
dR dR dR dR A . _ ,

g ^— —; ,— contains Jt as a factor it we have p 4- q = r + s.
da

p
da

q
aa

r aa
s

x *

Cor. 2. It is evident, by parity of reasoning, that the differ-

ential coefficients of the eliminant, with regard to the several

coefficients in
i/r,

are proportional to a", a"
-1

,
&c.

;
and hence, as

in the last corollary, that, when R = 0, -7— : -?
—

: : -^- : 77
—

;

dap da
p k db

q dbg_k
7

. dRdR dRdR . _ , +

'

or that -j—- -=- z =- contains ii as a factor when we have
da

p do
q

da
r db

t

Cor. 3. Or, again, if we substitute in the second equation
the values of a

n

,
a
n_1

,
&c. given above, we have

, dR , dR
K -JT + K-x jT~ + &c -

=
°j" dk nx

d\. x

'

when R = 0. But the left-hand side of this equation cannot

contain R as a factor, for it obviously contains the coefficients

of
<f)

in a degree less by one than that in which R contains

them. It must therefore vanish identically.

97. The results of the preceding article may be confirmed

by calculating the actual values of the differential coefficients

of R. We know (Art. 67) that R =
<£ (a) (£) <£ (7) &c. But
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since 4>{oL)
= ama

m
+ am_1

a
m-1 + &c., we have J^^of; and

therefore

%* = ap
tf> (0) <f> (7) +W (a) 4> (7) + &c.

' dR
If then a satisfies

</>,
we have <£ (a)

=
0, and

^-
= ap

<j> (£) <f> (7) &c.

fJH
In like manner -7- = a^ (/3) <f> (7) ;

and therefore, as before,
CLdq

Again, if we multiply together,

^-~ = ap+* {<£ (/3)}" {<£ (7)}
2
&c. + 5 (a

p
/3'+ a*/3

p
) </> (7) &c. +&c.

j

p ^

and it can easily be seen that the series multiplying R is

If now we subtract -=- -j- ,
the terms not multiplied

dapdaq

'

dar
da

t

by R will destroy each other if we havep -f £ = r + s,
and there

will remain

dR dR__dR dR = ( ^R_ d?R \

da
p
da

q
dar da

t \dapdaq
dardaj

'

. .. , ^ dR dR dR dR .

±>y a similar process we can shew that -7 Tl
-
7
-—

55- 13

:
r

aa^ dbg da
q
abp

divisible by R. but the quotient is not ^—77 7
—„ .

' 1 da
p
db

q
da

q
dbp

98. What has been said is applicable, as we shall presently

see, to a system of equations in any number of variables. The

following simpler method only applies to a system of two equa-
tions. In that case we have seen (Art. 84) that the eliminant

can be expressed in the form of the determinant resulting from

the elimination of a?™"
1

,
x
m
~'\

&c. from a system of equations

linear in these quantities. When this determinant vanishes, the

equations are consistent with each other, and if we leave out

any one of them, the remainder will suffice to determine x.

Hence if /3U , /312, &c. represent the minors of the determinant

in question, we have a?
w_1

,
a;
w"2

,
&c. severally proportional to

£n» A*? As) &c
-j

or t0 £21 > £22) #23, &c, &c. These values are

simpler than those found by the preceding method
;

since they
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are a degree lower than the eliminant in the coefficients of

each equation ;
whereas the values found by differentiating the

eliminant are a degree lower than it only in the coefficients

of one of the equations. For example, the common value

which satisfies the pair of equations

ax1 + bx + c = 0, ax'
2

-f b'x + c =

is by this method found to be — -r—r = —
7-77: ;

wThereas by the
J

(ac ) (ab)
1 J

preceding method it is given in the less simple form

2c' [ac
1

)
-V (be') _ a! (be)

- c
(ab')

a! (be)
- c (ab')

— 2d (ac) + b' (ab')

'

All these values are equal in virtue of the relation which is

supposed to be satisfied (acf = (ab') (be).

99. If we substitute in any of the equations used in the last

article, the values -, for #m-1
, &c, this equation must be

in—1

satisfied when i2 = 0, and therefore the result of substitution

must be divisible by R. In other words, if a
rl , a, 2 ,

&c. be the

constituents of any of the lines of the determinant of Art. 84,

we must have a, -5
—- + cl, -5 h &c, divisible by R. But if

^-1
" dam^

we examine what a
ri ,

&c. are, we see that an is the determinant
JO

(
amK-r)i &c

*)
ana

"

tnus tnat tne function an -j

— +&c. contains

I

the b coefficients in a degree one higher than R, while its weight
exceeds that of R by n — r-+ 1. Consequently the remaining
factor must be bn_r+i multiplied by a numerical coefficient. To

i determine this coefficient, we suppose all the terms of
yjr

to

.vanish except bn_^. Now it follows at once from the method of

elimination by symmetric functions, that if
yfr

consist of factors

F, Wj &c, the eliminant of <£ and ty is the product of the

eliminants of <£, F; <£, W\ &c. For if Fbe (x^a) (x
—

/3), &c,
and W be (x— a) (x

—
/3'), &c, the eliminant of <£ and V is

4> (a) (j> (/3), &c, that of
cj>

and W is $ (a) </> (£'), &c, and the

product of all these is the eliminant of
</>

and
-yjr.

Again, if
yjr

reduce to the single term bax
a

yP, since the elimi-

nant of
<j>

and x is a and of $ and y is am ,
the eliminant of
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<f>
and

yjr
will be ba

m
a*aj. The only one then of the series of

terms -, , &c, which will not vanish when all the coefficients

dR
of

yjr, except ba are made to vanish, will be
-j- ,

and this will

be oib^a*'^^. But in the case we are considering, it will

be found that the term by which -7— is multiplied will be baaQj

and hence that in general, when a = n - r + 1,

dR dR . „ N -m
a

"i -TT- + «r2 j~— + &c. = {n - r + 1
)
Rb

n_ni .

aam-\ UUm-2

Ex, In order to make what has been said more intelligible, we repeat the proof

for the particular case of the two cubics a
3x

3 + a2x
2 + a

x
x + a

,
b3x

z + b2x
2 + b

x
x + b

,

then we have the system of equations (Art. 84)

(a3b2) x
1 + (a3b{) x + (a3b )

= 0,

(a3b x )
x2 + {{a3b ) + (a2& t)} x + (o26 )

= 0,

(a3bQ) x
2 + (a2b )

x + (a,J )
= 0.

Substituting then, suppose in the second equation, the following quantity must be

divisible by R,

(*A)
d

i
2

+ {(«3^o) + («A)}^ + («A) ^ •

But, considering the order and weight of the function in question, it is seen at once

that the remaining factor must be b2 multiplied by a numerical coefficient. To deter-

mine that coefficient, let b
,

bu b3 all vanish, then the quantity we are discussing
. . / dR dR\reduces to - b2 I a

x
— + a

^-
I . But R, on the same supposition, reduces to b./a3a

2
;

and therefore the function we are calculating at most differs in sign from 2b2R.

100. There is no difficulty in applying the method of

Arts. 96, 97 to the case of any number of variables. For

greater clearness we confine ourselves to three variables, but

the same proof applies word for word to any number of vari-

ables. Let there be three equations </>
=

0, yjr
=

0, % = 0, where

$ = <2
m,o,o

a;m +*--+ ^a,/3,y^y^
7
+ &c., and let the values x'y'z'

satisfy all the equations; then they will still satisfy them if

in $ we alter am^ aa^ y into *w + Am^, aa^ y + A a^ y)
&c.

provided only that Am^ x,m
+ &c. + AaAyx'*y'Pz

n + &c. = 0.

But, as in Art. 96, the equation must also be' satisfied

A dR dR
ua

m,o,o
aaa^^ y

and comparing these two equations, we see that the value of
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each term x*y'&z'
t must be proportional to the differential of

the eliminant with respect to the coefficient which multiplies it.

We obtain the values of x\ y\ z\ by taking the ratios of the

differentials of R with respect to the coefficients of any terms

which are in the ratio of
a?, y, z. And this may be verified

as in Art. 97. For let the common roots of
yjr, % substituted

in
<£, give results

</>', <£", &c. Then R =
(£'<£"<£"' &c. And

-J^— ^xyWipy&c. 4 x"*y"W4>'<l>" &c. + &c.
;

«««,/?, y

and if we suppose # to vanish, the value of this differential

coefficient reduces to its first term, and it is seen as before, that

the differential with regard to each coefficient is proportional
to the term which that coefficient multiplies. The same corol-

laries may be drawn as in Art. 96.

101. And more generally, in like manner, if the coeffi-

cients of
(f>

be functions of any quantities a, 5, c, &c, which

do not enter into -^, ^, it is proved by the same method, that

dR dR d<b dd> . . . ,._

1~ :

~~Jh
: :

7T~
: Th »

wnere m tne *atter differentials
sc, 3/, 2, are

supposed to have the values x\ y\ z\ which satisfy all the

equations. For either, as in Art. 97, we have when <£'
=

0,

dR
d<f) „ „, dR d(J> „ . .- . a

Ta
=

da * * &C
-'Jb

=
db'l>

'
l>

&C -
>
°r

'
aSam '

RS '" Art 92
'

if a, &, c be varied, so that the same system of values continues

to satisfy </>,
we have

da do dc 1

while, because in this case, the eliminant of the transformed 4>

and of the other equations continues to vanish, we have

dR dR ,?^dR ,
,

„

-j-
ca-\- -== 66+

-j-
be + &c. = 0,

and these two equations must be identical.

102. The formulae become more complicated if we take the

differentials of the eliminant with respect to quantities 0, 6, &c,
which enter into all the equations. As before, if we give these
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quantities variations, consistent with the supposition that the

cliniinant still vanishes, we have

dB ~ dB -, dB ~ p

da do do

Now, in the former case, where a, 5, c, &c. only entered into

one of the equations, a change in these quantities produced no

change in the value of the common roots, since the coefficients

remained constant in the other equations, whose system of

common roots was therefore fixed and determinate. But this

will now no longer be the case, and the common roots of

the transformed equations may be different from those of the

original system. Let the new system of common roots be

x + &&', y + %', *' + oY, &c, then the variations are connected

by the relations

d
4&a+*i Sb + &c.+ f S*'+f ty + &c. = 0,da do dx dy

°

% la +
dA Sb + &c . +# u + d± g

, &c _ &c _

aa a6 a# dy

If there are 7<; such equations, there will be k — 1 independent
variables ;* we may therefore, between these k relations elimi-

nate the k— 1 variations hx\ hj\ &c, and so arrive at a re-

lation between the variations Sa, hb, &c. only ;
the coefficients

of which must be severally proportional to —r-
, -jr ,

&c.

Ex. 1. Let there be two equations and one variable. The final relation then la

(d<t>
dx\, dxj, dcj>\ (dct> dx\r dxff d<j>\

and the several coefficients are proportional to -r-
, j ,

&c. If the equations had

been given in the homogeneous form, we might have taken x as constant, and sub-

t*L d4> d\f/ d(f> dxj/ .

stituted
^- ,

-jr
for

-^ ,
— in the preceding formula. This makes no change,

because it was proved, Art. 89, that the common root satisfies the Jacobian, or makes

d(p d\fs _ d(p d\ff

dx dy
~

dy dx
'

* If the equations had been given as homogeneous functions of k variables, still

since their ratio is all we are concerned with, we may suppose any of the variables t

to be the same in all the equations, and may suppose iz' = 0,
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Ex. 2. If there are three equations, the coefficient of oa is

d<p d\fr d% I

da' da' da

4>u ^ Xi

</>2 , ^2 , X2 I >

where <pu (f>2 denote the differential coefficients of
cj>

with respect to x and y, &c.

103. If a system of equations is satisfied by two common

systems of values, not only will the eliminant R vanish, but

also the differential of R with respect to every coefficient in

either equation. For evidently the values of the differentials,

given Art. 97, all vanish if both $ (a) and
</> (/3)

=
0, or, in

Art. ] 00, if
<£', cj)"

both = 0. In this case the actual values of

the two common roots can be expressed by a quadratic equa-
tion in terms of the second differentials of R. The following,

though for brevity, stated only for the case of two equations,

applies word for word in general. We have (see Art. 97)

£? = a"/3> (7 ) </> (8) &c. + /9V£.(a) j> (S) &c. + &c.,;

which, when
<f> (a), <£ (13)

=
0, reduces to the single term

a?/3
p

(l> (7) <f> (8) &c

In like manner, in the same case,

££- =
(«*/? + cffr) t(y) <}, (8) &c, £? = *0F <f> (7) * (8) &c

P t *

If then we solve the quadratic in ~k :
//,,

x%
d*R _ x £R_ 2^ =0
da 2 da da, da* '

q p ? P

the roots will give the ratios ap : a3

, (3
P

: /3
?
.

If the equations have three common systems of values, all

the second differentials of R vanish, and the common roots are

found by proceeding to the third differential coefficients and

solving a cubic equation.
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LESSON XL

DISCRIMINANTS.

104. Before entering on the subject of discriminants, we

shall explain some terms and symbols which we shall frequently

find it convenient to employ. In ordinaiy algebra we are wholly

concerned with equations, the object usually being to find the

values of x which will make a given function =0. In what

follows we have little to do with equations, the most frequent

subject of investigation being that on which we enter in the next

Lesson : namely, the discovery of those properties of a function

which are unaltered by linear transformations. It is convenient,

then, to have a word to denote the function itself, without being

obliged to speak of the equation got by putting the function = :

a word, for example, to denote ax1

-f hxy + cy
l
without being

obliged to speak of the quadratic equation ax1 + hxy + cif
= 0.

We shall, after Prof. Cayley, use the term quantic to denote a

homogeneous function in general; using the words quadric,

cubic, quartic, quintic, rc
ic

,
to denote qualities of the 2nd, 3rd,

4th, 5th, n
m

degrees. And we distinguish qualities into binary,

ternary, quaternary, rc-ary, according as they contain 2, 3, 4,

n variables. Thus, by a binary cubic, we mean a function

such as ax3 + bx*y -f cxy* -f dy
3

; by a ternary quadric, such as

ax* + by* 4 cz
2 + 2fyz + 2gzx + 2hxy, &c. Prof. Cayley uses

the abbreviation («, 6, c, oTJx, y)
3

to denote the quantic
ax3 + 3bx*y + Sexy* + dy

3

,
in which, as is usually most con-

venient, the terms are affected with the same numerical coeffi-

cients as in the expansion of {x-\-y)
3
. So the ternary quadric

written above would be expressed (a, 6, c, /, g, hjx, y, *)\
When the terms are not thus affected with numerical coeffi-

cients, he puts an arrow-head on the parenthesis, writing, for

instance (a, b, c, d$x, y)
3

to denote ax3 + bxSj + cxif + dy
3
.

When it is not necessary to mention the coefficients, the quantic
of the n

,h

degree is written
(a?, y)

n

, (#, g, z)% &c.
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105. If a quantic in k variables be differentiated with respect

to each of the variables, the eliminant of the k differentials is

called the discriminant of the given quantic.

If n he the degree of the quantic, its discriminant is a homo-

geneous function of its
. coefficients, and of the order k[n

—
If'

1
.

For the discriminant is the eliminant of k equations of the

(n
— 1

)

,n

degree, and (Art. 78) must contain the coefficients of

each of these equations in a degree equal to the product of the

degrees of all the rest, that is (n- l)*"*. And since each of

these equations contains the coefficients of the original quantic

in the first degree, the discriminant contains them in the

k (n
— 1 f'

1

degree. Thus, then, the discriminant of a binary

quantic is of the degree 2 [n
—

1) ;
of a ternary, is of the degree

3(?z-l)
2

,
&c.

106. If in the original quantic every coefficient multiplying the

first power of one of the variables x be affected with a suffix 1
,

every term multiplying the second power by a suffix 2, and so on •

then the sum of the suffixes in each term of the discriminant is

constant and = n (n
-

1)*~\ It was proved (Art. 78) that if

every coefficient in a system of equations were affected with a

suffix corresponding to the power of x which it multiplies, then

the sum of the suffixes in every term of their eliminant would be

equal to the product of the degrees of those equations, viz.,

= mnp, &c. Now suppose, that in the first of these equations

the suffix of
sd°,

instead of being 0, was I] that of x1 was 1+ 1,

and so on
;

it is evident that the effect would be to increase the

sum of the suffixes by I for every coefficient of the first equation

which enters into the eliminant; and since (Art. 78) every term

contains np &c. coefficients of the first equation ;
the total sum

of suffixes is mnp &c. + Inp &c. = (m -f I) np &c. Now, in the

present example, it is evident that every coefficient in the k - 1

differentials £7, Z7
3 , &c.,* multiplies the same power of x as

it did in the original quantic U. But in the remaining diffe-

rential, Z7j, every coefficient multiplies a power of x one less

than in
Z7,

and the coefficient multiplying any term xl

in this

* We write, as before, l\, U„, U3 ,
<tc. to denote the differential coefficients of U

with respect to x, y, z. <£c.
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differential will be marked with the suffix Jfl, since it arose

from differentiating a term xl+1
in the original quantic. It

follows, then, that the sum of suffixes in the discriminant

must =
[n
-

1)* + (n
-

l)*"
1

-ft
(ft
- lf\

We shall briefly express the results of this and of the last

article by saying that the order of the discriminant is k[n—lf~
l

\

and its weighty n(n- if'
1
. Thus for a binary quantic the weight

of the discriminant is n (n— 1).

107. If a binary quantic contain a square factor, then, as is

well known, the discriminant vanishes identically. For the two

differentials must each contain that factor in the first degree,

and therefore, since they have a common factor, their eliminant

vanishes. In like manner, if a ternary quantic be of the form

X*<)) + XYyfr + Y*x, where X=ax-\- by + cz, Y=a'x + b'y + c'z,

then the discriminant must vanish, since every term in any of

the differentials must contain either X or Y, and therefore the

differentials have common the system of roots derived from the

equations X=0, Y=0. In like manner, the discriminant of a

quaternary quantic vanishes, if the quantic can be expressed as

a function in the second degree of X, Y, if,
these being any

linear functions of the variables.* We shall call those values

which make all the differentials vanish, the singular roots of the

quantic.

108. We shall now discuss the properties of the discriminant

of the binary quantic TJ— a
a
x* + ?ta

1
x
n~1

y -f \n (w
—

1) a
tjx?'

2

?/

2+ &c.

The eliminant of U and U
%

is a
9
times the discriminant, and

the eliminant of U and Ua is a times the discriminant.^ For

since nU=xU
x

-\- yU^ the result of substituting in nTJ any root

of U
x

is y'U^', and when all the results of substitution are

multiplied together, the product will be y'y'y" &c. (which is

= a
,
see Art. 61), multiplied by the product of the results of

substituting the same roots in Z7
2 ,
which is the discriminant.

* In other words, the vanishing of the discriminant of an algebraical equation

expres?es the condition that the equation shall have equal roots
;
and the vanishing

of the discriminant of the equation of a curve or surface expresses the condition that

the curve or surface shall have a double point.

f We do not take account of mere numerical factors,
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109. To express the discriminant in terms of the values

x
xy s1 xjUtf (be, which make the quantic vanish.

Let U= [xy x

-
yx^ fa - yx%) fa - yx3 )

&c. (see Art. 61) ;

then

u
x =y, i

xy* -vx>) i
xy,

-
vx»)

&c - + & (•*& -s^Ofa-wi &c - +&c -
5

and the result of the substitution in U
t
of any root x$t

of U is

Vi {
X

\V<2.

~
2/i
x

%) [
x\Vs

~
Vix^ &c * Similarly, the result of sub-

stituting xg%
is y2 (x#t

- x
xy2 ) foy.-^y^J &c. If, then, all the

results of substitution are multiplied together, the product is

±y&& &c - (*i,
-

Vxx*Y {*$*
- iJxxX {*& -y^y &c -

This, then, is the eliminant of U and U
x ,

and if we divide it

by a
Q ,

which is = yxytj/3 ozc, we shall have the discriminant

= (x^ — yx
x

2Y {x
ly3
— y xx^* &c. If we make in it all the ^/'s

= 1
,

we get the theorem in the well-known form that the discriminant

is equal to the product of the squares of all the differences of

any two roots of the equation. We shall, for simplicity, refer

to the theorem in the latter form.

110. The discriminant of the product of two qualities is equal

to the product of their discriminants multiplied by the square of
their eliminant. For the product of the squares of differences of

all the roots evidently consists of the product of the squares of

differences of two roots both belonging to the same quantic,

multipled by the square of the product of all differences between

a root of one and a root of the other, and this latter product is

the eliminant (Art. 68). As a particular case of this, the dis-

criminant of {x— a) (f> (x) is the discriminant of
<f> [x) multiplied

by the square of
cf> (a). For if

/3, 7, &c. be the roots of
</> [x) 9

then (a
—

J3Y (a.
- jY (/3

— jf &c - ls equal to the square of

(a
—

ft) (a
—

7) &c. which is $ (a), multiplied by the product of

the squares of all differences not containing a.

111. The discriminant of (a ,
a

l
.,*a

9mi aj$x, y)
n

is of the

form a
t <j)-\- a^^r, where

yjr
is the discriminant of the equation of

the («— l)
Kt

degree (a ,
a

x
...a

n_2 ,
a
n_$x, y)""

1
. For we evidently

get the same result, whether we put any term a
n
= in the

discriminant, or whether we put an — in the quantic, and then

form the discriminant. But if we make a
n
= in the- quantic, we
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get x multiplied by the («-])
ic written above, and (Art. 110)

its discriminant will then be the discriminant of that (n
—

1)
1C

multiplied by the square of the result of making in it x =
;

that
is, by the square of a

n^. In like manner we see that the

discriminant is of the form a$ + a,
2

-^.*

112. The discriminant being a function of the determi-

nants x
xy% -xjj x i

&c. must satisfy the two differential equa-

tions (Art. 62),

dA . „, dA , nS dA
, p

dA rt dA n dA p

1 da 2 da
x

3
rf«

8

or, if the original equation had been written with binomial

coefficients,

dA .
t ^

dA v dA _ dA p

Ex. To form the discriminant of (a ,
au a2 , ..Sjfcx, y)

n
,
which we suppose arranged

according to the powers of aQ . We know (Art. Ill) that the absolute term is

a^D, where D is the discriminant of (a lt
a2 , ...jjfa;, y)

w~l
. The discriminant then is

a^D + aa(j> + a 2
\]/ + &c.

; operating on this with a
v

-, V 2a2
-j

\- 3a3
-—V &c, we

may equate separately to zero the coefficient of each power of a . Thus, then, the

part independent of a is

«!<£ + 4ai«2D + a? [2a,
--- + 3a3

— + &c.
J
D,

•or, remembering that [a2
~ + 2a3 j- + &c.

)
D -

0, we have

0=-4«2D + Ol («3^
+ 2«

4 ^- +
&c.)z),

and the discriminant is

(ay*
- 4a aa) Z> + ata U3

— + 2a4
-. +

&c.J
Z> + o 2^ + &c.

In like manner, from the coefficient of «j we can determine
\J/-,

but the result does

not seem simple enough to be worth writing down.

* This theorem was first published by Joachimsthal
;
I had, however, previously

been led by simple geometrical considerations to the following theorem in which it

is included. If a
x contain a factor z, and if a contain z 1 as a factor, the discriminant

will be divisible by z2. If a2 contain 2 as a factor, if a
Y
contain z2

,
and a contain z3

,

the discriminant will in general be divisible by z«. In like manner, if a 3 contain z;
<x2 ,

z2
j a„ z3

;
and a

, z*, the discriminant will be divisible by * 12
, &c.
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113. If the discriminant of a binary quantic vanishes, the

quantic has equal roots, and the actual values of these roots can

be found by a process similar to that employed in Lesson X.

Let U= a
Q
x
n
+ a^x

1' 1 + %x
n~* + &c. be a quantic whose discrimi-

nant vanishes, and having therefore a square factor (x — a)
2

.

Then evidently V, where

V= A x
n
+ A

x
x
n~ x +A^ 4 &c

will also be divisible by x — a, provided that A
c ,
A

x)
&c. be any

quantities satisfying the condition

Ay + Ak
oT* + AjT

1 + &c. = 0.

In this case then we shall have U+W divisible by x — a.

Let it =(x- a) {{x
—

a) <f> (x) + X\/r (.r)}.
It follows then, from

Art. Ill, that the discriminant of U+W is the discriminant

of the quantity within the brackets, multiplied by the square

of the result of substituting a for x inside the brackets. But

this, result is
X-vJr (a). We have proved then that in the case

supposed, the discriminant of U+ X V is divisible by X2
.

But since U+W is derived from U by altering a into

a +\A , &c, the discriminant of U+\V is derived from the

discriminant of Z7by a like substitution, and is therefore

Bv hypothesis A = 0. But the discriminant will not be divisible

by X2
unless the coefficient of X vanish. Now the relation thus

obtained between A^ A^ &c. must be identical with the relation

A a
n
+ A^'

1 + &c. = 0, which we have already seen is the only
relation that need be satisfied by A^ A

t1
&c. in order that the

discriminant of U+ X V may be divisible by X2
. We must have

therefore the quantities a*, a
B

~*,
a
H~2

,
&c. respectively propor-

tional to
-j— ,

-,-
, -y-, &c. Dividing any one of these terms

by that consecutive, we get an expression for a. We may state

this result : When the discriminant vanishes, the several diffe-

rential coefficients of the discriminant with respect to a
,
a

t1
&c.

are proportional to the differential coefficients of the quantic with

respect to the same quantities.

O
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114. This result may be confirmed by forming the actual

values of -7- ,
&c. in terms of the roots, which may be done

da
x ,

by solving from the n equations

d£ dA da
x

dA da
t

„

da da
x

do. da
2

den

We know the expressions for A, a„ a
2 ,

&c. in terms of the

roots (see Art. 65), and therefore from these n equations can

find the n sought quantities -7- ,
&c. The result will be

found to be

x {(&-$) (a- y) + (a- /3){a- S) + {a-y) [a-h)},

where the product of the squares of all the differences, not con-

taining a, is multiplied by the sum of the products (n
— 2 taken

together) of the differences which contain a,

£ - 2a 03- jY (7
-
Sf (8

- ft [(«
-

0) (a
-

y) + &c),

£- =2a2

(^-7)
2

(7-8)
2 (8-^ {(«-£) («- 7)+&c.}, &c,

M—2

and the supposition a = ft reduces these sums to quantities which

are in the ratio 1, a, a
2

,
&c. As in Art. 96, it follows from the

theorem of the last article that -
y , = 7— is divisible by
aa

p
da aa

r
aa

s

A when p + q = r -f s. If more than two of the roots are equal

to each other, all these differentials vanish identically, and we
find the equal roots by proceeding to second differentials of the

discriminant.

115. We know, from Art. 98, that instead of the functions

in the last two articles, which are of an order in the coefficients

only one lower than the discriminant, we may substitute func-

tions of an order two lower, and possessing the same property,
viz. that they vanish when more than two roots are equal, and

that if two roots are equal (a
=

/3) they are to each other in

the ratios 1, a, a
2

,
&c. If we proceed by Bezout's method of

elimination (Art. 84) to eliminate between the two differen-
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tials £7
, U, the resulting equations of the (n

—
2)

th

degree, when

expressed in terms of the roots, are 2 (a
—

/3)

a

(x
— y)(x—S)

—
0,

2& (a-/3)'
2

(x-y) [x- 8)
=

0, 2^ («-£)*, &c. = 0, where ^, &, &c.

are the sura, sura of products in pairs, &c. of all the roots

except a and /3.* The discriminant is then, by Bezout's

method, expressed as a determinant, whose constituents are

2 (a-/?)
2

, 2j, («-#% 2j, (a-/8)\&c.,

2?, («-£)", 2?," («-/9)*, 2Ml («-/5)',&c,

2j,(«-/S)
,

> 2?a(«-/3)', J?,' (a-/9)
2

,&c.,&c.

And when the given equation has two roots equal, the first

minors of this determinant will, by Art. 98, be in the ratio

1, a, a
2

,
&c. A somewhat simpler series, possessing the same

property, is 2 (/?
-

7)* (7 - 8f («
-

£)", 2a (£-7)* (7-8)' («-«,
2a'

2

(£-7)
2

,
&c.

116. The following proof of the theorem of Art. 113 is

applicable to the case of a quantie in any number of variables.

For simplicity, we confine ourselves to the case of two inde-

pendent variables, the method, which is that of Art. 102, being

equally applicable in general. Let the coefficients in U be

functions of any quantities «, £, &c, and let variations be given
to these quantities consistent with the supposition that the dis-

criminant still vanishes, and therefore such that

-f Ba -f -7,- Bb + &c. = 0.
da do

And if the effect of this change in a, &, &c, is to alter the

singular roots from x
1 y into x + 8x, y + By, since these new

values satisfy UxJ
U

2l
£7

3 , &c, we must have

dU*x *.*E*i!x ±.
dU** _i_^S a—r-1 ba -f- -^ cb + &c. + —~' ex + ~y

l

oy = 0,da do dx dy
** 7

dU** ^ dU*M L * ,

dU** ^t* n-y-
2 da + -«* d& + &c. -f- -^-

2 to + -y-
2
- dy = 0.

aa do dx dy
°

- - - ba + —jf bb + &c. -f- -^ oa; + -7-* 67/ = 0.
da do dx dy

J

* The first of these functions of degree n — 2 is one of the series to which we
are led by Sturm's process. With regard to the extension of Sturm's theorem, see

Sylvester's memoir in the Philosophical Transactlo?is for 1853.
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Multiply these equations by #, y, z respectively and add
;

then since nU—xTJ^yTJ^-YzV^ the coefficient of 8a will be

dU , . dU^ dU, dU^ dU
x

-
ffi

.
-

j. ,w -7—; and since -7-* = —7-
1

,
—— = ——

,
the coefficient of ox

da ax dy dx dz 7

will be (n
—

1) Ut1
which will vanish, since U

x
is satisfied for the

singular roots. We get therefore

dU\ dU . „

-y- oa 4- -tt 06 4- &c. = 0.
da do

and therefore the differentials of A with respect to «, &, &c. are

proportional to the differentials of U with respect to the same

quantities, it being understood that the x, y, z which occur in

the latter differentials are the singular roots.

117. The theorem proved for binary quantics (Art. Ill) may
be extended to quantics in general. Let a be the coefficient

of the highest power of any of the variables, 5, u, c?, &c, those

of the terms involving the next highest power, then the dis-

criminant is of the form

a0 + (& Xi + 5 &c.X&, c, d, &c.)
2
.

Thus, for a ternary quantic to which, for greater simplicity,

we confine ourselves, if a be the coefficient of z
n

; 6, c those of

z
n~1x

1
z
n~x

y, then if in the discriminant we make a = 0, the re-

maining part will be of the form b*(j> -f bcyfr + c\. To prove
this:

first, let U be any quantic whose discriminant vanishes,
V any other reduced to zero by the singular roots of

Z7,
then I

say that the discriminant of U+XV will be divisible by X\

For, let U=azn
+ bz

n- 1x + &c, V=Azn
+ Bz"-

1x + &G., then

the coefficient of X in the discriminant of £7+ A, F will be

A -r +3-^ +&c, and (Art. 116) -j- ,
&c. are proportional

to 2
W

,
2
w_1

.t,
&c. The coefficient of X is therefore proportional

to the result of
substituting the singular roots in F, and there-

fore vanishes.

Now, in the case we are considering, the supposition of

a = 0, 6 = 0, c = must make the discriminant vanish, since

then all the differentials vanish for the singular roots x = 0,

y = 0. Any other quantic V will vanish for the same values,

provided only A = 0. The general form of the discriminant
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then must be such that if we substitute for 5, b + XB) for c,

c + XGj &c, and then make a, b, c = 0, the result must be

divisible by V ; or, in other words, if we put for &, XB ;
for c

7

\C, &c
,
and then make a = 0, the result is divisible by X\

which was the thing to be proved.

118. Concerning discriminants in general, it only remains

to notice that the discriminant of a quadratic function in any
number of variables is immediately expressed as a symmetrical
determinant. And, conversely, from any symmetrical deter-

minant, we may form a quadratic function which shall have

that determinant for its discriminant. The simplest notation

for the coefficients of a quadratic function is to use a double

suffix, writing the coefficients of a?
2

, #
2

, &c, au ,
a
22 ,

a
33 , &c,

and those of xy, xz
1 &c, a

12 ,
a

13 ;
a

V2
and a

21 being identical in

this notation. The discriminant is then obviously the sym-
metrical determinant

flHJ a
rt a^ &C «

»«» am «»i &c -

<*«J «S8) &c -

&c.

LESSON XII.

LINEAR TRANSFORMATIONS.

119. Invariants. The discriminant of a binary quantic

being a function of the differences of the roots is evidently
unaltered when all the roots are increased or diminished by
the same quantity. Now the substitution of x + X for x is a

particular case of the general linear transformation, where, in

a homogeneous function, we substitute for each variable a linear

function of the variables
;

as for example, in the case of a

binary quantic where we substitute for
aj,

Xx + fiy, and for

y, X'x + fiy. It will illustrate the nature of the enquiries in

which we shall presently engage if we examine the effect of
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this substitution on the discriminant of the binary quadratic,

ax* + 2bxy + cy
2
. When the variables are transformed, it be-

comes

a (Xx + fiy)
2 + 2b (Xx + fxy) (X'x + fi'y) + c (X'x -f n'yf ;

and if we call the transformed equation ax
2,

-f 2b'xy -f cy\ we have

a' = aX2

4 2bXX' + cX'% c = atf + 2bfifx' -f c/jl'%

V = aXjut + b
(X/ju' + X'/jl) + cX'fx'.

It can now be verified without difficulty that

a'c - b
n =

(ac
- b'

2

) (X/j,'
- X» 2

;

that is to say, the discriminant of the transformed quadratic is

equal to the discriminant of the given quadratic multiplied by
the square of the determinant X/a'

—
X'/a, which is called the

modulus of transformation.

120. Now, a corresponding theorem is true for the discrimi-

nant of any binary quantic. We can see a priori that this

must be the case, for if a given quantic has a square factor,

it will have a square factor still when it is transformed
;

so

that whenever the discriminant of the given quantic vanishes,

that of the transformed must necessarily vanish too. The one

must therefore contain the other as a factor. The theorem

however can be formally proved as follows: Let the original

quantic be (xy l ~yx 1 ) (xy2
— yx2) &c, then (Art. 105) the dis-

criminant is (x iy2 —y x

x
if (xxy3

-
y^xj

2
&c.

Now the linear factor (xy^yxj of the given quantic be-

comes by transformation yx (XX+jaY) — x
x (X'X + /*'F), and

if we write this in the form Y
i
X—X

i
Y

)
we shall have

Y
t
= Xy x

—
X'x^ Xj = -

fiyl
+ /jl'x^

If then the transformed

quantic be written as the product of the linear factors

{Yl
X—X

l Y)(Yti

X — X
2 Y) &e.

?
we have expressions, as above,

for F
1?
X

r ;
F

2 ,
X

2 , &c, in terms of ?/ t ,
x

x ; ya a?
8,

&c. We
can then, without

difficulty, verify that

(
r

,
x

*
~ x

t^ = (V ~ *» (i/,^2
-

»,&)•
'

It follows immediately that
( l^X,

- ^X$ (
Y

t
X

t
- Y

%
X

t)*
&c

is equal to (yx
x

2
- x

xyj
2

(y x
x

3
-
y5xj

2
&c. multiplied by a power

vfXfL'-X'fi equal to the number of factors in the expression
for the discriminant in terms of the roots. A corresponding
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theorem is true for the discriminant of a quantic in any number
of variables.

What I have called Modern Algebra may be said to have

taken its origin from a paper in the Cambridge Mathematical

Journal for Nov. 1841, where Dr. Boole established the prin-

ciples just stated and made some important applications of

them. Subsequently Prof. Cayley proposed to himself the pro-
blem to determine a priori what functions of the coefficients

of a given equation possess this property of invariance; viz.

that when the equation is linearly transformed, the same func-

tion of the new coefficients is equal to the given function

multiplied by a quantity independent of the coefficients. The
result of his investigations was to discover that this property
of invariance is not peculiar to discriminants and to bring
to light other important functions (some of them involving .

the variables as well as the coefficients) whose relations to

the given equation are unaffected by linear transformation.

In explaining this theory, even where, for brevity, we write

only three variables, the reader is to understand that the

processes are all applicable in -exactly the same way to any
number of variables.

121. We suppose then that the variables in any homo-

geneous quantic In k variables are transformed by the sub-

stitution

a = \
1X+/* i

r+v
lZ-{-&c.,

z =\X+/ll3Y+ j/
8iT+&c., &g.,

and we denote by A the modulus of transformation ; namely,
the determinant, whose constituents are the coefficients of

transformation, X
1? fi^ v,, &c, X

2 , /z2 ,
p
f, &c, &c.

Now it is evidently not possible in general so to choose the

coefficients X
/j, x1 &c, that a certain given function ax

n + &c.

shall assume, by transformation, another given form aXn
-f &c.

In fact, if we make the substitution in ax
n

-\- &c, and then

equate coefficients, we obtain, as in Art. 119, a series of equa-
tions a' = aX

1

n

4-&c, the number of which will be equal to the

number of 'terms in the general function of the ntli

degree in
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k variables. And to satisfy these equations we have only at

our disposal the k2
constants \„ \, &c, a number which will

in general be less than the number of equations to be satisfied.*

It follows then that when a function ax +- &c. is capable of

being transformed into a'X
H + &c, there will be relations con-

necting the coefficients
<z, b, &c, a\ b\ &c. In fact, we have

only to eliminate the U constants from any k* -f 1 of the

equations a = a\
n

-+- &c., and we obtain a series of relations

connecting <z, a', &c, which will be equivalent to as many

independent relations as the excess over W of the number of

equations. Thus, in the case of a binary quantic, the number

of terms in a homogeneous function of the nth
degree is n + 1.

If then, in any quantic aa:
w

+&c., we substitute for #, \X+fil
Y

1

and for y, \X+fi2 Y, and if we then equate coefficients with

a'Xn
-f &c, we have n + 1 equations connecting «, a\ \

1? &c,
from which, if we eliminate the four quantities Xt ,

\
s , /^, fi2l

we

get a system equivalent to n — 3 independent relations between

«, 5, a\ 6', &c. It will appear in the sequel that these relations

can be thrown into the form
<f> (a, &, &c.) = <£ (a\ b\ &c.) ; or,

in other words, that there are functions of the coefficients

«, £>,
&c. which are equal to the same functions of the trans-

formed coefficients. The process indicated in this article is

not that which we shall actually employ in order to find such

functions, but it gives an a priori explanation of the existence

q{ such functions, and it shows what number of such functions,

independent of each other, we may expect to find.

122. Any function of the coefficients of a quantic is called

an invariant, if,
when the quantic is linearly transformed, the

same function of the new coefficients is equal to the old function

* The number of terms in tlie general equation of the nth
degree homogeneous

-j • -ui • (»+*) (»+ 2). ..(» + £ - 1)in k variables is
12 (k-1) »

and {t is easy to see that the only

cases where this number is not greater than fa are, first, when n = 2, when it becomes

%k (k + 1), a number necessarily less than k", k being an integer j
and secondly, the

case k = 2, n = 3, when both numbers have the same value 4. That is to say, the

only cases where a given function can be made by transformation to assume any
assigned form are, first, the case of a quadratic function in any number of variables.;
and secondly, the case of a cubic function homogeneous in two variables.
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multiplied by some power of the modulus of transformation
;

that is to say, when we have

<p (a, b\ c', &c.)
= Ap

<f> (a, 5, c, &c).

Such a function is said to be an absolute invariant whenp = 0;

that is to say, when the function is absolutely unaltered by
transformation even though A be not =1. If a quantic have

two ordinary invariants, it is easy to deduce from them an

absolute invariant. For if it have an invariant $, which when

transformed becomes multiplied by Ap
,
and another

i/r,
which

when transformed becomes multiplied by A
?

,
then evidently the

q
th

power of
cf>

divided by the p
XXx

power of
yjr

will be a function

which will be absolutely unchanged by transformation.

It follows, from what has been just said, that a binary

quadratic or cubic can have no invariant but the discrimi-

nant, which we saw (Art. 120) is an invariant. For if there

were a second, we could from the two deduce a relation

<j> (a, 5, &c.) = <f) (a\ b'j &c). But we see from Art. 121 that

there can be no relation connecting «, &, &c. with a', b\ &c,

since, with the help of the four constants X
1}

&c. at our dis-

posal, we can transform a given quadratic or cubic, so that the

coefficients of the transformed equation may have any values

we please. In the same manner we see that a quantic of

the second order in any number of variables can have no

invariant but the discriminant. On the other hand, suppose
we take the binary quartic ax 1

+ &bx3

y + 6cx'
z

y
2 + kdxy

s + ey*,

and that the coefficients become by linear transformation a\

&', &c, it will be found that we have two invariant func-

tions both distinct from the discriminant; viz. we have the

two equations

a'e - Ab'd' -f 3c* = A4

(ae
- ±bd + 3c'

2

),

a'c'e' + We'd' - ad"2 - e'b" - c* = A6

(ace + 2bed- ad 2 - eb* - c
3

) ,

and from these two we deduce the absolute invariant

(a'c'e' + 2b'd'f
- a'd

ri - e'b'
2 - c'

3

)

2

_ (ace + 2bcd- ad*-d?- cj
{a'e'

- 4A'd' -f 3cJ {ae
- ±bd + 3c*)

3

In this case the invariance of the discriminant may be deduced
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as a consequence of the preceding equations, for the discri-

minant is

(ae
- Abd + 3c'

2

)

3 - 27 (ace + 2bcd- ad 2 - eW - c
3

)

2

,

and consequently the discriminant of the transformed equation

is equal to that of the original multiplied by A
12

.

123. In the same manner as we have invariants of a single

quantic we may have invariants of a system of quantics. Let

there be any number of simultaneous equations ax
n
+ &c. = 0,

a'x
n + &c. = 0, &c., and if when the variables in all are trans-

formed by the same substitution, these become AX n + &c. = 0,

A'X n
+ &c. = 0, &c.', then any function of the coefficients is an

invariant if the same function of the new coefficients is equal

to the old function multiplied by a power of the modulus of

transformation
;
that is to say, if

<}> (w4,I?,&c, A\B',&c.) A"j&c.) = A p
</> («,&,&c, a\b\ &c, «", &c).

The simplest example of such invariants is the case of a

system of linear equations. The determinant of such a system
is an invariant of the system. This is evident at once from

the definition of an invariant and from the form in which the

fundamental theorem for the multiplication of determinants has

been stated at p. 20.

If we are given an invariant of a single quantic, we can

derive from it a series of invariants of systems of quantics of

the same degree. In order to make the spirit of the method

more clear, we illustrate it in the first instance by a simple

example. We have seen (Art. 119) that ac-b2
is an in-

variant of the quadratic ax2 + 2bxy + cy\ and we shall now
thence derive an invariant of a system of two quadratics.

Suppose that by a linear transformation ax2 + 2bxy + cy
2

becomes AX2 + 2BXY+ CY2

,
and aV + 2b'xy + cxf becomes

A'X2 + 2BXY+ C'Y'2
;
then evidently, by the same transfor-

mation, (k being any constant),

{a + lea) x
2 + 2 (b + W) xy+(c + Ice) y

2

will become

(A + IcA') X 2

+ 2 (B + kB') XY+ (0+ kC) Y\
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Forming then the invariant of the last quadratic, we have

(Art. 119)

{A + kA'){C^kG
,

)~{B + kB'f=^{{a + kd){c^kc)-{b^kb'Y}.

But since k is arbitrary, the coefficients of the respective powers
of k must be equal on both sides of the equation ;

and therefore

we have not only, as we knew before,

(AC-B*) = A
a

(ac- V), (A'C'-B"
2

)
= A2

(aV- 5'*),

but also AC' + A'C- 2BB' = A2

{ac + ac - 2bb'\

an equation which may also be directly verified by the values

of A, B, &c. given Art. 119. We see then that ac -\- ac- Vbb'

is an invariant.

By exactly the same method, if we have any invariant of a

quantic ax + &c, and if we want to form invariants of the system
ax

n
4- &c, dxn

+ &c, we have only to substitute in the given
invariant for each coefficient a, a + ka\ for 6, b + kb\ &c, and

the coefficient of every power of k in the result will be an

invariant. Writing down, by Taylor's theorem, the result of

substituting a + kd for a, &c, the theorem to which we have

been led may be stated thus: If we have any invariant of

a quantic ax
n
+ &c, and if we perform on it the operation

a'-r- + &'-77 + &c, we get an invariant of the system of two
da db ' ° J

quantics ax
n
+ &c, a'x

n
'+ &c. We may repeat the same opera-

tion and thus get another invariant of the system, or we may

operate with a"— -f 5"
-^-
+ &c, and thus get an invariant of

a system of three quantics, and so on. This latter process

gives us the invariants which we should find by substituting
for a, a + kd -f ld\ &c, and taking the coefficients of the pro-
ducts of every power of k and I. In the same manner we get
invariants of a system of any number of quantics,

124. Covariants. A covariant is a function involving not

only the coefficients of a quantic, but also the variables, and
such that when the quantic is linearly transformed, the same
function of the new variables and coefficients shall be equal
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to the old function multiplied by some power of the modulus

of transformation
;
that is to say, if ax 4 &c. when transformed

becomes AXn + &c, a function <£ will be a covariant* if it is

such that

(f>(A, It, &c., X, Y, &c.)
= Ap

<2> (a j b, &c, #, y, &c).

Every invariant of a covariant is an invariant of the original

quantic. This follows at once from the definitions. Let the

quantic be aa>" + &c, and the covariant a'x
m + &c. which are

supposed to become by transformation AXn
+ &c, A'Xm + &c.

Now an invariant of the covariant is a function of its coefficients

such that

<t> {A', B\ &c.) - Ap
(j> (a', V, &c).

But A\ B\ &c. by definition can only differ by a power of

the modulus from being the same functions of A, B, &c. that

«', b', &c. are of a, 6, &c. Hence when the functions are both

expressed in terms of the coefficients of the original quantic and

its transformed, we have

yft {A, B, &c.)
= A'f (a, J, &c),

or the function is an invariant. Similarly, a covariant of a

covariant is a covariant of the original quantic.

125. We shall in thi3 and the next article establish prin-

ciples which lead to an important series of covariants.

If in any quantic u we substitute x + hx for
a?, y + hy for y,

&c, where x'y'z are cogredient to xyz, then the coeffi-

cients of the several powers of
Jc,

which are all of the form

f x' -j- + y' -7- + &c.
J u, have been called the first, second, third,

* In the geometry of curves and surfaces, all transformations of coordinates are

effected by linear substitutions. An invariant of a ternary or quaternary quantic is

a function of the coefficients, whose vanishing expresses some property of the curve

or surface independent of the axes to which it is referred, as, for instance, that the

curve or surface should have a double point. A covariant will denote another curve

or surface, the locus of a point whose relation to the given curve is independent of

the choice of axes. Hence the geometrical importance of the theory of invariants

and covariants.
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&c. emanants* of the quantic. Now each of these emanants is

a covariant of the quantic. We evidently get the same result

whether in any quantic we write x+.kx' for x, &c, and then

transform x
1 x\ &c. by linear substitutions, or whether we make

the substitutions first and then write X+kX' for X, &c. For

plainly

\X+^ Y+ v
x
Z+ k (\t

X + fi1
Y'+ v

xZ')

= \(X+ kX) + ft, ( Y+ k Y') + v
t (Z+ kZ').

If then u becomes by transformation U, we have proved that

the result of writing x + kx for
a?,

&c. in w, must be the same

as the result of writing X-\-kX' for X, &c. in U, and since k

is indeterminate, the coefficients of k must be equal on both

sides of the equation ;
or

,du ,
du „ __. dU Tr/ dU Q p

126. If we regard any emanant as a function of a?', y\ &c 7

treating a?, y\ &c. as constants ; then any of its invariants will be

a covariant of the original quantic when x, y, dec. are considered

as variables.

d"u dpUWe have iust seen that x'
p

-5 h &c. becomes X'p
-7== + &c.

dxp aX F

when we substitute for x\ \X' -{ ^Y' + &c, and for x
7

\X+ /jl^Y-\- &c. It is evidently a matter of indifference

whether the substitutions for x\ &c, and for
a?, &c, are

simultaneous or successive. If then on transforming a:',
&c.

dpu
alone, x'

p
-7-^ -f &c. becomes al'p + &c, then a, &c. will be

such functions of #, &c. as when
a?, y, &c. are transformed will

d pU
become

-jy-pi &c. Now an invariant of the given emanant

considered as a function only of x\ y\ &c. is by definition such

a function of its coefficients as differs only by a power of the

modulus from the corresponding function of the transformed

* In geometry emanants denote the polar curves or surfaces of a point with regard

to a curve or surface.
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coefficients a, b, &c. But since, as we have seen, a, &c. become

~dX*

1

p ,
&c. when x, &c. are transformed, it follows that the given

n

dpu
invariant will be a function of

-j-p , &c, which when a?,
&c. are

transformed will differ only by a power of the modulus from

dpU
the corresponding function of

3^*7
&c. It is therefore by

definition a covariant of the quantic.

Thus then, for example, since we have proved (Art. 119)

that if the binary quantic ax2 + 2bxy + cy
2 becomes by trans-

formation AX 2 + 2BXY+CY 2

,
then

AC-B 2

=tf{ac-b
2

);

it follows now, by considering the second emanant f x -=- + ?/' -7-
J

of a quantic of any degree, that

d 2U d 2U
f
d 2U \

2

_ (d*u d2u
f
d2u \

2

|

dX*
' dY2 [dXdYj

~ A
\dx

2 '

dif \dxdy) J
*

a theorem of which other demonstrations will be given.

127. In general, if we take the second emanant of a quantic
in any number of variables, and form its discriminant, this will

be a covariant which is called the Hessian -of the quantic. It

was noticed (Art. 118) that the discriminant of every quadratic
function may be written as a determinant. Thus then if, as

we have done elsewhere, we use the suffixes 1, 2, &c. to de-

note differentiation with respect to
a?, ?/, &c, so that, for

d2u
example, uu shall denote

-^-a ,
then the quadratic emanant is

uux'
2 + 2unx'y' + &c, and its discriminant, which is the Hessian,

is the determinant

V u^ u^ &c «

U2M UM W
23>

&C «

W
31>

%
32>

W
33>

&C «

&c.

128. We have seen (Art. 123) that the determinant of a

system of linear equations is an invariant of the system. If



u
l,
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contragredient to each other. In what follows, variables sup-

posed to be contragredient to
a?, y, z are denoted by Greek

letters, the letters a, /3, 7 being usually employed in subsequent
lessons. We proceed to explain two of the most important
cases in which the inverse substitution is employed.

130. When a function of a?, ?/, z, &c. is transformed by
linear substitutions to a function of X, F, Z, &c, then the

differential coefficients, with respect to the new variables, are

linear functions of those with respect to the old, but are ex-

pressed in terms of them by the inverse substitution. We have

d d dx d dy d dz _

dX
~

dx~ dX 7 dy dX
+

dz dX +

But from the expressions for
a?, y, &c. in terms of X, Y, &c,

we have

dx . dy dz _
dX~ A» dX"V dX~ s

*

Hence then ^\^\^\^^
Similarly ^* ^ + ft | + ft ^ + &c, &c.

Thus then, according to the definition given in the last article,

the operating symbols
-j- , j- ,

—
,
&c are contragredient to

a?, y, 0, &c, that is to say, when the latter are linearly trans-

formed, the former will be linearly transformed also, but accord-

ing to a different rule, viz. the rule explained in the last article.

If, as before, w1?
w

2 ,
&c. denote the differential coefficients of w,

and U
x1

Z7
2 ,

&c. those of the transformed function
Z7,

we have

just proved that

U
x

= \Ut
4 \u9

4 \u3 , L\
=

ft*, 4 fi2
u

2 4 ftw„ &c.

Consequently, if ua u^ u
3

all vanish, Z7
l7

Z7
2 ,
U

3
must all vanish

likewise. Now we know that uv u
2 ,

u
3
all vanish together only

when the discriminant of the system vanishes
;

if then the dis-

criminant of the original system vanishes, we see now that the

discriminant of the transformed system must vanish likewise,
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and therefore that the latter contains the former as a factor,

as has been already stated (Art. 120).

131. In plane geometry, if x, y^ z be the trilinear coordinates

of any point, and x% +yn + z%= be the equation of any line,

f, r)j £ may be called the tangential coordinates of that line

(see Conies^ Art. 70). Now, if the equation be transformed to

any new system of axes by the substitution x = XjX-f &c, the

new equation of the line becomes

|(X
rX+/*l

F+ v
tZ) + v (\X-t M,r+ iy*j

+ ?(\,J+ P.Y+VtZ),

so that if the new equation of the right line be written

3X+HY+ZZ=Q, we have

S = \f + \
2*7 + X,?, H =^ + ^,v +^ ***£+*#+ *£

In other words, when the coordinates of a point are transformed

by a linear substitution, the tangential coordinates of a line are

transformed by the inverse substitution ; that is, they are con-

tragredient to the coordinates of the point. In like manner,
in the geometry of three dimensions^ the tangential coordi-

nates of any plane are contragredien.t to the coordinates of any

point. When we transform to new axes, all coordinates xyzw,

xy'z'w\ &c. expressing different points^ are cogredient; that is

to say, all must be transformed by the same substitution

x = \X+&c, x =\X' 4 &C, &c, But the tangential coordi-

nates of every plane will be transformed by the inverse substitu-

tion, as we have just explained.

The principle just stated will be frequently made use of in

the form

xg+yrj +z^XZ + YH + ZZ,

where x
y y, z being supposed to be changed by the substitution,

x =\X -f fjb x
Y-\- &c, f , T], f are supposed to be changed by the

inverse substitution H = X
tf -f \jj + \£, &c. In other words, in

the case supposed, xg -f yrj + z£ is a function absolutely unaltered

by transformation.

132. If a function ax
n
+ &c, becomes by transformation

ylXn

-f&c, then any function involving the coefficients and

ihose variables which are supposed to be transformed by the

Q
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inverse substitution, is said to be a contravariant if it is such

that it differs only by a power of the modulus from the corre-

sponding function of the transformed coefficients and variables :

that is to say, if

4> (A, J9, &c, H, H, &c.)
= Ap

(j> (a, 5, &c, f, 17, &c).

Such functions constantly present themselves in geometry.

If we have an equation expressing the condition that a line

or plane should have to a given curve or surface a relation

independent of the axes to which it is referred
; as, for ex-

ample, the condition that the line or plane should touch the

curve or surface
j then, when we transform to new axes, it is

obviously indifferent whether we transform the given relation

by substituting for the old coefficients their values in terms of

the new, or whether we derive the condition by the original

rule from the transformed equation. In this way it is seen

that such a condition is of such a kind that
cf> (a, &, f , &c.)

differs or>ly by a factor from
<f> (A, B, H, &c).

133. Besides covariants and contravariants there are also

functions involving both sets of variables, and which differ

only by a power of the modulus from the corresponding trans-

formed functions: i.e. such that

<£(^,I?,&c., Xj F,&c, H,H,&c.) = A
p

<£(a,Z>,&c, #, 2/,&c, f, 7;, &c).

Dr. Sylvester uses the name concomitant as a general word

to include all functions whose relations to the quantic are un-

altered by linear transformation, and he calls the functions now
under consideration mixed concomitants. I do not choose to

introduce a name on my own responsibility ;
otherwise I should

be inclined to call them divariants. The simplest function of

the kind is xtj + yr) -f sf, which we have seen (Art. 131) is trans-

formed to a similar function, and is therefore a concomitant

of every quantic whatever.

134. If we are given any invariant I of the quantic

a x
n

-f na
x
xn-*y + nb^'z -f £w (n - 1) a

2
x
n

~Y + &c,

we can deduce from it a contravariant by the method used in
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Art. 123. If a x
n
-{-&c. becomes by transformation A

o
Xn

-f &c,

then, since x% -f &c. becomes XB + &c, it follows that

a
Q
x
n
+ &c. + h {x^ + yrj + *£;*= A X

n
+ &c. +k (XH 4 FH + ZZ)\

Now an invariant of the original quantic fulfils the condition

<#> (4„ 4,, B„ &c.) = A>tf> (o„ «„ b„ &c).

Forming then the same invariant of the new quantic, it will be

seen that

</> (A + JcB
n

,
A

x
+ fcg^H, &c.) = A>0 (a + fcf, a, +h^\ &c).

Since & is arbitrary we may equate the coefficients of like

powers of k on both sides of this equation.

But, by Taylor's theorem, these coefficients are all of the form

We have proved then that they differ only by a power of the

modulus from the corresponding function of the transformed

equation. They are, therefore, contravariants, since it is assumed

all along that f, 17, fare to be transformed by the inverse sub-

stitution. Dr. Sylvester has called contravariants formed by this

rule, first, second, &c. evectants of the given invariant. Thus

£
n

--.
—Y J

w_1
77 -7— -f &c. is the first evectant. It is to be ob-

da da
1

served that in the original quantic the coefficients are supposed
to be written with, and in the evectant without, binomial coeffi-

cients. Comparing this article with Art. 123 we see that the

function P
n

-7— + &c. may be considered either as a contravariant

of the single given quantic, or as an invariant of the system
obtained by combining with the given quantic the linear func-

tion x% -\-yr) + z£. The theory of contravariants, therefore, may
be included under that of invariants.

If we perform the operation f
n

-=—h&c. upon any co variant,

we obtain a mixed concomitant, for it is proved in the same way
that the result, which will evidently be a function involving
variables of both kinds, will be transformed into a function of

similar form.
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Ex. 1. "We know that ac-b2 is an invariant of ax2+2bxy+cy
2

;
hence c%

2
-2bfr)+-aiy

!

is a contravariant of the same system.

Ex. 2. Similarly abc + 2fgh
— a/

2 —
bg

2 — ch2
, being the discriminant, and there-

fore an invariant of ax2 + by
2 + cz2 + 2fyz + 2gzx + 2hxy,

(be -f2
) I

2 + (co
- g

2
) 7)

2 + (ab
- h2

) Z
2 +2(gh-qf) v$ + 2 (#- bg) ££ + 2 (fg

-
ch) g*

is a contravariant of the same quantic. Geometrically, as is well known, the function

eqnated to zero expresses the tangential equation of the conic represented by the given

quantic.

Ex. B. Given a system of two ternary quadrics ax2 + &c, a'x2 + &c, then since

a' {be -f2
) + &c. is an invariant of the system (Art. 123); operating with £

2

^-
+ &c,

we find that

(be' + b'c - 2ff) p + (ca' + c'a - 2gg
f

) v
2 + {ab' + a'b - 2hh') %

2

+ 2 {gh' +g'h-af- off) nl + 2{hf'+ h'f- bg'-b'g) ££ + 2 {fg' +f'g -ch'-e'h) g,

is a contravariant of the system. We might have equally found this contravariant

by operating with a* -r- + &c. on the contravariant of the last article. Geometrically,

the function equated to zero expresses the condition that a line should be cut har-

monically by two conies.

135. When the discriminant of a quantic vanishes, it has

a set of singular roots x'y'z [geometrically the coordinates of

the double point on the curve or surface represented by the

quantic] ;
and in this case the first evectant will be a perfect

?i
th

power of (x'l-+y'ri + z'£). Since we have seen that this

evectant is a function unaltered by transformation, it is sufficient

to see what it becomes in any particular case. Now if the

discriminant vanishes, the quantic can be so transformed that

the new coefficients of x \ x
n

~*y, x
n~ 1

z shall vanish
;

that is to

say, so that the singular root shall be y = 0, z = 0, [geome-

trically, so that the point yz shall be the double point]. Now
it was proved (Art. 317) that the form of the discriminant is

a<P + <V> .+ afryfr + bfa
Evidently then, not only will this vanish when a

,
a

t ,
b

x vanish,
lv.it also its differentials with respect to

. every coefficient

except a will vanish. This evectant then reduces itself to

,- multiplied by the perfect n
tb

power £* which is what

i
x'S + y'v + *'?)" becomes when y and *' = 0, and x = 1. Thus

then, if the discriminant of a ternary quadric vanish, the quadric

represents two lines : the contravariant
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becomes a perfect square; and if we identify it with (aj'f+y r)-\-
z Q'\

we get x'y'z the coordinates of the intersection of the pair of

lines. If a quantic have two sets of singular roots, all the first

differentials of the discriminant vanish, and its second evectant

becomes a perfect n
tt

power of

where x'y'z', x'y'z" are the two sets of singular roots. And
so on.

LESSON XIII.

FORMATION OF INVARIANTS AND COVARIANTS.

136. Having now shewn what is meant by invariants, &c,
we go on to explain the methods by which such functions can

be formed. Three of these methods will be explained in this

Lesson, and a fourth in the next Lesson.

Symmetric functions. The following method is only appli-

cable to binary qualities. Any symmetric function of the differ-

ences of the roots is an invariant, provided, that each root enters

into the expression the same number of tim.es.
* It is evident that

an invariant must be a function of the differences of the roots,

since it is to be unaltered when for x we substitute x + X.

Now the most general linear transformation is evidently equi-

valent to an alteration of each root a into -. *-:, By this

change the difference between any two roots a — /3 becomes

* If in the equation the highest power of x is written with a coefficient a
,
we

have to divide by that coefficient in order to obtain the expression for the sum, &c.

of the roots
;
and all symmetric functions of the roots are fractions containing powers

of o in the denominator. When we say that a symmetric function of the roots is

an invariant, we understand that it has been made integral by multiplying it by such
a power of a as will clear it of fractions

; or, what comes to the same thing, if we
form the symmetric function on the supposition that the coefficient of xn is 1, that

we make it homogeneous by multiplying each term by whatever power of a may
be necessary.
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-r-£ ,//,,.>
——,\ • In order then, that any function of the

(X'a + /*')(*• £ + /*')

> '

differences may, when transformed, differ only by a factor from

its former value, it is necessary that the denominator should be

the same for every term
;
and therefore the function must be

a product of differences, in which each root occurs the same

number of times. Thus for a biquadratic, 2 (a
—

fif (7
-

S)
2

is

an invariant, because, when we transform, all the terms of

which the sum is made up have the same denominator. But

2 (a
-

/3)
2

is not an invariant, the denominator for the term

(a
—

13)* being [X'a+ fi)*(\'@ + /i')*,
and for the term (7-8)*

being (\'7 + /*')"(V8 + /*')".

137. Or perhaps the same thing may be more simply stated

by writing the equation in the homogeneous form. We saw

(Art. 120) that if we change x into \x + ny, y jnto \'x+ fiy,

the quantity x
iy,2
— x

2yi
becomes (Xy/- X'/jl) {xxy%

—
a?^,),

and

consequently, that any function of the determinants x^y2
—
x^y1

&c. is an invariant. Now (Art. 61) any function of the roots

expressed in the ordinary way is changed to the homogeneous
x x

form by writing for a, /3,
&c. —

,

—
, &c, and then multiplying

by such a power of the product of all the ?/'s as will clear it

of fractions. If any function of the differences in which all the

roots do not equally occur be treated in this way, powers of

the y's will remain after the multiplication, and the function will

not be an invariant. Thus, for a biquadratic, 2 (a
-

/3)
2
be-

comes 2y8

2

y4

2

(xty2
- x

2y^ ;
but the function 2 (a

-
/?)* (7

-
$)%

in the expression for which all the roots occur, becomes

2
{
X
\V%

~~^J2

1H3/4
"" XJJ^'\ which being a function of the de-

terminants only, is an invariant.

It is proved in like manner, that any symmetric function

formed of differences -of roots and differences between x and

one or more of the roots is a covariant, provided that each root

enters the same number of times into the expression. Thus
for a cubic 2 (a

-
/3)

2

(x
-

7)* is a covariant.

138. We can, by the method just explained, form invariants

or covariants which shall vanish on the hypothesis of any system
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of equalities between the roots. Thus, let it be required to form

an invariant which shall vanish when any three roots are all

equal, it is evident that every term must contain some one

of the three differences a — ft, ft
—

7, 7 — a; and in like manner

for every other set of three that can be formed out of the roots.

Thus, in a biquadratic, there are four sets of three roots : the

difference a — ft belongs to two of these sets, and 7 - 8 to the

other two; therefore 2 (a
—

ft)* (7
—

S)
2 *

is an invariant which

will vanish if any set of three roots are all equal. In like

manner, for a quintic there are ten sets of three : a — ft belongs
to three sets, 7 — 8 to three other sets

;
the remaining sets are

CC7S, ccSs, ftys, /3Se, two of which contain 7 — 8 and the other

two 8 - e. The function then 2 (a
-

/3)

4

(7
-

S)
2

(8
-

s)
2

(7
-

s)
2

is

an invariant which will vanish if any set of three roots are

all equal. This invariant (Arts. 57, 58) is of the fourth order

and its weight is 10.

So, again, if we wish to form a covariant of a biquadratic
which shall vanish when two distinct pairs of roots are equal,

the expression must contain a difference from each of the pairs

a ~fii 7~ S3 a — 7, ft- 8] a — 8
j ft

—
7. Such an expression

would be

^(a-ftY{ft-yr(y-aY(x-8)%
or 2 (a

-
ft) (a

-
7) (a

-
8) [x

-
ft]

2

(x
- yf {x

-
$)*,

which are covariants of the fourth and sixth degrees respectively
in the variables

;
and of the fourth and third in the coefficients,

and every term of which vanishes when two distinct pairs of

roots are equal.

139. Mutual differentiation of covariants and contravariants.

When we say that
<f> [a, &, f , 77, &c.) is a contravariant, f, 77,

&c.

may be any quantities which are supposed to be transformed by
the reciprocal substitution. Now we have shewn (Art. 130)

that the differential symbols -7- r -7- ,
&c. are so transformed.

We may, therefore, in any contravariant substitute these differ-

ential symbols for f, 77, &c, and we shall obtain an operating

* 2 (a
—

/3) (y
—

5) would vanish identically.
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symbol unaltered by transformation, and which, therefore, if

applied either to the quantic itself or to any of its covariants,

will give a covariant if any of the variables remain after differ-

entiation
;
and if not, an invariant. Similarly, if applied to a

mixed concomitant, it will give either a contravariant or a new

mixed concomitant, according as the variables are or are not

removed by differentiation. Or, again, in any contravariant in-

stead of substituting for f, 17, &c, y- >
-r- 5 &c, and so obtaining

an operating symbol, we may substitute -y- , -7— ,
&c. where U

is either the quantic itself or any of its covariants, and so obtain

a new covariant. The relation between the sets of variables

a;, ?/, Zj &c.j £ , 77, J,
&c. being reciprocal, we may, in like manner,

substitute in any covariant, for
a?, y, 2, &c, — , -=-,

—
,
&c f

,

when we get an operative symbol which when applied to any
contravariant will give either a new contravariant or an in*

variant.

Thus then, if we are given any covariant and contravariant,

by substituting in one of them differential symbols and operating
on the other, we obtain a new contravariant or covariant

;
which

again may be combined with one of the two given at first, so

as to generate another
;
and so on.

140. In the case of a binary quantic, this method may be

stated more simply. The formulae for direct transformation

being

those for the reciprocal transformation are (Art. 129)

whence A£ = /*2E -X2H, A?? = -
/^E 4 \H,

which may be written

An-\H.+ ^t"B)5 A(-f)=\2H+/*2 (-E).

Thus we see that, with the exception of the constant factor

A, r) and - f are transformed by exactly the same rules as

x and y ;
and it may be said that y and - x are contragredient
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to x and y. Thus then in binary quantics, covariants and

contravariants are not essentially distinct, and we have only in

any covariant to write 77 and —
j-

for x and y when we have

a contravariant, or vice versa. In fact, suppose that by trans-

formation any homogeneous function whatever
cf> (#, y) becomes

4> (X, F), the formulae just given show that
</> (17, f)

will

become — 4> (H,
—

H), where p is the degree of the function in

x and y. If then
<j> (a?, y) is a covariant, that is to say, a'

function which becomes by transformation one differing only by
a power of A from a function of like form in X and Y) evidently

$(*?)
—

£) will by transformation become one differing only by
a power of A from one of like form in H and H

;
that is to say,

it will be a contravariant. For example, the contravariant,

noticed (Art. 134, Ex. 1), cf
2 -

2&frj + arj% by the substitution

just mentioned, becomes the original quantic.
Instead then of saying that the differential symbols are

contragredient to x and y, we may say that they are cogredient
to y and - x

;
and if either in the quantic itself or any of its

covariants we write
-j- ,

— -=- for x and
3/,

we get a differential

symbol which may be used to generate new covariants in the

manner explained in the last article. Or we may substitute

du du c _
-T-,

—
-j- tor # and y, and so get a new covariant. Ine

following examples will sufficiently illustrate this method :

Ex. 1. To find an invariant of a quadratic, or of a system of two quadratics.

Suppose that by transformation ax2 + 2bxy + cy
2 becomes AX2 + 2BXY + CY2

,
then

since we have seen that A
-j-

,

- A ~ are transformed by the same rules as x and y,

it follows that the operative symbol

A2
(
a^- 25

£fy
+C&2

)
becomes by transformation

(a ^-W^+C-^j .

If then we operate on the given quadratic itself, we get

4A 2 (ac-b2
) =4 (AC- B2

),

which shows that ac - b2 is an invariant
;
or if we operate on a'x2 + 21/xy + r'/f- and

the transformed function, we get

2A2
(ac' + ca' - 2bb') = 2(AC'+CA'- 2BB'),

which shows that ac' + ca' - 2bb' is an invariant. We might also infer that

a (bx + cy)
2 - 2b (bx + cy) (ax + by) + c (ax + by)

2

is a covariant
;
but this is only the quantic itself multiplied by ac - b2 .

R



122 FORMATION OF INVARIANTS AND COVARIANTS,

Ex. 2. Every binary quantic of even degree has an invariant of the second order in the

coefficients. We have only to substitute, as just explained, g- ,

-
jg

for x and y, and

operate on the quantic itself. Thus for the quartic (a, b, c, d, e$x, y)\ we find that

ae-4bd + 3c2 is an invariant; or for the general quantic (a , «!...««-!, a,^x, y)
n

,

we find that a a„ - na^n-i + in (n
-

1) a^an-2
- &c. is an invariant

;
where the coeffi-

cients are those of the binomial, but the middle term is divided by two.

If we apply this method to a quantic of odd degree ; as, for example, if we operate

d3 d3 d3 d3

on the cubic ax3 + 3bx2y + Sexy
2 + dy

3
,
with d^ - 3cj^ + 36—-

2
- a^ ,

it

will be found that the result vanishes identically. We thus find, however, that a

system of two cubics has the invariant (ad' — a'd)
— 3 (be'

—
b'c). Or, in general, that

a system of two quantics of odd degree, a xn + &c, b xn + &c, has the invariant

(a bn - anb )
- n (a,^ - «»-A) + £»(»- 1) (a2bn-2

- a„-262)
- &c,

which vanishes when the two quantics are identical.

141. When, by the method just explained, we have found

an invariant of a quantic of any degree, we have immediately,

by the method of Art. 126, a covariant of any quantic of higher

degree. Thus, knowing that ac — b'
z

is an invariant of a quad-

ratic, by forming that invariant of the quadratic emanant of

, .
,
d2u d?u f d

2
u \

2
.

any quantic, we learn that -,-a ^-2
-

\~j—j ]
1S a covariant

of any quantic above the second degree. In like manner, from

the invariant of a quartic ae - &bd + 3c'
2

,
we infer that for every

quantic above the fourth degree,

d4
u d4

u d4
u d4

u
f

d4
u \

2

dx4

dy
4 dx3

dy dxdif \dx'
2

dy'y

is a covariant, &c. In this way we see that a quantic in

general has a series of covariants, of the second order in the

coefficients, and of the orders 2 (n
—

2), 2 (n
—

4), 2 [n
—

6), &c.

in the variables. These covariants may be combined with the

original quantic and with each other, so as to lead to new co-

variants or invariants.

Ex. 1. A quartic has an invariant of the third order in the coefficients. We know
that its Hessian

(ax
2 + 2bxy + cy

2
) (car

2 + 2dxy + ey
2
)
-

(bx
2 + 2cxy + dy

2
)
2

,

or (ac
- b2

)
x* + 2 (ad

-
be) x3

y + (ae + 2bd - 3c2
)
x2
y
2 + 2 (be- cd) xy

3 + (ce
- d2

) y\

is a covariant. Operate on this with (a, b, c, d, el[— ,

—
-t-)

4
,
and we get seventy-

two times

. ace + 2bcd — ad2 — eb2 — c3,

which is therefore an invariant.
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Ex. 2. Every quantic of odd degree has an invariant of the fourth order in the

coefficients. The quantic has a quadratic covariant , n-1 , H_ l
— &c. of the second

order in the coefficients
;
and the discriminant of this quadratic will be an invariant

of the original quantic (Art. 124), and will be of the fourth order in its coefficients.

In fact, it is proved in this way that every quantic has an invariant of the fourth

order; for if we take any of the covariants of this article, which are all of even

degree, its invariant of the second order will be of the fourth in the coefficients of

the original quantic. But when the quantic is of even degree, it may happen that

the invariant so found is only the square of its invariant of the second order.

Ex. 3. To form the invariant of the fourth order for a cubic.

Its Hessian is (ax + by) (ex + dy)
-

(bx + cy)
2

;

or (ac
- b2

) x
2 + (ad

-
be) xy + (bd

- c2) y
1
.

Hence (ad
-

be)
2 - 4 (ac

- b2) (bd
- c2)

\

is an invariant of the cubic. In fact, it is its discriminant

a2d2 - Gabcd.+ Uc3 + Ab 3d - 3b2c2 .

142.' From any invariant of a binary quantic we can gene-
rate a covariant. For from it we can form (Art. 134) the

evectant contravariant £
w
-v- + &c. ; and then in this substi-
da

tuting y, —x for f and
77,

we have a covariant. For example,
from the discriminant of a cubic which has been just written

we form the evectant

f {ad
2 - Shed + 2c

s

) + 3ff) {- acd 4 ffld - he')

+ 3f<rf (- aid + 2ac
i -

tfc) + rf [a\l - Zabc + 2J
3

),

whence we infer that the cubic has the cubic covariant

{d
2

d-Sabc+2b%abd-2ac'+b%-acd+^
2

d-bc\Sbcd-ad
2

-2^Jx^Y.

143. The differential equation.
—

If n be the order of a

binary quantic^ 6 the order in the coefficients of any of its in-

variants, then the weight (see Art. 56) of every term in the

invariant is constant and —\nQ. For if we alter x into \x
y

leaving y unchanged, since this is a linear transformation, the

invariant must, by definition, remain unaltered, except that it

may be multiplied by a power of X,. which is in this case the

modulus of transformation. It is proved then, precisely as in

Art. 57, that the weight, or sum of the suffixes, in every term

is constant.



124 FORMATION OF INVARIANTS AND COVARIANTS.

Again, the invariant must remain unaltered, if we change
x into y, and y into

a?,
a linear transformation, the modulus of

which is — 1. The effect of this substitution is the same as if

for every coefficient aa we substitute a
n_a

. Hence the sum of

a number of suffixes

a 4 P 4 7 + &c. = (n
-

a) + [n
-

j3) 4 {n
-

7) + &c,

whence 2 (a 4 ft 4- 7 4 &c.) = n6. q.e.d.

Cor. n and 6 cannot both be odd, since their product is an

even number; or, a binary quantic of odd degree cannot have

an invariant of odd order.

144. The principle just established enables us to write down

immediately the literal part of any invariant whose order is

given. For the order being given, the weight is given also.

Thus, if it were required to form for a quartic an invariant of

the third order in the coefficients, the weight must be 6, and

the terms of the invariant must be

Aa
4
a

2
a 4 Bap x

a
x
4- Ca^at 4- Dat

a
9
a

x
4- Ea%

a
%
a
% ,

where the coefficients A, B, &c. remain to be determined. The

reader will observe that there are as many terms in this in-

variant as the ways in which the number 6 can be expressed
as the sum of three numbers from to 4 inclusive

;
and gene-

rally that there may be as many terms in any invariant as the

ways in which its weight %nd can be expressed as the sum of

6 numbers from to n inclusive.

We determine the coefficients from the consideration that

since an invariant is to be unaltered by the substitution either

of x 4 X for
a?,

or y + X for
3/, evidently, as in Art. 62, every

invariant must satisfy the two differential equations

dl
ft

dl
'

dl « dl
, N

dl p A« ^-4-2a — +3a __ +&c.= 0, na. ^—4 (n- 1) a9 ^—4 &c = 0,da
x

da
2

2 da
3

' ' da
&

v ' 2 da
x

it being supposed that the original equation has been written

with binomial coefficients. In practice only one of these equa-
tions need be used

;
for the second is derived from the first by

changing each coefficient aa into a
n_a . It is sufficient then to

use one of the equations, provided we take care that the func-

tion we form is symmetrical with regard to x and y] that is
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to say, which does not change (or at most changes sign)* when

we change aa into a
w_a . And this condition will always be

fulfilled if we take care that the weight of the invariant is

that which has been just assigned. Thus then, in the example
chosen for an illustration, if we operate on Aa

4
a
2
a

{)
-\-&c. w7ith

CTo^ + &c., we get

{2B f 2A) a^a + (£> + 6 C+ ±A) a
3
a

2
a

+ (2D + 4cB) aji x
a

x
+ (6.E + W) a

2
a

2
a

x

=
0,

whence if we take A = l
7
the other coefficients are found to be

B=—
1, Z) = 2, G- —

1,
E=— 1, and the invariant is

a
4
a

2
a + 2a

z
a

2
a

x

- a^a, - a
5
a
3
a - a

2
a

2
a

2
.

145. In seeking to determine an invariant of given order

by the method just explained, we have a certain number of

unknown coefficients A, B, (7,
&c. to determine, and we do so

by the help of a certain number of conditions formed by means

of the differential equation. Now evidently if the number of

these conditions were greater than the number of unknown

coefficients, the formation of the invariant would in general
be impossible ;

if they were equal we could form one invariant
;

if the number of conditions were less, we could form more

than one invariant of the given order. We have just seen

that the number of terms in the invariant, which is one more

than the number of unknown coefficients, is equal to the number

of ways in which its weight \nd can be written, as the sum

of 6 numbers, none being greater than n. But the effect of

the operation a
-j
—

f- &c. is evidently to diminish the weight

by one, the number of conditions to be fulfilled
is, therefore,

equal to the number of ways in which \nQ
— 1 can be expressed

as the sum of numbers, none exceeding n. Thus, in the

* When we change x into y and y into x, this is a transformation whose modulus

is I 0, 1 I or — 1 . Any invariant, therefore, which when transformed becomes mul-

| 1, I

tiplied by an odd power of the modulus of transformation will change sign when we

interchage x and y. Such invariants are called skeiv invariants.
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exampL of Art. 144, the number of conditions used to deter-

mine A, B, &c. was equal to the number of ways in which

5 can be expressed as the sum of three numbers from to 4

inclusive. To find then generally whether an invariant of a

binary quantic of the order 6 can be formed, and whether

there can be more than one, we must compare the number

of ways in which the numbers \nQ, \nQ—\ can be expressed
as the sum of 6 numbers from to n inclusive.*

146. Similar reasoning applies to covariants. A covariant,

like the original quantic, must remain unaltered, when we

change x into px, and at the same time every coefficient aa
into p*aa . If then the coefficient of any power of

a?,
xu in

the covariant be aahpc7 ,
&c. it is obvious, as before, that

/a + a + (S + &c. must be constant for every term
;
and we may

call this number the weight of the covariant.

Again, in order that the covariant may not change when
we alter x into y and y into x, we must have

ji+ a + /3 + y + &c. bb (p - p) -f (*
—

a) + (n
-
0) + &c,

wherep is the degree of the covariant in x and y ;
whence if

6 be the order of the covariant in the coefficients, we have

immediately its weight =
\ (nO +p). Thus if it were required

to form a quadratic covariant to a cubic, of the second order

in the coefficients, n = 3, 6 =p = 2, and the weight is 4. We
have then for the terms multiplying a?

2

,
a + /3

=
2, and these

terms must be a
2
a and a

x
a

x
. In like manner the terms mul-

tiplying xy must be a
sa^ a

2
a

1?
and those multiplying y

2 must

be a
3
a

t ,
a

2
a

t2

. In this manner we can determine the literal part
of a covariant of any order. The coefficients are determined

as follows:

147. From the definition of a covariant it follows that we
must get the same result whether in it we change x into x + A#,
or whether we make the same change in the original quantic
and then form tl?e covariant. But this change in the original

* It was in this way Prof. Cayley first attempted to investigate the number of

invariants and covariants of a binary quantic. As to (Jordan's later results on this

subject, see Appendix.
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quantic is equivalent (Art. 62) to changing a, into a
x
+ \a

o)

a
2

into a
2 -f 2a,\ + a \2

,
&c. Hence, in the covariant also the

change of a? to x+\y must be equivalent to changing a
t

into

a
x
+ \a

,
&c. Let the covariant then be

A xp +pA x
aT r

y + \p (p
-

I) A 2
xp

~Y + &c.

Let us express that these two alterations are equivalent, and

let us confine our attention to the terms multiplying \. Then

if, as in Art. 64, we use the abbreviation -=^ to denote the
1 7

d£

operation a -=—
\- 2a

x -?
—

[ &c, we get

In like manner, writing -j-
for na

x
-z—\- (n

-
1) a

2
-=—h &c,

we have

Thus we see that when we have determined ^4 so as to satisfy

dA
the equation —=^

=
;
in other words, when ^4

o
is a function

of the differences of the roots of the quantic (Art. 58), all the

other terms of the covariant are known. The covariant is

in fact

. p dA
n pl d'A

n af-y d 3A
n
xp

-y p

It will be observed that the weight of the covariant being

\ [n6 +j)) the weight of the term A is
•§- (n0 —p) ;

since the

weight of A
Q together with p makes up the weight of the

covariant. This term A
,
whence all the other terms are de-

rived, is called by Prof. M. Roberts the source of the covariant.

He observes also that the source of the product of two cova-

riants is the product of their sources. For if we multiply the

covariant last written by
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we get, as may be easily seen,

A Bx^ + <*tA*,>^V+ <?(AA) ^1 + &C

Hence, if we know any relation connecting any functions of the

differences A^ i?
,

(7
, &c, the same relation will connect the

covariants derived from these functions.

Ex. 1. To find the quadratic covariant of a cubic. We have seen (Art. 146) that

A is of the form a2a + Ba
x
a

x
. Operate on this with ao JjT""^^ -r— ,

am* we

get (2 + 2B) a a
x
= 0, whence B = - 1 and A = a2a

- a
x
a

x
. Operate then with

3a
x

-j

—
1- 2a2 -,— + «3 -j— ,

and we have 2A
X
= a3a

— a2ax . Operate with the same

on A
x ,
and we have A 2

— a
x
a3
— a2a2 . The covariant, therefore, is

(a2a
— a

x
a

x ) x
2 + (a a3

—
a^a^ xy + (a x

a3
— a2a2) y

2
.

Ex. 2. To find a cubic covariant of a cubic of the third order in the coefficients.

Here n = 3, = 3, \ (nd + p) = 6. The sum then of the suffixes of the coefficient

of x3 will be 3
;
and this coefficient must be of the form Aa3%aa + Ba2a x

a + Ca
x
a

x
a

x
.

Operate with a -:—h 2a, «t—+ 3a2 -=—
,
and we getda

x

* da2 da3
°

(3A + B) a2a a + (25 + 3 C) a
x
a

x
a

,

whence if we take A =
1, we have B = — 3, C - 2, or A = a3a a — 3a2ax

a + 2a
x
u

x
a

x
.

Operate on this three times successively with 8a
x -j

—
I- 2a2 -z—I- a3

-=-
,
and we have

the remaining coefficients, and the covariant is (see Art. 142)

(a3aoa
— 3a2ax

a + 2a
x
axax ) x

3 + 3 (a3at
a — 2a2aja + a2ax

a
x) x

2
y

+ 3 (2a3ax
ax
— a2a2ax

— a3a2a ) xy
2 + (Sa3a2a x

— 2a2a2a2
— a3a3a ) y

3
,

148. We have seen that a quantic has as many covariants

of the degree p in the variables and of the order 6 in the

coefficients as functions A
0)

whose weight is %[nQ—p) can be

dA
found to satisfy the equation —^ = 0. And, as in Art. 145, we

see that this number i3 equal to the difference of the ways in

which the numbers \ (nO -p) and *
(n6 -p) - 1 can be expressed

as the sum of 6 numbers from to n inclusive. It may be re-

marked that p cannot be odd unless both n and 6 are odd.

Hence only quantics of odd degree can have covariants of odd

degree in the
coefficients, and these must also be of odd degree

in the variables.
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149. The results arrived at (Art. 147) may be stated a little

differently. The operation y ,— performed on any quantic is

equivalent to a certain operation performed by differentia-

ting with respect to the coefficients. Thus, for the quantic

(o , a,,
a

2 ..-XT ) yTt we Se ^ *ae same result whether we operate

on it with y -j- or with a
Q -j

1- 2a
x

-,—h &c. This latter opera-

d
tion then may be written y& ;

and the property already

proved for a covariant may be written that we have for it

d

IS" y
d~

dx
0. In other words, that we get the same

result whether we operate on the covariant with y
- or with

an
-
7
—

|- 2a, =—h &c. In his Memoirs on Quantics, Prof. Cayley
da

x

' da
2

has started with this property as his definition of a covariant
;

a definition which includes invariants also, since for them we

have y -=- = 0, and therefore also

"

dl
J dx

= 0.

150. It can be proved, in like manner, that quantics in any
number of variables satisfy differential equations which may be

d
written y -=- = d'

dx
d_ _

dx dx ,
&c. Thus, for the

quantic («, b
y c,f, #, Jifix, y, z)

2

,
we have

d d d . d d d 7 d d

yT^ a
Th

+nf+2h db'
z
dx=

aTg +li
Tf
+2nc'

and every covariant must satisfy these two equations. While

every invariant must satisfy the two equations

dl dl al dl n dl .dl n dl _

a
dh
+
Vdf

+2h
db
=

°' a
clg
+ h

df+
2
Vd-c

=
>

as may easily be proved from the consideration that the invariant

remains unaltered if we substitute for #, x + \y or x + /uz.
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LESSON XIV.

SYMBOLICAL REPRESENTATION OF INVARIANTS AND COVARIANTS.

151. It remains to^explain a fourth method of finding in-

variants and covariants, given by Prof. Cayley in 1 846
( Cambridge

and Dublin Mathematical Journal, vol. I., p. 104, and Crelle,

vol. XXX.) ;
which not only enables us to arrive at such functions,

but also affords the basis of a regular calculus by means of which

they may be compared and identified.

Let
a?,, ?/j ; x^ y%

be any two cogredient sets of vari-

ables; then, if we write for shortness for -—
, -j- ,

- ~
;

f,j ??,, f2 , &c, it has been proved (Arts. 130, 120, 139) that

ft, 9)%i ft, rj2
ar6 transformed by the reciprocal substitution

;

that fj972
— ffi^ is an invariant symbol of operation ;

and that if

we operate with any power of this symbol on any function

of #,, y^ #
2 , y2 ,

we shall obtain a covariant of that function.

We shall use for f^ —
f2^ 1

the abbreviation 12.

Suppose now that we are given any two binary quanties

Uj V, we can at once form covariants of this system of two

quanties. For we have only to write the variables in U with

the suffix (1), those in V with the suffix (2), and then operate

on the product UV with any power of the symbol 12
;
when the

result must be an invariant or covariant. Thus if we operate
•

i *k 7K ^ •
.i t t . dUdV dUdV ...

simply with 12 we obtain the Jacobian - = z-,
—

,
winch

ax ay ay ax
we saw (Art. 128) was a covariant of the system of qualities.

Again, if

Z7= &x? + 2bx
iy l
+ cy* ;

V= a'x? + 2b'x
2y2 + c'y2%

and if we operate on UV with 12'
2

, which, written at full

length, is

the result is ad +ea -
iW, which is thus proved to be an inva-
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riant of the system of equations. In general, it is obvious that

the differentials marked with the suffix (1) only apply to
27,

and

those with the suffix (2) only to V\ and it is unnecessary to

retain the suffixes after differentiation ;* so that 12
a

applied to

two quantics of any degree gives the covariant

cHJtfV dTU.J'V d2

U_ <FV_
dx2

dy
2

dy
2 dx2

dxdy dxdy
'

Similarly the symbol 12
3

applied to two cubics gives the

invariant

(ad'
—
ad)

— 3 (be — &'c),

or to any two quantics gives the covariant

d3UdA V d3U cPV d3U d3 V ds

Ud*V,
dx3

dif dx'dy dxdy
2

dxdy
2 dx2

dy dy
3 dx3 '

and so in like manner for the other powers of 12.

152. We can by this method obtain also invariants or co-

variants of a single function U. It
is,

in fact, only necessary to

suppose in the last article the quantics U and Fto be identical.

Thus, for instance, in the example of the two quadratics given
in the last Article, if we make a = a', b — b\ c =

c',
the invariant

12
2 becomes 2 (ac

— b
2

). And, in like manner, the expression

there given for the covariant 12* of a system £7, V, by making
U= F, gives the covariant of a single quantic

(pu dru _ {d*u\\
dx2

dy
2

\dxdy)

In general, whenever we want by this method to form the

covariants of a single function, we resort to this process :
—We

first form a covariant of a system of distinct quantics, and then

suppose the quantics to be made identical. And in what

follows, when we use such symbols as 12" &c. without adding

* If W be any function containing x
x , y v ;

x2 , y2 ;
we shall get the same result

whether we linearly transform these variables, and afterwards omit all the suffixes

in the transformed equation; or whether we omit the suffixes first, and afterwards

transform x and y. This results immediately from the fact that xu yx ;
x2 , y2 ;

x, y are eogredient. It foUows then at once that if W written as a function of

xi> Vi) xii Vi'i be a covariant of U, V; that is to say, if the expression of the

coefficients of W in terms of the coefficients .of U and V be unaffected by trans-

formation, then W is also a covariant when the suffixes are all omitted.
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any subject of operation, we mean to express derivatives of a

single function U. We take for the subject operated on the

product of two or more quantics Ux1
U

2l &c, where the variables

•Ti>#i> x
zi V*\ &c * are written in each respectively, instead of

x and y* and we suppose that after differentiation all the

suffixes are omitted, and that the variables, if any remain, are

all made equal to x and y.

153. From the omission of the suffixes after differentiation,

it follows at once that it cannot make any difference what

figures had been originally used, and that 12" and 34
n

are

expressions for the same thing. In the use of this method we
have constantly to employ transformations depending on this

obvious principle. Thus, we can show that when n is odd, 12
n

applied to a single function vanishes identically. For, from

what has been said, 12" = 21"; but 12 and 21 have opposite

signs, as appears immediately on writing at full length the

symbol for which 12 is an abbreviation. It follows then that

12
n
must vanish when n is odd. Thus, in the expansion of 12

3

,

given at the end of Art. 151, if we make Z7= F, it will obviously

vanish identically. The series 12
2

,
12

4

,
12

6 &c. gives the series

of invariants and covariants which we have already found

(Art. 141). It is easy to see that, when n is even, 12
n

applied
to [%,<*„ ar ..Jx,y)

n

gives

a an
- na

x
a
n_x
+ %n{n- 1) a

2
a
n_2
- &c,

where the last coefficient must be divided by two, as is evident

from the manner of formation. In particular, we thus have

the invariants, for the quadratic, ac - b
2

;
for the quartic,

ae — £bd+ 3c
2

;
for the sextic, ag

— 6bf+ 15ce - 10c?
2

;
and so on.

154. The results of the preceding Articles are extended

without difficulty to any number of functions. We may take

any number of quantics £7", F, TF, &c, and, writing the variables

in the first with the suffix (1), those in the second with the suffix

(2), in the third with the suffix (3), and so on, we may operate
on their product with the product of any number of symbols

12*, 23^, 317
,
143

,
&c.

; where, as before, 23 is an abbreviation

for f2773
- f3??2 ,

&c. After the differentiation we suppress the



INVARIANTS AND COVAEIANTS. 133

suffixes, and we thus get a covariant of the given system of

quantics, which will be an invariant if it happens that no power
of x and y appear after differentiation. Any number of the

quantics £7, F, W, &c, may be identical
;
and in the case with

which we shall be most frequently concerned, viz., where we

wish to form derivatives of a single quantic, the subject operated

on is UJJJJ% &c, where U
x
and U

2 only differ by having the

variables written with different suffixes.

It is evident that in this method the degree of the derivative

in the coefficients will be always equal to the number of different

figures in the symbol for the derivative. For if all the functions

were distinct, the derivative would evidently contain a coefficient

from every one of the quantics Z7, F, IF, &c.
;
and it will be

still true, when
Z7, F, W are supposed identical, that the degree

in the coefficients is equal to the number of factors in the product
U

1
U

2
U

3
&c. which we operate on. Thus the derivatives con-

sidered in the last Article being all of the form 12p are all of

the second degree in the coefficients.

Again, if it were required to find the degree of the derivative

in x and y. Suppose, in the first place, that the quantics were

distinct, U being of the degree ??,
V of the degree n\ W of the

degree w", and so on
;
and suppose that in the operating symbol

the figure 1 occurs a times
; 2, /3 times

;
and so on

; then, since

U is differentiated a times, F, /3 times, &c, the result is of the

degree (n-a) + [n
-

/3) + («"
-

7) + &c. When the quantics
are identical, if there are p factors in the product U

x
U

2
...U

p

which we operate on, the degree of the result in x and y
will be np— (a-f /3 + 7 + &a). While again, if there be r

factors such as 12 in the operating symbol, it is obvious that

(a + /3 4- 7 + &c.) = 2r. It is clear that if we wish to obtain

an invariant, we must have 0L = /3
= y = n.

155. To illustrate the above principles, we make an ex-

amination of all possible invariants of the third degree in the

coefficients. Since the symbol for these can only contain three

figures, its most general form is 12^.23'3.31
7

; while, in order

that it should yield an invariant, we must have

a + 7 = a-f/3 = /9 + 7 = «,
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whence a = /3
= 7. The general form, then, that we have to

examine is (12.23-31)*. Again, if a be odd, this derivative

vanishes identically; for, as in Art. 153, by interchanging the

figures 1 and 2, we have (12.23.31)*= (21.13.32)"; but these

have opposite signs. It follows, then, that all invariants of the

third order are included in the formula (12.23-31)*, where a

is even. Thus, 12
2
.23

2
.31'

2
is an invariant of a quartic, since

the differentials rise to the fourth degree; 12
4
.23

4
.3l

4
is an

invariant of an octavic;. 12
6
-23

6
-31

6
of a quantic of the twelfth

degree, and so on
; only quantics whose degree is of the form

Am having invariants of the third order in the coefficients. If

we wish actually to calculate one of these, suppose 12
2
.23

2
.31

2

,

I write, for brevity, f1? 97,, &c, instead of ^— , -7— ,
&c. Then

we have actually to multiply out

(to
-
to)

2

(to - to)
2

(to - f,%)"

In the result we omit all the suffixes, and replace f
4

by -=-
4 &c.

;
6LJG

or, when we operate on a quartic, by a the coefficient of a?
4

.

There are many ways which a little practice suggests for

abridging the work of this expansion, but we do not think it

worth while to give up the space necessary to explain them
;

and we merely give the results of the expansion of the three

invariants just referred to. 12
2
.23

2
.31

2

yields the invariant of

a quartic already obtained (Art. 141, Ex. 1, and Art. 144), viz. :
—

a
4
a

2
a + 2a9aa

a
t

- atf - aji*
- a*.

12
4
.23

4
.31

4

gives

+ «
6 (
3a6«o- 8«5«i- 22a

4
«
2+24a3

a
3) + tf

5 (24a5
a

2
- 36a

4
a

3 ) + 15a
4
a
4
a
4
.

And 12
6
.23

6
.31

6

gives

avka6
a<T 6«6a,+15<24a2

- 10a
3
a

3)+ «u(-6^^+30^^— 54a
5
a

2+ 30a
4
#

3)

+ a
10 (15a8

a - 54a
7
a

x
-f 24<y7f + 150a

5
a
3
- 135«

4
a
4 )

+ a
9 (- 10a

9
« + BOa^ + 150a

7
a
a
- 430a

fl

a
8 + 270a

6
a
4)

+ a
8 (- 135a

b
a
2 + 270a

7a, + 495a
6
a
4
- 540a

6
a
8)

+ a
7 (- 540a

7
a
4
+ 720a

Q
a
5)
- 280a

a
a

fl

a
6

.
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156. Though the above-mentioned is the only type of in-

variants of the third order, there is an unlimited number of

covariants, the simplest being 12
2

.13, which, when expanded, is

d*Ud*UdU_d*U / <PU dU d'
2 UdU\

dx3

dy'
2

dy dx2

dy \ dxdy dy dy
2 dx )

d 3u /d'Udu d*u du\ _ d*ua*uau

dxdy
2

\ dx'
2

dy dxdy dx J dy" dx2 dx
'

When this is applied to a cubic, it gives the evectant obtained

already (Art. 142).

The general type of invariants of the fourth order in the

coefficients is (12.34)* (13. 2~4)>
9

(14.23)
y

. Thus the discriminant

of a cubic is expressed in this notation (12.34)* (13-24); but

we cannot afford space to enter into greater details on this

subject.

157. The principles just laid down afford an easy proof of

a remarkable theorem first demonstrated by M. Tlermite, and to

which we shall refer as " Hermite's Law of Reciprocity." The

number of invariants of the ?i
tn

order in the coefficients possessed

by a binary quantic of the p
th

degree is equal to the number of
invariants of the order p in the coefficients possessed by a quantic

of the ?2
th

degree. We have already proved that if any symbol

]2".23
&
-34

c

&c. denotes an invariant of the order p of a quantic
of the degree n, then the number of different figures 1,2,3, &c,

isjp, and each figure occurs n times. But we might calculate by
the method of Art. 136 an invariant 2{a-/3)

n

{/3-y)
b

(y-8)
c

&c,
where we replace each symbol 34 by the difference of two roots

(<y
—

S). This latter is an invariant of a quantic of the j9

th

degree, since there are by hypothesis p roots
;
and it is of the

degree n in the coefficients of the equation (Art. 58).

Thus, for example, a quadratic has but the single indepen-
dent invariant (a

—
/3)

2

, though of course every power of this is

also an invariant
;
and the general type of such invariants is

(a
—

/3)'

2

"\ Hence, only quantics of even degree have invariants

of the second order in the coefficients, and the general symbol
for such invariants is 12

2Wl
.

So again, cubics have no invariant except the discriminant
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(a
—

fif (/3
—

7)
2

(7
—

a)
2 and its powers ;

and the discriminant is

of the fourth order in the coefficients. Hence, only quantics of

the degree 4m have cubic invariants whose general type is

F22W.232m.31
2W

. It will be proved that quartics have two inde-

pendent invariants, one of the second and one of the third

degree, in the coefficients
; and, of course, any power of one

multiplied by any power of the other is an invariant. Hence,

quartics have as many invariants of the p
th

order as the equation

2x -f 3y =p admits of integer solutions
;

this is, therefore, the

number of invariants of the fourth order which a quantic of

they
11

degree can possess.

158. Hermite has proved that his theorem applies also to

covariants of any given degree in x and y ;
that is to say, that

an n{c

possesses as many such covariants of the p
m

order in the

coefficients as a^?
ic has of the n

th
order in the coefficients. For,

consider any symbol, 12x.23w-34
y

&c, where there are p figures,

and the figure 1 occurs a times, 2 occurs b times, and so on
;

then we have proved that the degree of this covariant in x

and y is [n
—

a) + (n
—

b) + &c. But we may form the sym-
metric function

2 (a
-
0)X (j3

- 7> (7
- Sy (x

-
a)

n~a

(x
- /8p &c,

which has been proved (Art. 137) to be a covariant of the

quantic of the p
tb

degree, whose roots are a, /3, &c. Every
root enters into its expression in the degree w, which is there*

fore the order of the covariant in the coefficients, and it ob-

viously contains x and y in the same degree as before, viz.

(n
—

a) -f (7?
-

b) -f &c. Thus, for example, the only covariants

which a quadratic has are some power of the quantic itself

multiplied by some power of its discriminant, the general type
of which is

the order of which in the coefficients is 2p + q, and in x and y is

2q. Hence we infer that every quantic of the degree 2p + q
has a covariant of the second degree in the coefficients, and of

the degree 2q in x and y, the general symbol for such covariants

being 12 2p
. When q = 1, we obtain the theorem given (p. 123),

that every quantic of odd degree has a quadratic covariant.
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159. Derivatives of quantics in three or more variables are

expressed in a manner similar to that already explained. If

X\V\
Z

\-)
x^2Zii

xHJAi De cogredient sets of variables, then, by
the rule for multiplication of determinants, the determinant

ft (?a
-
&*.) + ft (art

- ya) + ft (ma
-
Wi)

is an invariant, which, by transformation, becomes a similar

function multiplied by the modulus of transformation. And if in

the above we write for x
x1
-=—

;
for #2, -y- .;

and so on, we obtain

"ft °%
an invariantive symbol of operation, which we shall write 123.

When, then, we wish to obtain invariants or xovariants of

any function £7, we have only to operate on the product

U^U2
U

3
...UP with the product of any number of symbols

123 x 124/ 2357
&c, and after differentiation suppress all the

suffixes. Thus, for example, let Cf
,

£7
2 ,
U

3
be ternary quadrics,

and let the coefficients in U
x
be a, b

7 c, 2/, 2#, 2^, as at p. 92,

then 123'
2

expanded is

a [b'c + b"c - 2ff") + b [ca + cV -
2gg") + c («'&" + a"b' - 2h'h")

+ 2/ (<//*" +g"h!
-
a/"

-
«'/) + 2g (h'f + «3f

~W ~ hY)

+ M(fg"+f'g'-ch"-c"h').',

which, when we suppose the three quantics ~U
X ,

£f
,
U

s1
to be

identical, ora = a' = a" &c. reduces to six times

abc + 2fgh
- af -

bg*
- di\

If in the above we replace a, the coefficient of x\ by -~~^ &c.

we get the expansion of 123
2
as applied to any ternary quantic.

This covariant is called the Hessian of the quantic.

It is seen, as at Art. 153, that odd powers of the symbol 123

vanish when it is applied to a single quantic. We give as a

further example the expansion of 123
4

applied to the quartic,

ax* + by
4 + cz

4, + 4 (a2
x3

y + a
s
xs

z -f bgfz -f b
xy*x + c

x
z
3x 4- c

2z*y)

+ 6 [dy'z
2 + e»V -\-fxY) + I2xyz (Ix + my + nz).

T
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Then T23
4

is

ale ~ 4 (ab3
c
2 4 be

x
a

3 4 cajbj 4 3 {ad
2 4 be

2 4 ef) 4 4 (a2
5
3
c

l
4 ajb^)

- 12 (a9
n<? 4 ajnd 4 5

t
n« 4 £

3
fe 4 c

xrnf+ cjf)

4 12
[lb x

c
x
4 «w,ft 4 wa

8
#
a)
4 12 (dl'+ em

2

+fif) 4 Qdef- Yllmn.

160. We can express in the same manner functions contain-

ing contragredient variables
;
for if a, /8, 7 be any variables con-

tragredient to
a?, 2/, z, and therefore cogredient with -7- , -j- , -7- ,

it follows, as before, that the determinant

d d d d \ „{ d d d d \ f d d d d \

dy x
dz

2 dy2 dzj \dz
x
dx

9i dz^dxj \dx
x dy2 dx^dyj

(which we shall denote by the abbreviation al2) is an inva-

riantive symbol of operation. Thus, if £7, U2
be two different

quadrics, a!2
2

is the contravariant called <£ (Conies, p. 331),

which expanded is

a
2

(b'c" 4 b"c'- 2ff") 4 /3
2

(e'a"4 c'W- 2//) 4 y* (<#"+ a"7>'- 2*'*")

4 2/97 fo'A" 4 g'h'
-
af"

- af) 4 2ya (h'f 4 A'/'
-
&>"

-
6"/)

4 2a/3(//4/V-cT'-c'T),
and which, when the two quadrics are identical, becomes the

equation of the polar reciprocal of the quadric.

In like manner, the quantic contravariant to a quartic, which

I have called 8 (Higher Plane Curves, p. 75), may be written

symbolically al2
4

,
and the quantic T in the same place may be

written al2
2
a23

2
a31

2
. In any of these we have only to replace

in

the coefficient of any power of x, x
n

by -=-« to obtain a symbol

which will yield a mixed concomitant when applied to a quantic

of higher dimensions. Thus ol\ 2
2

is

*W dzt-{d^dz)\
+ &C-

wmich, when applied to a quadric, is a contravariant, but, when

applied to a quantic of higher order, contains both x, y, z, as

well as the contragredient a, /3, 7, and, therefore, is a mixed

concomitant.
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In general, if we have the symbolical expression for any
invariant of a binary quantic, we have only to prefix a contra-

variant symbol a to every term, when we shall have a con-

travariant of a ternary quantic of the same order. And in

particular it can be proved that if we take the symbolical ex-

pression for the discriminant of a binary quantic, and prefix in

this manner a contravariant symbol to each term, we shall have

the expression for the polar reciprocal of a ternary quantic.

Thus, the symbol for the discriminant of a binary cubic is

12
2
.34

2

.13.24, and the polar reciprocal of a ternary cubic is

al2
2
.a34'

2

.al3.a24, which is obviously of the sixth order in the

variables a, /3, 7, and of the fourth in the coefficients.

161. If in any contravariant we substitute
-^ , -7- , -y- for

a, /3, 7, and operate on U, we get a covariant (Art. 139) ;
and

the symbol for this covariant is got from that for the contra-

variant by writing a new figure instead of a. Thus from a23
2

is got 123
2

,
from a23-a24 is got 123- 124,

&c. Conversely, if

in the symbol for any invariant we replace any figure by a

contravariant symbol a, we get the evectant of that invariant.

Thus,

123.124.234.314

is an invariant of a cubic, and the evectant of that invariant is

123.al2.a23.a31.

In the case of a binary quantic, this rule assumes a simpler

form
;

for if we substitute a contravariant symbol for 1 in 12,

it becomes, when written at full length, f -^ ^ ~T~ 1
but smce

f and 7] are cogredient with —
y and

a?,
this may be written

X
~tf

+ y T »
an(* ma^

T ^e suppressed altogether, since it only

affects the result with a numerical multiplier. Hence, given
the symbol for any invariant of a binary quantic, its evectant

is got by omitting all the factors which contain any one figure*

Thus,

. . 12
2
.34

2
. 13.24
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being the discriminant of a cubic, its evectant, got by omitting

the factors which contain 4, is 12
2
.13.

It in a contravanant of any quantic we substitute -j- , -7- , ,
-

for a, /3, 7, we also get a covariant, and the symbol for it is

obtained from that for the contravariant by writing a different

new figure in place of every a. Thus, from a34
2 we get

134.234
;
and so on.

162. In the explanation of symbolical methods which has

been hitherto given, I have followed the notation and course

of proceeding originally made use of by Prof. Cayley. I wish

now to explain some modifications of notation introduced by
Aronhold and Clebsch, who have employed these symbolical
methods with great success, but who perhaps at first scarcely

sufficiently recognized the substantial identity of their methods

with those previously given by Prof. Cayley. The variables

are denoted x^ x
2l

<r
3 , &c, while the coefficients are denoted by

suffixes corresponding to the variables which they multiply.

Thus the ternary cubic, the ternary quartic, &c, may be briefly

denoted *2,a
ikfC{Cjpin '2a

illmxfRkxfcm ,

i &c, where the numbers

?*, &, ?,
on are to receive in succession all the values 1, 2, 3.

It will be observed that in this notation am = am = a
kii ,

so that

when we form the sums indicated we obtain a quantic written

with the numerical coefficients of the binomial theorem. Thus
when we form the sum '2atifcfclpcn the three terms a^x^x^
a

\'i.\
x
'P
c ĉ

\i
a2nxi

x
\
x

i
are identical, as in like manner are the six

terms

*iWW*8> at*Ft**** a™x*
x

i
x

si ««av*v*D *ufW* ««flW^i
so that the sum written at length would be

*m*P& + **&&&» + a
s,S
X

Z
X

,
X
S +^a lnX1

X
l
X

2+-+^WW* 1

And so, in like manner, in general; Now Aronhold uses, as

an abbreviated expression for the quantic in general,

(a1
x

t
+ a

2
x

i2
+ a

3
x

s +...)
n

,

where, after expansion, we are to substitute for- the products
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a
,
a
k
a

it
&c

«>
*ne coefficients am . Thus the ternary cubic given

above may be written in the abbreviated form

the terms a
x
a

x
a

x
x

x
x

x
x

x
+ 3a

x
a

x
a

2
x

x
x

x
x

2 + &c.

in the expansion of the cube being replaced by ct
nyxx

xx
^

3aU2xx
x

x
x

2 i
&c. The quantity a

x
x

x
+ a

2
x

2 + a
3
x

3
is written a

v

or sometimes simply a, and the quantic is symbolically ex-

pressed as a*. The quantic might equally have been written

{b
x

x
x
+ b

2
x

2 -+- 63
z

3)

3

, [c x
x

x
+ c

2
x

2 + c
3
a?

3)

3

, &c, it being understood

that we are in like manner to substitute for bfifi^ c
x
c

x
c
2 , &c, the

coefficients a
ni ,

ang ,
&c. Now the rule given by Aronhold

for the formation of invariants is to take a number of deter-

minants, whose constituents are the symbols a
x1
a
2 ,
a

3 ;
b

x1
b
2 , &c,

to multiply all together, and after multiplication to substitute

for the symbols a,a/^, bmbnbn the coefficients aun a
mnp ,

&c.

Thus Aronhold first discovered a fundamental invariant of

a ternary cubic by forming the four determinants 2 ± a
x
b
2
c
3l

2 + b
x
c
2
d

3 ,
S ±c

x
d

2
a

3 ,
2 ± dx

a
2
b
3 ; multiplying all together and

then performing the substitutions already indicated. This is

the same invariant which, in Prof. Cayley's notation, would be

designated as ] 23-234.341.412. In order to obtain an in-

variant by this method, it is obviously necessary (as in Art. 154)

that the a symbols, b symbols, &c. respectively should each

occur n times. A product of determinants not fulfilling this

condition is made to express a covariant by joining to it such

powers of a
x1

bx, &c. as will make up the total number of

a's, 6's, &c. to n. Thus the Hessian of a binary quadratic,

which in Cayley's notation is 12
2

is in Aronhold's (abf ;
but

the Hessian of any other binary quantic, which in Cayley's

notation is still 12'
2

,
is in Aronhold's (ob)* %~*ba

n-27 «-2

163. In order to see the substantial identity of the two

methods, it is sufficient to observe that by the theorem of homo-

geneous functions any quantic u of the n
tb

order differs only

— +x —V
dx

2

3

dxj
that if we write it («!#, + ff

8
aJ

9 -f <vc8)

n

,
the symbols a,, a

%1
o

s

by a numerical multiplier from (x
x j f- x2 -^- + x

3 £- ) w, so
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differ only by a numerical constant from the differential sym-

bols -7- ,
&c. And we evidently get the same results whether

CtX.

with Prof. Cayley we form determinants whose constituents are

-7— ,
—-

,
^r—

,
or with Aronhold, whose constituents are

dx
x

dx
2

7 dx
3

«,1
a* «3'

And the artifice made use of by both is the same.

If we multiply together a number of differential symbols

f-p+\
—

) (;7-+At
-r)? &c

->
an(l operate on £7, it is evident

the result will be a linear function of differentials of U of an

order equal to the number of factors multiplied together ;
and

that in this way we can never get any power higher than the

first of any differential coefficient. When, then, it is required

to express symbolically a function involving powers of the

differential coefficients, the artifice used by Prof. Cayley was

to write the function first with different sets of variables, and

form such a function as (^ 1-\ -7— ) [-, V u, -
7
—

] U.IL, and
\dx

x dyj \dx
2

^
dyj

l 27

after differentiation to make the variables identical. So in like

manner Aronhold in his symbolic multiplication uses different

symbols which have the same meaning after the multipli-

cation has been performed. By multiplying together symbols
a

ii
a
ki
a

ii
&c

->
we can on ly get a term such as a

ikl
of the first

degree only in the coefficients. When, then, we want to ex-

press symbolically functions of the coefficients of higher order

than the
first, the artifice is used of multiplying together diffe-

rent sets of symbols or,-, a^ a
{ ] b„ b

k1
bn &c, the products

a
i
ak
a

ii bfijbfi CfrGfi &c., all equally denoting the coefficient aiu.

The notations explained in this Lesson afford a complete

calculus, by means of which invariants and covariants can be

transformed and the identity of different expressions ascer-

tained. We shall in a subsequent Lesson give illustrations of

the applications of this method, referring those desirous of

further information to Clebsch's valuable Theorie der binaren

algebraischen Formerly in which work this symbolical method

is the basis of the whole treatment of the subject.
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LESSON XV.

CANONICAL FORMS.

164. Since invariants and covariants retain their relations

o each other, no matter how the quantic is linearly transformed,

it is plain that when we wish to study these relations it is suffi-

cient to do so by discussing the quantic in the simplest form to

which it is possible to reduce it. This is only extending to

quantics in general what the reader is familiar with in the case

of ternary and quaternary quantics; since, when we wish to

study the properties of a curve or surface, every geometer is

familiar with the advantage of choosing such axes as shall

reduce the equation of this curve or surface to its simplest form.*

The simplest form then, to which a quantic can without loss

of generality be reduced is called the canonical form of the

quantic. We can, by merely counting the constants, ascertain

whether any proposed simple form is sufficiently general to be

taken as the canonical form of a quantic, for if the proposed form

does not, either explicitly or implicitly, contain as many con-

stants as the given quantic in its most general form, it will not

be possible always to reduce the general to the proposed form.f

* It must be owned, however, that as in the progress of analysis greater facility is

gained in dealing with quantics in their most general form, the advantage diminishes

of reducing them to simpler forms.

f It is not true, however, conversely, that a form which contains the proper number
of constants is necessarily one to which the general equation may be reduced. For

when we endeavour by comparison of coefficients to identify such a form with the

general equation, although the number of equations is equal to the number of

quantities to be determined, it may happen that the constants enter into the equations

in such a way that all the equations cannot be satisfied. Thus

(x
-

a)
2 + (y- /3)

2 = he + my + n

is a form containing five constants, and yet is not one to which the general equation
of a ternary quadric can be reduced

;
since the constants enter the equation in such a

way that though we have more than enough to make the coefficients of x and y and

the absolute term identical with those in any proposed equation, we have no means of

identifying the coefficients of x2
, xy and y

1
. A more important example is

x* + Z/
4 + £ 4 + »1 + V\
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Thus, a binary cubic may be reduced to the form X3 + Y3

;
for

the latter form, being equivalent to (lx + my)
3 + [l'x+ my)

3

,
con-

tains implicitly four constants, and therefore is as general as

(a, 5, c, d$x, y)
3

. So, in like manner, a ternary cubic in its

most general form contains ten constants
;

but the form

X 3 + Y3 +Z3
-f 6mXYZ contains also ten constants, since, in

addition to the m which appears explicitly, X, Y, Z implicitly

involve three constants each. This latter, then, may be taken

as the canonical form of a ternary cubic, and, in fact, the most

important advances that have been recently made in the theory

of curves of the third degree are owing to the use of the

equation in this simple and manageable form.

165. The quadratic function (a, £, c$x, yf can be reduced

in an infinity of ways to the form x'
2

+y'
2

,
since the latter

form implicitly contains four constants, and the former only

three. In like manner the ternary quadric which contains six

constants can be reduced in an infinity of ways to the form

x* + 2/

2 + £
2

)
since this last contains implicitly nine constants;

and, in general, a quadratic form in any number of variables

can be reduced in an infinity of ways to a sum of squares.

It is worth observing, however, that though a quadratic form

can be reduced in an infinity of ways to a sum of squares,

yet the number of positive and negative squares in this sum
is fixed. Thus, if a binary quadric can be reduced to the

form x2 + y\ it cannot also be reduced to the form u
l — v

2

,
since

we cannot have x2 + y* identical with u2 -
v\ the factors on

the one side of the identity being imaginary, and those on

the other being real. In like manner, for ternary quadrics we
cannot have x2 + y

2 — z
2 = u2 + v

l + w\ since we should thus have

x* + y
z = z

2 + u2 + v
2 + w2

, or, in other words,

x2
-f y

2 = z2

+ [lx +my + nz)'
2+ (l'x-{-my+riz)

2+ (/"#+my +n"*)\

and if we make x and y = 0, one side of the identity would

where z, u, v are linear functions. In the case of a ternary quantic this form contains

implicitly fourteen independent constants, and therefore seems to be one to which the

quartic in general can be reduced. But Clebsch has shewn that a condition must be

fulfilled in order that a quartic should be reducible to this form, namely, the

vanishing of a certain invariant.
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vanish, and the other would reduce itself to the sum of four

positive squares which could not be = 0. And the same argu-

ment applies in general.

166. We commence by shewing that, as has been just

stated, a cubic may always be reduced to the sum of two cubes.

To do this
is,

in fact, to solve the equation, since when the

quantic is brought to the form X3 + F8

,
it can immediately be

resolved into its linear factors. Now, if the cubic (a, &, c, d\x, yf
become by transformation (A, B, (7, BJJK, F)

3

, then, since

(Art. 126) the Hessian (ax -f by) [ex 4- dy)
—

(bx + cy)* is a co-

variant, it will, by the definition of a covariant, be transformed

into a similar function of A
} B, (7, D, X, F. That is to say,

we must have

(ac
-

tf) x* + (ad
-

he) xy + (bd
- c

2

)y
2

= {AG- B*) X 2 + (AD - BG) XY+ [BD - C2

)
Y\

Now, if in the transformed cubic, B and C vanish, the Hessian

takes the form ADXY\ and we see at once that we are to take

for X and Y the two factors into which the Hessian may be

broken up. When we have found X and F, we compare the

given cubic with AX 3 + DF 3

,
and determine A and D by

comparison of coefficients.

Ex. To reduce ix3 + 9a;2 + l&c + 17 to the form AX3 + DY 3
. Tlie Hessian is

(4x .+ 3) (Gx + 17)
-

(3a; + 6)
2
,

or 15a;2 + 50a; + 15,

whose linear factors are x + 3, 3x + 1. Comparing then the given cubic with

A (x + 3)
3 + D (Sx + l)

3
,

we have A + 27D =
4, 27.4 + D = 17, whence 72SD = 91, 728.4 = 455, or A is to D

in the ratio of 5 to 1. The given cubic then only differs by a factor (viz. 8) from

5 (x + 3)
3 + (3a? + l)

3
, \

and it is obvious that the roots of the cubic are given by the equation

Bx + 1 + {x + 3)
3
4(5) = 0.

167. It is evident that every cubic cannot be brought by
peal transformation to the form AX S + DY*, for this last form

has one real factor and two imaginary ;
and therefore cannot

U
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be identical with a cubic whose three factors are real. The

discriminant of the Hessian

±{ac-V){bd-<?)- {ad-be?

is,
with sign changed, the same as that of the cubic. When

the discriminant of the cubic is positive, the Hessian has two

real factors, and the cubic one real factor and two imaginary.

When it is negative, the Hessian has two imaginary factors,

and the cubic three real. When it vanishes, both Hessian and

cubic have two equal factors, and it can be directly verified that

the Hessian ofXZY is X\*
It is to be observed, that a quantic cannot always be reduced

to its canonical form. The impossibility of the reduction indi-

cates some singularity in the form of the quantic. Thus a

cubic having a square factor cannot be brought to the form

Axs + Dy
3

: a different canonical form must be adopted, and

the most simple one is the form a?
2

y, to which the cubic in

question is obviously at once reducible.

168. In the same manner as a cubic can be brought to the

sUm of two cubes, so in general any binary quantic of odd

degree (2n
-

1) can be reduced to the sum of n powers of the

(2n- l)
th

degree, a theorem due to Dr. Sylvester. For the

number of constants in any binary quantic is always one more

than its degree, or, in the present case, 2n
;
and we have the

same number of constants if we take n terms of the form

(Ix + my)
in~l

. The actual transformation is performed by a

method which is the generalization of that employed (Art. 166).

For simplicity, we only apply it to the fifth degree, but the

method is general. The problem then is to determine w, v, w,
so that (a, 6, c, cZ, e,f$x, yf may = u5

-f v
5 + wb

. Now we say
that if we form the determinant

ax + by, bx -f cy, ex -f dy
bx -f ey, ex +dy, dx -f ey

ex + fZ?/, dx+ ey, ex +fy

* In general, when a binary quantic has a square factor, this will also be a square
factor in its Hessian, as may be verified at once by forming the Hessian of .>"</».
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the three factors of this cubic will be u, v, w. For let

u = Ix + my, v = Tx + my, w = l"x + m"y ;

then, differentiating the identity

(a, b, c, d, e, f\x, y)
5 = u5 + v

5 + w6

four times successively with regard to x, and dividing by 120,

we get
ax + hy = l*u + rv + rw.

Similarly differentiating three times with regard to x, and

once with regard to y,

bx + cy = l
5mu + T'

A
m'v -\ l'

rim"w
;

and so on.

The determinant, then, written above, may be put into the

form

?u + l'% + l"*w
,
fmu + l'

3
m'v+ l"

3

m"w, IWu+lVv+l'V'zv
l
smu+ Pm'v+l'Vw, IVu+lVv+l'V^w, lm*u+ Vm"v +t"m

mw

liVjVv+rm""^ ImWm^o -f l"m"
3

w, ntu + w'
4
v + m'*w

But (Art. 22) this is the product

kM, Z'm'v, T'm
2 '2 "2m
ic,
m v

,
m

p, p, r
?/7z, ZW, T'm

m\ rri\ m"*

or is uvw (Im
—

I'mf (I'm"
-

l"m')
2

(T'm — lm")
2
.

When, then, the determinant written in the beginning of

this Article has been found, by solving a cubic equation, to be

the product of the factors (x + \y) (x-\ fiy) (x + vy), we know
that u, v, w can only differ from these by numerical coefficients,

and we may put

ka,

b, c, d, ejjx, yf = A(x + \yf + B(x + fiyf +C(x + vyf ;

id then A, B, G are found by solving any of the systems of

mple equations got by equating three coefficients on both sides

of the above identity.

The determinant used in this Article is a covariant, which is

called the canonizant of the given quantic.
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l)X%

C
1
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d d
factors in the operating symbol is -3 X -7- . Since, then, the

given qnantic is by hypothesis the sum of three terms of the

form (x-\-\y)
5

j
the result of applying to the given qnantic the

operating symbol just written must vanish. Thus, then, we
have

A [d, ejjx, yf - B (c, d, ejx, y)
2
-f C (5, c, djx, yf

or, equating separately to the coefficients of a:
2

, xfa y\ we
have

Ad- Be hCb-Ba =
J

Ae-Bcl-\Cc-Db = 0,

Af-Be+Cd-jDc=Q,

whence (Art. 28) A is proportional to the determinant got by

suppressing the column A or

a, b, c

bj c, d and so for B, C, D,

c, d, e

which values give for the canonizant the form stated in the last

Article.

171. We proceed now to quantics of even degree (2n).

Since this quantic contains 2/2 + 1 terras, if we equate it to a

sum of n powers of the degree 2w, we have one equation more

to satisfy than we have constants at our disposal. On the other

hand, if we add another 2n
m

power, we have one constant too

many, and the quantic can be reduced to this form in an infinity

of ways. It is easy, however, to determine the condition that

the given quantic should be reducible to the sum of w, 2n
tb

powers. Thus, for example, the conditions that a quartic

should be reducible to the sum of two fourth powers, and that

a sextic should be reducible to the sum of three sixth powers,
are respectively the determinants

a. b. c
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and so on. For, in the pase of the quartic, the constituents of

the determinant are the several fourth differentials of the

quantic, and expressing these in terms of u and v precisely as

in Art. 168, it is easy to see, from Art. 25, that the determinant

must vanish, when the quartic can be reduced to the form

u4 + v
4

. Similarly for the rest. This determinant expanded
in the case of the quartic is the invariant already noticed (see

Art. 141, Ex. 1),

ace + 2bcd — ad'
2 — eh* — c

3
.

172. When this condition is not fulfilled, the quantic is re-

duced to the sum of n powers, together with an additional term.

Thus, the canonical form for a quartic is naturally taken to be

u4 + v
4 + 6AwV. We shall commence with the reduction of the

general quartic to its canonical form
;

the method which we
shall use is not the easiest for this case, but is that which shows

most readily how the reduction is to be effected in general.

Let the product, then, of w, v, which we seek to determine, be

(A, B, C\x,y)\ and let us operate with [A, B, C\±, -
A)«

on both sides of the identity (# , £, c. d, ejx, y)
4 = u4

-f v
4 + 6A«V.

Now, as before, this operation performed on u
4
and on v

4

will vanish, and when performed on 6AwV, it will be found to

give 12A'wv, where A' = 2
[4,
AC- B*) X. Equating then the

coefficients of a?
2

, xy, and y
l on both sides, after performing the

operation, we get the three equations

Ac-Bb + Ca= \'A,

Ad-Bc+Cb = i\'B,

Ae -Bd+Cc = \'C,

whence eliminating 4j B, 0, we have to determine A', the

determinant

«, £, c - A'
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which expanded is the cubic

X3 - V (ae
- 4bd + 3c'

2

)

- 2 [ace + 2bcd - ad'
2 - eV - c

3

)
= *

the coefficients of which are invariants. Thus, then, we have

a striking difference in the reduction of binary quantics to their

canonical form, between the cases where the degree is odd and

where it is even. In the former case, the reduction is unique,

and the system w, v, w, &c. can be determined in but one way.
When u is of even degree, however, more systems than one can

be found to solve the problem. Thus, in the present instance,

a quartic can be reduced in three ways to the canonical form,

and if we take for V any of the roots of the above cubic, its

value substituted in the preceding system of equations enables

us to determine A, B, G.

173. If now we proceed tor the investigation of the reduction

>of the quantic (a , a,, a
2 ...^o?, yf\ the most natural canonical

form to assume would be u*
1

-f v
in + win + &c. + \u'

2vV &c,
there being n quantities w, v, w, &c. But the actual reduction

io this form is attended with difficulties which have not been

overcome, except for the cases n = 2 and n = 4. But the

method used in the last Article can be applied if we take for

:the canonical form u2n + v
in

-f &c. + Wuvw &c., where, if

uvw &c. = (A ,
A

t ,
A

2 ...\x, y)
n

,

V is a covariant of this latter function such that when Vuvw &c.

is operated on by (A 0)
A

x
• ••5S- > ~~tTi tne result is propor-

tional to the product uvw &c. Suppose, for the moment, that

we had found a function V to fulfil this condition, then, pro-

ceeding exactly as in the last Article, and operating with the

differential symbol last written on the identity got by equating
the quantic to its canonical form, we get the system of equations

4a



152 CANONICAL FORMS.

whence, eliminating A , A^ A^ &c, we get the determinant

«.-V, a
n_n a

n_2 ,
a

W -1--V, au_xi

a..
-

1.2

n(n- 1)

"

'2,n W*l

and having found V by equating to this determinant expanded

(a remarkable equation, all the coefficients of which will be

invariants), the equations last written enable us to determine the

values of A
Q) A^ &c, corresponding to any of the n-\- 1 values

of V.

174. To apply this to the case of the sextic, the canonical

form here is u6 + v
6 + w(5 + Vuvw, where, if uvw be

V is the evectant of the discriminant of this last quantic, and

whose value is written at full length (Art. 142). Now it will

afford an excellent example of the use of canonical forms if we

show that in any cubic the result of the operation

>oj °u a» aJL
d d

"dy
' dx '

performed on the product of the cubic and the evectant just

mentioned, will be proportional to the cubic itself. For it is

sufficient to prove this, for the case when the cubic is reduced to

the canonical form x3 + y
3

,
in which case the evectant will be

x3 —
y

3

,
as appears at once by putting b = c = 0, and a = d = 1 in

the value given, Art. 142. The product, then, of cubic and evec-

* The determinant above written may be otherwise obtained as follows. Let

x', if be cogredient to x, y, and let us form the function

d
,
d \* TT . .

, ,,

+y
Wy)

+ to -vx y
i

>dx

which (Arts. 125, 131) we have proved to be linearly transformed into a function of

similar form. Equate to zero the n + 1 coefficients of the several powers a;", x
H' v

i/, ifcc,

and from these eliminate linearly the n + 1 quantities x'H
,
a;'"

1

//', &C., and we obtain

the determinant in question.
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LESSON XVI.

SYSTEMS OF QUANTICS.

176. It still remains to explain a few properties of systems
of qualities, to which we devote this Lesson. An invariant

of a system of quantics of the same degree is called a combinant

if it is unaltered (except by a constant multiplier) not only when
the variables are linearly transformed, but also when for any
of the quantics is substituted a linear function of the quantics.

Thus the eliminant of a system of quantics w, v
1
w is a com-

binant. For evidently the result of substituting the common
roots of vw in u + \v + p-w is the same as that of substituting

them in a
;
and the eliminant of u + \v-\- fiw, v, w is the same

as the eliminant of uvw. In addition to the differential equa-
tions satisfied by ordinary invariants, combinants must evidently

also satisfy the equation

a'dl b'dl cell „-— + -
7 + —- + &c. = 0.

da do dc

It follows from this that in the case of two quantics a combinant

is a function of the determinants («&'), («c'), [hd')., &c, in the

case of three, of the determinants {cib'c")^ &c.
;
and will accord-

ingly vanish identically, if any two of the quantics become

identical. If we substitute for m, v
;
\u + jjlv,

\'u + fx'v, every

one of the determinants [ah') will be multiplied by (A,/*'
—

X'fi)
•

and therefore the combinant will be multiplied by a power
of (\//

—
X'fji) equal to the order of the combinant in the co-

efficients of any of the quantics. Similarly for any number of

quantics. There may be in like manner combinantive covariants,

which are equally covariants when for any of the quantics is

substituted a linear function of them. For instance, the

Jacobian (Art. 88)

vn %> %
10, , w»< w„
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if we substitute for u
)
lu + mv + nw, for v, I'u + mv + n'w, &c.

by the property of determinants, becomes the product of the

determinants [Im'n"), (hdjwJi The coefficients of a combinan-

tive covariant are also functions of the determinants
(aft'), (ac) ;

(aft'c"), &c.

177. If u — (a, ft, c..«3[.r, y)
n

,
v = (a', ft', c'...^, */)"

be any
two binary qualities of the same degree, then u + kv or

(a + ka, b + kb'...J^x, y)
7

\ where we give different values to k,

denotes a system of qualities which are said to form an involu-

tion with w, v. Now there will be in general 2 (n
—

1) qualities

of the system, each of which will have a square factor. For

the discriminant of a quantic of the ?*
th

degree is of the

order 2 (w
—

1) in the coefficients (Art. 105). If then we sub-

stitute d-\-kd for a, b + kb' for
ft, &c, there will evidently be

2 [n
—

1) values of k, for which the discriminant will vanish.

If we make y = 1 in any of the quantics, it denotes n points

on the axis of x. We have just proved that in 2 [n
—

1) cases,

two of the n points denoted byu + kv will coincide; or, in

other words we may say, that there are 2 («
—

1) double points
in the involution.

When u 4 kv has a square factor x — a, we know that «

satisfies the two equations got by differentiation, viz. u
l
-f &9

%
=

0,

U
2 + ^v

i
~

0) an(^ therefore will satisfy the equation got by

eliminating k between them, viz. u
t
v
2

— u
2
v

t
= 0. Now

U
\

V2~ Vii wn icn is °f * ne degree 2 (n— 1), is the Jacobian of

u, v., and we see that by equating the Jacobian to 0, we obtain

the 2{n— 1) double points of the involution determined by

|, v.*

178. If u and v have a common factor, this will appear as a

square factor in their Jacobian. First, let it be observed, that

since nu — xu
x -\-yu^ nv = xv

t
+ yv^, then if we write J for

u
xv^
—

u,z
v

x ,
we shall have n [uv%

—
vu.A)

=
xJ, n [av x

— vu
t)

*= — yJ.

* In like manner, for a ternary qnantic, the Jacobian of w, v, to is the locus of

the double points of all curves of the system u + kv + tw which have double points.

And so in like manner for quantics with any number of variables.
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Differentiating the first of these equations with regard to y7
and

the second with regard to
a*,

we get

n
(tt»M

- wj = apfp
n {uvn

- vu
xx)
= -yJr

It follows from the equations we have written, that any value <x

of x which makes both u and v vanish, will make not only J
vanish but also its differentials J

% ,
J

2l
and therefore x - a must

be a square factor in J.

Or. more directly thus: let u=/3(j), v=0yfr r
where /3=lx+my7

then u
t
= !$ + £^, u= m$ + /3<£2 ,

v
x
= ty + /3>/rt , ^ =^ + /3fg ;,

and w^-iy^2^^
whence (n

—
1) (a^ — zy>t)

=
(»
-

1) /3
2

(^, - ^rj + [lx + «qr) (fc^
- <^)

=^2

(<^2-<M0.
It follows from what has been said, that the discriminant of the

Jacobian of w, v must contain R their resultant as a factor;

since whenever R vanishes, the Jacobian has two equal roots.

Thus in the case of two quadratics,

(a, 5, cjx, y)\ (a , b\ cjx, y)%

the Jacobian is (aV) x* -f (ac) xy -f (5c') ?/
2

,

whose discriminant is 4(a&') (bc')
—

(ac'y\ which is the eliminant of

the two quadratics. In the case of quantics of higher order,

the discriminant of the Jacobian will, in addition to the resultant,

contain another factor, the nature of which will appear from

the following articles.

179. It has been said that we can always determine k, so

that u + kv shall have a square factor. But since two conditions

must be
fulfilled, in order that u -f kv may have a cube factor,

k cannot be determined so that this shall be the case unless a

certain relation connect the coefficients of u and v. This condi-

tion will be of the order 3 [n
-

2) in the coefficients both of u and v.

If (x — a)
3
be a factor in u + kv + lw, x - a will be a factor

in the three second differential coefficients, or x = a will satisfy

the equations

uu + hvu + lwn = 0, u
V2 + kv

i2 + lw
Vi
=

0, frM + hvn + tow = 0,
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whence eliminating k and l^x
—

o. will satisfy the equation

12? 1

= 0.
22? 22'

If then we use the word treble-point in a sense analogous

to that in which we used the word double-point (Art. 177),

we see that the equation which has been just written gives

the treble points of the system u 4- kv + Iw
;

and since the

equation is of the degree 3 (w
—

2), there may be 3 [n
—

2) such

treble points. But we could find the number of treble points

otherwise. Suppose we have formed the condition that u + lev

should admit of a treble point, and that this condition is of the

order p in the coefficients of a. If in this condition we sub-

stitute for each coefficient (a) of w, a 4 la", we get an equation
of the degree p in ?; and therefore p values of I will be

found to satisfy it. In other words, p quantics of the system
u + lcv-\- Iw will have a treble point. It follows then from what

has just been proved that p = S[n
—

2). And the same argu-
ment proves that the condition in question is of the order

3
(?i
-

2) in the coefficients of v.

This condition is evidently a combinant
;

for if it is possible

to give such a value to &, as that u + kv shall have a cube

factor, it must be possible to determine
Jc,

so that (u 4- av) + kv

shall have a cube factor.

180. If u + kv have a cube factor (x
—

a)
3

,
then the Jacobian

of u and v will contain the square factor (x
—

a)
2

. For the two

differentials u
x
+ kv^ i/

2
+ hv

%
will evidently contain this square

factor, and therefore it will appear also in the Jacobian, which

may be written [ut
+ levJ v

2
-

(w2 + JcvJ v
t
. If then S= be the

condition that u + kv may have a cube factor, S will be a factor

in the discriminant of the Jacobian, since if $=0 the Jacobian

has two equal roots, and therefore its discriminant vanishes.

If R be the resultant, the discriminant of the Jacobian can

only differ by a numerical factor from ES. For since the

Jacobian is of the degree 2(n
—

1), its discriminant is of the

degree 2 {2 (n
- 1

)
- 1

}
in its coefficients, which are of the first

order in the coefficients of both u and v. Now R is of the order



158 SYSTEMS OF QUANTICS.

n in eacli set of coefficients, 8 of the order 3 (n
-

2).
Both

these are factors in the discriminant
;
and it can have no other,

since

n + 3(?i-2) = 2{2(n- 1)
-

lj.

181. If we form the discriminant of u + Jev, this considered

as a function of k will have, a square factor whenever u and v

have a common factor. In fact (Art. Ill) the discriminant of

u + kv will be of the form (a + Jed) <f) + (b + hb'f \jr.
But if u

and v have a common factor, we can linearly transform u and v

so that this factor shall be
?/,

that is to say, so that both a

and a shall vanish. The discriminant will therefore have the

square factor (b + hb'f y
and since the form of the discriminant

is not affected by a linear transformation of the variables, it

always has a square factor in the case supposed.

It follows that if we form the discriminant of u -f kv, and

then the discriminant of this again considered as a function of

fe,
the latter will contain as a factor R the resultant of u and v.

For it has been proved that when i2 = 0, the function of h

has two equal roots, and therefore its discriminant vanishes.

For example, the discriminant of a quadratic ac — b
2

becomes,

by the substitution of a-\- hd for a, &c,

{ac
- b'

2

) -f h (ac -f ed -
2bb') + // (do

- b"
2

) r

whose discriminant is

4 (ac
- b

2

) (dc
-

b")
-

(ac + cd - 2bb')\

But this is only a form in which, as was shewm by Boole, the

resultant of the two quadratics («, 5, cj£.r, ?/)

2

, («', b', cX», yf
can be written. This form, all the component parts of which

are invariants, is sometimes more convenient than that pre-

viously given. In the case of quantics of higher order, the

discriminant of the discriminant will have R as a factor, but

will have other factors besides.

182. If u have either a cube factor or two distinct square

factors, the discriminant of u + he will be divisible by U\ For

if the discriminant of u be A, that of u + ho is

A f h[ a -

f + V n + dec. + &c.
V da do J



SYSTEMS OF QUANTICS. 159

Now when u has a square factor A vanishes; and it appears
from the expressions in Art. 114, that if either three roots of

u are equal a = £? = 7, or two distinct pairs be equal a = /3, 7 = S,

then all the differentials of A, -=-
, &c, vanish : and therefore

1 da

the coefficient of k in the expression just given vanishes. The

discriminant therefore contains W as a factor. It is evident

hence that if u -f av have a cube or two square factors, the

discriminant of u + lev will be divisible by (k
—

a)
2

;
since u + kv

may be written u 4- av + (k
-

a) v. If then, as before, #=0
express the condition that the series u -j- kv may include one

quantic having a cube factor; and if T=0 be the condition

that it should include one having two square factors, both 8
and T will be factors in the discriminant with respect to k of

the discriminant of u + kv. For wTe have just seen that the

discriminant has a square factor if either 8=0 or T=0. We
proved in the last Article that the discriminant has R as a

factor; and, in fact, the discriminant will be, as Prof. Cayley
has observed, R8

3 T\ I do not know whether there is any
more rigid proof of this than that we see that there is no

other case in which the discriminant of u + kv has a square
factor

;
that we find in the case of the third and fourth degrees

that 8 and T enter in the form &3

,
Tl

;
and that we can thus

account for the order in general. For the discriminant of u + kv

is of the order 2 [n
—

1) in k
y
and the coefficients are of the

order 0, 1...2(w
—

1) in the coefficients of either quantic. The
discriminant then with respect to k will be of the order

2 (n
—

1) [2n
—

3) in the coefficients of either quantic. But R
is of the order n, 8 of the order 3 [n

—
2), and it will be proved

in a subsequent lesson that T is of the order 2 [n
—

2) (n
—

3),

and

2 (n
-

1) (2n
-

3)
= n + 9 (w

-
2) + 4 [n

-
2) (n

-
3).

183. It was stated (Art. 176) that every combinant of w, v

becomes multiplied by a power of (\/i/
—

X'fi) when we sub-

stitute \u + /uv, \'u + jjl'v for w, v. It will be useful to prove
otherwise that the eliminant of %, v has this property. First,

let it be observed that if we have any number of quantics,
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one of which is the product of several others, ?/,
v

1 ww'vj", their

resultant is the product of the resultants [uvw), [wow), (uvw").

For when we substitute the common roots of %, v in the last

and multiply the results, we evidently get the product of the

results of making the same substitution in w, w\ w". Again,
the resultant of w, v, hw is the resultant of w, v, w multiplied by
k
mn

since the coefficients of w enter into the resultant in the

degree mn. If now R («, v) denote the resultant of w, v,
which

are supposed to be both of the same degree n, we have

fi

mR [Xu + fiv, X'u + fiv)
= R (\fjb'u + fifiv, X'u + /ul'v)*

= R {(A//
—

\'fi) U, X'u -f /jb'v}
=

[\/i/
—

X'fi)

n R (m, X'u -f fiv)

—
(X/jl'

—
X'fif fJb

mR (uj v\

whence R (Xu + fiv, X'u -f fiv)
=

(Xfi'
-

X'fi)

n R (w, v).

By the same method it can be proved that the eliminant of

Xu + fiv + vw, X'u + fiv + v'w, X"u + fi'v -f v"w is (Xfi'v")
n2

times

that of Wj v, w, and so on.

184. If
£7, V be functions of the orders m and w respectively

in w, v, which are themselves functions of
a;, ?/ of the order p,

and if D be the result of eliminating w, v, between
Z7, F; then

the result of eliminating sc, ^ between
Z7,

F will be Dp times

the mnth
power of the resultant of u, v. For U may be re-

solved into the factors u — av, u — /3y, &c, and V into u — a'v,

u - 0'v, &c. And, Art. 183, the resultant of U, V will be the

product of all the separate resultants u - av, u — a v. But one of

these is (a
-
d)

p R (w, v). There are mn such resultants. When
therefore we multiply all together, we get the mnm power of

R(u : v) multiplied by the p
m

power of (a
—

a) (a
—

a"), &c.

But this last is the eliminant of
Z7, V with respect to u, v.

185. Similarly, let it be required to find the discriminant,
with respect to

a?, y, of
£7, where U is a function of w, v.

First, let it be remarked (see Art. 110) that the discriminant

of the product of two binary quantics w, v is the product of the

* The resultant of u + bo, v, being the same as the resultant of u, v, Art. 176,

we next subtract /u times the second quantic from the first.
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discriminants of u and v multiplied by the square of their

resultant.

If then U= (u
-

av) [u — ftv) &c, the discriminant of U will

be the product of the discriminants of u — av, u — ftv, &c. by
the square of the product of all the separate resultants u - av,

u — ftv. But, as before, any of these will be (a
—

ft)
p R [u, v).

If then m be the degree of U considered as a function of u, v
;

there will be \m (m — 1) separate resultants, and the square of

the product of all will be (a
- £)* (a

-
7)*, &c. x ST*'* (u, v).

But (a
—

ftf (a
—

7)
2

,
&c. is the discriminant of U considered as

a function of u, v. If then we call this A, we have proved
that the product of the squares of the separate resultants is

Apir!cm-1)
, Let us now consider the product of the discriminants

of u - av, u — ftv, &c. ;
this is the result of eliminating a between

the discriminant of u — av, which is a quantic of the order

2 (p
—

1) in a, and the quantic of the mth
order got by sub-

stituting u — av in U. Or this product has been otherwise

represented by Dr. Sylvester. If a
,
b be the coefficients of

xp in u, v, then (Art. 108) the resultant of u — av, u
x

—
av^ will

be a
Q
- ab times the discriminant of u — av. But

R(u, v)B(u—av, u^av^Rfa—av, u^—avv^R^—av, u
xv—uv^.

Now (Art. 178) p (ux
v — uv

x)
= yJ where J is u

x
v
%
— u

2
v

x ,
and

R(u — av, y) is a — ab . It appears thus that the discriminant

of u — av differs only by a numerical factor from the resultant

of (u
—

av, J) divided by R (u, v). The product then of all the

discriminants will be the resultant of J and the product u — av,

u -
ftv, &c.

;
in other words, the resultant of U, J divided

by the mth

power of R (u, v). Thus we have Dr. Sylvester's

result [Comptes, Rendus, LVUl., 1078) that the discriminant of

Z/with respect to x : y is APR (u, v)
m{,n

-
2)

R(U, J). But it will

be observed that the result expressed thus is not in its most

reduced form since R(U, J) contains the factor R (u, v)
m

.

186. We have next to see what corresponds in the case of

ternary and quaternary quantics to the theory just explained
for systems of binary quantics. Let then u and v be two

ternary quantics, and let us suppose that we have formed the

Y
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discriminant of u 4 lev. Then (for certain relations between the

quantics u, v) this discriminant considered as a function of k

will have a square factor. In the first place the discriminant

will have a square factor, if the curves represented by u and

v touch each other. For we have seen (Art. 117) that if the

equation of a curve be az
n
4 nbz

l~ xx 4 7icz
n~1

y 4 &c. = 0, its dis-

criminant is of the form aO 4 ?>

2

<£ 4 bcyfr 4 c
2

%. The discriminant

then of u 4 kv will be of the form (a 4 ka) 6 4 {b 4 kb'f cj> 4 &c.

But if wre take for the point a??/,
a point common to u and v,

both a and a will vanish
;
and if we take the line y for the

common tangent, both b and b' vanish
;
and the discriminant

will be of the form
(c 4 kc'f % ;

and therefore will always have

a square factor in the case supposed.

187. Again, the discriminant will have a square factor

if u have either a cusp or two double points. The discriminant

A of a ternary quantic gives the condition that u
t1

w
2 ,

u
3
shall

have a common system of values. If, however, we have either

two double points, or a cusp, u
x,
w

2 ,
v

H
will have two systems

of common values, distinct or coincident, and therefore (Art. 103)

not only will A vanish, but also its differentials with respect

to all the coefficients of u. The discriminant then of w + fe,

being in general A + Jc I— y —
=^-

4 &c.
J
4 &c. will in this

case be divisible by 7c\ And as in Art. 182, it will be divisible

by (k
—

a)'
2
if the curve u 4 av have either a cusp or two double

points.

Let then R = be the tact-invariant of u and v, that is to

say, the condition that the two curves should touch; #=0
the condition that in the system of curves u 4 kv shall be

included one having a cusp; and T=0 the condition that

there shall be included one having two double points. It has

been proved that B, 5, T are all factors in the discriminant

of the discriminant of u 4 kv, considered as a function of

k. In fact this discriminant will be RSiTi
. For an investi-

gation of the order of R, S, T, see Higher Plane Curves,
Art. 399.

The tact-invariant R is of the order dn (n
-

X) in the coeffi-
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cients, S of the order 12 (n
-

1) (n
-

2), and T of the order

f {n-1) [n- 2) (3/i
2 - 3n — 11): the discriminant of u+kv in

regard to x : y is of the order 3 [n
—

l)
2 and the discriminant of

this with regard to k of the order 3 [n
-

l)
2

(3n
2 - 6/i + 2), and

we have identically

3 [n
-

l)
2

(3n*
- Gn + 2)

= Sn (n
-

1) + 36 (n
-

1) (n
-

2) + 3 (w
-

1) (n
-

2) (3^
2 - 3n - 11),

showing that the order of the discriminant is equal to that

ofRS'T 2
.

188. The theorem given, Art. 110, for the discriminant of

the product of two binary quantics cannot be extended to

ternary quantics ;
for the discriminant of the product of two

will, in this case, vanish identically. In fact, the discriminant

is the condition that a curve shall have a double point; and

a curve made up of two others has double points; namely,
the intersections of the component curves. Or, without

any geometrical considerations, the discriminant of uv is

the condition that values of the variables can be found to

satisfy simultaneously the differentials uv
x
-f vu

t ,
uv

2
-f vu^ &c.

But these will all be satisfied by any values which satisfy

simultaneously u and v
;
and such values can always be found

when there are more than two variables.

But the theorem of Art. 110 may directly be extended to

tact-invariants. The condition that u shall touch a compound
curve vw will evidently be fulfilled if u touch either v or w,
or go through an intersection of either. For an intersection

counts, as has been said, as a double point on the complex
curve

;
and a line going through a double point of a curve is

to be considered doubly as a tangent. Hence if ^(w, v) denote

the tact-invariant of w, v, we have

T[u, vw) = T{u, v) T{u, w) [R (w, t>, w)},
2

where R (w, v, w) is the resultant of w, v, w. And the result

may be verified by comparing the order in which the coefficients

of w, v, or w occur in these invariants. Thus, for the coefficients

of w, we have

(n + p) (n +p + 2m -
3)
= n (n + 2m - 3) +jp (jp + 2m - 3) + 2np>
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189. The theory of the tact-invariants of quaternary quantics

is given in Geometry of Three Dimensions, p. 513; and there is

not the least difficulty in forming the general theory of the class

of invariants we have been considering, to which Dr. Sylvester

proposes to give the name of Osculants. Let there be i quantics,

Z7, F, W, &c. in k variables
;
then the osculant is the condition

that for the same system of values which satisfy Z7, F, &c. the

tangential quantics xU* + yUJ + &c, &c. shall be connected by
an identical relation

\ \x u; + &c.) + fx (x v; + &c.) + v {x w; + &c.) + &c = o.

In other words, the osculant is the condition that the equa-

tions U= 0, V— 0, &c, and also the system

]

v»
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The order of the i—1 equations V, TT, &c is the product of

their degress n, p 1
&c.

;
and the order of the osculant in the

coefficients of U is the product of this number by the order

of the system of determinants, which is found by the rule

given in a subsequent Lesson on the order of systems of

equations.

When we are given but one quantic, the osculant is the

discriminant
;
when we are given k quantics in k variables, the

osculant is the resultant. The theorem of Art. HO may be ex-

tended to osculants in general ;
viz. that if we form the osculant

of k — 1 quantics in k variables, and if the last be the product
of two quantics Z7, F, then the osculant of the entire system
will be the product of the osculant of the system of the other

k — 2 with U
y
that of the system of k - 2 with F, and the square

of the resultant of all the quantics.

190. We have already seen (Art. 151) how the invariants

and covariants of a single quantic are derived from those of

a system of quantics in the same number of variables
;
and we

wish now to point out how the invariants and covariants of

a single quantic are connected with those of a system of quantics
in a greater number of variables. Suppose, in fact, we had two

ternary quantics, geometrically denoting two curves, we can,

by eliminating one variable, obtain a binary quantic satisfied

by the points of intersection of these curves
;
and it is evident,

geometrically, that the invariants of the binary quantic (ex-

pressing the condition, for instance, that two of these points

should coincide, or should have to each other some permanent

relation) must also be invariants of the system of two ternary

quantics. Conversely, we may consider any binary quantic as

derived from a system of two ternary quantics; for we have

only to assume X=
<f> (a?, #), Y=

yjr (a?, #), Z= x (#, y), equa-
tions which in themselves imply, by elimination of x and y,

one fixed relation between X, F, Z, and from which, com-

bined with the given binary quantic equated to zero, we
can obtain a second such^ relation. The simplest example
of such a transformation is that investigated by Mr. Burnside

{Quarterly Journal, X. (1870) p. 211), where #, ^ % are
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quadratic* functions of x and y. The substitution is then

reducible by linear transformation to X=x2

1 Y—2xy, Z—y\
giving the fixed relation ±XZ- Y* = Q. By making these

substitutions for x'
2
&c. in a binary quantic of even degree,

we have at once a fixed relation between X, Y, Z\ if the

quantic be of odd degree, it can be brought to an even

degree by squaring. The resulting relation is obviously not

unique, but is of the form <£2OT +tf>2m_2 (±XZ- F
2

),
where <£2))l

is any one form of the relation, and the coefficients in <£2m_2 are

arbitrary. Geometrically, the binary quantic of the mth

degree

is thus made to represent m points on a conic, determined when

m is even by the intersection of the conic with a curve of the

order \m, and when m is odd with a curve of order m touching

the conic in m points. Among these forms there is always one

whose invariants and covariants are also invariants and co-

variants of the given binary quantic.f

Thus the binary quadratic ax1 + 2bxy + cy
2
is replaced by the

system aX+bY+cZ, kXZ—Y%

,
and geometrically denotes the

two points of intersection of a line with a conic. The dis-

criminant of the quadratic is also an invariant of the system ;

viz., its vanishing expresses the condition that the line shall

touch the conic. So, in like manner, the system of two binary

quadratics ax2 + 2bxy + cy\ ax2 + 2b'xy + c'?/

2

, gives rise to the

system of a conic and two lines. The invariant of the binary

system ac+cd-2bb' (Art. 151) is also an invariant of the

ternary system ; viz., its vanishing expresses that the lines are

harmonic polars with respect to the conic.

If three lines X, M, N be mutually harmonic polars with

respect to a conic, we know (Conies, Art. 271) that the equation
of the conic may.be written in the form V= ID+ mM*+ nN*= 0,

whence we infer immediately that if three binary quadratics be

* If linear functions had been taken, the transformation could be reduced to

X = x, Y=y, Z=0, and the binary quantic of the n^ degree would represent
n points on the line Z (see Art. 174).

t This form can be found by operating on
</>2W + 2H1

_2 (AXZ - F 2
) with the form

reciprocal to 4ZZ- Y 2
,

viz. jj^- ^yi '
m^ equating to zero the coefficients of

every term in the result.
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connected in pairs by the relation ac + cd — 2bb'= 0, their squares

are connected by an identical relation IL2 + mM 2 + wiV 2 =
0,

for V vanishes identically when we return to binary quantics.

To the Jacobian of two binary quadratics answers, for the

system of two lines and a conic, the line (ab')X+ [ac) Y+ (bc^Z,

which is also a covariant of that system. In fact, it is the polar

with respect to the conic of the intersection of the two lines.

More generally, the Jacobian of any system w, v will be

transformed into the Jacobian of the system formed by £7, F,

and the fixed conic. For let w
|?
w

2 ,
u

3
denote the differentials

of u with respect to X, Y, Z, which, it will be remembered,
denote x\ 2xy ) y

2

respectively, then the Jacobian is

xur{-yu2)
xu

2 + yus

xv
x +yv2)

xv
2 + yva

but the terms in the first line are proportional to the differentials

ofAXZ- Y\
The same method being applied to the discussion of the

biquadratic, it is found to be equivalent to the system of two

conies, viz. the fixed conic &XZ— Y'\ and the conic

aX 2 +cY 2 + eZ* + 2dYZ+2cZX+2bXY=Q,
the discriminant of the latter conic being also an invariant of

the quartic (Art. 171). So again the system of two binary

quartics is equivalent to a system of three conies. We shall

have occasion in the next Lesson to give further illustrations

of this method.
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riants of binary quantics for the first five degrees. If S and

T be invariants of the same degree, or covariants of the same

degree and order, and h any numerical factor, then S+ JcT,

which will of course be also an invariant or covariant, will

not be reckoned in our enumeration as distinct from the in-

variants S and T. And, generally, any invariant or covariant

which can be expressed as a rational and integral function of

other invariants and covariants of the same or lower degrees,

will not be considered as distinct from these latter functions.

It is otherwise if the expression be not rational and integral.

Thus, if S be an invariant of the second and T of the third

degree, then though S 3 + kT'2 would not be regarded as a

new invariant, yet if it be a perfect square, and we have

I£
z
=z S 3 + Jc2

12

,
we count R as a new invariant distinct from

$and T. It was proved in Art. 121, that a binary quantic has

n—S absolute invariants, and in Art. 122, that from any two

ordinary invariants an absolute invariant can be deduced. We
should infer, therefore, that the number of independent ordinary
invariants is one more than the number of absolute invariants

;

or, in other words, that a binary quantic of the nth order has

n — 2 invariants, in terms of which every other invariant can be

expressed. But as it does not follow that the expression is

necessarily rational, we do not in this way obtain any limit to

the number of distinct invariants. And so as regards the

covariants (including in this expression the invariants) we
shall presently see that for a quantic of the nth order there

are, inclusive of the quantic itself, n covariants, such that

every other covariant multiplied by a power of the quantic
is equal to a rational and integral function of the n covariants

;

thus, each such other covariant is a rational, but not an integral

function of the n covariants; and we do not hereby obtain

any limit to the number of the distinct covariants. Gordan,

however, has proved (see Crelle, vol. LXix., or Clebsch Theorie

der bindren algebraiscJien Formerly p. 255, also his Programm
for the University of Erlangen, Ueber das Formensystem
Mnarer Formen, Leipzic, 1875), that for a binary quantic or

system of binary quantics, the number of distinct invariants

and covariants is always finite
;
and he has given a process by
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which, when we have the complete system of invariants and

covariants for a quantic of any degree, we can find the system

corresponding to the next higher degree. His proof, which is

founded on an analysis of the different possible expressions by
the symbolical method explained, Lesson xiv, cannot be con-

veniently given here, and we therefore content ourselves with

an enumeration of the fundamental invariants and covariants

in the case of the lower degrees.

192. It will be convenient to bear in memory what was

proved, Art. 147, viz. that a covariant is completely known

when its leading coefficient, or as we have there called
it,

its

source, is known
;

this coefficient being any function of the dif-

ferences of the roots of the quantic* Thus take the quantic

(a, b, c.^Xj y)'\ we know that, in the case of the quadratic,

{ac
— b

2

)
is an invariant

;
and if we desire to form the covariant

{ac
— b

2

)
xp + &c, having this leading term, we observe that

the weight of the given coefficient and its order in the coeffi-

cients are each =
2, so that writing 9 = 2 in the formula

(Art. 147) 2 = i(nd-p) we have ^?
= 2 (n-2). The other

coefficients are found by the method explained, Art. 147
;

thus

the covariant is found to be

{ac
-
V) «****> + [n

-
2) {ad

-
be) x

2n

Sj

+ {n
-

2) {{bd
-

c") + i (n
-

3) {ae
-

c*)} x^f + &c.

It follows also from what has been stated, Art. 147, that any

algebraic relation between the leaders of different covariants

implies a corresponding relation between the covariants them-

selves.

Prof. Cayley has used this principle in attempting to form

the complete system of the covariants of a binary quantic.

The leading coefficient of any covariant being a function of

the differences must (Art. 62) satisfy the differential equation

* Such functions have been called seminvariants, as they remain unaltered (see

Art. 62) when we substitute x + \ for x, but not necessarily when we substitute

y + X for y ;
and as they satisfy one of the differential equations given in that article

but not necessarily the other.
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{adb -f 2hdc
4 Scdd + &c) U = : and we assume that U is a

rational and integral function of a, 5, c, &e. Now, if we solve

the partial differential equation, we find that U must be a

function of

«, ao - £
2

,
a*d-3abo + 26

3

,
a"e - 4a2

5d4 6a5
2
c - 3J

4

, &c,

where the law of formation of the successive terms is obvious
;

and, in fact, the covariants of which these terms are the leaders

are each the Jacobian of the preceding covariant in the series,

combined with the original quantic. We shall refer to these

quantities as Z,, L
2l
Z

3 , &c, and we see that the leading

coefficient of any covariant must be a function of these quan-
tities : and it must of course be a rational function of them.

The question is whether there are any rational, but not in-

tegral functions of L
i}

I/
2 ,

2/
g, &c, which are rational and

integral functions of «, 5, c; and a little consideration shows

that the only admissible form is that of a rational and integral

function divided by a power of L
t)

that is a. For the leading

coefficient in question is a rational function of the coefficients

(a, b, c, ...) ;
and if we make in it 5 = 0, it becomes a rational

function of «, c, d, &c, and by multiplying by a suitable power
of a it can be made an integral function of a, ac, a?d, a

3

e, &c.

But these are the values of L
2)
Z

3,
&c. on the supposition of

5 = 0. Thus we see that the leader of any covariant can only
be the quotient by a power of a of an integral function of these

n quantities. Conversely, the problem of finding all possible

covariants is the same as that of finding the new functions

which arise when rational and integral functions of Z
2 ,
X

3 ,
&c.

are formed which are divisible by a. To find these functions

we make a — in L^ X
8 ,

&c. and eliminate b between any

pair ;
we thus get a function of X

2 ,
&c. which vanishes on the

supposition of a = 0, and therefore is divisible by a power of

a. By performing the division we obtain the leader of a

new covariant. This again may be treated in like manner,
viz. by putting a = and examining whether it be possible
to eliminate the remaining coefficients. This will be better

understood from the applications of this method which will

be made presently.
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193. We have already stated the principal points in the

theory of the quadratic form (a, &, c$x, y)
2
. Since there are

but two roots and only one difference, there can be no function

of the differences of the roots but a power of this difference;

and the odd powers, not being symmetrical functions of the

roots of the given quadratic, cannot be expressed rationally in

terms of its coefficients. It thus immediately follows that the

quadratic has no covariant other than the quantic itself,
and no

invariant other than the powers of the discriminant, ac — b
2

,

which is proportional to (a
—

/3)

2
. We have already shewed

(Art. 157) that it follows, by Hermite's law of reciprocity,

that only quantics of even degree can have invariants of the

second order in the coefficients. These are the system whose

symbolical form is 12
n

, explained Art. 153,

ac - V% ae - ibd + 3c'
2

, ag
- 6bf+ 15ce - 10d% &c.

If we make y — 1 in the quadratic it denotes geometrically a

system of two points on the axis of #, and the vanishing of the

discriminant expresses the condition that these points should

coincide, Art. 177.

System of two quadratics. This system

has the invariant 12* or ac + ac — 2bb'. When each quantic is

taken to represent a pair of points in the manner just stated,

the vanishing of this invariant expresses the condition (see

Conies, Art. 332) that the four points shall form a harmonic

system, the two points represented by each quantic being con-

jugate to each other. We have also proved (Art. 177) that the

covariant 12 (or the Jacobian of the system) represents geome-

trically the foci of the system in involution determined by the

four points.

It is easy to see, as in Art. 169, or by Conies, Art. 333, that

the Jacobian may be written in the form

J[u, v)

y%
-

ay, *?

a, b
,

c

a', V
,

c
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y\ -«& «?

b
,

c

b', c'

0, u

u.,22),

or

Now by the ordinary rule for multiplication of determinants

we have

Sap, f
c

,

— 2&
,
a

v, A
,

2Z>'

2J 2 = - 2w2D' + 2uvA - 2v
2
Z>

,

where / denotes the Jacobian, D and Z>' the discriminants of

the quantics, and A the intermediate invariant ac' + ca - 2bb'.

This equation includes the theorem stated Art. 190, for the case

A = 0. The equation just given may also be easily verified

by means of the canonical form. We have seen (Art. 177)

that there are two values of &, for which u •+- kv is a perfect

square, and if these squares be x2 and y
1
the system may be

written ax2 + c?/
2

,
a'x* + cy\ or more simply xl + ?/

2

,
ax2 + cy

2
.

We have then D =
1, D'= ac, A = a + c, J"= (c

-
a) #y, by means

of which values the preceding equation is at once verified.

So again the Jacobian of w, J is for the canonical form

\ (c-a) (a?

2 — y
2

),
and therefore is in general lAu — JDv. The

invariant A taken between u and J vanishes identically, as is

geometrically evident.

The expression found for J 9

may be generalized, if in the

second determinant we write in the second and third rows

c", -25", a"; o'"
f 2b"\ a'". We thus find that if there be

»Vn
four binary quadratics u

ti
u

2)
u

s)
w
4 ,
then

0, ul$ u
2

%, A4 > Ai
All other invariants or covariants of a system of two quad-

ratics may be expressed in terms of w, «, /, Z>, #', A.

Thus the eliminant

(ad - ca')
2 + 4 (5a

r -
b'a) {be

-
b'c\

may also be written in the form

(ad + ca! -my - 4 (ac
-
V) (aV

- b"\

In other words, the eliminant is the discriminant either of the

Jacobian

{ab')x^(ac')xy + {bc')y\



a,
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194. It is to be remarked that, by means of Euler's theorem

for homogeneous functions, the theory of those covariants of

any quantic, the expression of which contains differential

coefficients in not higher than the second degree, reduces itself

to the theory of the quadratic; and so every relation between

the covariants of a quadratic has answering to it a relation

between such covariants of a quantic in general. Similarly, a

relation between covariants of a cubic gives a relation between

general covariants not involving differential coefficients in more

than the third degree, and so on. Thus, the expression obtained

for the square of the Jacobian of a quadratic gives the identical

relation

{(ax + by) (b'x + c'y)
-
(ax + b'y) (bx 4 cy)}'

2

= -(ac- V2

) (ax
2 + 2b'xy + cy'

2

)'

2 + &c.

But if a
) bj c

; a', &',
c' denote the second differential coefficients

of any two quantics, we have

ax + by = (n
—

\) u^ ax2

-f 2b'xy + c'y
2 — n

(71
-

1) 0, &c,
whence we have an expression for the square of the Jacobian

of any two quantics

(n
-
iy (

n
' _

i)* J* = _ n"
(*'
_

i)«
Hv*

+ nri (n
-

1) (n
-

1) Auv - n* (n
-

l)
2Hu2

,

where H denotes the Hessian ac - V2 and A as before the co-

variant ac + ca — 2bb'.

So again, since the Jacobian involves only differential co-

efficients in the first degree, the Jacobian of J, w, involves them

only in the second, and therefore can be expressed by means

of the theory of the quadratic. Writing L, M for the first

differential coefficients, we have

J = LM'-L'M;
J (J, u)

= {aMM'- b (LM'+ L'M)+ cLL'} -{a'llP- 2b'LM+ c'U).

But the values of the two members of the right-hand side of

the equation are immediately found by the canonical form of

the quadratic, and are respectively

n
'

it j n a n
'

(
n

' -
1) TT

-£lv, and -Am- -^—7vr-Hv*n-l ' n-1 {n - l)
2

whence J (J, u) =—-. *r=—'- Hv Aw.
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195. The cubic. We come next to the concomitants of

the cubic

(a, 6, c, djx, y)\

It lias but one invariant (Art. 167), viz. the discriminant

a*d* +W - 6abcd + Adb
3 - 3&V.

If the cubic were written without binomial coefficients, the

discriminant would be 21a
2d2

-\- 4ac
3 - 18abcd+ Adb

3 - bV. It

is to be noted that the function here written is, with sign

changed, the product of the squares of the differences of the

roots of the quantic. A useful expression may be derived

from the last remark. Consider the three quantities yS
—

7,

7 — a, a — /3, they are the roots of a cubic for which a = 1, 5 = 0,

c = -i{(^-7r+(7-«)
a

+(a-W, <*=(£- 7) (7-«)(*-0).

Hence (2a
- -

if (2/3
- 7 - a)

2

(27
- a - j3)'

z

- i {08
-

7)'
2 + (7- «)

2 + (a
-

ffltf
- 27 - 7)

2

(7
-

a)
2

(a
-
£)

2
.

The Hessian 12* or H, is

(oc
- b

2

)
x2 + {ad

-
be) xy + (fldf

- c
2

) #
2

,

which may also be written as a determinant

«)
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Now, if a, /3, 7, 8 denote the distances from the origin of four

points on the axis of #, any harmonic or anharmonic relation

between them is expressed by the ratio of the products

(a- /3) (7-8) and (a- 7) [0-8): and this ratio (see Art. 136)

is unaltered by a linear transformation
;
that is,

when for each

distance a we substitute ri
—

• Such relations, then, beingXa + fM

unaltered by linear transformation, if proved to exist in one

case, exist in general. We find that the other factors in the

evectant of xy {x + y) are a?+2y, 2x + 2/,
so that our result may

be written symmetrically, that the evectant of xyz (where

Xj y y
z are connected by the linear relation x + y + z = 0) is

[x— y)(y
—

z){z
—

x). These considerations lead us to the ex-

pression for the factors of the covariant in terms of the roots of

the given cubic : for if 8 be the distance from the origin of the

point conjugate to a with respect to /3 and 7 ; solving for 5 from

the equation fe

= -= + we get 8 = — -=
,* 0-8 0,-/3 a-7 2a -/3-y
'

whence the covariant must be

{(2a
-

/3
-

7) x + (2/37
-

a/3 - «y) y) {(2/3
- a - 7) *

+ (27a
- £7 - /3a) y] {(27

- a - /3) x + (2a£
- 7a - 7/3) y],

as may be verified by actual multiplication and substitution in

terms of the coefficients of the equation.

196. We can now see that our list of covariants is complete.

The leading coefficient of any covariant is a function of the

differences ft
—

7, 7 — a, a - /3. Now, since the sum of these

quantities is zero, any symmetric function of these can be

expressed in terms of the sum of their squares, and their con-

tinued product. But since this product is only half symme-
trical with respect to the roots of the given quantic, that is

to say, is liable to change sign by an interchange of these

roots, it can enter only by its square into a function ex-

pressible in terms of these coefficients. We thus see, that

if the leader be a symmetric function of the differences, the

covariant can be expressed as a rational function of
Z7, iT, D.

But there is another function, viz. the product of the dif-
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ferences (2a —ft — y) (2/3
- 7 - a) (27

- a - /3), which though

only half symmetrical with respect to the differences, is symme-
trical with respect to the roots of the given quantic. This is

the leading term of the covariant J. But obviously the square

of this function can be expressed in terms of the sum of squares,

and product of differences. The expression has, in fact, been

given in the last article. It is easy to prove, that in the case

of the cubic written with binomial coefficients, we have

a2 2 (a
-

/5)

2 = 18 {b*
-

ac), a
4

(0
- 7)

2

(7
- af (a

-
/3)

2 = - 27D,

a3

(2a
- £ - 7) (2/8

- 7 - a) (27
- a - /3)

= 27 (d'd-Sahc + 2&
3

),

by the help of which values, the expression obtained in the

last article gives the relation 'between the covariants, due to

Prof. Cayley,

This relation may also be easily verified by using the canonical

form U= ax3 + dy*, in which case we have D = a
2

d'\ H= adxy,

J—ad(ax
3 —

dy
3

). Any other relation between covariants may
be similarly investigated. Thus we can prove that the dis-

criminant of / is the cube of the discriminant of
£7,

the former

discriminant being for the canonical form a6d6
. So again we

see that the Hessian of J differs only by the factor D from the

Hessian of U.

Prof. Cayley has used the relation just found between
</, D,

TJ
1
and H, to solve the cubic 27, or, in other words, to re-

solve it into its linear factors. For, since J2 — DTJ* is a perfect

cube, we are led to infer that the factors J± U \JD will also

be perfect cubes, and, in fact, the canonical form shows that

they are 2didx3 and 2ad 2

y
3
. Now, since xai + ydi is one of

the factors of the canonical form, it immediately follows that

the factor in general is proportional to

(Us/D + J^+tUsJD-J)},
a linear function which evidently vanishes on the supposition
27=0.

Ex. Let us take the same example as at p. 145, viz. TJ— 4x3 + dx2
y + 18##

2 + 17y
3

.

Here we have D -
1600, J- 110a;3 - 90a% - 630xy*

-
670//

3
,
whence

UjD + J= 10 (3* + yf j
V 4D - J= 50 (x + 8y)« j

and the factors are dx + y + (» + 3y)
3
^5.

AA
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197. The entire system of covariants for a cubic is also im-

mediately found by Prof. Cayley's method explained Art. 192.

We start with the three covariants Z7, IZ, J, whose leading coeffi-

cients are L
x

=
a, L

2
= ac- b

2

,
L

3
= cud - Sabc + 2b

3
. If we

make a ==
0, the last two become - b

2

, 2b\ whence by eliminating

b we have 4i
3

3 + L 2 = 0. Thus we see that 4EP + J2
is divisible

by a, and actually it is found to be divisible by d\ the quotient

being D or a
2d2 + 4ac

8 + ±db
3 - 35V - Qabcd. We have thus

obtained the new invariant D together with the equation of

connection AH3 \Jl —DU2
. If in D we make a = it becomes

Adb
3 —

36V, and since this combined with the preceding gives

rise to no new relation between Z
2 ,
L

3 , D, we learn that the

system of covariants is complete.

198. System of cubic and quadratic. Let these be

u = (a, b, c, djx, y)
3

-,
vm (A, B, CJx, yf ;

then the following is a list of the different independent covariants

of the system. The figures added to each denote its order in

the coefficients of the cubic and in those of the quadratic.

Three cubic co-variants^ viz. the original cubic w, (1, 0) ;
its

cubicovariant (3, 0) which we shall call Q, viz.

(a
2
d-3abc+2b

3

, abd+b*c-2ac\ 2b
2

d-acd-bc'\ Sbcd-ad?-2c
3

Jx,y)%

and the Jacobian of u, v
1 (1, 1) which is

(Ab-Ba)x
3+ [2Ac-Bb- Ca) x

2

y+{Ad+Bc-2Cb) xy
2+ (Bd- Cc)y*

Three quadratic covariants^ viz. the original quadratic

Vj (0, 2) ;
the Hessian of the cubic (2, 0) and the Jacobian of

these two (2, 1) which is

[A (ad- be)
- 2B {ac

- b
2

),
A (bd-c

2

) -C(ac- b
2

\

2B (bd
- c

2

) -C(ad- bc)Jx, y)\

Four linear covariants
,
viz. 2^(1, 1) which is obtained by

substituting differential symbols in the quadratic and operating
on the cubic,

L
l
= (aC-2Bb + cA)x+(bG-2cB+ dA)y,
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L
2 (1, 2) which is obtained by operating in like manner with

L
x
on the quadratic,

£
2
= {aBG- b [2B

2 + AC) + 3cAB- dA
2

}
x

+ {aG
2- BbBG + c (A G+ 2B2

)
- dAB} y,

and L
s (3, 1), and Z

4 (3, 2) which are obtained in like manner

from the quadratic and the cubicovariant Q, and which may-

be written at length by substituting for a, 5, &c. in the values

of L^ X2 just given, the corresponding coefficients of Q.

Five invariants
,
viz. A (0, 2) the discriminant of the quadratic,

D (4, 0) that of the cubic, 7(2, 1) which is the intermediate

invariant between the system of two quadratics v, H
I=A{bd- c

2

)-B(ad- bc)+C{ac-b
2

),

B{2, 3), the resultant of the cubic and quadratic, which formed

by the methods of either Art. 67 or Art. 86, is

B = a2G 3 -QabBG2 4 GacG [2B
2

-AG) +ad {6ABC-8B
3

)

+WA C* - 18bcABG+ QbdA {2B
2

-AG)
+ 9>c

2A2 G-<ocdBAl
-\d

lA3

,

and, finally, il/(4, 3), which is the resultant either of L
xi L^ or

of Z
2 ,
L

3
and is

a3dG3 - Ba2bcG3 - Ga'bdBC* + 6aVJ30" + 2ab
3G3 + 6ab

2cBG2

+ Sab'dA G2 + 12aV
2dB2G- Gabc'A G2 - 2iabc

2B2G+ \2ac
3ABG

+ Sac
3B 3 - 3ae

2dA2C- !2ac
2dAB2 + 6acd*A2B- ad3A3 - 6b*BG*

+ WcAG2 + 12b
3cB 2G - \2b

3dABG - Sb
3dB 3 + QtfcdA2G

+ 2tf2cdAB2 - Q¥d2A2B- Sbc
3A2G- l2bc

3AB2 - Gbc
2dA2B

+ Zbca^A
3 + Gc'A'B- 2c

3dA3
.

This last invariant if is a skew invariant (see Note, p. 125) and

changes sign if we interchange x and y ;
the functions §, L^ LK

are also skew functions. In comparing different invariants we

may conveniently make A and C = 0, which is equivalent to

taking for x and y the two factors of the quadratic. In this

case the fundamental invariants are

A = - JS
2

,
D = a

2d 2 + 4ac
3 + lab

3 - 3&V - Qabcd,

I=-B(ad-bc), B = -8B 3

ad, M=8B3

(ac
3 - db

3

).
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Thus we have in the same case

L
X
= -2B [bx + cy\ L2

= - 2&2

{bx
-
cy\

and L the resultant of these two is — 8B3

bc, whence we see

immediately that L can be expressed in terms of the funda-

mental invariants; in fact, L = B + 8Al. So, again, we see

that the square of M can be expressed in terms of the other

invariants, giving a relation between them. For we have

8 {ac
5 + db

3

)
= 2 [D

- cfd
2 + 36V + Sabcd),

whence M2 = ±B 6

{D- d2d2 + 35V + Sabcd)*
- 2565W6V,

and if in this equation we substitute for ad,
—
^3-,

for &c, r-™—
,

and for B\ —
A, we have the required relation.

199. Si/stem of two cubics. We begin with those invariants

of the system of two cubics (a, Z>, c, (P$x, y]
6

, (a, b\ c', d'^x, ?/)

3

,

which are also combinants. The simplest is (see Art. 140, Ex. 2)

[ad')
— 3 (be), which we shall refer to as the invariant P. The

properties of this system may be studied most conveniently

by throwing the equations into the form

Au3 + BvB + Cw\ A'u3 +BV + CV,
a form to which the two cubics can be reduced in an infinity

of ways. For the cubics contain four constants each, or eight

in all. And the form just written contains six constants ex-

plicitly; and m, v, w contain implicitly a constant each, since

u stands for x + \y, &c. The second form then is equivalent

to one with nine constants, that is to say, one constant more

than is necessary to enable us to identify it with the general
form.

Any three binary quantics of the first degree are obviously
connected by an identical relation of the form au + j3v + yw = 0.

We write
a*, ?/,

z for au, fiv, yw y
so that the two cubics are

.4a;
3
+• By' + Gz% A'x3 + B'if + G 'z

3 where x + y + z = 0.

Putting for z its value, and writing the cubics

(4-C, -C, -C, B-C1x,y)\ (A'-C, -C, -O; B'-0%x,y)\
and forming the invariant P of the system, we find it to be

(AB') + (BG') + {GA').
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The resultant of the system is found by solving between

the equations Ax3 + By
3 + Cz3 =

0, A'x3 + By
3 + G'z

3 =
0, when

we get x3 = (BG'), y
3

=(GA% z
3

=(AB')-, and, substituting
in the identity x + y 4 z — 0, the resultant is

(AB'f+(BCf+(GA')
i =

J

{(AB') + (BC) + {CA')}
3 = 27 (.iff) (5C) (G4').

Now, if we denote the two cubics by u and v, it has been

proved, Art. 180, that there is an invariant, which we shall call

Q, of the third order in the coefficients of each cubic, which

expresses the condition of its being possible to determine X, so

that u + \v shall be a perfect cube. Now this invariant i3

identical with the product (AB) (BC) (CA'), which is of the

same degree in the coefficients. For if any factor (AB') in

this product vanish, Av - A'u evidently reduces to the perfect
cube (A G ')

z
3
. It follows then that the resultant is of the form

P 3

-27Q.

200. If it were required to form directly the invariant Q
for the form (a, 5, c, dPfcx, y)

3

, (a', b\ c', d'Jx, yf }
we might

proceed as follows. If u -f Xv be a perfect cube, its three second

differentials will simultaneously vanish
; or, for proper values of

a;, y, X, we have

ax+by + \ [ax + b'y)
=

0,

bx + cy + A (b'x + c'y)
=

0,

ex + dy + \ (ex + d'y)
= 0.

Solving these equations linearly for
a?, ?/, Xa?, Xy, and then

equating the product of x by \y to the product of y by \x,
we get for the required condition

a, by a
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If, as in the last article, we give a, £, &c. the values A—C,
-0, &a, this would become - (AB) (BC) (CA'). If then to

twenty-seven times this quantity we add {{ad')
— 3 (be)}

3

,
we get

the resultant in the form

B m [ad')
3 - 9 (ad')

2

[be') + 27 (ca'f [cd') + 27 (db'f (ab')

- 81 (ab') {be) (cd')
- 27 (ad') (ab') (cd'),

a result which agrees with that of Art. 80, it being remembered

that there the cubics were written without binomial coefficients.

201. We have, in Art. 199, formed the invariant P of the

system Ax3
+ By

3
-}- Cz

3

,
Ax3

+ B'y
3 + C'z

3

, by first reducing
them to functions of two variables, and then calculating the

value of (ad')
— 3

(be').
We shall, for the sake of establishing a

useful general principle, give another way of making the same

calculation. We know that we may substitute in any binary

quantic -=-
,

- -=- for x and y y
and so obtain an invariantive

operative symbol. Now when this change is made in a function ex-

pressed in terms of #, y, #, where z is — (#+#), we must for z write

2 jr . And when the operation is performed on a function

similarly expressed, since its differential with respect to x will

be -=- + -r- -r •>
or

» m virtue of the relation between x. y. z.
dx dx dz 1 J ' JJ 7

7t T >
we see *nat tne ru*e ma^ ^e exPresse^? *nat in anyax az

covariant we may substitute for #, y, z respectively

d d d d d d

dy dz ' dz dx' dx dy
'

and so obtain an operative symbol which we may apply to any
covariant expressed in terms of x, ;/, s, without first reducing
it to a function of two variables. Thus, in the present case, we
find the invariant P by operating on A'x3

-f B'y
3 + 0V, with

\dy dz) \dz dx) \dx dy)
'

and the result only differs by a numerical factor from the

foregoing expression (AB') -f (BC) + (CA').
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In like manner we find that, in the symbolical notation, 1 2,

is applied to a function expressed in terms of x, y, z, denotes

1,1,1
d d d

dx
x

'

dyx

' dz
x

d d d

dx
2

*

dy2

'
dz~

2

202. The Jacobian of the system of two cubics is a com-

binantive covariant. Its value for the general case is

(ab') x* + 2 (ac') x
3

y + {{ad') + 3 (be')} x
2

y
2 + 2 (M) xy

3 + (cd) y\

Its value for the canonical form is by the last Article

1 1
,

1

Ax% By\ Cz*

Ax'\ B'y% G'z
2

or (BC) yV + (CA) z*x* + (AB') x*y\

This is a quartic, for which we may calculate the two invariants

noticed in p. 122, viz.

8- ae - Abd+ 3c
2

,
T= ace + 2bcd- ad2 - etf - c

3

,

and these invariants may be expressed in terms of the com-

binants which we have enumerated already.

Putting in for z\ (# + 2/)

2

>
ana

*

multiplying the Jacobian by
six to avoid fractions, we get

a = 6(CA), b = S(CA), e = 6(BC'), d=3(BC),
c = (BC') + (CA) + (AB') = P,

whence #=3P2

, T=54#-P
3
. We shall presently show that

the discriminant of a biquadratic is S3 — 27 T\ The discriminant

of the Jacobian, therefore, is proportional to Q(P
3 — 27 Q) 9

which

agrees with Art. 180.

203. There is another form in which the system of two

cubics may be usefully discussed, viz.

ax3 + Sbx
2

y -f Sexy
2
+ dy% bx

3 + Scx'
2

y -f Sdxy
2 + ey

3
.

In other words, the cubics may be so transformed as to become

the differential coefficients of the same quartic, with regard to
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x and y respectively. We can infer, from counting the constants,

that the proposed form is sufficiently general ;
but the possibility

of the transformation will be more clearly seen if we consider

two linear covariants, obtained by operating on either cubic

with the Hessian of the other. These forms are easily cal-

culated to be, in the general case,

L
s
m {V (be') + c' (ca!) + d' (ah')} x-{a' (cd') + V (dV) + d (be')} y,

L
2 ={b (cV) + c (ad) + d (ba)} x+{a (cd")'+ b (db') + c (be)} y.

These forms for the case Ax3 + By
5 + Cz% A'x3 + By'

6 + CV,

may be either calculated by first transforming to two variables

as in Art. 199, or else directly by the method of Art. 201.

The Hessian of Ax3 + By
3 + Cz3

is BOyz + CAzx + ABxy.

Operating then, as in Art. 201, the two linear forms are found

to be AB G'x + BG'A'y + CA'B'z and A'BCx + B' CAy + C'ABz.

Keturning to the values given for the general case, if we make

a', &', c',
d' = bj c, d, e, we have L

x
— Tx, L

2
= Ty. Thus we

see that, in order to effect the proposed transformation, we are

to take these two linear covariants for the new variables.

If u and v be the differentials with regard to x and y of the

same quartic, the quartic itself can only differ by a numerical

factor from xu -f yv ;
and in fact L

t
u + Lj) is immediately seen

to be a combinant, as being a function of the determinants

(aV) &c. This function may be otherwise arrived at by calcu-

lating the Hessian of the Jacobian (Art. 202).

We first multiply the Jacobian by six, in order to have,

without fractions, binomial coefficients, and the leading term in

the Hessian is then 6 (aV) {(ad') -J- 3 (be)}
- 9 (ac')\ Now the

leading term in L
x
u + L2

v is (ab') (be) + (ab
f

) (ad')
—

(ac']\

whence remembering that the invariant P is (ad')
— 3 (be),

and that the leading term in J is («&'), we have

QH(J) + SPJ= 9 (L x
u + L2v).

Thus, in order to obtain the quartic, having for its differentials

the two given cubics, we must add double the Hessian of the

Jacobian, the Jacobian itself multiplied by P.

We shall presently see that there are other linear covariants

of the system.
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204. If we have any invariant of a single quantic, and if we
d

,
d

perform on it the operation a -j- + V
-jj

+ &c
,
we obtain an

invariant of the system of two quantics of the same degree.
For if we form the corresponding invariant of u + \v, the

coefficients of the different powers of A will evidently be in-

variants of the system. Thus let the discriminant of u + \v
be D + \M+\*N+\*M' + \*D', and we have the three new
invariants

ilf, iV, M\ whose orders in the coefficients are (3, 1),

(2, 2), (1, 3).

If in general we form any invariant of u -\-\Vj and then

form any invariant of this again considered as a function of
A.,

the result will be a combinant of the system w, v
;

that is to

say, it will not be altered if we substitute lu + mv, I'u + mv
for w, v. For, by this substitution, we get the corresponding
invariant of (I + Ai') u + (m + \m) t>,

which is equivalent to a

linear transformation of A, by which the invariants of the

function of A will not be altered. If then it be required to

calculate the invariants of the biquadratic, which we have found

for the discriminant in the case of two cubics, we may, with-

out loss of generality, take instead of u and v two quantic3 of

the system u + \v which have square factors, taking x and y
for these factors

;
and so write u = axs + 3bx*y, v = 3cxy* + dy

3
.

For this system we have P= ad - 35c, Q = &V [ad
-

be) ;
the

resultant P3

-27() being a*d
2

(ad-9bc). Now, for this form,
the biquadratic is 4ac

3A + [d'd
2 - Qabcd- 35V) A'

2

-f 4db*\
8

;
or

multiplying by six to avoid fractions P = P' = 0, M— 6ac
3

,

M' = Qdb% N= d\? - Gabcd - 35V = P 2 - 125V. Hence,

S= 3AT2 - 4J/JT = 3P(P
3 - 24, Q) ;

P=2iVl/i¥'-A' 3 = -(P
6 -36P 3

O+2160,

whence the discriminant of the biquadratic, £ 3 — 27P 2

is~pro-

portional to #
a

(P
3 -

27$), which agrees with Art. 183.

The method used above is evidently also applicable to co-

variants. Thus let the Hessian of u + Xv be i/+A0-f A/PP,
and we are led to the intermediate quadratic covariant 0, whose
leader is ac + cct - 255'. The covariants and invariants of the

BB
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system of three quadratics, just mentioned, are also covariants

and invariants of the system of two cubics. Thus if we take

the Jacobian of each pair of quadratics, we have three cubic

covariants of the orders (3, 1), (2, 2), (1, 3). We have seen

(Art. 167) that a cubic and its Hessian have the same dis-

criminant, and therefore we may identify the discriminant of

H-\-\& + X*H' with the expression aheady found for the

discriminant of u + Xv. Now if w, v, w be three quadratics,

the discriminant of \u -f- pv -f vw is plainly A,
2DU + \pDX2

+ &c.

Thus for the system under consideration, we see that Z>
12 , D^

can only differ by a factor from J/, M' already enumerated
;

and we have the two invariants Z>
22 ,

Z>
13

whose sum similarly

is, to a factor, the same with N. These invariants, however,

are not new but can be expressed each in terms ofN and the

combinant P. The expression is most easily arrived at by

taking the particular case already considered u = ax3

-f 3bx*y,

v = Sexy
2 + dy

s

,
in which case we have

= acx
z+ (ad-bc)xy+bdy\ D l5

=b2

c\ D22
= l-{6abcd-d

J

<F-b*c*).

Thus we find, for the case when the discriminants of both

cubics vanish, the relations P*-N=12D
iS ,
P2 + 2iV= - 12Z>

22 ;

and it can easily be verified that these relations are true in

general.

Lastly, we may form the invariant R of the system of three

quadratics, but this is found to differ only by a factor, from the

combinant Q already considered.

205. We are able now to give a list of the covariants of

the system, which the investigations of Clebsch and Gordan

show to be complete. There is one quarttc covariant (1, 1), viz.

the Jacobian (Art. 202). There are six cubic covariants, viz.

the two cubics themselves (1, 0) (0, 1), their two cubicovariants

(3, 0) (0, 3), and the two Jacobians (2, 1) (1, 2) of either cubic

combined with the Hessian of the other. For the canonical

form, the last four covariants are included in the form

1
,

1 1

A*
, By* ,

W
A(l;y + Cz), B{Cz + Ax),C(Ax+By) ,



APPLICATIONS TO BINARY QUANTICS. 187

according as we accentuate the coefficients in neither, either,

or both of the last two rows. There are six quadratic cova-

riants, viz. the two Hessians (2, 0), (0, 2), and the intermediate

covariant (1, 1), these three being for the canonical form

SBCyz, ^B'C'yz,^{BG
,

-{-B'G)yz'1 and for the remaining
three covariants (3, 1), (2, 2), (1, 3), we may take either the

Jacobians of each pair of these (Art. 204), or the results

obtained by operating with each on the quartic covariant.

There are eight linear covariants, viz. the two (I, 2), (2, 1)

considered Art. 203; two (3,2), (2,3) obtained by operating
with the Hessian of either on the cubicovariant of the other

;

two (1, 4), (4, 1) obtained by operating with either cubic on

the square of the Hessian of the other, and two (3, 4), (4, 3)

obtained by operating with the cubicovariant of either on

the square of the Hessian of the other. Lastly, there are

seven invariants, viz. the two discriminants (4, 0), (0, 4), the

combinants P, Q, (1, 1), (3, 3) (Art. 199), and the invariants

M, M', jV, of Art. 204. Of the preceding invariants P and Q
are skew. We have in Art. 204 connected P 2 with the in-

variants P
13 ,
P

22
of that article, and the expressions there

given for the 8 and T of the biquadratic are, in fact, expres-
sions for PQ and Q* in terms of iV, M\ &c. We can also con-

nect Q* with the functions Pn ,
P

12 ,
&c. if we remember that,

as was remarked (Art. 204), Q is the invariant 12.23-31 of a

system of three quadratics, and that it was proved at the end

of Art. 193 that double the square of this invariant is

Dn,
nn,

d
iz

A,, d« A,
As, d« K

206. The quartic. We come next to the quartic, which, as

we have seen, p. 122, has the two invariants

S=ae-4bd + 3c
2 and T=ace + 2bcd-adz - eb*- c\

Wr

e have shown (Art. 172) that the quartic may be reduced to

the canonical form cc
4

-t- fatflfy + ?/

4

,
and for this form these in-

variants are S= 1 + 3m'\ T= m - mA
.
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These invariants, expressed as symmetric functions of the

roots, are

0- 2 (a- /3)

2

(7
-

S)
2

,
?= 2 (a

-
/3)

2

(7
-

8)' (a
-

7) {P
-

«),

or, more conveniently,

^=((a-/3)(7-S)-(a- 7)(3-«}

x[(a- 7)(S-/3)-(a-8) (£-7)}

x{(a-S)(/3- 7)-(a-/3)(7-S)).

In the latter form it is easy to see that T= is the condition

that the four points represented by the quartic should form a

harmonic system. It was stated (Art. 171) that T=0 is the

condition that the quartic can be reduced to the form x4 + ?/

4

,*

and that T can be expressed as a determinant

a.
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when expressed in terms of the roots, contain as a factor the

difference between every two roots
;
that is to say, must contain

the discriminant as a factor.

It is easy now, by means of S and T, to construct an in-

variant which shall vanish when we make a and 6 = 0. For on

this supposition S becomes 3c
2

,
and T becomes — c

3

;
therefore

S 3 — 27 T* vanishes. Now this invariant of the sixth order in

the coefficients is of the same order as that which we know

(Art. 105) the discriminant to be. It must therefore be the

discriminant itself, and not the product of the discriminant by

any other invariant. The discriminant is therefore

(ae
- Abd + 3c'

2

)

3 - 27 {ace + 2bcd - ad 2 - eW - c
3

)

2
.

We can in various ways verify this result. For instance, it

appears from Art. 185,* that the discriminant of the canonical

form x* + 6mx*y* + y* is the square of the discriminant of the

quadratic x
l + 6mxy+y

2

;
that is to say, is (1

- 9»i
2

)*. But

(1
- 9m2

)

2 =
(1 + 3m

2

)

3 - 27 (m
- m3

)\

We should also be led to the same form for the discriminant,

by writing the quartic under a form more general than the

canonical form, viz. Ax4 + By* 4 Cz*, where x + y + z = 0. In

this case, then, we have a = A + C, e = B+ C, b — G — d— G^

and we easily calculate S=BC + CA + AB, T=ABC. But

if we equate to nothing the two differentials, viz. Ax3 — Cz3

,

By
3 — Cz

3

1
we get a:

3

, #
3

,
z
3

respectively proportional to BC,

CA, AB] and, substituting in x + y + z = Q, we get the dis-

criminant in the form

{BC)$+[CA)l+(ABf = %

or {BC+CA + AB)
3 -2lA 2B*C 2 =

0, or S 3 -27T 2 = 0.

* "We may also see this directly, thus : The resultant of ax* + by
k

,
a'xk + b'y

k

is the klh power of ab' — a'b, since the substitution of each root of the first equation

in the second gives ab' — a'b. Now the discriminant of ax* + 6cx2y
2 4- ey* is the

resultant of ax3 + 3cxy
2

, 3cx-y + ey
3

. If we substitute x = in the second, and y =

iu the first, we get results e, a, respectively, and the resultant of ax2 + 3cy
2

,
3cx2 + ey*

is (ae
— 9c8)

8
. The discriminant is therefore ae (ae

-
9c*)

8
.
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208. From the expression just given for the discriminant of

a quartic in terms of 8 and 2 can be derived the relation

(Art. 195] which connects the covariants of a cubic.

If we multiply two quantics together, the invariants of the

compound quantic will be invariants of the system formed by
the two components. If then we multiply a quantic by xg + yrj,

the invariants of the compound will (Art. 134) be contravariants

of the original quantic ;
and if we then change f and 77 into y

and — x, will be covariants of it. If we apply this process to a

cubic, the coefficients of the quartic so formed will be

ay, \ (Sby
—

ax), \ (cy —bx), \ (dy
—

3cx),
— dx

;

and the invariants >S' and T of this quartic are found to be the

covariants — \H, ^J of the cubic. But the discriminant of the

product of any quantic by x% + yrj, by Art. 110, becomes, when

treated thus, the discriminant of U, multiplied by U
2
. Express-

ing then the discriminant of the compound quartic in terms of

its 8 and T, we get the relation connecting the //, J, and dis-

criminant of the cubic.

209. A quartic has two covariants, viz. the Hessian H,
whose leading coefficient is ac - b

2

,
and J the Jacobian of the

quartic and its Hessian, whose leader is a
2d- Babe + 2b

3
.

The Hessian is the evectant of T, and is

[ac
- b

2

)
x* + 2 (ad

-
be) x

3

y + (ae + 2bd- 3c
2

)
x2

if

+ 2 (be
-

cd) xy
A + (ce

- d 2

) y*,

which, for the canonical form, is

m(x*+ 1/) + (l-3»i')a;y.

Expressed in terms of the roots, it is

2(oL-/3y(x-yy(x-S)
2
.

The covariant J, which symbolically is 12
2

13> and expressed
in terms of the roots, is

2(a- /3) (z- y) (<x- 8) (x- /3)

2

(x-y)
2

(x-S)
2

,

written at length, is

(a
2d - Sabc + 2b

3

,
a

2
e + 2abd-dac2 + 6b

2

c, babe - 15acd+ 10b
2

d,

- 10ad2 + 10b
2

e,
- bade + Ibbce - 10bd

2

,

- ae
2 - 2bde + 9c

2
e - Gcd

2

,

- be
2 - 2c

3 + Zcdejx, y)%

and for the canonical form is (I
- dm z

) xy (x
4 —

1/).
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Vv
r

e have just seen that the x and y of the canonical form

which we use are factors of
«/,

but it will be remembered

(Art. 172) that the problem of reducing a quartic to its canonical

form depends on the solution of a cubic equation; hence, the

factors of J are the x and y of the three canonical forms.

This may be connected with the theory explained in Art. 177.

If u and v are any two quartics, six values of X. can be found,
such that u + Xv shall have a square factor, and those six factors

are the factors of the Jacobian of u and v. But when v is

the Hessian of w, the sextic in question becomes a perfect

square, and there are three values of X, for each of which u + Xv

contains two square factors, but these factors are still the factors

of the Jacobian of u and v. The geometrical meaning of J
may be stated as follows: let the quartic represent four points

on a line A, B
1 (7, D, then these determine three different

systems in involution (according as B, G or D is taken as the

conjugate of A\ and the loci of these three systems are given

by the covariant J,

210. Solution of the quartic. This is the same problem
as that of the reduction of the quartic to its canonical form

ax* + 6cx*y
2 + e?/

4

,
for in this form it can be solved like a

quadratic. One method of reduction has been explained

(Art. 172); the reduction may also be effected by means of

the values given for S and T. Imagine the variables trans-

formed by a linear transformation whose modulus is unity,

and so that the new b and d shall vanish
;

then we have

S= ae + ?>c'\
T=ace-cA

\
and the new c is given by the equa-

tion 4c
3 — So + T= 0. We get the x and y which occur in

the canonical form from the equations

JJ= ax* + Qcx'Y + ey\ H= acx
4 + (ae

- 3c
2

)
x2

y* + cey%

whence c U— H= (9c
z —

ae) x*y*.

Our process then is to solve for c from the cubic just given ;

then with one of these values of c to form cU—H which

will be found to be a perfect square. Taking the square root

and breaking it up into its factors we find the new x and y, and

consequently know the transformation, by means of which the
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given quartic can be brought to the canonical form. Having

got it to the form ax* + §cx*y* + ey% we can of course, if we

please, make the coefficients of x* and y* unity, by writing

xl and y
l
for x'

2

V(«)» ana
"

V* V(g)*

Ex. Solve the equation

x* + 8x3
y - \2x-y

2 + \Q4xy
3 -

20y* = 0.

We have here 8 = - 216, r=-756, and our cubic is 4c5 + 216c = 756, of which

c = 3 is a root. The Hessian is

# = - Qx* + 60x3
y + T2xY + 24xy

3 -
636/,

3U - H = 9 (x*
- 4x3

y - 12a:V + B2xy
3 + 64y

4
)
= 9 (x

2 -
2xy

-
fy

2
)
2

.

The variables then of the canonical form are X — x + 2y, Y= x — 4y, which give

6x = 4X+2Y, 6y = X — Y; whence substituting in the given quartic the canonical

form is found to be 3X* + 2X2Y 2 - Y*. The roots then are given by the equations

(x + 2y) 4(3) = x-4y, {x + 2y) J(- 1)
= X - iy.

211. Since / is proportional to the product of the x and y
of the three canonical forms, and since we have just seen that

the square of the product of one set of x and y is c
t
U— 17,

where c
x

is one of the roots of the cubic 4c
3 — Sc + T=0, we

have J'
z

proportional to (cJJ—H) (cJJ- H) {cJJ- if), or from

the equation which determines c to AH 3 - SHU* +TU3
. By

calculating with the canonical form, we find the actual value

to be — J2

,
so that we have

4# 3 - SHTP + TU*=-J\

212. Prof. Cayley has given the root of the quartic in a

more symmetrical form. It has been shown that H- c
t Z7,

H—cJJ) H—cU are severally perfect squares; the square
roots being of course of the second degree in x and y. But

further

(«,
- c

3) (H- c, Uf + (c,
-

„,) (H- c
2 U)i + (c,

-
„,) (H- e

3 Uf,
is also a perfect square, and its root is one of the factors of the

quartic. It is only necessary to prove that this quantity is a

perfect square, for it evidently vanishes when U= 0. We work

with the canonical form, taking for simplicity a and e = l. Now
if we solve the equation kz

6 - z (1 + 3c'
2

) + c - c
3 =

0, we find the

three roots to be c,
- \{c + 1),

- J (c
-

1) ;
and the three cor-

responding values ofll—cU are

(1
-

9c') x'f, i (3o + 1
) (x

1 + ff, \ (3c
-

1) (»«
-.

y')\
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Now in order that any quantity of the form

axy + /3{x
2

-ry
2

)
+ ry{x

2

-y
2

)

may be a perfect square, we must obviously have a
2 = 4 (/3

2 — 7
2

),

which is verified when

a
? =l-9c2

, ^
2 = i(3c-l)

2

(3c+l), 7
2 = J(3c + 1)* (

3c ~ *)

Ex. If this method be applied to the last example, the other values of c are

i {- 3 ± 9 «](- 3)} j
and the squares of the linear factors of the quartic are given

in the form

-2J(3){^_ 2a.

i/_8^} ± J{l-,'(_3)}[{l + J(-3))x2 + {10-2J(-3)}^-{2-10 4(-3) 2/
2
}]

± ft {1 + 4(- 3)} [{1
- J(- 3)} x2 + {10 + 2 4(~ 3)} ^ -

{2 + 10 J(- 3)} 2/-].

213. It remains to distinguish the cases in which the trans-

formation to the canonical form is made by a real or by an

imaginary substitution. The discriminant of the canonical form

is, as we have seen (p. 189, note), ae [ae
— 9c'

2

)

2

;
and since the

sign of the discriminant is unaffected by linear transformation,

we see that whenever the discriminant is positive, a and e of

the canonical form have like signs ;
and when the discriminant

is negative, unlike signs. Now the form ax* + 6cx
2

y
2 + ey

evidently resolves itself into two factors of the form, either

(x
2
-f \y

2

) (x
2 + fiy

2

)
or (x

2 — Xy
2

) (x
2 —

/ny
2

) ;
that is to say, the

quartic has either four imaginary roots or four real roots. On
the contrary, if a and e have opposite signs, the two factors are of

the form (x
2 + \y

2

) (x
2 —

fiy
2

),
or the quartic has two real and two

imaginary roots. Hence then when the discriminant is negative,

that is to say, when S5
is less than 27 T\ the quartic has two

real roots and two imaginary ;
and when the discriminant is

positive, it has either four real or four imaginary roots.* Now
the discriminant of the equation 4c

3 - Sc 4- T= is 27Tz -
S'%

therefore (Art. 167) when 8s
is less than 27 T\ the equation in c

has one root real and two imaginary ;
in the other case it has

three real roots. Hence when a and e have opposite signs, that

is, when the quartic has two real and two imaginary roots, the

* The signs of the invariants do not enable us to distinguish the case of four

real roots from that of four imaginary; but the application of Sturm's theorem
shews that (the discriminant being positive), when the roots are all real, both the

quantities b2 - ac and oaT+2 (b- - ac) S are positive, while if either is negative
the four roots are imaginary. (Cayley, Quarterly Journal, vol. iv., p. 10).

cc
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transformation can be effected in one way only. Next, if a

and e have like signs, in which case the equation can be

brought to the form x4 + §mxl

y
i + y

4

,
it is easy to see that

the equation can by two other linear transformations be brought
to the same form; for write x + y and x — y for x and

?/,

and we have (1 + 3m) x4 + G (1
-

in) x*y
2
+ (1 + 3m) y\ Write

xJty\l{— 1), and x — y*J(—l) f°r x ana Vi ana
" we Dave

(1 + 3m) x
4

+ 6 (m
-

1) ofy
2 + (1 + 3m) y

4
. Hence when a and e

have the same sign, that
is,

when the quartic has four real

or four imaginary roots, though there are three real values

for
c, one of these corresponds to imaginary values of x and y ;

and there are only two real ways of making the transfor-

mation.

The same thing may be also seen thus. Imagine the quartic

to have been resolved into two real quadratic factors

(a, &, cja;, #)", [a\b\ c'Jx, y)* ',

then these two factors U, Fcan, by simultaneous transformation,

be brought to the form AX* + BY'\ A'X
2 +B Y\ where A72 and

Y* are the values of XU+ V corresponding to the two values of

X given by the equation

(ac
-
V) k* + {ac + ca - 2bV) X + (a'c

-
h*)

= 0.

In order that the values of X should be real, we must have

the eliminant of the two quadratics positive, or

(a- a') (a- P) ({3 -a') ({3-/3')

positive. Thus then when the quantic has four real roots, if

we take for a and y3 the two greatest roots, and for a and yS' the

two least, or again, if we take for a and yS the two extreme

roots, and for a! and /3' the two mean roots, we get real values

for X. In the remaining case we get imaginary values. If

either of the quadratics has imaginary roots, the resultant of

the two is positive, and the values of X real.

214. Conditions for two pairs of equal roots. If any quantic
have a square factor x\ this will be also a factor in the Hessian.

For the second differential U
22

contains x\ and TJ
vl

contains x,

therefore x2
will be a factor in Un U* — UJ. If then a quartic
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liave two square factors, both will be factors in the Hessian,

which, being of the fourth degree, can therefore differ only

by a numerical factor from the quartic itself. In fact, if a

quartic have two square factors, by taking these for xl and y\

the quartic may be reduced to the form cx
2

y
2

; but, by making

0, 5, d, e all =
0, the Hessian, as given Art. 209, reduces to

-
3c'Vy.
Thus then by expressing that a quartic differs only by a

factor from its Hessian, we get the system of conditions that

the quartic shall have two square factors, viz.

ac — b*_ad—bc_ae + 2bd— 3c
2

__be
— cd_ce-d*

~a
~

2b Qc
~

2c? e
'

a system equivalent to two conditions, as may be verified in

different ways.
We have, in Art. 138, given other ways of forming these

conditions. From the expression (Art. 209) for the covariant

J in terms of the roots, it appears that every term of it must

vanish identically if any two pairs of roots become respectively

equal. This also follows from the consideration that J is the

Jacobian of the quartic and its Hessian, and must vanish

identically when these two only differ by a factor; now the

coefficients in J are, only in a different form, the conditions

already written. Again, we have said (Art. 138) that in the

same case the covariant 2 (a
-

/3f (/3
— yfiy — af(x

—
£)

4
vanishes

identically. But this, it will be found, is the same as 3 TU— 2SII-

and we can easily verify that this covariant vanishes when the

quartic has two square factors
; for, making a, &, g?,

e all = 0,

U reduces to 6ca>y, H to -
3cVy*, T to - c

3

,
and 8 to 3c

2
.

Thus, then, we see that in the system of conditions given above,
3T

the common value of the fractions is —~ .

2o *

215. We next show by Prof. Cayley's method (Art. 194),
that the system of invariants and covariants already given
is complete. We start with the semi-invariants a, ac — b'%

a?d-3abc + 2b% a?e - ±a
2bd+ Gab*c - Sb% the first three being

the leading coefficients of
Z7, ZT, /. Since any relation between
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the leading coefficients of covariants implies a similar relation

between the covariants themselves, there will be no incon-

venience in calling the first three terms by the names Z7, H, J]

the fourth we shall call provisionally L. If now we make a = 0,

we have ET«0, H' = -b% J' = 2b% Z7 = -3Z>
4

;
and by elimi-

nating b between the second and third, second and fourth of

these equations, we have

4jg
r '3 + e7'

2 =
0, BHn + L' = 0*

Now these two quantities which vanish on the supposition a = 0,

will, when we give H, «/,
L their general values, be divisible by

a power of a. The first has been already discussed in the

theory of the cubic. It gives 4IZ"
3 + J* = 17*1), where

D = a
2dx + 4ac

3 - Qabcd+ ±b
3d - 3&V.

The second, treated in like manner, gives dll
2

+ L = U*S. We
have thus been led to the two new semi-invariants D, S, and we

may dismiss L, which we have seen can be expressed as a

function of simpler covariants. Making a = again in D and S,

we have
D' = V [Abd

- 3c'
2

) ,
& = (- Abd + 3c

2

) ,

whence, since H' = -
b'\

we have D - H'S' = 0. And giving

Z>, II, S their general values, we find D-HS=-UT. We
are thus led to the new invariant T and may dismiss D, which

has been linearly expressed in terms of simpler covariants.

Making a = in I7

,
we have T' = 2bcd — eb* - c

3

,
and we cannot

now by elimination of
Z>, c, d, e obtain any new relation between

//', «/', S\ T. The system is therefore complete, consisting of

Z7, Hj J, 8, I1

with the equation of connection

±H* + J* = U*(IIS-UT).

216. We have already (Art. 190) mentioned Mr. Burnside's

remark on the identity of the theory of the quartic with that

of two conies [Conies, Art. 370). By the substitution x,y,z
for x\ 2xy, y\ the quartic becomes

ax* + cif + ez* + 2dyz -f 2czx + 2bxy = 0,

* It is easy to see that any result of elimiration, obtained by combining these

equations differently, will vanish when the two equations, written above, are

satisfied.
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with the identity 4.r2 - y
2 = 0. Calling these two conies u and v

1

the discriminant of u + A-u is 4A3 — 8\ +T= 0. Thus we see that

the invariants of the system of two conies are also invariants of

the quartic. The solution of the quartic evidently is given

by the cubic in A just written; for if A be one of its roots, we
know that the ternary quadratic is resolvable into two factors.

The discriminant of the resolving cubic 27 T'
z — &3

, giving the

condition that the two conies should touch, gives also the condi-

tion that the quartic should have equal roots. To the Hessian

of the quartic answers the harmonic conic (Conies, Art. 278) of

the system of two conies, and to the sextic covariant J, which is

the Jacobian of the quartic and its Hessian, answers the Jacobian

of the two conies and their harmonic conic; that is to say,

the sides of the self-conjugate triangle common to the two

conies. The expression for the square of / in terms of Z7, H, 8

Tj answers to the expression given, Conies, Art. 388, Ex. 2.

217. Since Ills a, covariant of U
y

it follows that if a and /3

be any constants, olU+Qj5H will be a covariant of U, whose

invariants also will be invariants of U. The following are the

values of the 8, T, and discriminant R, of this form :

8[aU+ 60JT) = £a2 + 18ra/3 + 3S*/3%

T{a U+ G/3H) = Ta3 + £V£ + 9STaF + (54 T* - S3

) /3
3

,

R (aU+ WH) = R{(x
3 -d Sa/3

2 - 54W)\
The last is a perfect square, because, as we have just mentioned,

instead of six cases where aU+ 6/3H has a square factor, we
have three cases where it has two square factors.

Hermite has noticed that if we call G the function of a, /?,

a
3 - 9£a/3

a - 54T/3
3

,
then the values just given for the 8 and T

of aU+ 6(311 are respectively the Hessian and the cubicovariant

of C. The discriminant of Q differs only by a numerical

factor from the discriminant of U.

The covariants of aU+6fiH are also covariants of U. Its

Hessian is

{a{3S+V!3*T)U+ (a* -3/3*8) H,

which is the Jacobian, with respect to a, £, of G and aZ7+ G/3ZT.

Since J is a combinant of the system £7, //, the J of aU+ 6/3//
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will be the same, multiplied however by the numerical factor G.

The Hessian of / is S*U*-SGTUH+ 12SE 2

,
which is the

resultant of aU+6/311 and the Hessian of 67. Prof. Cayley
has thrown this into the form

(SU- ^sf +^ (£
3 - 27 TT) IP,

showing that it is a perfect square when the discriminant of U
vanishes.

218. It having been just proved that the Hessian of the

Hessian of a quartic is of the form a 2774 /3SH, we can infer,

as in Art. 194, that the same is true of the Hessian of the

Hessian of any quantic. For if we form the Hessian of

entials of u. But, by the equations (n
-

3) uul = xuun + yuuli ,

&c, we can express the second and third differentials in terms

of the fourth, and so write the second Hessian as a function of

the fourth differentials only, and of the x and y which we have

introduced, and which, it will be found, enter in the fourth

degree. It will then be a covariant of the quartic emanant.

Now every covariant of a quartic is a function of U and H
(Art. 215), and when the covariant is of the fourth degree it

must be a linear function of these quantities. Actually it is

found to be proportional to (2n
—

5) TU— SH, where S and T
are invariants of the quartic emanant and covariants, as in

Art. 141, of the higher quantic.

219. System of a biquadratic and quadratic. This system
is most easily dealt with by Mr. Burnside's method, Art. 190.

Let the quadratic be ax* + 2/3xy -f <yy\ and let the quartic be

given by the general equation, then (Art. 190) this is equivalent
to the system of two conies and a right line

ax* + cy* -f ez* -f 2dyz -f 2czx + 2hxy, Axz —y
1

,
ax + &y + 72,

the properties of which have been discussed, Conies, Art. 370, &c.

Thus the formula of Conies, Art. 377, which expresses the re-

sultant of the three ternary quantics in terms of simpler in-

variants, gives at the same time an expression for the resultant
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of the two binary quantics. The formula just cited gives the

resultaDt as ft
-
422', where

2 = a
2

(ce
-

d') + £
2

(ae
- c

2

) + 7
2

(ae
-

b*)

+ 2 (6c
- aa

7

) £7 + 2 [5cZ
- c

2

) 7a + 2 (cd
-

be) a/3,

2' = 4(a7 -/3
2

),

cj>
= ea? + 4c/3

2 + ay*
- 4^7 + 207a - 4Ja/3.

In the above 2' is proportional to the discriminant of the

quadratic, <f>
is an invariant got by substituting differential

sj'mbols in the quadratic, squaring, and operating on the quartic ;

if we operate in like manner on the Hessian of the quartic,

we get an invariant of the same order as 2, but differing from

it by a multiple of &2'. If we treat 2, 2', (j>
as conies and form

their Jacobian, we get another invariant of the system of

conies, the vanishing of which geometrically represents the

condition that the right line shall pass through one of the

vertices of the common self-conjugate triangle of the two conies.

It is

a
3

(Scde
- 2d3 - be

2

) + a
2

7 (3bce
- 2bd2 -

ade)

-r ay* (abe + 2b'
2d - dacd) -f 7

s

(a
ud + 2b

3 -
Babe)

+ /3a
2

(Gcd
2 + 2bde - 9c

2
e + ae

2

) + a/3y {Gad
2 - Qb'

2

e)

+ £7* (- a*e - Qb
2
c -f 9ac* - 2abd) -f £

2
a (I2bce

- Sbd1 -
lade)

+ /3
2

7 (- \2acd + Wd + Aabe) + /3
3

(lad
2 - 42>

2

e).

This is a skew invariant of the binary system of the quartic

and quadratic. The formula (Conies, Art. 383, Ex. 2) gives an

expression for the square of this in terms of the other invariants.

From what has been stated, as to the geometric meaning of

the skew-invariant, it follows that if it vanishes two of the right

lines which pass through the intersections of the two conies

intersect on the given line
;

that is to say, these equations are

of the form L ±M= 0, where L is the given line and M some

other line. The corresponding property for the binary equations

is, that the vanishing of the skew-invariant is the condition that

the given quartic can be resolved into two quadratic factors

L±M where L is the given and M some other quadratic. The

system of quartic and quadratic have only these six independent
invariants now indicated

;
viz. the 8 and T of the quartic, the
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discriminant of the quadratic, those which we have just called

2 and
<£,

and the skew-invariant.

We get immediately two quadratic covariants of the binary

system by introducing differential symbols into the given quad-

ratic, and operating on the quartic and its Hessian. Thus we

get the two forms

(col
-

2fy3 4 ay) a;
2
4 2 [da

-
2c/3 4 by) xy 4 (ea

- 2d/3 4 cy) f ;

{a (ae 4 2bd - 3c'
2

)
- 6£ (ad

-
be) 4 67 (ae

-
b*)} x*

+ {6a (be
-

cd)
-

4/3 (ae 4 2bd - 2c
2

)
+ 67 (ad- be)} xy

4 J6a (ce -a
n
)-6j3 (be -cd)+y (ae + 2bd- 3c'

2

)} y\

To these two binary covariants answer covariant right lines

in the ternary system, which are found by taking the pole of

the given line with regard to either conic and then the polar

of this point with regard to the other. Having now three quad-

ratics, viz. the given one and the two just found, we obtain,

as in Art. 205, three more quadratic covariants by taking the

intermediate covariant of each pair; and these six quadratics

complete the system of quadratic covariants. There are five

quartic covariants, viz. in addition to the given quartic and its

Hessian, the Jacobian of the quartic and quadratic, of the

Hessian and quadratic, and of the Hessian and the first covariant

quadratic. Lastly, there is the J sextic covariant of the quartic.

The eighteen forms enumerated make up the complete system.

220. System of two quartics.* We consider chiefly the in-

variants of this system, which are also combinants. We have

seen, Art. 204, that the invariants of any invariant of \u + fiv

are combinants. Let us then form the S and T of Xu{-fiv

and write them

/SV + 2\fi + By. T\3 + a'fi + iXy? 4 ?V j

* I omit to discuss the case of the cubic and biquadratic, it being one of the

most complicated and least interesting. There are G4 forms, viz. 1 sextic, 2 quintic,

5 quartic. 8 cubic, 12 quadratic, 10 linear, and 20 invariants. I take these results

from an inaugural dissex-tation by Dr. Gundelfinger.
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then if we form (Art. 198) the invariants and covariants of this

cubic and quadratic, we get combinants of the system of two

quartics.

Thus the discriminant of the quadratic is easily found to be

(ae)
2+ 1 6 (bd'f+ 12 (ac) (ce)

- 48 (be) (cd')
- 8 [ah') (de)

- 8 {ad!) (be) ,

which we shall refer to as the combinant A.

It will be convenient to use the abbreviations (ah')
=

a,

(de)
=

a', (ad')
=

/3, (be)
=

/3', (ac')
= X, (ce)

= V, (be')
= p,

(cd')
=

fju\ (ae)
=

7, (bd) = 8. We have then

A = 12XV - 48w'

+ 7
2
-f 1 6S

2 - 8aa' - 8/3/3'.

We can find by a different process an independent combinant

of the same order in the coefficients. The Jacobian of the two

quartics, J",
is

ax*+Z\x
5

y^3j3+6fi)xy+(y+8$)xy+ (3/3'+6,u') xY+3X'xy
5

+a'y\

Again a combinantive quadratic P or 12
3

is

(/3
-

Sfi) x*+(y- 28) xy + (£'
-

3/.') y\

The sextic «7 has an invariant of the second order in its

coefficients (Art. 141), and P has a discriminant which is of

like order, neither being identical with A. If we write

P= XV - /Mfi'
~ fa' - J3'fi + 8* - aa\

then the invariant of J will be found to be A fr 48P, and the

discriminant of P to be A — 12P.

B may be written in the form

a, J, c, d

6, c, d, e

a\ b'j c', d'

b\ c, d\ e'

The resultant of u
) t>,

found by expanding the determinant

of Art. 84, is

R = 1296X2V 2 - 3456 (a/i\'* + aVA,
2

)
- 1152 (a/3A/

2 + a'/3'A,
2

)

- 727
2\V - 57678XV + 9216aa>^' + 967 (/3

2
X/ + /3'

2

\)

+ 2887(a/3'X/+a73A,) +15368 (a/3>' W/3/*) +3072aa'(/3//+ /3>)

4 7*
- 48aa'7

2 -
16/3/3V - 256aa 78 + 512aV2

- 256 (aiS'
3
+ a'/3

3

)
- 4096aa'S

2
.

DD
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In terms of the preceding combinants can be expressed the

combinant which we have called T (Art. 182), but which, in order

to avoid confusion, we shall now call 0; and which expresses the

condition that a quartic of the system U+W can have two

square factors. Such a combinant must vanish if V reduce to

the single term c'x'y* . In such a case a, a, /3, /5', 7, B all vanish
;

and we have A = 12\\' -48/ip, J5 =W -
/*/*', R = 1296A,'

2
A/

2

;

hence we see that (A -
48Z?)

2 — R is a combinant which vanishes

on this supposition. And since it is of the same order that we

have seen, Art. 182, that T must be, it is identical with it.

Using the values already given for -4, B, i?, we find that

(A - 48£)
2 - R = 128

<?,
where

<7=-277(V
2

+^y)^18(/8V
2

+^V0+ 18S*XV+367S/i/A-36aa>/A'

+ I878XV - 97V/*'
- 37 (a/3'V + a'/3\)

- 24S
2

(/V + £»
- 68 (/3

2
A/ + j3'

2

\)
- 68 [aff\' + a 0\) + 2 (a/3'

3 + a'/3
3

) + aa'7
2

+ 4aV2 -
2aa'78 + 478" + 16aa'8

2

+ 88
4

.

Again, if we form the invariant which we called I (Art. 198)

of the quadratic and cubic at the beginning of this article, it

will be found that

{A + 4&B) (A - UB) - R = - 1287,

a formula obtained by Mr. Warren, Quarterly Journal, Vol. VII.,

p. 70.

221. We consider next D, the resultant of the cubic and

quadratic, and E the discriminant of the cubic. D is the

invariant which we have called 8 (Art. 182). It may be

mentioned that besides the methods already indicated for cal-

culating that invariant in general, the following may be used.

It is required to find the condition that A can be determined

so that the three expressions un + \vn1 u
13

4- Xv
ll5

w
22 + \vM can

be made to vanish together. Now we may multiply each of

these by the 2 (n
—

2) terms a;
2"*5

, &c, of a quantic of the degree
2w — 5, and so obtain 6 (n

—
2) equations, from which we can

eliminate dialytically the 6(^
—

2) quantities £c
3n~7

, &c, A^3*-7

, &c,
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and so obtain S in the form of a determinant. In the case

of the system of two quartics,

D = - 16X3
X'

3+ 48X2

X>/*'+ 6XX>V
f+ 16/*y

3+ 27Xy
4
4 27XV

+ 36aX/*X'
3
+ 36a'X'/*'X

8 + 12X2
X'

2

(£/*' + £'/*)
-

96a/*
2
X'

2

/*'

-
96a'/*'

2X2

/*
-

67X/U/U,'
8 -

67/*
8

X'/*'
- 368X

2

X'/*'
2 -

368X/*
2
X'*

-
48a/*/*'

4 - 48a>V - 248X/*/*'
3 -

24SX7*'/*
3 + 24a/3XX'

8

+ 24a'/3'X
8
A' - 18a/3'X'

2

/*
2 -

18/3a'xy
2 - 65

2X2
X'

2 + 877VV 8

-
XX'/*/*' (162aa + 90/3£')

-
36a/3/*'

4 -
36a'/3'/*

4 + 968
2

XX>/*'

+ (228aa'
-

60/3/3') /*
2

/*'

2 - 4a
2

7V 3 - 4a'
2

7X
3 -

16a/3
2
X'

2

/*'

-
16a'/3'

2X2

/*
- 30aa'

2

X'V - 30a
2

a'X> - 50aa'XX' (/3/*' 4 /3»
- 208XX' (X/3a + X'a/3') + 27/*/*' (X/3a + X'a/3') + 488VX"

+ 48SV/*'X
2+ 24a/3'

2

/*yU/
2+ 24a'/3yy+ 56a/3/3>'

8+ 56a'/3/37*
8

+ 240aa'/3/*/*'
2 + 240aa'/*

2

/*'/3' + 32aSy
3+ 32a'o>

8 + 3X2

/3
2
a'

2

+ 3XV/3'
2 + 24aa' (/3'V

2 + /3'V) -
6aa'7

2

/*/*'
- 12aVXX'

-
30aa'/3/3'XX' + 60aa'XX'8

2 + 12/3/3'XX'5
2

+ {84a
2
a'

2

+120aa'/3/3'- 12/3
2

/3'
2

) /*/*'- 192aa'S
2

/*/*'+4878
8

/*/*'

- 48S
4
XX' + 67aa

,2

/3X + 67a
2

a',3'X' + 48aV2

(£/*' + ff/i)

+ 24aa'8 (/3

2

/*' + /3'
2

/*)
- 96aa'8

2

(/3/*' + /3» - a
2

a'V - 4aa'
2

/3
3

-4aV/3'
8
-f 8aV3

-47Sa
2
a'

2-48aV2
a
2- 168

2

aa'/3/3'+64aa'8
4

.

222. In studying the relations of these combinants, we may,
without loss of generality, suppose one quartic to want the first

two terms, and the other the last two
;
that

is, we may write

u = ax* + ±bx3

y + 6cx
2

y\ v = 6cx2

y* + ±dxy* + ey*.

To save room, we write ae =
Z,

bd = m
y
cc=n

%
cad

2 + ceb'
i

=p
z
.

We find then

i?= m* — p' + n {l-m)j

E= P{1- 16m) + 96?>
2 - 12nF

(I + 8m) + 1296ZW.
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I m _ ?m* + am* +f (p
_ 2Zm - 8m2

) + 6/
- n

(Z

3 + 6Zm2 - 16m3

)
-

<bnltf + 12n2

(Z

2 + Im - 2m2

),

Z> = -7i
2

{9Zm
8

(Z-4m)-6/(2Z
2 -6Zm-4m2

)-27/+16w(Z-m)
3

},

#= - IW 4- 2Zmy (Z + 2m)
-

(Z + 2m)
2/ - 2rcZm

2

(Z + 2m)
2

+ 4/ + 2nf (I + 2m)
3 -

18rc/Zm
2 - n2

(Z + 2m)
4

+ 36rc
2Zm2

(Z + 2m)
-

Gnp* (Z + 2m)
- 6w

2/ (Z + 2m)
2

+ 21nY -f ±n
3

(Z + 2m)
3 - l08rc

3Zm2
.

By the help of these values we can verify the equation

16BS -AB*-2IB+ E=D,
which expresses E in terms of invariants already found.

The Jacobian, with this form, wants the extreme terms.

There is no difficulty, therefore, in calculating its discriminant,

and thus verifying the theorem of Art. 180.

Finally, we have seen (Art. 198) that a cubic and quadratic

have a skew invariant M. The equation of connection indicated

at the end of Art. 198, when worked out, is found to be

M2 = - 4A3
Z>

2 + D (B
2 + 12i?Ai + 24A2/2

)
- 4.BF - 36Al4

.

Applying this to the case considered in this article, we find

that the system of two quartics has a skew invariant M of the

9
m

order in the coefficients of each, whose square is given by
the formula

if2 = A [AE- iy - SD (I
3 - 9AIE + 5±DE).

Mr. Burnside's method, reducing the theory of two quartics

to that of three conies, discussed Conies, Art. 388, would have

led us to the same results.

223. I have also sometimes found it convenient to suppose
each quartic to be the sum of two fourth powers, so that for

each the invariant T vanishes. Let the quartics be au* + bv*,

a'vf + b'z*, where u is a^ + Z^y, &c. We use (12) to denote

a
t/32

- a
2/3t ,

and we use the abbreviations

(12)(34)
= £, (13) (42)

=
2/; (14)(23)

= iV;

where it will be observed that we have identically L+ M-\-N=Q.
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Now the invariant 8 is got by substituting -j- ,

— -=-
,
for

cc, y

in the quartic and then operating on itself. If we operate in

this way with u upon u the result vanishes
;

but if we operate
on v the result is (12). We find then at once that the 8 of

\U+fiV is

\*ab (12)
4
+VK (13)

4+ aV (14)
4
-f ba' (23)

44W (24)
4

) + p'a'V (34)*.

The combinant then which we have called A is

{aa' (13)
4 + aV (14)

4 + 5a' (23)
4 +W (24)

4

}

2 - Aaba'b'L\

In the same case B is found to be - aba'b'UMN.

The invariant 2* is found by operating on a quartic with

its Hessian. But here the Hessian of U is ab (12)'
2 u2

v
2
. We

find then that the T of \U+ fi V is

XV {aba (12)
2

(13)
2

(23)
2 + abb' (12)

2

(14)
2

(24)
2

}

+V {a'b'a (13)
2

(14)
2

(34)
2 + a'b'b (23)

8

(24)
2

(34)
2

}.

Hence, we have immediately

E=- d2K2
a'

2
b'

2L* {aa'N'
2

(lsy+ab'M
2

(14)
4

+5a'iT(23)
4
4bb'N^YW

D =-a2
b
2d2

b"
2L6

{<?a*N* (13)
8
4 d2

b"
2M2

(14)
8 + b*a'*M

2

(23)
8

+ b
2
b'

2N2

(24)
8 - 2MNa2

db' (13)
4

(14)
4 - 2MNb2

db' (23)
4

(24)*

- 2MNd2
ab (1 3)

4

(23)
4 - 2MNb'2

ab (14)
4

(24)
4

+ 2M2N'2
abdb' {M

2 4 iV
2 - 2Z2

)},

7 = - a6a'5'X
2

[a
2a"W2

(13)
8+a

2
&'

2i/2

(14)
8+5V2if2

(23)
8+^'2^2

(24)»

+ (M
2 4 #* - 2Z") {d

2
a'b' (13)

4

(14)
4 4&W (23)

4

(24)
4

+ a'
2
ab (13)

4

(23)
4 4 b"

2
ab (14)

4

(24)
4

}

4 2J\FN2

[M
2 +N2 -

417) a5a'5'J,

by the help of which values we can verify the equation already

obtained.

Gordan has enumerated the total number of independent
forms for the system of two quartics as thirty, viz. there are for
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each quartic the live forms w, H, J, #, T\ sixteen more forms

are got by taking the operations 12, 12", 12
3

,
12

4

performed on

the pairs m, u
; w, H'

•

u\ H) H, H'
;
and lastly, four more are

obtained by operating on the sextic covariant of either quartic

with the other quartic or with its Hessian. This gives in all

eight invariants, eight quadratic, eight quartic, and six sextic

covariants.

224. The Quintic. There are in all (including the quintic

itself and four invariants) twenty-three forms. The theory of

the covariants being not yet complete, only the invariants will be

here fully treated of. These are J, if, L of the orders 4, 8, 12

respectively, and a skew invariant I of the 18th. The dis-

criminant B of the quintic is not reckoned as a separate

invariant, inasmuch as it
is,

as we shall presently see, a function

{J
2 - 1282T) of the invariants J and K.

Three of the covariants invite special attention, viz. the

Hessian 12 2

,
which if we take the quintic to be

(a, &, c, c£,e,/^) 2/)

6

?

has for its value.

H= (ac-b*)cc
e+ 3 {ad- bc)x

h

y\ 3 (ae+bd-2c*) xY+{af+7be-8cd)xy

+ 3 (£/+ ce _ 2d'
2

) xy + 3 {cf- de) xy
5
+ (df- £) y* ;

There is a second covariant of the second order in the

coefficients, viz. the covariant quadratic 12
4

,
the S of the quartic

emanant, which has for its value

S = (ae- 43d+ 3c*) x* + (af- Bhe + 2cd) xy -f (bf- Ace + 3d') y\

And thirdly, there is a covariant of the third order in the

coefficients, viz. the canonizant, the expression for which we

gave p. 148
;

that is to say, the covariant cubic which has for

its roots the
a?, y, z of the canonical form. This covariant, which

is also the T of the quartic emanant, has for its value

[ace
- ad2 - eV2 + 2bed - c

3

)
x3+ (acf- ade

- b'
2

f+ bee + bd*~ c
2

d) x*y

+ [adf- ae*-bcf+bde+ c
2
e - cd2

) xy*

-f [bdf- be
2 - c

2

f+ 2cde - d*) y\

225. In studying the quintic we constantly use the canonical

form axb
+ by* + cz* (where x + y + 2 = 0), to which it has boon
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shown (Art. 168) that the general equation may be reduced.

For this form the three covariants ju3t considered are re-

spectively
H= bcy*z

H + caz*x
3 + abx^y

3

,

S= bcyz -f cazx + abxy,

T— abcxyz.

Differentiating the quintic with regard to x and y successively,

we have u
x
= ax* — cz*, u

2
=

by*
— cz*. It is evident that the

resultant of these two will be the discriminant of the quintic,

and that the combinants of this system will be invariants

of the quintic. These invariants are then immediately found

from the expressions in Art. 223, where we must write for

a and 5, a and -
c, for a and b\ b and — c. We have (24),

and therefore M=
; (13)

=
1, (12)

= -1, (34)
= -1, (14)

= -1,

(23)
= 1. We observe then at once that B vanishes. We can

see by counting constants, that any two cubics can be brought

by linear transformation to be the two differentials of a single

quartic ;
but two quartics cannot be similarly brought to be the

differentials of a single quintic, unless the condition B= be

fulfilled. Or it may be otherwise stated that this is the condition

that the quartics should be reducible to the form auA + bv
4, + cw*,

a'u
4
4 b'v* + cw*.

The combinant A in like manner becomes

&V + cV + a
2
b
2 - 2abc {a + b + c).

This, which we shall call J, is the simplest invariant of the

quintic, and it may be obtained in other ways ;
viz. either

by forming the discriminant of S, or the quadratic invariant

12"
6
of H.

In either way we obtain the general value of J, viz.

a2

/*
2 -

10abef+ Aacdf+ 16ace
2 - I2ad'

2
e + WFdf

+ dbV - 12bc
2

f- 7Qbcde + 48^3 + 48c
3
e - 32cW2

.

226. The discriminant of the quintic may be obtained either

from the theory of two quartics, or by direct elimination

between the two differentials az'-cz*, by*-cz*. When these
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vanish together, we may take abc as the common value of

ax*, by*, c*
4

;
whence sc=(5c)*, y=(caf, z= (abf. Substituting

in x + y + z = 0, we get the discriminant in the form

(5c)*+(ca)
i
+(a^)

i =
0,

or {bV + c
2d2 + d2

b*-2abc{a+ He)}
2 - 128aW(6c+ca+ a&)=0.

Thus then we are led to the form for the discriminant J"
2

-128iT,

where K is the invariant of the eighth order in the coefficients,

which for the canonical form is a
2
b
2
c
2

(be + ca + ab).

This latter invariant may be otherwise defined, viz. if sub-

stituting in the usual way differential symbols for the variables,

we operate with the square of the canonizant on the Hessian,

we get the invariant K
;
as we can easily verify by the canonical

form. Or else K can be found by forming the invariant 2, as

in Art. 198, of the covariant quadratic bcyz + cazx + abxy, and

the canonizant. In any of these ways the general value of K
is found to be

a\df - a
3

fee
2 - d2

f
3
b'
2d - Sa

3

fd
2
e - 3a*/W + 5a

3

fde
3 + 5afb

3
c

- 2aV - 2b
5

f
3 +a/W + Ucffbcde

- 5d2

fbce
3 - 5afb

3
de

+ \2a
2

fbd
3 + 12a'/Ve - SOdfbdV - 30a/We + Udbde*

+ IhVcef - 21a
2

/W - 34a/cW - Uof
2
b
2cd2 + 22aW

+ 22b*d2/2 + 78d2

fcd
3
e + 18afbc

3d - ^Sa
2
cd

2
e
3 - ASbVdf

2

- 27a2

/a
75 - 27a/V + 18aW + 1 8&V/

2 + 133aftfe*cd

- 5±abW - 5±b
4
de

2

f- lSafb
2d3

e - lSafbcV + 3ab
2d2

e
s

+ Sb
3

cVf- 220afbec
2d2 + 106abc

2
de

3 + I06b
3
cd

2

ef+ 93a/6cd
4

+ 93a/cVe
- S0abe

2
cd

3 - 30tfec
3

df- dabed
5 - %ec5

f- 38acV

- 385
3

aY- 42a/c
3a73 + 8«cW + 8&V<F/+ 6ac

2d4
e + Gbc'd

2/
-f 27JV - SlbVcd+SSbVd3 + 38Z>Vc

3 + 25bVc2d2 - 57 b
2
ecd<

- 57be
2
c*d+ I8b

2d6+ 18cV + Ubec
3d3- 2±bc

2d5-2±c5d2

e+8c
Adt

.

The value of the discriminant in general can be derived hence,
or else, as I originally obtained

it,
from the formula (Art. 220),

for the resultant of two quartics. We thus find
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E = a*f
- 20a

3fbe - 120a
3

f
3
cd 4 1 60 (a

3

fee
1
+ a

2

/W)
+ 360 (a

3f2d2
e 4 d2f

3
b6

2

)
- 640 {a

3

fde
3 4 a/

3
5
3

e) + 256 (aV 4 5
6

/
3

)

- 10a*/W - Wi0d2

f
2
becd + 320 (af/Be'c + a/

2

5W)
-
1440ay

2

(5a
73
4 c

3

e) 4 4080 (<#W 4 afb
2
ec

2

)

- 1920 (d
2

be*d+b*ecf
2

) 4 2640a'yVa
724 4480 (d

2

fc
2
de

2

+af
2
b'

2
cd

2

)

- 2560 (aVV 4 5V2

/
2

)

- 10080 {a'fccPe 4 a/Wrf )

4 5760 (aWV 4 &V#"*) 4 3456 {d
2d5

f+ a/V)
- 2160 (aW 4 5V/

2

)
-
180a/5V

- UV20afb
2
e'
2cd

4 7200 (a5Vc 4 bVdf) 4 960a/ (5Vf 4 5eV)
- 600 {abV(P+ 5W/)

4 28480a/5ec
2a72- 1 6000 (a&eW 45W2

/)

- 1 1 520af(bcd
4
4 cVe) 4 7200 (aJe'crf

8 4 5
2
ec

3

a/)

4 6400 (ocV 4 VdJ) 4 5120«/c
3^3 - 3200 (aeVdr 4 5V0

78

/)
- 33755V 4 90005VCO

7 - 4000 (bVd
3 4 5Vc3

) 4 20005'VVa
72

.

The discriminant may also be expressed as follows : Let

A = a
2/2 -

Ziafbe 4 IGafcd- Vlace
2 - 32b

2

df- \2aed
2 - \2bc

2

f
4 2255V - S20becd4 480 (bd

3 4 c
3

e)
- 320cV

;

B= Sa
2

/
2 -

22afbe
-

Vlafcd 4 64 (ace
2 4 b

2

df)

- 36 (aed
2 4 5cy)

- 455V 4 20becd
;

O= d2

fe 4 2a/ 5a
7 - 9a5e

2 -
9a/c

2 4 32acde - ISaa
73 4 65

2

c/

-15bcc2
+10bcd

2

,

D = Zcidf- 2aV -
9a/5c 4 abed 4 18ac

2
e - \2acd2 4 GZ//

-1552
ec4l05

2a72
;

and let G\ D' be the functions complemental to C and D, (where
all these functions vanish if three roots be equal), then three

times the discriminant is

AB+6WC-6WD'.

227. Quintics have also an invariant of the twelfth degree,

which may be most simply defined as the discriminant of the

canonizant. For the canonical form for which the canonizant

is abcxyz, this discriminant is - a
45V. And, in general, this

discriminant is —
Z, where the following is the value of L as

calculated by M. Faa de Bruno. To save space in printing we
EE
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omit the complementary terms. Thus (a*c
2
de

2

f
s

)
stands for

a
4
c
2
dS

2

J
s + a*b

2
cd'

2

f\
L m a'cWf - 2 {cScWf

3

) + {aWf
2

)

- 6 {a*cd
3

ef) + 1 6 (a
i
cd2

e
3

f
2

)

- 14 (aW/) + 4 (aW) + 4 (a*<?J
3

)
- 11 (aWf)

+ 10 (aW/)
- 3 {a

4dV) 4- ±a
3

Vcd£f - 2 (aW/») + 6 (a
s
b*d

3

ef)
- 16 (a'b'dVf) + 14 (a

3

6W/) - 4 (aW) + Wa3
bc

2

d*ef
- 82 (a'JcW/") + 32 (a^V/) - 36 (aW

4

/
8

) + 30 [a'bcdVf
2

)

4 30 (a'bcdVf)
- 24 (aWe6

) + 28 [a
3bd

b

ef)
~ 50 [cfbdVf)

+ 22
(rt

3^5

) + 16 (aW/*) + 22aVdy
3 + 50 (aWV/

2

)

- 16 (a
3

cW/) - 16 (a
3
c
3
e
8

)
- 54 (aWef) - 46 {aVdVf)

+ 60 (aWV) + 6 (a'ta
8

/') + 70 (a*cdVf)
- 56 («WV)

- 18 (a
8

dY) + 14(«W) +aW/ 2
-f 132a

2
b
3
cde

3f- 50 {a'bWf)

H- 14 {d
2
b»d

3
e
2/2

)
- 60 («WV/) + 30 (aWe

c

)
- 168aWdV/*

+ 48 @bWde
A
f) f 4 (aWe

6

)
+ 48 [dTcd'ef

2

] + 2 (a*b*cdVf)

- 6 {d
2
b
2

cdV) - 62 (a'W/
2

) + 90 (d
2h2db

d
2

f) - 39 (aWV)
- 112 (aW</) - S2a2

bc
3d 3

ef
2 + 170 [d

2
bc

3

dVf) + 104 (a'^c
3
Je

5

)

4 108(a
25cW5

/
2

) + 42(a
2

6cW/) - 298(a"5cW)
-
242(a

5W6

e/)

+ 294 (a'WV) + 72 (a
2^ 8

/)
- 78 (a*WV) + 164 (a'cW/)

-f 24 (aW) - 63a
2
cYZ

4

/
2 - 394 (a'WV/) - 194 (aVrfV)

+ 324 [a
2
c
3d b

ef) + 440 (aV^Vj - 78 (aW/) - 428 (aWV)
4 180 {d

2
cd

8

e)
- 27 (a

2d 10

) + ISabVf- Z$ab*cde
4

f+ 36 (a£
4
ce

6

)

+ 204 (aVdVf) - 102 (a&W) - 308 (afrWe
5

)
- ±2abVdVf

- 674 (ab
s

cdVf) + 590 (a#WV) + 128 {ab
3d6

ef)
~ 138 (a&W)

+ 4 {ab
2
cY) -f 652 (a&We

4

) + 7UaVc
9

dVf+ 498 {abVd'ef)

- 1246 (ab
2
c

2

dV) - 224 (a&
2
cd

7

/) + 516 (a&VdV)
- 48 (aftVfe)

- 136 (a&cW) - 1078a5c
4

rf*e/- 206 (abcW) + 342 (abc
3

d?f)

+ 804 (abc
3

dV) - 506 (a&cVe) + 90 (afocf)
- 16 (acV)

+ 220(ac
6dV) - 10Qac

5d5

f- 392(acW) + 222{ac
Ad e)

-
40(ac

3
tf

)

- 276V + 234&W - 32 (5W) - 713 bVd2
e* + 246

(Z>

4

c<ZV)

- 4"(&W) + 866&
3cW - 550 (JVW) + 56 (We) + 4 {b'd?)

- 139&
8cW + 354 {b

2
c
3

d°e)
- 83 (&W) - 3306c

5^e

+ 72 (6cV
7

)
- 16c

6
tf.
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On inspecting this invariant it will be seen that it vanishes if

^», c, cf all vanish. Consequently the form ax5
-f 5exy

4

+fy
5

,
to

which Mr. Jerrard has shown that the quintic can be brought

by a non-linear transformation, is one to which no quintic can

be brought by linear substitution unless Z = 0.

228. We take J, K, L as the fundamental invariants of the

quintic, and we proceed to show how all its other invariants can

be expressed in terms of these. In the first place, it will be

observed that the interchange either of x and y )
or of x and z,

is a linear transformation whose modulus is - 1. Hence, if any
invariant is such that when transformed it is multiplied by an

even power of the modulus of transformation, it must, for the

canonical form, be unaltered by any interchange of a, &, c; that

is to say, it must be a symmetric function of these quantities.

If the invariant is multiplied by an odd power of the modulus,
it must, for the canonical form, be such as to change sign when

any two of the quantities a, b, c are interchanged; it must

therefore be of the form (a
—
b)(b- c) (c

-
o) multiplied by a

symmetric function of a, 5, c. Now an invariant is in trans-

formation multiplied by a power of the modulus equal to its

weight. And (Art. 143) the weight of an invariant of the

quintic, whose order is w, is fn. A quintic cannot have an in-

variant of odd order in the coefficients. If the order is a

multiple of 4 the weight is an even number, and the sign of the

invariant is unaltered by the interchange of x and y. If the

order be not divisible by 4, the invariant is what we have called

skew, that is to say, such as to change sign when x and y are

interchanged. Let us first examine the former kind, which, we
have seen, must, for the canonical form be symmetric functions

of «, &, c. Now since J= (be + ca + ah)*— ±abc (a + b 4 c),

Jt = ai¥c2

(bo + ca + ab), L = a
4

6V, (from which we infer

.JEr=i(2T
,

-«7Z) = aW(a + & + c)*) it follows that if we are

* The reader must be careful to observe that though, in the case of the canonical

form, a 56se5 (a + b + c), for example, is divisible by o*J*c*, we have no right to infer

that in general // is divisible by L4 unless in cases where the quotient abc (a + b + c)

has been also proved to be an invariant.
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given any quintic, and transform it to the canonical form by a

substitution whose modulus is unity, the numerical values of the

new a, £, c are given by the cubic

a
3

3 a
2 + —. a - I? = 0.

Now the order of any symmetrical function of a, /;,
c will be

equal to its weight in the coefficients of this cubic, and when

this weight is a multiple of 4, it is easy to see that the symmetric

function is a rational function of J, iv, L.

Being given, therefore, any invariant whose order in the co-

efficients is a multiple of 4, it has been proved that we can

write down a rational function of
«/, K, L, which, for the

canonical form, shall have the same value as this invariant, and

therefore be always identical with it. And since it would be

manifestly absurd to suppose an integral function of the co-

efficients to be equal to an irreducible fraction, it follows that

every non-skew invariant is an integral function of J, iT, L.

If we make a, &, c all equal 0, J, iT, L all vanish. Hence

when three roots of a quintic are all equal, these three invariants

vanish.* If we make a, 5, e,f all equal 0, J becomes — 2>2c
2

d'\

and jL,
— 16cV, and therefore J 3 — 20A8L vanishes. Quintics

therefore which have two pairs of equal roots must not only
have the discriminant = 0, but also J 3 = 2048Z.

229. The simplest skew invariant is got by forming the

resultant of the quintic ax° + by* + cz
b

,
and its canonizant abcxyz.

Substituting successively the three roots of the canonizant in

the quintic, and multiplying together, we get for the resultant

a
b
b
b
c
b

(b
—

c) (c- a) {a
—

b). This invariant, therefore, is of the

eighteenth order. Previous to its discovery by M. Hermite,t

* In general all the invariants of a quantic vanish, if more than \n of its roots

be all equal. For it is easily seen that if half the coefficients, counting from one end,

simultaneously vanish, it is impossible to make with the remaining coefficients any
term of the proper weight (Art. 143).

f See Cambridge and Dublin Mathematical Jo«r?z«?, vol. ix.p.172. M. Hermite works
with a new canonical form, the x and y of which are the two factors of the quadratic
covariant. The quintic then is supposed to be such that ae - 4bd + 3c2

, bf- Ace + Ski ;

both vanish, and the quadratic covariant reduces to xy. The advantage of this is that
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the possibility of the existence of skew invariants had not been

recognised. I took the trouble to calculate this invariant, and

the result is printed [Philosophical Transactions, 1858, p. 455),

but as it consists of nearly nine hundred terms I cannot afford

room for it here. The leading terms are a?d
b

f*
—
ofc°p ;

in this,

as in every skew invariant, the complementary terms having

opposite signs, and the symmetrical terms vanishing. It is

found that / vanishes if
Z>, d, f vanish

;
that is to say, if the

quintic can be reduced to the form x (x*
— a

2

) (x
z —

/3'

2

),
in other

words, if we consider the quintic as denoting five points on a

right line, the vanishing of / is the condition that one of these

points should be a self-conjugate point of the involution deter-

mined by the other four. This immediately leads to the

expression of I in terms of the roots; viz., I is the product
of the 15 determinants of the form

2a-(/3 + 7), a(/3 + 7)-2/57

2a -{8 + e), a [8 + e)
- 2Ss

By the argument used, it is proved that every skew in-

variant of a quintic must be the product of this invariant I by
a rational function of J, iT, L.

230. The square of I being of the thirty-sixth degree can

be expressed rationally in terms of
«/, iT, L (Art. 228). The

actual expression is easily found.

By forming the discriminant of the cubic (Art. 228)

a
3 - — <**+—; a -£*,

we obtain the product of the squares of the differences of o, Z>,
c

in terms of J, iv, L. and thus have

PL = IPIP + lSEEP - 27X4 - UCU - 411s

;

or putting for II its value \{K* — JL), and dividing by Z,
we have

1 QP = JK* + SLK3 - 2j2LK* - 72JKL2 - 432Z3 + J*L\

the operating symbol thence derived is simply j—r:,
and some of the covarianta

obtained by thus differentiating assume a very simple form. Notwithstanding, I

have preferred to work with Sylvester's canonical form, which I find much more
convenient.
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231. We come now to the covariants. We have already

(Art. 224) mentioned the quadratic covariant S and the cubic

covariant T. Considering this system of a cubic and quadratic,

we have (Art. 198) a series of covariants which give com-

pletely all the covariants of the quintic which are not higher
than the third order in the variables. The live invariants of

Art. 198 reduce to four J, K, L, I already mentioned, the

discriminant of the cubic, and the resultant of cubic and

quadratic, both reducing to L. The four linear covariants

of the system of cubic and quadratic give four linear covariants

of the quintic, of the orders 5, 7, 11, 13, which for the canonical

form are respectively

abc (hex + cay + abz)^

abc ((5V+ abc) (y-i) + (cV+ b
2

ac) [z -*) + («7>
2
+ c\th) (x -y)\,

a36V {be (y
—

e) 4 ca (z
—

x) + ab (x — y)},

a4
b
4
c
4

{ax + by + cz) .

These are the only distinct linear covariants of the quintic.

If we eliminate either between the first and last of these, or

between the second and third, or between the first of them

and the canonizant, we get Ilermite's 7; and if between the

same linear covariant and the quintic itself we get I (J
2-

3/f).

Thus, then, if / vanish, the quintic is immediately soluble,

one of the roots being given by that linear covariant. Hcrmite

has studied the quintic by transforming the equation, so as

to take the first two linear covariants for x and y, when all

the coefficients in the transformed equation are found to be

invariants. The actual expressions, however, are not simple,

and I have not found much advantage from the use of this

form. The transformation becomes impossible when the two

linear invariants are identical, which will be when their

resultant JK + 9L vanishes.

The system of cubic and quadratic have (Art. 198) three

quadratic covariants, viz. in addition to S itself, the Hessian

of Tor a
2
b'
2
c
2

(x
2
+ ?/ + z

l

) ,
and the Jacobian of this and S, or

a*&V {hex (y
—

z) + cay (z
—

x) + abz (x
—

y)}.

These are the only distinct quadratic covariants of the quintic.
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Lastly, there are three cubic covariants, viz. in addition to

T itself, its cubic-covariant a
3
b
3
c

:i

(x
—

y) (y
—

z) (z
—

x) ;
and the

Jacobian of S and T7

, ,

abc [bcyz [y
—

z) -f cazx {z
—

x)-\- abxy [x
-

y)}.

These are the only cubic-covariants of the quintic. We have

now enumerated fourteen forms, whose order in the variables

is not higher than the third
; adding to these the quintic and

its Hessian, there are still seven forms to be mentioned. If

we operate with S upon H, we get a quartic of the fourth

order in the coefficients, which only differs by a multiple of

the square of 8 from abc (ax
4
-f by

4 + cz
4

).

A second quartic covariant is the Jacobian of this and S, or

abc {a
2

(b -c)x
4 + b* (c -a)y

4 + c
2

(a
-

b) z
4

}.

These are the only two quartic covariants. We have a quintic

covariant by taking the Jacobian of 8 and
£7,

viz.

a" (b -c)x
5 + b'

2

(c
-

a) if + c
l

{a - b) z
h

- abc (x
—
y) (y

—
z) [z — x) (yz -f zx + xy).

A second quintic covariant is found by taking the Jacobian of

U and the quadratic covariant a*b*c* (x* + y
z

•+ z
2

).
This gives

Of sextic forms there only is,
in addition to the Hessian, the

Jacobian of S and II, or

abc [x
5

{y-z) + if {z-x) + z
5

(x
-

y)}.

There is one septic form, viz. the Jacobian of U and the

simplest quartic covariant, or

abc \bcfz* (y
—

z) + caz*x
s

(z
-

x) -f abx
s

y
B

(x
—

y)}.

And lastly, one nonic, namely, the Jacobian of U and iT, or

a*bxY - a'cx'z
2 + tfcfz

2 -
Pcifx* + c'az'x

2 - c
2

bz\f

-f abcx
2

y
2
z

2

(x
—
y){y

—
z) (z—x).

232. The forms might also have been arranged, as

Prof. Cayley has done, according to their order in the coeffi-



216 APPLICATIONS TO BINARY QUANTICS.

cients. We give here, in his order, the leading terms of

the less complicated.

(1) w, Quintic, a.

(2) S, Quadratic, ae - £bd + 3c
2
.

(3) II, Quartic, ac - 5
2
.

(4) T, Cubic, ace - ad" - b
2
e + 2bed- c\

(5) Quintic, a
2

/- hole + 2acd + Sb*d- 65c
2
.

(6) Nome, a
2d-3abc+2b\

(7) Invariant J already given; fourth degree in coefficients.

(8) Quartic, a2

(e* -df) + a (35c/- 3bde - 4c°e + 4c<f
)

+ 5b*ce + 2b*<P - 2J*/- 85c
2d+ 3c

4
.

This differs by the square of S from the corresponding quartic

covariant, Art. 231.

(9) Sextic, a2

(of- de)
-
atff- 2abce + Aabd2 - ac

2d + 3b
3
e

- Wed + 35c
3

.

(10) Linear, a8

(c/
2 -

2def-{- e
3

)
+ a (- 5/

2 -
45cc/+ Sbcfy )

+ a (- 25dc
2- 2cV/+ 14cV)+a (- 22afe + 9J

4

) + 65
3

c/- 125'
2

cd/
- 15bW + 10&W? + 65c

3

/+ 305cVe - 20AaZ" - 15c
4
e + 10c

3J2
.

(11) Cubic, a2

[cef- 3d?f+ 2de
2

) + a (- 5
2

e/+ 145c<7/- 1 l5ce
2

)

+ a (- 5cfe - Scy+Uc'ta
- 6cd

3

)
- 85

3^4 95V4 65
2
c
2

/- 165We

+ 85Vs + 35c
3c-25cV2

.

(12) Septic, a2

(2c
2

/- 5c^c + 3d3

) + a (- 45
2

c/+ 55Wc + 55c
2

e)

+ a (- 75cr/
2 + e

3

d) + 25
4

/- 55
3
cc - 25

3
<f 4 85Vd- 35c

4
.

(13) Quadratic, a
2

{- c
2f + 5cdef- 3ee

s - 3d3

f+ 2de2

)

+ a (25
2

c/
2 - 55Wc/+ 35V - 55c

2

c/+ 75c^
2

/)

4 a (- 5c<fe - 5d3
e - c

s

df+ GcV - 8c
2d2

e 4 3cd*)

- 5
4

/
2

-}- 55
3

ce/+ 2b
3

dJ- 35W - 85Vdf- 45
2cV + 75Vfc

- b
2
d* + 35c

4

/+ 5bc
3
de - 45c

2
<f - 3c

5
e + 2cV2

.

(14) Quartic, a
3

(- df + ej) + a
2

(35c/
2 + 2bdef- 55e

3 - 8c
2

e/)

+ a2

(2cd
2

f+ 12cde*-Qd3

e) + a{- 2b
3

f 2-2b2

cef-6b
2

dy+ 13b
2
de

2

)

4- a (20bc*df+ 45cV - 52bcd
2
e + 2±bd* - 9c

4

/+ 20c
3
de - 10c

2
<f

)

4- 65
4

c/- 12b
3

cdf- 155
3
ce

2 + 105
3d2

e + 65V/+ BObVde

-2052
ccZ

3 -155c4
e4l05c

3
cf.
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(15) Linear, a
3

(c/
3 -

±def
2 + Iff) + a2

(- b
2

/
3 -

Sbcef
2

)

+ dl

(16Wy
" + Me'j - \hU - 6c

2

df* + 4cV/- 22c<Pef)

+ a
2

(26cde
3 + 9J4

/- 12<ZV) + a (7&V - 30b
2

cdf
2 + bWf)

+ a{- 7±b
2d2

ef+ 84&W + 18W/" + lGObc'def- 98&cV)

+ a (- 20bcd
3

f- MbcdV + blbd'e - 81c
4

e/+ 18cV*/+ 140cW)

+ a (- lOOcWe + 18cd
5

) + 8^/
a -

18b*e*f- 6b
3
c
2

/
2 + 32b

3

cdef

+ 455W + I12b
5

d*f- 1506W - QbVef- 2$±b
2
c
2d2f+ 50b

2
c
2
de

2

+ 320&We - 120TO5
+ 21Qbc*df- 15bcV - 3l0bc

3d2
e + UObc'd*

-54c6

/+90c
5^e-40cV.

(16) Quintic, a*{cdf
2 -2ce2

f+2d
i

ef-de
3

) + d
i

(-b
2

df+2b
2
e
2

f)

4 a
2

(- 36c
2

/
2 -

Qbcdef+ ISbce
3 - Sbd3

/-}- 2bd
z
e
2

)

+ a2

{16c*ef- 2c*d*f- 38cW + Mctfe - 9d5

)

+ a [5b
3

cf
2 + 2b

3

def- 125V - 24&Ve/+ 52&\*P/+ 7JWe")

+ a (•- 22Wc - 52bc
3

df+ Mbc3
e
2 + 82>cV

2
e - 5cd

4 + 18c
5

/)

+ a (- 25cVe + 1 Oc
3
<f

)
- 25

5

/
2 + 106

4

ce/- 28&VP/+ 30&W
+ S2bVdf- 356W - 505W2

e -f 30&V - 126V/+ 70&We
- 40JW - 156c

5
e + lOJcV.

(17) Invariant K already given, 8th
degree in coefficients.

(18) Quadratic, 8
th

degree in coefficients.

(19) Cubic, 9
fU

degree in coefficients.

(20) Linear, ll
m

in coefficients.

(21) Invariant L already given, 12 th
degree in coefficients.

(22) Linear, 13
th

in coefficients.

(23) Invariant 7, 18
tu

in coefficients.

For (18), (19), (20), (22) we refer to Prof. Cayley's Ninth

Memoir on Quantics, Phil. Trans. 1871, p. 17.

233. Prof. Cayley* has been led to consider in the theory

of the quintic a new canonical form, which is obtained as

follows : Taking for convenience the quintic to be

(a, b, c, d, e, 0>, y)\

* It has been already mentioned (p. 127) that the method of discussing covariants

by means of their leading terms or sources was introduced by Prof. M. Eoberts.

See Quarterly Journal, vol. IV.

FF
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viz. using small Roman letters for tbe coefficients, suppose in

the first instance that a, 6, c, J, e, / denote the leading coeffi-

cients of the first six covariants of Art. 232 respectively, viz.

« = a,

b = ae - 4bd + 3c'
2

,

c = ac — b2

,

d m ace - ad2 - b2
e - c

3
4 2bcd,

e = a'
2f- 5abe + 2acd + 8b

2d - 6bc
2

,

/=a
2d-3abc+2b3

,

where —/
2 = dl

[ad— be) + ±c
3

identically, so that any rational

and integral function containingf can always be expressed as

a function linear in regard to/. This being so, the function

-
(a,b, c, d, e,f£a>-by, a#)

5

lias the value
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of any quantic enables us at once to determine whether it

has an even or odd number of pairs of imaginary roots.

Imagine the quantic resolved into its real quadratic factors,

then (Art. 110) the discriminant of the quantic is equal to

the product of the discriminants of all the quadratics, multiplied

by the square of the product of the resultants of every pair

of factors. These resultants are all real, and their squares

positive, therefore, in considering the sign of the discriminant,

we need only attend to the discriminants of the quadratic factors.

But the square of the difference of the roots of a quadratic is

positive when the roots are real, and negative when they are

imaginary. It follows then that the product of the squares of

the differences of the roots of any quantic is positive when it

has an even number of pairs of imaginary roots, and negative

when it has an odd number. We have been accustomed to

write the discriminant giving the positive sign to the term

which is a power of product of the two extreme coefficients.

This will have the same sign as the product of the squares of

differences of the roots when the order of the quantic is of the

form 4m or 4m -f 1, and the opposite sign when the order is

of the form 4m -f 2 or 4m -f 3. We see then, in the case of

the quintic, that if the discriminant be positive, there will be

either four imaginary roots or none; and if the discriminant

be negative, there will be two imaginary roots. It remains

then further to distinguish the cases when all the roots are

real, and where only one is so.

235. In order to discriminate between the remaining cases,

there are various ways in which we may proceed. The

following* are, in their simplest forms, the criteria furnished

by Sturm's theorem. Let Jbe the quartic invariant as before, and

H= b
2

-ac, S=ae- ±bd + 3c
2

,
T= ace + 2bcd - ad1 - eb

2 - c
3

,

M= aV - a*df+ Sabcf- Sabde + 4acd* - W<? - 2bJ

+ 5o
2
ce + 2b*<? - %h?d + 3c

4

,

* These values are given by Mr. M. Roberts, Quarterly Journal, vol. IV., p. 175.

The reader who may use Prof. Cayley's tables of Sturmian functions {Philosophical

Transactions, vol. cxlvii., p. 735) must be cautioned that the fourth and fifth

functions are there given with wrong signs.
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then the leading terms in the Sturmian functions are proportional

to a, a, ZZ, bHS+^aT, - HJ+ 12SM+±S* -21(>T% the last

of course being the discriminant
;
and the conditions furnished

by Sturm's theorem to discriminate the cases of four and no

imaginary roots, are that when all the roots are real the three

quantities H, hHS+ §aT, —HJ+ &c, must all be positive.

236. We may apply these conditions to the canonical form

(c
-

a) x
5 + $cx

A

y + 1 0cx
s

y
2 + lOcx'y

3 + bcxxf + (c
-

h) y\

in which case the equality of all but two of the coefficients

renders the direct calculation also easy. We easily find then

that the constants are c — a, c — a, ac,
— c?6

i'

;
and the fourth

being essentially negative, we need not proceed further, and we

learn that the equation just written has always imaginary roots.

We find then that when the invariant L of a quintic is positive,

the roots of the equation cannot be all real. For L being, w
Tith

sign changed, the discriminant of the canonizant, when L is

positive, the roots of the canonizant are all real, and the quintic

can be brought to the canonical form by a real transformation.

When L is negative, two factors of the canonizant are

imaginary, and the canonical form is

a (- 2x)
5 + {c

- d V(- 1)} (* + y V(- I)}
5

+ {c + dV(-i)H*-W(-i)}
5

,

which, expanded, is

dy* + 5cy*x
-

\0dtfj?
-

10cy
2x3 + 5dyx

4 + (c
-

16a) x\

Writing for brevity c'
2 + dl = r\ 1 find for this form the Sturmian

constants to be d, d, r
2

,
r
4

,
r
2

(-4a'
2
c?

2 + 20acr
2 + 5r

4

),
and it

would seem that the discriminant being positive, the roots are

all real if d and - Aa2d2
H- 20acr* -f 5r

4
are both positive.*

237. In practice the criteriaf furnished by Sturm's theorem

are more convenient than any other, because the functions to

* I give this result, though suspecting its accuracy, because it seems to me to

disagree with the theory derived from the other methods.

t It may be noticed that there is no difficulty in writing down a multitude of

criteria which might indicate the existence of imaginary roots
;

for any symmetric
function of squares of differences of roots S (a

—
/?)

2
,

&c. must be positive if all

the roots are real. We can without difficulty write down such functions which arc
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be calculated are of lower order in the coefficients. It is,
how-

ever, theoretically desirable to express these criteria in terms of

the invariants, and this is what has been effected by different

methods by Hermite and by Sylvester. We proceed briefly

to explain the principles of Sylvester's method, which is

highly ingenious. We have seen already that when the

invariants
«/, A", L are given, then «, 5, c of the canonical

form may be determined by a cubic equation ;
and we can infer

that to every given system of values of J
) K, L will correspond

some quintic. But to every system of values of J, K, L will

not correspond a real quintic. In fact we have seen, Art. 230,

that the J, iT, L of every quintic with real coefficients, are such

that the quantity G is essentially positive, where G is

JK4
-f $LK3 - <2J

2LK2 - nJL*K- 432£3 + J3L\

For G has been shown to be the perfect square of a real

function of the coefficients of the general quintic, viz. a
7d 5

j
6+ &c,

this being the eliminant of the quintic and its canonizant, and

therefore necessarily real. We may in the above substitute for

.ST its value in the discriminant from the equation J'
z— 128K = D,

and so write G,

JD' - 4 [J
3 + 2

s

L) D3 + [<6J
3 - 29-2

10

X) PBl

- 4 {J
6 - 61.2V 3£ - 9.2^2

)
JD + (J

3 - 2
n
L)

2

{J
3 - 27.2

10

X).

If now, to assist our conceptions, we take J, -D, L for the co-

ordinates* of a point in space, then G — represents a surface
;

and points on one side of
it, making G positive answer to real

quintics, while points on the other side making G negativef

answer to quintics with imaginary coefficients.

238. Now, in the next place, we say that if the coefficients

in an equation be made to vary continuously, the passage from

also invariants
;
and which, if negative, show that the equation has imaginary roots.

But then these may also be positive when the roots are imaginary, and the problem

is to find some criterion or system of criteria, some one of which must fail to be

satisfied when the roots are not all real.

*
Sylvester takes L in the usual direction of x. J of

?/,
and D of z.

t Points for which G — answer to real quintics, and it is easy to see that in

this case the equation is of the recurring form. For we have proved that when G =
two of the coefficients of the canonical form are equal. The equation is therefore of

the form ajcb + ay* + b (x + >j)
h - 0.
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real to imaginary roots must take place through equal roots.

For, let any quantic <f> (x) become by a small change of co-

efficients
</> (x) + e\jr (x) (where s is infinitesimal), and let a be

a real root of the first, a -f h a root of the second
;
then we

have
<j) (a •+ h) + e>/r (a)

=
; whence, since

</> (a)
=

0, we have

h(f) (a) + s>/r (a)
=

0, which gives a real value for h. The con-

secutive root a + h is therefore also real. But if
<£' (a) vanishes

as well as
<f> (a), the lowest term in the expansion of

cf> (a + h)

will be U\ and the value of h may possibly be imaginary.

When, therefore, the original quantic has equal roots, the cor-

responding roots of the consecutive quantic may be imaginary.
It follows then, that if we represent systems of values of

J, D, L by points in space, in the manner indicated in the last

article, two points will correspond to quintics having the same

number of real roots, provided that we can pass from one to

the other without crossing either the plane D or the surface G.

If points lie on opposite sides of the plane D, we evidently
cannot pass from one to the other without having, at an inter-

vening point, Z> = 0, at which point a change in the character

of the roots might take place. If two points, both fulfilling

the condition G positive, be separated by sheets of the surface

(7, we can not pass continuously from one of the corresponding

quintics to the other; because when on crossing the surface

we have G negative, the corresponding quintic has imaginary
coefficients. But when two points are not separated in one of

these ways, we can pass continuously from one to the other,

without the occurrence of any change in the character of the

corresponding quintics.

Now Sylvester's method consists in shewing, by a dis-

cussion of the surface 6r, that all points fulfilling the condition

G positive* may be distributed into three blocks separated from

each other either by the plane D or the surface G. And since

there may evidently be quintics of three kinds, viz. having four,

two, or no imaginary roots, the points in the three blocks must

correspond respectively to these three classes. I have not space
for the elaborate investigation of the surface (r, by which

*
Sylvester calls these facultative points.
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Sylvester establishes this; but the following is sufficient to

enable the reader to convince himself of the truth of his

conclusions.

239. One of the three blocks we may dispose of at once,

viz. points on the negative side of the plane D, which we have

seen (Art. 233) correspond to quintics having two imaginary
roots. Next with regard to points for which D is positive.

We have seen, in the last article, that a change in the character

of the roots only takes place when D =
;

our attention is

therefore directed to the section of G by the plane D. We see

at once, by making D = in the value of G (Art. 237), that

the remainder has a square factor, and consequently that the

surface G touches D along the curve J'
A — 2

nL
1
and cuts it

along J
3 — 27.2

10
X. Now, if a surface merely cut a plane, the

line of section is no line of separation between points on the

same side of the surface. If, for example, we put a cup on a

table, there is free communication between all the points inside

the cup and between all those outside it. But if a plane touch

a surface, as, for instance, if we place a cylinder on a table,

then while there is still free communication between the points

inside the cylinder, the line of contact acts as a boundary line,

cutting off communication as far as it extends, between points
outside the cylinder on each side of the boundary.

Now Sylvester's assertion is, that if we take the negative

quadrant, viz. that for which both J and L are negative, and

if we draw in the plane of xy the curve «7
3 -2nZ, then all

facultative points in that quadrant, lying above the space in-

cluded between the curve and * the axis Z = 0, form a block

completely separated from the rest, and correspond to the case

of five real roots.

240. In order to see the character of the surface, I form the

discriminant of G considered as a function of JT, which I find

to be -V (J+ 27Z)
3
. Consequently, when both J and L are

negative, the discriminant is negative, and the equation in K has

only two real roots. To every system of values, therefore, of

J" and L correspond two values of iT, and consequently two
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values of Z), and the surface is one of two sheets. Now I say

that it is the space between these sheets for which O is positive.

In fact, since O is e7Z)
4 + &c., it may be resolved into its factors

J(D- a) (D-/3) {(D-y)
2 + 8'

2

} ;
and since J is supposed to be

negative in the space under consideration, D must evidently be

intermediate between a and /3 in order that G should be positive.

Now the last term of the equation being (J
3-2nL)

2

(J
3-27.2 10

L),

if J3
be nearly equal to 2

U
Z, will be of opposite sign to L

1
or

in the present case will be positive. And the coefficient of Z)
4

being negative, we see that on both sides of the line J9 = 2
nL

;

the values of D are, one positive and the other negative, that

is to say, the two sheets of the surface are one above and the

other below the plane D. But I say it is the upper sheet which

touches D along J3 — 2
U
L. This may be seen immediately by

looking at the sign of the penultimate term in the equation

for I), by which wTe see that when the last term vanishes, the

two roots are and negative. The theory then already ex-

plained shows that the curve J3 = 2
nL acts as a boundary line

cutting off communication in that direction between facultative

points on the upper side of D. But, again, communication in

the other direction is cut off by the plane L = Q. For when

we make L positive, the discriminant becomes positive, and the

equation in D has either four real or four imaginary roots.

But the first Sturmian constant is proportional to L [J
3 + 12Zv),

which, when J is negative, and L positive and small, is negative.

Immediately beyond the plane Z/, therefore, the equation to

determine D has four imaginary roots, or the surface does not

exist. The facultative points, therefore, lying as they do within

the surface or between its sheets, are cut off by the plane L
}

on which the sheets unite, from communication with points

beyond it. Thus the isolation of the block under consideration

has been proved.
I need enter into equal detail to prove that all other faculta-

tive points have free communication inter se. The line of

contact 2
UL — J3

is no line of separation in the quadrant where

J and L are both positive. For then it is seen, as before, that

it is the points outside the two sheets which are facultative, and

not the points between the surface and touching plane.
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The result of this investigation is, that in order to have all

the roots real, we must have the quantity 2
nL — J3

positive,*

and L negative, which also infers J negative. If either con-

dition fails, our roots are imaginary. It is supposed that in both

cases D is positive.

241. We have seen that the cylinder parallel to the axis

of z and standing on the curve 2
nL — J3

does not meet G above

the plane D * the two values of z being one 0, the other nega-
tive. Any other surface then standing on the same curve and

not meeting G would serve equally well as a wall of separation

between the two classes of facultative points. For all the

points between the cylinder and this surface would be non-

facultative, and therefore irrelevant to the question. Sylvester

has thus seen that we may substitute for the criterion 2
nL - J"

3

,

2
nL — J3 + /mJDj provided that the second represent a surface

not meeting G above the plane D. And on investigating

within what limits fi must be taken, in order to fulfil this

condition, he finds that fi may be any number between 1

and -2.

He avails himself of this to give criteria expressed as sym-
metrical functions of the roots. In the first place

S(a-/3n/3- 7)

J

(7-«r(S-er

is an invariant (Art. 136), and being of the same order and

weight as J can only differ from it by a numerical factor,

which factor must be negative, since this function is essentially

positive ;
and J we have seen is essentially negative when the

roots are all real. And secondly, the symmetric function

S(a_/3)>0e-7)*(7-a)'(e-ar(e- i8)*(«-7)
4

(8-«)
4

(8-/8)
4

(8- 7)*,

(the relation of which to the other may be seen by writing it

in the form Da2 (a- /3)~
a

(£
_

y)-" (7
-

a)
-2
(8- e)"

4

,
where D is

the discriminant), is also an invariant, and of the twelfth order.

*
Sylvester has inadvertently stated his condition to be that 2UL — J3 is

negative. It is easy to see, however, that what he has proved is, that this quantity
must be positive. For the block which he has described lies on the side of the curve

2U£ - J3 next to the axis L = 0. But when L is and J negative, 2nL - J3 is

positive.

GG



226 APPLICATIONS TO BINARY QUANTICS.

It must therefore be of the form ctJ
3 + &JD -f yL. Now, by

using the quintic* x [x
z -a2

) (x
2 — £

2

),
the symmetric function

may easily be calculated and identified with the invariants
;
and

the result is that its value is proportional to 2
nL — J3 + %JD-

Since then the numerical multiplier of JD is within the pre-

scribed limits, it may be used as a criterion, and Mr. Sylvester's

result is that the two symmetrical functions mentioned are such

that not only are both positive, as is evident, if the roots are

all real, but also if both are positive, and D positive, the roots

must be all real. It ought to be possible to verify this directly

by examining the form of these functions in the case of an

equation with four imaginary roots.

242. I have also tried to verify these results by examining
the invariants of the product of a linear factor and a quartic,

(ax + (3y) (x
4
-f Smx^y* + y

4

) ;
these being necessarily covariants

of the quartic (Art. 208). The coefficients of the quintic are

then 5a, /9, 3???a, 3???/3, a, 5/3 ;
and I find for the J of the quintic,

48 (88H- 3 277), or 48 times

(5m + 27m 3

) (a
4 + £

4

)
+ (8

- 18m* - 54m4

)
a
2

/3
2
.

Now the roots of the quartic are all real when m is negative,

and when 9w2
is greater than 1. On inspection of the value

given for J, we see that when m is negative every term but

one is negative. Giving then m its smallest negative value — J,

J is negative, viz. - 144 (a
2 —

/3
2

)

2

;
and J is d fortiori negative

for every greater negative value of m. Or we may see the

same thing by supposing /3 = 0, when we have only to look at

the coefficient of the highest power of a in 8SH—3TU, which

is - 8
(b*
-

ac) S-STa. But now if we call the three Sturmian

constants A, B, 0, viz.

A = hi

-ac, B=2SA + 3Ta, 67=/S 3 -27T2

,

* It is to be observed, that though this form may be safely used in this case, it

cannot always be safely used. For when a linear factor of a quintic is also a factor

in the Jacobian of the remaining quartic, a relation must exist between the invariants,

which, however, I have not taken the trouble to calculate, it being obvious that it is

of too high a degree in J, D, L to affect the present question.
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the value given for J becomes — 6AS— B, which is essentially

negative when the roots are all real.

Tlie invariant L, according to my calculation, is

54 (8SH- 3 TUf - 6400 (S*
- 27 2*) (4/i

3 - SBU* + TIP)

+ 150 {8
3 -2lT2

)
U* {8SH+ 15277)

- 4050 IPS" (2SH-3TCT),

whence 2
nL — </

3
differs only by a positive constant multiplier

from

- 128 (S
z - 27 T*) (4i7

3 - SSHU* + TIP)

+ 3(£
3 -27r2

)
U* {8SH+ 15TU) -81ZPS

3

[2SH-3TU).

Writing = a*d — 'dabc 4- 2Z>
3

,
the coefficient of the highest

power of a in this is

128 G& + 81a2
/S

3 + 45a'
2CB - MtfCSA.

All the- terms of this but one are positive when the roots are

all real, but as there is one negative term, it is not obvious, on

the face of the formula, that the whole will be positive when
the roots are all real. Still less that if this formula be positive

and J negative, the roots are necessarily all real. Therefore,

although no doubt Mr. Sylvester's rule may be tested by the

process here indicated, to do so requires a closer examination of

this formula than I am able to give.*

24-3. Prof. Cayley in his Eighth Memoir on Quantics

(Phil. Trans. 1867), proceeded by a method a little different

from that described above.

* The verification, however, is easy in the particular case x (x* + 6?nx2
i/'

i + y*) .

We have then J = 48m (5 + 27?»2
),
L = 12m (5

- dm2
)* ;

2UZ - J3
proportional to

m (1
- 9m2

) (50 + 457/i* + 648m4 + 729m6
). Thus, when m is negative, and 9m2 > 1,

we have J and L negative and 2UL — J 3
positive. The latter is positive for imaginary

roots only when m is positive, but in this case J is positive. The imaginary roots

must, therefore, be detected by one criterion or other.

The discussion of the invariantive characteristics of the reality of the roots of a

quint ic was originally commenced by M. Hermite in his classical paper in the

Cambridge and Dublin Mathematical Journal for 1854, and was resumed by him
his valuable memoir presented to the French Academy, 18G6. His result,

mslated into the notation we have used, is that the roots are all real, when, the dis-

criminant being positive, we have also positive -ST, 2nZ—J 3
+JD, andK (JL+K 2

)-18L
2

.

seems to me that this result is superseded by the greater simplicity of Prof. Sylvester's

criteria.
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Taking a different set of coordinates, and writing

2
nL-J 3 D

»-—p— ->y=-p->
z=J

i

then from the foregoing equation

UP = JIC + SLK 3 - 2PLK* - 12JUK- 432Z,
3
+ J'U,

where, as before, K— T \-g (J
2 —

D), we deduce without much

difficulty

P
2.2

3a

-p
= - 3a;

3 - xl + y (72a;
2
4 205* + 125)

+f (- 29a; - 17) +f (- x - 9) + y\2

— $ (
x

i y) suppose ;

or, since 2 = «/,we have

•*(«,y) -a.a"£- + ,

and the before-mentioned surface (9 = may be replaced by

z$ (jc, y)
=

;
that

is, by the plane z — and the cylinder

<£ (a;, y)
—

0. The configuration of the regions into which space

is divided by this surface depends only on the form of the

curve
<j) (a;, y)

= (Prof Sylvester's
"
Bicorn"), which is the

section of the cylinder by the plane z = 0, and the discussion

as to the reality of the roots may be then effected by means

of the plane curve alone
;
the results, of course, agree with those

obtained above.

244. It does not enter into the plan of these Lessons to give

an account of the researches to which the problem of resolving

the quintic has given rise.* The following, however, finds a

place here on account of its connection with the theory of in-

variants. Lagrange, as is well known, made the solution of

a quintic to depend on the solution of a sextic
;
and it can

easily be proved that functions of five letters can be formed

capable of six values by transformation of letters. Let 12345

* Among the most remarkable of recent investigations in this subject is the appli-

cation to it of the theory of elliptic functions by M. Hermitc and M. Kronecker.
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denote any cyclic function of the roots of a quintic ; such, for

example, as the product

where evidently 23451 and 15432 would denote the same as

12345; then it can easily be seen that there can be written

down in all twelve such cyclic functions. But, further, these

distribute themselves into pairs ;
and by so grouping them we

can form a function capable of only six values; for instance,

12345 -I- 13524, 12435 + 14523, 13245 + 12534, 13425 + 14532,

14235 + 12543, 14325 + 13542. The actual formation of the

sextic having these values for its roots is in most cases a work

of extreme labor. M. Hermite, however, pointed out that

when the function 12345 is the product of the squares of

differences written above,* all the coefficients of the corre-

sponding sextic are invariants, and that the calculation therefore

is practicable. I have thought it desirable actually to form

the equation, because, when the theory of sextics comes to

be studied, it will be necessary to ascertain the invariantive

characteristics of sextics whose solution depends on that of a

quintic ;
and it may be useful to be in possession of more than

one of the sextics which spring out of the discussion of a quintic.t

I take the simple example xb + 2mx3

y
2 + xy

A

,
of which, since two

pairs of roots are equal with opposite signs, the functions of the

differences can easily be formed. I find then that the sextic

is the product of

t + 2
6

(m + m
3

)
t+ 2

10

(m*
- 2m4 + 5m2

),

* In the method of Messrs. Harley and Cockle, the function 12345 is

a/3 + (3y + yS + 8e + ta,

and the sextic chosen is that whose roots are 12345 — 13524, &c. This has been

calculated by Mr. Cayley (Philosophical Transactions, 1861, p. 263), and the result

is very simple, two terms of the sextic being wanting ;
but the coefficients are not

invariants.

f The form arrived at by M. Kronecker and M. Brioschi is

(x
-

a)
5
(x
-

5a) + 10b (x
-

a)
3 - c {x

-
a) + 562 - ac = 0.

By the help of the formulae given further on, the invariants of this equation can be

calculated, and a, b, c eliminated.
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by the square of

f + 2
4

(m
s + Bm) t + 2

6

(w
6 + 5m4 + 19»i* - 25).

But if we first multiply the quintic by five, its invariants are

J= 2
4
»z (5 + 3m

2

) J
D = 2

8
. 5

3

(1
- m2

)

2

,
X = 4m (5

-
m*)\

To avoid fractions I write J=2A, D = 250B
y
J 3 -2nL = 50C;

and then forming the sextic, and expressing its coefficients in

terms of the invariants, I obtain

f + ±At + (6^1
2 -

25£) t + (4^1
3 + 2 0- 30^5) *

3

+ £
2

(^1
4
4 44 C- 17^i?+ -a|i^')

+ *(2^a- ±A3B- 1BG+ UOAB*) +
8 -'445(7 + 20^B f

;

which is a perfect square, as it ought to be, when D = 0.*

245. M. Hermite has studied in detail the expression of the

invariants in terms of the roots. He uses the equation trans-

formed so as to want the first and last terms; that is to say,

so that one root is and another infinite
;
and the calculation

is thus reduced to forming symmetric functions of the roots

of a cubic. I had been led independently to try the same

transformation on the problem discussed in the last article, but

found that, even when thus simplified, the problem remained

a difficult one. It would be necessary to form for a cubic the

sextic whose roots are the six values of

and then to identify the result with combinations of the forms

assumed by the invariants of the quintic when a and/" vanish.

Of M. Hermite's results I only give his expression for his own

invariant I. Let

-F = (a-/3)(a- £)(S- 7) + (a-7)(a-S)(/3-e),

<?- (a-/S) (a
- 7) (e -&) 4 (a- 8) (a- e) (/3 -7),

l?=(a-/3)(«-S)(8-7)4-(a-7)(a-8)(S-/3);

the continued product of these is symmetrical with respect to

* Though the form with which I have worked is a special one, I believe that the

result is general ;
because it seemed to me that the coefficients only admitted of being

expressed in terms of the invariants in one way.
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all the roots except a
;
and if we multiply this product by the

similar products obtained for the other four roots we get I.

246. The Sextic. The theory of the sextic has as yet been

but little studied. It appears from the investigations of Clebsch

and Gordan that, including the sextic itself, there are in all

26 forms. There are four independent invariants, which we
shall call A, Bj 0, D, of the orders 2, 4, 6, 10 respectively ;

and a fifth skew invariant, which we shall call E, of the fifteenth

order, whose square is a rational and integral function of the

other four. There are six quadratic covariants whose orders

in the coefficients are respectively 3, 5, 7, 8, 10, 12
;
five quartics

of orders 2, 4, 5, 7, 9
;

five sextics, orders 1, 3, 4 and two of

the sixth
;

three octavics, orders 2, 3, 5
;
one of the tenth in

variables, and fourth in coefficients
;
and one of the twelfth in

variables and third in coefficients.

The first invariant A is 12
6

,
formed by the method of

Art. i&?-, which for the general sextic is

ag-6bf+15ce-\Qd\

I have given (Art. 174) the canonical form of the sextic; but

I believe it will be found in practice not less convenient to use

the more general form

au6 + bv* + cw6 + dz\

To this we should be led by the theory of two quintics, which

cannot be mor esimply expressed than as each the sum of four

fifth powers. For the form just given, the invariant A
is, by

proceeding as in Art. 2&£j- found to be

ab (1 2)
6 + ac (13)

6 + ad (14)
6 + be (23)

6
* Id (24)

6
+ cd (34)

6

,

which we may write *2ab (12)
6
.

The Hessian of the sextic, 12
2

,
is of the eighth degree, the

general coefficients being ac — b
2

,
4 (ad —be), 6ae-\-4:bd— 10c

a

,

4a/+ lQbe - 20cd, ag + Ubf+ 5ce - 20c?
2

,* &c.
;

and for my
canonical form is "Eabu

4
v
4

(12)'\ The sextic ha3 another co-

* I have thought it unnecessary to add the terms which may be written down
from symmetry.



232 APPLICATIONS TO BINARY QUANTICS.

variant of the second order in the coefficients, viz. the 8 of the

emanant quartic, which is of the fourth order in the variables,

the general coefficients being

ae - ±bd+ 3c*, 2af- 6be + 4cd, ag
- dee + Sd'% &c,

this for the canonical form being 2abuV (12)\ To these co-

variants we may add thq covariant sextic, of the third order,

which is the T of the quartic emanant, and whose general

coefficients are

ace + 2bcd-ad2 - eb* - c% 2acf- 2ade - 2Vl

f 4- 2bee + 2bd' - 2cV,

acg + 2adf- 3ae* - b
2

g
-
2bcf+ <kbde + 2e

2
e - 3cd\

2adg
-
2aef- 2bcg + ±bdf- 2bi - 2c*/+ 6cde - Ad3

,
&c.

;

and which for the canonical form is 2abc (12)* (23)* (31)*wW.

247. We take for the invariant B that which has been

called by Sylvester the catalecticant, which expresses the con-

dition that the sextic should be reducible to the sum of three

sixth powers, and is (Art. 171) the determinant

a, 5, c, d

£>, c, dj e

c, d
} 6, /

d
i

e
i /) 9

This expanded i3

aceg
-
acf

2 - ad2

g + 2adef- ae
3 - b

2

eg + b*/* + 2bcdg
-

2bcef

- 2&P/+ 2bde* - c
3

g 4 2<?df+ cV - ded'e + d\

If now we form the quadrinvariant of the Hessian, we find it

proportional to A* + 3005; if that of the covariant #, we find

A1 — 365; and if we operate on the sextic with the covariant T7

,

we get B. Applying this last process then to the canonical

form, we get, for the value of I?,

abed (12)
2

(23)* (34)* (41)
a

(13)* (24)*,

which vanishes, as it ought, if any of the quantities a, b, c, d

vanishes, or if any two of the four functions u, v
} w, z become

identical.
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248. We take for the form of the fundamental sextinvariant

7, that which involves no power higher than the second of the

eading coefficient a, and which for the general form is

?dy-Q>tfdefg + 4a*df* 4 4aV? - Sa'e
8

/"
-

Qcibcdg'
2 4 \8obcefg

-
V2abcf+ 12abd'

l

fg - 18abde
z

g 4 Gabe*f+ ±ac
3

g
2 - 2iacVg

-
ISatfdfg + S0ac

2

ef + 5±acd*eg
-

12acd*f*
- ±2acde

2

f
4 12ace

4 - 20ad4

g 4 2±ad*ef- SadV 4 4#W/ - 12&
3

e/<7

4- 8b
3

/
3 - Biy/ 4 30&*ceV

-
Z&cef*

- 12b
2

d*eg
- 2ib'

id 2fl

4 GObWf- 21bV 4 Qbc
3

fg - 426c'
2% 4 605cV/

2 - 306cV/

4 245c^V - tebcd*ef+ GGbcde* 4 2ibd*f- 2ibd*e
2 4 12c

4

e</

-27cy
2

-8cVV466cV^/-8cV-24c^y-39cVV436c^V8^.

In terms of these the other invariants of the sixth order

can be expressed. Thus, the cubinvariant of the covariant

quartic is A3 — 1Q8AB-5±C] the cubinvariant of the Hessian

is 3J 3

-100AB+2750C] and the quadrinvariant of the sextic

covariant is 2AB—C. The last-named invariant can be easily

calculated in the case of the canonical form. We have to

operate with 2abc (12)
2

(23)* (31)" u*v*w* on itself. Now if we

operate with tt*t>V on wW the result is proportional to

(12)* MN, where M and N have the same meaning as in Art.

223; and if with u2vV on itself the result is - (12)" (23)
8

(31)\

Hence we get for the invariant in question

SaW (12)
6

(23)
6

(31)
6 - 2abcd2ab (12)*M*N\

249. If a, bj c all vanish, the invariants A, B, C become

respectively
- 10^ 2

, d*,
— 8d 6

. Hence, when the sextic has as

factor a perfect cube, the conditions must be fulfilled Az — 1005,

±AB=5C, AG=80B\ If we make a, b, f,g all =0, the

invariants become

15ce-10^ a

,
c'e

2 -3cde + d% - 8cV - 39cW 4 36ceTe - 8d*
;

consequently when the sextic has two square factors, in addition

to the discriminant, the condition must be satisfied,

(A
3 - 300^£ t 250 C)

2 = b(A
7 - 100B)\

H H
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. 250. If we make &, d,f=Q in the equation, the discriminant

will be ag mult'piied by tbe square of the discriminant of

(«, 5e, 5e, g"$JC) yf ;
and if all the terms vanish but a, d. g, the

discriminant will be a*<f multiplied by the cube of the discrimi-

nant of («, 10dj g'fcx, yf. Knowing these terms in the dis-

criminant, the rest can be calculated by means of the differential

equation. The resulting value of A is

-30
-300'

+ 375

-300
+ 3000

-2500

+ 1000

-7500

+ 9375
- 3125

+ 375

-15
+ 3000

-5550

+ 750

-4800
- 27000

+ 43500

-7500

+ 57000

-97500

+ 37500

+ 1000

-27000

+ 18750

+ 16875

-9.375

-7500

+ 127500

«w
cfceg

4

«w
a\i\f

a'd'efi/

a*d/y

av/y

a'b'eg*

"WV
as

bcdg*

cfbcejy*

a'be/y

a'bdjcf

a'bdey
a3

bdefy
a

3

bdfg

a3

b<?fg

ctbef
a*cy
aVdf/
aWg3

«Wy
cfcd'eg

3

Mfg*

I + 30000

|

-412500

J

+ 187500

i -150000

+ 412500
- 187500

+ 30000
- 330000

+ 50000

+ 250000

+ 675000
- 375000
- 900000

+ 500000

+ 250000
- 150000

-2500

+ 750

-410
- 7500

+ 43500

+ 16875

- 54675

+ 25500

+ 127500

-171300
- 346500

+ 616500
- 240000

+ 7500

(fcde'fg*

c?cdej
3

g
a3

cdf
a3

c'e\f

aWfg
a

3
ce

2f
a*dy
a»d

3

ef/
a

H

d«fg
a
5

d*ey

a'dVfg
a

3

d?ef

rfdffg
a

3
de

3f
aVg
aVf
a2

b
3

d/
d2

b
3

efg
3

a'b'j'y

dwy
dVcdfy

3

a
2

tfcey

crb'ce/y

cWcfg
dWd'eg

3

aWdyy
d2

bWff

a*b*dj*

a2

bVy
z

- 23250

+ 11250

+ 57000

+ 30000
- 346500
- 596250

+ 1222500
- 506250
- 330000

+ 1590000
- 330000

+ 750000

-3172500

+ 1537500

+ 375000
- 225000

+ 780000
- 1350000

-2190000

+ 1200000

+ 4650000
- 2550000

-1500000

+ 900000
- 150000

+ 7500

+ 250000

+ 750000

+ 37500

+ 1062500

a*bc*fy

d'bc'dey
3

a*be*d/y

a*bcV/y

d'bc'efg

a*hc
%

j*

d'bedy
d2

bcd'
z

efy'
i

d'bcdjy
d2
bcde

3

g*

cfbcdjfg

d'bcdef*

c?bc£fg

tfbcej
3

a2bd4

fy
2

a'bdKy
di
bd 3

ef
i

g
a

2
bd3

f*

tfbtfejg

d'bdVj*

a'bde'g

a'bde'f*

a'c'eg*

aV/y
dwy
aVdeff
dl

c
3

dfg
eftW
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-2821875

4 1265G25
- 1350000
- 3562500

4 4725000
- 2062500

-f 4875000
- 2625000
- 1875000

+ 1125000

+ 3750000
- 300000
- 9750000

+ 5250000

+ 3750000
- 2250000

1000000

+ 3000000
- 1600000

- 1250000

+ 750000

+ 9375

-7500
-9375

+ 25500

-11520

97500

-412500

+ 616500

+ 1222500

-2197800

+ 864000

+ 50000
- 330000

+ 83200

+ 37500

4 511500
- 288000

aVef
a

2/dH

ff
d'cWg*
a7

c*d*efg

aW/4

aV3e*Jg

aVdJf
3

aWg
aVey
dl

cd*eg'
2

<?cd'fg

d'cdVfg

a*cd*ef*

a*cd*e*g

d'cdVf*

d\iy
a*<?efy

d'dVg

d'dVf
aVcg*

aVdfg
3

abYg
3

atfefV

abVjc?

alfcdtff

aWcdfg
1

ab
3
ce

2

fg*

ab
3

cef
A

g

ab\f'

atfdy
ab

3

d\fg*

aWd 2

fg
ab

3
de

3

g
l

abMcf

-202500 abVfg
+ 121500 abV/

6

+ 412500 ab''c
3

cg
3

-23250 abV/Y
4 675000 abVd'g

3

- 3172500 affcrdefg*

4 511500 ab
2
c
2

d)
3

g
- 2821875 ab'cVg

2

+ 7633125 ab
2

cVj
2

g
- 3442500 ab

2
c
2

ef
4

-2190000 atfcdjg
2

4 4725000 atfcdVg
2

4 6030000 ab
2

cd-ef
2

g
- 3360000 aVcd2

/?
- 1533750Qab

2
cde

3

fg
+ 8392500 aFcde2

/'
4 5062500 abWg
- 3037500 abWf

2

-300000 aVcfeg*

+ 900000 ab'Wfg
-480000 ab

2

d?ef
-375000 ab

2
d'e

4

g
+ 225000 ab

2
dre

bf
-900000 abc

4

dg
3

4 375000 abc
4

efg
7

-202500 abc
4

fg
4 4650000 abc

3d2

fg
l

4 4875000 ab6
s
de

2

g*
-
15337500a6cVe/#

4 7087500 abc
3

df
4 843750 abcVfg
-506250 abc

3
e
2f

- 9750000 abc
2d3

eg*

4 900000 abc
2ds

fg
+ 2±750000abc2d2

e
2

fg

-ISSoOOQOabrd'ef
3

- 9375000 abc
2
de

4

g
4 5625000 abc

2

djf

4 3000000 abcd^g'
- 9000000 abcd

4

efg

4 4800000 abed
4

/
3

4 3750000 abcdVg
- 2250000 abccPe

2

/*

4 250000 ac°g*

- 1500000 ac
b

'dfg
z

- 1875000 ac
5

e'g*

4 5062500 ac
b

efg
-2278125 a/f

4

4 3750000 ac'd'eg*

-375000 ac
4d2

fg
- 9375000 ac*de*fg

4 5062500 ac*def*

4 3515625 acVg
- 2109375 ac*ef?
- 1250000 ac

3d4

g*

4 3750000 ac
A

d"efg
- 2000000 ac

3d3

f
- 1562500 ac'dVg

4 937500 ac
3

dVf*
-3125 by
4 37500 b

b

cfg
3

4187500 b
b

deg
s

- 240000 b
5

d/Y
-506250 v*W
4 864000 b

b

efg
-331776 b

b

f'°

-187500 b
b
c
2

cg
3

4 11250 bV/y
-375000 b

4cdl

g
3

4 1537500 b*cdeff

-288000 b
4

cdfg
4 1265625 bWg'

2

-3442500 bWfg
4 1555200 b

4

cef
4

4 1200000 b\ffg
z

- 2062500 VcPfrf
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- 3360000 b*<Fef*g

+ 1843200 Vd2f
+ 7087500 bW/g
- 3888000 V-d/f
- 2278125 bVg
+ 1366875 bYj*
+ 500000 bVdg*
-225000 bVefg*

+ 121500 b
3
c
3

fg
- 2550000 b*c*(Ffg*
- 2625000 bVdeY
+ 8392500 bVdefg
- 3888000 b*c*df*

'

-506250 bW/g

+ 303750 Z>
3

cV/
3

+ 5250000 b
3
cd

3

eg*

-480000 b
3
cd

3

fg
- U3500Q0b3

cdVfg
+ 7200000 b

3
cd

2

ef
3

+ 5062500 b*cde*g
- 3037500 b

3
cde

3f
-1600000 b*d

6

g*

+ 4800000 b
3dlefg

-2560000 My 3

- 2000000 b
3

dVg
+ 1200000 b

3dA
e
2f

- 150000 bVg
3

+ 900000 bVdfg*

+ 1125000 b
2

cVg*
-3037500 b

2
c
4

efg
+ 1366875 Z>V/

4

- 2250000 bWcFef
+ 225000 bVd2

fg
+ 5625000 b

2
c"de

2

fg
-3037500 b-c*def

-2109375 b*cVg

+ 1265625 bWf
+ 750000 bVdy
- 2250000 Vftfefg

+ 1200000 bVd3f
+ 937500 b*<?<Fe

s

g
-562500 J'WV/

Instead of the discriminant A we may use another in-

variant D,* in which no higher power than the fourth of the

extreme coefficients a, g appears, and which does not contain

the product cfg* . The quantity multiplying a
4
in D is [eg —f

2

)

3

',

and the relation connecting A and D is

A = A5 - 375^ 3I?- 625A2C+ 3125Z>.

251. The invariant E
}

I calculated by means of the differ-

ential equation. Its value was given at length in the former

edition, where it occupied thirteen pages, but I have not

.thought it worth while to reprint so long a formula. The

terms containing the highest power of a are

The expression for E in terms of the other invariants may
be got from the following considerations: If in the sextic b, d,f

vanish, E necessarily vanishes. For, since the weight of E is

forty-five (Art. 143), the weight of some one of the constituent

coefficients in each term must be expressed by an odd number
;

and when we make in the equation all the terms vanish whose

* The value of D was given at length in the former edition, but I have not

thought it necessary to reprint it.
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weight is odd, E vanishes. E=0 is therefore the condition

that the roots of the sextic should form a system in involution.

If then we make 5, d^f— in A, B1 0, D, and eliminate a, c, e, g
from the results, the relation thus obtained between A, B, 0, D
must be satisfied when E vanishes, and must therefore contain

it as a factor.

If we write ag =\ ee =
yu.,

ae
3 + gc

8 =
v, the values of the

invariants got by making 6, c?,/=0, may be written

A = X + l5fij B =
\/ub + fA

2

-v,

C=- 24V2 ~ V3 + 4 [\ + Sfi) v,

A = \ {V _ 150V - 13?5/»" + 500»/}
2
.

Eliminating v in the first place, the last two equations become

C= 4^(A,-/*)
2

-4(\ + 3/*)£, A=\.(V + 350X/*-1375/a"-5005)*.

Then eliminating ft by the help of the first equation, we get

1024X3-1152\M + (132^
2

-10800^)X+3375a+2700^5-4^
3

=0,

\ (256V - 320A\ + 55^1
2 + 4500-B)

5* - A = 0.

The resultant of these two equations is of the thirtieth degree

in the coefficients
;
and therefore, from what we have seen, can

only differ by a constant multiplier from E*.

252. By Art 235, when the discriminant is negative the

sextic has either six or two real roots
;
and when it is positive,

has either four or none. We can readily anticipate that the

discussion of this expression for E is likely to lead to the same

results in affording criteria for further distinguishing these cases,

as the corresponding discussion of the expression G in the case

of the quintic. Analogy also leads us to expect that what will

be important to examine will be the result of making A =
in the expression for E. Now, although the calculation of the

general expression for E may be a little laborious, that part

of it which is independent of A is easily obtained. It will

evidently be the product of 3375(7+ 2700.45- 4A 3

by the

square of the resultant of the cubic and of the quadratic

256X2 - 320A\ + 55A 2 + 45005.

And again, analogy leads us to believe that the first of these
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factors is not important in the question of the criteria for real

roots, and that it is the square factor alone which needs to be

attended to.

The result I find is that, writing for convenience B' for 100 Z?,

C for 125 0, the quantity squared differs only by a constant

multiplier from

4 A - 1 dA'B' - ^A2
B'* - ±A3C - SOB" + 52AB'C - 4 C'\

Analogy then leads me to suppose that the criteria for the

number of real roots of a sextic depend on the signs of this

quantity, and of A2 -
1005, A

3 - 125 C,

(A
i

-300AB+250Cy-5(A*-X00B)%

which, as we saw, vanish when three roots are all equal.

LESSON XVIII.

ON THE ORDER OF RESTRICTED SYSTEMS OF EQUATIONS.

253. The problems discussed in this lesson are purely alge-

braical, and in the investigation of them I do not make use

of any geometrical principles. But I find it convenient to

borrow one or two terms from geometry, because we can thus

avoid circumlocution, and also can more readily see how to

extend to quantics in general theorems already known for

ternary and quaternary quantics.

We saw (Art. 78) that if we are given h equations in k*

independent variables, the number of systems of common values

of the variables which can be found to satisfy all the equations,

will be equal to the product of the orders of the equations. Now,
in the geometry of two and three dimensions respectively, the

system of values x = a, y = b; or x — a^ y = b, z — c denotes a

point. I find it convenient therefore to use the word "point"

* If as is usual we employ homogeneous equations, the number of variables will

of course be k + 1.



ORDER OF RESTRICTED SYSTEMS OF EQUATIONS. 239

In general instead of "
system of values of the variables "j and

the theorem already stated may be enunciated. " A system of

k equations in k variables of degrees Z, m, ??, p, q )
&c. respec-

tively, represents Imnpq &c. points" by which we mean that

so many
"
systems of values of the variables

" can be found

to satisfy all the equations. This number Imnpq &c. will be

called the order of the system of equations.

254. If we have a system of k - 1 equations in k indepen-
dent variables, we have not data enough to determine any system
of common values of the variables, and the system of equations

denotes a singly infinite series of "
points." Such a system of

equations we shall speak of as denoting a carve. If with the

given system of k - 1 equations we combine any arbitrary

equation of the first degree, we have then data enough to

determine points which will be equal in number to the product
of the degrees of the equations. We shall define the order

of a curve as the number of points which are obtained when,
with the equations which denote the curve, we combine an

arbitrary equation of the first degree.

When we are given a system of k — 2 equations, these

denote a doubly infinite series of points, since we cannot de-

termine any points unless we are given two other equations.

Such a system we shall speak of as denoting a surface. If

with the system of k — 2 equations we combine an arbitrary

equation of the first degree, we shall have a " curve " whose

order is the product of the degrees of the k - 2 equations. In

general, by the order of a surface, we mean either the order

of the curve obtained by combining with the given equations an

equation of the first degree, or, what comes to the same thing,

the number of points obtained by combining with the given

equations two equations of the first degree.

And so more generally, if we have any system of fewer than

k equations, by the order of the system we mean the number of

points that are obtained, when with the given equations we
combine as many equations of the first degree as are wanting to

make the entire number of equations up to k, and so afford

data enough to determine systems of values of the variables.



240 ORDER OF RESTRICTED SYSTEMS OF EQUATIONS.

It is evident that in the case under consideration the order

of the system is the product of the degrees of the equations

which compose it.

255. If we have Jc + 1 equations in k independent variables,

whose degrees are
/, »*, rc, &c, we can eliminate the variables

;

and we have seen (Arts. 76, 78) that the order in which the

coefficients of each equation enter into the resultant, will be

equal to the product of the degrees of the remaining equations.

Taking then, to fix the ideas, the case of four equations: let

their orders be
?, w?, w, r, and let any quantity enter into the

coefficients of the equations in the degrees X, //,, j>, p respec-

tively, this quantity will enter into the resultant in the degree

\mnr + finrl + vrlm + plmn.

We shall use the word l order' to denote the degrees ?, ?w, ft, r,

in which the equations contain the variables which are to be

eliminated, and weight to denote the degrees X, a&, v, p in which

they contain the quantity not eliminated
;
and the result just

written may be stated, that the weight of the resultant, or the

weight of the system, is equal to the sum of the weights of ^ach

equation multiplied by the order of the system formed by the

remaining equations.

And this is still true, if we break the given system up into

partial systems. Thus, the first two equations form a system
whose order is hn and weight \m + fj,l,

and the second two

equations a system whose order is nr and weight vr + pn) and

the value just given for the weight of the entire system is

nr (\m + fil) -}- lm (vr + pri),

that is, it is the sum of the weights of each component system

multiplied by the order of the other. The advantage of so

stating the matter will appear presently.

256. What has been hitherto said in this lesson is but a

re-statement in other words of principles already laid down in

the Lesson on Elimination
;
but my purpose has been to make

more intelligible the object of investigations, on which we shall

now enter as to the order and weight of systems of asomewhat
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different kind. We have seen that k equations in k variables

represent Imnp &c. points. But now we may combine with

these k equations an additional equation, which is satisfied for

some of the points but not for others of them. We have then a

s)
Tstem of k + 1 equations representing points, that is to say, all

satisfied by a number of systems of common values of the

variables, that number being now, however, generally smaller

than the product of the degrees of any k of the equations.

Cases are of constant occurrence where a number of points can

be expressed in no other way than that here described. A simple

geometrical example will suffice. Consider p points in a plane

where p is a prime number, and where the points do not lie in a

right line, then these points cannot be represented as the com-

plete intersection of any two curves, and if we have any two

curves going through the points, their intersection includes

not only these points but others besides. To define the

points completely, we must add a third curve going through
the p given points, but not through the remaining points of

intersection of the first two curves. The points are then

completely defined as the only points common to all three

curves. Our object then
is,

in some important cases where

a system of points is defined by more than k equations,

to lay down rules for ascertaining the order of the system ;

that is to say, how many systems of common values satisfy

all the equations.

In like manner a system of k — 1 equations is satisfied by an

infinity of common values. But it may happen that we can

write down an additional equation satisfied by part of this series

of common values, but not by the remaining part. In such

a case, the system of k - 1 equations denotes a complex curve,

and it requires the system of k equations to define that part of

it for which all the equations are satisfied. It will be the

object of this lesson to ascertain the order and weight of what

we may call restricted systems; that is to say, where to a

number of equations sufficient to define points, curves, &c, is

added one or more others which exclude from consideration

those values of the variables which satisfy the first set of

equations, but do not satisfy the additional equations.
II
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257. The simplest example of such a system is the set of

determinants

u
,
v

,
w

u\ V, w
o,

or, at full length,

vw 0, wu — w'u — 0, uv - vu' = 0.

By writing these equations in the form

it is evident that in general values of the variables which satisfy

two of the equations must satisfy the third. But there is an

exception for the case of values which make either u and u\
v and v\ or w and w = 0. In any of these cases it is easy to see

that two of the equations will be satisfied, but not the third. And
now it is easy to see how to calculate the order of the system
common to all three. Let the orders of u and u\ of v and

v',

of w and w\ be
I, ???,

n respectively; then the orders of the first

two equations are m-t
ft,

n + ?,
and of the system formed by

them is (m + n) (n + I). But in this system will be included

values which satisfy both w and w\ these values not satisfying

the third equation. Excluding then this system, the order of

which is w2

,
the order of the system common to the three

determinants is mn •+ nl+ Im.

In like manner, suppose we have a system with three rows

and four columns,

Us u* u

Vj V
,

V

w* w\ w w

= 0.

Let us write at full length the determinants formed by the

omission of the third and fourth columns

u" (vw —
vio) + v" (wu

-
w'u) -f- w" (uv'

-
u'v)

=
0,

u'" (vw
- vw) + v" (ivu

-
w'u) + iv" (uv

-
u'v)

=
0,

then these two equations are obviously satisfied for all values

which satisfy the three vw =
v'w, wu' = w'u, uv' = u'v. But

these values will not satisfy the other determinants of the
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given system. From (Z+ra + w)
2

, then, which is the order of

the system formed by the two equations written at length, we
must subtract mn-\- nl+ Im, which has just been found to be

the order of the system special to these two equations, and the

remainder f-h m* + n
2
+ mn + nl-k hn is the order of the system

common to all the determinants. Having thus determined the

order of a system with three rows and four columns, we can,

in like manner, thence derive the order of a system with four

rows and five columns. Proceeding thus step by step we arrive

by induction at a general formula, for the order of a system
with k rows and (& + 1) columns.

258. We may consider in succession the cases :
1°,

k rows

and k columns; 2°, k rows and [k +- 1) columns; 3°, k rows and

k + 2 columns, and so on. Writing down in each case only the

orders of the several functions, so that a + a,Hj8, &c, stand

for functions of the orders a + a, b + /3,
&c. respectively ;

the

case 1° includes the systems

a + a o,

a + a, b + a =
0, &c,a + /3,

6 + /3

the case 2° includes the systems

ii , z , ii ^ I

a + a, b + a. c + a
||
a + a,h + a ||=0,

|

a + /3

'

)5 + /3

'

)C + /3

the case 3° includes the systems

a+a, o+ a, c+a, d-ra

0, &a,

|| a+a, £+a, c+a
||

=

and so on.

Write in each case

a+P, b+P, c+/3, d+j3
=

0, &c.,

(7,* 2a, <7
2
=

2a5, <7
3
= 2a£c, . . .

,

viz. Cj, (7
2 ,

(7
8

... denote the sums of the products without repe-
titions of the letters a, 5, ... (as many of them as belong to the

system in question) taken one together, two together, three

together, &c, and

H
x
=

2a, E9
= 2a2 + 2a/3, Hz

= 2a' + 2a'
2

/3 + 2a/3y, . . .
,

viz. IZj, H^ H3
... denote the sums of the homogeneous products,

with repetitions of the letters a, /3, ... (as many of them as
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belong to the system in question) taken one together, two

together, three together, &c.

Then in the case

1°, the order of the system is = G
x
4-Ht1

2°, „ „ =C
2 + C,//,+ ff

2)

= O
s + 2 ff, + OxH^H„

and so on.

Thus in the case 1°, there is only a single equation ;
and for

the several systems written down above, the orders are a 4 a
;

a + b + a 4 /3, &c, viz. for each system the order is C^ + H^
In the case 2°, for the first of the systems written down

above, there are two equations of the orders a + a, b + a re-

spectively, and the order of the system is =
(a 4- a) (b + a), viz.

this is = a& -f (a 4 i) a 4- a
8

,
which is = (7

2 +C^ 4 #,.
For the second system, viz. the system

b 4- a, c 4 a 0,a 4- a,

a4/3, #4/3, C4-/3

(which includes the first of those considered, Art. 257), applying
to it the reasoning of that article, we have two equations of the

orders a -f & + a + /3, a + c + a + P respectively ;
the product of

these numbers is

= a
2 + a (b 4 c) + be + (2a + b + c) (a 4- /3) 4- (a

2

4- 2a#4-£
2

) ;

but we have to subtract from this the product (a 4- a) (a 4- /3),

which is =a2 4 a (a 4 /3) 4 a£ ;
and the order of the system is thus

found to be =ab + ac 4 bc+ (a 4 b + c) (a 4-/3) 4 a
2
4 /3

a + a3;

The next system is

a + a, 6 + a, c 4 a, ^4-a

a4/3, J 4-0, c + /3, ^ + /3

«4 7, b + y, C4-7, ^ + 7

the order of this is equal to the order of the system

a + a, Ha, c + a

a + {3, 6 4/3, C4-/3

a 4- 7, 647, c + 7

a 4 a, 6 + a, c?4a

« 4/3, b + (3, d+{3
a + 7> & + 7) ^ + 7

= 0,
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less the order of the system

a + a, /3 + a, 7 + a 0,

which is

|

a + 6, £ + 6, 7 + 6

viz. this is

=
(a + b-\-c-\-a + fi + y)(a + b-\-d + 0L±l3+y)

-
{a

2 + b'
2 + ab+(a + b)[oL + /3 + y) + (a/3 + ay + /3y)}

=
(a + b + c) [a+ b +d) + {2a + 2b + c + d){a+ l3 + y) + (ot.+ /3+ <y)'

2

- a
2 - b'

2 - ab - (a + J) (a -f £ -f 7)
-

a/3
-

0C7
- £7

= a& +ac + ad+bc + bd + cd- (a + 5 -f c-f d) (a+ /3 + 7)

+ a* + £" + 7
2 + a^ + a7 + £7,

^Cft+ H^
and similarly for the other systems of the case 2°.

In the first system of case 3°, we have three equations of

the orders a -f a, 5 + a, c + a respectively ;
and the order of the

system is

(a + a) (b + a) [c + a),
= abc + (a& + ac + be) a + (a + b + c) a'

2 + a
3

,

and the result may be verified for the other systems.

259. We may proceed in like manner to calculate the

weight of the system of determinants considered in the last

article. Beginning again with the simplest case, let us suppose

that the system w, v, w
|

is to be combined with one or

u'j v\ w
I

more other equations and the variables eliminated. Now the

result of elimination between uv -
uv, uw - uw^ and any other

equations will contain as a factor the resultant of w, u\ and

the other equations. If we reject this factor we get the same

result as if we had eliminated between uv' — u'v, vw — v'w and

the other equations, and then rejected the factor got by elimi-

nating between v, 1/, and the other equations. To illustrate

the method employed, let us suppose that w, u
; v, v

; w, w

respectively contain any quantity not eliminated in the degrees
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X, fi, v
;
and that we are to combine with the determinants of

the given system another equation R =
0, whose order is r, and

containing the uneliminated quantity in the degree p. This

quantity then will enter into the resultant of JS, uv—u'v^ uw'-u'w,

in the degree

p(l + m) (Z + n) +r {(£+ m) (\4v) + (l + n) (\4 /*)}.

But the resultant of 22, u, w',
will contain the same quantity in

the degree
pF 4 2rZ\.

When then this factor is rejected from the former result, the

remainder is

p [mn -\-nl-\- Im) 4 r {X (m 4 w) 4 ft (w 4 I) 4 v (Z + w)}.

The order then of the system of three determinants is the

quantity multiplying p, and the weight is the quantity multi-

plying r.

260. Finding in this way the weight of any system of those

considered in Art. 258, the result is that if the orders of the

several functions be as written in Art. 258, and if their weights

(that is to say, the degrees in which they contain the vari-

able not eliminated) be a + a',
V + a', &c, a + /3', &c, then

the formula for the weight is derived from that for the order,

by performing on it the operation

,
d 7/ d p ,

d -, d p

aj- + o-JT + &c. + ai-r + p -T7>-\-
&c.

da do da dp

261. If we form the condition that the two equations

of j, h^1 + cf
~2
4 &c. = 0, a'f 4 Vfx 4 cT* 4 &c. = 0,

should have a common root, we obtain a single equation, namely
the resultant of the equations. But if we form the conditions

that they should have two common root3, we obtain (Art. 82)

not two equations, but a whole system, no doubt equivalent to

two conditions, yet such that two equations of the system
would not precisely define the conditions in question. Now we

may suppose that t is a parameter eliminated, and that a, J, &c.

contain variables, and we may propose to investigate the order
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of the system of conditions in question. Now, Art. 82, these

conditions are the determinants of the system

a, b, c,

a,
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Collecting all the terms, the order of the required system is

found to be

in (n
-

1) A,
2 + \m [m

-
1) // + (m

-
1) (n

-
1) X/x

4- \n (n
-

1) (2m
-

1) Xa 4- \m (m
-

1) (2w
-

1) fia

4- \mn (m
—

1) (w
— 1

)
a
2

.

If the two equations considered are of the same degree, that

is to say, if m — «, we may write X 4- fi =p, X/x = q 1
and the

order becomes

\n (n
—

1) (j> + fta) {p 4- («
—

1) a}
—

(n
—

1) q.

If all the functions
<2, 5, &c. are of the first degree, writing

X =
/jl
=

1, and a — in the preceding formula, the order is found

to be
-J- (?rc

4- n — 1) (?/z + n — 2).

262. If the degrees in which the uneliminated variables occur

in any terms be denoted by the accented letters corresponding
to those which express their degrees in the variables to be

eliminated, then the formula for the weight of the system is

obtained from that for the order by performing on it the opera-

tion V -;—V a =—ha' T- In other words the weight is
dX dfi da °

ft (n
—

1) XX' + m (m — 1) /jl/jl' 4- (m
—

\)(n
—

\) (X/// + X'/x)

-f \n (ft
- ]

) (2m
- 1

) (Xa' 4- X'a) + \m (m
-

1) (2n
-

1) (pa -f pa)

4- mn (m
—

I) (ft
-

1) aa'.

263. The next system we discuss is that formed by the

system of conditions that the three equations

^4-^_1
4-&c. = 0, a't

m
+ b't

m -1 + &c. = 0, a"t
n
4- V'r1

4- &c. = 0,

may have a common factor. The system may be expressed by
the three equations obtained by eliminating t in turn between

every pair of these equations, a system equivalent to two con-

ditions. The order of the system may be found by eliminating
from the equations the variables which enter implicitly into

a, £, c, &c, when the order of the resulting equation in t deter-

mines the order of the system.
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Let us suppose that a, a',
a" are homogeneous functions in

x, y, z of the degrees X, ^, v respectively ;
that b

y b\ b" are of

the degrees X — 1
, fi

—
1, i>

—
1, &c., and if we take the reciprocal

of t as a fourth variable, the equations are of the orders

respectively X, //,, v, forming a system of the order \fxv. But

the system of values x = 0, y = 0, a = is a multiple point in the

three equations of the orders X-?, /x
— m, v — n respectively.

The order then is to be reduced by (X
—

I) {ji
—

rn) (v
—

n). It

is therefore

Ifiv 4 mv\ 4 nX/jb
— Xmn -

finl
— vim 4- Imn*

This then is the order of the system we are investigating. If

the orders of
Z>, b\ c, c\ &c. had been X -f a, fi 4- a, X + 2a,

fjb 4- 2a, &c, then the order of the system would have been

Ifiv 4- mv\ 4- n\fi 4 a (wwX + hZ/a -f- Imv) + dl
lmn.

The weight is found by operating on this with X' j* + &c, and is

Z (fiv 4- /*'y) + wi (v\' 4- v'X) 4- ?i (\fi 4 X'/a) 4- win (aX' + a'X)

+ nl
(ayu/ + a'fi) 4- Zm (av 4- aV) 4- 2&wnaa\

264. It is a particular case of the preceding to find the

order and weight of the system of conditions that an equation
at 4- bf~

x

4- &c. may have three equal roots; because these

conditions are found by expressing that the three second differen-

tials may have a common factor. Writing in the preceding
for

Z, m, and w, n — 2
;
for

fi,
X 4- a

;
and for

i>,
X 4- 2a ;

we find,

for the order of the system,

3 (n
-

2) X (X 4- na) + n (n
-

1) (n
-

2) a
2

;

and in like manner for its weight

6 (n
-

2) XX' + 3n(n- 2) (a'X 4- aX') 4 2w (n
-

1) (n
-

2) aa'.

Again, to find the order and weight of the system of condi-

tions that the same equation may have two distinct pairs of

equal roots, we form first, by Art. 258, the order and weight
of the system of conditions that the two first differentials

af~l

4 &c, bf~ x 4 &c. may have two common factors. We
KK
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subtract then the order and weight of the system found in the

first part of this article. The result is that the order is

2 (n
-

2) [n
-

3) X (X + ha) + in [n
-

1) {n
-

2) (n
-

3) a*,

and the weight is

4 [n
-

2) (n
-

3) XX + 2n (n -2)(n- 3) (a'\ + aX')

+ n{n- 1) (n -2)(n- 3) aa\

Before proceeding further in investigating the order of other

systems, it is necessary to discuss a different problem, and I com-

mence by explaining the use of one or two other terms which

I borrow from geometry.

265. Intersection of quantics having common curves. Two

systems of quantics are said to intersect if they have one or

more "
points" common, that is to say, if they are both capable

of being satisfied by the same system of values of the variables.

A " surface" is said to contain a " curve" if every system of

values which satisfies the h - 1 equations constituting the curve,

satisfies also the k - 2 equations constituting the surface. Thus,
in the case of four variables, three equations £f=0, F=0, W=0
constitute a curve, and the two equations Z7=0, V=0 con-

stitute a surface which evidently contains that curve.

Now a system of h quantics in k variables, in general, as we
have seen, intersect in a definite number of points, that number

being the product of the orders of the quantics. But it may
happen that they may have an infinity of points common,
these points forming a " curve" in the sense in which we have

already defined that word. Besides that curve they will have

ordinarily a finite number of points common, which it is our

object now to determine. Let us take, for example, to fix the

ideas, the case of four independent variables
;
and suppose that

we have four equations of the form

U = Au +Bv -f Cw =0,
V = A'u + B'v + C'w =

0,

W=A"u +B"v + C"io =0,
Z =A'"u + B'"v+ G"'w = 0.

We suppose the degrees of
Z7, F, TF, Z to be

7, m, ?*,p ;
of u, v

}
w
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to be \ fju, v] and A, B\ A\ B\ &c. are therefore functions of

the degrees I — \, I -
/jl ;

ra — \, m —
ft, &c. Now, evidently,

these equations will be all satisfied by every system of values

which make w = 0, v = 0, w = ;
and these equations not being

sufficient to determine "
points," will be satisfied by an infinity

of values of variables. In other words, the four qualities £7", V,

W, Z have a common curve uvwl And yet U)
V

1 W, Z may
be satisfied by a number of values which do not make w, v, w
all = 0. It is our object to determine this latter number

;
and

our problem is, When a system of quantics has a common curve,

it is required to find how many of their Imnp, &c. points of

intersection are absorbed by that curve, and in how many points

they intersect not on that curve,

266. Let us first consider the curve formed by k—1 of the

quantics ;
for instance, in the example we have chosen for

illustration, the curve WW. Now evidently a portion of this

curve is the curve uvw
y
but there are besides an infinity of

points satisfying UVW which do not satisfy m, v, w. We speak
then of the curve UVW, as a complex curve consisting of the

curve uvw and a complementary curve. Now the order of a

complex curve is always equal to the sum of the orders of its

components. For, by definition, the order of the complex curve

UVWh the number of points obtained by combining with the

equations of the system an additional one of the first degree :

that order being in the present case Iran. And evidently, since

of those Imn points \/jlv lie on the curve uvw, there must be

Imn — X/juv on the complementary curve.

The two curves intersect in points whose number i is easily

obtained. For evidently all points which satisfy the three

equations

Au + Bv+Cw = 0, A'u + B'v+C'w =
)
A"u + B 1

'v + C"w = 0,

and which do not satisfy u, v, w ;
must satisfy the determinant

A, B, C

A', B\ C
A", B'\ C" =0,

the degree of which is I -f m + n — X - fi
- v. The intersection
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of this new quantic with uvw gives all the points in which

uvw meets the complementary curve. We have therefore

* = Xyu-v {l-\- m-\-n — \- /a— v)*

267. To find now the number of points common to UVWZ,
we have to consider the points in which the curve UVW
meets Z; and it is required to find how many of these are not

on the curve uvw. But since uvw is itself a part of the curve

UVW, it is evident that the points required are contained

among the p (hnn
—

X/jlv) points in which the complementary
curve meets Z. And from these points must be excluded the

i points in which the complementary curve meets uvw. Using
then the value given in the last article for

i,
we find, for the

number which we seek to determine,

hnnp
—

XfAv [I + m + n +p) + Xfxv (X + fi + v).

We shall state this result thus, that if 7c qualities of orders

Z,
m

y n, p, &c have common a curve of order a; then the

number of points which they will have common in addition to

this curve is less than the product of the orders of the quantics

by a (I + m + n + &c.)
—

/3, where /3 is a constant depending

only on the nature of the curve and not involving the orders

of the quantics. We shall call this constant the rank of the

curve. We have seen that when the curve is given as the

intersection of quantics w, v, w}
the order is Xjjlv and the rank

XyCtv(X + yLt f V).

We saw, in the last article, that if the intersection UVW
consists of two complementary curves whose orders are a, a',

and whose ranks are
/3, j3\ the number of points in which the

two curves intersect is a(l + m + n)- @) and by parity of

reasoning it is a! (Z-f m + n) -/?'. Hence the orders and ranks

of the two complementary curves are connected by the equa-
tions a + a! m lmn

) fi
-

ft'
=

(a
-
a) (I+ m + n).

268. Next, let us consider the case where the quantics have

common two or more distinct curves uvw, uvw, &c. Let the

intersection for instance of UVW consist of the two curves

uvw, uvw, and of a complementary curve a"; then, in the first
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place, the order of a" is evidently Imn — X/jlv
—

X'/jl'v. Secondly,

we have seen that uvw meets the remaining intersection of

UVW in points whose number is

X/jlv (I -\- m + n — X — fi
—

v).

If then i of these lie on uvw (that is to say, if uvw, uv'io

intersect in i points) there must be on the complementary curve a"

X/jlv (I + m -f n - X —
/jl
—

v)
— t.

And in like manner a" meets uvw in

X'fi'v' (I + m + n - X' — /i
—

v)
— i points.

As before, then, the number of points on neither curve in

which a" meets any other quantic Z is

(hnn
—

Xfiv
-

X'/aV) p — Xjjlv (l + m + n — X — fi
—

v)

—
X'fi'v' (J + in + n —X' — yi

—
v) -f 2t,

or Imnp
—

[X/jlv + X'/jl'v) (I + m + n +p) + X/jlv (X + /*1v)

+ X'/jl'v (V -}-/*'+ v) + 2t.

Thus, then, the diminution from the number Imnp effected

by a complex curve is equal to the sum of the diminutions

effected by the simple curves less double the number of their

points of intersection. The same holds no matter how many
be the curves common to the qualities ;

and we may say that

when a complex curve consists of several simple curves the

order of the complex is equal to the sum of the orders of its

components ;
and the rank of the complex is equal to the sum

of their ranks increased by double the number of points common
to every pair of curves.

269. We give, as an illustration of the application of these

principles, the problem to determine how many surfaces of the

second degree can be described through five points to touch

four planes. Let S, T, £7, F, W be five surfaces passing

through the five points, then any other will be of the form

aS+ fiT+yU+SV+eW; and the condition that this should

touch a plane will be a cubic function of the five quantities

a, /3, 7, 8j s. We are given four such equations, and it is
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required to find how many systems of values can be got to

satisfy them all. If the four equations had no common "curves,"

the number of their common "points" would be 3
4

or 81. But

the existence of common curves may be seen in this way : The

condition that a surface of the second order should touch a

plane vanishes identically when the surface consists of two planes.

Let us take then for S and T two pairs of planes passing

through the five given points, S= (123) (145), T= (123) (245) ;

then, evidently, the condition that OLS+fiT+yU+ SV+ eW
should touch any plane whatever, must be satisfied by the sup-

position 7 = 0, 8 = 0, s = 0. This "curve," then, which is of

the first degree, will be common to all four quantics. And, if

we call this the line (123) (45), it is evident, by parity of

reasoning, that the quantics have common ten such lines

(124) (35), &c. Now
if,

as before, we take S as the system of

two planes (123) (145), T= (123) (245), and take £7= (145) (234) ;

then, while the line (123) (45) is denoted by 7 = 0, 8 = 0, £ = 0,

the line (145) (23) is denoted by /3 = 0, 8 = 0, £ =
;
and these

two lines intersect, being both satisfied by the common values

/3
=

0, 7 = 0, 8 = 0, £ = 0. And, in like manner, (123) (45) is

intersected by (245) (13), (345) (12). Thus, then, the ten lines

have fifteen points of mutual intersection. The rank of a single

curve of the first degree being got by making X. =
//,
= v = 1 in

the formula \/jlv (X + jju + v) is three. Hence the rank of the

entire system is ten times three increased by twice fifteen or

is 60. And the number of points which satisfy the four

quantics is 81 - 10 (3 + 3 + 3 + 3) -f 60 or is 21.

270. We have shown, Art. 258, how to determine the order

of a system of determinants, the number of rows and columns

in whose matrix differ by one. We shall now show how, in the

last mentioned case, to determine the rank of the curve. Com-

mence, as before, with the simple case

and we see that the intersection of uv

complex curve, consisting of the curve uu and of the curve
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with which we are concerned, and knowing the order and rank

of uu\ we find the order and rank of the other curve. Repre-

senting as before the orders of the several terms by

a 4 a, b + a, c +- a
|

a-r/9, #4/3, c + /3 J,

we thus obtain

Rank = rank of (us'
—

iiv, uw —
u'w)

— rank of (w, u)

— twice number of intersections of the two curves,

and this is

=
(a + b + a + j3) (a 4 c f a 4 /3) (2a 4 b + c 4- 2a 4 2/9)

-(a4a)(a + /3)(2a4-a + /9)

. -2(o-f a)(a + jS)(J+"c + a + /9),

or, introducing the former notation (see Art. 251),

(7,
= a + b + c, &c, iT

t

= a + /S, &c,

this is =
(a + & + #,) (a + c + #;)(« 4-0, +2//J

-
(a

2 + a#, 4^ -#
2) (2 Gx

4 3iJJ ;

or, what is the same thing,

- {a
2
+ Qi

+ (a+C1)Hi
±H

i*}(a + Ci
+ 2H

%)

-
(a

2 + aH
x
+ il,

2 -
JBQ (2 0, + 3//,),

which is easily found to be

= c.+ca
+ jh;{c,»+2C2)

or attending to the relation B
3
— 2H

1
H

ti
+ H* = which exists

in the case of two equations (a, /3), this is

= €,+0,0,

or, finally, the rank is
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and passing successively to the cases of four columns and three

rows, five columns and four rows, &c, it may be shown that

C,, (7
2 ,
C

s referring to the series of numbers, a, 5, c, &c, and

H
t1

iif
2 ,
H

3
to the series of numbers, a, /5, &c, the foregoing

expression for the rank holds good for the system in which the

number of the rows and columns differ by one.

271. The formula of the last article may be applied to

calculate the order of the system of conditions, that the equa-

tions at
m 4 &c, a't

n
4 &c. may have three common roots. The

conditions are formed by a system of determinants, the matrix

for which is formed as in Art. 261
;
save that the line a, Z>,

c

is repeated n — 2 times, and the line a\ h\ c\ to — 2 times.

The matrix consists of m + n — 2 columns and m + n-4: rows.

The order of the system then calculated by the last article is

found to be

n(n- l)(n— 2) . to (to
—

1) (to
—

2) „ ., -v# rtW _;,.

1.2.3
X +

1,2.3
^3

+i{n-l){n-2)(m-2)\^

4 \ {rn - 1) (to
-

2) (n
-

2) Xtf + %(<m-l)n(n- 1) {n
-

2) X
z
a

4- %{n-l)rn(m-l)(m-2)(jt?0L+ \{m-2) [n-2) {to {n-l)+n (m-l)} XfioL

4 {in [n
-

1) (ti
-

2) to (to
-

2) 4 Jn (n
-

1) (n
-

2)} a'
2\

4 [\m {m-l) (m-2)n(n-2) + %n(m-l) (m- 2)} aV
+ Jto (to

-
1) (to

-
2) n (n

-
1) (n

-
2) a

3
.

In the case where we have a = 0, \ = ^ = 1, this reduces to

J (to 4 w - 2) (to 4 w - 3) (m 4 rc - 4).

The weight of the system, found by the same process as

before is

\n (n
-

1) [n
-

2) X*X' + £to (to
-

1} (to
-

2) ^V
+ (?i-l)(«-2)(w-2)(X/iV+J\V)+(w-l)(w-2)(w--2)(X/A /Lt'+^

2

V)

+ (to
-

1) n (n
-

1) (n
-

2) (Woe 4- JXV)
4 («

-
1) to (to

-
1) (to

-
2) (fi/ju'a 4 ift'a')

+ £ (to
-

2) (n
-

2) {2tow -m-n) (X/jl'ck. 4 V/xa +Va
')

+ {|rc (n
-

1) (n
-

2) to (to
-

2) + |n (n
-

1) (it
-i

2}} (a
2
A/ 4 2aa'X)

+ {Jto (to
-

1) (to
-

2) w (w
-

2) + Jm (to
-

1) (to
-

2)} (aV+ 2aa»
4 Jto (to

-
1) (to

-
2) w (w

-
1) [n

-
2) aV.
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272. The next problem we investigate is when a system
of quantics have a u surface" common, to find how many of

their points of intersection are absorbed by the common surface.

We mean by the order and ranh of a surface, the order and

rank of the curve which is the section of the surface by any

quantic of the first degree. Thus, consider the case of five

independent variables, then a system of three equations con-

stitutes a surface, and if their orders be X, ya, i>,
the order of the

surface will be X/zv, and its rank \/nv (X -f fx + v) ;
these being

the order and rank of the curve got by uniting with the given

equations an additional one of the first degree.

Now, first let h — 1 quantics have a surface in common,
whose order and rank are a, fi ; they will also in general
have common besides a complementary curve whose order is

readily found. Thus if h = 5, joining with the given quantics

another of the first degree, we then have a system of 5 quantics,

having a curve common, and therefore by Art. 267 intersecting

in Imnr — a (I + m -f n + r) + j3 points besides. But these are the

points in which the quantic of the first degree meets the

complementary curve, and therefore this is the order of that

curve.

273. Next let us investigate the number of points in which

the surface and complementary curve intersect each other.

Let
£7, F, Wj Y (being as above of the orders

/, w?, ft,
r re-

spectively) be respectively of the forms

Au +Bv +Cw =0,

A'u +B'v +C'w =0,

A"u +B"v +C"w =0,

A"'u + B'"v + C'"w = 0,

where w, v, w are of the orders X, //.,
v respectively.

Then the points common to
£7, F, W, Y which do not make

Uj v, iv = 0, will satisfy the system of determinants

A, A', A", A'

OF THE

EESIT1

&iimc^

B, B\ B", B'"

G, ,
G

,
G = 0.

LL
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But since A is of the order Z— X, i? of the order I-
/x,

A' of the

order m -
X, &c, it follows (Art. 258) that the order of the set

of determinants is

(hi + ln+ Ir 4- mn + mr 4- nr)

- (l+m + n + r)(\ + n+v)
4- (
V 4- ft* + v

2 + XyU, + XV + fiv).

If now we combine this system of determinants (equivalent

to two conditions), with the 7c — 3 conditions which constitute

the surface, we determine the points common to the surface

and complementary curve. And their number is the order of

the system of determinants, multiplied by Xjmv. Writing then a

and /3 for the order and rank of the surface X/av, \/xv (X 4 fi + v),

and denoting by 7 the new characteristic

X/ii> (X* + /** + v
2
4- \fju + fjuv + vX),

which we may call the class of the surface, we find

i= a (?w? 4- fo + &• + W2ft + ww* 4- «r)

274. If then we have an additional quantic Z also con-

taining the given surface, and if it be required to find how

many points not on the surface are common to all 5 qualities,

these will be evidently the points of intersection of the com-

plementary curve with Z, less the number of points of intersec-

tion of the complementary curve with the surface. If then

Z, 7W, «, r, s be the orders of the quantics, the number sought
will be got by subtracting from

s {hnnr
— a (I 4- m 4- n 4- r) 4- ft] ,

the number

a (hn + hi 4 mn 4- Ir + mr 4- nr)
—

/3 (I + m 4- n 4- r) 4- 7.

And the difference is

hnnrs

-
a{lm-\ ...4- rs)

+ /3(l + m + n + r + s)- 7,

which is the formula required.
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275. Next let us consider the case (&
=

5) where a system of

qualities have common not only a surface, whose characteristics

are a, /3, 7, but also a curve, whose characteristics are a', $',

intersecting the surface in i points. As before, consider first

4 of the quantics. Their intersection we have seen consists

of the surface and of a complementary curve, whose order is

hnnr — a (I + m + n + r) + /3.

And if the complementary curve be itself complex, consisting

in part of the curve a, and also of another curve, whose order

is a", we have evidently

a" = hnnr — a (I -f- m -f n 4- r) + ft
— a.

The points therefore which we desire to determine are got by

subtracting from the sol" points of intersection of the curve a

with the remaining one of the given system of 5 quantics,
8 + B' where 8 is the number of points in which the curve a"

meets the surface (a, /3, 7), and 8' is the number of points where

it meets the curve. But we know 8, since we know, by
Art. 273, the number of points where the surface is met by
the entire curve complementary to it

;
and therefore have

S + i= a [hi + In + &c.)
-

ft [l + m + n + r) + 7 ;

and we know
8', knowing, by Art. 266, the number of points

in which the curve a' is met by the entire curve complementary
to it,

and therefore have

8' + c2i = a! (Z 4 m + n + r)
-

ft'.

Substituting the values thence derived for 8 and 8' in 5a" — 8— S\

we get
hnnr8

— a (hn+...+ rs)

+ /3(l + 7n + n + r + s)

-7
— a' [I + m + n + r + s)

+ £'

+ 3*.

In other words, the diminution from the number hnnrs pro-

duced by curve and surface together is equal to the sum of
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their separate diminutions lessened by three times the number

of their common points.

276. This result may be confirmed by supposing one of the

qualities, to be a complex one Z '

Z'\ where Z' contains the

common surface, and Z" the common curve; and the degrees
of Z\ Z" are

«',
s". Then the qualities Z7, 7, W% F, Z\ by

Art. 274, have common points not on the common surface

Imnrs — a{s'(l+m+&c.)+ lm+ Mn + &c.) + j8(s'+/+m + &c.)- 7.

But among these will be reckoned the as points in which

the common curve meets Z\ deducting however the % points

common to the curve and surface. To find then the number

of points UVWYZ' which lie on neither curve nor surface,

we must deduct from the number last written as — i.

Consider now the intersections of
£7, 7, W, Yy

Z"
\

these

are a system of qualities having common two curves inter-

secting in i points; viz. the given curve a, and the curve of

intersection of the common surface by Z'\ whose order will be

as", and whose rank will be as" (X 4- jjl 4- v 4- s"). The number

of points UVWYZ" which lie on neither curve nor surface

will be

Imnrs"- (a 4- as") (l + m+n+ r + s") + /3'+ as" (\ +/m 4- v 4- s") + 2i.

Adding, and writing s for s + s", we get

Imnrs — a (Im -f . . .+ rs) + &c,
as in the last article.

277. We next suppose the qualities to have common two

surfaces having i points of intersection. The method would

be the same if there were several surfaces. Let the last

quantic be a complex one, consisting of Z' which passes

through the first surface and Z" which passes through the

second. Then the system £7, F, W, Y, Z\ have the common
surface \fiv and the curve A/yuVV, which have i points common,
and the number of points of intersection, not lying on either

surface, is thus

Imnrs -
Xfiv {{I + m + n 4- r) s + hi 4 &c.} + ft {I + m + n + r + s)

— 7 - X'ia'v's (I + m + n + r + s) 4- X'p'v's' (V 4- A6
'

4- v 4- s) 4- $U
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In like manner for the system U, F, IF, Y, Z'\ the number of

points of intersection not lying on either surface, is

hnnrs" — X/jlvs" (I -f m + n + r + s") + Xjjlvs" (X + ja -f v + s")

— Xfiv {(I + m + n + r) s" + Im -f &c.} +ft' (I + m + w + r+ s") + 3/.

Adding these, we have for the whole number of points of

intersection

bnnr (s + s")
-

(XfMV + X'jjl'v') {{I + tk + n + r) (s + 5") + tm + &c.J

+ (ft + /3') (f + m + n +. r'4 *' + *")
- 7 - 7 + 6t.

In other words, the combined effect of the two surfaces is

equal to the sum of the effects of the surfaces separately con-

sidered, diminished by six times the number of their common

points. When there are only four variables, two surfaces

always must have common points of intersection.

278. Lastly, let the two surfaces have a common curve

whose order and rank are a", ft". Proceeding, as in the

last article, we find that the system UVWYZ' have common
indeed the surface X/jlv, and the curve X'/jl'v's. But since

this curve is a complex one, consisting in part of the curve

a", ft" which lies on X/zv, we are only to take into account

the complementary curve which, by Art. 268, has for its order

X'/jl'v's
—

a", while its rank is

ft" + (X'/jl'v's
-

2a") (V + p- *V+ h
1

) ;

and the complementary curve intersects a'ft" in

a" (X' + /i -f v + s)
—

ft" points.

The number of intersections is therefore

hnnrs —
X/jlv [(1+ m-\-?i-\- r) s'+ Im + &c.J + ft(l+ m+ n + r+ s')

—
ry'

—
{X'/jl'v's'

—
a") (I -f m +• H+ r+ *')

+ ft" 4 (A>W-
2a")(V+y -f ?'+

*') + 3a" (V+ /jl'+v'+ s)
-

3/3".

Similarly the intersections for UVWYZ' are

hnnrs"-X'/i'v' {(l+m+ n + ?-)s"+Im+ &c.}+ft'(l+m + n + r+ s")-y'

—
(X/ivs"

-
a.") (I + m + n + r + s")

-f ft" + (X/ivs"
-

2a") (A- + /i + v + s") +- 3a" (A + /l + v + s")
-

3ft".
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Adding, we have

Imnr (s + s")
-

[Xfiv 4 X>V) {(I 4 m 4 n 4 r) (s 4 s") 4 hi 4 &c.}

+ Ifi 4 £' 4 2a") (? 4 m 4 n 4 r 4 s 4 s")

- 7 - 7 4 a" (X 4 /x 4 v 4 V 4 ^ 4 v)
-

A/3".

In other words, the diminution is obtained by regarding

the two surfaces as making up a complex surface, whose

order is the sum of their orders, whose rank is the sum of

their ranks increased by twice the order of the common

curve, and whose class is the sum of their classes increased by
four times the rank of the common curve and diminished by
a" (\ 4 /a + v 4 V 4 /x' 4 v'f.

We must leave untouched some other cases which ought to

be discussed in order to complete the subject; in particular

the case where the surfaces touch in points or along a curve.

279. We come now to the problem of finding the order of

the system of conditions that three ternary quantics should

have two common points. The method followed is the same

as that given by Prof. Cayley for eliminating between three

homogeneous equations in three variables, and wThich we have

explained (Art. 94). Let the three equations be of the degrees

Z, m, n. Multiply the first by all the terms x l+n

'% yx
n+
"~\ &c.

of an equation of the degree m + n — 3, the second in like

manner by all the terms of an equation of the degree w + Z-3,
and the third by all the terms of an equation of the degree
1 4 m — 3. We have thus in all •

|(«2+w-l)(7?i+ w-2) + ^(w+7-l)(w + Z-2)+J(?-f-w-l)(?+??i-2)

equations of the degree 1 4 m 4 n — 3, from which we are to

eliminate the \ (1 4 m 4 n - 1
) (1 4 m -hn-2) terms xI+m+n

~\ &c.

But, as it has been shewn in the place referred to, the equations
we use are not independent, but are connected by

±(l-l)(l-2)-)-i(m-l)(m-2) + l{n-l){n-2)
relations. Subtracting then the number of relations, the number
of independent equations is found to be one less than the number
of quantities to be eliminated

;
and we have a matrix in which

the number of columns is one more than the number of rows,
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the case considered In Art. 258. But, as was shewn, Art. 93,

when we are given a number of equations connected by rela-

tions, the determinants formed by taking a sufficient number of

the equations, require to be reduced by dividing out extraneous

factors, these factors being determinants formed with the co-

efficients of the equations of relation. If then, in the present

case, we took a sufficient number of the equations and deter-

mined the order by the rule of Art. 258, our result would require

to be reduced by a number which we proceed to determine.

280. Let us commence with the simplest case where we have

h equations in 1c variables, the equations being connected by a

single relation. To fix the ideas we write down the system
with three rows

a, b, c
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we are thus led to the same result whatever be the omitted

row. Thus

(7
2 + C,

1 (a + ye) + a
2 + /3

2

-fa/9-V'((71
4-a + /3 + 7)

=
<?,+ C^p + y) +& + y> + /3y -\(Ci

+ a + £ + y),

since the orders X — X" = 7 — a.

And our result may be written in a symmetrical form if we
write A for the common value of X + a, X' + /3,

V 4- 7, when

it becomes

C
2+CI (a+/9l7) + a'

J+^2

-f7
2

+/57-f7a + «^-^(6>cc+/3 + 7),

or C^Crt + H^AiC^EJ.

281. And, generally, if there be any number of relation

columns, I have been led by a similar process to the following

result : Let the terms in the relation columns be X, X', X", &c,
/a, /*', //', &c, Vj v\ v", &c.

;
then we must have

X + a = X' + ff, &c, fjL + OL = fi' + /3', &c, v + a = v + /S',
&c.

Let ^4, i?, (7 denote the common values of these sums, and let

H*9 i72
'

denote the sum and sum of products as in Art. 258

of the quantities A,B, C\ then the order of the system is

This result may be stated as follows, in a way which leads

us at once to foresee the answer to some other questions that

may be proposed as to the order of systems of these equations.

In the case we are considering, the entire number of columns,

counting the relation columns, is one more than the number

of rows
;
and the order of the system is that given by the rule

of Art. 258, if we give a negative sign to the orders in the re-

lation columns. In like manner, when the number of columns,

counting the relation columns, is equal to the number of rows,
the system, by Prof. Cayley's theorem, represents a determinant

whose order is that which we should obtain by calculating
the order of the entire system considered as a determinant,
the orders in the relation columns being taken negatively. And
so no doubt if the entire number of columns exceeded the

number of rows by two, the order of the system would be found

by the same modification from the rule of Art. 271.
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282. Let us now apply the rule just arrived at to the

problem proposed in Art. 279, We consider the three ternary

quantics of the order
Z, w, n respectively ;

and we regard these

as depending upon two arbitrary parameters, the orders in

(these

parameters being as follows; viz. the coefficients of the

highest powers of x, x\ cc
m

,
x
w
are of the orders X, /-t, v; those of

xl
~
x

y, xl
~ l
z are of the orders X + a, X -f a', and so on, the orders of

the coefficients increasing by a for every power of y 1
and by a

for every power of z. Then the terms in the first column

consist first of J [m + n — 1) [m + n — 2) terms whose orders are

X
;
X — a, X - a!

;
X — 2a, X — a - a',

X — 2a', &c.
; secondly, of

\ (n -f- I - 1) {n + Z — 2) terms whose orders are p ; //,
—

a, //,
— a'

;

&c, arid thirdly of J (Z-f »i— 1) (Z+ra — 2) similar terms in v.

These may be taken for the numbers a, /9, 7, &c. of Art. 258.

The numbers a, 5, c, &c. of that article are 0, a, a' : 2a, a + a',

2a', &c, there being in all ^ (Z + m + w - I) (Z + ra + n — 2) such

terms. Lastly, the numbers A, B, 0, &c. of the last article are

found to consist of | (Z-l) {1-2) terms, //, + v, /i+v— a, yu-+ r— a';

together with J [m
—

1) (wi
-

2) and \ (n
—

1) [n
—

2) correspond-

ing terms in v + X and X + fi. In calculating I have found it

convenient to throw the formula of the last article into the shape

where s
2
denotes the sum of the squares of the terms a, Z>, c, &c.

Also if
<p (X)

= Af + Br + CI' + DI + E, it is convenient to take

notice that

<j>[l + rn + n)+ <j>{l)+ <f>(m) + cj>{n)-cl){l+ m)-(f>{m+n) -cf>(n + l)

= 12Almn [l + m-\-n) + GBlmn + J?

I have thus arrived at the result, that the order of the system
or number of the sets of values of the parameters is

\mn (mn
-

1) X
2 + \nl {nl- 1) ^ 4- \lm [lm

-
1) v

%

-f {(«Z- \){lm- l)-i il-\)(l-2)}fJLV

(+

{{lm
-

1) (mn
-

1)
-

J [flt
-

1) (m
-

2)) vX

+ {(»?•- 1) («m
-

1)
-

i (w
-

1) (n
-

2)] X/*

4 mrik {hnn
— I + 1 — \ («« + w)) (a -t- a')

+ w7/i {Zotw
— m + 1 — £ (w + Zj) (a -+ a')

+ Zwi> {Zwtn
— n + 1 — J (Z + m) j (a + a')

+ Jfozn [hnn- 1- m -
w+2) (a

2
+ a"

2

) 4- |Zm;i [2/mn
— l — m—n+ 1) aa'.

M M
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If the order of all the terms in the first equation be \, in

the second
yu,,

in the third v, we have only to make a and a —0
in the preceding formula. In this case, supposing X =

^u
= v=l >

the order becomes

•J (mn + nl + lm) (mn -\-nl+lm- 5)

-
i (l-l)(l-2)-i{m-l)(m-2)-i(n -l)(n-2),

and in particular if I = m = w, the order is

fft
(ft
-

1) (ft* + 71 - 1).

This last result shows that U, V\ U", F, V, V'\ W, W\ W"
being given homogeneous functions of

(a?, y, z) each of the order

«, then that the number of curve-triplets

U+eU' + fU'^O, F+<9F+0F"=O, W+dW'+cl>W" = 0,

having 2 common points, is

= %n (n
-

1) (ri

2 + n - 1)»

LESSON XIX.

APPLICATIONS OF SYMBOLICAL METHODS.

'

283. In this Lesson, which is supplementary to Lesson XIV.,
we wish to show how the symbolical notation there explained
affords a calculus by means of which invariants and covariants

can be transformed, and the identity of different expressions

ascertained. In order to facilitate the reader
T
s study of foreign

memoirs, we employ the notation explained, Art. 162, which

is now almost exclusively used on the Continent. In order to

save the necessity of reference, we repeat what has been already

said, and, in order to fix the ideas, we suppose the variables

to be three, though the method is perfectly general. The
variables then are a?„ a?

2 ,
x

3 ;
if there are different sets of co-

gredient variables, such as the coordinates of different points, they
are written yt<i y^ y3 ;

z
lt
z
i%

z
3 ,

&c. We use the abbreviation

a^for a
x
x

x
+ a

2
x

2 + a
3
x

B}
a
y

for a
lyl

+«2#2 +^ ;
if we are only
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dealing with one set of variables, so that no confusion is likely

to arise, we sometimes suppress the suffix, and write a instead

of ax. . The quantic of the n
m

degree is symbolically written

«/, or (a i
x

1
+ a

2
x

2 + a
!i

x
3)

n
-,

that is to say, a,,
«

2 ,
a
z
are umhral

symbols not regarded as having any meaning separately ;* but

a" denotes the coefficient of x* in the quantic, a^~
l
-a

%
that of

nx"~l

x^ and so on. And so generally any homogeneous function

of the nth
degree in the letters «„ a

2 , Og may be replaced by a

multiple sum of the coefficients of the quantic ; any other func-

tion of these letters 13 not regarded as having a separate mean-

ing. Other quantics may be denoted by bp
1
c
?

, &c, the symbols

J„ &
2 ,

&
3 , &c, being used in the same way. In the cases with

which we principally deal the quantics are supposed to be

identical
;
and a", b

n

,
c
n

,
&c. are only different expressions for

the same quantic.

We use («5c), (abd), &c, to denote determinants formed with

the constituents «„ a
2 ,

«
3 ; 5„ &

2 ,
J
8 ,

&c. In order to express

invariants or covariants of the quantic we take any number of

such determinants and multiply them together; then evidently

the product can be translated as a function of the coefficients

of the given quantic, provided that the a symbols, b symbols, &c.

respectively each occur n times. If not, we join to the product
such powers of a

K , b^ &c.—that is to say, of (axxx
4 «

2
#

2 -f «3
^
3)j

&c.—as will make up the total number of a's, 5's, &c. to ru

We are then able to replace the symbolical letters by coefficients

of the quantic, and the resulting product is a function of the

coefficients and the variables, the latter entering in a degree equal
to the sum of the orders of a

x ,
bx ,

&c. in the symbolical product.

It is easy to show that we obtain an invariant in the one

case, and a covariant in the other; and we refer to Clebsch's

Theorie der binaren algebraischen Formen for a formal proof
that all invariants and covariants can be so expressed.f All

* It has, however, been stated, Art. 163, that we can at any moment interpret a

formula by substituting for av a2,
a3 differential symbols with regard to xu xv x3 .

t The principle of the proof is briefly this : we have seen, Art. 204, that from any
d

invariant or covariant P of a single quantic, we can by the operation a' =- + &c,

obtain a corresponding form II for a system of two quantics, and that we can fall



268 APPLICATIONS OF SMYBOLICAL METHODS.

this has been stated already (Art. 162). When a covariant

is expressed in the manner explained, it is evident that its

order in the coefficients is equal to the number of symbols

a
x1

b
x , &c, which enter into the determinant factors, and that its

order in the variables is equal to the number of non-determinant

factors ax,
b
x1

&c.

Since the differential coefficients of u - ax are respectively

na,T\i naJ'~\i nax
n

~\j tne equation of the polar, which is

-
( 7i -y— + Vo t- + V« -J- J

= 0> becomes a"~\ = 0. Similarly,

the second polar is ax
n~2a

y

2

,
and so on.

284. Confining ourselves now to the case of two variables,

ax or a here stands for a
x
x

x
-f a^x^ (ab) stands for ap2

—
aj) x ;

and any covariant is expressed symbolically by a product

(ab)*(acY(bdy &c. multiplied by apb
q
c
r

&c, the number of a's,

£>'s, &c, in the entire product being each wora multiple of n.

If
£>, ^, r, &c. all vanish, the symbol denotes an invariant. Any

symbol which simply changes sign by an interchange of a

and b (as, for example, (abfa^b"'*, where a is odd) denotes an

expression which vanishes identically (see Art. 153).

If we eliminate
a?,,

x
2
from the equations

a = a
x
x

x
+ a

8
cc

3 ,
b~b

x
x

x
+ b^xz ,

c = c
x
x

x
+ c^

we have

(A) a (be) + b (ca) + c (ab)
=

0,

an identity of the greatest use in transforming these expressions.

Thus, for example, transposing a (be) to the other side and

squaring, we have

(B) 2bc (ah) (ac)
= b> (ac)

2 + <? (ab)*
- a* (bc)\

To illustrate the use of this, multiply by a
n~2

b
n"2

c
n

~'\
in order

back from II on P by making a' = a, &c. By repeated application of this principle,

if the form P be of the rth order in the coefficients, it may be considered as derived

from a form II belonging to r different functions, each of which may be symbolically
written {a x

x
x + Ogpt^F, (J^, + b2x2)

n
,
&c. Every form therefore of the r** order for

the single quantic has a corresponding form for r linear factors, and it is proved
without difficulty that for the latter case the only invariant or covariant forms aro

tl.ose expressed as in the text.
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that each term may denote a covariant of an «-ic, and we
have

2a
n
-*b

n-1
c
n- 1

(ab) (ac)
=ZW"2

(ac)
2+ c

na"2
b
n-2

(ab)
2 -ftVV-

(be)
2
.

Now, since a", 5
n

,
c
n

all equally denote the quantic, the three

terms on the right-hand side of the equation are only different

expressions for the same covariant
;

and we learn that the

covariant a
n
~*b

f*'1
c
u~1

(ab) (ac) is half the product of a
n

(which is

the quantic itself) by b
n ~'2

c
n"2

(be)
2

,
which denotes the Hessian.

We can always (as has been stated Art. 163) interpret these

symbolical expressions by supposing a
t,

a
2 , &c, to denote

'j— , -j— , &c, by supposing that we operate on the product

of several distinct quantics uvw, and by making the variables

identical after differentiation. In this way a or x
x
%—

Vx^-j-~ >

applied to any homogeneous function, only affects it with a

numerical factor. If we interpret in this way equation (Z?),

(ab) (ac) is Q, where Q is

d^u/duV d2
u fdu\(du\ d2

u /du\*
#

dx 2

xdxj dx
t
dx

2 \dxj \dxj dx 2

\dxj
'

j r 7\ 2 • c^Ti i tt' d 2u d2u ( d'
2u \

a

and (ab) * 2fl, where H is

jgj jj
-
[^j .

On the right-hand side of equation B, d\ 5
2

,
c
2

respectively

operate on functions which have not been before differentiated,

and therefore affect them with the numerical factor n (n
—

1) ;

on the left-hand side &, c operate on a function which has been

once differentiated, and each affects it with the numerical factor

(n
—

1). Equation B therefore gives us (n
—

1) Q — n UH.

285. From equation B other useful formulas may be derived.

Squaring it,
we have

(C) a^bcy + b^caY+c^abf
= 2 {bV (ah)

2

(ac)
2 + c

2
a
2

(be)
2

(ba)
2 + d2

b
2

(ca)
2

(cb)
2

}.

If this be applied to a quartic form, the three terms on the left-

hand side are all different expressions for the same thing. So

are also the three terms on the right; and we learn that the
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covariant bV (ah)* (ac)
2

differs only by a numerical factor from

the product of the quantic itself by the invariant (bey.

Considering the four expressions

a = a
x
x

t
+ a

2
a?
2,

b = b
x

x
v + \x^ c = c

x
x

t
+ c

2
#

2,
d= d

x
x

x
+ d

2
x

2i

we at once verify the identity

(2>) (ad) (be) + (bd) (ca) + (of) (oft)
=

0,

which is also of very great use in the theory. We deduce

from it

(E) 2 (bd) (cd) (ab) (ac)
=

(bd)
2

(ac)* + (cd}' (ab)'
-

(ad)
2

(bc)\

(F) (ad)
4

(be)
4 + (bd)

4

(ca)
4 + (cd)

4

(ab)
4

= 2{(bdf(cd)\ab]\ac)^ (cdy(ad)\bc)\bay+ (ad)
2

(bdy(ca)
2

(cb)
2

}.

To these may be added an identity which is really a different

form of (D) : this is

(G) aJ>v-Ka
v
=

i
ah)(xy)i

where (xy) denotes [mjft
-
x^/ t ) ;

and from it we deduce

286. A symbolical expression may be always so transformed

that the highest power of any factor (ab) shall be even. For

the signification of the symbol is not altered if we interchange
the letters a and b

;
therefore

(oS)-"*, = - (ablT** = i w"(*. -
*j,

and by the help of equation A, $>x

—
<£2

can always be so trans-

formed as to be divisible by (ab). Thus be*"
1'1

(ab)
2m~l

(ac) is at

once reduced to c
m

(ab]
zn
\ For

be
2"1-1

(ab)
2"1-1

(ac)
= ic

2"-1

(ab)
2m~l

[b (ac)
- a (be)}

= \c
im

(ab)
2m

.

287. If we arrange symbolical products according to the

number of determinant factors which they contain, we can,

by these formulae of reduction, reduce them to certain standard

forms. If there is but a single factor (ab), the covariant

vanishes identically (Art. 284), since it changes sign by an

interchange of a and b. The possible forms with two factors

are (ab)
2

, (ab) (ac), (ah) (cd), of which the last vanishes identi-

cally, and, in Art. 284, we have expressed (ab) (ac) in terms of
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(ab)'\ There is therefore only a single distinct covariant

symbolically expressed with two determinant factors, viz. the

Hessian H=a*~9

b*~*(ab)\ Any such form must denote either

the Hessian or the product of the Hessian by a power of

the quantic. So again, for three factors, the possible forms are

(abf, (abf (ac), (ab) (ac) (ad), (ab) (ac) (be), (ab) (ac) (bd) ;
and of

these the first, fourth, and fifth vanish identically. Multiply

equation B by a
n~3

b
n"'i

c
l~2d

n~1

(ad) ;
two of the terms on the right-

hand side become identical, the third vanishes, and we have

2a
n-3

5
n"1

c
n-V1

{ab) (ac) (ad)
= 2a

n-3
b
n-'2

c
n
d
n-1

(abf (ad),

showing that the covariant expressed by the left-hand side is

the product of the quantic itself by the covariant whose value

is given (Art. 156). Generally every symbol having a pair of

factors with a common letter (ab) (ac) may be reduced to a

more compact form by substituting for this pair their value

from equation B, and so expressing the symbol by others in

which this pair of factors is replaced by a single square factor.

Symbols with four factors can be reduced to either of the forms

(ab)* or (ab)* (cdf, which is H'\ For five factors the fundamental

forms are (ab)
4,

(ac) and (ab)
2

(ac) (def, the latter being the pro-
duct of two distinct covariants. For six factors the forms are

(ab)
6

(Art. 153), (ab)* (be)* (caf (Art. 155), and (abf (cdf (ef),

the last being the cube of the Hessian. We give two or three

examples of the reduction of these forms.

Ex. I. To reduce an-*bn- 1c»~ 1dn-
^e"- 1

(ab) (ac) (ad) (ae). Multiply together

2bc (ab) (ac) = b2 (ac)
2 + c2 (abf

- a2
(be)

2
,

2de (ad) (ae) = d2 (ae)
2 + e2 (ad)

2 - a2
(de)

2
;

multiply the product by an-*bn-2cn~2dn-2en~2
,
and assemble the identical terms, when

we have

4an-4&n- 1c*- 1
cZ*- 1e*- 1

(ab) (ac) (ad) (ae)

= 4cne»an
-46»-3(f"-2 (ab)

2
(ad)

2 - 3a"^-2c"-r<?'-2e"-2(5c)
2

(de)*.

The last term is - 3 TIE 2
. The other term on the right-hand side is reduced by

equation C. Multiply by an-i6n
-4c?"-4 the equation

a4
(bd)* + b* (ad)* + d* (ab)* = 2 {b

2d2 (ab)
2
(ad)

2 + dta2 (bd)
2
(ba)

2 + a2b2 (ad)
2
(bd)

2
},

when we have 2an-*bH-2dn~2 (ab)
2
(ad)

2 = dna»-*bn-* (ab)*. The right-hand side there-

fore of the preceding equation reduces to 2SU 3 -3UH2
,
where S ia the covariant

an'*bn-* (ab)*.

Ex. 2. To reduce (ab)* (ac)
2
. Multiply equation C by an'6bn-6cn~* (ab)

2
,
when we

have, assembling identical terms,

C
nan-Gbn.6 (

rt^6
_ 2a^bn-*cn

-2
(ab)* (ac)

2 + 2a"- 46n
-4cu

-4
(ab)

2
(be)

2
(ca)\
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Thus if we call the standard forms an-6bn~6 (ab)
6 and an~45n-4cn -4

(ab)
2
(be)

2
(ac)

2
,
M

and T, we have 2an-6bn-*cn~2 (ab)* (ac)
2 =UM-2T.

Ex. 3. To reduce (ab)
2
(ac)

2
(ad)

2
. Multiply together the three equations

2bc (ab) (ac) = c2 (ab)
2 + b2 (ac)

2 - a2
(be)

2
,

2cd (ac) (ad) = d2
(ac)

2 + c2 (ad)
2 - a2 (cd)

2
,

2bd (ab) (ad) = b2 (ad)
2 + d2

(ab)
2 - a2 (bd)

2
,

and multiply by an-Gb*-*cn-idn-i
,
when we have

Qan-6bn-2cn-2dn-2 (ab)
2

(ac)2 (ad)
2

= - 4cZ»aB
-4&»-V»-4

(ab)
2
(bc)

2
(ca)

2+6an-ebn-*cn-2dn (ab)
i
(ac)

2 - 3an-*bn-icn'2dn'2 (ab)* (cd)
2

= - 4UT+ ZU(U31 - 2T) - 3SH r= 3U2M - 10UT-3SII.

Ex. 4. To reduce (ab)
2
(ac)

2
(cd)

2
. Multiply equation (C) by (cd)

2
,
and by

an-ibn-4cn-6jn~2
f
when we have

4a»-4£n-2cn-4tf»-2 (ab)
2
(ac)

2
(cd)

2

- 2a»5»-4c»-6<Z«-2 (be)* (cd)
2 + a^b^c^d^2

(ab)* (cd)
2 - 2an-2bn-2cn

-Gd»-2 (ac)
2
(be)

2
(dc)\

Multiply by three, and observe that in Ex. 3, we find that

6a»5n-4cn-6^-2 (fc)4 (CJ)2
_ Qan-2bn-2cn- 6^»-2 (ac)2 (fo)2 (rfc)2

_ WT + 3SII,

and we have 6a»-4J»-2c"-4cZ»-2 (ab)
2
(ac)

2
(cd)

2 = 2UT+ 3SII.

Ex. 5. To reduce (ab)
2
(cd)

2
(ac) (bd). Multiply the equations

2ad (cd) (ca) - a2
(cd)

2 + d2
(ac)

2 - c2 (ad)
2
,

2bc (cd) (bd) = b2 (cd)
2 + c2 (bd)

2 - d2
(be),

and multiply also by an-ibn- icn- idn-i (ab)
2
,
and we have

- 4.a»-3£n-3cn-3dn-3 (ab)
2

(cay (ac) (bd)

- an-2bn-2cn-idn-i
(
a5)2 (cd)i + 2a^b^2cn

'idn'2 (ab)
2
(cd)

2
(ac)

2

- 2an~ibn-icn'idn (ab)
2

(be)
2
(ca)

2

= SH-2TU+ 2an-*b»~2cn-idn-2 (ab)
2
(cd)

2
(ac)

2
;

therefore, by Ex. 4,

- I2an-sb*-*cn-*d»-* (
a&)2 (cay (

ac) (bd) = 6SH - 4TU.

We stated, Art. 156, that the expression for the discriminant of a cubic was

(ab)
2
(cd)

2
(ac) (bd). The present example shows how the corresponding covariant

of a quartic is expressible in terms of the fundamental forms S, T, U, II.

288. If
<£, yjr

be covariants of the orders p, q in the vari-

ables, we may write these symbolically $ =
(</>,»

,

1
+ <£2

,r
2 )

P
>

yfr
=

(yfr^ -r >^2a?2 )

3

,
and we can obtain from them the series

of covariants <£/~V/
"*

(<£^)*, where k has any value from 1

up to the least of the two numbers p and q. This operation,

in German called UeberscMebung, we shall call transvection, and

the covariants generated we shall call transvectants of the two

given covariants.

In the notation used Lesson XIV, l2*<£-v/r denotes a covariant

differing only by a numerical factor from the transvectant
j
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that is to say, if we denote differentiation with regard to sc„ a?
2

by subindices, the series is

^2 ~ <M^ +i,^«
" 2&2^i2+ *«•*»» &c -

Thus the first in the series is the Jacobian, and if n be the

lowest of the orders of
<f>

and -^ the last in the series 12
w
<^\^,

is the result obtained by introducing differential symbols into

the one quantic and operating on the other (Art. 139). We
obtain transvectants of a single quantic by supposing cf>

and ^
to denote the same quantic. The transvectants then of odd

order vanish, and those of even order form the series of co-

variants considered (Art. 141). The method of formation of

covariants explained in this article has a prominent place in

the proof given by Gordan and Clebsch, that the number of

covariants of any form is always finite. Thus the first step in

the proof is to show, as we shall presently do, that any
covariant symbol formed with h letters a, b

1 c, &c. may be

reduced to the transvectant of the original form combined

with a covariant whose symbol contains only k- 1 letters.

289. There is no difficulty in forming the transvectant, or

any other derivative of a form
<f> symbolically expressed.

The transvectants of <£, i|r,
we have seen, are given by the

formula
(<f>yjr)

k =
(f i

rj2
—

f2^,)
ft

,
where fl5 f2

denote differentiation

of <£, and
77j, ^ differentiation of

y}r.
Now let the symbolic

expression of
<j>

be
<f>
= Map

bq

&c, where M denotes the

aggregate of the determinant factors. Then, since x
xl
x

2 only
enter in a

)
b

) &c, we have

Similarly if
yjr
= Ncr

d" &c, we have

d 7 d p d , d p

If we put these values into (f^ —
f^J* we see that the symbolic

expression for the transvectant consists of a group of terms,

each of which contains all the determinant factors M, N of the

two given forms, together with a function of the 7c
h
order in

NN
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the determinants (ac), (ad), (be), [Id), &c. In particular the

transvectants of
<j>

combined with the original form u (or g
n

,

where g is a symbol not occurring in
<j>),

are found by operating

on * with {^i+^i +^i +&c
}

k

Ex. To form the symbol for the Hessian of the Hessian. Here we have

<p = an-26»-2(a&)
2
, \\t

= ct^d^^cd
2
), and we are to operate on <p\Jr with (^ri2

— £2*h)
2

J

or with
(. . d d . ^ d d ,. . d d /TJS d d}

2

or, collecting like terms, with

.
, ,, d2 d2 ;<; w - <? 4 d n , ....rf d df tf»WBBt«WMB!B+iM«5 s s 5a-

It would be therefore

4 (w
-

2)
2
(t*-3)

2
(a6)

2
(ctf)

2
(ac)

2 a»-45*-2c"-*d»- 2

+ 16 (»
-

2)
3
(n
-

3) (a&)
2
(cd)

2
(ac) (ad) a»-^6»-*c»-"e^-,

+ 8 (n
-

2)« (a£)
2

(ccZ)
2
(ac) (M) a»-3&»-3c»-3d'-3.

It was Bhown, Art. 287, Ex. 4 and Ex. 5, that the first and third of these terms were

expressible in the form aSH + (3TU, and the same thing is easily seen to be true

of the second, if we substitute for 2cd (ac) (ad) its value from equation B, viz.

c* (ad)
2 + d 2

(ac)
2 - a2 (cd)

2
. Thus we prove that the Hessian of the Hessian is

expressible in the form aSH+ fiTU, as was otherwise proved (Art. 218).

290. It is convenient to transform the formula given in the

last article for (cf>u), the transvectant of any form
<f>

combined

with the original. By equation A

-lw(«s+»a+fc|-i(wi +Mj+fc r ?

where it will be observed that the operation a -=- -f- b -^ 4- leaves
1 da do

the subject unchanged except by a numerical factor. Thus
then if

<j>
= Map

bq
c
r

&c, where p+q+r+=l

(<t>u)
m lM(ag) dT-W. . g^

1 -
g'Ma"-

1

Uab)
~ + &c.l frc &c.

Thus we have the expression divided into two parts, one in

which we have the old determinant factors M together with

the new factor (ag) ;
the other in which the letter g does not
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enter into the determinant factors. Conversely, if we have a

symbol in h + 1 letters, one of which g only occurs once, thia

is immediately resolved into the transvectant of $, w, together

with a form whose symbol only contains h letters.

So, in like manner, the second transvectant of any form
<f>

is

and therefore consists of a group of terms, each having all the

determinant factors of <£, together with two new factors, each

containing g. But, as before, this might be written

h [<*J {
ai + h i +

]
-*

{
(ai) i + &c

]J'
and therefore if

<f>
= MaFb* &c, we have

(<f>u)*
= I {I

-
1)M (ag)* aT'te. . .g*+ + ^,

where
yfr

consists of a group of terms into the determinant

factors of which g enters only once
;
and therefore by the former

part of this article, yfr
can be reduced to the transvectant of

a function whose symbol does not contain g, together with such

a function. Thus then any symbol of the form <p (ag)* can be

reduced to a function whose symbol does not contain #, together

with the first or second transvectants of such functions. The
same thing would be true of a function of the form

<f> {ag) (bg)j

as appears by writing the second transvectant in the form

>«[(w{-s+»«+MM s +(fa, s +
}]-

And so we see generally, that any symbol <j> (ag)* (bgY, where g
occurs in all k times, can be reduced to the kth transvectant of

<f>, together with terms in which g occurs only 7c — 1 times,

which again may be reduced in like manner. If, then, we

arrange forms according to their order in the coefficients, it

has been proved that the forms of any order consist either of

forms of lower order multiplied by u or by powers of w, or

else of transvectants obtained by combining u with forms of

lower order.
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291. We have just shewed that taking any one letter g
in the symbol for a form, that form may be regarded as a

trausvectant of u combined with other covariants, and that the

symbol for each of these other covariants will contain all the

determinant factors of the original form, striking out those

which contain g. So again taking any letter / in the symbol
tor any of these other covariants, we express that covariant

as a transvectant of u combined with covariants whose symbol
contains all the determinant factors of the original, striking

out those which include the letters f and g. Proceeding thus

we see that taking any of the letters, say, a, 6, c,
and taking

the factors of the given form which contain these letters only,

say [ah)" (bey (ca,y ,
then the given form may be obtained by

transvection from a form in these three letters having as a factor

(ab)
a

(bey (ca)\

All that has been said in the last article applies equally if

the original form, instead of being a covariant of a single

function, were a simultaneous covariant of several; that is to

say, if instead of a\ b
n

,
c
n

all representing the same function
Z7,

they represent different functions
?7, F, IF, &c. It remains

true that if V be the function to which g refers, the form

represents a transvectant of V and of other functions, whose

symbols could be separated in like manner. It may be seen

thus that if we had all possible covariants of two forms U, V
separately considered*, the system of their simultaneous co-

variants is obtained by adding to these all possible transvectants

of a form of one set with a form of the other. If the forms so

obtained be combined by transvection with the covariants

of a third fundamental form W^ we obtain all possible forms

of the system £7, F, Wy
and so on. We refer to Clebsch, p. 186,

or to Grordan, Programm, p. 18, for a proof that if the system
of covariants of the separate forms £7, F, W be finite, the

number of distinct forms obtained by transvection in the manner

described, and therefore the number of covariants of the system,
is also finite.

* We must include in the series the powers and products of the simple covariants.
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292. We proceed now to give an outline of the method

by which Gordan has shewed that the number of distinct forms

for a quantic of the nth
degree is finite, and we shall shew that

if this be true for a quantic of the degree n — 1, it will be as

true for one of the degree n. The symbol for a form belonging
to a quantic of the (n

—
l)

th
degree being Map

b
q
c
r

^ &c., where

the a symbols, b symbols, &c. each occur n — 1 times, it follows

that if we multiply the symbol by abc, &c. we shall have a

form for a quantic of the nth
degree, since the a symbols, &c.

will then occur each n times. We shall speak then of forms

belonging to quantics of different degrees, as being the same,
when the determinant factors in their symbols are the same,
and when these symbols only differ by a power of abc, &c.

We propose to establish the following theorem, viz. that the

forms for a quantic of the nth
degree consist either of the forms

which had occurred already for a quantic of the degree n — 1, or

else of the mutual transvectants between such forms and the

series of two lettered forms {ab]\ (ab)
4

,
&c. And in order

to establish this, we shall shew in the first place that every
form for a quantic of the n th

degree either has in its symbol
a factor (ab)

p where p is not less than \n, or else is a form

belonging also to a quantic of the (n
—

l)
th

degree ;
and with

regard to the latter, we add the further restriction,* that if

its symbol be Mapbq

c\ &c, p the greatest of these indices shall

not be less than \n. We shall prove this latter theorem

by shewing that if it is true for forms of the mth order in

the coefficients, it is true for forms of the order m + I
;
and

it evidently is true for forms of the first order, that is the

quantic itself. Now it was shewn (Art. 290) that all forms

of the order m + 1 can be obtained from forms of the order m
by transvection of such forms with u. Since this transvection

only adds new determinant factors to the symbol without

removing any of the old, it follows that every form of the order

m having [ab)
p in its symbol, will give rise by transvection

to forms of the order m -f 1 having the same property. We

* This limitation is only necessary for the proof of the theorem, and is not used in

any of its subsequent applications.
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need only consider therefore forms M(fbq
c
r &c. Now we saw

(Art. 289) that the kth transvectant 01 such a form is got by

operating k times with

that is to say, it will be of the form M(ag)
k
aF~

k
b
q
c
r

...g
n
~^

together with transvectants of the order k — 1. The term

which we have written will, in case k is as large as Jw,

contain the factor (ag)
in

;
and if k be less than \n, then since

by hypothesis p is at least |rc, the index of «, viz. p — k will

be positive, and therefore the term will still be divisible by

abc, &c, and will therefore denote a form belonging to a

quantic of lower order, while the index of g, viz. n - k will

exceed %n. We see then, that if forms of the order in the

coefficients consist only of the two classes we have named,
the kth transvectant of such form will consist only of the same

two classes, provided this be true for the (k — l)
th transvectant.

And so down step by step till we come to the transvectant
;

that is to say, the product of the given form by a, for

which it is obviously true. The theorem we have enunciated

is therefore proved.

It follows from what has been just proved, that every
invariant symbol must contain as a factor (a£)

p
,
where p is at

least half n
;
for the other class of symbols, viz. those occurring

in quantics of lower order, of necessity represent covariants,

since they have the factors a, b, &c, each of which contains the

variables.

Forms having (ab)
p for a factor are (Art. 291) transvectants

of forms having this as a factor, and it can be seen without

difficulty that, except when rc = 4, such forms will when p
exceeds \n be of lower order in the variables than the quantic
itself. With this exception, then, it appears that forms for the

n
th

degree are simultaneous covariants of certain forms all of

lower order than n\ and therefore if the number be proved
finite for numbers less than w, it is also finite for n (Art. 291).
The case n — 4 requires a little speciality of treatment, for which

we refer to Clebsch, p. 267.
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293. It would evidently be convenient if a general symbolical

expression could be given for the result of elimination between

two equations. When one equation is simple it is easily seen

that the eliminant between it and an equation of the n
tn

degree
is {aa) (ah) (ac), &c, where the symbol a relates to the equation

of the nth
degree, and the remaining symbols to the simple

equation. I gave in 1853 a general formula for the resultant

of a quadratic and an equation of the nth
degree [Cambridge

and Dublin Math. Jour., IX., 32). The theorem was re-

discovered by Clebsch in 1860, and extended by him to the

case of a system of any number of equations, one of the second,

one of the wth
,
and the rest of the first degree (Crelle,

vol. lviii). We give here Clebsch's investigation of the

general theorem.* To fix the ideas, I write only a system
of four homogeneous equations in four variables, but it will

be understood that the method is equally applicable to any
number of variables. Let the equations then be

a = a
x
x

x
+ a

2
x

2 + a
3
x

s -f a
4
x
4
=

0,
= &x

x
x
+ £8

aj
a + /33

a?
8 + /34

#
4
=

0,

U= uuxx
+ 2u

X2
x

x
x

2 + &c. = 0,

and
(f>
=

0, where
<f>

is an equation of the nih order in x
xl

a?
8 ,
x

3 ,
x

A

which may be written symbolically (a x
x

x
+ a

2
x

2 + a
3
x

3
+ a

4
x

4)

n= 0.

The method of elimination employed is to solve between the

linear equations and the quadratic, and substituting in
</>

the

two systems of values found, to multiply the results together.

Now we may in an infinity of ways combine the quadratic with

the linear equations multiplied by arbitrary factors, so as to

obtain a result resolvable into factors : that is to say, so that

U+ (Xx
x

x 4 \x2 + &c.) {a x
x

x
+ &c.) + (fi x

x
x
+ &c.) {fix

x
x
+ &c.)

= [pi
x

x
4- &c.) (qx

x
x + &c).

* In the same paper in the Math. Jour. I investigated a formula for the dis-

criminant of a binary qnantic, and in this way obtained that for a quartic. Clebsch

subsequently gave in his paper (Crelle, Lix.),
" Ueber symbolische Darstellung

algebraischer Formen," a rule for obtaining a general symbolic formula for the

resultant of two binary quantics or for the discriminant of a binary quantic. The
method of proceeding is to apply Cayley's form of Bezout's method of elimination,

explained Art. 87, to two quantics written symbolically, but the resulting rule is,

as might be expected, very complicated.
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We shall imagine this transformation effected, but it will

not be necessary to determine the actual values of X
t , fi^ &c.

for it will be found that these quantities disappear from the result.

Taking, then, the coefficient of any term x&k in the quadratic,

the equation written implies that we always have

2w
ft + (Oi\k + at\) + (ft^ + &tff)-i»A+l»jft...(4)'

Instead then of solving between the quadratic and the linear

equations, we get the two systems of values by combining with

the linear equations successively px
x

t
+ &c. = 0, qx

x
x
+ &c. = 0.

And by the theory of linear equations the resulting values of

a?j,
a?

a ,
&c. are the determinants of the systems

JPu Pt> P# P*

*1> a
2) «3, «4

ft, ft, ft, ft

&» ?2, V&
a,,

a
2 ,

a
3 ,

a
4

ft, ft, ft, ft

If then we substitute the first set of values in a
i
x

x
+ &c, we

get the determinant

aa a
2 ,

a
8 ,

a
4

A? ^2 , Pa, J^4

«1, «2, «3, «4

ft, ft, ft, ft

which we may write (a^otgft). The result of elimination then

may be written symbolically R =
(^/yZgft)" {b^afij

1

. We use

in the second factor the symbol Z> instead of a, for the reason

explained (Art. 162), in order to obtain powers of the coefficients

of
<f) ;

but it is understood that the b symbols have exactly the

same meaning as the a, since after expansion we equally replace
the products al

akal

a\ b%k
b

x

b
m

, by the corresponding coefficient

°f $, a
ikim-

We may then write the result of elimination in

the more symmetrical form

_

2^ =
(Ws/3/ (KwAY + K2A&)" (Kp*«AT,

for this after expansion will be only double the former ex-

pression.

Let us now write

K^ftH^^ft)^,

(<Waft) (K<1>«A) + (Waft) (^M)=2a,
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then R may be easily expressed in terms of A, B, C. For we
have

25= {C+ ^(C>-AB)}
n

+{C-^'(C
2

-AB)}
n

,

or 5=0"+ ^_J] cn~2

(
C 2 -

.45)

+ !±<fiz±)(*-*){n-S) Q^ (
C2 _ ABf + &c _

1 . J . O . 4:

294. It remains now to examine more closely the expressions

for A, B, (7,
and to get rid of the quantities p and q which we

have introduced, so that the result may be expressed in terms

of the coefficients of the given quadratic.

Now A, which is the product of two determinants, may be

written as a single determinant,

PxZi > i(Mi+Mi)i i(PA+Mi)i 4(.PA+Wi)i a
i» ft> a i

Ki^.+l^i)! #& J J(^A-tP^Jl 2(M4+M2)) «2> ft> «8

ita?s+?8?.)> i(Ms+M)> ?& j i(M*+M>)> a* ft> a3

i^A+P^iJ) Kftft+ftft)) Km+mJ) .a?* i
a
4 > ft> «4

K
l J

a
2 > «3 > «4 J

ft i ft ft » ft

a
t I «8 > «8 J

a
4 J

multiplied however by (— l)
m-1

,
where m is the number of vari-

ables, that is to say, in the present case, 4.

For every constituent of this determinant must contain a

constituent from each of the last three rows and columns
;

it is

therefore of the first degree in the terms p xq^ \ [p^+p^q^ &c.
;

and if the coefficient of any of these terms be examined, it will

be found, according to the number of variables, to be either the

same, or the same with sign changed, as in the product of the

two determinants. Now in this determinant we are to substitute

from equation (^1),

Pdx = Un + «A + ftfo

i (P& +P&x) =• u
x* + i («A + «A) + i (ft^2 + ft/^Jj &c -

But when this change has been made, if we subtract from each

of the first four rows and columns the a row and column each

multiplied by jx,
j

,
and the /3 row and column each multiplied

oo
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by i/*ij tne additional terms disappear, and the determinant

reduces to

wn, UM M
i3>

uw> «ti fti «t

W
21,

W
22,

W
23,

W
24,

a
2 > ft) «2

W
Slf
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295. As an example of the application of this formula we

give Clebsch's investigation of the equation of the system of

inflexional tangents to a cubic (Grelle ) 59), remarking in the

first place that formulas of reduction corresponding to those

given (Arts. 284, 285), exist for quantics in any number of

variables. Thus for ternary qualities the most useful are

a (bed)
— b (acd) +- c (abd)

— d (abc)
=

0,

(abc) (ade) + (abd) (ace) + (abe) (acd)
=

;

to which may be added the corresponding equations for con-

travariant symbols (Art. 160)

P(abc) = a
(cf.be) -f- b (aca) + c (aab),

(acb) (acd) 4 (abc) (ada) + (aca) (abd)
=

0,

where P is ax + fiy + 72. To come now to the problem

proposed, the equation of the system of inflexional tangents
to a cubic is got (Higher Plane Curves^ p. 57) by eliminating
between the equation of the curve and those of its first and

second polars, and one of these equations being linear and

another quadratic, the formula of the last article is applicable.

By Art. 293 the eliminant is 4<7
3 - BABC, where A, B, G

are respectively I
j,

( ,
J

,
(

,).
But we have proved,

p. 17, that

Q-fC5-w ©--*•©-***
The result therefore is when cleared of fractions

4{«Jff
+&

,g)}-8{
a
ftff+««g)}{a'H

+
6.Q}{ra

+
6.Q}.

But remembering that a3 and b* are each w, this is divisible

by u and gives
uHs + \8PH*+ 108QHu + 2WRu%

where P= 3aV
(?)

- ua {*\
- ubQ ,

•-ffl
,

--6fi)-'ffl©-*e)o.
i*=40-0 00
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In the above formula, as at p. 17, II denotes the determinant

formed with the unreduced second differential coefficients; but if

we suppose that, as in the Higher Plane Curves^ each coefficient

has been cleared of the numerical factor six, we must write in

the above for H, 216J5"; also, since P, Q, B involve the second

differential coefficients in the 2nd, 4th, 6th degrees respectively,

these will be 6
2

,
6
4

,
6
6

times the corresponding P, Q, B.

Making these substitutions, the eliminant becomes

uH3 + 3PH2 + 3 QIIu + Bu\

To reduce this further we observe that a (
J

= - dH, for

f

)
expanded is - (w22w33

-w2

<23)
a*+ &c., but a*a (p. 268) is un &c,

on making which substitutions, the truth of what has been

stated appears. In like manner we see that a
2

1 ,
]

= —
lib,

from which it at once follows that a*b*
( 7 J

= - Ha. We have

then P= SHu.

In order to calculate Q )
it appears from what we have just

stated that

O ©-OS)-*-. -'Offl-r™©-^
Again we can show that ab ( °1

J

= 3iP for (Art. 33, Ex. 2)

( ,
J
=(

) (
7

)

—
H\ 7))

an^ by actual expansion it is easily

seen that ab I
)

= 6iZ
2
. Collecting the terms we have

,ab;

Q = -SH\ Thus the two terms SPH\ SQIIu cancel each

other, the eliminant is seen to be divisible by u and reduces

to Hs + Bu.

296. It remains to calculate B. Now let us in the first

place observe, that if it be required to differentiate with regard
to

a-j,
II or

'12? ™l I

,
it follows from what was said at
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the end of Art. 24, that the result is
(t*wi*

ffl

— w
2

32)
anx + &c.,

that is to say, the result is -
a, I

)
. Taking then the

,
and multiplying the fourth

K K hi

column by I
J
and the fourth row by (

,
j ,

we have

©©©'-©>
(77\jrj.]

the result of substituting the

differential coefficients of H for a
1?

a
2 ,

a
3 ;

and for
Z^,

£>
2 ,

6

in the determinant just written. We have also (Art. 33)

G)'-0©(3=-<)©-
But if we take a

t
(

)
and differentiate it by the same process

as that already employed, we find that the second differential

of H with regard to a?
1?
x

x ,
is afi^ ( ,

j ;
and so on. Thus it

will be seen that
(, j ( ,]

is A(,), by which we mean the

result of substituting in (

J
for a

t , a.2 ,
a

3 symbols of differentia-

tion applicable only to H. We may get another expression for

(
7.

) ( 7 )
• It is the coefficient of X in the expansion of the

Hessian of u + XH. For that Hessian is found by substituting,
in the determinant which expresses the Hessian, for each

second differential coefficient uu) un + Xafi^ (
,

) ,
and it is easily

seen that the coefficient of X in this expansion is as stated.

But if we remember {Higher Plane Curves, Art. 225) that that

coefficient is - 2 Su, and that ( „.
J

is what is called (Higher
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Plane Curves, Art. 231), we identify the result now obtained

with that there given (p. 196), viz.

H*-5SuzH+uG.

297. In the theory of double tangents to plane curves

explained (Higher Plane Curves, Art. 384), it is necessary to

calculate the result of substituting in the successive emanants

a
3
u
2
— a

2
w

3 , a,u3
- a

s
u

t1
a
2w,
— a

x
w

2
for x

x ,
x

2 ,
x

3 ,
and to show

that each result is of the form P
n + Qn (a %

x
t
-f a

2
x

2 -f asxj\ We
give as a further illustration of the use of symbolical methods

the application of them to the calculation of Q^ &c. Now
the results of substitution may be symbolically expressed
a"

-8

(aaw)
2

,
a
n~3

(aauf, &c, where a only is a symbol. These

expressions may be reduced by the help of a general formula

for (aau)'\ which is found as follows, as in Higher Plane Curves,

p. 336 : This square differs only in sign from the determinant

Mn>
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but the first and last terms vanish identically ;
and as we have

seen that the differentials of the Hessian are —a~*a
x
(

J , &c,
the middle term reduces to - a

a

(aHu).

Again, for #4
we nave to calculate

d<) + °t)- 2aa
(:)F>

The first term vanishes, the second is 4a
2

f
'

) -flj
the third is

— 4a
2

(
jiZ,

as may be seen from (Art. 296), and since a
n~*

()
is - BH, the fourth is - 6a

2

(j H. Thus we see that the result

is divisible by a
2

, giving



(
288 )

NOTES.

HISTORY OF DETERMINANTS. (Page 1).

The following historical notices are taken from Baltzer's Tlieory of Determinants;

and from the sketch prefixed to Spottiswoode's Elementary Theorems relating to Deter-

minanU. The first idea of determinants is due to Leibnitz, as Dirichlet has pointed
out. In Leibnitz's letter to L'Hopital, 28 April, 1693 (Leibnitz's Mathematical Works,

published by Gerhardt, vol. II., p. 239), is to be found the first example of the

formation of these functions, and of their application to the solution of linear equa-

tions
;
the double suffix notation (p. 7) is employed, and he expresses his conviction

of the fertility of his idea. But nowhere else in his writings is there to be found

any proof that he sought to draw any new fruits from his discovery ;
and the method

was lost until re-discovered by Cramer in 1750. Cramer in his Introduction a VAnalyse
des lignes Courbes (Appendix), has exhibited the determinants arising from linear

equations in the case of two and three variables, and has indicated the law according

to which they would be formed in the case of a greater number. The rule of signs

by the method of displacements (Note, p. 5) is given by Cramer. The equivalence

of the other method by permutation of- suffixes was afterwards proved by Bezout

and Laplace. In the Histoire de VAcademic Eoyale des Sciences, Annee 1764 (pub-

lished in 1767), Bezout has investigated the degree of the equation resulting from the

elimination of unknown quantities from a given system of equations, and has at the

same time noticed several cases of determinants, without however entering upon the

general law of formation, or the properties of these functions. The Histoire de

VAcademie, An. 1772, part II. (published in 1776), contains papers by Laplace and

Yandermonde relating to determinants of the second, third, fourth, &c. orders. The

former, in discussing a system of simultaneous differential equations, has given the

law of formation, and shown that when two rows or columns are interchanged, the

sign of the determinant is changed, and that when two are identical, the determinant

vanishes. The latter employs a notation in substance identical with that which, after

Mr. Sylvester, we have called the umbral notation, and explained p. 7. In his Memoir

on Pyramids (Memoires de VAcademie de Berlin, 1773), Lagrange made an extensive

use of determinants of the third order, and demonstrated that the square of such

a determinant can itself be expressed as a determinant. The next impulse to the

study was given by Gauss, Disquisitiones Arithmetical, 1801, who showed, in the. case

of the second and third orders, that the product of two determinants is a determinant,

and very completely discussed the case of determinants of the second order arising

from quadratic functions, i.e. of the form b2 — ac. In 1812 Binet published a memoir
on this subject (Journal de VEcole Polytechnique, tome IX., cahier 16), in which he

establishes the principal theorems for determinants of the second, third, and fourth

orders, and applies them to geometrical problems. The next volume of the same
series contains a paper, written at the same time, by Cauchy, on functions which only

change sign when the variables which they contain are transposed. The second part
of this paper refers immediately to determinants, and contains a large number of very

general theorems. Cauchy introduced the name "
determinants," already applied by
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Gauss to the functions considered by him, and called by him "determinants of

quadratic forms." In 1826 Jacobi took possession of the new calculus, and the

volumes of Crelle's Journal contain brilliant proofs of the power of the instrument

in the hand of such a master. By his memoirs in 1841, Deformatione et proprietatibus

determinantium and De determinantibusfunctionalibus (Crelle, vol. XXII.), determinants

first became easily accessible to all mathematicians. Of later papers on this subject,

perhaps the most important are Cayley's papers on Skew Determinants (Crelle,

vols. xxxu. and xxxviii.). Of elementary treatises on this subject, I have to

mention Spottiswoode's Elementary Theorems relating to Determinants, London (1851) ;

Brioschi, La teorica del determinant^ Pavia, 1854
;
and Baltzer, Theorie und Anwen-

dung der Determinanten, Leipzig, 1857
;
second edition, 1864. French translations

both of Brioschi's and Baltzer's works have been published.

COMMUTANTS. (Page 8).

-

In connection with the umbral notation may be explained what is meant by

commutants, which are but an extension of the same idea. If we write for brevity

£, rj, for
-j- ,

-=-
,
it is easy to see what, according to the rule of the umbral notation,

is meant by
£> v, £

2
, £n, 1*1

£, V, P, £»?, t)
2

.

We compound the partial constituents in each column in order to find the factors

in the product we want to form, and we take the sum with proper signs of all possible

products obtained by permuting the terms in the lower row. Thus the first example
denotes £

2
. tj

2
-£»?.£»?, which is the Hessian ; and the second denotes

hich is the ordinary cubinvariant of a quartic.

Again, since multiplication is performed by addition of indices, it will be readily

understood that we can equally form commutants where the partial constituents are

combined by addition instead of by multiplication. Thus, considering the quantics

(«2 ,
av a$x, yf, (a t ,

a3 ,
«2 , a„ a^x, y)*,

the invariants in the last two examples may be written

1, 0, 2, 1, 0,

1, 0, 2, 1, 0,

which expanded are a2a — a
t
a

t ;
a
i
a2a — «4a 1

«
1 + &c.

All these commutants with only two rows may be written as determinants, but

it is a natural extension of the above notation to form commutants with more than

two rows, such as

f, v, 1, 0, p, Bh n".

I, n, 1, 0, p, £r,, n\

h v, l, 0, p, £„, n *.

£, n, h o, e, bh v
2
.

These all denote the sum of a number of products, each product consisting of as many
factors as there are columns in the commutant and each factor being formed by

PP
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compounding the constituents of the same column
;
and where we permute in every

possible way the constituents in each row after the first. Thus the first and second

examples denote the same thing, namely, the quadrinvariant of a quartic expressed

in either of the forms £
4
.t;

4 - 4£
3
tj .£?j

3
4- 3£V.£V or a

4
a - 4a8a, + Sa.zn2 ,

while

the third example £
8

. £V. ij
8 - <fcc. denotes the cubinvariant of an octavic given at

length, p. 134.

We have seen that the two invariants of a binary quartic can be expressed aa

commutants, but it will be found impossible to express in the same way the dis-

criminant of a cubic. Thus, the leading term in it being a3
2a 2 or £363*13^35 we are

naturally led to expect that it might be the commutant

£> '/, £> v,

& v, Z, v,

& n, E, v,

but this commutant, instead of giving the discriminant, will be found to vanish

identically. It may, however, be made to yield the discriminant by placing certain

restrictions on the permutations which are allowable. For further details I refer to

the papers of Messrs. Cayley and Sylvester in the Cambridge and Dublin Mathe-

matical Journal, 1852.

ON RATIONAL FUNCTIONAL DETERMINANTS.* (Page 14).

The determinants considered Ex. 5, 6, are particular cases of the important form

<f> {x), xff (x) ...

<t> (y), ^ (y) —

where <p (x), \]/ {x) denote rational integral functions of x, and
<f> (y) &c, <f> (z)., the

same functions of y, z, &c. respectively. Such a determinant may be briefly denoted

by its top line
| <p (x), \j/ (x) ...

|
. Thus the determinant Ex. (5) may be written

I 1, x, ^...x"- 1

I
. This last determinant we have seen has for its value

R^-^Or, 2,, *...);

by which notation Prof. Sylvester denotes the continued product of the differences

(x
-

y) {x
-

2) (x
-

id) ... x (y
-

z) (y
- w) ... x (z

-
w) &c.

This alternate pi-oduct is of the nature of a square root : its square we know is a

symmetrical function of x, y, z, &c, and is unaltered by any permutation of these

variables; but itself has two values corresponding to the different arrangement
of the variables, its sign being altered if we permute any two of the variables.

The function
| 1, x, ... xn~ l

|
was suggested by Cauchy as a symbolic representation

of a determinant, viz. expanding it as the sum of a series of terms ± y
lz2w3

...
,
and

changing the exponents into suffixes, or the term into x y l
z.,w3 ..., we have the

development of the determinant
X , Xi...Xn~i

y , yi-yn-i

* This note is, in substance, Professor Cayley's.
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It may be further remarked in passing, that any rational function of the variables

x, y, &c, which, however the variables are permuted, has only two values, is

necessarily of the form P + Q£ ,
where P, Q are symmetric functions of the vari-

ables.

Returning now to the general determinant
| <p (x), \j/ (x) ...

| ,
it obviously con-

tains £' as a factor, for on the supposition x — y, it vanishes as having two rows the

same, and is therefore divisible by x — y ;
and similarly with regard to every other

difference. Let us then in particular examine (2**, x/3, x7 ...), which we may call

(a, (3, y, ...) in order to find the value of the remaining factor. If a be the least

of these exponents, we may divide each row by x*, y*, ... respectively, go that we can

at once reduce the investigation to that of the case where a — 0.

In the following we employ a method given by Jacobi, Dt Functionibus Alter-

nantibus, Crelle 22, (1341) ; depending on the consideration of the determinant

For convenience we work with the case of threeix — a x — b' x — c'

variables, but it will be seen that the process is perfectly general. Consider then

the equation which is obviously true

1 1 1

x— a* x— b' x — c

1 1 1

y-a' y-b' y-c
I 1 1

e — a '

z — b' z — c

f {x, y, z) # (a, b, c)

(x- a) (x-b) (x- c) (y- a) (y -b) (y-c) (z-a) (z-b) (z-c)
'

and expand each side in the descending powers of x, y, z. We have

1 1 a a2

= - + — + -^ + &c.
x — a x x1 x3

xayPz'
1

a*\ bar\ c* »

a/3-
1
, 5/3-1, c/?-i

In order to expand the right-hand side, observe first that

1 1 E. E2
dec

(x
—

a) (x
—

b) {x
—

<) x3 x*

where IIv II2 &c. have the same meaning as at p. 243, as is easy to see by multiplying

together the expansions for -

_ &c. We have also J (x, y, z)
= -

Hence, the right-hand side is £* (a, b, c) multiplied by

I I +§ + &c, I +^ + &c, i + ^ + Ac.
I X3 X* X 2 Xs XX2

and the term multiplying the reciprocal of x'y'V is £' (a, b, c) multiplied by

E
,
E ,

H
*-3 *"2 *-lB
*-i

B
j-i y>

1, X, X2

1. sr, y*

1, z, z*
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ELIMINATION. (Page 53).

The name ' eliminant' was introduced I think by Professor De Morgan ;
I believe

I have done wrong in using a second appellation when a name to which there was

no objection was already in use. The older name • resultant' was employed hj Bezout,

Ilistoire de VAcademie de Paris, 1764. The method of elimination by symmetric
functions is due to Euler {Berlin Memoirs, 1748). The reduction of the resultant to

a linear system was made simultaneously by Euler {Berlin Memoirs, 1764) and Bezout

{Paris Memoirs, 1764). The theorem as to the degree of the resultant is Bezout's.

The method used in Art. 74 of forming symmetric functions of the common values

of a system of two or more equations in Poisson's (see Journal de V Ecole Polytechnique,

Cahier XI.). Sylvester's mode of elimination was given by him in the Philosojihical

Magazine for 1840, and called by him
'

dialytical,' because the process as it were dissolves

the relations which connect the different combinations of powers of the variables and

treats them as simple independent quantities. Cayley's statement of Bezout's method

is to be found, Crelle, vol. Lin., p. 366. Sylvester's results in Art. 91 are to be found

in the Cambridge and Dublin Mathematical Journal for 1852, vol. vil., p. 68
;
and

Cayley's general theory (Art. 92, &c.) in the same Journal, vol. ui., p. 116. It was

noticed by Lagrange, that when two equations have two sets of common roots, the

differential of the resultant with respect to the last term vanishes (see Berlin Memoirs,

1770). Sylvester showed, in January, 1853, that the same was true of all the

differentials, Cambridge and Dublin Mathematical Journal, vol. viii., p. 64. He
showed at the same time, that the common roots were given by the ratios of the

differentials. The proof in Art. 99 is, I believe, my own. The theorem, Art. 99, is

Jacobi's, Crelle, vol. xv., p. 105. In this part I have made some use of the Treatise

on Elimination by Fail de Bruno. The theorem of Art. 102 is Prof. Cayley's.

DISCRIMINANTS. (Page 92).

The word 'discriminant' was introduced by Sylvester in 1852, Cambridge and

Dublin Mathematical Journal, vol. vi., p. 52. The word 'determinant' had been

previously used, and had come to have a perplexing variety of significations. The

theorem referred to, Note, p. 96, was the basis of my investigations {Cambridge and

Dublin Mathematical Journal, 1847 and 1849) on the nature of cones circumscribing

surfaces having multiple lines. If the equation of a surface be b + b
x
x + b2x

2 + &c,
and if xy be a double line, b must contain y in the second, and b

x
in the first degree.

The discriminant with respect to a; is a tangent cone which has y
2 for a factor.

BEZOUTIANTS. (Page 98).

It has been shown (Art. 85) that the resultant of two equations of the nth degree is

expressed by Bezout's method as & symmetrical determinant. This may be considered

(Art. 118) as the discriminant of a quadratic function which Sylvester has called

the Bezoutiant of the system. When the quantics are the two differentials of the

Bame quantic, then if we resolve the Bezoutiant into a sum of squares (Art. 166), the

number of negative squares in this sum will indicate the number of pairs of imaginary
roots in the quantic. The number of negative squares is found by adding (as in

Art. 46) X to each of the terms in the leading diagonal of the matrix of the Bezoutiant,
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and then determining by Des Cartes' rule the number of negative roots in the equation

for \. The result of this method is to substitute for the leading terms in Sturm's

functions, terms -which are symmetrical with respect to both ends of the quantic ;

that is to say, which do not alter when for x we substitute -
(see Sylvester's Memoir,

Philosophical Transactions, 1853, p. 513).

LINEAR TRANSFORMATIONS. (Page 101).

The germ of the principle of invariance may be traced to Lagrange, who, in the

Berlin Memoirs, 1773, p. 2G5, established the invariance of the discriminant of the

quadratic form ax2 + 2bxy + cy
1

,
when for x is substituted x + \y. Gauss, in his

Disquisitiones Ariihmeticoz (1801), investigated very completely the theory of the general

linear transformation as applied to binary and ternary quadratic forms, and, in par-

ticular, established the invariance of their discriminants. This property of invariance

was shown to belong to discriminants generally by the late Professor Boole, who, in a

remarkable paper, Cambridge Mathematical Journal, 1841, vol. III., pp. 1, 10G, applied

it to the theory of orthogonal substitutions. He there showed how to form simultaneous

invariants of a system of two functions of the same degree by performing on the

discriminant of one of them the operation a'
j-

+ °' -jt + &c. Boole's paper led to

Cayley's proposing to himself the problem to determine a priori what functions

of the coefficients of an equation possess this property of invariance. He found that

it was not peculiar to discriminants, and he discovered other functions of the co-

efficients of an equation, at first called by him '

hyper-determinants,' possessing the

Bame property. Cayley's first results were published in 1845 (Cambridge Mathe-

matical Journal, vol. iv., p. 193). From this discovery of Cayley's, the modern algebra

which forms the subject of the bulk of this volume may be said to take its rise.

Among the first invariants distinct from discriminants, which were thus brought to

light, were the quadrinvariants of binary quantics, and in particular the invariant S
of a quartic. Mr. Boole next discovered the other invariant T of a quartic, and the

expression of the discriminant in terms of S and T (Cambridge Mathematical Journal,

vol. iv., p. 208). It is worthy of notice that both the functions 8 and T had been

used by Eisenstein (Crelle, 1844, xxvu., p. 81) in his expression for the general solution

of a quartic, but their property of invariance was unknown to him, as well as the

expressions for the discriminant in terms of them. Cayley next (1846) published

the symbolical method of finding invariants, explained in Lesson XIv. (Cambridge and

Dublin Mathematical Journal, vol. I., p. 104, Crelle, vol. XXX.). The next important

paper was by Aronhold, 1849 (Crelle, vol. xxxix., p. 140), in which the existence of

the invariants S and ^of a ternary cubic was demonstrated. Early in 1851 Mr. Boole

reproduced, with additions, his paper on Linear Transformations (Cambridge and

Dublin Mathematical Journal, vol. vi., p. 87), and Sylvester began his series of

papers in the same Journal on the Calculus of Forms, after which discoveries followed

in rapid succession. I can scarcely pretend to be able to assign to their proper
authors the merits of the several steps; and, as between Messrs. Cayley and

Sylvester, perhaps these gentlemen themselves, who were in constant communication

with each other at the time, would now find it hard to say how much properly

belongs to each. To Mr. Boole is, I believe, due the principle that in a binary

quantic the operative symbols j-,
- -r- may be substituted for x and y (Camh-idge

and Dublin Mathematical Journal, vol. vi., p. 95, January, 1851). The principle was
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extended to quantics in general by Sylvester, to whom is to be ascribed the general

statement of the theoiy of contravariants, Cambridge and Dublin Mathematical Journal,

(1857), vol. VI., p. 291
; although particular applications of contravariants had pre-

viously been made in Geometry in the theory of Polar Reciprocals, and in the theoiy
of ternaiy quadratic forms by Gauss {Disquisitiones Arithmetical, Art. 267), who

gives the reciprocal under the name of the adjunctive form, and establishes its

invariance under what he calls the " transformed substitution." Sylvester also re-

marked that we might not only replace contravariant by operative symbols, but also

by the actual differentials
j-, y, &c. To Boole I would ascribe the principle

(Art. 125) that invariants of emanants are covariants of the quantic (1842), Cambridge
Mathematical Journal, vol. III., p. 110, though Boole's methods were generalized by

Sylvester, Cambridge and Dublin Mathematical Journal, vol. VI., p. 190. Some
of the first steps in the general theory of covariants may thus be ascribed to Boole,

though a remarkable use of such a function had been made by Hesse in determining
the points of inflexion of plane curves. I had myself -been led to study the same

functions both for curves and surfaces, in ignorance of what Hesse had done

{Cambridge and Dublin Mathematical Journal, vol. II., p. 74). The discovery of

evectants (Art. 134) is Hermite's, Cambridge and Dublin Mathematical Journal, vol. VI.,

p. 292. In Cayley's first paper he gave a system of partial differential equations

satisfied by invariants of functions linear in any number of sets of variables. The

partial differential equations (p. 123) satisfied by the invariants and covariants of

binary quantics were, as far as I know, first given in print by Sylvester {Cambridge
and Dublin Mathematical Journal, vol. vii., p. 211). Sylvester there acknowledges
himself to have been indebted to an idea communicated to him in conversation by

Cayley ;
and he also speaks of having heard it said that Aronhold was also in pos-

session of a system of differential equations. These are not made use of in Aronhold's

paper {Crelle, vol. xxxix.) already referred to, but he refers, Crelle, vol. LXH.,
to a communication made by him in 1851 to the Philosophical Faculty at Konigsberg,

which, if it ever appeared in print, I have not seen. Very probably there may be other

parts of the theory to which Aronhold may justly lay claim. After the publication in

Crelle, vol. xxx., of Cayley's paper, in which the symbolical method of forming in.

variants was fully explained, Aronhold worked at the theory in Germany simultaneously
with the labours of Cayley and Sylvester in England ;

and the masteiy of the subject

exhibited by his papers leads me to suppose that of some of the principles he must

be able to claim independent if not prior discovery. The method in which the subject

is introduced (Art. 121) is taken from his paper {Crelle, vol. LXll). I refer in a

subsequent note to the valuable paper by Hermite {Cambridge and Dublin Mathematical

Journal, vol. IX., p. 172), in which the theorem of reciprocity was established, which

had at first suggested itself to Sylvester, but was hastily rejected by him, and in

which the whole theory of quintics received important additions. Mixed con-

comitants are Sylvester's {Cambridge and Dublin Mathematical Journal, vol. vii.

p. 80). The theorem, Art. 135, is Cayley's and Sylvester's. The application of sym-
metric functions to the invariants of binary quarries was, I believe, first made in the

Appendix to my Higher Plane Curves (1851). The method (Art. 139) of thence finding

conditions for systems of equalities between the roots is Cayley's {Philosophical

Transactions, 1857, p. 703). With regard to the subject generally, reference must
be made to the important series of papers by Sylvester, beginning in the sixth

volume of the Cambridge and Dublin Mathematical Journal; to a series of papers
on Quantics published by Cayley in the rhilosojihical Transactions ; and to Aronhold's

Memoir on Invariants {Crelle, vol. LXii.). The name '

invariant,' as well as much
of the rest of the nomenclature, is Sylvester's.
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CANONICAL FORMS. (Page 143).

The name is Hermite's; the theory explained in this Lesson is Sylvester's, see

a paper {Philosophical Magazine, November, 1851) published separately, with a sup-

plement, in the same year, with the title An Essay on Canonical Forms.

COMBINANTS. (Page. 154).

The theory of combinants is Sylvester's, Cambridge and Dublin Mathematical

Journal (1853), vol. vin., p. 63. In the case of the resultant of two equations it had,

I think, been previously shown by Jacobi, that the resultant of \u + fiv, \'u + fi'v

was the resultant of u, v multiplied by a power of {Xfx'
—

X'/x). Sylvester's results,

Arts. 185, 189, 192, are given in the Comptes Rendus, vol. lviii., p. 1071.

% APPLICATIONS TO BINARY QUANTICS. (Page 167).

The discussion in this Lesson of the quadratic, cubic, and quartic, is mainly
Prof. Cayley's. See his Memoirs on Quantics in the Philosophical Transactions, 1854.

The second form of the resultant of two quadratics, p. 172, is, as elsewhere stated,

Dr. Boole's. The discussion of the systems of quadratic and cubic, two cubics, and

two quarries, is, I believe, for the most part new. The form for the resultant of two

cubics, p. 181, has been published by Clebseh (Crelle, vol. lxiv., p. 95), and was

obtained by him by a different method, but had been previously in my possession

by the method here given. Sylvester proved (Philosophical Magazine, April, 1853)

that every invariant of a quartic is a rational function of S and T. The theorem,
Art. 213, that the quartic may be reduced to its canonical form by real substitutions,

is Legendre's (Traite des Fonctions Elliptiques, chap. II ). The canonical form of

the quintic ax5 + %5 + cz5
,
which so much facilitates its discussion, was given by

Sylvester in his Essay on Canonical Forms, 1851. The invariants J and K were

calculated by Prof. Cayley. The value of the discriminant and its resolution into

the sum of products (p. 209), was given by me in 1850 {Cambridge and Dublin

Mathematical Journal, vol. v. p. 154). Some most important steps in the theory
of the quintic were made in Hermite's paper in the Cambridge and Dublin Mathe-

matical Journal, 1854, vol. IX., p. 172, where the number of independent invariants

was established, the invariant i" was discovered
;
attention was called to the linear

covariants, and the possibility demonstrated of expressing by invariants the conditions

of the reality of the roots of all equations of odd degrees. The theory of the quintic

was further advanced by Sylvester's "Trilogy" {Philosophical Transactions, 1864,

p. 579) ;
and in Hermite's series of papers in the Comp>tes Rendus for 1866 already

referred to. The values of the invariants A, B, C of the sextic were given by
Prof. Cayley in his papers on Quantics, and the existence of the invariant E pointed

out. The rest of what is stated in the text about the sextic is new.

THE QUINTIC. (Page 206).

With respect to the special form x {x
2 — a2

) {x
2 - b2) used, p. 266, it was remarked,

p. 213, that its characteristic is that Hermite's invariant / vanishes. This form
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may therefore be safely used in calculating any invariant function whose order is

divisible by 4 and is below 36, since such forms cannot contain I. For the calculation

therefore at p. 226, it was sufficient to use this special form. More generally, if the

alternate terms be wanting in any equation, every skew invariant vanishes. For

the weight of a skew invariant is an odd number
;
and if the degree of the equation

be odd, the order of every invariant is even. Now an odd number can neither be

made up as the sum of an even number of odd numbers, nor of any number of

even numbers. In the special form just referred to, x and y are the linear covariants.

Until my attention was called to it by Sylvester, I had omitted to notice

(Art. 231) the use made by M. Hermite of the fact, that the quintic as well as every

equation of odd degree is reducible to a forme-type, in which the x and y are the

linear covariants and the coefficients are invaiiants. It follows immediately, that

by applying Sturm's theorem to the forme-type, the conditions for reality of roots

may be expressed by invariants. Hermite extends his theorem to equations of even

degree above the fourth, by the method explained at the end of the next note.

I think it therefore worth while now to give the coefficients of the forme-type of the

quintic. They were given by Hermite {Cambridge and Dublin Mathematical Journal,

vol. ix. p. 193), and re-calculated by me before I found out the key for the translation

of Hermite's notation into Sylvester's, which is A = J, J2
— — K, Jz

— JK + 9L.

I write now J2 - 3K = Jif, JK + 9L = N
;
and Q a numerical multiple of Hermite's /,

such that

Q2 = JK2M2 - 2MNK {J
2 + 12K) + JN2

{J
2

4- 72K)
- ±8N3

,

then the coefficients of theforme-type are

- A - QM,

B = JKM 2 - MN {J
2 + 18K) + 30JN2

,

C=Q(JM-12N),
D = J2KM2 - JMN (J

2 + 30^) + N2
(42/

2 + 144^),

E - Q {J
2M - 2iJN),

F- J3KM* - J*MN (J
2 + 42K) + N2J (54/

2 + 288K) - 1152iV3
.

I thus find the first Sturmian constant B2 — AC to be

36iV 2 {{MK- 5JN)2 - 16MN2
}.

The Sturmian constants being essentially unsymmetrical, there seems no reason to

expect that the discussion of these forms would lead to any results of practical interest.

The coefficients of theforme-type, as M. Hermite remarked, satisfy the relations

AJ2 -2CJ+E = 0, BJ2 - 2DJ+ F= -
11522V»,

AE - ABD + 3C2 = - 12W5
,
AF - ZBE + 2CD = 0, BF - ACE + 3D2 = 12ViV*.

Thus then the quadratic covariant is N5
(x

2 - Jy
2
) ;

and operating with this on the

quintic, we get the canonizant in the form

N* (AJ -C, BJ- D, CJ-E, DJ-F Jx, y)
3

;

the coefficients inside the parentheses being all further divisible by N. Hence we have

ACE + 2BCD - AD2 - EB2 - C 3 = - 4. 12*iY6
Q,

and the second Sturmian constant is got immediately by substituting the values just

found for B2 - AC, AE - 4BD + 3C2
,
ACE + 2BCD - &c, in the formula of Art. 235.

I have not thought it worth while to calculate the third constant.

QQ
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THE SEXTIC. (p. 237).

It ought to have been mentioned that since the vanishing of E is the condition

that the roots form a system in involution we have at once the expression for E in

terms of the roots ; viz. it is the product of the fifteen determinants of the form

1,1,1
a + ft, y + 8, e + <

aft , yd , i<p

THE TSCHIRNHAUSEN TRANSFORMATION.

The Tschirnhausen transformation consists in taking a new variable

y
— a + ftx + yx

2 +...+ Xxn~ l
;

then there are n values of y corresponding to the n values of x, and the coefficients

of the new equation in y are readily found in terms of those of the given equation by
the method of symmetric functions, the first for example being asQ + ftst + ys2 + ^c «

The coefficient of y^1 is evidently a linear homogeneous function of a, ft, &c, that

of jr"-
2 a quadratic, of y"~

3 a cubic function, and so on. In the case of the quintic,

the transformation is y = a + ftx + yx2 + 8x3
,
and we have four constants a, ft, y, 8

at our disposal. Mr. Jerrard pointed out that the coefficient of y
3
being a quadratic

function of a, ft, y, 8 was (Art. 165) capable of being written as the algebraic sum
of four squares, say t

2 — u2 + v2 — w2
. It can therefore be made to vanish, by

assuming two linear relations between a, ft, y, 8
;

t — u — 0, v — w —
0. If we combine

with these two that linear relation which makes the coefficient of y* vanish, we have

three relations enabling us to express three of the constants a, ft, y, 8 linearly in terms

of the fourth. "We can then by solving a cubic only make the coefficient of y
2

also vanish, or else by solving a biquadratic make the coefficient of y vanish. In this

way Mr. Jerrard showed, that by the solution of equations of inferior orders, a quintic

may be reduced to either of the trinomial forms y
b + by = c, or y

i + by
2 = c. The

actual performance of the transformations would be a work of great labour, but

M. Hermite showed how, by somewhat altering the form of substitution, we can

avail ourselves of the help of the calculus of invariants.

If we have to transform the equation axn + bx*' 1 + cxn
~2 + &c, Hermite's" form

is to take

y = a\ + (ax + b) a + (ax
2 + bx 4 c) ft + (ax

3 + bx2 + ex + d) y + &c,

then in the first place the transformed equation will be divisible by a
;
and secondly,

if the given equation be linearly transformed, and if the corresponding substitution

for the transformed equation be

Y= AX' + (AX+B) a' + (AX 2 + BX + C) ft' + &c,

then he has shewn that the expressions for a', ft', &c. in terms of a, ft, &c. involve

only the coefficients of linear transformation, and not those of the given equation.
It is not so with respect to the first coefficient X, which we have therefore designated

by a special letter. But the theory of linear substitutions will be directly applicable
to all functions of the coefficients of the transformed equation which do not contain X.

Such, for example, will be all symmetric functions of the differences of the roots of

the new equation, since, on subtracting

y, = oX + (oar, + b) a + &c, ys
- aX + (ax, + b) a + &c,
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X disappears. Or, what comes to the same thing, if we take \ such that the coeffi-

cient of y
n~ x in the new equation shall vanish, then the theory of linear substitutions

is applicable to all the coefficients of the transformed. I give Cayley's proof of

Hermite's theorem, and, after his example, take, to fix the ideas, the quartic

(a, b, c, d, e$x, I)
4
.

Then, as we have used binomial coefficients, the equation of transformation Is

y = a\ + (ax + 46) a + (ax* + Abx + 6c) /3 + (ax
3 + ibx* + 6cx + 4a*) y.

Adding the 4 values of y, and observing Newton's formulae for the sums of powers

of the roots, we see that the coefficient of y
n~ l in the transformed eqnation will

vanish if

a\ + 8ba + 3c/3 + dy = 0.

This reduces the value of y to

(ax + b) a + (ax* + 4&c + 3c) (3 + (ax
3 + ibx* + 6cx + 8d) y.

[In general it will be observed, that in this substitution all the terms have the

binomial coefficients corresponding to the order of the given equation, except the

terms not involving x, which have the binomial coefficients answering to the order one

lower.] Now what is asserted is, that all the coefficients of the transformed equation

will be invariants of the system

(a, b, c, d, e$x, y)\ (a, /8, yjy,
-

x)*,

and of course if we regard y as constant, the whole transformed function will be such

an invariant.

This will be proved by showing that it is made to vanish by either of the operations

d _ d _ T d d /_ A d d

Let the general substitution be y = V, and let Vv V2 ,
&c. be what V becomes when

we substitute for x each of the roots of the given equation, the transformed in y is

the product of the factors y — V
lt y — V2 , &c, and it is sufficient to prove that each

of these factors is reduced to zero by this differentiation. We may, as in Art. 60,

d dV
write the first part of the first operation ^y ,

and in order to calculate -~? > we must

dx
first find -^ . Operating on the given equation, we get

(a, b, c, djx, l)
3

J + («, b, c, d$x, 1)» = 0, or ^ = -
1.

The part then of the differential of V which depends on the variatiou of x is

-
{aa + (2ax + Ab) (3 + (3ax* + Sbx + 6c) y),

and the part got by directly operating on the a, b, &c. which explicitly appear in V is

aa + (4a« + 6b) /3 + (4ax
2 + 125a; + 9c) y.

Adding, we have

dV dV dV

j£=2(ax
+ b)p + (ax* + ±bx + 3c) y

-
2/3 ^-

+ y ^ ,

which proves that the effect of the first operation on V is zero.
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In like manner, for the second operation, we have, by operating on the original

equation,

(a, b, c, djx, l)
3 ~-f x (b, c, d, ejx, 1)» = 0.

But the original equation may be written

x (a, b, c, d£x, l)
3 + (b, c, d, e$x, l)

3 = 0.

Hence -3- = x2. The part of -r- due to the variation of x is therefore

ax2a + (2ax
3 + Aba?) /3 + (3ax* + 8&r» + 6cx2

) y.

The remaining part is

(ibx + 3c) a + (4&c
2 + 12ca; + 6d) /3 + (4Js« + 12cz2 + 12da: + 3e) y.

Adding, the coefficient of y vanishes in virtue of the original equation, and the

remaining part is found to be
dV 00 dVa
dp

+2
Pdy>

which completes the proof of the theorem.

When this transformation is applied to a cubic, if we consider a, (3 as variables,

the coefficients of the transformed equation in y will be covariants of the given equa-

tion. The transformed in fact has been calculated by Prof. Cayley, and found to be

y
3 + BHy + J, where H is the Hessian (ac

— b'
2
)

a'2 + &c, and / is the covariant

(Art. 142), (a
2d - 2abc + 2b3

)
a3 + &c.

Prof. Cayley has also calculated the result of transformation as applied to a quartic.

Take the two quantics

(«, b, c
s d, ejx, y)\ (a, ft yjjj,

-
x)

2
.

Let A denote the invariant got by squaring the second equation, introducing

differential symbols and operating on the first, viz.

act? + Abaj3 + c (2ay + 4ft
2

) + 4d(3y + ey
2

;

and let B denote the invariant got by operating similarly on the Hessian of the

first, viz.

(ac-b
2
) (a

t
+2(ad-bc) a/3+ (ae-2bd+c2

) ay+ 4(bd-c
2
)p

2
+2(be- cd)(3y + (ce-d

2
) y2

;

let C denote the result of operating with the cube of the quadratic on the covariant

J of the quartic, viz.

(a?d
- 3abc + 2b3

)
a3 + (a

2e + 2abd - 9ac2 + 6b2c) a2
(3 + (abe

- Sacd + 2b2d) a2y

+ (Aabe
- 12acd + 8b2d) a/3

2 - 6 {ad
2 - b2e) a(3y

- 4 (ad
2 - b2e) p*

+ (ade
- 3bce + 2bd?) ay

2 -
(Aade

- \2bce + Sbd2) fi*y

-
(ae

2 + 2bde - 9c2e + 6cd2
) (3y

2 -
(be

2 - Bcde + 2d3
) y

3
;

let 8 and T denote the two invariants of the quartic, and A the discriminant

ay — ft
2 of the quadratic, then the transformed equation in y is

y* + (65 - 2SA) y
2 + iCy + SA2 - SB2 + S 2A2 + 12TAA + 2SBA.

Prof. Cayley has also calculated the S and T of the transformed equation. In

making the calculation, it is useful to observe that since the square of J, from which C
was derived, can be expressed in terms of the other invariants, so also may the square
of C

;
the actual expression found by him being

- C 2 - TA 3 - SAW + AB 3 + (S
2A2 - 127115 - iSB2

) A + 8STAA2 + 16T2A3
.
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The result then is that the new S is

and the new T is TA3 + %S
2A2A + 4STAA* + A 3

(1GT
2 - frS

3
).

Finally, he has observed that these are the 8 and T of AU + 4All, as may be

verified by the formulae of Art. 217. It follows, then, that the effect of the Tschirn-

hausen transformation is always to change a quartic into an equation having the same

invariants as one of the form U + XII, and, therefore, reducible by linear transformation

to the latter form. The foregoing results are reproduced, and the corresponding

results for the quintic are obtained in Prof. Cayley's Memoir on Tschimhausen's

Transformation, Phil. Trans., vol. CLll. (1862). He writes B, C, D ... in place of the

coefficients above represented by a, /3, y ..., the transformation formula for the quintic

equation

(a, b, c, d, e,jl£x, l)
5 = 0,

thus ia y = (ax + b) B
+ (ax

2 + hbx + 4c) C

+ (ax
3 + hbx2 + Wcx + 6d) D

+ (ax* + hbx3 + 10cx2+ lOdx + 4e) E,

giving for y an equation of the form

(1,0, er, m, % dFl^,i)
5 =

o,

where ©* ID, 3E, $ are given functions, each of them homogeneous of the same

order separately as regards the coefficients a, b, c, d, e, f, and B, C, D, E, viz. the

orders for ©, J9, IS, ^ are 2, 3, 4, 5 respectively ;
the values are however too long

for quotation.

The following is the form in which M. Hermite presented his theory, and applied
it to the case of the quintic.

Let u be a quantic (x, y)
n

;
u

x ,
u2 its differentials with regard to x and y ;

let cp be

a covariant, which we take of the degree n — 2 in order that the equation we are about

to use may be homogeneous in x and y; then the coefficients of the transformed

yd>
equation, obtained by putting z = —

,
are all invariants of u. The equation in z isu

i

got by eliminating x and y between zu
x

—
yd> = 0, and u — 0, or, what comes to the

same thing, zu2 + xd> = 0, which follows from the other two. If we linearly trans-

form x and y, the new equation in z is got, in like manner, by eliminating between

zUx
- F* = 0, zU2 + X* = 0. But, if x = XX + fiY, y = X'X + fi'Y, A =V -

X'fi,

we have AX = fix
—

fiy, AY=Xy — X'x, and, Art. 130, £7,= Xut + X'u2 ,
U2 = fiux + /x'u^

and, since
<^>

is a covariant, we have <£ = A {
d>. Making these substitutions, the equa-

tion in z, corresponding to the transformed equation, is got by eliminating between

z (Xux + X'u2)
- A*'-1

*/) (Xy
-

X'x) = 0, z (mmx + /x'u2) + A*'- 1^ (ji'x
-

fiy)
= 0.

Multiply the first by yu.',
the second by X', and subtract, and we have Azu

x
— Al

y<p = 0.

In like manner, multiplying the first by /x, the second by X, and subtracting, we get
Azu2 + A fxd) = 0. In other words, we have the two original equations, except that z

z
is replaced by —v^ . Consequently, the equations in z corresponding to the original

equation, and to the same linearly transformed, only differ in having the powers of z

multiplied by different powers of the modulus of transformation A, and therefore the

several coefficients of the powers of z are invariants.
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The actual form of the equation in z will be

zn 4- ^ zn
'2 +

-p
zn

~3 + &c. = 0.

It is easy to see that the discriminant will appear in the denominator ;
and the co-

efficient of xn~ l will vanish, since, if <p be any function of the order n — 2, the sum of

the results of substituting all the roots of U in — vanishes. In fact, when the terms

of this sum are brought to a common denominator, the numerator is the sum of <£cc

multiplied by the differences of all the robts except a, and this is a function of the

order n — 2 in a, which vanishes for n — 1 values of a, a = /3,
a = y, &c, and must

therefore be identically nothing.
In applying this method to the quintic (x, l)

5
,
Hermite substitutes

zU
l
=

a<j> x + /3<£2 + y03 + <5tf>4 ,

where
<f> lf <p2, <f> 3 , </>4 are four covariant cubics of the orders 3, 5, 7, 9 respectively in

the coefficients
; <p x

is the canonizant, <p2 is the covariant cubic T of the fifth order,

see p. 216
;
and for the general equation, its leading term or source, whence all the

other terms can be derived, iB

a?cef- Za*&f+ 2a2de* - ab*ef+ Uabcdf- Uabcd1 - abdT-e - 9ac3/+ liatfde

- 6acd? - 8b*df+ W& + 66V/- 16b2cde + 8b"d* + ZbcH - 2bc2cP.

On inspecting this, we see that it vanishes if both a and b vanish
; consequently, if

the given quintic has two equal roots, their common value satisfies this covariant.

We can form a covariant cubic of the seventh order from <£2 in the same way that (ps

was formed from
<f>u and by adding <pv multiplied by / and a numerical coefficient,

can obtain <p3 ,
such that its source vanishes when a and b vanish

; and, in like manner

4 can be made to possess the same property. When this substitution is made, the

coefficient of z3 is a quadratic function of a, /3, y, <$. Hermite finds for its actual

value (a result which may be verified by working with the special form, note, p. 227).

{Fa? + QKDay - D {F + 10JK) y
2
} + D {Kp

2 + 2F(38
- (9KD + 10AF) 62},

where F= 9 (16L — JK), and vanishes when the quintic has two distinct pairs of

equal roots. By breaking up into factors each of the parts into which this coefficient

has been divided, the two linear relations between a, y ; /3, 8, which will make it

to vanish, can readily be obtained
;
as also by another process which I shall not delay

to explain. The discussion of this coefficient is also the basis of Hermite's later

investigations as to the criteria for reality of the roots. He avails himself of a

principle of Jacobi's (Crelle, vol. L.), that if a, (3, y, &c. be the roots of a given equa-

tion, and if the quadratic function

(t + uu + a*v +...a"- 1

ttf)
2 + (t + (3u + /3

2u + &c.)
2 + &c,

be brought by real substitution to a sum of squares, the number of negative

squares will be equal to the number of pairs of imaginary roots in the equation.
Hermite shows, by an easy extension of this principle, that the number of

pairs of imaginary roots of the quintic is found by ascertaining the number of

negative squares, when the coefficient of z3 just written is resolved into a sum of

squares. And since the same process is applicable to every equation whose degree
is above the fourth, he concludes that the conditions for reality of roots in every
equation above the fourth can be expressed by invariants.
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NOTE ON THE ORDER OF SYSTEMS OF EQUATIONS. (Page 238).

Prof. Cayley, in the Cambridge and Dublin Mathematical Journal, vol. IV., p. 134,

determined the order of a matrix with k rows and k + 1 columns, in the particular

case where each constituent is of the first degree. My own investigations were pub-

lished, Quarterly Journal, vol. L, p. 246, and in the Appendix to my Geometry of
Three Dimensions, second edition. After the lesson was printed in the second edition,

Mr. Samuel Roberts communicated to me some extensions of the theory there

developed, and his results have since been, published, Proceedings of the London

Mathematical Society, March, 1875. His method is to suppose each quantic

resolved into factors, and to deal with the combinations of the factors into which

the quantics have been broken up. The method is directly applicable to binary

quantics which can always be resolved into factors, and in the case of ternary

and higher quantics, it would seem that the question whether or not they can be so

resolved does not affect the problems here discussed, and that the orders determined

in the case of quantics which are the products of factors must be generally true. Thus,

to determine the order of the resultant of two binary quantics of the degrees m, n;

if the order of the terms in the first be X, X + a, X + 2a, &c, it may be resolved

into the product of m factors ax + by, the orders of a and b being
—

,
—

(- a re-

spectively ; similarly, for the second quantic ;
and the resultant is the product of mn

factors, the order of each being 1 ha; and, therefore, mn times this number willm n

be the order of the resultant. Now he argues that we may deal in the same manner

with the problem in Art. 263
;
that knowing, by Art. 258, the order of the matrix

a, b to be a- + (\ + n + v) a + \f* + [xv + i/\, the orders of the rows being

a', b'

a", b"

supposed to be X, X + a
; ft, fx + a; v, v 4- a

;
then we may conclude that the order

of the system of conditions for the simultaneous existence of three equations of

orders
/, m, n is

X ix v\ \tx iiv vX)

I \l m nj lm mn nl)

And in like manner, that the order of conditions for the co-existence of a system of

k + 1 binary quantics is the product of their degrees multiplied by

a* + P1
a*-i + P2a*-

2
+...P*,

where Plf
P2 ,

&c. are the sum, sum of products in pairs, ifec. of the numbers
-j

,

—
,
&c.

And so more generally, the order of the conditions for the co-existence of any number

of quantics in any number of variables is derived from the order determined by
Art. 258 for the co-existence of a system of linear equations. He find thus that the

order of conditions for the co-existence of k+s— 1 homogeneous quantics in s variables,

in which the order of the coefficients of x l

,
xuxy, x

l~ x

z, &c. is X, X + a, X + /3, <fec. is

the product of their degrees multiplied by

Hi + Uic-yP + ITk-2a + &C.,

where Sk has the same meaning as at p. 243, and P, Q, &c. are the sum, sum of pro-

ducts in pairs, <fec. of the numbers -
7 ,

— Ac. Thus, for instance, this formula appliedcm
to the case of ternary quantics gives the order of the conditions that a curve should
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have a cusp. We determine by the formula the order for the co-existence of

T7V U2,
U3,

Un Z7W - Z7i2
2
,
which system belongs either to cusps or double points on

the line z, and we subtract the order for the co-existence of U
1}
U2,

U3 , z, which

belongs to the latter. His result is

12 (»
-

1) (*
-

2) X
2 + 8n (n

-
1) (

n - 2) (o + j8) X + 2» (n
-

1) (»
-

2) (n + 1) a/3

+ 2n(n- l)
2
(n
-

2) (a
2 + /S

2
).

The problem of finding the order of conditions that two binary quantics should have

two common roots is discussed as follows : Consider first the simpler system, formed

by taking two factors from each equation, {ax + by) (a'x+ b'y) (a"x+ b"y) (a'"x+ b"'y),

and we have the pair of conditions (ab") (a'b") = 0, (ab'") (a'b'") = 0, whose order

combined is 4 (X + fi + a)
2

;
but from this we must subtract the irrelevant systems

(ab") (ab'"), (a'b") (a'b'"), which reduces the order to 2 (X.+ fx+ a)
2

. But if we take

two factors from the first equation and one from the second,the system (ab") = 0, (a'b")=0

is satisfied by a" = 0, b" = 0, whose order is fx (fi + a). Now since the number of

ways in which two factors of the first equation may be combined with two of the

second is %l (I— I) x %m (m — 1), and the number of ways in which one of the second

may be combined with two of the first is %l (I
—

1) m ;
the resulting order in general is

!M1 _
11(,. I) gti

' +
.)'

tli, (». 1))g t
.)
tH|M)5(?+ .).

By the same process of reasoning he arrives at the order of the conditions (Art. 282)

that three ternary quantics should have two points common, in the form

{him (I
-

1) (m - 1) (n
-

1) + 2ffinA (m - 1) (n
-

1)} ft + £ +
V- + a + a^

In this way the order of conditions that a curve should have two double points i3

found to be

$(»_!)(»_ 2)
2
(n + 1) {3X + n (a + a')}

2

-
£ (n

-
1) (n

~
2) {15X

2 + 10» (a + a') X + n (n + 6) ar,' + 2n (2»
-

3) (a
2 + a'2)}.

Mr. Roberts investigates other problems by the same method
; as, for instance, the

order of conditions that four curves may have two points common, or that a surface

may have a bi-planar double point. For these I must refer to his paper. I only give

the following result : The order of conditions that three binary quantics should have

two roots common is

hlmn(l-l)(m-i)(n-l)^£
+ vv J.

"x
J_ „

1 j + a
mn nl
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In the preceding pages, the equations are usually written with binomial coefficients,

but as in practice it is often necessary to apply formulae to equations not so written,

we give for convenience some of the principal results of elimination as applied to

equations written without binomial coefficients.

1. The resultant of the two quadratics

(A, B, C\x, y)
2

, {a, b, c\x, ?j)
2 is {Ac

-
Ca)

2 - {Ab - Ba) {Be
-

Cb),

or u2
<?

2 - abBC + ac (B2 - 2AC) + b2AC - bcAB + c2A2
.

2. The resultant of the quadratic {A, B, C^x, y)
2 and the cubic {a, b, c, dXx, y)

2
,
is

a2C 3 - abBC2 + acC {B
2 - 2AC) - ad {B

3 - 3ABC)
+ b2AC2 - bcABC + bdA {B

2 - 2AC) + c2A2C - cdBA 2 + d2A\

3. The resultant of quadratic and quartic is

a2C* - abBC3 + acC 2
{B

2 - 2AC) - adC {B
3 - 3ABC)

+ ae (B* - 4B2AC+ 2A2C2
) + b2AC 3 - beABC 2 + bdAC {B

2 - 2AC)
- beA {B

3 - 3ABC) + c2A2C2 - cdA2BC + ceA2
{B

2 - 2AC) + cPA3C - deA3B + e2A\

4. The resultant of quadratic and quintic is

«2C5 - abBC4 + acC3
{B

2 -2AC)- adC2
{B

3 - 3ABC)
+ aeC (5*

- 4AB2C + 2A2C2
)
- af {B*

- 5B3AC + 5A2BC2
)

+ b2AC* - beABC 3 + bdAC2
{B

2 -2AC)- beA C {B
3 - 3ABC)

+ b/A {B*
- 4:AB2C+ 2A2C2

) + c2A2C 3 - cdA2BC2 + ceA2C {B
2 - 2AC)

- cfA
2
{B

3 - 3ABC) + d2A 3C2 - deA 3BC + d/A
3
{B

2 - 2AC)

+ e2AiC-e/BA*+f2A5
.

5. Discriminant of cubic is

27A2D* + 4:AC3 + 4:DB3 - B2C2 - 18ABCD.

6. Resultant of two cubics {A, B, C, L-\x, y)
3

, {a, b, c, d\x, y)
3

.

The value expressed in terms of the determinants of the form Ab - Ba is given
in p. 72 and p. 182. Expanded it is

a3D3 - a2bCD2 + a2cD (C
2 - 2BD) - a2d {C

3 -3BCB + 3AD2
)

+ ab2BD2 - abcB {BC-3AD) + abd {BC2 - 2B2D - ACD)
+ acW {B

2 -2AC)+ acd {2AC2 + ABB - B2
C) + ad2 (B

3 - 3ABC + 3A2
B)

- ¥AB2 + b2cACB - bHA {C
2 - 2BB) - be2ABB + bcdA {BC - 3AB)

- bd?A {B
2 -2AC)+ c3A2B - c2dA2C + cd?A2B - d3A3

.

The other invariants of a system of two cubics are given (p. 182).

RR
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7. The resultant of cubic

(A, B, C, B\x, y)
3 and quartic (a, b, c, d, e\x, y)* is

a 3B* - a2bCB3 + a2cE2
(C

2 - 2BB) - a2dB (C
3 - 3BCB + 3AB2

)

+ a2e (C* - 4BC2B + 2B2B2 + 4ACB2
) + ab2BB3 - abcB2 (BC - BAB)

+ abdB {BC2 - 2B2B - ACB) - abe (BC3 - 3B2CB - AC2D + 5ABB2
)

+ ac2B2
(B

2 - 2AC) + acdD (2AC
2 + ABD - B2

C)

+ ace (BtC
2 -2AC3 - 2BB3 + 4ABCB - 3A2D2

)

+ ad2D (B
3 - 3ABC+3A2

D) - ade (B
3C-3ABC2 - AB2D + 5A2

CB)

+ ae2
(B*

- 4AB2C + 2A2C2 + 4A2BB) - FAB3 + b2cACD2

- b2dAB (C
2 - 2BB) + b2eA (C

3 - 3BCB + 3AB2
)
- bc2ABB2

+ bcdAB (BC - 3AB) + bceA (2B
2B + ACD- BC2

)
- bdPAB (B

2 - 2AC)
+ bdeA (B

2C -2AC2 - ABB) - be2A (B
3 - 3ABC + 3A2

B)

+ c3A2B2 - c2dA2CB + c2eA2
(C

2 - 2BB) + cd 2A2BB- cdeA2 (BC-3AB)
+ ce2A2

(B
2 -2AC)- d3A3B + dHA3C - dc2A3B + e3AK

8. The discriminant of a quartic written with binomial coefficients, expanded is

a3e3 - I2a2bde2 - 18a2c2e2 + b4a2cd2e - 27a2di + 54ab2ce2 - 6ab2d2e - 180abc2de

+ 108abcd3 + 81ac4e - bla&d2 - 27bie2 + I08b3cde - teb3d? - 5U2c3e + 3Qb2c2d2 ,

9. The discriminant of a quartic written without binomial coefficients is

4 (12ae
- 3bd 4- c2)

3 -
(72ace + 9bcd - 21ad2 - 27eb2 - 2c3

)
e

,

or expanding and dividing by 27,

256a3e3 - 192a2bde2 - 128a2c2e2 + lUa2cd2e - 27a2d* + lteab2ce - Gab2d2e

- 80abc2de + 18abcd3 + 16ac4e - 4ac3d2 - 27b*e2 4- 18b3cde - 4b3d3 - 4b2c3e + b"-c
2d2 .

10. The resultant of the two quartics

(A, B, C, B, E\x, y)\ (a, b, c, d, ejx. y)\

expanded is (see also p. 201),

aiE i - a3bBE 3 + a3cE 2
(B

2 - 2CE) - a3dE (B3 - 3CBE + 3BE2
)

+ a3e (B*
- 4CB2E + 2C2E 2 + ABBE2 - 4AE 3

) + a2b2CE 3

- a2bcE2 (CB - 3BE) + a2bdE (CB2 - 2C 2E - BBE + AAE2
)

- a2be (CB3 - 3C2BE - BB2E + 5BCE 2 + ABE 2
) + a2c2E2

(C
2 - 2BB)

- a2cdE (C
2B - 2BB2 - BCE + 5ABE)

+ a2ce (C
2B2 - 2BB3 - 2C3E + ABCBE + 2AB2E - 3B?E 2 + 2ACE2

)

+ atdtE (C
3 -3BCB + 3AB2 + 3B2E - 3ACE)

- a2de (C
3B - 3BCB2 + 3AB3 - BC 2E + bB 2BE - 2ACBE - 5ABE2

)

+ a?e2 (C* - 4BC2B + 2BT-B2 + AACB2 + ±B 2CE - 2AC2E - 9ABBE + AA2E 2
)

- ab3BE 3 + ab2cE 2 (BB -4AE)- abHE (BB2 -2BCE- ABE)
+ ab2e (BB3 - 3BCBE - AB2E + BBtE 2 + 2ACE2

)
- abc2E 2 (BC - 3AB)

+ abcdE (BCB - 3AB2 - 3B2E + 4ACE)
- abce (BCB2 - 3AB3 - 2BC2E - B2BE + 8ACBE - 2ABE 2

)

- abd2E (BC2 - 2B2B - ACB + 5ABE)
+ abde (BC2B - 2B2B2 -ACB2 - B2CE + 10ABBE - 8A2E2

)
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- abe2 (BC 3 - 3B2CE - AC2E + bABE2 + 3B3E - 2ABCE - bA2EE)
+ ac3E2

(B
2 -2AC)- acHE (B

2E - 2ACE - ABE)
+ ac2e (B

2E2 - 2ACL"1 - 2B2CE + AAC2E - AA2E2
)

+ acd2E (B
2C -2AC 2 - ABE + AA2E)

- acde (B
2CE - 2AC2E - ABE2 - 3B3E + 8ABCE - 2A2EE)

+ ace2
(B

2C2 - 2AC3 - 2B3E + 4ABCE - SAW2 + 2AB2E + 2A2CE)
- ad3E (B3 - 3ABC + 3AW) + acPe {B

3E - 3ABCE + 3A2E2 - AB2E + 2A2CE)
- ade2 (B

3C - 3ABC2 - AB2E + bA2CE + A2BE)
+ ae3 (B*

- 4:AB2C + 2A2C2 + 4A2BE - ±A3E) + b*AE 3 - b3cAEE2

+ b3dAE (E2 -2CE)- b3eA (E
3 - 3CEE + 3BE 2

)

+ b2c2ACE2 - b2cdAE (CE - 3BE) + b2ceA (CE2 - 2C2E - BEE + 4AE 2
)

+ b2d2AE (C
2 - 2BE + 2AE) - VdeA (C

2E - 2BE2 - BCE + 5AEE)
+ b2e2A (C

3 - 3BCE + 3AE2 + 3B2E - 3ACE)
- be3ABE 2 + bc2dAE (BE - ±AE) - bc2eA {BE2 -2BCE- AEE)
- bcd?AE (BC- 3AE) + bcdeA (BCE - 3AE2 - 3B 2E + ±ACE)
- bee2A (BC2 - 2B2E - ACE + 5ABE) + bd3AE (B

2 - 2AC)
- bd2eA (B

2E -2ACE- ABE) + bde2A (B
2C - 2AC2 - ABE + 4,A2E)

- be3A (B
3 - 3ABC + 3A2E) 4- &A2E2 - c3dA2EE + c3eA2

(E
2 - 2CE)

+ c2d2A2CE - c2deA2 (CE - 3BE) + c2e2A2
(C

2 - 2BE)
- cd 3A2BE + c<T-eA2 (BE - ±AE) - cde2A2 (BC- 3AE) + ce3A2

(B
2 - 2AC)

+ diA 3E - d3eA 3E + d2e2A 3C - de3A 3B + e*A\

I add the following very useful tables of symmetric functions as calculated by
Meyer Hirsch and verified by Prof. Cayley. They have been since extended to the

eleventh degree by M. Faii de Bruno (see his Theorie des Formes Binaires), The

equation is supposed to be xn + foe"- 1 + cxn~2 + &c. = 0.

= -b.

= b2 -2c; 2a/3 = c.

= -b3 + 3bc-3d; 2a2
/3
= - be + 3d

; 2a/3y = - d.

-
J4 _ 4/,2c + 2c2 + 4&d _ 4e . 2a3

/3
= b2c - 2c2 -bd + 4e,

= c2 -2bd+2e; 2a2
j8y = 6cZ - 4e

; 2a/3y<5 = e.

- _ J5 + 5J3C _ 5JC2 _ 5&2j + 5cd + 5be _ 5yf

= - b3c + 3bc2 + b2d - bed - be + bf.

Sa3^ = - be2 + 2b2d + cd- bbe + bf.

Za3
/3y

= - b2d + 2cd + be - bf.

2a2
j8

2
y = - cd + 3be - bf.

2a2
/3y5 = - be + bf; 2aj8y5c = -/.

VI. 2a6 =b6 -6bic + 9b2c2 -2c3 +6b3d-l2bcd+ 3d2 -6b2e + 6ce + 6bf-6ff.

2a5
/3

= b*c - 4b2c2 + 2c3 - b3d + 7bcd -3cP + b2e - 6ce - bf+ 6g.

2^/^ = b2c2 - 2c3 - 2b3d + ibed - 3d2 + 2b2e + 2ce - 6bf + 6g.

2a3
/3
3 = c3 - 3bcd + 3d2 + Bb2e - 3ce - 3bf+ 3g.

I.
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Za4
/3y = b3d - Sbcd + 3d2 - b2e + 2ce + bf- Gg.

Za3/^ = bed - 3d2 - Zb2e + Ace + Ibf- 12g.

Za2j3V = d2 - Ice + tyf
-

2g.

Za3
/3y<5

= b2e - Ice -bf+Gg.
Za2

/3
2
y<5 = ce-Uf+9g.

Za2
/3y5e -bf-Gg.

2a/3y<H = g.

VII. 2a7 = - b 7 + 7b5c - 14£ 3c2 + 7£c3 - 7b*d + 2lb2cd - IcH - 7bd2

+ 7b3e - Ubce + 7de - 7b2/+ 7cf+ 7bg
- 7h.

Za6
/3

= - b5c + 56 3c2 - 5bc3 + b*d - 9b2cd + 7c2d + Ud2 - b3e + 8bce

- 7de + b2f- 7cf- bg + 7h.

Za5
/3
2 = - b3c2 + 3bc3 + 2b*d - Gb2cd - 3c2d + 7bd2 - 2b3e + Abce

- 7de + 2b2f+ 3c/- Ibg + 7h.

Za4
/3

3 = - be3 + Sb2cd + c2d - bbd2 - Sb3e + 2bce + Me + 7b2f- 7cf

-
7bg + 7k.

Za5
/3y = - b*d + 4b2cd - 2c2d - Abd2 + b3e - Sbce + 7de - b2f

+ 2c/+ bg
- 7k.

Sa^y = - b2cd+ 2c2d+ bd* + Bb3e - 8bce + 2de - 3b2f+ 4c/+ Sbg-Wi.
Za3

/3
3y = - c2d + 2bd2 + bee - bde - 4£2/+ 7c/+ 4Ag

- fk.

Za3
/3

2
y
2 = - bd2 + 2bce + de - 2b2f- 3c/+ Ibg

- 7h.

Za4
/3y<5 =-b3e + 3bce - Me + b2f- 2cf

-
bg + 7h.

Za3
(PyS =-bce + 3de + Ab2f- Gcf- 9bg + 2\h.

Za2
/3V<5 =-de + 3c/- 5bg + 7h.

Za3
/3y<5e

= - b2f+ 2cf+ bg
- 7k.

2a2/3V« = -cf+bbg-Uh.
Za2

/3yo £g =-bg + 7k.

ZajSy^e^Tj = — k,

VIII. Za8 = b* - 8b«c + 2064c2 - lGb2c3 + 2c4
4- 8¥d - 32b3cd + 2ibc2d

+ \2b2d? - 8cd2 - 8¥e + 24b2ce - 8c2e - lGbde + 4e2 + 8b3/
-
lGbcf+ 8df- 8b2g + 8cg + 8bh - 8i.

Za7
/3

= b6c - Gb*c2 + %2c3 - 2ci - bH + Ub3cd - 17bc2d - bb2d2

+ 8cd? + ¥e - 10b2ce + 8c2e + 9bde - 4e2 - b3f+ 9bcf- 8dJ

+ b2g - 8cg
- bh + 8i.

2a6
/3
2 = ¥c2 - 4b2c3 + 2c4 - 2¥d + 8b3cd - 9b2tP + 2cd2 + 2b*e - 652ce

- 4c2e + lGbde - 4e2 - 2b3f+ ±bcf- 8df+ 2b2g + 4c^-

- 8bh + Si.

Sa5
/3

3 = b2c3 - 2c4 - 3b3cd + 6bc2d + 3bH2 - 7cd2 + 3b*e - 9b2ce + 8c2e

+ bde - 4e2 - 3b3J + bcf+ 7df+ 8b2g - 8cg
- 8bh + 8i.

Za4
^
4 = c4 - ±bc2d + 2b2d2 + 4cd2 + 4b2ce - 4c2e - 8bde + 6e2 - 453/

+ 8bcf- Adf+ ±b2g - Acg
- Uh + 4».

Za6
/3y = b*d - bb3cd + bbc2d + bb2d2 - bed2 - b*e + ib2ce - 2c2e - 9bde

+ 4e2 + b3f- 3bcf+ 8df- b2g + 2cg + bh - 8».
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Za5
/3

2y = b3cd - 3bc2d - b2d2 + Zed* - 35*e + ll52ce - ±c2e - 105cZe + 8ea

353/- 85c/ +df- 3b2g + 4cg + 9bh - lGi.

Za*/3
3
y = bc2d-2b2d2 -cd2 -b2ce+ I0bde-8e*+ 4b3f-10bcf+df- 9b2g

+ IGcg + 9bh - 16i.

Za*/3
2
y
2 = b2d? - 2cd2 - 2b2ce + 4c2e - 4e2 + 253/ -

ibef + 8dj
- 2b2g

-
4cg + 8bh - 8i.

2a 3
/3

3
y
2 = cd2 - 2c2e - bde + 4e2 + 55c/- Idf- Wg + 2cg + 8bh - 8i\

Za5
pyd = 5*c - 452ce + 2c2e + Abde - 4e2 - b3f+ 3bcf- 3df+ b2g

-
2cg

- bh + 8i.

Ia*/?V = 52ce - 2c2e - bde + 4e2 - 453/+ 115c/- 9dj + Ab2g - Beg

- lObh + 24i.

2a3
p

3
7S = c2e - 2bde + 2e2 - bcf+ 3df + W-g - 9cg

- bbh + 12t.

Za3
/^y

28 = bde - 4e2 - 3bc/+ Qdf+ 5b2
g - llbh + 24i.

Za2
/3

2
y
2£2 = e2 - 2df+ 2cg

- 2bh + 2%.

Za*/3yoE = b3f- 3bcf+ 3df- b2g + 2cg + bh - 8i.

Za3
)8

2
yo£ = bef- 3df- Wg + 8cg + llbh - 32i.

Za^-y^e = df
'-

icg + 9bh - 16*.

Za3
py8sZ = b2g - 2cg

- bh + Hi.

La*p*y8tl =cg-6bh + 20i.

Za2
PySeZri = bh - 8*.

2a/3yos£r/6 = i.

IX. la9 = - b9 + Wc - 275c2 + 3053c3 - 95c* - 9bGd + 4ob*cd - 545V<J

+ 9c3d - 18b3d2 + 27 bed2 - 3d3 + 955e - 36b3ce + 27bc2e

+ 27b°-de - 18cde - 9be2 - 95*/+ 2752c/- 9c2/- \8bdf

+ 9e/+ 9b3
g - \8bcg + 9dg

- 9b2h + 9ch + 9bi - 9/.

£as
/3

= - b 7c + 755c2 - 1453c3 + 75c* + bH - 135*cd + 3%2c2d

- 9c3d+ Gb3d2 - 19bcd2 + 3d3 - 55e + \2b3ce - \9bc2e

- H52Je + 18ccZe + 55e2 + ¥/- llb2
cf + 9c2/+ lObdf

- 9e/- b 3
g + lOSc^r

-
9dg + b2h - 9ch - bi + 9/.

Za 7
f3
2 = - b5c2 + 5b3c3 - 55c* + 256

cZ - 105*c<^ + bb2c2d + 5csd

+ UPd2 - \3bcd2 + 3d3 - 2b>e + 8b3ce + bc2e - 20b2de

+ icde + 95e2 + 25*/
- 652c/- 5c2/ + 18bdf- 9ef

- 2b3
g + 45c#

- 9dg + 2b2h + bch - 9bi + 9/.

Sa6
/3

3 = - 53c3 + 35c* + 35*c^ - 952c2d - 3c3^ - 353d2 + 185crf2 - 6^
- 355e + 1253ce - 95c2e - 952^e + 95e2 + 35*/'- 952c/

+ 9c2/- 9ef- 3b3
g + 9dg + 952A - 9c5- - 95i + 9/.

Sa5
/3*

= - 5c* + 452c2rf + c3d - 253cP - 75c^ + 3^3 - 45 3ce + 35c2e

+ 1352^e - 2ctZe - H5e2 + 45*/- 752c/- c2/- 25^
+ lie/- 9b3

g + 185c^
-

9dg + 9b2h - 9ch - 95i + 9/.

Za 7py =-b6d+ Gb*cd - 9b2c2d + 2c3d - Qb3d2 + 125c^ - 3d3 + 5 5e

- 553ce + 55c2e + 1152
rfe - llcde - 55e2 - 5*/+ 452c/

- 2c2/- Vbhdf + 9ef+ b3
g -

3lcg + 9dg
- 52/t + Ich

+ H -
9j.

SS
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Za8
/8*y = - b*cd + 4b

n
-c2d - 2c3d + b3<P - 7bcd> + 3d3 + SPe - Ub3ce

+ 12bc2e + I3b2de - Acde - Ube2 - Bb*f+ Ub2
cf- 4c2/

- 10bdf+ 18e/+ 3b3
g - 8bcg

- 3b2h + Ach + lObi - Ifij

2a5
/3

3y = - £2c2d + 2c3d + 2b3cP - Abed2 + 3d3 + b3ce - 2bc2e - bb2de

+ 2cde + Gbe2 - Ab*f+ lbb2
ef
- 8c2/- bbdf

-
2ef

+ Ab3
g - Wbcg - Wb2h + 18ch + lObi - 18;.

Za4
/3

4y = -c3d + 3bcd? - 3d3 + bc2e - U2de + 2cde + bbe2 - b-cf

+ c2f+ 6bdf- lief + bb3
g
- Ubcg + 9dg

- bb2h

+ 9ck + bbi - 9/.

Za 5£
2
y
2 = -b3

<JP + 3bccP - 3d3 + 2b3ce - 6bc2e + Gcde + be- - 26*f+ Qb-cf

- 8bdf- ef+ 2b3
g - Abcg + 9dg

- 2b2h - bbh + 9bi - 9/.

Za4
/3

3
y
2 = - bed 2 + 3d3 + 2bc2e + b2de - 8cde + 2be2 - bb2cf+ 6c2/

+ 2bdf- 2ef+ bb3
g - Abcg

- llb2h + Ach + \8bi - 18/.

Za3/3V =-d 3 + 3cde - 3be2 - 3c2/+ 3bdf+ 3ef+ 3bcg
- Gdg

- 3b2h + 3ch + 3bi - 3/

I a6
(3yd = -b5e + bb 3ce- bbc2e - bb2de + bcde + bbe2 + 6*/- Ab2ef+ 2c2/

+ Abdf- 9ef- b3
g + 3bcg

- 3dg + b2h - 2ch - bi + 9/

Ia^yS = - b 3ce + 3bc2e + b2de - bede - be2 + AVf- lbb2
ef+ Gc2f+ \bbdj

- lef- Ab 3
g + Ubcg - 9dg + Ab2h - Gch - llbi + 21j.

Xa4
/3

3
7a =s - bc2e + 2b2de + cde - bbe2 + b2cf- bbdf\ \3ef- bb3

g

+ Ubcg - 9dg + llb2h - 2Qch - 1 \bi + 21j.

Za4
/3
2
7

25 = - b2de + 2cde + be2 + 3b2
cJ
- 6e2/ - 2bdf+ 3ef- bb3

g

+ Ylbcg
- 9dg + bb2h + ck - 19bi + 21j.

Za*p
3
y

28 =-cde + 3be2 + 3c2/- Abdf- lef- Ibcg + 18dg + \2b2h

- I3ch - \9bi + 21j.

Sa^y2^2 = - be2 + 2bdf+ ef- 2bcg
- 3dg + 2b2h + bch - 9bi + 9j.

Ztfpyti =z - b*f+ Ab2
cf- 2c2/- 4bdf+ Aef+ b3g - 3% + 3dg - b2h

+ 2c& + bi - 9/

Za*(3
2
yot = - b2cf+ 2c2/+ bdf- Aef+ bb 3

g - Ubcg + Yldg
- bb2h

+ 8ch + I2bi - 36/

Zatpytt = - c2f+ 2bdJ
- 2e/+ beg

-
3dg - 6b2h + Uch + 6bi - 18/.

Za3
pr-y

2oz = - bdf+ 4e/+ Abcg
-
9dg - 9b2h + bch + 30bi - 54/

2a2
/3

2
y
252£ = - e/+ 3dg - bch + Ibi - 9/

Za4
/?y<k£ = - b3

g + 3bcg
-

3dg + b2h - 2ch - bi + 9/

Za3p2
ydiZ =-bcg + 3dg + 6bVi - lOch - 13bi + 45/

Za2
/3

2
7

2
(kS = - dg + bch - Ubi + 30/

Za3
/3yo^r, = - b2h + 2ch + bi - 9j.

Ia2
/3

2
y3£^ = - ch + Ibi - 27/.

Za2
(3yctliid = - bi+ 9/

X. la10 = bu - 1068c + 35^«c2 - 50^4c3 + 2bb2c* - 2c5 + 10b 7d - 60b*cd

+ WObWd - A0bc3d + 2bb*d2 - G0b2cd* + lbc2d2 + lObd3

- I0b6e + 503*« - 60b2
c"-e + I0c3e - 40b 3de + GObate
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- 10d2e + 154V - I0ce°- + 104s/- 404V/+ 304c8/
+ 30b2df- 20cdJ

- 20bef+ bf
2 - 104V + 30i2<#

- 10c2
<7
-

20bdg + lOeg + 1043* - 20bch + lOdh - 1042»

+ 10c i + 104/
- 10*.

Z«9
/3 = 48c - 8b6fi + 20b*fi - 164V + 2fi - b-d + IbbHd - 464V<*

+ mc*d - 7b*d2 + 33b2ed2 - \bc2d2 - 7bd3 + b6e

- 144<ce + 334Ve - I0cse + I3b3de - 42bcde + 10d2e

- 64V -f 10c«2 - *»/+ 1343
c/- 214c2/- 12b2d/+ 20cdf

+ Ubef- bf
2 + b*g

- \2b2cg + lOfig + 114<V
-

10e$r

- b3h + llbck - lOdh + bH - lOei - bj + 10*.

£«*/3
2 s b6fi - 6b*fi + 94V - 2c5 - 2b1d + \2¥cd - 12b3fid - 8bfid

- \3b*d2 + 28b2cd2 + fid2 - lObd* + 2b«e - 104<ce

+ 4b2fie + 6fie + 24b 3de - 2Sbcde + 10d2e - 114V
+ 2ce2 - 24*/+ 8b3cf+ 2bfif- 22b2df+ 4cdJ + 20bef

-
5/2 + 2b*g

- 6b2cg
-

Qfig + 20bdg
-

lOeg
- 2b3h

+ Uch - lOdh + 2bH + 6ci - 104/ + 10*.

I«r/8« - 4V - 44V + 2c5 - 3b*cd + 12b3fid - 2bfid + 34<tf2 - 244W2

+ Gfid* + llbd3 + 3b6e - 15b*ce + 1842fie - lOfie + \2b3de

+ 3bede - lld2e - 154V + 10ce2 - 345/+ \2b3cf- 94c2/
- Wdf- cdf + 204e/- 5/

2 + 34V - 942c<? + 10cV - bdg

-
lOeg

- 3b3h - bch + lldh + \0b2
i - lOci - 104;' + 10*.

SaO/3
4 = 4V - 2c* - 4b3fid + 8bfid + 2b*d 2 - 9fid 2 + 2bd3 + Wee

- 124Ve + 10c3e - 8b3de + Ubcde - 2rf2e + 94V - 14ce3

- 445/+ 1643c/- 184c2/- 642^+ 2Qcdf - 44c/- 5/
2

+ 44V - 642C£
-

2fig
- 4bdg + Ueg - 1043A + 204cA

- lOdh + 1042i - lOci - 104/ + 10*.

Za5
/3s

-
fi - hbfid + bb-cd 2 + bfid2 - bbd3 + bb2fie - bfie - 54^
- bbede + bcPe + bb2fi + befi - bb3cf+ 10bfif+ lQFdf
- \bcdf- lbbef+ 10/« + bb*g

- \bb
n
-cg + bfig + lObdg

-
beg

- bb3h + 104c* - bdh + bbH - bci - 54/ + 5*.

Z*«j3y = b 7d - "b*cd + 144W - Ibfid + 7b*d 2 - 214W2 + 7c2i 2

+ Ibd3 - 46e + 64*cc - 94Ve + 2c3e - 1343
<fe + 264crfe

- 10c? 2e + 64V - 6ce2 + 45/- 54»c/+ 54c2/+ 124*^
- \2cdf- Ubef+ 5/

2-
b*g + i&cg - 2c2^ -Ubdg + 10e^

+ 4 3A - 34c* + 10<7* - 42* + 2ct + bj
- 10*.

Ea'/^y = 45crf - bb3fid + bbfid - bW + Wed2 - lc2d2 - 4bd* - 3b«e

+ 17b*ce - 234Vc + 4c3e - 1643
r/e + 2l4cr/e + d2e + 174V

- 12ce2+ 345/- 1443c/+ 124c2/+ 13b2df-3cdJ- 3\bef

+ 10/
2 - 34^ + H42^ -

4fig
- Wbdg + 20<^ + 343*

- 84c* - dh - 342t + 4ci + 114/
- 20*.

Za*p*y = b*fid - 34c3d - 24^+ 642crf2 + 3c2^ - 74^ - b*ce + 34Ve
+ 543

tfe - 154c<fe + 13dU - 34V + 4ce2 + 445/- 194V
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+ 18bc2f+ I5b2df- \9cdf- lbef+ lOf
2 -

Ab*g + \Wcg
- 8c2g - Abdg - 4eg + Ab3h - lObch -dh- llb2i + 20ci

+ Ubj- 20k.

Za5
/3«y = UH - 3b2cd2 - c2d2 + bbd3 - b2c2e + bb3de - 8d2e - 8b2e2

+ Ace2 + b3ef- be2/- 12b2df+ I0cdf+ 23bef- lb/
2

-
bb*g + 18b2cg

- 8c2g - Ibdg
-

Aeg + Ub3h - Zlbch

+ 20dh - 1UH + 20a + lift/
- 20k.

Za6
j8
2
72 = Wd2 - Ab2cd? + 2c2d2 + Abd3 - 2b*ce + 8ftVe - Ac3e - 8bcde

- Ad2e - b2e2 + 10ce2 + 2ft
5/- 8b3cf+ Abc2/+ \0b2dJ

- Acdf^ 8bef+ 5/
2 -

2b*g + 6b2cg
-

8bdg - 2eg + 263A

- Abch + lOdh - 2b2i - 6ci + 10ft/
- 10k.

Za5
/3

3y2 - b2cd 2 - 2c2d? - bd3 - 2ftVe + Ac3e - b3de + bbede + d2e + ft
2e2

- 12ce2 + bb3cf- lBbc2/- Ab2df+ \lcdf+ lObef- lb/
2

-
bb*g + lbb2cg

- Ac2g - 19bdg + 20eg + bb3h - Bbch

-dh- YlbH + Aci + 20ft;
- 20k.

Za4/3V = c2d 2 - 2bd 3 - 2c3e + Abode + 2d 2e - 3b2e2 + 2ce2 + 2bc2f
+ 2b2df+ 12cdf+ Abef+ 5/

2 - 6b2cg + 10c2g + Abdg

-
lAeg + 6b3h - \2bch + lOdh - 6b2

i + 2d + lObj
- 10k.

La4
j3

3
y» = bd 3 - Bbcde - d2e + 3ft

2e2 + 2ee2 + 3bc2f- 3b
n

-df+ cdf- 8bef

+ 5/
2 - 3b2cg

- Ac2g + \3bdg
-

2eg + 3b3h + bch - Udh
- 10b2

i + lOci + lObj
- 10k.

'LaJfiyB = b6e - 6b*ce + 9b2c2e - 2e3e + %b3de - 12bcde + 3d 2e - Gb2e2 -

+ 6ce2 - b5f+ bb 3
cf- bbc2f- bb2df+ bcdf+ llbef- bf

2

+ b4
g - Ab2

cg + 2c2g + Abdg - lOeg
- b3h + 3bch - 3dh

+ b2i - 2ci - bj + 10k.

la^yS = b*ce - Ab2c2e + 2c3e - b3de + Ibcde - Bd2e + b2e2 - 6ce2 - AV>f

+ l%3cf- llbc2f- l%2df+ Ibcdj + 18bef- lbf
2
+Ab*g

- \bb2cg + Gc2g + lbbdg
-

6eg
- Ab3h + Ubch - ddh

+ Ab2i - 6ci - 126/ + 30k.

Sa5/3V = &<>2e - 2c*e - 2b3de + Abcde - 3dH + 2i2e2 + 2ce2 - b*cf

+ 2bc2f+ 3b2df- Acdf- \2lef+ 10f
2 + bVg - 19b2cg

+ 10c2g + lbbdg - 6eg
- bb3h + 13bch - 9dh + 12b2

i

- 22ci - 12bj + 30k.

Za4
/3<yd = cH - 3bcde + 3d2e + 3b2e2 - 3ce2 - bc2f+ 2b2df+ cdf- 8bef

+ 5/2 + b2cg
- c2g - 3bdg + 9eg

- 6b3h + Ubch - lbdh

+ Qb2
i - llci - 6bj + lbk.

Latpy^ = b3de - 3bcde + 3d2e - b2e2 + 2ce2 - 3b3
cf + 9bc2f+ 2b2df

- 13cdf- bef+ 10/
2 + b¥g - 17b2cg + Ac2g + 18bdg

-
18eg

- bb3h + 12bch - 9dh + bb2i + 2ci - 21bj + 30/c.

Za*p
3
y
28 = bede - 3d2e - 3b2e2 + Ace2 - 3bc2f+ Ab2df+ bedj

- bf
2

+ lb2cg
- 8c2g - lbbdg + 12eg

- 12b3h + 21bch + 3dh

+ 26b2
i - 28ci - A2bj + 60k.



TABLES. 313

Za3
/3

3
y
2
<5
2

Za6
/3y8e

LcfipPy&t

Za4
/3

3
y££

Za4
/3

2
7

2^£

rf
2e - 2cei - cdf+ bbef- 5/

2 + Ac2g - 76<fy + 2eg
- ibch

+ Udh + IbH - 10a - Ibj + 10k.

b2e2 - 2ce2 - 2b*df+ Acdf- 5/
2 + 2b2

cg
- Ac2g + lOeg

- 2b3h

+ Abch - lOdh + 2b2
i + 6a - 106/ + 10k.

ce2 - 2cdf- bef+ 5/
2 + 2c-g + obdg

-
deg

- Ibch + 6dh

+ 762
i + a- 156/ + lbk.

65/- bb3
cf+ 56c2/+ 5b2df- bed/- bbef+ 5/

2 -
b*g + Ab2cg

- 2c2g- Abdg+ Aeg + b3h- 3bch+ 3dh- b2i+ 2a + bj- 10k.

b3cf-3bc
2f- b2df+ bcdf + bef- 5/

2 - bVg + 19b2cg
- 8c2g

-
lObdg + 16eg + bb3h - Ubch + 12dh - bb2i + 8a

+ 136/
- 40&-

be2/- 2b2df- cdf+ bbef- bf
2 - b2cg + bbdg

-
8eg + 6b3h

- lQbch + Udh - 13b2
i + 24a + 136/

- 40k.

b2df- 2cdf- bef + bf
2 - Ab2

cg + 8c2g + 3bdg
-

12eg + 9b3h

- 23bch + 18dh - ObH + 4a + 336/
- 60k.

£a3
/3

3
y
25e = cdf

- 3bef+ bf
2 - Ac2g + Obdg + dbeh - 2Adh - 21bH

+ 28a + 33bj
- 60k.

Za3
/3
2
y

2
<5
2E = bef

-
bf

2 - 3bdg + 8eg + bbch - 2dh - lb2i - 8a+ 316/- 40&.

£a2
/3

2
y

2
<5
2£2 -f 2 -

2eg + 2dh - 2ci + 2bj
- 2k.

Za5
j8y5£$ as b*g

- Ab2
cg + 2c2g + Abdg

-
Aeg

- b3h + 3bch - 3dh + b2i

- 2a' - bj + 10k.

Ea^ydil = b2cg
- 2c2g - bdg + Aeg

- 6b3h + llbch - Ibdh + 6b2i

- 10a" - Ubj + 50k.

Za3
p

3
y6sZ = c2g - 2bdg + 2eg

- bch + 3dh + lb2
i - 13a - Ibj + 2bk.

Sa^y^S = bdg
-

Aeg
- bbch + 12dh + lAb2

i - 12ci - 466/ + 100&.

ra2
/3
2
y
2a2£$ = eg

- Adh + 9a - 166/ + 2bk.

Ea4
/3ya£$n aa 63& - 36c^ + 3dh - b2% + 2ci + bj

- 10k.

Za3/3V ££tj sa bch - 3dh - 7b2
i + 12a' + 156/

- 60&.

Sa2
/3

2
y
2
5£^rj = dh - 6ci + 20bj

- bOk.

£a3
/3y<$££t,e

= b2i - 2ci - bj + 10k.

LatfPyS &c. = ci- 8bj + 3bk.

2a2
j8y &c. ss bj

- 10k.

Prof. Cayley has noticed a certain symmetry in the coefficients of the preceding

formulae, which may be more easily exhibited by using Hirsch's notation. Let such

a sum as Za3
/3
2
y

2
^£$ be denoted [32

2
l 3

],
and let the coefficients be av a2 , &c, so that

be written
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The first line of which is to be read

Za* = - 4a4 + 4«3a 1 + 2a2
2 - 4a2« 1

2 + a^,

and so on for the rest. Fow what Prof. Cayley has proved is, that when the formulae

already given are written in this form, the figures are the same whether we read

according to the rows or to the columns. The same thing holds for a set of formulae

given by Prof. Cayley (Phil. Trans., 1856, p. 489) expressing the coefficients (4),

(31), &c. in terms of the sums [4], [31], &c.

I add, in conclusion, the values of a few symmetric functions of the differences

of the roots of the general equation written with binomial coefficients, as given by
Mr. M. Roberts (Quarterly Journal, vol. iv.), in whose papers are to be found several

interesting relations connecting the different covariants of binary quantics. Let

b* - ac - E, ae - Abd + 3c2 = S, ace + 2bcd -ad2 - eh* - c3 = T,

ag - 6bf+ lbce - 10d2 s A, ai - 8bh + 28cg
- bdf+ 35e2 = P,

Wg - 2cd2 + bde- 3bcf- acg + 3adf- 2ae2 + 3c2/= M.
Then

a2£ (a
-

/3)
2 = w 2

(n
-

1) E,

a«2 (a
-

/3)
4 = n2

(n
-

1) (rc
2# 2 -

% (n
-

2) (n
-

3) a*S},

a6Z (a
-

/3)6
= »2

(n
-

1) {n*H
3 - }«

2
(n
-

2) (»
-

5) m*ff$

-\n(n- 2) (In
-

15) a3T - ^(n -
2)(n

-
3)(n

-
4) (»

-
5) a*A],

a82 (a
-

/8)»
= n2 (n

-
1) L«E* -^ (n

-
2) (n

-
7) a?E2S

+ 2n3
(n
-

2) (3n
-

7) a?ET+ TV»2
(»
-

2) (»
-

3) (w
2 + 8« - 21) a4£ 2

- ^y»
2
(»
-

2) (n
-

3) (n
-

4) (n
-

21) a<fl^4

- $» (»
-

2) (»
-

3) (»
-

4) (3»
-

7) a*M

_ (»-2)(n-8)(»-4)(n-5)(»-6)(fi-7) \
2.3.4.5.6 7 J

'

By the help of these can be calculated the first few terms in the equation for the

squares of the differences of the roots.
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Aromhokl, on symbolical methods, 140.

On the invariants of a ternary cubic,
'294.

On the differential equations of in-

variants, 295.

Baltzer, on determinants, 288.

Bezout, on elimination, 75, 288.

Binet. on determinants, 288.

Bezoutiants, 293.

Boole, on linear transformations, 103, 294.

His form for the resultant of two

quadratics, 158, 172.

Borchardt, proof that the equation of the

secular inequalities has all its roots

real, 44.

Bordered Hessians reduced, 16.

Bordered symmetrical determinants, value

of, 32.

Brioschi, expression for differential equa-
tion of invariants in terms of roots,
292.

On solution of the quintic, 229.

On determinants, 289.

Burnside, investigation of radius of sphere
circumscribing tetrahedron, 23.

Transformation of binary to ternary
forms, 165.

Applications of this method, 196, 198,
204.

Canonical forms, 143, 191, 296.

Canonizants, 147.

Catalecticants, xil., 149, 188, 232.

Cauchy, on determinants, 288.

Cayley (see also p. 294).
His expression for relation connect-

ing mutual distances of five points
on a sphere, 23.

of five points in space, 24.

Application of skew determinants to

the theory of orthogonal substitu-

tions, 36, 289.

Calculation of number of terms in a

symmetrical determinant, 39.

On symmetric functions of roots of

equation, 53, 292.

Statement of Bezout's method of

elimination, 77.

General expression for resultants as

quotients of determinants, 80.

Notation for qualities, 92.

Cayley, discovery of invariants, 103.

On the number of invariants of a

binary quartic, 126, 169.

Definition of covariants, 129.

Symbolical method of expressing in-

variants and covariants, 130.

Identifies two forms of canonizant of

equations of odd degree, 148.

On discriminants of discriminants,
158.

On tact-invariants, 162.

Method of forming a complete system
of covariants, 169.

Relation connecting covariants of

cubic, 177.

Solution of a cubic, 177.

Solution of a quartic, 192.

On criteria of reality of roots, 193.

On covariants of system formed by
quartic and its Hessian, 198.

On covariants of quintic, 215.

Canonical form for quintic, 217.

Tables of Sturmian functions, 219.

On rational functional determinants,
290.

On Tschirnhausen transformation,298.
Tables of symmetric functions, 305,

313.

Clebsch, on symbolical methods, 140.

On canonical form of ternary quartics,
144.

His proof that every invariant may be

symbolically expressed, 267.

Proof that number of forms is finite,

277.

Investigation of resultant of quadratic
and general equation, 279.

General expression for discriminant,
279.

Investigation of equation of system
of inflexional tangents to a cubic,
283.

His form for resultant of two cubics,
296.

Cockle, on the solution of the quintic, 229.

Combinants, 154, 296.

Invariant of invariant of U + XV is

a combinant, 185.

Of a system of two quartics, 200.

Common roots determined, 85.

Commutants, 289.

Concomitants, 114.
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Conditions that equations should have two
common factors, 73, 91.

For systems of equalities between
roots, 119.

That quantic should be reducible to

sum of powers, 149.
That U+W should have a cubic

factor, 156, 181.

That four points should form a har-
monic system, 171.

That three pairs of points should form

system in involution, 173.

Special method of calculating this

condition in case of two quartics,
202. .

That quartic should have two square
factors, 202.

That two quartics should be differen-
tials of same quintic, 207.

That quintic should admit of being
brought by linear transformation
to Jerrard's form, 211.

That quintic should have two square,
or a cubic factor, 212.

That sextic should have two square,
or a cubic factor, 233.

That roots of sextic should be in in-

volution, 237.

See also Lesson XVIII.
Contragredience, 111.

Contravariants, 114.

Of binary quantics not essentially dis-
tinct from covariants, 121.

Continuants, 18.

Covariants, 107.

How defined by Cayley, 129.
Number of, for a binary quantic,

126, 169.

Cramer, on determinants, 288.
Critical functions, 55.

Cubicovariant of cubic, 123, 175.
Cubic discussed, 175.

Cubic quaternary, its canonical form, 153.

Derivatives of derivatives expressed sym-
bolically, 273.

Dialytic method of elimination, 74.
Differential coefficients of determinants,

30.
'

Of resultants with respect to quantities
entering into all the quantics, 89.

Differential equation of functions of differ-
ences of roots. 56.

Of invariants, 124.

Differentiation mutual, of covariants and
: contravariants, 119.

Discriminant of binary quantic expressed
as determinant, 22.

Of products of two quantics, 95,
160.

H ' '

Of discriminants, 158.
Enables us to distinguish whether

equation has even or odd numbers
of pairs of imaginary roots, 219.

General symbolical expression for,

246, 252.

Double points of involution, 155.

Double tangents of plane curves, 286.

Eisenstein, expression for general solution
of quartic, 294.

Eliminants defined, 61.

Elimination, 62, 80.

Emanants, 109.

Equalities between roots of an equation,
conditions for, 119.

Euler, on the theory of orthogonal sub-

stitutions, 39.

On elimination, 72, 293.

Evectants, 115.

When discriminant vanishes, 116.

Symbolical expression for, 139.

Of discriminant of cubic, 175.

Fa§, de Bruno, calculates invariant of

quintic, 209.

On elimination, 293, 307.

Forme-type of quintic, 297.

Gauss, on linear transformations, 288.

Gordan, on number of covariants, 126,

168, 205, 273, 277.

Gundelfinger, on system of cubic and

quartic, 200.

Harley, on solution of a quintic, 229.

Hermite, law of reciprocity, 135, 171.

On transformation of a quadratic
function, 37.

Form for covariants of system formed

by quartic and its Hessian, 197.

Canonical form for quintic, 212.

Discovery of skew invariant of quintic,
213.

Forme-type of quintic, 297.

Expression by invariants of conditions
of reality of roots, 221, 227.

Expression of invariants in terms of

roots, 230.

Solution of quintics by elliptic func-

tions, 228.

On Tschirnhausen transformation,
298.

Hessians, 16, 110, 137, 290.

Contain all square factors of original

quantic, 146.

Of Hessians, 198, 273.

Hirsch's tables of symmetric functions,
305.

Inflexional tangents to cubic, calculation

of their equation, 283, .

Invariants, 101.

Absolute, 105, 188.

Skew, 125.

How many independent, 105.

Relation connecting weight and order

of, 123.

Involution, 155.

Condition roots of sextic shall be in,

237.
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Jacobi, on determinants and linear trans-

formations, 289, 292.

Jacobian, of system of equations, 78, 111,
292.

Properties of, 78.

Geometrically interpreted, 155.

Of two quadratics, 171.

Its discriminant discussed, 157.

Of quartic and its Hessian, 191.

Jerrard, transformation of a quintic, 211.

298.

Joacbimstbal, expression for area of a

triangle inscribed in an ellipse, 23.

Theorem on form of discriminant, 96.

Kronecker, solution of quintic by elliptic

functions, 228.

Kiimmer's resolution into sum of squares
of discriminant of cubic wbicb de-

termines axes of a quadric, 50.

Lagrange, on the general solution of equa-
tions, 228.

On determinants, 288.

On conditions that equation should
have two pairs of equal roots, 293.

On linear transformations, 294.

Laplace, on determinants, 288.

On equation of secular inequalities,
43.

Leibnitz, his claim to invention of deter-

minants, 288.
Linear covariants of cubic and quadratic,

178.

Of two cubics, 187.
Of quintic, 214.

Minor determinants, 10, 28.

Of reciprocal system how related to
those of original, 29.

Muir on continuants, 18.

Multiplication of determinants, 20.

Newton, on sums of powers of roots of

equation, 51.

Number of terms in a symmetrical de-

terminant, 39.

Of quadrics which can be described

through five points to touch four

planes, 253.

Of invariants of a binary quantic,
126, 169, 277.

Order of determinants, 7.

Of symmetric functions, 53.
Of invariants, 123.

Of resultant of system of equations,
70.

Of discriminants, 94.

Of systems of equations, 240.

Orthogonal transformations, 36.

Osculants, 164.

Poisson's method of forming symmetric
functions of common roots of sys-
tems of equations, 57, 293.

Quadratic forms, reducible to sum of

squares, 144.

Number of positive and negative
sqnares fixed, 144.

And equation of ntb
degree, general

expression for resultant, 244.

Quadrinvariants of binary quantics, 122.

Quartic, theory of, 187.

Keciprocal determinants, 27.

Reciprocity, Hermite's law of, 135, 171.

Reducing sextic for quintic, forms of,
201.

Resultant of two quadratics, 63, 71, 172.

General rule for order and weight of,
70.

Two cubics, 72, 181.
Two quartics, 201.

Of quadratic and any equation, 279.

Tables of, 305.

Roberts, Michael, on sources of covariants,

127, 217.

On application of Sturm's theorem to

quantics, 219.

On equation of squares of differences,

293, 314.

Roberts, Samuel, on orders of systems of

equations, 302.

Rodrigues, on orthogonal transformations,
39.

Seminvariants, 169.

Serret's notation for differential equation
of covariants, 60.

Skew symmetric determinants of even

degree are perfect squares, 34.

Skew invariants defined, 125.

Skew invariant of quintic, 213.

Vanishes if quintic can be linearly
transformed to the recurring form,
or to one wanting alternate terms,
213.

Expression in terms of roots, 213.
Of sextic, 236.

Of all quantics vanish when quantic
wants alternate terms, 297.

Source of covariants, 127, 217.

Sphere circumscribing tetrahedron, 24.

Relations connecting mutual distances
of points on, 24.

Spottiswoode on determinants, 288.

Sturm's functions, Sylvester's expressions
for, 44.

In case of quartic, 193.

of quintic, 219.

Extension of, 99.

Superfluous variable, method of using, 182.

Sylvester (see also p 294).
Umbral notation for determinants, 8.

Proof that equation of secular in-

equalities has all real roots, 25, 43.

Expression for Sturm's functions in
terms of roots, 44.

Dialytic method of elimination, 74.

Expression of resultant as determi-

nant, 79.

TT
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Sylvester, Extension of Sturm's theorem,
99.

On nomenclature, 114, 115:

Canonical forms of odd and even

degrees, 146, 148.

Of quaternary cubic, 153.

Expressions for discriminant with re-

gard to variables which do not enter

explicitly, 161.

On osculants, 164.

Investigation of expression by in-

variants of conditions for reality of

roots of quintic, 221.
On Bezoutiants, 293.
On combinants, 296.

Symbolical expression for invariants, &c.

131, 267.

Symmetric functions, 51.

Their use in finding invariants, 117.

Tables of, 305.

Tact-invariants, 162.

Of complex curves, 163.

Tetrahedron, radius of circumscribing
sphere, 24.

Transvection, 272.

Tschirnhausen, transformation of equa-
tions, 298.

Umbral notation, 8, 267, 288.

Vandermonde, on determinants, 288.

Warren, on system of two quartics, 202.

THE END.
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