

LIGHT—— LOCOMOTIVES.

Complements Cos

CIFT OF PURCHASING OFFICE S. F.

Light Locomotives

Tenth Edition

1900

Advertisement

Our Compressed-Air Locomotives are described in our new catalogue

Compressed-Air Haulage

which will be mailed free on request of mine or industrial operator or others interested

Compressed-Air Locomotives are preferable for underground haulage and for surface use at various industrial operations. They are wholly free from danger of fire, no dirt or smoke, easy to handle, free from breakdown, compare favorably with any other mechanical haulage as to economy, last longer with less repairs

In writing for Air Catalogue, please add "as advertised in Steam Catalogue"

LiPoreton X co.,

H K Porter Company

Builders of

Light Locomotives

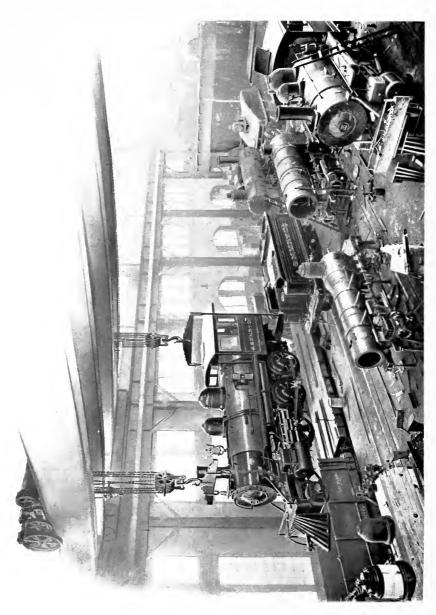
Steam and Compressed Air

HENRY KIRKE PORTER President WILLIAM ENSIGN LINCOLN Vice-President HOBART BENTLEY AYERS General Manager WILLIS ELIPHALET MARTIN Treasurer CHARLES LAWRENCE McHENRY Secretary DAVID EDWARD FERGUSON Purchasing Agent

Office 12th Floor Union Bank Building Fourth Ave and Wood St Works on Pennsylvania Railroad B & A V Div Forty-ninth St

Pittsburgh Pa

N. D. PHELPE, Front


405 SHE 12 IN E1

SAN FRANCISCO, SAL.

Cable Address Porter Pittsburgh

Codes Used

A B C Code Fourth Edition A B C Code Fifth Edition Lieber's Code
Western Union Code A 1 Code Business Telegraph Code
H K Porter Company Code (Beginning page 204 of this Catalogue)

ant of men Munay.

The above illustration shows a portion of the erecting floor. A 40-ton, 36-inch gauge engine is hanging from the electric cranes ready to load on the car. On the floor are locomotives for steel works, coke ovens, mines, etc., and also plantation locomotives for Hawaii, and an industrial locomotive for Spain.

Light Locomotives

Our exclusive specialty is the manufacture of Light Locomotives— Steam and Compressed Air—in every variety of size and design, and for ANY PRACTICABLE GAUGE OF TRACK, WIDE OR NARROW.

By "Light Locomotives" we do not mean lightly constructed machines, but locomotives of smaller sizes than are used on main lines of road. Our "Light Locomotives" as compared with usual construction are built heavier and stronger. They are specially adapted to severe requirements and difficult conditions for which ordinary railroad locomotives are unsuitable and too costly.

The business was begun in 1866 by the firm of Smith & Porter; they were succeeded in 1871 by Porter, Bell & Company; in 1878 by H. K. Porter & Company; and in 1899 by the H. K. Porter Company. The annual capacity of the first shop, which was destroyed by fire in 1871, was 15 to 25 locomotives; of our earliest shops on the present 49th Street site, from 1872 to 1880, about 75 locomotives; of our enlarged shops, 1881 to 1893, about 125 locomotives; and our present shops have an annual capacity of 400 locomotives.

Our first catalogue, printed in 1874, comprised 59 small pages and described 17 locomotives. This Tenth Edition describes 559 locomotives and contains 224 pages. All of the designs herein described and illustrated are original with us and are the growth of our more than forty years' experience in this specialty. The interval between the Ninth Edition Catalogue and this Tenth Edition marks a greater progress in the efficiency and quality of our locomotives, as well as the amount of output, than any equal period in our history. Our present designs are practically equivalent in power and efficiency to the next size larger cylinders as described in the previous catalogue.

Our Guaranty

Every one of our locomotives, whether expressly so stipulated in the contract or not, is guaranteed by us to be in accordance with the specifications; to be of the best workmanship and material; accurately constructed to our duplicate system; and to develop the tractive force stated in the catalogue.

This guaranty appears to us to cover everything for which a manufacturer can be considered accountable.

Between one-half and two-thirds of our sales are repeated orders, and of the remainder the majority are for neighbors or acquaintances of customers.

Our Duplicate and Stock System

By means of original and duplicate classified drawings and records, and of standard gauges and templets and special tools, each locomotive is made duplicate and interchangeable with all others of the same size and class.

One extremely valuable feature of our duplicate system is original with us, and so far as we know has not been adopted by any other locomotive shop, viz.: We always keep on hand, independent and ahead of locomotives under construction, a large stock of duplicate parts completed and under way for all of our standard designs and sizes, enabling us to fill orders for repairs promptly or immediately. On receipt of an order for repairs the parts ordered are taken from the proper rack or shelf and shipped. This saves from several days to several weeks time over the ordinary way of starting to make the parts upon receipt of the order. It ties up a considerable amount of our money, but avoids tying up our customers' business and saves them money. Necessarily our stock system cannot cover departures from standard designs or odd gauge parts varying with gauge of track.

Completed Locomotives on Hand in Stock

It has been our practice for over thirty-five years to keep on hand in stock a number of sizes and designs of completed locomotives both for thirty-six and fifty-six and one-half inches gauge of track.

Correspondents needing immediate delivery of locomotives for contractor's use, industrial service, mine and logging roads, shifting, steel-works, etc.. can usually find something suitable on our erecting floor ready for shipment as soon as the couplings can be adjusted to the required height and the locomotive lettered.

While we do not deal in **second-hand** locomotives, we often are able to refer such inquiries to customers having locomotives for sale. Second-hand locomotives—unless the history of the machine is known—may be expected to be of old-style, light machinery, light boiler pressure, and of less power than modern designs; they are liable to need more repairs than they are worth. A second-hand locomotive without the builder's name plate is open to suspicion as the year of its construction is given on the missing plate.

Many buyers do not appreciate the difference in power and value between modern and old-style locomotives of the same size cylinders and general design. As an illustration, we note below the weight, boiler pressure, and power of two types of locomotives at different dates.

Locomotive Code Word Kirwan, 7x12 Cylinders, Class B-S

			Weigl	ht.	Boiler Presst	ure. Tractive Force.
First	Edition	Catalogue	(1874).12,000	lb.	120 lb.	2,495 lb.
Sixth	6.6	4.6	(1889).15,000	4.4	110 ,,	2,915 "
Ninth	4.4	4.6	(1900).16,500	4.4	140 ''	2,915 "
Tenth	4.4		(1907).17,500	"	160 "	3,330 "

Locomotive Code Word Kizloz, 10x16 Cylinders, Class B-S

			Weigl	ht.	Boiler P	ressure.	Tractive	Force
First	Edition	Catalogue	(1874).28,000	1b.	120	1b.	5,005	1b.
Sixth	6.6	" "	(1889).29,000	4.4	140	"	5,775	4.4
Ninth	4.4	4.4	(1900).32,000	4.6	140	6.6	5,775	6.6
Tenth	6.6	4.4	(1907).36,500	" "	160	6.6	7,250	4.4

The increase of weight and power of other sizes and designs has progressed at a similar rate, and locomotives of our latest designs may be reckoned about ten to fifteen per cent more efficient than those built about five years ago.

Overhauling and Repairing Locomotives

We have the best facilities for making general repairs of locomotives, and do such work as promptly as contracts on hand will admit. If a locomotive is considered worth general overhauling we recommend that the work be done thoroughly, and we will use our best judgment to keep the cost as low as may be consistent with a satisfactory job. It is not possible to make any accurate estimate of cost of overhauling in advance of doing the work. Locomotives for repairs should be shipped to us to reach Pittsburgh by Pennsylvania Railroad or Pennsylvania Company Lines.

Shipment of Locomotives

Locomotives for points accessible by rail are shipped on flat cars, well loaded and secured, and set up ready for fuel and water excepting that small parts liable to injury or loss en route are removed and boxed, and bright work is protected from rust. This applies to all locomotives of narrow or unusual gauges of track, and to standard gauge locomotives excepting sizes large enough to make shipment on own wheels preferable. Unless otherwise agreed, our delivery is free on car or track at our shops. We are prepared to secure lowest possible freight rates.

Orders for Export

We have exported locomotives for over thirty-five years and are acquainted with the preferences and requirements of foreign countries. Our locomotives are in use throughout the United States and Territories, including Alaska and our West India Islands, the Canal Zone, Hawaii, and the Philippines; also in the various divisions of Canada, and in Mexico, Nicaragua, San Salvador, Honduras, Guatemala, Yucatan, Republic of Colombia, Venezuela, Guiana, Brazil, Uruguay, Argentine, Chile, Peru, Ecuador, Cuba, Haiti, San Domingo, Spain, Italy, Austria, Finland, Russia, Sweden, South Africa, Zanzibar, Korea, Formosa, and Borneo, and we were the first American builders to ship locomotives to Japan. Since our designs are the evolution of home conditions of excessive grades and curves, light rails, rough track, hard service, and poor care, our locomotives are better adapted for export to countries where similar conditions prevail than are English and Continental machines. Repeated orders from foreign customers have been a feature of our business for many years.

For foreign shipment our locomotives, after being thoroughly tested by their own steam on friction rollers, are taken apart and the various pieces marked to show their proper position and to facilitate setting them up again on arrival at destination. All bright work is carefully protected from rust by a coating of white lead and tallow, which can be removed readily with naphtha or turpentine rubbed on with rags or waste. The various parts are carefully packed, and secured by cleats, to prevent damage by shifting or chafing, in strong, tight boxes, well fastened and hooped. Boilers are completely protected by boards and hoops. Driving wheels and other items not requiring complete boxing are wrapped and protected from injury at the journals. All boxes and packages are distinctly and permanently marked with the proper shipping marks and numbers, dimensions and weights. An experience of many years enables us to conform to the requirements of different countries in the manner of boxing and packing, and to insure safety from injury during ocean voyages and the frequent transfers often necessary. A detailed list of boxes and packages, with weights, dimensions, and contents, is furnished. We are also prepared to include in proposals for export the delivery of boxed locomotives to the vessel's tackle in New York harbor, or delivery at any other port in this country. For customers' convenience in estimating ocean freights we will furnish, when desired, a memorandum, based on actual shipments, of the approximate weights and dimensions of boxes and packages, and the total measurement in cubic feet, for locomo-of extra duplicate parts is needed we will quote promptly on such parts as may be desired, or if preferred we will submit for approval, with estimate of cost, a list of such parts as our experience would lead us to suggest.

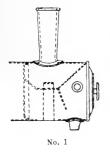
Standard Specifications

With every proposition for a locomotive we are prepared to furnish DETAILED SPECIFICATIONS with the various dimensions fully noted.

The STANDARD SPECIFICATIONS of our LIGHT LOCOMOTIVES include axles, crank-pins, guides, rods, and other forgings of open-hearth steel; oil-tempered half-elliptic steel springs; links of skeleton style to facilitate taking up wear, links and blocks of case-hardened forged mild steel with extra large bearings; valve gear and other working joints with removable case-hardened steel pins and bushings; locomotive frames of best quality hammered iron with pedestals and braces forged in solid, or of steel castings if so desired; bumper and drawbar connections at front and rear extra solid and strong; cylinders of special close metal, as hard as can be worked, with raised valve face; driving-wheel centers of special hard, close, cast iron (or of steel), with open-hearth steel tire: tender and truck wheels (if any) of iron with chilled flange and tread (unless otherwise specified); crossheads of steel castings with babbitted or brass gibs; all journals and wearing surfaces of ample size; wearing brasses of ingot copper and tin or of approved alloy of new metals; all movable nuts case-hardened; all bolts to U. S. standard thread; all cocks to standard gas-taps.

Boiler of homogeneous open-hearth steel plates, tested for chemical analysis and physical properties, "best flange" and "best firebox" grades; flanging done by hydraulic flanging press; firebox with crown-bars stayed to dome, or with radial stay-bolts: stay-bolt holes tapped by pneumatic tools; lap-welded iron or seamless steel flues set with copper ferrules at the firebox ends; all caulking done with pneumatic blunt tool on beveled edges; all rivets driven by hydraulic power where possible; tested by hydraulic pressure before lagging, to a pressure of 33% over the working pressure of 160 to 180 pounds, according to the class of locomotive. Boiler throughout constructed to conform to Boiler Insurance Companies' requirements. Tank of homogeneous open-hearth "flange" steel plates. Water supplied by two injectors of approved make and of ample capacity; or, if preferred, one injector and one full-stroke pump operated from the right-hand crosshead.

Our locomotives are furnished with sand-box; bell (except mine and other special designs); safety valves; steam gauge; cab-lamp; double or triple sight-feed lubricators; cylinder cocks; blow-off, gauge, blower, heater, and other cocks; tool-box and cushion; tools, including two screw-jacks, tallow and oil cans, monkey-wrench; flat wrenches to fit all bolts and nuts; steel and copper hammers; chisels, pinch-bar, poker, scraper, and torch.


Special attention is given to secure for all of our locomotives thorough fitness in all details for the service required; durability for hard service, and ease of repairs, also compactness and accessibility of machinery; and convenient and perfect control of all working levers, gauges, handles, and cocks by the engineer.

Before shipment each locomotive is placed upon friction rollers, fired up and worked by its own steam to test the adjustment of the valve gear, alignment of bearings, and satisfactory working in all respects.

Every locomotive is built to our duplicate system, by which like parts of all engines of the same class are interchangeable, and these duplicate parts are always kept on hand.

The following items may be furnished as extras, but are not included in our standard specifications: head-lights; driver brakes, operated by hand, steam, or air; steam syphon, with hose for filling tanks from streams below track level; snow-plow; copper firebox, brass or copper flues; steel-tired truck or tender wheels; steel wheel centers; steel cab, and other special features.

The various locomotives illustrated and described in this catalogue may be constructed with smoke-stacks, fireboxes, and grates and bunkers or fuel space arranged for the kind of fuel desired.

For coal fuel we recommend the taper stack with extension boiler front, as shown by annexed outline sketch (No. 1). The exhaust steam is wholly unobstructed; the sparks are arrested by a steel wire netting and steel plate in the smoke-box until they are churned fine enough to pass through the netting, or if the quality of the coal or the conditions of service allow sparks to accumulate they are withdrawn

through a hopper.

If preferred, we furnish instead of the taper stack a straight stack with cast top finish (No. 2).

No. 2

The old-style diamond stack with cast cone and wire netting, and petticoat pipe, is generally used with short boiler front (No. 3).

For wood fuel, and especially for pitch pine, we recommend, as the safest smoke-stack, our balloon-shaped stack with spiral cone (No. 4). This stack is very efficient and interferes very little with the draft, as there is no wire netting for the exhaust steam to pass through. The spiral cone

No. 4

imparts a rotary motion to the sparks by which they are ground fine before escaping or are deposited in the space between the inner barrel and the outer part of the stack, from whence they may be removed through hand-holes.

If preferred, we furnish for wood fuel the "sunflower" style of stack with cast cone, and projection of inside barrel arranged to break up the sparks, and with a fine steel wire netting over the top to prevent the escape of anything but very small cinders (No. 5). This stack is efficient for hard-

wood fuel, but not well adapted for pitchy woods.

We are prepared to construct locomotives with apparatus for burning crude oil.

Physical Tests of Materials

All materials used shall be of the best quality of their respective kinds, carefully inspected and tested, conforming to the requirements adopted by the American Society for Testing Materials. If, after acceptance any material shows mechanical defects in working, it will be rejected.

Boiler Shell and Firebox Steel

All plates must be rolled from open-hearth steel and be true to gauge and free from laminations, seams, and other defects.

All shell plates shall have a tensile strength of not less than 55,000 or more than 65,000 pounds per square inch; elongation not less than 25 per cent in 8 inches; sulphur not to exceed 0.05, phosphorus not to exceed 0.04 per cent.

All firebox plates shall have a tensile strength of not less than 52,000 or more than 62,000 pounds per square inch; clongation not less than 26 per cent in 8 inches; sulphur not to exceed 0.04, phosphorus not to exceed 0.04 per cent.

Tank Steel

The plates to be rolled from soft, homogeneous steel billets, and must be of good surface finish, free from defects and hard scale. The steel to be of such quality that test pieces cut lengthwise from any plate selected shall show no sign of fracture when bent double cold over a mandrel of diameter one and one-half times the thickness of plate so tested.

Firebox Copper

Copper plates for fireboxes must be rolled from best quality Lake Superior ingots; they must have a tensile strength of not less than 30,000 pounds per square inch, and an elongation of at least 30 per cent in 8 inches. Test strips must be furnished with each firebox for testing.

Copper Stay-Bolts

Copper for stay-bolts to contain not less than 99.5 per cent of pure copper, and to be free from defects. Tensile strength must not be less than 30,000 pounds per square inch, with an elongation of not less than 30 per cent in 8 inches.

Stay-Bolt Iron

Iron for stay-bolts must be double refined, with an ultimate tensile strength of not less than 46,000 pounds per square inch, and an elongation of not less than 28 per cent in section 8 inches long. Iron must show a good fibrous fracture and be free from crystallization. Pieces 24 inches long must stand bending double both ways without showing fracture or flaws. Iron must be free from seams, true to gauge, and take a good, clean, sharp thread with dies in good working order.

Boiler Tubes, Seamless Steel or Charcoal Iron

A careful examination will be made of each tube, and those showing pit-holes or other defects will be rejected. Each tube must be tested by the manufacturer to an internal hydraulic pressure of not less than 500 pounds per square inch. Tubes must be straight and true to size, and must expand and bend over tube-sheet without flaw, crack, or opening.

All tubes must stand the following test: A section 1½ inches long, taken at random, to stand hammering down vertically until solid without cracking or splitting.

Charcoal-iron tubes to be lap-welded, seamless-steel tubes to be open-hearth.

Bar Iron

Must be thoroughly welded, free from seams, blisters, and cinder spots, with a fibrous fracture free from crystallization. Iron will not be accepted if tensile strength falls below 46,000 pounds, nor if elongation is less than 20 per cent in 8 inches, nor if it shows a granular fracture. Iron 1 inch thick or less to bend double over a bar equal to its thickness; sizes above 1 inch to bend to 120 degrees without flaw.

Steel for Forgings

All blooms to be of open-hearth steel, not exceeding 0.05 per cent in phosphorus. A test piece cut from forging 4 inches diameter hammered from the bloom must conform to the following test: For axles, main and parallel rods, tensile strength of not less than 75,000 pounds per square inch, and elongation of 18 per cent in section originally 2 inches long. For crank-pins, piston-rods, etc., tensile strength of 80,000 pounds per square inch, with elongation of not less than 18 per cent in section originally 2 inches long. Limits of tensile strength, 5,000 pounds below or above the amounts given.

Steel Castings

All steel castings must have uniform surface, free from blow-holes, slag, and shrinkage cracks. Test pieces cut from casting should show a tensile strength of not less than 60,000 pounds, and elongation of 22

per cent in 2 inches. Castings badly warped or distorted, which will not true up properly to drawing, will be rejected.

Steel Shapes, Angles, Channels, Tees, etc.

Must be of open-hearth steel, free from injurious seams, etc., and variation from estimated weight not to exceed 5 per cent. Tensile strength not less than 52.000 nor more than 62,000 pounds, and elongation of not less than 25 per cent in 8 inches. Specimens must stand bending through 180 degrees and an inner diameter equal to its own thickness, without crack or flaw.

Spring Steel

All spring steel must be free from any physical defects. The metal desired has the following composition:

Steel will not be accepted which shows on analysis less than 0.90 or over 1.10 per cent of carbon, or over 0.50 per cent of manganese, 0.05 per cent of phosphorus, 0.25 per cent of silicon, 0.05 of sulphur, and 0.05 of copper.

Classification of Locomotives

For sake of convenience in classifying our numerous designs of locomotives we have adopted a very simple system.

The size of the locomotive is designated by the diameter and stroke of its cylinder in inches; thus, 9 x 14 means a locomotive with cylinders nine inches diameter by fourteen inches stroke.

The number of driving wheels is expressed by:

A for two driving wheels.

B for four driving wheels.

C for six driving wheels.

D for eight driving wheels.

The number and position of locomotive truck wheels is expressed by a figure 2 for two-wheel, or 4 for four-wheel truck; for a rear truck, this figure is placed to the left, and for a front truck placed to the right, of the letter denoting the number of driving wheels, and separated by a hyphen. (The locomotive is supposed to be headed toward the observer's right hand.) Thus, 2-B denotes a locomotive with a two-wheel rear truck and four driving wheels; 4-C-2 a locomotive with a four-wheel rear truck, six driving wheels, and a two-wheel front truck.

The arrangement of water-tank is denoted by:

T for tender-tank with eight wheels.

T4 for tender-tank with four wheels.

T6 for tender-tank with six wheels.

S for saddle-tank.

SS for two side tanks alongside of boiler.

R for rear tank.

RR for two tanks, one each side at rear.

K denotes a locomotive with sheet-steel open canopy for cab.

M denotes a motor-style cab enclosing the machinery.

I denotes a locomotive with a steel cab.

O denotes a locomotive without cab.

P denotes pneumatic or compressed-air locomotive, with one air-tank, and PP one with two air-tanks.

Letters and figures relating to tank, cab, etc., should follow the letter and figures for driving wheels and truck wheels. Thus, 12 x 18-2-B-4-SS-K-T 4 denotes a locomotive with cylinders twelve inches diameter by eighteen inches stroke, four driving wheels, two-wheel rear truck, four-wheel front truck, side tanks, open steel canopy cab, and four-wheel tender—thirteen figures and letters expressing the meaning of twenty-eight words.

Memorandum of Conditions and Requirements of Service to be Furnished by Intending Purchasers

To facilitate the selection in all cases of the sizes and designs of locomotives which will be most thoroughly satisfactory to our customers, we request from intending purchasers as clear a statement as may be practicable of the work the locomotive will be expected to do. This statement should include items as follows;

- 1. The gauge of track (i. e., space in the clear between rails).
- 2. Length of road.
- 3. Description of fuel.
- 4. Weight of rail per yard.
- Steepest up-grade for loaded cars, and the length of this grade, and whether trains must be started on the grade. If grades are numerous and steep a memorandum of principal grades is desired.
- 6. If cars on return trips are empty, the steepest up-grade for return trips with empty cars. Length of this grade.
- Radius of sharpest curve. Length of track occupied by this curve, and grade, if any, on which this curve occurs.
- 8. Kind of traffic, and, if freight, the kind of freight.
- Total amount to be hauled daily in one direction (stating number of hours reckoned as one day).
- 10. Greatest number of cars to be hauled at one trip. (This should not be exaggerated, as we make a reasonable allowance for surplus power, and if double allowance is made there is liability of selecting too heavy and too expensive a locomotive.)
- 11. The weight of empty car. (Also, if practicable, a brief description of car, stating number and diameter of wheels and arrangement for oiling.)
- 12. Weight of load carried on each car.
- 13. Limitations, if any, of height or width.
- 14. Any preference as to design or details.

We fully appreciate that where the road has not been completed or fully surveyed it may be impossible to give complete information. In such cases we would request as close estimates of the length of road, grades, curves, daily amount of traffic, etc., as practicable, leaving the weight of rail, and number of cars to be hauled per trip, to be determined.

It is very desirable that the information should be given as fully as possible. Even in cases where intending purchasers have strong preferences as to size or design of locomotives required, an outline of the requirements and conditions of service may enable us to submit suggestions of value. We desire, also, in justice both to ourselves and to our customers, that in making propositions for locomotives we may, in every instance, feel assured that the locomotive will be, beyond doubt, well adapted to the service, economical and satisfactory in all respects, and thus lead to future orders from the purchaser and from his neighbors. If correspondents will kindly go to the trouble of furnishing us the desired information it will enable us to submit propositions, with specifications and photographs, for such sizes or designs as we would feel safe in recommending and guaranteeing.

"American" or "Eight-Wheel Passenger" Locomotive, Class B-4-T

Wide or Narrow Gauge

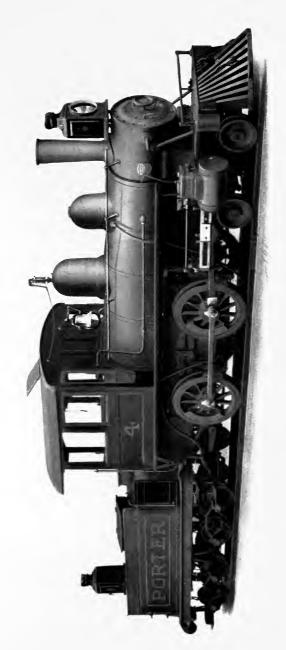


ILLUSTRATION No. 4, from photograph of 12 x 16 cylinders, coal-burning locomotive, 561/2 inches gauge exported to South America.

SEVEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The engine truck has pivotal and lateral motion. The driving wheels are connected by side equalizers. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD.	HADRIA	HAERAD	HAFSSA	HAGADA	HAGNON	HAKKOZ	HAKSEL
(diameter, inches.	IO	II	1.2	12	13	ŤΙ	7.1
Cymmers is stroke, inches	91	91	91	18	8	.00	2, 4
Diameter of driving wheels, inches	+2	7.	48	48	8†	48	95
Diameter of truck wheels, inches	18	50	22	22	2 2 -	22	7 7 7
Rigid wheel-base of engine, feet and inches	0-9	0-9	99	6-9	2-0	9-2	8-0
Total wheel-base of engine, feet and inches	15-6	0-91	0-11	18-0	1-61	20-6	21-6
Wheel-base of engine and tender, feet and inches	32-0	33-0	35-0	36-6	39-0	10-2	41-0
Length over all of engine and tender, feet and inches	39-0	41-0	43-0	45-0	40-3	47-9	0-6+
Extreme height (head-room not limited), feet and inches	9-01	11-0	9-11	12-0	12-1	12-6	13-0
Weight of engine, exclusive of tender, in working order, pounds	34,000	38,000	42,000	10,000	24,000	70,000	85,000
Weight on driving wheels, pounds	23,500	26,000	28,000	31,500	37,500	18,000	58,000
Weight on four-wheel truck, pounds	11,500	12,000	14,000	14,500	16,500	22,000	27,000
Weight of tender in working order, pounds	20,000	25,000	28,000	28,000	31,500	38,000	45,000
Water capacity of tender-tank, gallons	800	1,050	1,200	1,200	1,400		2,000
Final canadity of tandar (coal, pounds	3,000	3.700	4,000		4,500		7,500
were capacity of tender (wood, cords	1,4	1.5%	1 3/4	1 3/4	8		'n
Weight per yard of lightest rail advised, pounds	25	25	30		35	5	10
Radius of sharpest curve advised, feet	160	175	180	200	225	250	275
Boiler pressure per square inch, pounds.	091	091	091	091	091	160	091
Tractive force, pounds	5,180	5,860	6,530	7,340	8,625	11,100	13,100
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), 61% pounds per ton resistance of rolling friction.							
On absolute level.	770	865	965	060,1	1,280	1,650	1,950
" $\frac{1}{2}$ per cent grade = $26\frac{1}{1}$, feet per mile	285	320	360	405	475	620	725
# :: : : : : : : : : : : : : : : : : :	165	185	210	210	280	360	425
: 3	80	c6	105	120	140	180	215
 -	20	55	09	70	82	110	130
The Dule for Coloniation of Haulian Passacter at all meters of assistance of actions and as one successfully and it is also						•	

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Six-Wheel Fast Passenger" Locomotive, Class B-2-T

Wide or Narrow Gauge

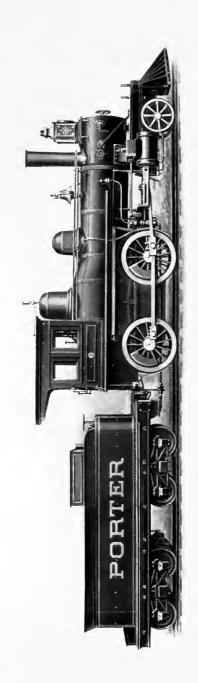


ILLUSTRATION No. 6, from photograph of 11 x 16 cylinders, coal-burning locomotive, 36 inches gauge.

SEVEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The engine truck has pivotal, lateral, and radial-bar motion. The driving wheels are connected by side equalizers. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	HALL00	HALSED	HALYDE	HAMAUX	HAMKIN	HAMOSE	HANANI
Cylinders diameter, inches. Diameter of driving wheels, inches.	10	11 16	12 16 45	12 18 46	13 18 46	14 20 46	15 24 56
	26	28	28.7	30		30	
	15-9	16-3	0-01	0-81		20-6	
ches	32-3	33-3	35-0	36-6		40-2	
: :	39-0 10-6	40-9 11-0	43-0 11-6	45-0 12-0	+0-3 12-4	47-9	
, in working order, pounds	33,500	37,000	41,000	44,000		65,000	-
Weight on driving wheels, pounds	25,000	27,500	31,000	33,500		50,000	_
nds	20,000	25,000	28,000	28,000		38,000	
	800	1,050	1,200	1,200		1,600	
Fuel canacity of tender & coal, pounds	3,000	3,700	4,000	4,000		0000,9	
we carbacted a wood, cords	1 1/4	1 2/8	1 34	1 3/4		$\frac{2}{2}$	
Weight per yard of lightest rail advised, pounds	25	30	30	30		45	
Kadius of sharpest curve advised, feet	150	091	170	180		220	
Boiler pressure per square inch, pounds	160	091	160	091	091	091	0/1
Tractive force, pounds	5,440	6,270	096'9	7,665	8,995	11,585	016,81
Hauling Capacity, in tons of 2.000 pounds (exclusive of locomotive and tender), $6V_2$ pounds per ton resistance of rolling friction: On absolute level. V_2 per cent grade = $26V_1^{10}$ feet per mile 1 1 = $15S_1^{10}$ S_2^{10} = $15S_1^{10}$ = $15S_1^{10}$	805 300 175 90 50	930 345 205 1000 60	1,0 385 115 70	1,140 425 255 1255 75	1,340 500 295 150	1,725 650 385 1995	2,077 7,80 1,460 1,450 1,453

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 1.56 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light "Six-Wheel Local Passenger" Locomotive, Class B-2-T

Wide or Narrow Gauge

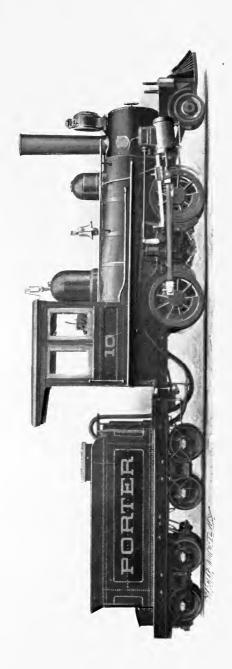


ILLUSTRATION No. 10, from photograph of 7 x 12 cylinders, coal-burning locomotive, 36 inches gauge of track, with steam syphon pump.

THREE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The engine truck has pivotal, lateral, and radial-bar motion. The driving wheels are connected by side equalizers. The 9 x 14 size has horizontal cylinders. The smaller sizes are usually built with four wheel tender. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

CODE WORD.	HANGBY	HANGEN	HANNAI	
Cylinders { diameter, inches	7	~	6	
stroke, inches.	1.2	14	1.4	
Diameter of driving wheels, inches.	28	30	33	
Bioid wheel-hase of engine feet and inches	41	0 ,	∞ ,	
Total wheel-base of engine, feet and inches.	0 0 0	S 10	5-9 IO-0	
Wheel-base of engine and tender, feet and inches.	20-2	22-6	24-4	
Length over all of engine and tender, feet and inches	258	29-8	32-0	
Extreme height (head-room not limited), feet and inches	9-6	01-6	I 0-0	
Weight of engine, exclusive of tender, in working order, pounds	16,000	22,000	25,500	
Weight on driving wheels, pounds.	13,000	18,000	21,000	
Weight on two-wheel truck, pounds.	3,000	4,000	4,500	
Weight to tender in working order, pounds	12,000	12,000	12,000	
Water capacity of tender-tank, gallons	200	500	500	
Fuel capacity of tender \ coal, pounds	2,000	2,000	2,000	
Wood, cords	I	I	I	
Weight per yard of lightest rail advised, pounds	91	16	20	
Kadius of sharpest curve advised, feet	70	7.5	85	
Boiler pressure per square inch, pounds	160	160 4,055	160 4,670	
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), 6½ pounds per ton resistance of rolling friction: On absolute level. ½ per cent grade = 26¼ feet per mile. 1	24 200 24 30 30 30 30	605 225 135 70 40	700 265 155 80 30	

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Six-Wheel Local Passenger" Locomotive, Class B-2-T

Wide or Narrow Gauge

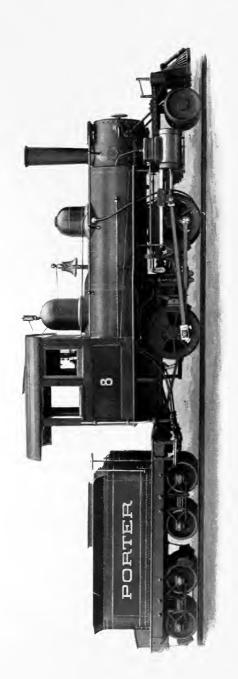


ILLUSTRATION No. 8, from photograph of 10 x 16 cylinders, coal-burning locomotive, 36 inches gauge of track, for a banana plantation in Central America. THREE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel. size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The engine truck has pivotal, lateral. and radial-bar motion. The driving wheels are connected by side equalizers. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE WORD.	HAPJES	HAPSUS	HAPTUK
(diameter, inches.	IO	11	12
Cymiders (stroke, inches	91	91	91
Diameter of driving wheels, inches	36	40	42
Diameter of truck wheels, inches.	20	2.4	24
Rigid wheel-base of engine, feet and inches	9-9	9-9	9-9
Total wheel-base of engine, feet and inches	13-3	14-3	14-6
Wheel-base of engine and tender, feet and inches	30-3	33-6	34-6
Length over all of engine and tender, feet and inches	36-8	41-0	42-6
Extreme height (head-room not limited), feet and inches	9-01	11-0	11-3
Weight of engine, exclusive of tender, in working order, pounds	31,000	35,000	40,000
Weight on driving wheels, pounds.	26,000	29,000	33,000
Weight on two-wheel truck, pounds	2,000	000,9	2,000
Weight of tender, in working order, pounds	20,000	25,000	25,000
Water capacity of tender-tank, gallons	800	1,050	1,050
Ruel canacity of tender \ coal, pounds	3,000	3,700	3,700
wood, cords	1/1	8/21	8 <u>6</u> I
Weight per yard of lightest rail advised, pounds	2.5	30	35
Radius of sharpest curve advised, feet	125	150	175
Boiler pressure per square inch, pounds	160	165	165
Tractive force, pounds.	0,040	6.785	7.695
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), $61/2$ pounds per ton resistance of rolling friction: On absolute level. 1/2 per cent grade = $261/6$ feet per mile. 1/2 i = $521/6$ f 2 = $1051/6$ f 3 = $1581/6$ f	900 340 200 100 65	1,010 380 225 115	1,150 430 255 130 80

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light "Mogul" Locomotive, Class C-2-T

Wide or Narrow Gauge

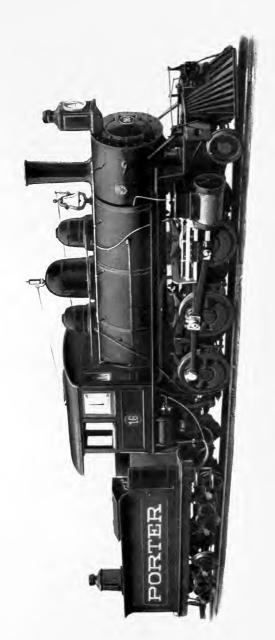


ILLUSTRATION No. 16, from photograph of 15 x 20 cylinders, coal-burning locomotive, 56½ inches gauge of track, for logging railroad

FIVE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The engine truck has pivoral, lateral, and radial-bar motion. The rear and center driving wheels are connected by side equalizers; the front driving wheels are equalized with the ruck; the center driving wheels are flangeless. The double-bar guide is seldom used except on sizes 14 x 20 and larger. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

CODE WORD.	HARCON	HARHUR	HARIPH	HARIRI	HARLOU
('vlinders diameter, inches	01	10	11	12	1.2
stroke, inches	14	91	16	91	81
Diameter of driving wheels, inches.	33	33	36	36	36
Diameter of truck wheels, inches.	20	2.2	5.4	24	2.4
Kigid Wheel-base of engine, feet and inches.	7-3	7-8	0-6	0-6	9-2
Total wheel-base of engine, feet and inches.	12-6	13-0	9-11	9-11	1.5-1
Wheel-base of engine and tender, feet and inches	29-0	29-1	33-4	33-10	35-41/2
Length over all of engine and tender, feet and inches	34-0	36-4	41-2	8-1+	43-6
Extreme height (head-room not limited), feet and inches	10-3	9-01	10-10	10-10	0-11
Weight of engine, exclusive of tender, in working order, pounds	30,000	36,000	40,000	44,000	49,000
Weight on driving wheels, pounds.	25,000	30,000	33,500	37,000	12,000
Weight on two-wheel truck, pounds.	2,000	000,9	6,500	2,000	2,000
Weight of tender in working order, pounds	20,000	20,000	25,000	25,000	28,000
Water capacity of tender-tank, gallons	800	800	1,050	1,050	1,200
Fuel capacity of tender \ coal, pounds	3,000	3,000	3,700	3,700	4,000
with the wood, cords	1/4	174	1 5 × 8	% I	1 3/4
Weight per yard of lightest rail advised, pounds	20	20	25	25	30
Kadius of sharpest curve advised, feet	120	120	135	135	1.50
Radius of sharpest curve practicable, teet	85	83	100	100	120
Boiler pressure per square inch, pounds	091	160	160	160	160
Tractive force, pounds	5,775	6,585	7,315	8,710	008.6
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), 6½ pounds per ton resistance of rolling friesion.					7 1000
	860	580	000,1	1.305	1165
" $\frac{1}{2}$ per cent grade = $26\frac{1}{10}$ feet per mile	325	370	410	400	. r.
 	061	220	240	290	330
01XOI = ","	9.2	110	120	150	175
3 = 15810	09	70	7.5	9.5	105
The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.	sistance of ro	Iling friction	and on any	practicable g	rade is given

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Mogul" Locomotive, Class C-2-T wide or Natrow Gauge

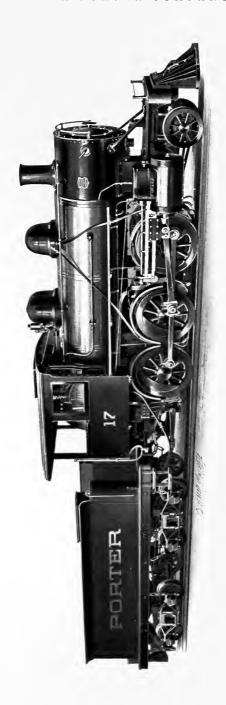


ILLUSTRATION No. 17, from photograph of 16 x 24 cylinders, coal-burning locomotive, meter gauge of track, exported to Spain.

EIGHT SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The engine truck has pivotal, lateral, and radial-har motion. The rear and center driving wheels are connected by side equalizers; the front driving wheels are equalized with the truck; the center driving wheels are flangeless. The double-bar guide is seldom used on sizes smaller than 14 x 20. The usual construction is two sand-boxes and with dome central. Wheel covers are usually omitted. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE WORD	HARPAR	HASHUB	HASPEL	HASPIC	HASPIC HASRAM	HATACH	HATANK	HATEAR
Cylinders { diameter, inches Diameter of driving wheels, inches.	13	1 T T T T T T T T T T T T T T T T T T T	1 T T T T T T T T T T T T T T T T T T T	15 20 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 7 7 × × × × × × × × × × × × × × × × ×	16 22 48	16 24 84
Diameter of truck wheels, inches.	36 26	26	45 26	26	45 26	2 4 5	2 7 2 8	2 8 2
Rigid wheel-base of engine, feet and inches	01-6	10-3	i_{-1}	9-01	6-11	6-11	12-0	12-0
Total wheel-base of engine, feet and inches	15-11	8-91	17-8	6-91	9-81	18-9	19-2	19-2
Wheel-base of engine and tender, feet and inches	30-3	38-0	40-0 48-3	0-04 0-84 0-8	40-0	40-0	43-0	43-0
Extreme height (head-room not limited), feet and inches	9-11	12-0	12-10	12-10	13-3	13-6	13-6	13-6
Wt. of engine, exclusive of tender, in working order, lbs. Weight on driving wheels, nounds.	56,000	04,500	73,000	74,000	78,000	83,000	87,000	92,000
Weight on two-wheel truck, pounds.	0,000	9,500	10,000	10,000	11,000	12,000	13,000	13,000
Weight of tender in working order, pounds	31,500	38,000	10,000	45,000	45,000	45,000	52,000	52,000
s	1,400	1,600	1,800	2,000	2,000	2,000	2,500	2,500
	4,500	0,000	6,500	7,500	7,500	7,500	8,000	8,000
	2	$\frac{21}{2}$	3	3	3	3	372	3 1/2
Weight per yard of lightest rail advised, pounds	30	35	04	40	40	5.4	20	50
Kadius of sharpest curve advised, feet	165	175	180	180	185	185	200	200
Kadius of sharpest curve practicable, feet	140	150	091	155	105	105	180	100
Boiler pressure per square inch, pounds	160	091	091	160	165	170	170	170
Tractive force, pounds	10,885	12,690	14,215	14,590	15,425	16,250	16,955	18,495
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), 6½ pounds per ton resistance of								
absolute lev	1,625	1,900	2,130	2,180	2,310	2,435	2,540	2,770
" $\frac{1}{2}$ per cent grade = $26\frac{1}{10}$ feet per mile	615	715	805	820	870	920	955	1,045
 : :	365	425	480	490	520	545	570	625
$= \text{Io}_{510}$ $= \text{Io}_{510}$	190	220	245	250	270	285	295	325
3 = 158 ₁₀	115	135	0 7.	160	170	180	185	202
The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any on page 140.	resistar	ice of ro	lling fric	tion and	on any	practicable	ole grade	grade is given

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-

motives of different weights.

"Consolidation" Locomotive, Class D-2-T

Wide or Narrow Gauge

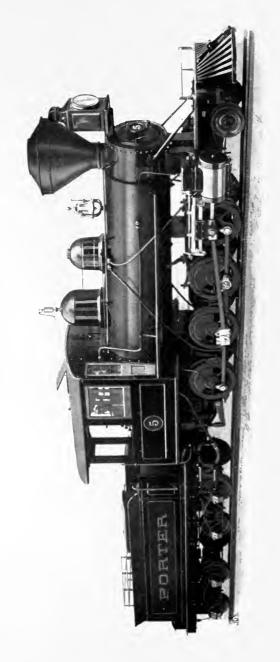


ILLUSTRATION No. 5, from photograph of 12 x 16 cylinders, wood-burning locomotive, 36 inches gauge of track, for logging railroad.

SEVEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The engine truck has pivotal, lateral, and radial-har motion. The driving wheels are requalized together and with the truck. The two center pairs of wheels are flangeless. The double-bar guide is seldom used for the smaller sizes. The design may be built with two sand-boxes and with dome central. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD.	HATHOR	HATIFI	HATIJO	HAURAN	HAVIAR	HAUYNE	HAYMOW
(Winders \ diameter, inches	II	1.2	13	14	1.5	91	17
stroke, inches.	14	91	91	18	0	20	20
Diameter of driving wheels, inches	30	33	33	36	38	42	42
Diameter of truck wheels, inches	18	20	22	24	24	26	26
Regid wheel-base of engine, feet and inches	0-6	10-0	9-01	11-3	01-11	12-2	12-8
Total wheel-base of engine, feet and inches	14-0	15-4	16-3	9-41	18-6	0-61	8-61
Wheel-base of engine and tender, feet and inches	33-6	36-6	38-0	39-0	40-3	43-7	44-6
Length over all of engine and tender, feet and inches	40-6	43-6	45-6	47-0	0-6+	53-0	0-1
Extreme height (head-room not limited), feet and inches	0-11	9-11	12-0	12-6	13-0	13-0	13-6
Weight of engine, exclusive of tender, in working order, pounds	40,000	49,000	58,000	000,89	82,000	000,06	000,26
Weight on driving wheels, pounds	35,000	43,000	51,000	000,09	73,000	81,000	88,000
Weight on two-wheel truck, pounds	5,000	000,9	2,000	8,000	0000,6	0,000	0,000
Weight of tender in working order, pounds	25,000	28,000	31,500	38,000	40,000	45,000	52,000
Water capacity of tender-tank, gallons	1,050	1,200	1,400	1,600	1,800	2,000	2,500
Fuel capacity of tender \ coal, pounds	3,700	4,000	4,500	000,9	6,500	7,500	8,000
(wood, cords.	1 2/8	1 34	7	$\frac{21}{2}$	2 3/4	, 75	31/2
Weight per yard of lightest rail advised, pounds	20	25	25	30	35	40	2.4
Kadius of sharpest curve advised, feet	135	I 50	165	180	185	200	220
Kadius of sharpest curve practicable, feet	100	120	140	091	165	180	200
Boiler pressure, per square inch, pounds	160	160	091	091	160	170	170
Tractive force, pounds	7,680	9,495	11,150	13,330	16,130	17,615	19,885
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), 6½ pounds per ton resistance of rolling friction:							
On absolute level.	1,145	1,420	1,670	1,995	2,420	2,640	2,075
½ per cent grade =	430	535	630	755	915	1,000	1,130
	255	315	375	450	545	595	675
" 10510 " " " " " " " " " " " " " " " " " " "	130	165	195	230	282	310	350
.501a	00	100	120	145	ISO	195	225

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-

motives of different weights.

Light Four-Wheel-Connected Locomotive with Tender, Class B-T4

Wide or Narrow Gauge

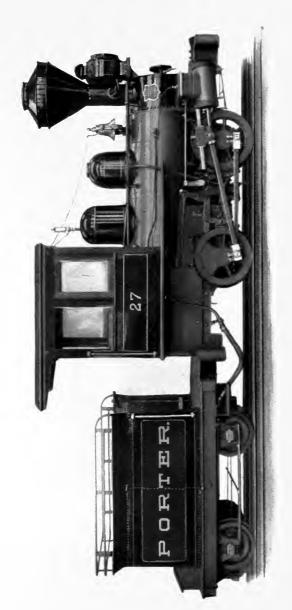


ILLUSTRATION No. 27, from photograph of 7 x 12 cylinders, wood-burning locomotive, 36 inches gauge of track, exported to Yucatan.

FIVE SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. Cylinders 9 x 14 and larger pare-teneus of customers. We are prepared to build additional sizes. A cross equalizer is placed at driving wheels. Cylinders 9 x 14 and larger pare-teneus are prepared to build additional sizes. See page 10 for general specifications and pages 11 and 12 for choice of stacks. For larger sizes Class B-T see next page.

CODE WORD.	HAYUCO	HEADLY	HECATO	HECUBA	HEDONE
('velindare') diameter, inches.	9	7	8	6	IO
stroke, inches	01	1.2	1.4	1,4	† _I
Diameter of driving wheels, inches	2.2	26	30	31	33
Wheel-base of engine, feet and inches	4-0	4-8	5-0	5-3	9-+
Wheel-base of engine and tender, feet and inches	13-9	14-6	17-3	18-0	20-0
Length over all of engine and tender, feet and inches	20-0	22-0	24-6	26-0	29-6
Extreme height (head-room not limited), feet and inches	8-7	6–8	9-4	6-6	01-6
Weight of engine, exclusive of tender, in working order, pounds	11,000	14,000	18,000	22,500	25,500
Weight of tender in working order, pounds	8,000	10,000	10,000	12,000	12,000
Water capacity of tender-tank, gallons	300	00+	00+	200	200
First capacity of tander (coal, pounds	1,200	1,600	1,600	2,000	2,000
1 act capacity of tender (wood, cords	72/25	`.30 \	, 30 , 30	% **	%* **
Weight per yard of lightest rail advised, pounds	1.2	91	20	20	25.5
Radius of sharpest curve advised, feet	35	0+	0+	57	0+
Radius of sharpest curve practicable, feet	1 S	91	18	2.5	20
Boiler pressure per square inch, pounds	091	160	160	091	160
Tractive force, pounds.	2,225	3,075	4,055	4.975	5,775
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), 6% pounds per ton resistance of rolling friction: On absolute level. 1% per cent grade = 261% feet per mile. 1% is 1% in 1% is 1% in 1% is 1% in 1% in 1% in 1% is 1% in	123 125 235 255 255	460 170 1000 30	610 230 135 70 45	2 8 5 1 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	870 330 105 65

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Four-Wheel-Connected Locomotive with Tender, Class B-T

Wide or Narrow Gauge

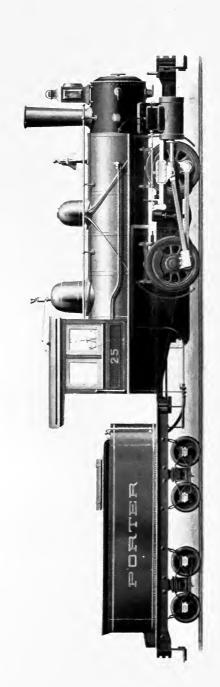


ILLUSTRATION No. 25, from 14 x 20 cylinders, coal-burning shifting locomotive, 56% inches gauge of track.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. We are prepared to construct with sloped tank. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes Class B-T see preceding page.

CODE WORD	HELKAI	HELVIA	HEMESA	HEMMEN	HENAJE	HENBIT	HEPHER	HERIDA	HERJIK
Cylinders diameter, inches. Diameter of driving wheels, inches. Wheel-base of engine and tender, feet and inches. Wheel-base of engine and tender, feet and inches. Length over all of engine and tender, feet and inches. Extreme height (head-room not limited), ft. and in. Weight of engine, exclusive of tender, in working order, pounds. Weight of tender in working order, pounds. Water capacity of tender-tank, gallons. Fuel capacity of tender wood, cords. Weight per yard of lightest rail advised, pounds. Radius of sharpest curve advised, feet.	10 16 36 5-3 21-0 29-6 10-3 29,000 29,000 29,000 3,000 1,14 25 45	36 5-3 5-3 22-0 30-6 10-9 33,000 20,000 20,000 33,000 174 30 30 30 30 30 30 30 30 30 30	12 16 40 5-9 22-6 31-6 11-6 36,000 20,000 800 36,000 11-7 35 50 30	12 18 40 5-9 23-0 32-0 11-6 40,000 20,000 3,000 1,14 35 35 35	13 18 18 12-0 24-6 34-0 34-0 12-0 22,000 22,000 3,000 174 10	14 20 46 6-3 29-0 38-0 12-6 52,000 25,000 1,050	14 48 48 48 7-0 31-0 12-0 12-0 12-0 1,200 1,34 50 15 15 15 15 16 17 17 17 17 17 17 17 17 17 17	15 24 50 7-6 33-0 42-6 13-2 70,000 31.500 1.400 4.500 60 75	16 24 50 8-0 35-0 45-0 13-6 80,000 1,800 1,800 1,800 1,800 1,800 1,700 1
Boiler pressure per square inch, pounds	160	160 7.315	7,835	160	160	160	160	170	17.755
Hauling Capacity, in tons of 2,000 pounds (exclusive and tender), 6½ pounds per sive of locomotive and tender), 6½ pounds per ton resistance of rolling friction: On absolute level	9	1,009 1445 1300 800	1,175 445 265 265 140 90	1,325 500 300 160 100	4.00 0 0 1 H H S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,740 660 395 210 135	2,005 760 455 1550 1550	2,350 890 2835 180	2,670 1,015 610 320 205

The Kule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2 on page 140.

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light Six-Wheel-Connected Locomotive with Tender, Class C-T

Wide or Narrow Gauge

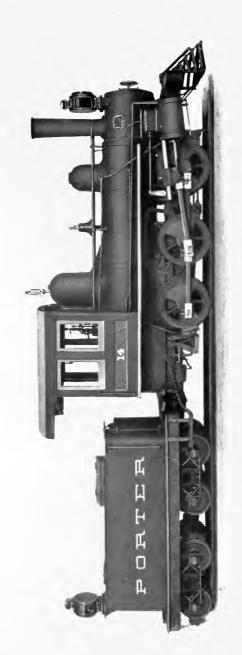


ILLUSTRATION No. 14, from photograph of 10 x 14 cylinders, coal-burning locomotive, 36 inches gauge of track, exported to Central America for banana plantation.

FIVE SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of purchasers. We are prepared to build additional sizes. The reat and center driving wheels are connected by side equalizers. A cross equalizer is placed at the front driving wheels. The center driving wheels are flangeless. Cylinders 8 x 14 and smaller are slightly inclined. Sizes 8 x 14 and smaller are slightly inclined. Sizes 8 x 14 and smaller are usually built with four-wheel tender. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

CODE WORD	HERNIE	HEROLD	HERPES	HERTOG	HESTIA
diameter, inches.	7	8	6	IO	11
Cylinders) stroke, inches	1.2	1.4	† ₁	+1	14
Diameter of driving wheels, inches	24	26	30	30	30
Wheel-base of engine, feet and inches	5-2	2-6	5-10	7-3	7-3
Wheel-base of engine and tender, feet and inches	8-91	20-7	20-II	23-0	26-0
Length over all of engine and tender, feet and inches	25-2	29-6	30-1	32-6	36-0
Extreme height (head-room not limited), feet and inches	9-6	I 0-0	I 0-0	10-3	10-8
Weight of engine, exclusive of tender, in working order, pounds	15,000	21,500	24,000	29,000	34,000
Weight of tender in working order, pounds	12,000	12,000	20,000	20,000	20,000
Water capacity of tender-tank, gallons	200	0000	800	800	800
roal, pounds	2,000	2,000	3,000	3,000	3,000
File capacity of tender) wood, cords	% /4	35	11/4	5 3.1	11/4
Weight per vard of lightest rail advised, pounds	1.4	16	91	20	2.5
Radius of sharpest curve advised, feet	0.00	15	09	80	80
Radius of sharpest curve practicable, feet	32	35	40	09	09
Boiler pressure per square inch, pounds	160	160	160	091	160
Tractive force, pounds.	3,330	4,680	5,135	6,350	7,680
Hauling Capacity, in tons of 2.000 pounds (exclusive of locomotive and tender), $6/2$ pounds per ton resistance of rolling friction: On absolute level. 1/2 per cent grade = $26/4$ feet per mile. 2 = $158/4$ = $158/4$	12 H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 6 5 5 6 5 6 5 6 5 6 6 5 6 6 5 6 6 6 6	200 200 175 900 000	955 2 2 5 0 1 1 0 5 7	1.150 435 260 260 135 85

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-

motives of different weights.

Six-Wheel-Connected Locomotive with Tender, Class C-T

Wide or Narrow Gauge

ILLUSTRATION No. 12, from photograph of 12 x 18 cylinders, coal-burning locomotive, 36 inches gauge of track, exported to Mexico.

TEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The rear and center driving wheels are connected by side equalizers. A cross equalizer is placed at the front driving wheels. The center driving wheels are flangeless. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE WORD.	HERVOR	HERZIG	HETICO	HETMAN	HEUTIG	HEYDAY	HEZILO	HEZILO HEZROM	HIABIT	HIALIN
Cylinders) diameter, inches	10	11	12	12	13	† ₁	1:	1.5	13	16
Diameter of driving wheels, inches.	31	33	36	36	36	0.7	2 4	0 4	† 5 † 5	7† 70
Wheel-base of engine, feet and inches	2-8	8-1	0-6	0-6	01-6	9-01	11-3	9-01	0-11	12-0
Wheel-base of engine and tender, feet and inches	25-0	28-0	29-0	29-6	30-6	32-11	34-6	34-0	35-0	38-0
Length over all of engine and tender, feet and inches.	34-6	39-2	0-0+	41-0	43-0	44-0	45-0	9-++	0-9+	9-6+
Extreme neight (head-room not immited), it. and in Weight of engine, exclusive of tender, in working	0-01	10-10	01-01	I I -2	11-0	11-6	12-0	12-10	13-2	13-6
Weight of fundar in worlding order nounds	32,000	37,000	10,000	4,000	53,000	01,000	66,000		26,000	
Water capacity of tender-tank, gallons	800	1,050	1,050	,200	1,200	31,500	30,000	30,000	1,800	
Fuel capacity of tender \ coal, pounds	3,000	3.700	3,700 4	,000	1,000	1,000 1,500 (0,000	000,9	6,500	7,500
Weight per vard of lightest rail advised, pounds	25.	1 % 20 %	1 % 20	7°	1.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7	2 0	24 21 17	2.72	2 % 40 ×	
Radius of sharpest curve advised, feet	90	100	100	125	150	071	180	170	180	
Radius of sharpest curve practicable, feet	10	85	85	011	135	150	091	150	160	
Boiler pressure per square inch, pounds	160	091	160	160	091	091	160	091	170	021
Tractive force, pounds	7,015	7,970	8,710	0,800	11,500		13,330 14.55c	15,320	16,960 1	
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), $61/2$ pounds per ton resistance of rolling friction: On absolute level $1/2$ per cent grade = $261/6$ feet per mile. $1/2$ per cent grade = $261/6$ feet per mile. $1/2$	1,050 395 235 125 80	1,195 450 270 140 85	1,305 490 295 150	1,470 555 330 175	1,725 655 390 205 130	2,000 760 455 245 155	2,1 8 8 2 5 8 2 5 1 6 5 5 5 1 6 5 5 1 6 5	2,300 870 520 175	2,550 970 580 305 195	2,900 1,100 660 350 225

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6/2

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Eight-Wheel-Connected Locomotive with Tender, Class D-T

Wide or Narrow Gauge

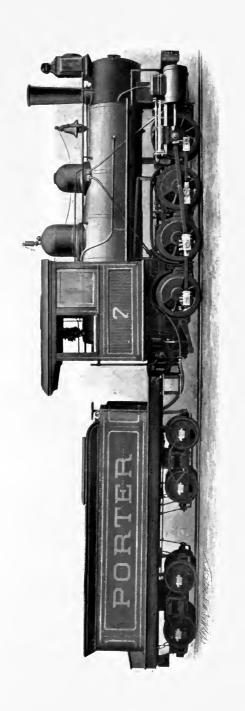


ILLUSTRATION No. 7, from photograph of 11 x 14 cylinders, coal-burning locomotive, 29% inches gauge of track, exported to Mexico.

EIGHT SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The rear and front driving wheels are equalized with the next wheels, and the two center pairs are flangleless. The double-bar guide is seldom used for the smaller sizes. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	HIATER	HIBLEA	HICARD	HIDRAS	HIEDRA	HIESIG	HIEUW	HIEZO
CODE WORD								
diameter, inches	01	11	1.2	13	14	1.5	91	7 1
Cylinders) stroke inches.	14	14	91	1.6	18	000	000	0
Diameter of driving wheels, inches	28.	28	31		36	40	0+	42
Wheel-base of engine, feet and inches	8-0	0-6	10-0		11-3	11-10	12-2	12-8
Wheel-base of engine and tender, feet and inches	25-0	27-6	39-6		33-6	34-0	37-0	38-6
Length over all of engine and tender, feet and inches	35-0	38-6	9-0+		45-0	47-0	20-0	51-6
Extreme height (head-room not limited), feet and inches	01-6	9-01	0-11		12-4	12-8	13-0	13-6
Weight of engine, exclusive of tender, in working order, lb	31,000	37,000	16,000	54,000	000,19	26,000	85,000	000,26
Weight of tender, in working order, pounds	20,000	25,000	25,000		31,500	38,000	45,000	52,000
Water capacity of tender-tank, gallons	800	1,050	1,050		1,400	1,600	2,000	2,500
coal, pounds	3,000	3,700	3,700		4,500	000,9	7.500	8,000
Fuel capacity of tender wood, cords	1 1/4	8 10 10	1 2 ×		7	2 1/2	3	3.72
Weight per vard of lightest rail advised, pounds	91	20	2.5		30	33	0+	+2
Radius of sharpest curve advised, feet	100	125	140		170	175	200	220
Radius of sharpest curve practicable, feet	80	011	120	011	150	155	180	200
	-7-	-7-	- 4-	- 4.			i	1
Boiler pressure per square inch, pounds	100	100	001	105		0/1	0/1	0/1
Tractive force, pounds	0,800	8,230	10,105	11,490	13,740	16,260	18,495	19,885
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive and tender), 6½ pounds per ton resistance of rolling friction.								
On absolute level.	1,020	1,230	1,515	1,725	2,065	2,440	2,645	2,085
" $\frac{1}{2}$ per cent grade = $26\frac{4}{10}$ feet per mile	385	465	575	655	785	925	995	1,130
; ; ; I	230	275	345	390	110	555	595	075
$" = 105\frac{6}{10}$ " " $" = 105\frac{6}{10}$ " " " " " " "	120	145	180	205	245	290	310	355
$\frac{1}{3}$ $\frac{1}$	75	06	115	130	155	185	195	225

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Double-Ender" Locomotive Four Driving Wheels, Class 2-B-2-S

Wide or Narrow Gauge

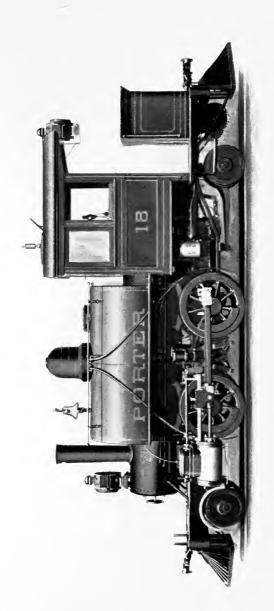


ILLUSTRATION No. 18, from photograph of 10 x 16 cylinders, coal-burning locomotive, 56½ inches gauge of track, for passenger service.

TWELVE SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The front driving wheels are equalized with the front truck and the read and with size of local and redial-bar motion. The two smaller sizes have cylinders slightly inclined. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	HIGADO	HIGHER	HIGHLY	HILVAN	HIMERA	HIMMEL	HIMNOS	HIMPAR	HINNOM	HIPIOO	HIPOSA	HIRONA
Cylinders \ diameter, inches. Diameter of driving wheels, inches. Diameter of truck wheels, inches. Bigneter of truck wheels, inches. Bignet wheel-base, feet and inches. Total wheel-base, feet and inches. Extreme ht. (head-room not limited), ft. and in. Weight in working order, pounds. Weight on driving wheels, pounds. Weight on two pony trucks, pounds. Weight on two pony trucks, pounds. Fuel capacity of saddle-tank, gallons. Fuel capacity \ vood, cubic feet. Weight per yard of lightest rail advised, pounds. Radjus of sharpest curve advised, feet.	2 2 6 2 6 2 6 2 6 6 6 6 6 6 6 6 6 6 6 6	8 30 4 1 1 4 8 8 30 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	33.500 1.5500	10 10 10 10 10 10 10 10 10 10	10 16 36 36 36 36 20 10 10 10 10 10 10 10 10 10 10 10 10 10	11 16 16 19 19 19 19 10 10 10 10 10 10 10 10 10 10	100 100 100 100 100 100 100 100	122 1842 2442 5-9 20-5 31-6 11-6 58,000 17,000 17,000 17,500 1,500 60 335	1.3 1.8 1.8 1.8 1.8 1.0 1.8 1.8 1.0 1.8 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	14 20 45 45 45 22 24 35 76,000 776,000 19,000 900 900 2,500 45 45	14 26 26 27 27 27 27 27 20 20 20 20 20 20 20 20 20 20	15 26 26 27 7-0 38-0 13-6 98,000 76,000 22,000 11,100 11,100 11,100 150 150 150 150
Boiler pressure per square inch, pounds Tractive force, pounds	160 3,075	50 160 4,055	160	160 5,290	75 160 6,040	160 6,580		90 160 8,395	100 160 9,845	110 160 11,845	120 160 13,330	130 170 15,600
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6\frac{1}{2}$ pounds per ton resistance of rolling friction: On absolute level $\frac{1}{2}$ per cent grade = $26\frac{1}{4}$ feet per mile $\frac{1}{2}$ $\frac{1}{3}$	460 170 100 50 30	610 230 135 70 45	2 7 0 0 1 2 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	795 300 180 90 60	905 345 205 105 70	985 375 220 115 75	1,175 445 265 140 90	1,260 475 2855 150 95	3,480 3,400 1,800 1,150	1,780 675 405 215 140	2,005 765 460 240 155	2,35 895 235 185 185

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40

pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Double-Ender" Locomotive Six Driving Wheels and Saddle-Tank, Class 2-C-2-S

Wide or Narrow Gauge

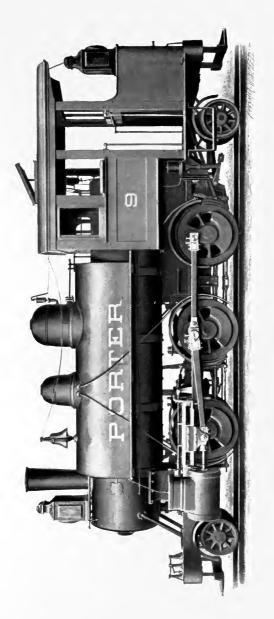


ILLUSTRATION No. 9, from photograph of 15 x 20 cylinders, coal-burning locomotive, 42 inches gauge of track. for export.

FOURTEEN SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The center and rear driving wheels are connected by side equalizers and equalized with the rear truck. The front driving wheels are equalized with the front truck. The center driving wheels are flangeless. The trucks have pivotal, lateral, and reliable motion. The 8 x 14 size has cylinders slightly inclined. Double-bar guides are used on the larger sizes. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	HIRTIN	HIRUDO	HISCAL	HISTON	HITIGU	HOAXES	HOBBLE	HOBNOB	HOCKEY	HOFBAU HOFCAN	HOFCAN	HOFFEN	HOFFIM	HOFFRAU
(ylinders) diameter, inches	∞]	6 1	01	01	11	12	12	13	14	1.4 2.1	15	15	91	16
Diameter of driving wheels, in	2 2	30	3.1	, cc	36	38		38	0 +	1 4	0 +	9+	7 5	
Diameter of truck wheels, in.	† I	91	91	81	18	18		20	2.2	26	2.4	26	26	
Rigid wheel-base, ft. and in	3-0	5-10	7-3	2-8	8-1	0-6		01-6	9-01	0 I I	9-01	11-0	9-01	
Total wheel-base, ft. and in	14-5	16-4	11-91	18-7	9-61	20-6		22-0	23-2	23-7	24-0	25-0	24-4	
Length over all, ft. and in.	22-4	25-0	25-6	27-11	29-7	30-1		32 - 9	34-0	34-9	35-0	36-6	37-0	
Ht. (head-room not limited), ft. and in.	01-6	0-01	10-3	9-01	01-01	11-3		I 2-0	12-0	12-9	13-0	13-2	13-4	
Weight in working order, 1b.	29,500	35,000	40,000	11,000	40,000	54,500		08,000	81,000	8,000	000,9(103,000	108,000	_
Weight on driving wheels, 1b.	21,000	25,500	29,500	32,500	36,000	10,000		52,000	000't9	0,000	000,8	83,000	86,000	
Weight on two pony trucks, Ib	8.500	0.500	10,500	11,500	13,000	14,500		16,000	17,00c	8,000	000,81	20,00c	22,000	
Water capacity of tank, gals	350	400	300	009	009	200		800	000	000,1	000'I	1,100	1,200	
End again I coul, pounds	009	200	800	1,000	1,200	1,300		1,800	2,500	3,00	0,000	3,500	1,000	
r uel capacity) wood, cubic ft	30	33	0+	15	200	52		70	80	06	06	100	011	
Wt. per yd. of lightest rail advised, lb	91	20	20	25	25	30		35	0	15	÷	0	36	
Radius of sharpest curve advised, ft.	20	7.5	80	8	06	011		135	175	175	175	175	175	
Radius of sharpest curve practicable, ft.	10	09	65	7.5	80	9.5		120	1+5	1+5	145	145	145	
Boiler pressure per sq. in. 1b.	1,60	160	160	160	160	160	160	091	160	160	165	1 70	170	170
Tractive force, Ib.	4,350	5.135	0,140	6,585	7,315	8,245	9,285	10,890	13,330	14,220	15,800	16,960	17,615	19,300
Hauling Capacity, in tons of 2,000 lb. (exclusive of locomotive), 6½ lb. per ton resistance of rolling friction: On ½% grade= 26½ ft. per mile On ½% grade= 52½, ft. per mile On 2% grade=155½ ft. per mile On 3% grade=155½ ft. per mile	650 1 + + 5 5 5 5 5	770 290 175 90 60	920 350 210 110	990 375 225 115 75	1,100 415 250 130 85	1,240 470 280 145	1,395 530 320 170	1,640 625 375 200 130	2,010 765 460 245 160	2,140 815 490 260 165	2,38 905 545 2905 185	2,5 9,55 0,05 0,05 0,05 0,05 0,05 0,05 0,	2.655 1,010 610 320 210	2.910 1,110 670 355 230

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per

ton, refer to Tables of Percentages on pages 156 and 157.
For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Forney" Locomotive, Four Driving Wheels, Class 4-B-R Wide or Narrow Gauge

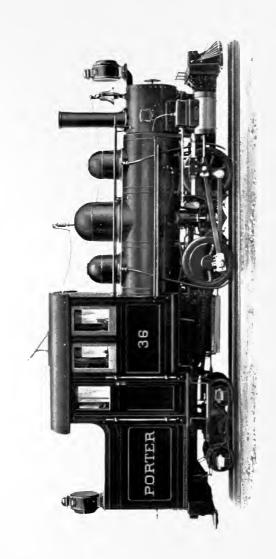


ILLUSTRATION No. 36, from photograph of 9 x 14 cylinders, coal-burning locomotive, 36 inches gauge of track, for sugar plantation in Louisiana.

FIFTEEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. Hanging step-board may be used instead of pilot. For marrow gauge all but the smaller sizes are constructed with full-width firebox and main frames stopped off with cross-brace and ite-plate to rear frames. The truck has pivotal and lateral motion. The three smaller sizes have cylinders slightly inclined. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	HOOPJES	HOORIG	HOPEAR	HOPFEN	HOPHRA	HOPMAN	HORBEL	HORELA	HORMUZ	HORNOS	HORROR	HOSTEL	HOSTEL HOSTAG	HOTBED	HOTELS
Cylinders \ \text{diameter, inches} \ \text{Diameter of driving wheels, in.} \ \text{Diameter of truck wheels, in.} \ \text{Rigid wheel-base, ft. and in.} \ \text{Total wheel-base (center of front)} \end{array}	6 10 22 12 3-6	7 12 24 14 14 10	8 14 14 14 14	9 14 30 16 16	10 14 33 18 18	10 16 33 18 5-3	11 16 36 20 5-3	12 16 40 22 5-9	12 18 18 40 5-9	13 18 40 40 6-3	14 20 46 24 6-3	14 24 50 50 7-0	15 20 46 24 7-0	15 25 50 7 7	16 24 50 50 8-0
axle to center of truck), feet and inches	10-9	11-6	12-6	12-8 25-0	13-7 26-0	15-0 27-0	15-6 28-0	15-9	30-2	17-4 32-2	33-8	18-6 34-8	18-0 34-2	36-0	20-6 38-0
	9-6 17,500 11,500 6,000 300 750	1 2 2	0 2 2 2	10-0 34,500 24,500 10,000 550 1,600	10-3 38,000 26,500 11,500 650 1,800	1 4 5 1	3,1	33,0	_ 10 + H _ 0	12-0 66,000 47,000 19,000 800 2,400	12-6 75,000 53,000 22,000 900 3,000	83,000 58,000 25,000 1,000 3,500	12-9 12-6 83,000 88,000 58,000 25,000 025,000 1,000 1,000 3,500 3,500	13-2 94,000 67,000 27,000 1,200 4,000	13-6 110,000 79,000 31,000 1,400 5,000
Weight per yard of lightest rail advised, pounds	30 12 75	35 16 80	8 2 4 0	9 2 4 5	50 105	55 30 115	30 125	35 135	65 35 135	65 150	70	80 50 170	80 56 170	90	100
ticable, feet	09	65	70	75	80	06	001	115	115	125	130	0 1	0 1	150	175
Tractive force, pounds	2,225	3,330	4,350	5,300	5,775	6,585	7,315	7,835	8,820	0	11,585	н	н	15,600	17,755
Hauling Capacity, in tons of 2,000 lb. (exclusive of locomotive), 6½ lb. per ton resistance of rolling friction: On absolute level		500	655	000	870	066	1,095	1,180	1,325	1,560	1,740	1,925	2,130	2, 2, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	2,685
On 1% grade= 521% ft. per mile On 2% grade=1051% ft. per mile On 3% grade=1158% ft. per mile	3,75	555	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	180 180 051	195	1253	1 2 1 2 X X X X X X X X X X X X X X X X	270 140 041	300	355	210	230	490	2840	615 325 325 310
The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages 156 and 157. For quick selection of suitable weight locomotive for stated local and resistance of rolling friction refer to Tables 1 III and IV on	g Capac of Hau entages	city at a ling Capon page	all rates pacity c s 156 a:	of resi	stance opractice	of rollin	ng friction de, and seistance	on and with r	on any esistanc	practice e of rol	able gra ling fric	ide is gi ction of Tables	1 II	page 140.	o. nds per

or quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Forney" Locomotive Six Driving Wheels, Class 4-C-R

Wide or Narrow Gauge.

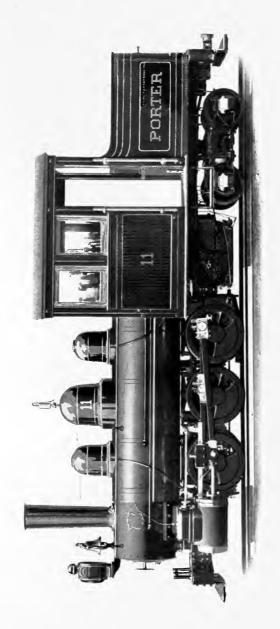


ILLUSTRATION No. 11, from photograph of 10 x 16 cylinders, coal-burning locomotive, 30 inches gauge of track, with stopped-off main frames and full-width firebox, exported to Mexico.

FOURTEEN SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. Continuous frames are used for wide gauges. The truck has pivotal and lateral motion. All except the two smaller sizes have horizontal cylinders. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	HOUARI	HOUNAU	HOUSIA	номран номоџа	HOWQUA	HUBBUB	HUETEN	HUEVAR	HUHUEL	HUIDIG	HUIMOS	HUKBAG HUKKOK	HUKKOK	нисну
Garante (diameter, inches		8	6	OI	0	11	1.2	1.2	1.3	1.4	14	1 2	2	91
Cylinders stroke, inches	12	14	1.4	† I	16	91	91	18	. 8.	50	2.4	200	2.4	2
Diameter of driving wheels, inches		26	28	31	31	3.3	36	36	36	0+	91.	42	8	48
Diameter of truck wheels, inches		† I	91	91	81	18	20	50	50	2.5	2.4	2.2	5.7	2.4
Rigid wheel-base, feet and inches.	5-2	2-6	6-4	7-3	2-8	8 - I	8-1	8-1	0-10	9-01	11-3	9-01	611	12-0
Total wheel-base (center of front axle to center of truck) feet														
and inches	10-4	8-01	9-11	I 2-I	12-10	13-7	1.1-0	0-1	8-51	17-0	8-0	18-0	18.0	901
Length over all, feet and inches	20-2	21-0	22-3	23-I	2.1-8	26-10	27-6	27-IO	20-0	20-0	21-2		22-0	3.4-0
Extreme height (head-room not			2	3	+)	,	1	000	F C
limited), feet and inches	8-6	01-6	10-0	10-3	9-01	01-01	9-11	9-11	12-0	12-6	12-0	12-6	13-2	13-6
Weight in working order, lb		29,500	35,000	39,000	11,000	50,000	54,000	58,000		77,000	0	000,00	95,000	110,000
Weight on driving wheels, 1b	17,000				31,500	37,000	40,000	43,500	51,000	60,000	000,99	68,50c 72,000	72,000	85,000
Weight on four-wheel truck, lb.	7,500	8,500	0.500	10,500			14,000		15,000	15,000 17,000	19.000	21,500 23,000	23,000	25,000
Water capacity of rear tank, gals.	00+					750	800	800	006	1,000	1,100	1,000	1,200	1,400
End aggin (coal, pounds	1,000	1,200	1,600	1,800	1,800	2,000	2,000	2,000	2.100	3,000	3,500	3,500	4,000	4,500
r uel capacity \ wood, cubic feet	35	40	5	0	55	09	09	09	09	20	80	80	06	100
Weight per yard of lightest rail														
	12	91	91	20	25	25	30	30	35	40	45	45	0	000
Radius of sharpest curve advised,														
Doding of shomest mante manager	50	55	65	80	8	06	100	011	130	155	155	170	175	200
Natitus of sital pest cut ve practica-		1	1	9	1	0	0	1	1	1			1	1
anie, leet	5	20	22	00	70	00	90	9.5	115	135	135	0+1	145	175
Boiler pressure per square in., ¹ b.	160	160	091	091	091	091	091	160	160	160	170	170	170	170
Tractive force, pounds	3,640	4,680	5,500	6,140	7,015	0.60.2	8,710	008,6	11,500	13,330	\vdash	15,500	16,250	18,495
Hauling Capacity, in tons of 2,000														
pounds (exclusive of locomo-														
sistance of rolling friction:														
On absolute level	747	107	82.5	025	0.1	1.200	1.315	1.475	1,735	2,010	2.230	2.340	2.450	2.785
" $1/2$ % grade= $26\frac{4}{10}$ ft. per mile	0 0	265	315	3.0	400	15.4	002	202	099	770	8.50	805	935	1,065
" " " " = 5210 " " "		160	061	210	240	275	300	340	395	465	57.5	240	565	640
$" 2\% = 105_{10} " " "$		8	100	IIO	125	1+3	091	180	210	245	275	285	300	340
3% " =1581, " "		55	65	10	80	9.5	105	115	135	160	180	185	195	220
The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction	g Capac	ity at a	ull rates	of resi	stance o	f rolling	friction	and o	n any pr	ractical	ole grad	le is giv	and on any practicable grade is given on page 140.	ige 140.
For anick annroximate calculation of Hauling Canacity on any practicable grade and	of Han	iling Ca	nacity	on any	practic	able ora	de and	with	resistar	nce of	rolling	friction		with resistance of rolling friction of 61% to 10

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Back-Truck" Rear-Tank Four-Driver Locomotive, Class 2-B-R

Wide or Narrow Gauge

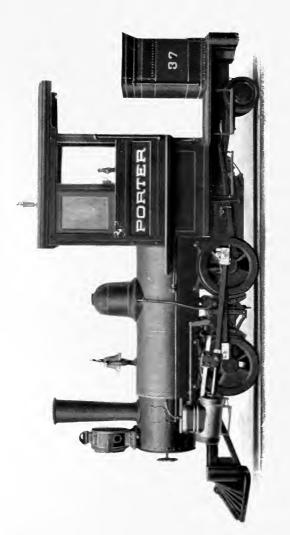


ILLUSTRATION No. 37, from photograph of 7 x 12 cylinders, coal-burning locomotive, 36 inches gauge, for plantation service in Louisiana.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal, lateral, and radial-lar motion. For narrow gauge all except the smaller sizes have the main frames stopped off in front of full-width straight-sides frebox. Hanging step-boards and hand-holds may be used instead of pilot. All except the three smaller sizes have borizontal cylinders. See page 10 for general specifications and pages 11 and 12 for choice of stacks,

								HOWE	
(velinders) diameter, inches	9	7	∞	6	10	10	11	1.2	1.2
stroke, inches	10	1.2	+ 1	+-	14	91	16	91	18
Diameter of driving wheels, inches	22	54	28	30	33	33	36	0+	0+
Diameter of truck wheels, inches	+1	91	91	18	20	20	2.2	2.2	2.2
Rigid wheel-base, feet and inches	36	0-+	0+	9+	9-+	5-3	5-3	59	5. 0
Total wheel-base, feet and inches	4-6	10-7	1 1 8	13-4	13-10	0-11	14-6	01+1	15-0
Length over all, feet and inches	0-91	17-0	18-3	20-6	22-0	22 - 10	23-8	24-0	24-4
Extreme height (head-room not limited), ft. and in.	9-6	8-6	01-6	10-0	10-3	9-01	0 I 0 J	I_{1-0}	11-2
Weight in working order, pounds	16,000	22,500	28,000	33,000	36,000	42,000	17,000	50,000	55.000
Weight on driving wheels, pounds.	11,000	16,000	20,000	24,500	26,500	30,000	34,000	36,000	10,000
Weight on two-wheel truck, pounds	2,000	0,500	8,000	8,500	9,500	12,000	13,000	14,000	15,000
Water capacity of rear tank, gallons	250	350	400	450	550	000	650	650	750
Finel canadity \ coal, pounds	750	006	1,000	1,100	1,200	1,400	1,500	1,500	1,500
wood, cubic feet	18	20	25	30	35	40	455	45	20
Weight per yard of lightest rail advised, pounds	1.2	91	20	2.5	2 5	30	30	30	35
Radius of sharpest curve advised, feet	55	65	75	9.5	100	100	105	IIO	IIO
Kadius of sharpest curve practicable, feet	40	45	50	65	20	10	80	85	
Boiler pressure per square inch, pounds	091	160	160	165	091	160	160	160	160
Tractive force, pounds	2,225	3,330	4,350	5,300	5,775	6,585	7.315	7.835	8,820
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $61/2$ pounds per ton resistance of rolling friction: On absolute level. $1/2$ per cent grade = $261/6$ feet per mile. $1/2$ per $1/2$ mile.	33 125 35 25 25 25	500 190 110 60	655 250 150 75	800 300 180 600	870 330 200 105 65	990 375 1225 75	1,100 1,20 1,20 1,30 1,30 8,5	1,180 4+5 270 1+0	1,325 505 300 160

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-

motives of different weights.

"Back-Truck" Rear-Tank Six-Driver Locomotive, Class 2-C-R

Wide or Narrow Gauge

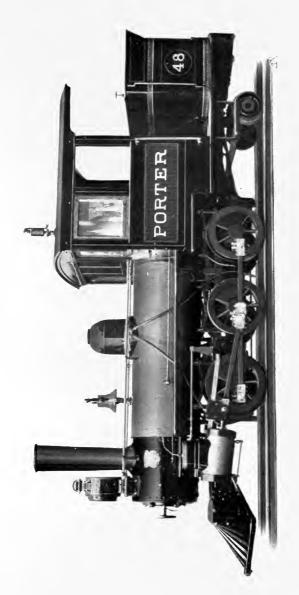


ILLUSTRATION No. 48, from photograph of 9 x 14 cylinders, coal-burning locomotive, 36 inches gauge, for plantation service in Louisiana.

TWELVE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The truck has pivotal, lateral, and radial-bar motion. Hanging step-boards and hand-holds may be used instead of pilot. All except the two smaller cylinders have horizontal cylinders. See page 10 or general specifications and pages 11 and 12 for cloree of stacks.

CODE WORD HURRIX	HUTZEL	HYAPEA	HYBELA	HYCSOS	HYDAGE	HYDRIC	HYGINO	HYGRAM	HYLLOS	HYPNUM	HYSMON
Cylinders (diameter, inches. Diameter of driving wheels, inches. Diameter of truck wheels, inches. Diameter of truck wheels, inches. Sigid wheel-base, feet and inches. Total wheel-base, feet and inches. Extreme ht. (head-room not limited), ft. and in. 9-8 Weight in working order, pounds. Weight on pony truck, pounds. Weight of galous. Weight of galous. Weight per yard of lightest rail advised, pounds. Radius of sharpest curve advised, feet. Salans Sharpest curve advised, feet.	8 26 14 26 16 5-6 10-11 17-6 9-10 0 28,000 0 28,000 0 1,500 1,200 1,50 1,50	2.8 1.6 1.6 1.6 1.9 1.9 2.5 2.5 8.5 8.5 1.6 8.5 1.6 8.5 1.6 1.6 8.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	10 10 11 13 13 13 13 13 13 13 13 13	10 16 17 18 7-8 14-0 10-6 142,500 11,500 650 11,700	10 10 10 10 10 10 10 10 10 10 10 10 10 1	2,000 2,	1.2 3 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	14 20 10-6 10-6 116-10 74:000 74:000 15:000 15:000 13:5000 13:	24, 24, 24, 24, 24, 24, 24, 24, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27	15 24 48 48 126 1100 290 1300 91,000 17,000 19,000 19,000 19,000 19,000 19,000 19,000 11,100 50 50 14,500 14,500 14,500 14,500 14,500 16,500 16,500 17,500 17,500 18,500 1
## Boiler pressure per square inch, pounds 3,640 Fractive force, pounds 3,640 Hauling Capacity, in tons of 2,000 pounds (exclusive of poundive), 6½ pounds per ton resistance of rolling friction: On absolute level 551,6	1,680 4,680 1,680 1,600 8,500 8,500 8,500 1,600	\$25 315 190 100 150 150	160 6,140 925 350 210 70	1,055 1,055 1,055 1,055 1,055 80	160 7,970 1,200 455 455 145 95	8,710 300 1,315 1,05 1,05	160 9,80 1,480 3,40 1,85	1,500 1,735 1,735 1,000	3,330 3,330 7,010 7,70 1,65 1,65	2, 2 2, 3 2, 3 2, 3 3, 3 4, 4, 7 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5 5	170 16.250 2.455 940 300 195

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Forney" Saddle-Tank Locomotive Four Driving Wheels, Class 4-B-S Wide or Narrow Gauge

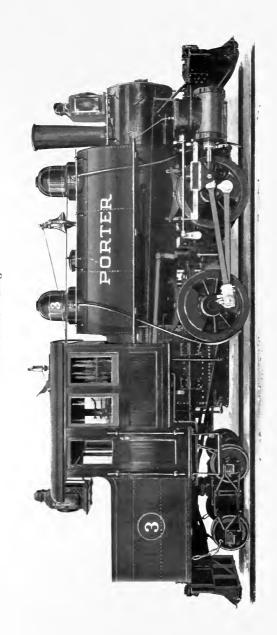


ILLUSTRATION No. 3, from photograph of 14 x 20 cylinders, coal-burning locomotive, 56% inches gauge, exported to Cuba for plantation railway.

FIFTEEN SIZES, each with code word, are described on the opposite page, subject to motifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized The truck has pivotal and lateral motion. For narrow gauges all except the smaller sizes have the main frames stopped off in front of full-width straight-sides frebox. Hanging step-boards and hand-shoks may be used instead of pilots. All except the three smaller sizes have horizontal cylinders. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	KABUFF	KABYLE	KADMOS	KAFTAN	KAFZAK	KAHLER	KAIMAN	KAISER	KAJUIT	KAKOUR	KALIUM	KALMIA	KALMOD	KALMUS	KALMTE
diameter, inches	9	7	~	0	10	IO	111	1.2	1.2	1.3	141	14	1.51	1.5	91
ylinders { stroke, inches	01	12	† I	, † 1	+1	91	91	91	18	18	20	24	20	5.7	2-1
Diameter of driving wheels, inches	2.2	2.4	28	30	33	33	36	38	0+	0+	42	46	45	30	30
Diameter of truck wheels, inches	91	91	91	91	81	18	50	22	22	24	24	24	24	2 †	57
Rigid wheel-base, feet and inches.	3-6	0-+	0-+	9-+	4-6	5-3	5-3	5-6	5-0	6-3	6-3	2-0	2-0	2-0	0-0
lotal wheel-base (center of front axle to center of truck), feet															
and inches	0-01	1.1-3	12-0	12-8	13-0	14-6	15-0	15-6	15-6	16-3	c1-91	17-6	0-11	18-2	0-61
Length over all, feet and inches	9-61	20-8	21-6	23-0	24-0	25-3	26-8	27-6	28-0	29-8	31-0	32-0	28-0	33-0	35-0
Extreme height (head-room not		(_						,
limited), leet and inches		8-6	0-10		10-3		10-10	11-4	0-11		12-0	12-0	12-0	13-2	13-0
Weight in working order, pounds				33,500	37,000		47,000	52,000	50,000		75,500	82,000	•	92,000	80,000
Weight on driving wheels, pounds Weight on four-wheel truck—15	2,000	7,500	8.000	× × × × × × × × × × × × × × × × × × ×	0000	33,000	37,000	11,000	12.000	12.500	12.000	14.500	16.000	16,000	17.000
Water canacity saddle-tank gals	3,000			100	2007	600	650	700	7.00	800	000	1,000		1,100	1,200
coal 1h	000	7 0 0	000	1.000	1.200	1000	2.000	2.000	2.500	3.000		1.500	1.500	, r	0,000
Fuel capacity) wood, cu. ft	30	2 2	10) t	0 0	60	65	65	70	80	000	100	100	011	120
Weight per vard of lightest rail	,	,			,		,	,			`				
advised, pounds	1.4	91	20	25	2 5	30	30	35	40	45	20	09	09	65	20
Radius, sharpest curve advised, ft.	75	80	85	95	105	115	125	125	135	150	100	o2 I	160	180	200
Radius of sharpest curve prac-		,			(1
ticable, feet	55	65	20	75	000	06	100	100	011	120	125	135	135	145	175
Boiler pressure, per square inch,															
pounds	091	091	091	160	091	091	160	091	091	091	091	091	170	170	170
Tractive force, pounds	2,225	3,330	4.350	5,135	5,775	6,585	7.315	8,245	8,820	10,350	12,690	13,900	14,450	15,600	17,755
Hauling Capacity, in tons of 2,000															
lb. (exclusive of locomotive), 61% lb. per ton resistance of															
rolling friction:															,
On absolute level		200	650	770	870	066	1,100	1,240	1,325	1,560	016,1	2,100	2,180	2,350	2,675
" $1/2$ % grade= 26_{10}^{4} it. per mile		061	250	295	330	375	150	0/1	505	595	730	800	830	006	1,020
$\frac{1}{1}$		011	150	175	200	225	250	280	300	355	440	180	200	240	015
" 2½° " =10510 "	35	55	080	06	105	120	130	150	160	190	235	25.5	205	290	325
3% == 158_{10}^{+}	000	35	50	00	ر ا ا	7.2	20	95	100	120	150	105	170	105	210
The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page	ng Capac	ity at	all rates of resistance of rolling friction and on any practicable grade is given on page 140.	of resi	stance c	of rolling	griction	n and or	any pr	acticab	le grade	isgiver	on pag		140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Forney" Saddle-Tank Locomotive Six Driving Wheels, Class 4-C-S

Wide or Narrow Gauge

ILLUSTRATION No. 15, from photograph of 10 x 16 cylinders, coal-burning locomotive, 30 inches gauge of track, with stopped-off frames and full-width fire box, exported to Mexico for ore railway.

FOURTEEN SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The truck has pivoial and lateral motion. For wide gauges the frames are continuous. Pilots may be used instead of hanging step-boards. The two smaller sizes have cylinders slightly inclined. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	KALONG	KALVEN	KAMBLI	KAMBOU	KAMLAT	KAMWOL	KAMUIS	KANGNE	KANSSU	KAPAUN	KAPMES	KAPMES KAPMOT	KAPUZE	KAPTUR
Cylinders diameter, inches	7	∞ ;	6	10	10	11	12	122	13	41	14	15	1.5	91
Diameter of driving wheels, inches	2 2 2 3	1 2	1 2	30	31	3 6	36	36	36	0 4	† ₇	2 4 2 2 2	1 4	† 8 4
Diameter of truck wheels, inches	14	14	91	9 I	81	8 1 8	81	81	81	2.2	5 7	20	5	2.4
Rigid wheel-base, feet and inches	5-2	2-6	5-10	7-3	2-8	8-I	8-1	8-I	01-6	9-01	11-3	9-01	6-11	12-0
center of truck), feet and inches	t-01	8-01	1-11	I 2-I	12-10	13-4	14-0	14-6	14-10	15-8	16-4	17-6	17-4	9-61
Length over all, feet and inches	20-2	20-8	21-10	22-6	24-6	25-10	26-0	27-4	28-5	29-8	30-6	31-6	32-0	33-6
feet and inches	8-0	01-0	10-0	10-3	9-01	01-01	11-1	9-11	12-C	12-6	12-0	12-6	13-2	13-10
Weight in working order, 1b	23,500	28,500			42,500	42,500 48,000		57,000	57,000 66,000	76,500	84,000	76,500 84,000 88,500	96,000	108,000
Weight on driving wheels, lb	17,500	22,000	CI.			34,500 40,000	4	47,000	55,000	02,000	71,000	65,000 71,000 75,000	\sim	000,16
Weight on four-wheel truck, Ib.	0,000		7,000			8,000	0000,6	10,000	10,000 11,000	11,500		13,000 13,500	14.000	17,000
Water capacity of saddle-tank, gallons	300	350				020	200	750	200	006	I,000	I,000	1,100	1,200
Fuel canacity (coal, pounds	006	1,000	I,000	1,200	1,500	1,600	1,700	2,000	2,500	3,000	3,500	3,500	4,000	4,500
wood, cubic feet	00	25.	30	35	40	40	+5	50	00	20	000	000	06	100
W.t. per yard of lightest rail advised, lbs	† _I	91	50	0 0	20	25	30	30	35	40	45	45	20	S. S.
Kadius of sharpest curve advised, feet	50	00	0.5	00	,00	100	110	115	135	155	155	100	175	200
Radius of sharpest curve practicable, feet	40	20	55	09	70	000	06	9.5	115	135	135	135	145	170
Boiler pressure per square in., lb	160	160	160	091	160	160	160	091	091	091	170	170	170	
Tractive force, pounds	3,480	4,350	5,500	6,350	7,015	7,970	8,710	008,6	11,500	13,330	14,770	н	_	н
Hauling Capacity, in tons of 2,000 (b. (exclusive of locomotive), $6J_2$ lb. per ton resistance of rolling friction: On absolute level 1570 grade = 524° i. i. ii. 270 = 155° ii. ii. ii.	520 195 120 60 40	655 245 150 75 50	825 315 190 100 65	955 365 220 110	1,055 400 240 130 80	1,200 455 275 145 95	1,310 500 300 160	1,480 565 340 180 115	1,735 660 400 210 110	2,010 770 465 245 160	2,230 850 515 180	2,340 895 540 285 185	2,450 935 565 300 195	2,790 1,065 640 340 220

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of $6\frac{1}{2}$ to 40

pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different

Light "Back-Truck" Saddle-Tank Locomotive Four Driving Wheels, Class 2-B-S

Wide or Narrow Gauge

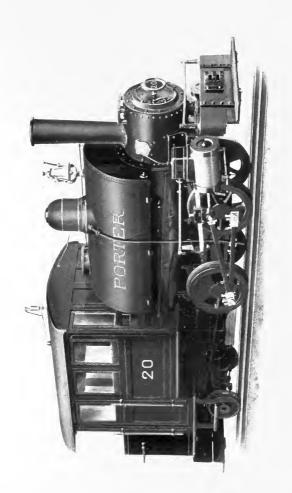


ILLUSTRATION No. 20, from photograph of 9 x 14 cylinders, coal-burning locomotive, 37% inches gauge of track, for phosphate mines.

FIVE SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The truck has pivotal, lateral, and radial-bar motion. If narrow gauge makes it desirable, the frames are stopped off infront of full-width straight-sides firebox. The two larger sizes have horizontal cylinders. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

CODE WORD (with closed end cab, like Illustration No. 20. with open end cab, without doors	KASVEL	KATOEN Keblah	KATTUN KECKSY	KATZEN KEGGEN	KAUERN
Cylinders / diameter, inches.	9	7 12	8 †I	6	01
Diameter of driving wheels, inches.	22	24	28	. 08.	33
Rigid wheel-base, feet and inches.	3-6	0-4	0 - +	9-+	4-6
Total wheel-base, feet and inches	0-91	7-01	11-8	$12-2\frac{1}{2}$	$\frac{12-21}{21-0}$
Extreme height (head-room not limited), feet and inches	9-6	8-6	9-10	10-0	10-3
Weight in working order, pounds	15,500	21,500	27,000	32,000	35,500
Weight on two-wheel truck, pounds.	4,000	5,000	0,000	2,000	7.500
Water capacity of saddle-tank, gallons	150	200	300	400	000
Fuel capacity wood, cubic feet	20	2.5	30	35	0+
Weight per yard of lightest rail advised, pounds	14	91	50	2.5	2.5
Radius of sharpest curve advised, feet	9	20	8 0	06	06
Radius of sharpest curve practicable, feet	4.5	50	5.5	00	09
Boiler pressure per square inch, poundsTractive force, pounds	160	160 3,330	160 4,350	160	160
Hauling Capacity, in tons of 2,000 pounds (exclusive of loconotive), $6 \frac{1}{2}$ pounds per ton resistance of rolling friction: On absolute level $\frac{1}{2}$ per cent grade = $26 \frac{1}{10}$, feet per mile = $125 \frac{1}{10}$, = $155 \frac{1}{10}$, = $155 \frac{1}{10}$, = $158 \frac{1}{10}$,	33.0 125 75 40 25	500 190 115 60	655 250 150 80 50	277 295 175 60 65	870 230 105 65

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Back-Truck" Saddle-Tank Locomotive Four Driving Wheels, Class 2-B-S

Wide or Narrow Gauge

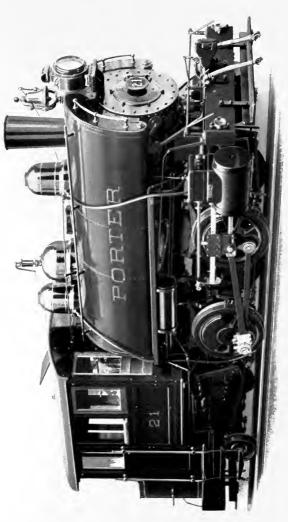


ILLUSTRATION No. 21, from photograph of 13 x 18 cylinders, coal-burning locomotive, 56% inches gauge, with extended tank, and air brake and dump, for phosphate mines.

TEN SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The truck has pivotal, lateral, and radial-har motion. For narrow gauges the frames are stopped off in front of full-width straight-sides firehox. Pitots may be used instead of step-boards. Short tank may be used. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE (With closed end cab, like Illustration No. 21 WORD (With open end cab, without doors	KEHAYA Kernig	KEHREN	KESLOP KESLOP	KEILEN	KESSEL	KEINER Ketupa	KEYAGE	KEMURN	KENATH	KERKER KHENNA
Cylinders diameter, inches. Diameter of driving wheels, inches. Diameter of driving wheels, inches. Diameter of truck wheels, inches. Rigid wheel-base, feet and inches. Total wheel-base, feet and inches. Length over bumpers, feet and inches. Extreme height (head-room not limited), ft. and in. Weight in working order, pounds. Weight on driving wheels, pounds. Weight on two-wheel truck, pounds. Weight or two-wheel truck, pounds. Weight per yard of siddle-tank, gallons. Fuel capacity \{ coal, pounds. Weight per yard of lightest rail advised, pounds. Radius of sharpest curve practicable, feet.	33 + 1	11 16 36 36 36 36 36 36 36 36 36 3	2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	1.00 1.00	2 2 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	2	1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24. 25. 26. 26. 27. 6 27	16 24 26 8-0 8-0 18-6 30-0 13-10 104,000 13,000 110 110 110 110 135
Boiler pressure per square inch, pounds	160	160	8,245	1,60	160	160 160	160 I3.900	170	170 15,60c	175
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6/2$ pounds per ton resistance of rolling friction: On absolute level $\frac{1}{2}$ per cent grade $\frac{1}{2}$ feet per mile $\frac{1}{2}$ per cent grade $\frac{1}{2}$ $\frac{1}{$	990 375 125 75 75	1,100 420 250 130 85	1,240 475 285 150	1.330 505 160 105	1,560 595 355 190 125	1,915 730 440 235 155	2,100 800 480 165	2,180 835 500 270	2,355 900 540 290 190	1,077 6,055 2,00 2,20 0,00 0,00 0,00 0,00 0,00

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2 For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given motives of different weights. on page 140.

"Back-Truck" Saddle-Tank Locomotive Six Driving Wheels, Class 2-C-S

Wide or Narrow Gauge

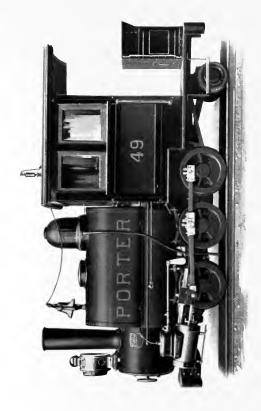


ILLUSTRATION No. 49, from photograph of 8 x 14 cylinders, coal-burning locomotive, 36 inches gauge of track, for sugar plantation in Louisiana.

FOURTEEN SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The truck has pivoral, lateral, and radial-bar motion. If narrowness of gauge demands, the frames are stopped off in front of distillusible traight-sides firebox. Pilot or hanging stepbogard maid-bar motion. If narrowness of gauge demands, the frames are stopped off in front of the september of all except the two smaller sizes are horizontal. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	KIAFUR	KIBBLE	KIBLAH	KIDNAP	KIDRON	KIEVIT	KIJANG	KILDIR	KIMBOW	KINCOB	KIOSCO	KIPALL	KIPPEN	KIRBYE
Cylinders diameter, inches Diameter of driving wheels, in	7 1 2 C	8 t t 7 7 8 8 7 8 8 7 8 8 9 8 9 9 9 9 9 9 9 9	9 14 28	30	10 16 31	11 16 33	12 16 36	12 18 36	13 18 36	1 to 5 to	14 24 46	15 20 42	1 2 4 4 4 8 4 4 8 4 8 4 8 4 8 4 8 4 8 4 8	16 24 48
Diameter of truck wheels, inches Rigid wheel-base, feet and inches. Total wheel-base, feet and inches. Length over bumpers, ft. and in.	5-2 9-10 16-6	5-6 10-6 17-0	5-10 11-5 18-8	16 7-3 12-6 19-5	16 7-8 13-4 20-8	18 8-1 13-9 22-0	20 8-1 14-6 23-0	20 9-0 15-0 23-5	20 9-10 15-8 24-6	22 10-6 16-6 25-8	24 11-3 17-0 27-0	22 10-6 17-0 27-0	24 11-9 18-6 29-0	24 12-0 20-0 31-6
Extreme height (head-room not limited), feet and inches	9-8 22,000 17,500 4,500	9-IO 27,000 22,000 5,000	10-0 32,500 27,000 5,500	10-3 38,000 31,500 6,500	10-6 41,000 34,500 6,500	10-10 47,000 40,000 7,000 7	50,000 50,000 42,500 7,500	11-6 55,000 47,000 8,00c	12-0 63,500 55,000 8,500	1-0	12-9 82,000 71,500 10,500	85,500 75,000 10,500	13-2 90,000 79,000 11,000	13-8 104,000 92,000 12,000
Fuel capacity \(\) coal, pounds Wordst to a void feet.	300	350 600 30	400 700 35	\$00 800 40	600 1,000 45	600 1,200 50	700 1,300 55	750 1,500 60	900 1,800 70	1,000 2,500 80	3,000	1,000 3,000 90	1,100 3,500 100	1,200 4,000 IIO
weight per yard of nightest ran advised, pounds Radius of sharpest curve advised, feet	14	91	20	8 0	8 8 10 10	30	30	30	35	40 155	45	45	50	60 200
Radius of sharpest curve practicable, feet	0	50	09	65	7.5	80	80	9.5	115	135	0+1	140	145	021
Boiler pressure per square in., lb. Tractive force, pounds	3,480	16c 4,350	160	160	160	160	160	001,800	11,500	160	170	170	170	170
Hauling Capacity, in tons of 2,000 lb. (exclusive of locomotive). 61_2 lb. per ton resistance of rolling friction: " $1_2 \%$ grade= 26_{14} ft. per mile " $1_2 \%$ grade= 26_{14} ft. per mile " $1_2 \%$ = $1_2 \%$ " $1_2 \%$ = $1_2 \%$ " $1_2 \%$ = $1_2 \%$	520 2000 1200 600	655 150 150 150	825 315 190 100 65	955 2055 1120 75	1,055 4 0 0 2 4 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,200 455 275 145 95	1,315 500 300 160 105	1,475 560 335 180 115	1,735 665 400 215 140	2,010 770 465 1465	2, 8,2, 8,5,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	2,340 895 540 290 190	4,4 6,60 6,60 6,60 6,60 6,60 6,60 6,60 6	2,790 1,065 645 3455 225

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light Four-Wheel-Connected Saddle-Tank Locomotive, Class B-S

For Contractors' Use and other Special Service. Wide or Narrow Gauge

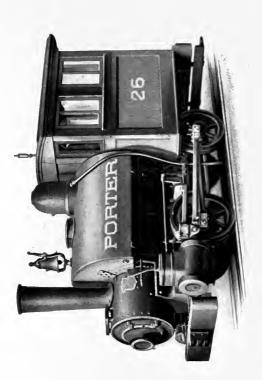


ILLUSTRATION No. 26, from photograph of contractors' service, coal-burning locomotive, 36 inches gauge of track, showing proportions of 8 x 14 cylinders size (NOTE.—Kirwan, 36 inch gauge, is usually on hand in stock ready to ship.)

FIVE SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is used at the front driving wheels. For extra narrow gauge the wheel-base is shortened and the frames stopped off in front of full-width straight-sides firebox. Hanging step-boards may be used front and rear. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next four pages.

CODE WORD	KIRBER	KIRCHE	KIRMES	KIRWAN	KISMET
Cylinders diameter, inches	ισα	w E	9	1, 1	s :
Diameter of driving wheels, inches	500	0 0	200	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	26
Wheel-base, feet and inches	3-6	0-+	4-0	. 8-+	5-0
Length over bumpers, feet and inches	9-01	0-11	9-11	12-0	0-11
Extreme height, (head-room not limited), feet and inches	4-6	6-4	9-6	8-6	9-10
Weight in working order, all on driving wheels, pounds	8,500	11,000	14,000	17,500	24,000
Water capacity of saddle-tank, gallons	100	125	150	200	250
East asserting (coal, pounds	175	200	200	250	300
r der capacity (wood, cubic feet	1.5	1.5	18	20	20
Weight per yard of lightest rail advised, pounds	1.2	+1	91	16	20
Radius of sharpest curve advised, feet	2.5	30	30	35	35
Radius of sharpest curve practicable, feet	1.5	1.5	1.5	91	18
Boiler pressure per square inch, pounds	160	091	160	160	160
Tractive force, pounds	1,360	1,700	2,445	3,330	4,680
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 61% pounds per ton resistance of rolling friction: On absolute level	007 007 007 007 007 007 007 007 007 007	20 50 50 E H S 50 50 50 50 50 50 50 50 50 50 50 50 50	365 140 85 40 25	500 1190 60 40	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-

motives of different weights.

Four-Wheel-Connected Saddle-Tank Locomotive, Class B-S

For Contractors' Use, Shifting, and Special Services. Wide and Narrow Gauge

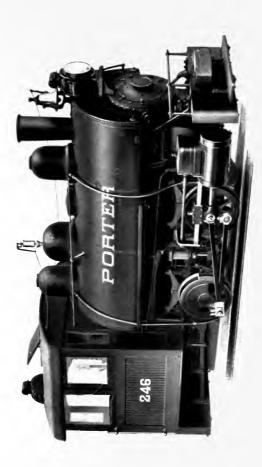


ILLUSTRATION No. 246, from photograph of 10 x 16 cylinders, coal-burning locomotive, 36 inches gauge of track, for contractors' service, with main frames stopped off in front of full-width straight-sides firebox with steel cross-brace and tie-plate to rear frames.

KITTEL, 36 inches gauge, and KIZLOZ, 36 inches gauge and 56½ inches gauge, are favorites for contractors' service and are kept on hand in stock ready to ship.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is used at the front driving wheels. For wide gauges the frames are continuous. The tank is carried forward surrounding the stack. See page 10 for general specifications and pages 11 and 12 for choice of

For smaller sizes see preceding page; for larger sizes see next page

Vord
\geq
Code
s py
Locomotives
_
Designate
to
Requested to
Red
are R
rrespondents are Re
spone
Corre
\bigcirc

CODE WORD	KITTEL	KITTIM	KIZLOZ	KLACHT	KLADDE	KLMST	KLASSE	KLATER	KLEBEN
Cylinders { diameter, inches. Diameter of driving wheels, inches. Wheel-base, feet and inches. Length over bumpers, feet and inches. Extreme-height (head-room not limited), ft. and in. Weight in working order, all on driving wheels, lb. Water capacity of saddle-tank, gallons. Fuel capacity { coal, pounds Weight per pard of lightest rail advised, pounds. Radius of sharpest curve advised, feet. Radius of sharpest curve advised, feet.	27, 14 16–10 16–10 9–10 29,000 400 350 25 25 25 38	110 141 14-6 17-0 17	10 10 10 10 10 10 10 10 10 10 10 10 10 1	111 14 30 18-0 10-2 39,000 500 500 40	11 16 31 5-0 18-6 10-9 42,000 600 600 600 600 600 600 600	12 16 33 5-0 19-0 11-3 47,000 800 800 35 45	36 36 36 36 36 20 11 10 51,000 51,000 35 800 35	13 33 5-9 21-6 12-0 56,000 800 900 900 900 900 900 900	13 36 36 5-9 5-9 12-0 60.000 900 900 900 900 900 900 900
Boiler pressure per square inch, pounds	165	160	160	160	091	160 9,495	165	165	165
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $61/2$ pounds per ton resistance of rolling friction: On absolute level. $1/2$ per cent grade = $25/6$, feet per mile $1/2$ is = $15/6$, i $1/2$ is = $15/6$, i $1/2$ is = $15/6$, ii	890 340 205 110	960 360 1150 751	1,095 4,20 2,55 1,35 90	1,160 445 270 145 95	1,28 490 295 1000 105	1.430 550 1.80 1.15	1,57 5,82 1,955,51 1,905,51	1,740 665 105 115 140	685 685 7 2 2 5 7 4 1 5 7 5 5 5

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-

III and IV, on pages 162 to 169. motives of different weights.

Four-Wheel-Connected Saddle-Tank Locomotive, Class B-S

For Shifting, Contractors' Use, and Special Service. Wide or Narrow Gauge

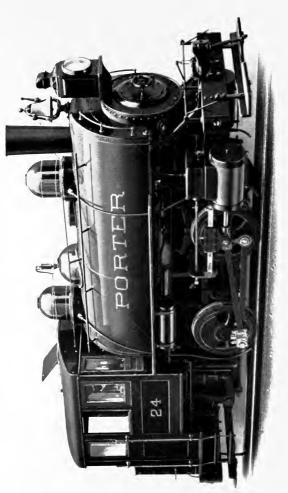


ILLUSTRATION No. 24, from photograph of 14 x 20 cylinders, shifting locomotive. 56% inches gauge of track, with air brake. KLINGE, 56½ inches gauge, is kept on hand in stock ready to ship.

SIX SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is used at the front driving wheels. For narrow gauge the main frames are stopped off in front for full-width straight-sides finebox with steel cross-brace and tie-plate to rear frames with rear entrance to cab as shown by Illustration 246 on the preceding page. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see four preceding pages.

CODE WORD.	KLEPEL	KLERIC	KLERUS	KLINIC	KLINGE	KLIMOP
Cylinders { diameter, inches	14	14	14	1.5	1.5	16
stroke, inches	20	22	54	20	24	24
Diameter of driving wheels, inches	40	42	4.5	4 2	9†	46
Wheel-base, feet and inches.	6-3	9-9	0-1	6-3	0-2	80
Length over bumpers, feet and inches.	23-0	23-10	24-0	24-0	25-6	27-6
Extreme height (head-room not limited), feet and inches	12-6	12-6	12-0	12-9	13-2	13-8
Weight in working order, all on driving wheels, pounds	000,69	71,000	74,000	78,000	84,000	100,000
Water capacity of saddle-tank, gallons	006	1,000	1,000	1,200	1,200	1,200
Fuel canacity \ coal, pounds	1,400	1,500	1,600	1,500	1,800	2,200
wood, cubic feet	45	45	50	45	09	80
Weight per yard of lightest rail advised, pounds	52	09	9	9	70	80
Radius of sharpest curve advised, feet	09	65	10	09	20	83.
Radius of sharpest curve practicable, feet	35	40	40	0+	45	65
Boiler pressure per square inch, pounds	165	165	165	170	170	180
Tractive force, pounds	13,740	14,395	14,660	15,480	096'91	20.435
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive). $6\frac{3}{2}$ pounds per ton resistance of rolling friction: (n absolute level	2,0 0,0 1,0 0,0 0,0 1,0 1,0 1,0 1,0 1,0 1	2,17 8,35 5,05 2,70 1,80	2 8 1 5 5 5 8 7 5 6 8 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.340 895 545 290 190	2.565 985 395 210	3,095 1,185 720 390 255

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights. The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

Light Six-Wheel-Connected Saddle-Tank Locomotive, Class C-S Wide or Narrow Gauge

ILLUSTRATION No. 22, from photograph of 8 x 14 cylinders, coal-burning locomotive, 30 inches gauge of track, plantation service, exported to Japan.

SIX SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and reuriements or preferences of customers. We are prepared to build additional sizes. The three larger sizes have horizontal expineders. A fampling step-boards may be used at front driving wheels. The center fires are flangeless. A may be used at front and rear. Heanow The above illustration shows height slightly reduced to accommodate head-room and the bell is concealed by the stack and head-light. (See illustration, page 74.) See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

)					
CODE WORD	KLONAS	KLOTHO	KLUCHS	KLUWEN	KNALDE	KOBANG
	9	7	00	6	0.1	II
Cynnaers \ stroke, inches	IO	1.2	1.4	1.4	1.4	+1
Diameter of driving wheels, inches	1.8	2.2	24	26	28	28
Wheel-base, feet and inches	01	5-2	5-6	5-10	7-3	2-8
Length over bumpers, feet and inches	13-6	14-0	15-6	6-91	18-0	20-6
Extreme height (head-room not limited), feet and inches	4-6	9-6	0-01	I 0-0	10-3	8-01
Weight in working order, all on driving wheels, pounds	15,000	000,61	24,500	29,500	34,000	41,000
Water capacity of saddle-tank, gallons	175	250	300	400	200	009
Exal aggretation of coal, pounds	300	350	00+	450	009	800
ruel capacity \ wood, cubic feet	2.5	30	32	35	0+	45
Weight per yard of lightest rail advised, pounds	1.2	+1	91	20	2.5	30
Radius of sharpest curve advised, feet	0+	50	53	09	80	06
Radius of sharpest curve practicable, feet	25	30	35	0+	09	20
Boiler pressure per square inch, pounds	091	160	091	160	091	091
Tractive force, pounds.	2,715	3,640	5.070	5.925	008,9	8,230
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $61/2$ pounds per ton resistance of rolling friction: On absolute level. $1/2$ per cent grade = 2616 feet per mile $1/2$ i $1/2$ i $1/2$ i $1/2$ i $1/2$ i $1/2$ ii	0 1 H 0 7 0 0 0 0 7 0 0 0	1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	895 340 205 110	1,025 395 235 125 80	1,245 475 475 1,245 1,00

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Six-Wheel-Connected Saddle-Tank Locomotive, Class C-S

Wide or Narrow Gauge

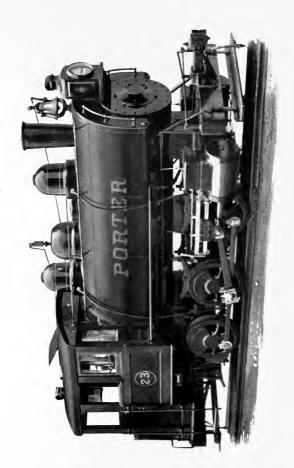


ILLUSTRATION No. 23, from photograph of 15 x 20 cylinders, coal-burning locomotive. 561/4 inches gauge of track, for mine railway in California.

ELEVEN SIZES, each with code word, are described on the opposite page, subject to modification of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are propared to build additional sizes. Double guides are seldom used except for the larger sizes. The rear and center driving wheels are connected by side equalizers. A cross equalizer is placed at the front driving wheels. The center tires are flangeless. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page

CODE WORD.	KOATOO	KOBELL	KOBENS	KOBOLD	KODATA	KOOROS	KOEDEK	KOEGES	KOETER	KOEPUS	KOEPOK
Cylinders diameter, inchesstroke, inches.	10	111	12	12	13	14	14	15	1.5	16	16
Diameter of driving wheels, inches	30	31	33	34	36	40	. 45	40	46	42	46
Wheel-base, feet and inches	2-8	8-I	8-I	0-6	01-6	9-01	1 I -0	10-6	$^{1}I-0$	0-II	0-11
Length over bumpers, feet and inches	20-6	21-0	21-6	22-0	23-6	25-0	26-6	27-6	28-0	28-0	29-0
Weight in working order, all on driving wheels,	10-3	6-01	11-2	0-11	0 7 7	12-0		6-21	13-2	13-2	13-0
pounds	38,500	43,500	19,500	55,000	000,10	71,000		83,000	37,000	04,000	106,000
gallons	009	009	001	750 800	800	006	950	1,025	1.025	1,100	1,100 1,200
Finel canadity \ coal, pounds	800	1,000	1,100	1.200	1,300	1.400		1,800	008.1	2,000	2,200
	+5	45	20	50	55	09		10	20	09	7.5
Weight per yard of lightest rail advised, lb	2.5	30	30	35	0+	+		50	ic,	09	09
Radius of sharpest curve advised, feet	06	100	100	125	150	170		o 2 I	180	180	180
Radius of sharpest curve practicable, feet	20	× ×	× × ×	110	135	145		145	091	160	160
lare inch, pounds	165	165	165		165	165	170	175	175	180	180
Tractive force, pounds	7 480	8,750	062.6		11,850	13,740	15,445	10,690 11,850 13,740 15,445 16,735 17,460 18,650	17,460	18,650	20,435
Hauling Capacity, in tons of 2.000 pounds (exclusive of locomotive), 6.1% pounds per ton resistance of rolling friction: On absolute level	1,130 430 260° 140 90	1.3 3.0 1.0 5.0 5.0 5.0 5.0 5.0	1,480 570 340 185 120	1,615 620 375 200 130	1,790 685 415 225 145	2,085 800 485 260 170	2,345 900 545 290 190	2,530 970 585 315 210	2,640 1,015 615 330 215	2,820 1,080 655 350 230	3,090 1,185 720 385 255

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2

For quick selection of suitable weight locomotive for stated load, grade and rsp.

III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Eight-Wheel-Connected Saddle-Tank Locomotive, Class D-S Wide or Narrow Gauge

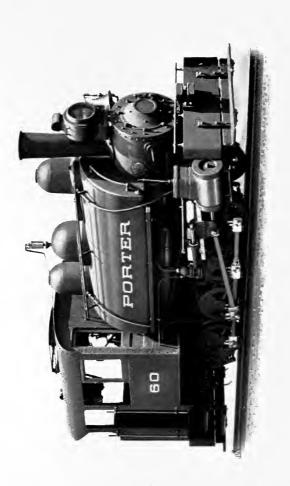


ILLUSTRATION No. 60, from photograph of 10 x 14 cylinders, coal-burning locomotive, meter gauge, for plantation service, exported to the West Indies.

NINE SIZES, each with **code word**, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The two center pairs are flangeless. The eyelinders of all the sizes described are usually placed horizontal. Larger sizes have bell on tank instead of left side of stack. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD.	K00000	KOOMAN	KOOLEE	KOOZEN	KOPJES	KOPTEN	KORKUD	KORNIS	KORNHOF
Cylinders \ \text{ diameter, inches.} \tag{Cylinders \} \text{ stroke, inches.}	9	01	11	12	13	141	182	16	17
Diameter of driving wheels, inches.	2 2	26	27	29	31	34	36	42	42
Wheel-base, feet and inches	9-2	8-0	8-6	0-6	8-6	9-01	11-3	11-10	13-0
Extreme height (head-room not limited), ft. and in.	9-6	9-10	0-01	0-11	9-11	12-0	12-6	13-0	13-6
Weight in working order, all on driving wheels. Ib.	31,000	36,000	16,000	50,000	65,000	78,000	87,000	000,96	106,000
Water capacity of saddle-tank, gallons	800 800	500	000	700	800 I,800	900	1,050	3,500	1,300
Fuel capacity & wood, cubic feet	2.5	30	3.5	0+	5.	20	9	80	06
Weight per yard of lightest rail advised, pounds	16	91	20	2.5	30	35	40	4	50
Radius of sharpest curve advised, feet	00	001	011	125	011	091	170	175	200
Radius of sharpest curve practicable, feet	10	80	06	110	120	140	150	155	180
Boiler pressure per square inch, pounds	160	091	0/1	0/1	175	175	180	180	180
Tractive force, pounds	0,170	7,330	9,065	10,045	12,975	15,435	17,210		21,055
ling Capaci sive of locc ance of roll									
On absolute level	930	011,1	1,370	1,515	1,960	2,335	2,600	2,820	3,185
;	2 1 5 2 1 5	25.5	315	350	455	540	605	655	047
$\frac{1}{2}$ $\frac{1}$	115	135	170	190	245	290	325	350	00+
::	75	06	110	125	091	061	215	230	260

on page 140. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2 The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light Four-Wheel-Connected Saddle-Tank Open-Canopy Locomotive, Class B-S-K

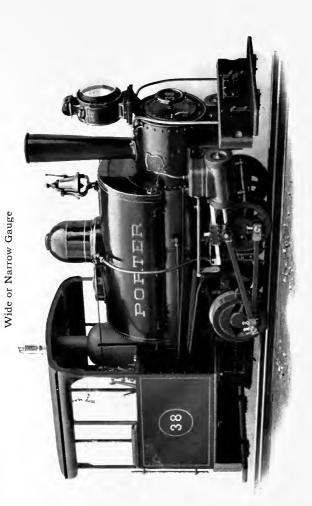


ILLUSTRATION No. 38, from photograph of 7 x 12 cylinders, coal-burning locomotive, 30 inches gauge, for plantation service, exported to Porto Rico.

EIGHT SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizar is placed at the front driving wheels. The cylinders of the two larger sizes are placed horizontal, and saddle-tank extended forward surrounding the stack and the dome forward forward forward forward surrounding the stack and the dome forward through the tank. The bumper hand-holds as shown are unusual style. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD.	KORREL	KORRIM	KORTAF	KORTOM	KORZEC	KOSEST	KOSMAS	KOTHIG
Cylinders diameter, inches	ww	\$\frac{51}{8}\$	5 10	9	7	8	9	01
Diameter of driving wheels, inches	20	20	20	20	2.4	26	27	30
Wheel-base, feet and inches	3-6	3-6	4-0	0-+	4-8	2-0	9-+	9-+
Length over bumpers, feet and inches.	9-01	10-0	0-11	9-11	12-0	0-11	01-91	17-0
Height (head-room not limited), feet and inches	9-0-8	0-6	9-4	9-6	9-8	9-10	9-10	10-0
Water capacity of saddle-tank, gallons	100	100	125	150	200	250	00+	500
Engl aggitty (coal, pounds	175	175	200	200	250	300	350	450
r uer capacity (wood, cubic feet	1.5	1.5	1.5	18	20	20	2 3	25
Weight per yard of lightest rail advised, pounds	12	1.2	14	91	91	20	25	30
Radius of sharpest curve advised, feet	25	25	30	30	35	35	0+	0+
Radius of sharpest curve practicable, feet	1.5	15	15	15	91	18	20	18
Boiler pressure per square inch, pounds	160	091	160	160	160	160	165	091
Tractive force, pounds	1,360	1,645	1,700	2,445	3,330	4,680	5,890	6,350
Hauling Capacity, in tons of 2.000 pounds (exclusive of locomotive), 6½ pounds per ton resistance of rolling fric-								
tion;	0	1	1	190	(1 (Ø	090
rade =	7.5	90	0 0 0 0	303	190	270	340	365
= 52 x	+ 52	20	is is	85	115	165	205	220
$\frac{1}{2}$ $\frac{1}$	20	25.	30	40	09		110	115
$= 158\frac{1}{10}$	¥	10	18	25	40	52	20	7.2

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I II, III and IV, on pages 162 to 169.

These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Four-Wheel-Connected Locomotive with Saddle-Tank (or Rear Tanks) without Cab, Class B-S-O or B-RR-C

For Mill or Industrial Service. Wide or Narrow Gauge

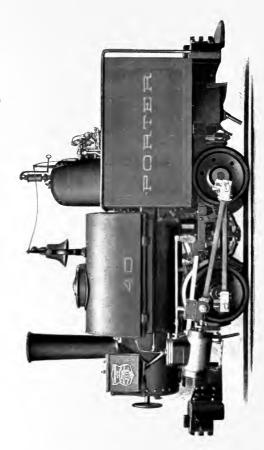
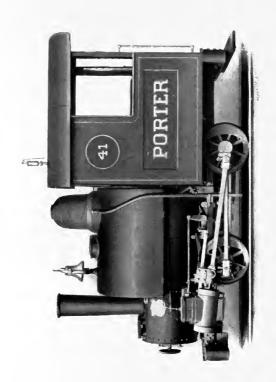


ILLUSTRATION No. 40, from photograph of 6 x 10 cylinders. coal-burning, saddle-tank locomotive, 36 inches gauge, for light work in steel mill.

EIGHT SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, fuel, size of locomotive, clearances, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. The cylinder better sizes may be placed horizontal. For limited head-room the stack, dome, etc., may be made flush with the tank like Class B. Mine, pages 106 and 107. For extra narrow gauges the wheel-base is shortened and the frames stopped off in front of full-width straight-sides firebox. The two larger sizes usually have the tank extended forward surrounding the stack and the dome placed forward coming up through the tank. Two rear tanks, one each side, may be used, but are not suitable for extreme narrow gauges. See page 10 to general specifications and pages 11 and 12 for choice of

CO DE $\{$ with saddle-tank, like Illustration No. 40	KOULER KRIPPE	KOUMIS	KOUSSO KRITIK	KRABAT KRODDE	KRABBE Krokus	KRAWAR	KRONOS	KRESSE
Cylinders diameter, inches. Diameter of driving wheels, inches. Wheel-base, feet and inches. Ength over bumpers, feet and inches. Height (head-room not limited), feet and inches. Water capacity of saddle-tank, gallons. Coal-bunker capacity, pounds. Weight per yard of lightest rail advised, pounds. Radius of sharpest curve advised, feet. Radius of sharpest curve practicable, feet.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$\frac{51}{2}\$ \$\frac{20}{3}\$ \$\frac{20}{6}\$ \$\frac{9}{6}\$ \$\frac{9}{6}\$ \$\frac{17}{5}\$ \$\frac{17}{5}\$ \$\frac{17}{5}\$ \$\frac{17}{5}\$ \$\frac{17}{5}\$	20 20 100 1000 11,000 125 150 150 150	20 20 10 11 13 15 15 15 15 15 15 15 15 15 15 15 15 15	7 12 24 4-8 12-0 8-8 17.000 200 200 200 16 16	8 26 5-0 13-6 9-0 23,000 250 250 250 250 250 250 250	9 11 27 4-6 16-10 9-0 28,000 28,000 350 25 400 25 400 25 25 20 20 20 20 20 20 20 20 20 20	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Boiler pressure per square inch, pounds	1,360	160	1,700	160	160	160	165 5.890	160
Hauling Capacity, in tons of 2000 pounds (exclusive of locomotive), 6½ pounds per, ton resistance of rolling friction: On absolute level	2007	2 0 0 5 0 0 5 1 1 6 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 30 18 18 18	365 140 140 140 153	500 110 60 60 115	2 7 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	890 340 205 110 70	960 365 225 115 75

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.


For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Coke-Oven Locomotive Four-Wheel-Connected, Class B-S-I

Usually for Wide Gauge

ILLUSTRATION No. 41, from photograph of 7 x 12 cylinders, 56½ inches gauge locomotive, for coke-oven service.

FIVE SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, size of locomotive, clearances, and requirements or preferences of customers. We are prepared to build larger or smaller sizes. A cross equalizer is placed at the front driving wheels. The evilanders of the two larger issues are horizontal. The cab is of sited, partly closed at sides, with rear entrance, and small windows front and rear. The height may be redduced for limited head-room. See page 10 for general specifications.

Word
Code
by
Locomotives
Designate
to
Requested
are
Correspondents are Requested to Designate Locomotives by Code Wor

CODE WORD	KRYPTE	KUBBEN	KUBIEK	KUCHEN	KUECHE
Culindars (diameter, inches.	9	7	∞	6	10
Stroke, inches	OI	1.2	14	†I	†1
Diameter of driving wheels, inches	20	2 †	26	27	28
Wheel-base, feet and inches	0-+	8-+	5-0	9-+	9-+
Length over bumpers, feet and inches	9-11	12 - 9	14-0	01-91	0-11
Height (head-room not limited), feet and inches	9-6	8-6	01-6	01-6	10-0
Weight in working order, all on driving wheels, pounds	15,000	18,000	24,000	29,000	33,000
Water capacity of saddle-tank, gallons	1 50	200	250	00+	300
Coal-bunker capacity, pounds	200	250	250	350	450
Weight per yard of lightest rail advised, pounds	91	20	2.55	2 5	30
Radius of sharpest curve advised, feet	30	35	0†	50	35
Radius of sharpest curve practicable, feet	91	18	2.2	2 5	81
Boiler pressure per square inch, pounds	160	091	091	165	091
Tractive force, pounds.	2,445	3,330	4,680	5.890	008'9
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $61/2$ pounds per ton resistance of rolling friction: On absolute level. $1/2$ per cent grade = $261/4$, feet per mile. $1/2$ per = $521/6$ = $105/6$ = $105/6$ = $105/6$	365 140 80 40 25	500 190 115 60 40	0 H 8 C 7 C 8 C 7 C 8 C 7 C 9 C 7 C 8 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	890 340 205 1105 70	1,022 3,925 2,335 855 555 555

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

motives of different weights.

Light Steel-Works Four-Wheel-Connected Saddle-Tank Locomotive, Class B-S-I

Wide or Narrow Gauge

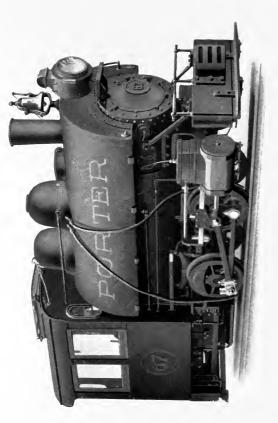


ILLUSTRATION No. 67, from photograph of 10 x 14 cylinders, steel-works locomotive, full height, 30 inches gauge of track, with stopped-off main frames and full-width straight-sides firebox.

SEVEN SIZES, each with code word are described on the opposite page, subject to modifications of details to suit gauge, clearances, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. The cylinders of the four smaller sizes are slightly inclined. The cub is of steel and practically no wood is used in construction. The three larger sizes are constructed with tank extended forward and with dome, coming up through tank. For limited side-room the cylinder flanges are flattened. For limited head-room the stack, dome, and other parts are made flush with the tank and the height may be like Class B-Mine, pages 106 and 107 (see also page 84). For wide gauges the frames are continuous. Guide-shields or side-aprons may be used if desired. See page 10 for general specifications.

For larger sizes see next page.

CODE WORD	KUENDEN	KUERBIS	KUGEL	KUHLAUS	KUHMIST	KUIFHEN	KUKANG
Cylinders diameter, inches	ın (9	7	∞	6	101	II
Diameter of driving wheels, inches.	2 0	0 0	2.1	1† 20	1 7 2	+ %	†1 30
Wheel-base, feet and inches	0-+	0-+	8-+	5-0	9	9-+	9 - 6
Length over bumpers, feet and inches	11-0	111-6	12-0	0-11	16-10	0-11	18-0
Extreme height above rail (head-room not limited), feet and inches. Extreme height, with cab, stack, etc., flush with top of tank, feet	4-6	96	8-6	01-6	01-6		10-2
and inches.	5-3	2-6	6 - 3	$6 - 8\frac{1}{2}$	6-9	$7-3\frac{1}{2}$	2-2
Weight in working order, all on driving wheels, pounds	11,000	14,000	17,500	24,000	29,000	32,500	39,000
Water capacity of saddle-tank, gallons	125	150	200	250	00+	500	009
Coal-bunker capacity, pounds	200	200	250	250	350	450	300
Weight of lightest rail advised, pounds	91	91	20	25	25	30	35
Radius of sharpest curve advised, feet	25.	30	35	0+	50	33	0+
Kadius of sharpest curve practicable, feet	91	91	18	22	25	18	20
Boiler pressure per square inch, pounds	160	160	160	160	165	160	091
Tractive force, pounds.	1,700	2,445	3,330	4,680	5,890	008'9	2,680
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive).						MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND	
	255	365	200	705	890	1,025	1,160
" $\frac{1}{2}$ per cent grade = $26\frac{1}{10}$ feet per mile	95	011	190	270	340	395	445
	55	80	115	165	205	235	270
	30	0+	00	82	011	125	1+5
$= 158_{10}^{4} = 1$	19	2.5	0+	55	20	85	95

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

to to pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½

Heavy Steel-Works Four-Wheel-Connected Saddle-Tank Locomotive, Class B-S-I

ILLUSTRATION No. 68, from photograph of 16 x 20 cylinders, steel-works locomotive, 10 ft. 10 in. height, 36 inches gauge of track, with stopped-off main frames and cross-brace tie-plate connection to rear frames, and full-width straight-sides firebox.

motive, and requirements or preferences of customers. We are prepared to build larger sizes. A cross equalizer is placed at the front driving wheels. The cab is of steel and practically no wood is used in construction. The tank is extended forward surrounding the stack and the dome comes up through the tank. For limited side-room the sylinder flanges are flattened. For limited head-room the stack, dome, and other parts are made flush with the tank. For unfinited head-room the general appearance is like lilustration No. 67, nage 82. Single-lar guides are used for the smaller sizes. For wide gauges the frames are continuous. The guides are protected by shields. Side-aprons covering the machinery below the tank may be used. See page 10 for general specifications. ELEVEN SIZES, each with code word, are described on the opposite page, subject to modifications of details to suit gauge, clearances, size of loco-

For smaller sizes see preceding page.

Vord
\geq
qe
ĮQ,
\cup
by.
Designate Locomotives by Code Word
Loce
Designate
D E
ĭ
g
<u> </u>
are
lents
orrespondents are Request
Ç OI

										•	
CODE WORD.	KUISCH	KUKUPA	KULPIS	KUMBUK	KUMBUK KUMTIC KUNBIT	KUNBIT	KUNKEL	KUNST	KUNVIM	KUNVIM KUNWIX	KUPDRA
Cylinders \ diameter, inches	Io	11	1.2	12	13	14	71	1.5	15	91	91
Diameter of driving wheels inches	01	10	10	81	01	18	50	50	24	20	24
Wheel-base, feet and inches.	2 14 C - C -	3.1	33	30	55	00 J	38	45 6-7	0+6	7 + 5	40
Length over bumpers, feet and inches.	18-3	18-6	0-61	9-61	21-0	2 1-0	21-9	24-0	25-2	24-2	27-6
Extreme neght above rail (head-room not limited), feet and inches	I 0-0	6-01	11-3	11-3	9-11	12-0	I 2-0	12-0	13-2	13-2	13-8
	7-41/2	8-2	8-8	$8 - 8\frac{1}{2}$	8-81/2 8-101/2	0-6	9-3	0-01	10-1	8-01	10-0
pounds	36,500	42,500	48,000	52,000		70,000	72,000		80,000 85,000	000,96	101,000
Water capacity of tank, gallons	009		200	750			_	1,200	1,200 1,200	1,200	1,200
Coal-bunker capacity, pounds	300	009	800	750	750	850	850	1,000	1,000	1,000	I,000
Weight per yard of lightest rail advised, Ib	35	0+	45	45	50	50	26	09	0/	80	80
Kadius of sharpest curve advised, feet	40	0	0	00	45	20	55	09	20	09	8 10
Kadius of sharpest curve practicable, feet	20	20	20	2.5	2 5	30	35	40	15	0+	65
Boiler pressure per square inch, pounds	160	091	091	165	165	170	021 071	170	170	180	
Tactive force, pounds.	7,250	8,480	9.495	10,110	10,110 11,490	14,17	14,905	15.480	096'91	18,650	20,435
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 61 pounds per ton resistance of rolling friction: On absolute level $1 \frac{1}{2}$ per cent grade = $26 \frac{1}{4}$ 0 feet per mile. $\frac{1}{3}$ = $15 \frac{1}{3}$ 0 = $15 \frac{1}{3}$ 0 = $15 \frac{1}{3}$ 0 = $15 \frac{1}{3}$ 0	1,095 420 255 135 90	1,280 490 295 160 105	1,435 550 330 180 120	1,525 585 1900 125	1,740 665 405 215 145	2,145 820 495 265 175	2, 8,2 8,5 1,8,5 1,8,5 1,8,5 1,8,5 1,8,5 1,8,5 1,8,5 1,8,5 1,8	2,340 895 540 290 190	2,565 985 595 320 210	2,820 1,080 655 350 230	3,090 1,185 720 390

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light Plantation and Industrial Locomotive Four-Wheel-Connected with Rear Tanks and Canopy, Class B-RR-K

Wide or Narrow Gauge

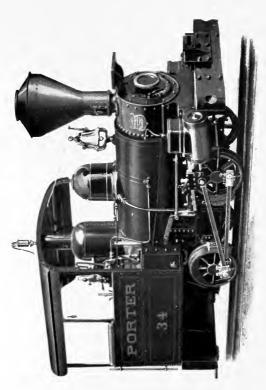


ILLUSTRATION No. 34, from photograph of 7 x 12 cylinders, wood-burning locomotive, 36 inches gauge of track, for industrial tramway, exported to Mexico.

EIGHT SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. The canopy is of steel. The water is carried in two tanks, one each side, at the rear. The engineer's seat on the right and the fuel bunker on the left. The cylinders of the two larger sizes are extreme narrow gauges involving shorter wheel-base and stopped-off frames the tanks are placed farther forward. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD.	KUPFER	KUPLOT	KUPPEL	KURDEN	KURHUT	KURIOS	KURSIV	KURZAB
('ylinders') stroke, inches.	ivo	-15 -27 80	15 I	9 01	7	8 11	9	0 1 1
Diameter of driving wheels, inches	20	20	20	20	2.4	26	27	30
Wheel-base, feet and inches	3-6	36	0-+	0-+	4-8	5-0	9-+	9-+
Length over bumpers, feet and inches	8-6	8-6	0-01	11-4	12-7	13-10	01-01	0-11
Extreme height (head-room not limited), feet and inches. Weight in working order on driving whools accounts	0-8	0-8	9-4	9-6	9-8	9-10	9-10	0-01
Water capacity of rear tanks, gallons	75	100	10001	125	1,000	2000	250	300
Ruel convoity (coal, pounds	120	175	125	150	150	200	25.0	300
t act capacity / wood, cubic feet	7	1.2	0 I	10	1.2	1.51	18	20
Weight per yard of lightest rail advised, pounds	I 2	1.2	1 2	† ₁	91	20	25	30
Radius of sharpest curve advised, feet	25	2 5	30	30	35	0+	0	0+
Radius of sharpest curve practicable, feet	1.5	1.5	9.1	91	1.8	22	25	20
Boiler pressure per square inch, pounds	160	160	160	091	160	160	165	091
Tractive force, pounds	1,360	1,645	1,700	2,445	3.330	4,680	5.890	6,350
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resistance of rolling fric-								
tion; absolute level	200	245	27.	365	00	0,0	800	090
" $\frac{1}{2}$ per cent grade = $26\frac{4}{10}$ feet per mile	7.5	90	95	0+1	061	270	340	365
1	45	0 10	ro (. S.	115	165	205	220
$\frac{1}{3}$ = $\frac{15316}{15816}$	071	16	30	9 t	0 0	0 IC	70	. c.7
			`	,))		

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights. The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

Plantation and Industrial Saddle-Tank Locomotive Six-Wheel-Connected with Canopy, Class C-S-K

Wide or Narrow Gauge

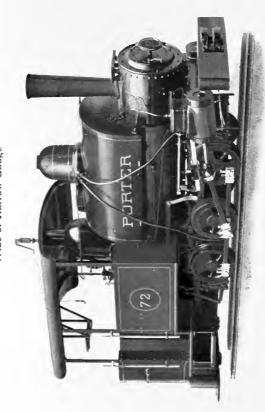


ILLUSTRATION No. 72, from photograph of 8 x 14 cylinders, coal-burning locomotive, 30 inches gauge of track, for ore tramway.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The rear and center driving wheels are connected by side equalizers. A cross equalizer is placed at the front drivers. The center driving wheels are flangeless. The canopy cab is of sicel. Hanging step-boards and hand-holds may be used at both front and rear. The cylinders of all except the three smaller sizes are horizontal. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

Cylinders $\$ diameter, inches. Cylinders $\$ diameter, inches. Dia	CODE WORD.	PABILO	PACATO	PACCAN	PACHAO	PACIFY	PACTYE	PADRAO	PAEANS	PAEDOR
inches: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Cylinders \ diameter, inches	9	7	~	6	01	OI		11	1.2
meter of driving wheels, inches. meter of driving wheels, inches. eel-base, feet and inches. gth over bumpers, feet and inches. 13-6 14-9 16-0 16-9 18-0 20-4 gth over bumpers, feet and inches. 13-6 14-9 16-0 16-9 18-0 20-4 13-6 14-9 16-0 16-9 18-0 20-4 13-6 14-9 16-0 16-9 18-0 20-4 14-10 16-0 16-9 18-0 16-0 17-2 250 34,000 34,500 34,000 800 17-2 350 300 400 500 800 17-2 350 400 400 800 17-2 30 400 400 800 17-2 30 400 400 800 18-2 12 14 16 20 800 18-2 12 14 16 20 800 18-2 12 14 16 20 800 18-2 12 14 16 16 16 16 16 16 16 16 16 16 16 16 16	cyminas (stroke, inches	OI	12	14	14	14	91		91	16
eel-base, feet and inches. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Diameter of driving wheels, inches	18	2.2	24	26	28	30		31	33
gth over bumpers, feet and mches	Wheel-base, feet and inches	4-10	5 - 2	2-6	5-10	7-3	2-8		8-1	8-1
reme height (head-room not limited), ft. and in. 9-4 9-6 $10-0$ $10-0$ $10-3$ 38.500 glbt in working order on driving wheels, pounds $15,000$ $1,000$ $24,500$ $24,500$ $38,500$ lear capacity of sadlo-tank, gallons 175 350 350 400 450 600 800 1000 lear per yard of lightest rail advised, pounds 12 14 16 20 25 35 60 800 100 glius of sharpest curve advised, feet 25 30 35 40 60 80 90 lius of sharpest curve practicable, feet 25 30 35 40 60 80 90 lius of sharpest curve practicable, feet 25 30 35 40 60 80 90 lius of sharpest curve practicable, feet 25 30 35 40 60 80 90 lius of sharpest curve practicable, feet 25 30 35 40 60 80 90 lius of sharpest curve practicable, feet 25 30 35 40 60 80 90 lius of sharpest curve practicable, feet 25 30 35 40 60 80 90 lius of sharpest curve practicable, feet 25 30 35 40 60 80 90 lius of sharpest curve practicable, feet 25 30 30 30 40 40 40 40 40 40 40 4	Length over bumpers, feet and inches	13-6	I4-9	0-91	6-91	18-0	20-4		21-0	21-6
ght in working order on driving wheels, pounds 15,000 19,000 24,500 29,500 34,000 38,500 ter capacity of saddle-tank, gallons 175 250 300 400 500 600 800 1000 1000 1000 1000 1000 1000	Extreme height (head-room not limited), ft. and in.	4-6	9-6	0-01	0-01	10-3	10-3		6-01	11-2
ter capacity of saddle-tank, gallons	Weight in working order on driving wheels, pounds	15,000	000,61	24,500	29,500	34,000	38,500		43,500	49.500
capacity Coal, pounds 300 350 400 450 600 800	Water capacity of saddle-tank, gallons	175	250	300	400	200	009		009	200
ght per yard of lightest rail advised, pounds. 12 30 32 35 40 45 15 16 160 160 160 160 160 160 160 160 160	Fuel canacity \ coal, pounds	300	350	400	450	009	800		I,000	1,100
ght per yard of lightest rail advised, pounds. 12 14 16 20 25 25 lius of sharpest curve advised, feet	wood, cubic feet	25	30	32	35	0+	45		45	50
inus of sharpest curve advised, feet	Weight per yard of lightest rail advised, pounds	1.2	14	91	20	25	25		30	30
lius of sharpest curve practicable, feet	Radius of sharpest curve advised, feet	0+	50	55	09	80	06		100	100
er pressure per square inch, pounds	Radius of sharpest curve practicable, feet	25	30	35	40	09	10		85	85
ting Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6 / 2$ pounds per ton resistable of rolling friction: absolute level. 1,025 1,025 1,130 2,715 3,640 5,070 5,925 6,800 7,480 7,480 1,130 1,2 per cent grade = $26 \frac{1}{10}$ feet per mile	Boiler pressure per square inch, pounds	160	160	160	160	160	165	091	165	165
ling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resistance of rolling friction: absolute level	Tractive force, pounds.	2,715	3,640	5,070	5,925	0,800	7,480	8,230	8,750	9,790
ance of rolling friction: absolute level	Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resist-									The state of the s
1/2 per cent grade = $26\frac{1}{10}$ feet per mile 155 210 295 340 395 430 1 = $52\frac{1}{10}$ 90 125 175 205 235 260	ance of rolling frictic absolute level	107	0.5.0	765	895	1,025	1,130	1,245	1,320	081.1
I = 5210 90 125 175 205 235 260	½ per cent grade =	155	210	295	340	395	430	475	505	570
	= : : : : : : : : : : : : : : : : : : :	06	125	175	205	235	260	285	305	340
2 = 10510 50 05 95 110 125 140		20	02	95	011	125	140	155	165	185
30 40 60 70 80 90	3 = 1581	30	0	00	20	000	06	100	105	120

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Plantation and Industrial Locomotive Four Driving Wheels Back-Truck Rear Tank, Class 2-B-R-K

Wide or Narrow Gauge

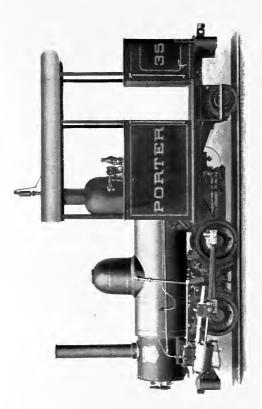


ILLUSTRATION No. 35, from photograph of 5 x 8 cylinders, coal-burning locomotive, 30 inches gauge of track, for plantation, exported to Central America.

ELEVEN SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal, lateral, and radial-har motion. The canopy cab is of steel. Cylinders 9 x 14 and larger are horizontal. Hanging step-board and hand-hold front and rear may be used. If narrowness of gauge requires, the frames are stopped off in front of full-width straight-sides firebox. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	PAENIT	PAEON	PAELEX	PAFLON	PAGLIA	PAIRAR	PAIXAO	PAJARA	PAJOSA	PAKJES	PALAGE
('wlinders diameter, inches	ır,	10	9	7	∞	6	01	01	1.1	1.2	12
stroke, inches	∞	10	0	12	+1	1-	1	91	91	91	18
Diameter driving wheels, inches	20	20	22	5.4	28	30	33	33	36	0+	0+
Diameter of truck wheels, inches	+1	1,4	+1	91	91		18	18	2.2	2.2	22
Kigid wheel-base, feet and inches	3-0	3-0	3-6	4-0	0-+		9-+		5-3	5-0	5-0
Total wheel-base, feet and inches		0-6	2-6	10-7	11-8		13-10		0-11	01-+1	15-0
Length over bumpers, feet and inches.	14-3	15-3	0-91	0 - 71	18 - 3		22 - 0	22-10	23-8	24-0	24-4
Height (head-room not limited), feet and inches	0-6	0 - 2	9-6	8-6	01-6		10-3		10-10	11-0	II - 2
Weight in working order, pounds	11,500	13,000	16,000	22,500	28,000		36,000	42,000			
Weight on driving wheels, pounds	8,000	000,6	11,000	16,000	20,000		26,500	30,000			
Weight on two-wheel truck, pounds	3,500	4.000	5,000	6,500	8,000		9,500	12,000			
Water capacity of rear tank, gallons	150	200	250	350	00+		550	009	650		
Fuel canacity \ coal, pounds	300	00+	750	006	1,000		1,200	1,400			
wood, cubic feet	1.2	+1	18	20	25		35	0			
Weight per yard of lightest rail advised, pounds	10	12	† I	91	20		25	25			
Radius of sharpest curve advised, feet	0	45	55	65	75		100	100			
Radius of sharpest curve practicable, feet	30	35	0+	+5	0	65	70	20		85	85
Boiler pressure per square inch, pounds	091	091	160	160	160	165	160	091	091	160	091
Tractive force, pounds.	1,360	1,700	2,225	3,330	4,350	5,300	5,775	6,585	7,315	7,835	8.820
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resistance of rolling friction;											
	200	250	330	200	655	800	870	066	1,100	1,180	1,325
½ per cent grade =	75	95	125	061	250	305	330	375	430	445	505
$= \frac{52}{10}$	+	ວິ	7.	011	150	180	200	225	250	270	300
3 " " " = 10510 " " " " " " " " " " " " " " " " " " "	1 20	0 %	ເວ ເ ເວ ເ	00 %	10 C	900	105	120	130	140	091
	+)	3	00	30		co	0/	Co	90	001

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Tramway and Plantation "Forney" Locomotive Four Driving Wheels with Canopy, Class 4-B-R-K

Wide or Narrow Gauge

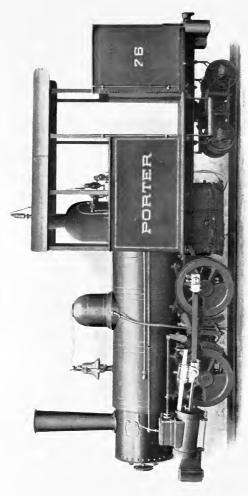


ILLUSTRATION No. 76, from photograph of 10 x 14 cylinders, coal-burning locomotive, 2338 inches gauge, for sugar plantation, exported to West Indies.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal and lateral motion. The canopy cab is of steel. Hanging step-boards and hand-holds, or pilots, may be used at front and rear. Cylinders 9 x 14 and larger are usually horizontal. If required by narrowness of gauge the frames are stopped fin front of full-width straight-sides firebox as shown by Illustration No. 76. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD.	PALCHI	PALMED	PALMON	PALTOS	PANDUR	PANDYA	PANIZ0	PANJIL	PANNUM
Cylinders diameter, inches	0 5	7	∞ ;	6	01	01	111	12	122
Dismotor of driving whools inches	01	1.2	+0	14	+ (01	01	01	8 !
Diameter of truely wheels, inches	5 5	5.7	20	30	250	m)	30	40	0 0
Digid whool have feet and inches	7,	÷ (÷.	01,	10,	0 ,	0 1	7 7	7 7 1
Total wheel-base (center of front axle to center of	3-0	1	0-4	4-0	0	5-3	5-3	5-6	2–6
truck), feet and inches	9-01	9-11	12-6	13-6	14-0	15-0	9-51	15-0	9-91
Length over bumpers, feet and inches	9-41	18-8	20-0	21-6	22-6	24-2	25-4	29-0	27-0
Extreme height (head-room not limited), ft. and in.	9-6	8-6	01-6	0-0I	10-3	9-01	10-10	11-3	9-11
Weight in working order, pounds	17,500	24,500	29,000	34,500	38,000	44,000	49,000	52,000	58,000
Weight on driving wheels, pounds.	11,500	16,000	20,000	24,500	26,500	30,000	34,000	36,000	41,000
Weight on four-wheel truck, pounds	000,9	8,500	000,6	10,000	11,500	I4,000	15,000	16,000	17,000
Water capacity of rear tank, gallons	300	400	450	550	650	650	200	750	750
Firel capacity \ coal, pounds	750	1,000	1,200	1,600	1,800	1,800	1,800	2,000	2,000
were capacity \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	20	2 2	30	35	40	4 5	50	55	10
Weight per yard of lightest rail advised, pounds	14	91	20	20	25	20	30	30	χ. Σ.
Radius of sharpest curve advised, feet	75	80	85	9.2	105	115	125	135	135
Radius of sharpest curve practicable, feet,	55	65	70	7.5	80	06	100	115	115
Boiler pressure per square inch, pounds	160	160	160	165	091	160	160	160	160
Tractive force, pounds	2,225	3,330	4,350	5,300	5,775	6,585	7,315	7.835	8.820
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6\frac{1}{2}$ pounds per ton resistance of rolling friction.									
absolute level.	330	200	655	800	870	066	1,095	1,180	1,325
" $\frac{1}{2}$ per cent grade = $26\frac{1}{10}$ feet per mile	125	190	245	300	330	375	415	445	505
$= 52_{10}$	75	011	130	180	195	225	250	270	300
$= 105_{10}$	35	55	7.5	9.5	105	120	130	140	155
3	20	35	200	09	65	7.5	82	06	100
The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given	rates of	f resistar	ice of ro	ling fric	tion and	on any 1	practical	de grade	is given

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 4° pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-

Tramway and Plantation Rear Tank Locomotive Six Driving Wheels Back-Truck with Canopy, Class 2-C-R-K

Wide or Narrow Gauge

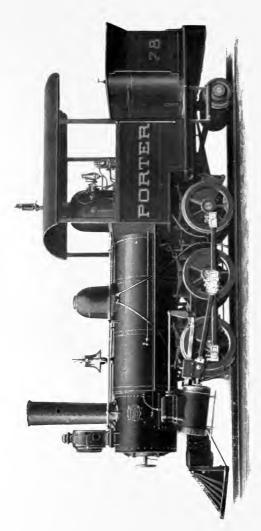


ILLUSTRATION No. 78, from photograph of 9 x 14 cylinders, coal-burning locomotive, 36 inches gauge, for sugar plantation.

EIGHT SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The rear and center driving wheels are connected by side equalizers. A cross equalizer is placed at the front driving wheels. The truck has pivotal, lateral, and radial-har motion. The canopy cab is of steel. All except the two smaller sizes have horizontal cylinders. Hanging step-boards with hand-holds may be used at front and rear. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD.	PANXIT	PAPION	PAPYRO	PARAMO	PARDON	PARFUM	PARGER	PARRAL
A diameter, inches.	1	×			2	1.1		
Cynnders) stroke inches	, ,)]	λ,) .	9	11	7.1	7.7
Diomotion of division relations	7.1	+ -	+	† T	0.1	10	0.1	18
Diameter of driving wheels, inches	2 2	26	28	31	31	33	36	36
Diameter of truck wheels, inches.	1.4	91	91	91	18	18	50	50
Rigid wheel-base, feet and inches.	5-2	2-6	† -9	7-3	7-8	8-1	8-1	8-1
Total wheel-base, teet and inches.	1001	IO-IO	12 - 2	13-5	14-0	14-4	15-2	14-10
Length over bumpers, teet and inches	0-21	9-21	6-61	20-7	2I - I0	23-0	23-6	23-10
Extreme height (head-room not limited), feet and inches	8-6	0-10	0-0I	10-3	9-01	10-10	11-3	1I-3
Weight in Working order, pounds	23,000	28,000	33,500	37,500	42,500	48,000	52,000	56,000
Weight on nony truck against	10,500	20,500	25,000	28,000	31,500	36,500	10,000	43,500
Water connective of root tools wellows	0,300	7,500	0,500	9,500	11,000	11,500	12,000	12,500
water capacity of real talls, gallolis	00+	450	550	050	050	200	800	800
Fuel capacity \ Coal, pounds	1,000	1,200	1,600	1,700	1,700	1,800	2,000	2,000
Woodst now mand of Rolling and America	20	2.5	30	35	40	40	45	45
Define per yard of rightest rail advised, pounds	† I	10	10	20	20	25	25	30
Radius of sharpest curve advised, leet	S	0.5	000	06	100	011	110	115
Nations of smalpest cut ve practicable, feet	4	55	10	000	06	9.2	9.5	100
Boiler pressure per square inch, pounds	160	091	160	160	091	091	091	160
Tractive force, pounds	3,640	4,680	5,500	0,140	7,015	7.970	8,710	008.6
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6\frac{1}{2}$ pounds per ton resistance of rolling frictionality								
On absolute level.	17	7	82.5	200	0	006.1.	1 2 1 6 1	×
" $\frac{1}{2}$ per cent grade = $26\frac{1}{10}$ feet per mile	205	265	315	350	00+	455	500	565
= 522 = = = = = = = = = = = = = = = = =	125	160	061	210	240	275	300	340
	0 -	ໝູ່ ໝູ່	100	110	130	2+1	160	185
) †	cc	co	0	00	95	103	113

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2 The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Plantation Logging and Industrial Saddle-Tank Locomotive Four Driving Wheels Back-Truck with Canopy, Class 2-B-S-K

Wide or Narrow Gauge

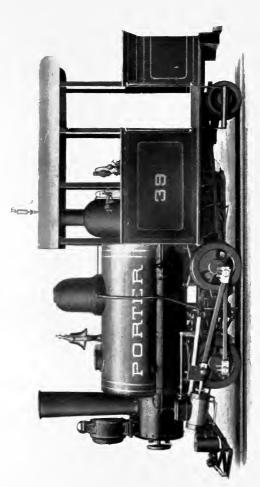


ILLUSTRATION No. 39, from photograph of 6 x 10 cylinders, coal-burning loco notive, 30 inches gauge of track, for sugar plantation in Central America.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal, latrical, and radial-bar motion. The canopy cab is of steel. Cylinders 9 x 14 and larger are horizontal. Hanging step-boards with hand-holds may be used at front and rear. If required by narrowness of gauge the main frames are stopped off in front of full-width straight-sides firebox. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

hes. $\begin{pmatrix} 6 & 7 & 8 & 9 \\ 10 & 12 & 114 & 14 \\ 10 & 12 & 22 & 24 & 30 \\ 11 & 16 & 16 & 18 & 30 \\ 12 & 3-6 & 4-0 & 4-0 & 16 \\ 13 & 16-0 & 9-8 & 11-8 & 12-2 1/2 \\ 14 & 16-0 & 9-8 & 9-10 & 10-0 \\ 15 & 15 & 15 & 21 & 20 & 32 & 20 \\ 15 & 20 & 21 & 20 & 25 & 400 \\ 15 & 20 & 21 & 20 & 25 & 400 \\ 15 & 20 & 25 & 25 & 400 \\ 15 & 20 & 25 & 25 & 400 \\ 15 & 20 & 25 & 400 \\ 15 & 20 & 25 & 400 \\ 25 & 30 & 35 & 40 \\ 25 & 30 & 35 & 40 \\ 25 & 30 & 35 & 40 \\ 25 & 30 & 35 & 40 \\ 25 & 30 & 35 & 40 \\ 25 & 25 & 400 \\ 25 & 30 & 35 & 40 \\ 25 & 25 & 400 \\ 25 & 25 & 400 \\ 25 & 25 & 400 \\ 25 & 25 & 20 \\ 25 & 25 & 25 \\ 25 & 20 &$	CODE WORD	PARSOS	PARTEZ	PARTIJ	PARURE	PARVAS	PASACH	PASEAN	PASEOS	PASIVO
the chees. The state of the chees. The chee	Cylinders \ diameter, inches	9	7	8	6	10		II	12	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diameter of driving wheels, inches.	10	1.2	+ 80 100	1.4 20	1+ 33		36	28	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Diameter of truck wheels, inches.	71	91	91	8 I	200		20	2 2	2.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Rigid wheel-base, feet and inches	3-6	0-4	0-+	9-+	9-+		5-3	5-0	59
nd inches	Total wheel-base, feet and inches	2-6	8-0I	11-8	$12-2\frac{1}{2}$	$12-2\frac{1}{2}$		13-0	14-0	0-†I
nd inches . 9-0 9-8 9-10 10-0 15,500 21,500 27,000 23,000 11,500 16,500 27,000 27,000 150 200 6,000 7,000 150 200 250 400 150 200 250 400 25 30 60 700 800 14 16 20 25 15 50 60 160 18. 160 160 160 18. 160 160 160 18. 150 200 655 775 mile 125 190 250 175 115 190 250 175 115 150 175	Length over bumpers, feet and inches	0-91	17-0	18-3	9-61	21-0		22-0	22-6	22-6
15,500 21,500 27,000 32,000 17,500 16,500 21,000 25,000 18,000 7,000 7,000 19,000 7,000 7	Height (head-room not limited), feet and inches	0-6	9-8	01-6	10-0	10-3		01-01	t-II	t-11
4,000 5,000 6,000 7,000 500 200 250 400 500 600 700 800 d, pounds. 14 16 20 25 eet 160 160 160 ls 160 160 160 m resistance mile 125 195 255 mile 125 255	Weight in Working order, pounds	15,500	21,500	27,000	32,000	35,500	33,000	36,500	40,500	53,000
s	Weight on two-wheel truck, pounds	4,000	5,000	000,9	7,000	7,500	•	8,500	8,500	0000,6
500 600 700 800 25 30 35 40 145 50 80 90 150 160 160 160 2,225 3,330 4,350 5,135 330 500 655 775 125 115 250 295 75 115 80 95	Water capacity of saddle-tank, gallons	150	200	250	400	200		009	200	750
25 30 35 40 14 16 20 25 60 70 80 90 45 50 55 60 160 160 160 160 2,225 3,330 4,350 5,135 330 500 655 775 125 190 250 295 40 60 655 775	Paral carsority (coal, pounds	200	009	200	800	006		1,200	1,400	1,500
14 16 20 25 60 70 80 90 45 50 55 60 160 160 160 160 2,225 3,330 4,350 5,135 330 500 655 775 125 190 250 295 40 60 655 175	wer carputated a wood, cubic feet	25	30	35	0+	45		50	09	65
160 70 80 90 160 160 160 160 2,225 3,330 4,350 5,135 125 190 250 175 150 150 150 150 150 150 150 150 150 15		†1	91	50	2.5	25		30	35	40
15 50 55 60 160 160 160 160 2,225 3,330 4,350 5,135 330 500 655 775 125 190 250 295 75 115 80 95	Radius of sharpest curve advised, feet	09	02	80	06	06		100	100	100
160 160 160 160 2,225 3,330 4,350 5,135 330 500 655 775 125 190 250 295 75 115 80 95	Radius of sharpest curve practicable, feet	+5	20	55	09	00		70	20	70
330 500 655 775 125 190 250 295 75 115 80 95	Boiler pressure per square inch, pounds	160	160	160	160	160	160	160	160	160 8,820
25 40 50 60	Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6/2$ pounds per ton resistance of rolling friction: On absolute level $1/2$ per cent grade = $26\frac{1}{16}$ feet per mile $1/2$ i = $52\frac{1}{18}$ $1/2$ i = $158\frac{1}{16}$	821 822 847 850 850 850	500 190 115 60 40	655 250 150 80 50	29.55 1.75 9.55 0.00	8 3 3 0 0 1 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 3 3 3 4 5 0 0 1 2 5 5 5 0 0 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1,1 0001,1 00025 1,200 1,300 8,5	1,240 475 285 150 100	1,33 3005 10005 10005

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Tramway Plantation and Logging Saddle-Tank Locomotive Four Driving Wheels Four-Wheel Back-Truck with Canopy, Class 4-B-S-K

Wide or Narrow Gauge

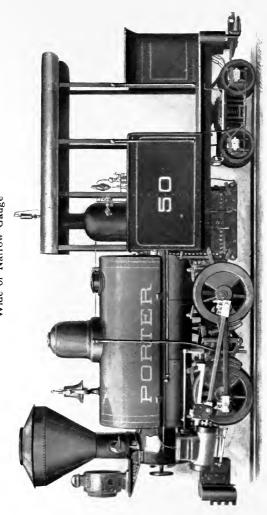


ILLUSTRATION No. 50, from photograph of 7 x 12 cylinders, wood-burning locomotive, 23¾ inches gauge of track, for phosphate mine tramway.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal and lateral-motion. The canopy cad is of steel. Cylinders 9 x 14 and larger are horizontal. If required by narrowness of gauge the main frames are stopped off in front of full-width straight-sides frebox. Hanging step-boards and hand-holds may be used at both front and rear. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	PATRON	PATUDO	PAUCOS	PAUVRE	PAVANA	PAVEAM	PAWNOR	PAWPAW	PAYANT
(dismeter inches	9	1	×		-			0.1	
Cylinders armicer, menes	10	12	17	γ FI	2 7	91	91	91	2 00
Diameter of driving wheels, inches.	2.5	5 7	28	.30	33	2.5	36	. %	0 0
Diameter of truck wheels, inches	14	14	14	91	∞ 200	81	50	22	22
Rigid wheel-base, feet and inches	3-6	0-+	4-0	4-6	4-6	5-3	5-3	5-0	59
truck), feet and inches	9-01	11-3	12-0	12-8	13-0	14-6	15-0	9-51	9-51
Length over bumpers, feet and inches	17-6	8-81	19-4	20-8	21-6	22-6	23-10	24-6	25-0
Height (head-room not limited), ft. and in	9-6	8-6	01-6	0-0I	10-3	9-01	01-01	11-4	9-11
Weight in working order, pounds	17,000	24,000	29,000	33,500	37,000	42,500	47,000	52,000	26,000
Weight on driving wheels, pounds.	12,000	16,500	21,000	25,000	28,000	33,000	37,000	41,000	11,000
Weight on jour-wheel truck, pounds	2,000	7,500	000,0	8,500	0000,6	9,500	000,01	11,000	12,000
water capacity of saddle tank, gallons	500	300	320	00+	200	000	050	200	750
Fuel capacity \ coai, pounds	000	200	800	1,000	1,200	1,500	2,000	2,000	2,500
wood, cubic feet	30	32	40	45	220	00	0.5	0.5	10
Weight per yard of lightest rail advised, pounds	† ₁	91	0	2 2	25	30	30	35	0+
Kadius of sharpest curve advised, feet	7.5	°8.	× × ×	9.2	105	115	125	125	135
Kadius of sharpest curve practicable, feet	52	65	70	7.5	80	06	001	100	011
Boiler pressure per square inch, pounds	091	091	091	160	091	091	091	091	170
Tractive force, pounds.	2,225	3.330	4,350	5,135	5,775	6,585	7,315	8,245	8,820
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resistance of rolling friction;									
: 1	330	500	650	770	870	990	1,100	1,240	1,325
$\frac{1}{2}$ $\frac{1}$	75	110	150	175	200	225	2 50	280	300
	33.0	ις ις ι	0 0	06	105	120	130	150	160
	0	35	200	2	SO	(2)	60	95	100

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, III, and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½

motives of different weights.

Tramway Logging and Plantation Saddle-Tank Locomotive Six Driving Wheels Back-Truck with Canopy, Class 2-C-S-K

Wide or Narrow Gauge

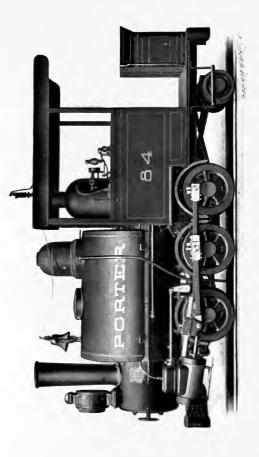


ILLUSTRATION No. 84, from photograph of 8 x 14 cylinders, coal-burning locomotive, 36 inches gauge of track, for sugar plantation in Louisiana.

SEVEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements of customers. We are prepared to build additional sizes. The rear and center driving wheels are connected by side equalizers. A cross equalizer is placed at the front driving wheels. The truck has pivotal, lateral, and radial-bar motion. The canopy cab is of sicel. Hanging step-boards and hand-holde may be used at front and rear. Cylinders 9 x 14 and larger are horizontial. See page 10 for general specifications and pages 11 for choice of stacks.

CODE WORD	PAYASO	PAYENS	PAYEUR	PAYNIM	PAZADA	PEAHEN	PEATON
(vlinders) diameter inches.	. 7	8	6	IO	10	II	12
stroke, inches	. 12	1.4	+1	+1	91	91	91
Diameter of driving wheels, inches	. 23	28	28	30	31	33	36
Diameter of truck wheels, inches	91 .	91	91	91	91	81	20
Rigid wheel-base, feet and inches	5-2	5-5	5-10		2-8	8-1	8-1
Total wheel-base, feet and inches	01-6	9-01	11-5		13-4		1.3-0
Length over bumpers, feet and inches	9-91	$^{17-0}$	18-8		20-8		22-8
Extreme height (head-room not limited), feet and inches	8-6	01-6	10-0	10-3	9-01	01-01	11 - 3
Weight in working order, pounds	. 22,000	27,000	32,500		41,000		30,000
Weight on driving wheels, pounds	. 17,500	22,000	27,000		34,500		42,500
Weight on pony truck, pounds	4,500	5,000	5,500		6,500	7,000	7.500
Water capacity of saddle-tank, gallons	300	350	00+		009		200
Fuel canacity (coal, pounds	00+	009	200		1,000		1,300
wood, cubic feet	25	30	35		10	50	10
Weight per yard of lightest rail advised, pounds	+ I	91	20		25		30
Radius of sharpest curve advised, feet	50	55	65		8		06
Radius of sharpest curve practicable, feet	4 23	20	10 10		7.5		80
Boiler pressure per square inch, pounds	091	160	091	160	160	160	160
Tractive force, pounds	3,480	4,350	5,500	6,350	7,015	7,970	8,710
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 61% pounds per ton resistance of rolling friction:							
On absolute level.	520	655	830	550	1,055	1,200	1,315
" $\frac{1}{2}$ per cent grade = $26\frac{1}{10}$ feet per mile	200	2 + 2	315	365	00+	75.5	000
	120	150	190	220	240	275	300
: :	09	75	100	115	130	1+5	160
$3 = 158_{10}^{+}$	0+	0	50	14	80	20	105

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2 to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157. For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II,

These tables are also useful for quick comparison of loads that can be handled by loco-

III and IV, on pages 162 to 169. motives of different weights.

Four-Wheel-Connected Noiseless Steam Street Motor, Class B-R-M

Wide or Narrow Gauge

I LLUSTRATION No. 32, from photograph of 9 x 14 cylinders motor, 56½ inches gauge of track.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, size of motor, and requirements or preferences of customers. We are prepared to build additional sizes. These motors are not constructed to carry passengers, but to haul cars. The fuel is antiferance coal or coke, to avoid smoke; and the motor is equipped with mulfied exhaust. The side flaps may be omitted. The cab has windows to let down and the engineer has good outlook in all directions and easy control of all valves and levers. See page 10 for general specifications.

CODE WORD.	PELEON	PELLAO	PELTES	PELVIS	PELZEN	PEPIGI	PERADA	PEREZA	PERIGO
Cylinders) diameter, inches	9 2	7	∞ <u>7</u>	9	01	11	12	14	15
Diameter of driving wheels, inches	200	24	56	27	30	31	36	04	46
Wheel-base, feet and inches	4-0	4-8	5-0	5-3	4-6	5-3	5-0	6-3	7-0
Extreme height above rail, feet and inches	10-2	10-2	9-01	10-9	11-01	9-11	01-11	12-2	12-9
Weight in working order, all on driving wheels, lb.	15,000	18,000	24,000	29,000	33,000	42,000	52,000	70,000	85,000
Water capacity of rear tank, gallons Fuel capacity, pounds.	200	8 8 8 0 0 10 0 10	250	322	4004	000	8 20 8 30	000,1	1,000
Radius of sharpest curve advised, feet	25	30	30	35	35	, 4	, 4 5	55	65
Boiler pressure per square inch, pounds	160	160	160	165 5,890	160	160 8,480	165	165	170 16,960
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $61/2$ pounds per ton resistance of rolling friction: On absolute level. 1/2 per cent grade = $26\frac{1}{10}$ feet per mile. 1 = $52\frac{1}{10}$ 2 2 3 3 1 = $158\frac{1}{10}$ 1	365 140 85 40 25	500 190 115 60 40	705 270 160 85 55	890 340 205 110	960 365 220 115	1,280 490 295 160 105	1, 582 3855 1995 1290	2,080 795 480 260 170	2,565 985 595 320 210

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Back-Truck Four-Driver Noiseless Steam Street Motor, Class 2-B-R-M

Wide or Narrow Gauge

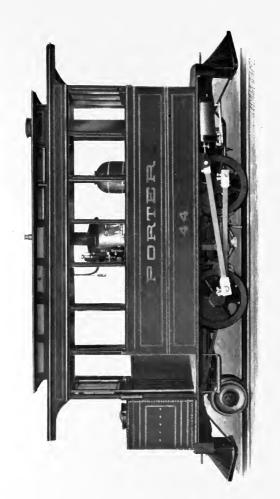


ILLUSTRATION No. 44, from photograph of 10 x 14 cylinders motor, 56% inches gauge of track.

EIGHT SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, size of motor, and requirements or preferences of customers. We are prepared to being additional sizes. These motors are not constructed to carry passengers, but to hand cars. The fuel is anthractice of or coke, to avoid smoke; and the motor is equipped with muffled exhaust. Side flaps may be used to conceal the machinery. The cash has windows to let down and the engineer has good outlook in all directions and easy control of all valves and levers. See page 10 for general specifications.

CODE WORD	PESONS	PETALE	PETEUS	PETRIR	PEWITS	PEZUNA	PIAFAR	PICAZA
Cylinders / diameter, inches. Diameter of driving wheels, inches. Diameter of truck wheels, inches. Rigid wheel-base, feet and inches. Rigid wheel-base, feet and inches. Length over bumpers, feet and inches. Extreme height above rail, feet and inches. Weight in working order, pounds. Weight on drivers (rear-tank design), pounds. Weight on pony truck (rear-tank design), pounds. Water capacity of rear tank, gallons. Fuel capacity, pounds.	7 12 24 24 14 4-0 9-0 9-0 10-4 10-4 10,000 16,000 7,000 250 250	8 30 0 0 1 1 8 8 9 1 1 8 8 1 1 8 8 1 1 1 8 8 1 1 1 9 1 9	9 14 30 18 18 18 10 10 10 10 10 10 10 10 10 10 10 10 10	10 14 33 20 4-6 10-11 19-3 11-0 36.500 10.000 10.000 10.000 150 50	110 160 170 170 170 170 170 170 170 17	12 18 18 19 10 10 10 10 10 10 10 10 10 10	14 20 20 20 20 15-0 20-0 17,000 17,000 900 75	15 26 26 7-0 17-0 17-0 18-00 18-000 18-000 18-000 18-000
Boiler pressure per square inch, pounds Tractive force, pounds Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotion), 6½ pounds per ton resistance of rolling friction: On absolute level ½ per cent grade = 26¼ feet per mile " ½ per cent grade = 151% " " " " " " " " " " " " " " " " " " "	160 3,330 190 110 60 35	160 4,055 610 140 70 45	160 5,135 770 290 175 90 60	160 5,775 870 330 200 105 65	160 7,315 1,100 120 250 130 85	1,60 8,820 1,325 505 300 100	1,950 1,800 685 1,15 220 140	1,70 1,5,600 1,3,55 9,000 1,900 1,900 1,900
The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.	resistano	se of rol	ling frict	tion and	on any	practical	ole grade	is giver

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I. II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Four-Wheel-Connected Steam Mine Locomotive, Class B-Mine Wide or Narrow Gauge

ILLUSTRATION No. 30, from photograph of 10 x 14 cylinders locomotive, 44 inches gauge of track, 5 ft. 6 in. height.

tion in construction. For sake of dry steam, draft of stack, and engineer's comfort the locomotive should not be lower height than the entry compels. Two inches clearance to the mine roof is sufficient. For extreme narrow gauges the main frames are stopped off in front of full-width straight-sides firebox. By special modification of designs we can construct to heights less than given on the opposite page. The 9 x 14 cylinders may be horizontal or slightly in-THIRTEEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, clearances, size of locomotive, and requirements or preferences of each word prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. The cab is of steel and of shape to suit clearances. For extra limited side room the cylinder flanges are flattened or the width may be further decreased by modificaclined; larger cylinders than 9 x 14 are horizontal. See page 10 for general specifications.

NOTE.—FOR COMPRESSED-AIR MINE LOCOMOTIVES see our Catalogue of COMPRESSED-AIR HAULAGE

CODE WORD	PICHOT	PICNIC	PIDAIS	PIENSO	PIESMA	PIEZIS	PIGARO	PIGUIT	PIJROK	PILADO	PILORI	PIMARD	PIMARIC
Cylinders diameter, inches. Diameter of driving wheels, inches.	10 ∞ ±	2000	100	7 122	8 1 1 2 6	0 1 1 2 8 7	10 17	16	111	111	12 16	13 16	14 18
Wheel-base, feet and inches. Length over bumpers, feet and inches. Progse of width at eviludars over contra of	3-0	3-6	4-0	0-4-	14-0	9-91	9-+ 10-9	5-3 18-0	4-6 17-9	5-3 18-4	55-9 19-6	55 6-3 21-6	50 6-3 22-0
1	1-11 1/4 1-10	$2-1\frac{1}{2}$ 5-0	$2-1\frac{1}{2}$ $5-2$	2-3 3 8 5-4	$\frac{2-514}{5-7}$	$\frac{2-738}{5-9}$	$2-9\frac{7}{8}$ 5-11	2-11 ¹ 4 6-1	3-0 6-3	3-0-3 s 6-4	$3^{-1}\frac{7}{8}$ 6^{-6}	3-614	3-818 8-6
out change of patterns, feet and inches Weight in working order, pounds.	8,500 8,500	4-6 11,000	4-7	4-9 17,500	5-0	5-3	5-5 32,000	36,000	5-8½ 39,000	5-9	6-0	56,000	9-7-9
Weight per yard of lightest rail advised, lb. Radius of sharpest curve advised, feet.	1 2 2 2 2	14		0 0 v	0000	25.5	3000	35.5		300 40			000
Radius of sharpest curve practicable, feet.	12	12		S IC	5.1	91	16	200		200			20
Boiler pressure per square inch, pounds Tractive force, pounds	1,510	160	160	160	160	160	160	160	160 7,680	160	160 9,495	160	160
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6/2$ pounds per ton resistance of rolling friction: $1/2$ per cent grade = 26_1^{10} ft. per mile $1/2$ = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10} = 100_1^{10}	4 00 TO 4 H	100 10 00 H	365 305 305 305 305 305 305 305 305 305 30	525 2005 1200 65 405	2 2 1 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0	830 315 190 100 65	960 365 220 115	1,095 420 255 135 90	1,160 445 265 145 95	1,280 490 295 160 105	1,435 550 330 175 115	1,685 645 390 210 135	2,015 775 470 250 165

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Six-Wheel-Connected Steam Mine Locomotive, Class C-Mine

Wide or Narrow Gauge

ILLUSTRATION No. 28, from photograph of 10 x 16 cylinders locomotive, 36 inches gauge of track, 6 ft. height.

A cross equalizer is placed at the front driving wheels. The cab is of steel and of shape to suit clearances. For extra limited side room the cylinder flanges are flattened. For sake of dry steam, draft of stack, and engineer's comfort the locomotive should not be lower height than the entry compels. Two inches elearance to the mine roof is sufficient. For extreme narrow gauges the main frames are stopped, off in front of full-width straight-sides frebox. By spechearance to the mine roof is sufficient. NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, clearances, size of locomotive, and re-We are prepared to build additional sizes. The rear and center driving wheels are connected by side equalizers. cial modification of designs we can construct to heights less than given on the opposite page. See page 10 for general specifications. quirements or preferences of customers.

NOTE.-FOR COMPRESSED-AIR MINE LOCOMOTIVES see our Catalogue of COMPRESSED-AIR HAULAGE.

CODE WORD.	PIMPAO	PINCHO	PINHAO	PINNES	PINOLE	PINSON	PIOPPO	PIORNO	PIPAGE
Cylinders \ diameter, inches	9	7	×	6	01	11	1.2	13	+1
stroke, inches	10	12	† ₁	† ₁	† ₁	† ₁	91	16	20
Diameter of driving wheels, inches	18	22	5†	26	28	28	33	33	36
Wheel-base, feet and inches	8-+	4-8	5-0	5-0	5–6	6-3	0-1	9-2	9-8
Length over bumpers, feet and inches	12-6	13-I	1-1-1	0-11	18-0	0-61	21-0	2I-IO	24-0
Excess of width at cylinders over gauge of track,	,	è	,	Ġ	ì	Ġ	ı	•	,
feet and inches.	$^{2-1}\frac{1}{2}$	2-3 3 8	$2-5\frac{1}{4}$	2-738	2-078	3-03	3^{-1} $\frac{7}{8}$	3-6.14	3-81/8
Height above rail least desirable, feet and inches	5-0	2 -5	5-0	0-9	6 - 3	2	8-9	2-0	8-0
Height above rail least practicable, feet and inches	9-+	5-0	5-4	5-7	5-0	5-11	0-9	6-3	01-9
Weight in working order, pounds	15,000	19,000	24,500	29,000	34,000	42,000	40,000	57,000	000,89
Capacity of saddle-tank, gallons	175	200	275	325	400	300	009	750	006
Weight per yard of lightest rail advised, pounds	1.2	91	91	20	2 3	25.	30	35	45
Radius of sharpest curve advised, feet	30	30	45	4 5	50	10	65	7.5	100
Radius of sharpest curve practicable, feet	50	20	2.5	30	35	0+	30	53	7.5
Boiler pressure per square inch, pounds	091	091	160	160	160	091	591	165	165
Tractive force, pounds.	2,715	3,640	5,070	5,925	0.800	8,230	9,790	11,490	13,740
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resistance				*					
of rolling friction: On absolute level.	107	0	765	805	1.025	1,245	1,180	1.740	2,075
" $1/2$ per cent grade = 26_{10}^4 feet per mile	155	210	295	335	395	+75	565	665	795
= :::::::::::::::::::::::::::::::::::::	06	125	175	205	235	285	340	405	180
: : : : : : : : : : : : : : : : : : :	20	65	95	011	125	155	185	215	200
3 = 15010	30	0	00	20	93	100	120	145	0/1

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light Plantation and Industrial Four-Wheel-Connected Locomotive with Side Tanks, Class B-SS

Wide or Narrow Gauge

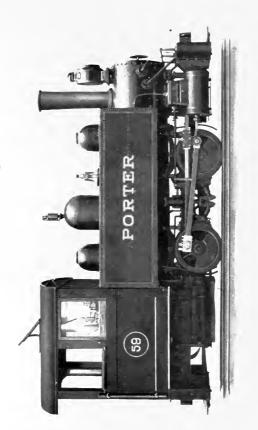


ILLUSTRATION No. 59, from photograph of 10 x 16 cylinders coal-burning locomotive, 30 inches gauge of track, with main frames stopped off and full-width straight-sides firebox, for coal-mine tramway.

EIGHT SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. The side tanks have connecting pipe. All except the two larger sizes have eylinders slightly inclined. Unless required by narrowness of gauge the frames are continuous. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

CODE WORD.	PULQUE	PULROD	PTLSOS	PULVER	PUNCTA	PUNDIT	PUNGIR	PUNIAN
Cvlindore \ diameter, inches	ıo	51/2	N	9	7	~	6	10
Stroke, inches	×	∞	10	10	12	I.4	1	ŤΙ
Diameter of driving wheels, inches	20	20	20	20	24	20	27	30
Wheel-base, feet and inches	3-6	3-6	0-4	4-0	4-0	9-+	9-4	4-6
Length over bumpers, feet and inches	9-01	9-01	11-0	9-11	12-9	14-0	01-91	17-0
Extreme height (head-room not limited), feet and inches	0-6	0-6	46	9-6	8-6	01-6	01-6	0-01
Weight in working order, all on driving wheels, pounds	8,500	0,500	11,000	14,000	17,500	24,000	29,000	32,000
Water capacity of side tanks, gallons	100	100	125	150	200	250	00+	500
First canacity \ coal, pounds	175	175	200	200	250	250	300	350
wood, cubic feet	25	2 25	30	30	35	35	0+	40
Weight per yard of lightest rail advised, pounds	12	12	+1	91	91	20	200	30
Radius of sharpest curve advised, feet	25	25	30	30	35	33	3,1	35
Radius of sharpest curve practicable, feet	1.5	1.5	1.5	1.5	16	28	. I.	18
Boiler pressure per square inch, pounds	091	091	091	091	091	091		160
Tractive force, pounds	1,360	1,645	1,700	2,445	3,330	4,680	5.890	6,350
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 61% pounds per ton resistance of rolling fric-								
tion:				,			(
:	200	245	255	365	200	705	890	096
" $\frac{1}{2}$ per cent grade = 26_{10} feet per mile	7.5	06	95	140	061	270	340	365
	45	50	55		115	165	205	220
$= 105_{10}^{6}$ " " $=$	20	2.5	30	40	09	80	110	115
3 = I581	†I	91	10	2.5	10	17	1	111

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

on page 140.
For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 155 and 157.
For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Plantation and Industrial Four-Wheel-Connected Locomotive with Side Tanks, Class B-SS

PORTER Wide or Narrow Gauge

ILLUSTRATION No. 59, from photograph of 10 x 16 cylinders, coal-burning locomotive, 30 inches gauge of track, with main frames stopped off and full-width straight-sides firebox, for coal-mine framway.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. The side tanks have connecting pipe. For wide gauges the frames are continuous. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE WORD.	PURFLE	PURELY	PURGOR	PURIFY	PURSUE	PURSANE	PUSCAE	PUTABO	PUTLOG
Cylinders) diameter, inches.	10	II	111	12	12	13	14	7.1	1.5
inches	30	14	10	10	01	10	0 0	57 -	77
	000	S - 1	ر ا	ر د ا	ى 0 - 1	55	2+5	4 t	÷ [
nd inches	18-3	18-0	18-6	0-01	20-0	2 y 2 1 – 6	23-0	24-6	25-6
	10-0	0-01	6-01	11-3	9-11	12-0	12-6	12-0	13-2
Weight in working order, all on driving wheels, lb	36,500	39,000	42,000	47,000	51,000	000,000	000,69	74,000	84,000
	009	009	009	200	750	850	006	1,000	1,200
Fuel capacity \ coal, pounds	200	200	009	800	800	006	006	006	006
	30	30	30	35	35	40	40	40	40
pounds	35	0+	04	45	45	50	55	09	70
:	45	40	45	45	50	09	09	10	70
Madius of sharpest curve practicable, feet	25	20	25	25	30	35	35	40	4.5
Boiler pressure per square inch, pounds	160	160	091	160	165	165	165	165	170
Tractive force, pounds	7,250	7,680	8.480	9,495	10,110	11,850	13,740	14,660	096,91
Hauling Canacity in tons of a one nameds levelucing									
of locomotive), 6% bounds per ton resistance									
of rolling friction;									
absolute level	1,005	1,160	1,280	1,435	1,525	1,700	2,080	2.215	2.565
" $\frac{1}{2}$ per cent grade = $26\frac{1}{10}$ feet per mile	120	4+5	061	550	58.5	685	795	850	985
· · · · · · · · · · · · · · · · · · ·	255	270	295	330	355	415	480	515	595
3	135	1+5	160	180	061	22.5	260	275	320
$3 = 158\frac{1}{10}$	06	9.5	105	115	125	145	170	180	210
The Dule for Coloniste at II and I was									

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light Plantation and Industrial Four-Wheel-Connected Locomotive with Side Tanks and Canopy, Class B-SS-K

ILLUSTRATION No. 29, from photograph of 8 x 14 cylinders, coal-burning locomotive, 24 inches gauge of track, with main frames stopped off and full-width straight-sides firebox, for export.

EIGHT SIZES, each with code word, are described on the opposite page, subject to modifications of gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. The side tanks have connecting proper cannot go as is of steel. All except the two larger sizes have evaluiders slightly inclined. Unless required by narrowness of gauge the frames are continuous. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

)							
CODE WORD	PSORIS	PUBAST	PUBERE	PUBLIO	PUCARO	PUCHAR	PUDUER	PUGILO
Cylinders { diameter, inches. Usameter of driving wheels, inches. Diameter of driving wheels, inches. Wheel-base, feet and inches. Length over bumpers, feet and inches. Extreme height (head-room not limited), feet and inches. Weight in working order, all on driving wheels, pounds. Water capacity of side tanks, gallons Fuel capacity { wood, cubic feet. Weight per yard of lightest rail advised, pounds. Radius of sharpest curve advised, feet. Radius of sharpest curve practicable, feet.	88 20 3-6 10-6 9-0 8,500 175 25 25 15	5½ 8 8 20 20 3–6 10–6 9–0 9,500 175 125 125 15	5 10 20 4-0 11-0 9-4 11,000 125 200 30 14 15	6 10 20 20 4-0 11-6 9-6 14,000 150 200 200 30 16 30 15	7 12 24 4-0 12-9 9-8 9-8 17,500 250 250 35 16	8 26 26 25 25 25 25 25 25 25 25 25 25 25 25 25	9 14 27 4-6 16-10 9-10 9-10 29,000 400 300 40 40 25 35	10 11 14 14 17 17 10 10 32,000 32,000 35 35 35 35 35 35 35 35 35 35 35 35 35
Boiler pressure per square inch, pounds Tractive force, pounds Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resistance of rolling friction. On absolute level. $\frac{1}{2}$ per cent grade = $\frac{26}{10}$ feet per mile. $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ i	1,360 200 75 145 145	1,645 1,645 245 90 50 50 16	1,700 1,700 255 95 30 19	160 2,445 365 140 85 40	3,330 500 1190 115 60	160 4,680 705 165 85 55	165 5,890 890 340 205 110	160 6.350 960 365 220 115 75

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights. Plantation and Industrial Four-Wheel-Connected Locomotive with Side Tanks and Canopy, Class B-SS-K

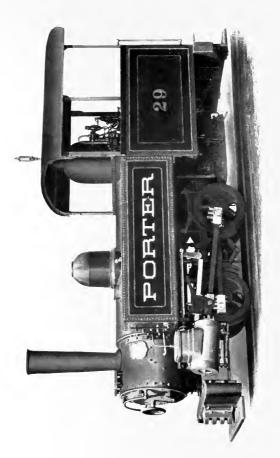


ILLUSTRATION No. 29, from photograph of 8 x 14 cylinders, coal-burning locomotive, 24 inches gauge of track, with main frames stopped off and full-width straight-sides firebox, for export.

NINE SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. A cross equalizer is placed at the front driving wheels. The side tanks have connecting pipe. The canopy cab is of steel. The cylinders are horizontal instead of inclined. For wide gauges the frames are continuous. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

		o		10					
CODE WORD.	PULJUM	PUNTAL	PUPIUM	PUPOSA	PUPPET	PUPUGI	PURAVA	PURCAS	PURCON
Cylinders { diameter, inches	IO	11	II	1.2	1.2	13	1.4	14	1.5
stroke, inches	91	1.4	91	91	18	18	50	54	5 7
Diameter of driving wheels, inches	30	30	31	33	36	36	40	45	46
Wheel-base, feet and inches	5-0	4-0	2-0	5-0	2-6	5-9	6-3	2-0	0-7
Length over bumpers, teet and inches	183	18-0	9-81	061	20-0	21-0	23-0	24-0	25-6
Height, (head-room not limited), it, and in.	0-0I	10-3	10-0	11-3	9-11	12-0	12-6	12-9	13-2
Weight in working order, all on driving wheels, lb	36,500	39,000	12,000	47,000	51,000	000,00	000,69	74,000	84,000
Water capacity of side tanks, gallons	009	009	009	200	750	850	006	950	1,025
Fuel capacity coal, pounds	800	800	1,000	1,100	1,200	1,300	1,400	1,600	1,800
wood, cubic feet	30	30	30	35	35	40	45	0.00	09
Weight per yard of lightest rail advised, pounds	35	35	40	0+	45	50	50	09	02
Kadius of sharpest curve advised, feet	45	0+	45	45	50	9	09	70	70
Kadius of sharpest curve practicable, feet	25	20	2.5	25	30	35	35	40	45
Boiler pressure per square inch, pounds	160	160	091	160		165	165	165	170
Tractive force, pounds.	7,250	2,680	8,480	9,495	10,110	11,850	13,740	14,660	16,960
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resistance of rolling friction:									
absolute level	1,095	1,160	1,280	1,435	1,525	1,790	2,080	2,215	2,565
" 72 per cent grade = 20_{10} leet per mile	120	445	400	550	585	085	795	820	985
105.6	255	270	295	3330	355	4 c	180	S 1 S	595
$\frac{1}{3}$ = $\frac{1}{5}8\frac{1}{16}$	900	95	105	115	125	145	170	180	320

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140. For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½

to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light Six-Wheel-Connected Side-Tanks Locomotive, Class C-SS

Wide or Narrow Gauge

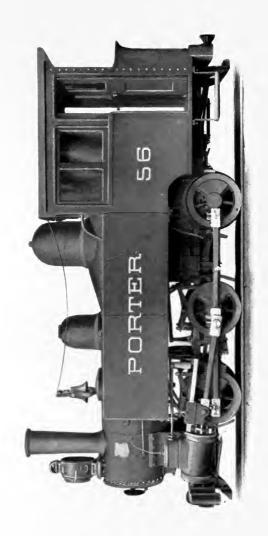


ILLUSTRATION No. 56, from photograph of 9 x 14 cylinders, coal-burning locomotive, 29% inches gauge of track, exported to Russia.

SIX SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The rear and center driving wheels are connected by side equalizers. A cross equalizer is placed at the front driving wheels. The center driving wheels are flangeless. The side tanks have connecting pipe. Cylinders 9 x 14 and larger are horizontal. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

CODE WORD \ with cab like Illustration No. 56	PUTPUT PYJAMA	PUTUIT RABATO	PUXADO RABETA	PYCTAM RABIZA	PYGELA RABMAG	PYGMEN
Cylinders diameter, inches. Diameter of driving wheels, inches. Diameter of driving wheels, inches. Wheel-base, feet and inches. Extreme height (head-room not limited), feet and inches. Weight in working order, all on driving wheels, pounds. Water capacity of side tanks, gallons. Fuel capacity coal, pounds. Weight per yard of lightest rail advised, pounds. Radius of sharpest curve advised, feet.	6 10 18 4-10 13-6 9-4 15,000 175 300 25 125 125	7 22 22 5-2 14-9 9-6 19,000 250 350 350 350 350 350 350 350 30 30 30 30 30 30 30 30 30 30 30 30 30	8 14 24 5-6 15-6 10-0 24,500 300 400 32 16 55	9 14 26 50-10 100-0 100-0 29,500 400 450 35 20 60	10 14 28 7-3 18-0 10-3 34,000 500 600 40 40 40 40	11 28 28 7-3 20-6 10-8 10-8 11,000 600 800 800 800 800 600
Boiler pressure per square inch, pounds	160	3,640	5,070	160 5,925	160	8,230
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 6½ pounds per ton resistance of rolling friction: " ½ per cent grade = 55½ fet per mile " ½ per cent grade = 55½ " " i	4 0 5 1 5 5 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	550 210 125 65 40	765 295 175 95 60	895 340 205 110	1,025 395 235 125 80	1,245 475 285 155 100

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights. The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

Six-Wheel-Connected Side-Tanks Locomotive Class C-SS

Wide or Narrow Gauge

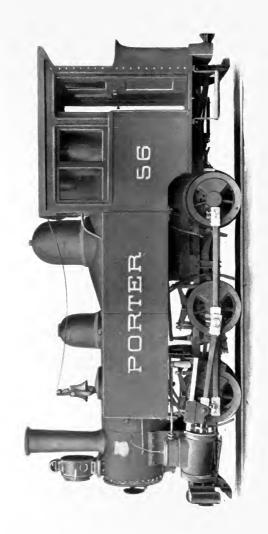


ILLUSTRATION No. 56, from photograph of 9 x 14 cylinders, coal-burning locomotive, 29% inches gauge of track, exported to Russia.

NINE SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The rent and center driving wheels are connected by side equalizers. A cross equalizer is placed at the front driving wheels. The center driving wheels are flangeless. The side tanks have connecting pipe. The cylinders are horizontal instead of inclined. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE WORD 'with cab like Illustration No. 56	RACILY	RACIMO RADOUB	RACLON	RACOMA	ADARM	RADBOD RAENKE	RADDIA RAERSE	RADCOL	RADIER RAETOS
Cylinders diameter, inches.	01	11	12		13				1.5
Diameter of driving wheels, inches	30	31	33	34	36	2 4 0 0		0 0	5† 70
Wheel-base, teet and inches	2-8		8-1		01-6				0-11
Engli over bumpers, reet and inches	20-0		21-6		23-6				28-0
Weight in working order off on devision wheels	103		11-6		12-0				13-2
Weight in working older, an outding wheels, pounds Water capacity of side tanks gallons	38,500		46,200		000,10			••	87,000
	000		700		800				1,025
Fuel capacity \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	000		1,100		1,300				1,800
W_{ode}	+2		50		5. 5.				70
Weight per yard of figurest rail advised, pounds	2 2		30		40				ור. ור
Natives of the strategy curve advised, feet	06		100		150				180
Nations of sharpest curve practicable, feet	10		85		135				160
Boiler pressure per square inch, pounds	165		165	165	165		175		175
Tractive force, pounds	7,480	8,750	0,790	10,690	11,850		15,445	16,735	17,460
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive). 6% nounds nor four resistance of reliand									
friction;									
On absolute level.	1,130	1,320	1,480		1,790	2,075			2,610
$\frac{7}{2}$ per cent grade = $20\frac{1}{10}$ teet per mile	430	505		620	685	795	006	970	1,015
	260	305	_		415	480			615
	140	165			225	260			330
3	06	105			145	o / I			215

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick[selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by loco-The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

motives of different weights.

Eight-Wheel-Connected Side-Tanks Locomotive, Class D-SS

Wide or Narrow Gauge

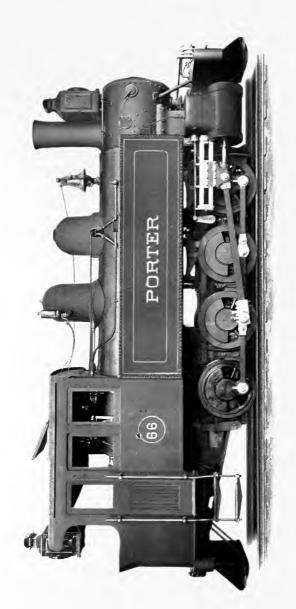


ILLUSTRATION No. 66, from photograph of 14 x 18 cylinders, coal-burning locomotive, 42 inches gauge of track, exported to Japan.

NINE SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The two center pairs are flangeless. The side tanks have connecting pipe. Double-bar guides are seldom used except for the larger sizes. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

CODE WORD	RAETOT	RAETRO	RAETUM	RAETWO	RAETZA	RAEVAM	RAEVEL	RAEVOR	RAEVUS
Cylinders { diameter, inches	6	10	11	1.2	13	14	20	91	17
Stroke, inches	14	14	†1	14	91	81	81	20	20
Diameter of driving wheels, inches	200	56	27	29	31	34	36	42	42
Wheel-base, feet and inches	9-2	8-0	8-0	0-6	8-6	9-01	11-3	$_{\rm II-IO}$	13-0
Length over bumpers, feet and inches	9-81	9-61	21-0	22-6	24-0	25-6	27-0	28-6	32-0
Height (head-room not limited), it, and in	9-6	9-10	9-01	0-11	9-11	12-0	12-6	13-0	13-6
Water capacity of side tanks, gallons	31,000	30,000	40,000	50,000	800	78,000	87,000	90,000	100,000
Fuel capacity coal, pounds	800	1,000	1,200	1,500	1,800	2,000	2,500	3,500	1,000
wood, cubic feet	25	30	35	0+	45	0.5	90	80	06
Weight per yard of lightest rail advised, pounds	91	91	20	2.5	30	35	40	45	0.5
Radius of sharpest curve advised, feet	06	100	110	125	140	160	170	175	200
Kadius of sharpest curve practicable, feet	20	80	90	011	120	140	150	155	180
Boiler pressure per square inch, pounds	160	091	170	170	175	175	180	180	180
Tractive force, pounds	6,170	7,330	6,065	10,045	12,975	15,435	17,210	18,650	21,055
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6\frac{1}{2}$ pounds per ton resistance of rolling friction: On absolute level	930 355 215 115 73	1,110 425 255 135 90	1,370 525 315 170 110	1,515 580 350 190 125	1,960 750 455 245 160	2,335 895 540 290 190	2,600 995 605 325 215	2,820 1,080 655 350 230	3,185 1,220 740 400 260

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light "Back-Truck" Four-Driving-Wheels Side-Tanks Locomotive, Class 2-B-SS

Wide or Narrow Gauge

ILLUSTRATION No. 81, from photograph of 8 x 14 cylinders, coal-burning locomotive, 36 inches gauge of track, exported to Mexico.

SEVEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal, lateral, and radial-bar motion. The side tanks have connecting pipe. Cylinders 9 x 14 and larger are horizontal. If required by narrowness of gauge the main frames are stopped off in front of full-width straight-sides firebox. See page 10 for general specifications and pages 11 and 12 for choice

For larger sizes see next page

CODE WORD.	RAFAEL	RAGOUT	RAGUET	RAIDIR	RAIGAS	RAIVAR	RAJPUT
Cvindare (diameter, inches	10	າດ	9	7	8	6	10
cymmets) stroke, inches	∞	OI	0 I	1.2	14	† I	+1
Diameter of driving wheels, inches	50	20	2 2	24	28	30	33
Diameter of truck wheels, inches	11	†1	14	91	91	18	81
Rigid wheel-base, feet and inches	3-0	3-0	3-6	0-+	0-+		9-+
Total wheel-base, feet and inches	8-8	0-6	6-7	10-7	11-8	12-21/2	$12-2\frac{1}{2}$
Length over bumpers, feet and inches	13-6	14-3	0-91	0-11	18-3		21-0
Extreme height (head-room not limited), feet and inches	0-6	9-2	9-6	8-6	01-6		10-3
Weight in working order, pounds	11,000	13,000	15,500	21,500	27,000		35,500
Weight on driving wheels, pounds	8,000	9,500	11,500	16,500	21,000	25,000	28,000
Weight on two-wheel truck, pounds	3,000	3,500	4,000	5,000	000,9		7,500
Water capacity of side tanks, gallons	75	100	150	200	250	00+	200
Final capacity \ coal, pounds	300	00+	009	200	800	006	1,000
were capacity \ wood, cubic feet	01	1.5	25	30	35	0+	45
Weight per yard of lightest rail advised, pounds	12	12	14	91	20	25	25
Radius of sharpest curve advised, feet	53	55	9	70	80	06	06
Radius of sharpest curve practicable, feet	0+	40	45	50	rc rc	09	09
Boiler pressure per square inch, pounds	091	160	160	160	091	160	160
Tractive force, pounds	1,360	1,700	2,225	3,330	4,350	5,135	5,775
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive) 612 pounds per ton resistance of rolling friction: On absolute level. 1/2 per cent grade = 2616 feet per mile. 1/2 = 5218 = 10516	2007 7750 1200 14	20 0 00 B H W 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	33.0 125.7 755 450	500 190 115 60	6 55 0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1775 1755 175 000	870 330 200 105 65

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Back-Truck" Four-Driving-Wheels Side-Tanks Locomotive, Class 2-B-SS

Wide or Narrow Gauge

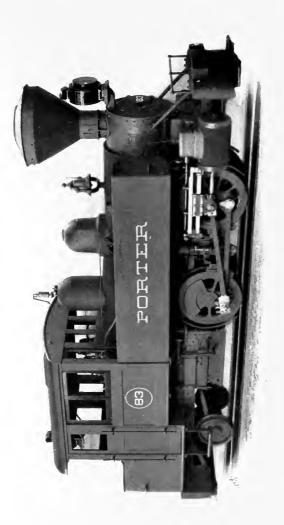


ILLUSTRATION No. 83, from photograph of 12 x 18 cylinders, wood-burning locomotive, 36 inches gauge of track, with main frames stopped off and with full-width straight-sides firebox, for sugar plantation in Mexico.

EIGHT SIZES, each with **code word,** are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal, larger and radial-bar motion. The side tanks have connecting pipe. For wide gauges the frames are continuous. Double-bar guides are seldom used except for the larger sizes. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE WORD	RAMNER	RAMROD	RAMTIL	RANCAR	RANGUE	RANKIG	RAPACE	RAPEUX
(Volindore) diameter, inches	10	111	1.2	1.2	1.3	1	11	1.5
stroke, inches	91	91	91	18	18	20	2	2.
Diameter of driving wheels, inches	33	36	38	40	40	42	46	0
Diameter of truck wheels, inches	20	20	22	22	2+	26	26	26
Rigid wheel-base, feet and inches	5-0	5-3	5-0	5-0	5-0	6-3	0-2	2-0
Total wheel-base, feet and inches.	13-4	13-6	14-0	0-11	14-10	9-51	1.5-9	17-0
Length over bumpers, feet and inches	21-6	22-0	22-6	22-6	23-6	25-0	26-0	27-6
Extreme height (head-room not limited), ft. and in	9-01	01-01	t-I1	9-11	12-0	12-6	12-0	13-2
Weight in working order, pounds	41,000	45,000	40,000	53,000	62,000	74,000	79,000	88,000
Weight on driving wheels, pounds.	33,000	36,500	40,500	44,000	52,000	63,500	67,500	26,000
Weight on two-wheel truck, pounds	8,000	8,500	8,500	0,000	10,000	10,500	11,500	12,000
Water capacity of side tanks, gallons	009	009	200	750	800	006	1,000	1,100
Ruel capacity \ coal, pounds	1,000	1,200	1,300	1,500	1,800	2,500	3,000	3,500
wood, cubic feet.	45	50	55	09	10	80	06	001
Weight per yard of lightest rail advised, pounds	30	30	35	0+	45	0	00	10
Kadius of sharpest curve advised, feet	9.2	100	100	100	105	011	120	120
Kadius of sharpest curve practicable, teet	9	20	20	10	80	82	06	06
Boiler pressure per square inch, pounds.	160	160	160	160	160	160	160	160
Tractive force, pounds	6,585	7,315	8,245	8,820	10,350	12,690	13,000	15,600
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 61% pounds ner ton resistance of rolling friction.								
	000	1,100	1,240	1,330	1,560	1.015	2,100	2,355
" $\frac{1}{2}$ per cent grade = $26\frac{1}{16}$ feet per mile	375	420	475	0.00	595	730	800	000
: :	225	250	285	305	355	0++	180	240
: 3	120	130	150	091	061	235	255	290
3 = 15816	7.5	85	100	105	125	155	165	061
The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given	resistan	ice of rol	ling frict	ion and	on any 1	oracticab	le grade	is given

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light "Back-Truck" Four-Driving-Wheels Side-Tanks Locomotive with Canopy, Class 2-B-SS-K

ILLUSTRATION No. 82, from photograph of 7 x 12 cylinders, coal-burning locomotive, meter gauge of track, for sugar plantation in the West Indies.

SEVEN SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal, ladretal, and radial-bar motion. The side tanks have connecting pipe. If required by narrowness of gauge the main frames are stopped off with full-width straighth-sides friebox. Cylinders 8 x 14 and smaller are slightly inclined. The canopy cab is of steel. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

Cylinders \ diameter, inches. \text{ stroke, inches.} \text{ stroke, inches.} \text{ light meter of driving wheels, inches.} \text{ Diameter of driving wheels, pounds.} Diameter of driving wh	Cylinders diameter, inches. Diameter of driving wheels, inches. Diameter of truck wheels, inches.								
Weeks, inches Weeks, inche	Diameter of driving wheels, inches. Diameter of truck wheels, inches.		'n	w	9	7	∞	6	IO
ng wheels, inches. The tand	Diameter of driving wheels, inches.		×	10	01	1.2	+1	+1	† <u>I</u>
twheels, inches. 14	Diameter of truck wheels, inches.		20	20	22	2.4	28	30	33
feet and inches. 3-0 3-0 3-0 4-0 4-0 4-0 10-1 11-8 12-2 2-2 13-0 10-2 11-8 12-2 2-2 13-0 13-0 17-0 13-0 17-0 13-0 13-0 17-0 13-0 17-0 13-0 13-0 17-0 13-0 17-0 13-0 13-0 17-0 13-0 17-0 13-0 13-0 17-0 13-3 13-0 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 13-0 17-0 13-3 14-0 1-0 15-0 17-0 13-3 15-0 17-0 13-3 15-0 17-0 13-3 15-0 17-0 13-3 15-0 17-0 17-0 15-0 17-0 17-0 15-0 17-0 1			1.4	† ₁	91	91	91	18	18
feet and inches. lighter, feet and inches. lighers, feet and inches. lighers, feet and inches. lighter, founds. lighter, pounds. lighter, poor pounds (exclusive of locomotive) lighter, pounds.	Rigid wheel-base, feet and inches		3-0		3-6	0-+	0-+	9-+	9-+
therefore and inches.	Total wheel-base, feet and inches		8-8		2-6	10-7	$^{1 I - 8}$	12-21/2	$12-2\frac{1}{2}$
head-room not limited), feet and inches g operation of limited), feet and inches g order, pounds g order, pounds g order, pounds g wheels, pounds g wheels g whee	Length over bumpers, feet and inches	:	13-6		0-91	17-0	18-3	9-61	21-0
g wheels, pounds. g wheels, pounds. g wheels, pounds. heel truck, pounds. heel truck, pounds. heel truck, pounds. 3,000 3,500 1,500 1,500 1,500 1,500 2,000 2	Extreme height (head-room not limited), feet and inches		0-6		9-6	8-6	01-6	0-01	10-3
wheels, pounds. bed truck, pounds. cod, cubic feet. cod, cubic	Weight in working order, pounds		11,000	_	15,500	21,500	27,000	32,000	35,500
heel truck, pounds. 1 side tanks, gallons. 2 side ta	Weight on driving wheels, pounds		8,000		11,500	16,500	21,000	25,000	28,000
of side tanks, gallons. 15 side tanks, gallons. 26 side tanks, gallons. 27 side tanks, gallons. 28 side tanks, gallons. 39 side tanks, gallons. 20 side tanks, gallons. 20 side tanks, gallons. 20 side tanks, gallons. 20 side tanks, gallons. 21 side tanks. 22 side tanks. 23 side tanks. 24 side tanks. 25 side tanks. 26 side tanks. 27 side tanks. 28 side tanks. 28 side tanks. 28 side tanks. 29 side tanks. 20 s	Weight on two-wheel truck, pounds		3,000		4,000	5,000	0000,9	7,000	7.500
90d, pounds 300 400 600 700 800 900 90d, cubic feet 12 15 25 30 35 40 90d, cubic feet 55 55 6 70 80 90 90d, cubic feet 55 55 6 70 80 90 90d, cubic feet 16 16 16 16 16 160 160 160 90d, cubic feet 16 16 16 16 160 1	Water capacity of side tanks, gallons		75		150	200	250	00+	200
ood, cubic feet. ood, cubic feet. of lightest rail advised, pounds. st curve advised, feet. st curve practicable, feet. ounds. in tons of 2,000 pounds (exclusive of locomotive) in tons of 2,000 pounds (exclusive of locomotive) st curve practicable, feet. 1,360 1,700 2,225 3,330 4,350 5,135 in tons of 2,000 pounds (exclusive of locomotive) st curve practicable, feet. 160 160 160 160 160 160 1,360 1,700 2,225 3,330 4,350 5,135 in tons of 2,000 pounds (exclusive of locomotive) st curve practicable, feet. 160 160 160 160 160 160 160 160 160 160 160 160 175 05 175 175 175 05 175 175 175 05 175 175 177 05 175 175 178 178 178 179 175 178 178 178 178 178 178 178 178 178 178	Engl aggainty coal, pounds		300		009	200	800	006	1,000
of lightest rail advised, pounds. 12 12 14 16 20 25 13 15 26 70 80 90 14 10 10 10 10 15 15 10 10 10 16 10 10 10 17 10 10 10 18 10 10 10 18 10 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10 10 18 10	I del Capacity (wood, cubic feet		IO		2 5 5	30	35	0+	100
st curve advised, feet 55 55 60 70 80 90 st curve practicable, feet 100 160 160 160 160 160 160 160 160 160	Weight per yard of lightest rail advised, pounds		1.2		+1	91	20	2.5	25.
er square inch, pounds. er square inch, pounds. in tons of 2,000 pounds (exclusive of locomotive) in tons of 2,000 pounds friction: and = 26 to feet per mile = 52 to 25	Radius of sharpest curve advised, feet		55		0)	0.7	80	06	06
er square inch, pounds. 160 160 160 160 160 160 160 1836 1,700 2,225 3,330 4,350 5,135 190 2,225 3,330 4,350 5,135 190 2,235 3,30 5,135 190 2,30 2,35	Radius of sharpest curve practicable, feet		0+		I.	50	55	00	00
in tons of 2,000 pounds (exclusive of locomotive) in tons of 2,000 pounds (exclusive of locomotive) set ton resistance of rolling friction: 200 255 330 500 655 775 ade = 26 to feet per mile 52 to 60 80 95 1,360 1,700 2,225 3,330 4,350 5,135 200 255 330 500 655 775 1,1 10 25 100 250 295 1,2 10 25 100 250 175 200 80 95	Boiler pressure per square inch, pounds		091	091	160	160	091	160	091
in tons of 2,000 pounds (exclusive of locomotive) set ton resistance of rolling friction: and = 26 \(\text{10} \) feet per mile = 52 \(\text{10} \) in (15 \(\text{10} \) feet per mile = 152 \(\text{10} \) in (15 \(\text{10} \) feet per mile = 152 \(\text{10} \) in (15 \(\text{10} \) feet per mile = 152 \(\text{10} \) in (15 \(\text{10} \) feet per mile = 152 \(\text{10} \) in (15 \(\text{10} \) feet per mile	Tractive force, pounds		1,360	1,700	2,225	3,330	4,350	5,135	5.775
ade = 26_{10}^{4} feet per mile 75 95 125 190 250 $\frac{255}{250}$ 30 $\frac{250}{250}$ 40 $\frac{250}{250}$ 30 $\frac{250}{250}$ 40 2	Hauling Capacity, in tons of 2,000 pounds (exclusive of lo 61% pounds per ton resistance of rolling friction:	ecomotive)							
1/2 per cent grade = 26 to feet per mile 1	On absolute level.		200	25.5	330	005	655	775	870
$= 52 \frac{10}{10} \frac{10}{10} \frac{115}{10} \frac{150}{10}$ $= 105 \frac{10}{10} \frac{10}{10} \frac{25}{10} \frac{15}{10} \frac{150}{20}$ $= 158 \frac{1}{10} \frac{1}{10} \frac{1}{25} \frac{1}{10} \frac{1}{25}$	$\frac{1}{2}$ per cent grade = 26_{10}^{+}		7.5	9.5	125	061	250	295	330
= 10516 $= 1584$ $= 1584$ $= 1584$	1		45	10	7.5	211	150	175	195
158.7	: :		20	30	0+	09	80	95	105
01.00			+1	61	25	0+	20	09	65

on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 4 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

With Canopy, "Back-Truck" Four-Driving-Wheels Side-Tanks Locomotive Class 2-B-SS-K

ILLUSTRATION No. 83, from photograph of 7 x 12 cylinders, coal-burning locomotive, meter gauge of track, for sugar plantation in the West Indies.

EIGHT SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements of customers. We are prepared to build additional sizes. The driving wheels are connected by side equalizers. The truck has pivotal, lateral, and radial-bar motion. The side tanks have connecting pipe. If required by narrowness of gauge the frames are stopped off with full-wides firebox. The canopy cab is of steel. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE WORD	RAPHUN	RAPTOR	RAPTUS	RAQUET	RAREFY	RARITY	RASCOA	RASGAR
Cylinders \ diameter, inches. Diameter of driving wheels, inches. Diameter of truck wheels, inches. Rigid wheel-base, feet and inches. Total wheel-base, feet and inches. Extreme height (head-room not limited), feet and inches. Weight in working order, pounds. Weight on driving wheels, pounds. Weight on triving wheels, pounds. Weight on triving wheels truck, pounds. Weight on two-wheel truck, pounds. Weight or two-wheel truck, allons.	16 16 5-0 13-4 21-6 10-6 10-6 41,000 8,000 600 1,000	11 16 36 20 20 20 13–6 13–6 10–10 45,000 45,000 8,500 600 1,200	12 16 16 22 5-9 14-0 22-6 11-4 49,000 40,000 40,000 8,500 700 1,300	12 18 18 40 22 5-9 14-0 22-6 22-6 53,000 9,000 9,000 1,500	13 18 18 19 14 10 10 10 10 10 10 10 10 10 10 10 10 10	14 20 26 26 6-3 15-6 25-0 12-6 72,000 61,500 10,500 2,	14 24 46 26 26 70 15-9 26-0 12-9 79,000 67,500 11,500 1,000	15 24 50 26 7-0 17-
Weight per yard of lightest rail advised, pounds Radius of sharpest curve advised, feet	30	30 100 70	35 100 70	001	105	50 110 85	120 90 90	70 120 90
Boiler pressure per square inch, pounds	160	7,315	8,245	160	160	12,690	13,900	160
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $6/2$ pounds per ton resistance of rolling friction. On absolute level. $1/2$ per cent grade = $26\frac{1}{10}$ feet per mile. $1/2$ is $1/2$ if $1/2$	990 375 225 120 75	1,100 420 250 130 85	1,240 475 285 150 100	1,330 505 305 160	1,560 595 355 190	1,915 730 440 235 155	2,100 800 480 1655 165	2,355 900 540 290 190

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

on page 140.
For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.
For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Light "Back-Truck" Six-Driving-Wheels Side-Tanks Locomotive, Class 2-C-SS

Wide or Narrow Gauge

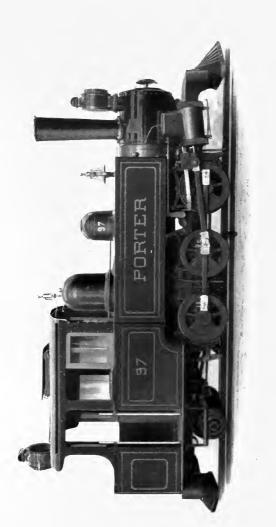


ILLUSTRATION No. 97, from photograph of 9 x 14 cylinders, coal-burning locomotive, 36 inches gauge of track, for plantation in the West Indies.

SIX SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The truck has pivoral, lateral, and radial-bar motion. The center driving wheels are flangeless. The side tanks have connecting pipe. Cylinders 9 x 14 and larger are horizontal. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For larger sizes see next page.

Word
Code
by
Locomotives
Designate
to
Requested
are
Correspondents

CODE (with closed cab like Illustration No. 97 WORD) with open canony like canony of Illustration No. 89, name 198	RASION	RASOIR	RATJES	RATOON	RAUFEN	RAULIM
		TO A CO	2000	DANKAGE	MANION	CHO CHO
('vlinders') diameter, inches	9	7	8	6	10	1.1
stroke, inches	01	1.2	1.4	ţ.I.	1.4	1.4
Diameter of driving wheels, inches	20	23	28	28	30	30
Diameter of truck wheels, inches	+1	16	91	91	91	18
Rigid wheel-base, feet and inches	4-10	5-2	5-5	5-10	7-3	2-8
Total wheel-base, feet and inches.	t_6	01-6	9-01	11-5	12-6	13-0
Length over bumpers, feet and inches	15-5	9-91	0-11	18 - 81	19-5	20-6
Extreme height (head-room not limited), feet and inches	9-6	8-6	01-6	0-01	10-3	10-4
Weight in working order, pounds	16,000	22,000	27,000	32,500	38,000	47,000
Weight on driving wheels, pounds.	12,500	17,500	22,000	27,000	31,500	40,500
Weight on two-wheel truck, pounds	3,500	4,500	5,000	5,500	6,500	6,500
Water capacity of side tanks, gallons	200	300	350	100	200	009
Fuel capacity (coal, pounds	400	009	200	800	006	006
wood, cubic feet.	20	30	35	0+	45	4.5
Weight per yard of lightest rail advised, pounds	I 2	1.5	10	91	20	20
Kadius of sharpest curve advised, feet	50	50	55	65	80	80
Kadius of sharpest curve practicable, feet	0+	0+	50	09	65	65
Boiler pressure per square inch, pounds	160	160	160	160	091	160
Tractive force, pounds.	2,445	3,480	4,350	5,500	6,350	7,680
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), 61% pounds per ton resistance of rolling friction:						
On absolute level.	365	520	655	830	9.55	1,155
" $\frac{1}{2}$ per cent grade = $26\frac{1}{10}$ feet per mile	140	200	245	315	365	0++
	80	120	150	061	220	265
:: 01SOI = ;;	40	09	7.5	100	115	0†I
3 = 15816	20	0	50	65	7.5	06

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given on page 140.

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Back-Truck" Six-Driving-Wheels Side-Tanks Locomotive, Class 2-C-SS



ILLUSTRATION No. 107, from photograph of 14 x 20 cylinders, coal-burning locomotive, 42 inches gauge of track, with stopped-off main frames and with full-width straight-sides firebox, for freight service, exported to Russia.

MINE SIZES, each with **code word**, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The driving wheels are equalized. The truck has pivotal, lateral, and radial-bar motion. The center driving wheels are flangeless. The side tanks have connecting pipe. Pilots or hanging step-boards may be used. For wide gauges the frames are continuous. Double-bar guides are seldom used except for the larger sizes. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

For smaller sizes see preceding page.

CODE (with closed cab like Illustration No. 107	RAYOSO	RAZAGO	RAZEIL	RAZZIA	REACTI	REAIAH	REALCO	REALLY	REAPER	
\sim	REBECA	REBILI	REBORA	REBOZO	REBUFF	RECADO	RECAIR	RECALL	RECENT	
Cylinders) diameter, inches.	10	11	12	_ ~	1.3	1.4	1 7	1.5	1.5	
Diameter of driving wheels, inches.	31	33	36	30	36	0+	9+	12	8	
Diameter of truck wheels, inches.	91	. 8	20	20	20	2.2	2.4	5.4	24	
Rigid wheel-base, feet and inches	2-8	8-1	8-1	0-6	0-10	9-01	11 - 3	10-0	6-11	
Total wheel-base, feet and inches.	13-4	13-6	13-9	15-0	15-8	9-91	17-0	0-11	0-81	
Length over bumpers, feet and inches Extreme height (head-room not limited), ft. and in.	20-0	10-10	22-0	23-5	12-0	12-6	12-0	12-7	13-2	
Weight in working order, pounds	41,000	47,000	50,000	55,000	63,500	26,000	82,000	85,500	93,000	
Weight on driving wheels, pounds.	34,500	40,000	42,500	47,000	55,000	66,500	71,500	75,000	82,000	
Weight off two-wheel there, bounds:	600	0009	700	7.50	000	1,000	1,000	1,000	1,100	
coal, pounds	1,000	1,200	1,300	1,500	1,800	2,500	3,000	3,500	3,500	
Fuel capacity \ wood, cubic feet	45	20	10	9	10	80	06	06	100	
Weight per yard of lightest rail advised, pounds	25	25	30	30	40	0+	45	20	50	
Radius of sharpest curve advised, feet	85	06	c 6	110	130	155	091	155	175	
Radius of sharpest curve practicable, feet	7.5	80	80	9.5	115	135	140	140	145	
Boiler pressure per square inch, pounds	091	160	091	091	091	091	170	170	0/1	
Tractive force, pounds.	7,015	0.670	8,710	008,6	11,500	13,330	14,770	15.500	16.250	
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $61/2$ pounds per ton resistance of rolling friction: On absolute level. $1/2$ per cent grade = $261/6$ feet per mile. $1/2$ and $1/2$ in	1,055 400 240 130 80	1,200 455 275 145	1,315 300 300 100 105	44.8 600 88.8 76.0 88.8 76.0 88.8	1,7,7 665 400 115 140	2,010 770 1,010 1,	2,23 850 15 15 180	2,340 895 540 290 190	2,450 935 300 195	

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 61/2 to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.
For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, These tables are also useful for quick comparison of loads that can be handled by loco-III and IV, on pages 162 to 169. motives of different weights.

"Double-Ender" Four-Driving-Wheels Side-Tanks Locomotive, Class 2-B-2-SS

Wide or Narrow Gauge

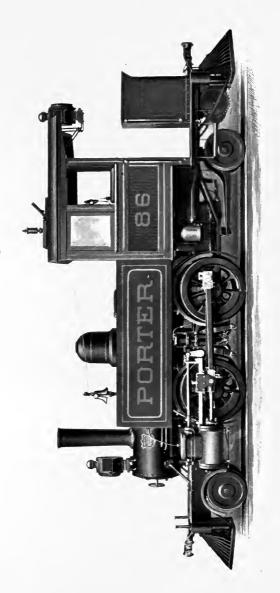


ILLUSTRATION No. 86, from photograph of 10 x 16 cylinders, coal-burning locomotive, 56% inches gauge of track.

THIRTEEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. Each pair of driving wheels is equalized with the next truck, or the four driving wheels may be equalized with the front truck. The trucks have pivotal, lateral, and radial-har motion. The side tanks have connecting pipe Cylinders 8 x 14 and smaller are slightly inclined. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

WORD with open canopy like canopy of Illustration No. 29, page 114	RECUIT	REDADA	REDBUD	REDNER	REDOMA	REFUTO	REGALO	REGAID	REGILD	REFIND	REGRAL	REFLEX	REFONT
Cylinders diameter, inches	9	7	8	6	10	10	1.1	12	12	13	14	14	1.5
stroke, inches	IO	12	+1	14	† I	91	91	91	1.8	18	20	54	27
Diameter of driving wheels, inches	2.4	56	30	33	36	36	0+	0+	42	+2	4.5	18	0
Diameter of truck wheels, inches	1.4	1.4	18	81	20	20	2.2	2.2	5.4	2.4	2.4	26	26
Rigid wheel-base, feet and inches	0+	8-+	5-0	5-0	5-0	5-3	59	59	5-0	6-3	6 - 3	0-7	0 - 1
Total wheel-base, feet and inches	I 2 -0	13-2	+-+1	15-0	9-91	18-6	6-61	20-0	20-5	2110	22-4	24-2	25-0
Length over bumpers, feet and inches	9-91	21-3	22-10	25-0	27-0	29-0	30-0	30-6	31-6	34-0	35-0	37-0	38-6
Height (room not limited) ft. and in	6-4	8-6	01-6	I-0I	10-3	10-8	0 - 11	11-3			12-8	13-0	13-6
Weight in working order, pounds	17,000	24,000	29,000	33,000	37,000	43,000 4	47,000	54,000	58,000		76,000	84,000	08,000
Weight on driving wheels, pounds	10,500	14,500	18,500	21,500	24,500	30,000	32,000	38,000			57,000	57,000 64,000	76,000
Weight on two two-wheel trucks, pounds.	6,500	9,500	10,500	11,500	12,500	13,000	15,000	000,91		18,000		20,000	22,000
Water capacity of side tanks, gallons		200	300	00+	200	009	009	200					1,100
Engles (coal, pounds	001	200	009	200	800	1,000	1,200	1,300	1,500	1,800	2,500	3,000	3,500
ruci capacity (wood, cubic feet	20	25.5	30	35	0+	45	20	rc rc	09	70	80	00	100
Weight per yard of lightest rail advised, lb	14	91	20	20	25	30	30	35	0	+	0	IC.	65
Radius of sharpest curve advised, feet		50	20	65	80	06	100	100	011	120	130	011	150
Radius of sharpest curve practicable, feet		0+	40	09	65	7.5	80	80	06	100	IIO	120	130
Boiler pressure per square inch, pounds	160	091	091	160	160	160	091	160	160	160	160	160	170
Tractive force, pounds	2,035	3,075	4,055	019,4	5,290	0,040	6,580	7,835	8,395	9,845	11,845	H	$\overline{}$
Hauling Capacity, in tons of 2,000 pounds (exclusive of locomotive), $61/2$ pounds per ton resistance of rolling friction: On absolute level	300 200 300 200 300	460 170 100 50 30	610 230 135 70 45	270 155 80 50	795 300 180 90 60	905 345 205 105	9 8 8 7 2 2 2 3 3 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	1,175 445 265 140 90	1,260 475 285 150 95	1,480 565 340 1180	1,780 675 405 215 140	2,005 7655 14605 1555	2,3 8,5 1,8 8,5 1,8 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8,5 8

The Rule for Calculation of Hauling Capacity at all rates of resistance of rolling friction and on any practicable grade is given

For quick approximate calculation of Hauling Capacity on any practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

"Double-Ender" Six-Driving-Wheels Side-Tanks Locomotive, Class 2-C-2-SS

Wide or Narrow Gauge

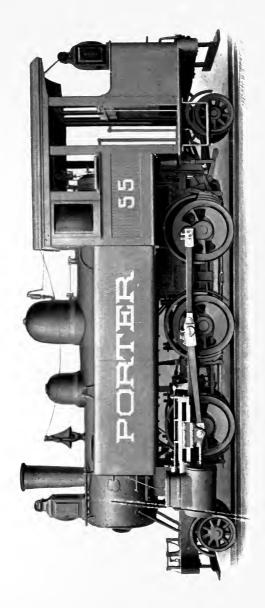


ILLUSTRATION No. 55, from photograph of 15 x 20 cylinders, coal-burning locomotive, 42 inches gauge of track, exported to South Africa.

FOURTEEN SIZES, each with code word, are described on the opposite page, subject to modifications to suit gauge, fuel, size of locomotive, and requirements or preferences of customers. We are prepared to build additional sizes. The front driving wheels are equalized with the front truck. The center and rear driving wheels are equalized with the rear truck. The center driving wheels are flangeless. The trucks have pivotal, lateral, and radial-bar motion. The side tanks have connecting pipe. Single-bar guides are seldom used except for the larger sizes. Cylinders 8 x 14 and smaller are slightly inclined. See page 10 for general specifications and pages 11 and 12 for choice of stacks.

hes 6 7 10 12 lS.in 22 23 im 14 14 linches 4-10 5-2 linches 13-0 14-3 and in. 17-6 22-2 mited), 9-4 9-8					-						
22 14 4-10 13-0 17-6 22-2 9-4 9-4			9	11	12	12	E 0	+ 0	1.5	1.5	91
14 4-10 13-0 17-6 22-2 9-4 9-4 9-8		14 1	31 33	36	2 82	0 00	0 00	0 0	20	75	20
4-10 5-2 13-0 14-3 17-6 22-2 9-4 9-8			18 18	18	18	18	0 00	22	24	22	56
13-0 14-3 17-6 22-2 9-4 9-8			7-3 7-8	8-1	0-6	0-6	01-6	9-01	9-01	0-11	9-01
and in. 17-6 22-2 mited), 9-4 9-8		1		9-61	20-6	20-10	22-0	23-2	24-0	25-0	24-4
8-6 +-6		25-0-25	5-6 27-11	29-7	30-I	30-7	32-9	34-0	35-0	36-6	37-0
						9-11	12-0	12-6	13-0		13-4
24,500	29,500 35	35,000 40, 25,500 29,	40,000 44,000 29,500 32,500	36,000		54,500 00,000	52,000	81,000	52,000 64,000 78,000	83,000	86,000
6,500 7,500	8,500	9,500 10,	10,500 11,500	13,000	14,500	15,000	\vdash	17,000	18,000	20,000	22,000
. 200 300			200 600	009	200	750	800	006	1,000	1,100	1,200
. 400 500		700 80	800 1,000	1,200	1,300	1,500	1,800	2,500	3,000	3,500	4,000
20		35 4	40 45	0.00	55	09	10	08:	06	001	011
advised, pounds 12 14 16	91	16 2	20 25	2.5	30	30	35	0	45	50	99
Radius of sharpest curve advised,		- X	× ×	0	011	011	1 2 5	1	1.	i.	1
e e)	26))	664	c / 1	c/+	6/1	6/1
		9 09	65 75	80	9.5	9.5	120	145	145	145	145
Boiler pressure per sq. in., lb		1 091	091 091	160	091	091	091	160	165	170	170
Tractive force, pounds 2,225 3,480 4,350	:	5,135 5,1	5,140 6,585	7,315	8,245	9,285	10,890	13,330	15,800	ī	17,615
Hauling Capacity, in tons of 2,000 lbs. (exclusive of locomo-											
tive), 61/2 lb. per ton resistance of rolling friction:											
330		6 022		1,100	1,240	1,395	049,1	2,010	2,380	2,555	2,655
e 125 195			350 375	415	110	530	625	765	905	975	1,010
75 120		175 2		250	280	320	375	460	545	585	019
35 60	_		IIO IIS	130	145	170	200	2+5	290	310	320
50 10	20	00	75	85	9.5	011	130	100	185	200	210

For quick approximate calculation of Hauling Capacity on anny practicable grade, and with resistance of rolling friction of 6½ to 40 pounds per ton, refer to Tables of Percentages on pages 156 and 157.

For quick selection of suitable weight locomotive for stated load, grade and resistance of rolling friction, refer to Tables I, II, III and IV, on pages 162 to 169. These tables are also useful for quick comparison of loads that can be handled by locomotives of different weights.

Tractive Force

The tractive force stated for each locomotive in this catalogue is calculated by the following formula:

$$T = \frac{D^2 \times L \times .85 p}{d}$$

T represents the Tractive force.

D " Diameter of the cylinders in inches.

L " Length of the stroke of the cylinders in inches.

.85 p "85 Per cent of the boiler pressure in pounds per square inch, which is assumed [on the basis of tests made] to be the effective pressure of the steam in the cylinders with the locomotive working at full stroke and slow speed.

d "the Diameter of the driving wheels in inches.

The above formula may be stated more fully as follows: The tractive force of a locomotive is computed by multiplying the square of the diameter of the cylinders in inches by the stroke in inches; multiplying again by 85 per cent of the boiler pressure in pounds per square inch; and then dividing by the diameter of the driving wheels in inches.

Example. The tractive force of a locomotive with cylinders 5 inches diameter by 10 inches stroke, 150 lb. boiler pressure, and driving wheels 20 inches diameter;

$$5^{2} \times 10 \times .85 \times 150 = 1,594$$
 pounds.

Memorandum: The above formula is arrived at as follows: The tractive force of a locomotive is due to the pressure of steam on the pistons as delivered through one revolution of the driving wheels. The tractive force increases in direct proportion to area of pistons, length of stroke, and steam pressure in the cylinders; it decreases in direct proportion to diameter of driving wheels.

To calculate the tractive force:

Ascertain the area in square inches of the two pistons. [The area of each piston is the square of one-half its diameter multiplied by 3.1416+.]

Multiply by the mean effective cylinders steam pressure in pounds per square inch [generally assumed as 85 per cent of the boiler pressure].

Multiply by the motion in inches of the two pistons during one revolution of the driving wheels—*i*. *e*., two times the stroke.

Divide by the circumference of the driving wheel in inches [the circumference is equivalent to the diameter multiplied by 3.1416+].

The above is expressed by formula as follows:

which by cancellation gives the formula T \equiv $D^2~\times~.85~p~\times~L$ d

The **Tractive Force** and the "Draw-bar Pull" of a locomotive are usually taken to mean the same thing, but the tractive force includes the power needed to run the locomotive [and tender, if any] as well as pull the train. The "draw-bar pull" is properly applied only to the power available for pulling the train attached to the locomotive.

Tables of Tractive Force

The tractive force of each locomotive described and illustrated in this catalogue is given in the descriptive text, pages 19 to 139. In each case the tractive force may be increased or diminished, as desired, to a considerable extent by modifying the boiler pressure and the size of the driving wheels. The following tables state the tractive force for each size of locomotive as modified by different sizes of driving wheels and by different pressures of steam. The sizes of locomotives covered by these tables range from cylinders 4 inches diameter by 8 inches stroke to 17 inches diameter by 24 inches stroke, the sizes of driving wheels from 18 to 56 inches, and the boiler pressures from 120 to 200 pounds per square inch.

A separate table is given for each size of locomotive, the size being designated by the diameter and stroke of the cylinders in inches as noted in the upper left-hand corner of each table.

Boiler pressures are noted in the left-hand column, in pounds per square inch.

Diameters of driving wheels in inches are noted in the upper line of each table.

The tractive force for the desired boiler pressure and size of driving wheels is found at the intersection of the proper horizontal and perpendicular lines.

Example.—The tractive force of a locomotive, 5×10 cylinders, 24-inch driving wheels, and 140 pounds boiler pressure, is found (in the third table below) under the figure 24 and on a line with the figure 140—viz., 1,240 pounds.

Note.—In every case the tractive force is computed by the formula on page 140, and for sake of even figures any figures in excess of multiples of 5 are disregarded.

Note.—The tractive force and the weight on the driving wheels of a locomotive must be properly proportioned to secure satisfactory results. If the weight is too small, the locomotive is over-cylindered, and will slip the driving wheels too easily. If the weight is too great, the engine is under-cylindered, and cannot slip its driving wheels. In adjusting the best proportion of tractive force and weight on driving wheels due regard must be paid to the character of service for which the engine is intended. For passenger service the weight on the driving wheels may be as little as four times the tractive force. For freight service a driving weight of about four and one-quarter times the tractive force is usual. For contractors', steel works and mine locomotives, street motors, or where slippery or greasy rails are to be expected, the driving weight may, with good results, be close to five times the tractive force. When the water is carried in a tank over the boiler the proportion of the tractive force to the weight on the driving wheels is usually calculated with reference to the water-tank being about half full. In the Tables of Hauling Capacity in this catalogue it is assumed that the proportion of driving weight to tractive force is such as to secure the best results.

Cylinders			SIZES (OF DRI	VING W	HEELS	i	
4 × 8	18	20	22	23	24	26	28	30
$\begin{array}{c} \text{Boiler} \\ \text{Pressure} \end{array} \begin{cases} \begin{array}{c} \text{120} \\ \text{130} \\ \text{140} \\ \text{150} \end{array} \end{cases}$	725 785 845 905	650 705 760 815	590 640 690 740	565 615 660 710	540 590 635 680	500 545 585 625	465 505 540 580	435 470 505 545

Cylinders	SIZES OF DRIVING WHEELS									
5 x 8	18	20	22	23	24	26	28	30		
Boiler 120 130 Pressure 140 150	1,125 1,230 1,320 1,415	1,015 1,105 1,190 1,275	920 1,005 1,080 1 160	880 960 1,030 1,110	\$45 920 990 1,060	780 850 915 980	725 790 850 910	675 735 795 850		

Cylinder	s		5						
5 x 10		18	20	22	23	24	26	28	30
	120 130	1,410	1,270 1,380	1,150	1,100 1,200	1,055	975 1.060	905 985	845 915
Pressure	140	1,650	1,485	1,350	1,290	1,240	1 140	1,060	990
	150 160	1,770 1,890	1,590 1,700	1,450 1,545	1,385 1,480	1,330	1,225	1,140 1,215	1,000

Cylinde	ers	SIZES OF DRIVING WHEELS									
5½ x 1	0	18	20	22	23	24	26	28	30		
	120	1,710 1,855	1,540 1,670	1,400	1,340	1,285 1 390	1,185 1,285	1,100	1,025 1,115		
Boiler Pressure	140	2,000	1,800 1,925	1,635 1,750	1,565	1 500 1,605	1,380 1 480	1,285 1,375	1,200 1,285		
	160	2,285	2,055	1,870	1,785	1,710	1,580	1.465	1,370		

Cylinders		SIZES OF DRIVING WHEELS									
6 x 10	18	20	22	23	24	26	28	30			
[1 20	1 ' '	1,835	1,665	1 595	1,525	1,410	1,310	I 220			
Boiler Pressure		1,985	1,805 1 945	1,725 1,860	1,655 1,780	1,525 1,645	1,415	1,325 1,425			
150 160		2,290 2,445	2.085 2.225	1,995 2,125	1,910 2,035	1,765 1,880	1,640 1,745	1,530 1,630			

Cylind	ers	SIZES OF DRIVING WHEELS										
6 x 1	2	20	22	23	24	26	28	30	33			
	120	2,200	2,000	1,915	1,835	1.690	1,570	1,435	1,335			
Boiler	130	2,385	2,170	2,070	1,985	1,835	1,700	1,590	1,445			
Pressure	140	2,565	2,330	2.230	2.140	1,975	1,830	1,710	1,555			
ressure	150	2.755	2,500	2,395	2,295	2,120	1,965	1,835	1,670			
	160	2,935	2 670	2,555	2,445	2,260	2,100	1,955	1,780			

Cylinders	SIZES OF DRIVING WHEELS										
6½ x 10	18	20	22	23	24	26	28	30			
Boiler 140 Pressure 150	2,590 2,790 2,990 3,190	2,330 2,510 2,690 2,870	2,120 2,285 2,445 2,610	2,025 2,185 2,340 2,495	1,945 2,090 2,240 2,395	1,795 1,930 2,070 2,210	1,665 1,795 1,920 2,050	1,555 1,675 1,790 1,915			

Cylinde	ers	SIZES OF DRIVING WHEELS									
7 x 10)	20	22	23	24	26	28	30	33		
Boiler Pressure	130 140 150 160	2,700 2,915 3,120 3,330	2,460 2,650 2,840 3,030	2 350 2 535 2,720 2,900	2,250 2,425 2,605 2,775	2,080 2,240 2,400 2,560	1,930 2,080 2,230 2,380	1,805 1,940 2,080 2,220	1,640 1,765 1,895 2,020		

Cylinders	SIZES OF DRIVING WHEELS									
7 x 12	22	23	24	26	28	30	33	36		
Boiler 130 140 150 160	2,950 3,180 3,420 3,640	2,820 3,040 3,265 3,480	2,700 2,915 3,125 3,330	2,500 2,690 2,885 3,075	2,315 2,500 2,680 2,855	2,165 2,330 2,500 2,660	1,970 2,120 2,275 2,425	1,810 1,945 2,085 2,225		

Cylinders	SIZES OF DRIVING WHEELS									
7 x 14	22	23	24	26	28	30	33	36		
Boiler 130 140 150 160	3,445 3,710 3,980 4,240	3,295 3,550 3,800 4,060	3,160 3,400 3,640 3,885	2,920 3.145 3.365 3,590	2,710 2,920 3,120 3,330	2,530 2,730 2,920 3,110	2,300 2,480 2,650 2,830	2,105 2,270 2,430 2,590		

Cylinders		SIZES OF DRIVING WHEELS									
8	x 12	23	24	26	28	30	33	36			
Boiler Pressure	130 140 150 160	3,690 3,970 4,250 4,540	3,530 3,810 4,075 4,350	3,260 3,520 3,765 4,020	3,030 3,260 3,490 3,730	2,825 3,045 3,260 3,480	2,570 2,770 2,965 3,165	2,355 2,540 2,720 2,900			

Cylinders	SIZES OF DRIVING WHEELS									
8 x 14	23	24	26	28	30	33	36			
Boiler 130	4 300 4.630 4.965 5,290	4,120 4 440 4,760 5,070	3,800 4,100 4,390 4,680	3.530 3,805 4,075 4 350	3,290 3,550 3,810 4,055	2.990 3.230 3.460 3,690	2,745 2,960 3,175 3,385			

Cylinders 8 x 16		SIZES OF DRIVING WHEELS								
		24	26	28	30	33	36	40		
Boiler Pressure	130 140 150	4,720 5,080 5,450 5 810	4,350 4,685 5,025 5,360	4,040 4,350 4 660 4,980	3,770 4,065 4,360 4,650	3,430 3,690 3,960 4,220	3,145 3,385 3,630 3,870	2,830 3,045 3,265 3,485		

Cylinders	SIZES OF DRIVING WHEELS								
9 x 12	24	26	28	30	33	36	40		
Boiler 130 140 150 160	4,475 4,820 5,170 5,515	4,130 4,450 4,770 5,085	3,835 4,130 4,425 4,720	3,580 3,855 4,135 4,410	3,255 3,505 3,760 4,010	2,985 3,210 3,445 3,675	2,685 2,890 3,100 3,305		

Cylinders 9 x 14		SIZES OF DRIVING WHEELS							
		24	26	28	30	33	36	40	
Boiler Pressure	130 140 150	5,220 5,620 6,020 6,420	4,820 5,190 5,560 5,925	4.475 4,820 5,160 5,500	4,175 4,500 4,820 5,135	3,795 4,080 4,375 4,670	3,480 3,750 4,020 4,280	3,130 3,370 3,610 3,850	

Cylinders	SIZES OF DRIVING WHEELS								
9 x 16	28	30	33	36	40	42	44		
Boiler 130 140 150 160	5,115 5,510 5,900 6,290	4,770 5,135 5,505 5,875	4,335 4,670 5,000 5,330	3,980 4,280 4,585 4,890	3,580 3,850 4,125 4,400	3,410 3,670 3,930 4,190	3,250 3,500 3,750 4,000		

Cylinders 9½ × 14		SIZES OF DRIVING WHEELS							
		24	26	28	30	33	36	40	
Boiler Pressure	130 140 150 160	5,820 6,270 6,720 7,160	5,365 5,780 6,200 6,610	4,980 5,370 5,760 6,135	4,650 5,015 5,375 5,730	4,225 4,550 4,880 5,210	3,875 4,175 4,475 4,775	3,490 3,760 4,030 4,300	

Cylinde	ers		9	SIZES (F DRIV	VING W	HEELS	6	
10 x 14		24	26	28	30	33	36	40	44
Boiler Pressure	130 140 150 160 170	6,450 6,950 7,440 7.935 8,435	5,950 6,410 6,870 7,330 7,800	5,525 5,955 6,375 6,800 7,230	5,160 5,560 5,960 6,350 6,750	4,685 5,050 5,415 5,775 6,140	4,300 4,630 4,960 5,290 5,625	3,870 4,170 4,465 4,765 5,065	3,515 3,790 4,060 4,330 4,605

Cylinders		SIZES OF DRIVING WHEELS								
10	x 16	28	30	33	36	40	44	48		
Boiler Pressure	130 140 150	6,320 6,800 7,285	5,890 6,350 6,800	5,355 5,775 6,180	4,915 5,290 5,670	4,425 4,765 5,100	4,020 4,330 4,635	3,685 3,970 4,250		
riessure	160	7,765 8, 2 60	7,250 7,710	6,585 7,000	6,040 6,4 2 0	5,440 5,780	4,940 5,250	4,530 4,820		

Cylinders		SIZES OF DRIVING WHEELS								
11	x 14	26	28	30	33	36	40	44		
Boiler Pressure	130 140 150 160	7,200 7,750 8,310 8,860 9,420	6,685 7,200 7,720 8,230 8,750	6,240 6,720 7,200 7,680 8,160	5,675 6,110 6,550 6,980 7,420	5,200 5,600 6,000 6,400 6,800	4,680 5,035 5,400 5,760 6,120	4,255 4,580 4,915 5,235 5,570		

Cylinders 11 x 16		SIZES OF DRIVING WHEELS								
		28	30	33	36	40	44	48		
Boiler	130 140	7,640 8,230	7,125 7,680	6,480 6,980	5,940 6,400	5,350 5,760	4,860 5,235	4,460 4,800		
Pressure	150 160	8,820 9,400 9,985	8,230 8,770 9,320	7,480 7,970 8,470	6,860 7,315 7,770	6,170 6,580 6,990	5,610 5,980 6,355	5,140 5,480 5,825		

Cylinders 11 x 18		SIZES OF DRIVING WHEELS								
		30	33	36	40	44	48	50		
Boiler Pressure	130 140 150 160	8,025 8,640 9,265 9,885 10,500	7,295 7,855 8,425 8,990 9,550	6,690 7,200 7,725 8,240 8,750	6,020 6,480 6,950 7,415 7,875	5,470 5,890 6,320 6,740 7,160	5,020 5,400 5,790 6,175 6,560	4,815 5,185 5,560 5,930 6,300		

Су	Cylinders		SIZE	ES OF	DRIVIN	G WHE	ELS	
12	x 14	28	30	33	36	40	44	48
Boiler Pressure	140 150 160 170 180	8,575 9,185 9,800 10,410 11,015	8,000 8,565 9,135 9,715	7,270 7,790 8,310 8,830 9,340	6,670 7,145 7,620 8,100 8,575	6,000 6,430 6,850 7,285 7,715	5,455 5,840 6,230 6,625 7,010	5,000 5,360 5,715 6,075 6,430

Cylinders 12 x 16		SIZES OF DRIVING WHEELS								
		28	30	33	36	40	44	48		
Boiler Pressure	140 150 160 170 180	9,800 10,500 11,195 11,900 12,600	9,150 9,800 10,450 11,100	8,320 8,915 9,495 10,080 10,680	7,625 8,170 8,710 9,250 9,800	6,855 7,350 7,835 8,330 8,820	6,230 6,675 7,120 7,570 8,020	5,720 6,130 6,530 6,940 7,350		

33	36	40	44	48	50
),350).010	8,575	7,720 8,265	7,020 7,520	6 425 6.885	6 180 6,615
,680 350	9,800 10,420	8,820 9.370	8,015 8,520	7,340 7,810	7,050 7,490 7,930
)	,010 ,680	,010 9,180 ,680 9,890 .350 10,420	,010 9,180 8,265 ,680 9,890 8,820 .350 10,420 9,370	,010 9,180 8,265 7,520 ,680 9,890 8,820 8,015 .350 10,420 9,370 8,520	,010 9,180 8,265 7,520 6,885 ,680 9,890 8,820 8,015 7,340 .350 10,420 9,370 8,520 7,810

Cylinders 13 x 16		SIZES OF DRIVING WHEELS							
		30	33	36	40	44	48	50	
-	[I40	10,730	9,750	8,940	8,040	7,315	6,710	6,440	
Boiler	150	11,490	10,450	9,580	8,620	7,840	7,180	6,900	
Pressure	160	12,260	11,150	10,225	9,200	8,360	7,660	7,360	
1 1 0 5 5 4 1 0	170	13,030	11,850	10,860	9.775	8,880	8,140	7,820	
į	180	13.785	12,550	11.490	10,340	9,400	8,620	8,270	

Cylinders 13 x 18		SIZES OF DRIVING WHEELS							
		30	33	36	40	44	48	50	
Boiler Pressure	140 150 160 170	12,080 12,940 13,800 14,670 15,530	10,975 11,770 12,550 13,340 14,130	10,060 10,800 11,500 12,230 12,955	9,060 9,710 10,350 11,000 11,650	8,235 8,830 9,410 10,000 10,590	7,550 8,100 8,625 9,175 9,715	7,245 7,770 8,280 8,800 9,320	

Cylinders		SIZES OF DRIVING WHEELS									
13	3 x 20	33	36	40	44	46	48	50			
Boiler Pressure	140 150 160 170 180	12,200 13,070 13,930 14,800 15,675	11,175 11,970 12,780 13,580 14,380	10,055 10,780 11,500 12,210 12,930	9,150 9,800 10,450 11,100 11,760	8,750 9,375 9,990 10,620 11,250	8,385 8,990 9,580 10,170 10,775	8,050 8,625 9,200 9,780 10,350			

Cylinders 14 x 16		SIZES OF DRIVING WHEELS									
		33	36	40	44	46	48	50			
1	140	11,300	10,360	9,320	8,475	8,115	7,770 8,330	7,460			
Boiler	150	12,110 12,920	11,100	9,990 10,650	9,085	8,690 9,275	8,890	7,990 8,530			
	170		12,595	11,330	10,300	9,850 10,420	9,450	9,065 9,600			
	190	15,355	14,070	12,660	11,500	11,005	10,550	10,130			

Cylinders		SIZES OF DRIVING WHEELS							
14	14 x 18		36	40	44	46	48	50	
Boiler Pressure	140 150 160 170 180 190	16,360	11,660 12,500 13,330 14,170 15,000 15,840	10,500 11,250 11,995 12,750 13,500 14,250	9,540 10,225 10,900 11,590 12,265 12,050	9,125 9,780 10,430 11,080 11,730 12,385	8,750 9,375 9,995 10,620 11,240 11,870	8,400 9,000 9,595 10,200 10,800	

Cylinders 14 x 20		SIZES OF DRIVING WHEELS									
		33	36	38	40	44	46	48	50		
Boiler Pressure	140 150 160 170 180 190	14,130 15,140 16,145 17,160 18,170 19,180	12,950 13,880 14,800 15,735 16,655 17,575	12,275 13,145 14,025 14,905 15,775 16,645	11,650 12,490 13,330 14,170 15,000 15,840	10,600 11,350 12,110 12,875 13,640 14,400	10, 125 10, 850 11, 585 12, 315 13,030 13,750	9,720 10,415 11,100 11,800 12,500 13,185	9,320 9,995 10,655 11,330 12,000		

Cylinders 14 x 22		SIZES OF DRIVING WHEELS									
		36	38	40	44	46	48	50	52		
Boiler Pressure	140 150 160 170 180 190	14,250 15,260 16,275 17,300 18,325 19,350	13,500 14,470 15,430 16,400 17,360 18,330	12,820 13,740 14,650 15,570 16,480 17,400	11,650 12,490 13,330 14,155 14,980 15,820	11,150 11,950 12,750 13,550 14,340 15,130	10,680 11,450 12,210 12,975 13,740 14,500	10,250 10,990 11,720 12,460 13,190 13,930	9,876 10,576 11,265 11,976 12,686 13,396		

Cylinders 14 x 24		SIZES OF DRIVING WHEELS									
		36	38	40	44	46	48	50	52		
Boiler Pressure	140 150 160 170 180 190	15,550 16,670 17,780 18,890 20,000 21,105	14,730 15,780 16,840 17,900 18,950 20,000	14,000 15,000 16,000 17,000 18,000	12,730 13,640 14,550 15,450 16,350 17,260	12,170 13,040 13,900 14,770 15,640 16,500	11,660 12,500 13,330 14,160 15,000 15,840	11,200 12,000 12,800 13,600 14,400 15,200	10,766 11,536 12,306 13,076 13,836 14,606		

Cylinders 15 x 18		SIZES OF DRIVING WHEELS									
		33	36	38	40	42	44	46	48		
Boiler Pressure	150 160 170 180 190 200	16,680 17,710	14,350 15,300 16,250 17,210 18,170 19,110	13,590 14,500 15,400 16,300 17,200 18,100	12,900 13,770 14,630 15,480 16,340 17,190	12,295 13,105 13,930 14,750 15,560 16,370	11,720 12,520 13,300 14,070 14,860 15,630	11,220 11,970 12,720 13,470 14,210 14,940	10,750 11,470 12,180 12,900 13,620 14,330		

Cylinders			SIZES OF DRIVING WHEELS									
15 x	15 x 20		38	40	42	44	46	48	50			
Boiler Pressure	150 160 170 180 190 200	15,950 17,020 18,090 19,150 20,200 21,270	15,120 16,130 17,140 18 140 19,150 20,150	14,360 15,320 16,260 17,220 18,180 19,140	13,670 14,590 15,500 16,410 17,330 18,230	13,050 13,930 14,800 15,660 16,540 17,400	12,480 13,325 14,150 14,680 15,820 16,650	11,970 12,760 13,550 14,360 15,170 15,960	11,490 12,250 13,030 13,790 14,560 15,320			

Cylinders 15 x 22		SIZES OF DRIVING WHEELS								
		38	40	42	44	46	48	50	52	
Boiler Pressure	150 160 170 180 190 200	16,610 17,725 18,840 19,940 21,030 22,120	15,780 16,825 17,880 18,940 19,980 21 040	15 030 16 030 17.030 18,030 19,030 20,030	14.340 15 300 16,270 17.220 18,170 19 120	13,720 14 630 15,550 16 470 17,370 18 280	13.150 14,020 14,910 15,780 16,650 17,530	12 620 13,470 14,310 15,150 15,980 16,820	12,130 12,950 13,770 14,570 15,370	

Cylinde	rs		5	SIZES C	F DRIV	ING W	HEELS	1	
15 x 2	4	40	42	44	46	48	50	52	56
	150	17,210	16,370	15,650	14.960	14,350	13,770	13,250	12 200
	160	18,350	17 460	16,680	15,950	15,300	14,680	14,120	13,100
Boiler	170	19,510	18,570	17,730	16 960	16,250	15,600	15,000	13 910
Pressure	180	20,650	19,660	18,770	17,950	17,200	16,510	15,800	14,730
	190	21,790	20,750	19,820	18 950	18,160	17,440	16,770	15.560
	200	22,950	21,860	20,850	19,950	19 110	18 350	17,650	16 390

Cylinde	rs		,	SIZES (OF DRI	VING W	HEELS	6	
16 x 2	0	36	38	40	42	44	46	48	50
Boiler Pressure	150 160 170 180 190 200	18,130 19.340 20,550 21,760 22.965 24,175	17 175 18.320 19.470 20 610 21,760 22,905	16,320 17,405 18,495 19,580 20,670 21,760	15 540 16.575 17,615 18,650 19 685 20,720	14 835 15,825 16,815 17,800 18,790 19,780	14,190 15,135 16,080 17,025 17,975 18,920	13,600 14,505 15,410 16,320 17,225 18,130	13 055 13.925 14.795 15.665 16,535 17,405

Cylinde	rs		;	SIZES	OF DRI	VING W	HEELS	5	
16 x 2	2	38	40	42	44	46	48	50	52
	150	18,895	17.950	17.095	16 315	15,610	14,955	14,360	13,80
D - 21	160	20,155	19,150	18.235	17,405	16,650	15,955	15,315	14,73
Boiler Pressure	170	21 415 22,675	20,345	19.375	18,495 19,580	17,690	16.955	16,275	15,650
ressure	190	23,935	21,540	20 515	20 670	19,770	17,950	17,230	16,570
	200	25,195	23,935	22,795	21,760	20.810	19,945	19,145	18,41

Cylinders		,	SIZES (OF DRI	VING W	HEELS		
16 x 24	40	42	44	46	48	50	52	56
Boiler 150 160 170 Pressure 180 190 200	19,580 20,885 22,195 23,500 24,805 26,110	18,650 19,895 21,135 22 380 23 625 24,865	17.800 18,990 20,175 21,360 22.550 23.735	17,025 18,165 19,300 20,435 21,570 22,705	16,320 17,405 18,495 19,580 20,670 21,760	15,665 16,710 17,755 18,800 19,845 20,885	15,060 16,065 17,070 18,075 19,080 20,085	13,985 14,920 15,850 16,785 17,715 18 650

Cylinders		5	SIZES OF I	ORIVING V	WHEEL	S	
17 x 20	36	38	40 4	2 44	45	48	50
150 160 Boiler 170 Pressure 180 190 200	20,470 21,835 23,200 24,565 25,925 27,290	19,390 20,685 21,975 23,270 24,565 25,855	19,650 18,	885 18,980 055 20,095 225 21,215	16,015 17,085 18,150 19,220 20,290 21,360	15 350 16,335 17 400 18,420 19,445 20,470	14,735 15,720 16,700 17,685 18,665

Cylinders		S	SIZES (OF DRI	VING V	VHEEL	S	
17 x 22	38	40	42	44	46	48	50	52
150	21,330	20,265	19,300	18,420	17,620	16,885	16,210	15,585
160	22,740	21,615	20,585	19,650	18,795	18,010	17,290	16,62
Boiler 170	24,175	22,965	21,870	20,880	19,970	19,140	18,370	17,66
Pressure 180	25,595	24,315	23,160	22,105	21,145	20,265	19,455	18,70
190	27,020	25,670	24,445	23,335	22,320	21,390	20,535	19,74
200	28,440	27,020	25,735	24,565	23,495	22,515	21,615	20,78

Cylinders		S	SIZES (OF DRI	VING V	VHEEL	S	
17 x 24	40	42	44	46	48	50	52	56
150	22,105	21,055	20,095	19.225	18,420	17,685	17,005	15,790
160	23,580	22,455	21,435	20,505	19,650	18,865	18,140	16,845
Boiler 170	25,055	23,860	22,775	21,785	20.880	20,045	19,270	17,895
Pressure 180	26,535	25,265	24,115	23,065	22,105	21,220	20,405	18 950
190	28,000	26,670	25.455	24,350	23,335	22,400	21,540	20,000
200	29,475	28,070	26 795	25,630	24,565	23,580	22,675	21,055

Hauling Capacity

With the description of each locomotive in this catalogue its hauling capacity on a level, and on grades of $\frac{1}{2}$ per cent, 1 per cent, 2 per cent and 3 per cent, is stated in tons of 2,000 pounds, and based on a resistance of rolling friction of $\frac{6}{2}$ pounds per ton of 2,000 pounds.

RULE FOR CALCULATION OF HAULING CAPACITY. In each case the hauling capacity is computed by dividing the tractive force of the locomotive by the rate of resistance per ton due to gravity and to rolling friction, and then deducting the weight of the locomotive (and tender, if any). This gives the weight in tons of 2,000 pounds of the train (including weight of cars and of lading, if cars are to be hauled loaded) which the locomotive can haul.

The resistance of gravity increases in exact proportion to the steepness of the grade; is always 20 pounds per ton of 2,000 pounds for each 1 foot per 100 rise; i. e., if there is an elevation of 1 foot in a distance of 100 feet, the locomotive must exert enough force to lift one one-hundredth of the weight of the train (itself included), or, what amounts to the same thing, to exert a tractive force enough to overcome a resistance of 20 pounds per ton of 2,000 pounds. For a grade of ½ per cent the resistance of gravity is 10 pounds per ton; for 2 per cent, 40 pounds per ton, and so on for any practicable grade.

The resistance due to rolling friction varies with the character and condition of rolling stock and track. With extra good cars and track it may be as low as 5 pounds per ton of 2,000 pounds; but 61/2 pounds may be taken as a fair average for first-class cars and track, 8 to 12 pounds for reasonably good conditions, and as high as 20 to 40 pounds for bad cars and track, and 60 to 80 pounds, or even more, for excessively hard-running cars and very rough track. Cars with fixed axles and suitable bearings and oil boxes should not exceed 8 to 12 pounds; logging cars may run 61/2 to 15 pounds if of good construction, up to 20 or even 40 pounds if with poor arrangement for oiling. Contractors' dump cars are usually hard-running, say 10 to 25 pounds; coal-mine wagons, with loose wheels, are seldom less than 15 pounds, and often exceed 30 pounds; and with the holes in the wheels worn out of true, and the wheels scraping against the sides of the car, may develop 60 to 80 pounds, or even greater resistance. Street cars may be reckoned at 15 to 25 pounds. The resistance of flange friction on wooden rails is an indeterminate quantity, but usually twice the resistance on steel rails. Poorly laid track and crooked rails increase the resistance indefinitely.

Overloading cars also increases the resistance greatly. The resistance is greater in cold weather. The resistance of rolling friction per ton is greater for empty cars than for loaded cars.

THE ACTUAL RESISTANCE OF ROLLING FRICTION MAY BE DETER-MINED by noting down what grade a car once started will just keep in motion. If a car will barely keep in motion if started down a 1 per cent grade, its frictional resistance is just about equal to 20 pounds per ton.

In computing the hauling capacity of any locomotive, the resistance due to gravity and the resistance due to rolling friction must be added, and the tractive force divided by this total resistance. For example: With cars and track involving $6\frac{1}{2}$ pounds per ton resistance, the hauling capacity on a level is found by dividing the tractive force by $6\frac{1}{2}$, and deducting the weight of the locomotive; but with the same cars on a grade of 2 per cent the tractive force must be divided by $46\frac{1}{2}$ ($6\frac{1}{2}+40$), and the weight of the locomotive deducted. It is easily seen that poorly constructed cars are very costly to operate; it is easier, for example, to haul cars of 10 pounds frictional resistance up a $1\frac{1}{2}$ per cent grade than to haul cars of 40 pounds frictional resistance up a 1½ per cent grade, the total resistance in one case being 40 pounds and in the other case 50 pounds per ton. Similarly, it is as easy to haul cars of 10 pounds per ton resistance up a 1 per cent grade as to haul cars of 50 pounds resistance down a 1 per cent grade.

When trains are hauled on curved track the resistance due to the curve should be considered, as explained on pages 177 and 178.

In any practical determination of the proper hauling capacity advisable in any special case, some suggestions by way of caution are shown by experience to be worthy of consideration:

- I. It is always desirable to provide a reasonable amount of surplus power, and not to work a locomotive regularly too close to its full capacity. A reserve of power is economical, because it cuts down the cost of repairs, and also of fuel and oil, to the lowest point, and lengthens the useful lifetime of the machine, and also provides for emergencies and increase of output.
- 2. It is not safe to figure on a grade as "level" because the land is quite flat. In such cases the so-called "level" grade may prove to be 1 per cent or possibly more, and a grade of only ½ of 1 per cent, or 13 feet per mile, may cut down the hauling capacity of a locomotive to but little more than one-half its capacity on a perfect level.

This is clearly seen by examination of the following tables of hauling capacities.

- 3. The statement is sometimes made that a geared locomotive can haul a heavier train and "climb" steeper grades than a directacting locomotive of **the same weight**. This is incorrect unless the direct-acting locomotive has only part of its weight on the driving wheels or is equipped with a separate tender. If two machines weigh the same and have all their weight on the driving wheels, and are properly designed, the loads they can start are absolutely identical, —i. e., the introduction of gears has no effect upon the proportion of weight on driving wheels that is useful for adhesion on the rail. A direct-acting locomotive on account of the position of the crank-pins has more tendency to slip its wheels in starting trains. A geared locomotive cannot make the same mileage or handle as great daily tonnage and has less advantage from train momentum in overcoming grades.
- 4. It pays to buy a locomotive of proper design for the requirements and cars properly constructed, and it pays to keep the rolling stock in good order. It pays to avoid bad grades and sharp curves if it can be done at reasonable cost. It does not pay to let road-bed and track get into bad condition through neglect. In such cases as contractor's service, temporary logging spurs, tramways in quarries, dumps at furnaces, collieries, etc., where the track must be shifted frequently, ideal conditions are impracticable; but it pays to pay good wages to a foreman with brains who with the least cost of maintenance and repairs and least time lost will get the most results out of the plant.

Percentage Tables for Computing the Hauling Capacity (see next two pages)

Of any locomotive on any practicable grade and with cars of varying resistance of rolling friction.

Owing to the lack of space, it was found impossible to state with the descriptive text and illustration of each size and design the hauling capacity of each locomotive on all practicable grades, or for more than one rate of resistance of rolling friction.

By the following tables, by using the hauling capacity on a level with $6\frac{1}{2}$ pounds frictional resistance, as stated for each locomotive, as a basis, and reckoning this amount as 100 per cent, the hauling capacity on grades up to 580 feet per mile (*i. e.*, 11 per cent), and with resistances of rolling friction up to 40 pounds per ton of 2,000 pounds, may readily be calculated. The results are not absolutely exact, but are closely approximate.

Note.—These tables are on the basis of including tenders as a part of the train to be hauled on grades, and for minute accuracy any weight carried on engine trucks should be considered as a part of the train.

Note.—In the application of these tables it must be borne in mind that on very steep grades, i. e., over about 8 per cent, slippery or wet rails, or failure to use sand, may prevent any safe, practical, or economical use of any locomotive. A locomotive can climb a steeper grade than it is safe for it to come down, since any acceleration of speed down an excessively steep grade may result in the engine sliding with all wheels locked.

Example illustrating the use of the following Tables of Percentages.—The hauling capacity of the locomotive code word HETMAN (page 38, 12 x 18 cylinders), at $6\frac{1}{2}$ pounds rate of frictional resistance on a level, is stated at 1,470 tons of 2,000 pounds. What can it haul on a grade of 4 per cent, and with cars and track involving 10 pounds per ton rolling friction? By turning to the tables below, at the intersection of the column for 10 pounds rate of friction with the horizontal line for 4 feet per 100-i. c. 4 per cent grade—is found the figure $5\frac{a}{10}$, and $5\frac{a}{10}$ per cent of 1,470 is 82 tons; deducting from this 14 tons the weight of the tender of this locomotive, 68 tons is left, which is the heaviest train (lading of cars, if cars are loaded, and weight of cars included) this locomotive can start under the given conditions.

Percentage Tables for Computation of Hauling Capacity

)	below
	noted
	as
	Resistances
	Frictional
	and
	Grades
	With

On absolute level the percentage of hauling capatility is a part of the percentage of the p	GRADES	Perc	entage	Percentages figured to include Frictional Resistances per ton of 2,000 lbs.	ed to in	ıclude	Friction	onal R	esistan	ed seo	r ton o	f 2,000	lbs.
100 93 81 72 64 58 53 42 31 24,5 20 85 77 66 66 54 50 40 30 23,5 24,5 85 77 72 65 59 54 46 37 29,5 23,5 19,5 77 72 65 59 54 48,5 39 29,5 23,5 19,5 77 72 65 59 54 48,5 39 29,5 23,5 19,5 77 72 65 59 54 46 48,5 39 29,5 23,5 19,5 77 72 65 59 44 46 47 40 37 29 80 53 49 45 42 33 24,5 20 81 74 74 74 74 74 74 74 82 73 73 73 73 73 74 82 74 74 74 74 74 74 83 74 74 74 74 74 74 84 74 74 74 74 74 85 75 75 75 85 75 75 75 85 75 75 75 85 75 75 75 85 75 75 75 85 75 75 75 85 75 75 75 85 75 75 75 85 75 75		6½ 1bs.	716s.	8 16s.	91bs.	10 1bs.	11 fbs.	121bs.	151bs.	20 lbs.	25 lbs.	301bs.	40 lbs.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	On absolute level the percentage of hauling capa	4											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	city is	. Ioo	93	81	72	64	58	53	42	31	24.5	20	14.5
freet	I foot per mile	. 94	87	77	69	62	56	52	41	31	57	20	14.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 feet " "	16	83	74	99	9	54	20	40	30	24	20	14.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 " " " " " " " " " " " " " " " " " " "	.85	79	70	63	57.5	53	48.5	39	29.5	23.5	19.5	14.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 77	72	65	59	54	49	9†	37	29	23	19	1.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 67.5	64	58	53	6†	45	42	35	27	22	18	†1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,,	. 60.5	59	54	50	9†	43	40	33	56	21	18	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	=) ,, ,,	. 56	53	6+	45	42	40	37	31	24.5	20	17	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		52	50	9†	43	40	38	36	30	54	20	17	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20 " " "	. 45	43	41	38	36	34	32	27 5	22	18.5	91	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. ,, ,, ,,	. 40	38	36	34	32	30.5	29	25	21	17	15	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$) ;; ;;	38	37	35	33	31	30	28	24.5	20	17	14.5	11.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30 " " " " " " " " " " " " " " " " " " "	. 35	34	32	31	29	28	26.5	57	61	91	†I	II
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	. 32	31	29	28	27	25.5	24.5	22	81	15.5	14	II
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) ,,	- 29	28	27	56	25	57	23	20	17	14.5	13	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 26	25	57	23	22	21.5	21	61	91	14	12	10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$) ;	. 23	22.5	22	21	20.4	19.5	19	17	14.5	13	11.5	9.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	. 22.5	22	21	20.5	20	61	18.5	17	14.5	12.5	II	9.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		21.5	20.5	20	61	18.5	81	17	16.5	13.5	12	10.5	& &
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	. 19.5	19	18.5	17.5	17	16.5	91	14.5	13	11.5	10.5	∞ ••
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		18.5	18	17.5	17	16.5	91	15.5	14	12.5	II	OI	8.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	. 17.5	91	15.5	15.2	14.8	14.4	14	13	11.5	10.3	9.3	7.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 15.3	15.1	14.7	14:4	13.9	13.6	13.2	12.3	10.9	9.8	8.7	7.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$;	. 14.5	14.4	1,4	136	13.3	12.9	12.6	11.7	10 5	9.5	8.6	7.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	. 14.2	14	13.6	13.3	13	12.6	12.3	11.5	10.3	9.3	8.4	7.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$:	. 13 2	13	12.7	12.4	12.I	8.11	11.5	8.01	6.7	80.00	œ	8.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	=)	. 12.5	12.3	12	11.7	11.5	11.2	II	10.3	9.3	8.5	7.7	9.9
(=2.4 feet per loo) II. II. II. II. II. II. II. III.		. 12	11.8	9.11	† II	11.1	10.8	10.6	6.6	6	8.2	7.5	6.4
	;	. 11.1	II	10.7	10 5	10.3	10.1	6.6	9.3	8.4	7.7	7.1	6.1
	I20 '' '' ''	. 11	10.9	9.01	10.4	10.2	OI	8.6	9.5	8.4	7.7	7.1	9

139 feet per mile $= 2\sqrt{6}$ f						6½ 1bs.	7 16s.	8 fbs.	91bs.	10 lbs.	11 fbs.	121bs.	151bs.	20 lbs.	25 lbs.	30 lbs.	40 lbs.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		feet	per	mi	:	10.2	IO	8.6	96	9 4	9.3	9.1	8.51	7.8	7.2	6.6	7.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	132	ş	:	:		10	6.6	6.7	9.5	9.3	9.1	8.9	8.4	7.7	7.1	6.5	. 9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	011	:	:	,		9.4	9.3	9.1	8.9	8.7	8.6	8.4	8.0	7.4	8.9	6.3	٠٠. ب
(= 3 feet per 100) 8.7 8.6 8.5 8.3 8.2 8 7.9 7.7 7.6 6.5 6.0 6.1 5.0 8.1 8.0 7.9 7.8 7.7 7.6 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	$1+5\frac{2}{10}$,	;	;		9.1	0.6	8.8	8.6	8.5	8.3	8.5	7.7	7.1	9.9	6.1	5.5
(= 3 feet per 100) 8.3 8.2 8.1 7.9 7.7 7.6 7.5 7.1 6.0 6.5 6.0 8.5 6.	150	;	;	;		8.7	8.6	8.5	8.3	8.2	œ	7.9	7.5	6.9	6.4	5.0	5.1
8.1 8.0 7.9 7.8 7.6 7.5 7.4 6.9 6.6 6.6 6.6 6.5 6.5 8.5 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6.6 6	$158\frac{4}{10}$;	;	;	3 feet	8.3	8.5	8.1	7.9	7.7	9.7	7.5	7.1	6.6	6.1	5.0	6:+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	091	;	;	;		8.1	8.0	6.7	7.8	7.6	7.5	7.4	7.0	6.5	0.9	5.6	· *
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	170	:	;	3		7.6	7.5	7.4	7.3	7.2	7.1	6.9	9.9	6.1	5.7	5.3	4.6
(= 3½ feet per 100) (180	;	:	3		7.2	7.1	7.0	6.9	6.7	9.9	6 5	6.2	s. S	5.4	5.0	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$184\frac{5}{10}$: :	; ;	: :	$(=3/2 \text{ feet per roo})\dots$	6.9	6.8	8.9	6.7	6.5	6.5	t.9	6. I	5.6	5.3	6:+	+3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	190	: :	: :	;		6.7	6.6	6.5	6.4	6.3	6.2	6.1	5.9	v.	5.1	8.	4.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	200	: :	: :	: :	:	†.o	6.3	6.2	6.1	0.9	5 9	ν. ∞	5.6	5.5	s ÷	+	0.+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$211\frac{z}{10}$: :	: :	: :	4	0.9	5.0	χ. 	5.7	5.6	ب د.	5.52	5.3	6.4	9:+	4.3	3.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	220	: :	: :	: :		0.	5.7	5.6	5.5	5.4	5.3	5.5	5.0	∞ †	+	1+	3.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	230	: :	: :	:		÷	5.4	5.3	5.5	5. I	5.0	5.0	- †	4:5	+ 5	3.9	3.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$237\frac{5}{10}$: :	: :	;	$4\frac{1}{2}$ feet per 100)		5.2	5.1	5.0	4.9	8.4	8.	4.6	+	0.+	3. 8.	3.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210	: :	: :	;		5.1	5.1	5.0	4.9	8.4	4 8	4.7	+ 52	4.3	3.9	3.7	3.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	250	: :	: :	;		4 ∞	∞ ÷	4.7	4.6	4.6	4.5	4.5	4.3	4.0	3.00	3.6	3.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200	: :	: :	: :	:	4.6	4.6	4.5	4.5	++	+3	4:3	1.4	3.9	3.7	3.4	3.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	507	: :	: :	: :	'n	4.50	÷	4.4	4.4	4.3	4.3	4.2	4.0	30 00	3.6	3.4	3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	270	: :	: :	: :		4.4	+	4.3	4.3	4:2	4.2	4.1	3.9	3.8	3.5	3.3	3.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	220	: :	: :	:		4.5	4.5	4.1	4.1	40	0.+	3.9	3.7	3.6	3.4	3.5	2.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	290_{1}^{1}	: :	;	: :		0 †	0:†	3.9	3.9	3.8	3.8	3.7	3.6	3.4	3.2	3.0	2.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300	: :	: :	: :		s, so	so .	3.7	3.7	3.7	3.6	3.6	3.4	3.3	3.1	2.9	5.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	310_{10}	: :	: :	: :		3.0	3.0	3.5	3.5	3.4	3.4	3.4	3.2	3.0	5 0	8	5.52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	325	: :	: :	: :		3.5	3.4	3.4	3.4	3.3	3.3	3.2	3.1	5.0	S	2.7	2.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350	: :	: :	: :	:	3.1	3.1	3.1	3.0	3.0	3.0	2.9	80	2.7	5.6	5.4	5.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30910	: :	: :	: :	^	2.9	, x	2. 20.	% %	8	2.7	2 7	2.6	5.5	5.4	2.5	5.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	375	: :	: :	: :		S	2. S	2. S	2.7	2.7	2.7	5.6	5.6	5.4	2.3	2.5	5.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	: :	: :	: :		2.5	2.	.5 72	3.2	5:4	5.4	5.4	2.3	2.5	2 I	2.0	1.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$422_{\bar{1}0}$: :	: :	: :	8 teet	2.3	2.3	2.3	2.3	2.5	2.2	2.5	2. I	2.0	6.1	8.1	9.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	450	: :	: :	: :	:	2.1	2.1	2.1	5.0	5.0	5.0	2.0	6.1	1.8	1.7	9.1	1.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	475 <u>r</u> 0	: :	: :	: :	6	1.9	6.1	6.1	1.8	8.1	8:1	1.8	1.7	9.1	9 1	1.5	†:I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	500	: :	: :	: :		1.7	1.7	1.7	1.7	1.7	1.6	1.6	1.6	1.5	1.4	†: ₁	1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	220	: :	: :	: :		1.5	1.5	1.5	1.5	1.5	1.5	1.5	†:T	1. t	1.3	1.2	1.1
(=11 leet per 100) 1.3 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.0	550	: :	: :	: :		1.4	1.4	1.4	1.4	†:I	1.4	†:T	1.3	1.3	1.2	1.1	0.1
	$280\frac{1}{10}$:	i	:	11 teet	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.2	1.1	0.1	0.1	6.

TABLE showing how many times its weight on driving wheels any locomotive can haul on straight track up various The tractive power is assumed to be equal to one-fifth of the weight on the driving wheels. Speed is not taken into account. Tenders and weight on pony trucks must be considered as if part of train weight. grades, at different allowances for frictional resistances.

60.5 56 49 43.5 39 35.3 32 32.3 22.5 21.2 20 19 18 17.2 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11										•			•	
frimes its weight on driving wheels any ocive can haul on absolute level. 4.5 frimes its weight on driving wheels any ocive can haul on absolute level. 5. $\frac{1}{2}$ free can haul on a second level. 6. $\frac{1}{2}$ free can haul on a second level. 6. $\frac{1}{2}$ free can haul on a second level. 6. $\frac{1}{2}$ free can haul on a second level. 6. $\frac{1}{2}$ free can haul on a second level. 7. $\frac{1}{2}$ free can haul on a second level. 8. $\frac{1}{2}$ free can haul on a second level. 8. $\frac{1}{2}$ free can haul on a second level. 8. $\frac{1}{2}$			6 1/2	7	∞	6	10	11	12	15	20	25	8	40
locomotive can haul on absolute level. Social Matrix S	Number of times its weight on driving	wheels any												
grade $\frac{1}{12}$ per cent = $13\frac{1}{12}$ feet per mile 33.8 32.3 29.7 27.6 25.7 24 22.5 19 15 11.5	on ab	vel	60.5	56	6†	43.5	39	35.3	32.3	25.7	19	15	13.3	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	grade $\frac{1}{4}$ per cent = $13\frac{1}{16}$	mile	33.8	32.3	29 7	27.6	25.7	54	22.5	19	15	12.3	10.4	7.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$ " = $26\frac{4}{10}$		23.3	22 5	21.2	20	19	18	17.2	15	12.3	10.4	6	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{34}{4}$ " = $39\frac{1}{10}$ "		17.6	172	16.4	15.6	15	14.4	13.8	12.3	10.4	6	7.9	6.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$1 = 52\frac{8}{10}$		14.1	13.8	13 3	12.8	12.3	6 11	11.5	10.4	6	7.9		5.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	" = 66		11.7	11.5	II.I	10.8	10.4	10,1	8.6	6	7.9	7	6.3	5.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{9}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$	·	10	86	9.5	9.5	6	8.7	20			6.3	5.6	+1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$	•	8.65	8.5	83	8.1	7.9	7 7	7.5	7	6.25	5 6	5 15	+3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{6} = 105 \frac{6}{10}$:	9.2	7.5	7.3	7 I	7	8.9	6.7	6.25	5.6	5 15	1 1	+
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{8}{10}$ 811 = ,,	:	6.77	6.7	6.5	t.9	6.25	0.I	9	5.6	5.1	+	4	3.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	" = 132		80.9	9	5.9	5.78	5.68	5.55	5.46	5.15	+ 7	4 32	4	3.45
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$"=145\frac{2}{10}$::::	5.5	5.45	5.35	5.25	5.16	5.07	4.97	4.71	4.33	+	3.7	3.22
$3/2$ $= 184\frac{18}{16}$ $+23$ $+2$ $+13$ $+07$ $+$ 3.94 3.88 3.7 3.45 4.84 4.85 $4.$	$" = 158\frac{4}{10}$		5.05	4.97	4.88	4 ∞	4.71	4.64	4.56	4.34	4	3.71	3.45	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$3\frac{7}{2}$ " = $184\frac{8}{10}$		4.23	4.2	4.13	4.07	+	3.94	3.88	3.7	3.45	3 22	e	5.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4 " = 2111 \frac{2}{10}$		3.62	3.6	3.55	3.52	3.45	3.4	3.35	3.21	3	2 SI	5.64	2.33
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$4\frac{1}{2}$ " = $237\frac{6}{10}$ "	·	3.15	3.12	3.08	3.04	3	2.96	2 92	2.81	5.64	2.48	2.34	2.08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 ,, = 504	•	2 75	2.74	2.7	2.67	5.64	2.61	2.57	2.48	2.33	2.2	2.08	1.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$5\frac{1}{2}$ " = $290\frac{4}{10}$ "	•	2.43	2.41	2.39	2.36	2.33	2.31	2.28	2.2	2.08	1.96	1.86	1.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	≡ • •	::::	2 16	2.15	2.12	2. I	2 08	2.05	2.03	1.96	1.86	1.76	99.1	1.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 = 36916		1.73	1.72	1.7	1.68	1.66	1.65	1.63	1.58	1.5	1.42	1.35	1.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 " = 422 \(\frac{4}{12}\)	٠	1.4	1.39	1.38	1.37	1.35	1.34	1.32	1.28	1.22	1.16	1.1	Ι
10 = 528 94 .93 .92 .91 .9 .89 .88 .86 .82 .11 = $580.%$ 77 .76 .76 .75 .71 .73 .72 .7 .67	$6 = 475\frac{2}{10}$,	1.15	1.14	1.13	1.12	I.I	1.09	1.08	1.05	_	.95	6.	.82
$\frac{11}{11}$ $\frac{11}{11}$ $\frac{12}{11}$ $\frac{12}{11}$ $\frac{12}{11}$ $\frac{12}{11}$ $\frac{12}{11}$ $\frac{12}{11}$ $\frac{12}{11}$ $\frac{12}{11}$,, OI	,	-04	.93	.92	16.	6.	.89	88.	98.		.78	.74	67
/o. / 01 01	= ,, II	,	.77	.76	.76	.75	.74	.73	.72	.7		.63	9.	.54

The above table is useful for the selection of a locomotive of suitable weight to do any given work, since it shows the relative power of a locomotive on any practicable grade and with varying allowance for frictional resistance. Example: How heavy a locomotive is needed to start 50 tons on a 3 per cent grade with contractors' cars and poor track involving a frictional resistance of 20 pounds per ton? By following the column for 20 pounds resistance to the intersection of the horizontal line for 3 per cent grade, the figure 4 is noted, i.e., a locomotive under these conditions can haul four times its weight on driving wheels; since 4 times 121/3 = 50, a locomotive 12½ tons, or 25,000 pounds in weight, with all the weight on driving wheels, would be needed

Memoranda as to Tables of Hauling Capacity (see pages 162 to 169)

The following series of four Tables of Hauling Capacity is convenient for quick approximate selection of a locomotive to do any required work. The Hauling Capacity of locomotives ranging from 4,000 to 80,000 pounds weight on driving wheels, and on grades from level to 11 per cent, is stated in each table. The tractive force is assumed to be equivalent to one-fifth the weight of the locomotive, (the weight being all on the driving wheels.)

- TABLE I is based on a resistance of rolling friction of 6½ pounds per ton of 2,000 pounds, and is to be used where the track and rolling stock are of good construction and in good condition. This would usually apply to passenger and freight roads, wide or narrow gauge, also to many roads for various industrial and special purposes where proper attention is given to maintenance.
- **TABLE II** is based on a resistance of rolling friction of **8 pounds per ton** of **2,000 pounds**, and is applicable to passenger and freight roads, and to roads used for a wide range of purposes, such as plantations, logging, coal and ore haulage, where the track may be expected to be in fair condition, and where the cars, if not in the best order and of the best construction, are not defective nor specially in need of repair.
- **TABLE III** is based on a resistance of rolling friction of 15 pounds per ton of 2,000 pounds, and is applicable to industrial tramways, coal and ore roads, plantations, logging roads, etc., where the track is in somewhat poor condition, and the cars not of the best construction or not in thoroughly good order.
- TABLE IV is based on a resistance of rolling friction of 30 pounds per ton of 2,000 pounds, and applies to cases where the service is such that the track cannot be kept in good order, and where the construction of the cars involves extra friction, or where repairs are needed. This includes contractors' tramways where cars and track cannot be kept in good order; coal and ore roads where cars with loose wheels are used; street railways where it is impossible to keep the track in proper condition; logging roads where fourwheel cars of imperfect design are used. A resistance of 30 pounds per ton is usually a proof of lack of reasonable care of track and

cars. In the case of steel works or furnaces, where hot material requires very clumsy cars and renders it difficult to give proper lubrication to car journals, also in contractors' work, or at brick yards where the track is frequently shifted, it may be impossible to avoid a greater resistance than 30 pounds per ton.

No account is taken in these tables of the resistance of curves or of speed.

The weights of the trains that can be hauled are stated in tons of 2,000 pounds, and include cars and lading (except where only empty cars are to be hauled). Except for passenger service, it is usually safe to allow the weight of an empty car to be about four-tenths its carrying capacity.

The weights of trains are in addition to the locomotive; but if the locomotive has a tender, the tender is considered as a part of the train. (For minute accuracy or on excessive grades, any portion of the weight of the locomotive that may be carried on front or rear trucks should be considered also as a part of the train.)

In the practical application of these tables, it is well to bear in mind that it is most economical to operate locomotives regularly at not more than about two-thirds or three-fourths of their full power, according to circumstances; that for saddle-tank locomotives it is safest to reckon the weight with tanks about half full, to allow for average conditions; that in determining the weight a locomotive can haul, the steepest grade and not the average grade must be taken; also that for short grades, where curves or other reasons do not prevent approaching the grade at a fair rate of speed, a locomotive can take about 50 per cent more up the grade than it can start on the grade.

Practical Illustrations of the Use of the Following Four Tables (see pages 162 to 169)

Example 1.—How heavy a train can a contractors' saddle-tank locomotive, weighing 24,000 pounds, all on the driving wheels, resistance of rolling friction assumed at 15 pounds per ton, start on a grade of 3 per cent?

Making allowance of 1,000 pounds for tank of locomotive being only part full, Table 111, under the column heading for 23,000 pounds, and along the horizontal line for 3 per cent grade, gives the answer 49 tons; or reckoning regular work at two-thirds to three-fourths of full capacity, say 32 to 37 tons as the weight of train which this locomotive, with somewhat poor track and cars, can start constantly with desirable reserve power on a 3 per cent grade. Or if the grade is short, and can be approached at a good rate of speed, the locomotive may be able to take up about 74 tons by taking advantage of monientum.

Example 2.—What should be the weight on driving wheels of a locomotive with pony truck and separate tender for it to be able on special test to start 40 tens on a 4 per cent grade, the conditions involving a resistance of rolling friction of 8 pounds per ton?

Turning to Table II, and following the horizontal line for 4 per cent grade, it is evident that—not allowing for weight of tender nor for weight on pony truck—a locomotive with 23,000 pounds on the driving wheels is required. Allowing 10 tons to cover weight of tender and weight on pony truck, and considering this weight as practically part of the train, a total weight of 50 tons is to be provided for, and this is seen to require a locomotive with 28,000 pounds on the driving wheels.

EXAMPLE 3.—It is desired to haul a train of 50 tons, with conditions involving 30 pounds per ton resistance of rolling friction, with a saddle-tank locomotive, which, under average conditions, is 30,000 pounds total weight, of which 22,000 pounds is on the driving wheels and the remainder on pony truck; how steep a grade is practicable, running the engine at three-fourths its full power?

To the 50-ton train the 4 tons carried on the engine truck is added, making a total of 54 tons; this is increased by one-third, making 72 tons, to cover the weight of train that could be hauled with the engine working at full power. Turning to Table IV, under the column for 22,000 pounds on driving wheels it is seen that a locomotive of this weight can start 77 tons on a grade of 1 per cent, or 69 tons on a grade of 1½ per cent. The steepest practicable grade would therefore be between 1 per cent and 1½ per cent; or, if the engine should be used at its full power and a load of not over 54 tons be considered, it will be noted that a grade of very nearly 2 per cent would be practicable.

Table I. Approximate Hauling Capacity, Extra Good Cars, 61/2 Pounds per Ton Resistance of Rolling Friction

lading (and tender if any); which locomotives with 4 000 to 80,000 pounds on the driving wheels can haul on straight track in Showing weight in tons of 2,000 pounds of heaviest trains, exclusive of the locomotive; inclusive of weight of cars and good order on grades from Absolute Level to 11 feet per 100. The Tractive Force is assumed to be one-fifth of the weight on driving wheels

DS	30,000 34,000 34,000 36,000	907 968 1029 1089 1150 348 372 395 418 442 204 282 299 317 334 211 225 239 253 267 1475 159 169 170 189 114 121 129 136 144 101 108 115 121 128 101 108 115 121 128 101 108 115 120 115 102 82 85 99 95 63 67 71 76 80 63 67 71 71 71 71 71 71 71 71 71 71 71 71 71	91
POUNDS	000,82	786 847 302 325 302 325 229 246 1153 197 115 115 115 121 115 121 116 125 117 125 11	12 1
Z	000,£2 000,₽2	8696 726 725 725 725 725 725 725 725 725 725 725	II OI
WHEELS	000'77	366 366 367 367 367 367 367 367	01 (
WHE	000,02	330 330 330 330 330 330 330 330	-6
/ING	000'81	3.54 2.09	so oc
DRIVING	000 81	251 19977 19977 19977 1997 1997 1997 1997	1
NO S	000'91	\$253.34 \$173.35 \$173.37 \$173.3	1
WEIGHTS	000⁴₹1	242 1163 898 898 1174 1197 1197 1197 1197 1197 1197 1197	9 9
WEIG	000,21	202 202 203 203 203 303 303 303 303 303	ıcı
	000'11	133 1286 1286 1387 1444 1198 1198 1198 1198 1198 1198 1198	7
TOTAL	000'6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4
	000,8	124 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3
	000'Z 000'9	810 110 110 110 110 110 110 110 110 110	2
	000°5	23	1 2
	000 7		;
			::
		Absolute 1	10

Continuation of Table I on opposite page

	000,08	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,
	000'84	336 336 336 337 338 336 336 336 336 336 336 336	,
	000'94	0.000	
		1 37 -	_
POUNDS	000°77	01 H	
OUN	72,000	11 11 10 10 10 10 10 10 10 10 10 10 10 1	
	000'02	2000 00 00 00 00 00 00 00 00 00 00 00 00	
SIN	000'89	2050 7150	
EL	000'99	2000 2000 2000 2000 2000 2000 2000 200	,
WHEELS	000'1⁄9	25,555,451 10,50 10,5	-
	000'79	8877 1125 1125 1131 1131 1131 1131 1131 1131)
VIN	000'09	28 28 28 28 28 28 28 28 28 28 28 28 28 2	-
DRIVING	000'89	11.05.00	_
NO	000'99	1690 16	_
TS	000′₹9	630 650 650 650 650 650 650 650 650 650 65	_
H.D.	. ———	157 1 1 1 1 1 1 1 1 1	,
ΝE	000'75	188 44 48 48 48 48 48 48	
L	20000	H	
TOTAL WEIGHTS	000,84	1 1 2 2 3 3 1 1 1 2 3 3 3 1 1 1 2 3 3 3 1 1 1 2 3 3 3 1 1 1 2 3 3 3 1 1 1 2 3 3 3 1 1 1 3 3 3 3	_
Ē	000'9₺	1390 1300	
	000'††	1330 3387130 167 167 167 167 167 167 167 167 167 167	
	000'7₺	2572 2572 2965	
	000'0₺	0550 0550	
		in the contract of the contrac	
		:4	
		t t l l l l l l l l l l l l l l l l l l	
		Absolute level Absolute level 1.77 Per cent 1.78 A 2.28	
		Solute or Transfer of the Control of	
		QQ 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

The above table is especially valuable for determining at a glance approximately the weight of locomotive needed to haul stated loads up stated grades. The exact weight and the design may then be determined according to the kind of traffic, exact frictional resistance, curves and other conditions.

the tank being only partly full under average conditions. In the case of locomotives with separate tender, the tender must be reckoned as a part of the train to be hauled. Also for engines with trucks, the weight on truck should be deducted to arrive at net NOTE.—In the case of saddle-tank engines, it is well to make a deduction from the weight on driving wheels to allow for weight of train, particularly on very steep grades. Speed is not taken into account.

Table II. Approximate Hauling Capacity, Average Good Cars, 8 Pounds per Ton Resistance of Rolling Friction

Showing weight in tons of 2,000 pounds of heaviest trains, exclusive of the locomotive; inclusive of weight of cars and lading (and tender, if any); which locomotives with 4,000 to 80,000 pounds on the driving wheels can haul on straight track in good order on grades from Absolute Level to 11 feet per 100. The Tractive Force is assumed to be one-fifth of the weight on driving wheels.

	32,000	784					8 4 4						1.8	12
	30,000	735	147 318 246	199 167			88							II
	28,000	989	417 297 229	156	133 116	102	82	68	50	37	200	23	15.	10
	000'97	637	387 276 213	173 144									12 1	
	74,000	588	357 254 196	159 133	†111	38	54	58 49	45	(C) (C)	1 20	20	13	
DS	23,000	563	342 244 188	153 128	_		19							S 1- 23
N	22,000	539	327 233 180	146 122	104 91	80	65 59	53 45	33	62	, 51 50 50	2 4		œ
POUNDS	000'17	514	312 223 172	139	87	77	62 56	51 43	37	8 u	0 61	17	111	710
Z	20,000	490	297 212 164	133 111	83	73	53	4 1 1	35	27	2 2	17	11	^
ST:	000'61	99‡	282 201 156											
WHEELS	000,81	1+4	268 191 147	001	827	3 62	53 8	37	31	ci :	19	T 2	018	$6\frac{1}{2}$
	000'21	417	253 180 139											
/INC	000'91	392	238 169 131	901	92	8 2 20 20	42	33	8 6	, C 1 -	91	13	7,11	9
DRIVING	12,000	367	223 159 123	100 83	71	55	+ +	36	26	02 1	15	12	σ r	7U 155
ON 1	000⁴₹1	343	208									_	6	
rs (000'E1	318	193 138 106	86	62	4	38	31	23		0.5	11	0 0	+
WEIGHTS	12,000	294	178 127 98	679	57	30,44	20 C	25	18	91				
WE	000'11	209	163 116 90	73	20 4 20 10	5.5	32	25 22	61	<u> </u>	C I I	9	- rv rv	+
	10,000	245	148 106 82											
TOTAL	000'6	220	133 95 74	50.00	7 5	33	26	22 - 8	13 E	21 3	2 0	1~5	++	3
[000,8	961	119 84 65										+ 40	
	000'∠	171	104 74 57	94 05	33	, to 9	20	17	. 51 5	0 0	0 1~	wи	. w. w	. C1
	000'9	147	89	33	88 5	55 1	17	17	0 0	\	-9	70 -	+ w g	C1
	000'9	122	74 53 41	33	5 7	18	1.4	110	o 1	, 0 ,	വ വ	+ 6	ე C1 C1 ყ—სე	L I
	000'₹	86	59 42 32	26	19	7 2	12 11	6 s	1.0	w.	1 1	. w u	201 01	Н
		:	$\frac{1}{10} = \frac{131}{10}$ $\frac{261}{10} = \frac{261}{10}$ $\frac{3036}{10}$		79	1005	132		211	264	= 316 = 316 = 316		475	$= 580_{10}^{8}$
		Absolute level	per cen		: :	::	: :	3 3						;
		Abs	74 76%		27.6	, c1 c	C1 C1	(t) (1)	· + -	; ; ;	S 0	1~a	0 0 0	II

Continuation of Table II on opposite page

	000,08	9961	849	656	+++	380	332 203	260	236	214	961	991	1+1	123	108	95	*	89	rc rc	‡	37	30
	000'8∠	1 2 1 6 1	1162 I 828	639	433	371	323 286	254	230	200	161	191	138	120	105	93	85	99	53	+3	36	29
	000'94	1862	807	623	122	362	315	218	224	204	186	156	134	117	102	90	80	t9	52	45	35	82
	000°†Z	1813	786	909	+ = +	352	307	5 + 5	218	198	181	152	130	114	100	88	78	63	51	7	34	28
	72,000	1921	1072	588	000	342	298 264	236	212	192	176	1+3	120	111	96	98	92	19	6†	아	33	27
POUNDS	000'0∠	1715	1042	572	388	333	290	220	206	187	171	+	123	108	6	83	7.4	59	\frac{1}{8}	39	32	50
POU	000'89	9991	1012	556	377.	324	252	223	200	181	991	140	120	tol	92	80	72	57	1	38	31	25
IN	000'99	191	982	540	367	314	273	216		9/1		136										
	000'†9	1568	952 679	524	356	304	205	210	188	171	156	132	112	98	86	26	89	40	4	36	29	24
WHEELS	000'79	1519	922	508	345	295	257	203	182	165	151	128	601	95	83	73	65	52	4	35	28	23
	000'09	0/11	893	308	334	286	248	961	176	160	941	124	901	92	So	70	63	51	Ŧ	33	27	22
DRIVING	98,000	1421	863 616	475 385	323					155			_							32		
ORIV	000'99	1372	833	-		• •	232															
ON I	000'ħS	1323	804 573																			
	900,22	1274	774	426	288	248	216	170				901	92	80	70	62	£	7	35	29	2.4	19
WEIGHTS	000'09	1225	744			•	207		_	133		102										
WE	48,000	1176	715																			
	000'9‡	1127	685									6										
TOTAL	000'₺₺	1078	655					1+1			_	06										
	000'7₺	1029		344			174					98										
	000'0₺	980	596	. ,				130														
	38,000	931	566				156			Ι		700										
	36,000	882	536				132		Τ			7,										
	34,000	833	506 361	278	1881	162	121	110	100	6	82	7	<u>څ</u>	rv G	7	7	36	8	23	ĵί	E .	12
			$\begin{array}{c} \text{per mile} \\ 137 \\ 26 \\ \hline \end{array}$	916	610	$9\frac{2}{10}$	$92\frac{1}{1}0$		32	510		418	175	$17\frac{6}{10}$:	$0\frac{1}{16}$	$6\frac{8}{10}$	$6\frac{1}{10}$	$2\frac{4}{10}$	510	 	0.1^{8}_{10}
		ا ا	i				9 :	: II	13			184		= 237						- 475		
		Absolute) oer cent 		74	72	# 1 # 1	77:	1/2			$3\frac{7}{2} = $										11
		A	20	-	-	I	- 61	C1	C1	C1	c	B	4	7	ഹ	ın	9		œ	6	10	I

The above table is especially valuable for determining at a glance approximately the weight of locomotive needed to haul stated loads up stated grades. The exact weight and the design may then be determined according to the kind of traffic, exact frictional resistance, curves and other conditions.

the tank being only partly full under average conditions. In the case of locomotives with separate tender, the tender must be reckoned as part of the train to be hauled. Also for engines with trucks, the weight on truck should be deducted to arrive at net NOTE.—In the case of saddle-tank engines, it is well to make a deduction from the weight on driving wheels to allow for weight of train, particularly on very steep grades. Speed is not taken into account.

Table III. Approximate Hauling Capacity, Poor Cars, 15 Pounds per Ton Resistance of Rolling Friction

lading (and tender, if any); which locomotives, with 4,000 to 80,000 pounds on the driving wheels, can haul on straight track Showing weight in tons of 2,000 pounds of heaviest trains, exclusive of the locomotive; inclusive of weight of cars and in good order on grades from Absolute Level to 11 feet per 100. The Tractive Force is assumed to be one-fifth of the weight on driving wheels.

						T	TOTAL		WEIGHTS	HT	S ON		DRIVING		WHE	WHEELS	NI S		POUNDS	S			
			000⁴₺	000'9	000'9	0004	000,8	000'6	000'01	000'11	000'21	13,000	000 91	000 91	000'21	000,81	000'61	20,000	000'17	22,000	23,000	000⁴₹	000'97
Absolute	level	:	51		92	89	02 1	I4 I	-	of	-	99	79 192	2 20	5 21	3 231		257	269	282	205	308	334
per	$t = 13\frac{2}{10}$ ft.1	per mile	38		57	99	9/	22	95 10	10	114 12	_		2 15	2 161	171			199	200	• • • •	228	247
	$= 26\frac{4}{10}$,,,	30		+3	52	9	- 29	75	82	00	_				135			157	165		180	195
; **	$= 39\frac{6}{10}$;;	+51		37	43	6+	52) 19	57	8 +4		98	92 9	8 10 ⁴	1 1		123	120	135	1+1	147	160
	$= 52\frac{8}{10}$,,	30		31	36	1+	9†	52	57 (62 6					3 93			100	115			135
" , 1/4	99 =	,,	81		27	31	36	0	45	6+	54 - 5					8 81			16	66	_		117
,, 2/1	$= 79\frac{2}{10}$	*	91		23	27	31	35	39 -	13	17 5					71			83	87			103
	$= 92\frac{4}{10}$;	+		12	54	28	31	35	38	12					63			73	77			16
;	$= 105\frac{6}{10}$,,	12		18	21	25	28	31	34	37 4					3 56			65	89			81
	$=118\frac{8}{10}$;	11		17	20	23	22	28	31	34 3					51			59	62	65		73
	=132	,,	01		5	18	20	23	23.	58	30 3					9† 9			53	56			67
23/4 "	$=145\frac{3}{10}$;	6		† _I	91	18	21	23 :	26 :	28					7			6+	51			61
	$=158\frac{4}{10}$,	x		13	15	17	61	21	23	26 2					39			45	+			56
	184	;			11	13	15	91		20 :	22 2					33			38	9			8+
	$=211\frac{2}{10}$	·,	9		01	II	13	+1	91	17	2 61					28			33	35			+
	237	;	w		œ	6	11	12	†I	15	1 91					252			20	31			36
	== 264	;	+		~1	oo	01	II	12	13	- + _I					22			20	27			32
	$=290\frac{4}{10}$;	+		9	_	oo o	6	II	12	13 1					20			23	C1			28
	$=316_{\frac{8}{1}0}$,,	ς. - 3;		τU 35	0.2	707	00 - 31	9.5	10	11 1					17			20	5			25
	$=369\frac{6}{10}$;	3		+	τυ - 33	9	7	7	-,s:	9					11			91	17			20
-	$=422\frac{4}{10}$;	C1 -33		32	4	'n	120	9	1	1,00					11			13	1+			91
,, 6	$=475\frac{2}{10}$:	61		n	31	4	4 2	'n	rC -161	9					6 18			11	11			13
	$=528^{-}$;	_ ?:		C1 -(3)	c	31	4	4-0	41:	w					-0			6	6			1.1
,, I	$=580\frac{8}{10}$;	п	I E	C3	61	2012	3	32	3.1	4	4			-22	9	0		1,21	1 2			6
					-	-	-	-	-	_	-		_	_	_	-		-		-		-	

Continuation of Table 111 on opposite page

	000,08	7008 7600 6000 33160 71173 71173 71128 888 888 888 888 888 888 888 888 888
	000,87	7702 7702 7702 7702 7702 7702 7702 7702
	000'94	976 7722 5772 5772 3397 577 577 577 677 677 677 677 67
	000⁴₹∠	950 976 955 570 955 570 955 570 955 570 955 570 957 570 957 570 958 59 958 59
,	000'7∠	888 984 444 432 444 432 444 432 444 432 444 432 444 432 444 432 444 432 432
	000'02	\$47 8.2 898 924 950 976 627 646 665 684 959 924 950 972 949 950 972 949 95 510 525 540 555 570 972 949 95 510 525 540 555 570 972 949 95 510 525 540 555 570 972 95 95 95 95 95 95 95 95 95 95 95 95 95
α	000'89	25 25 25 25 25 25 25 25 25 25 25 25 25 2
DRIVING WHEELS	000'99	770 776 522 547 8-2 898 924 950 976 557 559 589 608 627 646 665 684 703 722 450 465 559 608 627 646 665 684 703 722 450 465 550 555 570 382 395 407 419 455 409 352 352 355 355 355 355 355 352 352 352
/HE	000'179	777 79 796 822 83 83 83 83 83 83 83 83 83 83 83 83 83
13	000'79	770 770 770 770 770 770 770 770 770 770
ING	000'09	2551 570 358 370 358 370 370 370 370 370 370 370 370 370 370
N	000,82	172 48 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DF	000'99	513 3718 3718 3718 3718 3718 3718 3718 37
NO	000'₱9	860 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	92,000	668 39004 2371 2371 1122 1163 2034 1172 1173 1173 1173 1173 1173 1173 1173
E.G.H	000'09	2333334554 2008
TOTAL WEIGHT	000,8₽	100 100 100 100 100 100 100 100
>	000'9₹	0.00
ΓAΙ	000⁴₺₺	01+629 01+629 01+620 02-62 03-62
ro	45,000	0 40 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
`	000′0₺	366 356 356 356 356 356 356 356 356 356
	38,000	138 88 88 88 88 88 88 88 88 88 88 88 88 8
	000'98	1462 27702 2
	34,000	23233333333333333333333333333333333333
	32,000	410 100 100 100 100 100 100 100
	30,000	2385 282 282 282 282 283 283 283 283 283 283
	28,000	2 2 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
-		
		De:
		• 🕁
		$\begin{array}{c} \text{vel} \\ \text{i.e.} \\ $
		%el.
		per cent
		political period of the period
		Absolute level **Per cent 1

The above table is especially valuable for determining at a glance approximately the weight of locomotive needed to haul stated loads up stated grades The exact weight and the design may then be determined according to the kind of traffic, exact frictional resistance, curves and other conditions.

the tank being only partly full under average conditions. In the case of locomotives with separate tender, the tender must be reckoned as part of the train to be hauled. Also, for engines with trucks the weight on truck should be deducted to arrive at the net NOTE.—In the case of saddle-tank engines it is well to make a deduction from the weight on driving wheels to allow for weight of train, particularly on very steep grades. Speed is not taken into account.

Table IV. Approximate Hauling Capacity, Very Poor Cars, 30 Pounds per Ton Resistance of Rolling Friction

Showing weight in tons of 2,000 pounds of heaviest train, exclusive of the locomotive; inclusive of weight of cars and lading (and tender, if any); which locomotives with 4,000 to 80,000 pounds on the driving wheels can haul on straight track in good order, on grades from Absolute Level to 11 feet per 100. The Tractive Force is assumed to be one-lifth of the weight on driving wheels.

								TO	TOTAL	WE	WEIGHTS	TS	ON D	RIV	DRIVING	WH	WHEELS IN	SIN	I PO	POUNDS	S			
					000⁴₺	000'9	000'9	0004	000,8	000'6	000'01	000'11	12,000	14,000	15,000	000'91	000'∠1	18,000	000'61	000'07	000'17	000'77	000,62	000'₹7
A 151.	100	100				1	1	1	-		1	1			_	_							i	
ADSOL	Absolute level	:	:		+7		70		6	_		_	_	_	_			2	117	23	50	35 1	12 T	20
-	er cent	11	is ft.	per mile	21		31		41			_						93	06	tor	_	15	20 I	25
1/2	9			33	18		27		36	_			_					Si	, x	00		-		se Se
1,64	,	$= 39\frac{6}{16}$		"	16	20	23	27	31	35	39	43 4	-	55.0				71	, r.	70	. v.			50
1	;			"	14		21		28			_	_		_			63	99	70		_		87.
1,1	,,			",	12		18		25		_		_		_			56	59	62	_	-	_	7.
1 1/2	;	$= 79_1$	201 201	"	11		17		23		_						_	51	27	57	_		_	89
13/	:	$= 92_{\overline{1}}$	+2	"	10		15		21	_		-						94	49	52			_	62
2	,,	$= 105_1$	صا ي	",	6		14		19			_						43	54	17	_			7,
21/2	;	$= 118_{1}$	x O	",	00 153	11	13		17		_	_						39	41	+3	_		_	. 21
21/2	;	= 132		"	00		12		91		_				_			36	38	0	_			s +
234	;	$= 145_{1}$		-	7		11		15			_			_			34	35	37	_		_	5
3	;	$= 158_{1}$		•			10		14			_	-					31	33	35	_			1
$3\frac{1}{2}$;	184	* 0 I		9		6	11	12	14								27	28	30			_	36
4	;	$= 211\frac{1}{1}$			'n				11		13	-						5	25	56				35
7/7	,,	$= 237_{\overline{1}}$		-	+		~		6	_								21	2 2	23			-	28
'n	3	= 264		;,	4		9		oo	6								19	20	21				25
272	;	$= 290_{\overline{1}}$		",	 List		rU Lbs		^	œ		[O	_					17	18	19	_			22
9	;	$=316_{7}$;	B		ທ		$6\frac{1}{2}$	73	<u>∞</u>							T.	91	17		_		20
7	,,	$=369\frac{6}{10}$;	2		+		ູນ	9	$6\frac{1}{2}$	1						12	13	13				91
œ	;			;;	61		n		+	'n	ر ا							10	10	11				13
6	,,		200	"	1 2		61		$\frac{\mathcal{C}}{2}$	4	1							œ	8	0				10 <u>.1</u>
10	,,	= 528	•	:	' п		2		n	c	3.1							61	, 1	^ 1~				00 11 11
11	;	$= 580_{\mathrm{T}}$	801	"	0		I J		61	C1 	'n	3	$3\frac{1}{2}$ $3\frac{1}{2}$		4	+	Ŋ	'n	TO Figs	. 9	. 9	0.1		n
-						-			-			-	-	-		-		-	-	-	-			

Continuation of Table IV on opposite page

13. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.							TO	TOTAL		VEI	WEIGHTS	TS	ON		DRIVING	N		VHI	WHEELS		Z	POUNDS	JNI	SC					
evel			000'97	000,82	30,000		-					_	-						000'09	000'79	000'79	000'99	000'89	000'04	000'74		000'94	000,87	000,08
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	liste level		3	1 10	oz u		110.0	000		0 0				305	301			и и	370	382	305	107	10				- 091	- J	10.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	er cent = 13=2			2/1	157		771	871		8 2 I	0 23	0 210	25,0	261	271			302	313	324		3+1	35.4	365.9	376				717
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, ,	126	135	1	53.1	62 I	71 18	30 18	010	8 20.		5 225	23.1	243	252	261	270	270	288	297	306	315.3	324				36,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	;	102	011	811	1261	34 I	12 I	50 15	88 16	6 17	3 18	1 18c	9197	7 205	213	1221		236	244	252	260	268	2762	1842	2923	3003		316
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$;	16	98	105	1121		26 I	33 14	11 01	17 15	4 16	1 168	3/175	5 182	2 189	196	203	210	217	224	23I	238	245 2	252	2592	266 2	273.2	280
$\begin{array}{cccccccccccccccccccccccccccccccccccc$;	SI	87	†6		1 90	13 I.	19 12			817	1150	0157	7 163	3 16	176	182	188	195	20I	207	213	2192	226	232 2	238 2	245.2	25I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2}$;	74	80	s r	90		02 I	77 11	13 11	9 12	4 130	3(13)	5 141	117	1153	1158	104	170	175	181	187	192	198	501	200	2152	2212	226
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$., = 921	;	67	72	77	82			38 IC	3 10	11 80	3 118	8 12,	1129	134	135	717	149	154	159	165	170	175	1801	82	106	95.3	2002	206
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$;	19	99	1/	75							8 113	3 118	3 122	127		137			151	155	091	165 1	1201	75.1	179 1184	$\frac{1}{8}$	189
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$=118\frac{1}{1}$,,	56	9	65	69								1 108	3 113	3 117	121	125	130	134	139	43	1+7	151	120	1 09 1	65 1	169	73
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	=132	;	52	. 95	9	† 9	89	_						2 100	OIO	301		911	120	124	128	32	136	140 1	7		152 1	120	991
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$;	8+	52	56	59								36 6								123	126	130 1		37,1	1†1	145	148
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$;	45	8	52	55		_														113		1201		27 1		135	138
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$; = 18 + \frac{8}{10}$:	39	75	45	\$	51					_							-		96	66	102		_	_	_		120
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$;	34	37	39	+2															ģ	87	90	92	95	_	_	103 1	105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$;	30	33	35	37	39	•								_		_			7.	77	79	SI	*	98	80	16	93
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H	;	27	59	31	33	35							52	5	56		_		_	99	ŝ	20	75	75	-1	29		8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	П	,	24	56	28	29					60	+	+	7	34	<u>~</u>		72	55		59	19	63	65	67	89	20	72	7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	,,	22	23	25	56								7	=======================================		7	3	20	51	53	r. J.	26	20	3	19	63	65	99
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$=360^{-}$;	17	61	20	22	23														43	7	9†	47	\$	50	51	52	54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	П		14	15	91	18						7	5 2(3,4	35	30	37	38	9	4	75	43	#
528 9½ 10 11 12 13 13 14 15 15 16 17 18 18 19 20 20 21 22 23 24 24 25 26 27 580 18 7½ 8 9 10 10 11 11 12 12 13 13 14 14 15 16 17 17 18 18 18 19 20 20 21 21	П	;	$11\frac{1}{2}$	$12\frac{1}{2}$	$13\frac{1}{2}$	† ₁	15	91	17	200	9			23	27	2	5	56		28	29	30	31	32	32	33	34	35	36
580-48 77 8 9 10 10 11 11 12 12 13 13 14 14 15 16 17 17 18 18 19 20 20 21 21	$=528^{-1}$;	$\frac{1}{9}$	10	II	12	13	13	1	_				31 30	3 15					٠.	5	5	23	56	127	27	200	29	30
	$=580\frac{8}{10}$,,	71	oo	6	10	10			_	-	_	_								19	20	20	2	21	22	23	23	5

The above table is especially valuable for determining at a glance approximately the weight of locomotive needed to haul stated loads up stated grades. The exact weight and the design may then be determined according to the kind of traffic, exact frictional resistance, curves and other conditions.

tank being only partly full under average conditions. In the case of locomotives with separate tender, the fender must be reckoned as a part of the load to be hauled. Also, for engines with trucks the weight on truck should be deducted to arrive at the net weight of train, particularly on very steep grades. Speed is not taken into account. NOTE.—In the case of saddle-tank engines it is well to make a deduction from the weight on driving wheels to allow for the

Grades

Grades are stated in various ways

rst. The usual engineer's method by per cent, or the number of feet rise per 100 feet of track, fractions of a foot being expressed generally in tenths of a foot instead of in inches.

To reduce grade stated in per cent (or feet rise per 100 feet of length) to feet per mile, multiply by $52\frac{8}{100}$.

Example.—3 per cent, or 3 per 100, is equivalent to $3 \times 52.8 = 158\frac{1}{10}$ feet per mile.

2d. The American railroad method is to state the number of feet rise in a distance of 1 mile.

To reduce grade stated in feet per mile to grade stated in feet per 100 or per cent, divide by 52.8.

Example.—396 feet per mile \div 52. = 87½ feet per 100, or 7½ per cent.

3d. The English method is to state in feet the distance in which the grade rises I foot.

To reduce grade stated in the English method of a certain number of feet length per one foot rise, to grade in feet per mile, divide 5,280 by the given number.

Example.—A grade of 1 in 20 is equivalent to 5,280 \div 20 = 264 feet per mile.

To reduce grades stated in the English method to grades in per cent or feet per 100, divide 100 by the given number.

Example.—A grade of 1 in 40 is equivalent to $100 \div 40 = 2 \frac{1}{2}$ per cent, or $2\frac{1}{2}$ feet per 100.

4th. Grades may be stated as a rise of so many feet or inches in a number of yards or rods or feet, as 2 inches per rod, 2 feet in 150 yards, etc.

To reduce grades irregularly stated to grades in feet per mile, multiply the rise in inches by 5,280, and divide by the length of the grade in inches.

Example.—A grade of 5 inches in $1\frac{1}{2}$ rods. Multiply 5 by 5,280=26,400; divide by 297 (the number of inches in $1\frac{1}{2}$ rods) = $88\frac{8}{10}$ feet per mile.

To reduce grades irregularly stated to grades in feet per 100 or per cent, multiply the rise in inches by 100, and divide by the length of the grade in inches.

Example.—A grade of 6 inches in 10 yards. Multiply 6 by 100 = 600; divide by 360 the number of inches in 10 yards) = 1.66+, or $1\frac{2}{3}$ feet per 100, or $1\frac{2}{3}$ per cent grade.

5th. Grades are sometimes stated in degrees, or the amount of angle which the incline makes from the level, and measured in degrees of a circle, 360 degrees to the entire circle, an angle of 45 degrees, or half-way between horizontal and perpendicular, being one-eighth of an entire circle. This is a very inconvenient method of stating railroad grades. The rise of the grade is the sine of the angle, and must be figured out by tables of the length of sines of angles in proportion to the radius, the length of the grade being represented as the radius. Consequently, if the grade be taken as 100 feet long, the sine of the angle will state the grade in feet per 100.

Easy Method of Measuring Heavy Grades

Of course, the proper way of determining grades is by surveyor's instruments. But where the grade varies many times in a distance of a few hundred feet, it is quite as important to know the maximum as the average grade. In such cases it is sufficiently accurate to use a straight edge roo inches long, and, leveling it with an ordinary spirit level, to measure in inches from bottom of straight edge to top of rail. This gives the grade in per cent, which can be reduced to feet per mile by multiplying by 52.8. A few trials in different places will readily determine the ruling grades. On very low grades this method is not practicable, but it is useful on most of the roads where our special-service engines are running, the grades varying from 1 to 10 per 100.

Comparison of Different Methods of Designating the Same Grades

		Engineers' M	ETHOD		English Method	American Rail- road Method
1's of	I per	cent or 112	inches p	er 100 feet	=1 in 800	$= 6_{10}^{6}$ ft. per mil
14 of	fı	3		100 ''	=1 in 400	$= 13^{-2}_{10}$ "
½ of	I	6		100 ''	=1 in 200	= 2610
34 of		" 9	• •	100 "	=1 in 150	$= 39_{10}^{6}$ "
		or 1 foot o	4.	100 ''	=1 in 100	$= 52\frac{8}{10}$ "
1 4		ı '' 3	4.4	100 "	=1 in 80	= 66 "
I 1/2		1 '' 6		100 "	=1 in 66	$= 79\frac{2}{10}$
1 3 ₄	* *	I '' Q		100 "	=1 in 54+	$= 92\frac{4}{10}$ "
2	4.4	2 feet o	4.6	100 "	=1 in 50	=10516 "
2 14	4.4	2 '' 3	+ 4	100 "	=1 in 44+	=118,0 "
2 1/2		2 '' 6	4.4	100 "	=1 in 40	=132 "
234	6	2 '' 9		100 "	= in 36+	$=145_{10}^{2}$ "
3	4.6	3 '' o		100 "	$=1 \text{ in } 33^{1}3$	$=158\frac{4}{10}$ "
3. ¹ 4		3 " 3		100 "	= 1 in 31	$=171\frac{6}{10}$ "
3 1/2	4 4	3 " 6		100 "	=1 in 28+	$=184\frac{8}{10}$ "
334	4.4	3 " 9	* *	100 "	=1 in 26+	=198 "
4	4.4	4 '' o	* *	100 "	=1 in 25	$=211_{10}^{2}$ "
1 1/2		4 " 6		100 "	=1 in 22+	$=237\frac{6}{10}$ "
5	4.6	5 " 。	• 6	100 "	=1 in 20	=264 "
$5\frac{1}{2}$	4.4	5 " 6	* *	100 "	=1 in 18+	=29010 "
6.		6 '' o	+ 6	100 "	$=1 \text{ in } 16^{2} \text{ i}$	$=316\frac{8}{10}$ "
6½	"	6 '' ó	* *	100 "	=1 in 15+	$=343\frac{2}{10}$ "
7	* *	7	+ 4	100 "	=1 in 14+	$=369_{10}^{6}$ "
$7\frac{1}{2}$	4 4	7 " 6		100 "	=1 in $13+$	=396 "
3	+ 4	8 '' o	* *	100 "	$= 1 \text{ in } 12\frac{1}{2}$	=4224 "
8 1/2	* *	8 " 6	**	100 ,,	=1 in 12—	$=448\frac{8}{10}$ "
9	6.6	9 '' o	4.6	100 "	= 1 in 11+	$=475_{10}^{2}$ "
9 1/2	4.4	9 '' 6	4.4	100 "	=1 in 10+	$=501\frac{6}{10}$ "
0	"	10 '' 0	4.4	100 "	=1 in 10	=528 "
0 1/2		10 "6	4.6	100 "	$=1 in 9\frac{1}{2} +$	$=554_{10}^{4}$ "
I		11 ", 0	* *	100 "	=1 in $9+$	$=580\frac{8}{10}$ "
I ½	4.4	11 " 6	4.4	100 "	$=1 \text{ in } 8^{2/3} +$	$=607\frac{2}{10}$ "
2	44	I 2 '' O	4.4	100 "	=1 in 8+	$=633\frac{6}{10}$ "

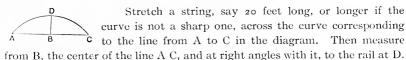
Curves

The simplest way of designating a railroad curve is by giving the length of the radius—*i.e.*, the distance from the center to the outside of the circle, or one-half the diameter. The shorter the radius the sharper the curve. The length of the radius is usually stated in fect; but English engineers often state the radius in chains (one chain=66 feet). The length of the radius of a railroad curve is measured to the center of the track.

Civil engineers designate railway curves by degrees (using the sign of for degrees and " for minutes, there being 60 minutes in one degree). The sharpness of the curve is determined by the "degree of curve," or the number of degrees of the central angle subtended by a chord of 100 feet. Or, in other words, let two lines start from the center of a circle in the shape of a V, so that the angle at the point of the V is one degree (equivalent to 300 of a complete circle), then, if the two sides of the V are prolonged until they are 100 feet apart, any part of a circle made by using one of these lines for its radius is a "one-degree curve." The exact length of radius which with an angle of one degree has a chord of 100 feet is found to be 5,720.65 feet. For sake of convenience 5,730 feet is usually taken as the radius of a one-degree curve. If the angle at the point of the V is two degrees and the sides are prolonged until 100 feet apart, the length of each side is (almost exactly) onehalf as long as when the angle is one degree, or one-half of 5,730=2,865 feet. For a three-degree curve the radius is one-third of 5,730; for a four-degree curve one-fourth of 5,730; and so on. For perfect exactness the length of 100 feet should be measured not along a straight line connecting the ends of the V, but along the line of the circle of which the sides of the V are radii—i. e., the arc should be used and not the chord. The difference, however, is so slight for any curves ordinarily used on main lines of standard gauge railroad as to be ignored in practice. But for extremely sharp curves, such as our locomotives both wide and narrow gauge are built for, a considerable mathematical error would be involved by the use of 100-foot chords and calculating the length of the radius by dividing 5,730 by the degree of curve. The ratio of this error increases with the degree of curve, since the error is caused by neglecting the difference between the length of the chord and of the arc (e.g., a 60-degree curve and 100-foot chord mathematically compels 100 feet radius instead of 95½ feet; a 90-degree curve and 100-foot chord, 71+ feet radius instead of 63.6 feet).

In practice, however, the formula of dividing 5,730 by the degree of curve $(R = \frac{5.730}{10})$ is almost universally used, and the mathematical error is avoided by using two 50-foot chords for curves ranging from 10 to 16 degrees, and four

25-foot chords for curves ranging from 17 to 30 degrees, and further subdividing for sharper curves, since this almost exactly balances the error, and it is also a practical necessity in laying out sharp curves to use short chords.


For extremely sharp curves, or say roo feet radius or less, it is usual to express the curve by feet radius rather than by degrees. The table following is computed by the formula $R = \frac{5.73.0}{D}$, and fractions of feet are not taken into account.

Note.—The above engineers' method of designating the rate of curvature of a railway curve must not be confounded with the number of degrees of a circle occupied by the curved portion of the track; thus a curved track making a quarter turn, equivalent to a right angle, will always be 90 degrees of a circle (360 degrees — the whole circle) no matter whether the curve is an easy one with a long radius or a sharp one with a short radius.

Table Showing Lengths of Radius in Feet (Fractions Disregarded) for Curves from One to Sixty Degrees

DEGRE	ES	Rad	IUS	Degre	ES	Rad	IUS	Degre	ES	Rad	IUS
1	==	5730	feet	2 I	-	273	feet	4 I	=	140	feet
2	=	2865	"	22	=	260	4.6	42	===	136	"
3	=	1910		23	==	249	4.6	43	===	133	"
4	=	1432	"	24	=	239	4.4	44	===	130	" "
5	=	1146	"	25	===	229	"	45	=	127	4.4
6	==	955	"	26	=	220	"	46	=	125	4.4
7	-	819	"	27	=	2 I 2	٠.	47	=	I 2 2	"
8	=	717	"	28	==	205	"	48		119	"
9 :	=	637	"	29	==	198		49	==	117	"
10	-	573	"	30	==	191	**	50	===	115	
11		521	"	31	=	185	"	51	=	I I 2	"
I 2		478	"	32	=	179	4.6	52	=	110	"
13		441	"	33	=	174	" "	53		108	"
14 :	=	410	"	34	=	169	"	54	===	106	* *
15	-	382	"	35	=	163		55	=	104	"
16	=	358	4.6	36	=	159	"	56	==	102	"
17	=	337		37	=	155		57	=	100	"
18	=	318	"	38	=	151		58	==	99	"
19	=	302		39	=	147	"	59	=	97	"
20	=	287	4.6	40	=	143	4.4	60	=	95	"

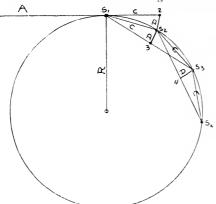
Rule for Measuring the Radius of a Sharp Curve

Multiply the distance A to B, or one-half the length of the string in inches, by itself; measure the distance D to B in inches, and multiply it by itself. Add these two products and divide the sum by twice the distance from B to D, measured exactly in inches and fractional parts of inches. This will give the radius of the curve in inches.

It may be more convenient to use a straight edge instead of a string. Care must be taken to have the ends of the string or straight edge touch the same part of the rail as is taken in measuring the distance from the center. If the string touches the bottom of the rail flange at each end, and the center measurement is made to the rail head, the result will not be correct.

In practice it will be found best to make trials on different parts of the curve to allow for irregularities. It is best not to measure across from one end of the curved track to the other even when the curve is so located that this is possible, since if any portion of the straight track at either end of the curve is included the results will be incorrect. This rule does not apply to curves of over one-half circle if the line is drawn connecting the two ends of the curve. It is a good plan to make the measurement on the inside of the outer rail of the curve, as this is often more convenient. In this case one-half of the width of gauge should be deducted from the radius when calculated, as the radius of the curve should be measured to the center of the track.

Example.—Let A C be a 20-foot string; half the distance, or A B, is then 10 feet, or 120 inches. Suppose B D is found on measurement to be 3 inches. Then 120 multiplied by 120 is 14,400, and 3 multiplied by 3 is 9; 14,400 added to 9 is 14,409, which, divided by twice 3, or 6, equals 2,401½ inches, or 200 feet 1½ inches, which is the radius of the curve.


The formula is thus stated:
$$A B^2 + B D^2 = R$$
.

Or applied to the above example, $\frac{120^2 + 3^2}{2 \times 3} = 2.401\frac{1}{2}$ in. = 200 ft. 1\frac{1}{2} in

Laying Out Curves

It is hardly within the limits of a condensed catalogue of locomotives to cover fully a subject so technical as the laying out of railroad curves. In cases where the services of a professional surveyor cannot be obtained it is possible to lay out curves without surveyors' instruments.

In the diagram the straight track is represented by the line A—S₁. The point where the curve is to begin is noted as Station One (S₁). Continue

the straight line beyond S₁, as shown by line C (*i. e.*, from S₁ to 2), a distance of 100, 50, or 25 feet, according to how sharp a curve is to be laid out or whether the situation is cramped or not, as shown by the table below. Start from Station S₁ with a line or chain of length C, as given by the table. From the end of this line C measure the offset D, of length as given in the table, to Station Two (S₂), so that its distance from Station S₁ is also

measured by the line C. Then measure from S₂ the same offset D to point 3, making distance from point 3 to S₁ also the same as line C. A line drawn from S₁ to point 3 and continued in the same direction an additional distance C fixes the next point, Station Three (S₃). Making from S₃ another offset D, so that the distance S₂ to S₃ and S₂ to 4 are each the length of line C, and prolonging the line S₂—4 in a straight line an additional distance C, fixes Station Four (S₄). Thus the points on the curve have been fixed S₁, S₂, S₃, and S₄. The same process is continued until a point is reached where it is desired to discontinue the curve and lay straight track.

In cramped locations the length of the line C (which is the chord of the arc) can be decreased to one-half or one-quarter of the lengths given in the table below, and the corresponding offset D will be respectively one-quarter and one-sixteenth of the lengths given in the table. In the table the length of the line C is taken at 100 feet for curves 1 to 12 degrees; 50 feet for curves of 13 to 24 degrees, and 25 feet for sharper curves; and for the reason that for the sharper curves the situation is usually so cramped that measuring the longer distances is impracticable. In the diagram the line R is the radius of the curve, but the formation of the ground where the curved track is to be laid is supposed to be such that it is impossible to fix a pin at the center of the circle, and in this way, by using a line of the proper length, to describe the circle.

Table of Radii and Deflections for Curv	able of	adie of Kadii an	a Deflections	ior Curve
---	---------	------------------	---------------	-----------

Curve in Degrees	Radius R in Feet	Offset D in Feet C=100 Feet	Curve in Degrees	Radius R in Feet	$\begin{array}{c} \text{Offset D} \\ \text{in Feet} \\ \text{C=50 Feet} \end{array}$	Curve in Degrees	Radius R in Feet	Offset D in Feet C=25 Feet
I	5,730	. 87	13	44 I	2.83	25	229	1.362
2	2,865	1.74	14	410	3.05	26	220	1.405
3	1,910	2.62	15	382	3.27	28	205	1.51
4	1,433	3 · 49	16	358	3.48	30	191	1.615
5	1,146	4.36	1.7	337	$3 \cdot 7$	32	179	1.72
6	955	5.23	18	318	3.92	36	150	1.935
7	819	6.10	10	302	4.13	40	143	2.14
7 8	717	6.98	20	287	4.35	44	130	2.34
9	637	7.85	2 I	273	4.56	50	115	2.64
10	573	8.72	22	260	$4 \cdot 77$	60	95	3.125
ΙI	521	9.58	23	249	4.98		, ,	0 0
I 2	478	10.45	24	239	5.2			

The offset D for given radius R and chord C is found from formula D = $\frac{C^2}{2R}$

Note.—For extremely sharp curves, say 20 to 50 feet radius, it is practicable to lay off the curve by the above method at one-twelfth the usual scale by using inches throughout instead of feet; for example, in case of a 30-foot radius curve (radius 360 inches) the formula for 16-degree curve, substituting inches for feet, using a 50-inch chord and 3.48-inch offset, will give sufficiently close results.

The Resistance of Curves

The frictional resistance to the passage of trains around curves is very considerable, and is also extremely variable. The shorter the radius of the curve the greater is the resistance; also the length of the wheel-bases of locomotive and of the cars, the elevation of the outer rail, the speed, the condition of track and rolling stock, the length of the train and the length of the curved track, and other matters influence the resistance, so that no one formula will apply to all cases. If the gauge of track on curves is not sufficiently widened to prevent the wheels from binding against the rails the resistance may be excessive.

Excessive or irregular curves, and especially sharp curves in connection with steep grades, are to be avoided, as they greatly decrease the loads which locomotives can handle, limit the amount of business practicable, and increase the cost of operation and the repairs required for track and rolling stock. It is preferable to increase the distance or the expense of track construction, rather than for sake of saving in first cost to lose continuously in operating expenses.

Compensation, or Reduction of Grade on Curves

It is customary, when a curve occurs on a grade, to reduce the grade on the curved part of the track so that the combined resistance of the flattened grade and the curve will not exceed the resistance of the steeper grade on the straight part of the track.

In practice most engineers compensate for curves on grades at the rate of two one-hundredths of a foot grade in each 100 feet for each degree of curvature.

Example.—If a 20-degree curve comes on a grade of 5 feet per 100, the grade is reduced $20 \times {}^{+0.0}_{10.0} = {}^{+0.0}_{10}$ of 1 foot, which, subtracted from the original grade of 5 feet per 100, leaves $4{}^{+0.0}_{10}$ feet per 100 as the compensated grade on the curve; or, in other words, a grade of 5 feet in 100 coming on a straight track offers the same resistance as a grade of $4{}^{+0.0}_{10}$ feet in 100 coming on a 20-degree curve.

Where the grade is stated in feet per mile the equivalent reduction for each degree of curvature is $1,\frac{36}{60}$ feet per mile.

Example.—A 20-degree curve coming on a grade of 264 feet per mile, the grade is reduced $20 \times 1_{1000}^{+66} = 21_{100}^{+86}$ feet, which, subtracted from 264, leaves 242_{100}^{+8} feet per mile as the compensated grade on the curved track.

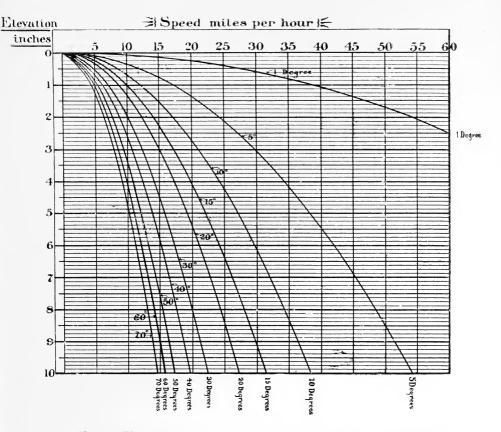
The above rule works well within the limits of ordinary railroad practice where excessive grades and curves are not required. For short local roads, such as are used for mining and industrial purposes, where very heavy grades and very sharp curves are necessary, the rate of compensation should be increased. On narrow gauge three one-hundredths of a foot per degree of curvature gave the best results with 40-degree curves on 4 per cent grades.

Sharper curves may be used on narrow gauge than on wide gauge, because there is less difference between the length of the inner and outer rails on curves of the same radius, and because narrow-gauge rolling stock usually has a shorter wheel-base.

Gauge of Track Widened on Curves

Theoretically, in order to pass around curves perfectly, every axle in the train should point to the center of the curve, and the outside wheels should be larger than the inner wheels. In practice, the difference in size of the wheels is supposed to be accomplished by coning the tread of each wheel so that the diameter close to the flange is greater than at the front face. the radial position of the axles is impracticable, as cars and locomotives are built so that two or more axles are parallel. On sharp curves this arrangement of the axles causes the cars and locomotive to bind, a four-wheel car or truck having a tendency to press the front wheel against the outside rail and the rear wheel against the inside rail. On this account the usual amount of clearance between the rails and wheel flanges must be increased. The exact amount of additional width of gauge required on a curve depends on the radius of the curve, the gauge of track, and the wheel-bases of the rolling stock, and no rule can be given which will apply to all cases. The width of the tread of the wheels limits the amount of extra width of gauge practicable. Actual trial has proved that on narrow gauge, with locomotives and cars of short wheel-base and with sharp curves, that a good rule is to widen the gauge of track one-sixteenth of an inch for each 21/2 degrees of curvature; i. e., a 40-degree curve calls for one inch increase in gauge of track. extremely sharp curves, such as are often used about manufactories, mines, etc., it is well to widen the gauge as much as can be done and still secure a safe amount of bearing on the rail for the car wheels, allowing for wear of flanges and for wheels hugging one rail. When a six-driver locomotive, with the center drivers flangeless, is used on an extremely sharp curve, it may be advisable to lay extra rails inside of the outer rail and outside the inner rail.

Elevation of Outer Rail on Curves


In passing around curves the centrifugal force tends to tip over the rolling stock and to crowd the wheels against the outer rail. This tendency increases with increased speed, and is greater in the case of a sharp curve than an easy curve. To counteract this tendency—which at a very high rate of speed might derail the train—it is desirable to elevate the outer rail of a curved track so that the train will lean inward to such an extent that at the desired rate of speed there will be no more pressure against one rail than against the other. Where the same track is used for both slow and fast trains it is usual to elevate the outer rail to suit the fast train. Excessive speeds around very sharp curves are altogether impossible.

It is customary to elevate the outer rail one-half inch for each degree of curvature on roads of 561/2-inch gauge of track, and for speeds of 25 to 35 miles per hour. For narrower gauges the elevation is proportionately less. Thus, if on standard (56½-inch) gauge with a speed of 30 miles per hour on a 10-degree (573 feet radius) curve the outer rail is elevated 5 inches, on a gauge of track 281/4 inches the elevation would be 21/5 inches. The elevation of the outer rail on 36-inch gauge should be very nearly two-thirds of the elevation for 561/2-inch gauge for the same speed around the same curve. The above rule is only approximate and requires modification for curves much sharper than 10 degrees and for speeds much less than 15 to 20 miles per hour. If the outer rail is elevated exactly the proper amount it will be impossible for a passenger to feel any sensation of tipping or rocking motion while the train is on the curve. The exact elevation to secure this result can only be arrived at in each case by very abstruse calculations. It is considered the best practice in approaching a curve to begin to make a difference in the level of the two rails some distance—say 50 or 100 feet—before the curve is reached, and to elevate the outer rail and depress the inner rail so that the center of the track is level. The best difference in level between the two rails on curved track can only be determined by actual trial after the track is complete.

We submit, however, a Diagram for Elevation of outer rail on curves up to 70 degrees and for speeds up to 60 miles per hour for a standard $(56\frac{1}{2}-inch)$ gauge track.

Example.—What should be the elevation of the outer rail for standard gauge track on a 20-degree curve for a speed of 25 miles per hour?

The rates of speed are noted at top line of diagram; follow down the line for 25 mile per hour speed until it intersects the curved line for 20-degree curve—noted on bottom line of diagram; follow from this intersection to the left-hand margin, which gives the required elevation at 8½ inches.

Note.—The elevation for other gauges of track will be in the same proportion, or for

Note.—The above diagram does not cover unreasonably fast speeds on sharp curves, and does not provide for any elevation in excess of 10 inches on standard gauge.

In average practice, if any variation is found advisable from the results obtained from the above diagram, it will probably be in the direction of reduced rather than of increased heights. The diagram is as nearly accurate as practicable for track laying, and modifications may be made after practical tests.

Speed

In most instances, the daily mileage which our locomotives can be relied upon to maintain is determined more by local conditions— such as the length of the haul and the time required to exchange trains at each end of the road—than by the ability of the locomotive to make excessive speed. In any case, the speed at which a locomotive can haul a given load is dependent upon many factors, most of which are too variable to be covered by any formula. For these reasons we have refrained from any mention of speed in connection with our figures of hauling capacities on level and on grades. We would prefer to ask our correspondents to furnish us with a memorandum of their requirements as explained on page 17 of this catalogue, which will enable us to suggest such sizes and designs of locomotives as will in our judgment cover the best selection.

Some general facts as to speed may be of interest.

It requires more power to start a train than to keep it in motion after it has been started. This is due to the fact that the resistances of axle friction and of flange friction are greatest in starting and diminish very rapidly as the train first acquires motion, and then continue to diminish, but less rapidly, as the train speed accelerates. Journal lubrication is more perfect at high speed than at slow, and in cold weather when oil congeals the difference is greatest. The lessening of flange friction with increase of speed is believed to be due largely to the increase of momentum and to the tendency of a body in motion to move in a straight line. For these reasons a locomotive may be relied upon to haul any train it can start.

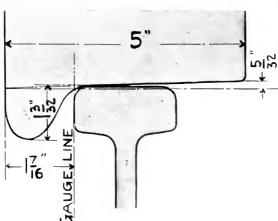
The resistance of the atmosphere is practically zero at slow speed, but is excessive at extreme speed; but the old idea that the resistance increases as the square of the speed appears to be an error.

Sharp or badly laid out curves or uneven track may wholly prevent a rate of speed which would be considered moderate on good straight track.

Car trucks out of square, wheels out of center, wheels mismatched on axles, and other rolling-stock defects are accentuated at fast speed.

The resistance caused by a strong side wind may be negligible with small cars at slow speed, but a considerable factor with large cars at high speed.

The resistance due to grade is absolutely constant whether speed is fast or slow, but the momentum of fast speed will take a train up a grade of considerable length with but little retarding, while the same grade may stall a slow-moving train.


No locomotive can at the same time haul its heaviest load and make its fastest speed. As speed increases the available tractive force decreases. At slow speed the mean effective pressure is estimated at 85 per cent of the boiler pressure. Steam requires time to move, and as piston speed is increased the steam from the boiler cannot get into the cylinders quick enough nor the exhaust steam be expelled quick enough to maintain the same mean effective pressure as at slow speed, and from mechanical as well as economic reasons steam must be used expansively. Together with the loss of mean effective pressure at high speed a greater amount of power is absorbed in forcing exhaust steam through the exhaust nozzles. At extreme speeds the best

designed fast passenger engines, using steam expansively in the most efficient manner, will for an instant compress the exhaust steam to a very much higher pressure than the boiler pressure. The ratio of loss of effective tractive power to increase of speed varies greatly with the design of the locomotive. A better proportion of its maximum load at maximum speed can be hauled by a passenger locomotive than by a freight locomotive, each machine being well designed for its distinctive service. This is because the passenger locomotive with its large driving wheels has a more moderate and effective piston speed when developing high train speed than the freight engine with small drivers at less train speed. This results in the apparent paradox that a passenger locomotive can haul a heavier train at fast speed and can develop more horse-power than a much heavier freight locomotive with larger cylinders and greater tractive force.

Gauge of Track

The gauge of track of a railroad is always the distance measured in the clear between the rails, as shown by the above sketch. A three-foot gauge track should measure exactly 36 inches in the clear between rails on straight track. (There are, however, some tracks, chiefly for industrial purposes, laid with the gauge measured from outside to outside of rail heads, and with rolling stock having wheel-flanges outside instead of inside.) The gauge of track is not measured between the flanges of rolling-stock wheels, and it is a mistake to increase the track gauge for sake of "clearance." (But see page 179 as to widening track gauge on curves.) In the construction of locomotive and car wheels the proper amount of clearance or side-play is provided, as shown by the accompanying sketch, one-half actual size, showing a rail with a wheel of the standard flange and tread. The position of the gauge-line is 176 inches

from the back face of the tire; the width of tread is 3 ½ inches measured from the gaugeline; the width over all is 5 inches; the depth of flange, 1 ¾ inches; the taper of the tread is ¾ per inch.

Customers in putting on new tire are cautioned to locate the position by the gauge-lines (or by the back faces of the tires), and not by making the front faces of tire and wheel center come flush, since these are often faced off for sake of finish.

Comparative Cost of Operating Animals and Light Locomotive

Cost per year of operating 3 mules and 3 drivers

Where Feed and Labor are at	Low Prices	Average Prices	High Prices
3 mules' feed, har- ness, shoeing, care, etc., for 365 days,			
each per day A	t 40c.=\$438.00	At $75c = 821.25	\$1.25=\$1,368.75
3 drivers' wages, 300 days, each per day. A 6 per cent interest, mules worth \$100	at \$1.00= 900.00	At\$1.50=1,350.00	2.25= 2,025.00
each	18.00	18.00	18.00
Total	\$1,356.00	\$2,189.25	\$3,411.75

Cost per year of operating one of our light locomotives capable of doing the work of 10 to 40 mules or horses

Where Fuel and Labor are at	Low Prices	Average Prices	High Prices
Dil and repairs, per year	\$50.00	\$100.00	\$200.00
mines, lumber mills, etc., per day. A Engineer's wages,	t 20c.=\$ 60.00 A	t \$1.00=\$300.00 A	t \$3.00=\$900.00
300 days, per day. A Boy to switch, cou-	t \$1.75= 525.00 A	t 2.50= 750.00 A	t 3.25= 975.00
ple, etc	t 75c.= 225.00 A	t 1.00= 300.00 A	t 1.50= 450.00
say	1 50.00	150.00	150.00
Total	\$1,010.00	\$1,600.00	\$2,675.00

The above calculations demonstrate that on an average where three animals and three drivers, or animals and drivers in different proportion but at about the same daily expense, are used, it is cheaper to operate a light locomotive. From \$5 to \$6 per day, or \$1,500 to \$1,800 per year, is a reasonable allowance for the cost of operating a light locomotive to take the place

of 10 to 40 animals. It is not unusual for an engine to save its cost in less than a year. When through strikes or dullness of trade an engine is idle it saves money as well as when it is busy; only a few cents' worth of white lead and tallow are needed for it, while mules, whether idle or not, must be fed.

There are a number of items which must be considered in a fair comparison of animals with locomotives, which vary too much with each individual case to be noted in the table given on page 184.

A locomotive makes so much quicker time than animals that fewer cars are required to carry a greater daily total of tonnage. This effects a reduction in original investment that may nearly amount to the cost of the locomotive, and also reduces materially the running expenses. This reduction in the number of cars—the engine, with quick trips, replacing a number of teams making slow trips—reduces the number of turnouts needed. In one case, one of our engines was mostly paid for by the sale of rails from extra track that was no longer of any use.

The keeping up of a path between the rails for animals to work on, the renewing of ties worn out by constant trampling over them, is a vexatious expense avoided by the use of a locomotive. This item often amounts to one man's continuous time, or \mathfrak{r} to \mathfrak{r} per day.

Even where a large sum is spent in keeping up a footway, the chance of accident and wear and tear of animals is greater and the average useful life is less than that of a locomotive.

The relative economy increases rapidly with the length of the road. On a track of a quarter of a mile or less in length, the locomotive, although much preferable, would not have so much advantage as on a road half a mile long. While it is almost impracticable to haul with mules much over half a dozen miles, freight can be hauled ten miles by the locomotive cheaper than by mules two or three miles.

These incidental savings, which are not included in the table, will usually cover the additional cost if heavier rails are required, and also of any changes of grades, curves, mine headings, etc., as may be advisable for the most economical use of the locomotive.

We recommend that an engineer be also enough of a mechanic to do all light repairs and keep the locomotive in good order. With such a man the item of repairs, unless the engine is overworked, should not average for say twenty years over \$50 to \$100 per year. The amount of fuel used is also considerably dependent on the engineer. We believe a liberal salary to a good, competent engineer the best policy. Our system of standard templets enables us to express duplicate parts on telegraphic orders.

We believe that if parties who are doing hauling on tramways by animals will calculate for themselves the cost of operating, their own figures will show more than ours the advantages and economy of substituting light locomotives.

Estimates of Cost of One Mile of Railroad Track

Laid with Steel Rails Weighing 16, 20, 25, 30, 35, 40, and 45
Pounds per Yard

The following estimates are for the track ready for rolling stock, not including survey, right of way, buildings, tunnels, bridges, etc. They are intended merely to give a basis for more exact calculations, and will require modification to conform to variations in prices of material, freight charges, etc. The item of grading is very variable, and the lowest figures for this are for easy country or where steep grades and sharp curves are used to avoid expense in grading. These estimates are for single track (*i. e.*, two rails), and no allowance is made for sidings, switches, frogs, crossings, culverts, etc.

I.—Estimate of cost of one mile of track with 16-pound steel rails

	Rails at \$31 per Ton	Rails at \$36 per Ton	Rails at \$41 per Ton
25.320 tons of 16- pound steel rails A	t \$31=\$779.43	At \$36=\$905.14	At \$41=\$1,030.86
3½x ³ / ₈ spikes A 357 splice joints A 2,640 crossties A	t = 22c. = 78.54	At 25c.= 89.25	At 27c. = 96.39
Grading and laying track.	= 300.00	= 500.00	
Total per mile	\$1,596.22	\$2,068.91	\$2,537.9

Memo.—Each \$1 per ton variation in the price of 16-pound rails will make a difference of \$25.14 per mile.

II.—Estimate of cost of one mile of track with 20-pound steel rails

	Rails at \$31 per Ton	Rails at \$36 per Ton	Rails at \$41 per Ton
31 2240 tons of 20- pound steel rails A	t \$31=\$974.29 A	t \$36=\$1,131.42 A	At \$41=\$1,288.57
$4x_{16}^{7}$ spikes A 357 splice joints A 2,640 crossties A	t 27c.= 96.39 A	t 30c.= 107.10 <i>i</i>	At 33c. = 117.81
Grading and laying track	= 300.00	= 500.00	= 700.00
Total per mile	\$1,831.72	\$2,336.98	\$2,844.97

Memo.—Each \$1 per ton variation in the price of 20-pound rails will make a difference of \$31.43 per mile.

III.—Estimate	of	cost	of	one	mile	of	track	with	25-pound	steel	rails
---------------	----	------	----	-----	------	----	-------	------	----------	-------	-------

	Rails at \$30 per Ton	Rails at \$35 per Ton	Rails at \$40 per Ton
39½40 tons of 25- pound steel rails 3,495 pound steel rails 3,495 pounds of 4x½ spikes 357 splice joints 2,640 crossties Grading and laying track	At 2_{100}^{85} c.= 82.13 At 32c.= 114.24	At 2_{100}^{55} c.= 89.12 At 35c.= 124.95	At 2_{100}^{85} c.= 99.61 At 38c.= 135.66 At 30c.= 792.00
Total per mile	\$2,302.94	\$2,849.07	\$3,398.70

Memo.—Each $1\$ per ton variation in the price of 25-pound rails will make a difference of 39.28 per mile.

IV.—Estimate of cost of one mile of track with 30-pound steel rails

	Rails at \$30 per Ton	Rails at \$35 per Ton	Rails at \$40 per Ton
47;320 tons of 30-pound steel rails 3,950 pound steel rails 3,950 pounds of 4½x½ spikes 3,57 splice joints 2,640 crossties Grading and laying track	At $\$30 = \$1,414.28$ At 2^{35}_{100} c.= 92.82 At 37c.= 132.09 At 20c.= 528.00	At 2_{100}^{55} c.= 100.72 At 40c.= 142.80	At 2_{100}^{85} c.= 112.57 At 43c.= 153.51 At 30c.= 792 00
Total per mile	\$2,567.19	\$3,153.52	\$3.743.79

 $\rm Memo.--Each~\$r$ per ton variation in the price of 30-pound rails will make a difference of \$47.14 per mile.

V.—Estimate of cost of one mile of track with 35-pound steel rails

	Rails at \$30 per Ton	Rails at \$35 per Ton	Rails at \$40 per Ton			
55 tons of 35-pound steel rails	At $\$_{30} = \$_{1,650.00}$ At $2^{8.5}_{10.0}$ c.= 92.82 At 42c.= 149.94 At 20c.= 528.00	At 2_{100}^{55} c.= 100.72 At 45c.= 160.65 At 25c.= 660.00	At 2_{100}^{85} c.= 112.57 At 48c.= 171.36			
Total per mile	\$2,920.76	\$3,446.37	\$4,075.93			

 $\rm M_{EMO}.--Each~\$\textsc{i}$ per ton variation in the price of 35-pound rails will make a difference of \$55 per mile.

	Rails at \$30 per Ton	Rails at \$35 per Ton	Rails at \$40 per Ton
621920 tons of 40- pound steel rails 4.185 pounds of 5x½ spikes 357 splice joints 2.640 crossties Grading and laying track	$At 2_{100}^{35} c. = 98.35$ $At 45c. = 160.65$	At 2_{100}^{55} c.= 106.71 At 50c.= 178.50	At $2\frac{85}{100}$ c.= 119.27 At 55c.= 196.35
Total per mile	\$3,304.71	\$3,977.21	\$4,753.90

Memo.—Each \$1 per ton variation in price of 40-pound rails will make a difference of \$62.86 per mile.

VII.—Estimate of cost of one mile of track with 45-pound steel rails

	Rails at \$30 per Ton	Rails at \$35 per Ton	Rails at \$40 per Ton
70½2±0 tons of 45- pound steel rails	At \$30=\$2,121.43 A	At \$35=\$2,475.00	At \$40=\$2,828.57
5x 16 spikes	At $50c. = 178.50 A$	At 60c.= 214.20	At 70c.= 249.90
track	= 500.00	= 700.00	= 1000.00
Total per mile	\$3,621.67	\$4,450.95	\$5,388.06

Memo.—Each S1 per ton variation in price of 40-pound rails will make a difference of \$70.71 per mile.

Memorandum of Weights and Capacities of Cars for Use in Estimating Weights of Trains

	Narrow Ga	uge	Wide Gau	ıge
	Weight of Car Pounds	Weight of Load Pounds	Weight of Car Pounds	Weight of Load Pounds
8-wheel flat car	9,500 to 11,000 10,000 " 12,000 15,500 " 18,000	25,000 30,000 40,000	18,000 to 20,000 20,000 " 22,000 22,000 " 24,000 26,000 " 28,000 28,000 " 30,000 32,000 " 36,000	10,000 50,000 60,000 70,000 80,000
8-wheel gondola car	15,000 to 16,500 21,000 " 23,000 22,000 " 24,000	30,000 44,000 50,000	19,000 " 23,000 26,000 " 28,000 34,000 " 38,000 36,000 " 42,000	40,000 60,000 80,000
8-wheel box car	14,000 to 15,000 19,000 " 21,000 20,000 " 22,000 22,000 " 23,000	20,000 30,000 40,000 50,000	33,000 " 36,000 34,000 " 36,000 38,000 " 40,000 40,000 " 46,000	60,000 70,000 80,000
4-wheel flat car 4-wheel gondola car 4-wheel box car	5,000 6,000 6,500	12,000 12,000 12,000	9,000	20,000
	Weight of Car Pounds	Number Passengers Seated	Weight of Car Pounds	Number Passengers Seated
8-wheel passenger coach	26,000	52	90,000	62
Light 8-wheel open excursion coach Light 8-wheel coach for motor lines, subur-	9,700	60	18,000	80
ban roads, etc	10,000	40	10,000	40

Weights and Capacities of Street Cars

Usual gauges of track, $56\frac{1}{2}$, 60, and $62\frac{1}{2}$ inches. 4-wheel, 1-horse street car, 16 to 18 ft. long, 3,500 lbs., seating 16 passengers. " 2 " " 2 3" 2 5" " 5 ,000 " 2 28 "

Note.—Passengers average 15 per ton of 2,000 pounds.

Weights and Capacities of Logging Cars

36 to 561/2 inches gauge of track.

Memo.—The bunks of logging cars for narrow gauge are shorter than for wide gauge and logs must be piled higher than for wide gauge; for this reason standard gauge is usually preferable to narrow for logging.

	Weight			Capacity, White Pine 8,000 Lbs., Yellow Pine 10,000 Lbs., per 1,000 Feet
4-wheel	logging	cars	3,000 lbs.	1,000 ft. of logs= 8,000 to 10,000 lbs. 2,000 " =:16,000 " 20,000 "
4.4	4.6	4.4		2,500 " = 20,000 " 25,000 "
8-wheel	"		6,900 '' 8,400 ''	2,500 to 3,000 ft.of logs=20,000 to 30,000 lb. 3,500 " 4,000 " = 28,000 " 40,000 "
4 4	44	"	- 11	4.500 " 5.000 " " = 36,000 " 50,000 " " = 36,000 " 50,000 " = 14,000 " 60,000 "

Weights and Capacities of Contractors' Cars and Industrial Dump Cars

Four wheels; usual gauge of track, 36 inches

			Weight of Empty Car	Average Weight of Load
cubic	vard	capacity	1,400 lbs.	3,000 lbs.
4.4			2 500 "	3,000 lbs. 4,500 ''
"	4.4		2 000 ''	6,000 ''
4.6	4.4		3 500 ''	7,500 ''
4.4	4.4	44	4 500 "	9,000 "
4.4	4.4	**	6 000 "	12,000 "
	4.4	44	6,800 "	15,000 ''

Weights and Capacities of Colliery Cars

Four wheels; usual gauge of track, 36 to 44 inches

App	roximat	е Сарас	eity	Weight of Empty Car	Average	Weight of I	Load
15 bushels 20 " 25 " 30 " 33 " 35 " 40 " 46 " 54 " 21/2 "long	" " " " " " "		coal	500 lbs. 600 " 850 " 950 " 1,050 " 1,150 " 1,250 " 1,400 " 1,700 " 2,000 "	1,200 lbs 1,500 " 1,900 " 2,300 " 2,500 " 2,700 " 3,000 " 4,100 " 5,700 " 6,700 "	s. bituminous "" "" "" "" "" anthracite	s coal "" " " " " coal

Miscellaneous

A bushel of bituminous coal weighs 76 pounds, and contains 2,688 cubic inches.

A bushel of hard coke weights 40 pounds.

A bushel of soft or gas-house coke weighs 32 pounds.

One acre of bituminous coal contains 1,600 tons of 2,240 pounds per foot of thickness of coal worked. Fifteen to 25 per cent must be deducted for waste in mining.

One ton, 2,000 pounds, of bituminous coal requires for storage 40 cubic feet, or one ton of 2,240 pounds 45 cubic feet.

One ton, 2,000 pounds, of anthracite coal requires for storage 33 cubic feet, or one ton of 2,240 pounds 37 cubic feet.

A cubic yard of loose earth weighs 2,200 to 2,600 pounds.

A cubic yard of wet sand weighs 3,000 to 3,500 pounds.

A cubic yard of broken rock weighs 2,600 to 3,000 pounds.

Water weighs about $8\frac{1}{3}$ pounds per gallon, and one gallon contains 231 cubic inches.

One cubic foot contains almost exactly 7½ gallons.

The circumference of a circle is about 3½ times its diameter.

One acre contains 43,560 square feet.

A square of 208_{100}^{71} feet contains one acre=43,560 square feet.

A square of 147_{1000}^{581} feet contains $\frac{1}{2}$ acre=21,780 square feet.

A square of 104,355 feet contains \(\frac{1}{4} \) acre=10,890 square feet.

One square mile contains 640 acres.

To find the number of gallons in a circular tank, multiply the diameter in feet by itself, then multiply by the depth in feet, then by 6, and from this sum deduct 2 per cent.

Example.—A tank 14 feet diameter and 9 feet deep. $14 \times 14 = 196 \times 9 = 1,764 \times 6 = 10,584$ less 2 per cent (= 210) = 10,374 gallons. (This is very nearly exact.)

One barrel is rated at 311/2 gallons.

Cast iron weighs about one pound per 4 cubic inches.

Wrought iron weighs about one pound per 3½ cubic inches.

Steel weighs about 2 per cent more than wrought iron.

To ascertain the weight in pounds per running foot of round steel, multiply the diameter in inches (using decimals to express fractions most conveniently) by 4; square this; divide by 6; add 1 per cent.

To ascertain the weight in pounds per running foot of square steel, multiply the size in inches (using decimals to express fractions most conveniently) by 4; square this; divide by 5; add $\frac{1}{16}$.

To ascertain the weight in pounds per running foot of flat steel, multiply the width by the thickness in inches (using decimals to express fractions most conveniently); multiply by 10; divide by 3; add 2 per cent.

Steel boiler plate weighs per square foot approximately $2\frac{1}{2}$ pounds (more exactly $2\frac{150}{100}$ pounds) for each $\frac{1}{16}$ inch of thickness.

Copper plate weighs $2^{+0.0}_{1.0}$ pounds, and brass plate $2^{+0.0}_{1.0}$ pounds per square foot of $\frac{1}{1.0}$ inch*thickness.

Weights of Logs and Lumber

Weight of Green Logs to Scale 1,000 Feet Board Measure

Yellow Pine (Southern)	10,000	pounds
Norway Pine (Michigan)	8,000	6.6
White Pine (Michigan) of off of stump6,000 to out of water7,000 to	7,000	"
out of water7,000 to	8,000	6.6
White Pine (Pennsylvania), bark off 5,000 to	6,000	
Hemlock (Pennsylvania), bark off6,000 to	7,000	6.6
Four acres of water are required to store 1 000 000 feet of	of logs	

Weight of 1,000 Feet of Lumber Board Measure

Yellow or Norway	Pine Dry,	3,000	pounds;	Green,	4,000 to 4,500	pounds
White Pine	Dry,	2,500	" ;	Green,	3,500 to 4,000	4.6

Weight of One Cord of Seasoned Wood, 128 Cubic Feet per Cord

Hickory or Sugar Maple	pounds
White Oak	6.6
Beech, Red Oak, or Black Oak	
Poplar, Chestnut, or Elm	
Pine (White or Norway)	4.4
Hemlock Bark, Dry (1 cord bark got from 1,500 feet logs) 2,000	4.4

Memorandum.—When wood is cut in 4 fect lengths, a pile 4 feet high and 8 feet long contains one full cord of 128 cubic feet. Wood for locomotive fuel is cut in 2 feet lengths and a pile 4 feet high and 8 feet long is reckoned as a locomotive cord. For our small locomotives wood should be cut about 18 inches long.

To Find the Size of Rail Needed for a Locomotive

Multiply the number of tons (of 2,000 pounds) on one driving wheel by eight, and the result is the number of pounds per yard of the lightest rail advisable.

This rule is only approximate, and is subject to modification in practice. Note.—If, as is often the case with four-wheel-connected locomotives, the weight on front and back driving wheels is not the same, the heavier weight must be taken.

To Find the Number of Tons of Rail per Mile of Road

Multiply weight of rail per yard by 11, and divide by 7. This does not include sidings, and a ton is reckoned at 2,240 pounds.

Example.—The number of tons of 28 pounds per yard rail required for one mile is $11 \times 28 = 308$; divided by 7 = 44 tons.

The number of tons of 2,000 pounds required per mile is very nearly 134 times the weight per yard.

Example.—13/4 times 28 gives 49 tons per mile required of 28-pound rail.

Rails are regularly sold by the ton of 2,240 pounds.

Table of Tons per Mile Required of Rails of Following Weights per Yard

WeightperYard	Tons of 2,240 Lb. per Mile	WeightperYard	Tons of 2,240 Lb. per Mile
16 lb. 20 " 25 " 28 " 30 "	25 tons, 320 lb. 31 " 960 " 39 " 640 " 44 " 0 " 47 " 320 "	35 lb. 40 " 45 " 56 "	55 tons, o lb. 62 " 1,920 " 70 " 1,600 " 88 " o " 94 " 640 "

Railroad Spikes, made by Dilworth, Porter & Co., (Limited), Pittsburgh, Pa.

SizeMeasured Under Head		Ties 2 Ft. between Centers, 4 Spikes per Tie, makes per Mile	Rail Used, Weight per Yard
5½ X 19	360	5,870 lbs.= 2913 kegs	45 to 100
5 X_{16}^{9}	405	5,215 " = 26 "	40 to 56
$5 \times \frac{1}{2}$	505	4,185 " = 21 "	35 to 40
$4\frac{1}{2} \times \frac{1}{2}$	535	$3,950$ " = $19\frac{3}{4}$ "	28 to 35
4 X 1/2	605	3.495 " = $17\frac{1}{2}$ "	24 to 35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	690 780	$3,065$ " = $15\frac{1}{3}$ " } $2,710$ " = $13\frac{1}{2}$ " }	20 to 30
$ \frac{3\frac{1}{2} \times \frac{7}{16}}{4 \times \frac{3}{8}} $	890 1,025	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16 to 25
$\frac{3\frac{1}{2} \times \frac{3}{8}}{3 \times \frac{3}{8}}$	1,250 1,380	$1,690 " = 8\frac{1}{2} " ($ $1,530 " = 7\frac{2}{3} " ($	16 to 20
$^{3}_{2}\frac{1}{2} \times ^{3}_{8}$	1,650	$1,280$ " = $6\frac{4}{5}$ "	12 to 16

Crossties per Mile

Center to Center	Ties	Center to Center	Ties
1 ½ feet 1 ¾ " 2	3,520 3,017 2,640	2 ½ feet 2½ "	2,348 2,113

Splice Joints per Mile

2 Bars and 4 Bolts and Nut	s to each Joint	2 Bars and 4 Bolts and Nu	its to each Joint
Rails 20 feet long " 24 " " 26 " "	528 joints 440 " 406 "	Rails 28 feet long	378 joints 352 "

The length of rails as usually sold is 90 per cent 30 feet long, and 10 per cent 24 to 28 feet long, requiring 357 splice joints per mile. The aver-

age weight of splice joints (complete with 2 bars and 4 bolts and nuts) is as follows:

For rails of 16 to 20 pounds per yard, each joint weighs 5 to 6 pounds.

"	* *	24 to 28					6 to 8	"
"	"	30 to 35	4.4	"	4.4	" "	10 to 12	"
6 6		40 to 50	"	"	"	"	12 to 16	"
4.4	4.4	56 to 60	6.6	6.6	6.6	6.6	18 to 21	6.6

Comparison of Weights of Rail—American and Metric Standards

1 1b	o. per ye	1.= 0.496 kil	og. per metre	ı ki	log. per me	etre= 2.016 lb.	per yd.
8	"	= 3.968		4		= 8.064	4.6
10	"	= 4.960	"	5	"	=10.080	4.4
I 2	" "	= 5.952	4.4	6	4.6	=12.096	
16		= 7.936	4.4	8	4.6	=16.128	4.4
20	4 4	= 9.920	4.4	10	4.4	=20.160	6.6
25	"	=12.400	"	I 2		=24.192	4.4
30	4.6	=14.880	"	14		=28.224	4.4
35	"	=16.960	" "	16		=32.256	
40	"	=19.840	"	20	4.4	=40.320	4.6
45	" "	=22.320	" "	22	"	=44.352	"
50	4.6	=24.800	"	24	4.4	==48.384	"
5.5	"	=27.280	"	26		=52.416	4.4
60	6.6	=29.760	4.6	30	"	=60.480	4.4

To change pounds per yard to kilograms per metre: Divide by 2, and then subtract $\frac{1}{10}$ of 1 per cent (.008).

EXAMPLE.—60 pounds per yard, divided by 2=30; 1 per cent of 30=.3; $\frac{1}{10}$ of 1 per cent (.008) of 30=.24; 30=.24=29.76 kilograms per metre.

To change kilograms per metre to pounds per yard: Multiply by 2, and then add $\frac{8}{10}$ of 1 per cent (.008).

EXAMPLE.—24 kilograms per metre multiplied by 2=48; $_{10}$ of 1 per cent (.008) of 48=.384, which added to 48 makes 48.384 pounds per yard.

NOTE.—Approximately each 1,000 pounds weight resting on four wheels requires one pound per yard weight of T rail; i. ϵ .. a locomotive with 20,000 pounds on four wheels needs a rail 20 pounds per yard.

American and Metric Standards of Length

```
I millimetre = _{1005}^{10} metre = 0.03937 (nearly _{25}^{1}) inch=0.00328 foot 1 centimetre = _{100}^{10} metre = 0.3937 (full _{38}^{3}) inch=0.0328 foot 1 metre ( = 1000 millimetres = 39.37079 (about 39 _{38}^{3}) inches 2 = 1000 centimetres = 3.2809 feet = 1.0936 yard 1 kilometre 1000 metres ( = 3280_{10}^{9} feet = 1093_{10}^{6} yards 1 inch = 2.5399 centimetres = 25.3995 millimetres 1 foot = 30.4794 centimetres = 304 7944 millimetres 1 yard = 91.4383 centimetres = 914.3835 millimetres 1 mile = 1.6094 kilometres = 1609_{10}^{4}0 metres
```

American and Metric Square Measure

American and Metric Cubic Measure

```
      I cubic millimetre
      = 0.000061 cubic inch

      I cubic centimetre
      1000 cubic mm.=
      0.01023 cubic inch

      I cubic metre
      = 1000000000 cubic mm.=

        \begin{cases}
            610230 & cubic inches \\ 35.3156 & cubic feet \\ 1.3080 & cubic yard \\ 0.88 & cu. ton of 40 cu. ft. \\
            \begin{cases}
            cubic yard \\ 0.88 & cu. ton of 40 cu. ft. \\
            \begin{cases}
            \begin{cases}
            2.11342 & pt., & liquid measure \\ 1.05671 & qt., & liquid measure \\ 0.26417 & gal., & liquid measure \\ 61.023 & cubic inches \end{cases}
```

American and Metric Cubic Measure—Continued

```
I cubic inch =16387 cubic millimetres

I cubic ft. =1728 cubic in. =0.02832 cubic metre =283200 cu. centimetres

I cubic yd. =27 cubic ft. =0.7645 cubic metre =764500 cu. centimetres

I cubic ton of 40 feet =1.1328 cubic metre =1132800 cu. centimetres

I pint =28.9 cubic in. =0.47315 litre =473.15 cu. centimetres

I quart =57.75 cubic in. =0.9463 litre =946.3 cu. centimetres

I gallon =231. cubic in. =3.7852 litre =3785.2 cu. centimetres
```

American and Metric Standards of Weight

```
      I kilogram
      =2.2046 lb. (usually reckoned as 2½ lb.)

      I pound
      =0.45359 kilograms

      I metric ton (1000 kilograms)
      =2204½ lb. (usually reckoned as 2200 lb.)

      I ton of 2000 pounds
      = 907.2 kilograms

      I ton of 2240 pounds
      =1016. kilograms
```

NOTE.—In ocean shipments it is customary for the vessel to have the option of reckoning each box or piece at 2,000 pounds, or at 40 cubic feet per ton. In computing the cubic measurements extreme dimensions are taken, and the width, length, and height multiplied together to arrive at the cubic contents of a rectangular figure which would contain any irregularly shaped piece. It is our practice to pack so as to secure economy of space, and to mark each piece with dimensions in feet and tenths of feet.

Distances in Miles and in Kilometres for Comparison of Lengths of Railroads, Speed per Hour, etc.

(5,280 feet=1 mile. 1,000 metres=1 kilometre.)

I	mile = 1.61	kilometres.	I	kilometre	= 0.62	miles
2	miles= 3.22	4.6	2	kilometre	s= 1.24	4.4
3	"=4.83	4.4	3	6.6	= 1.86	4.6
4	"=6.44	4.6	4	4.4	= 2.48	4.4
5	" = 8.05	4.4	5	4.4	= 3.10	4.6
6	"=9.66	4.4	6		= 3.73	4.4
7	" =11.26		7	4.4	= 4.34	4.4
8	" =12.88	4.6	8	"	= 4.97	
9	" =14.49	4.4	9	4.6	= 5.59	4.4
10	" =16.09	"	10	4.4	= 6.21	4.4
ΙI	" =17.70	4.4	ΙI	6.6	= 6.83	4.4
Ι2	" =19.31	6.6	Ι2	4.6	= 7.45	4.4
13	" =20.92	6.6	13	4.4	= 8.08	4.4
14	" =22.53	6.6	14	"	= 8.70	4.4
15	" =24.94	4.4	15	4.4	= 9.32	4.6
20	" =32.10	4.6	20	4.4	=12.43	4.4
25	" =40.24	4.6	25	"	=15.53	4.4
30	" =48.28	4.4	30	"	=18.64	6.6
35	"=56.33	6.6	35	44	=21.75	4.4
40	" =64.37	6.6	40	4.6	=24.85	4.4
50	" =80.47	"	50	4.6	=31.07	4.4

Comparison of Measurements in Inches and Millimetres

Sufficiently accurate for use in connection with gauges of track, heights of car coupling, lengths of wheel-base, width of locomotives, etc.

	millimetres.			=0 n			millimetres.
$1 \text{``} = 25\frac{4}{10}$	"	$31\frac{1}{2}$		= 0	"	800	"
$_2$ inches= $50\frac{8}{10}$	"	32		=0	4.6	813	4.6
$3 \text{``} = 76_{10}^2$	"	33		=0	"	838	" "
3_{16}^{15} "=100	"	34		= 0	4.6	863	4.6
4 " = 102		35		=0	"	889	4.6
5 " = 127	44	$35\frac{1}{2}$		=0	6.6	900	"
6 "=153	"	36		= 0	6.6	914	4.6
7 "= 178	"	37		=0	" "	940	" "
$7\frac{7}{8}$ " = 200	"	38		=0	"	965	"
8 "=203	"	39		=0	"	990	"
9 "=229	44	$39\frac{3}{8}$		= 1	"	0	"
10 "=254	44	40		= 1	"	16	"
11 "=280	4.6	41		= 1	"	41	44
11_{16}^{3} "=300	"	42		= 1	"	66	"
12 "=305		43		= I	"	91	"
13 "=330	"	44		= 1	"	116	"
14 "=355	6.6	4.5		— I	"	143	"
15 "= 381	"	46		== I	"	168	"
$15\frac{3}{4}$ " = 400	44	47		— I	"	184	"
16 "=407		48		== I	"	219	4.6
17 " $=432$	4.6	49		= I	"	244	4.6
18 " = 457		$49\frac{1}{4}$		— I	"	250	4.6
19 " = $_{483}$	"	50		== I	"	270	"
$19\frac{5}{8}$ " = 500	"	51		= I	"	295	"
20 "=508		52		— I		32 I	"
21 " = 533	"	53		= 1	"	347	"
22 " = 559	44	54		== I	"	372	"
23 " = 584	**	55	";	== I	"	397	"
$23\frac{5}{8}$ " = 600		56		— I	"	422	"
24 " =609	"	$56\frac{1}{2}$	" :	= I	"	435	"
25 " = 635		57		— I	"	448	"
26 " =66o		58		— I	"	473	"
27 "=685	"	59		— I	"	500	"
27_{16}^{9} "=700	**	60		— I	"	524	"
28 " =711	"	621/2		== 1		587	"
29 " = 736		66		= I	"	676	"
$29\frac{1}{2}$ " = 750		72	" :	== I		828	••
30 " = 762	"						

Comparison of Pressures in Pounds per Square Inch and in Kilograms per Square Centimetre

Pounds per Square Inch	{ = -}	Kilograms per Square Centimetre	Kilograms per Square Centimetre	:=	Pounds per Square Inch
I	_	.0703	0.10	=	I.422
2	==	.1406	0.15	=	2.133
3	==	.2100	0.20	==	2.844
4	_	. 2812	0.25	==	3.556
5	=	.3515	0.50	==	7.112
6	=	.4218	0.75	_	10.668
7	==	.4921	I	==	14.224
8	_	. 5624	2	_	28.448
9	_	.6327	2.50	=	35.560
10	_	. 7030	3		42.672
15	_	1.0546	4	=	56.896
20	===	1.4061	5	==	71.120
30	==	2.1002	6	=	85.344
40	=	2.8123	7	=	99.568
50	==	3.5154	7.50	===	106.680
100	=	7.0308	8	_	113.792
110	=	7.7338	9	_	128.016
120	=	8.4369	10	==	142.241
130	=	9.1400	11	==	156.465
140	=	9.8431	I 2	_	170.689
150	_	10.5462	12.50	-	177.801
160	==	11.2492	13		184.913
170	_	11.9523	14	==	199.137
180	=	12.6564	15		213.361
190	_	13.3585	16	==	227.585
200	==	14.0616	17	=	241.809
250	_	17.5770	18	=	256.033
300		21.0024	19	=	270.257
350	=	24.6078	20	==	284.482
400	_	28.1232	25		355.602
450	=	31.6386	30	-	426.722
500	_	35.1540	35	==	497.843 568.963
550	=	38.6694	40	_	640.083
600		42.1848	45 50	=	711.204
650	_	45.7002	55	=	782.324
700	==	49.2156	60	_	853.445
750	-	52.7310	65	=	924.565
800	=	56.2464	70		995.686
1000	=	70.3080	7.5	==	1066.806
1500	=	105.4620	100	=	1422.408
2000	==	.40.0100	150	=	2133.612
2500	=	175.7700	200	=	2844.816

Atmospheric Pressure

Temperature 60 Degrees Fahrenheit

Altitude above Sea Level in Feet	Pressure, Pounds per Square Inch	Barometer, Inches		
0	14.72	30		
1,000	14.17	28.87		
2,000	13.63	27.78		
3,000	13.11	26.72		
4,000	12.61	25.70		
5,000	12.13	24.72		
6,000	11.68	23.78		
7,000	II.24	22.89		
8,000	10.82	22.04		
9,000	10.42	21.22		
10,000	10.03	20.43		
11,000	9.65	19.66		
12,000	9.28	18.92		
13,000	8.93	18.20		
14,000	8.59	17.50		
15,000	8.26	16.82		

The pressure of one atmosphere, 14.72 pounds per square inch, is equiva-

lent to 1.0335 kilograms pressure per square centimetre
For convenience one atmosphere is usually reckoned as 15 pounds.

Note.—To reduce Fahrenheit to Centigrade: deduct 32, divide by 2, add 4th.
To reduce Centigrade to Fahrenheit: multiply by 2, deduct 105, add 32.
To reduce Fahrenheit to Reaumur; deduct 32, divide by 2, subtract 4th.
To reduce Reaumur to Fahrenheit: multiply by 2, add 1/4th, add 32.

Useful Data as to Wrought-Iron Pipe

Wrought-iron pipe is commercially listed by the inside diameter in inches and fractions, the actual inside diameter for most sizes being somewhat greater than the listed size.

List Size	Actual Inside Diameter	Weight per	Number of Feet in 2,000 Lb.	Cubic Contents of	Number of Ft. to Contain 100 Cubic Ft.
ι in.	1.048 1.38	167 lbs.	1,198	.60 I.04	16,690 9,625
1 1/4 " 1 1/2 " 2 "	1.61 2.067	269 " 366 "	744 547	1.41 2.33	7,066 4,291
$\frac{2\frac{1}{2}}{3}$ " $\frac{3}{3\frac{1}{2}}$ "	2.468 3.067 3.548	577 754 905	347 265 221	3·3 ² 5·13 6.86	3,012 1,950 1,457
4 " 4 1/2 "	4.026 4.508	1,072 "	186 160	8.85	1,131
5 "	5.045 6.065	1,456 " 1,877 "	137 106.4	13.9 20.1	720 498
7 "	7.023 7.982	2,341 " 2,835 "	85.4 7°·5	26.9 34·7	372 288

Contents of Cylindrical Pipes or Tanks

Inside Diam. in Inches	Cubic Feet for each Foot in Length	Length in Feet to Contain 100 Cubic Feet	Inside Diam. in Inches	Cubic Feet fo r each Foot in Length	Length in Fee to Contain 100 Cubic Fee
8	. 349	286.53	41	9.168	10.90
9	.442	226.6	42	9.621	10.39
IO	. 545	183.4	43	10.085	9.91
ΙΙ	.66	151.5	44	10.559	9 · 47
I 2	. 785	127.3	45	11.045	9.05
13	.922	108.5	46	11.541	8.66
14	1.069	93 · 54	47	12.048	8.30
15	I.227	81.49	48	12.566	7.95
16	1.396	71.63	49	13.098	7.63
17	1.576	63.45	50	13.636	$7 \cdot 33$
18	1.768	56.56	51	14.184	7.05
19	1.969	50.77	52	14.748	6.77
20	2.182	45.83	53	15.32	6.52
2 I	2.405	41.57	54	15.904	6.28
22	2.64	37.87	5.5	16.50	6.06
23	2.885	34.66	56	17.104	5.84
24	3.142	31.82	57	17.721	5.64
25	3.409	29.33	58	18.348	5 · 4 5
26	3.687	27.13	59	18.986	5.26
27	3.976	25.15	60	19.636	5.09
28	4.276	23.38	6 I	20.295	4.92
29	4.587	21.80	62	20 964	4.76
30	4.909	20.37	63	21.647	4.62
31	5.241	19.08	64	22.34	4 - 47
32	5.584	17.79	65	23.03	4.34
33	5.94	16.83	66	23.76	4.20
34	6.305	15.86	67	24.484	4.08
35	6.681	14.97	68	25.22	3.96
36	7.069	14.14	69	25.965	3.84
3 7	7.467	13.38	70	26.724	3 • 74
38	7.876	12.70	71	27.494	3.63
39	8.296	12.05	72	28.276	3 · 53
40	8.727	11.46			

American and Metric Standards of Thickness Plates, Wire, etc.

EQU	JIVALENT TH	ICKNESS	EQU	IVALENT TH	ICKNESS
Wire Gauge	Decimals of Inch	Millimetres and Decimals	Fractions of Inch	Decimals of Inch	Millimetres and Decimals
0000	.460	11.684	I	1	25.400
000	.410	10.414	31	. 96875	24.606
00	. 365	9.291	3 1 3 2 1 5 1 6	.9375	23.812
0	.325	8.255	9.9	.90625	23.019
1	. 289	7 · 34 1	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.875	22.225
2	. 258	6.553	2 7	.84375	21.431
3	. 229	5.817	13	.8125	20.637
3 4	. 201	5.182	25	. 78125	19.844
5	. 182	4.623	3/4	. 75	19.050
5	. 162	4.115	23	.71875	18.256
	. 144	3.657	11	.6875	17.462
7 8	. 128	3.247	21	. 65625	16.66 9
9	.114	2.896	5/8	.625	15.875
10	. 101	2.565	5/8 19 32	. 59375	15.081
II	. 09 I	2.311	9 16	. 5625	14.287
I 2	. 08 1	2.057	17	. 53125	13.494
13	.072	1.829	$\frac{1}{2}$. 5	12.700
1.4	. 064	1.626	$\frac{1}{2}$ $\frac{1}{3}$ $\frac{5}{3}$. 46875	11.906
15	.057	1.428	7	.4375	11.112
16	.051	1.295	1 6 1 3 3 2 3 8 1 1 3 2	.40625	10.319
18	.040	1.016	3/8	.375	9.525
20	.032	0.813	1.1	.34375	8.731
22	.025	0.635	1 6	. 3125	7.947
24	.021	0.533	9 3 2	. 28125	7.154
26	.016	0.407	$\frac{\frac{3}{3}\frac{2}{2}}{\frac{1}{4}}$. 25	6.350
28	.013	0.330	372	. 21875	5.556
			3 1 6	. 1875	4.762
			5 3 2	. 15625	3.969
			5 1/8 3 3 3 2	. 125	3.175
			3 2	. 09375	2.381
			$\frac{1}{1.6}$.0625	1.587
			$\frac{3}{6.4}$.046875	1.190
			$\frac{1}{32}$.03125	0.794
			1 6 4	.015625	0.397

Number of Revolutions per Mile for Driving Wheels of Different Diameters

Diameter of Wheel	Revolutions per Mile	Diameter of Wheel	Revolutions per Mile
18 inches	1,116	36 inches	558
20 "	1,005	38 "	529
22 "	914	40 "	502
23 "	874	42 "	480
23 " 24 " 26 "	837	44 "	457
26 "	773	46 "	437
28 "	718	48 ''	420
30 ''	672	50 "	402
32 "	628	60 "	336
32 " 33 "	609	72 "	279

Revolutions per Minute of Driving Wheels of Different Diameters at Varying Rates of Speed

	Dia. 72 in.	26	28	37	9†	99	70	87	93	112	0+1	191	981	200	727	279
	Dia. Dia. 60 in. 72	28	34	45	99	89	84	101	112	140	168	201 I	1 +55	252 2	280 2	336 2
α		3+	9	+ 6	29	80	00	1 021	134 1	167	201 I	241 2	268 2	301 2	335 2	402 3
WHEELS	n. 50 in.	35	27	99	ار (84										
WH	Dia.						105	126	011	175	3 210	252	280	315	350	, 420
Ŋ	Dia. 46 in	36	7	20	73	88	109	131	145	182	218	262	291	328	364	437
DRIVING	Dia 44 in	38	9†	61	92	92	111	137	152	190	228	274	305	343	381	457
S DE	Dia.	0	8	† 9	80	96	120	144	160	200	240	288	320	360	20+	480
FOR	Dia. 40 in.	42	50	29	8	100	125	150	167	200	251	301	335	376	418	502
JTE	Dia. 38 in.	7	53	70	SS	901	132	159	176	220	564	317	353	397	- - - +	529
MINUTE	Dia. 36 in	9†	99	74	93	112	139	891	981	232	279	335	372	418	465	50 80 80
PER I	Dia. 33 in.	51	19	Sı	102	122	152	182	203	253	304	365	901	457	507	609
	Dia. 32 in.	52	63	**************************************	101	126	157	188	207	261	314	377	415	471	523	829
REVOLUTIONS	Dia. J 30 in 3	26	29	90	112	134	891	201	224	280	336	403	44s	504	9	672
LUJ	Dia. I	- 09	72	96	120	144	179	216	240	299	359	431	479	538	598	718
EVC	Dia. I		77	103	129	154	193	232	257	322	386	†9†	515	580	644	773
0F R	Dia 1.	70	84	112	011	891	209	251	279	348	418	502	558	628	697 (837
SR C	Dia. D	73	87	116	9+1	174 1	218 2	262 2	291 2	364 3	437 4	524 5	583 5	655 (728 6	874 8
NUMBER	Dia. Dia. 23	92	16	122 1	152 I	182 I	228 2	274 2	304 2	380 3	157 4	548 5	608 5	685 6	761 7	914 8
NO		84	1001	134	1 891	200 I	251 2	301 2	335 3	419 3	502 4	603 5	9 029	754 6	838 7	
		93 8														0 1005
	Dia. 18 in.		111	641 .	. 186	. 222	. 279	. 334	. 371	. 465	. 558	699	. 722	. 837	. 930	91111.
		o sec	:	:	:	:	:	:	:	:	:	:	:	:	:	:
x			,, 0	30 ,,	,, 0	, 0	,, 0	30 ,,	,, 0	,, †2	, 0	, of	, 08	, 02	, 21	,
Minutes	Mile	min.	;	;	:	;	;	:	:	:	:	;	;	3	,,	3
		=12 min.	01 =	_ 1	9 =	 w	1	3	3	[]	 	-	1	1	-	I
		5 miles	3,	"	;	"	;	;	;	;	,	;	;	;	;	;
Speed	Ho	5 11	9	S	10	12	15	18	20	25	30	36	0	45	50	9

Horsepower of Locomotives

It is undesirable to reckon locomotives by horsepower, since this is dependent on speed, which is a variable quantity, and any figures as to horsepower of locomotives are liable to be misleading.

Locomotive horsepower may, however, be computed by the following rule: Multiply together the area of one piston in square inches, the mean effective pressure in the cylinders in pounds per square inch, twice the length of stroke in feet, the number of revolutions of the driving wheels per minute, and divide by 33,000.

If power is to be stated in equivalent of kilowatts divide by 44,236

Horsepower may be reduced to kilowatts by multiplying by .746. Kilowatts may be reduced to horsepower by multiplying by 1.34.

In computing locomotive horsepower the speed assumed must not be greater than practicable for the locomotive while hauling its heaviest loads unless a corresponding reduction is made in the estimate of mean effective pressure.

A much simpler rule for computing the horsepower of a locomotive when the tractive force is stated is to multiply the tractive force in pounds by the speed in miles per hour at which the locomotive can handle its heaviest loads, and multiply this product by .oo266.

Example.—Locomotive 7×12 cylinders, 24-inch drivers, 160 pounds boiler pressure has 3,330 pounds tractive force, and can do its heaviest work at about 4 miles per hour, $3,330 \times 4 \times .00266$ — (approximately) 35 horse-power, which is a conservative estimate.

Telegraphic Correspondence Code

Cable Address: Porter, Pittsburgh

To be used in connection with ABC Code (4th Edition), or ABC Code (5th Edition), or Lieber Code, or A1 Code, or Western Union Code, or Business Telegraph Code.

NOTE.—Code words not in previous catalogue are printed in light-face type in tables, and in italics in list of code words.

Note.—All of the code words in this catalogue, including the code words designating each size and design of locomotive, and the following code words for correspondence, selected from The Official Vocabulary for Code Telegrams published by the International Bureau of Telegraphic Administrations are approved by the various telegraph and cable companies throughout the world.

The code words selected are arranged alphabetically, and begin with the following letters in the alphabetical order given: H, K, P, R, T. Words beginning H, K, and P are used to designate the designs and sizes of locomotives, and words beginning with R and T are used for the correspondence code which here follows. These letters were selected because they are found in the firm name, H. K. PORTER co.

Boiler Construction, Material, Pressure, Lagging, etc.

Code Word			ME	SSAGE					
RIMEUX		e 120 j	oounds	per square inch.					
RIMMON	"	125	"	"					
RINGLA		130		44					
RINGOT		135	"						
RINODO		140							
RIPELY		145							
RIRONT		150		4.6					
RISADE		155	4.6	**					
RISBAN	44 44	160	4.6	4.6					
RISOTA	"	165	4.6	"					
RISQUE	"	170	"	"					
RISUDI	"	175							
RIVOTI	"	180	4.6	4.6					
RIXOSA	"	190	4.4						
RIZINA	**	200	4.4	4.6					
RIZODE	Pressure per			n pounds *——.					
RIZOPO	Straight style	boiler.							
RIZPAH	Wagon-top style boiler.								
RIZZARLO	Extension-front boiler (see Illustration No. 1, page 11).								
RIZZOLLO	Short-front b	Short-front boiler (see Illustration No. 3, page 12).							
ROADMAN	Firebox between frames and partly over rear axle (s).								
ROADSTEAD	Firebox betw	een fra	mes ar	d behind rear axle.					
ROADWAY	Firebox betw	een fra	mes ar	id between axles.					
ROANA	Firebox place	d abov	e fram	es.					
ROANESES	Firebox full v	vidth p	laced	behind rear driving wheels.					
ROANOS	Crown sheet s	secured	by cro	own-bars.					
ROARER	Crown sheet s	secured	by rac	dial stay-bolts.					
ROBIGO				part of boiler.					
ROBLON				l part of boiler.					
ROBIJN	Dome placed	central	lly on	cylindrical part of boiler with 2 nt and one behind dome.					
ROBORO	Boiler to be t above wo			hydraulic pressure 50 per cent					
ROBOSA	Boiler to be cent abov			ot hydraulic pressure *—— per essure.					
ROBUTU	Boiler to be t		oy stea	m *—— per cent above work-					
ROCHAZ	Dome placed	inside	of cab.						
RODAPE	Dome placed	outside	e of cal	b.					
ROEDOR	Grate area m	easure	d in sq	uare feet *——.					
ROEMER				measured in square feet *					
ROEMOS	Heating surfa	ice of fl	lues me	easured in square feet *——.					
ROENNE	Total heating square fee			firebox and flues measured in					

^{*} Any code designated on page 204 may be used to express figures.

Boiler Construction, etc.— Continued

Code Word	MESSAGE			
ROERBAK	Fire box of steel and flues of iron, or seamless steel.			
ROEREND	Fire box of steel and flues of seamless brass.			
ROERIAN	Fire box of steel and flues of seamless copper.			
ROEROM	Fire box of copper plates and flues of iron, or seamless steel.			
ROFFIA	Fire box of copper plates and flues of seamless brass.			
ROGADO	Fire box of copper plates and flues of seamless copper.			
ROGALE	Smoke-stack of copper.			
ROGALIUM	Smoke-stack for coal fuel, taper style, cast iron, like Illustration No. 1, page 11.†			
ROGASEN	Smoke-stack for coal fuel, straight style of steel plates with cast top finish, like Illustration No. 2, page 12.†			
ROGBORD	Smoke-stack for coal fuel, diamond style of steel plates with cast spark arrester and steel wire netting, like Illustration No. 3, page 12.†			
ROGEN	Smoke-stack for wood fuel, balloon spiral cone style, li Illustration No. 4, page 12.†			
ROGERIO	Smoke-stack for wood fuel, "sunflower" style, like Illustration No. 5, page 12.†			
ROGGIO	Smoke-stack of steel plate with copper top (straight style stack).			
ROGITO	Boiler lagged with wood and cased with planished iron.			
ROHUNA	Boiler lagged with wood over asbestos sheet and cased with planished iron.			
ROJIZO	Boiler lagged with asbestos cement and cased with planished iron.			
ROLDES	Boiler lagged with asbestos board and cased with planished iron.			
ROLENA	Boiler lagged with sectional magnesia and cased with planished iron.			
ROLHAO	Boiler casing with brass securing bands.			
ROLLOS	Dome casing of sheet brass body with cast-iron top and base.			
RONGER	Dome casing of sheet steel body with cast-iron top and base.			

Brakes

ROPAJE	Engine to have hand lever brake to driving wheels.
RORIDA	Engine to have hand screw brake to driving wheels.
ROSARY	Engine to have hand wheel brake to 4 wheels of tender.
ROSTRO :	Engine to have hand wheel brake to 8 wheels of tender.
ROSURI	Engine to have H. K. Porter Co.'s steam brake to driving
	wheels.

 $[\]dagger$ Unless otherwise agreed, stacks Nos. 1 and 2 will be furnished in connection with extension-front boiler, and stacks Nos. 3, 4, and 5 with short-front boiler.

Brakes—Continued

Code Word	MESSAGE					
ROTBAK	Engine to have H. K. Porter Co.'s steam brake to driving and tender wheels.					
ROTULO	Engine to have American patent steam brake to driving wheels.					
ROTURA	Engine to have American patent steam brakes to driving and tender wheels.					
ROTZES	Engine to have Eames Vacuum Air Brake to driving wheels only.					
ROUAGE	Engine to have Eames Vacuum Air Brake to driving wheels and tender only.					
ROUBAZ	Engine to have Eames Vacuum Air Brake for train only.					
ROUPIE	Engine to have Eames Vacuum Air Brake to driving wheels and train.					
ROXEAR	Engine to have Eames Vacuum Air Brake to driving wheels tender, and train.					
RUANEZ	Engine to have Westinghouse Automatic Air Brake for driving wheels only.					
RUARIA	Engine to have Westinghouse Automatic Air Brake for driving wheels and tender only.					
RUARON	Engine to have Westinghouse Automatic Air Brake for train only.					
RUBACE	Engine to have Westinghouse Automatic Air Brake for driving wheels and train.					
RUBBIO	Engine to have Westinghouse Automatic Air Brake for driving wheels, tender, and train.					
RUBEDO	Engine to have water brake to cylinders.					
RUBIFY	Brake shoes to be applied to four driving wheels.					
RUBION	Brake shoes to be applied to six driving wheels.					
RUBLOS	Brake shoes to be applied to eight driving wheels.					
RUBLUT	Cam style spread brake.					
$RUBMES \dots$	Clamp style brake.					
RUBNON	Equalized style brake.					

Cab

RUDEZA	Wooden cab without doors, rear entrance.
RUEFUL	Wooden cab with side doors.
RUEPEL	Wooden cab without doors, side entrances.
RUFULI	Steel cab, similar to page 80.
RUGIDO	Steel cab, similar to page 82 or 84.
RUGOSU	Mine style cab, similar to page 106 or 108.
RUGUMO	Open sheet-steel canopy, similar to pages 76, 86, 88. etc.
RUGWOL	Motor style cab, similar to pages 102 and 104.
RUIFEL	No cab at all, similar to page 78.
RUJADA	Front part of tender to be protected by sheet-steel canopy.

Couplings, Lettering, Etc.

Code Word	MESSAGE					
RUKKEN	Lettering for cab is ——.					
RULLUM	Lettering for tank is ——.					
RUMEUR	Lettering for cab and tank is ——. Numeral for number-plate is ——.					
RUMIAR						
RUMINO TABERD	Lettering for cab and tank and engine number are ——.					
TABIDO	Usual American style coupling for link and pin. Automatic patent coupling, name of patent is ——.					
TABIEL	Master Car Builder type of automatic coupler, full size.					
TABINS	Master Car Builder type of automatic coupler, narrow gauge or three-quarter size.					
TABIOR	Master Car Builder type of automatic coupler, pivoted.					
TABLON	European style coupling with two hooks and central buffer.					
TABUAL	European style coupling with single hook and two buffers.					
TABUDA	Screw coupling.					
TACCAS	Hook coupling placed centrally, American style, as used					
TACHIM	for small cars for mines, contractors, etc. Height from level of rail to center of car couplings in inches *——.					
TACHYS	Height from level of rail to center of car couplings is same as usual for American standard gauge freight cars—i.e.					
TACITA	34½ inches. Height from level of rail to center of car couplings is same					
Inclin	as usual for logging cars.					
TACTOS	Diameter of buffers, European style, in inches *——. Distance from level of track to center of buffer in inches					
INDDEO	*					
TADEGA	Distance apart between centers of buffers in inches *					
TADMOR	Please telegraph height in inches from level of rail to center					
•	of car coupling, confirming by mail with description of coupling, and, if practicable, a sketch of end timbers of car, with dimensions and location.					
TAFRIA	Please write fully height in inches from level of rail to					
	center of car coupling, with description of coupling, and, if practicable, a sketch of end timbers of car, with					
TACALO	dimensions and location.					
TAGALO	Please telegraph, confirming by mail, lettering for locomotive cab and for tank, and engine number (if any) to					
TAHALI	go on engine number-plate. Please write promptly instructions for lettering cab and					
	tank, and also engine number (if any) to go on engine number-plate.					
TAHENO	Please mail promptly as practicable full sketch, with di-					
	mensions and description and location, if European disc- shaped buffers, hook coupling, screw coupling, patent					
TAHURA	coupling, or any special arrangement is desired. Please telegraph, confirming by mail, lettering for cab and tank.					
TAIPAL	Please telegraph, confirming by mail, height of car coupling, lettering for cab and tank, and kind of fuel.					
TAIXAR	Please telegraph, confirming by mail, kind of fuel and gauge of track.					
TAJACU	Please write fully information as to requirements and conditions as explained on pages 16 and 17.					

^{*}Any code designated on page 204 may be used to express figures.

Construction Details

Code Word	MESSAGE					
TAJEAS	Wooden pilot at front end.					
TAKTIK	Wooden pilot at each end.					
TALCKY	Iron pilot at front end.					
TALGEN	Iron pilot at each end.					
TALISCA	Metal bumper at front end.					
TALITRO	Metal bumper at each end.					
TALOOK	Hanging step-board with hand-rail at front end.					
TALORA	Hanging step-board with hand-rail at rear end.					
TALVEZ	Hanging step-board with hand-rail at each end.					
TALVILLA	Snow-plow of sheet steel at front end.					
TALVOLTA	Snow-plow of sheet steel at each end.					
TAMARO	1					
TAMBEM	Steel wire brushes each end of locomotive for cleaning track.					
TAMBOR	Locomotive to be furnished with one head-light with bracket and shelf.					
TAMICA	Locomotive to be furnished with two head-lights with brackets and shelves.					
TAMIZO	Extra handsome finish and painting, gold lettering.					
	Very plain finish, durable, but without ornament.					
TAMRAS	Bell to be omitted.					

Cylinders

TAMTAM	Cylinders with sheet-brass jackets.				
TAMUGE	Cylinders with sheet-steel jackets.				
TAPIGO	Cylinders to be one-half inch larger diameter.				
TAPITI	Cylinders to be one inch larger diameter.				
TAPIZE	Cylinders to be one-half inch smaller diameter.				
TAPONA	Cylinders to be one inch smaller diameter.				
TAPPAL	Cylinders to be two inches longer stroke.				
TAPUJO	Cylinders to be four inches longer stroke.				
TAPUME	Cylinders to be two inches shorter stroke.				
TARAJE	Cylinders to be four inches shorter stroke.				
TARANDES	Compound cylinders, two-cylinder type.				
TARANTEL	Compound cylinders, two-cylinder type, diameter of high- pressure cylinder as stated for locomotive, code word given (——);† diameter of low-pressure cylinder to be in proportion, weight of locomotive to be increased accordingly.				

[†] Code word need not be repeated if already used in the message.

Cylinders—Continued

Code Word	MESSAGE			
TARASANA	Compound cylinders, two-cylinder type, weight of locomotive not to exceed weight stated for locomotive, code word given (——),† and diameters of high- and low-pressure cylinders of suitable size.			
TARASIUS	Compound cylinders, two-cylinder type, locomotive otherwise of general design, code word given (——),† and of weight nearly the same as practicable, diameters of high- and low-pressure cylinders in inches respectively *—— and *——.			
TARASPIC	Inside-connected cylinders placed between frames with main-rod connection to crank-axle, reducing width of locomotive.			

Dimensions

TARAUD	Height above rail not to exceed *—— inches.
	Height above rail not to exceed *—— feet.
TARBEA	Width not to exceed *—— inches.
TARDIO	Width not to exceed *—— feet.
TARDOZ	Length not to exceed *—— inches.
TAREFA	Length not to exceed *—— feet.
TARGET	Wheel-base, rigid (preferred), in inches *——.
TARGUM	Wheel-base, total (preferred), in inches *——.
TAROTS	Wheel-base to suit turntable length, length in feet *——.

Frames

TAUDER	Continuous forged frames of H. K. Porter Co.'s standard type of construction.				
TAUMEL	Main frames stopped at firebox with connection to rear section of frames to secure extra wide firebox for narrow gauge.				
TAUPEA	Outside frames with driving wheels placed inside of frames and with heavy steel cranks on axles for crank-pin connections.				
$TAUPIL \dots$	Steel castings frames.				

^{*}Any code designated on page 204 may be used to express figures.

[†] Code word need not be repeated if already used in the message.

Fuel

Code Word	MESSAGE				
TAUPON	Fuel, bituminous coal.				
TAURIM.	Fuel, bituminous coal, good quality.				
TAUSCH.	Fuel, bituminous coal, poor quality.				
TAVOUA	Fuel, bituminous coal, slack and nut size.				
TAWDRY.	Fuel, lignite coal, poor quality.				
TAXINE.	Fuel, anthracite coal.				
TAYOBA	Fuel, anthracite coal, pea size or culm.				
TAZANA.	Fuel, pitch-pine wood.				
TAZMIA	Fuel, white-pine and similar wood.				
TEAGEM	Fuel, hardwood, well seasoned.				
TEAPOY	Fuel, wood poorly seasoned and poor quality.				
TEATRO.	Fuel, sawmill slabs and refuse.				
TEAZLE	Fuel, bituminous coal and wood, mostly coal.				
TEBOUL.	Fuel, bituminous coal and wood, mostly wood.				
TECHNA	Fuel, naphtha or crude oil.				
TECTLY	Fuel, bagasse.				
TEFLIM	Please telegraph kind of fuel to be used.				
TEGAME	Please write kind of fuel to be used.				
TEGARN	Fuel capacity *—— pounds of coal.				
TEGATS	Fuel capacity *—— cubic feet of wood.				
$TEGAUB \dots$	Fuel bunker in cab.				
TEGENT	Fuel bunker at rear end.				
TEGEMS	Separate four-wheel fuel car.				

Gauge of Track

TEGESU	(What is	s) Gau	ge (of track?
TEGORA				
TEIFUN	"	6.6	'' *	— millimetres.
TEIMAR	"	4.6		18 inches.
TEINTE	"	4.4	"	20 "
TEJADO	"	4.4	4.4	2.4 "
TELARY	"		"	30 "
TELEBA	**		6.6	33 "
TELHAO	"			36 "
TELLER		4.4	6.6	42 "
TELONA		4.4	"	561/2 "
TELPAS		6.6	٤٤	60 "
TELURO			**	500 millimetres.
TEMOSO			" (600 "
TENDON	66 61		٠٠,	7.50
TENIDO	4.6 6.1		4.6	ı metre.

^{*} Any code designated on page 204 may be used to express figures.

Questions, Quotations, and Orders

Code Word	MESSAGE
TENONS	Quote us by wire, stating earliest date of completion \ We quote you\ confirming with details by mail. delivered at Pittsburgh free on board car (or on track, if locomotive can be shipped to best advantage on own wheels), set up in usual shipping order, with small parts liable to loss or injury boxed separately, lowest price for ONE locomotive, described by code word *——. gauge of track as per code word *——.
TENREC	Quote us as above noted, per locomotive for order of two locomotives, code word *——. gauge of track as per code word *——.
TENTER	{ Quote us } as above noted, per locomotive for order of three locomotives, code word *——, gauge of track as per code word *——.
TENZIJ	Quote us as above noted, per locomotive for order of FOUR locomotives, code word *——, gauge of track as per code word *——.
TEPEFY	Quote us as above noted, per locomotive for order of †—— locomotives, code word *——, gauge of track as per code word *——.
TEPORE	Quote us by mail, with details and earliest completion, delivered at Pittsburgh free on board car (or on track, if locomotive can be shipped to best advantage on own wheels), set up in usual shipping order with small parts liable to loss or injury boxed separately, for one locomotive described by code word *——, gauge of track as per code word *——.
TEQUIO	Quote us as above noted, per locomotive for order of two locomotives, code word *——. gauge of track as per code word *——.
TERCAS	Quote us as above noted, per locomotive for order of THREE locomotives, code word *——, gauge of track as per code word *——.
TERCOL	Quote us as above noted, per locomotive for order of FOUR locomotives. code word *——, gauge of track as per code word *——.

^{*}Code word designating size and design of locomotive should follow code word for message; if quotations on several sizes and several designs are desired the code word for each should follow. The code word for gauge of track should follow code word of engine, if practicable to give it. It is desirable also to add code words for fuel and other features which affect the details of construction.

[†] Number required to be stated, or left unfilled if number is not decided upon.

Note.—All quotations, unless otherwise agreed or specified, are in accordance with standard specifications, pages 10 to 15. Special items not included in standard specifications may be furnished at extra cost. Promises of quick completion are conditioned on prompt receipt of instructions as to gauge, fuel, height, and style of couplings and lettering, and also of any special features of construction.

Questions, Quotations, and Orders-Continued

Code Word	MESSAGE
TEREUA	Quote us as above noted, per locomotive for order of †———————————————————————————————————
TERFEX	Quote us by wire, stating earliest date of completion \ We quote you\ confirming with details by mail, delivery on car (or on track if shipped on own wheels), set up in usual shipping order with small parts liable to injury or loss boxed separately, including cost of delivery at ††—for ONE locomotive designated by code word *——, gauge of track as per code word *——,
TERMLY	Quote us as above noted,†† per locomotive for We quote you as above noted,†† per locomotive for order of two locomotives, code word *——, gauge of track as per code word *——.
TERNIR	{ Quote us } as above noted,†† per locomotive for order of three locomotives, code word *——, gauge of track as per code word *——.
TERROR	Quote us as above noted,†† per locomotive for order of FOUR locomotives, code word *——, gauge of track as per code word *——.
TERTIO	{ Quote us } as above noted,†† per locomotive for order of †—— locomotives, code word *——, gauge of track as per code word *——.
TESCAO	Quote us by mail with earliest completion, with details, delivery on car (or on track if shipped on own wheels), set up in usual shipping order with small parts liable to injury or loss boxed separately, including cost of delivery at ††——, for one locomotive designated by code word *——. gauge of track as per code word *——.
TESSON	Quote us as above noted, †† per locomotive for order of two locomotives, code word *——, gauge of track as per code word *——.
TETARD	Quote us as above noted, †† per locomotive for order of THREE locomotives, code word *——, gauge of track as per code word *——.
TETCHY	Quote us as above noted, †† per locomotive for order of FOUR locomotives, code word *——, gauge of track as per code word *——.

^{*}Code word for locomotive should be given, and if quotations are desired for several styles or sizes code word of each should be stated. The code word for gauge of track should follow code word of engine, if practicable to give it. It is desirable also to add code words for fuel and other features which affect the details of construction.

[†] Number required to be stated, or left unfilled if number is not decided upon.

 $[\]dagger\dagger$ Name of point of delivery desired should follow code word of message and precede code word for size and design of locomotive.

Questions, Quotations, and Orders-Continued

Code Word	MESSAGE
TETRAZ	Quote us as above noted, †† per locomotive for order of †—— locomotives, code word *——, gauge of track as per code word *——.
TETRYL	Quote us by wire, stating carliest completion \ We quote you
TETTIN	Quote us as above noted, per locomotive for order of two locomotives, code word *——, gauge of track as per code word *——.
TEUCRO	Quote us as above noted, per locomotive for order of three locomotives, code word *——, gauge of track as per code word *——.
TEUFEL	Quote us as above noted, per locomotive for We quote you as above noted, per locomotive for order of four locomotives, code word *——, gauge of track as per code word *——.
TEURGO	Quote us as above noted, per locomotive for We quote you as above noted, per locomotive for order of †—— locomotives, code word *——, gauge of track as per code word *——.
TEVENS	Quote us by mail with earliest completion, with details for export, including taking apart, protecting from rust, securely boxing and packing; with proper shipping and rotation marks, weights and dimensions marked in indelible ink; list with contents furnished; delivered to vessel's tackle in New York harbor lighterage limits; ONE locomotive designated by code word *——, gauge of track as per code word *——.
TEXTOS	Quote us as above noted, per locomotive for order of Two locomotives, code word *——, gauge of track as per code word *——.
THABIT	Quote us as above noted, per locomotive for order of THREE locomotives, code word *——, gauge of track as per code word *——.

^{*}Code word for locomotives should be given, and if quotations are desired for several styles or sizes code word of each should be stated. The code word for gauge of track should follow code word of engine, if practicable to give it. It is desirable also to add code words for fuel and other features which affect the details of construction.

[†]Number required to be stated, or left unfilled if number is not decided upon.

 $[\]dagger\dagger$ Name of point of delivery desired should follow code word of message and precede code word for size and design of locomotive.

Questions, Quotations, and Orders—Continued

Code Word	MESSAGE
THALNA	Quote us as above noted, per locomotive for order of FOUR locomotives, code word *——, gauge of track as per code word *——.
THAMAH	Quote us as above noted, per locomotive for order of †———————————————————————————————————
THAMER	Quote us by wire, stating earliest completion \ We quote you
THAMIG	Quote us by wire, stating earliest completion we quote you
THAMMO	Quote
THASSI	{ Quote
THATEN	$\left\{ egin{array}{ll} Quote\\ We quote you \end{array} ight\}$ including in price freight and insur-
тневле	ance by steam vessel to ††——. Quote We quote you including in price freight and insurance by sailing vessel to ††——.
ТНЕВЕО	Quote us by wire We quote you confirming by mail, lowest price of locomotive duplicate of locomotive last furnished.
THECAL	Quote us promptly by mail lowest price of locomotive duplicate of locomotive last furnished.
THEMES	Quotation accompanied with full specifications and photo- graph or blue print. Quotation accompanied with memorandum of actual or
THEORY	estimated dimensions, and weights of boxes and packages for export shipment. Quotation accompanied with list of spare parts recom-
THERMAL	mended, and cost of same. Quotation per locomotive including special items usually
THERMEN	rated as extras, as follows:——. Quotation per locomotive not including items as follows, ———, which may be furnished at additional cost.
THESOA	Quotation accompanied with full specifications, photo- graph or blue print of locomotive, memorandum of weights and dimensions of boxes and packages for export shipment, and list of spare parts recommended, and cost of same

^{*}Code word for locomotive should be given, and if quotations are desired for severa styles or sizes code word of each should be stated. The code word for gauge of track should follow code word of engine, if practicable to give it. It is desirable also to add code words for fuel and other features which affect the details of construction.

† Number required to be stated, or left unfilled if number is not decided upon.

† Name of point of delivery desired should follow code word of message and precede code word for size and design of locomotive.

Questions, Quotations, and Orders-Continued

Code Word	MESSAGE
THIASO	What locomotives have you on hand 30 inches gauge of track?
THINLY	What locomotives have you on hand 36 inches gauge of track?
THIRST	What locomotives have you on hand 39 \% inches gauge of track?
THISOA	What locomotives have you on hand 56½ inches gauge of track?
THOASA	What locomotives have you on hand gauge of track as per code word ††——?
THORAX	What locomotives have you on hand gauge of track in inches *——?
THOREN	What locomotives have you on hand gauge of track 24 to 36 inches?
THRENO	What locomotives have you on hand gauge of track 36 to 42 inches?
THRICE	What locomotives have you on hand gauge of track 36 to 561% inches?
THRUSH	{ Have you \ We have \ \ on hand 30 inches gauge locomotive(s), code \ word \ \ \ \ word \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
THUABA	{ Have you \ We have \ \ on hand 36 inches gauge locomotive(s), code \ word \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
THUBAN	{ Have you We have on hand 56½ inches gauge locomotive(s), code word †——.
THYMEA	{ Have you \ We have } on hand 36 or 56½ gauge locomotive(s), code word †——.
THYMOL	Locomotive(s) to be completed at factory within 10 days of receipt of order. †††
THYRSE	Locomotive(s) to be completed at factory within 15 days of receipt of order. †††
TIALCO	Locomotive(s) to be completed at factory within 20 days of receipt of order. †††
TIBIOS	Locomotive(s) to be completed at factory within 25 days of receipt of order. †††
TIBIZO	

^{*} Any code designated on page 204 may be used to express figures.

[†] See code words designating each locomotive, pages 19 to 139.

^{††} See code words for various gauges, page 211.

^{†††} If two code words are used they are to be understood as if connected by the word to—i.e., TIERRA TIESOS signifies 90 days to four months. The expression "receipt of order" covers receipt of instructions as to gauge, couplings, and fuel, and as to any special features of construction which must necessarily be understood clearly before work can be commenced. For export locomotives 10 to 15 days' additional time is required for taking apart and boxing and for transit to vessel in New York harbor.

Questions, Quotations, and Orders—Continued

Code Word	MESSAGE
TICIDA	Locomotive(s) to be completed at factory within 40 days of receipt of order. ††
TIDBIT	Locomotive(s) to be completed at factory within 50 days of receipt of order. $\dagger\dagger$
TIDILY	Locomotive(s) to be completed at factory within 60 days of receipt of order. ††
TIERCE	Locomotive(s) to be completed at factory within 70 days of receipt of order. ††
TIERNO	Locomotive(s) to be completed at factory within 80 days of receipt of order. ††
TIERRA	Locomotive(s) to be completed at factory within 90 days of receipt of order. ††
TIERCON	Locomotive(s) to be completed at factory within 100 days of receipt of order. ††
TIERSAN	Locomotive(s) to be completed at factory within 110 days of receipt of order. ††
TIERTU	Locomotive(s) to be completed at factory within †——days of receipt of order. ††
TIESOS	Locomotive(s) to be completed at factory within 4 months of receipt of order. ††
TIESURA	Locomotive(s) to be completed at factory within 5 months of receipt of order. ††
TIFACEAS	Locomotive(s) to be completed at factory within† —— months of receipt of order. ††
TIFATA	Locomotive(s) to be completed at factory within 6 months of receipt of order. ††
TIFFED	Enter our order on terms quoted for ONE locomotive, designated by code word *
TIFICA	Enter our order on terms quoted for two locomotives, designated by code word *
TIFONE	Enter our order on terms quoted for THREE locomotives, designated by code word *
TIGELA	Enter our order on terms quoted for Four locomotives, designated by code word *——.
TIGRIS	Enter our order on terms quoted for locomotives designated by code word *——, number of locomotives covered by this order is ——.

^{*}See code words designating each locomotive, pages 19 to 139. (Unless already advised, or sent by mail, code words should be added for gauge of track, fuel, height of drawbar, and lettering, to facilitate quick completion.)

[†] Any code designated on page 204 may be used to express figures.

[†] If two code words are used they are to be understood as if connected by the word to—i.c., TIERRA TIESOS signifies 90 days to four months. The expression "receipt of order" covers receipt of instructions as to gauge, couplings, and fuel, and as to any special features of construction which must necessarily be understood clearly before work can be commenced. For export locomotives 10 to 15 days' additional time is required for taking apart and boxing and for transit to vessel in New York harbor.

Service Requirements and Conditions

Code Word				ME	SSA	GЕ				
TIJOLO	Radius	of sharpes	st cı	ırve is	20	fee	t.			
TIKOOL	" "	4.6		"	20	to	25	feet.		
TIKVAH				**	25	to	30	4.4		
TILGEN	**				30	to	40			
TILLAC	**	+ +		• •	40	to	50	"		
TILODE		1.4		• •	50	to	60			
TILOMO	* *	4.6			60	to	7.5	"		
TIMBRE	"	+ 6		"	7.5	to	100	"		
TIMEAS	44			* *			125	"		
TIMMEN	"	"		6.6	125	to	150	"		
TIMUCU	**	4.4		"	150	to	200	"		
TINACO					200	to	300	"		
TINAGE	4.6	4.6			300	to	500	"		
TINAIS	4.6	4.4		4.4	ove		-			
TINKLE	Steepest	grade do	es r	not exc		-		ı per c	ent.	
TINOTE	"				" "	Ι .		cent.		
TINSEL	"	4			"	1 ½	*	"		
TIPITI	"	4	4			2		"		
ТІРТОЕ	"	6	4		"	21/9	á	"		
TIPULA	"	4	4		" "	3				
TIRAPE	"		4		"	31/2	ó	"		
TIRCIS	"	4	6		. 6	4		4.6		
TIRRIA	"		4			$4\frac{1}{2}$,	4.6		
TIRYNS	"	4				5	•	4.6		
TIRZAH	4.6		4			6		"		
TISANE	4.6	4	٠		• •	7				
TISARD	"	4				8		44		
TISICO	64	4	4			9		"		
TISSUS	4.4	•			۰۰ ۱	0		"		
TISTRE	Length o	of grade r	ot 1	more t	han	I	00 f	eet.		
TITULO	"	"	"	6 6			00	"		
TITYOS	"	4.6		"			00	"		
TIZNAR	"	"	"			1,0		"		
TIZONA	4.4	"		4.4		2,0		"		
TOANAH	Length o	of grade n	not	detern	nine			probah	oly no	t ove
ТОВАЈА	•	of grade i	n fe	et *	—.					
TOBBEN	4,0	of grade is								
TOCADO	_	rades are				ade	d tra	ains.		
TOCAGE		rades are								

^{*} Any code designated on page 204 may be used to express figures.

Service Requirements and Conditions—Continued

Code Word			MES	SAGE				
TODDLE	Length of	railroad d	loes not	exceed	1 1	mile.		
TODTES	"	"	4.4	"		miles.		
TOEHEK	"	"	4.4	4.6	2	4.4		
TOENEN	4.4	4.4	4.4	4.4	$_{2}\frac{1}{2}$	"		
TOESAS		"	6.6	4.6	5	4.4		
TOFORE		4.6	4.4	4.4	10	" "		
TOGATA		"	4.4	4.6	15	6.6		
TOGGEL	4.4	4.4	4.4	4.4	20	4.4		
TOLANE	Length of	railroad in	n miles :	*				
TOLOSA	Length of	railroad.						
TOLTEC	Weight of	rail in po	unds pe	er yard	*	٠.		
TOLUOL	Approxim						nds.	
TOMAUN	**	"	"					
TOMONE	"	"	"	4	4 2	5 "		
TONLOS	"	"	4.4	•				
TONOUS	"	"	"	4			tha	n 35 lb.
TOPAIS	4.4	"	* *	•		66	4 4	40 "
TOPCHI	4.6	4.6	6.6	4	4	4.4	44	45 ''
TOPFUL	4.4	4.4	4.4	4	4	6.6	"	50 "
TOPHIN	4.6	4.6	4.6	4	4	4.4	"	60 "
		—For com d kilogran						er yard
TOPICA	Speed in 1	niles per i	hour *_	—.				
TOPMAN	Total weig hours,	ht of freig in tons o	ht to be f 2,000	carrie	d one v	way pe 	er da	y of 10
TORADA	Weight of grade,	cars and in tons o	lading f 2,000	to be	hauled s *——	l at o	ne ti	me up
TORBOK	Weight of	empty tra when com	in to be	haule	d up g	rade (n ton	cars s of	loaded 2,000

Tank

TOTUMA	Saddle-tank over boiler.
TOUFAN	Side tanks, one each side of boiler.
TOUFFU	Side tanks, one each side at rear end of locomotive.
TOUTOU	Rear tank.
TOZUDA	Tank on 4-wheel tender.
TRABEO	Tank on 6-wheel tender.
	(Continued on next page.)

^{*}Any code designated on page 204 may be used to express figures.

Tank—Continued

	Tank—Continuea
Code Word	MESSAGE
TRAHIR	Tank on 8-wheel tender.
$TRAHOB \dots$	Tender with sloped style of tank.
TRAJAR	Locomotive to have both saddle and rear tanks.
TRAJET	Locomotive to have both side tanks and rear tank.
rrapez	Locomotive to have both saddle-tank and tender-tank.
rrashy	Capacity of tank to be *—— gallons of 231 cubic inches
TRASPE	Capacity of tank to be increased 50 gallons.
ΓRASTO	" " " 100 "
rraufe	" " i ii i
TREBAC	200
TREBOL	" " <u>25</u> 0 "
TRECHO	" " 300 "
TRECTIO	300
_	
	Tractive Force
TRECIN	Tractive force (as per formula on page 140) in pound
MD PGOT	*
TRECOV	Tractive force to be increased *—— pounds.
TRECUS	Tractive force to be decreased *—— pounds.
	Weight
TO DOLD	
TREFLE	(What is) Limit of weight per axle in pounds *——.
TREGOA	(What is) Limit of weight per axle in kilograms *——.
TREKOS	(What is) Total weight of locomotive in full working order *—— pounds.
TREPPE	(What is) Total weight of locomotive in full working order
	*—— kilograms.
TRESCATA	(What is) Weight on driving wheels in full working order *—— pounds.
TRESLER	(What is) Weight on driving wheels in full working order
TRESDER	*—— kilograms.
TRESNAN	(What is) Weight on locomotive truck in full working
mp pa o p	order *— pounds.
TRESOR	(What is) Weight on locomotive truck in full working order *—— kilograms.
TRESSES	(What is) Weight of tender in full working order *—
I KESSES	pounds.
TRETEAU	(What is) Weight of tender in full working order *—kilograms.
TRETEN	(What is) Weight of one locomotive set up on car, withou
110111111	fuel or water, in shipping order, in pounds *——.
TRICHE	(What is) Weight of one locomotive and tender set up o car(s), without fuel or water, in shipping order, in
	pounds *

^{*}Any code designated on page 204 may be used to express figures.

Weight—Continued

Code Word	MESSAGE
TRICON	(What is) Estimated weight of one locomotive (including tender, if any) taken apart and boxed for vessel shipment, in pounds *——.
TRIEGE	(What is) Estimated cubic tonnage (including tender, if any) of one locomotive taken apart and boxed for vessel shipment, in tons of 40 cubic feet *——.
TRIFUN	(What is) Estimated cubic feet (including tender, if any) of one locomotive taken apart and boxed for vessel shipment *——.
TRIGAR	(What is) Estimated total tonnage (including tender, if any) of one locomotive taken apart and boxed for vessel shipment, reckoning on basis of vessel's option of calculating 2,000 pounds weight or 40 cubic feet measurement per ton on each separate piece, in tons *
TRIGGER	(What is) Estimated total tonnage (including tender, it any) of one locomotive taken apart and boxed for vesscl shipment, reckoning on basis of vessel's option of calculating 2,240 pounds weight or 40 cubic feet measurement per ton on each separate piece, in tons *
TRILHO TRINCO	(What is) Weight of heaviest single piece in pounds *—— (What is) Cubic feet measurement of bulkiest single piece *——.
	Wheels
	W HECIS
TROUXA	Diameter (outside) of driving wheels measured in inches *
TROVAO TROYANA TROZOS TRUAND TRUFAR TRUISM TRUJAL TRULLA.	Diameter of driving wheels to be increased by *——inches. Diameter of driving wheels to be decreased by *—— inches. Driving wheels cast-iron centers with steel tires. Driving wheels solid cast iron with chilled flange and tread. Driving wheels extra-wide tread. Driving wheels steel centers with steel tires. Engine truck wheels cast-iron centers with steel tires. Engine truck wheels steel centers with steel tires.
TRUMPF	Engine truck wheels solid cast iron with chilled flange and tread.
TRUNFO TRUPPA TRUWOR	Tender wheels cast-iron centers with steel tires. Tender wheels steel centers with steel tires. Tender wheels solid cast iron with chilled flange and tread.

TRYGON..... Cast-iron centers and steel tires for all wheels.

TRYLLE..... Steel centers and steel tires for all wheels.

TUBFUL..... Shallow flange for flat street rail.

^{*}Any code designated on page 04 may be used to express figures.

INDEX

	PA	
Animal Haulage, Cost of Operating.	. I	84
Cable Correspondence Code	. 2	204
Cable Address and Codes Used		3
Cars, Weights and Capacities.	89, 1	
Classification of Locomotives		16
Compressed-Air Haulage, Industrial, Underground (Advt.)		2
Conditions of Service		17
Cost of Operating Animals and Locomotives	1	184
Cost of Railroads per Mile	J	186
Crossties per Mile		193
Curves	73.	181
Compensation for, on Grade	1	ı 78
Degrees of Curvature	173, 1	174
Elevation of Outer Rail	1	180
Gauge Widened on	!	178
Laying Out	:	176
Measurement of		175
Resistance of	:	177
Table of Degrees and Feet Radius		174
Cylindrical Tanks, Contents of		200
Duplicate System		7
Duplicate System		180
Friction, Resistance and Test of.	152.	153
Friction, Resistance and Test of	I I	.12
Gauge of Track		179
Gauge of Track. Stated in Inches and Millimetres	• •	197
Wheel Clearance for	• •	179
Widened on Curves		178
Widened on Curves		201
Grades.	170-	
Hauling Capacity on.	152.	160
Measurement of.	132	171
Resistance of		152
Table of.		172
Guaranty of Our Locomotives.		6
Hauling Capacity and Rule for Calculation		152
Influenced by Speed		182
Influenced by Speed	· ·	102
tional Resistances	1.58	160
Tables of Percentages	156-	157
Tables of Percentages	150,	158
Historic Data	• •	5-8
Horsepower of Locomotives		
Locomotives, Classification of.		203 16
		181
Cost of Operating		
Horsepower of		203 8
Repairing of	• •	0
Repair Parts for		7
Second-Hand		.7
Selection of		17
Specifications of		10
Tables of Tractive Force of.	142-	-151
Locomotives, "American" Design. "Back-Truck" Designs, Four Driving Wheels 50, 58, 60, 90, 96, 124		18
"Back-Truck" Designs, Four Driving Wheels 50, 58, 60, 90, 90, 124	, 120,	, 128
" Six Driving Wheels	132.	131

INDEX—Continued

Locomotives—Continued	PA	GE
For Coke-Oven Service.		80
Consolidation Design		30
For Contractors' Service . 64, 66, 68, 70, 72, 76, 86, 88, 110, 112, 114, 116	5.118	120
"Double-Ender" Designs42, 44	7,110,	120
Double-Endel Designs	, 130,	130
Eight-Driving-Wheel Designs 30, 4	0, 74,	122
Eight-Driving-Wheel Designs 30, 4 "Eight-Wheel-Passenger" Design.		18
For Export		0
For Export	£6.02	08
26 28 20 26 28 40 44 46	10, 92,	, go
For Freight Service \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10, 54,	50,
For Freight Service \(\text{ \text{26, 28, 30, 36, 38, 40, 44, 46, 58, 60, 62, 70, 72, 74, 118}} \)	-134,	138
For Furnace Service	DB. 82.	. 8.1
For Industrial and Special Service: Four-Wheel-Connected 32, 34, 64, 66, 68, 76, 78, 86, 110, 112		
Four-Wheel-Connected 32, 34, 64, 66, 68, 76, 78, 86, 110, 112	. 114.	116
Six-Wheel-Connected	118	1:30
Back-Truck	-0 60	40
	50, 00,	, 62
For Logging Service:		
Saddle-Tank Designs 54, 56, 58, 60, 90, 62-76, 86, 8	8, 98,	100
Separate Tender Designs	36, 38	. 40
For Mine Service, Steam	106	108
Mogul Design		
Motors for Steam Street Railways	20	, 20
	. 102,	104
For Passenger Service:		
With Separate Tender	20, 22	, 24
" Saddle or Side Tanks42, 54, 124	. 126.	136
" Rear Tanks.	16	-50
For Plantation Service:	. 40	, 50
With Wards Colored Tonday	-(-0	
With Wooden Cab with Tender 26, 28, 30, 32, 34,	36, 38	, 40
" " without Tender. 46-74, 110, 112, 118, 120, 124, 12 " Open Canopy "	:,132,	I 34
" Open Canopy " "	3,128,	130
For Shifting Service, 32, 34, 36, 38, 40, 64, 66, 68, 70, 72, 74, 110, 112, 11	6.120.	122
For Steel-Works Service	82	81
Lagrand Lymbor Weight of	02	, 04
Logs and Lumber, Weight of		192
Materials, Physical Tests of		13
Measures and Weights, American and Metric	. 195,	196
Miscellaneous Items of Information		189
Pipes, Cubic Contents of		200
Weight and Contents		IQQ
Pressures, Atmospheric		199
" Metric and Pounds		198
Rails		186
Tons per Mile		193
Weights of American and Metric		194
Weights of, American and Metric. Weight per Yard for Any Locomotive.		192
Paper Parts for Logomotives		192
Repair Parts for Locomotives		-0/
Resistances of Gravity and Friction		
" of Curves		177
Revolutions of Driving Wheels	.201,	202
Specifications of Locomotives, Standard		IO
Speed		182
On Curves.		180
On Curves.		
Resistance of		182
And Wheel Revolutions		202
Per Hour, Miles and Kilometres		196
Spikes, per Mile		193
Splice-Joints, per Mile.		193
Stacks, Different Kinds	1 1	, 12
Stock Locomotives Kept on Hand		
		/
Tables, Contents of Pipes and Tanks	Igo.	200
Tables, Contents of Pipes and Tanks	Igo.	200 174

INDEX—Continued

Tables—Continued				AGE
Curve Deflections				177
Curves, Elevation of Rail on				181
Crossties per Mile				193
Distances, American and Metric				196
Grades				172
Hauling Capacity			. 162	-160
Hauling Capacity Percentages.			. 155	-157
Hauling Capacities in Times Engine's Weight				158
Measurements. American and Metric.	I	07	. 105	-Iga
Pressures. " " "				108
Pressures, " " " Speeds per Hour, " " " " Thickness " " " "				106
Tractive Force			. 113	-151
Weights of Cars and Loads				
" Logs and Lumber				102
" "Rails, per Mile			102.	103
" Kails, per Mile. " Spikes, "			- ,-,	103
" "Splice-Joints			103.	101
Telegraph Correspondence Code			20.1	-221
Tractive Force, Formula for				
"Tables of				
Underground Haulage (See Advt. page 2)				
Weights and Capacities of Cars.				
of Logs and Lumber			190,	102
"American and Metric		• •	106.	Int
" Miscellaneous				
" of Pipe.				199
" of Rail, per Mile				
" of Railroad Spikes				193
" of Splice-Joints	•		193,	202
" " Mile				201
" Section of Flange and Tread				170
because of a sample and a retain the same and a same and a same and a same a same a same a same a same a same a				-/7

Rogers & Company Chicago and New York

RETURN TO the circulation desk of any University of California Library or to the

NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station University of California Richmond, CA 94804-4698

ALL BOOKS MAY BE RECALLED AFTER 7 DAYS 2-month loans may be renewed by calling (510) 642-6753

1-year loans may be recharged by bringing books to NRLF

Renewals and recharges may be made 4 days prior to due date

DUE AS STAMPED BELOW

JUL 13 Mar

SENT ON ILL

JAN 2 3 2006

U.C. BERKELEY

CELET

Ps

10 00/16

N.275026

THE UNIVERSITY OF CALIFORNIA LIBRARY

