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PREFACE.

The writing of this book was undertaken because no ex-

isting text on the subject quite filled the needs for my own
classes. The first draft was mimeographed, and has been used

in that form with some success for several years.

It is planned for students who have had no training in

the calculus, because many of those who take second-year

physics at the University of Missouri suffer from that handicap.

The first part has purposely been made rather easy, the inten-

tion being to lead gradually from less to more difficult matter.

A persistent attempt is made to lay stress upon the experimental

basis for our theories, and to point out such reasons as exist

for and against them; because my own experience has been

that many students, though they may learn the facts of a

science conscientiously and in a sense thoroughly, fail com-

pletely to realize the inductive processes on which the theoreti-

cal structure is founded, thus missing one of the chief educa-

tional values to be derived from the study of science. It is in

line with the same idea that certain matters have been intro-

duced, particularly in the last two chapters, whose purpose
is to give the reader an idea, incomplete; though it may be,

of the present state of optical theory and allied branches of

physical science.

Thanks are due to my colleague, Professor 0. M. Stewart,

for a number of valuable suggestions, and also to Professor

Henry Gale, of the University of Chicago, who read the

manuscript and suggested changes and additions which I have

been glad to make.

H. M. R.

Columbia, Missouri,

October, 1920.
465254
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LIGHT.

CHAPTER I.

1. Introduction. 2. Velocity. 3. Roemer's method. I. Bradley's
method. 5. Fizeau's method with the toothed wheel. 6. The rotating
mirror method of Foucault (and Fizeau).

1. Introduction. Simple and familiar observations teach

us that the sensation of vision is caused by some agency that

emanates from bodies external to us, and enters our eyes. For

instance, we cannot see anything in a room with tightly closed

blinds where there is no source of artificial illumination, such

as a candle, fire, or electric lamp. Incidently, this experience
also teaches that we may classify the objects we see into two

groups: first, luminous objects, such as a candle, a fire, the

sun, or the stars; second, objects such as a book, a tree, the

walls of the room, etc., which can be seen only through the

agency of a luminous body.

From the physicist's point of view, the study of light is

the study of this activity, whatever its nature may be, which

originates in luminous bodies and causes the sensation of

vision when it enters the eye. His interest lies primarily in

the way this agency starts into action in a luminous object,

how it propels itself through space, how it behaves on striking

objects of different kinds, such as glass, crystals, silver, water,

etc., and its relations to all other physical phenomena, such as

heat, electricity, and magnetism.

On the other hand, the physicist proper does not concern

himself much with the parts that the eye and the nervous

system play, in registering in our consciousness the sensation

(vision), whose primary cause is the physical agency that we

call light. This question is important and interesting enough,

but it belongs primarily to the domains of the physiologist

and the psychologist.

Let us begin our study by making a summary of such

facts as common knowledge gives us about light.

In the first place, besides differences in brightness, which

may be called a matter of quantity, there are also differences

of quality to be considered, as shown in the phenomena of

color.

1



2 LIGHT

Second, light travels approximately in straight lines, as

is shown in the formation of shadows. Nevertheless, we shall

see later that light does bend around corners to some slight

extent, though not nearly so much as sound does.

Third, it differs from sound also in that it travels with-

out hindrance through a vacuum. In coming to us from the

stars, it travels through millions of miles of the most perfectly

empty space obtainable.

Fourth, it is either itself a manifestation of energy, or

else it carries energy with it, since any object which receives

and absorbs it becomes heated.

Fifth, when it strikes a surface, more or less of it is gen-

erally reflected. (Those exceptional surfaces which reflect no

light are said to be black). If the surface is highly polished,

the light is reflected at a definite angle, in which case we say

the reflection is regular. If the surface is rough, like that of

a sheet of paper, the light is scattered in all conceivable direc-

tions, and the reflection is said to be diffuse.

Sixth, there are many substances, such that when light

strikes their surfaces, although part is reflected, part enters

the material and passes through it rather freely. Such ma-

terials are said to be transparent. Light traverses transparent

materials approximately in straight lines, as it does the air

or free space, but there is an abrupt bending of the rays at

the place where they pass through the surface. This bending

is called refraction.

Seventh, light travels either instantaneously, or else with

enormous velocity. Here again the comparison with sound is

very striking. The phenomenon of echoes shows that sound

travels with a speed which, though great, cannot be called

enormous, and indeed a fairly accurate measurement of this

speed could be made by noting with a stop-watch the time

required for an echo to be heard from a cliff or large building,

whose distance from the observer is known. An exactly

analogous experiment with light would be to note with a stop-

watch the time that elapses between the flashing of a light and

the perception of its reflection in a mirror, whose distance from

the observer is known. Such an experiment would fail com-

pletely, because no stop-watch could record a short enough
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time-interval; and even without that objection, no human

being has a "reaction-time" constant enough to manipulate
a stop-watch with anything like the necessary precision.

2. Velocity. Of the above mentioned seven points of

common knowledge about light, the last (in regard to velocity)

is of so much interest, and can be so easily discussed without

a thorough knowledge of other optical phenomena, that we
shall consider it here at some length.

It is interesting to note that Galileo actually tried to

measure the velocity of light by the method outlined above,

except that instead of using a mirror to send back the light

(probably none then available were good enough to use over

great distances) he stationed two observers with lanterns a

great distance apart. Observer number one flashed his lantern,

and number two answered by a flash of his own as quickly as

possible. Number one then tried to measure the interval of

time between his own signal and his perception of the answer-

ing signal. Of course no perceptible time-interval was found,

and Galileo concluded from this that the velocity of light was

too great to measure.

Since a velocity is always a distance divided by a time,

Galileo's failure shows that in order to measure so great a

velocity we may proceed in one of three possible ways. First,

we may choose a distance so great that, in spite of the great

velocity to be measured, the interval of time will be large

enough to measure conveniently by ordinary methods. Second,

it might be possible to get a direct comparison between the

velocity of light and some known velocity (such as that of

the earth in its, orbit) which, although much smaller, is yet

far greater than that of anything we can handle in the labora-

tory. Third, we may return to the principle of Galileo's

method, with a relatively short distance (say a few miles) and

correspondingly small time-interval, if we use a mirror to re-

turn the light and find some very refined method far measur-

ing an exceedingly short time. The last method would have

this advantage over the other two, that since the distance

concerned is not excessive, it might be possible to measure the

velocity, not only in air or in free space, but also in water and

other transparent materials.
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It is a matter of historical fact that each of the three

possibilities suggested above has been successfully carried out,

the first
!

by the Danish astronomer Roemer, in 1676, the

second by the English astronomer Bradley, in 1728, and the

third by two French physicists, Fizeau and Foucault, in 1849

and 1850 respectively.

3. Roemer 's Method. The planet Jupiter, like the earth,

revolves about the sun in a nearly circular orbit, but its orbital

radius is so much larger that it takes nearly twelve of our

years to complete the circuit. It has several satellites, similar

to our moon, one of which circles the planet in about 11

hours. Once in every revolution, it enters the shadow of

Jupiter and, since it is not a luminous body, but can be seen

only by virtue of the sun's light, it then disappears for a short

time. The interval of time between two successive eclipses is

called the period. We would naturally expect the period to be

constant, but it was long known that it seems to vary, accord-

ing to the relative positions of Jupiter and the earth. In

figure 1, the larger circle represents the orbit of Jupiter, the

^+.~ -^ smaller that of the earth, with the

/' sun at the center of both. (Actu-

/ \ ally each orbit is an ellipse, with

"V B^ \ the sun at one focus.) Suppose

I
J&

(
V c? *E, 1

that at a given time the earth is

I
\ &^..'' i at Ej and Jupiter at J 1? the two
**

N
' being in line with the sun. A

/

\ / little more than six months later,
NV
V^ ^/ they will again be in line, with

the sun between them, the earth

at E 2 , Jupiter at J2 ,
for Jupiter

moves more slowly in its orbit than does the earth. Again, at a

still later time, the earth will be at E
3 and Jupiter at J3 ,

the

former having made something more than a complete circuit,

while the latter has travelled only through the arc J^Js-
Evidently there are times, as at A, when we are receding
from Jupiter, and other times, as at B, when we are approach-

ing him. It was noticed that when the earth is receding from

Jupiter the period of the satellite seems1

to be longer, when
it is approaching him shorter, than the average. Thus if,
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when the earth is in such a position as E x ,
with Jupiter at J\,

a complete schedule of satellite eclipses be made out in ad-

vance, on the supposition that they occur with a regular period,

it will be found that they appear more and more behind

schedule time, till the earth and Jupiter are in the positions

E 2 J2 ,
and then begin to pick up till they are again actually

on schedule time, when the earth is at E 3 and Jupiter at J 3 .

Roemer saw that this phenomenon could be explained

perfectly by supposing that the eclipses occur at perfectly

regular intervals, provided that a finite time is required for

the light which brings us the news of an eclipse to travel the

very great distances involved. For when we are moving away
from Jupiter, as at the position A, each succeeding eclipse is

announced to us by light that must travel a somewhat greater

distance, and therefore the apparent period would be increased

by the time required for the light to travel the additional

distance. On the basis of a schedule of eclipses, such as was

described in the previous paragraph, it is found that the

eclipses observed when the earth and Jupiter are on opposite

sides of the sun seem to be about 16.6 minutes behind the

schedule. According to Roemer 's views, this would indicate

that it takes that much time for light to cross the earth's

orbit. Since the mean radius of the orbit is about 92.8 X 10 <J

miles, this gives for the velocity of light 18.6 X 104
miles/sec.,

which is the same as 2.99 X 1010
cm./sec.

It is worth noticing that the great distance of Jupiter

from the earth does not enter into the problem, only the

changes in that distance, and it would not be possible to deter-

mine the velocity of light by observations of the satellite if the

earth were stationary with respect to the planet. It is true

that each eclipse would be observed some time later than its

actual occurrence, but we could not know how much later,

unless we already knew the velocity as well as the distance

from Jupiter, and calculated back from the time of the appear-

ance to the time of actual occurrence. That is, one would have

to know the very thing which it is his object to find.

4. Bradley 's Method. The so-called fixed stars are so far

from us that the relatively small range of motion of the earth

in its orbit hardly changes their apparent positions, that is.

their directions from us. Still, as astronomical methods became
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more refined, it was observed that when the earth is on one

side of its orbit the position of a star seems shifted slightly

to the other side, as we should expect from ordinary geometry.

Of course this effect, which we call "parallax," is most pro-

nounced on the nearest stars, and its measurement enables us

to estimate the distance of such stars.

The phenomenon discovered by Bradley, known as "aber-

ration," is an entirely different matter, though it too consists

of an apparent change in the position of a

star. It is a shift, not in a direction opposite

to that in which the earth stands from the

sun, but towards the direction in which the

Dearth is moving at the time, that is, it de-

pends not on the position of the earth, but on

its velocity. Bradley found an explanation

for this phenomenon, suggested by the way
a flag acts when it is affected both by the

wind and by the motion of the ship on which

it is carried. For instance, in figure 2, let the

vector v represent the velocity of the ship,

V that of the wind, which is here supposed
to blow directly across the ship. The flag will not stand out
in the true direction of the wind, but in a direction such as

AB. That is, the flag is affected not only by the true?

wind, but also by an apparent wind equal and opposite to the

velocity of the ship. Evidently it will form an angle with
the true direction of the wind whose tangent is v/V.
This comes to the same thing as saying that to a

person travelling with the ship the wind appears to

come, not from the true direction M, but from the

direction N, where tan. a v/V.
Now let us take another figure (3) in which

we replace the ship by the earth moving through

space, and the wind by light coming from a star

whose position is broadside on to the earth's mo-

tion. Instead of the velocity V of the wind, we

have the velocity c, of light. Then the star, whose

real position is in the direction M, will appear in

the direction N, making an angle a with the true direction,
such that tan. a v/c. The angle a cannot be measured

Figure 2

Figure 3
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directly, since we see only the apparent direction of the

star, not its true position; and we could never hope to find

the velocity by means of the aberration if the earth continued

alwaj^s moving in the same direction. But six months later the

earth would be on the opposite side of its orbit, and moving on

the opposite direction. Therefore, if we take the angle between

the two apparent positions of a star at times six months apart,

this will be twice the angle a. Then knowing the velocity of

the earth in its orbit, we can at once calculate the velocity

of light. This was done by Bradley, who thus got a value

for c which was quite close to that obtained by Roemer's

method.

5. Fizeau's Method with the Toothed Wheel. The main

idea in this method is to send a beam of light through a small

hole toward a mirror from which it is reflected back toward

the hole The hole is

opened and closed

very rapidly, the ra-

pidity of this action

being gradually in- gl
creased till the light ly
that passed through
the opening going out

finds it closed when it returns. This rapid opening and closing
of an aperture was accomplished by using a toothed wheel, as

shown in profile in figure 4. The wheel was rotating rapidly at

a controlled speed,

and the light passed

out through the
gaps between the
teeth. The actual

arrangement, of the

optical parts of the

apparatus was much
more c o mplicated
than the simple dia-

gram of fi g u r e 4,

and is better shown
in figure 5, which we shall consider in detail because it involves

so many of the principles common to most optical experiments.

SOURCE

Figure 4

K
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In the first place, since an observer must watch to see

when the proper speed is reached to prevent the light from

returning through the hole through which it passed out, some-

place must be left for the eye, which obviously cannot be

placed either in front of the source of light or behind it. The

source, for instance an arc-light, is therefore placed to one

side, as at S, and reflected toward the wheel by a small mirror

MM, placed at 45. This is not a heavily silvered affair, like

a household mirror, but either a simple unsilvered sheet of

plane glass, or, better yet, .one which has a coating of silver

so thin that about half the light is reflected, half transmitted.

It is obvious that by such a device half the available light is

lost, by passing through in the direction of K, and half of

what is left is again lost in the returning beam, for it also

is half reflected, so that only %, or even less, of the original

beam can reach the eye placed at E. Nevertheless, enough is

left for the purpose, and it is possible with this arrangement
to see the returning light without interfering with its passage

outward.

Besides the mirror, a system of lenses is introduced, whose

purpose is two-fold: first to prevent the light from spreading

out indefinitely, and so becoming weakened, second to concen-

trate it Avhere it meets the rim of the wheel, so that it can pass

through only one gap at a time. The lens L 1? between the

source and the inclined mirror, forms an image of the source

just at the point where it passes through the wheel. If one of

the openings happens to be at this point the light will, pass

through, spreading out from the hole just as if the latter were

itself the source. A second lens L
2 ,

whose principal focus is

at the rim of the wheel, receives the rays and converts them

into a parallel beam, which can travel to any required distance

without suffering any further weakening- except that due to the

small and unavoidable absorption by the air through which it

passes. In Fizeau's experiment it was carried about 4 miles.

At the end of this distance, it could be made to fall upon a

plane mirror, as shown in the diagram of figure 4, and so re-

flected back, but a plane mirror perfect enough over its whole

surface for this purpose would be hard to construct. Conse-

quently, a third lens, L3 ,
is inserted, at whose principal focus
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is a concave mirror PP, with its center of curvature at the

lens. By this means only a small portion of the mirror is

used, and it makes little difference if it is not perfect all over.

The light now returns through L3 and L2 ,
is again focussed

on the same part of the wheel, and if an opening is there it

passes through, part of it getting through the mirror MM to

the eye.

Now consider what happens as the wheel is started in

revolution, slowly at first, but with increasing speed. At first

a flash will be seen whenever a gap in the wheel leaves the

path clear. But the eye cannot detect flashes coming more

frequently than about 20 per second, therefore the succession

of flashes will change gradually to an apparently steady light

as the speed of the wheel increases, for much more than 20

teeth per second must pass across the field of vision before the

speed is sufficient for a tooth to completely block the path of

the returning ray which went out through the adjacent gap.

But if the speed of rotation is increased still more, this appar-

ently steady light will gradually become fainter, as each tooth

encroaches more and more on the returning beam. It vanishes

completely when the speed is such that a tooth moves into the

place formerly occupied by a gap while the light is passing
from the wheel to the concave mirror and back again. It is

obvious that a further increase of speed will cause a reappear-
ance of the light, which indeed can go through a number of

maxima of intensity, separated by total darkness, if the speed
of rotation increases indefinitely.

In this experiment, the toothed wheel, whose speed of

rotation can be determined by suitable mechanical devices,

serves as a means of measuring very short time-intervals, thus

enabling us to measure the velocity of light over relatively

short distances.

6. The Rotating Mirror Method of Foucault (and Fizeau).

This method, first proposed by Arago, another Frenchman,

was worked out by Foucault and Fizeau, jointly at first, but

afterwards independently. Foucault finished the task first,

Fizeau having been delayed by an accident.

In this case, as in that of the toothed-wheel method, we

shall consider first a diagram showing only the crude principle
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of the method, figure 6. M t is a flat mirror, which can be

rotated rapidly about an axis in its own plane, perpendicular

to the plane of the paper. It receives a beam of light from a

source S, and reflects it in a direction depending upon the

po'sition of the mirror at the instant. Once in every revolu-

tion, and only during a very small part of the revolution, the

reflected light falls upon a second mirror, M 2 ,
which reflects

it back to M 1? and M t in turn reflects it back toward the

source. If the mirror were sta-

tionary, or if the velocity of

light were infinite, so that it

travelled from M x to M2 and

back before M
a had turned at

all, then the returning beam
would come exactly back to the

source S. . But since it requires

a finite time to traverse this dis-

tance, the mirror will have
turned a little, and the beam

Figure 6 will not return exactly to the

source, but to a new point S'.

Here, as in the tooth-wheel method, some other details

must be introduced to make the experiment really possible.

The most important thing to remember in all optical experi-

ments is that a beam of light never consists of a single ray,

but always of a great many, generally having different

directions. For this reason it is impossible to make accurate

measurements of position unless, by the use of lenses or other

means, the rays are concentrated to a definite focus.

Figure 7 is a complete diagram of the apparatus. Light

from the source S passes through a narrow slit, introduced to

give sharp edges to the illuminated area, and falls, after re-

flection from the haM-silvered 45-degree mirror mm, upon the

lens L, which would, if the mirror M t were not present, bring

it to a focus at the point I
x . The mirror M 2 is concave, form-

ing a section of a sphere whose center is at the axis of M^
and which passes through the point I lm Let R be the radius

of this sphere, that is the distance from M t to M2 . As the

mirror M t rotates, the direction of the rays that it reflects
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changes, but always in such a way that an image of the

illuminated slit is formed somewhere on the circle I^MoB.
We may regard this image as sweeping round the circle with

an angular velocity twice that of the rotating mirror. During

a short interval of time, it will fall upon the fixed mirror M 2 ,

which reflects the light directly back over its original path as

-->
-_------

--

B

Figure 7

far as M,. If the latter had been at rest, the light would

have continued to retrace its path as far as the half-silvered

mirror mm. Part of it would then penetrate mm and come

to a focus at f
x , forming there an image that could be seen by

the eye at E, aided perhaps by an eye-lens 1. It will be

noticed that this returning light would act exactly as if it

came from the point I
a instead of from M2 . In fact, I t is the

"image by reflection" of the point M2 ,
formed by the mirror

M
t

. According to the laws of reflection in a plane mirror,

which will be taken up in detail later, the angles A 1
M 1M2 and

AJM^I! are equal, A l being the point where the plane of the

mirror M t cuts the circle. Since the rays striking the lens

would appear to come from I,, the image f
x would be the

; '

conjugate focus" of I
x . According to the law of lenses, the
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line I
1
f 1 passes through the center of the lens, and f x is at

such a distance that

+ = !
Lfj, LI

t
F

where F is what we call the "focal length" of the lens L.

(section 31)

In point of fact, however, M instead of being at rest,

is rotating in the direction shown by the arrow. Consider the

light that starts from it toward M, when M t is in the position

indicated. When this light returns to M t the latter will have

turned through a small angle a, so that its plane will now
intersect the large circle in the point A 2 . Therefore it will

reflect the light returned from M2 as if it came, not from I
,

but from a new point I 2 ,
such that A2M 1

I
2
= A2M 1

M
2 . After

reflection then, the lens L will bring it to focus, not at f1? but

at the new point f2 ,
such that the straight line I 2f2 passes

through the center of L.

The eye would see an image of the slit at f x if the mirror
were at rest, at f2 if it were rotating. In the latter case, the

light would not be really steady, but consist of a series of

flashes; but, since the flashes come much more rapidly than
20 per second, it would to all appearance be steady. If the
mirror were started from rest and gradually picked up speed, the

image would first appear at f t and gradually move away, but
would seem perfectly still as long as the speed of the mirror
were steady.

Evidently, the distance f xf2 depends upon the velocity of

light, together with the distance between the two mirrors Mt

and M2 ,
the speed of rotation of the mirror M 1? and the focal

length F; consequently we should be able to get the velocity
of light if these other quantities are known. The small dis-

tance fjf, is measured with a micrometer (see section 37), the

large distance M
t
M

2 by steel tapes, or by surveyors' methods,
and the speed of rotation of the mirror by a special revolution-

counter and. stop-watch, or some equivalent mechanical device.

The focal length F is supposed to be known, or it can be found

by methods to be described later.

In order to derive the formula for finding the velocity of

light, c, we shall let R = the distance IV^IVLj, d the distance
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f
t
f2 ,

t = the time required for light to travel the distance 2R
from Mj to M2 and back, which is also the time required for

the mirror to turn through the angle a, and n the number

of revolutions per second of the turning mirror. Then the

velocity of light is

2Rc= (1)
L

and the angular velocity of the mirror, in radians per second, is

2,rn = - (2)
t

Since, by the laws of reflection, the angle A2MaM2
= A^IJ.,,

and AJNIjM., = A.MJ,, therefore LM^ = 2a. In the actual

experiment, the lens L is placed very close to M 1? not more

than a few feet away, while the distance I^Ij I 2M,. = R is

quite large, say several hundred meters. Therefore, very

nearly, the angle IXI, = IMJ.^ = 2a, and the opposite angle

fxLf2 is also approximately equal to 2a. With I x and I
2 so

far from the lens, the images f
1 and f2 come practically at the

focal distance from the lens, that is f x
L = f,L = F. There-

fore. in radian measure,

(3)

Now, from equations (1), (2), and (3) we can eliminate

t and a and we get

c = 87rnRF/d

from which the value of c can be computed, as soon as n, R,

F, and d are measured.

Professor A. A. Michelson, of the University of Chicago,

has made a number of improvements in the details of Fou-

cault's method, but has not altered the principles involved.

.Measurements of the velocity of light, obtained by ex-

perimental methods, vary from. 298,000 to 301,382 kilometers

per second. It is usually regarded as sufficiently accurate for

all purposes to take the round figure 300,000, or, when ex-

pressed in centimeters per second, 30,000,000,000 = 3 X 1010
.



14 LIGHT

Problems.

1. The star Sirius is 5 X 1013 miles away from us. How
many years are required for its light to reach us?

2. Calculate the time required for light to travel four

miles and return after being reflected by a mirror.

3. What is the maximum angle by which, owing to

aberration, a star may seem to be displaced from its true

position ?

4. Derive the formula applying to Fizeau's toothed-wheel

method for finding the velocity of light.

5. Referring to figure 1, at what) positions of the earth

does the observed period of the satellite eclipses seem longest

and shortest respectively?

6. It frequently happensi that the moon passes between

the earth and a star (occultation of the star). What would

be the effect upon this phenomenon if red light travelled faster

than blue, in the space between moon and earth?

7. The "parallax" of a star is the angle which the radius

of the earth's orbit. 92.8 X 106
miles, subtends as seen from

the star. A "parsec" is the distance of a star whose parallax

is one second of arc. Find its value in miles, and in "light-

years," the distance light travels in a year.



CHAPTER II.

7. Refraction through a prism. 8. Newton's conception of color.

9. Impure colors. 10. Color due to absorption. 11. Color due to other

causes. 12. Black and white. 13. Complementary colors and color

mixture. 14. The eye. 15. Color vision theories.

7. Refraction through a prism. Of the earlier physicists,

the one who made greatest progress in the study of light was

Sir Isaac Newton. It must be admitted that he was led to

believe in certain hypotheses which have since been discarded,

but in spite of that fact he accumulated, by experimental

methods, a large amount of needed definite information; and

his philosophical discussion helped greatly in the development
of the theory that later supplanted his own faulty one.

Newton was the first to get

a clear idea of color, which he
|

attained through a study of

glass prisms. Everyone knows w
that a prism of any transparent

substance not only bends rays
of light, but also makes a beam
of white light to show color on

the edges. Thus, let W in figure

8 represent a window, through
which white light enters a room,

passing through the prism and

entering the eye placed at E

general way the course of the rays. Because we judge the

position of an object by the direction of the rays as they

enter our eyes, the window appears to be displaced from its

true position to some such place as W. But, more than this,

the window appears white only in the middle. That edge of

it which, as seen through the prism, is nearest to its proper

position, is red, the other edge violet. Newton saw that this

experiment indicates white light to be a composite of many
colors, the color effect at the edges being a result of some

property of the prism which causes it to bend, or refract, some

of these component colors more than others; for instance, the

(15)

r
\v

,r

The

Figure 8

arrows indicate in a

we judge
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violet more than the red, and other colors to an intermediate

degree. According to this hypothesis, the eye would see a red

image of the window, as indicated by the rectangle rrrr in

figure 9, or as shown in the plan of figure 8 by rr; while,

slightly displaced from it, would be seen a

violet image (vvw in figure 9, rv in figure 8).

Any other color, such as green, would also

form an image of the window, displaced less

than the violet but more than the red. (Note

that, owing to a certain distorting action of

the prism, which we shall not here attempt
to explain, the vertical edges of the images appear not

straight, but curved, as shown by the dotted lines of figure

9). Now, if we bear in mind that there exist in the white

light, not three colors, nor only seven, but an infinite number
of gradations shading into one another, each of which produces
its own image of the window, it is easy to see that all of them
will overlap in the middle, so that this part will be white, just

like the light as it enters the window. But on passing from

the middle toward one edge, we find first the violet missing,

then the colors nearest to violet (blue-violet, blue, etc.), until

finally, at the extreme edge, only the red is present. On the

other hand, passing from the middle toward the other edge,

first the red is missing, then the intermediate colors, and at

the extreme edge only the violet remains. It is clear that only

the extreme colors, red and violet, are seen pure, that is, un-

mixed with other colors, because all the intermediate ones over-

lap. But it is also evident that the overlapping would be very

much reduced if, instead of a wide window, a very narrow

slit were used for the admission of the light. Since it is im-

possible to use an infinitely narrow slit, there will still be a

small amount of overlapping of the images produced by shades

of color very close to one another, but none at all in the case

of distinctly different colors. This can be understood clearly

if the reader will imagine each of the rectangles of figure 9,

rrrr, gggg, vvvv, etc., to be made much narrower, without

changing the distance between their centers.

Any person possessing a prism can try this experiment

for himself, by allowing light to stream through the crack in



NEWTON'S COLOR EXPERIMENTS 17

a door left slightly ajar, and viewing the crack through the

prism held before the eye as in figure 8, with the refracting

edge vertical. A band of color will be seen, shading from violet

at one edge, through blue, green, yellow, and orange, to red,

at the other. The crack in the door acts as a slit, and if this

be narrow enough very little overlapping will occur and white

will nowhere be seen.

Newton's procedure was really somewhat different from

the experiment outlined above. He allowed a beam of light

direct from the sun to pass through a small hole O in a shut-

ter (figure 10) and then through a prism P, which deflected

it toward the white

screen S. He could

have placed his eye

at the point E,

and by looking
into the prism,
seen the colored
band in the appar-

e n t position r'v',

since the red light

would then have
entered his eve as

V''

Figure 10

if it came from r', the violet as if it

came from v', and the intermediate colors as if they origi-

nated at points intermediate between r' and v'. Instead of

doing this, he allowed the light to proceed to the white screen,

forming a red spot at r, a violet spot at v, etc. Since; the

pencil of light coming from the sun through a small hole is

rather narrow, including an angle of only about one-half de-

gree, there was not much overlapping of the colors, and the

whole colored band showed the intermediate, as well as the

extreme colors, fairly pure. Newton called this band of color

a spectrum, and in technical language it is further defined as

a real spectrum because the light actually passes through it,

or at least to it, as distinguished from the so-called virtual

spectrum, seen in the apparent position rV when one looks

into the prism. The light does not actually pass through rV,
but merely enters the eye as if it came from there. There is

much less overlapping of colors in the virtual than in the real

spectrum, -in Newton's experiment, that is, the former is more
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pure. The overlapping in the virtual spectrum can be almost

entirely eliminated by making the hole through which the light

is admitted very small.

The width of the spectrum can be increased by replacing
the round hole with a narrow slit, and the overlapping of

colors in the real spectrum can be much reduced by the inser-

tion, either before or behind the prism, of a lens of suitable

focal length, so placed, that each of the colors is brought to a

focus on the screen. Under these circumstances, it is possible

to regard the real spectrum as made up of an infinite number

of images of the slit, side by side, the color of each image being

slightly, though imperceptibly, different from that of the

image next to it. If the light coming through the slit contains

(ivery conceivable gradation of color, as is the case with light

coming from an ordinary electric lamp, there will be no gaps

in the spectrum. In the case of sunlight there are certain

missing shades, and these defects are made evident, if the slit

is very narrow and the focussing very good, by certain gaps,

or "black lines" across the spectrum, in the positions of those

images of the slit which would be supplied by the missing

colors if they were only present, (see section 56)

8. Newton's conception of color. Newton's conception of

the formation of the spectrum, then, was that the differ-

ent colors are already

present in the white
light, and the prism
serves only as a separa-

tor. This view was direct-

ly opposed to that held

by some others, that the

prism in some way modi-

fies the light so as to

change it from white to

Figure 11 colored. According to

Newton's ideas, if a second prism be introduced behind the

first one, but with its refracting edge turned in the opposite

direction, as in figure 11, this should reunite the colors into a

white beam again. A trial shows that this actually occurs,

provided the second prism is of the same kind of glass, and

has the same angle. Another test of Newton's theory is this:
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If we could pass through a prism only light of a single spectral

tint, for instance deep red, or a definite shade of any other

color, the prism should simply bend it, and not separate it

into more colors. This can be tried by the arrangement shown

in figure 12. The
white screen, S of

figure 10, is re-

placed by a screen

in which there is

a narrow slit,

through which any

single portion o f

the spectrum can
be passed to a sec- Figure 12

ond prism. It is found that the second prism does bend the

light, but does not spread it out into any more colors; that is,

if only red light enters it, only red light leaves it, and that

without being spread out to any appreciable extent. For these

experimental reasons, we shall accept Newton's view of color

as being the correct one.*

9. Impure colors- There is one fact about the spectrum
which can hardly fail to strike one who examines it closely,

viz., that we fail to find in it certain colors which are more or

less common in nature. For instance, there is no purple, and

though there are several shades of red, there is none that could

be called pink. These two cases are good illustrations of the

general fact that most of the colors of nature are not ''pure

colors,
"

in the sense of spectral colors that cannot be further

separated by a prism, but are mixtures of two or more of these

latter. Purple, for example, is a mixture of red with blue or

violet or both. This fact can be shown by placing two small

*Certain modern investigations show that the contention of New-
ton's opponents, that a prism actually manufactures the different

colors from white light instead of merely separating out constituents

that are already present, is in a certain sense true. This is embodied

in what is called the pulse-theory of white light. But, after all is said,

this differs from Newton's theory only in the point of view, and tht

latter not only explains all the phenomena in a satisfactory manner,

but is much easier to deal with. Therefore we may accept it as true

in the pragmatic sense.
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mirrors in the spectrum, one in the deep red part, the other in

the blue or violet part, turning them so that each reflects to

the same spot on a white screen. This spot, illuminated by
both red and, blue or violet light, appears purple. Purple,

then is a sensation produced when both red and blue or violet

light fall upon the retina of the eye.

We can get a pink spot by illuminating a white screen

simultaneously with white light and red light. Consequently,

pink is produced by a combination of all the spectral colors,

with a considerable excess of red. Similarly, pale blue is a

combination of all the colors with an excess of blue, pale green
a similar combination with excess of green, etc. In technical

language, any such combination of one or more definite spec-

tral colors with white is said to be unsaturated. Thus, pink
is unsaturated red, pale blue is unsaturated blue, etc.

That the pigments used ordinarily in painting are very

impure colors, can be demonstrated by a very simple experi-

ment. Take a strip of paper about % 2 inc^ wide, and color it

in quarter-inch lengths with the following artists' pigments,

each pair of colors being separated by a short length of

white : alizarin crimson
,
alizarin crimson mixed with gam-

boge, gamboge alone, gamboge mixed with prussian blue, new
blue, and alizarin crimson mixed with new blue. The strip

will then appear as a very narrow ribbon showing the follow-

ing succession of colors : red, white, orange, white, yellow,

white, green, white, blue, white, violet. Now lay it against

a dull black background, such as a piece of black felt, illumi-

nate it with sunlight, and look at it through a prism whose

edges are parallel to the strip. Each of the white portions

forms a complete spectrum, with which the spectra of the

painted portions can be compared. It will be noted that each

of them shows through the prism not only the color which it

appears to have when viewed directly, but certain other parts

of the spectrum. Not one of them is a pure color, but at best

each shows only a strong excess of the color it is meant to

have. The most nearly pure of all is the red part, but even

it shows quite a little green, with traces of the other colors.

A narrow blade of grass, when observed through a prism

in such a manner, shows, beside strong green, a great deal of

red and yellow, and even some blue and violet.
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10. Color due to absorption. Naturally we are led to

enquire: why is a blade of grass green, or the petal of a rose

red? 'Since grass is not itself luminous, but is seen only be-

cause it reflects diffusely the sunlight that falls upon it, its

green color, or rather its very mixed color with green predomi-

nating, must arise from the fact that some of the chemical

substances in the grass have the property of "absorbing," to

a greater or less extent, certain colors, or as we often express

it, certain parts of the spectrum. For instance, these con-

stituents of the grass either do not absorb green at all, or more

likely simply absorb it less than they absorb red and yellow,

and still less than they absorb blue and violet. But absorption,

in the proper sense of the word, can occur only while the

light is actually passing through a material, not in the mere

act of reflection at the surface. Consequently, it must be that

the light penetrates the surface to some appreciable depth, that

is, the substance of the grass is to some extent transparent.

That this is true, can be readily proved by holding a blade of

grass between the eye and a bright source of light. A con-

siderable fraction of the incident light passes entirely through

the grass to the eye. Indeed, it may truly be said that any
material is to some extent transparent, and if made into a

thin enough sheet will allow an appreciable amount of light to

pass through it. But the farther the light is caused to pass

through a material the more of its energy is absorbed.

Evidently, what happens in the case of the blade of grass

is something like this : Of the white light that strikes the sur-

face, part is reflected without penetrating, as would be the case

with glass or water; and this part, if it could be seen alone,

would be white, like the incident light. The rest of the incident

light penetrates the surface; but since the material is not

completely transparent, but only what we call translucent, the

rays do not pass straight through to the back surface, but are

diffused, or scattered, within; the material. In this way part

of the light eventually gets back into the air through the front

surface, and we call this part "diffusely reflected" light,

although it has been within the body of the material. Part

also gets out through the back surface, and we call this

"transmitted" light. Both the diffusely reflected, and the

transmitted, light during its passage through the material,
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suffers losses by absorption in the chemical substances of the

leaf. Part of the green is absorbed, more of the yellow, orange,
and red, and most of the blue and violet. In this way, both

the reflected and the transmitted light become colored, and
indeed both parts show about the same color.

Most natural objects owe their colors to the same cause.

Part of the light penetrates the surface, and part of this

emerges again, after suffering absorption. This explanation is

satisfactory so far as it goes, but it must not be forgotten that

we do not know why, for instance, the leaf-substance absorbs

more red than green, while just the reverse is true of the

coloring-material known as alizarin-crimson. This question

cannot be answered without a far greater knowledge of atomic

structure than we now have.

11. Color due to other causes. There are some objects
whose color is produced in a different way. The yellow color

of gold, as an example, is mostly due to the fact that a certain

shade of yellow light seems unable to enter the gold at all. It

is completely reflected at the surface. Consequently, a very
thin sheet of gold-leaf transmits light which is completely

lacking in this color. The transmitted light is dull green, while

the reflected light is yellowish. A similar phenomenon occurs

in the case of some dyes, which in concentrated form show

quite a different color according as they are seen by transmitted

or by reflected light. Common red ink is an example; it

reflects green very strongly when concentrated, but transmits

red.

The brilliant colors of rainbows are due, not at all to

absorption, but to a separation of the colors something like

that which occurs in a prism. The theory of rainbows will be

taken up later, (section 83).

The blue of the sky is caused by a sort of scattering of

the light by the particles of the atmosphere, similar to the

scattering produced when a beam of light is sent through milky

water. If there were no atmosphere the sky would appear

black, and we would receive light only from the sun, moon,
and stars directly. In the scattered light from the sky, all

colors of the spectrum are represented, with blue in excess.

In order to explain this preponderance of blue, we must

anticipate to some extent facts that properly come later in
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these pages. It will be shown in the next chapter that light

consists of waves, the shortest of which are the violet, the

longest the red, the intermediate colors having waves of inter-

mediate length. Although all these waves are very short, the

length of even the shortest" is much greater than any of the

dimensions of a molecule. Since the molecules are so small,

they are much more efficient in reflecting, or scattering, short

waves than longer ones, just as small pieces of wood floating

on the surface of water will reflect short ripples, but simply
ride on the very long waves. Therefore the molecules in the

air reflect scattering in all directions those colors that lie

near the violet end of the spectrum to a considerably greater

degree than those near the red end, thus giving a bluish color

to this scattered light. That it appears blue rather than violet

is because the violet is at best very weak.

Of course, since a beam of direct light from the sun is

thus robbed of a greater percentage of its blue and violet than

of its red, that part of it which passes on through, must be

abnormally rich in red relatively speaking and therefore /
must appear more reddish in color than it was when it emerged
from the sun. This is particularly marked when the light has

passed through a long distance in air before reaching the eye,

as is the case near sunrise or sunset. That the light at sucix

times is exceptionally impoverished in blue and violet, is well

known to every photographer, for most of the photographic
action of light is produced by these colors, and a plate must
be exposed several times as long when the sun is low in the

sky as at midday. However, the reddish color of the sun when
it is near the horizon is familiar to all.

12. Black and white. A black object, strictly speaking,
is one which absorbs completely all colors, and reflects none.

But an object may appear black simply because the light

which illuminates it contains no constituent save those which

it absorbs completely. For example, a deep red rose will ap-

pear black when placed in the blue or violet part of the spec-

trum, because it absorbs these colors completely, and the only
color which it can reflect freely, red, is not present.

A -ibhite object is one which reflects diffusely, that is ii?

all directions, all colors to the same extent. The whiteness of

the snow is an interesting case. Snow is really composed of
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numerous little ice crystals, and ice in bulk is not a white

body, but ai transparent one. That is, a large chunk of ice

allows most of the light which falls upon it to pass, through,

and that part which it reflects is reflected, not diffusely, but

in a definite direction. But when we have a great mass of very

small ice crystals, arranged in an irregular manner, although

each crystal surface reflects in a particular direction, the whole

mass reflects about as much in one direction as in another.

Moreover, the light that passes through the crystals on top of

the layer of snow will strike other surfaces below, which again

cause reflection, part of the reflected light finding its way out

of the mass again. Thus the whole mass reflects irregularly a

very large amount of the light, and, since no color is absorbed

by the material, this reflected light is white in color. There-

fore, the whiteness of snow is due to the great number of re-

flecting surfaces, irregularly arranged. The same effect can

be produced by crushing a piece of glass with a hammer. The

many cracks in the glass cause a multitude of reflecting sur-

faces, arranged irregularly, and the mass immediately becomes

white. The whiteness of clouds is also due to numberless little

reflecting surfaces, the surfaces of millions of small water-

drops.

Of course, a white object will not appear white unless the

light which falls upon it contains all the colors of the spectrum,

i. e., is white light. If it be illuminated by red light it will

appear red, if by blue light, blue, etc. Thus, the white screens

of figures 10 and 11 show whatever color falls upon them, and

it is just this property that makes a white screen suitable for

such experiments.
13. Complementary colors and color mixture. Any two

colors which together produce the sensation of white are called

complementary colors. A convenient way of showing these is

illustrated in figure 13. White light passes through the slit

S to the lens L, which makes the rays parallel. It then passes

through the prism P and the second lens L2 ,
which' focusses

the spectrum in the plane vr. Instead of having a screen at

this place, another lens, L
3 ,

is placed just behind it. The two

lenses L2 and L3 together form, an image of the face of the

prism on a properly placed white screen A. Since light of all

colors comes through the whole face of the prism, and all the
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light passes through the two lenses, this image will be uniform-

ly white. Now, if an opaque obstacle be placed just in front

of L,. i. e., just in the plane in which, the spectrum is formed,

the obstacle being of sufficient width to cut off a certain spec-

tral region, say the green, then only the remaining colors will

reach the screen A, and the image of the prism-face will

therefore show the color complementary to the color cut out.

Figure 13

By this means, we find that the color complementary to the

average spectral green is a peculiar shade of red, that com-

plementary to spectral blue a sort of golden yellow, etc.

Generally, one or both of a pair of complementary colors are

impure in the spectral sense.

It is found that a combination of the red, the green, and /
the-Jalue of the spectrum, in suitable proportions, will produce
the sensation of white, without the presence of the other colors,

such as violet, orange, and yellow. This can be tried with the

arrangement of figure 13 by placing before the lens L3 a card

with holes cut through it so as to let pass only some of these

three colors. The best exact location of the holes, and their

proper sizes, can be found only by trial. Furthermore, by

suitably altering the relative intensities of these three colors,

as by stopping down one or two of the holes, any other color,

either a pure spectral hue, or such a color as purple, can be

closely imitated.

The mixing of pigments shows some results which at first

sight are very surprising. For instance, since a combination

of all the different colors, of proper proportions, produces

white, we should naturally expect that when many different

paints are mixed, the mixture would tend to become white.
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On the contrary, it tends to become black; and in general,

the more different pigments are put into a mixture, the darker

it becomes. The reason is that by mixing we combine the

absorbing powers rather than the reflecting powers of the

constituents. We have seen that the common pigments, alizarin

crimson, gamboge, and new blue, have each a distinctive ab-

sorption, and in a mixture of the three any part of the spec-

trum would be strongly absorbed by one or another, so that

little if any of the incident light would escape absorption. An

example less extreme than this is seen in the mixture of the

crimson and the blue to produce violet. If it were not for the

fact that certain parts of the spectrum escape complete absorp-

tion in either of these pigments, the mixture would be black

instead of violet. It is, as a matter of fact, extremely dark,

much darker than the violet seen in the spectrum from direct

sunlight, relative to the brightness of the other colors.

It is quite plain then, that the mixing of two or mx>re

paints produces quite a different result from throwing simul-

taneously upon a white screen lights of the corresponding

colors; and this fact seriously limits the ability of artists to

produce desired effects by mixing paints. The school of

painters known as impressionists introduced a new method.

Instead of mixing their paints, they lay them on the canvas

in little blotches side by side. Thus, where a painter of the

older schools would mix crimson and yellow to paint a surface

of orange color, the impressionist covers the surface with dots

of crimson and dots of yellow close together but arranged in

irregular order. Such a painted surface looks very confusing

when viewed at close range, but at a greater distance the

blotches of red and yellow seem to blend together to produce
the effect of a uniform orange, so that the impressionist

secures in this way the same effect that we could get in the

laboratory by simultaneously illuminating a white surface with

red and yellow light. As a result, paintings by impressionists

are usually far more brilliant than those of the old masters,

though it is true that the latter have a sombre richness which

is itself a great charm.

14. The eye. The organ of vision, the eye, is an optical

instrument more analogous to the photographic camera than to
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anything else. It is shown diagrammatically in figure 14. It

consists of a shell roughly spherical in shape, of which the

front wall, C. the cornea, is transparent. Behind this is the

iris I, a screen or diaphragm con-

taining a circular hole, the pupil,

P, whose diameter contracts in

brilliant illumination or expands in

dim light, by involuntary muscular

action. The lens L is capable of a

slight forward and backward mo-

tion, like that of a camera lens in

focussing, but most of the focus-

sing in the eye is accomplished by altering the radii of

the lens surfaces. The material of the lens is of course some-

what plastic, and in structure it resembles an onion in being
built up in layers. The lens forms an image of any object

looked at upon the retina R, which is spread over the rear and
side surfaces of the shell. The space between the lens and the

retina is filled with a jelly-like material called the vitreous

humor. The material between lens and cornea is watery, and

is called the aqueous humor. By means of the above mentioned

muscular distortion of the lens, together with its slight axial

movement, any object toward which the eye is directly turned

can be sharply focussed upon the retina, provided it is not

closer than a few inches, in the case of normal eyes. This ad-

justment of focus is called accommodation. With the eye re-

laxed, very distant objects should be in sharp focus. In view-

ing a very small object, however, it is advantageous to bring

it close, so that its image upon the retina may be larger; but

if it is brought closer than about 10 inches the muscular strain

of accommodation becomes unpleasant and is in fact harmful.

Consequently, about 10 inches (25 cm.) is the most favorable

distance, with people of normal vision, for reading or for

careful scrutiny of small objects. This is known as the
"
dis-

tance of distinct vision."

A myopic, or short-sighted, eye is one whose focal length

in the relaxed condition is abnormally short, so that it cannot

focus sharply upon distant objects. Just the reverse is a

hypermetropic eye, which requires a certain amount of accom-



28 LIGHT

modation even to focus upon an infinitely distant object.

Presbyopia, a trouble particularly common among older people,

is an impairment of the ability to accommodate, due to a pro-

gressive stiffening of the muscles which change the radii of

the lens. Astigmatism is caused by lack of axial symmetry in

the lens or the cornea or both. It shows itself in an inability

to see clearly, with the same accommodation, lines inclined at

different degrees with the vertical, though equally distant.

The focus upon the retina is sharp only for a limited

region near the axis of the lens, but unsharp vision is possible

over a very wide angle without moving the eye.

The retina is the sensitive part of the eye, which in some

manner is stimulated by light falling upon it so that the mind

experiences the sensation of vision. It is a network of delicate

nerve-fibers which are connected with the brain through the

optic nerve O.

15. Color vision theories. The student should understand

that the actual mechanism of vision, the connecting link be-

tween the light-stimulus upon the retina and the consciousness

of light and color, is a thing about which little is known. Even
if we knew the physical and chemical processes that go on in

a iierve, there would still be a gap or hiatus in our knowledge
between that and the actual sensation. Consequently, our

notions of light and color perception do not extend very far,

and are somewhat uncertain at that. On the face of things,

it seems very unlikely that there is a separate type of nerve

for every gradation of color. Such an experiment as the pro-

duction of the orange sensation by mixing red and yellow light,

or the production of any other spectral sensation by a mix-

ture in suitable proportions of red, green and blue, suggests

that there are only a few distinct color sensations, perhaps

three, and that the other sensations are the result of a simul-

taneous stimulation of these few. Experiments with color-

blind people also support this view. There are in fact two

principal theories of color-sensation, the Young-Helmholtz

theory and the Hering theory. The former alone is often

given in physics texts, but the latter is favored by at least a

great many experimental psychologists, and the matter is one

of psychology more than of physics.
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According to the Young-Helmholtz theory, the retina con-

tains three distinct sets of . nerve-fibers, each giving only a

single sensation, no matter what particular part of the spec-

trum corresponds to the light that does the stimulating. One
set gives a red sensation, the second a green sensation, the

third a violet or blue sensation. The three curves of figure

15, which are due to Koenig, show to what extent each of these

Dp. R

sensations is stimulated by light from different parts of the

spectrum. In order to clearly understand these curves, con-

sider how the spectrum would appear to a person whose eyes

were provided with the red-sensitive nerves, but not with the

other two sets. He would be able to see the spectrum through-
out its entire extent, with the possible exception of the ex-

treme violet end, but all of it would appear of the same color,

red. The only differences between different parts would be

differences of brightness, as indicated by the varying ordinates

of the red curve; In fact, his retina would act in a way quite

analogous to the action of a photographic plate, which responds

to the influence of light of many different colors, but with a

response which is the same in kind for all, differing only in

degree.

Now consider an eye with all three sets of nerve-fibers,

and suppose the retina to be stimulated by light from the

yellow-green portion of the spectrum. A comparison of figure

15 shows that this light stimulates all three of the sensations,

the green sensation most strongly, the red sensation to a lessi

degree, and the violet sensation least of all. The complex of

these three sensations acting together is what we are accustomed

to call the yellow-green sensation. About one man in thirty
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is "red-color-blind/
5

which, on the Young-Helmholtz theory,

means that his eyes lack the nerve-fibers which give the sen-

sation of red.

The Hering theory is quite different. Instead of three

primary sensations, it postulates certain contrasts, caused by
chemical changes, under the influence of light, in three hypo-
thetical fluids present in the retina, which we shall designate

as A, B, and C. Fluid A undergoes a certain decomposition
when any sort of light, irrespective of color, falls upon, it, but

recombines, or recovers, in darkness. It reacts upon the nerve

fibers differently in its two states, causing a sensation of bright-

ness in the one case and of darkness in the other. Fluid B
is different. It undergoes a decomposition under the action

of light of longer wavelengths, giving a red sensation, and a

recombination under the action of light of shorter wavelengths,

giving a green sensation, being entirely neutral for light of

wavelength corresponding to some part of the yellow. Fluid

C acts in a similar way, but the sensation produced by longer

wavelengths is yellow, that by shorter wavelengths blue or

violet, and the neutral condition would be for wavelengths in

the green. Thus we have three contrasts, bright and dark, red

and green, yellow and blue. According to this theory, the

usual type of color-blindness is due to lack of the B fluid,

resulting in an inability to distinguish reds from greens.

Color-blindness is not a disease, but a heritable defect, and

though a handicap it is not a thing of which one need be

particularly ashamed. Many people who have it are not con-

scious of it. Recent biological researches have shown the fol-

lowing interesting peculiarities about its inheritance. A
color-blind man transmits the defect neither to his sons nor

to his daughters, but to the sons of his daughters; that is, it

passes from the male of the first generation to the male of the

third, through the female of the second, but without showing

actively in the second generation at all. A woman is never

herself color-blind unless she inherits it both from her father

and her mother's father. Consequently, cases of color-blind-

ness among women are very rare.
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Problems.

1. Suppose that a flower whose color is a pure blue is

passed slowly through a spectrum, from one end to the other.

What would be its appearance in the different parts? Suppose
a blade of grass were treated in the same manner?

2. A story by Ambrose Bierce, entitled "The Damned

Thing," has for its subject a supposedly invisible animal. The

author argues that such a thing would be possible if the

animal's fur reflected only ultraviolet light. What would be

the actual appearance of such an animal f

3. Explain the whiteness of soapsuds and other froth.

4. Suppose blue glass were crushed to a powder. What
would be the effect upon its color?

5. Explain why tobacco smoke appears blue against a

dark, but brown against a bright, background.

6. Why is it that colored cloth can be changed by dyeing

to a darker, but not to a brighter color?

7. Birds, animals, and fishes usually have a much lighter

color on the lower than on the upper sides of their bodies. Is

this fact of any importance in the economy of nature? Explain.
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16. The corpuscular theory of light. We have now learned

enough about some of the general properties of light to en-

quire with some degree of intelligence as to its nature. The

two theories that have had any support may be called the cor-

puscular theory and the wave theory. According to the first,

light consists of very small weightless material particles; ac-

cording to the second, it consists of waves. Either theory

strains the imagination greatly.

It is hard to think of material corpuscles flying with

enormous speed through a solid substance like glass, with so

little hindrance as glass seems to offer to the passage of light,

though color might well be accounted for by differences in

size, in shape, or in some other characteristic among the cor-

puscles. It is also extremely difficult to explain how, when

these corpuscles strike such a substance as glass or water, some

of them should be reflected while others pass into the material,

being refracted as they do so. It is true that one might sup-

pose that there are two kinds of such particles, a kind that

is reflected and a kind that is refracted. But if this were the

case, one reflection would completely separate these two kinds,

so that if the reflected light struck another such surface all of

it would be reflected, none refracted; while if the refracted

light struck another surface, all would be refracted, none re-

flected. Then if one should observe in a plate glass window

the reflected image of his own body, this image would become

invisible to him if he held a small piece of glass in front of his

eyes. A simple trial shows that this is not true. Further-

more, the light that got in through the first surface of the

plate glass could not be reflected at all by the second surface.

It can easily be proved that this conclusion also is false, for

if one stands close to such a window he can distinctly see two

images of himself, the brighter image being formed by re-

(32)



:

THE WAVE THEORY 33

;

lection at the first surface, the fainter one at the second. (In

reality there is a large number of such images, produced by
multiple reflections, but all except the first two are very faint).

In order to get around this difficulty, Newton, the chief advo-

cate of the corpuscular theory, suggested that, although all

the corpuscles are fundamentally alike so far as reflection and
refraction are concerned, each one is at times in a state suitable

for reflection, at other times in a state suitable for refraction;

so that whenever the light strikes a reflecting surface there

will be a certain proportion of them ready for reflection, even

though some had already been reflected before. But such an

hypothesis, though not absolutely absurd, seems clumsy and

improbable, and Newton himself was far from being satisfied

with it.

17. The wave theory. In the wave theory, there is no

difficulty in explaining reflection and refraction. Indeed it is

characteristic of all kinds of wave motion that, whenever a

wave strikes a surface separating two media in which the

velocity of wave propagation is different (such as the surface

between air and glass) part of the energy enters the second

medium as a refracted wave, while part is sent back into the

first as a reflected; wave. Neither is it at all hard to think

of waves passing through glass and other transparent media

with high velocity and little resistance, for we know that

mechanical waves, such as sound waves, do traverse such

bodies very easily. Color, also, may be accounted for very

simply on the wave theory, by the supposition that differences

in color correspond to differences in the length of the waves,

just as we know that differences in the pitch of musical notes

correspond to differences in the lengths of the sound waves.

But it is difficult to understand how waves can pass, as

we know that light does, through perfectly empty space, for

the use of the names /'wave" implies the existence of some

medium in which the waves exist. On account of this difficulty

with the wave theory, physicists have been led to assume the

existence of a medium filling all space, even a so-called vacuum,

to which the name ether has been given. The necessity for

this assumption is to this day a very serious load on the

shoulders of the wave theory of light, though it becomes less
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objectionable when we find that there are other phenomena ;

such as electric and magnetic attractions and repulsions, which

also operate through a vacuum, and also seem to indicate the

existence of some all-pervading medium.

. Newton's chief objection to the wave theory, however,
was not the necessity for an ether, but the fact that light

apparently travels in straight lines, while other waves, such

as sound waves, or waves on the surface of water, will bend

freely round an obstacle placed in their path. In this con-

nection, it should be noted that the degree to which waves

bend round an obstacle, thus departing from the straight-line

path, depends to a great extent upon the length of the waves.

Long waves do so much more freely than short waves. There-

fore, if it can be shown that light really does to some slight

extent bend round a corner, this objection will be overcome,

and at the same time evidence will be acquired that if light

does consist of waves these waves are very short.

18. Bending of light into a shadow. In fact, the bending
of light about an obstacle can be shown, by a very simple

experiment illustrated in figure 16. represents any opaque

obstacle with a straight edge

perpendicular to the plane

of the paper. The source of

light, S, must be of very
small dimensions

; otherwise

the bending of the light into

the shadow, which the ex-

periment is designed to show,

will be masked by the pe-
numbral effect always shown when a shadow is cast by
a fairly large source of light. It should be either a very
fine hole, or better still a very narrow slit, illuminated
by an arc light or other brilliant illuminant. A is a white

screen, to receive the shadow. Let a straight line SQ be drawn
from the slit through the edge of the obstacle to the screen.
Then if light were absolutely rectilinear, all parts of the screen
above Q would be fully illuminated, all points below in com-

plete shadow. There would be a sharp and abrupt division

between the illuminated part and the shadow.



BENDING OF LIGHT INTO SHADOW 35

But, as a matter of fact, the light is found to shade off

continuously, though rather rapidly, into the shadow; and

above, the point Q there are a number of bright and dark

bands, parallel to the slit and to the edge of the obstacle. The

gradual shading off of the light, merging into the shadow, dis-

proves the rectilinear propagation of light, except as an ap-

proximation to the truth. As to the bands, it will merely be

noted here that they are readily explainable on the wave

theory, the actual explanation being deferred to later pages.

(See section 70)

Probably the crucial reason for the discarding of the

corpuscular theory and the definite adoption of the wave

theory is the 'following. When a beam of light strikes the

surface of glass or water at an angle, it is bent toward the

normal, that is, it makes a more acute angle with the perpen-
dicular within the glass than in the air. In order to explain

this, the advocates of the corpuscular theory were obliged to

assume* that the corpuscles are attracted by the glass when

they get very close to it, leading to the conclusion that they

travel faster in the glass than in the air. On the other hand,

the wave theory explains this bending of the rays at the sur-

face very easily with the assumption that the waves travel

slower in glass or water than in air. Thus the phenomenon of

refraction furnishes the occasion for a definite clash between

the two theories, one demanding that light travels faster in

the refracting medium than in air, the other that it travels

slower. During Newton's life, no means of actually measur-

ing the velocity of light in such a medium as glass or wa/ter5

was( known: but after Foucault had devised the rotating

mirror method, the velocity in water was measured by filling

a long tube, fitted with glass ends, with water, and inserting

this in the path of the light. The experiment showed without

any possibility of doubt that light travels slower in water

than in air.

Since this experiment definitely discredits the corpuscular

theory, and since the only outstanding objection to the wave

theory is the hypothesis of the ether, for whose existence we

have additional evidence from electric and magnetic phenom-

ena, it is now accepted by physicists that light consists of
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very short waves in a hypothetical medium extending through
all space. Even when light passes through a material like

glass or water, we regard the ether as the carrier of the waves.

"We may think of the molecules of the glass as existing in the

ether. Their presence modifies the transmission of the waves,

partly by changing the wave-velocity, partly by absorbing

part of the wave-energy, which they change into heat-energy,
for heat is always produced when light is absorbed. A rough

image of the state of affairs may be gotten by considering

waves on the surface of water on which are floating many
pieces of wood. The water represents the ether, the pieces of

wood the atoms or molecules of the material substance.
'

19. Nature of the ether. It is difficult to speculate about
the nature of the ether. There aret no reasons for believing
that it is atomic or molecular in structure, and it seems to

offer absolutely no resistance to the passage of bodies through
it. A philosophically minded person might ask the question:

Just what do we mean when we say there is an ether! Such
a question is worth while because it leads us to take stock of

our knowledge; but probably the only answer that can be

given i is this; if the wave theory of light is true, (and it is

supported by too many facts now for us to doubt it) then the

statement that there is an ether means only that empty space
has properties other than mere extension, properties that enable

disturbances carrying energy to pass through it, the passage

requiring finite/ time. Whether we say there is an ether, or

that empty space has properties other than those of pure

geometry, matters little, but the name "ether" is a convenient

one to symbolize these properties, and we shall hereafter use

it in this sense.

We shall see that it is comparatively easy to devise ex-

periments for measuring the wavelength of light, and that the

measurements can be carried out to a very high degree of

precision. (Chapter Yir and IX) It will be easy to explain
the laws of refraction from the fact mentioned above, that the

velocity of light is less through such a substance as glass than

through air. somewhat less through air than in the free ether.

(Chapter IV) "We can explain the formation of a spectrum by
a prism, by showing that through glass the velocity of shorter-

waves is less than that of longer ones.
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But when all this done, it must not be forgotten that we

shall still be much in the dark as to many important, questions.

In the first place, are these waves longitudinal, like sound

waves, or transverse, like those of a plucked string? Are they

purely mechanical waves, or do they consist of rapidly alter-

nating electrical disturbances, or are they disturbances of a

kind unrelated to any other physical phenomena? What is

the nature of the phenomena going on within the atoms of a

substance which is emitting light, or in those of a substance

which is absorbing it? How and why does the presence of

material molecules, in such a substance as glass or water, change

the velocity of the waves in the ether surrounding and per-

meating them?
Some of these questions have been solved satisfactorily,

some have been only partially solved, others are still open. It

is clear that if we are ever able to answer all of them we shall

know a great deal about the inner structure of tHe atom and

the molecule; and since the acquisition of such information is

one of the principal aims of physical research, the study of

light becomes one of the most important branches of science.

20. Waves in general. Plane waves. Before going on with

the study of light as a wave-motion, we shall devote some space

to the consideration of waves in general. We find cases of

waves which advance (1) in only a single dimension, like

those that travel along a stretched rope if it is struck or moved
in any way. (2) in two dimensions (i. e., spreading over a sur-

face) like water waves, and (3) in three dimensions, like sound

waves, light waves, or the waves that would spread through a

block of jelly if some point in the interior were set vibrating.

In the last case, it is clear that the waves would spread out in

spheres with the point of origin as1

center, the direction of

advance being along the radii. Under certain circumstances,

however, we could have cases where they advance in planes,

the direction of advance being perpendicular to these planes.

There would be an approximation to this condition, for exam-

ple, at a very great distance from the point of origin, for a

small section of a sphere of very great radius is nearly plane;
but such waves would be feeble because the energy initially

given to them would be spread over a great surface. In the

case of light, as we shall see in Chapter V, such plane waves
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can be produced by the use of mirrors or lenses, without such

a weakening of intensity.

The nature of plane waves

may be understood by imagining

a block of jelly as in figure 17, to

one face of which is attached a

rigid board that is moved har-

monically back and forth in its

own plane, in the direction of the

Figure 17 line AB. At any instant, each

point in a plane parallel to the board will be in the

same condition of motion, or, as we say, in the same phase.

lln general, any such surface, every point of which is in the

same phase, is called a wave-front, whether it is at the begin-

ning of a train of waves or not. In figure 17, every plane in

the jelly parallel to the board is a wave-front,- and in the case

of waves coming from a point-source, every sphere with its

center at the source is a wave-front.

We may have cases of a single wave, like the sound-wave

sent out from an explosion, and also cases where there is a

train of waves, such as those sent out by a tuning-fork. The

shape of the waves may be simple or complicated. For any
medium through which waves of all lengths travel with the

same velocity (as is true for the free ether with light-waves)

a disturbance of any kind will travel onward without changing

its shape, whatever that shape may be. For example, by giv-

ing the board of figure 17 a suitable motion, waves of the form

shown in figure 18 could be made to travel through the jelly.

A mathematical theorem due to Fourier proves that any
such periodic form can be made up of a series of simple sine

Figure 18

and cosine forms, of different wavelengths. For this reason,

we are compelled to make a special study of waves of these

simple forms.
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Figure 19

21. Mathematical formula for a wave. In figure 19, A
represents a sine-curve, whose equation is

ir - 2?rX /i\
y = K.sm (1)

B a cosine-curve, whose equation is

TT
y= K.cos

a

and C a third curve whose equation is

y = K.COK (x -. a)
a

(2)

(3) /

Evidently, all three are exactly the same in form, and either

can be transformed into one of the others by shifting it along

the axis of x. In fact, we- can represent either of the three

curves by the formula (3) provided a is given a suitable value,

different in each case. If a = 0, we have the simple cosine

curve. If a a/4 we have

T2,
27T

f
a\ /27TX 7T\ 2?rX

y = K.cos (x - = K.COS --- -
)

K.sm
a 4 / \ a 2 / a

the equation of the sine curve. Whatever value a may have,
its presence indicates that equation (3) represents a simple
cosine curve shifted in the positive direction of x by the dis-

tance a. For y has the same value for x in (3) that it has
for x a in (2).

Equations (1), (2), and (3) do not represent waves, but

only stationary curves. For such a curve to become a wave,
it must progress steadily to the right (or left). Since the

symbol a indicates a shift to the right, (3) can be changed
to represent a wave instead of a stationary curve if a is re-
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placed by a term containing the time, which term indicates the

movement. If t represents the time and V the velocity of the

waves, then in t seconds the curve must be shifted along the

x axis a distance Vt. Therefore, putting Vt for a, the wave

equation is

y K.cos- (x Vt) (4)
a

a is called the wavelength, for it is evident from figure 19 that

it is the distance from crest to crest, or from trough to trough.

The quantity K, called the amplitude, gives the maximum
value y can have. Equation (4) is an equation of three varia-

bles, y, x, t. x and t are called independent variables, y the

dependent variable. The equation gives the value of y for any
stated distance x from the origin and for' any stated time t.

It is often desirable to introduce another constant term,

c, within the parenthesis, making the equation read

y = K.cos (x Vt e) (5)
a

The only difference between (4) and (5) is that the former

represents a wave which, at time zero, has the position B of

figure 19, while the latter is one which at that instant has the

position A. B, C. or any other, depending upon the value of e.

This quantity e is called the pilose-constant ,
the whole quan-

tity whose cosine is to be taken, viz.,

a

being known as the phase.

A wave advancing to the left would be represented by

.equation (4) or (5) with the sign of V changed; thus,

y = K.cos
2
-(x + Vt c)
a

So far we have regarded y as a real mechanical displace-

ment, at right angles to the direction in which the waves are

propagated. In the case of transverse waves in a string, it

is indeed just that. The same thing is true of the mechanical

waves in the block of jelly, illustrated in figure 17, and in all

such eases the curves of figure 19 give a true picture of the

contour of the waves at different times.
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But there are cases of wave-motion ins which this is not

the case. For example, if a stiff rod or a stretched metal wire

be stroked longitudinally with a rosined piece of leather,

longitudinal waves are set up in which the displacement is

parallel to the direction of propagation of the waves. In such

a case we may still, for convenience, plot y at right angles to

x, but the graph so obtained is only a graph, and not a true

picture of the wave contour.

It may be that a wave does not even consist of mechanical

vibrations at all. There are cases, for instance, of temperature

waves, in which alternations of temperature, above and below

a mean value, are sent through a material. It is quite con-

ceivable also that waves should exist which consist of electric

disturbances, for instance regions in which there is an electric

intensity directed upward, separated by those in which it is

directed downward, these alternating regions following one

another through space with great rapidity. Since we have no

certain knowledge that such electric states in the ether are

necessarily accompanied by any real motion, of the ether or of

anything else, the quantity y in, such a case would have to

represent the intensity of the electric field at the distance

represented by x and the time* represented by t. It will be

shown later later (Chapter XIV) that such electric waves

actually exist, that the waves of wireless telegraphy are un-

doubtedly such, and that we have convincing evidence that

light waves are also of the same nature, differing from the

waves of wireless only in length.

But many of the phenomena of waves, such as interfer-

ence, diffraction, and some of the phenomena of reflection and

refraction, would be the same no matter what the nature of

the disturbance might be; and therefore it will be convenient,

for the time being, to think of light waves as if they were

really waves of mechanical displacement. Whether they are to

be thought of as transverse, like those in a plucked string, or

longitudinal, like those of sound, need not be considered yet,

but evidence will be produced in Chapter XII to help us de-

cide between these alternatives.

22. Interference. Fresnel's mirrors. One of the most

convincing proofs of the wave theory of light is the phenom-
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enon of interference, in which two separate beams of light

annul one another at certain places, producing darkness, and

at other places produce a

brightness much greater

than either alone could
cause. The theory of this

s, m - phenomenon is as follows :

s
z

m*
, Suppose we have two

sources of light, Si and S 2 ,

figure 20, in the form of

narrow slits or round
holes, through each of
which comes light of ex-

actly the same wavelength.* At first, we shall also suppose
that the two pencils of light are in phase, that is, that when-
ever a crest starts from one a crest will also be starting from
the other. This means that, if we should write a formula of
the type

yrzrK.COS
'

(X Vt c)
a

for each pencil, would have the same value in both. It will
be easier however to discuss this case without the use of the

formulae.

The light from each slit falls on the white screen AB, and

we shall first investigate what happens at that point, C, which

is equally distant from the two slits. Whenever a crest reaches

C from S t a crest will also reach it from S 2 ,
and similarly a

trough from S t and a trough from S2 will reach C at the same

instant. Consequently, the amplitude of the vibrations at C
will be double that which would exist if light from only one

slit reached it, and the screen will be very bright there. There

will be other points on the screen for which the same statement

*It is customary among physicists to speak sometimes of a small

hole or slit through which light is passed as the source of the light,

although in fact the real source is a flame, a spark, an arc-lamp, or

perhaps the sun. This real source is placed close to the slit or hole,

or else an image of it is thrown upon the latter by the use of a lens

or mirror. The object of the slit or hole is simply to provide a very
narrow opening for the light to come through. If the source proper is

itself small enough, the slit may be dispensed with.
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holds true. For instance, if M! is the point just one wave-

length nearer to S
t than to S 2 ,

and M\ the point one wave-

length nearer to S2 than to S
x ,

at each of these points .crests

will arrive together from the two slits, and also troughs will

arrive together, and therefore these too will be points of bright-

ness. The same may be said of M2 ,
which is two wavelengths

nearer to S
1 than to S 2 ,

and of any point on the screen which

is an exact whole number of wavelengths nearer to one of the

slits than to the other.

On the other hand, consider the points m lt m' lt m,. m' 2 ,

etc., each of which is so situated that it is either % wavelength,

% wavelength, or in general any odd number of half-wave-

lengths, nearer to one slit than to the other. Each of these

points will receive a crest from one slit at the same time as it

receives a trough from the other. In other words, the pencils

of light coming from the two sources will at these points be

opposite in phase, so that they will annul one another, and the

points will be dark. It need hardly be pointed out that there

will be points, such as one between C and m^ which will

neither be as bright as C nor completely dark as at m 1? since

here the two pencils of light meet neither exactly in phase nor

exactly opposite in phase. In fact, a moving point, going from

C up toward A, would first be in intense illumination, which

would fade out to darkness at m1? then brighten again to a

maximum at M,, fade to darkness again at m2 , etc.

We should expect then, according to the wave theory, to

find a number of bright regions, separated by dark regions.

Tn fact, these should be drawn out into bright and dark

streaks, or fringes, as they are called, perpendicular to the

pl'ane for which the figure is drawn. For, even if the slits,

had no appreciable length in this direction, the loci of bright

or dark regions would still be drawn out into lines.

Now let us see how all this would be altered if the two,

pencils of light were not exactly in phase as they came through

the slits. We should still expect to have fringes but they

would not occur at quite the same place on the screen. For1

instance, if the difference in phase were such that a crest would

start from Si and a trough from S2 at the same instant, (and

vice versa of course) then the places we have marked as bright
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would be dark, and those we have marked dark would be

bright. Herein lies a certain difficulty in subjecting these

predictions to experimental proof. The trouble is not so much
to keep the two pencils in the same phase, since we don't much
care which points are dark and which bright, so long as tihe

fringes stay steady long enough for us to see them. But they

will not keep steacty unless the two pencils at least keep the

same relation to one another in phase, and this they will not

do unless they were originally part of the same pencil or beam,

that is, unless they originated in the same ultimate source. It

must not be supposed that any source of light is perfectly

steady. "We might think of it as sending out a regular train

of waves perhaps a meter in length, followed by a break and

another train, perhaps longer, perhaps shorter, there being no

fixed relation between the phase-constant in the first train and

that in the second. In other words, the light comes in bunches

of waves, rather than in a long uninterrupted series. Now, if

changes of this sort are going on in the light coming from each

slit, and the breaks are occurring quite independently in the two

pencils, it is evident that, although fringes would be present

on the screen at any instant, the}^ woiild shift their position

with every break in either pencil. If we assume that the aver-

age length of an uninterrupted train of waves is one meter,

then since light travels 300,000,000 meters per second, there

would be at least 300,000,000 shifts per second in the positions

of the fringes. Consequently, no fringes could be seen, and

the screen would appear uniformly illuminated.

Therefore, in order to see such fringes, it is absolutely

necessary to get two pencils that have the same origin, so that

whenever the phase of one pencil suddenly changes, that of

the other will undergo the same change. There are several

ways of accomplishing this end, the most satisfactory being

one due to the French physicist Fresnel, a diagram of which

is shown in figure 21. He used only one slit, S, illuminated by

any source of light, but he allowed the beam from S to fall on

two mirrors M
t
and M2 , very slightly inclined to one another,

each of which reflected light to the screen. The light strikes

the screen exactly as if it came from the two images S
L
and S 2 ,

which may be thought of as replacing the two independent
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slits S t
and S 2 of figure 20, with the one important differ-

ence that now whatever change occurs in one pencil will also

occur at the same instant in the other. Thus they will always

have the same relation to one another in phase, and the fringes

will be steady and therefore visible.

Figure 21

Figure 22

This experiment works very satisfactorily, though the ad-

justment is somewhat difficult, since the slit must be very

accurately parallel to the line in which the planes of the two

mirrors intersect. Figure 22 is a photograph of fringes taken

by this method. The light used was the violet of a definite

wavelength coming from the "mercury-arc."

Referring back to figure 21, let d represent the distance

between the two apparent sources S t and S2 ,
D the distance

from their plane to the plane of the white screen, C the point

equally distant from Si and S 2 . Let P be any point on the

screen, within the plane of the diagram, and x its distance

from C. We shall first calculate what values x may have in

order for P to be one of the points of maximum brightness,

and from this result find the distance between centers of the

bright fringes.

If L represents the difference between the distances S
X
P

and S2P, P will be a point of maximum or minimum illumina-

tion according as L is equal to an even or an odd number of
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half-wavelengths. Therefore our first step will be to express
L in terms of measurable quantities d, D, and x. By simple

geometry,

Therefore,

L = S2P S,P = \/D 2 + x2 +^ -f xd Vo 2 + x2 + I
2

._xd
4 4

For convenience, we shall represent the quantity D2 + x2 +
4 9

which appears in both radicals, by a single term D 2
. Then

L = Vl>o
2 + xd VD 2 xd

These two simple radicals can be expanded in series form, by
using the binomial theorem, or applying the ordinary rules

for the extraction of the square-root. The results are

n T xd x2d2
,
x 3ds

+ xd = D., + -_+*- etc.

S n - x2(P x3d3

- Pt-- 2D 8D 3 16D 5
"

Subtracting the lower from the upper, we get

xd x3d3

=

i +W 4

In practise, D is about the order of 100 cm., d about half a

millimeter, or .05 cm., and x of course has various values, of

which the greatest will perhaps be 1 cm. If we substitute

these values, we see that in the first place D y will not differ

from D itself by more than about 1/20000 cm., so that D may
be substituted for D . Furthermore, the value of the first

term in the last equation comes out to be about .0005, the next

term .0000000000015, and the succeeding terms still more minute.

Of course, D, d, and x need not have exactly the values here

assumed, but the illustration suffices to show that in any case
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D is so nearly equal to D that the difference is negligible, and

that in the final expression for L only the first term is large

enough to measure. Consequently, we shall make no error

greater than the unavoidable errors of measurement if we

adopt as the correct vaiue for L

L = xd/D

Using the letter \ to represent the wavelength of the light,

we must have, in order that P may be a bright point, that L
takes one or other of the values 0, \, 2\, 3A, etc. Or,

since x DL/d, P is a point of maximum brightness when x

has the value 0, D,\/d, 2Dx/d, etc.

This shows us that the fringes are, at least approximately,

equally spaced, the distance from center to center being Dx/d.

This distance can be measured with some degree of accuracy,

and also the distance D. The remaining! distance d is more

difficult to measure, partly because it is smaller, and partly

because it is not the distance between real slits, but between

two images. However, it can be measured by indirect means,

and then everything necessary is known in order to calculate

the wavelength. It is found, as we should expect, that the

wavelength as so determined depends upon the kind of light

used. If only deep red light enters the slit, the width of the re-

sulting red fringes indicates the wavelength to be about .00007

cm.
;

while if deep violet is used the fringes are only a little

miore than half as far apart as the red, indicating the wave-

length of this color to be about .000038 cm. The other colors

have wavelengths between these two extremes. But the ex-

tremes themselves are not very definite, since it is found that

some people can see deeper red or deeper violet than others.

This fact makes us suspect the existence of wavelengths longer

than the red or shorter than the violet, to which nobody's

eyes are sensitive. We shall find later that there are such

waves. (Sections 64 to 67)

Although this interference experiment gives us a means of

measuring the wavelength of light, it is not an accurate method.

More complicated interference experiments, to be described

later, allow us to measure wavelengths with an accuracy of

1/1000 of 1%. and in a few cases the precision has been car-

ried even farther.
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23. Interference in white light. Let us consider what
would happen if white light, instead of light of only one color,

were admitted through the slit in figure 21. Evidently every

wavelength would produce its own set of fringes, the spacing

being different for each wavelength, and there would be much

overlapping of fringes of different color. Only one point, the

point C. would be bright for all colors, since it is equally dis-

tant from the two slit-images. The central fringe would there-

fore be white. But the first red fringe on either side of the

center would be slightly farther away than the first violet

fringe. Consequently, the totality of each of these two fringes

would be composed of fringes due to all the different wave-

lengths, for no two of which would the maxima come in ex-

actly the same place, violet being on the side nearest to C,

red on the other side. One might regard each of these fringes

as a very short and impure spectrum. It would be white near

its middle, with a violet inner edge and a- red outer. This

effect would be more pronounced for the second fringe on each

side, still more for the third, etc., as if each succeeding fringe

were a longer and longer spectrum. At the distance of two

or three fringes away from 0, they begin to seriously overlap ;

and at the distance of six or eight, the overlapping becomes

so complex that all color-effect is lost, the fringes are no longer

visible, and the screen becomes uniformly white. When white

light is used, therefore, only a small number of fringes are

ever visible, whereas with light of a single wavelength, spoken
of as monochromatic light, a great number may be seen, pro-

vided the two beams overlap over a sufficiently extended

region. A further discussion of interference in white light

will be found in section 82.

Problems.

1. If, in Foucault's rotating mirror experiment, figure 7,

a cylinder of some material, in which the velocity of light is

less than in air, is inserted between the mirrors M t and M 2 ,

what would be the effect upon the distance f^? What would

be the effect if the material were inserted between Mx and L?
2. Plot to scale, on the same diagram, the curves repre-

sented by formulae (2) and (3), letting K = 1, a = 4,
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a = 1.5. (It will suffice to plot only the peaks and troughs,

and the points where the curves cross the x-axis) Show by

scaling that the curve (3) lies to the right of (2) by the amount

predicted in the text.

3. Plot the curve for equation (4), giving any desired

value to the time.

4. If the two slit-images of the Fresnel Mirror experiment
are l/10mm. apart, how far away must the screen be to have

fringes 3mm. apart, if the wavelength is .00005cm.?

5. Suppose the light coming from the two sources of figure

20 had not the same wavelength. What would be the result?



CHAPTER IV.

24. Reflection and refraction. Huyghens' principle. Index of re-

fraction. 25. Total reflection. Critical angle. 26. Deviation through
a prism.

24. Reflection and refraction. Huyghens' principle. In-

dex of refraction. The laws of reflection and refraction, so

far as concerns only the direction of the reflected and re-

fracted waves and not their intensity, are easy to derive by an

application of geometry to the wave theory.

Figure i 23

Let MN, in figure 23, represent the surface of a sheet of

water, or the plane and polished surface of glass or some other

reflecting and refracting medium. We shall suppose the water,

glass, or other material to fill the space below MN, the medium
above being the free ether. Plane waves are advancing through
the ether, in the direction indicated by the arrow P, toward

the surface. The lines ab, ajbj, etc., represent successive posi-

tions of an advancing wavefront, as it approaches MN. Our

problem is to determine the position of the reflected wave and

the refracted wave to which this incident wave gives rise.

(50)
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In order to do this we shall make use of a principle

enunciated by the Dutch physicist Huyghens, which applies to

all types of waves. It may be stated as follows: A wave-front

propagates itself by virtue of the fact that each point in the

medium, as the wave-front reaches it, becomes itself a center

of disturbance from which a spherical wave is sent out; and

the further-advanced position of the original wavefront is

nothing more nor less than the envelope of all the secondary

wavelets sent out from the totality of points taken as centers.

"When the wavefront ab reaches the position a^b.,, the point

a2 therefore becomes the center of such a spherical wavelet,

not only in the medium above MN, but also in that below.

But the wavelets in the two media will not advance equally

fast, because the velocity of light is less in the lower medium
than in the free ether. Let us suppose the velocity in the

lower medium to be 1/n of that in the upper. Then, while

the incident wavefront is travelling onward from the position

a 2b., till it reaches' the reflecting surface at b3x the secondary

wavelet from a2 will have acquired a radius equal to b2b3 in

the upper medium, but! a radius of only 1/ri of b2b3 in the

lower. Therefore an arc is drawn in the upper medium with

radius b 2b3 ,
and one in the lower with radius b 2b3/n, both hav-

ing a-, as center. What has occurred at a2 will occur at every

point on MN as the advancing incident wavefront reaches it,

except that, if we want to construct the reflected and refracted

wavefronts for the time when the incident wave is at b3 ,
we

must take the radii of the secondary wavelets shorter and

shorter for centers nearer and nearer to b3 . Thus, for the

point c as center, we take the radius equal to mb,, in the upper

medium, mb,/n in the lower. For, when the incident wave-

front has reached c it .has also reached m, and still has tine

distance mb
:
, to travel. For d as center, the proper radii are

obc and ob3/n, and so on. There should be an infinite number
of such secondary wavelets, of which only a few are drawn in

the figure. A plane passing through b3 and tangent to all the

secondary wavelets in the upper medium gives the wavefront

of the reflected light, and another through b3 tangent to all

those in the lower medium gives that of the refracted light.

Each of these advances perpendicular to its own plane, as
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shown by the arrows Q and R respectively. The student may
ask what becomes of those parts of the secondary wavelets

which do not lie on the common tangent plane. It can be

shown that they mutually annul one another by interference,

if we take account not only of the crests of waves but also of

the troughs.

The angle b 2a2b3 ,
which is a dihedral angle between the

reflecting surface and the plane of the incident wavefront, is

called the angle of incidence. The dihedral angle between the

the reflecting surface and the reflected wavefront, a2b3a3 ,
is

the angle of reflection, and that between the reflecting surface

and the refracted wavefront, a 2b3a4 ,
is the angle of refraction.

a.a, is drawn perpendicular to the reflected wavefront, a2a4

perpendicular to the refracted wavefront. Since a2a3 is equal

to b2bo,, the triangles a2a3b3 and b2b3a2 are equal, and the angles
of incidence and reflection are equal. The triangles b 2b 3a 2 and

a^bg are not equal, but are both right-angled triangles, the

angles at b 2 and a4 being each equal to 90. Therefore, repre-

senting
1 the angle of incidence by i and the angle of refraction

by r, we have

b2b-
sin. i = -v^

a,a,
sin. r = ^~

Sjb,

Therefore,

sin. i _ bab,; _ ^
sin. r

"

a2a4

By the method of constructing the figure, a 2a 4 ,
bears the

same relation to b 2b3 that the velocity of light in the lower

medium bears to that in the upper.

That is, a 3a (i
= b,b3/n, or b 2b3/a 2a t

= n. Therefore,

sin. i = n
sm. r

Since the velocity of light through a non-crystalline material

such as glass or water is the same no matter what the direction

of the rays may be, and depends only upon the nature of the

material and the wavelength of the light, the above equation
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indicates that the ratio of the sines of the angles of incidence

and refraction is canstant, that is, it has the same value for

all different angles of incidence. This statement, known as

Snell's law, was first proved by direct measurements of differ-

ent sets of angles of incidence and refraction. It. holds good /
for all isotropic (non-crystalline) materials, but not as we
shall see later for all crystals. The quantity n, which was

originally defined simply as the ratio of the sines of i and r,

is called the index of refraction of the lower medium; in tlier

figure, that is of the medium into which the light is refracted.

The index differs slightly for different colors or wave- /

lengths. It is for this reason that a prism not only bends or

refracts a beam of light, but also separates it into a spectrum.

Since violet is bent more than red, evidently the index is

greater for the shorter waves than for the longer, at least in

ordinary media such as glass.

We have assumed, in discussing figure 23, that the upper
medium is the free ether, but the conclusion would be exactly

the same if it were any other isotropic medium, except that

the corresponding index of refraction would have a different

value. If the first medium were air, the change in the index

would be extremely slight, since light travels almost as fast

through air as through a vacuum. But if it were water

or some other transparent solid or liquid the change would be

great. In such a case, we say that the ratio of the sines or,

what comes to the same thing, the ratio of the light velocities

is the index of the second medium with respect to the first.

Let Ui be the index of the first medium (with respect to

the ether), n2 that of the second, vx the velocity of light in the

first medium, v2 that in the second, and v the velocity in the

ether. Then *

sin, i __ _y_1 ___ v^ _ VQ .

v,_ _ ^ _^_ v^ _ n^
sin. r v

2
v2v v

2

x
V(i v2

'

v,

"~
U

L

therefore, if n 12 be used to indicate the index of refraction of

the second medium with respect to the first, (light passing from

the first to the second),

n, 2
= n 2/n 1
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Tabulated values of the refractive indices of various solids

and liquids are to be found in such collections of physical data

as the Smithsonian Physical Tables, Recueil de Constantes

Physique of the French Physical Society, the Physikalische-

Chemische Tabellen of Landolt and Btrnstein, and Kaye and

Laby's Physical Tables. So far as glass is concerned, there is

an almost endless variety of different glasses, having all sorts

of variations of refractive index, dispersion, and absorption.

For rough calculations, we may take 1.53 as the approxi-
mate index of refraction of crown glass for yellow light, and

1.63 as that of flint glass. The index of water for yellow

light is very nearly 1.33, that of diamond 2.42.

It is customary to speak of substances having very high

refractive indices as being "optically dense." This is only a

technical expression, for refractive index has nothing to do

with real density, or specific gravity, beyond the fact that in

general the heavier kinds of glass, have the higher indices.

Thus, we say that diamond is an extremely dense medium,
and that flint glass is denser than crown.

25. Total reflection. Critical angle. So far, we have taken

up principally cases where the light passes from the less dense

to the more dense medium, as from air to water, but obviously
cases of the reverse type are almost as common. Whenever we
see anything that lies below the surface of water, for instance,

the light must pass out of water into air in order to reach our

eyes. In such a case we may still write

sin. i

- n
sin. r

where i means the true angle of incidence (on the water side

of the boundary), r the true angle of refraction (on the air

side), and n is the index of air with respect to water, just the

reciprocal of the index of water as found in tables, that is,

.75 instead of 1.33. Of course, beside the light that is refracted

out into the air, there is always in addition a reflected beam

going back into the water, for which the angle of reflection is

equal to the angle of incidence, exactly as it would be if the

light had been incident on the air side. Sometimes with light

incident on the denser side of a dividing surface, it will hap-

pen when the angle of incidence is large enough, that there



TOTAL REFLECTION 55

is no refracted light at all, all instead of part of the incident

beam being reflected back into the first medium. A considera-

tion of the formula of refraction shows that this must be so.

Solving for sin. r, we get

sin. i

sin. r =

Since, for such cases as we are now considering, n is less than

unity, this equation shows that sin. r is greater than sin. i, and

therefore r is greater than i, both being acute angles. It is

possible, then for r to be equal to 90 and sin. r equal to 1,

while i is still considerably less than 90. If i becomes any

greater, sin. r as calculated from the above equation becomes

greater than 1
;
and this means, since the sine of a real angle*

cannot exceed 1, that there is no refracted wavefront. Obvious-

ly, the largest value that i can have for refraction still to

occur, is that value which makes sin. r = 1. Such a value for

the angle of incidence is called the critical angle. If we let

7 represent the critical angle, we can find its value from the

equation for refraction, by substituting 7 for -i, and 1 for sin. r.

This gives

sin. 7 = n

As an example, let us calculate the critical angle for crown

glass, in contact with air. We have taken 1.53 as the index

from air to the glass, which gives 1/1.53, or .654 as the index

from the glass to air. Therefore

sin. 7 = .654

7 = 4049'

So much for the mathematical side of the question. The

physical interpretation can be gotten by considering figure 23

again, with the modification that now the velocity of light in

the lower medium is greater than that in the upper. Suppose,

for instance, that the velocities in the two media, and the angle

of incidence, have such values that while light travels the dis-

tance bobs in the upper medium it will travel a distance in the

lower medium greater than a2b3 . Under these circumstances

the radius a2a.t of the secondary wavelet from a 2 will be so

great that the point b3 will lie ivithin the sphere of the wave-
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let and it will be impossible to draw a plane through b3 tangent

to this sphere. When the angle of incidence has exactly the

critical value, a 2a4 the radius of the secondary wavelet from

a2 ,
is just equal to a2b3 .

One of the most effective ways of

showing total reflection is that illus-

trated in ^figure 24. ABC represents

a right-angled prism of crown glass.

The eye is held at some such point

as E, close to one of the shorter

prism-faces. SS' is any rather bright-

ly illuminated surface, such as the

sky, the whitewashed wall of a room,

or a sheet of paper. The eye sees,

reflected in the hypothenuse BC, an

image of the bright area SS', the upper part of which is

almost as bright as SS' itself, the lower part much fainter.

There is a fairly sharp boundary between the bright upper

part, seen by total reflection, and the fainter lower part, seen

by ordinary partial reflection. Following is the explanation.

Any point of SS', such as a, sends out rays of light in all

directions, but only a small bundle of these, comprising a cone,

will reach such a position, after reflection at the face BC
and refraction at the faces AB and AC, that they can enter

the pupil of the eye and contribute to vision. For simplicity's

sake, a single ray aa'a"E is drawn to represent this slender cone.

Similar rays are drawn from a few other points on SS'. In

every case, some light is lost by reflection at the two surfaces

AB and AC, but this is not indicated on the drawing in order

that the diagram may not become too intricate.

There will be some point on SS', such as b, which is so

situated that the cone of light from it which enters the eye

will strike the hypothenuse with an angle of incidence, b'b"K,

which is exactly equal to the critical angle. The light from

any point to the left of b, such as c or d, will strike BC at

an angle less than the critical angle, so that the greater part

of the) light in the small cone will be refracted through BC
into the air, below and to the right of the prism, leaving only

a small fraction to be reflected into the eye. Therefore such
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points as c and d will appear faint in the reflected image. On
the other hand, the light from a, or any other point to the

right of b, will be reflected from BC at an angle greater than

the critical angle, none will be refracted through the hypothe-

nuse, and all the light in the cone, except for the small amount

reflected by the other two faces of the prism, will enter the

eye. Therefore, points to the right of b will appear very

bright in the reflected image of SS', as bright as if they had

been reflected by a silvered mirror, or even brighter, since a

silver mirror does not reflect by any means all the light that

falls upon it.

Naturally, the critical angle for any material depends

not only upon the nature of the material itself, but also upon
that of the material in contact with it. For example, if the

prism were submerged in water instead of being in air, many
of the rays which are totally reflected against air would be

refracted through into the water.

The principle of the totally reflecting prism is utilized in

a number of optical instruments, a few of which we shall con-

sider later. But one of the most interesting cases of total

reflection is seen in the case of a cut diamond. The index of /

diamond with respect to air being so large, its critical angle

is correspondingly small, and a diamond owes its brilliance

partly to this fact and partly to the additional fact that its

index for different colors differs large-

ly, so that for certain angles of in-

cidence the shorter waves are totally

reflected while the longer ones are

not. Let figure 25 represent a cross-

section of a cut diamond. Not only

the ray aaa, but the very oblique one

bbbb may undergo total reflection at

the two surfaces XZ and YZ. More-

over, if the b ray happens to strike

one of these surfaces at the critical angle for green light, for in-

stance, the waves of shorter length will strike it at an angle

greater than the critical, the waves of greater length at an

angle less. For, since the index is greater for short than for

long waves, the critical angle is greater for long than for short.

Consequently, red rays, will escape total reflection and be par-
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tially refracted out of the diamond for angles which make re-

fraction impossible for violet rays.

Industrial applications of the total reflection principle have

been made in the manufacture of so-called "shades" flight-

distributors) for incandescent electric lighting, sidewalk-lights

for illuminating basements, etc.

The appearance, to a fish, of things outside the water, is

largely affected by refraction, "and also illustrates total re-

flection. Figure 26 represents a pond, the eye of the fish being

at E. XEY is the

section of a cone,

whose axis is verti-

cal and whose half-

angle K is equal to

the critical angle of

water, 4845'. Any
object outside the

water, as at a, would

be seen within the

Figure 26 con e, for obviously

light passing from air to water at an angle of incidence

less than 90, as it must be, will be refracted with an angle

of refraction which is less than what would be the criti-

cal angle for light incident on the under side of the

surface. The object a would appear in some such position

as a'. It is clear then that the whole array of objects

outside the water would appear to the fish very much distorted

from their true relative positions, being crowded within a

relatively small cone of view. Professor R. "W. Wood, of Johns

Hopkins University, has taken some curious photographs which

illustrate what he calls "fish-eye views" reproductions of

which can be found in his book "Physical Optics."

Whatever the fish sees by looking at the surface outside

the cone XEY would be totally reflected images of objects in

the water. For instance, it would see the objects C and D,

not only directly, but also by reflection in the surface. In other

words, the whole top surface, outside the circle whose diameter

is XY, would appear as a perfect mirror. Inside this circle,

the fish would see, not only objects that are outside the water,

as already stated, but also faint reflections of objects within
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the water between M and N. It need hardly be pointed out

that as the fish swims about the cone XEY moves with it, the

diameter XY becoming smaller as the fish approaches the sur-

face, larger as it sinks toward the bottom.

A man with his head under water would see things the

same way as a fish but for one thing. Our eyes are adapted
for seeing in the air, and the index of refraction of the cornea

(the forward portion of the eye)' with respect to air is such

that the lens within the eye can bring* to focus upon the retina

objects anywhere from about eight inches to an infinite dis-

tance away. The substitution of water for air, as the medium
in contact with the cornea, alters the refraction so that it is

impossible, at least without extreme eye-strain, to focus upon
the retina. Therefore human vision with the eyes in contact

with water is very much blurred and indistinct.

26. Deviation through a prism. We shall now consider

the deviation of light by a prism (figure 27) ;
and since, in

the actual use of prisms for the production of spectra, the

light waves are practically always first made plane by the use

of a lens, we shall take only the case of plane waves. At

each surface of the prism, not only refraction occurs, but also

reflection; but in this discussion we shall ignore the reflected

light. For the sake of symmetry,
we call i x the angle of incidence

at the first surface, rt the corre-

sponding angle of refraction, r2

the angle of incidence at the sec-

ond surface and i, the correspond-

ing angle of refraction; so that

i^ and i, are angles in air, r
t and

r., angles in glass. Then

n = sin. i sin. i2

sm. sin. r2

where n is the index of glass

with respect to air. The drawing
shows a series of wavefronts sup-

posed to be just one wavelength

apart (for instance the lines of the crests) both in the

air and in the glass, though of course the actual length of the

v/

t

Figure 27
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light waves, as compared to the dimensions of a practicable

prism, is enormously exaggerated in the figure. *It will be

i noticed that the wavelength is shorter in glass than in air)

Indeed this must be so, for the following reasons : The period,

or time of one vibration, must be the same in glass as in air,

for only so many waves can in a given time leave thle surface

toward the glass side as come up to it on the air side. Also,

since a train of waves advances the distance of one wavelength

during the time of one vibration,

wavelength
velocity ^

period

Therefore, since the period is the same in the two media,

wavelength in air velocity in air

wavelength in glass velocity in glass

Consequently, whenever light of any wavelength A passes from

air into another medium whose index of refraction with re-

\ spect to air is n, the wavelength within this medium is reduced

to the value A/n.

The angle D, between the wavefronts of the light before

entering the prism and those after leaving it, or what comes

to the same thing the angle between the rays before and after

passage through the prism, is called the angle of deviation.

The refracting angle of the prism itself we call A. It can be

easily proved by simple geometry from the figure that

A . r, + r2

= 1,4-12 A
From these two equations, together with the two gotten by

applying the law of refraction to each surface of the prism,

we can, if A, i it and n are given, solve for r 1? i 2 ,
r2 ,

and D.

A and n are necessarily constant for a given prism and a given

wavelength of light, but by turning the prism about an axis

perpendicular to the plane of the figure i
:
can be made to take

any value from to 90. Changing the value of i
t
in such a

manner will naturally cause changes in the value of D. If we

plot the values of i
t
as abscissae, and the corresponding values

of D as ordin ates, the curve will be found to have the form
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shown in figure 28, which shows that for a certain value of i
x

the value of D is less than for any other value of i x . Both ex-

periment and theory by the D

application of the differential

calculus show that this mini-

mum value of D occurs when /
ij
= i2 and r t

= r2 ,
that is

when the light passes through
the prism symmetrically. In

such a case,

Figure 28

n =

This equation has a great deal of importance in practical

optical work. For, by the use of a spectrometer, both the re-

fracting angle of a prism and the angle of minimum devia-

tion, D. can be measured with great accuracy. Therefore, by

applying this equation we can get very accurate determinations

of the index of refraction for any piece of glass that can be

obtained in the form of a prism. It is the most convenient

method for finding not merely the average index for white

light, but the separate indices for different wavelengths.

Problems.

1. Calculate the angle of refraction when li^ht strikes

crown glass with an angle of incidence of 60.
2. Find the index of refraction of crown glass with respect

to water, for yellow light.

3. Light within a piece of crown glass strikes the surface

at an angle of incidence of 40. At what angle does it emerge?
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4. Calculate the critical angle for diamond, yellow light.

5. Show that if light strikes a pile of parallel -sided plates

with different refractive indices, all in contact with one another,

it enters each plate with the same angle of refraction as if the

others were absent, and finally emerges parallel to its original

direction.

6. A star seems displaced from its proper position owing
to refraction in the earth's atmosphere. Show that, despite

the changes in the density of the air at different levels, we can

calculate the refraction by considering that all the air has

the same index as that at the earth's surface. (See problem

5).

7. Find the approximate length of wave, in water, of the

extreme red and the extreme violet light, assuming the index

for both to be 1.33.

8. Calculate the angle of minimum deviation for a 60

prism, the light having index 1.68.

9. What must be the properties of a body which, in air,

would be invisible under any illumination? Would such a

body be visible if immersed in water f

10. Certain aquatic bodies are "nearly invisible in water.

What are their properties'?

11. Show that any colorless and transparent object would

be invisible if surrounded completely by uniformly illuminated

walls.

12. Prove that, in figure 27, A = r t + r, and D = i t + i 2

A.

13. A real diamond will continue to glitter when immersed

in water, while an imitation will not. Explain this.

14. Plot four points on a curve like figure 28, for a prism
of 60, having an index 1.54.
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27. Reflection and refraction of spherical waves at a plane surface.

28. Judgment of the distance of an image. 29. Image of an extended

object. 30. Reflection and refraction at spherical surfaces. 31. Lenses.

32. Two lenses in contact. 33. Chromatic aberration. 34. Achro-

matic lenses. 35. Image of an extended object. Undeviated ray. 36.

Magnification. 37. Micrometer. 38. Imperfections in mirrors and
lenses. 39. Spherical aberration. 40. Curvature of field. 41. Astig-

matism. 42. Lenses for special purposes.

27. Reflection and refraction of spherical waves at a plane
surface. It is shown in the preceding chapter that when plane
waves strike a plane surface, both the refracted and the re-

flected wavefronts are plane. In this chapter we shall show

that when the incident wavefronts are spherical (diverging^
from a point) and the reflecting surface plane, the reflected

wavefronts are also spherical but the refracted wavefronts are

not, except as an approximation to the truth. We shall also

show that when both the incident wavefronts and the reflecting

surface are spherical, neither the reflected nor the refracted

wavefronts are truly spherical, except in the one special case

that the center of the incident waves coincides with that of the

reflecting surface.

In figure 29, let CBD
represent the plane boundary
between two media, the in-

dex of refraction of the low-

er with respect to the upper

being n. A is the center of

a system of spherical wave-

fronts, advancing from A
toward the surface CBD. B
is the foot of the perpendic-
ular from A upon this sur-

face, that is, the first point
on CBD reached by each Figure 29

wavefront. If the reflecting surface had not been in its place, a

wavefront, after reaching B would continue to travel with its

original velocity and in a short time would reach some such

(63)
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position as CxD. With the surface in its place, B becomes the

center for a secondary wavelet in the upper medium whose

radius, at the instant when the incident wavefront reaches C
and D, will have acquired the length Bx' = Bx. In the mean-

time, other points such as M and N will also have been reached

by the incident wave and become centers of secondary wave-

lets, whose radii in the upper medium will be respectively

MO' = MO and NP' = NP. The reflected wavefront will

therefore be CO'x'P'D, the envelope of all such secondary
wavelets. From the manner of its formation, it is obviously

exactly symmetrical with the hypothetical incident wavefront

COxPD, and therefore is truly spherical, with center at A'. A
and A' are equally distant from the reflecting surface, and the

line AA' is perpendicular to the latter. An eye placed any-

where in the upper medium would receive reflected light which

would appear to come from A', though really from A, and we
. therefore say that A7

is the reflected image, or image by Te-\

flection, of A.

The refracted wavefront is formed in a simitar manner,

except that in the lower medium the radii of the secondary
wavelets are shorter than in the upper if n is greater than

unity, longer if n is less than unity. The radius By of the

secondary wavelet from B as center is not equal to Bx, but to

Bx/n. The radius of the secondary wavelet from M is Mu =:

MO/n, that from N'is Nv = NP/n, etc. The envelope of all

these secondary wavelets in the lower iBedium, CuyvD, turns

out to be, not a sphere, but a surface of higher order. There-

fore, we cannot say that there is a refracted image in the same
strict sense in which we speak of a reflected image. It is true

* that an eye placed in the lower medium would receive light

that appeared to come from some point in the upper medium
other than the true source A, but this apparent "image" would
have a different position for every change in the location of

the eye.

However, it is always possible to describe a sphere which

approximates more or less closely to the refracted wavefront.

Suppose, for example, that a circular arc be drawn through
the three points C, y, and D, and a spherical segment be formed

by rotating this arc about the axis AA'. This surface would
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coincide exactly with the refracted wavefront at the three

given points, and would also pass very close to other points

such as u and v. The nearer the three points C, y, and D are

together, the closer would sphere and wavefront coincide for

all the region between C and D, and if the three points are

distant from one another by only an infinitesimal amount we

may say that in the immediate neighborhood of these points

the coincidence is exact. If A" represents the center of this

sphere, then to an eye located in the lower medium anywhere

along the line AA' or AA' produced, or in the close neighbor-

hood of this line, as at the point E, the light would appear to

come from A" instead of from A, and we therefore define A"

as the image by refraction of A. But, if the eye be located at

some distance from the line AA', as at E', the light appears to

come from a different point, such as Q.

In order to find the position of the image A", it is best

to consider the refracted wavefront just as it breaks through

the surface CBD, that is, we imagine C and D to be very close

together and By and Bx to be infinitesimally small. Then the

radius of the sphere through C, y, and D will be the radius of

the refracted wavefront just as it breaks through the surface,

and equal to the distance of the image A" from the surface.

To find A" is merely a matter of

plane geometry. CD is a chord common
to the two arcs CxD (hypothetical inci-

dent wavefront) and CyD (refracted

wavefront). The line drawn from the

middle point of a chord, perpendicular to

the latter, till it meets the arc, is called

the sagitta of the arc. Thus, Bx is the

sagitta of the arc of the incident wave-

front, By that of the refracted wave-
front. We must first find what relation the sagitta bears to

the radius. This can be best done by a consideration of figure

30, where the complete circle is shown. The triangles KBD
and DBy are similar, therefore

KB _BD
BD "BY

If we let s represent the sagitta, R the radius of the circle, and
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a the half-chord, KB = 2R s, BD = ,
and By = s. There-

fore

2R s

We are supposing that C, y and D are very close together, so

that both s and a are quantities of infinitesimal magnitude,

but R remains a quantity of finite size, therefore in the limit

2R s becomes equal to 2R, and

JL !_
a2
"

2R

or,

E =

Equation (1) shows that although a and s both become in-

finitesimally small, the ratio o2
/s remains a finite quantity,

equal to the diameter of the circle.

Now let us apply equation (1) to both the hypothetical

incident wavefront and the refracted wavefront. For the

former, s=Bx, R=BA. For the latter, s=By, R=BA", the

required distance. Therefore, since a is the same for both,

viz., BD,

If we divide the last equation by the one above it, we get

BA" _ Bx

BA
~~

By

But, by the method of constructing the refracted wavefront,

Bx/By .- n. Therefore,

BA"
^-r- =n
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or in general, if d x represent the distance of any point source

of light from a plane refracting surface, d 2 the distance of the

corresponding refracted image, and n the index of refraction

of the second medium with respect to the first, then.

As an application of formula (2) suppose a certain object

to be 2 feet above the surface of a pond. A person above the

surface would of course see a reflected image of it, apparently
2 feet beneath the surface, but a fish in the water would see

a refracted image. If the fish is directly beneath the object,

we can apply equation 2, putting d = 2, n = %, or 1.33. This

gives

d2
= 2 X ^r-~ 2.67 feet

o

Tha-t is, the object would appear to the fish to be 2 ft. 8 in.

above the surface.

If the source of light lies within the denser medium, the

refracted light travels faster than the incident, the refracted

wavefront of figure 29 will be bulged out more than the inci-

dent instead of being flattened, and n has a value less tihan

unity. Thus, suppose we look straight down to the bottom of

a pool 2 feet deep. Then, in equation (2), d t
= 2, n = %.. and

d 2
= 2Xj =1-5 feet

4

The pool appears to be only % its actual depth. The fact that

the wavefronts are not spherical is shown clearly by the

observation that, if we look very obliquely to the bottom, the

depth appears to have much less than % its actual value. This

explains a curious phenomenon which anyone standing in a

pool a few feet deep with perfectly level bottom can hardly
fail to notice. The bottom always appears to be bowl-shaped,

with the greatest depth just underfoot, and that depth of

course just about % the true depth of the whole pool.

28. Judgment of the distance of an image. The student

may wonder why the curvature of the wavefront has anything

to do with our judgment of the distance of an object perceived,
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for one is apt to think that only a single ray ever enters the eye.

This is incorrect, for the pupil of the eye has a finite size and

therefore always receives a finite area of the wavefront. Ac-

cording as the curvature of this section of wavefront is greater

or less, we must exert more or less muscular strain upon the

lens in the eye in order) to focus) the light upon the retina, and

the degree of this strain enables us to judge distance to some

extent. Still more important is1 the fact that we ordinarily see

with both e^yes at once, thus taking in at the same time two

separate sections of wavefront. A person with only one eye

is far less accurate in estimating distance than a normal per-

son. For instance, a one-eyed man usually has much greater

difficult}
7
- in hitting a nail with a hammer for this reason.

Naturally enough, estimation of distance becomes much
more difficult, even for normal two-eyed vision, when the dis-

tance becomes great. It is comparatively easy to tell whether

an object is five feet away or ten feet, for the difference in

curvature of a five foot and a ten foot sphere is comparatively

great. But it is not easy to tell whether a distant object is,

nearer to a mile or to two miles from us. For a small section

of a sphere of either one or two miles radius is nearly flat, and

there is no perceptible difference in the focussing and align-

ment of the eyes for such great distances. Our estimation of

great distances is a result of subconscious consideration of such

details as size, speed of motion (if the object seen happens to-

be in motion), distinctness of vision, etc., and at best it is very
uncertain and subject to queer illusions. Soldiers are given a

long and systematic training in judging distance.

If our eyes were set three feet apart instead of a few

inches, judgment of distance would become much easier. No
doubt small animals with their eyes close together are less

adept in this respect than human beings. Indeed there is some

reason fori thinking that many animals and birds are much
less keen than men in observing stationary objects, although a

moving objects almost instantly arrests their attention. Most

birds have the eyes set in the sides of the head, and therefore

seie an object with only oneseye at a time. This fact must

seriously hinder them in the estimation of distance; and it

is no doubt to counteract this deficiency that birds have the
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habit, particularly when alarmed, of darting the head rapidly

forward and backward, so as to get two or more points of view

of any object that excites their suspicion. The parallax of the

observed object gives some ground for a judgment of its remote-

ness. Thus the mechanism by which a bird estimates distance

is perhaps an automatic and unconscious application of the

same principle used by a surveyor in finding the width of a

river, or by an astronomer in finding the distance of the nearer

fixed stars.

29. Image of an extended object. We have so far con-

sidered only cases where a single point acted as a source of

light, and have found the positions of the reflected image and

the refracted image of this point source. Actually, we always

have to deal with objects more or less extended; but in order

to find the images of such an object we

have only to apply the principles al-

ready learned to each point of it. In

figure 31, AB represents any object.

The point A has an image by reflection, _
A', and an image by refraction, A",
found by these principles, and similar-

ly B has an image by reflection, B', and
an image by refraction B", and so on.

Figure 31

So far as the image by reflection goes, it is exactly symmetri-
cal to the object, with respect to the reflecting plane.

30. Reflection and refraction at spherical surfaces. We
shall now consider reflection and refraction at spherical sur-

faces, a subject which is of great importance because of the

use of curved mirrors and lenses in optical instruments.

Figures 32 to 35 show four different cases of the reflection

and refraction of spherical wavefronts at a spherical surface,

the source of the incident waves being in each case on the con-

cave side. All these figures are drawn on the supposition that

the medium on the convex side (second medium), is denser

than that on the concave side (first medium), and both media

are supposed to extend indefinitely. The reflecting and re-

fracting surface is indicated by a heavy line, the incident wave-

fronts by normal unbroken lines, and the reflected and refracted

wavefronts by dotted lines. The two last are not truly spheri-

cal, but are near enough to be considered so as long as the

Incidence is nowhere very oblique. Therefore, the center of
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the incident wavefronts is represented by 0, the center of the

reflected wavefronts (except in figure 35) by I, the center of

the refracted wavefronts by I', and the center of the surface

itself by C. Arrows show the direction of advance of the

waves.

Figure 33

t'o

,-v^r

Figure 34 Figure 35

In figure "B3, the source is farther from the mirror than is

the center C. The reflected waves converge to the point I,

betAveen C and the mirror, but nearer to the former, and

diverge again after* passing through I. The refracted waves

diverge more than the incident, appearing therefore to come

from a point I', between C and 0.

In figure &2i -the source is between C and the mirror,'

nearer to the former. The point I, to which the reflected waves

converge, and from which' they later diverge, lies outside of C.

The refracted waves diverge less than the incident, appearing

to come from I' between and C.

^ In figure 34 is nearer to the surface than to C. Here

the reflected waves do not converge at all, but diverge at once,

seeming to come from the point I within the second medium.
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The center of the refracted waves is again between and C.

In figure 35 is just halfway between C and the surface.

The reflected waves are plane, and may be said either to

converge to an infinitely distant point on the left, or to diverge

from an infinitely distant point on the right. The latter state-

ment is preferable, since an eye placed in the path of the re-

flected light would see an image of infinitely distant on the

right of the figure. In fact these waves would strike the eye

exactly as waves coming from a very distant star.

The points I in figures 32 and 33 are said to be real images

of the corresponding' sources 0, because the light is actually

converged to these points; while in the other two figures I is

only a virtual image, the reflected light not actually being

brought to.' focus at these points, but simply diverging as if

it had come from them. In each of the figures, the refracted

image, I' is virtual.

Figure 36

Figure 37

?. I

<x. ....

?>Af'\ \U1

Figure 38 Figure 39

Figures 36 to 39 differ from the four preceding figures in

that the reflecting and refracting surface is convex, instead of

concave, to the incident light and the rarer medium. In each
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of these cases, the reflected rays diverge from the surface at

once, and I is therefore a virtual image. As shown in figure

38, there is a certain position for the source 0, depending upon
the radius of the surface and the index of refraction, for which

the refracted waves are plane. If lies any nearer to the

surface, as in figure 39, they diverge, and V is virtual. If O
is farther from the surface, they converge, and I' is real, as

in figures 36 and 37. In figure 36 the source is infinitely

distant, and the incident waves are plane.*

From what precedes, it is obvious that there is a great

diversity of typical cases for reflection and refraction at

spherical surfaces. The surface may be concave or convex to

the incident light: the source may lie in the medium of less

or of greater optical density, and may be at any distance from

the surface. To develop and remember for each case a special

formula giving! the positions of I and V in terms of that of 0,

would be unduly laborious. Fortunately, we can derive a pair

of very general formulae, which are applicable to any case

that may arise, provided we make consistent and rational con-

ventions in regard to the algebraic sign of the distances in-

volved.

We shall suppose all distances to be measured from the

reflecting surface as a base, distances to one side being regarded

as positive, those to the other side negative; and it will be

most convenient to take the side from which the light comes

as the positive side. We let r stand for the radius of the re-

flecting and refracting surface, u for that of the incident

wavefronts, v for that of the reflected wavefronts, and v' for

that of the refracted wavefronts. In figures 32 and 33 all

these quantities are positive. In figure 34 v has become

negative, while it is 00 in figure 35. v' is negative in figures

36 and 37, -+-_ oo in figure 38, and positive in all the other

cases shown, r is always positive for a concave mirror, nega-

tive for a convex one. u is always and necessarily positive,

unless the incident waves are rendered convergent before

striking the surface, by means of another mirror or a lens.

*In figures 32 to 35 the index of refraction has been taken as 1.5,

but in figures 36 to 39 it has been taken as 1.67 to avoid making some

of these figures inconveniently long.
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It is easily seen that v is positive when the reflected image
is real, negative when it is virtual. On the other hand, v' is

negative when the refracted image is real, positive when it is

virtual.

It is easiest to derive the two formulae by considering a

case where all the quantities, r, u, v, and v' are positive, as

in figure 32. Figure 40 represents the case of figure 32 some-

J?_-_-L-9-

Figure 40

what exaggerated to make the diagram clearer. I, C, If and

have the same significance as in the preceding figures. XPY
is the reflecting and refracting surface (center at C), AdB
an incident wavefront as it would be if it advanced into the

second medium without being retarded (center at 0), AfB
the actual refracted wavefront (center at I'), and AeB the

reflected wavefront (center at I). In practice, mirrors are

seldom used in which the diameter XY of the mirror-faee, is

more than % of the radius of curvature CP = r. In this

figure XY is made about equal to r in order that the different

arcs having a common chord AB may be more clearly seen as

separate.

The formula for the reflected wave is based upon the fol-

lowing physical fact: While the incident light would, but for

retardation in the second medium, travel from P to d, the re-

flected light travels back from P to e. Therefore the distances

Pd and Pe are equal. Putting this statement into the form of

an equation,

Pe = Pd (3)
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But we can write

Pe=:PK eK
Pd=dK PK

Therefore

PK eK = dK PK
dK + eK = 2PK

But dK, eK, and PK are respectively the sagittas of the in-

cident wavefront, the reflected wavefront, and the reflecting

surface. We can therefore apply to each of them the general

geometrical formula (1), getting

dK = a2
/2u

eK a2
/2v

PK = a2
/2r

Making these substitutions, we get

_o^ _a?_ _ 2a^
2u

"h 2v
"

2r

or,
'

This is the general formula for a mirror. The symbol f,

equal to r/2, is called the focal length of the mirror. Its

physical meaning can be shown by supposing that u = oo
,
that

is, that we are dealing with an object infinitely distant. Then

1/u = 0, 1/v = 1/f ,
and v f . Then f is the distance from the

mirror to that point (called the principal focus) where parallel

rays, or plane waves are brought to a focus in the reflected light.

Conversely, if u = f
, 1/v = 0, and v = oo

;
that is, if the

source of light is at the principal focus, the reflected waves

are plane. If neither u nor v is infinite, the points O and I

are called conjugate foci. If the source is at 0, the reflected

image is at I, and conversely if the source is at I the image
will be at 0, for equation (4) shows that the relation between

these two points is reciprocal, u and v appearing in it in ex-

actly the same way.

The formula for the refracted wave is found in a similar

way. The physical fact upon which it is based is this : While
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the incident light would, but for the retardation in the second

medium, travel from P to d, the actual refracted wave travels

only from P to f, where Pd and Pf are to each other as the

velocities of light in the two media. That is,

Pd
FF= n

or

Pd = n X Pf
But

Pd=:dK PK

Pf ^:fK PK

(5)

therefore

dK PK=rn(fK PK)

nXfK dK= (n 1)PK

But fK, dK, and PK are the sagittas respectively of the re-

fracted wavefront, the incident wavefront, and the refracting

surface. Applying to each of these the geometrical formula

(1), we get

fK = a2
/2v'

dK = a2
/2u

'PK = a2
/2r

With these substitutions,

nXa2

_** _ (n l)a
2

2v'
"

2u
~

2r

or

This formula, for the refracted light, is necessarily more com-

plicated than that for the reflected, because it involves the

index of refraction, which does not affect reflection, and there-

fore does not appear in (4).

Formula (6) is of less common use than (4). but there

are certain problems where it becomes necessary, for example,
the following.
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A spherical globe, one meter in diameter, and made of

thin glass, is filled with water. A small fish is located 40cm.

from the glass wall at a certain side of the globe, (a) Where

would be the image which the fish would see of himself in the

farthest part of the surface! (b) Where would the fish appear,

to a person outside the globe on the side farthest from the fish?

Question (a) is easily answered, for the fish would see his

own reflected image, and we only need to apply equation (4)

as if the glass wall were non-existent, since its thinness pre-

vents it from affecting the problem to any extent. Then we

must put r = 50, u = 60, giving v = 42.9cm. Therefore the

fish would see, reflected from the farthest part of the boundary
of the globe, an image of himself 42.9cm. from the boundary,

17.1 cm. from himself. (If we had tried to find the location

of the image of the fish formed by reflection in the nearest

part of the wall, it would have come out to be behind the fish

and therefore not discernable by him as an image).

To answer question (b), we must apply equation (6), for

we have to do with refracted light. Since the light passes

from water to air, the appropriate index of refraction is not

%, but the reciprocal of this, %. Therefore

31 1

4v' 60- "4X50

Giving v' = 64.3. Therefore the person outside the globe would
see the fish apparently 4.3 cm farther away than it really is.

The fact that v' comes out positive shows that the refracted

image is on the same side of the bounding surface as the fish

itself. The reflected image seen by the fish is real, the re-

fracted image seen by the observer outside is virtual.

Mirrors for experimental work in optics are usually either

flat or concave, though convex mirrors are occasionally used.

They are made by taking a disc of homogeneous and thoroughly
annealed glass, and reducing one surface to the required radius

of curvature by careful grinding and polishing. This surface

is then covered with a deposit of silver by chemical deposition
from a solution of silver nitrate, and the silver film is thorough-

ly dried and then lightly polished with chamois and rouge.
The silver of course prevents any appreciable refracted light

so that the major part of the incident light is turned into the
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reflected beam. Flat mirrors such as were used in the experi-

ments of Fizeau and Foucault for finding the velocity of light,

whose function is to reflect only part of the light and transmit

the rest, must of course be ground and polished flat on both,

sides. One face is then covered with a very thin film of silver,

the best result being obtained when the film reflects approxi-

mately half the incident light, transmitting the rest, except

for some unavoidable absorption. Such a mirror is said to be

half-silvered. When a silvered mirror becomes tarnished and

dull, it is a comparatively easy matter to dissolve off the old

silver with nitric acid and put a new silver coating upon it.

31. Lenses. A lens is a disc of transparent refractive ma-

terial, such as glass, bounded by two surfaces, one or both of

which is curved, usually spherical. Each surface produces

some reflection, which not only weakens the transmitted beam

but also causes annoyance in other ways. The light reflected

from the lens-surfaces is therefore a hindrance, but is abso-

lutely unavoidable. In the following discussion of lenses we
shall ignore the reflected light.

Figure 41

When spherical wavefronts, with center at (figure 41)

strike a lens, they are refracted at the first surface, and again

at the second surface, finally emerging approximately spherical,

so that they either converge to a point I on the side opposite

to 0, as in the figure, or diverge from a point on the same side

as 0. Our task is to derive a formula by means of which,

knowing the distance of from the lens, the radii of curvature

of the
\ two lens-surfaces, and the index of refraction, we can

calculate the distance of I. This might of course be done by

applying equation (6) once for. each surface, taking due ac-

count of the fact that the appropriate index to be used at the

second surface is the reciprocal of that for the first.

However, we shall develop our lens formula by a different

method, chiefly because by so doing we can introduce a con-
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vention as to algebraic sign which will prove more convenient

for our purpose than the one used in equations (4) and (6).

We assume that the lens is so thin that its greatest thickness

may be neglected in comparison with the distance from source

to image. Call the distance from the lens to the center of the

incident wavefronts u, that from the lens to the center of the

refracted wavefronts v. u is considered positive when the

center of the incident wavefronts lies on the side from which

the light comes, that is, when the incident light is diverging,

as is practically always the case. Otherwise, u is1 negative. On
the other hand, we consider v as positive when the center of

the refracted wavefronts is on the side opposite to that from

which the light comes, that is, when the light leaves the lens

in a converging beam. The radius of curvature of the first

surface of the lens will be considered positive when that sur-

face is convex to the incident light ;
that of the second surface

is positive when it is concave to the incident light. By this

convention, all four of these quantities will be positive m the

most common case, viz., when a double-convex lens forms a real

image. In figure 42 LAL'B is a somewhat exaggerated diagram
of a lens. is the center of. the incident waves, or source, I

is the center of the emergent waves, or image. Let r t be the

radius of curvature of the first surface, LAL', ra that of the

second, LBL'.

Figure 42

In developing the! formula, we shall use the following

principle : In order that I shall be the image of 0, there must

be the same number of wavelengths in every path from to I.

In particular, there are as many in the distance OL -f- LI as in

the straight path OABI. Of course this can be true only be-

cause in part of the shorter path, viz., in the distance AB, the

wavelength is shorter than in the air. We have already seen
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that, if A is the wavelength in air, A/n will be that in glass
whose index of refraction is n. Therefore the total number of

wavelengths in the straight path is

(OA + BI)/A + n X AB/A = (OA + BI + n X AB)/A

The number in the path OL + LI is

(OL + LI)/A

Equating these two expressions,

OL + LI = OA + BI + n X AB
or

OL OA + LI BI = n X AB

Now draw the arcs LxL', from as center, and LyL', from I

as center. Then OL = Ox, and LI = Iy. Therefore,

Ox OA 4- yl BI = n X AB

Ax + By = n X AB

But Ax is the sum of the sagittaVof the incident wavefront

and the first lens-surface; By is the sum of the sagittas of the

emergent wavefront and the second lens-surface: and AB is

the sum of the sagittas of the two lens-surfaces, all with the

same chord LL'. Therefore, we may substitute the appropriate

values obtained from equation (1), and get

2u

or

or

This is the approximate formula for a lens. It is ad-

mittedly not accurate, and indeed* no perfectly accurate formula
can be found. For the wavefront emerging from a lens is not

accurately spherical. Consequently it has no true center and

1.1 11 /I
,
1\-

-I 1- 4 n
(

I

u T
L

' v '

r2 \r l
T2 I
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there is no perfect focus. It is possible, by giving the lens-

surfaces a special non-spherical form, to make the emergent

wavefronts really spherical; but this can be done only for a

certain fixed distance of from the lens, and the emerging

waves are no longer accurately spherical if the source is moved

closer to the lens or farther away. There is therefore no ad-

vantage to be gained by using the mathematically correct

form, except in the case of telescopic and microscopic objec-

tives, which are always used under the same conditions. With

spherical lens-faces, formula (7) is accurate enough for all

ordinary purposes, provided' the lens is thin and its diameter is

not more than 1/20 the distance u or v. For photographic

lenses and microscopic objectives, which are thick and have

relatively large diameters, it becomes very inaccurate.

Since the right-hand member of (7) contains only terms

which are constant for a given lens (r t ,
r2 ,

and n) it is con-

venient to replace it by a single symbol, 1/f, where f is known

as the focal length of the lens. The formula then becomes

-+-=* (8)
u v f

which is identical with one of the forms of the equation (4).

The meaning of the focal length f is also the same in the case

of mirror and lens. That is, f is the distance from the lens to

the principal focus, which is the point to which incident plane

waves would be brought to focus by the lens, or the point such

that if the center of the incident wavefronts were located there

the emergent wavefronts would be plane. In fact, the only

differences between (4) and (8) are first the difference in

convention as to sign, already explained, second, the fact that

the focal length of a mirror is simply half the radius, while

that of a lens is a function of two radii and an index of re-

fraction, having the value

f=
(

*'**
. . (9)

If we solve equation (8) for v, we get

uf
v =

1T=f
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As already noted, u is practically always positive, so that if f

is also positive, v will be + if u>f, infinite if u = f
, and -

if u < f . That is, the emergent wavefronts will be convergent

if the source lies beyond the principal focus, plane if it is at

the principal focus and divergent if it lies between the prin-

cipal focus and the lens itself.

A negative value for f itself means that plane waves fall-

ing upon it from the left would not be converged to a point

on the right, but diverged as if they came from a point on the

same side as the incident light. Equation (9) shows that in

order for f to be negative either rl and r, must both be nega-

tive, or the larger one must be positive and the smaller nega-

tive, since in all practical cases n is greater than 1. This is

the same as saying that f is negative if the lens is thinner in

the middle than at the edges, positive if thicker at the middle

than at thp edges. In the latter case we say that the lens is

converging or convex, in the former case diverging or concave,

In figure 43 are shown three different types of converging, and

three of diverging lens. In order from left to right, they are

named planoconvex, double convex, concavoconvex (or menis-

cus), convexoconcave, double concave, and planoconcave.

Figure 43

From the elementary theory of lenses that we have given

here, it is immaterial which face is turned toward the incident

light, for equation (9) shows that r
x and r2 can be interchanged

without affecting the value of f
,
and such an interchange would

be the only effect of turning the lens around. That is, for

example, the meniscus type has the same focal length no mat-

ter whether the convex or the concave face be turned toward

the incident light. But a more thorough study of lenses shows

that there usually is a choice, depending upon the circumstances

under which the lens is to be used. In some cases, it is best

to use a meniscus or planoconvex lens, with the faces turned in

a certain way, while in others a symmetrical double convex
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will function better, etc. The complete theory of lenses is a

long- and difficult study in itself, and cannot be taken up in

this book.

Figure 44

The quantity u can never be negative so long as the lens

receives the light directly from the source. But figure 44 shows

a case where, for the second lens, L2 ,
u is negative. (Here the

wavefronts are not drawn, but the course of the light is suffi-

ciently well indicated by the limiting rays of the beam.)
is a point-source, the light from which would be brought by
lens L t to a focus at I it Lens L, therefore receives convergent

light whose center is at I x ,
and in order to find the position of

the final image L we must substitute for u in equation (8) the

numerical value of the distance L.,!^ with a negative sign in

front of it, and then solve as usual for v.

32. Two lenses in contact. We can now prove that when
two thin lenses are placed very close together they act approxi-

mately as a single lens, the reciprocal of whose focal length is

equal to the sum of the reciprocals of the focal lengths of the

<
r

.

Figure 45

two given lenses. See figure 45. Let f t be the focal length of

L,, f2 that of L,. Aplying equation (8) to each lens, we get

-

u, v, f,

i+.L i

U
2

V
2

~~
.

Adding these two equations, we get

u, f,
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Since the center of the emergent wavefronts for the first lens,

I,, is also the center of the incident wavefronts for the second,
and since, L x and L2 being very close together, they are almost
the same distance from I 1? v, and u 2 are numerically practically

equal, but opposite in algebraic sign. Therefore l/u2 and l/vt

cancel one another, and we have left

14- - 1 1
*i v2 f,

' h
f2

Uj for the first lens is simply u for the combination, and v2 for

the second is v for the combination. Therefore, if we replace

1/f! -f- 1/f2 by the single constant 1/f, we get for the combina-
tion the ordinary equation for a single lens

1/u 4- 1/v = 1/f

where

K+C y
<

-&;
The reciprocal of the focal length of a lens is sometimes spoken
of as its dioptric strength, and practical opticians adopt a lens

of one meter focal length as the unit, calling it a lens of one

diopter. A lens of two diopters would then be one of focal

length 50 cm., a lens of % diopter one of 400 cm focal length,

etc. The above demonstration tlien shows that when two thin

lenses are placed very close together their dioptric strengths

are added. This relation holds good even if one of the lenses

is diverging, provided we take the sum of the reciprocals of

the focal lengths in the algebraic sense, the focal length of the

diverging lens being negative. We shall find the principle

very useful in discussing "achromatic," or color-free, lenses.

33. Chromatic aberration. We have already seen that

the index of refraction of a substance is different for different

wavelengths, or colors; and since the focal length depends upon
the index it is obvious that a lens, unlike a mirror, focusses

different colors at different points. This is a serious defect in

simple lenses, and it would be impossible to have very effective

lenses for telescopes, microscopes, or cameras, if it were not.

possible to avoid it in some degree. Figure 46 is a diagram,

plotted to scale, which shows the variation in focal length with



84 LIGHT

the wavelength of the light, for two different lenses, one of

crown glass (dotted line) and one of flint glass (full line).

i
Each lens has a focal length

of 100 inches for light of

wavelength .0000589 cm.

(yellow), and the ordinates

show the differences between

this and the focal length for

any other wavelength plot-

ted as abscissa. It is seen

Figure 46 that the focal length for

the blue differs by more than an inch from that for the yellow
in the flint lens, by something less than this in the crown.

This defect is known as chromatic aberration. The figure

shows that it is greater for flint than for crown lenses. Not

only does flint have a greater index than crown, but its relative

dispersion, that is, the percent change in index for a given

change in wavelength, is also greater. This fact enables us,

by combining a crown converging with a flint diverging lens,

to produce a combination known as an achromatic lens, in

which, though the focal length still varies for different wave-

lengths, the variation is relatively small. The plan adopted is

to figure the two lenses so that the .focal length of the com-

bination is the same for two chosen wavelengths, say one in the

brighter red and one in the greenish blue. It will then be

slightly less for wavelengths intermediate between these two,

somewhat greater for the deep red and the blue and violet.

34. Achromatic lenses. In order to explain the production
of achromatic lenses by a concrete example, we shall calculate

in detail the radii of curvature for an achromatic of 100 inches

focal length. We first choose, from a catalogue of optical

glasses, two known respectively ias "S.40, medium phosphate

crown," and "0.335, dense silicate flint." The refractive in-

dices of each of these glasses is given for five different locations

in the spectrum, known as the points A' (wavelength =
.00007677cm., deep red), C (wavelength = .00006563cm.,

bright red), D (wavelength = .00005893cm., orange-yellow), F
(wavelength = .00004862cm., blue-green), and G' (wavelength

= .00004341cm., deep blue). The table of indices follows:
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S.40 (crown)
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Of course we get an exactly analogous equation from the fact

that the focal length of the combination is also 100 inches for

the F light, viz., the equation

4-56415(1 +
J.)-.

86028
J-

(12)

In the two equations (11) and (12), we may regard I/a + 1/b

on the one hand, and 1/b alone on the other, as two unknown

quantities, and solve for their numerical values. The result is

- 4- -i = .037269 4= .016998an b

a = 49.33 inches. b= 58.84 inches.

Therefore, if the crown lens be ground with convex sur-

faces of radius 49.33 in. and 58.84 in. !

respectively, and the

flint lens with one surface concave of radius 58.84 in. and the

other surface plane, then the combination will have exactly the

same focal length, viz., 100 in., for the bright red and the green-

blue light. In order to find the focal length of the combina-

tion for other colors, we can make the calculations very simply

by using the already found values for the radii, and the appro-

priate values for the' refractive indices. Thus, if Fa , F^, and

Fg represent the focal lengths for the A' light, the D light, and

the G' light respectively,

*- = .55354 (- + -r
)

-62621 ~= .55354 X -037269 .69621

X.016996 Fa =100.13 in.

-i- = -55900 (- + 4W .63720 4= -55900 X .037269 .63720
Fd \ a b/ b

X .016996 Fd = 99.94 in.

^ = .56953(- + 4) .66152 -= .56953 X .037269 .66152
.r g \ a b/ D

X .016996 Fg
= 100.17 in.

These results are plotted in figure 48, to the same scale

used in figure 46. Since the lenses for which the latter figure

is drawn are supposed to be ma,de from the identical glasses

which we have used in our calculation, a comparison of the two

figures shows very clearly the superiority of an achromatic
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lens over a single-piece lens made from either of the glasses

composing the achromatic. Simple lenses of crown glass are

practically never used, ex-

cept as spectacle-lenses, as

condensers for lantern or mi-

croscopes, and in some few

other cases where good defini-

tion is not required. Lenses

are never made from flint

glass alone. It would be less

suitable than crown, not only Figure 48

because of its greater relative dispersion, but also because flint

glasses are generally softer and more easily scratched than

crown.

Whenever, as in the example calculated above, the crown

and flint components of an achromatic lens have one radius

of curvature in common, so that they fit to one another, they
are cemented together with Canada Balsam. This procedure

prevents part of the loss of light that would otherwise occur

by reflection at the two surfaces.

35. Image of extended object. Undeviated ray. Up to

this point in our discussion of mirrors and lenses, we have

always supposed the source to be located somewhere on the

axis of the mirror or lens. But when we consider the image

of an extended object we must enquire what happens when the

source lies off the axis, for evidently not all points of an object

of any size can lie on the axis. In this book we shall not at-

tempt to give a mathematical treatment of this problem, on

account of its difficulty, but merely state the result yielded by
such an investigation, as follows: Let and I inl figure 49

Figure 49

be the positions respectively of a source on the axis of the lens

and its image, as found by formula (8). Also let 0' be a point

off the axis, but lying in a plane perpendicular to the axis

through 0. Then, provided 00' is small compared to the dis-
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tance from the lens, the image of 0', which we shall call I', is

found to lie very nearly in a plane perpendicular to the axis

through I. These two planes, both perpendicular to the axis,

and so situated that a point in one finds its image in the other,

are called confocal planes. In order to locate, in the plane

through I, that particular point which is the image of 0', we

reason as follows: Among all the rays which diverge from 0'

there will be one which, striking the first surface of the lens

near the point where the axis penetrates it, will be deflected

into the glass in such a way that it strikes the second surface

at the same angle at which it left the first. For this ray, the

lens acts merely as a flat plate of glass with parallel sides, and

the ray on emerging will take a direction parallel to that which

it had on entering. The desired point I' will be the point

where this ray strikes the confocal plane through I. The ray in

question may be called the undeviated ray, for although it

suffers a slight lateral displacement in traversing the lens, its

direction is not changed. The thinner the lens, the smaller

will be the lateral displacement of the undeviated ray, and the

closer will its point of entrance into the lens and its point of

exit coincide with the geometrical center of the lens. There-

fore, for thin lenses, we find the image of such a point as 0'

by drawing a line from 0' through the center of the lens, and

another through I perpendicular to the axis, their intersection

giving the location of the image of to an accuracy sufficient

for most practical purposes.

36. Magnification. Incidentally, this construction enables

us to find the size of the image of an extended object such as

the arrow 00' of figure 49. For, since OO' and II' subtend

equal angles from the center of the lens, they must be propor-

tional to the distance from the lens. That is,

n/ v
n-n

00' "a
It is also evident that if object and image lie on opposite sides

of the lens, as in figure 49, the image is inverted, while if they

lie on the same side it is erect.



MAGNIFICATION

Figure 49 is drawn for a converging lens arranged to pro-

duce a real image, but the facts stated above hold good whether

the lens be converging or diverging, the image real or virtual.

Similar conclusions hold for the reflected images from a

mirror. Here also we have confocal planes, such that a point

in one has its image in the other, but there is of course no such

thing as an undeviated ray, since a change of direction is

always present in reflection. However, if we draw from 0' in

figure 50 the ray OT, to the point where the line 01 meets

Figure 50

the mirror, the ray O'P will be reflected in the direction PI',

where, by the laws of reflection, the angles O'PO and I'PI are

equal, and the intersection of this line with the plane confocal

to the plane of 0' will give the image I'. It follows at once

that equation (13) holds for mirrors as well as lenses. But

in the case of a mirror, the image is inverted if it lies on the

same side as the object, erect if on the opposite side.

An important application of the principles just stated is

illustrated in figure 51 .' Suppose there are two stars, prac-

tically at an infinite distance, in the direction from the lens

indicated by the letters C and D, the arrows indicating the

Figure 51

direction in which the light is propagated from them, in plane
waves. If either star lay on the prolongation of the axis BM,
its light would be focussed at the principal focus F. Other-

wise, if the angles CBM and DBM are small, not more than

a few degrees, the image; of each star will lie in what is called

the principal focal plane of the lens, a plane through F per-
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pendicular to the axis. For plane waves, every line perpen-
dicular to the wavefronts is a ray. Therefore, if we draw

through the center of the) lens a line perpendicular to each set

of incident wavefronts, these will be the undeviated rays from

the two stars
; and the points where these lines meet the prin-

cipal focal plane, c and d, will be the images of the two stars.

The angle cBd, subtended by the images from the center of the

lens, is then equal to the angle subtended by the stars them-

selves from the center of the lens or indeed from any terres-

trial point since the distance of the stars is so great. This

angle is given in radian measure, to a sufficiently close approxi-

mation, as the quotient of the distance cd divided by the focal

length.

This principle is used in practical astronomy for measur-

ing the angular distance between double stars. There are two

methods of measuring the distance cd between the images.

One is to place a photographic plate directly in the focal plane,

expose it to the light from the stars, and then develop it by
the usual photographic processes, which leave a little blackened

dot where each star-image falls. The distance between these

dots is accurately measured on a dividing-engine.

37. Micrometer. The other method is to use a micrometer,

the essential part of which is a small metal frame arranged

so that it can slide in a plane perpendicular to the axis' of

the lens. A fine spider-thread is stretched across this frame,

so that it lies in the focal plane, perpendicular to the direction

in which the frame slides. The whole micrometer is turned

about the axis of the lens, till the direction in which the frame

slides is parallel to the line joining the two star-images, and

the frame is then moved by a fine-pitched screw to which it

is attached, so that the spider-thread, commonly called the

cross-hair, lies first on one image, then on the other. The pitch

of the screw is known, so that the number of its revolutions

necessary to move the cross-hair from one image to the other

gives the distance. In order to make the cross-hair and star-

images clearly visible, a short-focus lens, or combination of

Itmses, called the eyepiece, is placed just behind the focal plane.

The eye sees magnified images of the cross-hair and the two

original star-images.
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A similar method is used in certain surveying instruments,

although the conditions are somewhat different. The objects

observed are not infinitely distant, and the images are con-

sequently not formed exactly in the principal focal plane.

38. Imperfections of mirrors and lenses. The student

will no doubt have drawn for himself the conclusion that, quite

apart from chromatic aberration in lenses, both lenses and

mirrors are far from perfect optical instruments, since our

formula? are only approximations. Such a conclusion is un-

doubtedly correct, and it will be worth while to enumerate the

more common faults.
. We shall speak principally of lenses,

but what is said applies- also to mirrors, for all the faults

found in lenses, except those due to chromatic aberration and

absorption, are also shared by mirrors, in many cases to a

greater degree.

In the first place, owing to the fact that light is a wave

motion, and therefore does not travel absolutely in straight

lines, no optical instrument, whether it be made up of lenses,

mirrors, or other elements, and no matter how perfect the

workmanship may be. can produce from a point source an

image which is a real mathematical point. For instance, al-

though a star, on account of its great distance, may be regarded
as a point source, its image as produced by the most perfect

telescope is not a mathematical point, but a very small disc

surrounded by a series of faint rings. If the lens is well made
and of large diameter, the diameter of the disc and the sur-

rounding rings is so small that the latter can be seen only by

highly magnifying them, and they become a source of trouble

only in the most exacting work with telescope or microscope.

The nature of this fault will be considered later under the

head of diffraction, sections 72 and 73.

39. Spherical aberration. Another fault is known as

spherical aberration. Quite apart from the just-mentioned

difficulty of diffraction, and from chromatic aberration, the

rays coming through the edges of a lens are not brought to the

same focus as those coming through near the center. This

follows from the fact mentioned above, that when a spherical

wavefront is refracted at a spherical surface, it emerges not

truly spherical. Figure 52 illustrates this defect in an exag-

gerated manner. The rays are drawn, but not the wavefronts.
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is a point source, from which all the rays originate. When
they emerge from the lens, they do not converge to a single

point. Since the central part of the emergent wavefront, say

the part to which rays between those marked 5 and 7 belong,

Figure 52

is very nearly spherical, these rays will all intersect nearly at

a single point f. Rays 4 and 5, however, cross before reaching

f; at such a point as e, and the corresponding rays 7 and 8 at

e'. Rays 3 and 4 will cross still nearer the lens, as at c, 3

and 2 at b, 2 and 1 at a, etc. Consequently, instead of having
a single point f as the image of 0, we may say that the image
is the line abcefe'c'b'a', or rather, the surface formed by re-

volving this line about the axis of the lens. This surface is

roughly conical, with a point or "cusp" at f, and by far the

greater part of the light is concentrated at this point, which

we commonly regard as the proper image. Nevertheless, much

light fails to pass through f, and if a screen were placed at

that point we should see a sort of halo surrounding the bright

center, caused by light which came to focus before reaching

the screen. The curve abcefe'c'b'a' is called a caustic, and the

corresponding surface a caustic surface. A familiar example of

a caustic is the socalled "cow's hoof" seen on the ^urface of

a glass of milk. It is formed by reflection from the inner sur-

face/ of the rim of the glass, which acts as a concave cylindrical

mirror, reflecting light from a nearby window, or any other

conveniently placed source of light.

40. Curvature of field. Still another defect is curvature

of the field. Referring to figure 49, it was stated in the text

that if 0' lies in the plane of 0, its image I' is very nearly in

the plane of I, provided that the distance 00' is small com-

pared to the distances of and 0' from the lens; and the

two planes perpendicular to the axis were called confocal

plane. More accurately, the surface which is confocal to the
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plane through O is not a plane but a slightly curved surface,

concave toward the lens and nearly plane in the neighborhood
of the axis. As a special case, suppose O '

and 0' are so far

away that the waves reaching the lens from them are prac-

tically plane. We may then regard 0, 0', and all other suf-

ficiently distant objects as being in a plane perpendicular to

the axis of the lens. Under these circumstances, if a screen

be placed perpendicular to the axis at the principal focus,

those of the distant objects which subtend only a small angle

with the axis will be sharply in focus on the screen, but the

others will be blurred, and the screen must be moved closer to

the lens to bring them into sharp focus.

41. Astigmatism. This is a fault which shows itself par-

ticularly for pencils of light which strike a lens or mirror

diagonally. Under such circumstances, the image of a true

point tends to become a pair of short lines, perpendicular to

one another, but not intersecting. Figure 53 is intended to

Figure 53

make this plain. The ellipse L represents a lens seen in per-

spective. For convenience in explanation, suppose an opaque

piece of paper pasted over
the^ face of the lens, with a square

hole, so that the beam that comes through is limited to what

passes through this square aperture. Only the rays coming
from the four corners are shown. Rays A and B intersect at

the point R, but A and C intersect at P, nearer the lens.

Similarly, C and D intersect at S, B and D at Q. Rays B
and C do not intersect at all, neither do A and D. There will

be a horizontal focal line PQ, for the intersection
'

of rays in

a vertical plane, and a vertical focal line SR, for the inter-
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section of rays in a horizontal plane. The two focal lines can

be shown very nicely by holding a converging lens, or better

still a concave mirror, so that it receives somewhat obliquely

the light from the sun, and moving a white card back and forth

till the two focal lines are found.

42. Lenses for special purposes. In spite of this long list

of faults, lenses function in a very satisfactory manner for

most purposes. Consider for instance the lenses used as

objectives in telescopes. (Telescopes are considered in detail

in the following chapter.) Chromatic aberration is hardly

perceptible if the lens is properly constructed of flint and

crown glass in the manner already described, for the focal

length is very nearly the same for all wavelengths except the

blue and violet; and since these colors in most light-sources

have feeble luminosity, their being somewhat out of focus

hardly affects the sharpness of the images. Spherical aber-

ration is negligible because the area of the lens is made small

enough so that only that part of the emergent wavefront is

used which is nearly spherical. As a rule, the diameter of a

telescope objective is somewhere between 1/30 and 1/16 of the

focal length, making the angular diameter of the cone of light

which it transmits relatively small. Finally, the curvature of

the field and astigmatism produce a negligible effect, on ac-

count of the smallness of the field. In astronomical telescopes,

it is seldom necessary to use a field of as much as one degree.

Consequently, only the flatter portion of the field is used, and

no pencil of light that is visible in the eyepiece traverses the

lens with enough obliquity to cause appreciable astigmatism.

-The design of a telescope objective is therefore relatively sim-

ple, and its excellence depends mainly on the quality of the

workmanship and the homogeneity of the glass. This latter

condition is by no means easy to fulfill in such large discs of

glass as were used in making the objective of the Lick tele-

scope (36 inches in diameter) or that of the Yerkes (40 inches).

Camera lenses are used under more exacting circumstances.

In order that the lens may be "fast," that is, give sufficient

illumination with very short exposure-time, it must have a

diameter as great as 1/5 or 1/6 the focal length, giving great

opportunity for spherical aberration. Moreover, the extent of

field used is large, since the dimensions of the photographic
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plate are nearly as great as the focal length. Consequently,
troubles due to curvature of the field and astigmatism are

likely to appear. The manufacturers of photographic lenses

have, however, achieved remarkable success in combating these

difficulties, so that a first-class lens shows them to only a limited

extent. Even with the best lenses, however, if they are used

with full aperture, the corners of the picture are slightly out

of focus due to curvature of field, and show a slight drawing
out of points into lines, which is the result of astigmatism. A
good photographic lens is made in two parts, separated by an

air-space, and each part is composed of several pieces of glass.

It is by altering the composition of these separate pieces and

the curvature of their surfaces that the designers have suc-

ceeded in reducing largely, but not entirely, the inherent lens-

defects. A photographic lens cannot properly be regarded as

a thin lens.

Microscopic objectives also, if of high power, are objects

of elaborate design, consisting of many pieces of glass. The

thickness of such a so-called lens (really it is a combination of

a number of lenses) is much greater than the equivalent focal

length of the combination.

Problems.

1. If a plate-glass window, index 1.58, appears to one

looking into it to be 8 mm. thick, what is the actual thickness?

2. What must be the radius of curvature of a symmetrical

converging lens of crown glass, to have a focal length 1 meter f

3. An object is 4 ft. from a white screen. Find two posi-

tions in which a lens of 8 inch focus can be placed, to form an

image of the object on the screen.

4. An object is 8 inches from a screen. Where should a

concave mirror of 2 foot radius be placed to form an image of

the object on the screen.

5. Show that problem 3 cannot be solved if the focal length

of the lens is more than 12 inches.

6. A lens of 3 foot focus forms images of two stars in its

principal focal plane, and a micrometer is used to find tho

distance between the images. It takes 12.85 turns of the screw

to move the cross-hair from one image to the other, and the
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screw has 50 threads to the inch. Find the angle between the

stars.

7. Show how an achromatic diverging lens can be made,
aad write the equations from which the curvature of its sur-

faces can be found, using the data for the glasses given in

paragraph 38.

8. In what position must the eye be placed, to see an

image formed by a lens ox* mirror, if a screen is not used?

Why is it usually easier to find a virtual than a real image?
9. If a camera lens has a focal length of 8 inches, find

the proper position for focus on an object 5 ft. away, and the

length of this image if the object is 2 ft. long.

10. Show that if a camera of focus 6 inches is focussed

for infinitely distant objects, any object more than 40 ft. away
will be less than 5/64 inch out of focus.

11. Explain why
"
depth of focus" in a camera is impos-

sible to obtain without sacrificing "speed."



CHAPTER VI.

43. The telescope. 44. Magnifying power. 45. Ramsden eyepiece.
46. Opera glass. 47. Prism binocular. 48. Reflecting telescopes.

49. Simple microscope. 50. Compound microscope. 51. Projection lan-

terns.

43. The telescope. The essential part of a telescope is

two lenses, a long-focus, large diameter achromatic, turned

toward the object in view and therefore known as the objective,

and a smaller lens (or, as we shall see later, more commonly
a pair of lenses) called the eyepiece. Figure 54 shows a sim-

ple diagram of a telescope. The object viewed is supposed to be

an arrow, very far away, but so large that in spite of distance

it covers an angle of a degree or so. If this conception seems

too artificial, we may think of the point of the arrow as repre-

senting one star, the butt another. Wavefronts are not indi-

cated, but lines are drawn to show the course, through the in-

strument, of the cone of light from each end of the arrow.

Dotted lines show the undeviated rays for each lens.

A real inverted image of the object is formed in the focal

plane of the objective, from which the waves continue on,

diverging from this image exactly as if it were a material

object, except that the light is limited to a comparatively small

cone. This light falls upon the eyepiece, which forms with it

a second image, really an image of an image. Since the rays

that form any point of the first image are limited to the cone

that comes through the objective, it may well happen that the

undeviated ray drawn from this point through the center of

the eyepiece lies outside the cone and therefore does not exist

as a real ray. But the position of the second image must cer-

(97)
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tainly be independent of the diameter of the objective, and

therefore we are at liberty in such a case to find that position

by drawing fictitious undeviated rays just as if they really

did exist. The figure is drawn for such a case. The position

of the second image depends of course upon the location of

the eyepiece which is mounted so that the observer can slide

it at will through a short distance toward or away from the

objective. Most observers place it so that the first image lies

a little within its principal focus. Then the second image, the

one which the eye sees, is virtual, still inverted, and on the

same side as the first image, but farther away. This is shown

by AB in the figure. If the principal focus x were placed just

at the real image ab, as is sometimes done by persons of far-

sighted or normal vision, AB would be thrown back to infinity,

like the original object, but would still subtend a much greater

angle than the latter.

44. Magnifying power. We take as a measure of the mag-

nifying power of the telescope the ratio of the angle subtended

by the image AB to that subtended by the original object, and

in calculating its numerical value we assume, for the sake of

definiteness, that the principal focus of the eyepiece coincides

exactly with that of the objective, that is, that x lies exactly

on ab, putting AB at an infinite distance. With both the

original object and the final image so far away, it does not

matter what point is chosen as the apex of the angles sub-

tended. That subtended by the object is aOb, which, in radian

units, has the value ab/F, F being the focal length of the

objective. That subtended by the image AB is ApB, whose

value is ab/f, f being the focal length of the eyepiece. There-

fore the magnifying power is

ab

f F
1

z L

i IT
ab f

F

Therefore, for high magnifying power, we should use a long-

focus objective and a short-focus eyepiece. Usually, a large

telescope is provided with several eyepieces of different focal

length, so that the magnifying power can be changed at will.

For some purposes, high magnification is desirable, for others
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not. The higher the magnification, the smaller the visible field:

that is the smaller the area that can be seen at once. For

instance, with high magnification only a very small part of the

surface of the sun or moon can be seen.

There are other practical limitations to the magnifying

power that can be used with advantage. As we have previous-

ly stated, the real imag'e produced by the objective is not a

true picture of the object, but is slightly hazy at the edges, and

is surrounded by faint diffraction rings. Any increase in mag-
nification beyond the point where these rings or bands become

visible is useless, for it merely magnifies the bands and the

haziness along with the rest of the image and contributes noth-

ing to distinctness of vision. Astronomers also find that cer-

tain conditions of the atmosphere, caused no doubt by irregu-

larities in density, produce a haziness or fuzziness of image
known as "bad seeing," which is worse than the diffraction

difficulty. In fact, with a large telescope, the appearance of

the diffraction bands oh high magnification indicates that the

"seeing is good,'
7

for poor seeing conditions cause them to be

blurred out of recognition. With only moderately good seeing,

an astronomer will use moderate magnification, and with very

bad seeing he will abstain from observing at all.

Figure 54 shows that at a certain place cd the two cones

of light from the head and the butt of the arrow cross. In

fact, there is a little circle at this place through which passes

every cone of light that traverses the telescope, and it Is not

hard to show that this circle is nothing more nor less than the

image of the objective lens formed by the eyepiece. For best

vision, the eye should be held so that its pupil coincides with

this small circle, which, by the way, is called the exit-pupil of

the telescope. For the figure shows clearly that if the eye is

held much closer to the eyepiece, or much farther from it, only

cones of light from the middle part of the arrow (cones not

drawn in the figure) would enter the pupil of the eye, unless

the latter were very large. To see the whole image AB at once

would then be impossible, though one could see different parts

of it at a time by moving the eye up or down, so as to receive

the light from those parts. That part of the image that can

be seen in any one position of the eye is called the field of view,
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and it is greatest when the pupil of the eye coincides with the

exit-pupil. If the eye is in thisi most favorable position, the

field of view is still limited by the diameter and the position of

the eyepiece. Reference to the figure shows that if the arrow

were much larger than it is there made, the cones of light from

the ends of the image would partly or wholly miss the eye-

piece. If they missed the latter entirely, these ends would be

completely invisible in the telescope, while if only part of the

cone fell on it, the image would be faint at the ends. The

simple eyepiece shown in the figure is not suitable for produc-

ing a large and uniformly illuminated field of view. Jt is

desirable that the eyepiece should come very close to the real

image ab; but in order to have this occur with a single-lens

eyepiece, the focal length of the latter would have to be inordi-

nately short; and if, in addition, the diameter were made

great, spherical aberration and other lens defects would become

too pronounced.

45. Rainsden eyepiece. For the reasons outlined above,

much ingenuity has been applied in devising eyepieces which

consist of combinations of lenses instead of single lenses, so as

to give a larger field for the same magnifying power. The best

known of these is the Ramsden eyepiece, which functions very

satisfactorily, and is used on most telescopes. It is shown in

figure 55. The objective of the telescope has been omitted,

from the drawing, but the real

image ab and cones of light

forming its ends are shown just

as they are in figure 54. The

eyepiece consists of two identi-

cal planoconvex lenses, mounted

rigidly in a metal tube, and separated by a distance equal to

% the focal length of either. It can be shown that such a pair-

is equivalent, so far as magnification is concerned, to a single

lens whose focal length is % that of either component. The

front lens, called the field-lens, is placed very close to the real

image ab, and therefore forms from it a virtual image a'b',

slightly larger, and slightly farther away. In fact, a'b', comes

just at the principal focus of the rear lens of the combination

(called the eye-lens) or just within it. Accordingly, this latter

forms the final virtual image, AB of figure 54, either at infinity
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or at whatever distance from the eye is most suitable for the

observer, adjustment being secured by sliding the whole eye-

piece toward or away from the real image ab. Since ab lies

close to the field lens, the latter receives and transmits light

from an area of the image practically equal to the area of the

lens itself, thus giving a field whose diameter is approximately

equal to the diameter of the field-lens. The pencils from all

parts of the image cross the axis just behind the eye-lens. This

is the most convenient place for the exit-pupil, for the eye can

then be placed close up to the end of the eyepiece. It is found

further that this combination of two planoconvex lenses ia

almost free from spherical aberration, and the chromatic aber-

ration is of such a nature asi to be hardly perceptible.

If a micrometer is used with the telescope, it is placed so

that the crosshairs move exactly in the plane ab in which the

real image lies. The proper method of adjusting the telescope,

known as focussing, is as follows : First, the eyepiece is pushed
in or out until the crosshairs are visible, clearly and without

eyestrain. Then, by means of a suitable slide in the telescope

tube, the eyepiece and crosshairs together are pushed in or out

till the image of the object viewed is also seen clearly, and there

is no parallax between the image and the crosshairs.

One defect of the kind of telescope we have been describ-

ing is that the image is inverted. This is not a disadvantage

in astronomical telescopes, but for terrestrial telescopes it is

inconvenient. In such instruments the image is usually rein-

verted by making the tube of the instrument very long, and

inserting between the eyepiece and the real image formed by
the objective another lens or pair of lenses of rather short

focal length, whose function is to receive the light from the real

image (ab of figure 54) and form therefrom another real image
which is reinverted and therefore right side up. The eye-

piece then forms from this image a magnified virtual image
which the eye sees. The great length of tube necessary in this

form of instrument makes it inconvenient except for small spy-

glasses.

46. Opera glass. In the old-fashioned opera glass, shown

in diagram in figure 56, the erection of the image is provided

for by using a diverging lens for the eyepiece. This form of

telescope is quite short; for, in order that the eyepiece may
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magnify the image, it is necessary that it should intercept the

light between the objective and the latter 's principal focus.

Thus the real image1 ab is not actually formed at all, for it

would come behind the eyepiece instead of before it. Con-

Figure 56

verging waves strike the eyepiece, with their centers on ab.

Therefore, in the formula

or its equivalent

uf

-u f

a must be taken as negative. Since f is also negative, because

the lens is diverging, the numerator of the fraction in the last

equation is positive, and the sign of v depends upon the sign

of u f
,
where both u and f are essentially negative. In order

to have a virtual image AB, v must be negative, therefore u

must be greater in absolute amount than f
;

that is, the prin-

cipal focus of the eyepiece must lie between the latter and the

place where the image ab would come if the lens were removed

For example, let f = - 5cm., u = - 5.2cm. Then v =
130 cm. The observed image AB would then lie 130 cm.

away on the side from which the light comes, and would be

virtual. Also, it would be inverted as regards ab, erect as

regards the original object. The erectness of image, and its

shortness make this type of telescope convenient, but unfor-

tunately its field is quite small. The diagram shows that there

is no real exit-pupil, as there is in the ordinary form of tele-

scope; that is there is no place where the eye can be placed

so that it will receive every cone of light that does not miss
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the eyepiece. The eye must be moved about in order to see

the whole image of any object viewed,; unless the object be

relatively small. For this reason, such instruments are made

only with small magnifying powers, say two or three diameters.

47. Prism binocular. The modern prism-binocular is a

great improvement over the form of telescope described above.

It is essentially a telescope of the form described (or rather,

a pair of such telescopes, one for each eye), in which the

length is very much reduced by four reflections in totally re-

flecting prisms. Incidentally, the series of reflections rein-

verts the image, so that it is possible to use an eyepiece like

the Ramsden, with, its large field. An additional advantage
lies in the fact that the arrangement of the two telescopes

brings the objectives farther apart than the two eyes. This,

being equivalent to a wider spacing of the eyes themselves,

greatly increases the stereoscopic effect, or parallax, and brings

the field into strong and pleasing relief.

48. Reflecting telescopes. A telescope composed of ob-

jective lens and eyepiece is known, among astronomers as a

refractor. A reflector is a telescope in which a concave mirror

is substituted for the objective lens. At the present time the

use of reflectors is confined almost exclusively to photographic

work, for which purpose they possess several decided advan-

tages. In the first place, they are free from chromatic aberra-

tion. Secondly, they have no absorption, and this is very im-

portant in photography, for the transmission of light through

glass causes much of the photographically active ultraviolet

light to be lost} by absorption. Finally, by making the con-

cave reflecting surface parabolic instead of spherical, the prin-

cipal focus is rendered absolutely free from spherical aberra-

tion, and a small region in its neighborhood almost so, so that

most beautiful definition is secured in photographing objects

of such small angular dimensions as a star-cluster or a small

nebula.

The concave mirror is usually placed at one end of a long

tube or frame work, the other end of which is open and pointed

toward the celestial body to be photographed. Between the

mirror and its principal focus, is placed a small plane mirror,

set at an angle of 45 with the axis of the instrument. This

reflects the light coming from the concave mirror to the side
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of the tube, where the photographic plate is exposed in the

reflected position of the focal plane. A Ramsden eyepiece may
also be placed in position to receive the light, but this has no
function during the photographic process. It may be used

however in pointing the instrument to the desired object.

There are, however, other forms of reflecting telescopes.

49. Simple microscope. The word microscope usually
means an instrument used for magnifying small objects close

at hand which, like a telescope, has two optical parts, objective

and eyepiece: but in stricter language such an instrument is

called a compound microscope, while the name simple micro-

scope is applied to a single
'

lens used as a magnifier of low

power.
A simple microscope is held as close to the eye as con-

venient, and the object to be examined is placed somewhat

within the principal focus, so that the eye sees a magnified

virtual image of it at the distance which is most suitable for

distinct vision. For the normal eye this is about 25cm., though

it differs with different individuals. Figure 57 shows the ar-

rangement. L is the magnifying lens, F its principal focus,

Figure 57

AB the object, A'B' the image seen by the eye. We take as

a measure of the magnifying power the ratio of the angle which

the image subtends at the eye to that which the object itself

would subtend if the lens were removed and the object put back

where it could be seen most distinctly, that is, where the image
is in the figure. Since magnifying powers need only be known

roughly, and since the eye is placed so close to the lens, it will

suffice to consider the center of the lens, instead of the pupil
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of the eye, as the apex of the angles. The angle subtended by

the image is

A'B'/v = AB/u
The angle which, the object would subtend if placed at the

distance v is

AB/v
Therefore the magnifying power is

AB/u -f- AB/v =

From the law of lenses

I II
u"~ v~~

--!=!-
u f

-=!+!-u f

Therefore the magnifying power is 1 + v/f or 1 + 25/f if f

is expressed in centimeters. As an example, the magnifying
power of a lens of 5cm. focal length is 6.

A Bamsden eyepiece used as a single lens makes a very

good simple microscope.

50. Compound microscope. It is not practicable to get

very high magnifying power with a single lens, for that would

require such a short focal length that the lens defects such as

chromatic and spherical aberration, curvature of field, etc.,

would be very prominent. Therefore, wherever high magnify-

ing power is necessary, it is provided by a compound micro-

scope. Figure 58 shows the arrangement of parts. The "ob-

ject" is usually in the form of a slide, a very thin slice of the

material to be examined enclosed between two thin glass plates.

The slide is represented by the short arrow A in the diagram.

Slides being more or less transparent, they are examined by
transmitted light". A mirror M and a condenser C concentrate

upon the slide, from below, a beam of light from a window or

other broad illuminated area. The set of lenses forming the

condenser are of low grade, for their function is merely to

provide illumination, not to form a clear image of anything.
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The mirror and condensers are accessories rather than parts of

the microscope proper. The latter consists of an objective

and an eyepiece FE. The former is shown in the figure as a

Figure 58

single hemispherical lens, but it is in fact compounded of

several distinct units in order to secure chromatic and other

corrections. The eyepiece shoAvn. in the figure is what is called

the Huyghens type, which has certain advantages over the

Ramsden eyepiece described in connection with telescopes,

though it has also the disadvantage that it cannot be used in

connection with crosshairs or micrometer. If it is necessary,

as sometimes happens, to put a micrometer on a microscope,

the Huyghens eyepiece must be exchanged for one of the

Ramsden type.

The objective would, but for the eyepiece, form a magni-
fied real inverted image of the slide at I

15 but the field-lens F
intercepts the converging light directed toward this image, and

converges it still more, forming the real image I 2 , slightly
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smaller and slightly lower. Usually a diaphragm is placed in

the plane of L so as to limit the visible field to a small circle

over which the illumination is uniform. The light diverging
from I, then passes through the eye-lens E, which forms a mag-
nified virtual image at I 3 ,

the image which the eye sees. For

very high powers, an "oil-immersion" objective is used. The

objective comes very close to the slide, and the space between

is filled with a drop of oil having an index of refraction nearly

the same as that of glass, so that one might regard the object

as being imbedded in the objective. Under these circumstances,

the resolving power of the microscope is somewhat increased,

and the brightness is also increased because less light is lost

by reflection from the bottom surface of the objective and the

top surface of the slide.

Certain particles too small to be seen with the bright back-

ground illumination commonly used in a microscope, such as

the particles in certain colloidal solutions, can be seen as bright

points against a dark background if the illumination comes

from the sides instead of from below. This is the principle of

the so-called
' '

ultramicroscope.
' '

In the figure, the fainter lines represent the full beam of

light from the point of the arrow through the objective and

eyepiece. The same rays are shown below, from before they

impinge upon the mirror till they strike the slide. Similar

rays from the butt of the arrow, or from any other part of it,

couid be drawn, but they are omitted for the sake of simplicity.

Figure 59

51. Projection lanterns. Figure 59 shows the ordinary

projection lantern, for throwing upon a screen an enlarged

image of a lantern-slide. The slide S is so placed with refer-

ence to the projecting lens L that the screen comes at the con-

jugate focus, and the focal length of L must be chosen with

due regard to the distance of the screen and the desired magni-
fication. The rest of the apparatus is for obtaining the neces-

sary illumination of the slide. Since the latter is more or less

trasparent, the illumination is supplied by transmitted light.
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p is the positive, n the negative carbon of an arc-lamp, and C
a condenser consisting of two plano-convex rough lenses. The

slide should lie as close to the condenser as convenient, and

the arc should be so placed that its light is focussed by the

condenser through the slide upon the center of the projection

lens, forming an image of the arc there. The lens L should

be achromatic, in order to avoid chromatic aberration at the

screen; and it should consist of two units with a diaphragm

between, otherwise the picture on the screen may show some

distortion. Except for these two points L need not be a high-

grade lens. The pencil of light coming from any point on the

slide is so narrow, as shown in the figure, that there is little

opportunity for spherical aberration, astigmatism, or curva-

ture of field to show any bad effect.

The focussing is done by moving the lens L. If the illumi-

nation of the image is not uniform, this is an indication that

the arc is not in the proper place, or that the negative carbon

is shutting off some of the light from the positive carbon.

Lately it has become more common to substitute a high-power

filament lamp instead of the arc. This makes the lantern much

easier to operate, and the illumination, though slightly weaker,

is strong enough in most cases.

The opaque projec-

tion lantern, one form of

which is shown in figure

60, is used for projecting

images of postcards, pic-

tures or printed matter in

books, etc. It differs from

the slide-lantern in two es-

6u sential points. First, it is

necessary to introduce a reflection (mirror m in the figure) be-

tween picture and screen, to prevent the image from being either

upside down or right side to left. Second, the original picture

must be illuminated from the front, since transmitted light is out

of the question, and this makes it difficult to get the illumina-

tion strong enough. The projection lens L must be of excep-

tionally large diameter for its focal length, and it must be well

corrected for all the defects of lenses, since it receives a full

beam of light. The arc is made to give an exceptionally large
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amount of light by using large carbons and a very heavy cur-

rent, and the condenser system is made to cover a very large

angle from the arc. Usually a glass cell containing water is

interposed, to cut out much of the infrared light, which would

unduly heat the picture. For use in small rooms, where the

picture on the screen need not be very large, a high-power

tungsten filament lamp may replace the arc, but in such a

case it is necessary to use a special screen made of filled can-

vas covered with aluminum paint, which reflects more strongly

than a simple white screen.

Problems.

1. The objective of a telescope has a focal length of 30

ft. "What is the magnifying power, when an eyepiece of focal

length y2 inch is used?
2. Explain why it is that dirt, or even a large opaque

obstacle, on the surface of the objective of a telescope, is never

visible to a person looking through; the eyepiece, the only

apparent effect being a general dimming of the image.

3. Prove that the
"
exit-pupil

"
is the image of the objec-

tive as formed by the eyepiece.

4. A projection lantern is being planned for use in a

certain room. The screen is to be 30 ft. from the slide, and

it is desired that the image of the slide on the screen shall

measure 58.5 X 72 inches. (A slide is 3.25 X 4 inches). What
must be the focal length of the projection lensf

5. Explain completely why strong illumination is so much
harder to obtain with the opaque projection lantern than with

the ordinary lantern for slides.
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52. Prism spectroscope. We have already considered the

spectroscope to some extent, in the chapter on color, but we are

now in a better position to understand its principles. The

essential parts of a prism spectroscope, shown in figure 61, are

the collimator C, the prism P (or a train of prisms), and the

telescope T. The colli-

mator is a tube, at

one end of which is

an achromatic lens, at

the other end a fine

slit. The latter is

carefully adjusted at

the principal focus of

the former, so that
light which enters the slit and passes through the lens emerges
in accurately plane waves. The beam then passes through the

prism and is dispersed, that is, the different wavelengths are

deviated to different amounts. It is best to have the prism
turned so that the region of the spectrum to be examined
traverses it at minimum deviation.

It should be borne in mind that when the light leaves the

prism ; although the different wavelengths take different direc-

tions, yet all the rays of -any one wavelength remain parallel

to one another till they strike the objective of the telescope.

Therefore the latter converges the waves of each particular

length to a definite place in the principal focal plane. Con-

sequently, there will be in this plane an image of the slit for

each particular wavelength that enters the slit, and the whole

(110)
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array of these images constitute the spectrum of the light in

question. The eyepiece of the telescope forms an enlarged vir-

tual image of the spectrum, just as it would form a virtual

image of any very distant object which the objective focussed

in its focal plane.

A spectrometer is a spectroscope provided with a large
divided circle, so that the angular position of the prism, of the

telescope, or of both, can be accurately measured. There is

also a crosshair at the principal focus of the telescope. The

spectrometer is used for making accurate measurements of the

refractive indices of prisms, and for other angular measure-

ments.

A spectrograph is a spectroscope so arranged that the

spectrum can be photographed instead of viewed directly. Any
spectroscope can be converted into a spectrograph by removing
the eyepiece from the telescope and putting a photographic

plate in the focal plane of the objective; but it is better to

remove the whole telescope, replacing it by what is really a

long-focus camera, a light-tight box with a specially corrected

photographic lens at one end and a holder for photographic

plates at the other. An ordinary hand camera, focussed for

distant objects, might be used instead, but in most cameras the

focal length is rather short, and this causes the spectrum also

to be short, since its length is proportional to the focal length

of the projecting lens, other things being equal.

53. Bright-line spectra. The character of the spectrum

seen in a spectroscope varies greatly with the chemical nature

and physical condition of the body emitting the light that

passes in through the slit. The flame of a Bunsen burner,

except for the small bluish inner cone, is practically invisible,

and if such a flame is placed before the slit, nothing is seen on

looking into the spectroscope, as we should expect. But if a

piece of asbestos soaked in a solution of common salt (sodium

chloride, NaCl) or of any other compound of sodium, is put

into the edge of the flame, the latter immediately becomes yel-

low in color. If this yellow light enters the slit, the spectrum

shows two fine yellow lines, that is two yellow images of the

slit. The light has a slightly different wavelength in these
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images, .00005890cm. in one and .00005896cm. in the other.*

We interpret the appearance of these lines as follows: atoms

of sodium pass into the flame and, under the conditions exist-

ing there, start into vibration with two different periods, thus

starting in the ether waves of the two different wavelengths

given.

The fact that these particular lines appear in the spectrum,

whatever compound of sodium be used, proves that it is the

sodium, not the chlorine, that is responsible for them. Chlorine

produces no color in a flame, though it can be excited to radia-

tion by an electric spark. The appearance, in the spectrum of

any source of light, of two bright lines of wavelength .00005890

cm. and .00005896 cm. is therefore a sure and delicate test for

the presence of sodium. The merest traces of sodium, far too

slight for detection by chemical methods, produce the distinc-

tive coloration in a flame. One cannot, however, assume that

a yellow color alone indicates sodium, for yellow includes a

considerable range of wavelengths, and some other elements

have in their spectra yellow lines, of wavelength different from

those attributable to sodium. For instance, if the light from

a Cooper-Hewitt electric lamp (mercury arc) be examined with,

a spectroscope, it shows a number of lines, two of which have

wavelengths .00005769cm. and .00005790cm., which brings them

in the yellow region, but a slightly different part of the yellow

from the sodium lines.

In the Bunsen flame, sodium never shows anything but

the two above-mentioned lines and a very faint green one, but

there are circumstances in which it gives in addition a number

of other lines
;
as when metallic sodium or a salt of sodium is

put into the crater of a carbon arc-light.

*The two lines are so nearly the same in wavelength that when a

single small prism is used in the spectroscope they appear as a single

line. Spectroscopes of higher power show them as separate and dis-

tinct, and the most powerful even show that the wavelength is not

absolutely definite in either line. Each line has a small but perceptible

ividth, showing that for each the wavelength varies between certain

narrow limits. This statement is also true of all other spectrum lines,

and it is impossible to obtain a bean) of light all of which has exactly

the same wavelength.
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In order to study the spectra oi the different elements,

various means must be employed to get them into a condition

where they emit their characteristic radiations. There are

only a few elements which give their spectra in a flame, like

sodium. An effective method in the case of metallic elements

which do not rapidly oxidize or suffer other chemical change
in air, is to pass an electric spark between points made from

the metal in question, the spark being operated by an induction

coil or transformer in parallel with a condenser. Another

method is to take two carbon rods, bore a hole in one of them,
fill it with the metal, and connect both rods to the terminals

of a direct-current supply of not too low voltage with some

resistance in series. When the ends of the rods are touched

together and separated about a quarter of an inch, the intense

heating at the point of contact vaporizes the carbon and forms

a bridge of glowing vapor called the arc, across which the cur-

rent continues to flow. Some of the element packed into the

hole in the rod also vaporizes and contributes its vapor to the

formation of the arc. If the light from the arc itself (the

bridge of vapor, not the glowing ends of the rods) is passed

through the slit of the spectroscope, a large number of lines

appear, some of which are due. to the element in question, some

to gaseous compounds of carbon, and some to such impurities

as are always present in the rods.

The spectrum of a gas is usually obtained by the use of a

so-called vacuum-tube. This is a glass tube with a restricted

middle portion, into opposite ends of which are sealed metallic

terminals. The tube is evacuated of air, and enough of the

gas is put in to exert a pressure of a few millimeters of mer-

cury, after which the tube is hermetically sealed. The electric

discharge of an induction coil is sent through the tube, from

one terminal to the other, causing the gas inside to become

luminous and emit its characteristic wavelengths.

Every known element has more than one line in its spec-

trum. No two elements have identical spectra, and so far as is

known no two elements show the same line in common, with,

the possible exception of hydrogen and helium.

Besides the elements, certain compounds also emit spectra

composed of lines. Thus, the blue inner cone of a Bunsen burner

shows the spectrum of carbon monoxide, and there are several
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groups of lines in the spectrum from the carbon arc which are

believed to originate in cyanogen gas, produced by the action

of atmospheric nitrogen on the carbon poles. The lines in the

spectra of compounds are arranged in groups of more or less

regular order, technically known as bands.

54 Spectral series. The fact that a single element emits

light of several wavelengths shows that the atom is capable of

vibrating in several different frequencies, just as a stretched

string or column of air can execute the vibrations that produce
sound waves in several definite frequencies. A string can vibrate

not only with its fundamental frequency, which we may call N,

giving a sound of wavelength L, but also with a frequency

twice as high, 2N (the octave), giving a wavelength L/2, a

frequency 3N, giving wavelength L/3, and so on indefinitely.

Therefore we might represent the whole series of sound wave-

lengths emitted by the string with the single formula

L
A =

n

where L is a certain constant for the string, and n may have

any integral value from 1 to oo. When n = 1, A is the wave-

length of the fundamental, when n = 2, A is the wavelength

of the first overtone, etc.

A most natural question is the following : Are not also

the different wavelengths of light, given out by such an ele-

ment as sodium or hydrogen, related to one another in some

simple numerical way, so that a single formula will represent

all of them if different integral values are given to one of the

symbols? This cannot be answered by an unqualified yes or

no, but we can say that in some of the elements (particularly

the metallic ones of small atomic weight) some of the lines can

be represented in this way, though not by so simple a formula

as applies to the acoustical vibrations of a string. The simplest

case is that of hydrogen. Figure 62 is a photograph of the

visible, and part of the ultraviolet, regions in the spectrum of

this gas. A careful examination shows that the lines may be

classified into two groups- First, there is a large number of

lines without any apparent regularity of arrangement what-

ever. Second, there are several lines, marked a, /?, y, etc., on
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the photograph, which show regularity in two respects. The
one of greatest wavelength, a, is the strongest line in the

whole spectrum, and each succeeding line of the group is

weaker than the one before it- Moreover, when the wavelengths

Figure 62

of these lines are measured, it is found that in passing through
the series, from a through (3, y, 8, etc., they come closer and

closer in wavelength, like a mathematical series approaching a

limit. Balmer showed that the wavelengths of the whole group,

including lines too far in the ultraviolet to show in this photo-

graph, can be represented with a considerable degree of accura-

cy by the single formula

A. =.00003646
Q2^ 4

where n may take any integral value from 3 on. If n = 3,

we get the wavelength of the a line, if n = 4. we get /?,

and so on*. This whole group of lines, represented by a

single formula, constitutes a spectral series. Our knowledge

of series has been greatly increased by the work of Rydberg,

Kayser and Runge, and many other investigators. The hydro-

gen spectrum shows another series in the far ultraviolet region,

and still another in the infrared. Other elements also show

series in their spectra, although a slightly more complicated

formula is necessary to represent them. A comprehensive ac-

count of series in spectra is found in French in the
"
Rapports

Presentes au Congres International de Physique," 1900. A
very good resume in English is contained in pages 559 to 621

of Baly's
' '

Spectroscopy,
"

second edition. In this chapter we

shall not take up the attempts to explain the peculiar form of

*The measured wavelengths of the first four of these lines, in

centimeters, are .00006563, .00004862, 00004341, .00004102.
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the series relation, since the subject conies more appropriately
after the introduction of the electromagnetic theory of light.

55. Continuous spectra. Spectral lines tend to become
widened when the density of the radiating gas or vapor is in-

creased. The hydrogen lines produced when a spark is passed
between platinum points in the gas at atmospheric pressure are

much broader and hazier than when it is in the rarefied con-

dition of the vacuum-tube. If a large amount of sodium is

present in the carbon arc, the two strong lines in the yellow,

instead of being fine and sharp, become very broad, and can

easily be made to run together and extend some distance be-

yond their original positions on both sides, causing them to

have the appearance of a single broad yellow band with hazy

edges. This of course means that the wavelengths emitted are

no longer confined even approximately to two definite numeri-

cal values, but extend over a relatively wide range. Several

causes contribute to this effect of increased density, one of

which is probably the fact that any given atom is hindered, by
the very close proximity of other atoms, in its natural free

vibrations. At any rate, when an exceedingly dense gas, or a

solid or liquid body, becomes luminous, the widening of the

characteristic lines is so extreme that all possible wavelengths
are emitted within the range of the visible spectrum and be-

yond, and all appearance of definite lines is lost. The spec-

trum is then said to be continuous, since it extends throughout

a very wide range of wavelengths without a break in- continuity

anywhere. In contradistinction from this, the kind of spectrum
that we have found to be given out by rare gases, metallic

vapors, etc., is called a bright-line spectrum. As an example,

the hot carbon pole of an arc light gives a continuous spectrum,

but the bridge of vapor between the two poles gives a bright-

line spectrum.

The following application of the principles of the spectro-

scope to astronomical problems is interesting and instructive.

A nebula is a celestial object which appears in the telescope as

a cloud of gas, but the possibility exists that it may really be

a swarm of stars, so close together and so far from us that the

telescope is incapable of resolving them into discrete bodies.

The spectroscope, however, shows that some nebulae have a con-
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tinuous spectrum, others a bright-line spectrum, so that with

the aid of this instrument it is easy to pick out those that are

gaseous.

56. Dark-line spectra. The sun and most of the stars

show still a third type of spectrum, which may be said to be

an exact reversal of the bright-line type. While the latter is

an assemblage of scattered bright lines, in colors appropriate
to the spectral region in which they fall, against a blank that

is a black background, the former is an assemblage of fine black

lines against an otherwise continuous colored background. It

is therefore called a dark-line spectrum. It may be described as

a continuous spectrum with certain definite wavelengths . miss-

ing.

The following experiment explains the cause of these dark

lines in the solar spectrum. An arc lamp, a Bunsen burner, a

converging lens, and a spectroscope are set up in line, so that

the lens forms an image of the bright carbon pole on the slit

of the spectroscope, and the light passes through the flame of

the burner before reaching the slit. Some of the light passes

into the collimator, and of course produces a continuous spec-

trum. A little common salt is inserted in the flame, and im-

mediately the sodium lines appear, not bright, however, as

they would be in the absence of the light from the arc, but as

apparently dark lines against the bright continuous spectrum
of the arc. The sodium vapor absorbs from the light passing

through it those particular wavelengths which, it is capable of

emitting, and -absorbs more than it emits, thus making the lines

appear black against the brighter arc spectrum, though in

reality they are not absolutely black. Undoubtedly, the dark

lines of the sun's spectrum are produced by absorption in the

same way. The main bulk of the sun is believed to be an

exceedingly dense gaseous mixture, as viscous as a liquid, and

like a hot liquid it gives a strictly continuous spectrum. But

surrounding this dense luminous portion is an envelope of

cooler and rarer vapor containing many chemical elements.

These absorb from the light passing' through them just those

wavelengths which they can emit. When the light reaches the

earth it is therefore deprived of these particular wavelengths,

and the spectroscope shows black lines at the corresponding
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positions in the spectrum. By comparing- the positions of the

black lines with the positions of the bright lines emitted by
various terrestrial elements, it has been possible to identify on

the sun most of the elements known to us on the earth. The

moon and the planets, since they send us only light which they

receive from the sun, have the same spectrum. Most of the

fixed stars have spectra of the same character as the sun's, and

in some cases only a careful examination can distinguish them

from the latter. Thus the spectroscope proves that the fixed

stars are bodies of the same general physical condition as our

sun, in spite of great differences in size, mass, and temperature;
and it also shows that the chemical elements present in the

earth are distributed throughout the universe and probably

make up the major part of its material, a fact which could

hardly have been proved by any other means.

57. Absorption by solids and liquids. Solids and liquids

also produce absorption of light, as we have already seen in

the chapter on color. If a colored liquid, such as a solution of

copper sulphate, potassium permanganate, or chlorophyll, is

placed in front of the slit of a spectroscope, and the light from

a source that would of itself alone give a continuous spectrum
is passed through it, certain parts of the spectrum are absorbed

in whole or in part. The black, or darkened, regions which

then appear in the spectrum are not fine and sharp, like those

figure 63

produced by sodium vapor in a Bunsen flame, but broad and

hazy. They are called absorption bands. Figure 63 (A) is a

photograph of the absorption spectrum of an alcoholic solution

of chlorophyll, the green coloring matter of plants. Figure 63

(B) is a photograph of the complete spectrum, with the chloro-

phyll absent, to serve as a comparison.
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58. Continuous spectrum of an absolutely black body.

The strictly continuous spectra given out by hot solids and

liquids differ from one another only as regards the distribu-

tion of the energy in different wavelengths. Thus, the spec-

trum from the pole of a carbon arc is not only brighter through-

out than that from the filament of a tungsten incandescent

lamp, it also has a greater proportio.n of its energy in; the

shorter wavelengths than that from the same body when cool-

er; but differences in material and surface condition have also

great effect. The only kind of continuous spectrum that can

be theoretically studied is that from what is called an absolute -

Figure 64

ly black body, which is defined as one which absorbs all light,

of whatsoever wavelength, that falls upon it, reflecting
1 none.

Strictly speaking no objects are absolutely black, though such

materials as lampblack and platinum-black nearly fulfill the

definition. But it can be shown by theory that the inside of

an enclosure, the walls of which are kept at a uniform and
constant temperature, acts exactly like a theoretical absolutely

black body; and it is possible to make use of this fact for

experimental purposes by making a small hole in the wall of

such an enclosure, through which light from the interior can

pass out and enter the slit of a spectroscope. Figure 64 is a

series of graphs, drawn for different temperatures of the

radiating enclosure, of the results of measurements of such

black-body continuous spectra. For each point on a curve, the

abscissa represents the wavelength, the ordinate the correspond-

ing energy. It will be noticed that for higher temperatures
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the energy is greater throughout, but particularly in the short-

er wavelengths.

59. Planck's theory of "quanta". The relation between
the energy of black body radiation and the wavelength, for a

given temperature, as represented by the curves of figure 64,

has been the subject of many exhaustive theoretical investiga-

tions. It is extremely difficult to give a complete theoretical

explanation of the exact form of these curves. Indeed, the

man who made most progress toward this end, Max Planck,

came to the conclusion that an explanation is impossible unless

we make a very remarkable hypothesis in regard to the be

havior of a radiating atom, which amounts to this that al-

though an atom can absorb energy steadily and continuously,

it can radiate only if and when it has acquired by absorption

a certain definite quantum of energy, or an integral number
of times that quantum; and when it does radiate it radiates

away all the energy it contains. Just as by adopting the atomic

theory of matter we abandon the ancient notion that matter

is continuous, so Planck's hypothesis would lead to the con-

clusion that energy also, so far as the radiation of it is con-

cerned, is composed of discrete amounts. For an atom can

radiate one quantum, or two, or three, etc., but not one and a

fraction.

This hypothesis, which has been named the "quantum
theory," is so very different from our previous notions about

energy that, in spite of Planck's success in deriving a formula

for black body radiation which fits the experimental curves, it

is doubtful if it could obtain much support were it not that a

number of other phenomena, including such diverse things as

the variation of specific heats with temperature, X-rays, and

the explanation of spectral series, are made much more under-

standable by means of the same hypothesis. Planck offers no

explanation of why an atom should radiate in such a manner,
and the whole question of the quantum theory is one of the

puzzles of modern physics.

The size of the quantum is not the same for all wave-

lengths, but is directly proportional to the frequency, or in-

versely to wavelength. That is, for any frequency v the small-

est unit of energy radiated is
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The multiplier h is an absolute constant, whose numerical value,
in the c. g. s. system of units is

h = 6.55 X 10-27

It is commonly known as "Planck's constant."

60. The plane grating. So far, we have learned no way of

measuring wavelengths except by simple interference experi-

ments, such as that of Fresnel with the two mirrors, as described

in section 22. That such a method is not capable of much, ac-

curacy can be seen from the following considerations. Refer-

ring again to figure 20, section 22, it will be recalled that we

found that certain points C, M^, M/, M2 , M/, etc., are very

bright, and the points midway between dark. The determination

of wavelength is made by measuring the interval between two

successive bright spots, and also the distance between the two

sources S T and S2 ,
and their distance from the plane of the

screen. Not only is the distance SjS,, difficult to measure, but

also the distance between the bands, CMi,, M^IVL, M2M3 , etc.,

cannot be measured accurately, because the bright points are

not sharply defined but shade off gradually into darkness.

The difficulty might be illustrated graphically by plotting

abscissas to the right of the line AB in figure 20, the length of

each abscissa representing the intensity of the illumination at

the corresponding point on the screen. The graph that would

be obtained would be like fig-

ure 5 (X). Evidently the loca-

tion of the places of maximum

brilliancy is subject to consid-

erable error, which would be

much lessened if, instead of

these broad maxima, we had

sharp and clearcut bright lines

separated by broad dark spaces,

as indicated in figure 65 (Y). x Y

Two other decided advantage? Figure 6S

would also accrue : first, the maxima would be much brighter,

since the light would be confined to a very narrow instead of

a broad band, second, if more than one wavelength were pres-

ent, the maxima due to the different colors would be much less

likely to overlap.
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The desired result, making the maxima narrow, sharp and

bright, can be secured by getting interference from more than

two points at once. For instance, if Fresnel's mirror experi-

ment could be arranged so that there were three regularly

spaced apparent sources of light, instead of only the two, S :

and S2 , the maxima would be sharper and brighter, if there

were four, they would be still sharper, and so on; but one

of the best devices for the purpose is what is called a grating.

In its theoretically simplest form, a grating is an opaque

plate containing a large number of slits, parallel and spaced

olose together at equal intervals. Light from a narrow source,

like a distant slit, or a star, falls upon it and passes through

the many narrow slits, producing interference bands on the

other1 side. Let AB, figure 66, represent a section of such a

Figure 66

grating. The slits, shown in section at a, b, c, etc., are sup-

posed to run perpendicular to the plane of the paper. We shall

suppose that monochromatic plane waves are falling perpendic-

ularly upon it, the advancing wavefronts being indicated at

C. The slits, or transparent portions of the grating, may be

regarded as centers froni which new wavelets start out. As

these get farther from the grating, where their curvature is

less, they
1 tend to combine into several different sets of plane

wavefronts, moving in different directions. For instance, the

12th wave out from a, together with the 12th from each of the

other openings, tends to form a plane wave, parallel to the
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incident waves C. There will ber a continuous train of such

waves, a few of which are indicated farther out at X. These,

after passing through the lens, will, be brought to the prin-

cipal focus P, and will form a bright spot there, exactly as if

the grating were removed and the original wavefronts C fell

directly upon the lens. An entirely different set of wavefronts

will be formed by a combination of the 12th wavelet out from

a, the llth from b, the 10th from c, and so on, the resulting

wavefront being inclined at a certain angle to the original

wavefronts. A few of the wavefronts formed in this manner

are shown at Y. After traversing the lens, they will be brought
to focus at a point 1^ in the principal focal plane. This point

will of course be the intersection of the plane with the un-

deviated ray for this set of waves, which is a line drawn through

the optical center perpendicular to the wavefronts Y. Still

a third set of wavefronts will be formed by a combination of

the -12th wavelet from a, the 10th from b, the 8th from! c, etc.

These, a few of which are drawn at Z, are still- more inclined

to the original wavefronts, and are brought to focus farther

out in the focal plane, at such a point as I,.

It is not difficult to prove that if X represents the angle

between the Y and the X wavefronts (which is the same as the

angle IjOP) and 62 the angle between the Z and X wavefronts

(the angle Tv>OP), A the wavelength of the light, and <r the

distance between the centers of slits in the grating,

A 2A
sin. 6 t

= - sin. 2
=

a a

Of course, the bright points on one side of P would be dupli-

cated by corresponding bright points on the other side, since

everything is symmetrical about the axis of the figure. It is

also possible that there may be other bright points, for which

the sine of the angle is 3A/0-, 4A/<r, etc. There is, however, a

limit to the number of bright points obtainable; for the sine

of an! angle cannot be greater than 1, and if, for instance,

4A<o-<5A, there will be four bright points on each side of P,

but not 5.

The formation of the wavefronts by monochromatic light

in passing through the grating can be very nicely illustrated by
the following experiment with ripples in a basin of mercury.
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To one prong of a tuning-fork is fastened a piece of sheet-

metal cut like a comb with some 16 teeth spaced about 3/16
inch apart, as shown in figure 67. The fork is then placed so

that the teeth just dip

below the surface of the

mercury in the basin, and

is set into vibration. Each

tooth becomes a center for

a series of ripples which
Figure 67 emanate from the teeth

just as secondary light wavelets emanate from the openings in

the grating of figure 66. The only difference is that the teeth

are the actual sources of the ripples, while the openings in the

Figure 68

grating only become centers of wavelets because the incident

plane wavefronts bring the disturbance up to them. The ap-

pearance of the mercury surface becomes like figure 68, which

is an instantaneous photograph. The heavy dark place of
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irregular shape is the shadow of part of the tuning-fork. Close

to the comb, the vibrations are too complicated to be analyzed,

but farther away five separate sets of plane wavefronts can be

clearly seen. The central one, X, advancing perpendicular to

the comb, corresponds to the wavefronts X of figure 66. The
two marked Y correspond to the Y wavefronts of figure 66 and

a symmetrical set on the other side of the axis, and similarly

for those marked Z. If the wavelength of the ripples had been

somewhat less, or the space between teeth greater, other sets

of wavefronts might have been seen. The comb was so con-

structed that 2A<<r<3A, so that only two spectra could be

expected on each side of the central axis.

It was not practicable in the case of the ripples to arrange

any device for focussing, and one may say that figure 68 cor-

responds to figure 66 with the lens removed.

Now, suppose that the incident light contains, beside the

wavelength already considered, A, another, longer or shorter,

which we shall call A'. The grating would produce several sets

of wavefronts for this wavelength also. The central set would

be parallel to the incident wavefronts C, and would therefore

be brought by the lens to the principal focus P, like those for

wavelength A. The other sets for A', however, would not be

brought to the same points as the corresponding sets for A, for

we have seen that the angles Q L , 2 , etc., depend upon the wave-

length. If A'>A, each bright point for A' will be focussed

farther from P than the corresponding point for A, and con-

versely if A'<A. Therefore, however many wavelengths may be

present in the incident light, a series of spectra will be formed

on each side of the central spot P. These are known as the

first spectrum, second spectrum, etc., to the right or left, as

the case may be. The central spot P, since it contains in itself

all wavelengths of the incident light, is sometimes spoken of as

the "spectrum of order zero." This manner of speaking is

consistent with the general formula for the grating,

For the first spectrum, n = 1, for the second n = 2, and for

the spectrum of order zero n = 0, so that = for all wave-

lengths.
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In. order to measure wavelengths with the grating, we must

first know <r, the distance between the centers of the slits, some-

times known as the "grating-space." This can be found by

placing the grating under a high-power microscope and measur-

ing with a micrometer. 'Then we must measure one of the

angles O i or #,, etc., for the wavelength desired. If the* lens

of figure 66 is th|e objective of a telescope, and if, as in the

figure, the axis of the telescope is perpendicular to the plane

of the grating, the angle may be found by means of a mi-

crometer. But when, as is usually the case, the grating is

mounted on the table of a spectrometer, so that the telescope

may be swung about an axis through the grating perpendicular

to the pla.ne of the diagram, then it can be turned so as to

receive upon the cross-hair at the principal focus any wave-

length in any order of spectrum, so that the angle can be read

off from the verniers attached to the telescope.

61. Why the lines are sharp, Of course, these measure-

ments would still be very inaccurate, and lines, or maxima, due

Figure 69

to different wavelengths would seriously overlap, unless these

maxima were quite sharp, as indicated in figure 65 (Y). It

remains to show why the large number of slits in the grating

produces the desired sharpness.

Consider figure 69. AB represents a grating, which for

the sake of defmiteness and simplicity, we shall suppose has

9 slits or openings, although a practical grating usually has
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many thousand. We suppose there is only a single wavelength

present in the light. The only wavefront drawn, iy, is one

for the first spectrum. Rays are drawn from each slit, running

through the lens to the point I, where they are brought to

focus. The lens is turned in such manner that these rays are

parallel to the lens-axis, so that I is really the principal

focus. From what we have learned about lenses, it is evident

that there is the same number of wavelengths in each ray,

measured from the wavefront iy to the point I, and brightness

occurs at I because, measured from the slits to this wavefront,

each ray has one more wavelength than the one next below it

in the figure, so that all arrive at I in the same phase. Now
let im represent a hypothetical wavefront, slightly inclined to

iy, so that the perpendicular distance am contains 9 wave-

lengths, whereas ay contains only 8. Such a wavefront would

be brought to focus at a point x, very close to I because im is

so slightly inclined to iy. We shall show that practically no

light reaches the point x from the 9 slits because the rays that

might come there mutually interfere, or annul one another.

The proof is as follows: Between the wavefront im and x,

there will be the same number of wavelengths in every ray,

otherwise x would not be the proper focus for a wavefront in

the position im. Hence we need consider only those portions

of the nine rays that lie between im and the grating. There

are 9 wavelengths in am, 9 X %, or 7 % in bn, 9 X % = 6 %
in co, 9 X % = 5 % in dp, 9 X % = 4 % in eq, 9 X % =
3 % in fr, 9 X % = 2 V4 in gs, 9 X % = 1 Vs in ht. Then

am is just 4 y2 wavelengths longer than eq, and therefore the

rays from a and e will interfere and annul one another, so far

as effect at x is concerned. Similarly, and for the same reason,

the ray from b will annul that from f, the ray from c that

from g, and the ray from d that from n. There remains only

the ray from i, not annulled by any other ray, to produce

illumination at x. In a later chapter, (see section 91), it will

be shown that in such a case the illumination is proportional

to the square of the number of effective elements; therefore,

since 9 slits conspire in phase to produce illumination at I,

and only 1 at x, the illumination at the latter point will be

only 1/81 that at the former.
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Now, suppose that, instead of 9 slits, the grating contained

999. Then ay would contain 998 wavelengths, and we should

draw im so that am contained 999. The point x would then

come very close indeed to I, and the brightness of illumination

at x would be only l/(999)
2 that at I, because only one open-

ing in the grating would contribute to it, all the others annul-

ling one another's effects in pairs. We should then be fully

justified in saying that x is practically a dark point, and it is

quite easy to prove, by similar reasoning, that there is another

point x', close to the other side of I, which is equally dark.

Since there is a dark spot so very close on each side of the

bright spot I, the maximum of illumination must be very sharp.

Moreover since, if the grating-space o- is quite small, the max-
ima of two successive orders, such as I : and I 2 of figure 66 are

quite far apart, we have just the conditions for accurate

measurements, viz., sharp and widely separated maxima of

brightness.* In our proof, we have taken only the case of a

grating having an odd number of openings, but the result

would be the same in all essentials if the number were even.

In fact, the dark, points would then be absolutely dark, instead

of only relatively so.

In actual gratings there are sometimes as many as 120000

openings, and the grating-space a has been made as small as

1/20000 inch, though 1/15000 inch is more common. It is of

course obvious that actual slits could 'not be cut so close to-

gether as this, through a solid plate. Gratings are made by

ruling upon a plate of glass an immense number of fine parallel

scratches with a diamond. One may regard the scratches as

being opaque, the clear unscratched spaces between taking the

place of the slits. Strictly speaking, this is incorrect, for the

scratched grooves are really not opaque. But the diminished

thickness of the glass where the grooves are cut causes the

light passing through these places to be out of phase with that

which passes through the clear spaces, and this has the same

effect, so far as the location of the spectra is concerned, as if

the grooves were really opaque.

*A more thorough treatment shows that between the sharp bright

maxima of different orders there are a great many faint secondary

maxima, but with practical gratings these are tno feeble to be observed.
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62. Reflection gratings. The best gratings are ruled, not
on glass, but on a polished plate of metal. In such cases, it is

the reflected light that produces the spectra. A study of figure
66 will show that if the spaces a, b, c, etc., reflected light, while

the spaces between did riot, spectra would be formed in exactly
the same way, but on the opposite side of the grating. The

great difficulty about a grating is to make the rulings, or

''slits," perfectly uniform in spacing. This involves a great

many practical difficulties which it is impossible to overcome

entirely. Still, a good grating gives beautifully sharp and
clear spectral lines, making it much superior to a prism for

producing spectra, except in' one particular, since a grating

produces many spectra, no one of them contains more than a

fraction of the available light, and therefore grating spectra

are in general not so bright as those produced by prisms.

63. The concave grating. Henry Augustus Rowland, who
developed the manufacture and use of gratirigs for the measure-

ment of wavelengths and other spectroscopic investigations,

conceived the idea of ruling gratings upon concave reflecting

surfaces, in order to avoid the use of lenses to focus the light.

This is of particular importance in the regions of very short

wavelength, for glass absorbs much of the ultraviolet light, and

it is difficult to make satisfactory lenses -out of materials which

are free from this objectionable quality. The idea proved very

valuable, and the so-called ''concave grating" is a most use-

ful instrument, simple and convenient in manipulation. For

the theory of the concave grating, the student should consult

some more advanced text, such as Preston 'a
' *

Theory of Light,
' '

or Baly's
"
Spectroscopy,

" where the following relations are

proved :

Suppose that, in a plane through the middle of the grating

and perpendicular to the rulings, a circle be drawn whose

diameter is the radius of curvature of the concave surface, so

that the circle is tangent to that surface at one end of the

diameter, and passes through the center of curvature at the

other end. Then, if, the slit be placed anywhere on this circle,

the different spectra will be sharply focussed at various points

about the same circle. Moving the slit will of course cause the

spectra to shift their position, but so long as the former
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remains on the circle, the latter will also. Rowland adopted a

very simple and ingenious method for making sure that the

slit remains on this focal circle, as shown by diagram in figure

70. Two beams, AS and BS, are set up making an angle of

Figure 70

90. The slit is placed at the intersection of these two beams,

i. e., at S. The grating G, and a plateholder P, to hold a long
narrow photographic plate, are mounted at opposite ends of a

third beam, whose length is equal to the radius of curvature

of the grating. Thus, the center of curvature of the grating
comes just at the middle of the photographic plate. The ends

of the beam GP are mounted 011 slides or carriages, so that

the end G can slide along the beam BS while the end P slides

along the beam AS. This beam therefore always forms the

hypothenuse of a right-angled triangle, the acute angles of

which can be changed. From the geometrical proposition that

an angle inscribed in a semi-circle is a right-angle, it follows

at once that S always remains on a circle of which GP is a

diameter. Of course, the photographic plate P is bent to fit

this circle.

64. The ultraviolet region. Fluorescence. Phosphores-
cence. Photography. It was stated in section 22 that there are

waves shorter than the violet, and others longer than the red.

The former are called
' '

ultraviolet,
"

the latter ''infrared."

Although ultraviolet light does not itself produce vision,

it can, by aid of the phenomenon called "fluorescence," give

rise to visible light and thus make its presence known. Fluores-
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cence is a property of a great many substances, including the

dyes fluorescein and uranin. It is the power to absorb certain

wavelengths and re-emit the energy in longer wavelengths,

instead of turning it into heat. Fluorescein and uranin, for

instance, absorb ultraviolet light and re-emit the energy 'as yel-

lowish-green light. It is very easy to show the existence) of

waves beyond the violet in the spectrum of the sun or of an

arc-light, by holding in that position a thin-walled flask con-

taining a solution of one of these dyes, or a glass plate which

has been colored with one of them.

There are some substances which continue to give off light

long after the incident light has been cut off. This phenomenon
is called "phosphorescence/' because it suggests the glow
shown by a piece of phosphorus that has been rubbed, in the

dark. The latter glow, however, is not true phosphorescence,

because it is caused by slow oxidation, rather than by previous-

ly absorbed light.

The principal method for studying the ultraviolet region

is by photography, for these waves are particularly effective on

a photographic plate. In order to go very far into the ultra-

violet, however, it is necessary to avoid the use of glass for

prisms and lenses, since it absorbs very strongly all but the

longer ultraviolet waves. Either quartz or fluorite are used

for this purpose, these substances being transparent for much
shorter waves than glass, but for the shortest waves gratings

and mirrors must be used. Even a little air absorbs such

waves, and Schumann and Lyman, who got wavelengths as

short as .00001cm., were obliged to work in] a vacuum or a

hydrogen atmosphere. Very recently, Millikan and Sawyer
have found waves as short as .00000272cm. from a spark in a

high vacuum.

65. The infrared region. Photography has also been ap-

plied to the study of the shorter infrared waves, for plates can

be specially prepared suitable for this purpose. But the usual

method, and the only method suitable for the very long waves,

is to detect them by the heat produced when they are absorbed.

The infrared waves are sometimes erroneously called
il
heat-

waves," because the major part of the energy radiated from

the sun or any hot solid is composed of waves longer than the
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red, and they are therefore responsible for most of the heat

produced when the light is absorbed. But it is conceivable that

some source of light might radiate in such a way that most of

the energy was in the ultraviolet, in which case it would be the

very short waves that were responsible for most of the heating.

In fact, there is no such thing as a heat-wave, at least in the

sense in which we understand a wave when speaking of light,

sound, etc. For heat consists of entirely irregular molecular

motions, which have nothing in common with waves in the

ether except that they possess energy. Light energy does not

become heat energy till the light has been absorbed and the

waves as such have ceased to exist.

. The distribution of waves in the infrared, or for that mat-

ter also in the visible and ultraviolet, might theoretically be

mapped out by moving a thermometer with a small blackened

bulb through the whole focal plane of the spectrum, and noting

the therometer reading at each point, but a mercury or alcohol

thermometer is far too insensitive for such a purpose. The

devices that have been most commonly used are the bolometer

and the thermopile, but any other very sensitive temperature-

indicator might be used in which the object whose temperature

is measured is in the form of a strip, narrow enough to cover

only a small section of the spectrum at a time, and blackened

so as to absorb and turn into heat whatever radiant energy
falls upon it.

66. The bolometer. In the bolometer, this strip is a thin

and narrow piece of blackened platinum, which is connected

ap with three other conductors so as to form a Wheatstone

bridge, to which a battery and a very sensitive galvanometer

are also connected in the usual way. The bridge is balanced

so that there is no deflection of the galvanometer when no

radiation is falling upon the strip. If the strip is placed any-

where in the spectrum so that energy falls upon jt, it is heated,,

its resistance is thereby changed, the bridge becomes unbal-

anced, and a deflection of the galvanometer results. The mag-

nitude of the deflection indicates the intensity of the radiation

of wavelength corresponding to the point in the spectrum

where the platinum strip is at the moment.

67. The thermopile. The thermopile depends upon the

principle that in a metallic circuit consisting of two dissimilar
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metals, an electric current will flow if one junction be at a differ-

ent temperature from the other. Usually, at least for such

purposes as are now under discussion, the circuit is com-

pounded of many pieces of two different and suitable metals,

for instance a piece of antimony, then one of bismuth, another

of antimony, another of bismuth/ etc. % till there may be a dozen

or more such junctions in the whole circuit. A sensitive gal-

vanometer is also included, to detect and measure the current.

Every alternate junction is brought into a line, close to one

another, and these junctions are exposed to the radiation while

the others are shielded from it. The exposed junctions in line

are of course blackened so that they will absorb and not reflect

the radiation.

With the infrared, as with the ultraviolet, it is necessary

to avoid the use of glass. Usually a prism of rocksalt is em-

ployed, and concave mirrors are substituted for the lenses of

the ordinary spectrometer, to focus the spectrum and to col-

Hmate the light.

68. The Doppler principle. Motion of the stars. An inter-

esting application of the spectroscope is to the determination

of the rate at which stars are

approaching or receding from

the solar system. This is based

upon a principle known as the

"Doppler effect," which ap-

plies not only to light, but also

to sound or any) other waVe
phenomenon. If a source of

waves is approaching an ob-

server, the length of the waves Fieure 71

which he receives is less, if it is receding from him greater, than
if there is no motion.

The reason is easily explained by figure 71. Suppose that
the source of waves is moving in the direction of the arrow P,
with a velocity v, and let V be the velocity of the waves them-
selves. Bear in mind that V depends only upon the properties
of the wave-carrying medium, not at all upon the velocity of
the body emitting the waves. If that body sends out a crest

when it is at A, then that crest will expand into a growing
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circle with A as center, despite the fact that the source moves

away from A in the meanwhile. Let A, B, C, etc., be positions

of the source at instants differing by a period, so that a crest

is started from each of these points. Then at any later instant

the wavefronts will be circles, as shown, ,but not concentric

circles, the center of each being displaced toward the right from

the center of the preceding one by the distance the source

moves during one period. If A represents the normal wave-

length, as it would be if the source were at rest, the period is

A/Y, and the motion of the source during this time is vA/Y.

Evidently, the wavelength received by an observer to the left,

in the direction of X, will be increased by this amount, while

that received by an observer to the right, in the direction Y,
will be decreased by the same amount. That is, the observed

wavelength, to a stationary observer in the line of motion, will

be

A' = A =A- (1)

the upper or lower sign being used according as the source is

receding or approaching.

It may be, however, that

, *-"-% * the observer instead of the

source is moving. In such a

Figure 72
Cas6j fae analysis must be some-

what different, as will be shown by use of figure 72. Let S be the

position of the stationary source, and the initial position of

the observer. Suppose the latter is moving away from the source,

toward the right, and let 0' be his position one second later,

so that 00' v. Lay off also the distance OX equal to V.

Within this last distance there are V/A waves, and the observer

would have received all these waves in one second had he

remained stationary at 0. But since he has, during the second,

moved to 0', he actually receives a number less than this, for

the waves lying between and 0' have failed to reach him.

The number he actually receives per second is therefore

(Y v)/A, and this is the frequency of the waves as he

receives them; whereas the frequency with which they are

emitted from the source is Y/A. This case differs from the

preceding in that the wavelength is not actually changed, but
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it seems to the observer to be changed; for since his spectro-

scope or other device for measuring wavelengths is moving

along with him, it acts as if the waves had the velocity V with

respect to the observer together with a frequency (V v)/A.

Since wavelength equals volocity divided by frequency, the

spectroscope therefore indicates the wavelength to be

A
'

V v

If the observer is approaching the source, instead of receding

from it, it is easy to prove in a precisely analogous way, that

the wavelength appears to be VA/(V + v), or in general the

apparent wavelength is

the lower sign being taken if the observer is receding, the upper
if he is approaching.

The two formulas, (1) and (2), are not quite alike, and

the student is usually inclined to think that they should be:

for he argues that motion is only relative and it should make

no difference which of the two things, source or observer, is

at rest and which in motion. But there is a third thing to

take into account, namely the medium that carries the waves.

It must make a difference, for instance, in the case of sound,

whether an observer is moving through stationary air toward

a stationary sounding body, or the sounding body is moving

through stationary air toward a stationary observer. Just so,

it must make a difference in the analogous case of light, pro-

vided that we may regard the ether as a material medium

which has a definite location in space. Certain considerations

bearing upon this proviso will be brought out later (section

85).

For all applications to spectra, formulas (1) and (2),

though not identical, yield results so nearly identical that there

is no distinguishing between them. If we divide the numerator

by the denominator in the second member of (2) we get
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which differs from (1) only by the terms in the square and

higher powers of v/V. The greatest velocity found in a star

is of the order of 300 kilometers per second, that of light is

300000 kilometers; per second, and therefore v/V is of the

order 1/1000. Since this makes v2/V2 of the order 1/1000000

and the other terms still smaller, they are beyond the limits of

measurement and can just as well be dropped out.

If a star then is moving toward us, or we toward it, all

the wavelengths in its light are apparently shortened, that is

all the lines in its spectrum are shifted toward the violet end,
and if the star is moving away from us, or we from it, the

lines are shifted toward the red. In either case, the amount
of the shift is proportional to the relative velocity or rather

to that component of it which is along the line joining star and

observer. It is possible, from the great array of lines shown
in the spectra of many stars to identify them with certain

elements in spite of their displaced position, and thus to know
their proper wavelengths. To determine the velocity then, it

is only necessary to photograph the star's spectrum side by
side with the spectrum of some terrestrial source such as that

of a hydrogen vacuum tube or a spark between iron terminals,

and measure the apparent wavelengths by comparison. Ob-

viously, one cannot say whether a certain measured shift of the

lines is to be attributed to motion of the star or of the earth,,

or partly to each, except that we know the earth to be moving
with a tolerably great velocity in its orbit about the sun. The

sun itself may also be moving, but it is customary to treat all

such measurements of line-of-sight velocities as if the sun were

at rest. The measured velocity is corrected for the earth's

orbital motion, and the result stated as the velocity of the star

"with respect to the sun."

It .is senseless to ask if the sun has any "absolute" motion,

for the motion of one body cannot be intelligently thought of

except with reference to some other body, but one cannot help

speculating asi to whether the sun is moving or at rest with

respect to the ether, though such a question presupposes that

the ether is to be regarded as having a definite location in

space. In section 84 a certain experiment will be discussed

which bears upon this question.
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Problems.

1. Suppose the slit of a spectroscope to be 5mm. long,

the focal length of the collimator to be 30cm., and that of

the telescope to be 40cm. How wide will the spectrum, in the

focal plane of the telescope, be?

2. A dense flint prism, of angle 60, has the following

indices of refraction: 1.7774 for wavelength .00004713, 1.7695

for A .00005016, 1.7537 for A .00005896, 1.7444 for X .00006708.

Plot a curve with A as abscissa, index as ordinate. How long
would be the stretch of spectrum, between the longest and the

shortest of the above wavelengths, if the focal length of the

telescope were 30cm.? (It will be sufficient, though not strict-

ly correct, to consider that all the light passes through the

prism at minimum deviation, and use the formula of paragraph

26).

3. Calculate the wavelengths of the first four lines of the

Balmer formula for hydrogen, and compare with the experi-

mentally found values given in the foot-note to paragraph 54.

4. What would be the spectrum of light reflected from a

white wall, in daylight? Under illumination by tungsten-fila-

ment lamps'?

5. Some of the dark lines in the solar spectrum are due

to absorption in the earth's atmosphere. How can these be

distinguished from the true solar lines?

6. From the curves of figure 64, show why a heated solid

first becomes dull red, only becoming "white-hot" at a very

high temperature. Also show why incandescent lamps are

more efficient when operated at high temperatures.

7. Calculate the energy in a "quantum," for light of

wavelength .00003 cm.
?
and of wavelength .00008 cm.

8. "What wavelengths in the first, 'second, and fourth order

spectra come at the same place as A .00005000 cm. in the third

order, with a grating.

9. Show that, in a plane grating, if the incident plane

waves strike with an angle of incidence i instead of zero, the

formula becomes sin. i sin. Q = nA/<r.

10. If a certain star is moving away from the earth at a

speed of 100 kilometers per second, find the change in wave-

length of a line whose proper wavelength is .000065 cm. (red).

Also for one whose proper wavelength is .000040 cm. (violet).



CHAPTER VIII.

69. The approximately rectilinear propagation of light. 70. Shadow
of a straight edge. 71. Shadow of a wire. 72. Diffraction through a

rectangular opening. 73. Resolving-power.

69. The approximately rectilinear propagation of light,

We have already seen, in section 18, that light does not travel

absolutely in straight lines; that is, it does not cast absolutely

sharp shadows, even when the light-source is as narrow as we
can make it. In fact, we should rather expect that light, like

other forms of wave motion, would bend rather freely about an

obstacle in its path, and our first interest lies in explaining,

not why it bends at all, but why it does not bend more.

The statement that light travels approximately in straight

lines really amounts to this, that a comparatively small object,

Figure 73

even when held some distance from the eye, will screen off all,

or at least most, of the light coming from a point. For instance,

a ten-cent piece six feet from the eye, will pretty effectually

blot out the light of a star, although the same coin at one hun-

dred feet will not. In this respect, light forms a marked con-

trast with sound, for even an obstacle several feet in diameter,

(138)
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when six feet away, produces very little effect on the intensity
of a sound. Our first problem, then, will be to explain why
the very much shorter wavelengths of light cause this great

difference. For simplicity, we shall assume that we are to deal

with only plane waves, and only monochromatic light, that is.

light all of one wavelength. The area ABCD figure 73 repre-

sents in perspective a portion of a plane wavefront advancing
from the left toward the point 0. According to Huyghen's

principle, the effect at may be regarded as made up of the

summation of all effects produced by secondary wavelets, one

coming from each, point in the wavefront. Some of these

secondary wavelets will annul one another upon reaching O,

but there will be a net residual effect, which we shall prove is

the same as if all but a small portion of the wavefront were

annihilated. Let P be the foot of a perpendicular drawn from

to the wavefront, and r the distance OP. Imagine a num-

ber of spheres drawn with as center, and with radii equal

to r +i, r 4- x ,
r + ^,

i + 2A ,
r + 5

A, etc., increasing by

A/2 each time. Each sphere will intersect the wavefront in a

circle with P as center, and the whole wavefront will be divided

up into a large number of regions known as "Huyghens'
zones," the innermost one a circle, the others rings. We shall

number them 1, 2, 3, etc., beginning at the center. The most

important characteristic of these zones is this, that the aver-

age distance from to the points in any one zone is half a

wavelength shorter than that for the next zone beyond. If we
consider the effect of any one zone, at the point 0, it is evident

that points on the inner boundary, being one-half wavelength
nearer than those on the outer boundary, will tend to neutral-

ize the latter 's effects; but points lying nearer the middle line

of the ring will not completely neutralize one another, so that

there will be a certain net effect at due to the whole zone.

Each zone, however, tends to neutralize the effect of the next

zone within it. Therefore we can represent the effects of the

odd zones by positive quantities, d,, ds ,
d 5 , etc., and those of

the even ones by negative quantities, d 2 ,
d4 , etc., and the

effect of the whole system of zones, that is, the whole wave-

front, will be properly represented by a series,
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D = d t d2 + ds d4 + d B d, 4- etc.

which will have an infinite number of terms if the wavefront

is not limited in extent.

We shall now prove that d t is slightly greater than d2 ,
d2

than d3 , etc., so that the series consists of alternate positive

and negative terms of decreasing magnitude, and is therefore

convergent and has a definite value.

The effect of any zone depends upon three things, its area,

its distance from 0, and the inclination at which its light comes

to 0. Leaving aside for a moment the influence of the inclina-

tion, the effect should be proportional to the area of the zone

divided by its distance from 0. If R represents the radius

of the outer boundary of the first zone, we have from simple

geometry R2 + r2 = ( r + V'2)
2

, giving

R2 = rA + A2
/4

therefore the area of the first zone is TrR2 or ir(rX + A2
/4).

It is easy to show in a similar way that the square of the

radius of the outer boundary of the second zone is 2rA -j- A2
,

and the area of the corresponding circle 7r(2rA + ^2
)- The

area of the second zone is the difference between the areas of

these circles, or 7r(rA -j- 3A2
/4). Similarly, the area of the

third zone is 7r(rA + 5A2
/4), that of the fourth 7r(rA + 7A 2

/4),

etc.

The average distance of points in the first zone from is

r 4- A/4, that of points in the second zone r + 3A/4, etc., so

that if we divide the area of each zone by its average distance

from O we get in each case the quotient ?rA. Therefore, the

effect of zone distance and zone area, in causing a variation in

the terms of the series, mutually counterbalance one another,

so that the only thing to consider is the inclination. Since the

light from the outer zones comes to the point at a greater

inclination with the line PO than does that from the inner

zones, it follows that the magnitude of the terms d1? d 2 , etc.,

continuously decreases with higher order, and the series is

convergent. The difference between successive terms, however,

is quite small, particularly in the case of the first few terms.

The easiest way to get an idea of the value of the whole

series, representing the effect of the whole wavefront upon the
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point 0, is by a graphical method. Lay off on a straight line,

as in figure 74. the distance oa equal to d
t
. From a lay off in

the opposite direction the distance

ab, equal to d,. Then ob = J_+-f ]

*

d
t

d2 . Lay off be equal to d31

cd equal to d4 ,
and so on. Then Figure 74

oc = d, d2 + d3 ,
od = d, d2 + d3

- - d4 ,
and so on. It is

evident, that, since each term is smaller than the one pre-

ceding it, the whole series will have a value less than d,,

and if we make an assumption about the manner in which the

terms decrease which is certainly reasonable, it can be shown

that the sum of an infinite number of terms will be just equal

to half of d,. The physical meaning of this mathematical result

is that the effect of
v
tbe whole wavefront is only half that which

the first zone alone would exert, so that if an opaque screen

were placed in the path of the light, with a hole in it only

large enough to let the first zone through, the illumination at

O would be actually increased. This surprising prediction is

actually verified by experiment, but it must be remembered that

it is only at the point 0, and in its immediate neighborhood,

that the illumination is increased. Other points in the plane

of become darker. Furthermore, since the size of a zone

depends not only upon the wavelength, but also upon the dis-

tance r, a hole big enough toi let through only the first zone

as calculated for the point would let through the first and

second as calculated for some point on OP nearer to P, the

first, second and third for a point still nearer, etc. Therefore,

at a certain point the illumination would be d t d 2 , or nearly

zero, while at another it would be d t c^ + d3 , nearly equal

di or d,,, and so on. Therefore, different points along the line

OP should be alternately bright and dark. This statement also

is found to be true.

The problem with which we began was to explain why a

comparatively small obstacle will cut off light but not sound.

Suppose then that instead of an opaque screen with a small

hole, we place in the path of the light a small opaque disc,

which will cut out some of the central zones but allow all the

rest to pass on. For numerical calculation, take the diameter

of the disc to be 1 cm., and the distance from the point whose
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brightness we are considering to be? 200 cm. Let n be the

number of zones cut out. The square of the radius of the nth

circle is nrA + n2A2
/4, and this must be equal to the square

of .5 while r is 200 and A may be taken as .00005, about the

brightest part of the spectrum. Then,

(.5)
2 = .25 = .Oln + .000000000625n2

The coefficient of n2
is so small that we may neglect it, since

we want only the approximate value of n, which is

n = .257.01 = 25

Since the first 25 zones are eliminated, the illumination at

will be given by the series

D = d20 d27 + d 28 d29 + etc.

whose value is approximately equal to half the first term, that

is doG/2. Now although the values of the d's decrease rather

slowly, still the 26th term is very much smaller than the first,

consequently the illumination at is very faint, though not

absolutely zero.

As a comparison, let us calculate how large a disc would

be required to screen off 25 zones from a sound wavefront, 200

cm. away, the wavelength being taken as 64.45 cm., which cor-

responds to a sound of 512 vibrations per second. Letting x

represent the required radius of the disc, and using the formula

x2 =nrA + n2A2
/4

we get x = 985 cm., that is, the disc must be nearly 20 meters

in diameter. The example shows how the great difference in

wavelengths between light and sound accounts for the differ-

ence in the effectiveness of a small obstacle.

70. Shadow of a straight edge. We are now in a position

to explain the bright and) dark bands that appear near the

shadow of an obstacle of considerable width with a sharp

straight edge, which were mentioned in section 18. Figure 75

is the same as figure 16, with the addition of the wavy line from

X to Z, which is a graph representing the distribution of

illumination as it appears on the screen AB. The peak p indi-

cates that at the point P on the screen the illumination is
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particularly bright, that is, there is a bright band running

along parallel to the edge e, at a distance PE from what would

be the edge of the shadow if light did travel absolutely in

straight lines. On the other hand, the drop in the curve to the

right of C indicates that C is relatively dark, and a dark band

Figure 75

runs along the screen there, also parallel to the edge. The
other peaks and depressions in the curve show that there are

a series of bright and dark bands, becoming less and less pro-

nounced at greater distances from the edge, until, at some point

beyond X, all traces of bands are lost, and the screen appears

uniformly illuminated, just as if the obstacle at e were removed.

Consider first the illumination at the point E, just on the

straight line through the slit S and the edge e. If we take the

plane of the wavefront just as it reaches the edge e, and con-

struct on it the Huyghens' zones for the point E, the center

of the zones will lie at e, and half of each zone will be cut off

by the obstacle. Therefore, the effect at E, instead of being

half that due to the first complete zone, will be only % that of

the first complete zone, that is, E will be distinctly darker than

if the obstacle were not present.

For a point further up on the screen, such as P, the cen-

ter of the zone system would be at such a place as b. Let us

suppose that P, and therefore b, are high enough so that the

whole of the first zone is uncovered, but that the obstacle cuts

off a segment of each of the others. Then the effect at P is

greater than it would be with the obstacle removed. For we
have seen that the effect of all the zones from the second on,
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when they are complete, is to nullify half the effect of the first

zone. In this case the first zone is complete and the others

incomplete, and therefore these are incapable of nullifying half

the effect of the first. Thus the first bright band at P is ex-

plained.

At a still higher point, as C, the first two zones are

clear, the rest partly covered. Here the second zone, being less,

opposed than it would normally be by the zones of higher

order, is more free to oppose the action of the first, therefore

the illumination at C is less than if the obstacle were not in

its place, and the first dark band is explained.

The second bright band occurs where three zones are com-

pletely free, the second dark one where four are free, etc.

Evidently these bands become weaker and weaker as more and
more zones are uncovered, since the zones of higher order are

weaker than those of lower.

Now take a point D, below B. For this point, the center

of the zone system is hidden by the obstacle, and no zone would
be complete. In this case it is better to construct the zones

on an entirely new plan. Instead of taking a line from D
perpendicular to the wavefront as the basic distance for draw-

ing the spherical surfaces that cut out the zones, we take De,
the shortest distance to that part of the wavefront -that is not

hidden, and draw our spheres of radius De + A/2, De + ^
De -f- 3A/2, etc. All of the resulting zones will be incomplete

segments of rings, and the resulting illumination at D will of

course be faint. The farther dowrn D is moved into the shadow,
the fainter it will be, but there will be no maxima or minima

of illumination. The brightness fades out continuously and

rather rapidly, becoming inappreciable at some such point as

Z. From there on, no illumination can be seen in the shadow.

The formation of bands at the edge of a shadow, together

with, a number of similar phenomena, are classed under the

general name of diffraction. Bands like those of figure 75 are

always formed about the edges of shadows, whenever the

source of light is small enough, or when, if not small, it is

far enough distant to subtend a very small angle, as in the

ease of a street light fifty or one hundred yards from the

opaque obstacle forming the shadow. The source may be a long
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line of light, or a slit, if it is parallel to the edge of the obstacle,

in which case of course the bands will be brighter.

71. Shadow of a wire. One of the most interesting cases

of diffraction occurs when the obstacle is a narrow straight

object, such as a wire. If a slit is used as source, it must be

parallel to the wire, and the shadow may be cast on a whitened

wall or a sheet of paper. Bands are seen on the outside of the

shadow, like those of figure 75, and in addition there are always
one or more bright bands running through the center of the

shadow, formed by interference between the light bending into

the shadow from the two sides.

72. Diffraction through a rectangular opening. A very

important case of diffraction, having much to do with the

effectiveness of telescopes, microscopes, spectroscopes, and other

optical instruments, is the kind produced when light passes

through a limited opening. We shall take up only a case in

which the conditions are somewhat simplified, so as to make

the theoretical discussion easy.

]
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to the slit-source, flanked on each side by a number of fainter

bands. If the aperture cd is widened, the central bright band

becomes brighter and narrower, and the fainter bands become

much more closely spaced. If, on the other hand, the aperture

is narrowed, the central bright band at P becomes widened and

the whole system of bands widens out and becomes fainter. The"

explanation is as follows:

Since the principal focus P is not the only point that

receives light from the section of wavefront cd, we shall select

a point at random, P', in the focal plane, and' find what illumi-

nation comes to it. Let represent the angle between the axis

of the lens and the line from the optical center to P'. P' will

be a point of absolute darkness only if all the secondary wave-

lets, coming from every point in the section of wavefront cd,

neutralize one another. Draw de perpendicular to QP' and ce

parallel to it. Let f be the center of the opening cd. From
our previous study of lenses, we know that a wavefront de

would be focussed at P', showing that from the line de on to

P' there are the same number of wavelengths in every ray.

Then whatever differences in path exist in the secondary wave-

lets are accounted for in the space between cd and de. If ce

is just a wavelength, the point P' will be dark, exactly contrary

to what one would at first thought suspect. For we must re-

member that not only the points c and d. but every point

between c and d sends a ray toward P7
. For each point in the

half df, there is a corresponding point in the half fc whose ray

has a half-wavelength farther to travel in getting to P'. There-

fore one half of the wavefront cd neutralizes the effect of the

other half, and P' is dark. If ce is two wavelengths, P' will

again be dark, for cd may then be divided up into four equal

parts. The upper two of these will annul one another, each

point in one being A/2 farther from P' than a corresponding

point in the other, and for the same reason the lower two will

annul oiie another. Similarly, if ce is equal to any integral

number of wavelengths, except zero, the point P' will be dark.

If ce =- 0, P' will of course coincide with P, all the secondary

wavelets will have the same distance to travel, and the point

will be the brightest possible. On the other hand, if ce is

equal to an odd number of half wavelengths, complete darkness

at P' is impossible. Suppose, for instance, that it is 3A/2.
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Then cd could be divided into thirds. Each point in the upper-
most third would annul the effect of a point in the middle

third, being one-half wavelength farther from P', and thus the

two upper thirds would cancel one another. The lowermost

third, however, would have a residual effect at P' and would

therefore cause a small illumination there, which accounts for

the first maximum of brightness on the lower side of the prin-

cipal focus. Another maximum would occur at such a position

of P' that ce = 5A/2, etc. Since the angle ode = 0, and ce

= cd. sin. 0, we may express what we have found in the form

of equations as follows: Complete darkness occurs at such

angles that

sin. o = nA/cd

where n is any integer except 0. The greatest brightness

occurs when
sin. =

but secondary maxima of brightness occur when

sin. = nA/2cd

where n is any odd integer except 1. (When ce = A/2 the

point is not dark, but neither is it a
3A

point of maximum brightness.) From

the symmetry of the figure, it is plain

that the points of maximum brightness

or of darkness on the lower side of the

principal focus would be duplicated by
similar points, symmetrically placed, on

the upper side. The graph of figure 77

shows the distribution of brightness on
Figure 77

the screen. The symbols to the right of

the vertical line indicate the values of ce at the corresponding

points on the screen, while to the left are plotted the corre-

sponding brightness.

If the screen is removed, and an eyepiece placed in posi-

tion to focus on the focal plane of the lens LL, so that the

latter with the eyepiece form a telescope, then the bright and

dark bands are seen in the eyepiece just as they would be on

the screen, with whatever magnification the eyepiece produces.

2X
-3X/2
X

-3X/2
2X
-5A/2
3X
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If the aperture cd is quite wide, the bands are very fine and

sharp, so that a high magnification is necessary to see them.
73. Resolving-power The importance of the considera-

tions in the preceding section can be understood from the fol-

lowing example. Suppose that in figure 76, instead of a single

set of plane wavefronts X, we have two sets, nearly but not

quite parallel to one another, say with a small angle a between

them. For instance, the light might be sodium light which has

passed through a prism or grating, so that the two distinct

wavelengths present in this light will have their wavefronts

slightly inclined to one another, the rays of course also being
inclined to one another at the same angle. Even if there is

no diaphragm such as cd to limit the two beams, still the

limited size of the prism itself puts a limit on the width of the

beams, and the result will be the same as if there were an

opening just large enough to pass them. Therefore each beam
will produce in the focal plane of the lens LL a diffraction

pattern like that of figure 77. These two patterns will not

fall in exactly the same place. In fact their centers will sub-

tend, from the optical center of the lens, an angle a, the same

as that between the two wavefronts before they reached the

lens. Instead of two sharp spectrum lines, then, we have two

bands of a certain width, each flanked by a number of fainter

bands, and this would be true even if the slit of the spectro-

scope were infinitely narrow, and each beam of light absolutely

monochromatic. The wider the beam of light, the more nearly
these bands would approximate to real lines. If the angle a

is quite small, and the width of the beams is also small, the

two central bands will run together, so that only a single band
will be seen, no matter how much we try to magnify the image
with a high-power eyepiece. The question then arises, how
small may be the angle between the wavefronts, a, in order

that the two lines may be resolved, that is, seen as distinct. It

is difficult to say exactly when the two images run together,

but for purposes of comparison between different instruments

we say that the limit of resolution is reached when the central

maximum for one image comes just where the first minimum
of the other image occurs. We have seen in the preceding sec-

tion that the angle between the center of a diffraction pattern
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and the first minimum is given by sin. $ = A/cd, or, since

is so small that sin. 0=0 very approximately, we may write
= A/cd. Therefore, for resolution of the spectrum lines we

must have

a 5 A/cd

The lines will therefore be resolved only when the angle between

the wavefronts is at least as great as an angle whose are is

equal to the wavelength, the radius being equal to the width

of the beam. In order that a spectroscope may have high

resolving-power, it is therefore not sufficient that the prism or

grating shall produce a great dispersion of the different wave-

lengths. It is also necessary that prism or grating shall be

wide enough to transmit a wide beam of light, and the lenses

must also be wide enough not to cut this beam at the corners.

The same sort of problem comes up in the use of tele-

scopes, though there is a slight difference due to the fact that

the beam of light has then a round cross-section. It is evident

that when a telescope is pointed toward a star everything is

symmetrical about the axis, and therefore the diffraction pat-

tern, instead of being a central band flanked by parallel fainter

bands, will be a central disc, surrounded by a system of faint

rings. It corresponds very closely indeed to what would result

if figure 77 were revolved about its axis of symmetry, except

that, because the opening is round and not rectangular, the

actual diameters of the dark rings are somewhat enlarged.

The radius of the first dark ring subtends from the optical

center of the objective an angle whose value is 1.22A/cd instead

of A/cd, if cd represents the width of the beam of light, that

is the diameter of the objective. If the telescope be pointed

toward a close double-star, each star will form in the focal

plane an image of itself which consists of a central disc sur-

rounded by faint rings, and we say that the images are just

resolvable when the center of one disc falls on the first dark

ring of the other diffraction pattern. A double-star is resolv-

able then if the two components make an angle which is equal

to or greater" than 1.22A divided by the diameter of the objec-

tive.
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A telescope of large diameter is said to have a large re-

solving-power. Similar considerations apply to a microscope,

though the treatment is somewhat different because with that

instrument the light does not enter the objective in plane waves

but in a highly diverging beam. All optical images are affected

by diffraction, and this explains the statement made in section

38 that no lens, however perfect in design and workmanship,
can produce a point image from a point source.

The question is often asked, by those unacquainted with

optical instruments, "How small may an object be, or how
far away may it be, and yet be visible in a given microscope
or telescope ?

" Such a question is not pertinent, because any

microscope will render visible any object, however small, and

any telescope will reveal any object however small or remote,

provided that object gives out 'a sufficiently strong beam of

light. The proper question is, "How close together (in linear

measure for a microscope, in angular measure for a telescope)

may two small objects be and yet be seen as distinct and sep-

arate in the instrument!" The efficiency of a telescope in this

respect depends entirely upon the diameter of its objective

lens, not at all upon its focal length, consequently the diameter

is by far the more important dimension.

The eye, like any other optical instrument, has a definite

limit to its resolving-power, depending upon the diameter of

the pupil. Anyone can convince himself of the truth of this

statement by the following simple experiment : Make two clear

dots upon a blackboard, about % inch apart, and then walk

backward away from the wall with the eyes fixed upon the dots.

At a certain distance, the two seem to run together, and can

no longer be distinguished as separate dots. Strange as it

may seem, it is possible that they may be distinguished at a

greater distance in a relatively dark than in a very bright

room, for in very bright light the pupil contracts, and the

resolving-power is decreased.

The diffraction-rings produced in the eye are finer in

structure than the structure of the retina itself, if the pupil

is normally open, ,and therefore are not ordinarily visible, but

they become visible if an effective decrease in the diameter of

the pupil is made artificially by looking through a very small
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hole in a card or other opaque object. The following experi-

ment is instructive: Make a single straight cut with a knife

in a stiff card, so as to make a sort of slit. Hold this closie to

the eye and look through it at a single filament of an incan-

descent lamp, keeping the slit parallel to the filament. The

diffraction bands described in connection with figures 76 and

77 will be clearly seen. It will be noticed that the bands

become narrowed if the card is sprung so that the opening is

widened, and conversely if the opening is narrowed. Here the

lens of the eye takes the place of the lens LL in figure 76, the

opening in the card that of the opening cd, and the retina that

of the screen AB. Notice that the central maximum is 50%
farther from either of the secondary maxima on either side,

than any two adjacent secondary maxima are from one another.

Problems.

1. A certain prism of dense flint glass separates the two

yellow sodium wavelengths by an angle of 2 seconds of arc.

How wide must the beam be, in order that the two lines may
be seen separated in the spectroscope?

2. A "double-star" has components whose angular separa-

tion is only 0.16 second of arc. What is the diameter f the

objective of the smallest telescope that can resolve them?
3. Find the resolving-power of the eye, when the pupil

is inch in diameter.
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74. Young's interference experiment. The arrangement

of mirrors, invented by Fresnel to show the interference of

light, and described in section 22 (see figure 21), is not the

only device for the purpose, though perhaps the most satis-

factory. The earliest was due to Thomas Young, one of the

early champions of the wave theory. It consists of a slit

through which light streams to

an opaque screen containing two

very small holes close together.

A white screen farther on re-

ceives the light from the two

holes, which could be replaced

with advantage by two fine slits

Figure 78
parallel to the original slit.

Figure 78 shows this simple arrangement. S is the source slit,

X and Y the two round holes or small slits. These last are

small enough so that diffraction causes the light coming through
them to spread out. Light from the two holes will therefore

overlap in the neighborhood of C on the white screen AB, and

will produce interference fringes there. The student will

observe that the opaque screen with two slits through it is to

all intents and purposes a very coarsely ruled grating with

only two openings. Although this arrangement is easy to con-

struct, very little light comes through the two slits, and the

fringes are therefore very dim indeed.

75. The biprism. This is another device of Fresnel. It

consists of two identical glass prisms, of very small angle,

cemented together base to base. Figure 79 shows how it is set

up. B is the biprism, S the slit-source, ab a white screen. The

(152)
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light passing through the upper half of the biprism is bent

downward, that through the lower half upward, so that the

a light comes to the screen as

if it came from two points

X and Y, which may be re-

garded as virtual images of

the real slit S
>
formed by re-

fraction through the upper
and lower halves of the bi-

prism respectively. Where

the two beams overlap near
Fi ure 79 the center of the white

screen, interference fringes are produced.

76. Interference in thin uniform films. Nature herself

provides us with the finest cases of interference, in the beauti-

ful iridescent coloring of soap-films, films of oil on water, fis-

sures in the interior of crystals, etc. In all such cases, it is

found that there are two reflecting surfaces separated by a

very small distance, and the interference is between the light

reflected from the first surface and that reflected from the

second. It is further necessary, ,if the colors are to be seen

anywhere but in certain particular spots when the eye happens
to be in the correct position, that the light shall come from a

widely extended source, such as the sky, the whitened wall of

Figure

a room, or a broad flame, giving out light in all directions

from every point of it.

We shall first suppose that the film has plane and parallel

surfaces, so that it is of uniform thickness. Let AB and CD,

figure 80, represent the upper and lower surfaces of suoii a
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film, and E the position of the eye. Let t be the thickness of

the film, and n its index of refraction. At first we shall sup-

pose that the extended radiating surface, not shown in the

diagram, but well above the position E, gives light of only a

single wavelength A. If only the upper surface of the film

reflected light, the eye could look in any direction, such as EX,
and see part of the extended source reflected in this surface,

the course of a ray of light being given by the lines SX and
XE. But only part of the light is reflected at the first surface,

while the rest enters the film along the ray XK, a,iid part of

it is reflected at the second surface along the ray KZ. When
the ray KZ strikes the upper surface, part of it is again re-

flected, but part is refracted out and follows a ray parallel

to the ray first reflected, XE. There will in fact be still

another ray which will emerge parallel to XE after three

reflections, another after five, and so on, each one, however,
weaker than the rays that have undergone fewer reflections.

Since the film must be very thin to show interference, all

these rays will lie very close together, and may therefore enter

the pupil of the eye together. If the eye is focussed for

infinitely distant objects, that is for parallel rays ? they will all

be brought to focus at the same point on the retina.

Let us first see what difference in phase exists, at the

retina, between light in the ray XE and that in the parallel

ray from Z, which has suffered only one reflection within the

film. Draw YZ perpendicular to the two rays. From Y and

Z on, there are the same number of wavelengths in each path,

since a wavefront such as YZ would be focussed upon the

retina. Also draw XP perpendicular to KZ. A wavefront in

the position XP would be reflected to the position YZ 011

emerging into the upper medium. Therefore there are the

same number of wavelengths in XY and ZP, and the path-

difference between the two rays is simply the distance XK
+ KP, in the medium of refractive index n. Draw XP per-

pendicular to the surfaces AB and CD, and prolong it till it

meets ZK produced at G. The right-angled triangles XFK
and GFK^are equal, therefore GK XK, and the path-dif-

ference XK + KP GP. The angle at G is the angle of

refraction, r, and XG = 2t. Therefore the path-difference is
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2t. cos r. Since the wavelength within the film is A/n, the

number of wavelengths in the path-difference is

A '2nt. cos r
2t. cos r ^- -

n A

77. Change of phase on reflection. But difference in path
is not the only difference in the two rays SXY and SXKZ,
for they have suffered reflections of quite different kinds.

While the reflection at X, occurs 011 the rarer side of the sur-

face AB, that at K occurs on the denser side of the surface

CD. and it is an important fact that a reflection on the rarer

side of a boundary is always accompanied by an abrupt change

of phase which is equivalent to the introduction of half a

wavelength in the path. That is, a crest is reflected as a trough,

and vice versa. No such change of phase exists when the

reflection occurs on the denser side of the boundary. Crest is

reflected as crest and trough as trough. An actual proof of

these statements involves difficult mathematics, but their rea-

sonableness may be made plain by a consideration of the much

simpler case of waves running along a string. In figure 81

XY represents a light

string, joined at Y to

the end of a- much
heavier string YZ.

Since transverse waves Figure si

travel faster along a light than along a heavy string, the light

string takes the place of the air in figure 80, the heavy string

that of the film, and the point Y represents one of the bounding
surfaces. In the upper diagram of figure 81 a single crest A is

ishown advancing toward the boundary point Y. Suppose for a

moment that the end Y were clamped tightly. Then, when the

crest A struck it, the reaction at this fixed point would throw

the cord below the normal position, and a reflected trough
would start back toward the left. With the end Y not fixed

rigidly, but merely fastened to the heavier cord, a trough is

still reflected to the left along the lighter cord, while a crest

goes on along the heavier one. There is a certain analogy here

with the case of a light ball striking squarely a heavier one

which was originally stationary, both being perfectly elastic.
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The direction of motion of the striking ball is reversed, and

part of its motion is given up to the other.

If the ball originally in motion is the heavier, its direction

of motion is not reversed upon striking the lighter one, but

only somewhat checked, both balls moving off in the same

direction after impact. The analogue to this case is provided
when a crest approaches the point Y along the heavier string,

as indicated by A in the lower diagram of figure 81. Both the

reflected and the continuing waves will then be crests.
'

Of course, in either case, the reflected and the continuing

waves will both have amplitudes less than that of the incident

wave. In fact the energy of the incident wave is divided

between the two.

Let us apply these principles to the optical case of figure

SO. The incident wave coming along from S, like that along

the lighter string in the upper diagram of figure 81, will give

rise to a reflected wave of reversed phase travelling toward E
and a continuing (refracted) wave without reversal of phase

travelling toward K. These two will divide between them the

energy of the original wave. On the other hand, the wave

coming from X to K, like that in the heavier string in the

lower diagram of figure 81, will produce a reflected wave trav-

elling toward Z and a continuing (refracted)^ wave travelling

toward T, neither of which has its phase reversed.

Return now to consideration of the difference in phase

between the ray reflected at the upper surface of the film, and

the one which has undergone one reflection inside the film.

We have found that the difference in path, expressed in wave-

lengths, is

2nt. cos r

X
To this must be added the equivalent of one half wavelength

on account of the dissimilarities in the two cases of reflection.

Therefore, interference will occur when

2at.cosr
I JL^N-K-

or when
2nt. cos r _

A
N being any whole number.
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As a matter of fact, the ray from Z is considerably weaker

than that from X, and therefore cannot completely neutralize

it. But if we consider the ray from U, which has undergone
three internal reflections, we see that its path exceeds that

from Z by exactly the amount by which the latter exceeds that

from X, viz., in wavelengths,

2nt. cos r

A
but that there is no occasion in either of the rays from Z or

U for the change of phase on reflection. Consequently the rays

from U and Z will differ by a whole number of wavelengths in

phase, and therefore will be in condition to assist one another,

when the rays from Z and X are opposite in phase, so as to

interfere. In the same way the rays that have undergone 5,

7, or any odd number of internal reflections, will also be in

phase with that from Z. It can be shown that the sum of the

amplitudes of the rays that have undergone 1, 3, 5, 7, etc.,

internal reflections is just equal to the amplitude of the ray

that has had only one external reflection. Consequently, when

the thickness t, the angle r, and the wavelength A are such that

2nt. cos r

A

a whole number, the eye will see no light whatever in this

direction.*

*There are certain considerations of continuity which would lead

us to believe, quite apart from the demonstration of figure 81, that a

change of phase must be caused by either internal or external reflec-

tion, and not by both. As a film becomes thinner and thinner, it

should approach, in optical qualities, the condition of no film at all;

in other words, a film whose thickness is very small compared to the

wavelength of light should fail completely to reflect light, allowing it

to pass through unimpeded. In fact, it is easy to test this point, for a

soap-film that is allowed to drain and evaporate becomes in some places

much thinner than the wavelength of visible light. Such places are

known as "black spots," and they have the appearance of irregularly

shaped holes through the film, although the fact that the whole film

does not collapse shows there is not a real hole. (Incidentally, this

experiment indicates that the diameter of a molecule must be much
smaller than the wavelength of visible light).

But, if there were no difference in phase introduced by the two
kinds of reflection, the only cause of phase difference would be dif-
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Now since, the thickness of the film being constant, the

condition for interference varies only with the angle of refrac-

tion, or what comes to the same thing with the angle of

incidence, then if the eye observes darkness in any such direc-

tion as EX it will also observe darkness in any direction, such

as EV, for which the angle of incidence is the same. That is,

it will observe a dark ring, subtending a cone whose angle is

XEV. Since darkness occurs whenever

2nt. cosr

A

where N may have any one of the integral values, 0, 1, 2, 3,

etc., there will be a series of such rings. It has already been

intimated that the eye must be focussed for parallel rays, as

if looking at an infinitely distant object, in order that these

rings may be seen. There is also another reason why they
look as if they were very distant: since the appearance of a

dark ring depends only upon the angle of incidence, and not

at all upon the position of the eye, if the latter be moved the

rings will move with it, instead of appearing fixed within the

film. In fact, they seem to be seen through the film, just as

one sees distant clouds or landscape through a window. For
these reasons, it is said that the rings of interference seen in

thin films of uniform thickness are "located at infinity."

The ring for which N 1 is called the ring of first order,

that for which N = 2 the ring of second order} etc. Of course,

the dark rings are separated by bright rings where the light

reflected from the upper and lower surfaces are more or less

in phase.

If white light instead of monochromatic falls upon the

film, a series of colored rings will be seen, instead of merely
dark rings separated by bright rings all of one color. In a

real soap-film the colors are of irregular outline instead of in a

ring pattern, because the film is never of uniform thickness

and the surfaces are usually not plane. Where the angle of

ference in path, and for vanishing thickness of the film all the reflect-

ed beams would have the same length of path. Th'us, experiment, as

well as general reasoning from the principle of continuity, indicate an

abrupt change in the phase of one of the reflected rays.
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incidence and the thickness are such as to produce interference

for light of a certain wavelength, other wavelengths are re-

flected without interference, and thus the colors are produced.

78. Non-uniform films. When a film is not of uniform

thickness, its two faces will not be parallel, and the theory of

the interference becomes much more difficult. One thing about

the interference bands produced in such a case, however, is in

striking contrast with those for films of uniform thickness,

viz., the fact that they are not located at infinity, but seem to

lie in, or very close to, the film itself. Figure 82 will show a

reason for this fact. AB and CD
are the two surfaces of a non-

uniform film, Sx an incident ray,

xE a ray reflected from the upper

surface, and zE' a ray emerging
after one reflection inside the film.

Figure 82

Under these circumstances, xE
and zE' are not parallel. In order that both, after entering the

pupil of the eye, shall be brought to focus at the same point of

the retina, the eye must be focussed, not upon infinity, but upon
the point where the two rays cross, which is either within the

film or close to it. The difference in phase varies with both the

angle of incidence and the thickness of the film, but principally

with the latter. Consequently a single dark fringe seen on the

surface maps out very closely the points of equal thickness.

Suppose one sheet of plate glass be laid upon another, and

viewed by the reflected light of a sodium burner. A very thin

film of air is left between the plates, which is usually quite

far from uniform in thickness, because the surface of commer-

cial plate glass is never really plane. Regions of equal thick-

ness of the air film are mapped out by curved bright and dark

lines. Suppose that at a certain fringe the thickness of the

film is 5A. Therr, along the next fringe on one side it is 5.5A,

along the next on the other side it is 4.5x. The thickness in-

creases by half a wavelength from fringe to fringe, because

the light reflected from the lower surface of the film traverses

the film twice. If one of the glass surfaces is known to be

plane, the method of fringes in reflected light may be used to
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test the other for planeness, and to show what parts must be

ground down.

79. The Michelson interferometer, A very valuable in-

strument, whose action depends upon the same principle as

interference in thin films, is the Michelson interferometer,

shown diagrammatically in figure 83. AB and CD are plane

glass mirrors, heavily silvered 011 their front surfaces, the

former fixed in position, the latter so mounted that it can be

moved backward and forward, in a direction perpendicular to

its own plane, by a fine-pitched screw. EF is another plane

glass mirror, set at an angle

of 45, and fixed in position.

On its upper right-hand sur-

face it is covered with a very

thin coat of silver, so that it

will reflect about half of all

light falling upon it and

> -
,

allow about half to pass

\> through, that is, it is a half-

silvered mirror. An extended

source of monochromatic

light, such as a sodium
Figure 83

flame, (Bunsen burner fed

with common salt) is placed at L. A small part of the light is

reflected from the lower unsilvered surface of the mirror EF,
but this is weak enough to be ignored. Of that which reaches

the half-silvered surface, half passes through to the fixed mir-

ror AB, is there reflected back to EF and is again half re-

flected, to the eye placed at I. The other part of the light!

which, coming from L, strikes the half-silvered surface, is

reflected to CD and back again, and half of it passes through
EF to the eye. The difference in path between these two

beams causes interference fringes to be seen. The fourth glass

GH is added because without it one of the interfering beams

would pass through three thicknesses of glass, the other only

through one. GH must be of the same thickness as EF and

parallel to it, but it is not silvered.

So far as the eye is concerned, we may regard the fixed

mirror AB as replaced by its image, seen by reflection in EF,
which would come in some such plane as ab. If AB be ad-
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justed, by means of screws provided for that purpose, so that

its image is accurately parallel to CD, we shall have in effect

light reflected from two plane and parallel surfaces, ab and

CD, just as in figure 80, with the single exception that when
we are dealing with a real film, as in figure 80, multiple reflec-

tions occur within the film, causing a series of reflected beams,

while here we have only two. The interference fringes will

therefore be a system of concentric circular rings, apparently
located at an infinite distance.

Any displacement of the movable mirror CD will change

the thickness of the hypothetical airfilm between CD and ab,

and cause a corresponding change in the rings, either an

increase or a decrease in their diameter. In order to determine

whether an increase in the distance ab to CD causes the rings

to enlarge or diminish, let us fix our attention on a certain

dark ring, say of order 200. We have seen that the difference

in path, expressed in wavelengths, will be

2nt. cos r XT .- = N
A

Here, n = 1, because the film is air, and therefore the angles

of refraction and incidence are equal. Also, N = 200. There-

fore

A

t is of course the distance ab to CD. If t increases, the factor

cos i must decrease by the same amount, in order that the ring

of order 200 shall still be seen. But a decreasing cosine means

an increasing angle, and therefore, for greater thickness of the

airfilm, one must look more obliquely in order to see this ring,

that is the ring enlarges. All the rings enlarge as CD moves

away from ab, and spots appear in the center one after another

and expand to form new rings. Conversely, if CD moves

toward ab. the rings all decrease, and one after another they

shrink to mere spots in the center and disappear.

The appearance or disappearance of each bright spot at

the center indicates that another half wavelength has been

added to or subtracted from the thickness of the airfilm. For
in the center the incidence is normal, that is, i = 0, and the

path-difference becomes merely 2t. It is therefore easy to de-
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termine accurately how far, in terms of light wavelengths, the

mirror CD is moved, by simply counting the number of rings

that appear or disappear at the center and dividing by 2.

Professor Michelson has used this instrument to find the length
of the standard international meter, in terms of the wavelength
of a red line in the spectrum of cadmium. The actual details

of the experiment were complicated and laborious, but the

degree of accuracy obtained was marvelous. A very readable

account of this and of other scientific uses of the interfero-

meter will be found in Michelson 's book "
Light Waves and

their Uses."

If the fixed mirror AB is so adjusted that its image ab is

not parallel, but slightly inclined to CD, we shall have the case

of a non-uniform film, and the bands, instead of being circular,

will be nearly straight, mapping out regions of approximately

equal thickness. Instead of being located at infinity, they will

seem to lie near ab and CD. A movement of CD causes them
to move across the faces of the mirrors.

80. Newton's rings. The interference phenomenon known
as "Newton's rings" is a matter of considerable historical inter-

est. As its name indicates, it was known to Sir Isaac Newton.

It is clearly an example of interference in an airfilm whose

thickness is not uniform, but Newton, refusing to entertain the

wave theory, gave a different and somewhat cumbersome ex-

planation which now has no interest for us.

These rings are produced by placing upon a plane piece

of glass a plano-convex lens of very slight curvature, convex

side in contact with the plane glass. Between the two pieces

there is a film of air, whose thickness varies from zero in the

middle, at the point of contact, to a great many wavelengths
at the edges. Figure 84A is a photograph of this arrangement
as it appears when illuminated from the front by monochro-

matic light. In this photograph the light was of violet color,

and was obtained by separating the light from a mercury-are

into its spectrum. The fringes appear somewhat elliptical in the

figure, because the photograph was necessarily taken somewhat

obliquely. They are in fact circular, marking regions of equal

thickness. The center, where the two glasses come into con-

tact, is always black, corresponding to zero difference in path,
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unless dust or some other obstruction prevents actual contact.

Figure 84B is the same thing when illuminated by white light,

instead of monochromatic. The difference will be explained

later.

81. Fabry and Perot interferometer. If the student will

refer again to figure 80, he will readily understand that not

only the reflected light, but also that which is transmitted

through the film, should show interference fringes.. For some

of the light passes through the film without being reflected,

some passes through after two internal reflections, some after

four, etc., and these different rays, all parallel on emergence
from the film, should be in a condition to interfere for certain

angles of incidence. Such fringes are indeed seen in the

transmitted light, but they are rather weak, because the ray

that passes through without reflections is so much stronger

than any of the others that the interference is not complete.

Only faint brighter and darker rings on a rather bright back-

ground are seen.

Fabry and Perot conceived the idea of diminishing the

intensity of the first ray, and increasing that of all the others,

by lightly silvering the surfaces of the film. Under these cir-

cumstances, the contrast between bright and dark rings becomes

much greater, and besides the bright rings become much

sharper, something like spectral lines, that is, the width of

the bright part is much less than that of the dark part. On
this principle, they have developed a type of interferometer

that is known by their names, which for some purposes is

superior to that of Michelson. Its essential parts are two discs

of perfectly plane glass, parallel to one another, one of them

fixed and the other movable by means of a screw in a direction

perpendicular to its own plane. The two surfaces turned

toward one another are lightly silvered, and the layer of air

between is the film in which the interference takes place. Only
the transmitted light is used. The thickness of the air-film is

altered by turning the screw. This instrument has been much

used in recent years for determining wavelengths. It is more

accurate than a grating for this purpose. The technique of its

use, however, is somewhat involved.

82. Interference in white light. In any interference ex-

periment, it is found to be impossible to observe interference
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fringes if white, or composite, light is used, except when the

difference in path amounts to only a few wavelengths. In most

experiments, matters are so arranged that in part of the field

of view the difference in path of the interfering rays is zero

or nearly zero, while in other parts it may be many wave-

lengths; but in some, as with a thin film whose thickness is

uniform but amounts everywhere to say more than six or eight

wavelengths, the difference in path is always relatively large.

In cases of the latter sort, fringes are absolutely invisible with

white light, though they may be very clear with monochromatic

light. In cases of the former sort, white light shows a few

fringes, usually not more than ten or a dozen, where the differ-

Figure 84

ence in path is quite small, but none whatever in the rest of

the field. Consider, for example, Newton's rings. Here the

thickness of the air-film ranges from zero, where the lens and

the flat disc come into contact, to larger and larger values as

we recede from that point. Figure 84B is a photograph of the

rings when the light comes from a tungsten filament lamp,

and is therefore composite white light. It does not reproduce
the visual appearance quite faithfully, because the range of

wr

avelengths for photographic sensitivity is somewhat different

from that for visual sensitivity, but the general character is
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the same. 84A, on the other hand, is taken with monochroma-
tic light, and the difference is striking. In the original photo-

graph, fine clear rings may be counted clear out to the edges
of the disc in 84A, while in 84B only a few can be seen. These

last of course were brilliantly colored in the original object.

In order to explain the difference, suppose that, by means
of a lens, an image of the ring-system in white light is focussed

upon the end of the collimator of a spectroscope, and that the

slit can be moved sideways so as to admit to the spectroscope

light from any chosen part of the ring-system. First, let it be

placed to receive light from a point where the air film is

.000018cm. thick. We suppose the illuminating beam of light

falls-upon the lens and disc perpendicularly, so that the differ-

ence in path for the interfering beams is twice the thickness,

or ,000036cm. We have seen that, because of the reversal of

phase on reflection from the rarer side of a boundary, destruc-

tive interference takes place when this difference in path is one

wavelength, or any integral number of wavelengths. There-

fore absolutely no light of wavelengths .000036cm., .000018cm.,

.000012cm., etc., will enter the spectroscope. Only the first of

these would be visible light, deep violet at that, the rest are

far in the ultraviolet and have no effect upon the visible

appearance of the fringes. For light of wavelength .000072cm.,

(deep red), the difference in path is A/2, and since the reversal

in phase of one of the interfering beams is equivalent to an-

other half wavelength very strong light of this color would

enter the spectroscope. Therefore the spectrum would be very

strong at the red end, fading off into absolute darkness at the

violet end. Without the use of the spectroscope, this part of

the ring-system would appear reddish, or rather orange, for

the presence of some color of wavelengths shorter than red

would undoubtedly alter the appearance somewhat toward the

yellow side.

Now let the slit be shifted to receive light from a place

where the thickness of the film is twice as great, .000036cm.

The difference in path is now .000072cm., and the wavelengths

destroyed by interference .000072cm. (deep red), .000036cm.

(deep violet), .000024cm. (ultraviolet), .000018cm. (ultravio-

let), etc. The spectrum would then be quite dark at both ends,

shading into brightness in the middle, about the green. The
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color at this part of the ring-system as seen by the unaided

eye would undoubtedly be green.

Change the slit again, so as to receive light from a place

of thickness .000072cm., path-difference .000144 cm. The wave-

lengths destroyed by interference would be .000144 (infra-red),

.000072 (deep red), .000048 (blue-green), .000036 (deep vio-

let), and certain ultraviolet wavelengths. The visible spectrum
would be dark at each end and have a dark band near the

middle, at the blue-green, but it would be very bright in the

yellow and also in the blue of shorter wavelength, the bril-

liancy shading off into darkness at the two ends and in the

middle. The color as seen without the spectroscope would be

a compound of strong yellow and strong deep blue, with some

orange, green and blue-violet. It would probably be nearly

white, somewhat yellowish.

In the first case, the spectrum has a single dark band, at

the violet end, in the second, a dark band at each end, in the

third one at each end and one in the middle. Of course, as the

bands become more numerous, they also become narrower, for

there is always a bright region between two dark regions. In

each case, one of the dark bands has come at wavelength

.000036, but that is only because we chose places where the

difference in path was equal to that wavelength or a multiple

of it. With the choice of another point, it would have been

found that the deep violet was bright instead of dark. Since

an increase in the thickness of the film causes more dark bands

in the visible spectrum, let us see how many there would be

at a place where the film is considerably thicker, say .000216cm.

The path-difference is .000432, and the wavelengths destroyed

by interference are found Ipy dividing this length by the sep-

arate integers, 1, 2. 3, 4, etc. They are

.000432 .000072 .000033

.000216 .000062 .000031 ultra-

.000144 infrared .000054 .000029 violet

.000108 .000048 visible etc.

.000086 .000043

.000039

.000036

There would then be seven dark bands in the visible spectrum,

with bright bands between. What would be the color of such
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light? "White light with the violet end of its spectrum sup-

pressed would be reddish, with the red end suppressed bluish,

with both ends suppressed greenish, with the middle alone

suppressed purple, and so on. But when a large number of

wavelengths, distributed regularly throughout the 'spectrum,

are cut out, there is no reason why the remaining light should

show one color more than another, since it contains constitu-

ents from all the spectral regions in the more general sense,

though not light of every particular wavelength. Therefore,

at such a place the color would be simply white, indistinguish-

able to the eye alone from the light with which the two discs,

flat plate and lens, are illuminated. Evidently the same con-

dition holds over all parts of the air-film where the thickness

is several times the wavelength of red light or greater, and

since all such parts are white, they will appear uniformly
illuminated and no fringes will be distinguishable, although

in monochromatic light they could be clearly seen.

The proof given above for the case of Newton's rings will

evidently hold good just as well for any sort of interference

experiment, so that we never observe interference fringes with

white light unless the difference in path between the interfer-

ing beams is not more than a few wavelengths.

83. Rainbows. The colors of rainbows are caused partly

by interference, partly by a dispersion of light passing through

raindrops, very similar to the action of a prism. The approxi-

mate positions of the principal bows is given by considering

only the dispersion by the raindrops. The modifications intro-

duced into the theory by the interference phenomena are diffi-

cult to understand, and they will be omitted from the discus-

sion here given.

We shall first take up the primary bow, the only one that

is usually seen. In order to see it, the back must be turned to

the sun, and then it appears, if there are any raindrops in the

right position and the direct sunlight reaches them, as an arc,

whose center lies on a prolongation of a line from the sun

through the eye of the observer. If the observer changes his

position, the bow seems, to move with him, so that the bow,
the sun and the observer always keep the same relative position.

Since this is what would happen if the bow were infinitely

distant, we say that, like the rings seen by reflection in a thin
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uniform film, the bow is located at infinity. This is true even

when it is formed by water drops quite close at hand, as in the

spray from a fountain. The bow seems to move- through the

fountain as the observer moves, instead of staying fixed in it.

The bow is caused by light that has suffered two refrac-

tions and one reflection: that is, by light that has been re-

fracted into the raindrop, reflected once inside, and then re-

fracted out again. Of course, the refractions cause a disper-

sion of the light, just as a prism would, but the case is less

simple than that for a

prism, because the sur-

faces of the raindrop

are curved while those

of a prism are plane.

When parallel rays fall

upon a prism, all the

light of a given wave-

length will be refracted

into the same direction.
but in the case of the spherical drop they are spread out into a
number of different directions. This can be seen from figure 85,
where three parallel rays from the sun are drawn, striking the

sphere at slightly different positions, therefore having different

paths through the drop and emerging in quite different direc-
tions below. The angle D, between the direction of a ray before

entering the drop and its direction after leaving, called the
deviation of the ray, is different for rays striking the surface
at different angles of incidence. It is not difficult to show thai
for any ray

D = 180 + 2i 4r

where i is the angle of incidence and r the corresponding angle
of refraction. If we calculate and plot the values of D for
various values of i, using of course the relation that

sin i = n. sin r

n being the index of refraction of the drop for the particular
wavelength we are considering, the graph will come out to be
like that of figure 86. For increasing values of i, the value of
D first decreases, then increases. If we take n = 1.33, which
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61
*

Figure 86

is correct for a certain part of the yellow, the minimum value

of D is 138, and it occurs when i = 61. This property, that

D has a minimum value, is of

great importance, for evidently it

rays having a deviation in the i

immediate neighborhood of 138

would be far more numerous than

those having a deviation consid-

erably more than this, and there

are none at all with a deviation

less than this. Therefore, al-

though not all of the light of the wavelength in question is sent

out from the drop in one direction, most of it is sent out very

nearly in one direction.

Now a ray having a deviation 138 would come to the

observer's eye as from a direction making an angle of 180

138 = 42 with a line drawn from the sun through the eye,

as shown in figure 87. Therefore all drops situated upon a

cone of half-angle 42, with the 'eye as apex, would send to the

eye a greater amount of

light of this wavelength

than any other drops, and

the observer would see a

yellow circular arc. If we

take red light, whose in-

dex of refraction is small-

er, the angle of minimum
deviation would be smaller

than 138, and therefore

the half angle of the cone

on which lie the drops

giving maximum red light would be greater than 42, that is,

the red circle would be outside the yellow, and correspondingly

the circles for shorter wavelengths would lie inside. Therefore

the bow is red on the outside and violet on the inside. Notice

that the drops giving the maximum red light are not the same

as those giving the maximum of other colors, and that if the

observer changes his position the drops which formerly sent to

him any particular color will no longer be in the proper direc-

tion to do so, and their function will be supplied by other

138'-'

Figure 87
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drops which are in proper relation to his new position. This

accounts for the bow appearing to be at an infinite distance.

Notice also that, because a drop sends riot all, but only the

greater part, of its light in one general direction for a given

wavelength, there will be a great deal of overlapping of colors.

A given color overlaps all the other colors that lie within it,

that is, red overlaps all the others, orange overlaps yellow, green,
blue and violet, yellow overlaps green, blue and violet, etc.

Only the red is even approximately pure.

The angular radius of the bow is somewhat modified from
the figures given above (42 for the yellow, etc.) by the inter-

ference phenomena already mentioned, which we shall not dis-

cuss here, and by the fact that the sun is not a point-source

but subtends a definite angle.

Not all the light that enters a raindrop traverses such a

path as is shown in figure 85. Some is reflected at the first

incidence, without entering the drop. Some is refracted out

where it strikes the surface the second time, without any internal

reflections, and this light might also form a bow, but that there

is for this case nothing like a minimum deviation. Some light

is refracted out of the drop after two internal reflections, some

after three, etc... and theoretically there should be a bow for

each such case. The second bow, that formed after two inter-

nal reflections, is in fact often seen. It is formed outside the

first bow, and has its colors in reverse order, and it is of course

fainter. The theory of its formation is quite similar to that

for the first, except that the light which forms it comes into

the drop from the lower side and emerges from the upper side.

The third and fourth bows, possible in theory, are still fainter

than the second, and to make matters still more unfavorable

they come in the bright part of the sky near the sun. There-

fore they cannot be seen. Bows of still higher order are

inherently too faint for visibility.

Rainbows are often classed with other natural optical

phenomena of the atmosphere, such as halos, coronas, mock-

suns, mirages, etc., under the general heading of "meteorologi-

cal optics." A good account of many of these phenomena is

given in Wood's "Physical Optics," or in "W. J. Humphreys'

"Physics of the Air," part III.
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84. Motion relative to the ether. In section 68 it was
shown how the Doppler effect, applied to the spectrum of a

star, gives us a means of finding the relative velocity of the

star with respect to the earth. It was also stated that veloci-

ties measured in this way are usually corrected for the earth's

orbital velocity so as to give the star's velocity referred to the

sun. "Whether the sun itself is in motion or at rest is a ques-

tion without sense, for we cannot specify motion without refer-

ring to some body which we regard as fixed. In other words

we can conceive of motion only as a relative matter, and abso-

lute motion is an absurdity.

But it is not absurd, on the face of things, to speculate

whether the sun is at rest or in motion with regard to the

ether, since up to the present we have regarded that medium
as if it partook in some measure of the nature of ordinary

material things. A passenger in an airplane or submarine

could readily tell that he was moving with respect to the sur-

rounding air or water, even without taking note of surround-

ing solid objects, and it is conceivable that some optical ex-

periment might enable us to detect and measure our velocity

with respect to the ether.

In 1887 Michelson and Morley carried out an experiment

devised with the above purpose in view. It was based on the

assumption, already tacitly made

in the discussion of the Doppler

effect, that the velocity of light-

waves hi the ether, like that of

sound-waves in air, does not par-

take of the velocity of the body
which emits them. If, in figure

88, a body moving from Q toward

P emits a wave when it is at the

point X, this wave spreads out

into an enlarging circle whose cen-

ter remains at X and does not follow the emitting body. If the

circle, with X as center, has a radius equal to c, the velocity of

light, then it would represent the wavefront one second after

emission. If the velocity of the body itself is v, then at the end

of the second it would be at the point Y, where XY = v. If
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this is the case, then to a person moving with the emitting

body the velocity of light should appear to be unequal in

different directions. Toward P the velocity would be YP =
c v, toward Q it would be YQ = c + v, and toward R, at

right angles to the line QP, it would be YR = \/c
2

v*". Now
refer to the diagram of the Michelson interferometer, figure 83,

remembering that the inter-

ference is between two beams

going from the diagonal mir-

ror EF, one up to AB and

back, the other to CD and

back. Let the instrument be

adjusted till these two paths

have exactly the same length,

and then suppose the whole

interferometer to be mounted

upon some base which is mov-

ing rapidly to the right in

figure 83 with a velocity v.

The two paths, in spite of being equal in length, would then

not include the same number of wavelengths, because the veloci-

ty of the light, with respect to the interferometer, would be

different in different directions. From the diagonal mirror to

AB and back, it would be Vc2 y2
5
from the diagonal mirror

to CD it would be c + v
;
from CD back to the diagonal mirror

it would be c v. Consequently, the fringes would be slightly

shifted from their position when the instrument was at rest

with respect to the ether. If it were turned through 90, so

that the path from EF to AB lay along the direction of the

velocity v, the shift would be in the opposite direction. Instead

of calculating the amount of the shift, we shall merely calcu-

late the difference in the time for the two interfering beams

of light to come together again after the separation. If d is

the distance from the diagonal mirror to either of the mirrors

AB and CD, the time required for the beam that goes up to

AB and back is

Figure 83

2d



RELATIVITY THEORY 173

approximately, while that required for the other beam is

d d 2cd 2d v2 v4 2d .

,

v 2

+-v ^c-^-?=V^^ (1 + ?-f c-+ etC -)=T (1 + ^
approximately. The terms in the fourth and higher powers of

v/c have been dropped because any attainable velocity of matter

is so small compared to that of light.

The difference in these two times is v2
d/c

3
. If we use for

v the orbital velocity of the earth, this difference is exceedingly

small. But the interferometer is an exceedingly sensitive in-

strument, and Michelson and Mbrley were able to increase its

sensitiveness by introducing a number of additional reflections

whose effect was to increase the distance d. The whole was

then mounted upon a stone slab floated in mercury so that it

could be turned about a vertical axis. It was turned so that

first one arm, then the other, was parallel to the earth's orbital

motion, but the expected shift of the interference fringes did

not take place.

85. The relativity theory. This failure of Michelson and

Morley's experiment was a crisis in the history of physics.

There can be no doubt that the earth is actually in motion,

and that the apparatus should have detected this motion if no

blunder was made in the theory. If light takes on the velocity

of the emitting body, as it would if Newton's corpuscular

theory were correct, then the failure of the experiment is what

we should expect, but this seems impossible if light consists of

waves. Some physicists indeed have favored throwing over

the wave theory, and the ether with it, but this cannot be done

in view of all the phenomena of interference. Fitzgerald and

Lorentz have pointed out that the Michelson and Morley ex-

periment can be reconciled with the wave theory if we assume

that ;a body in motion is very slightly shortened in all those

dimensions that lie parallel to its motion. Later a complete

doctrine known as the
"
Relativity Theory" was worked out,

based on two fundamental postulates: first, that it is impossi-

ble to detect by any means any relative motion between matter

and the ether, second, that the velocity of light in the free

ether will always come out the same, no matter under what

circumstances it is measured. From these postulates the change
of dimensions of a moving body suggested by Fitzgerald and
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Lorentz follows as a necessary consequence, but it also follows

that the mass of a body is changed, and that the time-unit is

altered, by motion. All these changes are exceedingly small

unless the velocity becomes comparable with the velocity of

light.

Einstein has in recent years extended the relativity prin

ciple to accelerated, as well as to steady motion, as a result of

which he was led to predict, among other things, that a beam
of light in passing near a body with a strong gravitational

field, like the sun, would be deflected. This prediction has

been apparently verified by observations during a recent solar

eclipse. The complete theory involves fundamental changes in

our idea of time and space, and is very metaphysical and

mathematical, as well as physical.

Problems.

1. Show that, in the circular fringes produced by uniform

films, a ring of small angular diameter corresponds to interfer-

ence of a high order, that is, a high value of N. Find the

highest order of interference for a film of glass, index 1.54,

1/10 mm. thick, for light of A .00005 cm.

2. What would be the effect upon the fringes seen in the

Michelson interferometer, of inserting a very thin slip of glass

into one of the arms, say between CD and EF of figure 83?

3. Show that, in the phenomenon of Newton's rings, the

radii of successive dark rings are approximately proportional

to the square-roots of the successive integers, assuming that the

thickness of the film alone determines the interference.

4. Prove the statement in paragraph 83, that D = 180 +
2i 4r.



CHAPTER X.

86. Simple harmonic motion. 87. Velocity in S. H. M. 88. Accel-

eration in S. H. M. 89. Energy in S. H. M. 90. Two parallel S. H.

M.'s. 91. Application to cases of interference. 92. Two S. H. M.'s at

right-angles. 93. Lissajous figures.

86. Simple harmonic motion. In all wave phenomena, we
are much concerned with a particular kind of vibratory motion

known a simple harmonic motion, and this name will occur

so frequently in this chapter that we shall at the outset adopt

for it the abbreviation S. H. M. Its definition is as follows:

The motion of a body P, figure .89,

is simple harmonic along a line MN when

it moves so that if a body be imagined

travelling at a uniform rate in a circle

with NM as diameter, P keeps always at

the foot of a perpendicular drawn from

O to MN. The time in which com-

pletes the circuit, which is the same as

the time in which P passes from M to N Figure 89

and back again, is called the period, and will be represented by
the letter r. The distance CM, half the range of motion P, called

the amplitude, will be represented by K. The distance CP, repre-

sented by y, from the middle position of P to that position

which it momentarily occupies, is the displacement; and the

corresponding angle OCM, represented by <j>,
is the phase. K

and T are constants for the motion, while y and < are variable

with the time. We consider y to be positive when P is above

C. negative when it is below, so that y varies from K to K,

oscillating between these values.

Our first problem will be to find a mathematical relation

between the displacement y and the time, represented by t.

Since P is at the foot of the perpendicular from 0, cos. <

CP/CO, therefore

y =1 K. cos
(j>

Since moves uniformly in a circle, the time required for it

to move through the angle < will be to the time necessary to

(175)
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complete the circuit, as
<f>

is to 2?r. Therefore, if we are to

count time from the instant when P is at M, the end of its

path, t : T : :
(j> :2ir, or

4 27rt/T

and

IT 2?rt

y = K. cos

Often, however, it is convenient to count time, not from a

particular instant such as that when P is at the end or at the

middle of its path, but from some instant chosen at random,
as when P is at such a point' as Q and the corresponding posi-

tion for is at S. Our formula may easily be modified to suit

this more general condition. Represent the angle SCM by ft.

Then, since, during the time t, has moved through the angle

SCO = < + ,
instead of

t : T : : < : 2,r

we must write

t :r : : (<f> + /3] : 2,r

giving

and

K cos^ B\ (1)
\ a

. 7

This is the required mathematical relation between y and

the time, and may be called the equation of the S. H. M. y
could easily enough have been put into the form of a sine

instead of a cosine, by simply considering the complement of

<f> instead of
<f>

itself. We might then have simply defined a

S. H. 'M. at the start as a motion in which the displacement

is a sine or cosine function of the time, and so avoided speak-

ing of the body of the figure, which is purely imaginary,

and was introduced only to make the definition easier to think

of physically.

There is a close relation between equation (1) above and

equation (5) of chapter III, which is

yrnK.COS (x Vt e)
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The latter, since it is the complete equation for a wave, in-

volves, besides the variables y and t, the third variable x,

which is the distance from a fixed origin, measured in the

direction in which the wave is progressing. But, if we fix our

attention upon a definite position in the medium, and consider

only the motion there, x will be regarded as, for the time

being, a constant, and therefore we may bracket it with the

other constant e. The equation then becomes

r2,rVt 2*, Jy = K. cos --- (x e)
L a a J

(The sign of the quantity whose cosine is being taken has been

changed, because the cosine of a positive angle and the cosine

of an equal negative angle are always the same.) Now V is

the velocity of the wave and a is the wavelength, as can be

seen by referring back to section 21, and therefore a = VT or

V/a=l/r
Therefore we can write

[2irt 2*
,

1
y K cos --- (x e)Ira J

This is exactly the same form as equation (1) above, the place

of ft being taken by 2?r(x )/a. Therefore any definite part

of the medium must, when a monochromatic wave passes

through it, go through a S. H. M. The value of the phase-

constant ft is greater the farther along be the point considered ;

that is, although a point far from the source goes through the

same motion as a point nearer, it is behind it in phase.

The relation between y and

t, expressed in equation (1), is

very well shown in a graph such

as the heavy curve D in figure
Si-r ^ * ^ \ ^ 90, where t is the abscissa and y

the ordinate. It is the same kind

\ / of curve as those shown in figure

19, except that there the abscissa

was distance, while here it is time.

Evidently the maximum height or depth of the curve, measured
from the horizontal axis, is the amplitude K, while the distance
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ac is the period T. Those portions of the curve that slope up-

ward to the right indicate that P in figure 89 is moving up,

while those that slope downward to the right indicate that P is

moving downward. The graph is drawn not only to the right of

the origin, but also to the left, corresponding to negative times,

for we may certainly suppose that the motion was going on

before the instant from which we measure time. In fact fO
is the time it took, or would take, for P to move from C out

to Q, and Om is 'the time to move from Q to the end of ttie

path.

87. Velocity in S. H. M. The simplest considerations show
that the velocity of the moving point P must be zero at either

end of its path, and greatest when the displacement y is zero.

Since P is moving sometimes upward and sometimes downward,
we shall agree to call the velocity, v, positive when P is moving

upward, whether it is actually above C or below it, and nega-

tive in the contrary case. Then if we draw another graph, in

which the abscissa again represents time but the ordinate the

corresponding velocity, it will be similar to the displacement'

curve, having the same period, but it will cross the axis at

points where the displacement is greatest, in a positive or a

negative direction.

The velocity-curve could be constructed graphically from

the displacement-curve by means of the following considera-

tions: A velocity is the ratio of a very short distance to the

very short time in which that distance is traversed, that is

v = limit <^
At

The symbol /j placed before a quantity means a very small

increase in that quantity, so that zlt indicates the time

in which the displacement of P increases by the small amount

Ay- But in a graph with Cartesian coordinates, the slope of

the tangent is also the limit of Ay/At- Therefore, the velocity

of P at any instant t can be gotten from the displacement-

curve by simply measuring the slope of the tangent, at a

horizontal distance t from the origin. If the slope found be

erected as another ordinate, the curve so constructed will be

the required velocity-curve. The curve V in figure 90 is con-

structed in this way. The amplitude is not necessarily the
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same as for the displacement-curve, and whether it is greater

or less depends upon the value of the period. It is evident

from figure 90 that a shortening of the period would increase

the slope of the D-curve, and also from physical considerations

it is clear that, the shorter the period, the greater would be

the velocity with which the body swings through its middle

position.

The mathematical formula for the velocity-curve is derived

as follows: Suppose the time, initially represented by t, in-

creases by a small amount At. The initial displacement is

The displacement after the change in time is

/ 27Tt
,

27TZlt \
y + /ly = K. cos ( p +

J

The last equation may be expanded by making use of the trigo-

nometrical relation for the cosine of the sum of two angles,

cos (x -j- y) = cos x cos y sin x sin y

letting
--

ft take the place of x and
'

that of y.

We then have

K. sin
/2irt \ . ^At
I P jsin

^-

Since we are to find the limit of the ratio Ay/At, in which

At approaches zero, and since the cosine of an angle approaches

unity and the sine approaches the value of the angle itself

when the angle becomes very small, we may make the follow-

ing substitutions:

cos- = sin
T T

Therefore, in the limit,

/ 2rrt _ \ 27rzlt / 2irt \

y + Jy =
K.cos(

ft
J

--
.

K.sm^
ft

J.

If we subtract from this equation the equation giving the

value of y itself, we get
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_ . /2,rt
Ay -- . K.sml --

r \ r

and if we divide by Jt, we get

Ay 2-rrK
, /2irt \

v limit 7=-- sin -- 8] (2)
At T \ r /

This is the equation for the velocity-curve V in figure 90, or

the formula for the velocity.

88. Acceleration in S, H. M. It is necessary also to con-

sider the acceleration, or rate of change in velocity, of a body
in S. H. M. It is defined as

a = limit
At

therefore it bears the same relation to the velocity as the latter

bears to the displacement, and the acceleration-curve can be

drawn by plotting, for each value of the time, the correspond-

ing value of the slope of the V-curve. The dotted curve A is

obtained in this manner. From what has already been said

of the relation between the V-curve and the D-curve, it follows

that the A-curve will have its peak just where the V-curve is

crossing the axis on the rise, and this of course entails that the

peak of the A-curve and the trough of the D-curve come at the

same time, in other words, the acceleration and the displace-

ment are exactly opposite in phase.*

The equation for the A-curve can be derived quite easily,

by the same method we used for the V-curve. The velocity v

at a given instant t -is

*It is sometimes difficult for a student to conceive that the body P,

figure 89, actually has its greatest acceleration when it is at the bottom

of its path, and the velocity is momentarily zero. It must be borne in

mind that just before P reaches the bottom its velocity is downward
in direction, while just afterward it is upward, so that it is precisely

at this point that the velocity is changing most rapidly. There is no-

thing incompatible in a body having a considerable acceleration when
its velocity (for a single instant only) is zero. For instance, a stone

thrown into the air has the acceleration 980 cm. per sec2
, even at the

instant when it is at the top of its path.
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2^K /2rf \= ---
. sm R

\ r '

/

let t be increased by the very small amount At, and let Jv be
the corresponding increase in v. The new value of v is

L r r J

Remembering that sin (x + y) = sin x. cos y + cos x. sin y, and

substituting
'

-
(3 for x and for y, we have

2irK /27rt _ \ 27rjt 2?rK /27rt \ 2irZ
f- Av = . sm

( p ). cos . cos ( B ) . sm
T \ T / T T \ * / T

Again considering that we are to take the case of the limit,

we substitute

27rZlt 27rZlt 2*At
cos 1 sin =

T T T

27rK . / 2irt \ 47r
2K/(t / 2^rt

T \ T / T2 \ T

Subtracting the value of v itself,

4rr
2
Zlt /27rt

T2
\ T

and dividing by Jt,

a = limit = cos
At r

2

Another form for the equation may be obtained by sub-

stituting y instead of the factor

which gives

47T
2a^-y (4)
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The minus sign in equation (4) indicates that whenever

the displacement is upward the acceleration is downward, and
vice versa, which means of course that the acceleration, and

therefore the force acting, are always such as to drive the body
back to its central position, C. The equation also shows that

the acceleration is directly proportional to the displacement,

the factor of proportionality being 4-n-
2 divided by the square

of the period.

89. Energy in S. H. M. A body in S. H. M. is of course

.endowed with a certain amount of energy, which will be con-

stant unless there are some disturbances. At the end of the

swing the energy is all potential, while at the middle it is all

kinetic, and at other positions it is partly potential and partly

kinetic. The simplest way to find an expression for the total

energy would be to find the potential energy at the end of the

swing or the kinetic at the middle. We shall do both, and

show that the same expression is found in each case.

The potential energy at the end of the path is the work

that must be done to pull the body out to that point, starting

with it at rest in the central position. Work is force applied

times the distance moved, and the force is the body's mass, m,

multiplied by the acceleration which the force, acting alone,

would produce in it. If the body be pulled out slowly enough,

this acceleration will be just equal and opposite to that which

the body has when freely swinging, which we have found to be

47r
2
y/T

2
. Therefore the force applied must be the mass m

multiplied by the equal and opposite acceleration -)- 47r
2
y/r

2
.

That is

F rr:

We cannot get the work by mul-

tiplying this expression by the

whole distance moved, K, for y is

a variable, and therefore F is also,

having the value zero at the be-

ginning of the motion and the

value of 47T
2mK/r2 at the end. We must calculate the work

by infinitesimal steps, F having a different value for each

step. To do this, consider figure 91, in which OQ is a graph
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whose abscissa is y and ordinate the corresponding value of F.

In accordance with the above equation, it is a straight line.

The distance OP represents the whole distance moved, or K,
while PQ is the force necessary to hold the body still at the

end of its path, ^rrmK/T2
. We shall prove that the work done

in pulling the body out to the end of its path is equal to the

area of the triangle OPQ.
Recalling that the work must be calculated step by step,

let us see how much work is done in moving the body from C
to C', the distance CC' being supposed very small. At the

beginning of this step, the force applied is CD, and if it con-

tinued to have this value through the step, the work would

be CD X CC', which is the area of the rectangle CDd'C'. At

the end of the step, the applied force is C'D', and if it had

this value throughout the step the work would be C'D' X CC',

the area of the rectangle CdD'C'. Evidently the actual work

done during the small motion fronTC to C' lies between these

two values, and when we consider the work done during the

whole motion from O out to P, it follows that this lies in value

between the area of the stair-shaped figure extending above

the line OQ and that of the similar figure all of which is below

OQ. If the steps are made smaller and smaller, the area of

each of these figures comes nearer and nearer to the area of the

triangle OPQ, therefore we can say that, in the limit, the work

done is equal to the area of that triangle, that is, the potential

energy at the end of the swing, or the total energy at any time,

The calculation of the kinetic energy when the body is

passing through its central position is easy. For kinetic energy
is one half the mass times the square of the velocity, and the

velocity in the central position is simply the greatest value

that the body can have, which is gotten from equation (2) by

putting the sine equal to 1. Therefore the kinetic energy at

this point, or the total energy of the body at any time, is

the same expression.
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The fact that the energy of a body in S. H. M. is propor-

tional to the square of the amplitude of vibration is quite im-

portant, but it is, after all, what we might have expected. For,

in order to set a body in vibration, first with an amplitude of

1 inch, and later with an amplitude of 2 inches, we must not

only pull it out twice as far in the second case, but also exert

a force whose average value is twice as great so that the work

done is four times as great.

90. Two parallel S. H. M.'s. In examples of interference,

and in other problems in light or sound, it is often necessary

to consider the application simultaneously of two S. H. M.'s

to the same body. We shall suppose that the two motions have

the same period, and are in the same direction, but they may
differ to any degree in amplitude, and they may have the same

phase, opposite phases, or any desired difference in phase. An
excellent example of the superposition of two S. H. M.'s in

this way, where the motion however is applied to an illumi-

nated spot on a screen instead of to a material body, is shown

in figure 92. H is a hole through which streams a beam of

L

Figure 92

light from the sun or a bright artificial source, L a lens, A
and B two tuning forks, S a white screen. The forks have

the same period and are arranged to vibrate in the same plane.

Each has a small mirror (M t and M2 ) mounted on one prong,
and the parts are arranged so that the light is reflected from

Mt to M2 , and thence to the screen, where it comes to a focus,

forming a small round image of the hole H. If either fork is

set in vibration while the other is held still, the illuminated

spot will be set into S. H. M. If both forks are vibrating to-

gether, the spot will also have a vibratory motion. We are to

find out whether this motion is simple harmonic, and if so

what its amplitude and phase-constant will be.

Suppose that the motion of the spot due to the first fork

alone is represented by the equation
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= K! COS
r

that due to the second fork alone by

It is unnecessary to put a phase constant into each expression,

since we may suppose that the zero-point for time measurement

is so chosen that the phase-constant of the first motion is zero.

Then ft is simply the difference in phase, or the amount by

which the second fork lags behind the first in phase.

The resultant motion, when both forks are vibrating, is

gotten by adding y t and y2 ,
for evidently the movement due

to one fork will be superimposed upon that due to the other.

We shall discuss the problem graphically, making use of the

definition of S. H. M., that it is the projection, upon a straight

line, of uniform motion in a circle. In figure 93, let ba be the

path of the vibration

due to the first com-

ponent motion. The
large circle, of which

the diameter is ab and

the radius equal to K 1?

will be called the ref-

erence-circle for the

first motion, and since

we have taken the

phase constant for that

motion as zero, it alone

would for time zero Figure 93

put the spot of light at a, the end of the diameter, and the

tracing point moving in the reference circle would also be there.

That is, yx
= K

l
= oa, at that instant. In order to add in y2 ,

the component due to the second vibration, we draw a reference -

circle with a as center and K^ as radius, and lay off the angle

eac, equal to the phase-difference /?. Then, for time zero, the

second component of the motion gives a displacement y2
= ad,

the projection of ac, and the total displacement is y l 4- y2
= od.

Notice also that od is the projection of the single line oc.
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Now consider the state of affairs at a later instant, when
the tracing point in the first reference-circle has moved to a',

through the angle aoa'. Let us suppose that, along with the

radius oa, the whole triangle oac rotates about the point o as

if it were rigid, taking the new /position oa'c'. Whenever a

rigid plane figure rotates about a point in its own plane, all

lines of the figure turn through the same angle in the same

time. Therefore the angle coc', turned through by the side oc,

is equal to the angle aoa', turned through by the side oa. Also,

if c'a' and ca be produced till they meet, the angle so formed

will also be equal to aoa'. (These statements can easily be

proved by simple geometry.) Since the two S. H. M.'s have

the same period, the radii oa and ac must necessarily turn

through the same angle in the same time. Therefore a'c' will

be the direction of the tracing-point radius in the second motion

at the same- instant when oa' is that for the first. For that

instant, then, yl must be equal to oh, the projection of oa', y2

to hd', the projection of a'c', and the total displacement is

yx + y2
=? oh + hd' = od'

and od' is nothing but the projection of the third side of the

triangle oc', in its new position.

The same result holds, whatever may be the angle through
which oa has turned. In each case, the resulting displacement

is the projection of the third side oc in its new position. Since

this is the projection of a line of fixed length, rotating with

the same period as the two component S. H. M.'s, the result-

ing motion is itself evidently simple harmonic, of the same

period as y t and y2 , of amplitude oc, and behind the first

motion y x in phase by the angle aoc, or
<f>.

"We have proved that the following rule holds for finding

the resulting motion when two S. H. M.'s of the same period

and direction act upon the same body: Lay off a line oa whose

length is the amplitude of the first motion. From a lay off

another line ac, whose length is equal to the second amplitude,

so that the angle it makes with oa produced is equal to the

amount by which the second component lags in phase behind

the first. Then, completing the triangle, the side oc gives the

resulting amplitude, and the motion lags behind the first com-

ponent in phase by the angle aoc. Since this is exactly the
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rule for finding the resultant of two vectors, the angle between

them being the phase-difference, it may be said that S. H. M.'s

are compounded as vectors, but it should be remembered that

this statement refers only to a diagrammatic representation,

and has nothing to do with the actual directions in which the

vibrations take place.

The resultant vibration can be represented by the formula

y = K. cos(-)
where K = oc, and < = angle aoc. Since, from trigonometry.

oc2 = oa2
-f- ac2

-|- 2 X oa X ac X cos(eac)
it follows that

K2 = K,
2 + K2

2 + 2 K, K2 cos p (6)

If both the component motions have the same amplitude, so

that K2
= K,

K2 =r2K 1

2
(l + cos0) (7)

If p = 0, cos p = 1, and K2 = tKf, or K = 2K 1? as can be

seen either from equation (7) or from consideration of the

above-mentioned rule for finding the resultant amplitude by a

vector diagram. In this case the energy of the resultant S.

H. M. is 4 times that of either component, because the energy

depends upon the square of the amplitude.* If ft
=

TT, or 180,
then cos/3 --1, and K = 0, as shown by equation (7) or

by the vector diagram. For other values of p, K will lie be-

tween and 2Kt .

91. Application to cases of interference. These results

can be easily applied to any case of interference where only

two beams of light are concerned. Take, for example, the

interference with Fresnel's mirrors, and refer to figure 20.

The two slits S t and S2 being nearly equally distant from any

portion of the screen AB, we can regard the amplitude of the

two beams as being equal. At C, where the difference in path

*In the arrangement depicted in figure 92 there is no energy as-

sociated with the movement of the illuminated spot on the screen,

since this motion is not a motion of a real thing, but only a trans-

ferrence of illumination from one place to another. The light vibra-

tions producing the illumination of course have energy, and so do the

two forks.
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is zero, at M or M/ where it is a wavelength, at M2 or M/
where it is two wavelengths, etc., the phase-difference is zero

or, what amounts to the same thing, an integral multiple of

2^r (360), the resulting amplitude is twice that which one

beam alone would produce, and the brightness four times as

much. At the points m x and m/, where the path difference is

A/2, at m2 and m./ where it is 3A/2, etc., the phase-difference

is either TT (180) or, what amounts to the same thing, an odd

multiple of TT, and the cosine is 1. These points therefore

have zero resulting amplitude, and they will be quite dark.

At other points, the cosine of the phase-difference is neither

-j- 1 nor 1, but some intermediate value, and therefore the

brightness will be neither so great as at C nor absolutely zero

as at nij.

The vector diagram construction for finding the resultant

of two S. H. M.'s can be extended to cases of three or any
number of component motions, provided all have the same

period and all are in the same direction. We simply regard

each amplitude as a vector, the direction of which on the dia-

gram is given by the phase-constant, and find the resultant, the

length of which gives the amplitude of the resultant vibration.

Many rather complicated phenomena of interference or diffrac-

tion can be easily treated by this method.

If the student will refer back to figure 69, chapter VII, he

should recall that, in the discussion of a grating with 9 open-

ings, it was found that at the .point I the rays from all the

different openings arrived together in phase, while at points

x and x', close to I, the rays opposed one another in pairs by

coming together in opposite phases, that is with a phase-differ-

ence which is an odd multiple of TT, leaving only the ray from

a single opening to exert its full effect. Therefore the ampli-

tude of the resulting S. H. M. which produces the light at I

is nine times that at x or x', and the energy of vibration, to

which the brightness is proportional, is 81 times as great at I

as at x or x'.

A very interesting application of the principles we have

taken up in this chapter, is in connection with the light sent

out by a luminous source such as a flame. The actual centers

from which the light is emitted are millions of radiating atoms

or molecules, and since these are independent of one another
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in their vibration, we must assume that all sorts of phase-

differences exist between them. It might be argued that since

one of these radiating centers is as likely to have one phase-

constant as any other, therefore in the whole assemblage they
should annul one another's effects, with the result that no light

would be emitted by the flame at all. Such a contention would
be as erroneous as the statement, sometimes loosely made, that in

a sufficiently large number of throws of a coin, it would show

heads just as often as tails. Both are due to a misunderstand-

ing of the laws of probability. It is true that in a great num-
ber of throws of a coin, the difference between the number of

heads and the number of tails becomes less and less as com-

pared to the total number of throws, but the absolute amount

of the difference tends to increase. In fact, the probable ex-

cess of heads over tails or conversely of tails over heads (theory

cannot predict which it will be) is directly proportional to the

square-root of the number of throws. Similarly, theory pre-

dicts that in the case of a great number of radiating centers,

with phases distributed at random, the probable amplitude of

the resulting vibration determining the illumination at any

place will be proportional to the square-root of the number of

radiating centers. Therefore the energy and the brightness of

illumination should be proportional to the number of centers.

A flame of double size should then give double illumination,

other things being equal, and this is what is actually found.

If we were able to control the phases of all the centers

of radiation in a flame, so that all the rays arrived at the eye

in the same phase, the brightness would be proportional to the

square of the number of centers, and therefore would be enor-

mously increased. Under these circumstances a sodium flame

which is actually very feeble would appear many times brighter

than the sun and would be absolutely destructive.

A similar case occurs in sound. Suppose that in an or-

chestra we have a large number of instruments of the same

kind, say 100, all striking the same note at once. If, by any

chance, the sound waves from all these instruments reached

the ear in the same phase, the intensity of the sound heard,

proportional to the square of the resulting amplitude, would

be 10000 times as great as that heard when only one instrument
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is being sounded, and the result would be deafening. The
chance for this to occur, however, is almost vanishingly small.

In general, the phases are distributed at random, and the

sound heard is proportional to the number of instruments.

92. Two S. H. M.'s at right-angles Another kind of com-

bination of two S. H. M.'s, the importance of which in the

study of light will be shown in chapters XII and XIII, is one

in which the vibrations are at right-angles. There are many
examples in physics. For instance, a ball hung from a string

whose upper end is clamped can be set swinging as a pendulum
in either an east-west or a north-south direction, and there is

no reason why both motions should not go on together. From

simple reasoning, it seems probable that the resulting motion

would in general be elliptical, and we shall show by analysis

that this is true. Another good illustration is gotten by sup-

posing one of the tuning-forks of figure 92 to be turned through
90 a.bout a horizontal axis, so that its vibrations are in a

vertical plane, the other still vibrating in a horizontal plane.

The spot of light would then be subject to a vertical and a

horizontal S. H. M., and would in general describe an ellipse.

We shall assume, as before, that the periods are the same.

Let the horizontal and the vertical vibrations be represented

respectively by

2?rt
X A. COS- (8)

T

y B. cosf /?
j

(9)

The latter equation can be rewritten in the form

y = B. cos ft. cos
'

-f- B sin
ft. sin (10)

To find the equation of the path, we must eliminate, between

(8) and (9) or between (8) and (10), that variable which has
no place in the simple equation of a line, viz., the time. This

can best be done by deriving from (8)

27rt X
cos and sin

r ^k

and substituting these values in (10). This gives
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Bx

191

y T- cos ft
= B \ 1 -- in

By squaring both sides, we get

y
2 ^2 cos p + C0s

2xy
AB (11)

Equation (11), represents an ellipse, except when sin/?==:

0, that is, when the phase difference ft is either or ?r. If

ft
= 0, cos

ft
= 1, and the equation reduces to

A2 AB + B*
~~

or,

the equation of a straight line whose slope is B/A. If ft
= IT.

cos ft
= 1 and the equation reduces to

a straight line whose slope is B/A.

Figure 94

Figure 94 shows a number of typical shapes that the path
can take according to the value of ft. In each case, the whole
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motion must lie within the rectangle of the dimensions 2A X
2B, for evidently x cannot be greater than -f- A nor less than

A, and y cannot be greater than + B nor less than B.

Except in the cases where the ellipse becomes a straight line,

the path is tangent to the sides of the rectangle. Arrows show
the direction of motion in the path. The equation of the

ellipse cannot tell us anything about the direction of motion,
for the time has been eliminated, but it can be determined for

each case by reasoning as in the following example: "When

/?
= 7T/2, or 90, the vertical motion must be % period behind

the horizontal, that is, y must be zero but increasing when
x = + A. A quarter period later, y will be equal to + B,
and x = 0. Since, in a quarter period, the point moves from
the right-hand extreme of the ellipse to the upper extreme, the

rotation must be counterclockwise. When the ellipse reduces

to a straight line, for ft equal to zero or TT, the motion is of

course back and forth along a diagonal of the rectangle.

If the difference in phase is ir/2 or 37T/2, and if, in addition

the amplitudes A and B are equal, the ellipse becomes a circle,

in which the motion is counterclockwise or clockwise.

As a converse to what we have proved about the produc-
tion of a harmonic elliptic motion as a result of the superposi-

tion of two linear S. H. M.'s at right-angles, it may evidently

be said that any given elliptic harmonic vibration can be re-

placed for the purpose of mathematical analysis, by a pair of

linear S. H. M. 's at right-angles which would produce this par-

ticular elliptic motion. Consideration of figure 94 shows that

the analysis can be made in a number of ways. The directions

of the two component vibrations that are to replace the ellipse

may coincide with the major and minor elliptic axes or be

inclined to them at any angle. In other words, there are many
pairs of linear motions which are equivalent to a given ellip-

tic motion, though the amplitudes and phase-difference are of

course not always the same. In most cases, we wish to replace

an elliptic motion by two linear motions in the directions of

the elliptic axes, and then the amplitudes will be equal to the

semi-axes of the ellipse, and the phase-difference will be 7r/2 or

37T/2 according as the motion is counterclockwise or clockwise.

It is also plain, from the cases in the figure for which
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ft
z= or TT, that a linear S. H. M. can be resolved into two

other mutually perpendicular linear S. H. M.'s either in the

same or in opposite phases, and that the amplitudes of the

components is gotten by exactly the same rule which holds

when we resolve a force, or any other vector, into two mutually

perpendicular components. For such a resolution then, ampli-

tudes of S. H. M.'s may be treated as vectors. It is easy to

see that the energy of the original vector will be the sum of

the energies of the two components. For, since the amplitude

of the former forms the hypotenuse of a right triangle, of

which the component amplitudes are sides, the square of the

former is equal to the sum of the squares of the latter, and we

know that the energy is proportional to the square of the

amplitude.

93. Lissajous figures. A very curious and beautiful ap-

pearance is produced when two linear S. H. M.'s at right-

angles, combining to form an elliptic motion, have

periods which are nearly the same, but not quite.

The difference in period causes one to gain upon
the other in phase, and the motion passes through

all the forms of figure 94, repeating the whole

cycle again and again. The figures so formed are

known as Lissajous figures. The following simple

experiment, which anyone can perform, shows the

cycle of changes very well in a slowly moving

system. A ball R, figure 95, is hung from any (!)

support by cords in the manner shown. It is then Figure 95

capable of swinging as a pendulum of length RQ in the plane

of the figure and as one of length RP in a perpendicular plane,

and the two motions will of course have different periods. If it

be started swinging in a direction inclined to both planes, it

will slowly pass through all the configurations of figure 94.

Problems.

1. Calculate the energy of a body of mass 1000 grams in

simple harmonic motion of period % sec. and amplitude 10 cm.

\Yhat is the force acting on this body when it is 2 cm. from the

center of its path?
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2. Show that when two S. H. M.'s in th,e same straight

line are applied to a body, each having the same amplitude and

period, but with a difference in phase of 120, the resultant

motion has the same amplitude as either component.
3. Show that the maximum kinetic energy of a body in

S. H. M. is equal to the kinetic energy of the tracing body

(0 of figure 89) if the latter has the same mass.

4. ,Show that when two S. H. M.'s at right-angles, with

same amplitude and phase-difference of ir/2, combine to produce
a uniform circular motion, the energy of the latter is equal to

twice that of either component.
5. Show that when two S. H. M.'s at right-angles, with a

phase-difference of or TT, combine to produce a linear S. H.

M. in another direction, the energy of the latter is the sum of

those of the components.

6. Suppose that the two forks of figure 92 had not ex-

actly the same period, say one had 100 complete ,
vibrations

per sec., the other 100.25. What would be the character of the

vibration of the spot of light? Could the conclusions of para-

graph 90 be modified to fit such a case!

7. A pendulum like that of figure 95 makes 100 complete

vibrations per min. in one direction, 100.25 in the perpendicular

direction. How long would it take to run through the cycle of

changes portrayed in fig. 94?



CHAPTER XI.

94. Inverse square law. 95. photometry. 96. Rumford photometer.

97. Bunsen. photometer. 98. Lummer-Brbdhun photometer. 99.

Light-standards. 100. Solid angle. 101. Intrinsic luminosity. 102.

Spectrophotometer.

94. Inverse square law. Little has been said in this book

so far about the 'brightness, or intensity, of light, except for

the one point that it is proportional to the square of the ampli-

tude. The subject is, however, of great importance, not only

for practical illumination, but also for the details of experi-

mental work.

Suppose that S, figure 96, is a math-

ematical point, emitting light at a steady

rate uniformly in all directions. We also

suppose that the medium exerts no ab-

sorption, which is absolutely true for the

ether, and almost true for the air and

other colorless gases, so far as visible

rays are concerned. Consider two spheres,

with S as center, of radii ra and r2 . Evi-

dently the same amount of energy will pass in each second

through each of these spherical surfaces, and therefore since tho

area of a sphere is directly proportional to the square of its ra-

dius, the passage of energy per second per square centimeter will

be inversely proportional to the square of the radius. To put
the matter in another form, suppose two white screens, each

1 square centimeter in area, are placed one 50cm. the other

100cm. from S, each being turned so that its face is perpen-
dicular to the line joining its center to S. The nearer screen

will receive four times as much light as the more distant one.

and will therefore appear four times as brightly illuminated.

Incidentally, the fact that the passage of energy per second

varies inversely as the square of the distance shows that the

amplitude of the light varies simply inversely as the distance.

If, instead of a single point source, there are two points

or more, or even an extended bright source like a flame, com-

prising a multiplicity of bright points, the inverse square law

(195)
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still holds true provided that the dimensions of the source are so

small compared to its distance from the screen that for prac-

tical purposes we may say that all points of the former are

equally distant from the latter. (This statement would not

hold true if the vibrations in the different emitting centers had

any special and constant phase-relations, for then interference

would take place and the intensity of the radiation would be

different in different directions. In an actual source such as

a flame or an incandescent filament, the vibrations in different

atoms or molecules are entirely independent, the phase-con-

stants are distributed at random, and in addition the phase of

any particular vibration is no doubt subject to sudden abrupt

changes. Consequently interference in the ordinary sense can-

not occur.)

95. Photometry. Instead of considering the illumination

of two screens at different distances, produced by the same

source, let us now compare the illumination of the same screen

by two different sources. By placing the brighter source far-

ther from the screen than the fainter one, it is possible to make

both sources produce the same illumination, and the relative

brightness of the two sources can be expressed in terms of the

two distances. The only practical difficulty lies in judging

when the illumination produced by the two sources is the

same. Various instruments known as photometers, a few of

which will be described, have been devised for this purpose.

96. Rumford photometer. The Rumford photometer,

figure 97, is a very simple affair. S and S' are the sources

to be compared, R a

cylindrical rod shown

in cross-section, and ss

a white screen. The
part of the screen A is;

in the shadow from S,

but is illuminated by
Figure 97

S', while the part B is

in the shadow from S' but is illuminated by S. The sources are

moved nearer to the screen or farther away, keeping the edges
of the shadows in contact, till A and B are equally bright. Let

d and d' then be the distances of S and S' from the screen,.
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while L and L' represent the brightness of the two sources.

Since the illumination on the screen is the same from both

JL _!/
dJ ~~JF

or

-=
L'

"~
d"

This photometer is unsatisfactory in practise, because it is very
difficult to tell accurately when two illuminated surfaces are

exactly of the same brightness unless they are exactly adjacent
to one another, without any dividing area between. It is im-

possible to arrange the two shadows in this way unless the

sources are very small. There is always at the edge of each

shadow, a region of "penumbra," or half-shadow, where the

screen is illuminated by part of one of the sources, but hidden

from the rest, and the overlapping half-shadows from the two
sources cause a region of unequal illumination between.

97. Bunsen photometer. This is shown in figure 98. The
screen ss is placed between the two sources S and S', so that it

is illuminated by them

on opposite sides. A s ,

greased spot is in the s*'~

center of the paper
screen, and use is made *

of the fact that greased
Figure 98

paper transmits more light, and reflects less, than un-

greased. If no absorption occurred in either the clean paper

or the greased portion, and if the latter scattered the light as

effectively as the former, then the grease-spot would disappear

when the illumination is the same on both sides. For, when

viewed from the right, for instance, it would make up in light

transmitted from S' what deficiency there was in the light it

reflected from S, and therefore would appear just as strongly

illuminated as the clean paper surrounding it. Unfortunately,

there is absorption, and unequal absorption, in the two por-

tions, and the greased portion does not scatter as well as the

ungreased, but acts more like a transparent medium, so that

the spot may disappear when viewed at a certain angle, but
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not when viewed at another. For this reason, it is necessary

to view both sides of the paper at once, at the same angle. A
pair of mirrors are set in an inclined position in such a way
that the observer stationed at E sees both surfaces of the

screen reflected in the mirrors. The screen and mirrors, which

are rigidly connected together, are then moved to right or to

left between the two sources until the spot appears equally

conspicuous in the two mirrors. The brightnesses of the sources

are then directly proportional to the squares of the distances

from the screen. Only a small degree of accuracy is obtain-

able with this instrument.

98. Lummer-Brodhun photometer. All accurate com-

parisons of the intensities of artificial light-sources are made

with the Lummer-Brodhun photometer, shown in figure 99, or

some modification of it. S and S' are the sources to be com-

pared, and s a two-faced screen, made of some white and

efficiently diffusing material, such as fresh plaster of Paris, or

a fine quality of milk-

s' glass. A and B are two
7|\"

\i/

right-angled glass prisms,

so se^ as * Pr duce
>
Dv

total reflection at the hy-

potenuse, reflected images

Of the two screen-faces.

P and Q are another pair

of right-angled prisms,
Figure " w i t h t h e i r hypotenuse

faces cemented together by means of Canada balsam, after

part of the face of P has been ground away, leaving only a
circular spot in the center where actual contact occurs. T is

a short-focus telescope, focussed upon the cemented faces of P
and Q. That part of the light from the right-hand surface of

s which, after reflection at B, strikes the cemented area where
P and Q come together, passes through without reflection and
never reaches the telescope, but that part which strikes the

edges is totally reflected into the telescope. Consequently, if

the source S were cut off and S' alone functioning, the tele-

scope would show an illuminated area with a completely dark
circular hole in it. On the other hand, of the light coming
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from the left-hand surface of s, illuminated by S, only that

part which strikes the cemented area passes through to the

telescope. The field of view then is a circle illuminated by S
surrounded by an area illuminated by S', and since these come

accurately edge to edge it is quite easy to tell when the illumi-

nation is the same. The screen, the prisms and the telescope

are mounted together in a frame which can be moved to right

or left till the inner circle vanishes against the equally illumi-

nated area surrounding it. Very accurate measurements can

be made with this instrument when the lights to be compared
have the same color. If they differ much in color an accurate

comparison is impossible, for from the nature of things one

cannot make accurate quantitative comparisons of things which

differ in quality. Most artificial light-sources, however, are

near enough the same color so that fairly trustworthy com-

parisons can be made.

99. Light-standards. In measuring the brightness of a

source, some unit is necessary. The original unit was the light

from a spermaceti candle, of a specified size and burning at a

specified rate, and lights are still rated in "candle-power."
Actual candles, however, even when made and used according

to specifications, are quite variable, and in practice a more

constant standard is used, such as the Vernon-Harcourt lamp,

taken as having 10 candle-power, or the Hefner lamp, .9

candle-power. Laboratory tests are usually made with an in-

candescent lamp whose intensity has been standardized at the

Bureau of Standards or some similar laboratory by comparison
with a Vernon-Harcourt or Hefner lamp.

The "foot-candle" is a unit of measurement, not for the

intensity of a source, but for the degree of illumination on a

surface. It is the illumination produced at a distance of one

foot from a source of unit candle-power. The degree of illumi-

nation on a desk 8 feet away from a 30 candle-power lamp is

30/(8)
2 = 30/64 = .453 foot-candles.

100. Solid angle. In order to discuss intelligently the

brightness of extended surfaces, optical images, etc., it is neces-

sary to define a term called "solid angle." Suppose a cone of

rays, of any cross-sectional shape, to emanate from a point S,

figure 100. The solid-angle of this cone is the area that it cuts
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Figure 100

out on the surface of a sphere of unit radius, or the area that

it cuts out on any sphere with S as center divided by the square

i.^ ^ of the radius of the sphere.

x
X X Since the total area of a sphere

\ is 4rrr
2 the total of all solid-an-

/ \ gles from a point is 4nr.

101. Intrinsic luminosity.

Suppose we have an extended

surface emitting light, such as

the surface of molten metal, or

of the pole of a carbon arc. Con-

sider the light emitted, within

a solid-angle o>, from a small

area a, so small that we may regard it all as lying at the apex
of the solid-angle. This amount of light will evidently be pro-

portional to the size of the solid-angle <o, and therefore may be

written as equal to

The factor of proportionality, 1, evidently is an indicator of

the brightness of the surface, without regard to its size, and it

is given the name "
intrinsic luminosity." It may be defined

in words as the amount of light emitted per unit area per unit

solid-angle.

We shall now prove that, when a real image is formed by
a lens, the intrinsic luminosity of the image is the same as that

of the object, except for losses of light due to reflection, absorp-

tion, etc. In figure 101 let a be any very small area on the

object and b the corresponding area on the image I. The

Figure 101

amount of light from a going to form b, apart from the above-

mentioned losses, is the amount lying within the solid-angle of

the cone which enters the lens. The value of this solid-angle is
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where A stands for the area of the lens and u for the distance

of the object from it. If I is the intrinsic luminosity at a, the

amount of light from a entering the lens is

lAa

Let I' be the intrinsic luminosity of the image at b, v the dis-

tance of the image from the lens, and a/ the solid-angle of the

cone which goes to form b and the equal cone which emerges

from b on the right, then

and the amount of light going to form b is

_PAb

If no light were lost, we could then write

IAa__ I'Ab

u 2
"

v 34

The dimensions of any part of an image are to those of the

corresponding part of the object as v is to u, and therefore the

areas will be in the ratio v2 to u2
,
so that

- i
.. .,

-2*.
u' v*

Consequently

1 = 1'

This conclusion is at first sight surprising, for it seems to indi-

cate first that the brightness of the image per unit area is

independent of the distance of the object, second that it is

independent of the diameter of the lens. Distance of the object

does indeed have no effect, for although the lens receives less

light when the object is farther away, that light is distributed

over an image whose area is smaller in the same proportion.

As to the effect of the diameter of the lens, one must

remember that intrinsic luminosity is defined for unit solid-

angle, as well as for unit area. A large lens does in fact send

more light to form the image, but since the solid-angle is
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increased in the same proportion the intrinsic luminosity
remains the same. If the image is cast on a photographic plate,

where the photographic action depends only upon the total

amount of light received per unit area of plate, entirely with-

out regard to the size of the light-cone, it is of course advan-

tageous to use a lens of large diameter. The same is true if

the image is cast on a diffusing screen, like white paper or plas-

ter of Paris, for such materials do not allow the light to remain

in a cone of the same diameter as that in which it comes to the

screen, but re-emit it in all directions. In either of the above

cases, the lens should be as large in diameter as is consistent

with moderate freedom from spherical aberration, astigmatism,

etc., if a bright image is desired.

L

Figure 102

But when an image is viewed directly by the eye, as in

figure 102, the amount of light entering the eye is limited by
the size of the pupil, and all the light which fails to enter the

pupil is wasted, so far as vision is concerned. Consequently,

the brightness of the final image upon the retina is not affected

by an increase or decrease in the diameter of the lens, so long

as the cone of light remains large enough to completely fill the

pupil. If the pupil were not completely filled, the intrinsic

brightness of the image on the retina would still be the same,

but the mental impression of brightness would be reduced. For

this impression, like photographic action, depends upon the

amount of light received without regard to the size of the cone

of light.

In spite of all that has been said, there is a great advan-

tage in the use of large-diameter lenses as the objectives for

telescope. In the first place, a large-diameter objective permits

the use of a very short-focus eyepiece, and therefore a high

magnifying-power, without reducing the emerging cone of light

so much that it does not fill the pupil. In the second place,

we have seen that the image of a mathematical point is not a

point, but a small disc surrounded by series of fainter concentric
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rings (see sections 72 and 73), and that the diameter of disc and

rings become smaller when the diameter of the objective becomes

larger. A fixed star (what follows does not apply to planets)

may be many times larger than the sun, but its distance is so

great that in every case what we call its "geometrical" image
the image as it would be if there were no such thing as

diffraction is hardly more than a point, being much smaller

than the central disc of the diffraction pattern. "We are there-

fore obliged to regard a star as equivalent to a point-source,

whose image is the diffraction-pattern itself. Since the diameter

of the central diffraction disc is inversely proportional to the

diameter of the objective, it is clear that the star-image will

have a much greater intrinsic luminosity with a large than

with a small lens. On the other hand, when an object is large

enough or close enough so that its geometrical image has per-

ceptible size, although each point of the image is made .up of

diffraction-disc and rings, the only effect of these is to extend

the edges of the image very slightly indeed, and the effect of

diffraction upon the area of the total image is relatively negli-

gible. Suppose that a telescope be pointed toward a star in

daylight. Since the diameter of the objective exceeds greatly

that of the pupil of the eye, the intrinsic luminosity of the

star is much greater than when seen with the naked eye; but

that of the sky, an extended area, is not increased in the least

degree. Consequently, it is possible to see with a large tele-

scope stars totally invisible to the naked eye, even in full day-

light.

The principle of equality of image and object so far as

intrinsic luminosity is concerned, proved above (with reserva-

tions as to loss of light by reflection and absorption) for a real

image formed by a lens, can be just as easily proved for a vir-

tual image, or for an image formed by a mirror. The only

advantage in using opera-glasses, reading glasses, microscopes,

etc., so far as extended objects are concerned, is the magnifica-

tion in size. The brightness is never increased, but rather

somewhat diminished by the unavoidable losses.

It is easy to prove also that, except for atmospheric ab-

sorption, an object will appear with the same intrinsic bright-

ness at any distance, provided the pupil does not dilate or

contract. For in figure 101 the lens L can just as well repre-
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sent the lens of the eye as any other lens, with the image I

formed on the retina. The proof then follows word for word
as given above.

102. Spectrophotometer. It has already been mentioned

that accurate comparisons of the brilliancy, or candle-power,

of light-sources can be made only when they have about the

same color. To compare the intensities of a reddish and a

bluish light would be much like comparing the intensities of a

deep bass musical note and a shrill treble one. Precise

measurements can never be made except when the objects com-

pared, though differing in quantity, are the same in quality.

It is true that a special form of instrument, known as the

"flicker-photometer," has been used with some success in com-

paring lights somewhat divergent in color, but the indications

given by it are now considered unreliable, and their interpre-

tation is in any case somewhat doubtful.

The only completely satisfactory method for such a problem
is to form the spectra of the two sources side by side and then

make a comparison, color by color, for a number of different

parts of the spectrum. Several de-

' B vices for accomplishing this, known as
' '

spectrophotometers
"

are now in use.

The results of the comparison must be

given in the form of a table, or bet-

ter still a curve, with wavelength as

abscissa and the corresponding ratio

of brilliancy in the two spectra as or-

dinate. Thus a curve, such as that in figure 103 would indicate

that the source A is relatively stronger than source B in the

middle of the spectrum, about the green.

Problems.

1. What is the value of the solid angle included between
two walls and the floor of a room?

2. Find the illumination on a desk 10 ft. from a 60 candle-

power lamp. Suppose the desk were inclined in such a way
that a perpendicular to it made an angle A with a line drawn
from it to the lamp. What would then be the illumination!

3. Given that the illumination of the earth in full moon-

light is .02 foot-candles, and that the distance of the moon is

235000 miles, find its candle-power.
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103. Transverse and longitudinal waves. 104. Double refractiors.

105. Polarization of the O and B light. 106. Wave-surface in doubly-

refracting crystals. 107. The lateral displacement of the E ray. 108.

Special cases of double refraction. 109. Tourmaline. 110. Biaxial

crystals. 111. Polarization by reflection.

103. Transverse and longitudinal waves. We have al-

ready spoken of the distinction between longitudinal and trans-

verse waves, but have left' unsettled the question to which of

these types light-waves belong. A decision has so far been un-

necessary, because everything we have said about light up to

this point would apply equally well whether the waves were

longitudinal or transverse. For instance, reflection, refraction,

interference, diffraction, etc., could occur equally well with

either.

It is manifestly impossible to see a light-wave, in the sense

that we see water-waves, or waves in a string. "We see by
means of light, but we do not see light itself. Therefore the

character of the waves must be determined by indirect, rather

than direct, means. The most important distinction between

the two types is this, that a train of longitudinal waves is com-

pletely specified when we have stated its wavelength, ampli-

tude, phase, and direction of propagation, while a train of

transverse waves is not. To explain more fully, imagine a beam
of monochromatic light travelling from north to south, whose

amplitude, wavelength and phase are known. If the waves

are longitudinal, nothing more can be said about this beam,
and any other beam, travelling in the same direction, with the

same amplitude, wavelength and phase, would be indistinguish-

able from it. On the other hand, if the waves are transverse,

there is still a possibility that the two beams should be quite

different. For instance, the vibrations in the first might be up
and down, while those in the second were east and west.

Evidently then, if light waves are transverse, there should

exist some distinguishing characteristic of a beam of light,

other than wavelength, amplitude, phase, and direction of pro-

pagation, and having to do with a direction at right angles to

the direction of propagation, if we could only find the suitable

(205)
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means of detection. But we should hardly expect ordinary
natural light, such as comes directly from the sun or a flame,

to show this characteristic even if it exists ; for there would be

no reason why in such light one direction of vibration would

predominate over another. It would be much more probable
that all possible directions of vibration would be represented
to about the same extent, so that the beam would not show any

peculiar properties in any direction. Consequently, in seeking
such a characteristic as we have mentioned as possible, which

would prove light-waves to be transverse, we ought to experi-

ment, not with light coming directly from any original source,

but rather with light which has suffered reflection, refraction,

or some other action which might cause one plane through the

direction of propagation for instance the plane of incidence in

the case of reflection to have a particular importance for the

beam.

104. Double refraction. In 1690 Huyghens discovered a

characteristic of light, such as we have been speaking about,

which we regard as a definite proof that light-waves are trans-

verse. Huyghens himself did not draw this conclusion, for at

that time it had always been assumed without question that

the waves were longitudinal, like those of sound, and the pos-

sibility of their being transverse had never been suggested.

Huyghens' discovery was concerned with the phenomenon
known as "double refraction," which is shown by many crys-

tals, to the most remarkable extent by the crystal known as

calcite, or Iceland spar. Before Huyghens' experiment can be

understood, it will be necessary to explain some of the facts

about crystal structure and the nature of double refraction.

Every crystal possesses certain regularities of structure,

on account of which it can be easily split in certain directions.

Calcite, for instance, can be readily split into any one of the

forms shown in figure 104, which differ in linear dimensions,

but have exactly the same angles. The important thing about

crystal structure is that the angles are fixed and invariable,

while the dimensions of the faces may be anything. In any one

of the three rhombohedral forms shown in the figure for cal-

cite, each face has two angles of 101 55' and two of 78 5'.

In each rhombohedron, there are two opposite corners where

three obtuse angles come together, as at A. A line drawn
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through one of these corners, equally inclined to the three faces

that meet there, or any line parallel to it, is called the optic

axis. Note that the optic axis is defined only by its direction,

and any line having that direction may be called the optic axis.

Figure 104

When a pencil of light enters such a rhomb of calcite it is

separated into two parts, so that there are two refracted beams,

instead of only one as in the case of glass and other non-crys-

talline media. One of the beams obeys the ordinary laws of

refraction, the ratio of the sines of the angles of incidence and

refraction being always the same, no matter what the angle of

incidence may be. It is therefore called the "ordinary" ray,

and we shall represent it by the letter O, for brevity. The other

does not follow the ordinary laws of refraction. The ratio

of the sines changes as the angle of incidence changes, showing
that this beam travels through the calcite with different

velocities in different directions, this being due, no doubt, to

the regular structure of the crystal. For this reason it is called

the "extraordinary" ray and we shall rep-

resent it by E. If we wish to speak of

-* f an index of refraction for the extraordi-

nary ray, it must be understood that that

index is not a constant for any given wave-
Figure los

length, but is variable with the angle
of incidence. Even when the incidence is normal, when there

should be no refraction according to the ordinary law, the

E-ray is in general refracted, as illustrated in figure 105.

ABCD is the sectional outline of a crystal of calcite. The
incident ray PQ, even when it strikes the surface normally as
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in the figure, is divided into two rays, one of which PQRT (the

O-ray) goes straight through without bending, while the other,

PQSU (the E-ray), is deflected upon entering the calcite and

emerges from it parallel to the incident ray but with a lateral

displacement. Consequently, if an object close to the rhomb

be viewed through the latter, two images will be seen. If the

object is very far away, however, only a single image will be

seen
;

for the two emergent rays are parallel, with only a small

relative displacement, and for an object very far away a small

displacement does not change its apparent position by an ap-

preciable amount. Therefore the two images coincide and ap-

pear as a single image. Another explanation is as follows: If

the object is far away, the incident waves are practically plane,

and therefore the two emergent beams have waves that are

practically plane, and parallel to one another, and we have

already found that all plane and parallel waves are focussed at

the same point on the retina. Conversely, we can regard the

fact that only a single image of a distant object can be seen

through a block of calcite as proof that the two emergent rays

coming from a single incident ray are parallel to one another.

The two images of a near object seen through calcite,

formed respectively by the O-ray and the E-ray, are called the

ordinary and the extraordinary images. If the crystal is

turned about the incident ray as an axis, the 0-image remains

still and the E-image revolves about it. Let us define a plane

which is parallel to the optic axis and perpendicular to the

face through which the light enters as the principal plane of

that face. A line joining the centers of the two images lies in

the principal plane. The images are equally bright, and the

light from them seems exactly the same to the eye. A super-

ficial examination reveals no difference between them except

for the displacement of the E-image in the principal plane,

and the further fact that it seems slightly farther away than

the 0-image. But note that the two refracted beams have

undergone a process (transmission through a crystal) which

has caused a particular plane (the principal plane) to have

a peculiar importance for both. Consequently, in accordance

with our former discussion, if the waves are transverse we are

more likely to get evidence, for it in these two beams than in
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the original incident beam, where one direction of vibration

has no reason to be preferred over another.

105. Polarization of the and E light. Such evidence is

furnished in the experiment of Huyghens, mentioned above,

which consisted in viewing an object through two crystals of

calcite. If the crystals are equally thick and are similarly

placed so that their optic axes are parallel, as in figure 106,

the phenomenon observed is just the same

as with only one, except that the displace-

ment between the images is doubled. For

the two are equivalent to a single crys-

106 tal of double thickness. But if one crys-

tal is turned about the incident ray as axis, while the other

is held still, there are in general four images, though for

certain positions of the moving crystal two of them disappear,

and in one position only one is visible. The production of

four images is not surprising, for one should expect that the

6 H I J

Figure 107

second crystal would divide each of the two beams that enter

it into two more, but the changes in intensity that the images

undergo when the second crystal is rotated, and the dis-

appearance of some of them in certain positions, require

explanation. These changes should be understood from the

series of eight diagrams in figure 107. In all of them thr,-

plane of the paper is supposed perpendicular to the incident

ray, and the little circles show the positions of the images. In

diagram A, aX represents the intersection of the principal
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plane for the first, or stationary, crystal with the plane of the

paper. aY that for the second, or moving, crystal, the two mak-

ing in this diagram an angle a which is less than 45. Four

images are seen, of which a and d are brighter than b and c.

If the angle a be increased, a and d become fainter and b and

c brighter, till when a = 45, as in diagram B, all four are

equally bright. If a is still further increased, a and d con-

tinue to grow dimmer, b and c brighter, and when a = 90

(C) a and d disappear and b and c attain maximum bright-

ness. With a further increase in a, a and d reappear and

grow brighter, while b and e diminish, till when a = 135

they are all equally bright, and when a = 180 a and d have

reached maximum brilliancy, b and c vanished completely.

Meanwhile, a and b have maintained their positions, but c has

swung about a as a center, and d about b, so that in the 180

position (G) the only remaining images, a and d, fall in the

same place and appear as a single image. Similar changes go

on if a is increased beyond 180. H shows the appearance

when a =. 225 (the four images equally bright), I that when

a = 270 (a and d vanish, b and c very bright), and J when

a = 275 (all equally bright). If a 360 it is the same

as if a = 0, a and d would have maximum brightness and be

at the maximum distance apart, while b and c would be gone.

These phenomena can all be well explained if we assume

first, the transverse nature of light waves: second, a cer-

tain property of crystals in regard to the velocity of light. A
non-crystalline material like glass has properties which are the

same in any direction, and light therefore travels through it

with the same velocity, no matter what may be the direction

of propagation or the plane in which the vibrations occur.

Crystals, on the other hand, have decidedly different proper-

ties in different directions. Not only do they split easily into

layers in certain definite planes, but also such properties as

heat-conductivity and the elastic and electrical constants are

different according to the direction in which they are measured.

Consequently, taking the optic axis as an axis of symmetry, it

is likely enough that waves whose vibrations lie in the principal

plane would be transmitted with a different velocity from those
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with vibrations perpendicular to that plane, and this is the

second assumption mentioned at the head of this paragraph.

Then, if a beam of natural light, which presumably has vibra-

tions equally in all directions, falls upon a crystal, the latter

will automatically resolve it into two component beams, the

vibrations of which are in one parallel, in the other perpen-

dicular, to the principal plane. These will become separated
from one another precisely because one travels faster than the

other, so that when they emerge from the crystal we shall have

instead of a single beam in which all directions of vibrations

are equally represented, two beams in each of which the vibra-

tions are confined to a plane, these planes for the two beams

being, however, mutually perpendicular. Light restricted to a

single plane of vibration is said to be polarized, or more

specifically, plane polarized, so that both the and E beams

are polarized, but not in the same plane. Both beams are

equally bright because the incident light (unpolarized) had

presumably no excess of vibrations in any particular plane.

Measurements of refraction show that the E-light travels faster

in the calcite than the 0-light, but there is no obvious reason

to decide whether vibrations in the principal plane or perpen-

dicular thereto should be propagated the faster. Consequently

we are at a loss to know whether the 0-light has its vibrations

in the principal plane and the E-light perpendicular thereto,

or vice versa. "We avoid the dilemma by simply

saying that the 0-light is polarized in the prin-

cipal plane, the E-light polarized perpendicular

to the principal plane. These statements should

be regarded as a definition of the plane of

polarization, leaving as a matter for future dis-

cussion the question whether the plan of polari-

zation coincides with the plane of the vibra-

tions, or is perpendicular to it.

Now, suppose that our two equally bright

polarized beams, obtained by passage through *

a single crystal, strike a second crystal whose

principal plane makes an angle a with that of the firsts

In figure 108, oX represents the position of the principal

plane for the first crystal, oY that for the second. Two

equal vectors are laid off, op representing the amplitude
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of the 0-ray as it comes from the first crystal, eq that of the

E-ray. The vectors are drawn in the directions of the respec-

tive planes of polarization, because we are not certain as to the

actual directions of vibration. Now light whose plane of

polarization is either parallel or perpendicular to oX cannot as

such pass through the second crystal, but only light whose plane

of polarization is parallel or perpendicular to oY. We have

seen, however, in section 92, that a simple harmonic motion of

amplitude op is equivalent to two other simple harmonic mo-

tions of the same period and phase, having amplitudes oa and

oc, gotten by the rules of vector resolution. Therefore, the

0-beam from the first crystal will be automatically broken up

by the second, and will pass through the latter as a beam of

amplitude oa, polarized in the principal plane, and a beam of

amplitude oc, polarized perpendicular to the principal plane.

The former of these forms the image a of figure 107, the latter

the image c. In quite the same way the E-beam from the first

crystal, represented by the vector eq, will, on entering the

second crystal, give rise to a beam of amplitude eb, polarized

in the principal plane and responsible for the image b of figure

107, and one of amplitude ed, polarized perpendicular to the

principal plane and responsible for the image d of figure 107.

The relative intensities of the four images a, b, c, and d of

figure 107 can be learned from the amplitudes of the vectors

oa, oc, eb and ed, figure 108. If A represents the amplitude op

or oq (representing the equal and E beams coming from the

first crystal) then

oa = ed = A. cos a and oc = eb = A. sin a

Since the intensity of a beam of light is proportional to the

square of the amplitude, the intensities of the images a, b, c,

and d of figure 107 are then in the continued proportion

a : b : c : d = cos2 a : sin 2 a : sin2 a : cos2 a

Therefore, when a = 90 or 270, a and d vanish while b

and c have maximum brightness, and conversely when a =
or 180, and all are equally bright when a = 45, 135,

225, or 315. These being exactly the relations of brightness

which experiment shows to exist, we may regard it as definitely

proved that light-waves are transverse, and that certain crystals

have the power to divide up an unpolarized beam of light into

two component beams polarized at right-angles to one another.
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106. Wave-surface in doubly-refracting crystals. The

fact that the ordinary ray obeys the regular laws of refraction

shows that light polarized in the principal plane travels with

the same velocity for all directions of propagation, that is, for

all directions of the ray. On the other hand, the failure of the

extraordinary ray to follow these same laws shows just as

surely that light polarized perpendicular to the principal plane

does not have the same velocity for different directions of the

ray. Careful measurements of the angles of refraction for

various angles of incidence show that velocity varies with ray-

direction in a manner that can best be explained as follows:

Suppose that, at some point in the interior of a block of

glass, a disturbance of the molecules takes place, of the kind

which produces light. The light would pass out from this

point in wavefronts each of which would be a perfect sphere,

for the velocity would be the same for all directions. If the

same sort of disturbance were to occur in the interior of a

block of calcite, each wavefront would no longer be a sphere

simply, but a double surface consisting of a sphere and an ellip-

soid of revolution. The optic axis through the center is the

axis of the ellipsoid, and ellipsoid and sphere are tangent to

one another where this axis pierces both surfaces. The spheri-

cal part is the wavefront for vibrations whose plane of polari-

zation is a radial plane, a plane containing ray and optic axis.

The ellipsoid is the wavefront for vibrations polarized perpen-

dicular to the radial planes. Therefore the sphere accounts

for the ordinary and the ellipsoid for the extraordinary light.

In calcite, the ellipsoid is oblate, and lies outside the sphere,

and therefore the E-wave travels faster than the 0-wave, but

in some crystals it is prolate and lies inside, and the 0-wave

travels the faster. In the direction of the optic axis, both

waves travel with the same velocity, and double refraction fails.

Only a single image can be seen from light passing through the

crystal parallel to the optic axis.

107. The lateral displacement of the E-ray. We can now

explain why the extraordinary ray receives a lateral displace-

ment in going through a block of calcite (not parallel to the

optic axis) even when the angle of incidence is zero. Let AB,

figure 109, represent a plane surface separating a block of

calcite (left) from air (right), and let XY be a series of wave-
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fronts advancing in the direction of the arrow, perpendicular

to the surface. The optic axis is parallel to Oc, in the plane of

the paper. According to Huyghen's

principle, each point in the surface

will, when a wavefront strikes it,

become the center of wavelets that

will advance into the calcite, and

the tangent to these wavelets con-

stitutes the wavefront in the crys-

tal. Wavelets are drawn in the

figure from three centers, a, b, and

c, .and each shows in the diagram as

a semi-circle and a semi-ellipse,

these being the sections of the wave-

surface with the plane of the paper.
Figure 109

If the incident wavefront consisted

only of light polarized in the plane of the paper, the semi-ellipse

would be omitted, for the plane of the paper is a radial plane
for the wavesurface, and there would be no extraordinary wave.

If the incident light were polarized perpendicular to the plane
of the paper, the semi-circle would be omitted, and there would

be no ordinary wave. But if the incident light is either un-

polarized, or polarized in any other plane, both circle and

ellipse are represented, and both rays exist. The refracted

wavefront will then be double, consisting of a plane ukv, tan-

gent to the circles and a plane sit tangent to the ellipses. These

two are parallel to one another, but the E-wavefront (sit) has

advanced farther than the 0-wavefront (ukv) and has received

a lateral shift, which increases as the wavelets progress, until

the second face of the calcite is reached. Then we can again

apply Huyghens' principle to find the wavefronts refracted out

into the air, remembering that here all waves travel with the

same velocity, whatever may be the plane of polarization. Of

course, the terms ''ordinary" and ' '

extraordinary
"

apply only

to light within a crystal or other doubly-refracting material.

Evidently, the ordinary wavefronts will emerge into the air as

shown at UV and the extraordinary as at ST. The latter will

have gained distance and suffered a permanent lateral displace-

ment, but neither the distance gained nor the lateral displace-

ment increases any more.
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In the ordinary light, what we call the "ray," or the line

along which the light advances, is perpendicular to the wave-

front, because, the secondary wavelets being spherical, the line

drawn from a center of a secondary wavelet to the point of

tangency with the resulting envelope, bk, for instance, is nec-

essarily perpendicular to the envelope. But in the extraordi-

nary light this is not necessarily so, because the secondary

wavelets are ellipsoidal. For instance, the line bl, drawn from

b to the point where the ellipse from b touches the extraor-

dinary wavefront sit, is not perpendicular to the latter, and

the wavefront advances, not perpendicular to itself but in an

inclined direction. "We are accustomed to speak pf two veloci-

ties for the extraordinary light, the ray-velocity and the wave-

velocity, which are in the ratio of bl to ok
7

. For the ordinary

light ray-velocity and wave-velocity are the same.

108. Special cases of double refraction. If the incident

light, instead of striking normally upon the surface of the

calcite as in figure 109, strikes it

obliquely, the two wavefronts in

the crystal would be found by

the method of Huyghens in a

quite analogous way. Figure .110

represents such a case. The wave-

front XY coming from the air

side (right) strikes the calcite

surface AB first at Y. While it

is advancing to u through air,

the point Y sends out a spherical

wavefront whose radius Yv bears

the same ratio to Xu as the ve-

locity of the ordinary wraves to

the velocity in air, and also the

corresponding ellipsoidal wavefront as shown. At later instants

the points b and a take up the role of secondary centers and

send out spherical and ellipsoidal wavefronts of correspondingly

smaller dimensions, and so for every point between Y and u.

The common tangent plane uv to all the spherical wavelets is

the ordinary wavefront in the crystal, and the common tangent

plane ut to all the ellipsoidal wavelets is the extraordinary.
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Here, as we see, the 0-waves are not parallel to the E-waves

within the crystal.

It is possible to cut or grind a piece of calcite in such a

way that the optic axis is parallel -to the surface, although the

crystal will not naturally split in this way. The part of figure

111 to the left of AB represents calcite cut in this way, AB

being the outer surface and the optic

axis being in the plane of the paper

parallel to AB. The Huyghens con-

struction is shown for the case when

a train of plane waves XY falls at

normal incidence upon the surface. In

this case there is no lateral displace-

ment of the ordinary waves, and in a

sense one may say there is no refrac-

tion, but the extraordinary waves

travel faster than the ordinary, so that

if they both emerge into the air

through a second surface parallel to

AB the E-waves will be ahead of the

0-waves by an amount which depends
Fi*ure m upon the thickness of the layer of cal-

cite. If the layer is thick enough so that one wave gets a quar-

ter of a wavelength ahead of the other, it is called a quarter-

wave plate, if thick enough so that one gets a half-wavelength

ahead of the other it is a half-iuave plate, etc.

109. Tourmaline. Certain doubly-refracting crystals have

the peculiar property of absorbing one of the rays very much
more than the other. The best-known of these is tourmaline,

which absorbs the ordinary ray so strongly that two or three

millimeters of the crystal practically extinguish it. The extra-

ordinary ray is transmitted with little absorption, and there-

fore tourmaline is one of our means of getting a beam of com-

pletely polarized light. With two plates of tourmaline a very

interesting phenomenon can be shown, whose explanation is

simple in terms of transverse waves, but would otherwise prob-

ably be impossible. If the plates be held together with their

principal planes parallel, and any source of light be observed

through them, the light can be plainly seen, though less than
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half as bright as when seen directly, for of course half the light

is absorbed as ordinary waves, and there is also some general

absorption and loss by reflection. But if one of the plates be

turned through 90 about the beam of light as axis, nothing at

all can be seen through them. The light transmitted through
the first plate as the extraordinary waves has its plane of

polarization in such a direction that it is ordinary light for the

second plate, which therefore absorbs it completely. In this

position the tourmalines are said to be crossed.

110. Biaxial crystals. A great many crystals show double

refraction in a way different from calcite, having two direc-

tions instead of one along which light can

be transmitted without showing double im-

ages. They are called ~biaxial crystals, and

both rays are extraordinary, following laws

which are, except for certain special direc- Figure nT
tions, more complicated than the simple laws of refraction that

hold for non-crystalline media. The complete wavesurface con-

sists, not in a sphere and an ellipsoid, but in a very complex
surface of two sheets. Figure 112 is a perspective view of a

plaster model showing one fourth of the complete surface, the

equation of which is

y* 7?- _
^"? ~

where r2 = x2 + y
2

-|- z2
,
and a, b and c are certain constants,

having different values for different crystals. The equation

gives the wavefront emitted from a point, at a definite time, say
1 second after emission. Perhaps a better idea of the shape of

the surface can be obtained if, after studying figure 112, one

considers the sections made by the three coordinate planes. The

section with the YZ plane consists of a circle of radius a and
an ellipse of semi-axes b and c; that with the ZX plane is a

circle of radius b and an ellipse of semi-axes c and a; and

that with the XY plane is a circle of radius c and an ellipse

of semi-axes a and b. These sections are shown in order in

figure 113, which is drawn on the assumption that a is greater

than b, and b than c. If it should happen that any two of

these quantities are equal, the crystal would become uniaxial.

If all three are equal, it would not be doubly-refracting at all.

This is the case for rocksalt and some other crystals, which act,
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so far as the transmission of light is concerned, like glass and

other isotropic media.

Figure 113

111. Poflarization by reflection. In 1810 Malus discov-

ered quite by accident that the light reflected from glass is in

general partly polarized. In looking through a plate of tourma-

line at a glass window from which the direct light of the sun

was reflected, he found that when the tourmaline was turned in

a certain way the light became much dimmer. In fact, light is

polarized to a greater or less degree when it is reflected from

any non-metallic surface, except when the angle of incidence

is zero. Observation, by means of a tourmaline or any equiva-

lent instrument, of the light reflected from a pond of water,

a slate roof, or a wet cement sidewalk, will show always a cer-

tain degree of polarization, which is an indication that the

vibrations in a certain plane are stronger than in a plane at

right-angles. This statement applies, however, only to light

that is regularly, not diffusely reflected. Many materials, such

as paper, which diffuse strongly, also reflect regularly to some

extent, particularly paper which has a strong glaze. The

regularly reflected light is subject to polarization by the act

of reflection, but the diffusely re-

flected light is not. In fact, the de-

gree of polarization of the reflected

light has been used as a means of

grading papers in regard to glaze.

Figure 114 illustrates the polari-

zation by reflection from glass. MN
is a glass slab, T a plate of tourma-

Figure 114 iin6j in sucn position that its princi-
pal plane is perpendicular to the plane of incidence of the light
on MN, i. e., to the plane of the paper in the figure. Under



POLARIZATION BY REFLECTION 219

these circumstances, the reflected light passes through the,

tourmaline, but if the latter is turned about the reflected ray

CB as -axis, till its principal plane is parallel to the plane of

incidence, it cuts off most or all of the reflected light, de-

pending upon the value of the angle of incidence ACD.
There is a certain value of this angle, about 57 for the common
varieties of glass, for which practically all the light is cut out

by the tourmaline. Since this light is transmitted by the tour-

maline when the plane of incidence is perpendicular to the

principal plane, and since tourmaline transmits its extraordi-

nary light, whose plane of polarization is perpendicular to the

principal plane, therefore the light reflected from MN is polar-

ized in the plane of incidence. The angle of incidence for which

polarization is most nearly complete is called the angle of

polarization. If the reflecting surface is thoroughly and fresh-

ly polished, the polarization is almost perfect at the angle of

polarization, but an old or soiled surface polarizes incompletely.

T.he mechanism of polarization by reflection can best be

explained as follows: The incident light coming from A, being

unpolarized, has its vibrations as much in one plane through

the ray AC as in any other, but every vibration can be re-

solved into a component vibration in the plane of incidence

and one at right-angles. _ Therefore, we may regard the beam

AC as composed of two parts, one having its plane of polariza-

tion in the plane of incidence, the other at right-angles to it.

These two parts are unequally reflected, and for a certain angle

of incidence, if the surface is fresh and clean, the second is not

reflected at all. Experiment shows that if A represents the

amplitude of that part of the incident light which is polarized

in the plane of incidence, i the angle of incidence, and r the

angle of refraction, the amplitude of the reflected ray to which

it gives rise is

sin (i -f r)

and that of the refracted ray is

_ 2 sin r. cos i

A A
;

T

sin (i -f- r)

But if B represents the amplitude of that part of the incident

light whose plane of polarization is perpendicular to the plane



220 LIGHT

of incidence, B' that of the reflected beam, and B" that of the

refracted beam, to which it gives rise,

~, - tan (i r)
JD "=.

B" = B -

tan (i + r)

2 sin r cos i

sin (i 4- r) cos (i r)

Theses formulas become indeterminate when i = 0, but hold

good for any angle other than this. None of the numerators

can vanish (except when i = 0), because for no other value of

i can i r = 0, provided there is any change in the medium
at all. But one denominator, that in the expression for B',

does become infinite, if i -j- r = 90. Therefore, when the angle
of incidence becomes large enough the angle of refraction

becoming larger along with it so that the two of them together

amount to 90, B' vanishes. This means that the angle of

polarization has been reached, for then none of the light polar-

ized perpendicular to the plane of incidence is reflected at all,

all of it being refracted. The only reflected light is then

polarized in the plane of incidence.

Since the angle of polarization is the angle of incidence

when the reflected light is all polarized in the plane of inci-

dence, that is the angle such that i + r = 90, we can derive

a simple relation between this angle and the index of refrac-

tion. For then

sin r = cos i

and since

11 = sin i/sin r

we have

n sin i/cos i = tan i

That is, the index of refraction is the tangent of the angle of

polarization. It is easy to prove, by simple geometry, that

when the angle of incidence is the polarizing angle, the re-

fracted ray and the reflected ray make an angle of 90.

When the plate on which the light falls at the polarizing

angle has plane and parallel sides, as indicated in figure 114,

the refracted light strikes the second surface at what is the

polarizing angle for reflection inside the plate. Consequently,

not only the light reflected from the first surface, but also that
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which emerges through the first surface after any odd number

of reflections inside the plate is polarized. On the other hand,

the transmitted light, although it shows some trace of polariza-

tion, is by no means strongly polarized. For, although all of

the light whose plane of polarization is perpendicular to the

plane of incidence is refracted, the major part of that polarized

in the plane of incidence is also, so that the transmitted light

has only an excess of vibrations in one plane.

Since a glass plate, by reflection, gives polarized light, a

second glass plate may be used instead of a tourmaline to de-

tect the polarization, as shown in

figure 115. If the second glass

plate, XY, be held parallel to the

first, MN, it can reflect light of

the same kind that MN reflects,

for their planes of incidence are

paraUel. But if XY be turned

about the ray CB as an axis

through 90, to the position shown

at X'Y', their planes of incidence

become perpendicular, and the

light reflected by MN cannot be

reflected at X'Y'. Similarly a glass

plate can be used to test any beam of light to see whether it

is plane polarized or not. It is only necessary to set the plate

so that it receives the beam at the angle of polarization, and
then turn it about the incident beam as an axis, so as to keep
the angle of incidence always equal to the polarizing angle. If,

for any position of the plate, the reflected light vanishes, the

beam in question is polarized in a plane perpendicular to the

plane of incidence.

Problems.

1. What must be the angle a, figure 108, in order that the

images b and c shall be twice as intense as the images a and

d!
2. Prove that, when light strikes a glass plate at the

polarizing angle, the reflected and refracted rays are at right-

angles.
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3. Find the angle of polarization for glass whose index of

refraction is 1.71.

4. Show that light that has gone through a prism spectro-

scope must be partly polarized. In what plane will be the

maximum polarization?
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112. Methods of polarizing light. For many purposes in

experimental optics, as well as in its industrial applications, it

is desirable to obtain a strong beam of plane polarized light.

A simple block of calcite does not answer the suppose, for it

transmits two beams with mutually perpendicular planes of

vibration, and these are parallek in direction of propagation,

with only a lateral displacement which is too small to separate

them completely. Tourmaline is better, since the ordinary
beam is removed by absorption, but unfortunately tourmaline

exerts a fairly strong absorption on the extraordinary also,

particularly in certain wavelengths, and is usually strongly

colored, so that the transmitted beam is weak. Reflection

from a glass plate at the polarizing angle can furnish a wide

clear beam of polarized light, free from absorption, but the

following calculation will show that this device utilizes only a

small portion of the incident light, and therefore the polarized

beam obtained is weak.

If we take the index of refraction of the glass plate as

1.54, and remember that this is the. tangent of the polarizing

angle, this angle is found to be 57. With an angle of incidence

of 57 and index 1.54, the angle of refraction is 33. We saw

in the last chapter that if light of amplitude A, polarized in

the plane of incidence, strikes the surface, the amplitude of the

reflected light is

sin (i 4- r)

If we substitute i = 57, r 33, we get A' = .407A, that

is the amplitude of the reflected ray is only about .4 that of

the incident, and consequently the energy of the reflected light

is only (.4)
2 = .16 that of the incident. That is, only 16 per-

(223)
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cent, of the incident energy is reflected, 84 percent transmitted.

All this is on the supposition that the incident light is already

polarized in the plane suitable for reflection. In reality, we are

always provided with a completely unpolarized incident beam,
only half the energy of which is polarized in the plane of inci-

dence, and therefore only 8 percent of the incident energy is

available for the production of a polarized beam. If the re-

flecting plate were a perfectly efficient polarizer, the reflected

polarized beam would contain 50 percent of the incident energy.
It is true that the efficiency of the plate is raised somewhat it

we consider the light reflected from the second surface, but

this contribution is small, and the presence of extra images by
internal reflection is usually undesirable. Glass plates used for

polarizing by reflection are usually made of black opaque glass,

so as to avoid these extra images.

113. The Nicol prism. Figure 116 shows an end and a

side view of the Nicol prism, the best-known device for obtain-

ing polarized light. It is made of calcite worked in such a way
as to get rid of the ordinary light and allow the extraordinary
to pass through. To make one, a rather long and narrow crystal

of calcite is cut in two by a plane through the obtuse corners A
and B. The two halves, after being ground and polished, are

Figure 116

cemented together again with a very thin layer of Canada
balsam. The inclination of the end faces is also slightly altered

from the natural cleavage surfaces. Canada balsam is a muci-

laginous substance .which has an index of refraction less than

that of calcite for the ordinary light, but greater than the

effective index of the calcite for extraordinary light, at the

angle at which it comes in. the ordinary use of the prism. For

this reason, it is possible for the ordinary light to be totally

reflected, if the angle of incidence on the plane AB is great

enough, while the extraordinary cannot be totally reflected, no

matter what this angle may be. The slant of the end faces

and that of the cut AB are so calculated that for light incident



DOUBLE-IMAGE PRISMS 225

parallel to the prism axis, or for a few degrees each side of it,

the ordinary light strikes AB at greater than the critical angle.

Consequently the ordinary light is totally reflected off to the

side of the prism, where it is lost, and the extraordinary passes

on alone. The Nicol prism therefore gives a clear colorless

beam of plane polarized light, and its efficiency is high, although

of course the emergent light is to some extent weakened by
reflection where the beam enters and leaves the prism.

114. Double-image prisms. There are also several devices

in which, although neither the ordinary nor the extraordinary

light is eliminated, they emerge, not with parallel rays as from

a simple calcite rhomb, but with an appreciable angle between

them, forming a diverging pair of beams. One of the oldest

is the Wollaston prism, figure 117. It is made of two wedges
of calcite, ABC and ACD, so cut that in

each the optic axis is perpendicular to the

entering ray of light, but the axis in one

wedge is perpendicular to that in the other.

For instance, it is perpendicular to the

plane of the paper in ABC, but parallel Figure n?

to the line CD in ACD. A beam of unpolarized light, on

entering the face AB, is divided into an ordinary and an

extraordinary, neither of which is bent when the incidence is

normal, because the optic axis is parallel to the face. But on

striking the diagonal face AC, the ray which had been the

ordinary in the first wedge becomes the extraordinary
'

in the

second, and vice versa, because the optic axis of the second is

perpendicular to that of the first. Therefore one beam passes

from a medium where it has less velocity to one where it has

greater and is therefore bent away from the normal, while the

other passes from a medium where it has greater velocity to

one where it has less, and is therefore bent toward the normal.

Both beams, on striking the air at the surface CD, pass into a

medium of greater velocity and are therefore bent away from

the normal. Thus they emerge from the prism with a con-

siderable angle of divergence, and become more and more sep-

arated as they recede from the prism.

The Rochon prism, figure 118, differs from the Wollaston

in that one wedge has its optic axis parallel to the entering ray,
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SO' that both rays travel through it with the same velocity. One

ray, the ordinary for the second wedge, suffers no change in

speed on striking the diagonal AC, but

the other undergoes an increase in speed

-* o which bends it away from the normal. The

net result is two polarized beams, one of

which goes straight through the prism
Figure 118 without any bending whatever, while the

other suffers a change of direction.

Devices like the Wollaston and Rochon prisms, which give

two divergent beams of polarized light, are called double-image

prisms. Prisms are now made which differ from the Rochon

type only in that a wedge of plain glass is substituted for the

wedge whose optic axis is perpendicular to the entering face,

and they work very well. Double image prisms are useful for

many optical purposes, but where only a single beam of polar-

ized light is desired it is more usual to employ a Nicol prism.

115. Crossed Nicols and crystal plate. Two Nicol prisms
are said to be crossed when they are held so that their trans-

mission planes are at right-angles, that is, so that the polarized

beam transmitted by the first Nicol is refused transmission by
the second. The first one is then called the polarizer, for ob-

vious reasons, the second the analyzer. No light, of course, can

be seen through a pair of Nicols so held, but if a thin slip of

mica, or of any other doubly-refracting substance, is inserted

between the polarizer and the analyzer, a considerable amount

Of light will, in general, pass through the combination. If the

slip of crystal be rotated about the beam of light as an axis,

certain positions will be found where this light disappears,

leaving things as they were before the slip was inserted. On
the other hand, if the slip be left in such a position that light

passes through, and the analyzer be rotated, the brightness of

of the transmitted light may show fluctuations, but it does not

vanish completely for any position of the analyzer. The last

fact shows that the action of the crystal slip is not to rotate

the plane of polarization, but either to depolarize the light or

to change it to a new kind of polarization which cannot be

shut out by a Nicol, however the latter be held.

116. Elliptic polarization. It is in fact the latter alter-

native which holds here, that is the experiment introduces us
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to a new kind of polarization, known as elliptic polarization,

which can be explained by reference to figure 119. Let OA
represent in direction and length

the amplitude of the light which the

polarizer transmits. Then, since the

Nicols are crossed, XY is the direc-

tion of vibrations which alone can

be transmitted through the analyzer.

Mica, being a doubly-refracting crys-

tal, transmits vibrations in two mu-

tually perpendicular planes, but with

different velocities. Suppose that OB and OC are these two

directions for transmission through the mica. The amplitude
OA will then be resolved into two vibrations of amplitude

OB = OA. cos a

OC = OA. sin a

These two are in the same phase when they enter the mica, but

since one travels faster than the other it will gain in phase till

they both emerge again. If the gain in phase does not amount
to an exact multiple of ?r, the two will, on emergence, no longer

be equivalent to the linear vibration OA, but to some elliptical

vibration, the elliptical form being inscribable within the rec-

tangle of dimensions 2OB X 20C, as fully explained in section

02. The beam of light coming from the slip of mica is there-

fore neither unpolarized nor plane-polarized, but is clearly a

very particular kind of vibration, and is appropriately known
as elliptically polarized light. The elliptical vibration of figure

]19, which is equivalent to the linear vibrations of amplitude
OB and OC with a certain phase-difference, is also equivalent

to vibrations of amplitudes OK and OL, with another phase-

difference. The vibration OL cannot pass through the analyzer,

but the vibration OK can. Consequently light is seen through

the combination when . the mica slip is inserted. If the plane

of transmission of the analyzer, XY is rotated, the amplitude of

the transmitted component will vary, its greatest and least

values being the major and minor semi-axes of the ellipse, but

it will never vanish. On the other hand, suppose that the ana-

lyzer is held in the position shown in the figure, but the crystal

slip is rotated, so that the angle a changes. "When a is zero
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or 180, OB is parallel to OA and equal to it in absolute

amount, while OC is zero. Then only a single beam goes

through the mica and it is in such a direction as to fail to pass

through the analyzer. If a is 90 or 270, OC is parallel to

OA and equal to it in absolute amount, while OB is zero. Again

only a single beam goes through the mica and it is in such a

direction as to fail to pass the analyzer.

117. Circular polarization. If, in figure 119, a = 45,
OB and OC are equal. If, in addition the difference in phase
of the two beams through the mica is 7r/2, or 90, the ellipse

becomes a circle, and we have emerging from the mica what

we call circMlarly-polarized light. Evidently circularly polar-

ized light may be right-handed or left-handed, according to

which of the two component beams passes through the mica

with the greater velocity. (The same is true of elliptically-

polarized light.) Now a difference of phase of -Tr/2 evidently

means that one of the beams passing through the mica gains a

quarter of a wavelength over the other, and as we saw in the

preceding chapter a plate thick enough for one component to-

gain just a quarter of a wavelength over the other is what is

known as a quarter-wave plate. Accordingly, we have the

following rule for the production of circularly polarized light:

Place a quarter-wave plate in the path of a beam of plane-

polarized light, so that its two planes of transmission make an

angle of 45 with the plane of polarization of the incident light.

The transmitted light is then circularly polarized. Quarter-

wave plates are usually made of mica because it splits into

layers so readily. It is peeled down, a thin layer at a time,

to the required thickness.

A quarter-wave plate made of calcite would have to be

exceedingly thin, on account of the great difference, in this

crystal, between the ordinary and the extraordinary velocities.

It is true, that, theoretically, a plate SQ thick that one wave

gains over the other a quarter of a wavelength plus any whole

number of wavelengths would act as a simple quarter-wave

plate, and it would so act in practice if the light used were

monochromatic. But doubly-refracting substances, like isotropic

materials, are subject to dispersion, or differences in velocity
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for different wavelengths, and the dispersion for the ordinary
and for the extraordinary light is not the same. For example,
a plate thick enough for the extraordinary ray to gain 10%
wavelengths over the ordinary in the yellow might show a

difference of 10% in the red, 9% in the green, 9 in the blue,

and 8y2 in the violet, these figures being merely illustrative,

and not actual statements of what any particular plate would

do. Under these circumstances, certain colors would be cut out

completely, all those in fact for which the gain was. an exact

whole number of wavelengths. For an examination of the

figure will show that for these colors the rays of amplitude

represented by OB and OC would emerge from the plate in the

same phase, and would therefore recombine to produce the

original plane polarized light of amplitude OA. Of the other

colors, some would be represented by right-handed, some by
left-handed circularly polarized light, and others by elliptically

polarized light of various configurations of the ellipse. Con-

sequently, of the light passing through the analyzer, parts of

the spectrum would be completely eliminated, other parts much

weakened, arid still other parts quite strong. The result would

be brilliant color effects, which would change when either the

analyzer or the crystal plane was rotated. On the other hand,
if the gain of the extraordinary over the ordinary ray were

only % wavelength for any particular color, it would not differ

a great deal from that for any visible wavelength, and there

would hardly be a suggestion of color in whatever light got

through the analyzer.

The phenomena explained above afford a very convenient

and delicate test for double refraction. It is only necessary to

set up a pair of crossed Nicols and insert between them a slice

of the material to be investigated. If, when this is rotated

into various positions, no light passes through the analyzer, the

material is free from double refraction. Glass is of this char-

acter if carefully annealed and not strained, but a piece of

commercial glass-ware, if experimented with between crossed

Nicols, is almost sure to show streaks of light which indicate an

irregular double refraction, and even well annealed glass, if

bent between the fingers, or otherwise slightly strained, shows

the same effect, though the degree of double refraction is far

too small to show double images to the unaided eye.
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118. Rotation of the plane of polarization. Quartz is a

doubly-refracting crystal, and shows phenomena similar to

those of calcite, though to a far less degree, the difference in

the velocities of the two rays being always small. But quartz

shows in addition a very remarkable property which calcite

and most other doubly-refracting crystals do not share, what

is called optical rotation. When a beam of light is passed

through quartz along the optic axis, just the condition under

which double refraction does not occur, the plane of polariza-

tion is turned without changing the direction of the ray, and

the number of degrees of turning is directly proportional to

the thickness of quartz passed through. Some samples of

quartz twist the plane to the right, others to the left, and in

all samples the amount of turning is very different for different

wavelengths.

If a layer of quartz crystal, cut so that the optic axis is

perpendicular to the faces, is inserted between a pair of crossed

Nicols, light reappears, just as when a slip of mica is so in-

serted, but it is very easy to distinguish between the two

effects. With the slip of mica, as we have already seen, a

rotation of the slip shows certain positions where the light

vanishes when the Nicols remain crossed, but a rotation of the

quartz has no effect, so long as the optic axis remains parallel

to the beam. On the other hand, with the mica fixed in position

so as to show light through the crossed Nicols, a rotation of the

analyzer may cause fluctuations in the transmitted light, but

does not quench it entirely, while with the quartz a rotation of

the analyzer will enable the light to be completely cut out.

These facts show that the effect of the quartz is not to produce

elliptically polarized light like the mica, but to leave the light

plane polarized but with a changed azimuth of the^plane of

polarization. Since quartz is itself a doubly-refracting crystal,

it too would produce elliptical polarization if the light went

through it perpendicular to the optic axis, and when the ray
is inclined to the optic axis the effect is a combination of double

refraction and rotation which is complicated and difficult to

describe.

The power to rotate the plane of polarization is shown by
a number of other crystals besides quartz, and also by certain

solutions, notably the sugars, and it forms the basis of an
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elaborate technical method of analyzing and testing commer-
cial sugars. Incidentally, since in solutions there can be no

question of a regular arrangement of molecules such as occurs

in crystals, it seems certain that solutions must owe their rotat-

ing power to something in the interior structure of the molecule.

Fresnel has offered a very ingenious kinematical explana-

tion of optical rotation. Taking a suggestion from the fact

that in ordinary double refraction linear vibrations in two

perpendicular planes are transmitted through the crystal with

different velocities, he made the supposition that along the

optic axis of quartz circular vibrations in two directions, viz.,

right-handed and left-handed, are transmitted with different

velocities, and from this supposition the rotation of the plane

of pZflwe-polarized light follows as a logical deduction. We
have shown in section 92 that a circular vibration is equivalent

to two linear vibrations, at right-angles in direction and with

a phase-difference of w/2, and we can now show that conversely

a linear vibration is equivalent to a right-handed and a left-

handed circular vibration, each having half the amplitude of

the linear vibration. This can. be done analytically, by the

use of equations, but the following graphical method is perhaps

better.

A right-handed circular motion can be represented by a

vector, whose length is equal to the radius of the circle, and

which swings at a uniform rate about

the origin, like the vector OA in figure

120, that is, the end of the vector al-

ways gives the position of the body

undergoing the circular motion. A
left-handed circular motion would be

similarly represented by a vector

swinging in the opposite direction.

The rule for compounding two vectors

is to place the origin of one at the ter-

minus of the other. Therefore, to com-

pound a left-handed with a right-

handed circular motion, we take the

terminus, A, of the latter for the center about which the former,

AB, turns. Now if OA swings at a uniform rate to the right

while AB swings at a uniform rate to the left from the end of

Figure 120
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OA, the point B will describe the path of a point whose motion

is a combination of the two circular motions. If OA and AB are

equal in length, and if they both rotate at the same rate, this

path is the straight line CD, as can be easily proved by simple

geometry. It is also easy to prove that the motion is simple-

harmonic, with amplitude twice the radius of either circle.

Any plane-polarized beam of light can therefore be regarded
as composed of two circularly-polarized components of the same

period but half the amplitude, one right-handed, the other left-

handed. According to Fresnel's hypothesis, these, on entering

the quartz along the optic axis, will travel through it with

different velocities. On emerging into the air again, one of

these components will have gained on the other in phase, be-

cause of its greater velocity, and this gain in phase causes the

plane-polarized beam to which the two on emergence are equiv-

alent to be turned somewhat from the plane of polarization of

the light as it entered the quartz. Irii order to explain this r

suppose that the right-handed vibration in the figure is %
revolution ahead of the left-handed. Then, when the former

had turned 90 from the vertical, into the position OA', the

latter would be just passing through the vertical position, as

A'B'. Consequently, the path of the tracing point would be

along the diagonal OC' instead of OC, and the plane of the

vibration would be rotated through 45. Evidently, the angle

through which the plane of polarization is rotated is half the

gain in phase of one component over the other, and therefore

it will be proportional to the length of path traversed in the

quartz.

Fresnel subjected his theory to a further interesting test.

If the two kinds of circularly polarized light travel with differ-

ent velocities within the quartz, they will have different indices

of refraction. Now suppose that plane polarized light be sent

through a prism cut out of quartz in such a way that the optic

axis is parallel to the base of the prism. The two circularly-

polarized components to which the plane-polarized beam is

equivalent, having different indices of refraction, should sepa-

rate, just as two different wavelengths separate in going through

a glass prism, emerge with different directions, and be brought

to a focus at different points. This actually proves to be the

case. Light of a single wavelength, when sent through a spec-
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troscope with such a prism gives two spectral lines instead of

one, one line composed of right-handed, the other of left-handed

circularly polarized light, but both having the original wave-

length. When Fresnel tried this experiment, he actually used

a row of prisms instead of one, a prism of right-handed quartz
followed by one of left-handed quartz with its base in the

opposite direction, this in turn followed by a prism like the

first, and so on. By this arrangement, the effect of a single

prism in separating the two beams is greatly increased, but

such an elaborate arrangement is not necessary. A single 60

prism of ordinary size is sufficient to show the effect, and in-

deed this doubling of the spectrum lines is so troublesome that

whenever quartz prisms are used for studying ultraviolet light,

they must be made double, half a prism being of right-handed,

half of left-handed quartz, the two halves having their bases

in line and their apexes together. By this contrivance the

effect is neutralized, one prism undoing the rotation produced

by the other, and single spectral lines result.

It should be noted that the doubling of spectral lines by
a quartz prism can be explained without making use of Fres-

nel's hypothesis, as a simple result of rotation and diffraction,

but there can be no doubt that right-handed and left-handed

light does pass along the optic axis of quartz with different

velocities.

119. Magnetic rotation. Michael Faraday found that

when certain substances are placed within a strong magnetic

field and plane-polarized light is sent through them along the

magnetic lines of force, the plane of polarization is rotated

just as it is in a sugar solution, or in quartz along the optic

axis. This discovery was the first intimation of any connection

between optical and electromagnetic phenomena, and is one of

the facts that stimulated the electromagnetic theory of light,

which we are to take up later. A similar phenomenon was

discovered by Kerr. He found that when a beam of light,

polarized in or at right-angles to the plane of incidence, is

reflected from the polished pole piece of a strong magnet, the

plane of polarization is slightly rotated in the reflected light.

There is one important difference between the rotation in

quartz and other crystals or solutions, and the rotation due to

magnetic action discovered by Faraday. In the former, if the
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rotation is right-handed, for instance, going in one direction, it

will also be right-handed going in the opposite direction. Stat-

ing the matter in another form, if a beam be sent along the

optic axis of a piece of right-handed quartz, so that the plane
of polarization is turned to the right, and then reflected .back

over its path by means of a mirror, the plane will again be

rotated to the right, bringing it back exactly to the azimuth

which it originally had, for a right-handed rotation with re-

versed path undoes the effect of the original right-handed

rotation. On the other hand, in the case of magnetic rotation,

the turning is to the right when the light goes out in the direc-

tion of the magnetic lines of force, but to the left when it goes

against the latter, so that a beam sent out along the lines of

force and reflected back suffers twice as much rotation as if it

traversed the distance only once. In magnetic rotation, the

direction of rotation depends upon the direction of the lines of

force of the magnetic field, but in rotation produced by crys-

tals and solutions it depends upon the direction of the ray.

120. The rings-and-brushes phenomenon. Some very re-

markable and beautiful effects are produced when a beam of

plane-polarized light is passed through a thin layer of doubly-

refracting crystal cut with its faces perpendicular to the optic

axis, and the light is received through an analyzing Nicol

prism and a telescope. Thus, let AB, figure 121, represent a

slip of some uniaxial crystal which is free from the rotating

power of quartz. CD, perpendicular

to the faces of the slip, shows the

direction of the optic axis, and the

polarized light comes through from

below, in a cone whose axis is paral-,

lei to this line. The axial ray CD
obviously suffers no double refrac-

tion, but a ray ED, inclined to the

optic axis, is resolved into an ordi-

nary and an extraordinary ray, and these emerge from the

crystal parallel to one another and with a phase-differ-

ence, unless the plane of polarization of the incident light

happens to be either parallel or perpendicular to the plane

through ED and the optic axis, the plane of the paper
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for this case. The phase-difference between ordinary and extra-

ordinary will depend upon the inclination and length of the

path within the crystal, for instance it will evidently be greater

for the ray FD than for ED, since FD is more inclined to the

axis and has also a longer path within the crystal.

The square area in figure 122 represents the crystal slip

as seen from above, the optic axis now being perpendicular to

the paper. Let be the point of emergence of the axial ray

Cd of figure 121, and AB the plane of polarization of the inci-

dent light. Referring back to figure 121, it is clear that the

phase-difference that exists between the components of the ray

c
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Figure 122

ED will be the same as for any other ray such as E'D which

emerges from the crystal at the same distance from the point

of figure 122. Therefore, if in the latter figure we draw
circles about 0, the phase-difference between the ordinary and

the extraordinary rays on emergence will be the same for all

points on any one circle, but different for points on different

circles. Circles are drawn for which this phase difference is TT,

2-7T, STT, 4rr, respectively.

Consider first the light that comes through at points along

the line AB. For these points the principal plane is the same
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as the plane of polarization, therefore there is no extraordinary

ray and all the light passes through as ordinary light. Next

take points along CD. For these the principal plane is per-

pendicular to the plane of polarization of the incident light,

and therefore there is no ordinary ray, and all the light comes

through as extraordinary ray with its plane of polarization un-

altered. Points along AB and CD would then be represented

by plane-polarized light with the same plane, as indicated by
the arrows along these two lines. Now take points along EF
or GH. Here the principal plane is at 45 with the plane of

polarization of the incident light, there will be both an ordinary

and an extraordinary ray, and their amplitudes will be equal,

but the phase-difference between them will depend, as we have

seen, upon the distance of the point from the center. At O

itself, and also where EF and GH cross the circles marked 2?r,

47r, etc., the two rays are equivalent to the original polarized

incident ray, for a phase-difference of 2tr, or any even multiple

of TT, is equivalent to no phase-difference at all. Consequently

we mark arrows at these points parallel to the plane of polari-

zation of the incident light and to the arrows along AB and

CD. But where EF and GH cross the circles marked TT, STT,

etc., (any odd multiple of TT is equivalent to TT when we are

speaking of phase-differences) the two rays are equivalent to

a ray polarized at right-angles to the incident light, as can be

seen by comparing the diagram of figure 94 for ft
=

TT, with

that for ft
= or

/?
=

. 2ir. These points are marked with

arrows at right-angles to those along AB and CD. The reader

should now be able to foresee what happens at points where

the circles are. cut by lines making any other angle, say 22.5,

with. AB or CD. At all these points there will be both an

ordinary and an extraordinary ray, of unequal amplitudes.

At the circles of phase-difference 27r, or 4?r, the original plane

of polarization is reproduced, but at the TT or BTT circles the

result will be plane polarized light, but with an inclined direc-

tion. Arrows are marked only in the upper left-hand quad-

rant of the figure to indicate the azimuth of the plane-polar-

ized light at points on these circles.

Other circles might be drawn, for which the phase-differ-

ence is 7T/2, 37T/2, 57T/2, etc., and it is not difficult to show that

at various points on these circles the resulting light is circularly
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or elliptically polarized, except where they are crossed by the

lines AB and CD, where the ellipse becomes a straight line.

We have shown that the light coming through at various

places on the plate would have diverse states of polarization,

but nothing of all this would show to the eye without the use

of a second Nicol prism or other analyzer, for the eye cannot

detect polarization. If an analyzer is inserted, parallel to the

polarizer which furnishes the incident light, brightness will

show at all those points of the diagram marked with arrows

like those along AB or CD, complete darkness at points marked

with arrows at right-angles to these, and partial illumination

at points where the polarization is elliptical or circular, or plane

but inclined to the line AB. There will be a bright cross AB
and CD, cutting across a series of bright and dark rings. ^ If

the analyzer is crossed with the polarizer, the pattern will be

exactly reversed, consisting of a black cross cutting across a

ring-system. This is the phenomenon of "rings and brushes,"

the name being suggested by the appearance.

121. The nature of elliptic and circular polarization.

Students often find difficulty in forming a satisfactory physical

conception of circularly-polarized waves, or of unpolarized

waves, although plane-polarization may offer no particular

difficulties. Probably this may be overcome most easily by con-

sidering simple mechanical waves in an elastic jelly, as was

done in chapter III to explain plane wavefronts. Figure 17 of

that chapter represents a block of jelly with a stiff board at-

tached to it so that any movement of the board in its own plane

sends a train of transverse plane waves through the jelly. It

is clear enough that a movement of the board back and forward

in the direction AB, or along any line in the plane of the board

inclined to AB at any angle, would cause the waves produced

to be plane-polarized. In order to make circularly-polarized

waves, the motion of the board would have to be circular in

its own plane, but the motion must be one of translation, not

of rotation. The board must not turn about a fixed axis, like-

a wheel on its shaft, but must move so that its edges remain

parallel to their initial directions and so that every point in

the board moves in a circle of the same diameter. Then one

plane after another in the jelly would take up the motion, and
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circularly-polarized wavefronts would advance through it. If

the path of every point in the board were an ellipse, the same

would be true of each point in the jelly when the wavefront

reached it, and the waves would be elliptically polarized. In

order to produce unpolarized waves, the Aboard must move so

that, although its edges keep parallel to themselves, the path
of each point in it would be a very irregular and random sort

of curve. Each point in the jelly would in its turn go through
the same path, and no particular direction of vibration would

predominate.

Whether light vibrations actually consist of real mechani-

cal displacements in the ether, like the mechanical displace-

ments in the jelly, is a question which up to the present we
have ignored. But it seems certain at any rate that whatever

may be the character of the ether-disturbances which produce

light, they must be of the nature of vectors, since the phe-

nomena of polarization clearly indicate that they have direc-

tion. Therefore it is convenient and permissible to represent

them as mechanical displacements, remembering that they may
prove to be something else.

Problems.

1. A device that has been used for producing polarized

light is a pile of plates set so that the light passing through

strikes each at the polarizing angle. If each reflection (two

for every plate) reduces by 16% the energy of that part of the

beam incident upon it which is polarized in the plane of inci-

dence, what would be the total percentage reduction by 10

plates $

2. Light passes through one Nicol prism and then through

another whose plane of transmission makes an angle a with

that of the first. Neglecting losses by reflection from the end

faces, what must be the angle a in order that the second Nicol

cut down the intensity to %?. to %? to %?
3. Suppose a beam of light, whose origin is unknown, is

passed into a room. What instruments would be used, and

how would one proceed, to find whether it is unpolarized,

plane-polarized, circularly polarized, elliptically polarized, or

partly plane-polarized ?
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4. Mica transmits, perpendicularly to its natural cleavage

planes, two beams whose 'indices are 1.5609 and 1.5941, their

planes of polarization being of course mutually perpendicular.

These indices are for light of wavelength .00005893. What will

be the thickness of a quarter-wave plate of mica for this wave-

length?



CHAPTER XIV.

122. Plane of polarization and plane of vibration. 123. Elastic-

solid theories. 124. Electromagnetic theory. 125. Direction of the

vibrations. 126. Fundamental electromagnetic laws. 127. Faraday's
displacement-currents. 128. Maxwell's assumptions. 129. Hertz's ex-

periments. 130. Propagation of electromagnetic waves. 131. Velocity
of the waves. 132. Refractive index and dielectric constant.

122. Plane of polarization and plane of vibration. It has

been shown that, in the ordinary and the extraordinary waves

produced by double refraction, the directions of the vibrations

or, more precisely, the directions of the light-disturbance

vectors are at right-angles to one another. But no evidence

was shown to indicate whether this vector for the ordinary or

for the extraordinary lies in the principal plane. The difficulty

was temporarily avoided by agreeing to call the principal plane
the

' '

plane of polarization
' '

of the ordinary waves
;
and con-

sistently therewith, the plane of polarization for the extraordi-

nary waves must be perpendicular to the principal plane. This

is a pure definition, rather than a statement of physical fact,

and leaves it an open question whether the vibrations in polar-

ized light lie in or perpendicular to the plane of polarization.

123. Elastic-solid theories. Such a question could not be

permanently ignored by physicists, particularly as it was found

to be of decisive importance for certain theories which were

worked out mathematically during the nineteenth century.

These theories all started from the assumption that the ether

behaves like an elastic jelly, and that light consists of real

mechanical transverse waves in it, the velocity of which de-

pends on the density and the elastic coefficients of the ether.

Since light travels slower through glass and other material

media than through the free ether, it was assumed that the

presence of material molecules alters either the density or the

elastic properties of the ether. In doubly-refracting substances,

the velocity is different for different directions of the vibra-

tions, and this fact would lead us to infer that it is the elastic

constants, rather than the density, which is changed, for densi-

ty, as we ordinarily know it, is not a vector quantity, and has

(240)
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nothing to do with direction. Nevertheless, some theorists as-

sumed that it is the density that is changed, others that it is

the elastic coefficients, for the development of the science had

reached such a point that further progress could be made only

by making such assumptions and seeing whether all the con-

clusions to which they led were in accord with experimental
facts. Each of these assumptions accounts for some of the

facts of reflection and double refraction, but neither is satis-

factory at all points. One leads to the conclusion that in polar-

ized light the vibrations are parallel to the plane of polariza-

tion, the other that they are perpendicular to it.

A fundamental weakness in these
"
elastic solid" theories

is that they fail to explain why we never find indications of

longitudinal ether waves. For a disturbance inside an elastic

solid like a jelly will send out not only transverse but also

longitudinal waves, which will travel with a different velocity,

greater or less than the transverse, according to the relative

values of the elastic coefficients, the compressibility and the

rigidity. Moreover, longitudinal waves striking a reflecting

surface should set up transverse waves, and vice versa. At-

tempts were made to solve this difficulty by assuming that the

longitudinal waves failed to make their presence known to us

because their velocity was enormously great or enormously

small, but the results were by no means satisfactory. It is

also difficult to see how a medium which exerts an elastic re-

action against a displacement can allow bodies like the planets

to move through it without any retardation.

124. Electromagnetic theory. Although text-books writ-

ten in comparatively recent years have given a prominent place

to the elastic solid theories, these are now practically obsolete,

supplanted by the electromagnetic theory. Therefore we shall

in this book make no further reference to them, but confine our

attention to the electromagnetic theory and its consequences. A
complete mathematical treatment would be out of place in a

text of this kind, but an attempt is made in the following pages

to give, first a physical conception of the character of electro-

magnetic waves, second a statement of the electromagnetic laws

that form their basis, with a little of the history of the develop-

ment of the theory.
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We are no longer to think of the ether as a material me-

dium, with a certain density and a certain degree of rigidity,

but simply as the seat of electrical and magnetic forces, and

the laws of these forces are all that we need to know about it.

Figure 123 is designed to explain the electrical part of what

'\ t>\-

Figure 123

we mean by an electromagnetic wave. At ax ,
a2 , etc., and at

points in their immediate neighborhood, what we call the elec-

tric force, or the intensity of the electric field, is directed up-
ward in the figure, while at b ly b2 , etc., and in their neighbor-

hood, it is directed downward. The meaning of the above state-

ment is this : if a body with a positive electric charge were placed

at a x or a 2 it would be acted upon by an upward force, while

at bj or b2 it would be acted upon by a downward force. The

small vertical arrows indicate the direction and the magnitude
of the electric force at the different points. Now imagine this

whole condition of affairs to be in process of transference to

the right as indicated by the arrow A, so that after a certain

time the a's will be places of downward and the b's of upward
electric force. We should then have an electric wave travelling

in the direction A.

Such a wave, however, cannot exist alone, for the changes

in electric force are necessarily accompanied by changes in

magnetic force, in a plane at right-angles to the electric force,

which means at right-angles to the paper in figure 123. To

show properly both the electric and the magnetic parts of the

complete wave, would require a three-dimensional model, but in

figure 124 an attempt is made to represent the whole thing in

-'i Ll \--^-

Figure 124

a perspective drawing. A positive charge placed at a t or a2

would experience a force upward, while the north-pointing pole

of a magnet placed there would experience a force outward
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toward the reader. At b, or b2 both forces would be reversed.

The reader should not think of the electric and the magnetic

parts as two separate waves, but simply as two different aspects

of the same wave, for, from the nature of electrical and mag-
netic phenomena, neither one can exist without the other.

Such a wave as is depicted in figure 124 would undoubted-

ly be a polarized wave, for we have considered the electric

vibrations to be always in a vertical, the magnetic in a hori-

zontal plane. Either set of vibrations might, however, be in

any plane parallel to the direction of propagation, provided
the two parts, electric and magnetic, are perpendicular to one

another. A train of waves in which the plane of the electric

vibrations is continually changing at random would be an un-

polarized train. Polarized electromagnetic waives of the type
of figure 124 are exactly the kind sent out by the transmitting

apparatus of a wireless telegraphy outfit. The electric vibra-

tions are perpendicular to the earth's surface, the magnetic

parallel to it.

The electromagnetic theory of light, although historically

it arose long before the development of wireless telegraphy,

really amounts to the belief that polarized light-waves are

exactly identical in everything except wavelength and fre-

quency with the waves of wireless telegraphy, so that if a wire-

less transmitter could be made to vibrate rapidly enough, and

thus give out short enough waves, the usual receiving appara-

tus could be dispensed with and the signals received by the eye.

Wireless telegraphy would then become identical with signal-

ing by flashes from a lantern, and some of its advantages,

whicK depend upon great length of wave, would be lost.

125. Direction of the vibrations. The introduction of the

electromagnetic theory, with its two kinds of vibrations at

right-angles to one another, makes a fundamental change- in

the old question about the plane of polarization. Instead of

asking, "Are the vibrations parallel or perpendicular to the

plane of polarization?", we must now ask, "Is it the electric

or the. magnetic vibrations that lie in the plane of polariza-

tion?" The answer to this question has been found by apply-

ing rigorous mathematical methods to the reflection of elec-

tromagnetic waves from glass at the polarizing angle, first

when the electric vibrations, second when the magnetic, lie in
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the plane of incidence. The theory indicates that in the -first

case there is no reflection, all the energy being transmitted,
while in the second part is reflected and part transmitted. If

the incident light has both its electric and its magnetic vibra-

tions inclined to the plane of incidence, we can resolve it into

two components. In one component, the electric -vibrations are

in the plane of incidence and the magnetic perpendicular to it,

and no part of this component is reflected. The other com-

ponent has its magnetic vibrations in the plane of inci-

dence and its electric at right-angles, and some of this

energy is reflected. Therefore, in general, electromagnetic

waves reflected at the polarizing angle have their mag-
netic vibrations in the plane of incidence, and their elec-

tric vibrations at right-angles. Since the plane of polariza-

tion has been defined so that, for; light reflected at the

polarizing angle, it is identical with the plane of incidence, we
can now draw the general conclusion that, if the electromag-

netic theory is correct, magnetic vibrations lie in the plane of

polarization, electric at right-angles to it. Since it has become

customary to understand when one speaks of the ''vibrations"

of electromagnetic waves, without any qualifying adjective,

that it is the electric vibrations that are meant, it is often

stated somewhat loosely, that the vibrations are perpendicular

to the plane of polarization.

The theory of electromagnetic waves in space was worked

out on a strictly mathematical basis by Clerk Maxwell. He
was able to prove that such waves are possible, and that their

velocity of propagation would be 3 X 1010 centimeters per

second in the free ether. Since this is the velocity found ex-

perimentally for light, he announced the belief that light con-

sists of electromagnetic waves of very short length.

-A complete verification of Maxwell's theory, however,

would call for an experimental demonstration that waves of the

character contemplated in this theory actually exist, under

such circumstances that, from the manner of their production

and the methods of detecting them, there could be no doubt

that they are electromagnetic, and this was not done until

after Maxwell's death. The difficulty lay not simply in produc-

ing the waves, for according to Maxwell's theory any elec-

tric or magnetic phenomenon such as the discharge of a con-
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denser or the mere movement of a charged body or magnet
would send out such a wave but in getting them of sufficient

intensity and devising suitable means of detecting them. These

experimental difficulties were first solved by Heinrich Hertz,

whose work formed the foundation from which Marconi, De-

forest and others developed modern wireless telegraphy.

The complete mathematical theory of" elec-

tromagnetic waves would be too difficult for

a book such as this, but the following treat-

ment should give some physical idea of why
these waves are possible and how they propa-

gate themselves through the ether. We begin

by recalling two fundamental laws, found by

experiment, for electromagnetic phenomena.
126. Fundamental electromagnetic laws. If the wire AB

in figure 125 carries an electric current in the direction shown

by the arrow, it is surrounded by a "field of magnetic force,"

that is, magnetic lines of force encircle the wire in the direc-

tion shown. If the wire is long and straight, and the return

part of the circuit far away, the lines of force are circles, and

in fact any circle coaxial with the wire is a line of force. Other-

wise, the lines are not true circles, but they still form closed

curves surrounding the wire. The direction of the magnetic*

lines bears the same relation to the direction of the current as

the direction of rotation of a right-handed screw to the direc-

tion in which the screw advances. This is our first fundamental

empirical law.

The second law relates to the induction of electric currents.

Suppose we have a plain loop of wire, in which there is origi-

nally no current, and no battery, dynamo, or other device for

producing a current. Then if, by any such means as the move-

ment of a magnet, the starting or stopping of a current in the

neighborhood, etc., lines of magnetic force are caused to thread

the loop, or lines previously threading it are withdrawn, a

momentary current will traverse the circuit.

127. Faraday's displacement-currents. Now consider the

kind of circuit which we call incomplete, shown in figure 126.

The two straight lines at C represent the plates of a condenser,

such as the inner and outer coatings of a Leyden jar, and B is

an ordinary battery cell. A steady current cannot flow in such
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Figure 126

a circuit, but when the poles of the cell are first joined by con-

necting wires to the plates of the condenser, there is a real

current which lasts only a very short time.

The current is clockwise, that is, we say that

positive electricity flows from the right-hand

plate of the condenser around through the

wires and the cell to the left-hand plate,

leaving the right-hand plate negatively

charged and charging the left-hand plate

positively. The current ceases when the

difference in potential between the condenser

plates, due to their charges, equals tha-t be-

tween the poles of the cell.

Such a circuit is called incomplete because there is no con-

ducting path through the condenser. But Michael Faraday
took the view that every electrical circuit is in a certain sense

a complete circuit. He regarded electricity as being capable
of motion within a non-conductor (or, dielectric) as well as

within a conductor, but with this difference : in a conductor, its

motion is analogous to the flow of water through a pipe, which

retards the water by a sort of frictional resistance but has no

tendency to reverse its motion; while in a non-conductor there

is a sort of elastic reaction opposing the flow, a reaction which

becomes greater as the displacement becomes greater and which

tends to reverse it. A rather good analogy with Faraday's
ideas is gotten by considering the wires of figure 126 replaced

by pipes, the cell by a pump, positive electricity by water, and

the condenser by an elastic membrane which the water cannot

penetrate, but which can be stretched when water is pumped
away from one side of it to the other side. "When the pump
is started water flows through the pipes and the membrane is

bulged out toward one side, and the flow stops when the mem-

brane maintains a difference of pressure equal to that produced

by the pump. If another pipe-route, not containing a pump,
is opened between the two sides of the membrane, the latter

will flatten out, discharging the water through this route. If

the resistance of this pipe is not too great, the inertia of the

water will cause the membrane to overshoot the mark, it will

bulge out on the other side, and there will be a series of oscil-
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lations in the water, till it is brought to rest through loss of

energy by friction in the pipes. Analogous electrical oscilla-

tions occur when a condenser is suddenly discharged through

a wire circuit of small electrical resistance. Notice that the

force which the pipes themselves exert upon the water is in

the nature of a drag, or resistance. It increases when the

velocity of flow increases, and becomes zero when the velocity

is zero. On the other hand, the reaction of the membrane de-

pends not at all upon the velocity of flow, but only upon how
much water has been pumped out from one side into the

other.

In the wires of the electrical circuit there is a real current,

or flow of electricity, when the condenser is being charged and

when it is being discharged, just as there is a real flow of water

in the pipes when the membrane is being bulged out and*when

it is flattening itself again. Faraday regarded the condenser

also as the seat of a flow of electricity, opposed by an elastic

reaction instead of a mere resistance. Such a flow has been

called a displacement current, as distinguished from the con-

duction current that takes place in the metal wires.

128. Maxwell's assumptions. So far, Faraday's idea is

merely a theory that affords a convenient way of thinking of

electrical phenomena, but it becomes of great importance when

we enquire whether displacement currents have the same rela-

tion to magnetic phenomena as conduction currents. Are dis-

placement currents surrounded by. lines of magnetic force?

Are displacement currents induced when there is a change in

the lines of force threading through a circuit composed in whole

or in part of non-conductors? An answer by direct experiment

would be difficult, but Maxwell started out with the assumption

that the answer to each of these questions is yes, and tried to

see what conclusions this assumption would lead him to. The

principal conclusion is the existence of electromagnetic waves

in the ether of the kind we have already described.

129. Hertz's experiments. The mechanism by which

these waves propagate themselves can be seen by a considera-

tion of the apparatus with which Hertz first studied them.

The two ends of the secondary of an induction coil (S, figure

127) are led to the two halves of what is called the oscillator.

This consists of two rectangles of sheet metal in the same plane,
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Figure 127

to each of which is attached a metal rod ending in a ball. The

two balls are placed close enough together so that when the

induction coil is operated a series of sparks pass between them.

One may regard the rectan-

\ gles of sheet metal as being

the two plates of a condenser,

\ the plates being opened and

A separated from one another.

; They still constitute a sort of

condenser, but one of small

capacity. So long as a spark

^'' is in existence between the

balls, the spark, the balls and

.the rods form a short-circuit for the condenser, but before the

spark is formed the plates are connected only through the coil

S in the induction coil. The first action then, when the induction

coil starts to work, will be to charge up the plates just as if the

induction coil were a battery cell, except: that they are charged

to much higher potential. Let us say, for the sake of concrete-

ness, that the upper plate is charged positively, the lower nega-

tively. Evidently there will be what we have called displacement-

currents in the space between the balls and also all around the

two plates. When the difference in potential between the two

plates becomes great enough, a spark starts between the balls,

immediately establishing a short-circuit. The plates then dis-

charge, and rapid electrical oscillations occur in the system,

much more rapid, in fact, than the operation of the induction

coil which starts them. The induction coil, for example, might
make one or two hundred sparks per second, while the oscilla-

tions in the oscillator are at the rate of some hundred million

per second, so that each single spark would include a large

number of oscillations, though in each set of oscillations there

is no doubt that the amplitude dies down rapidly, or, as we

say, they are strongly damped. Each spark starts a series of

oscillations which die out completely before the next spark

occurs.

130. Propagation of electromagnetic waves. Now, con-

sider what happens in the surrounding space, supposing for

convenience that the axis of the oscillator is vertical. When
the first discharge occurs, there is a downward current through
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the spark which causes lines of magnetic force, clockwise as

seen from above, to circulate in a horizontal plane about the

oscillator. According to our second law of electromagnetic

phenomena, the introduction of magnetic lines through any

conducting circuit will induce a momentary current in the

latter; and according to Maxwell's theory the same thing holds

true also for a non-conducting circuit. Therefore, any circuit

drawn at will so as to enclose some of these lines of magnetic

force, such as the dotted line in the figure, which is drawn to

represent a circle in a vertical plane, would be the seat of an

induced current, whose direction is given by the arrow. This

means that there would be an induced current upward at the

spark (where its effect would be to diminish somewhat the

downward current already there, and so account in part for

the dying down of the amplitude of the oscillations) and down-

ward at A. This downward current at A would in its turn

produce lines of magnetic force in a horizontal plane, clock-

wise as seen from above. Their effect would be to neutralize

the magnetic field between A and the oscillator, and to produce

beyond A other induced displacement currents, which would in

turn produce a magnetic field, and so on. Thus, the effect of

the downward current in the oscillator is to cause downward

displacement currents and lines of magnetic force in a horizon-

tal plane, which progress farther and farther from the oscil-

lator. The above explanation might lead the reader to draw

the incorrect conclusion that the progression out from the oscil-

lator comes in a series of steps, for an explanation of such a

complicated phenomenon given without the assistance of mathe-

matical analysis is necessarily crude and incomplete. In reality

the progression is perfectly continuous and goes on at a veloc-

ity of which we shall speak later.

The downward discharge of the condenser is followed after

a very small fraction of a second by a reverse discharge up-

ward. This of course will also send out vertical displacement-

currents and horizontal magnetic field, both of which will be

in the reverse direction from the corresponding vectors caused

by the initial discharge, but they will follow them in their

progression out from the oscillator. The phenomena are re-

peated by the succeeding discharges, although the amplitude of

the oscillations must become less and less since energy is con-
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stantly being sent out from the oscillator. Thus there will be

a series of damped electromagnetic waves, for each time that

the induction coil charges up the plates of the oscillator. It

is evident that the waves are transverse and polarized, since

electrical vibrations occur only in a vertical, magnetic only in

a horizontal plane.

We have traced the causes of the wave propagation only
for a direction at right angles to the axis of the oscillator,

but waves are also sent out in other directions, though with

less intensity. No waves at all are sent out in a direction

parallel to the axis.

131. Velocity of the waves. The general method which
we have here used to show how electromagnetic waves are prop-

agated does not enable us to predict the velocity of propaga-
tion. Evidently this will depend upon the electrical and mag-
netic properties of the free ether, or of whatever medium the

waves are passing through. The mathematical treatment shows

that the velocity is

where /* is the magnetic permeability of the medium and k is

its dielectric constant (specific inductive capacity). In order-

to calculate the velocity from this formula, it is of course nec-

essary that both p and k be expressed in the same system of

units, for two systems are used in the theory of electromagnetic

phenomena, the electrostatic system and the electromagnetic.

Since we must choose one or the other, suppose the latter is

chosen, so that p, and k are both expressed in electromagnetic

units. Now the electromagnetic system is based on the assump-
tion that the permeability of the ether is 1, the electrostatic

system on the assumption that the dielectric constant of the

ether is 1
;

therefore in the above equation for the velocity we

may substitute 1 for ^ but we may not substitute 1 for k.

Instead, we must find the value of k in electromagnetic units.

When two charges e and e' are placed x centimeters apart, the

force between them is

v - ee
'

~.Sf

Since k is expressed in electromagnetic units, e and e' must be
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also. If E and E' be the values of these same charges in

electrostatic units,

where K is now the dielectric constant in the electrostatic sys-

tem. F and x remain as they were, for the unit of force and

the unit of distance do not change from one system to the

other. Therefore, we may say

ee'__ EE'
k

r
iv

Now let c be the number of electrostatic units of charge which

are equal to one electromagnetic unit of charge. Then
E = ce E' = ce'

ee' c
2
ee'

k=|
Since K = 1 for the ether, we may write k = 1/c

2
. Substi-

tuting this value for k and 1 for ^ in the equation for the

velocity, we get

V = c

The velocity of electromagnetic waves appears then to be equal

to the ratio of the units of charge on the two systems of elec-

trical units. This ratio has been measured with great care by
a number of different experimental methods, and is found to

be 3 X 1010
,
the same value as the velocity of light in centi-

meters per second. This is also the value found experimentally

by Hertz for the velocity of his electromagnetic waves.

From this close accord between Hertz's experimental re-

sults and Maxwell's theory on the one hand, and the known

properties of light on the other, the electromagnetic theory of

light seems fairly surely grounded. One is naturally led to

enquire what sort of a mechanism sends out the extremely
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short waves that constitute visible light. Light always starts

from some material particles, never, we believe, from an empty
spot in the ether. Moreover, we have seen that the different

chemical elements emit characteristic wavelengths. Consequent-

ly, the mechanism of emission for ordinary light, corresponding
to the oscillator of Hertz or the elaborate transmission appara-
tus of wireless telegraphy, must be contained within the atom.

Many phenomena not directly connected with light indicate

that an atom contains positive and negative charges, and we are

led to infer that it is the vibrations of one or more of these

charges which start the electromagnetic waves. A mass of

material becomes luminous whenever, as a result of high tem-

perature or any other cause, the charges within some of the

atoms are set into vibration with sufficient amplitude to pro-

duce, in the surrounding ether, waves strong enough, to affect

the eye. Waves coming from a single atom would be polarized,

but from a great mass of luminous atoms, as in a flame, all

planes of vibrations would be represented. If the waves strike

against any material body, part of thei? energy is reflected and

part enters. In some materials the waves that enter are ab-

sorbed before they have gone more than a short distance, their

energy being converted into heat. Such materials are said to

be opaque to the waves. Other materials, called transparent,

allow the waves to pass through with little absorption. The

velocity is always, with a few exceptional cases, slower in the

material than in the free ether; and if the material is doubly-

refracting there are two velocities one for waves having the

electrical vibrations in the principal place (extraordinary),

and one for those having the electrical vibrations perpendicular

to the principal plane (ordinary).

132. Refractive index and dielectric constant. Of course,

since V = l/\/ju,k, a change in velocity means a change in p

or in k. The permeability for all materials except the mag-

netic metals, iron, nickel, cobalt, etc., is practically the same

as for the free ether, so that it must be a change in k, the

dielectric constant, which causes the change in velocity. In

fact, the index of refraction should bear a direct relation to

the dielectric constant. For if V is the velocity of the light

in the material in question, V that in the ether, k the dielec-
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trie constant for the material and k' that for the ether, the

index of refraction will be

X_'_ -L L \/F~~ -
'

'

VA =
? P

Since we have to do only with the ratio of two dielectric con-

stants, it is immaterial whether we use the electromagnetic or

the electrostatic units. If we use the electrostatic, k' = 1,

n. = \/k, or na = k. That is, the square of the refractive

index is equal to the dielectric constant in electrostatic units.

The following table shows how well this prediction of theory

agrees with experimentally measured values for a few common
materials. The refractive indices are given for yellow light of

wavelength .00005893 cm.

n n2 k

Carbon bisulphide ............ 1.64 2.68 2.62

Turpentine oil ................ 1.47 2.16 2.23

Benzene ..................... 1.50 2.25 2.29

Ice ......................... 1.31 1.71 2.85

Alcohol ...................... 1.37 1.88 25.8

Water .................... ... 1.33 1.78 81

It will be noted that n2 and k are nearly the same in value for

carbon bisulphide, turpentine oil, and benzene, but quite differ-

ent for ice and absurdly different for alcohol and water. This

failure of agreement causes a suspicion that there is some de-

fect in the theory, a suspicion that becomes all the greater when

one reflects that even for a single substance the index varies

with wavelength, while the dielectric constant, as we have de- /

fined it, has nothing to do with wavelength. The defect ac-
'

tually lies, not in the electromagnetic theory of light, but in

the conception of the dielectric constant for material substances.

This quantity, which is defined for steady electrostatic fields,

requires some modifications when applied to such rapidly alter-

nating fields as we are concerned with in light waves. These

modifications will be considered in the next chapter.
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133. Dispersion. 134. Electron theory of matter. 135. Electro-

magnetic dispersion formula. 136. Anomalous dispersion. 137. Rest-

strahlen.

133. Dispersion. The preceding chapter ended with the

citation of a case where the electromagnetic theory, in its sim-

ple form, disagrees decidedly with experiment. According to

the theory, the index of refraction of water should be equal

to the square-root of its dielectric constant, i. e., about 9, where-

as it is in fact about 1.33 for yellow light and variable for

different wavelengths. Similar wide divergences are shown by
some other materials, and the index varies with the wavelength
in all. Obviously, before the electromagnetic theory can be

made worthy of acceptance, it must be supplemented in some

way to account for dispersion, or the variation of index with
v

wavelength. So far as the passage of light through the ether

is concerned, the theory may stand as it is, for it is only in

ponderable matter, made up of molecules and atoms, that the

velocity is different for different colors, or wavelengths.
No two materials behave exactly alike in regard to dis-

persion, but so far as the visible spectrum is concerned most

of them agree in this, that both the index and the rate at which /

the index changes are greater for short than for long waves.

Cauchy proposed the formula

where A, B, and C are constants for one material, but have

different values for different materials. The formula is

rather useful when applied to prisms of glass, etc., for

if we know the indices of a particular glass for three

different wavelengths, then by substituting the values of

A and the corresponding values of 11 we get three separate

equations in which A, B, and C occur as unknowns. If we

solve, and substitute the numerical values in (1), we have an

equation from which n can be found for other wavelengths.

But the equation works satisfactorily only over a limited range

of wavelengths, and has no sound theoretical basis.

(254)



ELECTRON THEORY 255

134. Electron theory of matter. The dispersion of ma-

terials can be accounted for on the electromagnetic theory, and

the nature of the dielectric constant at the same time explained,
if we take into account the electron theory of matter, brought
into being as a result of researches partly in optics, partly in

radioactivity and other branches of physics. According to it,

every atom consists of a nucleus of positive electricity sur-

rounded by a number of very small negative charges called

electrons. All the negative electrons are believed to be exactly

alike, even in different elements, and the elements differ merely
in the number and arrangement of electrons and the correspond-

ing magnitude of the positive nucleus. In a complete atom,

the sum of all the negative charges equals the positive charge

of the nucleus, so that the atom is electrically neutral, but

under some circumstances one or more electrons may become

detached from the atom and either remain free and unattached

in space or become temporarily attached to some other atom

or group of atoms. Such a free electron, or one attached to an

otherwise neutral atom or group of atoms, is called a negative

ion; while the atom fromi which it came, which is left with

an excess of positive electricity, and which possibly also gathers

neutral atoms about it, is a positive ion. Experiments on the

leakage of electricity through gases indicate that there are

always a number of ions present in any gas, though exceedingly

few in comparison with the number of neutral atoms, and that

certain agencies such as X-rays and radioactive substances

cause a considerable increase in the number of ions. In metals

the electrons are believed to be particularly free to become de-

tached from their atoms and susceptible of great freedom of

motion within the metal. This accounts for the fact that metals

are invariably good conductors of electricity, for the electrons

are supposed to carry the current. In nonconductors, on the

other hand, the electrons are not easily detached from the atoms.

135. Electromagnetic dispersion formula. The dielectric

constant, or specific inductive capacity, is defined as follows:

Imagine two small metal balls, one charged positively, the other

negatively, e and e' being the respective charges and r the

distance apart. Since the force of attraction is proportional

to the product of the charges and inversely as the square of

the distance, we can write it
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"~kr

The factor of proportionality, k, is the dielectric constant, and

its value depends upon the nature of the medium between and

immediately surrounding the charges. If the medium is water,

F has quite a different value from that for the ether, and

therefore k is different. According to the electron theory,

this decided alteration in the force, caused by interposing

material atoms, is due to the production of what is called elec-

trical polarization. In each atom the positive nucleus is pulled

slightly toward the negatively charged ball, the negative elec-

trons toward the positive ball. When the atoms are of such a

nature that this polarization is great, the result will be a value

of k differing greatly from that for the ether.

If the amount of polarization is proportional to the in-

tensity of the electrical field producing it, k should be constant,

and we find that it is so for steady electrostatic fields. But

when light waves pass through a material the latter is, as we
have seen, the seat of electrical fields which alternate very

rapidly, and in such a case we should expect the so-called

dielectric constant not to be constant at all, but highly varia-

ble. Particularly should this be the case if the waves happened
to have a period somewhere near a natural period for the

vibration of the electrons within the atoms
;
that is, if the wave-

length happened to be nearly the same as that which the atoms

could absorb very strongly, or could themselves emit if excited

to luminescence. In such a case the wavelength is said to lie

close to an absorption-band of the material. The electrons

would be set into violent vibration by resonance, and the elec-

trical polarization would oscillate through a very wide range.

In the theory of such a case, it is necessary to calculate

a sort of average, or effective, value for the dielectric constant,

which will of course be different for* different wavelengths.

The calculation is complicated, because we must take into ac-

count not only the amplitude of the electronic vibrations, but

also the relation in phase between these vibrations and the light

vibrations. For instance, if the period of the light-waves is

shorter than the natural period of the electronic vibrations,

the latter will be behind the former in phase, and conversely
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in the converse case. The full mathematical treatment is be-

yond the scope of this text, but the above considerations; are

sufficient to show that the effective value of k, and therefore

the value of n, should be abnormally large or small for wave-

lengths close to an absorption-band. When the atoms have

only one such band, the final formula is

M, (A
2

(2)

II
2 = 1 +

'

( A*_x,*)* +
Here n is the index for light of wavelength A, Aj is the wave-

length which the material absorbs most strongly, and b and M x

are constants whose values depend upon conditions within the

atom and the density of the material. If the atom has several

absorption bands, the formula becomes

M2 (A
2

A,-)M
T (A

2
A,

2
) M., (A

2
-A.,

2
)

(A
2 ^T + V ' A2 A2 2 (A^^)4 4-V

Aj, Ao. A3 , ete., being the wavelengths of the several absorption

bands.

136. Anomalous dispersion. If, taking equation (2), we

plot n as ordinate against A as abscissa, we get a curve like

figure 128, indicating very low values of n for waves slightly

Figure 128

shorter than A 17 very large values for waves slightly longer.

There are certain substances, particularly the aniline dyes,

which have very strong absorption bands within the visible

region, and for these the dispersion curves are found by experi-

ment to be of the form of this figure, except that the exceed-
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ingly strong absorption which these substances exert upon light

whose wavelength comes anywhere close to the center of the

absorption band (i. e., close to A in the formula) prevents us

from taking measurements there. For instance, all that part
of the graph which is indicated in dotted lines might be miss-

ing from the experimental curve. Such substances were said to

have ''anomalous dispersion," because the curve, with two

branches, differs so much from the single curve obtained for

colorless transparent materials in the visible region. We now

know, however, that the complete dispersion curve of any

material, taken over the complete range of wavelengths, would

show an inflection like that of figure 128 at each strong absorp-

tion band. The curve for the visible region, in the case of

different kinds of glass, quartz, etc., is similar to the right-

hand branch of the figure, showing that these materials must

have absorption-bands in the ultraviolet.

There are some cases of absorption which do not seem to

influence dispersion in this way, for example the absorption

of solutions of copper sulphate, potassium bichromate, etc.

Such absorption is much weaker, however," than the kind shown

by the aniline dyes.

A very interesting case of absorption as influencing dis-

persion is that of sodium vapor, which absorbs very strongly

two wavelengths quite close together in the yellow. (See sec-

tions 53 and 56). It is possible to adjust a Bunsen flame fed

with sodium so that it takes the form of a prism, and thus

investigate its index of refraction for light of different wave-

lengths. Since the density of the vapor is quite small, the in-

dex is practically unity except for wavelengths very close to

one or the other of these two absorption lines, that is light

passes through it with practically the same speed as through

air. An ingenious experiment due to Becquerel causes the

vapor to draw its own dispersion curve. Suppose the sodium

flame to be made to take a prismatic form, with the refracting

edge of the prism below and horizontal, and placed in front

of the slit of a grating spectroscope. Light from some source

giving a continuous spectrum is sent through this flame, enters

the slit of the spectroscope, and is spread out by the grating

into a spectrum in a horizontal plane. Those wavelengths for

which the sodium vapor has a high index of refraction will be
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bent upward by the flame-prism, and so will be raised above the

general level of the spectrum, while those for which the index

is low will be sent down-
absorption

ward and brought below lincs

the general level. Figure
129 shows the actual ap-

Vlole*

pearance under such cir-

cumstances. Each of the Figure 129

absorption lines produces a break in the dispersion-curve simi-

lar to that shown in figure 128, affording a very satisfactory

verification of the theory.

137. Reststrahlen. There are a large number of cases

where a material has the power to resonate to a certain period

of vibration so that we should expect it to absorb very strongly

light of the corresponding wavelength, but instead it reflects

this wavelength with extraordinary power, in some instances

as strongly as a silvered mirror reflects ordinary visible light.

The reflection in such cases is a true surface reflection, not the

sort of diffuse reflection from within the material that occurs

in the case of paper and many other more or less translucent

materials, and which, coupled with some absorption, is responsi-

ble for the colors of most natural objects. This selective sur-

face reflection, due to resonance, is particularly common among
substances having strong resonance bands far out in the infra-

red, such as quartz, rocksalt, sylvite, potassium bromide, potas-

sium iodide, and other crystals or fused salts. This property

enables us to isolate and study some very long waves which

would otherwise be difficult to detect. The method employed

is to take the radiation from some source such as a Welsbach

mantle burner and reflect it again and again from polished

surfaces of the material being investigated. The light obtained

from a single reflection contains, beside the wavelength selec-

tively reflected, light of other wavelengths which are reflected to

a lesser degree, but the latter are almost completely eliminated

after a number of reflections, while the former remain almost as

strong as at first. The Germans have called waves isolated in

this manner "Reststrahlen," and this name has been pretty gen-

erally adopted into other languages, though the English equiva-

lent "residual rays" is also used. By this means light-waves as
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long as .00965 cm. (nearly 1/10 mm., more than 100 times as

long as the deep red) have been isolated from the radiation

of a Welsbach burner by using potassium iodide for the re-

flecting material.

The student may wonder why, if these wavelengths are

already present in the light from a Welsbach burner, they
could not be detected easily and simply by sending the whole

beam through a prism, or dispersing it with a grating, as we
would for shorter wavelengths, without resorting to the resid-

ual ray method for first isolating them. Prisms are useless

for such a purpose because many prisms would absorb such

long waves, and even if that did not occur we could hardly

hope to determine wavelengths from the deviation by the prism
because the course of the prism's dispersion curve so far in

the infrared would not be accurately known. The trouble with

using a grating lies in the fact that a grating gives many
spectra which overlap, and a wavelength such as we are con-

cerned with would come in the same place as many other

shorter waves. For example, a wavelength of .00965 in the

first spectrum would coincide with .004825 in the second,.

.003217 in the third, .002412 in the fourth, and many others,

and it would be impossible from such a complex to tell what

wavelengths were actually present. After the method of re-

flections from a selectively reflecting material have been used

to isolate the waves, a coarse grating or a specially constructed

interferometer can be used to measure the wavelengths. Of

course the actual detecting device must be a bolometer, ther-

mopile, or some similar absorbing and heat-recording instru-

ment.

It was found that quartz, although opaque to some shorter

waves, is rather transparent to the residual rays from potas-

sium iodide, and has for such waves

the very large refractive index 2.2.

A quartz lens then would have for

such long waves a focal length much
less than for shorter waves. Rubens

Figure 130 and Wood made use of this fact for

isolating these waves and even longer ones, their method
being in principle as shown in figure 130. A is a Wels-
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bach mantle, emitting the radiations, B a double metal

screen with a small hole, C a quartz lens, E another screen

with a small hole. E is placed at the proper focus for

the very long waves to be investigated. For visible and

the shorter infrared waves, the focal length of the lens is

so long that the hole in B comes within the principal focus.

Therefore such waves are diverged by the lens, and none of

them would get through the hole in E except such as came

through close to the center of the lens, and these were cut out

by fastening there a small opaque disc D. It is clear that by
this method not only the particular waves strongly reflected by

potassium iodide would get through, but also other waves hav-

ing about the same index of refraction, which would be lost in

the reststrahlen method. In this way, they were able to obtain

waves as long as .0107 cm. from a Welsbach mantle, and by

using a mercury arc in a quartz tube instead of the Welsbach

burner Rubens and von Baeyer detected waves of .0343 cm.,

the longest waves yet found in the radiation from a light-

source. Waves from electrical oscillations in constructed ap-

paratus (i. e., waves of the Hertz type) have been obtained

as short as .2 cm., leaving only a very short gap for undetected

wavelengths. Doubtless waves of length suitable to fill in this

gap exist, and it only remains to detect and measure them.

Problems.

1. Calculate the constants A, B, and C, of equation (1)

of the preceding chapter, for glass whose indices are 1.7774 for

A .00004713, 1.7582 for A .00005600, and 1.7444 for A .00006708.

Then calculate the indices for wavelengths .00005016 and

.00005893.

2. Show that the middle point in a spectrum as given by

a prism of the glass of problem 1 would correspond to a much

shorter wavelength than that in a spectrum of the same source

as given by a grating.

3. From a consideration of the above two problems show

why, in general, spectra produced by prisms are, relatively

speaking, abnormally bright in the longer wavelengths.
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138. Production of X-rays. 139. Their properties. 140. Are X-rays
ether waves? 141. Crystal reflection of X-rays. 142. Measurement of

wavelengths. Crystal structure. 143. X-ray spectra. 144. The K and
L series. 145. Quantum theory applied to X-rays. 146. Secondary
X-rays. Absorption. 147. Total range of ether waves.

138. Production of X-rays. As soon as the discovery of

X-rays was announced by Roentgen in 1897, speculation began
as to whether, like light, they consisted of ether-waves; but all

the evidence acquired for a long time was conflicting on this

point. Before discussing it, a summary of what was known
of the properties of the rays a few years ago will be given.

They arise when an electric discharge is sent through a

glass tube which has been exhausted to a very low pressure,

or as it is sometimes stated, to a "high vacuum. " At such

pressures the discharge in a gas is carried largely by the

"cathode rays," which had been 'shown before Roentgen's dis-

covery to consist of a stream of electrons shot out with very

high velocity from the cathode, or negative terminal of the

tube. The green color, like a fluorescent glow, which is seen

during the discharge, is caused by the impact of the cathode-

ray electrons upon the glass walls of the tube. It was soon

found that the particular place where the electrons strike is

the source of the X-rays, and the tubes are arranged so that

they impinge upon a sheet of metal called the "anticathode,"

or "target," which may or may not be metalically connected

with the positive terminal of the tube. The X-rays then stream

out in all directions from the

anticathode as shown in figure

131, where K is the cathode.

T the anticathode, A the

anode. The student is warned

Figure 131 against thinking that X-rays
are reflected cathode rays. This cannot be, since cathode rays
are negatively charged particles, and X-rays are something en-

tirely different, whatever they may be.

(262)
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139. Their properties. From the standpoint of the gen-

eral public, the most striking characteristic of the rays is their

ability to pass readily through flesh, somewhat less freely
tlirough bone, and to some extent even through metals, all of

which are opaque to light. But to a person of analytical mind
this fact should be no more surprising than that light will pass

through glass. Glass is transparent to light and flesh is trans-

parent to X-rays, and one of these facts calls for explanation

exactly as much as the other.

A characteristic that is more interesting to the physicist

is the ionising power of the rays. Any gas through which they

pass becomes for a short while a relatively good conductor of

electricity, showing that the passage of the rays causes many
molecules to separate into positive and negative ions.

The rays affect a photographic plate very much as light

does, and they cause certain mineral salts to fluoresce strongly,

though they themselves do not stimulate vision in the eye.

X-rays are not subject to refraction, but pass straight

through a prism or lens without any bending. Neither are they

regularly reflected from a polished surface as light is. How-

ever, they are to some extent scattered or diffused in going

through matter, very much as light is diffused in going

through an attenuated fog. The scattering occurs not only at

the surface, but also throughout the material, even when the

latter is a dense solid.

A grating has no effect upon them. They pass right

through it as they would through any material, with some scat-

tering and absorption. An attempt was made to produce dif-

fraction by passing X-rays through a very narrow aperture,

or slit, the jaws of which were made of lead, which is very

opaque. Under similar treatment light, as we have seen in

section 72, spreads out after passing the aperture, and forms

a set of bright and dark bands, whose distance apart depends

upon the width of the aperture and the wavelength of the

light. The narrower the aperture and the longer the wave-

length, the wider apart are the bands. It was hoped by this

means to show that X-rays also consist of waves, and to meas-

ure their length, but it was found that if they spread out at

all it was to such a slight extent that the wavelength, if there
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is any such thing, must be something like 1/5000 that of yellow

light, or less.

X-rays are not all alike, for some will penetrate a material

like aluminum far more readily than others. Rays of great

penetrating power are said to be hard, those of slight penetrat-

ing power soft. The hardness of the rays depends mainly upon
two factors, the material of the anticathode and the degree of

exhaustion of the bulb.

"When a stream of X-rays from a vacuum-tube like figure 131

falls upon a metal, under certain circumstances the latter gives

off electrons and also new X-rays, different from the scattered

rays, called secondary X-rays. It is very remarkable that the

velocity with which these electrons are sent off is nearly the

same as that of the electrons of the cathode ray stream which

produced the original X-rays, and is entirely independent of

whether the incident rays be strong or weak.

After the discovery of radioactive substances, with their

three types of rays known as a, /?, and y, it was soon found

that the y-rays are similar in all respects to X-rays, except

that they are more penetrating than the hardest rays obtained

from a vacuum-tube.

Professor Marx, of Leipsic, carried out a very ingenious

experiment by which he claimed to prove that X-rays travel

with the same velocity as light ;
but his method was necessarily

very complicated, and he was not able to convince his fellow

investigators that his conclusion was justified. No accepted

measurement of the velocity of X-rays has yet been made.

140, Are X-rays ether waves? The fact that X-rays are

not refracted does not necessarily prove that they are not ether-

waves, for it is conceivable that exceedingly short waves would

travel through matter with the same velocity as through empt}^

space. Neither is the failure of regular reflection an objection,

when we know that the distance between the atoms of a solid

body is something of the general order of 10'8 to 10~7
cm.,

that the wavelength of visible light is in the neighborhood of

5 X 10" 5
,
and that if X-rays have a wavelength it is probably

less than 10'8
. A long string of atoms could lie within a single

wavelength of yellow light, while on the other hand a number

of wavelengths of X-rays might lie between two adjacent atoms,

A surface that we may regard as finely polished for visible
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light, would therefore be an exceedingly rough structure for

the very short waves. In the discussion of reflection in chapter

IV, it was stated that each point in the straight line MN of

figure 23 representing the reflecting surface becomes the center

for a secondary wavelet, but it would no doubt have been more

in accordance with facts if it had been said that each atom of

the surface became such a center. Figure 132 represents what

Figure 132

a reflecting surface might look like if it were magnified till

individual atoms became clearly perceptible. The continuous

straight line MN of figure 23 has become a somewhat irregular

row of atoms forming the top layer of a body composed of

many such atoms. When the wavefront "WF strikes any one

atom it becomes a center for a secondary wavelet. 1, 2, 3, 4

and 5 are the respective wavelets from the atoms a, b, c, d, and

e. Since these atoms are not on a straight line, the secondary
wavelets do not lie tangent to a straight line, but if the wave-

length of the light is as long as AB the amount by which each

wavelet falls off a common tangent such as the dotted line is

a very small fraction of a wavelength, and therefore the second-

ary waves are nearly in phase along this line. Therefore, for

visible light we are justified in treating the polished surface

of a solid as if it were a continuous surface. But if the wave-
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length were as short as A'B' the conditions would be very

different, for then any one wavelet might miss the hypothetical

reflected wavefront by half a wavelength or more. Therefore

there would be no general agreement in phase of the secondary
wavelets along any line which could act as a reflected wave-

front; on the contrary the secondary wavelets would have a

general tendency to annul one another's effects, leaving only
a weak resulting effect in any direction, which might account

for the diffuse scattering of X-rays.

141. Crystal reflection of X-rays. But there is one cir-

cumstance under which we might expect a sort of regular re-

Figure 133

flection even for exceedingly short waves, namely, when the

atoms are arranged in regular plane layers, as in a crystal.

This idea occurred to Professor Laue, of Zurich, and at his

suggestion Friedrich and Knipping tried the effect of several

different crystals in the path of a beam of X-rays. They found

that reflection does occur, not necessarily from the surface ot

the crystal, but from every plane within the latter along which

atoms are distributed in a regular pattern.

Laue's explanation of the phenomena observed by Fried-

rich and Knipping is unnecessarily involved, and is in fact

less useful than the following method, which is due to Messrs.

W. H. and W. L. Bragg, who have done a great deal of ex-

perimental work with X-rays. Their book, entitled "X-rays
and Crystal Structure," gives the best account of the subject

yet published.
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In figure 133 let AB, A'B', A"B", etc., represent the rows,

or rather the contours of the planes, in which atoms are regu-

larly arranged. Let PQ be a ray of incident waves. When
the wavefront strikes each point in the layer AB, secondary
wavelets will be sent out, and since the atoms lie in a plane,

the secondary wavelets will all be tangent to a plane, and there

wili be a reflected wavefront for which the ray QR is drawn,
the angles of incidence and reflection being equal. But this is

not all for the incident waves will pass on and strike the next

layer of atoms A'B', which will also give rise to a reflected

wavefront represented by the ray Q'R'. In the same way one

layer after another would take up the act of reflection, until,

after penetrating to a sufficient depth within the crystal, the

incident waves are too much weakened to produce sensible re-

flection. Here we have to do with reflection from many parallel

surfaces, spaced at equal intervals. The condition is really

quite analogous to the reflection of light from a material film

of uniform thickness (see section 76 and figure 80), although

there are certain important differences. Here we have to do

with a series of reflected beams produced by reflection from

many different planes, rather than between only two planes.

All the reflections in the present case are of the same kind, so

that there is no occasion for a difference in phase due to re-

flection alone. Moreover, the index of refraction is to be re-

garded as having the value 1, and the angles of incidence and

refraction are equal. Bearing these facts in mind, the differ-

ence in path between rays PQR and PQ'R', or between PQ'R'

and PQ"R", etc., can be gotten from the analogous case of

figure 80. It is simply

2t. cos r, or 2t. cos i.

t being the perpendicular distance between successive layers

of atoms. X-ray workers have found it more convenient to

express their results in terms of what they call the "glancing-

angle," a, than in terms of i, the angle of incidence, and there-

fore the difference in path is usually written

2t. sin a

If this quantity is equal to a wavelength, or to any whole num-

ber of wavelengths, the reflections from the different layers



268 LIGHT

will reinforce one another, and the reflection will be strong.
The formula for strong reflection

2t. sin a = nA

reminds one of the formula for the grating, and indeed a

crystal does provide a natural grating for exceedingly short

wavelengths; but it differs from the ordinary grating in that

the regular spacing extends in three different directions instead

of only in one, and this fact makes important differences. With
the ordinary grating, the angle of incidence of the light may
be zero, and we look for various wavelengths at various angles ;

but with the three-dimensional grating, or "space-lattice," the

angle of incidence as well as the angle of reflection must have

a particular value, and only one wavelength can be shown at a

time.

142. Measurement of wavelengths. Crystal structure.

The procedure in investigating the wavelengths of X-rays is,

in crude outline, as follows. The X-ray tube, such as that

shown in figure 131, is enclosed in a lead box with a narrow

slit at a certain place, so that only a very fine beam of the rays

gets out through the slit. A crystal is held in the path of this

beam, and slowly turned so that the angle a is changed. At

the same time, a photographic plate, or a device for measuring
the ionization produced by the rays, is turned about the same

axis at twice the rate of motion, so as to always be in position

to receive the reflected rays if there are any. At certain posi-

tions a blackening of the plate or a functioning of the ionization

apparatus shows a reflection, and the angle a is measured. In

addition to this angle a we must of course know the distance t

between the layers of atoms. The man-

ner in which this is found can be best

understood from the following exam-

ple, the special crystal being rocksalt.

It is composed of the atoms of sodium
and chlorine in equal numbers (formu-
la NaCl) and its density is 2.17. From
considerations in regard to its crys-

tal form, which are well supported by the experiments with

X-rays, we are convinced that the atoms in this crystal are

arranged in a cubical pattern as illustrated in figure 134, where

6--

.rV

4
Figure 134
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the white circles represent sodium atoms, the black chlorine

atoms. To each small cube of the structure one atom must be

assigned, as can be readily understood if the reader notes that

cubes of the same size can be drawn with an atom at the cen-

ter of each, the cubes filling the entire space. Therefore, since

t is the length of each side of a little cube, each atom commands
a space of volume t

3
,
and in one cubic centimeter of crystal

there are 1/t
3 atoms. Since one cubic centimeter has a mass

of 2.17 grams, the average mass of the atoms must be

2.17 1/t
3 = 2.17t3

Now the atomic weight of sodium is approximately 23, and that

of chlorine 35, so that the average atomic weight is 29, that

is the average mass of the atoms making up the crystal is 29

times that of the hydrogen atom. From a number of physical

and chemical lines of attack, we know the mass of the hydrogen
atom to be 1.64 X 10'24

, therefore the average atom of rock-

salt has mass

29 X 1-64 X 1C'24 47.56 X 10 24

We can then put

2.17 t
3 = 47.56 X 10-24

t = 2.80 X lO'8

One might be inclined to wonder whether it is not a mole-

cule, rather than an atom, which is located at each corner of

a cube of the crystal lattice. The way in which it was proved
that it is a matter of atoms rather than molecules will not be

taken up here. It is fully explained in Bragg 's book, from

which most of the facts of this chapter are taken.

Having the value of t, it is possible to find the wavelength
of the X-rays emitted by any anticathode. A palladium anti-

cathode is found to emit rays of wavelength .576 X 10~8 as well

as certain other wavelengths. One wavelength being known,
it is now possible to reverse the procedure outlined above, and

find the structure of crystals less simple than rocksalt. Thus

we are provided with a new method, by which we can determine

the inner structure of crystals as well as measure the wave-

lengths of X-rays, although it is only in the latter that we are

at present interested.
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143. X-ray spectra. We carry over into the discussion of

X-rays a number of the terms familiar in connection with visi-

ble light. Thus we speak of the X-ray "spectrum" of a ma-

terial, meaning the total array of wavelengths which it emits

when acting as the anticathode of an X-ray tube. When a

spectrum extends over a considerable range of wavelengths,

without the absence of any wavelength within that range, we

say it is "continuous." On the other hand, a spectrum con-

sisting of several distinct wavelengths only is said to be made

up of so many "lines." Any metal serving as anticathode

emits a continuous spectrum, but also, if the vacuum be good

enough and the consequent speed of the cathode rays great

enough, certain characteristic lines, much more intense than the

continuous spectrum. Each element emits a group of lines

similar to those characteristic of other elements, but the higher

the atomic weight the shorter the wavelengths in the group.

If we pick out corresponding lines for different elements, cal-

culate their frequencies from the general relation that fre-

quency equals velocity of light divided by wavelength, and

then plot the square-roots of these frequencies as abscissa}

against the "atomic numbers"* as ordinates, the points lie

very accurately upon a curve which is nearly straight, that

is, the square roots of the frequencies are proportional to the

atomic numbers.

144. The K and L series. Certain elements of neither very

high nor very low atomic number yield two groups of lines,

the K series and the L series, of which the former is consti-

tuted of shorter wavelengths. For elements .of lower atomic

numbers only the K series has been found, for members of higher

numbers only the L, series. The rule of proportionality be-

tween square-root of frequency and atomic number holds for

each series separately. If this rule be carried down to the

case of hydrogen, for which naturally X-rays cannot be ob-

tained in the usual way, it indicates that the K series for hydro-

*The atomic number is the ordinal number of the element when

the whole list of elements is arranged in the order of increasing atomic

weight. For elements of smaller atomic weights, it is nearly equal to

half the atomic weight. Recent investigations show that the atomic

number is far more indicative of an element's physical and chemical

properties than the atomic weight.
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gen should come in what we have hitherto regarded as the ex-

treme ultraviolet region, where part of a series of lines has

actually been discovered by Lyman; also, that the L series

should about correspond to the hydrogen series in the visible

spectrum shown in figure 62, for which Balmer's series-formula

applies. That is, hydrogen being the lightest known element,

its X-ray spectrum seems to be composed of wavelengths so

long as to bring the lines in the visible and the extreme ultra-

violet regions. Possibly the ordinary visible series spectra of

the heavier elements could legitimately be regarded as repre-

senting X-ray series of longer wavelength than the L-series.

145. Quantum theory applied to X-rays. Mention has

been made in section 59 of the quantum theory^ introduced by

Planck to explain the radiation of an absolutely black body.

There appears in this theory a constant h, numerically equal

to 6.55 X 10'27 , whose significance is that a radiating center

which sends out light of frequency v can do so only in energy-

amounts equal to a multiple of hv. Curiously enough, this same

constant appears in X-ray phenomena, for it is found that an

X-ray tube can emit the radiations characteristic of its anti-

cathode metal, of frequency v, only when the velocity of the

electrons constituting the cathode-ray stream is great enough so

that their energy is at least equal to hv. Of course we have no

rational explanation for this fact, or for any other case in which

the constant h appears.

146. Secondary X-rays. Absorption. It was stated earlier

in this chapter that characteristic secondary X-rays are pro-

duced under certain circumstances when primary rays from a

vacuum-tube fall upon a metal outside the tube. These sec-

ondary rays have the wavelengths of the K or the L series ap-

propriate to the metal which emits them. These rays are pro-

duced only when the primary rays have a somewhat higher

frequency (shorter wavelength).

The absorption of X-rays by a given material is different

according to the wavelength of the rays, just as we should ex-

pect. But the wavelength most strongly absorbed is not the same

as that which the material could under proper stimulus emit, as

we should infer from analogy with phenomena in the visible

region (absorption by sodium vapor, or absorption by the sun's

atmospheric gases of those wavelengths which they can emit).
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For X-rays, the emitted wavelengths are always longer than

those most readily absorbed, as in the phenomenon of fluores-

cence.

147. Total range of ether waves. The facts related in

this chapter show beyond reasonable doubt that X-rays are

ether-waves of the same general character as visible light,

though of exceedingly short length. They may be regarded as

ultraviolet carried to the extreme, though the term ultraviolet

is usually meant to include only waves stimulated by the same

general methods used to produce visible light, such as high

temperature, ordinary electric spark discharges between metal

points close together, discharge through gases at pressures not

excessively low, etc. There is still a gap between the shortest

ultraviolet waves produced by such means and the longest

X-rays produced either directly or indirectly by cathode-ray

discharge, but we are now acquainted with an extraordinarily

large range of ether waves, from the exceedingly short y-ray
waves emitted by radioactive substances at one end of the scale

to the waves familiar under the head of wireless telegraphy at

the other; and such gaps as exist in the range are relatively

small. The following table gives the salient points in the range

of ether-waves, according to length, as we now know them:

wavelength, in cms.

Shortest known waves (y-rays from radium) 10'*

Longest X-rays from cathode-ray discharge 1.2 X 10"7

Shortest ultraviolet from spark discharge 2 .7 X 10"6

Shortest visible 3.5 X 10"r>

Longest visible 7.0 X 10'5

Longest infrared (from mercury-arc lamp) 3.4 X 10 2

Shortest waves from electrical oscillations in

constructed apparatus 2.0 X 10' 1

Approximate length used in wireless 10 5

Longest waves attainable no limit.
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148. Review of the development of light-theory. The de-

velopment of the theory of light given in the preceding chap-

ters follows roughly the chronological order of the history of

the subject. It is of interest to notice that there are a number

of stages in the development, with rather clearly marked divid-

ing points.

Let us turn our attention first to the old corpuscular

theory. It could never have held its place so long, but for the

reverence in which the authority of Sir Isaac Newton, its chief

advocate, was held, long after his death, particularly in Eng-
land. Considerable progress was made under this theory, par-

ticularly in regard to colors and the phenomena of reflection

and refraction.

Nevertheless, the final adoption of the wave theory was a

distinct break, for it offered satisfactory explanations of such

phenomena as interference and diffraction, which were serious

stumbling-blocks to the corpuscular theory. Also, it explained

reflection, refraction, and color differences in a more rational

manner, brought about the invention of gratings and inter-

ferometers, and thus led to the detailed and accurate study of

spectra.

The discovery of polarization may be said to have intro-

duced a third stage, for it proved that light waves, of whose

nature nothing had previously been known except their length,

were not longitudinal but transverse. A period of active specu-

lation as to the nature of the ether and ether waves followed,

leading to the "elastic-solid" theories mentioned in chapter

XIV. These very ably worked out theories are excellent exam-

ples of the application of mathematical analysis to physical

phenomena.

Meanwhile, the mathematical theory of electrical phenom-

ena was also being perfected, and this, as we have seen in

(273)
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chapter XIV, enabled Maxwell to predict the existence of elec-

tromagnetic waves and announce the electromagnetic theory of

light, which fully supplanted the older theories after the ex-

periments of Hertz. This brought the subject to the fourth,

and so far the final, stage.

It must be admitted that, at the present time, the electro-

magnetic ether-wave theory of light does not stand on an

absolutely secure foundation, for certain experimental facts

cast some doubt upon it, namely, those facts that gave rise

to the relativity theory and the quantum theory. Strange as

it may seem, the old corpuscular theory of light could account

very nicely indeed for the Michelson-Morley experiment (chap-
ter IX) and for some of those phenomena in which the constant

h of the quantum theory appears. In fact, one might regard
the relativity theory and the quantum theory as hypotheses in-

troduced to make the wave theory square with these facts, and

the necessity for such additional hypotheses may be regarded as

a weakness in the structure. On the other hand, the corpuscu-
lar theory is condemned by interference, diffraction, and polari-

zation, which seem impossible to explain except in terms of

waves.

149. Lines of modern investigation. Since the introduc-

tion of the electromagnetic-theory, progress has been very

rapid, and has followed several general lines. First, our knowl-

edge of the range of ether waves has been greatly extended,

not only by thrusting farther out into the ultraviolet and infra-

red, but also by an abrupt jump into the region of very short

waves (X-rays) and another into that of very long waves

(Hertz waves).

Another line of attack has been the study of the radiation

from an absolutely black body (see chapter VII). This has

involved a great deal of very careful experimental work, as

well as difficult theoretical study, leading, as we have seen, to

the formulation of the quantum theory.

Third, a number of previously unknown phenomena have

been discovered and investigated, partly optical and partly

electrical in nature. These have to do with the emission and

absorption of light, that is with the relation between radiated

energy and matter, and they are interpreted in terms of the

electron theory of matter. The most striking of these phenomena
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is X-rays. Since this subject has been dealt with at some length
as the special subject of chapter XVI, we shall not discuss it

further here, but proceed to a brief discussion of a few of the

others.

150. The Zeeman effect. Long before Maxwell formulated

the electromagnetic theory of light, Michael Faraday, who had
discovered that a beam of light passing through a magnetic
field has its plane of polarization rotated, conceived the idea

of placing a source of light directly in the magnetic field, to

see whether the latter produced any effect upon the spectrum
lines. Although we now know there is such an effect, Faraday
was unable to. detect it, because the spectroscopes then available

were not efficient enough. Rowland also tried the experiment

Avithout success. In 1897 it was tried again by Zeeman, using a

strong magnet and a good grating spectroscope. The effect

which was discovered has been named the
' * Zeeman effect.

' '

In figure 135 let

MINI be the two parts

of a strong electro-

magnet, each termin-

ating in a conical

pole-piece, leaving a

small space between,
where the magnetic

field is very strong.

The source of light,

S, is placed in this

strong field. The slit

of the spectroscope

may be placed either

at sr (broadside position), or at S2 (end position). In the latter

case a hole must be bored through one pole-piece and magnet

core, to let the light through. In either case, an image of the

source is focussed upon the slit by means of a lens. The results

found in the earlier experiments of Zeeman, and of others who

took up this study, may be stated as follows: In the broadside

position, each spectrum line is changed by the presence of the

magnetic field into a group of three lines very close together

(triplet). The middle line of the triplet is polarized in a plane

perpendicular to the plane of the figure, and the two outer

~
Figure 135
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lines are polarized in the plane of the figure. In the end posi-

tion, the magnetic field causes each spectrum line to become a

close doublet, consisting of two lines, one of which is circularly

polarized in the right-hand direction, the other in the left-hand

direction.

151. Lorentz's theory. These results were given a very
clear explanation in terms of the electron theory by H. A.

Lorentz. He supposed the light to be sent out from an atom by

the vibrations of electrons within the atom. Each electron was

conceived to be bound to the center of its path by a sort of elastic

force, that is a force that varies directly as the distance. Suppose

OX, OY, and OZ, figure 136, to

be three directions perpendicular

to one another. We take one of

these, OX, to represent the direc-

tion of the magnetic field, and sup-

pose to be the center about which

an electron vibrates. The direction

Figure 136 of vibration might be anything,

so we choose a direction OR at random, the length OR repre-

senting the amplitude of the vibration. "We want to find

how such a vibration would be affected by the presence

of a magnetic field in the direction OX. To do this, it

is best to resolve the vibration into certain components.
In the first place, a vibration of amplitude OR is equi-

valent to one of amplitude OP parallel to OX and one of

amplitude OQ in the plane of OY and OZ. (OQ and OR lie

in a plane through OX perpendicular to the plane of OY and

OZ, and the figure OPRQ is a rectangle.) The vibration of

amplitude OQ can again be resolved into a right-handed and

a left-handed circular motion about OX as axis, as was done

by Fresnel in explaining the rotation of the plane of polariza-

tion by quartz. (See figure 120, chapter XIII,) Thus we may
think of the single electron as replaced by three different elec-

trons, of which one vibrates back and forth in the direction

OX, one rotates about OX in one direction, and the third in

the opposite direction. Since an electron is a negatively

charged body, a moving electron constitutes a current. A mag-
netic field has no effect upon a current in the same direction

as the field, and therefore the vibration along OX goes on just
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as if the field were absent. The two rotary motions, however,

constitute currents across the field, and it is well known that

the effect of the field upon such a current is to exert a force on

the latter, perpendicular both to the field and to the current,

that is, either toward the center or away from it, according

to the direction of the rotation. That is, one of the electrons

rotating about OX as axis will have the elastic force pulling

it to the center somewhat strengthened by the addition of a

magnetic pull in the same direction. This electron will there-

fore have its angular speed increased, its period diminished.

The electron rotating in the opposite direction will have its

pull toward the center somewhat weakened by the magnetic

action. It will therefore rotate somewhat slower, that is with

a longer period.

The vibration along OX sends out waves of the same peri-

od, and the same wavelength, as the vibration in absence of

a magnetic field. These will have their electric vibrations

parallel to OX, so that their plane of polarization will be per-

pendicular to OX, i. e., in the plane of OY and OZ. They
will pass out in all directions except the positive or negative

direction of the X-axis, the axis of the magnet, but most

strongly in the YZ plane, so that light of this wavelength would

be observed in the broadside position, but not in the end posi-

tion. The circular vibration would send out circularly polar-

ized light in both directions along the X-axis, and elliptically

polarized light in every other direction except directions in the

YZ plane. In this plane, since the circles in which the elec-

trons rotate are seen edge-on, plane-polarized light would be

the result. The direction of the electric vibrations would be

perpendicular to the magnetic field, so that the plane of

polarization would be parallel to the field. The wavelength

would be slightly shorter in one case, and slightly longer in

the other, than the natural wavelength. Thus, the three differ-

ent wavelengths seen in the broadside position, and the two in

the end position, are fully accounted for, even to the state of

polarization. Moreover, the theory indicates that the change

in wavelength of the two outer lines of the triplet depends upon
the ratio of the charge upon the electron to its mass, and the

measured change gives about the same value to this ratio that
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was known to be right from electrical experiments with cathode

rays.

Unfortunately for Lorentz's theory, it was soon found,

when stronger magnetic fields were available, that many lines

split up into four, five, and even more different component
lines in the field. In fact, the simple triplet seems rather the

exception than the rule. Lorentz's theory was incapable of

explaining these more complicated cases of the Zeeman effect;

and the only theory which has been applied to them with any

degree of success is the theory of Ritz, which will be mentioned

further on in this chapter.

152. The Stark effect. A phenomenon somewhat analogous
to the Zeeman effect was discovered by Stark. It is a similar

splitting up of the spectrum lines when the source of light is

placed in a strong electrostatic field. It has not been studied

to the same extent as the Zeeman effect.

153. The photo-electric effect. Hallwachs discovered in

1888 that a negatively charged zinc plate, if illuminated with

ultraviolet light, would lose its charge. This phenomenon, the

photo-electric effect, is also shown by: other metals, and with

some even visible light is effective.' The action of the light is

to cause electrons to be shot out from <the plate. The phenome-
non is difficult to work with, because it is necessary for the

surface of the metal to be perfectly clean and free from tar-

iiish, and most metals tarnish under the action of the air fast

enough to make the effectiveness decrease very rapidly. In

some experiments, the metal and other parts of the apparatus

were enclosed within a highly exhausted vacuum-tube, which

also contained a device whereby a thin shaving could
'

be cut

off the metal at any time, leaving a fresh clear surface.

Suppose that the illuminated metal, which we shall call

A, is placed face to face with another metal plate B, which is

shielded from the ultraviolet light, so that B may receive the

electrons shot off from A. If B is kept at zero potential by

being connected with the earth, while A is kept at a positive

potential V, then, provided V be high enough, the electrons

will be kept from reaching B by the attraction of the positive

charge upon A, which will draw them back. The magnitude

of the potential V which is just sufficient to accomplish this is

very simply related to the speed with which the electrons are
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emitted. If v represents this speed, and m the mass of an elec-

tron, the kinetic energy with which they leave A is mvY2. If

e represents the charge upon the electron, the expenditure of

work necessary to take it from a potential V to potential

is equal to the product of charge and potential-difference, or

eV. If they are just stopped before reaching B, the kinetic

energy mv2
/2 is just lost in doing this work, therefore

eV = mv2
/2

Since the values of m and of e are well known from electrical

experiments, this equation enables us to find v by measuring
the potential V just sufficient to prevent any current passing

between A and B, for the transfer of electrons constitutes a

current.

It has been found by such experiments that the velocity

of the emitted electrons is exactly the same, whether the beam
of ultraviolet light be strong or weak, although of course the

number emitted per second is greater with stronger illumina-

tion. (Notice that a similar relation was found to hold for the

emission of electrons and secondary X-rays, under the stimulus

of another beam, of X-rays, chapter XVI). The velocity does

depend, however, upon the wavelength of the light. The

shorter the wavelength (i. e., the higher the frequency), the

greater is the velocity, and the relation between the electron

velocity and the frequency of the exciting light involves the

constant h of the quantum theory.

mv2
/2 = hv a

where v is the frequency and a is a constant characteristic of

the particular metal employed. The equation may be inter-

preted in the following manner: As soon as an atom has ab-

sorbed from the incident light a quantum of energy, i. e., the

amount hv, an electron is emitted. Part of the absorbed energy,

the amount a, is used up in getting free from the metal, and

the remainder, hv a, is retained by the electron as kinetio

energy. If the frequency is so small (wavelength so great)

that hv is less than a, the electron cannot escape, and therefore

short wavelengths are necessary for the photoelectric effect.

154. Atom-models. One of the aims of all physical re-

search, as has already been mentioned in this book, is to explain
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the structure and behavior of atoms. If this aim is ever to be

accomplished, we must pay due attention to what information

the chemists have accumulated, as! well as to such physical

phenomena as spectral series, X-rays, the Zeeman effect, the

photoelectric effect, the behavior of gases under electric dis-

charge, etc. It now seems fairly certain that an atom is made

up of a positive charge, the nucleus, and one or more electrons.

If the atoms are arranged in the order of increasing atomic

weights, hydrogen, helium, lithium, beryllium, boron, carbon,

nitrogen, oxygen, etc., the first, hydrogen, is believed to have

a small nucleus and a single electron, helium a nucleus of

twice the charge of the hydrogen nucleus, with two electrons,

lithium a nucleus of three times the charge of the hydrogen
nucleus, with three electrons, and so on, an element of high
atomic weight having a high nuclear charge and a correspond-

ingly large number of electrons. The "atomic number" of an

element is the number of its electrons, or the ratio of its posi-

tive nuclear charge to that of the hydrogen atom.

So far, physicists and chemists are fairly in agreement,
but they differ in their ideas as to the arrangement of the

electrons. It is supposed that the outer electrons are responsi-

ble for the chemical valence of the element; and certain facts>

particularly those concerning the compounds of carbon, which

has a valence four (that is, a carbon can hold four hydrogen
atoms in combination) seem to indicate that these valence-elec-

trons have definite relations to one another in space. For this:

reason chemists are inclined to regard them as stationary in the

atom, each electron having a fixed position. On the other

hand, the physicists, having more in mind that the equilibrium

of the electrons must be explained, look upon them as being

in revolution about the nucleus. Perhaps some means of recon-

ciling these apparently diverging points of view may be found.

We shall ignore any further consideration of stationary

electrons, and confine our attention to atom-theories in which

the electrons are in motion. Lorentz's theory to account for

the Zeeman effect, which is really an atom-theory, has already

been mentioned. It is formulated on the assumption that an

electron is attracted toward the center of its orbit by a force-

directly proportional to the distance. Now if this force is the

attraction beween the nucleus and the electron, it should vary
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inversely as the square of the distance, like any other electro-

static force, provided the electron is outside the nucleus. It

would vary directly as the distance only if the nucleus were in

the form of a sphere of positive electricity with the charge

uniformly distributed throughout its volume and the electron

moving inside this sphere. The atom would then be a globe

of positive electricity with enough electrons moving inside to

neutralize the positive charge, each electron attracted to the

center by a force proportional to its distance from it.

There is a vital difference between a central force varying
as the distance and one varying inversely as the distance

squared, as will be shown by some simple equations. We know
that when a body moves at uniform rate in a circle, the force

toward the center must be equal to mv2
/r, m being the mass,

v the speed, r the radius. If we let
^ represent the frequency

of revolution, v = 2-*^ and the force may be written 47r
2mr

7?

2
.

If we put this force proportional to the distance,

4^2
mr^

2 = Cr or
^
=

showing that the frequency is independent of the distance.

That is the electron would make the same number of revolu-

tions per second whether it were far from or close to the nu-

cleus, and if these revolutions sent out light waves, the latter

would have the same length whether the revolutions of the

electron were violent (large radius of orbit) or weak. On the

other hand, suppose that the central force is the usual inverse

square force of electrostatic attractions. Then

r^

E, and e being respectively the charges of the nucleus and the

electron. Here the frequency depends on the radius r, and

smaller orbits would be traversed with higher frequencies than

larger ones, and therefore send out shorter waves.

If an electron gives out waves as a result of its rotation,

it is bound to lose energy, and therefore to draw closer to the

nucleus. If the central force is directly proportional to the

distance, this would make no difference in the wavelength

emitted, and sharp spectrum lines would be the result. On

the other hand, if the force is inversely as the distance squared,
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the electron would give out' shorter and shorter waves as it

lost energy, so that sharp spectrum lines would not result.

Since gases emit spectrum lines which are usually more or less

sharp, often so sharp that only the most refined spectrum ap-

paratus can show that they are not absolutely so, this evidence

is strongly in favor of a central force proportional to the dis-

tance, and therefore of a spherical nucleus with electrons in-

side. This is the basis of the atom theory proposed at one time

by Sir J. J. Thomson.

But certain experiments in radioactivity, and some other

considerations, indicate that the nucleus, at least in some ele-

ments, is much too small to contain the electrons, and this fact

has made the Thomson atom somewhat obsolete.

Ritz's theory assumes that the rotating electrons are under

the control of a magnetic field produced by the nucleus, which

is assumed to have magnetic properties. By introducing cer-

tain vibrations of the nucleus itself, Bitz was able to explain

the variations of the Zeeman effect. This theory, however, has

not been given much attention by physicists, perhaps because

it does not seem to agree very well with the results of radio-

activity experiments.

155. Bohr's theory of

the hydrogen atom. With-

in recent years an atom

theory has been formulated

by Bohr, in which the elec-

tron is considered as being
under an electrostatic force

of attraction toward the

center of its orbit, varying

inversely as the square of

the distance. We shall con-

fine our attention to Bohr's

application of the theory to
the simplest element, hydrogen. He conceives the single elec-

tron of the hydrogen atom as capable of revolving in any one
of a large number of orbits, as indicated by the circles 1, 2, 3,

etc., in figure 137, and that during such rotation it neither radi-
ates nor absorbs energy. The frequencies of revolution in these

Figure 137
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orbits are governed by the equation (2) above, which for this

case may be written

since for hydrogen E = e. The electron would have a different

energy as well as a different revolution frequency in each orbit.

The potential energy of a negative charge e at a, distance r

from a positive charge e is C - - e2/r, where C is a constant,

the potential energy when the electron is removed to an infinite

distance from the nucleus. The kinetic energy is of course

mv2
/2, or 27r

2mr2

^
2

,
since v =

2?rr^. If we substitute the value

of
^
from (2), the kinetic energy becomes e2

/2r. This makes

the total energy

Thus orbits of smaller radius have smaller energy, and higher

revolution frequency.

Now it has long been suspected that an atom cannot absorb

or emit light when in the normal condition, but that absorp-

tion occurs when it is being ionized, and radiation when the

electrons are in the act of recombining. Accordingly, Bohr

supposes that the hydrogen electron, in jumping from an orbit

of larger to one of smaller radius, to do which it must get rid

of a certain amount of energy, emits this energy in one, two,

or an integral number of quanta. If the electron jumps from

what is practically an infinite distance (complete ionization)

to the innermost ring, it emits one quantum, if to ring 2 two

quanta, to ring 3 three quanta, etc. The frequency of the

emitted light, which we shall call v, is not the same as the

revolution frequency ^ of the orbit at which it chances to stop.

Bohr assumes that it is half of ^ and this assumption fixes the

radii of the orbits. For, if we call rn the radius of the nth orbit.

the energy in that orbit is C e2
/2rn while the energy at an

infinite distance is simply C. Therefore the radiated energy

is C __ [C e
2/rD] = e

2/2rn . Since this is equal to n quanta,

or n times hv, and v is ^/2, we have

e
2
/2rn = nhv = nh^/2
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.Recalling the value of
r/
given in equation (2), we get, by sim-

ple substitution and solution,

ru = n2h2
/47T

2
e
2m (4)

If we substitute this value of rn for r in equation (3), we get

for the energy in the nth orbit

Wu = C 27r
2e4m/n2h 2

(5)

Now suppose that the electron, instead of being at the start

completely removed from the neighborhood of its nucleus, is

only in one of the outer orbits, and it jumps to an inner one.

Let us say that it goes from the nth to the n' th orbit. The en-

ergy radiated will be

Wn W01
= C 27r

2
e
4m/n2h2

[C 27r
2
e
4
m/n'

2h2
]

27r
2
e
4m /

J._ JL\T2
""

Vn72 ""^/
Bohr assumes that in this case the energy is emitted in a sin-

gle quantum, so that the frequency of the emitted radiation can

be gotten by dividing this radiated energy by h, giving

This can be put into terms of the wavelength A, instead of the

frequency v, by substituting A = c/v, c being the velocity of

light. This gives

ch* / n 2n' 2
\

"2^e^ U2 n' 2
/

If we calculate the numerical value of the fraction outside the

parenthesis, we must put c = 3 X 1010
,
h = 6.55 X 10'27

,
e =

4.78 X 30-10
,
m = 8.9 X 10"28

. This gives

A- 909X10-*^^ (8)

Now consider the array of wavelengths that would be ob-

tained when an electron jumps to the first orbit from the

second, then from the third, then from the fourth, etc. For

this purpose, we put n' = 1 throughout, and let n take the

successive values 2, 3, 4, 5, etc. This will give a spectral series,

of formula
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This formula about corresponds to a series the beginnings of

which were found by Lyman in the far ultraviolet. It also

comes at about the right place for the K-series of X-rays for

hydrogen.

If we consider the wavelengths gotten when an electron

jumps to the second orbit, from the third, then from the fourth,

etc., the series formula will be, putting n' = 2,

n2 4

= 3636 X 10 f

n 2 4

Notice that this is the form of the Balmer formula, for the

visible series of hydrogen lines, found by actually considering

the wavelengths of the lines as found experimentally (see chap-

ter VII), even the value of the numerical constant being as

nearly the same as we could expect, considering uncertainties

in the values of h, e, and m.

If we let n' equal 3, or 4, etc., while n takes all the integral

values larger than n', we get other possible series, according to

Bohr's theory. Traces of one such series, that for n' = 3, have

been found in the infrared. Wavelengths in the other series

would come very far in the infrared, and are not known ex-

perimentally.

Bohr does not attempt to explain why the electron does

not radiate when revolving in the fixed orbits, as it should do

according to the known laws of electromagnetic phenomena, nor

in what manner the radiation occurs in the jump from one orbit

to another. Still, it is almost inevitable that a theory which

makes use of the quantum theory should do violence to the laws

of mechanics or electromagnetics, and it is certainly remark-

able that he could predict so closely the wavelengths of the

hydrogen series by making use of values of h, e, and m found

from entirely distinct experiments. At any rate, the theory is

regarded seriously by physicists, as a beginning toward an

atom-theory that admits of quantitative predictions which can

be compared with experimental data.



LIGHT

APPENDIX 1.

It is often necessary, in optical experiments, to have at

command some means of producing bright-line spectra of known

wavelengths. A number of different sources that yield such

spectra are mentioned below, and the principal lines given.

The wavelengths are expressed, not in centimeters, but in the

unit most often employed for this purpose, the angstrom, which

is equal to 1O8
cm.

The easiest source of all to work with is the sodium flame

spectrum. The two bright yellow lines, 5890 and 5896, are

close enough together so that for many purposes they answer

well enough for truly monochromatic light. They are obtained

with considerable brightness by soaking a thin strip of asbestos

paper in a solution of common salt, and tying it about the

mouth of a Bunsen burner, so that the flame burns from the

top edge of the asbestos. If lithium chloride be used instead

of common salt, a bright red line is given, of wavelength 6708,

but usually there is enough sodium present as an impurity to

show its lines also. The lithium line is not as bright as the

sodium lines, nor so persistent. Quarter-wave plates are usually

adjusted for the sodium lines, and this light is also ' used in

measuring the rotating power of sugar solutions.

A very bright and convenient source is the mercurj^ arc.

It is made in various forms, but each consists of a glass or

quartz tube partly filled with mercury, the air being pumped
out.- When a current is once started through this, it continues

to run through mercury vapor, giving a number of bright lines.

The principal wavelengths are 5790 and 5768, both yellow and

bright, 5461, yellow-green and very bright, 4916, blue-green,

weak, 4359, blue, strong, 4047, violet, strong. The line 5461

is probably the strongest line available.

Hydrogen, at a few millimeters pressure in a glass tube,

and excited by a high-tension electrical discharge, shows a great

number of not very strong lines, but also the following series

lines: 6563 red, 4861 blue-green, 4341 blue. The first of these

is the strongest, the last the weakest. The next line of the

(286)
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series, 4102, does not show visibly, because it takes a fairly

strong line to show to the eye in the violet.

Under the same conditions, helium gives a number of clear

bright lines, including the following wavelengths: 6678 red,

5876 yellow, 5048, 5016, and 4922, green, 4713 greenish blue,

4472 blue, 4388 violet. The yellow line is very strong, the lines

5016, 4472, and 4388 rather strong, the rest weaker.

A good, bright, and practically monochromatic beam can

be obtained by passing the light from the mercury arc through

a lens and a prism, so as to form the spectrum, and allowing

one of the brightest lines alone to pass through a slit in the

plane in which the spectrum is focussed. The interference

rings of figure 84 A were photographed with light obtained in

this manner.

APPENDIX II.

The following may serve as a proof that, for the special

case of plane monochromatic waves, the velocity of propagation

is l/\/V
According to Faraday's theory of di-

^<
-

electrics, if a charge 4- e be given to any

conducting sphere, (figure 138) an equal /

amount of electricity is pushed outward I vS^
\

i

through every surface surrounding it. If we \

take the surface of a sphere of radius r, the

amount pushed through each square centi- Figure us

meter will be e/47r
2

,
and this amount is defined as the

' '

displace-

ment" and is represented by D. The intensity of the electric

force at the surface of this same sphere is e/kr
2

. Hence, for

this case,

D = kF/4*-

and it can be shown that this relation holds in all cases. Fara-

day regarded D as analogous to a mechanical "strain," F to

a mechanical "stress," and therefore 47r/k is analogous to an

elastic coefficient.

Consider a system of three orthogonal axes, as in figure

139, and suppose that a train of plane monochromatic waves

are advancing along the positive direction of the X-axis. We
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shall suppose that they are polarized so that the electrical

vibrations are along the Y-axis, the magnetic along the Z-axis.

If we represent the former by F, the

c * latter by H, each must follow an equa-

tion of the type of (4) in chapter III.

F = K.cos~ (x Vt)
x

A

2-r

Figure 139 H = M. COS
-j-

(x Vt)

where K and M are the amplitudes respectively of the electrical

and the magnetic vibrations.

In order to find the relation between V, /*, and k, we must

apply the two fundamental laws of electromagnetics.

A. First Law. Consider a very narrow rectangle abdc,

perpendicular to the Y-axis, which extends in width from x

to x + zJx, but may have any length, say L. The amount of

electricity which, at any instant t, has been pushed through the

area, is gotten by multiplying the area L/jx by the value of D
in this neighborhood. This gives

kL 2?r
E = DL/lx =kFLjx/47r /IxK. cos (x Vt)

4<7T A

Since E is changing with the time, this constitutes a current,

whose value is the limit of zlE/zlt. The value of E at time

t 4- At is

E 4. JE = /jxK. cos - (x Vt V/jt)

,
.

,cos (x Vt) + sin- sm (x Vt)

A

The last equation is gotten by putting

cosl^UO

which is permissible since At becomes vanishingly small in the

limit.
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If we now subtract the value of E for time t, and divide by
we get the current equal to

According to the, laws and definitions of electromagnetic

phenomena. 4?r times the current is equal to the work done in

carrying a unit north pole about this area, in the direction

abdca. The work done in going from a to b is exactly equal

and opposite to that from d to c, but that from b to d is not

necessarily balanced by that from c to a, since the magnetic
force at distance x + /Jx from the origin is in general different

from that at distance x. Evidently the net work done in the

path is the distance bd = ac = L, multiplied by the excess of

the value of H at distance x from the origin over that at dis-

tance x -f- zlx, that is by zlH. At distance x,

and at distance x

~? (x Vt)
A

= M.cos (x -Vt-h/Jx)
A

= M f co.s ^ (x- Vt) -^- sin ^- (x- Vt) 1
L A A A J

as can be proved by trigonometrical transformations similar to

those carried out above. This gives

^TT STT/JX . 2-7T .

zJH =--- M. sm (x Vt)
A A

and the work done in carrying the unit pole about the rectangle

, rT . 2-jr

ML. sin (x Vt)
A A

Putting this equal to 4rr times the current, we get

ML. sin (x- Vt) = 4, KV. sin (x - Vt )
A A Z\ A

M = kKV
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kV (1)

B. Second Law. The second law states that the electro-

motive force induced in any circuit is equal to the rate of

change in the number of lines of force through thals circuit,

and is in such a direction as to oppose that change.

Take this time a long narrow rectangle perpendicular to

the Z-axis. The number of lines of force through it is
ju,
times

H times the area. If the length of the rectangle is again L
and its width zJx, this number is

/xHL/jx = /xLjxM. cos - (x Vt)
A

The rate at which this changes with the time is easily found,

by the methods used above, to be

^LzlxMV sin (x Vt)
\ A

The electromotive force is, by definition, the work done in

carrying a unit + charge about the circuit. By the same

process already used in finding the work done in carrying a

unit pole about the other circuit, we find the electromotive

force to be

,^T .
,- KL. sin (x Vt)

A A

Since this opposes the increase in the lines of force, we have

KL. sin- (x- Vt) = jiLJxMV sin - (s
- Vt).

A A A A

K =
M/K 1/>V (2)

Now, if we eliminate M/K between equations (1) and (2),

we get the required relation
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accommodation, 27

achromatic lens, 84

amplitude, 40, 175

analyzer, 226

angle of incidence, 52

polarization, 219

reflection, 52

refraction, 52

anomalous dispersion, 257

Arago, 9

arc, 113

astigmatism, 28, 93

atomic numbers, 270, 280

atoms, 264, 269, 279

Balmer, 115, 285

Baly, 115
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cathode rays, 262
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circular motion, 192, 231

polarization, 228, 237
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unsaturated, 20

complementary colors, 24

concave grating, 129

confocal planes, 88

conjugate foci, 74

continuous spectrum, 116, 119

corpuscular theory, 32, 273
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crystal reflection of X-rays, 266
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crystals, biaxial, 217
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displacement, electrical, 287

distance of distinct vision, 27,

104

Doppler effect, 133

double-image prism, 225

double refraction, 206

eclipse, 4

Einstein, 174

elastic-solid theories, 240, 273

electromagnetic laws, 245

theory, 241, 273

waves, 242

electron theory, 255, 276

elliptic polarization, 226, 237

s. h. m., 190

energy in s. h. m., 182

ether, 33, 36, 135, 136, 171

exit-pupil 99

extraordinary ray 207

eye, 26

eye-lens, 100

eye-piece, 100

Faraday, 233, 245, 287

field-lens, 100

field of view, 99

fish-eye vision, 58

Fitzgerald, 173

Fizeau, 4, 7, 9

fluorescence, 130, 263

focal length of a lens, 12, 80, 84

mirror, 74

plane, principal, 89

foci, conjugate, 11, 74, 80

focus, principal, 74 80

foot-candle, 159

Foucault, 4, 9, 35

Fourier, 38

Fresnel, 44, 152, 231,

Friedrich, 266

fringes, 43

Galileo, 3

grating, concave, 129

plane, 121

reflection, 129
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half-wave plate, 216

Hallwachs, 278

heat-waves, 131

Hefner lamp, 199

Hering theory, 30

Hertz, 247

Humphreys, 170

Huyghens, 51, 139, 206

eyepiece, 106

zones, 139

hydrogen spectrum, 114, 282

hypermetropic eye, 27

Iceland spar, 206
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refraction, 65
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real, 71
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imperfections of mirrors and

lenses, 91

impressionist painting, 26

impure colors, 19

index of refraction, 53, 252, 254

infrared, 131

intensity of light, 195

interference, 42, 152, 187

fringes, 43

in white light, 48, 158, 163

interferometer, 160, 163

intrinsic luminosity, 200

inverse square law, 195

ionization by X-rays, 263

judgment of distance, 67

Jupiter, 4

K-series of X-rays, 270

Kayser, 115

Kerr, 233

Knipping, 266

L-series of X-rays, 270

lantern, opaque projection, 108

simple projection, 107

Laue, 266

lens, 77
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achromatic, 84

formula for, 79, 80

lenses, two in contact, 82

types of, 81

light-standards, 199

light-year, 14

Lissajous figures, 193

longitudinal waves, 37, 205

Lorentz, 173, 276

luminous objects, 1

Lummer-Brodhun photometer, 198

magnetic rotation, 233

magnification, 88

magnifying power, 98

Marx, 264

Maxwell, 244, 247

Michelson, 13, 160, 171

micrometer, 12, 90

miscroscope compound, 105

objective, 95

simple, 104

minimum deviation, 61

mirror, formula for curved, 74

half-silvered, 8, 10, 160

rotating, 10

mirrors, Fresnel, 44

molecules, 23^ 269

monochromatic light, 48

Morley, 171,

myopic eye, 27

Newton, 15, 33, 35,

Newton's rings, 162

Nicol prism, 224

occultation, 14

opaque projection lantern, 108

opera-glass, 101

optic axis, 207

optical rotation, 230

ordinary ray, 207

parallax, 6, 14, 69

parallel s. h. m/s, 184

parsec, 14

period, 4, 175

permeability, 250

phase, 38, 40, 42, 175

phase-change on reflection, 155

phase-constant, 40

phosphorescence, 131

photo-electric effect, 278

photography, 131

photometers, 196

photometry, 196

pigments, 20, 25

Planck, 120

plane grating, 121

of polarization, 211, 240, 243

polarized light, 211, 273

waves, 37, 50

polarization by reflection, 218

electrical, 256

polarized light, plane, 211, 273

polarizer, 226

presbyopia, 28

principal focal plane, 89

focus, 74, 80

plane, 208

prism, 15-26, 59-61

double-image, 225

prism-binocular, 103

prism-spectroscope, 110

projection lantern, 107

propagation of electromagnetic

waves, 248

quantum theory, 120, 271, 274,

279, 283

quarter-wave plate, 216

rainbows, 22, 167-170

Ramsden eyepiece, 100

ray, extraordinary, 207

ordinary, 207

undeviated, 88

ray-velocity, 215

real image, 71

spectrum, 17

rectangular opening, diffraction

through, 145

rectilinear propagation, 2, 34,

13S

reflecting telescope, 103

reflection, 2, 32, 50, 63, 69
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at plane mirror, 50, 63

spherical surface, 69

grating, 129

reflection of polarized light, 219

X-rays, 264

total, 54

reflector, 103

refraction, 2, 15, 32, 35,

at a plane surface, 50, 63

spherical surface, 69

refractive index, 53, 252, 254

relativity theory, 173, 274

residual rays, 259
resolution of circular motion, 231

s. h. m., 192

resolving-power, 148

reststrahlen, 259

retina, 27, 28

rings and brushes, 234

Ritz, 278, 282

Rcchon prism, 225

Roentgen, 262

rotation of plane of polarization,

230, 23a

round opening, diffraction

through, 149

Rowland, 129

Rumford photometer, 196

Runge, 115

Rydberg, 115

sagitta of an arc, 65

satellites of Jupiter, 4

scattering of light, 22

secondary X-rays, 271

series in spectra, 114

X-rays, 270

shadow of an edge, 34, 142

a wire, 145

simple harmonic motion, 175-193

miscroscope, 104

sky, blue of, 22

slit, 10, 16, 19, 42

snow, whiteness of, 23

solar spectrum, 18, 117

solid angle, 199

source of light, 42

spectral series, 114

spectrograph, 111

spectrometer, 111, 204

spectrophotometer, 204

spectroscope, 110

spectrum, 17, 111, 116, 117

lines, 112

of X-rays, 270

spherical aberration, 91

standards of light, 199

Stark effect, 278

telescope, 97, 110

reflecting, 103

lenses, 94,

theories of color vision, 28

light, 32

thermopile, 132

thin films, interference in, 153,

159.

Thomson, 282

toothed wheel, 7

tourmaline 216

transparent media, 2

ultramicroscope, 107

ultraviolet, 130

unsaturated colors, 20

vacuum-tube, 113

velocity in s. h. m., 178

velocity of light, 2-ia, 35, 52, 244,

250, 287

Vernon-Harcourt lamp, 199

vibrations in polarized light, 243

virtual spectrum, 17

image, 71

wave, 23, 33, 37, 40

theory, 32 273

wavefront, 38

wavelength, 36, 40, 47, 260, 272,

286

of X-rays, 264, 267, 269

wave-surface in biaxial crystals,

217

uniaxial 213

Wollaston prism, 225

Wood, 58 170
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X-rays, 262

secondary, 271

series in, 270

velocity of 264

wavelengths of, 264, 267, 269

Young-Helmholtz theory, 29

Young's interference experiment,

152

Zeeman effect, 275
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