


UNIVERSITY OF
ILLINOIS LIBRARY

AT URBANA-CHAMPAIGN
BOOKSTACKS



' en
1 in

00 in
% r^-
lift

',
1 *=r

<Ni

£ o
o
z

o



Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/linearizedestima1555bera



1

BEBR
FACULTY WORKING
PAPER NO. 89-1555

-JtX, >K

Linearized Estimation of Nonlinear

Simultaneous Equation Systems

Anil K. Bera

Ray P. Byron

College of Commerce and Business Administration

Bureau of Economic and Business Research

University of Illinois Urbana-Champaign





BEBR

FACULTY WORKING PAPER NO. 89-1555

College of Commerce and Business Administration

University of Illinois at Urbana- Champaign

April 1989

Linearized Estimation of Nonlinear Simultaneous Equation Systems

Anil K. Bera, Associate Professor
Department of Economics

Ray P. Byron
Australian National University



(



LINEARIZED ESTIMATION OF NONLINEAR SIMULTANEOUS
EQUATION SYSTEMS

Anil K. Bera

University of Illinois
Champaign, Illinois, U.S.A.

and

Ray P. Byron
Australian National University
Canberra, A.C.T., Australia

SUMMARY

Linearized estimation procedure of Byron and Bera for nonlinear
single equation functions is generalized to nonlinear simultaneous
equation systems. The procedure uses variable linearization through
Taylor series expansion rather than parametric linearization as used
in the Gauss-Newton and Newton-Raphson methods. It does not require
recomputation of derivatives and reinversion of weighting matrices at

each iteration stage. Both limited information and full information
methods are discussed. Finite sample properties of the estimators are
investigated through simulation, and an empirical example is provided
to highlight the usefulness of the suggested procedure.
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1. Introduction

The appearance of nonlinearity is the rule rather than the excep-

tion in economic models because the affects of some economic variables

on other variable(s) are not simply additive. Many examples can be

given in support of this statement. Unfortunately, econoraetricians

have engaged primarily in problems arising from linear models.

Although certain solutions of nonlinear problems are available,

applied econoraetricians seem to prefer estimating linear approximation

of their nonlinear models rather than applying nonlinear techniques to

original models specified by economic theory. One reason for this may

be that the existing procedures are not simple enough to apply in many

situations. In an earlier work reported in Byron and Bera (1983), we

proposed a simple estimation technique for nonlinear single equation

functions. There, by taking a Taylor series expansion around a

feasible point in the observation space, the nonlinear function was

expressed as a linear function in some observable variables and trans-

formed parameters (some function of the original parameters) plus a

remainder terra. Consistent estimates of the transformed parameters

were obtained by applying iterative ordinary least squares (OLS ) with

a remainder correction, and from these estimates the original parame-

ters were recovered. An advantage of this procedure was that we

avoided some of the computational burden of the Gauss-Newton or

Newton-Raphson methods, e.g., at each iteration stage recalculation of

derivatives and reinversion of weighting matrix were not required.

Moreover, a by-product of the procedure, the transformed parameters
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had interesting interpretations. They could be viewed as local deri-

vatives or as local elasticities of the nonlinear function. In this

paper we extend those results to the simultaneous equation case. Our

identification and estimation techniques have close resemblance to the

procedures for the linear system. The plan of the paper is as

follows. In Section 2, we specify the model and in Section 3, an

overview of the literature is given. Section 4 describes the

linearized limited information estimation procedure. In Section 5,

through a Monte Carlo study we compare our procedure with some of the

existing ones. In Section 6, we briefly discuss the linearized full

information procedure and provide an empirical example. The paper is

closed in Section 7 with some concluding remarks.

2. The Model

We consider the following nonlinear simultaneous equation system

(NLSES)

q(y.»x.,8) = u. , i = 1,2, ...,N (1)11 l

where q is a vector valued function and its j-th component is denoted

by q.(y. ,x. ,9.) , j = 1,2, ...,m,
J i i j

y. is an m x 1 vector of endogenous variables,

x. is a k x 1 vector of exogenous variables,

9. is a p. x 1 vector of unknown parameters,

t» i
m

9 = (9 8 ... ,9 )», I p. = p,12 m
j=l J

and
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u. is an m x 1 vector of random disturbances, with the

following assumptions:

Assumption 1. (i) y e V C R
m

, x . e X C R
k

, u . e E C R
m

,

and (ii) 9* - the true value of 3, is an interior point of

p
9, a compact set in R .

Assumption 2. q is twice continuously dif ferentiable with respect to

all its arguments.

Assumption 3. Random disturbances u. 's are identically and indepen-

dently distributed with mean zero and variance

covariance matrix £ = ((<*. .))

3. An Overview of the Literature

3.1 Identification

It is not possible to give standard rank, and order type iden-

tification conditions for general NLSES. Fisher (1966) generalized

the rank and order conditions for linear system to nonlinear system

where nonlinearity occurs only through variables. His identification

procedure is as follows: given a system, take all possible nonlinear

combinations of the equations such that no extra variables other than

those are already in the system appear. Combine the original

equations and the equations implied by the above operation. Then

apply usual rank and order conditions to the augmented system. This

procedure deals with only a special case of NLSES and, even then,

sometimes it might be tedious to verify the conditions for a large

system.



-4-

Gallant (1977) defined identification with respect to a set of

instruments. This is quite important since, as it was shown by

Hausraan (1975) and Amemiya (1977), both minimum distance and maximum

likelihood estimation procedures can be viewed as instrumental

variable (IV) methods. According to Gallant the j-th equation of (1)

is said to be identified with respect to the instrument Z if the only

solution of the almost sure limit

1
N

lim tt I z.q.(y,,x.,6.) = (2)
N+oo i=l J J

* *
is 9 =9 where 9 is the true value of 9 .

J J J j

It is easily understood that the above definition requires the

existence of unique consistent estimators for the structural para-

meters. Gallant (1977) provided sufficient conditions for the

existence of the limit in (2). These conditions included the

existence of an integrable function dominating zq.(y,x,9.) and

required (x ,u.) to form a Casaro summable sequence. However, for a

complicated nonlinear system it is not easy to verify these conditions

and hence, Gallant's definition is not very useful in spite of its

applicability to general models and its intuitive appeal.

3. 2 Estimation

A number of estimation techniques are available for NLSES. Here

we briefly discuss nonlinear minimum distance (NLMD ) and full infor-

mation likelihood (FIML) procedures. In Subsection 5.2, some further

discussion is there for models nonlinear only in variables.
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Let

q,(6.) = [q.(y
1
,x

1
,e.),q.(y

2
,x

2
,9.),...,q.(yN

,x
N
,6.)] ' (Nxl)

and

q(9) = [q^e^^^),...^^)]'. (Nmxl)

Definition 1. NLMD estimator for 9, denoted by 9Mn , is defined as

follows

:

9
:id

: y * @

such that

S(eMn ) = inf S(9)
MD

where S(9) = q'(8)Dq(0) for a suitably chosen matrix D.

Different choices of D will lead to different estimators, e.g., if

we take [see Fair and Parke (1980)]

-1

D =

z ...

z
2

...

... Z
m

/z ... \ /z. ... \

(Z 9 1)

o z
2

...

V ... zv

o z
2

...

V z /m7

z
i

°

z,

.

.

• •

... z

where E is a consistent estimator for E and z. is instrument for i-th
J

equation, then we will get nonlinear three-stage least squares

(NL3SLS) estimator, and if E in (3) is replaced by an identity matrix,
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will reduce to nonlinear two-stage least squares (NL2SLS) estima-

tor.

Gallant (1977) established strong consistency and asymptotic nor-

mality for both NL2SLS and NL3SLS when certain nonlinear parametric

restrictions were present across equations and also showed that

NL3SLS estimator is asymptotically more efficient than NL2SLS

estimator.

Assumption 4. In Assumption 3, the general assumption about the error

distribution is now specified as normal with mean vec-

tor and variance covariance matrix E.

Under the above assumption the log-likelihood function can be

written as

N

£(9,E) = -
~r- In 2tt - T In |E

|
+ E lnil3q(y. ,x. ,9)/3y.'l

2 2 ' ., 11 l
1 = 1

1

N
-1

- j l i(y
±
>x

±
>syz q(y

i
,x

i
,e). (4)

i=l

Now,

N

ffl = => E = E q(y.,x e)q'(y.,x ,9)/N.
d L

\ ,
11 11

Putting this value of E in (4) we get the concentrated log-likelihood

function
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N
N

**(9) - -j (In 2tt+1) + S lnH9q(y
i
,x

i
,9)/9y

i
II

i=l

"fin |q(y
1
,x

i
,9)q'(y.,x

i
,e)/N|. (5)

Definition 2. FIML estimator for 9, denoted by 9 , is defined as

5
ML

: /

such that

£*(9 ) = sup t*(8).
ML

Amemiya (1977) showed that FIML estimator is consistent,

asymptotically normal and more efficient than NLMD estimator.

4. Linearized Estimation for NLSES (Limited Information)

4.1 System nonlinear both in parameters and variables

We rewrite the system (1) as

q.(y..x.,9.) = u. . , i = 1,2,... ,N, j = 1,2, ...,m (6)
J i i J ij

with earlier definitions of all the variables. Expanding q.(y.,x.,9.)

around a "feasible" point (y.,x.) e V x x, we get

q.(y.,x.,9.) + [3q.(y.,x.,8.)/3y.
|

] (y.-y?)
J i i J j i i j 1

|( yJ,xJ)
1 x

+ [3q.(y.,x.,9.)/3x. I ] (x.-x?)1111 I/O Os 11
(y.»x.)

i i

+ r. (y. ,x. ,y. ,x. ) = u. . (7)
j i i i i ij

where r . ( y . ,x ,y . ,x . ) is the remainder.
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In the expansion, for simplicity we take terras only up to first

order and the derivatives are taken with respect to nonconstant

variables only.

Collecting terras appropriately (7) can be rewritten as

y. r. + x.A. + r. . = u.

.

(8)
i J i J iJ ij

where r.. = r.(y, ,x.,y?,x°) and I\, A. are functions of 9,, y° and x?.
ij j i i i i jj ii 1

Writing (8) in system form

YT + XA + R = U (9)

and putting R = 0, we get standard linear system

YT + XA = U. (10)

Definition 3. j
_ th equation of (6) is said to be partially identified

if the usual rank and order condition is satisfied by

j-th equation of (10).

Ifj-th equation is partially identified then putting r. = 0, we

can get some (inconsistent initial) estimates of I\ and A_.
J J

Normalizing (8) with respect to one endogenous variable in each

2
equation, we have

y..=YY+XS+r+u (11)
ij ij j ij J ij ij

where Y. . is the vector of included endogenous variables (except y..),
ij ij

and X. . is the vector of included exogenous variables in j-th
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equation, T and 6 are subvectors of respectively T and A

J J J J

multiplied by (-1), and r. .
= -r

.
.

.

ij ij

Definition 4. j-th equation of (6) is said to be fully identified if

3 , vthere exist a dif ferentiable function h( •) such that

= h
Y.
J (12)

It is not very clear how this definition is related to the defi-

nitions of Fisher and Gallant, discussed in Section 3. Apparently our

definition seems to be stronger—this will be clear from the model for

our simulation study in the next section. If a system (or a part of

it) is fully identified we can apply linearized full information (LFI

)

[or linearized limited information (LLI)] method of estimation. We

now discuss LLI method, and LFI method will be discussed in Section 6.

Let us take the first equation of (11) and write it as

V =Yy + X 5 +r +u = Y y +X5 +r +ey
l 1

T

1 1111 1
T

1 11 1 1

(13)

where Y is obtained from a regression on instruments consisting of

X. and other variables, and e = [u + (Y -Y )y. ]•

We rewrite (13) as

y, -Vi + r
i

+e
i

(14)

where z =
tY i> xJ and B

1 '

It is clear that plim -rrZ.e
« Nil - 0.
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Assumption 5. Z Z is positive definite

An initial estimate of 8 can be obtained from (14) by putting r

and then applying OLS, i.e.,

i, - cz;v
_1

Vr
Again, using (12) and (7) we can write

e
x

= KB^

and

r, - - i^i\) - <yrYiVxiV ! -

Now 8. can be improved upon using r. , i.e.,

= (Z.'z.) Vcy -r, ).
1

v ir l
w

l 1

In general, the iteration procedure at the n-th step will look

like

;

k„)
(z

'i

z
i
r '

z
i

(>'r
r
i(n-i)

) (15)

and

9
l(n) " h< 8

l(„)>

Hh«eT
l(„-l) "

-
[V 9

1(n-0 - (VVl(n-lf ^'Kr-l)"
and " <n) "

is the subscript for the n-th interation. Putting the value of

r. , , N
in (15) , we have

1 (n-1

)
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B
l(n)

= 8
l(n-l)

+ (Z
i
Z

l

)_lz
i

U
l(n-l)

(16a)

and

l(n) l(n)
(16b)

where u n = q/ 9 ., , .) •

l(n-l) 1 l(n-l)

To ensure convergence of such interation scheme and consistency of

the resultant estimator, we have to make a further assumption.

Assumption 6. (i) Z Z _+ Z -jg— is positive definite in the

*
neighborhood of 8 , the true value of 6 .

1 '

(ii) lim — Z Z = P and plim
N+°° N-*-"

1
- T7 Z

1

,B
1[3*.

-1

Q exist

in the neighborhood of 8 and [T-P Q ] is non-

singular.

An equivalent form of (16a) is

97

3
Kn) i

= (z lv~
lz

i

e
i

- (z
i
z

i
rlz

iinrL (8Kn-ir 8
t

)

i T

where 8. e (8,, ,.,B,). Now suppose our starting value of 3. is very
1 1 (.n— 1 ; 1 1

close to 8,. Then Assumption 6(i) implies that eigenvalues of

' -1 '

3r
l

(Z Z ) z. Vg— lie in (-1,1). This ensures the convergence of our

algorithm [see Proposition 1 of Byron and Bera (1983)].

For a given sample of size N, let

n -*oo



-12-

Proposition 1. Under the Assumptions 1, 2, 3, 5 and 6

N *
piim e = e .

Proof is almost same as given in Proposition 2 of Byron and Bera

(1983) for the single equation case.

4.2 System nonlinear only in variables

In this subsection we consider the estimation problems for a spe-

cial class of nonlinear system where nonlinearity appears only through

variables. Such models have been discussed extensively in the litera-

ture [e.g., Kelejian (1971), Edgerton (1972), Goldfeld and Quandt

(1972), Bowden (1978) and Bowden and Turkington (1981)].

Following Bowden (1978, p. 58) we write the first equation of the

system as

7, = g( Y ,> x ,> 9
!

+ M? + "•
1 i' r i i i

(17)

where the symbols have standard interpretation.

For notational simplicity (17) will be referred to as

Y, = Z i

1 o
+ u.

where Z = [g,X ] and
o 1

(18)

Before discussing our LLI method we briefly mention two of the

available procedures, namely, NL2SLS and naive instrumental variables

(NIV) methods [see Bowden (1978, Ch. 2)] for a comparative study

discussed in the next section.
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1. Nonlinear two-stage least squares method: It is basically an

IV procedure [see Edgerton (1972)], originally suggested by Kelejian

(1971), where instrument for Z is
o

Z = [g^].

Here g can be obtained by regressing the entire function g( •) on a

"low order polynomial" of X variables. It can be shown that [see

Amemiya (1974)] NL2SLS estimators are consistent and

/N ^NL2SLS-
9*>^ NU ailPlim [^ _1

V
where + denotes limiting distribution.

Efficiency of this procedure is questionable since it is very

difficult to get a proper instrument for g(*). We can increase the

efficiency by taking higher degree polynomials while forming the

instruments, but then computationally it will become burdensome and

"loss of degrees of freedom" will be quite substantial [see Bowden and

Turkington (1981)].

2. Naive instrumental variables method: This was suggested by

Bowden and Turkington (1981). Here the instrument for Z is
o

Z - [g(Y
1

,X
1

),X
1

]

where Y can be obtained by regressing Y on the exogenous variables.

They showed that under certain conditions this technique gives con-

sistent estimators and
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^(e
NIV

-e*) I n

z »z Z 'Z ,

o ,-1
°' a

il
pUm C~T"^ ] plim [~N~ ] plim HH

Computationally it is quite convenient, and performance of this tech-

nique is also quite good as reported in Bowden and Turkington (1981).

Another way to get instruments is to replace g( •) by its con-

ditional expectation given X. However, the use of this technique is

very limited because it is not always possible to get a close

expression for conditional expectation, and even if we get, the

expression will be a function of the structural parameters. Bowden

(1978) has successfully applied this technique to estimate disequili-

brium econometric models.

3. Linearized limited information method: After linearizing with

respect to the variables (18) can be written as

y i

= ZH 9 + r + u
i

(19)

with

Z = [Y^Xj] - G

where G and H are metrices of known constants, and r is the remainder

term. If there is a constant term in the equation then G will be a

null matrix, and H is nonsingular if the equation is identified.

Taking the instruments as

Z = [Yj.Xj] - G

and denoting 8 = H9, the iteration scheme can be written as

8, > = B + (Z'Z)
l
z»uw n(n) (n-1) l(n-l)

(20)
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and

(n) (n)

where u.
,

= y - Z 9 = y - Z H 8 .

l(n-l) 1 o (n) 1 o (n)

Since we are dealing with models that are linear in parameters we

can modify (20) by putting an explicit expression for a step length at

each iteration step. This step length, say d , can be obtained by
n

t

minimizing u. , x u, , x at the n-th step, i.e., choose d for the itera-
l(n) l(n) n

tion procedure

8, , = 8, M + d (Z'ZrVu., .. (21)
(n) (n-1) n l(n-l)

such that u, , \U,. . is minimum. It is easy to verify that the solu-
l(n) l(n)

tion is

\x\, . ^(Z'Z)"
1
!!

-1
Z'u, , ,v

d
n

= ^^
;

° 1(n-1)
. (22)

u' 1N Z(Z'Z) V^Z'ZH^Z'Z) Vu,, ..
l(n-l

)

o o 1 (n-1

)

It is worthwhile to check the convergence of this modified

algorithm and the consistency of the resultant estimator. From (21)

we can write

8 = (Z'Z)
_1

Z'[Z8, ,. + d u.,
, J(n) (n-1) n l(n-l)

= (Z'Z)
_1

Z»[Z8, M + d (y,"Z e
r i J(n-1) n 1 o(n-l)

= (Z'Z)~
1

Z'[Z8, ,s + d (Z8*+r+u -Z 9 ]

(n-1) n — 1 o(n-l)

= (Z'Z)"
1

Z'[Z8, ,v + d (Z8*+r+e,-Z 9 ]

(n-1) n 1 o(n-l)
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where

e
l

= (Z-Z)B + u..

Since r, , = Z 9 - ZQ. ,., we have
(n-1) o (n-1) (n-1)

8, . = (Z'Z)
!

Z'[Z8, ,* + d (Z3*+r+ei -Z8. -r, ,J]
(n) (n-1) n 1 (n-1) (n-1)

= (2
-Z )-

1
2 .[ZB

(n_ 1)
d
n
{z S

*
+e

1
-ZB

<n_1) --§|L<Vl)- 6*'H

since r - r

Therefore
,

2l
(n-1) " 38

_(e
(n_ 1}

-B ) where 8 c (B
(n_n

*
,8 ).

8 - d (Z'Z) Ve. - d (Z'Z)
:

Z' -||| (3, -$*)
(n) n In 38 — (n-1)

+ (1-d )8. n + dl
n ( n- 1

)

n

or

; - 8* = d (Z'Z)
l

Z 'e. - d (Z'Z)
!

z' ||| (6,
-0*)

(n) n In 38— (n-1)

+ (1-d )(8 -8
)

n (n-1;

i .e .
,

'(n) - 8* = d (Z'Z) Ve, - [d (Z'Z)
!

Z' |§n In ofcs

(1-d )I] (3 -B )
n (n-1)

So the convergence of this algorithm depends on X = max | X. |, where

— 1 3r
X 's are the eigenvalues of [d (Z'Z) Z' — I - (1-d )I ]. If U.'s are
I n 3 8 \s n l-13 <

the eigenvalues of (Z'Z) Z' -rx\ then

X. = d u. - (1-d ).
l n l n
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That means for y. e (-1,1) and d e (0,1) for all n, X. e (-1,1).in l

Even in certain cases where u. f- (-1,1), X. might lie in (-1,1) inter-

val and this will help the algorithm to converge. Consistency is also

guaranteed since

plim
jf

Z »ej = plim ^ Z 'tij = 0.

N-*-00 N+00

It is difficult to compare analytically the performances of the

various estimation techniques discussed above. Therefore, in the next

section we evaluate their relative performance through a simulation

study. Since nonlinearity in a system can occur in a number of ways

and any simulation study is specific to the model considered, the

results of our study provide only some rough indications.

5. Simulation Study

We took the following familiar artificial model for our simulation

study [see Bowden and Turkington (1981)]

"u ' 9n lny
2i

+ 9
12

+ 9
13*i

+ UU (23)

yH > e
21

exp(
yi

.) + 6
22

x. + uu . (24)

According to Fisher's criterion both the equations are identified.

Linearizing these equations by taking a Taylor series expansion

around y = and y = 1, we have

'l " V2 +
<
912-e il>

+ 9
13

X + r
l
+U

1

*2
= 9

2l
y

l

+ 9
21

+ 9
22

X + r
2

+ U
2

(25)
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where r. and r are the remainder terras. Applying Definition 1, we

observe that the first equation is not partially identified whereas

the second one is, under the conditions that 9 * (^i-?
- ^,,)* But the

set over which 8 = (9 -6 ) has measure 0. Therefore, the equation

(25) is partially identified almost everywhere. Again, from (25) we

see that (24) is fully identified. So LLI technique can be applied to

estimate 9_ and 9 .

Observations on the exogenous variable were generated from a uni-

form distribution with mean 16 and different variances. They were

kept fixed throughout 100 replications we performed. The structural

disturbances were generated from a bivariate normal distribution with

two different variance-covariance matrices

h
'

50 .25

25 2.00

and £ =
.50 .50

.50 10.00

We took the following values for the structural coefficients: 9,.

i, e -io, e - .5, I = .5 and 9 = 15. With these parameter
21 22

F

values we obtained explicit expressions for y. and y , in terras of x,

u. and u~:

and

y 2
= (15x+u

2
)/[l-.5 exp(-10+.5x+u )]

y = In y - 10 + .5x + u.

Data for y, and y were generated according to the above expressions
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Five estimation techniques - OLS, NIV, NL2SLS1, NL2SLS2 and LLT

were selected for comparison. For NIV, NL2SLS1 and LLI the first

stage estimations were done by taking only linear function of x,

whereas for NL2SLS2 we took both linear and quadratic terras. For LLI

we used the following stopping rule [see Gallant (1975, p. 76)]: stop

at the (n+l)-th step if

(n) (n+1) 1 (n) 2

and

|ESS(9. ) - ESS(9 )| < e [ESS(9 ) + e ]
(n) (n+1) ' 1 (n) 2

where ESS is the error sum of squares and we took e = .000001 and

e = .0001. Three different criteria were used for comparison - mean

bias, MSE and variance. They were calculated in the following way.

r
Let 6 be the estimate of a parameter 6 in the r-th replication, r =

1,2, ...,100. Then

. 100

(i) Mean bias = —— E (6 -6)

r=l

,
100

j
(ii) MSE

--fifi
Z (5

r
-6)

Z

r=l

and

,100 _ 2
(iii) Variance = j^ I (6

r
-6)

r=l

where 5 = (1/100) E
10

? 5
r

.

r=l
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For sample size 30 and variance covariance matrix E. results are

reported in Table 1. Given the numerical magnitudes of 9 and 9 ,

in terms of MSE and variance estimates of 9 , the parameter that is

associated with a linear function of the exogenous variable, are

always better than those of 9 which is associated with a nonlinear

function of one endogenous variable. As the variance of x increases,

the MSEs and variances of all the techniques decrease systematically

but for the biases there is no systematic improvement. Also, as

expected NL2SLS2 is always better than NL2SLS1. Performance of NIV is

always better than NL2SLS1. Similar results were also obtained by

Bowden and Turkington (1981).

Insert Table 1 Here

In terms of MSE and variance OLS is the best. In certain cases

OLS also performs quite well in terms of mean bias. Comparing the

MSEs and the variances of the last four techniques that give con-

sistent estimators, for 9 - LLI is always superior to others, and

for 9 - LLI is superior to both NIV and NL2SLS1 when V(x) = 1. It

seems that an increase in V(x) does not improve the performance of LLI

very much compared to the improvements in the other three techniques.

When the noise level is changed to Z individual performances of all

the five methods, as it should be, become worse (but not in terms of

mean bias), but their relative performance remains unchanged. These

results are reported in Table 2.

Insert Table 2 Here
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In Tables 3 and 4 we give the results for sample size 80. Making

pairwise comparison with the corresponding quantities in Tables 1 and

2, we observe that in all cases there is an improvement in terms of

MSE and variance. But rather surprisingly mean biases do not decrease

as expected [similar behavior of mean bias was also noticed by

Goldfeld and Quandt (1972, p. 244)]. We also note that the relative

performance of LLI remains the same. Therefore, in conclusion of this

simulation study we may say that LLI performs quite favorably compared

to the other methods.

Insert Tables 3 and 4 Here

6. Linearized Estimation Method (Full Information)

Let us write the linearized system of equations as [see equation

(11)]

Now let

y. = Y.y. + X.5. + r. + u., j = 1,2,..., m,
J J J J J J j

Z =

Z ...

o z
2

...

... z

A » t f

where Z. [Y ,X ], u = [u,u....,u ]'. and
J j j 12 m

8. - [Y,,Y]'-
J J J

[8 , B.,..., 8 ]
* with12 m
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We assume all the equations are identified according to our

Definitions 3 and 4. So there exists a dif f erentiable function h(»)

such that

9 = h(8).

Then our earlier algorithm [see Equation (16)] can be generalized

straightforwardly as

-1
-1*.

-1

;

(n) " 6
( „-l)

+d
n
[Z

'

(i:
(n-l)

9l)Z1 Z ' ( J
(n-l)

9I)u
(n-l )

(26a >

and

, v = h(6/ v)
(n) (n)

(26b)

where (i,j)-th element of Z , «. is [u.,
\
u -/ <J/N> i,j = 1,2, ...,m and

d e (-1,1) is chosen in such a way that 9. . minimizes I (8), given

in Equation (5).

We now present an empirical example to illustrate our procedure.

We take Bodkin and Klein's (1967, p. 33) model

x. . - 8, ,
10

ll 11

9
12

X
i2

-e

13yil
+ d-e

13
)y i2

15
/9

14

and

= uu (27)

X
i3 l-l

13

13

111
yi2

-d+e
14

)

= u
i2

(2d)

where x. is real output, x
?

is time, x., is the ratio of price of capi-

tal services and wage rate, y. is the capital input and y., is the
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labor input. This model was also considered by Card (1974, p. 133)

and we use the same data. This particular model does not fit into

our specification of NLSES since 9,^, and 9,, appear in both the

equations. This makes our model overidentif eid and this will be clear

from the equation (31).

After linearizing around y, = y~ = x
?

= x^ = 1 and x
?

= 0, from

(27) and (28), we have

y
l

= 6
lo

+ 6
11

X
1

+ 5 12*2
+ Y 12 y 2

+ 7
1

+ U
l

(29)

and

y
2

" y
l

= 5
2o

+ 5
21

X
3

+ r
2

+ U
2

(30)

where

5
lo

= -(i-e
15

)/e
15

e
13

, an = U*n B
15

e
l3

5
12

= "
9 12

ln 1U/9
i5

9
i3' Y 12

= -d-e
i3

)/9
13 , 6

2q
= -1/(1+9^)

6^, = ( 1-9
,

^ )/ { 9
,

^ ( 1+9 , , )} and r. , r„ , u. , u„ have usual meanings.

From (29) and (30) it is easily seen that both the equations are iden-

tified with the following 9 to 8 correspondence:

9
11

= (1^12- 6
lo

)/6
ll>

9
12

= -^2 f
l
ln 10(1 ^12- 6

lo
)|

9
13

- l/d-Y
12

) or 5
2o

/(6
2o

-6
21

)

9
14

= " (1+6
2o

)/6
2o

and 9
15

= (1_Y 12
)/(1"^12" 6

lo
) *

(31)

To estimate u. we used the first value of 9.^ and the second one was

used to estimate u_.
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Bard (1974) derived the FIML estimator by minimizing the genera-

lized residual variance in the reduced-form equations. This was

possible because for this particular model both the equations can be

solved explicitly to get reduced-form equations and there is a one-to-

one correspondence between the reduced-form and the structural parame-

ters. His procedure was equivalent to maximizing the concentrated

log-likelihood function, derived from the reduced-form equations,

assuming that the reduced-form errors are also normal (which is a

strong assumption). Our concentrated log-likelihood function I ( 9)

was derived by assuming normality for structural errors, but there

were two difficulties: firstly, the initial values that we got by

putting the remainder terms as zero were far away from the optimum

values; secondly, I (9) was seen having a number of local maxima.

Therefore, it was essential to choose initial values lying in the

immediate neighborhood of the optimum values, and using Bard's results

we took the following initial values: 5 = .4, 5 =2.5, 5 =

-.02, y 10 = -.7, 5 = -. 5 and 5 = .4. In Table 5 we report the
lz Zo 11

results for two cases: general and diagonal E. Estimates in brackets

are due to Bard (1974, p. 138). Iteration schemes converged with

small number iterations, and the Bard's and our estimates are very

close. The values of the concentrated log-likelihood functions

obtained by putting Bard's estimates in I (9) are slightly higher than

those of ours. This slight difference may be due to the flatness of

*
H (9) in the neighborhood of the optimum values.

Insert Table 5 Here
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As noted earlier our I (9) is based on the normality of the

disturbances u and u . For the validity of our estimates, we test
i 1 i2

this assumption using four test statistics, C. ( j=l , 2, 3, 4) of Bera and

John (1983). The statistics values along with their corresponding

degrees of freedom and finite sample critical points are given in

Table 6. We observed that all the statistics are less than their

corresponding critical values except C„ which exceeds the 10 percent

critical value. However, this rejection of normality is not at all

strong, and the omnibus test statistics C and C do not reject

normality. Therefore, on the basis of the above results, we may

conclude that the disturbances in the Bodkin and Klein's model follow

a bivariate normal distribution.

Insert Table 6 Here

7. Concluding Remarks

A method has been suggested for the estimation of NLSES which is

computationally straightforward and is capable of producing consistent

estimates. This was achieved by linearization on variables rather

than parameters, as is the case with other algorithms. In certain

cases, as our simulation study shows, this procedure can also provide

more efficient estimates than NL2SLS. Where it gives less efficient

estimates, these can be used as starting values for more efficient

procedures such as FIML. However, our procedure is not applicable to

all NLSES. It is applicable to systems that satisfy our iden-

tification condition which requires a correspondence between the
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structural parameters and the linearized parameters. Further work,

needs to be done to characterize the class of functions where we can

apply this estimation procedure. Also it would be interesting to

study the properties of the linearized estimator analytically and com-

pare them with those of the commonly used estimators.
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FOOTNOTES

1

Amemiya (1977) asserted that consistency of 9ml crucially
depends on Assumption 4. However, through a counter example, Phillips

(1982) demonstrated that normality is not necessary for 9^^ to be con-
sistent.

Tor simplicity, we assume that Tii =

ysis can be modified to the case when

= 1 for all j. However, our

analysis can be modified to the case when T.- t 1, but that will

introduce some complicated algebra.

3
If such a function does not exist, we can call the equation

under-identified. This can be tackled by taking a higher order
approximation. When 9^ is not uniquely recoverable there will be some
loss of information unless we impose some restrictions on Y^ and S .

.

4
Strictly speaking our definition has much to do with estimability

rather than identif iability.

From the expression (22) it is clear that dn may not always lie

in the interval (0,1). Therefore, it is worthwhile to check whether
at each interation step dn e (0,1).
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Table 1

Mean Biases, Mean Square Errors and Variances of Different Estimators 3

(Sample Size 30 and V(u) = Sj

)

Method

Parameter 621 = •

5

Parameter 622 = 15.0

Mean Bias MSE Var Mean Bias MSE Var

OLS

NIV

NL2SLS1

NL2SLS2

LLI

19292"2

10139" 3

50298
-3

. 15700"2

.82673-2

-2
.90311

-.78258

11639

-3
. 73380

-2

V(x) = 1.

. 15663
-2

.82673-2

.90308" 2

. 73374-2

. 62420 -2

.65134-2

-2
.60313

.54550" 3

. 19112-2

:-2.20065

-2 .31187-2 .31173"2

.60244

. 58906

-2

-2

. 16365

. 16899

-2

-2

. 50537" 3

. 18750-2

i-2
. 19678

. 15991

. 16553

-2

-2

OLS

NIV

NL2SLS1

NL2SLS2

LLI

11866" 2

17347 -3

88775 -3

.65210

. 12135

-3

-2

V(x) = 3.

,-3.65070

. 12134
-2

.64006

. 64285

-2

-2

. 54550
-3

25779

-.54645

-4

-3

. 16402-2

. 11698~2

.78662"3

. 16394-2

. 11698" 2

.66651-2

.64050'

. 73624
-3

.86594"3

.69427
-3

. 50781
-3

. 69092" 3

.82031" 3

.65430"3

.78632"3 .66221"2
. 78583

-3 .74219" 3

V(x) = 5.0

OLS -. 68546~ 3 .28220" 3 .28173"3 .63074"2 .49972"3 .46142" 3

NIV .29337~ 3 .42634~ 3 .42625~3 .62972-2 . 54932" 3
. 51025" 3

NL2SLS1 -. 87132 -3 . 66057
-3 .65982"3 .67772-2 . 71335-2 .66894 -3

NL2SLS2 . 13958" 3 .41520" 3
. 41518" 3

. 64042"2
. 54932~3 .50537"3

LLI -. 54841

"

3 .31759" 3
. 31729" 3 .67489~ 2 .69427~ 3 .64941" 3

aPower refers to 10-K . Thus, -. 19292" 2 = -.0019292.



Table 2

Mean Biases, Mean Square Errors and Variances of Different Estimators
(Sample Size 30 and V(u) = S2 )

Parameter 921 =
* * Parameter 92 2

= 15.0

Method Mean Bias MSE Var Mean Bias MSE Var

V(x) = 1.0

OLS -. 10503" 1 .80704-2 . 79601"2
. 16558" JL .25329-2 .22558-2

NIV .16839-2 .41680 -1 .41677" 1
. 13787 _] .94223-2 .92310-2

NL2SLS1 .27535-2 .45545" 1 .45537 -1 . 12643 _JL .99335-2 . 97729-2

NL2SLS2 .37258-2 .36987" 1 .36973" 1
. 12397""L .79765"2

. 78247"2

LLI -. 55730 -3 . 15819" 1
. 15818" 1

. 12869" ]

.81940-2 .80249-2

V(x) =3.0

OLS -.56355-2 . 33215 -2 .32898-2 . 15977 _J1 .24681-2 .22095-2

NIV .88011"3
. 61016"2 .61008

-2
. 13967" ]

. 33379" 2
. 31396"2

NL2SLS1 -. 15642"2 .82580"2 .82555"2
. 14554" 1 .40780"2

. 38647"2

NL2SLS2 .35951"3
. 58895-2 . 58894-2 . 14106~ ]L .32120-2 .30151-2

LLI -,29733~2 .39946-2 . 39858-2 . 14683 _]
. 37422-2 . 35254-2

V(x) =5.0

OLS -.32147-2 . 14307-2 . 14204
-2

. 15337 _]L .22545-2 . 20166" 2

NIV .11015-2 .21437-2 . 21427"2
. 13703~ ][ .25520"2 .23657-2

NL2SLS1 -. 16729-2 .33246-2 .33218-2 . 14852 _]L .32921-2 .30713-2

NL2SLS2 .49131" 3 .20831-2 .20828-2 . 14037~ ] .25063-2 .23096-2

LLI -.22256-2 .16128-2 . 16078-2 . 14911" L .31052-2 .28833-2



Table 3

Mean Biases, Mean Square Errors and Variances of Different Estimators
(Sample Size 80 and V(u) = Ej

)

Parameter 921 = •$ Parameter 622 15.0

Method Mean Bias MSE Var Mean Bias MSE Var

V(x) =1.0

OLS . 19873 -3 .40716-3 .40712-3 .69671-2 .22125-3 . 17334"3

NIV .34398" 2
. 30205"2 .30087-2 .63680"2 .74768~ 3

. 71045" 3

NL2SLS1 .36037"2 . 33429"2 . 33300-2 .62520-2 .79727-3 . 75928 -3

NL2SLS2 -.28821-2
. 29791 -2 .29708-2 .88470-2 . 77057-3 .69580 -3

LLI .42855"2 .93436-3 . 91600-3 . 59782-2 .64850"3 .61279" 3

V(x) =3.0

OLS .50887"4 . 23137
-3 .23136"3

. 70786"2 . 24795~3
. 19775" 3

NIV .55303 -3 .48720-3 .48690-3 . 75234-2 . 34332-3 . 28564~3

NL2SLS1 .63360"4 .65392"3
. 65392" 3

. 77949~ 2 .39673" 3
. 33691"3

NL2SLS2 -. 44966" 3
. 51129" 3

. 51109" 3 .81419" 2
. 35858" 3 .29541" 3

LLI .10783 -2 .26003"3 .25887" 3
. 76518"2

. 36240"3 . 30029" 3

V(x) =5.0

OLS .78395~4 . 10448-3 . 10447-3 . 70559" 2 .21744 -3
. 16601"3

NIV .25976 -3 . 16436 -3
. 16430 -3 . 76008"2 .26321"3

. 20508" 3

NL2SLS1 -. 35500" 3 .25984-3 .25972-3 .81215"2
. 31662"3 .25146" 3

NL2SLS2 -. 17136 -3 . 17875-3 . 17871-3 .81043 -2 .28610 -3 .22217 -3

LLI .37276- 3 . 10567-3 . 10553-3 . 80405"2 •31281"3 .24902"3



Table 4

Mean Biases, Mean Square Errors and Variances of Different Estimators
(Sample Size 80 and V(u) = Z2 )

Parameter 02 i
= .5 Parameter 622 = 15.

Method Mean Bias MSE Var Mean Bias i MSE Var

V(x) =1.0

OLS -. 47728" 2 .20548" 2 .20320"2
. 17791" ] .10071-2 .69092 -3

NIV .80783-2 . 15017-1 . 14951" 1
. 13806" ]! .34752-2 .32886-2

NL2SLS1 ,83934
-2

. 16636" 1
. 16566" 1

. 13590~ ] .37880"2
. 36060"2

NL2SLS2 -. 71600"2
. 14865 -1 . 14814 -1 .20332 -1L .36888-2 .32764"2

LLI .63167-2 .46346"2 .-45944-2 . 13382
_]

L .29793-2 . 28027"2

V(x) =3.0

OLS -.23280" 2
. 11451

-2
. 11397"2

. 17188~ ]

. 98419" 3 .68603"3

NIV .14605"2 .24199" 2
. 24178" 2

. 16438" 1

. 14305"2
. 11621"2

NL2SLS1 .35032"3 .32560" 2 .32558-2 . 17087-1 . 17509-2 . 14600-2

NL2SLS2 -. 12523" 2
. 25431"2 .25415"2

. 18254~ ]L

. 15335"2
. 12012"2

LLI .87410"3 . 13014 -2
. 13006" 2

. 16945~ JL

. 15526"2 .12671"2

V(x) =5.0

OLS -. 11680"2
. 51508" 3

. 51371"3 . 16743~ ] .86594"3 . 59082" 3

NIV .73868~ 3 .81465" 3 .81410" 3
. 16625~ ]L

. 10528" 2
. 77637

-3

NL2SLS1 -.63256- 3
. 12929" 2

. 12925" 2
. 17826 _]

L
. 14038 -2 . 10889" 2

NL2SLS2 -. 33391"3 .88811"3
. 88800" 3

. 17837~ JL

. 11825"2 .86182" 3

LLI -.63106 -5 .53063"3
. 53063"3

. 17737" ]L .13123"2
. 99854"3
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Table 6

Results on Test for Multivariate Normality

Test Deg rees of Finite Sa mple
Statistics Fr eedora Critical Points

10 Percent 5 Percent

c
l

1.5159 2 3.6050 4.6842

C
2

4.8899 3 4.3500 5.4358

C
3

4.0614 4 5.6638 6.9087

C
4

6.4059 5 6.7914 8. 1364
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