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Chapter 1 

1 Introduction 

This literature review addresses sediment transport across the inner por- 

tion of the continental shelf, also referred to as the shoreface, or, as in this 
report, the inner shelf (Figure 1). The inner shelf extends from the sea- 

ward edge of the surf zone to the landward edge of the continental shelf. 

It is affected by the strong agitation that results from sediment resuspen- 
sion caused by shoaling of nonbreaking waves. The inner shelf is friction- 

dominated by both bottom and sea-surface boundary layers which overlap 

and frequently occupy the entire water column (Wright, in press). The 

inner shelf differs from the surf zone, which is also characterized by 

strong agitation of the bed by waves. The bed of the surf zone, however, 
is affected by the bore-like translation of waves following wave breaking 

(Komar 1976), and by wave-induced longshore currents and rip currents. 

Cross-shore transport of sediment across the inner shelf has a great 

effect upon short- and long-term fluctuations of beach and surf zone sand 
storage as well as the morphology and stratigraphy of the inner shelf. 

Although surf zone and nearshore processes and sediment transport have 

been extensively addressed in the literature, inner shelf processes and sedi- 

ment transport, particularly in the cross-shore direction, are not well 

understood. The complexity and interdependence of the mechanisms con- 
trolling transport on the inner shelf make it very difficult to comprehen- 

sively understand and describe the processes affecting sediment on the 
inner shelf. In response to this, Wright (1987) stated that a goal of the 

scientific community should be “to devise a more universal conceptual 
framework capable of better accounting for shoreface transport, erosion, 

and deposition in time and space.” 

Knowledge of sediment transport to and from the inner shelf region has 

important implications to engineering works such as beachfill design and 
dredged material placement. In computing a sediment budget for a beach- 
fill project, offshore gains and losses are usually assumed to be negligible 

in the sediment budget calculations. While this assumption recognizes the 
difficulty in quantifying inner shelf exchanges, it is probably incorrect dur- 

ing significant events. Defining limits for the active nearshore profile 
under varying conditions can aid in placing dredged material so that it 

will likely move onshore, offshore, or remain stable. 

Introduction 
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Figure 1. Continental shelf cross-sectional profile (site specific to the mid-Atlantic Bight 
of the United States). D, and d; (from Hallermeier (1981a)) refer to the 
seaward limit of surf-related effects, and the seaward limit to sand motion by 

normal waves, respectively 

Most models predicting shoreline change and cross-shore profile shape 

and changes are based on a profile of equilibrium which recognizes that 

for a given wave condition or average wave condition there is a profile 

shape (concave upward) that is in equilibrium with the wave conditions. 

While useful, this concept ignores the fact that, in addition to wave action, 
many other processes affect sediment transport. Moreover, cross-shore 

sediment transport is also affected by the regional geological framework 

and profile shape, as well as hydrodynamic conditions. 

Purpose 

The purpose of this report is to summarize literature which addresses 

the exchange of sediment between the beach and the inner shelf through 

analysis of physical processes, sediment transport, and stratigraphy. Spe- 

cific topics considered include the following: 

a. Depth of closure and extent of sediment transport landward and 

seaward of this zone. 

Chapter 1 Introduction 



Chapter 1 

b. Processes that cause cross-shore movement of sediment. 

c. Processes that cause net offshore and net onshore movement of 

sediment. 

d. Amount and physical characteristics of beach material lost to the 
offshore. 

e. Long-term fate of sediment that has moved offshore. 

f. Relationship between depositional structures and flow processes. 

g. Impact of episodic storms on sedimentation. 

This literature review will help to define the current state of knowledge 
concerning cross-shore sediment transport on the inner shelf and sediment 

exchange between the beach and the inner shelf. Discussions will revolve 
around how sediment transport on the inner shelf is related to the equilib- 
rium profile, depth of closure, sedimentation and stratigraphic character- 

istics of the inner shelf, and differences in sedimentation/stratigraphic 

patterns between fair-weather and storm conditions. 

While this literature review does not comprehensively review all pub- 
lished material concerning inner shelf cross-shore sediment transport, it 

does provide reviews of some of the more important studies. In addition, 
comprehensive lists of inner shelf cross-shore sediment transport studies 

are included in the bibliography sections of the appendices. 

Outline of Chapters 

This literature review is divided into five chapters and three appendi- 

ces. Chapter 2 discusses the equilibrium profile and depth of closure, and 
the importance of the geologic framework on inner shelf changes. Chap- 

ter 3 addresses several topics that verify the cross-shore transport of sedi- 
ment on the inner shelf. These topics include mechanisms of inner shelf 

sediment transport, surf zone and inner shelf cross-shore sediment trans- 

port, beach-inner shelf sediment exchange, storm/fair-weather sediment 

transport, and storm sedimentation models. Chapter 4 concerns the sedi- 

mentation structures and stratigraphy of the inner shelf and includes 

topics such as inner shelf sedimentary features, inner shelf stratigraphy, 
cross-shore stratigraphic sequences, and storm-related stratigraphy. Chap- 

ter 5 summarizes some of the more important findings of this review. 

Appendix A provides a glossary of useful terms. Appendix B is a bibli- 

ography of cross-shore sediment transport studies organized by topic. 
Appendix C is a bibliography of cross-shore sediment transport studies 
with respect to topic and region. 
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2 Inner Shelf Concepts 

Introduction 

This chapter reviews concepts that are crucial in determining the geo- 
logic aspects of inner shelf cross-shore sediment transport. These con- 

cepts include the equilibrium profile, the depth of closure, and the effect 
of the geological framework on the equilibrium profile and cross-shore 

sediment transport processes. These concepts are of concern to the engi- 
neering and scientific community primarily due to the unquantifiable 
amounts of sediment that are transported onshore and offshore of the inner 

shelf. Additional references concerning these topics can be found under 
individual reference lists entitled “Equilibrium Profile/Profile Adjustment 

References” and “Depth of Closure References” in Appendix B. 

Equilibrium Profile 

The equilibrium profile was first defined by Fenneman (1902), who 

stated “There is a profile of equilibrium which the water would ultimately 
impart, if allowed to carry its work to completion.” Additional equilib- 
rium profile studies include those by Cornaglia (1889); Ippen and Eagle- 

son (1955); Eagleson, Glenne, and Dracup (1961); and Zenkovich (1967), 

who argued in terms of the null point hypothesis. This hypothesis states 

that shoreward increases in wave orbital asymmetry should be counterbal- 
anced by shoreward increases in bed slope, thus creating an equilibrium 
profile. 

Studies at Mission Bay, California, and the Danish North Sea Coast by 
Bruun (1954) found that the average of field profiles fits the relationship: 

h= Ay” (1) 

where 

h= water depth 

Chapter 2 Inner Shelf Concepts 



A= scaling parameter dependent on sediment characteristics 

y = distance offshore 

The findings of this study are complemented by several laboratory studies 

including Rector (1954); Eagleson, Glenne, and Dracup (1963); Swart 

(1974); and Vellinga (1983). 

A model concerning shoreline change in response to rising sea level 
(known as the Bruun Rule) was introduced by Bruun (1962). In this 

study, Bruun stated that the equilibrium profile described by Equation 1 
would translate landward and upward while maintaining the original shape 

of the profile (Figure 2). Additional inner shelf equilibrium profile model 

studies include Inman and Bagnold (1963), Bailard (1981), and Bowen 

(1980). These models assume that the oscillatory motion of waves is the 

most important criterion in the development of the inner shelf equilibrium 

profile. 

Dean (1977) stated that the equilibrium profile occurs when bed shear 

stress and the energy flux dissipation rate (function of wave energy den- 

sity and group velocity) become equal everywhere over the profile. Dean 

(1983) further defined the equilibrium profile as “an idealization of condi- 

tions which occur in nature for particular sediment characteristics and 
steady wave conditions.” 

In proposing a model of destructive forces acting in the surf zone that 
would affect the equilibrium profile, Dean (1977) also reconsidered the 

equilibrium profile relationship by analyzing 504 beach profiles along the 
U.S. Atlantic and gulf shores (taken from Hayden et al. (1975)). Dean 

developed the following relationship: 

Figure 2. Translation of the original equilibrium profile in response to a rising sea level 
(after Bruun (1962)) 

Chapter 2. Inner Shelf Concepts 



h=Ay™ (2) 

By applying the least squares fit to each of the profiles, Dean (1977) 

found ranges of the values for the parameters A and n (A ranged from 
0.0025 to 6.31; n ranged from 0.1 to 1.4 with an average of 0.67, thus 

agreeing with Equation 1 of Bruun (1962)). 

For Dean’s (1977) model, he assigned a value of n = 2/3 when the rate 

of wave energy dissipation per unit volume of the water column is equal 

over the profile and n = 2/5 when the rate of wave energy dissipation per 

unit area of the sea bed is equal over the profile. Since the n value of 2/3 

matched the average n for the 504 profiles (0.67), Dean (1977) stated that 

the critical factor in developing a profile of equilibrium must be the rate 
of wave energy dissipation per unit water column volume. Dean (1977) 

left the sediment scale parameter A as the only free variable. This 
resulted in a much smaller range of A values between 0.0 and 0.3. 

Moore (1982), Dean (1987), and Kriebel, Kraus, and Larson (1991) 

related A to the sediment fall velocity using a single grain size for an 

entire profile. 

Dean and Maurmeyer (1983) review several profile response models 

including those of Bruun (1962) and Edelman (1968, 1970), as well as sev- 

eral evaluations of Bruun’s model including those of Schwartz (1965, 

1967), Dubois (1975, 1976, 1977) and Rosen (1978). Dean and Maur- 

meyer found that: 

a. Existing shore response models are useful for predicting long-term 

evolution due to relative sea-level rise. Better methods and field 

data are required to improve the capability of predicting depth of 
effective sand motion and the associated width of this zone. 

b. The Bruun rule has been validated qualitatively and, to the limit of 

our knowledge of the relevant processes, quantitatively for the case 

of nonbarrier island systems. Dean and Maurmeyer (1983) state 
that for barrier island systems which migrate landward, their own 

model is more appropriate. 

c. Of the existing models of the Bruun type, the Edelman (1970) model 

represents profile evolution as a continuing process and is therefore 

probably more representative of long-term response. 

d. There is a need for application of improved profile response models 
that incorporate the effects of noncompatible sediment eroded and 
gradients in longshore sediment transport. 

e. There is a need for improved definition of the detailed dynamics of 
beach profile response. This will probably require laboratory and 

field measurements under long-term and short-term (storm) events. 

Chapter 2. Inner Shelf Concepts 



Larson (1991) described the profile of equilibrium as occurring when: 
“A beach of specific grain size, if exposed to constant forcing conditions, 

normally assumed to be short-period breaking waves, will develop a pro- 
file shape that displays no net change in time.” 

Dean (1991) listed four characteristics commonly associated with equi- 

librium beaches: 

a. They are usually concave upwards. 

b. The smaller the sand diameter, the more gradual the slope. 

c. The beach face is usually planar. 

d. Steeper waves result in more gradual slopes. 

Pilkey et al. (1993) contend that the profile of equilibrium equation is 

inadequate to define the inner shelf profile shape and therefore should not 
be used as a basis for predictive models of profile evolution. First, 

although the equation provides an average inner shelf profile cross sec- 

tion, it does not effectively describe the true profile shape as it tends to 

ignore the effects of bars, and oversimplifies wave-inner shelf interac- 

tions. However, the equation does provide a useful guide particularly for 

long-term response of the “average profile.” Secondly, the inner shelf is 

composed of various sediment grain sizes. The assignment of a value of 

0.67 to the variable n in the profile equation, thus leaving a smaller range 
of values of the sediment scale parameter A (of 0.0 to 0.3), implies that 

beach profile shape can be calculated from sediment characteristics (parti- 

cle size or fall velocity) alone. 

Pilkey et al. (1993) state that the profile shape of the inner shelf is due 

to many factors, including the following: 

a. Wave climate (particularly the frequency of big storms). 

b. Sediment supply. 

c. Rate of shoreline and inner shelf retreat. 

d. Surficial sediment grain size. 

e. Underlying geology (Figure 3). 

Depth of Closure ° 

The model proposed by Bruun (1962) concerning shoreline change in 

response to rising sea level also introduced the concept of depth of clo- 
Sure - “the point on the equilibrium profile beyond which there is no 

Chapter 2. Inner Shelf Concepts 



|. Non—Headland Transgressive Inner Shelf (Sand Rich) 

A. Moinlanc Inner Shelf 

B. Barrier tsland inner Shelf 

i. Subaqueous Headland Inner Shelf (Sand Poor) 

A. Muddy Inner Shelf 

B. Hard Rock Inner Shetf 

Possible inner shelf types resulting from different characteristics of underlying Figure 3. 
geology (after Pilkey et al. (1993)) 
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significant net offshore transport of sand.” Bruun examined evidence for 

the capability of offshore currents to transport sediment beyond the equi- 

librium profile closure depth. He chose 18 m as a “reasonable assump- 

tion” for this closure depth. He based this on the depth at which there is 

no measurable (within the error bars of profile measurement) change in 

pre- and post-storm inner shelf profiles. 

Hallermeier (1978, 1981a) presented a model to estimate the seaward 

limit of sediment transport resulting from erosion (or offshore sediment 

transport). He developed a simple predictive equation, based on labora- 
tory studies, to estimate the annual depth of the seaward limit. He defined 

two limits to an area he called the shoal zone (Figure 1). In the shoal 

zone, “surface waves are likely to cause little sand transport; ...waves 

have neither strong nor negligible effects on the sand bed” (Hallermeier 

1981a). The seaward limit to the shoal zone (d;) is the depth limit to sedi- 

ment motion initiation by normal waves. This implies that significant 

onshore-offshore sediment transport is restricted to water depths less than 

d. The offshore zone is seaward of the shoal zone and is characterized by 
insignificant onshore-offshore transport by waves. 

The landward limit of the shoal zone (d,) separates the shoal zone and 

the littoral zone. The littoral zone is characterized by significant long- 
shore and onshore-offshore sediment transport due to increased bed stress 

and sediment transport by breaking and near-breaking waves. According 

to Hallermeier (1977), d, can be described by a critical value of a sedi- 

ment entrainment parameter (®.) in the form of a Froude number: 

of U, /y¥’ gd = 0.03 (3) 

This critical value assumes that an intensely agitated bed usually exists 

seaward of the surf zone. Hallermeier (1977) suggested an analytical 

approximation, using linear wave theory for shoaling waves, to predict an 

annual value of d,: 

2 2 d, = 2.28H, — 68.5(H,/gT.) 

where 

d, = annual depth of closure below mean low water 
Lo 

| 

H, = nearshore nonbreaking wave height exceeding 12 hr/yr 
% 

T, = corresponding wave period 

g = acceleration due to gravity 

According to the above equation, d, is primarily dependent on wave 

height with an adjustment for wave steepness. 

Chapter 2 Inner Shelf Concepts 



10 

Depth d, is considered the depth of closure and is used in estimating 

offshore closure limits for use in beach fill design. Hallermeier (1977) 

defined depth of closure as the minimum water depth at which no measur- 

able or significant change in bottom depth occurs based on profile surveys. 

To emphasize the importance of differences in wave and sand charac- 
teristics and wave variability on open sea coasts, Hallermeier (1978, 
1981b) computed the depths d, and d for 30 sites on the Pacific, Atlantic, 

and Gulf of Mexico coasts using the wave climate study of Thompson 

(1977) and data from the Littoral Environmental Observation (LEO) Pro- 

gram. For the Gulf of Mexico coast (seven sites), the d, and d values 

were -4.2 m and -9.9 m, respectively. For the Atlantic coast (11 sites), d, 

and d were -5S.7 and -22.1 m, respectively. D, and d values at the Pacific 
coast (12 sites) were -6.9 and -42.9 m, respectively. Differences in d, and 

d values stated above are a result of differences in significant wave 

height, wave period, and mean sediment grain diameter. 

Boyd (1981) documented that the maximum depth of the initiation of 

sediment movement (similar to Hallermeier’s (1981a) d) at the New South 

Wales, Australian continental shelf fluctuates with wave conditions (Fig- 

ure 4). For instance, for wave height of 0.5 m and periods of 7 sec, this 

depth is -10 m; for wave height of 2 m and periods of 12 sec, this depth is 
-60 m. 

Kraus and Harikai (1983) defined depth of closure as the minimum 

depth at which the standard deviation in depth change decreases markedly 

to a near constant value. 

Birkemeier (1985) compared data from two profiles located in Duck, 

North Carolina, between August 1980 and December 1982 to Haller- 
meier’s equation by measuring wave conditions that existed between pro- 

file surveys that exhibited offshore sand movement (Figure 5). 

Birkemeier (1985) found good agreement with the form of Equation 4, but 

recomputed the coefficient to better fit the data. He also found reasonable 

agreement using only H, in Equation 5: 

d — Neal. (5) 

where 

d,= nearshore limit, or closeout depth relative to mean low water 

H,= peak nearshore storm wave height, which is exceeded only 

12 hr/year 

He stated that this equation is probably site-specific. 

Kraus (1992) conceptualized that the beach profile responds to wave 
action between two limits, one limit on the landward side where the wave 

runup ends and the other limit in deeper water where the waves can no 

Chapter 2 Inner Shelf Concepts 
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Figure 4. Fluctuations of inner shelf bed form zones and initiation of sediment motion with 

respect to significant wave Height (H) and period (T) (after Boyd (1981)) 

longer produce a measurable change in depth. He calls this latter limit, 

the minimum water depth at which no change occurs (as measured by engi- 

neering means) the depth of closure. The depth of closure is not the loca- 
tion where sediment ceases to move, but that location of minimum depth 

where profile surveys before and after a period of wave action, a storm 

perhaps, lie on top of one another. 

Kraus (1992) also stated that the depth of closure is time-dependent, 

that is, dependent upon the transporting capacity of the particular incident 

waves. For example, we expect the average depth of closure for the sum- 
mer to be less than that in winter. Similarly, the “storm of the decade” 

will alter the profile elevation to a much greater depth than occurs during 

a typical storm season. In engineering projects, the depth of closure is 

best determined through repeated accurate profile surveys, such as per- 

formed with a sled. 
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Figure 5. Survey data from Duck, NC, from August 1981 to December 1982 showing 
fluctuation of closure depth as indicated by vertical arrows (after Birkemeier 
(1985)) 
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Pilkey et al. (1993) state that one of the most essential assumptions that 

must hold true for the concept of the equilibrium beach profile to be valid 

is: “There must exist a closure depth beyond which there is no net off- 
shore or onshore transportation of sediment - a depth of no net sediment 

movement to and from the inner shelf even during storm-induced down- 
welling events.” Pilkey et al. (1993) also defined the depth of closure as 

the depth where no vertical changes to the bed take place and where grain 
size distribution remains constant. Pilkey et al. (1993) state that the depth 

of closure does not exist, as field evidence shows that large volumes of 

sand may be moved beyond the closure depth. Such movement occurs 
mostly during offshore-directed storm flows. Studies in the Gulf of 

Mexico measured offshore bottom currents of up to 200 cm/sec and sedi- 

ment transport to the edge of the continental shelf (Hayes 1967a,c; Mor- 

ton 1981; Snedden, Nummedal, and Amos 1988). The amount of sediment. 

moved offshore was large, but it was spread over such a large area that the 

change in seabed elevation could not be detected by standard profiling 

methods (Hayes 1967a,c) (+10 cm). 

Several studies have found closure depths ranging from -5 m to -30m 

for the U.S. Atlantic coast. Birkemeier (1985) stated that the measured 

depth of closure at Duck, North Carolina, fluctuates between -3.9 m and 

-6.4m. However, the first conspicuous inner shelf configuration change 

at Duck occurs at -15 m, where sediments change from well-sorted fine 
sand to muddy fine sand with the fines bound in fecal pellets (Wright, in 

press). Perhaps this depth is more likely to be the maximum depth of nor- 
mally occurring, shore-normal sediment exchange. This compares to Hal- 

lermeier’s (1981b) seaward limit of sediment motion initiation (d) of 

-22.1 m for the Atlantic coast. 

Depth of closure estimates using Hallermeier’s (1977) method and the 

hindcast data of Jensen (1983) include Brevard County, Florida (-7.1 m); 

Walton County, Florida (-6.4 m); and Virginia Beach, Virginia (-5.5 m) 

(Hansen and Lillycrop 1988). Pearson and Riggs (1981) state that the 
depth of closure at Wrightsville Beach, North Carolina, was at least -16 m 

based on the presence of beach sediments at this depth. Wright (1987), in 

inner shelf studies including the use of bed elevation changes and sedi- 

ment and profile data, shows that the depth of closure was located 

between depths of -10 and -30 m depending on regional energy regimes. 

An additional estimate of depth of closure for the U.S. Atlantic coast is 
-9 m as presently used in engineering project design. This is the esti- 

mated depth where waves first affect the bottom as they move onshore, 

and there is no measurable (within the error bars of the profiling method) 
change in pre- and post-storm inner shelf profiles. In addition, sand 

ridges and irregular topography are typically located onshore of this clo- 

sure depth while a uniform sloping shelf is located seaward. 

Where Equation 4 predicts closure during the annual extreme 12-hr 

event, there exists a deficit of knowledge in predicting the depth of clo- 
sure as a function of time. In order to develop a predictive method to 
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determine the time-dependent cross-shore transport of beach nourishment 

material, Stive et al. (1992) extend the annual shoreward boundary d, 

(Hallermeier 1981b), by replacing the significant wave height exceeded 
12 hr/yr (H, in Hallermeier’s 1977 equation) with the significant wave 

height exceeded 12 hr/return period (y) (H, |). Stive et al. (1992) consid- 

ered an ideal model profile upon which a hypothetical beach nourishment 

was placed and subjected to the nearshore wave climate synthesis (func- 

tion of H ai) of Thompson and Harris (1972). They determined that d, var- 

ied greatly during different wave conditions and return periods (Table 1). 

In addition, by assuming that beach nourishment volume decreases as a 
thinning wedge in the offshore direction, the spreading evolution and 
beach nourishment foot (depth of which beach nourishment migrates) may 

be approximated by applying the extension of the Hallermeier (1977) 

equation. 

Table 1 
Variation in Depths of Dj and Nourishment Foot for Different Wave 
Conditions and Storm Return Periods (from Stive et al. (1992)) 

Wave Seepnees (rt > (Halermeter 198 1b) 
(H/L,) 

Stauble et al. (1993) analyzed 3.5 years of profile data from Ocean 

City, Maryland, considering both storm and normal wave conditions. 

Twelve profile lines extended over 5.6 km of beach, and each consisted of 

seven Or more surveys to the -9-m depth contour. Stauble et al. (1993) 

found that the depth of closure ranged between -5.5 m and -7.6 m, averag- 

ing -6 m. In addition, the profile at the northern end of the survey extent 

(103rd Street) was found to be steeper and without bars, while that of the 

southern end (37th Street) was shallow with bars. However, they suggest 

that more studies are required to relate the depth of closure to bar 
evolution. 
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Inner Shelf Geologic Framework Importance 

Coastlines characterized by limited sand supplies, such as much of the 

U.S. Atlantic margin, are significantly influenced by the geologic frame- 

work occurring underneath and in front of the inner shelf (Figure 3). Pas- 
sive margin coastlines, in particular, are significantly influenced by the 

geologic framework occurring underneath and in front of the inner shelf. 
This underlying geological framework can act as a subaqueous headland 

or hard ground that dictates the shape of the inner shelf profile and con- 

trols beach dynamics and the composition of the sediment. 

The Atlantic coast of North America is an example of a coast affected 
by its geological framework. The advance of glaciers during the Pleisto- 

cene Epoch (characterized by continental glaciations at North America 

from approximately 2 million years to 10,000 years before present (ybp) 
(Evernden et al. 1964, Pratt and Schlee 1969) extended as far south on the 

Atlantic coast as northern New Jersey. North of the moraine terminus, gla- 
cial moraines composed of till (mixture of clay, silt, sand, gravel and boul- 
ders) underlie much of the land, islands (i.e. Long Island, Nantucket, and 

Martha’s Vineyard), and offshore banks (i.e. Georges and Nova Scotian 

Banks). Coastal erosion of some of these features provides a variety of 
materials to the continental shelf. Conversely, south of the glacial mo- 

raine (Mid-Atlantic coast south of New Jersey), sediments are dominated 

by riverine sediments of piedmont streams that intersect the coastal plain 

strata. 

Along the North Carolina coast, Pilkey et al. (1993) discuss that there 

exist three categories of underlying geologic framework which influence 

the inner shelf profile shape: 

a. Subaerial headlands, which are composed of semi-indurated to 
indurated Pleistocene Epoch or older deposits incised by a wave-cut 

platform with a perched sand beach on the platform. 

b. Submarine headlands, composed of semi-indurated to indurated 
Pleistocene Epoch or older units, which form the platform upon 

which the modern barrier island is perched and either crop out on 
the eroding inner shelf or occur on the inner shelf as 
paleotopographic highs in front of the modern inner shelf. 

c. Nonheadland-transgressive inner shelf, commonly composed of 

Holocene Epoch (the Epoch from approximately 10,000 ybp to the 
present, which follows the continental glaciations of the Pleistocene 
Epoch) peat and mud deposits that extend from the modern 

estuaries, under the modern barrier islands, to crop out in the surf 
zone and inner shelf. 
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The Pleistocene section of the entire North Carolina coastal system rep- 

resents a complex record of multiple cycles of coastal deposition and ero- 

sion in response to numerous glacial-eustatic, sea-level cycles (Riggs, 

Cleary, and Snyder, in press). During each glacial episode, fluvial chan- 

nels severely dissected previously deposited coastal systems. The sub- 

sequent sea-level transgression then produced a ravinement surface that 
migrated landward and further eroded large portions of previously depos- 

ited coastal sediments by inner shelf erosion. This process of older units 

supplying sediment to the inner shelf of barrier islands was termed shore- 

face, or inner shelf, bypassing by Swift (1976). The fluvial channels were 
sequentially backfilled with fluvial, estuarine, and shelf sediments. Pre- 
sent day sea level has produced a modern sequence of coastal sediments 

that have been deposited unconformably over the eroded remnants of Pleis- 

tocene sequences composed of different lithofacies. Niedoroda, Swift, 

and Hopkins (1985) stated that this seaward thinning and fining veneer of 

modern inner shelf sediments over the older Pleistocene lithofacies is 

ephemeral and easily removed from the inner shelf during major storms. 

On a smaller scale, the Nags Head/Kitty Hawk and the Rodanthe/ 

Buxton areas on the Outer Banks of North Carolina, although separated by 

only 40 km, have distinctly different geological settings resulting in sig- 

nificantly different inner shelf profiles (Pearson 1979) (Figure 6). At the 

Nags Head/Kitty Hawk area, the inner shelf profiles contain two major 
sediment units including a modern inner shelf sediment wedge, composed 

primarily of reworked inner shelf sediments that thin in a seaward direc- 

tion. These form a thin blanket over the in situ relict sediments that will 

ultimately crop out on the inner shelf. Pearson (1979) stated that this mod- 

ern sediment wedge is periodically stripped away during extreme high- 

energy periods; thus exposing, possibly eroding, and transporting the 

relict units. By this mechanism, relict sediments are eroded and intro- 

duced into the modern sediment regime. In addition, the relict sediments 

underlying the thin, variable inner shelf sand sheet must also have a major 

impact upon the shape of the entire inner shelf profile. 

In the Rodanthe/Buxton area, the inner shelf is controlled by Pleisto- 

cene hard-bottom topographic features that act as headlands and intersect 

the lower beach face at acute angles. These topographic features are be- 
lieved to be a result of indurated Pleistocene stratigraphic units which out- 

crop in the Rodanthe area (Pilkey et al. 1993). These features include 

Wimble and Kinnakeet Shoals, permanent features up to 6 m in relief (Fig- 

ure 7). 

According to Pilkey et al. (1993), these vastly different inner shelf fea- 

tures have the following characteristics: 

a. They dramatically affect the cross section of the inner shelf and 

beach profile. 

b. They create major changes in the orientation of the barrier island 

(particularly at Rodanthe). 
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Figure 6. Location of the Outer Banks of North Carolina 
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Figure 7. Geologic cross section through the Outer Banks at Rodanthe showing the 
Pleistocene units cropping out on the inner shelf forming Wimble Shoals 
(after Pilkey et al. (1993)) 

c. They are not in equilibrium with incoming wave energy, suggesting 

that these features erode. 

d. They have dramatic impacts upon the energy regime affecting the 

adjacent inner shelf through wave refraction and setup. 

In addition, the geomorphic nature of an area must also be considered 
when determining mechanisms and resulting shelf sediment transport. In 

examining patterns of sedimentation on the continental shelf, Swift (1976) 

examined the mechanisms by which the nearshore is penetrated (at the in- 
ner shelf/oceanic process boundary and at river mouths) and how sedi- 

ment is injected into the shelf system. He found that the original mode of 
formation of the coast and surrounding areas had a large effect on present 

day sedimentation patterns. Swift (1976) differentiated between 
allochthonous and autochthonous settings. Allochthonous shelves 

(shelves presently composed of sediment formed elsewhere and sub- 

sequently deposited on the shelf) are typically floored by fine sands to 
muds (due to the introduction of riverine sediment through river-mouth by- 

passing) and are usually featureless, as these fine sediments travel in sus- 

pension. In addition, there is little bed form formation, as fine sediments 

have low angles of repose. Autochthonous shelves, or shelves presently 

composed of sediment originally derived from previous erosion of the 

shelf in its present location, are covered by coarser- grained sand of local 
origin. 
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3 Evidence of Cross-Shore 

Sediment Transport 

Introduction 

This chapter examines literature concerning evidences of cross-shore 

transport of sediment on the inner shelf. Patterns and mechanisms of sedi- 
ment transport on the inner shelf, particularly in the cross-shore dimen- 
sion, and of beach-shelf sediment interchange are poorly understood 

(Wright et al. 1991). Consequently, the generation of predictive theories 
which address these mechanisms and effectively recreate their effect on 

the cross-shore transport of sediment across the inner shelf is very diffi- 
cult. Several authors (Wright 1987, Nummedal and Snedden 1987, Pilkey 
et al. 1993) concur that a model directly relating cross-shore sediment 
transport to transport mechanisms/processes is needed. 

Additional topics discussed in this chapter include surf zone and inner 
shelf cross-shore transport of sediment, interchange of sediment between 

the beach and the inner shelf, and if this interchange results in the loss of 
sediment from the beach/inner shelf system to the outer shelf, storm/fair- 

weather sediment transport and storm sedimentation models. The purpose 

of the section concerning cross-shore sediment transport is not to provide 
a comprehensive review of all the theories of cross-shore sediment trans- 

port, but to discuss some of the evidences of this phenomenon and their re- 
lation to the theories of cross-shore sediment transport on the inner shelf. 

Mechanisms of Inner Shelf Sediment Transport 

The research of Wright et al. (1991) showed that bidirectional cross- 

shore sediment transport on the inner shelf is an exceedingly complex phe- 
nomenon driven primarily by shoaling waves, wind- and tide-generated 
currents, wave-current interactions, gravity-induced downslope transport, 

mean flows, and geostrophic circulation. However, these mechanisms 

have not been prioritized in terms of relative importance. 
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The mechanisms of cross-shore sediment transport are listed below and 

are more precisely documented in the literature by numerous authors as 

best summarized in part by Boyd (1981), Nummedal and Snedden (1987), 

Wright (1987), and Pilkey et al. (1993): 

a. Waves and wave-driven currents, including: 

(1) Powerful wave-orbital motions (Harms, Southard, and Walker 

1982; Walker, Duke and Leckie 1983; Duke 1985; Duke 1987; 

Duke 1990) and resulting orbital asymmetry (Gilbert 1889; 
Wells 1967; Nielsen 1979; Hallermeier 1981a; Trowbridge and 

Madsen 1984; Swift and Niedorada 1985; Dean and Perlin 1986). 

(2) Wave-induced upwelling and downwelling currents resulting 

from onshore/offshore movement of surface water and return 

bottom flows (Morton 1981, Snedden 1985, Wright et al. 1991). 

(3) Wave-induced rip currents (Bowen and Inman 1969; Cook and 

Gorsline 1972; Reimnitz et al. 1976; Seymour 1983; Field and 

Roy 1984; Wright and Short 1984; Cowell 1986; and Wright et 

al. 1986). 

(4) Sediment diffusion arising from gradients in wave energy 
dissipation associated with incoming incident waves (Wright et 

al. 1991). 

(5) Sediment advection caused by wave orbital asymmetries 

associated with incoming incident waves (Wright et al. 1991). 

(6) Long-period oscillations, which may be a more important process 

for cross-shore sediment transport in higher energy wave 

environments (Wright et al. 1991). 

(7) Interactions between groupy incident waves (alternating high and 

low waves and forced long waves) (Shi and Larsen 1984, Dean 

and Perlin 1986, Wright et al. 1991). 

(8) Groupy long waves (a forced long wave of infragravity 
frequency resulting in alternating high and low waves) (Shi and 

Larsen 1984, Dean and Perlin 1986, Wright 1987). 

b. Wind- and tide-driven currents including: 

(1) Semidiurnal and diurnal tidal currents (May 1979, Wright 1981). 

(2) Strong, unidirectional currents from wind forcing (Morton 1981). 
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(3) Wind-induced upwelling and downwelling currents resulting 
from onshore/offshore movement of surface water and return 

bottom flows (Niedoroda et al. 1982; Morton 1981; Snedden 

1985; Wright et al. 1986, 1991). 

(4) Tidal currents. 

(5) Storm surge ebb currents (Brenchley 1985). 

c. Interaction of waves and currents (Butman, Noble, and Folger 1977; 

Lavelle et al. 1978; Grant and Madsen 1979a, 1986; Vincent, 

Young, and Swift 1982; Nielsen 1983; Shi and Larsen 1984; and 

Wright et al. 1991) including: 

(1) Subharmonic and infragravity wave orbital interactions with the 
bottom sediment and with wave-induced longshore currents 
(Wright and Short 1984). 

(2) Interactions between oscillatory flow and mean flow (Lundgren 

1973; Smith 1977; Bakker and Van Doorn 1978; Grant and 

Madsen 1979b, 1986; Kemp and Simmons 1982; Wiberg and 

Smith 1983; Christofferson and Jonsson 1985; Coffey and 

Nielsen 1987). 

d. Gravity-induced downslope transport often of highly concentrated 
sediment (Bruun 1962, Hayes 1967a, Dean 1977, Kobayashi 1982, 

Pilkey et al. 1993). 

e. Forcing mean flows, which dominate and cause offshore transport 

during storms and contribute significantly to cross-shore sediment 
flux during fair-weather and moderate energy conditions (Wright et 

EV IKE )ID). 

f. Geostrophic circulation (Ekman spiral) and its superposition on wave 

motions (Komar 1976; Swift et al. 1983; Vincent, Young, and Swift 

1983; Cacchione et al. 1984; Allen 1982; Neshyba 1987; Nottvedt 

and Kreisa 1987; Nummedal and Snedden 1987; Swift and 

Nummedal 1987). 

g. Small-scale boundary layer processes (Wright 1994). 

h. Physical oceanographic processes including oceanic currents 

(Csanady 1972; 1976; 1977 a,b; 1982; Csanady and Scott 1974; 
Halpern 1976; May 1979; Schwab et al. 1984). 

Additional mechanisms contributing to cross-shore sediment transport 

include: 

a. Storm surge-controlled breakout of coastal lagoons (Hayes 1967a, b, 

c), tidal inlets, and submarine canyons. 
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b. Turbidity currents (Bates 1953; Hayes 1967 a, b, c; Brenchley 1985; 

Seymour 1986; Wright et al. 1991). 

c. Beach state (e.g. the first winter storm moving much more sediment 

than subsequent storms) including beach slope (Bascomb 1951, 

King 1972, Komar 1976, Shore Protection Manual 1984). 

d. Formation of shell lags and a wide variety of bed forms (ranging 

from ripple marks to offshore bar systems)(Pilkey et al. 1993). 

e. Organic scum layers (Pilkey et al.1993). 

f. Variations in sediment pore pressure (Pilkey et al.1993). 

g. Variations in the degree of sediment compaction and consolidation 

between storms (Pilkey et al. 1993). 

h. Irregular inner shelf shapes (bedrock) which affect wave refraction 
patterns (Pilkey et al. 1993). 

i. Coastal jets (Csanady 1972, 1977b; Csanady and Scott 1974; 

Ludwick 1977). 

J. Topographic gyres (Bennet 1974, Csanady 1975). 

k. Kelvin waves (Munk, Snodgrass, and Gilbert 1964; Munk, Snodgrass, 

and Wimbush 1970; LeBlond and Mysak 1977). 

l. Vertical density stratification (Wright 1987). 

Surf Zone Cross-Shore Sediment Transport 

Much is known about nearshore sediment movement under shoaling 

waves (Komar 1976) and the documentation of cyclic patterns of surf- 

zone change (Wright et al. 1979, Nummedal and Snedden 1987). It has 

been documented that the most important concepts of surf zone dynamics 
and sediment transport are: 

a. Orbital asymmetry (as expressed by second-and higher-order Stokes 

theory and supported by Gilbert (1889), Wells (1967), Hallermeier 

(1981a), Swift and Niedoroda (1985)). 

b. Radiation stress theory and derived understandings 

(Longuet-Higgins and Stewart 1964). 

c. Standing long waves and edge waves of infragravity frequency (Guza 
and Thornton 1985a). 
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Two useful models include Bailard’s (1981) energetics model, which 

estimates sediment flux from measured wave and current data over the 

surf zone, and Guza and Thornton’s (1985a, b) model, which is concerned 

with surf zone conditions where bed shear stresses and energy dissipation 

are strongly dominated by waves. Equations of both models help to deter- 
mine if the cross-shore component of the immersed weight sediment trans- 

port within the surf zone is onshore or offshore. 

A laboratory model developed by Hattori and Kawamata (1980), and its 
comparison with field data, is one approach which concerns the cross- 
shore transport of sediment in the surf zone. This model is based on the 

concept of the balance of power extended on sand grains generated by 

breaking waves, the beach slope, and the effect of gravity. Hattori and 
Kawamata theorized that cross-shore transport of sediment in the surf 

zone is a function of the dimensionless fall-time parameter as described 
by: 

where: 

C = aconstant determined from laboratory and field data 

when 

C < 0.5 onshore transport results - accretive profile 

= 0.5 no net transport results - equilibrium profile 

> 0.5 offshore transport results - erosive profile 

tan B = bottom slope in the surf zone 

W 
AY 

T= wave period 

fall velocity of a sand grain of diameter d. 

H, = deepwater significant wave height 

L, = deepwater wavelength 

Hattori and Kawamata (1980) continue that net cross-shore transport in 
the surf zone is a result of the stirring power P, (which is a function of 

submerged weight of sand grains, maximum wave-induced velocity, bot- 

tom slope in the surf zone, water depth at the breaking position, and width 
of the surf zone) and the resisting power P_ (which is a function of fall 
velocity of a sand grain and the submerged weight of the sand grain. 

When P. > P_, sand grains keep in suspension due to breaking waves, and 
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sand grains are transported seaward in the form of a cloud by wave- 
induced currents (Sunamura 1980). When P_ > P., sand grains tend to roll 

and jump as bed load and move shoreward. 

Inner Shelf Cross-Shore Sediment Transport 

Introduction 

Understanding of surf zone processes can be applied, at least in con- 

cept, to processes occurring on the inner shelf. For instance, Wright et al. 
(1991) applied surf zone sediment transport equations of Bailard (1981) 

and Guza and Thornton (1985 a,b) to predict inner shelf cross-shore sedi- 
ment transport. Wright et al. (1991) found poor agreement between these 
surf zone and inner shelf sediment transport equations. Wright et al. 

(1991) state that these types of equations are needed to better predict 
cross-shore sediment transport on the inner shelf. 

For wind-driven current patterns, Vincent, Young, and Swift (1983) 

divide the inner portion of the coastal ocean into the following three zones 

based on controlling sediment transport mechanisms: 

a. Geostrophic (offshore; seaward of approximately the -15-m depth). 

b. Transition. 

c. Friction-dominated (seaward of the surf zone to approximately -10-m 

depth). 

Landward of the 10-m contour in the fricfion-dominated zone, sediment 

transport rates are on the order of 1 x 10 g/cm/sec and are primarily a 
function of asymmetric wave orbitals while seaward of the 10-m contour 

in the geostrophic zone, sediment transport rates are approximately | x 

10° g/cm/sec (Vincent, Young, and Swift 1983). 

Geostrophic zone 

Geostrophic circulation of ocean waters and sediment transport in this 

zone are controlled by the following factors: 

a. Cross-shore mean bottom currents resulting from wind shear and 

tide-related currents. 

b. Currents generated by the Coriolis force. 

c. Upwelling/downwelling conditions. 
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The Coriolis force is defined as an apparent force resulting in the path 

deflection of an object due to the earth’s rotation (Neshyba 1987). In the 

Northern Hemisphere, an object or water body undergoing movement on 
the earth’s surface will be deflected to the right (clockwise) of the move- 

ment. The Ekman transport or drift, a function of the Coriolis force, 

states that as winds exert friction drag over an ocean of uniform density, a 
thin layer of surface water moves at an angle from the original wind (to 

the right in the Northern Hemisphere). This rotation continues as subsur- 

face parcels of water are also rotated by the Ekman transport in that same 

direction. Therefore, there is a depth at which the water moves opposite to 

that of the surface wind (Neshyba 1987). Nummedal and Snedden (1987) 

have documented the Ekman transport in a three-layer inner shelf flow 

model, which shows that if surface currents are obliquely onshore, cur- 

rents at mid-depths in the water column will be alongshore. Bottom cur- 
rents will be oriented obliquely offshore. 

Upwelling and downwelling currents are also geostrophically control- 

led currents that form due to orientation of the wind direction near a 

coast. For instance, upwelling conditions occur when offshore-directed 

winds transport surface waters in an offshore direction. Surface waters 

are then replaced by subsurface water and sediment, which moves on- 

shore. Downwelling conditions, conversely, occur as onshore-directed 
winds transport the surface water onshore. Surface waters are then re- 

flected by the beach, thus creating offshore-directed return flow of subsur- 

face water parcels and sediment transport. 

On the west coast of the United States, winds from the south will tend 
to deflect surface waters in a clockwise direction, or onshore, thus result- 

ing in downwelling of deeper water parcels. Winds from the north will be 

deflected offshore, thus resulting in upwelling of deeper water parcels. 

On the east coast of the United States, upwelling tends to occur when 

winds are from the southwest, south, or northwest, while downwelling 

tends to occur when winds are from the northeast (Swift 1976). 

Wright et al. (1986) conclude that northeaster storms create strong, 

southerly jet-like flows along the mid-Atlantic Bight. These flows affect 

the floor out to depths as far as -8 m, which results in downwelling and 

offshore sediment transport. 

Friction-dominated zone 

In the friction-dominated zone, a multitude of mechanisms affect inner 

shelf cross-shore sediment transport (see previous list of mechanisms of 

inner shelf cross-shore sediment transport). Overall, Wright et al. (1991) 

found that incoming incident waves were of primary importance in bed 

agitation (shear stress) and suspension of sediment on the inner shelf, 

while near-bottom tide- and wind-induced mean flows were of primary im- 

portance in the cross-shelf transport of sediment on the inner shelf. 
Wright et al. (1991) state that this mean-flow-generated cross-shore 
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transport of sediment was dominant or equal to that generated by incident 

waves in all cases and at all times. 

Pilkey and Field (1972) and Wright et al. (1991) distinguish between 

the primary causes of onshore and offshore cross-shelf sediment transport. 
Pilkey and Field (1972) summarize the mechanisms of onshore transport 

of sediment on the inner shelf, which include wave and tidal current phe- 
nomena such as: 

a. Onshore component of asymmetrical wave orbitals under shoaling 

conditions. 

b. Onshore-oriented dominating tidal flood currents in shallow water. 

c. Both the onshore and offshore components associated with 

storm-induced bottom currents. 

In addition, Wright et al. (1991) state that incident waves are an important 

mechanism of the onshore transport of sediment. 

Sediment transport mechanisms documented to cause onshore and off- 

shore cross-shore sediment transport include the following: 

a. Orbital asymmetry. 

b. Interaction of incident waves with infragravity waves and mean 

offshore flows. 

c. Wave groupiness. 

d. Slope of the shelf and effects of gravity. 

e. Rip currents (Wright et al. 1991). 

Discussion of these mechanisms of inner shelf offshore and onshore cross- 

shore transport follow. 

Orbital asymmetry. Findings by Cook and Gorsline (1972) during 
studies at Palos Verde, California, as supported by May (1979) and Wright 

et al. (1991) indicate that orbital asymmetry-created currents during wave 

shoaling transport sediment in both the onshore and offshore directions. 
These findings include the following: 

a. Both onshore and offshore asymmetry of currents were documented 

during wave shoaling. Long-period swells and offshore breezes 

cause a net onshore transport of sediment, while short-period waves 

and onshore winds are associated with neutral or offshore flow. 
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b. Swell characteristics also affect water drift, in that long-period waves 

have onshore pulses which prevail temporarily, and thus cause net 

onshore transport of sediment. 

c. Tidal surge asymmetry includes components of both onshore and 

offshore sediment transport across the inner shelf. 

d. Tidal flux does not have a significant effect on surge asymmetry. 
However, May (1979) found that 35 percent of the kinetic energy of 

currents above the 30-m isobath in the Northern Middle Atlantic 

Bight was at a tidal frequency, thus indicating the importance of 

tidal currents in affecting sediment transport on the shelf. In 

macrotidal environments tidal currents probably dominate the inner 

shelf transport (Wright 1981). 

e. Wind affects the ratio for durations of current flow and bottom drift, 

thus resulting in upwelling and downwelling flow. 

Cook and Gorsline (1972) and Trowbridge and Madsen (1984) discuss 

the importance of sediment transport under asymmetric waves and related 

orbital asymmetry in generating both onshore and offshore components of 

cross-shore sediment transport. Also, time and space variations in bed 
roughness when considering orbital asymmetry can affect both magnitude 

and direction of sediment transport. Oscillatory currents over rippled 

beds can cause a significant phase angle between instantaneous suspended 

sediment concentration and instantaneous velocity, resulting in sediment 
flux in a direction opposite to the net current or wave-induced mass trans- 

port (e.g. Nielsen (1979)). 

Larsen (1982) also found that the net offshore transport of sediment on 

the inner shelf is a function of the net offshore orbital asymmetry of 

waves. Currents forced by the radiation stress of variable amplitude swell 

(the higher waves suspending the sediments) are an important mechanism 

in suspending sediments resulting in the cross-shore transport of sediment 

on mid-continental shelves. 

Smith and Hopkins (1972) found that orbital asymmetry-created cur- 
rents during wave shoaling are the dominant control of net onshore trans- 

port of sediment, primarily of coarse material, on the inner shelf. 

Wave-current interaction. Grant and Madsen (1979a, 1986) theoreti- 

cally discussed combined wave-current bottom fluid shear stress and 

stated that the actual transport across the inner shelf is, in most cases, the 

result of wave-current interaction. Effects of wave-current interaction on 

the boundary layer include the following: 

a. Increases in rate of frictional dissipation of waves. 

b. Reduction in mean current speed near the bed. 
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c. Increases in bottom shear stress due to a combination of components. 

The importance of wave-current interaction in determining the magni- 
tude and direction of sediment transport is also considered by Vincent, 

Young, and Swift (1983). They found that when wave orbital velocities 

and slowly varying bottom boundary layer velocities are combined, 

stronger onshore combined flow results. Moreover, depending on bed 

roughness and the horizontal angle between wave incidence and the mean 

current, the vector resultant of the sediment flux may be opposite that of 

the mean current. 

Wave groupiness. Wave groupiness is also an important factor of net 

offshore transport of sediment across the inner shelf. Wave groupiness 
causes space and time variations in wave amplitude and in radiation stress 
(S_,). Thus, momentum balance requires that slowly time-varying mean 

water level (n,) be depressed and elevated under high and low waves, re- 

spectively (where S__ is greater and less, respectively). Variances inf 
cause a long-period infragravity wave. This infragravity wave has peaks 
at low primary waves which result in onshore sediment transport (i.e. 

shoreward values of f (or the cross-shore long wave flow constituent)) and 

troughs at high primary waves, which result in offshore sediment transport 

(i.e. seaward values of f). Since the large primary waves in the trough of 
the long wave suspend more sand (offshore-directed) than the small pri- 

mary waves of the long wave crest, there is a net seaward transport 

(Wright et al. 1991). 

Gravity-induced currents. Gravity-induced inner shelf offshore- 
directed sediment transport (as stated by early references considering the 

equilibrium profile concept (e.g. Cornaglia 1889, Ippen and Eagleson 
1955, Bruun 1962, Inman and Bagnold 1963) occurs due to the slope of 

the inner shelf being oriented in an offshore direction. This gravity- 

induced offshore transport of sediment is accentuated where fine-grained 

sediments are present, since these types of sediment can be easily sus- 
pended, especially during storm events. 

Seymour (1986), in studying different models of turbidity currents and 

their relation to inner shelf transport, confirms that these currents trans- 

port nearshore sand in an offshore direction during storms. 

Wright et al. (1991) noted that gravity plays a significant role during 
high-energy events when bed shear stress and suspended sediment concen- 

tration were greatest. If a density current develops, and the sediment is 
suspended at a greater rate than it is deposited, an autosuspending 

offshore-directed turbidity current can form. Kobayashi (1982), who de- 

veloped a model for net downslope sediment transport by oscillatory 

flows acting on a gentle slope, found that gravity-induced offshore- 

directed transport of sediment is significant. 
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Rip currents. Rip currents are also important in transporting sediment 

in an offshore direction (Field and Roy 1984). Bowen and Inman (1969) 

and Cook and Gorsline (1972) report that during the winter season, cross- 

shore movement of sediment by rip currents is in an offshore direction. 

Once transported offshore, sediment is confined by predominant seaward 

oscillations caused by steep waves and strong winds. During summer, 
long-period swells transport sediment landward to replenish the beach. 

Cook and Gorsline (1972) also present a sediment transport system 

whereby sediment is transported offshore outside of the breaker zone by 

rip currents and general diffusion, and then onshore by wave action, 

which separates silt and clay from sand. Sand is then moved alongshore 

to depths dependent upon wave characteristics. Silt and clay are separated 

in the sorting process and move out of the coastal drift system in 

suspension. 

Reimnitz et al. (1976) used side-scan sonar to show seaward-trending 

ripples out to depths of 30 m that are attributed to storm rip currents. 
Cowell (1986) measured rip currents off headland-bounded beaches dur- 

ing storms and measured velocities of greater than 1 m/sec extended to 
hundreds of meters past the surf zone. However, Field and Roy (1984) be- 

lieve that rip currents probably do not transport sand to a depth greater 
than 45 m. 

Seymour (1983), in experiments at Santa Barbara, Torrey Pines, and 

Virginia Beach (as part of the Nearshore Sediment Transport Study), also 

documented rip currents as a mechanism of offshore sediment transport. 

During periods of intense storm waves, Seymour (1983) documented the 

formation of offshore bars, particularly at Santa Barbara. The formation 
of these bars is attributed to excessive longshore sediment transport and 

rip current outlets during these storms. 

Hyperpycnal plumes. Hyperpycnal plumes, or sediment/water flows 

of dense concentration that plunge under flows of less dense concentration 
associated with gravity flows (Bates 1953), may also result in seaward 

transport where fine-grained sediments are present (no autosuspension is 
needed). In studies by Wright et al. (1991), where bed slope was 0.6 deg, 

suspended sediment concentrations were as high as 10 g/l, and underflows 

were as thick as 2 m with downslope speeds of 10-40 cm/sec, Wright et al. 

(1991) attributed this offshore-directed sediment flow to a rise of 0.6 m in 

mean water level (during this particular storm) and a resultant strong 

seaward-directed downwelling flow. 

Bar formation/migration. Osborne and Greenwood (submitted, 1992) 
determined that cross-shore sediment transport at a non-barred inner shelf 

in Nova Scotia and a barred inner shelf at Georgian Bay are similar and a 
function of the following parameters: 

a. Local wind-forced low-frequency waves. 
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b. Mean current flows (in the Nova Scotia non-barred example, these 

flows were offshore-directed undertows). 

Additional causes of non-barred inner shelf sediment transport include 

swell, while additional causes of barred inner shelf sediment transport in- 

clude high-frequency wind wave oscillatory currents. 

Osborne and Greenwood (1992) also differentiate between sediment 

transport at different locations on the bar. On the lakeward slope of the 

bar, a net offshore sediment transport component of mean currents results 
from the offshore flow of undertow and group-forced bound long waves, 
and the landward flow mechanism of wind wave oscillatory currents. This 

is in contrast to studies on Padre Island, Texas, by Hill and Hunter (1976) 

who show that net onshore bottom currents are dominant on the seaward 

side of the bars and the bar crests under normal breaking wave conditions 
of 0.3 to 1.0 m. On the bar crest, Osborne and Greenwood (1992) state 

that there was no net transport of sediment due to a balance between off- 

shore mean transport (undertow) and onshore net oscillatory transport (in- 

teraction between both high- and low-frequency waves). Landward of the 

bar crest and in the trough, although the wind waves decrease due to dissi- 
pation of wave energy, suspended sediment transport by low-frequency 

waves is most important, thus transporting sediment in a predominantly 

onshore direction (Osborne and Greenwood 1992). 

Sediment trends 

Wright (in press), in a study at the Field Research Facility at Duck, 

North Carolina, documented that the grain size of the inner shelf over the 

upper 18 m exhibits a slight tendency to fine seaward (Figure 8). Fine to 
very fine sand (D5, = 0.09-0.13 mm) prevails, while silts and clays com- 

prise 10-15 percent of the surficial sediment. This seaward-fining se- 

quence is a result of decreases in energy in an offshore direction. 

Different magnitudes and properties of offshore versus onshore flow 
across the inner shelf have resulted in the differential transport of fine ver- 

sus coarse sediments. Smith and Hopkins (1972) state that during storm 

events fine material is transported offshore, while coarse material is trans- 

ported onshore. They documented that fine sand moves as suspended load 

from the nearshore and is transported offshore during severe storms. Dur- 

ing non-storm periods, both fine and coarse sand move onshore by wave- 

driven bottom currents, which have a net onshore component. 

Basically, coarse material moves onshore due to the greater energy ex- 

erted by the onshore-directed wave orbitals which are shorter, and exert 

great velocities on the bed. Fine material moves offshore as suspended 

load by the offshore-oriented orbitals, which are longer and of less energy. 
Thus, the coarse material is moved onshore while the fine material moves 

offshore (Wright et al. 1991). 
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Figure 8. Cross-shelf profile of the inner shelf off Duck, North Carolina (after Wright 
et al. (in press)) 

Smith and Hopkins (1972) determined in their study of Columbia River 

sediments that an average particle on the shelf moves about 40 km/year in 

a longshore direction and 7 km/year in an offshore direction. The major- 

ity of this transport occurs only during a few storms each winter. Esti- 
mates of sediment transport indicate that the sand fraction moves much 

more slowly as bed load than the silt fraction as suspended load. 

Seasonal effects on inner shelf cross-shore sediment transport 

Seasonal cross-shore transport of sediment along the southern Califor- 
nia coast has been documented by Shepard (1950), Shepard and Inman 

(1950), Inman (1953), Inman and Rusnak (1956), and Aubrey (1979). Dur- 

ing summer, the subaerial beach accretes, while the offshore loses sedi- 
ment. In winter, the subaerial beach erodes, while the offshore accretes. 

These changes are a result of variation in wave frequency and directional 
properties (e.g. Pawka et al. (1976)). Small-amplitude, long-period waves 

dominate in summer, while higher-energy, high-frequency storm waves 

dominate in winter. 

Aubrey (1979) examines temporal changes in beach/inner shelf profile 
configuration using eigenfunction analysis of profile data for southern 

California profiles for a 5-year period. Two seasonal pivotal points sepa- 
rating eroding and accreting regions are documented at -2 m to -3 m, and 

at -6 m. A simple model of depth-dependent seasonal sand movement 
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shows that during initial winter storms, sand is eroded from both the fore- 

shore and from depths of -6 m to -10 m and is deposited at the -2-m to 

-6-m water depth. During less energetic periods, sediment migrates both 

onshore (to the beachface) as well as offshore (to a depth of -10 m) from 

its winter site of deposition (-2 m to -6 m). This depth-dependent motion 

contradicts the single pivotal-point model previously suggested for near- 

shore seasonal cross-shore sediment motion and emphasizes the complex- 

ity of nearshore sediment transport. A sediment budget for seasonal 

cross-shore transport, based on the dual pivotal point model, consists of 

exchanges of 85 m?/m at the -3-m pivotal point, and 15 m?/m at the -6-m 

pivotal point. On a longer (5-year) time scale, beaches showed no erosion 

or accretion, suggesting that the limited coastal region is stable over this 

time period. 

Beach-inner Shelf Sediment Exchange/Losses 

Now that evidence has been presented concerning the onshore and off- 

shore components of cross-shore sediment transport, the actual exchange 

of sediment between the inner shelf and the beach is considered. Boyd 

(1981) emphasized that cross-shore sediment exchange represents a major 

contribution to the inner shelf sediment budget. 

Studies by Pearson and Riggs (1981) extensively documented the ex- 
change of sediment between the beach and the inner shelf at Wrightsville 

Beach, North Carolina. It is this study which has accentuated the impor- 
tance of the permanent loss of sediment from the beach-inner shelf sys- 

tem. Two findings associated with this study are important. First, 

Pearson and Riggs (1981) observed the offshore transport of replenish- 

ment sand from Wrightsville Beach to a depth of -16.6 m. This is based 

on the presence of beach nourishment sand (fine to coarse-grained gray to 
black sand with oyster shells) which is easily distinguishable from North 

Carolina continental shelf sands, which are brown in color. This suggests 
that the depth of closure at Wrightsville Beach is at least -16.6 m. 

Secondly, Pearson and Riggs (1981) state that periodic renourishment 
totalling 7,300,000 cu m of material placed since 1939 (which would 

cover a 23.3-km? area with a 14.6-cm layer of sediment) is being effec- 
tively and permanently removed from the nearshore system. This renour- 

ishment sand requirement has not decreased over time, indicating that the 

profile is not establishing an equilibrium profile. Pilkey et al. (1993) con- 
tend that if the concept of the equilibrium profile were valid, then the vol- 

ume of sand needed to nourish the profile should decrease over the years 

as it accumulates above closure depth on the inner shelf. 

In studies of Hurricanes Carla and Allen, and tropical storm Delia on 

the Texas shelf, Nummedal and Snedden (1987) document the cross-shore 

exchange of sediment as a great loss of sediment from the beach-inner 

shelf. They found that sand is moved offshore during storms due to 
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downwelling (three-layer flow) but is not returned onshore. Niedoroda, 
Swift, and Hopkins (1985) also supported the loss of sediment from the 

beach-inner shelf system only during storms. However, they state that 
some of the sand transferred from beach to inner shelf during storms will 

return. 

Luternauer and Pilkey (1967) employ the use of minerals (i.e. phos- 

phorite) at the North Carolina coast at Onslow Bay to document the inter- 
change of sediment between the beach and the inner shelf. They found 

that the shelf is an important source of beach sediments. This suggests 

that the shelf is a major contributor of phosphorite to landward beaches. 
Another interesting finding of this study was that a small amount of long- 

shore transport occurs on the shelf as phosphorite content is limited to 

Onslow Bay and does not spill over to other embayments. This indicates 

that phosphorite is a useful tool for determining sediment provenance and 

transportation. 

Thus, several studies support the interchange of sediment between the 

beach and the inner shelf. However, there are examples in the literature 

where no sediment interchange occurs. For instance, Meisburger (1989) 
investigated the interchange of sediment between the beach and Gilbert 

Shoal, a nearshore linear shoal off Florida. He determined that the major 

sediment source to the beach is from littoral processes, while a lesser 
amount of sediment comes from the shoal. However, the shoal and sur- 

rounding seafloor receive little, if any, sediment from the beach or nearby 

St. Lucie Inlet. The shoal obtains sediment from the nearby shelf floor 

and from in situ shell production. 

Depth of inner shelf sediment transport 

When considering sediment interchange between the shelf and the 

beach, the next logical question is to what depth is sediment transported 
and/or affected on the continental shelf. This topic was previously consid- 

ered in the “Depth of Closure” section of Chapter 2 as discussed by 
Draper (1967); Harlett (1972); Komar, Neudeck, and Kulm (1972); Smith 

and Hopkins (1972); Sternberg and Larsen (1976); Channon and Hamilton 

(1976); Sternberg and McManus (1972); Gadd, LaVelle, and Swift (1978); 

Vincent, Swift, and Hillard (1981); Larsen et al. (1981); and Wright et al. 

(1986). In addition, Grant and Madsen (1979a,b, 1986), Madsen and 

Grant (1976), Larsen et al. (1981), and Niedoroda et al. (1982) compute 

bed load transport at depths. Evidence of sediment transport at consider- 

able depths (greater than -40 m) follows. 

Direct current measurements on the central and outer continental shelf 

of Washington and Oregon by Smith and Hopkins (1972) at the -50-m and 

-80-m water depths showed that significant sediment transport in an off- 

shore direction, most importantly by suspended load, occurs only during 

storms. A storm with current speeds of up to 60 cm/sec transports on the 
order of 6 m?/hr/m of sediment of shelf length, while a 70-cm/sec storm 
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transports 15m?/hr/m of sediment of shelf length. Net transport of sedi- 

ment is offshore. These data suggest that a single severe storm may be 

more effective in transporting sediment than several small storms. 

Komar, Neudeck, and Kulm (1972) discuss the production of orbitals 

by surface waves, which in turn create ripples, and rework shelf sedi- 
ments. Table 2 shows relationships between depth of rippling and a vari- 

ety of surface wave conditions (after Komar, Neudeck and Kulm (1972)). 

Table 2 
Relationships Between Depth of Rippling and a Variety of Surface 
Wave Conditions (after Komar, Neudeck, and Kulm (1972)) 

Significant 
Wave Period | Wave Height | Depth of 
(sec) a Rippling (m) 

85 2.13 

Ripple 
Orbital Wavelength 
Diameter (cm)| (cm) 

Surface Wave 
Conditions 

Average Summer 
Waves 

12.6 

Storm Waves 

Average Winter 3.05 99 
Waves | 

Large Storm 9.14 138 
Conditions | 

Long-Period 9.14 204 

Symmetrical (wave-generated) oscillatory shore-parallel ripple marks 

(see section in Chapter 4 titled “Examples of Inner Shelf Sedimentary Fea- 

tures” for additional information on ripple symmetry) exist on the Oregon 

continental shelf out to water depths of -204 m, while asymmetrical rip- 

ples are rare. Symmetrical ripples are covered by bottom orbital veloci- 

ties (as calculated by the Airy wave theory) as well as unidirectional 

currents while asymmetrical ripples are believed to be produced by inter- 

nal waves (15- to 30-min period), as they are more similar to unidirec- 
tional currents. It is believed that upwelling currents could not have 

formed ripples (Komar, Neudeck, and Kulm 1972). 

Larsen et al. (1981) determined that at the -100-m depth on the Wash- 

ington shelf, for sediment sizes 0.03-0.07 mm, a bottom oscillating cur- 
rent of 13 cm/sec is needed to suspend sediments. These types of currents 

and waves are common during winter storms in Washington, where 

100-cm/sec velocities associated with 15-sec waves have been measured. 
Draper (1967) calculated that fine sand on the shelf edge of Britain would 

be moved at a depth of 183 m 20 percent of the year. Sternberg and 

Larsen (1976) found that relatively frequent grain motion occurs at the 

-75-m depth on the Washington shelf. 

In addition, computations of bed-load transport by Madsen and Grant 

(1976) have shown that for conditions with 1.5-m, 13-sec waves, bed load 

was entrained to a depth of -16 m. 
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Storm/Fair-Weather Sediment Transport 

Several researchers (Hayes 1967a,c; Murray 1970; Morton 1981; Green 
at al. 1988; Wright et al. 1991) have documented the differences in cross- 

shore inner shelf mechanisms and resulting sediment transport during fair- 

weather and storm conditions (refer to “Significant (Storm) Event 

References” in Appendix B for additional references concerning this 

topic). 

Green at al. (1988) and Wright et al. (1991) in Mid-Atlantic Bight ex- 

periments measured suspended sediment movement, wave heights, and 
mean current flows between the -7-m and -17-m depth contours at Duck, 

NC, in 1985 and 1987 and at Sandbridge,VA, in 1988. The purpose of 

this work was to identify modes, directions, rates, and causes of shore- 

normal sediment flux over the inner shelf in response to different energy 
conditions (Table 3). Field measurements were compared to energetics 

mathematical models of sand transport (Bowen 1980; Bailard 1981; Guza 

and Thornton 1985 a,b; Roelvink and Stive 1989) who compared the con- 

tributions of mean and oscillatory flows, and separated cross-shore compo- 

nents of immersed weight sediment transport into bed load and suspended 
load. 

Table 3 

Summary of Environmental Conditions at Duck, North Carolina, for 
Different Events (after Wright et al. (1991)) 

Parameter 

Post-Hurricane 
Fair Weather 

August, 1991 

Summer 
Fair Weather 

July, 1987 

Winter 

Swell-Dominated 
January, 1988 

Extra-Tropical 
Storm 

-_—— 

Bed roughness 

Depth of 
instrumentation 

Current speed 

Wave height 

Wave period 

Wave/current 

angle 

Large ripples, 
biogenic activity 

Ripples on 
mounds and holes 

Small ripples, 
irregular 

October, 1991 

Highly mobile 
plane bed 

9.0-16.5 cm/sec 10.6-13.0 cm/sec 

7m im 

2.0-49.5 cm/sec 4.0-13.6 cm/sec 

0.29-0.40 m 0.9-1.4m 1.0->4.0m 

7.0 sec 9.7-12.9 sec 9.0-14.0 sec 

45°-75° 26°-34° 29°-66° 36°-85° 

Fair-weather sediment transport 

In documenting fair-weather processes, Green et al. (1988) and Wright 

et al. (1991) examined data collected at the -8-m and -17-m depths during 

two data collection periods at Duck (1985 and 1987). Green et al. (1988) 

and Wright et al. (1991) found that although tides and oscillatory wave 

motion strongly influence both onshore and offshore sediment transport 
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processes, mean cross-shore flows were of greatest importance. There ex- 

isted no relation between bed stress by instantaneous cross-shore velocity 

and suspended sediment concentration. The mean cross-shore flow re- 

versed with the tide. During high tide, weak offshore flows occurred, 

while during low tides stronger onshore flows resulted. Bed load and sus- 
pended load quantities were nearly equivalent. 

In fair-weather conditions, Wright et al. (1991) found that cross-shore 

flows differed according to depth. Overall, flows at the -8-m depth tended 

to be more energetic and had greater sediment transport rates by an order 

of magnitude. At a depth of -8 m, suspended sediment transport, which 

was dominated by mean cross-shore flows, was predominantly offshore. 

However, these flows reversed direction more often than those at a depth 

of -17 m. Conversely, at a depth of -17 m, a slight landward flow from 

mean flow and oscillatory currents resulted. 

Larsen (1982) stated that offshore sediment transport on the shelf is a 

slow but steady seaward motion of resuspended sediments. This contra- 

dicted the conclusions of other researchers (e.g. Wright et al. 1991) who 

stated that offshore sediment transport on the shelf occurred during a few 
events with a strong offshore component. The time required to establish 

steady flow conditions is approximately a tidal cycle offshore, but de- 
creases to several hours at shallower depth at the inner shelf due to 
friction. 

Moderate energy sediment transport 

Moderate energy processes, and related sediment transport, as studied 

at Sandbridge, VA, in 1988, were dominated primarily by mean flows, inci- 
dent wave orbitals, and tidal currents (Wright et al. 1991). The dominant 

flow was oriented onshore (which may be a function of tidal currents and 

upwelling from west winds during the study period). As in fair-weather 

processes, there was little relationship between suspended sediment trans- 

port and bed stress during moderate energy conditions. Suspended sedi- 

ment concentration, which at times equaled 1.5 kg/m?, varied considerably 

over the period. Tidal variation also occurred, as it did during fair- 

weather processes. However, in deference to fair-weather process peri- 

ods, weak onshore currents occurred during higher tides. 

Swell-dominated processes 

Swell-dominated processes, as measured at Duck, North Carolina, in 

1988 (during wave conditions of H, of 0.85-1.4 m and periods of 

10-14 sec), resulted in overall onshore flow (Wright et al. 1991). How- 

ever, many flow reversals occurred due to constant weak offshore-directed 

cross-shore mean flows, which opposed high-frequency landward-directed 

wave-induced oscillatory flows. These wave orbital velocities (maximum 

of 0.5 m/sec) were the main source of bed shear stress. 
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Overall, during swell-dominated conditions, the bed was strongly agi- 

tated at all times (suspended sediment concentration exceeded 1.0 kg/m?). 

Findings indicated that the suspended sediment load is dominant over bed 

load, and was directed onshore due to the landward-oriented incident 

wave orbital motion. 

Storm-dominated processes 

Storm-dominated processes were measured during a ‘northeaster’ storm 

at Duck, North Carolina, in 1985 (storm surge of 0.6 m; wave heights of 

1-1.4 m, wave periods averaging 8 sec)(Wright et al. 1991). Sediment 

transport prior to the storm was bidirectional but was net offshore during 

the storm and was greater than that of fair-weather and moderate proc- 

esses by an order of one to two magnitudes. This net offshore transport of 

sediment occurred due to onshore winds, the resulting 0.6-m rise in mean 

water level, and associated downwelling and offshore-directed bottom 

mean flows. However, this offshore sediment transport is much less than 

alongshore transport of sediment. 

During storm-dominated processes, suspended sediment concentrations 

averaged above 1.0 kg/m? throughout the study and were up to 4.0 kg/m? 
associated with wave orbital velocities up to 1.0 m/sec (Wright et al. 

1991). During the height of the storm, suspended sediment concentrations 
were 4,000 mg/l at 14 cm above the bed; 1,400 mg/l at 34 cm above the 

bed; and 200mg/l at 106 cm above the bed. Although there was a relation- 

ship between suspended sediment concentration and wave orbital velocity, 

there was no relationship between suspended sediment concentration and 

bed shear stress. The effect of the bed shear stresses on the bed (in order 

of occurrence) included: 

a. Negligible changes in bed level response to the initial impulses of the 
storm including wind, mean and oscillatory currents, and suspended 

sediment concentration maxima. 

b. Gradual, but significant, scour of the bed of 5 cm during the storm 

phase that followed the initial impulse. 

c. Initiation of accretion of the bed during the second and stronger peak 

of the storm. 

d. Rapid accretion of the bed (15 cm) during the waning phases of the 

storm (this accretion, the authors note, may be a migrating bed form 

or offshore pulse-like migration of sediment). 

These bed level changes are believed to be associated with high-energy 

wind waves, which cause mixing and mobility of the upper sediment col- 
umn thus causing offshore-oriented sediment exchanges (Wright et al. 

1991). 
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Hayes (1967c) studied Hurricanes Carla and Cindy in the Gulf of Mex- 

ico to examine the direct effects of storm processes and sediment trans- 

port. They recorded cross-shelf thicknesses and textures of Hurricane 
Carla beds to a depth of -35 m off Padre Island, Texas, along 50 km of 

coast. Hayes (1967c) documented that sediment was transferred between 

the beach and the inner shelf in both the onshore and offshore directions. 

Before and during Hurricane Carla, mollusk shells, coral blocks, and other 

materials were transported onshore from water depths between 15 m and 
25 m and deposited on the beach. Storm surge seaward-directed turbidity 

currents carried the sediment offshore. After the storm passed, offshore- 

directed currents associated with hurricane-generated channels deposited 

a 1.25-cm to 3.75-cm layer of sand over preexisting mud out to depths of 

-18 m. In addition, a graded layer of fine sand silt and clay (known as a 

turbidite) was deposited. 

Summary 

Green et al. (1988) document sediment transport changes according to 

different phases of the storm. During fair-weather conditions, although 
the waves were asymmetric in an onshore direction, the reversing tidal cur- 

rents and resulting mean flow controlled inner shelf sediment transport. 
During the early phase of the storm, sediment transport was controlled by 

wind-driven jet-like flow (mean flow) with an offshore component. Dur- 

ing the progression and towards the end of the storm, the waves were 
more organized and highly skewed in a onshore direction, thus enabling 

the highly skewed wave-orbital velocities to transport sediment in an on- 
shore direction against the mean flow. Storm flow was dominated by sus- 

pended load, which accounted for 75 percent of the sediment volume. 

In summarizing the findings of Green et al. (1988) and Wright et al. 

(1991), mean flows, interpreted to be related to tides, were dominant over 

incident waves in generating cross-shore sediment fluxes across the inner 

shelf. Cross-shore mean flows during fair-weather conditions were negli- 
gible, while these flows were greater than 20 cm/sec during storm condi- 

tions. Oscillatory flows associated with waves were 10 cm/sec and 

100 cm/sec during fair-weather and storm conditions, respectively. Sus- 
pended sediment concentrations 10 cm above the bed were less than 

0.1 kg/m? and 1-2 kg/m? during fair-weather and storm conditions, 
respectively. 

Storm Sedimentation Models 

Modeling of storm sedimentation is limited to the models of Dott and 
Bourgeois (1982); Walker (1984); Brenchley (1985); Duke (1985); and 

Duke, Arnott, and Cheel (1991), who base their models on the following 

parameters: 
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a. Textures in modern storm sediments. 

b. Geostrophic flow concepts. 

c. Results of flume experiments. 

d. Inferred storm-generated structures within ancient sandstones to 

construct cross-shelf facies sequences dependent upon water depth, 
sediment availability, and storm parameters such as return 

frequency and strength. 

Keen and Slingerland (1993a) note that while these models represent an 

important conceptual advance, they are qualitative and have not been 

tested against oceanographic data collected for that purpose, or compared 

to results of numerical experiments. 

Keen and Slingerland (1993b) have constructed a three-dimensional nu- 

merical prediction model to hindcast the oceanographic and sedimen- 

tologic responses of the western Gulf of Mexico to four historical tropical 

cyclones. 

The simulations of the numerical model by Keen and Slingerland 

(1993b) indicate that: 

a. Onshore flow to the right of the storm track generally transports fine 

sediment landward. 

b. Offshore flow to the left of the storm track transports coarser 

sediments seaward. 

c. A right-to-left (facing the coast) alongshore flow transports finer 

sediment in deep water and coarser sediment in shallower water. 

The models of Keen and Slingerland (1993a,b) suggest that coastal geome- 

try is the controlling factor in determining sedimentation patterns, while 
in situ sediments are the main source of sediments to the inner shelf. 

Along the coast in front of each storm, the volume of sediment transported 
obliquely in a cross-shore direction is a function of the shelf gradient and 

coastal configuration. Steeper gradients constrain flow to a more long- 

shore pattern. Concave coastlines promote greater shoreface erosion be- 

cause of increased setup. 
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4 Sedimentary Features/ 
Stratigraphy of the Inner 
Shelf 

Introduction 

Mechanisms of cross-shore sediment transport on the inner shelf 

greatly affect sedimentary features including morphological signatures 
such as surficial bed forms, and stratigraphy (internal structure) of the in- 
ner shelf. The first studies of inner shelf sedimentary features and strati- 

graphy characteristics were those of Agassiz (1888), Grabau (1913), and 

Johnson (1919). Johnson (1919), who developed the first model of conti- 

nental shelf sedimentary characteristics, stated that: 

a. The shelf is a system in dynamic equilibrium both in terms of slope 

and grain parameters. 

b. Given a nearshore sediment source, grain size decreases in an 

offshore direction due to decreasing wave energy. 

Shepard (1932) stated that the shelf was composed of a mosaic of sedi- 

ment sizes and types rather than a uniform seaward-fining trend in grain 
size. He suggested that these sediments were deposited during periods of 

lower sea level, particularly during the Pleistocene Epoch. Emery (1952, 
1968) presented a classification of shelf sediments on a genetic basis con- 
sidering the following types of materials: 

a. Authigenic, or formed or generated in place (e.g. glauconite or 
phosphorite). 

b. Organic, or relating to a compound containing carbon as an essential 

component (e.g. foraminifera, shells). 

c. Residual, or relating to an accumulation of rock debris formed by 
weathering which remains in place (e.g. residual clay). 
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d. Relict, or remnant from an earlier environment such as a beach or 

dune. 

e. Detrital material, or presently supplied from rivers, coastal erosion, 

and eolian or glacial activity. 

Emery (1952) stated that in most coastal environments, the nearshore zone 

is composed of modern detrital sediments, while the shelf is composed of 

relict sands. 

Curray (1964) stated that stratigraphy of the continental shelf is a func- 

tion of the following: 

a. Fluctuations in sea level. 

b. Rate of sediment input to the continental shelf. 

c. Sediment grain size and mineralogy. 

d. Rate of energy input. 

e. Rate of relative sea level change. 

f. Continental shelf slope. 

Curray (1964) found that the onshore (transgression)/offshore (regression) 

migration of the shoreline, and subsequent sediment dispersal and rate of 

net deposition/erosion of sediment on the continental shelf are functions 
of the rate of sea level rise (subsidence of the land) or sea level fall (emer- 

gence of the land) (Figure 9). Migrations of the shoreline and deposition 
of sediment on the continental shelf are important in understanding the pa- 

leogeography, sources, environments, and deposition mechanisms of 

sediments. 

Examples of Inner Shelf Sedimentary Features 

There exist a wide range of sedimentary features on the inner shelf 

ranging in scale from linear shoals (also known as ridge and swale topog- 

raphy) (hundreds of meters) to individual bed forms (centimeters to 

meters). 

Large-scale sedimentary features 

The large-scale sedimentary morphology of the middle Atlantic Bight 
was first extensively documented during the Inner Continental Shelf Sedi- 

ment and Structure Program (ICONS) undertaken by the U.S. Army Corps 
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Figure 9. Relationship between rate of net sediment deposition/erosion and rate of sea 
level rise/fall (after Curray (1964)) 

of Engineers in the mid-1960s. This program was undertaken to accom- 

plish the following: 

a. Identify continental shelf sand bodies for beach nourishment 

purposes. 

b. Garner a greater understanding of shelf sedimentation as it pertains 

to the supply of sand for beaches. 

c. Increase understanding of changes in coastal and shelf morphology, 

longshore sediment transport, inlet migration and stabilization, and 

navigation. 

d. Increase understanding of the geologic history of the continental 

shelf. 

Additional studies of the Middle Atlantic Bight of North America include 

Veatch and Smith (1939), Shepard (1963), Emery (1966), Uchupi (1968), 

and Duane et al. (1972). 
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ICONS helped to identify the larger framework of geomorphic sedimen- 
tary features on the Middle Atlantic Bight of North America, including the 
following (Figure 10): 
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Figure 10. Morphology of the Middle Atlantic Bight (after Swift (1975)) 
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a. Broad, flat plateaus. 

b. Fluvial valleys and related deltas excavated during the Quaternary 

Period (from approximately 2 million ybp to the Recent (present) 

Period inclusive of the Pleistocene and Holocene Epochs)(Evernden 

et al. 1964, Pratt and Schlee 1969). 

c. Shoal and retreat massifs (landward migration of deltas during 

transgression [or rising sea level]). 

d. Terraces and scarps. 

e. Cuestas. 

f. Sand ridges. 

Duane et al. (1972) summarized these studies and discussed both inner 

shelf-detached and shelf-attached shoals. Linear northeast-trending inner 
shelf-detached shoals trend from the shoreline at an angle between 5 deg 

and 25 deg, are located in water depths of up to -30 m, measure approxi- 

mately 25 to 500 m in length, have reliefs of up to 10 m, have side slopes 

of a few degrees, and extend for tens of kilometers. These sand bodies are 

composed of well-sorted medium- to coarse-grained sands and are similar 

in lithology to adjacent beaches. In some instances, clusters of shoals 

merge with the shoreline in depths as low as 3 m. 

Inner shelf-attached shoals are shoals that are landward of the wave 

base (about -8 m)(Duane et al. 1972)(although these features are located 

in the nearshore zone, they are not similar in nature to surf zone/nearshore 

bars). These shoals appear to form in response to the interaction of south- 

trending, shore-parallel, wind-generated currents with wave and storm- 

generated bottom currents during winter storms. Aggradation of crests 

occurs during storm waves, while degradation occurs during fair-weather 

waves. These shoals are believed to have formed during lower sea levels 

associated with the Wisconsin stage of glaciation (the most recent and far- 
thest south continental glaciation advancement approximately 21,500 ybp 

to 10,000 ybp during the Pleistocene Epoch) (Evernden et al. 1964, Pratt 

and Schlee 1969). The shoals are modified by present-day coastal proc- 

esses, as they are in equilibrium with shelf processes. If these shoals were 

not in equilibrium with present-day processes, they would erode and 
disappear. 

Field and Roy (1984) also document elongate, shore-parallel shoals on 

the lower inner shelf in southeast Australia. These bodies are 10-30 m 

thick and parallel the coast for 40 km. The upper parts of these sand bod- 
ies are composed of sand transported downslope from the upper inner 

shelf and surf zone. Surface sediments of ridges are well-sorted and 

coarser than surrounding sediments. No seaward fining trend exists. In- 

ternally, beds are parallel to the slope of the inner shelf and there is no evi- 

dence of cross- bedding, thus making it difficult to determine the exact 
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seaward sediment transport mechanisms responsible for the formation of 

these structures. Field and Roy (1984) indicate that the most plausible 

mechanism is the seaward transport of sediment during storm-induced 

downwelling currents. 

Cacchione et al. (1984), in a study associated with the Coastal Ocean 

Dynamics Experiment, have identified three types of sedimentary features 

of the Central California inner shelf up to 2 km from the coast in -65 m of 

water. These included: 

a. Rocky outcrops. 

b. Elongate depressions of low relief on the inner shelf slightly oblique 

or normal to the general trend of the isobaths. These depressions 

contain ripples (heights of 0.40 m; wavelengths of 1.7 m) believed 

to be formed by large-amplitude, long-period winter surface waves. 

c. Smooth areas of no perceptible relief, but covered with well-defined 
wave ripples (heights of 0.02-0.05 m, wavelengths of 0.20-0.30 m). 

The proposed generation mechanism of these features is storm-generated 

bottom currents associated with strong, storm-driven downwelling flows 
during late fall and winter, steered by underwater rock ledges which scour 

the surficial fine-grained sediment and expose the coarser-sand substrate 

in the depressions (Cacchione et al. 1984). 

Small-scale sedimentary features 

Bed form classification. Harms et al. (1975) presented a classification 

of bed forms in which bed form formation is a function of energy (depend- 

ent upon the energy source and water depth), and grain size, where a 

larger grain size effectively reduces the amount of energy affecting the 

bed (Table 4). The hierarchy of bed form formation by increasing energy 

includes ripples, megaripples, and sand waves. Within the ripple classifi- 

cation, a gradation exists from short-crested (0- to 20-cm wavelength), to 

medium-crested (20- to 40-cm wavelength), to large-crested (40- to 60-cm 

wavelength) ripples (Reineck and Singh 1986). Within the megaripple 

classification, a gradation exists from two-dimensional (straight-crested) 

megaripples, to three-dimensional or lunate (sinuous-crested) megarip- 

ples, to flat (plane) beds (Figures 11 and 12). 
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Figure 11. Gradation from two-dimensional to three-dimensional bed forms and flat beds 
with increasing flow strength (after Reineck and Singh (1986)) 

SEEUEEEEEEEEEEEEEEEEEEE 
Table 4 
Hierarchy of Bed Form Formation by Increasing Energy (after 
Harms et al. (1975)) 

Low-energy High-energy 
Sandwaves Sandwaves Parameter Ripples Megaripples 

60 cm-10m >6m >10m 

Relatively large 

Sinuous to highly | Straight to sinuous 
three-dimensional 

Spacing 

Variable Relatively small Very small Height/Spacing 
Ratio 

Geometry Highly variable Straight to sinuous 

Characteristic Low (> 25-30 High (> 70-80 Moderate (> High (> 70-80 
Flow Velocity cm/s, < 40-50 cm/s, < 100-150 | 30-40 cm/s, < cm/s, may be 150 

cm/s) cm/s) 70-80 cm/s) cm/s) 

Velocity Negligible to Negligible to Usually substantial | Small to 
Asymmetry substantial substantial euestental 

= eel 

Formation and movement of inner shelf sedimentary features, primarily 

the smaller scale ripples, are primary methods of inner shelf cross-shore 

sediment transport. These bed forms are formed only during turbulent 
flow conditions (water flow in which the flow lines are confused and het- 

erogeneously mixed (Bates and Jackson 1984). These turbulent condi- 
tions are created by wave and related oscillatory motion, or tide-generated 
currents near the bottom which roll and creep sediment particles along the 

sediment-water interface (Reineck and Singh 1986). As sediment parti- 

cles continue to move from the trough to the crest on both sides, ripples 

eventually form. As velocity increases and greater amounts of sediment 
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Figure 12. Two-dimensional and three-dimensional bed forms. Vortices and flow patterns 

are shown by arrows above the dunes (after Reineck and Singh (1986)) 
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are added to the ridge, ripple height continues to increase with velocity 

until a point where height decreases and length increases. 

Bedding theory. Bedding is defined as the signature of migration of a 

surficial bed form, or a morphologic feature having various systematic pat- 
terns of relief which is created by the conditions of flow at the dynamic 

interface between a body of cohesionless sediment particles and a fluid 

(Davis 1983). Many authors have stated that bed form migration produces 

internal stratigraphic records in subsurface sediments. These records pro- 

vide clues to the processes, magnitudes, and directions of sediment trans- 

port that formed them (Nittrouer and Sternberg 1981, Swift et al. 1983). 

In other words, a specific process with a given magnitude and direction of 

energy will produce a unique subsurface stratigraphic record. The reader 

is referred to Reading (1978), Allen (1982), and Reineck and Singh (1986) 

for comprehensive discussions of stratigraphic signatures of migrating 

sedimentary features. 

Generally, there exist two classes of bedding; horizontal and cross- 

bedding. Horizontal bedding is characterized by parallel beds graded at 

any angle, usually resulting from flat bed sediment migration or the migra- 

tion of sediment where no bed forms occur. 

Cross-bedding, which is the most common type of bedding encoun- 
tered on the inner shelf, is defined as a single layer, or a single sedimenta- 

tion unit, consisting of laminae that are inclined in a direction similar to 
the principal surface of sedimentation. This sedimentation unit is sepa- 

rated from adjacent layers by a surface of erosion, nondeposition, or 

abrupt changes in character. 

Reineck and Singh (1986) indicate that different types of cross-bedding 

result from the migration of different types and sizes of bed forms. Two 
types of cross-bedding shown in Figure 13 include: 

a. Planar cross-bedding - cross-bedding in which bounding surfaces 

form more or less planar surfaces. These units are tabular or 

wedge-shaped. 

b. Trough cross-bedding - cross-bedding in which bounding surfaces 

are curved surfaces and the unit is trough-shaped. 

Clifton (1976) classifies internal sedimentary structures on the inner 

shelf into the following three classes: 

a. Planar parallel laminae (where lamina (singular) is a type of 

bedding defined as the thinnest recognizable layer in a sediment 

differing from other layers (commonly 0.05 to 0.10 mm thick)). 

b. Medium-scale ripple-foreset bedding (a foreset is a type of bedding 

thicker than lamina produced by the deposition of sediment on the 

downcurrent face of a bed form (Bates and Jackson 1984). 
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c. Small-scale ripple-foreset bedding. 

These three classes of bed forms can form from either wave- or tidal- 

generated currents depending on the flow characteristics. 

Planar parallel laminae develop in shallow marine sands by: 

a. Sheet flow caused by the consistent flow of sand over a flat bed 

during high-energy conditions (Davis 1983). 

b. Migration of long-crested ripple forms accompanied by a slow rate of 

sediment accumulation. 

Deepwater sheet flow results from the high energy oscillatory flow of 

large long-period waves (Clifton 1976), and the currents usually associ- 

ated with geostrophic or downwelling currents. Shallow-water sheet flow 

results from intense wave activity close to the shoreline and may show evi- 

dence of shear sorting of particles of different size, density, or shape (less 

velocity is needed to form sheet flow in fine sand than in coarse sand). 

Other sedimentary structures associated with sheet flow include mica lami- 

nae, convex-up Shells, and little to no bioturbation due to wave reworking. 

The second cause of planar parallel laminae is the migration of ripples 

accompanied with a slow rate of sediment accumulation known as slowly 

climbing ripple stratification (or the internal structure formed in noncohe- 
sive material from migration and simultaneous upward growth of long- 

crested ripples). Climbing ripple stratification can be produced by either 

currents or waves (Reineck and Singh 1986) of all periods, but only by 

medium- to long- period waves (8 to 12 sec) in deeper water. The sedi- 

mentary signature of the migration of ripple forms accompanied with a 

slow rate of sediment accumulation includes poorly defined climbing rip- 

ple foresets, shell lag deposits, concave up shells due to their tumbling 

over ripple crests, and bioturbation. 

Medium-scale ripple foreset bedding is characterized by 6-cm-thick 
foreset units in medium to coarse sand, which form due to the migration 

of cuspate (three-dimensional) megaripples or the migration of long- 

crested ripples if a rapid sedimentation rate is present. Lunate megaripple 

migration produces cross-bedding, while long-crested ripple migration pro- 

duces more tabular units (said of the shape of a sedimentary body whose 

width/thickness ratio is greater than 50 to 1, but less than 1,000 to 1). The 

foresets of medium-scale foreset bedding are oriented onshore in the direc- 
tion of wave propagation suggesting the landward transport of sediment 

associated with orbital asymmetry. 

Small-scale ripple foreset bedding is the most common structure near 

the sediment water interface, but has a low preservation potential. This 

type of bedding is characterized by foreset units less than 6 cm thick and 

is produced by the migration of irregular asymmetrical wave ripples (to be 

described in the following section) or by the migration of small-scale 
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ripples during rapid sediment accumulation. Bedding planes dip onshore 
from wave-generated currents, while bedding associated with unidirec- 

tional currents dips either onshore or offshore (Clifton 1976). 

Ripple symmetry. Inner shelf ripples can be symmetrical or asymmet- 

rical. Symmetrical ripples have similar side slopes and are usually pro- 

duced by waves and associated bidirectional currents of near similar 

magnitudes (Reineck and Singh 1986). 

Asymmetrical ripples, or ripples with different side slopes, are formed 

by bidirectional currents of different magnitudes (Reineck and Singh 
1986). These bidirectional currents can be formed by both wave and tidal- 

generated currents. Asymmetrical wave ripples occur especially in the 
surf zone and shallow water under long period low waves, as the oscilla- 

tory flow of water particles tends not to occur in a closed orbit. Net trans- 
port of sediment occurs in the direction of wave propagation. Therefore, 

there is significant unidirectional sediment movement associated with 
asymmetrical wave ripples. Although both asymmetrical wave ripples and 

current ripples have unequal side slopes, asymmetrical ripples bifurcate 

while current ripples do not. Since the formation of bed forms on the 
inner shelf environment is dominated by wave activity, the following dis- 

cussion concerns wave ripples (ripples formed by wave-generated cur- 

rents, also known as oscillation ripples) rather than current ripples 
(ripples formed by tidal-generated currents). 

Sediment movement in symmetrical wave ripples is a function of wave 

orbitals at the water surface, which flatten towards the bottom eventually 
having only horizontal, and not vertical, movement. These ripples are es- 

sentially straight-crested, have pointed crests, rounded troughs and fre- 

quently show bifurcation. The occasional rounding of crests is a result of 

the reworking of ripples as the current field changes characteristics. The 

internal structure of wave symmetrical ripples is characterized by chev- 

rons indicating two directions of transport (chevron bedding slopes away 

from the crest and toward the trough of a ripple at equal angles). A more 

detailed discussion of internal structure characteristics of wave-ripple bed- 
ding can be found in Boersma (1970) and Reineck and Singh (1986). 

Clifton (1976), building on the work of Inman (1957) and Dingler 

(1974), stated that the prediction of symmetrical ripple size, which is gra- 

dational, is based on grain size, orbital velocity, and wave period. Three 

types of symmetrical ripples include (Figure 14): 

a. Orbital ripples, which form under short-period waves and have ratios 

between orbital diameter/grain diameter (d,/D) which are less than 

2,000 (where ripple wavelength is dependent upon the length of 

orbital diameter of the oscillatory current and is independent of 

grain size). 
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Figure 14. Classification of symmetric and reversing ripples based on the ratio of ripple 
length to square root of grain diameter (WD! 3) and ratio of orbital diameter to 
grain diameter (d,/D) (after Clifton (1976)) based on data from Inman (1957) 
and Dingler (1974)) 

b. Suborbital ripples, which form under longer period waves and have 
d,/D ratios between 2,000 and 5,000 (wavelength increases with 
larger grain size but decreases with increasing orbital diameter). 

c. Anorbital ripples, which are associated with waves of very large 

orbital diameter and have d,/D ratios greater than 5,000 
(wavelength depends on grain size and is independent of orbital 

diameter). 

Reversing ripples, which are considered asymmetrical, have do/D ratios 

between 6,500 and 13,000 (Inman 1957). 

In comparing symmetrical and asymmetrical wave ripple size, Clifton 

(1976) states that symmetrical wave ripples form where maximum bottom 

orbital velocity is less than 1 cm/sec, while asymmetrical wave ripples 

form when maximum bottom orbital velocity is greater than 5 cm/sec. 
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Symmetrical wave ripples, which tend to form in deeper water, do not mi- 

grate and thus produce no stratigraphic record. Asymmetrical wave rip- 

ples tend to form in shallow water. In addition, symmetrical wave ripples 

have a poorer preservation potential than asymmetrical ripples, as asym- 

metrical wave ripples migrate. Komar (1974) indicates that ripple spacing 

of symmetrical wave ripples increases landward under short-period waves 

but decreases landward under longer-period waves. 

Reineck and Singh (1986) discuss the formation of ripples as a function 

of water depth and wave period. For wave periods of 2-4 sec, ripples 

form out to a water depth of -25 m. Symmetrical suborbital ripples are 

the dominant ripple type for these periods. No asymmetrical ripples form 

and there exists a limited occurrence of flat beds. For wave periods of 
5-8 sec, ripples form out to a water depth of -100 m and are dominated by 

suborbital symmetrical ripples with some anorbital ripples forming at 

higher velocities in fine- to medium-grained sand. Flat beds form under 

large wave conditions except in coarse sand. For wave periods of 10 to 

15 sec, ripples form to a water depth of -300 m. In deep water, symmetri- 

cal suborbital ripples form in coarse sand while anorbital ripples form in 

fine sand. It is possible that lunate ripples and flat beds form in medium 

to coarse sand at higher velocities. Reineck and Singh (1986) also note 

that maximum velocity, velocity asymmetry, and grain size increase in a 

landward direction. 

Wave-formed sedimentary structures. Clifton (1976) presents a 

model concerning the origin and interrelationship of wave-formed sedi- 

mentary structures. Data collected from southern Oregon (high energy), 

southeast Spain (relatively low energy) and Willapa Bay, Washington (low 

energy), and previously collected data from Komar and Miller (1973, 

1974), Komar (1974) and Dingler (1974) form the basis for this concep- 

tual model. The processes responsible for these structures include: 

a. Wave parameters including height, period, maximum bottom orbital 

velocity, and change in maximum bottom orbital velocity. 

b. Fluid factors (density,viscosity). 

c. Flow factors (existing mean currents). 

d. Bottom configuration factors (water depth over all and local slope). 

e. Sediment factors (grain size diameter, sorting, density, and shape). 

f. Oscillatory currents just above the boundary layer. 

g. Length of oscillatory water movement. 

h. Velocity asymmetry of oscillatory currents. 
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Arnott and Southard (1990), in a collinear oscillatory and combined 

flow water tunnel with a wide range of component speeds and an oscilla- 

tion period of 8.5 sec, have produced stability fields for wave-generated 

bed forms in very fine sand. Figure 15 shows that different types of bed 

forms and resulting internal stratigraphy are formed according to different 
wave oscillatory speeds, which are greater closer to shore and reduce in 
an offshore direction. 
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Figure 15. Stability fields for bed forms produced in very fine sand in collinear 
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combined-flow water tunnel. Velocities were measured at 0.10 m above the 
bed. Note that “2D” considers a two-dimensional (straight-crested, which is 
usually representative of low energy conditions) bed form, while “3D” 
considers a three-dimensional (sinuous-crested, usually representative of 
high energy conditions) bed form (from Arnott and Southard (1990)) 
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Inner Shelf Stratigraphy 

Cross-shore stratigraphic sequences 

Numerous authors (see Appendix B, “Sedimentary Features and Strati- 

graphy References”) have identified cross-shore sequences of sedimentary 
structures and resulting stratigraphy. Clifton (1976) documents the follow- 

ing typical sequence of sedimentary structures for the Oregon coast inner 
shelf resulting from wave-induced oscillatory flow (Figure 16), beginning 

offshore and moving landward: 

a. Inactive zone. 

b. Active asymmetric ripples. 

c. Long-crested asymmetric ripples. 

d. Irregular asymmetric ripples. 

e. Asymmetric cross-ripples. 

f. Megaripples. 

g. Flat bed. 

Similar sequences were also found in Australia by Boyd (1981). 

Land ——= 

—=— Symmetric Asymmetric 

Active Long—Crested reg! Cross—Rippies Lunate Megeripples Fist Beds 

| 

Figure 16. Cross-shore sequence of structures commonly found off the coast of southern 
Oregon (after Clifton (1976)) 
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Howard and Reineck (1972) defined a cross-shore sequence of internal 

stratigraphic structures. In addition to a seaward-fining sediment grain 

size trend, they found that physical sedimentary structures decrease and 

biogenic structures increase in a seaward direction due to increasing depth 

and position of the wave base. Howard and Reineck (1981) also examine 

and describe the primary physical sedimentary structures and compare a 

high-energy sequence at Port Hueneme, California, with a low energy, 

tide-dominated sequence at Sapelo Island, Georgia. 

Howard and Reineck (1981) describe three facies associated with the 

Port Hueneme, California, beach-to-offshore depositional stratigraphic se- 

quence. This sequence includes nearshore, transition, and offshore facies. 

The nearshore facies (+3.0-m to -9.0-m water depth)(inclusive of the fore- 

shore facies from +3.0 m to 0.0 m, and the inner shelf (shoreface) facies 

from 0.0 to -9.0 m) is composed primarily of parallel and cross-bedded ho- 

mogeneous sand, and small-scale wave ripple laminae, while bioturbation 

is only locally significant. Rounded rock-fragment pebbles are present 
both individually and as layers in the foreshore and more commonly in the 

swash zone. Alternating layers of coarse and fine sand are locally present. 

Heavy minerals are abundant throughout and enhance the expression of 

physical sedimentary structures. 

In sections of parallel laminated sand in the nearshore facies, the dip is 

very low (3 deg) and therefore dip directions cannot be specified from 

cores. Individual laminae pinch out at erosional contracts suggesting that 

these are wedged-shaped laminae sets. Thickness of individual parallel 

sets varies from | to 12 mm, with their average thickness being 1-2 mm. 

Cross-bedded sand is characterized by sets 10 to 30 cm thick with individ- 

ual laminae up to 2 cm thick. This sedimentary structure is found only in 

the nearshore facies, and within this facies, increases with decreasing 

water depth. Cross-bedding is most abundant in the vicinity of the mean 

low water line and is commonly associated with coarse sand, and alternat- 

ing sets of coarse and fine sand. Small-scale wave ripple laminae are re- 
stricted mainly to the nearshore facies. Ripples are present on the bottom, 

but were not preserved in cores. Bioturbation was practically nonexistent 

out to a water depth of -6.3 m as wave activity dominated the sedimentary 

sequence. Sand dollars were present in water depths from -6.5 to -8.7 m. 

No shells or shell fragments were found in the nearshore facies (Howard 
and Reineck 1981). 

The transition facies (-9.3-m to -18.7-m water depth) is a zone of fine 

sand and silty sand characterized by an increase in biogenic over physical 

structures that are commonly preserved as laminated-to-burrowed beds. 

This laminated- to-burrowed bed sequence is also described by Howard 

(1972), Howard and Reineck (1972), Golding and Bridges (1973), and 

Bourgeois (1980). Howard and Reineck (1981) state that wave-ripple bed- 

ding and parallel laminae are important structures in this facies. Hum- 

mocky cross-stratification laminae are defined as laminae which are both 

concave up (swales) and convex up (hummocks), possess many undulating 
erosion surfaces, and dip into the swales at angles of approximately 
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15 deg (to be described in detail in the next section). Hummocky cross- 
stratification laminae are probably the most persistent physical sedimen- 

tary structure in this facies, with small-scale oscillation-ripple laminae 
second in abundance. Cross-bedding, pebbles, and heavy-mineral laminae 

are not present. This facies contains stratigraphic structures of both the 

offshore and nearshore zones. The cross-shore transition. between bio- 
genic and physical structures indicates fluctuation of wave energy. The 

onshore limit of this area is most likely normal wave base, while the off- 
shore limit is storm wave base. No shells or shell fragments were present 

in this facies (Howard and Reineck 1981). 

In the offshore facies at Port Hueneme (> -18-m water depth), the pri- 

mary texture is sandy silt and bioturbation is the dominant sedimentary 
structure (Howard and Reineck 1981). Energy decreases with increasing 

water depth, which results in increasing amounts of biogenic activity and 
a fining of grain size in an offshore direction. Biogenic processes affect 

up to 90-100 percent of this facies due to the following: 

a. Slow rates of sedimentation. 

b. Brief storm events. 

c. Long periods of relative quiescence. 

Remnant parallel laminae are the only physical sedimentary structures pre- 

sent. Shells and shell fragments are abundant. Direct or indirect effects 

of storms are rare. 

In comparing the stratigraphy of the inner shelf off Port Hueneme, Cali- 

fornia, and Sapelo Island, Georgia, Howard and Reineck (1981) found sev- 

eral differences in the sedimentary sequences resulting from different 

wave characteristics (as the tidal range for the two areas is similar). A 

major difference between sedimentary sequences at the two sites was the 

water depth at which facies boundaries occur. At the Port Hueneme, Cali- 

fornia, site, the foreshore-inner shelf boundary is distinct as the parallel 

laminated sand of the foreshore facies is replaced by large-scale cross- 

bedding, and small-scale ripple laminae of the inner shelf facies. At the 

Sapelo Island, Georgia site, a distinction between the foreshore/inner shelf 

boundary could not be made because the parallel laminated sand of the 

foreshore facies continues as the dominant sedimentary structure well into 

the upper inner shelf facies. 

Thickness of the inner shelf facies was also different between the two 
sites. At Sapelo Island, the inner shelf is 250 m wide and 2 m thick. The 

upper inner shelf is characterized by parallel laminated sand, and the 
lower inner shelf is characterized by small-scale ripple laminae. In con- 

trast, the Port Hueneme inner shelf is 300 m wide and 9 m thick. Large- 

scale cross- bedding as well as parallel laminated sand and small-scale 

ripple laminae occur on this inner shelf. 

Chapter 4 Sedimentary Features/Stratigraphy of the Inner Shelf 
Sif 



58 

Additional differences between the two sites include the transition 
zone, which is between the -2.0- and -5.0-m water depths at Sapelo Island, 

and between the -9.3 and -18.7-m depths at Port Hueneme. Offshore 

facies are characterized by the presence of palimpsest sediments, defined 

as reworked sediments of the continental shelf, and occur seaward of 
-5.0 m at the Sapelo Island site, and seaward of -18.7 m at the Port Hue- 
neme site. In addition, storm units (parallel laminated to burrowed beds, 

separated by erosional contacts) are more clearly developed at the Port 
Hueneme site sequence. 

In a study of Topsail Island, North Carolina, Schwartz, Hobson, and 

Musialowski (1981) collected data supporting the subdivision of the inner 

shelf into upper, middle, and lower inner shelf zones. These zones corre- 

spond to the inner shelf, transition zone, and offshore facies attributed to 

the Sapelo Island, Georgia, coast site by Howard and Reineck (1981). 

Each zone is related to a particular set of nearshore processes and result- 

ing stratigraphical characteristics. The upper inner shelf is dominated by 
surf conditions (including longshore currents) and maximum wave shoal- 

ing effects just prior to breaking. The approximate water depth range of 

the upper inner shelf is estimated to be between 0.0 m and -2.0 m based 
on sedimentary structures, sediment grain size characteristics, and 

changes in profile shape). Stratigraphically, the upper inner shelf is char- 

acterized by subhorizontal laminae and very low-angle, thinly laminated 

units, and by local occurrences of inverse textural grading. 

The middle inner shelf (approximate water depth from -2.0 to -4.0 m), 

is dominated by relatively strong shoaling effects and coastal currents that 

produce significant downward scour and sediment transport during storm 
events. This facies is dominated by subhorizontal laminae, trough cross- 

bedding, low-angle foreset laminae, and minor bioturbation structures. 

The lower inner shelf, (water depth from -4.0 m to -6.5 m), is slightly to 

moderately affected by fair-weather waves, is stratigraphically dominated 

by subhorizontal to low-angle laminar bedding, small-scale trough or rip- 

ple bedding, and has moderate to locally abundant bioturbation. Nor- 

mally, graded beds, although sometimes poorly defined, occur throughout 

the inner shelf. 

Storm-related stratigraphy 

Numerous authors have identified storms as controlling sedimentation 

and stratigraphy of the inner shelf (Appendix B, “Significant (Storm) 
Event References”). Smith and Hopkins (1972) state that erosion of the 

continental shelf by severe storms ranges from a few millimeters to centi- 

meters; sediment is transported off the continental shelf into deeper 

water. Smith and Hopkins (1972) suggest that deposits are layered, and 

perhaps graded by storms as sands are covered by silt that settles out in 

suspension after the storms. 
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Storm-influenced bedding 

Types of storm-influenced bedding include the following: 

a. Hummocky cross-stratification - defined as laminae which are both 

concave up (swales) and convex up (hummocks), possessing many 

undulating erosion surfaces, and dip into the swales at angles of 

approximately 15 deg (Brenchley 1985, 1989). The laminae are 

oriented 360 deg, indicating that current orientation fluctuates over 

an entire 360-deg circle. The beds, which thin over hummocks and 

thicken over swales, appear similar when viewed from two faces 

perpendicular to one another. Therefore, three-dimensional views 

are required to correctly identify hummocky cross-stratification 

(Brenchley 1985, 1989). 

b. Beds of laminated silt, usually only a few centimeters thick at most, 

which fine upwards. 

c. Beds similar in nature to turbidites (where turbidites are defined as a 

bedding sequence formed by a turbidity current or a bottom-flowing 

current laden with suspended sediment and possessing a density 

greater than that of the water which moves slowly down a 

subaqueous slope (Bates and Jackson 1984)). These beds show 

graded, parallel laminae or ripple drift lamination, commonly 

formed below the wave base. 

Hummocky cross-stratification, also known as truncated wave ripple lami- 

nae (Campbell 1966, 1971), is of utmost importance in the study of storm 

deposits on inner shelf sedimentation/stratigraphy patterns. Studies con- 

cerned with this subject include Campbell (1966, 1971), Harms (1975), 

Hamblin and Walker (1979), Bourgeois (1980), Allen (1982), Dott and 

Bourgeois (1982), Swift et al. (1983), Walker, Duke, and Leckie (1983), 

Brenchley (1985, 1989), Duke (1985, 1987, 1990), Greenwood and Sher- 

man (1984), Klein and Marsaglia (1987), Nottvedt and Kreisa (1987), 

Swift and Nummedal (1987), Arnott and Southard (1990), Higgs (1990), 

Southard and Boguchwal (1990), and Duke, Arnott, and Cheel (1991). 

Hummocky cross-stratification requires an increase in seaward sedi- 

ment transport, and entrainment and deposition of sand on the continental 

shelf above the wave base by storm-generated currents and waves 

(Brenchley 1985). This bedding is usually formed by accretion as laminae 

thicken over crests. However, some hummocky cross-stratification bed- 
ding is produced by erosion when sediment is eroded from the hummocks 

and is deposited and thickens in the swales. Brenchley (1985) questions 

whether wave oscillatory currents or a combination of wave oscillatory 

and unidirectional currents are needed to produce hummocky 

cross-stratification. 
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Arnott and Southard (1990) state that meter-scale, isotropic hummocky 

cross-stratification is likely formed by large three-dimensional symmetri- 

cal wave ripples produced by purely oscillatory flows and very strongly 

oscillatory-dominant combined flows of storm waves. They documented 
that the sedimentary response of the inner shelf from pure oscillatory flow 

at low speeds was small symmetrical vortex ripples. At higher current ve- 

locities large, three-dimensional, round-crested bed forms with heights to 

20 cm and spacings of decimeters to meters resulted. 

Hummocky cross-stratification varies with distance from shore and 

water depth (Arnott and Southard 1990). As energy decreases in an off- 

shore direction, hummocky cross-stratification laminae tend to be less 

deeply incised and dip at a lower angle. At nearshore locations, there is a 
greater presence of wave ripples, and beds are lenticular (resulting from 

high energy) and tend to erode at the top. At offshore locations where the 

energy is less, the beds become tabular. In addition, wavelength and 

height of hummocks are likely to decrease in an offshore direction. 

Arnott and Southard (1990) found that superimposition of a steady cur- 

rent with oscillatory motion produced significant changes in bed state. 

Even a weak current caused bed forms to become asymmetric and mi- 

grate; most of the combined-flow bed forms contained downstream- 

dipping cross-stratification. Changes in the morphology of the ripples 

were profound as currents increased. Currents of only 1-5 cm/sec, super- 

imposed on oscillatory flows of 40-60 cm/sec, produced downstream- 

dipping low-angle hummocky cross-stratification. For currents exceeding 

13 cm/sec, hummocky cross-stratification occurred and dip angles were 

formed near the angle of response (similar in morphology to high-angle 

hummocky cross-stratification as described by Nottvedt and Kreisa 

(1987). At higher oscillatory speeds (60-80 cm/sec), any non-negligible 

current washed the ripples away, replacing them with a flat bed. How- 

ever, Arnott and Southard (1990) state that a core current exceeding 

95-110 cm/sec is needed to form large ripples exhibiting moderately steep 
internal laminae in very fine sand. 

Examples. Greenwood and Hale (1980), in a study at New Brunswick, 

Canada, using depth of disturbance rods, found that the depth of activity 
at a bar is proportional to storm intensity. The seaward side of the bar 

crest, which had maximum values of bed-level change due to large wave 

heights, asymmetric oscillatory motion, and rip currents, eroded up to 

35 cm. Meanwhile, the trough at the foot of the landward slope eroded up 

to 37 cm due to scour by longshore currents. Accretion of up to 12 cm oc- 
curred on the upper part of the landward slope in response to a decrease in 

wave height due to breaking waves and increased water depth. In addi- 

tion, accretion of up to 21 cm occurred on the upper seaward slope of the 

bar, thus steepening both slopes and producing a seaward displacement of 

the bar crest. Overall, the bar eroded during the storm, and sediment was 

transported in multiple directions through megaripple migration. How- 

ever, net transport of sediment was in an offshore direction. 
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Schwartz, Hobson, and Musialowski (1981) distinguished between fair- 

weather and storm bedding features. They found that storm sequences are 

marked by: 

a. Beds with sharp lower contacts. 

b. Normal textural grading (fining of sediment grain size in an upward 
direction). 

c. Laminae bedding throughout or upward transition from laminated 
bedding at the base to bioturbation in the upper part of the sequence. 

Studies by Curray (1960), Hayes (1967c), and Morton (1981) as re- 

viewed by Nummedal and Snedden (1987) show that fine sand moves off- 

shore from the inner shelf during storms and hurricanes. Nummedal and 

Snedden (1987) summarize that once transported to the continental shelf, 

little sediment is returned by post-storm flow. The primary sediment 

source is the portion of the inner shelf between mlw and the break in slope 

onto the more gently dipping continental shelf. These sediments are rede- 

posited as thin-graded, centimeter-thick, fining-upward, sand bed se- 
quences with sharp erosional bases on an otherwise muddy shelf. 

Hummocky cross-stratification is present. Hayes (1967c), who studied in- 

ner shelf sedimentation caused by Hurricane Carla (September 1961) docu- 

mented that these beds have a sharp upper contact, suggesting that some 

erosion occurred after the Hurricane Carla deposition. The beds have a 

scoured sole-marked base and are floored by a coarse lag of pebbles or 

shell fragments. Hummocky cross-stratification is common. This sug- 
gests that little sand is returned onto the inner shelf and beach from the in- 
ner shelf after a hurricane. 

In measuring bed level changes during a storm, Green et al. (1988) 

noted that bed changes at the -8-m depth included 6 cm of accretion over 
4.5 days of low-energy flow associated with currents as measured with a 
digital sonar altimeter prior to the onset of the storm. During the initial 

phase of the storm, 5 cm of scour was followed by 15 cm of rapid accre- 

tion. This accretion was coincident with the organization of surface 

waves into long-period swell, and maximum accretion was coincident 
with the most highly skewed waves. Onshore sediment transport corre- 

lated strongly with erosion of the bed, and offshore transport with accre- 
tion of the bed. 

Gagan, Chivas, and Herczog (1990) showed that Cyclone Winifred 

(1 February 1986) produced a normally graded, mixed terrigenous- 

carbonate bed sequence 11 cm thick in water depths up to -43 m extending 

30 km offshore. Cross-shelf distribution of organic carbon in the sedi- 
ment indicated that suspended sediment transport was extensive and that 

the storm layer was the result of the following three sources: 

a. Landward transport of reworked, resuspended mid-shelf sediment. 
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b. Resuspension and settling of inner shelf sediment. 

c. Seaward transport of terrigenous sediment in freshwater plumes. 

By taking 15-cm cores, Gagan, Chivas, and Herczog (1990) show that on 
a shelf-wide scale, in the -20- to -40-m water depth, sediment was eroded 

to a depth of 6.9 cm, and in water depth less than -20 m, sediment was 

eroded to a depth of 5.1 cm. Particles finer than medium sand were 

eroded and transported out of the mid shelf. 

Gagan, Chivas, and Herczog (1990) found that at least 10-30 percent of 

inner shelf storm sediment is composed of mid-shelf mud, thus indicating 
the landward movement of fine material. In summary, Gagan, Chivas, and 
Herczog (1990) support other findings that significant storms are capable 

of sporadic but efficient cross-shelf transport of suspended sediment. 

Wright et al. (1991) and others (Swift et al. 1983; Niedoroda, Swift, 

and Hopkins 1985; Niedoroda, Swift, and Thorne 1989) concur with 
Gagan, Chivas, and Herczog (1990) that the inner shelf is dominated by 

storm flows, which produce a fining sequence of grain size in an offshore 
direction, and storm beds including hummocky cross-stratification and 

storm-graded bedding. 

Wright et al. (1991), using a digital sonar altimeter, also documented 

bed-level changes of 15 cm at 8 m due to a ’Northeaster’ storm. This in- 

crease is inferred to be a result of offshore migration of sediment lobes 

possessing abrupt leading edges, which migrate well seaward of the -8-m 
depth contour. These lobes are indicative of energetic cross-shelf advec- 

tion, as opposed to gradual diffusion. 

Wright et al. (1991) documented the response of the bed primarily as a 

result of hydraulic roughness during different weather conditions. Bed re- 

sponse during fair-weather conditions was characterized by pronounced 
wave-induced ripples, low sediment mobility, and high apparent hydraulic 

roughness heights (up to 1 cm). During post-hurricane fair-weather condi- 
tions, the bed was mantled with redeposited fine sediment and exhibited 

subtle ripples surmounting irregular ridges and depressions. This mor- 

phology yielded the lowest hydraulic roughness of all four cases. 

During storm-dominated conditions (wave heights and periods of 3-6 m 
and 10-20 sec, respectively, and near-bottom wind-driven mean currents 

of 0.5 m/s) while there were no ripples, a highly mobile plane bed was pre- 
sent. However, strong wave agitation and a thick wave boundary layer re- 

sulted in an effective hydraulic roughness moderately larger than that of 
the ripple-dominated normal fair-weather case. Skin friction and total bed 

stresses during the storm exceed those of fair-weather conditions by more 

than an order of magnitude. 
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Swell-dominated conditions created the greatest hydraulic roughness of 

all four cases. This was due to the existence of a thick wave boundary 

layer with subtle ripples on a partially armored bed. 

In studies of the ancient geologic rock record, Brenchley (1989) and 

Duke, Arnott, and Cheel (1991) state that hummocky cross-stratification is 

part of a storm bed sequence characterized by an eroded base with a grada- 

tional top, which includes the following activities (from bottom to top of 

the sequence) (Figure 17): 

a. Waves interact with a relatively weak coast-oblique bottom current to 
erode the muddy substrate. Simultaneously, shells and shell hash 

carve tool marks in the mud and are deposited in swales). 

b. Coastal sand, moving as bed and suspended load under combined 
wave and current bottom flow, is eventually transported offshore 

resulting in the formation of horizontal lamination to low-angle 
dipping sand (this also results in basal erosion). 

c. Formation of hummocky cross-stratification due to reworking of the 
bed by storm processes. 

SUBSTRATE 

SHORE—NORMAL 
FLOW SPEED 
NEAR THE BED 

INSTANTANEOUS 

TIME — AVERAGED 

CURRENT 9 COMBINED FLO 
BED RESPONSE app he 

ONSHORE © OFFSHORE 

Figure 17. Probable sequence of events producing hummocky cross-stratification on the 
inner shelf (after Duke, Arnott, and Cheel (1991)) 
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d. As storm processes wane, sand and mud accumulate and are 
deposited as parallel laminae on top as formed under oscillatory- 

dominant combined flow (much of it draping over low-relief 

scours), while megaripples which slowly form and migrate on the 

still-aggrading substrate may initially produce anisotropic 
hummocky cross-stratification (bedding properties are different in 
all directions). Much of the sand is reworked by waves as the 

bottom current subsides, thus resulting in strongly oscillatory- 
dominant combined flow and the formation of isotropic (properties 

are similar in all directions) hummocky cross-stratification. As 

storm wave motions decrease in speed, a reworked mantle of 
draping lamination and vortex ripples is formed. Later, the sand is 

buried by mud and often bioturbated (from Duke, Arnott, and Cheel 

(1991)). 
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5 Summary 

Nummedal and Snedden (1987) state that during storms and post-storm 

recovery, large quantities of sand move in cross-shore directions. Large 
quantities of this sediment may be lost from the beach and from the active 
profile, thus necessitating beach fill. Much is known about nearshore sedi- 

ment movement under shoaling waves (Komar 1976); precise documenta- 

tion of cyclic patterns of surf-zone change (Wright et al. 1979, Nummedal 

and Snedden 1987), and the well-studied effects of rip currents (Cook and 

Gorsline 1972, Wright and Short 1984). 

However, despite undergoing intense study by geologists and engineers 

for over a century, there are still many fundamental, unanswered questions 

about patterns, mechanisms, and rates of beach-shelf sediment inter- 
change. An extensive amount of field work concerning contrasting inner 

shelf environments is needed (particularly data from cross-shore arrays 

which provide simultaneous measurements at different depths of near- 
bottom flows, sediment fluxes, and bed responses). Wright (1987) 

believes that in determining cross-shore inner shelf sediment transport 
processes, attention should be placed on field studies and modeling the 

naturally occurring inner shelf environments. Wright (1987) believes that 

no one model (or concept) effectively describes inner shelf transport. 

Nummedal and Snedden (1987), Wright et al. (1991), and Pilkey (1993) 

contend that existing models of equilibrium profile development and cross- 

shore sediment transport are seriously inadequate. 

Pilkey et al. (1993) contend that present-day assumptions of the profile 

of equilibrium concept indicate the following: 

a. Sediment movement on the inner shelf is an exceedingly complex 

phenomenon driven by a wide range of wave, tidal, and gravity 

currents. 

b. The depth of closure does not exist, as evidence shows that large 

volumes of sand may frequently be moved beyond the depth of 

closure. These large volumes of sediment moved are often spread 

over such a large area that standard profiling methods cannot detect 

this movement. 
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c. The inner shelf is often not sand rich and in some areas is strongly 

influenced by the geological framework. 

d. The profile of equilibrium equation provides an average inner shelf 

profile cross section, but does not accurately predict equilibrium 

profiles at specific inner shelves. 

Present-day models concerning inner shelf cross-shore sediment trans- 
port and based on the profile of equilibrium equation (Pilkey et al. 1993) 

do not adequately describe nearshore sediment transport as they say inner 

shelves can be described and differentiated solely on the basis of sediment 
grain size and a broadly defined wave climate. However, these models do 

represent the most up-to-date estimation of inner shelf cross-shore sedi- 
ment transport and are particularly useful in that they allow an engineer or 

scientist to explore storm impact on a location using a general approxima- 
tion of the profile. 

Many problems must be understood before we can gain a reasonable 
understanding of inner shelf and nearshore equilibria/disequilibria and the 
associated rates of and directions of cross-shore sediment transport 
(Wright et al. 1991). A goal for the coastal engineering community should 

be “to devise a more universal conceptual framework capable of better 

accounting for inner shelf transport, erosion, and deposition in time and 
space” (Wright 1987). Accomplishing this goal would help to do the 
following: 

a. Garner a better understanding of the physical oceanography of the 

inner shelf, including the vertical segregation of flows and 
cross-shelf variations of these flows. 

b. On a morphodynamic perspective, study the bottom boundary layer 

processes that provide the connecting link between hydrodynamics 
and resulting morphologic change via sediment transport. 

c. Study the environmental end members (i.e. other sites) in order to 
create a comprehensive inner shelf morphodynamic model. 

d. Acquire more detailed time series data on near-bottom flow structure, 
sediment fluxes, bedform behavior, and substrate microstratigraphy. 

As their empirical base is expanded, so, too, theory and models 
should be expanded. 

e. More accurately predict ripple geometries and their applicability to 

mixed sediment size distributions and combined waves and currents. 

f. Create more realistic paradigms for shelf-nearshore equilibrium that 

take explicit account of the natural suite of near-bottom flows and 
of the fundamental roles played by time-varying bed 

micromorphology. 
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g. Caution users of any inner shelf models that they must be aware of 
the limitations of the models and of special conditions that may 

exist at their project sites. 

h. Commence an extensive field measurement and modelling effort not 

currently underway in North America (Wright 1987, Pilkey et al. 

1993): 
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Appendix A 
Glossary 

Bedding - the signature of a migration of a surficial bed form. 

Bed form - a morphologic feature having various systematic patterns of 
relief and created by the conditions of flow at the dynamic interface 

between a body of cohesionless sediment particles and a fluid. 

Climbing ripple stratification - The internal structure formed in 

noncohesive material from migration and simultaneous upward growth of 

long-crested ripples. 

Continental shelf - The gently sloping submerged edge of a continent, 
extending from the surf zone seaward to a depth of about i130 m, or the 

edge of the continental slope. The continental shelf is composed of two 

distinct zones, the inner and outer continental shelf. The shelf is 
characterized by an average slope of 0.1 deg. 

Continental shelf break - The seaward edge of the continental shelf 

where the bottom begins to descend at a greater angle as part of the 

continental slope. Average depth of the shelf break is 130 m. 

Continental slope - The submerged edge of a continent extending 

seaward of the continental shelf which is characterized by slopes of 3-6 
deg. 

Cross-bedding - A single layer, or a single sedimentation unit, 
consisting of laminae that are inclined in a direction similar to the 

principal surface of sedimentation. This sedimentation unit is separated 
from adjacent layers by a surface of erosion, nondeposition, or abrupt 
changes in character. 

Depth of closure - The point on the equilibrium profile beyond which 

there is no significant net offshore transport of sand even during storm 

conditions. 
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Equilibrium profile - The long-term profile which the ocean bed is 
assumed to conform to based on a particular wave climate and sediment 

characteristics. 

Foreset - A type of bedding thicker than lamina produced by the 

deposition of sediment on the downcurrent face of a bed form. 

Holocene - The Epoch from approximately 10,000 years before present 

(ybp) to the present, which follows the continental glaciations of the 

Pleistocene Epoch. 

Horizontal bedding - Bedding characterized by parallel beds graded at 

any angle, usually resulting from flat bed sediment migration or the 

migration of sediment where no bed forms occur. 

Hummocky cross stratification - Laminae which are both concave up 

(swales) and convex up (hummocks) possessing many undulating erosion 

surfaces, and dip into the swales at angles of approximately 15 deg. 

Inner shelf (inner continental shelf) - The inner part of the continental 

shelf, also known as the shoreface, extending from the seaward edge of 

the surf zone to the landward edge of outer continental shelf. This zone is 
characterized by a normal, strong agitation of the seafloor bed by waves. 

Slopes of this zone are on the order of 1:200. 

Lamina (pl. laminae) - The thinnest recognizable layer in a sediment or 

sedimentary rock differing from other layers in color, composition, or 

particle size. Commonly 0.05 to 1.00 mm thick. 

Outer continental shelf - The outer continental shelf, the landward limit 

marking the depth of closure, is only periodically agitated by waves. 

Slopes of this zone are on the order of 1:2,000. 

Palimpsest sediments - Reworked sediments of the continental shelf. 

Planar cross-bedding - Cross-bedding in which bounding surfaces 

form more or less planar surfaces. These units are tabular or 

wedge-shaped. 

Pleistocene Epoch - The Epoch characterized by continental 

glaciations at North America from approximately 2 million years to 

10,000 ybp. 

Profile envelope (active) - The range of vertical migration of the 

profile due to coastal processes including waves and currents. 

Quaternary Period - The Period from approximately 2 million ybp io 
the recent (present) inclusive of the Pleistocene and Holocene Epochs). 
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Sheet flow - the consistent flow of sand over a flat bed during high 
energy conditions. 

Shoreface - See inner shelf 

Surf zone - The region characterized by normal and strong agitation of 

the seafloor bed by the borelike translation of waves following wave 

breaking. 

Trough cross-bedding - Cross-bedding in which bounding surfaces are 
curved surfaces and the unit is trough-shaped. 

Turbulent flow conditions - water flow in which the flow lines are 

confused and heterogeneously mixed. 

Wisconsinan Stage - The most recent and farthest south continental 

glaciation advancement from approximately 21,500 ybp to 10,000 ybp 

during the Pleistocene Epoch. 

Appendix A Glossary 
A3 



vives 

Shiva ate 

me Ney 



Appendix B 

Bibliography with Respect to 
Topic 

This appendix is divided into 12 individual reference lists, each of 
which concerns a separate piece of evidence of cross-shore sediment 

transport on the inner shelf. 

Individual topics demonstrating evidence of cross-shore sediment 

transport on the inner shelf include Original Inner Shelf Studies (page 
B1), Sedimentary Features and Stratigraphy (page B2), Significant 

(Storm) Events (page B11), Sediment Transport (page B14), Shelf Coastal 

Processes (page B25), Equilibrium Profile and Profile Adjustment (page 
B31), Depth of Closure (page B35), Field Research Facility (page B36), 

Geological Framework (page B39), Comprehensive Studies (page B42), 
Organic Burrowing (page B43), and Cross-Shore Sediment Transport 

Model Reference Lists ( page B44). 

Original Inner Shelf Study References 

Purpose 

A reference list of some of the original studies concerning cross-shore 

sediment transport on the inner shelf follows (subject matter of studies is 
also noted): 

a. Laboratory Studies 

Beach Erosion Board (1947) - Laboratory study of equilibrium 

beach profiles 

Inman and Bowen (1963) - Sediment transport by waves and currents 

Rector (1954) - Equilibrium beach profiles 

b. Processes/Hydrodynamics 

Arlman, Santema and Svasek (1958) - Movement of bottom 

sediment by currents and waves (with radiometric tracer) 
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Bumpus (1965) - Residual drift along the northwestern United 
States continental shelf bottom waters 

Einstein and Li (1958) - Viscous sublayer along a smooth boundary 

Longuet-Higgins and Stewart (1964) - Radiation stress 

Manohar (1955) - Mechanisms of bottom sediment movement due to 

wave action 

Shepard and Inman (1950) - Nearshore water circulation related to 

bottom topography and wave refraction 

. Equilibrium Beach Profiles 

Bascomb (1951) - Relationship between sand size and beach face 

slope 

Beach Erosion Board (1947) - Laboratory study of equilibrium 
beach profiles 

Bruun (1953) - Forms of equilibrium coasts with a littoral drift 

Dietz (1963) - Wave base, marine equilibrium, and wave built 

terraces 
Eagleson, Glenne, and Dracup (1961) - Equilibrium profiles 

offshore 

Fenneman (1902) - Development of the profile of equilibrium 

Johnson (1959) - Supply and loss of sand to the coast 

Keulegan and Krumbein (1949) - Bottom slope configuration in 
shallow water and relation to geologic processes 

Rector (1954) - Equilibrium beach profiles 

Tanner (1958) - The equilibrium beach 

. Sediment Transport 
Bruun (1962) - Sea level rise as a cause of storm erosion 

Caldwell (1956) - Wave action and sand wave migration off the 

California coast 

Cartwright and Stride (1958) - Sand waves on the near shelf 

Hall and Heron (1950) - Test of nourishment of the shore by 

offshore deposition of sand 
Inman (1953) - Areal and seasonal variation in beach and nearshore 

sands in southern California 
Inman and Risnak (1956) - Changes in sand level on beach and 

shelf in southern California 

Inman (1957) - Wave-generated ripples in nearshore sands 
Shepard (1950) - Beach cycles in southern California 

Shepard and Inman (1951) - Sand movement on the southern 

California shelf 

Vernon (1965) - Shelf sediment transport system 

. Sediments 

Gorsline (1963) - Bottom sediments of the Atlantic shelf and slope 

of the southern United States 

Hayes (1967) - Relation between sediment type and coastal climate 
on the inner shelf 

Shepard (1932) - Sediments of the continental shelves 
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Uchupi (1963) - Sediments on the continental shelf off the eastern 

U.S. coast 

f. General (Comprehensive Texts) 

Johnson (1919). Shore processes and shoreline development 
Sverdrup, Johnson, and Fleming (1942). The oceans, their physics, 

chemistry, and general biology 

Sedimentary Features and Stratigraphy 
References 

Purpose 

A reference list addressing sedimentation patterns and resulting 

stratigraphic record of the inner shelf. This reference list also concerns 

stratigraphic relationships preserved in the ancient rock record. 

Agassiz, A. (1888). “Three cruises of the United States Coast and 

Geodetic Survey Blake, Harvard Collection, Museum of Comparitive 

Zoology Bulletin, 14. 

Allen, J.R. L. (1976). “A model for the interpretation of wave 

ripplemarks using their wavelength textural composition and shape,” 

Journal of the Geological Society of America 136, 673-82. 

. (1982). Sedimentary structures: Their character and 

physical basis. Elsevier, Amsterdam, The Netherlands, Vols | and 2. 

Allen, P. A. (1985). “Hummocky cross-stratification is not produced 

purely under progressive gravity waves,” Nature 313, 562-64. 

Arnott, R. W. C., and Southard, J. B. (1990). “Exploratory flow-duct 

experiments on combined-flow bed configurations, and some 

implications for interpreting storm-event stratification,” Journal of 
Sedimentary Petrology 60, 211-19. 

Ashley, G. M. (1990). “Classification of large-scale subaqueous 

bedforms: A new look at an old problem,” Journal of Sedimentary 

Petrology 60, 160-72. 

Bernard, H. A., Le Blanc, R. J., and Major, C. F. (1962). “Recent and 

Pleistocene geology of southwest Texas,” Houston Geology Society, 

175-224. 
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Bourgeois, J. (1980). “A transgressive shelf sequence exhibiting 

hummocky stratification: The Cape Sebastian sandstone (Upper 

Cretaceous), southwestern Oregon,” Journal of Sedimentary Petrology 
50, 681-702. 

Boersma, J. R. (1970). “Distinguishing features of wave-ripple 

cross-stratification and morphology,” Ph.D. diss., University of Utrecht. 

Brenchley, P. J. (1985). “Storm influenced sandstone beds,” Modern 

Geology 9, 369-96. 

ENON . (1989). “Storm sedimentation,” Geology Today, 133-37. 

Brenchley, P. J., and Newall, G. (1982). “Storm-influenced inner-shelf 

sand lobes in the Caradoc (Ordovician) of Shropshire, England,” 
Journal Sed. Petrology 52, 1257-69. 

Brown, P. J., Ehrlich, R., and Colquhoun, D. J. (1980). “Origin of 
patterns of quartz sand types on the southeastern United States 

continental shelf and implications on contemporary shelf 

sedimentation—Fourier grain shape analysis,” Journal of Sedimentary 
Petrology, Vol 50, pp 1095-1100. 

Cacchione, D. A., Drake, D. A., Grant, W. D., and Tate, G. B. (1984). 

“Rippled scour depressions on the inner Continental Shelf off Central 
California,” Journal of Sedimentary Petrology 54, (4), 1280-91. 

Campbell, C. V. (1966). “Truncated wave-ripple laminae,” Jour. Sed. 
Petrology 36, 825-28. 

Carlson, P. R., Molnia, B. F., Kittelson, S. C., and Hampson, J. C., Jr. 
(1977). “Distribution of bottom sediments on the continental shelf, 

northern Gulf of Alaska,” U.S. Geological Survey Misc. Field Studies 
Map MF-876. 

Cartwright, D. E., and Stride, A. H. (1958). “Large sand waves near the 
edge of the continental shelf,” Nature 181, 41. 

Cheel, R. J. (1991). “Grain fabric in hummocky cross-stratified storm 

beds: Genetic implications,” Journal of Sedimentary Petrology 61, 
69-76. 

Cheel, R. J., and Leckie, D. A. (1992). “Coarse-grained storm beds of 

the Upper Cretaceous Chungo Member (Wapiabi Formation), southern 

Alberta, Canada,” Journal of Sedimentary Petrology 62, (6), 933-45. 

Clifton, H. E. (1969). “Beach lamination: Nature and origin,” Marine 

Geology 7, 553-59. 
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. (1976). “Wave-formed sedimentary structures - a 

conceptual model,” SEPM Special Publication 24 - Beach and 

Nearshore Processes, R. A. Davis and R. L. Ethington, eds., United 

States Geological Survey, Menlo Park, CA. 

Clifton, H. E., and Dingler, J. R. (1984). “Wave-formed structures and 

paleoenvironmental reconstruction,” Marine Geology 60, 165-98. 

Clifton, H. E., Hunter, R. E., and Phillips, R. L. (1971). “Depositional 

structures and processes in the non-barred high-energy nearshore,” 

Journal of Sedimentary Petrology 41, (3), 651-70. 

Davidson-Arnott, R. G. D., and Greenwood, B. (1974). “Bedforms and 

structures associated with bar topography in the shallow-water wave 

environment, Kouchibouguac Bay, New Brunswick, Canada,” Journal 

of Sedimentary Petrology 44, 698-704. 

. (1976). “Facies relationships on a barred coast, 
Kouchibouguac Bay, New Brunswick, Canada.” Beach and nearshore 

sedimentation. Society of Economic Paleontologists and Mineralogists 

Special Publication, R. A. Davis and R. L. Ethington, eds., 24, 149-68. 

Dingler, J. R. (1974). “Wave-formed ripples in nearshore sands,” Ph.D. 

diss., Univ. Calif., San Diego, 136. 

Dingler, J. R., and Inman, D. L. (1977). “Wave-formed ripples in 

nearshore sands.” Proceedings of the 15th Conference on Coastal 

Engineering. Honolulu, HI, 2109-26. 

Dott, R. H., Jr., and Bourgeois, J. (1982). “Hummocky stratification: 
Significance of its variable bedding sequences,” Bulletin of the 

Geological Society of America 93, 663-80. 

Drake, T. G. (1992). “Discrete-particle simulations of bedload 
transport.” EOS: Transactions of the American Geophysical Union. 

73(43), 282. 
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Springer-Verlag, New York, 533-624. 
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Shepard, F.P. 1932. “Sediments of the continental shelves,” Bulletin of 
the Geological Society of America 43, 1017-40. 
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Swift, eds., John Wiley and Sons, New York, 311-50. 
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Geological Association of Canada, Toronto, 141-170. 

Organic Burrowing References 

Purpose 

A reference list addressing organism burrowing and the resulting 

structures, and the effect of burrowing on stratigraphy. 

Bellis, V. (1979). “Benthic communities in North Carolina coastal 

waters.” Ocean outfall wastewater disposal feasibility and planning. 

Institute for Coastal and Marine Sciences, East Carolina University, 

Report No. 5, 114-26. 

Berger, W.H., and Heath, G.R. (1968). “Vertical mixing in pelagic 
sediments,” Journal of Marine Research 26, 134-43. 

Fager, E.W. (1964). “Marine sediments: Effects of a tube building 
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Golding, R., and Bridges, P. (1973). “Sublittoral sheet sandstones,” 

Journal of Sedimentary Petrology 43, 736-47. 
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Hill, G.W. and Hunter, R.E. (1976). “Interaction of biological and 

geological processes in the beach and nearshore environments, 

northern Padre Island, Texas.” Beach and nearshore sedimentation. 
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Cross-Shore Sediment Transport Model 
References 

Purpose 

A reference list addressing numerical and physical models concerning 
cross-shore sediment transport. 

Capobianco, M., DeVriend, H.J., Nicholls, R.J., and Stive, M.J.F. (1993). 

“Behavior-oriented models applied to long term profile evolution.” 

Large scale coastal behavior ’93. U.S. Geological Survey Open File 

Report 93-381, 21-24. 

Clarke, T.L., Swift, D.J.P., and Young, R.A. (1982). “A numerical model 
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Geology 4, 117-29. 
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Davies, A.G., Soulsby, R.L., and King, H.L. (1988). “A numerical model 

of the combined wave and current bottom boundary layer,” Journal of 

Geophysical Research 93, 491-508. 
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ed., CRC Press, Boca Raton, FL, 151-166. 

Galt, J.A. (1971). “A numerical investigation of pressure induced storm 
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1, 82-91. 

Hanson, H., and Kraus, N.C. (1989). “GENESIS: Generalized model for 

simulating shoreline change,” Technical Report CERC-89-19, U.S. 
Army Engineer Waterways Experiment Station, Vicksburg, MS. 

Keen, T.R., and Slingerland, R.L. “A numerical study of sediment 
transport and event bed genesis during Tropical Storm Delia,” Journal 

of Geophysical Research, in press. 
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Appendix C 
Bibliography with Respect to 
Topic and Location 

General References 

References in this appendix concern studies performed along the 
following coastlines: 

North American Pacific 

Bernard, Le Blanc, and Major (1962) 

Bruun (1954) - California 

Cacchione et al. (1984) - California 

Cacchione (1987) - California 

Cacchione et al. (1987) -- Northern California 

Caldwell (1956) - California 

Clifton (1976) - Oregon 

Clifton, Hunter, and Phillips (1971) - Oregon 
Dingler (1974) - California 

Dingler and Inman (1977) - California 

Drake, Kolpack, and Fischer (1972) - California 

Drake, Cacchione, and Karl (1985) - California 

Greenwood and Mittler (1984) - Canada 

Gross, Morse, and Barnes (1969) - Washington, Oregon 

Halpern (1976) - Oregon 

Howard and Reineck (1981) - California 

Hunter, Clifton and Phillips (1979) - Oregon 

Inman (1953) - California 

Inman (1957) - California 

Inman and Risnak (1956) - California (La Jolla) 

Inman, Swift, and Duane (1973) - Washington 

Kachel (1980) - Washington 

Komar, Neudeck, and Kulm (1972) - Oregon 

Komar and Miller (1975) - Oregon 

Korgen, Bodvarsson, and Kulm (1970) - Oregon 

Appendix C Bibliography with Respect - Topic & Location 



C2 

Larsen (1982) - Washington 

Miller and Komar (1980) - Oregon 

Nittrouer and Sternberg (1981) - Washington 

Pilkey et al. (1972) - Oregon 

Seymour (1983) - California (Scripps, Torrey Pines, Santa Barbara) 

Seymour (1986) - California (Scripps, Torrey Pines) 

Shepard (1950) - California 

Shepard and Inman (1951) - California (La Jolla) 

Smith and Hopkins (1972) - Washington, Oregon 

Sternberg (1972) - Washington 
Sternberg and McManus (1972) - Washington 

Sternberg and Larsen (1976) - Washington 

U.S. Department of Commerce (1984) - California 

Vernon (1965) - California 

North American Atlantic 

Beardsley, Butman (1974) - New England 

Birkemeier (1985a) - North Carolina (Duck) 

Birkemeier (1985b) - North Carolina (Duck) 

Birkemeier et al. (1989) - North Carolina (Duck) 

Birkemeier et al. (1991) - South Carolina 

Bowen (1980) - Canada 

Brown, Ehrlich, and Colquhoun (1980) - Southeast Atlantic Coast 

Bumpus (1965) 

Butman and Folger (1979) - Mid-Atlantic Coast 

Butman, Noble, and Folger (1977) - Mid-Atlantic Coast 

Crowson (1980) - North Carolina 

Crowson et al. (1988) - North Carolina (Duck) 

Davidson-Armott and Greenwood (1974) - Canada (New Brunswick) 

Davidson-Armott and Greenwood (1976) - Canada (New Brunswick) 

Davidson-Arnott and McDonald (1989) - Canada 

Dean (1977) - Southeast Atlantic Coast 

Duane et al. (1972) 

Eames (1983) - North Carolina 

Figueiredo et al. (1981) 

Figueiredo, Sanders, and Swift (1982) - Central Atlantic Coast 

Fleming and De Wall (1982) 

Gadd, Lavelle, and Swift (1978) - New York 

Gorsline (1963) - Atlantic Coast 

Green et al. (1988) - North Carolina (Duck) 

Greenwood and Mittler (1984) - Canada 

Greenwood and Hale (1980) - Canada (New Brunswick) 

Greenwood and Osborne (1991) - Canada (New Brunswick) 

Hall and Herron (1950) - New Jersey 

Hayden et al. (1975) 

Hine and Riggs (1986) - North Carolina 

Howard and Reineck (1972) - Georgia 

Howard and Reineck (1981) - Georgia 
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Howd and Birkemeier (1987) 

Kraus, Gingerich, and Rosati (1989) - North Carolina (Duck) 

Lavelle et al. (1978) - New York 

Leffler et al. (1992) 

Liu and Zarillo (1987) - New York 

Ludwick (1977) - Virginia 

Luternauer and Pilkey (1967) - North Carolina 

Madsen et al. (1993) - North Carolina (Duck) 

Mason et al. (1984) - North Carolina (Duck) 

Mason et al. (1984) - North Carolina (Duck) 

McClennen (1973) - New Jersey 

Meisburger and Judge (1989) - North Carolina (Duck) 

Niedoroda and Swift (1981) - New York 

Osborne and Greenwood (1992) - Canada (Nova Scotia) 

Pearson and Riggs (1981) - North Carolina 

Pilkey (1968) - Southeast Atlantic Coast 

Pilkey and Field (1972) - Southeast Atlantic Coast 

Reineck and Enos (1968) - Florida 

Riggs (1979) - North Carolina 

Riggs (1991) - North Carolina 
Riggs and O’Connor (1974) - North Carolina 

Riggs et al.. (1986) - North Carolina 

Sallenger, Holman, and Birkemeier (1985) 
Schmittle (1982) 

Schwartz, Hobson and Musialowski (1981) - North Carolina (Topsail 

Island) 

Schwing, Kjerfve, and Sneed (1983) - South Carolina 
Shipp (1984) - New York 

Seymour (1983) - Virginia (Virginia Beach) 

Snyder, Hine, and Riggs (1982) - North Carolina 
Snyder and Riggs (1989) - North Carolina 

Snyder et al. (1991) - North Carolina 

Snyder et al. (1993) - North Carolina 

Snyder, Hoffman, and Riggs (in press) - North Carolina 

Stauble (1992) - North Carolina (Duck) 

Stauble, Garcia, and Kraus (1993) - Maryland 

Stefansson, Atkinson, and Bumpus (1971) - North Carolina 

Stubblefield, Permenter, and Swift (1977) - New York 

Swift and Freeland (1978) - Mid-Atlantic Coast 

Swift, Freeland, and Young (1979) - Mid-Atlantic Coast 

Swift, Thorne, and Oertel (1986) - Mid-Atlantic Coast 

Swift et al. (1981) - New York, Maryland, Massachusetts (Nantucket) 

Swift, Thorne, and Oertel (1986) 

Swift, Han, and Vincent (1986) - Mid-Atlantic Coast 

Twichell (1983) - Massachusetts (Georges Bank) 

Vaughn et al. (1987) - North Carolina 

Vincent (1986) - Mid-Atlantic Coast 

Vincent, Swift, and Hillard (1981) - New York 

Vincent, Young, and Swift (1982) - New York 

Vincent, Young, and Swift (1983) - New York 

C3 
Appendix C Bibliography with Respect - Topic & Location 



C4 

Windom and Gross (1989) - Southeast Atlantic Coast 

Uchupix (1963) - Mid-Atlantic Coast 

Wright et al. (1986) 

Wright et al. (1991) - North Carolina (Duck) 

Wright (1993) - North Carolina (Duck) 

United States Gulf of Mexico 

Bernard, LeBlanc, and Major (1962) - Texas 

Brooks (1983) - Texas 

Dean (1977) - Eastern Gulf Coast 

Dupre (1985) - Texas 

Forristall, Hamilton, and Cardone (1977) 

Gorsline (1963) 

Hayes (1967a) - Texas 

Hayes (1967b) - Texas 

Hayes (1967c) - Texas 

Hayden et al.. (1975) 

Hill and Hunter (1976) - Texas 

Keen and Slingerland (1993a) - Texas 

Keen and Slingerland (1993b) - Texas 

Morton (1981) - Texas, Louisiana 

Morton (1988) 

Morton and Winker (1979) - Texas 

Murray (1970) - Mississippi 

Nummedal and Snedden (1987) - Texas 

Smith (1977) 
Snedden, Nummedal, and Amos (1988) - Texas 

North Sea 

Aagaard (1988) 

Arlman, Santema, and Svasek (1958) 

Bruun (1954) 

Morton (1981) 

Reineck and Singh (1971) 

Swift et al. (1981) 

Winkelmolen and Veenstra (1980) 

North American Great Lakes 

Engstrom (1974) - Lake Superior 

Hands (1979) 

Hands (1980) 

Hands (1981) 

Hands (1983) 

Hands (1984) 
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Greenwood and Sherman (1984) - Lake Huron 

Greenwood and Osborne (1991) - Georgian Bay 

Osborne and Greenwood (1992) - Lake Huron 

Stockberger and Woods (1990) 

Other Locations 

Beydoun (1976) - Eastern Mediterranean Sea 
Boon and Green (1989) - Caribbean 

Boyd (1981) - Southeast Australia 

Channon and Hamilton (1976) - Southwest England 

Clifton (1976) - Southeast Spain 

Cowell et al. (1983) - Southeast Australia 

Field et al. (1981) - Bering Sea 

Field and Roy (1984) - Southeast Australia 

Figueiredo, Sanders, and Swift (1982) - Brazil 

Flemming (1980) - South Africa 

Gagan, Chivas, and Herczag (1990) - Southeast Australia 

Gao and Collins (1992) - China 

Hino, Yamashita, and Yoneyama (1981) - Japan 

Hunter, Thor, and Swisher (1982) - Bering Sea 

Jago and Borusseau (1981) - France 

Kuo, Su, and Liu (1980) - Japan 

Kuo et al. (1987) - Japan 

Pae and Iwagaki (1985) - Japan 

Roy and Stephens (1980) - Southeast Australia 

Short (1984) 

Wells and James (1981) - South America 

Sediment Transport Mechanisms References 

These references concern the inner-shelf mechanisms (processes) 

which result in cross-shore sediment transport. Complete citations can be 
found in the Coastal Processes reference list in Appendix B. 

North American Pacific 

Cacchione (1987) - California 

Gross, Morse, and Barnes (1969) - Washington, Oregon 

Halpern (1976) - Oregon 

Korgen, Bodvarsson, and Kulm (1970) - Oregon 

Seymour (1986) - California (Torrey Pines, Scripps) 
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North American Atlantic 

Bumpus (1965) - Atlantic Coast 

Butman and Folger (1979) - Mid-Atlantic Coast 

Beardsley, Butman (1974) - New England 

Birkemeier et al. (1989) - North Carolina (Duck) 

Crowson et al. (1988 - North Carolina (Duck) 

Davidson-Arnott and McDonald (1989) - Canada 

Harris, R.L. (1954) - New Jersey 

Lavelle et al. (1978) - New York 

Madsen et al. (1993) - North Carolina (Duck) 

Mason et al. (1984) - North Carolina (Duck) 

Niedoroda and Swift (1981) - New York 

Osborne and Greenwood (1992a) - Canada (Nova Scotia) 

Schwing, Kjerfve, and Sneed (1983) - South Carolina 

Seymour (1986) - Virginia (Virginia Beach) 

Stefansson, Atkinson, and Bumpus (1971) - North Carolina 

Swift, Han, and Vincent (1986) - Mid-Atlantic Coast 

Vincent (1986) - Mid-Atlantic Coast 

Williams (1976) - New York 

Windom and Gross - Southern Atlantic Coast 

United States Gulf of Mexico 

Forristall, Hamilton, and Cardone (1977) 

Hands (1983) 

Hands (1991) - Alabama 

Murray, 1970 - Mississippi 

Smith (1977) 

Snedden, Nummedal, and Amos (1988) - Texas 

Williams and Meisburger (1987) -New York 

North American Great Lakes 

Greenwood and Sherman (1984) - Lake Huron 

Osborne and Greenwood (1992b) - Lake Huron 

Other Locations 

Wells and James (1981) - South America 
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Cross-Shore Sediment Transport References 

A reference list documenting references which give evidence of 
cross-shore sediment transport on the inner shelf (shelf-beach sediment 

exchange) is divided by regional area as follows: (The reference list 
entitled “Sediment Transport” in Appendix B addresses additional inner 

shelf sediment references.) 

North American Pacific 

Cacchione et al. (1987) - North Carolina 

Caldwell (1956) - California (Anaheim) 

Drake, Kolpack, and Fischer (1972) - California 

Drake, Cacchione, and Karl (1985) - California 

Inman (1953) - California (La Jolla) 

Inman (1957) - California 

Inman and Risnak (1956) - California (La Jolla) 

Inman, Swift, and Duane (1973) - Washington 

Kachel (1980) - Washington 

Larsen (1982) - Washington 

Osborne and Yeh (1991) - California 

Osborne, Yeh, and Lu (1991) - California 

Pilkey and Field (1972) - Southeast United States 

Shepard (1950) - California 

Shepard and Inman (1951) - California (La Jolla) 

Smith and Hopkins (1972) - Washington, Oregon 
Sternberg (1972) - Washington 
Sternberg and McManus (1972) - Washington 

Sternberg and Larsen (1976) - Washington 
U.S. Department of Commerce (1984) - California; Nearshore Sediment 

Transport Study 

Vernon (1965) - California 

North American Atlantic 

Bowen (1980) - Canada 

Butman, Noble, and Folger (1977) - Mid-Atlantic Coast 

Figueiredo, Sanders, and Swift (1982) - Central Atlantic Coast 

Gadd, Lavelle, and Swift (1978) - New York 

Green et al. (1988) - North Carolina (Duck) 

Greenwood and Mitiler (1984) - Canada 

Hall and Herron (1950) - New Jersey 
Hubbard (1992) - U.S. Virgin Islands 
Kraus, Gingerich, and Rosati (1989) - North Carolina (Duck) 

Ludwick (1977) - Virginia 
McClennen (1973) - New Jersey 

Pearson and Riggs (1981) - North Carolina 
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Pilkey (1968) - Southeast Atlantic United States 

Pilkey and Field (1972) - Southeast Atlantic United States 

Reineck and Enos (1968) - Florida 

Richmond and Sallenger (1985) - North Carolina 

Stauble (1992) - North Carolina (Duck) 

Stauble, Garcia, and Kraus (1993) - Maryland 

Stubblefield, Permenter, and Swift (1977) - New York 

Swift et al. (1981) - New York, Maryland, Massachusetts (Nantucket) 

Swift, Thorne, and Oertel (1986) 

Twichell (1983) - Georges Bank 

Wright et al. (1986) 

Wright et al. (1991) - North Carolina (Duck) 

Vincent, Swift, and Hillard (1981) - New York 

Vincent, Young, and Swift (1982) - New York 

Vincent, Young, and Swift (1983) - New York 

Williams (1976) - New York 

Williams and Meisburger (1987) - New York 

Windo, and Gross (1989) - Southeast Atlantic Coast 

United States Gulf of Mexico 

Bernard, LeBlanc, and Major (1962) - Texas 

Brooks (1983) - Texas 

Dupre (1985) - Texas 

Hayes (1967a) - Texas 

Hayes (1967b) - Texas 

Hayes (1967c) - Texas 

Hill and Hunter (1976) - Texas 

Keen, T.R., and Slingerland, R.L. (1993a) - Texas 

Keen, T.R., and Slingerland, R.L. (1993b) - Texas 

Morton (1981) - Texas, Louisiana 

Morton (1988) 

Snedden, Nummedal, Amos, (1988) - Texas 

North American Great Lakes 

Osborne, P.D., and Greenwood, B. 1992 - Lake Huron 

North Sea 

Aagaard (1988) 

Arlman, Santema, and Svasek (1958) 

Morton (1981) 

Swift et al. (1981) 

Winkelmolen and Veenstra (1980) 

Appendix C Bibliography with Respect - Topic & Location 



Other Locations 

Beydoun (1976) - Eastern Mediterranean Sea 

Boyd (1981) - Southeast Australia 

Channon and Hamilton (1976) - Southwest England 

Cowell et al. (1983) - Southeast Australia 

Figueiredo, Sanders, and Swift (1982) - Brazil 

Gagan, Chivas, and Herczag (1990) - Southeast Australia 
Gao and Collins (1992) - China 

Hino, Yamashita, and Yoneyama (1981) - Japan 

Jago and Borusseau (1981) - France 

Kuo, Su, and Liu (1980) - Japan 

Kuo et al. (1987) - Japan 

Pae and Iwagaki (1985) - Japan 

Roy and Stephens (1980) - Southeast Austraiia 

Sedimentation/Stratigraphy References 

Numerous studies are concerned with stratigraphy and sedimentology 

of the nearshore shelf. A lot of these studies are from coastlines with 
different wave, tide, and morphologic settings. References concerning the 

sedimentation/stratigraphic characteristics of onshore-offshore sediment 

transport are broken down by region (The sedimentation/stratigraphy 
reference list of Appendix B contains additional references related to this 

subject.): 

North American Pacific 

Bernard, Le Blanc, and Major (1962) 

Cacchione et al. (1984) - California 

Clifton (1976) - Washington, Oregon 
Clifton, Hunter, and Phillips (1971) - Oregon 
Dingler (1974) - California 

Dingler and Inman (1977) - California 

Greenwood and Mittler (1984) - Canada 

Harms, Southard, and Walker (1982) - California 

Harms, Southard, and Walker (1982) - Oregon 

Howard and Reineck (1981) - Canada 

Hunter, Clifton, and Phillips (1979) - Oregon 
Inman (1957) - California 

Komar, Neudeck, and Kulm (1972) - Oregon 

Komar and Miller (1975) 

Miller and Komar (1980) 

Nittrouer and Sternberg (1981) - Washington 

Pilkey et al. (1972) - Oregon 
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North American Atlantic 

Brown, Ehrlich, and Colquhoun (1980) - Southeast Atlantic Coast 

Davidson-Arnott and Greenwood (1974) - New Brunswick, California 

Davidson-Arnott and Greenwood (1976) - New Brunswick, California 

Duane et al. (1972) 

Eames (1983) - North Carolina 

Figueiredo et al. (1981) 

Figueiredo, Sanders, and Swift (1982) 

Green et al. (1988) - North Carolina (Duck) 

Harms, Southard, and Walker (1982) - Georgia 

Howard and Reineck (1972) 

Gorsline (1963) - Eastern United States 

Greenwood and Hale (1980) - New Brunswick, California 

Greenwood and Osborne (1991) - New Brunswick, California 

Howard and Reineck (1972) - Georgia 

Howard and Reineck (1981) - Georgia 

Luternauer and Pilkey (1967) - North Carolina 

McBride and Moslow (1991) 

Mearns, Hine, and Riggs (1988) - North Carolina 
Meisburger and Judge (1989) - North Carolina (Duck) 

Meisburger and Williams (1987) - North Carolina 

Riggs (1979) - North Carolina 

Riggs and O’Connor (1974) - North Carolina 

Schmittle (1982) 

Schwartz, Hobson, and Musialowski (1981) - North Carolina (Topsail 

Beach) 

Shipp (1984) - New York 

Snyder, Hoffman and Riggs (in press) - North Carolina 

Snyder et al. (1993) - North Carolina 

Stubblefeld, Paramenter, and Swift (1977) 

Swift and Freeland (1978) - Mid-Atlantic Coast 

Swift, Freeland, and Young (1979) - Mid-Atlantic Coast 

Swift, Thorne, and Oertel (1986) - Mid-Atlantic Coast 

Uchupi (1963) - Eastern United States 

Uchupi (1968) - Eastern United States 

Uchupi (1970) - Eastern United States 

Wright et al. (1991) - North Carolina (Duck) 

Wright (1993) - North Carolina (Duck) 

United States Gulf of Mexico 

Gorsline (1963) - Southern United States 

Hill and Hunter (1976) 

Morton and Winker (1979) - Texas 

Nummedal and Snedden (1987) - Texas 
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North Sea 

Aagaard (1988) 

Reineck and Singh (1971) 

Harms, Southard, and Walker (1982) 

Other Locations 

Clifton (1976) - Southeast Spain 

Engstrom (1974) - Lake Superior 

Field et al. (1981) - Bering Sea 

Field and Roy (1984) - SE Australia 
Figueiredo, Sanders, and Swift (1982) - Brazil 

Flemming (1980) - South Africa 

Greenwood and Osborne (1991) - Georgian Bay 
Harms, Southard, and Walker (1982) - South Africa 

Hunter, Thor, and Swisher (1982) - Bering Sea 

Short (1984) - Australia 
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