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LIVE-LOAD STRESSES

ARTICLE I.

INFLUENCE LINES. DEFINITION AND USES.

INFLUENCE lines are useful in determining the position

of live load on a bridge to produce maximum effect. They
offer also a convenient method of deriving general alge-

braic formulas for stresses and rules for maximum when
the general relations between influence lines and algebraic

formulas are once understood; and in the case of the more

complex problems of skew bridges, arches, cantilever bridges,

etc., the influence lines themselves serve as a most direct

method for the determination of the maximum live-load

stresses.

An influence line may be defined as a line showing the

variation in any function caused by a single unit load as

it moves across the bridge. Vertical loads only will be

considered. The function may be a reaction, bending

moment, shear, stress, deflection, or any quantity what-

soever at a given part of a bridge, provided that its value

is a function of the position of the unit load on the bridge.

Refer to Fig. la. Consider the span AB, and let Z be

any function at the fixed position C on the span L. If

the load unity moves across the span AB and the value

of Z be calculated for each position of the unit load and

its value z plotted below the corresponding position of this

load as an ordinate from a horizontal base line, the locus

of the plotted points will be the influence line for Z. For

example, if Z be the bending moment at the fixed section

C in a beam of span L, the influence line will be as shown

in Fig. Ib. In plotting influence lines, ordinates repre-

l
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senting positive quantities are plotted above the base line;

and negative, below. In case the influence line consists of

several straight segments, it is necessary to determine the

value of the ordinates only where the influence line has a

change of direction; i.e., at the salient points. For example,

FIG 1.

the points A, C, and B are the salient points of the influence

line in Fig. Ib.

The value of Z caused by a single load w is equal to

wz, if z is the influence ordinate below w. The value of Z
caused by a series of loads w^ wZj w3 , etc., is

. . (1)
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where Zi, z2 ,
z3 , etc., are the influence ordinates below the

corresponding loads. It will be convenient to speak of such

a quantity as wz as an ordinate-load product.

Formula (1) therefore may be expressed thus:

Z = Sum of ordinate-load products.

The area between the influence line and the base line

is called the influence area. It may be shown that the

value of Z caused by a uniform load on the bridge is pro-

portional to the area A z of the influence line between the

ordinates at the extremities of the uniform load. If the

uniform load in Fig. la has an intensity of q per unit of

length, the load in the length dx equals q dx, and the influ-

ence of this elementary load on the value of Z is zq dx,

where z is the influence ordinate below q dx. Summing up
for the length of the uniform load,

z =

If a series of equal loads w is on the span, the value of

Zis
Z = zwz = w2z ........ (3)

If a series of unequal loads, w\, w2 , etc., is multiplied by
the corresponding ordinates of an influence line or a por-

tion of an influence line which has a constant ordinate z,

as in Fig. Ic, the value of Z is

Z = z(wi + w2 +...)= zSw = zW (4)

where W equals the sum of these loads.

If a series of unequal loads is multiplied by the corre-

sponding ordinates of an influence line or a portion of an

influence line consisting of two diverging lines, as shown

in Fig. Id, the value of Z, or the sum of the ordinate load

products, and the rate at which Z varies as the loading

advances, are given by the two theorems that follow. The

slope of a line is defined at the beginning of Art. 2.
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Theorem I.

The sum of the ordinate-load products between two di-

verging lines equals the difference between the slopes of

the two lines multiplied by the sum of the moments of

the loads about the intersection of these lines.

In symbols, this is stated as

Z = CaMa V ....... (5)

*

Theorem II.

The rate at which the sum of the -ordinate-load prod-

ucts between the two diverging lines increases as the load-

ing moves away from the intersection of these lines equals

the difference between the slopes of the two lines multiplied

by the sum of the loads.

In symbols, this is stated as

dZ = CJU_ C M, (ga)dx dx dx

The proofs of these theorems follow in the next article.



-. ARTICLE II.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS
BETWEEN THE TWO DIVERGING LINES.

CONSIDER the diverging lines DAB and AC in Fig. 2.

Use the following notation:

w = any vertical load.

z = ordinate below w in the angle BAC.
Z = 2wnzn

= sum of ordinate-load products.

Salient Point

FIG. 2.

Ma = 2wnxn = moment sum of all loads to left of Aa

about A.

Wa
= 2wn

= load sum of all loads to left of A a.

SR = slope of line DA = tangent of angle which DA
makes with the horizontal.
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SL = slope of line AC = tangent of angle which AC
makes with the horizontal.

Ca
=

(SL SR)
= length of ordinate unit distance

xn
from A.

Slopes are counted numerically positive when upward
to the left. The sign of Ca (called the coefficient at salient

point A) is, accordingly, negative when AC diverges below

DA produced to the left of A. The value of Ca may be

determined graphically as -- or it may be figured algebra-xn

ically as (SL SR).

Proof of Theorem I, or that Z = CaMa .

Consider the load wn distant xn from the salient point a.

By the similar triangles AEF and AGH,

Ca

1.00 Xn
9

Therefore,

wnzn = Cawnxn (A)

Summing up all of the ordinate-load products,

Z = 2wnzn = Ca2wnxn = CaMa (5)

Proof of Theorem II, or that
-^

= CaWa .

From equation (A) above, the increase in the ordinate-

load product wnzn for an advance dxn of the load is

wndzn = Ca-wn-dxn .

Summing up the increases of all the ordinate-load products
and noting that dx is the same for all loads,

dZ = 2wndzn = Cadx-2wn = Ca-Wa-dx.

Dividing by dx, -r- = CaWa
= |



ARTICLE III.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS

FOR ANY INFLUENCE LINE. POSITION OF LOADING FOR

MAXIMUM LIVE-LOAD STRESS.

AN influence line of a general type is shown in Fig. 3,

this one in
t particular being for the member U^L* of the

Salient

Internals

C)rflinates

Slopes

Coefficients

Influence Line for U 3 L4
of

189' Three Hinged Arch

Moment Sums

t-f T-

FIG. 3.

arch shown in Fig. 15. It is assumed that the ordinates at

all salient points and the intervals between these points are

known. Ordinates and slopes are counted positive or nega-
tive as already defined. The slope of any segment of the

7
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influence line equals the ordinate at the left minus the

ordinate at the right end of this segment divided by the

corresponding interval. The coefficient C at any salient

point equals the slope of the segment at the left minus the

slope of the segment at the right of this point. The sub-

tractions in each case are made algebraically.

It should be remembered, as has already been pointed
out in Art. 2, that the value of any coefficient C may also

be measured graphically from an influence line which has

been drawn to scale. For example, in Fig. 3 the value of

the coefficient C2
= and C4

= -

Xi X4

The algebraic calculation of the coefficients at all sa-

lient points of the influence line in Fig. 3 is given below.

If it be assumed that this influence line has been drawn
to scale, the signs of the numerical values of the slopes and
coefficients will be as given in the parentheses.

i
= -*2 (+) Ci = -

*, (-)

S2
= "~7~

*

( ) C2
= Si S 2 (+ )

4
= S3

- S 4

Cs = s 4
- (+)

A numerical evaluation of the slopes and coefficients for

this influence line is given in Fig. 15 of Art. 8, which the

reader should check in order to understand completely the

method of procedure. These coefficients should also be

checked by the graphical method as already explained.

2 59
For example, in Fig. 15 the value of C2

= -~- = .0863.

It will be noted in the algebraic calculation of the coeffi-

cients C at all salient points that each slope enters once
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as positive and once as negative. Therefore the sum of all

coefficients equals zero.

SC = ..... ..... (6)

This formula serves as a check on the values of the coef-

ficients which have been determined either by calculation

or by graphical measurement.

The general formulas for the sum of the ordinate-load

products for any influence line (viz., with several salient

points such as the one shown in Fig. 3) may be arrived

at by considering the two contiguous sloping sides of the

influence line meeting at each salient point as two diverg-

ing lines. The entire influence line is thus made up of pairs

of diverging lines (see Fig.- 3) to each pair of which for-

mula (5) may be directly applied. Thus in Fig. 3,

Ordinate-load products in \dfc
= CiMi ( )

"
[c0e

= C2M2 (+)
"

\eha = C3M3 (-)
" = CM, (+)

(+)

The signs of the CM's are + or according to the

signs of the coefficients, for the M's are always positive.

Summing up the above equations and observing that the

ordinate-load products cancel one another except between the

influence line fghkm and its base line fom, it follows that

the sum of the ordinate-load products for the influence

line, or the live-load stress, is

S = dM^ + C2MZ + . . .
= ZCM. .... (7)

The letter S represents in general any stress or sum of

ordinate-load products for any influence line, while Z stands

for the sum of ordinate-load products for any geometrical

figure.

The rate at which S varies as the load advances a dis-

tance dx equals
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dS
,---

-j

-----h
c c a#

But by formula (5a) this becomes

= dTFi + C2TF2 + . . .
= SCT7. ;,v.. (8)

Wi, W2 , etc.,
= sum of all of the loads to the left of

points 1, 2, etc., respectively, whether on the span or not.

Mi, Mz, etc.,
= moment of the same loads about points

1, 2, etc., respectively, whether on the span or not.

The above formulas (6), (7), and (8) apply equally well

when the loading is headed from left to right instead of

from right to left, the latter being the more usual way.
In applying these formulas, however, it will save confu-

sion not to reverse the loading, but to turn the influence

line end for end, for this operation changes neither the

values nor the signs of the coefficients C.

The stress S 2CM is related to its derivative - -- =
ax

2CTP in the same way that any function is related to its

i Q

derivative. Thus, if the value of
-j-

passes through zero as

the loading advances, the stress itself may have reached

any one of four conditions; namely,

1. Numerically maximum positive value.

2.
" minimum " "

3.
" maximum negative

"

4. minimum

In practice it is desirable to find the positions of load-

ing to satisfy the first and third conditions. This may be

done by proceeding as directed below. It is assumed in

stating the following rules that the live load is advancing
from right to left. In case the live load advances from

left to right, the wheel will be tried first to the left and
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then to the right of a salient point. In other words, dx

is always an increment in the same direction as the loading

advances.

Rule 1. To determine the position of loading to give

a maximum positive stress, place the live load on the part

of the bridge corresponding to the positive portion of the

influence line. Try a wheel first immediately to the right

of a salient point that has a negative coefficient and then

just to the left of this point. Calculate the value of -7- =
ctx

I,CW for each of these successive positions of loading. If

j &

the sign of -7- changes from + to
,
a position of load-

ed

ing for maximum positive stress is determined.

Rule 2. To determine the position of loading to give

a numerically maximum negative stress, place the live load

on that part of the bridge corresponding to the negative

portion of the influence line. Try a wheel first immedi-

ately to the right of a salient point that has a positive coef-

ficient and then just to the left of this point. Calculate
7Q

the value of -5
= 2CTF for each of these successive posi-

tions of loading. If the sign of -r- changes from to +,

a position of loading for numerically maximum negative
stress is determined.

It will be noted that the negative coefficients C occur

at those salient points where the angles of the influence

line point upward, while the positive coefficients C occur

at those salient points where the angles point downward.

It is unnecessary to seek a position of loading for maxi-

mum positive stress by placing a wheel successively to the

right and to the left of any salient point which has a posi-

tive coefficient; for if ^ = 2(7TF be + when the wheel is

to the right of this point, it would have a still larger +
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value when the wheel is to the left of the point. A change,
TO

therefore, of -7- from + to would not result. Similarly,

it may be shown to be unnecessary to seek a numerically
maximum negative stress by trying wheels at any salient

point which has a negative coefficient.

Formulas (7) and (8) are the general formulas for the

solution of the sum of the ordinate-load products of an

influence line and the rate of change of this sum, and are

applicable to any form of influence line. They give at once

a definite solution of the position of a set of loads produc-

ing maximum positive and negative stresses in any member
of any truss or girder for which an influence line can be

drawn and the values of such stresses. The method is

particularly advantageous in the case of statically indeter-

minate structures, such as two-hinged and no-hinged arches,

swing bridges, continuous girders, etc., where general ana-

lytical criteria for the positions of loads producing maxi-

mum stresses cannot readily be expressed and where such

maximum stresses have had to be found by assuming posi-

tions of loadings and scaling the influence-line ordinates

under all the loads, a laborious process and one open to

much liability of mechanical inaccuracy.

In applying the present method to the simple forms of

girders and trusses (viz., the statically determinate struc-

tures where the ordinates of the influence lines are readily

expressible algebraically) it will generally be more conve-

nient to transform formulas (7) and (8) in each case whereby
the coefficients C may be expressed in terms of the geo-

metric proportions of the truss or girder. This, in the fol-

lowing articles (4 to 7 inclusive), we shall proceed to do for

the case of girder bridges (with and without panels), pier

reactions, and through Pratt trusses with curved or hori-

zontal chords. The general method will, however, be ap-

plied directly to the case of the three-hinged arch in Art.

8, which will serve as a typical example of the application

of the method to any influence line.



ARTICLE IV.

GIRDER BRIDGE WITHOUT PANELS.

IN Fig. 4 is shown a girder bridge without panels. The
live load has advanced beyond the span, this being the

Point (( l

FlG. 4.

most general case. Formulas for the end reactions and for

the bending moment and shear at any section will be

developed.
13
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The influence line for Ri is shown in Fig. 4a. The sum
of the ordinate-load products within the shaded area rst

equals the end reaction Ri, which at the same time is the

end shear at Ri.

From Fig. 4a,

Ordinate-load products in \rst
=

"
(ate

" " " "
[orb

"
brsc.

By using formulas (4) and (5), this equation becomes

R l
= M3

- l M l -W l
=^-Wl . . (9)

Any value of M or W may be read directly from Table

2 for the standard loadings given in Table 1. For example,
in Fig. 4, if h =

10', k =
30', and w l of Cooper's #50 has

advanced 14' beyond the left end of the span, we have

from Table 2,

At 1, 14' from wi, M 1
= 350.0*

1 W1
= 62.50*

At 2, 24' from Wi, M2
= 1150.0 Wz

= 112.50

At 3, 54' from wi, M, = 5435.0 TF3
= 177.50

The formula for R2 is developed as for JBi, the method

of writing the second member of the first equation bein^

abbreviated in a way readily understood. From the influ-

ence line in Fig. 4b, and the formulas (4) and (5),

R2
= Ordinate-load products in (dvxe \ dvf -\- \fue)

Or

R2
= Ws

- Mt + ~M, = W, - M*~ Ml
. (Qa)

The sum of the reactions Ri and R2 as given by (9) and

(9a) equals TF3 W\, or the sum of the loads on the bridge.

From the influence line in Fig. 4c and formulas (5) or

(7), the equation for bending moment may be written:

M = Ordinate-load products in ( | gbh \ gak + \kz
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Or

M = l

j-M, + |jf,
- M, .... (10)

Formula (10) readily follows, likewise, from the general

formula (7), S = C.M, + <72M2 + C3M3
= SCM.

For example, in the case of the bending moment at

point 2 in Fig. 4,

C k ^
1'

L
~
L

~~

C ,.*c s
-
L

-

Whence M = r M, - M2 + 4M3 . (lOa)

Taking the derivative of M with respect to the advance

dx of the loading toward the left or using formula (8)

directly, the rate of variation of the bending moment is

fF. + -TF, .... (11).
. , ...

All positions for maximum M may be found by trying

wheels at point 2 as directed by Rule 1 of Art. 3. In ap-

plying this rule the simultaneous shifting of other wheels

of the rigid loading from right to left of points 1 and 3

as a wheel is shifted from right to left of point 2, must be

taken into account by substituting in formula (11) the

corresponding changed values of Wi and W3 . It is to be

remembered, as stated in Art 3, that it is entirely unnec-

essary to try wheels at points 1 and 3.

From the influence line in Fig. 4d, the formula for the

intermediate shear S follows by applying formulas (4)

and (5) :

S = Ordinate-load products in

(| mfq mden
\ ncq)
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Or

S =
j-M3

- TT. - \M,
= M*

~ Mj - W> . (12)

There is one more thing to be borne in mind in calcula-

ting maximum bending moments in a girder bridge without

panels: it is the rule for finding the section where the

absolute maximum bending moment occurs. The rule is often

spoken of as the "centre of gravity rule" and may be stated

as follows:

The bending moment under any given wheel becomes maxi-

mum when the centre of the span bisects the distance from the

wheel in question to the centre of gravity of the loading on the

span.
In the practical application of this rule, the procedure

is first to find the wheel which gives maximum bending
moment at the centre of the span and then to shift this

wheel so that the bending moment beneath it becomes an

absolute maximum according to the centre of gravity rule.

For the usual standard loadings the maximum centre mo-
ment closely approximates the absolute maximum bending
moment for the spans greater than 70 feet.

The proof of the centre of gravity rule follows. Refer

to Fig. 5. Assume that it has been found by trial that

the wheel wn gives the maximum centre moment. The

general case where load has advanced beyond the span is

taken. In order to get an absolute maximum bending
moment under wn ,

this wheel must be shifted a certain

distance from the centre. Let such position be distance y
from Ri. The sum of the loads on the span is called P2

and equals (W3 Wi). The centre of gravity of the loads

P2 is distance x from R2 . The sum of the loads on the

span to the left of wn is called Pi, and their centre of gravity
is at the fixed distance b from wn .

Taking moments about R2 ,
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Therefore,
P rM = R,y - P,6 = ~ y

-

In this equation for M, the only variables are x and

/y. Therefore, M will be a maximum when the product

xy is maximum. Note, however, that the sum

x + y = (L a)
= constant.

If two variables have a constant sum, their product is

maximum when the two variables are equal. Therefore, M
is maximum when x =

y. But when x =
y, the distance

from wn to the centre of gravity of the loading is bisected

FIG. 5.

by the centre of the span. This proves the centre of

gravity rule.

In order to apply this rule, a general expression for x

is needed.

Since Ri = -y
2-

it follows that x = -5' Substitute the
LJ r 2

value of Ri from formula (9), and the value (Ws Wi) for

P2 .

M3
-

x ''

!
- LWi

- Wl

(13)
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In the special case where the loading has not advanced

beyond the left end of the span, M i and Wi equal zero and

x becomes
- M3 ,

x ~- :

w, (13a)

Problems relating to a girder bridge without panels will

now be given to illustrate the application of the above

formulas and the use of some of the tables following the

text.

Problem. Given a 40-foot deck-girder bridge consisting

of one girder per rail. Use Cooper's E5Q loading. Find

the maximum shear at the end, quarter point, and centre.

Determine also the maximum bending moment at the

quarter point and at the centre, and the absolute maximum

bending moment. All values are to be given per rail.

Solution. Table 5 following the text gives the position

of Cooper's loadings for maximum end shear. This table

is the result of the solution of end shears for a large num-
ber of spans. As a general rule, however, it is safe to as-

sume that w2 of Cooper's and similar loadings will always

give the maximum end or intermediate shear when placed

immediately to the right of the given section, the live load

being headed toward the left. The exceptions in Table 5

to this general rule are not of prime importance, for the

actual value of the shear when w2 is used is sufficiently close

to the maximum even in the exceptional cases. There is

no satisfactory criterion for determining the position of load-

ing for maximum shear in girder bridges without panels, for

it is as easy to calculate the actual values of the shears for

the successive positions of loading as it is to apply any
criterion. In the case of bending moment, however, time

is saved by using the criterion.

Maximum End Shear.

Use formula (9), R, = ^~^ _ Wi. Place wheel 2
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of Cooper's #50 immediately to right of Ri. Take the

values of moment and load sums for Cooper's E5Q from

Table 2.

Maximum end shear = :
,

-- 12.5 = 94.3*.

Maximum Shear at Quarter Point.

Use formula (12) with w2 at quarter point.

t

S at Y point = 2838

4

75 ~ - 12.5 = 58.5*.

Maximum Shear at Centre.

Using formula (12) with w2 at centre.

at centre = - 12.5 = 27.5*.

The values for the shears are given in Kips, or thou-

sand of pounds. A comparison of the above shears with

those in Table 7 shows agreement of results.

Maximum Bending Moment at the One-Quarter Point.

First compute successive pairs of values for-; for dif-

ferent wheels, first placed to the right and then to the left

of the quarter point. A change of sign from + to indi-

cates a wheel that gives a maximum. Use formula (11),

'

at J4 point.

: : ^f
= M (H2.5) + -M (o)

- o = +

No maximum.
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^ = M (H2.5) + M (0)
- 12.5 = +

wz at J4 point.

~ = V (145) + M (0)
- 12.5 = +

Maximum.

= M (145) + M (0)
- 37.5 = -

waw

at J4 point.

M (145) + M (12.5)
- 37.5 = +

Maximum.

~ = K (161.25) + M (12.5)
- 62.5 = -

at J^ point.

y (161.25) + % (12.5)
- 62.5 = -

No maximum.

M (177.5) + M (37.5)
- 87.5 = -

Accordingly, compute the value of M by formula (10)

for wz and ws at quarter point.

M = l Ms + jMi
- M2 (10)

M for w2 at quarter point,

M = }/ (2838.75) + % (0)
- 100 = 609.7 Kip feet.

M for w3 at quarter point,

M = K (3563.75) + ^ (37.5)
- 287.5 = 631.6 Kip feet.

The latter value, 631.6, is the maximum bending mo-
ment at the quarter point. A comparison of this value
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with Table 11 shows agreement of results. Reference to

Table 3 indicates that the correct wheel for maximum has

been chosen.

Maximum Bending Moment at the Centre.

dM W3 + W1 TJ7
,in ,

-fa
=

2
W*>

' Oa^'

M3 + MI ,.. /v* \ i hM = M2 , (Ha), when

at centre,

dM 128.75

dx 2

128.75 - 62.5 = +

^ at centre,

dM 145

dM 145

No maximum.

Maximum.

at centre,

145 + 12.5

dx
'

2

161.25+ 12.5

dx

- 87.5 = -

No maximum.

- 112.5 = -

Therefore, maximum centre moment occurs with w4 at

centre.

M - 283
^'

75 - 600 = 819.37 Kip feet.
Zj

This value agrees with Table 11; and the position of

loading, with Table 3.
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Absolute Maximum Bending Moment.

Shift w4 according to centre of gravity rule, and then

recompute the value of M under this wheel by formula (10).

Note that new values for Zi, Z2 ,
and M3 must be determined.

By formula (13a), when w* is at the centre,

- _ M, _ 2838.75
_.' W3

'
145

Therefore for absolute maximum bending moment under

104, shift loading to left
-

^
- = 0'.21.

The new values of Zi, Z2 ,
and M3 are

h = 20.00 - 0.21 = 19.79

Z2
= 20.00 + 0.21 = 20.21

M3
= 2838.75 + .21(145) = 2869.2

The absolute maximum bending moment =

M =
j-
M3 -h T Mi M2

= i^ (2869.2) + - 600 = 819.54 Kip feet.

It appears, therefore, that the absolute maximum bend-

ing moment is .17 Kip feet greater than the maximum cen-

tre moment. The difference is not great in this particular

case, as the required shift of the loading is comparatively
small. The position of loading for absolute maximum bend-

ing moment agrees with Table 4, and its value agrees with

Table 7.



ARTICLE V.

PIER REACTION.

IN Fig. 4e is given the influence line for the pier reac-

tion R between two non-continuous beam spans li and Z2 .

From this influence line, the formulas (5) and (7) give

R = Ordinate-load products in
(| gbh \ gak + \ kzh)

Or,

MX Mi L L
R - T +T - U M2 =

Formula (14) may also be derived from formula (10)

since the ordinates of the influence line for R bear the con-

stant ratio 7-7 to the corresponding influence ordinates for
LI li

M, the position of the live load and the values of li and 12

remaining fixed.

Therefore,

R = ~

Substituting the value M =
j-
M3 +

j-
Mi M2 from

formula (10) in formula (16), the result is again formula

(14).

For equal spans,777 4- t>
M3 + MJ- 2M2

li
= Z2

= I so that R = -

j . (14a)

The rate of change of R for a movement dx of the

loading to the left is

dR W, Wl L L /Z, I

~dx
=T +T "

u*
w*

=
E (~L

W* + Tw>
~

23
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For equal spans, h = 12
=

I, so that

dR Ws + W, - 2W*
dx

=

I
(15a)

In the last member of formula (15) the quantity within

the parentheses is the same as the expression for -y in

formula (11). It follows, therefore, that the same position

of loading gives maximum R and maximum M for any

given values of l\ and 2 -

Problem. (a) Find the maximum pier reaction per rail

between two simple beam spans li
= 10 ft. and Z2

= 30 ft.

(b) Find the maximum pier reaction between two simple

beam spans, each having a length of 20 feet. Use Cooper's

#50 loading.

Solution of Problem (a).

Use formula (15) to find position of loading for

maximum R.

- (15)

at pier.

dR 40 /1<K
,

30
! fi(0) -12.6)-dx

'

10X30V40 V r
40

Maximum.
dR 4 S (145) + g(0)- 37.5)

= -__
da; 10 X 30iO 40

t at pier.

dR 40

4
-

Maximum.

dR 40 (W L?Pn2^ fi9

"d^ -10^30 Uo ( '40

Use formula (14) to compute the value of R.
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R __ M*. Mi L_ M
wz at pier.

283875 40 k

30
"

10
"

10 X 30 (

w3 at pier.

_
3563.75 37.5 40

_ t

30 10"
"

10 X 30 (l

The latter value of 84
fc

is the maximum pier reaction.

Its value agrees with Table 14 and the position of loading

agrees with Table 3.

Solution of Problem (b).

Use formulas (14a) and (15a),

R = --

j ,
and

j
= -

-y- .

w3 at pier.

A**. 128.75 + - 2 X 37.5

dx 20

No maximum.
dR 128.75 + - 2 x 62.5

dx 20

w4 at pier.

dR_ 145 + - 2 X 62.5

dx
''

20

Maximum.

dR_ 145 + - 2 x 87.5
_

dx
''

20

w$ at pier.

dR_ 145 + 12.5 - 2 X 87.5 _

dx
''

20

No maximum.

dR_ 161.25 + 12.5 - 2 X 112.5

dx
'

20

Therefore, maximum pier reaction occurs when w is at the

pier.
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2838.75 - - 2 X 600 *R -

-2Q-
51.9 .

This maximum pier reaction of 81.9
fc

agrees with value

in Table 7 and Table 14, while the position of loading agrees

with that given by Table 3.



ARTICLE VI.

GIRDER BRIDGE WITH PANELS.

In Fig. 6 is shown a girder bridge with panels. It is as-

FIG. 6.

sumed that the live load has advanced beyond the left end
of the span, this being the most general case.

27
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The formulas for Ri and R2 are the same as formulas

(9) and (9a) for the girder without panels, if the girder

bridge with panels has end floor-beams; but if this bridge
has end struts with the end stringers resting on separate

pedestals, the value of Ri beneath the end of the main

girder is the same as Sa ,
the shear in the end panel, as

given by formula (17) to follow.

Inasmuch as the maximum bending moment in a beam

carrying concentrated loads always occurs beneath a con-

centration, the maximum bending moments in the main

girder of a girder bridge with panels will occur at the floor-

beams. The influence line for the bending moment at the

floor-beams is the same as for the bending moment in a

girder bridge without panels; accordingly, formulas (10) and

(11) are to be used in finding maximum bending moments
at the floor-beams.

It remains to derive formulas for the maximum shears

Sa in the end panel and Sb in any intermediate panel. In

Fig. 6 are given the influence lines for Sa and Sb . The
correctness of the ordinates is at once evident. The slopes

and coefficients are calculated as explained in Arts. 2 and 3.

The general formulas for Sa and Sb and their rates of varia-

tion may be written at once by use of formulas (7) and (8).

8 = M, + ^i - ^ =

T*Z*-ZL p p

(19)

(20)

Formula (17) when compared with formula (10) shows

that Sa is equal to the bending moment at the first inter-

mediate floor-beam divided by the length of the first panel.

Formula (18) when compared with formula (11) shows that
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the same position of loading that gives maximum bending
moment at the first intermediate floor-beam will also give
maximum shear in the end panel.

Formulas (19) and (20) are perfectly general and will

serve for any assumed series of vertical loads in any posi-

tion. For the usual standard loadings and panel lengths,

however, it is not necessary to advance any loads beyond
an intermediate panel for maximum shear in this panel.

Therefore, for practical purposes formulas (19a) and (20a)

Illustrative Problem. A single track through girder

bridge with a floor system consisting of stringers and floor-

beams, both end and intermediate, has six panels of 20 feet

each. Find the maximum end reaction and the shear in

panels 1,12, and 2 3, using Cooper's E5Q loading.

Solution. For maximum end reaction place wheel 2 at

left end. Use formula

(9)

12.6 - 217.1*

Note that the above value agrees with Table 7.

For maximum shear in panel 1, find critical wheel

by formula (18) and then compute shear by formula (17).

Try wheel 3 at panel point 1.

Maximum.

H %( (365>
- - 62 -5

)
- -
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Note that the position of loading agrees with Table 3.

For this position of loading formula (17) gives

Sa
= i( (21895) + -

287.5)
M 168.1*.

For maximum shears in the intermediate panels, deter-

mine the position of loading by formula (20a) and the shear

by formula (19a).

(20a)

(19a)

Panel 1-2. Try wheel 3 at panel point 2.

=
27)(-6

<306 -25 )
- 37 '5

)
- +

Maximum.

f =
1(J (322.50) -62.5)

= -

Sb =
^o(l (1505L25)

" 287 -5
)

z ~- 11L0*-

Panel 2-3. Try wheel 3 at panel point 3.

Maximum.

& = ^Q (9345)
-

287.5)
= 63.5*.

The above values for shears agree with the values given

by Table 9. The wheel for maximum shear in panels of

girder and truss bridges is given in Table 6.



ARTICLE VII.

THROUGH PRATT TRUSS. GENERAL FORMULAS FOR LIVE-

LOAD STRESSES AND THEIR RATE OF VARIATION.

ILLUSTRATIVE PROBLEMS.

dS
THE general formulas S = 2CM and -7 = 2CW may

be used to write the equations for the live-load stresses in

any member of a framed structure as soon as its influence

Salient Points

Ordinates

Slopes

Coefficients

mkp

h
nv

JL
nv

FIG. 7.

line has been drawn and the ordinates at the salient points
determined.

In Figs. 7, 8, 9, and 10 are shown all the influence lines

31
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needed in writing the formulas for the live-load stresses in

a through Pratt truss with non-parallel or parallel chords.

The influence ordinate at any salient point is the calcu-

lated stress due to a one-pound load on the bridge at the

panel point above this salient point. By easily discovered

relations between similar triangles, the algebraic value of

each stress, or influence ordinate, is expressed in terms that

are most readily evaluated in any numerical problem.
The derivation of any one formula for a live-load stress

is typical. Refer to Fig. 7. The stress in the lower chord

member S5 is found by taking moments about C. The
influence line for $5 is straight over each of the two inter-

vals kp and mp. The ordinates at the salient points 1 and
4 are zero. The ordinate at salient point 3 must be found

by placing a one-pound load at the lower panel point of

the truss above this salient point and calculating the value

of S6 . For the unit load so placed,

Reaction at A = = -

np n

By moments about C,

Therefore,

~
(mp) = S, (v)

= + ~ = Influence ordinate at 3.
nv

The slopes of the segments of this influence line follow.

, mkp k
Slope of ao = -- -

-r- mp = --
nv nv

r , . mkp m
Slope of be = + -

-r- kp =
-\
--

nv nv

The coefficients C for use in the general formula S =

2CM are now found.

c 1
= o + - = +-

nv nv
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- -
nv nv v

nv nv

Therefore, for the position of the live load advanced

beyond the limits of the span, the general formula for

However, in actual practice it is usually not necessary
to advance the loading beyond the left end of the span in

order to get a maximum value of S$. The usual formula

will therefore not contain the term Mi, since this will be

zero; thus,

Inasmuch as the horizontal component of the stress *S8

in an inclined top chord member or end post equals the

stress $5 in a corresponding lower chord member, the stress

$6 in any top chord member or end post may be found by

SG = ~
Ss ........ (22)

In Fig. 8 is shown the influence line for the stress $4

in any vertical post. The influence ordinates are deter-

mined by taking moments about the intersection of the

upper and lower chord members which are cut by the

section. The algebraic values of these ordinates are trans-

formed by use of easily discovered relations between sim-

ilar triangles. The slopes and coefficients are then calcu-

lated in the usual way. The influence line indicates that

the live load should advance into but not beyond the panel

p for a maximum compression, and for this reason MI and
If2 equal zero for the usual case. The numerical value of
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the maximum compression S* in a vertical post is, therefore,

The coefficients for the stress in any inclined web mem-

ber are given by Fig. 9. The quantities for Si and >S2 are

Ordinates

Slopes

Coefficients

. _
I b.L bL

A.
bl bLp\

a
bL

d
bl

.
(>P\

_

IP

FIG. 8.

as shown, and the quantities for S3 are of the same alge-

braic form except that they are of opposite sign through-

out. For the usual position of the live load advanced from

the right into but not beyond the panel p for maximum

stress, the moment sums Mi and M2 equal zero, and the

numerical values of the maximum tension Si and &> and

of the maximum compression & are given by the following

formula:

(24)
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In a special case where the loading must be advanced

beyond the panel p until the tension in the inclined counter-

web member $2 is balanced by the dead-load compression

FIG. 9.

in this same member, the value of M2 is not zero, and the

formula for $2 becomes

Or, letting Mc
= - S).
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Note that the coefficients of M4 and Mc in this formula

are the same as the coefficients forM4 and M3 in formula (24) .

The influence line for the counter-tension in a vertical

post is shown in Fig. 10. For the usual case, the loading

advances beyond the panel but not beyond the end of the

span. Therefore Mi is equal to zero, so that

FICJ. 10.

(26)

where K and M stand for the corresponding terms in the

parentheses. In order that T be a maximum the live load

must advance beyond the position for the maximum tension

& until the tension as computed by formula (25) becomes

equal to the dead-load compression in this same member.

For this position of the live load, the value of T is then

computed by using formula (26). It may be noted that
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some specifications state that only % of the dead-load

compression is to be counted as effective in counteracting

the live-load tension in an inclined counter-web member.

This specification has been observed in the problem to

follow.

A review of the preceding formulas shows that all the

live-load stresses may be computed by formulas (21), (22),

(23), and (24), except the counter-tension in a vertical post

and the tension in a floor-beam hanger. Formula (25) makes

it possible to find readily by trial the position of loading for

maximum counter-tension in a vertical post, and formula

(26) gives the value of this tension. The maximum ten-

sion in the floor-beam hanger may be found by the use of

formulas (14a) and (15a) for pier reaction between equal

spans.

If the chords of the Pratt truss are parallel, there will

be no counter-tension in any vertical post. Formula (21)

for the stress in a horizontal chord member and formula

(22) for the stress in the inclined end post remain unchanged.
Formulas (23) and (24) for web stresses are simplified be-

cause a = b = depth of truss.

The formulas, therefore, for the Pratt trusswith parallel

chords are:

Stress in horizontal chord members =

Stress in inclined end post = S& = - $5 ....... (22)

Stress in vertical post =
4
= j$*

" ~ M^ - - - (29)

Stress in inclined web member =

)*'-;& (30)

One general formula will suffice for finding the position

of loading for maximum chord and web stresses of a Pratt

truss with either inclined or parallel chords. The formulas
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(21), (23), (24), (29), and (30) for these stresses are of one

general form

S = (G) M, -
(H) M, (27)

where G and H are the corresponding coefficients of M4

FIG. 11.

and Ms in the preceding formulas. The rate of variation

of S as the load advances is

^ = GWt - HW3
= H (| Wt - W3)

. . (28)

When any one of the above stresses is a maximum, the

CC
1

\

jjWi W3
J passes through zero as a wheel is

shifted from right to left of the salient point 3 in Figs.

7, 8, or 9.

The preceding formulas for the live-load stresses are

summarized for convenient reference in Art. 11 preceding
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the Tables. The important dimensions and quantities in

Figs. 7, 8, and 9 are summarized in Fig. 11. If a uniform

live load is used, the shaded areas in Fig. lla, b and c mul-

tiplied by the intensity of the uniform load will give the

maximum live-load stresses. The algebraic value of any one

of these triangular areas is conveniently expressed as the

base of the triangle times y% of the given algebraic ordi-

nate. The lengths of the bases of the shaded areas in Figs,

lla and b may be readily determined by one of the con-

structions shown in Figs. 12a and 12b, which give the po-

sition of the unit load for zero stress in the members indi-

cated. The proofs that these constructions locate neutral

points are not given, for they are generally known, and

are proved in numerous texts on bridges. (See Marburg's
"
Framed Structures and Girders," Vol. I, page 392.)

The application of the preceding formulas will now be

made to the calculation of the live-load stresses in the two

single track through Pratt trusses shown in Figs. 13 and

14. A convenient procedure is as follows:

1. Determine the lengths of all inclined members and

write then- values on the truss outline.

2. Determine the values of the intercepts a as defined

by Fig. 11 and write their values on the truss outline.

3. Write on the truss outline the distances of the sev-

eral panel points from the right end of the span.

4. Write down the reciprocals of the span, panel length,

and lengths of vertical members.

5. Make a form for tabulating calculations and list

members in some convenient form as is done in Figs. 13

and 14.

6. Calculate the numerical values of the coefficients G
and H for the several members by use of the formulas

already derived.

7. Determine the position of the loading for maximum

/ C1 \

stress by finding the position of loading causing (-77
TF4 TF3

J
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to pass through zero, and for this position of loading select

from Table 2 the corresponding values of M4 and M3 . At

VARIOUS CONSTRUCTIONS USED TO FIND NEUTRAL POINTS IN PRATT TRUSSES.

U, U 2 U,, U 4 U,

the same time tabulate the length Z/i of loading causing

maximum stress as this value is used in the impact formula
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/ = S'
300

Li + 300*

8. Calculate values of S = GM4 HMS and combine

with impact and dead-load stresses. When the dead- and

live-load stresses are of opposite sign, the combination is

usually not algebraic but according to the particular speci-

fication that is used.

a= 38'

2G.OO 26.08

A 1 2 a

1-4- 208 = .00480

1-^ 26 =.0385

Span 208' Live Ld. E J3

-f- 32 =.03125

-^36 .02778

FIG. 13.

6 7 A

l-4-38=.0C32

>/r*%wv
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9. Find positions of loading for maximum counter-ten-

sions in posts and compute values by use of formulas (25)

and (26).

PROBLEM 1.

Calculation of Live-load Stresses in a Pratt Truss with

Inclined Chord.

The complete data for this problem are given in Fig.

13. Items 1 to 5 of the above method of procedure need

no explanation. The values of the coefficients G and //,

the position of the loading for maximum stress, and the

value of the maximum stress will be determined for several

typical members; for example, vertical post, inclined web

members, horizontal chords, end post, and inclined chords.

Vertical Post EF.

Formula S, =
(^r)

M4
-

(-)M3 . . . . . . (23)

Refer to Fig. 11 for definition of dimensions.

G = - = |f (.00480) = .00373
DLi oO

H = - = .0385

Try ws at panel point 3. Use Table 2. L = 143'.

Therefore w3 at 3 gives a maximum.

S = GM, - HM3
= .00373(33970)

-
.0385(287.5)

= 126.7 -- 11.0 = 115.7"

- 300 300 A77Impact factor == -- =- == .677

Impact stress = .677 X 115.7 = 78.3
fc

.
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Inclined Web Member ED.

Formula 8l =
(^) M 4

- ()M, .... (24)

Refer to Fig. 11 for definition of dimensions.

H = ~ = ~
(.0385) = .0442

Try ws at panel point 2. Use Table 2. Za = 169'.

nnj.si 37.5 -f-

= ^^T (505.0)- or =or
.U44^ }o cD^.O

Therefore w3 at 2 gives a-maximum.
iS = GM* - HMS

= .00481(46255)
-

.0442(287.5)
- 223 - 13 = 210

fc

.

300
Impact factor =

-j

= .640

Impact stress = .640 X 210 = 134*.

Inclined Web Member ML.

Formula S, =
4
-

jtf, ... .(24)

Refer to Fig. 9 or Fig. 11 for definition of dimensions.

/ 4fi 04
H = ^ =

-^- ( -0385) -
-0493

Try w2 at panel point 6. Use Table 2. la = 60'.

00777 1^.5 +
w( 19 )-

3

- =
_
r

Therefore w2 at 6 gives a maximum.
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S = GM, - HM, = .00777(6550)
-

.0493(100)

= 51 -- 5 = 46*.

300
Impact factor = = .833

Impact stress = .833 X 46 = 38*.

Lower Chord Member AC AD.

Formula & == Q^4
-

()jf, ..... (21)

Refer to Fig. 11 for definition of dimensions.

syyi

G = ~ = J (.03125) = .00390

H= = .0312
v

Try w* at panel point 1. . Use Table 2. L, = 200'.

Therefore io4 at 1 gives a maximum.

S = GM4
- #Af, = .00390(63111)

-
.0312(600)

= 247 -- 19 = 228*.

Impact factor = = .600

Impact stress = .600 X 228 = 137*.

End of Post BC.

Formula S 6
=

-^
S- ......... (22)

S G
= ^l

3
(228) = 362*, and impact = ^p (137) = 217*.

Lower Chord Member AH.

Formula S 5
= M4

- M3 . . . . (21)



LIVE-LOAD STRESSES 45

Refer to Fig. 11 for definition of dimensions.

/yyi

G = ~ = | (.02632) = .00985

H = -i- = .0263

Try wu at panel point 3. Use Table 2. Li = 194'.

ri 190

l^-
Therefore MU at 3 gives a maximum.

S = GM4
- HM3

= .00985(59661)
-

.0263(7310)

= 587 -- 192 = 395*.

Impact stress = S = .607 X 395 = 239*.

Top Chord Member BG.

Formula S G
= S, .......... (22)

S. =^ (395) . 396
fc

.

2fi AQ

Impact = ^ (239) = 240".

Counter-Tension in Post at Panel Point 5.

Formulas

S2
= Stress JK =

= tension in post.

-)(-n^-^)=K-M (26)

Refer to Fig. 10 for definition of dimensions.

The calculation of the dead-load compression in JK is
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not given, but the value is 21
fc

. Two-thirds of this com-

pression, or 14
fc

,
will be considered effective in counterbal-

ancing the live-load tension in JK. The live load must be

advanced beyond the position of maximum live-load ten-

sion in JK (i.e., w2 at panel point 5) until &, or the stress

in JK, equals 14
fe

. This must be done by trial, Sz being

figured each time by formula (25). It is found that when
114' of loading has advanced upon the bridge, this condi-

tion is approximately satisfied. For this position of loading

M* = 22261

Mc
= MS

- M2
= (2565

-
175) = 2390

-

Therefore,

& = .00580(22261)
-

.0466(2390) = 16*.

This value of S* = 16
fc

balances % D = - 14
fc

, nearly

enough for practical purposes. Therefore, compute T for

this position of the live load.

K = =
-00203

M =
$/8 (22261)

- 2565 = 11340

T = .00203(11340) = 23*

300
Impact factor = T = .725

Impact stress for T = .725 X 23 = 17
fc

.

PROBLEM 2.

Live-load Stresses in a Pratt Truss with Parallel Chords.

The complete data for this problem are given in Fig.

14. Formulas (21), (29), and (30) give the values of the
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coefficients G and H, which are identical for several mem-
bers of any Pratt truss with parallel chords. The proce-

dure for finding the positions of the loading and maximum
stresses is exactly as in Problem 1. It should be noted

that

Stress FG = Stress EF X
37.54

HI =

BC = (C

GHX

ACX
25

Live Load E 50

3

A

-=^=.00667

^ =
~j|f

== '0400

Fig. 14.

Secant

Mem.



ARTICLE VIII.

THREE-HINGED ARCH. APPLICATION OF THE GENERAL METHOD

TO THE CALCULATION OF LIVE-LOAD STRESSES.

THE general formulas -r- = 2CW and S = 2CM may

be used directly to find the position of loading and the

FIG 15.

value of the maximum live-load stress in any member of

a framed structure as soon as the influence line for this

member and the ordinates at all salient points have been
48
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determined. This method is applied to the calculation of

maximum live-load stresses for the three-hinged arch shown
in Fig. 15. Cooper's E40 loading is used.

First are drawn the influence lines for the horizontal

and vertical components of the reaction at the left hinge.

The vertical component Vi is the same as for a simple

span L. The horizontal component Hi equals the bending
moment at the centre of the span L divided by the depth h.

The influence-line ordinates for all members are now found by
drawing five Maxwell diagrams, one of which is reproduced
in Fig. 16. From the influence lines for Vi and Hi, the

value of Vi is .8889 and Hi is .2187 for a one-pound load

at Ui. The external loads acting on the left half of the

arch are then as shown in Fig. 16a. The load line axbcya
in Fig. 16b is drawn to a scale of 10" = 1 pound, and the

Maxwell diagram completed in the usual way. The scaled

TABLE A

INFLUENCE-LINE ORDINATES FOR THREE-HINGED ARCH

Members
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values of these stresses are the influence ordinates for a
one pound load at U\. In an exactly similar way the in-

fluence ordinates for a unit load at U2 ,
Us ,

U4 , and U\ are

determined. The influence lines are straight from U'Q to

(a)

FIG 16.

7'4 . Table A gives the influence ordinates for all members
and also for the horizontal and vertical components of the

reaction at the left hinge. The angle 6 is the inclination

of this reaction with the vertical.

The calculation of the live-load stresses in any one mem-
ber is typical. The member UJL is taken. The influence

line for this member is drawn to scale in Fig. 15 by use of

the influence ordinates from Table A. The salient points

occur below panel points C73 , Ut, and U\. The distance
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662
from U3 to the neutral point equals AAO 4. oog

Calculation of Slopes.

Slope of df =

jy -

hk =

km =

mn =
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|~
= 2CW = -

.1094(30) +.309(103) +.0027(302) = + .7

-.1094(50) + .309(103) +.0027(302) = - .7

Therefore w3 at 17* gives a maximum tension in

and its value is

S = zCM = -.1094(230)+ .309(1846)+.0027(19001)=83
fc

.

TOf

By use of the formula - = ?CW and Rule 2 of Art. 3,

the position of loading for maximum compression in

is now determined. Try wheel 2 at Us with the loading

advancing toward the right. Note that the signs of the

coefficients remain unchanged. Take the values of the load

sums and moment sums for #40 from Table 2.

-.0105(192) + .0863(10) = -- 1.3

- = SCTF = -.0105(192) + .0863(30) = + 0.6

Therefore w2 at Us gives a maximum negative stress, or

compression, in USL^ and its value is

S = ?CM = -.0105(7092) + .0863(80) = - 67*.

The above values of 83
fc

and 67
fc

for maximum tension

and compression in C73L4 may be checked by use of formula

S = qA z (2), the values of q being taken from Table 16.

Tension U&L* by Equivalent Uniform Load.

The area of the tension part of the influence line equals

A z
= 27.2

The influence line ohkm is not triangular, but a tri-

angular influence line with intervals Zi
= 10 ft. and 12

=
45 ft. approximates its shape closely enough for the selec-

tion of an equivalent uniform load. For Zi
= 10

r and Z2
=

45', Table 16 gives 3.080
fc

as the equivalent uniform load.
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Therefore,

S = qA z
= (3.080) (27.2)

= 84.

This value checks very closely that obtained by the

exact method.

Compression U^L^ by Equivalent Uniform Load.

Choose from Table 16 the equivalent uniform load for

h = 10 ft. and Z2
= 65 ft. From the influence line Az

=
23.7.

Therefore,

S = qA z
= (2.870) (23.7) = 68

fc

.

This checks closely the value obtained by the exact

method.

Calculation of other members of this arch and of some

more complicated framed structures shows a close agree-

ment between the two preceding methods. The latter

method is the simpler when a table of equivalent uniform

loads has been made, especially in the case of the more

complex influence lines for members of swing bridges, two-

hinged arches, arch ribs, etc. The method of calculating

a table of equivalent uniform loads will be explained in the

following article.



ARTICLE IX.

EQUIVALENT UNIFORM LOADS.

AN equivalent uniform load is one which gives the same
stress as does a loading which is not uniform. For any
given standard loading, the equivalent uniform load is dif-

ferent for stresses whose influence lines differ. Since the

forms of influence lines are innumerable, a table of exact

equivalent uniform loads for all stresses is impracticable.
A table of equivalent uniform loads, however, for stresses

whose influence lines are triangular may be used with little

error in selecting equivalent uniform loads for stresses whose
influence lines are not triangular. It is, therefore, sufficient

for practical purposes to make tables of equivalent uniform

loads for a series of triangular influence lines. It may be

shown that the equivalent uniform load for any triangular

influence line is dependent entirely upon the intervals Zi

and 12) and is independent of the ordinate h at the apex
of the influence line. Consider the triangular influence line

in Fig. Ib to be for any stress S. Let the ordinate below

C be any value h. If q equals the equivalent uniform load

covering li and lz ,

S
S = qA z ,

or q =
j- (A)

The area of this influence line is

A z
=

\ (h + =
\L (B)

Furthermore, if the concentrated live loads have been

placed so as to give the maximum pier reaction between

two spans h and k, this same position of loading will give

maximum S, if the influence line for S is a triangle with the

54
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same intervals li and Z2 . Since the influence ordinates for

S are related to the influence ordinates for R as h is to

unity,

S h

R
==

1.00

Or

S = hR ..... . . . . (O

Substituting the values of A z and S from equations (B)

and (C) in equation (A),

q = hR + L~ ...... (D)

It appears, therefore, that q is independent of /t.

From formula (16) of Art. 5,

Li t-2

Substituting for R in equation (D),

2/2 2M

(16)

(3D

The term M is the bending moment in the span L =

li + 12 at the point where the intervals are h and Z2 .

Tables (10) to (18) inclusive have been calculated for

the positions of the live load given by Table 3. The values

of M were first found, then the values of R, and finally the

values of the equivalent uniform loads. The three formulas

that were used in succession are

If - jJMt+jJfi- Jfi ..... (10)

R = /y M .......... (16)
tl t-2

2M 2R
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An example of the use of equivalent uniform loads has

already been given in Art. 8. The general formula S =

qA z may be used in any case. For the special cases of

bending moment in a beam and pier reaction between two

simple spans, formula (31) gives

<32>

The quantities in the parentheses are the areas of the

influence lines for M and R respectively.



ARTICLE X.

METHOD OF CALCULATING TABLE OF LOAD SUMS FOR ANY
STANDARD LOADING. ILLUSTRATIVE EXAMPLE.

THE definitions of moment sum and load sum are given

at the beginning of Art. 2. It is at once evident that a

table of load sums may be computed by adding the succes-

sive loads. It may be shown that the table of moment
sums may also be calculated by the process of

addition.

From formula (5a) of Art. 2,

CnWn = dMa

dx

Or
dMa

= Wa
- dx.

Expressed in words, the increase in the moment sum for

an increase dx in the distance of the centre of moments
from wheel 1 equals the load sum times dx. If the load

sum is constant for an interval dx = 1 foot, as between con-

centrated loads, the increase of the moment sum for dx =
1 foot equals the corresponding load sum. If the load sum
is not constant, but uniformly increasing, as when the cen-

tre of moments lies within the uniform load, the increase

of the moment sum for dx = 1 foot equals the average value

of the load sum for this one foot interval. The appli-

cation of the foregoing principles is made clear by the fol-

lowing example.

Example. Give explicit directions for the calculation of

a table of load sums and moment sums at intervals of 1

foot from IT to 400' for Cooper's #40 loading.

Solution. Calculate the table of load sums by adding
57
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the loads one by one, taking a sub-total for each addition.

Thus, the following numbers are added,:

110
4 20's

4 13's

110
4 20's

4 13's

391 2's

If the final total checks 284 + 391 X 2 = 866, the table

of load sums is correct.

Assume now that the table of load sums for E40 has

been completed. The table of moment sums may now be

found as directed below. The following numbers are to

be added one by one, taking a sub-total for each addition:

8 10's

5 30's

5 50's

5 70's

9 90's

5 103's

6 116's

5 129's

8 142's

8 152's

5 172's

5 192's

5 212's

9 232's

5 245's

6 258's

5 271's

5 284's
1285
1287
1289

and all odd numbers up to 865.

If the final total checks up 183,689, which is figured

independently, the table of moment sums is correct.

The preceding additions may be made most satisfac-

torily on a recording adding machine. Table 2 was cal-

culated in this way.
It will be noted that the table of load sums serves as a

table of differences for the table of moment sums.



ARTICLE XI.

SUMMARY OF FORMULAS.

Art. 1.

z = zwz . . '. . . .;; ... .. v ..-.- . . (i)

Z = qA z ..... . . .,. . . (2)

. Z = w2z ....... ....... (3)

Z = z2w = zW . . . V . . ...... (4)

Art. 2.

Z = 2wnzn
= Ca2wnxn = CaMa ..... (5)

dZ d(CaMa ) CadMa

dx aa dx dx

Art. 4. Girder Bridge without Panels.

End reactions.

Art. 3.

ZC = ..... ../; . ., ,
;
:
! .... (6)

S = 2CM . . /. . . . ....... (7)

I ...... .

R^ =Ws _^-M, .;....'.;. (9a)

Bending moment for unequal segments li and 1%.

M = Klfa + -- Afi - M2 , ; . . . . , (10)

Wt-W, . ..... (11)

59
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Bending moment at centre, h = Z2
=

~^~

-. M3 + MiM = o ^/ 2 -

dx 2

Shear at any section.

s-*&
Location of centre of gravity of loading on span.

M3
- Mi - LWl

When Mi =
0,

5 =
|

. (13a)

Ar. 5. Pier Reaction.

For unequal spans Zi and Z2 .

cffi
. Ej . Ej Aw _ J

aic Z2 'i ZiZ2 Z:

For equal spans Zi and k equal to Z.

R = '^
g

1
" -2

(14a)

m = TF3 +
^-

2^
- - : - - (16a)

Relation between R and M
,

R = rrM . (16)

Art. 6. Girder Bridge with Panels.

Shear in end panel; general case.

= ^Mz+^M^Mz
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f -

Shear in intermediate panel; general case.

:

'

S^M,_M, M,_M,
'

L p p L

dSb _Wt W, W, TF,

"^
==

T" y y " T
Shear in intermediate panel; usual case.

. 7. Through Pratt Truss with Inclined Chord.

Stress in hanger. Use formulas (14a) and (15a).

Stress in any horizontal chord member; usual case.

Compression in any inclined top chord member or end

post; usual case.

.
(22)

Compression in vertical post; usual case.

(28)

Stresses in inclined web members including counters;
usual case.

v

..-
S t , &, S, = M4

- Mt . . . (24)

Stress in inclined counter; special case of loading ad-

anced bevond panel.
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/ ta \ , t ( , f b , T \ ( ta
S2

= (-rriMi T-\Mz MZ) = (-rr
\cbL' bp\ c / \coL

Counter-tension in vertical post; usual case.

Formulas (21), (23), and (24) are of the general form

S = GM, - HM3 . . '.,. , V . (27)

where the coefficients G and H may be tabulated thus:

Type of member G H

Horizontal chord -

Vertical post ry-

Inclined web member. . .-7-7- 7
cbL bp

The rate of variation of S in formula (27) is

dS
(28)

7 v r r 4 J.J. rr 3 J.x -rj r r 4 rr A I \***/

When S in formulas (21), (23), or (24) is a maximum

CC*
\

jjWi Wzj passes through zero.

Through Pratt Truss Parallel Chords.

Stress in hanger, use formulas (14a) and (15a)

Stress in horizontal chord = S~a =
\ jM^ \-jM3 , (21)

"
vertical post = & = (|)M 4 (-\M* (29)

VJL// \ p /

"
inclined web = S, = M* - ~^i = (30)
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Stress in end post = $ 6
= ~S b ........ (22)

Formulas (21), (29), and (30) are of the general form

S = G- M, - H-Mt . . .... (27)

and their rate of variation is

. . . . -(28)

G and H are the coefficients of M4 and Ms in equations (21),

(29), and (30), respectively.

When S in formulas (21), (29), or (30) is a maximum,
/ C1

\

\JfWi W3 } passes through zero.

Art. 9. Equivalent Uniform Loads.

~~j ^O-Ly

(32)
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TABLE 1

STANDARD LOADINGS
Loads given are for one rail.

COOPER'S E 40:

COOPER'S E 50:

111

(jXJXJxt) cj> c|)
cL

cj>4 fofcb6 ^cLo F

'ieis^sj

COOPER'S E 60:

SC50CS OOQS C50SC50S
T-HT-IT--I -i CCCOCOCO rH rH -H i I

^o OO I 3000 I bs. per ft.

8H*-MJMW6H^H*W*6WWii

COMMON STANDARD-1904-PACIF1C SYSTEM

D. L. & W. R. R.:
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TABLE 2

LOAD SUMS AND MOMENT SUMS FOR COOPER'S
AND OTHER STANDARD LOADINGS

NOTE. Load Sums and Moment Sums are given per rail in thousands

of pounds and foot-pounds respectively.
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COOPER'S #40. 0'-50' COOPER'S #40. 50'-100'

Length
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COOPER'S #40. 100'-150' COOPER'S #40. 150'-200'

Length
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COOPER'S #40. 200'-250' COOPER'S #40. 250-300'

Length
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COOPER'S #40. 300'-350' COOPER'S 40. 350'-400'

Length
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COOPER'S ESQ. 0'-50' COOPER'S #50. 50'-100'

Length
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COOPER'S #50. 100'-150' COOPER'S #50. ISO 7-200'

Length
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COOPER'S 50. 200 '-250' COOPER'S #50. 250 '-300

Length



LIVE-LOAD STRESSES 75

COOPER'S #50. 3()0'-350' COOPER'S #50. 350'-400'

Length
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COOPER'S #60. 0'-50' COOPER'S #60. 50'-100'

Length
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COOPER'S #60. 100'-150' COOPER'S #60. 150'-200'

Length
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COOPER'S #60. 200'-250' COOPER'S ESQ. 250 /-300/

Length
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COOPER'S #60. 300'-350' COOPER'S EGO. 350'-400'

79

Length
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COMMON STANDARD 0'-50' COMMON STANDARD 50'-100'

Length
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COMMON STANDARD 100'-150' COMMON STANDARD 150'-200'

Length
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COMMON STANDARD 200 '-250' COMMON STANDARD 250 '-300'

Length
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COMMON STANDARD 300'-350' COMMON STANDARD 350'-400'

Length
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LACKAWANNA 0'-50' LACKAWANNA 50'-100'

Length
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LACKAWANNA 100'-150' LACKAWANNA 150'-200'

Length
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LACKAWANNA 200'-250' LACKAWANNA 250'-300'

Length
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LACKAWANXA 300'-350' LACKAWANNA 350'-400'

Length
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TABLE 3

POSITION OF COOPER'S LOADINGS FOR MAXIMUM STRESS

Shorter Segment h

Segments
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TABLE 4

POSITION OF COOPER'S LOADINGS FOR ABSOLUTE MAXIMUM BENDING MOMENT
IN GIRDER BRIDGES WITHOUT PANELS

5 Span in feet.

c = Distance in feet that wheel No. 1 has moved to left beyond centre of

span.

w = wheel under which absolute maximum bending moment occurs.

a = distance that w is to left from centre of span.
6 = " " w "

right
" " " "

S
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TABLE 6

POSITION OF COOPER'S LOADINGS FOR MAXIMUM SHEAR IN PANELS OF GIRDER
AND TRUSS BRIDGES

Number of

Panels
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TABLE 7

MAXIMUM MOMENTS, SHEARS, AND PIER REACTIONS FOR COOPER'S
STANDARD LOADINGS

(Figures for One Rail)

Span
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TABLE 7. Continued

MAXIMUM MOMENTS, SHEARS, AND PIER REACTIONS FOR COOPER'S
STANDARD LOADINGS

(Figures for One Rail)

Span
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TABLE 7. Continued

MAXIMUM MOMENTS, SHEARS AND PIER REACTIONS FOR COOPER'S
STANDARD LOADINGS

(Figures for One Rail)

Span
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TABLE 8

MAXIMUM MOMENTS FOR TRUSS BRIDGES COOPER'S #50 FOR ONE RAIL

Moments Given in Thousands of Foot-Pounds

Panel Points h

Panels in

Truss
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TABLE 8. Continued

MAXIMUM MOMENTS FOR TRUSS BRIDGES COOPER'S E50 FOR ONE RAIL

Moments Given in Thousands of Foot-Pounds

Panel Points h 4- 1

ll
(5.2

3
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TABLE 8. Continued

MAXIMUM MOMENTS FOR TRUSS BRIDGES COOPER'S "50 FOR ONE RAIL

Moments Given in Thousands of Foot-Pounds

Panel Points I

Panels

1

in

Truss
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TABLE 9

MAXIMUM SHEARS FOE TRUSS BRIDGES COOPER'S #50 FOE ONE RAIL
Shears Given in Thousands of Pounds

Panels

d
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TABLE 9. Continued

MAXIMUM SHEARS FOR TRUSS BRIDGES COOPER'S E5Q FOR ONE RAIL
Shears Given in Thousands of Pounds

1 2 3 4.5.6,7.8.9.
Panels I

=
1 1 1 1
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TABLE 9. Continued

MAXIMUM SHEARS FOR TRUSS BRIDGES COOPER'S #50 FOR ONE RAIL
Shears Given in Thousands of Pounds

Panels

Panels in

Truss
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TABLE 10

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS,
COOPER'S E0 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT h
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TABLE 10. Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS,
COOPER'S #40 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT l\

250
225
200
175
160
150
140
130
120
110
100
95
90
85
80
75
70
65
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TABLE 11

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS,
COOPER'S, E50 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT h
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TABLE 11. Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS,
COOPER'S #50 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT h

250
225
200
175
160
150
140
130
120
110
100
95
90
85
80
75
70
65
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TABLE 12

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS,
COOPER'S E6Q LOADING

Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT h
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TABLE 12. Continued

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS,
COOPER'S #60 LOADING

Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT h
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TABLE 13

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S

#40 LOADING

Values in Thousands of Pounds per Rail

SHORTER SEGMENT h
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TABLE 13 Continued

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S

#40 LOADING

Values in Thousands of Pounds per Rail

SHORTER SEGMENT h
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TABLE 14

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S

#50 LOADING

Values in Thousands of Pounds per Rail

SHORTER SEGMENT h
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TABLE 14. Continued

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S
#50 LOADING

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l\
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TABLE 15

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S
#60 LOADING

Values in Thousands of Pounds per Rail

SHORTER SEGMENT h
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TABLE 15. Continued

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S

#60 LOADING

Values in Thousands of Pounds per Rail

SHORTER SEGMENT Zi
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TABLE 16

EQUIVALENT UNIFORM LOADS FOR COOPER'S #40 LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT l\

Longer

Segment

lz
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TABLE 16. Continued

EQUIVALENT UNIFORM LOADS FOR COOPER'S .#40 LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT h
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TABLE 17

EQUIVALENT UNIFORM LOADS FOR COOPER'S #50 LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT h

-s

1

J
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TABLE 17. Continued

EQUIVALENT UNIFORM LOADS FOR COOPER'S E5Q LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT h

60
I

65 70 75 80

250 2830 2820 2810J2810 2800J2790 2780 2770 2760J2750 2720 2700 2680
225 2860 2850 284012840 2830 2820 2810 1 2800

!

27802770 i2730>2710'2690
200 S2890 287012860 2860 2850 2850 2840

;

2820 ! 28 10 2790 27501272012700
2920 2900:2900 2900i2890j2880 2860 2850,2840 2800|2760 2750! 2720

2940i2930|2920 2920 2910 2900 2890 2870|2850 2820 2790 2760J2730
2960 2940|2950 2940 2930 2920 2910|2880 2870 2840 2800 27701 2740
2980 2965 2960 2950i2950 2940 2920 2900 2890 2850|2810 2775 2750
3000 2985 2985 2975'2970 2955 2940 2920

\

2905 2860 2820i2785
3020 3005 3005 2995 s 2995 2960 2960 2940 2920 2880 2835
304513030 3030 3020^3015 3000 2985 2965 2940 2895
3080 3065 3060 3050|3045 1 3030 301012985 2965
3115 3095 3075 3065^3060 3050 3020 ! 3001
3140 3120 3100 3080 3075 3060 3035

175
160
150
140
130
120
110
100
95
90
85
80
75
70
65
60. .

90 95 100 110 120 130 140

3160 3140 3120 31053090 3070
31853165314531253110
3200318031553140
320031803160
3200:3180
3190 . .

For h and I, each >142 ft. q = /2.5 +-f
\ h

1000

Pounds per Lineal Foot per Rail.
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TABLE 18

EQUIVALENT UNIFORM LOADS FOR COOPER'S #60 LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT h

Longer

Segment

k
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TABLE 18. Continued

EQUIVALENT UNIFORM LOADS FOR COOPER'S #60 LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT h
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TABLE 19

INFLUENCE-LINE ORDINATES FOR M FOR GIRDER BRIDGES WITHOUT FLOOR-

BEAMS

Values of^
SHORTER SEGMENT h

Longer

begment

Iz
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TABLE 19. Continued

INFLUENCE-LINE ORDINATES FOR M FOR GIRDER BRIDGES WITHOUT FLOOR-

BEAMS

Values of ^-
2

LI

SHORTER SEGMENT h
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TABLE 20

RECIPROCALS OF INFLUENCE-LINE ORDINATES FOR M FOR GIRDER BRIDGES
WITHOUT FLOOR-BEAMS

Values Of ry
lit,

SHORTER SEGMENT h
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TABLE 20. Continued

RECIPROCALS OF INFLUENCE-LINE ORDINATES FOR M FOR GIRDER BRIDGES

WITHOUT FLOOR-BEAMS

Values of

SHORTER SEGMENT
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TABLE 21

BENDING MOMENTS IN BEAMS DUE TO UNIFORM LOAD OP 1 POUND PER
LINEAL FOOT

Values in Foot-pounds

Values equal -^
= Area of Influence Line for M

SHORTER SEGMENT h
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TABLE 21. Continued

BENDING MOMENTS IN BEAMS DUE TO UNIFORM LOAD OF 1 POUND PER
LINEAL FOOT

Values in Foot-pounds

Values equal ^ = Area of Influence Line for M
SHORTER SEGMENT h
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