

IN

RAILWAY BRIDGES

WITH

FORMULAS AND TABLES

BY

GEORGE E. BEGGS, A.B., C.E.

Assistant Professor of Civil Engineering in Princeton University; Associate Member of the American Society of Civil Engineers; Member of the Society for the Promotion of Engineering Education

FIRST EDITION FIRST THOUSAND

NEW YORK JOHN WILEY & SONS, INC. London: CHAPMAN & HALL, Limited 1916

PREFACE

The author wishes to acknowledge his indebtedness to the American Bridge Company for material assistance, and in particular to Mr. O. E. Hovey, Assistant Chief Engineer of this company, for his encouragement and help. The author also desires to acknowledge the valuable suggestions made in the revision of the original text by Professor F. H. Constant, of the Civil Engineering Department of Princeton. To Professor William H. Burr of Columbia University, the writer is permanently indebted for the logical and thorough instruction received from him as a student.

G. E. B.

PRINCETON UNIVERSITY December, 1915.

CONTENTS

			PAGE
ARTICLE	Ï.	Influence Lines. Definition and Use	1
ARTICLE	II.	Sum and Rate of Variation of Ordinate-load Products between Two Diverging Lines	5
ARTICLE	III.	Sum and Rate of Variation of Ordinate-load Products for any Influence Line. Position of Loading for Maximum Live-load Stress	7
ARTICLE	IV.	Girder Bridge without Panels. General Formulas for Reactions, Shears, and Bending Moment with its Rate of Variation	13
ARTICLE	v.	General Formulas for Pier Reaction and its Rate of Variation. Illustrative Problem	23
ARTICLE	VI.	Girder Bridge with Panels. General Formulas for Live-load Stresses and their Rate of Variation. Illustrative Problem	27
ARTICLE	VII.	Through Pratt Truss. General Formulas for Live- load Stresses and their Rate of Variation. Illus- trative Problems	31
ARTICLE	VIII.	Three-hinged Arch. Application of the General Method to the Calculation of Live-load Stresses	48
ARTICLE	IX.	Equivalent Uniform Loads	54
ARTICLE	Х.	Method of Calculating Table of Load Sums and Moment Sums for any Standard Loading. Illus- trative Example	57
ARTICLE	XI.		59
		Tables 1 to 21 .	67

و د ر و و و و و د ر و م و و و و و ر د م و و

ARTICLE I.

INFLUENCE LINES. DEFINITION AND USES.

INFLUENCE lines are useful in determining the position of live load on a bridge to produce maximum effect. They offer also a convenient method of deriving general algebraic formulas for stresses and rules for maximum when the general relations between influence lines and algebraic formulas are once understood; and in the case of the more complex problems of skew bridges, arches, cantilever bridges, etc., the influence lines themselves serve as a most direct method for the determination of the maximum live-load stresses.

An influence line may be defined as a line showing the variation in any function caused by a single *unit* load as it moves across the bridge. Vertical loads only will be considered. The function may be a reaction, bending moment, shear, stress, deflection, or any quantity whatsoever at a given part of a bridge, provided that its value is a function of the position of the unit load on the bridge.

Refer to Fig. 1a. Consider the span AB, and let Z be any function at the fixed position C on the span L. If the load unity moves across the span AB and the value of Z be calculated for each position of the unit load and its value z plotted below the corresponding position of this load as an ordinate from a horizontal base line, the locus of the plotted points will be the influence line for Z. For example, if Z be the bending moment at the fixed section C in a beam of span L, the influence line will be as shown in Fig. 1b. In plotting influence lines, ordinates repre-

senting positive quantities are plotted above the base linc; and negative, below. In case the influence line consists of several straight segments, it is necessary to determine the value of the ordinates only where the influence line has a change of direction; *i.e.*, at the *salient points*. For example,

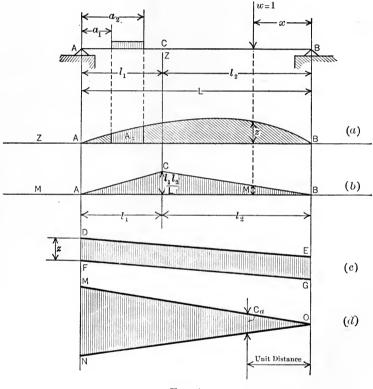


FIG 1.

the points A, C, and B are the salient points of the influence line in Fig. 1b.

The value of Z caused by a single load w is equal to wz, if z is the influence ordinate below w. The value of Z caused by a series of loads w_1 , w_2 , w_3 , etc., is

$$Z = w_1 z_1 + w_2 z_2 + w_3 z_3 + \ldots = \Sigma w z \quad . \quad . \quad (1)$$

where z_1 , z_2 , z_3 , etc., are the influence ordinates below the corresponding loads. It will be convenient to speak of such a quantity as wz as an *ordinate-load product*.

Formula (1) therefore may be expressed thus:

Z = Sum of ordinate-load products.

The area between the influence line and the base line is called the *influence area*. It may be shown that the value of Z caused by a uniform load on the bridge is proportional to the area A_z of the influence line between the ordinates at the extremities of the uniform load. If the uniform load in Fig. 1a has an intensity of q per unit of length, the load in the length dx equals q dx, and the influence of this elementary load on the value of Z is zq dx, where z is the influence ordinate below q dx. Summing up for the length of the uniform load,

$$Z = q \sum_{a_1}^{a_2} z dx = q A_z \quad \dots \quad \dots \quad (2)$$

If a series of equal loads w is on the span, the value of Z is

If a series of unequal loads, w_1, w_2 , etc., is multiplied by the corresponding ordinates of an influence line or a portion of an influence line which has a constant ordinate z, as in Fig. 1c, the value of Z is

$$Z = z(w_1 + w_2 + \ldots) = z\Sigma w = zW \quad . \quad . \quad (4)$$

where W equals the sum of these loads.

If a series of unequal loads is multiplied by the corresponding ordinates of an influence line or a portion of an influence line consisting of two diverging lines, as shown in Fig. 1d, the value of Z, or the sum of the ordinate load products, and the rate at which Z varies as the loading advances, are given by the two theorems that follow. The *slope* of a line is defined at the beginning of Art. 2.

Theorem I.

The sum of the ordinate-load products between two diverging lines equals the difference between the *slopes* of the two lines multiplied by the sum of the moments of the loads about the intersection of these lines.

In symbols, this is stated as

Theorem II.

The rate at which the sum of the ordinate-load products between the two diverging lines increases as the loading moves away from the intersection of these lines equals the difference between the *slopes* of the two lines multiplied by the sum of the loads.

In symbols, this is stated as

$$\frac{dZ}{dx} = C_a W_a = \frac{d(C_a M_a)}{dx} = C_a \frac{dM_a}{dx} \quad . \quad . \quad . \quad (5a)$$

The proofs of these theorems follow in the next article.

ARTICLE II.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS BETWEEN THE TWO DIVERGING LINES.

CONSIDER the diverging lines DAB and AC in Fig. 2. Use the following notation:

w = any vertical load.

z =ordinate below w in the angle BAC.

 $Z = \Sigma w_n z_n =$ sum of ordinate-load products.

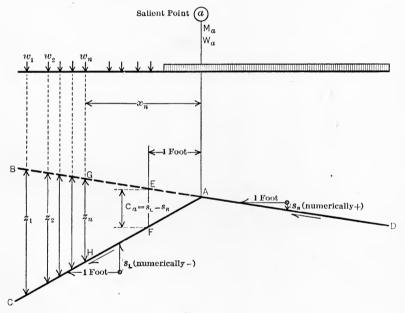


FIG. 2.

 $M_a = \Sigma w_n x_n =$ moment sum of all loads to left of Aa about A.

 $W_a = \Sigma w_n = \text{load sum of all loads to left of } Aa.$ $s_R = \text{slope of line } DA = \text{tangent of angle which } DA$ makes with the horizontal.

 s_L = slope of line AC = tangent of angle which AC makes with the horizontal.

 $C_a = \frac{z_n}{x_n} = (s_L - s_R) = \text{length of ordinate unit distance}$ from A.

Slopes are counted numerically positive when upward to the left. The sign of C_a (called the coefficient at salient point A) is, accordingly, negative when AC diverges below DA produced to the left of A. The value of C_a may be

determined graphically as $\frac{z_n}{x_n}$ or it may be figured algebraically as $(s_L - s_R)$.

Proof of Theorem I, or that $Z = C_a M_a$.

Consider the load w_n distant x_n from the salient point a. By the similar triangles AEF and AGH,

$$\frac{C_a}{1.00} = \frac{z_n}{x_n}, \text{ or } z_n = C_a x_n.$$

Therefore,

Summing up all of the ordinate-load products,

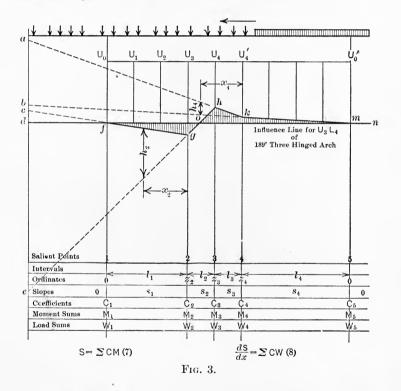
$$Z = \Sigma w_n z_n = C_a \Sigma w_n x_n = C_a M_a. \quad . \quad . \quad (5)$$

Proof of Theorem II, or that $\frac{dZ}{dx} = C_a W_a$.

From equation (A) above, the increase in the ordinateload product $w_n z_n$ for an advance dx_n of the load is

$$w_n dz_n = C_a \cdot w_n \cdot dx_n.$$

Summing up the increases of all the ordinate-load products and noting that dx is the same for all loads,


$$dZ = \Sigma w_n dz_n = C_a dx \cdot \Sigma w_n = C_a \cdot W_a \cdot dx.$$

Dividing by dx, $\frac{dZ}{dx} = C_a W_a = \frac{d(C_a M_a)}{dx} = \frac{C_a dM_a}{dx}$. (5a)

ARTICLE III.

SUM AND RATE OF VARIATION OF ORDINATE-LOAD PRODUCTS FOR ANY INFLUENCE LINE. POSITION OF LOADING FOR MAXIMUM LIVE-LOAD STRESS.

An influence line of a general type is shown in Fig. 3, this one in particular being for the member U_3L_4 of the

arch shown in Fig. 15. It is assumed that the ordinates at all salient points and the intervals between these points are known. Ordinates and slopes are counted positive or negative as already defined. The *slope of any segment* of the

⁷

influence line equals the ordinate at the left minus the ordinate at the right end of this segment divided by the corresponding interval. The *coefficient* C at any salient point equals the slope of the segment at the left minus the slope of the segment at the right of this point. The subtractions in each case are made algebraically.

It should be remembered, as has already been pointed out in Art. 2, that the value of any coefficient C may also be measured graphically from an influence line which has been drawn to scale. For example, in Fig. 3 the value of

the coefficient
$$C_2 = \frac{h_2}{x_2}$$
 and $C_4 = \frac{h_4}{x_4}$.

The algebraic calculation of the coefficients at all salient points of the influence line in Fig. 3 is given below. If it be assumed that this influence line has been drawn to scale, the signs of the numerical values of the slopes and coefficients will be as given in the parentheses.

$$s_{1} = \frac{0 - z_{2}}{l_{1}} (+) \qquad C_{1} = 0 - s_{1} (-)$$

$$s_{2} = \frac{z_{2} - z_{3}}{l_{2}} (-) \qquad C_{2} = s_{1} - s_{2} (+)$$

$$s_{3} = \frac{z_{3} - z_{4}}{l_{3}} (+) \qquad C_{3} = s_{2} - s_{3} (-)$$

$$s_{4} = \frac{z_{4} - 0}{l_{4}} (+) \qquad C_{4} = s_{3} - s_{4} (+)$$

$$C_{5} = s_{4} - 0 (+)$$

A numerical evaluation of the slopes and coefficients for this influence line is given in Fig. 15 of Art. 8, which the reader should check in order to understand completely the method of procedure. These coefficients should also be checked by the graphical method as already explained. For example, in Fig. 15 the value of $C_2 = \frac{2.59}{30} = .0863$.

It will be noted in the algebraic calculation of the coefficients C at all salient points that each slope enters once

as positive and once as negative. Therefore the sum of all coefficients equals zero.

This formula serves as a check on the values of the coefficients which have been determined either by calculation or by graphical measurement.

The general formulas for the sum of the ordinate-load products for any influence line (viz., with several salient points such as the one shown in Fig. 3) may be arrived at by considering the two contiguous sloping sides of the influence line meeting at each salient point as two diverging lines. The entire influence line is thus made up of pairs of diverging lines (see Fig. 3) to each pair of which formula (5) may be directly applied. Thus in Fig. 3,

Ordinate	e-load	$\operatorname{products}$	in	dfc	=	C_1M_1	(-)
"	" "	"	"	cge	=	C_2M_2	(+)
"	"	"				C_3M_3	
"	"	"	"	akb	=	C_4M_4	(+)
"	"	"				C_5M_5	

The signs of the CM's are + or - according to the signs of the coefficients, for the M's are always positive. Summing up the above equations and observing that the ordinate-load products cancel one another except between the influence line fghkm and its base line fom, it follows that the sum of the ordinate-load products for the influence line, or the live-load stress, is

$$S = C_1 M_1 + C_2 M_2 + \ldots = \Sigma C M_1 \ldots \ldots \ldots (7)$$

The letter S represents in general any stress or sum of ordinate-load products for any influence line, while Z stands for the sum of ordinate-load products for any geometrical figure.

The rate at which S varies as the load advances a distance dx equals

$$\frac{dS}{dx} = \frac{d(C_1M_1)}{dx} + \frac{d(C_2M_2)}{dx} + \text{Etc.}$$

But by formula (5a) this becomes

$$\frac{dS}{dx} = C_1 W_1 + C_2 W_2 + \ldots = \Sigma C W. \qquad (8)$$

 W_1, W_2 , etc., = sum of all of the loads to the left of points 1, 2, etc., respectively, whether on the span or not.

 M_1 , M_2 , etc., = moment of the same loads about points 1, 2, etc., respectively, whether on the span or not.

The above formulas (6), (7), and (8) apply equally well when the loading is headed from left to right instead of from right to left, the latter being the more usual way. In applying these formulas, however, it will save confusion not to reverse the loading, but to turn the influence line end for end, for this operation changes neither the values nor the signs of the coefficients C.

The stress $S = \Sigma CM$ is related to its derivative $\frac{dS}{dx} =$

 ΣCW in the same way that any function is related to its

derivative. Thus, if the value of $\frac{dS}{dx}$ passes through zero as

the loading advances, the stress itself may have reached any one of four conditions; namely,

1.	Numerically	maximum	positive	value.
2.	"	minimum	" "	"
3.	66	maximum	negative	"
4.	" "	minimum	"	"

In practice it is desirable to find the positions of loading to satisfy the first and third conditions. This may be done by proceeding as directed below. It is assumed in stating the following rules that the live load is advancing from right to left. In case the live load advances from left to right, the wheel will be tried first to the left and

then to the right of a salient point. In other words, dx is always an increment in the same direction as the loading advances.

Rule 1.—To determine the position of loading to give a maximum positive stress, place the live load on the part of the bridge corresponding to the positive portion of the influence line. Try a wheel first immediately to the right of a salient point that has a *negative* coefficient and then just to the left of this point. Calculate the value of $\frac{dS}{dx} =$ ΣCW for each of these successive positions of loading. If the sign of $\frac{dS}{dx}$ changes from + to -, a position of loading for maximum positive stress is determined.

Rule 2.—To determine the position of loading to give a numerically maximum negative stress, place the live load on that part of the bridge corresponding to the negative portion of the influence line. Try a wheel first immediately to the right of a salient point that has a *positive* coefficient and then just to the left of this point. Calculate the value of $\frac{dS}{dx} = \Sigma CW$ for each of these successive positions of loading. If the sign of $\frac{dS}{dx}$ changes from - to +, a position of loading for numerically maximum negative stress is determined.

It will be noted that the negative coefficients C occur at those salient points where the angles of the influence line point *upward*, while the positive coefficients C occur at those salient points where the angles point *downward*.

It is unnecessary to seek a position of loading for maximum positive stress by placing a wheel successively to the right and to the left of any salient point which has a positive coefficient; for if $\frac{dS}{dx} = \Sigma CW$ be + when the wheel is to the right of this point, it would have a still larger +

value when the wheel is to the left of the point. A change, therefore, of $\frac{dS}{dx}$ from + to - would not result. Similarly, it may be shown to be unnecessary to seek a numerically maximum negative stress by trying wheels at any salient point which has a negative coefficient.

Formulas (7) and (8) are the general formulas for the solution of the sum of the ordinate-load products of an influence line and the rate of change of this sum, and are applicable to any form of influence line. They give at once a definite solution of the position of a set of loads producing maximum positive and negative stresses in any member of any truss or girder for which an influence line can be drawn and the values of such stresses. The method is particularly advantageous in the case of statically indeterminate structures, such as two-hinged and no-hinged arches, swing bridges, continuous girders, etc., where general analytical criteria for the positions of loads producing maximum stresses cannot readily be expressed and where such maximum stresses have had to be found by assuming positions of loadings and scaling the influence-line ordinates under all the loads, a laborious process and one open to much liability of mechanical inaccuracy.

In applying the present method to the simple forms of girders and trusses (viz., the statically determinate structures where the ordinates of the influence lines are readily expressible algebraically) it will generally be more convenient to transform formulas (7) and (8) in each case whereby the coefficients C may be expressed in terms of the geometric proportions of the truss or girder. This, in the following articles (4 to 7 inclusive), we shall proceed to do for the case of girder bridges (with and without panels), pier reactions, and through Pratt trusses with curved or horizontal chords. The general method will, however, be applied *directly* to the case of the three-hinged arch in Art. 8, which will serve as a typical example of the application of the method to any influence line.

ARTICLE IV.

GIRDER BRIDGE WITHOUT PANELS.

IN Fig. 4 is shown a girder bridge without panels. The live load has advanced beyond the span, this being the

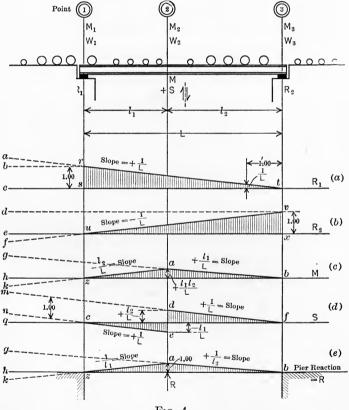


FIG. 4.

most general case. Formulas for the end reactions and for the bending moment and shear at any section will be developed.

The influence line for R_1 is shown in Fig. 4a. The sum of the ordinate-load products within the shaded area *rst* equals the end reaction R_1 , which at the same time is the *end shear* at R_1 .

From Fig. 4a,

	Ordina	te-load	produc	ets in	rst =
	"	"	"	"	atc
_	_ "	"	"	"	arb
	- "	"	"	" "	brsc.

By using formulas (4) and (5), this equation becomes

$$R_1 = \frac{1}{L} M_3 - \frac{1}{L} M_1 - W_1 = \frac{M_3 - M_1}{L} - W_1 . . (9)$$

Any value of M or W may be read directly from Table 2 for the standard loadings given in Table 1. For example, in Fig. 4, if $l_1 = 10'$, $l_2 = 30'$, and w_1 of Cooper's E50 has advanced 14' beyond the left end of the span, we have from Table 2,

At 1, 14' from w_1 ,	$M_{1} =$	350.0^{K_1}	$W_1 =$	62.50^{K}
At 2, 24' from w_1 ,	$M_2 =$	1150.0	$W_{2} =$	112.50
At 3, 54' from w_1 ,	$M_3 =$	5435.0	$W_3 =$	177.50

The formula for R_2 is developed as for R_1 , the method of writing the second member of the first equation being abbreviated in a way readily understood. From the influence line in Fig. 4b, and the formulas (4) and (5),

 $R_2 = \text{Ordinate-load products in } (dvxe - \lfloor dvf + \lfloor fue)$ Or

$$R_2 = W_3 - \frac{1}{L}M_3 + \frac{1}{L}M_1 = W_3 - \frac{M_3 - M_1}{L} \quad . \tag{9a}$$

The sum of the reactions R_1 and R_2 as given by (9) and (9a) equals $W_3 - W_1$, or the sum of the loads on the bridge.

From the influence line in Fig. 4c and formulas (5) or (7), the equation for bending moment may be written:

M = Ordinate-load products in (|gbh - |gak + |kzh).

 \mathbf{Or}

$$M = \frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2 \quad . \quad . \quad . \quad (10)$$

Formula (10) readily follows, likewise, from the general formula (7), $S = C_1M_1 + C_2M_2 + C_3M_3 = \Sigma CM$.

For example, in the case of the bending moment at point 2 in Fig. 4,

$$C_{1} = 0 + \frac{l_{2}}{L}$$

$$C_{2} = -\frac{l_{2}}{L} - \frac{l_{1}}{L} = -1$$

$$C_{3} = \frac{l_{1}}{L} - 0$$

$$M = \frac{l_{2}}{L}M_{1} - M_{2} + \frac{l_{1}}{L}M_{3} \dots \dots (10a)$$

Whence

Taking the derivative of M with respect to the advance dx of the loading toward the left or using formula (8) directly, the rate of variation of the bending moment is

$$\frac{dM}{dx} = \frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \qquad . \qquad . \qquad . \qquad (11)$$

All positions for maximum M may be found by trying wheels at point 2 as directed by Rule 1 of Art. 3. In applying this rule the simultaneous shifting of other wheels of the rigid loading from right to left of points 1 and 3 as a wheel is shifted from right to left of point 2, must be taken into account by substituting in formula (11) the corresponding changed values of W_1 and W_3 . It is to be remembered, as stated in Art 3, that it is entirely unnecessary to try wheels at points 1 and 3.

From the influence line in Fig. 4d, the formula for the intermediate shear S follows by applying formulas (4) and (5):

S = Ordinate-load products in

(mfq - mden - ncq)

Or

$$S = \frac{1}{L}M_3 - W_2 - \frac{1}{L}M_1 = \frac{M_3 - M_1}{L} - W_2 \quad . \quad (12)$$

There is one more thing to be borne in mind in calculating maximum bending moments in a girder bridge without panels: it is the rule for finding the section where the *absolute maximum bending moment* occurs. The rule is often spoken of as the "centre of gravity rule," and may be stated as follows:

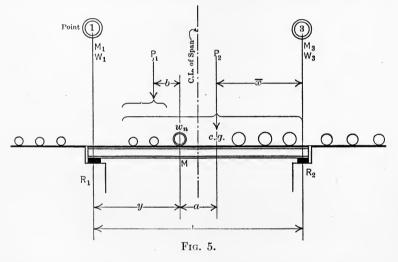
The bending moment under any given wheel becomes maximum when the centre of the span bisects the distance from the wheel in question to the centre of gravity of the loading on the span.

In the practical application of this rule, the procedure is first to find the wheel which gives maximum bending moment at the centre of the span and then to shift this wheel so that the bending moment beneath it becomes an absolute maximum according to the centre of gravity rule. For the usual standard loadings the maximum centre moment closely approximates the absolute maximum bending moment for the spans greater than 70 feet.

The proof of the centre of gravity rule follows. Refer to Fig. 5. Assume that it has been found by trial that the wheel w_n gives the maximum centre moment. The general case where load has advanced beyond the span is taken. In order to get an *absolute maximum* bending moment under w_n , this wheel must be shifted a certain distance from the centre. Let such position be distance yfrom R_1 . The sum of the loads on the span is called P_2 and equals $(W_3 - W_1)$. The centre of gravity of the loads P_2 is distance \overline{x} from R_2 . The sum of the loads on the span to the left of w_n is called P_1 , and their centre of gravity is at the fixed distance b from w_n .

Taking moments about R_2 ,

$$R_1 = \frac{P_2 \bar{x}}{L}$$


Therefore,

$$M = R_1 y - P_1 b = \frac{P_2 \overline{x}}{L} y - P_1 b.$$

In this equation for M, the only variables are \overline{x} and \underline{y} . Therefore, M will be a maximum when the product \overline{xy} is maximum. Note, however, that the sum

$$\overline{x} + y = (L - a) = \text{constant.}$$

If two variables have a constant sum, their product is maximum when the two variables are equal. Therefore, Mis maximum when $\overline{x} = y$. But when $\overline{x} = y$, the distance from w_n to the centre of gravity of the loading is bisected

by the centre of the span. This proves the centre of gravity rule.

In order to apply this rule, a general expression for \overline{x} is needed.

Since $R_1 = \frac{P_2 \overline{x}}{L}$ it follows that $\overline{x} = \frac{R_1 L}{P_2}$. Substitute the value of R_1 from formula (9), and the value $(W_3 - W_1)$ for P_2 .

$$\overline{x} = \frac{M_3 - M_1 - LW_1}{W_3 - W_1} \qquad . \qquad . \qquad . \qquad (13)$$

In the special case where the loading has not advanced beyond the left end of the span, M_1 and W_1 equal zero and \bar{x} becomes

Problems relating to a girder bridge without panels will now be given to illustrate the application of the above formulas and the use of some of the tables following the text.

Problem.—Given a 40-foot deck-girder bridge consisting of one girder per rail. Use Cooper's E50 loading. Find the maximum shear at the end, quarter point, and centre. Determine also the maximum bending moment at the quarter point and at the centre, and the absolute maximum bending moment. All values are to be given *per rail*.

Solution.-Table 5 following the text gives the position of Cooper's loadings for maximum end shear. This table is the result of the solution of end shears for a large number of spans. As a general rule, however, it is safe to assume that w_2 of Cooper's and similar loadings will always give the maximum end or intermediate shear when placed immediately to the right of the given section, the live load being headed toward the left. The exceptions in Table 5 to this general rule are not of prime importance, for the actual value of the shear when w_2 is used is sufficiently close to the maximum even in the exceptional cases. There is no satisfactory criterion for determining the position of loading for maximum shear in girder bridges without panels, for it is as easy to calculate the actual values of the shears for the successive positions of loading as it is to apply any criterion. In the case of bending moment, however, time is saved by using the criterion.

Maximum End Shear.

Use formula (9), $R_1 = \frac{M_3 - M_1}{L} - W_1$. Place wheel 2

of Cooper's E50 immediately to right of R_1 . Take the values of moment and load sums for Cooper's E50 from Table 2.

Maximum end shear = $\frac{4370 - 100}{40} - 12.5 = 94.3^{k}$.

Maximum Shear at Quarter Point. Use formula (12) with w_2 at quarter point.

 $S = \frac{M_3 - M_1}{L} - W_2$

S at $\frac{1}{4}$ point = $\frac{2838.75 - 0}{40} - 12.5 = 58.5^{k}$.

Maximum Shear at Centre.

Using formula (12) with w_2 at centre.

S at centre = $\frac{1600 - 0}{40} - 12.5 = 27.5^k$.

The values for the shears are given in Kips, or thousand of pounds. A comparison of the above shears with those in Table 7 shows agreement of results.

Maximum Bending Moment at the One-Quarter Point.

First compute successive pairs of values for $\frac{dM}{dx}$ for different wheels, first placed to the right and then to the left of the quarter point. A change of sign from + to - indicates a wheel that gives a maximum. Use formula (11),

$$\frac{dM}{dx} = \frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \quad . \quad . \quad . \quad (11)$$

 w_1 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (112.5) + \frac{3}{4} (0) - 0 = +$$

No maximum.

$$\frac{dM}{dx} = \frac{1}{4} (112.5) + \frac{3}{4} (0) - 12.5 = +$$

 w_2 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (0) - 12.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (0) - 37.5 = -$$

 w_3 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (145) + \frac{3}{4} (12.5) - 37.5 = +$$

Maximum

$$\frac{dM}{dx} = \frac{1}{4} (161.25) + \frac{3}{4} (12.5) - 62.5 = -$$

 w_4 at $\frac{1}{4}$ point.

$$\frac{dM}{dx} = \frac{1}{4} (161.25) + \frac{3}{4} (12.5) - 62.5 = -$$

No maximum.

$$\frac{dM}{dx} = \frac{1}{4} (177.5) + \frac{3}{4} (37.5) - 87.5 = -$$

Accordingly, compute the value of M by formula (10) for w_2 and w_3 at quarter point.

M for w_2 at quarter point,

$$M = \frac{1}{4} (2838.75) + \frac{3}{4} (0) - 100 = 609.7$$
 Kip feet.

M for w_3 at quarter point,

 $M = \frac{1}{4}(3563.75) + \frac{3}{4}(37.5) - 287.5 = 631.6$ Kip feet.

The latter value, 631.6, is the maximum bending moment at the quarter point. A comparison of this value

with Table 11 shows agreement of results. Reference to Table 3 indicates that the correct wheel for maximum has been chosen.

Maximum Bending Moment at the Centre.

$$\frac{dM}{dx} = \frac{W_3 + W_1}{2} - W_2$$
, (10a), and
$$M = \frac{M_3 + M_1}{2} - M_2$$
, (11a), when $\frac{l_1}{L} = \frac{1}{2}$

 w_3 at centre,

$$\frac{dM}{dx} = \frac{128.75}{2} - 37.5 = +$$

No maximum.

$$\frac{dM}{dx} = \frac{128.75}{2} - 62.5 = +$$

 w_4 at centre,

$$\frac{dM}{dx} = \frac{145}{2} - 62.5 = +$$

Maximum.

$$\frac{dM}{dx} = \frac{145}{2} - 87.5 = -$$

 w_5 at centre,

$$\frac{dM}{dx} = \frac{145 + 12.5}{2} - 87.5 = -$$

No maximum.

$$\frac{dM}{dx} = \frac{161.25 + 12.5}{2} - 112.5 = -$$

Therefore, maximum centre moment occurs with w_4 at centre.

$$M = \frac{2838.75}{2} - 600 = 819.37$$
 Kip feet.

This value agrees with Table 11; and the position of loading, with Table 3.

Absolute Maximum Bending Moment.

Shift w_4 according to centre of gravity rule, and then recompute the value of M under this wheel by formula (10). Note that new values for l_1 , l_2 , and M_3 must be determined. By formula (13a), when w_4 is at the centre,

$$\overline{x} = \frac{M_3}{W_3} = \frac{2838.75}{145} = 19'.58$$

Therefore for absolute maximum bending moment under

 w_4 , shift loading to left $\frac{20'.00 - 19'.58}{2} = 0'.21$.

The new values of l_1 , l_2 , and M_3 are $l_1 = 20.00 - 0.21 = 19.79$ $l_2 = 20.00 + 0.21 = 20.21$ $M_3 = 2838.75 + .21(145) = 2869.2$

The absolute maximum bending moment =

$$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2$$

= $\frac{19.79}{40} (2869.2) + 0 - 600 = 819.54$ Kip feet.

It appears, therefore, that the absolute maximum bending moment is .17 Kip feet greater than the maximum centre moment. The difference is not great in this particular case, as the required shift of the loading is comparatively small. The position of loading for absolute maximum bending moment agrees with Table 4, and its value agrees with Table 7.

ARTICLE V.

PIER REACTION.

IN Fig. 4e is given the influence line for the pier reaction R between two non-continuous beam spans l_1 and l_2 . From this influence line, the formulas (5) and (7) give

 $R = \text{Ordinate-load products in } (|\underline{gbh} - |\underline{gak} + |\underline{kzh})$ Or,

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right)$$
(14)

Formula (14) may also be derived from formula (10) since the ordinates of the influence line for R bear the constant ratio $\frac{L}{l_1 l_2}$ to the corresponding influence ordinates for M, the position of the live load and the values of l_1 and l_2 remaining fixed.

Therefore,

Substituting the value $M = \frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2$ from formula (10) in formula (16), the result is again formula (14).

For equal spans,

$$l_1 = l_2 = l$$
 so that $R = \frac{M_3 + M_1 - 2M_2}{l}$. (14a)

The rate of change of R for a movement dx of the loading to the left is

$$\frac{dR}{dx} = \frac{W_3}{l_1} + \frac{W_1}{l_1} - \frac{L}{l_1 l_2} W_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right)$$
(15)

For equal spans, $l_1 = l_2 = l$, so that

In the last member of formula (15) the quantity within the parentheses is the same as the expression for $\frac{dM}{dx}$ in formula (11). It follows, therefore, that the same position of loading gives maximum R and maximum M for any given values of l_1 and l_2 .

Problem.—(a) Find the maximum pier reaction per rail between two simple beam spans $l_1 = 10$ ft. and $l_2 = 30$ ft. (b) Find the maximum pier reaction between two simple beam spans, each having a length of 20 feet. Use Cooper's E50 loading.

Solution of Problem (a).

Use formula (15) to find position of loading for maximum R.

$$\frac{dR}{dx} = \frac{L}{l_1 l_2} \left(\frac{l}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right) \quad . \quad (15)$$

 w_2 at pier.

 $\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} (145) + \frac{30}{40} (0) - 12.5 \right) = +$

Maximum.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} \left(145 \right) + \frac{30}{40} \left(0 \right) - 37.5 \right) = -$$

 w_3 at pier.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} \left(145 \right) + \frac{30}{40} \left(12.5 \right) - 37.5 \right) = +$$

Maximum.

$$\frac{dR}{dx} = \frac{40}{10 \times 30} \left(\frac{10}{40} \left(161.25 \right) + \frac{30}{40} \left(12.5 \right) - 62.5 \right) = -$$

Use formula (14) to compute the value of R.

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2.$$

 w_2 at pier.

$$R = \frac{2838.75}{30} + \frac{0}{10} - \frac{40}{10 \times 30} (100) = 81^{k}.$$

 w_3 at pier.

$$R = \frac{3563.75}{30} + \frac{37.5}{10} - \frac{40}{10 \times 30} (287.5) = 84^k.$$

The latter value of 84^k is the maximum pier reaction. Its value agrees with Table 14 and the position of loading agrees with Table 3.

Solution of Problem (b).

Use formulas (14a) and (15a),

$$R = \frac{M_3 + M_1 - 2M_2}{l}$$
, and $\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l}$.

 w_3 at pier.

$$\frac{dR}{dx} = \frac{128.75 + 0 - 2 \times 37.5}{20} = +$$

No maximum.

$$\frac{dR}{dx} = \frac{128.75 + 0 - 2 \times 62.5}{20} = +$$

 w_4 at pier.

$$\frac{dR}{dx} = \frac{145 + 0 - 2 \times 62.5}{20} = +$$

Maximum.

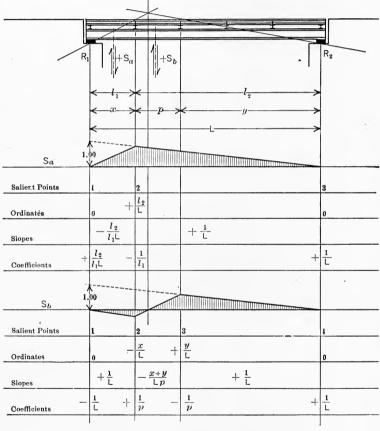
$$\frac{dR}{dx} = \frac{145 + 0 - 2 \times 87.5}{20} = -$$

 w_5 at pier.

$$\frac{dR}{dx} = \frac{145 + 12.5 - 2 \times 87.5}{20} = -$$

$$\frac{dR}{dr} = \frac{161.25 + 12.5 - 2 \times 112.5}{20} = -$$

Therefore, maximum pier reaction occurs when w_4 is at the pier.


$$R = \frac{2838.75 - 0 - 2 \times 600}{20} = 81.9^{k}.$$

This maximum pier reaction of 81.9^k agrees with value in Table 7 and Table 14, while the position of loading agrees with that given by Table 3.

ARTICLE VI.

GIRDER BRIDGE WITH PANELS.

In Fig. 6 is shown a girder bridge with panels. It is as-

sumed that the live load has advanced beyond the left end of the span, this being the most general case. The formulas for R_1 and R_2 are the same as formulas (9) and (9a) for the girder without panels, if the girder bridge with panels has end floor-beams; but if this bridge has end struts with the end stringers resting on separate pedestals, the value of R_1 beneath the end of the main girder is the same as S_a , the shear in the end panel, as given by formula (17) to follow.

Inasmuch as the maximum bending moment in a beam carrying concentrated loads always occurs beneath a concentration, the maximum bending moments in the main girder of a girder bridge with panels will occur at the floorbeams. The influence line for the bending moment at the floor-beams is the same as for the bending moment in a girder bridge without panels; accordingly, formulas (10) and (11) are to be used in finding maximum bending moments at the floor-beams.

It remains to derive formulas for the maximum shears S_a in the end panel and S_b in any intermediate panel. In Fig. 6 are given the influence lines for S_a and S_b . The correctness of the ordinates is at once evident. The slopes and coefficients are calculated as explained in Arts. 2 and 3. The general formulas for S_a and S_b and their rates of variation may be written at once by use of formulas (7) and (8).

$$S_a = \frac{1}{L}M_3 + \frac{l_2}{l_1L}M_1 - \frac{1}{l_1}M_2 = \frac{1}{l_1}\left(\frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2\right)$$
(17)

$$\frac{dS_a}{dx} = \frac{1}{L}W_3 + \frac{l_2}{l_1L}W_1 - \frac{1}{l_1}W_2 = \frac{1}{l_1}\left(\frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2\right)$$
(18)

Formula (17) when compared with formula (10) shows that S_a is equal to the bending moment at the first intermediate floor-beam divided by the length of the first panel. Formula (18) when compared with formula (11) shows that the same position of loading that gives maximum bending moment at the first intermediate floor-beam will also give maximum shear in the end panel.

Formulas (19) and (20) are perfectly general and will serve for any assumed series of vertical loads in any position. For the usual standard loadings and panel lengths, however, it is not necessary to advance any loads beyond an intermediate panel for maximum shear in this panel. Therefore, for practical purposes formulas (19a) and (20a)

$$S_b = \frac{M_4}{L} - \frac{M_3}{p} = \frac{1}{p} \left(\frac{p}{L} M_4 - M_3 \right)$$
 . (19a)

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_3}{p} = \frac{1}{p} \left(\frac{p}{L} W_4 - W_3 \right) \quad . \quad . \quad (20a)$$

Illustrative Problem.—A single track through girder bridge with a floor system consisting of stringers and floorbeams, both end and intermediate, has six panels of 20 feet each. Find the maximum end reaction and the shear in panels 0 - 1, 1 - 2, and 2 - 3, using Cooper's E50 loading.

Solution.—For maximum end reaction place wheel 2 at left end. Use formula

$$R_{1} = \frac{M_{3} - M_{1}}{L} - W_{1} \qquad (9)$$
$$R_{1} = \frac{27651 - 100}{120} - 12.5 = 217.1^{k}$$

Note that the above value agrees with Table 7. For maximum shear in panel 0 - 1, find critical wheel by formula (18) and then compute shear by formula (17).

Try wheel 3 at panel point 1.

$$\frac{dS_a}{dx} = \frac{1}{20} \left(\frac{1}{6} (365) + 0 - 37.5 \right) = +$$

Maximum
$$\frac{dS_a}{dx} = \frac{1}{20} \left(\frac{1}{6} (365) - 0 - 62.5 \right) = -$$

Note that the position of loading agrees with Table 3. For this position of loading formula (17) gives

$$S_a = \frac{1}{20} \left(\frac{1}{6} (21895) + 0 - 287.5 \right) = 168.1^k.$$

For maximum shears in the intermediate panels, determine the position of loading by formula (20a) and the shear by formula (19a).

Panel 1–2. Try wheel 3 at panel point 2.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (306.25) - 37.5 \right) = +$$
Maximum.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (322.50) - 62.5 \right) = -$$

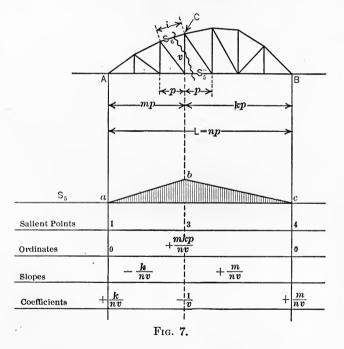
$$S_b = \frac{1}{20} \left(\frac{1}{6} (15051.25) - 287.5 \right) = 111.0^k.$$

Panel 2–3. Try wheel 3 at panel point 3.

$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (240) - 37.5 \right) = +$$

Maximum.
$$\frac{dS_b}{dx} = \frac{1}{20} \left(\frac{1}{6} (240) - 62.5 \right) = -$$

$$S_b = \frac{1}{20} \left(\frac{1}{6} (9345) - 287.5 \right) = 63.5^k.$$


The above values for shears agree with the values given by Table 9. The wheel for maximum shear in panels of girder and truss bridges is given in Table 6.

ARTICLE VII.

THROUGH PRATT TRUSS. GENERAL FORMULAS FOR LIVE-LOAD STRESSES AND THEIR RATE OF VARIATION. ILLUSTRATIVE PROBLEMS.

The general formulas $S = \Sigma CM$ and $\frac{dS}{dx} = \Sigma CW$ may

be used to write the equations for the live-load stresses in any member of a framed structure as soon as its influence

line has been drawn and the ordinates at the salient points determined.

In Figs. 7, 8, 9, and 10 are shown all the influence lines

needed in writing the formulas for the live-load stresses in a through Pratt truss with non-parallel or parallel chords. The influence ordinate at any salient point is the calculated stress due to a one-pound load on the bridge at the panel point above this salient point. By easily discovered relations between similar triangles, the algebraic value of each stress, or influence ordinate, is expressed in terms that are most readily evaluated in any numerical problem.

The derivation of any one formula for a live-load stress is typical. Refer to Fig. 7. The stress in the lower chord member S_5 is found by taking moments about C. The influence line for S_5 is straight over each of the two intervals kp and mp. The ordinates at the salient points 1 and 4 are zero. The ordinate at salient point 3 must be found by placing a one-pound load at the lower panel point of the truss above this salient point and calculating the value of S_5 . For the unit load so placed,

Reaction at
$$A = \frac{kp}{np} = \frac{k}{n}$$

By moments about C,

$$\frac{k}{n}\left(mp\right) = S_{5}\left(v\right)$$

Therefore,

 $S_5 = + \frac{mkp}{nv} =$ Influence ordinate at 3.

The slopes of the segments of this influence line follow.

Slope of
$$ab = -\frac{mkp}{nv} \div mp = -\frac{k}{nv}$$

Slope of $bc = +\frac{mkp}{nv} \div kp = +\frac{m}{nv}$

The coefficients C for use in the general formula $S = \Sigma CM$ are now found.

$$C_1 = 0 + \frac{k}{nv} = + \frac{k}{nv}$$

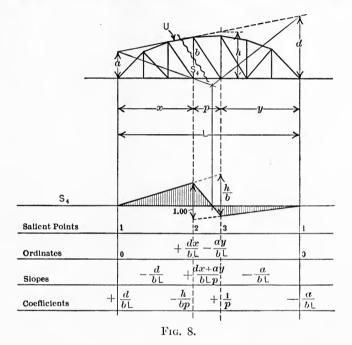
$$C_3 = -\frac{k}{nv} - \frac{m}{nv} = -\frac{1}{v}$$
$$C_4 = \frac{m}{nv} - 0 = +\frac{m}{nv}$$

Therefore, for the position of the live load advanced beyond the limits of the span, the general formula for S_5 is

$$S_5 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_3 + \left(\frac{k}{nv}\right)M_1.$$

However, in actual practice it is usually not necessary to advance the loading beyond the left end of the span in order to get a maximum value of S_5 . The usual formula will therefore not contain the term M_1 , since this will be zero; thus,

$$S_5 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_3 \quad . \quad . \quad . \quad (21)$$

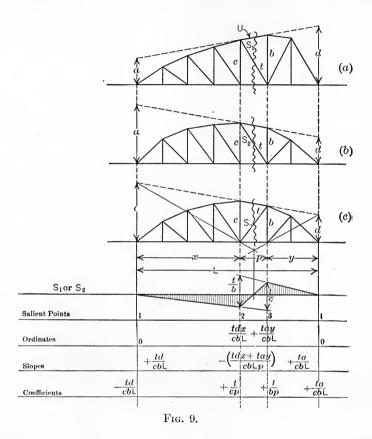

Inasmuch as the horizontal component of the stress $S_{\mathfrak{s}}$ in an inclined top chord member or end post equals the stress $S_{\mathfrak{s}}$ in a corresponding lower chord member, the stress $S_{\mathfrak{s}}$ in any top chord member or end post may be found by

In Fig. 8 is shown the influence line for the stress S_4 in any vertical post. The influence ordinates are determined by taking moments about the intersection of the upper and lower chord members which are cut by the section. The algebraic values of these ordinates are transformed by use of easily discovered relations between similar triangles. The slopes and coefficients are then calculated in the usual way. The influence line indicates that the live load should advance into but not beyond the panel p for a maximum compression, and for this reason M_1 and M_2 equal zero for the usual case. The numerical value of

the maximum compression S_4 in a vertical post is, therefore,

$$S_4 = \left(\frac{a}{bL}\right)M_4 - \left(\frac{1}{p}\right)M_3 \quad . \quad . \quad . \quad (23)$$

The coefficients for the stress in any inclined web member are given by Fig. 9. The quantities for S_1 and S_2 are



as shown, and the quantities for S_3 are of the same algebraic form except that they are of opposite sign throughout. For the usual position of the live load advanced from the right into but not beyond the panel p for maximum stress, the moment sums M_1 and M_2 equal zero, and the numerical values of the maximum tension S_1 and S_2 and of the maximum compression S_3 are given by the following formula:

$$S_1, S_2, \text{ or } S_3 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_3 \quad . \quad . \quad (24)$$

 $\mathbf{34}$

In a special case where the loading must be advanced beyond the panel p until the tension in the inclined counterweb member S_2 is balanced by the dead-load compression

in this same member, the value of M_2 is not zero, and the formula for S_2 becomes

$$S_{2} = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{3} + \left(\frac{t}{cp}\right)M_{2}$$

Or, letting $M_{c} = \left(M_{3} - \frac{b}{c}M_{2}\right)$,
$$S_{2} = \left(\frac{ta}{cbL}\right)M_{4} - \frac{t}{bp}\left(M_{3} - \frac{b}{c}M_{2}\right) = \left(\frac{ta}{cbL}\right)M_{4} - \left(\frac{t}{bp}\right)M_{c} \quad (25)$$

Note that the coefficients of M_4 and M_c in this formula are the same as the coefficients for M_4 and M_3 in formula (24).

The influence line for the counter-tension in a vertical post is shown in Fig. 10. For the usual case, the loading advances beyond the panel but not beyond the end of the span. Therefore M_1 is equal to zero, so that

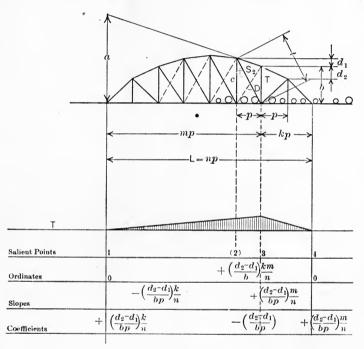


FIG. 10.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_o \quad . \quad (26)$$

where K and M_o stand for the corresponding terms in the parentheses. In order that T be a maximum the live load must advance beyond the position for the maximum tension S_2 until the tension as computed by formula (25) becomes equal to the dead-load compression in this same member. For this position of the live load, the value of T is then computed by using formula (26). It may be noted that

ć

some specifications state that only $\frac{2}{3}$ of the dead-load compression is to be counted as effective in counteracting the live-load tension in an inclined counter-web member. This specification has been observed in the problem to follow.

A review of the preceding formulas shows that all the live-load stresses may be computed by formulas (21), (22), (23), and (24), except the counter-tension in a vertical post and the tension in a floor-beam hanger. Formula (25) makes it possible to find readily by trial the position of loading for maximum counter-tension in a vertical post, and formula (26) gives the value of this tension. The maximum tension in the floor-beam hanger may be found by the use of formulas (14a) and (15a) for pier reaction between equal spans.

If the chords of the Pratt truss are parallel, there will be no counter-tension in any vertical post. Formula (21) for the stress in a horizontal chord member and formula (22) for the stress in the inclined end post remain unchanged. Formulas (23) and (24) for web stresses are simplified because a = b = depth of truss.

The formulas, therefore, for the Pratt truss•with parallel chords are:

Stress in horizontal chord members =

$$S_{5} = \left(\frac{m}{nv}\right)M_{4} - \left(\frac{1}{v}\right)M_{3} \quad . \quad . \quad . \quad . \quad (21)$$

Stress in inclined end post = $S_6 = \frac{i}{p} S_5$ (22)

Stress in vertical post =
$$S_4 = \left(\frac{1}{L}\right)M_4 - \left(\frac{1}{p}\right)M_3$$
. (29)

Stress in inclined web member =

$$S_1 = \left(\frac{t}{cL}\right)M_4 - \left(\frac{t}{cp}\right)M_3 = \frac{t}{c}S_4 \quad \dots \quad (30)$$

One general formula will suffice for finding the position of loading for maximum chord and web stresses of a Pratt truss with either inclined or parallel chords. The formulas

 $(21),\ (23),\ (24),\ (29),\ and\ (30)$ for these stresses are of one general form

$$S = (G) M_4 - (H) M_3 \quad . \quad . \quad . \quad . \quad (27)$$

where G and H are the corresponding coefficients of M_4

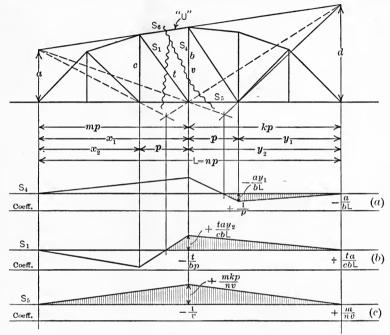


FIG. 11.

and M_3 in the preceding formulas. The rate of variation of S as the load advances is

$$\frac{dS}{dx} = GW_4 - HW_3 = H\left(\frac{G}{H}W_4 - W_3\right) \quad . \quad (28)$$

When any one of the above stresses is a maximum, the value of $\left(\frac{G}{H}W_4 - W_3\right)$ passes through zero as a wheel is shifted from right to left of the salient point 3 in Figs. 7, 8, or 9.

The preceding formulas for the live-load stresses are summarized for convenient reference in Art. 11 preceding

đ

the Tables. The important dimensions and quantities in Figs. 7, 8, and 9 are summarized in Fig. 11. If a uniform live load is used, the shaded areas in Fig. 11a, b and c multiplied by the intensity of the uniform load will give the maximum live-load stresses. The algebraic value of any one of these triangular areas is conveniently expressed as the base of the triangle times $\frac{1}{2}$ of the given algebraic ordinate. The lengths of the bases of the shaded areas in Figs. 11a and b may be readily determined by one of the constructions shown in Figs. 12a and 12b, which give the position of the unit load for zero stress in the members indicated. The proofs that these constructions locate neutral points are not given, for they are generally known, and are proved in numerous texts on bridges. (See Marburg's "Framed Structures and Girders," Vol. I, page 392.)

The application of the preceding formulas will now be made to the calculation of the live-load stresses in the two single track through Pratt trusses shown in Figs. 13 and 14. A convenient procedure is as follows:

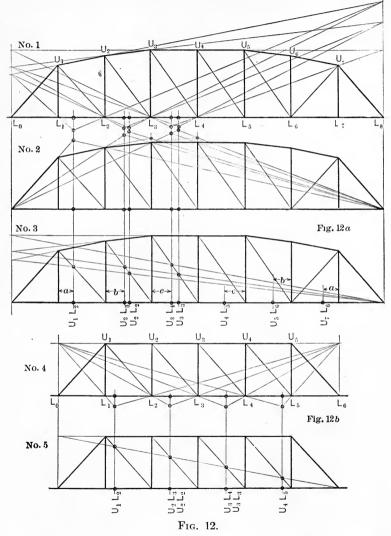
1. Determine the lengths of all inclined members and write their values on the truss outline.

2. Determine the values of the intercepts a as defined by Fig. 11 and write their values on the truss outline.

3. Write on the truss outline the distances of the several panel points from the right end of the span.

4. Write down the reciprocals of the span, panel length, and lengths of vertical members.

5. Make a form for tabulating calculations and list members in some convenient form as is done in Figs. 13 and 14.


6. Calculate the numerical values of the coefficients G and H for the several members by use of the formulas already derived.

7. Determine the position of the loading for maximum

stress by finding the position of loading causing $\left(\frac{G}{H}W_4 - W_3\right)$

to pass through zero, and for this position of loading select from Table 2 the corresponding values of M_4 and M_3 . At

VARIOUS CONSTRUCTIONS USED TO FIND NEUTRAL POINTS IN PRATT TRUSSES.

the same time tabulate the length L_1 of loading causing maximum stress as this value is used in the impact formula

$$I = S \cdot \frac{300}{L_1 + 300}.$$

8. Calculate values of $S = GM_4 - HM_3$ and combine with impact and dead-load stresses. When the dead- and live-load stresses are of opposite sign, the combination is usually not algebraic but according to the particular specification that is used.

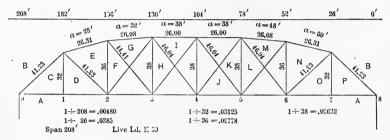


FIG. 13.

Mem.	G	н	Wheel	\mathbf{M}_4	M ₃	GM4	HM3	s	Lı	300 L1+300	I	DL	Total K
EF	00373	0385	3 @ 3	33970	287	127	11	-116	143	.677	- 78	- 40	-234
ED			3 @ 2				13	+210	169		+134	+ 83	
GH			2 @ 4				4	- 83	112		- 60	- 15	-158
GF	.00500	.0450	3 @ 3	33970	287	170	13	+157	143		+106	+ 48	+311
ĪĴ			2 @ 5				4	- 58	86		- 45	+ 7	
ĨĤ			3 @ 4				13	+123	117		+ 88	+ 21	+232
JK			2 @ 5				5	+70			+ 54	- 21	
ML			2 @ 6			51	5	+46			+ 38	- 50	
NO	.01030	.0496	2 @ 7	2307	100	24	5	- 19	34	.898	- 17	+ 83	No
			Ŭ .				- 1						counter
AC = AD	.00390	.0312	4 @ 1	63111	600	247	19	+228	200	.600	+137	+101	+466
BC								-362			-217	-160	-739
AF	.00695	.0278	7 @ 2	59095	2694	410	75	+335	193	.608	+203	+154	+692
BE							·	-339			-206	-156	-701
AH	.00985	.0263	11@3	59661	7310	587	192	+395	194	. 607	+239	+181	
BG								-396			+240	-181	
BI	.01315	.0263	13 @ 4	50901	9585	670	252	-418	178	.627	-262	-194	
CD	. 0385	.0770	4 @ 1	3725	600	144	46	+ 98	44	.872	+ 86	+ 25	+209
Post at	Mem.	M4	Mc	s	3 D	к	Mo	т	Lı	300 L1+300	I	D.L.	Total
5	JK	22261	2390	+16	-14	.00203	11340	+23	114	.725	+17	+3	+ 43
6	ML	8865		+35	-34	.00214	5960		71	.8	+10	+1	+ 24

9. Find positions of loading for maximum counter-tensions in posts and compute values by use of formulas (25) and (26).

PROBLEM 1.

Calculation of Live-load Stresses in a Pratt Truss with Inclined Chord.

The complete data for this problem are given in Fig. 13. Items 1 to 5 of the above method of procedure need no explanation. The values of the coefficients G and H, the position of the loading for maximum stress, and the value of the maximum stress will be determined for several typical members; for example, vertical post, inclined web members, horizontal chords, end post, and inclined chords.

Vertical Post EF.

Formula

$$S_4 = \left(\frac{a}{bL}\right) M_4 - \left(\frac{1}{p}\right) M_3 \dots \dots \dots \dots (23)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{a}{bL} = \frac{28}{36} (.00480) = .00373$$
$$H = \frac{1}{p} = .0385$$

Try w_3 at panel point 3. Use Table 2. $L_1 = 143'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00373}{.03850} (440.0) - \frac{37.5}{0} + \frac{+}{62.5} - \frac{-}{-}$$

Therefore w_3 at 3 gives a maximum.

 $S = GM_4 - HM_3 = .00373(33970) - .0385(287.5)$ = 126.7 - 11.0 = 115.7^k Impact factor = $\frac{300}{L_1 + 300} = \frac{300}{443} = .677$

Impact stress = $.677 \times 115.7 = 78.3^k$.

42

e

Inclined Web Member ED.

Formula

$$S_1 = \left(\frac{ta}{cbL}\right) M_4 - \left(\frac{t}{bp}\right) M_3 \quad . \quad . \quad . \quad (24)$$

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{ta}{cbL} = \frac{41.23 \times 28}{32 \times 36} (.00480) = .00481$$

$$H = \frac{t}{bp} = \frac{41.23}{36} \left(.0385\right) = .0442$$

Try w_3 at panel point 2. Use Table 2. $L_1 = 169'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00481}{.0442}(505.0) - \frac{37.5}{0r} = 0$$
 or $62.5 = -$

Therefore w_3 at 2 gives a maximum. $S = GM_4 - HM_3 = .00481(46255) - .0442(287.5)$ $= 223 - 13 = 210^k$.

Impact factor $=\frac{300}{469}=.640$

Impact stress = $.640 \times 210 = 134^k$.

Inclined Web Member ML.

Formula

$$S_2 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_3 \quad . \quad . \quad . \quad . \quad . \quad . \quad (24)$$

Refer to Fig. 9 or Fig. 11 for definition of dimensions.

$$G = \frac{ta}{cbL} = \frac{46.04 \times 48}{38 \times 36} (.00480) = .00777$$
$$H = \frac{t}{bp} = \frac{46.04}{36} (.0385) = .0493$$

Try w_2 at panel point 6. Use Table 2. $L_1 = 60'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00777}{.0493}(190) - \frac{12.5}{.07} + \frac{$$

Therefore w_2 at 6 gives a maximum.

$$S = GM_4 - HM_3 = .00777(6550) - .0493(100)$$

= 51 - 5 = 46^k.
Impact factor = $\frac{300}{360}$ = .833
Impact stress = .833 × 46 = 38^k.
Lower Chord Member AC = AD.
Formula $S_5 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_3$ (21)
Refer to Fig. 11 for definition of dimensions.
 $G = \frac{m}{nv} = \frac{1}{8}(.03125) = .00390$
 $H = \frac{1}{v} = .0312$
Try w_4 at panel point 1. . Use Table 2. $L_1 = 200'$.
 $\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00390}{.0312}(582.5) - \frac{62.5}{07} + \frac{6}{87.5} - \frac{62.5}{07} + \frac{6}{87.5} - \frac{6}{2}$
Therefore w_4 at 1 gives a maximum.
 $S = GM_4 - HM_3 = .00390(63111) - .0312(600)$
 $= 247 - 19 = 228^k$.
Impact factor = $\frac{300}{500} = .600$
Impact stress = $.600 \times 228 = 137^k$.

 $\frac{1}{1000}$

End of Post BC.

 $S_6 = \frac{41.23}{26} (228) = 362^k$, and impact $= \frac{41.23}{26} (137) = 217^k$.

Lower Chord Member AH.

Formula
$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \ldots (21)$$

44

Formula

Refer to Fig. 11 for definition of dimensions.

$$G = \frac{m}{nv} = \frac{3}{8} (.02632) = .00985$$
$$H = \frac{1}{v} = .0263$$

Try w_{11} at panel point 3. Use Table 2. $L_1 = 194'$.

$$\left(\frac{G}{H}W_4 - W_3\right) = \frac{.00985}{.0263}(567.5) - \frac{190}{0} + \frac{.00985}{.025} + \frac{.00985}{.025}$$

Therefore w_{11} at 3 gives a maximum.

$$S = GM_4 - HM_3 = .00985(59661) - .0263(7310)$$

= 587 - 192 = 395^k.
Impact stress = $\frac{300}{494}S = .607 \times 395 = 239^k$.

Top Chord Member BG.

Formula

Counter-Tension in Post at Panel Point 5.

Formulas

J

T =tension in post.

$$= \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n} M_4 - M_3\right) = K \cdot M_0 \quad (26)$$

Refer to Fig. 10 for definition of dimensions. The calculation of the dead-load compression in JK is not given, but the value is 21^k . Two-thirds of this compression, or 14^k , will be considered effective in counterbalancing the live-load tension in JK. The live load must be advanced beyond the position of maximum live-load tension in JK (*i.e.*, w_2 at panel point 5) until S_2 , or the stress in JK, equals 14^k . This must be done by trial, S_2 being figured each time by formula (25). It is found that when 114' of loading has advanced upon the bridge, this condition is approximately satisfied. For this position of loading

$$M_{4} = 22261$$

$$M_{c} = \left(M_{3} - \frac{b}{c}M_{2}\right) = (2565 - 175) = 2390$$

$$G = \left(\frac{ta}{cbL}\right) = \frac{46.04 \times 38}{38 \times 38} (.00480) = .00580$$

$$H = \left(\frac{t}{bp}\right) = \frac{46.04}{38} (.0385) = .0466$$

Therefore,

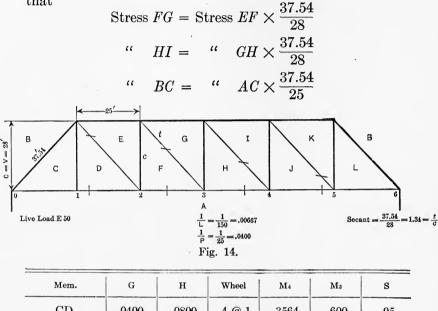
 $S_2 = .00580(22261) - .0466(2390) = 16^k.$

This value of $S_2 = 16^k$ balances $\frac{2}{3} D = -14^k$, nearly enough for practical purposes. Therefore, compute T for this position of the live load.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n}M_4 - M_3\right) = K \cdot M_o$$

$$K = \frac{2 - 0}{38 \times 26} = .00203$$

$$M_o = \frac{5}{8} (22261) - 2565 = 11340$$

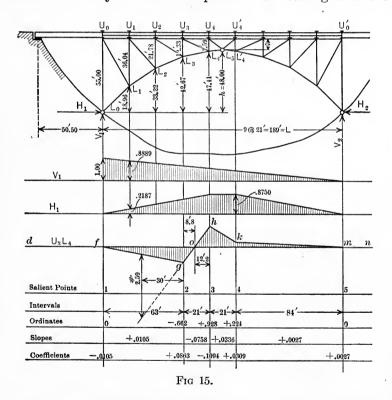

$$T = .00203(11340) = 23^k$$
Impact factor = $\frac{300}{414} = .725$
Impact stress for $T = .725 \times 23 = 17^k$.

PROBLEM 2.

Live-load Stresses in a Pratt Truss with Parallel Chords.

The complete data for this problem are given in Fig. 14. Formulas (21), (29), and (30) give the values of the

coefficients G and H, which are identical for several members of any Pratt truss with parallel chords. The procedure for finding the positions of the loading and maximum stresses is exactly as in Problem 1. It should be noted that


$\mathop{ m CD}_{ m EF}$.0400 .00667	.0800 .0400	$\begin{array}{c} 4 @ 1 \\ 3 & 3 \end{array}$	$\begin{array}{c} 3564 \\ 13520 \end{array}$	600 287	95 79
${ m FG}{ m GH}$.00667	.0400	2 " 4	6170	100	106 37
HI JK	.00894	.0536	2 " 5	2179	100	50 14
DEBC	.00894	. 0536	3 " 2	21895	287	$\begin{array}{c}181\\272\end{array}$
AC = AD AF = BE	.00595 .01190	. 0357 . 0357	$\begin{array}{cccc} 4 & {}^{\prime\prime} & 1 \\ 7 & {}^{\prime\prime} & 2 \end{array}$	$33970 \\ 31375$	$\begin{array}{c} 600 \\ 2694 \end{array}$	$\begin{array}{c}181\\278\end{array}$
BG	.017,85	. 0357	12 " 3	34411	8385	314

The stresses in all of the chord members may be checked by use of Table 8, and the stresses in the end post and web members may be checked by Table 9. The stress in CDagrees with the maximum pier reaction in Table 7. Table 3 may be used to find the position of loading for maximum chord stresses, and Table 6 gives position of loading for maximum web stresses.

ARTICLE VIII.

THREE-HINGED ARCH. APPLICATION OF THE GENERAL METHOD TO THE CALCULATION OF LIVE-LOAD STRESSES.

THE general formulas $\frac{dS}{dx} = \Sigma CW$ and $S = \Sigma CM$ may be used directly to find the position of loading and the

value of the maximum live-load stress in any member of a framed structure as soon as the influence line for this member and the ordinates at all salient points have been determined. This method is applied to the calculation of maximum live-load stresses for the three-hinged arch shown in Fig. 15. Cooper's *E*40 loading is used.

First are drawn the influence lines for the horizontal and vertical components of the reaction at the left hinge. The vertical component V_1 is the same as for a simple span L. The horizontal component H_1 equals the bending moment at the centre of the span L divided by the depth h. The influence-line ordinates for all members are now found by drawing five Maxwell diagrams, one of which is reproduced in Fig. 16. From the influence lines for V_1 and H_1 , the value of V_1 is .8889 and H_1 is .2187 for a one-pound load at U_1 . The external loads acting on the left half of the arch are then as shown in Fig. 16a. The load line *axbcya* in Fig. 16b is drawn to a scale of 10'' = 1 pound, and the Maxwell diagram completed in the usual way. The scaled

Members			ORDINATES		
	1 lb. at U1	1 lb. at U_2	1_lb. at U3	1 lb. at U ₄	1 lb. at U'4
$\begin{array}{c} U_0 U_1 = \dots \\ U_1 U_2 = \dots \\ U_1 U_2 = \dots \\ U_2 U_3 = \dots \\ U_3 U_4 = \dots \\ U_0 L_1 = \dots \\ U_0 L_1 = \dots \\ U_2 L_3 = \dots \\ U_2 L_3 = \dots \\ U_2 L_3 = \dots \\ U_1 L_1 = \dots \\ U_1 L_1 = \dots \\ U_1 L_2 = \dots \\ U_1 L_2 = \dots \\ U_1 L_4 = \dots \\ U_1 L_2 =$	$\begin{array}{c}403 \\417 \\378 \\171 \\295 \\ + .221 \\ + .217 \\ + .164 \\048 \\692 \\ - 1.014 \\ + .022 \\ + .075 \\ + .114 \\ + .800 \\ + .019 \\044 \\221 \\206 \\ 0.2187 \\ 0.8889 \\ 14^{\circ} \end{array}$	$\begin{array}{c}223 \\833 \\756 \\342 \\590 \\264 \\ + .434 \\ + .328 \\096 \\384 \\632 \\955 \\ + .150 \\ + .226 \\ + .441 \\ + .878 \\088 \\442 \\412 \\ 0.4375 \\ 0.7777 \\ 29^{\circ} \end{array}$	$\begin{array}{r}045 \\286 \\ -1.135 \\513 \\885 \\740 \\408 \\ + .491 \\145 \\075 \\253 \\253 \\490 \\775 \\ + .342 \\ + .085 \\ + .350 \\ + .986 \\662 \\617 \\ 0.6562 \\ 0.6666 \\ 44^{\circ} \end{array}$	$\begin{array}{r} + \ .130 \\ + \ .262 \\ + \ .189 \\ - \ .685 \\ -11.180 \\ -1.224 \\ -1.224 \\ -1.248 \\ -1.086 \\ - \ .193 \\ + \ .234 \\ + \ .129 \\ - \ .043 \\ - \ .317 \\ - \ .545 \\ - \ .270 \\ - \ .180 \\ + \ .928 \\ - \ .823 \\ 0.8750 \\ 0.5555 \\ 58^{\circ} \end{array}$	$\begin{array}{c} + & .201 \\ + & .477 \\ + & .757 \\ + & .548 \\ -1.182 \\ -1.302 \\ -1.484 \\ -1.674 \\ -1.420 \\ + & .345 \\ + & .287 \\ + & .165 \\ - & .376 \\ - & .364 \\ - & .400 \\ - & .398 \\ - & .324 \\ + & .224 \\ + & .657 \\ 0.8750 \\ 0.4444 \\ 63^\circ \end{array}$

TABLE A

INFLUENCE-LINE ORDINATES FOR THREE-HINGED ARCH

values of these stresses are the influence ordinates for a one pound load at U_1 . In an exactly similar way the influence ordinates for a unit load at U_2 , U_3 , U_4 , and U'_4 are determined. The influence lines are straight from U'_0 to

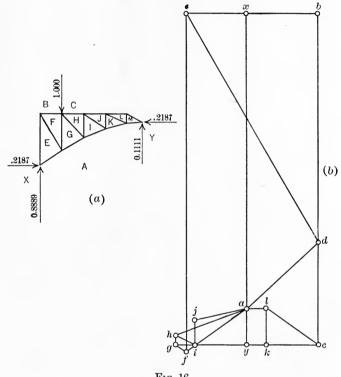


FIG 16.

 U'_4 . Table A gives the influence ordinates for all members and also for the horizontal and vertical components of the reaction at the left hinge. The angle θ is the inclination of this reaction with the vertical.

The calculation of the live-load stresses in any one member is typical. The member U_3L_4 is taken. The influence line for this member is drawn to scale in Fig. 15 by use of the influence ordinates from Table A. The salient points occur below panel points U_3 , U_4 , and U'_4 . The distance from U_3 to the neutral point 0 equals $\frac{.662}{.662 + .928}$ (21) = 8'.8.

Calculation of Slopes.

Slope of df = 0 $fg = \frac{0 - (-.662)}{68} = +.0105$ $gh = \frac{-.662 - (.928)}{21} = -.0758$ $hk = \frac{.928 - (.224)}{21} = +.0336$ $km = \frac{.224 - 0}{84} = +.0027$

mn = 0

. 1

Calculation of Coefficients.

$C_{1} =$	0 —	(.0105)	=0105
$C_2 =$.0105 -	(0758)	= + .0863
$C_{3} =$	0758 $-$	(.0336)	=1094
$C_4 =$.0336 -	(.0027)	= + .0309
$C_{5} =$.0027 -	0	= + .0027

The sum of these coefficients equals zero. This agrees with formula (6) of Art. 3.

It should be remembered, as is pointed out in Art. 3, that the value of these coefficients may be measured graphically. For example, in Fig. 15 the value of C_2 is $\frac{2.59}{30} = .0863$.

By use of the formula $\frac{dS}{dx} = \Sigma CW$ and Rule 1 of Art.

3, the position of loading for maximum tension in U_3L_4 may now be determined. Try wheel 3 at U_4 with the loading advancing toward the left. Take the values of the load sums and moment sums for E40 from Table 2. $\frac{dS}{dx} = \Sigma CW = -.1094(30) +.309(103) +.0027(302) = +.7$ $\frac{dS}{dx} = \Sigma CW = -.1094(50) + .309(103) +.0027(302) = -.7$

Therefore w_3 at U_4 gives a maximum tension in U_3L_4 , and its value is

 $S = \Sigma CM = -.1094(230) + .309(1846) + .0027(19001) = 83^{k}.$

By use of the formula $\frac{dS}{dx} = \Sigma CW$ and Rule 2 of Art. 3,

the position of loading for maximum compression in U_3L_4 is now determined. Try wheel 2 at U_3 with the loading advancing toward the right. Note that the signs of the coefficients remain unchanged. Take the values of the load sums and moment sums for E40 from Table 2.

$$\frac{dS}{dx} = \Sigma CW = -.0105(192) + .0863(10) = -1.3$$
$$\frac{dS}{dx} = \Sigma CW = -.0105(192) + .0863(30) = +0.6$$

Therefore w_2 at U_3 gives a maximum negative stress, or compression, in U_3L_4 , and its value is

$$S = \Sigma CM = -.0105(7092) + .0863(80) = -.67^{k}.$$

The above values of 83^k and 67^k for maximum tension and compression in U_3L_4 may be checked by use of formula $S = qA_z$ (2), the values of q being taken from Table 16.

Tension $U_{3}L_{4}$ by Equivalent Uniform Load.

The area of the tension part of the influence line equals

 $A_z = 27.2$

The influence line *ohkm* is not triangular, but a triangular influence line with intervals $l_1 = 10$ ft. and $l_2 =$ 45 ft. approximates its shape closely enough for the selection of an equivalent uniform load. For $l_1 = 10'$ and $l_2 =$ 45', Table 16 gives 3.080^k as the equivalent uniform load.

Therefore,

$$S = qA_z = (3.080) (27.2) = 84^k.$$

This value checks very closely that obtained by the exact method.

Compression $U_{3}L_{4}$ by Equivalent Uniform Load.

Choose from Table 16 the equivalent uniform load for $l_1 = 10$ ft. and $l_2 = 65$ ft. From the influence line $A_z = 23.7$.

Therefore,

$$S = qA_z = (2.870) (23.7) = 68^k$$
.

This checks closely the value obtained by the exact method.

Calculation of other members of this arch and of some more complicated framed structures shows a close agreement between the two preceding methods. The latter method is the simpler when a table of equivalent uniform loads has been made, especially in the case of the more complex influence lines for members of swing bridges, twohinged arches, arch ribs, etc. The method of calculating a table of equivalent uniform loads will be explained in the following article.

ARTICLE IX.

¢.

EQUIVALENT UNIFORM LOADS.

An equivalent uniform load is one which gives the same stress as does a loading which is not uniform. For any given standard loading, the equivalent uniform load is different for stresses whose influence lines differ. Since the forms of influence lines are innumerable, a table of exact equivalent uniform loads for all stresses is impracticable. A table of equivalent uniform loads, however, for stresses whose influence lines are *triangular* may be used with little error in selecting equivalent uniform loads for stresses whose influence lines are not triangular. It is, therefore, sufficient for practical purposes to make tables of equivalent uniform loads for a series of *triangular* influence lines. It may be shown that the equivalent uniform load for any triangular influence line is dependent entirely upon the intervals l_1 and l_2 , and is independent of the ordinate h at the apex of the influence line. Consider the triangular influence line in Fig. 1b to be for any stress S. Let the ordinate below C be any value h. If q equals the equivalent uniform load covering l_1 and l_2 ,

$$S = qA_z$$
, or $q = \frac{S}{A_z}$ (A)

The area of this influence line is

$$A_{z} = \frac{h}{2} (l_{1} + l_{2}) = \frac{h}{2} L \quad . \quad . \quad . \quad . \quad (B)$$

Furthermore, if the concentrated live loads have been placed so as to give the maximum pier reaction between two spans l_1 and l_2 , this same position of loading will give maximum S, if the influence line for S is a triangle with the

same intervals l_1 and l_2 . Since the influence ordinates for S are related to the influence ordinates for R as h is to unity,

$$\frac{S}{R} = \frac{h}{1.00}$$

 \mathbf{Or}

$$S = hR \quad . \quad . \quad . \quad . \quad . \quad . \quad (C)$$

Substituting the values of A_z and S from equations (B) and (C) in equation (A),

$$q = hR \div \frac{h}{2}L = \frac{2R}{L} \quad . \quad . \quad . \quad . \quad (D)$$

It appears, therefore, that q is independent of h. From formula (16) of Art. 5,

Substituting for R in equation (D),

$$q = \frac{2R}{L} = \frac{2M}{l_1 \, l_2} \qquad \dots \qquad \dots \qquad (31)$$

The term M is the bending moment in the span $L = l_1 + l_2$ at the point where the intervals are l_1 and l_2 .

Tables (10) to (18) inclusive have been calculated for the positions of the live load given by Table 3. The values of M were first found, then the values of R, and finally the values of the equivalent uniform loads. The three formulas that were used in succession are

$$M = \frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \quad . \quad . \quad . \quad (10)$$

$$R = \frac{L}{l_1 \, l_2} \, M \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (16)$$

An example of the use of equivalent uniform loads has already been given in Art. 8. The general formula $S = qA_2$ may be used in any case. For the special cases of bending moment in a beam and pier reaction between two simple spans, formula (31) gives

$$M = q \left(\frac{l_1 l_2}{2}\right) \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (32)$$

$$R = q\left(\frac{L}{2}\right) = q\left(\frac{l_1 + l_2}{2}\right). \quad . \quad . \quad . \quad . \quad (33)$$

The quantities in the parentheses are the areas of the influence lines for M and R respectively.

ARTICLE X.

METHOD OF CALCULATING TABLE OF LOAD SUMS FOR ANY STANDARD LOADING. ILLUSTRATIVE EXAMPLE.

THE definitions of *moment sum* and *load sum* are given at the beginning of Art. 2. It is at once evident that a table of *load sums* may be computed by adding the successive loads. It may be shown that the table of moment sums may also be calculated by the process of addition.

From formula (5a) of Art. 2,

$$C_a W_a = C_a \frac{dM_a}{dx}$$

Or

$$dM_a = W_a \cdot dx.$$

Expressed in words, the increase in the moment sum for an increase dx in the distance of the centre of moments from wheel 1 equals the load sum times dx. If the load sum is constant for an interval dx = 1 foot, as between concentrated loads, the increase of the moment sum for dx =1 foot equals the corresponding load sum. If the load sum is not constant, but uniformly increasing, as when the centre of moments lies within the uniform load, the increase of the moment sum for dx = 1 foot equals the average value of the load sum for this one foot interval. The application of the foregoing principles is made clear by the following example.

Example.—Give explicit directions for the calculation of a table of load sums and moment sums at intervals of 1 foot from 0' to 400' for Cooper's E40 loading.

Solution.—Calculate the table of load sums by adding

the loads one by one, taking a sub-total for each addition. Thus, the following numbers are added:

If the final total checks $284 + 391 \times 2 = 866$, the table of load sums is correct.

Assume now that the table of load sums for E40 has been completed. The table of moment sums may now be found as directed below. The following numbers are to be added one by one, taking a sub-total for each addition:

> 8 - 10's5-30's5 -50's-70's5 9 -90's 5 -103's6 -116's -129's5 8 -142's8 -152's5 -172's -192's 5 -212's 5 a -232's -245's 5 258's6 -271's 5 -284's5 -285-287 289

and all odd numbers up to 865.

If the final total checks up 183,689, which is figured independently, the table of moment sums is correct.

The preceding additions may be made most satisfactorily on a recording adding machine. Table 2 was calculated in this way.

It will be noted that the table of load sums serves as a table of differences for the table of moment sums.

58

đ

ARTICLE XI.

SUMMARY OF FORMULAS.

Art. 1.

$Z = \Sigma w z$						•	`.			(1)
$Z = qA_z$								•		(2)
$Z = w \Sigma z$										(3)
$Z = z \Sigma w$	= z	W	•							(4)

Art. 2.

$$Z = \Sigma w_n z_n = C_a \Sigma w_n x_n = C_a M_a \quad . \quad . \quad . \quad (5)$$

$$\frac{dZ}{dx} = C_a W_a = \frac{d (C_a M_a)}{dx} = \frac{C_a dM_a}{dx} \quad . \quad . \quad . \quad (5a)$$

Art. 3.

$\Sigma C = 0$		•	•	•	•	•	•	•			•	(6)
$S = \Sigma$												
$\frac{dS}{dx} = \Sigma$	CW	•				•					•	(8)

Art. 4. Girder Bridge without Panels.

End reactions.

$$R_2 = W_3 - \frac{M_3 - M_1}{L}$$
 (9a)

Bending moment for unequal segments l_1 and l_2 .

$$M = \frac{l_1}{L}M_3 + \frac{l_2}{L}M_1 - M_2 \quad . \quad . \quad . \quad . \quad (10)$$

$$\frac{dM}{dx} = \frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2 \qquad (11)$$

Bending moment at centre. $l_1 = l_2 = \frac{L}{2}$

Shear at any section.

Location of centre of gravity of loading on span.

When $M_1 = 0$,

Art. 5. Pier Reaction.

For unequal spans l_1 and l_2 .

$$R = \frac{M_3}{l_2} + \frac{M_1}{l_1} - \frac{L}{l_1 l_2} M_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} M_3 + \frac{l_2}{L} M_1 - M_2 \right) (14)$$

$$\frac{dR}{dx} = \frac{W_3}{l_2} + \frac{W_1}{l_1} - \frac{L}{l_1 l_2} W_2 = \frac{L}{l_1 l_2} \left(\frac{l_1}{L} W_3 + \frac{l_2}{L} W_1 - W_2 \right) (15)$$

For equal spans l_1 and l_2 equal to l.

$$R = \frac{M_3 + M_1 - 2M_2}{l} \quad . \quad . \quad . \quad . \quad (14a)$$

$$\frac{dR}{dx} = \frac{W_3 + W_1 - 2W_2}{l} \quad . \quad . \quad . \quad (15a)$$

Relation between R and M,

$$R = \frac{L}{l_1 l_2} M \qquad \dots \qquad \dots \qquad \dots \qquad (16)$$

Art. 6. Girder Bridge with Panels.

Shear in end panel; general case.

$$S_{a} = \frac{1}{L}M_{3} + \frac{l_{2}}{l_{1}L}M_{1} - \frac{1}{l_{1}}M_{2} = \frac{1}{l_{1}}\left(\frac{l_{1}}{L}M_{3} + \frac{l_{2}}{L}M_{1} - M_{2}\right)(17)$$

$$\frac{dS_a}{dx} = \frac{1}{L}W_3 + \frac{l_2}{l_1L}W_1 - \frac{1}{l_1}W_2 = \frac{1}{l_1}\left(\frac{l_1}{L}W_3 + \frac{l_2}{L}W_1 - W_2\right)(18)$$

Shear in intermediate panel; general case.

$$S_b = \frac{M_4}{L} - \frac{M_3}{p} + \frac{M_2}{p} - \frac{M_1}{L} \quad . \quad . \quad (19)$$

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_3}{p} + \frac{W_2}{p} - \frac{W_1}{L} \quad . \quad . \quad . \quad (20)$$

Shear in intermediate panel; usual case.

$$S = \frac{M_4}{L} - \frac{M_3}{p} = \frac{1}{p} \left(\frac{p}{L} M_4 - M_3 \right)$$
 (19a)

$$\frac{dS_b}{dx} = \frac{W_4}{L} - \frac{W_3}{p} = \frac{1}{p} \left(\frac{p}{L}W_4 - W_3\right) \quad . \quad (20a)$$

Art. 7. Through Pratt Truss with Inclined Chord. Stress in hanger. Use formulas (14a) and (15a). Stress in any horizontal chord member; usual case.

$$S_5 = \left(\frac{m}{nv}\right) M_4 - \left(\frac{1}{v}\right) M_3 \quad . \quad . \quad . \quad (21)$$

Compression in any inclined top chord member or end post; usual case.

$$S_6 = \left(\frac{i}{p}\right) S_5 \qquad \dots \qquad \dots \qquad \dots \qquad (22)$$

Compression in vertical post; usual case.

$$S_4 = \left(\frac{a}{bL}\right) M_4 - \left(\frac{1}{p}\right) M_3 \quad \dots \quad \dots \quad (23)$$

Stresses in inclined web members including counters; usual case.

$$S_1, S_2, S_3 = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_3 \quad . \quad . \quad (24)$$

Stress in inclined counter; special case of loading advanced beyond panel.

$$S_2 = \left(\frac{ta}{cbL}\right)M_4 - \frac{t}{bp}\left(M_3 - \frac{b}{c}M_2\right) = \left(\frac{ta}{cbL}\right)M_4 - \left(\frac{t}{bp}\right)M_c (25)$$

Counter-tension in vertical post; usual case.

$$T = \left(\frac{d_2 - d_1}{bp}\right) \left(\frac{m}{n}M_4 - M_3\right) = K \cdot M_0 \quad . \quad (26)$$

Formulas (21), (23), and (24) are of the general form

$$S = GM_4 - HM_3 \qquad \dots \qquad (27)$$

where the coefficients G and H may be tabulated thus:

$Type \ of \ member \dots G \qquad H$	
Horizontal chord $\frac{m}{nv}$ $\frac{1}{v}$	
Vertical post $\frac{a}{bL} = \frac{1}{p}$	
Inclined web member $\frac{ta}{cbL}$ $\frac{t}{bp}$	
The rate of variation of S in formula (27) is	
$rac{dS}{dx} = GW_4 - HW_3 = H \Big(rac{G}{H} W_4 - W_3 \Big)$	(28)

When S in formulas (21), (23), or (24) is a maximum

 $\left(\frac{G}{H}W_4 - W_3\right)$ passes through zero.

Through Pratt Truss—Parallel Chords.

Stress in hanger,—use formulas (14a) and (15a)

Stress in horizontal chord = $S_5 = \left(\frac{m}{nv}\right)M_4 - \left(\frac{1}{v}\right)M_3$. (21)

" "vertical post =
$$S_4 = \left(\frac{1}{L}\right)M_4 - \left(\frac{1}{p}\right)M_3$$
 . (29)

" " inclined web =
$$S_1 = \left(\frac{t}{cL}\right)M_4 - \left(\frac{t}{cp}\right)M_3 = \frac{t}{c}S_4$$
 (30)

Stress in end post

$$S_6 = -\frac{1}{p}S_5 \quad \dots \quad \dots \quad \dots \quad \dots \quad (22)$$

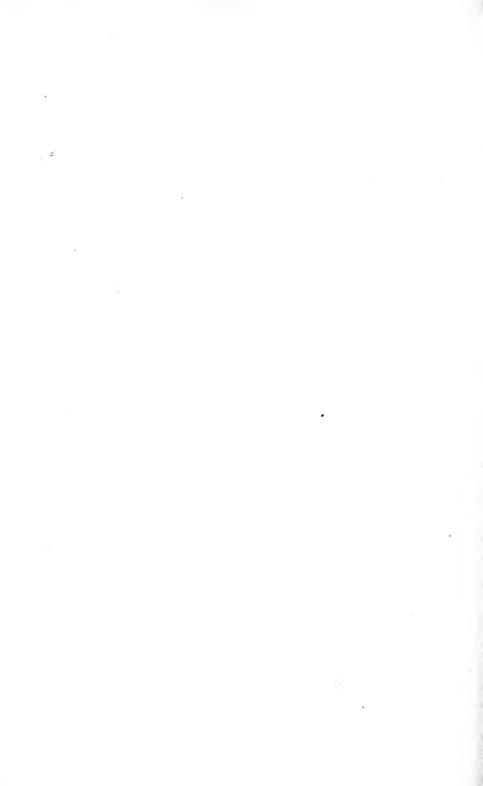
Formulas (21), (29), and (30) are of the general form

$$S = G \cdot M_4 - H \cdot M_3 \qquad \dots \qquad (27)$$

and their rate of variation is

$$\frac{dS}{dx} = H\left(\frac{G}{H}W_4 - W_3\right) \quad . \quad . \quad . \quad (28)$$

G and H are the coefficients of M_4 and M_3 in equations (21), (29), and (30), respectively.

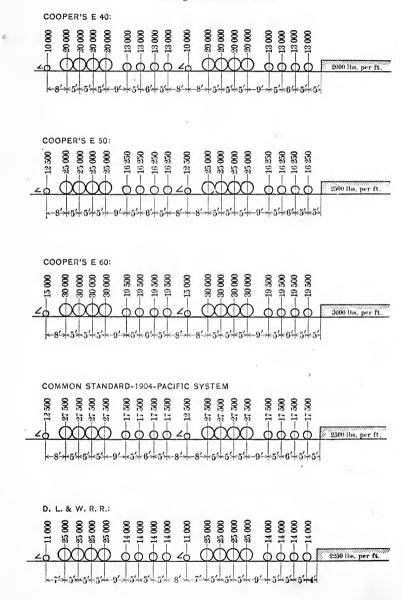

When S in formulas (21), (29), or (30) is a maximum, $\left(\frac{G}{H}W_4 - W_3\right)$ passes through zero.

Art. 9. Equivalent Uniform Loads.

$$q = \frac{2M}{l_1 \, l_2} = \frac{2R}{L} \quad \dots \quad \dots \quad \dots \quad \dots \quad (31)$$

$$M = q\left(\frac{l_1 l_2}{2}\right) \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (32)$$

$$R = q\left(\frac{L}{2}\right) = q\left(\frac{l_1 + l_2}{2}\right) \quad . \quad . \quad . \quad . \quad . \quad (33)$$



INDEX TO TABLES

NO	. F	AGE
	Five standard loadings	66
	Lengths, loads, load sums, and moment sums from 1 to 400 ft. for five standard loadings	67
3	Position of Cooper's loadings for maximum pier reaction between	
	equal and unequal beam spans	88
4	Position of Cooper's loadings for absolute maximum bending mo-	89
2	ment in beam spans	09
5	Position of Cooper's loadings for maximum end shear in beam	89
0	spans	09
0	Position of Cooper's loadings for maximum panel shear in bridges	90
177	with equal panels	90
4		91
0	Cooper's E40 and E50 loadings	91
8		94
0	E50 loading	94 97
	Maximum bending moments at 5-foot intervals of beams—Cooper's	91
10		100
11	E40 loading	100
11	E_{50} loading	102
19	Maximum bending moments at 5-foot intervals of beams—Cooper's	102
14	$E60 \text{ loading } \dots $	104
12	Maximum pier reactions for equal and unequal beam spans—	101
10	Cooper's E40 loading	106
14	Maximum pier reactions for equal and unequal beam spans-	100
**	Cooper's E50 loading	108
15	Maximum pier reactions for equal and unequal beam spans-	
10	Cooper's E60 loading	110
16	Equivalent uniform loads—Cooper's E40 loading	112
	Equivalent uniform loads—Cooper's E50 loading	114
	Equivalent uniform loads—Cooper's E60 loading	116
	Influence-line ordinates for bending moments at 5-foot intervals of	
	beam spans	118
20	Reciprocals of influence-line ordinates for bending moments at 5-foot	
	intervals of beam spans	120
21	Bending moments at 5-foot intervals of beam spans due to a unit	
	uniform load	122

TABLE 1

STANDARD LOADINGS Loads given are for one rail.

TABLE 2

LOAD SUMS AND MOMENT SUMS FOR COOPER'S AND OTHER STANDARD LOADINGS

Note.—Load Sums and Moment Sums are given per rail in thousands of pounds and foot-pounds respectively.

\$

C	COOPER'	s E40.	0′-50)'	C	OOPER's	s E40.	50'-1	00′
Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	10	10	0	50				3780
1				10	51				3922
2				20	52				4064
3				30	53				4206
4				40	54				4348
5				50	55				4490
6		· ·		60	56	w. 10	10	152	4632
7				70	57				4784
8	w. 2	20	30	80	58				4936
9				110	59				5088
10				140	60	-			5240
11				170	61				5392
12				200	62				5544
13	w. 3	20	50	230	63				5696
14				280	64	w. 11	20	172	5848
15				330	65				6020
16				380	66				6192
17				430	67				6364
18	w. 4	20	70	480	68		•••		6536
19	w. 1			550	69	w. 12	20	192	6708
20				620	70				6900
21				690	71				7092
$\overline{22}$	1			760	72	1			7284
23	w. 5	20	90	830	73				7476
24				920	74	w. 13	20	212	7668
25				1010	75				7880
26				1100	76				8092
27				1190	77				8304
28				1280	78				8516
29				1370	79	w. 14	20	232	8728
30				1460	80				8960
31				1550	81				9192
32	w. 6	13	103	1640	82				9424
33				1743	83				9656
34				1846	84			•••	9888
35				1949	85				10120
36		::		2052	86				10352
37	w. 7	13	116	2155	87		::		10584
38				2271	88	w. 15	13	245	10816
39				2387	89	•••••			11061
40				2503	90				11306
41				2619	91				11551
42				2735	92				11796
43	w. 8	13	129	2851	93	w. 16	13	258	12041
44				2980	94				12299
45				3109	95				12557
46				3238	96				12815
47				3367	97				13073
48	w. 9	13	142	3496	98	····	::		13331
49				3638	99	w. 17	13	271	13589
50				3780	100				13860
	1	1	1	1				I	

68

ć

Cooper's E40. 100'-150' Cooper's E40. 150'-200'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Momen Sums
100				13860	150		366	29689
100				13000 14131	151		368	30056
101				14402	151		370	30425
				14402	152			
103		19					372	30796
104	w. 18	13	284	14944	154		374	31169
105				15228	155		376	31544
106				15512	156		378	31921
107				15796	157		380	32300
108				16080	158		382	32681
109		· · · · · · · ·	284	16364	159		384	33064
110			286	16649	160		386	33449
111			288	16936	161		388	33836
112			290	17225	162		390	34225
113			292	17516	163		392	34616
114			294	17809	164		394	35009
115			296	18104	165		396	35404
116			298	18401	166		398	35801
117			300	18700	167		400	36200
118			302	19001	168		402	36601
119		сь	304	19304	169		$40\overline{4}$	37004
120		2,000 pounds per foot	306	19609	170	2,000 pounds per foot	406	37409
121			308	19916	171	1 2	408	37816
122		be	310	20225	172	be	410	38225
$1\overline{2}\overline{3}$		2	312	20536	173	2	412	38636
$120 \\ 124$		no	314	20849	174	pq	414	39049
$121 \\ 125$		nc	316	21164	175		416	39464
126		d	318	21481	176	d	418	39881
$120 \\ 127$		8	318	21401 21800	177	9	420	40300
127		ð	$\frac{320}{322}$	21800	178	8	$420 \\ 422$	
$128 \\ 129$		5	$\frac{322}{324}$	22121	178	ς,	$422 \\ 424$	$40721 \\ 41144$
130		1	326	22769	180	"	426	41569
131		03	$\frac{320}{328}$	23096	180	03(420	41996
131	•••••	н	$\frac{320}{330}$	$23090 \\ 23425$	181	ЦЦ	$428 \\ 430$	
$132 \\ 133$	•••••	B			$182 \\ 183$	R		42425
	• • • • • • •	Jniform Load	332	23756		Uniform Load	432	42856
134	• • • • • • •	hif	$\frac{334}{226}$	24089	184	ifc	434	43289
135	• • • • • • •	C.	336	24424	185	Jn	436	43724
136	• • • • • • •		338	24761	186		438	· 44161
137	• • • • • • •		340	25100	187		440	44600
138		•	342	25441	188		442	45041
139			344	25784	189		444	45484
140			346	26129	190		446	45929
141			348	26476	191		448	46376
142			350	26825	192		450	46825
143			352	27176	193		452	47276
144			354	27529	194		454	47729
145			356	27884	195		456	48184
146			358	28241	196		458	48641
147			360	28600	197		460	49100
148			362	28961	198		462	49561
149	•••••		$\frac{302}{364}$	29324	198		464	49501 50024
$149 \\ 150$	•••••		364 366	29524 29689	$\frac{199}{200}$		404 466	50024
100			900	29089	200		400	00489

Cooper's E40. 200'-250' Cooper's E40. 250'-300'

.

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200		466	50489	250		566	76289
200		468	50956	$\frac{250}{251}$		568	76856
$\frac{201}{202}$		408	$50950 \\ 51425$	$\frac{251}{252}$		570	
							77425
203		472	51896	253		572	77996
204		474	52369	254		574	78569
205		476	52844	255		576	79144
206		478	53321	256		578	79721
207		480	53800	257		580	80300
208		482	54281	258		582	80881
209		484	54764	259		584	81464
210		486	55249	260		586	82049
211		488	55736	261		588	82630
212		490	56225	262		590	83223
213		492	56716	263		592	83816
214	1	494	57209	264		594	8440
215		496	57704	265		596	8500
216		498	58201	266		598	8560
$\frac{210}{217}$	4	500	58700	267	с н	600	86200
217	8	502	59201	267	8	602	8680
	۰. ۳			11	ų.		
219	2,000 pounds per foot	504	59704	269	2,000 pounds per foot	604	8740
220	32	506	60209	270	52	606	8800
221	DC.	508	60716	271	nc	608	8861
222	n	510	61225	272	n	610	8922
223	b d	512	61736	273	ď	612	8983
224	0	514	62249	274	9	614	9044
225	8	516	62764	275	8	616	9106
226	ດົ	518	63281	276	cî	618	9168
$\frac{220}{227}$	1	520	63800	277	11	620	9230
			64321	278		620	9292
$\frac{228}{229}$	oac	$\begin{array}{c} 522 \\ 524 \end{array}$	64844	$\frac{278}{279}$	03($622 \\ 624$	9354
230	Uniform Load	526	65369	280	Uniform Load	626	9416
$\frac{230}{231}$	L.	$520 \\ 528$	65896	280	11	628	9479
	fo				ifo		
232	E I	530	66425	282	'n	630	9542
233	þ	532	66956	283	p	632	9605
234		534	67489	284		634	9668
235		536	68024	285		636	9732
236	t	538	68561	286		638	9796
237		540	69100	287		640	9860
238		542	69641	288		642	9924
239		544	70184	289		644	9988
240		546	70729	290		646	10052
241		548	71276	291		648	10117
242		550	71825	292		650	10182
243		552	72376	293		652	10247
244		554	72929	294		654	10312
245		556	73484	295		656	10378
246		558	74041	296		658	10444
240		560	74600	297		660	10510
247		562	75161	297		662	10576
						664	10642
$\frac{249}{250}$		$\begin{array}{c} 564 \\ 566 \end{array}$	$75724 \\ 76289$	$\begin{array}{c} 299 \\ 300 \end{array}$		666	10708
		1 2000	1 (6289			000	10100

ć,

Cooper's E40. 300'-350' Cooper's E40. 350'-400'

000	OPER'S E	40. 300	-350'	00	OPER'S E	40. 300	-400
Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302 303 304 305 306 307		$\begin{array}{c} 666\\ 668\\ 670\\ 672\\ 674\\ 676\\ 678\\ 680\\ \end{array}$	$\begin{array}{c} 107089\\ 107756\\ 108425\\ 109096\\ 109769\\ 110444\\ 111121\\ 111800 \end{array}$	$\begin{array}{r} 350 \\ 351 \\ 352 \\ 353 \\ 354 \\ 355 \\ 356 \\ 357 \end{array}$		766 768 770 772 774 776 778 780	$\begin{array}{r} 142889\\ 143656\\ 144425\\ 145196\\ 145969\\ 146744\\ 147521\\ 148300 \end{array}$
308 309		682 684	112481 113164	358 359 200		782 784 786	149081 149864
$\begin{array}{c} 310\\ 311\\ 312\\ 313\\ 314\\ 315\\ 316\\ 317\\ 318\\ 319\\ \end{array}$	per foot	$\begin{array}{c} 686\\ 688\\ 690\\ 692\\ 694\\ 696\\ 698\\ 700\\ 702\\ 704\\ \end{array}$	$\begin{array}{c} 113849\\ 114536\\ 115225\\ 115916\\ 116609\\ 117304\\ 118001\\ 118700\\ 119401\\ 120104 \end{array}$	$\begin{array}{c} 360\\ 361\\ 362\\ 363\\ 364\\ 365\\ 366\\ 367\\ 368\\ 369\\ \end{array}$	per foot	788 790 792 794 796 798 800 802 804	$\begin{array}{c} 150649\\ 151436\\ 152225\\ 153016\\ 153809\\ 154604\\ 155401\\ 156200\\ 157001\\ 157804 \end{array}$
$\begin{array}{c} 320\\ 321\\ 322\\ 323\\ 324\\ 325\\ 326\\ 327\\ 328\\ 329\\ \end{array}$	Load = 2,000 pounds per foot	$706 \\ 708 \\ 710 \\ 712 \\ 714 \\ 716 \\ 718 \\ 720 \\ 722 \\ 724$	$\begin{array}{c} 120809\\ 121516\\ 122225\\ 122936\\ 123649\\ 124364\\ 125081\\ 125800\\ 126521\\ 127244 \end{array}$	370 371 372 373 374 375 376 377 378 379	Load $= 2,000$ pounds per foot	$\begin{array}{c} 806\\ 808\\ 810\\ 812\\ 814\\ 816\\ 818\\ 820\\ 822\\ 824\\ \end{array}$	$\begin{array}{c} 158609\\ 159416\\ 160225\\ 161036\\ 161849\\ 162664\\ 163481\\ 164300\\ 165121\\ 165944 \end{array}$
330 331 332 333 334 335 336 337 338 339	Uniform Load	726 728 730 732 734 736 738 * 740 742 744	$\begin{array}{c} 127969\\ 128696\\ 129425\\ 130156\\ 130889\\ 131624\\ 132361\\ 133100\\ 133841\\ 134584 \end{array}$	380 381 382 383 384 385 386 387 388 389	Uniform Load	$\begin{array}{c} 826\\ 828\\ 830\\ 832\\ 834\\ 836\\ 838\\ 840\\ 842\\ 844\\ \end{array}$	$\begin{array}{c} 166769\\ 167596\\ 168425\\ 169256\\ 170089\\ 170924\\ 171761\\ 172600\\ 173441\\ 174284 \end{array}$
$\begin{array}{c} 340\\ 341\\ 342\\ 343\\ 344\\ 345\\ 346\\ 347\\ 348\\ 349\\ 350\\ \end{array}$		$\begin{array}{c} 746 \\ 748 \\ 750 \\ 752 \\ 754 \\ 756 \\ 758 \\ 760 \\ 762 \\ 764 \\ 766 \end{array}$	$\begin{array}{c} 135329\\ 136076\\ 136825\\ 137576\\ 138329\\ 139084\\ 139841\\ 140600\\ 141361\\ 142124\\ 142889 \end{array}$	$\begin{array}{c} 390 \\ 391 \\ 392 \\ 393 \\ 394 \\ 395 \\ 396 \\ 397 \\ 398 \\ 399 \\ 400 \\ \end{array}$		$\begin{array}{c} 846\\ 848\\ 850\\ 852\\ 854\\ 856\\ 858\\ 860\\ 862\\ -864\\ 866\end{array}$	175129 175976 176825 177676 178529 179384 180241 181100 181961 182824 183689

Cooper's E50. 0'-50' Cooper's E50. 50'-100'

Length	Wheel	Load	. Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	12.50	12.50	00.00	50				4725.00
ĭ				12.50	51				4902.50
$\frac{1}{2}$				25.00	52				5080.00
3		••••		37.50	53				5257.50
4	••••			50.00	54				5435.00
$\frac{1}{5}$	••••			62.50	55				5612.50
6	• • • •	••••		75.00	56	w. 10	12.50	190.00	5790.00
7	• • • •		• • • • • •	87.50	57	w. 10			5980.00
8	w. 2	${25.00}$	37.50	100.00	58				6170.00
9				137.50	59				6360.00
9	• • • •			107.00	05		••••	•••••	0300.00
10				175.00	60				6550.00
11				212.50	61				6740.00
$\overline{12}$				250.00	62				6930.00
13	w. 3	25.00	62.50	287.50	63				7120.00
14				350.00	64	w. 11	25.00	215.00	7310.00
15	••••			412.50	65		20.00	210.00	7525.00
16				475.00	66				7740.00
17				537.50	67				7955.00
18	w. 4	25.00	87.50	600.00	68				8170.00
19	····			687.50	69	w. 12	25.00	240.00	8385.00
20				775.00	70				8625.00
$\overline{21}$				862.50	71				8865.00
$\overline{22}$				950.00	$\overline{72}$				9105.00
$\overline{23}$	w. 5	25.00	112.50	1037.50	73				9345.00
$\frac{10}{24}$				1150.00	74	w. 13	25.00	265.00	9585.00
$\frac{1}{25}$				1262.50	75		20.00	200.00	9850.00
$\frac{1}{26}$				1375.00	76				10115.00
$\frac{10}{27}$		••••		1487.50	77				10380.00
$\frac{21}{28}$				1600.00	78				10645.00
$\frac{20}{29}$		•••••		1712.50	79	w. 14	25.00	290.00	10910.00
30				1825.00	80				11200.00
31				1937.50	81				11490.00
32	w. 6	16.25	128.75	2050.00	82				11780.00
-33				2178.75	83				12070.00
34				2307.50	84				12360.00
35				2436.25	85				12650.00
36				2565.00	86				12940.00
37	w. 7	16.25	145.00	2693.75	87		•		13230.00
38				2838.75	88	w. 15	16.25	306.25	13520.00
39				2983.75	89				13826.25
40				3128.75	90				14132.50
41				3273.75	91				14438.75
$\hat{42}$				3418.75	92				14745.00
43	w. 8	16.25	161.25	3563.75	93	w. 16	16.25	322.50	15051.25
44				3725.00	94				15373.75
$\overline{45}$				3886.25	95				15696.25
46				4047.50	96				16018.75
47				4208.75	97				16341.25
48	w. 9	16.25	177.50	4370.00	98			1	16663.75
49				4547.50	99	w. 17	16.25	338.75	16986.25
				4725.00	100	w. 17	10.23		17325.00
50									

72

¢,

Cooper's E50. 100'-150' Cooper's E50. 150'-200'

	COOP	ERS L	50. 100 -	100	0001	ERS L	00. 100	-200
Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load - Sums	Moment Sums
$\begin{array}{c} 100\\ 101\\ 102\\ 103\\ 104\\ 105\\ 106\\ 107\\ 108\\ 109\\ \end{array}$	w. 18	16.25 	355.00 355.00	$\begin{array}{c} .\\ 17325.00\\ 17663.75\\ 18002.50\\ 18341.25\\ 18680.00\\ 19035.00\\ 19390.00\\ 19745.00\\ 20100.00\\ 20455.00 \end{array}$	$150 \\ 151 \\ 152 \\ 153 \\ 154 \\ 155 \\ 156 \\ 157 \\ 158 \\ 159 \\ 159$		$\begin{array}{c} 457.50\\ 460.00\\ 462.50\\ 465.00\\ 467.50\\ 470.00\\ 472.50\\ 475.00\\ 475.00\\ 477.50\\ 480.00 \end{array}$	$\begin{array}{c} 37111.25\\ 37570.00\\ 38031.25\\ 38495.00\\ 38961.25\\ 39430.00\\ 39901.25\\ 40375.00\\ 40851.25\\ 41330.00\\ \end{array}$
$110\\111\\112\\113\\114\\115\\116\\117\\118\\119$		er foot	$\begin{array}{c} 357.50\\ 360.00\\ 362.50\\ 365.00\\ 367.50\\ 370.00\\ 372.50\\ 375.00\\ 375.00\\ 377.50\\ 380.00 \end{array}$	$\begin{array}{c} 20811.25\\ 21170.00\\ 21531:25\\ 21895.00\\ 22261.25\\ 22630.00\\ 23001.25\\ 23375.00\\ 23751.25\\ 24130.00\\ \end{array}$	$\begin{array}{c} 160\\ 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ 169\\ \end{array}$	er foot	$\begin{array}{r} 482.50\\ 485.00\\ 487.50\\ 490.00\\ 492.50\\ 495.00\\ 497.50\\ 500.00\\ 502.50\\ 505.00\\ \end{array}$	$\begin{array}{r} 41811.25\\ 42295.00\\ 42781.25\\ 43270.00\\ 43761.25\\ 44255.00\\ 44751.25\\ 45250.00\\ 45751.25\\ 46255.00\\ \end{array}$
$120 \\ 121 \\ 122 \\ 123 \\ 124 \\ 125 \\ 126 \\ 127 \\ 128 \\ 129$	· · · · · · · · · · · · · · · · · · ·	Load $= 2,500$ pounds per foot	$\begin{array}{c} 382.50\\ 385.00\\ 387.50\\ 390.00\\ 392.50\\ 395.00\\ 397.50\\ 400.00\\ 402.50\\ 405.00 \end{array}$	$\begin{array}{c} 24511.25\\ 24895.00\\ 25281.25\\ 25670.00\\ 26061.25\\ 26455.00\\ 26851.25\\ 27250.00\\ 27651.25\\ 28055.00 \end{array}$	$170 \\ 171 \\ 172 \\ 173 \\ 174 \\ 175 \\ 176 \\ 177 \\ 178 \\ 179 \\ 179$	Load $= 2,500$ pounds per foot	$\begin{array}{c} 507.50\\ 510.00\\ 512.50\\ 515.00\\ 517.50\\ 520.00\\ 522.50\\ 525.00\\ 527.50\\ 530.00\\ \end{array}$	$\begin{array}{r} 46761.25\\ 47270.00\\ 47781.25\\ 48295.00\\ 48811.25\\ 49330.00\\ 49851.25\\ 50375.00\\ 50901.25\\ 51430.00\\ \end{array}$
$130 \\ 131 \\ 132 \\ 133 \\ 134 \\ 135 \\ 136 \\ 137 \\ 138 \\ 139$		Uniform Load	$\begin{array}{c} 407.50\\ 410.00\\ 412.50\\ 415.00\\ 417.50\\ 420.00\\ 422.50\\ 425.00\\ 425.00\\ 427.50\\ 430.00 \end{array}$	$\begin{array}{r} 28461.25\\ 28870.00\\ 29281.25\\ 29695.00\\ 30111.25\\ 30530.00\\ 30951.25\\ 31375.00\\ 31801.25\\ 32230.00\\ \end{array}$	$180 \\ 181 \\ 182 \\ 183 \\ 184 \\ 185 \\ 186 \\ 187 \\ 188 \\ 189 \\ 189 \\$	Uniform	$\begin{array}{c} 532.50\\ 535.00\\ 537.50\\ 540.00\\ 542.50\\ 545.00\\ 545.00\\ 547.50\\ 550.00\\ 552.50\\ 555.00\end{array}$	$\begin{array}{c} 51961.25\\ 52495.00\\ 53031.25\\ 53570.00\\ 54111.25\\ 54655.00\\ 55201.25\\ 55750.00\\ 56301.25\\ 56855.00\\ \end{array}$
$140\\141\\142\\143\\144\\145\\146\\147\\148\\149\\150$			$\begin{array}{r} 432.50\\ 435.00\\ 437.50\\ 440.00\\ 442.50\\ 445.00\\ 445.00\\ 445.00\\ 455.00\\ 455.00\\ 457.50\end{array}$	$\begin{array}{r} 32661.25\\ 33095.00\\ 33531.25\\ 33970.00\\ 34411.00\\ 34855.00\\ 35301.25\\ 35750.00\\ 36201.25\\ 36655.00\\ 37111.25\\ \end{array}$	$190 \\ 191 \\ 192 \\ 193 \\ 194 \\ 195 \\ 196 \\ 197 \\ 198 \\ 199 \\ 200$		$\begin{array}{c} 557.50\\ 560.00\\ 562.50\\ 565.00\\ 567.50\\ 570.00\\ 572.50\\ 575.00\\ 577.50\\ 582.50\\ \end{array}$	$\begin{array}{c} 57411.25\\ 57970.00\\ 58531.25\\ 59095.00\\ 59661.25\\ 60230.00\\ 60801.25\\ 61375.00\\ 61951.25\\ 62530.00\\ 63111.25\end{array}$

Cooper's E50. 200'-250' Cooper's E50. 250'-300

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200		582.50	63111.25	250		707.50	95361.25
201		585.00	63695.00	251		710.00	96070.00
201		587.50	64281.25	252		712.50	96781.25
		590.00	64870.00	253		715.00	
203			65461.25	253		717.50	97495.00
204		592.50	66055.00				98211.25
205	1	595.00		255		720.00	98930.00
206		597.50	66651.25	256		722.50	99651.25
207		600.00	67250.00	257		725.00	100375.00
208		602.50	67851.25	258		727.50	101101.25
209		605.00	68455.00	259		730.00	101830.00
210		607.50	69061.25	260		732.50	102561.25
211		610.00	69670.00	261		735.00	103295.00
212		612.50	70281.25	262		737.50	104031.25
213		615.00	70895.00	263		740.00	104770.00
214		617.50	71511.25	264		742.50	105511.25
215		620.00	72130.00	265		745.00	106255.00
216		622.50	72751.25	266		747.50	107001.25
217		625.00	73375.00	267	<u>ح</u> ـ	750.00	107750.00
218	<u> </u>	627.50	74001.25	268	8	752.50	108501.25
$\frac{10}{219}$	fe	630.00	74630.00	269	fe	755.00	109255.00
	2,500 pounds per foot	629 50	75261.25	270	2,500 pounds per foot	757.50	110011.25
220	20	632.50	75895.00	271	S	760.00	110770.00
221	DC 1	635.00		272	ŭ		
222	ng	637.50	76531.25		no	762.50	111531.25
223	ă.	640.00	77170.00	273	ā	765.00	112295.00
224	8	642.50	77811.25	274	8	767.50	113061.25
225	20	645.00	78455.00	275	10	770.00	113830.00
226		647.50	79101.25	276		772.50	114601.25
227	n	650.00	79750.00	277	11	775.00	115375.00
228	q	652.50	80401.25	278	P	777.50	116151.25
229	Uniform Load	655.00	81055.00	279	Uniform Load	780.00	116930.00
230	n	657.50	81711.25	280	m	782.50	117711.25
231	La la	660.00	82370.00	281	L OL	785.00	118495.00
232	ij	662.50	83031.25	282	if	787.50	119281.25
233	5	665.00	83695.00	283	5	790.00	120070.00
234	-	667.50	84361.25	284		792.50	120861.25
235		670.00	85030.00	285		795.00	121655.00
236		672.50	85701.25	286		797.50	122451.25
237		675.00	86375.00	287		800.00	123250.00
238		677.50	87051.25	288		802.50	124051.25
239		680.00	87730.00	289		805.00	124855.00
240		682.50	88411.25	290		807.50	125661.25
241		685.00	89095.00	291		810.00	126470.00
242		687.50	89781.25	292		812.50	127281.25
243		690.00	90470.00	293		815.00	128095.00
244		692.50	91161.25	294		817.50	128911.25
$\tilde{2}45$		695.00	91855.00	295		820.00	129730.00
246		697.50	92551.25	296		822.50	130551.25
240		700.00	93250.00	297		825.00	131375.00
247		700.00 702.50	93951.25	298		825.50	132201.25
243		702.00	94655.00	299		830.00	133030.00
		705.00	95361.25	300		832.50	133861.25
250		101.00	30001.20	000		. 002.00	100001.20

74

¢?

COOPER'S E50. 300'-350' COOPER'S E50. 350'-400'

.*

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300		832.50	133861.25	350		957.50	178611.25
301		835.00	134695.00	351		960.00	179570.00
302		837.50	135531.25	352		962.50	180531.25
303		840.00	136370.00	353		965.00	181495.00
304		842.50	137211.25	354		967.50	182461.25
$304 \\ 305$		845.00	138055.00	355		970.00	183430.00
		847.50	138901.25	356		972.50	184401.25
$\frac{306}{207}$		850.00	139750.00	$350 \\ 357$		975.00	185375.00
$\frac{307}{208}$		$850.00 \\ 852.50$		358		977.50	186351.25
308 309		855.00	$\frac{140601.25}{141455.00}$	359		980.00	187330.00
310		857.50	142311.25	360		982.50	188311.25
311	•	860.00	143170.00	361		985.00	189295.00
312		862.50	144031.25	362		987.50	190281.25
313		865.00	144895.00	363		990.00	191270.00
314		867.50	145761.25	364		992.50	192261.25
315		870.00	146630.00	365		995.00	193255.00
316		872.50	147501.25	366		997.50	194251.25
317		875.00	148375.00	367	حد	1000.00	195250.00
318	of	877.50	149251.25	368	00	1002.50	196251.25
319	r fo	880.00	150130.00	369	r fo	1005.00	197255.00
320	2,500 pounds per foot	882.50	151011.25	370	2,500 pounds per foot	1007.50	198261.25
321	pr	885.00	151895.00	371	pq	1010.00	199270.00
322	3	887.50	152781.25	372	In	1012.50	200281.25
323	d l	890.00	153670.00	373	od	1015.00	201295.00
324	0	892.50	154561.25	374	0	1017.50	202311.25
325	20	895.00	155455.00	375	50	1020.00	203330.00
326	ŝ	897.50	156351.25	376	6	1022.50	204351.25
327	1	900.00	157250.00	377	- 11	1025.00	205375.00
328	1	902.50	158151.25	378		1027.50	206401.25
329	oac	905.00	159055.00	379	Joac	1030.00	207430.00
330	Uniform Load	907.50	159961.25	380	Uniform Load	1032.50	208461.25
331	- LO	910.00	160870.00	381	or	1035.00	209495.00
332	ji	912.50	161781.25	382	lif	1037.50	210531.25
333	5	915.00	162695.00	383	5	1040.00	211570.00
334	-	917.50	163611.25	384		1042.50	212611.25
335		920.00	164530.00	385		1045.00	213655.00
336		922.50	165451.25	386		1047.50	214701.25
337		925.00	166375.00	387		1050.00	215750.00
338		927.50	167301.25	388		1052.50	216801.25
339		930.00	168230.00	389		1055.00	217855.00
340		932.50	169161.25	390		1057.50	218911.25
341		935.00	170095.00	391		1060.00	219970.00
342		937.50	171031.25	392		1062.50	221031.25
343		940.00	171970.00	393		1065.00	222095.00
344		942.50	172911.25	394		1067.50	223161.25
345		945.00	173855.00	395		1070.00	224230.00
346		947.50	174801.25	396		1072.50	225301.25
347		950.00	175750.00	397		1075.00	226375.00
348		952.50	176701.25	398		1077.50	227451.25
349		952.00 955.00	177655.00	399		1080.00	228530.00
350		955.00 957.50	178611.25	400		1030.00 1082.50	229611.25
000		501.00	110011.20	100		1002.00	

	COOPE	RSLU	J. U -	50		COOPEI	AS LOU	, ₀₀ -	-100
Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	15.0	15.0	00.00	50				5670.00
1	w. 1			15.00	51				
	• • • •			30.00	52	• • • • • •			5883.00
2	• • • •					••••			6096.00
3				45.00	53	• • • • • •			6309.00
4				60.00	54	• • • • • •			6522.00
5				75.00	55		::::		6735.00
6		••••		90.00	56	w. 10	15.0	228.0	6948.00
7				105.00	57				7176.00
8	w. 2	30.0	45.0	120.00	58				7404.00
9				165.00	59				7632.00
10				210.00	60				7860.00
11				255.00	61				8088.00
$\overline{12}$				300.00	62				8316.00
$\overline{13}$	w. 3	30.0	75.0	345.00	63				8544.00
14		50.0		420.00	64	w. 11	30.0	258.0	8772.00
15	••••			495.00	65			200.0	9030.00
16				570.00	66				9288.00
17				645.00	67				9546.00
18	w. 4	30.0	105.0	720.00	68				9804.00
18		1		825.00	69	w. 12	20.0	200 0	10062.00
19	• • • •		••••	020.00	09	w. 12	30.0	288.0	10002.00
20				930.00	70				10350.00
21				1035.00	71				10638.00
22				1140.00	72				10926.00
23	w. 5	30.0	135.0	1245.00	73	• • • • • • •			11214.00
24				1380.00	74	w. 13	30.0	318.0	11502.00
25				1515.00	75				11820.00
26				1650.00	76				12138.00
$\overline{27}$				1785.00	77				12456.00
28				1920.00	78				12774.00
29				2055.00	79	w. 14	30.0	348.0	13092.00
30				2190.00	80				13440.00
31				2325.00	81				13788.00
32	w. 6	19.5	154.5	2460.00	82				14136.00
33				2614.50	83				14484.00
34	• • • •	• • • •	• • • • •	2769.00	84	•••••	• • • •		14832.00
$\frac{34}{35}$		••••	••••	2923.50	85		••••		15180.00
36	• • • •	••••		3078.00	86		• • • •		15528.00
30 37	 w. 7	19.5	174.0	3078.00 3232.50	87	• • • • • •	• • • •	••••	15528.00
37 38				3406.50	88		10.5	367.5	15870.00 16224.00
	• • • •		••••		88	w. 15	19.5		16591.00
39	• • • •		••••	3580.50	- 69	• • • • • •	••••	••••	10991.00
40				3754.50	90				16959.00
41				3928.50	91				17326.50
$\tilde{42}$				4102.50	92				17694.00
43	w. 8	19.5	193.5	4276.50	93	w. 16	19.5	387.0	18061.50
44				4470.00	94				18448.00
45				4663.50	95				18835.50
46				4857.00	96				19222.50
47				5050.50	97				19609.50
48	w. 9	19.5	213.0	5050.50 5244.00	98				19996.50
48 49				5457.00	98	w. 17	19.5	$\frac{1000}{406.5}$	20383.50
49 50	••••	••••	•••••	5670.00	100				20383.00
50	• • • •	••••	• • • • •	5010.00	100	••••			20130.00
					1				

5

COOPER'S E60. 100'-150' COOPER'S E60. 150'-200'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100				20790.00	150		549.0	44533.5
101				21196.50	151		552.0	45084.0
102		••••		21603.00	152		555.0	45637.5
103		••••		22009.50	$152 \\ 153$		558.0	46194.0
104	w. 18	19.5	426.0	22416.00	$153 \\ 154$		561.0	46753.5
104	w. 18	19.0	420.0	22842.00			561.0 564.0	
		• • • •			155			47316.0
106		• • • •		23268.00	156		567.0	47881.5
107		• • • •		23694.00	157		570.0	48450.0
108	• • • • • •	• • • •		24120.00	158		573.0	49021.5
109			426.0	24546.00	159		576.0	49596.0
110 111	-		429.0	24973.50	160		579.0	50173.5
			432.0	25404.00	161		582.0	50754.0
112			435.0	25837.50	162		585.0	51337.5
113			438.0	26274.00	163		588.0	51924.0
114			441.0	26713.50	164		591.0	52513.5
115			444.0	27156.00	165		594.0	53106.0
116			447.0	27601.50	166		597.0	53701.50
117			450.0	28050.00	167		600.0	54300.00
118			453.0	28501.50	168	ot	603.0	54901.5
119	ا حبر ا		456.0	28956.00	169	3,000 pounds per foot	606.0	55506.00
120	00		459.0	29413.50	170	bei	609.0	56113.5
121	1		462.0	29874.00	171	sp	612.0	56724.0
122	be		465.0	30337.50	172	ğ	615.0	57337.5
123	202		468.0	30804.00	173	no	618.0	-57954.00
124	pq		471.0	31273.50	174	d	621.0	58573.50
125	n		474.0	31746.00	175	8	624.0	59196.00
126	ă		477.0	32221.50	176	ō,	627.0	59821.5
127	9		480.0	32700.00	177	3	630.0	60450.00
128	8		483.0	33181.50	178	11	633.0	61081.50
129	= 3,000 pounds per foot		486.0	33666.00	179	Uniform Load =	636.0	61716.00
130			489.0	34153.50	180	Io	639.0	62353.50
131	a l		492.0	34644.00	181	B	642.0	62994.0
132	Ă		495.0	35137.50	182	or	645.0	63637.50
133	Uniform Load		498.0	35634.00	183	lif	648.0	64284.00
134	L.		501.0	36133.50	184	5	651.0	64933.50
135	if		501.0 504.0	36636.00	185	·	651.0	65586.00
136	n n		507.0	37141.50	186			
130							657.0	66241.50
			510.0	37650.00	187		660.0	66900.00
138			513.0	38161.50	188		663.0	67561.50
139			516.0	38676.00	189		666.0	68226.00
140			519.0	39193.50	190		669.0	68893.50
141			522.0	39714.00	191		672.0	69564.00
142			525.0	40237.50	192		675.0	70237.50
143			528.0	40764.00	193		678.0	70914.00
144			531.0	41293.50	194		681.0	71593.50
145			534.0	41826.00	195		684.0	72276.00
146			537.0	42361.50	196		687.0	72961.50
147			540.0	42900.00	197		690.0	73650.00
148			543.0	43441.50	198		693.0	74341.50
149			546.0	43986.00	199		696.0	75036.00
150			549.0	44533.50	200		699.0	75733.50
			010.0	1 1000 .000	400		000.0	10100.00

Cooper's E60. 200'-250' Cooper's E60. 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200		699.0	75733.50	250		849.0	114433.50
201		702.0	76434.00	251		852.0	115284.00
202		705.0	77137.50	252		855.0	116137.50
203		708.0	77844.00	253		858.0	116994.00
203		711.0	78553.50	$250 \\ 254$		861.0	117853.50
204		714.0	79266.00	255		864.0	118716.00
				256			
206		717.0	79981.50			867.0	119581.50
207		720.0	80700.00	257		870.0	120450.00
208		723.0	81421.50	258		873.0	121321.50
209		726.0	82146.00	259		876.0	122196.00
210		729.0	82873.50	260		879.0	123073.50
211		732.0	83604.00	261		882.0	123954.00
212		735.0	84337.50	262		885.0	124837.50
213		738.0	85074.00	263		888.0	125724.00
214		741.0	85813.50	264		891.0	126613.50
215		744.0	86556.00	265		894.0	127506.00
216		747.0	87301.50	266		897.0	128401.50
217	ç.	750.0	88050.00	267	ę.	900.0	129300.00
218	8	753.0	88801.50	268	8	903.0	130201.50
219		756.0	89556.00	269	میت ب	906.0	131106.00
	3,000 pounds per foot				3,000 pounds per foot		
220	s	759.0	90313.50	270	s	909.0	132013.50
221	ŭ	762.0	91074.00	271	n	912.0	132924.00
222	no	765.0	91837.50	272	no	915.0	133837.50
223	đ	768.0	92604.00	273	đ	918.0	134754.00
224	8	771.0	93373.50	274	8	921.0	135673.50
225	ŏ	774.0	94146.00	275	õ	924.0	136596.00
226		777.0	94921.50	276		927.0	137521.50
227	11	780.0	95700.00	277	11	930.0	138450.00
228		783.0	96481.50	278		933.0	139381.50
229	03(786.0	97266.00	279	030	936.0	140316.00
230	Uniform Load	789.0	98053.50	280	Uniform Load	939.0	141253.50
231	11	792.0	98844.00	281	L	942.0	142194.00
232	ife	795.0	99637.50	281	Ę	945.0	143137.50
232	'n	798.0	100434.00	$\frac{282}{283}$	'n		
	L L					948.0	144084.00
234		801.0	101233.50	284		951.0	145033.50
235		804.0	102036.00	285		954.0	145986.00
236		807.0	102841.50	286		957.0	146941.50
237		810.0	103650.00	287		960.0	147900.00
238		813.0	104461.50	288		963.0	148861.50
239		816.0	105276.00	289		966.0	149826.00
240		819.0	106093.50	290		969.0	150793.50
241		822.0	106914.00	291		972.0	151764.00
242		825.0	107737.50	292		975.0	152737.50
243		828.0	108564.00	293.		978.0	153714.00
244		831.0	109393.50	294		981.0	154693.50
245		834.0	110226.00	295		984.0	155676.00
246		837.0	111061.50	295		987.0	156661.50
247		840.0	111900.00	297		990.0	157650.00
248		843.0	112741.50	298		993.0	158641.50
249		846.0	113586.00	299		996.0	159636.00
250		849.0	114433.50	300		999.0	160633.50

6

Cooper's E60. 300'-350' Cooper's E60. 350'-400'

	JOOPER	S £00.	300 -330		JPERS.	<u>200. 550</u>	-400
Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
$\begin{array}{c} 300\\ 301\\ 302\\ 303\\ 304\\ 305\\ 306\\ 307\\ 308\\ 309 \end{array}$		$\begin{array}{c} 999.0\\ 1002.0\\ 1005.0\\ 1008.0\\ 1011.0\\ 1014.0\\ 1017.0\\ 1020.0\\ 1023.0\\ 1026.0 \end{array}$	$\begin{array}{c} 160633.50\\ 161634.00\\ 162637.50\\ 163644.00\\ 164653.50\\ 165666.00\\ 166681.50\\ 167700.00\\ 168721.50\\ 169746.00 \end{array}$	$\begin{array}{c} 350\\ 351\\ 352\\ 353\\ 354\\ 355\\ 356\\ 356\\ 357\\ 358\\ 359\end{array}$		$\begin{array}{c} 1149.0\\ 1152.0\\ 1155.0\\ 1155.0\\ 1158.0\\ 1161.0\\ 1164.0\\ 1167.0\\ 1170.0\\ 1170.0\\ 1173.0\\ 1176.0 \end{array}$	$\begin{array}{c} 214333.50\\ 215484.00\\ 216637.50\\ 217794.00\\ 218953.50\\ 220116.00\\ 221281.50\\ 222450.00\\ 223621.50\\ 224796.00 \end{array}$
$310 \\ 311 \\ 312 \\ 313 \\ 314 \\ 315 \\ 316 \\ 317 \\ 318 \\ 319$	r foot	$\begin{array}{c} 1029.0\\ 1032.0\\ 1035.0\\ 1038.0\\ 1041.0\\ 1044.0\\ 1044.0\\ 1050.0\\ 1053.0\\ 1056.0 \end{array}$	$\begin{array}{c} 170773.50\\ 171804.00\\ 172837.50\\ 173874.00\\ 174913.50\\ 175956.00\\ 177001.50\\ 178050.00\\ 179101.50\\ 180156.00\\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	r foot	$\begin{array}{c} 1179.0\\ 1182.0\\ 1185.0\\ 1188.0\\ 1191.0\\ 1194.0\\ 1197.0\\ 1200.0\\ 1203.0\\ 1206.0 \end{array}$	$\begin{array}{c} 225973.50\\ 227154.00\\ 228337.50\\ 229524.00\\ 230713.50\\ 231906.00\\ 233101.50\\ 234300.00\\ 235501.50\\ 236706.00 \end{array}$
320 321 322 323 324 325 326 327 328 329	oad = 3,000 pounds per foot	$\begin{array}{c} 1059.0\\ 1062.0\\ 1065.0\\ 1038.0\\ 1071.0\\ 1074.0\\ 1077.0\\ 1080.0\\ 1083.0\\ 1083.0\\ 1086.0 \end{array}$	$\begin{array}{c} 181213.50\\ 182274.00\\ 183337.50\\ 184404.00\\ 185473.50\\ 186546.00\\ 187621.50\\ 188700.00\\ 189781.50\\ 190866.00 \end{array}$	370 371 372 373 374 375 376 376 377 378 379	oad = 3,000 pounds per foot	$\begin{array}{c} 1209.0\\ 1212.0\\ 1215.0\\ 1218.0\\ 1221.0\\ 1224.0\\ 1227.0\\ 1230.0\\ 1233.0\\ 1236.0 \end{array}$	$\begin{array}{c} 237913.50\\ 239124.00\\ 240337.50\\ 241554.00\\ 242773.50\\ 243996.00\\ 245221.50\\ 246450.00\\ 24681.50\\ 248916.00\\ \end{array}$
330 331 332 333 334 335 336 337 338 339	Uniform Load	$\begin{array}{c} 1089.0\\ 1092.0\\ 1095.0\\ 1098.0\\ 1101.0\\ 1104.0\\ 1107.0\\ 1110.0\\ 1113.0\\ 1116.0 \end{array}$	$\begin{array}{c} 191953.50\\ 193044.00\\ 194137.50\\ 195234.00\\ 196333.50\\ 197436.00\\ 198541.50\\ 199650.00\\ 200761.50\\ 201876.00\\ \end{array}$	380 381 382 383 384 385 386 387 388 388 389	Uniform Load	$\begin{array}{c} 1239.0\\ 1242.0\\ 1245.0\\ 1245.0\\ 1251.0\\ 1254.0\\ 1257.0\\ 1260.0\\ 1260.0\\ 1263.0\\ 1266.0 \end{array}$	$\begin{array}{c} 250153.50\\ 251394.00\\ 252637.50\\ 253884.00\\ 255133.50\\ 256386.00\\ 257641.50\\ 258900.00\\ 260161.50\\ 261426.00 \end{array}$
$\begin{array}{c} 340\\ 341\\ 342\\ 343\\ 344\\ 345\\ 346\\ 347\\ 348\\ 349\\ 350\\ \end{array}.$		$\begin{array}{c} 1119.0\\ 1122.0\\ 1125.0\\ 1128.0\\ 1131.0\\ 1134.0\\ 1137.0\\ 1140.0\\ 1143.0\\ 1146.0\\ 1149.0 \end{array}$	$\begin{array}{c} 202993.50\\ 204114.00\\ 205237.50\\ 206364.00\\ 207493.50\\ 208626.00\\ 209761.50\\ 210900.00\\ 212041.50\\ 213186.00\\ 214333.50\\ \end{array}$	390 391 392 393 394 395 396 397 398 399 400		$\begin{array}{c} 1269.0\\ 1272.0\\ 1275.0\\ 1278.0\\ 1281.0\\ 1284.0\\ 1287.0\\ 1290.0\\ 1293.0\\ 1296.0\\ 1299.0 \end{array}$	$\begin{array}{c} 262693.50\\ 263964.00\\ 265237.50\\ 266514.00\\ 26793.50\\ 269076.00\\ 270361.50\\ 270361.50\\ 271650.00\\ 272941.50\\ 274236.00\\ 275533.50 \end{array}$

Common Standard 0'-50' Common Standard 50'-100'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	12.5	12.5	00.00	50				5120.00
ĭ		14.0	12.0	12.50	51				5312.50
2				25.00	52				5505.00
3				$\frac{1}{37.50}$	53				5697.50
4		••••		50.00	54				5890.00
5				62.50	55				6082.50
6				75.00	56	w. 10	12.5	205.0	6275.00
7				87.50	57				6480.00
8	w. 2	27.5	40.0	100.00	58				6685.00
ğ				140.00	59				6890.00
10				180.00	60				7095.00
11.				220.00	61				7300.00
12				260.00	62				7505.00
13	w. 3	27.5	67.5	300.00	63				7710.00
14				367.50	64	w. 11	27.5	232.5	7915.00
15				435.00	65				8147.50
16				502.50	66				8380.00
17				570.00	67				8612.50
18	w. 4	27.5	95.0	637.50	68				8845.00
19				732.50	69	w. 12	27.5	260.0	9077.50
20				827.50	70				9337.50
21				922.50	71				9597.50
22			:::::	1017.50	72				9857.50
23	w. 5	27.5	122.5	1112.50	73				10117.50
24				1235.00	74	w. 13	27.5	287.5	10377.50
25				1357.50					10665.00
26				1480.00	76				10952.50
27		••••		1602.50	77				11240.00
28				1725.00			07 5		11527.50
29				1847.50	79	w. 14	27.5	315.0	11815.00
30				1970.00	80				12130.00
31		1212	1100	2092.50	81				12445.00
32	w. 6	17.5	140.0	2215.00	$\begin{array}{c c} 82\\ 83 \end{array}$				$12760.00 \\ 13075.00$
33				2355.00			• • • •		
34				2495.00	84 85				$13390.00 \\ 13705.00$
35	• • • • • •			2635.00	80				14020.00
$\frac{36}{27}$	w. 7	17.5	157.5	$2775.00 \\ 2915.00$	87	• • • • • •		••••	14020.00 14335.00
$\frac{37}{38}$		1		2915.00 3072.50	88	w. 15	17.5	332.5	14355.00 14650.00
38 39				3072.50 3230.00	89	w. 15	17.5		14982.50
			•••••						
40				3387.50	90				15315.00
41				3545.00	91				15647.50
42		:		3702.50	92			250.0	15980.00
43	w. 8	17.5	175.0	3860.00	93	w. 16	17.5	350.0	16312.50
44				4035.00	94				16662.50
45				4210.00	95				17012.50
46				4385.00	96				17362.50
47		1212		4560.00	97				17712.50
48	w. 9	17.5	192.5	4735.00	98		12.2	0.07 5	18062.50
49				4927.50	99	w. 17	17.5	367.5	18412.50
50				5120.00	100				18780.00

¢,

Common Standard 100'-150' Common Standard 150'-200'

Length	Wheel	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
100				18780.00	150		487.5	40061.2
101		••••		19147.50	151		490.0	40550.0
102				19515.00	$151 \\ 152$		492.5	41041.2
102				19882.50	153		495.0	41535.0
	10	177 6	905 0					
104	w. 18	17.5	385.0	20250.00	154		497.5	42031.2
105				20635.00	155		500.0	42530.0
106				21020.00	156		502.5	43031.2
107				21405.00	157		505.0	43535.0
108				21790.00	158		507.5	44041.2
109			385.0	22175.00	159		510.0	44550.0
110			387.5	22561.25	160		512.5	45061.2
111			390.0	22950.00	161		515.0	45575.0
112			392.5	23341.25	162		517.5	46091.2
113			395.0	23735.00	163		520.0	46610.0
114			397.5	24131.25	164		522.5	47131.2
115			400.0	24530.00	165		525.0	47655.0
116			402.5	24931.25	166	t i	527.5	48181.2
117		0	402.0	25335.00	167	0	530.0	48710.0
118		fo	407.5	25741.25	168	- L	532.5	49241.2
119		L.	410.0	26150.00	169		535.0	49775.0
		2,500 pounds per foot				2,500 pounds per foot		
120		spr	412.5	26561.25	170	ğ	537.5	50311.2
121		B	415.0	26975.00	171	õ	540.0	50850.0
122		od l	417.5	27391.25	172	d	542.5	51391.2
123		0	420.0	27810.00	173	ğ	545.0	51935.0
124		õ	422.5	28231.25	174	35	547.5	52481.2
125		3	425.0	28655.00	175		550.0	53030.0
126		1	427.5	29081.25	176	Ш	552.5	53581.2
127			430.0	29510.00	177	p	555.0	54135.0
128		ad	432.5	29941.25	178	08	557.5	54691.2
$1\overline{29}$		Uniform Load	435.0	30375.00	179	Uniform Load	560.0	55250.0
130		. H	437.5	30811.25	180	orn	562.5	55811.2
131		fo	440.0	31250.00	181	lif	565.0	56375.0
132		.iu	442.5	31691.25	182	5	567.5	56941.2
133		D	445.0	32135.00	183		570.0	57510.0
134			447.5	32581.25	184		572.5	58081.2
135			450.0	33030.00	185		575.0	58655.0
136			450.0 452.5	33481.25	185		575.0 577.5	59231.2
130			452.0 455.0	33935.00	180		577.5 580.0	59231.2 59810.0
138			457.5	34391.25	188		582.5	60391.2
139			460.0	34850.00	189		585.0	60975.0
140			462.5	35311.25	190		587.5	61561.2
141			465.0	35775.00	191		590.0	62150.0
142			467.5	36241.25	192		592.5	62741.2
143			470.0	36710.00	193		595.0	63335.0
144			472.5	37181.25	194		597.5	63931.2
145			475.0	37655.00	195		600.0	64530.0
146			477.5	38131.25	196		602.5	65131.2
147			480.0	38610.00	197		605.0	65735.0
148			482.5	39091.25	198		607.5	66341.2
149			482.0	39575.00	198		610.0	66950.0
149								
100			487.5	40061.25	200		612.5	67561.2

Common Standard 200'-250' Common Standard 250'-300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200 201 202 203 204 205 206 207 208 209		$\begin{array}{c} 612.5\\ 615.0\\ 617.5\\ 620.0\\ 622.5\\ 625.0\\ 627.5\\ 630.0\\ 632.5\\ 635.0\\ \end{array}$	$\begin{array}{c} 67561.25\\ 68175.00\\ 68791.25\\ 69410.00\\ 70031.25\\ 70655.00\\ 71281.25\\ 71910.00\\ 72541.25\\ 73175.00\\ \end{array}$	$\begin{array}{r} 250 \\ 251 \\ 252 \\ 253 \\ 254 \\ 255 \\ 256 \\ 257 \\ 258 \\ 259 \end{array}$		$\begin{array}{c} 737.5\\740.0\\742.5\\745.0\\747.5\\750.0\\752.5\\755.0\\757.5\\760.0\end{array}$	$\begin{array}{c} 101311.25\\ 102050.00\\ 102791.25\\ 103535.00\\ 104281.25\\ 105030.00\\ 105781.25\\ 106535.00\\ 107291.25\\ 108050.00\\ \end{array}$
210 211 212 213 214 215 216 217 218 219	per foot	$\begin{array}{c} 637.5\\ 640.0\\ 642.5\\ 645.0\\ 647.5\\ 650.0\\ 652.5\\ 655.0\\ 657.5\\ 660.0 \end{array}$	$\begin{array}{c} 73811.25\\74450.00\\75091.25\\75735.00\\76381.25\\77030.00\\77681.25\\78335.00\\78991.25\\79630.00\end{array}$	$\begin{array}{c} 260\\ 261\\ 262\\ 263\\ 264\\ 265\\ 266\\ 267\\ 268\\ 269\\ \end{array}$	per foot	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 108811.25\\ 109575.00\\ 110341.25\\ 11110.00\\ 111881.25\\ 112655.00\\ 113431.25\\ 114210.00\\ 114991.25\\ 115775.00\\ \end{array}$
220 221 222 223 224 225 226 227 228 229	Uniform Load=2,500 pounds per foot	$\begin{array}{c} 662.5\\ 665.0\\ 667.5\\ 670.0\\ 672.5\\ 675.0\\ 675.0\\ 677.5\\ 680.0\\ 682.5\\ 685.0\\ \end{array}$	$\begin{array}{c} 80311.25\\ 80975.00\\ 81641.25\\ 82310.00\\ 82981.25\\ 83655.00\\ 84331.25\\ 85010.00\\ 85691.25\\ 86375.00\\ \end{array}$	270 271 272 273 274 275 276 277 278 279	Uniform Load=2,500 pounds per foot	$\begin{array}{c} 787.5\\ 790.0\\ 792.5\\ 795.0\\ 797.5\\ 800.0\\ 802.5\\ 805.0\\ 807.5\\ 810.0\\ \end{array}$	$\begin{array}{c} 116561.25\\ 117350.00\\ 118141.25\\ 118935.00\\ 119731.25\\ 120530.00\\ 121331.25\\ 122135.00\\ 122941.25\\ 123750.00 \end{array}$
230 231 232 233 234 235 236 237 238 239	Uniforn	$\begin{array}{c} 687.5\\ 690.0\\ 692.5\\ 695.0\\ 697.5\\ 700.0\\ 702.5\\ 705.0\\ 707.5\\ 710.0\\ \end{array}$	$\begin{array}{c} 87061.25\\ 87750.00\\ 88441.25\\ 89135.00\\ 89831.25\\ 90530.00\\ 91231.25\\ 91935.00\\ 92641.25\\ 93350.00\\ \end{array}$	280 281 282 283 284 285 286 287 288 287 288 289	Uniforn	$\begin{array}{c} 812.5\\ 815.0\\ 817.5\\ 820.0\\ 822.5\\ 825.0\\ 827.5\\ 830.0\\ 832.5\\ 835.0\\ \end{array}$	$\begin{array}{c} 124561.25\\ 125375.00\\ 126191.25\\ 127010.00\\ 127831.25\\ 128655.00\\ 129481.25\\ 130310.00\\ 131141.25\\ 131975.00\\ \end{array}$
$\begin{array}{c} 240\\ 241\\ 242\\ 243\\ 244\\ 245\\ 246\\ 247\\ 248\\ 249\\ 250\\ \end{array}$		$\begin{array}{c} 712.5\\ 715.0\\ 717.5\\ 720.0\\ 722.5\\ 725.0\\ 727.5\\ 730.0\\ 732.5\\ 735.0\\ 737.5\\ \end{array}$	$\begin{array}{c} 94061.25\\ 94775.00\\ 95491.25\\ 96210.00\\ 96931.25\\ 97655.00\\ 98381.25\\ 99110.00\\ 99841.25\\ 100575.00\\ 101311.25\\ \end{array}$	290 291 292 293 294 295 296 297 298 299 300	\$	$\begin{array}{c} 837.5\\ 840.0\\ 842.5\\ 845.0\\ 847.5\\ 850.0\\ 852.5\\ 855.0\\ 857.5\\ 860.0\\ 862.5\end{array}$	$\begin{array}{c} 132811.25\\ 133650.00\\ 134491.25\\ 135335.00\\ 136181.25\\ 137030.00\\ 137881.25\\ 138735.00\\ 139591.25\\ 140450.00\\ 141311.25\\ \end{array}$

82

¢,

Common Standard 300'-350' Common Standard 350'-400'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300 301 302		$862.5 \\ 865.0 \\ 867.5$	$\begin{array}{r} 141311.25\\142175.00\\143041.25\end{array}$	$350 \\ 351 \\ 352$		987.50 990.00 992.50	187561.25 188550.00 189541.25
303 304 305		870.0 872.5 875.0	$143910.00\\144781.25\\145655.00$	$353 \\ 354 \\ 355 \\ 252 \\ 355 $	-	995.00 997.50 1000.00	$\begin{array}{c} 190535.00\\ 191531.25\\ 192530.00\\ \end{array}$
306 307 308 309		877.5 880.0 882.5 885.0	$\begin{array}{r} 146531.25\\147410.00\\148291.25\\149175.00\end{array}$	356 357 358 359		$1002.50 \\ 1005.00 \\ 1007.50 \\ 1010.00$	$\begin{array}{c c} 193531.25\\ 194535.00\\ 195541.25\\ 196550.00\end{array}$
$310 \\ 311 \\ 312$		$887.5 \\ 890.0 \\ 892.5$	$\begin{array}{c} 150061.25 \\ 150950.00 \\ 151841.25 \end{array}$	$360 \\ 361 \\ 362$		$\frac{1012.50}{1015.00}\\1017.50$	$197561.25 \\ 198575.00 \\ 199591.25$
313 314 315 316		$895.0 \\ 897.5 \\ 900.0 \\ 902.5$	$\begin{array}{r} 152735.00 \\ 153631.25 \\ 154530.00 \\ 155431.25 \end{array}$	$\begin{array}{c} 363 \\ 364 \\ 365 \\ 366 \end{array}$		$1020.00 \\ 1022.50 \\ 1025.00 \\ 1027.50$	$\begin{array}{c} 200610.00 \\ 201631.23 \\ 202655.00 \\ 203681.23 \end{array}$
317 318 319	er foot	$905.0 \\ 907.5 \\ 910.0$	$\frac{156335.00}{157241.25}\\158150.00$	367 368 369	er foot	$1030.00 \\ 1032.50 \\ 1035.00$	$\begin{array}{c} 204710.00 \\ 205741.23 \\ 206775.00 \end{array}$
320 321 322 323	ounds pe	912.5 915.0 917.5 920.0	$\begin{array}{r} 159061.25\\ 159975.00\\ 160891.25\\ 161810.00 \end{array}$	370 371 372 373	ounds po	$1037.50\\1040.00\\1042.50\\1045.00$	$\begin{array}{c} 207811.23 \\ 208850.00 \\ 209891.23 \\ 210935.00 \end{array}$
$324 \\ 325 \\ 326$	2,500 p	$\begin{array}{c} 922.5 \\ 925.0 \\ 927.5 \end{array}$	$\begin{array}{c} 162731.25 \\ 163655.00 \\ 164581.25 \end{array}$	$ \begin{array}{r} 374 \\ 375 \\ 376 \end{array} $	2,500 p	$\frac{1047.50}{1050.00}\\1052.50$	$\begin{array}{c} 211981.2 \\ 213030.0 \\ 214081.2 \end{array}$
327 328 329	Load =	$930.0 \\ 932.5 \\ 935.0$	$\frac{165510.00}{166441.25}\\167375.00$	377 378 379	Load =	$1055.00 \\ 1057.50 \\ 1060.00$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
330 331 332 333	Uniform Load=2,500 pounds per foot	937.5 940.0 942.5 945.0	$\begin{array}{c} 168311.25\\ 169250.00\\ 170191.25\\ 171135.00 \end{array}$	380 381 382 383	Uniform Load $=$ 2,500 pounds per foot	$1062.50 \\ 1065.00 \\ 1067.50 \\ 1070.00$	$\begin{array}{c} 218311.2 \\ 219375.0 \\ 220441.2 \\ 221510.0 \end{array}$
334 335 336 337	C	947.5 950.0 952.5 955.0	$172081.25 \\ 173030.00 \\ 173981.25 \\ 174935.00$	384 385 386 387		$1072.50 \\ 1075.00 \\ 1077.50 \\ 1080.00$	$\begin{array}{c} 222581.24\\ 223655.00\\ 224731.24\\ 225810.00\end{array}$
338 339		957.5 960.0	$\frac{175891.25}{176850.00}$	388 389		$\frac{1082.50}{1085.00}$	$\begin{array}{c} 226891.23 \\ 227975.00 \end{array}$
$340 \\ 341 \\ 342 \\ 343$		962.5 965.0 967.5 970.0	$177811.25\\178775.00\\179741.25\\180710.00$	$390 \\ 391 \\ 392 \\ 393$		$1087.50 \\ 1090.00 \\ 1092.50 \\ 1095.00$	$\begin{array}{c c} 229061.2 \\ 230150.0 \\ 231241.2 \\ 232335.0 \end{array}$
$344 \\ 345 \\ 346$		972.5 975.0 977.5	$\frac{181681.25}{182655.00}\\183631.25$	394 395 396		$1097.50 \\ 1100.00 \\ 1102.50$	$\begin{array}{r} 233431.23 \\ 234530.00 \\ 235631.23 \end{array}$
347 348 349 350		980.0 982.5 985.0 987.5	$\frac{184610.00}{185591.25}\\ 186575.00\\ 187561.25$	397 398 399 400		$1105.00 \\ 1107.50 \\ 1110.00 \\ 1112.50$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Lackawanna 0'-50' Lackawanna 50'-100'

		AAWA.	unn o	00		LIACKA	WAININZ	1 00 10	
Length	Wheel	Load	Load Sums	Moment Sums	Length	Wheel	Load	Load Sums	Moment Sums
0	w. 1	11	11.03	00.000	50				4744 000
							••		4744.000
1	• • • • • •	• •	• • • • • •	11.000	51	••••	• •		4911.000
2		• •		22.000	52		•••		5078.000
3				33.000	53				5245.000
4				44.000	54	w. 10	11	178.00	5412.000
5				55.000	55				5590.000
6				66.000	56				5768.000
7	w. 2	25	36.00	77.000	57				5946.000
8				113.000	58				6124.000
9				149.000	59				6302.000
10				185.000	60				6480.000
11				221.000	61	w. 11	25	203.00	6658.000
12	w. 3	25	61.00	257.000	62				6861.000
13				318.000	63				7064.000
14				379.000	64				7267.000
15				440.000	65				7470.000
16				501.000	66	w. 12	$\dot{25}$	228.00	7673.000
17	w. 4	25	86.00	562.000	67				7901.000
18				648.000	68			1 1	8129.000
19		• •		734.000	69	1			8357.000
10		• •		101.000	05		•••	• • • • • •	0001.000
20				820.000	70				8585.000
$\overline{21}$				906.000	71	w. 13	25	253.00	8813.000
$\overline{22}$	w. 5	25	111.00	992,000	72				9066.000
$\overline{23}$				1103.000	73				9319.000
$\tilde{24}$				1214.000	74				9572.000
$\tilde{25}$				1214.000 1325.000	75			1 1	9825.000
26	1			1325.000 1436.000	76	w. 14	$\frac{1}{25}$	278.00	10078.000
$\frac{20}{27}$	• • • • • •	• •	• • • • • •	1547.000	77			1	10356.000
$\frac{27}{28}$		••	• • • • • •		78	• • • • • •			
$\frac{28}{29}$	• • • • • •	• •		$1658.000 \\ 1769.000$	79			• • • • • •	10634.000
29		• •	•••••	1709.000	19	••••	• •		10912.000
30				1880.000	80				11190.000
31	w. 6	14	125.00	1991.000	81				11468.000
$\overline{32}$				2116.000	82				11746.000
33				2241.000	83				12024.000
34				2366.000	84		• •		12302.000
35				2491.000	85	w. 15	14	292.00	12502.000 12580.000
36	w. 7	14	139.00	2616.000	86	w. 15		292.00	12380.000 12872.000
37	4 1		159.00	2755.000	80			4 1	12872.000 13146.000
38	••••	•••	1 1	2894.000	88	••••		••••	13146.000
39		• •		2894.000	89	••••	• •	• • • • • •	
99	••••	• •	••••	3033.000	09	••••		•••••	13748.000
40				3172.000	90	w. 16	14	306.00	14040.000
41	w. 8	14	153.00	3311.000	91				14346.000
$\frac{11}{42}$				3464.000	92				14652.000
43				3617.000	93				14958.000
44				3770.000	94		••		15264.000
45		• •		3923.000	95	w. 17	14	320.00	15570.000
46	w. 9	14	167.00	4076.000	95 96	w. 17		520.00	15890.000
40				4070.000	90		••	1 1	
48	• • • • • •	. ••		4245.000		· · · · · · ·		••••	16210.000 16520.000
	• • • • • •	•••			98	· · · · · · ·	• •	• • • • • •	16530.000
$\frac{49}{50}$	• • • • • •	• •		4577.000	99 100		14	224 00	16850.000
50	• • • • • •	•••		4744.000	100	w. 18	14	334.00	17170.000
			1	1	1			1	

ć

Lackawanna 100'-150' Lackawanna 150'-200'

Length	Wheel	Load	Load	Moment	Length	Load	Load	Moment
	w neer	1.040	Sums	Sums			Sums	Sums
100	w. 18	14	334.00	17170.000	150		437.50	36250.500
101				17504.000	151		439.75	36689.125
102				17838.000	152		442.00	37130.000
103				18172.000	153		444.25	37573.125
104			334.00	18506.000	154		446.50	38018.500
105			336.25	18841.125	155		448.75	38466.125
106			338.50	19178.500	156		451.00	38916.000
107			340.75	19518.125	157		453.25	39368.125
108			343.00	19860.000	158		455.50	39822.500
109			345.25	20204.125	159		457.75	40279.125
110			347.50	20550.500	160		460.00	40738.000
111			349.75	20899.125	161		462.25	41199.125
112			352.00	21250.000	162		464.50	41662.500
113			354.25	21603.125	163		466.75	42128.125
114			356.50	21958.500	164		469.00	42596.000
115			358.75	22316.125	165		471.25	43066.125
116			361.00	22676.000	166	حب ا	473.50	43538.500
117		foot	363.25	23038.125	167	foot	475.75	44013.125
118		fc	365.50	23402.500	168	f	478.00	44490.000
119		2,250 pounds per	367.75	23769.125	169	pounds per	480.25	44969.125
120		[s]	370.00	24138.000	170	s	482.50	45450.500
121		nc.	372.25	24509.125	171	Ĕ	484.75	45934.125
122		no	374.50	24882.500	172	- DO	487.00	46420.000
123		d	376.75	25258.125	173	<u>д</u>	489.25	46908.125
124		20	379.00	25636.000	174	2,250	491.50	47398.500
125		0,	381.25	26016.125	175	C1.	493.75	47891.125
126			383.50	26398.500	176		496.00	48386.000
127		11	385.75	26783.125	177	1	498.25	48883.125
128		pr	388.00	27170.000	178	ad	500.50	49382.500
129		Uniform Load	390.25	27559.125	179	Uniform Load	502.75	49884.125
130		g	392.50	27950.500	180	B	505.00	50338.000
131		L L	394.75	28344.125	181	L LO	507.25	50894.125
132		if	397.00	28740.000	182	lif	509.50	51402.500
133		5	399.25	29138.125	183	5	511.75	51913.125
134			401.50	29538.500	184		514.00	52426.000
$135 \\ 120$			403.75	29941.125	185		516.25	52941.125
136			406.00	30346.000	186		518.50	53458.500
137			408.25	30753.125	187		520.75	53978.125
138			410.50	31162.500	188		523.00	54500.000
139			412.75	31574.125	189		525.25	55024.125
140			415.00	31988.000	190		527.50	55550.500
141			417.25	32404.125	191		529.75	56079.125
142	1		419.50	32882.500	192		532.00	56610.000
143			421.75	33243.125	193		534.25	57143.125
144			424.00	33666.000	194		536.50	57678.500
145			426.25	34091.125	195		538.75	58216.125
146			428.50	34518.500	196		541.00	58756.000
147			430.75	34948.125	197		543.25	59298.125
148			433.00	35380.000	198		545.50	59842.500
149			435.25	35814.125	199		547.75	60389.125
150			437.50	36250.500	200		550.00	60938.000

85

Lackawanna 200'–250' Lackawanna 250'–300'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
200 201 202 203 204 205 206 207 208 209		$\begin{array}{c} 550.00\\ 552.25\\ 554.50\\ 556.75\\ 559.00\\ 561.25\\ 563.50\\ 565.75\\ 568.00\\ 570.25\\ \end{array}$	$\begin{array}{c} 60938.000\\ 61489.125\\ 62042.500\\ 62598.125\\ 63156.000\\ 63716.125\\ 64278.500\\ 64843.125\\ 65410.000\\ 65979.125 \end{array}$	$\begin{array}{c} 250 \\ 251 \\ 252 \\ 253 \\ 254 \\ 255 \\ 256 \\ 257 \\ 258 \\ 259 \end{array}$		$\begin{array}{c} 662.50\\ 664.75\\ 667.00\\ 669.25\\ 671.50\\ 673.75\\ 676.00\\ 678.25\\ 680.50\\ 682.75\end{array}$	$\begin{array}{c} 91250.500\\ 91914.125\\ 92580.000\\ 93248.125\\ 93918.500\\ 94591.125\\ 95266.000\\ 95943.125\\ 96622.500\\ 97304.125\end{array}$
210 211 212 213 214 215 216 217 218 219	er foot	$\begin{array}{c} 572.50\\ 574.75\\ 577.00\\ 579.25\\ 581.50\\ 583.75\\ 586.00\\ 588.25\\ 590.50\\ 592.75\end{array}$	$\begin{array}{c} 66550,500\\ 67124,125\\ 67700,000\\ 68278,125\\ 68858,500\\ 69441,125\\ 70026,000\\ 70613,125\\ 71202,500\\ 71794,125 \end{array}$	$\begin{array}{c} 260 \\ 261 \\ 262 \\ 263 \\ 264 \\ 265 \\ 266 \\ 267 \\ 268 \\ 269 \end{array}$	er foot	$\begin{array}{c} 685.00\\ 687.25\\ 689.50\\ 691.75\\ 694.00\\ 696.25\\ 698.50\\ 700.75\\ 703.00\\ 705.25\\ \end{array}$	$\begin{array}{c} 97988.000\\ 98674.125\\ 99362.500\\ 100053.125\\ 100746.000\\ 101441.125\\ 102138.500\\ 102838.125\\ 103540.000\\ 104244.125 \end{array}$
220 221 222 223 224 225 226 227 228 229	oad $= 2,250$ pounds per foot	$\begin{array}{c} 595.00\\ 597.25\\ 599.50\\ 601.75\\ 604.00\\ 606.25\\ 608.50\\ 610.75\\ 613.00\\ 615.25\end{array}$	$\begin{array}{c} 72388.000\\ 72984.125\\ 73582.500\\ 74183.125\\ 74786.000\\ 75391.125\\ 75998.500\\ 76608.125\\ 77220.000\\ 77834.125\end{array}$	270 271 272 273 274 275 276 277 278 279	load $= 2,250$ pounds per foot	$\begin{array}{c} 707.50\\ 709.75\\ 712.00\\ 714.25\\ 716.50\\ 718.75\\ 721.00\\ 723.25\\ 725.50\\ 727.75\\ \end{array}$	$\begin{array}{c} 105950.500\\ 105659.125\\ 106370.000\\ 107083.125\\ 107798.500\\ 108516.125\\ 109236.000\\ 109958.125\\ 110682.500\\ 111409.125 \end{array}$
230 231 232 233 234 235 236 237 238 239	Uniform Load	$\begin{array}{c} 617.50\\ 619.75\\ 622.00\\ 624.25\\ 626.50\\ 628.75\\ 631.00\\ 633.25\\ 635.50\\ 637.75\\ \end{array}$	$\begin{array}{c} 78450.500\\ 79069.125\\ 79690.000\\ 80313.125\\ 80938.500\\ 81566.125\\ 82196.000\\ 82828.125\\ 83462.500\\ 84099.125 \end{array}$	280 281 282 283 284 285 286 287 286 287 288 289	Uniform Load	$\begin{array}{c} 730.00\\ 732.25\\ 734.50\\ 736.75\\ 739.00\\ 741.25\\ 743.50\\ 745.75\\ 748.00\\ 750.25\\ \end{array}$	$\begin{array}{c} 112138.000\\ 112869.125\\ 113602.500\\ 114338.125\\ 115076.000\\ 115816.125\\ 116558.500\\ 117303.125\\ 118050.000\\ 118799.125\\ \end{array}$
$\begin{array}{c} 240\\ 241\\ 242\\ 243\\ 244\\ 245\\ 246\\ 246\\ 247\\ 248\\ 249\\ 250\\ \end{array}$		$\begin{array}{c} 640,00\\ 642,25\\ 644,50\\ 646,75\\ 649,00\\ 651,25\\ 653,50\\ 655,75\\ 658,00\\ 660,25\\ 662,50\\ \end{array}$	$\begin{array}{r} 84738.000\\ 85379.125\\ 86022.500\\ 86668.125\\ 87316.000\\ 87966.125\\ 88618.500\\ 89273.125\\ 89930.000\\ 90589.125\\ 91250.500\\ \end{array}$	290 291 292 293 294 295 296 297 298 299 300		$\begin{array}{c} 752.50\\ 754.75\\ 757.00\\ 759.25\\ 761.50\\ 766.00\\ 768.25\\ 770.50\\ 772.75\\ 775.00\\ \end{array}$	$\begin{array}{c} 119550.500\\ 120304.125\\ 121060.000\\ 121818.125\\ 122578.500\\ 123341.125\\ 124106.000\\ 124873.125\\ 125642.500\\ 126414.125\\ 127188.000 \end{array}$

ć.

Lackawanna 300'-350'

LACKAWANNA 350'-400'

Length	Load	Load Sums	Moment Sums	Length	Load	Load Sums	Moment Sums
300		775.00	127188.000	350		887.50	168750.500
301		777.25	127964.125	351		889.75	169639.12
302		779.50	128742.500	352		892.00	170530.000
303		781.75	129523.125	353		894.25	171423.123
304		784.00	130306.000	354		896.50	172318.500
305		786.25	131091.125	355		898.75	173216.123
306		788.50	131878.500	356		901.00	174116.000
307		790.75	132668.125	357		903.25	175018.12
308		793.00	133460.000	358		905.50	175922.500
309		795.25	134254.125	359		907.75	176829.123
310		797.50	135050.500	360		910.00	177738.000
311		799.75	135849.125	361		912.25	178649.123
312		802.00	136650.000	362		914.50	179562.500
313		804.25	137453.125	363		916.75	180478.12
314		806.50	138258.500	364		919.00	181396.00
315		808.75	139066.125	365		921.25	182316.12
316		811.00	139876.000	366		921.20 923.50	182310.12
317	t f	813.25	140688.125	367	ot	925.75	184163.123
318	ŏ	815.50	141502.500	368	ĕ	928.00	185090.000
319	erf	817.75	142319.125	369	er	930.25	186019.123
320	pounds per foot	820.00	143138.000	370	2,250 pounds per foot	932.50	186950.500
321	Pa	822.25	143959.125	. 371	pa	934.75	187884.12
322	3	824.50	144782.500	372	n	937.00	188820.000
323	al	826.75	145608.125	373	Dd	939.25	189758.123
324	0	829.00	146436.000	374	0	941.50	190698.500
325	2,250	831.25	147266.125	375	22	943.75	191641.12
326	o l	833.50	148098.500	376	0	946.00	192586.000
327		835.75	148933.125	377	1	948.25	193533.125
328	11	838.00	149770.000	378		950.50	193555.123 194482.500
329	bad	840.25	150609.125	379	Uniform Load	950.50 952.75	194482.500 195434.125
330	Uniform Load	842.50	151450.500	380	υΓ	955.00	196388.000
331	H	844.75	152294.125	381	1	957.25	197344.125
332	ē	847.00	153140.000	382	\mathbf{f}_{0}	959.50	198302.500
333	ie	849.25	153988.125	383	ni	961.75	198302.300 199263.125
	5				P		
334		851.50	154838.500	384		964.00	200226.000
335		853.75	155691.125	385		966.25	201191.125
336	•	856.00	156546.000	386		968.50	202158.500
337		858.25	157403.125	387		970.75	203128.125
338		860.50	158262.500	388		973.00	204100.000
339		862.75	159124.125	389		975.25	205074.125
340		865.00	159988.000	390		977.50	206050.500
341		867.25	160854.125	391		979.75	207029.125
342		869.50	161722.500	392		982.00	208010.000
343		871.75	162593.125	393		984.25	208993.125
344		874.00	163466.000	394		986.50	209978.500
345		876.25	164341.125	395		988.75	210966.125
346		878.50	165218.500	396		991.00	211956.000
347		880.75	166098.125	397		993.25	212948.125
348		883.00	166980.000	398		995.50	213942.500
349		885.25	167864.125	399		997.75	214939.125
350		887.50	168750.500	400		1000.00	215938.000

TABLE 3

POSITION OF COOPER'S LOADINGS FOR MAXIMUM STRESS

Shorter Segment l_1

Seg	ments	0	10	15	·20	25	30	35	40	45	50	55	60	65	70	75	80	85	6	95	100	110	120	130	140
300)-260	2	2	3	3	4	4	5	5	6	7	7	8	9	10	10	11	11	12	12	13	14	15	17	18
250	-200	$\begin{vmatrix} 2\\ 2 \end{vmatrix}$	2	3	3	4	4	5	5	6	7	8	8	9	10	11	11	12	12	12	13	14	15	17	18
190)-150	2	2	3	3	4	4	5	5	6	7	8	9	9	11	11	12	12	12	12	13	14	15	17	18
	140	2	3	3	3	4	4	5	5	6	7	8	9	10	11	12	12	12	12	12	13	14	15	17	18
	130	2	3	3	3	4	4	5	5	6	7	8	9	10	11	12				12					
	120	2	3	3	3	4	4	5	5	6	7	8	9	10	11	12	12	12	13	13	13	14	15		
	110	2	3	3	3	4	4	5	6	7	7	8	9	10	11	12	12	12	13	13	13	14			
	100	2	3	3	3	4	5	5	6	14	14	14	13	$\overline{13}$	11	12	12	12	13	13	13				
	95	2	3	3	4	4	5	13	13	$\overline{13}$	$\overline{13}$	13	13	13	13	12	12	12	13	13					
	90	2	3	3	4	4	5	$\overline{13}$	13	$\overline{13}$	13	13	13	$\overline{13}$	13	12	12	12	13						
	85	2	3	3	4	4	5	$\overline{13}$	$\overline{13}$	$\overline{12}$	$\overline{13}$	13	$\overline{12}$	$\overline{13}$	13	$\overline{12}$	12	12							
	80	2	3	3	4	4	$\overline{13}$	$\overline{13}$	$\overline{13}$	$\overline{12}$	12	$\overline{12}$	$\overline{12}$	12	12	$\overline{12}$	12								
t l2	75	2	3	3	4	4	$\overline{13}$	$\overline{13}$	$\overline{12}$	$\overline{12}$	$\overline{12}$	$\overline{12}$	12	12	12	12									
en	70	2	3	3	4	4	$\overline{13}$	$\overline{13}$	12	$\overline{12}$	$\overline{12}$	12	11	11	11				•••						
Longer Segment l_2	65	2	3	3	4	4	$\overline{12}$	$\overline{12}$	12	$\overline{12}$	$\overline{12}$	11	11	11											
Se	60	11	3	3	4	4	5	$\overline{13}$	$\overline{12}$	11	11	11	11												
er	55	11	12	12	12	4	12	$\overline{13}$	$\overline{12}$	$\overline{12}$	$\overline{13}$	11													
guc	50	11	12	12	12	12	12	$\overline{13}$	13	$\overline{13}$	12														
Γ	45	2	3	12	12	12	12	$\overline{13}$	$\overline{13}$	13															
	40	2	3	3	3	12	12	$\overline{13}$	13																
	35	2	3	3	4	4	13	13																	
	30	2	3	3	4	4	13																		
	25	2	3	3	4	4																			
	20	2	4	3	4																				
	15	2	3	3																					
	10	2	3																						
	5	2												[
					1				1	1		1		i	1										

GENERAL NOTES.—The table gives wheel for maximum for any stress which has a triangular influence line.

In case of two unequal segments, the live load approaches on the longer segment except where wheel is overlined, when live load approaches on shorter segment.

When both segments are each greater than 142 ft., advance load on longer segment first, and upon next segment until wheel No. 1 is within 33 feet of the far end of the latter.

ć

TABLE 4

Position of Cooper's Loadings for Absolute Maximum Bending Moment in Girder Bridges Without Panels

S =Span in feet.

c = Distance in feet that wheel No. 1 has moved to left beyond centre of span.

w = wheel under which absolute maximum bending moment occurs.

a = distance that w is to left from centre of span.

b = " w " right " " " "

S	. <i>c</i>	w	a	ь
0' to 8'.5	8′.00	2	0′.00	
8.5 " 11.1	9.25	2	1.25	••••
11.1 " 18.7	13.00	3	0.00	••••
18.7 " 27.6	14.25	3	1.25	••••
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13.39	3	0.39	
34.9 " $38.738.7$ " 48.6	$\begin{array}{c} 17.06 \\ 18.21 \end{array}$	4	0.01	0.94
48.6 " 53.7	$18.21 \\ 19.45$	$\frac{4}{4}$	$\begin{array}{c} 0.21 \\ 1.45 \end{array}$	
53.7 " 58.4	74.13	13	0.13	••••
58.4 " 63.2	75.37	13	1.37	••••
63.2 " 70.00	74.07	13	0.07	••••

NOTE.—For spans greater than 70 feet, the maximum centre moment equals the absolute maximum bending moment with an error of less than one per cent.

TABLE 5

Position	\mathbf{OF}	COOPER'S	LOADINGS	FOR	Maximum	End	Shear	IN	Girder
		٠	BRIDGES V	Vitho	OUT PANELS	3			

Span	Direction Load	Position of	 Location of
	Moves	Load	Maximum Shear
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Right to left	w_2 at left end	Left end
	Right to left	w_5 at right end	Right end
	Right to left	w_2 at left end	Left end
	Right to left	w_{11} at left end	Left end
	Right to left	w_2 at left end	Left end

TABLE 6

POSITION OF COOPER'S LOADINGS FOR MAXIMUM SHEAR IN PANELS OF GIRDER AND TRUSS BRIDGES

Number of						Ра	NEL	LEN	атн 1	IN F	EET			•	
Panels	Panel	22	23	24	25	26	27	28	29	30	31	32	33	34	3
6	0-1 1-2	$\frac{4}{3}$	$\frac{4}{3}$	$\frac{4}{3}$	43	4	4	4	4	44	4		$5\\4$	5 4	2
7	$\begin{array}{c} 2-3 \\ 3-4 \\ 4-5 \\ 0-1 \\ 1-2 \\ 2-3 \end{array}$	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 3 \\ 3 \end{array} $	322433	$\begin{array}{c} 3\\2\\4\\3\\3\end{array}$	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 3 \\ 3 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \\ 3 \\ \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \\ 3 \\ \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 4 \\ 4 \\ 3 \end{array} $	$\begin{array}{c}3\\2\\2\\4\\4\\3\end{array}$	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \\ 3 \\ \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 4 \\ 4 \\ 3 \\ \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 4 \\ 4 \\ 3 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 5 \\ 4 \\ 3 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 5 \\ 4 \\ 4 \end{array} $	4.0004.004.00
3	3-4 4-5 5-6 0-1 1-2 2-3 3-4	32233333	3224333	322433	322433	$\begin{array}{c}3\\2\\2\\4\\4\\3\\3\end{array}$	$ \begin{array}{r} 3 \\ 2 \\ 2 \\ 4 \\ 4 \\ 3 \\ 3 \end{array} $	3224433	$\begin{array}{c}3\\2\\2\\4\\4\\3\\3\end{array}$	3 2 4 4 3 3	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \\ 4 \\ 3 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 4 \\ 4 \\ 4 \\ 3 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 5 \\ 4 \\ 4 \\ 2 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 5 \\ 4 \\ 4 \\ 3 \end{array} $	4000040444
9	$\begin{array}{c} 4-5\\ 5-6\\ 6-7\\ 0-1\\ 1-2 \end{array}$	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 3 \\ 3 \end{array} $	$2 \\ 2 \\ 2 \\ 4 \\ 3$	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 4 \\ 3 \end{array} $	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 4 \\ 3 \end{array} $	$ \begin{array}{c} 2 \\ 2 \\ 2 \\ 4 \\ 4 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \end{array} $	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \end{array} $	$egin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \end{array}$	$ \begin{array}{c} 3 \\ 2 \\ 2 \\ 4 \\ 4 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 4 \\ 4 \\ 4 \end{array} $	$ \begin{array}{r} 3 \\ 2 \\ 2 \\ 5 \\ 4 \end{array} $	4 8 9 9 9 9 9 9 4
	$\begin{array}{c} 2-3\\ 3-4\\ 4-5\\ 5-6\\ 6-7\\ 7-8 \end{array}$	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $	3 3 3 2 2 2 2	$ \begin{array}{c} 4 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 2 \\ 2 \end{array} $	$\begin{array}{c}4\\3\\3\\2\\2\end{array}$	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 2 \\ 2 \end{array} $	43333222
)	$\begin{array}{c} 0-1 \\ 1-2 \\ 2-3 \\ 3-4 \\ 4-5 \\ 5-6 \end{array}$	3333332	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 2 \end{array} $	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 2 \end{array} $	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 3 \\ 2 \\ 2 \end{array} $	$ \begin{array}{c} 4 \\ 4 \\ 3 \\ 3 \\ 2 \\ 2 \end{array} $	4 3 3 2	$ \begin{array}{c} 4 \\ 4 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{array} $	4 3 3 3 3	4. 4 3 3 3	$ \begin{array}{c} 4 \\ 4 \\ 3 \\ 3 \\ 3 \end{array} $	4 4 3 3 3	4 4 4 3 3 3 3	544333	$\begin{array}{c} 4\\ 3\\ 3\\ 2\\ 2\\ 5\\ 4\\ 4\\ 4\\ 3\\ 2\\ 2\\ 2\\ 2\end{array}$
	6-7 7-8 8-9	$\begin{array}{c} 2\\ 2\\ 1\end{array}$	$\begin{array}{c}2\\2\\1\end{array}$		$\begin{array}{c}2\\2\\1\end{array}$	$\begin{bmatrix} 2\\2\\1 \end{bmatrix}$		$\begin{array}{c}2\\2\\1\end{array}$	$\begin{array}{c}2\\2\\1\end{array}$	$\frac{2}{2}$	$\begin{array}{c}2\\2\\2\end{array}$	$\begin{array}{c}2\\2\\2\end{array}$	$\begin{array}{c} 2\\ 2\\ 2\\ 2\end{array}$	$egin{array}{c} 2 \\ 2 \\ 2 \end{array}$	$\frac{2}{2}$

NOTE .--- Place tabulated wheel at right end of corresponding panel with locomotive advancing toward left,

e.

TABLE 7

MAXIMUM MOMENTS, SHEARS, AND PIER REACTIONS FOR COOPER'S STANDARD LOADINGS

(Figures for One Rail)

			E40			E50				
Span	Max.	M	ax. Shea	ırs	Max. Pier	Max.	Ma	x. Shea	rs	Max. Pier
	Moment	End	1⁄4 Pt.	Cent.	React.	Moment	End	1⁄4 Pt.	Cent.	React.
10	56.3	30.0	20.0	10.0	40.0	70.4	37.5	25.0	12.5	50.0
11	65.7	$\frac{32.7}{25.0}$	20.9	10.9	43.7	82.1	$\begin{array}{c} 40.9\\ 43.8\end{array}$	26.1	13.6	54.5
$12 \dots 13$	$ 80.0 \\ 95.0 $	35.0 36.9	$rac{21.7}{22.3}$	$\begin{array}{c} 11.7 \\ 12.3 \end{array}$	$\begin{array}{c}46.7\\49.2\end{array}$	$100.0 \\ 118.8$	$43.8 \\ 46.2$	$27.1 \\ 27.9$	$\begin{array}{c} 14.6 \\ 15.4 \end{array}$	$\begin{array}{c} 58.4 \\ 61.6 \end{array}$
$13 \dots 14 \dots$	110.0	$30.9 \\ 38.6$	$\frac{22.3}{23.6}$	$12.3 \\ 12.9$	52.2	137.5	$40.2 \\ 48.2$	$27.9 \\ 29.5$	16.2	65.2
15	110.0 125.0	40.0	$25.0 \\ 25.0$	12.9 13.3	54.7	157.5 156.3	50.0	$\frac{23.5}{31.3}$	16.6	68.3
16	140.0	42.5	$26.0 \\ 26.3$	13.7	56.9	175.0	53.1	32.9	17.1	71.1
17	155.0	44.7	27.4	13.8	58.8	193.8	55.9	34.3	17.3	73.5
18	170.0	46.7	28.3	13.9	60.7	212.5	58.3	35.4	17.4	75.9
19	186.6	48.4	29.2	14.0	62.9	233.3	60.5	36.5	17.5	78.6
20	206.3	50.0	30.0	14.0	65.6	257.9	62.5	37.5	17.5	81.9
21	226.0	51.4	31.4	14.5	68.0	282.5	64.3	39.2	18.1	84.9
$22\ldots\ldots$	245.7	52.7	32.7	15.0	70.2	307.1	65.9	40.9	18.8	87.6
$23\ldots$	265.4	53.9	33.9	15.4	72.2	331.8	67.4	42.4	19.3	90.2
$24 \dots \dots$	285.2	55.4	35.0	15.8	74.0	356.5	69.3	43.8	19.8	92.4
$25.\ldots$	305.0	56.8	$\frac{36.0}{26.0}$	16.2	75.7	381.3	71.0	45.0	20.2	94.6
$rac{26}{27}$	$\begin{array}{r} 324.8\\ 344.6\end{array}$	$58.1 \\ 59.2$	$\frac{36.9}{37.8}$	16.5 16.9	$\begin{array}{c} 77.7 \\ 80.2 \end{array}$	$406.0 \\ 430.8$	$\begin{array}{c} 72.6 \\ 74.0 \end{array}$	46.1	20.6	97.1
$\frac{27}{28}$	365.5	$\frac{59.2}{60.4}$	$37.8 \\ 38.6$	$10.9 \\ 17.1$	$\frac{80.2}{82.3}$	450.8 456.9	74.0 75.5	$\begin{array}{c} 47.2 \\ 48.2 \end{array}$		$100.1 \\ 102.8$
$29.\ldots$	388.0	61.6	39.3	17.1 17.4	84.4	430.9 485.0	76.9	49.1		102.8 105.4
30	410.5	63.0	40.0	17.7	86.3	513.0	78.8	50.0		107.9
31	432.9	64.4	40.7	18.2	88.5	541.1	80.5	50.9		110.6
32	455.4	65.7	41.3	18.8	91.0	569.3	82.1	51.8		113.7
33	477.9	66.9	42.0	19.2	93.3	597.4	83.7	52.5		116.7
34	500.6	68.1	42.8	19.7	95.5	625.8	85.1	53.5	24.6	119.4
35	-523.0	69.2	43.5	20.1	97.5	653.8	86.5	54.4		122.0
36	548.6	70.6	44.1	20.6	99.6	685.8	88.2	55.1		124.4
$37\ldots$	574.3	71.9	44.8	21.0	101.5	717.9	89.8	56.0		126.9
38	600.0	73.1	45.4		103.7	750.0	91.4	56.7		129.7
39	626.6	74.3	46.0	21.7	105.9	783.3	92.9	57.5		132.3
40	$\begin{array}{c} 655.6 \\ 684.6 \end{array}$	$75.4 \\ 76.8$	$46.8 \\ 47.5$		$108.0 \\ 110.0$	$819.5 \\ 855.8$	94.3	58.5		135.0
41	713.6	78.4	47.0		110.0 112.1	$855.8 \\ 892.0$	$96.0 \\ 97.6$	59.4 60.2		$\frac{137.6}{140.2}$
43	742.6	79.4	48.9		112.1 114.3	928.3	97.0	61.1		$140.2 \\ 142.9$
44	771.6	80.6	49.5		114.5 116.5	964.5	100.7	61.9		142.5 145.6
45	800.6	81.7	50.1		118.6	1000.8		62.6		148.3
46	829.8	82.8	50.7		120.7	1037.3		63.4		150.9
47	858.6	83.8	51.4		122.7	1073.3		64.2		153.4
48	887.6	85.0	52.1	24.2	124.8	1109.5	106.3	65.1	30.2	156.0
$49\ldots$	918.8	86.1	52.8		126.8	1148.5		66.0		158.5
$50\ldots\ldots$	950.9	87.2	53.5		128.7	1188.6		66.8	31.1	
51	983.1	88.4	54.1		131.0	1228.9		67.6		163.6
52	1015.2	89.3	54.8		133.3	1269.0		68.5		166.6
$53\ldots\ldots$	1047.4	90.5	55.4	25.8	135.6	1309.2	113.1	69.2	32.3	169.6
	1						1			

TABLE 7.—Continued

MAXIMUM MOMENTS, SHEARS, AND PIER REACTIONS FOR COOPER'S STANDARD LOADINGS

(Figures for One Rail)

			E40			E50				
Span	Max.	M	ax. Shea	ars	Max. Pier	Max.	Ma	x. Shea	rs	Max. Pier
	Moment	End	¼ Pt.	Cent.	React.	Moment	End	¼ Pt.	Cent.	React.
54	1081.4	91.5	56.1		138.0	1351.8		70.1		172.5
55	1116.9	92.6	56.8		140.3		115.8	71.0	33.0	175.4
56	1152.4	93.7	57.5		142.7	1440.5	117.2	71.8		178.5
57	1187.9	94.8	58.2		145.4	1484.9		$\frac{72.7}{72}$	33.6	
58	$ 1223.4 \\ 1261.0$	95.9	58.8		$148.1 \\ 150.6$	1529.2	119.8	73.5		185.1
59	1261.0 1299.6	$97.0 \\ 98.0$	59.5 60.1		$150.0 \\ 153.2$	$ig \begin{array}{c} 1576.2 \\ 1624.5 \end{array}$	$\begin{array}{c}121.2\\122.5\end{array}$	$\begin{array}{c} 74.4 \\ 75.2 \end{array}$	34.4	$188.4 \\ 191.5$
$60.\ldots$ $61.\ldots$	1299.0 1338.3	99.0	60.1	$ \frac{27.9}{28.2}$		1024.5 1672.9		76.0	34.9 35.2	
62	1338.3 1377.0		61.3	$\frac{28.2}{28.5}$		1072.9 1721.2	125.9 125.2	76.6	35.2 35.6	
63	1415.6	100.1 101.3	61.8		160.4	1721.2 1769.5	126.6	77.4		200.7
64	1455.5	102.6	62.4		162.6	1819.4		78.0		203.6
65	1497.5	103.8	63.0		165.2	1871.9		78.8		206.7
66	1539.5	105.0	63.6		167.8	1924.4		79.5		209.7
67	1581.5	106.4	64.2	30.0		1976.9	133.0	80.3	37.5	
68	1623.5	107.8	64.8	30.2	172.5	2029.4	134.8	81.0		215.6
69	1665.5	109.2	65.4		174.8	2081.9	136.5	81.7	38.1	218.5
70	1707.5	110.5	65.9	30.7	177.1	2134.4		82.4	38.4	221.3
71	1749.3	111.8	66.5	31.1	179.3	2186.6	139.8	83.1	38.8	224.1
72	1793.0	113.3	67.0	31.4	181.5	2241.2	141.7	83.8	39.2	226.9
73	1833.9	114.8	67.5	31.7	183.7	2292.4	143.5	84.4	39.6	229.6
74	1879.2	116.3	68.0		186.0	2349.0	145.3	85.0	40.0	
75	1925.8	117.7	68.6		188.2	2407.3	147.1	85.7		235.2
$\underline{76}$	1972.0		69.2		190.4	2465.0		86.5	40.8	
77	2019.1	120.4	69.9		192.5	2523.9	150.5	87.4	41.1	240.7
$\frac{78}{78}$	2065.0	121.7	70.5	33.2		2581.2	152.1	88.2		243.3
$79.\ldots$	2112.3	123.0	71.1		196.8	$ 2640.4 \\ 2700.6 $		88.9	41.7	245.9
80	2160.5	124.2	71.7		198.9	2700.6		89.6	42.1	248.6
$81.\ldots$	2207.7	125.6	$\frac{72.3}{72.0}$		200.9	2759.6		90.4	42.5	
$82\ldots$ $83\ldots$	$2256.7 \\ 2306.5$	$126.9\\128.2$	$\begin{array}{c} 73.0 \\ 73.7 \end{array}$		203.0 205.0	$ \begin{array}{c} 2820.9 \\ 2883.1 \end{array} $	158.6 160.3	91.2		253.6
84	2300.3 2356.3	120.2 129.5	74.4	$\frac{34.7}{25.0}$	205.0 206.9	2000.1 2945.4	160.3 161.8	$\begin{array}{c}92.1\\93.0\end{array}$	$ \begin{array}{r} 43.4 \\ 43.7 \end{array} $	$256.1 \\ 258.7$
85	2300.3 2406.9	129.0 130.7	75.1		200.9 208.9	3008.6		93.9		258.7 260.8
86		130.7 132.1	75.8		208.9 210.8	3074.5		93.9 94.3		260.8 263.0
87		133.4	76.5	35.0		3138.3	166.8	95.7		265.0 265.6
88	2564.2	134.7	77.1	36.2	212.8 214.7	3205.3	160.8 168.4	96.5		263.0 268.3
89	2615.9	136.0	77.9	36.2		3269.9	170.0	97.4	45.6	
90	2670.5	137.2	78.7	36.7	218.6	3338.1	171.5	98.4	45.9	
91	2723.0	138.5	79.5	37.0	220.6	3403.7	173.1	99.4		275.6
92	2776.7	139.8	80.3	37.3		3470.9		100.4		278.0
93	2831.5	141.1	81.0	37.5	224.4		176.4	101.2		280.3
94	2885.3	142.4	81.7	37.8		3606.6		102.1	47.3	
95	2939.5	143.6	82.5	38.0		-3674.3		103.1		285.1
96	2994.5	144.8	83.3		230.0	3743.1		104.1	47.9	
97	3049.0	146.2	84.2	38.5	231.8	3811.2	182.7	105.1		289.7

TABLE 7.—Continued

MAXIMUM MOMENTS, SHEARS AND PIER REACTIONS FOR COOPER'S STANDARD LOADINGS

(Figures for One Rail)

			E40			<i>E</i> 50				
Span	Max.	Ma	ax. Shea	ırs	Max. Pier	Max.	Ma	x. Shea	rs	Max. Pier
	Moment	End	¼ Pt.	Cent.	React.	Moment	End	¼ Pt.	Cent.	React.
98	3106.5	147.5	85.0	38.8	233.6	3883.1	184.3	106.2	48.5	292.0
99	3162.3	148.8	85.8	39.1	235.4	3952.9	186.0	107.2	48.9	294.2
00	3219.9	150.0	86.6	39.4	237.2	4024.9	187.5	108.2	49.2	296.5
.01	3277.6	151.2	87.3	39.6	238.9	4097.0	189.0	109.1	49.5	298.6
02	3335.9	152.4	88.1	39.9	240.6	4169.9	190.6	110.1	49.9	300.8
03	3410.6		88.8	40.1	242.4	4263.3	192.1	111.0	50.1	303.0
04	3475.2		89.5	40.4	244.2	4344.0				305.3
05	3537.6		90.3	40.6	246.0	4422.0	195.1	112.7	50.7	
06		157.3	90.9		247.8	4500.4		113.6		309.8
07	3666.6		91.7	41.1	249.6	4583.3				312.0
08	3745.3		92.4		251.4	4681.6				314.2
09	3818.4		93.2		253.1	4773.0				316.3
10	3886.8		93.9		254.8	4858.5				318.5
11	3958.2		94.6		256.5	4947.7		118.2		320.7
12	4026.9		95.3		258.2	5033.6				322.8
13	4099.0		96.0		259.9	5123.8				324.9
14	4172.0		96.8	42.8		5215.0				327.0
15	4245.0		97.5		261.0 263.3	5306.2				329.0
16	4318.8		98.3	43.4		5398.5				331.1
17	4389.5		99.0	43.7				123.7		333.3
18	4463.8		99.7		260.1 268.5	5579.7		123.1 124.6		335.6
19	4538.8		100.4	44.2		5673.5		124.0 125.5		337.8
20	4614.1		101.1		270.2 272.0	5767.6		1		340.0
21	4686.5		101.8	44.7	272.0 273.8	5858.1		120.4 127.2		340.0 342.2
22			$101.8 \\ 102.5$	45.0		5953.4		100.0		342.2 344.5
23			102.3 103.2	45.0 45.3				128.1 129.0		344.5 346.7
24	4917.4			45.3 45.7				129.0 130.0		349.0
07	4996.4			45.7 46.0		6140.7 6245.5				349.0 351.2
.2ə .50	7062.3									
150						8827.9				406.7
	9352.5		138.3	$\begin{bmatrix} 62.5 \\ 70.4 \end{bmatrix}$		11690.6		172.9		464.6
200			153.4		419.0			191.8		523.8
$250\ldots$	17592.5	515.2	183.7	85.0	515.2	21990.6	391.5	229.6	100.3	644.0

NOTES .- Moments are given in thousand foot-pounds.

Shears are given in thousand pounds.

Pier reactions are given in thousand pounds and are for piers between two spans each equal to the tabulated span.

TABLE 8

MAXIMUM MOMENTS FOR TRUSS BRIDGES-COOPER'S E50 FOR ONE RAIL Moments Given in Thousands of Foot-Pounds

	0	
Damal	Dolmary	

2

í-----

1

2

3 4 5 6 7

8

9

ls russ	ts		PANEL LENGTHS										
Panels in Truss	Panel Points	8' 0''	8′ 6′′	9′ 0″	9′ 6″	10' 0''	10' 6''	11′0″	11′ 6″	12' 0''	12′ 6′′	13' 0''	13′ 6″
3	1	325	359	392	425	464	503	541	580	619	661	707	755
4	$\frac{1}{2}$	433 569	483 625	533 683	582 747	632 819	688 892	743 964	$\begin{array}{r} 799 \\ 1037 \end{array}$	859 1110	918 1189	982 1269	$1046 \\ 1352$
5	1 2	540 790	599 877	662 964	728 1051	794 1149	861 1255	930 1361	1001 1468	1071 1574	1140 1675	1217 1792	1298 1910
6	1 2 3	641 1008 1109	710 1115 1221	784 1228 1351	859 1347 1484	937 1466 1618	1017 1587 1767	1100 1719 1925		1280 1997 2240	1375 2135 2407	1485 2289 2581	$1600 \\ 2451 \\ 2760$
7	1 2 3	731 1215 1425	812 1344 1577	896 1477 1739	984 1615 1910		$\begin{array}{c} 1184 \\ 1904 \\ 2269 \end{array}$	1293 2070 2465		1530 2441 2879	$1645 \\ 2642 \\ 3100$	1775 2849 3332	1906 3050 3560
8	1 2 3 4	819 1402 1716 1819	1553 1899	2100	$1133 \\ 1872 \\ 2311 \\ 2465$	1254 2061 2529 2700	$1375 \\ 2273 \\ 2752 \\ 2946$	2490	$\begin{array}{c} 2708\\3241 \end{array}$	1776 2933 3498 3743	1900 3165 3775 4025	2047 3405 4078 4344	2200 3649 4383 4681
9	1 2 3 4	621 1583 1997 2208	2215	2451	1287 2179 2700 2997	2986		1697 2888 3570 3899	3877	1997 3400 4194 4588	2145 3670 4532 4970	2309 3946 4887 5370	2475 4224 5242 5770
22		 		<u>,</u>		·	PANE	LEN	CTHS				

sls russ	in Truss Panel Points		PANEL LENGTHS										
Panels in Truss	Pane	14' 0''	14′ 6″	15' 0''	15' 6''	16′ 0′′	16' 6''	17′ 0″	17′ 6″	18' 0''	18' 6"	19' 0''	
3	1	803	850	900	952	1008	1060	1115	1170	1228	1285	1347	
4	1 2	1115 1441	1183 1529					1553 2030		1709 2240	1776 2349	1872 2465	
5	. 1 2	1389 2047	1480 2177					2010 2881	2123 3030	2242 3190	2355 3350	2477 3518	
6	1 2 3	1724 2616 2946	2792	2986	3175	3372	2352 3570 3953		3978	2769 4194 4681	2910 4415 4948	3062 4650 5215	
7	$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $	2047 3263 3802	3485	3723	3958	4202	4450			3268 5218 6135	$\begin{array}{c} 3434 \\ 5480 \\ 6460 \end{array}$	3605 5748 6800	
8	1 2 3 4	2358 3900 4710 5034	4165 5040	4436 5380	4710 5720	4994 6072	5280 6430	5576	3553 5873 7180 7740	3741 6180 7573 8163	3930 6487 7985 8595	4125 6805 8369 9043	
9	1 2 3	2651 4512 5617	2828 4804 5993	5107 6390	5420 6790	5747 7204	6074 7620	6414 8054	6755 8496	4198 7108 8959	4410 7463 9415	4629 7830 9892	
1	4	6187	6610	7040	7485	7966	6460	8980	9490	10010	10530	11065	

TABLE 8.—Continued

MAXIMUM MOMENTS FOR TRUSS BRIDGES-COOPER'S E50 FOR ONE RAIL

Moments Given in Thousands of Foot-Pounds

0	1	2	3	4	5	6	`7	8	9
Panei Points -									1

els russ	el		PANEL LENGTHS									
Panels in Truss	Panel Points	19' 6''	20' 0''	20' 6''	21' 0''	21' 6"	22' 0''	22' 6''	23 ' 0''	23' 6"	24' 0''	24' 6''
3	1	1404	1466	1527	1587	1653	1719	1788	1857	1927	1997	2066
4	1 2	1958 2581	2061 2700	2166 2821	2273 2946	2380 3074		2597 3338	$2708 \\ 3471$	2819 3607	2933 3743	3046 3883
5	1 2	2600 3685	2731 3943	2864 4144	3001 4347	3138 4555	3279 4767	3418 4978	3562 5193	3705 5415	3852 5640	3999 5865
6	1 2 3	3210 4885 5487	$3362 \\ 5256 \\ 5746$	$3516 \\ 5501 \\ 6028$	3678 5750 6321	3840 5998 6617	4008 6250 6921	4175 6501 7228	4349 6756 7538	4522 7011 7850	4700 7270 8166	4878 7525 8491
7	$\begin{array}{c}1\\2\\3\end{array}$	$3778 \\ 6025 \\ 7140$	$3955 \\ 6326 \\ 7646$	4130 6613 7990	$4317 \\ 6914 \\ 8347$	4505 7215 8710	4702 7530 9079	4897 7845 9448	5100 8173 9826	5303 8503 10207	5512 8842 10609	5721 9182 11017
8	$\begin{array}{c}1\\2\\3\\4\end{array}$	4320 7125 8780 94,0	4525 7458 9234 9943	4727 7805 9530 10396	4939 8162 10070 10862	$5150 \\ 8520 \\ 10515 \\ 11317$	$5373 \\ 8890 \\ 10993 \\ 11805$	$\begin{array}{r} 5592 \\ 9260 \\ 11475 \\ 12288 \end{array}$	5829 9640 11976 12790	6061 10030 12472 13287	6300 10430 12981 13795	6540 10832 13490 14300
9	$\begin{array}{c}1\\2\\3\\4\end{array}$	4850 8198 10372 11605	5)79 8578 10880 12172	5308 8970 11375 12735	5545 9378 11900 13310	5780 9790 12425 13880	6030 10216 12978 14472	6280 10640 13535 15068	$\begin{array}{r} 6542 \\ 11082 \\ 14118 \\ 15684 \end{array}$	6804 11525 14705 16300	7074 11985 15308 16930	7344 12448 15910 17560
els russ	el ts				8	PAN	EL LEN	GTHS				
Panels in 1 russ	Panel Points	25' 0''	25' 6''	26' 0''	26' 6''	27′ 0″	27′ 6″	28' 0''	28' 6''	29' 0''	29' 6"	30' 0''
3	1	2135	2215	2289	2370	2451	2534	2616	2700	2792	2889	2986
4	$\frac{1}{2}$	$\begin{array}{r} 3165\\ 4025 \end{array}$	3282 4170	$\begin{array}{r} 3405\\4344 \end{array}$	$\substack{3526\\4501}$	$3649 \\ 4681$	$3774 \\ 4858$	$3900 \\ 5034$	$\begin{array}{c} 4031\\5215\end{array}$	$4165 \\ 5398$	$4300 \\ 5580$	$\begin{array}{r} 4436 \\ 5768 \end{array}$
5	$\frac{1}{2}$	4150 6093	4301 6371	$4456 \\ 6552$	$\begin{array}{c} 4611 \\ 6783 \end{array}$	4770 7017	4929 7250	5092 7492	$\frac{5255}{7736}$	5422 7984	5589 8232	5760 8482
6	$1 \\ 2 \\ 3$	$5061 \\ 7794 \\ 8821$	$5245 \\ 8068 \\ 9153$	5433 8352 9490	5622 8654 9828	$5816 \\ 8960 \\ 10170$	$\begin{array}{r} 6010 \\ 9268 \\ 10514 \end{array}$	6208 9580 10862	6408 9897 11208	$\begin{array}{r} 6612 \\ 10218 \\ 11565 \end{array}$	6817 10547 11925	7026 10880 12296
7	$1 \\ 2 \\ 3$	5936 9530 11444	6151 9875 11870	6373 10236 12312	$\begin{array}{r} 6595 \\ 10600 \\ 12752 \end{array}$	6823 10980 13203	$7051 \\ 11357 \\ 13653$	7286 11742 14112	7521 12125 14571	7762 12520 15039	8003 12918 15507	8250 13330 15984
8	$1 \\ 2 \\ 3 \\ 4$	6787 11244 14010 14820	$7035 \\11655 \\14528 \\15340$	7289 12080 15063 15875	$\begin{array}{r} 7540 \\ 12508 \\ 15605 \\ 16413 \end{array}$	$7806 \\ 12950 \\ 16163 \\ 16965$	$\begin{array}{r} 8069 \\ 13392 \\ 16718 \\ 17514 \end{array}$	8338 13850 17285 18075	8608 14308 17852 18635	8887 14780 18431 19210	9165 15250 19010 19795	9450 15730 19600 20406
9	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} $	7622 12925 16528 18205	7900 13400 17145 18850	8188 13890 17778 19515	8477 14380 18414 20180	8774 14888 19070 20870	9070 15400 19730 21557	9376 15930 20405 22260	9686 16460 21080 22955	9996 17005 21770 23678	$\begin{array}{r} 10310 \\ 17547 \\ 22461 \\ 24405 \end{array}$	10633 18100 23168 25170

TABLE 8.—Continued

MAXIMUM MOMENTS FOR TRUSS BRIDGES-COOPER'S E50 FOR ONE RAIL Moments Given in Thousands of Foot-Pounds

Panel Points	1	2	3	4	5	6	7	8	9
ranei roints						1		1	-
									2

Panels in Truss	Panel Points	PANEL LENGTHS										
		30′ 6″	31′ 0″	31′ 6″	32′ 0″	32′ 6″	33' 0''	33′ 6″	34' 0''	34′ 6″	35' 0''	35' 6''
3	1	3080	3175	3276	3372	3471	3570	3672	3775	3877	3978	4080
4	1 2	4573 5957	4710 6147	$4852 \\ 6332$	$4994 \\ 6516$	$5137 \\ 6715$	$5280 \\ 6915$	5428 7123	$5576 \\ 7331$	5725 7535	5873 7740	5923 7950
5	$\frac{1}{2}$	5937 8734	6113 8986	6295 9241	6477 9496	6678 9749	6849 10012	7039 10291	7228 10590	7423 10891	7617 11192	7814 11495
6	1 2 3	7238 11219 12668	$7450 \\11558 \\13040$	7671 11903 13418	$\begin{array}{r} 7892 \\ 12248 \\ 13796 \end{array}$	8120 12684 14180	8347 12979 14563	8581 13354 14952	8812 13729 15341	9050 14120 15745	9288 14510 16148	$\begin{array}{r} 9628 \\ 14902 \\ 16654 \end{array}$
7	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	8501 13748 16474	8752 14165 16964	9009 14590 17466	9266 15015 17968	9536 15460 18475	9806 15885 18981	$10081 \\ 16358 \\ 19508$	$10355 \\ 16810 \\ 20015$	10637 17284 20545	10919 17758 21024	$\begin{array}{c} 11203 \\ 18234 \\ 21606 \end{array}$
8	1 2 3 4	9740 16225 20206 21022	$10030 \\ 16720 \\ 20812 \\ 21638$	10326 17227 21432 22268	$\begin{array}{c} 10622 \\ 17733 \\ 22051 \\ 22898 \end{array}$	$\begin{array}{r} 10931 \\ 18252 \\ 22685 \\ 23549 \end{array}$	$11239 \\18770 \\23318 \\24200$	$\begin{array}{c} 11557 \\ 19311 \\ 23960 \\ 24860 \end{array}$	$\begin{array}{c} 11874 \\ 19852 \\ 24601 \\ 25531 \end{array}$	$\begin{array}{r} 12200 \\ 20407 \\ 25261 \\ 26216 \end{array}$	12526 20961 25920 26901	12856 21518 26585 27590
9	1 2 3 4	10961 18672 23886 25943	11288 19244 24603 26715	$11625 \\19832 \\25343 \\27498$	11961 20419 26083 28281	12310 21019 26839 29096	12658 21618 27595 29910	$\begin{array}{c} 13018\\ 22239\\ 28365\\ 30741 \end{array}$	13378 22860 29135 31572	13747 23503 29923 32431	14116 24146 30710 33290	14490 24795 31500 34155

96

£

TABLE 9

MAXIMUM SHEARS FOR TRUSS BRIDGES—COOPER'S E50 FOR ONE RAIL Shears Given in Thousands of Pounds

Panels		<u>⊢_1</u>	_12	?!	3	4	- 5		6	7	1 8		91
els	-	PANEL LENGTHS											
Panels in Truss	Panel	8' 0''	8' 6''	9' 0''	9' 6"	10' 0''	10' 6''	11′ 0″	11′ 6″	12' 0''	12′ 6″	13′0″	13′ 6″
3	12	$40.6 \\ 7.3$	$42.1 \\ 8.0 \\ 56.7 \\ 100$	$43.5 \\ 8.8$	$44.8 \\ 9.5$	46.4 10.0	47.9 11.0	49.1 11.8	$50.4 \\ 12.5 \\ 69.4$	$51.6 \\ 13.2$	$53.0 \\ 13.7$	$\begin{array}{c} 54.3 \\ 14.3 \end{array}$	$55.9 \\ 14.9$
4	$\begin{vmatrix} 1\\ 2\\ 3\\ 1 \end{vmatrix}$	$54.1 \\ 23.5 \\ 2.4$	$56.7 \\ 25.4 \\ 3.1$	$59.1 \\ 27.4 \\ 3.9$	$\begin{array}{r} 61.3\\ 28.6\\ 4.5\end{array}$	${}^{63.1}_{30.0}_{5.0}$	$ \begin{array}{r} 65.5 \\ 31.3 \\ 5.9 \end{array} $	$ \begin{array}{r} 11.8 \\ 67.4 \\ 32.4 \\ 6.5 \end{array} $	33.4	$71.6 \\ 34.4 \\ 7.9$	73.6 35.6 8.4	$75.5 \\ 36.7 \\ 8.9$	14.9 77.6 37.7 9.4
5	$\begin{vmatrix} 1\\2\\3\\1 \end{vmatrix}$	67.5 38.8	70.4	73.6 43.0	9.561.328.64.576.644.920.890.1	$79.4 \\ 46.7 \\ 22.0$	82.3 48.7 23 1	6.5 84.5 50.3 24.0	7.2 87.1 51.9 25.0	89.2 53.8 25 9	$91.4 \\ 55.5 \\ 26.9 \\ 110.5$	93.6 57.1 27.8 114.3	96.4 58.7 28.7
6	2	80.1 52.7	18.0 83.5 55.3	$\begin{array}{c} 73.6\\ 43.0\\ 19.5\\ 86.9\\ 57.9\\ 34.0\\ 14.4\\ 99.2\\ 72.4\\ 48.0\\ 27.6\end{array}$	90.1 60.5	$\begin{array}{c} 63.1\\ 30.0\\ 5.0\\ 79.4\\ 46.7\\ 22.0\\ 93.6\\ 62.9\\ 37.4\\ 16.6\\ 108.0\\ 78.4\\ 52.4\\ 30.5\\ 12.8\end{array}$	96.9 65.5	$ \begin{array}{r} 24.0 \\ 100.1 \\ 67.8 \\ 40.8 \\ 18.8 \\ 117 \\ 83.9 \\ 56 \\ 0 \end{array} $	$51.9 \\ 25.0 \\ 103.1 \\ 70.1 \\ 41.9 \\ 19.4 \\ 122.9 \\ 26.1 \\ 122.9 \\ 100 $	106.7	$ \begin{array}{r} 110.5 \\ 74.2 \\ 44.9 \end{array} $	$114.3 \\ 76.3 \\ 46.3$	9.4 96.4 58.7 28.7 118.7 78.1 47.7
7	3 4 1	30.2 11.5 91.1	$ \begin{array}{r} 33.5 \\ 33.5 \\ 13.0 \\ 94.6 \\ 69.1 \\ 45.6 \\ 26.0 \\ 0 \\ $	$ \begin{array}{r} 34.0 \\ 14.4 \\ 99.2 \end{array} $	60.5 35.6 15.6 103.4 75 3	37.4 16.6 108.0	17.8 112.8	40.8 18.8 117 5	41.9 19.4 122.9	43.4 20.2 127.5	2 1.1 132.0	21.9 136.5	22.6 141.4
	$\begin{vmatrix} 2\\ 3\\ 4 \end{vmatrix}$	$ \begin{array}{r} 65.5 \\ 43.4 \\ 24.1 \end{array} $	$ \begin{array}{r} 69.1 \\ 45.6 \\ 26.0 \end{array} $	$\begin{array}{c} 72.4 \\ 48.0 \\ 27.6 \end{array}$	$\frac{50.4}{29.0}$	78.4 52.4 30.5	$ \begin{array}{r} 80.9 \\ 54.8 \\ 32.1 \end{array} $	33.4	59.9	89.0 59.6 36.1	92.0 62.0 37.4	95.0 64.3 38.6 17.7	98.8 65.9 39.8
8	5 1 2	$\begin{array}{c} 23.5\\ 2.4\\ 67.5\\ 38.8\\ 16.3\\ 80.1\\ 52.7\\ 30.2\\ 11.5\\ 91.1\\ 65.5\\ 43.4\\ 24.1\\ 8.5\\ 101.9\\ 78.2\\ 55.8\end{array}$	9.6 107.6 81.7	$10.7 \\ 113.6 \\ 85.2$	$11.7 \\ 119.3 \\ 89.1$	$12.8 \\ 125.4 \\ 92.5$	$\begin{array}{c} 11.0\\ 65.5\\ 31.3\\ 5.9\\ 82.3\\ 48.7\\ 28.1\\ 96.9\\ 65.5\\ 39.0\\ 17.8\\ 112.8\\ 80.9\\ 54.8\\ 32.1\\ 13.8\\ 131.0\\ 96.0\\ 69.6\\ 46.8\\ 26.9\\ 10.9\\ \end{array}$	14.9 136.4 99.8	$ \begin{array}{r} 38.8 \\ 34.7 \\ 15.5 \\ 141.9 \\ 104.1 \\ 74.4 \\ 74.4 \\ \end{array} $	$\begin{array}{c} 51.6\\ 13.2\\ 71.6\\ 34.4\\ 7.9\\ 89.2\\ 53.8\\ 25.9\\ 106.7\\ 72.1\\ 43.4\\ 20.2\\ 127.5\\ 89.0\\ 59.6\\ 36.1\\ 16.1\\ 147.2\\ 108.4\\ 76.8\\ 52.0\\ 30.5\\ \end{array}$	$ \begin{array}{r} 16.9\\ 152.3\\ 112.6\\ 79.5\\ \end{array} $	157.4	22.6 141.4 98.8 65.9 39.8 18.4 162.9 121.0 85.0 56.7 33.9
	3 4 5	55.8 36.4 19.5	59.0 38.5 21.3	$61.9 \\ 40.6 \\ 22.8$	$64.5 \\ 42.8 \\ 24.1$	$125.4 \\92.5 \\67.4 \\44.6 \\25.5 \\10.0 \\141.9 \\102 \\25.2 \\10.0 \\141.9 \\102 \\20 \\20 \\100 \\100 \\100 \\100 \\100 \\$	$69.6 \\ 46.8 \\ 26.9$	$ \begin{array}{c} 14.9 \\ 136.4 \\ 99.8 \\ 72.3 \\ 48.6 \\ 28.0 \\ 11.0 \\ \end{array} $	$\begin{array}{c c} 74.4 \\ 50.4 \\ 29.1 \end{array}$	76.8 52.0 30.5	31.7	82.2 55.3 32.8	85.0 56.7 33.9
9	6	36.4 19.5 7.4 115.2 89.0	7.9 122.3 93.6		9.2 135.6 103.3	10.0 141.9	$ \begin{array}{r} 10.9 \\ 148.4 \\ 113.6 \\ 84.3 \end{array} $	$ \begin{array}{c} 11.9 \\ 154.5 \\ 118.6 \end{array} $	$\begin{array}{c c} 12.5 \\ 160.8 \\ 123.4 \end{array}$	13.1 166 4 128 2	13.8 172.0 132.9	32.8 14.5 177.6 137.5 102.9 72.9	151
	234	68.1 48.2 31.0	71.4 51.1	74.5 53.8	77.6 56.5	$108.3 \\ 81.2 \\ 58.5$	60.8	87.8 63.1	91.6	$\begin{array}{c} 30.5 \\ 13.1 \\ 166 \ 4 \\ 128.2 \\ 95.4 \\ 67.4 \\ 45.3 \\ 26.2 \end{array}$	99.2 69.8	102.9 72.2 48.3	$ 183.5 \\ 142.5 \\ 106.4 \\ 74.8 \\ 40.6 $
	5 6	31.0	32.9 17.5	34.9 19.1	36.9 20.3	38.5 21.5	40.5 22.7	42.3 23.9	43.8 25.0	45.3	46.8 27.3	48.3	49.6 29.3
Panels in Truss	lel	PANEL LENGTHS											
Par in 7	Panel	14' 0''	14' 6''	15' 0''	15' 6"	16' 0''	16' 6"	17' 0"	17' 6''	18' 0''	18' 6''	19' 0''	
3	12	57.4 15.5 79.6 38.6	58.7 16.0	60.0 16.4 83.6	61.5 17.1 85.5 41.7	63.0 17.8 87.3	64.3 18.3 89.0	65.6 18.8 90.6 45.0	66.9 19.3	68. 2 19.9	69.5 20.5	70.8 21.0	
4	$\begin{vmatrix} \overline{1} \\ 2 \\ 3 \end{vmatrix}$	9.8	81.6 39.6 10.3	40.6	85.5 41.7 11.2	42.7	$ \begin{array}{r} 89.0 \\ 43.9 \\ 12.2 \\ 115.1 \end{array} $	90.6 45.0 12.7	92.6 46.1 13.1	94.5 47.2 13.5	96.4 48.3 13.9	98.3 49.3 14.3 130.4	
5	$\begin{vmatrix} 1\\ 2\\ 3 \end{vmatrix}$	99.2	102.3	$\begin{array}{c c} 105.4 \\ 63.4 \\ 31.2 \\ 131.0 \end{array}$	$ \begin{array}{c} 108.6 \\ 64.8 \\ 32.0 \end{array} $	$ \begin{array}{c c} 111.8 \\ 66.2 \\ 32.8 \end{array} $	$115.1 \\ 67.7 \\ 33.6 \\ 142.7$	$ \begin{array}{c c} 118.3 \\ 69.1 \\ 34.3 \end{array} $	121.5 70.8 35 1	$124.6 \\ 72.4 \\ 35.8$	$ \begin{array}{r} 127.5 \\ 74.0 \\ 36.6 \\ 157.5 \\ \end{array} $	130.4 75.6 37.3	
. 6	1 2 3	$\begin{array}{c} 00.3\\ 29.5\\ 123.1\\ 79.8\\ 49.1\\ 23.3\\ 146.2\\ 102.6\end{array}$	$\begin{array}{c c} 30.4 \\ 127.1 \\ 82.2 \\ 50.4 \end{array}$	$\begin{array}{c c} 131.0 \\ 84.6 \\ 51.7 \end{array}$	$\begin{array}{c} 11.2 \\ 108.6 \\ 64.8 \\ 32.0 \\ 134.9 \\ 86.9 \\ 52.9 \\ 25.6 \\ 160.1 \end{array}$	$\begin{array}{c} 11.4 \\ 111.8 \\ 66.2 \\ 32.8 \\ 138.8 \\ 90.1 \\ 54.0 \\ 26.3 \\ 164.6 \\ 116.4 \end{array}$	$\begin{array}{c c}142.7\\93.0\\55.2\end{array}$	$\begin{array}{c} 12.7\\ 118.3\\ 69.1\\ 34.3\\ 146.5\\ 95.8\\ 56.5\\ 27.6\\ 173.3\end{array}$	$ \begin{array}{r} 351 \\ 1502 \\ 98.5 \\ 576 \end{array} $	$13.5 \\ 124.6 \\ 72.4 \\ 35.8 \\ 153.8 \\ 101.1 \\ 58.6 \\ 28.9 \\ 181.6 \\ 129.6 \\ 1$	157.5 103.6 59.7	161.1 106.1 60.7	
7	4	23.3	50.4 24.1 150.9	24.8	25.6 160.1	26.3 164.6	$ \begin{array}{c c} 142.1 \\ 93.0 \\ 55.3 \\ 27.0 \\ 169.0 \\ 110.7 \\ \end{array} $	27.6 173.3	$ \begin{array}{r} 1352\\ 98.5\\ 57.6\\ 28.3\\ 177.5\\ 196.4 \end{array} $	28.9	29.6	30.2 189.7	
		67.4	$\begin{array}{c c} 106.1 \\ 69.3 \\ 42.2 \end{array}$	$\begin{array}{c c} 109.6 \\ 71.1 \\ 43.4 \end{array}$	$\begin{array}{c c}113.0\\73.1\\44.4\end{array}$	75.0	$119.7 \\ 77.4 \\ 46.5$	$123.1 \\79.7 \\47.5 \\22.8 \\198.4 \\149.5$	82.1	129.6 84.4 49.4	$ \begin{array}{c c} 132.8 \\ 86.6 \\ 50.4 \end{array} $	$\begin{array}{c} 30.2 \\ 189.7 \\ 135.9 \\ 88.8 \\ 51.3 \\ 25.1 \\ \end{array}$	
8	5	41.0 19.0 168.4 125.3 87.8 58.1 35.0 15.7 189.4	19.7 173.6 129.5	43.4 203 178.8 133.7	$\begin{array}{c c} 73.1 \\ 44.4 \\ 21.0 \\ 183.8 \\ 137.8 \\ 96.8 \\ 63.1 \\ 38.0 \\ 17.6 \\ 206.2 \end{array}$	$ \begin{array}{c} 10.1 \\ 21.6 \\ 188.7 \\ 141.8 \\ 99.6 \\ 99.6 \end{array} $	$\begin{array}{c} 169.0\\ 119.7\\ 77.4\\ 46.5\\ 22.2\\ 193.6\\ 145.7\\ 102.6\\ 66.7\\ 20.0\\ \end{array}$	$\begin{array}{c} 22.8 \\ 198.4 \\ 149.5 \end{array}$	48.5 23.4 203.1 153.2	$131.0 \\ 129.6 \\ 84.4 \\ 49.4 \\ 24.0 \\ 207.8 \\ 156.9 \\ 111.4 \\ 40.4 \\ 156.9 \\ 111.4 \\ 100.0 \\ $	$\begin{array}{c c} 24.6 \\ 212.5 \\ 160.5 \end{array}$	164.1	
	$ \frac{1}{3} $ 4 5	87.8 58.1 35.0	90.9 59.8 36.1	93.9 61.4 37.1 17.0 200.8	96.8 63.1 38.0	64.8	$\begin{array}{c} 102.6 \\ 66.7 \\ 39.9 \end{array}$	$ \begin{array}{c} 130.4\\ 149.5\\ 105.6\\ 68.5\\ 40.9\\ 19.2\\ 2027 \end{array} $	$ \begin{array}{r} 108.5 \\ 70.4 \\ 41.7 \end{array} $	$156.9 \\ 111.4 \\ 72.2 \\ 42.5 \\ 20.3 \\ 233.2 \\ 183.0 \\ 137.7 \\ 97.3 \\ 97.3 \\ $	$\begin{array}{c c}114.2\\74.0\\43.4\end{array}$	$\begin{array}{c c}117.0\\75.8\\44.2\end{array}$	
9	6	15.7	16.4	17.0	$ 17.6 \\ 206.3 \\ 161.9 $	18.1	$ \begin{array}{c} 18.7 \\ 217.3 \end{array} $	222.1	19.8 228 0 178.8	20.3	20.8 238.4 187.2	$\begin{array}{c} 21.3 \\ 243.6 \\ 191.3 \end{array}$	
	1 2 3 4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c}152.1\\112.9\\80.1\end{array}$	116.7	$\begin{array}{c} 17.6\\ 206.3\\ 161 \\ 3\\ 120.4\\ 85.2\\ 55.4\\ 33.1 \end{array}$	$ \begin{array}{c c} 165.7 \\ 124.1 \\ 87.6 \\ 56.0 \\ \end{array} $	$\begin{array}{c c} 170.1 \\ 127.6 \\ 90.1 \\ 58.6 \end{array}$	$ \begin{array}{c c} 174.5 \\ 131.0 \\ 92.5 \\ 60.9 \\ \end{array} $	134.4	$ \begin{array}{c c} 183.0 \\ 137.7 \\ 97.3 \\ 63.5 \end{array} $	141.0 99.9	144.2 102.4	
	56	50.8 30.3	52.4 31.4	82.7 53.8 32.3	55.4	56.9 33.9	58.6	60.2	61.9 36.5	63.5 37.2	65.3 38.0	67.0 38.7	

TABLE 9.—Continued

MAXIMUM SHEARS FOR TRUSS BRIDGES—COOPER'S E50 FOR ONE RAIL Shears Given in Thousands of Pounds

Panels		1	1 2		3 1	4	5	6	1 7	1	8	91		
els russ	-	PANEL LENGTHS												
Panels in Truss	Panel	19' 6''-	20' 0''	20' 6''	21' 0''	21' 6''	22' 0''	22' 6"	23' 0''	23' 6''	24' 0"	24' 6"		
3	1 2	72.0 21.5 100.7	$73.3 \\ 22.0 \\ 100 $	74.3	75.3	76.6 23.5 110.7 54.0	78.0	79.524.3115.555.8	81.0 24.6	82.1 25.1	83.2 25.5 122.2 58.2	84.6 25.9 124.4		
4	1 2 3	$ \begin{array}{r} 100.7 \\ 50.3 \\ 14.7 \\ 100 \\ \end{array} $	103.0 51.3 15.0	105.6 52.2 15.3	108.2 53.1 15.6	54.0 15.9	24.0 113.2 54.9 16.2 149.0 86.1	110.0 55.8 16.5	56.8 16.7	120.0 57.4 17.0	17.2	124.4 59.0 17.5 163.3		
5	1 2 3	133.5 77.4 38.1	136.6 79.1 38.8	139.8 80.9 39.6	142.9 82.6 40.3	$ 15.9 \\ 146.0 \\ 84.4 \\ 40.9 \\ 1000 $	$ \begin{array}{r} 149.0 \\ 86.1 \\ 41.6 \\ 182.3 \\ 120.8 \end{array} $	16.5 152.0 88.0 42.3 185.8 123.2 71.3	154.9 89.9 42.9	$\begin{array}{c} 82.1\\ 25.1\\ 120.0\\ 57.4\\ 17.0\\ 157.8\\ 91.7\\ 43.7\\ 192.6\\ 127.9\\ 74.5\end{array}$	$ \begin{array}{r} 160.5 \\ 93.5 \\ 44.3 \\ 195.9 \\ 130.1 \\ 75.9 \\ 26.0 \\ \end{array} $	95 1		
6	21231231234	$\begin{array}{c} 100.7\\ 50.3\\ 14.7\\ 133.5\\ 77.4\\ 38.1\\ 164.6\\ 108.6\\ 62.1\\ 30.8 \end{array}$	$\begin{array}{c} 73.3\\ 22.0\\ 103.0\\ 51.3\\ 15.0\\ 136.6\\ 79.1\\ 38.8\\ 168.1\\ 111.0\\ 63.5\\ 31.4\\ 197.8\\ 142.0 \end{array}$	$\begin{array}{c} 74.3\\ 22.4\\ 105.6\\ 52.2\\ 15.3\\ 139.8\\ 80.9\\ 39.6\\ 171.7\\ 113.6\\ 65.1\\ 32.1\\ 201.7 \end{array}$	175.2 116.0 66.6	178.8 118.5 68.2 33.4	182.3 120.8 69.6 34.0	185.8 123.2 71.3 24.5	$\begin{array}{c} 81.0\\ 24.6\\ 117.7\\ 56.8\\ 16.7\\ 154.9\\ 89.9\\ 42.9\\ 189.2\\ 125.4\\ 72.9\\ 35.0\\ 221.8\\ 159.3\\ \end{array}$	192.6 127.9 74.5	195.9 130.1 75.9 26.0	45.0 199.2 132.4 77.4 36.6		
7	4 1 2 3	193.9	197.8 142.0 92.1	$ \begin{array}{r} 32.1 \\ 201.7 \\ 145.0 \\ 95.4 \end{array} $	$\begin{array}{c} 75.3\\ 22.9\\ 108.2\\ 53.1\\ 15.6\\ 142.9\\ 82.6\\ 40.3\\ 175.2\\ 116.0\\ 66.6\\ 32.8\\ 205.5\\ 205.5\\ 97.5\\ 97.5\end{array}$	209.6 150.9 99.6	$\begin{array}{r} 54.0\\ 213.7\\ 153.7\\ 101.6\\ 57.8\end{array}$	217.8 156.1	221.8 159.3 105.8	225.8 162.1	36.0 229.7 164.8	233.6 167.6		
8	4 5	$ \begin{array}{c c} 133.0\\ 91.0\\ 52.4\\ 25.7\\ 221.7\\ 107.7\\ \end{array} $	53.4 26.3 226.3	54.5 26.9 230.8	55.5	56.7 28.0 239.8	$ \begin{array}{c} 57.8 \\ 28.5 \\ 244.3 \end{array} $	$\begin{array}{c} 34.5\\ 217.8\\ 156.1\\ 103.8\\ 59.3\\ 29.0\\ 248.9\\ 188.4\\ 135.4\\ 89.2\\ 51.0\\ 24.9\\ 279.4\\ 219.4\\ 166.0\\ 118.9\end{array}$	60.6 29.4 253.4	$\begin{array}{c} 35.5\\ 225.8\\ 162.1\\ 107.9\\ 62.1\\ 29.9\\ 258.0\\ 195.1\\ 140.3\\ 92.8\\ 53.1\\ 25.7\end{array}$		$\begin{array}{c} 36.6\\ 233.6\\ 167.6\\ 111.8\\ 64.7\\ 30.8\\ 267.1\\ 201.7\\ 145.2\\ 96.3\\ 55.3\\ 26.5\\ \end{array}$		
_	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} $	167.7 119.8 77.8	$171.3 \\ 122.5 \\ 79.8$	174.8 125.1 81.7	$178.2 \\ 127.6 \\ 83.6$	181.7	57.8 28.5 244.3 185.0 132.8 87.3 49.4 24.4 274.2 215.5 163.0	188.4 135.4 89.2	191.7 137.8 91.0	$195.1 \\ 140.3 \\ 92.8$	$198.3 \\ 142.7 \\ 94.5$	$201.7 \\ 145.2 \\ 96.3$		
9	4 5 6 1 2 3 4	$\begin{array}{c c} 45.2 \\ 21.9 \\ 248.8 \end{array}$	$ \begin{array}{r} 46.1 \\ 22.4 \\ 253.9 \end{array} $	47.1 22.9 259.0	$ \begin{array}{r} 48.0 \\ 23.4 \\ 264.0 \end{array} $	130.3 85.5 49.0 23.9 269.2 211.5	49.4 24.4 274.2	51.0 24.9 279.4	$52.1 \\ 25.3 \\ 284.5$	53.1 25.7 289.7 227.2	54.1 26.0 294.8	299.9		
	234	$\begin{array}{c} 167.7\\ 119.8\\ 77.8\\ 45.2\\ 21.9\\ 248.8\\ 195.4\\ 147.4\\ 104.9\\ 68.6\\ 39.6\\ \end{array}$	93.1 53.4 26.3 226.3 171.3 122.5 79.8 46.1 22.4 253.9 199.5 150.6 107.3 70.1 40.4	$\begin{array}{c} 145.0\\ 95.4\\ 54.5\\ 26.9\\ 230.8\\ 174.8\\ 125.1\\ 81.7\\ 47.1\\ 22.9\\ 259.0\\ 203.5\\ 163.8\\ 109.7\\ 71.7\\ 41.3 \end{array}$	$\begin{array}{c} 27.4\\ 235.2\\ 178.2\\ 127.6\\ 83.6\\ 48.0\\ 23.4\\ 264.0\\ 207.5\\ 156.9\\ 112.0\\ 73.3\\ 42.1 \end{array}$	114.3	116 6	$\begin{array}{c c} 219.4 \\ 166.0 \\ 118.9 \end{array}$	$\begin{array}{c} 60.6\\ 29.4\\ 253.4\\ 191.7\\ 137.8\\ 91.0\\ 52.1\\ 25.3\\ 284.5\\ 223.3\\ 169.0\\ 121.1\\ 79.5 \end{array}$	$ 172.0 \\ 123.4 $	$\begin{array}{c} 164.8\\ 109.8\\ 63.4\\ 30.3\\ 262.5\\ 198.3\\ 142.7\\ 94.5\\ 54.1\\ 260.0\\ 294.8\\ 231.0\\ 175.0\\ 125.5\\ 82.8\\ 47.6 \end{array}$	$234.9 \\ 177.9 \\ 127.8 $		
	5 6	68.6 39.6	40.4	41.3	42.1	74.9 43.0	76.4 43.9	78.0 44.9	45.8	81.2 46.7	82.8	84.3 48.6		
Panels in Truss	el					Pan	EL LEN	GTHS	THS					
Pan in T	Panel	25' 0"	25' 6"	26' 0"	26' 6"	27' 0''	27' 6"	28' 0''	28' 6"	29' 0"	29' 6"	30' 0"		
3 4	1 2	86.0 26.4	87.0 26.8 128.7 60.5	$\begin{array}{c} 88.0 \\ 27.2 \\ 130.9 \\ 61.3 \end{array}$	89.5 27.6	91.0 28.0 135.2	92.2 28.3 137.3	93.5 28.6	94.7 29.0 141.5	96.0 29.4 143.6	97.8 29.7 145.8	99.7 30.0 147.9		
5	2 3 1	$ \begin{array}{c} 120.0 \\ 59.7 \\ 17.8 \\ 166.0 \end{array} $	60.5 18.1 168.8	61.3 18.4 171.4	$ \begin{array}{c} 62.1 \\ 18.6 \\ 174 1 \end{array} $	$ \begin{array}{c c} 100.2 \\ 62.9 \\ 18.9 \\ 176 7 \end{array} $	63.8 19.1 179.4	93.5 28.6 139.3 64.6 19.3 181.9	65.6	66.5	67.4 20.1 189.6	68.3 20.3 192.0		
6	1 2 1 2 3 1 2 3 1 2 3	96.6 45.5 202.5	18.1 168.8 98.3 46.3 205.8 136.8 80.2 37.6 241.4 173.2 115.6 67.1 31.8	100.1 46.9 209.0	101.9 47.7 212.2	$\begin{array}{r} 135.2\\ 62.9\\ 18.9\\ 176.7\\ 103.6\\ 48.3\\ 215.4\\ 143.5\\ 84.3\\ 2001 \end{array}$	105.4	107.1 49.6 221.8	184.5 108.9 50.5 224.9	$110.6 \\ 51.3 \\ 228.0$	112.3			
	2 3 4	134.5 78.6 37.1	136.8 80.2 37.6	$ \begin{array}{r} 139.0 \\ 81.5 \\ 38.1 \end{array} $	$ \begin{array}{r} 141.3 \\ 83.0 \\ 38.6 \end{array} $	$\begin{array}{c} 143.5 \\ 84.3 \\ 39.1 \end{array}$	$[\begin{array}{c} 145.8 \\ 85.7 \\ 39.6 \end{array}]$	148.0 87.0 40.0	$ \begin{array}{r} 150.3 \\ 88.4 \\ 40.5 \end{array} $	152.4 89.6 41.0	$\begin{array}{c} 52.1\\ 231.1\\ 154.6\\ 91.1\\ 41.7\\ 271.4\\ 195.3\\ 130.2\\ 76.7\\ 35.1 \end{array}$	$\begin{array}{c} 114.0\\ 52.8\\ 234.2\\ 156.7\\ 92.4\\ 42.4\\ 275.0\\ 197.9\\ 131.9\\ 77.8\\ 25.6\end{array}$		
7	4 1 2 3	$ \begin{array}{c c} 237.4 \\ 170.3 \\ 113.6 \\ \end{array} $	$\begin{array}{c} 241.4 \\ 173.2 \\ 115.6 \end{array}$	245.2 175.9 117.4	249.1 178.8 119.3	39.1 252.8 181.5 121.1 70.8	$ \begin{array}{c} 256.6 \\ 184.3 \\ 123.0 \end{array} $	260.3 187.0 124.8	264.1 189.8 126.6	$\begin{array}{c} 267.7 \\ 192.5 \\ 128.3 \end{array}$	271.4 195.3 130.2	275.0 197.9 131.9		
8	$ \begin{array}{c} 4 \\ 5 \\ 1 \\ 2 \\ 3 \end{array} $	$\begin{array}{c} 126.5\\ 59.7\\ 17.8\\ 166.0\\ 96.6\\ 45.5\\ 202.5\\ 78.6\\ 37.1\\ 134.5\\ 78.6\\ 37.1\\ 134.5\\ 78.6\\ 37.1\\ 137.4\\ 170.3\\ 113.6\\ 651.8\\ 204.9\\ 147.5\\ 204.9\\ 147.5\\ 98.0\\ \end{array}$	$ \begin{array}{r} 67.1 \\ 31.8 \\ 276.0 \\ 208.3 \end{array} $	68.3 32.1 280.4	$\begin{array}{c} 89.5\\ 27.6\\ 133.1\\ 62.1\\ 18.6\\ 174.1\\ 101.9\\ 47.7\\ 212.2\\ 141.3\\ 83.0\\ 38.6\\ 249.1\\ 178.8\\ 119.3\\ 69.6\\ 32.6\\ 284.9\\ 215.1\\ 154.1\\ 155.1\\ 103.1\\ \end{array}$		$\begin{array}{c} 218.6\\ 145.8\\ 85.7\\ 39.6\\ 256.6\\ 184.3\\ 123.0\\ 72.0\\ 33.5\\ 293.6\\ 221.8\\ 159.4 \end{array}$	$\begin{array}{c c} 73.1\\ 33.8\\ 297.9\\ 295.0\end{array}$	74.3 34.3 302.3	75.4 34.6 306.5	76.7 35.1 310.8 235.0	77.8 35.6 315.0 238.2		
	$\frac{2}{3}{4}{5}$	204.9 147.5 98.0	208.3 150.0 99.8 57.4	$\begin{array}{c} 18.4\\ i71.4\\ i71.4\\ 100.1\\ 46.9\\ 209.0\\ 81.5\\ 38.1\\ 245.2\\ 175.9\\ 117.4\\ 68.3\\ 32.1\\ 280.4\\ 211.6\\ 152.3\\ 101.4\\ 58.4\\ 271.6\\ 315.0\\ 246.7\\ 186.7\\ 186.4\\ 211.6\\ 152.3\\ 101.4\\ 58.4\\ 211.6\\ 152.3\\ 101.4\\ 1101.4\\ 58.4\\ 211.6\\ 152.3\\ 101.4\\ 1101.4\\ 100.4\\ 10$	$ \begin{array}{r} 215.1 \\ 154.7 \\ 103.1 \\ 59.5 \end{array} $	289.2 218.4 157.0 104.6 60.5	221.8 159.4 106.3 61.6	107.1 49.6 221.8 148.0 87.0 40.0 260.3 187.0 124.8 73.1 33.8 297.9 225.0 161.7 107.9 62.6 29.1	50.5 224.9 150.3 88.4 40.5 264.1 189.8 126.6 74.3 302.3 202.3 228.4 164.0 109.5 63.7 29.5 339.9 266.3 200.9	$\begin{array}{c} 187.0\\ 110.6\\ 51.3\\ 228.0\\ 152.4\\ 89.6\\ 41.0\\ 267.7\\ 192.5\\ 128.3\\ 75.4\\ 34.6\\ 306.5\\ 231.7\\ 166.1\\ 111.0\\ 64.8 \end{array}$	235.0 168.5 112.6 65.9	238.2 170.2 114.1 66.9		
9	6 1 2 3	56.4 26.9 304.9 238 8	27.3 310.0	27.6 315.0 246 7	28.0 320.1 250.6	28.4 325.0 254.5	28.8 330.0	334.9	29.5 339.9 266.3	29.9 344.7 270.2	30.4	30.8 354.5 277.8		
	4	26.9 304.9 238.8 180.8 129.9 85.8 49.6	$ \begin{array}{r} 242.8 \\ 183.8 \\ 132.0 \\ 87.4 \\ 50.6 \end{array} $	186.7 134.1 88.9	250.6 189.6 136.3 90.4	$ \begin{array}{r} 254.5 \\ 192.4 \\ 138.4 \\ 91.8 \end{array} $	258.5 195.3 140.5 93.3	$ \begin{array}{r} 202.4 \\ 198.0 \\ 142.5 \\ 94.8 \\ \end{array} $	144.6	210.2 203.8 146.6 97.6 56.8	349.7 274.0 206.7 148.6 99.0	209.5 150.6 100.4		
	5 6	49.6	50.6	51.5	52.4	53.3	54.2	55.0	$\begin{array}{r} 96.2\\55.9\end{array}$	56.8	99.0 57.6	58.4		

¢.

TABLE 9.—Continued

MAXIMUM SHEARS FOR TRUSS BRIDGES—COOPER'S E50 FOR ONE RAIL Shears Given in Thousands of Pounds

Panels		1	2		3	4	5	+ 6	-1-7		8	9
Panels in Truss	5					Pan	el Len	GTHS				
Pan in T	Panel	30′ 6″	31′ 0″	31′ 6″	32' 0''	32′ 6″	33' 0"	33′ 6″	34' 0''	34' 6"	35' 0"	35′ 6″
3	$\frac{1}{2}$	101.1	102.6	$104.6 \\ 31.2$	$106.6 \\ 31.5$	$108.1 \\ 31.8$	$109.6 \\ 32.2$	$111.5 \\ 32.5$	$113.4 \\ 32.8$	114.8	116.2	117.6 33.7
4	$\frac{1}{2}$	149.9 69.1	$ \begin{array}{r} 30.8 \\ 152.0 \\ 70.0 \end{array} $	$ \begin{array}{r} 31.2 \\ 154.0 \\ 71.7 \end{array} $	$156.1 \\ 73.3$	158.0 74.4	160.0 75.4	$ \begin{array}{r} 32.5 \\ 161.9 \\ 76.4 \end{array} $	163.8 77.4	165.8 78.4	33.4 167.9 79.4	169.8 80.5
5	$\frac{1}{2}$	20.6 194.6 115.6	20.9 197.1 117.3	21.1 199.8 118.9	21.3 202.4 120.4	21.6 205.0 122.0	22.0 207.5 123.5	22.2 210.1 125.0	22.5 212.6 126.5	22.7 215.1 128.0	$ \begin{array}{c} 23.0\\ 217.6\\ 129.5 \end{array} $	$ \begin{array}{c} 23.3 \\ 220.2 \\ 131.0 \end{array} $
6		53.6 237.3 158.8	$54.3 \\ 240.3 \\ 160.9$	55.1 243.5 163.0	55.9 246.6 165.1	56.7 249.8 167.2	57.4 252.9 169.3	$58.3 \\ 256.0 \\ 171.4$	59.1 259.1 173.4	60.0 262.3 175.4	$ \begin{array}{c} 129.5 \\ 60.8 \\ 265.4 \\ 177.4 \end{array} $	
	3 4	93.7 43.0	$95.0 \\ 43.6$	$96.3 \\ 44.4$	$97.5 \\ 45.1$	$\frac{98.8}{45.8}$	$100.0 \\ 46.4$	$\begin{array}{r}101.3\\47.2\end{array}$	$\substack{102.5\\47.9}$	$103.8 \\ 48.6$	$105.1 \\ 49.3$	106.4 50.0
7	$\frac{1}{2}$	$278.7 \\ 200.6 \\ 133.6$	$282.3 \\ 203.3 \\ 135.3$	$286.0 \\ 205.9 \\ 137.1$	$289.6 \\ 208.5 \\ 138.9$	$\begin{array}{c} 293.4 \\ 211.2 \\ 140.7 \end{array}$	$297.1 \\ 213.8 \\ 142.5$	$300.9 \\ 216.4 \\ 144.3$	$304.7 \\ 218.9 \\ 146.0$	$308.4 \\ 221.5 \\ 147.9$	$\begin{vmatrix} 312.0 \\ 224.0 \\ 149.8 \end{vmatrix}$	$ \begin{array}{r} 315.7 \\ 226.5 \\ 151.7 \end{array} $
8	4 5 1	$79.0 \\ 36.1 \\ 319.3$	$ \begin{array}{r} 80.1 \\ 36.5 \\ 323.5 \end{array} $	$81.3 \\ 37.0 \\ 327.8$	$\begin{array}{r} 82.4 \\ 37.5 \\ 332.0 \end{array}$	83.5 38.0 337.0	$ \begin{array}{r} 84.5 \\ 38.5 \\ 341.9 \end{array} $	$85.6 \\ 39.2 \\ 345.6$	86.6 39.9 349.3	$87.7 \\ 40.5 \\ 353.2$	88.7 41.0 357.0	89.8 41.6
0	$\frac{1}{2}$	$\begin{array}{c} 241.4\\172.8\end{array}$	$244.6 \\ 175.4$	$247.8 \\ 177.8$	$251.0 \\ 180.1$	$254.2 \\ 182.5$	$257.4 \\ 184.8$	260.6 187.1	263.8 189.4	266.9 191.7	270.0 193.9	360.9 273.2 196.2
	4 5 6	$\begin{array}{r}115.7\\67.9\\31.2\end{array}$	$ \begin{array}{r} 117.3 \\ 68.9 \\ 31.5 \end{array} $	$ \begin{array}{r} 118.7 \\ 69.9 \\ 32.0 \end{array} $	$120.3 \\ 70.9 \\ 32.5$	$121.9 \\ 71.9 \\ 32.9$	$\begin{array}{c} 123.4 \\ 72.9 \\ 33.3 \end{array}$	124.9 73.9	$126.3 \\ 74.8 \\ 94.2$	127.7 75.7	$129.1 \\ 76.6 \\ 75.1 \\ 76.1 \\$	$130.5 \\ 77.5 \\ 25.5 \\$
9	1 2	$359.4 \\ 281.6$	364.2 285.4	369.1 289.2	373.9 293.0	378.7 296.8	383.5 300.5	$33.8 \\ 388.5 \\ 304.3$	$ \begin{array}{r} 34.3 \\ 393.5 \\ 308.0 \end{array} $	34.7 398.4 311.8	$35.1 \\ 403.3 \\ 315.5$	$35.5 \\ 408.3 \\ 319.2$
	$\frac{3}{4}$	$212.4 \\ 152.7 \\ 101.8$	$215.3 \\ 154.8 \\ 102.1$	218.2 156.8	221.0 158.8	223.9 160.7	226.8 162.6	229.6 164.6	232.5 166.6	$235.3 \\ 168.6$	$\begin{array}{c} 238.1 \\ 170.5 \end{array}$	$\begin{array}{r} 240.8 \\ 172.5 \end{array}$
	5 6	59.4	$\begin{array}{c c}103.1\\60.3\end{array}$	$\begin{array}{c}104.5\\61.2\end{array}$	$\begin{array}{c}105.9\\62.0\end{array}$	$\begin{array}{c}107.3\\62.9\end{array}$	$\begin{smallmatrix}108.6\\63.8\end{smallmatrix}$	$\begin{array}{c}110.0\\64.7\end{array}$	$\begin{array}{c}111.4\\65.5\end{array}$	$\begin{array}{c}112.7\\66.3\end{array}$	$\begin{array}{c}114.0\\67.1\end{array}$	$\substack{115.4\\67.8}$

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E40 LOADING

Values in Thousands of Foot-Pounds per Rail

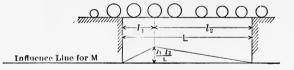
SHORTER SEGMENT l1

		5	10	15	20	25	30	35	- 40	45	50	55	60
	225 200 175 160 150 140 130 120 100 95	1534 1404 1273 1139 1053 1003 947 889 834 774 714 682	3030 2769 2505 2236 2073 1962 1851 1738 1625 1509 1390 1329	4514 4122 3727 3326 3082 2917 2750 2582 2410 2234 2055 1963	5979 5455 4926 4390 4063 3843 3620 3394 3164 2930 2690 2566	7411 6758 6098 5430 5022 4749 4471 4191 3906 3617 3320 3169	8820 8034 7241 6438 5950 5620 5287 4951 4608 4260 3910 3730	10203 9288 8364 7430 6862 6480 6093 5703 5703 5307 4905 4494 4290	$\begin{array}{c} 111562\\ 10515\\ 9460\\ 8391\\ 7742\\ 7304\\ 6862\\ 6417\\ 5964\\ 5514\\ 5053\\ 4864 \end{array}$	$\begin{array}{c} 12916\\ 11743\\ 10560\\ 9364\\ 8638\\ 8150\\ 7658\\ 7161\\ 6658\\ 6148\\ 5650\\ 5431 \end{array}$	14278 12976 11665 10339 9535 8994 8450 7901 7345 6782 6234 5991	15628 14198 12759 11306 10424 9833 9236 8635 8028 7414 6813 6546	16982 15422 13849 12266 11300 10664 10016 9363 8704 8038 7387 7096
Longer Segment	$\begin{array}{c} 90. \\ 85. \\ 80. \\ 75. \\ 70. \\ 65. \\ 60. \\ 55. \\ 50. \\ 45. \\ 40. \\ 35. \\ 25. \\ 20. \\ 15. \\ 10. \\ 5. \end{array}$	$650 \\ 617 \\ 584 \\ 551$	$\begin{array}{c} 1264\\ 1200\\ 1134\\ 1070\\ 1003\\ 931\\ 864\\ 805\\ 750\\ 692\\ 635\\ 570\\ 506\\ 506\\ 506\\ 440\\ 373\\ 300\\ 200\\ \end{array}$	$\begin{array}{c} 1866\\ 1770\\ 1671\\ 1573\\ 1474\\ 1367\\ 1266\\ 1172\\ 1091\\ 1005\\ 918\\ 819\\ 721\\ 622\\ 518\\ 410\\ \cdots\end{array}$	$\begin{array}{c} 2444\\ 2314\\ 2186\\ 2054\\ 1923\\ 1792\\ 1649\\ 1518\\ 1398\\ 1290\\ 1171\\ 1050\\ 918\\ 787\\ 656\\ \ldots\\ \ldots\\ \end{array}$	$\begin{array}{c} 3016\\ 2854\\ 2694\\ 2530\\ 2366\\ 2202\\ 2025\\ 1856\\ 1713\\ 1567\\ 1419\\ 1272\\ 1109\\ 946\\ \dots\\ \dots\\$	3550 3365 3200 3008 2805 2602 2389 2195 2023 1847 1669 1490 1294	4114 3923 3715 3489 3254 3019 2770 2546 2336 2136 2136 1921 1707	2884 2634 2404 2160	4132 3831 3519 3214 2928 2669	5458 5171 4874 4553 4221 3884 3514 3219	5958 5646 5320 4967 4608 4243 3859	5761 5378 4993 4597
			1		1			1		[

For l_1 and l_2 each > 142 ft. $M = l_1 l_2 + 3800 \frac{l_2}{L}$

LIVE-LOAD STRESSES

TABLE 10.—Continued


MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E40 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
250	18327	19675	21062	22421	23766	25084	26364	27660	30152	32591	35033	37455
225						22757						
200	14939	16036	17172	18269	19360	20418	21440	22482	24465	26400	28231	30255
175						18017						
160						16636						
150	11487											
140						14722						
130						13756						
120	9380		-0.00			12787						
110	8666	9338	9972			11812						
100	7963	8567	9150			10829						
95		8182	8737	9296			10834					· · · · ·
90		7817	8321	8851	9352							
85		7428	7917	8404	8876			1				
80	6582	7043	7500	7954								
$75 \\ 70$		6629	7057									
70		6197			• • • • •							
65	5374											

For l_1 and l_2 each > 142 ft. $M = l_1 l_2 + 3800 \frac{l_2}{L}$

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S, E50 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT la

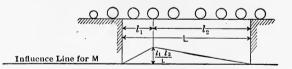
						CALO II							
		5	10	15	20	25	30	35	40	45	50	55	60
	250.	1918	3788	5643	7474	9264	11025	12754	14452	16145	17848	19535	21228
							10043	11610	13144	14679	16220	17748	19278
		1591					9052		11825				
		1424							10489				
	160.				5079			8578	9677		11919		
	150.				4804		7025	8100					13330
		1184					6609	7617	8578				12520
	130.				4242		6189	7129	8021	8951			11704
	120.				3955		5760	6634	7455	8322			10880
	110.				3662		5325	6131	6892	7685			10048
i'	100.				3362		4887	5618	6316	7063			
	95.				3208		4663	5363	6080				
.ue	90.				3055		4437	5143	5826	6502	7168	7829	8482
Segment	85.				2893		4206	4904	5552	6170	6823	7448	8061
50	80.	730	1418	2089	2733	3368	4000	4644	5256	5862	6464	7058	7646
	75.	689	1337	1966	2568	3163	3760	4361	4955	5528	6093	6650	7201
er	70.	645	1254	1843	2404	2958	3506	4068	4632	5165	5691	6209	6723
ng	65.	602	1164	1709	2240	2753	3253	3774	4296	4789	5276	5760	6241
Longer	60.	566	1080	1582	2061	2531	2986	3463	3943	4399	4855	5304	5746
-	55.	531	1006	1465	1897	2320	2744	3182	3605	4017	4392	4824	
	50.	496	937	1364	1747	2141	2529	2920	3293	3660	4024		
	45.	459	865	1256	1613	1959	2309	2670		3336			
	40.	419	794	1147	1464	1774	2086	2401	2700				
	35.	377	713	1024	1312	1590	1862	2134					
	30.	338	632	901	1148	1386	1617						
	25.	294	550	778	984	1182							
	20.	250											
	15.	187	375										
	10.	125											
	5.	$\overline{62}$											

For l_1 and l_2 each > 142 ft. $M = 1.25 \ l_1 \ l_2 + 4750 \ \frac{l_2}{L}$

102

£

TABLE 11.—Continued


MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E50 LOADING

Values in Thousands of Foot-Pounds per Rail

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
250	22909	24594	26327	28026	29707	31355	32955	34575	37690	40739	43791	46819
				25439								
				22836								
				20214								
				18633								
				17573								
				16508								
130				15436								
120				14357								
110				13270								
100				12173								
95	0000			11620								
90				11064								
85		9285	0.00-	10505								
80	8228			9943								
75												
70		7746										
65	6718											

or l_1 and l_2 each > 142 ft. $M = 1.25 \ l_1 \ l_2 + 4750 \ \frac{l_2}{L}$

MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E60 LOADING

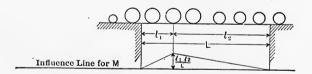
Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT *l*1

For l_1 and l_2 each > 142 ft. $M = 1.5 l_1 l_2 + 5700 \frac{l_2}{L}$

ć,

TABLE 12.—Continued


MAXIMUM BENDING MOMENTS IN GIRDER BRIDGES WITHOUT FLOOR-BEAMS, COOPER'S E60 LOADING

Values in Thousands of Foot-pounds per Rail

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
				33631								
				30527								
				27403								
				24257								
				22360								
50	17231	18532	19790	21088	22331	23521	24664	25847	28058	30227	32353	34478
				19810								
				18523								
				17228								
				15924								
				14608								
95	11462	12272	13105	13944	14736	15500	16252					
90				13277								
85	10415	11142	11875	12606	13314							
80	9874	10565	11250	11932								
75												
70	8684	9295										
65	8062											

For l_1 and l_2 each >142 ft. $M = 1.5 l_1 l_2 + 5700 \frac{l_2}{L}$

MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S E40 Loading

Values in Thousands of Pounds per Rail

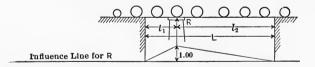
SHORTER	SEGMENT	l_1
---------	---------	-------

		0	5	10	15	20	25	30	35	40	45	50	5ð
	250	314	314	315	318	322	326	329	332	336	338	342	346
	$225\ldots\ldots$	287	287	290	294	298	301	304	306	309	312	317	32
	$200\ldots$	261	261	263	268	271	275	278	281	284	287	292	29
	175	234	234	236	241	244	248	251	254	258	262	266	26
	160	218	218	220	225	228	232	236	238	242	246	250	25
	150	207	207	210	214	218	222	225	229	231	234	239	24
	140	196	196	198	203	206	210	214	218	220	224	229	23
	130	185	185	187	192	196	201	203 -	208	210	214	219	22
	120	174	174	176	181	184	189	192	196	198	204	208	21
1	110	162	162	165	170	173	178	181	185	188	193	198	20
	100	150	150	153	158	162	166	170	174	177	182	187	19
)	95	144	144	146	151	155	160	163	168	173	178	182	18
)	90	137	137	140	146	150	154	158	163	168	174	178	18
	85	131	131	134	139	142	148	152	158	163	168	174	17
	80	124	124	127	133	137	142	146	153	158	163	168	17
	75	118	118	122	126	130	135	140	146	152	158	162	16
	70	110	110	114	120	124	128	134	139	146	150	156	16
3	65	104	104	107	112	118	122	126	133	139	144	149	15
	60	98	98	101	106	110	115	119	125	131	137	142	14
	55	93	93	95	- 99	103	108	113	118	125	130	134	14
	$50.\ldots$	87	87	90	94	- 98	102	108	114	118	124	129	
	$ \cdot 45 \dots $	82	82	85	90	- 93	- 98	102	109	114	118		
	40	75	75	79	84	88	92	98	102	108			
	35	69	69	74	78	82	87	92	98				
	30	63	63	67	72	77	82	86				<i>.</i>	
	25	57	57	62	66	71	76						
	$ 20.\ldots. $	50	50	56	60	66							
	15	40	40	50	55							• • •	
	10	30	30	40									
	$5.\ldots$	20	20										

For l_1 and l_2 each >142 ft. $R = L + \frac{3800}{l_1}$

106

¢,


TABLE 13.—Continued

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E40 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

For l_1 and l_2 each >142 ft. $R = L + \frac{3800}{l_1}$

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E50 Loading

Values in Thousands of Pounds per Rail

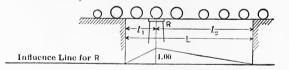
						- DEGIN		-					
		0	5	10	15	20	25	30	35	40	45	50	55
	250	392	392	394	398	403	407	411	415	420	423	428	432
	$225.\ldots$	359	359	362	367	372	376	380	383	386	390	396	401
	200	326	326	329	335	339	344	347	351	355	359	365	370
	175	293	293	295	301	305	310	314	318	323	327	332	336
	160	273	273	275	281	285	290	295	298	302	307	313	318
	150	259	259	262	267	272	277	281	286	289	293	299	305
	140	245	245	248	254	258	263	268	273	275	280	286	293
	130	231	231	234	240	245	251	254	260	262	268	274	280
	120	217	217	220	226	230	236	240	245	248	255	260	266
	110	202	202	206	212	216	222	226	231	235	241	247	253
12	100	187	187	191	197	202	208	212	218	221	227	234	240
nt	95	180	180	183	189	194	200	204	210	216	222	228	235
Segment	90	171	171	175	182	187	192	197	204	210	218	223	229
50	85	164	164	168	174	178	185	190	198	204	210	217	223
Š	80	155	155	159	166	171	177	183	191	197	204	210	217
H	75	147	147	152	158	163	169	175	183	190	197	203	209
50	70	138	138	143	150	155	160	167	174	182	188	195	202
Longer	65	130	130	134	140	147	152	158	166	174	180	186	194
Н	60	123	123	126	132	137	144	149	156	164	171	178	185
	55	116	116	119	124	129	135	141	148	156	162	168	176
	50	109	109	112	118	122	128	135	142	148	155	161	
	45	102	102	106	112	116	122	128	136	142	148		
	40	94	94	99	105	110	115	122	128	135			
	35	86	86	92	98	103	109	115	122				
	30	79	79	84	90	96	102	108					
	25	71	71	77	83	89	95						
	20	63	63	70	75	82							
	15	50	50	62	69								
	10	38	38	50									
	5	25	25									· · · ·	
	1			1									

SHORTER SEGMENT l1

For l_1 and l_2 each >142 ft. $R = 1.25 L + \frac{4750}{l_1}$

¢

TABLE 14.—Continued


MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S E50 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l1

	60	65	70	75	80	85	90	95	100	110	120	130	140
250	437	445	449	456	463	468	474	478	484	494	502	512	521
225	407	413	418	425	431	437	442	448	452	462	471	481	490
200	375	381	386	393	400	405	411	416	421	431	440	449	459
75	343	349	355	362	368	375	379	385	390	399	409	418	427
60	323	330	336	343	350	355	361	366	371	381	390	400	410
50	310	317	324	330	336	343	348	353	359	369	378	387	397
40	298	303	311	316	324	330	337	341	346	355	$\cdot 365$	374	385
30	286	291	299	304	312	317	323	328	334	343	352	362	
20	272	278	285	291	299	303	310	316	321	331	340		
10	259	265	273	279	287	292	298	304	309	319			
00	246	253	260	267	274	280	286	291	296				
95	240	247	254	260	267	274	279	286					
90	235	242	248	254	261	268	273						
85	229	236	242	248	255	261							
80	223	230	235	242	249								
75	216	222	229	235									
70	208	214	222										
65	$\bar{200}$	206											
60	191												

For l_1 and l_2 each >142 ft. $R = 1.25 L + \frac{4750}{l_1}$

Maximum Pier Reactions Between Equal and Unequal Spans, Cooper's E60 Loading

Values in Thousands of Pounds per Rail

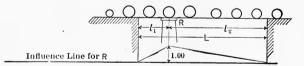
										-			
		0	5	10	15	20	25	30	35	40	45	50	55
	250	470	470	473	478	484	488	493	498	504	508	514	518
	225	431	431	434	440	446	451	456	460	463	468	475	481
	200	391	391	395	402	407	413	417	421	426	431	438	444
	175	352	352	354	361	366	372	377	382	388	392	398	403
	160	328	328	330	337	342	348	354	358	362	368	376	382
	150	311	311	314	320	326	332	337	343	347	352	359	366
	140	294	294	298	305	310	316	322	328	330	336	343	352
	130	277	277	281	288	294	301	305	312	314	322	329	336
	120	260	260	264	271	276	283	288	294	298	306	312	319
	110	242	242	247	254	259	266	271	277	282	289	296	304
~	100	224	224	229	236	242	250	254	262	265	272	281	288
t l2	95	216	216	220	227	233	240	245	252	259	266	274	282
n a	90	205	205	210	218	224	230	236	245	252	262	268	275
Segment	85	197	197	202	209	214	222	228	238	245	252	260	268
6 9	80	186	186	191	199	205	212	220	229	236	245	252	260
õ	75	176	176	182	190	196	203	210	220	228	236	244	251
er	70	166	166	172	180	186	192	200	209	218	226	234	242
Longer	65	156	156	161	168	176	182	190	199	209	216	223	233
3	60	148	148	151	158	164	173	179	187	197	205	214	222
-	55	139	139	143	149	155	162	169	178	187	194	202	211
	50	131	131	134	142	146	154	.162	170	178	186	193	
	45	122	122	127	134	139	146	154	163	170	178		
	40	113	113	119	126	132	138	146	154	162			
	35	103	103	110	118	124	131	138	146				
	30	95	95	101	108	115	122	130				·	
	$25\ldots\ldots$	85	85	92	100	107	114						
	20	76	76	84	90	98							
	15	60	60	74	83								
	10	46	46	60									
	5	30	30										

Shorter Segment l_1

For l_1 and l_2 each >142 ft. $R = 1.5 L + \frac{5760}{l_1}$

di.

TABLE 15.—Continued


MAXIMUM PIER REACTIONS BETWEEN EQUAL AND UNEQUAL SPANS, COOPER'S E60 Loading

Values in Thousands of Pounds per Rail

SHORTER SEGMENT l_1

60	65	70	75	80	85	90	95	100	110	120	130	140
524	534	539	547	556	562	569	574	581	593	602	614	625
	496	502	510	517	524	530	538	542	554	565	577	588
	457	463	472	480	486	493	499	505	517	528	539	551
	419	426	434	442	450	455	462	468	479	491	502	512
			412	420	426	433			457			492
												476
												462
							-			l		
								1				
			1				{					
220												
	$\begin{array}{r} 60\\ \hline 524\\ 488\\ 450\\ 412\\ 388\\ 372\\ 358\\ 372\\ 358\\ 326\\ 311\\ 295\\ 288\\ 282\\ 275\\ 268\\ 259\\ 250\\ 240\\ 229\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

For l_1 and l_2 each >142 ft. $R = 1.5 L + \frac{5700}{l_1}$

EQUIVALENT UNIFORM LOADS FOR COOPER'S E40 LOADING

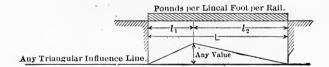
Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT l1

		0	5	10	15	20	25	30	35	40	45	50	55
	250	2500	2450	2430	2410	2380	2370	2350	2330	2310	2300	2290	2270
	225	2550	2500	2460	2450	2430	2400	2380	2360	2340	2320	2310	230
	200	2610	2540	2500	2490	2460	2440	2420	2390	2370	2350	2340	2320
	175	2680	2610	2550	2540	2510	2490	2460	2420	2400	2380	2360	2340
	160	2730	2630	2590	2570	2540	2510	2480	2450	2420	2400	2380	2370
	150												
	140	2800	2700	2650	2620	2580	2560	2520	2490	2450	2430	2420	240
	130	2850	2740	2670	2650	2610	2580	2540	2510	2470	2450	2430	2420
	120												
	110												
~	100	3000	2850	2780	2740	2690	2660	2610	2570	2530	2510	2500	248
12	95	3020	2880	2800	2760	2700	2670	2620	2580	2560	2540	2520	250
Segment	90	3050	2890	2810	2770	2720	2680	2630	2620	2590	2570	2550	254
ĕ	85	3080	2920	2820	2780	2730	2700	2640	2640	2620	2580	2570	255
50	80	3110	2920	2840	2790	2740	2710	2670	2660	2620	2610	2580	257
ñ	75	3140	2940	2860	2800	2740	2700	2670	2660	2640	2620	2600	258
G	70	3160	2940	2870	2810	2750	2700	2670	2660	2650	2620	2600	258
Longer	65	3190	2960	2870	2810	2760	2700	2670	2660	2650	2620	2600	258
9	60	3270	3020	2880	2820	2750	2700	2660	2640	2630	2610	2590	258
	55	3370	3090	2930	2840	2760	2700	2660	2650	2620	2600	2560	255
	50												
	45												
	40	3770	3350	3180	3060	2930	2840	2780	2740	2700			
	35	3960	3450	3260	3120	3010	2900	2840	2790				
	30	4200	3610	3380	3200	3060	2960	2880					
	25	4540	3770	3520	3320	3150	3020						
	20	5000	4000	3730	3450	3280							
	15	5336	4000	4000	3650								
	10	6000	4000	4000									
	5	8000	4000										

For l_1 and l_2 each >142 ft. $q = \left(2.0 + \frac{7600}{l_1L}\right) 1000$

TABLE 16.—Continued


Equivalent Uniform Loads for Cooper's E40 Loading

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT *l*1

	60	65	70	75	80	85	90	95	100	110	120	130	140
250	2260	2260	2250	2250	2240	2230	2220	2220	2210	2200	2180	2160	214(
225													
200													
175													
60													
.50													
40													
30													
.20													
10													
.00													
95											1		
90													
85											1		
80													
75													
70													• • •
65												• • • •	• • •
60	2550												• • •

For l_1 and l_2 each >142 ft. $q = \left(2.0 + \frac{7600}{l_1L}\right)$ 1000

EQUIVALENT UNIFORM LOADS FOR COOPER'S E50 LOADING

Values in Pounds per Lineal Foot per Rail

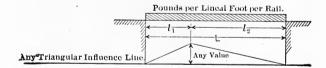
SHORTER SEGMENT l1

		0	5	10	15	20	25	30	35	40	45	50	55
	$250\ldots\ldots$	3130	3060	3040	3010	2980	2960	2940	2910	2890	2870	2860	284
	225	3190	3120	3080	3060	3040	3000	2980	2950	2920	2900	2890	287
	200	3265	3180	3130	3110	3080	3050	3020	2990	2960	2940	2920	290
	175	3350	3260	3190	3170	3140	3110	3070	3030	3000	2970	2950	29
	160	3410	3290	3240	3210	3170	3140	3100	3060	3020	3000	2980	29
	$150\ldots$	-3455	3340	3270	3240	3210	3170	3130	3080	3040	3020	3000	298
	140	3505	3380	3305	3275	3230	3195	3150	3110	3064	3040	3018	30
	130	3560	3420	3340	3310	3260	3225	3175	3135	3085	3060	3039	30
	120	3620	3460	3385	3350	3295	3255	3200	3160	3106	3080	3060	30
	110	3680	3510	3430	3385	3330	3285	3225	3185	3133	3105	3083	30
	100	3750	3560	3470	3425	3360	3320	3260	3210	3158	3140	3117	$ 30\rangle$
	95	3780	3600	3500	3445	3375	3340	3275	3225	3200	3175	3153	31
	90	3810	3610	3510	3455	3395	3350	3290	3265	3237	3210	3186	31
	85	3850	3650	3530	3470	3405	3370	3300	3295	3266	3225	3210	31
	80	3885	3650	3545	3480	3415	3385	3335	3315	3284	3255	3232	32
	75	3920	3670	3565	3495	3425	3380	3340	3325	3303	3275	3250	322
	70	3945	3680	3585	3510	3435	3380	3340	3320	3308	3280	3252	$ 32\rangle$
1	65	3990	3700	3580	3505	3445	3375	3335	3325	3305	3270	3246	32
	60	4085	3780	3595	3515	3435	3375	3315	3300	3286	3260	3237	32
	55	4215	3860	3660	3550	3450	3380	3325	3305	3277	3245	3194	319
	50	4360	3970	3750	3635	3495	3425	3370	3335	3293	3250	3219	
	45	4540	4080	3850	3720	3585	3480	3420	3390	3339	3295		
	40	4715	4190	3975	3825	3660	3550	3475	3430	3375			
	35	4945	4310	4080	3900	3760	3630	3545	3485				
	30	5255	4510	4215	4000	3825	3695	3595					
	25	5680	4710	4400	4150	3935	3780						•••
	$20\ldots$	6250	5000	4660	4315	4100							
	15	0070	5000	5000	4560								
	10	1900	2000	5000									
	$5 \dots$	10000	5000										
1	•••					-							

For l_1 and l_2 each >142 ft. $q = \left(2.5 + \frac{9500}{l_1L}\right) 1000$

¢

TABLE 17.—Continued


EQUIVALENT UNIFORM LOADS FOR COOPER'S E50 LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT *l*₁

140 2680 2690 2700 2720
2690 2700
2700
0700
2120
2730
2740
2750
• • •

For l_1 and l_2 each >142 ft. $q = \left(2.5 + \frac{9500}{l_1L}\right) 1000$

EQUIVALENT UNIFORM LOADS FOR COOPER'S E60 LOADING

Values in Pounds per Lineal Foot per Rail

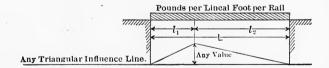
SHORTER SEGMENT l1

		0	5	10	15	20	25	39	35	40	45	50	55
	250	3760	3670	3650	3610	3580	3550	3530	3490	3470	3440	3430	3410
	225	3830	3740	3700	3670	3650	3600	3580	3540	3500	3480	3470	344(
	200,.				3730								
	175	4020	3910	3830	3800	3770	3730	3680	3640	3600	3560	3540	3520
	160	4090	3950	3890	3850	3800	3770	3720	3670	3620	3600	3580	355(
	150				3890								
	140				3940								
	130				3970								
	120				4020								
	110				4070								
2	100	4500	4270	4160	4120	4030	3980	3910	3850	3790	3770	3740	3720
	95	4540	4320	4200	4140	4060	4010	3940	3880	3840	3820	3780	3760
en	90				4150								
E	85				4160								
Segment	80				4180								
	75				4200								
Longer	70				4210								
đ	65	4790											
3	60				4220								
·	55				4260								
	$50\ldots$				4370								
	45				4460								
	40				4600								
	35				4680								
	30				4800								
	25	6820	5650	5280	4980	4730	4540						
	20	7500	6000	5590	5180	4920							
	15	8000	6000	6000	5470								
	10	9000	6000	6000									
	$5.\ldots$	12000	6000										

For l_1 and l_2 each >142 ft. $q = \left(3.0 + \frac{11400}{l_1L}\right)$ 1000

¢.

TABLE 18.—Continued


EQUIVALENT UNIFORM LOADS FOR COOPER'S E60 LOADING

Values in Pounds per Lineal Foot per Rail

SHORTER SEGMENT l1

	60	65	70	75	80	85	90	95	100	110	120	130	140
250													
225	3430	3420	3410	3410	3400	3380	3370	3360	3340	3320	3280	3250	323(
200													
175													
160	3530	3520	3500	3500	3490	3480	3470	3440	3420	3380	3350	3310	3280
150	3550	3530	3540	3530	3520	3500	3490	3460	3440	3410	3360	3320	3290
140	3580	3560	3550	3540	3540	3530	3530	3480	3470	3420	3370	3340	3300
130	3600	3590	3580	3570	3560	3550	3550	3500	3490	3430	3380	3350	
120	3620	3610	3600	3590	3590	3550	3550	3530	3500	3460	3410		
110	3650	3640	3640	3630	3620	3600	3590	3560	3530	3480			• • •
100	3700	3680	3670	3660	3650	3640	3610	3590	3560				
95	3740	3720	3690	3680	3670	3660	3620	3600					
90	3770	3740	3720	3700	3690	3670	3650						
85	3790	3770	3740	3730	3710	3680							
80	3830	3800	3770	3750	3730					:			
75	3840	3820	3780	3770									
70	3840	3820	3790										
65	3840	3820											
60	3830											· · · ·	

For l_1 and l_2 each >142 ft. $q = \left(3.0 + \frac{11400}{l_1L}\right) 1000$

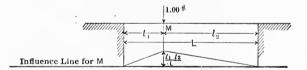
Influence-Line Ordinates for M for Girder Bridges Without Floorbeams

Values of $\frac{l_1 l_2}{L}$

SHORTER SEGMENT l1

	Ī	5	10	15	20	25	30	35	40	45	50	55	60
Longer Segment l_2	$\begin{array}{c} 250. \\ 225. \\ 200. \\ 175. \\ 160. \\ 150. \\ 140. \\ 130. \\ 120. \\ 110. \\ 120. \\ 110. \\ 100. \\ 95. \\ 90. \\ 85. \\ 90. \\ 85. \\ 90. \\ 55. \\ 50. \\ 45. \\ 40. \\ 35. \\ 30. \\ 25. \\ 20. \\ 15. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 55. \\ 10. \\ 10. \\ 5. \\ 10. \\ 10. \\ 5. \\ 10. \\ $	$\begin{array}{c}$	$\begin{array}{c} - \\ 9.62\\ 9.52\\ 9.43\\ 9.35\\ 9.34\\ 9.29\\ 9.35\\ 9.34\\ 9.29\\ 9.05\\ 9.00\\ 8.94\\ 8.89\\ 8.83\\ 8.75\\ 8.67\\ 8.846\\ 8.33\\ 8.180\\ 7.78\\ 8.846\\ 8.33\\ 8.180\\ 7.78\\ 8.56\\ 8.5$	$\begin{array}{c} & & \\ 14.14 \\ 14.06 \\ 13.97 \\ 13.83 \\ 13.64 \\ 13.55 \\ 13.44 \\ 13.55 \\ 12.95 \\ 12.95 \\ 12.95 \\ 12.95 \\ 12.63 \\ 12.50 \\ 12.35 \\ 12.50 \\ 12.63 \\ 12.50 \\ 12.63 \\ 12.50 \\ 1$	$\begin{array}{c} \hline \\ 18.5\\ 18.4\\ 18.2\\ 17.9\\ 17.8\\ 17.6\\ 17.5\\ 17.3\\ 17.2\\ 16.9\\ 16.7\\ 16.5\\ 15.0\\ 15.8\\ 15.6\\ 15.3\\ 15.0\\ 11.4\\ 13.3\\ 12.7\\ 12.0\\ 11.1\\ 10.0\\ \cdots \end{array}$	$\begin{array}{c} \hline \\ 22.7\\ 22.5\\ 22.2\\ 22.9\\ 22.2\\ 21.6\\ 21.5\\ 21.2\\ 20.4\\ 20.0\\ 19.8\\ 19.6\\ 19.3\\ 19.0\\ 19.8\\ 18.4\\ 18.0\\ 17.6\\ 19.3\\ 18.4\\ 18.0\\ 17.6\\ 12.5\\ \dots\\ \dots\\$	26.7 26.5 26.1 25.6 25.3 25.3 22.3 24.4 22.5 22.2 22.2 22.2 22.2 21.8 21.5 20.0 0 17.2 16.2 15.0 17.2 16.2 15.0 17.2 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	30.7 30.3 20.9 29.2 28.7 28.4 28.0 27.6 25.9 25.6 25.9 25.6 25.9 23.4 22.7 22.1 4 20.6 19.7 17.5 	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	38.2 37.6 36.8 35.8 35.2 34.7 34.1 33.4 32.7 34.1 30.6 29.4 228.8 28.1 27.4 26.6 225.8 23.7 22.5 32.5 32.7 22.5 32.5 32.7 32.7 32.7 33.7	$\begin{array}{c} 41.7\\ 41.0\\ 40.0\\ 38.9\\ 38.0\\ 37.6\\ 36.8\\ 36.1\\ 35.3\\ 32.2\\ 31.5\\ 30.8\\ 30.0\\ 29.2\\ 25.0\\ 27.3$	45.2 44.2 43.1 42.00 41.03 39.5 38.66 35.5 34.1 33.4 32.66 31.8 32.6 31.8 30.8 28.7	48.3 47.4 46.1 44.6 1 42.9 42.0 41.0 40.0 40.0 40.0 40.0 38.7 37.5 36.7 37.5 36.7 37.5 36.7 37.5 36.3 33.3 33.3 32.4 31.2 30.0
		1-00	1	1	1	1	1	1	1	1	1	1	1

ć


TABLE 19.—Continued

Influence-Line Ordinates for M for Girder Bridges Without Floorbeams

Values of $\frac{l_1 l_2}{L}$

SHORTER SEGMENT l1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53.2 51.8 50.0 48.5 47.6 46.7 45.5 44.3	$\begin{array}{c} 56.2\\ 54.6\\ 52.4\\ 51.0\\ 50.0\\ 49.0\\ 47.6\\ 46.3 \end{array}$	58.8 57.1 54.9 53.2 52.1 51.0 49.5 48.1	61.7 59.5 57.1 55.6 54.3 52.9 51.6	$\begin{array}{r} 64.1 \\ 62.1 \\ 59.5 \\ 57.5 \\ 56.2 \\ 54.6 \\ 53.2 \end{array}$	66.7 64.5 61.7 59.5 58.1 56.5 55.0	69.4 66.8 63.7 61.7 59.9 58.5 56.5	73 70 67 64 63 63 61 59	$.5 \\ .9 \\ .6 \\ .9 \\ .3 \\ .7 \\ .5 \\$	$78 \\ 75 \\ 71 \\ 68 \\ 66 \\ 64 \\ 62$.1 .2 .4 .5 .7 .9 .5	$82 \\ 78 \\ 74 \\ 71 \\ 69 \\ 67 \\ 65$.0 .7 .6 .4 .4 .6 .0	86 82 78 74 72 70 	.2 .0 .1 .6 .5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	53.2 51.8 50.0 48.5 47.6 46.7 45.5 44.3	$\begin{array}{c} 56.2\\ 54.6\\ 52.4\\ 51.0\\ 50.0\\ 49.0\\ 47.6\\ 46.3 \end{array}$	58.8 57.1 54.9 53.2 52.1 51.0 49.5 48.1	61.7 59.5 57.1 55.6 54.3 52.9 51.6	$\begin{array}{r} 64.1 \\ 62.1 \\ 59.5 \\ 57.5 \\ 56.2 \\ 54.6 \\ 53.2 \end{array}$	66.7 64.5 61.7 59.5 58.1 56.5 55.0	69.4 66.8 63.7 61.7 59.9 58.5 56.5	73 70 67 64 63 63 61 59	$.5 \\ .9 \\ .6 \\ .9 \\ .3 \\ .7 \\ .5 \\$	$78 \\ 75 \\ 71 \\ 68 \\ 66 \\ 64 \\ 62$.1 .2 .4 .5 .7 .9 .5	$82 \\ 78 \\ 74 \\ 71 \\ 69 \\ 67 \\ 65$.0 .7 .6 .4 .4 .6 .0	86 82 78 74 72 70 	.2 .0 .1 .6 .5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51.8 50.0 48.5 47.6 46.7 45.5 44.3	54.6 52.4 51.0 50.0 49.0 47.6 46.3	$57.1 \\ 54.9 \\ 53.2 \\ 52.1 \\ 51.0 \\ 49.5 \\ 48.1$	59.5 57.1 55.6 54.3 52.9 51.6	$\begin{array}{c} 62.1\\ 59.5\\ 57.5\\ 56.2\\ 54.6\\ 53.2 \end{array}$	64.5 61.7 59.5 58.1 56.5 55.0	66.8 63.7 61.7 59.9 58.5 56.5		.9 .6 .9 .3 .7 .5	$75 \\ 71 \\ 68 \\ 66 \\ 64 \\ 62$	$.2 \\ .4 \\ .5 \\ .7 \\ .9 \\ .5$	$78 \\ 74 \\ 71 \\ 69 \\ 67 \\ 65$.7 .6 .4 .4 .6	82 78 74 72 70 	.0 .1 .6 .5 .0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 48.5 \\ 47.6 \\ 46.7 \\ 45.5 \\ 44.3 \end{array}$	51.0 50.0 49.0 47.6 46.3	$53.2 \\ 52.1 \\ 51.0 \\ 49.5 \\ 48.1$	$55.6 \\ 54.3 \\ 52.9 \\ 51.6$	$57.5 \\ 56.2 \\ 54.6 \\ 53.2$	59.5 58.1 56.5 55.0	61.7 59.9 58.5 56.5		.9 .3 .7 .5		.5 .7 .9 .5	$71 \\ 69 \\ 67 \\ 65$.4 .4 .6 .0	74 72 70	.6 .5 .0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$47.6 \\ 46.7 \\ 45.5 \\ 44.3$	$50.0 \\ 49.0 \\ 47.6 \\ 46.3$	$52.1 \\ 51.0 \\ 49.5 \\ 48.1$	$54.3 \\ 52.9 \\ 51.6$	$56.2 \\ 54.6 \\ 53.2$	$58.1 \\ 56.5 \\ 55.0$	59.9 58.5 56.5	$\begin{array}{c} 63 \\ 661 \\ 559 \end{array}$	$.3 \\ .7 \\ .5$	$ \begin{array}{r} 66 \\ 64 \\ 62 \end{array} $.7 .9 .5		.4 .6 .0	72 70 	.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$46.7 \\ 45.5 \\ 44.3$	$49.0 \\ 47.6 \\ 46.3$	$51.0 \\ 49.5 \\ 48.1$	$\frac{52.9}{51.6}$	$\frac{54.6}{53.2}$	56.5 55.0	$58.5 \\ 56.5$	$\frac{561}{59}$	$.7\\.5$	$\begin{array}{c} 64 \\ 62 \end{array}$.9 .5	$\begin{array}{c} 67\\ 65 \end{array}$.6 .0	70 	.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 45.5 \\ 44.3 \end{array}$	$\begin{array}{r} 47.6\\ 46.3\end{array}$	$\frac{49.5}{48.1}$	51.6	53.2	55.0	56.3	559	.5	62	.5	65	.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.3	46.3	48.1												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				49.8	51 5										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42 7	44 6													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$															
90															
05 90 0															
8536.8	38.3 97.9	39.8	41.2	42.5		• • • •			• •	• •	•••	••	•••		• •
	01.0 26.9	30.1	40.0			• • • •			• •	•••	• •	· ·	• •		• •
7033.8	35 0	01.0	• • • •						•••	• •	• •		• •	• •	• •
6532.5	00.00								• •	• •	• •		• •		• •

Reciprocals of Influence-Line Ordinates for M for Girder Bridges Without Floor-Beams

Values of $\frac{L}{l_1 l_2}$

SHORTER SEGMENT l1

	5	10	15	20	25	30	35	40	45	50	55	60
225 200 175 150 1200 140 1200 1100 95 900 85 75 70 60 55 0 550	204 204 205 206 206 207 207 207 207 208 209 210 211 211 212 213 213 214 215 217 218 220	.104 .104 .105 .106 .107 .107 .107 .108 .108 .109 .110 .111 .111 .112 .113 .113 .114 .115 .117 .118 .120	.0707 .0711 .0716 .0723 .0730 .0733 .0738 .0738 .0744 .0750 .0756 .0776 .0778 .0766 .0772 .0778 .0784 .0792 .0800 .0810 .0820 .0833 .08467	.0540 .0544 .0550 .0567 .0567 .0571 .0577 .0583 .0591 .0600 .0605 .0611 .0618 .0625 .0633 .0643 .0654 .06654 .0666 .0682 .0700	.0440 .0440 .0450 .0462 .0466 .0472 .0477 .0483 .0491 .0500 .0505 .0511	.0374 .0378 .0383 .0390 .0396 .0400 .0405 .0410 .0417 .0424 .0433 .0438 .0444 .0451 .0458 .0466 .0476 .0487 .0500 .0513	.0326 .0330 .0335 .0342 .0352 .0357 .0363 .0366 .0386 .0391 .0376 .0386 .0391 .0403 .0419 .0428 .0440 .0452 .0467	.0290 .0295 .0300 .0317 .0313 .0317 .0321 .0321 .0321 .0350 .0355 .0361 .0368 .0375 .0383 .0383 .0393 .0404 .0417 .04320 .0450	.0262 .0266 .0272 .0288 .0293 .0293 .0306 .0316 .0322 .0327 .0333 .0340 .0340 .0356 .0356 .0365 .0376 .0388 .0404	.0240 .0244 .0250 .0266 .0271 .0266 .0271 .0277 .0283 .0291 .0300 .0305 .0311 .0318 .0325 .0333 .0343 .0353 .0366 .0382 .0366	. 0221 . 0226 . 0232 . 0238 . 0248 . 0253 . 0259 . 0265 . 0273 . 0282 . 0282 . 0287 . 0293 . 0305 . 0305 . 0336 . 0348 . 0364	.0207 .0211 .0217 .0224 .0229 .0233 .0238 .0244 .0250 .0258 .0267 .0272 .0277 .0272 .0277 .0284 .0292 .0300 .0309 .0321 .0333
In the second se	.213 .213 .214 .215 .217 .218 .220	.113 .113 .114 .115 .117 .117 .118 .120	.0792 .0800 .0810 .0820 .0833 .0848 .0867	. 0625 . 0633 . 0643 . 0654 . 0654 . 0666 . 0682 . 0700	.0525 .0533 .0543 .0554 .0554 .0567 .0582 .0600	.0458 .0466 .0476 .0487 .0500 .0515 .0533	$.0411 \\ .0419 \\ .0428 \\ .0440 \\ .0452 \\ .0467 \\ .0486$	$\begin{array}{r} .0375\\ .0383\\ .0393\\ .0404\\ .0417\\ .0432\\ .0450\\ \end{array}$	$\begin{array}{c} .0347\\ .0356\\ .0365\\ .0376\\ .0388\\ .0404\\ .0422\\ \end{array}$.0325 .0333 .0343 .0353 .0366 .0382 .0400	.0307 .0315 .0325 .0336 .0348 .0364	.0292 .0300 .0309 .0321 .0333
$\begin{array}{c c} 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ 10 \end{array}$.225 .229 .233 .240 .250 .267 .300	.125 .129 .133 .140 .150 .167 .200	.0917 .0952 .1000 .1066 .1166 .1333	.0750 .0786 .0833 .0900 .1000	.0650 .0686 .0733 .0800	.0583 .0619 .0666	.0536 .0571	.0500	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·

đ

TABLE 20.—Continued

Reciprocals of Influence-Line Ordinates for M for Girder Bridges Without Floor-Beams

Values of $\frac{L}{l_1 l_2}$

SHORTER SEGMENT l1

	65	70	75	80	85	90	95	100	110	120	130	140
				.0165								
$225 \\ 200 \\ 175$.0204	.0193	.0183	.0170 .0175 .0182	.0168	.0161	.0155	.0150	.0141	.0133	.0127	.0122
$170 \\ 160 \\ 150$.0206	.0196	.0182 .0188 .0192	.0180	.0174	.0168	.0162	.0154	.0146	.0140	.0134
	.0231	.0220	.0210	$.0196 \\ .0202$.0194	.0188	.0182	.0177	.0168	.0160	.0154	
$120 \\ 110 \\ 100$.0224	.0208 .0216 .0225	.0208	.0202	.0196	.0191	.0182			
95 90	.0259	.0248	.0238	.0225 .0230 .0236	.0223	,0216	.0211					
$\begin{array}{c} 85\\ 80 \end{array}$.0272 .0279	$.0261 \\ .0268$	$\begin{array}{c} .0251\\ .0258\end{array}$	$.0243 \\ .0250$.0235	 	 . .				· · · · · ·	
70		.0286		 								· • • • •
0.0	.0507	• • • • •	••••	••••	•••••	••••			• • • • •	• • • • •		••••

 $l_{1} = l_{2}$ Influence Line for M

BENDING MOMENTS IN BEAMS DUE TO UNIFORM LOAD OF 1 POUND PER LINEAL FOOT

Values in Foot-pounds

Values equal $\frac{l_1 l_2}{2}$ = Area of Influence Line for M

SHORTER SEGMENT l_1

		5	10	15	20	25	30	35	40	45	50	55	60
Longer Segment l_2	$\begin{array}{c} 225\\ 200\\ 175\\ 160\\ 150\\ 140\\ 130\\ 120\\ 110\\ 100\\ 95\\ 80\\ 75\\ 70\\ 65\\ 60\\ 55\\ 50\\ 45 \end{array}$	$\begin{array}{c} 625\\ 562.5\\ 500\\ 437.5\\ 400\\ 375\\ 350\\ 325\\ 250\\ 237.5\\ 225\\ 212.5\\ 200\\ 187.5\\ 175\\ 162.5\\ 150\\ 137.5\\ 125\\ 112.5\\ \end{array}$	$\begin{array}{c} 1250\\ 1125\\ 1000\\ 875\\ 800\\ 750\\ 700\\ 650\\ 550\\ 550\\ 455\\ 450\\ 375\\ 350\\ 325\\ 300\\ 275\\ 325\\ 220\\ 225\\ \end{array}$	$\begin{array}{c} 1875\\ 1687.5\\ 1500\\ 1312.5\\ 1200\\ 1125\\ 1050\\ 975\\ 975\\ 975\\ 975\\ 750\\ 712.5\\ 675\\ 637.5\\ 637.5\\ 600\\ 562.5\\ 525\\ 487.5\\ 450\\ 412.5\\ 375\\ 337.5\\ \end{array}$	$\begin{array}{c} 2500\\ 2250\\ 2000\\ 1750\\ 1600\\ 1500\\ 1200\\ 1200\\ 1000\\ 9500\\ 850\\ 850\\ 750\\ 6500\\ 6500\\ 5500\\ 450\end{array}$	$\begin{array}{c} 3125\\ 2812.5\\ 2500\\ 2187.5\\ 2000\\ 1875\\ 1750\\ 1625\\ 1750\\ 1625\\ 1250\\ 1187.5\\ 1125\\ 1062.5\\ 1000\\ 937.5\\ 875\\ 812.5\\ 750\\ 687.5\\ 625\\ 562.5\\ \end{array}$	3750 3375 3000 2250 2250 2100 1800 1650 1500 1425 1350 11275 1200 11255 1200 975 900 8255 750 675	$\begin{array}{r} 4375\\ 3937.5\\ 3937.5\\ 3500\\ 3062.5\\ 2800\\ 2625\\ 2450\\ 2275\\ 2450\\ 2275\\ 1450\\ 1925\\ 1750\\ 1662.5\\ 1575\\ 1487.5\\ 1487.5\\ 1487.5\\ 1137.5\\ 1050\\ 962.5\\ 875\\ 787.5\\ \end{array}$	5000 4500 4000 3500 3200 22800 2200 2200 2200 2200 2200 1900 1900 19	$\begin{array}{c} 5625\\ 5062.5\\ 4500\\ 3937.5\\ 3600\\ 3375\\ 3150\\ 2925\\ 2700\\ 2475\\ 2250\\ 2137.5\\ 2025\\ 1912.5\\ 1800\\ 1687.5\\ 1575\\ 1350\\ 1237.5\\ 1350\\ 1237.5\\ 1125\\ 1012.5\end{array}$	6250 56255 5000 4375 4000 3750 3250 22500 23750 22500 21255 22500 21255 22500 1875 1750 1625 1500 13755 1250	$\begin{array}{c} 6875\\ 6187.5\\ 5500\\ 4812.5\\ 4400\\ 4125\\ 3850\\ 3575\\ 3300\\ 3025\\ 2750\\ 2612.5\\ 2475\\ 2337.5\\ 2200\\ 2062.5\\ 1925\\ 11925\\ 1650\\ 1512.5\\ \ldots \end{array}$	7500 6750 6000 5250 4800 44500 4200 3900 3300 23500 22500 22500 22500 22500 22500 2100 1950 1800
Lon	65 60 55 50	$162.5 \\ 150 \\ 137.5 \\ 125$	$325 \\ 300 \\ 275 \\ 250$	$\begin{array}{r} 487.5 \\ 450 \\ 412.5 \\ 375 \end{array}$	650 600 550 500	$\begin{array}{r} 812.5 \\ 750 \\ 687.5 \\ 625 \end{array}$	975 900 825 750	$1137.5 \\ 1050 \\ 962.5 \\ 875$	$1300 \\ 1200 \\ 1100 \\ 1000$	$\begin{array}{r} 1462.5 \\ 1350 \\ 1237.5 \\ 1125 \end{array}$	$1625 \\ 1500 \\ 1375 \\ 1250$	1787.5 1650 1512.5	1950 1800
	$ \begin{array}{c c} 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \\ \end{array} $	$100 \\ 87.5 \\ 75.0 \\ 62.5 \\ 50.0 \\ 37.5$	$200 \\ 175 \\ 150 \\ 125 \\ 100 \\ 75$	$300 \\ 262.5 \\ 225 \\ 187.5 \\ 150 \\ 112.5$	400 350 300 250 200	$500 \\ 437.5 \\ 375 \\ 312.5 \\ \dots$	600 525 450	700 612.5	800 	· · · · · · · ·	· · · · ·	· · · · · · · ·	· · · · ·
	$\begin{vmatrix} 10\\5 \end{vmatrix}$	$25.0 \\ 12.5$	50 			· · · · · · ·		· · · · · · · ·				 	

ć,

TABLE 21.—Continued

Bending Moments in Beams Due to Uniform Load of 1 Pound per Lineal Foot

Values in Foot-pounds

Values equal $\frac{l_1 l_2}{2}$ = Area of Influence Line for M

SHORTER SEGMENT *l*₁

	65	70	75	80	85	90	95	100	110	120	130	140
		8750	9375	10000						15000		
			8437.5	9000	9562.5					13500		
			7500	8000	8500	9000				12000		
175	5687.5	6125	6562.5	7000	7437.5					10500		
160			6000	6400	6800	7200		8000	8800	9600	10400	
150	4875	5250	5625	6000	6375	6750	7125	7500	8250			10500
140	4550	4900	5250	5600	5950	6300	6650	7000	7700	8400	9100	9800
130	4225	4550	4875	5200	5525	5850	6175	6500	7150	7800	8450	
120	3900	4200	4500	4800	5100	5400	5700	6000	6600	7200		
110	3575	3850	4125	4400	4675	4950	5225	5500	6050			
100	3250	3500	3750	4000	4250	4500	4750	5000				
95	3087.5	3325	3562.5	3800	4037.5	4275	4512.5					
90	2925	3150	3375	3600	3825	4050						
85	2762.5	2975	3187.5	3400	3612.5							
80	2600	2800	3000	3200								
	2437.5											
(
	0110 #											
0.0												

200 mm

.

.

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

A MARCON STATE

1. 25 30

in the second

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE PENALTY WILL INCREASE TO 50 CENTS ON THE FOURTH DAY AND TO \$1.00 ON THE SEVENTH DAY OVERDUE.

MAR 16 1934	
APR 3 1939	
par in	
APR 8 1947	
8 1947	
35 ⁰⁰ 0 ⁰	
25	
	LD 21–100 <i>m</i> -7,'33

16 12961

337856

UNIVERSITY OF CALIFORNIA LIBRARY

