## TECHNICAL REPORT

# LOCAL ENVIRONMENTAL FACTORS AFFECTING ICE FORMATION IN NORTH STAR BUGT, GREENLAND 

RAYMOND J. McGOUGH<br>Applied Oceanography Branch<br>Division of Oceanography

JANUARY 1956


## A B S T R A C T

Environmental factors influencing the formation and growth of sea ice in the area of North Star Bugt and Wolstenholme Fjord indicate that the peculiar characteristics of the harbor are the free water exchange with the fjord at all levels, the relatively small importance of fresh-water runoff, and the small annual change in surface water temperatures during the open season. Because of these characteristics, the harbor is well situated for the use of long-range ice prediction techniques based on the thermohaline structure.
The formation and growth of sea ice in 1953 was studied in detail. Data indicated that the observed and computed ice thicknesses were nearly identical, both for the original ice and for the newer ice which formed after the first ice was broken up by wind action. It is shown that in order to determine the weather conditions over the ice, observations from a ship anchored in the harbor are more accurate than those at a land station because of the greater wind velocity and warmer air temperature over the ice. Accumulation of degree days of frost corresponded closely to the ice growth in two different years, but the total number of degree days of frost varied widely from season to season. It is concluded that this area is suitable for the use of long-range ice prediction techniques.

## FOREWCRD

Successful arctic operations require a considerable amount of preparation and plaming. To aid such planning, the Hyrrographic office has been engaged in the development of various techniques for the forecasting of growth, movement, and disintegration of sea ice, especially in the harbor areas since each arctic and subarctic harbor constitutes a special environmental problem.

This report presents a study of the environmentel factors that are peculiar to North Star Bugt and Wolstenholme Fjord, and evaluates their effect on the formation and growth of sea ice in the harbors axea. The ice growth in the autum of 1953 was studied in detail.

The conclusions expressed in this raport are tontative and may require revision as more data become avaliabies All additional informam tion which might amplify or modify this seport will be weleomed by the Hydrographic office.


CNO (Op-03, 03D3, 31, 316, 32, 33, 332, 04, 05, 533, 55)
BUAER (2)
BUSHIPS (2)
BUDOCKS (2)
ONR (Code 100, 102, 410, 416, 420, 430, 464, 466)
NOL (2)
NEL (2)
NRL (2)
COMOPDEVFOR (2)
COMSTS (2)
COMSTSLANT (2)
CODTMB (2)
AROWA
SUPNAVACAD (2)
NAVWARCOL (2)
NAVPOSTGRADSCOL, Monterey (2)
NATECHTRAU, Lakehurst (5)
OIC USFLTNEACEN NAVX \#127 \%/oPR Seattle, Wesh.
OIC USFLTWEACEN NAVY \#103 \% OPR Ne謂 York, No
CONDT COGARD (IIP) (2)
USC\&GS (2)
CG USAF (AFOOP)
CGAWS (2)
CGNEAC (2)
USAF CAMBRSCHLAB (2)
ADTIC
USWB (2)
CIA (2)
BEB (2)
SIPRE (2)
ASTIA. (5)
ARTPANSCORP
CE (2)
CANJSEMIS (5)
INTLHYDROBU, Monac* (2)
ARCRSCHLAB, COL, Alaska
ARCINSTNA. (2)
WHOI (2)
SIO (2)
UNIV WASH (2)
TEXAS A\&M (2)
DARTMOUTH COL (STEFANSGON LIB)
TUFTS COL (DEPT. OF PHYSICS)
NAUTISK AFDELING METEOROLOGISKE INSTITUT, Denuark
DIRECTOR, DANSKE S $\emptyset K O R T A R K I V$, Denmark
GRØNLANDS STYRELSE, Denmark

## CONTENTS

## Page

Foreword ..... iif
Distribution Iist. . ..... iv
Figures. ..... $\nabla$
Tables ..... Vi
I. Introduction ..... I
II. Climatology. ..... 1
III. Oceanography ..... 2
IV. Ice Formation and Growth in 1953 ..... 3
V. Ice-growth Computations ..... 5
VI. Conclusions. ..... 7
Bibliography ..... 4,0
FIGUEES
1 Location and Bathymatric Chart - North Star Bugt and Wolstenholme Fjord. ..... 19
2 Mean Air and Surface Water Tomperatures in North Star Bugt. ..... 20
\$ - Temperature, Salinity, and Density Profiles for Site A, 29 September 1953 ..... 21
4 - Temperature, Salinity, and Density Profiles for Site A, 6 October 1953. ..... 22
5 - Temperature, Salinity, and Density Profiles for Site A, 12 Octobex 1953 ..... 23
6 - Temperature, Salinity, and Density Proifiles for Site A, 21 October 1953 ..... 24
7 - Synoptic Ice Conditions, 6 October 1953 (1000 IST). ..... 25
8 - Synoptic Ice Conditions, 9 October 1953 (1000 LST). ..... 26
9 - Symoptic Ice Conditions, 9 October 1953 (1200 LST). ..... 27
10 - Synoptic Ice Conditions, 10 October 1953 (1100 LST) ..... 28
11 - Synoptic Ice Conditions, 10 October 1953 (1600 ISST) ..... 29
12 - Ice Conditions, 12 october 1953 ..... 30
13 - Ice Conditions, 23 October 1953 ..... 31
14 - Temperature and Salinity Gradients in Ice, 11 October 1953 ( 1030 LST - 01d ice) ..... 32
15 - Temperature and Salinity Gradlents in Ice, 23 October 1953 (1600-1900 LST - New ice) ..... 32
16 - Temparature and Salinity Gradients in Ice, 24 October 1953 (1000 IST - Net ice) ..... 33
17 - Ice Growth as a Function of Degree Days of Frost ..... 34
18 - Accumulation of Degree Days of Frost. ..... 34
19 - Ice Growth as a Function of Degree Days of Exoui in 1948- 1949 and 1953 ..... 35
20 - Historical Degree Days of Frost Curves. ..... 36
21. Computed Icenemorth Curwes for Selected Snow Covers. Compatation Based on Data from Site A, 29 Septemer 1953. ..... 37

## Page

22 - Comprited Icewgrowth Curves Pos Selected Snow Covers. Comprtation Based on Data from Site A, 12 October 1953.... 37
23 Computed and 0bserwed Ice-gronth Curves for New Ice.... . 38
24 © Computed and Obscrvad Icemgrowth Curves for Old Ice..... 39

## TABLES

I. Surface Water Temperature and Salinity........... 8
II. Synoptic Weather Observations at Thule Air Force Base and on the USS ATKA. ................... 9
III. Monthly Snowfail in Inchos............... 18

## I. TMPRODUCTION

During the past 3 years, the $\mathrm{J}_{0}$ S. Navy Hydrographic Office has been providing ice forecasts in support of military operations in the Arctic. These forecasts include information on the distribution, growth, and disintegration of sea ice, and other predictable factors which serve as aids to such operations. The forecasts are divided into two classes (a) shortmange ( 48 -hour) forecasts designed to provide detailed ice information for the field units while operating in the ice and (b) longrange (5-day to 6-inonth) forecasts designed for operational planning.

Forecasts of ice conditions in open-water areas present problems which involve oceanographic and meteorological factors that simultaneously influence major areas. Conditions in the open water are sufficiently homogeneous so that forecasts can cover large areas. However, the local topography influences the various oceanographic and meteorological factors for each harbor site. Separate ice studies are contemplated for the various harbors in which military shipping is conducted. These reports will describe the special local factors which affect ice forecasting in each harbor, so that the local sequence of freereup and ice growth can be delineated and a study of the particular harbor will be available for future operations. The present report discusses the local conditions of North Star Bugt and Wolstenholme Fjord, Greenland.

North Star Bugt, which is approximately three square miles in area, is situated in a protected cove opening to the west. A narrow peninsula to the north separates this bay from Wolstenholme fjord, into which large glaciers discharge from the inland icecap. The peninsula terminates with the spectacular landmark, Mount Dundes, which is over 700 feet higho Hills about 1,000 feet high lie close to the south and east of the bay. Between these hills, Pitufik Valley (local name) oxtends to the eastmsoutheast with a relatively gentle slope Geographic features of the area are shown in figure i.

The bay is noxmally open to shipping for three months annually (5 July to the first week of October). These dates vary somewhat from year to year, deponding on the influencing factors. During the first half of Julyg shipping is almost entirely dependent on icebreaker escort. Obstructions to shipping are caused largely by the presence of sea ice, since ice of land origin is not of sufficisnt concentration to present a navigational problem.

## II. CLIMATOZOGY

The warmest air temperatures at Thule occur during July with a mean temperature of $42^{\circ} \mathrm{F}$. The coldest air temperatures occur during February with a mean temperature of $-15^{\circ} \mathrm{F}$. The total precipitation throughout the year averages about 2.5 inches, nearly half of this amount
occurring during July and August. Jamary and February are the driest monthes, averaging less than 0.1 inch per month. An interesting feature, in contrast to the low amount of precipitation, is that nearly half of the days throughout each month record a trace or more of precipitation. The amount of cloudiness scanewhat parallels the precipitation pattern, the greatest mean total cloud amount being observed during the summer and the least during vinter. July observations show a mean total cloud amount of four-tenths or more about 78 percent of the time, whereas In December, the percentage drops to 45. Mean total cloud amounts of eight tenths ar more were observed 68 percent of the time in July and 39 percent of the tine in Lecember.

Surface winds are comparatively weak throughout the year, averaging 10 knots or less approximately 80 percent of the time, with considerable monthly variation. Almost all of the stronger winds are from an easterly direction.

## III. OCEANOGRAPHY

The most important oceanographic factors in the formation and growth of ice are surface water temperatures, which indicate the heat loss and gain at the sea surface, and physical properties, which show how the heat loss and gain will be distributed throughout the water mass. Figure 1 shows the location of the oceanographic stations (sites A and B) occupied in the area.

Suxface water temperatures in North Star Bugt vary little from year to year. Flgure 2 ahows the relationship between alr and sea surface temperatures and indicates that the air temperature is higher than the water teruperature until approximately 21 August. Air temperatures reach a peak near the end of July and decrease rawidly thereafter. Sur face water temperatures lag behind the air temperatures by about 3 weeks, reaching a maximum near 16 August and decreasing slowly to the freering temperature by the first week in October. At this time, however, the air temperature is more than $10^{\circ} F_{0}$ colder than the water temperature. The reversal of the heat budget (the date when the water temperature begins to fall) can be placed at about 16 August. After that date it may be assumed that the water is losing heat contimuously.

The oceanographic structure was studied for four stations made at site A (fig. 1) on 29 September and 6, 12, and 21 October 1953. Observations at site $B_{3}$ in shallow water, showed that the ice thickness was largely independent of depth. Changes in the oceanographic structure are shown by the four station plots for site A (figs. 3, 4, 5, and 6). Surface water temperatures and salinities are listed in table I. The gradual disappearance of the layer of warm water produced by the summer heating is illustrated by the oceanographic plots. only the upper 100 meters were affected by this seasonal warming; while the water below 100 meters was nearly isothermal and isohailine, water temperature being about $\sim 0,8^{\circ} \mathrm{C}$. and salinity ranging between 33.70 and $33.90 \%$. Cooling of the upper layer was steady and had ovidently been proceeding from the time of the reversel of the heat budget. In the station profile of September 29 (fig. 3), 45 days after the heat budget reversal, the surface water temperature
was $-1.3^{\circ} \mathrm{C}$. and the wamest tomperature at 50 meters was $0.36^{\circ} \mathrm{C}$. The salludty curve shows the begirming of convection in the first 10 meters. The seasonal. thermocline Lies between 75 and 100 meters and is stf. 11 faixly sharp.

In the second station profile (fig. 4) taken a week later, the shallow layer has cooled further, so that the warmest water nor has a temperature of $m 0.5^{\circ} \mathrm{C}$. The surfoce convection extends to 15 meters. At this time, the ice was l. 6 inches thick. The seasonal thermocline had weakened during the week.

In the thited station profile (ing. 5) taken 6 days later on 12 October, cooling has reduced the temperature of the upper layer so that it is less than that of the lower layer, thus eliminating the seasonal thermocline, The nearly isothermal lower layer now is the warmer of the two layers. Convection has produced an isohaline layer in the upper 20 meters, while the continuing surface cooling has brought the temperature to the freezing point. At this times a Goinch coverm ing of lee at site \& was the result of thermonaline convection.

Finally, 9 days later on 27 October, the station profile (fig. 6) shows that the surface coollug has extended below 75 meters. Hittle change in the salindty and in the dopth of the mixed layer has occurxed. Since the ice thickness was nearly 22 inches, it is evident that the loss of a modarate amoun of beat through the ice produced a relatively large amount of 1 C with 1 Hthle added change in the convection of the water. At this point, the winter oceanographic structure is well esw tablished. The precipitation of salt and the process of convection durm ing the formation of ice are shown cleazly in the four profiles. The surface salinity increased from 31.20\%/00 on 29 Septomber to 31. $64 \% / 00$ on 6 octobex, to $32.00 \%$ on 12 0ctobex, and to $32.21 \% 00$ on 21 october.

## IV. ICE FORMATION ANO GRCWTH IN 1953

Fringe ice was first noticed on 25 September along the eastern edge of North Star Bugt where fresh water empties from Pltufik Valley. By 1 October, groase ice was forming over North Star Bugt in the area northe east of Dolong Pier: a considerable amount of slush ice fomed along the easterm shore. By 3 october, the first now ice was formod over this area of the bay. Temporary patches of grease ice were forming in the area of sites $A$ and $B$. The first sheet of young ice formed at site B during the morning of 4 october and at A during the morning of 5 october. This now ice attained a thickness of about 2 inches by 6 october, the thicknesses being 1.6 and 2.2 inches at sites $A$ and $B$, respectively. The areal distribution of ice at this time is illustrated in figure 7 . A polynya with some grease ice existed slightly north of site $A$, and a few smaller openwater areas wese present. Some rafting had occurred. Ice continued to grom with little change in areal distributiong attaining a thickness of 4.8 inches at site B by 9 October ( 1000 IST). Tho snow cover amounted to onemhalf inch. Figure 8 shows the symoptic ice picture at this time. The polymya north of site A had decreased in size; a small polynya had developed a shost distance southwest of Delong Pier; and a small area in the imediate vicinity of the pier had become ice
fres. A point of interest here is that within 2 hours after this ice was observed at 1000 tST by helicopter the areal distribution changed very rapidly to that indicated in figure 9. This change occurred with the approach of high tide and lownot surface winds from the east and southeast. Average tide range during this period (9 to 10 October) was about 6 feet.

On 10 October, westward movement of the ice was noticed at approximately 1000 LST. Easterly winds at this time had increased to 19 lnots with gusts to 25 knots. At 1100 LST, aerial recomnaissance made possible a detailed synoptic analysis of the ice as shown in figure 10. Numerous cracks, leads, and polynyas had developed. Considerable amounts of slush ice had formed in the newly developed water areas. Ice thickness on thils date measured 5.0 inches. By 1300 IST, the wind speed was 32 knots with gusts to 40 knots. By 1600 LST, the ice picture was radically different. The ice had moved out of the local harbor area, except along the east shore, as shown in figure 11. Comparatively strong easterly winds continued throughout the next day.

During the period from 1 to 12 October, the USS ATKA (AGB-3) was anchored in North Star Bugt. Weather observations were taken regularly aboard the ship during the time and can be compared directly with the observations taken at Thule Air Force Base. These observations are given in table II. On 10 october, when the ice changed radically as shom in figures 10 and 11, winds recorded on the ATKA were considerably stronger than those recorded at the Air Force station. In checking the winds for 1030,1330 , and 1630 IST, it was found that the wind speeds at the land station were only 54 percent of those at the ship. Similar conditions also existed on nearly every dayo This wind speed differential plays an important role in forecasting ice distribution during breakup as well as during the period of freezeup. Since nearly all of the wind information used by the Hydrographic Office in making ice forecasts in harbors is derived ox infexred from observations at neighboring land stations, it is evident that local harbor studies are necessary to determine the relative applicability of each land-station record to the forecasting of sea ice conditions in the surrounding areas.

Grease ice developed on the newly formed water area during the morning of 12 October, at which time there was about fivemtenths grease ice coverage. The distribution of the ice between the harbor and Wolstenholme $\emptyset$ on this date is shown in figure 12. Ice that formed on this newly exposed water area will be known as "new" ice hereafter, whereas the ice that formed the first past of the nonth will be known as "old" ice. On this date (October 12), the old ice was 6.0 inches thick. Much rafting had occurred in this ice southeast of Saunder to the mainland coast. By 21 October, the new ice attained a thickness of 8.5 inches and the old ice 11,2 inches. No polynyas, cracks, or leads were present from Kap Athol to the dock area. On 23 October (fig. 13), the old ice was 12.0 inches thick with 1.5 inches of snow cover. No snow cover was evident on the new ice, even though some very Ilght snow
had fallen between 20 and 23 cotober. However there was a brine covering of threembixterenths of an inch, which appeared to cover the entire area of new ice. A smmple of this brine, taken 50 feet south of the dock on 23 october, had a salinity value of $62.3 \% / 00$. Evi= dently, this salinity value is the result of rapid ice formation on and after 12 october. The ice was able to form with comparatively low ais temperaturat, averaging about 70 F . between 12 and 14 October. Over a laxge area 300 feet south of the dock, walking was found to be very difficult owing to the slippery brine covering.

Three ice tempersture and salinity profiles, as illustrated in figures 14,15 , and 16 , were tiken from Ice in the immediate dock area. The salinity values were taken at 2-inch intervals vertically; i.e., $0-2,2-4$ inches, etc. Temperature readings were taken at 2 oinch in tervals, starbing at the surface. It will be seen that the temperature gradients are neariy linear, whils salinity decreases iregulariy with depth.

Several ice thickness neasurements were made from timo of formam tion uatil the ice had witained a thicksess of approximatsiy 13 inches. Only one messurement was made apter this tiune, and that was on 18 November 1953. The new ice thickness at that time was 28 inches with 2 inches of snow cover. Ice grouth as a function of degree deys of frost ( ${ }^{\circ} \mathrm{F}$ 。) and the accumulation of degree days of frost with time for the new and old ice are shom in figures 17 and 38. Degree doys of frost are based on the normal freozing point of the water at each location and may be expressed either in 0 F or ${ }^{\circ} \mathrm{C}$. To illustrate the use of degree days of irost, a day with an average temperature of $25^{\circ} \mathrm{F}$. would accumulate 4 degree days of rost when the base temparature of $29^{\circ} \mathrm{F}$ is used. It is the practice in the Hydrographic office to use a base of $29^{\circ} \mathrm{F}$. or w $1.8^{\circ} \mathrm{C}$. at sites with salinity between $25 \% / 00$ and $35 \% / 00$ while a base of $32^{\circ}$ or $31^{\circ} \mathrm{F}$. for fresh or brackish rater is used.

In figure 19, the ice growth as a function of degree days of frost is shom for two ice seasons. 1948 c 49 and $1953-54$. The curves are nearly identical for the overlapping portion. Fhysically, this identity exm pesses the fact already noted thet the water of North Star Bugt is well mixed because of the free exchange to depths. Since the composition of the sea water does not change greatly ircm year to year, the relationship between ice growth and the heat loss expressed in degree days of frost is also the same There is, however, a ride variation in the accumlam tion of degree days of frost. Figure 20 shows the available historical data on degree days of frost and reveals that the extreme values ranged from the total of 7,950 degree days of arost on 31 Nay 1954, to the total of 5,650 on 31 May 1947. This variation would be expected to cause considerable differences in lec thjekness, assuming the other paremeters were unchanged.

## V. ICE GRONTH COMPUTATIONS

In computing the lee promth a formal developed in the Hydrographic office (Lre and Simpson, 1954 ) 1s visel, thich talas into account tho inm fluencing oceanogrophic and metecrologiest paramoters.

$$
\int_{t_{0}}^{\dagger}\left(T_{F}-T\right) d t=\frac{1}{k_{i}}\left[\left.\frac{p_{i} K}{2}\right|_{i} ^{2}+\left\{\frac{K k_{i} l_{s}}{k_{s}}+\frac{Q_{T}}{2}\right\} l_{i}+\frac{k_{i} l_{S}}{k_{S}} Q_{T}\right]
$$

where $T_{F}=$ temperature of freezing in ${ }^{\circ} \mathrm{C} . \mathrm{D}^{\circ}$
$\mathrm{T}^{\mathrm{F}}=$ temperature of the water in ${ }^{\circ} \mathrm{Cos}$
$k_{f}$ seat conductivity of sea ice,
$k_{s}=$ heat conductivity of snow,
$\rho_{i}=$ density of sea ice,
$K=$ latent heat of fusion,
$I_{1}=$ thickness of the ice in cm., $I_{s}=$ thickness of the snow in cm. , and $Q_{T}=$ amount of sensible heat loss in kg . cal.

Using this method, icemgronth curves, figures 21 and 22, are plotted against degree days of frost ( ${ }^{\circ} F_{0}$ ) for various snow dephs that may be covering the ice. The growth curves are based on oceanographic data taken at site A on 29 September and 12 October. Ice grows more rapidly during the early stages and/or with no snow cover. Greater ice thichnss and/or snow cover offer more insulation therefore resulting in a slower rate of ice growth as compared to degree days. It will be noted here that thess degree days are based on $28.8^{\circ}$. compared to the previous $29.0^{\circ} \mathrm{F}$. However, differences are very small, less than 1 percent. The computed ice growth curve (in inches) versus degree days of frost ( ${ }^{\circ} \mathrm{F}_{0}$ ), using the actual measured snow depths, is shom in figures 23 and 24 . Figure 23 and figure 24 are for the new and old ice, respactively. For comparison purposes, the actual growth curves are plotted. In the case of the new ice, these curves parallel very closely. the old ice curve does not verify as well. Nevertheless, after 450 degree days ( ${ }^{0} \mathrm{~F}$.) with 13 inches of ice, the computed thickness of the old ice is only 1.5 inches less than the actual depth. It is possible that this discrepancy may be the result of measuring the ice thickness in a comparatively shallow area, whereas the oceanographic data is based on information from site $A$, in deeper water. The sama was not true in the case of the new ice. In this latter case the ice growth was the same over the entire area; ioe., from the pier to site Ay which is approximately 6 nautical miles to the southwest. Nevertheless, the actual growth curves parallel the computed values very closely, especially in the case of the new ice, thus reflecting the accuracy of the method in predicting ice growth.

Naturally, is one were to predict the air temperature and snow depth values, a forecast of this natwe probably would not be so accurate as in the case pointed out here is figures 23 and 24 , where the observed values for snow cover and temparatures are used. Difficulty in making accurate longarange predictions of snot depths and temperatures will vary for different areas. In general, the larger the monthly veriation of these parm ticular parameters, the more difficult the forecast will be Comparatively the varintion for these two prameters is small in the area of Thile.

For insience, table III indicates that the snowfoll varies very littolen Therefore, accurate predictions for this elcment are relatively easy. Temperthure forecasting, hobever, is not so easy, as is evidenced In fllgure 20, which shom considerable variation. For example, on 15 November 1.947 there was an accurnlation of about 650 ( ${ }^{\circ} \mathrm{F}$.) dagree days of frost as compared to $1,200\left({ }^{\circ} \mathrm{F}_{\mathrm{s}}\right)$ degree days of irost on the same date in 1.953. In referxing to figure 23 this difference would meen approcimatiely 10 inchas more ice ( 19 versus 29 inches). of course, the comparison assumes all other influencing factors to be the samo. This is clearly an extremo case. In other years the temperature values are more nearly equal.

## VI. CONCEUSIONS

The area of North Star Bugt and wolstenholme Fjord constitutas an open bay with fres water exchange at all depths from surface to the bottom. The special chanacteristics of this area trom arm oceanographic standpoint are 1) tha presence of contimal water exchange and hence temporal contimity in thermohalne structura, 2) the relatively small importance of runoff water, and 3) the small amual change in susface water tenporetures during the open season.

Forth Star Bugt, although a harbor suitable for shipping opexations, is not a closed water system but, instead, is an 35 m of Wolstenholma Fjord and open at all levels. Since the batex of the bay is contimually mixed with that of the fjowd, the thermohaline structure remains rew latively constant from treek to freek. This continuity, in turn, is an essential prerequisite for longwrange ice forecasting, in which the thermohaline stmucture must be studied in eaxly autumn and the heat budget utilized on the besis of the early sampling. It also makes possible the use of an oceanographic sampling in deep water to predict ice grorth in the bay.

There is relatively littla runoff into North Star Bugt, coming mostly from the Pitufik River. This runoff stops by the first week in September, so that there is essentially no runoff problem thereafter; the water salinity remains nearly constant, increasing slightly due to evaporation.

The combination of the above characteristics makes North Star Bugt a suitable harbor for the use of the techniques of longmprage ice prem diction even thorgh these techniques were developed for use in operwater areas. The 1953 longmange ice prediction verified satisfactorily, as shown by figures 23 and 2l.

In one aspect Worth Star Bugi presents obstacles to longorange ice prediction methods. The techniques assume that the ice remains in situ once it is formed. In North Star Bugt, however, it is normal for the ice to break up in the area of the pier as often as three times during the freezeup pexiod, somotimes not permanently until the first part of Novenber. Similar movement of the ice will generally apply to the greater part of Baffin Bay north of $70^{\circ} \mathrm{No}$
Table I
SURFACS WATYR TEMPERATURE AND SALINYTY

| Location | Site <br> A | $\begin{gathered} \text { Site } \\ B \end{gathered}$ | South Edge of Pier | 50 ft . South of Pier | 300 ft . South of Pier | We | Pier | 30 Nor of |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | $\begin{array}{cc} \mathrm{T} & \mathrm{~S} \\ \mathrm{O}_{\mathrm{F}} & \mathrm{O} / 00 \\ \hline \end{array}$ | $\begin{array}{cc} \mathrm{T} & \mathrm{~S} \\ \mathrm{O}_{\mathrm{E}} & \mathrm{o} / 00 \\ \hline \end{array}$ | $\begin{array}{lc} T & S \\ 0 & 0 / 00 \\ \hline \end{array}$ | $\begin{array}{cc} T & S \\ O_{F} & 0 / 00 \\ \hline \end{array}$ | $\begin{array}{cc} \mathrm{T} & \mathrm{~S} \\ \mathrm{O}_{\mathrm{F}} & 0 / 00 \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{T} \\ \mathrm{O}_{\mathrm{F}} \end{array}$ | $\begin{gathered} s \\ 0 / 00 \\ \hline \end{gathered}$ |  | $\begin{gathered} S \\ 0 / 00 \\ \hline \end{gathered}$ |
| Sept. 29 | 29.831 .20 | 30.031 .60 |  |  |  |  |  |  |  |
| Oct. 6 | 28.931 .64 | 28.931 .76 |  |  |  |  |  |  |  |
| 7 |  |  | 28.831 .94 |  |  |  |  |  |  |
| 8 |  |  | 28.931 .47 |  |  | 28. | 31.8 |  |  |
| 9 |  | 28.931 .31 | 28.931 .62 |  |  | 28. | 31.6 |  |  |
| 10 |  | 29.032 .00 | 28.931 .94 |  |  |  |  |  |  |
| 11 |  |  | 28.931 .85 |  |  |  |  | 29.0 | 30.17 |
| 12 | 28.832 .00 | 28.832 .23 | 28.831 .91 |  |  |  |  |  |  |
| 21 | 28.832 .21 | 28.832 .27 |  |  |  |  |  |  |  |
| 23 |  |  |  |  | 28.931 .24 |  |  |  |  |
| 24 |  |  |  | 8.838 .38 |  |  |  |  |  |

TABLE II SYTOPTIC WEATHER OBSERTATIONS AT THULE AI? FORCE BASE AND ONT THE USS ATKA



TABLE II SYNOPTIC WEATHER OBSERVETIONS AT THULE AIR PORCE BASF, ATD ON THE USS ATKA (Cont'd)











TARLE II SYNOPTIC !TRAMy OBSEDVATIONS AT THUE

TABLE II

| THULE - ATR FORCE BASE USS ATKA - IN YORTH STAR BAY |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temoerature ( $\mathrm{F}_{0}$ ) |  |  |  |  |  |  |  |  |  |  |  |  |
| Time |  | Dry <br> bulb | Wet bulb | Re]arive humiaity Percent | Present weather** | Direction | $\begin{aligned} & \text { Speed } \\ & (\mathrm{kn} .) \\ & \hline \end{aligned}$ | Dry <br> bulb | Wet <br> 5ulb | Relative humidity Percent | Diroction | $\begin{aligned} & \text { Soeed } \\ & (\mathrm{kn} .) \\ & \hline \end{aligned}$ |
| October |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} 1953 \\ 14 \end{gathered}$ | LST** |  |  |  |  |  |  |  |  |  |  |  |
|  | 0130 | 4.5 | 3.6 | 65 |  | SE | 5 |  |  |  |  |  |
|  | 0730 | 3.7 | 3.4 | 78 |  | E | 8 |  |  |  |  |  |
|  | 1330 | 6.7 | 6.2 | 76 |  | ESE | 5 |  |  |  |  |  |
|  | 1930 | 11.2 | 9.8 | 66 |  | E | 4 |  |  |  |  |  |
| 15 | 0130 | 13.0 | 12.5 | 81 |  | ESE | 4 |  |  |  |  |  |
|  | 0730 | 20.0 | 19.0 | 82 |  |  | c |  |  |  |  |  |
|  | 1330 | 13.5 | 13.1 | 84 |  | ESF, | d |  |  |  |  |  |
|  | 1930 | 6.8 | 6.5 | 82 |  | ESE | 8 |  |  |  |  |  |
| 16 | 0130 | 2.2 | 1.8 | 75 |  | SE | 7 |  |  |  |  |  |
|  | 0730 | 3.8 | 3.6 | 81 |  | ESE | 6 |  |  | . |  |  |
|  | 1330 | 7.9 | 7.2 | 73 |  | ESE | 6 |  |  |  |  |  |
|  | 1930 | 2.8 | 2.5 | 78 |  | ESE: | 7 |  |  |  |  |  |
| 17 | 0130 | 0.2 | 0.0 | 79 |  | ESE | 6 |  |  |  |  |  |
|  | 0730 | 1.2 | 0.9 | 76 |  | ESE | 7 |  |  |  |  |  |
|  | 1330 | 5.9 | 5.2 | 72 |  | E | 4 |  |  |  |  |  |
|  | 1930 | 3.3 | 3.0 | 78 |  | E | 5 |  |  |  |  |  |
| 13 | 0130 | \$. 6 | 7.0 | 56 |  | ESE | 6 |  |  |  |  |  |



TAB IE II SYNOTTIU NTATHER OBהERVATIONS AT THULE AIR FORCE BASE AND ON THE USS ATKA (CONE' A )

| THULE - AIR FORCE BASE |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Temoorature (OF.) |  |  |  |  |  | Temnerature (OF.) |  |  |  |  | rind |  |
| Time | her | Dry <br> bulb | Vet bul? | Relative humidity Percent | Present weather** | Direction | $\begin{aligned} & \text { Speed } \\ & (\mathrm{kn.}) \end{aligned}$ | Dry bulb | Wet <br> bulb | Relative humidity Percent | Direction | $\begin{aligned} & \text { Speed } \\ & (\mathrm{kn} .) \end{aligned}$ |
| Oct. 1953 LST\% |  |  |  |  |  |  |  |  |  |  |  |  |
| $22$ | 0730 | -2.3 | $-2.3$ | 83 |  | SE | 5 | 5.9 | 4.9 | 64 | ESE | 8 |
|  | 1030 | -2.2 | $-2.3$ | 80 |  | SE | 6 | 7.9 | 7.1 | 71 | E | 5 |
|  | 1330 | -1.8 | $-2.2$ | 72 |  | SE | 7 | 1.6 | 0.8 | 66 | E | 8 |
|  | 1630 | -1.0 | $-1.0$ | 84 |  | SE | 6 | 2.8 | 1.8 | 60 | E | 7 |
|  | 1930 | 6.2 | 6.2 | 87 | LS | SE | 6 | 1.0 | 0.4 | 60 | E | 9 |
|  | 2230 | 3.3 | 3.8 | 86 | LS | SE | 8 | 10.7 | 9.9 | 74 | E | 4 |
| 23 | 0130 | 2.0 | 2.0 | 85 | LS | SE | 12 | 9.1 | 8.3 | 75 | E | 7 |
|  | 0430 | 4.1 | 4.0 | 83 | LS | ST | 14 | 11.0 | 10.4 | 77 | $E$ | 13 |
|  | 0730 | 6.2 | 5.8 | 79 | . | SE | 13 | 13.7 | 12.7 | 74 | E | 13 |
|  | 1030 | 6.4 | 6.1 | 81 | IS | SE | 7 | 12.9 | 11.9 | 72 | ENE: | 12 |
|  | 1330 | 8.2 | 7.9 | 82 | LS | SE | 12 | 14.0 | 12.4 | 68 | FRE | 3 |
|  | 1630 | 8.7 | 8.2 | 78 | LS | SE, | 8 | 12.8 | 11.8 | 72 | ESE | 9 |
|  | 1930 | 10.0 | 9.4 | 77 | IS | SE | 5 | 12.0 | 11.0 | 67 | E | 7 |
|  | 2230 | 9.3 | 8.8 | 79 |  | SE | 7 | 14.0 | 13.0 | 73 | SSE | 8 |
| 24 | 0130 | 6.9 | 6.2 | 73 |  | SE | 6 | 13.1 | 12.3 | 76 | SSE | 4 |
|  | 0430 | 6.8 | 6.5 | 87 | LS | SE, | 5 | 12.0 | 10.8 | 67 | ESE | 6 |
|  | 0730 | 6.9 | 6.7 | 83 | IS | SE | 6 | 11.2 | 10.2 | 71 | E | 8 |
|  | 1030 | 7.8 | 6.3 | 57 |  | SE | 9 | 13.0 | 12.0 | 72 | ESE | 9 |
|  | 1330 | 5.0 | 4.5 | 75 |  | SE | 8 | 10.0 | 8.6 | 61 | ESE | 10 |

TABLE II


Table III
MONTHLY SNOWFALE IN INCHES

|  | 1946 | 1947 | 1948 | 1949 | Average |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | 1.0 |  |  |  |
| January |  | 0.9 | 0.4 | 0.4 | 0.6 |
| February |  | 1.1 | 0.6 | 0.1 | 0.5 |
| March | 6.1 | 0.4 | 0.4 | 0.6 |  |
| April | 2.1 | 0.5 | $T$ | 2.2 |  |
| May | 2.5 | 1.2 | $T$ | 1.1 |  |
| June |  | $T .0$ | $T$ | 0.0 | 0.8 |
| July |  | $T$ | $T$ | $T$ | $T$ |
| August |  | 3.5 | $T$ | $T$ | $T$ |
| September |  | 1.1 | 4.9 | 4.5 | $T$ |


$\begin{array}{lllllllllllllllllllllll}5 \% & 31.0 & 31.2 & 31.4 & 31.6 & 31.8 & 32.0 & 32.2 & 32.4 & 32.6 & 32.8 & 33.0 & 33.2 & 33.4 & 33.6 & 33.8 & 34.0 & 34.2 & 34.4 & 34.6 & 34.8 & 35.0\end{array}$ $\mathrm{T}^{\circ} \mathrm{C}-2.0 \begin{array}{llllllllllllllllllllllll}-1.9 & -1.8 & -1.7 & -1.6 & -1.5 & -1.4 & -1.3 & -1.2 & -1.1 & -1.0 & -0.9 & -0.8 & 0.7 & -0.6 & -0.5 & -0.4 & -0.3 & -0.2 & -0.1 & 0.0\end{array}$



FIGURE 3. TEMPERATURE, SALINITY, AND DENSITY PHOFILES FOR SITE A, 29 SEPTEMBER 1953





FIGURE 8. SYNOPTIC ICE CONDITIONS, 9 OCTOBER 1953 (IOOOLST)
FIGURE S. SYNOPTIC ICE CONDITIONS, 9 OCTOBER 1953 (I200 LST)


FIGURE 10. SYNOPTIC ICE CONDITIONS, 10 OCTOBER 1953 (IIOO LST)

FIGURE 1I. SYNOPTIC ICE CONDITIONS, IO OCTOBER 1953 (IGOO LST)

FIGURE I2. ICE CONDITIONS, I2 OCTOBER 1953


FIGURE 13. ICE CONDITIONS, 23 OGTOBER 1953



FIGURE 15. TEMPERATURE AND SALINITY GRADIENTS IN ICE, 23 OCTOBER 1953 (I600-I900 LST-NEW ICE)



FROST IN 1948-49 AND 1953
of

品
Z
$\frac{0}{5}$
0
4
4
w
FIGURE I9. ICE GROWTH
(SJHONI) SSJNXOHL ヨOR



FIGURE 21. COMPUTED ICE-GROWTH SURVES FOR SELECTED SMON COVERS. COMPUTATION BASED ON OATAFRON SITE A, 29 SEPTEMEER:953.


FIGURE 22. COMPUTED ICE-GROWTH CURVES FOR SELECTED SNOW GOVERS. COMPUTATION BASED ON DATA FROM SITE A. 120 OTOBER 1953.


FIGURE 23. COMPUTED AND OBSERVED ICE-GROWTH CURVES FOR NEW ICE


FIGURE 24. COMPUTED AND OBSERVED ICE-GROWTH CURVES FOR OLO ICE

## BIBLICGRAPHY

LEE, O.S. and SIMPSON, L.S. A practical method of predicting sea ice formetion and growth, U. S. Hydrographic Office Technical Report 4, 9 p., 17 fig. 1954.
U.S. AIR FORCE. Dajly weather records; Thule, Greenland, 1953, [n.p. 7 Unpublished.
U.S. WEATHER BUREAU. Ice measurements in North Star Bugt; Thule, Greenland, 1948-1949, [n.p. 7 Unpublished.

-     -         - Climatology summary; Thule, Greenland, October, 1946 through December, 1949, 38 p., 1950.

| U. S. Nory Hydrographic Ofice <br> LOCAL ENVIRONMENTAL FACTORS AFFECTING ICE FORMATION IN NORTH STAR SUGT, GREENLAND, by Roymond J. MeGough. Jonuary 1956. 7 po, 24 figures, 3 tableso (H. O. TR-23). <br> Environinent al factors influencing the formation and growth of sea ice in the crea of North Star Bugy and Wolstenholme Fiord ere studiod. The harbor is well situated for ths use of lang-range ice prediction ischniques besed on thas thermohaline structure. | b See les Forecasting <br> 2 Meteorology <br> 3. Ciimatology <br> 4. Oceanography <br> 5o North Star Bugt, Greeniand . Sealee <br> 6. Kilalstenhoime Fijord, Groaniand - Soc lea |
| :---: | :---: |
| The formotion and growhth of ses ice in 1953 were studied in detail. Data indicated that the observed and computed ice thicknass were noorly identical. | i. titile: Loeal and Environmental Foctors Affecting les formation in North Sicr Bugi, Grssnland <br> ii. cesthor: Raymond <br> J. MeGough <br> iii. H. O. PR-23 |
| U. S. Navy Hydrographic Office <br> LOCAL ENVIRONMENTAL <br> FACTORS <br> AFFECTING ICE FORMATION II NORTH STAR BUGT, GREENLAND, by Raymond J. MeGough. January 1956. 7 po, 24 figures, 3 tables. ( $\mathrm{H} . \mathrm{O}$. TR-23). <br> Environmental factors influencing the formation and growth of sea ice in the area of North Star Bugt and Wolstenholme Fiord are studied. The harber is well sifuated for the use of lang-range ice prodiction techniques based on the thermohaline structure. | Lb Sea leo <br> Forecosting <br> 2. Nietsoralogy <br> 3. Climatalogy <br> 4. Oceanogr cphy <br> 5. North Star Bugt, Greonland Sea lee <br> 6. iYol stentiolme Fiord, Greenland - Secilce |
| The formation arid growth of sea ice in 1953 were studied in detail. Data indicated that the observed and computed ise thickness were neorly identical. | i. title: Local and Envirommemeal Factors Affecting leo Formation in North Step Bugt, Greenland <br> ii. author: Roymond J. MeGough $\text { iii. H. O, TR. } 23$ |


U. S. Navy Hydrographic Office LOCAL ENYIRONMENTAL FACTORS SUGT, GREENLAND, by Raymond J. MeGough. and growth of sea ies in the area of North Star Bugs and Wolstenholme Fiord are studied. The harber is rechniques based on the thermatialine struciuro. The formotion and growth of secice in 1953 were
studied in detait. Dafo indicoted that the obsorved and computed ice thickness were nearly identieal.

$$
\begin{aligned}
& \text { \%. Sea lce }
\end{aligned}
$$

 LOCAL ENVIROMMENTAL FACTORS SUGT, GREENLAND, by Raymond do MeGough. January 1956. 7 peo 24 figures, 3 rablos. (H. O.
TRe 23).

Environmental factors influeneing the formation
and growth of saa ics in the crea of North Star Bugt and Wolstenhalme Fjord are studied. The harbor is wall situated for the use of long-range ice prediction
techniques based an the thermohaline structure.

The formation and growth of sea iee in 1953 were studied in detail. Dara indicated that the chserved
and eomputad ice thickness were nearly identicai.

| U. S. Novy Hydrographic Office <br> LOCAL ENVIRONMENTAL FACTORS AFFECTING ICE FORMATION IN NORTH STAR SUGT, GREENLAND, by Roymond J. MeGough. Jamuary 1956. 7 po, 24 figures, 3 fableso (H.O. TR-23). <br> Environmental factors influencing the formation and growth of sea ice in the ceec of North Star Bugt and Yolstenholme Fiord are studied. The herbor is well situoted for the use of lang-renge ice prediction techniques besed on the thermohaline structure. | b Soa les <br> Forecasting <br> 2 Metooroliogy <br> 3. Climotology <br> 4 Oceomography <br> 5. North Ster Bugt, Greeniand Soalce <br> 6. Wiel stenholme Fiord, Greonland - Sod lce |
| :---: | :---: |
| The formation and growth of ses ice in 1953 were studied in detail. Data indieated that the observed and computed ice thickness were neariy identical. | i. titlo: Lacal and Environmental Foctors Affeering Norith Ster Bugt. Grasnland <br> ii. author: Raymond J. MeGoagh iii. H. O. TR-23 |
| U. S. Navy Hydrogrophic Office <br> LOCAL ENVIRONMENTAL <br> FACTORS AFFECTING ICE FORMATION IIN NORTH STAR SUGT, GREENLAND, by Raymond J. MeGough. Jaruary 1956. 7 po, 24 figures, 3 tables. (H. O. TR-23). <br> Environmental factors influencing the formation and growth of sea ice in the area of North Star Bugt and Wol stonholme Fiord are studied. The harber is well situated for the use of long-range ice prediction rechniquas basad on the thermohaline structure. | LSealeo <br> Furecasting <br> 2. Nietsorology <br> 3. Climatology <br> 4. Ocearography <br> 5. North Star Bugt, Graentand. Sealce <br> 6. Wol stenhalme Fiord, Groenland - Sea lee |
| The formation and growth of sea ice in 1953 were studied in detail. Data indicated that the observed and compured ice thickness were nearly identical. | i. title: Loeal and Envirommemoi Factors Affocting Ice Formation in North Star Bugt, Groenland |
|  | $\begin{aligned} & \text { ii. author: Raymand } \\ & \text { J. McGough } \\ & \text { iii. H.O. TR-23 } \end{aligned}$ |

$\vdash \quad+\quad-1$




[^0]
$\square$
1




[^0]:    

    $$
    \begin{aligned}
    & \text { U. S. Navy Hydrogrophic Office } \\
    & \text { LOCAL ENVIRONMENTAL FACTORS } \\
    & \text { AFFECTING ICE FORMATION IIN NORTH STAR } \\
    & \text { SUGT, GREENLAND, by Raymond J. MeGeugh, } \\
    & \text { January } 1956.7 \text { Po, } 24 \text { figures, } 3 \text { tablos. (H. O. } \\
    & \text { TR-23). } \\
    & \text { Environmental factors influencing the formation } \\
    & \text { and growth of sea ice in the area of North Star Bugt } \\
    & \text { and Wolstenholme Fiord are studied. The harbor is } \\
    & \text { well situated for the use of long-range ice prediction } \\
    & \text { fechniques based on the thermahaline strueture. } \\
    & \text { The formation and growh of sea ice in } 1953 \text { were } \\
    & \text { studied in detail. Data indicated that the observed } \\
    & \text { and computed ice thickness were nearly identical. }
    \end{aligned}
    $$

    

