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PREFACE TO THE REVISED EDITION

THIS book was first published in 1941 as a thesis for the doctor's

degree in the University of Helsingfors.
1

It appeared as volume III

in the series Acta Philosophica Fennica. The book having been out

of print for some time, I was invited by its present publishers, Basil

Blackwell & Mott, Ltd., to prepare a new edition of it.

The book is essentially a discussion of the traditional problem of

the Justification of Induction, sometimes also called the Problem of

Hume. It examines some main attempts at a solution of this problem:
the doctrine of synthetical judgments a priori, conventionalism,
inductive logic in the tradition of Bacon and Mill, the approach to

induction in terms of probability, and the pragmatist approach. All

these attempts contribute something important to our understanding
of the nature of induction. But in a certain respect they all fail to

accomplish what they, often at least, claim to achieve. In a conclud-

ing chapter I try to show why this 'failure' on the part of any

attempted justification of induction is inevitable, and why the view

that it has catastrophic implications rests on a misunderstanding.
Since this book was first published, there has been a noticeable

revival of interest in Inductive Logic. The new interest, however,
has chiefly been in theformal aspects of the relation between premisses
and conclusion in inductive arguments. The two main branches of

this formal study may be called Elimination-Theory and Confirma-

tion-Theory. The former is a further development of the tradition in

inductive logic founded by Bacon. The latter is essentially a theory
of inductive probability. In another work, called A Treatise on

Induction and Probability (Routledge & Kegaji Paul, London 1951)

I have tried to contribute something to both these branches of formal

study.
If I were now to write afresh on the Problem of Hume, I should

probably write a very different book from this one. Not that the

present work expresses opinions which conflict with my present
views. But on many topics, here but lightly touched, I feel the need

for a more profound discussion. This feeling attaches particularly to

vii



PREFACE

the treatment of synthetical judgments a priori in Chap. II, which I

now think is superficial.

In order, however, not to attempt what I believe to be an unhappy
compromise between the original set-up of the discussion and a new
method of dealing with the problems, I have tried to interfere with

the original text as little as possible beyond correcting downright
errors and adding references to more recent literature. Some sections

I have preferred to re-write entirely rather than to revise. These

sections are the following:
3 of Chap. I, Remarks about various usages of the term 'induction \

has been re-written and considerably expanded by the inclusion,

among other things, of some comments on Aristotle's doctrine of

induction and on the mutual relation between generalization and

inference from particulars to particulars (induction versus eduction).

4 of Chap. IV, The mechanism of elimination, has been re-written

so as to conform to the fuller account of the logic of induction by
elimination which is given in my Treatise on Induction and Probability

(Chaps. Ill & IV).

To Section 1 of Chap. V, I have appended a longish Note on the role

ofInduction and Hypothesis in Science. The urge to write it came from
some recent attempts, which I consider unjustified, to decry the

importance of inductive inference and of the epistemological and

logical problems which it raises.

The whole of Chap. VI, Formal Analysis ofInductive Probability, is

new. The old version of it was extremely weak and guilty of many
errors. This chapter stands somewhat aside from the main theme of

the book. I hope that, in its present shape, it could serve as an

introduction to a more thorough study of an important province of

contemporary formal Inductive Logic.
From Chap. VII ofthe old edition the first Section has been omitted.

Its content is incorporated in Section 2 of the present Chap. VI.

2 of Chap. VIII, Reichenbach's Method of Correction, has been

re-written. The old version was neither accurate as an account nor

fair as an appreciation of Reichenbach's opinions. To the same

chapter has been added in the revised edition Section 3, The goodness

ofinductive policies reconsidered. Here the problem of the justification
of induction is viewed from an angle somewhat different from that

adopted in the rest of the book. Had I written a completely new book
viii



PREFACE

on induction, I should probably have made the point of view adopted
in this section more pervading of the discussion throughout.
The Notes contain mainly historical material. I have no claim to

scholarship in the history of learning or thought. But I have perhaps
occasionally been able to give hints which may be of interest even

to the professional historian of ideas.

I have tried to bring up to date the Bibliography of the 1941

edition. I have also added to it some items of an earlier date, and

omitted from it others as irrelevant. The Bibliography primarily
lists works and articles on the epistemological aspects of induction

and probability. It cannot pretend to be complete, but I hope
students will find it useful.

Dr. C. D. Broad, from whose kindness and knowledge I have much

profited throughout my work in the field of induction and probability,

has very kindly read the revised sections and contributed both

linguistic corrections, and valuable comments on the subject-matter.

I am most grateful for his assistance.

I dedicate this revised edition of my book to my first master in

philosophy, as a token of gratitude for what he has taught me and of

admiration for what he has done to encourage serious study in logic

and philosophy in my country.
GEORG HENRIK VON WRIGHT

Helsingfors, Finland

May 1955
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CHAPTER I

INTRODUCTORY REMARKS ON INDUCTION

1. Inductive inference and the problem of induction.

BY an inductive inference we mean roughly this: From the fact that

something is true of a certain number of members of a class, we
conclude that the same thing will be true ofunknown members of that
class also. If this conclusion applies to an unlimited number of
unexamined members of the class, we say that the induction has led
to the establishment of a generalization. As this is the most impor-
tant type of inductive inference, induction is often defined as the

process by which we proceed from particular to general, or from less

general to more general propositions.
1

It is, however, not necessary that an inductive inference should
lead to a generalization. We may also extend the conclusion to a
limited number of unknown members of the class, e.g. to the next
member which turns up, thus proceeding from particulars to a new
particular.

2 Both cases of inductive inference, that from particulars
to universals and that from particulars to particulars, are covered by
the definition of/induction as reasoning from the known to the
unknown. 8 This" definition also includes induction as reasoning from
the past to the future. It must be observed that this time-character-
istic of inductive inference, which is sometimes mentioned in the
definition of it, is of no essential importance, and that induction

may also proceed from past cases to other unexamined instances

belonging to the past.
Inductive inference, as is well known, plays an important role both

in science and in every-day life. When the general aim of science is

characterized by the words *savoir pour prevoir', then science is

conceived as a system of well-established inductions. Still more
fundamental is the importance of induction as the basis of almost all

our actions. When I assume that the same food that nourished me
yesterday will nourish me today, or that if I put my hand into the

l



THE LOGICAL PROBLEM OF INDUCTION

fire it will hurt, I am making inductive inference. Also in many
cases, where there is no question of conscious inference, we may be

said to 'act inductively'.

But what are the criteria that an inductive inference is legitimate,

i.e. how do we know that from what has been true of hitherto

examined members of a class we can infer something as to other

members also of the class? Is it possible, provided certain conditions

are fulfilled, to prove that an inductive inference must necessarily be

valid, and what are these conditions? Or, if this be not the case, is it

then perhaps possible to determine which inductions are likely and

which again are unlikely to be true, so that we shall be able to avoid

'bad' inductions and by keeping to the 'good' ones arrive at the

truth at least in a majority of cases?

In all these questions the validity of inductive arguments is asked

for, i.e. the logical nature of the relation that prevails between the

evidence on which the induction is based as premisses, and the

induced proposition itself as conclusion. The problem constituted

by these questions we shall, therefore, call the logical problem of
induction. With it can be contrasted the question of the factual origin

of inductions from observations, i.e. of the psychological conditions

that are essential for the discovery of invariances and laws in the flux

of phenomena, and of the practical rules of scientific methodology,
which can be abstracted from those conditions. This problem, which

falls outside the scope of the present treatise, might be called

the psychological problem of induction. It deserves mention that

whereas philosophy of induction in England has been predomin-

antly concerned with the former aspect of the problem, French

authors on questions of induction have mostly taken interest in the

latter.
6

Historically the logical problem of induction has, ever since the

appearance of David Hume's Treatise on Human Nature two

hundred years ago, been closely tied up with the question about the

justification of our use of inductive arguments. The use of induction,
we are inclined to think, would not be rational, unless we can

justify it by substituting for the mere belief that induction will lead to

the truth some guarantees that, under given conditions and with

specified limitations, it will actually do so. If such a justification

cannot be given, the foundation ofhuman knowledge about empirical
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reality seems to sink into a bog of irrationality, fatal for the superb
edifice of natural laws and well-confirmed empirical rules based upon
it. It is the chief aim of this treatise to clarify the muddles in the

philosophy of induction, which originate from the 'sceptical' results

of Hume. The logical problem of induction, therefore, as treated

by us, will predominantly be viewed in its relation to the classical

question about the justification of induction.

It might be suggested that there is a fundamental difference

between the problem of justifying induction in cases where the

inference involves a generalization, and the same problem in cases

where the inference is extended only to a limited number of cases.

This apparent difference is connected with the fact that inductions

covering an unlimited range of instances are unverifiable in the sense

that we can experience only a finite number of cases covered by them,
whereas inductions extended solely to a limited number of new cases

are at least 'in principle' verifiable, i.e. all the cases may fall within

our experience and be verified separately. It is, however, important
to note that the problem of induction as we are going to treat it has

nothing to do with the possibility of finding a subsequent verification

of inductive inferences, i.e. of verifying them by verifying all their

single instances. The justification we are looking for is a justification
of inductive inferences before their actual experiential verification,

and this problem is essentially the same when the induction under

consideration applies to the next member only of the class in question
and when it applies to an infinite multitude of possible future

members.*

In the following pages we shall mainly speak of inductions as

generalizations, i.e. as extended to an unlimited number of instances,

except where otherwise mentioned. Our first task will be to examine

some different logical forms which inductive generalizations may
assume.

2. Differentforms of inductive generalizations.

Our definition of an inductive generalization covers several

different cases. In the simplest case we infer from the fact that all

observed members of a class A have a property R that all unknown
members of the class will have the same property. The generalization
is thus of the form: 1
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(1) (X) [AX+BX},

that is to say, it is true for every x, that if x is A, it is also B. If it is

true as well that every B is A, the general implication takes the form
of a general equivalence between Ax and Bx.

One of the predicates A and 5, or both of them, may also have more
than one argument. This is for example the case with the generaliza-
tion: any two elements of the class A have the relation B to each

other, which is of the form:

(2) W(y)[Ax&Ay+B(x,y)].

Evidently a great majority of natural laws in advanced sciences such

as physics and astronomy concern the relations in which objects
stand to each other and not the 'properties' of single objects.

Inductions of the form (1) are therefore to be regarded as fairly

'primitive *.

The generalization may further be one about ordered sets of

individuals. The symbolic expression of such an induction would
for example be the following:

(3) (x)(y)[F(x9 y)~(Ax+By)],

whereF is the relation determining which of any x's and y s together
form an ordered pair in this case. The important category of in-

ductive generalizations, which are commonly known under the name
of causal laws, are generalizations of this type.
A characteristic feature of the logical structure of generalizations

of the kind (1) (3) is that they are general implications or equiva-
lences involving only the universal operator. Inductions of this type
we call Universal Inductions or Universal Generalizations. 1 We
shall in the next three chapters be dealing mainly with inductions of

this kind, and when it is useful to state them in symbols we shall

write them in the simplest form (1), except where otherwise is re*

quired.
With the Universal Inductions can be contrasted those generaliza-

tions in which we infer that something will be true not of all the

members of a class, but of a certain proportion of them only, Induc-

4
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tions of this kind we shall call Statistical Inductions or Statistical

Generalizations. 8 Such generalizations have recently come to play
an increasingly important role in scientific inquiry, both in social

sciences and mathematical physics. The question whether Statistical

Generalizations are to be regarded merely as 'approximations' to

the truth, being in principle replaceable by a system of Universal

Inductions, or whether they represent 'ultimate' laws of nature, is

one of the chief controversies in the philosophy of modern natural

science.*

Statistical Generalizations speak about finite proportions of
infinite multitudes of elements. The concept of a proportion which
has a clear-cut meaningwhen applied to a finite number of enumerable
elements or to a series of an infinite number of elements, given

according to a rule determining the characteristics of each one of the

members in the series, becomes problematic when we apply it, as is

the case in Statistical Generalizations, to an unlimited multitude of
what we may call 'empirically given' elements. 5 In order to show
that the conception of a proportion has a definite meaning even in

this last-mentioned case we shall examine the following symbolic
expression which is equivalent to the statement that a proportion p
of all elements which are A, are also B:

N

(4) (Elq)(*)(xJ(ExJ\n>m&
r

z==i
i\n>m& =pe I

L n J

In order to understand this formula, suppose first of all that we give
each instance of A as it occurs an ordinal number: the first, the

second, . . ., the rc'th and so on. Then the expression (4) says that a

proportion/? of all the A 's are 5, if there exists one and only one real

number p between and 1, including these two limits such that

for any element xm there exists in the series a later element xn , at

which the ratio, of all elements which -are both A and B to the total

number n of examined elements of the class A, falls in the interval

/> , where e can be any amount however small. We say, in other

words, that a proportionp of the elements which are A are also
, if

B 5
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over and over again it happens that, when the selection of A's is

enlarged, the proportion of 5's among them sooner or later becomes

'practically equal' to p. One further condition must be added, viz.

that p is the only number for which this is true. We could imagine
cases where more than one number had this property.

7 In such
cases we should say that there is no definite proportion of A J

s which
are 5. 8

The most interesting feature of this definition of a proportion is,

for the purpose of our inquiry, that it is applicable also to series of

elements, the characteristics of which are given empirically or

extensionally, and not according to mathematical rule. For the

formula shows that for this applicability it is only necessary that

the elements of the class A must be enumerable, i.e. it must be

possible to count them as they occur and to give to each one of

them an ordinal number, thus ordering them in a series. This

condition is fulfilled for all series or collections ('populations')
of empirically given elements to which inductive generalizations

apply. That this is the case follows from what we mean by 'empiri-

cally given'.

A proportion as defined by us is nothing but the limiting value of a

certain relative frequency in an ever-increasing collection of elements. 9

It is very important to note that we can apply the concept of a limit

(or proportion) to extensionally given series of elements without

saying anything more about the way in which the characteristics are

distributed in the series than is contained in the definition itself of

the concept. The question of further properties of this distribution

(randomness, irregularity, 'Nachwirkungsfreiheit' and so on) occurs

first when we have to determine the connection between Statistical

Generalizations and Probability-Laws, between propositions like

'a proportion^ of all A's are B* and *it is probable to degree/? that

an x, taken at random, which is A will also be J5' .

We have already mentioned that inductive generalizations are

unverifiable propositions in the sense that we can never verify more
than a finite number of their instances. This unverifiability applied

equally to Universal and to Statistical Generalizations. But in

respect of falsifiability there is not a corresponding symmetry between

the two types of generalization. A universal implication like (1) is

falsified if a single proposition Aa &~Ba turns out to be true; i.e. if

6
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there is at least one individual which, although it is A, is not B, then

it is obviously false to maintain that all A's are B. But if we had

asserted, say, that 10 per cent of the ^4's were B, there is not a corres-

ponding possibility of falsifying the statement. For even if it hap-

pened that the actual proportion of observed A's which are B
deviates to any extent from 10 per cent, it is always conceivable that,

by extending our observations to new A's, we finally arrive at a

point where the observed proportion will equal 10 per cent. And
as this might happen over and over again, after every deviation,

the true proportion of A's which are B may after all be just this

percentage.
Statistical Generalizations or assertions about proportions, there-

fore, are neither verifiable nor falsifiable propositions. This fact

which simply follows from what we mean by saying that such and
such a proportion of the elements in a class have a certain property,
must not be considered alarming from an epistemological point of

view. 10

It must further be noted that from the logical structure of the

formulae (1) (4) it follows that a Universal Generalization is not

a special or extreme case of a Statistical Generalization, that is to

say a Statistical Generalization where the proportion in question is

1. For a proportion 1 or 100 per cent of the ^4's might be 5, and
there might still exist an infinite multitude of A's which are not

B. Conversely, that per cent of the A's are B is in no way
incompatible with the existence of an infinite number of ^4's which

arej?. 11

We have still to mention those inductive generalizations, which

resemble Statistical Inductions in that their symbolic expressions
contain both universal and existential operators, for which reason

they are neither verifiable nor falsifiable propositions, but which

nevertheless do not assert anything about proportions. For example:
there exists a maximum velocity in nature i.e. a velocity which is

greater than all other velocities or there exists a minimum quantity
of energy. Of this type also is the following proposition: To

every species of flower with honey there exists, for the purpose of

fertilization, an insect which is able to reach the honey. This

proposition may be said to have guided Darwin in his prediction of

the existence of the insect which fertilizes Angraeum sesquipetale.
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The symbolic expression of this proposition would have the form:

(5) (x) {Ax-+(Ey) [By&R (x, y)]}.

3. Remarks about various usages of the term 'induction*. Induction

and eduction.

The logician's term 'induction' is a translation ofthe Greek e-ncxyooyfi

which occurs in the logical works of Aristotle. It is noteworthy that

Aristotle uses the term in three different ways.
1

In the Topics, which is probably among the earliest of his logical

writings, Aristotle defines 2 induction as *a passage from individuals

to universals'. As an example he gives
3 'the argument that supposing

the skilled pilot is the most effective, and likewise the skilled

charioteer, then in general the skilled man is the best at his particular
task'. Of this kind of induction he says* that it proceeds 'from the

known to the unknown'.

In the Prior Analytics treatment of induction is linked with the

theory of the syllogism. The account is not very clear. 6 Aristotle

gives
8 an example which can be rendered 7 as follows: Man, the horse,

and the mule are long-lived. But man, the horse, and the mule are all

the bileless animals. Therefore all the bileless animals are long-
lived. It is here essential that 'induction proceeds through an

enumeration of all the cases'. 8

In the Posterior Analytics, finally, induction is said 9 to impart new

knowledge by 'exhibiting the universal as implicit in the clearly

known particular'. In induction we abstract, through an act of

intuition,
10 a general truth from considerations of a particular

instance of it. It is essential to the Aristotelian doctrine that know-

ledge of particulars is possible only through sense-perception.
11

Text-books on inductive logic usually mention only the two first

kinds of inductive inference distinguished above. Induction which

proceeds 'through an enumeration of all the cases' is usually called

complete. It is more appropriately called summary
1* or summative 1*

induction. Induction in the sense which Aristotle seems to contem-

plate in the Topics is traditionally called incomplete. It is also called

8
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problematic. The best name for it seems to us to be ampliattve
induction. 15

Induction in the sense of the Posterior Analytics has been called

abstractive or intuitive induction. 15 It is a faculty of the intellect

which is highly significant both for epistemology and metaphysics.

By recursive (or mathematical) induction one understands an

argument of the following type: The first member of a series has a

property A. It is shown that, z/ the n'th member has this property,
then the n+Tth member has it too. From these two facts we
conclude that all members of the series have the property A. This

type of argument is of great importance in mathematics. 17
It seems

first to have been consciously employed by James Bernoulli18 and is

sometimes also called Bernoullian induction.

Summative and recursive induction are both logically conclusive

types of argument. It is of the essence of ampliative induction that

it is inconclusive', that the argument is 'ampliative' means that its

conclusion goes beyond ('transcends') its premisses, i.e. does not

follow logically from them.

Ampliative induction, though in itself inconclusive, may never-

theless be turned into a conclusive argument, when supplemented by
certain additional premisses.

19 Inductive inference, when exhibited

in 'syllogistic' form, has been termed demonstrative induction. 20 The

supplementary premisses are sometimes referred to under the name
of Presuppositions of Induction.

An argument by summative induction can be given the following
schematic form:

A i and . . . and An are all of them B
A i and . . . and An are all the A's

.-. Ally's are B

A and B are properties (classes). A l . . . An can be interpreted

alternatively as classes or as individuals. The example from Aristotle,

quoted above, answers to the first interpretation.

Summative induction is not, as has sometimes been said, a useless

or trivial kind of argument. It often renders good service to 'the

economy of thought' by summing up in a general formula the

information contained in its premisses. Another relevant use of it

9
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occurs in mathematical proofs. In order to establish a proposition,
we sometimes first 'resolve' it into a finite number of 'cases' to be

considered separately. Thereupon we carry out the proof of the

proposition for each case or show that the proof of some cases can

be traced back to other cases which we have already settled. Finally
we conclude by summative induction that the proposition has been

established. 21

The 'problematic' element in summative induction usually is in

the second premiss, which says that the enumerated cases exhaust

the scope of the generalization. Summative induction, however,

presents no problem of justification similar to that of ampliative
induction which we have described in section 1 . But there is a super-
ficial analogy between the two modes of induction which may be

very misleading with regard to the problem of how ampliative
induction is to be justified. In both cases we draw a general conclu-

sion after the enumeration of a certain number of single instances.

This suggests the same name, viz. that of induction and inductive

inference, for the two processes. Once in possession of this common
name we arrive at the further idea that, as reasoning from every one

of the cases separately to all the cases leads to a certain conclusion,

so reasoning from some only of the cases to all of them leads to

something 'less' than certainty but still resembling it. This 'some-

thing' which resembles certainty without possessing its full power is

then called probability.
The idea of induction as a sort of inference and of the relation

between this kind of inference and probability thus has one of its roots

in the apparent analogy between so-called complete and incomplete,
summative and ampliative, induction.

In this book we are concerned exclusively with induction which is

ampliative. Some authors, among them Mill,
22 even wish to restrict

the term 'induction' to ampliative reasoning.

As was already observed above (p, 1), ampliative reasoning

deserving the name of induction need not aim at the establishing of

general propositions. It may also conclude from some particular
cases to some other particular cases. This type of reasoning has been

called eduction,

10
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It is convenient to define the distinction between
(generalizing)

induction and eduction in such a way that inference from some
instances of a class to anyfinite number of new instances of the class
counts as eduction even if this number of new instances should
happen, with the old ones, to exhaust the class in question. It follows
from this convention that (genuine) generalization always pertains to
a numerically unrestricted ('potentially infinite') class of cases.

Mill, though recognizing inference from particulars to particulars,
1*

was of the opinion that 'whenever, from a set of particular cases, we
can legitimately draw any inference, we may legitimately make our
inference a general one'. 25

This, we believe, expresses an important
insight. The following considerations will perhaps serve to make
this insight more explicit:

Let us assume that all ,4's so far observed have been B. On the
basis of this we are willing to assert that the next (or the next few)
A which turns up will also be B, But we are not willing to assert the

general proposition that all A 9

s are B. What could be the reason for
this hesitation to generalize?

It seems off-hand plausible to think that hesitation to generalize
must be due to fear that the circumstances under which the A's so far
have been observed might have been peculiar to the observed /4's

and that a variation in accompanying circumstances will affect the
occurrence of the propertyB in other ,4 's. Fn other words, we entertain
a suspicion that some feature (or features) C, other than A, is to be
held "responsible* for the fact that all ,4's so far observed have been
B. If C is present in an A, then this A will be 5. But if C is absent
from an A 9 B may be absent too. Thus the eduction that the next A
will be B gets its legitimacy' from our belief in a general proposition
to the effect that all A's which are C are also B and our belief that
this C, whatever it may be, will accompany the next A.
The truth contained in Mill's dictum thus appears to be, that

being 'backed* by a general truth is part of what we mean by a

legitimate eduction. And this would serve to indicate that use of
eduction is 'logically secondary

9

to generalization.
26

In recent times Carnap
27 has emphasized the importance of amplia-

tive inference other than universal inference, the importance of which
he thinks has been overrated in traditional theory. Carnap 's

attitude is probably influenced by the fact that in his system of
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inductive logic general propositions (laws) always have a zero

probability relative to their confirming evidence. 28 This fact, however,
would seem to us to indicate a peculiar limitation in Carnap's theory
rather than a limitation in the relevance of generalizing induction.20

Classical theory of induction may have unduly neglected the study
of eductive inferences, but it is even more obvious that Carnap under-

rates the practical importance and logical interest of generalization.

12



CHAPTER II

INDUCTION AND SYNTHETICAL JUDGMENTS A PRIORI

1. Justification a priori of induction.

IN the next three chapters we shall be concerned with the possibility
of justifying inductions with certainty, i.e. of proving the truth of

inductive inferences either prior to the verification of any of their

instances or after the verification of some of them. In the former

case we speak of justification of induction a priori, in the latter

of justification a posteriori. It must be noted that justification a

priori does not exclude the possibility that instances of the induc-

tion have been recorded previously. The observation of such

instances may even be a psychologically necessary condition for the

detection of the justification. That the justification is a priori means,
for the purpose of our investigation, only that factual instances play
no role in the proof of the truth of the induction.

There is a prima facie presumption in favour of the possibility

of justifying inductive inference by means of a priori arguments in

certain typical cases. An instance is afforded by so-called causal

laws. If we observe only that A is regularly followed by B, we cannot

infer with certainty that the same will always be the case. But it

sometimes happens that we can 'explain' the sequence from A to 5,

e.g. by discovering that A is causally connected with B. We began
with the observation of a certain regularity, and found upon closer

investigation a reason for it. This reason, we say, is a justification of

the induction that the observed regularity will hold also for the future.

We shall first discuss this argument from causal connections. The

results at which we arrive we shall automatically be able to extend to

the problem as a whole of justifying induction a priori.

2. Hume's theory of causation.

There are three fundamental types of inductive generalizations

based upon alleged causal connections. That A is the cause of B
13
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may first of all imply that whenever A occurs it will be followed by
B. In this case we say that A is a sufficient condition of B. But the

causal relation may also entail that when B has happened it must

always have been preceded by A. Here A is called a necessary
condition of B. In the third place A may be both a sufficient and

necessary condition ofB. In the two first cases the inductive generali-

zation, expressed in symbols, is a general implication; in the third

case again it is a general equivalence.
1

In order to see whether a causal connection between A and B
justifies an inductive generalization of any of the above-mentioned

types, we have to examine the logical structure of the relation between

cause and effect. For the purpose of this investigation we can follow

the lines of Hume. It must be noted that Hume, in speaking about

cause and effect, chiefly had in mind relations where one term is a

sufficient condition of the other. 2
This, however, does not in any

way restrict the field of applicability of his theory of causation.

Hume's argument against the view that causal connection between

A and B would involve some power or force making B a necessary

consequent of A, or in other words that causal connection would

justify induction, is best illustrated with his own well-known example
of the billiard-balls. 3

We commonly say that the impact of one moving ball against
another stationary one is the cause of the second ball's movement,
What is the content of this assertion? If I first consider a single case

where this happens, all I actually experience, which is relevant to my
assertion about cause and effect, is the movement of the first ball, its

impact against the second one and finally the second ball's movement.
In this we find no additional experience of a causal power, except

perhaps in the purely psychological sense, which taken together with

the experience of the movement of the first ball and the impact
would assure us of the second ball's movement as an event which

must necessarily and inevitably follow.*

Again, if I consider, not a single instance of the causal law, but a

number of such instances, the situation remains fundamentally the

same. In each case I experience the same succession of events, but

even if the succession repeats itself a great number of times, this

additional experience does not give us any further information as to

what will happen next. 5 If the assertion that A is the cause ofB is to

14
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imply that A will always be followed by 5, the causal proposition is

itself an instance of induction and in need of justification.
In examining the validity of the argument of Hume we have first

to note two peculiarities of it which are open to criticism.

In the first place Hume's argument uses as a premiss his general
empiristic thesis that any meaningful idea must be capable of
reduction to certain definite impressions or sense-experiences.

6 As
there is no impression corresponding to the idea of 'necessary
connection' between cause and effect, we can safely conclude that
such a connection does not actually exist. Of course we have not
therewith denied the existence of the idea of such a connection. The
origin of this idea is a very interesting psychological problem. Hume
himself, as is well known, ascribed its origin to the force of habit. 7

Secondly, Hume in discussing causality does not distinguish
sharply the phenomenological aspect of the question from the

physical one. It is, strictly speaking, not clear whether his analysis
of causal connection applies to the way in which our impressions of
the external objects are connected or to the connection between the

physical objects themselves. In his criticism of causality, Hume
speaks about external objects in a language of almost naive realism,
and totally ignores the problem how the language of sensations is

related to the language of things.
8 This in its turn, it might be main-

tained, makes his arguments seem more plausible than if he had

sharply distinguished between the world of sensations and the world
of things.
We have next to show that Hume's criticism can be reformulated

in such a way that its two above-mentioned peculiarities become
irrelevant to the essential points in his arguments. For this purpose
we shall conceive of Hume's theory of causation not as a theory
about 'matters of fact', but as an inquiry into the grammar of certain

words. The question of how far this is in accordance with the

intentions of Hume himself will be considered later.

Hume states the essence of his theory in the following words:
'There is no object, which implies the existence of any other if we
consider these objects in themselves.

' 9 We may re-state this formula-
tion in the following way: From propositions asserting the existence

of a certain object or the happening of a certain event,
10 can never

follow propositions asserting the existence of another object or the
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happening of another event, different from the first object and the

first event. In this formulation two words, viz. 'follow' and 'dif-

ferent', need further elucidation. 11

When we say that the impact of the one billiard-ball against the

other is something 'different' from the second ball's movement after

the stroke, the word 'different' here has a twofold meaning. It

means first of all that we experience the two events as distinct,

separate happenings. This difference between them we call their

psychological difference. But secondly, the events are different also

in the sense that the proposition asserting the taking place of the

second event is not entailed by, or cannot be deduced from the

proposition asserting the taking place of the first event. That is their

logical difference.

In the case of the billiard-balls, as in several other cases, logical
and psychological difference are concomitant properties.

12 But it

may also happen that two events, although they are psychologically

different, are not different logically, i.e. the propositions asserting
one of them may after all be entailed by the propositions asserting
the other. This is not unlikely to be the case if the events are of a

rather complicated structure. (In such a case we should be inclined

to say that the difference between the events was only Apparent'.)
It must be observed that the arguments of Hume apply only to cases

where there is at least logical difference between the causally related

events. For if the events are not logically different, then there is

actually a necessary connection between cause and effect, that is,

'necessary' in the sense of 'logically necessary'.
A proposition b is said to 'follow' from a proposition a, only if

b can be deduced (derived) from a by means of principles of logic

alone. If b follows from #, then the implication a-*b and the

equivalence a* a&b are logically necessary propositions.
13

If we substitute these elucidations of what we mean by 'follow'

and 'different' in our formulation above of the central point in

Hume's theory, this formulation becomes tautological. For it then

says, that from propositions asserting the existence of a certain object
or the occurrence of a certain event, there never follow propositions

asserting the existence of another object or the occurrence of another

event, if the latter propositions do not follow from the former ones,

It is at once obvious that the validity of Hume's criticism of

16
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causality, when reformulated in this way, is independent of the two

peculiarities which were mentioned as characteristic of Hume's

theory in its 'original' form. For it is not affected by the truth or

falsehood of his thesis about the way in which meaningful ideas

are related to impressions, nor is it dependent upon whether we

speak about sensations of objects or about the objects themselves. 14

It is also quite independent of the relation between the physical

language and the sense-datum language. This is important, because

from the way in which Hume himself formulates his theory together
with his general thesis about the derivation of all meaningful ideas

from sense-experiences it may appear as if in some way it were

essential, for his criticism of causality, that propositions about

physical objects were translatable into the language of sense-data.

This, however, is not the case.

On the other hand it is easy to foresee that several objections will

be made against our statement of the Humean theory of causation.

It might be objected first that, although it overcomes certain difficulties

present in the theory in its original formulation, it makes the theory
itself wholly valueless, as the only thing that remains of it, when

reformulated, is a tautology, a mere truism. Second, that surely
Hume himself intended his theory to be something more than merely
an inquiry into the grammar of certain words, for which reason

our formulation omits all the philosophically interesting and con-

troversial points about causality brought forward by Hume.
And third, that our conception of the term 'follow' does not cover

that kind of necessary connection which, in the opinion of the

opponents to Hume's theory, exists between cause and effect.

Our answer to the first and second objections is this. We are not

directly interested in the question as to whether our formulations

cover the intentions of Hume himself as regards the nature of causal

relationship. Nor do we wish to decide whether our theory omits

the philosophically interesting points about causality, because it is

tautologous. The only thing we wish to do is to show that from our

reformulation of Hume's theory of causation can be demonstrated

the impossibility ofjustifying inductions as truths apriori by reference

to causal connections. As this may be truly said to have been one

of the chief aims ofHume 's own theory, we believe that our reformu-

lation does more justice to the arguments of Hume than at first seems

17
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to be the case. We endeavour, moreover, to suggest that most of the

so common outbursts about the absurdity of the Humean theory,
about its fatal consequences for practical life, and about its destruc-

tive influence upon science, emanate from the failure to see that its

importance is primarily grammatical and from the unfounded belief

that Hume's criticism would in some way weaken the foundation

of the actual world-order."

If we could show that causal relationship does not justify induc-

tion, then we should have automatically disposed of the third

objection against our statement of Hume's argument. For the kind

of necessary connection referred to in this objection is just that

alleged property of the causal relation which is supposed to justify

induction.

We introduce the term 'analytical' to mean logically necessary
and the term 'synthetical' to mean that which is neither logically

necessary nor self-contradictory.
16 That b follows from a means,

when the word 'follow' is defined as above, that b is an analytical,

i.e. logically necessary, consequence of a. We can now re-state

our formulation of Hume's argument in the following form: If the

causal relation is synthetical, i.e. if the effect is not a logically neces-

sary consequence of the cause, then the relation cannot be analyti-

cally valid. This formulation, obviously, is also a mere tautology. But
as actually a great many causal laws, it seems, are formulated and

applied as synthetical propositions, it follows that the causal relations

with which we are concerned in many cases do not as a matter offact

possess analytical validity. This again is no truism, but an empirical

proposition. Now the difficulty consists in seeing that if a causal

law can actually be shown to lack logical necessity, then it cannot

guarantee a priori the truth of the inductive generalization which it

implies.

It is at this point that Hume, in our opinion, took a great step
forward in comparison with his predecessors. The fact that reasoning
from cause to effect, as mainly used in practical life as well as in

scientific inquiry, is not reasoning involving logical necessity, was
seen and pointed out long before Hume by a great many philosophers
of various schools and periods. It can therefore be justly said that

'ware dies der Kern und Inhalt seiner Lehre, so ware er in der Tat an

keinem Punkte xiber die antike Skepsis hinausgelangt'.
17

It is a most
18
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interesting fact which the ancient sceptics already clearly appre-
hended, that causal reasoning as an inference of one fact from another

different one was never logically necessary, and their opinion in this

matter was, according to themselves, derived from the teachings of

the sophists.
18

During the Middle Ages this opinion was not un-

known among scholastic philosophers.
19 Later Hobbes,

20 Male-

branche,
21 and Leibniz22

expressed similar views.

None of these philosophers, however, seems to have realized that

if reasoning from cause to effect is void of logical necessity it cannot

justify induction. In so far as the inductive problem occurred to their

minds at all, they mostly concluded that induction must be justified

by means of some rational principle of a not-tautological character.

In other words they assumed, for the purpose ofjustifying induction,

the existence of a kind of necessary connection other than the

analytical one, a kind of necessity that was assumed to be a possible

property of synthetical relations. This assumption is the kernel of

the doctrine of synthetical judgments a priori. It is expressed very

explicitly by Leibniz, who after having shown that there is no

reasoning involving logical necessity which from the examination of

single instances leads to a universal synthetical truth, says: *Hinc

jam patet, inductionem per se nihil producere . . . sine adminiculo

propositionum non ab inductione, sed ratione universali penden-
tium.' 23

Hume's greatest contribution to philosophy, we think, consists in

having seen that this assumption is unjustified. And as was indicated

above we want to show that his demonstration of this can be carried

out also on the basis of our tautological reformulation of his argu-
ment.

Suppose somebody says that the event B is so connected with the

event A, to which it stands in a synthetical and not an analytical

relation, that when A has taken place B necessarily follows. What
does this assertion convey? In the first place perhaps something like

this: We feel perfectly sure that after the occurrence of A, B will

follow within a certain interval of time. In so far as this statement

is meant to be merely the expression of a psychological fact, which

actually in most cases is inseparable from the use we make of a causal

law, then it does not tell us anything as to whether B really will follow

A or not. It is therefore obvious that reference to this psychological
19
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fact does not convey the whole meaning of the assertion that the

connection between A and B is necessary. With this we want to say

something more, something which at the same time will justify the

belief or the conviction which we have that B must follow A.

It is not immediately clear what this 'more', i.e. this rational

ground or whatever we like to call it, could be, but it is at any rate

obvious that if the justification is intended to be a guarantee for the

truth of the causal proposition a priori, one of its chief functions is

to exclude the possibility of A occurring and not being followed by
B. Suppose, however, that it were alleged that this had happened
in spite of this 'more'. How is this to be dealt with? Shall we say
that perhaps B after all was not in necessary connection with A!
If we do this, then the causal proposition was itself a kind of induc-

tion and as such in need of justification. The only alternative to this

again is that we 'save' the truth of the statement that B must follow

A by saying either that B actually followed upon the occurrence of

A, although for some reason it escaped notice, or that the event

which took place first was only 'apparently', but not 'really', A.

About this 'saving' of the causal proposition the following must

be observed. If we save the proposition by supposing that one of the

two things which fall under the latter alternative be true, then this

supposition may later be shown to be false. So we are thrown back

on the first alternative, viz. that which made the causal law itself an

induction. In order to avoid this we must do the 'saving' in such

a way that the proposition that B must follow A within a certain

interval of time is made the standard for the truth of the expression
'either B has escaped notice or A was not a "real" A\ And if this

is done, the causal law becomes analytically valid, i.e. valid because

of the way in which certain words are used.

Now it is obvious that if the proposition that B necessarily follows

A is to be true a priori, then we must adopt the second of the two

above alternatives. But then, as it has been shown, the proposition
becomes analytical. This on the other hand contradicts the condition

that the relation between A and B was synthetical., Therefore the

assumption that we could justify the belief in a synthetical causal

proposition by showing it to be true a priori is contradictory.
Thus the 'more than a mere psychological fact' that is contained

in the assertion that B necessarily follows upon A, cannot, whatever

20
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this 'more' might be, under any circumstances guarantee the truth
of this assertion a priori. On the other hand we must not overlook
that the psychological fact has some bearing upon the problem of

justifying induction. If, by introducing an assertion that a causal
relation exists between A and 5, we raise a law about an observed

regularity to the higher rank of a causal law, this fact in itself stands
as an expression of increased confidence in the proposition that B
will follow A. (This stronger feeling of confidence or reliability, by
the way, is one of the reasons why we speak of certain generalizations
as 'laws of nature', as opposed to others as being mere 'general
facts',

24 or why under certain circumstances we regard the reduction
of an observed uniformity to another as an explanation of the first

one. 25
) It is not altogether out of the way, moreover, to call this

increased confidence a justification of our previous assumption that

the observed regularity could be generalized. We have only to

remember that this 'justification' does not tell us anything about the

'real' truth of the induction, but is solely an expression of our belief

in this truth.

The above conclusion as to the impossibility ofjustifying induction

by reference to causal relations which, although synthetical, were
true a priori, has been reached by an analysis of the meaning of

certain words and expressions. From the way in which the analysis
has been pursued it is seen, as will later be shown in detail, that the

result applies not only to the causal relation but to all the cases where
it is alleged that the truth of a proposition, which is not logically

necessary, could be guaranteed a priori.
To our analysis the following objection is conceivable. How do we

know that the meaning given by us to the analysed expressions is

the 'true' one? Is it not plausible to assume that some of those

philosophers who have objected to the arguments of Hume have

used these expressions with a meaning different from ours, and that

this meaning of theirs has enabled them truly to regard causal

relatedness, for example, as a means of justifying the truth of induc-

tive assumptions a priori!
The dispute about the 'true' meaning is futile. We do not pretend

that certain expressions, as used by us, mean exactly the same as when
used by other philosophers who have expressed different opinions
about the matters here under discussion. By examining some types

21
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of argument which are intended to 'refute' those of Hume about

causality we endeavour to show that this possible difference in the

meaning of terms, does not, however, have any bearing upon the

possible difference in opinion.

3. Kant and Hume.

It was mentioned above that Hume in his analysis of causality did

not distinguish sharply between the world of things and the world of

sensations between the physical and the phenomenal. Kant too,

in his earlier writings does not seem to have been aware of the

problems which arise when we begin to speak about things as being
different from our sensations of them. 1 It is, moreover, interesting to

note that as long as he had not become conscious of the importance
of these problems, his view as to the possibility of establishing the

a priori truth of any empirical proposition was in full accordance with

the opinion of Hume. 2

It is one of Kant's chief merits, however, that he saw with such

extraordinary clarity the bundle of difficult philosophical questions
which spring up when we pass from the realm of our private experi-
ences our sensations to the realm of objective or rather, inter-

subjective experience, i.e. to the realm of that which we have called

physical objects and events. Kant employs the word 'Wahrnehmung'
as opposed to 'Erfahrung' in roughly the same way as we employ the

word 'phenomenal' as opposed to 'physical'.
8 The sensations are,

so to speak, immediately given to us. The difficulty consists in seeing
how we can acquire from them inter-subjective experience, or as

Kant puts it, the problem is one of the 'Moglichkeit der Erfahrung'.
4

It was not until Kant realized the significance of this problem that

his attitude towards the possibility of synthetical judgments a priori
underwent a radical change.

5 In his attempt to solve the problem he

arrived at results which, in his own opinion, conflicted with the

essential point in Hume's theory of causation. 6
It will be our task to

show that Kant's results do not vitiate Hume's doctrine as reformu-

lated above and that they consequently do not cause any modification

in our view as to the possibility of justifying induction by means of

a priori arguments.
22
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According to Kant the passage from our subjective sensations to

inter-subjectively valid judgments on nature is possible through a

'Synthesis', i.e. a rational process which transforms the 'material'

given by the sensation into an inter-subjectively valid experience.
7

As an illustration of the way in which this 'Synthesis' operates, we
will briefly examine the ideas laid down in Kant's famous Second

Analogy of Experience, where he tries to prove the necessity of the

Universal Law of Causation. 8
It seems plausible to re-state the

'points' in Kant's argument roughly as follows:

In speaking about cause and effect we usually presuppose the

existence of an objective time-order, i.e. of inter-subjectively valid

judgments about 'before' and 'after'. But how do we know that an

objective time exists? Hume spoke about time as a sort of container

in which events take place, one after the other. On this basis he
showed that causality is merely a regular sequence in time and not a

necessary connection between different events. Kant may be said,

with Whitehead, to accuse Hume of 'an extraordinary naive assump-
tion of time as pure succession'. 9 He attacks Hume's theory by
showing that the assumption of an objective time rests upon the

assumption apriori of the truth of causal laws. Time, in other words,

presupposes causality.

The ideas of 'before' and 'after' have, in the first place, a purely

'subjective' meaning, as denoting certain phenomenological features

of the way in which sensations succeed one another. When we say
that physical objects or events stand to each other in the relation of

'before' and 'after', temporal relatedness means something entirely
different. In order to see how the mind acquires the idea of an

objective time, we have to examine more closely the nature of our

experiences of successions among sensations.

I cast my eye on the wall of a house and view it from top to bottom.

My sensations of the various parts of the wall are, in the phenomeno-
logical sense, temporally related. I also follow with my eye a vessel

floating down a stream. Here again my sensations of the various

positions of the vessel are temporally related. Nevertheless I am
inclined, in the former case, to say that the various parts of the

(physical) house exist simultaneously, whereas the various (physical)

positions of the vessel exist successively. In the one case 'before' and
'after' in the succession of sensations correspond to 'before' and
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'after' in the realm of things, in the other case not. How does the

mind arrive at the notion of this difference?

We get the answer by pointing, with Kant, to a remarkable

difference in the succession of sensations in the two cases. In the case

of the house this succession can be reversed: instead of experiencing
the parts of the wall from top to bottom, I might have experienced
them in the opposite direction. But in the case of the vessel, the

succession of sensations cannot be reversed. As Kant himself

remarks: 'Ich sehe z.B. ein Schiff den Strom hinab treiben. Meine

Wahrnehmung seiner Stelle unterhalb folgt auf die Wahrnehmung
der Stelle desselben oberhalb dem Laufe des Flusses, und es ist

unmftglich, dass in der Apprehension dieser Erscheinung das Schiff

zuerst unterhalb, nachher aber oberhalb des Stromes wahrgenommen
werden sollte. Die Ordnung in der Folge der Wahrnehmungen in der

Apprehension ist hier also bestimmt, und an dieselbe ist die letztere

gebunden. In dem vorigen Beispiele von einem Hause konnten
ineine Wahrnehmungen in der Apprehension von der Spitze desselben

anfangen und beim Boden endigen, aber auch von unten anfangen
und oben endigen, imgleichen rechts oder links das Mannigfaltige der

empirischen Anschauung apprehendieren. In der Reihe dieser

Wahrnehmungen war also keine bestimmte Ordnung.'
10

It is on the existence of such irreversible series of successive sensa-

tions that the possibility of an objective time is founded. If there

existed no irreversibility in the flux of sensations, it would not be

possible to talk about 'before' and 'after' in any other than the

phenomenological sense of the words. 11

The statement that a series of sensations is irreversible is a law or

rule determining the order in which sensations succeed one another.

As ordering rules irreversibility-statements are, in the terminology
of Kant, causal laws. 12 Thus he was entitled to say that the 'Synthesis

'

which, from the material given by the sensations, takes us to the idea

of an objective time, is possible for the reason, that the succession

of sensations is, in characteristic cases, governed by causal laws.

This is the meaning of the above assertion that 'time presupposes

causality*.

The 'Synthesis', giving to the sensations their 'Gegenstandlichkeit',
is always carried out in a manner analogous to that which leads to

objective time from the time-sensations. In order that inter-subjective
24
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experience may be possible, i.e. in order that we may be able to speak
about a world of things as opposed to a world of sensations, it is a

necessary condition that there shall exist certain invariant relations
or laws governing the stream of sensations. These invariances
these laws prevailing in the world of sensations constitute the

objective, physical or 'real' world. The physical is the invariance in
the phenomenal.

13 Nature is the sum or the system of all the laws
which regulate our subjective experiences,

14 If there were no in-

variance, no law and order in the realm of sensations, there would
be no physical world and no inter-subjective experience.

15 Kant's

'Erfahrung' would thus not be possible.
Kant is not the first philosopher to have the idea that the physical

is the invariance in the phenomenal. Leibniz had already formulated
the idea clearly.

16 What is new in Kant is, above all, the idea of 'de-

ducing' from the conception of inter-subjective experience itself a
set of rules to which the invariances defining the physical world have
to conform. With one of these rules we are already familiar, namely
the Universal Law of Causation, the deduction of which has been
outlined above. 17

It states that 'alles, was geschieht (anhebt zu sein),
setzt etwas voraus, worauf es nach einer Regel folgt'.

18

To the rules which are deduced from the general idea of 'Erfah-

rung' there correspond certain general concepts, called the cate-

gories.
1 * The category corresponding to the Universal Law of

Causation is that of Causality. The rules are said to subsume the

experiential content of the sensations under the general concepts of
the categories.

20

According to Kant these rules, in conformity with which the

subsumption takes place, are synthetical judgments a priori** They
are synthetical since they, apparently, assert something about the
course of nature. And they are apriori since their truth is a necessary
condition for the possibility of inter-subjective experience. They
cannot be contradicted by experience, because experience itself

presupposes them.

The Universal Law of Causation therefore is, according to Kant,
synthetical and a priori. How is this to be understood, and does the
doctrine of Kant have any bearing upon the problem of Hume?
The answer to these questions can be got from studying again

the arguments in the Second Analogy. The synthetical aspect of
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causality lies in the fact that there exist sequences of phenomena
conforming to causal laws, or else, that causality prevails in this

world as far as our experience goes. The aprioristic aspect consists

again in that the prevalence of causality (for past and for future

experience alike) can be used to define an objective time-order. Now
the seductive element which makes us think of the Universal Law of

Causation as being at the same time synthetical and a priori, seems

to be this:

The actual possibility of inter-subjective knowledge indicates that

time in the objective sense of the word exists as a matter of fact.

From this follows, prior to any further experience, the unrestricted

prevalence of causality, since causality was, so to speak, a defining
characteristic of time.

In this reasoning, however, there is a serious fallacy. All we

actually know is that hitherto., on account of certain uniformities of

the way in which phenomena have occurred to us, it has been possible
to arrange experiences in an inter-subjectively valid order of time,

defined by these uniformities themselves. From this we may conclude

that if uniformities of the same kind, i.e. causal uniformities or

causality, are continuously going to
j
exist, then it will always be

possible to arrange experiences in this objective order. It does not,

however, follow from the transcendental deduction of the Universal

Law of Causation that uniformities of the kind mentioned are going
to pervade also the realm of our coming sensations. That such will

be the case, i.e. that the law of causation will be true, is an inductive

generalization on the basis of what is hitherto known to us. This

generalization is a synthetical proposition the truth of which has

not been proved a priori.

The Universal Law of Causation, therefore, can a priori be made
a necessary condition for the existence of an objective time, but the

truth of it qua synthetical, i.e. as a proposition about the continuous

existence of time, cannot be established in advance. The apparent

possibility of doing so, by reference to time as a matter of fact,

disappears if we consider that we are thus referring, not to the

existence of time in general, but to the existence of time up to a certain

point. And from this does not follow the unconditioned validity

of causality, or in other words, the continued existence of time.

Analogous arguments apply to the other categories and to the
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judgments about the form of experience corresponding to them. In

laying down defining criteria of inter-subjective experience these

judgments are a priori and analytical. As generalizations about
certain characteristic features of the phenomenal world they are

again inductive, synthetical judgments, the truth of which cannot be
proved a priori.

The foregoing reasoning also makes it clear why the transcendental
deduction does not lead to a vitiation of Hume's results as to

causality and the justification of induction. We know that certain

inductions, among thein causal laws, have held true hitherto, and that
if henceforth no inductions or no inductions of a certain type are

going to hold true also, then
inter-subjective experience will not be

possible any more. But that which would be necessary in order to

justify induction, does not follow from this, viz, that causality and
induction are actually going to hold also for the future, or, generally
speaking, that inter-subjective experience is going to continue.

4. Kant and the application-problem.

Let us suppose that we had established a priori the truth of the
Universal Law of Causation, formulated as for example by Kant
above. 1 The following question may now be asked: In what way, if

at all, can the knowledge of this universal truth be applied to the
establishment of actual causal connections between concrete events?

Or, in other words, in what way can it provide us with a justification
of specific inductions? This problem we shall call the application-

problem of the Universal Law of Causation.
It is easy to see that the question asked can only be answered in

one way, viz, that it is not possible by means of the Universal Law
of Causation alone to establish general propositions about the actual

course of events. 2 This seems to be admitted by Kant, when he says:
'Auf mehrere Gesetze aber als die, auf denen erne Natur uberhaupt
als Gesetzmassigkeit der Erscheinungen in Raum und Zeit beruht,
reicht auch das reine Verstandesvermogen nicht zu, durch blosse

Kategorien den Erscheinungen a priori Gesetze vorzuschreiben,
Besondere Gesetze, weil sie empirisch bestimmte Erscheinungen
betreffen, konnen davon nicht vollstandig abgekitet werden . . . Es
muss Erfahrung dazu kommen, urn die letztere uberhaupt kennen
zu lernen. '*
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But what Kant in his Kritik der reinen Vermmft has overlooked is

that, if the Universal Law of Causation does not help us to a justifica-

tion of any single induction, then it does not provide us with a

satisfactory solution of Hume's problem. If Kant's transcendental

deduction does not enable us to guarantee the truth of any inductive

generalization, then it leaves the logical problem of induction at

precisely the same point where we had left it with Hume. 4

On the other hand it seems obvious that Kant believed himself to

have solved the problem of Hume, and never realized that the obstacle

put to his theory by the application-problem deprived it in fact of

any bearing upon the inductive problem,
5 In his later writings,

however, he became aware of some difficulties on this point.

There are some very obscure passages in the Prolegomena where

Kant tries to answer the question as to how the Universal Law of

Causation is applied to concrete cases. 6 From these contexts one

gets the impression that he believed the category of causation to be

applicable to special cases in such a way that it could raise observed

regularities to the higher level of universal and necessary laws. It is,

however, uncertain what Kant here really means by 'necessity' and

'universality'. Does he mean simply the property of inter-subjective

validity, belonging to physical propositions as opposed to pheno-

menological ones, which arises from the application of the category
to the material given by the sensations, or is he thinking of necessity

and universality in that sense which justifies induction? Some

arguments could be put forward in favour of the first interpretation,
7

but it seems to us most likely that Kant himself did not clearly

separate the two aspects from each other, and therefore can be said

to have tried in some obscure way to include, even if he had the first

one predominantly in mind, the second one also in his argumentation.
This view is strengthened by the fact that Maimon, when he criticized

Kant's treatment of the problem of Hume and showed that the

Universal Law of Causation alone is not sufficient for the establish-

ment of any single causal law, seems to have been inspired by those

very examples by means of which Kant in the Prolegomena apparently
tried to show just the opposite.

8

Later, however, in the Kritik der Urtheilskraft Kant is quite clear

as to the impossibility of deducing special laws of nature from the

Universal Law of Causation. 9 For the establishment, therefore, of
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true inductions other principles than those deduced from the general
idea of 'Erfahrung' are needed. 10 In his attempt to formulate these

principles Kant approaches the rules and canons, like the principles
of Uniformity of Nature or Limited Independent Variety, laid down
in various attempts to establish a so-called 'inductive logic'.

11 With
these attempts we shall be concerned later on. It is here sufficient to
note that Kant explicitly regarded these principles as not being
provable a priori, but merely as 'subjective'

12

assumptions.

5. The inductive problem in the school ofFries.

Our result so far is then that Kant was not able to show the
Universal Law of Causation to be synthetical and true a priori.
Furthermore it has been proved that even if Kant had shown this,
the difficulties raised by the application-problem would have deprived
his result of all importance for the problem of Hume.
Jacob Friedrich Fries and his followers, both his immediate

disciples and the adherents of the recent Neo-Friesian school, are
of importance for the discussion of the present problem both on
account of their ideas on the way in which synthetical judgments
a priori are to be established, and because of the special attention

given by them to the application-problem of those judgments and its

bearing upon the justification of induction.

According to the Friesians the idea of deducing synthetical judg-
ments a priori from the concept of inter-subjective experience, or
from any other general principle, is fundamentally unsound. For
either it makes those judgments analytical,

1 or it raises the further

problem as to the truth of the principle from which the deduction is

made. 2 If this principle is to be established by reference to a new idea

we are involved in an infinite retrogression.
3

Therefore, as Fries

rightly points out,
4
it is not possible by the transcendental method of

Kant to establish anyjudgment as being both synthetical and a priori,
This impossibility follows from the idea that those judgments must
be proved, i.e. deduced from superior principles. Fries speaks of this

idea as 'das rationalistische Vorurtheil'. 5

Fries himself tried to establish synthetical judgments a priori by
reference to a source of knowledge, called by him 'unmittelbare

Erkenntnis'. 6 This immediate knowledge is a sort of mental fact,

which is 'urtheilsmassig wiederholt' 7 in the form of synthetical
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judgments a priori. It is, in other words, a purely empirical, singular,
and a

posteriori detectable fact that we are in possession of general

knowledge which is synthetical, in the sense that it contains informa-

tion about what is going to happen, and a priori in the sense that we
know it to be true generally prior to actual testing.

8 To ask for a

proof of these judgments would be wholly to misunderstand the

question, as our knowledge of them is simply a fact. As such they
are to be regarded as starting-points for philosophical investigations
and not as something which these investigations themselves ought to

establish or justify.
9

Even if the criticism of Fries and his followers rightly points to

some defects in Kant's theory of synthetical judgments a priori, it

ought not to be difficult to see that the new theory offered by the

Friesians is no more successful as regards the establishment of these

judgments than the rejected one. That such is the case can be shown

by an example.

Suppose the judgment that all A's are B to be synthetical and a

priori according to the theory of Fries. Suppose further that some-

body claims to have found an A which is not B. This, a Friesian

would say, is impossible as we know that all A's are B. But what does

it mean that we 'know' this? It may mean, for example, that we use

the predicates A and B in such a way that always when A is present
we say that B is present also. If somebody claims to have found an
A without B, we should tell him that either A was no 'real' A, or A
was only 'apparently' lacking B. In this case, however, the proposi-
tion that all A's are B would be analytical as it provides us with a

standard for when the proposition 'either A is not a real A' or 'A is

only apparently lacking 5' is true. Therefore this possibility must be

ruled out.

But if, by 'knowing' that all A's are B, we mean something else,

whatever it may be, we cannot exclude the possibility of there being
an A which 'genuinely', and not merely 'apparently' lacks B. This

is seen by considering how the phrase 'apparently lacking -B' may be
defined. It can be defined as above, i.e. the predicate B is used in

such a way that it is attributed to all A's, for which reason every

(real) A in which B is not as yet detected is said 'apparently* to lack

B. This, however, is not the only possible, nor the most natural

definition of the phrase. 'A apparently lacks 5* can also mean that it
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has often happened that B has first been detected in A upon closer

investigation and that we suppose the case in question to be of this

kind. Here again, however, the statement that A apparently lacks

B is a hypothesis about what is going to happen after closer investi-

gation of the circumstances, and it is not possible to forecast whether
these investigations will actually lead to the detection ofB or not. If

we cannot decide this, however, we cannot decide whether A lacks

B 'genuinely' or only 'apparently
3

so that if somebody claims to have
found an A without 5, we cannot decide in advance whether the

case is one where B really is lacking, or whether it has merely escaped
our attention so far. This again means that we cannot exclude the

possibility that the judgment 'A is not J5' is true, or in other words
that we cannot be sure a priori that all ^4's are B.

If, therefore, 'knowing' that all A'$ are B is to mean something
which makes the proposition not analytical which can perfectly
well be the case then the proposition can never at the same time

be true a priori. Thus the Friesian way of establishing synthetical

judgments a priori is as insufficient as that of Kant.

It has been mentioned that the Friesians have paid some attention

to that problem which presented a serious obstacle to the doctrine

of Kant, viz. the question of how to arrive at special inductions

from the general principles established by a priori reasoning. Apelt's
work Die Theorie der Induction illustrates the difficulties in which

the theory of synthetical judgments a priori is necessarily involved

when it has to show its applicability to concrete cases. We shall

here give a short account of Apelt's ideas.

Pure induction, i.e. the examination of successive instances of, say,

&$ which are J?, is not able alone to assure us of the truth of the

general proposition that all A's are 5. 10 But if we can deduce this

inductive proposition from a system of general knowledge already
known to us, it becomes a law, i.e. a generally and necessarily true

proposition aboxit nature. 11 From this it would appear that in the

opinion of Apeit not only certain principles of a very general kind,

such as the Universal Law of Causation, but also every special law

of nature were a synthetical proposition a priori How is this to be

understood?

The explanation seems to be something like the following: From
a system of general principles alone it can be deduced that ifthere is

31



THE LOGICAL PROBLEM OF INDUCTION

any A then it must be B, but not that A's actually exist. Thus for the

establishment of the general proposition that all A's are B induction

is necessary in order to show that A's being B actually exist, and

deduction again is necessary in order to prove the universality of this

fact. 13 Thus induction may be called the bridge which leads from the

facts to the laws,
14 from the contingent experiences to the necessary

truths. 15

This interpretation of the theory is confirmed by the instances

given by Apelt. He says for example that the planetary movement
of Mars can be deduced from the general law of gravitation, but that

the actual orbit of the planet has to be determined empirically.
16

As another instance ofhow induction works Apelt mentions Bradley 's

detection of the aberration of light which was made empirically and

afterwards proved to be a consequence of general physical principles,

this proof giving it the character of a general and necessary law. 17

It is clear that this theory of induction is entirely based upon the

assumption that induction from facts and deduction from general

principles always give concordant results. There is one extremely

interesting passage in Apelt's work where he tries by means of an

example to show the impossibility of a contradiction between the

principles and the facts. Daniel Bernoulli and Laplace stressed that

the law that force and acceleration are proportional is no a priori

truth, since it is conceivable that experience might show the force to be

proportional, say, to the second power of the acceleration. Against
this Apelt says:

18 'Dies ist jedoch eine Irrung. Wenn ein Natur-

forscher einen Fall fande, bei welchem die beobachtete Grosse der

Veranderung einer Bewegung mit der anderweit bereits bekannten

Intensitat der Kraft nicht iibereinstirnmte, so wiirde er das Gesetz

/= $ nicht in Zweifel zeihen, sondern er wiirde vermuthen, dass

ausser der zur Erklarung der Erscheinung angenommenen Kraft

noch andere Krafte mit im Spiele seien. Es lasst sich gar keine

Beobachtung machen, die diesem Gesetze zuwider ware, eben weil

es nicht aus der Erfahrung folgt, sondern vor jeder bestimmten

Erfahrung schon a priori feststeht
'

This is a most beautiful instance of how the old doctrine of

synthetical judgments a priori approaches the doctrine, called

conventionalism, which will be examined in the next chapter,
19 Here

it is sufficient to note that if the impossibility of a contradiction
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between principles and facts is a consequence of the way in which we
have to interpret the facts, then these principles become analytical.
If for example an apparent contradiction between the observations

and the law/= jt is to be interpreted as being due to the presence of
hitherto unobserved forces, then the law is nothing but the definition
which enables us to decide when we have to speak of unobserved
forces and when not. For if the law is not made the definition of the

presence of such forces, but only a 'symptom' or 'indicator' of them,
then it is not a priori certain that these forces really are there and that
it is not the law after all that is false. But if the truth of a principle
is a truth guaranteed per definitionem then the principle is analytical.
The following we can say in conclusion about this theory of induc-

tion: The school of Fries is in advance of Kant in that it has seen that
if synthetical judgments apriori are to help us to a solution of Hume's
problem then it must be possible to deduce all laws of nature from
these judgments, and thus make them too synthetical and a priori
The attempt to do this, however, meets with insurmountable diffi-

culties when we come to the question ofhow to exclude the possibility
that experience will contradict the a priori principles and laws. Out
of this difficulty there are only two ways. Either we retain the

aprioristic nature of the principles and laws, in which case they
become analytical, or we retain their synthetical nature, in which case

they can no longer be known to be true a priori. We have also seen

that in the only case where one of the adherents of the Friesian

theory faces this question, he apparently decides in favour of the

former alternative, without, however, realizing that therewith he has

also given up the doctrine about judgments being both synthetical
and a priori. This decision of his also indicates the course which our

further investigations as to the possibility of justifying induction by
means of a priori arguments have to take. Before this, however, we
have to show that certain other more recent theories, which are put
forward in opposition to Hume's view about causation, also lead to

difficulties which point in the same direction for their solution.

6. Some other theories of causation.

Although the failure of the above attempts to solve the problem
of Hume by reference to synthetical judgments a priori is quite
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commonly admitted nowadays, it does not follow that modern

philosophy had unanimously accepted Hume's results. There are,

on the contrary, a multitude of theories put forward against his.

The most important ones are perhaps those of Whitehead on causal

perception, of Meyerson on scientific explanation, and of Bradley
and Bosanquet on concrete universals.

It might be said that all these theories have the idea in common
that a right understanding of the nature of causal relationship

requires a much more careful analysis of the concrete cases where such

relationships are manifested than Hume gives.
1 And it is alleged

that this closer examination of single instances of causal relationship
will reveal to us the necessity which Hume denied the relation between

cause and effect to possess.
2 Thus in the analysis of particular facts

universal truths are discoverable.' 3 We shall next discuss the different

meanings that this thesis might have, and its bearing onHume 's results.

The proposition that it is possible to arrive at general knowledge
from singular facts or to anticipate an event B after the observation

of the event A can mean all sorts of different things. It may first of all

mean that as a matter offact singular facts suggest to us general
conclusions. This is no mere truism but a point of considerable

importance, if we consider the following:
Hume says, on one occasion, that

c

the effect is totally different from

the cause . . . nor is there anything in the one to suggest the smallest

hint of the other'.* This phrase interpreted in its most natural sense,

is certainly false. Not only is there in general something in the cau$e

which 'points' in direction to the effect and lets us anticipate it, but

that such is the case is a most important and interesting feature of

the world in which we live and the way in which we react to things.

We are, in our daily life, constantly confronted with situations which

are not very similar to situations with which we are familiar and in

which we are compelled, without the aid of previous experience, to

anticipate the right course of action. As a matter of fact we do this

in a manner which clearly shows the untenability of Hume's view

that the belief in causal connection arises as a mental habit produced

by the repeated impressions of the same succession of events. 5 On this

point Whitehead 's theory about immediate causal perception gives
a much better account of the way in which we arrive at the knowledge
of causal laws than Hume's theory about the force of habit. 4
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If, therefore, the thesis that general knowledge is detectable in single
facts is interpreted as above, it expresses an important truth. The
manner, moreover, in which Whitehead treats it offers an explanation
of how we as a matter of fact arrive at inductive knowledge, and this

explanation is much more satisfactory than that given by Hume. But
it is also clear that with this interpretation of the statement we do not
obtain anything of relevance to the problem whether it is possible

prior to verification to guarantee the truth of general propositions.
From this it follows that the above interpretation is not sufficient

for the purpose of contradicting Hume's result as to the question of

justifying induction. 7 But the same phrase can also be interpreted

differently. That the single instance of an induction may contain

generalinformationcan alsomean that an analysis of the single case will

show this to havesuchaconstitution that the truth of the general propo-
sition follows from it. Or, if it isa question ofa causal law, theanalysis

may show the effect to be a necessary consequence of the cause.

This interpretation seems to fit in peculiarly well with Meyerson 's

theory of 'scientific explanation'. Expressed in our previous ter-

minology, the essence of this could be formulated as follows: Hume
maintained that the effect is something 'different' from the cause

and can therefore not be a necessary consequence of it. We have seen

that this is true if 'different' means 'logically different'. But difference

may also mean psychological difference and of such cases Hume's
statement need not necessarily be true. In other words, cause and
effect may have a different appearance, but nevertheless upon closer

investigation may be shown to be the same in the sense that the effect

logically follows from the cause, or is contained in it. Now the

theory of Meyerson seems to suggest that always where there is a

question of real causal relationship, the effect upon closer investiga-
tion can be explained as a necessary consequence of the cause. 8 If

this is possible the effect is said to be 'identical' with the cause. 9

Now it is not our intention to show Meyerson 's statement to be

false. We shall, on the contrary, soon have occasion to show that it

is true, if not for all, at least for a great many such cases where we

speak about causal relationship. We only want to show that if the

effect is identical with the cause, in the sense of being a logical conse-

quence of it, then the causal law, i.e. the inductive proposition based

upon this connection must be analytical.
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The fact that a single A and a single B stand in necessary causal

relationship to each other can be generalized to the statement that

when A occurs it will always be followed by B, if the A which occurs

repeatedly really is the same A in all the cases. 10 Sameness here of

course does not mean spatio-temporal identity but sameness in the

sense of having in common all the characteristics relevant to the

causal property. Under such circumstances the inductive proposi-
tion is true, because if there were an A apparently not followed by 5,
we can safely conclude that this A although it may have a certain

resemblance to the previous A's is not of the same kind as those A's

which should produce B. If it 'really' were the same then it would

produce B. 11 Sameness in other words has been defined so as to

include the property ofhaving the occurrence of B as a logical conse-

quence. On the other hand, if we do not define sameness in this way ?

which is perfectly well conceivable, we cannot be sure in advance of

the truth of the inductive proposition. And if we define sameness so

that we can be sure of this then the proposition becomes analytical.
It is this because it follows from the definition of two A's being 'the

same'.

Thus if the theory of Meyerson is to lead to the establishment of

general causal propositions a priori known to be true then these

propositions must be analytical. This is a consequence of his theory
of which Meyerson himself does not seem to have been aware. 12

The circumstance which forced the theory of Meyerson to make
inductive propositions analytical if their truth is to be guaranteed
a priori was the difficulties presented by the definition of sameness,

It seems to us plausible to say that the theory of causation put forward

by Bradley and Bosanquet is an attempt to meet this difficulty with

the explicit purpose in mind of making the inductive propositions,
based upon causal relationship and known to be true a priori,

synthetical and not analytical.
13

This is done in the theory of 'concrete universals'. To suppose A
to be a concrete universal or, in the terminology of Mill, a natural

kind,
14

is to suppose that although any instance of A may have an

unlimited variety and multitude of properties, these properties are

bound up with each other in such a way that the repetition of a few

of them brings with it the repetition of the whole, probably infinite,

number of properties belonging to the universal. 15 Thus in our
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example above it seems unnecessary for the purpose of establishing
the truth of the proposition that A will always be succeeded by B to
define sameness in a way which makes the proposition analytical, but
it is sufficient to assume that the A 9

s are instances of the same
natural kind. If it is once shown, as is supposed to have been the case,
that one instance of the universal has the power of producing B then
any instance of it will have the same power. And in order to know
that two A's belong to the same natural kind it is necessary only to
know that they have a limited number of properties, say XYZ, in
common. As soon as XYZ is repeated in A, A will be followed by B.

Let us assume this theory to be true in so far as that concrete
universals really exist. There remains, nevertheless, a difficulty which
none of the supporters of the theory seems to have noted. How is it

possible to know that the properties XYZ are sufficient for the
determination of the objects which belong to the same natural kind?

Suppose that A once produced B and that another A, having at least
XYZ in common with the previous one does not produce B. Then
we must assume that XYZ was not sufficient for the determination of
the members of the kind. We should say for example that a fourth
characteristic is needed for this determination, and that the absence
of this in the second case prevented B from following. If this charac-
teristic is supposed to be T and it again happens that an A which has
XYZT in common with the first one does not produce B, we have to
look for a fifth characteristic and so on. In other words, if we want
a priori to be sure that A will always be followed by B, we have to
define the universal which guarantees this truth in such a way that if

an A is not followed by B then there must exist some ultimate

property of the universal, not yet observed or taken into account,
which is not possessed by the A in question. But in this case the
truth of the inductive proposition that A will always be followed by
B becomes analytical. If the theory of concrete universals was in-

tended to establish the proposition as synthetical and true a priori,
it has failed to do so.

We may thus conclude that in whatever way we interpret the thesis

that singular facts provide us with general information, we cannot
overthrow Hume's results as to the impossibility of guaranteeing a

priori the truth of inductive propositions qua synthetical. Either an
inductive proposition remains synthetical, and in this case it is not
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possible to decide anything as to its truth apriori, or we can guarantee
its truth, in which case the proposition becomes analytical. If we lay

emphasis primarily upon the guaranteeing of the truth, then we are

driven to accept the alternative that justifiable inductions are analy-
tical sentences. This consequence, as was shown above, also applies
to the older doctrines of synthetical judgments a priori.

7. General remarks about syntheticaljudgments a priori.

The reader should have observed above that when we have had to

show the inefficiency of a certain philosophical theory to guarantee
a priori the truth of a general synthetical proposition, we have always
made use of one and the same 'technique'. Finally, we must say a

few words about the justification of this 'technique', and about the

general significance of the results at which we arrive by its aid.

The method used by us has been, generally speaking, as follows:

Suppose that the proposition 'all A's are 5' is said to be synthetical

and a priori. Suppose also that somebody maintains that there is

an A which is not B. How is such a situation to be judged?
The possibility that the latter of the two assertions about A and B

is true can be excluded, it seems, in two ways. Either we use the

terms A and B in such a way that the phrase 'A is not B' would
contradict that use; or, if this is not done, the proposition is shown
to be false for some other reason., (e.g. careless observation, a mistake

in the records, a deliberate lie or anything). But in order to guarantee
a priori that some such reason will be present we must determine

exactly what is to be called a reason against the existence of an A
which is not B9 in such a way that the presence of such a reason

follows in any situation where it is maintained that an A is not B.

In either case the truth of the proposition that all A's are B follows

from the use or the definition of certain terms. 1

Consequently the

proposition, if its truth is to be guaranteed apriori, must be analytical
The whole reasoning hangs upon the assumption that it is possible

to deny a synthetical judgment a priori. It is uncertain how far this

assumption would be in explicit accordance with known theories

about such judgments. In general it is not possible from the contexts

in which those theories are expounded to find a clear answer to this
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question. Kastil, in discussing different theories of synthetical judg-
ments apriori, assumes it to be concordant at least with some of them

to give an affirmative answer to the question whether such a denial

is possible or not. 2 But it must be observed that even if the answer,

as given by any philosopher, were in the negative, it would have only
an apparent bearing upon the method of reasoning employed by us.

This is seen in the following way:
The word 'possible', in this context, may mean several different

things. It is plausible to assume that some philosopher would like

to employ the word in such a sense that the negation of a synthetical

judgment a priori becomes, in his terminology, 'impossible'. But

when we say that such a negation is 'possible', we simply intend to

say that as a matter offact it might happen that somebody asserts a

proposition of a form contradictory to the form of the general

proposition, and this possibility cannot be denied by anybody.
We can thus end this chapter with the conclusion that the only way

to guarantee a priori the truth ofgeneral propositions is to make them

analytical. In the next chapter we shall see what bearing this result

has upon the question of justifying induction.
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CHAPTER III

CONVENTIONALISM AND THE INDUCTIVE PROBLEM

1. The way .in which conventions enter into inductive investigations.

Some examples.

WE know from chemistry that the melting-point of phosphorus is

44 C. We have obviously arrived at this result in what may be

termed an inductive way, i.e. we have melted different pieces of a

substance known to us under the name of phosphorus and found that

they all, suppose the experiment to have been carefully performed,
melted at the same temperature of 44 C. From this fact we generalize
that all pieces of phosphorus will melt at 44 C or, as we also express

it, that the melting-point of phosphorus is 44 C. This inductive

generalization is of the form (x) [Ax-+Bx], if A is the property of

being phosphorus and B the property of melting at 44 C.

In considering what justified our making this generalization, it

immediately occurs to us that the justification is not solely in the

experimental facts as such, but that the clue to it essentially lies in

the multitude of circumstances and qualifications which determine

the correctness and the significance of the experiments. If somebody,
for example, had made a number of haphazard experiments under

strange conditions and based a generalization upon his results we
should not have attached much weight to it, even if the number of

experiments were great and all had led to concordant results. 1 Let

us therefore consider the essentials of what we call a correct experi-
ment.

The fundamental condition is that we have reliable criteria which

enable us to decide when it is with a piece of phosphorus that we are

dealing and when not. It is quite conceivable that we are not able to

enumerate exactly the criteria used by us in our experiments, and a

scientist in the first place would hardly bother about such an enumera-

tion. But certainly we have relied upon some criteria, as we have

chosen a definite substance and not at random for the experiments.
Let us assume these criteria to have been K, L, A/, e.g. macroscopic
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properties such as colour, smell, taste, etc. We shall for the present
be concerned only with these criteria, and shall assume all other

things about the conditions of the experiment to be settled.

Suppose then that we find a substance having the characteristics

K, L, M, which does not melt at 44 C. Does this fact imply that our

previous generalization as to the melting-point of phosphorus is

falsified?

Obviously what has happened could be regarded as a falsification

of the law. But there is also another way left open which, in the

practice of science under similar circumstances, is very often resorted

to. We simply declare that the last examined substance cannot have
been a piece of phosphorus at all. The property of melting at 44 C,
which originally was an observed 'empirical' property of substances,

already known to us under the name of phosphorus, is thus made a

standard for what may be called phosphorus and what may not. If

this is done the generalization that all pieces of phosphorus melt at

44 C can never be falsified, i.e. is absolutely true under any circum-

stances whatsoever.

Here we have a case of an 'inductively' established generalization

being absolutely true. If we consider wherein the reconcilability of

absolute truth and induction consists, we find that it has its root in

the fact that the word 'phosphorus' has been used during the course

of the investigation in what may be termed a quasi-ambiguous way.
At the outset we used it to denote a substance characterized by a

number of properties with which we were already familiar a certain

colour, smell, taste, macroscopical structure and so on. In enunciat-

ing the law about the melting-point we were in the first place enun-

ciating an empirical discovery,
2

viz. that the substances with the

properties mentioned were found to have a further property the

melting-point in common. In so far as the generalization 'all

pieces of phosphorus melt at 44 C' is to mean that, whenever in the

future we find a substance with the first-mentioned properties, it will

exhibit the further discovered property too, then this generalization
is a hypothesis which later experience may confirm or refute.

Although the word 'phosphorus' was used at the outset for sub-

stances exhibiting the properties mentioned, it is by no means
certain that we, even at the beginning, wished to define phosphorus
as a substance exhibiting these characteristics. 3 We simply asserted
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that these substances were phosphorus, as though phosphorus were

something fixed and given, about whose definition we never need to

bother. A certain co-existence of a number of easily observable

properties has made us familiar with something called phosphorus,
and which of these properties are defining or fundamental ones and
which again empirical and accidental, is a question which never before

occurred to us. The first time that we were confronted with it was

perhaps in the above situation, where the properties K9 L, M, which

we used to regard as criteria of phosphorus, are present, but a further

property which hitherto always accompanied them is absent.

Now the question occurs: what then is phosphorus? Is the sub-

stance now under examination phosphorus or not? In such a situa-

tion it is quite conceivable that we should renounce every pretension
of regarding the properties K, L, M as the 'true' criteria for what may
be called phosphorus and should find the experimentally discovered

property, especially if it is exactly measurable and sharply distin-

guishable from other characteristics, more convenient for this

purpose. But at the same time we make the inductive generalization

true per definitionem, i.e. absolutely true as being an analytical

proposition.*
On the other hand the fact that we in this way 'save' the truth of

the inductively established proposition by making it analytical, does

not necessarily imply that we announce the melting-point itself as a

defining property of phosphorus. This certainly is a possibility close

at hand, but there is also another way open.
In making our decision as to whether an instance of K, L, M not

melting at 44 C is or is not a falsification of the law of the melting-

point, we have regard to a multitude of circumstances. It is very

plausible to assume that among those 'circumstances' are to be

found assumptions which are themselves inductive. For example,
we may suppose that if a substance with K, L, M does not melt at

44 C then it differs from phosphorus also in other properties,
5
in,

say, its microphysical structure, and this difference is the 'cause
'

of

some substances with K, L, M melting at the temperature in question
and others not melting. The 'probability

'

which we attach to assump-
tions of this kind will influence our decision. 6

Thus we can decide to regard the law about the melting-point as

true, not because the melting-point itself defines phosphorus, but
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because it indicates the presence of another property that explains

why phosphorus melts at exactly this temperature. Here it is im-

portant to observe that even if we do not know of any such property,
or if every property that is assumed to cause the characteristic

melting-point of phosphorus is shown later not to be the cause
looked for, it may nevertheless be plausible, on what we know, for

example, of other substances and their melting-points, to postulate
its existence.

This possibility is important for the following reason. If we, as a
matter of actual fact, had to save the truth of a general proposition,
such as that about the melting-point of phosphorus, by saying that a
substance which does not melt at the temperature in question cannot
be phosphorus, then we should almost certainly not want to say

anything decisive about the definition of phosphorus. We would
rather say something like this: Perhaps the melting-point can be
used for the purpose of defining phosphorus, but perhaps also there

will be found some 'deeper' quality of the substance which will

explain why phosphorus melts at just 44 C. But irrespective of which
alternative finally is to be chosen, we wish under all circumstances

to adhere to the norm that phosphorus melts at 44 C. Whether it is

because the temperature defines phosphorus, or whether it is because

it only indicates some true criterion of that substance, is a question
not as yet considered, and one that need not be settled in this con-

nection. 7

We shall next consider another case, slightly different from the

former one, which gives a new illustration of the way in which

conventions enter into inductive investigations. As an example we
shall take the famous instance of the billiard-balls.

We have observed that the impact of one billiard-ball against
another is, so far as our experience goes, followed by the movement
of the second ball. From the observed fact we might conclude that

the impact of the first ball is the cause of the second ball's movement,

implying that whenever the first ball strikes the second the latter will

move, which again is an inductive law or generalization. What of its

justification? Is it really possible that the law, which seems to us so

obvious, could be false; that one day it might happen that, although
one ball strikes another, the second one is left unmoved? Or is there

something to exclude this possibility a priortf
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Let us suppose, in order to find the answers to these questions, that

it has actually happened that a ball is struck by another but is left

unmoved. We should then under no circumstances immediately say
that the previously enunciated law has been falsified. Instead of this

we should investigate the more closely the circumstances under which

the impact has taken place in order to find an 'explanation' of what

happened, i.e. to show generally speaking, that what happened was

in accordance with some general law operating against the law which

we were in the first place considering. Suppose, for example, that we
find that the second ball was fixed to the table and could not move
at all. This would justify us in saying that the law was not false, but

that the cause could not operate because of the presence of a counter-

acting cause, the ball being fixed to the table.

All this may seem extremely trivial. In fact it is of fundamental

importance. It has shown us that the law, as originally enunciated,

was still incomplete in its formulation, that instead of saying that

whenever one ball strikes another the second one will move, we
intended to say that whenever one ball strikes another the second

ball will move, provided certain circumstances are present, and certain

conditions fulfilled. Of these further conditions and qualifications
there are obviously a great number. They specify, first of all, the

quality of the material used in the experiment: one ball must not be

of iron, the other of paper; the impact must have a certain minimum

force; the surface over which the balls move must be of such and such

a kind. And further they exclude the possibility of counteracting
causes: the ball must not be fixed to the table; it must not be acted

upon by forces of a certain kind, exceeding a maximum amount, and
so on.

Thus the inductive generalization, which we intended to formulate

on the basis of what experience has taught us about the effect which

the impact of one billiard-ball against another has produced in the

past, is in fact far more complicated than its usual enunciation

indicates. For practical purposes, however, it will generally be

sufficient to state the law in the simplest formulation, perhaps with

a very few qualifications, because the further additions to it are either

concerned solely with exceptional circumstances, which very seldom

need be taken into account, or they are such that the conditions laid

down in them are so trivial and 'self-evident' that their fulfilment is
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taken for granted without special mention. Besides this, the leaving
out of the additional qualifications seems to be merely a matter of
convenience and quite harmless from an epistemological point of
view. At the back of our minds we have the idea that although the
law 'in practice' is left incomplete in its formulation, it is always
'theoretically' possible to formulate it in full, if needed. And, it is

added, if really all relevant circumstances are taken into account,
then the law certainly will hold for the case in question.

8

This idea, however, ought to be more closely examined. Let us
ask the following question: How would it be possible to know that
all the conditions necessary for the formulation in full of the law
have been taken into account? This is possible in more than one

way. We may, for instance, decide after the enumeration of a
certain definite number of conditions that all 'relevant' circumstances
have been taken into account. If then the impact is not followed by
the supposed effect, we must speak of a falsification of the inductive

law. But it is not certain that this way would recommend itself as

being plausible or in conformity with the actual practice of science.

The decision as to when all relevant circumstances have been taken
into account would always retain an air of arbitrariness, which in

actual scientific procedure we wish to avoid.

Our attitude to the question as to the presence or not of all relevant

circumstances in a given enumeration of conditions is therefore

usually as follows: Perhaps all relevant circumstances have been

enumerated, perhaps not; this is a question on which future experience
will give us elucidation. It is conceivable moreover that, depending

upon a number of circumstances of which several are themselves

inductive experiences and assumptions, we regard it as highly
desirable to make the truth of the generalization about the billiard-

balls itself the standard for deciding when all conditions necessary
for the validity of the experiment are fulfilled. In other words, as

soon as the ball is struck, but left unmoved, we say that there must
still exist some condition, 'relevant' to the truth of the law, which

has not yet been taken into account, and which is absent in this case.

Thus the truth of the induction serves as the norm which guides us in

our search for new qualifications to be added for the purpose of

getting a complete and exhaustive formulation of the law aimed at

in making the generalization.
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The above examples are meant to illustrate the two typical ways
in which conventions may be introduced in inductive lines of thought.
It must finally be observed that the two ways do not in general occur

separately, but are usually both present in connection with the same
induction. As will be remembered, we supposed in the example of
the melting-point of phosphorus that all conditions as to the correct-
ness of the experiment (apart from those as to the true criteria of

phosphorus) were settled. Actually in settling these conditions we
should be confronted with problems such as this: under what
conditions should the measurement of the temperature take place in

order to be correct? This question again resembles that of the

presence or not of counteracting causes in the instance of the billiard-

balls. Here also conventions similar to those in the last-mentioned
instance may enter, and so the two ways are combined.

It is thus found that conventions play a fundamental role in

investigations which rightly and truly are called inductive. General-
izations from experience get part of their strength and convincing
power from the analytically binding force of conventions about the
use of certain words and expressions. But what bearing has this

upon the inductive problem as such?

2. Conventionalism as an 'elimination* of the inductive problem.

The importance ofconventionalism or analytical steps of thought in

inductive investigations is already implicitly contained in the doctrines
of Mill and Whewell on induction. For example the role played by
possible 'counteracting causes' in causal inductions has been noted

by both the authors. 1 When Whewell constantly emphasizes that

the process of induction has something to do with the formation of

concepts and that with every scientific induction there is introduced
a new idea, he moves along lines of thought which are not always
very far from the ideas which were illustrated above in the example
of the melting-point of phosphorus.

2 Bacon had mentioned
induction as an operation by which concepts are defined. 3 Jevons*
and Mach5 stress the connection between induction and the classifi-

cation of natural phenomena, and Sigwart
6 and Broad 7

give good
examples of how induction is used for the formation of scientific

concepts. Mach also pointed out a certain resemblance between the
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inductive procedure which results in the definition of a concept and
the mathematical method called recursive induction. 8

Induction as
a step in the formation of concepts is also related to the Aristotelian
intuitive' induction. 9

The first philosopher who clearly stated the general importanceof conventions for the foundations of science and for inductive
investigations was Poincarf." He did not, however, use conven-
tionalism for the purpose of offering a general theory of induction ll

This has been done by certain other philosophers, who think that
conventionalism lines of thought when developed to a certain
extreme would lead to an elimination of the inductive problemThe argument is roughly the following.

12

The problem of induction, as put forward by Hume and as dealt
with by most philosophers after his time, has its origin in a miscon-
ception of the nature of scientific truth. 15

It is an
over-simplification,not in accordance with the real use of scientific propositions, to

regard every generalization at which we arrive by induction as being
purely synthetical. On the contrary, in so far as induction can claim
to reach absolute truth it is because there has taken place a transition
from synthetical to analytical, from well-established and well-
confirmed empirical generalizations to linguistic conventions, which
obtain their unrestricted validity from being analytical and tautolo-
gous. As this transition from synthetical to analytical is sometimes
difficult to perceive, is very seldom

explicitly formulated, and is often
hidden in the ambiguous forms of language, we easily arrive at the
mistaken idea of something which is at the same time synthetical
and necessarily true." From the attempt to reconcile these contra-

dictory attributes of one and the same sentence originates the induc-
tive problem in its 'classical' form. When we have seen that this

attempt was undertaken on the basis of a misunderstanding the
whole problem disappears, is eliminated. To justify induction is not
to show how propositions which are synthetical can also be known
to be true for unexamined instances, but to show how universal and
necessary truth originates from synthetical propositions changing
their nature into analytical.

There is much to be said for the view held by certain philosophers
that the whole of science, even that part of it which is based upon
induction, is not a system of general synthetical propositions, but of
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statements which are analytically true. When in this system a

general proposition is discarded, it is not because it has been falsified,

i.e. contradicted by an experiential proposition, but because enlarged

experience has recommended the employment of some new mode of

scientific expression.
15 Thus this view of scientific truth accounts also

for the phenomenon of 'falsification' and need not presuppose a

'system
'

of science that has been rendered unchangeable once for all.

And as it seems at the same time to eliminate the problem of induc-

tion, which occurs with the 'usual' view of the nature of scientific

truth, it gets a further air of plausibility from this.

We shall call the view that general truth in science is always

analytical, radical conventionalism. A typical representative of this

view is Le Roy.
16 Ideas similar to those of Le Roy have in recent

years been expounded by Ajdukiewicz.
17 Radical conventionalism,

with explicit reference to induction has been developed by Schuppe,
18

Cornelius,
19 and Dingier.

20 The conventionalism of Dingier is

peculiar in that he prescribes further conditions for the conventions

which make up the bulk of exact science, as, for example, that

geometry must be Euclidean and mechanics Newtonian. 21

It is not our intention to discuss here the merits and demerits of

the respective systems of conventionalism. We shall only show that

it is not possible to eliminate the inductive problem as a whole (even

in science) by taking a radically conventionalistic view of the system
of natural laws.

3. Conventionalism andprediction.

Suppose that we decide to regard every general proposition,
established by induction, as true/w conventionem, i.e. either as part
of a definition or as an incomplete proposition, the completion of

which is guided by its truth, or as a combination of both these cases.

Then it would be possible to co-ordinate with these analytical

propositions (one or more) synthetical general propositions after the

following pattern:
Take the sentence 'the melting-point of phosphorus is 44 C' as

enunciating a defining property of phosphorus. To this analytical

proposition we thereupon co-ordinate the following general syn-
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thetical proposition: 'if a substance has all the defining properties
of phosphorus, except perhaps the melting-point which is still

unexamined, then the substance is phosphorus.' Or if, as certainly
would be more in accordance with actual scientific practice, the

defining properties of phosphorus are not
explicitly enunciated: 'if

a substance has such and such properties, which, irrespective of the
further question whether they are defining properties or empirical ones,
are regarded as reliable criteria of phosphorus, then the substance will
melt at 44 C'. Again, in the case of the proposition concerning the

billiard-balls, we co-ordinate the following synthetical sentence: 'if

we know only that such and such conditions are fulfilledwhenwe make
the experiment, then the impact of one ball against another will
be followed by the movement of the second one'.
The mere fact that we are able to do the co-ordination is, of course,

trivial. But the further fact that, in a great number of cases, we use
the co-ordinations to stress the reliability ascribed by us to certain
inductive generalizations has a deep bearing upon the problem of
induction. 1

In order to understand this, consider the following alternative:

What if we were never justified in co-ordinating to the analytical
propositions such synthetical propositions? This would imply that it

would be impossible to make any reliable predictions in science since
an analytic proposition in itself never justifies predictions. From the
mere knowledge that A,B, and C define a substance it does not follow
that we can regard, say, the presence ofA and as a reasonable basis
for predicting the presence of C. Only if A and B are reliable 'signs'
of C are we justified in co-ordinating to the definition the synthetical

proposition that if a substance has the properties A and B then
it has also the property C. Therefore, the fact that this co-

ordination actually takes place in a great number of cases is

nothing but an expression of the other fact that we regard reliable

predictions as possible in science. This, by the way, is what makes
science important and useful.

But here we are immediately confronted with a new question. How
do we know that the synthetical propositions co-ordinated to the

analytical ones really are reliable? (What has been said, above, implies
that they are regarded as such, but this is of course no proof
that they actually are so.) Or, in other words, how do we know that
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science can be used in future for predictions, not simply that it has,

as a matter of fact, been possible to use it for this purpose?
These questions are nothing but the re-occurrence of the inductive

problem within the conventionalistic conception of science itself.

We cannot settle the questions by making the co-ordinated synthetical

propositions themselves analytical.
2 For then we could again create

new co-ordinations of synthetical propositions, and the inductive

problem would only have been pushed to a new level. Nor can we
dismiss the question by saying that, according to radical conven-

tionalism, only analytical propositions are formulated as laws of

science, and that consequently the above-mentioned co-ordinated

synthetical propositions do not belong to the system of science.

What matters is not whether we pretend that the co-ordinated

propositions are laws of nature or not, or even whether they are

formulated at all, but solely thefact that we regard certain predictions
as reliable and act accordingly. This fact remains even within the

system of radical conventionalism and its 'justification' constitutes

the inductive problem,
3

4. Conventionalism and the justification of induction.

We have thus seen that conventionalism, even in its most radical

form, does not eliminate the inductive problem. But, nevertheless,

conventionalistic points of view contribute to a clarification of

important aspects of the problem.

(1) We are now aware of the important fact that the general ques-
tion about a 'justification of induction' covers not one, but (at least)

two different things. One is this: how can we- prove an inductive

generalization to be true? The other is: how can we prove that such

a generalization is a reliable basis for making predictions? There

is a strong temptation to regard an answer to the former question as

also an answer to the latter, and this tendency explains why we are

liable to overlook the difference between the two aspects of the

problem of how induction is to be justified. For if I have proved that

it is true that all A's are 5, have I then not also proved that any

prediction ofB on the basis of A will be true?

As we know, there really is a means of proving that all A 9

$ are
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B, viz., by making the proposition true per conventionem. Thus it is

possible to justify induction, if by 'justification' we mean only a

proof of the absolute truth of the inductive proposition. But this

'justification' does not tell us anything as to the reliability of pre-
dictions. For if all A's are Bper conventionem, then to say that an A
will be B is not to predict anything about A, but simply to state a

tautologous fact about it. Therefore, if the first question contained
in the problem of the justification of induction is answered by resort-

ing to conventionalism, then the second question is still left open.
We have said that if it is true per conventionem that all A*$ are -B

then there is no further question of 'predictions' of B on the basis
of A. This, however, does not exclude the same verbal mode of

expression 'all A's are 5' from being used in future for predicting B
on the basis of properties of the A 9

s 9 other than B. But the reliability
of those predictions is, of course, not to the slightest degree increased

by the fact that the proposition 'all ^t's are
'

is made absolutely
true per conventionem. 1

(2) Those who emphasize that conventionalism eliminates the
inductive problem seem to have been so impressed by the fact that
it is possible to account for the absolute validity which we some-
times attribute to inductive generalizations, that they overlook the
fact that it is not this alone which we had in mind when we demanded
a justification of induction. 2 The general propositions, according to

which predictions are made, still remain to be justified. But in the

justification demanded for them, we seem to be content with some-

thing 'less' than absolute truth. Scarcely anybody would pretend
that predictions, even when based upon the safest inductions, might
not fail sometimes. We are satisfied in knowing that they are highly

'probable* at any rate. Thus conventionalism may be said to be able

to dispose of the element of absolute truth contained in induction,
and what then remains to be accounted for is the element ofprobability
which is attached to the inductive predictions.

(3) The idea that conventionalism could eliminate the inductive

problem, however, originates from more than a mere failure to see that

to justify induction means not only to establish the truth of general

propositions, but also to give rational grounds for the reliability of

predictions. There is a deeper reason, why conventionalism seems to

dispose of the inductive problem as a -whole.
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Language as it is actually used, both in everyday life and in

science, is so constituted that in most cases it is not settled whether

a given proposition is 'really' synthetical or analytical, nor which

criteria of a certain object are defining criteria, and which again
are empirical. For this reason it is not usually immediately clear

whether a general proposition, as used by us, is 'really' used qua

analytical, i.e. as a linguistic standard for interpreting facts, or qua

synthetical, i.e. as a means of predicting experiences.

Therefore, if I have arrived by induction at a general law, I need

not immediately decide as to its analytical or synthetical nature. 1

may for instance, to begin with, use it for the
purpose of making

predictions, and may regard every successful prediction as a con-

firmation of the law. Not until I am confronted with a situation in

which a prediction fails to hold and this may actually never

happen do I have to consider whether the law has been falsified or

whether it is more plausible to 'save' its truth by 'explaining away
'

the

failure of the prediction. As both alternatives are always possible I need

never fear that experience will compel* me to withdraw the inductive

generalization once established. It is always in our power to decide

whether a law has been falsified or not, and this fact, which con-

ventionalism reveals to us, explains the feeling of unshakable validity

which we sometimes attach to those inductions which, on the other

hand, are themselves 'confirmed' by successful predictions.
4

(4) It must also be observed that if in the case of an apparent
'falsification' of a law, we decide to make the law analytical, this

usually happens because there exists some empirical invariance or

uniformity which, in spite of the exception to it in this case, is

regarded as 'strong' enough to justify the introduction of the

convention.5 The convention, so to speak, serves the purpose of

strengthening an already assumed empirical law; it adds absolute

validity to something which is already in itself 'almost' absolutely
true. Psychologically, therefore, the transition from the synthetical
to the analytical which takes place when a convention is used to

'justify' induction may mean only a very slight increase in the

feeling of confidence which we associate with the proposition, and

this fact may obscure the fundamental change in the logical nature

of the generalization which is introduced by the convention. So the

inductive proposition, which has been transformed into an analytical
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one, retains an empirical 'flavour' which gives to the conventionalistic
decision an air of being concerned not only with the future use of
words, but with future facts as well.

(5) There is a tendency, very much furthered by the introduction
of exact symbols and notations, to regard the bulk of human know-
ledge as expressible in a definite set of propositions.

6 As was seen
from the above discussion of the example of the billiard-balls, the
idea underlying this tendency is to some extent delusive. It leads
us to regard as pure knowledge about facts, knowledge which actually
gets part of its firmness from verbal circumstances. The question
of the justification of induction must be understood against the

background of language, as an expression of knowledge, being not

only ambiguous and 'unsettled', but also in a certain sense inex-

haustiveS The importance of this inexhaustiveness of language for
the problem of induction is revealed to us by the conventionalistic

points of view from which the question was discussed above.
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CHAPTER IV

INDUCTIVE LOGIC

1. Justification a posteriori of induction.

IN the previous chapters it was shown that the only way to guaran-
tee a priori the truth of inductive generalizations is to make them

analytical. And from this it followed that we cannot justify a priori

predictions from inductive laws.

The idea of a justification a priori of induction was to make the

proof of inductive propositions independent of the empirical testing

of instances of those propositions. With this idea can be contrasted

that of proving inductive truths with the aid of verified instances of

the generalizations. The justification of induction is thus aposteriori.
1

Of attempts to justify induction a posteriori there are two funda-

mentally different types.

Of the one type are the theories of induction which contrast the

process leading from singular facts to inductive laws with the

process of deducing those facts from the laws, the latter of these two

'inverse' processes being regarded as the justification of the 'induc-

tive leap' made in the former. The logical element in induction is

thus deduction. The inductive philosophy of Whewell is the most

noteworthy representative of this type. Of the other type are the

attempts toformalize the very process ofgeneralizingfrom given data,

i.e. to make inductive propositions follow from singular instances

according to given rules. Of this type is the theory of induction of

Bacon and Mill.

Theories of the second type thus aim at the creation of a logic of
induction, 'parallel' to the other main branch of formal study, viz.

deductive logic. This, however, must not mislead us to the idea that

the logic involved in inductive reasoning is, in any circumstances,

of a different kind from the logic used in what is commonly
known under the name of syllogistic or deductive reasoning. It is

important to observe from the very beginning that the logic of all
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known attempts at a so-called logic of induction is exactly the same
as the logic of that process of thought which is called deductive

reasoning, even if this fact is sometimes obscured by a misleading
terminology.

2

In the following sections we shall examine the above two types
of 'classical* attempts at an inductive logic. Here, as in the preceding
two chapters, we are concerned only with a justification of induction

leading to certainty. Considerations about the probability of propo-
sitions are still outside the sphere of our investigation.

2. Induction and discovery. Induction and deduction as inverse

operations.

According to a well-known definition induction is 'the operation
of discovering and proving general propositions'.

1 In this definition

the two fundamentally different aspects, viz., that of discovering a

general proposition and that of proving it, are parallelized in a way
which has been fatal for the philosophy of induction. A careful

separation of them on the other hand contributes much to a clarifi-

cation of the ideas about induction and its justification.
The problem of how to discover a generalization from a set of

particular data is related to the question which, in the logic of

Jevons, is called the inverse (or inductive) problem.
2 This problem,

again, could be re-stated in the terminology of modern symbolic
logic roughly as follows: Given a certain number of propositions,
a, b

y c . . ., construct a truth-function in the form of an equivalence
which is true for certain given combinations, and for them only, of

truth-values of those propositions. Assume for example that the

propositions are a and b and that the equivalence is to be true for

all possible combinations of truth-values of the propositions, except
the case when a is true and b false. Then a truth-function fulfilling

these conditions is <2==a&.

Given the tmth^function, any of the propositions asserting one of

the prescribed combinations of truth-values (in our example the

propositions a&b, ^a&<^b, <~^a&b) can be deduced from it. Given
the latter propositions, the construction of the truth-function again
becomes the inverse of this deduction. In the opinion of Jevons the
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sole way to perform this inverse operation was to 'guess' at the

truth-function. 3 We suppose the truth-function fulfilling the condi-

tions in question to be T; by deducing the particular data from T we

verify (or falsify) this supposition.
The analogy between this and induction is obvious. 4 In the case

of an induction we have also a set of particular data the 'law' for

which we are in search of, i.e. a proposition from which these

particular data are deducible. The invention of this law cannot

usually be performed 'mechanically' but is the outcome of skilful

guessing, guided by scientific 'intuition'. 5 As soon as any law, L,

has been guessed at, we can test the result of the guessing by trying
to deduce the given data from the law. If the deduction can be

carried through, then the supposition that I, is a law of the kind we
look for has been verified. 6

The process just outlined, by which we establish inductive proposi-

tions, is the typical process of discovery. It must be observed that this

process does not accompany every case of induction. When from the

fact that such and such X's are B, I infer that all A 7

s are B, there does

not occur any discovery'., in the sense that I guess at a law from which

the observed particulars are subsequently deduced. The law, so to

speak, follows 'directly' from the given data.

On the other hand it is clear that such cases as the last-mentioned

are of a rather 'primitive' kind, and that the many beautiful instances

of induction which science affords us are generally peculiar on

account of the element of discovery which they contain. This is the

case in every instance of quantitative induction in which empirical
measurement has provided us with a set ofcorresponding values of the

variables, and we wish to detect a law or function for this correspon-
dence. A sub-class of these instances again is that in which the values

are pictured in a diagram and we look for a curve connecting them.

Kepler's discovery of the planetary path of Mars is a good example
of quantitative induction of the last kind. Observation had informed

him of the position of the planet in various points of its path, and

from this information the path itself was to be induced. We know
that Kepler, after having first rejected no less than nineteen assump-
tions as to the true path, discovered the law which agreed with the

observations, i.e. from which the observed positions could be

deduced. 7
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The process of discovery accompanying induction is of interest

also from a psychological point of view. It introduces order and
perspicuity in a multitude of previously disconnected facts, and it

facilitates our handling of the given information. It concentrates,
in the handy formulation of a law, a mass of knowledge which before
had to be summed up in elaborate records of observations. Induc-
tive discovery, in other words, is an important step towards the ideal

'economy of thought'.
8

Induction as an operation inverse to deduction bears a certain

resemblance to the well-known way of making geometrical construc-
tions on given data, which is sometimes called the analytical method.

*

This method consists in that we suppose the problem to have been

solved, and then deduce the given data from the solution. By tracing
the thread of deductive steps in the opposite direction we thereupon
carry out the construction. 10

The idea that induction as a logical method is analogous to this

way of reasoning in mathematics is very old. It is contained already
in Zabarella's account of a logic of induction. 11 Galileo expounds
the same idea in his account of the resolutive method which, accord-

ing to him, described the way in which mathematical laws of nature
are discovered. This method consists in a certain happening being
resolved analysed into components, each one of which is

supposed to obey some comparatively simple mathematical law. It is

then shown that when the respective values of the components of the
event in question are calculated separately under these suppositions
and the components are then put together, their 'resultant' approxi-
mates to the actual happening. Galileo regarded the coincidence of
the calculated and the actual course as the 'verification' of the

discovered law. 12 The method is illustrated, for example, in his

discovery of the mathematical paths of falling bodies. Ideas very
similar to these on the nature of the scientific method are expressed

by Leibniz. 1 *

The inductive logic, or logic of discovery, expounded by Whewell
must be understood wholly against the background of the above idea

of induction and deduction as inverse operations and the analogy
between induction and the analytical method in mathematics. 14

According to Whewell the logic of induction is *the analysis of

doctrines inductively obtained into their constituent facts, and the
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arrangement of them in such a form that the conclusiveness of the

induction may be distinctly seen
3

.

16 The 'Inductive Tables' 16 in which
this function of the inductive logic is performed are tables giving a

hierarchy of propositions, beginning with particular data and

ascending from them to laws of greater and greater generality. Each

ascending step is 'a leap which is out of reach of method',
17

i.e. the

more general proposition is not deducible from the less general ones,

whereas the descending steps form a chain of successive deductions.

These deductions, says Whewell, 'are the criterion of inductive

truth, in the same sense in which syllogistic demonstration is the

criterion of necessary truth'. 18 The general propositions are thus

discovered by induction and proved by deduction. 10

Now the following question must be asked: Does this scheme of

an inductive logic, foreshadowed in the description of the scientific

method given by two of the greatest geniuses of European thought
and developed to systematic strictness by Whewell, give a justifica-

tion of induction?

The question ought not to be answered off-hand. The answer

depends upon what we expect a justification of induction to be. It is

not unplausible to assume that when, in advanced sciences, we ask

for a 'justification' of the inductions made, we primarily have in

mind a proof that the known data follow from the assumed laws.

This may be the case because, as has already been said, inductions

in advanced sciences, like astronomy and mathematical physics, do

not usually follow from the data as a matter of course but are the

products of 'discovery', i.e. of a sort of 'scientific guessing',
90 and

must therefore afterwards be shown to fit the facts.

Snell detected the well-known law for the refraction of light,

^^==A:. Before one had this law one had to look for each pair of
sm p

r

corresponding angles from tables. When Snell hit upon the law he

certainly could not see at once that it really fitted each of the recorded

pair of angles. The proof that each pair of the tables really followed

from the law, was the justification of his discovery. Whether for this

justification already recorded facts were used or whether the law

was tested on new facts was in the first place a point of minor

importance.

58



INDUCTIVE LOGIC

If, therefore, by a justification of induction we mean a proof that
from the inductive proposition follow the data upon which the
induction was made, then the scheme of an inductive logic outlined

by Whewell provides us with the justification sought for. 21 The fact

that in advanced sciences the justification of induction, in which we
are primarily interested, may be a justification in this sense, has as
a rule been overlooked by inductive logicians simply because they
have chiefly confined their attention to those 'primitive' types of
inductive inference where the general proposition follows as a matter
of course from the given data." Whewell was an exception to this

rule, and that is why his philosophy of discovery partly gives a much
better account of scientific induction than do other 'classical'

treatments of the inductive problem.
But Whewell, on the other hand, overlooked the significance of

another aspect of induction. This aspect, the importance of which

again becomes more readily apparent if we confine our attention to

those 'primitive
5

inductions where the element ofdiscovery disappears*
is that of generalization. It is stressed with great acuteness by Mill
in his polemics against Whewell. 23

If the discovery of the law from which given data follow is an
induction, then it must be possible to deduce from it also data other
than those already given.

24

Kepler's discovery that the available

observation-points of the path of Mars were situated on an ellipse

was, as such, no induction. It was made an induction by the further

assumption that this ellipse would give to us the path of the planet
also between the observed points, and make it possible for us to

calculate Mars 's position for any future time. 25 This further assump-
tion which gives to the discovery its inductive character is a generali-
zation.

But the truth of the generalization, involved in the discovery,
cannot be proved in Whewell 's scheme of an inductive logic.*

8 And,

consequently, if by the justification of induction we mean a proof
that the general proposition to which induction has led us is true,

then this kind of inductive logic does not justify induction.

We have therefore seen that the question whether Whewell had
been able to justify induction or not is answered affirmatively or

negatively depending upon what kind of 'justification
9 we look for.

From the same considerations it also follows that the kindred question
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whether a law of nature can be verified or not has a twofold mean-

ing, and therefore can be answered as well in the negative as in

the affirmative. If by 'verification' we mean a proof that the sup-

posed law really is a law for the given data, i.e. that the data can be

deduced from it, then it is possible to verify it. But if 'verification'

is to mean a proof that the law as a generalization is true, then we do

not as yet know of a corresponding way of verifying it. Now we must
not forget that actually the term 'verification' has been used by
several philosophers and scientists so as to cover primarily the first

case. We thus understand how they arrived at the opinion that laws

of nature were verifiable. But it must be added that those philosophers
as a rule overlooked that this kind of verification was not a verifica-

tion of the law as a general proposition, but of the supposition that

the law fitted the given facts. They therefore forgot that the problem
of justifying induction has a further aspect which has not yet been

dealt with.

If we consider why the inductive logic of Whewell does not justify

induction in the sense of proving the truth of general propositions,
we immediately detect that this is because, although the given data

follow from the law, the converse of this, apparently, does not hold

true, i.e. the law does not follow from the data. It is, therefore, the

task of an inductive logic, which has to prove the truth of the induc-

tive generalizations themselves, to show that under certain circum-

stances we are entitled to infer the truth of the law from the data.

Can this task really be accomplished?

3. The idea and aim of induction by elimination.

The idea that the process of generalizing from given data could

be formalized, i.e. that the generalization could be inferred from the

data according to fixed rules, seems to have its origin in the following
observation:

We cannot establish the truth of an inductive generalization merely

by collecting a huge number of instances confirming it. This kind of

induction, inductio per enumerationem simplicem, 'puerile quiddam
est\

l to use the words of Bacon, as it is a task constantly 'pericuh
&b instantia contradictoria exponitur\* i.e. because the number of

60



INDUCTIVE LOGIC

verifying instances as such cannot eliminate the possibility of a

falsifying case. On the other hand it looks as though the examination
of only a very few cases were sometimes sufficient for the establish-

ment of-an unshakable generalization. This evidently must be because
the cases, besides being instances of the generalization, show some
other characteristic features which are relevant to the validity and

legitimacy of the inductive inference made from them. It is the
business of an inductive logic to give a general scheme of these
features which the given data must possess in order to serve as a
valid basis for a generalization.

3

The inductive method, described in the classical attempts to forma-
lize the process of generalizing and in contrast with enumerative

induction, we shall call induction by elimination.* It is our intention

in this discussion to examine the eliminative method from the viewpoint
of modern symbolic logic. This examination will not only enable us

exactly to estimate the value of this method for the problem of

justifying induction, but will also lead to interesting discoveries

about the logical nature of eliminative induction in general. These

discoveries, we think, are a testimony of the value of logistics when
used as a means of analysing and re-interpreting 'classical' doctrines

and ideas on philosophical questions.
The task of induction, ifwe confine our attention only to Universal

Inductions about one-place predicates,
5 could be described as that of

connecting two characteristics (properties, predicates), A and B, by
universal implication (or universal equivalence).

This task, first of all, presents two different aspects, according to

whether the characteristics are properties of the same individual

(object, event)
6 or whether they belong to different individuals. In

the former case the general implication which we want to establish

is of the form:

(i) (x) [AX-+BX],

in the second case again of the form:

(2) (x)(y

where F is a function, determining the pairs of corresponding ;t's

and^'s.
7
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If in (2) the function F correlates the ,x's and /s as individuals

succeeding each other in time,, we shall call the generalization a

Causal Law. Universal implications and equivalences of the form

(1) and those of the form (2), which are not Causal Laws, might in

accordance with a classical terminology be called Uniformities of

Co-existence. The most conspicuous difference between Bacon's

and Mill's respective systems of inductive logic is that the former

treats of Uniformities of Co-existence, the latter causal uni-

formities.

But the task of connecting two characteristics by universal impli-

cation also presents two different aspects in another sense. Either

I take one of the characteristics as 'given
9

and look for another

characteristic, which it universally implies. Or, I look for a charac-

teristic by which the 'given' one is itself universally implied. The
former case is that of finding a necessary condition of a given charac-

teristic, the second that of finding a sufficient condition. The connect-

ing of two characteristics by universal equivalence is again the

establishing of a necessary and sufficient condition of a given

property.
8 We shall, therefore, call the characteristic, which is

*given*, the conditioned one, and the characteristic we are looking for,

the conditioning one.

Now the idea of eliminative induction could be described shortly

as follows: Suppose I look for a conditioning property of a given
conditioned property, say A. As a rule there will be a number of

concurrent hypotheses as to this conditioning property. Is it the

characteristic B or C or D or any other which is connected with A

by universal implication? This question, obviously, we cannot

answer by collecting a great number of instances confirming one or

other of these possible general implications, i.e. by resorting to

enumerative induction. Because if we do so, then we can never, in

spite of the confirmations, eliminate the possibility that not the

confirmed hypothesis but some other is the true one. On the other

hand we know that we need only find one single instance where one

of these possible general implications does not hold in order to

invalidate and consequently also eliminate one of the concurrent

hypotheses as to the necessary or sufficient condition of which we are

in search. It is this important asymmetry in the possibilities of veri-

fying and falsifying Universal Generalizations which is at the root of
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the idea of an Inductive method, proceeding from elimination of
concurrent hypotheses.

Francis Bacon, who gave the first
substantially correct description

of eliminative induction, saw the advantage of the eliminative
method over enumerative induction in that the former was a method
enabling us to reach absolute certainty. This association between
absolute certainty and induction by elimination is typical also of
most later treatments of that method. For a critical examination of
the Idea that eliminative induction could attain absolute certainty
it is, however, important to observe that the word 'certainty' in this

connection may mean no less than three different things. The failure
to separate these different meanings from one another has been the
cause of much confusion and misunderstanding.

In the first place absolute certainty may mean that under certain
circumstances we can prove a general proposition to be the only
generalization which Is in accordance with certain data.

In the second place absolute certainty may mean that the Inductive
method provides us with thepremisses from which the generalizations
themselves can be deduced according to logical rules. From this it

does not follow that the generalizations, reached by the eliminative

method, must be true. The eliminative method would take us to this

conclusion only if we had the additional knowledge that the premisses
which this method provides are themselves true. That the conditions

for this conclusion are fulfilled Is the third meaning of the phrase
that eliminative induction leads to absolute certainty.

It would not be inappropriate to say of the eliminative method
that it justifies induction If it could reach certainty In any of these

three senses. But it is als clear that only if it does so In the third

sense, do we get that kind of justification in which we are primarily
interested here, viz. that which excludes the occurrence of a contra-

dictory instance to the law established by induction. Bacon explicitly
attributed this power to the eliminative method when he said that it

'ex aliquibus generaliter concludat ita ut instantiam contradictoriam

inveniri non posse demonstretur'. 11

It follows from the logical nature of the eliminative method, as

described above, that elimination as such only informs us of the

falsehood of certain hypotheses. From this information in itself

nothing can ever be concluded as to the (conditional or uncondi-
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tional) truth of some not-eliminated hypothesis. Pure elimination,

therefore, at least cannot attain certainty in the second and third of

the above senses.

It is, however, not certain a priori that elimination in itself can

attain even certainty in the first sense. For this it is a minimum

requirement that it is logically possible, by elimination alone, to

invalidate all concurrent hypotheses except one as to a necessary or

sufficient condition of a given characteristic. It will be our next task

to inquire whether the logical mechanism of elimination really can

achieve this last aim without the aid of some general postulates
about the nature of the universe.

4. The mechanism of elimination.

Necessary Conditions. We begin with a description of how the

logical mechanism of elimination works when we are looking for a

necessary condition of a given characteristic A.

By & positive instance of the conditioned property A we mean any
individual x, of which this property can be truly predicated.
We consider a (finite) set x, y, z, . . . of positive instances of the

conditioned property. To the individual x there answers a set of

properties Xi, X z . . . (other than A), which can be truly predicated of

this individual. 1

Similarly, there is a set 7i, Fa . . . of properties of

y, a setZi, Z a . . . of properties of z, etc. The properties in each set

are assumed to be logically independent of each other. This means
that no one of the properties is such that its presence in the individual

logically follows from the presence of some (or all) of the other

properties in the individual. 2

These sets of properties we call basic sets of initially possible

necessary conditions ofA.

By the positive analogy between a number of sets of properties we
mean the (set of) properties, which are common members of all the

sets. The (set of) properties again which are members of some but

not all the sets of properties are said to constitute the negative

analogy between the sets.
8

It is clear that, if a property P belongs to the negative analogy
between the basic sets of initially possible necessary conditions of A,
then it cannot (actually) be a necessary condition of A. For, from
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the definition of the negative analogy it follows that there exists at
least one positive instance of the conditioned property A, in which
P is lacking. And anything which is absent in the presence of 4
cannot be a necessary condition of A. Or, in other words, if a

property belongs to the negative analogy between the basic sets,
then the supposition that it would be universally implied by the
conditioned property A is invalidated and consequently also elimi-
nated from the class of alternative hypotheses as to the necessary
condition of A.

It follows from this that each increase in the negative analogy
mentioned, and conversely each decrease in the corresponding
positive analogy, effects the elimination of some possible hypothesis
as to the necessary condition of the conditioned property A. There-
fore, the object of applying the eliminative method of induction to
the search for a necessary condition of A is to narrow, as far as can
be done, the positive analogy between some basic sets of initially

possible necessary conditions of the property. This is done by adding
new positive instances to those already considered, which differ
from the latter in as many properties as possible. Or to use a classical

terminology, it is done by 'varying the circumstances' under which A
occurs. According to the way in which this variation is affected, we
say that we use eliminative induction as a method of observation or
as a method of experimentation.

It is conceivable that the positive analogy between the basic sets

might finally consist of one property only. This, of course, does not
mean that use of eliminative induction will actually, sooner or later,

in every case lead to a situation in which all properties save one are

eliminated from the positive analogy. If we are left with more than
one property in the positive analogy, this may be either because we
have not yet 'varied the circumstances* to the utmost, or because the

conditioned property actually has more than one necessary condition

among the members of the basic sets. The latter alternative is known
from traditional logic of induction under the name of 'Plurality of

Causes'. It is to be observed that there is no answer to the question,
which of these two alternatives is true, other than the answer which
future experience alone can give after continued recourse to elimina-

tive induction.

Let us, however, suppose that we actually were left with only one
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property in the positive analogy. From this fact it cannot be con-

cluded that this remaining property is also the only remaining

possible necessary condition of A not even in the 'realm', so to

say, of the properties in the basic sets. For, we have still to consider

the possibility known by the name of 'Complexity of Causes',* i.e.

the possibility that, although no single member of the basic set is a

necessary condition ofA, a disjunction of two (or more) such members
is a necessary condition of A*
That the disjunction of two properties, say B and C, is a necessary

condition of A means that whenever A is present, then B or C is

present. In symbols: (x) [Ax-+Bx v Cx\. Necessary conditions of

the disjunctive form are no mere 'theoretical possibilities' but

familiar from the practice of science.' Thus, e.g., in order to bring
about a variation in the volume of a gas, it is necessary either to

vary the pressure, to which the gas is subject, or to vary its tempera-
ture. Variation in pressure or temperature is thus a necessary condi-

tion of variation in volume.

It might here be suggested that the eliminative method should be

applied also to the properties which can be constructed by forming
all the possible disjunctions of logically independent properties which

are members of some of the basic sets.

Actually, an application of the eliminative method to such 'dis-

junction-properties
'

is possible.
7 But the resort to elimination is

here subject to an important limitation in its logical powers. This

is seen from the following considerations:

It is clear that if a property P is a necessary condition of A, then

the disjunction of P and any property is also a necessary condition

of A. For, that P is a necessary condition of A means that in all

positive instances of A the property P is present, and of all instances

where P is present it is trivially true thatP orP '

is present.

Consequently, if elimination has left us with the property P as a

possible necessary condition of A, then it has also left us with all

disjunctions of properties, containing P as a constituent, as such

possible conditions.

From the above it follows that if all the 'disjunction-properties'
mentioned with the exception of one have been eliminated, i.e.

excluded from the possibility of being necessary conditions of A 9

then this one remaining property must necessarily be the disjunction
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of as many logically independent properties as there are in all the
basic sets considered together.
The relevance of this peculiarity of the eliminative method, when

applied to possible complex conditions, to that method's power of

attaining certainty will be estimated later.

Sufficient Conditions. We proceed next to an examination of the
mechanism of elimination in cases where we are looking for a
sufficient condition of a given property A.

Sufficient and necessary conditions are interdefinable. If the

presence of A is sufficient for the presence of B, then the absence of
A is necessary for the absence of B, and vice versa. In symbols:
(x) [Ax-*-Bx]zs(x)[~Bx-+~Ax]. If oxygen is a necessary condition
of life, then the absence of oxygen is sufficient to extinguish life, and

conversely.
It follows from this that to ascertain the sufficient conditions of a

given property A is equivalent to the task of ascertaining the neces-

sary conditions of the property ~A (not-^4). And this means that
the same method of-elimination as was described above for necessary
conditions can be applied ('negatively' or 'inversely', so to speak)
to the search of sufficient conditions. 8

There is, however, a 'typical' case of the search of sufficient

conditions, to which a different canon of elimination is applicable.
In this case we are interested, not in the sufficient conditions 'as

such' of a given property, but in the sufficient conditions of the

property among the properties of a given positive instance of it.
9

In this case we compare a given positive instance x of the condi-
tioned property A with a (finite) set of negative instances y9 z, ... of
A. (By a negative instance of A we mean any individual, of which A
can be truly denied.)
To the positive instance x there answers a set of logically inde-

pendent properties Xl9 X* . . . which can be truly predicated of x. 10

We call it a basic set ofpossible sufficient conditions of A.

To the negative instances j, z . . . also answer sets Y19 F2 . . . and

Zi, Z2 . . . etc. of properties which can be truly predicated of the

individuals. We call these sets of properties basic sets of not-possible

sufficient conditions of A. (It is clear that any property which occurs

in a negative instance of A cannot be a sufficient condition of A.)
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We form the logical sum of the basic sets of not-possible sufficient

conditions of A. That is to say: we form a set consisting of each

property that occurs in at least one of the above sets of not-possible
sufficient conditions.

With this sum-set, thus formed, we compare the one basic set of

possible sufficient conditions of A, It is obvious that if a property

belongs to the positive analogy between these two sets, then it is elim-

inated as a possible sufficient condition of A. For, from the fact that

it belongs to this analogy, it follows per definitionem that at least one

instance exists in which the property in question is present but in

which A is lacking. The property mentioned, in other words, though

present with A in x, cannot universally imply A.

For this reason each increase in the positive analogy mentioned

entails the elimination of some alternative hypothesis as to the

sufficient condition of A among properties of x. It is the purpose
of the eliminative method to increase this positive analogy to the

utmost. This is done by taking for examination new negative in-

stances which agree in as many properties as possible with the one

positive instance x of A which we have examined.

Obviously, the elimination of all properties except one from the

basic set of possible sufficient conditions, is logically possible. But

here, as in the case where we looked for a necessary condition, we
can never a priori exclude 'Plurality of Causes', i.e. the possibility

that A has not one but several sufficient conditions among members
of this basic set.

Suppose, however, that we had actually eliminated all properties

except one from the basic set. Then the question of possible 'Com-

plexity of Causes' arises. This means that, although no single

member of the basic set of possible sufficient conditions of A is

actually such a condition, nevertheless a conjunction of two (or more)
such members is a sufficient condition of A. 11

That the conjunction of two properties, say B and C, is a sufficient

condition of A means that whenever B and C are both present (but

not necessarily when one of them is present), then A is present too.

In symbols: (x) [Bx&Cx-*Ax]. Sufficient conditions of a conjunctive
form are certainly a commonplace in the practice of science." Their

importance to the logical study of induction was (vaguely) recognized

by Mill. 13
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It is possible to apply the same canon of elimination also to the
properties which are constructed by forming all the possible con-
junctions of any two, three, etc. members of the basic set of possible
sufficient conditions. 14 But the use of elimination among such

'conjunction-properties' is subject to a limitation, analogous to the
one described above for necessary conditions.

It is clear that if a property P is a sufficient condition of A, then
the conjunction ofP and any property is also a sufficient condition of
A. For, that P is a sufficient condition of A means that in all positive
instances of P A is present, and of all instances where P and P' are

present it is trivially true that they are positive instances of P. Thus,
if elimination has left us with the property P as a possible sufficient
condition of A, then it has also left us with all conjunctions of

properties, of which P is a constituent, as such possible conditions.
From the above it follows that //all the

'conjunction-properties'
mentioned with the exception of one have been eliminated, i.e.

excluded from the possibility of being sufficient conditions of A, then
this one remaining possibility will necessarily be the conjunction of
all the properties in the basic set of

initially possible sufficient

conditions of A.

Our description of induction by elimination, when used for the

purpose of ascertaining necessary conditions, roughly answers to
Mill's Method of Agreement, and our description of the elimmative
method, when used for the purpose of ascertaining sufficient con-
ditions of a given property in a given positive instance of it, roughly
corresponds to Mill's Method of Difference. For the purpose of

ascertaining necessary-and-sufficient conditions canons of elimina-
tion may be used which roughly answer to Mill's Joint Method. 15

Throughout the above discussion we have assumed that the genera-
lization or law, of which we are in search, is of the type [1] of the

preceding Section, i.e. of the type that the conditioned and the

conditioning properties are attributes of the same individual. The
description of the mechanism of elimination can without difficulty
be extended so as to apply to generalizations of the type [2] as well.

We have only to let the basic set of properties answer, not to (positive
or negative) instances of the conditioned property itself, but to

instances correlated through some relation F to instances of the

conditioned property. This modification in the determination of
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the basic sets is altogether inessential to the way in which the elimina-

tive mechanism functions. 16

Conclusions. It was mentioned at the end of Section 3 that if

elimination, as such, without the aid of any general postulates or

assumptions as to the nature of the universe, were to attain certainty
in any of the various senses in which 'certainty' has been attributed

to this method of induction, then it should be logically possible to

effect, in any given case, the elimination of all alternative hypotheses

except one as to a necessary or a sufficient condition of a character-

istic. Examination has taught us that the two sub-methods of

induction by elimination, roughly corresponding to the classical

methods of Agreement and Difference, are both equally efficacious

in the attainment of this aim. And to both of them applies the

following limitation in their power of reaching this aim:

Although it is logically possible to achieve an elimination of all

initially possible conditions except one, relative to given basic

sets of logically independent properties, this 'ideal' elimination must

always lead to the result that the only remaining possible condition

is of 'maximal complexity', i.e. either a disjunction or a conjunction
of as many properties as there are logically independent members in

the basic sets of initially possible conditions. This important re-

striction on the 'direction' of the eliminative process makes pure
elimination less valuable, as a means of finding the only possible true

hypothesis as to a necessary or sufficient condition of a given charac-

teristic, than it might seem at first sight to be. It would have been

more valuable, if the 'direction' of elimination had been 'free', i.e.

if it had been possible to eliminate from the class of initially possible
rival hypotheses all but one, without it being possible to know
beforehand (on purely logical grounds) which degree of complexity
must characterize that hypothesis which will finally be the only

remaining one. 17

*

Let us illustrate the limitations in the power of pure elimination by
an example. This example will to some extent go beyond the basis of

the above strictly formal considerations, but might be useful in

assessing the value and epistemological significance of the classical

ideas about eliminative induction.
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As an example ofhow the Method of Difference works the follow-

ing is sometimes mentioned: 18

We observe a yellow band at a characteristic place in the spectrum
of a spirit-flame containing sodium. We wish to establish a 'causal

relationship*, i.e. a
relationship of universal implication, between the

yellow band in the spectrum and the presence of sodium in the flame.
To this end we remove the sodium from the flame leaving all other
circumstances unchanged. If then, together with this removal of
sodium from the flame, the yellow band in the spectrum also

vanishes, we feel inclined to assert that the presence of sodium in the
flame was the 'cause' of the yellow band in the spectrum. This
assertion is based on the following argument;

Since the yellow band did not occur when the flame did not contain

sodium, it cannot be universally implied by any circumstance present
in this case. But since, on the other hand, this second case differed

only in the absence of sodium from that case where the yellow band

appeared, we conclude that, if there is any cause at all for the occur-
rence of the yellow band, then this cause must be the presence of
sodium in the flame.

Already Mill has observed that an argument of this type is incon-

clusive in the following respect:
19

Even if it is assumed that the yellow band has a cause, we cannot
from the experiment conclude that this cause will be sodium alone,
since the possibility remains that it were sodium and some other

substance and neither of them alone which universally implied
the occurrence of the yellow band in the spectrum. In other words,
the possibility of a 'complex cause" remains. We can only, strictly

speaking, conclude that, if there is any cause at all for the occur-

rence of the yellow band, then sodium is at least part of this cause,
that is to say in our terminology, that if the condition is complex then

it consists of a conjunction of characteristics, one of which is sodium.

Mill and later authors, however, have not rightly estimated the

significance of this inconclusiveness in the argument. Actually this

inconclusiveness implies that we cannot draw any general conclusion

at all from the above described experiment.
It is important to point this truth out, since there appears to be a

strong inclination to overlook it for the following reason: We admit,

following Mill, that we cannot conclude from the experiment that
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always when sodium is present in the flame there will appear a yellow
band in the spectrum, since the cause may be 'complex'. But since,

on the other hand, this possible complexity in the cause means that

sodium is at least part of the cause of the yellow band's occurrence,
it seems that we could conclude conversely that always when there

is a yellow band at the characteristic place in the spectrum, then

there must be (at least) sodium present in the flame. This would
amount to asserting that, although we cannot from the experiment
conclude that sodium is a sufficient condition of the yellow band's

occurrence, we can nevertheless conclude that it is (at least) a neces-

sary condition of it.

The suggested conclusion, however, it must be observed, is entirely

unjustified. The method of ascertaining necessary conditions by
elimination is, as was shown above, a method which can be roughly
identified with the classical Method of Agreement. The experiment
described above has not, however, the slightest relevance to the

possible result of applying this method in ascertaining a necessary
condition of the yellow band in the spectrum of the spirit-flame. It

will also be immediately clear on reflexion that there is nothing in the

experiment mentioned to exclude the existence of the characteristic

yellow band in the spectrum in spite of the fact that there were no
sodium in the spirit-flame.

Thus we can, on the basis of the experiment described above,

neither conclude universally from the presence or absence of such

and such substances in the spirit-flame the presence or absence of

such and such spectral phenomena, nor conversely from the presence
or absence of anything in the spectrum the presence or absence of

any substance in the flame. In other words, there is no universal

implication whatever to be concluded from the experiment. This

important truth is clearly revealed to us when the theory of the clas-

sical inductive methods is treated as a theory of necessary and suffi-

cient conditions.

Although the value of pure elimination as a means of attaining

certainty is limited, the description of the logical mechanism of

elimination is of importance as being the exact and formalized

expression of age-old ideas on the way in which truly 'scientific'*

induction proceeds, particularly when employed for experimentation.
The nature of elimination makes it clear why we sometimes consider
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the examination of a single instance, when pursued carefully and
with a certain methodical aim, to contribute very much more to the

weight of a general proposition than does the verification, regardless
of further circumstances, of even an enormous multitude of instances

confirming it,
21 The method of ascertaining necessary conditions, in

addition, is the exact expression of the rule, which has always been

regarded as one of the leading maxims in the practice of science, viz.

that the true test of a scientific law does not lie in the number of con-

firming instances as such, but in the multitude and variety of different
conditions under which the testing has taken place.

22

5. Remarks about the comparative value of the methods ofAgreement
and Difference.

The result that the Method of Agreement is, for the purpose of

elimination, not less 'effective' than the Method of Difference might
appear highly surprising when we consider the value attributed to the
latter method in the inductive logic of Mill. 1 As is well known Mill,
and following him most later authors on the subject,

2

regarded the
Method of Difference as being the only method by means of which
we can reach absolutely certain conclusions as to possible 'causes',

3

and as being much superior for this and other reasons to the method
of Agreement.

4

In order to make clear to what extent our results as to the com-

parative value of the two methods conflict with those of Mill we
have to make the reader conscious of certain peculiarities in Mill's

description of the inductive methods, peculiarities which are partly
the offspring of serious mistakes and obscurities,

In the logic of Mill the word 'cause' means sufficient condition* (in

time). For this reason the Method of Agreement, as described by
Mill, can be used as a method of elimination solely for the purpose of

looking for the effect of a given cause and not for the cause of a given
effect. This, however, was overlooked by Mill. 6 After having given
a substantially correct description of how the method works by
elimination for the detection of the sole possible effect of a given
cause 7 he continues: 8

*In a similar manner we may inquire into the cause of a given
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effect. Let a be the effect. ... If we can observe a in two different

combinations, a b c and a d e\ and if we know, or can discover, that

the antecedent circumstances in these cases respectively were ABC
and ADE; we may conclude by a reasoning similar to that in the

preceding example,
9 that A is the antecedent connected with the

consequent a by a law of causation. B and C, we may say, cannot be

causes of a, since on its second occurrence they were not present; nor

are D and E, for they were not present on its first occurrence. A,
alone of the five circumstances, was found among the antecedents

of a in both instances.
'

Here Mill obviously has failed to see that the fact that 5, C, D and
E belong to the negative analogy between the two cases has no bearing
whatever upon the question of finding a sufficient condition, i.e. a

'cause* in Mill's sense, for a. Actually none of the characteristics has

been eliminated as a possible sufficient conditon of A\ all we have

achieved with the two instances is that the hypotheses that B, C, D or

E respectively is a sufficient condition of a have been confirmed once,

and the hypothesis that A is such a condition has been confirmed

twice. Thus Mill's Method of Agreement,, when applied to the task of

finding sufficient conditions is not an eliminative method at alt but

simply a kind of inductio per enumerationem simplicem.
This important truth never became clear to Mill. Misled by the

fact that the increase in the negative analogy, when the Method of

Agreement is employed, actually brings about an elimination (of

possible necessary conditions) he believed this method also to be one

of elimination when used in the search for causes of given effects, i.e.

of sufficient conditions. On the other hand the fact although not

clearly grasped by Mill that the method, when applied to sufficient

conditions, was not one of elimination but one of enumeration, drove

him to the reservation against the Method of Agreement, which he

expressed by saying that this method can prove a characteristic to be

an invariable, but not an unconditional antecedent of a given charac-

teristic.
10

By this very confused and gravely misleading formulation

Mill simply wanted to express that the Method of Agreement cannot

prove the characteristic A to be a sufficient condition of a, even if A
and a are the only properties common to all the examined instances. u

Again, with the aid of the Method of Difference, we might prove
that if a has any sufficient condition in the cases in question, then this
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condition cannot be any other than A or some condition more

complex than A, i.e. some condition part of which is A.

Thus we can understand how Mill, from the false idea that the

Method of Agreement as well as the Method of Difference were an
eliminative method when used in the search for sufficient conditions

together with the true insight that the Method of Difference, but

not that of Agreement, can under certain circumstances prove one
characteristic to be in a given case the only possible sufficient

condition or part of such sufficient condition of another character-

istic, arrived at the further idea that the Method of Difference was

'superior' to the Method of Agreement in the search for 'causes',

i.e. sufficient conditions. The absurdity of this comparison becomes

apparent so soon as we realize that the Method of Difference alone

is an eliminative method when applied to sufficient conditions.

Apart from this fundamental misconception of the eliminative

power of the Method of Agreement there is another reason which

caused Mill to regard the Method of Difference as 'superior* to that

of Agreement. This reason consists in his always assuming, in

describing how the Method of Difference works, that the first

instance lacking the conditioned property agreed with the instance

having the conditioned property in all other characteristics except a

single one, or else that only two instances were needed in this method,

whereas in the method of Agreement we need perhaps an unlimited

number of instances. 12 Such an assumption was intelligible from

the use we actually make of the Method of Difference as a method of

scientific experimentation.
15 But logically' we are equally justified

in making a corresponding assumption in the Method of Agreement,

when used as a method of elimination, viz. that the second positive

instance of the conditioned property differs from the first instance

in all its properties except a single one. (This assumption might also,

as in the case of the other method, be 'practically' justified when the

Method of Agreement is used as an experimental method. 1
*) Mill

was prevented from grasping this probably for the simple reason

that he did not realize that the Method of Agreement is an elimina-

tive method when applied to necessary conditions only*
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6. The general postulates of induction by elimination.

In ascertaining the possibilities of eliminative induction to attain

certainty we must distinguish from each other the following two
questions:

(1) Is it logically possible, by elimination alone, to invalidate all

concurrent hypotheses except one as to a necessary or sufficient

condition?

(2) Is it possible to determine, in a given case, whether all con-
current hypotheses except one have been eliminated?

It was stated above that an affirmative answer to the first question
was necessary if eliminative induction was to attain certainty in any
of the three previously defined senses.

It is, however, to be observed that this affirmative answer, although
necessary, is not sufficient for the attainment of certainty even in the
first of the three senses mentioned. To this end, evidently, it must be

possible to answer also the second of the above questions in the
affirmative.

It is immediately clear that if the number of independent possible

conditioning properties of a given conditioned property were infinite,
then it would never be possible to determine whether,- in a given
situation, all concurrent hypotheses except one have been eliminated.

For, under such circumstances, we could never know for certain

whether, in the basic sets, the positive and negative analogies of
which it is the business of eliminative induction to increase and
decrease respectively, all relevant properties have been included or
whether some property has not, for one reason or another, escaped
notice or been neglected.

It is, however, not possible for reasons of logic alone to exclude the

possibility that the number of concurrent hypotheses as to a necessary
or sufficient condition are infinite. The exclusion of this possibility
can be effected only by the introduction of some general assumption
as to the constitution of the universe.

Now it has been suggested that the assumption necessary on this

point, in order to secure the possibilities of eliminative induction of

attaining certainty, were that the number of logically independent
properties of any individual are finite in number. 1 This assumption
we shall call the Postulate of Limited Independent Variety. It can
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be said to be the basic supposition of the inductive logic of Bacon. 3

Recently a developed form of the Baconian postulate has been ad-
vocated by Keynes.

3 There appears, furthermore, to be some prima
facie presumption in favour of the truth of this postulate.

4

It is, however, extremely important to observe that the assumption
of a finite number of properties of any individual is not sufficient for
the purpose of knowing when all concurrent hypotheses except one
have been eliminated. Suppose that we knew the number of proper-
ties to be finite. Then, even ifwe have taken into account, in pursuing
the elimination, any finite number n of concurrent hypotheses as to a

necessary or sufficient condition, we could never be sure that there
does not exist at least one p roperty which so far has not been reckoned

with, and which therefore may represent also a true hypothesis as to
the condition in question. For from the mere knowledge that the

number of properties of an individual is finite, it does not follow that

the number of properties (and consequently also of concurrent

hypotheses), which in a given situation we ought to take into account,
is not greater than the (always finite) number of properties, or hypo-
theses, which actually has been considered. 5

Consequently, in order to make possible knowledge as to whether
in a given situation all concurrent hypotheses except one have been

eliminated, we have to introduce some assumption 'stronger' than
that of Limited Variety. This new assumption must, generally

speaking, assert that, under certain circumstances, it is possible to

know when we possess complete knowledge of all properties of the

examined instances which are to be taken into account for the purpose
of elimination of concurrent hypotheses. This postulate of the

logic of induction which is to replace the postulate of Limited

Independent Variety we shall call that of Completely Known In-

stances. 6

For a more detailed formulation of the postulate of Completely
Known Instances two principal ways are left open. One of them

might be described as a continuation of the way leading to the

introduction of the postulate of Limited Variety. It would consist

in our introducing some more precise assumption as to the number
of possible properties of an individual than simply that it is finite. A
sort of 'minimum assumption' in this direction would be to suppose
the number of possible properties never to be greater than a fixed
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number n. Under this assumption it would be possible at least in

those cases where we have in each examined instance discovered

exactly n properties, to know for certain when all concurrent hypo-
theses except one as to a necessary or sufficient condition have been

eliminated.

On the other hand it seems arbitrary, if not absurd, to assume

a priori, of the number of possible properties of an individual, that it

cannot supersede afixed number n. This way of giving the postulate
of Completely Known Instances a more specific formulation must
therefore be regarded as extremely unplausible and unsatisfactory.

The second way of specifying this postulate is the following: We
make no assumption as to the number of possible hypotheses or

possible properties of an individual, not even that it must be finite.

We assume instead that certain categories of simple properties can be

left out of consideration as being irrelevant to the eliminative method
of induction, and that in each single case we are able to judge
whether the information about the instances, which has been taken

into account, represents complete knowledge as to all the remaining
relevant properties or not. If it does then we can enumerate the

relevant properties of each individual and hence also determine

whether or not, after the examination of a number of instances, the

eliminative process has reached the elimination of all concurrent

hypotheses except one.

The defects also of this formulation of the postulate will be obvious

to anybody. How is it possible, it will be asked, to define what is

'relevant' in this connection in any way other than that the definition

involves a reference to the eliminative method itself and hence is

circular? 7 But apart from this obvious defect it cannot be denied

that such a specification of the postulate has some plausibility in itself.

First there is, so to speak, a 'practical plausibility' in favour of it,

consisting in that we are in any given case usually "practically sure'

about which hypotheses might conceivably be true for a given

phenomenon and which again can at once be dismissed as being
irrelevant. The number of the first hypotheses, furthermore, is as a

rule not very great.

This 'practical plausibility' of the postulate, incidentally, is a fact

of the greatest psychological significance for the possibilities of, the

human mind to detect law and order in the multitude of phenomena
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with which it is confronted. If it were not possible for us to confine
our attention to a fairly small sector of 'relevant' circumstances in
the multitude of given data, we should have seldom succeeded in

detecting the uniformities and laws of nature of which we actually
possess knowledge.

It must also be noted that there seems to be at least one class of

'properties'
8 which can generally be excluded as being 'irrelevant'.

This class consists of the characteristics which state the spatio-
temporal position of the instances. It is an old idea that the validity
of natural laws cannot be restricted by time and space as such, but
that if a law is not valid under spatio-temporal conditions differing
from those under which it has been detected and confirmed, then this

is due to some difference in circumstances, other than spatio-tem-
poral.

9 This idea seems extremely plausible, and one is tempted to

say that its plausibility, which almost equals self-evidence, is founded
not upon matters of fact, but upon some a priori grounds.

10

So much for and against the postulate of Completely Known
Instances as specified above. Irrespective of whether this postulate
can be upheld with some plausibility or not, we have to observe that

it is absolutely necessary if the second of the above two questions is

to be answered affirmatively, i.e. if it is to be possible to determine,
in a given case, whether all concurrent hypotheses as to the necessary
or sufficient condition of a given characteristic have been eliminated.

Thus only under the Postulate of Completely Known Instances can
induction by elimination reach certainty as to which one of a number
of concurrent hypotheses is the only generalization fitting all the

known data. Actually there are passages in the writings of Bacon,
11

Mill,
12 and other authors,

13 from which one gets the impression that

it was just this kind of certainty that they deemed the eliminative

method capable of achieving. The failure to distinguish different

senses of the term 'certainty' from each other has, however, caused

those authors to make apparently contradictory statements in other

places.
14

It will be useful here to introduce the following definition:

By the data ofthe elimination in a case when the eliminative method
is applied we mean all (singular) propositions stating that such and
such individuals, examined for the purpose of the method, possess
such and such properties.
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It is evident that the above postulate of Completely Known
Instances is not sufficient if it is to be possible from the data of the

elimination to deduce general propositions, that is to say, if eliminative

induction is to reach certainty also in the second of the three senses

mentioned. For even if the result of actual elimination together with

the above postulate had informed us that the only characteristic

which can possibly be connected by general implication with the

given characteristic, say A 9 is the characteristic B, this information

cannot exclude the possibility that the next instance, so far unknown
to us, which exhibits the characteristic supposed to be the implicans
lacks the property supposed to be the implicat, or in other words,
that the general implication between A and B is, after all, false.

Thus a second postulate is needed if the method of eliminative

induction is to result in the deduction of general implications (or

equivalences) from the data of the elimination. This postulate we
shall call the Deterministic Assumption.

15 It can be given various,

weaker or stronger, formulations. One such formulation is that every

property has, in every positive instance of its occurrence, at least

one sufficient condition. From this formulation follows that every

property also has at least one necessary condition, viz. the disjunc-
tion of all its sufficient conditions. 15

Mill restricted the applicability of the Deterministic Assumption
to properties of individuals succeeding each other in time, thus

getting the more specific form of it which might be called the Univer-

sal Law of Causation,
17 and did so on the ground that he regarded

the postulate as being unjustifiable for simultaneously existing

properties.
18 Causal Laws, according to Mill, but not Uniformities of

Co-Existence, get their strength from such a general principle.

Bacon on the other hand seems to have assumed precisely the

opposite to Mill, viz. that for each property or 'nature' of an indi-

vidual there exists another simultaneous property, called its *form\

being a necessary and sufficient condition of it,
10 whilst he does not

state any corresponding general principle for temporally related

properties.
The two general 'inductive principles

*

called by us the Deterministic

Assumption and the Postulate of Completely Known Instances are

necessary, but also sufficient, if eliminative induction is to attain

certainty in the second of the three senses, i.e. if inductive generaliza-
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tions shall be deducible from the data of the elimination. This
deduction, generally speaking, is made so that the Deterministic

Assumption is applied to a situation where the Postulate of Com-
pletely Known Instances, together with the actual results of the
elimination, entitles us to the conclusion that all concurrent hypo-
theses except one have been eliminated.

Any system of conditions which makes it possible to deduce
inductive generalizations from singular data we shall call a Complete
System of Inductive Logic. In this sense the above two postulates,
together with the logical mechanism of elimination, make up such
a Complete System.

It is, obviously, logically possible to strengthen the postulates of
our Complete System so that the system's powers of deduction are
widened. We might, for example, introduce some more definite

assumption as regards the number of (sufficient or necessary) condi-
tions of a given conditioned property. Or, we may assume the
existence of some restriction to the complexity of the possible
conditioning properties. Such stronger assumptions have actually
been suggested.

20
They will, however, not be discussed here.

7. The justification of the postulates ofeliminative induction.

If induction by elimination is to reach certainty in the third of the

previously mentioned senses, that is to say, certainty as to the truth

of a generalization, then it is not sufficient to know only which

premisses are needed for the purpose of deducing general propo-
sitions. We must, in addition, know that those premisses are true.

The postulates of eliminative induction mentioned are all general

propositions, by the aid of which from singular propositions other

general propositions are deduced. The truth of the singular proposi-
tions, i.e. the so-called data of the elimination stating that such and
such properties belong to such and such an individual, is in this

connection unproblematic. This cannot be said of the truth of the

general propositions.
Let us first assume the principles to be true a priori. As was seen

above the sole way to guarantee the truth of a general proposition
a priori is to make it analytical.

1

Now it can be shown that if the postulates are supposed to be true
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a priori, i.e. analytical, then any general proposition which, with

their aid, is deduced from particular data can be proved true only
in the sense of being analytical. This amounts to the same as that if

with a general analytical proposition and a singular synthetical

proposition as premisses, we draw a general conclusion, then the

conclusion must itself be analytical. One might be inclined to say
that this thesis is 'almost self-evident'. It will, however, be of some
interest to see, how it is related to our previous elucidations of the

notions of analyticity and logical consequence.
2

If the proposition b follows from the proposition a, then the

implication a-+b is an analytical proposition and hence3

necessary.
This relation between logical consequence and necessary implication
cannot be converted. For, if a is an impossible proposition or b a

necessary proposition, then the implication is necessary, irrespective

of whether b follows from a or not. 4 We shall assume,
5

however, that

if a-+b is necessary, then b follows from a in every situation when a

is not impossible or b not necessary. The desired proof can now be

given as follows:

If the general proposition g follows from the particular proposi-

tion/? and the analytical proposition a, then the implication a&p-+g
is a necessary proposition. Now, according to a law of modal logic,

if a is necessary and a&p-+g is necessary, then p~+g is necessary too.

But, on our assumption above, if/?-># is necessary, then it is the case

either that g follows from/? or that/? is impossible or that g is neces-

sary. We already know that g, the general proposition, is not a

logical consequence of/?, the data of the elimination. Nor is it the

case that p is an impossible proposition. Hence the only remaining
alternative is that g is necessary (analytical)/

In presenting the scheme of induction by elimination we intended

primarily to inquire whether it could reach inductive propositions
which were synthetical. Now we have seen that if eliminative

induction is to reach this then the general postulates necessary for

this method must be synthetical. Our next task will be to see what

bearing this has upon the question as to whether eliminative induc-

tion can justify inductive inference or not.

If the postulates are synthetical principles, their truth cannot be

guaranteed a priori* But perhaps it could be established a posteriori,
i.e. generally speaking according to some 'inductive method'. 7
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It is immediately clear that this 'inductive method' cannot be
induction by elimination. For this method presupposes, for the
attainment of truth, the two postulates the truth of which is now to
be proved. Thus to try this way would be circular.

But it is equally clear that the method cannot be enumerative induc-
tion. This method is constantly 'periculo ab instantia contradictoria

exponitur\ and can hence never reach certainty.
8

The possibility then remains that there exists some third inductive

method, beside the eliminative and the enumerative ones, which
could be used for proving the truth of the two postulates. But this

possibility also can be ruled out on the following general grounds:
That a general proposition g can be established by an 'inductive

method' means 9 that g can be inferred from some experiential
'data' d in conjunction with some 'rules' or 'principles' p. Since

g is a general and d a singular proposition, it follows that/? must be

general
10 If the inductive method has to establish the truth of g,

the truth of d andp must be known. But, how can the truth ofp be
known? If it is known a priori, then p is analytical. And then it

follows that g is analytical too. 11
If, on the other hand, p is known

a posteriori, then its truth must have been established by means of
some other inductive method using other rules or principles p',
different from/?. Then the questions arises, how/?' is established arid

we are driven to consider some further principles p", different18

from bothp and
/?

'.

Thus we see that we cannot prove the truth, as general synthetical

propositions, of the postulates upon which eliminative induction is

based, without reference to some new inductive method, and it

cannot be proved that this new method establishes the truth of the

postulates without reference to a further inductive method, again
different from the former ones, and so on in infinitum. As the truth

of the two postulates as synthetical propositions was necessary in

order that induction by elimination should lead to true generaliza-

tions, not being analytical, we can conclude that the whole idea of an

inductive method reaching general synthetical propositions, known
to be true, has failed as leading to an infinite retrogression. For

from its leading to an infinite retrogression follows that it is never

possible to know when and if the generalization aimed at can be

regarded as true.
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8. The elimmative method and the justification of induction.

Although Bacon's idea of an inductive logic able to conclude 'ita

ut instantia contradictoria inveniri non potest' is proved to be a

failure, we must not underrate the relevance which a system of

inductive logic on the above principles nevertheless possesses to the

question of justifying induction.

If anybody were to assert that the principles of elimmative induc-

tion justify a certain general proposition he is likely to assert, not

that this generalization can be proved to be true, so much as that it

can be proved to follow from premisses of a particular kind. These

premisses are partly singular propositions asserting that certain

individuals have certain properties and that, consequently, certain

generalizations are invalidated; partly general propositions or

'inductive principles' such as the above Deterministic Asumption
or Postulate of Completely Known Instances. The truth of the

former premisses is, as a rule, unproblematic. In the truth of the

latter premisses, again, we are seldom directly interested. Therefore

also the task of proving their truth is of minor importance in view

of the practical needs of science.

The really important task of a logic of induction is to analyse the

logical mechanism of elimination so that it becomes clear what pure
elimination alone can achieve, and exactly to formulate the content

of the principles needed in order to extract inductive generalizations
from the data of the elimination. 1 When this is done we can deter-

mine in the case of given generalizations how far they are based on

known data and how far they go beyond our direct experience. This

knowledge, which gives us elucidation as to the logical relation

between our inductive conclusions and the experiential evidence

on which they are based, can sometimes truly be. said to constitute a

justification of induction.
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CHAPTER V

INDUCTION AND PROBABILITY

1. The hypothetical character of induction.

IN the three preceding chapters we have examined different attempts
to justify induction as a species of reasoning leading to certainty.
We have seen that those attempts are successful or not depending

upon what we expect the justification of induction to be. They
succeed, under appropriate conditions, inter alia, if by 'justification'

we mean any of the following three things:

(1) A proof that a given general proposition is a 'law' for certain

data, i.e. that those particulars can be deduced from the generalization.

(Whewell.)

(2) A proof that a general proposition can be deduced from given

particular propositions by the aid of certain other general proposi-

tions, called 'inductive principles'. (Bacon-Mill,)

(3) A demonstration that a general proposition, obtained by
induction, is analytical, i.e. true per conventionem. (Convention-

alism.)

But we have also seen that all those attempts fail to justify induc-

tion in one very important sense, viz. that ofproving predictions from

an inductive generalization to be true. Or to use a different mode of

expression: we cannot prove a synthetical general proposition to be

true prior to experiential testing.

The truth that inductive propositions, when used for the purpose
of predicting future happenings, are and must always remain hypo-

theses which coming experience may either confirm or refute, has

been already clearly apprehended by men of science centuries ago.

It was expressed, for instance, by Newton in his Opticks, when he

said that 'the arguing from experiments and observations by induc-

tion' is 'no demonstration of general conclusions'. 1 The same

clarity as to the impossibility of proving predictions from a law to

be true a priori also pervades the works of another great man of

science of about the same time, Huyghens.
2
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In spite of all the various doctrines of synthetical judgments a

priori it can hardly be maintained that any philosopher had explicitly

asserted the possibility of proving predictions of concrete events in

advance of experience. But it is true that philosophers, even those

who have devoted much ingenuity and work to the theory of induc-

tion, have until recently paid only slight attention to the fact that

inductive propositions, the consequences of which are deduced and

successively tested, are hypotheses.* The significance of this truth

has usually been entirely minimized by the stress that those philoso-

phers have laid upon the element of certainty which is also inherent

in the inductive mode of reasoning.
4

The first philosopher to have clearly apprehended and separately

emphasized the epistemological significance of the hypothetical
element in induction, i.e. of the impossibility of proving the truth of

predictions, is Jevons. 5 To have done this is the chief merit of his

philosophy of induction. Today the opinions of Jevons in these

matters may seem almost trivial, but the way in which they were

misunderstood and contested in contemporary philosophy is the

best proof that they represented a real step forward in the theory of

induction. 7

2. Hypothetical induction andprobable knowledge.

One of the chief aims of science is to provide a basis for successful

predictions. Does the fact that knowledge used for predictions is

hypothetical affect the possibilities of science to achieve this aim?

Is the impossibility of guaranteeing the truth of predictions prior
to testing a 'catastrophe to science', does it mean that all prediction
is simply haphazard guessing, and that we are left in 'complete
uncertitude' as to the future course of nature?

It is obvious that if the results of our previous investigations make
such questions seem justified, then the results have been misin-

terpreted. Because those results, as has already been pointed out

several times, are 'granxmaticar in their nature, i,e. concern the use

of certain words, whereas the above questions seem to protest

against some absurd consequence of our results for 'matters of fact'.

The questions arise out of the same fundamental mistake as that
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which makes Berkeley's treatment of the existence of things and
Hume's theory of causation appear absurd and catastrophic the

confusion between the clarification of thought and the discovery of
facts.

The above questions, therefore, could be said to express a vain

worry about the implications of our investigations. But if we are

asked to show in detail why we need not worry about these imagined

consequences, we are soon confronted with the most perplexing

problems.
The first answer which suggests itself as settling our anxiety as to

the 'catastrophe of science' is roughly the following:
From the fact that we cannot prove what is going to happen it

does not follow that we could not estimate, prior to testing, the degree
of reliability possessed by a prediction. Such estimations as a matter

of fact take place, since certain predictions are actually regarded as

very reliable ones, and others again as less or in a very small degree
reliable. These different degrees of belief in predictions we also

express by saying that predictions are more or less probable. Induc-

tive knowledge, in so far as it is hypothetical, is probable knowledge.
This is why the impossibility of guaranteeing the truth of predictions
is no 'catastrophe to science', and why it is overhasty to say that we
are left in 'complete uncertitude' as to the future.

If this answer were satisfactory it would imply, that the fact
itself that certain predictions are believed more, and others again
less strongly, were all the justification of inductive predictions that

we need.

To this, however, there appears to be a strong prima facie objec-
tion. From the fact, it will be said, that one prediction or one genera-
lization is regarded as more reliable, i.e. believed more strongly than

another, it does not" follow that this prediction or generalization

really is more reliable than the other one. That is to say, we might
have been mistaken in our judgments about probabilities. The
reference to degrees of belief, therefore, is unsatisfactory as a justi-

fication of induction unless we can justify the beliefs themselves,

that is to say can guarantee with certainty, or at least with probability,
that we are not mistaken in our estimations of the probability of

inductive propositions.
1

Thus we have arrived at the idea that the justification of hypotheti-
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cal induction does not lie in the fact, as such, that we estimate

degrees of probability, but is to be found in some 'mechanism of

probability' underlying these estimations and guaranteeing their

validity. To the examination of this idea, which has played, and still

plays, a profound role in discussions and philosophical controversies
about induction, we shall devote the following chapters.

3. A scheme for the treatment of inductive probability.

The idea of a 'mechanism of probability' underlying our estima-
tions of reliability in inductive propositions gains support from the

following observations:

These estimations, it appears, are not made on 'intuition' only but
take place in conformity with certain rules. Such rules are for
instance: The probability of a generalization increases with the

number of verified instances of it; the verification of an unexpected
or surprising instance of a law contributes more to its reliability
than the verification of an instance of a type with which we are

familiar; the probability of an induction is, somehow, proportionate
to the scope of the generalization.

It will be our task in Chapter VI to give aformal analysis of the
rules of inductive probability. We will inquire into the conditions
under which the above-mentioned rules and certain others are

provable, that is to say, what assumptions need to be made about

probabilities in order that those rules shall become logically neces-

sary. That this analysis is purely 'formal' also implies that it is

pursued without any presuppositions as to the 'meaning' of proba-
bility or as to how probability-values are empirically determined.
The formal treatment of inductive probability will show that the

rules mentioned are all deducible from a common set of simple
assumptions. This is important as it proves that those rules, fre-

quently mentioned in works on induction but seldom analysed into

their formal interconnections, form part of a coherent system of
inductive probability.
Moreover the analysis is peculiar inasmuch as that it shows the

formal structure of the probability-concept of this system of induc-
tive probability to be the same as the formal structure of that proba-
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bility-concept which is treated in the branch of mathematics known
to us under the name of the ('classical') calculus of probability.
This shows that the idea oftwo kinds ofprobability 'mathematical

'

probability and 'philosophical' probability, the latter being essentially
the probability of inductions is unnecessary at least in so far as

the formal nature of inductive probability is concerned.

The formal analysis of the rules of inductive probability cannot
in itself determine the relevance of those rules to the justification of
induction.

In Chapter VII we return to the problem of justification. We shajl

try to show, why any justification of induction with probability,
intended to refute Hume's scepticism as regards the possibility of

guaranteeing anything about the future course of nature, is doomed
to failure irrespective of how we interpret the probability-concept.
From this will follow that no dichotomy into different kinds of

probability 'mathematical' and 'philosophical' or whatever the

terms be is helpful towards a solution of Hume's Problem.
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CHAPTER VI

FORMAL ANALYSIS OF INDUCTIVE PROBABILITY

1. The Abstract Calculus ofProbability.

Historically, the mathematical study of probability was developed
on the basis of a study of certain mathematical models of the concept.
The oldest 1 of these models is provided by the well-known definition

of probability as a ratio of cases or possibilities, 'favourable' and
'unfavourable' to a certain event or to the outcome of a certain

experiment. This model was suggested by considerations pertaining
to games of chance. Another model is provided by the definition of

probability as the relative frequency of a characteristic or an event

within a class ('population')- Probability-mathematics, when devel-

oped on the basis of the first model, was primarily a branch of the

theory of combinations and permutations. Probability-mathematics

developed from the frequency or statistical model, may be termed a

class-ratio arithmetic. 2

In the two models are reflected different opinions as regards the

meaning of probability and about the relation of the mathematical

theory to empirical reality. 'Philosophically', these opinions are

highly divergent. We shall not here be interested in the question,
which of them is right or whether some of them can be 'reconciled'

by virtue of the fact that they fit different concepts of probability.
3

The logico-mathematical nature of the models themselves will be

somewhat more closely scrutinized in the next section.

It is a most important fact that the theories of probability, which
can be developed on the basis of the two models mentioned, though

differing in their conception of the 'meaning' of their fundamental

notion, yet agree, by and large, in their logical structure. This fact

suggests the possibility of creating an Abstract Calculus of Proba-

bility, i.e. a deductive theory which is 'neutral' with regard to

conflicting opinions about the meaning of probability and studies

only the mathematical laws which this notion obeys. Within a

theory of this abstract kind 'probability' figures as an undefined
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term, for which certain 'axioms' or 'postulates' are laid down.
The axioms are sometimes said to constitute an implicit definition of

probability.
Several abstract calculi of probability have been suggested

4 and
some have been developed in detail. They fall into two groups. We
shall call them the set-function calculi and the logistic calculi.

An Abstract Calculus of Probability on a set-function basis has
been developed by the Russian mathematician A. Kolmogorov in

an important publication from the year 1933. 5 In Kolmogorov's
calculus probability figures as a function of sets. The theory has
received much favour among mathematicians6 and is perhaps the

most satisfactory mathematical treatment of probability which has

been presented. It incorporates probability mathematics within the

general theory of measurable sets of points.
The theory of J. M. Keynes from the year 1921 may be regarded as

the first attempt on a large scale at the development of an abstract

calculus of the logistic type.
7

Another, more consciously 'formalist*,

system of the same type is that of Hans Reichenbach. It was first

presented in 1932. 8 Axiomatic systems, similar to that of Keynes,
are due to S. Mazurkiewicz and H. Jeffreys.

9

Systems of probability of the type here called logistic' form a
rather heterogenous group. Common to all members of the group is

that they conceive of probability as a 'logical relation' between two
entities. The entities may be propositions, as in the systems of

Keynes and Jeffreys, or they may be attributes (propositional-

functions, properties, classes) as in the theory of Reichenbach. 10

They might with a common name be called proposition-like entities.

Their 'proposition-likeness' consists, vaguely speaking, in the fact

that they can all be manipulated with the aid of the so-called truth-

connectives: negation, conjunction, disjunction, etc. 11

The logistic calculi of probability thus stress the relative (or rela-

tional) nature of probability. Probability is a quantity depending
for its value upon the 'field of measurement' in which it is deter-

mined. 12

For our purposes a logistic calculus of probability is better suited

than a set-function one. We shall in this section outline a logistic

Abstract Calculus of Probability. In order to simplify the treatment

we have made as many omissions of points of a.formal nature as has
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seemed to us possible without seriously damaging the logical rigour
of the arguments. The purpose of our inquiry, it will be remem-

bered,
13

is to indicate, how certain popular ideas about the probability
of inductions may be assigned a place within the common framework
of probability mathematics.

We introduce a symbol 'P(a/hy which we call probability-functor.
It can be read: the probability of a relative to h. Instead of 'relative

to' we may also say 'on data' or 'given' or simply 'in'.

It may be asked, whether
6

P(a/hy makes sense for any two proposi-

tions, a and /z, i.e., whether it makes sense to say that any given

proposition possesses, relative to any other given proposition a

(known or unknown) probability. It is primafacie plausible to think

that a and h would need to be somehow 'materially related' in order

to determine a probability-relation. What sense could it make to

speak of the probability of a proposition of, say theoretical physics
relative to a proposition of history? It is further doubtful, whether a

proposition can have a probability relative to a self-contradictory
or for other reasons logically impossible proposition.

14

It is thus reasonable to think that the propositions (proposition-
like entities) a and h must satisfy certain conditions in order to

determine a probability-relation.
It may further be asked, whether 'P(a/h)\ when significant,

necessarily signifies a number, i.e. whether the probability of a

proposition relative to another proposition is necessarily a numeri-

cal magnitude. This is a serious question, not least from the point of

view of a theory of induction. For it is sometimes said that proba-

bility as an attribute of inductive conclusions, though a legitimate

concept, differs from 'ordinary' probability, among other things,
in being non-numerical 15 Of probability which is considered as

non-numerical the question may be raised, to what extent it is

comparative, i.e. obeys laws about 'greater', 'equal', and less'."

We shall, however, in this chapter deliberately ignore the problems
about the existence of the probability-relation and about the numerical

or non-numerical nature of (inductive) probability. In constructing
our Abstract Calculus we simply proceed on the assumption (con-

vention) that with such pairs of proposition-like entities as may enter

our arguments there may be co-ordinated a unique, non-negative
real number subject to the following axioms or postulates:
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AL P(a/h)+P (~alh)=L The sum of the probability of a

proposition and the probability of its negation, relative to one and
the same datum, is 1 .

A2. P(a&blh)=P(a[h)xP(b/h&d). The probability, given A, of a

conjunction of two propositions, a and b, is the probability of a on A
as datum multiplied by the probability of b on h and a as datum.
We call this the Multiplication Principle.

A3. Ifh is self-consistent, thenP(/z//z)=l.
On the basis of these axioms, and a few principles of subordinate

nature, the whole fabric ofwhat might be called 'classical' probability
mathematics can be erected.

The deduction of theorems from the axioms can be completely
'formalized', i.e. subjected to explicitly stated rules for the manipula-
tions offormulae. We shall not burden the exposition by enumerating
the rules of inference. We only mention that the deduction, by
and large, proceeds through 'substitutions of identities*, and that of

such substitutions there are two kinds, viz.

(i) external substitutions, of numerically identical' expressions, in

the equations, and

(ii) internal substitutions, of logically identical propositions, in

the probability-functors.

(Examples of the two types of substitution of identities are indi-

cated below.)
We mention a number of elementary theorems.

Tl. O^.P(a/K)^L Probability is a magnitude between O and 1,

inclusive the limits.

That probability is not-negative, i.e. equal to or greater than O,
was established by convention. (P. 92.) From this convention and

the postulate (Al) stating that the probabilities of a proposition and

of its negation, on one and the same datum, add up to 1, it immedi-

ately follows that probability must be equal to or smaller than 1 .

72. If h is self-consistent and entails a, then P(a/h) = 1 .

Proof:

(1) If h entails a, then a&h is logically identical with /z.
17

(2) If a&h is logically identical with h, then by internal substitu-

tion P(h/K)
= P(a&h\h\

(3) P(a&h/h) = P(h/h)xP(a/h&h). (From A2.)

(4) h&h is logically identical with h.
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(5) Thus, by internal substitution, P(ajh&K) = P(a/h).

(6) Hence, by external substitution in (3), P(a&h/Ii)

P(h/h)xP(alh).

(7) If h is self-consistent, then P(h/h) = L (A3.)

(8) Hence, by external substitution in (6), and considering the

identity established in (2), we get P(a/h) = 1. This completes the

proof of T2.

T3. P(alh)=P
(1) P(b/h&a)+P(~b/h&a) = L (From A I.)

(2) Since a probability is, by convention, a unique value, we have

P(alh) = P(a/h).

(3) P(a/h)
-

P(a/h) x [P(blh&a)+P(~b/h&a)]. (From (1) and (2).)

(4) P(a/h) =P(alh)xP(blh&a)+P(alh)xP(~blh&a). (From (3).)

(5) P(a/h) ^P(a&blh)+P(a&~blh). (From (4) with the aid of

A2.)
We shall call T3 the Division Principle.

T4. P(avblh) ^P(alli)+P(blh)-P(a&blh).

(1) P(avblh) =P((avb)<&lh)+P((avb)&~blh). (From T3.)

(2) (avb)&b is logically identical with b alone, and (av&)&~6 is

logically identical with a&~b. Thus by internal substitution in (1) we
obtain

(3) P(avb/ti) =P(bjh)+P(a&~blh\
(4) P(a&~b/h) = P(alh)-P(a&blK). (From T3.)

(5) P(avb/h)=P(alh)+P(blhy-P(a&blh). (From (3) and (4) by
external substitution.)

T4 will be called the Addition Principle.

That two propositions are mutually exclusive means that the

negation of either proposition logically follows from the other

proposition. Thus, if a and b are mutually exclusive, ~b follows

from a.

T5. If a and b are mutually exclusive and consistent with A, then

P(avb/h) - P(a/K)+P(b/h).
It may easily be proved that, if a and b are mutually exclusive and

consistent with A, then P(a&b/h) = O. We leave the proof as an

exercise to the reader.

We shall call T5 the Special Addition Principle.
We say that a is independent of b (for probability) in A, if P(ajh) =

P(alh&b).
94



FORMAL ANALYSIS OF INDUCTIVE PROBABILITY

T6. If a is independent of b in h or if b is independent of a in A,
then P(a&blh} = P(a/h)xP(blh).

(1) P(a&b/h)=P(a!h)xP(b!h&a)^P(blh)xP(alh&b). (From^
(2) If a is independent or 6, then P(0/A) = P(alh&b). If 6 is

independent of a, then P(6/A) = P(b/h&a). In either case we get
from (1) by external substitution:

(3) P(a&bjh) = P(alh)xP(b/h).
We call T<5 the Special Multiplication Principle.
For the higher development of the calculus, the notion of inde-

pendence is of the greatest importance.
18

If extreme probabilities (the values and 1) are excluded, we can

prove the following theorems:

T7. If a is independent of b in h, then b is also independent of
a in A.

T8. If a is independent of b in A, then a is also independent of
~b in A.

79. If <2 is independent of b in A, then ^a is also independent of

b and of ~& in A.

We leave the proof of these elementary theorems to the reader.

Consider an event such as, e.g., getting 'head' in tossing a coin.

We symbolize the occurrence of the event by
'"

and its non-occur-

rence by
c

<-v/T.

Consider further a sequence of occasions, on which the event may
occur or fail to occur, e.g., a sequence of tosses with a coin. We
symbolize the sequence of occasions by *Xi\

ex z\ . . .

*Exn means that the event has occurred on the nth occasion, and

'^Exn* means that the event has failed to occur on the nth oc-

casion.

We shall say that the occurrence (and non-occurrence) ofE on the

occasions x i9 -x 2 , . . . are independent for probability in A, if the

probability, relative to A, of any proposition Exn is independent for

probability in A of any proposition A
'

to the effect thatE has occurred

or failed to occur on some other occasions than xn . (The proposition
A' is thus itself a conjunction of propositions of the form Ext and

~Exi.)
A sequence of occasions of independent occurrences (and non-
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occurrences) of an event are said to constitute an independence-
realm. 19

An independence-realm will be called normal, if the probabilities
for the occurrence of the event on the respective occasions are
neither nor 1.

A normal independence-realm will be called Bernoullian, if the

probabilities for the occurrence of the event on the respective
occasions are all equal If the probability of the occurrence of the
event is p (the Bernoullian probability), then the probability of its

non-occurrence is 1 p.
The notions of the various independence-realms can easily be

generalized so as to apply to sequences of occasions for the occurrence
and non-occurrence, not of one event E only, but of any number n
of events Ei 9

. . ., En . For our purpose, however, it will suffice to

consider the simplest case, when there is one event E only.
For Bernoullian independence-realms can be proved a very

important theorem, usually known as Bernoulli's Theorem. It is

convenient to divide its content into two parts or stages.
We ask for the probability that, on n occasions, E will occur m

times and fail to occur n-m times. This can happen in nCm different

ways,
20

all of which are mutually exclusive. The probability that E
will occur and fail to occur in a given one of these nCm ways is, by
repeated use of the Special Multiplication Principle, found to be

p
m x (1 -pY~m , where p is the Bernoullian probability. The proba-

bility again that E will occur and fail to occur in any one of the nCm
ways is, by repeated use of the Special Addition Principle, found to be

It can be proved
21

that, for givenp and n, the calculated probability
has its maximum value for that value of m:n which is closest to p. In
other words: the most probable value of the event's relative frequency
on n occasions is the value which is closest to the event's Bernoullian

probability p. This, which may also be called the Direct Law of
Maximum Probability (for Bernoullian Independence-Realms),
constitutes the first stage in the proof of Bernoulli's Theorem.
We next ask for the probability that, on n occasions, E will occur

m times and fail to occur n-m times, m now being a variable which
runs through all values (integers) for which the ratio m:n falls in the

interval p e. (e is an arbitrary quantity which may be as small as
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we please.) This probability is calculated with the aid of a further

application of the Special Addition Principle and is simply the sum
2 of the values nCm xpm x(l-~~p)

n-m when m runs through the

interval just mentioned. Of this sum Z it can be proved
22

that, for

given values ofp and e, it is greater, the greater n is. As n approaches
infinity, I approaches 1 as a limit. In other words: if the Bernoullian

probability of the event is p, then the probability that the event's

relative frequency on n occasions mil deviate from p by less than an
amount s, however small9 approaches as a limit the maximum value 1

as n is indefinitely increased. This, which may also be called the Direct

Law of Great Numbers (for Bernoullian Independence-Realms),
constitutes the second and final stage in the proof of Bernoulli's

theorem.

Thus, loosely speaking, the first part of Bernoulli's Theorem tells

us that the most likely relative frequency of an event is that which is

indicated by its probability, and the second part that 'in the long
run' it becomes infinitely probable that the event's relative frequency
will equal its probability. The danger of using this loose mode of

speech is that it leaves without mention the, rather sweeping, assump-
tions of independence which are essential to a correct proof of the

theorem.

2. The interpretation offormalprobability.

It is usual to distinguish between two types of interpretation or

model of abstract calculi. 1 In the one type of interpretation it is

assumed that certain empirical objects 'satisfy' the postulates

(axioms) which the calculus lays down for the undefined concepts.
In the other type ofinterpretation it improved of some entities that they
conform to the postulates.
An example of an interpretation of the first type is when we

conceive of Euclidean geometry as a physical theory of space ('light-

ray geometry'). As is well known Euclidean geometry, as such a

theory, is supposed to have been falsified by some experiments which

are relevant to the acceptance of Einstein's Theory of Relativity.

An example of interpretations of the second type is Descartes 's

invention of analytic geometry. In this geometry the system of
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Euclid is 'modelled
5

in the realm of numbers, the axioms and
theorems of abstract Euclidean geometry becoming provable proposi-
tions within another branch of mathematics.

It is of some importance to note that all known interpretations of

abstract probability are interpretations of the second type, i.e.

logico-mathematical models. For this reason one ought not, as is

sometimes done,
2 to regard the relation between abstract and inter-

preted probability as presenting a close analogy to the relation be-

tween axiomatic geometry and the physical theory of space.
There are many models of abstract probability, but all of them

which are known to be important fall within one of two main

categories.
3 We shall call these categories frequency-models and

range-models. Since the members of the respective catagories are

closely similar to each other, we may also speak of the categories
themselves as the frequency- and the range-model of abstract proba-

bility. The frequency-model may also be called a statistical, and the

range-model a modal interpretation of probability ( 'possibility
'-

interpretation).

The Frequency-Model Any model of the statistical type pre-

supposes that the terms of the probability-relation are, not proposi-

tions, but propositional-functions. It will suffice for our purpose to

consider propositional-functions of the simplest kind only, viz.

propositional-functions of one variable. We shall further make the

simplifying assumption that the propositional-functions which enter

as terms of one and the same probability-relation are functions of

one and the same variable. Under these simplifying assumptions
we can speak of the probability-relation as a relation between some
attributes or properties or classes.

On the frequency view, the probability of a given h is the relative

frequency of such values of the variable which statisfy the proposi-
tional-function a among all values of the variable which satisfy the

propositional-function h. (Instead of Value of the variable' we may
say 'individual'.) Popularly speaking, the probability of a given h is

the relative frequency with which an 'event' of the nature a takes

place when the 'conditions' h are fulfilled. Or differently again: the

probability of a given h is the proportion of A's which are a's.

Since the relative frequency in question thus is a proportion of true
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propositions within a class of propositions, it may also be called a

truth-frequency*
The notion of a relative frequency or a proportion is straight-

forward and presents no difficulties, if the number of values of the

variable which satisfy h is restricted to a finite number n. It is easy to

show that such a Finite Frequency-Model satisfies our postulates of
abstract probability.

5

The Finite Frequency-Model is, for reasons which we need not
consider here, thought very unsatisfactory from the point of view of

accounting of the 'meaning
5

of probability.
If the number of values of the variable which satisfy h is potentially

infinite, the proportion of A's which are a's is the limiting value of a
relative frequency in a sequence.

6 The notion of a limiting-frequency
must not be regarded as 'meaningless' or in any other way logically

unsatisfactory. But it is important to observe that the notion makes
sense only relative to a way ofordering the values of the variable which

satisfy h. 7

By re-ordering the sequence we may alter or even destroy
the limiting value. 8

The Frequency-Limit-Model can be shown to be also a valid inter-

pretation of the Abstract Calculus of Probability.

Against the Frequency-Limit-Model too, as a suggested analysis
of probability, many grave objections can be levelled. One is that

empirical propositions about proportions in infinite 'populations'
can be neither verified nor falsified by statistical observation. Another
is that a probability is (usually) not thought to depend upon a way of

ordering the members of a population. And a third is that use of

probability calculations for statistical predictions is by no means

always tied up with beliefs in limiting-frequencies in nature.

A problem which has been very much discussed in connection with

the Frequency-Limit-Model of probability concerns the manner in

which those values of the variable which satisfy a are distributed

among the values which satisfy h. It has been thought that unless this

distribution satisfies some conditions as to irregularity or randomness,

the frequency-model cannot give an adequate account of what we
mean by a probability. The definition of random distribution,

however, constitutes a difficulty.
10

It should be observed that none of the difficulties mentioned

impairs the logico-mathematical correctness of the Frequency-Model
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(for finite or infinite populations) of abstract probability. And this

correctness of the frequency-view is all that concerns us in the present
investigation.

11

The Range-Model
12 A model of this type can be worked out both

on the assumption that the terms of the probability-relation are

propositions and on the assumption that they are attributes. 13 We
here adopt the former alternative, which appears to be the more usual
one. 14

The range-theory of probability, in its simplest form, can be

loosely explained as follows:

We 'analyse' the evidence-proposition h into a number, say n, of

alternatives, hi, . . . hn , which are mutually exclusive and such that
some of them, say m, entail the proposition a and the rest entail the

proposition ~#. 15 In conformity with a traditional terminology, we
shall call the alternatives, which entail <z, 'favourable' alternatives

and the alternatives, which entail ~a, 'unfavourable' alternatives.

By the probability of a given h we now understand the ratio of
'favourable' alternatives to all alternatives, or the proportion of
alternatives 'favourable' to a among all alternatives which fall under
h.

We may call this the 'classical' form of the range-definition
of probability. Omitting an important qualification to be mentioned

presently, it answers approximately to the definition of probability
proposed by Laplace

16 and current in books on the subject up to the

present day.
The 'classical' definition can be generalized and the description

of it made more exact in the following way:
We consider some set v of propositions, such that a and h are

truth-functions 17 of some members of o-.
18 We thereupon consider

the disjunctive normal forms of a&h and of h in terms of all the
members of a. Let us assume that the normal form of a&Ji is m-
termed and that the normal form of h is ^-termed, i.e. let us assume
that the normal forms are disjunctions of m and of n conjunctions
respectively. By the probability of a given h we now mean the ratio
m:w. 19

By the a-range of a proposition we shall mean its disjunctive
normal form in terms of the members of cr.

20
(In this definition it
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is presupposed that the proposition in question is a truth-function

of the propositions in or.) The conjunctions in the normal form we
shall call unit-alternatives

The numbers m and n above are measures of the o-ranges of the

propositions a&h and h respectively. These measures are obtained

simply by counting the number of units in the ranges of the proposi-
tions. But we may also adopt some other method of measurement
which assigns, not an equal, but an unequal 'weight' to these units.

In this way we arrive at a generalized notion of the measure of a

range. We introduce the symbol
cmra

'

for 'measure of cr-range
3

.

On the basis of this generalized notion of a range-measure, we

introduce the definition P(alK) = dfJ

It may be shown that for any choice of a and mra subject only
to a few restrictions of a very general nature23 this ratio of measures
of ranges satisfies the postulates of abstract probability. The above
'classical' range-definition and its generalized form may be regarded
as special types of such ratios.

It is characteristic of this definition that if, given a and h, we ask
what is the value of P(ajh) the answer will depend upon the choice

of a and the choice of rarCT ,
24

Since, from the point of view of the

applications of probability, not all choices are equally good, we are

led to consider the problem of adequacy in the choice.

The answer given to this problem in the 'classical' theory of

probability can, in our terminology, be stated as follows:

The choice of a ought to be such that each unit in the ranges can
be given an equal weight. Or, popularly speaking, the data ought to

be analysable into a number of equipossible alternatives.

When this condition is added to what we called above the 'classical'

range-definition we get the following: The probability of a given h

is the proportion of alternatives, which are 'favourable' to a among
a number of equally possible alternatives which fall under h.

But how can we be sure that an analysis of the data leads to equi-

possible unit-alternatives? To this question the 'classical' theory

proposed as an answer the famous Principle of Insufficient Reason,
also called the Principle of Equal Distribution of Ignorance or the

Principle of Indifference. The applicability and formulation of this
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principle have been the object of much discussion and controversy.
26

In the original formulation, given to it by James Bernoulli, the

principle states that alternatives should be held equally possible, when
no reason is known why one of them rather than another should

come about. 26

One other answer to the problem of the adequate choices of or

and mra should be mentioned before we leave this topic:

The choice of mra ought to be such that for a given a, the
// jp ~\

ratio ~2j equals the value of P(ajh) on the frequency-interpre-

tation. 37

To accept this answer is to let the frequency-interpretation function

as a check on the adequacy of any particular range-interpretation of

the concept of probability. This may be said to ignore the problem
of adequacy for the frequency-interpretation. But it is nevertheless

noteworthy that one of the difficulties confronting the range-theory
of probability is how it can be used to account adequately for

probability-values without taking refuge, so to speak, in the

frequency-theory.
2 8

In this inquiry we are, however, not interested in the difficulties

and problems confronting the range-theory as a proposed analysis

of the meaning of probability. For our purposes it will suffice to note

that a definition of probability in terms of range-measures just as

a definition of the concept in terms of relative frequencies is

possible and gives a mathematically correct model of our Abstract

Calculus.

3. The doctrine of Inverse Probability.

In the Theorem of Bernoulli, one might say, we argue from
probabilities to probable values of relative frequencies or propor-
tions. Can this argument be reversed or inverted? Is there a theorem

of the calculus which enables us to conclude from knowledge of

relative frequencies to probable values of probabilities? If this

theorem were analogous to the Theorem of Bernoulli, it would,

speaking approximately, tell us that the most likely value of an

event's probability is that indicated by its actual relative frequency,
102



FORMAL ANALYSIS OF INDUCTIVE PROBABILITY

and that 'in the long run' it becomes infinitely probable that the

relative frequency with which an event occurs gives us the true value

of its (hitherto unknown) probability.
It is a noteworthy fact that James Bernoulli, in proving the

Direct Law of Great Numbers, evidently believed himself to have

proved also the inverse of it, i.e. that knowledge of actual frequencies
entitles us to probable conclusions about probabilities.

1 Later
authors again sometimes believed the inverted theorem to follow as a
matter of course from the direct one. 2 The reasoning underlying
such an idea has an apparent plausibility in its favour, but is neverthe-

less thoroughly fallacious. Since the question is of a certain interest to

the problem of induction, we shall examine in some detail the way to

a correct proof of the Inverse Laws of Maximum Probability and of

Great Numbers.

The inversion essentially relies upon an elementary formula of

probability theory which is not needed for the proof of the direct

principles. We shall call it, following Keynes,
3 the Inverse Principle.

Its proof is as follows:

(l)P(blh&a) =pMfo' (From ^2 provided P(

(2) P(a&b\K) = P(blh)xP(a!h&b). (From A2.)

(3)P(alfy=P(aMlfy+P(a&~b{h). (73.)

(4) P(a/K) ^P(blh)xP(a/h&b)+P(~blh)xP(alh&~b). (From
(3) and A2.)

Tin PthiiAA- __P(blh)xP(aIh&b)_w z ;
P(b/h) xP(alh&b+P(~blh) xP(a/M~6).

(From (1), (2), (4).)

This is the simplest form of the Inverse Principle. We next con-

sider two generalizations of it.

Let bi . . . bs be s mutually exclusive and jointly exhaustive

alternatives. Then we have P(a/h) = P(a&(b :v . . . vbJ/K) =

P(a&b l v ... va&bJK) =

P(b l/h)xP(alh&b 1)+. . .

If, in T10, we substitute the last expression for the denominator

103



THE LOGICAL PROBLEM OF INDUCTION

and bi for b, we reach the following generalization of the Inverse

Principle:
TIL If bi is one of s mutually exclusive and jointly exhaustive

t t ^ n o , P(bilh)xP(alh&bi)
alternatives b, . . . b,, then Pfa/h&d) = - - ~ ^

.

^P(bilh} xP(a/h&bi)

From Til we immediately reach one further generalization of the

principle, viz..

T12. If bilt . . ., bik are k of some s mutually exclusive and jointly
exhaustive alternatives 61. , . bs, then

v ... vb
iklh&d) =

In speaking of the Inverse Formula we shall usually mean the

formula given in TIL In conformity with traditional terminology
we shall speak of the probabilities P(bijh) as the initial or a priori

probabilities, of the probabilities P(a/h&bi) as the likelihoods, and
of the probabilities P(bilh&d) as the a posteriori probabilities.

If all a priori probabilities are equal, the values P(bt/K) cancel out

in the right-hand member of the Inverse Formula. Then it is readily
seen that the a posteriori probability P(btlh&d) has its maximum
when the corresponding likelihood P(a/h&bi) is greatest.

From the Inverse Principle we arrive at the Inverse Laws of

Maximum Probability and <3reat Numbers in the following principal

steps:

Let there be 5- Bernoullian independence-realms for the event E.

And let the Bernoullian probabilities bej^i . . . ps . We assume, for

the sake of simplicity, that these probabilities are all different from
each other and that^i< . . . <ps .

The reader may think of these s independence-realms as s different

sets of conditions under whichEmay occur. Each time the conditions

are satisfied we have an occasion for jB's occurrence. On each occa-

sion E may either occur or fail to occur. That the conditions con-

stitute an independence-realm forE means that the probability ofE's
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occurrence on a given occasion is not affected by E's occurrence and
non-occurrence on other occasions. And that the independence-
realm is Bernoullian, finally, means that the probability of E's

occurrence remains the same on each occasion.

The 'classical' illustrations are from games of chance. An inde-

pendence-realm could be the potentially infinite sequence of drawings,
with replacement, of balls from an urn. If there are s different urns,

there are s such independence-realms. The event E could be the

drawing of a black ball. Under 'normal' conditions of drawing we

regard the results as independent for probability of each other.

The Bernoullian character of the independence-realms, again, is

guaranteed by the stipulation that the ball should be replaced after

each drawing.
In each of these independence-realms we can calculate the proba-

bility that E will happen exactly m times on n occasions. In the

realm with the Bernoullian probability/?! this value is

Let qi be the probability that (a random set of) n occasions for "s

occurrence belong to the independence-realm with the Bernoullian

probability p . . . and qs the probability that they belong to the

realm with the Bernoullian probability ps .

For example: #1 is the probability that n drawings, with replace-

ment, are from an urn in which the probability af drawing a black

ball is pi. It is assumed that the n drawings are from one and the

same urn.

We can now, given thatE occurs exactlym times on n occasions, use

the Inverse Formula of Til to calculate the probability that those

occasions belong to an independence-realm with the Bernoullian

probability/?/. (!<<$.) This value is:

<A\
(A)

Further, we may use the Inverse Formula of T12 to calculate the

probability that those occasions belong either to an independence-
realm with the Bernoullian probability p^ or ... or to an indepen-
dence-realm with the Bernoullian probability/?,^. This value is:
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k

OB)

For example: Let there be n drawings, with replacement, from one

and the same urn. On exactly m of those n occasions a black ball is

drawn. (A) now gives us the probability that the drawings were from
an urn, in which the probability of drawing a black ball is p t . (fi)

gives the probability that they were either from an urn, in which

this probability is
/?, 1?

or ... or from an urn in which it is pik .

Let us assume that all ^-values are equal. Then they cancel out

from 04) and 03) above and we get the simplified expressions:

(A')

/=!

and

2rt.
m v/'/ _ n-^\ n -- n

p tj
x (i p^)

f=l

For given values n and m, the denominators of the four expressions
have a constant value. The maginitude of the four expressions them-

selves is then directly proportionate to the value of their numerators.

This value again varies with the choice of i or of the set i l9 . . ., fo.

Of pi
m
x(lp!)

n -m
it can be proved

5 that it reaches its maximum
for that value of i which is nearest to the ratio m:n. This means that

(A'} reaches its maximum for that value of i too. The result can be

expressed in words as follows:

If it is initially or a priori equally probable that a set ofn occasions

for the occurrence ofan eventE belongs to any given one ofs Bernoullian

independence-realms for E's occurrence, then it is a posteriori, i.e.

given the information that E occurs on m of those n occasions, most

probable that the set of occasions belongs to an independence-realm,
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in which the Bernouttian probability ofE is closed to its actual relative

frequency m:n.

We shall call this the Inverse Law of Maximum Probability (for
Bernoullian independence-realms).
For example: If it is initially equallyprobable that a set of n drawings

are from any given one of s urns, then it is a posteriori most probable
that the drawings are from an urn, in which the probability of

drawing a black ball is closest to the actual relative frequency of
black balls drawn.

Consider an interval round the ratio m:n. Let us assume that

/
t

. . . p\k are all the p-values which happen to fall in this interval,

and that not all the corresponding ^-values qil
. . . qfjt equal O.

On these assumptions it can be proved
6 that the value of the numera-

tor in (E) increases with n and approaches the value of the denomina-
tor as n is indefinitely increased. Thus the value of (B) increases with
n and approaches 1 as a limit. The result can be expressed in words as

follows:

If it is not initially or a priori infinitely improbable, i.e. probable to

degree O, that a set of n occasions for the occurrence of an event E
belongs to some Bernoullian independence-realm for E's occurrence,
in which the Bernoullianprobability ofE differs by, at most, an arbitrary
amount sfrom the actual relative frequency m:n ofE, then the proba-
bility that the set of occasions belongs to some s\ich independence-
realm increases with the number n of occasions and approaches the

maximum value I as n is indefinitely increased.

We shall call this the Inverse Law of Great Numbers (for Bernoul-
lian independence-realms).
For example: Unless it is initially infinitely improbable that the

drawings are from an urn, in which the probability of drawing a
black ball differs by, at most, the value s from the actual relative

frequency of black balls in those drawings, then the probability that

the drawings are from some such urn increases with the number of

drawings and approaches the maximum value 1 as a limit.

The Inverse Laws of Maximum Probability and Great Numbers
can be given a particularly elegant formulation, ifwe use integration.
Then we have to replace the assumption that there is a limited number
s of Bernoullian independence-realms for the event by the assump-
tion that there is a not-denumerable infinity of such independence*
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realms, one for each of the possible values of "s Bernoullian

probability. The range of the possible values is the whole range from
to 1 inclusive.

The a prforf-probability or #-value, associated with a given
Bernoullian probability or ^p-value p, we denote by qp . The formulae

(A) and (B) above now become formulae

p
m
x(l-p)

n ~m
xqp

jp
m X (Jf pY~

m X qp dp
o

and
(m:/7)-fe

f p
m x(lp) n -m

xqp dp

(m:/7)-fe

(D)

x (1 p)
n~m x qp dp

o

If all ^-values are equal, the values qp cancel out from these

expressions and we get simpler expressions corresponding to (^4')

and (5') above

(C') -r^
f p

m x(lp)n~m
dp

o

and

f p
m
x(lp) n -m

dp
f T\ f\ (m:) E

(L> ) j
.

j p
m
x(l-p)

n-m
dp

o

(C") has its maximum value for max. p
m x(lp)n -m which is

reached when/?
= m:n. (The Inverse Law of Maximum Probability.)

If qp is not for all values ofp in the interval m;ne, then (D)
increases with n and approaches 1 as a limit. (The Inverse Law of

Great Numbers.)
The inversion of Bernoulli's Theorem is also known under the

name of Bayes's Theorem. 7

The first part of Bayes's Theorem or the Inverse Law of Maximum
Probability depends on an assumption of equal a priori probabilities.
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The second part of Bayes's Theorem or the Inverse Law of Great
Numbers requires only the much weaker assumption that it is not

a priori infinitely improbable that the event's Bernoullian probability
deviates by at most s from its actual relative frequency. One might
say that this assumption means that the increase in a posteriori

probability towards I is 'practically independent' of a priori

probabilities.
8

Thus, loosely speaking, the first part of Bayes's Theorem tells us

that, if all values of an event's probability are a priori equally likely
then it is a posteriori most likely that the event's probability is as

indicated by its relative frequency. And the second part tells us that,

'practically independently' of a priori probabilities, it becomes 'in

the long run' infinitely probable that the event's probability will

equal its actual relative frequency. The danger of using this loose

mode of speech is, among other things, that it leaves without men-
tion the assumptions of independence needed in order to warrant the

Bernoullian character of the event's probability.

From Bayes's Theorem we easily reach another famous principle of

Inverse Probability known as Laplace's Law of Succession. 9 We
raise the following question:

If an event has occurred on all of n occasions, what is the

probability that the event will occur as well on the next occasion?

It is taken for granted that the formula (C) above can be used for

calculating the probability that, if the event has occurred on all

of n occasions, its Bernoullian probability will be p. The Special

Multiplication Principle is then used for calculating the probability
that the Bernoullian probability is p and the event occurs on the

next occasion as well. Finally, use of the Special Addition Principle

is made to 'add up*, p passing through all values from to 1, all

these conjunctive probabilities. Thus we get for the calculated

probability the value

(E)

J p
n
xqpdp

o
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On the assumption that all the initial probabilities qp are equal, we
get the simplified expression

i

jp
n+2

dp

(') *.- .

pdp

11 -{- 7

By integration we obtain for (') the 'famous' value
^

for

the probability that, if the event has occiu.ed n times in succes-

sion, it will occur on the next occasion as well. 10

Mention should be made of a version of the Law of Succession
which is independent of the assumption of equality in the initial

probabilities and obtainable without the use of integration.
Let there be s Bernoullian independence-realms for a certain event.

Let the Bernoullian probabilities be p t .../, and the corresponding
initial probabilities c^ . . . qs . We assume that q,< . . . <qs ,

Now suppose that the event has occurred n times in succession.
We choose an arbitrary value s such that at least one of the Ber-
noullian probabilities falls in the interval 1-s. Formula (5) may
be used for calculating ths probability that the n occurrences belong
to some independence-realm in which the Bernoullian probability
of the event falls in the interval 1-s. It follows from the Inverse Law
of Great Numbers that the calculated probability is the greater, the

greater is n (provided that not all the initial probabilities, which

correspond to the Bernoullian probabilities in the interval 1-s, are

0). For a sufficiently large n it is more probable that the occurrences

belong to an independence-realm, in which the Bernoullian proba-
bility of the event falls inside this interval, than that they belong to a
realm in which the Bernoullian probability falls outside the interval.

And 'in the long run' it becomes infinitely probable that the n occur-
rences belong to some such independence-realm.
We raise the question: What is the probability that the event, which

has occurred n times in succession, will occur on the next occasion
as well? This value we may calculate from (A) with the aid of the

Special Multiplication and Addition Principles in a manner exactly
similar to the derivation of the formula (E) from the formula (C).
We get the formula:

no
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/=!

This formula can be expanded as follows:

. w ^
Wehave/?x< . . .<z?5 . Since

we can always choose e insuch awaythat/us the only/-value which falls

in the interval 1- e, it follows from the Inverse Law of Great Numbers

ps
n

xqs

that * increases with n (provided qs is not 0). For a

.

sufl&ciently large n * is greater than any other term

-
From arithmetical considerations of an elementary nature now follows
that (F) increases with increasing n. 11 In other words, it has been

proved that, relative to the assumption mentioned, the probability
that an event which has occurred n times in succession will occur on
the next occasion as well, increases with n. We may call this the
Non-Numerical Law of Succession. 12

On the assumption that all initial probabilities are equal, (F)
reduces to

(F)

Let us assume that p l
= and ps = 1 and that the difference

between any two successive ^-values is always the same. The interval

from to 1, in other words, is divided by the ^-values in sl sub-
intervals of equal length. On these assumptions it may be shown

in



THE LOGICAL PROBLEM OF INDUCTION

that, with increasing s, the value of (F
f

) approaches the value

as a limit. Thus, on the assumption of equal probabilities a priori,
the value given by the Non-Numerical Law of Succession and
obtained without the use of integration approaches as a limit the

value given by the Numerical Law of Succession, which is obtained

by the use of integration.
13

4. Criticism of Inverse Probability.

The doctrine of Inverse Probability is also known as a doctrine of

'inductive' probability or of the probability of 'hypotheses' or

'causes'. It is not difficult to see the reasons for these names:

Consider first the Inverse Principle or T10-T12 above. It is some-

times natural to speak of the mutually exclusive and jointly exhaustive

alternatives b . . . bs as 'causes' of the 'event' a, and of the assump-
tion that an occurrence of a is due to a specific one of these 'causes'

as an 'hypothesis'.
1 On each 'hypothesis' the event possesses a

certain likelihood, and each 'hypothesis' has itself a certain initial

or a priori probability of being true. Given these likelihoods and

initial probabilities we use the Inverse Principle to calculate the

probability that a given occurrence of a is to be explained by the

'hypothesis' that it is due to a specific 'cause' bi. If any one 'cause'

('hypothesis') has the same initial probability of being operative

(true), then the most probable 'cause' ('hypothesis') is the one which

gives to the event the greatest probability.
2

In a similar manner one may speak of 'cause' and 'hypothesis'
in connection with Bayes's Theorem.

3 The 'cause' is here the event's

membership of a certain Independence-Realm, i.e. the 'cause'

consists in the presence of certain conditions under which the event

will occur with a certain (Bernoullian) probability. The 'hypothesis'

again is that those conditions are satisfied, i.e. that the occasions for

the event's occurrences belong to a certain Independence-Realm.

Very often one has talked of the 'hypotheses' involved in Bayes's
Theorem as propositions to the effect that the event possesses a

certain (Bernoullian) probability. This loose mode of speech is

seriously misleading. (Vide infra.)
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The Law of Succession was traditionally regarded as a rule for

estimating the probability of future events relative to past experience.
It has been said that no formula in the alchemy of logic has exercised

a more powerful fascination over the human mind. 4 Not only was it

uncritically accepted by those, who followed closely in the footsteps
of Laplace. Many respectable authors of the nineteenth century on
the subject of induction regarded it as an altogether sound formula,

whereby to judge with probability of the future course of events/

Some put it to the wildest uses, such as calculating that the sun will

rise tomorrow or that it will continue to rise regularly for the next

1000 years.
8 The formula still finds favour with authors, who regard

the doctrine of inverse probability as being, with due qualifications,
tenable. 7

Criticism of Inverse Probability in general and of the Law of

Succession in particular is historically connected with the criticism,

mainly by early proponents of the frequency view, of the Laplacean
definition of probability and of uncritical use of the Principle of

Indifference. Among the early critics Boole, Peirce, and Venn should

be mentioned. 8

Keynes took a guarded and in many respects sound

view of Inverse Probability, but in his criticism of the Law of Suc-

cession he went too far when charging the law with a contradiction. 9

In recent times Inverse Probability has been severely criticized by
one of the champions of modern statistical science, R. A. Fisher.

He rejects the entire doctrine as theoretically unsound and as useless

in practice.
10 Fisher's criticism ofthe theoretical foundation, however,

is not in every way clear and convincing. The subject is still open to

controversy.
11

Here we shall have to content ourselves with a number of critical

observations which no attempted rehabilitation of Inverse Probability

will be able to 'get round'.

(1) In the Inverse Principle (T10-T12) three factors may be said to

be involved. These are the individual propositions a and h and the

set of propositions bi. It is convenient to speak of a as a proposition
to the effect that a certain event has occurred, and of each proposi-
tion bi as some condition, under which the event will take place with

a certain probability. We may, for present purposes, ignore h.

That the probability of the event relative to conditions bi is pt

is a probability-proposition.
113



THE LOGICAL PROBLEM OF INDUCTION

which is calculated by means of the Inverse Formula, cannot properly
be described as the probability of a probability-proposition ('second
order probability'). The calculated probability is the probability
that the conditions, under which an occurrence of the event took

place, were just the conditions 6/. The unknown of the problem,
therefore, is not a probability. It is the presence of certain conditions,
relative to which the event has a probability. The 'inverse problem'
in all its variations can be described as a problem of re-identification
of the conditions under which an event has occurred, these conditions

constituting a 'field of measurement' (data, information) of the
event's probability.
When from the Inverse Principle we pass on to Bayes's Theorem

we conceive of the event a of the Inverse Principle as a complex
event, consisting of m occurrences of an event E on n occasions.
The complex event a is, as in the Inverse Principle, supposed to have
taken place under some condition(s) A/. This Z>/ is, moreover,
supposed to be a Bernoullian independence-realm for the occurrence
of . In other words: given that the condition 6/ is satisfied, the
event E will occur with a certain Bernoullian probability/)/. On this

supposition it is then possible to calculate also the probability that,

given &/, the complex event a will occur. The 'inverse problem'
now consists in determining the probability that the conditions,
under which an occurrence of the complex event a took place, were

exactly the conditions bt . It is thus a problem of
'identifying', with

probability, an independence-realm for E.

(2) What has so far been said goes a long way towards explaining
certain limitations in the applicability of inverse probability to
concrete cases. Let us first consider to what type of situation inverse
formulae may be applied:

Let there be a number of urns containing black and white balls.

With each urn we associate a certain probability of drawing a black
ball. (How we have come to associate these probabilities with the

respective urns is for present purposes quite irrelevant: it might
have been on the basis of knowledge of the proportions of black and
white balls in the various urns, or it might have been on the basis of
the results in long series of drawings from the urns.) Now n drawings,
with replacement, are made from one of the urns and we get exactlym balls. We do not know which probability of drawing a black ball
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has been associated with this particular urn. The inverse problem
before us is now to use the information obtained from the drawing to

'identify' the urn as being one associated with a certain Bernoullian

probability p t of drawing a black ball.

Any legitimate application of inverse probability has to be essen-

tially analogous to this case as regards the problem of identifying
the independence-realm. And from it follows at once that such uses
of inverse probability as those of determining the probability that
the sun will rise tomorrow or that the next raven to be observed will

be black are illegitimate. The possibility of identifying birds as

ravens, independently of observations concerning their colours,
makes the suggested application of the Law of Succession lose its

point For, it is a part of the data on which this law would rest, when
applied to birds and their colourings, that being a raven is associated
with a certain (Bernoullian) probabilityp of being black. This value

p is the probability that any random bird, which is known to be a

raven, will be black and hence also that the next raven to be
observed will be black. There is, however, a question to which the
Law of Succession could be quite sensibly applied here, although this

question would hardly arise in practice. It is the following: What is

the probability that the next member to be observed in a set of (one
and the same) unknown species of bird will be black, given that all

the n members of the set which have been so far observed have been
found to be black? In calculating an answer to this question, using
the Law of Succession, we would have to rely on probabilities

PI, pz, etc. that a random individual of the species of bird, b l9 b t,

etc. are black. And among these probabilities would also be the

probability that a random individual of the species of raven is black.

(3) We have so far said nothing of the a priori probabilities

traditionally considered the crux of the doctrine ofinverse probability.
We have been concerned to show that, independently of the problems
connected with the initial probabilities, the doctrine, if applicable at

all, is so only to situations of a very peculiar nature. When initial

probabilities are considered too, further severe restrictions to the

applicability of the formulae become apparent.
The a priori probabilities are the probabilities, relative to some

piece of information A, that the respective conditions &/, under
which the event a may or may not occur, are satisfied. If h is of the
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form hv~h, the initial probabilities may be said to be 'eminently'
a priori, i.e. subsisting relative to no particular information.

To many of the notorious uses of the Inverse Formula for

determining the probability of some 'causes' or 'hypotheses', and
to any use of the Inverse Law of Maximum Probability and the

Numerical Law of Succession, it is essential that the a priori proba-
bilities involved in the problem under consideration should be

equal.

Traditionally, the needed equality of the a priori probabilities was

regarded as a consequence of a Principle of Indifference. In short:

ignorance of the initial probabilities was considered a sufficient

condition of their equality.
12 We shall not criticize this deduction of

knowledge from ignorance here. It seems to us that a Principle of

Indifference may be legitimately invoked as a ground for framing a

hypothesis about the equality of certain initial probabilities, but that

use of this principle can never amount to a proof of the equality in

question.
13

It is difficult to see, how any assumption about the a priori proba-
bilities be it about their equality or inequality or exact numerical

values could be anything but a hypothesis for the correction of

which future experience about the case under consideration may
constitute a reason. This hypothetical nature of the initial probabili-
ties already destroys the faith which the 'classical

5

doctrine put in

the power of inverse probability to justify induction.

(4) In order to reach that level of the doctrine of Inverse Probability,
where Hayes's Theorem and the Law of Succession belong, it is

necessary to assume that the conditions under which the event in

question may occur or fail to occur constitute Bernoullian indepen-
dence-realms for the event. These assumptions of independence are of

a sweeping nature. Their problematic character was practically
never noticed in the traditional doctrine. It is difficult to see, how
the truth of these assumptions could be established on a priori

grounds. The assumptions of independence may, with the assump-
tions about initial probabilities, be said to form part of the hypo-
thetical framework of any significant use of Bayes's Theorem and
the Law of Succession.

(5) In the case of those formulae of inverse probability which

employ integration, an additional difficulty enters. They presuppose
116



FORMAL ANALYSIS OF INDUCTIVE PROBABILITY

that the conditions under which the event may occur or not, consti-
tute not only an infinite, but a not-denumerable manifold. This

presupposition can never be empirically satisfied. It is an Idealiza-

tion', the legitimacy of which at least in the opinion of the present
writer remains problematic even in those cases where all the other
conditions for a legitimate use of the inverse principles are fulfilled.

We do not think that the question of the legitimacy of this 'ideali-

zation' can be settled simply by reference to an analogy with other

applications of mathematical formulae involving integration to
cases in nature. For it is not clear to what extent use of integration
in the doctrine of inverse probability is, from the point of view of

application, peculiar and to what extent it is analogous to such other
cases.

It is not a correct presentation of the nature of the case to say
that the 'idealizing

5

assumption is the assumption that the possible
values of a certain event's (Bernoullian) probability continuously
cover the range from to 1 inclusive. What we have to say is that
the alternative conditions under which an event may occur

e.g. the
alternative urns from which the drawing of balls takes place form
a manifold within which all possible values in the interval from to 1

of a certain (Bernoullian) probability are represented. It is not

prima facie obvious that this assumption even as an 'idealization*

makes any sense at all.

5. Confirmation andprobability.

Let a be some proposition and h some logical consequence of it.

Deductive logic studies the relation of entailment between a and h.

Inductive logic, one might say, studies the degree of confirmation or

support which h gives to a. (We do not mean to say that this is the

only task of inductive logic.)

By the hypothetical method or use of hypothesis
1
is often meant

the deduction and subsequent verification of consequences of an
assumed (usually general) proposition. It is a major task of inductive

logic to study the way in which verified consequences 'inductively'
affect the hypothesis from which they deductively follow.

By Confirmation-Theory we shall here understand the theory
i 117
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of how the probability of a given propositon is affected by evidence

in the form of propositions which are logical consequences of it. A
case of particular importance to this theory is when the given

proposition is a generalization and the evidence for it is some of its

instances. Verified instances confirm the generalization. It is a

primary task of Confirmation-Theory to evaluate, in terms of

probability, the confirming effect of the instances on the generaliza-
tion. The notion of an 'instance' of a generalization will have to be

discussed somewhat more in detail later. For present purposes it

suffices to lay down merely that an 'instance' of a generalization is a

logical consequence of it.

The doctrine of Inverse Probability, which we have examined in

the two preceding sections, is not a Confirmation-Theory in the

sense here understood. The same is true, moreover, of some recent

investigations which call themselves theories of confirmation,*

The creation of a Confirmation-Theory for inductive generaliza-
tions is of comparatively recent date. The theory was founded by
C. D. Broad (1918) and J. M. Keynes (1921). After Keynes there has

been very little further development of the theory, but a certain

amount of dicussion of the significance of his achievement.

We prove the following elementary Lemma which is of basic

importance both to Confirmation-Theory and to the Theory of

Scope to be discussed later:

Lemma. The probability of a proposition., on given data, is smaller

than or at most equal to the probability
r

, on those same data, of any of
its logical consequences.

Proof: Let h be the datum, and let a entail b. In virtue of the

General Multiplication Principle (A2) we have P(a&b/K) = P(b/K) x
P(a/h&b). Since a entails b, a&b is logically identical with a. Thus
we haveP(a//z) = P(b/K)xP(ajh&b). Since probabilities are in the

interval from to 1 inclusive, it follows that P(a//z)<P(Z?//i).

Let g be a generalization. Let z"i . . . in . . . be confirming instances

of it. Let In be the conjunction ii & . . . &in of the first n instances of

g. Let e, finally, be some piece of evidence or information, relative to

which we may estimate the probability of g and of /.

Let p be the probability of g given e. Thus we have P(g[e) =p.
We shall callp the initial or apriori probability of the generalization.

Let pi be the probability of z\ given e ; p z the probability of i,
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given e and h ; etc. Thus we have P(inle&In^ =pn . We shall
call the values pn the eductive probabilities of the instances of the

generalization.

Given the eductive probabilities we can use the General Multipli-
cation Principle to calculate the probability of ! given e, i.e. the

probability of n successive confirmations of the generalization. Let
ttn be the product p l x . . . xpn . Then we have P(In/e) = //.

Let qn be the probability of g given e and In . Thus we have
P(g/e&In) = qn . We shall call the values qa the probabilities a

posteriori of the generalization.
From the General Multiplication Principle follows P(g&IJe) =^ F *

Since the generalization entails (the conjunction of) its confirming
instances, it follows from our Lemma above that p^IIn .

From this immediately Mows that, if p>0, then IIn >0.
And if IIn>0) we can transform the last identity above to

P(g/e<Mn)^^^ Le.toqn^^-^ (g&In is logically identical

with g alone).

Now compare qn and #,+1 , i.e. compare -^- and =^-. It is evi-
lln //+ 1

dent that, ifp>0 and //n>JTn+1, then qn<qn+i. But, since proba-
bilities are in the interval from to 1 inclusive, it follows that

//>//+!, if and only ifpn+i<l.
Herewith has been proved that, ttP(g/e)>0 and P(in+i/e&Itt)<l,

thQnP(g/e&In+1)>P(g/e&In). In words:

If the initial probability of a generalization is not minimal, its a

posteriori probability increases with each new confirmation which is

not maximally probable relative to the previous confirmations.
(It should be observed that in this formulation of the theorem in

words no mention is made of e. The choice of e, as we shall see

presently, is crucial to the 'meaning* of the theorem.)
We shall call this the Principal Theorem of Confirmation.

Consider the difference jf
--- -

. It can also be expressed in the

p / 1 \ .
n+1 lln

formyrr
( --1

j.
It is seen that it is inversely proportionate to

the value ofpn+1 . Thus we have the theorem:
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The smaller the eductive probability of the confirming instance,

the greater is its contribution to the increase in the a posteriori proba-

bility of the generalization.

The ideas contained in these two theorems, viz. the ideas that the

probability of a generalization increases with the number of con-

firming instances and that it increases the more, the more improbable,
i.e. surprising and unexpected, are the confirmations, can truly be

regarded as belonging to the 'classical' ideas of the theory of induc-

tion and probability.
3

The next question to be raised is, whether the increasing proba-

bility of a generalization tends towards a limit and, particularly,

whether this limit is the maximum value 1 .

On this question divergent opinions have been expressed. Keynes
wanted to show that the increasing probability approaches 1. His

proof makes use of extra-logical assumptions about the constitution

of the universe. 4 Nicod tried to show that Keynes 's use of his

assumptions was based on an error, and that the increasing

probability cannot be proved to approach I.
5

The condition of approach to maximum probability is easily

stated. From the formula qn =77-^ f U ws that q* approaches 1,
Jin

if IIn approaches p. In words:

The probability a posteriori of a generalization approaches 1, if the

probability of n successive confirmations of the generalization

approaches its probability a priori.

By virtue of A2 we have P(~g&In/e) = P(~g/e)xP(In/e&~g) =
P(In/e)xP(~g!e&In

). By virtue of Al we have P(~g/e) = 1 p and

P(~gle&In} = 7- -r . We also have P(/*/e) =//. Substituting these
Lin

values in the equation P(~g[e) xP(//ecfc~) =P(//e) xP(~gfe&L\

we get P(Lle&~g) =
* P

9 on condition that 1 p>0.

(This last condition is trivial. For, if1p = 0, then/>
=

/, which

means that the generalization is already a priori maximally probable.
And in this case its probability can no longer be increased by confir-

mation.)
If now IIn approaches p, then P(L/e&r^g) approaches 0, and
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conversely. Thus we get a new condition of convergence, which
can be formulated in words as follows:

The probability a posteriori of a generalization approaches 1, if the

probability of n successive confirmations, on the assumption that the

generalization is false, -approaches O. 6

The thought that the probability of n successive confirmations

approaches as a limit the probability a priori of the generalization
is intuitively plausible, if we think of the generalization as a con-

junction of its confimiing instances. If the generalization is 'genuine',
i.e. numerically unrestricted, this conjunction is (at least 'potentially')
infinite. In symbols:

(1) ii& . . . &i*& . . . ad
inf.

=
Df g.

A shorter way of expressing the same thought symbolically is

(2) Urn L = Df g.
n >oo

Here we have a case of a sequence of propositions approaching
another proposition as a limit.

7

(The sequence is the sequence of

conjunctions /.) It is 'natural' to think that, under such circum-

stances, the probabilities associated with the members of the sequence
of propositions will converge towards the probability associated with

the limiting-proposition. The probabilities associated with the

members of the sequence are the values IL. The probability of the

limiting-proposition is/?. In view of (2) it is therefore 'natural' to

think that we also have:

(3) limlln=p.
n >oe

The 'naturalness' of this thought, moreover, has nothing to do with

assumptions about the structure of the universe. It is of a logico-
mathematical character and connected with the conception of the

generalization as an infinite conjunction. But we cannot prove this

idea from the axiom system of probability, presented in the first

section of the present chapter. In order to prove it we have to add
to the system a new axiom to the effect that, if a sequence of proposi-
tions approaches a given proposition as a limit, then the probabilities
associated with the members of the sequence approach as a limit the

probability associated with the given proposition. (It is assumed
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that the probabilities are throughout taken relative to the same

data.) In symbols:

A4. If Urn ^ = a, then lim P(*//z) = P(tf//2).
8

n+ =o n >

From this axiom and the identity (2) above we can prove that the

probability of n successive confirmations of a generalization ap-

proaches as a limit the probability a priori of the generalization

and that hence the probability a posteriori of the generalization

approaches as a limit the maximum value 1.

The above argument, we believe, is the right and conclusive

answer to the Keynes-Nicod dispute over the question, whether or

not the increasing probability of a confirmed generalization ap-

proaches maximum probability as a limit.

It is important to stress that the convergence towards maximum

probability does not follow from the fact alone that the generaliza-

tion is confirmed in an indefinite number of instances ('indefinitely

confirmed'). It must also be the case that the confirmations cover

the -whole range of instances of the generalization, and not only some

infinite sub-class of this range. From the sequence i l9 ...,/,...,
assumed to consist of all instances of g9 we may select every second

member z
l9

zs , fs, etc. and thus obtain another infinite sequence of

confirming instances of g. But there can be no assurance (of a logico-

mathematical nature) that indefinite confirmation of the generaliza-

tion through these instances will make the probability of the gen-
eralization approach 1 as a limit. 9

Lastly, it should be noted that the proof of our Principal Theorem
does not require the use of principles of Inverse Probability.

6. The Paradoxes of Confirmation.

It is a major task of Confirmation-Theory to make the notion of a

(confirming) instance of a generalization precise. Of this notion we
have so far only said that the confirming instance must be a logical

consequence of the generalization. The further clarification of the

concept turns out to involve difficulties.
1

We shall here briefly consider some of these difficulties. Attention

will be confined to the simplest case only, viz. to Universal Generaliza-

tions of the form (x) (Ax-^Bx).
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First a certain ambiguity in the term Instance' should be noted.

The term can be used to refer only to instances which confirm the

generalization, or it can be used to refer to instances which either

confirm or disconfirm it. Only if 'instance' means 'confirming
instance' is it true that the instance is entailed by the generalization.

In speaking about instances we have so far always meant confirm-

ing instances. For present purposes, however, it is convenient to take

Instance' in the broader sense and distinguish between instances

which are confirming and instances which are disconfirming of the

generalization.

Anything which is A but is not B disconfirms (falsifies) the general

proposition (x) (Ax-^Bx). By a disconfirming instance of

(x) (Ax~*Bx) we shall therefore understand any proposition of the

form Ax&~Bx. And we shall say of the thing x that it 'affords
9

or

'constitutes' the disconfirming instance (disconfirmation).
The notion of a disconfirming instance raises no problem. Not so

the notion of a confirming instance. As regards its definition

several possibilities are open.
One possibility is to define a confirming instance as that which is

not a disconfirming instance. Or, more precisely, as the contra-

dictory of a disconfirming instance. In the case of (x) (Ax-*Bx), the

general form of the confirming instance would thus be ~(Ax&~Bx).
But ^(Ax&^Bx) is the same proposition as Ax-*Bx and also the

same as Ax&Bx v ~Ax&Bx v ~Ax&~Bx. Thus, if the notions of

a disconfirming and a confirming instance are contradictories, then

we shall have to say that the generalization that all A are B is con-

firmed by () anything which is both A and B, (ii) anything which
is not A but is B, and (Hi) anything which is neither A nor B,

This way to define a confirming instance, however, leads to two

'paradoxes'. These axe variants of the well-known Paradoxes of

Implication. The first 'paradox* is that anything which is not A
will constitute a confirming instance of (x) (Ax-^Bx), irrespective of

whether it is J5 or not. And the second 'paradox' is that anything
which is B will likewise constitute a confirming instance, irrespective
of whether it is A or not. Thus for example any swan, whether white

or not, would serve to confirm the proposition that all ravens are

black. And the same holds good for any black object, whether a

raven or not. Such consequences as these plainly conflict with our
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intuitive notions of what it is for a state of affairs to 'confirm' a

generalization.
Another possibility is to look for a narrower definition of a con-

firming instance. To this end one might suggest that only things
which are both A and B are really confirmative of the generalization

that all A are B. The general form of the confirming instance of

(x) (Ax~>Bx) would thus on this proposal be Ax&Bx. This idea is

sometimes called the Nicod Criterion. 2

But this definition, too, leads to a 'paradox'.
If the general form of a confirming instance of (x) (Ax-^Bx) is

Ax&Bx, then, by substituting ~B for A and ~A for B, it follows

that the general form of a confirming instance of (x) (~Bx-+~Ax)
must be ~Bx&~Ax which is the same as ~Ax&~Bx. This piece

of reasoning seems quite unobjectionable.
Now (x) (Ax~*Bx} and (x) (~Bx-+~Ax) are logically equivalent.

It is highly plausible to think that anything which counts as a con-

firming instance of a certain proposition should also count as a

confirming instance of any propositon which is logically equivalent

with the first. This idea may be called the Equivalence-Criterion

(-Condition).
3

If we accept the Equivalence-Criterion, we should thus have to

reject the proposal that Ax&Bx is the sole general form of a con-

firming instance of (x) (Ax-^Bx). We should have to recognize that

~Ax&~Bx is another form of confirming instance.

On the other hand, to regard a proposition of the form ~Ax&~Bx
as a confirmation of the generalization that all A are B seems not to

accord very well with our 'intuitions' in the matter. We would not

normally regard the fact that this particular object, say a swan,

is neither a raven nor black as a confirming instance of the pro-

position that all ravens are black. And we would admit that the fact

in question confirms the generalization that all things which are

not black are not ravens.

This conflict between two "intuitions', the obvious plausibility

of the Equivalence-Criterion on the one hand and the reluctance to

accept Ax&^Bx as a confirming instance of (x) (Ax-+Bx) on the

other hand, has been called a Paradox of Confirmation.4

Of those 'paradoxes' which are special cases of the Paradoxes of

Implication it is easy to show that they are 'harmless' in the sense
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that paradoxical confirmations of a generalization cannot influence

(increase) the generalization's probability by virtue of the Principal
Theorem- of Confirmation. The fact that this particular animal is -a

swan cannot effect the probability that all ravens are black. This is

seen from the following considerations:

The proposition Axn-*Bxn logically follows from the proposition
~Axn and also from the proposition Bxn. If therefore, in estimating
the probability of (x) (Ax-^Bx) relative to verified propositions of

the form Axn-^Bxn, it is part of our data that an object xn does

not possess the property A or that it possesses the property 55 then

it is certain and hence also maximally probable that this object will

verify the proposition Axn-*Bxn. Expressed in our symbolism above:

If e contains either < >Axn or Bx, i.e. if e is identical with e'&~Axn
or e'&Bxn, then, writing / for Axn-*Bxn , and L-i for

& ... & (Axn-r+Bx^, we have by virtue of T2 (p. 93)
= /. And this means that /, i.e., Axn-^Bxn , does not satisfy the

condition which is necessary if its verification is to contribute to

increase in the generalization's probability.
'Paradoxical' confirmations of a universal implication, afforded by

things which are either known not to satisfy the antecedent or

known to satisfy the consequent, are thus 'harmless', i.e. they do not

affect the probability of the general proposition. Instead of saying
that they are 'harmless' one may also say that they are 'valueless'

for confirmation, have no 'confirmatory value'.

It seems to us that the solution to the 'paradox' which results

from the conflict between the Nicod- and Equivalence-Criteria has to

be sought along the following lines:

We should start by questioning the validity of the Nicod-Criterion.

Is it necessarily the case that anything which is bothA andB genuinely
affords a confirmation of the law that all A are 5? It seems to us that

the answer is quite certainly negative.
Whether the fact that a thing which is both A and B is a genuine

or a paradoxical confirmation of the law that all A are B depends

upon the way in which thisfact becomes known to us. If we know that

the thing is A but do not know whether it is or is not B, then it will be

of interest, from the point of view of testing the law in question, to

find out whether it is B or not. If the thing is found not to be B,

the law is falsified, and therefore, if the thing is found to be B, the
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law is confirmed. 'Genuinely confirmed', one might say, means
the same as 'saved from falsification after having stood the risk'.

But ifwe know that the thing is B and do not know whether it is or is

not A> then it will be ofno interest, from the point ofview of confirma-

tion, to find out whether it is A or not. For in neither case would

the law be falsified and therefore not (genuinely) confirmed either.

'Paradoxically confirmed', one could say, means 'confirmed under

circumstances which involve no risk of falsification'.

Thus the fact that a thing is both A and 5, genuinely confirms the

law that all A are B only if, on first knowing that the thing is A, we

subsequently verify that it is .

Next we raise the following question: Is it necessarily the case that

nothing which is neither A nor B genuinely affords a confirmation

of the law that all A are 5? It seems to us obvious that the answer

to this question, too, is negative. If we know that a thing is not B
but do not know whether it is or is not A, then showing that it is not

A saves the law that all not-5 are not-^4 and thus also the law that all

A are B from falsification, and can therefore be truly regarded as

confirmatory of either law. But if we know that a thing is not A but

do not know whether it is or is not 5, then showing that it is not B
saves neither the law that all not-5 are not-A, nor the law that all A
are B from falsification and therefore does not genuinely confirm

either of them.

Thus not any confirmation of the law that all ravens are black

through an object which is neither black nor raven can be rightly

called 'paradoxical'. It is paradoxical only if, prior to knowing

anything about the object's colour, we know that it is not a raven.

Then the object is valueless for the purposes of confirming that all

ravens are black and also for confirming that all not-black things are

not-ravens. But if, prior to knowing anything about the object's

membership of a certain species of bird, we know that it is not black,

then there is no 'paradox*. The object is then of value as affording a

potential confirmation both of the law that all ravens are black and
of the law that all not-black things are not-ravens.

The conclusion is that the Equivalence-Criterion is sound and that

the 'paradox' arises from the Nicod-Criterion alone. It is a mistake

to believe that everything which is both A andB constitutes a genuine
confirmation of the law that all A are B. And it is equally a mistajce
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to believe that nothing which is neither A nor B could constitute

a genuine confirmation of the law that all A are B. Whether some-

thing which is both A and B genuinely confirms the law or not,

pends upon whether the fact that this thing is B, is or is not known

prior to knowledge of the fact that it is both A and B. Similarly,
whether something which is neither A nor B paradoxically confirms

the law or not, depends upon whether the fact that this thing is not A,
is or is notknown prior to knowledge ofthe fact that it is neitherA nor
B. But anything which genuinely confirms the law that all A are B
also genuinely confirms the law that all not-J? are not"A. And
anything which paradoxically confirms the first law also paradoxically
confirms the second. For they are one and the same law.

7. Confirmation and elimination.

Does the Principal Theorem of Confirmation mean that induction

by the multiplication of instances, sometimes also called Pure In-

duction, possesses a value independently ofinduction by elimination?

Keynes tried to show that the condition P(in+ife&I)<l 9 men-
tioned in the Theorem, is satisfied only if the thing affording the

n+lth confirming instance differs in at least one property from all

the previous things affording confirmations of the generalization.
In his argument he makes a rather dubious use of the principle known
as the Identity of Indiscernibles. He interpreted his result as meaning
that the contribution of confirming instances to the probability of

laws really is rooted in their contribution to the elimination of

concurrent possibilities.
1

In opposition to the view of Keynes, Nicod made an attempt to

defend the value of Pure Induction independently of elimination.2

He pointed out some errors and insufficiencies in Keynes 's arguments,
but he cannot be said to have been successful in vindicating his own

position.
3

It is hardly possible to settle the Keynes-Nicod controversy
over the value of Pure Induction without resort to a model of the

abstract notion of probability as it occurs in the Principal Theorem.

An adequate model is provided in the following way:
4

Let g be the Universal Generalization (x) (Ax-+Bx). We replace J5

by a variable X. Thus we get a propositional function (x) (Ax~*Xx).
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It is satisfied by any property which is a necessary condition of A.

By O we shall understand the class of all necessary conditions of A.
The generalization g states that B is such a condition. Thus g can
also be expressed symbolically by G> (B).

Let e be of the form Y (5), i.e. let e be a proposition to the effect

that the property B is one of a certain class of properties Y.

The confirming instances i'i, z' 2 , etc. of g are the propositions
Axi-*Bx l9 Ax z->Bx z ,

etc.

That a property is co-present with the property ^4 in a thing is to

mean that it is not the case that A is present but the property in

question absent in this thing.
5

Consider the prepositional function Ax l-^Xxi 9 which is obtained
from z\ by replacing B by the variable X. By 93. we shall understand
the class of all properties which satisfy this prepositional function,
i.e. the class of all properties which are co-present with A in the

thing XL Similarly, we define /p 2 , <p s , etc. By <D we understand the

conjunction (logical product) of classes 9i& . . . &9. Thus On is the

class of properties which are co-present with A in all (every one of)
the things x l and . . . and jc.

P(gje)
or P(<&CB)M#) ) is the probability that B will be a necessary

condition of A, given that .# is a member of the class of properties y.
That this probability has the value p means in the Frequency-
Model: the proportion of necessary conditions of A among all

members of vp is p.

P(fn/e<fe/n_0 or P(<?4B)lv(B)&<S>rt- l(B)') is the probability that B
will be co-present with A in x*

9 given that B is a member of y and
B has been co-present with A in every one of the things #1 . . . jcn_!

That this probability has the value p* means in the Frequency-
Model: p is the proportion, among all member of y which are

co-present with A in x^ and . . . and x- ly of properties co-present
with A in x.

P(L/e) or P(<fc<jB)M5) ) is the probability that B will be co-

present with A in the first n things, affording confirming instances of

g, given that B is a member of y. That this probability has the value

^i X ... xp means in the Frequency-Model: this probability is the

proportion, among all members of % of properties co-present with
A in Xj, multiplied by the proportion, among members of y co-

present with A in xl9 of properties co-present with A in x, multiplied
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by . . . multiplied by the proportion, among members of y co-present
with A in X L and . . . and xtt-i, of properties co-present with A in xtt .

P(gle&In) or
P((B)jv(B)&Qn(B)) is the probability that B will

be a necessary condition of A, given that B belongs to a class of

properties y <?/zrf that B has been co-present with A in every one of the

first n things which have afforded confirmations of the law that B is

such a condition. That this probability is qn means in the Frequency-
Model that the proportion of necessary conditions of A among
members of <y which are co-present with A in xl and . . . and xn is

qn . That qn equals the ratio ~~- means that the proportion just men-

tioned equals the proportion of necessary conditions of A among all

members of y divided by the proportion, among members of y, of

properties which are co-present with A in Xj. and . . . and xn .

That 9+! is greater than qn means in the Frequency-Model that

the proportion of necessary conditions of A among members of y
which are co-present withA in x : and . . . and Xi+1 is greater than the

proportion of necessary conditions ofA among members of vy which
are co-present with A in x^ and . . . and xn . Considering the meaning,

in the Frequency-Model, of the ratios -=~- and w~ * ^ fU ws that
llpn+ 1 tlpn

two conditions must be fulfilled if qn-i is to be greater than qtty viz:

(i) p 9 or the proportion of necessary conditions ofA among all the

members of y, must not be minimal, i.e. must be greater than 0, arid

(ii) pn+i, or the proportion, among all members of \y which are co-

present with A in x^ and . . . and xn, of properties co-present with A
in #11+1, must not be maximal, i.e. must be smaller than 1.

If the class of properties y is finite, then (z) simply means that there

must exist at least one necessary condition of A in vy, and (ii) simply
means that, if'xn+i is an instance of A 9 then xn+l must lack at least

one property which is co-present with A in xl and . . , and xn . And
the latter again means that the n+l:ih instance must exclude at

least one member of y, which has not already been excluded, from
the possibility of being a necessary condition of A.

If the class vy is infinite, then (z) means that a 'perceptible', i.e. not-

minimal, proportion of members of the class must be necessary
conditions of A

9
and (ii) means that the n+ Jf:th instance must exclude

a 'perceptible' proportion of members of the class, which are co-
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present with A in the n first things affording confirming instances,

from the possibility of being necessary conditions of A.

The condition that p or the a priori probability of the generaliza-

tion must be greater than' is thus, in the Frequency-Model,
tantamount to a Condition of Determinism. And the condition that

pn+i or the eductive probability of the confirming instance must be

smaller than 1 is tantamount to a Condition of Elimination,

The above considerations started from replacing B in (x) (Ax~*Bx)

by a variable X. We might instead have replaced A by a variable.

Then we should have got the prepositional function (x) (Xx-*Bx).
It is satisfied by any property which is a sufficient condition of B.

The Universal Generalization states that A is such a condition.

The generalization can also be expressed symbolically by 3>(A).

Let e be of the form y(A).

Consider the prepositional function Xxi-+Bxi. By 9 x we now mean
the class of all properties which satisfy this prepositional function.

A member 91 is thus a property, of which it is not true that it is

present in xly ifB is absent in xlf Of such a property we shall say that

it is co-absent with B in (from) the thing in question.'

Similarly, we define 9*, 9,, etc. By <D* we understand the product

9i<& . . . &yn . (Ox thus is the same as 91.)

If, in our previous interpretations in frequency terms of the a

priori probability, of the eductive probabilities, and of the aposteriori

probability, we substitute the phrase 'sufficient condition(s) of B'

for the phrase 'necessary condition(s) of A ', and the phrase *co-

absent with B 9

for the phrase 'co-present with A\ then we get

another interpretation in terms of frequency of the magnitudes in

question. The two conditions of increase in probability now assume

the following shape:

(*') p, or the proportion of sufficient conditions ofB among all the

members of vy, must not be minimal, and

(") pn +i, of the proportion, among all members of y which are

co-absent with B in *,. and . . . and Jcn, of properties co-absent with B
in xn+i, must not be maximal.

As before, the condition p>Q is tantamount to a Condition of

Determinism, and the condition/>+i<l is tantamount to a Condition

of Elimination.

It is clear that, on the interpretation <D(B) of g, elimination Can
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take, place only if *n+1 has the property A. For it is only when A is

present that any other property could be denied to be co-present with
it. And similarly it is clear that, on the interpretation (A) of g,
elimination can take place only if x +1 lacks the property B. For it

is only where B is absent that any other property could be denied
to be co-absent with it.

This is in harmony with the two basic facts of Elimination-Theory,
viz. that when we are in search of a necessary condition of a given
property we ought to compare with each other positive instances of
that property, whereas when we are in search of a sufficient condition
of a given property the elimination is promoted by negative instances

of that property. (Cf. above Ch. IV, 4.)

We now also see how the fact that the probabilifying effect of a

confinning instance is inversely proportional to the eductive proba-
bility of the instance, is reflected in the Frequency-Model. It simply
means that the probabilifying effect is inversely proportional to

the eliminative effect. The eliminative effect, in its turn, is the

greater the more unlike the new confirming instance is as compared
with the previous confirming instances. Thus, we increase the

probability of a generalization by confirmation, the more effectively,
the more we succeed in varying the circumstances under which the

generalization is put to successful test.

If the eductive probability of an instance is 1, its eliminative effect

is nil. This sheds light upon the Paradoxes of Confirmation. A thing
which has the property B cannot eliminate anything from the

possibility of being a sufficient condition of B. And a thing which
lacks the property A cannot eliminate anything from the possibility
of being a necessary condition of A. Such things are therefore

necessarily ineffective from the point of view of elimination. This

is the counterpart, in the Frequency-Model, to the fact that such

things are ineffective from the point of view of producing an increase

in probability. But by being necessarily ineffective, the 'paradoxical'
confirmations are also 'harmless', they do not 'genuinely' or 'really'
confirm the generalization in question at all.

The abstract notion of probability, which figures in the Principal
Theorem of Confirmation, can thus be given a model which makes
the logical mechanism of the theorem reflect the working of the

logical mechanism of induction by elimination.
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The possibility of this model may be said to support the view,

which Keynes put forward but supported with dubious or false

arguments, that the multiplication of instances in induction has a

probabilifying effect on the conclusion only in so far as it has an

eliminative effect within a field of concurrent possibilities.

Can the model be said definitely to settle the dispute over the

value of Pure Induction? The answer to this question depends upon
whether some other model of the Principal Theorem can be worked

out which would establish the independence (in that model) of the

probabilifying effect of the instances from their eliminative effect.

No such model is known. And it seems to us doubtful, whether such

a model could be given without the introduction of highly arbitrary

assumptions as regards the way in which probabilities are measured. 7

It would involve no contradiction, if there existed a model which

would establish the independence of the probabilifying effect from

the eliminative effect. We should then only have to say that, abstract

probability being interpreted in one way, the Principal Theorem

makes the probability of inductions dependent of elimination, and

abstract probability being interpreted in another way, the theorem

makes confirmation independent of elimination.

In any case the possibility of a model, which makes the probabilify-

ing effect of confirmation mirror a process of elimination, is of great

interest. It establishes a not-trivial logical connection between the

two main branches of the formal study of induction, viz. Elimination-

Theory and Confirmation-Theory. And in doing this it lends

support to an epistemological attitude, shared by some of the ablest

thinkers in the field of induction (Bacon, Mill, Keynes), as regards

the logical nature of inductive reasoning.

8. Probability, scope and simplicity. Reasoning from analogy.

Mathematical andphilosophical probability.

Besides the point of view of confirmation, there are at least two

other points of view from which the probability of inductive generali-

zations may be studied. One is the point of view of scope of generali-

zations. The other is the point ofview of simplicity of generalizations.
J. M. Keynes, with C. D. Broad the founder of Confirmatidti-
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Theory, also made a first attempt to study the probability of generali-
zations from the point of view of their scope.

1 The theory of scope
turns out to bear relevantly on one 'classical' type of argument
intimately connected with induction, viz. reasoning from analogy.

2

We need not here give a general definition of the notion of the

scope ofa generalization. The idea is connected with some difficulties,

which are related to the difficulties which arise in connection with the

notion of a confirming instance. (See this chapter 6.)

We shall content ourselves with a notion of relative magnitudes of

scope in propositions (not necessarily generalizations). We shall say
that, if one proposition entails another., then the scope of the first

proposition is smaller than, or at most equal to, the scope of the second.

Together with our previous Lemma (p. 118), according to which the

probability of a proposition, on given data, is smaller than, or at

most equal to, the probability of its logical consequences, we immedi-

ately obtain the following result:

Theprobability ofaproposition., on given data, is directly proportion-
ate to its scope.

It must be understood that this formulation is a shorthand for

saying that, relative to the same data, a propostion of given

scope cannot have a smaller probability than a proposition of smaller

scope.
Consider a Universal Generalization of the simple form

(x) (Ax-+Bx).
The scope of this generalization is increased, if (z) to the antecedent

is conjoined a new term, or (if) to the consequent is alternated a

new term.

For example: (x)(Ax-+Bx) entails (x)(Ax8tCx-+Bx) and also

(x)(Ax-+Bx v Cx).

Similarly, the scope of a generalization is decreased, if (/) to the

antecedent is alternated a new term, or (if) to the consequent is

conjoined a new term.

For example: (x)(Ax v Cx-*Bx)- and also (x)(Ax-*Bx&Cx) entail

From the definition of relative magnitudes of scope ofpropositions
it follows that, in general, a conjunction has a smaller scope and a

disjunction a greater scope than its single members. This result is

now easily generalized to the following:
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The scope of a universal implication is directly proportionate to

the scope of its consequent and inversely proportionate to the scope
of its antecedent.

Or, considering the proportionality between scope and probability:
The probability of a universal implication is in direct proportion to

the scope of its consequent and inverse proportion to the scope of its

antecedent.

We may call this the Principal Theorem on the Scope of Generali-

zations.
*

Reasoning from analogy is, roughly speaking, an argument of the

following character:

From the fact that two things, :c and y9 resemble each other in a

number of features, AI . . . An , we conclude that a further feature B
which is characteristic of x will also be characteristic of j.

This sort of argument is, in general, considered to be stronger (its

conclusion more probable) the greater the number n is of common
characteristics of the two things. (This is not to say that the strength

of the argument depended only on the number of common charac-

teristics.)

What is the logical foundation of this belief? Why do we think

that the degree of likeness between two things is relevant to the

question whether a certain property, known to belong to one of the

things, will also belong to the other?

It is difficult to see, how the argument from analogy could appear

convincing at all, if it were not for the fact that we suspect a connec-

tion between the presence of the properties Ai . . . A*, and the

property B in a thing. The presence of the former properties is

thought of as somehow 'responsible' for the presence of the latter

property.
A connection, which satisfies this requirement of causal 'res-

ponsibility', is the connection of sufficient (or necessary-and-

sufficient) conditionship. If the set of properties Ai . . . A* contains

among themselves a sufficient condition of B, i.e. if one or other of

the properties individually or some of them taken in conjunction
are sufficient to produce B, then the presence of all of them in a thing
will be accompanied by the presence of B. Now the meaning of

reasoning from analogy becomes this: The probability that n proper-
134



FORMAL ANALYSIS OF INDUCTIVE PROBABILITY

ties, Ai . . . An, contain among themselves a sufficient condition

ofB is greater, the greater n is.

The validity of this argument may now be examined within a

theory of the scope of generalizations. For the argument amounts to

saying that, in general, the probability of (x) (A&& . . . &An

will be greater than the probability of (x) (A :x& . . .&A nx

(It is understood that both probabilities are taken relative to the

same data.)

From our Principal Theorem in fact follows that

P((x)(A>x& . . . &Anx^Bx)/h)^ P( (x)(AiX& . . . &AH+ix-+Bx)lh).
It is of some interest to examine when < holds and when = holds

between the two probabilities.

(x) (A!.X& . . . &AnX~*Bx) is the same proposition as the conjunc-
tion (x) (A,x& ...&Anx&~An+1x-*Bx) & (x) (A Ix& ...& A*+&-*Bx).

By virtue of the General Multiplication Principle it is easily shown
that the two probabilities under consideration are equal if, and

only if, P( (x) (Ax&. . .& Anx &~An+iX-+Bx)lh&(x) (A^x&...
&An+*x-+-Bx) )

= L Conversely, the first probability is smaller than

the second, if this last (third) probability is smaller than L
This means: If the addition of a new common property An+i to

the previous common properties A . . . An is to strengthen the

argument by analogy under consideration, then it must not be

maximally probable that the set AT, . . . An,
~An+i contains a suffi-

cient condition of
, given that the set Ai . . . An+i contains a suffi-

cient condition of B.

Considering reasoning from analogy, these conditions of equality
and inequality are intuitively most plausible. For, assume that both

sets actually contained a sufficient condition of B. Then it would

follow that Ai& . . . &An&^An^ and A t& . . . &An^ are both

sufficient conditions of B. And from this again would follow that

A& . . . ScAn is a sufficient condition of B. In other words: if both

sets contained a sufficient condition of 5, then it would be certain

that already the smaller set A& . . . &A contained a sufficient

condition of B. And if this were the case, then the discovery of any

further resemblance between things, which already agree in all the

properties Ai . . . An, would be worthless as a contribution to the

logical force of reasoning from analogy. Conversely we may say

that, z/the discovery of a further resemblance An+i is to be of value
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to the argument, then there must be some chance that a sufficient

condition of B is to be found in the set A l . . . An+i rather than in the

set AI . . . An. And this is precisely what we should say there is not,
if the assumption that there were a sufficient condition ofB in the set

Ai . . . An+i would make it maximally probable that there is one in

the set Ai . . . An9~An +i as well.

Thus reasoning from analogy may be shown to depend, for its

logical force, on simple ideas concerning the proportionality of

scope and probability in generalizations.
3

The idea of relating the probability of generalizations to their

'simplicity' can truly be said to be among the classical ideas of

scientific methodology.
4

Simplex sigillum veri. The notion of

simplicity oh generalizations has often been compared to the notion

of simplicity in curves (and their algebraic expressions); and the

problem of generalizing from particular data has been compared to

the problem of tracing the simplest curve through a number of

points in a diagram.
5 Sometimes ideas on simplicity have been

related to ideas on the scope of generalizations.
8

In spite of many efforts, no satisfactory theory of the relation

of simplicity to the probability of inductions has as yetbeen developed.
The subject largely remains a virgin field of inductive logic.

7 In this

work we shall not make an attempt to penetrate into it.
8

It is sometimes alleged that probability, when contemplated in

relation to simplicity of curves and of laws, is of a different nature

from the probability-concept which is 'implicitly defined' in a set of

postulates such as ours for abstract probability and 'explicitly
defined' either in a Frequency- or a Range-Model of the abstract

calculus. This probability of a different nature was traditionally
called philosophicalprobability and contrasted with the notion of the

calculus which was called mathematical probability.
9

It appears, however, that the suggested dichotomy is at least not

very helpful from the point of view of &formal examination, such as
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the one undertaken in this chapter, ofideas concerning the probability
of inductive conclusions. It is noteworthy that all achievements so

far in the formal clarification of these ideas have been reached

either with the aid of the abstract calculus or some of its models

or with the aid of some weaker calculus such as the various systems
of so-called comparative probability. We must not, of course,

exclude on a priori grounds the possibility of a formalism of proba-

bility which would be significantly different from the 'classical'

ones and which might be successfully used for analysing some such

ideas as those relating to simplicity of inductions. 10 But it is initially

difficult to see how such a formalism, if invented for the ad hoc

purpose of dealing with an obscure corner of inductive theory,
could be ofmuch interest either to the logician or to the philosopher.
For any contribution, it would seem, becomes significant only if it

succeeds in assigning to some of our natural, though notoriously
obscure and vague, ideas of inductive probability a place within the

common framework of all other significant uses of probability.

But irrespective of the question of plausibility and intrinsic

interest of other formalisms of probability, any formalism of what-

ever structure would, so far as concerns its power of justifying

induction, be subject to the same general conditions as our abstract

calculus and its various models. Which these conditions are wiU be

discussed in the next chapter.
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CHAPTER Vn

PROBABILITY AND THE JUSTIFICATION OF INDUCTION

1. Probability and degrees of belief.

IT is our intention in this chapter to answer the following question:
In what sense and under what circumstances can the assertion either

that a proposition is probable to degree p, or that one proposition
is more probable than another proposition, be said to justify induc-

tion*

By its very use in ordinary language the word 'probability' is

closely related to ideas such as those of 'possibility', 'degree of

certainty', or 'degree of rational belief. This connection naturally
causes us to think of probability as justifying induction in the sense

that it were 'better' or 'safer ', in making predictions and, in

'practical life', taking precautions to prefer the more probable

propositions to the less probable ones. In other words, this connec-

tion suggests the idea of probability as being 'the guide of life',
1

i.e. the safest finger-post to follow in the search for truth.

In order to assess the significance of this idea, it will first be neces-

sary to discuss the relation between abstract probability and the

notion of a partial belief.

By an actual degree of belief vis mean a state of mind, a psycho-

logical fact expressing our attitude towards something (usually outside

the sphere of our direct knowledge). In order to get a clearer idea of

this psychological fact we must consider how degrees of belief might
be measured, i.e. determined empirically.
We can, in the first place, regard the psychological facts called

degrees of belief as feelings of different intensity. It is, theoretically,

conceivable that a psychometrical method could be invented for

comparing intensities in feelings and for assigning to those intensities

numerical magnitudes. Nevertheless, it is for several reasons obvious

that this way of evaluating degrees of belief is wholly inappropriate
if we wish to relate degrees of belief to degrees of probability. We
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need only consider the fact that our belief in things which we habit-

ually take for granted is often accompanied by practically no feeling
at all. 2

In the second place we might measure degrees of belief as follows:
We say that our degree of belief in a proposition is p9 when we

believe that the event which the proposition asserts will occur *in

average
5

(or
e

in the long run') in a proportion/? of all occasions for
its occurrence.

This definition is peculiar in that it defines degree of beliefm one

proposition by reference to belief, as such, in another proposition,
'Belief in connection with this latter proposition, again means the

psychological fact which is expressed in saying that we 'believe* a
certain proposition to be true (as opposed to certain other proposi-
tions which are 'believed* to be false).

We can, of course, go further and ask what degree of belief we
have in the latter proposition believed to be true. This degree is then
defined by reference to a further proposition believed to be true.

It seems to us that this second way of measuring degrees of belief

is a true analysis of the old-established idea of measuring a man's
belief by proposing a bet, and also of the philosophical doctrine that

degrees of belief were causal properties of our beliefs, that is to say
of our preparedness to act on our beliefs.

3

Supposing a method of measuring actual degrees of belief to be

given, we turn our attention to the interpretation-problem of formal

probability. It is now to be observed that, whatever this method of
measurement be, the definition of probability as actual degrees of
belief, would make the axioms and the theorems of the probability-
calculus general synthetical propositions, i.e. a kind of psychological
laws for our distribution of beliefs. The interpretation would thus

unlike the frequency- and range-interpretations be of the same

type as the interpretation of Euclidean geometry as a theory of

light-rays.

Consider for example the Special Multiplication Principle. If

probability means degree of belief, then this principle says that my
degree of belief in the proposition a & b (relative to some datum

K) is the product of my degree of belief in a and my degree of belief

in b, assuming that knowledge of one of these propositions does not
influencemy beliefin the other proposition. This assertion, obviously
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is synthetical in the sense that from my believing the proposition a
to degree/? and the proposition b to degree/ it does notfollow that
I shall believe a&bto degree p xp'. There is nothing in the nature
of things to exclude that my belief in a & b, on the above premisses
isnotpxp'.*

'

The assumption that an axiom or theorem of the probability-
calculus were false under this interpretation is, furthermore, not
only possible but also likely to be true. 5 Thus the calculus of proba-
bility as a theory for the distribution of actual beliefs would pre-
sumably soon break down as being a false theory.

It is, however, evident that the adherents of the
'psychological'

theory of probability have not intended the propositions of the

probability-calculus to be synthetical propositions concerning the
distribution of actual beliefs. They appear, on the contrary, to have
assumed that the axioms of probability were a kind of standard of
correctness in actual beliefs. TTie calculus of probability does not
tell us how we believe cs a matter offact, but how we ought to believe.*

If we accept this regulative function of formal probability, it is

necessary to abandon the idea of probability being defined or inter-

preted in terms of beliefs as psychological states of mind. 7 The
exact nature, however, of this regulative function of the formalism,
as also the true connection between probability and belief, still

remains to be determined.

We will characterize the regulative function of the probability-
calculus by saying that it provides a standard ofrationality in degrees
of belief. What does this characterization convey?

It is first to be observed that the standard of rationality cannot
be defined as a standard of consistency. This is important. Not only
does the calculus of probability not tell us how we actually believe
but it does not even tell us that, if OUT actual beliefs in certain simple
cases are distributed in such and such a way, then in order to be con-
sistent we ought to distribute our beliefs in certain other cases -
compounded of those simple ones -in a determinate way.

8 For
actual degrees of belief are psychological facts and can, as actual
facts, never contradict one another. This has been already illustrated
in the example above of the Special Multiplication Principle.

It thus appears that
'rationality' in degrees of belief is not aformal

property of the way in which actual beliefs are related, but that
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'rationality' is what may be termed a 'material* characteristic

discriminating between certain actual beliefs and others.

This material characteristic determining certain degrees of belief

as rational is, evidently, the same as that referred to when we say that

it is 'rational' to prefer the more probable to the less probable, imply-
ing with this as was already observed above that probability is

'the guide of life' or the best finger-post to follow in the search for

truth. A rational degree of belief, in other words, is a degree of

probability justifying induction. It remains to be analysed what this

'rationality' in beliefs really means.

2. Rationality of beliefs and success in predictions.

Let us, throughout this paragraph, assume that the proposition
'it is probable to degree p

9

implies the proposition 'belief of degree

p is rational', and conversely. We ask the following question:
How is it to be determined whether or not it is rational to entertain

belief of degree/? in a given proposition?
As a first answer to the above question we suggest the following:

Whether a certain degree of belief in a proposition is rational or not,

is determined by the knowledge relative to which we consider the

truth or falsehood of this proposition. By knowledge we mean here

any analytical proposition and any synthetical proposition known
to be true. (That is to say, no synthetical proposition which is

inductive is included under the term 'knowledge'.
1
)

For example: I may call it rational to believe to degree J- that this

coin will come down 'heads' in the next toss-up on the knowledge
that the coin is symmetrical and homogeneous and that the toss is

made under certain determinate conditions. 2

Suppose that on this way of determining rationality in beliefs

it were rational under the circumstances C to believe to degree p a

certain proposition asserting the event E. It follows from the initial

assumption of this paragraph that it is rational under the same
circumstances to believe the negation of this proposition to degree
1 p.

3 We suppose further thatp>lp.
Under these suppositions we can conclude that, if rationality in

beliefs is to be of relevance to the justification of induction, then it

must be rational, in considering whether under the circumstances C
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the event E will occur or not, to prefer the prediction of E to the

prediction of not-j as a 'guide of conduct*.
Let us assume that, in predicting the event E n times under the

conditions C, the prediction turned out to be true m times and false
m' times, and that m\n<m

t

\n. If the process of predicting is con-
tinued so that n becomes very large, and if the proportion of true
and false predictions shows a marked tendency to cluster round the
same ratios m\n and m'\n respectively, this may make plausible the
further assumption either that, in the long run, the events E and not-
occur under the circumstances C in the proportions m\n and m'\n
respectively, or at least that not- occurs more frequently than E.

It is to be observed that there is nothing in the previous suppositions
as to the rational degree of belief inE which could preclude any of the
above assumptions as to the relative frequency ofE from being true.

This implies that the suggested way of determining rationality in
beliefs may lead to a situation of the following somewhat paradoxical
character:

We call it, for determinate reasons, rational to prefer the predic-
tion of the event E under the circumstances C to the prediction of
not~E. But we assume, nevertheless, that we shall be less successful
(i.e. that we shaU arrive at the truth in a smaller number of cases) in

predicting E under these circumstances than in predicting not-.
We know, furthermore, that this assumption may well be true.

From the possibility of such a situation it follows that the suggested
way of determining rationality in beliefs cannot provide a satisfactory
justification of induction. By this we do not wish to maintain that
it were not possible to define rationality in beliefs without regard
to success in predictions, and not even that one might not call this

kind of rationality a 'justification* ofthe predictions which we actually
make. One must simply be clear that this 'justification' is not of the

slightest relevance to the 'sceptical' results of Hume as to the

impossibility of foretelling the future. 4

Consequently, if degrees of probability qua degrees of rational
beliefs are to 'relieve' us from Humean scepticism, then the answer
to the question as to whether or not it is rational to entertain, in a

given proposition, a certain degree of belief must involve some refer-

ence to success in using the proposition concerned for predictions.*
We must, in other words, be able to give some kind of guarantee
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that, in preferring the more probable to the less probable, we shall be
more successful than in making the opposite preference.

In considering what the 'guarantee' mentioned could possibly
be, the following will be instantly clear to us:

If, in the example given above, it is rational under the circumstan-
ces C to prefer the prediction of the eventE to the prediction of not-2f,
we cannot with this assertion of 'rationality' wish to exclude the

possibility that, those circumstances being realized, the more
probable prediction will after all turn out to be false, the less probable
again to be true.6

Nor, of the assertion of 'rationality', do we de-
mand that, of all predictions of E on the conditions C which will

actually ever be made, a majority is going to be true and a minority
false. We only demand that, if it is rational to prefer the prediction
ofE to the prediction of not-jE

1

, and it nevertheless happens that only
a minority of actual predictions of E are true, then this distribution
of truth and falsehood on the predictions must be regarded as

representing a 'chance-event' which cannot be excluded, but which
we think, in the long run, will give place to another distribution where
the true predictions are in majority.

7 The statement that 'chance-

events', such as the above 'abnormal' distribution of true and false

predictions of the event E9 will be cancelled out or eliminated in the

long run so that ultimately the frequencies tend to be proportionate
to the probabilities, we shall call the statement on the Cancelling-out of
Chance CAusgleich des Zufalls').

8

It can thus be stated that the guarantee of success needed in

predictions, if induction is to be justified with reference to rationality
in beliefs, concerns the statement that the Cancelling-out of Chance
will take place for the degrees of probability corresponding to the

degrees of rational belief.

It will immediately occur to us that there is one way of securing
off-hand the Cancelling-out of Chance for every probability. This
consists in interpreting formal probability in terms of limiting-

frequencies. Under this interpretation the statement that the

Cancelling-out of Chance will take place would become analytical
If this method be resorted to, the assertion that it is rational to

entertain belief of degree/? in an event E would mean that this event
occurs in a proportion/? of all occasions. The statement, on the other

hand, that the relative frequency of an event on all occasions of its
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occurrence
is/?, is a general synthetical proposition of the type called

Statistical Induction. It is plain that if the truth of such Statistical

Inductions be made the criterion for the truth of statements concern-

ing rationality in beliefs, then any argument which tried to justify
induction by reference to degrees of probability as representing
rational degrees of belief would be circular.

The state of our problem is now the following;
We have shown that if rationality in beliefs is to justify induction,

then it must be possible to give some kind of 'guarantee' that the

Cancelling-out of Chance will take place for degrees of probability
representing rational degrees of belief. We have further seen that
this guarantee can be given if we resort to the frequency-interpreta-
tion of formal probability, but that this way of securing the Cancel-

ling-out of Chance at the same time vitiates any argument from

rationality in beliefs to the justification of induction. Consequently,
if we are able to show convincingly that the only possible way of

guaranteeing the Cancelling-out of Chance is to interpret formal

probability in terms of limiting-frequencies, then it will have been
demonstrated that the idea of compensating the

'sceptical
5

argu-
ments of Hume with a theory of inductive probability is vain.

3. The Cancelling-out of Chance and the theorem ofBernoulli.

The theorem of Bernoulli, speaking approximately, tells us that if

we are concerned with propositions the probabilities of which all

have the value/?, then it is infinitely probable that 'in the long run',

exactly the proportion p of those propositions are found to be true.

Thus, if we have two propositions with the respective probabilities p'
and/?", and/?' is greater than/?", then we know that it is infinitely

probable that the former proposition will be true on a greater number
of occasions than the latter. In spite of this it may of course happen
that, of the propositions which we actually have tested, those with
the probability/)" have more frequently been true than those with
the probability/?'. This, however, has been due to 'chance'. In the

long run we know, according to the theorem, that it is infinitely
probable that such chance-events will be eliminated 'cancelled
out' so that finally the proportions of true propositions in the

respective classes become as indicated by the probabilities.
When stated in this way it looks as though the theorem of Ber-
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noulli were closely related to that which we have called the Cancelling-
out of Chance. Actually it is an old idea that this theorem amounted
to a proof that although irregularities and chance-events may
upset our calculations when applied only to a narrow sector of the
world in the course of nature as a whole regularity, law and order

prevail
1

It is therefore intelligible that the proof of the theorem was
regarded as an intellectual achievement of the greatest philosophical
significance.

2 In the nineteenth century mathematicians and philo-
sophers still spoke with the deepest awe about the wonderful philo-
sophical implications of this theorem.
A deeper insight into the logical nature of probability, however,

hashed
in our days to a common abandonment of the philosophical

aspirations originally connected with the theorem of Bernoulli and
the Laws of Great Numbers in general. Nevertheless, the idea of the
relatedness between the formal theorem of the probability-calculus
and the statement on the course of nature which we have termed the

Cancelling-out of Chance, possesses high philosophical value as an
illustration of a fallacy of thought, which not only underlies the
main 'classical' misuses of the principles of probability for philo-
sophical considerations concerning induction, but also is the source
of various erroneous ideas about inductive probability which still

play a prominent role in philosophical discussion. We shall there-
fore examine in some detail the fallacy made in relating the theorem
of Bernoulli to the Cancelling-out of Chance.3

The apparent relatedness between the theorem of Bernoulli and
the Cancelling-out of Chance has its root in the fact that in the
theorem mentioned two probabilities are involved. Of these proba-
bilities one remains constant throughout the course of con-

siderations, whereas the other increases and approaches the

maximum value 1. It is this probability of the second order that

acquires the appearance of providing a bridge between

probabilities of the first order and corresponding frequencies This
occurs through an unconscious interpretation of the empirical

implications of an increasing probability.
It has been already observed (p. 138) that the concept of proba-

bility is, by its very use in ordinary language, related to the concepts
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of certainty and of possibility. It seems plausible to say that prob-
ability measures degrees of certainty or of possibility:

4 The more
probable a proposition, the smaller the possibility that this proposi-
tion will turn out to be false. If the probability of a proposition is

infinitely close to the maximum value 1, it means that its possibility
of being false is infinitely small, or in other words that the proposi-
tion itself is 'almost certain'.

The interpretation of probability as a magnitude of possibility
is natural, particularly when we have to do with a variable proba-
bility-value. For whereas the grounds for interpreting a fixed
probability as a degree of possibility must be in some way or other

'objective', (e.g. in the sense in which in games of chance certain

properties of symmetry, being physical properties, provide us with a
number of equally possible alternatives), the statement, on the other

hand, that a probability varies seems by its very nature to mean a
statement about the altered possibilities of a certain thing being true.

For this reason it happens that, in the theorem of Bernoulli, we might
speak about the constant probability of the first order without

attaching to it any special 'interpretation', but nevertheless take as a
matter of course the variable probability of the second order to
'mean' an increasing degree of possibility or certainty.
Thus the first step towards the use of the Bernoullian theorem as a

bridge from the realm of probability to the realm of empirical

frequencies consists in giving the theorem the following content: If

the probability in certain propositions is p, then it becomes in the

long run almost certain that among those propositions a proportion
p are true.

At this point the following remark will take the reasoning further.

Let us suppose that we have demonstrated, with the aid, for example,
of the theorem of Bernoulli, that one possibility is greater than
another, or that one is very great, another again very small. Is there

anything in this which will preclude, even in the long run, the small

possibility from being realized very frequently, the great possibility

again very seldom or perhaps even not at all?

It is obvious that if there were nothing to preclude this, then a

degree of possibility, even at its maximum, could not serve as a

bridge to frequencies, sincethen the statement that a certain frequency
is very, or even

'infinitely', possible would not tell us anything
146



PROBABILITY AND THE JUSTIFICATION OF INDUCTION

about the way in which that frequency will be realized. Therefore,
the second step in using the theorem of Bernoulli as a bridge from

probabilities to frequencies consists in our tacitly assuming the

increasing degrees of possibility, involved in the theorem, to have the

following implication: If the probability in certain propositions is p,
then it will in the long run almost always happen that among those

propositions a proportion p are true. 5

On the other hand there is nothing in the proof of the theorem of

Bernoulli which would exclude the highly possible from happening
very rarely/ If we want to effect the necessary exclusion we must
therefore turn our attention to the way in which degrees of

possibility are measured empirically.
A well-known type of empirical determination of degrees of pos-

sibility is represented by the cases where certain physical attributes,

known as properties of symmetry, afford a basis for calling alterna-

tives equally possible. Consider, for example, the case of a homo-

geneous coin. As circumstances stand we are inclined to call the

occurrence of 'heads' an event equally as possible as the occurrence

of 'tails'. Suppose, however, that in actual trials, 'heads' occurred

more frequently than 'tails'. Would this under any circumstances

affect the judgement, passed on the basis of the properties of sym-

metry, that the alternatives are equally possible?
To this question two answers can be given. First, we may say that

the judgment mentioned is not under any circumstances affected by
what is true of the proportion of 'heads' and 'tails*. Secondly, we

might say that if it were true that the proportions of 'heads* and
'tails

'

were unequal, even in the long run, then we were mistaken in

calling the alternatives equally possible. This does not imply that

statistical frequencies must be used as the measure of equal and

unequal possibilities, as the observations of frequencies may repre-
sent chance-events, but it implies that any comparison between

degrees of possibility is "checked up* by a comparison between

proportions, so that we cannot imagine the relative frequency of the

event E' to be greater in the long run, than that of E" without also

assuming that E' is more possible than E'\ and conversely.
It is clear that if the first answer be accepted then again we could

not exclude that which was necessary if the theorem of Bernoulli was

to. serve as a bridge to frequencies, viz. that the small possibility will,
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even in the long run, occur frequently, and the great possibility
seldom or never. Therefore we must resort to the second answer,
which moreover seems to accord much better than the first answer
with the way in which in practice we would judge the situation, and
which actually has been suggested by several supporters of the theory
that probability is to be defined in terms of quantified possibilities
or 'Spielraume'.

7 But the acceptance of this answer has a remarkable

consequence which the supporters of the theory mentioned have as a
rule not observed. 8

If a statement that two possibilities are equal is checked up by a
statement about proportions, then the 'grounds' on which the former
statement was made properties of symmetry or whatever these

grounds may be cannot be defining criteria of equal possibilities.
Rather than criteria they are only symptoms of this equality and

inequality respectively. For a proposition about proportions, which
is a general synthetical statement, plainly cannot be a logical conse-

quence from those (singular) propositions which lay down the

observable content of the circumstances under which an event takes

place.
9

Since, on the other hand, a statement about proportions is

'checking up' the assertion about possibilities based on the latter

propositions, it follows that the truth of these latter propositions can
never imply the truth of the assertion about possibilities. It might
always be the case that the assertion is false although the propositions
in question are true.

We have now arrived at the following general conclusion: In
whatever way degrees of possibility may be measured10

it is not

possible with this measurement to exclude that a great possibility
will, even in the long run, be realized extremely seldom and a small

possibility again very often, unless the grounds for measuring
possibilities involve the assumption that a proposition will, on

repetition, be true in the long run in a proportion of cases propor-
tional to its degree of possibility.
With this we have shown that the theorem of Bernoulli provides

a bridge from the realm of probabilities into the realm of empirical

frequencies solely under the condition that the probability of the

second order, involved in this theorem, is given an interpretation
which implies that a proposition will, on repetition, be true in the long
run, in a multitude of cases proportional to its probability. But this
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implication is nothing but that the Canceliing-out of Chance will

take place. Consequently, that which makes it appear as though the

theorem of Bernoulli were of relevance for the Canceliing-out of

Chance in the case of the probabilities of the first order involved in it,

is nothing but the tacit or unconscious assumption that the Canceliing-
out of Chance is already established as regards the probabilities of

the second order. 11

The idea of the theorem of Bernoulli being a proof of the Cancel-

ling-out of Chance is thus circular. Bernoulli's theorem can be used

for proving inductive predictions concerning future frequencies only
on assumptions which are themselves inductive. This important
truth, incidentally, was pointed out already by Leibniz in his polemics

against the uncritical use of the theorem which James Bernoulli

himself suggested.
12

4. The idea of
l

probable success
9

.

The above examination of Bernoulli's theorem was pursued

mainly in order to point out an interesting fallacy of thought which
will be relevant also to the following discussion concerning proba-

bility and the justification of induction. It is, however, clear for

general epistemological reasons and thus independently of the

analysis in the preceding section that neither Bernoulli's theorem,
nor any other deductive chain of thought, could ever provide a

proof of the Canceliing-out of Chance relevant to the question of

justifying induction. This is seen from the following considerations:

The statement that the Canceliing-out of Chance will take place
for a given probability is a general proposition. It is such because it

concerns truth-frequencies
1 'in the long run', i.e. in an infinity of

cases. The only way of guaranteeing the truth of a general proposi-
tion is to make it analytical.

2

That the statement on the Canceliing-out of Chance for a given

probability, say p, is analytical means the following: If it is true

that a proposition is probable to degree^, then it is logically necessary

that this proposition will be true in a proportion^ of all occasions. Or
in other words: that the Canceliing-out of Chance is analytical

means that the frequency-interpretation is accepted as a model of

formal probability.
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On the other hand it was seen above3 that if the frequency-interpre-
tation be accepted as a model of formal probability, then any state-

ment that a proposition is probable to such and such a degree
becomes a general synthetical assertion i.e. an inductive proposi-
tion of the form called Statistical Generalizations for which reason it

would then be circular to justify induction by reference to probability.

We can therefore conclude that the guarantee of the statement on

the Cancelling-out of Chance, necessary for the justification of

induction with probability, applies to this statement as a general

synthetical proposition concerning truth-frequencies,
4 Since it is

impossible to guarantee a priori the truth of a general synthetical

proposition, it follows further that the 'guarantee' in question
cannot be a proof that the statement on the Cancelling-out of Chance

will be certainly true.

On this point the following idea suggests itself: Perhaps the Cancel-

ling-out of Chance as a synthetical statement could be secured or

guaranteed, if not with certainty, at least with some degree of

probability in its favour.

This idea, according to which the justification of induction with

probability consists in a proof of 'probable success' in predictions,

does not seem unplausible at first sight.
5 If we are asked whether

the statement that the proposition a is more probable than the

proposition b can justify induction, we should be likely to give

roughly the following answer: Of course we cannot be certain that

in predicting the proposition a we shall be 'on the whole' or 'in

the long run' more successful than in predicting the proposition &,

but it is very likely, if the proposition a is asserted to be more probable
than the proposition b, that the former proposition will be true in a

greater proportion of occasions than the latter.

This answer is very suggestive. It gains its suggestiveness partly
from the undetermined way in which the word 'likely' or 'prob-
able' is used in speaking about probabilities. This makes it appear as

though we had to do with two kinds of probability, the one, used in

saying that a is more probable than Z>, being 'mathematical' proba-

bility, i.e. a quantity treated in formal calculations, the other, used in

judging the relevance of those calculations with the quantitative

concept to matters of fact, being 'philosophical' or 'inductive'

probability.
6
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This distinction between two kinds of probability seems the more

plausible, as it would make it possible to interpret 'mathematical'

probability in terms of limiting-frequencies, i.e. to make statements

such as "a is more probable than b
9

general synthetical propositions

concerning proportions, without nevertheless depriving, with this

interpretation, propositions on probabilities of their power of

justifying induction. 7 The justification in question would be a judg-
ment in terms of 'philosophical

5

probability about the inductive

propositions of 'mathematical' probability.
It is, however, to be observed that, irrespective of whether we want

to distinguish between different kinds of probability or to keep to the

same interpretation of the concept throughout, the idea that success

in predictions could be guaranteed with probability is of no value for

the justification of induction unless we can compare the magnitudes
of the probabilities which are to guarantee this success, (at least) in

the following way:
If, in preferring on a given occasion the prediction of the more

probable proposition a to the less probable proposition b, we wish
to justify this preference by stating that it will probably lead to

success, then this statement must imply that it is more probable that

we shall arrive at the truth in preferring a to b than in making the

opposite preference. For if the statement on 'probable success' did

not imply this, then any assertion according to which it were 'prob-
able' that a certain proposition will be true on a greater number of

occasions than another proposition would simply mean that
cwe do

not know, but perhaps' the truth-frequency of the former proposi-
tion will be greater than the truth-frequency of the latter, and this is

exactly what we can say in any case of a general synthetical proposi-
tion concerning proportions. It would, under such circumstances,

be possible to assert equally as well that I shall probably succeed

in preferring the more probable to the less probable as that I shall

probably succeed in preferring the less probable to the more prob-
able, without saying anything as to which of these two alternatives

is preferable. But in this case I have not justified the choice which I

actually make between them.

If, therefore, philosphical probability is to justify induction, that is

to say if it is to be a guide as to which opinion we ought to follow in

the search for truth, then this probability must be capable of quanti-
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tative evaluation in the sense determined above/ This truth, which
is obvious even upon the slightest reflexion and is wholly independent
of how we wish to interpret probability, will soon be seen to possess
the most remarkable consequences.

It has been shown above that if induction is to be justified with

probability, i.e. if it is to be 'rational' or 'better' or 'safer' to prefer
the more probable to the less probable, then it must be possible to

guarantee that the more probable 'in the long run' is realized on a

greater number of occasions than the less probable, or more

exactly that the Cancelling-out of Chance will take place for the

probabilities under consideration. 9 On the other hand we have seen
that if the Cancelling-out of Chance is to be guaranteed with proba-
bility, this guarantee must imply that one of two ways of possible
success is more probable than another. From this it follows that we
must be able to guarantee the Cancelling-out of Chance also for

the 'philosophical' probability guaranteeing the Cancelling-out of
Chance for any 'mathematical' probabilities. From this important
conclusion the reasoning easily proceeds as follows:

The Cancelling-out of Chance cannot be guaranteed with cer-

tainty ifwe wish to justify induction with probability. The remaining
alternative is that it could be guaranteed with probability. Thus, we

might introduce the idea of 'philosophical' probability for a second
time. If this new probability is to express anything more than

uncertainty in general, it must be capable of 'quantification* in the

sense described above which tells us that the one of two alternatives is

more probable than the other. This again leads to a justification of
induction only if we can guarantee the Cancelling-out of Chance for

these last two probabilities. In this way we are involved in an in-

finite retrogression.
10

The crucial point of the whole discussion concerning probability
and the justification of induction is to see that any statement,

according to which something is 'probable', is relevant to what is

going to happen, only if it implies that this 'something* is going to

happen in a proportion of cases proportionate to its probability.
11

For this reason the idea that success in predictions could be guaran-
teed with 'probability' is dependent, in its power of justifying
induction, on the possibility of guaranteeing that of those predictions
a determinate proportion are true (the Cancelling-out of Chance)
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and consequently any attempt to guarantee the latter with reference

to the former is circular.

It is thus impossible to substitute, for the demand of a guarantee
with 'certainty' that the Cancelling-out of Chance will take place,
the 'weaker' demand that this is to be guaranteed with 'probabilityV2

The apparent possibility of making this substitute arises from an
unconscious use of the word 'probability* so as to imply truth-

frequencies, that is to say from the same fallacy of thought which
was the origin of the classical idea that Bernoulli's theorem amounted
to a proof for uniformity and order in the course of nature. 13 The

only way to justify this use of probability, however, is to interpret
the concept in terms of truth-frequencies, and as soon as this is done
it is easily seen that any argument which invokes probability for

guaranteeing success in predictions has become circular.

It deserves mention that David Hume who was the first to see that

general synthetical propositions cannot be proved true a priori, also

clearly apprehended that this result of the impossibility of foretelling
the future cannot be 'evaded* or 'minimized' by reference to proba-
bility.

14 He was aware of the infinite retrogression
15 to which the

introduction of probabilities in this connection leads and also of the

necessity of interpreting probability as a statistical concept if it is to

be of relevance to statements on future events. 16 This clarity, in our

opinion, gives the highest possible credit to the philosophical genius
of Hume and strikingly contrasts him with those numberless critics

of his ideas who have in the realm of probabilities found an escape
from the 'scepticism* which he taught.

5. Logical and psychological, absolute and relative justification of
induction with probability.

The results of the analysis in the preceding sections can be said to

have taken us back to the same point from which in Chapter V
we started our investigations concerning inductive probability. No
'mechanism of probability*, whatever be its formal structure and
whatever its interpretation, is in itself a better guide to the truth than
the mere fact, as such, that we regard certain propositions as more
reliable, more probable, than other propositions.
We previously refused to accept this fact alone, as &justification of
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induction. It is now appropriate to consider this point afresh. The

following will then occur to us:

In trying to justify inductions as general synthetical propositions
we need a guarantee that certain things are going to happen in the

future. Such a guarantee can only be given if it is relative to some
other assumptions as to the future,

1 and this leads to an infinite

retrogression. If, in spite of this, we break the chain of superimposed

assumptions as to the future and declare ourselves content with the

'guarantee' given in the last of them, the sole justification of this

behaviour, to which we can refer, is the fact that we regarded this

last assumption as being so highly 'probable' as not to need a

'guarantee' itself.

Thus it is, after all, not inappropriate to call the mere fact that

certain propositions are deemed more, others again less 'probable',

i.e. reliable, a justification of induction. It is not a justification in the

sense of its being & proof or: guarantee about what is going to happen
in the future, it is simply an expression for the attitude which we
take to conjectures on future events. We use certain inductions for

making predictions and taking precautions, and discard others for

the same purpose. Our use of inductive arguments is, in other

words, guided by estimations of reliability which as a matter of fact

we perform.
The different weights attached to inductive conclusions might be

characterized as different degrees of actual belief. It recommends

itself to say that degrees of actual belief provide a psychological

justification of induction with probability.

The essence of a logical justification of induction with probability
consists in a proof or guarantee that certain inductions are better

guides to the truth than others. If such a proof is to be given without

interpreting probability statistically, i.e. without the introduction

of any assumptions concerning the truth-frequencies in classes of

propositions, then we might call the justification absolute.

Such a justification, we have seen, is not forthcoming. This,

however, does not imply that our formal analysis and proofs of

inductive probability, have been altogether useless. We might also

speak of a relative justification ofinduction with probability, meaning

proofs of the calculus to the effect that a proposition is a guide to the
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truth, reliable in proportion to its probability, provided that certain

other propositions are also such guides to the truth. Such a 'relative

justification' is obtained, if the probability of propositions is inter-

preted in terms of frequencies.
It remains to be considered to what extent it is possible to apply

the frequency-interpretation to inductive propositions, especially
to generalizations.

In the Frequency-Model, the probability of a given proposition
means a truth-frequency within a class of propositions. This class is

determined by those values of a variable which satisfy a certain

propositional-function. The truth-frequency is the proportion of

those values of the variable which also satisfy a certain other propo-
sitional-function. And the proposition, in the probability of which
we are interested, is one of the propositions which this second

propositional-function yields, when for the variable is substituted a

constant.

The problem of how to define the two propositional-functions
needed for measuring the truth-frequency, presents no particular
difficulties when we are dealing with singular propositions. The
reason for this is that a singular proposition contains no exist-

ential or universal operator. We need only substitute variables for

some constant parts of the proposition and we get a propositional
function. Any other propositional function with at least the same
number of variables (of appropriate logical type) then constitutes

a possible 'collectivity' for measuring the probability of the singular

proposition in question.
When we preceed to general propositions, i.e. to propositions

containing existential or universal operators, the situation is different.

It does not seem natural to speak ofan 'occasion' on which a general

proposition might 'occur', or of a general proposition being true on

certain 'occasions' and false on others. But, this being the case, is it

then at all possible to speak of the probability of a general proposi-

tion, if probability has to be interpreted statistically?

This question has already been answered in the affirmative. It was

shownin ChapterVI, section?that the Principal Theorem ofConfirma-

tion can be given a frequency-model, in which the logical mechanism

of the theorem 'mirrors' the logical mechanism of induction by
elimination. The desired interpretation in frequency terms was

155



THE LOGICAL PROBLEM OF INDUCTION

obtained by regarding Universal Generalizations as instances of

prepositional functions of the type 'X is a sufficient condition of A 9

or 'X is a necessary condition of A\ where A is a constant and X a

variable property. The probability of the Universal Generalization

becomes, on this interpretation, a proportion of actual sufficient (or

necessary) conditions of a given characteristic within a class of

possible sufficient (or necessary) conditions of it.

If the class in question is infinite, the proportion in question will

have to be a limiting-frequency. The notion of a limiting-frequency

again presupposes an ordering of the members of the class. The

necessity of this presupposition challenges the adequacy of the

frequency-interpretation as an analysis of the 'meaning' of proba-

bility. But it does not impair the logico-mathematical correctness

of the model. 2

It is an old idea that the 'probability' of a generalization depends
on whether it belongs to a class of good or less good inductions. 3

We shall show that this idea can be worked out to a formally correct

definition in frequency-terms of the probability of natural laws. 4

Consider the two propositions 'all ravens are black' and 'phos-

phorus melts at 44 C'. They are both general implications of the

form

(1) (jc) (Ax-Bx).

If we made a statement according to which one of these generaliza-

tions were more probable than the other, it is likely that we would

be expressing something such as the following: The generalizations

represent two classes (kinds, types) of natural laws, the proportion
of true generalizations among all generalizations of the one class

being greater than the corresponding proportion in the other class.

It would presumably not be immediately clear how those classes of

generalizations to which we refer are to be characterized, but it

seems plausible to suggest, for example, that they are the class of

hypotheses attributing respectively to a species of bird a constant

combination of colour, and to a chemical substance one and only
one melting-point. 'All ravens are black' is a less probable generali-

zation than 'phosphorus melts at 44 C' if there are more species of

birds, the individuals of which vary in colour, than there are chemical

substances with more than one melting-point.
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Let Si denote the class of all species of birds, and S z the class of
all species of combinations of colours in a bird. The statement that

all individuals of the species of birds X have the same colouring Y
is then a proposition of the form

(2) & (X) & S Z(Y) & (Ex) (Xx & KC)-KJC) (Xx-+Yx).

If we take X and 7 to be real variables (2) becomes a prepositional
function. Any pair of constant values Xi and 7t which when sub-

stituted for the real variables in the prepositional function Si (X) &
S 2 (Y) & (Ex) (Xx & Yx), make this a true proposition can be said

to constitute an 'occasion' for any hypothesis of the form (x) (Xx->

Yx). The proportion of times on which the prepositional function

(x) (Xx-+Yx) turns into a true proposition on all such 'occasions*

constitutes the truth-frequency in the class of hypotheses as to

constancy of colour in species of birds.

In an analogous way we may, in the form of a prepositional
function, define a class of 'occasions' for a statistical interpretation
of the probability of the hypothesis that phosphorus melts at 44 C.

Against the idea of defining a 'collectivity' for the purpose of

measuring the probability of a general proposition the following

objection has been made:

A proposition of the form (jc) (Xx-*Yx) is unverifiable. Conse-

quently it is not possible to determine whether such a proposition
is true on a given 'occasion' of it, nor to count the truth-frequencies
even among a finite number of hypotheses. Or as Popper expresses
it 'Dieser Yersuch scheitert . . . daran, dass wir von einer Wahrheits-

haufigkeit innerhalb einer Hypothesenfolge schon deshalb nicht

sprechen konnen, weil wir ja Hypothesen zugestandenermassen nicht

als "wahr" kennzeichnen konnen. Denn konnten wir das wozu
brauchen wir dann noch den Begriff der Hypothesenwahrschein*
lichkeit?' 5

This remark, however, is beside the point. It is a fact that Universal

Generalizations cannot be verified, but there is no logical objection
to the assumption that, in a class of such generalizations, a certain

proportion is true. Leaving for a moment all considerations as to

'probability', it is surely in no way absurd to assume a certain thing
to be true of, say, the proportion p of all species of birds, although
such an assumption, strictly speaking, cannot be 'verified* even for
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a single species. It is a reason for regarding this assumption as

plausible if roughly the proportion 1 p of all species are known to

lack the property in question which knowledge can be obtained

since Universal Generalizations can be falsified and if continued

observation and long experience had confirmed the hypothesis as to

the presence of this property in individuals of the remaining species.

Propositions concerning the probability of Universal Generaliza-

tions, meaning truth-frequencies in classes of hypotheses, therefore

cannot be verified, but nevertheless can be, so to speak 'recom-

mended' or 'discountenanced' by the records of experience. The

logical difference, consequently, between singular propositions and

Universal Generalizations, consisting in the fact that the former

may be verifiable and the latter not, is irrelevant to the question of

whether or not it be possible to interpret the probability of general

propositions in terms of frequencies.
There remains the further problem whether it be possible to deter-

mine the propositional functions ('collectivities') for measuring the

probability of generalizations in such a way that the loose estima-

tions of reliability, with which we usually content ourselves, can be

made into exact numerical evaluations. We shall not embark upon a

discussion of this problem here. For several reasons we are inclined

to take a sceptical attitude to the possibility in question.
6
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CHAPTER

INDUCTION AS A SELF-CORRECTING OPERATION

1. Induction the best mode of reasoning about the unknown. The
ideas ofPeirce.

WE say that we employ the inductive mode of reasoning or an
'inductive policy' when we make inferences to the unknown on the

principle that future experience will be in conformity with the past.
For instance: We conclude from the fact that all observed A 's have
been B that the unknown A's will also be B, or we infer from the

fact that a proportion p of the observed A's have been B that the

same proportion of all A's are B. We have seen that we cannot

guarantee, prior to testing, the truth of any such inference as a

synthetical proposition, nor can we show one generalization from a
set of data to be more probable than another in the sense that it were
a better guide to the truth. We might, in other words, have made the

inferences to the unknown in any other than the 'inductive* way and
nevertheless been successful. But in spite of these 'negative' results

it seems possible to assert that the inductive method as such is, in a

certain sense., the best way of making conjectures about the unknown.

For this method seems to have a certain advantage possessed by no
other method of conjecture.

1

The methods of reasoning about the unknown could be compared
to the methods by means of which we find our way out from a

complicated labyrinth. This last can be accomplished in many
different ways. We might just run ahead and guess the right course

at each turn. Or we might determine the course to be chosen accord-

ing to a fixed rule. One of such rules holds a peculiar position. It is

the determination consistently to keep to the same hand, either to the

right or to the left. Of this rule it can be proved that it must finally

lead us out of the maze. It is very likely that the employment of

some other rule, or even mere guessing, will lead us more quickly
out of the labyrinth, but the employment of any such method may
also never attain this end. The determination to keep to the same
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hand is the only method of which we can be sure that, if persisted in

consistently, it will lead to the goal.
This power of the method mentioned of finding one's way through

a maze is due to its being, by its very definition, a self-correcting
method. That is to say, it follows from the way in which the method
is defined that, even if it momentarily takes us away from the exit

of the labyrinth, this deviation from the goal will be automatically
corrected until the exit is reached and we leave the maze.

Something corresponding to this seems to be true also of induction.

Two classes A and B intersect and we want to generalize as to the

proportion of the one class which falls within the other. This can
be done either by guessing or 'methodically', i.e. according to some
rule. One such rule is provided by the inductive method. It is not

impossible thatwe might arrive at the true generalization more quickly

by employing some method other than the last-mentioned one, or even

by guessing. But, on the other hand, none of these methods may lead

to the truth. The inductive method on the other hand maymomentarily
give results deviating very much from the true value of the propor-
tion, but it follows from the way in which this method is used that

any such deviation is in time corrected by experience's own indica-

tion. This process of correction continues until the true proportion
is reached. Thus induction, like the method mentioned of finding
one's way out from the labyrinth, is by its very nature a self-

correcting operation, and as such is the only method of making
inference about the unknown of which it can be proved that it must,
when consistently employed, finally lead to a true generalization.
This property of the inductive method might plausibly be regarded
as & justification of our use of induction.

This argument about induction as 'the best mode of reasoning
about the unknown', which is related to the idea that our experiences
are 'fair samples' from a larger totality, was expressed for the first

time by Peirce. 2 Peirce speaks of 'the constant tendency of the

inductive process to correct itself as the 'essence
5

and the 'marvel'

of induction. 3 He also says that 'the validity of an inductive argu-
ment consists, then, in the fact that it pursues a method which, if

duly persisted in, must, in the very nature of things, lead to a result

indefinitely approximating to the truth in the long run'.4

The validity of the argument, naturally, depends upon the assump-
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tion that in the respective cases the proportion as to which we
generalize exists. For if, of the two classes A and B, no definite

proportion of the first is included in the second, then obviously any
method of generalizing as to the proportion would be equally vain.

This condition, however, was not stated by Peirce. It is likely that
he assumed it to be tautologous, and hence unnecessary to formulate

explicitly. But in fact the condition is not tautoiogous. We shall

dwell on this point for a moment, as there is psychologically a most

interesting origin for the supposition that always when two classes

intersect it is a tautology that a definite proportion of the first is

included in the second.

We denote each member of the class A that is also a member of
the class B by 1, and each member ofA that is not a member ofB by
0. The observed A's can always be pictured in a series of a definite

number of alternating 1 's and O's, such as this

(1) 110100011111011.

In any such series there is a definite proportion of A 's which are B,

This follows per definitionem from the way in which such a series

is constructed. And now we fancy the picture of all A's to be

something like this

(2) 110100011111011...,

where the dots indicate that the series of 1's and O's perhaps goes
on indefinitely,

This picture, however, is most fallacious. It causes us to think ofthe
class A as in some way 'resembling' finite collections of the class,

picturable in rows such as (1), chiefly on account of its being a

'very long' row of this kind. (It is the same type of fallacy wMch
occurs over and over again in the philosophy of mathematical concep-
tions. We know it, for example, from the controversies about the

infinitesimals or the transfinite, controversies of which the deepest
root lies in the inclination to think ofinfinitesimal quantities as some-

thing 'very small' and of transfinite magnitudes as something Very
great'.)

Actually the only way to state the fact that a definite proportion
of the class A is included in the class B is to assert the proposition
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(3) (J5//0 0) (x) (Ex.)

z = n

N Axt&B

n>m & :

z =

or some proposition equivalent to it. But the statement (3) is no

tautology, for, as was seen above 5
it is conceivable that it were false.

And hence the assumption that when two classes intersect there must

be a definite proportion of the one included in the other is itself an

inductive assumption.
6

This fact can hardly be said to intrude upon the validity of the

argument about induction being the best mode of reasoning about

the unknown, as this argument makes sense only under the assump-
tion that the proportion as to' which we generalize exists. It imposes,

however, a serious restriction upon the applicability of the argument
to single cases. For as the statement that a definite proportion of

one class is included in another is itself inductive, it follows that we
can never guarantee that in this case such a proportion exists and

hence that induction here will be the best mode of reasoning.

On the other hand knowledge that the existence of a proportion
is a non-tautologous fact, expressed in a statement of the form (3),

gives us an unexpected possibility to strengthen Peirce's argument.
This has been pointed out by Reichenbach, whose system of an

'inductive logic' is very closely related to the idea about induction

as a self-correcting operation.
7

It can be proved that if the statement (3) is true, i.e. if a definite

proportion/? of the A's are 5, then also the statement

(4) n>m-

i = n

N
i = 1

i & B xt

i = n

N A

is true for this p9 i.e. then there exists a finite number m such that

from the m'th A onwards the proportion ofA 9

s which are B remains

in the interval/? e.
8
(The series ofrelative frequencies corresponding
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to the observations is, in other words, convergent.) But this means
that if two classes intersect so that a definite proportion of the first is

included in the second and we want to generalize as to this propor-
tion, then the inductive method can be proved to attain this goal in a

finite number of steps, i.e. after a finite number of corrections. 9

It is clear that for 'empirical' classes it is not possible to calculate
the exact value of the ordinal m from which point onwards (for a

given s) the observed proportions will remain within the fixed interval.

Thus it is never possible to tell, in a given situation where we are

using induction, whether the corrections can still be expected to

continue, or whether the true generalization has already been reached.
But perhaps in spite of this it would be possible to devise some
'technique' by means ofwhich the approach to this important m could
be accelerated. Such a 'technique' has actually been suggested by
Reichenbach. We shall therefore examine his ideas as regards this

topic somewhat more closely.

2. Reichenbach's Method of Correction.

In this section we shall attempt to give a simplified description of
Reichenbach's idea which should make it easier to assess its episte-

mological significance.
1

Let the problem be to find 'by induction
1

what proportion of
members of a certain, potentially infinite, sequence 5 possess a
certain characteristic A.
We have observed an initial segment of n members of S. The

recorded proportion ofA among them is p. We generalize, following
the inductive principle that 'the future will resemble the past',

2 that

p is the limiting frequency of A in S. This generalization we call a

posit ( 'Setzung*} of thefast order*

For this posit we can find an appraisal ('Beurteilung') which may
result in a correction of the posit. The procedure is as follows:

We consider s different, potentially infinite, sequences . . . Ss .

(We shall assume that our sequence S above is one of them.) We
observe initial segments of n members of each sequence and record
the proportion of A in these segments. The recorded proportions
are /?i . . . p9 ,

Following the inductive principles we assume that p* . . .'/vare
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the limiting-frequencies of A in the s sequences. Thus, we get in all s

posits of the first order.

Some of the s p-values may be identical (or 'nearly identical').
4

We assume that there are /-different /7-values. (/"<.) We call them

We record the relative frequency of /7-values which are qlf (If
there are m such ^-values, the recorded relative-frequency is ra:s.)

Similarly, we record the relative frequency of^-values which are q z,

etc. In this way we get in all r
relative-frequencies /(^) . . . f(qr).

Some, or even all, of them may be identical. Their sum, of course,
isl.

Following the inductive principle we assume that f(q^ . . . f(qr)

are the limiting-values, which those r recorded frequencies will ap-
proach, when the segments of n members of the s sequences are

indefinitely increased. Thus we get r inductive generalizations. We
call them posits of the second order.

We raise the following arithmetical problem:
If the limiting-frequency of A in a sequence is qf , what is the

limiting-frequency, among all sets of n members of this sequence, of
such sets in which the proportion of A is qk1

In order to be able to answer this question, certain assumptions
about the 'inner structure' of the sequences in question will have
to be made. 5 For purposes of our simplified description, however, we

ignore these assumptions. We imagine the question to have been
answered for all possible pairs qt and qk . (Since there are r ^-values,
there are r2 such pairs.) The calculated limiting-frequency, for given

qt and qk ,
we symbolize by/(^, qk).

We can now use the values /(#/) and /(#i, qk) for calculating an
answer to the following question, which may be termed the 'inverse'

of the question just answered:

What is the limiting-frequency, among all sets of n members from

any of the s sequences, of such sets as satisfy the following two
conditions:

(0 the proportion of A in the set is qk , and

(ff) the limiting-frequency ofA in the sequence, from which the set

is a selection, is qi ?*

The calculated limiting-frequency we symbolize by
F (/(?0; ffabQk) ) or shorter F&.
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Now, for a fixed i, the value of F/,* will, in general, be different

for different values of k. Its maximum value we call Fimax.
Since z can take r different values in all, we have altogether r such

maximal values F\rnax . . . Frmax.
The value of Ft,t we call the appraisal of the first order posit

(inductive generalization) that qt is the limiting-frequency of A in
a sequence, from which an initial segment of n members has been
found to contain A in the proportion qt.

The appraisals are used for the purpose of correcting the posits

according to the following rule:

Iff},/ equals Fimax, no correction is needed. If F& is less than
the maximum, then we correct the posit by assuming that the

limiting-frequency of A in the sequence is, not qf, but a value q?
such that Fi

t
r equals Fimax. 7

This correcting procedure, which even under the above simplified

description of its mathematical mechanism may appear involved and

cumbrous, has in fact a very simple and clear-cut meaning. It

amounts to this:

We should posit that value as the limiting-frequency of A in the

sequence S, which is mostfrequently the limiting-frequency of A in a

sequence, of which a set with the recorded relative frequency of A
is a selection. 8

It must now be observed that the posits of the second order upon
which the correction essentially depends, are themselves generaliza-
tions about proportions, and may as such be in need of correction.

To this end we may derive an appraisal of the second order for

each posit of the second order and then use the appraisal for possible

corrections, all in a way analogous to the one described above for

the first order posits. The corrected values of the posits of the second
order could then be used for correcting our previous calculations of

appraisals for the posits of the first order, and may thus ultimately
lead to further corrections in the first order posits.
The correction of the posits of the second order would in their

turn depend on certain posits of the third order, which again are

capable of appraisal and correction. Thus we get an infinite hierarchy
of superimposed posits and appraisals,
We are now in a position to tell in what sense the Method of

Correction means an accelerated approach to the points of conver-
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gence in sequences of relative frequencies, and to assess the

significance of this to the problem of induction.

On the assumption that the recorded relative frequencies possess

limiting values in the sequences under consideration, we can from

what was said above (in section 1 of the present chapter) on the

nature of Statistical Generalizations, draw the following conclusion:

For any given value of e, however small, there exists some value

of H, call it /2i, from which onwards all the posits of the first order are

true within the limits . And similarly, there exists some value of

H, call it n z ,
from which onwards all the posits of the second order are

true within the limits e.

That a posit of the first order is true means that the limiting-

frequency of the characteristics in the sequence under consideration

is as indicated by the relative frequency of this characteristic in the

observed initial segment of the sequence. That a posit of the second

order is true means that the proportion, among all sequences under

consideration, of sequences with a certain limiting-frequency of the

characteristic, is as indicated by the observed proportion of initial

segments of sequences showing this relative frequency of the

characteristic.

From considering these meanings it is clear that if all the posits of

the first order are true, then all the posits of the second order are

true also. But it is equally clear that this proposition cannot be

converted. For all the posits of the second order may be true, and

yet some of the posits of the first order false. It follows from this

that 72 2</2i. And this means that all posits of the second order will

become true not later than, i.e. either sooner than or simultaneously

with, all posits of the first order.

Generalizing, we can prove that all posits of a higher order will

necessarily become true not later than all posits of inferior orders.

This is the sense in which the building up of the hierarchy of posits

and appraisals and its use for corrections may be said to 'accelerate'

or 'speed up' the inductive approach to truth.

It is important to observe that the 'acceleration' in question does

not amount to a proof that we shall, with our posits of the first

order, sooner reach the point of convergence if we resort to the

Method of Correction, than if we generalize on the basis of the

inductive principle alone. 9 And it is also evident from the way in
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which the hierarchy of posits and appraisals is constructed that we
can never determine, after any number of corrections, whether the

true value of the proportion as to which we are generalizing has been
reached or not, nor can we ever know how many corrections, if any,
still remain to be made. And we cannot even exclude the possibility
that the corrections will, for any length of time, take us further away
from the true value of the proportion instead of letting us approach
it.

10

For these reasons it seems to us that Reichenbach's Method of

Correction cannot be said to add anything epistemologically signifi-

cant to the idea that induction is an indefinite and self-correcting

approximation to the truth.

3. The goodness of inductive policies reconsidered.

We return to the problem, whether induction can be justified as

being, in some sense, the best policy for making conjectures about the

unknown. The superiority of induction, we have seen, was thought
to be in its self-correcting nature and in its alleged indefinite approxi-
mation to the truth. In view of what has been said above of these

attributes of induction, it is at least doubtful whether they can really
be said to constitute a 'superiority' of inductive over alternative

policies.
1 We shaU now consider a somewhat different way, related

we believe to the Peircean approach, of establishing the superiority
of induction.

It is useful here to make a rough distinction between prediction
and generalization. A prediction, we shall say, is about a single case

('event') or about a finite number of cases. A prediction should be,

in principle, verifiable and falsifiable. A generalization is about an

unlimited number of cases. 2

Accordingly, we shall say that a method or policy for reasoning
about the unknown can be either & prediction policy or a generaliza-
tion policy.
A prediction policy will be called inductive, if it proceeds according

to a maxim of one of the following schematic types:

() If all observed A are 5, then predict that the n next A are B.
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(ii) If a proportion p of all observed A are j3, then predict that a

proportion (as near)/? (as possible) of the n next A are B. (>1.)
Similarly, a generalization policy will be called inductive, if it

proceeds according to a rule of one of these types:

(i) If all observed A are B, then generalize that all A are B.

(ii) If a proportion/? of all members of a sequence S are 5, then

generalize that the limiting-frequency of B in S is p.
This characterization of inductive policies is only a rough first

approximation. It would probably be sensible to count as 'inductive'

also policies which employ rules somewhat 'laxer' than those above,
but resembling them in essential features. We need not discuss this

question here.

(In view of the fact, among others, that generalization policies of

type (if) presuppose the ordering of the members of a class into a

sequence, it seems to us doubtful whether they play any great role

in science. 3 It might be suggested that there is a more important

(and embracing) type of policy, viz.)

(ii)' If a proportion/? of all observed A are B, then generalize that

the probability that any given A is B is p.
We shall not, however, here discuss inductive policies of the

probability-type.)
We shall say that a policy is truth-producing (possesses a 'truth-

producing virtue') if its predictions or generalizations always, or at

least in a great majority of cases, are true. We shall also say that

verified predictions confirm a policy.

We shall now briefly consider policies which are, or may be

claimed to be, not-inductive. Not-inductive policies are probably
worth a closer scrutiny than is given to them here and elsewhere in

the literature on induction.

Let n be an integer and
/?

a value in the interval between and 1

inclusive. f(p,ri) is to be a function of/? and n which satisfies the

following three requirements: (a) for any given /?
and n we can calcu-

late a unique value of/(/?,); (b) the value of/(/?,) is in the interval

between and 1 inclusive; (c) the value of/(/?,rc) is different from/?.
Consider a prediction policy of the following type:
If a proportion/? of the n last A which have been observed are J5,

then predict that a proportion (as near) /(/?,) (as possible) of the

n next A are B.
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A policy of this type resembles induction in that it is guided by
experience. What we anticipate according to this policy is rigorously
determined by what we have recorded. The policy is thus self-

correcting. (Being, in this sense, self-correcting, is therefore no

privilege of the inductive method.)
4

The policy differs from induction in that it proceeds, not on
the principle that 'the future will resemble the past', but on the

principle that the future will, in a characteristic way, be different

from the past. We shall call a policy which proceeds on this prin-

ciple, counter-inductive. 5 A more rigorous definition of such policies
will not be attempted here. The counter-inductive policies are a
sub-class of not-inductive policies.

As a prediction policy the above not-inductive method may be

superior to an inductive prediction policy in a very palpable sense.

Consider the following situation:

The property B becomes rarer and rarer among instances of A. If

we predict its frequency in a set of n new instances of A following
an inductive policy we shall, on the whole, predict a too high fre-

quency. But iff(p,ri) is a function ofp and n which corresponds to

the 'rate of diminution' in the frequency, then we shall with the

aid of the counter-inductive policy, on the whole, predict the right

frequencies.
Consider next a generalization policy according to which the

limiting-frequency of a characteristic in a sequence is consistently
assumed to differ in a determinate way from the recorded relative

frequency. Use of such a policy would, in the following sense, always
be futile:

Either the relative frequency of B in S has a limiting-value, or it

has not. In the first case we shall, foEowing the inductive policy,
in a finite number of steps reach the point of convergence which
answers to an arbitrary value of e. This entails that by following
the counter-inductive policy we shall in a finite number of steps
reach a point from which onwards we make only false generaliza-
tions. In the second case again, no generalization policy about

limiting-frequencies will approximate to the truth.

As we have said repeatedly before,
6

it is not necessary that the

relative frequency of a characteristic in a sequence should have any

limiting value at all. Beside approximating to a limit there is also the
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behaviour of relative frequencies which is best termed an oscillation

between two extremes. 7

Special policies may be devised for predicting
and for generalizing about such oscillating behaviour of frequencies.
Such policies may be either inductive or counter-inductive or not-
inductive. We shall not stop to examine them here. It is a lacuna
in the literature on induction that, as far as we know, oscillating
relative frequencies have never received systematic attention. 8

Of inductive and counter-inductive policies we may, comparing
them with each other, say that they use the same premisses but draw
different conclusions from them. We now turn our attention to
not-inductive policies which do not use the same premisses as induc-
tive arguments (but may reach the same conclusions).

It is noteworthy that it is difficult to give any uniform characteriza-
tion of such not-inductive policies or to illustrate them by an example
which seems worthy of being seriously considered as a policy or
method at all. (This, by the way, throws light on the proposition
that induction is the best method for making conjectures.)
As a crude example of such a not-inductive policy we may take the

consulting of an 'oracle' for purposes of prediction and generaliza-
tion. We shall not attempt to explain what should be the other
characteristics of an 'oracle' besides the negative one that we must
not be able to calculate the oracle's answer from experiential

premisses according to some known rule. If the 'oracle' did not

possess this characteristic, consulting it would be equivalent to

adopting a counter-inductive policy. Since this negative feature must
be common to all not-inductive policies, which are not counter-

inductive, we shall call such policies oracle-policies.
It is clear that we cannot exclude the possibility that an oracle-

policy would be superior to induction in the sense that its predictions
and generalizations were more often true than those made in accor-
dance with inductive (or counter-inductive) policies.

9 And it is

noteworthy that there is no limitation to an oracle-policy's powers
of competing successfully with an inductive policy, when we are

generalizing about proportions, which would correspond to the
limitation in a counter-inductive policy's capacity.

Having thus made clear in what respect not-inductive policies

may and may not be superior to inductive policies in the search for

truth, we raise the question: Could there ever be a ground or reason
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for adopting a not-inductive policy, and what would such a reason
look like?

If asked why we adopt a certain policy for predicting or generaliz-

ing, the 'reason' given is often some fact about our beliefs and (other)
attitudes in the matter. Why, for example, did we predict B with a
lesser frequency among the last 100 A than the recorded frequency

among previous Al Because we believe that the occurrence ofB will

become rarer. Why did we consult an 'oracle' about tomorrow's
weather and act according to its prediction? The answer could be
that we regard the oracle as the representative of a God, whose

powers of foretelling the future we trust, or whose wrath for not

having taken his advice we fear.

If belief is called a 'reason
'

for adopting a policy, it should be borne
in mind that a 'reason' of this sort is quite without relevance to the

question of justifying the choice of policy, i.e. to the question of

objectively appraising the policy's truth-producing capacity. The
same is true of any 'reason' which consists in our attitude to our

source of information about the future such as an attitude of love

or trust or fear of a divine power. We shall therefore, for the sake

of clarity, distinguish between reason and motive and say that a belief

or other attitude may be a motive for adopting a certain policy, but

not a reason for doing so. 10
By a reason for adopting a policy we

shall understand a reason for belief in the truth-producing virtue of

the policy. A reason in this sense, moreover, should be some known

fact about the 'world', i.e. about something which exists indepen-

dently of the predicting or generalizing subjects. (This last excludes

beliefs and attitudes from being reasons for beliefs.)

The above is a rough characterization only, but it will have to suffice

for present purposes. Be it remarked, however, that the logic of the

case is further complicated by the fact that an attitude (other than

belief) to a source of information, is sometimes a motive both for

adopting a certain policy and for believing it, and sometimes a

motive only for adopting but not for believing a policy. Thus, for

example, fear of punishment for not having taken the oracle's advice

could be a motive for adopting a policy in which we do not believe.

In such a case it is difficult to see how anything which counts as a

reason for our attitude to the source of information could ever be

a reason for belief in the policy. If, however, the attitude to the
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source of information is also a motive for belief, then a reason for
the attitude may but need not be at the same time a reason for the
belief.

In addition the following point should be noted about our concep-
tion of 'reason'. Since the fact which constitutes the reason should
be known, we cannot on our terminology count as reasons
unknown facts which, if known, would have been reasons for adopting
a certain policy. Thus, for example, we must not say of the fact,
that B actually became rarer and rarer among A's from a certain
moment on, that this was already before it became known a reason
for adopting a counter-inductive policy for predicting B.

After these preliminaries we raise the question: Of what kind
would the facts about the world have to be in order to qualify, if

known, as reasons for adopting a certain 0Mnductive prediction or

generalization policy?
We first consider counter-inductive policies.
What should we, for example, consider a reason for predicting that

the relative frequency ofB among the next 100 A will be 45 per cent,

although the relative frequency ofB among, say, the first 500 A which
we have observed was 48 per cent? As a reason we might count the

observation, i.e. known fact, that among the first 100 A the frequency
ofB was 50 per cent, among the next 100 it was 49 per cent, among
the next 100 again 1 per cent less, and so on. Or the reason might be
some other, similar observation about the fluctuation of the frequency
of B among the A. Or it could be the observation, say, that the

frequency of B among certain other properties A^ . . . An has sunk
from 50 per cent among the first 100 instances to 45 per cent among
the sixth 100 instances.

This is only a very rough indication of possible examples. And in

this place it is important to warn against a misunderstanding. The
above illustration of reasons must not be taken to mean that any
observation of the kind indicated would ipso facto constitute a
reason for the prediction policy under discussion. Whether the
observation will be a reason or not for adopting the policy depends
upon its relation to all the other facts which are known about the
case. Thus the 'weight' of some of the observations mentioned in
favour of the counter-inductive policy may be, so to speak, 'counter-
acted' by some other observation speaking in favour of a different,
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e.g. of an inductive prediction policy. What the examples were
intended to show was only what kind of facts might count as reasons
for adopting a counter-inductive policy.
The facts which we indicated agree in an important feature, which

the reader may already have discerned. The reasons for adopting
a counter-inductive policy were thought to be confirmative of some
inductive prediction policy which produces the same predictions as

the counter-inductive policy. The observed facts that among the

first 100 A the proportion of B was 50 per cent, among the next

100 49 per cent, etc. confirm the inductive policy, always to predict
B among the 100 next A with 1 per cent less frequency than among
the 100 last A. This policy is inductive in as much as that it may be
said to proceed on the principle that the future will resemble the past
with regard to the 'rate of diminution' for the relative frequency of

B among A. The policy, moreover, conforms to the prediction-
scheme (i) on p. 167 above, if for 'A' we substitute 'sets of 100 A 9

and
for 'B

9 we substitute "showing 1 per cent less B than the immediately

preceding set of 100 A 9

.

Thus from the view which we took of the possible reasons it

follows that a reasoned counter-inductive policy is equivalent to

some inductive prediction policy. A similar argument may be

conducted for counter-inductive generalization policies.

It may be asked: How can we be sure that any known facts which

constitute reasons for a counter-inductive policy must be confirmative

of some inductive policy? The answer is that, in a sense, we cannot

be sure of this at all. The only indubitable certainty about it which

we could reach would arise from a decision not to call any other

facts 'reasons' for a counter-inductive policy. But no such decision

would strengthen the case which we are here pleading. If the argu-
ment which we have presented carries any weight, it must be because

it is difficult to see what other known facts (excepting beliefs and

other 'subjective' states of affairs which are admittedly incapable
of justifying a choice of policy) could conceivably be counted as

reasons.

We next turn our attention to oracle-policies.

What would constitute a reason for believing an oracle? As

already observed, the reason cannot consist in the authority which

the oracle enjoys among those who consult it, or, which means the
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same: it cannot be the attitude of love or trust or fear, as the case

may be which the oracle's consultants take to it. For facts

concerning attitude or authority are not 'objective' in the sense in

which we required that facts providing reasons, as opposed to

motives, should be objective. But, with this distinction between

reasons and motives in mind, is not the sole reason which we can

imagine for believing an oracle, knowledge of the fact that it had

proved to be a 'good guesser' in the past or, more precisely, proved
to be a better 'guide to the truth' than alternative policies?

Granting an affirmative answer to the last question, a reason for

adopting an oracle-policy is thus something which is confirmative of

a certain inductive policy. This inductive policy proceeds on the

principle that the future will resemble the past with regard to the

oracle''s truth-producing powers.
A certain ambiguity in the use of the term 'induction' or 'inductive

policy' should be noted here. Let us assume that all A so far

observed have been B, but that an oracle tells us that the next A will

not be B. If, in this situation, we actually believe that the next A will

not be jB, it might be natural to say that we here believe the oracle

rather than induction. Now, what would be a reason for believing the

oracle rather than induction? If we accept the account of the concept
of a 'reason

*
which we have given, it could only be our past experi-

ence that inductive inferences to the next case from facts that all Z's

so far observed have been 7, have more often broken down than the

oracle's predictions in similar situations. But this, of course, is

equivalent to saying that a reason for believing the oracle rather than

induction is tantamount to a reason for believing the induction from

past experience of the oracle's predicting-powers rather than the

induction from past experience of certain regularities in nature. In a

sense, therefore, it is misleading to say that we have a reason for

believing an oracle rather than induction. What we have a reason for

doing is to trust one inductive policy rather than another.

The conclusion which emerges from the above considerations is

that a reasoned policy for purposes of prediction and generalization

is necessarily equivalent to an inductive policy. If we wish to call

reasoned policies better than not-reasoned ones, it follows further

that induction is of necessity the best way of foretelling the future,

The suggested use would certainly be a sensible use of 'better'.
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But it is not the only sensible use of the attribute in connection with

prediction and generalization. A policy might also be called good
in proportion to its successfulness. And under this use of 'good' it

may well be the case that a reasoned policy turns out to be inferior

to a not-reasoned one. Neither with certainty nor even with 'proba-
bility* can this possibility be excluded.

With our term 'reasoned' may be compared the words 'reason-

able' and 'rational'. It is noteworthy that the two latter have, so
to say, a double face. One face looks to the past, another to the future.

'Reasonable' and 'rational' as attributes of a policy for prediction
and generalization may mean 'reasoned' in our sense, i.e. grounded
on past experience. But theymay also mean the policy which will hold

good in future.

Thus, depending upon which use of 'reasonable' and 'rational'

we contemplate, we are entitled or not to say that induction is ipso

facto rational. But there is no way of securing the rationality of induc-

tion under every sensible use of 'rational'.

Our examination of policies for predicting and generalizing has
thus led us to the conclusion that the truth contained in the idea that

induction is the best mode of reasoning about the unknown is a

disguised tautology. It is not that the inductive method possesses
some features, besides being inductive, which give it a superiority
over other policies. Its superiority is rooted in the fact that the

inductive character of a policy is the very criterion by means ofwhich
we judge its goodness. The superiority of induction, in other words,
is concealed in the meaning of a policy's goodness.
Our argument, it will be remembered, hinges on the assump-

tion that the only things which count as reasons for a belief about the

future are known facts which are confirmatory of some inductive

policy. We shall not dispute that this assumption may be success-

fully challenged, although we see no way of doing it. But it is our

thesis that with a changed conception of a 'reason' we should have

to give up or modify the idea that the justification of induction con-

sists in the superiority of inductive over rival policies.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

1. The thesis of the 'impossibility* ofjustifying induction.

THE subject-matter of this treatise has been an investigation into

the logical nature of the relation in which so-called inductive infer-

ences or inductive conclusions stand to the data or grounds on which

they are established. This investigation has been pursued with the

chief purpose of answering the question as to whether or not it be

possible in the logic of the relation mentioned to find a justification

for induction as an operation on which reasoning, both in science

and in every-day life, has to rely.

We have seen that the demand for a justification of induction

covers in ordinary language as well as in the records of the history
of philosophy not one but several distinct ideas, and that conse-

quently the question mentioned can be answered in the negative or

in the affirmative depending upon what we expect a justification of

induction to be. We have, moreover, seen that there is one sense in

which any attempt at such a justification necessarily fails. This

failure consists, roughly speaking, in the impossibility of guaranteeing

(with certainty or even with probability) the truth of any synthetical

assertion concerning things outside the domain of our actual or

recorded experience. This impossibility was first pointed out by
Hume, and from the anxiety over its alleged philosophical implica-
tions has originated the 'problem of Hume* or the 'problem of

induction' par preference.
Before leaving our topic we must scrutinize the logical nature of

the statement concerning the sense in which any attempt to justify

induction fails. This statement will in what follows be referred to as

the thesis on the impossibility of justifying induction. With regard
to this thesis the problem of induction has been called 'the despair
of philosophy'

1 and the failure to justify inductive inference has been

deemed a scandal to philosophical thinking.
2 From such statements

it might appear that philosophy, in attacking the inductive problem,
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has undertaken a task too mighty for its faculties and that the thesis
under consideration was the acknowledgement of ultimate defeat
in this task. Actually, however, these statements are the offspring
of certain typical misinterpretations of Hume's results and of the
failure clearly to apprehend the logical character of the question
presented to us by the demand for a 'justification' of induction.
When this is understood it is seen why the thesis on the impossibility
of justifying induction is, not a scandal to philosophy, but a philo-
sophical achievement of great importance.
The typical way of

misinterpreting the thesis in question is the

following: Our thesis states that in a certain and furthermore, as it

seems, very important sense our efforts to justify induction have been
all in vain, since such a justification is not forthcoming. Induction,
in other words, is in a certain sense an unjustifiable operation. We
cannot 'prove', with certainty or even probability, that the sun will

rise tomorrow. It is easy to take this as implying that it were, after

all, worthy of a rational man to take a sceptical attitude towards this

conjecture.
On tho other hand such 'sceptical* consequences of a theory of

induction are repugnant to sound judgment. We revolt against
ideas such as that it is not 'probable' that the sun will rise to-

morrow, and as this idea was the logical outcome of a certain philo-
sophy of induction we revolt against this philosophy as well And
we maintain with a deep moral awe that induction must be justifiable
also in the sense with which we are here concerned, even if such a

justification has not hitherto been found.
Of such an attitude towards induction there are good representa-

tives also in recent philosophy. The following passages may be

quoted from a distinguished contemporary philosopher as illustrating
it. He says:

The most important postulate of science is induction. This may
be formulated in various ways, but, however formulated, it must

yield the result that a correlation which has been found true in a
number of cases, and has never been found false, has at least a
certain assignable degree of probability of being always true.'3 *I

am convinced that induction must have validity of some kind in some

degree, but the problem of showing how and why it is valid remains
unsolved . . . Until it is solved, the rational man will doubt whether
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his food will nourish him, and whether the sun will rise tomorrow.' 4

This typical misinterpretation of the thesis on the impossibility
of justifying induction originates from a confusion with which we are

already familiar from earlier portions of the present treatise. This
confusion, which is deeply rooted in the philosophical inclinations of
man and which is one of the fundamental sources of philosophy as
such, consists in the failure to separate from one another questions
of language and questions of fact. In almost any situation where
there is alleged to be a conflict between 'philosophy' and 'common
sense' the conflict can be shown to be the offspring o this confusion.

It will be our final task, therefore, to show why and in what sense
the above thesis on the impossibility ofjustifying induction is when
rightly understood grammatical in its nature, and, as such, free from
all 'sceptical' implications. We shall do this by applying a character-
istic 'technique of thought' to the thesis mentioned, the essential of
this 'technique' being to demonstrate that the truth in the thesis is a

disguised tautology.

2. The logical nature ofHume's 'scepticism
7

.

Let us give to the 'thesis' which we are here examining the follow-

ing more specific formulation:

It is impossible to guarantee, with certainty or with probability,
that an unknown instance of the property A will also exhibit the

property B, ifA and Bare different properties.
(This formulation must not be taken to represent, in

itself, an
important result of philosophical thinking. The philosophical
achievement which it has been the chief purpose of this treatise to

expound does not consist in the above thesis itself but in a certain

interpretation of it.)

The thesis states that a certain thing is 'impossible". It is important
to observe that the phrase it is impossible* here means the same as

4
it

is contradictory'. There is also another interpretation of the phrase
which suggests itself, viz. 'there does not exist'. This last interpreta-
tion need not be false if used in the appropriate way, but it should,
however, be avoided for the reason that it is misleading. For, if we
take *it is impossible to justify induction' as meaning 'there does
not exist a justification of induction*, then this suggests that we
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know what the desired justification ought to be, although upon
investigation we have not been able tofind it. But this gives an entirely

wrong picture of the logical situation. Actually the failure of the

attempts to justify induction was caused by the fact that we had no
clear idea as to what exactly we were seeking. Now we maintain that

in clarifying the meaning of 'justification' we find that the reason why
it was impossible to justify induction in a certain sense is that this

'sense' was a hidden contradiction.

The next task, therefore, is to show that that which the thesis asserts

to be impossible is a contradiction. This is done by summarizing
the chief results of the foregoing chapters into an analysis of the

constituents of the thesis.

It was shown in Chapter VII that a guarantee for something with

'probability' is relevant to that which is going to happen only if it

means that this 'something' is going to be true in a certain proportion
of cases. The difference, therefore, between a guarantee with

'certainty' and one with 'probability' is that the former concerns the

truth of a single statement, the latter the truth of a statement on the

truth-frequency in a class of statements. The problem of 'guarantee-

ing' something as to the future is thus fundamentally the same in

both cases, viz. that of assuring that a proposition, about the truth of

which we are uncertain, will be true. We can, consequently, without

altering the content of the thesis mentioned on the impossibility of

justifying induction, omit from its formulation above the qualifica-
tion 'with certainty or with probability* added to the word 'guaran-
tee'.

(This, it must be noted, does not mean that it is the same thing
to guarantee that A will be B with certainty and to guarantee it with

probability. We merely maintain that to guarantee that A will

probably be B means to guarantee the truth of another proposition
itself of the same 'inductive* kind as this one. The guarantee of the

truth of the second proposition can again be demanded either with

certainty or with probability.)
We next turn our attention to the condition that the properties

A and B ought to be 'different'. The meaning of this was analysed
in Chapter II, section 2, where we distinguished between 'psychologi-
cal* and logical* difference, the latter alone being of relevance to the

problem of Hume. That two properties are logically different meant
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that the presence (or absence) of one of the properties does not

logically follow from the presence (or absence) of the other property.
If one property entails another, then its presence, in a given

situation, is a standard or criterion for the presence of this other

property. (The absence of the second property again is a standard
for the absence of the first.) That two properties are (logically)
different therefore means that neither of them is a standard for the

presence or absence of the other.

The phrase that the instance of the property A ought to be 'un-

known' then remains to be interpreted. The first interpretation to

suggest itself is the following:
An instance ofA is 'unknown' so long as we do not know of any

property which it is going to possess except A, which it has per
definitionem. That the instance of A is 'unknown' thus implies that

we do not know whether it will have the property B or not.

To 'know
'

that an instance of the property A will have the property
B can mean different things. But, as was shown in Chapter II, section

5, unless it means that the presence ofA is taken as a standard for the

presence of B (or the absence of B for the absence of A), then to

'know' that A will be B is not relevant to the question whether A
'really' is going to be B or not.

It follows that not to know whether or not A will be B must

imply that the presence ofA is not taken as a standard for the presence
of B. Otherwise the interpretation of the phrase that the instance of

A must be 'unknown' would contradict the condition that A and B
are logically different.

It is, however, easy to see that even if the phrase is thus interpreted
we get a contradiction. The thesis on the impossibility of justifying
induction would then imply that it is impossible to guarantee that A
will be B if the presence ofA is not a standard for the presence of B.

According to the analysis in Chapter II a 'guarantee' that A will be
B can mean several things, but unless it means that we make the

assertion 'A will be 5' analytical, the 'guarantee' is not relevant to the

question whether or not the property B really will be present in A.
On the other hand, if it is analytical that A is B then the presence of
A is a standardfor the presence ofB

t and the demand for a 'guarantee
'

becomes contradictory.
On this point the following 'objection* is likely to be suggested:
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The above interpretation of the qualification that the instance of
A ought to be 'unknown' is evidently beside the point, since on
reflection it is clear that under it the demand for a justification of
induction becomes a demand for knowledge about something of

which, according to our own premisses, we can know nothing. But

surely, in demanding a guarantee that certain things are going to be
such and such in the future, we do not demand this. Therefore, an

interpretation of our demand as such a self-contradictory wish does
not do justice to that for which we are really asking. The true

interpretation seems to be something of this kind:

In speaking of an instance of A as being 'unknown' we mean that

certain reasons for judging the presence of B (and other properties)
in the instance are as yet not available. These reasons, sense-

perception or whatever they may be, we shall call the experiential

grounds on which a proposition concerning the presence or absence

of properties is Verified' or 'tested'. Induction, speaking generally,
is the anticipation of the results to which experiential tests will

subsequently lead. To justify induction is to provide some other

grounds or reasons let us call them inductive grounds which are

somehow to 'rationalize' this process of anticipation. Since these

'inductive' grounds are to be different from the above 'experiential*

ones, the demand for a justification of induction may perhaps be

impossible to satisfy, but is surely not self-contradictory.
To this objection it is easy to reply:
What would be the logical relation, we ask, between the 'inductive'

grounds and the 'experiential' ones for judging the truth of proposi-
tions on future events? Let us suppose that the former were criteria

of the results to which an anticipation of the testimony of the latter

will lead. This would mean that if I had 'inductive' reasons for

anticipating that A will be B then I am bound to interpret any

subsequent experiential information so as to accord with the anticipa-
tion. But then the proposition 'A will be "B

9

is analytical, and the

presence ofA is a standard for the presence of 5, and the absence of

B a standard for the absence of A. This again contradicts the condi-

tion that A and B ought to be different.

Consequently in demanding a justification of induction we cannot

demand criteria of the truth of inductions. The remaining possibility
is that we demand something which can be conveniently called
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symptoms of the experience anticipated in inductive inferences.

Such 'symptoms' for the anticipation of truth may be obtained in

various ways, but irrespective of how they are obtained we must

know something of their reliability if they are to be relevant to the

truth of inductions. A statement concerning their reliability, again,

is either an assumption that those 'symptoms' will lead to true

inductions, and as such is itself in need of justification, or it is a

guarantee that the indications of the inductive grounds will accord

with the testimonies of the experiential grounds. On the other hand

we know that the sole way of guaranteeing that those indications and

testimonies are going to give concordant results is to make the state-

ment on their concordance analytical. This means that the indica-

tions of the inductive grounds are standards or criteria for the

testimonies of experience, and this again contradicts the assumption
that the former are only 'symptoms' of the latter.

We have thus seen that the same contradiction, which, according
to the above 'objection' it was unfair to attribute to the demand for

a justification of induction, is innate also in the 'objection' itself.

It is the logical peculiarity of this demand that, although it need not

be interpreted as self-contradictory, any interpretation which evades

the contradiction is not relevant to the demand in that sense of it,

in which it is to be satisfied by a solution of 'Hume's problem'.
1

But if the demand for a justification of induction is self-contra-

dictory, when taken in that particular sense, then the above thesis

on the 'impossibility' of justifying induction is a tautology.

The view that Hume's 'sceptical' result as to the justification

of induction is a consequence, not of the constitution of the world

but of the use of language, can truly be said to constitute the 'solu-

tion' of the problem put to philosophy by Hume. To Hume the

failure to justify induction seemed the discovery of a serious limita-

tion in man's intellectual faculties.
2 We, in realizing what this

'failure' means, also understand that from the very meaning of words

it follows that we can never imagine these faculties, in the aspect of

them under consideration, to be greater than they are. When this is

clearly apprehended, the demand for a justification ofinduction in the

Humean sense is 'satisfied', that is to say it vanishes from itself as

being devoid of object.
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3. The critical and the constructive task of inductive philosophy *

The clarification of language leading to a solution of Hume's
problem can be said to constitute the critical task of inductive

philosophy. With this can be contrasted what we shall call the
constructive task of a theory of induction. The latter, unlike the

former, is not concerned with the meaning and use of words, but
with the formal peculiarities of given conceptual structures. It con-
sists in the application of formal logic and mathematics to the

analysis of inductive propositions.
As regards this constructive task the treatment in the present

work has been far from exhaustive. Our contributions have to some
extent been in the nature of first sketches which it will be the task of
others to work out in fuller detail. We finally mention some points
on which a continuation of the task undertaken here would seem
to be worth while.

In Chapter IV we showed that the idea of a logic of induction',
in that form of it which was invented by Bacon and later developed
by Mill, can be profitably treated as a formal theory of necessary
and sufficient conditions. This treatment reveals unexpected asym-
metries and other logical peculiarities in the fundamental types of
method of scientific inquiry. The examination, as pursued by us,

applied specifically only to inductive propositions of certain very

simple structures. It would be of interest to investigate, inter alia,

whether the theory of necessary and sufficient conditions can be ex-

tended also to relational and quantitative laws of nature, and whether
there is some analogy to such a theory among Statistical Inductions.

In Chapter VI we analysed the formal nature and interrelatedness

of certain ideas concerning the probability of inductions. We
endeavoured to show that those ideas can be formalized and made
exact within the 'ordinary' probability-calculus. This system re-

mains to be embellished, especially we think by a fuller analysis of

the ideas of simplicity and scope in relation to the probability of

inductions.

Philosophy of induction has, at least since the days of Hume,
been seriously hampered in its progress by an unwholesome confu-

sion of the two tasks of inductive theory, called by us the critical

and the constructive tasks respectively. The constructive value of
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most efforts to develop a system of inductive logic or inductive

probability has been minimized by the fact that those constructions

have been undertaken for the vain purpose of solving Hume's

problem. On the other hand most critical treatments of inductive

philosophy have contented themselves with the easy task of showing
that those constructive efforts have failed in that they did not lead

to a solution of the problem mentioned, in which case one has not

been able to estimate the value of the constructions in spite of their

'failure'.

It appears to us that we have now arrived at a point where the

clarification of philosophical ideas has led to a completion of the

critical task of inductive theory, and from which the constructive

task can be pursued with a clear purpose unhampered by false

philosophical pretensions and disentangled from all misleading

expectations.
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NOTE In the notes any work is usually referred to under the author's name, or

if there are several works quoted by the same author, under the author's name
followed by a number in brackets. The names of the works themselves are found in

the Bibliography. The references and quotations apply, of course, always to the

edition mentioned in the Bibliography, but the Author has in certain cases tried, by

giving the number of chapters and sections instead of those of pages, to make them

apply to other editions of the work also. If no special edition of any work is mentioned,
the references should apply to all editions of it.
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CHAPTER i. INTRODUCTORY REMARKS ON INDUCTION

1. Inductive inference and the problem of induction.

1
See, e. g. Jevons [1], p. 211 and 239.

2 See Mill, bk. II, chap, iv, 2 and 3.
3 Aristotle [1], 1565; Mill, bk. Ill, chap, n, 1.

4
Mill, bk. Ill, chap, m, 1.

5 To this rule there are indeed important exceptions. The way of applying the prin-

ciples of probability to induction, which is characteristic of Laplace and his followers,
marks an important epoch in the development of the logical problem of induction.

(See below chaps, vi and vn.) Ajnong works, typical of the psychologizing tendency
of French writers on induction, may be mentioned: The methodological works of the

great physiologist Claude Bernard, Introduction a la m?decine experimental and La
science experimentale, Lalande's Les theories de rinduction et de Vexperimentation,
Naville's La logique de Vhypothese, and Picard's Essai sur la logique de rinvention
dans les sciences and Essai sur les conditions positives de rinvention dans les sciences.

6
Mill, bk. Ill, chap, i, 2: 'An analysis of the process by which general truths are

arrived "at, is virtually an analysis of all induction whatever' and 'we shall fall into no
error, then, if in treating of induction, we limit our attention to the establishment of

general propositions'. Reichenbach [6], p. 265f.: 'Das erkenntnistheoretische

Problem . . . liegt gar nicht in der Unendlichkeit der Folgen, sondern darin, dass die

Folgen sich stets, iiber vergangene Ereignisse hinaus, auf zukiinftige Ereignisse erstrecken

. . . Eben darin liegt das eigentiimliche Problem der Induktion; und dieses Problem
wird nicht im geringsten dadurch erleichtert, dass man die Zahl der zukiinftigen

Ereignisse finitisiert.
*

2. Differentforms of inductive generalizations.
1 The use of logical symbols and formulas in this book assumes that the reader is to

some extent famiSar with the symbolic language of modern logic. For any reader, not

acquainted with logistics, the following elementary elucidations will be added:

Let a and b be propositions. The conjunctive proposition a&b ('# and &') is true

only if both a and b are true. The disjunctive proposition avb ('a or 6*) is false only if

a and b are both false. The implicative proposition a-*b is false only if a is true and b

false. The equivalence-proposition a< +b is true when a and b have both the same
truth-value ('true' or 'false'). The negative proposition r^/a(*not-a') is true when a is

false, and false when a is true.

If the truth-value of a proposition depends (uniquely) on the truth-value of certain

other propositions, the former is said to be a truth-function of the latter, a&b, avb, a-+b>

and a+*b are, according to this definition, truth-functions of the propositions a and
b. The proposition < >a, again, is a truth-function of a.

The proposition a&b, avb, a-*b, and a* >b are called molecular relative to their con-

stituent propositions, a and b, which again are called atomic relative to the above com-

pound propositions.
Of two propositions, a and b, and then* negations we can form four conjunctions:

a&b, a&> >b, r^a&b, and (^a&<-^b. In a similar manner we can of n propositions and

their negations form 2n conjunctions. Any proposition, which is a truth-function of the

n propositions, is equivalent to a disjunction of some of these 2n conjunctions. This

disjunction is called the disjunctive normalform of the proposition.
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Ax means: the individual x has the property A. R(x,y) means: the pair of individuals,
x and y, stand to one another in the relation R.

x in Ax may be regarded as a constant or as a variable. If x is a constant, Ax is a

proposition. If x is a variable, /lx is called a propositional-functlon. The propositional-
function 'becomes' a proposition when for the variable is substituted a constant. The
constants which may be substituted for a variable are called the values of the variable.

A value is said to satisfy the propositional-function when the resultant proposition is

true.

(Ex)Ax means: there exists an x which is A or, in other words, at least one x has the

property A. (Ex) is called an existential operator. (x}Ax means: all x*s are A. (x) is a

universal operator.
The symbols used by us differ from those of Principia Mathematica inasmuch as that

we, following Hilbert, use '&' instead of V as a sign for conjunction, the arrow instead

of the horseshoe as a sign for implication, the double-arrow instead of *=' as a sign for

equivalence, and brackets instead of dots for combining and separating the respective

parts of a symbolic sentence.

It is of some importance to observe that phrases such as
4

the proposition a\ 'the

property A ',

4

the individual x\ when they occur in this book, are not about the symbols
V, *A\ and V but about the symbolized entities. Similarly, 'a is false*, 'every A is B\
'x is A '

are about entities and not about symbols.
On the other hand, a phrase such as 'Ax means' or '(Ex) is called' is about symbols

and not about things symbolized.

Usually, it is clear from the context, whether we are talking about the symbols or

about their meanings. Sometimes, however, when we are talking about the symbols,
we enclose the symbols within single quotation-marks

' '

(as, for example, on line 13 on

this same page).
A good modern introduction to logic is Cooley, A Primer ofFormal Logic (New York,

1946). An excellent text-book of a more advanced character is Hilbert-Ackermann,

Grundzuge der theoretischen Logik (3rd edn., Berlin, 1949).
2 Cf. Keynes, p. 220.
8
Keynes (p. 220) calls them Inductive Correlations. Mill's Approximate Generaliza-

tions correspond roughly to our Statistical Inductions. Mill pays very slight attention

to this type of inductive inference. See bk. Ill, chap. xx.
4 The contrast in question is perhaps more appropriately described as one between

Causal Laws and Probability-Laws, than between Universal and Statistical Generaliza-

tions. It might be maintained that induction from statistical data usually aims at the

establishment of Probability-Laws, and that Statistical Generalizations accordingly
are relatively unimportant in science. We shall not discuss the question here. Some
writers on induction (Broad [7] and Kneale [1], 48), have tried to argue that Probability-
Laws presuppose the existence of causal (nomic) connections in nature. Their arguments
do not seem to us convincing.

5 Characteristic of the elements of a series are said to be intensionally given when they

may be calculated from a rule. Characteristics which cannot be calculated from a rule

but have to be determined by empirical observation from case to case, are called

extensionally given.

For this notation cf. Reichenbach [4], p. 81 and 347.

7 Cf. Popper [2], p. 128ff.

8 Observe for example the series 01010011000011110000000011111111 . . . where the

proportion of 1's is 'oscillating' between the limits 1/2 and 1/3.
9 From the above expression (4) follows a proposition asserting the existence, for any

188



NOTES

e, of a number m such that from xm on the frequency of A's which are B remains
within the interval p s. See below chap, vm, 1.

10 The existence of empirical propositions which involve both universal and existential

operators and hence are neither verifiable nor falsifiable originally presented a difficult

puzzle to adherents of the so-called verificationist theory of meaning. Later, however, the
criterion of meaningfulness, advocated by the logical positivists, has been gradually
widened, so as finally to include also propositions with any number of both universal
and existential operators in any combination. See Carnap [1 ].

11
Consider, e.g. the series 100100010000100000 . . . which contains an infinite number

of both 1 *s and O's, but where nevertheless the limiting ratio of the number of times
when 1 occurs to the total number of members in the series is zero. Sequences of this

structure may occur in nature (the order of 1's and O's reflecting, say, the temporal
succession of results in repeated experiments or observations). It seems to us, therefore,
that R. B. Braithwaite is mistaken, when he writes ([6], p. 152): 'all general statements
are in fact probability statements, since to say that all A *s are 2?'s is the same thing as

to say that 100 per cent of A's are 's, which is (on my thesis) the same thing as to say
that the probability of an A being a B is 1. Similarly, to say that no A'$ are B's is to

say that per cent of A 's are 5*s and to say that the probability of an A being a B is 0.

Universal generalizations, whether affirmative or negative, are special cases of proba-
bility statements.' He argues (loc. cit.) that 'within a science, ascriptions of zero

probability are taken to be indistinguishable from negative universal generalizations'.
This, it would seem, is a confusion between what is usually the case (as a matter of fact)

and what must necessarily be the case (as a matter of principle).
12

Darwin, On the Various Contrivances by which Orchids are Fertilized, (London
1862), chap. v.

3. Remarks about various usages of the term
'

'induction*. Induction and eduction.
1 The relevant passages are Topics bk. I, chap. XTI and bk. VIII, chap, i-n; Prior Ana-

lytics bk. II, chap, xxm; Posterior Analytics bk. I, chap, i and xvm and bk. II, chap. xix.

It is usually said (cf. Keynes, p. 274 and Kneale [1], pp. 24-37) that Aristotle used

'induction* in two senses, viz. to mean either summative induction (Prior Analytics) or

intuitive induction (Posterior Analytics). It seems to us, however, that the use of

'induction
*

in the Topics must be counted as a third sense. This opinion is confirmed

by the example quoted in the text, which is a clear case of so-called ampliative induction.

Cf. Lalande, p. 3 and 6.

2
[1], 105*12.

3
[1], 105a 13-15.

4
[1], 165* 5.

5 For a discussion of Aristotle's account of induction in relation to the syllogism see

Whewell [4], p. 449fT.
6
p], 68* 19-24.

7 Cf. Kneale [1], p. 25.
8 PL 68* 29.

[31,71*8.
10

[3], 100*12.
11 PL 81*6.
12 Johnson [1], vol. II, chap, ix, 1.

l Kneale [1], p- 30.
14 Johnson [1], vol. II, chap, vm, 1 and vol. Ill, chap, n.
15

Peirce, vol. II, especially par. 680 and 709; Lalande, p. 6; Kneale [1], p. 44.

189



THE LOGICAL PROBLEM OF INDUCTION

1S Johnson [1], vol. II, chap. vra.
17 For a good account of recursive induction see Kneale [1], 10.
l8 SeeMach [3], p. 306.
19

Mill, bk. Ill, chap, in, 1: 'every induction may be thrown into the form of a

syllogism by supplying a major premiss'.
20 Johnson [1], vol. II, chap. x.
21 For significant examples of the use of summative induction see Mach [3], p. 305f.

and Lalande, p. 8ff.

22
Mill, bk. HI, chap. n. The chapter is called 'Of Inductions Improperly So-Called'.

23 Johnson [1], vol. Ill, chap. rv.

24
Mill, bk. II, chap, m, 3 and 7.

2*
Mill, bk. II, chap, m, 5.

M Kneale [1], (p. 45) argues against Mill that there can be no 'inference from the

observed to the unobserved without at least tacit reliance on laws*. It is not quite clear,

how this shall be understood. If 'inference from the observed to the unobserved* is

meant to include generalization, then Kneale's statement must be rejected as false.

For all generalizations cannot be said to 'rely on laws ', i.e. rely on some other generali-
zations. If again 'inference from the observed to the unobserved' means eduction

only, then Kneale's statement seems to us unduly dogmatic. It is hardly possible to

deny that cases ofgenuine eduction occur. At most one might say that the rationale of

an eductive inference is a hypothetical general truth. And if this is what is meant by

saying that inference from the observed to the unobserved must rely, tacitly at least, on

laws, then Kneale's position in the matter would seem to coincide with Mill's.
27
Catnap [11], 44s and 110, especially p. 208 and p. 574f.

38
Carnap [11], 110F.

*9 Cf. von Wright [10], p. 364.

CHAPTER n. INDUCTION AND SYNTHETICAL JUDGMENTS A PRIORI

2. Hume's theory of causation.

1 See above ch. I, 2.

2 His definition of 'cause', however, sometimes is given so as to include also necessary
conditions, See Hume [3], sect. VII, pt. 2.

3 Hume [3], sect. IV, pt. 1, and Hume [2], p. llf.
4 Hume [1], bk. I, pt. m, 12: 'There is nothing in any object, considered in itself,

which can afford us a reason for drawing a conclusion beyond it.*

6
Ibid.: 'Even after the observation of the frequent or constant conjunction of objects,

we have no reason to draw any inference concerning any object beyond those of which
we have had experience.

'

* Hume [3], sect. 2: 'When we entertain, therefore, any suspicion that a philosophical
term is employed without any meaning ... we need but enquire, from what impression is

that supposed idea derivedT
7 Hume [1], bk. I, pt m, 14.
8 In another part of the Treatise on Human Nature there is, however, a most acute

discussion of this problem. See Hume [1 ], bk. I, pt. iv, 2.

Hume [1], bk. I, pt. in, 6.

10 It has been a matter of philosophical controversy whether the relation between

cause and effect is a relation between 'objects' or between 'events'. This controversy is

wholly irrelevant to our discussion of the causal relation and so also to Hume's.
11 Cf. the resemblance between Hume's thesis and the following proposition from

Wittgenstein: 'Auf keine Weise kann aus dem Bestehen irgend einer Sachlage auf das
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Bestehen einer, von ihr ganzlich verschiedenen Sachlage geschlossen werden.
*

(Wittgen-
stein 5, 135.) Also here we are entitled to ask what is meant by two 'Sachiagen' being
'ganzlich verschieden.' Note the qualification 'ganzlich'!

12 We ought rather to have said: In the case of the billiard-balls, as we want to Con-
ceive of it here, and as it was conceived ofby Hume, logical and psychological difference
are concomitant properties. For as will be seen later (ch. m, 1) it is also possible to
conceive of the case in such a way that in it cause and effect become logically connected.13

It is not necessary here to embark upon a discussion of the exact nature of the

concepts of entailment (the 'follows from') and deducibility. The concepts are open to
debate. It is sufficient for our purposes to emphasize the 'formal' or 'logical* (as distinct
from 'material' or 'physical') character of the notions concerned.

14 Cf. Braithwaite [2], pt. I, p. 467.
15 Outbursts about the absurdity of Hume's theory, based upon typical misunder-

standing of the nature of his arguments, are to be found everywhere even among recent
authors. A good example is offered by Ewing's criticism of the Humean theory or the
so-called 'regularity view' of causality. See e.g. Ewing, p. Ill: If the regularity view
were the whole truth, all practical life would become sheer nonsense.' Similar
exclamations are abundant in the works of Reichenbach. See e.g. Reichenbach [9], p.
344ff. (Note the phrase 'intellectual suicide*, ibid., p. 344.)

16 We do not think it necessary here to introduce a definition ofthe concept 'analytical'
or 'logically necessary'. The following three remarks will suffice to make clear the use,
which we in this treatise make of the term 'analytical':

(1) Any proposition which is true per definitionem, is analytical.

(2) A proposition, the falsehood of which has been excluded on the ground that it

would be contrary to the (correct) use of language to say the proposition is false, is

analytical. It is clear that (2) includes (1).

(3) Any analytical proposition is (necessarily) true.
17

Cassirer, E., vol. II, p. 262 - See also Church, R, W., p. 210ff.
18

Natorp, p. 127-163.
10 See Revue de Metaphysique et de Morale 40, 1933, suppl. /, p. 15f., where William

of Auvergne is quoted, and the possibility that he had influenced Hume is mentioned.
20

Hobbes, p. 15ff.

21
Malebranche, Quinzieme fclarcissement. Malebranche also uses the example of

the billiard-balls.
22 Leibniz [2], 26.
23 Leibniz [1], vol. IV, p. 161f.
24 Kaila [6], p. 1 12. Cf. Mill's use of the term 'empirical law*, bk. Ill, ch. xvi.
25

Mill, bk. Ill, chap, xn, 1.

2*
Apelt [2], p. 53: 'Wie sind synthetische Urtheile a priori moglich? So lautet das

Humesche Problem, wenn man es allgemein auffasst.' Cf. Hobart, pt. i, p. 284. Hume
himself, however, regarded causality as the only relation by means of which, as he says,
'we can go beyond the evidence of our memory and senses*. (Hume [3], sect, rv, pt. 1.)

3. Kant and Hume.
1 The development of Kant's views as to these problems, which may be said to

constitute the central question in the Kritik der reinen Vernunft, can be followed in the

Reflexionen.
2 Kant [1], 291, 292, and 726.
* See e.g. the definition of 'Wahrnehmungsurtheile' and 'Erfahrungsurtheile' in

Kant [3], 18.
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4 See e.g. Kant [3 ], 17. A slightly different form of the same question is 'Wie ist Natur
selbst moglich?'. (Kant [3], 36). Cf. ibid.: 'Die Moglichkeit der Erfahrung uberhaupt
ist also zugleich das allgemeine Gesetz der Natur, und die Grundsatze der erstern sind

selbst die Gesetze der letztera.
*

In a certain sense, therefore, we are with Kant entitled

to use the word 'Natur' as synonymous with 'Erfahrung'.
5 Another important factor in this change in Kant's opinion was that he always seems

to have held mathematical judgments to be synthetical. (Kant [1 ], 496.) When this

had to be reconciled with the aprioristic nature of those judgments he turned to the

doctrine of synthetical judgments a priori.
* Kant [3], Vorwort.
7 Cf. Cassirer, E., vol. II, p. 526fT. and 534.
8 Kant [2], p. 232ff.
9 Whitehead [2], p. 34.
10 Kant [2], p. 237f.
11 For a more detailed analysis of Kant's causal theory of time see Mehlberg, especially

pt. i, pp. 135-158. For the importance of reversibility and irreversibility, respectively, in

series of sensations as regards the logical 'Aufbau' of the physical world, see Kaila [4],

p. 29-63.
12
They are, however, not causal laws according to the terminology followed in this

treatise. (See chap, i, 2 and chap, n, 2.)
13 The idea that the so-called physical world is a system of invariances or laws pre-

vailing in the phenomenal world is very well stressed by Kaila in several of his writings.

See Kaila [3], p. 81ff., Kaila [4], p. 14ff., and Kaila [6], p. 89.

14
Cassirer, E., vol. II, p. 530f.: *Die Natur ist ... der InbegruT ihrer allgemeinen

Gesetze.
'

Helmholtz [2], p. 39: 'Das Gesetzmassige ist daher die wesentliche Voraus-

setzung fur den Character des Wirldichen.'
16 See Kaila [6], p. 228.
18 Leibniz [3], vol. VII, p. 3I9ff.
17

Actually all that could possibly follow from the 'deduction' as outlined above is

that causal laws must exist in order for time to be possible. But this is not the same as

stating that the Universal Law of Causation must be true, which is a much 'stronger'

assumption. Now this peculiarity of the 'deduction' seems, in a way, to be attached also

to Kant's own arguments, and is thus not to be attributed to an incompleteness in our

restatement of them.
18 Kant [2], 1st edn., p. 189. In the second edition (p. 232), we read only: 'Alle Veran-

derungen geschehen nach dem Gesetze der Verkmipfung der Ursache und Wirkung.
'

19 Kant [2], p. 102ff.

20 Kant [3], 21.

81 Kant [2], p. 102ff.

4. Kant and the application-problem.
1 For the following it is irrelevant whether we have tried to establish this law as a

synthetical or as an analytical principle. Actually several philosophers, in insisting upon
the aprioristic nature of the Universal Law of Causation, have regarded it as an analy-
tical principle. According to Mach causal relatedness is a kind of functional relatedness.

So long as the class of functions, which are to connect cause and effect, is not specified,
the Universal Law of Causation becomes tautological. See Jourdain and Mach [3],

p. 270-281. See also Helmholz [1 ], vol. HI, p. 26ff. Helmholz's view is an intermediate

between Kant's and Meyerson's and illustrates very well how the theory about the
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aprioristic nature of causality is driven to conventionalism, i.e. to accept the a priori
principles as analytical. Cf. later chap, n, 6 and chap, in, 2.

2 Cf. Cassirer, E., vol. Ill, p. 92f.: 'Der allgemeine Satz der Ursachlichkeit enthjUt
kein Merkmal und gibt kein Kriterium an, kraft dessen wir die besooderen Falle seiner
Anwendbarkeiterkennen und ihm subsumieren konnen. Ich weiss aus dem Grundsatze
zwar, dass Objekte der Erfahrung uberhaupt in Kausalverbinding xniteinander gedacht
werden miissen, keineswegs aber, dass eben diese Objekte es sein miissen, die in diesem
Verhaltnisse stehen.

*

3 Kant [2], p. 165.
4
Cassirer, E., vol. Ill, p. 93, observes acutely on this point that 'das Humesche

Problem steht vor neuem vor uns'.
5 Cf. Maimon, p. 190f.: 'Kant nimmt den wirklichen Gebrauch der Kategorien von

empirischen Objekten als ein unbezweifeltes Faktum an.
*

This, in our opinion, hits the
nail on the head. The application-problem never seriously bothered Kant.

6 Kant [3], 19, 20, 22, 29.
7 Kant [3], 18 and 22. Cassirer, E., vol. II, p. 525: 'Audi das Erfahrangsurteil als

solches enthalt eine eigentumliche "Notwendigkeit".' As to Kant's use of the term

'Notwendig*, see Reinach, Kant [2], p. 279ff., and Kant [3], 19.
8 Maimon, p. 190ff. Maimon uses Kant's example from the Prolegomena of the rela-

tion between the radiation from, the sun and the increase in temperature in a stone

touched by the rays. See also Maimon, p. 420: 'Daraus, dass Objekte uberhaupt z.B.

im Verhaltnisse von Ursache und Wirkung gedacht werden miissen, wenn eine Erfah-

rung uberhaupt moglich sein soil, lasst sick noch nicht begreiflich machen, warum z.B.

eben das Feuer und die Warme in diesem Verhaltnisse stehen miissen?
*

9
Cassirer, W. H., p. 110. Cassirer emphasizes that Kant's views as to the application-

problem had undergone a radical change from the Kritik der reinen Vernunft and the

Prolegomena to the Kritik der Urtheilskraft.
10 Kant [4], Einleitung, IV, and Kant [6], p. 22ff.
11 Kant speaks of such principles under the names 'lex parsimoniae*, 'lex continui in

natura' and others. All these are modifications of a more general principle, which he
calls the principle of 'die Zweckmassigkeit der Natur'. Kant [4], Einleitung, V, and
Kant [6], p. 22ff.

12 Kant [4], Einleitung, IV, and Cassirer, W. H., p. 109.

5. The inductive problem in the school ofFries.
1
Kastil, p. 29: 'Dieser vielgepriesene "transzendentale Beweis" . . lauft also eigent-

lich darauf hinaus, die synthetischen Urteile apriori zu analytischen zu machen.
*

2
Kastil, p. 296.

3 Cf. Popper [2], p. 52.
4 Fries [1], vol. I, p. 27 and 35ff.

8 Fries [1], vol. I, p. 28.

9 Fries [1], vol. I, p. 21 and Kastil, p. 3 Iff. For the theory of synthetical judgments
a priori in its Neo-Friesian form see especially Nelson [1] and [2].

7
Kastil, p. 31.

8 Cf. Nelson [2], p. 532: 'Die metaphysische Erkenntnis ist eine Erkenntnis allge-
meiner Gesetze, und allgemeine Gesetze werden a priori erkannt. Die Erkenntnis der

allgemeinen Gesetze ist aber nicht selbst wieder ein allgemeines Gesetz, sondern ein

individuelles Faktum. Individuelle Fakta aber werden a posteriori erkannt. Also wird

auch das Faktum der unmittelbaren Metaphysischen Erkenntnis nicht apriori sondern

aposteriori . , . erkannt.
*
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fl A theory of synthetical judgments a priori very similar to that of Fries and the

Neo-Friesians has been held by the Oxford philosopher Cook-Wilson and his adherents.
10

Apelt [1], p. 44 and p. 56ff.
11

Apelt [1], p. 73 and p. 91ff.
12

Apelt [11, p. 92: 'Gesetze . . . sind allgemeine und notwendige Wahrheiten d.h.

Wahrheiten apriori.* Ibid., p. 106: 'In der Natur sind die physischen Gesetze von gieicher

Notwendigkeit wie die mathematischen und philosophischen.
*

13
Apelt [1], p. 74f.: 'Die Induction bringt also nur die Untersatze des theoretischen

Lehrgebaudes. In der vollendeten Theorie miissen diese Untersatze auf doppelte
Weise festgestellt werden: einmal . . . deductiv, d.i. als Lehrsatze, die durch systematische

Ableitung aus ihren Principien folgen, das anderemal inductiv als Erfahrungssatze.
'

"Apelt [1], p. 72.
15
Apelt [1], p. 56: "Die Induction ist . . . der Weg zu der Verbindung der notwendigen

Wahrheiten mit den zufalligen Wahrheiten.'

"Apelt [1], p. 101.
17
Apeit [1], p. 77ff.

18
Apelt [l],p. 95f.

19 It is of interest to observe that Maimon, after having shown that Kant's synthetical

judgments a priori are not sufficient to establish the truth of single inductions, (Maimon,

p. 382), tried to 'complete' the theory of Kant in roughly the same way as the Friesians,

i.e. by determining the synthetical principles a priori so that special inductions follow

from them. Thereby he also approached the conventionalistic attitude. For a confirma-

tion of this interpretation of Maimon 's view see, e.g. the way hi which he tries to prove
that iron necessarily must be attracted by a magnet. This seems in some way to follow

from the very definition of what a magnet is. Maimon, p. 255: 'In diesem Urtheile z.B.:

der Magnet zeiht das Eisen an sich, wird das Eisenziehen ... als etwas eingesehen . . .

zu dessen Bewusstsein wir nicht eher gelangen, als wir zum Bewusstsein des Magnetes
an sich gelangt sind; und so ist es mit alien Objekten der Erfahrung der Fall, deren

Subjekte gegeben, und deren Pradikate nach und nach durch Abstraktion gefunden
werden.

*

6. Some other theories of causation.
1 Cf. Whitehead [1], p. 55: 'It is impossible to over-emphasize the point that the key

to the process of induction, as used either in science or in our ordinary life, is to be
found in the right understanding of the immediate occasion of knowledge in its full

concreteness.
*

3
Kerby-Miller, p. 177, Whitehead [3], p. 26 and p. 251, Kelly, p. 22, Meyerson [2], p.

67, Bosanquet [1], vol. I p. 135, Bradley, p. 546f.
3 Whitehead [2], p. 39.

*Hutne [3], sect. 4, pt. I.

* Kaila [5], p. 27ff.

* For a theory of causality slightly approaching that one of Whitehead see Russell

[5]. For a criticism of the theory about causal perception see Ayer's rejoinder to

Russell's paper, especially p. 274.
7 We do not maintain that the interpretation in question answered to the intentions

of Whitehead himself. See also Robson and Gross.
8
Meyerson [2], p. 136: 'Nous avons explique le phenomene, le changement, en

deduisant le consequent de Tantecedent, en montrant que le consequent etait necessaire-

ment tel qu'il a ete, r&pouvaitpas Stre different de ce qu'il a ete, parce qu'il se trouvait

deja implicitement contenu dans cet antecedent.*
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9

Kelly, p. 24f.: The effect is identical with the cause, for after all it is the cause

explicated, brought out from the fields, but itself unchanged.
' The meaning of

'identity*
here is complicated by the fact that Meyerson often also considers the causal relation
from the point of view of quantitative equivalence (identity) between cause and effect.

One of the reasons why we speak of cause and effect as 'different' from each other,

obviously, is that they occur at different time-points. The time-factor involved in causality
has presented some difficulties for the doctrine that cause and effect are 'identical'. See

Meyerson [1 L the chapter called L'eKmination du temps. Also Renouvier, p. 26 and

Bosanquet [1], vol. !, p. 258.
10 Cf. Joseph, p. 409: Tor the causal relation which connects a with x connects a cause

of the nature a with an effect of the nature x. The connection is between them as a and ;*:,

and therefore must hold between any a and x, if they really are a and x respectively/
11 Cf. Bosanquet [1], vol. I, p. 174: *If, in an alleged causal nexus, the alleged effect

is sometimes absent while the alleged cause is present, ceteris paribus, it is impossible
that the alleged cause should be the real cause of the effect in question.

'

See also ibid.,

p. 255: 'Same effect, in the same form, same cause.
* A similar view upon causality was

advocated by Lotze.
12
Blumberg [2], especially p. 76ff.

13 Cf. Bosanquet [1], vol. II, p. 2.
14 Mill's definition of a natural kind is this: 'By a Kind ... we mean one of those classes

which are distinguished from all others not by one or a few definite properties, but by
an -unknown multitude of them: the combination of properties on which the class is

grounded, being a mere index to an indefinite number of other distinctive attributes/

(Mill, bk. IV, chap, vi, 4.) The doctrine of Kinds as it occurs with Mill has nothing to
do with synthetical judgments apriori. Cf. Mill, bk. Ill, chap, xxn, 7. For the connec-
tion between Mill's theory of Kinds and the theory of Concrete Universals see Acton.
With the theory of Kinds and Concrete Universals are connected Lachelier's ideas on
induction and final causes. The best statement of the theory of Natural Kinds and its

relevance to induction is found in Broad [1 ], pt. i.

15
Bosanquet [3], p. 8.

7. General remarks about syntheticaljudgments a priori.
1

I.e. what follows immediately is that there does not exist an A which is not B. As
is well known the equivalence between this proposition and 'all A's are R* has been a

matter of controversy among modern logicians. This controversy, however, is of no
relevance to

f
the context to which our reasoning applies.

2
Kastil, p! 248: 'Notwendig heisst einmal das, dessen Gegenteil einen inneren Wider-

spruch enthalt . . . Es gibt aber noch eine andere . . . Notwendigkeit; namlich dann, wenn
das Gegenteil einer anderen, sonst schonfeststehenden Wahrheit widerstreitet . . . Urteile

die im ersten, logischen, Sinne nocwendig sind, sind analytische; Urteile, die im zweiten

Sinne notwendig sind, sind synthetische. Denn was in diesem zweiten Sinne des wortes

notwendig ist . . . dessen Gegenteil ist logisch moglich.
'

CHAPTER m. CONVENTIONALISM AND THE INDUCTIVE PROBLEM
1. The way in which conventions enter into inductive investigations. Some examples,
1 Cf. Mill, bk. Ill, chap, x, 2.

* Cf. Schuppe, p. 242.
* This is why we do not want to call the use of the word 'phosphorus' ambiguous in

the strict sense of this term. We have not used the word to mean two different things.
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We have not expressed any definite opinion as to the 'real' meaning of that word at all,

and thus it comes about that it is not clear what the word actually is intended to cover.

Cf. Britten's (p. 183ff.) treatment of induction and conventionalism.
4 Cf. Cornelius [1], p. 291.
5 Cf. Poincare [3], p. 189. Poincare, however, does not see that this leads to a point

which is relevant also to the conventionalistic arguments.
6 Cf. the following observation of Jevons in speaking about classification (Jevons [2], p.

675): 'Now in forming this class of alkaline metals, we have done more than merely
select a convenient order of statement. We have arrived at a discovery of certain em-

pirical laws of nature, the probability being very considerable that a metal which exhibits

some of the properties of alkaline metals will also possess the others.
'

7 The example of the melting-point of phosphorus was used for the purpose of illus-

trating conventionalistic lines of thought for the first time by Milhaud (p. 280fT.). The
same example is mentioned by Le Roy ([2], p. 517) and discussed by Poincare in several

places. See Poincare [2], p. 235ff. and Poincare [3], p. 189f. Cornelius uses for the

same purpose a slightly different example, also from chemistry. See Cornelius [1], p.

289ff. and Cornelius [2], p. 211.
8 This idea is expressed clearly by Schuppe, p.

240: *Sind die Bedingungen eines

Ereignisses erst voUstandig erkannt . . . natiirlich in aller Vollzahligkeit und ohne

behinderndeandereUmstande . . . dasEreigniss mussunter alien Umstanden eintreten.'

2. Conventionalism as an 'elimination' of the inductive problem.
1
Mill, bk. Ill, chap, x, 5 and chap, xi, 1. Whewell [4], p. 453. See also Fowler,

p. 14 and Berlin, p. 90.
2 Whewell [3], p. 36: 'The question really is, how the Conception shall be understood

and defined in order that the Proposition may be true.' Ibid., p. 39: 'The business of

definition is part of the business of discovery.
'

Ibid., p. 70: 'Induction is ... the process
of a true Colligation of Facts by means of an exact and appropriate Conception.

'

Ibid.,

p. 73: 'Thus in each inference made by Induction, there is introduced some General

Conception, which is given, not by the phenomena, but by the mind.
*
See also Whewell

[4], p. 253ff. Although Whewell 's ideas can in part be interpreted conventionalistically,
he himself was of the opinion that the truth to which induction leads, in so far as it is

absolute, is a kind of synthetical truth a priori. For Whewell's ideas about synthetical

judgments a priori see the very lucid account in Whewell [1], vol. I, p. 53-75. (Also
Whewell [2], vol. I, p. 57-76.) It is most interesting to see, how easily Whewell's 'funda-

mental ideas', i.e. the general synthetical and a priori principles, can be understood in a

conventionalistic way. This was pointed out without the use of the terms analytical
or conventionalistic already by Boole, in an extremely interesting passage in The Laws

ofThought. (Boole [1], p. 406.). About the general idea of order and uniformity in nature

Boole, quoting Cournot [2], says (ibid.) that 'it carries within itself its own justification

or its own control, the very trustworthiness of our faculties being judged by the confor-

mity of their results to an order which satisfies the reason.'
3 Bacon [2], lib. I, aph. CV: 'Atque huius inductionis auxilio, non solum ad axiomata

invenienda, verum etiam ad notiones terminandas, utendum est. Atque in hac certe

Induction spes maxima sita est.* Cf. Ellis [1], p. 37.

4 Jevons [2], p. 675. For the question about classification, induction, and convention

see also Mill, bk. IV, chap. vn. The question is connected with that of the existence of

Kinds. See above chap, n, 6.

5 Mach [3], p. 307ff.

6

Sigwart, vol. II, p. 451.
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7 Broad [1], pt. n, especially pp. 17f., 32f., and 34f. The discussion is of Natural

Kinds.
8 Mach [3], p. 307.
9 See above chap. I, 3 and Keynes, p. 274.
10 See e.g. Poincare [1], p. HOff. and 135ff. for conventions in the foundations of

physics, and ibid., p. 92ff. for convention and geometry. For a further development of
some of the ideas of Poincare see Lenzen, p. 259ff.

11 That Poincare regarded the essential problem of induction as a question upon
which conventionalism had no bearing is seen from several statements of his. (E.g.
Poincare [I], p. 6. and p. 167ff.)

12 The arguments given here do not pretend to be identical throughout with the

opinions of all the philosophers, whom we call 'radical conventionalists*. They are
meant to characterize a certain attitude towards the problem of induction, and the

philosophers separately mentioned may in minor points differ from the attitude which
is here 'typified'.

13 With this might be compared the ideas of J. R. Weinberg ([1], p. 108 and p, 157ff.).

Weinberg 's arguments seem to aim at something similar to the lines of thought de-

veloped by us here, but are somewhat obscured by his reference to the 'neo-positivistic'
idea that general propositions are not 'propositions,' but 'schemes for the construction
of propositions*. For this doctrine of general propositions and its bearing on the

inductive problem see also Blumberg [1J, p. 581, Ramsay, p. 237ff., and Schlick [2],

p. 151.

14 Poincare was aware of the perplexing features in the not always easily perceptible
transition from synthetical to analytical, which takes place when conventions originate.

(Poincare [1], p. 11 Off. said passim.)
15 The experiential instances, which recommend the adoption of a new convention and

the dismissal of a previous one might be called renegade instances. For this name and its

use see Aldrich.
16 See Le Roy [1 ] and [2] for a fuller account of his ideas. A (partly very good)

criticism of Le Roy is to be found in Poincare [2], p. 213-247.
17 For the relatedness of the ideas of Ajdukiewicz to those of Le Roy see Ajdukiewicz,

p. 260.
18

Schuppe's theory of what he calls 'rationale Induktion' (Schuppe, p, 31 Off.) is a

beautiful example of the view that induction in so far as it is to have scientific value must
lead to absolutely true and consequently analytical propositions. Induction which does
not lead to absolute truth, i.e. all induction which attains synthetical generalizations* he
calls 'nichtig'. (Ibid.).

ia Cornelius expounds his system of radical conventionalism in Cornelius [1 ], p. 277-

299 and Cornelius [2], p. 21 Off.

20 See Dingier [1], p. 6; [2], p. 135ff.; [3], p. 178ff. (here on p. ISO it is very clearly
stated that the semper et ubique of the natural laws is a tautologous property of theirs):

[4], p. 25; [5], passim; and [6], p. 340ff. For a criticism of Dingier *s ideas see H.

Weinberg and v. Aster-Vogel.
21

Dingier and his adherents do not, for reasons which are connected with this peculi-

arity of his system, want to call it conventionalistic at all, but give it the name 'DezerniV

mus'. (See Krampf, p.
45ff. where the difference between the 'Dezernismus' and

conventionalism in the usual sense is stressed.) Nevertheless what is said here about

conventionalism and the inductive problem applies also to Dingier 's theory of induction.

Cf. H. Weinberg, p. 40.
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3. Conventionalism andprediction.
1 Poincare was quite clear as to the importance of this in the question of whether

conventionalism can justify induction or not. Laws of nature can always be kept true

if we regard them as definitions, but that these laws are also used for making predictions
is not justified by this. (Poincare [2], p. 236.) I may for instance regard Galileo 's law

concerning falling bodies as analytical, but this does not contribute anything to the

reliability of my predictions as to how a certain body in a given case is going to fall.

The law which gives reliability to such predictions is no convention. *I1 ne me servirait

a rien d 'avoir donne le nom de chute libre aux chutes qui se produisent conformement
a la loi de Galilee, si je ne savais d'autre part que, dans telles circonstances, la chute sera

probablement libfe ou a pen pres libre. Cela alors est une loi qui peut etre vraie ou

fausse, mais qui ne se reduit plus a une convention.
*

Ibid., p. 237f.)
2 Poincare [2], p. 238.
*
Roughly the same objection against radical conventionalism as the one put forward by

us, is the following which has been made by several philosophers. We can guarantee the

absolute truth of inductive generalizations by making them definitions. But how do we
know that definitions derived from past experiences will be suitable for new experiences
also? This is a question which must be decided by the new experiences themselves.

These experiences may 'correct' our definitions or suggest the adoption of new ones

instead of the old. Nevertheless we know that this process of altering the definitions

does not take place from case to case, but that the definitions which we employ have a

certain 'stability*. To account for this stability is beyond the power of conventionalism.

It is the inductive problem recurring. For these ideas see Sigwart, vol. II, p. 45 Iff., Mach
[3], p. 139f., Meinong [1], p. 637ff., and Lenzen, p. 262. For a conventionalist's way of

dealing with these objections see Cornelius [1], p. 292ff.

4. Conventionalism and the justification of induction.

1 Cf. H. Weinberg, p. 40: 'An der Tatsache, das wir "prophezeien", Naturereignisse

voraussagen konnen, scheitert aller (Konventionalismus und) Dezernismus.
'

* This observation underlies the following very good remark of H. Weinberg (p. 40)

in his criticism of Dingier 's theory of induction: *Gewiss, wenn eine auf Minute und
Sekunde vorausgesagte Sonnenfinsternis nicht oder nicht piinktlich eintritt, so werden

wir diese "Stoning" wahrscheinlich "exhaurieren'V ('Exhaurieren' is Dingier 's

expression for the process of completing the formulations of inductive laws by consider-

ing new circumstances.) 'Aber es war doch schon unzahligemal moglich eine derartige,
sich bestatigende Vorausbestimmung zu treffen.

'

3 Tne word 'compelled' is used here to mean logical and notpsychological compulsion.
*
It is, for instance, very interesting to note that Whewell who, as was shown above,

closely approaches conventionalistic lines of thought in his doctrine of inductive truth,

at the same time underlines the importance of testing inductions, by making predictions
from them. *It is a test of true theories not only to account for, but to predict pheno-
mena.' (Whewell [3], p. 70.)

6 This point was emphasized also by Poincare. See e.g. Poincare [2], p. 239: 'Quand
une loi a rec.u une confirmation suffisante de Inexperience ... on peut 1'eriger snprincipe,
en adoptant des conventions telles que la proposition soit certainement vraie.

'

6 Cf. above p. 45.
7 We are here touching upon a point which is at the same time one of the deepest

sources of certain metaphysical ideas about language and knowledge. Of these ideas

the metaphysical systems of Bergson-and Le Roy, for example, are good exponents.
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CHAPTER rv. INDUCTIVE LOGIC

1. Justification a posteriori of induction.
x Cf. above chap, n, 1.

2 A full proof of this statement would take us into general considerations about the
nature of logic, which it does not seem appropriate to introduce in this treatise.

2. Induction and discovery. Induction and deduction as inverse operations.
1
Mill, bk. Ill, chap, i, 2.

2 Jevons [2], p. 122ff.
8
Ibid., p. 139. Jevons 's idea that there is no other method of discovering the function

in question is, however, false. Actually the function can be written down directly on the
basis of the given truth-possibilities according to a rule.

4
Already before Jevons, Tissot had mentioned induction and deduction as inverse

operations. (Tissot, p. 248.) Jevons 's account of induction has been criticized by
various authors, thus Venn ([2], p. 361), Meinong ([1], p. 656), and Erdmann (p. 710ff.).
Those critics, however, tend to overlook that Jevons, in calling induction the inverse of

deduction, did not intend to attribute to inductive reasoning syllogistic powers. The

lengthy criticism of Erdmann is based on a complete misinterpretation of Jevons *s

opinion on this point.
5 Cf. Whewell [3], p. 64 and [4], p. 456 and Liebig, p. 20ff. See also Popper [2],

p. 207ff.
6 Whewell [3], p. 103.
7

Apelt [1], pp. 142-9 and 189-204; Mill, bk. Ill, chap, n, 4; Whewell [3], p. 75.
8 For the 'Okonoinie des Denkens* see Mach [1], p. 452tT. For induction and the

economic nature of thinking see also Kaila [6], p. !8ff.
9 For this resemblance see Couturat [1], p. 265ff.
10 For a further description of this method see Mach [3], p. 252ff. The invention of

the method is attributed to Plato.
11 Cf. Cassirer, E., vol. I, p. 136H It appears from this context that the description of

the method of science given by Zabarella were almost identical with Galileo's descrip-
tion of his 'resolutive* method.

12
Galileo, vol. II, p. 21.

13 See Couturat [1], p. 265ff.
14 The best ? xount of Whewell's inductive logic is to be found in Whewell [3], bk. II,

chap, v and *i. Ideas similar to those of Whewell are expounded by Sigwart (vol. II,

p. 434ff.) in his talk of induction as a 'Reduktionsverfahren*. Cf. also Trendelenburg's
account of induction. (Trendelenburg, vol. II, p. 316ff.)

15 Whewell [3], p. 105.
16 For a description of the inductive tables see ibid., p. 100. An inductive table of

astronomy and another of optics is given ibid, after bk. II, chap. ix.
17

Ibid,, p. 114.
18

Ibid., p. 115.
19

Ibid., p. 75.
20 Whewell (ibid., p. 64) speaks of discoveries of science as 'happy Guesses*.
21

Ibid., p. 98, Whewell explicitly says that his system of inductive logic justifies

induction.
22 This most important feature of certain common types of inductive logic has been

stressed by Kaila ([6], p. 97). Cf. also above chap, i, 2,

23
Mill, bk. Ill, chap, n, 2 and 4. Although Whewell *s philosophy of induction

on the whole gives a clearer picture of the actual procedure of science than the induc-
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tive logic of Mill, one can hardly deny that Mill in his criticism of Whewell was right
as regards most points of importance.

24 This follows from the definition of (ampliative) induction given above (chap, i, 1).
25 Cf. Mill, bk. Ill, chap, n, 3. The only real induction concerned in the case,

consisted in inferring that because the observed places of Mars were correctly represented

by points in an imaginary ellipse, therefore Mars would continue to revolve in that same

ellipse; and in concluding . . . that the position of the planet during the time which

intervened between two observations, must have coincided with the intermediate points
of the curve.

'

26 As Stoll rightly points out (p. 91) Whewell never realized the significance of this.

He seems to have assumed that the verification, which shows that the given data follow

from the law, was sufficient to establish the truth also of the law as a general proposition.
This is explicitly stated in Whewell [4], p. 454, where he says of an inductively obtained

proposition 'no one doubts its universal truth', but adds parenthetically to this 'except
. , , when disturbing causes intervene'. The last clause indicates why Whewell regarded
the conclusion as to the universal truth of the induction as justified: this truth was to be

guaranteed by a convention that if there was a fact apparently contradicting the law,

then it was to be 'explained away' in some way. That this was the opinion of Whewell

is confirmed from Whewell [3], p. 234ff., where he at some length discusses the use of

induction for predicting new facts. The law, it seems, can never be 'falsified', but it can

under circumstances be 'corrected', i.e. formulated more accurately. (Ibid., p. 235.)

These passages clearly show the above-mentiond relatcdness of Wliewell's inductive

philosophy to conventionalistic lines of thought. (See above chap, m, 2.). See also

Whewell 's criticism of Newton's view of induction (Whewell [4], p. 196ff.), where he

against Newton, who maintained that inductive propositions are never secure of excep-
tion (Newton [1], lib. Ill, reg. phil. iv), says that *to judge thus would be to underrate

the stability and generality of scientific truths*.

3. The idea and aim of induction by elimination.

1 Bacon [1], vol. I, p. 137.
2 Ibid.
3 Cf. Mill, bk. Ill, chap, m, 3: 'Why is a single instance, in some cases, sufficient for

a complete induction, while in others, myriads of concurring instances, without a single

exception known or presumed, go such a very little way towards establishing a universal

proposition? Whoever can answer this question . . . has solved the problem of induc-

tion.
*

4 This distinction is equivalent to that between induction by confirmation and induction

by invalidation. See Nicod, p. 219ff. and p. 222.
5
Keynes (chap, xxxm) has made a first attempt to extend the general principles of the

eliminative method to Statistical Generalizations.
6 For the following considerations it is irrelevant whether the individuals are objects

or events. Cf. chap, n, 2, fn. 10.
7 Cf. above chap. I, 2.

8
It is to be observed that the main task of the inductive logic of Bacon was to devise

a method for the discovery of necessary and sufficient conditions of given characteristics.

According to Bacon the business of induction was to find the 'form* of a given 'nature'.

That the 'form' is a necessary and sufficient condition of the 'nature* is seen from the

following statement (Bacon [2], lib. II, aph. iv.): 'Etenim Forma naturae alicujus talis

est ut, ea posita, natura data infallibiliter sequatur. Itaqueadest perpetuo quando natura
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ilia adest . . . Eadem Forma tails est ut, ea amota, natura data infallibiliter fugiat.
Itaque abest perpetuo quando natura illabest*. That is to say: theform implies universally
the nature and conversely.

9 C D. Broad, in [8], was the first author to deal with the logic of elirninative
induction within the framework of a Logic of Conditions. Broad's paper marks an
important advance in the logical study of induction.

10 Bacon [1], vol. I, p. 137. Cf. Mis [1], p. 23: 'Absolute certainty is ... one of the

distinguishing characters of the Baconian induction.' See also Keynes, p. 267.
11 Bacon [5], vol. Ill, p. 618. Mill (see bk. Ill, chap, in, 3; chap, rv, 3; and chap, ix,

6) also attributed absolute certainty to his inductive method. As wiU be seen later,

however, it is not clear in which of the three senses mentioned Mill spoke of inductive
conclusions as being 'certain*.

4. The mechanism of elimination.
1 We do not wish to commit ourselves on the question, whether the totality of proper-

ties of a given individual can be said to determine a set. We must not speak of the set
X

19
Xz . . . as the set of properties of x (beside A). Forthe description of the mechanism

of elimination given in this section it suffices to assume that Xv X2 ...isa set properties
of x.

2 This explanation of the meaning of 'independent' is somewhat imprecise but
suffices for our present purpose. Cf. von Wright [11], p. 42f.

3 For the notions ofpositive and negative analogy see Keynes, p. 223ff. If we consider
the three sets of properties A, By C; A, B, D; A, C, E, then, according to the definition

given, the positive analogy between the sets is (the set, the only member of which is)

the property A, and the negative analogy is (the set, to which belong) the properties

4
Nicod, p. 229. Nicod is the first author, who has clearly seen the seriousness of the

restrictions to the logical power of the elirninative method which follows from possible

Complexity of Conditions.
5 The possibility that the necessary condition of A is a conjunction of properties does

not concern us. If the presence of B and C is necessary for the presence of A, then the

presence of B is necessary for A and the presence of C is necessary for A. In symbols:
(x) [Ax-+Bx&Cx]=~(x) [Ax-*Bx] & (x) \Ax~+Cx]> A conjunctive necessary condition
is thus a case of Plurality and not of Complexity of Conditions.

6 Mill did not distinguish between Plurality and Complexity of Conditions (Causes).
From failure to make this distinction arise several mistakes in his account of induction-

It is noteworthy that at least in one place (bk. Ill, chap, x, 3) he considers the possibility
(in our terminology) of a disjunctive necessary condition. He, however, mistakenly
describes it as a case of Plurality of Conditions. Cf. von Wright [1 1 ], p. 161f.

7 A detailed description of the working of the logical mechanism of elimination hi this

case is given in von Wright [11], pp. 102-16.
8 Cf. von Wright [11], p. 94f.

9 The corresponding typical* case never occurs in the search of necessary conditions.

For it is a characteristic logical difference between sufficient and necessary conditions of

a given phenomenon A that the presence of A entails the presence of all its necessary
conditions, but that A may very well occur in the absence of some (or maybe even all)

of its sufficient conditions. For a more detailed account of the Logic of Conditions see

von Wright [11], pp. 66-77.
10 See above p. 64 and the present section fn. 1.

11 The possibility that the sufficient condition ofA is a disjunction of properties does
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not concern us. If the presence of B or C, 'no matter which one', is sufficient for the

presence of A, then the presence of B is sufficient for the presence of A and the presence
of C sufficient for the presence of A. In symbols: (x) [Bx v Cx-*Ax\=(x) [Bx-*Ax] &
\x) [Cx-+Ax]. A disjunctive sufficient condition is thus a case of Plurality and not of

Complexity of Conditions. Cf. above fn. 5.

12 Cf. Nicod, p. 229.
13 Mill's recognition of complexity in sufficient conditions (causes) enters in the form

of the reservation which he (sometimes but not always) makes when, speaking of his

Method of Difference, he says that the circumstance, in which alone the instances differ,

is the cause or a part of the cause of the investigated phenomenon. See Mill, bk. Ill,

chap, vra, 2.

14 A detailed description is given in von Wright [11 J, pp. 116-19.
16 See Mill, bk. Ill, chap, vra, 4 and von Wright [11], pp. 97-102 and 119-26. Mill

also describes two further methods, called by him those of Residues and of Concomitant
Variations. These two methods, however, do not contribute anything new to the logical

mechanism, as such, of eliminative induction. (Cf. Nicod, p. 220 fn. and von Wright [11],

p. 160f.) Mill's description of his methods was anticipated in Herschel's Discourse on

the Study of Natural Philosophy which appeared thirteen years before Mill's Logic.

(See especially Herschel, p. 151ff.) As Herschel's greatest contribution to the theory of

induction, however, must be regarded the emphasis which he laid on what he called

'residual phenomena', i.e. phenomena not accounted for by known laws of a given
context. (Ibid., p. 156ff.) AJI important class of such residual phenomena are so-called

'counteracting causes'. The theory of residual phenomena is connected with conven-

tionalism. (See above chap, m, 1 and 2.) For residual phenomena hi inductive logic

see also Jevons [2], p. 558ff.

16 Cf. Broad [8], p. 311.
17 It is noteworthy that in the search of necessary-and-sufficient conditions (use of the

Joint Method) there is no corresponding restriction to the 'direction of elimination*

among possible complex conditions. See von Wright [11], p. 123.
18 See Kaila [6], p. 97ff.

19
Mill, bk. Ill, chap, vra, 2. Cf. above fn. 13.

20 Lachelier (p. 31) speaks of '1 'induction scientifique' as opposed to 'rinduction

vulgaire* intending, as far as we can judge, precisely the distinction between eliminative

and enumerative induction.
21 Cf. Mill, bk. Ill, chap, x, 2: *A single instance eliminating some antecedent which

existed in all the other cases, is of more value than the greatest multitude of instances

which are reckoned by their number alone.
*

22 Cf. Keynes p. 217. Keynes makes the acute observation (p. 218f.) that Hume
apparently on this point misrepresented the nature of inductive argument in his criticism

of it. See also Stocks, p. 202.

5. Remarks about the comparative value of the methods ofAgreement and Difference.
1
Mill, bk. Ill, chap, vra, 2 and 3.

2 See e.g. Fowler, p. 157f.

3
Mill, bk. Ill, chap, vra, 3: 'It thus appears to be by the Method of Difference alone

that we can ever, in the way of direct experience, arrive with certainty at causes.'

4 Ibid.

5 See e.g. ibid., bk. Ill, chap, v, 3: 'The cause, then ... is the sum total of the con-

ditions . . . which being realized, the consequent invariably follows/ That is to say:

A is the cause of B, if A precedes B in time and universally implies it.
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6
Ibid., bk. Ill, chap, vni, 1 and 3.

7
Ibid., bk. Ill, chap, vm, 1.

8 Ibid.
9 This is the point were the fallacy enters. Italics mine.
10 Ibid. The most natural interpretation of the term 'unconditional antecedent

'

would
be 'necessary condition in time'. This interpretation, however, is excluded both by the
use which Mill otherwise makes of the term 'cause* (cf. above fn. 5) and on the ground
that the method of Agreement can prove an antecedent to be unconditional in the sense
of being the (only possible) necessary condition. Thus under this 'natural' interpreta-
tion Mill's statement would be simply false. It must, therefore, be interpreted as is done
by us in the text.

11 Mill himself (ibid.), erroneously, connected the formulation mentioned with 'the

impossibility of assuring ourselves' (in the given example) 'that A is the only immediate
antecedent common to both the instances'.

12
MH1, bk. Ill, chap, vm, 3.

13
Mill, bk. Ill, chap, vin, 3 and Fowler, p. 158.

14 Cf. above p. 65.

6. The generalpostulates of induction by elimination.

1 See Ellis [2], p. 84, where the postulate of Limited Variety is called The fundamental

principle in virtue of which alone a method of exclusions can necessarily lead to a

positive result.
*

2 Bacon [3], vol. Ill, p. 243 and Bacon [4], vol. Ill, p. 357. Cf. Ellis [1], p. 28: The
view . . . that it is possible to reduce all the phenomena of the universe to combinations
of a limited number of simple elements is the central point of Bacon's whole system/ It

is, however, not quite clear what the principle of Limited Variety, as it occurs in Bacon 's

philosophy, really means and to what extent it is covered by the idea that the number
of different properties of an individual is finite. For a lucid discussion of the Baconian
idea of limited variety and different possiblemeanings of it see Broad [6], p. 35ff. Bacon's
ideas on this point are probably related to another favourite idea of his, viz. that of a

complete and definite collection of all human knowledge. (See Spedding, voL I, p. 369ff.)

All these ideas might be regarded as kindred to the Mathesis-Universalis-idesi, character-

istic of the systems of Descartes, Leibniz and other philosophers of the seventeenth

century. The relatedness between the scheme of an inductive logic and the Mathesis

Universalis becomes quite apparent in Robert Hooke's treatise A General Scheme of
the present state of Natural Philosophy, which was published posthumously in 1705.

Hooke tried to develop the general method of Bacon, without, however, contributing

anything essentially new to it, into a 'Philosophical Algebra' (note the mathematical

analogy !) which makes it 'very easy to proceed in any Natural Inquiry, regularly and

certainly'. (See Hooke, p. 6f.)
3
Keynes, p. 251. Keynes introduces his postulate for the purpose of securing a finite

a/>rz0n-prebability hi favour ofeach one of all concurrent hypotheses as to a conditioned

property of a given characteristic. See below chap, vr, 5.

4
E.g. if the properties are sense-qualities. Cf. Kaila [6], p. 203.

5A similar objection to the use of the postulate of Limited Variety for the purpose of

assigning finite a /?jior/-probabilities to the concurrent hypotheses was made by Nicod

against Keynes. See Nicod, p. 278 fn.
e Whereas Bacon resorts to the postulate of Limited Variety, the inductive logic of

Mill may be said to be based on the postulate of Completely Known Instances, although
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it is never explicitly stated by him. (Keynes, p. 270f.) From the tacit assumption of this

postulate Mill's Method of Difference obtains part of its illusory strength. (Cf. Jevons

[3], p. 295ff. and Kaila [6], p. 99.)
7 See Kaila [6], p. 98ff.
8
It is uncertain whether the term 'property

'

here is not used to denote a relation.
9 For this idea see Maxwell, chap, i (the end), Schlick [2], p. 147f., Hempel [1], p. 31.
10

I.e. it is conceivable that it were an analytical truth.
11 Bacon [3], vol. Ill, p. 242.
12

Mill, bk. Ill, chap. xix. Mill also says (bk. Ill, chap, rx, 6) with reference to

Whewell, that his inductive methods 'are methods of discovery'. But at the same time

he adds that they are also methods of 'proof. It remains, however, uncertain whether

'proof here means a demonstration that a certain general proposition is true or a

demonstration that a certain general proposition is, in a given context, the only possible

generalization.
13
Hibben, p. 166. The author states that we may by the inductive method detect that

A has been the cause of B in given instances, but that from this it does not necessarily
follow that we can generalize as to the constant conjunction of A and B. In this state-

ment we find ourselves confronted with the source of much ambiguity in discussions

about the aim and power of the inductive logic, viz. the failure to distinguish sharply
between the following two meanings of the word 'cause': (1) A characteristic with the

*power of producing' another characteristic universally, i.e. always when certain condi-

tions are fulfilled, and (2) A characteristic which is the only one that in given cases has

been conjoined with another characteristic.
14 Cf. the above quotation from Bacon (p. 63) and Mill, bk. Ill, chap, in, 3: 'That all

swans are white, cannot have been a good induction, since the conclusion has turned out

erroneous.
*

15 For this term see Nicod, p. 223. Nicod, however, states the principle only in the

weaker form that every characteristic has a sufficient condition. In Keynes again there

is (p. 226) a corresponding postulate of eliminative induction called the principle of

Uniformity of Nature. (Cf. Broad [1 ], pt. n, p. 13ff.) Keynes has not observed that, since

the method of elimination which he describes is roughly that of Agreement, his principle

applies only to necessary conditions.
16 For this formulation of the Deterministic Assumption and its implications see

Broad [8], p. 307 and von Wright [11 ], pp. 72-7 and 131-5. If the law is of the form (2)

of 3 there must be added some qualification as regards the correlating function F.

Those possible qualifications will not be considered here.

17 It must furthermore be assumed that Mill's Universal Law of Causation applies

only to sufficient conditions, to judge from the definition of cause given by him. Cf.

above chap, rv, 5, fn. 5.

18
Mill, bk. Ill, chap, xxn, 4: To overlook this . . . was, as it seems to me, the capital

error in Bacon's view of inductive philosophy.*
19 The Baconian 'forms* and 'natures' have, however, also peculiarities other than

those of being simultaneously existing necessary and sufficient conditions of each other.

Bacon has rightly seen that other peculiarities must be demanded in order to distinguish
the characteristics as forms and natures respectively. Thus he requires the 'form' to

be something of the kind of a differentia specifca of a genus proxirnum (Cf. Bacon [2],

lib. II, aph. iv and xv). This connects his doctrine of induction with the Aristotelian

doctrine of definition (Kotarbinski, p. 11 Iff). Bacon also seems to have thought, at

least at a certain stage in his development, that the 'form' ought to be an external

physical property, the 'nature* again a phenomenological feature (Kotarbinski, p.
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I13ff). Therewith his doctrine of forms and natures becomes connected with the
distinction between 'primary* and 'secondary' qualities (Ellis [1], p. 28ff).

20 See Nicod, p. 229ff.

7. The justification of the postulates of eliminative induction.

1 Above chap, n, 7.

2 Cf. above chap, n, 2, fns. 13 and 16.
3 See chap, n, 2, fn. 16.
4 These findings constitute the so-called 'paradoxes of strict (necessary) implication'.

These and other principles of modal logic, mentioned here, are explained in Lewis-

Langford, Symbolic Logic (New York, 1932) or in the Author's An Essay in Modal
Logic (Amsterdam, 1951).

6 No reason in support of this assumption will be given here. The idea appears highly

plausible and it has, as far as we know, never been contested.
6 For a similar argument see Broad [12], pt. i, p. 23f.
7 See above chap, iv, 1.

8 One might make the objection to the use of enumerative induction that it cannot even

confirm the Deterministic Assumption, and correspondingly Mill's Universal Law of

Causation. For the assertion that A has a sufficient or necessary condition is a universal

proposition and hence unverifiable (since it would be circular to suppose it to have been
verified through the eliminative process itself). This important point seems to have

escaped Mill's notice. Mill constantly speaks about the confirmation of the Universal

Law of Causation through enumerative induction, as if it were actually possible to

verify single causal uniformities.
9 Cf. above chap, rv, 1.

10 The metalogical proof of this will be omitted here.
11 From the above argument on p. 82.
12 This qualification is necessary in order to avoid circularity.

8. The eliminative method and the justification of induction.

1 This task the Author has tried to accomplish in his book A Treatise on Induction and

Probability (London, 1951), especially chaps, iv and v.

CHAPTER v. INDUCTION AND PROBABILITY

1. The hypothetical character of induction.

1 Newton [2], p. 31. See also the fourth of Newton's Regulae Philosophandi in

Newton [1], lib. III. This must not be confused with Newton's own use of the term

'hypothesis'. Cf, Lalande, p. 123ff.

z
Huyghens, vol. XIX, p. 454. See also Lalande, p. 146.

3
If they were not hypotheses, incidentally, of what use and of what interest would it

then be to draw the conclusions and make the tests?

4 This is particularly true of Whewell. Cf. Stoll, p. 91
5 See Jevons [2], p. 152 and p. 218ff. Jevons uses 'hypothetical* and hypothesis' in

several senses which are not always clearly kept apart. (.Cf. Johnson [1], vol. Ill, chap,

n, 12.) By the 'hypothetical* character of induction we here mean simply the fact that

ampliative induction does not yield demonstrative certainty. When Jevons, however,

says ([2], p. 265fT.) that 'hypothesis' is the first stage in the inductive process of thought,

the second and third stage being deduction and verification respectively, what he has in

mind is 'hypothesis' in the sense of the so-called hypothetico-deductive method. See

Note at the end of this section.
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6 For a 'typical' misunderstanding see Fowler's criticism of Jevons. (Fowler, p. 9ff.)

Fowler is wholly unable to see the significance of the fact that inductive generalizations,
used for predictions, are hypothetical. The following quotation (ibid., p. lOf.) is interest-

ing as it illustrates the very difficulty on this point which Fowler entirely over-looks:

'I maintain as against Mr. Jevons that many of our inductive inferences have all the

certainty of which human knowledge is capable. Is the law of gravitation one whit less

certain than the conclusion of the 47th Proposition of the First Book of Euclid? Or is

the proposition that animal and vegetable life cannot exist without moisture one whit

less certain than the truths of the multiplication table? Both these physical generaliza-
tions are established by the Method of Difference, and as actual Laws of Nature' (cf.

above chap, iv, 6, fn. 13), 'admit, I conceive, of no doubt. But it may be asked if they
will always continue to be Laws of Nature? I reply that, unless the constitution of

the Universe shall be changed to an extent which I cannot now even conceive, they will

so continue, and that no reasonable man has any practical doubt as to their continuance.
*

7 Note on the role of Induction and Hypothesis in Science.

'Hypothesis
1

and 'hypothetical* are used in many different senses in connection with

induction. The hypothetical character of induction as understood above and as empha-
sized by Jevons ought not to be confused with the use of the hypothetical or hypothetico-
deductive method in the inductive sciences.

Some modern authors (K. Popper, J. O. Wisdom) emphasize, against induction, the

role of hypothesis and the hypothetico-deductive method. Wisdom ([2], p. 7) goes as

far as saying 'that induction plays no part whatever in science that there is no induc-

tive method and that nothing approximating to inductive inference is used*. Novelty is

claimed (Wisdom [2], p. 49) for the approach of Popper's, who is said to be the first to

give to the hypothetico-deductive method 'serious attention in metascience'.

In face of these modern exaggerations it may be useful to remember:

(i) That the 'metascientific' appreciation ofthe hypothetico-deductive method is clearly
manifested in the remarks on scientific method which we find in the works of many of

the champions of modern natural science such as Galileo, Pascal, Huyghens, or Leibniz

(see above chap, iv, 2 and Lalande, pp. 83-109 and 146-71), and

(ii) That the role of hypothesis in science and the relation between induction and the

hypothetico-deductive method has been ably and extensively studied by authors on

scientific method in the 19th century, foremostly by William Whewell and E. F. Apelt.

(See Whewell [3], bk. II, chap, rv-vn and bk. Ill, chap, v, vi and rx; Whewell [4]; Apelt
[1 ], especially pp. 56-64.) It is particularly regrettable that the writings of Whewell on
the philosophy of science have largely fallen into oblivion among modern authors,

probably under the influence of a text-book tradition in inductive logic which has been

nourished mainly by Mill's theory of the canons of elimination.

Anyone who maintains that 'induction plays no part whatever in science' is advised

to study the examples of the use of inductive methods given in Mill's Logic (particularly
in bk. Ill, chap. rx). Against these examples it could conceivably be objected that they
are all of a rather 'primitive' kind. This rejoinder should not be met by assuming off-

hand that examples of a more 'advanced' nature could be added. It is worth consider-

ing, whether the nature of the examples, which are found in Mill's or Bain's works on

inductive logic and similar books, do not indicate some essential limitation to the use

of induction as a 'method' in scientific investigation. To this extent the 'critics of

induction' may be right. Here the following observation suggests itself (see also above

chap, iv, 2):

Situations, in which generalizations are framed, may be divided into two types. In
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situations ofthe first type it is clear or
'practically clear' which are the features (character-

istics, properties) that possibly lend themselves to generalization. Of this type are many,
or perhaps most, of the situations in which we look for the cause (condition) of a

phenomenon among a number of antecedent or coexistent phenomena. (Perhaps the
best examples are found in the branch of medicine called aitiology.) In sucli cases the

generalization emerges from the observation of a regular concomitance in the occur-
rence (or variations) of two features (or groups of features). The 'method

'

of generaliza-
tion is either induction by simple enumeration or induction after the elimination of
concurrent possibilities.

That such situations are frequent in every-day thinking is obvious and that they
occur in 'science' too can hardly be disputed. But it would be a mistake to believe that
all cases of generalization are ofthis type. Weknow ofno author on inductive logic, who
had held this belief; but some authors may be said to have overemphasized the impor-
tance of this kind of situation in science. (Cf. Mill, bk. Ill, chap, xiv, 4-7 on* the

hypothetical method.)
In situations of the second type, the possible generalizations cannot be 'read off' by

merely inspecting some experiential data. The introduction of a new concept is required
which, as Whewell says, 'colligates' the facts, gives them a uniting feature. As a prototype
of such cases, may be regarded the tracing of a curve through "a number of points, the
coordinates of which (in a diagram) are given by observation. Here the colligating

concept is the curve (or rather, its mathematical law')- It is, usually, first introduced
as a 'hypothesis' which the points are subsequently shown to fit. In this Verification '-

procedure deduction plays an essential part. The 'method' involved is thus: hypothesis
plus deduction.

What has been said so far, however, is only one aspect of the 'hypothetical method*.
Another aspect consists in the conjectural character of the hypotheses. They ought
to make prediction possible. On this the classics of scientific method agree (with the

reservation, however, that the idea of conjectural hypotheses seems to be peculiar to

Western science; it is not prominent in Ancient science). Whewell says ([3], p. 85f.):

Thus the hypotheses which we accept ought to explain phenomena which we have
observed. But they ought to do more than this: our hypotheses ought to foretell phe-
nomena which have not yet been observed.' And the fact that a hypothesis has been
verified to fit given data is no guarantee that it will not be falsified when predictions
from it are confronted with future observations. (Cf. chap, rv, 2, fn. 26.)

Thus hypothesis in science frequently has a double function. It introduces a new

concept or idea to account for observed data. And it makes conjectures about the

unobserved. The first function presupposes that an invention or discovery has been
made. And inventions are, as Whewell said, *happy guesses* or leaps which are out

of the reach of method'. (See above chap, rv, 2.) To fulfil the second function, is to

reason inductively. Thus induction enters as an ingredient in the hypothetico-deductive
method itself. Whether, in this connection, induction should be called a 'method* or

not, is a matter of nomenclature.

The difference between the two types of situation, just described, may be used for

distinguishing between 'primitive' and 'advanced* generalizations in science. And one

may suggest that use of induction as a 'method' is confined to the 'primitive' cases. But

even if it were true, which it is not, that the hypothetico-deductive procedure were *the

actual method of science* (Wisdom [2], p. 46), this would not, in view of the conjectural
character of scientific hypotheses, minimize the seriousness of the problem of the

justification of induction in science.

These remarks do not claim to give an exhaustive account of the typical uses of
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hypothesis in science. Not all 'advanced' generalizations can appropriately be put
under the title of 'colligation of facts', and not every use of hypothesis for conjecturing
is 'anticipation from experience' or can appropriately be termed 'inductive'. We have

only against certain *anti-inductivist' claims, wanted to show that theory of induction

cannot, in the name of the hypothetico-deductive method, be banished from holding a

prominent place within the methodology of science.

On the notion of hypothesis and the hypothetical method the following works, now

largely forgotten, may also be profitably consulted: Biedermann, Die Bedeutung der

Hypothese (Dresden, 1894); Hillebrand, ZurLehre von der Hypothesenbildung (Sitzungs-
berichte der Wiener Akademie, Philosophisch-historische Classe, Bd. 134, Wien 1896);

Mach, Erkenntnis und Irrtum (Leipzig, 1905); Naville, La Logique de VHypothese
(Paris, 1880). The best historical survey, known to the Author, of the problems discussed

in this note is Lalande, Les Theories de VInduction ei de VExperimentation (Paris, 1929).

2. Hypothetical induction andprobable knowledge.
1 Cf. Reichenbach [13], p. 98: 'Belief can be the motive of action, but belief as such

can neverjustify an action; only &justified belief can do that.'

CHAPTER vi. FORMAL ANALYSIS OF INDUCTIVE PROBABILITY

1. The Abstract Calculus ofProbability.
1 As a definition of probability, the so-called frequency-view would seem to be the

most ancient. It goes back to Aristotle. But the frequency-definition was not used as a

basis for the mathematical study of probability until the nineteenth century. See

chap, vi, 2, fn. 11.
2 Braithwaite [6], p. 118.
3
This, roughly, is the view taken by Carnap, who distinguishes two (main) concepts

of probability, viz. probability! which is a ratio of possibilities (strictly speaking, of

measures of ranges, see below p. 101) and probability2 which is a frequency. This dis-

tinction does not seem to us a very happy one. The fact, on which it is based, is the

existence of two models of mathematical probability of an identical or at least closely
similar structure. The question, how these models are related to the actual use (applica-

tions) of mathematical probability, is very complicated. It would be an oversimplifica-
tion to think that probability is sometimes used to 'mean* a ratio of range-measures
and sometimes to 'mean' a relative frequency, and that these two usages of it can be

sharply separated.
4 As first attempts in this direction may be regarded Bohlmann (1901) and Bernstein

(1917). Neither paper is mentioned in Keynes's Bibliography.
5 Similar systems for probability have been proposed by Tornier (in [1 ] and [2]) and

by Cramer (in [1]).
6 Cf. Cramer [2], p. 151.
7 The classification of Keynes's system along with more recent abstract theories of

probability presents some difficulties. It dates from a period when the general ideas of

axiomatic and formalized systems were much less developed than nowadays. Keynes
presents it, not as an abstract calculus, which is supposed to ]be 'neutral* with

regard to various interpretations of it, but as a form of what is sometimes also

called a belief-theory of probability. (See chap, vn, 1.)
8 And further developed in Reichenbach [4].
9 This does not exhaust the list. An abstract calculus, in line with Reichenbach 's
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rather than Keynes's, was proposed by the Author in [7] and further developed in [11].
See also below fn. 16.

10 In Reichenbach [4] the probability-relation is first (p. 56) said to be between events

(Ereignisse) and then (p. 57) said to be between propositions (Satze). In the further

development of the system the relation is actually one between prepositional-functions.
On the question whether probability is appropriately attributed to events or to proposi-
tions see Ancillon, p. 4, Boole [1], p. 247f., and Reichenbach [11], p. 57ff. See also
below fn. 11.

11 To these entities may also be counted their linguistic counterparts', i.e. sentences
as counterparts of propositions and (some kind of) names as counterparts of attributes.

The interpretation of probability in terms of such 'linguistic counterparts
'
will not be

considered here.
12 That probability is always relative to some evidence has been energetically stressed

by Keynes, who rightly says (p. 6) that 'a great deal of confusion and error has arisen
out of a failure to take due account of this relational aspect of probability'.

18 See above chap, v, 3.
14 In Keynes 's system it is explicitly assumed that the datum-proposition h must not

be self-contradictory. (See Keynes, p. 116ff.)
15 This was maintained, e.g., by adherents hi the nineteenth century of the dichotomy

between mathematical and philosophical probability. See later, this chapter 8, fn. 9.
16

Keynes (chap, in) took the view that there are non-numerical (as distinct from
unknown numerical) probabilities and that not all non-numerical probabilities are

comparable. An axiom system of comparative probability has been given by Koopman
(in [1]). See also Carnap [11], 79-85 and [15] and Shimony.

17 See above p. 16.
18 For a fuller treatment of the notion of independence the reader is referred to von

Wright [11], p. 193f.
19 For a fuller treatment see von Wright [11], p. 199ff.

20 nCm is the so-called binomial coefficient. Another symbol for it is ( m j.
It stands

ni
for the value

f
* _

-

f
. n! again means the product Ix2x3x ... xn.

21 The proof is not given here as it is of no relevance to the epistemological problems
under discussion. The proof makes no further use of principles of probability, but relies

on considerations of a purely arithmetical nature. It may be found in any text-book

on probability-mathematics.
22 See m. 21. It was this second part of the theorem which, save for a minor difference,

was proved by James Bernoulli ([1 ], pp. 236-8). An elegant proof both of the maximum

principle and of the limit theorem, which uses, only elementary means and closely
follows Bernoulli's own deductions, is found in Kneale [1], 28 and 29.

2. The interpretation offormalprobability.

1 See von Wright [1], p. 6f.

2 See Reichenbach [3], p. 404.
3 As an example of a model which falls under neither category may be mentioned the

geometrical model given in Reichenbach [2], p. 588ff.
4 The term truth-frequency appears originally to have been suggested by Whitehead

(see Keynes, p. 101). It is used also by Carnap, Reichenbach, and others.
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5 See Reichenbach [4], 18. For a thorough presentation of the Finite Frequency-
Model see also Russell [7].

6 On the notion of a limiting frequency or proportion see above chap, i, 2. Also

later chap, vm, 1.

7 This important point, it seems to us, has not received sufficient attention either

from von Mises or from Reichenbach, not to speak of earlier proponents of the fre-

quency-theory of probability. It is emphasized by Braithwaite C[6], p. 125) and put
forward by him as an objection against the Frequency-Limit-Model as a proposed

analysis of the meaning of probability.
8 See von Wright [11], p. 80f.
9 See Reichenbach [4], 18.

10
Important mathematical contributions to the problem of random distribution are

to be found in the papers of Church, Copeland [2], Feller, and Wald. For a discus-

sion of the epistemological aspects of the notion of randomness the reader is referred to

von Wright [2], [7] and [1 1 ].

11 As mentioned above (chap, vi, 1, fn. 1) the frequency-view of probability goes
back to Aristotle. A probability, says Aristotle in [2], 70

a
4,is 'what men know to happen

or not to happen, to be or not to be, for the most part thus and thus '. (See also Aristotle

[4], 1357 a
.) A similar view of probability was taken by writers of the seventeenth and

eighteenth centuries, other than those who studied probability in connection with

games of chance. Thus Locke (bk. IV, chap, xv, 1) says that 'probability is nothing but

the appearance of such an agreement whose connection is not constant but is, or

appears, for the most part to be so'. (See also below chap, vu, 2, fn. 5.) In connection

with a mathematical theory of probability the frequency-view made its first appearance
in three publications from the same year 1843, viz. Cournot [1], Ellis [3], and Mill.

(See von Wright [6].) Mill, however, in later editions of his Logic (see bk. Ill, chap,
xvm, 1) 'recanted' his earlier criticism of the view of probability taken 'by Laplace
and by mathematicians generally' and withdrew from the frequency position. None of

the three authors mentioned attempted a rigorous construction of the mathematical

calculus on the basis of a frequency-model. The first to do this was Venn in 1866.

Venn also was the first to make use of the notion of a limiting frequency. An improved
version of the frequency-theory was presented by von Mises in 1919. The modern form
of the theory is best studied in von Mises [2] and in Reichenbach [4]. A very good
semi-popular account is found in Nagel [5].

12 The English word 'range' may be regarded as a translati m of the German Spielraum
v/hich was introduced in probability theory by J. von Kreis (1886).

13
It is usually not clear which alternative is intended by those authors (particularly

of an earlier epoch), who speak of probability as an attribute of events.
14 A range model, in which the terms are attributes, is given in Kneale [1]. In the

most elaborate account of the range-theory which exists, viz. Camap [11], the terms

(arguments of Carnap's probability-function) are sentences. The choice of sentences

rather than propositions as terms has certain technical advantages, but fundamentally
there is no great difference between the two possibilities. See Carnap [11], 10 and
52.
15

I.e. we substitute for h a logically identical proposition h '

which overtly has the

form of a disjunction of n propositions of the required nature. That h' overtly has this

form should mean that the sentence
l

h'\ expressing the proposition #', is a disjunction-
sentence of n atomic sentences, each of which expresses a proposition which entails

either a or r^a and no two of which express compatible propositions. If h itself overtly
has the required disjunctive form no analysis is needed.
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Laplace's view of the philosophical nature of probability is best studied in [6].
17 For the notion of a truth-function and of a normal form see chap, i, 2, fn. 1 or

consult any modern text-book on logic.
18 In the limiting case, the set o- may consist of the propositions a and h themselves

and no other propositions.
19 This essentially answers to the definition of probability within a theory of truth-

functions proposed by Wittgenstein (5.15ff.). It is also substantially the same as Bol-
zano's (147, 161 and 167) definition of probability as 'relative validity' (relative

Giiltigkeit). Our definition might therefore be called the Bolzano-Wittgenstein defini-

tion.

In the theories of Bolzano and Wittgenstein the set a is identified with the set of
atomic propositions, of which a and h are overtly truth-functions. This is the set of

propositions expressed by the atomic sentences of which the sentences V and Vz' are

molecular complexes. (See above fn. 15.) Our definition is thus somewhat more general
than the definitions actually proposed by Bolzano and by Wittgenstein.
As specialized forms of the Bolzano-Wittgenstein definition may be regarded the

definition of probability on the basis of hypothetico-disjunctive judgments, given by
Sigwart (vol. II, p. 314) and Czuber ([3], vol. I p. 5); the definition on the basis of

disjunctive judgments, given by Lange (p. 99ff.) and Stumpf; the definition on the basis

of hypothetical judgments, given by Pick (p. 12ff.); and finally also the definition given

by Mendelssohn (vol. II, p. 248) and by Hailperin.
20 This essentially answers to Carnap's concept of range in [11], 18 D. Our set o-

plays a role corresponding to Carnap's choice of a 'language'. For a brief account of

the essentials of Carnap's theory see von Wright [10].
21 These units essentially answer to Carnap's state-descriptions. ([11], 18A.)
22 This definition was, neglecting notational differences, first proposed by Waismann

and essentially answers to Carnap's definition in [11], 55A of a regular confirmation

function. It may therefore be called the Waismann-Carnap definition of probability.
23 See Waismann, p. 236.
24 In Carnap's terminology: on the choice of a language and a regular measurefunc-

tion.

25 The best discussion of the principle is probably the one found in Keynes, chap. iv.

See also Kneale [1], 31, 34 and 35.
26

J. Bernoulli [1], p. 224: 'nulla perspicitur ratio cur haec vel ilia potius exire

debeat quam quaelibet alia*.

27 See Waismann, p. 242.
28 The re-birth of the frequency-theory in the nineteenth century (see fn. 11 above)

was ultimately connected with a criticism of the idea of equipossibility in the theory of

Laplace. It was alleged that the equality of alternative possibilities must ultimately
consist in the equal frequencies of their realization 'in the long run'. See Ellis [3] and

Mill, bk. Ill, chap, xvm, 1.

3. The doctrine of Inverse Probability.
1 See Bernoulli [1], p. 224ff., where the author is discussing the determination of

probabilities, as he puts it, *a posteriori*, i.e. the nature and use of the inverse Law of

Great Numbers. Of this inverted form of the theorem he says, not only that it is

provable (ibid., p. 226 and Bernoulli [2], p. 2f.), but also that he himself had proved it

after twenty years of effort and was going to give the proof in the Ars Conjectandi

(Bernoulli [1], p. 227). Thereupon he gives the proof of the direct theorem (ibid., p.

236ff,), and here the book suddenly ends. It remains uncertain, whether Bernoulli
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regarded the proof given as a proof of the inverted form of the theorem which he had

mentioned before, or whether he intended the real proof to follow in a later chapter. It

appears to us (cf. ibid., p. 239) that the former alternative is the true interpretation of

Bernoulli's own opinion. See also Todhunter, p. 73 and M. Cantor [2], vol. Ill, p. 334f.

Curiously enough Cantor seems to believe that Bernoulli really proved the inverted

form of his theorem.
2 See e.g. De Moivre, p. 251: 'As, upon the Supposition of a certain determinate Law

according to which any Event is to happen, we demonstrate that the Ratio of Happen-
ings will continually approach to that Law, as the Experiments or Observations are

multiplied: so, conversely, if from numberless Observations we find the Ratio of the

Events to converge to a determinate quantity, as to the Ratio of P : Q\ then we coji-

clude that this Ratio expresses the determinate Law according to which the Event is to

happen. For let that Law be expressed not by the Ratio P : Q, but by some other, as

R:S; then would the Ratio of the Events converge to this last, not to the former: which

contradicts our Hypothesis.
' From this interesting quotation is clearly seen that it is the"

confusion of maximum probability with certainty that makes the inversion of Ber-

noulli's theorem appear self-evident. The conversion would be self-evident if we had

proved by Bernoulli that, supposing an event's probability to be p, the proportion of

that event's happening on all occasions is certainly p. But what we really have proved
is that the probability that the proportion is p on some n occasions, approaches 1 as n

approaches oo . For a similar confusion see G. Cantor, p. 362.
3
Keynes, p. 148f. Keynes's Inverse Principle is of a somewhat more general content

than our 770.
4
It should be noted that the binomial coefficient nCm cancels out.

5

By an adaptation of the arithmetical considerations underlying the Direct Law of

Maximum Probability. Cf. chap, vi, 1, fn. 21.

6
By an adaptation of the arithmetical considerations underlying the Direct Law of

Great Numbers.
7 The name 'Bayes 's Theorem' is used very ambiguously in literature. Sometimes it is

used for what we have called the Inverse Principle, i.e. for T10 or some of its generaliza-
tions. (See Kolmogorov, chap, i, 4. and Nagel [5], p. 29.) Sometimes it is used to

denote the Inverse Law of Great Numbers. (See von Mises [2], p. 147f.) Actually,

Bayes's chief achievement consists in having proved the theorem which we here call

the Inverse Law of Maximum Probability. To this end he had, of course, first to prove
a form of the Inverse Principle. Bayes's considerations apply to 'continuous probabili-
ties', i.e. they assume that the Bernoullian probabilities of the problem cover the whole

range from to 1 inclusive. Bayes, however, did not use integration but relied on

'geometrical' considerations. (See Bayes [1], p. 388ff.) The first to prove the formulae

involved in the problem by the use of integration was Laplace in a Memoire of the

year 1774. It appears that, in 1774, Laplace was not acquainted with the essay of Bayes.

Concerning the history of Bayes's Theorem see the next fn. and fn. 3 of the next section.
8 The asymptotic property of the expressions (Z>) and (/)'), i.e. the Inverse Law of

Great Numbers, was not known to Bayes. It was noted by Price, who communicated

Bayes's paper for publication. (See Bayes [1], p. 418 fn.) It was proved for (>') i.e. on
the assumption of equal initial probabilities, by Laplace in the Memoire of 1774. The

corresponding proof for (>), which is 'practically independent' of initial probabilities,
is of later date. (See Bachelier [1], vol. I, p. 472f. and p. 488; Edgeworth, p. 228; von
Mises [2], p. 148f.) We have not been able to discover, who was the first to produce it

and thus to complete the proof of that part of Bayes's Theorem or the inversion of

Bernoulli's Theorem which we here call the Inverse Law of Great Numbers.
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9 The name 'Rule of Succession' appears originally to have been suggested by Venn,

(See Venn [1], p. 190) The use of the name in literature is ambiguous. Often it refers

only to the formula
^r^-

It seems to us useful to distinguish between a numerical and a

non-numerical form of the law.
10 See Laplace [1], vol. VIII, p. 30f., [3], vol. X, p. 325fF., [6], vol. VII, p. 16ff. Prior

to Laplace, Price (see Bayes [1], p. 405ff.) had used a somewhat different formula for
the determination of 'the probability of future events'. See also Mendelssohn, vol. II,

p. 264ft., where is given the formula
j
for the probability that if two events have been

observed n times in conjunction, they will be constantly conjoined,
The problem behind the Law of Succession can be put quite generally as follows:

If an event has occurred m times on n occasions, what is the probability that the
event will occur i times on the k next occasions? On the same assumptions as those
made in proving Bayes 's Theorem, we get the value:

1

k
i

J

On the additional assumption that all the initial probabilities qp are equal we get,
after integration, the expression:

k! x (m+i)f x(n + k-m-i)!x (n+1)!
i! X (fc-i)/x(/H-& -h IV x mix (nrm)!

If i-sks-j, we obtain from this the value --~ for the probability that the event
n+2 r J

will occur on the next occasion, if it has occurred m times in n occasions. If,

further m = n, we obtain the value 77- ^or t^ie probability that the event will occur

on the next occasion, if it has occurred on every one of some n occasions.
11 This is but a consequence of the following arithmetical truth: If w

1
<w2 <. . ,<ms

and M^M^r - - - +Ms==M'l+M'2+ , , . Af's and -WS <M'S , then m
1
xM

1+mzXMZ+ . , . +7ns xAfs<m1
xM/

1+m2XMa -f. . . . -fwsxM's . The m- and M- and
AT-values are assumed to be in the interval"from to 1 inclusive.

12 Cf. von Wright [11], p. 21 3f. for a fuller treatment of the problem. The Non-
Numerical Law of Succession, naturally, can be proved in a more general form which

deals, not with the question of the probability of the event's occurrence on the next

occasion, but with the question of the probability of its occurrence on the k next occa-

sions. It is a mathematical fact, which can be deduced from either the non-numerical or

the numerical version of the law and which has much impressed the philosophical

imagination, that the greater this number k is, the smaller is the calculated probability.

See^Quetelet [2], p. 21 and de Morgan [2], p. 21 3f. It was on similar considerations

about diminishing probabilities that Craig based his notorious calculations concerning
the dying-out of belief in Christianity, on the supposition that this beliefwas based solely
on oral or written tradition. See Craig, pp. 21 and 24.
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This, as far as we know, has first been shown by Broad. See Broad [7], pp 4-9 and
[12], p. 196f., and von Wright [11], p. 215.

4. Criticism of Inverse Probability.

I For good illustrations of this idea see Kneale [1], 27 and Nagel [5], p. 30f.
3 A characteristic use of the Inverse Principle (Formula), was for determining, with

probability, whether a phenomenon was due to a cause or to chance. This meant a

probability-judgment on the respective alternatives that the probability of the phenom-
enon, on a given condition, was 1 and that it was, on the same condition, . Kirchhoff
determined the probability that the occurence of the 60 dark rays, observed by him at
characteristic places in the spectrum of the sun, were by chance coinciding with the rays
in the spectrum of iron by this use of inverse probability. (See Kirchhoff, p. 79.) Hart-
mann (p. 24-35) has offered abhorrent instances of the uncritical use of the formulae
for determining the probability of causes, calculating inter alia the probability for a
non-material cause operating in a given case to 0.9999985! For formal treatment of
the formulae for estimating the likelihood of causes and critical remarks about their

applicability see Bertrand, p. 142ff.
3
Bayes himself never spoke of his theorem as one of the probability of causes. His

own treatment of the problem is purely mathematical and free from philosophical
aspirations. Price, however, who communicated Bayes 's paper to the Royal Society,
regarded the formula as being relevant to the estimation of probable causes and to
inductive conclusions in general. (See Bayes [1], p. 402fT.) With Laplace's above-
mentioned Memoire (see especially vol. VIII, p. 29ff.) the use of the formula being an
instrument for determining the probability of causes was ultimately established. The
literature, predominantly from the late eighteenth century, illustrating this use of it is

very extensive. As examples, apart from the writings of Laplace, may be mentioned,
Quetelet [1], p. 123ff. and [2], p. 24fL, the paper of Lhuilier and Prevost called 'Sur
1'art d'estimer la probabilrte des causes par les effets' (1799), and Trembley's paper
*De probabilitate causarum ab effectibus oriunda' (1795).

*
Keynes, p. 82.

B For various usages and acceptances of the formula see, e.g. Quetelet [1], p. 128
and [2], p. 18; de Morgan [2], p. 213ff.; Jevons [2], p. 257ff.; Lotze [1], p. 425: Bobelc,

p. 207f.; Whittaker, p. 163ff. ; Edgeworth, p. 234.
6 See Keynes, p. 383 and Bobek, p. 207f.
7
Among such authors Jeffreys and Carnap are most prominent. Carnap 's Quanti-

tative System of Inductive Logic ([11], 110) may be regarded as a revival, with modifi-
cations and further developments, of essential aspects of the classical doctrine of
inverse probability.

8 See Boole [1], p. 368ff. for very acute criticisms. See also Bryant and Broad [1],

pt. I, pp. 393-400 and [7], p. 19-23.
*
Keynes, p. 377f. The alleged inconsistency which Keynes sees in the formula is

removed if due consideration is paid to the data relative to which the various

probabilities of the problem exist.
10 See especially Fishex [2], p. 10 and [7], p. 6f. and the minor publications listed in

the Bibliography.
II For an attempt at a logical and epistemological clarification of the problems of

inverse probability see von Wright [7], pp. 60-6 and [11], chap, x. This attempt, we
feel, still stands in need of improvement.

12
Laplace [2], p, 419: 'Lorsqu'on n'a aucune donnee a priori sur la possibility d'un

214



NOTES

evenement, il faut supposer toutes les possibilites, depuis zero jusqu'a 1'unite egalement
probables.'

^ &
13 For the idea of 'equal distribution of ignorance' see Boole [1], p.370 and Donkin

p. 354. In the first edition of the present work (p. 121) an attempt was made to account
tor the equality of a priori probabilities as a consequence of what we mean by 'equal
ignorance'. For an appraisal of this attempt see Broad [12], p. 119. Edgeworth and
Pearson ([!], p. 365rT. and [2], p. 143fL) tried to justify the assumption of equality on
an empirical basis. All the possible hypotheses about the value of a proportion (proba-
bility) are

initially equally probable, because experience is alleged to show that all

proportions (probability-values) as a matter of fact occur equally often in nature. As
Edgeworth (p. 230) put it: The assumption that any probability-constant about which
we know nothing in particular is as likely to have one value as another is grounded uponthe rough but solid experience that such constants do, as a matter of fact, as often have
one value as another'. For a criticism of this idea see Keynes, p. 381ff. and von Wright
[11], p. 283.

5. Confirmation andprobability.
1 See above chap, v, 1, especially fn. 7.
2 For example the. theory developed by Rudolf Carnap. A degree of confirmation

means with Carnap the same as a degree of probability, defined as a relative measure of
ranges. (See above 2 of the present chapter.) The proposition conferring a degree of
probability or confirmation upon another proposition need not be entailed by the
latter, nor need it be, in any obvious sense of the word, an 'instance

'

of it. The proba-
bilified (confirmed) proposition again need by no means be a generalization. It is, oa
the contrary, characteristic of Carnap 's theory that any (numerically unrestricted)
Universal Generalization possesses a zero-probability, relative to any (finite) number of
confirming instances of it. (See Carnap [11], 110f.) In an important sense this theory
is incapable of evaluating the bearing of individual instances upon general conclusions
and is, already for this reason, no Confirmation-Theory at all in our sense of the word.
This incapacity, in our opinion, must be considered a serious defect of Camap's treat-
ment of induction, irrespective of whether one wishes to restrict the use of the term

'Confirmation-Theory' to the treatment of converse entailment-relations (as is done by
us), or use it in some wider sense (as is done by Carnap). See also above chap, i, 3.

3 For the idea that induction by simple enumeration, although unable to reach cer-

tainty, yet contributes to an increase of probability in a generalization see Huyghens,
vol. XIX, p. 454, Bayes [1], p. 406, Mendelssohn, vol. ii, p. 267f., Poisson, p. 161f.,
Lotze [2], p. 70. For the idea that the strength of support which a confirmation affords
to a law is inversely proportionate to the confirmation's initial probability, see Herschel,
p. 170f,, Broad [1], pt. I, p, 402, Russell [4], p. 194f., and Kaik [6], p. 105f.

4 Cf. Keynes, p. 237ff.

5 Cf. Nicod, p. 248 and 2524.
e This is the form in which the condition ofconvergence towards maximum probability

was stated by Keynes (p. 236f.) and Nicod (p. 276). Keynes, moreover, substitutes for
it a somewhat stronger condition (op. cit., p. 238). The reason, why the authors men-
tioned do not discuss the condition in the simple form, first introduced in the text, is

probably that their proof of the Principal Theorem is more complicated than the simple
proof given here.

7 For a precise definition of this type of the notion of a limit see von Wright [11], p.
54f.
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s For a statement of this axiom in a more developed symbolism see von Wright [1 1 ],

p.
I76f.
9 Cf. von Wright [1 1 ], p. 248.

6. The Paradoxes of Confirmation .

1 For discussions of the notion of a confirming instance the reader is referred to

Hempel [6] and Carnap [11], 86-8.
2
Hempel [6], p.

9ff. and Carnap [11], 87. See also Nicod, p. 219.
3
Hempel [6], p. 124 and Carnap [11], 87.

4 The Paradoxes of Confirmation were first hinted at by Hempel in [3] and discussed

by Hosiasson-Lindenbaum in [3] and by Hempel in [6]. Hempel, however, does not

make a clear distinction between the paradox which results from the clash between the

Nicod- and Equivalence-Criteria, and the paradoxes which are special cases of the

familiar Paradoxes of Implication. The discussion with Hempel and Carnap mainly
centres round the first type of paradox. In von Wright [1 1 ], pp. 254-6 the second type of

paradoxes is discussed.

7. Confirmation and elimination.

1 Cf. Keynes, p. 226, 234 and 236.
2 Cf. Nicod, pp. 249-65 and pp. 269-73.
3 In the first edition of the present work the Author sided with Nicod against Keynes

both on the question, whether the increasing probability of a generalization approaches
1 as a limit, and on the question, whether confirmation contributes to probability

independently of elimination. That this was a mistake was shown in von Wright [7],

chap, nr, 3 and 4 and von Wright [11], chap, rx, 3 and 4 and chap, x, 5.

4 For a more detailed development of this idea see von Wright [11], chap, ix, 4,

5
'Co-presence with A '

thus means "not-absence in the presence of A \ B is co-present
with A in x, if either A and B are both present in x, or A is absent and B present, or A
and B are both absent. This definition of co-presence is made necessary by the fact that

we regard anything which satisfies the prepositional function Ax >Bx as affording a

confirming instance (either 'genuine' or 'paradoxical') of the law (jc) (Ax-+Bx).
6 'Co-absence with B 1

thus means 'not-presence in the absence of B\ A is co-absent

with B in x, if either A and B are both present in x, or A is absent and B present, or both

A and B are absent. We notice that the two phrases "B is co-present with A' and 'A is

co-absent with B' mean exactly the same. Cf. fn. 5 above.
7 The Author has also worked out a Range-Model of the Principal Theorem, using

the general theory of measuring ranges which is developed in Carnap [11], It turns out

that in this model the condition /?^+ i < 1, which in the Frequency-Model means elimina-

tion, is tantamount to certain measures of ranges becoming zero. No conditions for the

existence of such zero-measures can be deduced within the model. But it becomes
reasonable to assume that the ranges in question acquire a zero-measure ('become
extinct') because of the incompatibility of a new confirming instance fm + 1

with some or

other of a number of alternatives* covered by the evidence e, to the generalization g.
And this supports the idea that increase in probability is, in the case of the Range-
Model too, effected by elimination.

8. Probability\ scope, and simplicity. Reasoning from analogy. Mathematical and

philosophicalprobability.
1 Cf. Keynes, p. 224ff. Keynes 's reasoning in this place is neither very clear nor in

every detail correct.
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2 This must not be confused with Keynes's use of the term 'analogy' or with our use

of it above in chap, iv, 4.

'For a fuller examination of the argument from analogy within a theory of scopes see
von Wright [1 1 ], chap, ix, 7. In Carnap [1 1 ], 1 10 D there is an outline of an analysis
of reasoning from analogy within a Range-Model of probability. Carnap 's analysis
resembles ours in that it relates analogy to scope of propositions (in Carnap 's terminology
'width' of properties). The main difference seems to lie in the fact that Carnap does
not relate reasoning from analogy to considerations about nomic connections between
characteristics. (Cf. our idea that the analogy contains some factor or conjunction of

factors which is 'causally responsible' for the occurrence of the property, whose presence
we know in one thing and conjecture in another thing.) The outline given in Carnap
[1 1 ] is too sketchy to make possible a more detailed comparison of the two attempts to

clarify the logical nature of reasoning from analogy. Although analogy may be said to

belong to the traditional topics of inductive theory and the methodology of science,

there are evidently very few attempts at a formal treatment of the subject. The only
formal examination, beside Carnap 's and ours, known to us, is in Hosiasson-Linden-
baum [4] and J. R. Weinberg [2].

4 A forceful early expression of this idea is Leibniz's comparison between discovering
laws of nature and rinding the key to a cryptogram. See Couturat [1], p. 254f. and [2],

p. 175 and p. 232. See also Kaila [6], p. 103ff., where an interesting suggestion is made,

relating the idea of the cryptogram and of simplicity of curves to ideas of inverse proba-

bility. Leibniz's thought on the topic calls for a more thorough examination than has
been given to them in literature.

5 Cournot ([2], vol. I, p. 82) saw in the comparison of curves with regard to their

simplicity the basis of all probability of inductions, and in curve-fitting the basic type
of all making of theories and hypotheses in science. He says (ibid.): 'En general, une
theorie scientifique quelconque . . . peut etre assimilee la courbe que Ton trace d'apres
une definition mathematique, en s'imposant la condition de la faire passer par un
certain nombre de points donnes d 'avance.

'

6 In the first edition of the present work and in von Wright [1 1 ] the theory of scope
and probability was regarded as a special case of a general theory of simplicity and

probability. For similar ideas see Bolzano, vol. II, 151, Broad [1], pt. i, p. 402, and
Kaila [2], p. 139f.

7 For contributions to a clarification of the notion of
simplicity

see Goodman [3] and

[4], Kemeny [4], and Lindsay. For discussions of probability in relation to simplicity
of curves see Cournot [2], vol. I, p. 82, Weyl, p. 155f., Jeffreys [1], p. 43ff. and [2],

Braithwaite [3], Popper [2], p. 87fT., and Kaila [6], p. 103ff.

8 In the first edition of the present work a treatment of probability and simplicity of

curves was attempted. The treatment, however, was most unsatisfactory and contained

a bad error. For a conclusive criticism of it with some interesting positive suggestions
see Broad [12], pt. m, p. 199ff.

9 The distinction between mathematical and philosophical probability was, as far as

we know, made for the first time by Fries in his System der Logik (1811). It was later

developed by the same author in the Kritik der Prinzipien der Wahrscheinlichkeitsre-

chnung (1842). Fries regarded philosophical probability essentially as an attribute of

inductions. (See Fries [3], p. 16ff.) The distinction between the two kinds of probability
was current with many authors on induction, probability, and scientific method in the

nineteenth century. See Apelf [1], p. 38ff.; Beneke, vol. II, p. lOltT.; Cournot [1], p.

440 and [2], vol. I, p. Tiff, and vol. II, p. 386; Drobisch, p. 177; Grelling, p. 459ff. and

p. 478. For the notion of philosophical probability in relation to the notion of simplicity
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see especially Cournot [2], vol. I, p. 71ff.; Poirier, p. 107ff.; and Picard [2], p. 436. For
a distinction resembling that between mathematical and philosophical probability see

also Peirce, vol. II, p. 416ff. In recent times the distinction between probability as an
attribute of inductive conclusions and as an attribute of 'events' finds favour with many
authors. Some prefer not to call the former 'probability' at all. Thus Carnap, Hempel,
Hosiasson-Lindenbaum, Popper, and others call the probability of inductions (hypothe-
ses) degree of confirmation', Kneale ([1], 36) speaks of acceptability, Braithwaite([6],

p. 120f. and pp. 354-60) speaks of reasonableness. These notions with some modern
authors cannot, however, all be equated with the notion of philosophical probability
with the authors mentioned of the nineteenth century (or Grelling). Kneale 's concept
of acceptability comes very near the classical notion of philosophical probability. But
it is important to observe that the distinction made by Carnap and his followers

between 'probability/ (degree of confirmation) and 'probability 2

'

is not directly

comparable with the classical distinction between philosophical and mathematical

probability. Carnap 's distinction is between probability within a Range-Model (proba-

bility!) and probability within a Frequency-Model (probability 3) of abstract probability.
To call probabilitVj by the name of 'degree of confirmation' is, in our opinion, some-
what misleading. (See the present chapter 1, fn. 3 and 5, fn. 2.) Mention should also

be made of the distinction which Russell makes in [7] between credibility and mathe-

matical probability. By the former he means the probability of an individual event on
all relevant information as data. Russell's notion of credibility, it would seem, is

thus a limiting case of the generic notion of mathematical probability. (Cf. von Wright

[ll],p.302f.)
10 The possibility of such a formalism is mentioned by Popper ([2], p. 245) with a

'reference to Hosiasson-Lindenbaum.

CHAPTER m PROBABILITY AND THE JUSTIFICATION OF INDUCTION

1. Probability and degrees of belief.
1 This well-known saying comes from Bishop Butler. (See Butler, p. 3 and passim.)
2

Ramsey, p. 169.
8 This doctrine is expounded by Ramsey, p. 170ff.

4 This must not be confused with the fact that, on the above second way of defining

degrees of beliefs, if my belief hi a to degree/? and in b to degree q are true beliefs, then

belief in a&b to degree/? x q would be true too.
5 Consider the well-known psychological phenomena underlying the arguments from

'maturity of odds'. If I toss ten successive times 'heads' with a homogeneous coin I

am likely to expect 'tails' rather than 'heads' in the following toss. Various less success-

ful attempts have been made to justify such arguments on the ground of their not having
a purely psychological foundation. See Maibe, Sterzinger, and Kammerer. For a

criticism of these attempts see v. Mises [2], p. 166-72.
6 That this is a true interpretation of the view taken by the adherents of the 'psycholo-

gical* theory is confirmed from the following statements of De Morgan ([2], p. 172f.):

'By degree of probability we ... ought to mean degree of belief ... I ... consider the

word (sc. "probability") as meaning the state of the mind with respect to an assertion . . .

on which absolute knowledge does not exist. *Tt is more probable than improbable"
means ... "I believe that it will happen more than I believe that it will not happen".
Or rather

*

'I ought to believe &c.
'

'.
'
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7 From the quotation in the preceding footnote it is apparent that De Morgan did

not realize this consequence of the regulative function of formal probability.
8 Donkin (p. 354), after mentioning the principle of 'equal distribution of ignorance'

as an expression of how beliefs are distributed on a set of alternative propositions, says:
This being admitted as an account of the way in which we actually do distribute our
belief in simple cases, the whole of the subsequent theory follows as a deduction of the

way in which we must distribute it in complex cases if we would be consistent.
'

This

statement, it must be noted, is false. It appears uncertain to the Author whether

Ramsey (see especially p. 180, 182 and 188) clearly apprehended this when he described
the laws of probability as laws of consistency for partial beliefs.

2. Rationality of beliefs and success in predictions.
1 This answer, interpreted as here is done, seems to be in exact accordance with

Keynes's opinion as to the basis on which rational degrees of belief are determined.
See Keynes, p. 17: 'I assume then that only true propositions can be known . . . and
that a probable degree of rational belief cannot arise directly but only . . . out of the

knowledge ... of a ... probability-relation in which the object of the belief stands to

some known proposition.
'

2 It might be suggested that a statement concerning symmetry and homogeneity in a

coin involves an inductive element. This we are not going to dispute. Our argument
only requires the not unplausible/cfww that the question as to the properties mentioned
were settled by reference to known (i.e. not-inductive) data concerning weight, shape and
centre of gravity of the coin.

8
According to A^ on p. 93.

4
Keynes explicitly expresses the opinion that the criterion of rationality in beliefs is

altogether independent of any reference to success in predictions. (See Keynes, p. 107

and p. 322f.) In spite of this he strongly insists that degrees of probability, as rational

degrees of belief, justify induction. The validity of the inductive method does not

depend on the success of its predictions.
*

(P. 221.) The importance of probability can

only be derived from the judgment that it is rational to be guided by it in action; and a

practical dependence on it can only be justified by a judgment that in action we ought to

act to take some account of it. It is for this reason that probability is to us the "guide
of life".' (P. 323.) As already observed there is no objection to such statements as

these, if one is clear about their philosophical implications. Otherwise they might be

thoroughly misleading.
5 This important truth has been clearly apprehended and expressed in Venn [1], p.

150f.; Peirce, vol. II, p. 394; and Ramsey, p. 188, 196 and 202. (Ramsey, p. 199:

*Reasonable degree of belief = proportion of cases in which habit leads to truth.
5

)

The idea of probability as a *guide of life* being a 'guide to success' is contained already
in Locke's opinions on probability. (See especially Locke, bk. IV, chap, xv, 1 and 4.)

Probability, according to Locke, is
c

to supply the (defect of our knowledge, and to guide
us where that fails . . . the proof being such as for the most part carries truth with it.'

Cf. Kahle, p. 22 and Price, p. 410,
7 Cf. Jevdns [2], p. 261: 'All that the calculus of probability pretends to give, is the

result in the long run, as it is called, and this really means in an infinity of cases. During

any finite experience, however long, chances may be against us.
*

See also Ramsey, p, 207.

8 What we call the Cancelling-out of Chance is roughly equivalent to the basic

principle of inductive arguments which Kaila ([1], p. 9, p. 41 andpassim.) calls 'Kontin-

genzprinzip' and Bruns (p. 13) 'gleichmassige Erschopfung aller moglichen Ffille'.
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3. The Cancelling-out of Chance and the theorem of Bernoulli.

1 For the idea that the Laws of Great Numbers were laws of nature assuring order

and uniformity, see e.g. Laplace [4], p. 360f., [6], p. 47; Poisson, p. 7; Quetelet, [3],

p. 15, [4], p. 38f.; Lacroix, p. 261. The natural philosophy of the school of Laplace was
much inspired by Hume's philosophy of the causal relation and the similar theories

of Condillac. (See e.g. Lacroix, p. 3ff.; also Ellis [3], p. 1 and G. Cantor, p. 366.) To
the philosophers of the school mentioned the principles of probability served as a kind

of 'substitute* for the uncritical belief in the uniformity of nature, which was 'destroyed
'

by Hume. A much later, and naive example, of the use of probability as a weapon
against Hume is offered by the little book by Masaryk late president of the Republic
of Czechoslovakia entitled David Hume'sSkepsis nnddie Wahrscheinlichkeitsrechnung.

(See especially Masaryk, p. 14f.).
2 De Moivre (p. 252f.) saw in the Laws of Great Numbers a proof of the prevalence

of 'Intelligence and Design* in nature. Kant ([5], vol. VIII, p. 17) found them to have

some bearing on the problem of the freedom of the will, so also Quetelet ([3], p. 70).
8 The error in relating the theorem of Bernoulli to the fact called the Cancelling-out

of Chance consists, in its gravest form, in that a statement about a
probability

is believed,

as a consequence of the theorem mentioned, to imply a statement about a proportion.

Distinguished mathematicians and philosophers have been guilty of this error. Some

very significant examples are offered by De Morgan ([1], p. 114f. and [2], p. 184). In

the latter place the author says that 'it is a remote, but certain, conclusion from the

theory . . . that events will, in the long run, happen in numbers proportional to the . . .

probabilities '. See also Lambert, vol. II, p. 322.

* For a detailed analysis of the relation of probability to possibility see Meinong [1].

James Bernoulli ([1], p. 212) calls probability a degree of certainty. He does not speak
of degree of belief, as does later Laplace, n this point the account given in Kneale

[1], p. 124 is in error.

B We have already said (fn. 3) that the gravest error in relating the theorem of Ber-

noulli to the Cancelling-out of Chance consisted in the interpretation of the relation of

maximum probability as one of implication. We might now say that the next-gravest
error consists in uncritically giving to the theorem the interpretation just mentioned in

the text, according to which the increasing probability is taken to be a frequency-
constant. Of this error Czuber ([3], vol. I, p. 154) presents a nice example. He says:
4Der Sinn des BernoulHschen Theorems ist dahin zu verstehen, das mit wachsender

Versuchszahl die absolute Differenz zwischen der relativen Haufigkeit und der Wahrsch-
einlichkeit . . . im attgemeinen abnimmt.

*

It is to be noted that Czuber does not interpret

probability in terms of frequencies but in terms of 'Spielraume*. One must accuse

Keynes of a similar error to that made by Czuber, although Keynes on the whole adopts
a very guarded attitude to the use of Bernoulli's theorem for predicting averages. See

Keynes, p. 109, p. 337, p. 344 and passim. Cf. also Cournot [2], vol. I, p. 61 and v.

Kries, p. 81.

*
It might be suggested that one of the reasons why we are apt tacitly to assume a great

possibility in the sense in which it occurs in the theorem of Bernoulli to be realized

frequently, and again a small possibility very seldom, is connected with the following
mathematical 'picture*. Take two events such as 'heads* and 'tails* in tossing with a
coin. In each toss there are two possibilities we shall call them possibilities of thefirst
order one of which will be realized. We can denote them with 1 (

== 'head') and

(
=

'tail*). In two tosses there are four such possibilities of the first order, 11, 10, 01,
00. By & possibility of the second order, again, we shall mean the class of all possibilities
of the first order, containing the same number of digits, which contain, 'heads* and 'tails

'
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in a given proportion. (E.g. the class [10, 01] is such a possibility of the second order.)

Continuing the construction of such rows of
digits, each one corresponding to a certain

possibility of the first order for the occurrence of 'heads' and 'tails', we shaU find that
the longer the rows become, the greater is the proportion (among rows with a given
number of"digits) of rows which contain 'heads' and 'tails' in roughly the same propor-
tion, whereas rows where the distribution of 'heads' and 'tails' differs considerably
from the value |- become the rarer, the longer the rows are. Thus to each possibility of
the second order there corresponds a relative frequency for the occurrence of its class-

members within the class of all possibilities of the first order with the same number of

digits. These relative frequencies, furthermore, are found to equal the magnitudes of
those possibilities for the occurrence of 'heads

' and 'tails
*

in a given proportion, which
are determined by the probabilities of the second order in the theorem of Bernoulli.

Consequently this mathematical picture of the possible ways in which 'heads
1 and 'tails'

may be realized contains a frequency-interpretation of the possibilities determined by
the theorem of Bernoulli, and it seems highly plausible to assume that this frequency-
interpretation will influence our inclination to assume that also the actual realization of
those possibilities will take place with frequencies proportionate to their relative

frequencies in the 'picture'. Cf. Ellis [3], p. 4.

7 See e.g. Drobisch, p. 191; Czuber, [3], vol. I, p. 210; Waismann, p. 242. Note also

the remark by Quetelet ([2,], p. 12) that if a coin fell regularity twice on one face, while

it fell but once on the other, the tossing of the coin might be considered as presenting
three possibilities, two of them in favour of one face, and one in favour of the other.

8 See e.g. v. Kries, p. 5fL and compare it with the analysis which follows in the text.
9
Or, ifgeneral propositions are also included in the class of propositions mentioned,

a statement about proportions cannot follow from them unless one at least of those

general propositions is itself a statement about proportions. This trivial truth is of far-

reaching importance. From it follows, for example, that from the knowledge of the

physical constitution of a die, together with the known or assumed laws of Newtonian
mechanics we can never deduce that the proportion of, say, aces will be such and such.

This would be possible only if this bulk of knowledge itself contained some assumption
about proportions, e.g. the assumption that certain causes, operating according to the

rules of classical mechanics, are divided into different categories in determinate propor-
tions. (See also v. Mises [2], p. 90fl)

10 It is to be observed that the suggested measurement on the basis of properties of

symmetry merely served as an illustration. What is said here applies to all conceivable

ways of measuring degrees of possibility.
11 On the other hand the theorem of Bernoulli, when probability is interpreted statisti-

cally, ought not to be taken as asserting the Cancelling-out of Chance itself. For the

Cancelling-out of Chance only implies that events will be realized in the long run with

frequencies proportionate to their probabilities, whereas the theorem of Bernoulli

contains an assertion about the frequencies with which frequencies of the event, in

finite series of occasions, will be realized, supposing that the Cancelling-out of Chance

takes place. This difference is sometimes overlooked. (See e.g. Poisson, p. 7 and

Charpentier, p. 35 for such confusions. For a clarification of this important point see v.

Mises [2], p. 129f. and p. 136.)
12 See Leibniz [4], vol. Ill, p. 79-98 and M. Cantor [2], vol. Ill, p. 339f. Leibniz (in

the letter from 3. XII, 1703) in opposition to Bernoulli's idea that one could determine

the probable value of human life with ever-increasing probability on a statistical basis,

makes the very acute observation that 'novi morbi inundant subinde humanum genus,

quodsi ergo de mortibus quotcunque experimenta feceris> nan idea naturae rerum limites
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posuisti, ut pro future variare nonpossit*. Bernoulli (the letter from 20. IV, 1704) was

wholly unable to grasp the epistemological significance of this ingenuous remark of

Leibniz.

It is interesting to observe that also mathematicians of the school of Laplace were not

altogether unaware of the necessity of making certain inductive assumptions if the

calculus of probabilities were to be applicable to proofs concerning future events,

although they never realized the epistemological significance of this necessity. (See

e.g. Laplace [6], pp. 14, 48, and 53f., and Condorcet, p. 10.)

The knowledge that the theorem of Bernoulli and other propositions of the probability-
calculus can be applied to inductive predictions solely on the condition that we have

already made some assumptions as to the future, is related to the well-known statement

that 'probability presupposes causality'. (See Mach [3], p. 283, and Struik, p. 51 and

p, 65f.) For analyses of the causal conditions for this applicability see Poincare [3],

p. 64-94 and Hopf.

4. The idea of 'probable success
9

.

1
By the truth-frequency of a proposition we mean the proportion of values of a

variable, which satisfy a certain propositional-/crto, among all values of the variable

in question. (See above chap, vi, 2, p. 98f.)
2 See chap, ir, 7.

8 See above p. 143f.
4 Zilsel is of the opinion that the fact which impresses us as the 'Ausgteich desZufalls'

obtains its character of an unquestionable truth from a convention. (See Zilsel, especially

p. 123.) Zilsel's analysis appears to us essentially right but, as Kaila ([1], p. 69fF.)

acutely observes, the statement on the Cancelling-out of Chance, when used as a basis

for induction, must be taken as synthetical. It deserves mention that Ellis, who gave the

first substantially correct detailed criticism of Bernoulli's theorem as a bridge from

probabilities to empirical frequencies, believed the Cancelling-out of Chance to be a

synthetical truth a priori roughly in a Kantian sense. See Ellis [3] and also Fick, p. 2

and p. 46.

* Cf. E. J. Nelson, p. 580: 'No "justification" is worthy of respect unless it is based

upon principles the application of which will in theoryprobably lead to success.'

6 Cf. chap, vi, 8, p. 136 and fn. 9, p. 217.

7

Keynes' chief objection against the frequency-interpretation is that it makes proba-

bility-statements inductive and consequently deprives probability of the power ofjustify-

ing induction. 'The Calculus of Probabilities', he says (p. 96 fn.), 'thus interpreted, is

no guide by itself as to which opinion we ought to follow.* Therefore, according to

Keynes (p. 95) the statistical interpretation can at most only coverpart of what we mean

by probability, the other sense in which probability is used being that justifying induc-

tion. 'It is, in my opinion', he continues (p. 96), 'this other sense alone which has

importance'. See also Broad [11], p. 487 for the suggestion that, since probability-
statements in frequency-interpretation are inductive, another kind of probability might
be needed for judging the likelihood of those statements

'

truth.

8
It is questionable whether all supporters of 'philosophical' probability have clearly

apprehended this. Both Fries ([3], p. 18) and Cournot ([2], vol. II, p. 386) decisively
state that philosophical probability cannot be estimated numerically. The latter author
for example says (ibid.) that 'la probabilite phttosophique repugne tout a fait a une

evaluation numerique\ It is, however, plausible to assume that these authors wished to

deny only a metrical, and not a topological quantification of philosophical probability,

although they did not explicitly state the necessity of the latter.
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9

Chap, vii, 2.

10 Cf. Popper [2], p. 4 and Feigl [2], p. 25.
11

Probability taken as a 'GrundbegrhT, in other words, cannot justify induction as

leading to 'probable success'. It is questionable whether authors such as Keynes and

Jeffreys, who regard probability as a kind of undefinable fundamental idea, have clearly

apprehended how 'empty' of empirical content is this undefinable probability-concept.
12 One might object to our view that it moves in the grooves of the 'classical' two-

valued logic, and that the nature of inductive argument cannot be grasped until we have
left this logic for the more comprehensive system of a 'probability-logic \ (Cf. Reichen-
bach [4], p, 360 and p. 377.) To this objection the following rejoinder will be sufficient;

It is possible to develop a formal system, treating degrees of probability, which exhibits

certain analogies to the formalized systems of two-valued logic. This system we might
then call 'probability-logic'. (For the development of such a system see e.g. Reiehen-

bach [4], p. 379ff. and [5].) But from the mere fact that such a formalism can be

developed nothing follows as to the justification of induction. For its capacity to justify
induction the probability-/^fc is dependent on the same conditions as any formalism
of probability, and those conditions, we have tried to show, are such as to make any
argument that probability were the 'guide to success' circular. (See also Tarski, p.
174ff. and Hertz.)

13 It is, in our opinion, evident that this fallacy of thought underlies the whole of

Keynes 's reasoning as to probability and the justification of induction. Consider, for

example, the following passage: Keynes states (p. 309) that although it is not certain

that we shall ultimately succeed in preferring the more probable to the less probable,
the success may nevertheless be probable. That success is 'probable' implies, this

seems to be Keynes *s opinion here that we shall 'generally* or 'on the whole* succeed

in preferring the more probable to the less probable. Concerning this implication as to

future frequencies he states that it need not be certain. It is, evidently, sufficient only to

assume it to be itself 'probable*. On this point Keynes breaks the hierarchy of superim-

posed probabilities. This is fatal, because his argument then becomes supported by a

new statement on frequencies which remains unformulated but is nevertheless implicitly

contained in the reasoning.
14 Hume [2], p. 15: 'Nay, I wUl go further, and assert, that he could not so much as

prove by any probable arguments that the future must be conformable to the past. All

probable arguments are built on the supposition, that there is this conformity betwixt

the future and the past, and therefore can never prove it. This conformity is a matter of

fact.
*
See also Hume [1 ], pt. iv, 1 and E. Cassirer, vol. II, p. 264.

15 Hume [1 ], bk. I, pt. iv, 1 :

s

As demonstration is subject to the control of probability , so

is probability liable to a new correction by a reflex act of the mind . . . Here then arises a

new species of probability to correct and regulate the first . . . and so on ad infinitum.
'

16 Hume [2], p. 15.

5. Logical and psychological* absolute and relative justification of induction with proba-

bility.
1 This truth is usually expressed by saying that all induction proceeds upon the

principle that the future will resemble the past, and that this principle must be taken for

granted without proof, since it is itself the basis of all proofs concerning the future. Cf.

Hume [2], p. 15, Poirier, p. 216 and Olzelt-Newin.

2 Cf. chap, vr, 2.

8 See e.g. Mill, bk. Ill, chap, rv, 2: 'Experience testifies, that among the uniformities

which it exhibits or seems to exhibit, some are more to be relied on than others; and

223



THE LOGICAL PROBLEM OF INDUCTION

uniformity, therefore, may be presumed, from any given number of instances, with a

greater degree of assurance, in proportion as the case belongs to a class in which the

uniformities have hitherto been found more uniform.'
4 For attempts in the same direction see Poirier, p. 94ff., and Reichenbach [4], 71,

[7], p. 274ff., and [9], p. 348-73.
5

Popper [21 p. 192.
6 For an argument in support of this attitude see von Wright [11], P. 243f. See also

Nagel [5], pp. 60-75.

CHAPTER viii. INDUCTION AS A SELF-CORRECTING OPERATION

1. Induction the best mode of reasoning about the unknown. The ideas ofPeirce.
1 The characterization of the use of induction as being the adoption of SL policy seems

to be of recent origin. It is used by Kneale (especially [1], pt. iv) and Braithwaite [5]

and [6]. With the authors mentioned and some other recent authors (Reichenbach,

J. O. Wisdom) the problem of the justification of induction may be said to have under-

gone a transformation. From having been a problem of ascertaining the conditions of

truth or of probability in single inductive conclusions, it has become a problem of

showing the superiority of the inductive policy, as such, over rival policies. The change
in attitude is expressed by Kneale ([1], p. 225f.) as follows:

4

... in order to justify

induction we must show it to be rational without reference to the truth or even to the

probability of its conclusions, we must conceive of it as a policy to be adopted or

rejected and then make clear that no one who understands his situation . . . can fail to

choose this policy.' For a critical examination of this 'pragmatic' or 'practicalist'

approach to the problem of induction see Black [2], pp. 157-90.
2
Peirce, vol. I, p. 28. For Peirce's opinions on induction and their development see

Braithwaite [4], p. 500ff. and Goudge.
3
Peirce, vol. II, p. 455f.

4
Peirce, vol. II, p. 501 f.

5
Chap, i, 2.

6
Ellis ( [4], p. 49f.) gives an interesting analysis of this assumption. He appears to have

been of the opinion that the statement 'on a long run of similar trials, every possible
event tends ultimately to recur in a definite ratio of frequency

'

were a kind of synthetical
truth a priori, following from the nature ofgenera and their species. (Cf. chap, vn, 4,

fn. 4.) Marbe has tried to show that there exist series of statistical observation not

having definite proportions, i.e. limiting-frequencies, for the occurrence of their charac-

teristics. It appears however, as though Marbe had drawn unwarranted conclusions

from his experiments. See von Mises [2], p. 166ff.
7 Reichenbach [4], p. 396. Reichenbach himself does not seem to be aware of the

intimate relationship between his solution of the inductive problem and the ideas of

Peirce. Actually almost everything that is true and essential in the views of Reichenbach
on the justification of induction has already been explicitly stated by Peirce.

8 The proof is roughly as follows: Suppose the number m did not exist. This would

imply that over and over again it happened that the proportion of A 's which are B fell

outside the interval p e, for some e. From this again it follows that there must exist a

value p
f
outside the interval such that the frequency over and over again falls in the

interval p' e, for any e. But this contradicts (3), which asserts that there exists one
and only one value p such that the relative-frequency of A's which are B for any e over

and over again falls in the interval/? e. Thus if (4) is false (3) would also be false.

Conversely, if (3) is true, (4) must be true.
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s main addition to the argument of Peirce. Cf. Rieichenbacfa
|4J, p. 415.

2. Reichenbach's Method of Correction.
1 The full description is in Reichenbach [4], 77,
2

-I
hi
l

iS

'u

r
?,
U

i
gh|L

S

/
Ca
^ng ' the C0ntent of Rei^enbach's Rule of Induction. See

Reichenbach [4], 76 and 80.
3 The posit of the first order consists, strictly speaking, in the assumption that the

limiting-frequency falls within certain limits 6 ofp. Reference to the e will be omitted
from our simplified account of the method.

4 That is, falls within some interval s round a 'mean'. For the sake of simplicity
however, we snail assume that we need only consider exact coincidences of values

5 See Fveichenbach [4], p. 399ff.
6 This problem is substantially the same as the well-known problem of inverse proba-

bility which we treated in outline above in chap, vi, 3. The values/fa/) answer to the
a priori probabilities, the values /(?/, qk) answer to the eductive probabilities, and the
calculated values Fi,k to the a posteriori probabilities.

7 Sometimes there may, for a given /, exist more than one value /', such that F,- ,- FI ,-'

equals Fimax. It is not clear, how the correction should be carried out, if this possibility
happened to be true. Reichenbach does not consider the case. (It might be added that
for sufficiently great values of n, this possibility does no longer occur.)

8 To say that a posited value is corrected, comes therefore to the following: A sequence
in which the limiting frequency of A is the same as the recorded relative frequency of A,
is regarded as less usual than a sequence in which the

limiting-frequency differs (in a
certain assigned way) from the recorded relative frequency of A in the observed initial

sequence of n members. We may, of course, be mistaken. The sequence may, after all,
be of the unusual kind, and the correction unwarranted. But if this be the case, we can
be sure that continued use of the method of correction will finally 'put things right*,
i.e. make us revert to the value first posited in accordance with the inductive principle
on the basis of the recorded relative frequency ofA in the intial segment of n members

of the sequence. That such will happen follows from the fact that, independently of the
values /(<//), the values F/, t converge towards I with increasing n. (Cf. above chap, vi,

3, p. 107ft) We can thus be sure that, for a sufficiently large n, the value of Ft t
will

equal Frnax. (See Reichenbach [4], p. 401f.)
9 It is not quite clear from the exposition given in Reichenbach [4], whether the author

has realized the significance of this point. See, for example, the discussion in Reichen-
bach [4], p. 41 3f. of the question, whether another policy than induction (e.g. that of

consulting an oracle about the true values of the proportions) might lead to a quicker
approximation to the truth.

10 On this point it will be useful to remember a passage in the dispute between Leibniz
and James Bernoulli on the epistemological value of the inverse Law of Great Numbers.
Bernoulli assumed that the records of statistical observation supply us with approximate
values of probabilities, which values may be corrected by extended observations. This

process of correcting the values he compares to the calculation of new digits of n, i.e.

to a calculation which can correctly be called an approximation to the truth. (Leibniz
[4], vol. Ill, p. 9 If.) To this Leibniz (ibid., p. 94) acutely observes that the analogy is

fallacious. In calculating the digits of n, each new digit is known to take us nearer the
true value, But whether new observations will take us nearer to the true values of the

proportions about which we generalize is uncertain. That they will do so is an assumption
which is essential to the use of induction, but whether it is true or not we cannot know,
not even with 'probability .
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3. The goodness of inductive policies reconsidered.
1 The idea that inductive policies are self-correcting has been severely criticized by

Black ([2], pp. 168-73). According to Black (ibid., p. 170) the term 'self-corrective' is

a misnomer. A modification which experience may lead us to make in our generaliza-

tions, can properly be called a correction only if there is some assurance that the modifi-

cations will progressively take us nearer to the truth. As we have seen (this chapter, 1)

such an assurance can exist only relative to the (unprovable) assumption that the propor-
tions, about which we generalize, do really exist. Of the necessity of making this

assumption Peirce, as mentioned above (p. 161), was not even aware. Reichenbach

([4], 80) explicitly avowes it and calls it the assumption that the world is 'predictable'.
J. O. Wisdom introduces a related assumption, which he calls the assumption of a

'favourable' universe. (Wisdom [2], p. 226ff.)
2 See above chap. I, 1 and 2 on the notion of a generalization.
3 We shall not here substantiate this doubt with further reasons for it. If it is well-

grounded, it puts a serious limitation upon the value of the Peirce-Reichenbach approach
to the problem of induction. For the Peircean idea of induction as a self-correcting

approximation to the truth has no immediate significance, it would seem, for other

types of inductive reasoning than statistical generalization.
* Cf. Black [2], p. 158 and p. 172.
5 For the notion of a counter-inductive policy see Black [2], p. 171ff.
* See above chap. I, 2 and chap, vm, 1.

7 See above chap. I, 2, fn. 8.

8 The possibility of a policy for purposes of prediction and generalization about

oscillating frequencies shows that material assumptions concerning the constitution of

the universe such as those made by Reichenbach and Wisdom (see above fn. 1) are not

needed in order to warrant successful use of induction.
9 Cf. Reichenbach [4], 80.
10 Cf. above chap, v, 2, fn. 1.

CHAPTER ix. SUMMARY AND CONCLUSIONS

1. The thesis of the 'impossibility' ofjustifying induction.
1 Whitehead [1], p. 30.
2 Inductive Reasoning ... the glory of Science ... the scandal of Philosophy'. This

often quoted characterization is from the concluding sentence in Broad [6]. See also

Ramsey, p. 197. Ramsey 's remarks on the nature of the problem ofHume seem to us to

'hit the nail on the head.
'

3 Russell [4], p. 167.
4 Russell [3], p. 14. See also Russell [5], p. 481. For a criticism of some of Russell's

earlier opinions on induction see Smart, and for a critical appraisal of some of his later

views on the topic see Edwards, Hay [1], McLendon and Reichenbach [14].

2. The logical nature ofHume
9

s 'scepticism*.
1 For the idea that a contradiction or antinomy is inherent in the demand for a

justification of induction see the acute analysis in Oxenstierna, especially p. 27ff.
2
Although Hume's results as to the impossibility of justifying induction are, in our

opinion, fundamentally right and expressed with extraordinary clarity and convincing-
ness, it is obvious that he himself did not take the view that they were 'grammatical' in

nature. This is clearly seen from Hume [1], bk. I, pt. rv, 7, where he considers the

consequences of his results for practical life.
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