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PEEFAOE.

IN the present work an attempt is made to present to computers

and students a set of logarithmic and trigonometric tables which

shall have all the conveniences familiar to those who use German

tables. The five-figure tables of F. G. GAUSS, of which fifteen edi

tions have been issued, have, after long experience with them, been

taken as the basis of the present ones, but modifications have been

introduced wherever any improvement could be made.

Five places of decimals have been adopted as an advantageous

mean. The results obtained by them, being nearly always reliable to

the 10,000th part, are amply accurate for most computations, while

the time of the student who uses them is not wasted in unnecessary

calculation.

The Introduction is intended to serve not only as an explanation

of the tables, but as a little treatise on the art of computation, and

the methods by which the labor of computation may be abridged.

To avoid fostering the growing evil of nearsightedness among

students, the author and publishers have spared neither pains nor

Expense in securing clearness of typography.
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TABLE I.

LOGARITHMS OF NUMBERS.

1. Introductory Definitions.

Natural numbers are numbers used to represent quantities.
The numbers used in arithmetic and in the daily transactions of

life are natural numbers.

To every natural number may be assigned a certain other number,
called its logarithm.

The logarithm of a natural number is the exponent of the

power to which some assumed number must be raised to produce the

first number. The assumed number is called the base. E.g. 9 the

logarithm of 100 with the base 10 is 2, because 10
2 = 100; with the

base 2, the logarithm of 64 would be 6, because 2&quot; = 64.

A system of logarithms means the logarithms of all posi

tive numbers to a given base.

Although there may be any number of systems of logarithms,

only two are used in practice, namely:
1. The natural or Napierian system, base = e = 2.718282.

2. The common system, base = 10.

The natural system is used for purely algebraic purposes.

The common system is used to facilitate numerical calculations

and is the only one employed in this book.

If the natural number is represented by n, its logarithm is called

log n.

A logarithm usually consists of an integer number and a decimal

part.

The integer is called the characteristic of the logarithm.
The decimal part is called the mantissa of the logarithm.
A table of logarithms is a table by which the logarithm of

any given number, or the number corresponding to any given loga

rithm, may be found.
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The most simple form of table is that on the first page of Table I., which

gives the logarithms of all entire numbers from 1 to 150; each logarithm being

found alongside its number. The student may begin his exercises with this

table.

Mathematical tables in general enable us, when one of two related

quantities is given, to find the other.

In such tables the quantity supposed to be given is called the

argument.
The argument is usually printed on the top, bottom, or side of

the table.

The quantities to be found are called functions of the argu

ment, and are found in the same columns or lines as the argument,
but in the body of the table.

In a table of logarithms the natural number is the argument,
and the logarithm is the function.

2. The Use of Logarithms.

The following properties of logarithms are demonstrated in

treatises on algebra.

I. The logarithm of a product is equal to the sum of the loga

rithms of its factors.

II. The logarithm of a quotient is found ly subtracting the loga

rithm of the divisor from that of the dividend.

III. The logarithm of any power of a number is equal to the loga

rithm of the number multiplied by the exponent of the power.
IV. The logarithm of the root of a number is equal to the loga

rithm of the number divided by the index of the root.

&quot;We thus derive the following rules:

To find the product of several factors by logarithms.
RULE. Add the logarithms of the several factors. Enter the

table with the sum as a new logarithm, and find the number corres

ponding to it.

Tliis number is the product required.

Example 1. To multiply 7x8.
We find from the first page of Table I.

log 7 = 0.84510
&quot; 8 = 0.90309

Sum of logs = 1.748 19 = log of product.

Having added the logarithms, we look in column log for a num-
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her corresponding to 1.788 19 and find it to be 56, which is the pro
duct required.

Ex. 2 To find the continued product 2x6x8.
log 2, 0.30103

&quot;

6, 0.77815
&quot;

8, 0.90309

Sum of logs, 1.982 27 = log product.
The number corresponding to this logarithm is found to be 96,

which is the product required.

Ex. 3. To find the quotient of 147 + 21.

log 147, 2.16732
&quot;

21,1.32222

Difference, 0.84510

We find this difference to be the logarithm of 7, which is the

required quotient.

Ex. 4. To find the quotient arising from dividing the continued

/roduct 98 X 102 X 148 by the continued product 21 X 37 X 68.

log 21, 1.32222 log 98,1.99123
&quot;

37, 1.56820 &quot;

102, 2.00860
&quot;

68, 1.83251 &quot;

148, 2.17026

Sum = log divisor, 4.722 93 Sum = log dividend, 6.170 09

log divisor, 4.72293

Difference = log quotient, 1.447 16

Looking into the table, we find the number corresponding to this

logarithm to be 28, which is the required quotient.

NOTE. The student will notice that we have found this quotient without

actually determining either the divisor or dividend, having used only their loga

rithms. If he will solve the problem arithmetically, he will see how much
shorter is the logarithmic process.

Ex. 5. To find the seventh power of 2.

We have log 2 = 0.30103

7

2.10721 = log 128

Hence 128 is the required power.

Ex. 6. To find the cube root of 125.

3
|
2.09691

0.69897
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The index of the root being 3, we divide the logarithm of 125 by
it. Looking in the tables, we find the number to be 5, which is the

root required.

EXERCISES.

Compute the following products, quotients, powers, and roots by

logarithms.
22 ft*

1. 11 . 13. Ans. 143. 5. ^4=. Ans. 128.

2. IV. Ans. 144. 6.
51 98

^
81

. Ans. 21.
O4: . DO

12 s 2 T 3 b

3.
^-.

Ans. 48. 7. ^A Ans. 144,

2. 9
a

. 91 . 78
,

54. 48
4.

iqa 91 o Al*s. 108. 8. -3-0-. Ans. 36.
J.O . /Cl . O O . o

3. Arrangement of the Table of Logarithms.

A table giving every logarithm alongside its number, as on the

first page of Table I., would be of inconvenient bulk. For numbers

larger than 150 the succeeding parts of Table I. are therefore used.

Here the first three figures of the natural number are given in the

left-hand column of the table. The first figure must be understood

where it is not printed. The fourth figure is to besought in the

horizontal line at the top or bottom. The mantissa of the logarithm
is then found in the same line with the first three digits, and in the

column having the fourth digit at the top.

To save space the logarithm is not given in the column,
but only its last three figures. The first two figures are found in

the first column, and are commonly the same for all the logarithms
in any one line.

Example 1. To find the logarithm of 2090.

We find the number 209, the figure 2 being omitted in printing,

in the left-hand column of the table, and look in the column having
the fourth figure, 0, at its top or bottom. In this column we find

320 15, which is the mantissa of the logarithm required.

Ex. 2. To find the logarithm of 2092.

Entering the table with 209 in the left-hand column, and choos

ing the column with 2 at the top, we find the figures 056. Te
these we prefix the figures 32 in column 0, making the total logarithm
,32056. Therefore

Mantissa of log 2092 = .320 56.
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EXERCISES.

Find in the same way the mantissae of the logarithms of the fol

lowing numbers:

2240; 5133;

2242; 5256;

2249; 5504;

2895; 8925;

3644; 9557;

4688; 9780.

When the first two figures of the mantissa are not found in the

same line in which the number is sought, they are to be found in the

first line above which contains them.

Example. The first two figures of log 6250 are 79, which be

longs to all the logarithms below as far as 6309. Therefore mantissa

of log 6250 = .79588.

EXERCISES.

Find the mantissae of the logarithms of

6300; answer, .79934.

6309;
&quot; .79996.

6434;

6653;

6755;

6918;

7868.

Exception. There are some cases in which the first two figures

change in the course of the line. In this case the first two figures

are to be sought in the line above before the change and in the line

next below after the change.

Example. The mantissa of log 6760 is .82995. But the man
tissa of log 6761 is .83001. In this case the figures 83 are to be

found in the next line below. To apprise the computer of these

cases, each of the logarithms in which the two first figures are found

ID the line below is indicated by an asterisk.

EXERCISES.

Find the mantissa of

log 1022; answer, .009 45.

log 1024;
&quot; .01030.
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1231; 1999;

1387; 3988;

1419; 4675;

1621; 4798;

1622; 5377;

1862; 8512;

1863; 1009.

4. Characteristics of Logarithms.

The part of the table here described gives only the mantissa oj

&amp;lt;each logarithm. The characteristic must be found by the general

theory of logarithms.

The following propositions are explained in treatises on algebra:

The logarithm of 1 is 0.

&quot; &quot; &quot; 10 &quot;

1.

&quot; &quot; &quot; 100 &quot;

2.

&quot; &quot; &quot; 1000 &quot;

3.

&quot; &quot;

10&quot;
&quot;

n.

Since any number of one digit is between and 10, its logarithm
is between and 1; that is, it is plus some fraction. In the same

way, the logarithm of a number of two digits is 1 -1- a fraction. And
in general,

The characteristic of the logarithm of any number greater than 1 is

less by unity than the number of its digits preceding the decimal point.

Example. The characteristic of the logarithm of any number

between 1 and 10 is 0; between 10 and 100 it is 1; between 100 and
1000 it is 2, etc.

Characteristic of log 1646 is 3.

&quot; &quot; &quot; 164.6 &quot;

2.

&quot; &quot; &quot; 16.46 &quot;

1.

&quot; &quot; &quot; 1.646 &quot;

0.

It is also shown in algebra that if a number be divided by 10 we
diminish its logarithm by unity.

Logarithms of numbers less than unity are most conveniently ex

pressed by making the characteristic alone negative.

For example:

log 0.2 = log 2 - 1 = - 1 + .301 03;
&quot; 0.02 = log 2- 2 = -2 + . 30103.

Hence: The mantissce of the logarithms of all numbers which

differ only in the position of the decimal point are the same.
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Hence, also, in seeking a logarithm from the table we find the

mantissa without any reference to the decimal point. Afterward we
affix the characteristic according to the position of the decimal point.

For convenience, when a negative characteristic is written the

minus sign is put above it to indicate that it extends only to the

characteristic below it and not to the mantissa. Thus we write

log .02 = 2. 301 03.

In practice, however, it is more common to avoid the use of

negative characteristics by increasing them by 10. We then write

log. 02 = 8.30103 -10.
If we omitted to write 10 after the logarithm, the latter would,

in strictness, be the log of 2 X 10 8
. But numbers so great as this

product occur so rarely in practice that it is not generally neces

sary to write 10 after the logarithm. This may be understood.

A convenient rule for remembering what characteristic belongs to

the logarithm of a decimal fraction is:

The characteristic is equal to 9, minus the number of zeros after

the decimal point and before the first significant figure.

Examples, log 34060 =4.53224
&quot; 340.60 =2.53224
&quot; 3.4060 =0.53224
&quot; .03406 =8.53224-10
&quot; .0003406 = 6.53224 - 10

It will be seen that we can find the logarithms of numbers from

1 to 150 without using the first page of the table at all, since all the

mantissas on this page are found on the following pages as loga

rithms of larger numbers.

EXERCISES.

Find the logarithms of the following numbers:

1.515 .003899

.01 702 0.4276

18.62 464700

.03 735 98.030

Find the numbers corresponding to the following logarithms:

3.241 80; 8.750 35 - 10; 9.999 91 - 10;

1.191 45; . 7.411 28 - 10; 5.999 96;

5.653 21; ans. 450 000 6.889 97 - 10; 2.960 28;

. 6.748 27; ans. 5 601 000 9.116 94 16; 0.886 27
;&quot;

7.56003; ans. 36 310-000 7.25018 0.00087.
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5. Interpolation of Logarithms.

In all that precedes we have used only logarithms of numbers

containing not more than 4 significant digits. But in practice

numbers of more than four figures have to be used. To find the

logarithms of such numbers the process of interpolation is necessary.

This process is one of simple proportion, which can be seen from the

following example.
To find log. 1167.23.

The table gives the logarithms of 1167 and of 1168, which we find

to be as follows:

log 1167 = 3.06707
&quot; 1168 = 3.06744

Difference of logarithms = .000 37

Now the number of which we wish to find the logarithm being
between these numbers, its logarithm is between these logarithms;
that is, it is equal to 3.067 07 plus a fraction less than .000 37.

Since the difference 37 corresponds to the difference of unity in

the two numbers, we assume that the quantity to be added to the

logarithm bears the same proportion to .23 that 37 does to unity.

We therefore state the proportion
1 : .23 :: 37 : increase required.

The solution of this proportion gives .23 X 37 = 8.51, which is

the quantity to be added to log 1167 to produce the logarithm

required.
* The result is 3. 067 155 1.

But our logarithms extend only to five places of decimals, while

the result we have written has seven. &quot;We therefore take only five

places of decimals. If we write the mantissa 3.06715, the result will

be too small by .51. If we write 3.067 16, it will be too great by .49.

Since the last result is nearer than the first, we give it the prefer,

ence, and write for the required logarithm

log 1167.23 = 3.06716.

We thus have the following rule for interpolating:

Take from the table the logarithm corresponding to the first four

significant digits of the number.

Considering the following digits as a decimal fraction, multiply
the difference between the logarithm and the next one following by
such decimal fraction.

* In this multiplication we have used a decimal point to mark oir the

fifth order of decimals. This is a convenient process in all such computations.
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This product being added to the logarithm of the table will give
the logarithm required.

The whole operation by which we haye found log 1167.23 would
then be as follows:

log 1167 = 3.06707

37 X 0.2 7.4

X 0.03 1.11

log 1167.23 = 3.06716

The products for interpolation, 7.4 and 1.11, may be found by

multiplying by the fifth and sixth figures of the number separately.
To facilitate this multiplication, tables of proportional parts are

given in the margin. Each difference between two logarithms will

be readily found in heavy type not far from that part of the table

which is entered, and under it is given its product by .1, .2, etc., . . .9.

We therefore enter this little table with the fifth figure, and take out

the corresponding number to be added to the logarithm. Then if

there is a sixth figure, we enter with that also and move the decimal

one place to the left. We then add the two sums to the logarithm.

6. Labor-saving Devices.

In using a table of logarithms, the student should accustom

himself to certain devices by which the work may be greatly facili

tated.

In the first place it is not necessary to take the whole difference

between two consecutive logarithms. He has only to subtract the

last figure of the preceding logarithm from the last one of the fol

lowing, increased by 10 if necessary, and thus find the last figure of

the difference.

The nearest difference in the margin of the table having this

same last figure will always be the difference required.

Example. If the first four figures of the number are 1494, in

stead of subtracting 435 from 464 we say 5 from 14 leaves 9, and

look for the nearest difference which has 9 for its last figure. This

we readily find to be 29, at the top of the next page.

NOTE. In nearly all cases the difference will be found on the same page
&quot;with the logarithm. The only exception is at the bottom of the first page, &quot;where,

owing to the number of differences, they cannot all be printed.

In the preceding examples we have written down the numbers in

full, which it is well that the beginner should do for himself. But

after a little practice it will be unnecessary to write down anything
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but the logarithm finally taken out. The student should accustom

himself to take the proportional parts mentally, adding them to the

logarithm of the table and writing down the sum at sight. The

habit of doing this easily and correctly can be readily acquired by

practice.

Exercises. Find the logarithms of

792 638; 0.99997;

1000.77; 949.916;

1000.07; 20.8962;

100 007; 660 652;

181 982; 77.642;

281.936; 8.8953.

As a precaution in taking out logarithms, the computer should

always, after he has got his result, look into the table and see that

it does really fall between two consecutive logarithms in the table.

If the fraction to be interpolated is nearly unity, especially if it

is equal to or greater than 9, it will generally be more convenient to

multiply the difference of the logarithms by the complement* of the

fraction and subtract the product from the logarithm next succeed

ing. The following are examples of the two methods, which may
always be applied whether the fraction be large or small:

Example I. log 1004.28 = log (1005
-

.72).

log 1004, .00173 log 1005, .00217

pr. pt. for .2, 8.8 pr. pt. for .7, 30.8
&quot; &quot; &quot;

.08, 3.5 &quot; &quot; &quot;

.02,
- .9

log, 3.00185 log, 3.00185

Ex. 2. log 154 993 = 155 000 - 7.

log 1549, .19005 1550, .19033

pr. pt. for .9, 25.2 pr. pt. for .07, 1.9b
&quot; &quot; &quot;

.03, 0.8

log, 5.19031
log, 5.19031

* By the complement or arithmetical complement of a decimal fraction is here

meant the remainder found by subtracting it from unity or from a unit of the

next order higher than itself. Thus :

co. .723 = .277

co. .1796 = .8204

co. .9932 = .0068.
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7. To find the Number corresponding to a given
Logarithm.

The reverse process of finding the number corresponding to a

given logarithm will be seen by the following example:
To find the number of which the logarithm is 2.02790.

Entering the table, we find that this logarithm does not exactly
occur in the table. We therefore take the next smaller logarithm,
which we find to be as follows:

log 1066 = 2.02776.

Subtracting this from the given logarithm we find the latter to be

greater by 14, while the difference between the two logarithms of

the table is 40. &quot;We therefore state the proportion
40 : 14 : : 1 to the required fraction.

The result is obtained by dividing 14 by 40, giving a quotient .35.

The required number is therefore 106.635. It will be remarked that

we take no account of the characteristic and position of the decimal

until we write down the final result, when we place the decimal in

the proper position.

The table of proportional parts is used to find the fifth and sixth

figures of the number by the following rule:

If the given logarithm is not found in the table, note the ex-

cess of the given logarithm above the next smaller one in the table,

which call A.

Take the difference of the two tabular logarithms, and fiad it

among the large figures which head the proportional parts.

That proportional part next smaller than A will be the fifth

figure of the required number.

Take the excess of A above this proportional part; imagine its

decimal point removed one place to the right, and find the nearest

number of the table.

This number will be the sixth figure of the required number.

Example. To find the number of which the logarithm is 2.193 59.

Entering the table, we find the next smaller logarithm to be

.193 40. Therefore A = 19.

Also its tabular difference = 28.

Entering the table of proportional parts under 28, we find 16.8

opposite 6 to be the number next smaller than 19 the value of A.

Therefore the fifth figure of the number is 6.

The excess of 19 above 16.8 is 2.2. Looking in the same tabU

for the number 22, we find the nearest to be opposite 8.
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Therefore the fifth and sixth figures of the required number are

68. Now looking at the log .193 40 and taking the corresponding

number, we find the whole required number to be

156 168.

The characteristic being 2, the number should have three figures

before the decimal point. Therefore we insert the decimal point at

the proper place, giving as the final result 156.168.

8. Number of Decimals necessary.

In the preceding examples we have shown how with these tables

the numbers may be taken out to six figures. In reality, however,

it will seldom be worth while to write down more than five figures.

That is, we may be satisfied by adding only one figure to the four

found from the table. In this case, when we enter the table of

pioportional parts, we take only the number corresponding to the

nearest proportional part.

To return to the last preceding example, where we find the num-

be/ corresponding to 2.193 59. We find under the difference 28 that

th^ number nearest 19 is 19.6, which is opposite 7.

Therefore the number to be written down would be 156.17.

In the following exercises it would be well for the student to

fn ite six figures when the number is found on one of the first two

pages of the table and only five when on one of the following page*

Tl reason of this will be shown subsequently.

EXAMPLES AND EXERCISES.

t. To find the square root of $.

We have log 3, 0.477 12
&quot;

2, 0.30103

log |, 0.17609

-f- 2, log 4/1&quot;,
0.08804

Here we have a case in which the half of an odd number is

required. We might have written the last logarithm 0.088045, but

we should then have had six decimals, whereas, as our tables only

give five decimals, we drop the sixth. If we write 4 for the fifth

figure it will be too small by half a unit, and if we write 5 it will

be too large by half a unit. It is therefore indifferent which figure
we write, so far as mere accuracy is concerned.
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A good rule to adopt in such a case is to write the nearest EVEN
number. For example,

for the half of .261 81 we write .130 90;
&quot; &quot; .26183 &quot;

.13092;
&quot; &quot; .26185 &quot;

.13092;
&quot; &quot; .26187 &quot;

.13094;
&quot; &quot; .26189 &quot;

.13094;
&quot; &quot; .26197 &quot;

.13098;
&quot; &quot; .26199 &quot; .13100.

Returning to our example, we find, by taking the number corre

sponding to 0.088 04,

fj = 1.224 72.

2. To find the square root of f .

log 2, 0.30103
&quot;

3, 0.477 12

logf, 9.82391 - 10

| log |, 4.911 96 - 5 = log 1/f.

The last logarithm is the same as

9.91196 - 10,

which is the form in which it is to be written in order to apply the

rule of characteristics. The corresponding number is 0.816 50.

We have here a case in which, had we neglected considering the

surplus 10 as we habitually do, the characteristic of the answer

would have been 4 instead of 9 or 1. The easiest way to treat

such cases is this:

WTien we have to divide a logarithm in order to extract a root)

instead of increasing the characteristic by 10, increase it by 10 X
index of root.

Thus we write log f_= 19.823 91 - 20.

Dividing by 2, log Vj = 9.911 96 - 10,

which is in the usual form.

3. To find the cube root of |.

logl, 0.00000
&quot;

2, 0.301 03

log i, 9.69897 - 10,

which we write in the form

log i = 29.698 97 -30.

Dividing this by 3,

i log i = log Vf = 9-899 66 - 10.
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This logarithm is in the usual form, and gives

VT= 0.79370.

The affix 30, or 10 x divisor, can be left to be understood

in these cases as in others. All that is necessary to attend to is that

instead of supposing the characteristic to be one or more units less

than 10, as in the usual run of cases, we suppose it to be one or more

units less than 10 x divisor.

Find: 4. The square root of -J;

5. The cube root of 2;

6. The fourth root of f ;

7. The fifth root of 20;

8. The tenth root of 10;

9. The tenth root of .

9. The Arithmetical Complement.

When a logarithm is subtracted from zero, the remainder is

called its arithmetical complement.
If L be any logarithm, its arithmetical complement will be L.

Hence if

L = log n,
&en

arith. comp. = L = log -;

that is,

The arithmetical complement of a given logarithm is the logarithm

of the reciprocal of the number corresponding to the given logarithm.
Notation. The arithmetical complement of a logarithm is writ

ten co-log. It is therefore defined by the form

co-log n = log .

Finding the arithmetical complement. To find the arithmetical

Complement of log 2 = 0.301 03, we may proceed thus:

0.00000

log 2, 0.30103

co-log 2, 9.69897-10.
We subtract from zero in the usual way; but when we come to

the characteristic, we subtract it from 10. This makes the re

mainder too large by 10, so we write 10 after it, thus getting a

quantity which we see to be log 0.5.

We may leave the 10 to be understood, as already explained.



THE ARITHMETICAL COMPLEMENT. 17

The arithmetical complement may be formed by the following
rule:

Subtract each figure of the logarithm from 9, except the last sig

nificant one, which subtract from 10. The remainders willform the

arithmetical complement.
For example, having, as above, the logarithm 0.301 03, we form,

mentally, 9-0 = 9; 9-3 = 6; 9-0 = 9; 9-1 = 8; 9-0 = 9;

10 3 = 7; and so write

9.698 97

as the arithmetical complement.
To form the arithmetical complement of 3.284 00 we have 9 3

= 6; 9 - 2 = 7; 9 - 8 = 1; 10 - 4 = 6. The complement is

therefore

6.71600.

The computer should be able to form and write down the arith

metical complement without first writing the tabular logarithm, the

subtraction of each figure being performed mentally.
Use of the arithmetical complement. The co-log is used to substi

tute addition for subtraction in certain cases, on the principle: To

add the co-logarithm is the same as to subtract the logarithm.

Example. We may form the logarithm of J in this way by ad

dition:

log 3, 0.47712

co-log 2, 9.69897

log |, 0.17609

Here there is really no advantage in using the co-log. But there

is an advantage in the following example:

To find the value of P = 2763 * 419 24
. We add to the loga-yy

rithms of the numerator the co-log of the denominator, thus:

log 2763, 3.44138

log 419.24, 2.62246

co-log 99, 8.00436

logP, 4.06820

. P = 11700.

The use of the arithmetical complement is most convenient when
*- io divisor is a little less than some power of 10.
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EXERCISES.

Form by arithmetical complements the values of:

109 X 216.26

2.

3.

0.99316

8263 X 9162.7

92 X 99.618

4 X 6 X 8219

1C. Practical Hints on the Art of Computation.

The student who desires to be really expert in computation
should learn to reduce his written work to the lowest limit, and to

perform as many of the operations as possible mentally. We have

already described the process of taking a logarithm from the table

without written computation, and now present some exercises which

will facilitate this process.

1. Adding and subtracting from left to right. If one has but

two numbers to add it will be found, after practice, more easy and

natural to write the sum from the left than from the right. The
method is as follows:

In adding each figure, notice, before writing the sum, whether

the sum of the figures following is less or greater than 9, or equal
to it.

If the sum is less than 9, write down the sum found, or its last

figure without change.
If greater than 9, increase the figure by 1 before writing it down.

If equal to 9, the increase should be made or not made accord

ing as the first sum following which differs from 9 is greater or less

tthan 9.

If the first sum which differs from 9 exceeds it, not only must we
increase the number by 1, but must write zeros under all the places
where the 9 s occur. If the first sun different from 9 is less than 9,

write down the 9 s without change.
The following example illustrates the process:

7502768357858892837
8239171645041102598

15741940002899995435
Here 7 and 8 are 15. 5 + 2 being less than 9, we write 15 without

change. 3 + being less than 9, we write 7 without change. 9 + 2 being

greater than 9, we increase the sum 3 + by 1 and write down 4. 7 + 1 being
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less than 9, we write the last figure of 9 + 2, or 1, without change. 6 + 7 being
greater than 9, we increase 7 + 1 by 1 and write down 9. Under 6 + 7 we
write down 3 or 4 To find which, 8+1 = 9; 3+ 6 = 9; 5+4= 9; 7 + 5 =
12. This first sum which is different from 9 being greater than 9, we write 4
under 6 + 7, and O s in the three following places where the sums are 9. 7+5
= 12. Since 8+ &amp;lt; 9, we write down 2. Before deciding whether to put 8 or
9 under 8 + 0, we add 5 + 4 =9; 8 + 1 =9; 8 + 1 = 9; 9+ = 9; 2 + 2 = 4
This being less than 9, we write 8 under 8 + 0, and 9 s in the four following

places. Since 5+ 8 = 13 &amp;gt; 9, we write 5 under 2+ 2. Since 9+ 3 = 12
&amp;gt; 9, we

write 4 under 5 + 8. Since 8+ 7 = 15 &amp;gt; 9, we write 3 under 9+ 3. Finally,
under 8+ 7 we write 5.

This process cannot be advantageously applied when more than

two numbers are to be added.

EXERCISES.

Let the student practise adding each consecutive pair of the fol

lowing lines, which are spaced so that he can place the upper margin
of a sheet of paper under the lines he is adding and write the sum

upon it.

250917285316981208251235964692184368791615832316646891208532164379102909868588964342944825987654321012345674
Subtracting. &quot;We subtract each figure of the subtrahend from

the corresponding one of the minuend (the latter increased by 10 if

necessary), as in arithmetic.

Before writing down the difference, we note whether the follow

ing figure of the subtrahend is greater, less, or equal to the corre

sponding figure of the minuend.

If greater, we diminish the remainder by 1 and write it down.*

If less, we write the remainder without change.

If equal, we note whether the subtrahend is greater or less than

the minuend in the first following figure in which they differ.

If greater, we diminish the remainder by 1, as before, and write

9 s under the equal figures.

* If the student is accustomed to carrying 1 to the figures of the minuend

when he has increased the figure of his subtrahend by 10, he may find it easier

to defer each subtraction until he sees whether the remainder is or is not to be

tUminished by 1, and, in the latter case, to increase the minuend by 1 before

subtracting.
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If less, write the remainder unchanged, putting O s under the

equal figures.

Example.7229351621439424268518014198
48024998200196

Here 7 2 =5; because 4 &amp;gt; 2, we write 4. 12 4 = 8; because 2 = 2

and 6 &amp;lt; 9, we write 8
;
and write in the following place. 96 = 3; be

cause 8 &amp;gt; 3, we write 2. 13 -8 = 5; 5 = 5; 1 = 1; 8&amp;gt;6; so under 13 8 we

write 4, with 9 s in the two next places. 16 8 = 8; because &amp;lt; 2, we write

8. 2 = 2; 1 = 1; 4 = 4; 1&amp;lt;3; so under 2 we write 2, followed by O s.

3 1 = 2; because 9 = 9, 8 &amp;gt; 4, we write 1, with 9 in the next place. 14 8 =
6, which we write as the last figure.

EXERCISES.

The preceding exercises in addition will serve as exercises in sub

traction by subtracting each line from that above or below it. The
student should be able to subtract with equal facility whether the

minuend is written above or below the subtrahend.

Mental addition and subtraction. When an expert computer has

to add or subtract two logarithms, as in forming a product or quo
tient of two quantities, he does not necessarily write both of them,
but prefers to write the first and, taking the other mentally, add (or

subtract) each figure in order from left to right, and write down the

sum (or difference). He thus saves the time spent in writing one

number, and, sometimes, the inconvenience of writing it where

there is not sufficient room for it.

This process of inverted addition is most useful in adding the

proportional part in taking a logarithm from the table. It is then

absolutely necessary to save the computer the trouble of copying
both logarithm and proportional part.

Expert computers can add seven-figure logarithms in this way
without trouble. But with those who do not desire to become ex

perts it will be sufficient to learn to add two or three figures, so as

to be able to take a five-figure or seven-figure logarithm from the

table without writing anything but the result.

11. Imperfections of Logarithmic Calculations.

Nearly all practical computations with logarithms are affected

by certain sources of error, arising from the omission of deci

mals. It is important that these errors should be understood in
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order not only to avoid them so far as possible, but to avoid spend
ing labor in aiming at a degree of accuracy beyond that of which the

numbers admit.

Mathematical results may in general be divided into two classes:

(1) those which are absolutely exact, and (2) those which are only
to a greater or less degree approximate.

As an example of the former case, we have all operations upon
entire numbers which involve only multiplication and division. For

example, the equations
16 = 256

j^_16
6 ~~~9&quot;

are absolutely exact.

But if we express the fraction % as a decimal fraction, we have

| = .142857. ., etc., ad infinitum.

Hence the representation of \ as a decimal fraction can never be

absolutely exact. The amount of the error will depend upon how

many decimals we include. If we use only two decimals we shall

certainly be within one hundredth; if three, within one thou

sandth, etc. Hence the degree of accuracy to which we attain de

pends upon the number of decimals employed. By increasing the

number of decimals we can attain to any degree of accuracy. As an

example, it is shown in geometry that if the ratio of the circumfer

ence of a circle to its diameter be written to 35 places of decimals,

the result will give the whole circumference of the visible universe

without an error as great as the minutest length visible in the most

powerful microscope.

There are no numbers, except the entire powers of 10, of which

the logarithms can be exactly expressed in decimals. &quot;We must

therefore omit all figures of the decimal beyond a certain limit. The

number of decimals to be used in any case depends upon the degree
of accuracy which is required. The large tables of logarithms con

tain seven decimal places, and therefore give results correct to the

ten-millionth part of the unit. This is sufficiently near the truth

in nearly all the applications of logarithms.

With five places of decimals our numbers will be correct to the

hundred-thousandth part of a unit. This is sufficiently near for

most practical applications.

Accumulation of errors. When a long computation is to be

made, the small errors are liable to accumulate so that we cannot

rely upon this degree of accuracy in the final result. The manner
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in which the tables are arranged so as to reduce the error to a mini

mum may be shown as follows :

We have to seven places of decimals

log 17 = 1.2304489
&quot; 18 = 1.2552725

When the tables give only five places of decimals the two last

figures must be omitted. If the tables gave log 17=.230 44, the

logarithm would be too small by 89 units in the seventh place. It is

therefore increased by a unit in the fifth place, and given .23045.

This quantity is then too large by 11, and is therefore nearer the

truth than the other. The nearest number being always given, we
have the result:

Every logarithm in the table differs from the truth ~by not more

than one half a unit of the last place of decimals.

Since the error may range anywhere from zero to half a unit, and

is as likely to have one value as another between those limits, we
conclude:

The average error of the logarithms in the tables is one fourth of

a unit of the last place of decimals.

Errors in interpolation. When we interpolate the logarithm we

add to the tabular logarithm another quantity, the proportional part,

which may also be in error by half a unit, but of which the average

error will only be one fourth of a unit.

As most logarithms have to be interpolated, the general result

will be:

An interpolated logarithm may possiUy be in error by a unit in

the last place of decimals.

The sum of the average errors will, however, be only half a unit.

But these errors may cancel each other, one being too large and the

other too small. The theory of probabilities shows that, in conse

quence of this probable cancellation of errors, the average error only
increases as the square root of the number of erroneous units added.

The square root of 2 is 1.41.

If, therefore, we add two quantities each affected with a probable

error, .25, the result will be, for the probable error of the sum,

1.41 x .25 = 0.35.

We therefore conclude:

The average error of a logarithm derived from the table by inter

polation is 0.35 of a unit of the last place.

Applying the above rule of the square root to the case in which
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several logarithms are added or subtracted to form a quotient, we
find the results of the following table:

ed or subtracted.
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perceive that the corresponding number is between 85.01 au4 85.02-

If this logarithm is the result of adding a number of logarithms,

each of which may be in error in the way pointed out, we may sup

pose it probably affected by an error of half a unit in the last figure

and possibly by an error of a whole unit or more. That is, its true

value may be anywhere between 92 948 and 92 950.

The number corresponding to the former value is 85.C12, and

that corresponding to the latter 85.016. Since the numbtrs may
fall anywhere between these limits, we assign to it a mean \alue of

85.014, which value, however, may be in error by two units in the

last place. It is not, therefore, worth while to carry the interpolation

further and to write more than five digits.

Next suppose the logarithm to be 2.021 70. Entering the table,

we find in the same way that the number probably lies between the

limits 105.121 and 105.126. There is therefore an uncertainty of

five units in the sixth place, or half a unit in the fifth place. If the

greatest precision is desired, we should write 105.124. But our last

figure being doubtful by two or three units, the question might arise

whether it were worth while to write it at all. As a general rule, if

the sixth figure is required to be exact, we must use a six- or seven-

place table of logarithms.

Still, near the beginning of the table, the probable error will bo

diminished by writing the sixth figure.

Now knowing that at the beginning of the table a difference of

one unit in the number makes a change ten times as great in the

logarithm as at the end of the table, we reach the conclusions :

In talcing out a number in the first part of the table, it can never

be worth while to write more than six significant figures, and very
little is added to the precision by writing more than five.

In the latter part of the table it is never worth while to write more

than five significant figures.

Sometimes no greater accuracy is required than can be gained by

irjmg four-figure logarithms. There is then no need of writing the

last figure. If, however the printed logarithm is used without

change, the fourth figure must be increased by unity whenever the

fifth figure exceeds 5. When the fifth figure is exactly 5, the increase

should or should not be made according as the 5 is too small or too

great. To show how the case should be decided, a stroke is printed
above the 5 when it is too great. In these cases the fourth figure

should be used as it stands, but, when there is no stroke, it should

be increased by unity.
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2. Applications of Logarithms to the Computation oi
Annuities and Accumulations of Funds at Com
pound Interest.

One of the most useful applications of logarithms is to fiscal

calculations, in which the value of moneys accumulating for long
periods at compound interest is required.

Compound interest is gained by any fund on which the interest

is collected at stated intervals and put out at interest.

As an example, suppose that $10 000 is put out at 6 per cent

interest, and the interest collected semi-annually and put out at the

same rate. The principal will then grow as follows:

Principal at starting 810 000.00

Six months interest = 3 per cent 300.00

Amount at end of 6 months $10 300.00

Interest on this amount = 3 per cent.. 309.00

Amount at end of 1 year 810 609.00

Interest on this amount = 3 per cent. . 318.27

Amount at end of ! years 810 927.27

Interest on this amount for 6 months. . 327.82

Amount at end of 2 years 811 255.09

Although in business practice interest is commonly payable semi-

annually, it is in calculations of this kind commonly supposed to be

collected and re-invested only at the end of each year. This makes

the computation more simple, and gives results nearer to those ob

tained in practice, because a company cannot generally invest its

income immediately. If it had to wait three months to invest each

semi-annual instalment of interest collected, the general result would

be about the same as if it collected interest only once a year and in

vested it immediately.
If r be the rate per cent per annum, the annual rate of increase

T
will be --. Let us put100

p, the annual rate of increase =
-r^-;

p, the amount at interest at the beginning of the time, or the

principal;

a, the amount at the end of one or more years.
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Then, at the beginning of first year, principal p
Interest during the year pp

Amount at end of year p (1 + p)

Interest on this amount during second year pp (1 + p)

Amount at end of second year, (1 + p)p (I + p) p (1 + p)
a

Continuing the process, we see that at the end of n years the

amount will be

a=p(l + p). (1)

To compute by logarithms, let us take the logarithms of both

members. We then have

log a = log^ + n log (1 + p). (2&amp;gt;

Example. Find the amount of $1250 for 30 years at 6 per cent

per annum.

Here p= .06

l + p = 1.06

log (1 + p) = 0.025 306 (end of Table I.)

30

n log (l + p), 0.75918

logp, 3.09691

log a, 3.85609

a, $7179.50 = required amount.

EXERCISES.

1. Find the amount of $100 for 100 years at 5 per cent compound
interest.

2. A man bequeathed the sum of $500 to accumulate at 4 per
cent interest for 80 years after his death. After that time the annual

interest was to be applied to the support of a student in Harvard

College. What would be the income from the scholarship?

3. If the sum of one cent had been put out at 3 per cent per
annum at the Christian era, and accumulated until the year 1800,

what would then have been the amount, and the annual interest on

this amount?
It is only requisite to give three significant figures, followed by the necessary

number of zeros.

4. Solve by logarithms the problem of the horseshoeing, in which

a man agrees to pay 1 cent for the first nail, 2 for the second, and so

on, doubling the amount for every nail for 32 nails in all.

NOTE. It is only necessary to compute the amount for the 32d nail, be

cause it is easy to see that the amount paid for each nail is 1 cent more than for

all the preceding ones.
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5. A man lays aside $1000 as a marriage-portion for his new-born

daughter, and invests it so as to accumulate at 8 per cent compound
interest. The daughter is married at the age of 25. What does the

portion amount to?

6. A man of 30 pays $2000 in full for a $5000 policy of insurance

on his life. Dying at the age of 80, his heirs receive $7000, policy
and dividends. If the money was worth 4 per cent to him, how
much have the heirs gained or lost by the investment?

7. What would have been the answer to the previous question,

had the man died at the age of 40, and the amount paid been

$6000?

Other applications of the formulcB. By means of the equations

(1) and (2) we may obtain any one of the four quantities a, p, p, and

n when the other three are given.

CASE I. Given the principal, rate of interest, and time, to

find the amount.

This case is that just solved.

CASE II. Given the amount, time, and rate per cent, to find

the principal.

Solution. Equation (1) gives

Taking the logarithms,

log p = log a - n log (1 + p),

Dy which the computation may be made.

CASE III. Given the principal, amount, and time, to find the rate*

Solution. Equation (2) gives

i /-. \ a i

log (! + )
= _!__ = -

log-.

Example. A man wants a principal of $600 to amount to $1000

in 10 years. At what rate of interest must he invest it?

Solution. log a = 3.000 00

logp = 2.77815

log
- = 0.221 85

1
logj

= 0.022 185 = log (1 + ft).

Hence, from last page of logarithms,

1-f p = 1.05241;
and rate = 5.241,

or 5i per cent, nearly.
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EXERCISES.

1. At what rate of interest will money double itself every ten

years? Ans. 7.177.

2. At what rate will it treble itself every 15 years? Ans. 7.599.

3. A man having invested $1000, with all the interest it yielded

him, for 25 years, finds that it amounts to $3386. What was the

rate of interest? Ans. 5 per cent.

4. A life company issued to a man of 20 a paid-up policy for

$10,000, the single premium charged being $3150. If he dies at the

age of 60, at what rate must the company invest its money to make
itself good? Ans. 2.93 per cent.

5. A man who can gain 4 per cent interest wants to invest such a

sum that it shall amount to $5000 when his daughter, now 5 years old,

attains the age of 20. How much must he invest? Ans. $2776.62.

6. How much must a man leave in order that it may amount to

$1,000,000 in 500 years at 2J per cent interest? Ans. $4.36

7. How much if the time is 1000 years, the rate being still 2J

per cent, and the amount $1,000,000? Ans. 0.0019 of a cent.

8. A man finds that his investment has increased fivefold in 25

years. &quot;What is the average rate of interest he has gained ?

Ans. 6.65.

9. An endowment of $7500 is payable to a man when he attains

the age of 65. What is its value when he is 45, supposing the rate

of interest to be 4 per cent? Ans. $3423.

13. Accumulation of an Annuity.

It is often necessary to ascertain the present or future value of a

series of equal annual payments. Thus it is very common to pay a

constant annual premium for a policy of life insurance. The value

of such a series of payments at any epoch is found by reducing the

value of each one to the epoch, allowing for interest, and taking the

sum. Supposing the epoch to be the present time, the problem may
be stated as follows:

A man agrees to pay p dollars a year for n years, the first pay*

ment being due in one year, and the total number ofpayments n.

What is the present value of all n payments ?

rate of interest ,, , .

Putting, as before, p = ^ , the present value of p

dollars payable after y years will, by 12, Case II., be

P
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Putting in succession, y = 1, y = 2, . . . y = n, the sum of the

present values is

___+._ +_ + + P
1 + p

^
(l + p?

^
(l + P)

3 h
(l+ P)

n

This is a geometrical progression in which

First term = ^- ;1+P
Common ratio = -

: ;ITP
Kumber of terms = n.

By College Algebra, 212, the sum of this progression will be

1 -

/&amp;gt;

1
P

_ P U + P/ (l+P&amp;gt;
n -l_ .

+ P)
n 1 /1X

(T+ /,)- T&quot;
(1)

If the first payment is to be made immediately, instead of at the

end of a year, the last or nth payment will be due in n 1 years,

and the progression will be

Ih

We find the sum of the geometric progression to be

EXERCISES.

1. What is the present value of 15 annual payments of $85 each,
of which the first is due in one year, the rate being 5 per cent?

We find by substitution

Present value = 85
1.05&quot;- 1-

1.05
16

1.05
15

1.05
19

.05

_1700(1.05
1S

-1)
(1.05)

15

log 1.05, 0.021189 1.05
15

, 2.07895_15 1.05
16 -

1, 1.078 95

log 1.05&quot;, 0.31784
log, 0.03300

co-log 1.05
15

, 9.68216

log 1700, 3.23045

Value, $882.28 log value, 2.9456?
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2. The same thing being supposed, what would be the present
value if the rate of interest were 4 per cent ? Ans. $945.80

3. What is the present value of 25 annual payments of $1000

each, the first due immediately, if the rate of interest is 3 per cent ?

Ans. $17,935
4. A debtor owing $10,000 wishes to pay it in 10 equal annual

instalments, the first being payable immediately. If the rate of

interest is 6 per cent, how much should each payment be?

Ans. $1281.76.

NOTE. This problem is the reverse of the given one, since, in the equation

(2), we have given 2* = 10000, p = 0.06, and n = 10, to find#.

5. The same thing being supposed, what should be the annual

payment in case the payments should begin in a year?

Ans. $1358.69.

Perpetual annuities. If the rate of interest were zero, the

present value of an infinity of future payments would be infinite.

But with any rate of interest, however small, it will be finite. For if,

in the first equation (1), we suppose n infinite, f--
J

will converge

toward zero, and we shall have

- P P

This result admits of being put into a concise form, thus:

Since 2 is the present value of the perpetual annuity p, the

annual interest on this value will be p2S. But the equation (3) gives

p2=p.
Hence:

The present value of a perpetual annuity is the sum of which the

annuity is the annual interest.

Example. If the rate of interest were 3| per cent, the present

value of a perpetual annuity of $70 would be $2000.

EXERCISES.

1. A government owing a perpetual annuity of $1000 wishes to

pay it off by 10 equal annual payments. If the rate of interest is 4

per cent, what should be the amount of each payment?
Ans. $3082.30.

2. A government bond of $100 is due in 15 years with interest at

6 per cent. The market rate of interest having meanwhile fallen to

3| per cent, what should be the value of the bond?
NOTE. We find, separately, the present value of the 15 annual instalments

of interest, and of the principal.
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MATHEMATICAL CONSTANTS.

14. In this table is given a collection of constant quantities

which frequently occur in computation, with their logarithms.
The logarithms are given to more than five decimals, in order to

be useful when greater accuracy is required. When used in five-

place computations, the figures following the fifth decimal are to be

dropped, and the fifth decimal is to be increased by unity in case

the figure next following is 5 or any greater one.



TABLES III. AKD IT.

LOGARITHMS OF TRIGONOMETRIC FUNCTIONS.

15. By means of these tables the logarithms of the six trigono
metric functions of any angle may be found.

The logarithm of the function instead of the function itself is

given, because the latter is nearly always used as a factor.

We begin by explaining Table IV.
,
because Table III. is used only

in some special cases where Table IV. is not convenient.

I. Angles less than 45. If the angle of which a function is

sought is less than 45, we seek the number of degrees at the top of

the table and the minutes in the left-hand column. Then in the

line opposite these minutes we find successively the sine, the tan

gent, the cotangent, and the cosine of the angle, as given at the

heading of the page.

Example. log sin 31 27 = 9.717 47;

log tan 31 27 = 9.78647;

log cotan 31 27 = 0.213 53;
cos 31 27 = 9.93100.

The sine, tangent, and cosine of this angle being all less than

unity, the true mantissae of the logarithm are negative; they are

therefore increased by 10, on the system already explained.
If the secant or cosecant of an angle is required, it can be found

by taking the arithmetical complement of the cosine or sine. It is

shown in trigonometry that

secant = : ,
cosine

and

cosecant = .

sine

Therefore log secant = log cosine = co-log cosine;

log cosec = log sine = co-log sine.

We thus find log sec 31 27 = 0.069 00;

log cosec 31 27 = 0.28253.

After each column, upon intermediate lines, is given the differ-
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ence between every two consecutive logarithms, in order to facilitate

interpolation.

In the case of tangent and cotangent, only one column of differ

ences is necessary for both functions.

If we use no fractional parts of minutes, no interpolation is

necessary; but if decimals of a minute are employed, we can inter

polate precisely as in taking out the logarithms of numbers.

Where the differences are very small they are sometimes omitted.

Tables of proportional parts are given in the margin, the use of

which is similar to those given with the logarithms of numbers.

Example 1. To find the log sin of 31 27 . 7.

We have from the tables, log sin 31 27 = 9.717 47

Under diff. 20, P.P. for 7, 14

log sin 31 27 . 7 = 9.71761

Ex. 2. To find log cot 15 44 . 34.

The tables give log cot 15 44 = 0.550 19

Under diff. 48, opposite 0.3, P.P., 14.4
&quot; &quot; 0.4 -r- 10,

- 1.9

log cot 15 44 . 34, 0.55003

Since the tabular quantity diminishes as the angle increases, the

proportional parts are subtractive.

EXERCISES.

Find from the tables:

1. log cot 43 29 . 3;

2. log tan 43 29 .3;

3. log cos 27 10 . 6;

4. log sin 27 10 .6;

5. log tan 12 9 .43;

6. log cot 12 9 . 43.

In the case of sines and tangents of small angles the differences

vary so rapidly that in most cases the exact difference will not be

found in the table of proportional parts. In this case, if the pro

portional parts are made use of, a double interpolation will generally

be necessary to find the fraction of a minute corresponding to a given
sine or tangent. If only tenths of minutes are used, an expert com

puter will find it as easy to multiply or divide mentally as to refer to

the table.

II. Angles between 45 and 90. It is shown in trigonometry
that if we compute the values of the trigonometric functions for the



34 LOGARITHMIC TABLES.

first 45, we have those for the whole circle by properly exchanging
them in the different parts of the circle. First, if we have

a + ft = 90,

then a and ft are complementary functions, and
|.

sin ft
= cos a-,

tan ft = cotan a.

Therefore if our angle is between 45 and 90, we may find its

complement. Entering the table with this complement, the com

plementary function will then be the required function of the angle.

Example. To find the sine of 67 23 , we may enter the table

with 22 37 (= 90- 67 23
) and take out the cosine of 22 37 ,

whicl^is the required sine of 67 23.

To save the trouble of doing this, the complementary angles and

the complementary denominations of the functions are given at the

bottom of the page.

The minutes corresponding to the degrees at the bottom are given
on the right hand. Therefore:

To find the trigonometric functions corresponding to an angle

between 45 and 90, we take the degrees at the bottom of the page and

the minutes in the right-hand column. The values of the four func
tions log sine, log tangent, log cotangent, and log cosine, as read at

the bottom of the page, are then found in the same line as the

minutes.

Example 1. For 52 59 we find

log sin = 9.90225;

log tan = 0.12262;

log cot = 9.877 38;

log cos = 9.77963.

Ex. 2. To find the trigonometric functions of 77 17 . 28.

sin. tan. cot. cos.

77 17 9.989 21 0.646 53 9.353 47 9.342 68

P.P. for 0.2 + 0.6 + 11.8 - 11.8 - 11.8

&quot;0.08 -fO.2 +4.7 4.7 4.5

9.98922 0.646 70 9.35330 9.34252

Then log sec = co-log cos = 0.657 48;

log cosec = co-log sin = 0. 010 78.

EXERCISES.

Find the logarithms of the six functions of the following angles:

1. 45 50 . 74; 3. 74 .68;

2. 48 49 .37; 4. 83 59 .62.
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Binepositive

III. When the angle exceeds 90.

RULE. Subtract from the angle the greatest multiple of 90

which it contains.

If this multiple is 180, enter the table with the excess of the angle

over 180 and take out the functions required, as if this excess were

itself the angle.

If the multiple is 90 or 270, take out the complementary func
tion to that required.

By then assigning the proper algebraic sign, as shown in trigo

nometry, the complete values of the function will be obtained.

The computer should be able to assign the proper algebraic

sign according to the quadrant, without burdening his memory with

the special rules necessary in each

case. This he can do by carrying

in his mind s eye the following

scheme. He should have at com
mand the arrangement of the four

quadrants as usually represented in

trigonometry, so as to know, when
an angle is stated, where it will fall

relatively to the horizontal and ver

tical lines through the centre of the

circle. Then, in the case of

Sine or cosecant. If the angle
is above the horizontal line (which
it is between and ISO

).,
the sine is positive; if below, negative.

Cosine or secant. If the angle is to the right of the vertical

central line (as it is in the first and fourth quadrants), the cosine and

secant are positive; if to the left (as in the second and third quad

rants), negative.

Tangent or cotangent. Through the opposite first and third quad
rants, positive; through the opposite second and fourth quadrants,

negative.

Example 1. To find the tangent and cosine of 122 44 . Sub

tracting 90, we enter the table with 32 44 and find

log cot 32 44 = 0.191 92;

log sin 32 44 = 9.73298.

fnerefore, writing the algebraic sign before the logarithm, we have

log tan 122 44 = - 0.191 92;

log cos 122 44 = - 9.73298.

Sine negative
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Ex. 2. To find the sine and cotangent of 322 58 .

Entering the table with 52 58 = 322 58 - 270, and taking

out the complementary functions, we find

log sin 322 58 = - 9.779 80;

log cot 322 58 = - 0.122 36.

Ex. 3. To find the sine and tangent of 253 5 .

Entering with 73 5 , we take out the sine and tangent, finding

log sin 253 5 = 9.89079;

log tan 253 5 = + 0.516 93.

Ex. 4. To find the six trigonometric functions of 152 38 . We
have

log sin 152 38 = log cos 62 38 pos. = -f 9,662 46;

log cos 152 38 = log sin 62 38 neg. = 9.948 45;

log tan 152 38 = log cot 62 38 neg. = - 9.71401;

log cot 152 38 = log tan 62 38 neg. = - 0.285 99;

log sec = co-log cos = 0.05155;

log cosec = co-log sin = + 0.337 54.

EXERCISES.

Find the six trigonometric functions of the following angles:

276 29 .3;

66 .5;

96 59 .8;

252 20 .3;

318 10 .7;

- 25 22 .2;

-155 30 . 7.

16. Method of Writing the Algebraic Signs.

As logarithms are used in computation, they may always be con

sidered positive. It is true that the logarithms of numbers less than

unity are in reality negative, but, for convenience in calculation, we
increase them by 10, so as to make them positive.

The number corresponding to a given logarithm may, in compu
tation, be positive or negative. There are two ways of distinguishing
the algebraic sign of the number, between which the computer may
choose for himself.

I. Write the algebraic sign of the number before the logarithm.
As usually interpreted, the algebraic sign written thus would apply
to the logarithm, which it does not. It is therefore necessary for the
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computer to bear in mind that the sign belongs, not to the loga

rithm, as written, but to the number.

II. Write the letter n after the logarithm when the number i&

negative. This plan is theoretically the best, but, should the com

puter accidentally omit the letter, the number will be treated as

positive, and a mistake will be made. It therefore requires vigilance
on his part. An improvement would be to write a letter not likely

to be mistaken for n, s for instance, after all positive logarithms.

17. To Find the Angle Corresponding to a Given
Trigonometric Function.

Disregarding algebraic signs, there will always be four angles

corresponding to each function, one in each quadrant. These angles,

will be:

The smallest angle, as found in the table;

This angle increased by 180;
The complementary angle increased by 90;
The complementary angle increased by 270.

For instance, for the angle of which log tan is 0.611 92, we find

76 16 . But we should get this same tangent for 103 44 , 256 16 ,

and 283 44 .

Of the four functions corresponding to the four angles, two will

always be positive and two negative; so that, in reality, there will

only be two angles corresponding to a function of which both the-

sign and the absolute value are given. These values are found by

selecting from the four possible ones the two for which the functions

have the given algebraic sign. After selecting them, they may be

checked by the following theorems, which are easily deduced from

the relations between the values of each function as given in trigo

nometry:
The sum of the two angles corresponding to the same sine is 180^

or 540.

The sum of the two angles corresponding to the same cosine is

360.

The difference of the two angles corresponding to the same tangent

is 180.

Which of the two possible angles is to be chosen depends upon,

the conditions of the problem or the nature of the figure to which

the angle belongs. If neither the conditions nor the figure decide,

the question, the problem is essentially ambiguous, and either ^~

Doth angles are to be taken.
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EXERCISES.

Find tHe pairs of values of the angle a from the following values

of the trigonometric functions:

1. log sin a = + 9.902 43; 12. log sec a = + 0.221 06;

2. log sin a = 9.902 43; 13. log sec a = 0.221 06;

3. log cos a -f- 9.902 43; 14. log sec a = 0.099 20;

4. log cos a 9.902 43; 15. log sec a -f 0.123 46;

5. log tan a = -f- 0.143 16; 16. log sin a = -f 8.990 30;

6. log tan a = 0.143 16; 17. log sin a 8.990 30;

7. log cot a = + 0.143 16; 18. log cos a = -f 9.218 67;

8. log cot a 0.143 16; 19. log cos a = 9.218 67;

9. log tan a = 9.024 81; 20. log tan a = 9.136 90;

10. log tan a = 0.975 19; 21. log tan a = -f 9.136 90;

11. log tan a = + 0.975 19; 22. log cot a = + 9.136 90.

18. Cases when the Function is very Small or Great.

When the angle of which we are to find the functions approaches
to zero, the logarithms of the sine, tangent, and cotangent vary so

rapidly that their values to five figures cannot be readily interpolated.

The same remark applies to the cosine, cotangent, and tangent of

angles near 90 or 270. The mode of proceeding in these cases will

depend upon circumstances.

In the use of five-place logarithms, there is little advantage in

carrying the computations beyond tenths of minutes, though the

hundredths may be found when the tangent or cotangent is given.

Where greater accuracy than this is required, six- or seven-place

tables must be used.

If the angles are only carried to tenths of minutes, there is no

necessity for taking out the sine, tangent, or cotangent to more than

four decimals when the angle is less than 3, and three decimal?

suffice for angles less than 30 . The reason is that this number of

decimals then suffice to distinguish each tenth of minute.

When the decimals are thus curtailed, an expert computer will be

able to perform the multiplication and division for the tenths o?

minutes mentally. If, however, this is inconvenient, the following

rule may be applied.

To find the log sine or log tangent of an angle less than 2 to

lour places of decimals:

KULE. Enter the table of logarithms of numbers with the value
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o/ the angle expressed in minutes and tenths, and take out the loga
rithm.

To this logarithm add the quantity 6.4637.

The sum will be the log sine, and the log tangent may be assumed
to have the same value.

Example 1. To find log sin 1 22 . 6.

122 .6 = 82 .6

log 82 .6 = 1.9170

constant, 6.4637

log sin 1 22 . 6, 8.3807

This rule is founded on the theorem that the sines and tangents
of very small arcs may be regarded as equal to the arcs themselves.

Since, in using the trigonometric functions, the radius of the circle

is taken as unity, an arc must be expressed in terms of the unit

radius when it is to be used in place of its sine or tangent. Now, it

is shown in trigonometry that the unit radius is equal to 57. 2958 or

3437 . 747 or 206 264*. 8. Hence we must divide the number of

angular units in the angle by the corresponding one of these coef

ficients to obtain the length of the corresponding arcs in unit

radius. Now,
log 3437. 747 = 3.5363

co-log 6.4637

which may be added instead of subtracting the logarithm.
To find the cosine of an angle very near 90, we find the sine of

its complement, which will then be a very small angle, positive or

negative.

EXEECISES.

Find to four places of decimals:

1. log sin 22 . 73;

2. log sin 1 1 .12;

3. log cos 90 .78;

4. log tan 88 59 . 35;

5. log cot 90 28 . 76;

6. log cos 89 22 . 23;

7. log sin .25.

If an angle corresponding to a given sine or tangent is required,

the rule is:

From the given log sine or tangent subtract 6.4637 or add 3.5363.

The result is the logarithm of the number of minutes.

Of course this rule applies only to angles less than 2, in th*

value of which only tenths of minutes are required.
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EXEECISES.
Find a from:

1. log sin a = 7.2243; 3. log tan a = 2.8816;
2. log cot a = 2.8816; 4. log cos a = 6.9218.

When the small angle is given in seconds. Although the com,

puter may take out his angles to tenths of minutes, cases often arise

in which a small angle is given in seconds, or degrees, minutes, and

^seconds, and in which the trigonometric function is required to five

decimals. In this case the preceding method may not always give
=accurate results, because the arc and its sine or tangent may differ by
.a greater amount than the error we can admit in the computation.

Table III. is framed to meet this case. The following are the

quantities given:

In the second column : The argument, in degrees and minutes, as

already explained for Table IV.

In the first column : This argument reduced to seconds. From
this column the number of seconds in an arc of less than 2, given in

degrees, minutes, and seconds, may be found at sight.

Example. How many seconds in 1 28 39&quot;? In the table, before

1 28 , we find 5280&quot;, which being increased by 39&quot; gives 5319&quot;, the

number required.

Col. 3. The logarithm of the sine of the angle. This is the same

tis in Table IV.

Col. 4. The value of log sine minus log arc; that is, the difference

between the logarithm of the sine and the logarithm of the number

of seconds in the angle.

Col. 5. The same quantity for the tangent.

Cols. 6 and 7. The complements of the preceding logarithms, dis

tinguished by accents.

The use of the tables is as follows.

To find the sine or tangent of an angle less than 2:

Express the angle in seconds by the first two columns of the table.

Write down the logarithm in column 8 or column T, according as

the sine or a tangent is required.

Find from Table I. the logarithm of the number of seconds.

Adding this logarithm to S or T9 the sum, will be the log sine or

&amp;lt;log tangent.

Example. Find log sin 1 2 47 . 9.

8, 4.68555

1 2 47*.9 = 3767&quot;.9; log, 3.576 10

log sin 1 2 47
ff

.9, 8.261 65
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To find the arc corresponding to a given sine or tangent:
Find in the column L. sin. the quantity next greater or next

smaller than the given logarithm.

Take the corresponding value of S or T according as the given

function is a sine or tangent, and add it to the given function.
The sum is the logarithm of the number of seconds in the required

angle.

Example. Given log tan x = 8.401 25, to find x.

log tan x, 8.401 25

T ,
5.31433

logo:, 3.71558

x = 5194 . 9 = 1 26 34 . 9, from col. 2.

EXERCISES.

Find: 1. log sin 20 20 .25;

2. log tan 1 .2273;

3. log sin 1 59 22 . 7;

4. log tan 1 59 .7.

Find x from:
1. log tan x = 8.427 96;

2. log tan z = 7.42796;
3. log tan z = 6.42796;
4. log sin x = 5.35435;
5. log sin x = 4.226 19;

6. log sin x 8.54078.

When the cosine or cotangent of an angle near 90 or 270 is re

quired, we take its difference from 90 or 270, and find the comple

mentary function by the above rules.

Remark. The use of the logarithms of the trigonometric func

tions is so much more extensive than that of the functions themselves

that the prefix &quot;log&quot;
is generally omitted before the designation of

the logarithmic function, where no ambiguity will result from the

.omission.
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NATURAL SINES AND COSINES.

19. This table gives the actual numerical values of the sine and

cosine for each minute of the quadrant.

To find the sine or cosine corresponding to a given angle less than

45, we find the degrees at the top of a pair of columns and the

minutes on the left.

In the two columns under the degrees and in the line of minutes

we find first the sine and then the cosine, as shown at the head of

the column.

A decimal point precedes the first printed figure in aD cases, ex

cept where the printed value of the function is unity.

If the given angle is between 45 and 90, find the degrees at the

bottom and the minutes at the right.

Of the two numbers above the degrees, the right-hand one is the

sine and the left-hand one the cosine.

For angles greater than 90 the functions are to be found ac

cording to the precepts given in the case of the logarithms of the

sines and tangents.
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ADDITION AND SUBTRACTION LOGARITHMS.

2O. Addition and subtraction logarithms are used to solve the

problem: Having given the logarithms of two numbers, to find the

logarithm of the sum or difference of the numbers.

The problem can of course be solved by finding the numbers

corresponding to the logarithms, adding or subtracting them, and

taking out the logarithm of their sum or difference. The table

under consideration enables the result to be obtained by an abbrevi

ated process.

I. Use in addition. The principle on which the table is con

structed may be seen by the following reasonings. Let us put
S = a -f ,

a and b being two numbers of which the logarithms are given. We
shall have

putting, for clearness, x = .

We then have

log S = log a -f log (1 -f x).

Since log a and log b are both given, we can find log x from the

equation
log x = log b log a,

which is therefore a known quantity.

Now, for every value of log x there will be one definite value of

each of the quantities x, 1 + x, and log (1 -f x). Therefore a table

may be constructed showing, for every value of log x, the correspond

ing value of log (1 -f- #)

Such a table is Table VI.

The argument, in column A, being log x, the quantity B in the

table is log (1 -f- x).

Example, log 0.25 = 9. 397 94.

Entering the table with A = 9.397 94, we find

B = 0.096 91,

.which is the logarithm of 1.25.
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Therefore, entering the table with log x as the argument, we

take out log (1 + a), which added to log a will give log S.

We have therefore the following precept for using the table in

addition:

Take the difference of the two given logarithms.

Enter the table with this difference as the argument A, and take

out the quantity B.

Adding B to the subtracted logarithm, the sum will be the required

logarithm of the sum.

It is indifferent which logarithm is subtracted, but convenience

in interpolating will be gained by subtracting the greater logarithm

from the lesser increased by 10. The number B will then be added

to the greater logarithm.

Example. Given log m 1.62974, log n = 2.203 86
;

find

log (m -|- n).

The required logarithm is found in either of the following two

ways:
log m, 1.629 74 (1) log B, 0.676 76 (4)

log n, 2.203 86 (2) log m, 1.629 74 (1)

B, 0.102 64 (4) log n, 2.203 86 (2)

A = logw -r- n, 9.425 88 (3) log n -5- m, 0.574 12 (3)

log (m + n), 2.306 50 (5) log (m + n), 2.306 50 (5)

The figures in parentheses show the order in which the numbers

are written.

EXERCISES.

Log a and log I having the following values, find log (a -j- b).

1. log a. = 1.700 37; log b = 0.921 69.

2. log a = 0.624 60; log b = 9.881 26.

3. log a = 9.791 86; log b = 9.322 09.

4. log a = 1.601 62; log I = 1.306 06.

5. log a 0.792 90; log b = 9.221 27.

6. log a = 0.601 32; log b = 9.001 68.

7. log a = 4.796 43; log b = 3.981 86.

II. Use in subtraction. The problem is, having given log a and

log b, to find the logarithm of

D = a - b.

We have D =

Whence
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Since log 7- is found by subtracting log b from log a, if we can

find log f T-
l)

from log 7-, the problem will be solved.

From the construction of the table already explained, if we have

* =
logp

we must have

We now have the following precept for subtraction:

Subtract the lesser of the given logarithms from the greater.

Enter the table so as to find the difference of the logarithms in the

numbers B of the table.

Add the corresponding value of A to the lesser of the given loga

rithms. The sum will be the logarithm of the difference.

Example. Find log (n m) in the example of the preceding
section,

log n, 2.203 86 (1)

log m, 1.62974 (2)

A, 0.43945 (4)

log|-
= B, 0.57412 (3)

log (n
-

m), 2.069 19 (5)

EXERCISES.

Find the logarithms of the differences of the quantities a and b

in the preceding section.

Remark. In the use of addition and subtraction logarithms,
the precepts apply to numerical sums and differences, without

respect to the algebraic signs of the quantities. For example, the

algebraic difference between -f 1473 and 29 462 is to be found by
addition, and the algebraic sum of a positive and negative quantity

by subtraction.

Case where the quotient is large. Near the end of the table, A
and B become nearly equal; the structure of the table is therefore

changed so as to simplify its use. It is evident that if b is very
small compared with a, the logarithms of a -f b and a b will

not differ much from the logarithm of a itself. Hence, in this case,

we shall have smaller numbers to use if we can find the quantity
which must be added to log a to give log (a -|- b), or subtracted from
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log a to give log&quot; (a #). Now, the equations already written give,

when a
&amp;gt; 1), log a = log b -\- A,

log (a + &)
= log d + ;

whence, by subtraction,

log (a -f- #) log a = B A,
or log (a -j- Z&amp;gt;)

= log a -}- B A. (with Arg. A)
We find in the same way,

log (a
-

b)
= log a - (B - A), (with Arg. )

Now, whenever log a log # is greater than 1.65, we shall find

it more convenient to take out B A from the table than either

A or B. We notice that the last two figures of B in this part of

the table vary slowly, and we need only attend to them in interpolat

ing. For instance, in the horizontal line corresponding to A = 1.66

we find:

for A = 1.660 00; B - 1.669 40; B - A - .009 40;

.66100; .67038; .00938;

.66200; .67136; .00936;

.66300; .67233; ; 00933;

.66400; .67331; .00931;

.66500; .67429; .00929;
etc. etc. etc.

The interpolation of B A is now very easy whether the quan

tity given is A or B. We note that B A has but three significant

figures, of which the first is found in column zero, and the other two

are the last two figures of B as printed.

As an example, let us find log (a -f- V) from

logfl = 2.79163

log b = 1.12819

A = 1.66344

Entering the table with this value of A, we find by column

that B A falls between .009 40 and .009 19. Following the hori

zontal line A = 1.66 to column 3 and interpolating the last two

figures between 33 and 31 for .44, with the difference 2, we find

B - A = .00932

Then log a = 2. 791 63

log(a + b)
= 2.80095

Next, if log (a b) is required, we have to find the difference

1.663 44 in the part B of the table. We find in the table:

for B - 1.662 55; B - A = .009 55;

for B = 1.663 53; B - A = .009 53.
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Therefore
for B = 1.663 44; B - A = .009 53.

Subtracting this from log a, we have

log (a
-

b) = 2.78210.

EXERCISES.

*^nd log (a + I) and log (a b) from:

8. log a = 0.367 02; log b = 8.462 83.

9. log a = 0.001 26; log b = 8.329 07.

10. log a = 2.069 23; log b = 0.110 85.

11. log a = 5.807 35; log b = 3.838 09.

For values of A and B greater than 2. 00, the table is so arranged
that no interpolation at all is necessary. The computer has only to

find what value of A or B given in the table comes nearest his value

of log a log b and take the corresponding value of B A. He
must remember that column A is to be entered for addition, and B
for subtraction.

In this part of the table A and B are given to fewer than five

decimals; because five decimals are not necessary to give B A with

accuracy. The nearer the end of the table is approached, the fewer

the decimals necessary in taking the difference.

Example. Find log (a -\- b) and log (a b) from

log a = 1.265 32

log b = 9.22230

log a log*, 2.04302

Entering column A with this difference, we find the nearest tabu

lar value of A to be 2.0425, to which corresponds B A .003 92.

Hence

log (
a + b) = 1.265 32 -f .003 92 = 1.269 24.

Entering column B with the same difference, we find B A =
.00395; whence

log (a
-

b)
= 1.265 32 - .003 95 = 1.261 37.

EXERCISES.

Find log (a + b) and log (a b) from:

1. log a = 4.069 05; log b = 2.001 32.

2. log a = 3.926 93; log b = 1.201 59.

3. log a = 3.061 64; log b = 0.126 15.

4. log a = 1.22C 68; log b = 7.321 56.

5. log a = 0.693 17; log b = 6.010 23.

6. log a = 2.306 20; log b = 7.023 01.
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Case of nearly equal numbers. Near the beginning of the table

the reverse is true: it is not possible to find A with accuracy to five

places of decimals. But here the value of A taken from the tables,

though it be found to only two, three, or four places of decimals,

will give as accurate a result as the computation of a and b to five

places will admit of. Let us suppose, for example, that we have to

find log (a b) from

log a = 9.883 15

log I = 9.88296

B = 0.00019

We find ^ = 6.64-10;
whence log (a

-
b)
= 6.52 - 10.

We note that the value of A may be 6.63 or 6.65 as well as 6.64,

so that the result cannot be carried beyond two decimals. To show

that these two are as accurate as the work admits of4 we find the

natural numbers a and b from Table I.

a= 0.76410

b = 0.76377

a -I = 0.00033

Since a b has but two significant figures, and the first of these

is less than 5, two figures in the logarithm are all that can be

accurate.



TABLE YIL

SQUARES OF NUMBERS.

21. By means of this table the square of any number less than
1000 may be found at sight, and that of any number less than 10 000

by a simple and easy interpolation.

The first page gives the squares of the first 100 numbers, which
it is often convenient to have by themselves.

On the second and third pages (98 and 99) the hundreds of the

number to be squared are found at the tops of the several columns,
and the tens and units in the left-hand column. The first three or

four figures of the square are in the column under the hundreds,
and opposite the tens and units, and the last two figures on the right
of the page after the column 9 + +

Examples. The square of 634 is 401 956;
&quot; &quot; 329 &quot;

108241;
&quot; &quot; 265 &quot;

70225;
&quot; &quot; 153 &quot;

23409;
&quot; &quot; 999 &quot; 998001.

The same table may be used for any number of three significant

figures by attention to the position of the decimal-point. Thus:

51100
9 = 2611210000;

511
a = 261121;

51.1 = 2611.21;

5.11 = 26.1121;

0.511
8 = 0.261121.

When there are four significant figures, an interpolation may be

executed in several ways. If n be the nearest number the square of

Trhich is found in the table, and h the excess of the given number

over this, so that n -f- h is the number whose square is required, we

shall have

(n + h)* =n + 2nh + h = n +h (2w + h)
= n +

where W = n + h, the given number.
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We may therefore find the square of 257.4 in the following way:
257

a = 66 049

514.4 X .4 = 205.76

(257. 4)
2 = 66254.76

To find the square of 9037 we proceed thus:

9037

9030a = 81 540 900

18067 X 7 = 126469

9037
a =81667369

In many cases only one more figure will be required in the square
than in the given number. The square can then be interpolated with

all required accuracy by the differences, the last two figures of which

are found in the last column of the table, while the remaining figures

are found by taking the difference between two consecutive numbers
in the principal column.

To return to the last example, we find the difference between

257
3 and 258a

to be 515, the first figure being the difference between

660 and 665, and the last two, 15, in the last column. Then

257
a = 66 049

515 X 0.4 = 206

(257. 4)
a = 66255

which is correct to the nearest unit.

It will be remarked that the two methods are substantially the

same when only five figures are sought in the result. The substantial

identity rests upon the general theorem that

The difference of the squares of two consecutive numbers is equal
to the sum of the numbers.

We prove this theorem thus:

(n + I)
2 - n* = 2n + 1 = n + (n + 1).

When the tabular difference is taken in the way already described,

it will often happen that the difference between the numbers in the

columns of hundreds is to be diminished by unity. Thus, although
4173 4160 = 13, the difference between 645 a and 646a

is not 1391,

but 1291. These cases are noted by the asterisk after the number in

the last column.

The squares of numbers of more than four figures may be found

in the same way, but in such cases it will generally be easier to use

logarithms than the table of squares.



TABLE VIII.

TO CONVERT HOURS, MINUTES, AND SECONDS
INTO DECIMALS OF A DAY, AND VICE VERSA.

The familiar method of solving this problem is to convert

the seconds into decimals of a minute, and the minutes into decimals

of an hour, by dividing by 60, and then the hours into decimals of a

day by dividing by 24. The reverse problem is solved by multiply

ing by 24, 60,- and 60.

Table VIII. enables us to perform these operations without divi

sion. Column D gives each hundredth of a day, but its numbers may
also be regarded as ten thousandths or millionths of a day, according
to which of the following three columns is used. In column H.M.S.

are found the hours, minutes, and seconds corresponding to these

hundredths. In the next column is one hundredth of column H. M. S. y

or the minutes and seconds in the number of ten thousandths of a
TT i/- or

day in column D. Finally, column
TT^T&quot;&quot;

shows the number of

seconds in the number of millionths of a day found in column D.

Example. To convert Od.532 946 into hours, minutes, and seconds.

O d.53 = 12h 43m 12 s

.0029 = 4m 10 s.56

.000046= 3 s
. 97

Od.532 946 = 12h 47m 26 8.53

It will be seen that we divide the figures of the given decimal of

a day into pairs, and enter the three columns of time with these

three pairs in succession.

If seven decimals are given, we may interpolate the last number,

as in taking out a logarithm.

Example. Convert Od.050 762 7.

Od.05 = lh 12m O8

.000 7 = lm 8.48

.000062 = 5 3.36

.0000007 = .7X.08= 8.06

lh 13m 5 s
. 90
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TABLE
T&amp;lt; &amp;gt; CONVERT TIME INTO ABC, AND VICE VERSA.

23. In astronomy the right ascensions of the heavenly bodies

are commonly given in hours, minutes, and seconds, the circumfer

ence being divided into 24 hours, each hour into 60 minutes, and

each minute into 00 seconds.

Since S60
r = one circumference,

we have l
h a 15;

I
81 a 15

;

1- =15
;

the iigni
fc

,

m
, and indicating hours, minutes, and seconds of time.

Henr&amp;lt; we m. iy rh;int;e time info :ir&amp;lt;- l&amp;gt;\ mull
ij.|\

in-
l.y !.*..-iii l

arc into time by dividing by 15, the denominations being changed in

each cane. Table IX. enables us to do this by simple addition and

subtraction by a process similar to that employed in changing hours,

minutes, and seconds into decimals of a day.

To turn time into arc, we find in the table the whole number of

dcgrccM rontumed in the tim&amp;lt;! denomination e\i smaller than the

given one, and subtract the former time denomination from the

latter.

Next we find the minutes of arc corresponding to the given time

next smaller than the remainder, and again subtract.

Ijatly we interpolate the ItOOndi corresponding to the second

remainder.

Example. Change 15h 29&quot; 46.24 to arc.

Given time, 15* 29 46 .24

The table gives 232 = 15h
28&quot;

Remainder, I* 46&quot;. 24

The table givei 26 a l
m 44-

Remainder, 2&quot;.24 a 33 .6

Hence
15 b 29 ffl 46 . 24 = 232 26 33 . 6.
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The computer should be able to go through this operation with
out writing down anything but the result.

The operation of changing arc into time is too simple to require

description, but it is more necessary to write down the work.

EXERCISES.

Change the following times to arc, and then check the results by
changing the arcs into time and seeing whether the original timea

are reproduced:

1. 7h 29m 17 8

.86;

2. Oh 4m 8

.25;

3. 12h 4m O s

.25;

4. 13h 48m 16 8

.40;

5. 19h 7m 59 s
. 92.



TABLE X.

TO CONVERT MEAN TIME INTO SIDEREAL TIME,
AND SIDEREAL INTO MEAN TIME.

24. Since 365J solar days = 366 sidereal days (very nearly),,

any period expressed in mean time may be changed to sidereal time-

by increasing it by its ^ part, and an interval of sidereal time-
obo./co

may be changed to mean time by diminishing it by its ~
part.obb. /cO

The first part of the table gives, for each 10 minutes of the argu

ment, its ^T~nK Part, by which it is to be increased. The second:
OOO./4O

part of the table gives the part of the argument.
Obb./cO

The small table in the margin shows the change for periods of

less than 10 minutes.

Example 1. To change 17h 48m 36 s
. 7 of mean time to sidereai

time.
Given mean time, 17h 48m 36&quot;. 70

Corr. for 17h 40m
,

2m 54M3
Corr. for 8m

37&quot;,
1 8.41

Sidereal time, 17h 51m 32&quot;. 24

Ex. 2. To change this interval of sidereal time back to mean

time.

Corr. for 17h 50m,
- 2m 55 8.29

Corr. for lm 32 B
,
- 8.25

- 2m 55 8.54

Sidereal time, 17h 51m 32 8.24

Mean time, 17h 48m 36 8.70

EXERCISES.

Cnange to sidereal time:

1. 3h 42m 36 8.5 m. t.; 3. 22h 3m 5 . 61 m. t*

2. 18h 46m 29 8.82 &quot; 4. Oh lm 12 8.55 &quot;

Change to mean time:

5. Oh 7m 16 s
. 3 sidereal time;

6. 22h 17m 29 s
. 65

&quot;
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OF DIFFERENCES AND INTERPOLATION.*

25. General Principles.

We call to mind that the object of a mathematical table is to

enable one to find the value of a function corresponding to any value

whatever of the variable argument. Since it is impossible to tabulate

the function for all values of the argument, we have to construct the

table for certain special values only, which values are generally equi
distant. For example, in the tables of sines and cosines in the

present work the values of the functions are given for values of the

argument differing from each other by one minute.

The process of finding the values of functions corresponding to

values of the argument intermediate between those given is called

interpolation.

We have already had numerous examples of interpolation in its

most simple form; we have now to consider the subject in a more

general and extended way.

In the first place, we remark that, in strictness, no process of

interpolation can be applicable to all cases whatever. From the

mere facts that

To the number 2 corresponds the logarithm 0. 301 03,
&quot; &quot; &quot; 3 &quot; &quot; &quot; 0.477 12,

we are not justified in drawing any conclusion whatever respecting
the logarithms of numbers between 2 and 3. Hence some one or

more hypotheses are always necessary as the base of any system of

interpolation. The hypotheses always adopted are these two:

1. Tliat, supposing the argument to vary uniformly, the function
varies according to some regular law.

2. That this law may be learned from the values of the function

given in the table.

These hypotheses are applied in the process of differencing, the

* The study of this subject will be facilitated by first mastering so much of

it as is contained in the author s College Algebra, 299-302.

It is also recommended to the beginner in the subject that, before going
over the algebraic developments, he practise the methods of computation

according to the rules and formulae, so as to have a clear practical understand

ing of the notation. He can then more readily work out the developments.
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THEOREM. The differences of the sum of two quantities are equal
to the sums of their differences.

General proof. Let

/, /,, /,, etc., be one set of functions;

//&amp;gt; //*/ &amp;gt;

etc
-&amp;gt;

another set.

f. + //&amp;gt; /. +/. /. + /. etc., will then be their sums.

In the first of tiie following columns we place the first differences

of/, in the second those of/ , and in the third those of/+/ , each

formed according to the rule :

etc. etc. etc.

It will be seen that the quantities in the third column are the

sums of those in the first two.

NUMERICAL EXAMPLE.

/ A f A /+/ A

39
-f

&amp;gt;-47

We see that the third set of values of A* follow the theorem.

Because the second differences are the differences of the first, the

third the differences of the second, etc., it follows that the theorem

is true for differences of any order.

Now when we write a series of functions in which the decimals ex

ceeding a certain order are omitted, we may conceive each written num
ber to be composed of the algebraic sum of two quantities, namely:

1. The true mathematical value of the function.

2. The negative of the omitted decimals.

Example. In the preceding collection of logarithms, since the

true value of log 30 is 1.477 121 3 . . . , we may conceive the quantity

written to be
1.477 12 = log 30 - .000 001 3 ____

Hence the differences actually written are the differences of the

true logarithms minus the differences of the errors. Now suppose
the errors to be alternately + 0.5 and 0.5 = the point marking
off the last decimal. Their differences will then be as follows:

/ A A&quot; A &quot;

- 0.5 ,

j + 2 .. 4

etc. etc. etc. etc.



GENERAL PRINCIPLES. g$

It is evident that the nth order of differences of the errors are

equal to 2n ~ 1
. Hence, in this case, if the nth order of differences

of the true values of the function were zero, still, in consequence of

the omission of decimals, the actual differences of the nth order would
be2n -!.

This, however, is a very extreme case, since it is beyond all proba

bility that the errors should alternate in this way. A more probable

average example will be obtained by supposing a single number to have

an error of 0.5, while the others are correct. We shall then have:

f A 1
4&quot; A&quot;

1
A&quot; A*

n . n . + 0.5 -

o
o +L5 + a 1 2.072-5

-5
* - 1.0

-
\ l + 3.0 +

%* + 0.5 + &quot; - 2.0
~

&quot;

o
5

-f 0.5 + M
In this case the maximum value of the difference of the nth order

is 1.5 in the differences of the third order, 3 in those of the fourth,
5 in those of the fifth, etc. Its general expression is

2 1.2.3
where n is the order of differences, and

according as w is even or odd.

n
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If none of the differences of this order expressed in units of the

last place of decimals exceed the limit

n (n 1) . . . . (n s + 1)

1. 2.3 . . . . s

that is, the value of the largest binomial coefficient of the nth order

the given numbers may be assumed to follow a regular law, and

therefore to be correct to a unit in the last figure.

If some differences exceed this limit, their quotient by the above

binomial coefficient may be considered to shoiu the maximum error

with which the number opposite it is probably affected.

&quot;We can thus detect an isolated error in a series of numbers with

great certainty. Suppose, for example, an error of 2 in some number
of the series. Differencing the series 0, 0, 0, 2, 0, 0, 0, we shall

find the four largest differences of the fifth order to be 10, -f- 20,

20, + 10, which would enable us to hit at once upon the erro

neous number and judge of the magnitude of its error.

An error near the beginning and end of the series of numbers of

which the differences are taken cannot be detected by the difference?

unless it is considerable. If, for instance, the first or last number
is in error by 1, the error of each order of differences will only be 1,

as we may easily see by the following example:

/ A A&quot; A &quot;

&quot;

+
J
- letc

It is only in those differences which are on or near the same line

as the numbers which are magnified in the way we have shown. But
at the beginning and end of the series we cannot determine theso

differences.

Examining the various tables of differences, we see that n numbers
have n 1 first differences, n 2 second differences, and so on, the

number diminishing by 1 with each succeeding order. Hence, unless

the number of given functions exceeds the index expressing the order

of differences which we have to form, no certain conclusion can be

drawn.

What is here said of the correctness of the numbers when the

differences run properly must be understood as applicable to isolated

errors only. If all the numbers were subject to an error following a

regular law, this error would not be detected by the differences be

cause, from the nature of the case, the latter only show deviations

from some regular law.
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27. Fundamental Formulae of Interpolation.

We suppose a series of numbers to be differenced in the way already
shown, and the various differences to be designated as in the follow

ing scheme, which is supposed to be a selection from a series preceding
and following it.

Function. 1st Diff. 2d Diff. 3d Diff. 4th Diff. 5th Diff.

etc. etc. etc. etc. etc. etc.

It will be seen that the lower indices are chosen so as to

on which line a difference of any order falls. Thus all quantities
with index 2 are on one horizontal line, those with index f = 2| ar?

half a line below, etc. This notation is a little different from that

used in algebra, but the change need not cause any confusion. ,

It is shown in algebra that if n be any index, we have

.,
n (n 1) .

un u + n tH -^ ! . .v

the notation being changed as in the preceding scheme.

Now the fundamental hypothesis of interpolation is that this

formula, which can be demonstrated only for integral values of
&quot;n,

is

true also for fractional values; that is, for values of the function u

between those given in the table or in the above scheme. We there

fore suppose this formula to express the value of the function u for

any value of n between and 1.

For values between -(- 1 and -f 2 we have only to increase the

indices, of u and its differences by unity, thus:

,+ =
, + nJ

i +
n (

&quot;_~

1} A\ + etc,,

and by supposing n to increase from to 1 in this formula we shall

have values of u from u^ to u .
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Increasing the indices again that is, applying our general foi

mulae to a row of quantities one line lower we shall have

= * nA 5a J &quot;

etc-

The equation (a) is known as Newton s formula of interpolation.

28. Transformations of the Formula of Interpolation.

In the equation (a) and those following it, the formula of inter

polation is not in its most convenient form. We shall therefore

transform it so that the differences employed shall be symmetrical

with respect to the functions between which the interpolation is to

be made.

In working these transformations we shall suppose the sixth and

following orders of differences to be so small as not to affect the

result. These differences being supposed zero, any two consecutive

fifth differences may be supposed equal.

First transformation. Let us first find what the original formula

(a) will become when, instead of using the series of differences

A t, A \, A
&quot;,,

A l

\, etc.,

we use
A

t, A \, J &quot;

t, A^\, etc.

To effect the transformation we must find the values of the first

series of differences in terms of the second, and substitute them in

the formula (a).

We find, by the mode of forming the differences,

for which, because we suppose the values of Jv to be equal, we may put

Making these substitutions in (a), we have

un = u, + nA , +
n (* ~ 1}

( J&quot;. + A
&quot;,)

1.2.3.4.5
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Eeducing by collecting the coefficients of equal differences, we find

--
1.2.3.4

(n + 2)(n + l)n(n-l)(n-2)
1.2.3.4.5

Second transformation. Next, instead of the series of this last

formula, (),
J

t, J&quot;.,
J

&quot;*, JV etc.,

let us use
J -t, J&quot;.,

J
&quot;_i,

J \, etc.

To effect this transformation we substitute in (#) for J ^, ^&quot;$, etc.,

t =4 -i +//

The series (}) then changes into

&quot;.;

(n + 2) (n + 1) n (n
-

1)

1.2.3.4

Ta.s Is -^-*- &amp;lt;&quot;&amp;gt;

Third transformation. Stirling s formula. &quot;We effect a third

transformation by taking the half sum of the equations (b) and (c),

which gives us a formula perfectly symmetrical with respect to the

lines of differences, namely,

which is known as Stirling s formula of interpolation.

It will be seen that we have put
n1 -I for (n + 1) (n

-
1),

n&amp;gt;

- 4 for
(ff + *)(- 2),

etc. etc.

Fourth transformation. In the equation (), instead of the series

of differences
J t, J&quot; ,

J % ^ l *
, etc.,

let us use
J J&quot; J J^ etc.
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-. To effect this we put

J&quot; = A \
- J &quot;

i5

A^\ = z/-
i

_ j
Vi&amp;lt;

Making these substitutions in (), it becomes

--
1.2.3.4&quot;

-

1.2.3.4.5 W
transformation. BesseVs formula. Let us take half the

sum of the equations (e) and (). We then have

1.2.3.4 2

(n + i) n(fl -i)(n -a) (n -.i)
1.2.3.4.5 fa U)

which is commonly known as BesseVs formula of interpolation, and
which is the one most convenient to use in practice.

, In applying this formula to find a value of the function inter

mediate between two given values, we must always suppose, the

index to apply to the given value next preceding that to be found,
and the index 1 to apply to that next following. The quantity n
will then be a positive proper fraction.

29. Example of interpolation to halves. If we increase the loga
rithms of 30, 31, etc., already given, by unity, we shall have the

logarithms of 300, 310, 320, etc. It is required to find, by interpola

tion, the logarithms of the numbers half way between the given ones

(omitting the first and last), namely, the logarithms of 315, 325, 335,

etc.

Here, the required quantities depending upon arguments half way
between the given ones, we have n = %, and the values of the Bessel-

ian coefficient, so far as wanted, are

_

ft
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The subsequent terms are neglected, being insensible. So, if we
put a and a

l
for any consecutive two of the numbers 300, 310, etc.,

we have

log (a, + 5) = log . + (I
J

t
- I

V

log (a,
-

5) = log fll
-

4̂ +
(*)

where we put ^ for that first difference between a and ^
These two formulae are two expressions for the same quantit}

because a -f- 5 = a
l

5. They are both used in such a way as to

provide a check upon the accuracy of the work. For this purpose we

compute the two quantities

log (a. + 5)
-

log a. = \A k
- I A

&quot;

* + J
&quot;,

1

1 1 A&quot; _L A&quot; I
( /

log a,
-

log (a, + 6) = |
J

t + |
^ + *

.

J

The most convenient and expeditious way of doing the work is

shown in the accompanying table, where we give every figure which
it is necessary to write, besides those found on p. 57. The following
is the plan of computation:

No.
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is added in order that the errors may not accumulate by the addition

of several quantities. This precaution should always be taken when

the interpolated quantities are required to be as accurate as the given

ones.

The fourth column from the right is formed by adding and sub

tracting the numbers of the second and third columns according to

the formula (k). The additional figure is now dropped, because no

longer necessary for accuracy. The numbers thus formed are the

first differences of the series of logarithms found by inserting the

interpolated logarithms between the given ones, as will be seen by

equation (k).

We write the first logarithm of the series, namely,

log 310 = 2.49136,

and then form the subsequent ones by continual addition of the dif

ferences, thus:

log 315 = log 310 + 695;

log 320 = log 315 + 684;

log 325 = log 320 + 673;

etc. etc. etc.

If the work is correct, the alternate logarithms will agree with the

given ones in the former table.

The continuance of the above process for a few more numbers,

say up to 450, is recommended to the student as an exercise.

3O. Interpolation to thirds. Let us suppose the value of a

quantity to be given for every third day, and the value for every

day to be required. By putting n = and applying formula (/) to

each successive given quantity, we shall have the value for each day

following one of those given, and by putting n = f we shall have

values for the second day following, which will complete the series.

But the interpolation can be executed by a much more expeditious

process, which consists in computing the middle difference of the

interpolated quantities and finding the intermediate differences by a

secondary interpolation.

Let us put

/ , / /s, etc., the given series of quantities;

/ /u / /&amp;gt; /4 etc
-&amp;gt;

tne required interpolated series;

A , A&quot;, etc., the first differences, second differences, etc., of the

given series;

$ , 8&quot;, etc., the first differences, second differences, etc., of the

interpolated series.
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We may then put

/./ = A\ (in the given series):

/i-/.= * n
/./,= &amp;lt;?

&amp;gt; (in the interpolated series).

AW.-r,)
We shall then have

* * + *
i + *

|
= ^v

The value of /t

- / = d% is given by putting n = i in the Bes-
selian formula (/). Thus we find

+ __ 1r
243 2 1458 *

Putting n = |, we have the value of/, -/ , that is, of
Thus we find

-3&quot; 9
&quot;

~T~ ~162^ *

+
243

&quot;

^~2
1 +

1458
^

**

Subtracting these expressions, we have

_

which is most easily computed in the form

We see that the computation of #
$,

the middle difference of the

interpolated quantities, is much simpler than that of 6^. It will

therefore facilitate the work to compute only these middle differ

ences, and to find the others by interpolation.

This process is again facilitated, in case the second differences are

considerable, by first computing the second differences of the inter

polated series on the same plan. The formulae for this purpose are

derived as follows:

Let us put
* !=/.-/,

The second difference of which we desire the value is then

*&quot;.= &amp;lt;T|

-
&amp;lt;*

,.

The value of
|
is given by the equation
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and the value of $ $ is found from that of d by simply increasing, the

indices of the differences by unity, because it belongs to the next

lower line.

We thus find

2 !62

___
1458

162
~

-T^v^
Then by subtraction,

243 2 1458 **

Reducing the first of these terms, we have

J ,
- J i

= J&quot;
t
.

For the second term,

whence

and

For the third term,

J&quot; f
_ J ^ = Jiv

5
.

For the fourth term, dropping the terms in J vl as too small ID

practice, we may put

The difference of the fifth terms may also be dropped, because

they contain only sixth differences.

Making these substitutions in the value of
&quot;

8 ,
we find

&quot; 4- -J iv\ 4- ^iv 4- -i^-Jlv
J ^ ^ ^ ^

3 9

Ij/ . . JL
9 &quot; 243
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By this formula we may compute every third value of
tf&quot;, and

then interpolate the intermediate values. By means of these values
we find by addition the intermediate values of 6

, of which every
third value has been computed by formula (in). Then, by continu

ally adding the values of 6
, we find those of the function/.

As an example of the work, we give the following values of the.

sun s declination for every third day of part of July, 1886, for Green
wich mean noon:

Date.

1886.

July 3
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exceed half a unit of the last decimal in the given quantities, or five

units in the additional decimal added on in dividing.

To correct these little imperfections after the interpolation of the

second differences, but before that of the first differences, the sum of

the last two figures in each triplet of second differences should be

formed, and if it does not agree with the difference of the first differ

ences, the last figures of the second difference should each be slightly

altered, to make the sum exact.

The first differences can then be formed by addition.

In the same way, the sum of three consecutive first differences

should be equal to the difference between the given quantities. If,

as is generally the case, this condition is not exactly fulfilled, the

differences should be altered accordingly. This alteration may, how

ever, be made mentally while adding to form the required inter

polated functions.

As an exercise for the student we give the continuance of the

sun s declination for the remainder of the month, to be interpolated

for the intermediate dates from July 15th onward:

o / n

July 21 20 27 16.5

24 19 50 49.1

27 19 11 22.7

30 18 29 4.8

Aug. 2 17 44 3.1

As another exercise the logarithms of the intermediate numbers

from 998 to 1014 may be interpolated by the following table:

Number. Logarithm.

994 2.9973864

997 2.9986952

1000 3.000 000

1003 3.001 3009

1006 3.002 598

1009 3.003 891 2

1012 3. 005 180 5

1015 3. 006 466

1018 3.0077478

32. Interpolation to fifths. Let us next investigate the formulae

when every fifth quantity is given and the intermediate ones are to

be found by interpolation. By putting n = in the Besselian for

mula, we shall have the value of the interpolation function second



OF INTERPOLATION. 75

following one of the given ones, and by putting n = | that third

following. The difference will be the middle interpolated first dif

ference of the interpolated series. Putting n = in (/), we have

..
2.3.7.8 Jiy + A\ _ 2.3.7.8.1

^2.3.4.5* 2 2
a
.3.4.5.5*

Putting n =
-J,

we have

. 3 ., 2.3 J&quot; + J&quot; 2.3.1
14 = Wo + J ,

- - - ri
2.3.7.8 Jiv

-f A\ . 8.3.2.7.1 .

h
2. 3.4.5* 2 i

&quot;2.3.4.5.5
k *&quot;

The difference of these expressions, being reduced, gives

|
~ w = r-J j

-
j?&amp;gt;5^

&quot;* +
156^5

Jv*

The term in ^v will not produce any effect unless the fifth differ

ences are considerable, and then we may nearly always, in practice,

put -J-
instead of -ffa

The interpolated second differences opposite the given functions

are most readily obtained by Stirling s formula, (d). Putting n = ,

we have the following value of the interpolated first differences im

mediately following a given value of the function:

_1 ^ - t+J t 1,,, 24 4&quot; _, + J
&quot;,

&quot;

~ w
&amp;gt;

~
5 2

r
50 6.5.25 2

Again, putting ra = \, and changing the signs, we find for the

first difference next preceding a given function

1 -r+_i _ 1 . 24 A &quot;_i+A&quot;\

.
- M-t - 5

-
2 50^ 6.5.25 2

24

The difference of these quantities gives the required second dif

ference, which we find to be

tf&quot;
- -.A&quot; . A^ = (d&quot; Aj6 -

25 625 25V 25
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As an example and exercise we show the interpolation of loga
rithms when every fifth logarithm is given:

+ 21 661

108

+ 21 553

- 107

-f 21 446

+ 21 342
- 104

Number.
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PLANE AND SPHERICAL TRIANGLES.



REMARKS.

1. It is better to determine an angle by its tangent than by its

sine or cosine, because a small angle or an angle near 180 cannot be

accurately determined by its cosine, nor one near either 90 or 270

by its sine,

Sometimes, however, the data of the problem are such that the

angle can be determined only through its sine or cosine. Any un

certainty which may then arise from the source pointed out is then

inherent in the problem; e.g., if the hypothenuse and one side of a

right triangle are 0.39808 and 0.39806 respectively (sixth and follow

ing decimals being omitted), the value of the included angle may be

anywhere between 25 and 42 , no matter what method of com

putation be adopted.
2. If the sine and cosine can be independently computed, their

agreement as to the angle will generally serve as a check on the

accuracy of the computation. If they agree, their quotient will give

the tangent.
3. It is desirable, when possible, to have a check upon the accu

racy of the computation; that is, to make a computation which must

give a certain result if the work is right. But no check can give a

positive assurance of accuracy: all it can do is to make it more or

less improbable that a mistake exceeding a certain limit exists.

4. In the following list several formulae are sometimes given as

applicable to the same problem. In such cases, the most convenient

for the special purpose must be chosen*



PLANE TKIASGLE3.

Notation, a, b, and c are the three sides.

A, By and C are the opposite angles.

PLANE TRIANGLES.

Given.

tty by Cy

the three

sides.

by Cy Ay
rwo sides

and the

included

angle.

a,b,A,
two sides

and the

angle oppo
site one of

them.
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Given.
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a,B.

c,A,
the hypo-
thenuse

and one

angle.

the two

angles.

Required.

b and A. sin A sin b = sin a sin

sin A cos b = cos B.

a, b, or B. sin a = sin c sin ^4;

tan b = tan c cos ^4;

cot ^ = cos c tan ^4.

a and B.

a and b.

a, #, or c.

cos a sin j5 = cos A\
cos a cos Z? = sin A cos c;

sin a = sin ^4 sin c.

cos a sin b = cos -4 sin c\

cos cos Z&amp;gt;
= cos c.

cos^4
f

sin B*

cos j5
a

sin -4

cos c = cot ^4 cot

QUADRANTAL SPHERICAL TRIANGLES.

the two

sides.

a, C,

one side

and the

angle oppo
site the

right side.

A, B, or C,

either

angle.

A, B, or b.

A and b.

A and B.

cos A =

cos B =

c is the omitted side equal to 90.
C is the angle opposite this side,

cos a

cos

sin

cos C = cot cot #.

sin -4 = sin # sin (7;

tan B = cos # tan (7;

cot = tan cos (7.

cos ^4 sin # = cos a;

cos -4 cos b sin a cos (7.

sin -4 = sin a sin (7.

cos A sin

cos A cos

= cos a sin (7;

= cos (7.
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Given.

one angle

and the

adjacent
side.

ay A 9

one side

and the

opposite

angle.

A, C,

one angle
and the

angle oppo
site the

right side.

two angles.

Required.

t, B, or a

a and B.

a and C.

b, B, or C.

a, 1, or B.

a, 1, or C.

a and (7.

and a

cos a = cos A sin J;

tan B = sin A tan #;

cot C = cot ^4 cos b.

sin a sin B = sin .4 sin b$

sin a cos J5 = cos Z/;

cos # = cos A sin 5.

sin a sin (7 = sin A;
sin a cos C = cos -4 cos

cos c^

cos .4

sin B = cot a tan A\
sin .4.

smG = ^-a-

smA
9

sin (T
5

cos J = tan ^4 cot (7;

cos (7

cot a = cot ^4 sin B;

cot Z&amp;gt;

= sin A cot 5;
cos (7 = cos A cos B.

sin (7 sin # = sin A ;

sin C cos a = cos A sin J?;

cos (7 = cos A cos B.

sin (7 sin 5 = sin B\
sin (7 cos b = sin .4 cos B.



SPHERICAL TRIANGLES IN GENERAL.

SPHERICAL TRIANGLES IN GENERAL.

Given.
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Given.
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N.
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N.



TABLE I.

N.

200

01
02
03

04
05
06

07
08
09

210

11

12
13

14
15
16

17
} IS
19

220

21
22
23

24
25
26

27
28
29

230

31
32
33

34
35
36

37
38
39

240

41
42
43

44
45
46

47
48
49

250
mmmmmauHm*

N.
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N.
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N.
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N.

850

51
52
53

54

,
55
56

57
58
59

360

61
62

63

64
65
66

67
68
69

370

71
72
73

74
75
76

77
78
79

380

81
82
83

84
85
86

87
88
89

390

91
92
93

94
95
96

97
98
99

400
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N.

450
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N.
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N.

5oO

51

52
53

54
55
56

57
58
59

560

61
62
63

64
65
66

67
68
69

570

71

72
73

74
75
76

77
78
79

580

81
82
83

84
85
86

87
88
89

590

91
82
93

94
95
96

97
98
99

600
^~

N.
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N.
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N.
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N.



LOGARITHMS OF NUMBERS.

N.
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N.

800

01
02
03

04
05
00

07
08
09

810

11

12
13

14
15
16

17
18
19

820

21
22
23

24
25
26

27
28
29

830

31
32
33

34
35
36

37
38
39

840

41
42
43

44
45
46

47
48
49

850
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N.

850
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N.
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N.
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N.
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1

N-
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TABLE II.





TAbiE -SINES AND TANGENTS OF SMALL ANGLES.

TABLE III.

FOR

SINES AND TANGENTS OF SMALL ANGLES.

TO FIND THE SINE OB TANGENT s

Log sin a = log a (in seconds) + &
Log tan a = log a (in seconds) + T.

TO FIND A SMALL ANGLE FROM ITS SINE OB TANGENT)

Log a (in seconds) = log sin a + S .

Log a (in seconds) = log tan a -f 2*.
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SINES AND TANGENTS OF SMALL ANGLES.

1
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TABLE IV.

LOGARITHMS
OF THE

SINE, COSINE, TANGENT AND COTANGENT

FOR

EACH MINUTE OF THE QUADRANT.
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7



8 TABLE IV.



LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC.

9



40 TABLE IV.

10
|



LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC. 41

i
11



TABLE IV.



LOGARITHMS OF SINE, COStXE, TANGENT AN D COTANGENT, Ere. 4,



44 TABLE IV.

14



LOGARITHMS OF SINE, TANGENT AND COTANGENT, ETC.



TABLE IV.



LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC.

17
!
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22
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27



TABLE IV.

28



LOGARITHMS OF SINE, COSINE, TANGENT AND COTANGENT, ETC.

29
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36 i
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37
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39
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TABLE V.

NATURAL

SINES AND COSINES.
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NATURAL SINES AND COSINES.
77
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NATURAL SINES AND COSINES.
79
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NATURAL SINES AND COSINES. 81
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TABLE VI. ADDITION AND SUBTRACTION LOGARITHMS.

TABLE VI.

!

ADDITION AND SUBTRACTION LOGARITHMS.
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ADD $ log ^
~

log * = ^ SUB J
loS* - log&amp;lt;*

= /?.
jX

\ log( -f b) = log* + ^.
blJ 3*

i log (a
-

b) = log + ^
|
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88 TABLE VI.

Ann l
l Z* lo% a = A * SUB \

lo% a ~ loS^ = -#
X

\ log (a + J) = log* + ^. ( log (a - &amp;lt;*)

= log + A.



ADDITION AND SUBTRACTION LOGARITHMS.

ADIX
1 log ( + /) = bga + A SuB

{ log(~^f=log^+ A



9 TABLE VI.

A iloga-\ogt = A.
g (logs log^ = ^.

x
\ log( + *) = log + B.

bUB
i log (a

-
b) = log + ^.



ADDITION AND SUBTRACTION LOGARITHMS.

Ann /
l 8 a log b= A CTTP f logtf log = B.x

i log( + b) = log* + B.
JB

i log(*
-

b) = log + ^.



TABLE VI.

ADD -

{ lof i&amp;lt;r+J)
-loft + B SUB -

{ lo* r
l

f-To^
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A-
{afr^iT# + A s-

| gi~^1=
*
+ A
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log a log b = A. log a log b = B.

log (a + b) = log* + (^ - ^). log (a
-

)
= log* - (^ - ^)
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102 TABLE IX. ARC INTO TIME AND VICE VERSA.

o



TABLE Xfl. TO CONVERT MEAN INTO SIDEREAL TIME. 103

Mean T.

h. m.



TABLE X*. TO CONVERT SIDEREAL INTO MEAN TIME.

Sid. T.

h. m.
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