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PREFACE TO THE FIEST EDITION.

The following work is designed for the use of the

higher classes of Schools and the junior students in the

Universities. Although the book is complete in itself, in

the sense that it begins at the beginning, it is expected
that students who use it will have previously read some

more elementary work on Algebra : the simpler parts of

the subject are therefore treated somewhat briefly.

I have ventured to make one important change from

the usual order adopted in English text-books on Algebra,

namely by considering some of the tests of the conver-

gency of infinite series before makings any use of such

series : this change will, I feel sure, be generally approved.
The order in which the different chapters of the book may
be read is, however, to a great extent optional.

A knowledge of the elementary properties of Deter-

minants is of great and increasing practical utility ;
and

I have therefore introduced a short discussion of their

fundamental properties, founded on the Treatises of Dostor

and Muir.

No pains have been spared to ensure variety and inte-

rest in the examples. With this end in view, hundreds

of examination papers have been consulted
; including, with

383520



VI PREFACE.

very few exceptions, every paper which has been set in

Cambridge for many years past. Amongst the examples
will also be found many interesting theorems which have

been taken from the different Mathematical Journals.

I am indebted to many friends for their kindness in

looking over the proof-sheets, for help in the verification

of the examples, and for valuable suggestions. My especial

thanks are due to the following members of Sidney Sussex

College : Mr S. R. Wilson, M.A., Mr J. Edwards, M.A.,

Mr S. L. Loney, M.A., and Mr J. Owen, B.A.

CHARLES SMITH.

Cambbidge,

December 12th, 1887.

PREFACE TO THE THIRD EDITION.

A Chapter on Theory of Equations has been added,

which it is hoped will increase the value of the book.
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CHAPTER I

Definitions.

1. Algebra, like Arithmetic, is a science which treats

of numbers.
In Arithmetic numbers are represented by figures

which have determinate values. In Algebra the letters of

the alphabet are used to represent numbers, and each

letter can stand for any number whatever, except that in

any connected series of operations each letter must through-
out be supposed to represent the same number.

Since the letters employed in Algebra represent any
numbers whatever, the results arrived at must be equally
true of all numbers.

2. The numbers treated of may be either whole
numbers or fractions.

All concrete quantities such as values, lengths, areas,

periods of time, &c., with which we have to do in Algebra,
must be measured by the number of times each contains

some unit of its own kind. Thus we have lengths of 4, |,

5J, the unit being an inch, a yard, a mile, or any other

fixed length. It is only these numbers with which we are

concerned, and our symbols of quantity, whether figures or

letters, always represent numbers. On this account the
word quantity is often used instead of nwmber,

3. The sign + ,
which is read '

plus,' is placed before a
number to indicate that it is to be added to what has gone

S.A. 1



2 DEFINITIONS.

before. Thus 6 + 3 means that 3 is to be added to 6
;

6 + 3 + 2 means that 3 is to be added to 6 and then 2

added to the result. So also a + 6 means that the number
which is represented by b is to be added to the number
which is represented by a

; or, expressed more briefly, it

means that b is to be added to a ; again a + b + c means
that b IS to be added to a and then c added to the

result

4. The sign
—

, which is read 'minus/ is placed before

a number to indicate that it is to be subtracted from what
has gone before. Thus a—b means that b is to be subtracted

from a; a — b — c means that b is to be subtracted from a,

and then c subtracted from the result; and a — b + c means
that b is to be subtracted from a, and then c added to the

result.

Thus in additions and subtractions the order of the

operations is from left to right.

6. The sign x, which is read 'into/ is placed between
two numbers to indicate that the first number is to be

multiplied by the second. Thus axb means that a is to

be multiplied by b; also axbxc means that a is to be

multiplied by b, and the result multiplied by c.

The sign x is however generally omitted between two

letters, or between a figure and a letter, and the letters

are placed consecutively. Thus ab means the same as

axb, and 5ab the same as 5 x a x 6.

The sign of multiplication cannot be omitted between

figures : 63 for example does not stand for 6x3 but for

sixty-three, as in Arithmetic.

Sometimes the x is replaced by a point,
^ which is

placed on the line, to distinguish it from the decimal

point which is placed above the line. Thus axbxc,
a.b.c and abc all mean the same, namely that a is to

be multiplied by b and the result multiplied by c.

6. The sign -r-, which is read 'divided by' or *by/
is placed between two numbers to indicate that the fiist
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number, called the dividend, is to be divided by the

second number, called the divisor. Thus a-r-h means
that a is to be divided by h

;
also a-i-h-r-c means that

a is to be divided by 6, and the result divided by c;

and a -7- 6 X c means that a is to be divided by h and the

result multiplied by c.

Thus in multiplications and divisions the order of the

operations is from left to right.

7. When two or more numbers are multiplied together
the result is called the continued product, or simply the

product; and each number is called a factor of the

product.
When the factors are considered as divided into two

sets, each is called the co-efficient, that is the co-factor
of the other. Thus in 3a6a?, 3 is the coefficient of abx,

3a is the coefficient of hxy and 3a6 is the coefficient of x.

When one of the factors of a product is a number

expressed in figures, it is called the numerical coefficient
of the product of the other factors.

8. When a product consists of the same factor

repeated any number of times it is called a power of that

factor. Thus aa is called the second power of a, aaa is

called the third power of a, aaau is called the fourth

power of a, and so on. Sometimes a is called the first

power of a.

Special names are also given to aa and to aaa
; they

are called respectively the square and the cube of a.

9. Instead of writing aa, aaa, &c., a more convenient

notation is adopted as follows : a" is used instead of aa,
a' is used instead of aaa, and a** is used instead of

aaaa the factor a being taken n times; the small

figure placed above and to the right of a shewing the

number of times the factor a is to be taken. So also

a^h^ is written instead of aaabh, and similarly in other

cases.

The small figure, or iSiter, placed above a symbol to

1—2



4 - DEFINITIONS.

indicate the number of times that symbol is to be taken
as a factor is called the index or the exponent Thus a"

means that the factor a is to be taken n times, or that

the nth power of a is to be taken, and n is called the

index.

When the factor a is only to be taken once, we do
not write it a\ but simply a.

10. A number which when squared is equal to any
number a is called a square root of a, and is represented

by the symbol ^a, or more often by »/a: thus 2 is ^^4,

since 2^ = 4.

A number which when cubed is equal to any number
a is called a cube root of a, and is represented by the

symbol j^a : thus 3 is ^27, since 8" = 27.

In general, a number which when raised to the nth

power, where n is any whole number, is equal to a, is

called an nth. root of a, and is represented by the

symbol ^a.
The sign V was originally the initial letter of the

word radix. It is often called the radical sign.

11. A root which cannot be obtained exactly is

called a surd, or an irrational quantity: thus ^/7 and

4/4 are surds.

The approximate value of a surd, for example of ^7,
can be found, to any degree of accuracy which may be

desired, by the ordinary arithmetical process ;
but we

are not required to find these approximate values in

Algebra: for us \/7 is simply that quantity which when

squared will become 7.

12. A collection of algebraical symbols, that is of letters,

figures, and signs, is called an algebraical expression.
The parts of an algebraical expression which are con<-

nected by the signs 4- or — are called the terms.

Thus 2a — Sbx + ocy^ is an algebraical expression con-

taining the three terms 2a,
—

Sfa?, and + ^cy\
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13. When two terms only differ in their numerical

coefficients they are called like terms. Thus a and 3a are

like terms
;
also ba%^G and 3a^6'c are like terms.

14. An expression- which contains only one term is

called a monomial expression, and expressions which
contain two or more terms are called multinomial expres-

sions; expressions which contain two terms, and those

which contain three terms are, however, generally called

binomial and trinomial expressions respectively. Thus
Sab^c is a monomial, a^-{- 36^ is a binomial, and cw?* + 6a; + c

is a trinomial expression.

15. The sign =, which is read 'equals,' or 'is equal
to,' is placed between two algebraical expressions to denote
that they are equal to one another.

The sign > indicates that the number which precedes
the sign is greater than that which follows it. Thus a>b
means that a is greater than 6.

The sign < indicates that the number which precedes
the sign is less than that which follows it. Thus a<b
means that a is less than 6.

The signs =h, :^ and
<j: are used respectively for is 7iot

equal to, is not greater than, and is not less than.

The sign *.* is written for the word because or since.

The sign .'.is written for the word therefore or hence.

16. To denote that an algebraical expression is to be
treated as a whole, it is put between brackets. Thus

(a + 6) c means that b is to be added to a and that the
result is to be multiplied by c

; again (a —b){c + d) means
that b is to be subtracted from a, and that d is to be added
to c, and that then the first result is to be multiplied by
the second

;
so also (a + bf (c + df means that the cube of

the sum of a and b is to be multiplied by the square of the
sum of c and d. \

Brackets are of various shapes : thus, ( ), j }, [ ].

Instead of a pair of brackets a line, called a vinculum, is

often drawn over the expression which is to be treated as
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a whole : thus a-^h — c is equivalent to a —

(6
—

c), and

Ja -I- 6 is equivalent to tj(a + h). It should be noticed

that where no vinculum or bracket is used, a radical sign
refers only to the number or letter which immediately
follows it : thus V^a means that the square root of 2 is to

be multiplied by a, whereas J2a means the square root of

2a
;
also hja -f x means that x is to be added to the square

root of a, whereas Ja + x means that x is to be added to a
and that the square root of the whole is to be taken.

The line between the numerator and denominator of

a fraction acts as a vinculum, for , is the same as

Note. It is important for the student to notice that

every term of an algebraical expression must be added or

subtracted as a whole, as if it were enclosed in brackets.

Thus, in the expression a-\-hc — d-^-e +f, b must be .

multiplied by c before addition, and d must be divided by
e before subtraction, just as if the expression were written

a + {bc)-{d^e)+f.

EXAMPLES.

1. Find the numerical values of the following expressions in each of

which a=l, &=2, c = 3, and d=4.

(i)
5a + 3c -36 -2d, (ii) 26a-3bc + d,

(iii) ab + Sbc-5d, (iv) bc-ca~ab,

(v) a+ bc + d &nd (vi) bcd+ cda + dab + abc.

Am. 0, 12, 0, 1, 11, Sa

2. If a=3, 6= 1 and c=2, find the numerical values of

(i) 2a»-36a_4c8, (ii) 2a26-363c%

(iii) -lc»-|6^ (iv) a^ + '6ac^ - 3a^c - c\

and (v) 2a*b^c - Sb^c'^a - 2c*a^b.

Ana. 19, 6, 0, 1, 0.
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3. Find the values of the following expressions in each of which a— 3
6= 2, c= l and d= Q.

(i) {3a+ 4d)(26-3c),

(ii) 2a'>-{b^-S(^)d,

(iii) a»-6»-2(a-& + c)»,

(iv) a{b^-c^) + b{c^-d^) + d(a^-c%

(v) 3(a+ 6)2(c + d)-2(6 + c)2{a + d),

,
/ .,

2a2 262 20" 2cP
and (vi) z , , -\ r .

b + c c+ a b + d a + b

Am. 9, 18, 3, 11, 21, 3.

4. Find the values of

Va« -
h-\ Joab + c, J{h^c^ + h^<^) 9.ndi ^o? +W^AV\

when . a= 5, 6 = 4, c= 3.

ylns. 3, 13, 60, 5.

5. Shew that a^-b"^ and (a + 6) {a -6) are equal to one another (i)

when a= 2, b= l\ (ii) when a= 6, 6= 3; and (iii) when a=12, 6= 5.

6. Shew that the expressions

a8-63, (a-6)(a2 + a6+62), (a- 6)8+ 3a6(a-6),

and (a+ 6)8
- 3a6 {a + b)- 263

are all equal to one another (i) when a= 3, 6= 2; (ii) when a= 5, 6= 1;
and (ii) when a = 6, 6 •=3.



CHAPTER II.

Fundamental Laws.

17. We have said that all concrete quantities must
be measured by the number of times each contains some
unit of its own kind. Now a sum of money may be either

a receipt or a payment, it may be either a gain or a loss ;

motion along a given straight line may be in either of two

opposite directions
;
time may be either before or after some

particular epoch ;
and so in very many other cases. Thus

many concrete magnitudes are capable of existing in two

diametrically opposite states : the question then arises

whether these magnitudes can be conveniently distin-

guished from one another by special signs.

18. Now whatever kind of quantity we are consider-

ing + 4 will stand for what increases that quantity by
4 units, and — 4 will stand for whatever decreases the

quantity by 4 units.

If we are calculating the amount of a man's property
(estimated in pounds), + 4 will stand for whatever increases

his property by £4, that is + 4 stands for £4 that he

possesses, or that is owing to him
;
so also — 4 will stand

for whatever decreases his property by £4, that is,
— 4 will

stand for £4 that he owes.

If, on the other hand, we are calculating the amount
of a man's debts, + 4 will stand for whatever increases his
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debts, that is, + 4 will now stand for a debt of £4
;
so also

— 4 will now stand for whatever decreases his debts, that

is,
- 4 will stand for £4 that he has, or that is owing to

him.

If we are considering the amount of a man's gains, + 4

will stand for what increases his total gain, that is, + 4

will stand for a gain of 4
;
so also — 4 will stand for what

decreases his total gain, that is,
— 4 will stand- for a loss of

4. If however we are calculating the amount of a man's

losses, + 4 will stand for a loss of 4, and — 4 will stand for

a gain of 4.

Again, if the magnitude to be increased or diminished

is the distance from any particular place, measured in

any particular direction, + 4 will stand for a distance of

4 units in that direction, and — 4 will stand for a distance

of 4 units in the opposite direction.

19/ From the last article it will be seen that it is not

necessary to invent any new signs to distinguish between

quantities of directly opposite kinds, for this can be done

by means of the old signs + and —.

The signs + and — are therefore used in Algebra with

two entirely different meanings. In addition to their

original meaning as signs of the operations of addition and
subtraction respectively, they are also used as marks of
distinction between magnitudes of diametrically opposite
kinds.

The signs + and — are sometimes called signs of
affection when they are thus used to indicate a quality of

the quantities before whose symbols they are placed.
The sign +, as a sign of affection, is frequently omitted

;

and when neither the + nor the ~ sign is prefixed to a

term the + sign is to be understood.

20. A quantity to which the sign + is prefixed is

called a positive quantity, and a quantity to which the

sign
— is prefixed is called a negative quantity.
The signs + and — are called respectively the positive

and negative signs.
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Note. Although there are many signs used in algebra,
the name sign is often used to denote the two signs + and
—

exclusively. Thus, when the sign of a quantity is

spoken of, it means the + or — sign which is prefixed to

it; and when we are directed to change the signs of an

expression, it means that we are to change the + or —
before every term into — or + respectively.

21. The magnitude of a quantity considered inde-

pendently of its quality, or of its sign, is called its absolute

magnitude. Thus a rise of 4 feet and a fall of 4 feet are

equal in absolute magnitude ;
so also + 4 and — 4 are

equal in absolute magnitude, whatever the unit may be.

Addition.

22. The process of finding the result when two or more

quantities are taken together is called addition, and the

result is called the sum.

Since a positive quantity produces an increase, and a

negative quantity produces a decrease, to add a positive

quantity we must add its absolute value, and to add a

negative quantity we must subtract its absolute value.

Thus, when we add -f 4 to + 6, we get + 6 + 4
;
and when

we add — 4 to + 10, we get + 10 — 4.

Hence + 6 + (+ 4)
= + 6 + 4,

and + 10 + (- 4)
= + 10 - 4.

So also, when we add + 6 to + a, we get + a + 6
;
and

when we add — 6 to + a, we get + a - 6. Hence

+ o + (+ 6)
= + a + ^>,

and + a + (— 6)
= + a — 6.

We therefore have the following rule for the addition

of any term : to add any term affix it to the expression to

which it is to he added, with its sign unchanged.
When numerical values are given to a and to 6, the

numerical values of a + 6 and a — b can be found
; but
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until it is known what numbers a and b stand for, no

further step can be taken, and the process is considered

to be algebraically complete.

23. When b is greater than a, the arithmetical

operation denoted by a — 6 is impossible. For example, if

a = 3 and 6 = 5, a — b will be 3 — 5, and we cannot take

5 from 3. But to subtract 5 is the same as to subtract 3

and 2 in succession, so that

3-5 = 3-3-2 = 0-2 = - 2.

We then consider that —2 is 2 which is to be sub-

tracted from some other algebraical expression, or that
— 2 is two units of the kind opposite to that represented

by 2
;
and if — 2 is a final result, the latter is the only

view that can be taken.

In some particular cases the quantities under con-

sideration may be such that a negative result is without

meaning ;
for instance, if we have to find the population

of a town from certain given conditions
;
in this case the

occurrence of a negative result would shew that the given
conditions could not be satisfied, and so also in this case

would the occurrence of a fractional result.

Subtraction.

24. Since subtraction is the inverse operation to that

of addition, to subtract a positive quantity produces a

decreasey and to subtract a negative quantity produces an
increase. Hence to subtract a positive quantity we must
subtract its absolute value, and to subtract a negative

quantity we must add its absolute value. Thus, to

subtract + 4 from +10, we must decrease the amount by
4

;
we then get +10 — 4.

Also to subtract — 4 from + 6, we must increase the

amount by 4
;
we then get +6 + 4.

Hence +10-(+4) = + 10-4 = + 6,

and + 6-(-4) = + 6 + 4 = + 10.



12 FUNDAMENTAL LAWS.

So also, in all cases

a — (+ 6)
= a — 6,

and a — (—h) = a-\-b.

We therefore have the following rule for the subtraction

of any term :
—to subtract any term affix it to the expression

from which it is to be subtracted but with its sign changed.

25. We have hitherto supposed that the letters used
to represent quantities were restricted to positive values

;

it would however be very inconvenient to retain this

restriction. In what follows therefore it must always be

understood, unless the contrary is expressly stated, that

each letter may have any positive or negative value.

Since any letter may stand for either a positive or for

a negative quantity, a term preceded by the sign + is not

necessarily a positive quantity in reality ;
such terms are

however still called positive terms, because they are so in

appearance; and the terms preceded by the sign
-- are

similarly called negative terms.

26. On the supposition that b was a positive quantity,
it was proved in Articles 22 and 24, that

a-\-(+b) = a-\-b.. (i)

a + (-6) = a-6 (ii)

a — (+ 6)
= a — 6 (iii)

and a — (-6) = a + 6 (iv),

We have now to prove that the above laws being true

for all positive values of 6 must be true also for negative
values.

Let b be negative and equal to —
c, where c is any

positive quantity ;
then

+ 6==4.(-c) = — c from (ii),

and -6 = — (
—

c)
= + c from (iv).

Hence, putting
— c for + 6, and + c for — 6 in (i), (ii).

.(A).
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(iii), (iv), it follows that these relations are true for all

negative values of 6, provided
a 4- (— c)

= a — c,

a + {+c) =a + c,

a — (— c)
= a 4- c,

and a — (+ c)
= a — c,

are true for all positive values of c
;
and this we know to

be the case.

Kence the laws expressed in (A) are true for all values

of 6.

27. Def. The difference between any two quantities
a and b is the result obtained by subtracting the second

from the first.

The algebraical difference may therefore not be thq
same as the arithmetical difference, which is the result

obtained by subtracting the less from the greater. The

symbol a • 6 is sometimes used to denote the arithmetical

difference of a and h.

Def. One quantity a is said to be greater than another

quantity b when the algebraical difference a — b is positive.
From the definition it is easy to see that in the series

1, 2, 3, 4, &c., each number is greater than the one before

it
;
and that, in the series —

1,
—

2, --3, —
4, &c., each

number is less than the one before it.

Thus 7, 5, 0,
—

5,
— 7 are in descending order of

magnitude.
EXAMPLES.

Ex. 1. Find the sum of (i)
5 and -

4, (ii)
- 5 and 4, (iii) 5,-3 and

- 6 and (iv)
-

3, 4,
- 6 and 6. Am. 1,

-
1,

-
4, 0.

Ex. 2. Subtract (i) 3 from -
4, (ii)

- 4 from 3, and
(iii)

- a from
-b. Ans. -1,1, -b + a.

Ex. 3. A barometer fell '01 inches one day, it rose -015 inches on
the next day, and fell again '01 inches on the third day. How
much higher was it at the end than at the beginning?

Am. - '005 inches.

Ex. 4. A thermometer which stood at 10 degrees centigrade, fell

20 degrees when it was put into a freezing mixture: what was
the final reading?

^
Am. -IC.
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Ex. 5. Find the value of a-b+ e and of -a + b-c, when a=l,
6=:-2andc= 3. 47w. 6, -G,

Ex. 6. Find the value of -a+b-c when

a=l, 6= -2, 0= -1; also when

a=s-2, 6=-l, crr-3. Am. -2,4.

Ex. 7. Find the value of a -
(
-

6) + (
-

c) when
a= -3, 6= -2, c=-l, Ans. -^.

Ex. 8. Find the value of - a+ (
-

6)
-

(
-

c) when
a= -2, 6= -3, c= -6. Ant. 0.

Ex. 9. Find the value of -{~a) + b-{-c) when
a= -1, 6= -2, c= -3. Am. -&.

Multiplication.

28. In Arithmetic, multiplication is first defined to be
the taking one number as many times as there are units in

another. Thus, to multiply 5 by 4 is to take as many
fives as there are units in four. As soon, however, as

fractional numbers are considered, it is found necessary to

modify somewhat the meaning of multiplication, for by the

original definition we can only multiply by whole numbers.
The following is therefore taken as the definition of

multiplication :

" To multiply one number by a second is to

do to the first what is done to unity to obtain the second."

Thus 4 is 1 + 14-1+ 1.;

.-. 5 X 4 is 5 + 5 + 5 + 5.

Again, to multiply ^ by J, we must do to f what is

done to unity to obtain J; that is, we must divide f into

four equal parts and take three of those parts. Each of

the parts into which ^ is to be divided will be fr-—. , and^ ^ 7x4

by taking three of these parts we get ^
—7 . Thus s x ?

_5_x_3
"7x4*
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So also, (-5)x4 = (-5) + (-6) + (-5) + (-5)
=_5_5_5_5
= -20.

With the above definition, multipHcation by a negative

quantity presents no difficulty.

For example, to multiply 4 by
— 6. Since to subtract

5 by one subtraction is the same as to subtract 5 units

successively.
-5 = -l-l-l-l-l;

.*. 4x( — 5) = — 4— 4 — 4 — 4 — 4

= -20.

Again, to multiply
— 5 by — 4. Since

-4 = -l-l-l-l;
,.(_5)x(-4) = -(-5)-(-6)-(-5)- (-5)

= + 5 + 5 + 5 + 5 [Art. 26]

= + 20.

We can proceed in a similar manner for any other

numbers, whether integral or fractional, positive or nega-
tive.

Hence we have the following rule :

To find the product of any two quantities, multiply their

absolute values, and prefix the sign + if both factors be

positive or both negative, and the sign
—

if one factor be

positive and the other negative.

Thus we have

( + a)x( + ^) = + a6 (i)
^

(~a) x( + b)
= -ab (ii)

( + a)x(-6) = -a6 (iii)

( -a) X (-6) = + a&., (iv) j

The rule by which the sign of the product is determined

IS called the Law of Signs. This law is sometimes

enunciated briefly as follows : Like signs give +, and unliht

signs give
—

.

.(B).
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29. The factors of a product may be taken in

any order. It is proved in Arithmetic that when one

number, whether integral or fractional, is multiplied by a

second, the result is the same as when the second is multi-

plied by the first.

The proof is as follows : when the numbers are integers,
a and h suppose, write down a series of rows of dots,

putting a dots in each row; and take h rows, writing the

dots under one another as in the following scheme :

a m a row
* *****#****
4( « 4t * ^ iK I

h rows.

Then the whole number of the dots is a repeated h

times, that is a x 6. Now consider the columns instead

of the rows : there are
'

clearly h dots in each column, and
there are a columns

;
thus the whole number of dots is h

repeated a ^times, that is 6 x a. Hence, when a and h are

integerSy ah = ha.

When the numbers are fractions, for example f and f ,

5 3 5x3
we prove as in Art. 28 that

17
x t = k—7 • And, by the

, rr,. 5x33x5, 5335
above proof for integers, =—^

= 7
—

=; hence i? >< 7 = 7 ^ ir-

Hence we have ah = ha, for all positive values of a and

6; and the proposition being true for any positive values of

a and 6, it must be true for all values, whether positive or

negative ;
for from the preceding Article the absolute value

of the product is independent of the signs, and the sign
of the product is independent of the order of the factors.

Hence for all values of a and h we have

ah — ha (i).

If in the above scheme we put c in place of each of the
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dots; the whole number of the c's will be ab; also the

number of c's in the first row will be a, and this is repeated
b times. Hence, when a and b are integers, c repeated ab
times gives the same result as c repeated a times and this

repeated b times. So that to multiply by any two whole

numbers in succession gives the same result as to multiply
at once by their product; and the proposition can, as

before, be then proved to be true without restriction to

whole numbers or to positive values. Thus, for all values

of a, b and c, we have

axbxc = ax(be) (ii).

By continued application of (i) and (ii) it is easy to

shew that the factors of a product may be taken in any
order, however many factors there may be. Thus

abo^cab = cba, &c (C).

30. Since the factors of a product may be taken in

any order, we are able to simplify many products. For

example:
3ax4a = 3x4xaxa = 12a^

(- 3a) X (- 46) = + 3(x X 46 = 3 X 4 X tt X & = 12ab,

(aby = abxab = axaxbxb = d^b^,

(V2a)' = ^/2a x V2a = y/2x^2xaa = 2a'.

Although the order of the factors in a product is

indifferent, a factor expressed in figures is always put first,

and the letters are usually arranged in alphabetical order.

31. Since a^ = aa, and a' — aaa; we have

So also

and

In the above examples we see that the index of the

product of two powers of the same letter is equal to the sum
of the indices of the factors. We can prove in the following

S.A. 2
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manner that this is true whenever the indices are positive

integers :

since by definition

a'" = aaaa ... to m factors,

and a" = aaaa ... to n factors
;

.*. a'" X a" = {aaa ... to m factors) x {aaa ... to n factors)

= aaa ... to {m + n) factors,

= a*"^, by definition;

hence a'"xa" = a"'^ (D).

The law expressed in (D) is called the Index Law.

32. Since (- a) x {~a)=-^- a' = (+ a) (+ a) [Art. 28],

it follows conversely that the square root of a* is either

H- a or — a: this is written s/d''
= ± a, the double sign being

read
*

plus or minus.'

Thus there are two square roots of any algebraical

quantity, which are equal in absolute magnitude but

opposite in sign.

EXAMPLES.

1. Multiply 2a by -46, a^ by -aSand -2a86by -3a&».

Am. -8ab, -a"^, 6a*b*.

2. Multiply
- 2xy^ by - 3yh, Saxh/ by -

Ba^xy^, and Sa^c^x by 12ab^cx^.

Ans. Qxyh,
-

IBa^x'^y'^, SQa^b^c^x*.

3. Multiply

la'^bh^ by - Sa^^c^, and - 2ab'^xY by -
Aa^b^x^i/.

Ans. -21a76«c», Sa^ftSx^yS.

4. Find the values of (
-
a)\ (

-
a)^, (

-
a)* and (

- a)\

Ans. a^, -a', a*, -a^.

6. Find the values of
(
- ab)\ {a%y and (

-
Sab^c^)*.

Ans. a%\ a8&4, -21a^b^c*.

6. Shew that the successive powers of a negative quantity are

alternately positive and negative.

7. Find the cubes of 2a»6, - Zdb^c^, and - 2a%xh)'K

Am. 8a«63,
- 27a36«c» and -

Qa^h^x^y'^.
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8. Find the value of {-afxi-b)^ of (
-
2a62)3 x (

-
Sa^ft)', and

of {-Sabc)^x{2a%)K
Am, -a2&3, 216a96», 72a»b^c\

9. Find the value of 3abc~2a^bc^ + Ac*y when a— 2, &=-!, and

c=-2.
Am. 12.

10. Find the value of 2a^bc-Sb^cd+4,c^da - 5cPab, when a=-l,
6= -2, c= -3 and d= -4.

4m. -148.

Division.

33. Division is the inverse operation to that of multi-

plication; so that to divide a by 6 is to find a quantity c

such that cxb = a.

Since division is the inverse of multiplication and

multiplications can be performed in any order [Art. 29], it

follows that successive divisions can be performed in any
order. Thus a-^6-r-c=a-^c-^6.

It also follows from Art. 29 that to divide by two

quantities in succession gives the same result as to divide

at once by their product. Thus a-r-b -r-c = a-7- (be), which
is usually written a -r- be.

Not only may a succession of divisions be performed
in any order, but divisions and multiplications together

may be performed in any order. For example

axb-^c = a-i-cxb.

For a = a-r-oxc;

.\ a xb — a-i-cx cxb
= a-i-cxbxc'f [by Art. 29]

therefore, dividing each by c, we have

a X b-r- c = a^c xb.

Hence we get the same result whether we divide the

product of a and b by c, or divide a by c and then multiply

by 6, or divide 6 by c and then multiply by a.

34. The operation of division is often indicated by
placiDg the dividend over the divisor with a line between

2—2
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them : thus
j-
means a-i-b. Sometimes a/b is written for

r . When a-r-b is written in the fractional form 7- ,
a is

b

called the numerator, and b the denominator.

Since - = 1 -r c,
cIt-xc=l^cxc = l.
c

Also ax-xc = ax(-xc)=axl=a.
c \c J

Therefore, dividing by c,

1
a X - = a -f- c,

c

so that to divide by any quantity c is the same as to

multiply by the quantity -.
c

Hence a xb -7-c = a-r- c xb^

can be written,

ax6x-=ax-x6,
c c

in which form it is seen to be included in Art. 29 (C).

35. Since a? x a^ = a^, and aJ xa^ = a*®; we have con-

versely a^ ^a* = a^ and a^" -^ a^ = a'.

And, in general, when m and n are any positive integers
and m > w, we have

for by Art. 31
a"'~" X a** = a*".

Hence if one power of any quantity be divided by
a lower power of the same quantity, the index of the

quotient is equal to the difference of the indices of the

dividend and the divisor.
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and
*

a'b'o'^a'b'c' = a'b\

36. We have proved in Art. 28 that

ax (—b) = — ab;

,\ (— ab) -5- (~ 6)
= a, and (— a6) -r- a = — 6 ;

we have also proved that

(-a)(-6)= + a6 = (+a)(+6);

.\ (+ ab)
~ (- a) = --

6, and (+ ab) h- (+ a) = + 6.

Hence if the signs of the dividend and divisor are

alike, the sign of the quotient is + ;
and if the signs of

the dividend and divisor are unlike, the sign of the quo-
tient is —

;
we therefore have the same Law of Signs in

division as in multiplication.

Thus -a'b'^ab' = -a'b\

and - 2a'bG' ^ - Sa^bc" = | ac\

. EXAMPLES.

1. Divide 10a by - 2a, Ba^b^ by -
2a6», and - la'^b^* by - Sa^b^c\

AriM. -6, -^a, -a-^6c^.

2.' Divide - 2a^b'^c^ by 4^a^bc^,
-

Qx'^y* by Sx^y, and -
ba^^x'^y^ by

-2a6%V-
Am.

-^a^b% -2xhj\ |aa;V-

3. Multiply - 2a36c^ by - BaWc^ and divide the result by 8a=*6«c«.

Ana. -aV^e.
4

37. The fundamental laws of Algebra, so far as

monomial expressions are concerned, are those which were
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marked A, B, C, D in the preceding articles, and which are

collected below :

+ (+a) = + a

+ (-a) = -a

-
(- a)

= + a

(+ a) (+ 6)
= + ab

(+ a) (- 6)
= - ah

(- a) (+ 6)
= - ab

(- a) (- 6)
= 4- ri6

a6c = cba = ca6 = &c.

(A),

(B),

•(C),

.(D).

It should be remarked that the laws expressed in (A),

(B), (C) have been proved to be true for all values of a and

6; but both m and n are supposed in (D) to be positive

integers.

Multinomial Expressions.

38. We now proceed to the consideration of multi-

nomial expressions.
We first observe that any multinomial expression can

be put in the form

a + h + c-\- &c.,

where a, b, c, &c. may be any quantities, positive or nega-
tive.

For example, the expression Sx*y
—

^xy*
—

7ccyz, which

by (A) is the same as Safy + (- ^ccy^) + (— 7a:yz), takes
the required form if we put a for Sx^y, b for — ^xy^, and c

for (— Ifxyz).

It therefore follows that in order to prove any theorem
to be true for any algebraical expression, it is only necessary
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to prove it for the expression a + b + c-i- &c., where a,b,c, &c.

are supposed to have any values, positive or negative.

39. It follows at once from the meaning of addition

that the sum of two or more algebraical quantities is the

same in whatever order they are added. For example, to

find how much a man is worth, we can take the different

items of property, considering debts as negative, in any
order.

Thus a + 6 + c = c + a + 6 = 6 + c + a = &c (E).

The laws [C] and [E] are together called the Com-
mutative Law, which may be enunciated in the following
form : Additions or Multiplications may be made in any
order.

40. Since additions may be made in any order, we have

a + (b-{-c + d+ ...)
=

(6 + c + cZ+ ...) + a (from E)

= b-\-c-\-d+ ... + a

= a + b+c + d-\- ... (from E).

Hence, to add any algebraical expression as a whole is

the same as to add its terms in succession.

Since the expression -\-a — b-{-c — d may be written in

the form + a + (— ^) + c + (— c?), we have

-\-{+a-b + c-d}=+{+a+(-b)+c-h(-d)}
= -]-a-\-{-b)-\-c + (-d).

Whfen we say that we can add the terms of an expres-
sion in succession, it must be borne in mind that the

term^ include the prefixed signs.

41. Since subtraction and addition are inverse opera-
tions, it follows from the preceding that to subtract an

expression as a whole is the same as to subtract the terms
in succession. Thus

a — {b + c-\-d+...) = a — b — o — d—.,.
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42. If c be any positive integer, a and h having any
values whatever, then

(a + 6) c = (ct + 6) + (a + 6) + (a + 5) + ... repeated c times

= a-\-h + a-\-h + a + h+ .., [Art. 40]

= a + a + a + . . . repeated c times

+ 6 + 6 + ^ + . . . repeated c times

= ac + ho.

Hence, when c is a positive integer, we have

(a + 6)c= ac + ho (F).

Since division is the inverse of multiplication, it follows

that when d is any positive integer

And hence

{a-\-h) X c ^ d = [(a -\-h) X c] ^ d

=
(ac + hc) -T- d^ac^d+bc-i-dj

c c c
that is (a + 6) X -, = a X -, + 6 X 1 .^ d d d

Thus the law expressed in (F) is true for all positive
values of c

;
and being true for any positive value of c, it

must also be true for any negative value. For, if

(a + 6) c = ac + 6c,

then {a -\-h) {— c)
= —

{a-\-h) c^ — dc — ho

= a(-c)+6(-c).

Hence for all values of a, h and c we have

{a-\-h)c = ac-\-hc (F).

Thus the product of the sum of any two algebraical

quantities by a third is the sum of the products obtained

by multiplying the quantities separately by the third.

The above is generally called the Distributive Law.
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43. Since (a + 6) -r- c = (a + 6) x -

c c

we see that the quotient obtained by dividing the sum of

any two algebraical quantities by a third is the sum of the

quotients obtained by dividing the quantities separately by
the third.

44. From Art. 40 it follows that

a + 6 + c + c2 + e + . .. = (a + 6) + c + (d + e) + ...

= a + (6 + c + c?) + e + ... = &c.,

so that the terms of an expression may be grouped in any
manner.

Again, from Art. 29, it follows that

ahcde ... = a (be) (de) ... =a (bed) e ... = &c.,

so that the factors of a product may be grouped in any
manner.

These two results are called the Associative Law.

45. We have now considered all the fundamental laws

of Algebra, and in the succeeding chapters we have only to

develope the consequences of these laws.



CHAPTER III.

Addition. Subtraction. Brackets.

Addition.

46. We have already seen that any term is added by
writing it down, with its sign unchanged, after the expres-
sion to which it is to be added

;
and we have also seen

that to add any expression as a whole gives the same
result as to add all its terms in succession. We therefore
have the following rule :

—to add two or more algebraical

expressions, write down all the terms in succession with
their signs unchanged.

Thus the sum of a — 26 + 3c and — 4c2 — 5e + 6/ is

a-26 + 3c-4d- 5e + 6/.

47. If some of the terms which are to be added are
'like' terms, the result can, and must, be simplified before

the process is considered to be complete.
Now two 'like' terms which have the same sign are

added by taking the arithmetical sum of their numerical
coefficients with the common sign, and affixing the com-
mon letters.

For example, to add 2a and 5a in succession gives the same result,
whatever a may be, as to add 7a; that is, +2a + 5a= +7a. Also, to

subtract %i and 5a in succession gives the same result as to subtract

7a; that is,
- 2a - 5a= - 7a,
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Also two *like' terms whose signs are dififerent are

added by taking the arithmetical difference of their

numerical coefficients with the sign of the greater, and

affixing the common letters.

For example, + 6a - 3a= + 2a+ 3a - 3a= + 2a,

also +8a-6a= +3a-3a-2a= -2a.

Thus, when there are several *like' terms some of

which are positive and some negative, they can all be
reduced to one term.

Ex. 1. Add 2a+ 56 to a - 66.

The sum is a-66 + 2a+ 66

= a+ 2a-66 + 56

= 3a-6.

Ex.2. Add 3a2-5a6 + 76',
- 4a2 - 2a6+ 36%

and 2aa + 6a6-86s.

The sum is 3a' - 5a6 + 762 _ 4^2 _ 2ab + 36' + 2a' + 5a6 - 86«.

The terms Sa^, - 4a', and + 2a' can be combined mentally; and we
have a'. Similarly we have - 2a6 and + 26'.

Thus the required sum is a' - 2a6 + 26'.

The beginner will find it desirable to put like terms
under one another.

Subtraction.

48. We have already seen that any term may be sub-

tracted by writing it down, with its sign changed, after the

expression from which it is to be subtracted
;
and we have

also seen that to subtract any expression as a whole gives
the same result as to subtract its terms in succession. We
therefore have the following rule : To subtract any alge-
braical expression, write down its terms in succession with

all the signs changed.
Thus, if a— 2b-}- 3c be subtracted from 2a — Sb — 4<c,

the result will he 2a - Sb - 4iC — a -\- 2b — Sc = a — b — 7c.

49. The expression which is to be subtracted is some-
times placed under that from which it is to be taken, 'like*

terms being for convenience placed under one another;
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and the signs of the lower line are changed mentally before

combining the 'like' terms.

Thus the previous example would be written down as under:

2a - 36 - 4c

a-2&+ 3c

a- h-lc

As another example, if we have to subtract 3o6 -6ac+c* from
a' - bah + 2ac - 2l)\ the process is written

a2-5a6 + 2ac-262

3a6 - 5ac + c'

a2-8a6 + 7ac-262-c«

Brackets.

50. To indicate that an expression is to be added as a

whole, it is put in a bracket with the 4- sign prefixed
But, as we have seen in Art. 46, to add any algebraical

expression we have only to write down the terms in suc-

cession with their signs unchanged.
Hence, when a bracket is preceded by a -}- sign, the

bracket may be omitted.

Thus 4- (2a
- 56 + 7c)

= + 2a - 56 + 1c.

Hence also, any number of terms of an expression may
be enclosed in brackets with the sign + placed before each

bracket. Thus

3a - 26 + 4c - d + e -/= 3a - 26 + (4c
- ci + e -/)

= 3a + (- 26 + 4c)
- c? + (e -/).

When the sign of the fii'st term in a bracket is + it

is generally omitted for shortness, as in the preceding

example.

51. To indicate that an expression is to be subtracted

as a whole, it is put in a bracket with the — sign prefixed.

But, as we have seen in Art. 48, to subtract any alge-
braical expression we have only to write down the terms
in succession with all their signs changed.
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Hence, when a bracket is preceded by a —
sign, the

bracket may be omitted, provided that the signs of all the

terms within the bracket are changed. Thus

a-(2h-c + d)=^a-2b + o-d.

Hence also, any number of terms of an expression may
be enclosed in a bracket with the sign

—
prefixed, provided

that the signs of all the terms which are placed in the

bracket are changed. Thus

a- 2h + Sc - d = a - (2b
- Sc -h d)

= a - 2h - (- Sc -h d).

52. Sometimes brackets are put within brackets: in

this case the different brackets must be of different shapes
to prevent confusion.

Thus a — [2b
—

{3c
—
(2d

—
e)}] ;

which means that we
are to subtract from 2b the whole quantity within the

bracket marked
{ },

and then subtract the result from a
;

and, to find the quantity within the bracket marked
{ },

we must subtract e from 2d, and then subtract the result

from 3c.

When there are several pairs of brackets they may be
removed one at a time by the rules of Arts. 50 and 51.

Thus a-[b + {c-{d~e)}]
= a-[b + {c-d-{-e}]
= a— [b + c — d-j-e]

^^a — b — c + d — e.

EXAMPLES L

1. Add Sx — 5y, bx — 2y and Ty — 4x.

2. Add 3x- by + 2z, bx—ly- 5z and Qy-z-lOx.

3. Add ^a-^b + lcy ^b -^c + ^a and ^c-^a + ^b,

4. Add a^-a' + a, a' -a+\ and a* -a^- 1.

5. Add of - bxy - 7y* and Sy^ + ixy - x'.
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6. Add m* — Zmn + 2n', 3n* — m* and 5mn — 3n' + 2m*.

7. Add 3a* -2ac- 2ab, 2b' + Sbc + 3ab and c' - 2ac - 2bc.

8. Add ^a'b
- 5ab' + 76», 2a' - Ja»6 + 5ab' and 36' - 2a'.

9. Subtract 3a — 46 + 2c from a + 6 - 2c.

10. Subtract - + - 6 - ^ c from c - ^ a - ^ 6.

11. Subtract 30:* - 4a; + 2 from 4a;' - 5a; - 7.

12. Subtract 5a* - 3a«6 + 4a*6» from 56* - 3a6' + 4a'6'.

13. Wliat is the difference between - 3a;' - t)xy + 4y* and
-6a;' + 2a;2/-3/?

14. What must be added to 26c — 3ca — 4a6 in order that

the sum may be bc + ca]

15. What must be added to 3a'- 26' + 3c' in order that

the sum may be 6c + ca + a6?

16. Simplify 3a; - {23/ + (5a;
- 3a; + y)}.

17. Simplify a; - [3y + {3z
- x^2y\ 4-

2a;].

18. Simplify y- 2a;- {«- a;- y-a; + z}.

19. Simplify a-[a-6-{a-6 + c-a-6 + c- d\\

20. Simplify 2a; - [3a; -^y- {2x
- 3y - (a;

+ 5y)}].

21. Simplify a - [3a + c - {4a
-

(36
-

c) + 36}
-
2a\

22. Subtract x — {3y
-

z) from y - {2x-z-y}.

23. Subtract 2m — (3m - 2?i — m) from 2n— (3n- 2m — n).

24. Find the value of

{a-(b- c)Y + {b-(c- a)]' + {c-{a- 6)}' when

a = -l, 6 = -2, c=-3.

25. Find the value of

{a'
-

(6
-

c)'}
-

{6'
-

(c
-

a)'}
-

{c'
-

(a
-

6)'} when

a=l, 6=2, c=- 3.
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Multiplication.

53. Product of monomial expressions. The

multiplication of monomial expressions was considered in

Chapter II.
,
and the results arrived at were :

(i) The factors of a product may be taken in any
order.

(ii) The sign of the product of two quantities is +
when both the factors are positive or both negative ;

and
the sign of the product is — when one factor is positive
and the other negative.

(iii) The index of the product of any two powers of

the same quantity is the sum of the indices of the factors.

From (i), (ii) and (iii) we can find the continued

product of any number of monomial expressions.

Thus
(
-
2a'hc^) x (

-
Sa^b^-c)

= + 2a^bc^ x Sa^b\ from (u),

= 2x3xa2.a».6.62.c3.c, from (i),

= Ga^b^c*, from (iii).

Again, (
-

Sa^fc) (- 5ab^ (- 7a*b^= { + 3a»& . Safe'
| (
-

Ta^ftS)

= -3.5.7.a2.a.aM>.l>s. 6«=- 105a76«.

54. Product of a multinomial expression and a
monomial. It was proved in Art. 42 that the product
of the sum of any two algebraical quantities by a third is

equal to the sum of the products obtained by multiplying
the two quantities separately by the third.



32 MULTIPLICATION.

Thus {x + 2/)
z = xz-\-yz (i).

Since (i) is true for all values of x, 3/
and z, it will be

true when we put {a + h) in place of x
;
hence

[{a + h)-\-y]z=^{a + h)z+ yz
= az + bz + yz.

.*. (a-^b + y)z = az + bz + yz.

And similarly

(a-\-b-\- c+ d+ ,..) z
= az -\-bz + cz -\-dz -h ,.,,

however many terms there may be in the expression

a + b-\-c + d+ ...

Thus the product of any multinomial expression by a
monomial is the sum, of the products obtained by multiplying
the separate terms of the multinomial expression by the

monomial.

55. Product of two multinomial expressions.
We now consider the most general case of multiplication,

namely the multiplication of any two multinomial ex-

pressions.

We have to find

(a + 6 + c + ...)x(a; + y + ^:+...);

and, from Art. 38, this includes all possible cases.

Put M for x + y -h z-h ...] then, by the last article,

we have

(a-^b + c+ ...)M=aM-\-bM-\-cM-\-...
= Ma + Mb+ Mc-{- ...

==(x+y + z+ ...)a + (x-^y + z+ ...)b

+ (x-^y + z-{-...)c-^...

= ax + ay -{-az-\- ...-\-bx-^by + bz-\- ...-^cx + cy -\-cz-^ ...

Hence (a -\-b-i- c-^ ...) {x-{-y + z -\- ...)

= a^-\-ay -\-az-\- ... -\-bx+by + bz+ ...+cx-{-cy-\-cz + ...
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Thus, the product of any two algebraical expressions is

equal to the sum of the products obtained by multiplying

every term, of the one by every term of the other.

For example

{a + b) {c + d) = ac + ad + be -\- hd )

also

(3a + 56) (2a -+86)
=

(3a) (2a) + (3a) (36) + (56) (2a) + (56) (36)

= 6a' + 9a6 + 10a6 + 156' =M + 19a6 + 156'.

Again, to find (a —h){c
—

d), we first write this in the

form [a + (- 6)} {c +(— d)}, and we then have for the product
ac + a (- rf) + (- 6) c + (- 6) (- d)

— ac — ad — bc + bd.

In the rule given above for the multiplication of two

algebraical expressions it must be borne in mind that the

terms include the prefixed signs.

56. The following are important examples :
—

I. (a + 6)*
=

(a -H 6) (a + 6)
= aa + a6 + 6a + 66

;

.-. (a + 6)*
= a'' + 2a6 + 6^ ^"^

Thus, the square of the sum of any two quantities is

equal to the sum of their squares plus twice their product.

II. (a-6)*=(a-6)(a-6)=aa + a(-6)4-(-6)a
+ (-6)(-6) = a*-a6-a6 + 6^

... (a-6)^ = a*-2a6 + 6l

Thus, the square of the difference of any two quantities is

equal to the sum of their squares minus twice their product.

III. (a + 6)(a- 6)
= aa+a(-6) + 6a + 6(--6)
= a'' - a6 4- a6 - 6'

;

/. (a + 6)(a-6) = a*-6l

Thus, the product of the sum and difference of any two

quantities is equal to the difference of their squares.

S.A. 3
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57. It is usual to exhibit the process of multiplication
in the following convenient form :

a' + 2ab - b'

a'-2ab -\-b'
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temi which contains the highest power of that letter be put
first OD the left, the term which contains the next highest

power be put next, and so on
;
the terms, if any, which

do not contain the letter being put last
;
then the whole

expression is said to be arranged according to descending

powers of that letter. Thus the expression

a^ + d'h-^ah'^ + h^

is arranged according to descending powers of a. In like

manner we say that the expression is arranged according
to ascending powers of h.

59. Although it is not necessary to arrange the terms
either of the multiplicand or of the multiplier in any
particular order, it will be found convenient to arrange
both expressions according to descending or both according
to ascending powers of the same letter: some trouble in

the arrangement of the different sets of *like' terms in

vertical columns will thus be avoided.

60. Definitions. A term which is the product of n

letters is said to be of n dimensions, or of the nth degree.
Thus Sabc is of three dimensions, or of the third degree ;

and 5a^¥c, that is 5aaabbc, is of six dimensions, or of the

sixth degree. Thus the degree of a term is found by taking
the sum of the indices of its factors.

The degree of an expression is the degree of that term
of it which is of highest dimensions.

In estimating the degree of a term, or of an expression,
we sometimes take into account only a particular letter, or

particular letters : thus aa;^ + bx-\-cis of the second degree
in X, and is often called a quadratic expression in x

;
also

ax^y + bxy + cx^ is of the third degree in x and y, and is

often called a cubic expression in x and y. An expression,
or a term, which does not contain x is said to be of no

degree in x, or to be independent of x.

When all the terms of an expression are of the same
dimensions, the expression is said to be homogeneous.
Thus a' + ZaJ^b — 56' is a homogeneous expression, every

3—2



36 MULTIPLICATION.

term being of the third degree ;
also aa^ + hxy + cy* is a

homogeneous expression of the second degree in a; and y.

61. Product of homogeneous expressions. The

product of any two homogeneous expressions must be

homogeneous ;
for the different terms of the product are

obtained by multiplying any term of the multiplicand by
any term of the multiplier, and the number of dimensions

in the product of any two monomials is clearly the sum
of the number of dimensions in the separate quantities;
hence if all the terms of the multiplicand are of the

same degree, as also all the terms of the multiplier, it

follows that all the terms of the product are of the same

degree ;
and it also follows that the degree of the product

is the sum of the degrees of the factors.

The fact that two expressions which are to be multi-

plied are homogeneous should in all cases be noticed
;
and

if the product obtained is not homogeneous, it is clear

that there is an error.

62. It is of importance to notice that, in the product
of two algebraical expressions, the term which is of highest

degree in a particular letter is the product of the terms

in the factors which are of highest degree in that letter,

and the term of lowest degree is the product of the terms
which are of lowest degree in the factors: thus there is only
one term of highest degree and one term of lowest degree.

63. Detached Coefficients. When two expressions
are both arranged according to descending, or to ascending,

powers of some letter, much of the labour of multiplication
can be saved by writing down the coefficients only.

Thus, to multiply Zx^ — a; + 2 by 3a;'^ + 2a? - 2, we write

3-1+2
3 + 2-2
9-3 + 6

6-2+4
-6+2-4

9+3-2+6-4
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The highest power of x in the product is clearly a;*,

and the rest follow in order. Hence the required product

is 9a?* + 3ic' - 2x^ + 6a; - 4.

When some of the powers are absent their places must
be supplied by O's.

Thus, to multiply a?* — 2a;* + a; - 3 by a;* + a;^ - a; - 3,

we write

1+0-2+1-3
1+1+0-1-3
1+0-2+1-3

1+0-2+1-3
_l_0+2-l+3
-3-0+6-3+9

l+l_2-2-5-l+5+0+9
Hence the product is

x^^-x' - 2a;« - 2af - bx"- - a;" + Sa;* + 9.

This is generally called the method of detached
coefficients.

64. We now return to the three important cases of

multiplication considered in Art. 56, namely,

(a + hy = a' + 2ah + If
(i),

(a-6)* = a*-2a6 + 6^
(ii),

{a + h){a-h) = a^-h^ (iii).

A general result expressed by means of symbols ia

called Q. formula.

Since the laws from which the above formulae were
deduced were proved to be true for all algebraical

quantities whatever, we may substitute for a and for h

any other algebraical quantities, or algebraical expressions,
and the results will still hold good.
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We give some examples of results obtained by substi-

tution.

Put —b in. the place of b in
(i) ; we then have

[a + (- b)Y =a' + 2a (- b) + (- b)\

that is (a
-
by = a' - 2ab + b\

Thus (ii) is seen to be really included in (i).

Put V2 in the place of b in (iii) ; we then have

(a + V2) (a- V2) =«*- (V2)* = a' - 2.

[We here, howevei, assume that all the fundamental
laws are true for surds: this will be considered in a

subsequent chapter.]

Put 6 + c in the place of b in (i); we then have

la+ (b -\- c)Y
= a' + 2a (b + c) -{-{b +cy ;

.-. (a + b-\~cy = a^ + 2ab + 2ac + b' + 26c + c* (iv).

Now put
— c for c in (iv), and we have

{a + b + (- c)Y
= a^ + 2ab+2a (- c)-\-b' + 26 (- c) + (- c)*;

.-. (a 4- 6-c)'= a' 4-2a6 - 2ac + 6" - 26c+ c*.

Put 6 + c in the place of 6 in (iii); we then have

{a+(6 + c)}{a-(6 + c)}=a*-(6 + c)'
= a''-(6*+26c + c*);

/. (a + 6 + c) (a
- 6 - c)

= a'' - 6* - 26c - c\

The following are additional examples of products
which can be written down at once.

(a2+ 263) (aa
-

2b-^) = (a^)^
-

(262)2
= ^4 _ 454.

{a^ + jBb^){a^
- ^362) = (a2)a

_
(^363)2= ^4 - 3?A

{a-b + c)(a + b-e)={a-{b-c)}{a+ {b-c)}=aJ'~{b-c)K

(a» + ab+ 62) (a« -ab + b^)
= {{a^+ 6«) + ab}{(a^ + b^)

-
ab}

=
(a»+ 62)2

-
(a6)2=a* + a^b^ + 6*.

=
(ar« +x)2

-
(a!2 + l)2

= x« + 2a;^ + .'c2
-
{x*+2x^ ^l) = x<^ + x*-x^-l.
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65. Square of a multinomial expression. We
have found in the preceding Article, and also by direct

multiplication in Art. 57, the sqaare of the sum of three

algebraical quantities; and the square of the sum of

more than three quantities can be obtained by the same
methods. The square of any multinomial expression can

however best be found in the following manner.

We have to find

{a->rh + c + d+ ...)(a + 6 + c + fZ+ ...)•

Now we know that the product of any two algebraical

expressions is equal to the sum of the partial products
obtained by multiplying every term of one expression by
every term of the other. If we multiply the term a of

the multiplicand by the term a of the multiplier, we
obtain the term a* of the product: we similarly obtain

the terms h'\ c^, &c. We can multiply any term, say h,

of the multiplicand by any different term, say dy of the

multiplier; and we thus obtain the term hd of the

product. But we also obtain the term hd by multiplying
the term d of the multiplicand by the term h of the

multiplier, and the term hd can be obtained in no other

way, so that every such term as 6d, in which the letters

are different, occurs twice in the product. The required

product is therefore the sum of the squares of all the

quantities a, 6, c, &c. together with twice the product
of every pair.

Thus, the square of the sum of any numher of algebrai-
cal qvxintities is equal to the sum of their squares together
with twice the product of every pair.

For example, to find (a + & + cf.

The squares of the separate terms are a^, h^, (?.

The products of the different pairs of terms are ah, ac and be.

Hence {a+ b + c)'^=a^ + b' + c^+ 2al) + 2ac + 2bc.

Similarly,

{a + 2h- 3c)2=a2+ (26)2+ {
- Scf+2a (26) + 2a{ - 3c) + 2 {2b){- 3c)

= a2+ 462 ^ 9^2 + ^ab - 6ac - 126c.
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And

(a-6 + c-d)2= a2+(-6)2 + c2+ (-d)2+ 2a(-6) + 2ac + 2a(-d)
+ 2(-6)c4-2(-6)(-d) + 2c(-d) = a2 + 62+ c2 + d2_2a6-h2a«
- 2ad - 2bc + 2bd - 2cd.

After a little practice the intermediate steps should be omitted

and the final result written down at once. To ensure taking twice

the product of every pair it is best to take twice the product of each
term and of every term which follows it.

66. Continued Products. The continued product
of several algebraical expressions is obtained by finding
the product of any two of the expressions, and then

multiplying this product by a third expression, and so on.

For example, to find {x + a){x + b) {x+c), we have

x+ a
x + b

z^ + ax
+ bx + i

x^ + ia + b)x+ ab
x+ c

a;3 + (a + b) x'^ + abx
+ cx^ + {a+ b)cx+ abc

x^ + {a + b+c)x''^ + {ab + ac-bc)x + ahe

In the above all the terms which contain the same powers of x are

collected together : it is frequently necessary to arrange expressions
in this way.

Again, to find (x^+ aP'f {x + af {x
- af.

The factors can be taken in any order
;
hence the required product

= [(x
-
a) (x + a) {V? + a?)f = [{x^

-
a^) [x^ + a^)f= {x^

-
a^)^=x»- 2a^v* + a*.

67. We have proved in Art. 55 that the product of

any two multinomial expressions is the sum of all the

partial products obtained by multiplying any term of one

expression by any term of the other.

To find the continued product of three expressions we
must therefore multiply each of the terms in the product
of the first two expressions by each of the terms in the

third; hence the continued product is the sum of all the

partial products which can be obtained by multiplying

together any term of the first, any term of the second, and

any term of the third.
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And similarly, the continued product of any number of

expressions is the sum of all the partial products which

can be obtained by multiplying together any term of the

first, any term of the second, any term of the third, &c.

For example, if we take a letter from each of the three

factors of

{a + h) {a + h) {a-h b),

and multiply the three together, we shall obtain a term
of the continued product; and if we do this in every

possible way we shall obtain all the terms of the continued

product.

Now we can take a every time, and we can do tl\js in

only one way; hence a^ is a term of the continued

product.

We can take a twice and h once, and this can be done
in three ways, for the b can be taken from either of the

three binomial factors; hence we have Sa^b.

We can take a once and b twice, and we can do this

also in three ways; hence we have Sab^.

Finally, we can take b every time, and this can be done
in only one way; hence we have ¥.

Thus the continued product is

a» + Sa'b + Sab' + 6',

that is (a + bf = a' + Sa'b + Sab' + b\

The continued product (x + a) (a; + b) {x + c) can simi-

larly be written down at once.

For we can take x every time: we thus get x'.

We can take two x's and either a or ^ or c: we thus
have x^a, x'^b and a?V

We can take one x and any two of a, b, c: we thus

have xaby xac, and xbc.

Finally, if we take no x% we have the term aba,
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Thus, arranging the result according to powers of x, we
have

{x + a) [x + h) {x -\- c)
= x^ -\- x' {a + h + c) + X {ah + ac-\- be)

-\-abc.

68. Powers of a binomial. We have already found
the square and the cube of a binomial expression; and

higher powers can be obtained in succession by actual

multiplication. The method of detached coefficients should
be used to shorten the work.

The following should be remembered:

{a + by = a' + 2ab + ¥,

(a + by = a« + Sa'b + 3a6' + b\

and (a + by = a* + 4>a'b + QaV + ^ab' + b\

To find any power, higher than the fourth, of a binomial

expression a formula called the Binomial Theorem should

be employed: this theorem will be considered in a subse-

quent chapter.

EXAMPLES IL

1. Multiply 2x-a by x — 2a.

2. Multiply 3a; - J by ^x- 3.

3. Multiply x^ + X+1 by x-l.

4. Multiply a^-xi/ + 7/' by x + y,

5. Multiply 1 + 05 + a:* + ic' by x-\.

6. Multiply aj* + y^y + ^y^ + xy^ + y* by y -x.

7. Multiply a;' - a; + 2 by a;' + a; - 2.

8. Multiply 1 + aa; + a*x^ by 1 — aa; + a^x*,

9. Multiply a;* + a;' + 1 by x* - x'' ^- 1.
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10. Multiply 3£c» -xy-^ %f by Sy*
-

ajy + 2aj*.

11. Multiply a;' - 5a;' + 1 by 2a;« + 5a; + 1.

12. Multiply 2a;'' - t)x^y + y' by / + ^V + 2x^

13. Multiply 3a»- 2a^6 + ZaV" - 36* by 2a*+ 5a^6-4a6»+6*.

14. Multiply 2aV - 3aVy + 5/ by aV + 4aa:s^^
-
2/.

15. Multiply 2a - 3a» + da" - 7a' by 1 - 2a' + 'oa''.

16. Multiply a* — ah — ac + b^ — he •\- c* by a + 6 + c.

17. Multiply a? ¥ y^ >*- ^ - y%
- zx — xy by a; + y + «.

18. Multiply 4a'+ 96* + c' + 36c + 2ca - 6a6 by 2a + 36 - c.

19. Multiply together a;*+ 1, 3;"+ 1 and a;'— 1.

20. Multiply together a;*+ 16^, a;'+ 4^*, a; + 2y and x - 2y.

21. Multiply together (x
-
yY, (x + y)' and

(a;*
+ yy.

22. Multiply together (x' + 1)^ (a;
+ 1)' and (x

-
l)^

23. Multiply together a;'-a;+l, a;'+a;+l and a;* - a;' + 1 .

24. Multiply together a' - 2a6 + 46', a* + 2a6 + 46' and

25. Find the squares of (i) a + 26 - 3c, (ii)
a* — a6 + 6',

(iii) 6c + ca + a6, (iv) 1 - 2a; + Sx^, and (v) a;* + a' + a; + 1.

26. Find the cubes of
(i)

a + 6 + c, (2) 2a - 36 - 2c and

(iii) 1 + a; + jc".

27. Simplify

(x + y + zy-(-x + y+zy + {x-y + 2)'- (x + y- zf.

28. Shew that

(x-¥ y) {x + z) -x'' = {y ^ z) {y + x) -f = {z ¥ x) (z + y)
- z'.

29. Shew that

(y + z)' +{z + xy + (x + yy~x'-y'~s^={x-ry + zy.
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30. Simplify {x (x + a)
- a (x

-
a)]{x {x

-
a)

- a {x + a)}.

31. Shew that

{y-zy+{z-xy+{x-yy = 3(y-z)(z-x){x-y).

32. Shew that a' + 6' = (a + by - dab (a + b\ and that

a* + 6* = (a + by - 4ab (a + by + 2a'b\

33. Shew that {x" + xy + y'y
- ixy (x' + y')

= (af-xy+ y'y.

34. Shew that

{y + zy+(z + xy + (x + yy + 2(x + y){x + z)+2(y + z)(y + x)

+ 2(z + x)(z + y) = 4: {x + y + zf.

35. Shew that {a' + b') (c» + d')^{ac + bdy +{ad- bey.

36. Shew that, if ic = a + c?, 2/
= ^ + ^, and z = c + d; then

will of \-'i^ + z^ - yz^zx-xy = a* -\-b'^ + c* -be- ca- ab.

37. Shew that, if a; = 6 + c, y = c + a, and z = a + b; then

will of ^y' + T^ — yz
— zx-xy = a' + b' + c'—bc — ca-ab.

38. Shew that 2{a-b){a-c) + 2(b-c){b-a) + 2(c-a){c-b)
= {b-cy + (c-ay+(a-by.

39. Shew that (a^ + y" + z') (a' + b' + c') -{ax + by + czy
=

(bz
— cyy + (ex- azy + (ay

-
bx)'.

40. Shew that, if a; = a* - 5c, y = b*- ca, z = c' — ab; then

will ax + by + cz = (x ^- y + z) (a + b -h
c)j

and be (x^
-

yz)
= ca (y'

—
zx)

= ah
(z*

-
xy),

41. Find the value of

{x
- ay + {x-by + (x-cy-Z{x- a) {x -b){x- c)

when Zx = a + b-^c.

42. Shew that (a» + 6" + cV
=

(6" + cy + (ab 4- ac)' -{-(ab-aey + a*

=
(6c + ca + aby + (a*

-
bey + (6'

-
ca)» + (c»

-
a5)«.

43. Shew that
(sc' + xy + y') (a' + ab + b')

= (ax
-
byy + (ax- by) (ay + bx + by) + (ay + bx +

by)'.
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44. Shew that l+a' + b' + c' + b'c' + cV + a'b" + a'b'c'

= (1
~ 6c — ca - aby + (a + b + c~ obey.

45. Shew that

(a« + 6« + c« + dy =
(a' + b'- c«- dy+ 4:{ac + bdy+ 4:(ad

-
bey.

46. Shew that

(i) {a + 2y-4:{a + iy+6a'-4:{a-iy+{a-2y=0.

(ii) (a + 2) (6 + 2)
-
4(a + 1) (6 + 1) + Gab

- 4 (a
-

1) (6
-

1) + (a
-

2) (6
-

2)
= 0.

47. Shew that

(i) (a + 2)»- 4 (« + 1)«+ 6a«- 4 (a- 1)^+ («
-

2)«
= 0.

(ii) (a + 2)(6 + 2)(c + 2)- 4 (a + l)(b + l)(c + l) + 6abc

-4(a-l)(5-l)(c-l) + (cj-2)(6-2)(c-2) = 0.

48. Shew that

{a + b + cy + (b + c - a) (c + a -
b) {a + b - c)

= ia' {b + c) + 46' (c + a) + 4c' (a + 6) + 4a6c.

49. Shew that

x{x-y + z){x + y-z)+y{x + y-z){-x+y-{-z)
+ z{- x+y-\-z){x -y + z) + (-x + y+z){x-y + z)(x + y-z)
=

4:xyz.

50. Multiply

a' + b' + c^ + d' -bc-ca-ab-ad — bd-cd by a + b -^c + d.

51. Shew that

(x'+x+l)(af'-x+l)(x*-x'+l){x'-x'+l)...{x''-x'''" + l)

= x* + a- -- 1.
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Division.

69. Division by a monomial expression. We
have already considered the division of one monomial

expression by another. We have also seen (Art. 43) that

the quotient obtained by dividing the sum of two alge-
braical quantities by a third is the sum of the quotients
obtained by dividing the quantities separately by the

third; and we can shew by the method of Art. 54 that

when any multinomial expression is divided by a monomial
the quotient is the sum of the quotients obtained by
dividing the separate terms of the multinomial expression

by that monomial.

Thus {pi^x
—

Sax) -i-ax = a^x -^ ax — Sax -^ cw; = a — 3.

And (12a;'
- bax" - 2a*x) h- 3.r = 12a;' -r 3a; - bax" -h 3a;

- 2a*a; -^ 3a; = 4a;'^ - f aa; — |a*.

70. Division by a multinomial expression. We
have now to consider the most general case of division,

namely the division of one multinomial expression by
another.

Since division is the inverse of multiplication, what
we have to do is to find the algebraical expression which,
when multiplied by the divisor, will produce the dividend.

Both dividend and divisor are first arranged according
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to descending powers of some common letter, a suppose ;

and the quotient also is considered to be so arranged.
Then (Art. 62) the first term of the dividend will be the

product of the first term of the divisor and the first term
of the quotient ;

and therefore the first term of the

quotient will he found by dividing the first term of the

dividend hy the first term of the divisor. If we now

multiply the whole divisor by the first term of the

quotient so obtained, and subtract the product from the

dividend, the remainder must be the product of the

divisor by the sum of all the other terms of the quotient;
and, this remainder being also arranged according to

descending powers of a, the second term of the quotient
will be found as before by dividing the first term of the

remainder by the first term of the divisor. If we now

multiply the whole divisor by the second term of the

quotient and subtract the product from the remainder, it

is clear that the tldrd and other terms of the quotient can
be found in succession in a similar manner.

For example, to divide Sa" + ^a% - 4^a¥ + b^ by 2a 4- b.

The arrangement is the same as in Arithmetic.

2a + 6
)
8a« + 8a'6 + ^ab' + ¥ ( 4a' + 2ab + 6»

8a' + 4a'6

4a=-'6 + 4a6' + b^

4>a'b + 2ab'

2ab* + 6"

2ab' + 6'

The first term of the quotient is 8a' -*- 2a = 4a'.

Multiply the divisor by 4a* and subtract the product from
the dividend : we then have the remainder 40/^6 + 4'ab'^ + 6^

The second term of the quotient is 4a''fe -r- 2a = 2ab.

Multiply the divisor by 2a6, and subtract the product
from the remainder: we thus get the second remainder
2a6' 4- b\ The third term of the quotient is 2a¥ -i-2a = b\

Multiply the divisor by 6^ and subtract the product from
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2ab'^-\-b', and there is no remainder. Since there is no
remainder after the last subtraction, the dividend must be

equal to the sum of the different quantities which have
been subtracted from it; but we have subtracted in suc-

cession the divisor multiplied by 4a^ by + 2ah, and by
+ b^

;
we have therefore subtracted altogether the divisor

multiplied by 4a' + 2ab + b^. And, since the divisor mul-

tiplied by 4a^ f 2ab + 6* is equal to the dividend, the

required quotient is 4a* + 2ab + b^.

The dividend and divisor may be arranged according
to ascending instead of according to descending powers of

the common letter, as in the last example considered with
reference to the letter b

;
but the dividend and the divisor

must both be arranged in the same way.

71. The following are additional examples:

Ex. 1. Divide a* - a^b+ 2a^b^ - ab»+ b* by a" + bK

a^ + b^)a*-a^b + 2a^b^~ab^+ b^(a^-ab + b^

-a"^& + a26a -aW^b*'
- d^b - ab^

+ a262 +b^
+ a^b^ +b*

Ex. 2. Divide a*+ a^b^ + b* by a^ - ab + b\

a^~ab + b^)a* +a^h^ +b*(a*+ ab+b^

+ a?b + &4

In this example the terms of the dividend were placed apart, in

order that ' Uke ' terms might be placed under one another without

altering the order of the terms in descending powers of a. The
subtractions can be easily performed without placing *like' terms
under one another; but the arrangement of the terms according to

descending (or ascending) powers of the chosen letter shoald never
be departed from.

Ex.3. Divide a3 + [;3^^_3^5j; by a+ 6+c.
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a+b + c)a^- Sabc -i- b^+ c^ ( a^ - ab - ae+b'^ - be + e^

'a3 + a26 + a2c
^

-a26-
-a26-



50 DIVISION.

73. Extended definition of Division. In the

process of division as described in Art. 70, it is clear that

the remainder after the first subtraction must be of lower

degree in a than the dividend
;
and also that every re-

mainder must be of lower degree than the preceding
remainder. Hence by proceeding far enough we must
come to a stage where there is no remainder, or else

where there is a remainder such that the highest power
of a in it is less than the highest power of a in the divisor,

and in this latter case the division cannot be exactly per-
formed.

It is convenient to extend the definition of division to

the following : To divide A by B is to find an algebraical

expression G such that B x C is either equal to A, or differs

from A by an expression which is of lower degree, in some

particular letter, than the divisor B,

For example, if we divide a^ -h Sab +W by a + b, we
have

a + 6 ) a' -f 3a6 + 46' ( a + 26

a^ + ab

2ab + 46''

2ab + 26'

+ 26*

Thus (a* + Sab + 46^^) -4- (a + 6)
= a + 26, with remainder

26=^
;
that is a' + Sab + 46'"^= (a + 6) (a + 26) + 26*. We have

also, by arranging the dividend and divisor diiferently,

6 + a ) 46' + 3a6 + a" ( 46
- a

W + 4(i6

— ab-V(J^
— ab — a^

+ 2a'^

Hence a change in the order of the dividend and

divisor leads to a result of a different form. This is, how-

ever, what might be expected considering that in the first
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case we find what the divisor must be multiplied by in

order to agree with the dividend so far as certain terms
which contain a are concerned, and in the second we find

what the divisor must be multiplied by in order to agree
with the dividend so far as certain terms which contain h

are concerned.

When therefore we have to divide one expression by
another, both expressions being arranged in the same

way, it must be understood that this arrangement is to

be adhered to.

74. Def. A relation of equality which is true for all

values of the letters it contains, is called an identity.
The following identities can easily be verified, and

should be remembered :

{a? + 2gw? -\- a^) -^ {x -\- a)
= X -\- a,

(x^
— 2ax -\- a^) -7- (x

—
a)
= X — a.

(a?'
—

a*) -7- (a?
+ a)

= a? + a.

(x^ + a') -7- (a? T a)
= ^ ± aa; 4- a\

(x*
-

a*) -^
(a; + a)

= ic" ± ax^ + a^x ± a\

{x* + aV -\- a*) -^ {x^ T ax -\- a^)
= a^ ± ax -^ d\

(a;'+ 2/' + 2^ — ^xyz) -^{x-\-y-\-z)^ x^^- y'^+ i^— yz
— zx - xy.

EXAMPLES IIL

oJ* - 92/* by (K + Zy.

a;*- 161/* by a;* - V-
27a;»+6V by ^y + ^x.

2>x^ - ixy - 42/' by 2y
- x,

1 - 5a^ -I- 4a;* by 1 - x.

a^ ~ 5xy* + 4y* by x-y.

4—2

X.
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7. Divide 1 - Cic^ + 5£C« by l-2x + a^.

8. Divide m' - 6mn'^ + 5n' by m* — 2mn + ri*.

9. Divide l-7xf^ + Qa^ by (1
-

x)'.

10. Divide 1 - a^ by l-x\

11. Divide 1 + a; - 8a;' + 19a;» - 16ar* by l-\-3x- doc".

12. Divide 4 - 9ic' + 1 2a;« - 4£c^ by 2 + 3x- 2x\

13. Divide 4ic* - 9afy' + 6xy^
-

y* by 2x' + dxy - y'.

14. Divide a;^ - 3xV 3a; + y'
- 1 by x-\-y-l.

15. Divide a:" + x^y + x^y^ + x^y^ + xy^ + ?/^ by x^ + xy + y*.

16. Divide

a" - bx*y + 7a;V - a;*/
-
^xy* + 22/"^ by a;' - 3a;V + 3a;y*

-
y^.

17. Divide a' - 26' - 6c' + a6 - ac + 76c by a - 6 + 2c.

18. Divide a' + 26' - 3c' + 6c + 2ac + 3a6 by a + 6 - c.

19. Divide

6a* + 46' - a»6 + 13a6« + 2a'6' by 2a« + 46' - 3a6.

20. Divide x* + y*
- z' + 2xY ¥ 2z' - I by «" + y'

- ^^ + 1.

21. Divide a" - 3a'6 + 3a6^ - 6' - c' by a-6-c.

22. Divide a' + 86' - c' + 6a6c by a + 2b-c.

23. Divide

a* + 86* + 27c' - 18a6c by a' + 46' + 9c' - 66c - 3ca - 2a6.

24. Divide 27a" - 86» - 27c» - 54a6c by 3a - 26 - 3c.

25. Divide acx^ + (ad -he) a?- (ac + hd) x + bc by oa; - 6.

26. Divide

2aV-2(6-c)(36-4c)2/' + a6a;2/ by aa;+2(6-c)y.

27. Divide

9a«6' - 1 2a*6 + 36» + 2a«6' + 4a» - 1 la6* by 36' + 4a» - 2a6'.

28. Di\T^de x* + y' hj x + y; and from the result im^e down
the quotient of

(a;
+ y)' + a' by x + y + z.

29. Divide af — y* by x — y; and hence lorite down the

quotient of {x + y)'
— 8«' by x + y — 2z.
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Factors.

75. Definitions. An algebraical expression which

does not contain any letter in the denominator of any
term is said to be an integral expression : thus ^a^b

—
\h^

is an integral expression.
An expression is said to be integral with respect to any

particular letter, when that letter does not occur in the

denominator of any term : thus—I

—
-, is integral with

'' a a-\-o

respect to x.

An expression is said to be rational when none of its

terms contain square or other roots.

76. In the present chapter we shall shew how factors

of algebraical expressions can be found in certain simple
cases.

We shall only consider rational and integral expres-
sions

;
and by the factors of an expression will be meant

the rational and integral expressions, or the expressions
which are rational and integral in some particular letter,

which exactly divide it.

77. Monomial Factors. When some letter is

common to all the terms of an expression, each term, and
therefore the whole expression, is divisible by that letter.

Thus 2ax + x^=x(2a + x),

ax+ a^x^=ax{l + ax) ,

and 2a»6'a: + 3a%hf = a%'^ {2ax+ Bby).

Such monomial factors, if there be any, are obvious on

inspection.
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78. Factors found by comparing with known
identities. Sometimes an algebraical expression is of

the same form as some known result of multiplication:
in this case factors can be written down at once.

Thus, from the known identity

a^-b^= {a+ b)(a-b),
we have

a2 - 462= a2 - (26)2= (a + 26) (a
-

26),

a2-2= a2-(^2)2=(a + V2)(a-^2),
a* - 166''= (a2)a

-
(462)2= (a^ + 462) (^2

_
462)

= (a2 + 462)(a + 26)(a-26),
and a3 - 9a62= a{a^- 962)= a (a + 36) (a

-
36).

Again, from the identity

a3+ 63 = (a + 6)(a2-a6 + 62),

we have

a3+ 863= ^3 + (26)3= (a + 26) {
a2 - a (26) + (26)'}

= (a+ 26)(a2-2a6 + 462),

8a3 + 276«= (2a)3 + (362)8
= (2a + 362) | (2a)2

-
(2a) (362) + (352)2j

= (2a + 362) (4^2
- 6a62 + 96-») ,

and a^+ x^ = (a3)3 + {x^f= (a^ + x^) (a^
- a^a^ + a;«)

= {a + x){a^-ax + x^) {a^
- a^a^ + x%

And, from the identity

a3-63=(a-6)(a2 + a6 + 62),

we have

a363 _
^a^3=

fab -
^xy\ (^a%^

+
^ abxy + \xY^ .

The following are additional examples of the same

principle :

(i) (a + 6)2-(c + d)2={(a + 6) + (c + d)}{(a+6)-(c + d)}
= (a + 6 + c H- d) (a + 6 - c - d).

(ii) 4a262 - (a2 + 6^ - c2)2
= {2a6 + (a2+ 62 - c2) } { 2a6 - (a2+ 62 - c2) } ;

and, since

2a6+ a2+ 62-c2= (a+ 6)2-c2=(a+ 6 + c)(a+ 6-c),

and 2a6-a8-62 + c2=c2-(a-6)2= (c + a-6)(c-a + 6),

we have finally

4a262-(a2+ 62-c2)2=(a+ 6 + c)(6 + c-a)(c + a-6)(a + 6-c).
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(iii) (a + 26)3 -(2a + 6)3

= {(a+ 26)-{2a + 6)}{(a+ 26)2 + (a + 26)(2a + 6) + (2a+ 6)a}

= (6-a)(7a2+13a6 + 762).

79. Factors of x^+px + q found by inspection.
From the identity

{x + a) (a? + 6)
= «* + (a + 6) a? + ab,

it follows conversely that expressions of the form

0!^ +px-{-q

can sometimes, if not always, be expressed as the product
of two factors of the form x + a, x-hb.

We shall presently give a method by which two factors

of x^-^px + q of the form x + a and x + b can always be
found

; but whenever a and b are rational, the factors can
be more easily found by inspection. For, if {x -ha) (x + b),

that is of -\- (a ]- b) X -\- ab, is the same as x^ +px-h q, we
must have a-\-b=p and ab = q. Hence a and b are such

that their sum is p, and their product is q.

For example, to find the factors of x^+7x + 12. The factors will

be jc + a and x + b, where a + 6 = 7 and ab = 12. Hence we must find

two numbers whose product is 12 and whose sum is 7: pairs of
numbers whose product is 12 are 12 and 1, 6 and 2, and 4 and 3;
and the sum of the last pair is 7. Hence a;^ + 7a; + 12 = (x+ 4) {x + 3).

Again, to find the factors of x^-7x + 10. We have to find two
numbers whose product is 10, and whose sum is -7. Since the

product is +10, the two numbers are both positive or both negative;
and since the sum is -

7, they must both be negative. The pairs of

negative numbers whose product is 10 are - 10 and -
1, and - 5

and -2; and the sum of the last pair is -7. Hence a;2-7a; + 10=
{x-5){x-2).

Again, to find the factors of a;2+ 3a;-18. We have to find two
numbers whose product is - 18 and whose sum is 3. The pairs of

numbers whose product is - 18 are - 18 and 1,-9 and 2,-6 and 3,
- 3 and 6,-2 and 9 and - 1 and 18

;
and the sum of 6 and - 3 is 3.

Hence ai^+3x-18 = {x + &){x- 3).

It should be noticed that if the factors oi x^-}-px-{-q be
x-{- a and x + b, the factors of x^ -{-pxy + qy^ will hQ x + ay
and x-\-by; also the factors of {x -{- yY -\-p [x + y) z -h q?
will he x-\-y-{-az and x-\-y + bz.
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Hence from the above we have

x^ + 3xy^ -lSy*= {x + ey^) (x
- 3y\

{a + by^-7{a + b)x+10x^={a + b-5x){a+ b-2x),

= {x+2){x-2){x + l){x-l).

EXAMPLES IV.

Find the factors of the following expressions :

1. a*-16b\ 2. 16x*-8Wb\
3. l6-{3a~2b)\ 4. 4.y'-{2z-xy.
5. 20aV-45aa;2/». 6. 36aV-4aV2/*.
7. (3a'-by-(a'-3by. 8. (5a^

- 36y - (3a«
- 56^

9. (5af + 2x-Sy-{x'-2x-3y.
10. (3x' -ix- 2y -

(3x' +4:x- 2)'.

11. 32a'b'-U\ 12. (a«-.2&c)»-86V.
13. a'-2a~8, U a;+12-aj«.

15. 1-Ux-Q3a^. 16. 8a-4a^-4.

17. a'b-ia'b' + 3ab'. 18. a'b + 5a%' + ia'b'.

19. (6 + c)^-6a(6 + c) + 6a«.

20. 9(a + 6)*-6(a + ^»)(c + c/) + (c + c/)».

21. a:* - 29a;^ + 100. 22. lOOx* - 29.xy + y\
23. x'~8xyz'+16y*z\ 24. 9a' - lOa'b' + a'b\

25. x'-2ax-6« + 2a6. 26. x' + 2xy - a' -
2a/}/.

27. 4 («6 + cdy - (a' + b'^c'- dj.
28. i(xy- aby - {x' + y'-a'- by.



FACTORS. 57

80. Factors of general quadratic expression.
We proceed to shew how to find the factors of any ex-

pression of the second degree in a particular letter, x

suppose.
The most general quadratic expression [Art. 60] in x

is ax^ -\-bx + c, where a, b and c do not contain x.

The problem before us is to find two factors which are

rational and integral with respect to x, and are therefore

each of the first degree in x, but which are not necessarily,
and not generally, rational and integral with respect to

arithmetical numbers or to any other letters which may
be involved in the expression.

The method of finding the factors of ax^ + bx-^c con-

sists in changing it into an equivalent expression which
is the difference of two squares.

We first note that since ai^ + 2ax + a^ is a perfect

square, in order to complete the trinomial square of which
x^ and 2ax are the first two terms, we must add the

square of a, that is, we must add the square of half the

coefficient ofx.

For example, a^+Bx ia made a perfect square, namely [
a; + ^ j

,

by the addition of
( ^ j ;

also x^~px is made a perfect square, namely

(«
-
1) , by the addition of

(^- 1^
= ~-

.

81. To find the factors of ax^ -\- bic-\-c,

aaf-\-bx + c==alx'-\--x+-].
\ a a)

Now a?-^ - a; is made a perfect square, namely [a?
+~ ] ,

by the addition of f^ ] =7-1- And, by adding and sub-

tracting j^-j
to the expression within brackets, we have
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^

Hence as the difference of any two squares is equal to

the product of their sum and difference, we have

h=
^^^+2a

Thus the required factors have been found*.

Ex. 1. To find the factors of a^ +4«+ 3.

«2 + 4a; + 3 = x2 + 4a; + 4-4 + 3 = (x+ 2)2-l= (a; + 2 + l)(x + 2-l)
= ix + 3){x + l).

Ex. 2. To find the factors of x^-5x + S.

..-5..3=.2.,.,(_|y.(.|)V3=(.-|y-^

=(^-i+\/T)(^-|-\/T)-
Ex. 3. To find the factors of 3ar» - 4a; + 1.

s.-...i=s(.»-|..|)=3{.-|..(iy-(l)%i|

Ex. 4. To find the factors of x^ + 2a4; - &' - 2ah.

iti+2ax -¥ -2ab=^x^ + 2ax + a^ - a^ -b^ -2ab= {x + ay - (a + b)*

= {x+ a + {a + b)} {x +a- {a + b)} = {x + 2a+ b) {x
-

b).

• It will be proved later on [see Art. 91] that an expression containing
X can be resolved into only one set of factors of the first degree in «.
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82. Instead of working out every example from the

beginning we may use the formula

and we should then only have to substitute for a, h and c

their values in the particular case under consideration.

Thus to find the factors of 3a;3 - 4a; + 1. Here a= 3, 6= - 4, c= 1.

„ /62
- 4ac /16 - 12 /I 1 ,^ . .

Hence ^ —4-3-
= y -

gg—
=
\/ 9

=
3

' *^® expression is

therefore equivalent to 3 (*-q + q)(^-q
-
a)= ^ (^~'q) (*~^)'

83. We have from Art 81

<M^ -\-hx-\-c

/ 6
. /b'-4^ac\f b /h'-4>ac\

7)2 __ Ann
Now, for particular values of a, 6, c,

—
^Ta
— may be

positive, zero, or negative.

I. Let —7-2
— be positive. Then the two factors of

cwj* + 6a; + c will be rational or irrational according as

—
7-2
— is or is not a perfect square.

II. Let —T~2— be zero. Then

Hence aa^ + 6iP + c is a perfect square in x, if 6^ — 4ac = 0.

III. Let —T~T~ b® negative. Then no positive or

negative quantity can be found whose square will be equal

to —TTT" j
^or all squares, whether of positive or nega-

tive quantities, are positive.
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Elxpressions of the form V— a, where a is positive, are

called imaginary, and positive or negative quantities are

distinguished from them by being called real.

We shall consider imaginary quantities at length in a

subsequent chapter : for our present purpose it is sufficient

to observe that they obey all the fundamental laws of

Algebra ;
and this being the case, the formula of Art. 81

will hold good when b^ — 4ia^ is negative.

Note. For some purposes for which the factors of

expressions are required, the only useful factors are those

which are altogether rational: on this account irrational

and imaginary factors are often not shewn. Thus, for

example, the factorisation of x^ — S is for many purposes

complete in the form (os
—

2) (as^ + 2a; + 4) *, the imaginary
factors of a;^ + 2ic + 4, namely

a;+l +V^ and a^ + l-V^,
not being shewn.

84. We have in Art. 81 shewn how to resolve any
expression of the second degree in a particular letter into

two factors (real or imaginary) of the first degree in that

letter.

It should be noted that the factors of the most general

expression of the third degree, or of the fourth degree,
can be found, although the methods are beyond the range
of this book ; expressions of higher degree than the fourth

cannot however, except in a few special cases, be resolved

into factors.

85. Factors found by re-arrangement and
grouping of terms. The factors of many expressions
can be found by a suitable re-arrangement and grouping
of the terms.

For example

=
{l + ax){l + x){l-x);

* The reason of thia will appear from Art. 179 and Art. 193,
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or we may write the expression in the form

and the factors 1 - x^, 1 + ax are now obvious.

For the best arrangement or grouping no general rule

can be given : the following cases are however of frequent
occun'ence and of great importance.

I. When one of the letters occurs only in the first

power, the factors often become obvious when the expres-
sion is arranged according to powers of that letter.

Ex. 1. To find the factors of ab + be + cd + da.

Arranged according to powers of a we have a{b + d) + bc + cd,
which is at once seen to he a{b + d) + c {b + d) = {a + c) {b + d).

Ex.2. To find the factors of 3tP+ {a + b+ c)x+ ab + ac.

The expre88ion= a {x + b+ c)+x^ + bx + cx = {a+ x){x + b + c).

Ex. 3. To find the factors ofax^ + x+a+ 1.

asfi + x+ a + l = a{a^ + l) + x + l = {x + l){a{xi^-x+ l) + li.

Ex. 4. To find the factors of a^ + 2ab - 2ac - Bb^+ 26c.

The given expression is of the first degree in c
;
we therefore write

it in the form a^ + 2ab - '6b^ -2c {a- b)

= {a-b){a + 3b)-2c{a-b) = {a-b)(a + Bb-2c).

II. When the expression is of the second degree with

respect to any one of the letters; factors, which are rational

and integral in that letter, can be found as in Art. 81.

Ex. 1. Find the factors of a^+ 36^ - cH 26c - 4a6.

Arranging according to powers of a, we have
'

a«-4a6 + 36'-c»+ 26c=a2-4<f6 + 46a-468 + 362-c2+ 26c

= (a
-

26)2
-

(6
-

c)^
= {{a

-
26) + (6

-
c)} {{a

-
26)

-
(6
-
c)}

= (a-6-c)(a-36 + c).

Ex. 2. Find the factors of a» - 6^ - c^+ ^2 _ 2 (ad
-

6c).

The expression

s=a2 - 2ad -b^-c» + d^ + 2bc

=a8-2ad + d2-62-c2+ 26c= (a-d)»-(6-c)«

=s{a-d+ b-c)(a-d-b + c).
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Ex. 3. Find the factors of a^+ 2ab -ac- 36^ + 5bc - 2c'.

The expression

^a^+ a{2b-c)~db^ + 5bc-2c*

= tt2 +a(2&-c)+(?^y-(?^*Y-36« + 56c-2c>

= fa+-^y -
^ {462

_ 46c + c»+ 1262 _ 206c + 8c2}

= (a+ 36-2c)(a-6 + c).

Ex. 4. Find the factors o{ x* + x^-2ax + l- a?.

Arranging according to powers of a, we have

-
{a^ + 2ax -1- x^ - x^} ^ -

{a?+ 2ax^x^ -l-2x^ -
X*}

= -{(a+ x)a-(l + a:2)2}=-(a + a;+ l + x2)(a+ a;-l-a:2).

III. When the expression contains only two powers
of a particular letter and one of those powers is the square
of the other, the method of Art. 81 is applicable.

Ex. 1. To find the factors of x^ _ I0a;2 + 9.

a:* - 10x3 + 9 =a:4 - 10a;2 + 25 - 25 + 9= (a:»
-

5)2
- 16

= (a;2-5 + 4)(iB2-5-4)= (xa-9)(ar»-l) = (a;+ 3)(a;-3)(x + l)(x-l),

or thus:— «* _ i0a;2 + 9= (a:' + 3)»
- IGx'

=
(«»+ 3 + 4a;) (x2 + 3 - 4x)= (x + 3) (x+ 1) (x

-
3) (x

-
1).

Ex. 2. To find the factors of x" + x^+ 1.

Two real quadratic factors can be found as follows :

X4 +X2+I=(x2 + 1)2-X2=(x2+1 + X)(x3+1-X).

Ex. 3. To find the factors of x« - 28x»+ 27.

x«-28x3 + 27 = x«-28x3+143-142+ 27 = (x3-14)»-13»
= (x»-l)(x3-27) = (x-l)(x-3)(x2 + x + l)(x2 + 3x + 9).

In this case, and also in Ex. 1, two factors can be seen by
inspection, as in Art. 79.
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Ex. 4. To find the factors of a* + b* + c*- 2b^c^ - 2c«a* - 2a^l^.

Arranging according to powers of a, we have

a4 - 2a2 (62+ gS) + 54+ ^4 _ 252^2

= a* - 2a2 (&2 4. c2) 4. (^2 + c2)2
_

(52 + c2)2 + 64+ c4 _ 262^2 ^

= {a2
-

(62 + c2)}2
_ 46V = (a^

- 62 - c^ - 26c) (a^
- 62 - 0^+ 26c)

= {a2-(6 + c)2}{a2-(6-c)2}
= (a + 6+ c) (a

- 6 - c) (a
- 6 + c) (a + 6 - c) .

IV. Two factors of aP^ + bP + c, where P is any
expression which contains x, can always be found by the

method of Art. 81
;
for we have

aP^ + bP + c

Ex. 1. To find the factors of [x^ + xf + 4
(a;^ + x)

- 12.

Since P2 + 4P- 12= (P-2) (P + 6),

the given expression =
(a^+ a; - 2) (x* + a; + 6)

=
(a;+ 2)(a;-l)(a;2 + flc+ 6),

the factors of ot^ + aj + G being imaginary [see Art. 83, Note].

Ex. 2. To find the factors of (aj2+ a; + 4)^ + 8x (x2 + a: + 4) + 15x2.

The given expression =
{ (x2 + x+ 4) + 3x} { (x2 + x + 4) + 5x}

= (x2 + 4x + 4)(x2 + 6x+ 4)

=
(x + 2)2(x2 4 6x+4).

Ex. 8. To find the factors of

2(x2+ 6x + l)2 + 5(x2 + 6x + l)(^=» + l) + 2(x2+l)».

Since 2P2+ 5PQ + 2Q2=(P + 2(2)(2P+ g),

the given expression

=
{(x2 + 6x+l) + 2(xHl)}{2(x2 + 6x+l) + xHl}

= (3x2 + 6x+ 3) (3x2+ 12x + 3)

= 9(x+l)2(x2+ 4x+ l).

Ex. 4. To find the factors of (x» + x + 1) (x^ + x + 2)
- 12.

The given expression = {x^+ x)2 + 3 (x2 + x)
- 10

= (x2 + x-2)(x2 + x + 5)

= (x+ 2)(x-l)(a;2 + «+5). .
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EXAMPLES V.

Find the factors of the following expressions i

1. 03* + a^ -x — a.

2. ac — bd — ad+ be.

3. ac' + bd'-ad'-bc\

4. acx^ + (be + ad) xy + bd'tf,

5. acx^ + bcaf + adx + bd.

6. {a + 6)' + (a + c)«
-

(c + (i)^
-

(6 + J)*.

7. a' + a'b-ab'-b\

8. a* - a»6 _ ab"" + b\

9. a'b'-a'-b'+l.

10. afi/'-x'z'-y'z' + z\

11. a;VV-a;'«--/;s + l.

12. oj* + a;^ + xz"^ + y^.

13. x(x + z) -y{y + z),

14. a;*-7a:^-18.

15. a;* - 23x' + 1.

16. x*-Uxy-i-y\

17. x' + aj' + l.

18. x*-2{a' + b')x'+(a'-b')\

19. aj* - 4a;y2» + 4:y*z\

20. ic*- 2 (a + 6) a; - a5 (a
-

2) (b
^

2).

21. a:* + 6a^ + CKC + a6.

22. {l+yy-2a^{l+y')^x*{l-yY
23. af-y'- 32» - 2a» + 4y».
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24. 2^/*
- 6xy + 2x^ -ay-ax- a^

25. a' - 3b' - 3c' + 106c - 2ca - 2ah.

26. 2a» - 7a6 - 226« - 5a + 356 - 3.

27. l + (6-a»)aJ*-a6£c^

28. 1 - 2aa5 - (c
-

a') a?" + aca;°.

29. a«(6 -c) + h\c-a) + c\a - h).

30. 6*c + 6c' + c'a + ca' + a*6 + a6* + 2a6c.

31. a'6 - a6' + a*c - ac' - 2abc + b'c + be'.

32. x\a -\-l)-xy(x-y) {a-b)+j/'{b + 1).

33. ax {/ + 6') + by (6a;' + a'y).

34. 2a;' - ^a;*!/ -a^z + 2xy' + 2xyz
-

y'z.

35. xyz (a;"
+/ + «")

- yV - «V -
ajy.

36. {a;'+a;)»-14(a;' + a;) + 24.

37. (a;'
+ 4a; + 8)' + 3a;

(a;'
+ 4a; + 8) + 2a;'.

38. (a;+l)(a; + 2)(a;+3)(a; + 4)-24.

39. (a;+ 1) (a;+ 3) (a;+ 5) {x + 7) + 15.

40. 4(a; + 5) (a;
+ 6) (a; + 10) (a;

+ 12)
- 3a!«.

86. Theorem. The expression of" — a" is divisible by
x— a, for all positive integral values of n.

It is known that x — a, x^ — a^ and x^ — a^ are all

divisible hy x — a.

We have a;" - a" = a;" - aa;""' 4- ax*"'^ - a"

= a?"-' (a;
-

a) + a (a?""^
-

a""*).

Now if x — a divides a;""* — a**"^ it will also divide

a;*"* (a?
-

a) + a (a;""*
-

a""*), that is, it will divide a;" - a\

Hence, if x
— a divides a;"'* — a""* it will also divide

X — a .

S.A. 5
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But we know that x — a divides of — a^;it will therefore

also divide cc" — a*. And, since x — a divides x* — a* it will

also divide x'^
— a*. And so on indefinitely.

Hence a;**
— a" is divisible by x — a, when n is any

positive integer.

87. Since a;" + a" = a;" - a" + Sa" it follows from the

last Article that when a?" + a** is divided by a; — a the

remainder is 2a**, so that a?" + a" is never divisible by a; — a.

If we change a into — a^x—a becomes x — {—a) = x-\-a\
also a?" — a** becomes a?" — (— a)**, and a?" — (— a)" is a;" + a**

or a;" — a** according as n is odd or even.

Hence, when n is odd

a?" + a" is divisible by a? 4- a,

and when n is even

a;" — a" is divisible by a; + a.

Thus, n being any positive integer,

x-^ a divides a?" - a** always,

x — a „ a;" + a" never,

a? + a „ a?" — a" when w is even,

and x + a „ a;" + a" when n is odd.

The above results may be written so as to shew the

quotients: thus

"

= a;--' + a;"-^ a + a;""' a'^ + + «-»,

= a;""' - a?""* a + a;""' a' - ± a""',
x-{- a

the upper or lower signs being taken on each side of the
second formula according as ri is odd or even«

88. Theorem. If any regional and integral expres-
sion which contains x vanish when a is put for x, then will

x — a be a factor of the expression.

or
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Let the expression, arranged according to powers of x,

be
cw?" + 6a?"~' + ca?**"^ +

Then, by supposition,

aa'*-i-6a""' + ca''~'+ =0.

Hence aa?" + 6a;""* + ca;""' +
= a«" + 6^""' -i- ca?"^ + -

(aa" + 6a"-' + ca""* + ...)

= a (a;"
-

a") + 6 (^"~*
-

a""*) + c (^""^
-

a""') +

But, by the last Article, a?" - a", aj""' - a"-\ a;""'' - a*-^

&c. are all divisible by x — a.

Hence also cm?" + 60?"-* + co;""' + is divisible by
X —OL.

The proposition may also be proved in the following
manner.

Divide the expression aaj"+6a;**~' + ca;""'' + by a? — a,

continuing the process until the remainder, if there be any
remainder, does not contain x\ and let Q be the quotient
and K the remainder.

Then, by the nature of division,

aa;" + 6a;"-* + ca;"-='+ =Q(a;-a) + -B,

and this relation is true for all values of x.

Now since H does not contain a;, no change will be
made in R by changing the value of x : put then x = (x, and
we have

aa" +6a"-* + ca"-'^+ =Q(a-a) + R==R

Hence, if any expression rational and integral in x
be divided by x~a, the remainder is equal to the result

obtained by putting a in the place of x in the expression.

It therefore follows that the necessary and sufficient

condition that an expression rational and integral in x

may be exactly divisible by x — a is that the expression
should vanish when a is substituted for x.

6—2
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Ex. 1. Find the remainder when 3^ - 4lX^ + 2 is divided by a; - 2.

The remainder = 2" - 4 . 22 + 2= - 6.

Ex. 2. Find the remainder when x^ - 2a^x + a' is divided hy x-a.

The remainder is a* - 2a* + a^=0, so that x^ - 2a^x + a^ is divisible

hj x-a.

Ex. 3. Shew by substitution that «-l, x-5, x + 2 and x+4: are

factors of x* - 23x2 _ 18a; + 40.

Ex. 4. Shew by substitution that a - 6 is a factor of

a^{b-c) + b^{c-a) + c^{a-b).
Put a=b and the expression becomes a^ {a

-
c) + a^ {c

-
a), which

is clearly zero : this proves that a - 6 is a factor.

Ex. 6. Shew that a is a factor of

(a+ 6 + c)8-(-a+ 6 + c)3-(a-6+ c)»-(a+ 6-c)».

89. We have proved that w — a is a factor of the

expression oaf* + hx"*'^ + cx**~^ + , provided that the

expression vanishes when a is put for x.

If the division were actually performed it is clear that

the first term of the quotient, which is the term of the

highest degree in x, would be cw?""\ Hence the given ex-

pression is equivalent to

(a?
-

a) (ow;""'' + &c
).

Now suppose that the given expression also vanishes

when x=l3; then the product of ic — a and 0^""^ +
will vanish when x = 0; and since x— a does not vanish

when x= ^, it follows that aa?"~* 4- must vanish

when a?=/S. Hence x — ^ is a factor of ax^~^ + &c.; and,
if the division were performed, it is clear that the first

term of the quotient would be cw;""*.

Hence the original expression is equivalent to

(a;_a)(a;-/3)(aa;*-*-f-&c ).

Similarly, if the original expression vanishes also for

the values 7, B, &c. of x, it must be equivalent to

(x -(i){x- /3) (x -y)(x- 8) (OA-"-*- + &c ),
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where r is equal to the number of the factors x — a,

X - py &c.

If therefore the given expression vanishes for n values

a, y8, 7, &c. there will be n factors such as a? — a, and the

remaining factor, oa?""*" + &c. will reduce to a; and hence
the given expression is equivalent to

a{x — a)(w
—

13) {x — 7)

OOR If any of the factors x — a, x — P, ... occur more
than once in aa?" + 6a;"~^ + . . .

,
it can similarly be proved

that the expression is equivalent to a(x — ay (x
—

iSf . . . ,

the factors x — a, x — ^, ... occurring respectively ^, ^, •..

times, and p -{-q-\- ... = n.

90. Theorem. An expression of the nth degree in x
cannot vanish for more than n values of x.

For if the expression

Gw;" + 6a;""^ + ca;""* +

vanishes for the n values a, ^^y , it must be equivalent
to

a(x — a)(x-~0)(x
—

y)

If now we substitute any value, k suppose, different

from each of the values a, ^, 7, &c.; then, since no one of

the factors k— a, k — ^, &c. is zero, their continued product
cannot be zero, and therefore the given expression cannot
vanish for the value x = k, except a itself is zero.

But, if a is zero, the original expression reduces to

fta?""^ + ca;""* + , and is of the (n — iy degree; and
hence as before it can only vanish for n — 1 values of x,

except b is zero. And so on.

Thus an expression of the nth degree in x cannot

vanish for more than n values of x, except the coefficients of
all the powers of x are zero; and when all these coefficients

are zero, the expression will clearly vanish for all values

of a?.
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91. Theorem. If two expressions of the nth degree
in X he equal to one another for more than n values of x,

they will be equal for all valves of x.

If the two expressions of the nth degree in x

cw;" + 6a?"-' + ca;"-'' + ,

and px"" + qaf"'^ + rx*'~^-{- ,

be equal to one another for more than n values of x, it

follows that their difference, namely the expression

{a
-

j9) a;" + (6
-

q) a?""^ + (c-r) x^'^ + ,

will vanish for more than n values of x.

Hence, by Art. 90, the coefficients of all the different

powers of x must be zero.

Thus a-_p = 0, 6-^ = 0, c-r = 0, &c.

that is, a — p,h—q,c = r, &c.

Hence, if two expressions of the nth degree in x are

equal to one another for more than n values of x, the

coefficient of any power of x in one expression is equal to the

coefficient of the same power of x in the other expression.

When any two expressions, which have a limited

number of terms, are equal to one another for all values

of the letters involved, the above condition is clearly

satisfied, for the number of values mast be greater than the

index of the highest power of any contained letter.

Hence when any two expressions, which have a

limited number of terms, are equal to one another for all

values of the letters involved in them, we may equate the

coefficients of the different powers of any letter.

92. Theorem. A rational integral expression con-

taining X can he resolved into only one set of factors of the

first degree in x.

For, if it be possible, let the expression ax"* + hx^^ + . ..

be equivalent to

a{x— ay (x
—

j3y..., and also to a (^
-

f)' {x
—

ly)" ...
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Put OP = 01 in both expressions; then a (a
-
^y (a

—
t?)*". . .

must vanish, and therefore one at least of the quantities

f, 17, ... must be equal to a. Let f = a
;

remove one

factor x — a from both expressions, and proceed as before.

We thus prove that every factor of one expression occurs

to as high a power in the other expression; the two ex-

pressions must therefore be identical.

93. Cyclical order. It is of importance for the

student to attend to the way in which expressions are

usually arranged. Consider, for example, the arrange-
ment of the expression bc-\-ca + ah. The term which does

not contain the letter a is put first, and the other terms

can be obtained in succession by a cyclical change of the

letters, that is by changing a into 6, h into c and c into a.

In the expression a^ (b
—

c)-\- ¥ {c—a)-\- & {a — h) the same

arrangement is observed; for by making a cyclical change
in the letters of a^ (b

—
c) we obtain ¥ (c

—
a), and another

cyclical change will give c' (a
—

b). So also the second and
third factors of (b

—
c){c

—
a) (a

—
b) are obtained from the

first by cyclical changes.

94. Symmetrical expressions. An expression which
is unaltered by interchanging any pair of the letters which
it contains is said to be a symmetrical expression. Thus
a-\-b + c, bc-\- ca-\-ab, a' + 6^ + c^ — Sabc are symmetrical

expressions.

Expressions which are unaltered by a cyclical change
of the letters involved in them are called cyclically sym-
metrical expressions. For example, the expression

(b
—

c){c
—

a) (a — b)

is a cyclically symmetrical expression since it is unaltered

by changing a into b, b into c, and c into a.

It is clear that the product, or the quotient, of two

symmetrical expressions is symmetrical, for if neither of

two expressions is altered by an interchange of two letters

their product, or their quotient, cannot be altered by such

interchange.
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It is also clear that the product, or the quotient, of

two cyclically symmetrical expressions is cyclically sym-
metrical.

Ex. 1. Find the factors of a^ (6
-

c) + 6^ {c-a)->r c^ (a
-

6).

If we put 6=s:c in the expression

a2(6-c) + &2(c-a) + c3(a-6) -. (i)

it is easy to see that the result is zero.

Hence &-c is a factor of
(i), and we can prove in a similar

manner that c-a and a — & are factors.

Now (i)
is an expression of the third degree; it can therefore only

have three factors.

Hence (i) is equal to

L(})-c){e~a){a-h) (ii),

where L is some number, which is always the same for all values of

a, by c.

By comparing the coefficients [See Art. 91] of a' in (i) and (ii) we
see that L=-l.

We can also find L by giving particular values to a, 6 and c.

Thus, let a= 0, & = 1, c= 2; then (i) is equal to -2, and (ii) is equal
to 2L, and hence as before L= - 1.

Ex. 2. Find the factors of a^ (6
-

c) + 6« (c
-

a) + c^ (a
-

6).

As in the preceding example, (6-c), {c-a) and (a -6) are all

factors of

a8(6-c) + J3(c-a) + c»(a-6) (i).

Now the given expression is of the fourth degree ; hence, besides

the three factors already found, there must be one other factor of

the first degree, and this factor must be symmetrical in a, 6, c, it

must therefore be a + & + c.

Hence the given expression must be equal to

L (6
-

c) ip-a) (a-b) (a + b + c) (ii),

where L is a number.

By comparing the coefficients of a' in (i) and in
(ii)

we see that

L= - 1
;
hence

a*(6
-

c) + 63(c
-
a) +c8(a

-
6)
= -

(6
-

c) {c-a) {a
-

b) {a + b + c).

We can also find L by giving particular values to a, b, and c.

Thus, let a= 0, &= 1, c=2; then (i) is equal to -6 and (ii) is

equal to 6L, so that L = - 1.

We may also proceed as follows:

Arrange the expression according to powers of a ; thus

a^{b-c)-a (63
-

c^) + be {b'-
- c%
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It is now obvious that 6 - c is a factor, and we have

(b-c) {a^-a{b^ + bc + c^) + bc{b + c)}

= (&
-

c) { 62 (c
-

a) + & (c2
-

ac) + a3 - ac2 }

=
(6
-

c) (c
-
a) {&2 + bc-a^-ac}=-{b- c) (c

-
a) (a

-
6) (a + 6 + c).

Ex. 3. Find the factors of bh^ {b-e) + c^o? {(i-d)-\- a^V^ (a
-

&).

By putting 6=c in the expression

V^c^{b-c) + c^a^{c-a) + a%^{a-b) (i),

it is easy to see that the result is zero; hence h-c is a factor of (i).

So also c-a and a - 6 are factors.

The given expression being of the fifth degree, there must be,

besides the three factors b-c, c-a, a-b, another factor of the

second degree ; also, since this factor must be symmetrical in a, b, c,

it must be of the form L [a^+ b^ + c^) +M {be + ca + ab).

Thus (i)
is equal to

{b-c){c-a){a-b){La^+ Lh^ + Lc^ + Mbc + Mca+ Mab}...{n).

Equating coefficients of a* in
(i)

and in (ii) we see that L= 0;
and then equating coefficients of bh^ we see that M=-l. Hence

(i)
is equal to

-(b-c) {c- a) {a
-

6) {be + ca+ ab).

We may also proceed as follows.

Arranging according to powers of a, the factor b-c which does

not contain a becomes obvious ; then, arranging according to powers
of 6, the factor c-a which does not contain 6 becomes obvious; and
so on. Thus

6V(6 -
c)
-
a2(68

_
c3) + a3 (52

_
c2)

= (&-c){62c2-a3(62 + 6c + c2) + a3(& + c)}

=
(6
-

c) {62 (c2
-

a2) + a26 {a-c) + a^c (a-c)}
= {b-c){c-a){b^{c + a)-a^-a^c}
= {b-c){c- a) {{62

-
a2) c + 62a - a26}

ss - (6 -c) (c-a) (a -6) (6c + ca + a6).

EXAMPLES VI.

Find the factors of the following expressions i

1. {y-zy + (z-xy + (x-yy.

2. {y-zy + (z^xy + (x-yy,

3. a' (b'
-

c') + h' (c'
-

a') + c' (a'
-

h'),

4. a{b-cy-\-h{c-ay + c(a-h)\
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5. a(b- cY + h{c-ay + c{a- h)\

6. he (6
-

c) + ca (c
-

a) + ah {a
-

h).

7. 6V (h-c)-\- ea"" {c~a)-¥ a'6^ (a
-

6).

8. a* (6
-

c) + 6* (c
-

a) + c* (a
-

6).

9. a''(6-c) + 6»((;-a) + c'(a-6).

10. (a + 6 + c)»
-

(6 + c - a)»
-

(c 4- a - 6)»
-

(a + 6 - c)^

11. (a + 6 + c)'-(6 + c-a)'-(c + a-6)*-(a + 6-c)*.

12. a (6 + c - a)' + 6 (c + a - 6)' + c (a + 6 - c)'

+ (6 + c - a) (c + a - 6) (a + 5 -
c).

13. a* (6 + c - a) + 5' (c + a - 6) + c^ (a + 6 - c)

-
(6 + c — a) (c + a -

6) (a + 6 -
c).

14. (6 + c - a) (c + a - 6) (a + 6 - c) + a (a
- 6 + c) (a 4- 6 - c)

+ 6 (a + 6 - c) (
- a + 6 + c) + c (- a + 6 + c) (a

- 6 + c).

15. (6
-

c) (a
- 6 + c) (a + 5 - c) + (c

-
a) (a + 6 - c) (-a + 6 + c)

+ (a
-

6) (- a + 6 + c) (a
- 6 +

c).

16.
(a; + 2^ + is)'

- £c' - / - z^.

17.
(aj
+ 2/ + 2;)''

- a;* -
g/**
- «\

18. (6-c)(6 + c)' + (c-a)(c + a)»+(a-6)(a + 5)'.

19. (6-c)(6 + c)» + (c-a)(c + a)' + (a-^»)(a + 6)^

20. (6-c)(ft + c)*+(c-a)(c + a)^+(a-6)(a + 6)*.

21. a^ + 6^ + c" + 5a6c - a{a-h) {a- c)
- h {h

-
c) {h

-
a)

—
c{c

—
a){G

—
h).

22. a» (a + 6) (a + c) {h-c) + h' (h + c){h + a) {c
-
a)

+ c'(c + a) (c + h){a- b).

23. (y + z) (z + x) (x + y)+ xyz.

24. a*(6 + c)' + 6'(c4-a)» + c*(a + 6)'
+ a6c(a + 6 + c)

+ {a^ + 6' + c") (6c + ca + a6).

25.
(a;
+

2/ + »)*
-

(y + »)*
-

(a + a;)*
-

(a;
+ y)* + a;* -1- y* + 2;*.

26. a« (6 + c - 2a) + 6' (c + a - 26) + c" (a + 6 - 2c)

+ 2 (c'-a^)(c- 6) + 2 (a'-6')(a-c) + 2 {¥-c'){b
-

a).
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27. {h + c-a-dY{h-c)(a-d) + {c-^a-h-dy{c-a){b-d)
+ {a + b-c-dy{a-b)(c- d).

28. Shew that

12 {ix + y + «)«-
-
(y + »)'"

-
(« + xf"" -{x + yy + x"' + y'" + z'"]

is divisible by

{x + y + zy-{y + zY -{z-k- x)*- {x + y)* + a* + y* + z\

29. Shew that

a«(6 + c-a)»+6»(c + a-6)* + c*(a + 6-c)»+a6c(a' + 6»+c»)

+ (aV 6' + c' ^ 6c - ca - a6) (6 + c - a) (c
+ a ~ 6) (a + 6 - c)

= 2a6c (Jc H- ca + a6).

30. Shew that

(6-c)« + (c-a)' + (a-6)«-9(6-cy(c-a)'(a-6)'
= 2 {a-hf{a-cy + 2 (6

-
c)« (6 -a)^+ 2 (c

-
a)" (c

-
6)«.

31. Shew that

{h-^ cf + {c + af -^ {a + hf + (a + dy + {h + dy -\- {c+ dy
= Z(a+h + c-^d){a' + h' + c' + d^).

32. Reduce to its simplest form

4 (a' + aft + hy -
(a
-

6)' (a + 26)^ (2a + 6)^

33. Shew that

«* (J« + c« - a^)^ 4- 6* (c» + a» - 6^)» + c*
(a''

+ 6' -
c'')*

is divisible by
a* + 6* + c* - 26^c» - 2c'a« - 2a'h\

34. Resolve into quadratic factors

4 {cc^ (a^
-

h') + aft (c^
-

d')]' + {(a'
-

6^) (c'
-

1^»)
-

4a6c^}».

35. Shew that

(^^-^)(l+xy) (1 -^xz) + (^'-a;^) (l + y«)(l + yx)

+ {x'-y') (1 +!2;a;)(l+«2/)
= (y-z) (z-x) (x-y) {xyz +x+y+z).

36. Find the factors of

a'(b^c)(c-d){d-b)-b'{c-d)(d-a)(a-c)
+ c\d-a){a-b){b-d)-d^(a-b)(b-c)(c-a).

37. Find the factors of

b'c'd' (b -c){c- d) (d-b)- c'd'a' (c -d){d- a) {a -c)

+ dWb'(d- a)(a-b)(b-d)
- a'b'c' {a

-
b) {b

-
c) (c

-
a).



CHAPTER VII.

Highest Common Factors. Lowest Common
Multiples.

95. A Common Factor of two or more integral alge-
braical expressions is an integral expression which will

exactly divide each of them.
The Highest Common Factor of two or more integral

expressions is the integral expression of highest dimensions
which will exactly divide each of them.

It is usual to write h.c.f. instead of Highest Common
Factor.

96. The highest common factor of monomial
expressions. The highest common factor of two or more
monomial expressions can be found by inspection.

Thus, to find the highest common factor of a^h^c and a^ft^'.

The highest power of a which will divide both expressions is

a'; the highest power of & is 6^. and the highest power of c is c;
and no other letters are common. Hence the h.c.f. is a^h^c.

Again, to find the highest common factor of a^6*c^, a%^ and a%c^.

The highest power of a which will divide all three expressions
is a^

;
the highest power of & which will divide them all is 6

; and c

will not divide all the expressions. Hence the h.o.f. is a%.

From the above examples it will be seen that the

H.C.F. of two or more monomial expressions is the product

of each letter which is common to all the expressions taken

to the lowest 'power in which it occurs.
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97. Highest common factor of multinomial

expressions whose factors are known. When the

factors of two or more multinomial expressions are known,
their h.c.f. can be at once written down, as in the pre-

ceding case. The h.c.f. will be the product of each factor
which is common to all the expressioTis taken to the lowest

power in which it occurs.

Thus, to find the h.c.f. of

(a: -2)3 (a; -1)2 (a; -3) and (a;
-

2)* («
-

1) («
-

3)».

It is clear that both expressions are divisible by {x
-

2)^, but by no

higher power of «- 2. Also both expressions are divisible by a; - 1,

but by no higher power of a; - 1
; and both expressions are divisible

by a; -3, but by no higher power of a; -3. Hence the h.o.f. is

{x-2,f{x-l){x~^).

Again, the h.c.f. of a%'^{a-}>Y{a + hf and a%'^{a-h){a-\-hY is

In the following examples the factors can be seen by
inspection, and hence the H.C.F. can be written down.

Ex. 1. Find the h.c.f. of a^}^-a%* and a^lfi+ a^l^.

Am. a262(a + 6).

Ex. 2. Find the h.o.f. of a«6=»-4a4&* and a%'^-l%a^h^.

Am. a262(a3_452).

Ex. 3. Find the h.o.f. of a»+3a»6 + 2a6» and a*+6a*6 + 8a262.

Am. a (a + 26).

98. Although we cannot, in general, find the factors

of a multinomial expression of higher degree than the

second [Art. 84], there is no difficulty in finding the

highest common factor of any two multinomial expressions.
The process is analogous to that used in arithmetic to find

the greatest common measure of two numbers.

If the expressions have monomial factors, they can be
seen by inspection; and the highest common factors of

these monomial factors can also be seen by inspection:
we have therefore only to find the multinomial expression
of highest dimensions which is common to the two given
expressions.
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Let A and B stand for the two expressions, which are

supposed to be arranged according to descending powers
of some common letter, and let A be of not higher degree
than B in that letter. Divide B by A, and let the quotient
be Q and the remainder R

;
then

B = AQ + R;
.-. B==B-AQ.

Now an expression is exactly divisible by any other if

each of its terms is so divisible; and therefore B is divisible

by every common factor of A and R, and R is divisible

by every common factor of A and B. Hence the common
factors of A and B are exactly the same as the common
factors of A and R; and therefore the h.c.f. of A and R
is the H.C.F. required.

Now divide A by R, and let the remainder be >Si
;
then

the H.C.F. of jK and S will similarly be the same as the

H.C.F. of A and R, and will therefore be the H.C.F. re-

quired.

And, if this process be continued to any extent, the

H.C.F. of cmy divisor and the corresponding dividend will

always be the H.C.F. required.
If at any stage there is no remainder, the divisor must

be a factor of the corresponding dividend, and that divisor

is clearly the h.c.f. of itself and the corresponding divi-

dend. It must therefore be the H.C.F. required.
It should be remarked that by the nature of division

the remainders are successively of lower and lower dimen-
sions

;
and hence, unless the division leaves no remainder

at some stage, we must at last come to a remainder which
does not contain the common letter, in which case the

given expressions have no H.C.F. containing that letter.

Since the process we are considering is only to be used

to find the highest common multinomial factor, it is clear

that any of the expressions which occur may be divided or

multiplied by any monomial expression without destroying
the validity of the process; for the multinomial factors

will not be affected by such multiplication or division.
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Thus the h.c.f. of two expressions can be found by
the following

Rule :—Arrange the two expressions according to

descending powers of some common letter, and divide the

expression which is of the highest degree in the common
letter by the other [if both expressions are of the same

degree it is immaterial which is used as the divisor). Take
the remaindery if any, after the first division for a new

divisor, and the former divisor as dividend ; and continue

the process until there is no remainder. The last divisor

will be the h.c.f. required. The process is not used for

finding common monomial factors, these can be seen by

inspection ; and any divisor, dividend, or remainder which

occurs may be multiplied or divided by any monomial ex-

pression.

Ex. 1. Find the h.o.f. of »»+ a;^ - 2 and a^-{-2x^- 3.

x^+ aP-2\x^ + 2x'-S(l
J x^+ x\-2^

'

x^-x ^

2

f T.- — V.\

x^+x-2
x^ -1

a;- -05

x-1
x-1

Thus the h.c.f. is x- 1.

The work would be shortened by noticing that the factors of

the first remainder, namely x'^ - 1, are x-1 and a; + 1. And by
means of Art. 88 it is at once seen that x-1 is, and that a;+ l is

not, a factor of a*+ a;*- 2,

Ex. 2. Find the h.o.f. of

x^ + 4:x'^y-8xy^ + 24:y^ and x^-x^ + 8x^y^-8xy*.

The second expression is divisible by x, which is clearly not a

common factor: we have therefore to find the h.o.f. of the first

expression and x*-x^y + 8xy^-8y*.
st^ + 'kc'^-8xy^ + 2iy^\x^- x^y + 8xy^

-
8y* Ix-by

f x^ + ^ahf -
8x'^y'^ + 2^xy^

^

- 5x^y + 8xh/ - 16an/3
-
»y*

-
bx^y

-
2(ixhj'^ + AQxy^

-
120y*

28«2i/2-66xj/3 + 112t^*
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The remainder =28y^{x^-2xy + 4y^): the factor 28^^18 rejected
and x^ - 2xy + iy^ is used as the new divisor.

s^-2xy + Ay^\x^+ 'hPy-8xy^+ 24y»(z+ 6y
I x^ - 2x'^y + 4an/2

^

Qxh/-12xy^+2^y^
Qx^y-12xy

^ + 24:y^

Hence «* - 2xy + iy^ is the H.o.r. required.

Ex. 3. Find the h.o.f. of

2x^+ 9x^ + lix + S and 3x*+ 16a^ + 6«3+ 10a?+ 2.

To avoid the inconvenience of fractions, the second expression
is multiplied by 2: this cannot introduce any additional common
factors. The process is generally written down in the following
form :

2a;4+ 9a;3+Ux + 3 \ 3a:* + 15a;3+ 5*2+ lOx+ 2

/2

6x^ + S0x^+ 10x^ + 20x + 4:(S
6a;^ + 27a:8 +42x4-9 ^

'6x^ + 10x^-22x-5\2x* + 9x^+Ux + 3

6a;^ + 27a;3 + 42a; + 9 ( 2x
6x^ + 2(h^-4.ix^-10x^

7x^+Ux^ + 52x + 9
3

21x3 + 132a^»+ 156a; + 27/7
21x8+ 70a;2-154a;-35 V

62 |62a;^ + 31Qa: + 62

ar^+ 5x+ 1

x''+ 5x + l\Sci^ + 10x^-22x-5(Sx-5
hx^ + 15x^+ Sx V

- 5a:2-25x-6
- 5a;a-25a;-5

Thus x'+ 6a; + 1 is the h.o.f. required.

Detached coefficients should generally be used [Art. 63].

99. The labour of finding the h.c.f. of two expres-
sions is frequently lessened by a modification of the pro-
cess, the principle of which depends on the following

Theorem :—The common factor of highest degree in

a particular letter, x suppose, of any two expressions A
and B is the same as the H.C.F. of pA + qB and rA + sB,
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where p, q, r, s are any quantities positive or negative which
do not contain x.

To prove this, it is in the first place clear that any
common factor of A and B is also a factor of pA -f qB and
oirA-^sB.

So also, any common factor of pA 4- qB and rA + sB
is also a factor of s{pA-]-qB)

— q{rA+sB), that is, of

{sp
—

qr) A. Hence, as {sp
—

qr) does not contain x, any
common factor of pA +qB and rA -\-sB must be a factor

af A, provided only that p, q, r, s are not so related that

sp
—

qr = 0. Similarly any common factor of pA + qB
and rA + sB is also a factor of r {pA + qB)—p {rA + sB)^
that is of {rq —ps) B, and therefore of B.

Since every common factor of A and 5 is a factor of

pA + qB and of rA + sB, and every common factor of

pA + qB and rA + sj5 is a factor of A and of B, it follows

that the H.c.F. of A and B is the same as the h.c.f. of

pA + qB and rA + sB.

Ex. To find the h. c.p. of 2ic*+ a:* - 6a;2 - 2a; + 3 and 2a;* - 3a;3+ 2as - 3.

We have, by subtraction,

4aJ_6x'»-4a;+ 6 (I);

and, by addition,

4x4-2a;»-6a;«=2a:»(2x2-a;-3) (II).

The required h.c.f. is the h.c.f. of (I) and (II), and therefore

of (I) and
2ar»-a;-3 (in).

Multiply (III) by 2 and add (I), and we have another expression,

namely
4a;»-2x2_6a;= 2a;(2a;2-a;-3) (IV),

such that the h.c.f. of (III) and (IV) is the h.c.f. required. But the

H.C.F. of (III) and (IV) is obviously 2x^-x-'^.

100. U R, S be the successive remainders in the

process of finding the H.C.F. of the two expressions A and
B by the method of Art. 98

; then, as we have seen, every
common factor ofA and 5 is a factor of R, and therefore a
common factor of J. and R. Similarly every common factor

of A and ii^ is a common factor of R and S. And so on
;
so

s. A 6
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that every common factor of A and 5 is a factor of every
remainder, and therefore must be a factor of the H.c.F.

Hence every common multinomial factor of two ex-

pressions is a factor of their highest common multinomial

factor
;
and this is obviously true also of monomial factors.

Therefore every common factor of two expressions is a

factor of their H.c.F.

It can be shewn that every remainder, in the process
of finding the H.c.F. of two expressions A and 5 by the
method of Art. 98, is expressible in the form FA + GB
where F and G are rational and integral in x.

For, if Qi, Qa, Qjj ••• Qn be the successive quotients,
and i^i, R^, R^, ...Rn be the successive remainders, the
last of which, Rn, is the H.c.F. of A and B ii A and B
have any common factor, but is independent of a; if J. and
B have no common factor containing x

;
then we have

R,^B -A. Q,,

R2 = A — Ri' Qa,

Rs = Ri —
-Ba . Qa,

Mn— Mn—i lin—\' ^n*

Now i^i is clearly of the required form {F being
—

Q^ and
G being 1), and substituting for jRi in the second equation
it will be at once seen that R^ is of the required form.

Also jRfc is of the required form provided that both Rjc_^

and Rje^ are of that form
; for, if i^;fc_i

= LA + MB and

Rk-^ = L'A^M'B\ then

Rh = Rh-a - Bk-i Qtc
=

{L' -Qjc.L)A + {M'-Qi.M)B,
and the expressions L —

Q]c > L and M' — Qj^ . M are both

integral, since by supposition L, M, L', M' and Q^ are all

integral expressions.
Hence Rn = FA + GB, where F and G are integral

expressions.
If now A and B have no common factor in x, then Rn

does not contain x. And, dividing throughout by Rn,
since F/Rn and G/Rn are integral in x, we have

where P and Q are integral in x.



i

fflGHEST COMMON FACTORS. 83

Thus, if A and B he any two integral expressions con-

taining X, hut which have no common factor containing a?,

two other expressions^ P and Q, can he found hoth integral
in X, and such that PA + QB = 1.

Ex. FindPand Q when .4= a:»- 3*2+1 and B=a;«+ 2a;+ 2.

Am. P=-l(8a;+ 6). Q=i(8x''-35i;+39).

101. The H.C.F. of three or more multinomial expres*
sions can be found as follows.

Let the expressions be -4, 5, (7, Z),....

Find Q the H.C.F. of A and B.

Then, since the required H.c.F. will be a common
factor of A and B, it will be a factor of Q : we have there-

fore to find the H.c.F. of 0,0,1)....
Hence we first find the H.c.F. of two of the given ex-

pressions, and then find the H.c.F. of this result and of

the third expression ;
and so on.

Note. The highest common factor of algebraical ex-

pressions is sometimes, but very inappropriately, called

their greatest common measure (G.C.M.).
If one expression is of higher dimensions than another,

in a particular letter, we have no reason to suppose that it

is numerically greater : for example, a' is not necessarily

greater than a; in fact, if a is positive and less than

unity, a' is less than a.

It should also be noticed that if we give particular
numerical values to the letters involved in any two ex-

pressions and in their H.C.F., the numerical value of the
H.C.F. is by no means necessarily the G.C.M. of the values
of the expressions. This is not the case even when the

given expressions are integral for the particular values
chosen. For example, the h.cf. of l^aj'^^- 15a;-f-l and
22a;' + 23a; + 1 will be found to be a;+l; but if we
suppose X to be |, the numerical values of the expressions
will be 12 and 18, which have 6 for G.C.M., whereas the
numerical value of the H.O.F. will be |.

6—2
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EXAMPLES VIL

Find the h. c. f. of

1. a" - 5ab + ib' and a" - 5a'b + ib'.

2. 2af-5x + 2 and 12a;'- 8a;'- 3a; + 2.

3. 2x*-doi^y' + y* and 2x''-3xy + y\

4. 2a;" + 3a;*y
-

y' and 4:X^ + xi/'-y\

5. a;*- V+122/«-9«' and a;* + 2a» - 42^ + 8^2
- 3«*.

6. 20a* - 3a'b + 6* and 64a* - Sab' + 5b\

7. a» - a'b + ab' + 14&» and 4a» + Za'b - 9ab' + 2b\

8. 2a;* + a;»-9a;' + 8a;-2 and 2a;*- 7a;" + 1 la;"- 8a; + 2.

9. 1 la;* - 9aa;» - aV - a* and 13a;* - lOaa;" - 2aV - a\

10. a;* + a;»-9a;»-3a;+18 and a;' + 6a;' - 49a; + 42.

11. a;* - 2a;" + 5a;' --4a; + 3 and 2a;* - a;" + 60;" + 2a; + 3.

12. a;* + 3a;' + 6a; + 35 and a;* + 2a:" - 5a;' + 26a; + 21.

Lowest Common Multiple.

102. Definitions. A Common Multiple of two or

more integral expressions, is an expression which is exactly
divisible by each of them.

The Lowest Common Multiple of two or more integral

expressions, is the expression of lowest dimensions which
is exactly divisible by each of them.

Instead of Lowest Common Multiple it is usual to

write L.C.M.
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103. When the factors of expressions are known,
their L.C.M. can be at once written down.

Consider, for example, the expressions
'

a'h^x-afioo-hy and ah'ix-a)' {x-h).

It is clear that any common multiple must contain a* as

a factor
;

it must also contain 6^ (x — of and {x
—

hf. Any
common multiple must therefore have a'6* {x — of (x

— by
as a factor

;
and the common multiple which has no un-

necessary factors, that is to say the lowest common multiple,
must therefore be a^6* (x

—
a)^ (x

—
by.

From the above example it will be seen that the L.C.M.

of two or more expressions which are expressed as the

product of factors of the first degree, is obtained by taking

every different factor which occurs in the expressions to the

highest power which it has in any one of therri.

Ex. 1. Find the l.o.m. of ^xh/z, 27sc?yh^ and SxyV.
Ans. 54a;^yV.

Ex. 2. Find the l.o.m. of Gab^ {a + bf and ia^b [a^
-

62).

Ans. 12a^b^a+ by{a-b).

Ex. 8. Find the l.o.m. of 2axy {x
-
y)\ Sax^ {x^

-
y^) and 4y^ {x+ y)^.

Ans. 12aa;V{^^-2/T-

Ex. 4. Find the l.o.m. of 3c^-Bx + 2, x^-5x + 6 and x^-4:x+ 3.

Am. {x-l){x-2){x-S).

104. When the factors of the expressions whose L.C. M.

is required cannot be seen by inspection, their H.C.F. must
be found by the method of Art. 98.

Thus, to find the l.o.m. of a;3 + a;2-2 and x^ + 2x?^3.

The H.o.F. will be found to be « - 1 ;

and x»+x^-2= {x-l){x^+ 2x+ 2),

««+2a;a-3= («-l)(«3+ 3a;+ 3).

Then, since x2 + 2a; + 2 and x^ + 3x + S have no common factor, the

required l.o.m. is {x
~

1) {x^ + 2a5 + 2) (x^ + 3a;+ 3).
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105. Let A and B stand for any two integral ex-

pressions, and let H stand for their H.C.F., and L for their

L.G.M.

Let a and h be the quotients when A and B respec-

tively are divided by ^; so that

A=H .a and B = H.b.

Since H is the highest common factor of A and B,
a and b can have no common factors. Hence the L.C.M.

of A and B must he H x axb. Thus

L = H.a.b.

Hence L — Ra x
-jf

= A
Xjj. (i);

also L xH= Hax Hh^A x B (ii).

From (i) we see that the L.C.M. of any two expressions
is found by dividing on£ of the expressions by their H.C.F.,

and multiplying the quotient by the other expression.

From (ii) we see that the product of any two expressions
is equal to the product of their H. c. F. and L. c. M.

EXAMPLES YIIL

Find the l. c. m. of

1. 6a^ - 5aa; - 6a' and 4aj' - 2aa? - 9a'.

2. 4a* -5ah + b' and 3a' - Sa'b + ab' - h\

3. 3aj» -Ux' + 23aj - 21 and 6a3» + x^- Ux + 21.

4. x*-l Ix' + 49 and 7x* - 40ic' + 75a;" - 40a; + 7.

6. aj' + 6a;' + lla; + 6 and a;* + a;"-4a;'-4a;.

6. a;*-a;» + 8a;-8anda;* + 4a;«-8a;« + 24a;.

7. 8a' - 18a6", 8a» + Sa'b - Qab' and 4a' - 8a6 + 36'
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8. a^-7x + 12, 3x'-Qx-9 and 2x'-6x'-Sx,

9. 8a;' + 27, 16a;* + 36a;' + 81 and 6a;' -5x-6.

10. x' - 6xy + 92/', x^-xy- 6y' and 3a;' - 1 2^.

11. of — 7ocy + 122/', a;' - 6xy + Sy^ and a;' - 5xy + Qy*

12. Shew that, if aa;' + 6a; + c and a'a;' + 6'a; + c' have a com-

mon factor of the form x +f, then will

(ac'
-
a'cY

=
(6c'

-
6'c) (ah'

-
a'h),

13. Shew that, if ax^ + haf + Gx + d and a'x^ + b'x" + c'a; + d'

have a common quadratic factor in x, then will

ba' — b'a cal — c'a da' — d'a

ad — a'd bd' - b'd cd' — c'd
'

14. Find the
,
condition that ax^ + bx + c and a'x^ + b'x + c'

may have a common factor of the form x -¥f.

15. If g^,g^i g^ are the highest common factors, and
?j, ?,, l^

the lowest common multiples of the three quantities a, 6, c taken
in pairs; prove that g^g.29]'}}z= {phcf.

16. If -4, jB, (7 be any three algebraical expressions, and

{BG\ (GA), (AB) and (ABC) be respectively the highest
common factors of B and C, C and A, A and B, and A, B and
G j

then the l.c.m. of A, B and C will be

A.B.G. (ABG) ^ {{BG) . (GA) . (^^)}.
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Fractions.

106. When the operation of division is indicated by
placing the dividend over the divisor with a horizontal

line between them, the quotient is called an algebraical

fraction, the dividend and the divisor being called respec-

tively the mmierator and the denominator of the fraction.

Thus T means a-r-h.

Since, by definition, ^
= a -i- 6, it follows that 7- x 6 = a*

107. Theorem. The value of a fraction is not altered

by multiplying its numerator and denominator by the same

quantity.

We have to prove that

a _am
b~b^'

for all values of a, b and m.

a
Let ^ = 7- ;

then a xb = Txb== a, by definition.
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Hence a; xh x m = a x m;

,\ X X (hm) = am. [Art. 29, (ii).]

Divide by hm, and we have

,, V am
X — am -^ (6m) = 7— .

108. Since the value of a fraction is not altered by
multiplying both the numerator and the denominator by
the same quantity, it follows conversely that the value of

a fraction is not altered by dividing both the numerator
and the denominator by the same quantity.

Hence a fraction may be simplified by the rejection
of any factor which is common to its numerator and

ax
denominator. For example, the fraction tj- takes the

a^

simpler form ^ , when the factor a?, which is common to

its numerator and denominator, is rejected.

When the numerator and denominator of a fraction

have no common factors, the fraction is said to be in its

lowest terms.

To reduce a fraction to its lowest terms we must
divide its numerator and denominator by their h.c.f.

;
for

we thus obtain an equivalent fraction whose numerator

and denominator have no common factors.

Ex. 1. Eeduoe -^f
^

to its lowest terms.
Qarxy

The H.c.y. of the numerator and denominator is 3axy ;
and

Saxhf _ 3axhf-r-Saxy _ x_

Qa^xy
~

6a''^xy-7-daxy

""
2a

*

Ex.2. SlmpUfy5Ll|S±12i;.^ *'

x^-8xy + 12y^

x^ - 7xy + lOy^ _ jx
-
2y) {x

-
5y) __ x-5y

x^-8xy + 12y^~ {x-2y){x-6y) x-6y'
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Ex.3. Simplify ^^.
x^-ax x{x- a)

a^-x^~ {a- x) {a + x)'

Since a; - a= -
(a
-

a;), if we divide the numerator and denominator

by a - a?, we have the equivalent fraction^^ : and if we divide the
a+ x

numerator and denominator by a; - a, we have —, r . By the
-(a+x)

''

Law of Signs in Division = -—
: =

, and the last form
a-\-x -{a + x) a + x

is the one in which the result is usually left.

Ex.4. Sunpbfy jj^;^^^^^^^^.
The H.c.F. will be found to be x^-Zx + 1; and, dividing the

numerator and denominator by x^-ix+ l, we have the equivalent

^^^^^^"^
i^T5^T3-

109. Reduction of fractions to a common de-
nominator. Since the value of a fraction is unaltered

by multiplying its numerator and denominator by the

same quantity, any number of fractions can be reduced
to equivalent fractions all of which have the same de-

nominator.

The process is as follows. First find the L.C.M. of all

the denominators
;
then divide the L. C. M. by the denomi-

nator of one of the fractions, and multiply the numerator
and denominator of that fraction by the quotient; and
deal in a similar manner with all the other fractions : we
thus obtain new fractions equal to the given fractions re-

spectively and all of which have the same denominator.

For example, to reduce

a h
and

^y{x + y)' xy^{x-y) oc^yHx^-y'')*

to a common denominator.

The L.o.M. of the denominators is ahi^{x^-y^). Dividing this

L.C.M. by c(^y{x+y), xy^{x-y) and xhf^{x^-y^), we have the
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quotients y^{x-y), x^{x+y) and xy respectively. Hence the

required fractions are

a _ axy^{x-y) _ ay^{x-y)

x^y{x + y) x^y{x + y)xy^{x-y) a^^{x^-y^)*
b _ bxix^{x+ y ) _ bx^{x+ y)

-y) X x^{x + y)

~
a^y^{x^-

cxxy _ cxy

xY i^^
-
y^) ^y^ {^ -y^)^xy x^ (x^

-
y^)

'

It is not necessary to take the lowest common multiple of the

denominators, for any common multiple would answer the purpose j

but by using the l.o.m. there is some saving of labour.

110. Addition of fractions. The sum (or differ-

ence) of two fractions which have the same denominator
is a fraction whose numerator is the sum (or difference) of

their numerators, and which has the common denominator.
This follows from Art. 43.

When two fractions have not the same denominator,

they must first be reduced to equivalent fractions which
have the same denominator : their sum, or difference, will

then be found by taking the sum, or difference, of their

numerators, retaining the common denominator.

When more than two fractions are to be added, or when
there are several fractions some of which are to be added
and the others subtracted, the process is precisely the

same. The fractions must first be reduced to a common
denominator, and then the numerators of the reduced
fractions are added or subtracted as may be required.

Ex. 1. Find the value of—- + —r .

a+b a-b
The L.c.M. of the denominators is (a + b) {a-b); and

1 1 a-b a+b
a+ b

"^o^ ^
(a + b) (a-b)

"*"

{a-b) (a+ b)

{a-b) + {a+ h) _ 2a

a^-b^ ~a»-b^'

a ab
Ex. 2. Find the value of r + f-^ s .

a-b b^-a^
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The L.O.M. of the denominators is a'- 6^; and we have

a{a+ b) -ah a{a-\-h)-db _ a^
+

Ex. 3. Simphfy + —— + „
,

„ + -^j-— . .^ a-x a +x a^+ ar a* + x*

La this case it is not desirable to reduce all the fractions to a

oommon denominator at once : the work is simplified by proceeding
as under:

a a _a{a+ x)+a{a-x) _ 2a^

a-x a +x~ a^-x^ "a^-x^*

, 2a^ 2a^ _ 2a^{a^ + x^)+2a^{a^-x^) _ 4a<
"^®°

a^-x^'^a^+ x^~ a*-«* ~a*-c^'

.^ „ 4a* 4a* 4a* (a*+ aj*) + 4a* (a*
-

a;*)
8a^

and finally ^j-^ + ^-^ =—^

^,-^
1 =

^3--,
.

[The above would be shortened by observing that, except for the

factor 2, the second addition only diifers from the first by having a^

and aP instead of a and x respectively; and hence the result of the

addition can be written down at once. So also the result of the

third addition can be written down from the first or second.]

Ex. 4. Simplify
J_ - -1- + -1- - -i-

.
*^ 05-3 x-1 x+ 1 x + S

Here again it is best not to reduce all the fractions to a common
denominator at once : much labour is often saved by a judicious

arrangement and grouping of the terms.

and

then

The L.o.M. of the denominators is (6-c)(c-a)(a-6) [See Art.

93]. Hence we have

a^(c-b) + b^{a-c) + c^{b-a)

{b-c){c-a){a-b)

Now we naturally test, by the method of Art. 88, whether either

of the factors of the denominator is a factor of the numerator : we
are thus led to find that the numerator is the same as the denomi-

nator, so that the given expression is equal to unity.

1

«-8
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Ex. 6. Simplify

a' 6^ c^

(o
-

6) (a
-

c) (x + a)
"*"

( &
-

c) (6
-

a) (a; + 6) (c
-

a) (c
-

6) (a; + c)

*

The L.c.M. of the denominators is

{b-c){c-a){a-h){x+ a) [x + l) {x + c).

The expression is therefore equal to the fraction whose denominator
is this L.c.M. , and whose numerator is

a2(c-6)(a; + &)(a; + c) + 62(a-c)(a; + c) {x+ a)+c^{h-a) {x-\-a) {x + h).

Arranging the numerator according to powers of «, the coefficient

of «« is a?{c
-

6) +6'{a
-

c)-\-c^{b
- a)= (6 -c) (c -a) {a- b).

The coefficient of x is a^ (c«
-

b^) + fe^ (a»
-

c^) + c^ {b^
-

a»)= 0.

The term which does not contain x is

abc{a{c-b) + b{a-c)+c{b-a)}=0.
Hence the numerator is x^{b-c){c-a){a-b), and therefore the

given expression

xHb-c){c-a){a-b) x^

''(b-c){c-a){a-b){x+ a){x + b){x + c) {x + a) (x+ h) {x + c)'

111. Multiplication of fractions. We have now
to shew how to multiply algebraical fractions.

n c
Let the fractions be y and -, ,

a

Let ^=6'<a5
CL C

then (cxhxd=jX-Txhxda

= YXOXjXa,a

by the Commutative Law.

n C

But, by definition, y x 6 = a, and
-^
x cZ = c;

.', axhxd = axG;

_ ao
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Thus the product of any twofractions is another fraction
whose numerator is the product of their numerators, and
whose denominator is the product of their denominators.

The continued product of any number of fractions is

found by the same rule. For

a c e _ac e _ ace

b^d^f~hd ^f~hdf*
and similarly, however many fractions there may be.

Hence

/(X\* a a aa a , . , fay a'

^ =
p; and, m general. ^ =^,

a , c
112. Division of fractions. Let r and

-^
be any

two fractions : and let a? = ,- ^ j •
'

b d

mi caeca
• Then xx t = t-^j x-7=7d d d b

Hence

c d a
a X -jX -= r

d c b
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J a a c a 1 a

1 c be

Note. It should be noticed that the rules for the

multiplication and division of algebraical fractions are

simply rules concerning the order in which certain opera-
tions of multiplication and division may be performed, and
have really been proved in Art. 33.

Thus rX ^
=

{a-7-b) xic-T-d)

= a-7-6 X c-^d

ax c-7-b-7-d — (ac) -i- (hd)
—

j-^

Ex.1.
SunpMyjj-^,<^---,.

x^+ a^ x-a _ {x^ + a^){x-a)
^^^^ {x+af~ {(x?-a^){x+ ay

{x^- (ix + a^){x-\-a) {x- a) _ x^-ax+ a^

(x-a){x + a)^

~
"(x + a)^

1 1

Ex. 2. SimpUfy j
—
^.

1_1 y-x
X y __ xy _y-x ^ y^-x^ _y-x aPy^ _ xy

J^_l^~j/^-ar*~ xy
'

x^y^

~
xy y^-x^~ x+ y'

x^ y^ ~^2

Ex. 3. Simplify

a+x a-x
a-x a+ x

a+ x a-x'
a-x a+ x

a+ x a-x _{a + x) {a +x)-{a-x) (a-x) _ 4:ax

a-x a +x~ a^-x^ a^-x^*

and
^'^^

+
^~^ - (^+ ^)(^+ ^) + (<^-^)(<^-^) _ 2a2 + 2ac2

a-x a+x~ a^-s^
~

a^-x'^
'
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Hence the given fraction is equal to

4ax
.
2a^+ 2x^_ 4ax a^-x^ _ 2ax

a^-x'' a^-af
~
a^-a?'^ 2a'^ + 2x^~ a^+ x^'

113. The following theorems (the second of which
includes the first) are of importance :

Theorem I. If the fractions ^ , ^ , ^, Sc. be all
1 2 8

equal to one another, then will each fraction be equal to

pa^ + qa^-]-ra^ +
ph + ^K-^'^K+

Let each of the equal fractions be equal to a?.

Then, since r^ = ^, a^
=

bj^x;

/. pa^
=

pb^ X,

so also qa^
=

qh^ x,

ra^
=

rb^ x,

Hence, by addition,

pa^ + qa^ + ra^ + =
(pb^ + qb^ + rb^ + ...) a;;

. pa, + qa, + ra, +
__, ^ _ «i - &c

p\-\- qb^+ rb^+ ^i

Theorem II. If the fractions jf , if , jf
,
<&c. be all

equal to one another, then will each fraction be equal to

^-p- ,
where A is any homogeneous expression of the nth

degree in a,, a^, a^, <^c. and B is the same homogeneous

expression with b, in the place of a^, b^ in the place of

a^, (Sec.

Let each of the equal fractions be equal to x, so that

0^1
=

b^x, a^
=

b^x, ftj
=

b^x, &c.
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Let Xa^* a,f ay... be any term of A
;
then X^^" 6/ fegV...

will be the corresponding term of B
;
and since the ex-

pressions A and B are homogeneous and of the nth degree,
a-\- j3 + y-{- ... = 71.

Now Xttj* a/ a^Y . . .
= X (h^xY (b^xY (h^x)y. . .

=
X(6,'^6/63>...)*-+^+v+~.

=
a;".X6i«6/ V--»

since a + y9 + 7+ ... =?i.*

Hence any term of ^ = a?" x corresponding term of B
;

.'. sum of all the terms of -4 = a;" x sum of all the terms of B,

that is A ^x"" .B\

which proves the theorem.

Theorem III. If the denominators of the fractions

j^ J ~,
J-*,

he all positive, then will the fraction

,^—,"
. /—'-L1111

J)0 greater than the least and less than
O1 + O2 + O3 +

^

the greatest of the fractions 1^ , if t <^o.

=
a;;Let r be the ejreatest of the fractions, and let ~

then r^<x, t^ <x, &c.

Hence, 6j, b^,... being all positive, we have

a^
— x. 61,

a^<x. 62,

a^Kx.h^^

* We have in the above assumed certain results which will be proved
in Chapter XIII.

3. A, 7
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Hence by addition

••

K^b,^\+
<^-

Hence 7-^^

—
7-^
—r^—— is less than the greatest of the

^ + ^ + ^»+--
. .

fractions; and it can be similarly proved to be greater
than the least of the fractions.

Ex. 1. Shew that, if ? = 5 , then will ?-±| =^ .

6 d a-b c-d

Let?=x6
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Each of the given equal fractions

^ -a{cy + bz) + b{az + cx) + c{bx + ay) 2bcx

-al+bm+ cn
~
-al+ bm+cn

and similarly =-7-^- =—^^^1— .cU-bm+ cn al+ bm-cn

EXAMPLES IX

Simplify the following fractions :

3Qa'bc'x'9jz'
• ^'

a'c*xy
'

3
«'-8«5 + 76' 7xY-Safy' + l

'

a'-3ah-28b''
'

28a;y + 3a;y - 1
'

•

(a:«
+ 2/^)(a;-2/)-

*

{x''
-

y') {x*
-

y*)

'

•

a;' + 2a;'+2ic' + 2a;+l' a* - 2a;' - a'' - 2a; + 1

2ic' + 5x'y + xy'
-

Sy'

3x' + 3x'y
- ixV -

xy^ + 2/*

*

54a;' -27a;* -3a;' -4
36ar' + 3a;«+3a;-2

*

{a + b){{a + by-c'}

Wc'-(a'-b'-cy'

10.

11.

12. x^W-z')+y'(^-x')-^z'^(:^-y')

x'{y-z) + y'{z-x) + z' (x-y)

13. ^'(.y-g) + y'(g-a;) + g'(«^-y)

{y + zY + {z+ xy +(x + yY

,^ a{b-c){c-d) -c(d-a) (a- b)

b{c-d)(d-a)-d{a-b){b-cy
7—2
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a^
(2/

-
«) +/ («

-
a) + «'

(a?
-
y)

2a 26 a* + 6'
16. — , 4- —-T +

17.

a + h
'

a — b
'

h* — a*'

Z-x Z + x 1 - 16a;

1 - 3a; 1 + 3a; Ga;* - 1
*

18.
^ y i^-vT

x+2y 2y-x af - 4^

_ - a; - 2a a; + 2a 8aa;
19. ^ - ^ +

x+2a 2a — X of - 4a*
'

o« 1 3 3 1

20. s ; +
a; + 2 a; + 4 x+ 6 x + S

21. J ?- + -^ L_,
a;+a a; + 3a x + 5a x + 7a'

or> 1 4 6 4 1
22. ;r + +

23.

24.

25.

x — 2a x-a x x + a x + 2a

1 2 1

a;* - 5xy + Qy' a;* — 4:xy + 33/' a;* - 3xy + 2^/*

a 6 c

(a -b) (a- c) (b -c){b- a) (c
-

a) (c
-

6)

*

a' 6» c'

(a _ 6) (a
-

c) (6
-

c) (6
-

a) (c
-
a) (c

-
6)

'

(l+a6)(l+ac) {l + bc)(l+ba) (l+ca)(l+cb)
^^'

(a-b){a-c)
"^

{b-c){b-a)
"^

(c-a)(c-6)
'

6c (a + c?)
ca (6 + d) ah(c + d)

(a-6)(a-c)"^ (6-c)(6-a)"^ (^a)(c-6)*

28
^-y^

1

y"-^^
,

^-^
{x + y)(x + z) (y+z){y + x) (z

+ x){z + y)'
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(y-x){z-x) (g-y)(^-y)

{x-2y-\-z){x + y- 2z) (x + y-2z){-2x + y + z)

(-2x + y + z)(x-2y + z)'

x + a a; + 5 x + c ^{x + a){x + b){x + c)

X — a x — h X — c {x
— a)(x-b)(x — c)

X X X ^x^+ (be + ca + ab) x

x-a x — b x — c {x
-

a) {x -b) {x
-

c)

g' 6' c'

••

{a-b) (a-c)'^ (b- c) (6- a)
"^

(c-a) (c-b)'

32
^' «L_

{a -b)(a-c) (b- c) (b-a)+(c- a) (c-b)'

33. ^«
(« + ^)(« + c)

^ ^,
(64-c)(6 + a)

^ ^,
(c + a)(c +

5)^
(a
—

6) (a
-

c) (b
—

c)(b
—

a) (c
—
a) (c

—
6)

*

\J c/ \c a/ Va bj

85.

& c/ \c aj \a b)

1 1

{a
— b + c) {a -¥ b - c) (a + 6 - c) (- a + 6 + c)

1

(- a + 6 + c) (a
- 6 + c)

*

^ h-c c-a a-b
a'-ib-c)' b*-{c-ay c'-(a-b)'

87. Shew that

16 + 1^:^ . ^^ - 2 ?;z4i'= 16 (^y,{x-a x + a x+a) \x-aj

88. Shew that

a+6 a-b a*x + ¥y _ aV-6y
oa; + 62/ ax -by aV + 6*y' aV -^y

'
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89. Shew that

^^^
(a-b)(a-c)(l+ax)'^ {b-c){b-a)(i+bx)

c' 1

(ii)

(iii)

(c -a)(c- b) (1 + ex) (1 + ax) (1 + 6ic) (1 + ex)

a b

(a-b){a-c)(l+ax) (b-c) (b-a) (I +bx)

c —X
(c -a)(c- b) (1 + ex) (1 +ax)(l+ bx) (1 + ex)

'

1 1

(a -b){a- e) (1 +ax) (b- e) (b
-
a) (1 + bx)

1 x'

{e-a)(c-b)(l + ex) (i +ax){l +bx){l +cx)'

40. Simplify

{a+p)(a + q)
_^

(b+p){h + q) ^ {c+p){c + q)

{a-b){a-c){x + a) (b -c) (b
-

a) (x + b) {e-a){e-b){x+ey

41. Simplify

a(b + e — a) b(c + a — b) c(a + b — e)

(a-b) (a -c)
*"

{b-e) (b-a)'^ (e-a) (e-b)'

42. Simplify

(a-b + c)(a + b-e) {a + b -c) (-a + b + e)

{a-b)la-e)
"^

(b-c) (b-a)

{-a + b + e){a-b + c)
"*•

{e-a)(c-b)
•

43. Simplify

a{b + c) b{e + a) c{a + b)

b+e-a c+a-b a+b—c
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44. Shew that |m + — )
+ (n + -) -»- (mn + —

)

\ m/ \ w/ \ mn/

- (m + —
) (n + -

)
(mn +—

)
= 4.

\ mj \ nj \ mnj

45. Shew that

46. Shew that

h — c c — a a — h (b
—

c)(c
— a){a-b)

l+bc l+ca l-hab (1 + be) (1 + ca) (1 + ab)

47. Simplify

48. Shew that, if

y + z _ z + x _ x + y
b — c c—a a— b*

then will each fraction be equal to

Jof + y' + !i^

j{(b-cy + {c-ay+{a-by}

X Ob

49. Shew that, if - = r i tl^en will
y b

x' + a^ y' + b' (x + yY + (a + 5)"

x + a y + b x + y + a + b

50. Shew that, if

a; _ y _ z

b+c-a c+a-b a+b~e*

then will (b
-

c) x + {c
-

a) y + (a -b) z = 0.
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61. Shew that, if '!lz£y^'JL^^0-c c-a

and c be not zero, then will each equal
——7- ,

cit
— V

and a{y — z) + b(z-x) + c{x-y) = 0.

52. Shew that

{a-h){a-c){a-d)'^ {h-c){h-d){h-a)'^ {c-'d){c-a)(c-h)

{d-a){d-h){d-'c)

63. Shew that

a: a'

a •¥}>¥ c -^d.

+ .. + <

is equal to zero if r be less than n-\^ to 1 if r = /i - 1, and to

ttj
+ a^ + . . . 4- a^ if r = r*.

54. Shew that

x-tty (x-a^)(x-a^) (x-a^{x-a^{x-a^
1 +

a; — «! {x — a^

(x-a,) (a:-aj...(a;-aj («-«,) (a;
-
aj...(x-a,)

55. Shew that

6 + C + G?+ ... +^ + ^ 6 c
+ 7 7T-7 ; ^ + ...

a(a+6+c+...4-^4-^) a{a + h) {a + h){a + h +c)

I

(a+6 + ... +
A;) (a + 6 + ... + ^ + ^



CHAPTER IX.

Equations. One Unknown Quantity.

114. A STATEMENT of the equality of two algebraical

expressions is called an equation; and the two equal
expressions are called the members, or sides, of the

equation.
When the equality is true for all values of the letters

involved the equation is, as we have already said, called

an identity, the name equation being reserved for those
cases in which the equality is only true for certain

particular values of the letters involved.

For the sake of distinction, a quantity which is sup-

posed to be known, but which is not expressed by any
particular arithmetical number, is usually represented by
one of the first letters of the alphabet, a, h, c, &c., and
a quantity which is unknown, and which is to be found,
is usually represented by one of the last letters of the

alphabet x, y, z, &c.

115. We shall in the present chapter only consider

equations which contain one unknown quantity.
To solve an equation is to find the value or values of

the unknown quantity for which the equation is true
;
and

these values of the unknown quantity are said to satisfy
the equation, and are called the roots of the equation.

Two equations are said to be equivalent when they
have the same roots.
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An equation which contains only one unknown quantity,
X suppose, and which is rational and integral in x, is said

to be of the first degree when x occurs only in the first

power ;
it is said to be of the second degree when of is the

highest power of a; which occurs; and so on.

Equations of the first, second and third degrees are

however generally called simple, quadratic and cui^ic equa-
tions respectively.

116. In the solution of equations frequent use is

made of the following principles.

I. An equation is equivalent to that formed by adding
the same quantity to both its members.

For it is clear that A +m = B -\-m when, and only
when, A=^ B.

II. Any term may be transformed from one side of

an equation to the other, provided its sign be changed.

Let the equation be

a + h — c—p — q + r.

Add —p-\-q~r to both sides
;

then a-^h — c—p + q
— r—p — q + r — p + q^r,

that is, a-\-h — c—p + q
— r — 0.

We thus have an equation equivalent to the given
equation, but with the terms p, —q,-\-r changed in sign
and transposed.

By means of transposition all the terms of any equa-
tion may be written on one side of the sign of equality
and zero on the other side.

III. An equation is equivalent to that formed by
multiplying (or dividing) each of its members by the same

quantity which is not equal to zero.

For, ii A=B, it is clear that mA = mB. Conversely, if

mA = mB, that i%m{A-B)= 0, it follows that A-B^O,
since m is twt zero. Hence mA — mB when, and only
when, A=B.
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The case of division requires no separate examination,

for to divide by m is the same as to multiply by
—

.

117. Simple Equations. The method of solving

simple equations will be seen from the following examples.

Ex. 1. Solve the equation 13a; - 7= 6a; + 9.

Transpose the terms 5a; and -
7; then 13a; - 5a;= 7 + 9.

That is 8a;= 16.

Divide both sides by 8, the coefficient of x; then a; =2.

Zx 2x
Ex. 2. Solve the equation ~r - 2 = — + 5.

4 o

We may get rid of fractions by multiplying both members by 20,
the least common multiple of the denominators; we then have

15a; -40= 8x4-100,

or transposing 15a; - 8a;= 100+ 40
;

.-. 7a; =140.

Divide by 7, the coefficient of x; then a; = 20.

Ex. 3. Solve the equation a{x-a) = 2ab ~b{x- 6).

Eemoving the brackets, we have

ax-a^= 2ab-bx+ b\

or transposing ax + bx=2ab + b^+ a^,

that is a; (a + 6)= (a + 6)2.

Divide by a + 6, the coefficient of x; then

x=- ~=:a+ b.
a + b

From the above it will be seen that the different steps
in the process of solving a simple equation are as follows.

First clear the equation of fractions, and perform the

algebraical operations which are indicated. Then trans-

pose all the terms which contain the unknown quantity
to one side of the equation, and all the other terms to the

other side. Next combine all the terms which contain

the unknown quantity into one term, and divide by the
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coeflRcient of the unknown quantity : this gives the re-

quired root.

118. Special Case9. Every simple equation is re-

ducible to the form cw? + 6 = 0, the solution of which is

x =— . The following are special cases.

I. If 6 = 0, the equation reduces to cw? =
;
whence

a? = 0.

II. If 6 = and also a = 0, the equation is clearly
satisfied for all values of x.

III. Ifa = and 64=0.

Suppose that while h remains constant, a takes in

succession the values
:r^ , r^, -j-Trg,.--;

then will a; take

in succession the values — 106,
—

10^6,
— 10^6.... Thus as

a becomes continually smaller and smaller, x will become

continually greater and greater in absolute magnitude;
moreover, by making a sufficiently small, x will become

greater than any assignable quantity; for example, in

order that the absolute value of x may be greater than
lO'"*" it is only necessary to give to a an absolute value

less than j^ .

This is expressed by saying that, in the limit, when
a becomes zero, the root of the equation oo? + 6 = is

infinite.

The symbol for infinity is oo .

EXAMPLES.
Solve the equations

1.
l(x-2)-|(a;-3)

+
^(a;-4)

= 4. Am. «=12.

2.
g(a;-3)-^(a;-8)

+
g(x-6)

= 0. Ans. a:= 0.
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8. a{x-a) = b{x-b). Ans. x= a + b.

4. {x + a){x+ b)-{x-a){x-b) = {a + b)K Am,
x=-^{a

+ b).

6. a{2x-a) + b{2x-b)= 2ab. Ans. x=^{a + b).

6. {a^+ x)(b^ + x)-{ab + x)K Ans. x=0.

7. 3{a; + 3)3+ 5(a; + 6)2= 8(x + 8)a. Ans. x=-&.

8. {x+ a)*-{x-ay-8aK^+ 8a'^= 0. Ans. x=-a.

9. {x-lf + K^ + {x + l)^
= Sx{x'^-l). Am. a:= 0.

10. ix+a)»+{x + bf+{x + c)^=S{x + a){x + b)(x+ c).

Am. x= --{a + b+ c).

119. Equations expressed in Factors. It is clear

that a product is zero when one of its factors is zero
;
and

it is also clear that a product cannot be zero unless one of

its factors* is zero.

Thus {x
—

2) (a;
—

3) is zero when a? — 2 is zero, or when
a?— 3 is zero, and in no other case.

Hence the equation

(a;-2)(a:-3)x=0,

is satisfied if a; — 2 = 0, or if a? — 3 =
;
that is, if a; = 2, or

if a? = 3, and in no other case. The roots of the equation
are therefore 2 and 3.

Again, the continued product {x
— a)(x

—
h){x

—
c)...

is zero when a; — a is zero, or when a; — 6 is zero, or when
a; — c is zero, &c.

;
and the continued product is not zero

except one of the factors a) — a,x — b,x — c, &c. is zero.

Hence the equation

{x — a) {x
—

h) {x — c) . . .
=

is equivalent to the system of equations

a? ~ a = 0, a; — 6 = 0, a? — c = 0, &c.

From the above it will be apparent that the solution
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of an equation of any degree can be written down at once,

provided the equation is given in the form of a product of

factors of the first degree equated to zero.

Now all the terms of any equation can be transposed
to one side, so that any equation can be written with all

its terms on one side of the sign of equality and zero on
the other side.

It follows therefore that the problem of solving an

equation of any degree is the same as the problem offinding
the factors of an expression of the same degree.

Ex.1. Solve the equation x^-5x= %.

Transposing, we have «'' - 5a; - 6= 0,

that is (a;-6)(x+l)=0;

.-. x-G= 0, or a; + 1 = 0.

Hence x=6, or a;=-l.

Ex.2. Solve the equation 3^-x^=^(jx.

Transposing, yue have x^-x^-<ax= 0,

that is a{a;-3)(x + 2)=0;

.'. a;= 0, or a:= 3, or x = -2.

120. Quadratic Equations. When all the terms
of a quadratic equation are transposed to one side it must
be of the form

ax^ + 6a? + c = 0,

where a, 6, c are supposed to represent known quantities.
We have already [Art. 80] shewn how to resolve a

quadratic expression into factors : the same method will

therefore enable us to find the roots of a quadratic equation.
Hence to solve the quadratic equation

(W + 6a; + c = 0,

we proceed as follows.

Divide by a, the coefficient of a^\ the equation then
becomes

^V-a? + -=a
a a
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Now add and subtract the square of half the coefficient

of X, that is the square of J
-

. Then we have

lat is

H4 +
\/(£-a)}H£-\/(£-a)}

= ''-

Hence «,+ _ +
^-^-^,

=0,

,

6 /b'-4,ac .

that is

Thus there are two roots of the quadratic equation,

namely
h . IW — ^ac
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Ex.2. Solve 3ar3-10a; + 6= 0.

Dividing by 3, we have
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EXAMPLES.

Find the roots of the following equations :

1.
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If 6* — 4ac = 0, both roots reduce to — h- ,
and are thus

Za

equal to one another. In this case we do not say that

the equation has only one root, but that it has two equal
roots.

It is clear that the roots will be unequal unless

6* — 4ac = 0. Hence in order that the two roots of the

equation aa^ + 6a; + c = may be equal, it is necessary and
sufficient that b^ = 4ac.

When 6' = 4ac, the expression ax* -\-bx-\-c is a perfect

square in x, as we have already seen. [Art. 83.]

122. Special Forms. We will now consider some

special forms of quadratic equations, in which one or more
of the coefficients vanish.

I. If c = 0, the equation reduces to

oar* + bw — 0,

or X (ax + 6)
=

0,

the roots of which are and —
.

a

II. If c = and also 6 = 0, the equation reduces to

ax^ = 0, both roots of which are zero.

III. If 6 = 0, the equation reduces to aa^ + c = 0, the

roots of which are + , /— . The roots are therefore~ V a

equal and opposite when 6 = 0, that is when the coefficient

of X is zero.

IV. If a, 6 and c are all zero, the equation is clearly
satisfied for all values of x.

V. If a and 6 be zero but c not zero,

put x = - in the equation ax^ + bx + c = 0;
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then we have, after multiplying by i/*,

cy^ + 6y + a = 0.

Now from I. and II. one root of this quadratic in y
is zero if a = 0, and both roots are zero if a = and also

6 = 0.

But since a; = -, a; is infinity [Art. 118] when y is zero.

Thus one root of ax^ + 6ic + c = is infinite if a =
;
also

both roots are infinite if a = and also 6 = 0.

Thus the quadratic equation

(a - a!) a;2 + (&
-

6') « +c - c'=0

has one root infinite, if a= a' ; it has two roots infinite, if a=^a' and
also 6= 6'; and the equation is satisfied for all values of x, if a=a',
6=6' and e=c'.

Again, the equation

a(a: + 6) (a: + c) + 6 (x + c) {a; + a)=c (a; + a) (a;+ 6),

is a quadratic equation for all values of c except only when c= a + 6,

in which case the coefficient of x^ in the quadratic equation is zero.

When c— a + h we may still however consider that the equation
is a quadratic equation, but with one of its roots infinite.

Note. It is however to be remarked that since in-

finite roots are not often of practical importance in Algebra,
they are generally neglected unless specially required.

123. Zero and infinite roots of any equation.
The most general form of the equation of the nth degree is

aa;"+ hx*"'^ +...+ ka) + l=^0
(i).

If ^ = 0, the equation may be written

X (aa;"~* + 6a;"~' +. . .+ A;)
=

0,

one root of which is clearly zero.

Similarly two roots will be zero if i^
= and also k = 0;

and so on, if more of the coefficients from the end vanish.

8—2
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Put a; = -
;
then we have, after multiplying by y",

a-¥hy + + %""' + /y"
= 0.

From the above, one root of the equation in y will be

zero when a = 0; and two roots will be zero if a = and

also 6 = 0. But when v = 0, x = - = co .^
y

Thus one root of (i) is infinite when a = 0, and two

roots are infinite when a and 6 are both zero
;
and so on,

if more of the coefficients from the beginning vanish.

124. Equations not integral. When an equation
is not integral, the first step to be taken is to reduce it to

an equivalent integral equation.
An equation will be reduced to an integral form by

multiplying by any common multiple of the denominators

of the fractions which it contains, but the legitimacy of

this multiplication requires examination. For if we

multiply both sides of an integral equation by an ex-

pression which contains the unknown quantity, the new

equation will not only be satisfied by all the values of the

unknown quantity which satisfy the original equation, but

also by those values which make the expression by which

we have multiplied vanish. Thus if each member of the

equation A=^B, be multiplied by P, the resulting equa-
tion PA = PB, or P {A — B)= 0, will have the same roots

as the equation A—B =
together with the roots of the

equation P = 0.

When however an equation contains fractions in whose

denominators the unknown quantity occurs, the equation

may be multiplied by the lowest common multiple of the

denominators without introducing any additional roots, for

we cannot divide both sides of the resulting equation by

any one of the factors of the L.C.M. without reintroducing

fractions, which shews that there are no roots of the re-

sulting equation which correspond to the factors of the

expression by which we multiply.
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3 2x
Ex. 1. Solve the equation = + = 6.x-5 x-B

Multiply by (as- 5) (x- 3), the u c. m. of the denominators; then
we have

3(a;-3) + 2a;(a;-5) = 5(a:-5)(a5-3);

/. 3x2 -33ar + 84= 0.

Whence x=4 or x=7.

Ex. 2. Solve the equation —=—- + 2 + =0.x^-1 x-1

Multiply by x^-1, the l.o.m. of the denominators; then we have

x»-3x + 2(xa-l)+x+ l=0,

which reduces to

3x»-2x-l=0,
that is (3x+l)(a;-l)=0.

Thus the roots appear to be - J and 1
;
the latter root is however

due to the multiplication by a^- 1.

x"-3x 1 x^-Sx + x + 1 (x-l)2 x-1
Since V3T +^= x^-1 =Wl=i^^i'
the equation is equivalent to

^+ 2=0,

which has only one root, namely x= -
J.

From the above example it will be seen that when an equation
has been made integral by multiplication, some of the roots of

the resulting equation may have to be rejected.

Ex. 3. Solve the equation :

X x-9 _ »+! .
»-8

x-2'^x^~x^'^x^Q'

In this case it is best not to multiply at once by the l. o. m. of the
denominators of the fractions; much labour is often saved by a

judicious arrangement and grouping of the terms.

By transposition we have

X x+1 x-9 ag~8_Q
08-2 x-1 x-7 x-G"

The first two terms
{x-2){x-iy
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-2
and the other terms=

x-7){x-6y

Hence the equation is equivalent to

2 2 = 0.

{x-2){x-l) (*-7)(x-6)

Now multiply by the l.o.m. of the denominators; then

2 (x-l) {x -&) -2 {x
-

2) {x -1)=0,

which reduces to

20a; -80=0;

Or thus :—
The equation is equivalent to

x-2
^

^x-7
^

-x-1
^

^x-6 *»

*v, . • 2 2 2 2
that IS _^_-_^ = _^-_^;

- 10 - 10
"
{x-2){x-7)~{x-l){x-Q)*

from which we find as before that a;=4.

Ex. 4. Solve the equation :

a b e _rt
x + a x + b x+ c~

We have —^-1 +—^.-1 +-- 1 = 0;
x+a x+b x+c

X X X n
:.— + -—i + ——=0.X + a x + b x + c

Hence a;=0 (i),

or else + -—7 +—— =0.
x + a x + h x + c

Multiply by the l. 0. m. ;
then

{x + b){x+ c) + {x+ e){x + a) + {x + a){x + b)^%

that is

Zx'^+ 2x{a + b+ c) + bc + ca+ ab= 0^
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the roots of which are

-^{{a+ b+ c)^J{a^+b^ + c^~bc-ea-ab)} (ii).

Thus there are three roots given by (i)
and

(ii).

Ex. 6. Solve the equation:

b+c
,
e+a

^

a

bc-x ca-x ab
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Ex. 1. Solve the equation Jx +A+ Jx+ 10 - 2 Jx + Tl = 0.

We have JxTi+Jx+ 20=2jx + 11.

Square both members : then

2X + 24 + 2 Jx+ljx + 20= 4:{x + n),

which is equivalent to

Jx + l Jx+ 20=X + 10.

Square both members : then

(a; + 4)(a; + 20) = (a; + 10)*,

whence x=5.

Ex.2. Solve the equation j2x + Q-2jx + 5=2.

Square both members: then

2a; + 8 + 4(x + 5)-4 J2x + Q Jx + 5=^4^\

:. 3a:+ 12= 2 J2x+ S Jx+ 5,

Square both members : then

9x2+ 72a;+ 144 = 4 (2a; + 8) (x + 5)>

/. a;a=16,

whence a;=4 or x= -4.

Ex. 3. Solve the equation s/ax+a+ Jbx + p+^cx+y=sO»

We have Jax + a + Jbx +p= - Jcx+ y.

Square both members : then we have after transposition

(a + 6-c)x + o +/3-7= - 2 Jax + a ^Jbx +p.

Squaring again, we have

{{a + b-c)x + a+ p-y}^=4:{ax + a){bx+ p)t

that is x^{a^ + b^ + c^-2bc-2ca-2ab)

+ 2x(aa+ bp+ cy-by-ep-ca-ay-ap-ba)
+ a2 + /32 + 72

-
2/37

- 27a - 2a/3= 0.

Thus the given equation is equivalent to a quadratic equation.

It should be observed that it is quite immaterial what sign
is put before a radical in the above examples; for there are two

square roots of every algebraical expression and we have no symbol
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which represents one only to the exclusion of the other ; so that

+ Jx+i and - Jx + l are alike equivalent to :^Jx + l\ also

X + Jx + 1 has the same two values as xJ=iJx+l.

126. By squaring both members of the ratioDal equa-
tion A=B, we obtain the equation A^ = B^; and the

equation A^ = B\ or A^ — B^== 0, is not only satisfied when
J. — 5 = 0, but also when A-\-B — 0, Hence an equation
is not in general equivalent to that obtained by squaring
both its members; for the latter equation has the same
roots as the original equation together with other roots

which are not roots of the original equation. Additional

roots are not however always introduced by squaring both
sides of an irrational equation. For example, the equation
a? + 1 = V^+13 is really two equations since the radical

may have either of two values
; and by squaring both

members we obtain the equation (a?+ ly = a; + 13, which
is equivalent to the two. [See Art. 152.]

127. A quadratic equation can only have two
roots. We have already proved that an expression of the

nth degree in x cannot vanish for more than n values of a?,

unless it vanishes for all values of x. This shews that an

equation of the nih. degree cannot have more than n roots,

and in particular that a quadratic equation cannot have
more than two roots.

The following is another proof that a quadratic equa-
tion can only have two roots.

We have to prove that a^ -\-hx + c cannot vanish for

a, /8, 7 three unequal values of x. That is we have to

prove that

aa^ -{-hoL +c = (i),

a/3*-K6/5-hc = (ii),

and 07^-1-67+0 = (iii),

cannot be simultaneously true, unless a, 6, c are all zero.
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From (i) and (ii) we have by subtraction

that is (a-/3) {a(a + ^) + b}
= 0.

But a — yS + O; hence

a(a+ ^) + b = (iv).

Similarly, since ^ — 7 4= 0, we have from (ii) and (iii)

a(/S+7) + 6 = (v).

From (iv) and (v) we have by subtraction

a(a — y)
=

(vi).

Now (vi) cannot be true unless a = 0, for a — y^O.
Also when a = 0, it follows from (iv) that 6 = 0, and then
from (i) that c = 0.

Thus the quadratic equation aa^ -\-bx-\-c = cannot

have more than two different roots, unless a = 6 = c =
;

and when a, 6, c are all zero it is clear that the equation
aa^ -{bx-\-c = will be satisfied for all values of a;, that is

to say the equation is an identity.

Ex. 1. Solve the equation a^) ^^t [ + ^ n rk r=«*.
(a
-

6) (a
-

c) (6
-

c) (6
-

a)

The equation is clearly satisfied by fl;=a, and also by 05=6; hence

a, h are roots of the equation, and these are the only roots of the

quadratic equation. [The equation is not an identity ,
for it is not

satisfied by a5= c.]

Ex. 2. Solve the equation

ni (^-fe)(a?-c) . .a {^-c){x-a) 3 {x-a){x--b)

{a~h){a-cy {h-c){h-ay (c-a)(c-6)

The equation is satisfied by as= a, by a; = 6, or by a;= c. Hence,
as it is only of the gecond degree in as, it must be an identity,

Ex. 3. Solve the equation

(x-6)(x-c) {x-c){x-a ) i,x-a)[x-h)_
(a-6)(o-c)"*" {h-c){h-ay (c-a)(c-6)~

*
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The equation is satisfied hj x=a,hj x=b, and hy x=c; and the
equation is not an identity, since the coefficient of x^ is not zero.

Hence the roots of the cubic are a, b, c.

Ex. 4. Shew that, if

(a
-
a)^x + {a-^)^y + {a- y)^z = (a

-
5)3,

(6-o)3x+ (6-/S)2y + (6-7)2« = (&-5)3,

{c-a)^x+{c-p)^y + {c-y)^z = {e-d)\
then will

(d-a)^x + {d-^Yy + {d~y)^z=={d-8)\

where d has any value whatever.

The equation

{X-a)*x + (X-p)^y + {X-y)H=.{X-8)\

is a quadratic equation in X, and it has the three roots a, 6, c. It is

therefore satisfied when any other quantity d is put for X.

128. Relations between the roots and the coeffi-

cients of a quadratic equation.

If we put a and 13 for the roots of the equation
aaf + bx-{-o=0,yfe have

2a
/5'~4ac

V 4a'^
'

and
'^^-^.-V""^^"''

By addition we have

«+/3 = -^ (i).

By multiplication we have

b* h^-4tac c ,..>.

''^
=W—W=a (")•

The formulae (i) and (ii) giving the sum and the

product of the roots of a quadratic equation in terms of the

coefficients are very important.
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129. Relations between the roots and the co-
efficients of any equation. By the following method
relations between the roots and the coefficients of an

equation of any degree may be obtained.

We have seen that if the expression of the nth degree
in X

aic* 4- hx"^^ + ca;'*'* + doT'^ + . . .
,

vanish for the n values a? =*a, a? = ^, a; = 7, &c., then will

cw;" + 6x--' + ca?"-^ + o^a;""' + ... = a (a;
-

a) (a;
-

/S) (a;
-

7)...

We have therefore only to find* the continued product
(a;
—

a) (ic
—

/8) (a?
—

7) and equate the coefficients of the

corresponding powers of sc on the two sides of the last

equation.

For example, if a, yS, 7 be the roots of the cubic equa-
tion aaf + hx^ + coj + (Z = 0, we have

aa^ + hx^ -^ ex -{- d = a {x
—

a) {x
—

/8) {x
—

7)

= a {«'
-

(a + /3 -f 7) a^ + (^y + yoL+a^) x-ajSy],

Hence, equating coefficients, we have

a+^+7=-^,

/87 + 7a + a/3= -
,

Of

a/37 = --
^

It should be remarked that the sum of the roots of any
equation will be zero provided that the term one degree
lower than the highest is absent*.

We may make use of the above to prove certain identical rela-

tions between three quantities whose sum is zero. For a, b, c will

be the roots of the cubic a^ +px + 2=0, provided that a + 6+ c= 0, and
that p and q satisfy the relations

* See Art. 437.
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be,+ ca + ab=p (i),

abc= - q (ii).

Tlien, since a+ b + c= (iii),

we have a^+ b^+ c^=(a + b + c)^-2{bc + ca + ab)

= -2i> (iv).

Also, since a, b, c are roots of x^+px + q=Of

a^+pa + q= \

lP+pb + q= I (v).

c^+pc + q= )

From (v) by addition

a^ + h^ + c^=-Sq (vi).

Multiply the equations (v) in order by a'*-^, 6"-3, c"-^, and add ;

then

a« + 6« + c" +i) (a»-a+ 6""* + c»»-2) + q (a^-s + fe**-* + c"-^)
= 0.

Hence we have in succession

a*+ b^ + c*= 2p\

a^ +¥+ c'^=5pq,

a« + 6« + c«= 3g2-2j)3,

o^+ 67 + c7=-7p2gr.

Hence also

a°+&'^+ cg _ a2 + 6g+ c» a» + b^+ c*

6
~

2
•

3
•

a7 + b'^ + cf a^ + h^+ c^ a^ + b^ + c^

= 2.

2*6'
a» + b^+ c^ a* + b* + c*

3
•

4
•

[See also Art. 308, Ex. 2.]

130. Equations with given roots. Although we
cannot in all cases find the roots of a given equation, it is

very easy to solve the converse problem, namely the

problem of finding an equation which has given roots.

For example, to find the equation whose roots are 4 and 6.

We want to find an equation which is satisfied when a;=4, or

when x — 5; that is when a; - 4 = 0, or when a; - 5 =
; and in no other

cases. The equation required must be

(a?-4)(a;-5)
= 0,

that is, aj«-9a+20=0,
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for this is an equation which is a true statement when af-4=0, or
when a; - 5=0, and in no other case*.

Again, to find the equation whose roots are 2, 3, and - 4.

We have to find an equation which is satisfied when a; - 2= 0, or
when a; - 3 = 0, or when a; + 4 = 0, and in no other case. The equation
must therefore be {x

-
2) {x

-
S) [x + 4) = 0,

that is x^-x^-Ux + 2i= 0.

Ex. 1. If a, /3 are the roots of the equation cLX^ + bx+ c=iO, find the

equation whose roots are - and -
.

P «

The required equation is

that is «3_a;'L±^ + l=,0.

Now, by Art. 128, we have

b c

..a^^^^= ';-2l;

Hence the required equation is

„ b"- 2ac
a; + l = 0.

Ex. 2. If a, j9, 7 be the roots of the equation fla:* + &x^ + ca; + d=0,
find the equation whose roots are /S7, 7a, a/3.

The required equation is

(a;-^7)(ar-7a)(x-a/3)=xO,

that is «»-a:2(/37 + 7a+ a/3)+xa/J7(a + ^+7)-a^/SV= 0.

* The equation a;^ - 9ar + 20 = is certainly an equation with the

proposed and with no other roots ; but to prove that it is the only equa-
tion with the proposed and with no other roots, it must be assumed that

every equation has a root.

If, for example, the equation a:* + 7a;'-2 = had no roots, then

(x
-

4)(a;
-
6) [x^ + lx^ - 2) = would also be an equation with the proposed

roots and with no others.

The proposition that every equation has a root is by no means easy to

prove; the proof is given in works on the Theory of Equations.
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Now, by Art. 129, we have

h
a+ p+y=--,

and 0'^y=— •

Hence the required equation is

a?- -x^ + x-^ - -0=0,

or 0^3^ - acT? + hdx- cP= 0.

131. Changes in value of a trinomial expression.
The expression act? + hx + c will alter in value as the value

of X is changed ; but, by giving to x any real value

between — oo and + oo
,
we cannot make the expression

ax^ -\-hx-\-c assume any value we please.
We can find the possible values of ax^ + hx-\-c, for

real values of x, as follows.

In order that the expressicm ax^ -\-hx-\-c may be equal
to X for some real value of x, it is necessary and sufficient

that the roots of the equation

ax^ -\-hx-\-c = \ ^<

be real, the condition for which is

6'-4a(c-X)>0,
that is 6*-4ac + 4aX>0 (i).

I. If 6' - 4ac be positive, the condition (i) is satisfied

for all positive values of 4aX, and also for all negative
values of 4aX which are not greater than 6' — 4ac.

Thus, when h^ — ^ac is positive, aa? + hx { c can, by
giving a suitable value to x, be made equal to any quantity
of the same sign as a, or to any quantity not absolutely

greater than—7 and whose sign is opposite to that of a.

II. If 6' — 4ac be negative, the condition (i) can

only be satisfied when 4aX is positive and not less than

4ac— 6'.
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Thus, when 6* — 4ac is negative, aa;* -\-bx + c must al-

ways have the same sign as a, and its absolute magnitude

can never be less than —-. .

4a

III. If h* — ^ac be zero, the condition (i) is satisfied

for all positive values of aX.

It follows from the above that the expression aa^+bx+c
will keep its sign unchanged, whatever real value be given
to X, provided that 6* — iac be negative or zero, that is

provided that the roots of the equation aa^ -\- bx -\- c =^ he

imaginary or equal, and also that the expression can be
made to change its sign when the roots of do^ -{-bx+ c—0
are real and unequal. We give another proof of this

proposition.

If the equation ax^ + bx-\- c=0 have real roots, a, yS

suppose, then ax^ -^bx-i- c = a(x — a)(x - jS).

Now (x
—

OL){x
—

/3) is positive when x has any real

value greater than both a and /8, or less than both a and
jS : but ix — a) (x

—
jS) is negative when x has any real

value intermediate to a and y§.

Thus for real values of x the expression ax*+bx-\-c
has always the same sign as a except for values of x which
lie between the roots of the corresponding equation
ax^ + 6a; + c = 0.

132. We can also prove that the expression aa^-\-bx-^c

will or will not change sign for different values of x accord-

ing as 6^ — 4ac is positive or negative, as follows.

ax^ + bx-\- c r +
2-aj-—4-^J

I. Let 6* — 4ttc be positive.

The whole expression within square brackets will

clearly be negative when a; = — ^ ; also, when x is very
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great, (^ + 2" J
'^^^^ ^^ greater than —7-3— ,

and there-

fore the whole expression within square brackets will be

positive.
Thus when 6''—4ac is positive the expression aa;*+5a7+c

can be made to change its sign by giving suitable real

values to x.

II. Let 6' — 4ac be negative (or zero).

Since lx+ ^\ is positive for all real values of sc, and

2~8
— ^^ ^^^^ positive (or zero), the whole expression

within square brackets must be always positive.
Thus when h^ — 4iaG is negative or zero, the expression

GUK* + bx-\-c will always have the same sign as a.

133. It follows from Article 131 or 132 that if an

expression of the second degree in x can be made to

change its sign by giving real values to x, then must the

roots of the corresponding equation be real.

Consider, for example, the expression

a'(x -^){x-y)-\- b' (x-y) (a;- a) + c' (x
-

a) (x-fi),
where the quantities are all real, and a, /3, 7 are supposed
to be in order of magnitude. The expression is clearly

positive if x = a, and is negative if x = ^. Hence the

expression can be made to change its sign, and therefore

the roots of the equation

a'(x-^)(x-y)+b\x-y){x-OL)-\-c\x-a)(x-^)^0
are real for all real values of a, 6, c, a, A 7.

Ex. 1. Shew that {x -l){x- 3) {x
-

4) (a?
-

6) + 10 is positive for aU
real values of x.

Taking the first and last factors together, and also the other two,
the given expression becomes

(x2
- 7a; + 6) (ar»

- 7x + 12) + 10

= {a;a-7a;)3+18(«2-7a;) + 82

= {(x^-7x) + 9y + l,

which is clearly always positive for real values of x.

S.A.
'

9
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Ex. 2. Shew that, by giving an appropriate real value to a:,

TTT-s—7^ T can be made to assume any real value.
12a;2 + 8x + l

^""^
12x2 + 8x + l-^'

then «2 (4
_ i2\) + (36

-
8X) a;+ 9 - X =0.

Now in order that x may be real it is necessary and sufl&cient

that

(36
-
8X)»

- 4 (4
-
12X) (9

-
X) > 0,

or that X2-8X + 72>0,
or (X-4)a+ 56>0,
which is clearly true for all real values of X. Thus we can find

real values of x corresponding to any real value whatever of X.

x^ — Sx + 4
Ex. 3, Shew that -s—^ 1 ca^i never be greater than 7 nor less

«-'+ dx + 4

than - for real values of x.

^*
a;^ + 3x + 4

=^'

then x2(l-X)-3x(l + X) + 4(l-X)=0.
In order that x may be real it is necessary and sufl&cient that

9(1 + X)2-16(1-X)3>0.
that is -7X3+ 50X-7>0,
or _(7X-l)(X-7)>0.
Hence 7X - 1 and X - 7 must be of different signs, and therefore

X must lie between - and 7, which proves the proposition.

EXAMPLES X

Solve the follovring equations:

1. (x-a + 2by-(x-2a-i-by = (a + b)*.

2. (c + a-2b)af + (a + b-2c)x + {b + c-2a)=0,

a
(x-ay {x+by

a+x b+x
b+x a+x
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ax-hb _cx + d
a + bx c + dx'

a-x 1-bx
1 -ax h-x

'

7. r- = a^-k-2x .x+\ a;+l

Q . X* x' 5x
8. X+l + — r = i +

x'-l a; + l ic«-l'

x-0 X- 6 x + 6 x+ 8

10 2^5 3
_4^

a;+8 a;+9 a:+15 """aj + S*

11. J-.. ' '

2x-3 x-2 3a;+2*

12. ?r| + ?i:* + ^-f=3.«-o x-c x-a

. x + a x + b x + c „13. + + = 3.a-x o—x c-x

14. ^±f + ^* + ?±5^3X-a x-b x-c

15. -!£Z1+!^1 =4^^7x+1 x+2 x-1

,„ X 2 X 3

,„ *-rc* w — a x+0 X — o

18.

19.

x + a
h

a; — a



132
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37. Ja + x+ Jb+x=Ja + b + 2x,

38. Ja-x + Jb + x = J2a + 26.

39. J{a + x)(x + b) + J(a-x)(x^) = 2 yosc.

40. Ja{a + b + x)- Ja(a + b-x) = x.

41. ^a;^ + aa; + 6» - Vaj'
- oo; + 6' = 2a.

42. Js^T^x + a' + Jac^-ax + a* = J2a'-2b'.

43. Jax~^ + ^ccc + 6 = ^oaj + ft + ^ca?
- 6.

44. Jx {a + b - x) + Ja (b + X
-
a) + Jb (a + X - b)

= 0.

45. /Jx + a + Jx + b + Jx + c = 0.

46. JabJa + V+s^ = Ja(a + b) (6
-

a;)
+ ^6 (a + 6) (a

-
a;).

'

47. Jx'~b'-(^ + Jx'-c'-a' + Jaf-a!'-b'=^x.

48. J'^r^+ J¥^^+ sl7'^^= Ja' + b' + c'-af.

49. For what values of a; is ^14 -
(3a;

-
2) (a;

-
1) real.

x'+ 34a; — 71
50. Shew that—=— =- can have no real value between

a;' + 2a;-7
6 and 9.

51. Shew that, if aj be real -5
—^ r can never be less

a;" + 2a; + 1

than —J.

52. What values are possible for —j ^ ,
x being real.

53. Find the greatest and least real values of x and y
which satisfy the equation a^ + y' = 6x-8y.

54. Find the greatest and least real values of x and y when

aj" + 4y»-8a;-16y-4 = 0.

55. When x and y are taken so as to satisfy the equation

(a;*
+ y")"

= 2a" (x"
-
y^\ find the greatest possible value of y.
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56. Shew that if the roots of the equation

a? (b' + b") + 2x {ah + a'h') + a'-^a" =

be real, they will be equal.

57. If the roots of the equation aaf + 6a; + c = be in the

ratio m : n, then will mnlf = (m + ny ac.

58. If aa3* + 2hx + c = and aV + 2h'x + c' = have one and

only one root in common, prove that 6' — ac and 6" — a'c' must
both be perfect squares.

59. If ajj, X be the roots of the equation oa;' + 6a; + c = 0,

.. x^ x^
find the equation whose roots are (i) x^ and x^^ (ii)

-^ and —^'
ajj ajj

(iii) h + ax^ and h + ckc,.

60. If x^ , a;,
be the roots of ax^ + 6a5 + c = 0, find in terms

of a, 6, c the values of

ajj' (bx^ + c) + a;/ (ftaj^
+

c),
and

aj^^ (Jaj^
+ c)' + aj^^ (62;^

+ cf.

61. Shew that, if x^ , a;,
be the roots of x^ + ma; + m^ + a = 0,

then will
ai^*

+
a;ja;,

+ a;/ + a = 0.

62. If a?! , a5j
be the roots of {a? + 1) (a* + 1)

= max (ax
-

1),

then will {x' +1) (aj^*
+ 1)

=
majja;^ (ajia;^

-
1).

63. If
aj,, x^ be the roots of the equation

A (x' + m') + Amx + ^mV = 0,

then will A {x^ + x^) + Ax^x^ + -Ba;j'a;/
= 0.

64. Prove that, if x be real, 2 (a
—

a;) {x + >/a;* + 6*) cannot

exceed a' + 6^

«. ^. , , , .,, , ^ 2a;' -4a;' 4- 9a;'' -4a; + 2
65. Find the least possible value of -7—%

—
fva

»

for real values of x*
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Equations of higher degree than the second.

134. We now consider some special forms of equations
of higher degree than the second, the solution of the most

general forms of such equations being beyond our range.

135. Equations of the same form as quadratic
equations.

The equation ax*' + 6a;^ + c =

can be solved in exactly the same way as the quadratic

equation aoc^ + 6^? + c = ;

we therefore have

. ^ b J¥- 4>ao

2a- 2a

Hence x /{b Jb'-4>ac \

V I 2a- 2a j

Thus there are four real or imaginary roots.

Similarly, whenever an equation only contains the
unknown quantity in two terms one of which is the

square of the other, the equation can be reduced to two
alternative equations : for, whatever P may be,

aP'+6P+c =

is equivalent to P — — ^r- -^ —^r .

2a
-

2a

Ex. 1. To solve x* - IQx^ + 9=0.

We have {x^-^){x^-l)=Q\

.\ x^=9, giving x= ±3;

or else ar*= 1, giving a;= ± 1.

Thus there are four roots, namely +1, -
1, +3, -3.
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Ex. 2. To solve {x^ + x)^+ ^ {x^+ x)
- 12= 0.

The equation may be written {x^+ x + 6) {x^+ x-2)=z 0.

Hence x^ +x+&=0^ or x^+x-2=0.

The roots of a;^+ a; + 6= are -
^ ± --J^2Z,

The roots of ic2 + a?-2= are 1 and -2.

Thus the roots are 1, -2, --.^-J-IX

Ex. 3. (a;2 + 2)2 + 8a;{f+ 2) + 15a;2= 0.

The equation is equivalent to

(a;2+ 2 + 6a;)(a3+ 2 + 3a;)
= 0.

The roots of ar» + 3a;+2=0 are -1 and -2.

Therootsof a;2 + 5a; + 2 = are -s=»= ^^.
5 \

Thus the equation has the four roots -1, -2, -h^'^o v17.

Ex.4. To solve aa;* + &a5 + c + p Ayaa;2 + 6a; + c + g= 0.

Put y=ijax^ + hx + c\

then 2/'' + Pl/ + 3 = 0,

whence we obtain two values of y, o and j3 suppose.

We then have ax^ + fea; + c= a^,

or aa;*+ 6a; + c= jS^,

and the four roots of the last two quadratic equations are the roots

required.

Ex.6. To solve 2a;^-4a;+3^/«'-2a;+ 6= 15.

The equation may be written

2(x2-2a; + 6) + 3^(a;2-2a; + 6)-27=0.
Put y = ;^(x2

- 2a!+ 6) ; then we have 1y^ + 3y - 27= 0,

9
whence y=3, ory=--.

Hence «2-2a;+ 6 = 9, giving aj=3 or -1;

or else a;"-2»+6=-j-, giving a;=l±s n/61.

Thus the roots are 8 ;
- 1 ; 1 ± x ^61.
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9
Ex. 6. To solve {x + a){x+ 2a) {x + 3a) {x + 4a) = r^

a*.

Taking together the first and last of the factors on the left, and
also the second and third, the equation becomes of the form we are

now considering. We have

{x^+ 5ax+ 4a2) {x^+ 5ax + 6a^)=^ a\

Hence (x» + 5ax)^+ lOa^ {x^ + 5ax) + 24a*=^ a\

.*. !e^+ 5ax= --ra\ or else x^+5ax= - -ra\
4 4

Hence «+5a= 0, or «+ a==b-^10.

Thus the roots are ~o*» ''^^^9. '^^^ '

136. Reciprocal Equations. A reciprocal equa-
tion is one in which the coefficients are the same whether
read in order backwards or forwards

;
or in which all the

coefficients when read in order backwards differ in sign
from the coefficients read in order forwards. Thus

ax^-\-baf-hba) + a = 0,

ax* + hx^ +cx^-\-hx + a=Oy
and ax^ + hx*' -\- cx^ — ca^ — hx — a =^

are reciprocal equations. [See also Art. 442.]

Ex. 1. To solve ax^-\-b^+ 'bx + a-=^ 0.

We have o (a;'+l) + 6a;{a; + l)=0,
that is (x + l){a{3^-x + l) + hx)=Q.
Hence as=s - 1,

or else aai?-\-(h-a)x+ a—0»

Ex. 2. To solve ax^ + 6a:' + cx^ + 6x + a= 0.

Divide by x^
; then we have

(x«+i)+6(.+i)+c=a

Now put x +~=y\

then a;2+_=y2_2.

Hence a(y2-2) + &y + c=0.



138 BOOTS FOUND BY INSPECTION.

Let the two roots of the quadratic in y he a and /S;. then the
roots of the original equation will be the four roots of the two
equations

1 J 1 o
ajH—=a and x + -=fi.

X X ^

Ex.3. To solve ax'^+ bx*+ cx^ - cx^ - bx - a=zO.

We have a{x^ -l) + bx {x^-l) + cx^ (a;- 1)= 0,

that is (x-l){a{x* + x»+ x^ + x + l) + bx{x^+ x+ l) + cx^} = 0.

Hence a;=l, or else

cuK^+{b + a)a^+ {a + b + c)x^ + {b + a)x+ a=0.
^ The last equation is a reciprocal equation of the fourth degree

and is solved as in Ex. 2.

137. Roots found by inspection. When one root

of an equation can be found by inspection, the degree of

the equation can be lowered by means of the theorem of

Art. 88.

Ex. 1. Solve the equation

x{x-l){x-2) = a(a-l){a-2).
One root of the equation is clearly a. Hence a; - a is a factor of

x{x-l){x-2)-a{a-l){a-2), and it will be found that

x{x-l){x-2)-a{a-l){a-2) = {x~a){x^-{3-a)x+{a-l){a-2)}.
Hence one root of the equation is a, and the others are given by

x'^-{S-a)x + {a-l){a-2) = 0.

Ex. 2. Solve the equation

0:3 + 2x3- 11a; + 6= 0.

Here we have to try to guess a root of the equation, and in order
to do this we take advantage of the following principle :

—
K «= dL- be a root of the equation ax'^+bx''-^+ ... + k=0, where

a, 6, ... fc are integers and - is in its lowest terms, then a will be a

factor of k and /3
a factor of a. As a particular case, if there are any

rational roots of x^+ ... + k= 0, they will be of the form x=±a,
where a is a factor of k.

In the example before us the only possible rational roots are ±1,
±2, ±3, and ±6. It will be found that a; =2 satisfies the equation,
and we have

(a;
-

2) (a;2 + 4a; - 3)
= a;3+ 2a;2 - 1 la;+ 6.

Hence the other roots of the equation are given by

x^ + ^x-S = 0,

and are therefore - 2 ± Jl.
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Ex. 3. Solve

Since x=a and x= b both satisfy the equation, (x-a) (x-b) will

divide (a
-

x)^ + {x~ b)*
-

(a
-

6)^, and as the quotient will be of the

second degree, the equation formed by equating it to zero can be

solved.

We may however proceed as follows. The equation may be written

{a-x)*+{x-b)*={{a-x) + {x-b)y
= {a-x)*+ ^{a-x)^(x-b) + 6(a-x)^{x-b)^

+ 4(a-x){x-b)»+ {x-b)*;

.'.2{a-x){x-b){2{a-x)^+ S{a-x){x-b) + 2{x-b)^} = 0.

Thus the required roots are a, 6 and the roots of the quadratic

aP-x(a + b) + 2a^- Sab + 2b^= 0.

Ex. 4. Solve the equation

A^-b){x-c) {x-c){x-a) . Ax-a){x-b) _
{a-b){a-cy {b-c){b-a)'^ {c-a){c-b)~

The equation is clearly satisfied by a:=a, by x=b, and by a;=c.

Also, since the coefficient of x^ is zero, the sum of the roots is zero.

[Art. 129.] Hence the remaining root must be -a-b-c.

Thus the roots are a, &, c,
- (a+6 + c).

138. Binomial Equations. The general form of

a binomial equation la oT ±k=0.
The following are some of the cases of binomial

equations which can be solved by methods already given
—

for the general case De Moivre's theorem in Trigonometry
must be employed.

Ex.1. To solve a?- 1=0.

Since a?-l= {x-l)(x^+x+l),
we have a;- 1= 0;

or else as' + a;+ 1 = 0, the roots of which are

_1 x/^3

Hence there are three roots of the equation a^=l; that is there

are three cube roots of unity, and these roots are

1. -5 + 3*/^3ana -i-i^/^3.2
'

2
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Ex. 2. To solve a;4-l=0.

Since 3e*-l= {x-l){x+l) {x+J~^) {x
-V -^). tt»e /owr fourth

roots of unity are

1, -1, V^ and -J^,
Ex.3. To solve x»-l=0.

3cf^-l= {x-l){x*+ gi? + x^ + x+ l).

Hence x=l;
or else x* + x^+x^+ x + l= 0.

The latter equation is a reciprocal equation. Divide by x^^ and
we have

«3+-„+a5+- + l=0.
x^ X

Put x+-=y;

then a;2+ -^=y2-2;

Hence x+ — _ ,
a; 2

that is a;a_a. -^^V5 _^^^Q^

Hence x= Jll + n/^ ±
^ ^-10-2^5,

or a;= ~-'-~">^^
dbi V-IO +V^.

or x=l.

Ex. 4. To solve x*+ 1 = 0.

a;4 + l= {a;a+l)»-2.T2= (a;!»+ l-v'2a;)(a;» + l+V2a;).
Hence «*=F^2a; + l= 0;

•••*--^;^
•

139. Cube roots of unity. In the preceding article

we found that the three cube roots of unity are

1, H-i+s/~3), H-i-y-3)-
An imaginary cube root of unity is generally repre-

sented by o); or, when it is necessary to distinguish
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between the two imaginary roots, one is called
oy^,

and the

other
G),,

so that 1, co^
and ©^ are the three roots of the

equation a?" — 1 = 0.

Taking the above values, we have

1 +«, + 0),
= 1 + H- 1 +y^) + i(- 1 -s/^^) = 0,

also co.co,
= i(- 1 + s/=^) (- 1 - 7=^) = 1.

These relations follow at once from Art. 129
;
for the

sum of the three roots of a?* — 1 = is zero, and the

product is 1.

Again CO,'
= i(- 1 + J-^f = K"" 1 - J^) =

«,>

and < = i(- 1 -J^r = K- 1 + ^/^) = «i>

so that co,=co^ and co^=(o,. These relations follow at

once from

CD, ft).
= 1 and ft)

* = ft)
° = 1.

Thus if we square either of the imaginary cube roots of
unity we obtain the other.

Hence if (o be either of the imaginary cube roots of

unity, the three roots are 1, co and g)*.

We know that

a9 + b^ + c^-Sabc= {a+ b+ c){a^+ b^+ c^-bc-ca-ab).
Hence a+b + cia & factor of a^ + 6^+ c* - 3abc, and this is the case

for all values of a, 6, c.

Hence a + (w&) + U^c) is a factor of a^+ {(abf+ {uPcf
- 3a (w6) (w^c),

that is of a^ + li^ + i^-^abc, and a+uP'b + wc can similarly be shewn
to be a factor.

Hence a^ + h^ + (^ -Zabc = {a+ b-\-c) {a+ ub + (a^c){a+ orb+ (ac).

I
EXAMPLES XI.

Solve the following examples ;

2. a;*'4-7aV-8a' = 0.
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3. a;«-7aV-8a'' = 0.

d ^ a^ + 1 _ 5

5
a;' + 2 x^ + 4x+l _5

af+4:x + l'^ a^ + 2 ~2'

6. {af + x+l){x' + x + 2)
= l2,

7.
(aj«

+ 7aj + 5)'
- 3x' - 2\x = 19.

8. JU-1x^x'=x'+1x-\,4

9. 6v/x''-2ic + 6 = 21+2ic-ic«.

10. {a-\){\+x + xJ = {a+l){\+x' + x*).

11.
(a; + 1) (a;

+ 2) (a;
+ 3) (ic + 4)

= 24.

12. {x + a) (a;
+ 3a) (a;

+ 5a) (aj
+ 7a)

= 384a*.

13. {x
-

3a) (aj
-

a) (a; + 2a) (a;
+ 4a) = 2376a\

14. {x + 2){x + 3) (a;
+ 8) (a;

+ 12)
= 4a;".

15. 2a;«- 3a;-21 = 2aj ^a;^
- 3a; + 4.

16. a;' - 2 (a + 6) a;* + a^ + 2a6 + 6« = 0.

17. X* - 2a;V - 2x'h' + aV 6* - 2a'6' = 0.

18. 4a;*-4a;"-7a;*-4a; + 4 = 0.

19. 9a;* - 24a;» - 2a;' - 24a; + 9 = 0.

20. a;' + l=0. 21. a;«-l=0.

22. 3a;'-14a;« + 20a;-8 = 0.

23. a;* - 15a;' + 10a; +24 = 0.

24. a;* + 7a;' - 7a; - 1 = 0.

25. (x^ay (b-cy + (x-by (c-ay +
(a;
-

c)» (a-6)» = 0.

26. a;(aj-\)(a;-2) = 9.8.7.
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27. x{x-l){x-2){x-3) = 9.8.7.6.

28. («-«)»+ {b-xy= {a + b-2xY.

29. (a
-- xy + {b-xy = {a + b- 2xy.

30. (a-xy + {b-xy = (a+b-2xy.

31. ^^a^^ +^F^ =
'Ja + b- 2x.

32. i/a- x + tjb-x = ^a + b- 2x.

33. (a
-
«)*-+ (a

-
6)*

=
(a
-

6)\

31 Ua-x-\-^x-b = Ua-b.

35. J^a
- aj + ^a?

- 6 = ^a - b.

36. «* + («- a?)*
= 6*.

37. (a;
+ ay +

(a;
+ 6)'

= 17 (a
-

6)*.

38. *Jx + 7a^= 4/&.

39. a6a;
(a;
+ a + 6)^

-
(aa; + 6a; + a6)'

= 0.

40. obex {x + a+b + cy
-

(xbc + xca + xab + abc)'
= 0.

(a-xy + (x-by _ a* + b*
'

(a+b-2xy ^{a + by
42. x* + b(a + b)x''+{ab-2)b'o(f-(a + b)b^x + b' = 0.

43. {of + by = 2ax' + 2a¥x - aV.

44. (x + b + c) (x + c + a) {x+ a+b) + abc = 0.

AIT ^ ^ C n r\
45. T + +—I +3=0.o+c—x c+a—x a+o—x

*°-

(x-ay-{b-cy
^
(x-by-{c-ay

"*"

(a;-c)^-(a-6)«

~ *

(a;
+ a) (x + b) (x

-
a) (x-b) _(x + c) (x + d)

{x -a) {x- b) (x + a) (x + b)~ (x- c) {x
-

d)

{x +c){x + dy



CHAPTER X

Simultaneous EQUATioNa

140. A SINGLE equation which contains two or more
unknown quantities can be satisfied by an indefinite

number of values of the unknown quantities. For we can

give any values whatever to all but one of the unknown

quantities, and we shall then have an equation to deter-

mine the remaining unknown quantity.
If there are two equations containing two unknown

quantities (or as many equations as there are unknown

quantities), each equation taken by itself can be satisfied

in an indefinite number of ways, but this is not the case

when both (or all) the equations are to be satisfied by the

same values of the unknown quantities.
Two or more equations which are to be satisfied by the

same values of the unknown quantities contained in them
are called a system of simultaneous equations.

The degree of an equation which contains the unknown

quantities a?, y, 2^. . . is the degree of that term which is of

the highest dimensions in a?, y, ^. . . .

Thus the equations

ax + a^y + a^z = a*,

wy-\-(io-\-y + z = Ot

a^-^y'^ + i^ — Sxyz — 0,

are of the first, second and third degrees respectively,
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141. Equations of the First Degree. We proceed
to consider equations of the first degree, beginning with
those which contain only two unknown quantities, x and y.

Every equation of the first degree in x, y^ Zy.,, can by
transformation be reduced to the form

ax-\-hy \' cz-\- ,,,—k,

where a^h, c, ...k are supposed to represent known quan-
tities.

Note. When there are several equations of the same

type it is convenient and usual to employ the same letters

in all, but with marks of distinction for the difi'erent

equations.

Thus we use a, 6, c. . . for one equation ; a\ h\ d . . . for

a second ;
cb'

,
11\ c"... for a third

;
and so on. Or we use

ttj, \y Cj
for one equation ; a,, 6,, Cj for a second

;
and so

on.

Hence two equations containing x and y are in their

most general forms

ax+hy — c,

and a'x + h'y
= o\

and similarly in other cases.

142. Equations with two unknown quantities.

Suppose that we have the two equations

ax+hy = Ct

and cbx + h'y
= c'.

Multiply both members of the first equation by 6', the
coefficient of y in the second

;
and multiply both members

of the second equation by Z>, the coefficient of y in the
first. We thus obtain the equivalent system

ah'x + hh'y
= cb\

a'hx + hh'y
— c'h.

S.A. 10
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Hence, by subtraction, we have

{ah'
— ah)x = ch' — ch ;

cb' — ch
whence

ah'— a'h

Substitute this value of a? in the first of the given
equations; then

ch' - c'h ,

a —n 77 + oy = c,
ah —ah ^

, _ c {ah'
—

a'h)
— a (ch'

—
c'h)

••• ^y- W^a'h '

, ac' — a'c
whence y = -tt 7? •^ ah'- a'h

The value of y may be found independently of oc by
multiplying the first equation by a and the second by a

;

we thus obtain the equivalent system

a'ax + a'hy
= a'c,

a ax + ah'y
= ac'.

Hence, by subtraction, we have

{a'h
—

ah') y = a'c — ac' ;

_ a'c — ac'
•'• ^'aT-^''

which is equal to the value of y obtained by substitution.

Note. It is important to notice that when the va] ue

either of x or of y is obtained, the value of the other can

be written down.

For a and a' have the same relation to x that h and b'

have to 2/; we may therefore change x into y provided
that we at the same time change a into h, b into a, a into

b', and h' into a. Thus from

ch' — c'h , ca' — c'a
X = —n 7-,

we have y= 7—7
—

p- .

ah -ah ^ ha -ha
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It will be seen from the above that in order to

solve two simultaneous equations of the first degree, we
first deduce from the given equations a third equation
which contains only one of the unknown quantities ;

and
the unknown quantity which is absent is said to have
been eliminated.

143. From the last article it will be seen that the

values of x and y which satisfy the equations

ax-\-hy — c,

and a'x + h'y
=

c',

can be expressed in the form

_ y _ -1
he' — h'o

~
ca' — da ah' — ah

So also, from the equations

GWJ + 6y + c = 0,

and a'x + h'y + c = 0,

we have _ y _
he —h'c ca'^c'a ah'—ah

It is important that the student should be able to

quote these formulae.

Ex. 1. Solve the equations

3ar+ 2y= 13,

and 7aJ+ 3t/=27.
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Ex. 2. Solve the equations

X y
* ^

and = - 7. A
X y J

These may be considered as two simultaneous equations of the

first degree with - and - as unknown quantities.X y

We therefore have

1 1

X 11 -1

S(-7)-(-6)2 2.2-(-7)4"4(-5)-2.3*
1. 1

that IS ——i = -^ = — :'^ - 11 32 26
'

1 11 26

•••i=-26'°'*=-n-

., 1 32 13
^««

r26'^' 2^
=
16-

Ex. 3. Solve the equations

x-y=a-b,
ax-6y= 2(a2-62).

We have
X y -

-2(a^-h^) + b{a-h) a(a~6)-2(a2-Z>2) _6 + a'

, . * _ y _ '
*^**^

62 + a6-2a2"~262-a6-a2~6^'

6a+ a&-2a» , ^
.. «= r = & + 2a;— a

, 2&2-a&-a»
and «=—r = a+26.— a

Instead of referring to the general formulae of Art. 143, as we have
done in the above examples, the unknown quantities may be elimi-

nated in turn, as in Art. 142
;
and this latter method is frequently the

simpler of the two. Thus in this last example we have at once, by
multiplying the first equation by a and then subtracting the second,

(6-a)y = a(a-6)-2(a2-Z>2);

-a2-a6 + 262
* b-a



SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE. 149

Then x = (a+2b)+a-bi

,\ x = 2a+ b.

144 Discussion of solution of two simultaneous

equations of the first degree. We have seen that the

values of x and y which satisfy the equations

aw+by=c (i),

and a'x + b'y
= c' (ii),

are given by
(aJ/

-
a'h) x = cb' — ch

(iii),

(ba — h'a) y = ca' — ca (iv).

Thus there is a single finite value of x, and a single
finite value of y, provided that ah' — a'h 4= 0.

If ah' — a'h = 0, x wiU be infinite [see Art. 118] unless

ch' — c'h — O; and, if aV — a'h and ch' — o'h are both zero,

any value of x will satisfy equation (iii).

So also, y will be infinite if ah' — a'h = 0, unless ca'—c'a
is also zero, in which case any value of y will satisfy

equation (iv).

If ab' — a'h = 0, then — = t/ ;
and if ah' — a'6 = and

a

also ch' — c'h = 0, then — = -t-.= -,,
a b c

When equations cannot be satisfied by finite values of

the unknown quantities, they are often said to be incon-

sistent. Thus the equations ax + hy—c and a'x + h'y
— d

are inconsistent if — = t7 1
unless each fraction is equal to

c
-7 ,

in which case the equations are indeterminate. In fact
c

when -7= T7 = — , it is clear that by multiplying the terms

of equation (i) by — we shall obtain equation (ii), so that
a

the two given equations are equivalent to one only.
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We have hitherto supposed that a, a', b, V were none
of them zero. It will not be necessary to discuss every

possible case : consider, for example, the case in which a
and a' are both zero.

/»

When a and a' are both zero, we have from (i) y — t y

c'

and from (ii) y—jj- These results are inconsistent with

one another unless r = n •

(f

Hence, if a=a' = 0, and t=t,, the equations (i) and

(ii) are satisfied by making y = j-,
and by giving to x any

finite value whatever.

If however r =+ r/ ,
the equations hy = c and h'y

= c'

cannot both be satisfied, unless they are looked upon as the

limiting forms of the equations (ix+hy=c and a'x+h'y=c\
in which a and a' are indefinitely small and ultimately
zero. But from (iii) we see that when a and a' diminish

without limit, x must increase without limit, cb' — c'b not

being zero. Thus, in the equations (i) and (ii), when a
and a' diminish without limit, and cb' 4= c% the value of x
must be infinite.

Equations with three unknown quantities.

14)5. To solve the three equations :

ax + by + cz = d (i),

a'x -^ b'y -{ c'z = d' (ii),

a"w-\-b"y + c"z^d'' (iii).

Method of successive elimination. Multiply the

first equation by c', and the second by c ;
then we have

ac'x + bc'y + cc'z = dc'.
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and a ex + b'cy + &cz = d'c ;

therefore, by subtraction,

(ac
—

a'c) X + (6c'
—

6'c) y
— dc* — d'c (iv).

Again, by multiplying the first equation by c" and
the third by c and subtracting, we have

{ac"
-

a"c) X + {W - Vc) y = do"- d"c (v).

We now have the two equations (iv) and (v) from
which to determine the unknown quantities x and y.

Using the general formulae of Art. 143, we have

{he'
-

h'c) {do
-

d"c) + {dc
-

d'c) (be"
-

h"c)X —
{ac'

-
ac) {be'

-
b"e)

-
{be

-
b'c) {ac"

-
a"e)

'

Method of undetermined multipliers. Multiply
the equations (i)

and (ii) by X and
fi,

and add to (iii);

then we have the equation

X {\a + fjui' + a") + y{\b + fib' + b") + ^ (Xc 4- fic' + e")
= {\d + tid' + d"\

which is true for all values of X and
//,.

Now let X and /x be so chosen that the co-efficients

of y and z may both be zero,

^, Xd + fid'+d"then X = .——--7-;
—

r, ,Xa -V fia + a

where X and
//.

are found from

Xb+fih' + b"=0,

and Xc + fic' + c'' = ;

/^ 1
'•

b'c"-b"c' b"c-be" bo -b'c'
Hence

_ d {b'c"
-

b"c) + d' {h"c
-

be") + d" (be'
- b'c )^

a {b'c"
-

b"e') + a [b"c
-

be") + a" {he
-

b'c)

'

[The numerator and the denominator of the first value

of X, which was obtained by eliminating z and y in succes-
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sion, can both be divided by c
;
and the two values of x will

then be seen to agree.]

Having found the value of x by either of the above

methods, the values of y and z can be written down.
For the value of y will be obtained from that of x by
interchanging a and h, a' and 6', and a" and 6". The
value of y can also be obtained from that of a; by a

cyclical change [see Art. 93] of the letters a,h,c\ a, h', c
;

and a"y h'\ c"; and a second cyclical change will give the

value of z.

It should be remarked that the denominators of the

values of x^ y and z are the same, and that there is a

single finite value of each of the unknown quantities
unless this denominator is zero.

Ex. 1. Solve the equations :

a; + 22/ + 3« = 6... (i),

2x + 4y+ z= 7 (ii),

dx + 2y + 9z = 14: (iii).

Multiply (ii) by 3, and subtract (i) ;
then

5a; + 102/
= 16 (iv).

Again multiply (i) by 3, and subtract (iii) ;
then

4y = 4 (v).

From (v) we have y= 1 ; then, knowing y, we have from (iv) x= l;
and, knowing x and y, we have from (i) ^ = 1.

Thus x=y = z = l.

Ex 2. Solve the equations :

x + y + z=l (i),

ax+ by + cz= d (ii),

a^x + bhf + cH= d'^
(iii).

Multiply (i) by c and subtract (ii) ; then

{c
- a)x+ {c -b)y =c - d (iv).

Again multiply (i) by c' and subtract (iii) ; then

{c^-a^)x+{c^-b^)y=c^-d'^ (v).

Now multiply (iv) by c+6 and subtract (v);

then

(c
-

a) (6
- a)x={c -d){b-d);

{b-d){c-d)
^'

''-(b-a)(c-a)'
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The values of y and z may now be written down : they are

_ {c-d){a-d) _ {a-d){b-d)

y~{c-b){a-b)' '~{a-c){b-c)'

Instead of going through the process of elimination, we may at

once quote the general formulsie. Thus

_ {bc^
-

b^c) + d{b^- c^) + d^{c- b)

"~{bc^- b^c) + a (62
_

c^) + a^{c- b)

_ {b-c){-bc + d(b + c)-dj^}~
{h-c){-bc + a{b + c)-a^)

= ;,~ \,~ I t as above.
(6 -a){c-a)*

Ex. 3. Solve the equations :

x +y+z=a + b + c (i),

ax + by + cz= bc + ca+ab (ii),

hcx+ cay + abz= Sabc (iii).

We have

(a + b + c) {ab^
-

ac^) + {be+ ca+ ab) {ca
-
ab) + Sabc (c

-
&)*~

ab^- ac^+ a{ca
-
ab) + bc{c- b)

a(b-c){ {b + c){a + b + c)-bc-ca-ab- Sbc}~
{& -c){ab +ac-a^- be]

a{b-cy~ ""

(a
-

6) (a
-

c)

*

The values of y and z can now be written down : they are

_ 6 (c
- aY c{a-bY

'^~
(6-c)(6-a)*

*~
{c-a){c-by

Ex. 4. Solve the equations :

a;+ay + a2« + a'= (i),

a; + 6y+ 622+ 63=0 (ii),

a; + ct/ + c^«+ 0^ = (iii).

The equations may be solved as in the preceding examples, or as

follows.

It is clear that a, 6, c are the three roots of the following cubic

inX
X8+ z\2+t/\+ a;=0.

Hence from Art. 129, we have at once

2= _(a+ 6 + c),

y= 6c+ca+a6,
and «= -dbc.
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146. Equations with more than three unknown
quantities. We shall return to the consideration of

simultaneous equations of the first degree in the Chapter
on Determinants, and shall then shew how the solution of

any number of such equations can be at once written

down.
The method of successive elimination or the method

of undetermined multipliers can however be extended to

the case when there are more than three unknown quan-
tities. For example, to solve the equations

aco +bi/ -{-cz -\-dw =e (i),

a'x +b'^ +c'2 +d'w =e' (ii),

a"x -\-h"y -^-g'z +d"w =e" (iii),

a"(c + h"'y + c'"z + d"'w = e"' (iv).

Multiply (i) by X, (ii) by jjl, (iii) by v, and add the

products to (iv). Then we have

X (a\ + a> + a''v + a'") + y(h\ + h'fi + h"v + h'")

-\- z(c\ + c> + g"v + d") + w{dX + d'fi + d"v + d'")

= eX + e'/x + e"v + e" (v).

Now choose X, //,,
i/ so as to make the coefficients of y,

z and w in the last equation zero
;
then

ex+ea-^ev + e , ..X= ,
,

;
, JT-, 777 (vi),

where X, fi, v are to be found from the equations

6X + h'lJL + h"v + h'" =
0]

cX + c> +c'V +c'" = ol (vii).

d\ + d'ix^-d"v + d"' = Q\

Hence we have to solve (vii) by Art. 145 and then

substitute the values of X, /a, and v in (vi) ; this will give
the value of x\ and the values of the other unknown

quantities can then be found by cyclical changes of the

letters, a, 6, c, c?, &c.
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EXAMPLES XXL

Solve the following equations.
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16.
2/ + «-3a3=2a, 17. aa; + 6y + c«=l,

x + y-Zz = 2c. cx + ay + bz = l,

18 y + g-^ ^ g + g-y _ x ^y-z _
b + c c + a a + b

~

19. x + y + z^'Of 20. x + y + Z'^a + b + c,

ax + by + cz= ly bx + cy + az = bc+ca+abf
a'x + b'y + c^z = a + b + c cx + ay+bz = bc + ca+ab.

21 x + y + z = a + b + Cf

bx + cy + az = a' + b' + c*,

cas + ay + 6« = a' + 6' + c'.

22. a; +
2/ + » = 0,

(6 + c) a; + (c + a) y + (a + 5) «
=

(5
-

c) (c
-

a) (a
-

6),

bcx + cay + abz = 0.

23. ax + by + cz = ay 24. x — ay+ a'z — a' = 0,

6a; + cy + «« = 6, a? - 61/ + 6*« - 6' = 0,

cx + a/y + bz = c, x— cy + c'z— c^ =0.

25. OKC + 63/ + c» = m,
a'a; + b^y + 0*2; = m',

a'a; + 5V + c^z = m\

26. ax + cy + bz = a'+2bGy

cx + by + az = b' + 2caj

bx + ay + cz = c^ + 2ab.

27. x + y + z = 2a + 2b +2c,

aoi + by + cz = 2bc + 2ca + 2ahf

(b-c)x + {c
— a)y + (a-b)z = 0»

28. ax + by +cz = a + b + c,

a'x + b'y + c*z={a + b + c)',

bcx + cay + abz = 0.
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29. x + y + z^l +m + n,

Ix + my + nz = mn + nl + hn^

{m-n)x+{n~l)y + (l-m)z = 0.

30. Ix + ny + mz = nx + my + lz = mx +ly + nz

= l^ + m^ + n^- Slmn.

31. l^x + m^'y + n'z = Imx + rtmy + nlz = nlx + Imy + mnz
^l+m + n.

32.
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For example, to solve the equations :

Sx+2y= 7,

3a;2- 22/2= 25.

From the first equation we have

Substitute this value of x in the second equation ; we then have

whence y^ + 14y + lS = 0,

that is (2/ + 13)(y + l)=0;

.'. y=: -1, or ^= -13.

Ify=-1^ xJ-=^= S;

and if y=-13, a5=ll.

Thus x=S, «/=-!; or a: =11, i/=-18.

From the above example it will be seen that to solve

two equations of which one is of the first degree, and the

other of the second degree, we proceed as follows :
—

From the equation of the first degree find the value of

one of the unknown quantities in terms of the other un-

known quantity and the known quantities, and substitute

this value in the equation of the second degree ;
one of

the unknown quantities is thus eliminated, and a quadratic

equation is obtained the roots of which are the values of

the unknown quantity which is retained.

The most general forms of two equations such as we
are now considering are

Ix + my + n = 0,

aa^ 4- hxy + cy* -{ dx + ey +/= 0.

From the first equation we have

my -h n
X J—.
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Hence on substitution in the second equation we have
to determine y from the quadratic equation

a {my + rif
—

Ihy {my + ti) + cFy^

- dl {my + 7i) + el^y +fl^ = 0.

Having found the two values of y, the corresponding
values of x are found by substitution in the first equation.

148. It should be remarked that we cannot solve any
two equations which are both of the second degree ;

for

the elimination of one of the unknown quantities will in

general lead to an equation of the fourth degree, from
which the remaining unknown quantity would have to be
found

;
and we cannot solve an equation of higher degree

than the second, except in very special cases.

For example, to solve the equations

aa^ + hx+c = yy x^ + 'if=d.

Substitute ax^ -\-hx-\-c fory in the second equation, and
we have

which is an equation of the fourth degree which cannot be
solved by any methods given in the previous chapter.

149. There is one important class of equations with
two unknown quantities which can always be solved,

namely, equations in which all the terms which contain

the unknown quantities are of the second degree. The
most general forms of two such equations are

aa^ 4- hxy -\- cy^
= d

and aV + b'xy + dy^ = d!.

Multiply the first equation by d!, and the second by d
and subtract

;
we then have

iSid'
- ad) a^ + {bd'

-
b'd) xy + {cd'

-
cd) y'

= 0.
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The factors of the above equation can be found either

by inspection, or as in Art. 81
;
we therefore have two

equations of the form Ix + my — either of which com-
bined with the first of the given equations will give, as in

Art. 147, two pairs of values of w and y.

Ex. 6. To solve the equations :

y^-xy= 15 ^,

x^+xy=14, (ii).

Weh^ve 14:{y^-xy) = 15 (x^ + xy);

,'. 15x^ + 29xy-Uy^=0,
that is (6a:

-
2y) (3a; + 7y)= 0.

Hence 5x-2y=0,
or else 3x + 7y=0.

If 6x-2y= 0, we have from (i)

whence y==fc6.

Hence also a;= ±2.

Jf Sx + 7y = 0, we have from (i)
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Hence x + t/==t8,

which with x-y= 2,

gives x= 5 or -3,

and y= 3 or -5.

Thus x=5, y= S; orx=-3, y=-5.

Ex.2. To solve x^ + xy + y'^
= a^ (i),

ji^ +xY +y*=¥ (ii).

Divide the members of the second equation by the corresponding
members of the first ; then

x^-xy + y^=^ (lii).

From (i)
and (iii) by subtraction we have

2xy= a^-^^ (^^^•

From (i) and (iv)

x^ + '2xy + f-= "^~ ;

/3a* -6^ ,.

•••^+^=^v^^ ^^^-

From (iii) and (iv) we have

Finally, from (v) and (vi) we have

_1 f /Sa* -b* _^ /Sb*-a^ \

1
f /3a* -b* /Bb*-anand y=_|:fc^_^-^=P^-^-^|.

Ex.3. To solve x^-2y^= 4y,

3x^ + xy-2y^= Uy.

Multiply the first equation by 4, and subtract the second ; then

x^-xy-&y^= 0,

that is {x + 2y) {x-3y) = 0;

,: x+ 2y = 0,

or else x-By=0,

S,A. 11



162 SIMULTANEOUS EQUATIONS OF THE SECOND DEGBEK

If x+ 2y=i0, the first equation gives

4y»-2y»=4y;

/. y= or y = 2,

whence 06=0 or a;=-4.

If x-Sy=0, the first equation gives

%2_2ya=4y;
4

/. y=0 or
y=^,

whence x=0 or «=—,

Thus x=0, y=0; a?=-4, y=2;
12 4

Ex.4. To solve x^-\-y^={x + y + 1)*.

By subtraction we have

{x+ y + l)^-{x-y+ 2)^^0,

that is (2a: + 3)(2y-l) = 0,

Hence 2x+ 3= 0, or 2y-l=0.

If 2a;+ 3= 0, we have

1\»

whence
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Hence (6+ «)*+ (6
-

«)*
= 2a*,

whence after reduction

.-. 2= ±^{ - 362±^86* + a4}.

Thus x=^b±J{-db^^j8b* + a*},

and y= b =fV{ - 36^± Jsb*+^^}.

EXAMPLES XIIL

Solve the following equations :
—

1. x + y==a?'-y'^23.

2. x^ - iy' + X + iy = 2x - y = 1,

3.
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14. 1+1=2, 15. a;+y=l,

xy ¥ - \- - =^, sc* + 2/*
= 31.

X y

16. x^ + y* + ^xy-A:{x + y) + Z=0,

a;y + 2
(as
+ 2/)

- 5 = 0.

17. x* + xy + x=U, 18. a;' + y» = 9,

y* -^xy + y~2^. af^xy + y^ = Z.

19. X {y -h) = y {x
-
a)
- 2ab,

20. a; + - =
1, 21. ax + by= 2aby

y+- = 4:. -+- = 2.

22. ^4-^ = 12, 23. - + a;y
=

a',
y X '

y

1 1 1

y-V \^xy^h\

24. iBy--=a, 25. a; +y+^ = U,

^ X a ^
X*

26. a; + 2/
=

6, 27. a; + y = Secy,

(jB* + /) (a;«
+ 2/»)

= 1440. a" + y" = 40a;y.

28. a*-a;v = 8aj+3, 29. ^—^
3,

xy

xy-y* = ^y-Q, x-y ^
1

l + a;2^ 3'
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80. «,-y = a(.'-A 81. M=M.
x + y = b{xi'- y'). x' y' _h* a*

32. ?-.«=| + ^=?+?^.
a X y y X

151. Equations with more than two unknown
quantities. No general rules can be given for the solu-

tion of simultaneous equations of the second degree with
more than two unknown quantities : all that can be done
is to solve some typical examples.

Ex. 1. Solve the equations :

{x + y)(x + z)=a* (i),

{y + z){y + x) = b^ (ii),

{z+x){z + y) = c^ (iii).

Multiply (ii) and (iii) and divide by (i) ;

then (j/ + ^)'-~-y;

.-. y + 2=±_ (iv).

Similarly we have

g+X=±j , (v),

ab , ..

and a?+y= ±— « ^ (vi).

Also from the original equations it is clear that the signs must all

be positive or all be negative.

Add (v) and (vi) and subtract (iv) from the sum; then

^ .
tea ab bc\

•'• *- =*•

2abc

a%^ + b-^c^-{^a*

2abc
*So also y

and «= ± „ ,

2abc
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Ex. 2. Solve the equations :

x{y+t)=a (i),

y{z+x)=b ..^ (ii),

z{x + y)=c (iii).

We have y {z + x) + z{x + y)
- x{y + z) = h + c - a,

that is 2yz = b + c-a.

Similarly 2zx =c + a-bt

and 2xy=a+ b-e.

{2xy) {2zx) {a + b -c){c + a~ h) ^

2yz b+e-a
'

(6 + c-a)
_ /ic + a-b){a + b-c)Hence «= db . / >—

irrrr^ \ »

-V 2{b + c-a)
, . ., 1 /{a + b- c){b + c-a)

and similarly y = ±^ 2{c + a-i)

'

/{b + e~a){c + a-b)and
'=^^'-~2^^rb^:c)

—
'

Ex. 3. Solve the eqaations :

x^+2yz=a ^),

y^ + 2zx^a (ii),

«a-|.2x2/ = 6 ^ (iii).

By addition {x+y + z)^
= 2a + & ;

/. x+ y+ z- Jtzj2a + b (iv).

From (i) and (ii) by subtraction

(.T-y)(a: + y-22) = 0.

Hence x=y (v),

or else «+ t/
- 2«=0 (vi).

I. Ii x=yy we have from (ii) and (iii) by subtraction

«^+ x'-2xz=:6-a;

.*. z-x=^^b-a,... (vii).

Hence, from (iv), (v) and (vii),

M=^{±j2a + b±2jb-a}.
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U. When x+ y-2z-~0, we have from (iv)

and «+t/=±g»y2a+
6.

Also, from (ii), y^ + x{x + y)=a,

which with the previous equation gives

and

Ex. 4. Solve the equations :

We have bh + chf = xyz (i),

c'x 4- a'z = xy« (ii),

and ahf + h^x=xyz (iiij

Multiply (i) by -
a', (ii) by b^, and (iii) by c', and add ;

then 2b^c^x=(-«*' + 6^ + c^) xyz.

Hence x-d,

2&2c3
or else y, = ___^^-__^

.

If jf =0, y and « must also be zero.

Hence x=y=«=0;
2J»c2

or else y^: 6a + c3-a2'

and similarly ^^'"
c»+ a«-&-^

'

2o2&2
and ^=a» + 62-c3*

The solution then proceeds as in Ex. 2,

Ex. 6. Solve the equations :

x^-yz= a.

xy=c.
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We have (a? - yz)*
-

(y'
-

zx) (z* -xy) = a?- 6c,

that is x{a^+ y^+ i^-3xyz)= a^-bc.

Hence, from the last equation and the two similar onen^

X _ y _ z

a^-bc~'b'^- ca c^-ab'

Hence each fraction is equal to

V (a^
-

&c)'»
-

(6^
-
ca) {c^ -ab) V («'+ **+ c* " 3«&<^)

'

Ex. 6. Solve the equations :

x+ y +z=a + h+ e...,^ «.^ (i),

a;2 + 2/2 + ^2^aa + 62 + c2 (ii),

- + | +
-= 3 (iii).

a b c

It is obvious that x= a, y= 6, z=c will satisfy the equations: put
then a:=a+ \, y=6 + /it,

«= c + i', and we have after reduction

\+^ + i» = (iv),

^f-^» <^)-

2(a\+ 6AH-cv)+X2+ Ai''+ i'*=0 (vi).

From (iv) and (v)

X _ A* __
p

a{b^)
"
b{c~a)

~
cjd-bj

'

whence from (vi)

X 2{b-c){c-a){a-b)
**'

a(6-c)~a2(6-c)2 + 62(c-a)a+ c2(a-6)a'

Hence «=a, y=b, z=ci
or else

g-g _ y-b _ «-c 2 (6
-

c) (c
-

a) (a
-

6)

a{b^'c)
~
b{c^)

~
c{a-b)

"
a^ (6

- cf + h''\c-a)^+ c'{a- bf
'

Ex. 7. Solve the equations :

a; +y+«= 6,

yz + zx + xy = ll^

xyz= 6.

This is an example of a system of three symmetrical equations.
Such equations can generally be easily solved by making use of the

relations of Art. 129. Thus in the present instance it is clear that

X, y, z are the three roots of the cubic equation

X»-6X2+llX-6=0
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The roots of the cubic are 1, 2, 3.

Hence x=l, y= 2, z—d; or j;= l, y = 3, z=2; or «=2,
y= 3, «= 1; &o.

Ex. 8. Solve the equations :

x + y +z=:a i.i (i),

UUUi (ii),X y z a ^ "

yz+zx +xy= -c^ (iii).

This again is a system of symmetrical equations, and two of the
relations of Art. 129 are already given ; we have therefore only to find

the third.

We have from
(ii),

yz+zx+ xy _ 1^

xyz
~
a *

.'. xyz=: -ac* (iv).

Then, from (i), (iii)
and (iv), we see that x, y, z are the roots of

the cubic X^ - a\^ - c»X + ac^ = 0,

that is X*(X-a)-c2(\-a)=0;
.-. X=a, or X= ±c.

Thus x=a, y=c, z=-~c; &g.

Ex. 9. Solve the equations :

n:^{y-z)=za^(b-e)f

y^z-x) = b^c-a),

zHx-y)=::c^{a-b),

By addition

x^{y-z)+y*{z-x) + z^{x-y)=a\b-c) + b^e-a) + c^(a~b),

that is (y -z){z- x) {x-y) = {b- c) (c -a) (a- b).

By multiplication

arVV {y-z){z-x){x-y)= a'Wc^ (6 -c){c- a) (a
-

6) ;

.-. xh/H'^-a^V^c^.

Hence xyz= abc
(i),

or xyzss ~abe (ii).

Again a' (6
-

c) y + b^ (c
- a)x=xPy {y -z) + xy^ («

-
«)

=xyz{y-x) (iii).

Hence, if xyz = abc, we have from (iii)

{b^{c-a) + abe}x + {a*{b-c)-abc}y=Of
that is bx {be + ca~ ab)

-
ay {be + ca - a&) = ;

/. - = r> aJ^d therefore each = -
.

a b e
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Thus, when xyz=abc, we have - =s ^ = - .
a b c

Hence each is equal to a /^ = V^*

Thus - = !
= -=!. or ^=f = i= l.

aw' ftw* cw*

If xyz = -
a6c, we have from (iii)

-
(6c -ca^ab) =

~^
(ca -ab-^ he).

Hence also each =- (aJ
- 6c - ca)

=s/{
-

(6c
- CO -

o6) {ca ~ab- be) (ab-bc- ca)},

EXAMPLES XIV.

Solve the following equations :

1.

3.

yz^a',
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9. x" - (y
- zy = a'y 10. x{y + z-x) = af

y'-(z- xf =
6", y(z + x-y)=^b,

z' - {x
- yY = c^. z(x + y-z) = c.

21.

11.



l'?^2 EXAMPLES.

x' + y'-z{x + y)
= c\

25. x' + yz-a'' = y' + zx-b* ^z% a^ - c' = ?
(a:» + y» + z\

26. a
(a;

+ y + «)
-

(y« 4- »* + y«)
= a,

y {x ¥ y -k- %)
- (z^ ¥ a? -^r zx)

^ 6,

«
(a;
+ 2^ + 2)

-
(a;' + y' + xy) = c.

27. a; +
2/ + « = « + & + c,

a:« + y« + ;s^ = a» + 6« + c',

(6
-

c) a; + (c
-

a) y + (a
-

^»)
2; = 0.

28.
(a;

+ y)(a; + «)
=

aa;, 29. x^-yz = aai,

{y-^z){y + x) = hy, f-zx^hy,
{z + x) {z \- y)

= cz. z'-xy^cz.

.30. a3' + a(2a; + y+«)=y» + 6(22/+« + a;)
= «« + c(22 + a: + y)

s=
(a;

+ y + »)'.

31.
2/'

+ 2/0 + «* = a*,

»* + ;sa; + a^ = 6%
a^ + xy + y' = c*.

32. a»a; + 6"«/ + c*2!=0,

(6-cy^(c-«)» ,

(et-5)' _Q
aa; 6y C2;

*

1 1 1111
^2 ;sa; a^ a 6 «



CHAPTER X*

Graphical Representation of Functions.

I. Co-ordinates. Let two straight lines XOX\
YOY' be drawn in a plane at right angles to one another,
and through any point P in the plane let the straight
lines PM, PN be drawn parallel to OX, OY respectively
to meet OY, OX respectively in M and N, Then it is

easily seen that the position of the point P in the plane
XOY can be found when the lines ON, OM are given.
The lines ON and OM, or ON and NP, which thus define

the position of any point P with reference to the fixed

lines OX, Y are called the co-ordinates of the point P
with reference to the axes OX, Y. The point of inter-

section of the axes is called the origin.

The co-ordinate which is measured along the axis OX
IS denoted by x, and that measured along the axis OF is

denoted by y.

The point for which x — a and y = 6 is called the point

(a, 6). .

When the co-ordinates of difterent points are given,
the positions of the points with reference to the axes can
be marked in a diagram. This is called plotting the

points.

In order to determine the position of a point we must
know not merely the lengths of the lines ON, OM but also

the directions in which they are drawn. Now, if a length



measured in one direction be taken as positive, the same

length measured in the opposite direction must be taken

!:;:;:::!:::::s;:;::::;:;;:::s!::::h:::::u::;::::::k;::::::;:::::::

as negative. Thus, for example, if OJS'' is positive, NO is

negative, and conversely.

OX and 7 are always taken as the positive directions,

and OX', OY' are therefore drawn in negative directions.

By using paper ruled with two sets of equidistant

parallel lines, as in the figure, the position of points whose

co-ordinates are given can be readily plotted.

Thus the points P, Q, R, S in the figure are the points

(12, 8), (- 9, 10), (- 9,
-

5), (15,
-

6) respectively.

II. The Graph of a Function. If any function of

o! (that is, any algebraical expression which contains x) be

.taken, and different values of x be set off along the line
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OX, and the corresponding values of the function be set

off in a perpendicular 'direction, the curve through the

series of points so obtained is called the Graph of the

Function.

For example, to find the graph of 2w + 6. Put

y = 2.x + 6.

Then, if a; = 0, y = 6; if x = l,y = S; if a7 = 2, y = 10;
and so on.

Now, if the points (0, 6), (1, 8), (2, 10) be plotted on

squared paper, it will be found that these three points lie

on a straight line; and it will also be found that the

points corresponding to any other values of x, for example
the points (— 1, 4), and (- 2, 2), will lie on the line through
the first two points.

Thus the graph of y = 2^7 + 6 is a straight line.

It will similarly be found that the graphs of y = 6a; - 11,

y = ^
—

lcc, 2y
— —

^x
— 7 are straight lines.

[The above are special cases of the following general
theorem :

—
The graph of y = ax-\-h, where a and h are any given

numbers, is a straight line.
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To prove this, it is only necessary to point out that it

follows from the properties of sirhilar triangles that the

graph of y = ax is a, straight line through the origin ;
and

that, if we increase the y co-ordinates of points on y — ax

by the same quantity 6, we know from Geometry that we
shall obtain points on a straight line parallel to that de-

termined by 2/
=

ax.'\

An equation of the form y = mx 4- n, or ax-\-by-\-c
= 0,

where m, n, a, b, c are supposed to be known constants, is

called a Linear Equation.

In order to draw the graph of a linear equation it is

only necessary to find two pairs of corresponding values of

X and y, for a straight line is determined when any two

points on it are known; and pairs which are arithmetically

easy to obtain and are not near together should be chosen.

Ex. 1. Draw the graphs of y = Sx + 7 and 3y= 4x + 6, and find their

point of intersection.

Ex. 2. Solve by graphical constructions the simultaneous equations

y = 2x-16, Sy = 7~4:x.

Ex. 3. Draw the graphs of Bx + 2y = 12 and 6x + Ay = S&, and shew
that they do not intersect at a finite distance from the origin.

Ex. 4. Plot the two lines given by

5x + 2y = 10, 10a5 + 4t/= 15,

and shew that the two lines are parallel.

Ex. 6. Plot the two lines given by

5x+ y = ll, 2x-Sy= lS,

and find their point of intersection.

Ex. 6. Draw the graph of 3a; -4^ = 6, and hence find solutions of the

equation in positive integers.

Ex. 7. Find positive integral values of x and y which satisfy the

equation 2x-{-y = ll.

III. To find the graph of By = a;*.

[5y is used because x^ increases very rapidly as x is

increased.]
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The following
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To find more exactly where the graph cuts the axis of

X (which will give the value of the roots of the equation
2a;^ — 8d? + 5 = 0), we find in succession the following series

of corresponding values :

X
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It should be noticed that ^x^ — 8^ + 5 has its least

value for that value of x which is midway between the

roots of 2x'^ — ^x + b = 0, or midway between any two
values for which 2x^ — 8a; + 5 has the same value. This is

true for all quadratic functions.

[These results can be obtained at once by Algebra, as

we have already shewn. For 2a;2 _ 8a3 + 5 = 2 (a?
—

2)^
— 3

;

and, since 2 (a;
—

2)^ is positive for all real values of x, it is

obvious that — 3 is the least value of 2ar* — 8a? + 5 and that

a; is 2 when the expression is least.]

We can also find the value of y for which the roots of

2a;2 — 8a; + 5 =
2/

^^^ equal. [The condition for equal roots

of 2a;2-8a;+5-2/ = is 8^ = 4 x 2 x (5
-

3/),
whence

3/
=

3.]

If these results are obtained from the graph they
should always be checked by Algebra ; for, unless the

values happen to be integral, the graph will generally

give only a rough approximation.

VI. Approximations to the roots of a quadratic equa-
tion may also be obtained in the following manner.

Consider, for example, the equation 2a?^ — 8a7 + =
0, or

a?' — 4a; + 2'5 = 0, whose roots have just been found.
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Hence the roots of the equation are the two values of

X at the points of intersection of the graphs, and these are

seen to be approximately "7 and 3*3.

N.B. If the graph of 10y = a^ has been drawn on

squared paper .very accurately and on a large scale, the

second method would enable any one to find the approxi-
mate roots of a quadratic equation without great waste of

time. For any quadratic equation can be reduced to the

form x'^-\-ax-\-h = 0, and the roots required are the values

of X where the graph of lOy = ar^ is cut by the straight line

10y + ax-\-h = 0\ and having found two points on the

straight line, a ruler could be placed along it and the

values of x read off without actually drawing the graph of

the straight line, so that the graph of l(dy
= a^ could be

used over and over again. Except for this advantage, this

second method is inferior to the former, for in the first

method the roots can be found to any required degree
of accuracy, by successive approximations, as shewn in IV.

Graphical methods are, however, after all only methods

of getting rough approximations by those who know no
A Igehra,

EXAMPLES XIV a.

1. Calculate the values of y for a5 = 0, 0'5, 1, 1*5, 2, 2*5, 3,

(i)
when

3/
= 2*5 + Q'lx

;
and

(ii)
when y = 5 - OSa;.

Draw the graph of y in each case using the same lines of

reference for the two graphs. Find by calculation, the values
of X and y which will satisfy the two equations simultaneously,
and check the result by considering the point of intersection

of the two graphs,

2. Calculate the values of {x—l){x—3) for the following
values of a; :

-
1, 0, 1, 2, 3, 4, 5. Plot these values on squared
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paper and draw through them a curve to shew how the

expression varies for diflferent values of x.

Find from your curve the values of x when the expression
is equal to 5, and verify the result by calculating the roots

of the equation (a;
—

1) (aj— 3)
= 6 to two places of decimals.

3. Draw the graph of 103^ = (a;- 4) (a;— 6) between the

values x =—2 and aj = 9, and use the graph to determine when

(x
-

4) (a;
—

6) is equal to 5. Verify by calculation.

4. Draw the graph of 10y = a?-Sx between the values

a; = — 4 and x = 5, and use the graph to determine when x^ - Sx

is equal to 5. Shew that x^-Sx has its least value when x is

midway between the values just found, and find the least value.

6. Draw the graph of 102/= 10 + 4a;— a;^ between the values

x = -S and a; = 7, and use the graph to find the roots of the

equation 10 + 4a; - ar^ = 0, and also to find the greatest value of

10 + 4a; - ar^. Verify the results by calculation.

6. Draw the graph of i/=:lS-Qx-x^, and shew that y is

greatest for the value of x midway between the two values for

which y = 2.

7. Calculate the values of ar'-3*4a; + 4 for the values 0,

0-5, 1, 1*5, 2, 2-5, 3 of x. Plot these values on squared paper,
and draw a smooth curve to shew how the expression varies

for diflferent values of x.

From your diagram, determine (i)
the least value of the

expression, (ii)
the value of x for which the expression is least.

8. Draw the graph of 3/
= a;* — 6a; + 1, and hence shew that

the smaller root of the equation ar^ - 6a; + 1 = is approxi-

mately 0-17.

9. Draw the graph of y=a^-4:X + 2, and find the smallest

value of y for real values of x. Find also the values of x for

which 2/
= 7 and for which y = 23.

10. Draw the graph of y = 15 + 3x-x\ For what values

of X will X and y be equal ?
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11. Draw on the same scale and with the same lines of

reference the graphs of the following functions from a; = to

x = 5 :

(i) y = x-2, (ii) y = {x-2){x-3).

Find two values of x, each of which gives the same value

of y in both graphs.

12. Plot the graphs of 10y = a^a.ndl0y-5x + 2 = 0, and
find their points of intersection, and so find approximately the

roots of s^ — 5x + 2 = 0. Compare the result with the alge-
braical solution.

13. Plot the graphs ol y = x^ and of y = 5a3 - 5, and hence
write down the approximate roots of the equation a?—bx+b=Q.

Verify the results by Algebra.

14. Plot
(i) the graph of y = x^— Zx-{-\ -5, and

(ii)
the

graphs of \Oy = x^ and lOy - 3a; + 1 -5 = 0. Find the roots of

ar^-3aj-i-l'5 = 0by means of the graphs and compare the results.

15. Find where the graph of y = a;^ - 3a; + 4 is cut by
the graph of y = mx^ (i)

when m =
2, (ii)

when m = 3, and

(iii)
when m = — 7. Find also the value of m in order that

the two points may coincide.

16. Find where the graph of y = a;^ — 4a; + 9 is cut by the

graph of y = Qx. Find also the values of m if the graph of

y = x^ — 4cX + 9 is touched by the graph oi y = mx.

17. Trace the graph in x and y given by the equations
x = f—\,y = ^ + t—\ from the values < = — 3 to < = 3. Find
from the graph the value of x when y = —

^, and verify by
Algebra.

18. Trace the graph in x and y given by the equations
x = f-\.t-¥l, y = t^ + 2t + 2 from the values t = -Z to < = 3.

Find by means of the graph the least values of x and y, and

verify by Algebra.
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Sa?
VII. To find the graph of

2/
=
^^
_

^^^ ^^ _^ ^^

Corresponding values of x and y are :

X
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Ex. 1. Draw the graph of y
{x-2){x-S)

{x-l){x-^)

Corresponding values of x and y are

x\ \

-5
\

1
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Now the values of x corresponding to any possible assigned value

of y must be real, the condition for which is that

25 (1
- y)2

- 4 (1
-
y ) (6

-
4t/ )

> 0, [Art. 121

ue, {9y-l){y-l)>0.

From which it follows that no real values of x correspond to

values of y between ^ and 1, but that real values of x correspond to

any value of y which is less than ^ or greater than 1.

When y= ^ it will be found that both values of x are 2-5
; and

when y = l both values of x are infinite.

EXAMPLES XIV 6.

1. Plot the graph of y = x + - for the following values of

x: -1, -2, -5, 1, 1-5, 2, 4, 10, 20.

Find from the graph the least value of y, and verify by
calculation.

1 9
2. Plot the graph of y = jx + - {or the following values

oix: 1, 1-5, 2, 3,5, 8, 10, 15, 20.

Find from the graph the least value of y, and verify by
calculation.

1 2
3. Plot the graph of y = -^x

+ -ior values of x between

0-3 and 10.

Also find, from the graph, the value of m for which the

1 2
quadratic ^x+ - = m has equal roots.

X 3
4. Plot the graph oi y = -= + - from x='6 to a; = 5.

o X

Find from the graph the value of m for which the line

y^m cuts the graph in coincident points.
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a^ — x+1
5. Draw the graph of 2/= o^

-,
>
and shew from the

graph that y is not greater than 3 nor less than J. Verify

by calculation.

6. Draw the graph of y = -
^g, and shew that the

(03-1)
least value of 2^

is -J.

7. Draw the graphs of i)cy
= 10 and x + y = 8, and hence

write down the solutions of the simultaneous equations.

Verify by Algebra.

x — 1
8. Draw the graphs oi y = =- and 2y=l — x, and write

X "r L

down the solutions of the simultaneous equations.

VIII. Approximate solutions of equations with
numerical coefficients.

Approximate solutions of numerical equations can be

found in the following manner.

Consider, for example, the equation a;' - 3a; + 1= 0.

Put y=x^-3x + l', then corresponding values of x and y are

a; |0| 1
I

2
I

3
I -1| -2| -3 1

2/|l| -1|3|19| 3
I -1| -17

1

Now, since y does not become infinite for any finite value of x,

the graph must cut the axis of x between - 2 and -
1, between

and 1, and again between 1 and 2.

Thus the graph of y = a;^ - 3a;+ 1 is as in the figure below (p. 172 q).

To find closer approximations to the points where y= 0, that is

to the required roots, we have

^1
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value of this root found by Homer's Method [see Chapter xxxn.

p. 592] is 'Si?...; but, from the slope of the graph in this neighbour-
hood, it will be seen that the actual root is slightly less than that

given by the straight line.

We find in a similar manner that 1'529 and - 1-878 are close

approximations to the other two roots ; and here again we see from
the graph that 1-629 is leas than the actual value, which will be
found by Horner's Method to be 1-632...; also -1-878 is greater
than the true value, namely -1-879..,.

Turning values. It appears from the graph that the value of
x'-Sx+ l increases from x= -d to x= -1, and that it then begins
to diminish; also that it goes on diminishing until a;= -1, after
which x^-dx + 1 increases continuously.

These points are called the turning points of the function

a^-3a;+ l.

It will also be seen that at the turning points, namely when
x=-l or x=+l, the tangent line to the graph is parallel to the
axis XOX\

The position of the turning points can always be determined,
roughly at any rate, from the graph.
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To determine the turning values by Algebra, we have to find the

values of k for which the line y = k outs y=x^-Sx+ lin coincident

points. Hence we have to find the values of k for which two of

the roots of x^-Sx + l = k are equal, and this method is applicable
whatever may be the degree of the function.

To find the condition that an equation may have equal roots

see Art. 453.

The roots of the above cubic could be found, as in VI., by drawing
the graphs of y=x^ and y -3x + l= 0, when the values of x at the
intersections of the two graphs would give the required roots.

Unless, however, the graph of y = x^ is drawn very accurately and
on a very large scale the results will not be of much value.

EXAMPLES XIV c.

1. Find approximate values of the real roots of the

following equations :

(i)
£c'»-4aj + 2 = 0.

(ii) ar^-ll£c-5 = a

(iii) o(^-Sx-l=0.

(iv) a?-x+3 = 0.

(v) a^-3x'' + 2x-l = 0.

(vi) a^-3x' + 4:x-l=0.

(vii) x'^-6o(^ + 7x^+6x-7 = 0.

(viii) ar^ - 5a; + 1 = 0.

2. Draw the graph of

y = a^—12x + 2 from a; = -4toa; = + 4.

Find the values of x for which the value of y reaches

a turning point, and obtain the corresponding values of y
(i) by measurement, (ii) by calculation.

3. Draw the graph of y = a^ — 5x^ +3x + 2.

Find the approximate values of the roots of the equation

a^-5x' + 3x+2 = 0,

and find the values of x for which oc^ - 5x^ +3x + 2 reaches

a turning value.
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4. Draw the graph of y = a^-3x, and find from the graph
the values of m for which two of the roots of the equation

a:^ — 3x + m =
are equal.

5. Draw the graph oi y = 2oc^ — 3x^ + 4, and find from the

graph the values of m for which two of the roots of the

equation
2a^ - 3aj2 + m =

are equal.

6. Draw the graph of 20?/= a? (a;'- 36), from x=-S to a;=8.

Find from the curve for what approximate values of x the

value of y reaches a turning point, and obtain the correspond-

ing values of y (i) by measurement, (ii) by calculation.

IX. In Scientific investigations when a series of cor-

responding values of two different quantities have been
obtained by experiment or observation, a series of points
are plotted so that the co-ordinates of each point represent

corresponding values of the two different quantities. It is

then sometimes possible to determine the law connecting
the magnitudes of the two different quantities. For

example, if the points lie very nearly on a straight line, it

may be taken as probable that the points would all lie

exactly on a straight line if the observations or experi-
ments were quite free from errors, which can however
never be actually realised; moreover, by drawing the

straight line which lies above some of the points and
below others but w^hich on the whole appears to pass most

evenly amongst the points, we should reduce the effect

due to errors of observation to a minimum.

Curves of this kind which shew at a glance the con-

nection between two variable quantities are very often

employed even when there is no expectation of finding

any law connecting the two quantities; for example,
curves are given in the newspapers to shew the time
variation in the height of the barometer or of the ther-

mometer.
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X. If the two quantities whose corresponding vahies

are to be plotted are both of the same kind, the scales on

which they are represented should generally be the same.

If, however, the quantities are of different kinds there

can be no connection between the scales on which they
are represented

—for example, one centimetre along the

axis of X may represent a pressure of one pound, and one

millimetre along the axis of y may represent one cubic

foot, or any other number of cubic feet which may be

most convenient for the diagram.

It should be noticed that when a number of corre-

sponding values of two different quantities have been found,
and these results are plotted and a curve drawn freehand

through them, the best approximation to corresponding
values intermediate to those given can be found from the

curve so drawn. It should also be noticed that the slope
of the graph at any point gives us a means of comparing
the rates of increase of the two quantities at that point.

EXAMPLES XlYd,

1. Find the values of x and y which satisfy the equations

y = x + 2, y =^bx + 3. Draw the graphs of the equations on

squared paper and indicate the values of x and y which

satisfy both equations, (i)
when 6 = 0-7; (ii)

when 6 = 0-8;

(iii)
when 6 = 0-9. Is it possible to find values of x and y

which satisfy both equations when 6 = 1?

2. For a certain book it costs the publisher £100 to

prepare the type and 2s. to print and bind each copy. Find an

expression for the total cost in pounds of x copies.

Also make a diagram on the scale of 1 inch to 1000 copies
and 1 inch to £100, to shew the total cost of any number of

copies up to 5000. Read off the cost of 2500 copies, and the

number of copies costing £52 o.
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3. The mean temperature on the first day of each month
shewed on an average of 50 years the following values :

January 37° May 50° September 69°

February 38 June 57 October 54

March 40 July 73 November 46

April 45 August 62 December 41

Represent these variations by means of a curve, neglecting
the difference of length of different months.

4. A manufacturer has priced certain lathes
;
the largest

sells at £175, and the smallest at £40. He wishes to increase

his prices so that the largest will sell at £200 and the smallest

at £50. Assuming that the new price (P) and the old price

(Q) are connected by the relation Q = a + bP, find the values

of a and b
; and, to the nearest pound, the new prices of lathes

originally valued at £130, £125. 10s., and at £76.

5. From the following numbers, obtained on determining
the solubility of saltpetre in water, plot a curve on squared
paper :

Temperature
Grams of saltpetre dissolved

]

per 100 grams of water j

State the inferences you draw from the curve, and also find

from it the approximate weight of saltpetre which 100 grams
of water would dissolve at 35°.

6. The following are the areas of cross sections of a body
at right angles to its straight axis :

0°
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7. The following pairs of corresponding values of two

quantities x and y were measured :

.
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12. Draw the graph oi y =
-,

=4-^^
Jr

,
and find for

what values of c the line y = c will cut the graph in coincident

points.

(£c-4) (a; -7)
13. Draw the graph oi y= -.

—^^—=--r^ ,
and shew that

between a; = 4 and aj = 7 the greatest value of
3/

is
|-.



CHAPTER XL

Problems.

152. We shall in the present chapter consider a class

of questions called problems. In a problem the magni-
tudes of certain quantities, some of which are known and
others unknown, are connected by given relations; and the

values of the unknown quantities have to be found by
means of these relations.

In order to solve a problem, the relations between the

magnitudes of the known and unknown quantities must
be expressed by means of algebraical symbols: we thus
obtain equations the solution of which gives the required
values of the unknown quantities.

It often happens that by solving the equations
which are the algebraical statements of the relations

between the magnitudes of the known and unknown

quantities, we obtain results which do not all satisfy the

conditions of the problem. The reason of this is that in a

problem there may be restrictions, expressed or implied,
on the numbers concerned, which restrictions cannot be
retained in the equations. For example, in a problem
which refers to a number of men, it is clear that this

number must be integral^ but this condition cannot be

expressed in the equations.
Thus there are three steps in the solution of a problem.

We first find the equations which are the algebraical

expressions of the relations between the magnitudes of the

13—2
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known and unknown quantities; we then find the values

of the unknown quantities which satisfy these equations ;

and finally we examine whether any or all of the values

we have found violate any conditions which are expressed
or implied in the problem, but which are not contained in

the equations. The necessity of this final examination
will be seen from some of the following examples of

problems.

Ex. 1. A has £5 and B has ten shillings. How much must A give to

B in order that he may have just four times as much as JS ?

Let X be the number of shillings that A gives to B.

ThenA will have 100 - x shillings, and B will have 10 + as shillings.

But, by the question, A now has four times as much as B,

Hence we have the equation

100-a;=4(10 + a;);

:. x=12.

Thus A must give 12 shiUings to B.

It should be remembered that x must always stand for & nurnber.

It is also of importance to notice that all concrete quantities of the

same kind must be expressed in terms of the same unit.

Ex. 2. One man and two boys can do in 12 days a piece of work
which would be done in 6 days by 3 men and 1 boy. How long
would it take one man to do it ?

Let ae=the number of days in which one man would do the whole,
and let y=the number of days in which one boy would do the whole.

Then a man does - th of the whole in a day ; and a boy does - th
X y

of the whole in a day.

By the question one man and two boys do ^^jth of the whole in a

day.

Hence we have
1 2_J^
«"*"y""l2*

We have also, since 8 men and 1 boy do ^th of the whole in a

day,

3^1 1- + -=» J.X y ^
Whence a; =20.

Thus one man would do the whole work in 20 days.
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Ex. 8. In a certain family eleven times the number of the children is

greater by 12 than twice the square of the number. How many
children are there ?

Let X be the number of children ; then we have the equation

11a;= 2*2+ 12,

or 2ar»-lLB+12=0,

that is (2a!-3)(a?-4)=0.

Hence «=4, or a:=f .

The value x=\ satisfies the equation, but it must be rejected, since

it does not satisfy all the conditions of the problem, for the number
of children must be a whole number.

Thus there are 4 children. .

Ex. 4. Eleven times the number of yards in the length of a rod is

greater by 12 than twice the square of the number. How long is the

rod?

This leads to the same equation as Ex. 3; but in this case we
cannot reject the fractional result. Thus the length of the rod may
be 4 yards, or it may be a yard and a half.

Ex. 5. A number of two digits is equal to three times the product of

the digits, and the digit in the ten's place is less by 2 than the digit

in the unit's place. Find the number.

Let X be the digit in the ten's place ; then a; + 2 will be the digit

in the unit's place. The number is therefore equal to

10a;+ (a! + 2).

Hence, by the question,

10x + (a?+ 2)=3a;(a; + 2);

.-. 3«3-6a;-2=0,

or (a;-2)(3x+ l)=0.

Hence «=2, or x— -\.

Now the digits of a number must be positive integers not greater
than nine; hence the value x= -^ must be rejected. The digit in

the ten's place must therefore be 2, and the digit in the unit's place
must be 4. Hence 24 is the required number.

Ex. 6. A number of two digits is equal to three times the sum of the

digits. Find the number.

Let X be the digit in the ten's place, and y the digit in the unit's

place; then the number will be equal to IQx+y.

Hence, by the question,

lQx +y=^{x + y)\

/. lx=2y.
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Since x and y must both be positive integers not greater than 9,

it follows that x must be 2 and y must be 7. Thus the required
number is 27.

Ex. 7. The sum of a certain number and its square root is 90. What
is the number ?

Let z be the number
; then we have the equation

x+^x = 90;

,\ {x-90y=x,
or «»- 181a;+ 8100= 0,

that is {x
-
81) (a;

-
100) = 0.

Hence ar=81, or a;=100.

If, in the question, the square root means only the arithmetical

square root, 81 is the only number which satisfies the conditions.

If, however,
'

its square root
'

is taken to mean * one of its square
roots,' both 81 and 100 are admissible.

Ex. 8. The sum of the ages of a father and his son is 100 years ; also

one-tenth of the product of their ages, in years, exceeds the father's

age by 180. How old are they ?

Let the father be x years old; then the son will be 100 - x years
old. Hence, by the question,

^a;{100-a;) = a; + 180;

.-. ar^- 90a;+1800 = 0,

that is (x-60)(a;-30)=0.

Hence a;=60, or a; =30.

If the father is 60, the son will be 100-60=40. If the father

is 30, the son wUl be 100-30=70, which is impossible, since the
son cannot be older than the father.

Hence the father must be 60 and the son 40 years old.

Ex. 9. A man buys pigs, geese and ducks. If each of the geese had
cost a shilling less, one pig would have been worth as many geese as
each goose is actually worth shillings. A goose is worth as much as

two ducks, and fourteen ducks are worth seven shillings more than
a i)ig. Find the price of a pig, a goose, and a duck respectively.

Let a;=the price in shillings of a pig,

y= „ >i „ ,* goose,

and«= „ „ „ „ duck.

Then, by the question, a pig is worth y times (y
-

1) shillings ;

.-. x=y{y-l) «. (i).
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Since a goose is worth 2 ducks,

••• J/=2z (ii).

And, since 14 ducks are worth 7 shillings more than a pig,

Uz =7+x (iii).

From (i) and (ii)
we have the values of x and z in terms of y ; and,

substituting these values in
(iii),

we have

7y = 7 + y(y-l),
or y2-8y+ 7=0;

.-. y= 7, or y=l.

If y=7, a;= 42 from (i), and z = ^ from (ii).

If y= l, «=0 from
(i), and 2=^ from (ii). These values are how-

ever inadmissible, since pigs cannot be bought for nothing.

Hence a pig cost 42«., a goose 7«.,.and a duck 3s. 6d,

EXAMPLES XV.

1. Divide 60 into two parts, such that twice one part is

equal to three times the other.

2. A has £6 less than jB, G has as much as A and JB

together, and A, By C have £50 between them. How much
has each %

3. One man is 70 and another is 45 years of age ;
when

was the first twice as old as the second *?

4. How much are eggs a score, if a rise of 25 per cent, in

the price would make a difference of 40 in the number which
could be bought for a sovereign 1

5. A bag contains 50 coins which are worth XI 4 altogether.
A certain number of the coins are sovereigns, there are three

times as many half-sovereigns, and the rest are shillings. Find

the number of each.

6. A can do a piece of work in 20 days, which B can do

in 12 days. A begins the work, but after a time B takes his

place, and the whole work is finished in 14 days from the

beginning. How long did A work ?
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7. A man buys a certain number of eggs at two a penny,
four times as many at 5d. a dozen, five times as many at Sd.

a score, and sells them at Ss. Sd. a hundred, gaining by the

transaction 3^. Qd. How many eggs did he buy]

8. A bill of £63. 5s. was paid in sovereigns and half-crowns,
and the number of coins used was 100; how many sovereigns
were paid 1

9. A man walking from a town A to another B at the

rate of 4 miles an hour, starts one hour before a coach which

goes 12 miles an hour, and is picked up by the coach. On
arriving at B he observes that his coach journey lasted two
hours. Find the distance from A to £.

10. Two passengers have altogether 600 lbs. of luggage
and are charged for the excess above the weight allowed 3s. 4(i.

and lis. 8d. respectively. If all the luggage had belonged to

one person he would have been charged £1. How much

luggage is each passenger allowed free of charge?

11. A piece of work can be done by A and ^ in 4 days,

by A and (7 in 6 days, and by B and C in 12 days : find in

what time it would be done by ^, ^ and C working together.

12. A father's age is equal to those of his three children

together. In 9 years it will amount to those of the two eldest,
in 3 years after that to those of the eldest and youngest, and
in 3 years after that to those of the two youngest. Find their

present ages.

13. A and B start simultaneously from two towns to meet
one another : A travels 2 miles per hour faster than B and

they meet in 3 hours : if B had travelled one mile per hour

slower, and A at two-thirds his previous pace they would have
met in 4 hours. Find the distance between the towns.

14. A traveller walks a certain distance : if he had gone
half a mile an hour faster, he would have walked it in

|^
of the

time : if he had gone half a mile an hour slower he would have
been 2^ hours longer on the road. Find the distance.



EXAMPLES. 179

15. Divide 243 into three parts such that one-half of the

first, one-third of the second, and one-fourth of the third part,

shall all be equal to one another.

16. A sum of money consisting of pounds and shillings
would be reduced to one-eighteenth of its original value if the

pounds were shillings, and the shillings pence. Shew that its

value would be increased in the ratio of 15 to 2 if the pounds
were five-pound notes, and the shillings pounds.

17. £1000 is divided between A, B, C and B. B gets
half as much as A^ the excess of Cs share over Z)'s share is

equal to one-third of ^'s share, and if B's share were increased

by £100 he would have as much as C and D have between
them ;

find how much each gets.

18. Find two numbers, one of which is three-fifths of the

other, so that the difference of their squares may be equal to

16.

19. Find two numbers expressed by the same two digits
in different orders whose sum is equal to the square of the sum
of the two digits, and whose difference is equal to five times the

square of the smaller digit.

20. A man rode one-third of a journey at 10 miles per

hour, one-third more at 9 miles per hour, and the rest at 8

miles per hour. If he had ridden half the journey at 10 miles

per hour and the other half at 8 miles per hour, he would have

been half a minute longer on the journey. What distance did

he ride 1

21. Two bicyclists start at 12 o'clock, one from Cambridge
to Stortford and back, and the other from Stortford to Cambridge
and back. They meet at 3 o'clock for the second time, and they
are then 9 miles from Cambridge. The distance from Cambridge
to Stortford is 27 miles. When and where did they meet for the

first time ?

28. Divide £1015 among A^ B, C so that B may receive

£5 less than A, and G as many times B's share as there are

shillings in ^'s share.
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23. On a certain road the telegraph posts are at equal

distances, and the number per mile is such that if there were

one less in each mile the interval between the posts would be

increased by 2^ yards. Find the number of posts in a mile.

24. The sum of two numbers multiplied by the greater is

144, and their difference multiplied by the less is 14 : find

them.

25. A and B start simultaneously from two towns and
meet after five hours; if A had travelled one mile per hour
faster and B had started one hour sooner, or if ^ had travelled

one mile per hour slower and A had started one hour later,

they would in either case have met at the same spot they

actually met at. What was the distance between the towns 1

26. A battalion of soldiers, when formed into a solid

square, present sixteen men fewer in the front than they do
when formed in a hollow square four deep. Required the

number of men.

27. A number of two digits is equal to seven times the

sum of the digits; shew that if the digits be reversed, the

number thus formed will be equal to four times the sum of the

digits.

28. A sets out to walk to a town 7 miles off, and B starts

20 minutes afterwards to follow him. When B has overtaken
A he immediately turns back, and reaches the place from
which he started at the same instant that A reaches his

destination. Supposing B to have walked at the rate of 4
miles an hour : find ^'s rate.

29. A starts to bicycle from Cambridge to London, and B
at the same time from London to Cambridge, and they travel

uniformly : A reaches London 4 hours, and B reaches Cambridge
1 hour, after they have met on the road. How long did B take
to perform the journey 1

30. A number consists of 3 digits whose sum is 10. The
middle digit is equal to the sum of the other two

;
and the

number will be increased by 99 if its digits be reversed. Find
the number.



EXAMPLES. 181

31. Two vessels contain each a mixture of wine and water.

In the first vessel the quantity of wine is to the quantity of

water as 1 : 3, and in the second as 3:5. What quantity
must be taken from each in order to form a third mixture,
which shall contain 6 gallons of wine and 9 gallons of water ?

32. Supposing that it is now between 10 and 11 o'clock,

and that 6 minutes hence the minute hand of a watch will be

exactly opposite to the place where the hour hand was 3 minutes

ago : find the tima

33. -4, B and C start from Cambridge, at 3, 4 and 6

o'clock respectively to walk, drive and ride respectively to

London. C overtakes ^ at 7 o'clock, and G overtakes A 4J
miles further on at half-past seven. When and where will B
overtake A %

34. A train 60 yards long passed another train 72 yards

long, which was travelling in the same direction on a parallel
line of rails, in 12 seconds. Had the slower train been

travelling half as fast again, it would have been passed in 24
seconds. Find the rates at which the trains were travelling.

35. A distributes £180 in equal sums amongst a certain

number of people. B distributes the same sum but gives to

each person £6 more than A, and gives to 40 persons less than
A does. How much does A give to each person ?

36. Three vessels ply between the same two ports. The
first sails half a mile per hour faster than the second, and
makes the passage in an hour and a half less. The second

sails three-quarters of a mile per hour faster than the third

and makes the passage in 2J hours less. What is the distance

between the ports ?

37. Two persons J., B walk from P to ^ and back. A
starts 1 hour after /i, overtakes him 2 miles from Q, meets him
32 minutes afterwards, and arrives at F when -5 is 4 miles ofi".

Find the distance from P to ^.



CHAPTER XIL

Miscellaneous Theorems and Examples.

163. Elimination. When more equations are given
than are necessary to determine the values of the un-
known quantities, the constants in the equations must be
connected by one or more relations, and it is often of

importance to determine these relations.

Since the relations required are not to contain any of

the unknown quantities, what we have to do is to eliminate

all the unknown quantities from the given system.

The following are some examples of Elimination :

Ex. 1. Eliminate x from the equations ax + b=0, a'x + 6'= 0.

From the first equation we have x= --
, and from the second

equation we have «=—j.

Hence we must have - = -., or ba'-b'a=0; which is the

required result.

Ex. 2. Eliminate x and y from the equations

ax+ by + c=0,
a'x + b'y + c'= 0,
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From the first two equations we have [Art. 143]

a? _ y _ 1

he' - b'c
~

ca' - c'a
~
aV - a'h

'

These values of x and y must satisfy the third equation ; hence

ah - ah ah -ah

or o" {be'
-

h'c) + h" {ca'
-

c'a) + c" (ah'
-

a'h)
= 0,

the required result.

The general case of the elimination of n - 1 unknown quantities
from n equations of the first degree will be considered in the Chapter
on Determinants.

Ex. 3. Eliminate x from the equations

a'a;2 + 6'x + c'=0.

As in Art. 143, we have

a^ X 1

he' - b'c ca' - c'a ah' - a'h

Hence (he'
-

b'c) [ah'
-

a'h)= (ca'
-

c'a)',

the required result.

It should be remarked that the above condition is also the

condition that the two expressions aa^ + hx + c and a'x^ + h'x + c' may
have a common factor of the form as -a; for if the expressions have

a common factor of the form x-a they must both vanish for the

same value of as.

Ex. 4. Eliminate x from the equations

ax''i-bx + c=Ot

a'afi+b'x + c'=0.

As in Ex. 3, we have

a^ X 1 .

he' - b'e ea' - c'a ah' - ah

b&-b'c
__(

ca'-e'a \»^
''

ab'-a'h~\ab'-a'b)
'

.-. (6c'
-

b'e) {ab'
-

a'h)^= {ca'
-

c'a)^,

the required relation.
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Ex. 6. Eliminate x from the equations

ax^ + bx +c=0
(i),

a'x^+ b'x^+ c'x+d'=0
(ii).

Multiply (i) by a'x, (ii) by a, and subtract; then,

{ab'-ba')x^+ {ac'-ca')x + ad'=0 (iii).

We can now eliminate x from (i) and (iii) as in Ex. 3.

Ex. 6. Eliminate a;, y, z from the equations

x + y + z= a
(i),

a:2 + t/2 + 22^&2
^jjj^

X^ + y3 + z3^C^
(iii)^

xyz= (p
(iv).

From (i) and (ii) we have

2yz+ 2zx + 2xy= a^-b^.

From
(iii) and (iv) we have

x^ + y» + z3-Bxyz= c^-3d^,
ie. {x + y+z){x^ + y'^ + z^-yz-zx-xy)=c^-Sd:i,

Hence
a{b^-^{a^-b^)}:=c^-Sd^.^

.'. a8+ 2c3-6d3-3a&2=0,
the required result.

Ex. 7. Eliminate x, y, z from the equations

x^{y+z)= a^
(i)^

2/2(2+a;)= 6a
^^^^

z^{x + y)= <?
(iii)^

xyz=abc (iv).

From
(i), (ii), (iii) by multiplication

a;2y2^a (^ + g)^g + j.) {x+ y)= a^b^c^.

Henoe, from (iv),

(y + z)it + x){x + y)= l,
that is,

2xyz + xHy + z) +y^z+x)+z^x + y)= l;

:. 2a6c+ a«+62+<j*=l,
the required result.

Ex. 8. EHminate I, m, n, l\ m', n' from the equations

ll'=af mm'=b, nn'=:c,

mn' + m'n = 2f, nl'+n'l=2g, lm' + l'm= 2Ju
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By continued multiplication of the last three equations, we have

8fgh= 2lmnVm'n'+ IV [m^n"' + m'V)
+mm' {nH'^+ nn'^) + nn' {Pm'' + V^^)

SB IV [mn' + m'nY + mm' (nV + n'l)^

+ nn' {Im' + Tm)"
- Ul'mm'nn'

= 4a/3 + 46flf3+ ^ch^ _ 4^abc.

Hence dbc + 2/p/»
- ap -hg^-ch^= 0.

154. To find the condition that the most general quad-
ratic expression in x and y fnay he expressed as the product
of two factors of the first degree in x and y.

The most general quadratic expression in x and y may
be written in the form

aos" + ^}ixy -\-hf + '2,gx-\-yy -^ c
(i).

What is required is the condition that the above ex-

pression may be identically equal to

(Ix + my-\-n) (I'x + mfy + n') (ii),

where I, m, n, I', mf, n do not contain x or y.

Now if (i) and (ii) are identically equal we may
equate the coefficients of the different powers of x and
also of y [Art. 91]. Hence we have

W = a, mm! = 6, nn =
c,

mn' + m'n = 2/, nl + n'l = 2g, Im' + Vm — 2h.

Eliminating I, m, n, l\ m\ n [Art. 153, Ex. 8], we have

ahc + 2fgh
-

a/"
~

hg*
- cK' = 0,

the condition required.

Ex. 1. For what value of X is

12a;2 _ iQxy + 2y^ + llx-5y + \
the product of two factors of the first degree in x and y?

Am. X=2.

Ex. 2. For what value of X is

Via? + Ziixy + Xy' + 6a;+ 6y + 3

the product of two factors of the first degree in x and y ?

Am. X=28.
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155. Equations in which there is some re-

striction on the values of the letters. A single

equation which contains two or more unknown quantities
can be satisfied by an indefinite number of values of the
unknown quantities, provided that these values are not
in any way restricted. If however the values of the un-
known quantities are subject to any restriction, a single

equation ma}^ be sufficient to determine more than one
unknown quantity.

For example, if we have the single equation 2x+5y=7,
and restrict both x and y to positive integral values, the

equation can only be satisfied by one set of values, namely
by the values x=l, y = l.

Again, from the single equation

S(x-ay + 4i{y~by = 0,

with the restriction that all the quantities must be real,

we can conclude both that x — a = 0, and that y - 6 =
;

for the squares of real quantities must be positive, and
the sum of two or more positive quantities cannot be zero

unless they are all zero.

Ex. 1. If (a+6 + c)2=3(6c + ca + a&), then a= h=c.

We have a^+ b^+ c^-bc-ca-ab= 0,

that is i{(6-c)5«+ (c-a)2+ {a-6)2}=0.

Whence 6 - c, e-a and a-b must aU be zero.

Ex. 2. If X, a/, 1/, y' be all real, and

2 («a + a/a _ XX') {y^+ y'^
-
yy') =xY + xTy'^ ;

then will x=<xf and y=y'.

We have

«b2
(y^^+ 2i/'2

-
2t/i/')

- 2aa/ (y2 + 1/'»
-

yy') + «"(V + y" -
22/2/0

=
;

.-. {a>^-2xa/+ af^){y^-2yy' + y'^) + xh/^-2xa^yy' + x'Y=0,
that is {x

-
x')^(y

-
y'Y+ (ary'

-
«V)'= 0.

Hence xy'-x'y—Q and (x-x'){y-y')=^Q.

From the second relation x=x' or y=y'; and either of these

combined with the first relation shews that both x=x' and y=y'.
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Ex.3. If a^ + a^ + a^^Jf =jf)3,

V+V +V + = 3'»

and Orp^^t a^^+ a^h^+ =^g,
the quantities being all real; then will

^1
=^ = ^3^ &C.=^.

\ Oj &8 q

Multiply the equations in order by 2^, p^ and - 2pg respectively,
and add ;

we then have

(2«i-2>6i)' + (2«»-P&2)*+(3«8-i'&8)'+ =0-

Hence goj -!p\= = qa^ -1>&3= 2^3
- ^^3= &c.

Therefore ei=? = «» = ^= &o.

156. We have already proved that

a" + 6' + c" - 3a6c = (a + 6 + c) (a' + 6* + c''
- 5c - ca - a6)

= i(a + 6 + c) {(6
-

c)'' + (c
- af^ (a

-
hf]

— {a-\-h-\-c){a + (oh + co^c) (a + ay^b + coc),

where « is either of the cube roots of unity. [See Art.

139.]

From the above many other identities can be found.

Ex.1. (6 + c)» + (c + a)8+(a+ 6)8-3(6 + c)(c + a)(a + 6)

= 2(a3+ 63 + c»-3a6c).

Left side =
^^ {& + c + c + a+ a + 6} {(c + a-a+ 6)^+ two similar

terms}
= (a+ 6 + c){(6-c)2+(c-a)2+ (a-6)2}
= 2(a3 + 63 + c8-3a6c).

Ex.2. (6 + c-a)»+(c + a-6)3 + {a + 6-c)8

-3(6 + c-a)(c+ a-6)(a + &-c) = 4(a34-&3 + c'-3a6c).
Left side = ^ (a + 6 + c) {(26

-
2c)^ + two similar terms}

=4(a3+ 6»+ c»-3a6c).

Ex. 3. (a;2
-
y^)^ + (ya

-
za;)»+ {z-*

- xy^ -3{x^- yz) {y^
-
zx) {z^

-
xy)

=
{x^ + y^ + z^-3xyzy.

Left side =s ^{x^ + yi+ z^-yz-zx-xy[{y^-zx-i?-xyy + two

similar terms]

^i{x^ + y^ + z^-yz-zx-xy){x + y + z)^[iy~z)^ + two
similar terms]

= (x + y + z)^ {x^ + y^ + z^-yz - zx- xy)^

= (x^ + y^ + z^- 3xyz)'^.

S. A. 14
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Ex. 4. Shew that (iB« + y3 + 28 - 3(tyz) (a» +h^+c^ -
3abc) can be

expressed in the form X^+T^ + Z^-HXYZ.

We have

{x + y + z){a + b+ c)=:{ax+ hy + cz) + {hx+ cy + az) + {ex + ay + 6«),

{x + (ay + ux^z) (a + co^ft + wc) = {ax+ hy + cz) + u^ {hx + cy + az)

+ <a{cx + ay + bz),

and

{x+ urh/ + b}z){a+ (i}b + uh)= {ax + by+ cz) + <i){bx + cy + az)

+ ta^{cx+ ay+ bz).

The continued product of the left members of the above equations
is

(«*+ 2/*+ 2* - 8x^2) (a»+ 6«+ c» - 3a6c) ;

and the continued product of the expressions on the right is

{ax+ by+ c«)'+ {bx + cy + az)^ + {ex + ay + bz)^

- 3 {ax + by + cz) {bx + cy + az) {ex+ay + bz),

which is of the required form.

157. Definitions. The symbol = is often used to

denote that the two expressions between which it is placed
are identically equal. Thus a* — b^={a + h) (a

—
b).

The sum of any number of quantities of the same

type is often expressed by writing only one of the terms

preceded by the symbol 2. Thus Xbc means the sum
of all such terms as be

;
so that if there are three letters

a, b, c, 26c = bc + ca + ab. So also the identity

(a + 6 + c+...)'
= a' + 6' + c»+...+ 2(a6 + 6c+...),

may be written (2a)^
= 2a^ + 2%ab.

The product of any number of quantities of the same

type is often expressed by writing only one of the factors

preceded by the symbol 11. Thus IT (6 + c) means the

product of all such factors as (6 4- c) ;
so that if there are

three letters a, b, c, 11 (6 + c) = (6 + c) (c + a) (a + 6).

168. The following examples illustrate cases of fre-

quent occurrence.
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Ex. 1. If a«+ 6»+ c»= (a+ & + c)', then will

where n is any positive integer.

Since (a + b+c)* = a^+ b^+ c^+ S{b+ c) {c + a){a+b), the given
relation shews that (6 +c){c + a) (a+ 6)

= 0.

Hence either 6 + c=0, or c+a=0 or a + 6=0.

If 6 + c = 0; then fesn+i
_

^
_

c)2n+i
_ _ c2n+i, and therefore

J*i+l+c2n+l=0.

Thus if & + c = 0, a«"+^ + 62«+i + c2«+i-(a + 6+ c)2«+i becomes

a2n+i + 52n+i + c2»+i - a^w+i = 62«+i + c2«+i = 0.

Hence a*"+i + 62»+i+ c2»+^=(a + 6 + c)2«+i if 6+c 0; and so also

if c + a :s 0, or if a + 6 = 0. This proves the proposition, since

{b+ c){c + a){a+ b)=0.

Ex. 2. li X, y, z be unequal, and if

prove that each equals 'ixyz, and that x + y + z + m=Q.

Since y3 4.28^^(ya+ ;j.2j_;j8^jB8^^(22^a.2j^ we have

2/8-x3+m(2/2_x2)=0,

that is {y-x){y^-\-xy + x^+ m{x-\-y)}=Q.

Therefore, y-x not being equal to zero, we have

y>+ ajy + ar»+ TO(a;+ y)
=

(i).

So also, since y^z^
«* + 2/2 + y^+ wi (« + y)=0 (ii).

From (i)
and (ii) we have by subtraction

a^ - «2+ J/ («
-

2) + i» (a;
-
«)= 0.

Hence, as x^t^wQ have

aj+y +«+m=0 (iii).

Substitute -
(a;+ y + 2) for »n in (i) ; and we have

x^+ xy + y^
~ {x+y){x -{-y \- z)

= 0\

:. yz + zx + xy=0 (iv).

Then y^ + z^ + m{y^ + z^)=y^+z^-{y^+z^){x + y+z) from (iii)

= -{y^x+z^+y^g+z^)

= -y {xy+yz)-z {yz + zx)

=2xyz from
(iv),

14—2
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Ex. 8. Shew that, if a+b + c+ d=0, then will

a* + b*+ c*+ d*=2 {ab
-
cd)^+ 2{ac- bdf+ 2 {ad- be)'+ Adbed.

We have to prove that

Sa4=2Sa26a-8a6cd.

Since a+ 6 + c + d=0; we have, hy squaring and transposing,

a2+ 6a+ c2+ d2=-2(6c + ca + a&+ ad+ 6d+ cd).

Hence by squaring

Sa*+ 22a26a=4(S&c)a.

Now (26c)2
= 262^2+ Qabcd+ 2bcd {b + c + d) + 2cda {c + d-\-a)

+ 2dab (d+ a+ b) + 2abc {a + b + c)
= ^b^c^+ 6abcd - 8abcd.

Hence 2a* + 2^a%^= 42a262 _ Sabcd ;

.-. 2a*=22a262_8a6cd.

Ex.4. Prove that, if ax+ by + cz=0, and - + - + - = 0, then will
z y z

'

ax^+ by^ + cz^= -
(a+ b + c){y + z){z+ x){x+ y).

From the given relations we have, as in Art. 143,

a _ b c

y --
~
t _ ? ~f y

*

z y X z y X

Hence [Art. 113] each fraction is equal to

aa^ + by^+ cz^ a + b + c

\z yj
"

\x zj \y xj z y X z y X

Hence

ax^+ 62/8 + cg8 ^ a^
^y^^

_
^8) ^ yi (^.a

_
^.2) + g4 (^a

_
^8)

o+ &+ C x{y^-z'') + y{z^~ x^) + 2
(a^»

-
y^)

-{y^-z^){z^-x^){x^-y^)*"

{y-z)(z-x){x-y)
= -{y+z){z+x){x + y).

EXAMPLES XVL

1. Shew that, if = a, —^ = 6 and = c ; then

will . +
,
—- + ,

= 1.l+a 1+6 1 +c
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2. Shew that, if ax + b^ = and csc^ + dxy + eif
= 0, then

will (j?e + 6*c = ahd.

3. Eliminate a;, y, z from the equations

y — z z-x , ic-y^— =a, =6, - = c,

y + z z + x x + y

4. Eliminate x, y, « from the equations

y X z y J
x z

(SB « y x z y11 1
5. If a; + - = 1 and y + - = 1 ; prove that « + -=!,

6. Eliminate a; from the equations

a + c—— dxjx

a — c =— bx,
X

I 7. Eliminate a, y, z from the equations
^

x'~yz = a, y^-zx = b, z' -xy=Cy ax + by + cz = d,

8. Prove that the equations

x + y + z = a,

aJ' + y' + ^ = b%

a^ +^ + z^-Sxyz = c\

do not give any roots, but simply a relation between a, b and c.

9. Shew that, if

bz + cy = ex + az= ay + bXf and x^ + y^ + s^ - 2yz
- 2zx - 2xy = ;

then will a =fc 6 ± c = 0.

10. Shew that, if - +| +- = 1 and - +- +- =0; then
I

' a 6 c X y z
'

'

.„ a;^ 2/'
z* -

will -T + TT + ^ = !•
a^ b cr

11. Ifa; + - = i/ + - = » + -; then xWz^ =1, or x = y = z.

y
^

z X
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12. Shew that, if x = cy + bZf y = az + cx and z= bx + ay ;

then
g* y* a*

l_a»-l_6«-l_c»'

13. Shew that, if af = y' + z'+ 2ayz, j/*
= »' + sc* + 2bzx and

«* = «:' +
2/' + 2ca;^; then

of _ y' _ z'

1 _ a«
-

1 _ 6»
~

1 - c'
•

14. Shew that, if x, y, » be unequal, and

a + bz a + bx , a + by
y = X >

^2! = -T- and 03 = /- ,c+a2; c + dx c + ay

then will aci + 6c + 6' + c* = 0.

15. Eliminate a;, y, « from the equations

af yz . y* zx 2* an/

yz or zx y' xy z'

16. Eliminate a?, y, z from the equations baf + Ix + c = 0,

cy'+my + a = Of as^ + nz + b = 0, xyz = \.

17. Eliminate x, y, « from the equations

't^
\- s? = ayz^ s^ + af — bzXf af + y' = cxyf

xyz not being zero.

18. Eliminate
(i) a;, y, « and (ii) a, 6, c from the equations

o--\-c-=a. c- + a- = b. and a-+ b-=e,
z y X z y X

19. Eliminate a;, y, e from the equations

ax + yz = bCf by + zx = cay cz-\-xy = dbf and xyz = a6c.

20. Eliminate
a;, y, « from the equations

a? — xy-xz_y*-yz-yx^z'-zx-zy
a

~
b

"
c

*

and ax + by + cz = 0.
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21. From the equations d?yz = a* (y + zf^ hhx = p' (z + x)",

c^xy = y'(x + yY, deduce the relation

abc a' b' c' .

^ —
-I- 4. — _ 4

a)8y a»
^
^« y'

22. Prove that, if

y' + z' + yz = a*y «* + sja; 4- a;' = 6", a? + xy +y'=^ c*

and yz + zx + xy ==0
'y
then will a ± 6 ± c = 0.

23. Prove that, if - + =-+- = r
,
then will

a b c (a+ b + c)

1 1 1 _ 1

where n is any positive integer.

24. Shew that, if

J . -.8 rfl _« . 7.8 _t

=
1,

1.

26c 2ca 2ab

then (6 + c - a) (c + a - 6) (a + 6 - c)
= 0,

and

\ 2bc J
"^

V 2ca ) '^\ 2ab J

25. If aV + 6y + cV = 0,

and — a" =— 6' = c":
a;

2/
»

prove that aV + 6y + cV =
0,

and aV + 6y + cV = aV + 6*2/' + cV.

26. if « -^ = y -.-^ =z / ,
and x, y, 2? be unequal;

XT y z

then each member of the equations is equal tox + y + z—a.

(z - xY
27. If x, y, z be unequal, and if 2a-3y =

^ ^ and

2a-3z= ^^~^^\ then will 2a-3x= ^^~ ^^*
,
and

x + y + z = a.
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28. If a; + -^—5 » ^ Jio* altered in value by inter-

changing x and
2/,

it will not be altered by interchanging x and

«, and it will vanish if x + y + z=l, the letters being all

unequal.

29. If X, y, z be unequal, and

y" + «* + m (2/ + «)=«* + ic^ + w (« + «)
= »• + y + m

(35
+ y),

then each will equal 2xyz.

30. If X, y, z be unequal, and

y* + z^ + myz = 2^ + cc' + mzx = af + y' -{• mocyy

then each will equal J (a?"
+ y* + ^).

31. If X, y be unequal, and if (i^Ui-f)" = {^V^^Z^
,X y

then will each equal
^^ —

.

32. Shew that, if a, 6, c, c? be all real quantities not zero,

and [a^ + Jf) (c* + d^)
= 4:abcd : then will a = ^h and c='^d.

33. If a, 6, c, aj be all real quantities, and

c b
then -= - =x.

a

34. Shew that, if

(ai^ + y^ + z") (a' + b' + c')
= (ax + by + cz)^,

then xja = y/b = z/c.

35. Prove the following :

(i) If 2 {a' + b')
=

(a + b)% then a = h.

(ii) If 3(a» + 6* + c')
=

(a + 6^-c)^ thena=ft=c.

(iii) If 4(a» + 6' + c' + c^«)
=

(a + 6 + c +
(i)«,

then

a = 6 = c = c?.

and

(iv) If 7i(a' + 6' + c'+
)
=

(a + 6 + c+
)',

then

a = b = c =
,
n being the number of the letters.
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36. Prove that, if a, b, c, d be all real and positive, and

a^ + 6* + c* + c?* = 4a6c£i;

then will a = h = c=^d.

37. If 5

{n
-

1) a' + 2a; {a^
- aJ + a/ + 2a/ + 203* + . . . + 2a;.i + aj

= 2 {a^a^ + a^a^ + + a^_,aj

for real values of «, a^, a,, ..., a,; then will

a,
—

«,
=

CTg
—

a,
= ... = a„

—
a„_j

= x,

Yerify the following identities :

38. aJ" (6 + c) + 6' {c + a)-\- c^ {a + h) + ahc (a + h+c)

=
{a^ + 5" + c') (6c + ca + ai).

39. (6 + c-a-cZ)*(6-c)(a-ci) + (c+a-6-c^)*(c-a)(6-fQ

+ (a + 6 - c — c?)^ (a
-

6) (c
-

c?)

^ 1 6 (6
-

c) (c
-

a) (a
-

^)) (c/
-

a) {d -h){d- c).

40. 8 (a + 6 + c)»- (6 + c)»
-

(c + a)»
- (a+ 6)»

= 3 (2a + 6 + c) (a + 26 + c) (a + 6 + 2c).

41. (a+h + c-^d)'-{h + c-^dY-(c + d-\-af-{d-¥a-¥ h)'

-
(a + 6 + c)» + (6 + c)'

+ (c + ay + (a + 6)' + (a + c?)'

+ (6 + df + (c + <^)' -a'-b'-c'-d' = 60abcd (a + b + c + d).

42. (a + 6 + c)' a6c - (be + ca + abf
= abc (a' + 6' + c')

-(6V + cV + aV).

43. (a' + 6V
c^)-^

+ 2 (6c + ca + a6)'

- 3 (a« + 6'' + c") (6c + ca + abf - (a^ + 6" + c" -
3a6c)».

44. (ca
-

b") (ab
-

c') + (a6
-

c') (bo
-

a') + (6c
-

a') (ca
-

b')

=
(6c 4- ca + a6) (6c + ca + a6 - a^ - 6^ -

c*).



196 EXAMPLES.

45. 2 (c" + ca + a') (a' + ab + b')
-

(6» + 6c + c')"

+ 2(a" + a6 + 6')(6"+6c+c')-(c« + ca+ay
+ 2(6" + 6c + c')(c' + ca + a')-(a" + a6 + 6y
= 3 (6c + ca + a6)'.

46. Shew that

(3a-6-c)»+(36-c-a)«+(3c-a-6)'
-3(3a-6-c)(36-c-a)(3c-a-6)= 16 (a' + 6« + c'-3a6c).

47. Shew that

(rwi
- 6 - c)* + (w6

- c - a)* + (ric
- a - 6)*

— 3 {na — b — c) (nb
— c — a) (no

— a-b)
=

(w + Vf in - 2) (a» + 6« + c'' - 3a&c).

48. Shew that

(aj*
+ 2yzy + {y*+ 2zxy + («» + 2xyy

-Z(a?+2yz) {y^ -\-2zx) {z' + 2xy)
=

(x"" + y^ + z' - Sxyz)'.

49. Shew that

(by + azy + (bz + aa;)* + (Jo? + ay)' -3(by+az) (bz + aa;) (6a; + ay)
=

(a»+ 6') (a» + ^ + »*- 3a;2/2).

60. Shew that, if 1 + co + o>' = 0, then

[(6
-

c) (aj
-

a) + 0) (c
-

a) (a;
-

6) + a)'(a
-

5) (a;
-

c)]'

+ [(6
-

c) (a;
^ a) + co' (c

-
a) (a;

-
6) + w (a

-
6) (a?- c)]'

= 27 (6
-

c) (c
-

a) (a
-

b) (x -a)(x- b) (x-c).

51. Shew that the product of any number of factors, each

of which is the sum of two squares, can be expressed as the

sum of two squares.

52. Verify the identity

(a' + 6" + c* + d^) (p' + q' + 7^+ «')
=

(ap + bq + cr + d^y
+ (aq -bp + c8 — dry+ (or —b8-cp+ dqy
•\- (as + br — cq

-
dpy.

Hence shew that the product of any number of factors,
each of which is the sum of four squares, can be expressed as

the sum of four squares.
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53. Shew that {a?-\-xy -^^) (a' + ab + b') can be expressed
in the form X' +XY+ Y\

54. Shew that {a^ +pxy + qy') (a' +pa^ + qb') can be ex-

pressed in the form X* +pXY + qY\

55. Shew that, it 2s=a + b + e,

(i) a(8-b){8-c) + b{8-c){s 'a) + c{8-a){8- b)

+ 2 {8-a) {8-b){s-c) = abc

(ii) («-a)» + («^6)" + (»-c)» + 3a6c = «».

(iii) (b + c) 8 {s
-

a) •¥ a {8 -b) {8
-

c)
- 2s6c

=
(c + a) 8 (»

-
6) + 6 (s

-
c) («

-
a)
— 2sca

=
(a + 6) « («

-
c) + c («

-
a) («

-
fe)
- 2sdb.

(iv) a(6-c) («-«)+ 6 (c-a)(«-6)"
+ c(a-6)(«-c)'=0.

(v) 8 («
-

6) («
-

c) + « («
-

c) (s
-

a) + s («
-

a) («
-

6)

-(«-»)(«- 6) («
-

c)
= a6c.

(vi) («-«)' (8-6)' («-c)" + «»(«-6)'(s-c)"
+ «« («-c)» («-»)« + «»(«- a)* («-6)»

+ «(«-a)(8-6)(s-c)(a» + 6« + c«)
= a''6V.

56. Shew that, if 2s = a + 6 + c + c?,

4(6c + a^)*-(6» + c*-a»-c^»)« = 16(s-a)(s-6)(8-c)(«-c;).

Shew also that

a («
-

6) (s
-

c)(»
-

c?)
+ 6 (8

-
c) (s

-
c?) («

-
a) + c(«-fl?) («-a) («-6)

+ c?(s-a)(«-6)(«-c) + 2(s-a)(s-6)(s-c)(s-c?)
— 8 {bed + cc?a + c^ai + abc)

= — 2abcd.

57. Shew that, ifa4-6 + c + c? = 0, then

flki (a + c?)' + 6c (a
-

c?)" + a6 (a + 6)' + cc? (a
-

6)*

+ ac (a + c)V 6c? {a - c)' + 4a6cc? = 0,
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58. Shew that, if

{a + 6) (6 + c) (c + d) (d + a)

^(a + b + c + d) (bed + cda + dab + ahc) ;

then ac = bd.

59. Shew that, if a + b + c = and x + y + z = 0, then

4:{ax + by + cz)' -3{ax+by + cz) (a" + b' + c'){af + y' + ^)
- 2 (6

-
c) (c

-
a) (a

-
b) {y -z){z~ x) (x-y) = diabcxyz.

60. Shew that, ii a + b + c = ; then

(i) 2{a' + b' +
c'')

=
7abc(a* + b* +

c*).

(ii) 6{a' + b' + c')
= 7{a' + b' + c')(a^+b* + c'),

(iii)
a' + 6« + c« = 3a^6V + l{a' + b' + c'f.

(iv) 25(a^ + 6^ + c0(a' + 6« + c«)
=

21(a'' + 6» + c7.

61. If a + b + c + d=0, prove that

(a* + 6' + c** + d^y = 9 (6cc? + cda + dab + abc)'

= 9 (be
—
ad) (ca

—
bd) {ah

-
cd).

62. Shew that, if a + 6 + c = 0, then

/b-c c — a a —b\/a h c \ .

\ a c J\o — c c—a a—bj

63. Prove that, if

1

\-\-l-¥ln 1+m + m^ l+w + nm =1,

A ? ml 1

1+Z+^w 1+m + m? 1+n+nm *

and none of the denominators be zero, then will l = in = n.

64. Shew that

a + (1
-

a) 6 + (1
-

a) (1
-

6) c + (1
-

a) (1
-

6) (1
-

c) i

+ ... = 1 - (1
-
a)(l

-
b) (1 -c)(l

-
d)
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65. Shew that

- = 1 + 2 (1
-
a) + 3 (1

-
a) (1

-
2a) + ...

+ {n{l-a){l-2a)...{l-n- la)]

+ h(l-a)(l-2a)..,(l-na)}.
(Jb

66. Shew that

a" + a"-' (1
-

a") + a"-' (1
-

a") (1
-

a"-') + ...

+ {a (1
-

a-) (1
-

a"-^) ... (1
-

a')} + {(1
-

a") (1
-

«"">) ... (1
-

a)}

= 1.

67. Shew that, if n be any positive integer,

l-a- (l-a')(l-a'-) (1 -a") (!-»-) (l-""")
,

^

(l-a-)(l-a-)...(l-«) ^
l-a"

68. Prove that, if

a + b + c-\-d=Of

x + y + z + u = 0,

and ax + by + cz + du = 0;

then 2 (a^c + b*y + c*z + d*u)

= (a'x + 6V + c'2; + c?V) (a* + 6^ + c' + d^.

69. Prove that, if n be any positive integer,

1111 111 1

(

2^4 2n n + l n-i-2 2n

70. Prove that, if

u V u + a v — h u+a' v-b' /'
then /2 (a6'

-
a'bf

= aa'66' (a
-

a') (6
-

6').



CHAPTER XIIL

Powers and Roots. Fractional and Negative

Indices.

159. The process by which the powers of quantities
are obtained is often called involution; and the inverse

process, namely that by which the roots of quantities are

obtained, is called evolution.

We proceed to consider some cases of involution and
of evolution.

160. Index Laws. We have proved in Art. 31, that
when m and n are any positive integers,

a'^xar = ar** (i).

This result is called the Index Law.

From the Index Law, we have

arxarxcf= oT^ X(f = oT^^,

and so on, however many factors *here may be.

Hence a"* x a" x a** x . . . = a"**""^
(ii).

Thus the index of the product of any number ofpowers
of the same quantity is the sum of the indices of the factors.

Also, a"* X a*" X a"* X ... to n factors

ni+n»+»i+ to n terms
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Hence {ory = ar'' (iii).

Thus, to raise any power of a quantity to any other

power, its original index must he multiplied by the index of
the power to which it is to be raised.

Again, to find (a6)**.

(a6)*"
= ah xab X ahx to m factors, by definition,

= (axaxa to m factors) x (bxb xb to

m factors), by the Commutative Law,

= a*" X 6"*, by definition.

Hence (aby = a** x h^.

Similarly (a6c...)"*
= a*" xb^'xc^x (iv).

Thus, the mth power of a product is the product of the

mth powers of its factors.

The most general case of a monomial expression is

a'6V

Now (a"W. .,...)"
= {oTT Q>T {cT from (iv)

= a"'"6'^c'"* from
(iii).

Hence (a^h^c' )*"
= a'^b'^'c"^. . . . . .(v).

Thus any power of an expression is obtained by taking
each of its factors to a power whose index is the product of
its original index and the index of the power to which the

whole expression is to be raised.

As a particular case

161. It follows from the Law of Signs that all powers
of a positive quantity are positive, but that successive

powers of a negative quantity are alternately positive and

negative. For we have



202 BOOTS OP ARITHMETICAL NUMBERS.

(-a)* = (-a) (~a) = 4-a',

(-a)^ = (-a)^(-a) = (+a'0(-ti) = -a«,

(-a)^ = (-a)«(-a)=(-a»)(-a)= + a^

and so on.

Thus (-ar = 4-a^ and (-a)^«*^=-a^"-^\

Hence all even powers, whether of positive or of
negative quantities, are positive; and all odd powers of

any quantity have the same sign as the original quantity.

162. Roots of Arithmetical numbers. The

approximate value of the square or of any other root of

an arithmetical number can always be found: this we

proceed to prove. It will be seen that the process
described would be an extremely laborious one; we are

not however here concerned with the actual calculation

of surds.

Consider, for example, i^Q% First write down the

squares of the numbers 1, 2, 3, &c. until one is found
which is greater than 62 : it will then be seen that 7* is

less and 8* is greater than 62. Now write down the

squares of the numbers 7'1, 7*2, 7*3, ..., 7'9 : it will then
be seen that (7"8)'* is less, and (7*9)^ greater than 62.

Now write down the squares of 7-81, 7-82, ..., 7-89 : it will

then be seen that (7 '83)^ is less, and (7 84)* greater
than 62.

By continuing this process, we get at every stage two
numbers such that 62 is intermediate between their

squares, and such that their difference becomes smaller

and smaller at every successive stage; moreover, this

difference can, by sufficiently continuing the process, be
made less than any assigned quantity however small.

Thus, although we can never find any number whose

square is exactly equal to 62, we can find two numbers
whose squares are the one greater and the other less than

62, and whose difference is less than any assigned quantity
however small. The limiting value of these two numbers,
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when the process is continued indefinitely, is called the

square root of 62.

The process above described for finding a square root

can clearly be applied to find any other root.

Thus an nth root of any integral or fractional number
can always be found.

163. Surds obey the Fundamental Laws of

Algebra. The fundamental laws of Algebra were proved
for integral or fractional values of the letters

;
and it can

be proved that they are also true for surds.

Consider, for example, the Commutative Law.
We have to prove that

We can find whole numbers or fractions x, y and p, q
such that

ic > 7a > 2/,

and p>"^h> q;

and the difference between a; and y, and also the difference

between p and q, can be made less than any assigned

quantity however small.

Hence xxp> ^ax1Jh>y xq,

and pxx>'^h X J^a>qxy.

But, since x, y, p, q are integral or fractional numbers,
we know that x x p=p xx, and y xq= q xy; also the

difference between px and qy can be made less than any
assigned quantity however small.

It therefore follows that ^a x 76 and "^6 x 7a, which
are both always intermediate to xp and yq, must be equal.

Thus the Commutative Law holds for Surds, and the

other laws can be proved in a similar manner.

164. We already know that there are two square
roots, and three cube roots of every quantity ;

and we may
remark that there are always n nth roots. Thus there is

S. A. 15
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an important diflference between powers and roots; for

there is only one nth power, but there is more than one
nth root.

165. We have proved in Art. 160 that the mth power
of a product is the product of the mth powers of its factors;

and, since surds obey the fundamental laws of Algebra, the

proposition holds good when all or any of the factors are

irrational. Hence

Also {Jab...y = ah...y by definition.

Hence ^a x <\Jb... must be equal to one of the square
roots oi ah... .

We can write this

\/a ^Jh...
= Jab... ,

meaning thereby that the continued product of either of

the square roots of a, either of the square roots of b, &c. is

equal to on^ or other of the square roots of ab ...

Similarly we have, tuith a corresponding limitation,

, :Ja "/a-

^a76... = 7a6..., and ^K^ sj I
'

Also Ja"" = X^a*™^, for their npih powers are both equal
to a*"^

Again, since the nth power of a monomial expression is

obtained by multiplying the index of each of its factors by
n, it follows conversely that an nth root of a monomial

expression is obtained by dividing the index of each of its

factors by n, provided the division can be performed.

Thus one value of \/a* is a*, one value of Ja^ 6' c* is

a^ b^ c, and one value of Ja^ 6"^ c"^ is a" b^ c^.
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Fractional and Negative Indices.

166. We have hitherto supposed that an index was

always a positive integer ;
and this is necessarily the case

so long as we retain the definition of Art. 9
; for, with that

definition, such expressions as a and a"^ have no meaning
whatever.

We might extend the meaning of an index by assign-

ing meanings to a** when n is frax^tional and negative.
It is, however, essential that algebraical symbols should

always obey the same laws whatever their values may be
;

we therefore do not begin by assigning any meaning to a**

when n is not a positive integer, but we first impose the

restriction that the meaning of a" must in all cases be such

that the fundamental index law, namely

shall always be true ; and it will be found that the above
restriction is of itself sufficient to define the meaning of a**

in all cases, so that there is no further freedom of choice.

For example, to find the meaning of a .

Since the meaning is to be consistent with the Index

Law, we must have

Thus a* must be such that its square is a, that is a*

must be ^a.

Again, to find the meaning of a"^.

By the index law
a' 1

a^ X a^ = a ^"^" = a*
;
therefore a ' = -^ = -

.
'

a^ a

Thus a~^ must be -
.

^ 15-2
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167. We now proceed to consider the most general
cases.

1

I. To find the meaning of a**, where n is any positive

integer.

By the index law,111
a** X a" X a" X to n factors

-+-+-+ to n terms -
= a**

*» « =a» = a' = a.

Hence a" must be such that its nth power is a, that is

II. To find the meaning of a", where m and n are any
positive integers.

By the index law,

a^ X a« X to 71 factors = a- "^» *°*»*«"°« = ^«^ «^^m

Hence a^= H^.

We have also

11 1 ^1 , * * »»" -
. r i i:+

—
f" to «» terms —

a^ xa'^x to m factors = a**
» = a**.

22 1

Hence a"= (a")"*.

Thus we may consider that a* is an wth root of the
mth power of a, or that it is the mth power of an nth root

of a
;
which we express by

With the above meaning of a" it follows from Art.

165 that a" = a"^
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Note. It should be remarked that it is not strictly

true that ^(O = (l/aY except with a limitation corre-

sponding to that of Art. 165, or unless by the nth root of

a quantity is meant only the arithmetical root. For

example, }/{a^) has two values, namely +a^ whereas ( ^aY
has only the value + a^.

III. To find the meaning of a^.

By the index law

a' X a"'=^a'^ = a'^y :, a' = a''' -^ a"^ = 1.

Thus a° = 1, whatever a may be.

lY. To find the meaning of a~^, where m has any
positive value.

By the index law,

a- X a"* = a-^'^ = a'
;
and a° = 1, by III.

Hence a~^ = -=, ,
and a"* = -^^^ .

a a

168. We have in the preceding Article found that in

order that the fundamental index law, a*" x a" = a*"*", may
always be obeyed, a*" must have a definite meaning when
n has any given positive or negative value. We have now
to shew that, with the meanings thus obtained,

a'" X a" = a"'^, (»"»)•»
=

a"*", and {aby = a"6*,

are true for all values of m and n. When these have been

proved, the final result of Art. 160 is easily seen to be true

in all cases.
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I. To prove that oT x a"" = oT^''
,

for all values of m
and n.

We already know that this is true when m and n are

positive integers. Let m and w be any positive fractions -

T
and -

respectively. Then

oTx aJ" = a* X a'= ^aFx *Ja\ by definition

= '^oT X V^= '4/^^ [Art. 165]

ps+rq
= a ?*

,

'

by definition

P+r
tn+n= a9 « =a'

Thus the proposition is true for all positive values of

m and n. To shew that it is true also for negative values,
it is necessary and sufficient to prove that

a"~ X a"* = a"*""", and a™ x a"" = a"*""

where m and n are positive.

Now a-^xa-" = --x- =
-^,- =a-"-«.

U/ U/ lib

And, if m — 7i be positive,

a*""* X a* = a*", and a" x a"" x a" = a* ;

therefore a"*"" = a*" x a"".

Hence, if m — w be negative, -^^ x — =
-^p;;, ,

that is, a*" X a"* = a'""".

Hence a"* x a" = a"^, for aZ^ vaZwes of m and n.

Cor. Since a*""" xa'' = a'^ for all values of m and n,
it follows that a"" -^ a"" = a"*"".
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II. To prove that (a'")"
=

o^""*? ^^ all values ofm and n.

First, let n be a positive integer, m having any value

whatever.

f
Then {a^'Y = oT x a"' x a"^ x to n factors,

r -^Qm +m+m+ to n terms bv I.

= ft"*".

I Next, let 71 be a positive fraction -
,
where p and q are

positive integers.

Then (0'* = K)*=^{(aT}, = V(0> since p is an

integer,
mp

Finally, let n be negative, and equal to —p.

Then {arr = {aT =
(~lp

=^ = "^^ = """

Hence for all values of m and n we have

III. To prove that (a6)"
= a"6^ for all values of n.

We have proved in Art. 160 that (afe)"
=

a"6", where
w is a positive integer.

And, whatever m may be, provided that ^ is a positive

integer, we have

{oTiry = a'^lr x arlr x ... to ^ factors

__ Q7)i+m+,.. to q terms ^ J^m+m+ ... to q terms

Let n be a positive fraction -, where p and g are

positive integers. Then
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p

(ahy^(ahy^X/(aby = ;^{a''b^), since _p is a positive

integer.

Also (a"6")'
=

a*"^b*^, since g is a positive integer.

Hence a"6" = ^(a^'b'')
= (ab)\

Thus (aby = a"6**, for all positive values of n.

Finally, if n be negative, and equal to — tw, we have

V / V /
(a 6) a 6

Ex.
(i) Simplify a^ xa~K

Ex.
(ii). Simplify aH^ x a^&».

ah^ xah^o = a^ + h^ + %=.aW'= a^fc*.

Ex.
(iii). SimpUfy (a-^b^)

'
^.

Ex. (iv). Simplify J{a
" ^ 6»c

"
t) 4- v^(a^ ft^c-i).

169. Rationalizing Factors. It is sometimes re-

quired to find an expression which when multiplied by
a given irrational expression will give a rational product.
The following are examples of rationalizing factors.

Since {a-\-Jh){a-Jh) = a^-h^ it follows that a^Jh is made
rational by multiplying by a^FsJh.

So also ajh =t c^d is made rational by multiplying hy aJh^c Jd,

Again from the known identity

262ca + 2c2a3 + ^a?})^ _ a* - 6* - c*

= (a+ 6 + c){-a + 6 + c)(a-6 + c)(a + &-c),
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it follows that the rationalizing factor of

The rationalizing factor of Jp+ ijq+ ^Jr may also be found as

follows,

{Jp +Jq + s/r)iJp+s/q~Jr)=p +q-r+2jM,
and

{p + q -r+2jpq) (p + 5 _r - 2 Jpq) = (p + g
-

r)^
-
^pq.

Thus the required rationalizing factor is

{>Jp-\rJq-slr){p + q-r-2^pq),

which is the same as before.

Again, from the identity

the rationalizing factor of a+ 6^ is seen to be a^ - db^ + h^.

170. To find the rationalizing factor of any binomial.

P r

Let the expression to be rationalized be gw?'± hy'.

P r

Put X^ax", and Y=hy\ and let n be the L.C.M. of

q and s.

Then it is easily seen that X" and F" are both
rational.

Hence, from the identities

(Z+y) {Z"-^-Z«-'^F+...+ (- ir^F-^} =:Z" + (- ir^F"

and (X- F)(X'^-^ + X'^-'F+ + F"-^)
= Z''- F",

the rationalizing factors ofX 4- F and X — F are seen to
be respectively

X"-'-X"-^F+ + (-l)"-^F""^

and X'*-^ + X"-^F+ + F"^
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Ex. To find a factor which will rationalize

xs _ ay^ .

Here X=x^, Y=ay^, n=6.

The factor required is therefore

a;^ + ax^y^ + a^x"y
^ + a^x^y^+ a*x^y^ + a^y^^ .

EXAMPLES XVIL

L Simplify a^b^ x oT^b'^.

2. Simplify at X a-S X (a«)-i X — .

8. Simplify (aJ-V)* X
(a»6"c-";^.

4. Simplify (a;c-oja-6 ^
(a;«-&)6-c X (a;5^)«-«

•

5. Multiply s^ + x^y^ + y^ by x^-y^.

6. Multiply a;' + 1 + a;-« by a:' - 1 + a;"*.

7. Multiply

a;^ + yt + »3 _ 2^i
;si _ ;g7£ci - a;7y

J
by a;^ + y^ + ;s^.

8. Divide a5*-2 + ic~* by x^-x~^,

9. Divide a^-x by a^^-a^.

10. Divide x^-xy^ + xy-y^ by x^-y\

11. Shew that

a;* - 4a;^ -*- 2x^ + 4a; - 4a;^ + a;^ = (a;*
- 2x^ 4- x^)\

12. Multiply 4a;' - 5aj - 4 - 7a;"' + 6a;~' by 3a; - 4 + 2«-»
and divide the product by 3a;- 10 + lOa;"' - 4a;~'.





CHAPTER XIT.

Surds. Imaginary and Complex Quantities.

171. Definitions. A surd is a root of an arithmetical

number which can only be found approximately.

An algebraical expression such as sja is also often

called a surd, although a may have such a value that ^a
is not in reality a surd.

Surds are said to be of the same order when the same
root is required to be taken. Thus V2 and V^ are called

surds of the second order, or quadratic surds
;
also i/4f is a

surd of the third order, or a cubic surd
;
and l/a is a surd

of the nth. order.

Two surds are said to be similar when they can be

reduced so as to have the same irrational factors. Thus

V8 and \/18 are similar surds, for they are equivalent to

2\/2 and 3\/2 respectively.

The rules for operations with surds follow at once from
the principles established in the previous chapter.

Note. It should be remarked that when a root symbol
is placed before an arithmetical number it denotes only
the arithmetical root, but when the root symbol is placed
before an algebraical expression it denotes one of the roots.

Thus ^/a has two values but f^2 is only supposed to denote

the arithmetical root, unless it is written ± \/2.
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172. Any rational quantity can be written in the form

of a surd. For example,

2 = ^4 = ^8 = ^2",

and a = ^a' = ^a^ = J^a^

Also, since V^ x ^6 = y/ab [Art. 165],

we have 2^2 = ^4x^2== \/(4 x 2) = ^S,

5 J/3
= ^5' X ^3 = ^(5^ X 3)

= ^375,

and aZ^= "Ja" x J^/ab
= ^(a" x ab)

= ^a^.

Conversely, we have V18 = V(9 x 2)
= V9 x V2 = 3^2,

and

^135 + ^^40
= ^(3^x5) +^(2^x5) = 3^5 + 2^5 = 5 75.

173. Any two surds can be reduced to surds of the

same order. For if the surds be ^a and
*l/b,

we have

^a = '7a'", and 76 = "76" [Art. 165].

Ex. Which is the greater, ^14 or 4/6?

The surds must be reduced to equivalent surds of the same order.

Now 4/14^:4/142=4/196, and 4^6
= 4/63=4^216. Hence, as ^216 is

greater than 4^196, 4^6 must be greater than 4^14.

Thus we can determine which is the greater of two surds without

finding either of them.

174. The product of two surds of the same order can

be written down at once, for we have yaxyb= J^ab.

Hence, in order to find the product of any number of

surds, the surds are first reduced to surds of the same
order ; their product is then given by the formula

;yax :y6x :^c,.,= ;/abc.,.

Ex. 1. Multiply ;^5 by 4/2.

n/5 X 4/2= 4/53x 4'22=4/(68x 22)
= 4/500.

Ex. 2. Multiply 3^5 by 24/2.

3^5 X 24/2 = 3 x2x<^5x 4/2
= 6x4/53x4/22=64/500.
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Ex. 3. Multiply ^/2 by 4^2.

V2 X ^2= 4/2» X ^23=^25^22 =4/32.

Or thus: ^2x^/2=2^ x 2i=2Hi = 2^= 4/i:5.

^
Ex. 4. Multiply J2 +^S by V3 + v/5.

(^/3+ ^/2)(V3^-^/5)=^3 X V3 + ^/2 X V3 + v/3 X ^^5 +^2 X 5

=3+VG + Vl5 + x/10.

Ex. 5. Divide 4/4 by ^8.
< /4a

'324'4^^8=4/4=^4'8'=^g=^4

175. The determination of the approximate value of

an expression containing surds is an arithmetical rather

than an algebraical problem ;
but an expression containing

surds must always be reduced to the form most suitable

for arithmetical calculation. For this reason when surds

occur in the denominators of fractions, the denominators
must be rationalized. [See Art. 169.]

The following examples will illustrate the process:

2^_ 2x^/5 2

v/5~^5x^5 5 J5.

3 _ 3(^5 + 1)
_3(^,^,j.

^/o-l (^5-l)(^5 + l) 4

= I(n/3~1)(n/5-1).
1 +V3 + V5 +V15 (l + ^3)(l + ;^5) 8

176. The product and the quotient of two similar

quadratic surds are both rational.

This is obvious; for any two similar quadratic surds

can be reduced to the forms a^b and C\/6-

Conversely, if the product of the quadratic surds V«
and ^/b is rational and equal to x, we have x = \lax \/b',

therefore x\Jb = \/a x \/b x \/b = b\la, which shews that the

surds are similar. So also, if ^a -J- >Jb is rational, the surds

must be similar.
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177. The following theorem is important.

Theorem. If a + V^ = ^ + Vy? where a and x are

rational, and sjh and xjy are irrational; then will a — x^

and b = y.

For we have a — a? + V^ ==
^/y.

Square both sides
; then, after transformation, we have

2(a — x)^/h — y-b -(a- xf.

Hence, unless the coefficient of s/h is zero, we must have

an irrational quantity equal to a rational one, which is

impossible.
The coefficient of sjh in the last equation must there-

fore be zero, so that a = x. And when a = x, the given
relation shews that i^h — isjy,

and therefore h = y.

As a particular case of the above,

Aja^h-\- sICy unless 6 = and a — c.

Hence sia + sjc can only be rational when it is zero.

Ex. 1. Shew that Ja+^h + ^c^i^O, unless the surds are all similar.

For we should have Ja + ^b= -^c; and therefore a + b + 2Ja^h= c.

Hence Jajh is rational, which shews [Art. 176], that Ja and ^6 are

similar surds.

178. The expressions a-\-i^h and a — sjh are said to be

conjugate quadratic surd expressions.
It is clear that the sum and the product of two conju-

gate quadratic surd expressions are both rational.

Conversely, if the sum and the product of the expres-
sions a + V^ ai^d c + /s/d are both rational, then a = c and

i^b -\- Ajd=0, so that the two expressions are conjugate.
For a + c + \/6 + V^ can only be rational when ^/b + ^/d

is zero. [Art. 177.]

And, when ^/d^-^b, the product (a + s/b)(c+ ^d)
= ac -\- {c

—
a) %/b

—
b, which cannot be rational unless c = a.

179. In the expression

CM?" + bx""'' + c^""" + + k,

where a, b, c, k are all rational, let a-^-sJ^ be substi-



218 SURDS.

tuted for x\ and let P be the sum of all the rational terms
in the result and Q s/^ the sum of all the irrational terms.

Then the given expression becomes P + Q s/fi.

Since P and Q are rational, they contain only squares
and higher even powers of VA and hence P and Q will not

be changed by changing the sign of VA Therefore when
a — Vy^ is substituted for x in the given expression the

result will be P - Q VyS.

If now the given expression vanish when a + s/^ is

substituted for a?, we have

P + OViS = 0.

Hence, as P and Q are rational and tj^ is irrational,
we must have both P = and Q = ; and therefore

P-Qv'^ = o.

Therefore if the given expression vanish when a + ^JP
is substituted for x it will also vanish when a — V/^ is sub-

stituted for X.

Hence [Art. 88], if a; — a — V/S be a factor of the given
expression, x — a-\- V/3 will also be a factor.

Thus, if a rational and integral expression he divisible

by either of two conjugate quadratic surd expressions it

will also be divisible by the other,

180. The square root of a binomial expression
which is the sum of a rational quantity and a quadratic
surd can sometimes be found in a simple form. The pro-
cess is as follows.

To find sJCa + \Jh), where »Jb is a surd.

Let \/{a + s/b)
= *^x + hjy.

Square both sides
;
then

a-\-slb = x-\-y-\- ^Jxy.

Now, since sjb is a surd, we can [Art. 177] equate the

rational and irrational terms on the different sides of the

last equation; hence x + y — a, and ^xy — 6,
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Hence x and y are the roots of th

4

and these roots are

J (a + V(a"
-

&)} and Hg-J/(^'
-

&)}.

equation

Thus V(aW6)VM"^^H7^=^^-
It is clear that, unless \/(ot^

~
^) is rational, the right

side of the last equation is less suitable for calculation than
the left. Thus the above process fails entirely unless

a'' — 6 is a square number; and as this condition will not

often be satisfied, the process has 4ot much practical

utility.
It should be remarked that if x and y are really

rational, they can generally be written down by inspection.

Ex.1. Find ^(6 + 2^5).
Let Mj{& + ^fJ5) =^x+ Jy. Then, by squaring, we have 6 + 2/^5

ssx + y + 2ijxy' Hence, equating the rational and irrational parts,

05+1/ = 6 and xy = 5. Whence obviously x = l and y = 5. Thus

^(6 + 2V5) = l + ^/5.

Ex.2. FindV(28-5J12).
Let ;^(28

- 5 <v/12)
= ^a;

-
,Jy. Then, as before, ixy= 25 x 12, or

xy= 75 and x + y=28; whence a;= 25 and y = 3. Thus ^^ (28
- 5 v'12)

= 5 - ^3. [If we had taken a;= 3 and y= 25 we should have had the

negative root, namely ^3 -
5.]

Ex.3. Find V(18+ 12;^3).

In this case ij{a^
-

b) is irrational and therefore the required root

cannot be expressed in the form ^x +Jy where x and y are rational.

The root can however be expressed in the form ^x + ^y; for

^(18 + 12 <v/3)
=VW3 (12 + 6^3) }

= 4/3 X ^(12 + 6 ^3) = 4/3 X (3 + v'S)
= 4/243 + 4/27.

Ex. 4. Find sj{10 + 2 s/e + 2^10 + 2^15).
Assume J{10 + 2v'6 + 2v'10 + 2^15) =^x +Jy+ Jz ; then 10+ 2^6

-\-2^10 + 2J15= x + y + z + 2iJxy + 2^xz + 2jyz. We have now to

find, if possible, rational values of x, y, z such that xy= Q, 0:2; = 10,

yzszl5 and a; + y + z= 10. The first three equations are satisfied by
the values .t = 2, y = S, z=5, and these values satisfy x + y + z=10.
Hence ^/(10 + 2^6 + 2^10 + 2^15) =V2 + n/3 + /v/o.

S.A. 16
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Ex. 5. Prove that,if 4/(a+ ;^6) = a; + ;^y; then wiU ^{a-Jb)=x-^y.
We have a+^b= ix+,JyY=x*+ Sxy +Jy (3«a+ y).

Hence, equating the rational and irrational parts, we have

a=x^+ Sxy, and ^b=^y{3x^ + y).

Hence a-fjb= x^ + 2xy -^y{Sxz + y);

.-. i/{a-s/h)=x-^y.

./

y

EXAMPLES XVIIL

Simplify the following :

N/3 + r •

J6^JZ'

5 3n/2 ._iV3_ ^ x/6
•

V3+V6 JQ + J2^J2 + JS'

6 (7-2 75)(5 + V7)(31 + 13J5 )
•

(6-2V7)(3-fV5)(ll + 4V7)
•

7
1

8 ^ 1

9.

10.

1

^/lO +VH 4-^15 + ^21

1

V6 + V21-x/10-^35

,, 1 _1 4 5
^-

4/2-1 "^4/24-1
• ^^'

4^9-1
"^

4/94-1
•

13. i-T^/7 . 14. ^
'

l4-4/24-^4*
*""

<^2 4-4/6 4-;718'
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15. V(101-28V13). 16. V(28-6V12).

17. V{ll + 2(l + V5)(l + v/7)}.

18. V{6- 4 ^3+^(16-8^3)}.

19. V(97-56V3).
^

20. f:^^^.
^^-

J2 + J(7-2J10)'

22 x/3 + V2 73-^2
"* •

^2 + J{2 + J3) J2-J{2 + J3)'

23 V(5 + 2V6)-^(5-2V6)
•

V(5 + 2^6) + V(5-2V6)*

24. ^{6 + 2^2 + 2^3 + 2^6}.

25. V{11 + 6 V2 + 4 x/3 + 2 V6}.

26. V{17 + 4V2-4V3-4V6-4v/5-2V10-h2V30}.

27. Shew that

1 1 2

V(12-x/140) V(8-V60) V(10+V84)

28. Shew that

1 3 4

= 0.

V(ll-2x/30) V(7-2V10) x^(8+4V3)

Imaginary and Complex Quantities.

181. We have already seen that in order that the

formula obtained in Art. 81 for the factors of a quadratic

expression may be applicable to all cases, it is necessary

to consider expressions of the form J— a, where a is

16—2
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positive, and to assume that such expressions obey all the

fundamental laws of algebra.

Since all squares, whether of positive or of negative

quantities, are positive, it follows that ^/— a cannot

represent any positive or negative quantity; it is on this

account called an imaginary quantity. Also expressions

of the form a-\-hJ—l where a and b are real, are called

complex quantities.

182. The question now arises whether the meanings
of the symbols of algebra can be so extended as to include

these imaginary quantities. It is clear that nothing would
be gained, and that very much would be lost, by extending
the meanings of the symbols, except it be possible to do
this consistently with all the fundamental laws remaining
true.

Now we have not to determine all the possible systems
of meanings which might be assigned to algebraical

symbols, both to the symbols which have hitherto been

regarded as symbols of quantity and to the symbols of

operation, subject only to the restriction that the funda-

mental laws should be satisfied in appearance whatever the

symbols may mean: our problem is the much simpler and
more definite one of finding a meaning for the imaginary

expression J—a which is consistent with the truth of all

the fundamental laws.

183. We already know that — 1 is an operation which

performed upon any quantity changes it into a magnitude
of a diametrically opposite kind. And, if we suppose that

J^^ obeys the law expressed by 1 x J— 1 x J— 1 = - 1,

it follows that J—1 must be an operation which when

repeated is equivalent to a reversal.

Now any species of magnitude whatever can be re-

presented by lengths set off along a straight line; and,
when a magnitude is so represented, we may consider the
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Operation J—1 to be a revolution through a right angle,
for a repetition of the process will turn the line in the
same direction through a second right angle, and the line

will then be directly opposite to its original direction.

Hence, when magnitudes are represented by lengths
measured along a straight line, we see that J— 1, regarded
as a symbol of operation, has a perfectly definite meaning.

The symbol J—l is generally for shortness denoted by
i, and the operation denoted by i is considered to be a

revolution through a right angle counter-clockwise, — i

denoting revolution through a right angle in the opposite
direction.

184. It is clear that to take a units of length and
then rotate through a right angle counter-clockwise gives
the same result as to rotate the unit through a right angle
counter-clockwise and then multiply by a. Thus ai = ia.

Again, to multiply ai by hi is to do to ai what is done
to the unit to obtain bi, that is to say we must multiply

by h and then rotate through a right angle; we thus

obtain ab units rotated through two right angles, so that

ai xbi= — ab = ahii

From the above we see that the symbol i is commuta-
tive with other symbols in a product.

Siace {ai) x {ai)
= aaii = d^ (— 1)

= —
a^, it follows that

>J—a^ = ai-j it is therefore only necessary to use one

imaginary expression, namely J—1,

185. Let XOX\ YOY' be two rectangular axes.

[See Chapter X*.]

Then, any positive or negative real quantity oo, is

represented geometrically by choosing any fixed length
for unit and laying off a length OM=x units, measured

from the fixed point in the direction OX or its opposite

according as x is positive or negative ;
and we may con-

sider that the quantity x is represented either by the

position of the point M, or by the straight line OM.
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Again, any purely imaginary quantity iy, is represented

by laying off a length ON — y units, measured from in

the direction F or its opposite according as y is positive
or negative; and we may consider that the imaginary

quantity iy is represented by the point iV, or by the

length OK

Y

N
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Definitions. The positive quantity r = sJ{a^-\-y^) is

called the modulus and the angle 6 is called the

argument of the complex quantity x-\-iy.

The addition of complex quantities. If two

complex quantities x^-^-iyx, x^ + iy^ are represented by
OPy OQ, and OR is the diagonal of the parallelogram
POQR, it is easily seen that the projection of OR on OX
is Xi + X2 and the projection on OF is

3/1 + 3/2 ;
from which

it follows that OR represents the sum of the complex
quantities represented by OP and OQ.

Since OR is less than the sum of OP and OQ unless OP and OQ
coincide in direction, it follows that the modulus of the sum of two

complex quantities is less than the sum of their moduli, unless their

arguments are equal.

Thus the sum of two complex quantities is obtained

geometrically hy adding the straight lines which represent
them according to the parallelogram law.

The multiplication of complex quantities. By
the definition of multiplication, in order to multiply the

complex quantity represented by OP by the complex
quantity represented by OQ, we have to do to OP what
was done to the unit to obtain OQ, that is to say we must

multiply OP by the modulus of OQ and then turn OP
through an angle equal to the argument of OQ. Thus
the product of two complex quantities is the product of
their moduli and the argument is the sum of their argu-
ments.

With the above geometrical representation of complex
quantities, due to Argand, it will be seen that they obey
the fundamental laws of Algebra.

Some of the results of the following Articles follow at

once from this geometrical interpretation.
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186. If a + bi = 0, where a and h are real, we have

o = _ l)i. But a real quantity cannot be equal to an im-

aginary one, unless they are both zero.

Hence, if a + bi = 0, we have both a = and 6 = 0.

Note. In future, when an expression is written in

the form a + bi, it will always be understood that a and 6

are both real.

187. If a-{-bi^c-^di, we have a — c + (b
— d)i = 0;

and hence, from Art. 186, a — c—0 and b — d = 0.

Thus, two complex expressions cannot be equal to one

another, unless the real and imaginary parts are separately

equal.

188. The expressions a + bi and a — bi are said to be

conjugate complex expressions.

The sum of the two conjugate complex expressions
a-\-bi and a — 6i is a + a + (6

—
6)^ = 2a; also their pro-

duct is oa + ahi — abi — 6V = a^ + 6^

Hence the sum and the product of two conjugate complex
expressions are both real.

Conversely, if the sum and the product of two complex
expressions are both real, the expressions must be con-

jugate.

For let the expressions be a + bi and c + di. The sum
is a H- 6i + c + a5i = a H- c + {b-\-d)iy which cannot be real

unless 6 + d = 0. Again,

(a + bi) (c + di)
= ac+bci+adi 4- bdi^ = ac — bd-^ (be + ad)i,

which cannot be real unless bc + ad = 0. Now, if 6 4- c? =
and also bc-\- ad = 0, we have b (c

—
a)
=

;
whence

a = c or 6 = 0. If 6 = 0, c^ is also zero, and both expres-
sions are real

; and, if 6 =|= 0, we have a = c, which with
b — —

d, shews that the expressions are conjugate.

189. The modulus of the complex quantity a + i6,

namely the positive value of the square root of \/(a' + b^)
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is written mod (a + bi). Thus

mod (a + bi)
= + \/a^ + b\

It is clear that two conjugate complex expressions have

the same modulus
; also, since (a + bi) (a — bi)

= d^ + }^

[Art. 188], the modulus of either of two conjugate complex

expressions is equal to the positive square root of their

product.
Since a and h are both real, a* -f })^ will be zero if, and

cannot be zero unless, a and 6 are both zero. Thus the

modulus of a complex expression vanishes if the expression
vanishes, and conversely the expression will vanish if the

modulus vanishes.

If in mod (a + bi)
= + >Ja^ + b^ we put 6 = 0, we have

mod a = + s/a*, so that the modulus of a real quantity is

its absolute value.

190. The product of a + bi and c + di is

ac + bci + ddi + bdi^ — ac — bd-\- (be + ad) i.

Hence the modulus of the product of a + bi and
c + di is

y/{(ac
-
bdy + {be + ady] = V{(a' + 6'0 (c' + d')}

=
^/(i(l' + b')x^/{c'-hd').

Thus the modulus of the product of two complex
expressions is equal to the product of their moduli

The proposition can easily be extended to the case of

the product of more than two complex expressions ; and,
since the modulus of a real quantity is its absolute value,
we have the following

Theorem. The modulus of the product of any number

of quantities whether real or complex, is equal to the

product of their moduli.

191. Since the modulus of the product of two com-

plex expressions is equal to the product of their moduli, it

follows conversely that the modulus of the quotient of two

expressions is the quotient of their moduli. This may
also be proved directly as follows :
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/ 7 -x / 7 .\ a + bi c —
(a + bi) ^ (c + dz) = ——p X

c + di c — di

_ac + bd + (bo
— ad) %~

TTd'
•

Hence mod j^'l = ^{(-o^WHho-adf}
[c + di) c^ + dr

_ is/\^_+^ _ mod(a+ 6i)"
V{c' + d']

~
mod (c + c^i)

*

192. It is obvious that in order that the product of

any number of real factors may vanish, it is necessary
and sufficient that one of the factors should be zero, a,nd,

by means of the theorem of Art. 190, the proposition can

be proved to be true when all or any of the factors are

complex quantities.

For, since the modulus of a product of any number of

factors is equal to the product of their moduli, and since

the moduli are all real, it follows that the modulus of

a product cannot vanish unless the modulus of one of its

factors vanishes.

Now if the product of any number of factors vanishes

its modulus must vanish [Art. 189] ;
therefore the modu-

lus of one of the factors must vanish, and therefore that

factor must itself vanish. Conversely, if one of the

factors vanishes, its modulus will vanish; and therefore

the modulus of the product and hence the product itself

must vanish.

193. In the expression

where a,b,c,...k are all real, let a + /3i be substituted for a?,

and let F be the sum of all real terms in the result, and

Qi the sum of all the imaginary terms. Then the given
expression becomes P + Qi.

Since P and Q are both real, they can contain only
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squares and higher even powers of i, and hence P and Q
will not be changed by changing the sign of i. Therefore

when a — ^i is substituted for a; in the given expression
the result will be P —

Qi.

If now the given expression vanishes when a + ^i is

substituted for a?, we have F + Qi = 0.

Hence, as P and Q are real, we must have both P =
and Q = 0, and therefore P—Qi= 0.

Hence if the given expression vanishes when a + jBi

is substituted for x, it will also vanish when a — fii is

substituted for x.

Therefore [Art. 88] if x — a-jSi is a factor of the

given expression, x — a-\-^i will also be a factor.

Thus, if any expression rational and integral in x,

and with all its coefficients real, he divisible by either of
two conjugate complex expressions it will also he divisible

by the other.
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Square and Cube Roots.

194. We have already shewn how to find the square
of a given algebraical expression; and we have now to

shew how to perform the inverse operation, namely that

of finding an expression whose square will be identically

equal to a given algebraical expression. It will be seen

that our knowledge of the mode of formation of squares
will enable us in many cases to write down by inspection
the square root of a given expression.

195. From the identity

a' ± 2ah + 6^ = (a ± b)\

we see that when a trinomial expression consists of the

sum of the squares of any two quantities plus (or minus)
twice their product, it is equal to the square of their sum

(or difference).

Hence, to write down the square root of a trinomial ex-

pression which is a perfect square, arrange the expression

according to descending powers of some letter ;
the square

root of the whole expression will then be found by taking
the square roots of the extreme terms with the same or

with different signs according as the sign of the middle
term is positive or negative.

Thus, to find the square root of -

4a*'-12a*6''4-96*.
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The square roots of the extreme terms are ± 2a* and

+ 86^ Hence, the middle term being negative, the re-

quired square root is ± (2a*
—

36^).

Note. In future only one of the two square roots of

an expression will be given, namely that one for which

the sign of the first term is positive: to find the other

root all the signs must be changed.

196. When an expression which contains only two
different powers of a particular letter is arranged accord-

ing to ascending or descending powers of that letter, it will

only consist of three terms. For example, the expression
a^ + 6' + c^ + 26c 4- 2ca 4 2ah when arranged according to

powers of a is the trinomial

a' + 2a (6 + c) + (¥ + c^ + 26c).

It follows therefore from the preceding article that

however many terms there may be in an expression which

is a perfect square, the square root can be written down

hy inspection, provided that the expression contains only
two different powers of some particular letter.

Ex. 1. To find the square root of

a^+ b^+ c^+ 2bc + 2ca + 2db.

Arranged according to powers of a, we have

a2+ 2a(6 + c) + (6+ c)2, thati8{a+(& + c)}«.

Hence the required square root is a+ 6+ c.

Ex. 2. To find the square root of

4tx^ +V+ 16^*+ 12a;2t/2
_ iQxh^ - 24.y'^z\

The given expression is

4«4+ 4x2 (3^2
_

4^3) + 9^4
_

242/2^2 + 1824,

that is, {2a;2)a + 2 (2x2) (3j/2
-

4^2)+ (3i/2
-

4^2)3^

which is
{
2x2 + ( 3^2

_
4^2) j

2.

Hence the required square root is 2x^ + 3y2
- 4^*.
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Ex. 3. To find the square root of

a? + lahx + (62 + 2ttc) ««+ 26ca;» + c^x*.

Arrange according to powers of a
;
we then have

a2 + 2a (ftx + cx2) + 62a;2 + 2&cjk3 + c^S

that is, a2 + 2a (6x + ct?) + (6a;+ cx^)\

Hence the required square root is a+6x + ca;2.

Ex. 4. To find the square root of

«« - 2a;'' + 3x4+ 2a;3
(i/
-

1) + a;2 (1
-
2y) + 2x?/ + 1/«.

The expression only contains y^ and y ; we therefore arrange it

according to powers of y, and have

ya + 2?/ (a;3
_ a;2 + x) + a;6 - 2a;5 + Sx* - 2a;' + x^.

Now, if the expression is a complete square at all, the last of the

three terms must be the square of half the coefficient of y ;
and it is

easy to verify that

(aH»
- a;2 + a;)2

= a;8 - 2a;6 + 3J.4 _ 2aa + x«.

Hence the required square root is y-\-x^-Q^-\-x.

197. To find the square root of any algebraical ex-

pression.

Suppose that we have to find the square root of (J. 4- -B)*,

where A stands for any number of terms of the root, and B
for the rest; the terms in A and B being arranged accord-

ing to descending (or ascending) powers of some letter, so

that every term in A is of higher {or lower) degree m thai

letter than any term of B.

Also suppose that the terms in A are known, and that

we have to find the terms in B.

Subtracting A^ from {A + B)^, we have the remainder

{^A^B)B.
Now from the mode of arrangement it follows that the

term of the highest (or lowest) degree in the remainder is

twice the product of the first term in A and the first term

mB.

Hence, to obtain the next term of the required root, that
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is, to obtain the highest (or lowest) term of B, we subtract

from the whole expression the square of that part of the root

which is already found, and divide the highest {or lowest)

term of the remainder by twice the first term of the root.

The first term of the root is clearly the square root of

the first term of the given expression; and, when we have
found the first term of the root, the second and other terms
of the root can be obtained in succession by the above

process.

For example, to find the square root of

«« - 4a;5+ 6iB* - 8x^ + 9x^ - 4a; + 4.

The process is written as follows :

x» - 4^^ + 6x^ -8a^ + 9x^ -ix + i ( x^ -2x^+x-2
{x^)^

=
x^

^

{x^
-

2x2)2=^«j-4^«j+4^
{x^

- 2a;2+ a;)2
= x^- 4a;g + (ix^ - 4a;3 + x^

{x^ -2a^ + x -2)^= x^ - ^+Qx* -8x^ + 9x^ - 4x+ i

We first take the square root of the first term of the given

expression, which must be arranged according to ascending or de-

scending powers of some letter: we thus obtain a^, the first term of

the required root.

Now subtract the square of x^ from the given expression, and
divide the first term of the remainder, namely -ix^, by 2x^: we
thus obtain - 2x^, the second term of the root.

Now subtract the square of a:*-2a;2 from the given expression,
and divide the first term of the remainder, namely 2x'^, by 2a^ ; we
thus obtain x, the third term of the root.

Now subtract the square of a^ - 2a;2+ x from the given expression,
and divide the first term of the remainder, namely -

4a;*, by 2a^^ : we
thus obtain -

2, the fourth term of the root.

Subtract the square of a^-2x^ + x-2 from the given expression
and there is no remainder.

Hence x^ - 2^2 + a; - 2 is the required square root.

The squares of a^, x^-2x'\ &c. are placed under the given

expression, like terms being placed in the same column, so that in

every case the first term of the remainder is obvious.

198. The square root of an algebraical expression may
also be obtained by means of the theorem of Art 91.

Take for example the case just considered.
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The required root will be ax^ + ba^ -^ ex + d, provided
that the given expression is equal to (ax^ + bx^ -\- cx + df^
that is equal to

d'x^ + 2a6a;' + (2ac + 6') a?* + 2 {ad + be) a?

+ {%d + c') x^ + 2cdx + d\

Hence, equating the coefficients of corresponding

powers of x in the last expression and in the expression
whose root is required, we have

tt'^^l; 2a6 = -4; 2ac + 6''=6; 2ac^ + 26c = -8; .

26c^ + c' = 9; 2ccZ = -4; (f = 4.

The first four of these equations are sufficient to

determine the values of a, 6, c, d; these values are (taking

only the positive value of a), a = 1, 6 = — 2, c = 1, (i = — 2.

The last three equations will be satisfied by the values

of a, 6, c, d found from the first four, provided the given

expression is a perfect square, which is really the case.

Thus the required square root is a?' — 2a;^ + x — 2.

199. Extended Definition of Square Root. The
definition of the Square Root of an algebraical expression

may be extended so as to include the case of an expression
which is not a perfect square. For, although an expres-
sion may not be a perfect square, we can find, by the

methods of Art. 197 or Art. 198, a second expression
whose square is equal to the given expression so far as

certain terms are concerned.

Thus the square root of x^ + 2x may be said to be

x-\-l, (x + iy being equal to x'^-\-2x so far as the terms
which contain x are concerned.

Again, the square root of 1 + a? may be said to be
X X OC/

l-f-orl+^— — ,
the square of the former differing from

1+ X by
—

,
and the square of the latter differing by

4!
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OR—
Jd?' + ^^a?*. Thus, provided x is small, 1 + s is an

approximation to the square root of 1 4- a;, and 1 + 5
—

-q

is a closer approximation, and by continuing the process
we can approximate as closely as we please to the square
root of 1 -f a?

;
this however is by no means the case when

X is not a small quantity.

200. When any number of terms of a square root have

been obtained as many more can be found by ordinary
division.

For suppose the expression whose square root is to be
found is the square of

(aja?"+ a,aj"-* + . . . + a^""^') + (ar+i^""' + • • • + a«X""^') + -K.

The coefficients a^, a^,,..a^ can be found by equating
the coefficients of the first 2r powers of x in the square of

the above to the coefficients of the corresponding powers
of X in the given expression.

The square of the above expression is

ia/" + a,a;""' + . . . + a^"^')' + ^
(ai^?" + . . . + a^"^')

+ 2R (a^^.x'^^ + . . . + a^x''-^'^') + R'].

Now, since the highest power of a; in -B is a?**'*^, the

highest power of x in the expression within square brackets

is a;'^"-^.

Hence the expression within square brackets will not

affect any of the terms from which a^, a,, ...a^ are deter-

mined, for the first 2r terms of the given expression ex-

tend from ar"* to oT-^K

It therefore follows that, if the square of the sum of

the first r terms of the root be subtracted from the given

S. A. 17



234 SQUARE ROOT.

expression, and the remainder be divided by twice the

sum of the first r terms, the quotient will give the next

r terms of the root.

201. When n figures of a square root of a number
have beenfound by the ordinary method, n — 1 more figures
can be fownd by division, provided that the number is a

perfect square of '2,n—l figures ; if however this be not the

case, there may be an error in the last figure.

Let N be the given number, which is the perfect

square of a number containing 2n — 1 figures, and let p
be the number formed by the first n figures followed by
n—1 zeros, and let q be the number formed by the

remaining w — 1 figures.

Then ^N=p + q;

.-. (N-f)/2p = q + qy2p.

Now 2p <t 2 .10'^""' and q >> lO*'"'. Hence qy2p must be a
fraction

;
whence it follows that if p^ be subtracted from

N and the remainder be divided by 2p, the integral part
of the quotient will be q.

Next, let ^N contain m figures, where m is greater
than 2n — l.

Let p be the number formed by the first n figures of

the root followed by m — n zeros, let q be the number
formed by the next n — 1 figures followed by m — 2n + 1

zeros, and let r be the number formed by the m — 2n-\-l

remaining figures. Then

N^^ip + q-^rY;

.'. (N-p')l2p - ^ = (5^ + r* + 2qr)l2p + n

Now 10"* >p ^ lO'^'S

10""" >q^ 10"-"-*,

and 10'""^**-''>rH:lO"-^
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whence it follows that {(f + r^ + 2qr)/2p is less than
1
f\m-2n+l

Hence (q" + r'^ + 2qr)/2p + r is less than 2 x i0'"-2»+\

but it is not necessarily less than 10"*"*"'*'\ Hence

{N-p')l2p may differ from q by more than lO*"-^"^^; it

must however differ by less than 2 x lO*""^""*"^; so that the

n — 1 first figures of the quotient (iV^
—
p*)/2p are either

the n—1 figures of q or differ only in the last figure,
and in that case by 1 in excess.

Cube Root.

202. From the identity

(a + by = a' + Sa'h + Sah' + h\

we see that the cube of a binomial expression has four
terms, and that when the cube is arranged according to

ascending or descending powers of some letter, the cube
roots of its extreme terms are the terms of the original
binomial.

Hence the cube root of any perfect cube which has

only four terms can be written down by inspection, for we
have only to arrange the expression according to powers
of some letter and then take the cube roots of its extreme
terms.

For example, if 27a'' - 54a''6 + 36a*62 _ SaSftS is a perfect cube its

cube root must be Sa^ - 2ah ; and by forming the cube of Sa^ - 2ab
it is seen that the given expression is really a perfect cube.

When an expression which contains only three different

powers of a particular letter is arranged according to

powers of that letter, there will be onlyfour terms.

It therefore follows that however many terms there

may be in an expression which is a perfect cube, the cube
root can be written down by inspection, provided that the

17—2
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expression contains only three different powers of some

particular letter.

For example, to find the cube root of

a3+ 6»+ c» + 3a2& + Sa^c + Sab^ + Sac^+ 6ahc + 3h^c + 36c».

Arranged according to powers of a, we have

a8+ 3a2 (6 + c) + Sa {b^+ c^+ 2bc) + b^ + c^ + Sb^c + 36c»,

that is, 08 -f- 3a» (6 + c) + 3a (6 + c)2+ (6 + c)«.

Hence the required root is a + b + c.

203. Tofind the cube root ofany algebraical expression.

Suppose we have to find the cube root of {A + Ef,
where A stands for any number of terms of the root, and
B for the rest; the terms in A and B being arranged
according to descending (or ascending) powers of some

letter, so that every term of A is of higher (or lower)

degree in that letter than any term of B.

Also suppose the terms in A are known, and that we
have to find the terms in B.

Subtracting A^ from {A + B)^, we have the remainder

{^A^ + ^AB + B')B.

Now from the mode of arrangement it follows that the
term of the highest (or lowest) degree in the remainder is

3 X square of the first term oi A x first term of B.

Hence to obtain the next term of the required root,

that is, to obtain the highest (or lowest) term of B we
subtract from the whole expression the cube of that part

of the root which is already found and divide the highest

{or lowest) term of the remainder by three times the square

of the first term of the root

This gives a method of finding the successive terms
of the root after the first; and the first term of the root

is clearly the cube root of the first term of the given
expression.
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For example, to find the cube root of

The process is written as follows :

a;6 _ Q^y + 21x*y^
- 44a;V+ 63a;2t/4

_
543,^^3 + 271/6

(a;2)»=x«

(a;2
- 2xy + 3y2)3

= a;6 _ Gar^y + 21a;^2
_
44a;3p + 63a;'V4

_
543.^3 4. 27y»,

Having arranged the given expression according to descending

powers of x, we take the cube root of tlie first term : we thus obtain

x^t the first term of the required root.

We then subtract the cube of x^ from the given expression, and
divide the first term of the remainder, namely -

Qxh/, by 3 x (052)2
.

we thus obtain -
2xy, the second term of the root.

We then subtract the cube of 052 - 2xy from the given expression,
and divide the first term of the remainder by 3 x (a;2)2 ; this will give
the third term of the root.

Note. The above rule for .finding the cube root of an

algebraical expression is rarely, if ever, necessary.

In actual practice cube roots are found as follows.

Take the case just considered
;
the first and last terms

of the root are x^ and Sy^, the cube roots of the first and

last terms of the given expression ;
also the second term

of the root will be found by dividing the second term of

the given expression by 3 x (aff, so that the second term

of the root is — 2a;y.

Hence, if the given expression is really a perfect cube,

it must be (a?"
—
2xy + Syy, and it is easy to verify that

(x^
—
2xy + Zy^ is equal to the given expression.

Again, to find the cube root of

x' - Qx'y + 15*Y - 29^y + 51a;y
- eOxY + 64«y
-6SxY + 2'7xy'-27y\

If the given expression is really a perfect cube the

first and last terms of the root must be y^a;' and \/— 27y^

respectively, that is x^ and — 3y^.
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The second term of the root must be —
Qx^y -r- 3 (a;')*

= — 2a^y ;
and the term next to the last must be

27^' - 3 (-Sj/-)'
= + «;/.

Hence the given expression, if a cube at all,

must be (a;*
—

2x^y + xy^
—

3^")' ;
and by expanding

(a^
- ^y + xy^

— Z^y it will be found that the given
expression is really a perfect cube.

204. From the identity [see Art. 253]

(a + 6)"
= a** + n(f~^}> + terms of lower degree in a,

it is easy to shew, as in Articles 197 and 203, that the
n*^ root of any algebraical expression can be found by
the following

Rule. Arrange the expression according to descending
or ascending powers of some letter, and take the n^^ root of
the first term : this gives the first term of the root.

Also, having found any number of terms of tiue root,

subtract from the given expression the n*^ power of that

part of the root which is already found, and divide the first
term of the remainder by n times the (n

— iy^ power of the

first term of the root : this gives the next term of the root.

EXAMPLES XIX.

Write down the square roots of the foliowing expressions i

1. 4a;'"'-12a;y + V-

2. aj» + 9xy»-6a;y.

3. a' + 46* 4- 9c* + 1 26c - Qca - ^ah.

1 25a* + 96* + 4c* + 126V - 20c*a'' - 30a»6'.
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Find the square roots of

5. x' + 2x' + 3x* + ^x' + 3x' + 2x+l. O
6. ^x* - 8a^y + 4032^' + y*.

7. 49 + 112aj^ + 70^' + 64a;* + 80a;» + 25x'.

8. a;* - 2x^ + 5x'-6x + 8- Qx'' + dx'' - 2a;-" + a;-\

y" 25a;* y 5a;

10. a;* - 4a;^ + 2a; + 4a;^ + a;*

. 11. x^ - 4a;* + 4a; + 2a;^ - 4a;^ + x^.

12. a;^ - 2a"'^a;'^ + 2a^a;^ + a'^a;^* - 2a^a;^ + a\

Find the cube roots of

13. a;« - 24a;' + 192a; -512.

14. x' - Sx'y + 6xy - 7a;y + 6xY -
3xy' + y\

15. 1 - 9a;' + 33a;* - 63a;« + 66a;'' ~ Sea;^" + 8a;''.

16. Find the square root of

2a' (6 + c)'
+ 26' (c + a)' + 2c' (a + 6)' + 4a6c (a 4- 6 + c).

17. Find the square root of

aj* (a;*
+

2/' + «') + 2/'«' + 2a;
(2/ + z) (yz

-
a;').

18. Find the square root of

(a
-

6)*
- 2 (a' + 6') {a-hf^2 (a* + 6*).

19. Shew that {x + a) (a;
+ 2a) (a: 4 3a) {x + 4a) + a* is a

perfect square.

20. Prove that x* + px^ + ja;' f ra; + 8 is a square, if jp'«
= r*

and ^^
- ipq + 8r = 0.
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21. Find the vaiues of ^, ^ and C in order that

4a;*'-24a;'* + Ax'' + Bvi" + Cx'-40x + 25

may be a perfect square.

22. Sliew that, if aoif + bx* + cx + d he a perfect cube, then

6" = 3acandc'=36d

23. Find the conditions that

oaf + by' + cz' + 2fyz + 2gzx + 2hxy

may be the square of an expression which is rational in a;, y
and z.

24. Shew that if

(a -X)x' + {b- X) y" -I- (c
-
X) z' + 2fyz + 2gzx + 2hxy

be the square of an expression which is rational in. Xy y and z,

then will
'

gh . hf_ fg

f 9 h

25. Shew that when the first r terms of the cube root of

an algebraical expression are known, r more terms can be

found by ordinary division.

26. When n + 2 figures of the cube root of a number have
been obtained by the ordinary method, n more can be obtained

by ordinary division, provided the number is a perfect cube of
2?/ + 2 figures.

27. Shew that, if n + 2 figures whose numerical value
is a have been found of a positive root of the equation
0^ + qx — T = Oj q being supposed positive, then the result of

dividing r-qa-a^ by Za' + q )vill give at least ?* - 1 more

figures correctly.

\



CHAPTER XVL

Ratio. Prcportion.

205. Definitions. The relative magnitude of two

quantities, measured by the number of times the one

contains the other, is called their ratio.

Concrete quantities of different kinds can have no

ratio to one another : we cannot, for example, compare
with respect to magnitude miles and tons, or shillings
and weeks.

The ratio of a to 6 is expressed by the notation a : h;
and a is called the first term, and b the second term, of the

ratio. Sometimes the first and second terms of a ratio are

called respectively the antecedent and the consequent

It is clear that a ratio is greater, equal or less than

unity according as its first term is greater, equal or less

than the second. A ratio which is greater than unity is

sometimes called a ratio of greater inequality, and a ratio

which is less than unity is similarly called a ratio of less

inequality.

The ratio of the product of the first terms of any
number of ratios to the product of their second terms, is

called the ratio compounded of the given ratios.

Thus ae:hd\& the ratio compounded of the two ratios a : h and c : d.

The ratio a^ : ¥ is sometimes called the duplicate ratio

of a : 6
;
so also a^ : 6°, and ^/a : sjh are called respectively

the triplicate, and the sub- duplicate ratio of a : 6.
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206. Magnitudes must always be expressed by means
of numbers^ and the number of times which one number
contains another is found by dividing the one by the other.

Thus ratios can be expressed d^ fractions.

The principal properties of fractions and therefore of

ratios have already been considered in Chapter viii.

Thus, a ratio is unaltered in value by multiplying each

of its terms by the same number. [Art. 107.]

Different ratios can be compared by reducing to a

common denominator the fractions which express their

values. [Art. 109.]

The theorems of Art. 113 are also true for ratios.

The following theorem is of importance :

207. Theorem. Any ratio is made more nearly

equal to unity by adding the same positive quantity to each

of its terms.

By adding a; to each term of the ratio a : b, the ratio

a-^x : b + x is obtained.

T^T a - a — b , a-ho) - a — b
Now T — 1 = —7— ,

and j—, 1 = t—— ,

b b b + x 6 + aj

and it is clear that the absolute value of v is less than
b -¥x

t

that of , ,
for the numerators are the same and the

denominator of the former is the larger : this proves the

proposition.

When X is very great, the fraction r is very small
;

Snd q , which is the difference between f and 1,
b-\-x b+x

^an be made less than any assignable difference by taking

sufficiently great.
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This is expressed by saying that the limiting value of

r ,
when x is infinite, is unity.

Now two quantities, whether finite or not, are equal
to one another when their ratio is unity. Thus a-\-x and

h-\-x are equal to one another when x is infinite, a being

supposed not equal to h. [See Art. 118.]

208. Since any ratio is made more nearly equal to

unity by the addition of the same quantity to each of its

terms, it follows that a ratio is diminished or increased by
such addition according as it was originally greater or less

than unity. This proposition is sometimes enunciated :

A ratio of greater inequality is diminished and a ratio of
less iiiequality is increased by the addition of the same

quantity to each of its terms.

209. Incommensurable numbers. The ratio of

two quantities cannot always be expressed by the ratio of

two whole numbers
;
for example, the ratio of a diagonal

to a side of a square cannot be so expressed, for this ratio

is V2 : 1, and we cannot find any fraction which is exactly

equal to V2.

Magnitudes whose ratio cannot be exactly expressed

by the ratio of two whole numbers, are said to be in-

commensurable.

Although the ratio of two incommensurable numbers
cannot be found exactly, the ratio can be found to any
degree of approximation which may be desired

;
and the

different theorems which have been proved with respect
to ratios can, by the method of Art. 163, be proved to be
true for the ratios of incommensurable numbers.
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Proportion. t
210. Four quantities are said to be proportional when

the ratio of the first to the second is equal to the ratio of

the third to the fourth.

Thus a, b, c, d are proportional, if

a : h = c : d.

This is sometimes expressed by the notation

a : h :: c : d,

which is read " a is to 6 as c is to d.'*

The first and fourth of four quantities in proportion,
are sometimes called the extremes, and the second and
third of the quantities are called the means.

211. If the four quantities a, b, c, d are proportional,
we have by definition,

a __c
b~d'

Multiply each of these equals by bd ; then

ad = be.

Thus the product of the extremes is equal to the product

of the means.

Conversely, if ad — be, then , a, b, c, d will be propor-
tional.

For, if ad--
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Hence also, the four relations (

a : b = c : d,

a '. c =h '. d,

h : a = d : c,

and b : d = a : c,

are all true, provided that ad = be. Hence the four

proportions are all true when any one of them is true.

Ex. 11 a : b=c : dj then will a+ b : a-b==c + d : c-d.

This has already been proved in Art. 113: it may also be proved
as follows :

a+b : a-b=c + d : c-d,

if {a + b){c-d)= {a-b)(c + d),

that is, if ac-bd + bc-ad= ac-bd-bc + adi

or, if be =04.

But be is equal to ad, since a : b= e : d.

212, Quantities are said to be in continued proportion
when the ratios of the first to the second, of the second

to the third, of the third to the fourth, &c., are all equal.

Thus a, b, c, d, &c. are in continued proportion if

a:b = b:c=c:d — &c.,

that is, if -=- = _ = &c.bed
If a : b = b : c, then b is called the mean proportional

between a and c; also c is called the third proportional
to a and b.

If a, b, be in continued proportion, we have

a b

', b^ = ac, or b = Jiac
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Thus the mean proportional between two given quantities
is the square root of their product.

a b b b
Also j-

X - = - X -
6 c »c

that IS
c

n
Thus, if three quantities are in continued proportion,

the ratio of the first to the third is the duplicate ratio of the

first to the second.

213. The definition of proportion given in Euclid is

as follows: Four quantities are proportionals, when if any

equimultiples whatever be taken of the first and the third,

and also any equimultiples whatever of the second and
the fourth, the multiple of the third is always greater

than, equal to or less than the multiple of the fourth,

according as the multiple of the first is greater than, equal
to or less than the multiple of the second.

If the four quantities a, b, c, d satisfy the algebraical

test of proportionality, we have t=-j', therefore for all

„ J ma mc
values 01 m and n, -^ =—3 .

no nd

> >
Hence mc = nd, according as ma = nb. Thus a, b, c, d

< <

satisfy also Euclid's test of proportionality.

Next, suppose that a, 6, c, d satisfy Euclid's definition

of proportion.

If a and b are commensurable, so that a: b = m: n,

where m and n are whole numbers
;
then

a m
V = — ; .*. na = 7uo.
b n '
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Ex. 6. Shew that, if a : 6 : : c : d, then

(i) a^+ ab + b^ : c^ + cd + d^ :: a^-ab + h^ :c^-cd + cP,

(ii)
a+ 6 : c + d : : ^(2a2 _ 363)

.

j^2c^
_

3^2^.

(iii) aa+62+ c2 + da ; {a+b)*+{c + d)^ :: (a+c)«+(& + d)2
: (a + 6 + c + d)«.

[See Art. 113.]

Ex. 6. Ii a : b :: c : d, then will ab + cd be a mean proportional
between a^ + c^ and b^+ dK

Variation.

214. One magnitude is said to vary as another when
the two are so related that the ratio of any two values of

the one is equal to the ratio of the corresponding values

of the other.

Thus, if
ctj, a^ be any two measures of one of the

quantities, and
b^, b^ be the corresponding measures of the

other, we have

— =
r'i and therefore 7^ = 7^ .

Hence the measures of corresponding values of the two

magnitudes are in a constant ratio.

The symbol cc is used for the words varies as: thus

AocB is read 'A varies as B \

If a oc 6, the ratio a : 6 is constant
;
and if we put m

for this constant ratio, we have

5-
= m; .*. a = mh.

To find the constant m in any case it is only necessary
to know one set of corresponding values of a and b.

a 15
For example, if a oc 6, and a is 16 when 6 is 6, we have - =m=-v- ;

A a =36.
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215. Definitions. One quantity is said to vary in-

versely as another when the first varies as the reciprocal
of the second.

Thus a varies inversely as h if the ratio a : r is constant,

and therefore ab = m.

One quantity is said to vary as two others jointly when
the first varies as the product of the other two. Thus a
varies as h and c jointly if a « be, that is if a = mbc,
where m is a. constant.

One quantity is said to vary directly as a second and

inversely as a third when the ratio of the first to the

product of the second and the reciprocal of the third is

constant.

Thus a is said to vary directly as b and inversely as c,

if a : 6 X - is constant, that is, if a = m- , where m is a
c c

constant.

In all the different cases of variation defined above,
the constant will be determined when any one set of

corresponding values is given.

For example, if a varies jointly as 6 and c
;
and if a is 6 when b

is 4 and c is 3, we have

a=mbc,

and 6=mx4x3.

Hence m=jr , and therefore a=-bc,
a It

216. Theorem. If a depends only on b and c, and

if a varies as b when c is constant, and varies as c when
b is constant; then, when both b and c vary, a will vary
as be.

Let a, b, c; a', b'
,
c and a'\ b\ d be three sets of

corresponding values.

s. A. 18
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Then, since c is the same in the first and second, we

have —, — Tf (i)-
a! h

And, since V is the same in the second and third, we

have — =-
(ii).a G

Hence from (i) and (ii),
—

,
= tt-, ,

which proves the proposition.

The following are examples of the above proposition.
The cost [C] of a quantity of meat varies as the price [P] per

pound if the weight [IF] is constant, and the cost varies as the

weight if the price per pound is constant. Hence, when both the

weight and the price per pound change, the cost vaiies as the

product of the weight and the price.

Thus, if C QC P, when W is constant,

and GolW, when P is constant ;

then G oc PW, when both P and W change.

Again, the area of a triangle varies as the base when the height
Ib constant; the area also varies as the height when the base is

constant; hence, when both the height and the base change, the
area will vary as the base and height jointly.

Again, the pressure of a gas varies as the density when the

temperature is constant; the pressure also varies as the absolute

temperature when the density is constant ; hence when both density
and temperature change, the pressure will vary as the product of the

density and absolute temperature.

Ex. 1. The area of a circle varies as the square of its radius,
and the area of a circle whose radius is 10 feet is 314-159 square
feet. What is the area of a circle whose radius is 12 feet ?

Ans, 452-38896 feet.

Ex. 2. The volume of a sphere varies as the cube of its radius,
and the volume of a sphere whose radius is 1 foot is 4-188 cubic feet.

What is the volume of a sphere of one yard radius? Am. 113-076 feet.

Ex. 3. The distance through which a heavy body falls from rest

varies as the square of the time it falls ; also a body falls 64 feet in

2 seconds. How far does a body fall in 6 seconds? Am. 676 feet.

Ex. 4. The volume of a gas varies as the absolute temperature
and inversely as the pressure; also when the pressure is 15 and the

temperature 260 the volume is 200 cubic inches. What will the

volume be when the pressure becomes 18 and the temperature 390?
Am. 250 inches.



INDETEKMINATE FOEMS. 251

Ex. 5. The distance of the offing at sea varies as the square root
of the height of the eye above the sea level, and the distance is

3 miles when the height is 6 feet : find the distance when the height
is 72 yards. Am. 18 miles.

Indeterminate Forms.

217. A ratio or fraction sometimes assumes an in-

determinate form for some value or values of a contained
letter.

Thus, when x=0 both the numerator and the denominator of

the fraction -^—— vanish, and the fraction assumes for this value of

X the indeterminate form -
; and this is also the case when x=l.

Again, when «=qo both the numerator and the denominator of

the above fraction become infinitely great, and the fraction assumes

the indeterminate form — .

00

We proceed to shew how to find the limiting values

of fractions which assume these indeterminate forms.

x^ —1
Consider, for example, the fraction -g

—
-, which as-

sumes the form
^
when x=l.

Now ^~1_ (^-l)(a^+l) .

x'-i'ico-lXx' + x+l)'
and, provided x — 1 is not really zero, we may divide the
numerator and denominator by a? — 1 without altering the
value of the fraction, and we can do this however small
x—1 may he.

Q^ \ X -\-\
Hence, when a? - 1 is very small, -g

—zr = -5 =• ,X -~ L X "TT X "X" 1.

and the limiting value of the latter fraction, as x ap-
2

preaches indefinitely near to 1, is at once seen to be ^ .

18— 2'
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Hence, as x approaches indefinitely near to 1, the

x' —1 . . 2
fraction -g

—=- approaches indefinitely near to the value
^.

a^ — 1 2
This is expressed by the notation X,„, ^^^

— « .

x^ — bx+ 6
Ex. 1. Find the limiting value of -s—r^j ^^ when x—2,

x^- 10a; + 16

It follows from Art. 88 that « - 2 is a common factor of the
numerator and denominator.

a;2_53; + 6 _ (a;-2)(a;-3) _ a;-3_;_l
^*-« a;a-10a; + 16~ *"«

(a;-2) (aj-S)"-^*"* a;-8~6'

Ex. 2. Find the limiting value of ^—^
——- when a;=0 and when

«= ao .

a;» + 2a; _ a;(a; + 2) _ a;+ 2 2
*"•*'

2a;2 + 3x~ *"*
a:(2a; + 3j~

*"*
2a; + 3~3*

2 3
since - and - are both zero when x is infinite.

X X

Ex. 3. Find the limiting value of the ratio l + 2a; : 2 + 3ar when x
increases without limit.

^" 2+8.-^«-
7(17!)

'"
r:|=»'

Ex. 4. Find the limiting value of
^

, „ ^,^ when x becomes
5a^ - 40

indefinitely great.

y
2a;a+ 100a; + 600

,.

^ V^ x
^

x^ )

(-:-?)

_r 2a;2 2 _
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EXAMPLES XX
1. Shew that, if a + 6, 6 -»- c, c + a are in continued propor-

tion, then b + c ; c + a — c — a i a — h.

2. Shew that, ifa;:a = y:6 = «:c, then

a^ y' »* _ (a;
+

2/ + 2;)*

3. Shew that, ii {a ->fh •\- c ¥ d)(a -h - c {- d)={a -h + c - d)

(a+b-c-d), then a, 6, c, <f are proportionals.

4. Shew that, if 6* + c' = a^ then

a + b + c : c + a — 6 = a + 6-c: 6 + c— a.

5. What number must be subtracted from each of the

numbers 7, 10, 19, 31 in order that the remainders may be in

proportion 1

6. Find a : 6 : c, having given

6 _ a + c- b _ a + b + c

a + b b + c - a~ 2a + b + 2o'

7. If
'" = ^— =

"

b-\-c-a c + a-b a + b-c^

shew that {a + b + c) {yz + zx + xy) = (a?
+ y + 2) {ax + 6y + cz).

8. li a(y + z)
= b{z + x)

= c{x+ y), prove that

y—z z—x x—y
a(b-c) b (c- a)~ c(a-b)'

9. Shew that the ratio

h^i + h% + h%+ '

h^i + hK + ^8^ +

is intermediate to the greatest and least of the ratios a^: ftj,

a^'.b^, &c., the quantities being all positive.

10. li a'.bv.c '. c?, then

11. Shew that, ii {a + b){b + c) {c-^ d) {d + a)

= {a-\-b-¥c + d) {bed + cda + dab + abc\

then a : 6 :: c? : c.
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12. If {hcd + cda + dab + abcY - abed (a + 6 + c + c?)'
= 0,

then it will be possible to arrange a, 6, c, c? so as to be propor-

tionals.

13. Shew that, if ^r
= -^

a + 26 + c a — c a — 2b + c*

XI.
a b c

then s = = o
—

:

—
•

x + 2y + z x-z X- 2y + z

14. Shew that, if aoi^ + by^ + cz^ + 2/yz + 2gzx + 2hxy =
and x + y + z = are only satisfied by one set of ratios x'.y.z^
then be -/' -v ca - g^ -v ah - h^ + 2 {gh

-
af)

+ 2{h/-bg) + 2(fg-ch) = 0.

15. Shew that, if

a b e

p (px -qy -rz) qiqy — ^^- P^) ^ (rz
—px— qy)

*

4Ji
P ^ q ^

^

a (ax
—
by — cz) b (by

— cz — ax) c(cz
— ax — by)

16. Shew that, if ab — cdy then either of them is equal to

(a + c) (a + c?) (5 + c) (6 + d)l(a + 6 + c + d)^.

Also, if a + 6 = c +
c?,

then either of them is equal to

17. Find the limiting values of the following fractions

when 05 = 2, and when as = oo .

r\
g^-7a;+10 ...V a;'-4a; + 4 ..... a;° + 6a;- 16

^'^ a;»-9a;-f-14'
^''^

a;« - 5a; + 6
' ^^^ a.--12a;+16*

18. Find the limiting values of the following when a; = a,

^^
i/a-i/x'

^""^ J(^^^
•



CHAPTEK XVII.

Arithmetical, Geometrical, and Harmonical

Progression.

218. Series. A succession of quantities the members
of which are formed in order according to some definite

law is called a series.

Thus 1, 2, 3, 4, ,
in which each term exceeds the

preceding by unity, is a series.

So also 3, 6, 12, 24, ,
in which each term is double

the preceding, is a series.

We shall in the present Chapter consider some very

simple cases of series, and shall return to the subject in a

subsequent Chapter.

Arithmetical Progression.

219. Definition. A series of quantities is said to be
in Arithmetical Progression when the difference between

any term and the preceding one is the same throughout
the series.

Thus, a, 6, c, d, &c. are in Arithmetical Progression

[a. P.] if 6--a = c — 6 = (i — c = &c.

The difference between each temi of an A. p. and the

preceding term is called the common difference.
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The following are examples of Arithmetical progressions :—
1, 3,' 6, 7, &c.

8, -1, -6, -9, &o.

a, a + 26, a+ 46, &o.

In the first series the common difference is 2, in the second it is

- 4, and in the last it is 26.

220. If the first term of an arithmetical progression
be a, and the common difference d; then, by definition,

the 2nd term will he a + d,

„ 3rd „ „ a-\r2d,

„ 4th „ „ a + Sdy

and so on, the coefficient of d being always less by unity
than the number giving the position of the term in the

series.

Hence the nth term will be a + (n
—

1) d
We can therefore write down any term of an A. P.

when the first term and the common difference are given.

For example, in the a. p. whose first term is 5, and whose
common difference is 4, the 10th term is 6 + (10 -1)4= 41, and the

30th term is 6 + 29 X 4 = 121.

221. An arithmetical progression is determined when

any two of its terms are given.

For, suppose we know that the mth term is of, and that

the nth term is ^.

Let a be the first term, and d the common difference;
then the mth term will be a + (m - 1) c?, and the nth term
will he a-h(n — l)d.

Hence a + (m — 1) c? = a,

and a + (n —l)d = l3.

Thus we have two equations of the first degree to

determine a and d in terms of the known quantities m, n,

a and /3.
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Ex. Find the lOth term of the a. p. whose 7th term is 15 and whose
21st term is 22.

If a be the first term, and d be the common difference, we have

a+ 6d= 15, and a + 20d=22.

1 9
Hence d=J , a= 12. The 10th term is therefore 12 + -= 16^.

222. When three quantities are in arithmetical pro-

gression, the middle one is called the Arithmetic Mean of

the other two.

If a, b, c are in A. P., we have, by definition,

b — a = c — b; and therefore 6 = |(a + c).

Thus the arithmetic mean of two given quantities is half
their sum.

When any number of quantities are in arithmetical

progression all the intermediate terms may be called

arithmetic means of the two extreme terms.

Between any two given quantities any number of arith-

metic means may be inserted.

Let a and b be the two given quantities, and let n be

the number of terms to be inserted.

Then b will be the 71 + 2th term of the A. P. whose first

term is a.

Hence, if d be the common difference, 6 = a + (n + l)cZ;

and therefore d =—-z- .

n + 1

Then the series is

b — a ^b — a „

the required arithmetic means being

b- a c^b
— a

,
b — a

a+-^-— a + 2——r, a + n——-,
W4- 1 n + 1 n + 1

na-^b (n-l)a + 2b (n-2)a-\-Bb a + nh
or

n + 1
' n + 1

' w+1 ' '

n + 1
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223. To find the sum of any nmnher of terms of an
arithmetical progression.

Let a be the first term and d the common difference.

Let n be the number of the terms whose sum is required,
and let I be the last of them.

Then, since I is the nth term, we have

l = a + {n-l)d (i).

Hence, if S be the required sum,

/Sf=a + (a4-c?) + (a+2c?) + jf.(l-2d)-\-{l-d)-\-l.

Now write the series in the reverse order
;
then

8^l + {l-d) + {l-'2,d) + +(a + 2rf) + (a + (0 + a.

Hence, by addition of corresponding terms, we have

2/Sf = (a + Q + (a4-0 + (« + + *o ^ terms
= n(a + Z);

.-. ^=|(«+0 (ii),

or, from (i),

/Sf =
|{2a

+ (7i-l)(Z} (iii).

From the formulae (i), (ii), (iii) the value of all the

quantities a, cZ, n, I, S can be found when any three are

given.

Ex. 1. Find the sum of 20 terms of the arithmetical progression
3 + 6 + 9 + &0.

Here o=3, d=3, n=20;

.-. S=-^{6 + 19x3} = 630.

Ex. 2. Shew that the sum of any number of consecutive odd numbers,
beginning with unity, is a square number.

'The series of odd numbers is

1+3+5+
Here a=l, d=2; hence the sum of n terms is given by

S=^{2a+(n.-l)d}=~{2 + (n-l)2}=7i2.
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Ex. 3. How many terms of the series 1 + 6 + 9+ must be taken
in order that the sum may be 190?

We have S=^{2a + {n-l)d}, where fif=:190, a=l, <7=4.
2

Hence n is to be found &om the qtiadratic equation

190=1 {2 +4 (n-1)},

or 2n2_n- 190=0,

that is (n
-
10) (2n+ 19)= 0.

19
Hence n=10. The value n=

--2-
is to be rejected for n must

necessarily be & positive integer*.

Ex. 4. How many terms of the series 5 + 7 + 9+ must be taken

in order that the sum may be 480?

Here we have —-'Z^.

480=|{10+(n-l)2}; /

,\ n2 + 4n- 480=0,

or (n-20)(n+24)=0.

Hence n must be 20, for the value w= - 24 must be rejected as a

negative number of terms is altogether meaningless*.

Ex. 5. What is the 14th term of the a. p. whose 5th term is 11 and
whose 9th term is 7? Ans. 2.

Ex. 6. What is the 2nd term of the a. p. whose 4th term is b and
whose 7th term is 3a+ 46 ? Ans. -2a-b.

Ex. 7. Which term of the series 5, 8, 11, &o. is 320?
Am. The 106th.

Ex. 8. Shew that, if the same quantity be added to every term of an
A. p., the sums will be in a. p.

Ex. 9. Shew that, if every term of an a. p. be multiplied by the same
quantity, the products will be in a. p.

• The inadmissible value is a root of the equation to which the

problem leads, but it is not a solution of the problem. [See Chapter xi.]
It should be remarked that a negative value of n cannot mean a number
of terms reckoned backwards.
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Ex. 10. Shew that, if between every two consecutive terms of an
A. p., a fixed number of arithmetic means be inserted, the whole will

form an arithmetical progression.

Ex. 11. Find the sum of the following series:

(i) 2i + 4i + 6|+ to 23 terms.

(ii) 2
*

6
~
6
~ *° ^^ terms.

(iii) (a+ 96) + (a+ 76) + (a+ 66) + to 10 terms.

... n-1 n-2n-3, , .

(iv)
- + \- to w terms.^ ' n n n

Am. (i) 621, (ii) -16, (iii) 10a, (iv) l{n-l).

Ex. 12. The 7th term of an a., p. is 15, and the 21st term is 8
; find

the sum of the first 13 terms. Ans. 195.

Ex. 13. Find the sum of 21 terms of an a. t. whose 11th term is 20.

Ans. 420.

Ex. 14. Shew that, if any odd number of quantities are in a. p., the

first, the middle and the last are in a. p.

Ex. 15. Shew that, if unity be added to the sum of any number of

terms of the series 8, 16, 24, &o., the result will be the square of an
odd number.

Ex. 16. How many terms of the series 15 + 11 + 7 + must be
taken in order that the sum may be 35? Ans. 6.

Ex. 17. The sum of 5 terms of an a. p. is -
6, and the 6th term is

- 13
;
what is the common difference? Ans. - 4.

Ex. 18. Find the sum of all the numbers between 200 and 400 which
are divisible by 7. Ans. 8729.

Ex. 19. If a series of terms in a. p. be collected into groups of n terms,
and the terms in each group be added together, the results form an
A. p. whose common difference is to the original common difference as

n2;l.

Geometrical Progression.

224. Definition. A series of quantities is said to be
in Geometrical Progression when the ratio of any term
to the preceding one is the same throughout the series.
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Thus a, b, c, d, &c. are in Geometrical Progression

(g.p.) if - = -=:- = &C.

The ratio of each term of a geometrical progression
to the preceding term is called the common ratio.

The following are examples of geometrical progressions :

1, 3, 9, 27, &o.

4, -2, 1, -i, &o.

a, o', a'^, o^, (fee.

In the first series the common ratio is 3, in the second series it is

-
^, and in the third series it is a^.

225. If the first term of a G.P. be a, and the common
ratio r

; then, by definition,

the 2nd term will be ar,

H 3rd „ „ ar*,

„ 4th „ „ ar",

and so on, the index of r being always less by unity than

the number giving the position of the term in the series.

Hence the nth term will be ar"~\

We can therefore write down any term of a G.P. when
the first term and the common ratio are given.

For example, in the g.p. whose first term is 2, and whose common
ratio is 3, the 6th term is 2 x 3^, and the 20th term is 2 x 3i».

226. A Geometrical Progression is determined when

any two of its terms are given.

For, suppose we know that the mth term is a, and

that the nth term is /8.

Let a be the first term, and r the common ratio
;

then the mth term will be ar'""\ and the nth term will

be ar"~*.
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Hence ar*""' = a, ar'*''=/3; and /.
^*"""=|.

1 1 l-n 1-m

Hence r = «"*"*» /S"*"*^, and therefore a= a"*""/^"""*.

Ex. Find the first term of the a. p. whose 3rd term is 18 and whose
5th term is 40^.

If a be the first term, and r the common ratio, we have

ar»=18, ar^=~', /. r»=|.2 4

4
Hence a=18x5=8.V

Thus the series is 8, 12, 18, &o.

227. When three quantities are in G.P., the middle
one is called the Geometric Mean of the other two.

If a, bf c are in G.P., we have by definition

- =
5;..

6 = ±V«c.

Thus the geometric mean of two given quantities is

a square root of their product.

When any number of quantities are in geometrical

progression all the intermediate terms may be called

geometric means of the two extreme terms.

Between two given quantities any number of geometric
means may be inserted.

For let a and b be the two given quantities, and let n
be the number of means to be inserted.

Then b will be the (11 + 2)th term of a G.P. of which a
is the first term. Hence, if r be the common ratio, we
have

n+l /ft

6 =
a.-;.-.r=^^.

Hence the required means are ar^ ar^, ,ar^,

n 1 n-1 2 1 _n_
that is, a**+^6**+\ a"+^6**+^ a»*+^6"+^
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228. To find the sum of any number of terms in

geometrical progression.

Let a be the first term, and r the common ratio. Let

n be the number of the terms whose sum is required, and
let I be the last of them.

Then, since I is the nih. term, we have I — ar""*.

Hence, if S be the required sum,

S^a + ar+ar""-^ + ar"~*.

Multiply by r
;
then

5r= ar -\- ar^+ ar^ -\- + ar""^ + ar".

Hence, by subtraction, **

S-Sr=^a-a7'''\

1 —r

Ex. 1. Find the snm of 10 terms of the series 3, 6, 12, &o.

Here a=3, r=2, n=10.

Hence
iS=3i=^*=3(2io-l)

= 3069.

229. From the preceding article we have

1 — r" a ar*
8 = a

1—r 1 —r 1 — r'

Now when r is a proper fraction, whether positive or nega-
tive, the absolute value of r" will decrease as n increases

;

moreover the value of r" can be made as small as we

please by sufficiently increasing the value of n.

Hence, when r is numerically less than unity, the sum

of the series can be made to differ from
:;

— by as small

a quantity as we please by taking a sufficient number of

terms.
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Thus the sum of an infinite number of terms of the

geometrical progression a-h ar + ar* + ,
in which r is

numerically less than unity, is
^|

.

Ex. 1. Find the sum of an infinite number of terms of the series

9-6+4-u-r* —

Here
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Ex. 8. Find the sum of the following series :

(i)
12+ 9 + 6|+ ... to 20 terms.

2 4
(ii)

1 -- + - + .». to 6 terms.

(iii) 4+ -8+ '16+.,. to infinity.

^n..(i)48|l-(?y]. (ii)|?, (iii) 5.

Ex. 9. Shew that the continued product of any number of quantities
n

in geometrical progression is equal to {gl)^, where n is the number of

the quantities and g, I are the greatest and least of them.

Ex. 10. Shew that the product of any odd number of terms of a g.p.

will be equal to the nth power of the middle term, n being the number
of the terms. ^

Ex. 11. The sum of the first 10 terms of a certain g.p. is equal to 244

times the sum of the first 5 terms. What is the common ratio ?

Am. 3.

Ex. 12. If the common ratio of a g.p. be less than ^, shew that each

term will be greater than the sum of all that follow it.

Harmonical Progression.

230. Definition. A series of quantities is said to be

in Harmonical Progression when the difference between
the first and the second of any three consecutive terms is

to the difference between the second and the third as the

first is to the third.

Thus a, b, c, d &c., are in Harmonical Progression

[H.P.],if
a — :

— c :: a : c,

b — c:c — d::h:d,
and so on.

If a, h, c be in harmonical progression, we have by
definition

a — h : h — c :: a : c;

,'. c{a
—

h) — aQ)~ c).

S. A, 19
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Hence, dividing by abc, we have

h a c b

which shews that -
> t ,

- are in arithmetical progression.

Thus, if quantities are in harmonical progression, their

reciprocals are in arithmetical progression.

231. Harmonic Mean. If a, 6, c be in harmonical

progression,
-

, r, - will be in arithmetical progression.

TT 2 11
Hence r = ~ + -

>a c

, 2ac
.*. =

a + c

Thus the harmonic mean of two quantities is twice

their product divided by their sum.

If we put A, G, H for the arithmetic, the geometric,
and the harmonic means respectively of any two quantities
a and b, we have

A=i(a + bX G^Jab,S =^^;

Thus the geometric mean of any two quantities is also

the geometric mean of their arithmetic and harmonic
means.

232. Theorem. The arithmetic mean of two unequal

positive quantities is greater than their geometric mean.

If a, b be the two positive quantities we have to shew
that

\{a + h)> Jab,

or i (^a - s/bf > 0.
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Now {i\Ja
—

hjhf is always positive, and therefore greater
than zero, unless a = 6.

Since the arithmetic mean of two positive quantities is

greater than their geometric mean, it follows from Art, 231
that the geometric mean is greater than the harmonic.

233. To insert n harmonic means between any two

quantities a and h.

Insert n arithmetic means between - and r ,
and the

a

reciprocals of these will be the required harmonic means.

The arithmetic means are

1 1 /I 1\ 1 _2_/l 1\ o

Hence, by simplifying these terms and inverting them,
the required harmonic means will be found to be

{n + 1) ah {n + 1) ah (n + 1) ah

nb + a '(7i-l)6 + 2a*
'

b + na

234. It is of importance to notice that no formula can

be found which will give the sum of any number of terms

in harmonical progression.

EXAMPLES XXI.

1. Shew that, if a, 6, c be in a. p., then will a'{h + c),

6" (c + a), c' (a + b) be in A. p.

2. Find four numbers in A. P. such that the sum of their

squares shall be 120, and that the product of the first and last

shall be less than the product of the other two by 8.

3. If a, 6, c be in a. p., and 6, c, c? be in h.p., then will

a: b — c'.d.

4. Find three numbers in g.p. such that their sum is 14,

and the sum of their squares 84.

19—2
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\ 5. If a, 6, c be in arithmetical progression, and x be the

g^metric mean of a and 6, and y be the geometric mean of 6

and c j then will a;', 6', y" be in arithmetical progi^ession.

o. Shew that, if a, 6, c be in harmonical progression, then

will 7 ,
, and —-j , be also in harmonical

o-\-c-a c + a-b a + b-c
progression.

7. Shew that, if a, 6, c, d be in harmonical progression,
then will

3{b-a){d-c) = (c-b){d-a).

8. Shew that, if a, 6, c be in harmonical progression,

2 1 1

6 6 — a 6 — c*

9. Shew that, if a, 6, c be in h.p., then will

b+a b+c ^
I + I

= 2.
b~ a b — c

10. If a, 6, c be in a. p., 6, c, o? in o. p., and c, J, e in ii. p.
;

then will a, c, e be in o. p.

11. If a, by c be in h. p., then will a-^, ^,c-^bein g.p.

12. If a, 6, c are in h.p., then a^ a — c, a~b are in ii. P.,

and also c, c — a, c - 6 are in n. p.

13. If X, CTj, o,, 2/
be in a. p., «, <7j, ^„ 2/

in g.p., and

^» ^i> ^8> y ^^ H. p., then

hjh^ h^ + h^'

14. The sum of the first, second, and third terms of a o. P.

is to the sum of the third, fourth and fifth terms as 1 : 4, and
the seventh term is 384. Find the series.
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15. If a,, ttj, ^3, , a, be in harmonical progression,

prove that a^a^ + a^a^ + a^a^ + + a^.i^^
=

(n
-

1) a^a^ .

16. If a, 05, J/,
6 be in arithmetical progression, and

a, w, Vy h be in harmonical progression, then xv= yu = ab.

17. Three numbers are in arithmetic progression, and the

product of the extremes is 5 times the mean
;
also the sum of

the two largest is 8 times the least. Find the numbers.

18. If = Y » ^» 1 r- be in A. p. : then a, ,- » <^ will be
1- ah I -be h

in H.p.

19. If a, 6, c be in a. p., and a*, &*, c* be in h.p., prove

that - ^ , 6, c are in G. p., or else a — h = c.

20. If aj be any term of the arithmetical progression and y
be the corresponding term of the harmonical progression whose

first two terms are a, 6, then will x — a : y~a ::h : y.

21. Shew that, if a be the arithmetic mean between h and

c, and h be the geometric mean between a and c, then will c be

the harmonic mean between a and h.

22. The series of natural numbers is divided into groups as

follows: 1; 2, 3; 4, 5, 6 j 7, 8, 9, 10; and so on. Prove that

the sum of the numbers in the B^ group is \k {k* + 1).

23. An A. p. and an h. p. have each the first term a, the

same last term
?,
and the same number of terms n

; prove that

the product of the (r + 1)'^ term of the one series and the

(n
—
ry^ term of the other is independent of r.

24. Terms equidistant from a given term of an A. p. are

multiplied together ;
shew that the differences of the successive

teims of the series so formed are in a. p.

25. Shew that, if S^y /S,,, S^^ be the sum of n terms, of

2n terms, and of 3/1 terms respectively of any q.p., then will

26. If a, 6, c be all positive and either in A. p., in g.p.,

or in H. p., and n be any positive integer, then a" + c" > 26".
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27. If P, Q, R be respectively the p^\ q^'^, and r^ terms

(i) of an A. p., (ii)
of a g. p., and

(iii)
of an h. p., then will

(i) P(q-T)+Q{T-p) + R{p-q)^0,

(ii)
P»-'. ^'-'.i?'-' = l,

(iii) QR (q-r) + RF (r -p) + PQ (j»-?) =0.

28. Shew that, if a,, aj* %> > », ^e in h.p., then

a«,



CHAPTER XYIIL

Systems of Numeration.

235. In arithmetic any number whatever is repre-
sented by one or more of the ten symbols 0, 1, 2, 3, 4, 5, 6,

7, 8, 9, called figures or digits, by means of the convention

that every figure placed to the left of another represents
ten times as much as if it were in the place of that other.

The cipher, 0, which stands for nothing, is necessary
because one or more of the denominations, units, tens,

hundreds, &c., may be wanting.

The above mode of representing numbers is called the

common scale of notation, and 10 is said to be the radix or

base.

236. Instead of ten any other number might be used

as the base of a System of Numeration, that is of a system
by which numbers are named according to some definite

plan, and of the corresponding Scale of Notation, that is

of a system by which numbers are represented by a few

signs according to some definite plan ;
and to express a

number, N, in the scale whose radix is r, is to write the

number in the form d^d^d^d^, where each of the digits

d^,d^,d^,d^ is less than r, and where d^ stands for d^

units, cZj
stands for d^ x r, d, for d^ x r^, and so on.

Thus N:=d^ + d^r+d/^
Note. Throughout this chapter each letter stands for a

positive integer, unless the contrary is stated.
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237. Theorem. Any positive integer can he expressed
in any scale of notation, and this can he done in only one

way.
For divide N by r, and let Q^ be the quotient and d^

the remainder.

Then N =
d,-\-rxQ^,

Now divide Q^ by r, and let Q, be the quotient and d^
the remainder.

Then Q,
=

c?, + rQ, ;
therefore N =

d^ + rd^ + r*Q, .

By proceeding in this way we must sooner or later

come to a quotient, Qn = c?„, which is less than r, when the

process is completed, and we have

N==d^ + rd^-{- r% + r'cZ,
+ ^X.

so that the number would in the scale of r be written

dn d^d^d^d^.

Each of the digits d^, d^, d^, is less than r, and any
one or more of them, except the last, d^ , may be zero.

Since at every stage of the above process there is only
one quotient and one remainder the transformation is

unique.

The given number N may itself be expressed either in

the common or in any other scale of notation.

Ex. 1. Express 2157 in the scale of 6.

The quotients and remainders of the successive divisions by 6
are as under :

6
1
2157

6
1

359 remainder 3=d^

6j69 6=ii
6 [9 6=^3

1 3=d,
Thus 2167 when expressed in the scale of 6 is 13553.

Ex. 2. Change 13553 from the scale of 6 to the scale of 8.

We have the following successive divisions by 8, remembering
that since 13553 is in the scale of 6 each figure is $ix times what
it would be if it were moved one place to the left, so that to begin
with we have to divide 1x6+ 3, and so on.
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8 [13553
8 [1125 remainder 5

8[63 6

4 1

Hence the number required is 4155.

Ex. 3. Change 4165 from the scale of 8 to the scale of 10^

Proceeding as before, we have

10
1

4165

10
1

327 remainder 7

10[25 5

2 1

Thus 2157 is the number required.

Or thus :

Since 4155= 4 x 88+1x82+ 6x8 + 5= {(4x8 + 1)8 + 5)8+ 5,

the required result may be obtained as follows :
—

Multiply 4 by 8 and add 1
; multiply this result by 8 and add 5 •

then multiply again by 8 and add 5.

Ex. 4. Express 3166 in the scale of 12. [Represent ten by t, and
eleven by e.] Am. I9et.

Ex. 5. Express ^ in the scale of 4. Ans. -—
.

Ex. 6. In what scale is 4950 written 20301? Ans. 7.

238. Radix Fractions. Radix fractions in any scale

correspond to decimal fractions in the ordinary scale, so that

'abc... stands for - + -5 + -s +
r r r

To shew that any given fraction may be expressed by a
series of radixfractions in any proposed scale.

Let F be the given fraction
;
and suppose that, when

expressed by radix fractions in the scale of r, we have

F^-abc ^^ + 4 + ^ + ,
r r* r^

where each of a, 6, c is a positive integer (including

zero) less than r.
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Multiply by r; then

TT be^xr = a + - + 3- +r r

Hence a must be equal to the integral part, and
& c
- + -^ + must be equal to the fractional part of Fr,

(If Fr be less than 1, a is zero.)

Let F^ be the fractional part of Fr; then

K=l+i+r r

Multiply by r; then

Fxr=6+-+

Hence 6 must be equal to the integral part of F^r.

Thus a, b, c, can be found in succession.

Ex. 1. Express jr- by a series of radix fractions in the scale of 6.

Hence '012 is the required result.

Ex. 2. Express = by a series of radix fractions in the scale of 3.

13 *i 9 2 fi

^x3=0+^; 2x3=l+f; |x3=0+?;

Hence -610212 is the required result.

Ex. 3. Change 324-26 from the scale 8 to the scale 6.

The integral and fractional parts must be considered separately.
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6|324
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Ex. 1. The difference of any two numbers expressed by the same

digits is divisible by r- 1.

For the sum of the digits is the same for both ; and since N-.-S
and N^-S are both divisible by r-1, it follows that Ni-N^ is

divisible by r - 1.

Ex. 2. Shew that in the ordinary scale a number is divisible by 9 if

the sum of its digits be divisible by 9, and by 3 if the sum of its digits
is divisible by 3.

N-S IB & multiple of 9 ; hence, if 5 be a multiple of 9, so also is

N ; and, if S be a multiple of 3, so also is N.

Ex. 3. Shew that any number is divisible by r+ 1 if the difference

between the sum of the odd and the sum of the even digits is

divisible by r+ 1.

Let N=dQ + djr+ d^r^+ d.^r^+ ,

and D= dff-d^ + d^-dg+
Then N - D= di{r+l) + d^{r^ -l) + d3{r^+l) +

Each of the terms on the right is divisible by r+ 1 [Art. 87J;
.*. N-D is divisible by r+ 1. Hence if D is divisible by r+ 1 so also

ibN.

Ex. 4. If
Nj^

and N^ be any two whole numbers, and if the remainders
left after dividing the sum of the digits in Ni, N^ and in NixN^ by
9 be

rij, n, and p respectively ; then will Tijn^ be equal to p, or differ

from phy & multiple of 9.

For A\=ni+a multiple of 9, andA^^= nj4-a multiple of 9;
therefore N, x N^= Wj x n, + a multiple of 9. Hence n^n^ + a multiple
of 9 is equal to p+& multiple of 9.

If the above is applied in any case of multiplication, and it is

found that n^n^ does not equal p, or differ from it by a multiple of 9,

there must be some error in the process of multiplication.

This gives a method of testing the accuracy of multiplication;
the test is not however a complete one, for although it is certain that

there must be an error if n^ x Wj does not equal p, or differ from it by
a multiple of 9, there may be errors when the condition is satisfied,

provided that the errors neutralize one another so far as the sum of

the digits in the product is concerned.

This is called the *'Rule for casting out tbe nines."

Ex. 5. A number of three digits in the scale of 7 has the same digits
in reversed order when it is expressed in the scale of 9: find the
number.

Let a, 6, c be the digits ; then we have

49a + 76 + c= 81c + 96+ a,

where a, b, c are positive integers less than 7-

Hence 40c + 6= 24a.



EXAMPLES. 277

Now 40c and 24a are both divisible by 8; therefore b must be

divisible by 8. But b is less than 7: it must therefore be zero. And
since 6 is zero, we have 6c=3a, which can only be satisfied when
c=3 and a— 5.

Thus the number required is 503.

Ex, 6. A number consisting of three digits is doubled by reversing the

digits ; prove that the same will hold for the number formed by the
first and last digits, and also that such a number can be found in

only one scale of notation out of every three.

Let the number be abc in the scale of r.

Then we have {abc) x 2= cba.

Since cba is greater than abc, c must be greater than a.

Hence we must have the following equations :

2c= a + r (i),

2& + l= 6 + r (ii),

2a+ l=e (iii).

From (i)
and (iii)

we see that the number represented by ca is

double that represented by ac.

Also 4a + 2=2c=a+r;

.-. r-2= 3a.

Hence, as a is an integer, r - 2 must be a multiple of 3, so that

the number must be in one of the scales 2, 6, 8, 11, &c., the numbers

corresponding to these scales being Oil, 143, 275, 3t7, Ac.

EXAMPLES XXII.

1. Find the number which has the same two digits when

expressed in the scales of 7 and 9.

2. In any given scale write down the greatest and the

least number which has a given number of digits.

3. A number of six digits is formed by writing down any
three digits and then repeating them in the same order ; shew
that the number is divisible by 1001.

4. Of the weights 1, 2, 4, 8, &c. lbs., which must be taken

to weigh 1027 lbs. 1
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5. Shew that the number represented in any scale by 144

is a square number.

6. Shew that the numbers represented in any scale by
121, 12321, and 1234321 are perfect squares.

7. Find a number of two digits, which are transposed by
the addition of 18 to the number, or by converting it into the

septenary scale.

8. A number is denoted by 4*446 in the quinary scale,

and by 4-54 in a certain other scale. What is the radix of

that other scale ?

9. If S be the sum of the digits of a number iT, and 2Q
be the sum of the digits of '2J}1, the number being expressed in

the ordinaiy scale, shew that ^S'- ^ is a multiple of 9.

10. If a whole number be expressed in a scale whose
radix is odd, the sum of the digits will be even if the number
be even, and odd if the number be odd.

11. Prove that, in any scale of notation, the difference of

the square of any number of three digits and the square of the

number formed by reversing the digits is divisible by r* — 1.

12. Prove that, in any scale of notation, the difference of

the square of any number and the square of the number formed

by reversing the digits is divisible by r* — 1,

13. A number of three digits in the scale of 7, when

expressed in the scale of 11 has the same digits in reversed

order : find the number.

14. Prove that all the numbers which are expressed in

the scales of 6 and 9 by using the same digits, whether in the

same order or in a different order, will leave the same remainder
when divided by 4.

15. There is a certain number which is expressed by 6

digits in the scale of 3, and by the last three of those digits in

the scale of 12. Find the number.
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16. Find a number of four digits in the scale of 8 which
when doubled will have the same digits in reverse order.

17. The digits of a number of three digits are in a. p.

The number when divided by the sum of its digits gives a

quotient 15; and when 396 is added to the number, the sum
has the same digits in inverted order. Find the number.

18. Find the digits a, 6, c in order that the number
13a645c may be divisible by 792.

19. Prove that there is only one scale of notation in

which the number represented by 1155 is divisible by that

represented by 12, and find that scale.

20. Find a number of four digits in the ordinary scale

which will have its digits reversed in order by multiplying
by 9,

21. In the scale of notation whose radix is r, shew that

the number (r*
—

l)(r''— 1) when divided by r— 1 will give a

quotient with the same digits in the reverse order.

22. Shew that, in any scale of notation,

^-l^,=
-(,n3...(r-3)ir-l),

the circulating period consisting of all the figures in order

except r — 2 which is passed over. For example, in the

ordinary scale, ^ = 012345679.

23. There is a number of six digits such that when the

extreme left-hand digit is transposed to the extreme right-hand,
the rest being unaltered, the number is increased three-fold.

Prove that the left-hand digit must be either 1 or 2, and find

the number in either case.

24. Find a number of three digits, the last two of which
are alike, such that when multiplied by a certain number it

still consists of three digits, the first two of which are alike

and the same as the former repeated ones, and the third is the

same aa the multiplier.



CHAPTER XIX

Permutations and Combinations.

240. Definition. The different ways in which r

things can be taken from n things, regard being had to

the order of selection or arrangement, are called the per-
mutations of the n things r at a time.

Thus two permutations will be different unless they
contain the same objects arranged in the same order.

For example, suppose we have four objects, represented

by the letters a, 6, c, cZ; the permutations two at a time
are ah, hay ac, ca, ad, da, he, ch, hd, dh, cd, and dc.

The number of permutations of n different things
taken r at a time is denoted by the symbol ^P^.

241. To find the numher ofpermutations of n different

things taken r ata time.

Let the different things be represented by the letters

a, h, c,

It is obvious that there are n permutations of the n

things when taken one at a time, so that ^P^
= n.

Now in the permutations of the n letters r together,
the number of permutations in which a particular letter

occurs first in order is equal to the number of permuta-
tions of the remaining w — 1 letters r — 1 at a time. This
is true for each one of the n letters, and therefore
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Since the above relation is true for all values of n
and r, we have in succession

n—2 r-2*..,P,.,
= («-l)x„.,P,

But
'

"_«P. = (n-r + l).

Multiply all the corresponding members of the above

equalities, and cancel all the common factors; we then
have

,P,
= n (w

-
l)(7i

-
2) (n

- r + 1).

If all the n things are to be taken, r is equal to n, and
we have

^P^ = n{n-l)(n- 2). 3 .2.1.

Definitions. The product w (n
-

1) (r?
-

2) . . . 2 . 1

is denoted by the symbol [w or by n! The symbols [n
and n ! are read *

factorial n.'

The continued product of the r quantities n, n — 1,

w — 2, (n
—
r4-l), n not being necessarily an integer

in this case, is denoted by n^. Thus w,
= w (n

— V){n~ 2).

Hence we have JP^ = \n, and ^P^ = n^.

242. To j^rwi ^Ae number of permutations of n things
taken all together, when the things are not all different.

Let the n things be represented by letters; and sup-

pose p of them to be a's, q of them to be 6's, r of them to

be c's, and so on. Let P be the required number of per-
mutations.

s. A. 20
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If in any one of the actual permutations we suppose
that the as are all changed into p letters different from

each other and from all the rest; then, by changing only
the arrangement of these p new letters, we should, instead

of a single permutation, have \p different permutations.

Hence, if the a's were all changed into p letters

different from each other and from all the rest, the 6's, c's,

&c. being unaltered, there would be P x Ip permutations.

Similarly, if in any one of these new permutations we

suppose that the 6's are all changed into q letters different

from each other and from all the rest, we should obtain

\q permutations by changing the order of these q new

letters. Hence the whole number of permutations would
now he P x\px \q.

By proceeding in this way we see that if all the letters

were changed so that no two were alike, the total number
of permutations would be Pxlp x l^'x Ir...

But the number of permutations all together of n
different things is

jw.
Hence P x

|^
x

l^'
x lr...= In;~

_ In

"

Ex.1.

Ex.2.

Ex.3.

Ex.4.

Ex. 6.

Ex. 6. Find the number of permutations of all the letters of each of

the words acacia^ hannah, success and mississippi.
Am. 60, 90, 420, 34650.

Ex. 7. In how many ways may a party of 8 take their places at a
round table; and in how many ways can 8 different beads be strung
on a necklace ? Ans.

[7, i [7.

Ex. 8. In how many ways may a party of 4 ladies and 4 gentlemen be

arranged at a round table, the ladies and gentlemen being placed

alternately? Am. 144,

'

\i\q\r--'
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Ex. 9. The number of permutations of n things all together in which
r specified things are to be in an assigned order though not necessarily
consecutive is (n/ [r.

Ex. 10. The number of ways in which n books can be arranged on a

shelf so that two particular books shall not be together is (n
-

2) \

n- 1.

Ex. 11. Find the number of permutations of n things r together, when
each thing can be repeated any number of times.

Here any one of the n things can be put in the first place ; and,
however the first place is filled, any one of the n things can be put in

the second place ;
and so on. Hence the number required

=nxnx »x ,..=71''.

Combinations.

243. Definition. The dilBferent ways in which a

selection of r things can be made from n things, without

regard to the order of selection or arrangement, are called

the comhinations of the n things r at a time.

Thus the different combinations of the letters a, h, c, d
three at a time are abc^ ahd, acd and bed.

The number of combinations of n different things r at

a time is denoted by the symbol ^G^.

244. To find the number of combinations ofn different

things taken r at a time.

Let the different things be represented by the letters

a, b, c, ...

Now in the combinations of the n letters r together
the number in which a particular letter occurs is equal to

the number of combinations of the remaining n — 1 letters

r — 1 at a time. Hence in the whole number of combina-
tions r together every letter occurs ^_fi^_^ times, and
therefore the total number of letters is w x ^_fi^i ; but,

since there are r letters in each combination, the total

number of the letters must be r x ^G^.
20—2
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Hence rx jO^^nx ^S'r^v

Since the above relation is true for all values of n and
of r, we have in succession

Also -_^,C^, = w — r + 1.

Hence, by multiplying corresponding members of the

above equations and cancelling the common factors, we
have

|r x^(7^=w(7i-l)(n-2) (n-r-f 1),

that is c^^
nin-l)(n-2)...{n-^r + l) -^n ^

By multiplying the numerator and denominator of the

fraction on the right by In — r, we have

n (w
—

1) (n
—

2). . .(n
— r+ 1) X In — r

fi _
\r \n-

.(ii).
Ir j^— '^

By comparing the above result with that obtained in

Art. 242, it will be seen that ^P^ = ^G^ x
jr.

The relation

^P^
= jO^x [r

can however be at once obtained from the

consideration that every combination of r different things
would give rise to

[r permutations, if the order of the

letters were altered in every possible way.

Note. In order that the formula (ii) may be true

when r — n, we must suppose that |0=1, since JJ^ = 1.

We should also obtain the result |0
= 1 by putting n = 1 in

the relation \a
= n \n— 1.
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245. Theorem. The number of combinations of n

different things r together is equal to the number of the

combinations n — r together.

The proposition follows at once from the fact that

whenever r things are taken out of n things, n — r must
be left, and if every set of r things differs in some par-
ticular from every other, the corresponding set oi n — r

things will also differ in some particular from every other
;

and therefore the number of different ways of taking r

things must be just the same as the number of different

ways of leaving or taking n — r things.

The result can also be obtained from the formula

(ii) of the last Article.

\r \n
— r \n— r \r

It should be remarked that the first method of proof
holds good when the n things are not all different, to which
case the formulae of Art. 244 are not applicable.

Ex. 1. Find ^^G^, ^Cg and joCiy. Ans. 210, 220, 1140.

Ex.2. U„C7,=,Cn,find„C'i,. Am. 15S.

Ex. 3. Find n, having given that n^8= n^«' ^^' H*

Ex. 4. Find n, having given that 3 x »C4= 5 x n-iCg. Ans. 10.

Ex.5. Find w, having given that ^(74
= 210. Am. 10.

Ex. 6. Find ?i and r having given that „P,=272 and ^(7^=136.
Ans. w=17, r=2.

Ex. 7. Find n and r having given ^C^^ : „C^ : ^G^+i :; 2 : 3 : 4.

Am. 71= 34, r=14.
Ex. 8. How many words each containing 3 consonants and 2 vowels
can be formed from 6 consonants and 4 vowels ?

The consonants can be chosen in gC,=20 ways; the vowels can be
chosen in ^C^= & ways ; hence 20 x 6 different sets of letters can be
chosen, and each of these sets can be arranged in 5P5=120 ways.
Hence the required number is 20 x 6 x 120.
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Ex. 9. How many different sums can be formed with a sovereign, a

half-sovereign, a crown, a half-crown, a ehilling and a sixpence ?

Number required = gCj + jC, -f- jCg + ^G^, + gCg -h jC7g
= 63.

Ex. 10. Shew that, in the combinations of 2n different things n
together, the number of combinations in which a particular thing
occurs is equal to the number in which it does not occur.

Ex. 11. Shew that, in the combinations of 4n different things n

together, the number of combinations in which a particular thing
occurs is equal to one-third of the number in which it does not
occur.

Ex. 12. Out of a party of 4 ladies and 3 gentlemen one game at lawn-
tennis is to be arranged, each side consisting of one lady and one

gentleman. In how many ways can this be done ? Ans. 36.

Ex. 13. The figures 1, 2, 3, 4, 5 are written down in every possible
order : how many of the numbers so formed will be greater than 23000?

Ana. 90.

Ex. 14. At an election there are four candidates and three members
to be elected, and an elector may vote for any number of candidates
not greater than the number to be elected. Li how many ways may
an Sector vote? ^ (^ ^ ^ C ^ Ans. 14.

246. Greatest value ofrnOf> To find the greatest
value of ^C^for a given value of n. I Ci ^ . /() cfc

From the formulae of Art. 244 we have
i^' (^>^-. j} /^~'^)

n-r-Vl r^.j)
,a = „a.iX- ^;— . ,^^ ^

Hence J3^ = „(7^_i, according as n — r + 1 = rj that is,

according as r = J (w + 1).
>

Thus the number of combination of n things r together
increases with r so long as r is less than J (n -f 1).

n
If then n be even, JO^ is greatest when r = ^.

If n be odd, JOr%nGr.y
as

r^i(n-f 1), and ,(7,=

n^T-i when r = ^ (w + 1). Thus, when n is odd,

«^i{»-i)
~

n^i{n+i) ^^^ these are the greatest values of JO^.
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For example, if w=10, „(7y is greatest when r=5. Also if n=ll,
,Cr is the same for the values 5 and 6 of r, and ^Cf ^^ greater for these

values than for any other value.

247. To p'ove that „G, + „0,., = ^,(7,.

If the total number of combinations of (w + 1) things r

together be divided into two groups according as they do or

do not contain a certain particular letter, it is clear that the

number of the combinations which do not contain the

letter is the number of combinations r together of the

remaining n things, and the number of the combinations
which do contain the letter is the number of ways in which
r — 1 of the remaining n things can be taken. Thus

The above result can also be proved as follows :

From Art. 244 we have

_^ n(n-l)...(n-r + l) n(n- l)...(n-r + 2)
* -"^" '-' 1.2 r

^
1.2 (r-1)

n(n-l)...(n-r-\-2) , ^ ,
'^

1.2...... r Hn-r-^l+r}

_ (w4-l)n(n-l)...(r?-r + 2) _ ^~
1.2 r '*+'•"

Ex. To prove that „4.,Py=„P,,+ r.„P^_i.

A particular thing is absent in ^P^ of the permutations of the

(n + 1) things and occurs in JPr-i', also when it does occur it can be
in either of r places. Hence

248. Theorem. To prove that, if x and y he any two

positive integers such that x-\-y=^m, then will

^0.
=

.0, + .0... . ,0. + ,G,_ . ,0, + ... + .C, . ,6V. + .G,.

Suppose that m letters a, 6,..., p, q,..., are divided
into two groups a, 6,..., and p, q,..., there being x and

y letters respectively in these groups. Then the whole
number of sets of n out of the m things will clearly be
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equal to the sum of the number of sets formed by taking
n out of the first group and none out of the second, n—\
out of the first group and one out of the second, n — 2

out of the first group and 2 out of the second, and so on.

Now n can be chosen from the first group in JJ^ ways.
Also n — 1 can be chosen from the first group in JJ^^
ways, and any one of these sets of w — 1 things can be

taken with any one of the ^G^ sets of 1 from the second

group, so that the number of sets formed by taking n—\
from the first group and 1 from the second is J^^_^ x JJ^.

Similarly, the number of sets formed by taking n — 2

from the first group and 2 from the second is J0^_^ x yC^.

And, in general, the number of sets formed by taking
n—r from tha first group and r from the second is gpn-r ^ w^r'

Hence we have

li X OX y be less than n some of the terms on the right
will vanish; for JJ^

= if r > w.

249. Vandermonde's Theorem. From the last

Article, if a?, y and n be any positive integers such that

a; + y is greater than w, we have, since JO^
= .— ,

\n |n"^ |yi-l
-

|1
"^

|n-2 '|2
"*" •••

\n
— r

\r_ \n

Multiply each side of the last equation by |w, and we

have
n (w — 1)

{x + y\ = x^ + nx^_^y^ + \ ^ "^^^^^ "^ *••

+
|7[^^«-2/.+

+yv
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The above has been proved on the supposition that x
and y are positive integers such that a; 4- y is greater than

w; and by means of the theorem of Art. 91, the proposi-
tion can be proved to be true for all values of x and y.

For the two expressions which are to be proved
identical are only of the nth degree in x and y. But, if

y has any particular integral value greater than n, the

equation is known to be true for any positive integral
value of Xy and thus for more than n values; and
hence it must be true for that value of y and any value

whatever of x. Hence the proposition is true for any
particular value whatever of x, and for more than n values

of y ;
it must therefore be true for all values of x and for

all values of y.

This proves Yandermonde's theorem, namely :
—

If n he any positive integer, and x, y have any values

whatever ; then will

n(n — X)

[r \

n — r

Homogeneous Products.

250. The number of different products each of r

letters which can be made from n letters, when each

letter may be repeated any number of times, is denoted

by the symbol JS^.
For example, the homogeneous products of two dimensions formed

by the three letters a, 6, c aie oH^, b^, c^, he, ca, ab.

To find JI^,

Since in each of the r-dimensional products of n

things there are r letters, the total number of letters in all

the products will be ^H^ x r
; and, as each of the n letters

occurs the same number of times, it follows that the
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number of times any particular letter, a suppose, occurs is

Now consider all the terms which contain a at least

once. If any one of these terms be divided by a the

quotient will be of r — 1 dimensions
; and, when all

the terms which contain a are so divided, we shall obtain

without repetition all the possible homogeneous products
of the n letters of r — 1 dimensions. Now the homogeneous
products of r — 1 dimensions are in number „H^_j^ ; and,

by the above, the number of a's they contain is

r — 1
X „H^^. Hence, taking into account the a which is

a factor of each of the „J5^i terms, the total number of as
which occur in all the r-dimensional products of the n letters

is

,Sr.. +'^ X A.„ that is '^±1^ „ff,...

Hence equating the two expressions for the number
of a's, we have

r rr n-^r — 1 „
n n « r i»

n^r = X n^r-1'r

Since the above relation is true for all values of n and

r, we have in succession

jr _ ^+r-2 rr
n-"r-l

"~
•• — 1

^ B-'-'r-a*

T r _ yi +r—S rr

Also ^ITj is obviously equal to n.
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Hence, by multiplying and cancelling common factors,

we have -w^-iA^-fO

jl^ =
n(n +

l).^

(n +r-1 )
,g^^ ^j^^ j^^^ 293].

Ex. 1. Find the number of combinations three at a time of the letters

a, by c, d when the letters may be repeated. Ans. 20,

Ex. 2. Find the number of different combinations six at a time which
can be formed from 6 a's, 6 6'b, 6 c's and 6 d's. Ans. 84.

Ex.3. Shew that «ffr=n-A+ n^Vi.
and deduce that

Ex. 4. Shew that

n^r=n-l^r+ n-l^r-1+ «-l^r-S+ + n-Jh+ !•

251. Many theorems relating to permutations and
combinations are best proved by means of the binomial

theorem : examples will be found in subsequent chapters.

[See Art. 292.]

Ex. 1. Find the number of ways in which mn different things can be
divided among n persons so that each may have m of them.

The number of ways in which the first set of m things can be

given is mn^m » ^^^t whatever set is given to the first, the second
set can be given in mn-m^m ways ; so also, whatever sets are given
to the first and second, the third set can be given in mn-nn^m ways;
and so on.

Hence the required number is

nm^tn ^ in(n-l)^m ^ m<ii-2)^m^ ^ im^m ^ m^m
\mn \in(n-l) \tn(n-2) 12m \m= —

X X
^

X X
—

X ——
\m \m{n-l) |w |

w (n
-
2) \m |m(n-3) \m_\rn \m

Ex. 2. Prove that

l-nC?i.nHi+«C7j,.„H2-„C3.„H8+ + (-l)'»„C„.„H„=0.

Since „c;r.„7f.="-<'^--i^-^^^±^ . ^<^^'\(-^^-^)

n^{n^-l^) (n^-fH')*
P. 2* .. f"

*
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we have to prove that

P "*"

12,22
"

P. 22. 3*

T
n2(n»-l2)...(n2-n-l^ _

12.2a...na

n2-ia
Now the first two terms =

• • vvAaM wxree *= t
^2 ni

(n2-12)(n2-22)(n2-3^
....« four = p 22.32

•

and so on.

Hence the sum of all the terms on the left

_ (n«-12)(n2-22) (n2-n2)_
~^~ ' 12.22 n>

""•

Ex. 8. Shew that n straight lines, no two of which are parallel and
no three of which meet in a point, divide a plane into ^ (/i+ 1) + 1

parts.

The nth straight line is cut by each of the other n- 1 lines ; and
hence it is divided into n portions. Now there are two parts of the

plane on the two sides of each of these portions of the nth line which
would become one part if the nth line were away. Hence the plane is

divided by n lines into n more parts than it is divided by n - 1 lines.

Hence, if F {x) be put for the number of parts into which the

plane is divided by x straight lines, we have
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Consider the second case first.

Let the different things be represented by the letters a, 6, c,

Suppose that a is taken first. Then, if either of the two letters

next but one to a be taken second, any one of n - 6 letters can be

taken for the third of the set. If, however, the second letter is not

next but one to a, but in either of the n - 5 other possible places,

there would be a choice of n - (5 places for the third letter of the set.

Hence the total number of ways of taking 3 letters in order a being
first is 2 (n

-
5) + (n - 5) (n

-
6), that is (n

-
4) (n

-
5). There is the

same number when any one of the other letters is taken first ; hence,
as the order in which the three letters in a set are taken is indifferent,

the total number of sets is ^n (n
-
4) (n

-
6).

In order to obtain the first case from the second, we have only to

suppose that a and I are no longer contiguous. Hence the number
in the first case is the same as that in the second with the addition

of those sets which contain a and 2, and there are n-4 of these.

Hence the number in the first case is

in(n-4)(n-5) + (3i-4)= i(n-2)(n-3)(n-4).

Ex. 6. There are n letters and n directed envelopes : in how many
ways could aU the letters be put into the wrong envelopes ?

Let the letters be denoted by the letters a, 6, c... and the corre-

sponding envelopes by a', b', c',

Let F (n) be the required number of ways.

Then a can be put into any one of the n-1 envelopes 6', c',

Suppose a is put into k'; then k may be put into a', in which case

there will heF{n- 2) ways of putting all the others wrong. Also if

a is put into fc', the number of ways of disposing of the letters so that

k is not put in a', 6 not in 6', &c. is JP'(n
-

1).

Hence the number of ways of satisfying the conditions when a is

put into fc' is F(n-l) + F{n-2). The same is true when a is put
into any other of the envelopes 6', c',... Hence we have

F{n) = {n-l){F(n-l)+ F{ri-2)};

F (n) -nF(n- 1)= -{F{n-1)- (n- 1) F(n- 2)}.

Similarly F(n-l)-{n-l) F {n-2)= - {F {n-2)
- {n-2) F{n-d)}

F (3) -3F{2)=-{F (2)
- 2F (1) }.

But obviously F (2)
= 1 and F (1)

=
;

F{n)-nFin~l) = {-l)\

F{n) F{n~l) _ 1_

\n |n-l
"^ '

'\n'
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and

12"" ir-^"^^ |2"

Hence, by addition,

-("'=41-^34—1?}
the number required.

SXAMPLES XXin.

1. In how many different ways may twenty different things
be divided among five persons so that each may have four 1

^ A crew of an eight-oar has to be chosen out of eleven

men, five of whom can row on the stroke side only, four on the

bow-side only, and the remaining two on either side. How
many different selections can be made ?

3. There are three candidates for a certain office and twelve

electors. In how many different ways is it possible for them
all to vote

;
and in how many of these ways will the votes be

equally divided between the candidates ?

4. Shew that ^C^^ : ^JO^ is equal to
"

l". 3.5 (4n-l)

{1.3.5 (2n-l)}«*

5. Find the number of significant numbers which can be

formed by using any number of the digits 0, 1, 2, 3, 4, but

using each not more than once in each number.

6. Shew that in the permutations of n things r together,
the number of permutations in which p particular things occur

7. There are n points in a plane, no three of which are in

the same straight line
;
find the number of straight lines formed

by joining them.

8. There are n points in a plane, of which no three are on
a straight line except m which are all on the same straight line.

Find the number of straight lines formed by joining the points.
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'
9. There are n points in a plane, of which no three are on

a straight line except m which are all on a straight lina Find
the number of triangles formed by joining the points.

"
10. Shew that the number of different rt-sided polygons

formed by n straight lines in a plane, no three of which meet
in a point, is J j

71— 1.

11. There are n points in a plane which are joined in all

possible ways by indefinite straight lines, and no two of these

joining lines are parallel and no three of them meet in a point.
Find the number of points of intersection, exclusive of the n

given points.

12. Through each of the angular points of a triangle m
straight lines are drawn, and no two of the 3m lines are parallel ;

also no three, one from each angular point, meet in a point.
Find the number of points of intersection.

13. The streets of a city are arranged like the lines of a

chess-board. There are m streets running north and south,
and n east and west. Find the number of ways in which a

man can travel from the N.W. comer to the S.E. comer, going
the shortest possible distance.

14. How many triangles are there whose angular points
are at the angular points of a given polygon of n sides but none
of whose sides are sides of the polygon ?

15. Shew that 2n persons may be seated at two round

tables, n persons being seated at each, in^ different ways.

16. A parallelogram is cut by two sets of m lines parallel
to its sides : shew that the number of parallelograms thus

formed is J (w + l)'(m + 2)'.

17. Find the number of ways in which p positive signs
and n negative signs may be placed in a row so that no two

negative signs shall be together.

18. Shew that the number of ways of putting m things in

n + \ places, there being no restriction as to the number in each

place, is (m -hn) l/mln'
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19. Shew that 2n things can be divided into groups of n

\2n
pairs in ^^ ways.

20. Find the number of ways in which mn things can be

divided into m sets each of n things.

21. Shew that n planes through the centre of a sphere, no
three of which pass through the same diameter, will divide the

surface of the sphere into n' -n+2 parts.

22. Shew that the number of parts into which an infinite

plane is divided by m + n straight lines, m of which pass

through one point and the remaining n through another, is

mn + 2m + 2n—l, provided no two of the lines be parallel or

coincident.

23. Find the number of parts into which a sphere is

divided hj m + n planes through its centre, m of which pass

through one diameter and the remaining n through another,
no plane passing through both these diameters.

24. Find the number of parts into which a sphere is

divided by a + b + c+ ... planes through the centre, a of the

planes passing through one given diameter, b through a second,
c through a third, and so on; and no plane passing through
more than one of these given diameters.

25. Shew that n planes, no four of which meet in a point,
divide infinite space into J (n* +671 + 6) different regions.

26. Prove that if each of m points in one straight line be

joined to each of n points in another, by straight lines termin-

ated by the points ; then, excluding the given points, the lines

will intersect Jmw (m—l)(n—l) times.

27. No four of n points lying in a plane are on the same
circle. Through every three of the points a circle is drawn,
and no three of the circles have a common point other than one
of the original n points. .Shew that the circles intersect in

if^ (n
-

I) (n
-

2) {n
-

S) {n
-

^) {2n
-

\) points besides the

original n points, assuming that every circle intersects every
other circle in two points.



CHAPTER XX.

The Binomial Theorem.

252. We have already [Art. 67] proved that the con-

tinued product of any number of algebraical expressions is

the sum of all the partial products which can be obtained

by multiplying any term of the first, any term of the second,

any term of the third, &c.

258. Binomial Theorem. Suppose that we have n
factors each of which is a + 6.

If we take a letter from each of the factors of

(a-f 6)(a + &)(a-f 6)

and multiply them all together, we shall obtain a term of

the continued product; and if we do this in every possible

way we shall obtain all the terras of the continued pro-
duct. [Art. 67.]

Now we can take the letter a every time, and this can

be done in only one way; hence a" is a term of the

product.

The letter b can be taken once, and a the remaining
(w
—

1) times, and the number of ways in which one b can

be taken is the number of ways of taking 1 out of n things,
so that the number is

„(7,
: hence we have

.C,.a'-'b.
s- A.

, „ 21
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Again, the letter h can be taken twice, and a the

remaining (n
—

2) times, and the number of ways in which

two 6's can be taken is the number of ways of taking 2 out

of n things, so that the number is ^G^ : hence we have

And, in general, h can be taken r times (where r is

any positive integer not greater than n) and a the re-

maining n — r times, and the number of ways in which r

6's can be taken is the number of ways of taking r out of

n things, so that the number is ^G^: hence we have

Thus (a + b) (a -\- b) (a -{- b) to n factors

= a" + „a, . a"-*6 +nC, . a"-^6» + +„a. a""'^>'+ ...

the last term being jOy^'^b'', i.e. 6".

Hence, when n is any positive integer, we have

(a + by = a" + .a^ . a"-*6 + ,(7, . a"-»6^ + ...

The above formula is called the Binomial TJieorem.

If we substitute the known values [see Art. 244] of

„0j, ^Cj, „0g,... in the series on the right, we obtain the

form in which the theorem is usually given, namely

(a '{ by = a" + 7ia"-' b + ""^^"^^ a"^b' + . . .

J. . <u

In

The series on the right is called the expansion of

(a + by.

254. Proof by Induction. The Binomial Theorem

may also be proved by induction, as follows.
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We have to prove that, when n is any positive integer,

(a + by = a" + na'^-'h +
^

^^^ "l^^ a"-°6' +

jr
n — r

or that

(a + by = a" + „(7,a'*''6 + jO^a'^-'b^ + ... + ,aX"''?>'' + .•• + 6".

Now if we assume that the theorem is true when the

index is n, and multiply by another factor a + 6, we have,
when like terms of the product are collected,

(a + by^' = a"-^^ + (1 + „a,) a"6 + (A + „a,) a"-^ ^'^ + . . .

Now i + ^a,
= n-n =

„,,a„ xri-

and, in general,

.a-. + .a = «.a[Art.247].
Hence

(a + 6r^ = a"-^^ + „,,C, . a% + „^,a, . a^^ft'' + • . .

Thus i/^the theorem be true for any value of n, it will

be true for the next greater value.

Now the theorem is obviously true when n = 1. Hence
it must be true when n — 2; and being true when n = 2,

it must be true when 7i = 3; and so on indefinitely. The
theorem is therefore true for all positive integral values

of 71.

Ex.1. Expand (a + 6)4.

We have

= a* + ia^b + 6tt362 + Aab^ + 6*.

21—2
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Ex.2. Expand (2a; -i/)3.

Put 2x for a, and - y for 6 in the general formula : then

(2a:-y)3=:(2a;)8 + 3 (2x)M-y) +
f^-|

(2x) (- j,)» +^ (-y)»

Ex.3. Expand (a -6)".

Change the sign of 6 in the general formula; then we have

1. «

l5
,+Fi^ «"-"(-*)'•+ +(-")'

1 .J

In

+^-ir|7i^^"-^&''+
+(-i)"ft*.

255. General term. By the preceding articles we
see that any term of the expansion of (a + by by the

Binomial Theorem will be found by giving a suitable

value to r in

In

\r \n
— r

On this account the above is called the general term
of the series. It should be noticed that the term is the

(r + l)th term from the beginning. [See Note Art 244.]

256. Coefficients of terms equidistant respec-
tively firom the beginning and the end are equal.
In the expansion of (a + by by the Binomial Theorem,
the (r + l)th term from the beginning and the (r + l)th
term from the end are respectively

nC^.a'-^b^ and A-. • «^^""^-

But „a=«C^n^- [Art. 245.J
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Hence, in the expansion of (a + 6)", the coeficients of

any two terms equidistant respectively from the beginning
and the end are equal.

This result follows, however, at once from the fact that

(a + 6)", and therefore also its expansion, would be unaltered

by an interchange of the letters a and h
;
and hence the co-

efficient of a'^'^V must be equal to the coefficient of ft""*" a*".

257. If, in the formula of Art. 253, we put a = 1 and
6 = a;, we have

(l+a?)"
= l +^ + ''t'^^^ ^' + - + r-r^

— ar + ... + «?«.
^ ^ 1.2 r 71 — r

This is the most simple form of the Binomial Theorem,
and the one which is generally employed.

The above form includes all possible cases: if, for

example, we want to find {a + hy by means of it, we have

= a" + 7ia"-^6 -f"^^ a^-^h' + ...

258. Greatest term of a binomial expansion.
In the expansion of (1 + a?)", the {r + l)th term is formed

n ~~ r -^- 1
from the rth by multiplying by w.

T^T-
n — r + l /n + l ,\ , n-\- 1

JNow X — —
Ijoo,

and clearly

diminishes as r increases : hence cc diminishes
- r

as r is increased. If x be less than 1 for any
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value of r, the (r + l)th term will be less than the rth.

In order therefore that the rth term of the expansion may
be the greatest we must have

n—r+1 ^ ,n—r— 1+1
a; < 1, and = x>l.

r r — 1

Hence r > -^
—

,
and r < i—\- 1.

a?+ 1 a?+ 1

The absolute values of the terms in the expansion of

(1 + (cY will not be altered by changing the sign of x
;
and

hence the rth term of (1
—

a?)" will also be greatest in

absolute magnitude if

r > ^—-f— ,
and r < ^^ ^ + 1.

x-h 1 x + l

If r = ~-
, then x—1: and hence there

x+l r *

is no one term which is the greatest, but the rth and

r+ l|th terms are equal, and these are greater than any of

the other terms.

Since (a + x)'

f-x)*»i8

(n+1)

the rth term of (o+x)*» is the greatest when

r>- and < +1,

a a

Ex. 1. Find the greatest term in the expansion of (l + a?)*, when

21 21
The rth term is the greatest, if r>— and r <.!+-=-, Hence

o 5
the fifth term is the greatest.

Ex. 2. Find the greatest term in the expansion of {1+xy, when
6

The rth term is the greatest, if r > 5 and < 6. Thus there is no
one term which is the greatest, bnt the 5th and 6th terms of the
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expansion are equal to one another and greater than any of -the

other terms.

Ex. 3. Find the greatest term in the expansion of (10 + Sx)^'^ when
a;= 4. Am. The ninth term.

The greatest coefficient of a binomial expansion can

be found in a similar manner. For in the expansion of

(1 + a?)" the coefficient of the (r + l)th term is formed from
71 — T* -|- 1

that of the rth by multiplying by ± . Hence the

rth coefficient will be the greatest in absolute magnitude,

if < 1 and > 1.
r r — 1

That is if r>'^ and < 1 +^.
Hence when n is even, the coefficient of the rth term

is the greatest when r = ^ + 1
;
and when n is odd, the

coefficients of the —q— th and —^
—th terms are equal

to one another and are greater than any of the other terms.

For example, in {l + x)^ the coefficient of the 11th term is the

greatest; and in (1 + a;)" the coefficients of the 6th and 7th terms
are greater than any of the others.

EXAMPLES XXIY.

Write out the following expansions :

1. (x + ay. 2. {2a -xy. 3. (l-xj.

4. (2a -Say. 5. (2af-3y. 6. {x'
-
2yy.

7. Find the third term of {x
-

Sy)*".

8. Find the fifth term of (3aj
-

4)''".

9. Find the twenty-first term of (2
-
x)^,

10 Find the fortieth term of {x
-

y)**.
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11. Find the middle term of (1 +xf,

12. Fiml the middle terms of (1 4- a;)".

13. Find the general term of {x
-

3y)".

14. Find the general term of (of + y^)".

15. Write down the first three terms and the last three

terms of(3ic- 22/)''.

16. Find the term of (1 + xy^ which has the greatest
coefficient.

17. Find the two terms of (1 + aj)'*
which have the greatest

coefficients.

18. Shew that the coefficient of x" in the expansion of

(1 + xy is double the coefficient of x" in the expansion of

(1 + xy''-\

19. Shew that the middle term of (1 +a;)^'* is

[n
20. Employ the binomial theorem to find 99*, 51* and

999^

21. Shew that the coefficient of x' in the expansion of

\n
is

("jy \ i(n + r)\i{n-r)
'

22. Find the middle term of
(a;

- -
j

.

23. The coefficients of the 5th, 6th and 7th terms of the

expansion of (1 + a;)*
are in arithmetical progression : find n.

24. For what value of n are the coefficients of the second,
third and fourth terms of the expansion of (1 +a;)" in arith-

metical progression 1

25. If a be the sum of the odd terms and b the sum of the

even terms of the expansion of (1 + aj)", shew that

il-af)''=a'-b'.
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259. Properties of the coefficients of a binomial

expansion.

It will be convenient to write the Binomial Theorem
in the form

(l+a?)" = c„ + Cja; + C2a^ + ...+cX+ ... c.a?" (i),

where, as we have seen, c^
=

c„
= 1

; c^
=

c„_i
= n

;

and, m general, n = c„_ = ;

—r=— .
-'

° "^
\r \n — r

I. Put a; = 1 in (i) ;
then

2'* = c„ + c, + c,+ ... + c„.

Thus the sum of the coefficients in the expansion of
{l+xyisr,

II. Put a; = — 1 in (i) ;
then

(l-ir = c,-c, + c,- + (~irc,;

••.0 = (Co + c, + c,+ ...)-(c,+ C3 + c, + ...).

Thus the sum of the coefficients of the odd terms of a
binomial expansion is equal to the swm of the coefficients

of the even term^.

III. Since c^
=

c„_^, we have

(1 +xy = c^-{-c^x-\-c^a^ + ... + cX+ ... + cjv\

and (1 + xy = c„ + c„_^x + c„^^ + . . . c^_X + . . . + c^^x''.

The coefficient of of in the product of the two series

on the right is equal to

Co^+C,^ + c/+ +C
Hence [Art. 91] c,' + c,^ -^ ... +c,' + + cj'

is equal to the coefficient of x^ in (1 + xy x (1 + a?)", that

1271

is in (1 + xf"
' and this coefficient is -'=^ •
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Hence the smn of the squares of the coeflScients in the

expansion of (1 +a?)' is ~t- •

\n\n

IV. As in III, we have

(1 + xf = Co + c^x + c^a^ + ... + c„a;",

and (1
- xf = c,

-
c^^,x + c^_,x^ + ... + (- Vfc^"".

The coefficient of o^ in the product of the two st^rios

on the right is equal to

. (-l)"(c.'-c.» + c,=
- + (-l)V}.

The coefficient of a;^ in (1 + xy x (1
— x^, that is in

- 1^
(1
-

s^y, is zero if n be odd, and is equal to (— 1)'. rr^v-

if n be even.

Hence c^
-

c^'' + c,*
-

. . . + (- 1)X' is zero

n

or (— l)^/i!/(^7i!)', according as 7i is odd or even.

Ex. 1. Shew that

We have Ci+ 2c2 + 3c8+...+nc,,

„n(n-l) n(n-l)(n-2) I"
.

=njH-(n-l)
+

j-2
+

+]r-lln-.r+
+
^/(r-l|n-r

r:i(l + l)»»-l= n2'»-i.

Ex.2. Shew that
Co-^c,

+
^c,-

+ (-!)«_£._ = _i_^.

We have c©- g^i
+
s *-'»

" *^°' "= • ~
2

**

'^'S 172
~
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1 La.1 (^+1)« (r^ + l)n(n-l) J

- ^ ^
(l fnlin ^''^^^'' (n+l)n(n-l) ./.m-Hil

J^ ?_ (1 _ l)n+l __J_
n+1 n+ 1^

' n+1

Ex. 3. Shew that, if n be any positive integer,

o__£l_ -.^... + (-!)"
In

X x+ 1 x+2
' " ^ ' x+n x(x + l)..^{x+n)

Assume that

X a;+ l^x + 2
^^ ' x + n « («+ l). ..(«+ »)'

for all t;alM<« of «, and for any particular value of n.

Change x into x+ 1
; then

«+ l a; + 2^a: + 3
^^ ^ x + »+ l

!«

(a?+ l)(a; + 2)...(a;+ n+ l)*

Hence, by subtraction,

X X+ 1
^

X+ 2
~

"^^ ^^ x+ r
"^

1 |W + 1

^^ ' x+n + 1 x(x+l) (x+n+ 1)'

But «C^+nCf-i=n4-i^r. for all values of r [Art. 247j.

Hence we have

i _ w+l^l , n+lA _ +(_l)n+l n±l^»+l 1^

x~ X+1 x+ 2
^ ' x+n+1 X {x + 1) ...{x + n+1)'

Hence if the theorem be true for any particular value of n it will

be true for the next greater value. But the theorem is obviously true
for all values of x when n=l: it is therefore true for all positive

integral values of n, [See also Art. 297, Ex. 3.]

By giving particular values to x we obtain relations between

Cj, Cj , &c. For example :

Put x= l; then we have

£o £i 4. ^ _ _ _L
l"'2"^3 ~n+ l'
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- ^=^-"^M- =rx3;^,-
Ex. 4. Shew that

Coa-Ci(a-l) + Ca(a-2)-C8(a-3) + + (-l)nc„(a-n)=0,
and that

Coa3-Ci(a-l)2 + Ca(a-2)2-c,(a-3)3+ + (-l)»'c„{a-n)2=0.

We have from 11., if w be any positive integer,

i-„+!L(±il)- "("-iH«-2)^ ^,_,,.^„ ,,,_

Hence, if n > 1

1_(„_1,+ (lzi)|zl>
_ + (_i).-.=o (ii).

Multiply (i) by o and (ii) by n and add ; then

a-n(a-l) +^^^^a-2)- + (_i)n(a-n)= (iii),

where n is > 1.

Change a into a - 1 and n into n - 1 in
(iii) ; then, n feeing > 2, we

have

a-l-(w-l)(a-2) + + (-l)'*-i(a-n)=0., (iv).

Now multiply (iii) by a and (iv) by n and add; then

aa-n(a-l)a+ -^-Ji^y(a-2)2-
+ (

- l)«(a-n)2= 0,

provided n is greater than 2.

By proceeding in this way we may prove that

aP-n{a-l)P+ ^^'!^~^\a-2)P- + (- l)'»(a-7i)P=0,

provided that p is any positive integer less than n.

[See also Art. 305.]

260. Continued product of n binomial factors of

the form x + a, x-}-b, x-\-c, &c.

It will be convenient to use the following notation :

/S,
is written for a+6 + c + ..., the sum of all the

letters taken one at a time. 8^ is written for ab -\- ac •}- . . ,,

the sum of all the products which can be obtained by
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taking the letters two at a time. And, in general, S^ is

written for the sum of all the products which can be
obtained by taking the letters r at a time.

Now, if we take a letter from each of the binomial
factors of

(x-¥a){x + h){x-\-c){x-{-d) ,

and multiply them all together, we shall obtain a term
of the continued product ; and, if we do this in every
possible way, we shall obtain all the terms of the con-
tinued product.

We can take x every time, and this can be done in

only one way; hence a?" is a term of the continued

product.

We can take any one of the letters a, b, c..., and x
from all the remaining n—1 binomial factors

;
we thus

have the terms ax^'\ bx*"'^, ca?'*"^ &c., and on the whole

S^.x""-'.

Again, we can take any two of the letters a, b, c...,

and X from all the remaining w — 2 binomial factors;
we thus have the terms abx'''^, acx*''^ &c., and on the

whole S^ . of*-*.

And, in general, we can take any r of the letters

a, 6, c..., and x from all the remaining n — r binomial

factors
;
and w^e thus have S^ . a7""^

Hence (x-{- a) (x -\- b) (x + c)

=
x''-\-S^.ar-''-\-S^.x''-'+... + S,.x*'-' + ...

the last term being abed , the product of all the

letters a, 6, c, d, &c.

By changing the signs of a, 6, c, &c., the signs of

/Sj, /Sfg, S^, &c. will be changed, but the signs of S^y S^, 8^,
&c. will be unaltered.

Hence we have

{x
—

a) (x
—

b) (x
-

c)

^x''--S,.x'-'+S,.x^-'-,..-^('-iyS,.ar-\..-{-(''iyabcd,,.
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261. Vandermonde's Theorem. The following

proof of VandermoiKie's Theorem is due to Professor

Cayley*. [See also Art. 249.]

We have to prove that if n be any positive integer,
and a and b have any values whatever

;
then will

/ 7 x J
n(n — l) J

(a + bX = a, + na,_J)^ -f -\—2^ »„., 6, -I- . . .

6^ + ... +6..
ir

|7i

— r " ' *^ *

Assume the theorem to be true for any particular value

of n. Multiply the left side by a+ 6 — w
;
it will then become

(a + 6)^1. Multiply the successive terms of the series on
the right also by a + 6 - w but arranged as follows :

—
for the first term {(a

—
n) + 6} ;

for the second {(a
— n + 1) + (6

-
1)} ;

and for the rth {(a
- w + r - 1) + (6

- r + 1)}.

We shall then have

(a + bX,,:^a^{{a-n) + b\+A.a„_,b,{(a-n + l) + (b-l)]

+ nC^,.a«-A{(«-^ + 2) + (6-2)} + ...

+ nOr-x . ttn-^+X^'.-l {(a
- M + T - 1) + (6

- r + 1)}

+ nCr . a,.A {(a-n-^r)-\-(b- r)}

+ ...+6Ja + (6-n)}.

Now a„ {{a
-

n) + b]
=

a,^, 4- a„ 6,,

„G, . a^^A ((a
- n + 1) + (6

-
1))

=
^C\ (a, b, + a,_,6,),

„a-i . a„-,.+i^.-i {(a
- n + r - 1) + (6

- r + 1)}

nCr . a„-r^r {(tt
-

?i + r) + (6
-

v)}
= ^C, (a^.^-ift, + a,_,6^x)

•
Messenger of Mathematics, Vol. y.
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Hence (a + b)^,
=

a„+i + (1 + ^C^) a,,\ + . . .

since „0^i + JJ^ = n+iC'r-

Thus, t/ the theorem be true for any particular value

of n, it will also be true for the next greater value. But
it is obviously true when w = 1

;
it must therefore be true

when 71 = 2
;
and so on indefinitely. Thus the theorem is

true for all positive integral values of n.

262. The Multinomial Theorem. The expansion of

the nth power of the multinomial expression a + 6 + c + ...

can be found by means of the Binomial Theorem.

For the general term in the expansion of

(a + 6 + c + (i + ...)", that is of {a +(6 + c + d+ ...)}",

by the Binomial Theorem is .vu
f

"^

\n

'

^

Ir
|w
— r

Similarly the general term in the expansion of

by the Binomial Theorem is

\n — r

,

5>(c + d + ...)—-.

The general term in the expansion of (c + cZ + . . .)"
"^^

by
the Binomial Theorem is

!"-'•-
\t\n — r-s — t

c'(d +...)"-"--'.

Hence the general term in the expansion of

is

\r\n--r \8 \n
— r-8

\t\n
— r-s—t
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that is j—Tu— a'b'c' ...,

\r\s_\t...

where each of r, 5, ^ . . . is zero or a positive integer, and

r4-5 + ^ + ...=7i.

The above result can however be at once obtained by
the method of Art. 263, as follows.

We know [Art. 67] that the continued product

(a + 6 + c+...)(a4-6 + c+...)(a + 6 + c + ...)---

is the sum of all the different partial products which,can

be obtained by multiplying any term from the first multi-

nomial factor, any term from the second, any term from

the third, &c.

The term a*" 6* c* . . . will therefore be obtained by taking
a from any r of the n factors, which can be done in „G^

different ways; then taking h from any s of the remaining
n — r factors, which can be done in „_,.(7, different ways ;

then taking c from any t of the remaining n — r — s factors,

which can be done in „_^,C7^ different ways; and so on.

Hence the total number of ways in which the term
a*" 6* c*. . . will be obtained, which is the coefficient of the

term in the required expansion, must be

that is
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Ex. 1. Find the coe£Qcient of abc in the expansion of (a+ &+ c)".

13

The required coefficient = = 6.

Ex. 2. Find the coefficients of a^lP, bcd^ and abed in the expansion
of {a + b + e+ d)\

We have the terms

Thus the required coefficients are 6, 12 and 24 respectively.

263. By the previous Article, the general term of the

expansion of {a -\- bx -i- car^ -\- daf^ + )*•
is

In^ a' {hxj {cx'J {dxy ,

r \s \t\u..

that is ,-T-h a''?>V(i" ^.«+2*-»^«--.

\r\s \t\u...

Hence to find the coefficient of any particular power of «,

say of af^y in the expansion, we must find all the different

sets of positive integral values of r, s, ^,... which satisfy
the equations

5 + 2« + 3w+ =a,

r + s + ^ + w+ =w.

The required coefficient will then be the sum of the

coefficients corresponding to each set of values.

Ex. 1. Find the coefficient of «* in the expansion of (1 + 2a:+ ^x^)\

1^
The general term is

-j

—j^^ 2*3'x*+2*, and the terms required are

til 11

those for which «+ 2«= 5 and r+« + t=4.

Since each of the quantities r, s and t must be zero or a positive

integer, the only possible sets of values are t= 2, «:=!, r=l and

14

t=l, s= 3, r=0, the corresponding coefficients being p.
.y,
.2.3^

|l \i\z

s. A. 22
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li
and . 23 . 3, that is 216 and 96 respectively. Hence the

required coefficient is 312.

In simple cases the result can be readily obtained by aotnal

expansion. We have

(1 + 2a;+ 3x^)*= 1 + 4 (2a; + 3cc2) + 6 (2a;+ 3x^)^+ 4 (2a; + 3a;2)8+ (2x + Sx^.
Only the last two terms will contain x'^ and the coefficients of ar^ in

these terms will be found to be 216 and 96 respectively, so that the

required coefficient is 312.

Ex. 2. Find the coefficient of x* in the expansion of (1 + a;+ ar')^.

Am. 6.

Ex. 3. Find the coefficient of x^ in the expansion of (1 + a; + aP)*.

Am. 16,

Ex. 4. Find the coefficient of a;* in the expansion of (2 + a; - x^)^.

Am.
Ex. 5. Find the coefficient of a;^" in the expansion of

(7 + x + x^ + x^+ x*+ x^)». Am. 39.

Ex. 6. Find the coefficient of the middle term of the expansion of

(l+a; + a;- + x3 + a;«)». Ans. 38L

EXAMPLES XXV.

1. Prove that

c„
-

2c, + 3c,
- + (- 1)- {n +l)c^ = 0.

2. Prove that

c,-2c, + 3c3- 4-(-l)--'nc,-0.

3. Prove that

c„+2c, + 3c, 4- + (w + l)c,
=
2"-'(n+2).

4. Prove that

c, + 2C3 + 3c, + + (n- 1) c,
= 1 + (n- 2) 2'-\

5. Prove that

c„ + 3c,
+

5c, + + (2n + 1) c„
= (n + 1) 2".

6. Prove that

3c, + 7c,+ IIC3+ + {in-l)c^ = l + (2n-l)2\
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7. Prove that

1^2 3 ri+1 7*+l

8. Prove that

^0 ^2 ^4 ^'s
2*

13 5 7 n+l

9. Prove that

c. c- c.

4-^4- _ 2"-l
2 "4 "6 " ~

n+l"

10. Prove that

^ ^ ^ c, _ 1 + »i S"-"^

. 2"^ 3
"^

4"^ "^n + 2~ (ri + l)(w + 2)*

11. Prove that

^ - § + % - + (- If
-^ -i= - + - + + -

.12 3 ^ ' w 1 2 n

12. Prove that

1"4^7 ^^ ^^ 3n+l~ 1.4.7. ..(3n + l)-

13. Pjove that

14. Prove that, if

(1 + a;)"
=

c„ + c,a;
+

c,£c*
+ ,. +c„a;",

then n(l + ic)"-* =c, + 2Cj£c
+ 3030;' + +wc^a;""*,

and {1 + (ti
+ 1) £c} (1 + a;)""'

=
c„ + 2Cja;

+ +
(r«

+ 1) c^as".

Hence prove that,

|2n-l
' ' * "

|n- 1 \n-\

(n+2) |2yi,-l
and c; + 2c/+3c;+ + (^ + l)C=

[^y^.l^TP
"'

22—2
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15. Shew, by expanding {(1 +«)"— 1}"*,
where m and w

are positive integers, that

-c, .A -
.c. . ,.c„ + „c. . ..c,

- = (- 1)— »-.

16. Prove that, if t* > 3,

(i) a_n(a-l)4-^?^^^)(«-2)-.
+ (- 1)" (a_r*)

= 0.

(ii) db-nia-l) (6- 1)+ -&*^-)(a-2) (6-2)-
*

+ (-l)"(a-w)(6-n) = 0.

(iii) a6c-n(a-l)(6-l)(c-l) + ^?^^^(a-2)(6-2)(c-2)
+ (-l)"(a-w)(6-n)(c-7i)=0.

17. Shew that, if there be a middle term in a binomial

expansion, its coefficient will be even.

18. Shew that the coefficient of x" in the wth power of

«" + (a + 6) aj + a6 is

a' + ^C^'a^-'b + ^C^'a^-'b' + + b\

19. If n be a positive integer and F^ denote the product of

all the coefficients in the expansion of (1 + £c)",
shew that

F^ [n
•

20. Shew that

1 . 2

2L Shew that, if tz be a positive integer,

- 1 +x n{n-l) 1 + 2jb

\+nx 1.2 {l + nxy

- ^(^-l)(^ -2) 1 + 3a; ^
1.2.3 (IT^)'"^

22. Shew that

(a + 6 + c + c? + e)*
= Sa» + 55a'6 + 1 0^a%* + 202a'6c

4- 302a'6'c + ^0%a%cd + 1 mahcde.
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23. If (1 + re + xy =
«„ + «i^ + ^s^**

+

n{n-\) (-l)'!^ ^
prove that a^-na^_,+ ^^

^

a,.,- "^

[r |n -r
"""" *

unless r is a multiple of 3.

24. Shew that, in the expansion of (1 + a? + £c'+ +
a;'^)'*,

where w is a positive integer, the coefficients of terms equi-
distant from the beginning and the end are equal.

25. If
a,,, cb^,a^i

be the coefficients in the expansion of

(1 + ic + a?Y in ascending powers of x, prove that

a/ — a/ + a*— + a^^'
=

a^, and that

26. If (1 + a; + a?*)"
=

a,,
+ ^i^ + V* "*" ^3^' + • •

•>

prove that

a^a^-a^a^ + a/i^-
= 0.

27. Shew that, in the expansion of (aj + a, + ctg
+ ... + a^)*,

where n is a whole number less than r, the coefficient of any
term in which none of the quantities a^j a,, <fec. appears more
than once is n\

28. Shew that, if the quantities (1 + a;), (1 + a; + a;*), ,

(1 + a; + a;' + +a:") be multiplied together, the coefficients

of terms equidistant from the beginning and end will be equal ;

and that the sum of all the odd coefficients will be equal to the

sum of all the even, each being J(ri + 1) !

29. Shew that the coefficient of x" in the expansion of

{1+X+ xy is

n(n-\) n(n-\){n-2){n-Z)

n(n-l)(7i-2)(n-3)(n-4)(n-5)^
1".2'.3»

"^

30. Shew that 18 can be made up of 8 odd numbers in

792 different ways, where repetitions are allowed and the order

of addition is taken into account.



CHAPTER XXL

CONVERGENCY AND DIVERGENCY OF SERIES.

264. A series is a succession of quantities which are

formed in order according to some definite law. When a
series terminates after a certain number of terms it is said

to be a finite series, and when there is an endless succession

of terms the series is said to be infinite.

We have already found that when the common ratio of

a geometrical progression is numerically less than unity
the sum of n terms will not increase indefinitely, but that

the sum will become more and more nearly equal to a

fixed finite quantity as n is increased without limit. Thus
the sum of an infinite series is not in all cases infinitely

great.

When the sum of the first n terms of a series tends to

a finite limit S, so that the sum can, by sufficiently

increasing n, be made to dififer from S by less than any
assignable quantity, however small, the series is said to be

convergent, and S is called its sum. Thus l4-i + J + J + ...

is a convergent series whose sum is 2.

When the sum of the first n terms of a series increases

numerically without limit as w is increased indefinitely, the
series is said to be divergent. Thus 1 + 2 + 3-1-4+.. . is a

divergent series.
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When the sum of the n first terms of a series does not

increase indefinitely as n is increased without limit, and yet
does not approach to any determinate limit, the series is

neither convergent nor divergent. Such a series is some-
times called an indeterminate or a neutral series, or the

series is said to oscillate.

For example, the series 1 — 1 + 1 — 1 + ... is an oscilla-

tory series, for the sum of n terms is 1 or according as

n is odd or even.

It is clear that a series whose terms are all of the same

sign cannot be indeterminate, but must either be conver-

gent or divergent. For unless the sum of n terms increases

without limit as n is increased without limit, there must
be some finite limit which the sum can never exceed, but
to which it approaches indefinitely near.

265. If each term of a series be finite, and all the terms
have the same sign, the series must be divergent. For, if

each term be not less than a, the sum of n terms will be
not less than na, and no. can be made greater than any
finite quantity, however large, by sufficiently increasing n.

266. The successive terms of a series will be denoted

by Wj, u^, Wg,. . .
; and, since it is impossible to write down all

the terms of an infinite series, it is necessary to know how
to express the general term, w„, in terms of n.

The sum of the n first terms will be denoted by U„ ;

and the sum of the whole series, supposed convergent, in

which case alone it has a sum, will be denoted by U.

Thus C/'=Wi + W2 + w8+ ... +'M„ + w^i + ...,

and U'„
=

u^-{-u^ + u^-\- ...-\-u^.

267. In order that the series u^, u^, u^, u^, ,u^,

^n+i' ^^' ™^y ^® convergent it is by definition necessary
and sufficient that the sum
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should converge indefinitely to some finite limit U q& n ia

indefinitely increased.

Hence i7„, U^^^, J7„^, &c. ... must differ from iJ, and

therefore from one another, by quantities which diminish

indefinitely as n is increased without limit.

Now ^„«-C^n = ^Ui.

U-U= u^, + w ,, + II ^, 4-n+l ' "'n+i ' "'n+S

Hence, in order that a series may be convergent, the

{n + l)th term must decrease indefinitely as n is increased

indefinitely, and also the sum of any number of terms

beginning at the (7i+l)th must become less than any
assignable quantity, however small, when n is indefinitely
increased.

For example, the series r + K + o + -'H H— cannot be con-
1 Z 6 n

vergent, although the nth term diminishes indefinitely as n is increased

indefinitely; for the sum of n terms beginning at the (n+l)th is

rH 7i + "• + K-f which is greater than 7r-xn, that is, greatern+ l n + 2 2n 2n

than TT.

268. We shall for the present consider series in which
all the terms have the same sign ;

and as it is clear that

the convergency or divergency of such a series does not

depend on whether the signs are all positive or all negative,
we shall consider all the signs to be positive.

V
The convergency or divergency of series can generally

be determined by means of the following theorems.

269. Theorem I. A series is convergent if all its

erms are less than the corresponding terms of a second
series which is known to he convergent.
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Let the two series be respectively

XJ =U^-\' ^, + ^3+

and F= Vj + Vg + Vg +

Then, since u^ < v^ for all values of r, it follows that U
is less than V, Hence, as V is finite, U must also be
finite : this proves the theorem, for a series must be

convergent when its sum is finite and all the terms have
the same sign.

It can be proved in a similar manner that a series

is divergent if all its terms are greater than the

corresponding terms of a divergent series.

Ex. (i). To shew that the series - + -—
^
+

^ 2 k "*" 12 3 4"*'"'
"

convergent.

The terms of the series are less than the terms of the series

Y
+ J—2

+
]—2~2

+ 1222 *" •*•' ^®"®^ ^^ * ^^°'

metrical progression whose common ratio is
^ ,

which is therefore

known to be a convergent series. The given series must therefore

also be convergent.

Ex. (ii). Shew that the series

ja+ x) (a + x){2a + x) ja + x) {2a + x){Sa + x)

(b+ x)"^ (b + x){2b + x)
'^

{b + x){2b + x)(Sb + xj'^

is convergent if a, b and x are all positive, and a<b.

The terms of the given series are less than the corresponding
, , . a + x (fl+aj)" {a + x)^

terms of the series
r;

— + .w
—

^» + tt 7i+ .,
b + x {b + x)^ {b+x)^

ra + x a+x ., , ^ . 1 • ••• ^ ,

[smce -; <. z if r > 1, a. b and x bemg positive and b > a\.*•

rb + x b + x
' ' *^ •

The latter series is convergent, and therefore also the given series.

To ensure the convergency of the first series it is not

necessary that all its terms should be less than the

corresponding terms of the second series, it will be
sufficient if all the terms except 'a, finite number of them
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be less than the corresponding terms of the second, for the
sum of a finite number of terms of any series must be
finite.

4 43 48 44 46 4s
Ex. Shew that the series l +

T2"*"]3
+
j4+i5+i6+l7 +

- i^ con-

vergent.

From the sixth term onwards, each term is less than the corre-
4s 46

spending term of the series
gjp

+
-^^-j^

+ .... Hence the series

beginning at the sixth term is convergent, and therefore the whole
. series is convergent.

X 270. Theorem Hi If the ratio of the corresponding
wrms of two series be always finite, the series will both be

convergent or both divergent.

Let the series be respectively

U=u^-^u^ + u^-\- ,

and F = Vj + Vj H- 1;^ -f

Then, since the quantities are all positive, -^^
must lie

between the greatest and least of the fractions — [Art. 113].

Hence 27 : F is finite. It therefore follows that if U b
finite so also is F, and if CT is infinite so also is F.

For example, the two series ^r-^ + ^— + +

i

2.3 3.4 (n+l)(n + 2)
' *"

and T + + + - + ... are both convergent or both divergent.

For the ratio of the rth terms, namely -,
—ttt ;cr :

- is equal to
•'

(r+l)(r + 2) r
^

, . .,,, xr , which is > 1 and < 8 for all values of r. Now we have
(r + l)(r+ 2)

already proved that the second series is divergent : the first series is

therefore also divergent.

271. Theorem III. A series is convergent if after

any particular term, the ratio of each term to the preceding
is always less than some fixed quantity which is itself less

than wiity.
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Let the ratio of each term after the r^ to the preceding
term be less than k, where A; < 1.

Then, since ^ < A;, ^^<7c, ,

we have

^r + ^r+i + Wr+» + < U^ (1 + k + Jc" + )

< 3—^ , since k is less than 1.
1 — K

Hence the sum of the series beginning at the r^ term
is finite, and the sum of any finite number of terms is

finite
;
therefore the whole series must be convergent.

272. Theorem IV. A series is divergent if, after

any particular term, the ratio of each term to the preceding
is either equal to unity or greater than unity.

First, let all the terms after the r^ be equal to u^;

then w^^j + ii^^g + . . . + u^^.^
= nu^, and nu^ can be made

greater than any finite quantity by sufficiently increasing
n. The series must therefore be divergent

Next, let the ratio of each term, after the r^^ to the

preceding term be greater than 1.

Then w^^j > u^, u^ >
w^^^ > u^, &c.

Hence u^_^_^-^ u^^^+ ,,, -\-u„_^^> nu/, the series must
therefore be divergent.

1 2 22 2» 2*»-i
Ex. 1. In the series T+o + ^ + :r + + + »

*^6 'a^o12 3 4 n *

-^— = i , which is greater than 1
; the series is therefore

w„ n+ 1'

divergent.

X. 2. In J

that is ( 1 + -
I
X. Now, if x be leas than 1, and any fixed quantity k

jtween x and 1, the test ratio will be

the first which makes

(n + 1)^
Ex. 2. In the series l*+22a?+ 3%2+ the test ratio is ^—^x,

7L*

be chosen between x and 1, the test ratio will be less than k for all

terms after the first which makes
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Hence the series is convergent if a; < 1.

If x= 1 the series is 1^ + 2^ + 3^ + which is obviously divergent,
and if x > 1 the series is greater than l'+ 22-f3^+

Thus the series l^+ 2,^x + '6^a^+ is divergent except when x
is less than unity.

273. When a series is such that after a finite number

of terms the ratio -^^ is always less than unity but

becomes indefinitely nearly equal to unity as n is in-

definitely increased, the test contained in Theorem III.

fails to give any result
;
and in this case, which is a

very common one, it is often difiicult to determine whether
a series is convergent or divergent.

For example, in the series

1»
+

2*
*

3*
"^

4*
"^

the ratio
u^ (n + 1)*

(-jy
Hence, if A; be positive, the test ratio is less than

unity, but becomes more and more nearly equal to unity
as w is increased.

We cannot therefore determine from Theorem III.

whether the series in question is convergent or divergent.

I
274. To shew that the series y* + o» + q* + ••• ** ^o^'

L Ji o

V vergent when k is greater than unity, and is divergent when

\J k is equal to unity or less than unity.

First, let k be greater than unity.

Since each term of the series is less than the pre-

ceding term, we have the following relations :

1 1 2
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275. The convergency or divergency of many series

can be determined by means of Theorems I. and II., using

the series of the last Article as a standard series. The

method will be seen from the following examples.

, . . 2n
Ex. 1. Is the series whose general term is -3^ convergent or

divergent ?

Since -^> -
,
if n> 1, it foUows that S

-^^->S^.
But si

On
is divergent; therefore S

-g
—

j
is also divergent.

71 + 2
Ex. 2. Is the series whose general term is -5

—- convergent or

divergent ?

Now4±i<'^<?=<*. Hence S4±^<3si But S i,

n+ 2
is convergent [Art. 274]; therefore S-^

—z- is also convergent.

276. We have hitherto supposed that the terms of the

series whose convergency or divergency was to be deter-

mined were all of the same sign. When, however, some
terms are positive and others negative, we first see whether
the series which would be obtained by making all the

signs positive is convergent; and, if this is the case, it

follows that the given series is also convergent ;
for a con-

vergent series, all of whose terms are positive, would

clearly remain convergent when the signs of some of its

terms were changed. If, however, the series obtained by
making all the signs positive is a divergent series it does

not necessarily follow that the given series is divergent.
For example, it will be proved in the next Article that

the series |
— i + J— J+... is convergent, although the

series x + i + J+i + --- is divergent.

A series which would be convergent if all the terms
had the same sign is called an absolutely convergent
series.

277. Many series whose terms are alternately positive
and negative are at once seen to be convergent by means of
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Theorem V. A series is convergent when its terms

\are alternately positive and negative, provided each term is

less than the preceding, and that the terms decrease without

limit in absolute magnitude.

Let the series be

^i-'^» + ^8-^4+---±^n + ^n„±«„+,T

By writiDg the series in the forms

u,-u,i- (u^
-

u,) + {u^-u^) + ...,

and ^i-K-'^O-K-^s)- '

we s6e that, since each term is less than the preceding, the

sum of the series must be intermediate to u^
—

u^ and u^ ;

and hence the sum of the series is finite. It is also similarly
clear that the absolute value of U — U^ is intermediate to

the absolute values of u^^^—u^^ and w^^^, and therefore

U— U^ becomes indefinitely small when n is increased

without limit. The series must therefore be convergent.

For example, the series t-o+q~7+ ^^ convergent, since
1 A t} 4

the terms are alternately positive and negative and decrease without

limit. The series t-o + q~7+ ^^ ^°* however a convergent
1 A <5 4

series although its sum is a finite quantity between ^ and 2, for the

nth term, namely ,
does not diminish indefinitely as n is

n
indefinitely increased.

278. We will now apply the preceding tests of con-

i vergency to three series of very great importance.

4 I. The Binomial Series. In the binomial series,

namely
-

, ,

m (??i
-

1) ,l+mx-\- \
—-^a?*+

J. . ^

, m(m-l). .. (m-yi + l) ^„ ,



328 CONVERGENCY AND DIVERGENCY.

the number of terms is finite when w is a positive

integer; but when m is not a positive integer no one

of the factors m, m — 1, m —
2, &c. can be zero, and

hence the series must be endless.

To determine the convergency of the series when m
is not a positive integer we must consider the ratio

:u. Now ^. = 1i:iii±i^ = -^('i-'l±lY
u^ n \ n J

\

Hence, for all values of n greater than m + 1, m„^j, and

u^ have different signs when x is positive, and have the

same sign when x is negative. Moreover, as n is in-

creased, the absolute value of u^Ju^ becomes more and
more nearly equal to x. If therefore x be numerically
less than unity, the ratio u^^Ju^ will, either from the

beginning, or after a finite number of terms, be numeri-

cally less than unity. Hence by Art. 271 the series

formed by adding the absolute values of the successive

terms will be convergent, and therefore also the series

itself must be convergent, whether its terms have all

the same sign or are alternately positive and negative.

Thus the binomial series is convergent, if a? is numeri-

cally less than unity*.

II. The Exponential Series. In the exponential
series, namely

x^ a? X*

^+-^+^+1+ +^+-'
the ratio u„+Ju^ is x/n. Hence the ratio u^+Ju^ is nu-

merically less than unity for all terms after the first for

which n is numerically greater than x. The series is

therefore convergent for all values of x.

* The series is also convergent when x= 1, provided n >
ivergent when x= -

1, provided n > 0. [See Ait. 338. J

1 ; and it is

con^
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III. The Logarithmic Series. In the logarithmic

series, namely

the ratio u _^Ju is = — x ll ] ; and hence
n+l/ « ^+1 \^ 71+1/

u^^.Ju^ will be numerically less than unity provided x
is numerically less than unity. The logarithmic series

is therefore convergent when x has any value between
i - 1 and + 1.

J If a;=l, the series becomes 1— ^ + J— ..., which is

V convergent by Theorem V.

r^ If a? = — 1, the series becomes — (1 + ^ 4- ^ + . . .)>
which

is known to be divergent. [Art. 274.]

279. The condition for the convergency of the product
of an infiuite number of factors, and also some other

^theorems in convergency, will be proved in a subsequent
Chapter. [See Art. 337.] The two important theorems

J which follow cannot however be deferred.

J

280. If the two series

U= Uq-\-u^x + u^x^ -\- + w„a;'*+ ...,

and V= v^ + v^x + v^x^ -{ +v„^" + ...,

be both convergent, and the third series

+ +(V« + ^iVi+ +^„'yo)^"+ —
be formed, in which the coefficient of any power of x is

the same as in the product of the two first series; then
P will be a convergent series equal to UxV, provided
(1) that the series U and V have all their terms positive,
or (2) that the series U and V would not lose their con-

vergency if the signs were all made positive*.

• This Article, and in fact the whole of this Chapter, is taken with

slight modifications from Cauchy's Analyse Algehrique.

s. A. 23
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First, suppose that all the terms in U and V are

positive.

Then U^ x V.^^
=

-^271 + terms containing ^r^+^ and

higher powers of x. Hence U^ x V^, > Pm-
Also P,„ = i^n X F„ + other terms. Hence P^^ >U^xy^.
Hence P^^ is intermediate to U^ x F„ and U^ x F^^.

Now, the series U and F being convergent, U^ and ^.
both approach indefinitely near to U, also Fj„ and F„ both

approach indefinitely near to F, when n is indefinitely
increased. Hence ^j„ x F,„ and U^x V„, and therefore

also Pj^ which is intermediate to them, will in the limit be

equal to U x V. Hence, when all the terms are positive,
P=:Ux V.

Next, let the signs in the two series be not all positive,
and let U' and V be the series obtained by making all the

signs positive in U and F; and let P' be the series formed
from W and F' in the same way as P is formed from
f7and F.

Then U^„ x F,„
—

P,„ cannot be numerically greater
than U'^ X V\„— P\^ ,

for the terms in the latter expres-
sion are the same as those in the former but with all the

signs positive.

Now, provided the series U and F do not lose their

convergency when the signs of all the terms are made
positive, it follows from the first case that U'^ x V\^ — P'^,
and therefore also U^x V^ — P^ which is not numerically
greater, must diminish indefinitely when n is increased

without limit. Hence the limit of P^ is equal to the
limit of U^^ X Fj^ ;

so that P must be a convergent series

equal to the product of U and F.

If the series U and F are convergent, but are such
that they would lose their convergency by making the

signs of all the terms positive, the series P may or may
not be convergent; and, when P is not convergent, the
relation UxV=P does not hold good, for P has no
definite value and cannot therefore be equal to U x V,
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although the coefficient of any particular power of x in

the series P is always equal to the coefficient of the same

power of X in the product of the series U and F*.

281t_Jf the two series

a^-^- a^x + a^x^ + a^x^ -k- ,

and h^ + \x -f h^x"" + \x^ + ,

be equal to one another for all values of x for which they
are convergent ;

then will a^
=

6^, a^
=

h^^ a^
=

b^, &c.

For if the series are both convergent, their difference

will be convergent Hence

ao-^o + (ai-^)^ + K-^2)«^+ =0 (i),

for all values of x for which the series is convergent.

The last series is clearly convergent when a; =
;
and

putting a; = we have a„
—

Z>„
= 0. Hence a„

=
6^,

.

We now have

X {a^
-

6j +(a,
-
h^)x-h(%

-
h^)x^ + }

=
(ii).

Now for any value x^ for which the series in (i) is

convergent, a^
—

b^ + (% — b^) ^i + is equal to a finite

limit, Xj suppose.

Hence (ii) may be written x^ {a^
—

6^ + a?^
ZJ = ; and,

since this is true for all values of x^, however small, it

follows that
ttj
—

6j,
must be numerically indefinitely small

compared with L^ ;
that is, a^

—
6^ must be zero. It can

now be proved in a similar manner that a,
—

6^
= 0,

a,
-

J,
= 0, &c.

Hence if two series which contain x be equal to one

another for all values of x for which the series are conver-

gent, we may equate the coefficients of the same powers of x
in the two series.

The particular case of two series which have a finite

number of terms was proved in Art. 91.

* It can be proved that P is convergent if either Z7 or F is absolutely

convergent. See Chrystal's Algebray Part ii., p. 127.

23—2
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EXAMPLES XXYI.

^
Determine whether the following series are convergent or

divergent :

1 1 1 1
'"

1 . 2"*' 3. 4 "^5. 6
^••*

"^(2^+1) (2/1 + 2)
**••*

1 1 1
+•

a(a + 6) (a + 26)(a + 36) (a + 46) (a + 56)
*

? ijJ^ 3' ^- ^ 3. 4...(n + 2)
^'

4"^4.6"^4. 6. 8'^-'^4. 6...(2n + 2)

"*" "•

4 ? ?J_? 3-5.7 3.5. 7...(2n + l)

4
*
4. 7 "^4. 7. 10 ^•••^4. 7. 10...(3«+ 1)

^ "

5 1 Ll_^ 1.3.5 1.3. 5...(2n-l)
3"^3.6'^3.6.9"^*""^ 3.6.9...3/*

"*" '"

« 1 1 1 1

05 a;+ 1 a;+ 2 a; + 3

7 JL 1 1

o 1 1 1
8. ^ + :; -„ + 3 ••!

l+£c l+aj' l+os'

^ 1 X X* OJ*

1+a; 1+ar 1 + a;* 1+ic^

in 1 1 1 1

1 + a; l + 2ic^ l+3ic'' 1 + nx

J-
1 X of x^

r72'^273'^3:^"^-'^(n+l)(n + 2)'^'-

12. 1 - ^-- +
^'

_... + (- 1)-
-^1- + .„1+a l + 2a ^ ' \+7ui
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_-
,

1 + 2 1 + 3 1+n
^3-

^^rT2»^rTy'^-^iT^«-*--
2'-P 3' -2' n'-{n-iy

^*-
^^2»+P"^3» + 2''^'-'^n« + (n-l/"*'

__ m m* m"
15. + 7T-+-x+m a; +2/72, sc+Sm

16. ^ + +
05+1 x + m x + m*

(l+a)(l+6) (2+a)(2 + 6) (n + a)(n + 5)

1.2.3 2.3.4 ^w(/i+l)(n+2)"^

no 1 2 3

19.

20.

1+72 1 + 2^3 1 + 3^4
•

l+nV^n
_N^ + _V3_^_^^+ +^^ +
2 + ^2^3+ 3^4+74 -^w + Vn^-

21. (^2-l) + (J5-2)+...+(7;?Tl-n) + .„

a;

1* 3* 5*
"^ "^

«„ 2 4a; 6a;" 2na:"
23- 2^T^T0^-^n'+l^

24.



CHAPTER XXII.

The Binomial Theorem. Any Index.

282. It was proved in Chapter xx. that, when n is

any positive integer,

(l + Wy:r.l+rUV + '^-^^K'-^

We now proceed to prove that the above formula is

true for all values of w, provided that the series on the

right is convergent.

When n is a positive integer the above series stops, as

we have already seen, at the (w -f l)th term; but when
n is not a positive integer the series is endless, for no one
of the factors ti, w — 1, n — 2, &c. can in this case be zero.

It should be noticed that the general term of the

binomial series, namely —^ ^-^ ~—^ (^>

Ir

cannot be written in the shortened form ,

—~—
a?'' unless

\r \n
— r

n is a positive integer; we may however employ the
notation of Art. 241, and write the series in the form

^

[2 [3 [r
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283. Proof of the Binomial Theorem. Represent,

for shortness, any series of the form l + ppa? + y^a;'^ + ...

[1 |£

+ .—^ «;'+... by /(m). Thus*
11

/W-l+g-
+
J'^+ ^^,r^

/(^)^1+|^^
+
|^^+

+ %^+ ,

and

Now the coefficient of cf in the product/(m) xf(n) is

+ „ . . +
^' '

- + ... + —^^^r- + ... +

^r+ ••• + l^'~« |» '^r-«^«+'" +^rr

|r |r-l |1 |r-2 |2 |r-g |g

"•
\r'

that is

1
f k

Ir
(

r — » 15

And, by Vandermonde's Theorem [Art. 249 or 261],

this coefficient is equal to ^—
i ?, which is the coefficient

[r

of af in/(m + n).

Thus the coefficient of any power of x in /(m + n) is

equal to the coefficient of the same power of x in the

product f{in)xf{n)\ also the series /(m), f{n) and

/(m + n) are convergent, for all values of m and w, when
a; is numerically less than unity [Art. 278]. It therefore

follows from Art. 280 that

/(m) x/(7i)=/(m + n) (a),

for all values of m and n, provided that x is numerically
less than unity.
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Now it is obvious that/(0) = 1, and that/(I) = (1 + a;);

"we also know that if r be a positive integer f{r) = (1 + xj.

Hence, by continued application of (a), we have

f{m) xf{n) xf(p) X ... =f(m + n) xf(j)) x ...

=/(m +n+^ + ...).

T
Now letm = n=|?=... = -, where r and 8 are positive

integers; then taking s factors, we have

{/(.-)}'=/6")=/»
But, since r is a positive integer, /(r) is (1 + a?/;

.•.{/0}'
= (1 + .)';

This proves the Binomial Theorem for a positive
fractional exponent: the theorem is therefore true for

any positive index.

And, assuming that the binomial theorem is true for

any positive index, it can be proved to be true also for any
negative index. For, from (a),

/(-»)x/(«)=/(-« + «)=/(0).

Hence, as/(0) = 1, we have

/(- n)
=

-jj-r =77-—r-„ ,
since n is positive,fW (1 + a?)

=(i+^r.
Hence (1 + a;)"** —f(— n\ which proves the theorem

for any negative index.

284. EuleiOs Proof. Euler's proof of the Binomial
Theorem is as follows.
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Represent, for shortness, any series of the form

^ , ^ m(m-l) ^ ^ . m(m-l)...(m — r+1) ^

1.2 k*

by/(m): thus

|2^
+- +

P
/(m)=l+m^ +

^^a;» + ... + !^^aj- + (i),

f(n)^l+7i^ +
p^«

+ ... +
^^

^^ + (ii),

and,

Now, if the series on the right of (i) and (ii) be multi-

plied, and the product be arranged according to ascending

powers of x, the result must involve m and n in the same

way whatever their values may be. But, when m and n
-^

are positive integers, we know that f(m) is (1 + x)"*, and >

that/(w) is (1 4- a;)**,
and the product/(m) xf(n) is there-

.^s

fore (1 + a?)"*'^, which again, as m + w is a positive integer,
V

is /(m + n). Hence when m and n are positive integers
the product f(m) xf(n) is/(m H-n); and, as the form of ^
the product is the same for all values of m and n it follows

that

f(m)xf(n)=f(m + n) (a),

for all values of m and n provided /(m) and f{n) are

absolutely convergent. [Art. 280.]

From this point the proof is the same as in Art. 288.

Ex.1. Expand (l + a;)-i.

Put n= - 1 in the above formula; then we have

=zl-x-\-x^-sc^+ + (-1)'*t'-+

a:^ + .-
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This example illustrates the necessity of some limitation in the
value of x; for we know [Art. 229] that l~x + x^- is not

equal to =—— unless x is between - 1 and + 1.1 +x

Ex.2. Expand (l-a;)-2.

We have

(l-,)--l + (-2, (-.,+t|LM)(.,),^(^2H-8^, ^_^^.

= l +2x+3x^+^9+ + {r+l)x''+
is clear that the result can]

example, we should have

1= 1 + 2. 2 + 3.22+ 4.2'+

Here again it is clear that the result cannot be true for all values
of a:

; if «=2, for example, we should have

which is absurd.

Ex.3. Expand (l + a;)i

aeing

TT-^ ^^ that is
(
-

l)r-i Lll^-iSr-S)

'
2.4.6...2r

^ +••—

We have (1+a;)

the general term being

Hence
(l+.)i=l4.-^A^ .. + _1^^^

Ex. 4. Expand (l-a;)"J.

weh»ve
(i-«)-i=i+{-j)(-.)+i::^v:L)(-^,H .

+— \ (-^)''+

Hence

a-.)-i=,,i.,i.3^,, .L|.5^^^),.,
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Ex. 6. Expand {a*
-

Sa^x)'^ according to ascending powers of x.

(a3-3a=.)i={a3(l-^)}*=„.(l-^)*

^ ^
^""•y-'"-^' (i)v ]•

After the second, all the signs are positive ;
for in the general term

there are r - 2+ r, that is an even number, of negative factors.

that is

285. The (r + l)th term of the expansion of (1 + a?)"

7

he rth by multiplying byis obtained from the rth by multiplying by w,

by (

— 1 H
)
^. Now — 1 H is always

negative if n + 1 is negative ; and, whatever n + 1 may be,
71 + 1— 1 H will be negative for all terms after the first for

which r > w + 1.

Hence, if x be positive, the ratio of the r + 1th and rth

terms will be always negative when r > n + 1. The terms
of the expansion of (1 + xY will therefore be alternately

positive and negative after r terms, where r is the first

positive integer greater than n + 1.

If X be negative, the ratio of the (r+l)th and rth
terms will be always positive when r > n + 1. The terms
of the expansion of (1

—
a?)* will therefore be all of the

same sign as the ?^h term, where r is the first positive

integer greater than n 4- 1
; and, as a particular case, all

the terms of the expansion of (1
—

a?)" are positive when n
is negative.
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For example, all the terms in the expansion of (1 -«)* are of the

same sign as the rth, where r is the integer next greater than | + 1,

. so that r is 3. Also, after the ninth, the terms of the expansion of

1 (l + a;)"*^ are alternately positive and negative.

M 286. Greatest Term. In the expansion of (1 + xy
by the binomial theorem, we know that the ratio of the

71 — 7* -f- X

(r + l)th term to the rth is ± a?, that is

T a?(l );
we also know that x must be numeri-

cally less than 1, unless w is a positive integer.
First suppose that n -\-\ is negative, and equal to

— m. Then the absolute value of the ratio of the (r+ l)th

term to the rth term ia a il {—
J

. Hence the rth term

is =(r + l)th term according as x (l {—
)

=
1; that is,

,. > mx ^, ^ . > — (1 +n)a7
according as r =

^ ,
that is =—

^z^

^—
,

Hence, if—
^j

— be an integer, r suppose, the rth
X —" X

term will be equal to the (r+l)th term, and these will

('1-4- Yl) X
be greater than any other terms. But, if —

^^j

—
be not an integer, the r*th term will be the greatest when

r IS the integer next above—^j
—

,

1 —X
Next, suppose that n + 1 is positive, and let k be the

integer next greater than n + 1. Then, if r be equal or

71 -f- 1
greater than k, 1 will be negative and less than

unity; hence, as x must be less than unity, each term
after the Mh will be less than the one before it, and
therefore the greatest term must precede the A;th. And

since, for values of r less than ti -f 1,
'^ 1 will be
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positive ;
the rth term will be = (r + l)th according as

I — 1
J

a? = 1
;
that is, according as r =

^^^
~

.

Hence, if
^^-:j

— be an integer, r suppose, the rth

term will be equal to the (r + l)th, and these will be

greater than any other terms. But, if ^^- — be not an

integer, the rth term will be the greatest when r is the

, , (w -f 1) ^
integer next above ^^—Tt" •

Ex, 1. Find the greatest term in the expansion of (1 -«)"«, when

x=^.
Here n + 1 is negative, and \ '"'/^ _

i_^
_ 4^ Hence the

fourth and fifth terms are equal to one another, and are greater
than any other terms.

Ex. 2. Find when the expansion of (l-x)" a" begins to converge, if

3

^=4.

Here n+ 1 is negative, and—^-
— - ^—5 = 22i. Hence the

1 — x ^
convergence begins after the 23rd term.

Ex. 3. Find the greatest term in the expansion of {a + x)^, when
4a;=3a.

Since (a + x)'^—a^ {l + -\
, the greatest term required is the

term corresponding to the greatest term in ( 1 + -
J

. Now

X / x\ 21 3 7 9
(n + l)--s-(l +-j=— .2^2 = -; hence r must be the integer next

9
greater than -

, so that the 5th term is the greatest.

EXAMPLES XXVII.

1. Find the general term in the expansion of each of the

following expressions by the binomial theorem.

(i) 0--X)-', (ii) (\-x)-', (iu) il-x)-'.
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(iy) (l+a^)-^, (v) (l+x)i (yi) (l+x%

(vii) (l-5a;)-i (viii) (l-5a:)*, (ix) (1-a;)-?,

(x) (2a 4- 3a;)-*, (xi) (a*
-

2ax)^, and

(xii) (4-7a;)f

2. Find the first negative term in the expansion (i) of

(1 + |a;)^, and (ii) of (1 + ^x)^.

3. Find the greatest term in the expansion of (1 + x)~^'
when a; = J.

4. Find the greatest term in the expansion of (1 -fa;)"'
when 05 = j.

5. After what term will the expansion of (l—x) « begin
to converge, when x = ^1

6. Shew that the coefficients of the first 19 terms in the

19 — 21a;

expansion of
-p. rg- are all positive, and that the greatest

of them is 100.

7. If
ftj, a^y a^, a^ be any four coefficients of consecutive

terms of an expanded binomial, prove that

8. Find the general term in the expansion by the binomial
theorem of each of the following expressions according to

ascending powers of x :

,.. a .... a + x ..... /a + xy

(iv) {a + x)^ (a
-

a;)-i, (v) (a + x)' (a
-

a)"", and

(vi) (a-xy(a + x)~^.

9. Shew that the coefficient of x'" in the expansion of

{l+xy{l-x')-'h2n.

10. Shew that the coefficient of x' in the expansion of

(1 + 2a;)* (1 -a;)-'' is 27 (n- 1), n^3.
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287. Sum of coefficients. The sum of the first

r + 1 coefficients of the expansion of (1
—

a?)* can be ob-

tained as follows.

We have

also (1 -a;)~' = l-f-a? + a^+...+a^+...

From [Art. 281] the coefficient of af in the product
of the two series is equal to the coefficient of «*" in

(1
— xy X (1

—
a?)"*, that is in (1

—
«)""*; hence we have

= coefficient of x' in (1
-

a:)""'
= (- IY^^^t^ ,

LI

Similarly, if
(j> (x)

=
a„ + a^x + a^a^ + . . . + aX + • • •, the

sum a„ + ttj 4- . . . + G^r will be the coefficient of a?*" in ^^ .

JL
~~ X

Thus, to find the sum of the first r + 1 coefficients in the

expansion of
(f) (x), we have only to find the coefficient of

a?*" in the expansion of ^^
^

.

Ex. 1. Find the sum of the first r ooefBcientB in the expansion of

(l-x)-». Ans. ir(r+l){r+ 2).

The sum required is the coefficient of x^^ in (1
-
x)-*.

Ex. 2. Find the sum of n terms of tha series

1.2.3 + 2.3.4+ 3.4.5 +

Since(l-ar)-'»=;i-4-^[l-2.3 + 2.3.4a; + 3.4.5x'+ ]; the

sum required = 6 x sum of the first n coefficients in the expansion of

(1
-
:r)-*= 6 X coefficient of .t»-i in (1 -ar)-»=jTO (w+ 1) (n + 2) (n+ 3).

Ex. 3. Find the sum of the first n+r coefficients in the expansion of

(l+x)«

{l-xy-
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The sum required = coefficient of x^*^~^ in the expansion of

j^±^. Now(H-x)«=(2-l^r=2»-n.2»-i(l-a:)

^n^-1) 2^_j ^j
_
^^a^ higher powers of (1

-
x).

„ (1 + x)' 2" n2^i » (n
-

1) 2»-»
, -41

expression of the (n
-
3)th degree.

The coefficients of a;«+^i in (l-x)-*, (l-a;)-» and (l-ar)-i re-

spectively are ^{n+r) (n+r+l), n+r, and 1; hence the coefficient of

x«+-iini?^3i8
(1
-

x)^

2*-i (n + r) (w + r+ 1)
- 2«-i n (n+ r) + 2«-3n

(to
-

1).

Ex. 4. Find the sum of n terms of the series

x +»+
^^2

+
1.2.3

"^

.in*. (2n-l)!/n! (n-l)l.

288. Binomial Series. Series which are derived

from the expansion of (1 + a;)" by giving particular values

to X and n are of frequent occurrence: it is therefore of

importance to be able to determine at once when a given
series is a binomial series.

The case in which the index is a positive integer needs
no remark.

When the index is a negative integer, we have

n{n + l)...(n + r-l) ^ ^

and it should be carefully noticed that this expansion can

be written in the form

... + {(r + l)..,(r + n - 1)) a?" + ...].
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When the index is fractional, —p/q suppose, we have

_ j?(j) + g)(i) + 2g)
/a;y ^ ^^^

Here we notice that (i) there is an additional factor

both in the numerator and in the denominator for every
successive term, (ii) the successive factors of the numerator
are in an A. P. whose common difference is the denominator

of the index, (iii) the successive factors of the denominator
are 1, 2, 3, 4, &c., or multiples of these.

Bearing in mind the above laws, there will be no

difficulty in determining the expression which will pro-
duce a given binomial series.

Ex. 1. Find the sum of the series

1 1.3 1.3.6 ..^..
s
+
O-^sTeTg-*- ^^^^^^7-

Writing the series in the form

i ^4.1l2 i 1.3.6
j. ^

\\/l [2*3a"*" |3 •33'^
~

'

we see from (A) that it is obtained from the expansion of (1
-

a;)"*
X 1

by giving to x the value found from 5 = 5.2 3

1 3

(2\~»
1 2 2*2 /2\^

^-3) =^+2-3 +
r:2(3) + = 1+^' *^^^^^°^«

-g= v/3-l.

Ex. 2. Find the sum of the series

. 2 2.6 2.6.8 ^ . ^ ..

'-^6
+
67i2

+ 6n2Tr8+ tomfimty.

Writing the series in the form

•
[1

*

6
"*"

!

2 62
"^

|3 '68"^

we see from (A) that it is obtained from the expansion of (l-at)"*

s. A. 24
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X 1

by giving to x the value 5 = « . Hence the sum required is
o o

{^-T-^-
3 37 3 7 11

Ex. 3. Find the sum of the series
jg

+
^3' 24

+
is' 24 30

"^ '°

infinity.
In this case the factors of the denominator, although multiples of

1, 2, 3, 4, &c., do not begin at the beginning. Additional factors

must therefore be introduced in the denominator, and corresponding
additional factors in the numerator. We then have

(-5)(-l)3 1 (-6)(-l)3.7 l'

|3 63"^ j4 6*"^

Now the terms of this latter series are terms of (A), if 5=4, 2>= -5,

andj
=
g.

We can therefore find the required sum, as follows :

A_4\i_ 5 1 6.1 1 5.1.3 1 5.1.3.7 1

\ 6J
~

l'&
[2

6a''" |8 e*"*" I4 6*"^

_ 5 _5_ _6_rj^ 3.7 3.7.11 "I~
6"^6.12'^6.12 Ll8"^ 18.24"^ 18.24.30"^ J'

/l\l ,555-,
-[y =^-6 + 72

+
72^-

Whence fif = i{84/27 -17}.

Q Q fi *l i5 7
Ex. 4. Find the sum of the series -r + -^ + .

' '

+ to infinity.4 4.8 4.8.12

[--(-!)"*]•
Am. 2^2-1.

Ex. 5. Find the sum to infinity of the series

J— -111 1-3.5
28 |3 2*

[4"^ 2»|6

~

[From (1 + 1)^].
Am. ^-- ^2.

Ex. 6. Shew that 1 +1^1^ +^^ +14^6^ "> ^
... ,22.6 2.5.8 2. 5.8. 11 ^ ~ -^
fimty = l+

g
+
J-3-2+ ---j-.-_ +6_ia^j^8^g^

+ to mfimty.

[s..(i-|)-*=(i-^)-^.
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289. We know from Art. 281 that if any expression

containing x be expanded in two different convergent
series arranged according to ascending powers of x, the

coefficients of like powers of x in the two series will be

equal. By means of this very important principle many
theorems can be proved.

Ex. 1. Shew that, if n he any positive integer,

Wehave (l-^).=l-„^+2j2^) x>-ii2f4<^^+

n(n-l)...(n-iiri)^ '
1.2...n

Also, provided a? > 1, we have

{^-r-
, .^1 .

w(M+ l) 1
. n(n + l)(n+ 2) 1

,^ +"^^"1:2-^+ 1.2.3 i5
+

yt(n-t-l)...(n+ n-l) 1
"•

1.2...n x""^

is equal to the coefficient of ar® in (1
-
x)» x

(
1 - -

j
, that is equal

to the coefficient of «<* in
(
-

l)*»a;«, which is zero. [See also Art.

251, Ex. 3.]

Ex. 2. Find the sum of

. -..
1

/ t.1-3 .-. 1.3.5... (2n-l)
(„+l)+n.^ + (n-l)2^ + + 1. _____L___Z.

[Equate coefficients of x» in (1
-
x)~^ x (1

- x)-^ and in (1
-
x)"^.]

.7 ...(271+
2.4...2/1

^™.
5 •I.-J2«+3)

Ex.8. Shew that l-3«+ '^-l"^''-''' -;..... = (-l)'-
J. . A

We have
:;

= = = « = = 73 : .

Hence (l + a;){l -xs + ajs... + ( -irx^"+ ...}

= 1 + a- (1
-
«) + «2 (1

-
a;)2+ „ . + a:3n+i (1

_
^)3n+i .^. _

The coefficient of x^"^^^ on the left is (
-

1)".

24—2
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The terms on the right which give x'^+i are

aja^H-i (1
_

a.)»i.+i + a;8'»(l
- x)^+7^-'^ (1 -ar)3»-i + ...;

and hence the coefficient of ac^^^ will be found to be

,_ (3n-l)(3n-2) (3w
-

2) (3n - 3) (3n
-
4) .l_8n+

j-^ J-2--3
+.....

290. Expansion of Multinomials. Any multi-

nomial expression can be expanded by means of the

binomial theorem.

Since (p -{- qx -\- nc* -\- . . .)" may be written in the form

p*ll-{--x+ - x^ -\- ...] ,
it is only necessary to consider

\ p P J

expressions in which the first term is unity.

Now in the expansion of {1 + aa;4- ta;" + ca:* + ...}",

that is of (1 +(cM7 + 6a;* + ca?'+ ...)}*, by the binomial

theorem, the general term is

—5^ ^^
.^—^ ^^ (ax + ha? + ex* +...);

also in the expansion of (aaj + fta?" + ca;' + ...)'', r being a

positive integer, the general term is by Art. 262

r—T^^l a**6^c^...a;*+2^+»v+-,

where each of a, /3, 7,... is zero or a positive integer, and
a + /8 + 7+...=r.

Hence the general term of the expansion of the
multinomial is

n(n-l)(n-^2)...(n-r
+ l)

^.^^.....^..^.a,...,

|a [^ |7...

To find the coefficient of any particular power of a?,

say of of, we must therefore find all the different sets of

positive integral values (including zero) of a, ^, 7,...

which satisfy the equation a + 2^ + 87 + ... = A;; the cor-

responding value of r is then given byr=a + ^ + 7+...,
and the corresponding coefficient is found by substituting
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in the formula for the general term. The required coeiBQ-

cient will then be the sum of the coefficients corresponding
to each set of values of a, /3, 7

Ex. 1. Find the coefficient of afi m{l-x + 2x^- Bx^)-2'

The values of a, /S, 7 which satisfy a+ 2/8+ 87=6 will be found
to be 0, 1, 1; 2, 0, 1; 1, 2, 0; 3, 1, 0; and 6, 0, 0. The cor-

responding values of r will be 2, 3, 3, 4 and 5 respectively; and the

corresponding coefficients will be

L|iJi(.)>(-3).. HK_|)(J)<-in-3)-.
lili illi

(-D(-l)(-i)(-i)(-:
and

V ./ ^
./ V .^ V ./ V 2/

(.ij».

,, ,
. 9 45 16 35 , 63

thatis--. ^, J. -jg
and — .

31
Hence the required coefficient is —^ .

256

291. From the above example it will be seen that
the process of finding even the first six terms in the

expansion of a multinomial is very laborious; in many
cases, however, the work can be much shortened, as in

the following examples.

Ex. 2. Find the coefficient of x^^ in the expansion of

(l + a;+x2+ ar» + a;*)-3.

We have {l+x + x^ + x^+ x*)-^= f
f^)'^

=
^^
~

^^^ ^^
~

^'^^~'

= (l-2x + a:a)(l + 2x» + 3xi« + 4a;"+...).

Hence the coefficient required is zero.

Ex. 3. Find the coefficient of «» in the expansion of {l+x+x^+a^)"\

We have {l + x+x' + x^)-^=:
___i—_= ll^

' 1+X+ X^+ X^ 1-X-*

^(l-x){l + x*+x^+...+x*r+...).
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Hence the coefficient of x*^ is 1, the coefficient of x*^^ is -
1,

the coefficient of x*^'^^ is zero, and the coefficient of oc^^'^^ is zero.

Thus the coefficient of a;" is I when n is of the form 4r, it is - 1

when n is of the form 4r+ 1, and it is zero when n is of either of the

form8 4r + 2 or 4r + 3.

Ex. 4. Find the coefficient of «" in the expansion of

(l + 2x + 3«a+ 4a;3+ to infinity)".

Since l + 2x + Sx^+ = (l-a;)"^ the required expansion is

that of (1
- x)~^^; the coefficient of x^ is therefore

2?i (2/1 + 1). ..(2n + r-l)

\L

292. Combinations with repetitions. The number
of combinations of n things a together of which p are of

one kind, q oi a. second, r* of a third, and so on, can be

found in the following manner.

Let the different things be represented by the letters

a,b, c,...'y and consider the continued product

(l+cw;+aV+...+a'a;*')(l4-6ic+...+6V)(l+ca;+...4-cV)...

It is clear that all the terms in the continued product
are of the same degree in the letters a, 6, c,... as in a;; it

is also clear that the coefficient of of- is the sum of all the
different ways of taking a of the letters a, h, c,... with the
restriction that there are to be not more than p a'a, not
more than q 6*s, &c.

;
so that the coefficient of of- in the

continued product gives the actual combinations required.
Hence the number of the combinations will be given by
putting a = 6 = c=... = l. Thus the number of the com-
binations of the n things a together is the coefficient of
a^ in

(1 +a; + ar' + ... + a;**) (l+a?+...+ a;') (1+^+ •••+«?")...

Permutations. The number of permutations of the
n things a together being represented by P^, it is easily
seen that

(, ,

aj
,

a;* x^) (^ x x^ x")

li

P P P
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For la X the coefficients ofaf^ in

aV . aV]

{'-5-f--f)

is the sum of all possible terms of the form

6V . 6W

^

lii
m ..,

a'S"*,.

for which Z + m + ... = a, and the number of permutations
a together formed by taking I of the a's, m of the 6's, &c. is

111
m

Ex. 1. Find the number of combinations 7 together of 5 a's, 4 6's

and 2 c's.

The number required is the coefficient of x"^ in {l + a; + ...-f o^)

(l + a;+ ...«*) (1 + a: + x2), that is in {I
-

x<^) {1
-

x^) {1
-

x^) {1
- x)-K

Eejecting terms of higher than the seventh degree in the continued

product of the first three factors, we have

(1
- a;8 - aH^ - a;«) (1 + 3x + 6x2+ lOx*+ 15a:* + 21ar» + 28x8 + 36*7 +...) ;

and the coefficient of x' is 36 - 15 - 6 - 3= 12.

Ex. 2. Find the total number of ways in which a selection can be
made from n things of which p are alike of one kind, q alike of a
second kind, and so on.

The total number of the combinations is the sum of the coef-

ficients of a;\ x^..., x« in (l + a; + ... +xP) (l+x + ...-1-a;^)... ; and this

sum is obtained by putting x=l in the product and subtracting 1

for the coefficient of afi. Hence the required number is

{p + l){q + l)...-l.

The above result can, however, be obtained at once from the

consideration that there are^+1 ways of selecting from the a's,

namely by taking 0, or 1, or 2,... or j? of them; and, when this is

done, there are g + 1 ways of selecting from the 6's; and so on.

Hence the total number of ways, excluding the case in which no
letter at all is selected, is {p + l){q + 1)...

- 1. [Whitworth's Choice
and Chance, Prop, xm.]
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Ex. 3. A candidate is examined in three papers to each of which m
marks are assigned as a maximum. His total in the three papers is

2m; shew that there are -(m+l)(m+ 2) ways in which this may

occur.

The number of ways is the coefficient of x^^ in (l + a5 + a:2+ ...x"*)',

that is in (1
-

x»"+i)3 (1
-
x)-8= (l

- 3a;»»+i+ ...) x

-{1.2 + 2. 3a:+...+w(nn-l)a;"*-i + ...+ (2m+ l){2m + 2) x^+ ...),

Hence the number required

= i{(2m+l)(2m+2)-3»n(m+ l)}=i(m+l)(m+2).

Ex. 4. Shew that the number of permutations four at a time which
can be made of n groups of things of which each consists of three

things like one another but unlike all the rest is n* - n.

The number required is equal to J4 x the coefficient of a;* in

293. Homogeneous Products. We have already

[Art. 250] found the number of homogeneous products of r

dimensions which can be formed with n letters, where each

letter may be repeated any number of times. We now

give another method of obtaining the result. Suppose the

letters to be a, 6, c,... ;
then if the continued product

(1 +aa; + aV + aV -f ...) x (1 + 6a; + 6V + 6V + ...)

X (1 + ca; + cV + cV + ...)...

be formed, the coefficient of oc^ will clearly be of r dimen-
sions in the letters a, 6, c,..., and will be the sum of all the

possible ways of taking r of the letters*. Hence the

number of the products each of r dimensions will be given
by putting a=6=c=... = l in the continued product
Thus the number required is the coefficient of of in

(1 + a? + a;* + . . .)", that is in (1
—

a;)"*. Hence

n{n + l)...{n + r'-l) |n + r — 1

M,
t n-1

This result can be expressed in the form ^11^
=

n+r-fir-
* An expression for the sum of the homogeneous products will be

found in Art. 300, Ex. 4.
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I
f Cor. The number of terms in the expansion of

(a, + a, + a,+ ,.. + aJ is

^—^^.

294. We shall conclude this chapter by solving the

following examples.

Ex. 1. Find ,^14, by the binomial theorem, to six places of decimals.

=4 {1
- -0625 - -001953 - -0001220 - 0000095 - -0000010}

=3-741667.

Ex. 2. Shew that, when x is small,

(l-3x)-f+ (l-4«)-i ,3 . ^,
^--j
—^^ ^= 1 + jr a; approximately.

Since x is small, its square and higher powers may be rejected ;

and when all powers of x except the first are neglected the given
expansion becomes equal to

, 1 o , 1
. 2 + 2« 1 + x

l +
g.3x

+ l +
^.4x

(l
+
|a;)(l

+*r =
^l

+
5x)(l

z) = l +
^x.

Ex. 3. Shew that the integral part of

(s/3 + 1)^+^ is (^3 + l)2«-i-i
- (^3 - l)2«+i.

Since ^3-1 is a proper fraction, (v'3-l)''"+i must also be a

proper fraction. It therefore foUows that if (^3 + 1)^+^ - (x/3
- 1 )2«+i

be an integer, it must be the integral part of (/v^3 + l)2«+i.

Now (V3 + l)^+^-(x/3-l)2«+i

= {3V3 + (2n+ l)3*+ ^-?^^t^3»-V3+ + (2n + l)^3+l}

-{3»V3-(2n + l)3»+ <?5±^3*-V8- + (2n+ l)^3^1}

=2U2n + l)3"+^l"J:^^^|!^3- ^1),

aU the irrational terms disappearing.
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Since the coefficients of all the different powers of 3 in the last

expression are integers, it follows that (/>/3 + 1)^**"^^
-

(iy/3
-

l)2»+i is

an integer, and is moreover an even integer.

By the following method it can be proved that

(x/3 + l)2»+i
-

(,^3
-

l)2»+i is an integer divisible by 2~+i.

Represent (^3 + l)2«+i
-

(,^3
- 1)^+^ by I^^.

Then Ji=2; and it will be found that 28=20, and also that

(x/3+ l)9+ (x/3-l)2=8.
Hence

8l2«+i= {(x/3 + 1)=^+^
-

{s/3
- l)^+n {(V3 + 1)' + {v/3

-
1)'}

= (x/3+ 1)2"+3
_ (^3 - l)a«+8+ 4 {(^3 + l)2«-i

-
(J3 -

l)2«-i} ;

•*• f2n+3= ^^2n4-l~^^2n-l {^)-

It follows from the last relation that I^n+s will be an integer if

Tan+i aiid I^-i are integers. Now we know that I^ and /, are

integers ;
hence by induction lin-^i is always an integer.

The relation (A) also shews that I^^^ will be divisible by 2"+*

provided Ijjn+i is divisible by 2»+i and I^n-i by 2'*. Now we know
that Ii is divisible by 2^ and Ij by 2^; hence Ij must be divisible by
2^

; and it will then follow that ly must be divisible by 2*
; and so on,

so that I^n^i is always divisible by 2**+i.

Ex. 4. To shew that, if n be any positive integer,

a"-n(a+ 6r+"^^\a+ 26)*- = (-6)"ln.

Put ^—r— for X in the identity proved in Art. 259, Ex. 3
; then,

after reduction, we have

l^! ^_0o c^_
{y + a){y + a+b) ...{y + a+nb) y+ a y+a+b

Now expand the expressions on the two sides in powers of -
.

ln&* |n6»
Left side = j l j ,. = -—rr + higher negative

powers of y.

Eight .iae =
^(l

+
?)--...

+
,-ir|(l^"±^y+ ,

hence the coeflS*oient of
-j^^

on the right is

(-l)*[Coa*-Ci(a+ &)*+ + (_i)rc^(a+ r6)*+...].

Hence S (- l)»*Cy(a+ r&)* is zero if k<n, and is equal to

(-l)»6»|n_if ft =71.

+ ...
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EXAMPLES XXVIII.

1. Find the sum to infinity of each of the following

series

1 3 1^32 1.3.5 3^

(1)
l +

|i2"^-*--[2"2«"^ [3
2^"^

(ii)
1 - -

7c + ^^-^ ^ - ^ . ^ ^ +11 1»3 1 1.3.5 1

22"^2.4 2^ 2.4.6 2'

,..., ,
4 1 4.7 1 4.7.10 1

3^5 3 .5.7 3.5 .7.9
^^^^ 3.6 "^3.6.9

"*"

3. 6. 9 . 12
"*•••

3 3.4 3.4.5 3.4.5.6
^^' 2.4'^2.4.6'^2.4.6.8'^2.4.6.8.10"^

,., , 2 2.5 2.5.8
("^) ^^6^6712^02718-^-

, .., ,
3 3.5 3.5.7

(vn) l-- + _-^-g-^2-^...

.... 4 4.12 4.12.20
(vm) 18

+
r8":27

*"
18 . 27 . 36

^ *"

,. , ,
2 2.5 2.5.8

(1^) 1 + Q+0-TQ +

W
9 9.18 9.18.27

1 1.3 1.3.5
9.18 9.18.27 9.18.27.36

. 1 1.3 1. 3.5
^^'^ 2.4.6-^2.4.6.8"*'2.4.6.8.10"*""

/ -x ^ 7.28 7 . 28 . 49
^^'^^ 72 "^72. 96 "^72.96. 120"^

•••

2. Shew that

1 + n ^ + -A— i
(a + 6 1.2 \a + b/

Wi^b)

. b n(n+l)
a + 6 1.2
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8. Shew that

1.2.3 \l + x) +••••/•

4. Shew that, if x be greater than - J,

^(a;+l)"l+a;"^2 Vl + «/ "*'2.4Vl+J
1.3.5 / a; y

*"2.4.6 Vi+a^y
"^••'

5. Shew that

(1
-

a;')"
=

(1 + xy - 2nx (1 + x^-' +
^^(^^^^^ ^"{l +xf'^'^ .

6. Shew that

a — x n(n + l) /a — x\' _ /^ +^V
a + x 1.2 \a + xj

~
\ 2a; /

7. Shew that

(1 + xY" = (1 + a:)" + nx{l+ x)"-' + Uli^Lt}} a^ (l + ^y-

^"17273
—

-^(l^^^) +

8. Shew that, if a < 6,

.jLi / z-^4 K * » 4.5 a' 4.5.6 a°
)

9. Shew that

1_!LJL? (w + 2a;)(n-l) (w + 3a;) (n-1) (n- 2) _^
1+^"^

[2(l+a;)» [3(l+a;)»

+•••-"•

10. Shew that, if the numerical value of y be less than one-

third of that of X,

l+n-^^ ,
^(^-^1) / 2y Y n(n-fl)(r. + 2) / 2y V

a: + y"^ 1.2 V« + 2// 12. 3 U + y/

= l^,J^^!L(!LJL)(J^y.x-y 1.2 \x-y/
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11. Find the value of

r-(r-l)n + (r- J)
—
^—2 (»'-«5)

^ 2.3
*

to r terms.

12. Shew that, if n be a positive integer,

7i^(n-l) n^(ri^-r)(n-2)
•*"

[1[2

"^

|2[3

n'K^l')K-2«)(n-3) _

en
^•••""'

13. Shew that, if n be a positive integer,

«(«'-!') »(n'-l')K-2') .

li 1^ |2 [3

+ ^ ^^
|r [r

+ l
*--^ ^^ •

14. Shew that if w be a positive integer <f ^

4 . 6 n (n
-

1) 4 . 5 . 6 n (n
-

1) (n
-

2) ._
^'^'*'^1.2 1.2 1.2.3 1.2.3

+•••-"•

15. Shew that

l.n(n+l) + 2(7i-l)» + 3(w-2)(n-l)+...+n.l.2

«:njw(w + l)(w + 2)(w + 3).

16. Prove that

l.w(n + l) + ^.(n-l)n+^^^^(n-2)(n-l)

17. Shew that, ifp,= ^-^;;-f;-^;^) ,
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1.3.5...(2r-l) , 5.7...(2r4-3)

that p^ +Pr-l9,+Pr-»'I» + - +
5'r
= i (^ + 1) (^ + 2).

19. Shew that

1.2(n-l).2- (--;n--^)
.2'

(--^)(--^^(--^)
....

=j{2--+(-in.

20. Shew that
^3^"

=
(a + b)"-'

-
(n

-
2) aJ (a + 6)""

+ ^ f\ ^ aV (a + by
" - ...

21. From the expansion of (1 + 2a; + af)'" prove that

2«(2>»-l) ,... 2«(2«-l)(2»-2)(2»-3)' "~M~ El!
••

|2n [47*
"**

jn [»"|2w [2»*
22.

.
Shew that

n(n+ l)...(yi + m~l) n{n + 'i)...{n + m-4)
fi ——

n(n-l) n{n+l)..,(n + m —
7)

0,1.2 |m-6
if m > 2n, and = 1 if w = 2w.

23. Find the coeflGlcient of x" in

(l+a;)(l+a;»)(l+a;*)(l+a;»)...

24. Shew that, if a; be a proper fraction,

25. In how many ways can 12 pennies be distributed

among 6 children so tliat each may receive one at kast, and
none more than three 1
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26. There are n things of which p are alike and the rest

unlike ; prove that the total number of combinations that can

be formed of them is (;? + 1) 2"~'' - 1.

27. Shew that the number of ways in which n like things
can be allotted to r different persons, blank lots being admis-

sible, is ,^,_,(7,_,.

28. Shew that the number of combinations n together of

2n things, n of which are alike and the rest are all different,

is 2".

29. The number of combinations n together of 3n things,
of which n are alike and the rest all different, is

2'"-' + |2n-l /|n |?^-l.

30. A man goes in for an examination in which there are

four papers with a maximum of m marks for each paper ;
shew

that the number of ways of getting half marks on the whole is

31. Find the coefficient of a;* in (1
- 2r- 2x')^.

32. Find the coefficients of a:' in the expansions of

(l+a; + jc' + as' + xy and (I +x + x' + x^ +x* + x^,

33. In a shooting competition a man can score 5, 4, 3, 2, 1

or points for each shot. Find the number of different ways
in which he can score 30 in 7 shots.

34. In how many ways can 20 be thrown with 4 dice, each

of which has six faces marked 1, 2, 3, 4, 5, 6 respectively?

35. Find the coefficient of oj' in the expansion, according to

ascending powers of a;, of (4a' + 6ax + 9a^)~\

36. Shew that the coefficient of x^"" in the expansion of

l+x . g, T
-,Tb is 2w+ 1.

{l + x + a^y

37. Shew that the coefficient of oj' in the expansion of

(1 + 2a; + 3a;*+ ...)' is J (r + 1) (r + 2) (r + 3).
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38. Find the coefficient of a;" in the expansion of

{1 . 2 + 2 . 3a; 4- 3 . 4ic» + ... to infinity}'.

39. Find the coefficient of t^ in the expansion of

(1.2 + 2. 3. 2a; + 3. 4. 2V + + (w + 1) (« + 2) 2-0^

+ ... to infinity)".

40. Shew that the coefficient of v^ in the expansion of

(1 +a;+ 2a;« + 3a;' + ...)* is Jr (r» + 11).

41. Shew that if p-q be small compared with p or q^

then will

l'p_ ^ (n+l);? + (n-l)g ^
q (n-l)p + {n+l)q

42. If (6 76 + 14)""-''
=

iV^, and F be its fractional part;
then will IirF= 20'"-^'.

43. If (3 ^3 + 5)^"'+'
= I+F, where I is an integer and F

a proper fraction, then will F{I+F) = 2*'*\

44. Shew that the integer next greater than (3 + ^7)"**
is divisible by 2'""*'*.

45. If w be a positive integer, the integer next greater
than (3 + ^5)"* is divisible by 2"*.

46. Shew that the general term in the expansion of

l+x+y + xy
1 + X + y

|m + n— 2

\m-\

47. Shew that the coefficient of a;'' in the expansion of

^ (r'-l')(r'-2')(r'-3')
^. ^ _

| ^
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48. Shew that

1.2.n + 3.4l^M + 5.6^*i!4^^
+ {2n-S)(2n-2).n + {2n-l)2n.l= 2V.

49. Shew that the coefficient of x"*'"^ in the expansion of

50. Shew that the coefficient of ic"*''"* in the expansion of

|i^|is(-ir(.-2„)2'-.

51. Shew that

7i" - w (w
-

2)" +—^
—^ (w

-
4)"

- ... to n + 1 terms

= 2.4.6. 8...2n.

52. Shew that

a--^^ -n(a + 6)"^' + !L^L^) (« + 26)"*^
- ...

= J |n+l (2a + nb) {- b)\

53. If three consecutive coefficients in the expansion of

any power of a binomial be in arithmetical progression, prove
that the index, when rational, must be of the form q*

—
2,

where ^ is an integer.

54. Shew that the sum of the squares of the coefficients in

the expansion of (1 +aj + a;*)",
where n is a positive integer, is

tl2w-2r'

55. Shew that, if n is any positive integer,

n(n-l) n(n-l)(n-2){n-S)
2(2r+l)'*" 2.4(2r + l)(2r + 3)

'^ '"

-9» r(r + l)(r + 2)...(r + n- l)

2rr2r+l)(2r+2)...(2r + n-l)*
s. A. 26



CHAPTER XXIII.

Partial Fractions. Indeterminate Coefficients.

295. In Chapter viii. it was shewn how to express as

a single fraction the algebraic sum of any number of given
fractions. It is often necessary to perform the converse

operation, namely that of finding a number of fractions,

called partial fractions, whose denominators are of lower

dimensions than the denominator of a given fraction and

whose algebraic sum is equal to the given fraction.

296. We may always suppose that the numerator of

any fraction which is to be expressed in partial fractions

is of lower dimensions in some chosen letter than the

denominator. For, if this be not the case to begin with,
the numerator can be divided by the denominator until

the remainder is of lower dimensions : the given fraction

will then be expressed as the sum of an integral expression
and a fraction whose numerator is of lower dimensions
than its denominator.

297. Any fraction whose denominator is expressed
as the product of a number of different factors of the
first degree can be reduced to a series of partial fractions

whose denominators are those factors of the first degree.
For let the denominator be the product of the n

factors x — a, x — b, x — c,...; and let the numerator be

represented by F{x), where F(x) is any expression which
is not higher than the (n — l)th degree in x.
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We have to find values of A, B^ 6',... which are

independent of x and which will make

i^(^) _ A B G
^

{x
— a){x — h){x

—
c)... X — a x — b x—c '

or, multiplying hy (x
—
a)(x

—
b)(x

—
c) ,

F(x) = A(x-b){x-'C) +B(x-a)(x-c)
+ G(x-a)(x'-b) .....(i).

In order that (i) may be an identity it is necessary
and sufficient that the coefficients of like powers of x on

the two sides should be equal. Now F(x) is of the

(n— l)th degree at most, and the terms on the right of (i)

are all of the (n
—

l)th degree ; hence, by equating the

coefficients of x^, x^,... a?""* on the two sides of (i), we have
n equations which are sufficient to determine the n quan-
tities A, B, Cf

The values of A, B, G,... can however be obtained

separately in the following manner. Since (i) is to be
true for all values of x, it must be true when x = a; and,

putting 37 = a, we have F(a) = A {a
—
b)(a

—
c) ;

and
therefore A = F(a)/(a

—
b)(a

—
c) Similarly we have

B = F{b)/(b
-

a) (6
-

c). . .
;
and so for G, D,.. ..

We have thus found values of A, B, G,... which make
the relation (i) true for the n values a, b, c, . . . of x

;
and

as the expressions on the two sides of (i) are of not higher
degree than the (w

—
l)th, it follows [Art. 91] that the

relation (i) is true for all values of x.

Thus

Fja^) ^^ Fja) 1

(x
—

a) (x
—

b) (x
—

c). ,. (a
—
6)(a

—
c). . . a? — a

*

In the above it was assumed that all the factors of the

denominator were known and were all different. The

general theorem is the following:
—

25—2



363* PARTIAL FRACTIONS.

If .^ })Q a/fiy fraction in which iV, P, Q are rational

and integral functions of x, and N of lower degree than

PQ; then, provided P and Q are prime to one another in x,

two other functions A and B, rational and integral in w,

can be found such that

PQ-P'^Q-
For, since P and Q are prune to one another, two

integral functions in oo, G and D suppose, can always be

found such that

GQ-\-I)P = 1, [Art. 100]

CN DJSr N
^^^••-

-p-^-Q^PQ (°^>-

Now let CN/P = L-\-AIP, where L is an integral

expression in oc and A is of lower dimensions than P in a;
;

and similarly let DN/Q = if + B/Q.

Then, since N is of lower dimensions than PQ, it

follows from the identity (a) that i/ + ilf=0, and that

PQ'P'^Q ^^^•

From (l3) it immediately follows that, if a, y8, 7, ... are

all prime to one another, we can always find integral
functions A, B, G, ... of lower dimensions in x than

a, y8, 7, ... respectively such that

N A B G
+ -7^+-+....

x+ 2
Consider, for example, the fraction

x^ + 2x + 1

~x + S)x^ + 2x + l{x-l
a;2+ 2a;-3
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Then x + S= x^ + 3x + 4:- {x^ + 2x+l),

4 = a;2 + 2x+l-(x + 3)(a:-l)

= x^ + 2x + l-{x^ + 3x + 4~{x^ + 2x + l)}{x-l)

=:{x^ + 2x + l)x-{x^+3x + 4,){x-l).
Hence

4t {x +2) = (x^+ 2x + l)x {x + 2)
-

{x^ + Bx + i) {x-1) ix + 2);

.
x + 2 X (a; + 2) _ (a;-l)(a; + 2)

*'•

{x + 1)2 (x2 + Bx + 4)

~
4^2 + 3a. + 4) 4 (^2 + 2a; + 1)

Mi__^±i4_iJi__^_±i_l
4[ a;2+ 3a; + 4j 4] a;'^ + 2a; + lj

x+B x+4
4(a;2 + 2a;+l) 4(a;2 + 3x + 4)*

Again, for the fraction
^^^^^^^^^^^

.

,3 a;2 + 6a; + 9|a:^ + 6a;2+12a; + 81a5
9 x^+ Gx^+ 9x

3.'r + 10|9a:2 + 54a; + 81| 3a; + 8

9x2+ 54a; + 80

Thu8 3a; + 8= (x + 2)3-a;(a; + 3)2,

and l = 9(a;+ 3)2-(3a; + 8)(3a; + 10)

= 9 (x + 3)2
-

{ (x + 2)3
- a;

(a; + 3)2} (3a; + 10)

=
(3a;2 + 10a;+ 9) (X + 3)2

-
(3a; + 10) {x + 2)^.

Hence

a^ a;2(3ar'+10x+ 9) _ x2(3a;+10)

(a; +2)3 (a; + 3)2- (a; + 2)3 (a; + 3)2

^ ^. 21x2 + 72a; + 64 „ . 21x + 72= ^^-« +—
(^T2P

^^ +
^-l^?3F

_ 21x2 + 72x+64 21X + 72

(x + 2)3 (x+ 3)2

•

Ex. 1. Resolve -. -r-,
——- into partial fractions.

(x-l)(x-2)

Assume
3x+ 7 _ ^

.

^
.^"'""^^

(x-l)(x-2) =.rri
+ ^32 '

then 3x + 7= ^(x-2) + fi(x-l).
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In this identity put x= l; then 10= -^. Now put x=2; then

18 =B.
Sx + 7 13 10

Thus
{x-l)(x-2) x-2 x-1'

Ex. 2. Resolve ; ^)v^
—

'^rr-
—

I i^*^ partial fractions.
{x-a)(x-b){x-c)

(t-.J (o-a)(a-t)^J_^B^
{x-a){x-b){x-c) x-a x-b x-c*

then (h-c){c-a){a-b)=A{x-b){x-c)-\-B{x-c){xr-a)
+ G{x-a)(x-b).

Putting a;= a, we have (b
-
c){e

-
a){a -b) = A{a -b){a - c)\ there-

fore A=c-b\ and the values of B and G can be written down from

symmetry.

Thus ('-0(;-')(«-'')^ «^ ^ gjif ^ ^ng
.

Ex. 3. Resolve —. rr-7 z- -. r into partial fractions.

Assume

'+ —i:+^+ -/-+...+
a;(a?+ l)(a + 2) ... (a5+ w) x as + 1 a? + r

"
a; + n

Then, we have

l = Af,{{x+ l){x+ 2)...{x-\-n)}-\-A^{x{x + 2){x+ Z)...{x->rn))-if...+

il^{a;(a; + l)...(«+ r-l)(a; + r+l)...(a;+ n)}+...+^^{a;(«+ l)...(a?+ n-l)}.

If we put a;=0, all the terms on the right will vanish except the

first, and we shall have 1= ^5X In, so that ^o=l/jw.

To find the general term, put x= - r ; we then have

l=^^{(-r){-r+l)...(-l)(l)(2)...(n-r)},

that is 1= (
-

1)*-^, |£ jn
-
r; hence ^,= (

-
l)*'/[r |w-r.

Hence the required result is

«(«+l)...(«+n) \n\x
-'^^ ^^

\r\n-r x+r'-^^ ^x + n\'

[See Art. 259. Ex. 3.]

(a-b){a-e) x-a
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Ex. 6. Resolve -. , , , „ ^ into partial fractions.

The factors of x" + 2a; + 5 are the complex expressions a; + 1 + 2i

and a; + 1 - 2i, where t is written for \/
- 1.

x^+lb A B C
Assume

;; rrrii
—

7i 5\= r +
(x-l)(a;2 + 2a; + 5)-a;-l a5+l + 2i a; + l-2i '

.% «3 + 15=.i(a;+l + 2i)(a;+l-2i) + B(«-l)(a; + l-2t)
+ C{x-l){x + l + 2i).

Put a;=l; then 16=8^4, so that 4 = 2.

Puta;=-l-2t, then (l + 2i)2+ 15 = J5 (-2-2i) (-4i), that is

12 + 4i=B (
- 8 + 8i) ; therefore JB= - ^^. . Change the sign of i

in the value of B, and we have C= -

Thus

2 + 2i
*

ar«+15 2 3 + i 1 3

(ar-l)(a;a+ 2x + 5) x-\ 2-2ia?+ l + 2» 2 + 2i a?+ l

298. We have in the last example resolved the given
fraction into three partial fi-actions whose denominators
are all of the first degree, two of the factors of the denomi-
nator being imaginary. Although it is for most purposes

necessary to do this, the reduction into partial fractions, of

a fraction whose denominator has imaginary factors, is often

left in a more incomplete state. Take, for example, the

fraction just considered, and assume

fl^ + 15 A Bx + G

[It is to be noticed that we must now assume for the

numerator of the second fraction an expression containing
X but of lower degree than the denominator.]

Then 0^-^15=: A{x' + 2x + 5) + (Bx-{-G)(x-l).

Putting a; = 1, we have 16 = 8^, so that A = 2.

Put il = 2 in the above identity; then after transposi-
tion -x'-4^x + 5 = (Bx + C)(x-l);
or, dividing by a? — 1, Bx-\'C = — x — 5.

a^-\-lo 2 x + 6
Thus

{x-l)(x'-\-2x-^5) a?-l a;'+2a? + 6*
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299. We have shewn in Art. 2!J7 that a fraction can

always be resolved into partial fractions the denominators

of which are prime to one another. The process thus

indicated would, however, be very tedious. When factors

are repeated the following method may be used.

Ex. 1. Express , ^, 5-.
in partial fractions.

We may assume that

2a; + 5 A B _^ . ^
(a;-l)»(x-3)-(x-l)3"^(x-l)a"*" (x-l)'^ x-S'

or, clearing from fractions,

2x + 5 = A{x-S) +B{x~l){x-3) + C{x-l)Hx-3) + D{x-l)».

By equating the coefficients of x*, x^, x^, x^ on the two sides of the

last equation, we shall have four equations to determine the four

quantities A, B, C, D, so that the assumption made is a legitimate
one. The actual values of A, B, C, D are not however generally
best found from the equations obtained by equating the coefficients of

the different powers of x. In the present case, the following method
is more expeditious.

Put x-l=y; then we have

2 + 2y + 5=:A(y-2)+By{y-2) + Cy^y-2) + Dy\
Now equate coefficients of y^, y^, y^, y^, and we have 7=^ -2Ai

2= A-2B; 0=5-2(7; andO=D + (7.

XKTU .«
7 o 11 ^ 11 , ^ 11

Whence A =
-^,

B= -
j-,

C= -— &ndD=— .

„ 2x + 5 11 7 11 11
Hence

{x-l)^x-S)''8{x-B) 2(a;-l)» 4(a:-l)> 8(aj-l)*

(l + a;)"
Ex. 2. Express the fractional part of ^

—~-= in partial fractions.
(1
—
Zx)

Assume

(l + a;)« A B C . . ,

(T^2i)»^ (Tr2^+ (1^12^+ (132^)
+^ ^^*'^'^^ expression.

Then

(l + x)*=:A+B{l-2x) + C{l- 2x)*+ (1
- 2« )» X integral expression.

Now put 1 - 2a?=y ; then

{H-x)«=(?-|y=i-J3'»-«3H-iy+^i^3»-2y2^.
terms con.

taining higher powers of y).
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Also right Bide—A +By+ Cy^+ y^ x integral expression in y.

Hence, equating coefficients of j/", y^, y^, we have

300. The following examples will illustrate the use

of partial fractions.

Ex. 1. Find the coefficient of a** in the expansion of j—^ ^
according to ascending powers of x.

1 3 2
We have

l-5a; + 6a;» 1-3j: l-2a;

= 3{l + 3x + (3.T)«+... + (3a:)*+...}

-2{H-2x+ (2x)»+...+(2a;)«+...}.

Hence the required coefficient is S^+i - 2"+i.

(1 + x\^
Ex. 2. Find the coefficient of a;""*^ in the expansion of -^

—--., .^
(1
- 2xf

From Ex. 2, Art. 299, we have

(1+a;)" _ S" 1 _ n3»^i 1^ _ n (w
-

1) 3*-^ 1

(1
-

2a;)3

~
2» (l-2a;)» 2'* (T^ip

"*"

2«+i 1 - 2a;

+ an integral expression of the (n
-
3)th degree. Whence the re-

quired result.

Ex. 3. Shew that the sum of all the homogeneous products of n
dimensions of the three letters a, 6, c is equal to

g*-^ (c
-

6) + b"-^'' {a-c) + c'*+'^ (6
-
o)

(& -c){e- a) (a
-
6)

The sum of all the homogeneous products of n dimensions is the

coefficient of x* in the product

(l + aa; + a2a;a+...)(l + 6a;+ 62a;2+...)(l+ ca;+ c2a;2+...)[See Art.293];

that is in yz r-^;
—r-m ; . which will be found to be equal to

(1
-

oar) (1
-
bx) (1 -ex)

a? 1_ &» 1 c« 1

(a-h){a-e)l-ax (6
-

c) (6
-
a) 1- 6a; (c

-
a) (c

-
6) 1 - ca;

'

and the coefficients of a;" in the expansions of these partial fractions

is easily seen to be

^n+a jn+a cn-t-2

+ ,T .-.-i V +
{a-h){a-c) (6-c)(6-a) {c-a){c-b)

which equals

(& - c) (c
-
a) (a

-
6)
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Ex. 4. To find the sum of all the homogeneous products of n
dimensions which can be formed &om the r letters aifa^^a^^ , a^.

As in the previous example, the sum required will be the co-

efl&cient of x* in -; r-jz r-r^ r , which will be found

a.r-1 I

to be equivalent to 2-; r-*
;
—

-:;
.

Hence the required sum is 2)

(«i-«a)(«i-«8) ••(oi-ar)

301. Indeterminate coefflcients. We shall con-

clude this Chapter by giving two examples to illustrate a

method, called the method of indeterminate coefficients,

which depends upon the theorems established in Articles

91 and 281.

Ex. 1. Find the coefficient of a:' in the expansion, according to ascending
powers of x, of {l + cx){l-\-c^x){l + c^x)...{l + c^x).

The continued product is of the nth degree in a; ; we may therefore
assume that

(l + cx){l + c^x)...{l + c'*x)= AQ+ AiX+ A^^+... + Arxr+... + A^x*,

where A^, A^, A^,... do not contain x.

Now change x into ex ; then, since Aq, A^, A^, &g. do not contain

X, we have

(l+c*x){l + c^x)...(l + c'^+^x)
= Aq + AiCX + A^c^x^ +...

+ ArC^air+ . . . + A^c*x'^.
Hence

(1 + c"+ia;) (.lo+ ili«+^j^+ ... +^^+ ... + J„x«)
=

(1 + ca;) (ilo + Aycx+ A^c'^x^+ .„ + Ar^x^ + . . . + ^^c^x").

Now equate the coefficients of «»" on the two sides of the last

identity, and we have

Ar + c«+M^i= AfCf + A^^cT ;

•• ^'•^
c*--! ^«-i=^ c«--l ^*-^ ^*^-

By continued application of (a) we have

cr cr-l «a
, (C*-*^^

-
1) (C"-*^-- 1)...(C*-^

-
1) {C-

- 1 )•' •••' •''

(c'-l)(c-»-l)...(c^-l)(c-l)
^»'

iri.M.i.(c"-l)(c»-l-l)...(c'»-'^l-l) , . . ^ .
, ,
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Ix. 2. To find the sum of the series l^+ 2^+ S^+ . . . + n^.

Let V+ 2^+ S^+.,. +71^=Ajn+ A^rv'+ Agn^ (a)

for some particular value of w, where A^, A^, A^ do not contain n.

The relation (a) will be true for n+ 1 as well as for n, provided

ia + 2«4.32+...+«3 + (n+ l)»=^i(w + l) + ^,{n+l)2 + ^3(n+ l)3;

or, subtracting (a), provided

(n+l)2=^i+ (2n + l)^ + (3n»+ 3w+ l)^3.
Now the last relation will be true for all values of n if we give to

Aj, A^, Ag the values which satisfy the equations found by equating
the coefficients of n', n} and n®, namely, the equations

3^8= 1» 3^g + 24j=2, and A^+ A^ + Aj^
= l,

from which we obtain 6^i=2^j= 3^3=1.

Hence, if the relation V+2^+...+n^=-n+ -n^+-'n?, be true
o Z o

for any value of n, it will be true for the next greater value. But it

is obviously true when n = l; it will therefore be true when n= 2;

and, being true when n=2, it must be true when n=3j and so on

indefinitely.

The sum of the cubes, or of any other integral powers, of the

first n integers can be found in a similar manner. [See also Ajt. 321.]

EXAMPLES XXIX.

Resolve into partial fractions :

Sx ^ x + l
1. -=-

X ^ af+ 1

(2-xy(i+x)'

^'

(x + 2){af + iy

9. . /-"/\... 10.

x(x+iy'

af + x+l
a^-4x' + x + 6'

l + Jx-af

{l+Sxy{l-10xy

5-9x

(af+l)(x-iy' {l^3xy(l-^x)'



{X-



24. Shew that
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{x-a^)(x-a^)...(x-aj
ar' 1= a; + a. +«-+ ... + a +S . .. .

' *
(ax-a.)K-a3)...a;-a^

25. Shew that the coefficient of 2;""* in the expansion of

{(1 -z)(l- cz) (1
-

c'z) (1
-

c'^z)}-'
is

(1
_

C-) (1
-
0"-) (1

-
c--)/(l

-
c) (1

-
c«) (1

- O.

26. Prove that

a{h-c){hc-aa'){ar-a"^) b{c-a){ca-hh'){ir -b"^)

a -a' h-h'

c(a-b) (ab
-

cc') (c*"
-

c"")

c- c'

^_ -i_
(5
_

c) (c -a) (a- b) {be
-

aa') {ca
-

bb') {ab
-
cc) H^_^,

where aa' = bb' = cc\ ajid //„_, is the sum of the homogeneous
products of a, 6, c, a', 6', c' ofw — 3 dimensions.

27. Shew that the product of any r consecutive terms of

the series 1 - c, 1 - c*, 1 — c',. • • is divisible by the first r of

them.

28. Shew that, if c be numerically less than unity,

(1 + ex) (1 + 0*05) (1 + c^x) ... to infinity

-1 ^ c' c^("+^> .^-^ +
l_c^"^(l-c)(l-c«)^'*"

•*•'*'

(l-c)...(l -c")^"^-

29. Shew that, if c be numerically less than unity,

(1 + ex) (1 + c*a5) (1 + c^x) ... to infinity

_, c c* ^ c^ 3~ "^

rr7^^(l-c»)(l-c^)
"^

(1 -c«) (1 -c*) (1 -c«)
"^ *" -

30. Shew that, if c be less than unity,

= l + r +
(l-»)(l-ca;)(l-c^a;)... l-c (l-cXl-c")

^
(l-c)(l-c-)(l-c-)^- t^^^^^-3
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31. Shew that, if c be less than unity,

(
I + cx)(l + c'x) (I + c'^x)

... ^ l+c (1
+ c){l+ c*) ^

'{l-x){l-cx)(l-c'x)...
~

l-c^'^(l-c){l-c')'^
'

[Gauss.]

32. Shew that the coefficient of x"" in the expansion of

(I + cx)(l +c'x){l + c'x) ...

{l-cx)(l-c'x){l-c'x)...

(l + l)(l+c)...(l+0
"^

(l-c)(l-c')...(l-cO'
c being less than unity.

33. Shew that

-x I -ax l-a'x l-a^x

_ 1 x a^ a?

l-y l-oy 1- ay 1 — ay

34. Shew that

x 2x' 3x' ^x*

l-x^\-a?'"\-a^^\-x'''^"*

X x' a?
+ T-. ST. +Tq i:^+ ...

(I-.:)' (1 -«:»)• -(l-a:»)

35. Shew that Lambert's series, namely.

x

l-x'"l-x'^\-x'^l^x*'^"'
is equivalent to

\+x . 1 + a^ , 1 + cc* r^, ,

J»i +«*= a + aTr -„+... rClausen.)\-x l-oj' 1-x' • '



CHAPTER XXIV.

Exponential Theorem. Logarithms. Logarithmic
Series:

J 302. The Exponential Theorem. If 1/n be nu-

merically less than unity, (1 +-j can be expanded by

the Binomial Theorem
;
and we have

\ nj n 1.2 nr

ruv (nx
—

1) {nx
—

2) 1 nx(na;—l)...(nx
—

r-{-l) 1

.2.3 n ^ n

which may be written

- -^ xlx—-] x\x I (a; )

V^n) =1+^ +—r-Tr-+ .-^r^. +
1.2

'

1.2.3

/ 1\ / r-l\
X [x ]..Ax

. V nj \ n ;
.

Putting^a;
= 1, we have

l + l+-7^r- +
2

'

|3

p
+
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xiix! )
mix )(<B

—
)

1+X+ j^ +
^

- + .

=f+i+— +—¥ +-

The above relation is true for all values of n however

great, and therefore when n is infinite; but when n is

infinite, 1/n is zero, and the relation becomes *

1+^+^+ +l+-=(i+i+l+-+^+-y-

Denoting the series l + l+T^+-r^+... +t-+... bye,

we have the Exponential Theorem, namely

It should be remarked that the above series for e* is

convergent for all values of x [Art. 278].

303. The quantity e is of very great importance
in mathematics.

It is obvious that it is greater than 2 and it is clearly less

than 1 + 1 + 2~* + 2"* + 2"^+ . .., and therefore less than 3.

Its actual value can be found to be 2*71828....

* This requires more careful examination not only to find the limit of

each term, but also because the limit of a sum is not necessarily equal
to the sum of the limits of its terms unless the number of the terms

'iBjinite. This examination is however omitted here for the investigation
in Art. 304 is preferable.
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To prove that e is an incommenstcrable number.

If possible, let e=^m/n, where m and n are integers;
then we should have

m , ^ 1 11 1 1- = 1+1 + 7:^+. + 7- + i—TT + rTH + r vq + ••••

n
|2 \n \n-hl \n+2 |n4-3

Multiply both sides by \n; then all the terms will

become integral except

'
+. .J. ...-f . .... \ +...

n + l^{n-\-2){n + l) {n -\- S) (n -^ 2) (n -\- 1)

Hence

1
•

1 1

71 + 1
"^

(W + 2) (n + 1 )

"^

(71 + 3) (71 + 2) (71 + 1 )

"^ • • •

must be equal to an integer; but this sum is less than

+ -Z 7x2+7 TT3+-"» ^^^ therefore less than

er

71 + 1 (W + ly
'

(71 + 1>

=- / (1 =-
) , that is less than -

. But an integi
w +l/Vw + l/ n ^

cannot be less than 1/n ;
it therefore follows that e cannot

be equal to the commensurable number 7^/71.

304. The following proof of the Exponential Theorem
is due to Prof. Hill*. It will be seen that it only assumes
the truth of the Binomial Theorem for a positive integral

exponent.
771 771/*"

Let /(tti) denote the series 1+7^-4-7^+ + t— +....

Thus /(7n)= 1+771 +
^'
+ +~ +

\r

*
Proceedings of the Cambridge Philosophical Societi/, Vol. v. p. 415.

Substantially the same proof is however given in Cauchy's Analyse A Ige-

brique.

s. A. 26
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/(n)sl+» +^
+ +

^
+

and/(m+n) = 1 +(m+n)+<^i+i^V ...

+<!^
+ ...

Now the coefficient of mV m/(m) xfOn) is
-,
—

r-
;

and in/(m + n) the term mV can only occur in ^^-j
——^

,J \ / J
vr + s

\r + s 1
and its coefficient will therefore be . t

, that is

fc li
r + s

\r \8

Hence, as the series /(m), f{n) and f{m + n) are

convergent for all values of m and n, and the coeffi-

cient of any term mV is the same in/(m) xf{n) as in

/(m + n), it follows from Art. 280 that

f(m)xf(n)=f(m + n) (i)

for all values of m and n.

Now let a; be a positive integer; then from (i) we
have

/(I) x/(l) x/(l) + to w factors,

=/(l + 1 + 1 + to X terms),

.-. {/(1)}'=/W (ii).

Next let a; be a positive fraction -
, where p and q are

positive integers. Then from (i)

{^(f)F=-^(f^fi^ to,te..s)=/0,)

-{/(l))',from(ii);

••./(f)
= (/(l)}-.

Hence, for all positive values of x, {/(I)}* =f{x).
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Lastly, let a? be negative, and equal to — y, so that y is

positive ; then/(- y) xf(y) =/(0) from (i) ; but/(0) = 1,

therefore/(- y)
=

l//(y).

Hence

/W =/(- y)
^fJZ)

=
[7(1)7

' ^^^^® y ^^ positive,

= {/(l)r ={/(!)}'.

Hence, whatever a: may be,

But /(i) =
i+|

+
|
+
|
+ ^e.

therefore eT =f(x)
= 1 -{- -rr -\- r~ + + ?-+

[1 |2 [r

305. To shew that

^-_n(n~l)" + '^-^^\n-2)''-...
=

[7i.

We have from Art. 804

(^-i,.=(.+|+|+...)%
Also, by the binomial theorem,

(«--l)*=««-n.e{"-i)*+^|^ye("-2)'-....

Now the coefficient of x*" in I x+-r-^+ j-^+...] is zero, if r is

\ Lz. Li /

less than n, and is 1 if r=n.

Also the coefficient of «•" in e~-ne<''-"*+^4^-^- e'**"^'*- ... is

Hence, equating the coefficients of x* in the expansions of the

two expressions for (e*- 1)**, we have

i
|n«-n(n-ir

+ ^-^^n-2)n- ..|
=1.

26—2
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The above theorem may be generalised as follows:

We have

1 • A

aud

(««*
_ e6x)n^ gnte (g(«-6)«

_
l)n ^ g.»6x

j
(^
_

ft) a;+
(-^|1-^'

+...!".

Hence, equating coefficients of x^ in the two expressions for

(«***
-

c**)", we have

^ I
(na)«

- n (^T^ . a+ 6)«+ ^?^^^ (n^ . a+ 26)»»
-

...

1
= (a

-
6)«.

If we put na=x and b-a=:y, the last result becomes

We have also, if k be any positive integer less than n,

«»-n(a; + y)*+*^^^^ (x + 2y)»- ... to n+1 terms=0.

The following particular cases are of importance, * being less

than n.

!*_ n2*+ -^^^^
3* -... to n + 1 terms=0,

and m*-7j(m-l)*+-^^^^(m-2)*- ... to n+ 1 terms=0.

EXAMPLES XXX.

Ex. 1. Shew that the limit when n is infinite of
[
1 + -

]
is e'^.

Ex. 2. Shew that the limit when n is infinite of ( 1 + -V is gt ,

Ex. 8. Shew that

Ex. 4. Shew that

1.2 ^" ^ -
24
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Ex. 6. Shew that

('^rrr-)('-r4"r-)=^
2 4 6

Ex. 6. Shew that 6-1=^5 + ^^ + 7;^+..-
If. [£. LI

Ex. 7. Shew that

3 1+2 1+2+3 1+2+3+ 4

2'-'^
[2 +-1I"'' IT"^'*^

Ex. 8. Shew that

/.111 \» A 1 1 1 y
(^+]2

+
14+g+-)='^('-'^+^+[7+ •)

•

Ex. 9. Shew that

-1- JL 1 1
* ""

1.8 "^1.2.3. 6"*'"*"*"l. 2.3... (2n-l)(2n+l)"^'-

Ex. 10. Shew that

e-1 fl 1 1 1 (1 1 1
)

Ex. 11. Shew that

««+l L 1 1 1 1 (, 1 1 1

?3i=il +|2+[4
+ ^+-r^

+
5
+
[6+[7+-

Ex. 12. Shew that the coefficient of x" in the expansion of

(1 + 2^ (l + 2x)» (l + 2x)3 2»e

Logarithms.

306. Definition. The index of the power to which
one number must be raised to produce a second number is

called the logarithm of the second number with respect to

the first as base. Thus, if a^ = yy then on is called the

logarithm of y to the base a, and this is expressed by the

notation x = log„ y.
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We proceed to investigate the fundamental properties
of logarithms,

and to shew how logarithms can be found,
and how they can be employed to shorten certain approxi-
mate calculations.

307. Properties of Logarithms. The following are

he fundamental properties of logarithms.

I. Since a* = l, for all values of a, it follows that

log«l=0.

Thus the logarithm of 1 is 0, whatever the base may
he.

II. Klog„a; = a, log^y^^, log„ <2r = 7, ...

then ic = a'^, y = a^, z = ay,...;

,\ayz...=a''.a^.ay ... = a*+^+y+"

/. log,(a7y2:...)
= a+^ + 7+ ...

=
log. X + log.!/ 4- log. ir + ...

Thus the logarithm of a product is the sum of the

logarithms of its factors.

III. If log. x = a, and log. y = ^]

then aj = a**, y = afi, and .*. ar-f-y
= a»"^;

.-. log. (a; ^ I/)
= a - /3 = log. a; - log. y.

Thus the logarithm of a quotient is the algebraic diff&r-
ence of the logarithms of the dividertd and the divisor,

IV. If a? = a*
;
then a?"* = a"*", for all values of m.

Hence log. x'^^ma^m log. w.

Thus the logarithm of any power of a nwmher is the

product of the logarithm of that number by the index of the

power.

V. Let log. a? = a, and log^ x = ^; then a? = a* = 6^
;

and hence a = 6*, and a^ — b.
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Therefore - = log^a, and -p.
—

logjb.a p

Hence log, b x log^ a =
-^

x - = 1.

Also /8
= a

logi, a, that is log^ w = log, a? . log^^a.

Hence the logarithm of any number to the base b will be

foimd by multiplying the logarithm of that number to the

base a by the constant multiplier log^ a.

308. The logarithmic series. Let a = e*, so that

A; = log. a; then a' = e='*= e^i°K'« Hence from Art. 304,
we have

»•
|2 \r

Put a = 1 4- 2/ ;
then we have

(l+2/r=l + ^log.(l+y) +
|i{a;log.(l+2/)l^+...

Now, provided y be numerically less than unity, (1 + y)'
can be expanded by the binomial theorem

;
we then have

^ , x(x-l) . x(x-l)(a)-2)...(x-r-hl) _

l-\rxy+-^Y-^y*+...+-^
—

fT""^ -2/ +•••

= l+a;log,(l +
2/)+|2(a:log.(l

+ 2/)r+...

The series on the right is convergent for all values of x
and y, and the series on the left is convergent for all values

of w provided y is numerically less than unity. Hence, for

such values of y, we may equate the coefficients of x
on the two sides of the equation. We thus obtain

log.(l+y)=y-^ +^- +(-ir^+...

This is called the logarithmic series.
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Ex. 1. To express a*» + 6" in terms of powers of ab and a+ b.

From the identity {l-ax){l-bx)= l-{a+ b)x+ abx^

= 1 - «x +px\

where s is put for a+ & and p for ab, we have

log, {l-ax) + log, {l-bx)= log, {1-sx ^-px^).

Hence (
aa; +'^ +^ +

j
+

fftaj+'g
+^ +

|^(«-

Equate the coefficients of x^ on the two sides of the last equation.

[This is allowable since the series can clearly be made convergent by
taking x sufficiently small.] Then the coefficient of x*" on the left is

-
(a** + 6"). On the right we have to pick out the coefficient of ar"

from the terms (beginning at the highest in which it can appear)

^ (« -ijx)" + |-^ (» -pa;)«-i+|l^ (s -2,a;)»-»+

the coefficient of x^ is therefore

1 „ If/ ,^ « 9 .
1 f(n-2)(n-3) .^ J

Hence we have

a" + &«= (a + &)«
- na6 (a+ &)"-2 + ^'^^^"^^ a^fos (a + 6)«-*

1 • ^

-
"'T.i'r" -''^'''+^'''-+-

Ex.2. Shew that, if a + 6 + c= 0; then will

10 (a7+ 67+ c7)= 7 (a^+ 62+ c2) (a« + 6» + c6).

Put -2? for 6c+ca4-a6, and g for ahc ; then we have the identity

(1
-
ax) (1

-
6a;) (1

-
ca?) as 1 --px^

-
qcfi.

Now take logarithms, and equate the coefficients of the different

powers of X in the two expansions. This gives -
(a' + fe*" + c') in

terms of p and q, and the required result follows at once. [See also
Art. 129.]
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Ex. 3. To express a" + 6"+ c" in terms of aJ)c and be+ ca+ ab, when

Put -p=:bc+ca+ab, and q= abc; then we have the identity

(1
-

flur) (1
-
bx) (1

-
car)
= 1 -^jx'

-
qx^.

Hence, by taking logarithms, and equating the coefficients of like

powers of x, we have

~
(a»+ 6"+ c**)

= coeflBicient of x" in S - a;*"
( jp + qxY,n r

which gives the required result.

The terms in 2 - a;*" (j? + qx)^ which contain x"^*^ are

l-x^{p + qx)^+,^^x^+^p + qx)^+^ +^~^

+ ...+ _ x^-^ {p + qx)^*-^ + g—
x^ {p + qxf^.

Now by inspection we see that the coefficient of a^~^ in each
of the above terms in which it occurs contains pq as a factor ; and
also that the coefficient of a;*""*"^ in each of the terms in which it

occurs contains p^q as a factor.

Hence, when a + 6 + c= 0, a^+ ft^ + c** is algebraically divisible by
afec (6c+ co + a6) when n is of the form 6i»-l, and a» + 6**+ c* is

algebraically divisible by afcc (6c4-ca+o6)' when n is of the form
6m+l.

If we put c=-(a+ &), bc-\-ca-\-ab becomes -(a^-k-ab + h^), and
we have Cauchy's Theorem, namely that a*+ 6* - (a + 6)" is divisible

by a6(a+ 6) (a^+ aft + fe^) when n is of the form 6w-l, and by
ab (a+ 6) (a^+ afe + 6")' when n is of the form 6m+ 1.

[See papers on Cauchy's Theorem by Mr J. W. L. Glaisher and
Mr T. Muir in the Quarterly Journal, Vol. xvi., and in the Messenger
of Mathematics, Vol. viii.]

309. In order to diminish the labour of finding the

approximate value of the logarithm of any number, more

rapidly converging series are obtained from the funda-

mental logarithmic series.

Changing the sign of y in the logarithmic series

log,(i+y) = y-^ + |'-^ + (i),

we have

iog.(i-2/)=-y-^-^-|'- (ii).
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Hence log.^ =
log, (1+ y)

-
log. (1

-
y)

=
2(y+^ + ^+ ) (iii).

Put — for ^
—-

, and therefore for y: then
n I —y m + n ^

We are now able to calculate logarithms to base e

without much labour. For example :
—

Put m =
2, 71 = 1, in formula (iv) ;

then

log.2 =
2{|

+ |.l + |.i +
...}.

from which it is easy to obtain the value log, 2 = '693147...

Having found log, 2, we have from (iv)

log,3-log.2^2g
+
i,i+^.J+...}

= -405465....

Hence log, 3 = -693147 + -405465 = r09861.

Proceeding in this way, the logarithm to base e of

any number can be found to any requisite degree of

approximation.

310. Logarithms to base e are called Napierian or

natural logarithms.
The logarithms used in all theoretical investigations

are Napierian logarithms ;
but when approximate numeri-

cal calculations are made by means of logarithms, the

logarithms used are always those to base 10, for reasons

which will shortly appear: on this account logarithms
to base 10 are called Common logarithms.

We have shewn how logarithms to base e can be found
;

and having found logarithms to base e, the logarithms to

base 10 are obtained by multiplying by the constant
factor logj/, or by 1/log.lO. [Art. 307, V.] This constant

factor is called the Modulm: its value is -43429...
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EXAMPLES XXXI.

1. Shew that log (a;
+ »)

= log oj + log (
1 + -

j
+

2. Shew that log. s/l^-l +
(2

+
3) i

+
(4

+
5)45*

3. Shew that log. ^10 =
{l

+
3 9

+
59!

+
7 95+

*»

.».! fl 11 11 11 ^ a .\
mfimtyj

+
|-+ 35,+ 3^+ ^g,

+ to
mfimtyj

.

4.
Shewthatlog.2-^-=p-2-3+3;-j-g+57g-7+

to infinity.

5. Shew that ^_L^+^-I-^ +
g-|-^+

to in-

6nity = 31og.2-l.

6. Shew that log, ^^ = 2 {^^ +
\ p^-^.

1 1
+ ^7K ^ +
6(2a;-l)^

- «, , ,
a;-l 1 a:*-! 1 aj»-l

7. Shewthatlog.*^—
^
+
2(^Tl)-»-'3(^7ir^

8. Shew that

a + (B _ 2ag; 1 / "lax y 1 / 2^0; X'
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9. Shew that

/ x"" x" \ 2a; 1 / 2a3 \» 1 / 2a; \V

H^"^^5- ri^^'nr^v^nn:^;^

10. Shew that

{iog.(i+«)r=2{l»='-l(J4)»'.l(lH-l4)x'-...}.

11. Shew that, if log^ (1 + a? +
a;*)

be expanded in powers
1 2

of a5, the coefficient of a;" is either - or
,
and distinguish the

12. If logg (1
— a; + a*) be expanded in ascending powers of

X in the form a^x + a^^ + a^ + ,
then will a^ + % + a, + ...

-
1 log. 2.

13. Expand log^
:j —^

in ascending powers of as,

. 14. Shew that

1 aj a;* as*

n w (n + 1) 71 (w + 1) (w + 2) w (w + 1) (/i + 2) (w + 3)

fl _ a; g* g"
I

*^t» |l(w+l)"^ [2(w4-2) |3(7i
+ 3)"^ /•

15. From the identity 2 log (1
—

a;)
=

log (1
- 2a; +

a;"), prove

that 2' -» . 2'- +4^i) 2"--^i^ififc^> 2- + ... =2.

16. If log, •:!

1 ^
be expanded in a series of positive

1 — a? ^ au T" as

1 3
integral powers of a?, the coefficient of a;" will be - or - accord-

n n
ing as n is odd or even.
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17. Shew that the coefficient of a;'' in the expansion of

c"' — 1 1

:j -, is r-{V + 2' + 3"+ +»-}. Hence find the sum of n

terms of the series 1* + 2' + 3' + ..., and also of 1' + 2* + 3' + ...

18. Shew that, if a^ be the coefficient of aj*" in the ex-

pansion of e*', then

1 (V 2- 3'
)

Hence shew that
-13 Q8 OS

and that

1* 2* 3* ,.

19. Shew that

r 71 n{n-l) n(n-l)(n-2) 1

i 1' r.2* P. 2^3" J

-1 .rml^. ^^-^^X^^^) (7.-Hl)(n+2)(n + 3)

20. Shew that the sum ofn terms of the series j
+ h + o + • • •>

beginning at the (n+ l)th, becomes equal to log, 2 when n is

increased without limit.

21. Shew that

log, (1 + n) < y
+

2
+ . . . + - < 1 + log, (l + n).

22. Prove the following :
—

(i) (x + yy -x'-y' = Ixy (x ^y){a^ + xy + y")',

(ii) {x + yY' -x''-y'' = l Ixy (x + y) (of + xy + y')

{(x^ + xy + yy + xy(x + yy},

(iii) {x + yy^
- a;'' - y''

= 1 "^xy {x + y) {x* + xy + y^
{{x' + xy + yy + ^Qt^y" {x + yy\.
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23. Shew that a^" + y'" + (x + y^
«x n.ii w(w-3)(w-4)(n-5) ,_, ,- Sp" + n (r*

- 2)p'-y + -i^
^^3 ^

^^ ^
p" V

.

^
(y^-r-l)...(yi-3r+l)

"*
3.4...2r ^ ^ ^•••'

where p = a^ + xy + y' and
g'
=

ojy (a;
+ y).

24. Shew that, (i)
if n be any uneven integer, (b

—
c)" +

(c
-

a)" + (a
- by will be divisible by (b

-
c)* + (c

-
a)« + (a

-
6)';

(ii)
if 7i be of the form 6w*l, it will be also divisible by

(6
—

c)' + (c
~

a)' + (a- 6)' ; and (iii)
if w be of the form

Qm+l it will be divisible by (6
—

c)* + (c
-

a)* + (a
-

6)*.

# Common LoGARrrHMS.

311. In what follows the logarithms must always be

supposed to be common logarithms, and the base, 10, need
not be written.

If two numbers have the same figures, and therefore

differ only in the position of the decimal point, the one
must be the product of the other and some integral power
of 10, and hence from Art. 307, II. the logarithms of the

numbers will differ by an integer.
Thus log 421-5 = log 4'215 + log 100 - 2 + log 4-215.

Again, knowing that log 2 = '30103, we have log '02

=
log (2 -r- 100) = log 2 - log 100 = -30103 - 2.

On account of the above property, common logarithms
are always written with the decimal part positive. Thus

log -02 is not written in the form - 1-69897 but 2-30103,
the minus sign referring only to the integral portion of

the logarithm and being written above the figure to which
it refers.

Definition. When a logarithm is so'written that its

decimal part is positive, the decimal part of the logarithm
is called the mantissa and the integral part the character-

istic.
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312. The characteristic of the logarithm of any nnmher
can he written down by inspection. For, if the number be

greater than 1, acd n be the number of figures in its

integral part, the number is clearly less than 10" but not

less than 10""'.

Hence its logarithm is between n and n — 1: the

logarithm is therefore equal to n — 1 + a decimal.

Thus the characteristic of the logarithm of any number

greater than unity is one less than the number offigures in

its integral part.

Next, let the number be less than unity.

Express the number as a decimal, and let n be the

number of ciphers before its first significant figure.
Then the number is greater than 10"""' and less than

10"".

Hence, as the decimal part of the logarithm must be

positive, the logarithm of the number will be — (n + 1) +
a decimal fraction, the characteristic being

—
(n + 1).

Thus, if a number less than um^ity he expressed as a

decimal, the characteristic of its logarithm is negative and
one more than the nwmber of ciphers before the first signifi-

cant figure.

For example, the characteristic of the logarithm of 3571*4 is 3,

and that of -00036714 is 4.

Conversely, if we know the characteristic of the

logarithm of any number whose digits form a certain

sequence of figures we know at once where to place the

decimal point.

For example, knowing that the logarithm of a number whose

digits form the sequence 35714 is 3*55283, we know that the number
must be 3571 '4.

313. Tables are published which give the logarithms
of all numbers from 1 to 99999 calculated to seven places
of decimals : these are called

'

seven-figure
*

logarithms.
For many purposes it is however sufficient to use five-

figure logarithms.
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, In all Tables of logarithms the mantissae only are

given, for the characteristics can always, as we have seen,

be written down by inspection.
In making use of Tables of logarithms we have, I. to

find the logarithm of a given number, and II. to find the

number which has a given logarithm.

I. To find the logarithm of a given number.

If the number have no more than five significant

figures, its logarithm will be given in the tables. But, if

the number have more significant figures than are given
in the tables, use must be made of the principle that

when the difference of two numbers is small compared
with either of them, the difference of the numbers is ap-

proximately proportional to the difference of their loga-
rithms. This follows at once from Art. 308, for

log,o {N + x)~ log,,N=
log,,

(l
+

1=)
=

/^ H.
(l
+

1")

^^ XN^^W^'") ^^N approximately, when
-^

small, jM being the modulus 1/log^ 10.

An example will shew how the above principle, called

the Principle of Proportional Differences, is utilised.

Ex. To find the logarithm of 357-247.
We find from the tables that log 3-5724= -5529601, and log 3-5725

= -6529722; and the difference of these logarithms is -0000121.
Now the difference between 3*57247 and 3-5724 is ^ths. of the
difference between 3-5724 and 3-5725 ;

and hence if we add ^ths, of

•0000121 to the logarithm of 3-5724 we shall obtain the approximate
logarithm of 3-57247. Now /^f/ia. of -0000121 is -00000847, which
is nearer to '0000085 than to -0000084. Hence the nearest approxi-
mation we can find to the logarithm of 3-67247 is -5529601 + -0000085
= •5529686.

The characteristic of the logarithm of 357-247 is obviousiy 2, and
therefore the logarithm required is 2*6629686.

II. To find the number which has a given logarithm.

For example, let the given logarithm be 4 •5529652.
We find from the tables that log 3-5724 = -5529601 and that

log 3-5725= -5529722, the mantissa of the given logarithm falling

is
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between these two. Now the difference between •5529601 and the

51
given logarithm is r^ of the difference between the logarithms of

3-5724 and 3-6725.; and hence, by the principle of proportional
differences, the number whose logarithm is -5529652 is

3-6724 + ,^ X 0001= 3-6724+ •00004=3-57244.

[The approximation could only be relied upon for one figure.]

Thus -5529662= log 3-57244, and therefore

4-5529652= log -000357244.

Compound Interest and Annuities.

314. The approximate calculation of Compound In-

terest for a long period, and also of the value of an annuity,
can be readily made by means of logarithms.

All problems of this kind depend upon the three fol-

lowing :
—[The student is supposed to be acquainted with

the arithmetical treatment of these subjects.]

I. To find the amount of a given sum at compound
interest, in a given number of years and at a given rate

per cent per annum.
Let P denote the principal, n the number of years,

lOOr the rate per cent, per annum, and A the required
amount.

Then the interest of P for one year will be Pr, and
therefore the amount of principal and interest at the end
of the first year will be P (1 -\- r). This last sum is the

capital on which interest is to be paid for the second

year ;
and therefore the amount at the end of the second

year will be {P (1 + r)} (1 + r)
= P (1+ rf. Similarly the

amount at the end of n years will be P (1 -f r)".

Thus ul = P (1 + r)" ;
and hence

log A =
log P + n log (1 -f r).

If the interest is paid, and capitalised, half yearly, it

can be easily seen that the amount will be P ( 1 + ^ 1 .

s. A, .27
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Ex. Find the amount of £350 in 25 years at 5 per cent, per annum.

Here P= 350, r=^ and n= 25;

/. log 4 = log 350+ 25 log
(l
+
fQQJ

= log 350 + 25 (log 105 -
log 100).

From the tables we find that log 350= 2-5440680 and log 105=
2-0211893; hence log J:= 3-0738005. Whence it is found from the

tables that ^ = £1185-22.

II. To find the present value of a sum of money which

is to be paid at the end of a given time.

Let A be the sum payable at the end of n years, and
let P be its present worth, the interest on money being

supposed to be lOOr per cent, per annum. Then the

amount of P in w years at lOOr per cent, per annum
must be just equal to A.

Hence from I. P = ^ (1 + r)'".

III. To find the present value of an annuity of £A
payable at the end of each of n successive years.

If the interest on money be supposed to be lOOr per
cent, per annum ;

then from II.

The present value of the first payment is J. (1 -H r)~*

second -4(1 + r)~*

?ith A(l-\-ry.

Hence the present value of the whole is

Ex. Find the present value of an annuity of £30 to be paid for 20
years, reckoning interest at 4 per cent,

Here^=80,„=20,r=A =
^l_.
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Hence the present value = 30x25Jl-(2c) \
•

Now log
(IIy"

= 20{log 25 - log 26}

= 20 {1-3979400
- 1 -4149733}

=20 (--0170333)= - •340666=1-659334

=log -456389, from the Tables.

Hence the value required= 30 x 25 x (1
-
-456389) = £407-7...

EXAMPLES XXXIL

The following logarithms are given
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5. Find the amount of £500 in 10 years, interest at 4 per
cent, being paid half yearly.

6. The number of births in a certain country every year
is 85 per 1000 and the number of deaths 52 per 1000 of the

population at the beginning of every year: shew that the popu-
lation will be more than doubled in 22 years.

7. A man invests £30 a year in a Savings Bank which

pays 2J per cent, per annum on all deposits. What will be

the total amount at the end of 20 years?

8. What sum should be paid for an annuity of .£100 a

year to be paid for 40 years, money being supposed to be worth
4 per cent, per annum ?

9. A corporation borrows £30000 which is to be repaid

by 30 equal yearly payments. How much will have to be paid
each year, money being supposed to be worth 4 per cent, per
annum?

10. A house which is really worth £70 a year is let on a

lease for 40 years at a rent of £10 a year, the lease being re-

newable at the end of every 14 years on payment of a fine.

Calculate the amount of the fine, reclconing interest at 6 per
cent.



CHAPTER XXV.

Summation of Series.

815. We have already considered some important
classes of series, namely the Progressions [Chapter xvii],
Binomial series [Art. 288], and Exponential and Logarith-
mic series [Chapter xxiv]. In the present chapter some
other important types of series will be considered.

316. The nth term of a series will be denoted by u^,
and the sum of n terms by 8^. When the series is con-

vergent its sum to infinity will be denoted by S^.

317. No general method can be given by which the

summation of series can be effected
;

but . in a great
number of cases the result can be obtained by expressing
the general term of the series, i*„, as the difference of

two expressions one of which involves w — 1 in the same
manner as the other involves n.

For example, in the series

a)(ic + a) (a? + a) {x + 2a) (x -t- 2a) {x + 3a)

a
the nth term, namely == , is equal to

{x -\-n — l.a) {x-\-na)

7 =^- . Hence the series may be written
x -k- {n — \) a X •\- na ''
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yx" x-{-a) \d?+a x-\-2a/ \x+2a a? -f Sa/

+ J ; -V [
' and it is now obvious that all

\x+{n — l)a a? -f- na)
the terms cancel except the first and last

;

hence o„ = ;

= —7
—

;
r .

X OS + na a;{£c + na)

Ex. 1. Find the sum of n terms of the series

Ans. 1 = .

n+1

1.2 "^2. 3 ^3.4"*' '^n{n+l)^

Ex. 2. Find the sum of n terms of the series

Ex. 3. Find the sum to infinity of the series

_i- J_ Jl_
1

3|_l

+
4l2

+
5[3'^ '^(n+2)\^'^

Here w„=
, ^ -

-. ^ . Ans. rr."
\

n + l
\
n + 2 2

Ex. 4. Find the sum to infinity of the series

3 5 _J__ 2n+l
12 . 28

*"
23 . 32

"^
32 . 42

"•"

*"^(n+ !)«"*"

Ex. 5. Find the sum of n terms of the series

1 2 3 n
1.3 "•'1.3. 5 "^1.3. 5. 7"*" '^1.3.5...(2n+l)'

[^''"=1.3. 5...^7^1)
"
1.3.6...(2rt-l)(2n+ l)J

*

^^-
H^"l.3.5.^2n + 1)}-
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Ex. 6. Sum to infinity the series
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Hence v„
—

v^_^
=

(r + 1) 6 x u^.

Changing n into w — 1 we have in succession

v,
-

Vi
=

(r + 1) 6 X w,.

Also Vj
—

v^
=

(r + 1) 6 X Wj,

where v^ is the term preceding v^ which is formed accord-

ing to the same law,

that is Vq= {(a
—
b)a(a + b)...(a + r — ib)], so that v^ is

obtained by putting n = in the expression for v^.

Hence by addition

^n-'^o^(r+l)bS^;

r.S^ = {v^-v,)l{r-^l)b.

Ex. 1. Sum the series 1.2 + 2.3 + 3.4+ +w(w + l).

Here M„ = n(n+1), v„= n(n+l)(7t+2), Vq = 0. 1. 2, r = 2, and
6=1.

Hence
Sn=^n{n + l){n+2).

Or, by using the above method without quoting the result, which
is preferable in very simple cases, we have

n(n+l)=^{w(w+l)(n+2)-(n-l)n(n+ l)}.

(«-l)n=i{(n-l)n(n+l)-(«-2)(M-l)«},

1.2= ^{1. 2.3-0. 1.2}.

Hence S^=-w(w+ l)(n+2).

Ex. 2. Sum the series 1 .2. 3 + 2.3.4+ +w(n+l) (n + 2).

Ans. -n(n + l) (n + 2) (u + 3).



SUMMATION OF SERIES. 399

Ex. 3. Sum the series

1.2.3.4 + 2.3.4.5 + +n{n + l){n + 2) (n + B).

Ans. vn(w+ l)(n + 2)(n + 3)(n+4).

Ex. 4. Find the sum of n terms of the series

3.5.7 + 6.7.9 + 7.9.11 +
Here

w„=(27i + l)(2w+ 3)(2n + 5), v„=(2n + l) (2ri + 3) (2n+ 5) (2n+7),

^0= 1.3.5.7, r=3, and 6= 2.

Hence
/Sf„=^{{2w

+ 1) (271 + 3) (2n + 5) (271 + 7) -1.3.5.7}.

Many series which are not of the requisite form can be

expressed as the algebraic sum of a number of series

which are all of the required form
;
and the sum of the

given series can then be written down. The following are

examples.

Ex. 5. Find the sum of n terms of the series 1.3 + 2.4 + 3.5 +

Here M„=ro(n+ 2)=72 (n+l)+w.

The sum of the series 1.2 + 2. 3+...+n(n + l) is

-J-{n(w
+ l)(n+ 2)-0.1.2},

and the sum of the series 1 + 2+ ... +n is ^{n(w+l)-0 . 1}.

Hence the required sum i8-n{n+ l){n + 2) + --n{n + 1).

Ex. 6. Find the sum of the series

2.3. 1 + 3.4. 4+ 4. 5.7+ + Cu + 1) (n + 2) (37i-2).

Here M„=(n+1) (n+2) (3n-2) = 3n(n+l) (71+2) -2 (71 + 1) (w + 2).

/.
S„=| {71(71+ 1) (71+ 2) (71+ 3)^0. 1 .2.3}

-|{(7i+l)(7i
+ 2)(n+ 3)-1.2.3}

=i (971
-
8) (n + 1) (71+ 2) (71 + 3) + 4.
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319. To find the sv/m of n terms of the series whose

general term is

l/{(a + 71 - 1 . 6) (a + n6) (a + n + 1 . 6)...(a + n + r - 2 . 6)j.

Consider the series which is formed according to the

same law but with one factor taken away from the

beginning of each term, and let v^ be the nth term of this

second series, so that v^—\l{{a-\- nh) ...{a-\-n-\-r
—

2.h)].

Then

1

[{a + nh) ... {a ^- n -\- r -2 .h)]

1

{(a + 71 - 1 . 6) (a + n6) . . . (a + ri + r - 3 . 6)}

{{a + 71- 1 . 6). . .(a+ 7i+r-2 . h)]

-(a+7i + r-2.6)};

Changing n into ti — 1 we have in succession

v^^—v^
— — {r—l)h X

u.^.

Also
v^
—

VQ=^
— (r- 1)6 xu^,

where v^ is the term which precedes v^ and which is formed

according to the same law, that is

t;,
= 1 / {a (a + 6). . .(a + ^'2 . 6)j.

Hence, by addition,

v„-v,==^-(r-l)hxS^;

-Sn = (Vo-vJI{r-l)b,

Ex. 1. Sum the series tt—„ + ^—. + ... +
2.3 ^3.4 •"^(n+ l)(n + 2)*
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Hence S^=j-j j^

"
n + 2l

"
2
"
^T2

*

Ex. 2. Sum the series j-^^ + 2:^5^ --^
n{n+l){n+ 2){n + Z)

to w terms and to infinity.

„ _ 1 1
liere

«n-„(^^ij(^+ 2)(»+"3)» *'»-(n+l)(n+2) (n+3)
'

Hence
^«=37i jf^Ts

"
(n + 1) (n+^)F+3)|'

and S^ = ^.
3 1.2.3 18

Ex. 3. Sum the series x-^^n + s-T7-^r?+ ••• +
3.7.11 7.11.16 (4n-l){4w + 3)(4n+ 7)

Ans.
fif„=g |377-(4„+3)(4^+ 7)[

•

Many series which are not of the above form can be

expressed as the algebraic sum of a number of series

which are all of the required form; and the sum of the

series can then be written down. The following are
,

examples.

Ex. 4. Sum the series
^-q + 2~i + 3~6'^

*-

Here

1 • n+1 1
.

1

»""n(n+ 2) w(n+l)(w+ 2) (w+ l){n+ 2)
'

w(n+ l)(n+ 2)

The series whose general terms are -—
., q. and

(n+l)(n+ 2) n(n+l)(n + 2)

are of the required form. Hence the sum of the given series is

given hy

_/l_JLA . l/_i L ^=! 2n + 3

^«~V2 n+2j'*"2Vl.2 (n+l)(w+ 2); 4 2(n + l)(n+ 2)*
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r. . o .^ . 1 1 1
Ex, 6. Sum the senes

., » ^ + 77—j

—
^+ ... + —.—-^rr-.

——
jv .

1.3.6 2.4.6 n{n+ 2){n+ 4)

_ 1 ^ (w+ l)(n+3)

"«~n(7H-2)(n + 4)~n(n + l)(n+ 2)(n + 3)(n+ 4)

n(w+ 4) + 3

"n(n+l)(n+ 2)(w + 3)(»+ 4)

= ^^ + ?
(n + l)(n+2)(n+3)^n(n+l)(n+ 2)(n + 3)(n+ 4)'

Hence

g =liJ____J__i .?J_J __i 1"
2]2.3 (n+^)(n+3)j "^4 (1.2.3.4 (n+l){n + 2)(n + 3)(n+ 4)f

*

320. The sum of series of the kind just considered

may be obtained by means of partial fractions.

The method will be seen from the following example.

To find the sum of the series r—^ + jr—r + 77—?+ ... + —; .

1.3 2.4 3.5 n(n + 2)

that ^= 5 and S=-i.
a 2

Hence 2w»= .* n n+2
We have therefore the following series of equations :

^=1-5- '^-l-V M-g =

^"»--;i^2-s- ^"-=s:^i-j7i' '«'^2"«=i-r^-

Hence, by addition,

'^«-i"*'2 irri"^rr2'
the other terms all cancelling.

3

4 2(n + l)(n + 2)'

Hence S.=| - 2n+ 3

321. 2^0 /nc? ^Ae si^m 0/ the rth powers of the first
n whole numbers.

We will first consider the two simplest
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Case I. To find the sum of 1' 4- 2' + 3' + ... + n\

Here u^
= n^ = n {n -^-1)

— n.

Hence, by Art. 318,

"^ S,^\n{n + l){n + 2)-\n{n-\-l)

=
gn(n

+ l)(27i + l).

Case II. To find the sum of 1» + 2" + 3» 4- . . . + n\

Here
t/-^

= w' = ri (w + 1 ) (w + 2)
- Sti' - 2n

= n (n + 1) (w + 2)
- 3/1 {n + 1) + w.

Hence, by Art. 318,

/S„
=
^n(7i

+ l)(7i + 2)(7H-3)-|7i(7i
+ l)(^4-2)

=
j7i(n

+ l){(7i + 2)(7H-3)-4(7i+2) + 2}

Since l + 2 + ...+n = 2^(^ + l),

the above result shews that

r + 2'' + ...+7i» = (l + 2 + ... + ny,

so that the swm of the cubes of the first n whole numbers is

equal to tlie square of the sum of the numbers.

The sum of the cubes of the first n integers can also be easily
found by means of the identity 4w2 = {n (n+ 1)}^

- {(»- 1) «}'.

For we have in succession

47j.^ = {7t(w + l)}2-{(n-l)n}2,

4{«-l)8={(w-l)n}3-{(n-2)(n-l)}2,

4. 23= (2, 3)»- (1.2)2,

and 4. 18= (1.2)3 -(0.1)8.

Hence, by addition, ^Sn=n^ {n+ l)\
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Case III. To find the sum of 1" + 2*^ + 8' + . . . + n^

The sum for any particular value of r can be found by
the same method as that adopted for the values 2 and 3.

For example, the sum of the fourth powers can be

written down as soon as n* is expressed in the form

n' = w (71 + 1) (71 + 2) (71 + 3)
- 6n(n+l){n+2)

4- Tti (n + 1)
- 71.

By means of the Binomial Theorem a formula can be
found which gives the sum of the rth powers in terms of

the sum of powers lower than the rth
;
and this formula

can be used for finding the sum of the 2nd, 3rd, 4th, &c.

powers in succession. The formula has however the great

disadvantage that in order to find by means of it the sum
of the rth powers, it is necessary to know the sums of all

the powers lower than the rth.

By the Binomial Theorem, we have in succession

(71+ ir^ = tT' + (r + 1) 7?:

+^^li^7i'-^
+ ... + 1,

(7ir=(7i-ir+(r+i)(7i-ir+(^:±^(7i-ir
+...+1,

g^, ^ 2*^* + (7- + 1) 2'- +^—^- 2*-^ + ... + 1,

2'-^ = l*^* + (r + 1) r + ^-^^li^ 1-^ + ... + 1.

Hence, by addition, we have (n + l)**^^
—

(ti + 1)

= (r + 1 ) ^/ + (l+^ ^,
-^+ . . . + (^ + 1 ) s:,

where SJ" is written for the sum of n terms of the series

r + 2- + 3''+...
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We can in a similar manner find a formula for summing the

rth powers of any series of quantities a, a + 6, a + 26, ... in arith-

metical progression. The result is

(a + n6)'^i-a'-^i-w6-*-i= (r + l)&V + ^~^^- b^S^'--^ +..'. + {r+1) b^S„\

where /S„'-=a»- + (a + 6)*'+ ... + (a+ 7^U6)^

322. Piles of Shot. To find the number of spherical
balls in apyramidal heap, when the base is (I) ai^equilateral
triangle, (II) a square, and (III) a rectangle.

I. In a pile of this kind the balls which rest on the

ground form an equilateral triangle, and upon this first

layer a number of balls are placed forming another equi-
lateral triangle having one ball fewer in each side than in

the side of the base
;
and so on

;
a single ball being at the

top.
If n be the number of balls in each side of the base,

the total number in the base will be

71 + (n
-

1) + (w
-

2) +. . .+ 2 + 1,

that is ^n (n + 1). The whole number of the balls in the

pile will therefore be

^ {w (71 + 1) + (w
-

1) n +. . .+ 1 . 2},

that is Jn (w + 1) (n + 2).

II. In this case the balls in any layer form a square
with one ball fewer in each side than in the layer next
below. Hence if n be the number of balls in each side of

the lowest layer, n^ will be the number of balls in the base,
and therefore the whole number of the balls will be
71* + (71

-
I)'^ + (71

-
2)^^ +. . .+ 1^ that is jTi (71 + 1) {2n + 1).

III. In this case the balls in any layer form a

rectangle with one ball fewer in each side than in the

layer next below. Hence if n and m be the number of balls

in the sides of the lowest layer, nm will be the number of

balls in the base and therefore the whole number of the
balls will be, n being greater than m,
nm + (71-1) (m- l) + (n - 2) (tti

-
2) + ... (n-m + 1) 1

—{n — m + m)m + {n
—m + 'm—l){m — l)-\-...{n

—m+ 1)1
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= (n-m){m + (m-l)+...+ l} + m'* + (m-l)»+...+ l'

= ^(7i-m)m(m + l) + Jm(m+l)(2m + l) S
= Jm (m + 1) (3m -m + 1).

Ex. 1. How many balls are contained in 8 layers of an unfinished

triangular pile, the number in one side of the base being 12 ?

If the pile were completed it would contain
^

. 12 . 13 . 14 balls;

1
and there are ^ . 4 . 5 . 6 missing from the complete pile; hence the

D

required number is
^ (12 . 13 . 14 - 4 . 5 . 6).

Ex. 2. How many balls are contained in 10 layers of an incomplete
pile of balls whose base is a rectangle with 20 and 25 balls in its

sides ?

The number=Sn(n+ 5) from n=ll to w=20.
An*. 3260.

323. Pigurate numbers. Series of numbers which
are such that the nth term of any series is the sum of the

first n terms of the preceding series, all the numbers of

the first series being unity, are called orders of figurate
numbers.

Thus the different orders of figurate numbers are :
—

First order, 1, 1, 1, 1, 1,

Second order, 1, 2, 3, 4, 5,

Third order, 1, 3, 6, 10, 15,

It follows from the definition that the nth term of the

second order of figurate numbers is n; the nth term of

the third order will therefore be (1 4- 2 + 3 + . . . + n), that is

\n (n + 1); the nth term oi thefourth order will therefore be

i {n(n + l) + (n- l)n+...+ 1.2}, that is
''^'''^^^^^''^^^

the nth term of the fifth order will therefore be

2^{n(n
+ l)(n + 2) + (n-l)n(n + l)+...+ 1.2.3j, that
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is 2 n {n -^ 1) (n -{- 2) (n + Sy, and so on, the nth term

of the rth order being

71 (w + 1) (n + 2)...(n + r-2)

324. Polygonal numbers. Consider the arithmetical

progressions whose first two terms are respectively 1, 1 ;

1, 2
; 1, 3

; 1, 4
;
and so on. Then the series formed by

taking 1, 2, 3,..., n of the terms of these different arith-

metical progressions, namely the series

1, 2, 3, , n,

1, 8, 6, , in(n + l),

1, 4, 9, , <
1, 6, 12, , n-\-^n(n-l),

1, r, Sr-S,..., n-\-in(n-l){r-2), ...

are called series of linear, triangular, square, pentagonal^,,

r-gonal numbers.

The sum of n terms of a series of r-gonal numbers
can be written down at once, for the sum of n terms of the

series whose general term is n -\- \n {n
—

V) {r
—

2) is

\n{n+l) + i{n-\)n{n + \){r-2) [Art. 318].

EXAMPLES XXXIII.

Find the sum of n terms of each of the following series,

and find also the sum to infinity when the series is convergent.

1. 4.7.10 + 7.10.13 + 10. 13.16 + ...

1 1 1

3.7.11 "*"7.11.16 *"11.15.19"*'"*

3. 1.3.4 + 2.4.5 + 3. 5.6 + ...

4. 1.5 + 3.7 + 5.9 + 7. 11 + ...

s. A. 28
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6. 1.2. 3 + 2. 3. 5 + 3. 4. 7 + 4. 5.9 + ...

6. 1.2*+2.3« + 3.4» + 4.5«+...

7. 1.3V3.5* + 5.7=' + 7.9=»+...

1 1 1 1
^'

1 . 3 . 7
"^

3 . 5 . 9
"^

5 . 7 . 11
"^

7 . 9 . 13
* **•

1 1 1 1

1.3.4'^2.4.5"^3.5.6'^4.6.7'**'*"

10.
4 5 6 7

1.2.3 2.3.4 3.4.5 4.5.6

,,12 3 4
11. ,—7C—= + A ^ ^ +

1.3.5 3.5.7 5.7.9 7.9.11

3_ 4 5 6

1.2.4"^2.3.6"*"3.4.6'^4.5.7'^"

.oil 1 1
13. - + r ;: +11+21+2+31+2+3+4
,, 1« P + 2» V + 2' + 3' l" + 2^+3" + 4*
14.

^
+ -2-^ ^3—^ 4

+ -.

15. l.P + 2(P + 2») + 3(r+22 + 3^) + 4(P + 2* + 3^ + 4=')+...

16. a'+{a + by + {a + 2by+.„

17. a^+(a + bY+{a + 2by+„.

18. l'+3» + 5» + 7" + ...

19. l« + 5« + 9« + 13^+...

20. Shew that

l«_2»+3»-4«+... + (2n + l)*
= (n+l)(2n+l).

21. Shew that 1" - 2« + 3« - 4« + . . .
-

(2n)^
= -n {2n + 1).

22. Shew that

l»_2«+3»-4»+...+(2n+l)»=4n« + 9n» + 67j+l.

23. Find the sum of the series

l.w+2(n-l) + 3(w-2) + ...+n.l.
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24. Find the sum of the series n.n+(n-l)(n + 'l)
-k-

(w- 2) (n + 2) + ... + 2 (271
-

2) + 1 . {2n
-

1).

25. Find the sum of n terms of the series

ab + ia- 1) (b-l) + (a- 2) (6
-
2) + ...

26. Prove that, ifS;=r + 2'+ ... n"; then wiU

(i) 6S; = QS^'xS;-SJ'.

(ii) ^;+^;=2(^;)v

27. Find the sum of the following series to n terms:

1
o O

(i)
__. 2 +—- 2' + -— 2^ +^^ 2.3 3.4 4.5

_3_1 ^J^ 5 1

^^'^ 1. 22^2. 32^ ^3.42^"^-

..... 4 /2\ 6 /2V 6 /2V
("^) 172(3)^273(3) ^3-4(3)^-

(^^) r:2r3 (7)
^
2-7374 (7)

^
37175 (7)

^ -

/ X
9 /3\ 10 /3\> 11 /3V

(") 1727^ (4)
^
2-7374 (4)

^
37175 (4)

^ -

. ., 15 /6\ 16 /6V 17 /6Y
("^) 17273 (7)

^
2-7374 (7)

^
3—475 (7)

^ -

28. Shew that the sum of all the products of the first n

natural numbers two together is ^ (w
—

1) w (n + 1) (3n + 2).

29. Shew that the sum of all the products of the first n

natural numbers three together is
-j-^in

-
2) (n

—
1) n' (n + 1)*.

30. Shew that the sum of the products of every pair of the

squares of the first n whole numbers is

^«K-l)(4»'-l)(5«+6).
28—2
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325. To find the sum of n terms of the series

a a(a-\-a)) a (a -\- x) (a -i- 2a?)

b
"^
JJb + xj

*
6 (6 + a?) (6 + 2^)

* • * *

a{a + x)...(a-\-n—lx)

b(b + x)...{h-^n-lx)

In the above series there is an additional factor both
in the numerator and in the denominator for every succes-

sive term, and the successive factors of the numeiator and
denominator form two arithmetical progressions with the

same common difference.

Consider the series formed according to the same law
but with an additional factor in the numerator, and let v^
be the general term of this second series, so that

_ a (a + x). . .(a -{• n — 1 x) (a -\- nx)

6 (6 +«?)...(& + ^r^ a;)

Then

_ « (o^ + g^)" '(c^ + n - 1
a?) (g + 7ia?)

a(a^x)...{a-\-n-lx)

b{b + x)...{b-\-^^^x)

a{a-\-x)...{a-\-n
— lx){, , ^,

. J

b{h+x)...{b + n-lx)\:
^

So also v^j
-

Vn-s
=

'^n^t
X (a + a; - 6)

v^- v^
= u^x {a -\- X -b).

[a^-x) . .

Wj X (a +ar-6) + bu^.

Also ..-^(« + ^)
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Hence S^x(a + w — b)
=

v^
— a;

•~a + a;-6|6(6 + a?)...(6 + n^a;) J'

The sum of n terms of the series

a a{a — w) a(a — x){a
—

2a;)

b~'b(b + x)'^ b(b + x)(b-{-2xj'^'"

in which the successive factors of the numerator and
denominator form two arithmetical progressions whose
common differences are equal in magnitude but of opposite

sign, can be found by changing the sign of a in the

previous result : the sum can, however, be obtained inde-

pendently by the same method. Thus

a
__

1 Va a (a
—

x)!

h
~
a+b-x [l

"^
b J

1 ra(a- x) a (a— x) (a
—

2xy\

^a-\-b-x I b
"^

b{bTxj J

a(a — x)

b(b + x)

C_ i)"-i
(^((^-^)-"(ci'-n-lx)

6(6 + ^)...(6 + ^r^a;)

_ ._ . „_, 1 fg (a
—

x)...(a
— n—l x)

a + b-x [b{b + x)...{b+n^2x)

a(a — x)...(a
—
nx) ~|

b(b + x)...(b-i-n-lx)j'
Hence

S
^

["i
_ /_ pn (^

-
^) (^

-
2^)- • (Q^

-
nx)l

«
a+6-^L b{b-^x).,.(b + n-lx) y

Ex. 1. To find the sum of n terms of the series - +^ + hJ^+
3 3.6 3.6.9
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We have

2_l/2.5 2\ 2. 51/ 2. 5. 8 2 . 5\

8~2l^ 3 ij' 3.6~2V 3.6 3 )*

2.5.8...(3n-l) _ 1
/2.5.8...(3w+ 2) _ 2. 5. 8...(3n-l)

|

3.6.9...3n ~2
t

3.6.9...3n 3 .6. 9...(3w-3)j
'

„ 1 j2.6.8...(3n+ 2) 2)

[This particular series is a binomial series, the successive terms being

the coefficients of x, x^, &c., in the expansion of (l-x)"*. Hence

[Art. 287] 1 + /S«=sum of the first (n + 1) coefficients in the expansion of

(1 -x)~^= coefficient of «« in {l-x)~^ x {l-x)-\ that is in (l-x)'^].

2 2 6 2 6 10
Ex. 2. Find the sum of n terms of the series - + ^^ + 5-^ _',., +...

o 3.7 3.7.11

2|
6.10...(4n+ 2) 1

"^^^
3 i3.7...(4n-l) 7*

Ex. 3. Find the sum of n terms of the series

- m TO (m - 1) m (to
-

1) (to
-

2)

~T'*"~T72 1.2.3
"*"••

Am. ( i)»-i
("^-l)(^-2)...(m-7i+ l)

^

326. The sum of n + 1 terms of the series

where a„ is any integral expression of the rth degree in n,
can be found in the following manner.

S^
=

cto + (i^a)+a^af + ... + ajc'',

(1 ~ajr^= 1 - (r+ l)a; + (!:il^^^-
... + (_ l)^^a^r^\

Hence ^„ x (1
-

w)"^'
=

a, + {a,
-

(r + 1) a,} a; +...
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Now
aj,

is by supposition an integral expression of the

rth degree in p ;
hence

a,
=Ay + A^_,f-'^ + A^_,p^ + . . . + ^0.

where A^, A^^,..., A^ do not contain p.

Also, by Art. 305, the sum of the series

p»
_

(^ + 1) (^ _ 1)» -f (!l±^(p
-
2)*- . . . to (r+ 2) terms,

is zero for all integral values of k less than r -f 1. Hence

a,-(r+ 1) a^., + ^^3^- a^- . . . to (r + 2) terms

is zero for all values of ^.

All the terms of the product S^ x (1 —x)"^^ will there-

fore vanish except those near the beginning, or the end,
for which the series %—{r+V)aj^^-\-,.. is not continued

for (r + 2) terms, that is all the terms of the product will

vanish except the first r + 1 terms and the last r + 1 terms.

Heoce

S^ X (l-a:y'=a,-h{a,-(r + 1) ^o} ^ +—

whence the value of S^ is found,

Ex. 1. Find the sum of the series

l + 2ar + 3a;2+ 4x»+ + (n+ l)a;'»'

-S^i= l + 2x+ 3x2+ 4a;3+ + {n+l)x\

{l-x)^=l-2x + x^;

.'. {l-xr^S^^=l + x^+^{n-2{n + l)} + {n+ l)x^+\

[all the other terms vanishing on account of the identity

k-2{k-l) + {k-2)=0]
«1 -

(w+ 2) a:"+i+ (n+ 1) a;"-^;

*• ^"+1
{l~x)^ {l-xf
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Ex. 2. Find the sum of n+ 1 terms of the series

V+ 2^x + S^x^+ + {n+lfx\

5f^i= 18 + 23x + 3%2+ + (n + l)3a;»,

{1-x)*=1-4jc + 6x^-4x»+ x*',

/. Sf^iX(l-a;)4=l + (23-4)a; + (38-4.23+ 6.18)a;a

+ (43-4. 33+ 6. 2»-4.1»)a:»

+ {-4(n + l)3 + 6n8-4(n-l)'+ (n-2)3}a:''+i

+ {6 (n + 1)»
- 4n3 + (n

-
1)3} «"+='

+ {-4(n+ l)»+n3}a;~+3

+ (n + l)3a;»+*.

[The other terms all vanishing, since

k^-4{k-l)*+ 6{k-2)^-^{k-Sf + {k-4f= identically.]

Hence /S„+i
= [1 + 4a; + a;^ _ (n»+ 6n^+ 12n + 8) a;"+i

+ (3n3+ 15n^+ 21n + 6) x»+2

-
(3n3 + 12n2+ 12n + 4) a;«-*-3

+ (n+ l)3a:«+*]/(l-a;)^

When X is numerically less than 1, the series is convergent, and the
sum of the series continued to infinity is {l + 4x + x^)l{l- a;)*.

327. Series whose law is not given. We have
hitherto considered series in which the general term was

given, or in which the law of the series was obvious on

inspection. We proceed to consider cases in which the

law of the series is not given. With reference to series

in which the law is not given, but only a certain number of

the terms of the series, it is of importance to remark that

in no case can the actual law of the series be really deter-

mined : all that can be done is to find the simplest law the

few terms which are given will obey.

There are for instance an indefinite number of series

whose first few terms are given by a; + a?* H-a^ + ..., the

simplest of all the series being the geometrical progression
whose nth term is a?" : another series which has the given

terms is that formed by the expansion of r ^ ,
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which agrees with the geometrical progression except at

every 10th term.

Note. In what follows it must be understood that

hy the law of a series is meant the simplest law which
satisfies the given conditions.

Method of Differences.

328. If in any arithmetical series

a, + a2 + a,+...+ a„,

each term be taken from the succeeding term, a new
series is formed, namely the series

(a,
-

a,) + (a,
- aj +...+ («„- a„_,) +. . .,

which is called the first order of differences.

If the new series be operated upon in the same way,
the series obtained is called the second order of differ-
ences. And so forth.

Thus, for the series 2, 7, 15, 26, 40, ... ,

the first order of differences is 5, 8, 11, 14, ...,

and the second order of differences is 3, 3, 3,...

329. When the law of a series is not given, it can often

be found by forming the series of successive orders of

differences
;

if the law of one of these orders of differences

can be seen by inspection, the law of the preceding order

of differences can often be found, and then the law of the

next preceding order of differences, and so on until the
law of the series itself is obtained. The method will be
seen from the following examples.

Ex. 1. Find the nth term of the series

1 + 6+ 23 + 58 + 117 + 206+

The first order of differences is 5 + 17 + 35 + 59 + 89 + . .. .„

„ second „ „ „ 12 + 18 + 24 + 30+
„ third „ „ „ 6 + 6 + 6 + ....^
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The second order of differences is clearly an arithmetical progres-

sion whose nth term is 6 (n+ 1).

Hence, if t?„ be the nth term of the first order of differences, we
have in succession

«'n-«'n-l = 6»; Vn-1-Vn-2=6(W-1); ] V^-Vj^= 6 .2,

Also »i=6 . 1-1. Hence, by addition,

t;„=6(l + 2 + +n)-l= 3n(n+ l)-l.

Then again, we have in succession u^ - w„_i= v„_i= 3 (n
-

1) n - 1
;

«„_i-w„_a=3(n-2)(n-l)-l; ..,; M2-Wi = 3 . 1. 2-1. Also
1*^
= 1.

Hence m„=3 {(n-l)n+ + 1 .2} -n+ 2 = (n- 1) n(TO+ l) -w+ 2.

Ex. 2. Find the nth term and the sum of n terms of the series

6 + 9 + 14 + 23 + 40+

The first order of differences is 3 + 5 + 9 + 17+

„ second,, „ ,,2 + 4+ 8+

Hence the second order of differences is a geometrical progression,
the (n

-
l)th term being 2»-i. Hence, if r„ be the nth term of the

first order of differences, we have in succession

^«-^^n-l= 2~-^ i'„-i-Vn-2= 2"-^ , v^-v,= 2\

Also Vi= 3. Hence, by addition, v„= (2 + 2^+ + 2»-i) + 3= 2" + 1.

Then again, we have in succession u^-u^-i=v^_^= 2^-^ + 1,

**n-l-Wn-a=2"~^ + l
, W3-Wi= 21+1. Al80Mi= 6.

Hence M,»=(2»-i+...+2) +n+5=2«+n+ 3.

The sum of n terms of the series can now be written down : for
the sum of n terms of the series whose general term is 2" + n+ 3 is

(2 + 2a+...+2«) + {n+ (n-l)+... + l} + 3n= 2«+i-2 + in(n+l) + 3n.

Note. By the method adopted in the preceding
examples the nth term of a series can always be found

provided the terms of one of its orders of differences are all

the same, or are in geometrical progression.

330. It is of importance to notice that when the
nth term of a series is an integral expression of the rth

degree in n, all the terms of the rth order of differences
will be the same.
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For, if w„ =Ay+ A.^{!nr^+ . . . + J.^ , where A^, A^_^,, , .

do not contain n, the nth term of the first order of differ-

ences will be

[4,(«+l)'+4^,(»
+ ir+ ...}

- {^X + ^^.n-' + ...},

which only contains n to the (r
—

l)th degree.

Similarly the wth term of the second order of differ-

ences will be of the (r
—

2)th degree in n
;
and so on, the

nth term of the rth order of differences being of the {r — r)th

degree in n, so that the nth term of the rth order of

differences will not contain n, and therefore all the terms
of that order of differences will be the same.

When therefore it is found that all the terms of the

rth order of differences are the same, we may at once
assume that u^ = A^ + A^^^ + ... + A^y and find the

values of A^y A^_^y ..., ^o ^7 comparing the actual terms of

the series with the values obtained by putting n = 1, n = 2,

&c. in the assumed value of u^. This method will not

however give the value of u^ in a convenient form for

finding the sum of the series
; for, if r be greater than 3,

the sum of n terms of the series whose general term is

Ay \- A^^^-\- ... cannot be found [see Art. 321] without
a troublesome transformation which will in fact reduce u^
to the form in which it is obtained by the method of

the preceding Article. A much better method would be
to assume that u^

= A^ (n\ + A^^ (^)r-i + •••> and then to

find A^, A^^,...jiA^ as above.

t;Recurring Series.

331. Definitions. When r + 1 successive terms of

the series a^ -f a^x + a^x^ + + a^x^ +. . . are connected by
a relation of the form a^ a?" + px (a^_^ a?""^) + qa^ (a^_^ a?""^)

+ ... = 0, the series is called a recurring series of the rth

order, and 1 •\- px-\- qx^ + ... is called its scale of relation.

The relation does not hold good unless there are r terms
before the nth^ so that the relation only holds good after

the first r terms of the series.
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For example, the series 1 + 2a? + 4a;* + 8.z;' + is a

recurring series of the first order, the scale of relation

being 1 — 2x. Again, it will be found that the series

1 4- 3a; + 5a^ + 7a;' + 9a;* + is a recurring series of the

second order, the scale of relation being 1 — 2a; + a;*.

\

332. To find the sum of n terms of a given recurring

Let the series be a„ -H a^x 4- + (X„a;**-|-...,
and let the

scale of relation be 1 + pa; 4- qa^. [This assumes that the

recurring series is of the second order, but the method is

perfectly general]. Then

.-. S^ (1 + pa; + qx^)
=

a, + (a^ + pa^ x-\-{a^+ pa^ + qa^) o? +
... + (»„+ V^.-X + ^«nJ ^" + ( i>«« + ^«»-i) ^"^' + ^«« ^"^

=
a, + (Oi + pa,) X + (^a„ + ^a„_,) a;"""' + ^a„ a;""^,

since all the other terms vanish in virtue of the relation

ay^ a;* + px {a^_y a;*"^) + qo^ {a^_^ a?*"')
= 0, which is by sup-

position true for all values of h greater than 1.

Hence

^ ^ «o + (o^i + pa^ ^ + (^o^n + go^n-i)
a?**^' + qa^x''^

" 1 + pa? + g'a;*

If the given series be a convergent series, the nth term
will be indefinitely small when n is increased without

limit; and the sum of the series continued to infinity
will in this case be given by

^ ^ ao4-(a^+pao)a?

l+pa; + ga;'

The expression % .

^—^-^ is therefore such that if it^
1 ^-px 4- qof

can be expanded in a convergent series proceeding accord-

ing to ascending powers of a;, the coefficient of a?" in its

expansion will be the same as in the recurring series.
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On this account the expression -^—^-^^—-—%— is^
1 +px + qar

called the generating fwnction of the series.

333. A recurring series of the rth order is determined

when the first 2r terms are given.

For let the series be

a^ + a^x-\-a^a;^ -h +«„«;'*+

Then, the series being a recurring series of the rth

order, if we assume that the unknown scale of relation is

1 -h2)^x+p^x^-\-,..+p^x'', we have by definition the follow-

ing equations

^r^l+i'l^r + P,a^,+ ...+Prao =0,

C^r« + Pr^r^i +P,(J'r + • • • +PA =
0,

=0,

We have therefore r equations which are suiSficient to

determine the r unknown quantities p^, p^, "-yPr '^^ ^^®
scale of relation

;
and when the scale of relation is deter-

mined the series can be continued term by term, for a^^^
is given by the equation aj^, + p^a^ + . . . + p^a^

=
;
and

when
ajj^i

is found, a^^^ can be found in a similar manner
;

and so on.

The series is similarly determined when any 2r con-

secutive terms are given.

334. From Art. 305 we know that if^ < r + 1,

to r + 2 terms = 0,

for all values of k.
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This shews that the series

l"- + I'x + 3V +. . .4- (w + 1/a;" +. . .

is a recurring series whose scale of relation is (1
—

xf^^.

It also shews that the series

a^ + a^x + a^o^ +. . .+ a„a?" +. . .

is a recurring series whose scale of relation is (1
—

xY"^
whenever a^ is a rational and integral expression of the

rth degree in n.

335. In order to find the sum of any number of terms
of a recurring series by the method of Art. 332, it is neces-

sary to know the general term of the series; we must
therefore shew how to obtain the general term of a

recurring series when the first few terms are given.

By Art. 333 the scale of relation of a recurring series

of the rth order can be found when the 2r first terms are

given ; and, having found the scale of relation, the genera-

ting function is at once given by the formula of Art. 332.

Now, provided the scale of relation can be expressed
in factors of the first degree, the generating function can

be expressed as a series of partial fractions of the form
A A

or of the form 7^ rv, and the coefiScient of any1-ax {l-axf*
^

power of X in the expansion of the generating function

can be at once written down by the binomial theorem;
and thus the general term of the series is found.

When the value of x is such that the given recurring
series is not convergent, the generating function will not

be equal to the given series continued to infinity nor can
it be expanded in a series of ascending powers of x

; but,

taking as an example the generating function in Art. 332,

the expression
-^

_J
*—^^{^ can always be expanded in

ascending powers of y, if y be taken sufficiently small, and
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the coefficients of y® and y* in this expansion will clearly

be a^ and a^ respectively and all succeeding terms will

obey the law a^ +paj,_j^ + qa^_^
= 0, and hence all the coeffi-

cients of the expansion will be the same as the corre-

sponding coefficients in the given series. We may there-

fore in all cases, whether the series is convergent or not,

find the general term of a recurring series by writing
down the expansion of its generating function in ascending

powers of w on the supposition that a? is sufficiently small.

Ex. 1. Find the nth term of the reourrmg series 3 + 4a:+ 6ir*+ lOx'+ . . .

In an example of this kind, in which the order of the recurring
series is not given, it must always be understood that what is wanted
is the recurring series of the lowest possible order whose first few

terms agree with the given series. In the present example there is

a sufficient number of terms given to determine a recurring series of

• the second order, but an indefinite number of recurring series of the

third, or of any higher order than the second, could be found whose
first four terms were the same as those of the given series. [See
Art. 327.]

Assuming then that the scale of relation is 1 +px + qx\ we have

the equations 6 + 4^) + 3g = 0, and 10 + 6^ + 4g = 0, whence ^= - 3 and

2 = 2. Hence the scale of relation is 1 - 3a; + 2x2.

The generating function is therefore

3 + (4-9)x_ 3-5a; _ 2 1

1 - 3a: + 2a;a
""

1 - 3x +2a:3~ l-a?"*" 1 - 2x

s=2{l+x+...+a;«-i} + {l + 2a;+...+2»-ia;«-i + ...}.

Hence the general term of the series is (2 + 2"~^) x**"!.

The sum of n terms can now be found by the method of Art. 332;
the sum can however be written down at once, for the sum of n
terms of the series 2 (1 + x + a;^ + . .

.)
is 2 (1

-
x") / (1

-
x) and the sum

of n terms of the series 1 + 2a; + 4a;''*+ ... is (1
-

2**a;'») / (1
-

2x).

We may remark that the given series is convergent provided a; < ^.

Ex. 2. Find the nth term and the sum of n terms of the series

1 + 3 + 7 + 13 + 21 + 31 + ....

Consider the series 1 + 3a;+ 7a;»+ 13a;3 + 21a;*+ 313;^* + ...

Then, assuming that the series is a recurring series, and also that

a sufficient number of terms are given to determine the recurring
series completely, it follows that the series is of the third order.

Let then the scale of relation be l+px + qx^ + rx^) we then have
the following equations to find j?, g, r :
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lS + 7p+ Sq + r= 0,

21 + r6p + 7q+ 3r=0,

and n + 21p + lSq + 7r=0,

whence p= -3, q= S and r= -1,

so that the scale of relation is 1 - 3x+ Bx"^ - x'.

The generating function is now found to be

1 + x^ _ 2 2 1_
{l-x)^~{l-xf (l-a:)2 1-x

Hence the general term of the series

l + Sx + 7x^+.'.. isa;"-i{n(n+ l)-27H-l}=(n2-n + l)a'» ^

Thus the general term of the given series is w^- w+ 1.

Having found the general term of the series the sum of the first n
terms can be written down, for the sum of n terms of the Series

whose wth term is n (w
-

1) + 1 is -
(n
-

1) n (n+ 1) + n.
o

Ex. 3. Find the nth term of the series 2 + 2 + 8 + 20+

Considered as a recurring series of the lowest possible order, the

generating function of 2 + 2x + 8a;2 + 20x8+.., will be found to be

2 -2a:

l-2a;-2a;2'

Now the factors of 1 - 2a; - 2x^ are irrational, and therefore the

nth term of the series, considered as a recurring series of the second

order, will be a complicated expression containing radicals.

On the other hand, by the method of Art. 329, we should be led

to conclude that the nth term of the series was (Sn^
- 9n + 8) x^~^,

which by Art. 334 is a recurring series of the third order.

As we have already remarked, the actual law of a series cannot be
determined from any finite number of its terms, and the above is a
case in which it would be difficult to decide as to what is the

simplest law that the few terms given obey, for the recurring series

of the lowest order which has the given terms for its first four

terms is not the recurring series which gives the simplest expression
for the nth term.

CONVERGENCY AND DIVERGENCY.

3n6. We shall now investigate certain theorems in

convergency which were not considered in Chapter XXI.
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337. Convergency of infinite products. A product

composed of an infinite number of factors cannot be con-

vergent unless the factors tend to unity as their limit
;
for

otherwise the addition of a factor would always make a

finite change in the continued product, and there could be

no definite quantity to which the product approached
without limit as the number of factors was indefinitely
increased.

It is therefore only necessary to consider infinite pro-
ducts of the form

n (1 + «,) = (1 + «.) (1 + u,) (1 + u,). . .(1 + «.)....

.where u^ becomes indefinitely small as n is indefinitely

[increased;
and the convergency or divergency of such

products is determined by the following theorem.

Theorem. The infinite product II (1 + u^), in which

ill the factors are greater than unity, is convergent or

livergent according as the infinite series Xu^ is convergent
or divergent.

Since e* > 1 -f- a;, for all positive values of x, it follows

that

(1 + Wj) (1 + u,) (1 + M,). . . < e"' . e»« . e**» . . . < e«, +«,+«,+...

Hence, if %u^ be convergent, 11 (1 + u^) will also be

convergent

Again, (1 + wj (1 + w^) > 1 + m, + w^,

(H-w,)(l+w,)(l+W8)>(l+^i+^2)(l+^)>l + ^i+^+^8>

and so on, so that

Hence, if Xu^ be divergent, H (1 + u^) will also be

divergent.

n , mi. XV ^a{a + l)(a+ 2)...(a+n-l) . . „ .. ,

Ex. 1. To shew that y^v
— '\.

'

), :r[,
is infinite or zero, when

b(h + l){b + 2)...{b + n-l)
n is indefinitely increaeed, according as a is greater or less than 6.

s. A. 29
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For, if a > 6, the expression may be written in the form

(-^)(-l^:) (-^i)
which is greater than

!+ („_,)
|l+_l-+^_i-^

+
}•

But T + -,

—T + i
—s + ... is a divergent series [Art. 274] : the given ex-

0+1 0+2
pression is therefore infinite when n is infinite, a being greater than 6.

If 6>a: then as before, —
) -J4 „! is infinite; and

a(a+l)(a + 2)

^- , a(a + l)(a + 2) ,,
therefore -^4-,

—rrr^—?:r must be zero.
6(& + l)(6 + 2)

Ex. 2. Determine whether the series

a a{a + x) a (a + x) {a+ 2x)

6"*" 6(6+a;)"^ b(b+x){b + 2x)'^

is convergent or divergent.

From Art. 325, we have

_ a I {a+ x){a + 2x)...{a+ nx) ]

''~a+ x-b\i,(^b + a:}{b + 2x)...{b + n^l.x) \'

Now by Ex. 1,
^^ — —£zu_i_ is mfimte or zero according
b{b + x)...{b + n-lx)

as a + X
^

b.

Hence the given series is convergent, and its sum is then ~ ,0— a — X
if 6 > a+ a;. Also the series is divergent \ib<.a + x.

Also if 6=a + a;, the series becomes r-+, V-,
—

jr- which is
b h+ x b+ 2x

known to be divergent [Art. 274].

338. The Binomial Series. We have already proved
that the binomial series, namely

-
, , m(m-l) „ m(m-l)(m-2) -

.l + m^+
1.2
^ +

1.2 3
"''+•"

is convergent or divergent, for all values of m, according
as a; is numerically less or greater than unity.

If flj = 1, the series becomes

1 I m I

^(^-^)
I

m(m-l)(m-2)
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Now we know that the terms of this series are

alternately positive and negative after the rth term, where
r is the first positive integer greater than m + 1. More-
over the ratio u^^Ju^ is numerically less or greater than

unity according as m + 1 is positive or negative. The
series will therefore, from theorem V. Chapter XXI. be

convergent when m + 1 is positive provided the nth. term
decreases without limit as n is increased without limit.

.. ^1 1.2 n
Now ± —

u^ (— m) (1
—

m). ..{n
— l—m)

u^ m\ l—mj\ 2 — mJ \ n — l — mj

Now, if m 4- 1 be positive and less than r, the product of

the factors from the rth onwards is greater than

^ ^

[r
— m r + 1— m J

and the product of the preceding factors is finite.

Hence, when n is increased without limit, 1/u^ is in-

finitely great, and therefore u^ indefinitely small, provided
1 + m be positive.

Thus the binomial series is convergent if ic = l, pro-
vided m > — 1.

If a? = — 1, the series becomes

1 m I

^(^-1) m(m-l)(m-2)

The sum of n terms of the above series is easily found
to be [see Art. 287 or Art. 325]

(1
- m) (2

- m) (3
-

m).,.(n
- 1 -- m)

1.2.3...(w-l)
The sum of n terms of the series is therefore pEx.

1, Art. 337], zero or infinite, when n is infinite, according
as m is positive or negative.

Thus the binomial series is convergent when a? = — 1,

provided m is positive,
29--2
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339. Cauchy's Theorem. If the series u^ + u^-^ u^
... +u^+ ... have all its terms positive, and if each term

e less than the preceding, then the series will be convergent

divergent according as the series Wj + au^ + a^Uas + ...

+ a"Uan-\- ... 15 convergent or divergent, a being any positive

integer.

For, since each term is less than the preceding, we
have the following series of relations

Wi + w, + . . . + Wa < a^ < (a
-

1) ^^ + ^,

w^i -\-u^^...-\-Ua^< (a' -a)u,<(a-l)au^,

m
Uan+i + Uan+2 + . . .+ Won+i < (a""^^

-
a") Uan < (a

-
1) aJ'Uan,

Hence, by addition, >Si< (a
—

1) S + u^ (I),

where S and S stand for the sum of the first and second
series respectively.

Again, we have since a is <f 2,

a (^ + ^2 + ^8 + • • • + ^«) > «w«

a {u^^ + w^^2 +. . .+ tt^a) > a{a^
—

a) Ua^ > G^UcHy

a (Ua^-i+i + Wa-i+2 +. . .+ Ua") > a (a""
-

a""') Ua» > a'^Uan.

Hence aS>X —v^ (II).

From I and II it follows that if S is finite so also is S,
and that if S is infinite so also is S.

Ex. To shew that the series —r, rz is converffent if fe be greater
n (log n)*

^ ^

than unity, and divergent if k be equal or less than unity.

By Cauohy's theorem the series will be convergent or divergent
a"

according as the series whose general term is
-^j:

—
^ is convergent

or divergent.
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a* (log a**)*~ n* (log a)*

~
(log a)* n*

*

it therefore follows from Art. 274 that the given series is convergent
if fc > 1 and divergent if fc :f 1.

340. We shall conclude with the two following tests

of convergency which are sometimes of use, referring the

student to Boole's Finite Differences and Bertrand's Differ-

ential Calculus for further information on the subject.

1 '341. Theorem, A series is convergent when, from
\and after any particular term, the ratio of each term to tJie

preceding is less than the corresponding ratio in a known

convergent series whose terms are all positive.

For let the series, beginning at the term in question,
be

27 =
1^, + w, -f W3+...+t<„ + ...,

I

and the known convergent series, beginning at the same

term, be
F =

Vj-|- V, + Vg+ ... + v„ + ....

U V

Then, since -^* < -^* for all values of r, we have
u, V,

F= V, + v, .
-^

-I- v,
-' -^ + V,

-* -' - + ...

u^ u. u. u. u^ u^

Hence as F is convergent, U must also be convergent.
I The given series is therefore convergent, for the sum
I

of the finite number of terms preceding the first term of

I

U must be finite.

;
We can prove similarly that if, from and after any

[

particular term, u^^ : u^ > v^^, : v^, and all the terms of Xu^
have the same sign ;

then 1u^ will be divergent if Xv^ be

divergent
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342. Theorem. A series, all of whose terms are posi-

tive, is convergent or divergent according as the limit of

nil ^^
J
is greater or less than unity.

For let the limit of w
^1
-
^']

be a.

Consider the series ^ —5 = Xv^ : then

/ v^^A _ Un-^iy — n^\ _ fin^ + lower powers of n

\ v^J ] (n-\-iy )
n^ + lower powers of n

Hence the limit of 71
[
1 —^

)
,
when n is infinitely

great, is /8.

First supposie a > 1, and let yS be chosen between
a and 1.

Then since the limit of n(l ^M is greater than

the limit of n
[
1 ^M

,
there must be some finite value

of n from and after which the former is constantly greater
than the latter.

But when nfl- ^^] >n(l- '"^'\ ,

we have -^* > -^^
.

Hence, by the previous theorem, '^u^ will be conver-

gent if 2v^ be convergent; but Xv^ is convergent since

Similarly, if a be < 1, and y9 be taken between a and

1, we can prove that 2m^ is divergent if Xv„ is divergent,
and the latter series is known to be divergent when y9 < 1.

If the limit of w
(l

^M be unity the test fails.
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„ , , „ .a a{a + l) a(a + l){a + 2) „ .

B.. 1. Is the senes -+ ji^«+
^^^^^21^.»+...

convergent

or divergent ?

Here ''^^rr J^a;, the limit of which is x. Hence, either from
M„ b+n

the beginning or after a finite number of terms,

— "*"^ ^ 1 according as a;
^

1.

Hence the series is divergent if x > 1, and convergent if a; < 1.

If a;=l, the limit of -^- is unity. But

{^-"^M^-m-

I

the limit of which is 6 - a.

Thus, if x = l, the series is convergent when 6-a>l and

divergent when 6 - a < 1. "When 6=a+ 1, the series becomes

a a a

6"*" 6 + 1 "^6 + 2"^
*

which is divergent.

[These are the results arrived at in Ex. 2, Art. 337.]

EXAMPLES XXXIY.

1. Find the sum of each of the following series to n

terms, and when possible to infinity :
—

4 4.7 4.7.10

,.., 2 2.5 2.5.8
(^^) 4^4T7^4TnO^--

3 S^ 3.5.7
^''^^ 8"^8.10"^8.10.12'^-*

11 11.13 11.13.15
^'""^ 14 "^14. 16 ^14. 16. 18"*"

••••

2. Find, by the method of differences, the nth term and

the sum of n terms of the following series :
—

(i)
2 + 2 + 8 + 20 + 38+....

v/(ii) 7 + 14+19 + 22 + 23 + 22 + ....

(iii)
1 + 4 + 11 + 26 + 57 + 120+....
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yfv) 1 + + 1 + 8 + 29 + 80 + 193+....

^)
1 + 5+15 + 35 + 70+126+....

XAji) 1 + 2 + 29 + 130 + 377 + 866 + 1717 + ....

3. Find the generating function of each of the following
series on the supposition that it is a determinate recurring
serieB :

—
V(i) 2 + 4a;+14ar» + 52a;»+....

(ii) l + 3a;+lla;' + 43a^+....

(iii)
l + 6a; + 40a;»+288a3'+....

; (iv) 1 + (B + 2a5* + 7a;« + 14^' + 35a;» + ....

J (v) 1" + l^x + 3V + 4*a^ + 5V + 6V + . . . .

4. Find the nth term, and the sum of n terms of the

following recurring series :
—

%(i) 2 + 6 + 14 + 30+ ....

(ii)
2-6 + 29-89+....

(iii)
1 + 2 + 7 + 20+....

5. Find the nth term of the series 1, 3, 4, 7, <fec.; where,
after the second, each term is formed by adding the two

preceding terms.

6. Determine a, 6, c, d so that the coefficient of aj" in

the expansion of t=
r^ may be (n + 1) .

7. Shew that the series l*" + 2''a; + 3V + 4V + . . . is the

- . £ ^t X.
a. + a.ic + . . . + a 03'

,

expansion of an expression of the lorm ——
^^

—
^rj

—""—
; shew

also that a,
= 0; and that «,._,

=
a^_^.

8. Find the sum to infinity of the recurring series

2 + 5aj + 9a;' + 15a;" + 25a;* + 43a;' + ...

supposed convergent, it being given that the scale of relation

is of the form 1 + joa;
+ qx^ + ra;*. Shew that the (n + l)th term

of the series is (2" + 2n + l)a;".
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9. Find the sum to infinity of the series

1 + 4x + 11a;" + 26a;' + 57a;* + 120a;' +

X being less than
J.

10. Find the sum of n terms of the series

, X x(x + a) x(x + a){x + b)1+- + ^
,

^ +— P -+ .

a ao abc

11. Shew that
^la ab

x+a (x + a) (x + b) (x + a) (x +b){x + c)

abc.k 1 abc.M

{x^-a){x-irb)...ix + k){x + t)
x x{x+ a){x + b) ...{x + l)'

12. Shew that

1 1+n (l+yi)(l4-2n)

p-{-n (p + n){p-\-2n) {p \- n) {jp
-\- 2n) {jp

+ ^n)

+ ... to infinity = =- ,

p-1
provided that p > 1 and jo + n > 0.

13. Shew that, if m be greater than 1,

1 1.2 1.2.3
1+ T +

rn+l (m+l)(7» + 2) (m+ 1) (m + 2) (7At + 3)

+ ... to infinity
m
m— 1

14. Shew that

_1 n-1 •

(n-l)(n-2) 1

m + 1 (m+l)(m + 2) (w + l).(m + 2) (m + 3)

'** m +n'

if m + w be positive, or if w be a positive integer.

15. Shew that, if n be any positive integer,

n n(n — l) n{n- 1) (n
-

2)

;rri
~
(n+l)(n+2)

"^

(rM^T)(n + 2)(n + 3y'*'

"•

yt(7i- l) (n-2)... 2.1_ 1
"^

{n+\){n + 2).,:2n ~2'
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16. Shew that, if m be a positive integer,

2n + 1 m(m-l) (2n + l) (2n + 3) _
^""^27*1^^ 1.2 (2n + 2)(2n + 4)

"*

1.3.5...(2m-l)~
(2w+ 2) (27i + 4) ... (2w + 2m)

*

17. Shew that, if m, n and m — n + l are positive integers;

then

m n(n-l) m(m-l)
1 +wm-n + 1 1.2 (m-n+ l)(wi-ri + 2)

n(n-l)(n-2) m(m-l)(m-2)
"*"

1.2.3 (m-n+l){m-n+2){m~n + 3)

^ , ,,, (m+ l)(m+2)...(m + m)+ ...to (n+1) terms = 7
"^

, , /
^ ^

^,
^

.
^

-v.
^ '

(m-7i+ l)(m-fH- 2) ... (7»-w + m)

18. Shew that, if m + 1 > 0, then

1-1 I m(m- l) l w(w-l)(m-2)
2 S''*'^^ 172"~"5 1.2.3

^•*

1

(m+l)(m+2)*
19. Shew that, if P^ be the sum of the products r together

of the first n even numbers, and Q^ be the sum of the products
r together of the first n odd numbers; then will

1+P,+P,+ +P^=1.3.5...(2n+1),
and l + Q^ + ^^+ + <^^

= 2.4.6..,2n.

20. Prove that

[a + {a+ l)+(a+2) + ... +(a + n)}{a" + (a+ l) + (a + 2) + ...

... + (a + n)}
= a^ + (aH-l)' + ... ^-(a + 7l)^

21. Shew that the series

l-g" (l-a")(l-a"-^) (1 -a")(l -a^-^)(l -g--^)

1-a^ (l-a)(l-a«) (1
-
a)(l -a*)(l -a«)

^ '"

is zero when n is an odd integer, and is equal to (1 -a) (1 -a')
... (1

—
a"~^) when w is an even integer [Gauss].
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22. Find the sum of the series

n n— 1 n— 2
+ 77-71—7 + -^r—r-P + ... +

1.2. 32. 3.43. 4. 5 w(w+l)(n + 2)'

n^ « , . ^ ., 2(B» 3a:» 4£C*
23. Sum to infinity =—x -

^
- +

3-5- ••••

24. Sum, when convergent, the series

X a? x"

172
"^
273

"*••• "^

^^^)
"^ ••• •

25. Sum to infinity the series

1 . 2 . 3 + 3 . 4 . 5a; + 5 . 6 . 7a;' + 7 . 8 . 90;" + ...,

X being less than unity.

26. Shew that, if n is a positive integer

l-3n^^"f-^)-^"(^Vt^f-^)^... = 2(-ir.
1 . iB 1.2.0

27. Shew that, if
a^, a^, a,,.-, be all positive, and if

ttj
+ a, + ttj

+ . . . be divergent, then

+ ..

a^ + 1 (a^+ l)(a,+l) (a, + l)(aj+ l)(a,+ l)

is convergent and equal to unity.

28. Shew that the series

_i_ Z!_ ^ ^^^

is convergent if «> 1, and is divergent if a? :|> 1,

29. Shew that, if the series u^+u^ + u^+ ... +Un+ ... be

divergent, the series

Wj w,+w,
*"

Wj + i^, + ... +^^,_^

will also be divergent.
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30. For what values of x has the infinite product

(1 + a) (1 + ax) (1 + ax") (1 + ax^) ... a finite value?

31. Prove that, if v^ is always finite and greater than

unity but approaches unity without limit as n increases

indefinitely, the two infinite products ViV^v^v^...y v^v^v*v^ ...

are either both finite or both infinite.

32. Test the convergency of the following series :
—

ijifff'
1 2«

3^
n"

^,..., 2 2.4 2.4.6

2.4.6...2ri
+ ....

3.5.7...(2w-f l)(2n + 2)

\ _2__
1.3 1.3.5

^^""^ 2.3'^2.4.5^2.4.6.7'*'*"

1.3.5...(2w-l )

^2.4.6...2w(2w+l)'^""*

/v^ a;g a(a+ 1)^(^+1)
,

r(r+i)

a(a+l)(a-h2)^()8+l)(/? + 2)

1.2.3.y(y+l)(y + 2)



CHAPTER XXVI.

INEQUALITIES.

343. We have already proved [Art. 232] the theorem
that the arithmetic mean of any two positive quantities is

greater than their geometric mean. We now proceed to

consider other theorems of this nature, which are called

Inequalities.

Note. Throughout the present chapter every letter

is supposed to denote a real positive quantity.

344. The following elementary principles of inequal-
ities can be easily demonstrated :

I. If a > 6
;
then a + x>h + x, and a—x>h — x.

II. If a > 6
;
then —a< — h.

III. If a > 6
;
then ma > mb, and — ma < — mb.

IV. Ua>b,a'>b\a''>b\&c.;
then a + a'-|-a"+... > 6 + 6'+ 6"+ ...,

and aa'a". . . > bb'b". . ..

V. If a > 6
;
then a"* > &"', and a"^ < Z)"^.

Ex. 1. Prove that a»+ 6» > a% + ah^.

We have to prove that

a» - a% - ab^ + 63 > 0, or that (a'
-

6«) (a
-

&) > 0,

which must be true since both factors are positive or both negative

according as a is greater or less than b.
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Ex. 2. Prove that a"» + a~^ > a" + a"", if m >• n.

We have to prove that (a"*
-
a") (1

-
a~**~*) > 0, which must be

the case since both factors are positive or both negative according as

a is greater or less than 1.

Ex. 3. Prove that (P+ m» + n^) {V + wi'»+ n'^) > {IV + mm! + nn'f.

It is easily seen that

(Z»+ TO»+ n2) (ra+ m'a+ n'»)
-

{IV + mm' + nn')«

= {mn'
- m'nf+(nV - n'l)^+ {Im'

-
Vm)^.

Now the last expression can never be negative, and can only be

zero when mn' - m'n, nV - n'l and Im' - I'm are all separately zero, the

conditions for which are ^ = —^ = -7 .

V m n'

Hence (P+ m^+ w*) (Z'^ + m'^ + n") > (Zr+ mm' + nw')', except when
lll'—mjm'=nln'f in which case the inequality becomes an equality.

345. Theorem I. The product of two positive quanti-

ties, whose sum is given, is greatest when the twofactors are

equal to one another..

For let 2a be the given sum, and let a+ x and a — x
be the two factors. Then the product of the two quanti-
ties is a* — x^, which is clearly greatest when x is zero, in

which case each factor is half the given sum.

The above theorem is really the same as that of Art. 232 ; for

from Art. 232 we have{^\ ("-J^)
> ab.

346. Theorem II. The product of any number of
positive quantities, whose sum is given, is greatest when the

quantities are all equal.

For, suppose that any two of the factors, a and h, are

unequal.
Theu, keeping all the other factors unchanged, take

i(a + 6) and ^(a + b) instead of a and b : we thus, without

altering the sum of all the factors, increase their continued

product since ^(a+b) x ^(a + 6)> ab, except when a = b.

Hence, so long as any two of the factors are unequal,
the continued product can be increased without altering
the sum

;
and therefore all the factors must be equal to

one another when their continued product has its greatest

possible value.
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.. a

)•

Thus, unless the n quantities a, b, c, ... are all equal,

and therefore

a + h-{-c + d+ ...

> :^(ahcd ...).

By extending the meaning of the terms arithmetic

mean and geometric m^an, the last result may be enunci-

ated as follows :
—

Theorem III. The arithmetic mean of any number of

positive quantities is greater than their geometric mean.

Ex. 1. Shew that a» + 6'+ c' > Sabc.

_. ^3 j_
J[)8

_L /jS

"We have > ^{a* . 6' . c*) >• dbc.

Ex.2. Shew that '^ + ^+-' + +^>n.
ag a, a^ a^

Wehavei(^^ + ^^+ +<)^ ::/ h.'^.jA :> ::/!.

Ex. 3. Find the greatest value of (a -x){b- y) {ex + dy), where a, 6, c

are known positive quantities and a-x, b-y are also positive.

The expression is greatest when {ac
-

ex) {bd
-
dy) {ex + dy) is

greatest, and this is the case, since the sum of the factors is now con-

stant, when ac-cx= bd-dy= cx + dy. Whence the greatest value is

found to be {ac + bd)^l27cd.

Ex. 4. Find when x^y^z^ has its greatest value, for different values of

a, y and z subject to the condition that x+ y + z is constant.

Let P^x'^y^z'^; then

P rx''x\a (yy (z\y

_??? y y y t ^ ^
~a' a'a ^*/S'^ 7* 7*7

The sum of the factors in the last product is constant, since there

are a factors each -
,
S fiotors each ^ ,

and y factors each -
, and

therefore the sum of all the factors ia x + y+ z.
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Hence, from Theorem II, (-) (V) (-j^bas
its greatest value

when all the factors are equal, that is when - = | = -
.

« P 7

It is clear that P is greatest when Pja'^py'^ is greatest, since

o, /3, 7 are constant ;
hence P is greatest when xla= ylp=zly.

In the above it was assumed that a, /3, y were integers ;
if this

be not the case, let n be the least common multiple of the denomina-

tors of a, /S, y. Then x'xfz^ will have its greatest value when

x^^-y^^z^"^ has its greatest value, which by the above, since na, n/3

and ny are all integers, will be when — = ^L = — that is when
' ^ na n^ ny

Thus, whether a, /3, y are integral or not, x^y^z^ is greatest for

values oix,y and 2; such that x + y + zia constant, when xja= yj^= z/7.

347. Theorem IV. The sv/m of any number of

positive quantities, whose product is given, is least when
the quantities are all equal.

First suppose that there are two quantities denoted by
a and 6.

Then, if a and h are unequal, {s/a
~

\/l>f > 0, and there-

fore a + b> Jab + Jab. Hence the sum of any two

unequal quantities a, b is greater than the sum of the two

equal quantities Jab, Jab which have the same product.

Next suppose that there are more than two quantities.

Let a, by any two of the quantities, be unequal. Then,

keeping all the others unchanged, take Jah and Job
instead of a and b ; we thus, without altering the product
of all the quantities, diminish their sum since Jab + Jab
<a + b. Hence, so long as any two of the quantities are

unequal, their sum can be diminished without altering
their product; and therefore all the quantities must be

equal to one another when their sum has its least possible
value.
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348. Theorem V. Ifm and r be positive, and m >r ;

then, imless a^ — ai = as = Sac,

a: + ar+... + a- ^^^
n greater than

n n

We have to prove that

or that

(n
-

1)« + a,"» + ...)> 2 (a,V + a^'^-XO,
or that

2 (a,*" 4-< -
a;a,'"-'

-
a^^-^a^) > 0,

every letter being taken with each of the (n
—

1) other

letters.

Now

which is positive since a^
—
a^ and

a^'""'"
—

a,*""**
are both

positive or both negative according as a^ is greater or less

than a^.

Hence t
(o^"* + a,*"

- aX""" " ^r'^sO > 0,

which proves the proposition.

By repeated application of the above we have

ta^ tal tal_ Xay
n n

'

n
'

n '"*

where a, jS, y, ... are positive quantities such that

a + )S + 7+ =m.

Ex. 1. Shew that 3 {a*+P+ c^)
> (a + b + c) (a^ + b^hc^),

Ex. 2. Shew that a«+ ft'' + c» > abc (a^+b^ + c^).

From Theorem V, > r . b*^ >o o o

aa + 52 + c2
> Q . abc, from Theorem III.

s. A. 30
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. 349. Theorem VI.* To prove that, if ay b,Cy.,. and

a, ^,y, ... be all positive, then

V a + b + c + .., J
^ '

First, let a,b,c, ... be integers. Take a things each a,

b things each 0, and so on. Then, by Theorem III,

(a + a+ ... to a terms) + (y6! + yS + ... to b terms) + ...

>«*VKi^' },

that is

"^:;f^t.:' >°^v{«y...}.

If a,b,c,... be not integral, let m be the least common
multiple of the denominators of a, 6, c, ...

;
then ma, mb,

mc, . . . are all integers, and we have

maa + mb0-\-... ^ ^^^^^
|a"'«^'»^ I

ma -\- mb -\- . . .
'^ ^ '"*'

Hence i^^j >--^ w
Cor. I. Put

letters a, b, . . .
;
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Again, substitute a*", If, ... for a, b, ... respectively, and

a*"*", l/'", ... for a, /8 respectively, where ^< r.

Then
a' + 6*+...!

K + 6'' + ...^

Hence, as m — r and r — ^ are both positive, we have
from [B] and [C]

Hence, provided m>r >t,

{a'"+6'"+...px{a'"+6*'+...}*-^x{a'+6*+...)'""'>l....[D].

The following are particular cases of [D].

Put t = 0'y then, since a® + 6°+ ... = w, we have provided
m>r

f'^J>{'~M" f^^-

Again, put ^ = 0, m = 1
;
then since m>r>t, r must

be a proper fraction.

Hence, if r he a proper fraction,

r-±^f>°^^- m.

Again, put < = 0, r = 1
;
then m > 1.

Hence, ifm>l we have

r-±^-r- [°i-

Now put m =
1, r = 0, then < is negative. Hence, pro-

vided t be negative,

{a + b+ ...)-* X rT' X (a* + b* + ...)>1 ;

•
-'4-6^ + ... /a +

6+,^y ^^^^

30—2
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From [F], [G] and [H] we see that

a' + b'-^... > ra + 6 + ...r
n < L '^ J

according as x is not or is a proper fraction.

350. We shall conclude this chapter by solving the

following examples. [See also Art. 133.]

Ex.1. Shew that, if «= ai+ aa+... + a^,

1 H... + >—=-, unless flh=aa=a...=a-.

Unless ai=aa=...=a^, we have

1/ < $ s \ -/ «*

nV-Oi s-a^
'"

s-aj^ y (s-a^){s-a^...{8-aj*

^,t%)±(fZ^±,::±(lZ£^>yj(._^)(.-,,)...(._aJ}.

By multiplication, since («
-

Oj) + («
-

aj) + . .. + (»
- aJ = n* - «,

we have

n^ \»-«i 8-a^
'"

8-a^J
Ex. 2. Shew that, if a + 6 + c + d= 3s, and a, 6, c, d, a-a, «-6, <-c,

» - d are all positive ; then will

abed > 81 (s
-
a) (s

-
6) (s

-
c) (s

-
d).

For 84/{(«-6)(»-c)(»-d)}<{(»-6) + («-c) + (»-d)}<a.
So also 34/{(a-c)(«-d)(«-a)}<6, 3^{{s-d){g-a){8-b)} <e,

and 3^{(«
-
a) (« -&)(«- c)} < d.

Hence 81 (s
-
a) (s

-
6) (s

-
c) (»

-
d) < a6cd.

Ex. 8. Shew that f^^^+V^+^Y^^^^ af'yVz', unless x=y=z.

First suppose that x, y and 2 are integral ; then by Theorem III.

{x + x + ... to 0? terms) + (y + y + ... to y terms) + (z+g-h... to z terms)
x + y + z

>^^{3r'yyz^)',

#« -t-^ I-* V

^a^yV^^
Vx+y+z/ ^

If «, y, t be not integral let m be the least common multiple
of theii- denominators ; then mx, my and mz are integral, and we
have by the first case

—?.

)
> (ffw:)"« imy)^y {mzY>^\

\ mx+ my + mz J
\ / \ sf/ \ / *
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that is I

^
)

X »n"»(»^+«) > (ar^yi'z*)"* x m»»»(*-^^'+') j

\ x+y+z J

\ x+y + z J
^

The Theorem can in a similar manner be proved to be true for any
number of quantities.

EXAMPLES XXXY.
Prove the following inequalities, all the letters being

supposed to represent positive quantities :
—

1. y^z' + z'a:^ + (C*y^ -^^ xyz (x + y + z).

2. («,« + a/ + a3«+ )(6^« + 6.- + V+ )

<t(aA + aA + «s^a+ f-

3. {afi,^a,\^aj>^^ )
(^+ ^'^ ^+ )

_ fx y z\ /a h c\ . _

\a cj \x y zj
^

6. (a + 6 + c) (a' + 6* + c«) <t 9a6c.

7. a'c<£ + 6'ac^ + c'a6 + c?^6c <t 4a6G<f.

8. ihc + ca + aby <^ Sabc (a + b + c).

9. a* + 6* + c* <^ a6c (a + 6 + c).

10. a* + 6* + c' + G?"^ <(; a6ccZ (a + 6 + c + c?).

__ a -a; a'-£c' .»
11. < -i ^ ,

11 £c < a.
a + a; a + ar

io 1 1 1 ^ ^
-.

1
a-

^

a c ^oc Jca ^ ab

13. Shew that, \ix* + x^+ + aj/
= a,

then wa>(a;j + a;j+ +£cj^>a.
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14. Prove that, if
cCj, x^, x^, , x^ be each greater than

a, and be such that (x^-a){x^-a) (x^ -a) = b% the least

value of x^x^x^...x^
will be (a + 6)*, a and b being positive.

(a + b)xy . ax + by
15. Shew that ^ ^ > -/ .

ay + 0X a + o

no 2 2 2^9
6+c c+a a+6 a + 6 + c*

3 3 3 3 . 16
17. 5 J + ; + -J r + i <t ,

b + c + a c + d + a a + a-\-b a + b + c a + b + c + d

18. Shew that if a > 6 >c; then

/a + cy /6 + cy
\a — cj\b-cj*

19. If x' = i/' + s^f then will a;"
^
y" + z" according as n ^ 2.

20. Shew that (a6cc?y+*^^^ lies between the greatest and1111
least of a\ 6*, c', c?* .

21. Shew that l+x + x' ¥ ^x" <^(2n+l) x\

22. If n be a positive integer, and a > 1 ; then

a
>

a^--l a-r
23. (m + l)(m + 2)(m + 3) {m+ 27i-l)^(7n + n)'^-\

24. Shew that, if all the factors are positive:
—

abc ^ (b + c ~ a) (c + a — b) (a + b — c).

25. abed ^ (b -i- c + d-2a) (c + d + a- 2b) (d + a + b - 2c)

(a + b + c — 2d).

26. a,a.a,...a,<t(n-l)»(«-ai) («-»,). ..(»-aJ,
where (n- l)s = aj + a,+ +a^.

27. If a, 6, c be unequal positive quantities and such that
the sum of any two is greater than the third, then1119__ + + ^ > ^o+c—a c+a—b a+b—c a+b+c
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28. Shew that, unless a = h = c,

(b-€y{b + c-a) + {c-ay(c + a-b) + (a-by{a + b-c)^0,

29. Shew that, if a, 6, c be unequal positive quantities,

then

a'(a-b){a-c) + b'{b-c){b-a) + c'{c-a){c~b)^0.

30. Shew that px'''" + qx'~^ + ra^"' > jo + ^ + r, unless a; = 1,

or p = q = r.

31. Shew that
c, a a c,

<
, / o""TT'2. 4. 6...2n v 2n + 1

on CI. XT. X 3.7. 11. ..(471-1) / 3
32. Shew that _ ^ ,»

—
)-. =^ <

^ / -;
= .

5.9. 13. ..(471+1) \/ in + Z

33. Find the greatest value of a3*^«^, for different values

of X, 2/,
and z subject to the condition that aa* + by^ + cz^ = c?.

34. Prove that, if w > 2, (|n)'
> w".

35. Shew that, if n be positive,

(l+£c)"(l+a;")>2'-'V.

36. In a geometrical progression of an odd number of

terms, the arithmetic mean of the odd terms is greater than

the arithmetic mean of the even terms.

37. Prove that, if an arithmetical and a geometrical pro-

gression have the same first term, the same last t^erm, and
the same number of terms; then the sum of the series in A. p.

will be greater than the sum of the series in G. p.

38. Shew that, if P^ denote the arithmetic mean of all

those quantities each of which is the geometric mean of r out

of n given positive quantities; then
/*,, P,, ..., F^ are in

descending order of magnitude.

39. Shew that, if 8 = a-\-b ¥ c -^ ...,

/« - ay (
8 - b

\^ (
8 - cy /«\*

\n-\) \n-\) V^^^/ "*"^W'
n being the number of the unequal positive quantities a, 6, c, ....

40. Shew that, if n be any positive integer,—
(-^r(r)'C-i-0""--t^)'©'
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CHAPTER XXYir.

Continued Fractions.

851. Any expression of the form a±b

e± &c.

is called a continued fraction.

Continued fractions are generally written for con-

venience in the form

^ h d f
'
c± e± g±

852. The fraction obtained by stopping at any stage is

called a convergent of the continued fraction. Thus a and

a ± -
, that is =- and —=-

, are respectively the first and

second convereents of the continued fraction a +— —-
. . .

~o± e±
The rth convergent of any continued fraction will be

denoted by — .

The fractions a, , -, &c. will be called the first,
c e

second, third, &c. elements of the continued fraction.
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853. In a continued fraction ofthe forvi a-\ —
. . . ,

where a, 6, c, <kc. are all positive, the convergents are

alternately less and greater than the fraction itself.

For the first convergent is too small because the part

— ... is omitted; the second convergent, a + -, is too

greiit because the denominator is really greater than c;

then again, the third is too small, because c + - is greater
e

than c-\ ...; and so on.

854. In order to find any convergent to a continued

fraction, the most natural method is to begin at the

bottom, as in Arithmetic : thus

If only one convergent has to be found, this method
answers the purpose ;

but there would be a great waste of

labour in so finding a succession of convergents, for in

finding any one convergent no use could be made of the

previous results: the successive convergents to a continued

fraction are, however, connected by a simple law which we

proceed to prove.

355. To prove the law of formation of the successive

convergents to the continued fraction

o + ^ "^ ^•

The first three convergents will be found to be
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Now the third convergent can be written in the form

(ab^ + a^) 6g + (a) a,

from which it appears that its numerator is the sum of the

^ numerators of the two preceding convergents multiplied

^ respectively by the denominator and numerator of the last

\^ element which is taken into account ; and a similar law

-^ holds for the denominator.

^ We will now shew by induction that all the convergents

j^ after the second are formed according to the above law^
provided there is no cancelling at any stage.

For, assume that the law holds up to the nth con-

vergent, for which the last element is a^_Jb^^, and let

Prl^r denote the rth. convergent ;
then by supposition

Then the (w-l-l)th convergent will be obtained by

J changing
—- into '

j*"^
-^

jf ,
that is into ^

—
^^-^
—

.

, Hence in (1) we must put a;_j6^ for
a-^_j and o^_^b^ + a^

* for 6^_j; we then have

^ Pn^x
= (K-A+ »«)jPn-l + (^n-xKPn-,

^ =K (K-rPn-l + (^n-lPn-,) + ^nP.-X

I
=^«Pn + a«i>,-i [fromi.].

x| Similarly q^^ = b^q^ + a„g„.,.

Thus the law will hold good for the (n+l)th con-

vergent if it holds good for the nth convergent. But we
know that the law holds good for the third convergent ;

it must therefore hold good for all subsequent ones.

Cor. I. In the fraction a, -i
— — ... ,

^--^^ • a2 + as +

Pn=f^nPn-x + p„., and q,
=

a^q,.^ + q„. 2*
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CoK. 11. In the fraction 7^ ^ r" •.•!

Pn =- KPn-t- ^nPn-, ^nd ^„
=

b^q^_^
-

a^q^_^.

Ex. By means of the law connecting successive convergents to a
continued fraction, find the fifth convergent of each of the following
fractions :

1111 . 11111
^^f ^ +

1 + 2 4- 3 + 4* ^"^ 1 + 1 + 4 + 1 + 4 +
'"

,..., 12345 ,.,^2222
(^) 2 + 3 + 4 + 6 + 6- <^^) 3+g_^g^-^-^...12345 /N^^?^!
^^^ 1 + 1 + 1 + 1 + 1* t'^^^ 4 + 3 + 2 + 1 + 2 +

*"

,..,22222 , .... 11111
^") 3-3-3-3-3-- <^")l_i_I_4-l--

356. The convergents to continued fractions of the

form a-\-T - t .
• • • > where a, b,c,d,,,, are all positive

i- c +a +
integers, have certain properties on account of which
such fractions have special utility: these properties we

proceed to consider. We first however shew that any
rational fraction can be reduced to a continued fraction

of this type with a finite number of elements.

For let — be the given fraction
; then, if m be greater

than n, divide m by w and let a be the quotient and p
the remainder, so that — = a + -

. Now divide n hy pn n
and let b be the quotient and q the remainder; then

v 1 1^=-=s
. Now divide p hy a and let c be the

^
!^ 6 + i
r p

quotient and r the remainder : then - = - =—
. By

P P c+^
^ 9.
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proceeding in this way, we find — in the required form,

, m
, p ,

1 11
namely —= a-\-- = a -{ —^— = a + - - ....

^ w ,£ 6+c-f-

Since the numbers
jp, g', r, ... become necessarily

smaller at every stage, it is obvious that one of them
will sooner or later become unity, unless there is an
exact division at some earlier stage, so that the process
must terminate after a finite number of divisions.

It should be noticed that the process above described

is exactly the same as that for finding the G.C.M. of m
and n, the numbers a, h, c, ... being the successive quo-
tients On this account the numbers a, b, c &c. in the

continued fi-action a + r - ••• are often called the
+ c +

first, second, third, &c. partial quotients.
It is easy to see that the continued fractions, found as

above, for — and —
^ ,

where k is any integer, will be the

same.

491
Ex. Convert ^Hiii *^d 3 •14159 into continued fractions, and find in

71 355
each case the fourth convergent. Aru.

^fpj » rfo •

357. Properties of Convergents. Let the continued
11 v

fraction be a, H—
.

—
.

... , and let ^ denote the nth
>

a,+ a.+ q^

convergent

i
L From Art. 355 we have

Pn _&i= «n Pn-1 +Pn-, Pn-r ^ Pn-An-X
-

JPn-xg>.-« .
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So also in succession

But p^q^ -p^q^ = (a,a, + 1)
-

a^a^
= 1.

Hence jp„?^i -i)„.,g„
= (-l)" (i).

Hence also ^_£t:» = t:_J_
(ii).

Cor. In the continued fraction — —H... , which is

less than unity, we have

PnQ .-P .q =(-1)""' and & -^» = tiZL .

II. Every common measure of p^ and q^ must also be
a measure of Pn<ln-\~ Pn-i9.ny that is, from I., a measure of

+ 1. Hence p^ and q^ can have no common measure.

Thus all convergents are in their lowest terms,

III. Ifi^=a, +- - ....-....; then jP will be

obtained from the nth convergent by putting
—

in the place of — .

Hence F =^ ^^^^^^— _P^+^P«-i

a +~ ]a 4- a ^«+^«-i'

where \ is written instead of— ...
,
so that X ia some

««+! +
positive quantity less than unity.
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Hence ^-^« = ^l^«--» -^«= ^^^^^-^

Also ^ -P*^! :^ -P"
+ ^^"-^ ^"-^ = ( ^"^"->

"" P-' ^-^

(-1)"

Now \ is less than 1, and q^ is greater than g^.^ ;
hence

F -.^ is less than F-^^ .

% 9.n-X

Thus any convergent is nearer' to the continuedfraction
than the immediately preceding convergent, and therefore
nearer than any preceding convergent.

lY. If any fraction,
-
suppose, be nearer to a continued

«/

fraction than the nth convergent, then - must from III. be

also nearer than the (n--l)th convergent; and, as the

continued fraction itself lies between the nth and the

(w
—

l)th convergents [Art. 353], it follows that - must
if

also lie between these convergents.

Hence &=^ ~ - must be <-^* ^ 2?
;

<ln-xy Mn-t'

/. y must be > q^ (p„_, y ~
q^.,x).

Hence, as all the quantities are integral, y must be

greater than q^ .
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Thus every fraction which is nearer to a continued

fraction than any particular convergent must have a greater
denominator than that convergent,

V. We have seen in III. that

where \ is a positive quantity less than unity.

Hence F'-^'^> ^-^ c ;

also ^-.^i<_l_.

Thus any convergent to a continiced fraction differs

from the fraction itself by a quantity which lies between

-j-j- and -f-rr——T\ , where d, and cZ, are respectively the

d^a^ d^ (cfj + a )

denominators of the convergent in question and the need

succeeding convergent.

Ex. 1. Shew that, if "Prlq,. be the rth convergent to the continued

fraction a, + — — —
, then wiU

t-^<..
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It can be proved in a similar manner that

^„ 1 1 1

Ex. 2, To shew that —^
=

pr ^ ^ ... to n quotients, where n is
n + 1 2 - 2 - 2 -

a positive integer.

We have

n 1 n-1 1 2_ 1

n n-1 2

Hence =- ^
-

^ .«... to n quotients.

Ex. 3. Shew that, if Prl^r ^^ *^® ^^ convergent o' 7 t r .«...;

then wDl 1)^1 =05,.

EXAMPLES XXXYL

1. Shew that, if ^
,
^

,

^ be three successive converffents
^1 9, gz

to any continued fraction with unit numerators, then will

2. Shew that, if

^ be the nth convergent of -7-' r' t^
qn

"^

6, +6,4-6, + ...;

then wm
p,5'„_,-;7^_,g',

= (-l)-X«. «„•

V 3. Two graduated rulers have their zero points coincident,
and the 100th graduation of one coincides exactly with the

63rd of the other: shew that the 27th and the 17th more

nearly coincide than any other two graduations.
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4. Shew that, if
a^, CTj j , a^ be in harmonical progression;

then will —^=- -
... - -s.

a,_, 2-2- -2-aj

5. Shew that

^111 ,111
*

na^ + na^ + na^ + ^ ^ n\ + % + n\ + *

6. Shew that, if Pe -
^

- ... ~,a +b +c + +^+1'

and
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12. If pjq^ be the rth convergent of the continued fraction

- T - - T -
..-, shew that », .,

= 6», + (6c + l)^, .a+6+c+a + 6+c+ ' '^••+» ^»" ^ ''^8-

13. If
jt?^/^,

be the rth convergent oi ~
j =- -

...,

shew that
;?,„ ^-^^.i

-
1/',, ;?,„_,

= - oTir.

14. Shew that, if — be the nth convergent to the continued

fraction

15. Shew that, if ^= a + \ -
...\ 1; then wiU

q 6+C+ A; + Z'

11 11 1^1 1 1 l^J^
?-<-^ + ***+c+6+a i+A + ***+c+6 "JOS''

p
16. Shew that, if -pr be converted into a continued fraction,

P
the first quotient being a, and the convergent preceding -= being

-; then, if — be converted into a continued fraction, the last

convergent will be (F -aQ)/{p-aq).

17. Shew that, if - and —. be any two consecutive conver-

gents of a continued fraction a;, then will^ J a;* according as

q<q"

358. To find the nth convergent of a continued

fraction.
We have in Art. 355 found a law connecting three suc-

cessive convefgents to a continued fraction, so that the
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convergents can always be determined in succession. In

some cases an expression can be found for any convergent
which does not involve the preceding convergents : the

method of procedure will be seen from the following

examples.

Ex. 1. To find the nth convergent of the continued fraction

1 1^ 3^_5 6^3+4+4 + 4 +••••

Here the nth element is
'-^

—^—^
,
and therefore

l>n=4i>„-i + (2n-3)(2n-l)i)„_a.

The above relation may be written

i)«-(2n+l)i)„_i= -(2w-3) {i)n-i-(2n-l)l>„_3}.

Changing n into w - 1 we have in succession

Pn-i
- (^ -

l)l>n-2=
- (2» - 5) {j)„_a

-
(2n

-
S)^^.,},

l>8-7P2=-3{l>2-5i>i}.

But, by inspection, ^=1, Pa=4; /. p^-5pi= -1,

Hence p^ - {2n + 1) p^_, = (
-
1)*"! (2to

-
3) (2n

-
5) ... 3 . 1.

Then again

Pn J>n-1 _ (-1)"-^

1.3...(2w+ l)" 1.3... (2/1-1) (2w+ l)(2w-l)*

Pi Pi _(-l)^
1.3.6 1.3~ 3.5 '

*°^
173 =173-

_ 11 (
— 1)""^

°®''°®
1.3.6.."(2n+l)

=
r73~376"^

+
(27i+ l) (2n-l)-

Since the denominators of convergents are formed according to

the same law as the numerators, we have from the above

^„-(2n+ l)g«_i=(-l)»-23.6...(2w-3){ga-5gr,}
= 0,

since gi=3 and q2=15.

31—2
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Hence

1» gn-i _ _ ga _ gl _-i.

(2n+ l)(2w-l)...3.1~(2»-l)...3.1 5.3.1 3.1" '

.-. g^=1.3...(2»-l)(27i + l).

Hence p^lQn* *^® '"'^^ convergent required, is

1 ^
,+ ,_„+. <-!)""'

1.3 8.5 (2»-l)(2n+ l)"

Ex. 2. To find the nth convergent of the continued fraction

12 3 4

1 + 2 + 3 + 4+

The necessary transformations are given in Ex. 5, Art. 2

11 (
- l)«-i

It wiU be found that p^=
|2

"
|3

"*" "*
u^+i

•

11 (
- D*

and that gr^=i-+-l __... + ^ >

;SSH

|2

•

|3

•*"••• '

\n±l

If n be supposed infinitely great

359. Periodic continued fractions. When the

elements of a continued fraction continually recur in the

same order, the fraction is said to be a periodic continued

fraction ;
and a periodic continued fraction is said to be

simple or mixed according as the recurrence begins at the

beginning or not.

rm. 111111
Thus a + - - - - - - .••

b+c +a+b+c +a+

is a simple, and - r r r '^^ a + b + b + b +

is a mixed periodic continued fraction.
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360. To find the nth convergent of a periodic continued

fraction with one recurring element.
h h h

Let the fraction be a+ -
.

- - ... Then, for all
c-\-c + c-\-

convergents after the second, we have jp„
=

cp^^.^ + hp„_^

where h and c are constants, that is, are the same for all

values of n.

Now, if Wj + u^x + u^off*+ . . . +uj3cr^+ ... be the recurring

series formed by the expansion of
:j

r-^, the suc-

cessive coefficients after the second are connected by the

law u^
=

cw^_i + &^,_a- Hence, if A and B are so chosen

that tl^=p^ and u^^p^y then will u^=Pn for all values of

n. The necessary values of A and B are respectively p^
and p^

—
cp^, that is a and h.

Hence the numerator of the nth convergent to the

continued fraction a + - - ... is the coefficient of a;""* in
c + c +

J.X.
• n a + hx

the expansion of =
j-^

.

Similarly the denominator of the nth convergent is

the coefficient of x*~^ in the expansion of -* ^^'
r^- ,

1.
~~ ex ~~ OSCT

that is of
1 — cic — hx*

'

Ex. 1. Find the nth convergent of the continned fraction

3 3 3

'^2 + 2 + 2 +
'"'

The numerator of the nth convergent is the coefl&cient of ar^*

in tiie expansion of
j^z^^TsS^,

that is of
^^^j-g^^

-
^^^ .

Hence
J>„=^ {3"+ (-!)»}.

Also 3,4= coefficient of a?""^ in the expansion of

8
^

1

l-2x-Bx^ 4(l-3x) 4(l + x)



460 GENERAL CONVERGENT.

Hence tfi»=7{3'*- (-1)"}.

Thus the nth convergent is 2——-——•

Ex. 2. Find the nth convergent of the continued fraction

a c a
e^

b+d+b+d+ ""

We have p^= dp^_j^ + cp^.^.

Hence, eliminating ^2n-i ^-nd j?2n-3» ^e ^^.ve

i)a„
-

(a+ c + 6d) p2«-a + ««i'2n-4
= 0-

Since the last result is symmetrical in a and c, and also in h

and d, it follows that

Pin-i-ia+ c + hd) p2„_8+ acp2„-6= 0.

Hence the relation

i>n- («+ c + 6d)i>„_3+acp„_4=0

holds good for aU values of n.

Hence p^ will be the coefficient of x^~^ in the expansion of

A + Bx + Gx^+ Dx^
1 - (a+ c + 6d) ar^ + ocar*

'

provided the values oi A, B, G, D are so chosen that the result holds

good for the first four convergents. It wiU thus be found that p^ ib

the coefficient of x""* in the expansion of

a+adx-acx^
1 - (a+ c + bd) X*+ acx^

*

It will similarly be found that g„ is the coefficient of ar""* in the

expansion of

b + {bd+ c)x- aca^

l-{a+e + bd)x^+(icx*'

361. Convergency of continued fl-actlonB. When
a continued fraction has an infinite number of elements it

is of importance to determine whether it is convergent or

not. When an expression can be found for the nth con-
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vergent, the rules already investigated can be employed;
the nth convergent cannot however be often found.

In the continued fraction y-^ j-* r^ ... it is easy to

K + ^ + ^8 +
shew, as in Art. 357, that

5n ^«-l ^n-l<ln

and hence that

Now, if all the letters are supposed to denote positive

quantities, the terms of the series on the right are

alternately positive and negative; also each term is less

than the preceding, for the ratio of the rth term to the

preceding term is
*" ^*'~*

,
which is less than unity since

qr
—

^r^r-x-^^r9.r-r Hcnce the series, and therefore the

continued fraction, is convergent provided the nth term
diminishes indefinitely when n is indefinitely increased.

It can be shewn that the condition of convergency is

satisfied whenever the ratio b^.b^^ : a„ is finite for all

values of n*.

For let 6„6„_i be always greater than k.a^, where k is

some finite quantity.

Thent. =55-fUS = _i2L-«-
S',v-i9'«

?«-l(?«-«
+
^^n-l)

b k k

n-l

Hence u,< ^i^.--"n-i^

Whence u^ <

* Todhunter'8 Algebra, Art. 783.
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But (1 + A?)"~" increases indefinitely with n, since k is

finite; hence u„ decreases without limit as n is increased

without limit.

We have therefore the following Theorem. The

infinite continued fraction j~ ,j^ ,jr ,
••',ii^ which all the

letters represent positive quantities, is convergent if the ratio

bj)^_i : a„ is always greater than some fixed finite quantity.
It should be remarked that any infinite continued

fraction of the form a + r -
.... in which a, b, c,.,.+ c +

are positive integers, is convergent.

362. In the following five Articles the continued

fractions will all be supposed to be of the form

a + T -
•••, where a, b, c,... are positive integers.

6 +C +
This form of continued fraction possesses two great

advantages, for we know that every convergent is in its

lowest terms, and we can also see by inspection, within

narrow limits, the difference between any convergent and
the true value.

*363. Theorem. Every simple periodic continued

fraction is a root of a quadratic equation with rational

coefficients whose roots are of contrary signs, one root being

greater and the other less than unity. Also the reciprocal

of the negative root is equal in magnitude to the continued

fraction which has the same quotients in inverse order.

Let the fraction be

_ 1 1 1111
p/ p

Let jy and
-j^

^^ the last two convergents of the first

*
Articles 363, 364, and 368 are taken from a paper by Gerono,

Nouvelles Annales de MatJiematiques, t. i.
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period. Then

.\a?Q +x{Q'-P)-F =
(i).

The roots of (i) are obviously of different signs, and the

positive root is the value of the continued fraction.

Now, from Art. 857, Ex. 1,

P_ 1 11

and K> = * + T • . • T .

Q' A; + +6

TT v 7 .

1 111
Hence, if y = f + 7- ... - ^ t ....

. Py±Qwe have
V^prp-q)

:,fP' + y{q-P)-Q^O (ii).

The roots of (ii) are obviously of different signs, and the

positive root is the value of the continued fraction

^k-\-"' -Ya + l +
""

From (i) and (ii) we see that the positive root of (ii) is

equal in magnitude to the reciprocal of the negative root

of (i); and therefore the reciprocal of the negative root of

(i)is_(r+i^..._^l_^i_^...)

The positive roots of (i) and (ii) are both greater than

unity, as may be seen by inspection; the negative root of

(i) must therefore be less than unity.

The fraction - ^ ... y - ... requires no special
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examination, for we have only to change x into -
,
and

y into -
;
thus -

r .
•••

. r . t .

~
.

••• is equal to the

positive root of PV— {Q —P) a; — Q = 0, and the negative

root is —\l-\- I 1 11

Hence, as before, one root of the quadratic equation in

w is greater and the other is less than unity.

364. Theorem. Every mixed periodic continued

^ \fraction, which has more than one non-periodic element, is a

^slroot of a quadratic equation with rational coefficients whose

roots are both of the same sign.

Let the fraction be

1 111 1111
'^"^"^6 +

-
+ A; + a + ^ +

-
+y^ + i;+a + y8 + -'

and let

1 1111
^

13+ +/i + v + a + y8 +
A' A

Let -^7 and
-^

be the two last convergents of the non-

periodic part ;
then

yA + A' ...

F P
Let ^ and ^ be the last two convergents of the first

period of y ;
then

yP +F ....

'-WTQ' ^^^>-

The elimination of y from (i) and (ii) will clearly lead
to a quadratic equation in x with rational coefficients.

Now, if the positive root of (ii) be substituted in (i) we
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shall clearly obtain a positive value of a?, and this will be

the actual value of the given continued fraction.

Also, from the preceding article, the negative value of

-is — -^1; + - ... -[: and, if this value be substituted

in (i), we have

we have to shew that this is positive, li k>v the result

is obvious; if A;<j/, = - ... is negative but is less

than 1, and therefore a? is positive provided one element at

least precedes k ;
also k cannot be equal to Vy for in that case

the periodic part would really begin with k and not with
a. Hence both values of x are positive in all cases.

Reducti.on of Quadratic Surds to Continued
Fractions.

365. It is clear that a quadratic surd cannot be equal
to a continued fraction with a finite number of elements ;

for every such continued fraction can be reduced to an

ordinary fraction whose numerator and denominator are

commensurable. It will be shewn that a quadratic surd

can be reduced to a periodic continued fraction of the form

a + r ,-,..., where a, 6, c, ... are positive integers.

The process will be seen from the following example.

Ex. To reduce ^^8 to a oontinaed fraction.

The integer next below «y8 is 2 ; and we have

/8-2-I- /9 g-g, (v/8-2)(N/8+ 2) _a,
4

_
1

^8-2 +^8-2-2+ -j^^
-2+

-^^^-2+^^
4

/8 + 2
The integer next below ^*—

^
— is 1

; and we have
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4
-L+

4 ^^4(^^8 + 2) ^^8 + 2

The integer next below (^8+ 2 is 4 ; and we have

^8+2=4+^8-2=4+^^i—
.

The steps now recur, so that

/8-24-^
^ i ^

Thus ,^8 is equal to a periodic continued fraction with one non-

periodic element, which is half the last quotient of the recurring

portion; and it will be proved later on that this law holds good
for every quadratic surd.

366. We now proceed to shew how to convert any
quadratic surd into a continued fraction.

Let /^N be any quadratic surd, and let a be the integer
next below ^N; then

where r^
= N— a*.

Since \/N—a is positive and less than 1, it follows

that is greater than 1. Let then h be the integer

next below —
;
then

where a, :^hr^
— a and r,

= ^

Then, as before,
^ is greater than unity; and if
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c be the integer next below — *
, we have

'a

The process can be continued in this way to any extent

that may be desired. ThusV-^=ct + r - ^

367. To shew that any quadratic surd is equal to a re-

curring continued fraction.

It is first necessary to prove that the quantities which,
in the preceding Article, are called a, a^, ctg,..., r^, r^, r,,...

are all positive integers.

It is known that iV is a positive integer, and that a, 6,

c, d, ... are all positive integers.

We have the following relations :

n=^ -«% (i);

a^=hr^-a , r,r^=-N-a^ (ii);

a3
= cr^-a,, r^r^

= N-a^' ..(iii);

a^
= dr^-a^, r^r,

= N'-a* (iv);

and so on.

Now it is obvious from (i) that r^ is an integer.

From (ii) we have r„ = ^^— — = 1 + 2a6 — 6V, ,

since iV— a* = r^.

Thus dg
=

6rj
—

a, and r,
= 1 + 2ah — h\ ;

whence it

follows that a, and r, are integers, since r^ is an integer.
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From (iii) we have similarly

a,
=

cr,
-

a, and r^
=

r^ + 2a^c
- c\ ;

whence it follows that a^ and r^ are integers, since a, and

r, are integers.

Then again, from (iv) we have

^4
=

dr^
—

a, and r^
=

r, + 2a,(Z
—

d^r^,

whence it follows that a^ and r^ are integers, since a^ and r,

are integers.

And so on; so that a„ and r^ are integral for all values

of w.

We have now to prove that a^ and
r,^

are positive for

all values of w.

We know that a, 6, c, &c. are the positive integers

next helow \/^> > -y &c. Hence t^N—ay

\/N—a^, s/N—a^, &c., and therefore also N—a^, N —
a^,

iV—
ttg^ &c., are all positive. That is r^, r^y r^,

&c. are ail

positive.

Again, since b is the integer neoct helow
,
it

follows that ^J^+a<br^ + r^, Now, a cannot be equal
or greater than hr^, for then \fN<r^y and therefore a<r^;
therefore a<br^, since r^ is positive and b a positive

integer. Hence a<br^, so that a, is positive.

Again, since c is the integer next below ———
*, it

follows that *JN -\- a^ < cr^ •{ r^.
And we cannot have

«a>cr2, for then yjN<r^, and therefore a^<r^<cr^, since

r, is positive and c a positive integer. Thus a, < cr^y so

that
Gtg

is positive.

And so on
;
so that a„ is positive for all values of n.

Having shewn that the quantities r-j, r„ r„ &c. and a,

a,, a,, &c., are all positive integers, it follows from the
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relation r^r„_, =N —
a^* that a„ is less than aJN, so that

a„:J>a; hence the only possible values of a^ are 1, 2,..., a.

Then, from the relation a„4-a„+i = Aj.r„, where A; is a

positive integer, it follows that r„ cannot be greater
than 2a.

Hence the expression
^ cannot have more than

2a X a different values
;
and therefore after 2a* quotients,

at most, there must be a recurrence.

368. Theorem. Any quadratic surd can he reduced

to a 'periodic continued fraction with one non-recurring
element, the last recurring quotient being twice the quotient
which does not recur; also the quotients of the recurring

period, exclusive of the last, are the same when read hack-

wards orforwards.

Let Js/I\fhe the quadratic surd.

Then, from the preceding Article, we know that ^/N
is equal to a periodic continued fraction.

We also know that any periodic continued fraction is

equal to one of the roots of a quadratic equation with
rational coefficients

;
and the only quadratic equation in x

with rational coefficients of which ^/N is one root is the

equation a;* — iV= 0.

Now the roots of af —N = are hoth greater than

unity in absolute magnitude, and the roots are of different

signs : it therefore follows from Articles 363 and 364 that

the continued fraction which is equal to ^/N must be a

mixed recurring continued fraction with one non-recurring
element.

Hence we have

, 11 1111
^^-''-^h^c+'" +h + k+l+b + "''

/AT 11 1111
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XT 1 1 1111 .
^,Now T .-.•••• r . 7~ . 7 . r .

... is the positive

root of a quadratic equation with rational coefficients;

and as this positive root is ^jN—a, the negative root

must be —tjN—a. Hence, Art. 363, we have

__i_ = l 1 1 1
+ 1 + 1

ViV+ a l+k + h+'" +c h 1 + '"*

iliT 7
1 1 111

^ k+h+ +c+6+^+

TI 7.11 111
Hence i— a + y t ••• - t t

= 4-11 111
whence it is easy to see that l — a = a,k = b,h = c, ....

Series expressed as Continued Fractions.

369. To shew that any series can be expressed as a
continued fraction.

Let the series be

u^-^u^ + u^ + u^-\- ,..+u^+ (i).

Then the sum of n terms of the series (i) is equal to

the nth convergent of the continued fraction

1 -
v^ + u^

—
u^ + u^

—
u^-\-u^—

'" — w^i + w^— "*^ ^'

This can be proved by induction, as follows.

Assume that the sum of the first n terms of (i) is equal
to the nth convergent of (ii). Another term of the series

is taken into account by changing u^ into u„ 4- u^+ ; and,

by changing u„ into u^ + u^^,
—**"'"*

will become
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**~^^ " r^ which is easily seen to be equal to

u^..u„ u^,u^,
^j^^^ ^^^ ^^^ of n + 1 terms of

(i) will be equal to the (?i+l)th convergent of (ii) provided
the sum of n terms of (i) is equal to the nth convergeut of

(ii). But it is easily seen that the theorem is true when
7i is 1 or 2 or 3 : it is therefore true for all values of n.

Thus u^ + u^-\-u^-\-u^-\- .,,to n terms

W, ^5 ^l^» ^8^4 J. X- ^ PAT= -i ^— —*-^ —*^^ ... to n quotients... [AJ.
1 —u^-\-u^

—
u^ + u^

—
u^ + u^—

^

It can be proved in a precisely similar manner that

u^—u^ + u^
—

u^-{- to n terms

= -i —?— —^-^ —^-^ ... to n quotients ... [B|.

The formula [B] can also be deduced from [A] by olianging the

signs of the alternate terms.

370. The following cases are of special interest :

^ + tV + 111 + ... to w terms

= r - rr^ - a¥^ t - *« ^ quotients... [C],

all the upper signs, or all the lower signs, being taken.

And — ±—I

— + —h...to7i terms
«i ^2 ctg ^4

1 3 3

= — _ —i— _ —?— _ ... to 71 quotients . . . [D],
«! + a, ± a^ + ftg ± ttj +

all the upper signs, or all the lower signs, being taken.

These can be proved by induction as in the preceding
Article.

s. A. 32
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Thus to prove [C]. It is obvious by inspection that the theorem

is true when n=2. Assume then that [C] is true for any particular

value of n: then, to include another term of the series 7^ must be

changed into P^ =t: f»^w4-i ^ ^^^ therefore _~=1^ will become

which can easily be seen to be equal to J*~^
** n n+i—

^ Thus,

if [C] be tKue for any value of n, it wiU be true for the next greater
value ;

hence as [C] is true when n=2, it is true for all values of n.

The following are particular cases of [C].

Oi ± a^a^ + a^a^a^ ± a^a^a^a^ +

1 +I±a3+ 1 ±a,+ l ±a, + ^ h

and 2 + Jl +-J_ + _J_ + ...

ai + a2±l + a,±l + a,±l+
*'""'- ^'

Ex. 1. Shew that

1 1» 32 5« * . « .*
V TT -TT -^ ... to mfinity.1+2+2+2+ ^

=--- + ---+... to infinity. [Brouncker.]13 5 7

Put ai=l, aa=3» o»=5> &o. in [D],

Ex. 2. Shew that

1 IS 22 39

1 4. r+ 1 + r+ - *° i°fi°i*y=log-2. [Euler.]

Put ai=l, aj=2, 03=3, &c. in [D].

• The formula [A] is due to Euler
; [C] is given by Dr Glaisher in

the Proceedings of the London Mathematical Society^ Vol. v.
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Ex. 3. Find the value of
:j-

- - -
j ... to infinity.1+1+2+3+4+

From [F] we see that

1 + 1 + 2 + 3+ *^^^^^^*y

13 3
Ex. 4. Find the nth convergent of 5 - -

....
o + 2 + J +

From [F] we have

1 1 1 _1 ? ?
8 3.3"^3.3.3 •••"3 + 2 + 2+

••••

Hence the nth convergent required=2 -/l-(-._j L,

Ex.6. Shew that 1 + ^
_!_. JL JL _^^r^

1 -r+2-r+3-r+4-
_ - r

,
r.r r .r.r r .r.r .r

' =^+i +O +
1:2:3

+
ir2TF.-4+

-

1 .

*• » 2r 3r . _„= l +
l_,-T2-r-T3-r-?l--»^^°^[^l-

EXAMPLES XXXYII.

1. Find the continued fractions equivalent to the follovring

quadratic surds :

(1) V17, (2) JUO, (3) V33, (4) ^43,

(5) J{a'+l\ (6) VK + 2«).

2. Shew that JI^= a + —- —-
. . .,

where a has any value

whatever, and b = N—a'.

3. Find the value of

« l-^3+2+3+2 + -*^"^^"^*y-

82—2
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/..v ,11111 ^ . . .^

/.-. 111111 ^
• . .,

(ill) 7^ o T K T F ••• *<^ infinity.^^2+3 + 4 + 5+4+5+ •^

4. Shew that

7 + ^rr TT ...to infinity = 5 (1 +75 ^r ... to infinity).
14 + 14+ ''

\ 2 +2 + •"

5. Shew that

\a +b +c + d +a +
'"

J \ c+b+a+d+"'J
_b + d+hcd~
a + c + acb

'

6. Shew that, ifa5= y + 7r- -r- ... to infinity, then
"^2^ + 2^ +

7. Shew that, if

a; = -
7-

- r ... to infinity,a + b +a +b + •"

2^=i + i +i + i + -*"^^"^*y'

""^ *=i+i+i + i+-*^^^"^*y'
then will a; (y«

-
«') + 21/ (««

-
a') + 3«

(ar»
-

y')
= 0.

8. Shew that, if n be any positive integer,

n«_p n»_2« w«-3*

3 + 5 + 7 +

9. Shew that

l+a» + aV... + a'"
^

1 ]_ 1

a + a' + a*+... + a'"-^~ a 1 1 ...
a + a +—

a a

to n quotients.
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10. Shew that, if

a c a e , c a e a

b+d+b+d+ ^ d+b+d+b+ '

then bx-dy = a — c.

11. Shew that the ratio of

1111 ,^1111
l+6+a+l+ l+a+b+l+

is 1 + a : 1+6.

12. Shew that the nth convergent of

14 2 2 . 2--1
...IS3_3_3_3_-- -"2'' + r

13. Shew that the wth convergent of

^""2 + 2 + 2+-'' (l + ^2)"-(l-V2)-
•

12 2 2
14. Shew that the nth convergent of ^ ^r 77 tt

i — o — 6 — o

is 2- - 1.

15. Shew that the wth convergent of

1 ab ab . a* -b*
... IS -z-rz T-TT.

a-^b —a + b —a + b —

16. Find the nth convergent of the continued fraction

2 3 8 r'-l

1_5_7_ -
_2r+l-'"'

17. In the series of fractions —
,
—

, <fec., where the law
q, q,

of formation is p, = qr_x, 9'r
= (^'- l)i^r-i + ^3'r-i^ prove that

p 1
the limit of — when r is infinitely great is

|
.
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18. Shew that in the continued fraction

^« ^ ^ ^
61 + 5, + 63 +

**'

+ 6. + *'*'

the nth convergent is to the (n— l)th in the ratio

19. Shew that, if
j/j, y,, <fec., be the convergents of a simple

periodic continued fraction found by taking 1, 2, <fec., complete
F F'

periods, and if q, ^,
he the two convergents immediately

preceding y,, then y^
=
Q^yl\ + Q

'

20. If Z be any integer not a perfect squa,re, and if JZ
be converted into a continued fraction

11 111
6 + C+ +« + 2a+6

and if the convergents obtained by taking one, two, ..., i

complete periods, each period terminating with A, be denoted

by Pp Pj,, ..., P„ prove that

F,-JZ-\F^-JZ)'

21. Find the nth. convergent of the continued fraction

1 1 1

and shew that the limit of the nth convergent when n is

indefinitely increased is a or a~^ according as a is numerically
less than or greater than unity.

22. Shew that the nth convergent of

12 3 3 .3
2+2+2+2+ "•

'^8H-'iy
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23. Shew that

,1 X X 2x (n-l)x ^ ' n -^
e-'=rr ^ -^ ^ ... -^^ ^— ... to infinity.

1 + 1 -a5 + 2-a; + 3-05 + + n-x + ''

24. Shew that

X a^ a^ _x CKC hx

a ah abc
'"

a + 6-a; + c-a; +
****

25. Shew that

112 4 6
, . . ., -1

T T o F 77 ... to infinity = e 3,1+1+3+5+7+ ^

26. Find the value of

113 6 3(n-2) ,
.

fl .^Toko ••• o IT ... tO infinity.1+2+5+8+ +3/1-4+ "^

27. Shew that

1 r^ 2^4' 3'. 5' (n-l)^(n+l)'
3 + "5 + 7 + 9 +

"•
+ 2^1 + 1

"1.3 2.4'^3.5 '""^^ '
n(n + 2)'

28. Shew that the nth. convergent of

2 2 2 2 . ^ 2--1
K ... IS 6

29. Shew that the wth convergent of

14 14 . 6n-l+(-l )''

3_3_3-3- -
'^6»i + 7 + (-l)'"

1* 2* 3'
30. Shew that

-5- -^
-= ... to infinity =1.

31. Shew that

,^ ,
1 1.2 3.4 5.6 ^ . . .^-^2=1 +
2^-3- ^^^-3-^-..

to infinity.
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82. Shew that

- 1 1 2.3 4.5 6.7
,

. .
.,

33. Shew that

1 3.4 6.6 7.8 9.10 , . « ., ,

4--9---i3--Tr-^r--*^^^^^*^=^-

34. Shew that (1+ a;)"

— (^-l)a^ 2(n-2)a; 3(7i-3)a;
"*"

1 -2 + {n-l)x-3 + {n-2)x-4: + (n-3)x-"'

35. Shew that, if ri be a positive integer,

n «-l 2(»^-2) 3(>»-3) (n-l)l
Z = I + r- =- =— = ... =— .1-n + l- n+l - n + l - - w + 1

86. Shew that
(l +5 (1+3(1+^,)...

_ as a
(a;
+ a) a'

(a? + a')

a— x + a+a' —x+a' +a' ^

37. Shew that - ^ . ^ r ... to infinity

5= ... to infinity,w-l+2n-l+3w-l+ -^



CHAPTER XXVIIL

Theory of Numbers.

371. Throughout the present chapter the word number
will always denote a positive whole number

;
also the word

divide will be used in its primitive meaning of division

without remainder. The symbol M(p) will often be used

instead of
* a multiple ofp.'

Definitions. A number which can only be divided

by itself and unity is called a prime number, or a prime.
A number which admits of other divisors besides

itself and unity is called a composite number.
Two numbers which cannot both be divided by any

number, except unity, are said to be prime to one another,

and each is said to be prime to the other.

372. The Sieve of Eratosthenes. The different

prime numbers can be found in order by the following

method, called the Sieve of Eratosthenes.

Write down in order the natural numbers from 1 to

any extent that may be required : thus

1, 2, 3, 4, 5, 6, 7,

11, 12, 13, 14, 15, 16, 17,

21, 22, 23, 24, 25, 26, 2*7,

81, 32, 33, 34, 35, 36, 37,

Now take the first prime number, 2, and over every
second number from 2 place a dot : we thus mark all

8.



480 THEORY OF NUMBERS.

multiples of 2. Then, leaving 3 unmarked, place a dot

over every third number from 3 : we thus mark all mul-

tiples of 3. The number next to 3 which is unmarked is

5
;
and leaving 6 unmarked, place a dot over every fifth

number from 5 : we thus mark all multiples of 5. And so

for multiples of 7, &c.

Having done this, all the numbers which are left

unmarked are primes, for no one of them is divisible by
any number smaller than itself, except unity.

It should be here remarked that if a composite number
be expressed as the product of two factors, one of these

must be less and the other greater than the square root of

the number, unless the number is a perfect square, in

which case each of the factors may be equal to the square
root. Hence every composite number is divisible by a

prime not greater than its square root. On this account
it is, for example, only necessary to reject as above mul-

tiples of the primes 2, 3, 5 and 7 in order to obtain the

primes less than 121, for every composite number less than
t 121 is divisible by a prime less than 11.

\ 373. Theorem. The number ofprimes is infinite.^
For, if the number of primes be not infinite, there

must be one particular prime which is greater than all

others. Let then p be the greatest of all the prime num-
bers. Then \p will be divisible by p and by every prime
less than p. Hence 1^+1 will not be divisible by p or

by any smaller prime ;
therefore

[^
+ 1 is either divisible

by a prime greater than p, or it is itself a prime greater
than p. Thus there cannot be a greatest prime number

;

and therefore the number of primes must be infinite.

Ex. Find n consecutive numbers none of which are primes.
The numbers are given by jn + 1 + r, where r is any one of the

^
numbers 2, 3, ..., (n+ 1).

^74. Theorenii No rational integral algebraical
formula can represent prime numbers only.
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For, if possible, let the expression a±ba)±ca^± dx*±,.,

represent a prime number for any integral value of as, and
for some particular constant integral values of a, 6, c, ... .

Give to a? any value, m suppose, such that the whole

expression is equal to p, where p is neither zero nor

unity ;
then p = a±hm± cm^ ± ... . Now give to x any

value m-\-np, where n is any positive integer; then the

whole expression will be

a±h(m+ np) ± c (m 4- np)^ + . . . = a ± 6m + crn^ ± ...

+ M(p)==p-^M(p).
Thus an indefinite number of values can be given to x
for each of which the expression a±bx±ca^ ± ... is not

a prime.

In connexion with the above theorem, the following formnlae
are noteworthy :

—
(i) x^+x+ 41, which is prime if a; < 40. [Euler.]

^) x^+ x+ 17, which is prime if « < 16. [Barlow.]

(iii) 2a;^+ 29, which is prime if a; < 29. [Barlow.]

375. The student is already acquainted from Arith-

metic with many properties of factors of numbers : these

all depend upon the following fundamental

' Theorem :
—If a number divide a product of two

factors, and be prime to one of the factors, it will divide

the other.

For, let ab be divisible by x, and let a be prime to x.

Reduce - to a continued fraction, and let - be the con-
X q

vergent which immediately precedes
-

;
then [Art. 357, L]X

qa—px=±l; .'. qab—pxb — ±b. Now qab is, by supposi-
tion, divisible by x) and therefore qab—pxb must be
divisible by x, that is b must be divisible by w.

From the above theorem the following can easily be
deduced :

—
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^I. If a prime number divide the product of several

facials
it must divide one at least of the factors.

yll. If a prime number divide a" it will divide a.

/IIL If a be prime to each of a, /3, 7, ... it will be

prime to the product a^y. . . .

f iV. If a be prime to 6, a* will be prime to 6*".

^. If a number be divisible by several primes

separately it will be divisible by the product of them alL

376. Theorem. Every composite number can be re-

sotvedrtnto prime factors ; and this can be done in only one

For, if iV be not a prime number, it can be divided

by some number, a suppose, which is neither iV nor 1:

thus N=ah. Again, if a and b be not primes, we have

a = cxc?, 6 = e x/, and therefore N—cdef. Proceeding
in this way, since the factors diminish at every stage,
we must at last come to numbers all of which are primes.
Thus N can be expressed in the form aX)8x7xSx...,
where a, y8, 7, S, . . . are all primes but are not necessarily
all different, so that N may be expressed in the form

a'/3*7*"..., where a, ^, 7,... are the different prime factors

ofiV^.

Next, to shew that there is only one way in which a
number can be resolved into prime factors.

Suppose that N = ahcd... ^
where a, b, c, d,... are all

primes but are not necessarily all different
; suppose also

that N=
a/878. . ., where a, y8, 7, S. . . are also primes. Then

we have abed... = a^yB Hence a divides a^yB...; and
therefore, as all the letters represent prime numbers, a
must be the same as one of the factors of ay37S Let
a — a; then we have bed... —fiyB..., from which it follows

that b must be equal to one or other of y3, 7, 3, . . .
;
and so

on. Hence the prime factors a, 6, c,... must be the same
as the prime factors a, )S, 7, . . . .

Ex. Express 29646, 13689 and 90508 in terms of their prime factors.

Am. 6 . 72 . lia, 8* . 132 and 2^ . 11» . 17.
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377. To find the highest power of a prime number
contained in Iw.

Let /(-) denote the integral part of-; and let a be

any prime number. Then the factors in hi which will be

divisible by a are a, 2a, 3a, ...,/(- j
. a. Thus / (

-
j
factors

of \n will be divisible by a. Similarly 11-%)
factors will

be divisible by a*. And so on.

Hence the whole number of times the prime number a

is contained in In is /(-) +J^(— ) +-^(~8) +••.

Ex. 1. Find the highest powers of 2 and 7 contained in (50.

H.e
z(f)-., .(-)=x. x(-)=e. x(-)=a.

I (
-g j

= 1. Hence 2*^ is the required highest power of 2.

I Again, I (
—

J
= 7, I

[ ^ j
= 1. Hence 7* is the required highest

^ -^
power of 7.

jUiij
2. Find the highest powers of 3 and 5 which will divide [80.

I Am, 33«, 6".

—
jj"*^-^ 8. Find the highest power of 7 which will divide [1000.

Am. 7i«*.

^
378. Theorem. The product of any r consecutive

\ numbers is divisible by \r. h\
Let n be the first of the r consecutive numbers

;
then

we have to shew that
"(^ + l)('» + 2) (n + r-l)

ir
n + r — 1

or
I , ,

is an integer.
\r n-1 ^

In + r — 1
The theorem follows at once from the fact that ' ' v— ,

^71
— 1

is n+r-fir>
^^^ ^^^ uumber of combinations oi n-\- r^l
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things r together must be a whole number for all values

of n and of r.

The theorem can also be proved at once from first

principles by means of Art. 377.

For it is obvious that /
('^"^^""^ )

< I(^) + -^Q »

/( a
—

)^^\
—

2-) + -^(-^),
and so on. Hence from

Art. 377 it follows that the number of times any prime
number is contained in \n-\-r

— 1 can never be less,

although it may be greater, than the number of times

the same prime number is contained in \n
— l x

|r.
Thus

every prime number which occurs in In— 1 x Ir, occurs to

at least as high a power in
|w + r — 1, which proves that

\n-{-r
— l is divisible by |n

— 1 x
jr.

In

It can be proved in a similar manner that r-^—
is an integer, where a + ^-\-y-\-..,—n.

379. If n he a jpHme number the coefficient of every
term in the expansion of (a + by except the first and last

terms is divisible by n.

For, excluding the first and last terms, any coefl&cient

, n(n— l)...(n
— r + 1) ,

is given by
-^ —r-

,
where r is any integer

between and n.

Now, by the preceding Article,
—^^ ^^ ^"^

is an integer; and, as n is a prime number greater than r, n

must be prime to r; and therefore -^^ — —^^ —-

must be an integer. Hence every coefficient, except the
first and last, is divisible by n.

Similarly, if n be a prime number, the coefficient of
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every term in the expansion of (a + 6 + c+...)* which

contains more than one of the letters, is divisible by n.

For the coefficient of any term which contains more

\n
than one of the letters is of the form Y—rkr 1 where

a+y8+7+... = n. Now . '-7 is an integer; and, as

w is a prime greater than any of the letters a, /8, 7,...,
n must be prime to

lal^ly... ;
and therefore the coefficient

of every term which contains more than one letter is

divisible by n.

- -Ex: 1. Shew that n (n + 1) (2n+ 1) is a multiple of 6.

Ex. 2. Shew that, if n be odd, (w=»+ 3) {n^ +7) =M (32).

Ex. 3. Shew that/if n be odd, n*+ 4w' + 11= Jf (16).

Ex. 4. Shew that 1 + T^^+i= M{8).

^ Ex. 5. Shew that 19*» - 1= Jlf (360).

\ £z. 6. Shew that, if n be a prime number greater than 3,

\ n (w2
-

1) (n« -4:) =M (360).

* H 380. FermaVs Theorem. If n be a prime number^
Dand m any number prims to n ; then rrC^ — 1 will be

Invisible by n.

We know that when n is a prime number, the coeffi-

cient of every term in the expansion of (a, + a, +...+ a„)",
which contains more than one of the letters, is divisible by
n. Now there are m terms each of which contains only
one letter and the Coefficient of each of these terms is 1.

Hence, putting a,
=

a, =...= 1, we have

mr==m-^ M(n) ;
.-. m (w"~'

-
1) = M(n).

Hence, if m be prime to n, m""* — 1 will be a multiple
of 7i.

Ex. 1. Shew that, if n be a prime number,
^n-i + 2«-i + 3^-1+ . . . + (w

-
l)-*-! + 1= M{n).

2. Shew that, if a and b are both prime to the prime number n ;

then will a**"^ - 6"-^ be a multiple of n.

Ex. 3. Shew that n^-n=M (30).
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Ex.4. Shew that nf-n=M (42) .

Ex. 5. Shew that a?" - y
"= M{1S65) , if a? and y are prime to 1365.

...^-Ex. 6. Shew that, if m and n are primes ;
then

m^-i + ri'nr-i -i=M (mn) .

Ex. 7. Shew that, if m, n and p are all primes ; then

(np)"*-i + (pwi-)»-i+ {mnf-^
- 1 =ilf {mnp).

^„,„.^x. 8. Shew that the 4th power of any number is of the form 5m
or 6w+l.

Ex. 9. Shew that the 12th power of any number is of the form 13m
or 13m+ 1.

Ex. 10. Shew that the 8th power of any number is of the form 17m

\or

17m± 1.

381. To find the number of divisors of a given number.

Let the given number, N, expressed in prime factors,

be a'6V Then it is clear that N is divisible by
every term of the continued product

Hence the number of divisors of N, including N and

(^ + l)(y + l)(^ + l)

Ex. 1. The number of divisors of 600, that is of 2» . 3 . 5^, is

(3 + l)(l + l)(2 + l)
= 24.

Ex. 2. Find the sum of the divisors of a given number.

The given number being N=a''bvc*...y the sum required is easily
seen to be

(1
- o^i) (1

-
fty+i) (1

-
c*^^^)...

(l-a)(l-6)(l-c)...
•

Ex, 3. Find the number of divisors of 1000, 3600 and 14553.

Ans. 16, 45, 24.

Ex. 4. Shew that 6, 28 and 496 are perfect numbers. [A perfect
number is one which is equal to the sum of all its divisors, not

considering the number itself as a divisor.]

Ex. 6. Find the least number which has 6 divisors. Am. 12.

Ex. 6. Find the least number which has 15 divisors. Ans. 144.

Ex. 7. Find the least number which has 20 divisors. Am. 240.

Ex. 8. Find the least numbers by which 4725 must be multiplied in

order that the product may be
(i)

a square, and (ii) a cube.

Am. 21, 245.
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382. To find the number of pairs offactors, prime to

each other, of a given number.

Let the given number he N= a'h^c*... ; then, if one of

two factors prime to each other contains a, the other does

not
;
and so for all the other different prime factors.

Hence the factors in question are the different terms
in the product (1 + a") (1 + 6") (1 +c")..., the number of

them being 2*, where n is the number of different prime
factors of N. The number of different pairs of factors

\prime to each other is therefore 2""^ in which result N
and 1 are considered as one pair.

\ \ 383. To find the number ofpositive integers which are

less than a given number and prime to it.

Let the given number be iV= a*6V..., where a, b, c,...

are the different prime factors of N.

The terms of the series 1, 2, 3,..., iV which are divisible

by a are a, 2a, 3a,...,
— a: and therefore there are —

N
numbers which are divisible by a. So also there are

-j-

N . . . iV . . .

numbers divisible by b, j-
divisible by be, -r- divisible by

abc, and so on.

We will now shew that every integer which is less

than iV and not prime to iV is counted once and once only
in the series

2^_2 - + S—-S— + . (a)
a ab abc abed

Suppose an integer is divisible by only one prime factor

of N, a suppose; then that integer is counted once in

iV
(a), namely as one of the — numbers which are divisible

by a.

INext suppose an integer is divisible by r of the prime
(actors a, b, c,... ,

then that integer will be counted r

s. A.. 33
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iV r(r — l). N
times in S — ,

it will be counted v o times in 2 -i; ,

a i . z ao

it will be counted —^—=—^r^ times m 2, -7- ,
and so

1 . Z . 6 aoc

on. Hence the whole number of times an integer divisible

by r of the prime factors is counted, is

r(r-l) r(r-l)(r-2) r(r-l)...l
r

^p-2-+ f--273
...+ (-1)

^
= 1 - (1

- ly = 1.

Thus every number not prime to N is counted once in

(a); and therefore the number of positive integers less

than iV and not prime to iV is given by (a) ; provided
however that unity is considered to be prime to N.

Hence the number of positive integers less than iV and

prime to j/V is

a ao aoc

{
a ao aoc )

Ex. 1. Find the number of integers less than 100 and prime to it.

Since 100 = 2^ . 5^, the number required is

100
(i-i)(i-i)-

1=39.

Ex. 2. Find the number of integers less than 1575 and prime to it.

Am. 719.

Ex. 3. Shew that the number of integers, including unity, which
are less than N[N>2] and prime to N is even, and that half

N
these numbers are less than

-^
.

For if a be prime to N so also is N-a; and if a > -
,
then

N-a
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384. Forms of square numbers. Some of the

different possible and impossible forms of square numbers
will be seen from the following examples :

—
Ex. 1. Shew that every square is of the form 3ot or 3w + 1.

For every number is of the form Bm or 3m ± 1. Hence every

square is of the form 9m or 3m + 1.

Ex. 2. Shew that every square is of the form 5m or 57n ± 1.

For every number is of the form 5m, 5m J= 1 or 6m ± 2
;
and there-

fore every square is of the form 5m, 5m+1 or 5m + 4.

Ex, 3. Shew that, if a?+ 6*=c^ where a, b, c are integers ;
then will abc

be a multiple of 60.

First, every square is of the form 3m or 3m+l; and therefore

the sum of two squares neither of which is a multiple of 3 is of the

form 3m + 2 which cannot be a square. Hence either a or b must be

a multiple of 3.

Again, every square is of the form 5m or 5m =t 1. The sum of two

squares neither of which is a multiple of 5 is therefore of one of the

forms 5m, or 5m ± 2. Now no square can be of the form 5m ± 2
; and

if a square be of the form 5m, its root must be a multiple of 5.

Hence, if ab is not a multiple of 5, c will be a multiple of 5. Thus,
in any ease, abc is a multiple of 5.

Lastly, since every number is of the form 4to, 4m+ 1, 4m + 2 or

4m+ 3, every square is of the form 16m, 8m +1, 16m+ 4. Now a
and 6 cannot both be odd, for the sum of their squares would then be
of the form 8m + 2 which cannot be a square. Also, if one is even
and the other odd, the even number must be divisible by 4, for the
sum of two squares of the forms 8m + 1 and 16m + 4 respectively is of

the form 8m + 5 which cannot be a square. It therefore follows that

ab must be a multiple of 4.

Thus abc is divisible by 3, by 6 and by 4; hence, as 3, 4 and
6 are prime to one another, a6<;= ilf (60).

Ex. 4. Shew that every cube is of the form 7to or 7m ± 1. Shew also

that every cube is of the form 9m or 9m ± 1.

Ex. 5. Shew that every fourth power is of the form 5m or 5m+ 1.

Ex. 6. Shew that no square number ends with 2, 3, 7 or 8.

Ex. 7. Shew that, if a square terminate with an odd digit, the last

figure but one will be even.

Ex. 8. Shew that the last digit of any number is the same as the last

digit of its (4n + l)th power.

Ex. 9. Shew that the product of four consecutive numbers cannot be
a square.

33—2
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EXAMPLES XXXVIII.

1. Shew that the difference of the squarep of any two

prime numbers greater than 3 is divisible by 24

2. Shew that, if w be a prime greater than 3,

nK- l)(nV- 4)(n^
-

9)
= Jf (2' . 3'. 5 . 7).

3. Shew that, if ti be any odd number,

{n + 2m)-
-
(n + 2m) = J/ (24).

4. Shew that «*"+' - a*''*' = J/(30).

5. Shew that, if ^—a' = x and (a + 1)'
- iV = y, where ^

and y are positive; then I^—xyiaa, square.

y 6. How many numbers are there less than 1000 which are

not divisible by 2, 3 or 5?

7. P, Qj i?, p, q, r are integers, and p, q^ r are prime
P O R

to one another; prove that, if — h— + — be an integer, then

—
,
— and — will all be integers.

p q r

8. Shew that 284 and 220 are two 'amicable' numbers,
that is two numbers such that each is equal to the sum of the

divisors of the other.

9. Shew that, if 2"-l be a prime number, then 2"~'(2''-l)
will be a 'perfect' number, that is a number which is equal to

the sum of its divisors.

10. Find all the integral values of x less than 20 which
make a;'* - 1 divisible by 680.

11. Shew that no number the sum of whose digits is 15 can
be either a perfect square or a perfect cube.

12. Shew that every square can be expressed as the differ-

ence between two squares.
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13. Find a general formula for all the numbers which when
divided by 7, 8, 9 will leave remainders 1, 2, 3 respectively;
and shew that 498 is the least of them.

14. If n be a prime number, and iV prime to n, shew that

]^n-n_i ^M{n'), and that ir»'-«"'_ 1 = M
{n').

15. Shew that, if n be a prime number and iV be prime to

n, then wiU iV^'+=^-+^"-« =*= 1 = if
(w*).

16. Shew that, if p be a prime number, and (1 + xy~'= 1 +

a^x + a^af + ajpc''
+ .,,; then a^ + 2, a, -3, ^8 + 4, <fec. will be

multiples of
jt?.

17. Shew that if three prime numbers be in A. p. their

common diflference will be a multiple of 6, unless 3 be one of

the primes.

12a 126

18. Shew that
, '—7,'

— -= is an integer,

[a|6a + 6 ^

|2n
19. Shew that -.

— ,. is an integer.
|n+ 1 [n

\nr
20. Shew that r—rr-i* is an intesrer.

21. Each of two numbers is the sum of n squares ;
shew

that the product of the two numbers can be expressed as the

sum^of J n (n
-

1) + 1 squares.

22. Shew that a' + b' cannot be divisible by 3, unless both

a and b are divisible by 3; shew also that the same result holds

good for the numbers 7 and 11.

23. Shew that, if a'' + b' = c', then ab{a'-b') will be a

multiple of 84.

24. Shew that no rational values of a, 6, c, d can be found
which will satisfy either of the relations a* + 6' = 3

(c^ + d^)^
a' + b' = 7 (c' + d') or a« + 6' = 1 1 (c' + d^).

25. Shew that, if a' + c' = 2b\ then a'-b' =M (24).
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Congruences.

385. Definition. If two numbers a and h leave the

same remainder when divided by a third number c, they
are said to be congruent with respect to the modulics c; and
this is expressed by the notation a = b (mod. c), which
is called a congruence.

For example, 21= 1 (mod. 10), and (a 4- 1)^=1 (mod. a).

The congruence a=b (mod. c) shews that a — 6 is a
\ multiple of c, which can be expressed by
\ a — 6 = (mod. c).

>J 386. Theorem. Ifa^^b(nwd.x),anda^
=

h^(mod.iic);
then will a^ + a^

=
b^ + b^ (mod. x), and a^a^ = bp^ {mod. x).

For let
ttj
= m^x + r^ ,

and a,
= m^x + r, ; then, by sup-

position, b^
=

n^a? 4- r-j
and

6^
=

"^2-^ + ^2*

Hence a^ + a^
—

{b^ + 6^ = (m^ + 7?ijj

-
n,
-

ti^)
a;

;

.-. {a^ + a,)
-

(6j + 6,)
= (mod. a;),

or «! + a, = 6j + 62 (mod. a;).

Again, it is easily seen that a^a^
—

bfi^
= a multiple of

X, and therefore a^a^ = bf>^ (mod. ic).

The proposition will clearly hold good for any number
of congruences to the same modulus.

387. Congruences have many properties analogous to

equations. For example, if the congruence

Aa^-\-Bx^G=0 (mod. p\
wherein A,B,G have constant integral values, be satisfied

by the three values a, b, c of x, which are such that a — b

is unity or prime to p, and so for every other pair, then
the congruence will hold good for all integral values of a?,

and A.ByG will all be multiples of p.

For we have

Aa' + Ba+G=0 {modi. p\
and Ab' -\-Bb + G =

(mod. p) ;
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.*. by subtraction

(a -h){A(a + h) + B}=0 (mod. p).

Hence, as a — 6 is unity or prime to p, we have

A(a + b) + B = (mod. p).

Similarly, A (a + c)-\-B=0 (mod. p).

Hence, by subtraction, A {b
—

c)
=

(mod. p).

Therefore ^ =
(mod. p\ since b — o is unity or prime

to^.

Then, since A =
(mod. p), it follows that B=0 (mod.

p), and then that C = (mod. p).

Then, since A, B, G are all multiples of p, it follows

that Ax^ + Bx + (7 is also a multiple of p for all integral
values of x.

We can prove in a similar manner the general theorem,

namely :
—

If a congruence of the nth degree in x be satisfied by
more than n values of x, which are such that the difference
between any two is unity or is prime to the modulus, then

the congruence will be satisfied for all integral values of x,

and the coefficients of all the different powers of x will be

multiples of the modulus.

388. Theorem. If a and b are prime to one another,
the numbers a, 2a, Sa,..., (b

— l)a will all leave different
remainders when divided by b.

For suppose that ra and sa leave the same remainder
when divided by b.

Then ra- sa = M(b); but if b divide (r
—

s) a, and be

prime to a, it must divide r — s, which is impossible if r
and s are both less than b.

Hence the remainders obtained by dividing a, 2a, ... ,

(6
—

1) a by 6 are all dififerent; and since there are 6—1 of

these remainders, they must be the numbers 1, 2, ,

(6
—

1) in some order or other.
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If a be not prime to 6 the remainders obtained by dividing a, 2a,

8a, ..., (6
-

1) a by 6 will not be all different. For let A be a common
factor of a and 6, and let a=ka atid 6 =

/c/S.
Then it is easily seen

that (r + /3)
a and ra will leave the same remainder when divided by b,

and {r + ^)a and ra are both included in the series a, 2a, ..., (6- 1) a

provided r+ /3
< 6 - 1.

Cor. If a be prime to 6, and n be any integer what-

ever, the remainders obtained by dividing n, n -\-a,

\ n + 2a, ...,n + (b
— l)a by b will all be different, and will

\ therefore be the numbers 0, 1, 2, ..., (6
—

1).

^
389. Fermat'8 Theorem. From the result of the

preceding article, Fermat's theorem can be easily deduced.

For, if a and b are prime to each other, the numbers a,

2a, ..., (b
— l)a will leave, in some order or other, the re-

mainders 1, 2, . . ., (6
—

1), when divided by b. Hence we have

a. 2a . 3a... (6-1 . a)
= 1 . 2 . 3. ..(6

-
1) (mod. 6).

that is |6-1 (oT'
-

1)
=

(mod. 6).

Now, if 6 be a prime number, 1 6 — 1 will be prime to 6;

\and

we have a*^* — 1 = (mod. ~5X which is Fermat's
theorem.

390. Wilson's Theorem. If n be a prime number,
1 -I-

1

71 — 1 will be divisible by n.

If a be any number less than the prime number
M, a will be prime to n, and hence, from Art. 388,
the remainders obtained by dividing a, 2a, ..., (n

—
1) a by

n will be the numbers 1, 2, ..., (w
—

1); hence one and

only one of the remainders will be unity. Let then a6 be
the multiple of a which gives rise to the remainder 1; then,
if 6 were equal to a, we should have a* = 1 + M(n), or

(a + 1) (a
—

1) = M{n), and this can only be the case, since

n is a prime, if a = l or a = n — 1. Hence the numbers
2, 3, . . . (n

-
3), {n

—
2) can be taken in pairs in such a way

that the product of each pair, and therefore the product of

all the pairs, is of the form M{n) + 1.

Thus 2 . 3 . 4...(n
-

2) = M{n) 4- 1
;

.'. In - 1 = M{n) X (n
-

1) + ^i - 1.
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Hence |ri-l + 1 = M(n).
Wilson's theorem may also be proved as follows :—
From Art. 305, we have

(„-!)-_(„- l)(n
-

2)-' + ("-^) (^"-

^)
(„-3)--...

(- i)-^
("-i)(»-^)-^ r- =

|„
_ 1.

Now by Fermat's theorem (ri
-

1)"
^ = 1 + M(n),

Hence we have

=
|yi-l,

that is (1
-

1)"-*
- (- ir'-{-M(n) = \n-l ; hence, as w-l

is even, I n — 1 + 1 = M(n).

Wilson's theorem is important on account of its express-

ing a distinctive property of prime numbers; for 1 + in— 1

is not divisible by n unless n is a prime. For if any
number less than n divide n it will divide I n — 1 and

therefore cannot divide In — 1 + 1.

391. Theorem. If the number of integers less than

ahy number n and prime to n he denoted by (f> (n) ; then, if
a, 6, c,... are prime to each other,

(f>{ahc...)
=

<j>{cb)
X (j>(b) X

(j>{c) ,

provided that unity is considered to he prime to any greater
number.

First take the case of two numbers a, h and their

product ah.

Arrange the ah numbers as under :

1
, 2

, 3 , , k
, a

a + 1 , a + 2, a + 3, ,
a + k, 2a

2a+l, 2a + 2, 2a+3, , 2a+A;, 3a

(6-ija+i, (6-i)a+2,**(6-iya+3, *.*.., (6-i)a+^
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Then it is clear that all the integers in the kth vertical

column will or will not be prime to a according as A; is or

is not prime to a. Hence there are
<f) (a) columns of

integers, including the first, all of which are prime to a.

Then again, we know from Art. 388 that since a is prime
to b, the remainders obtained by dividing the numbers

ky a + k,. . ., (b
—

1) a + k hy h are the numbers 0, 1, 2,...

(6
—

1); and it is clear that a number is or is not prime to

b according as the remainder obtained by dividing the

number by b is or is not prime to b. Hence there are

as many integers prime to b in any one column as there

are in the series 0, 1, 2, . . .(b
—

1), that is to say, there are

in each column
cf) (b) integers prime to b. Thus there are

(f) (a) columns of integers prime to a and each column
contains

cj) (b) integers which are also prime to b. But all

integers which are prime to a and also to b are prime to

axb. Hence the number ofintegers less than ab and prime
to ab 18

(j) (a) X <f> (b), so that
(j) (ab)

=^
<f> (a) x

<f> (b).

The proposition can at once be extended, for we have

<f>(abc,..)
=

(f>{axbc...)
=

(f>ia) x <^(6c...)

=
4,{a)<l,{h),j,{c...)

=
<l,{a).<j>(h).4,(c)...

392. The number of integers less than a given number
and prime to it can be found by means of the theorem in

the preceding article.

For let the number be ^= a*6^c^..., where a, 6, c,...

are the different prime factors of N.

To find the number of integers less than a* and prime
to it, (unity being considered as one of these numbers) we
must subtract a*~^ from a*; for the numbers a, 2a, 3a,...,

a*~^ . a are not prime to a, and these are the only numbers
which are not prime to a

;
thus

^ (a")
= a« - a*-i = a«

(l
- -

j
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Similarly <^ (6^ = 6^
^1
-

g)
, </> (c"^)

=
cy(l-^Y

&c.

But, by the preceding article,

H..-
m.jr(i-!)(i-J)(i-?)...,

where a,b,c,... are the different prime factors of iV, and

unity is considered to be prime to a, 6, c, &c.

393. The following is an extension of Fermat's

Theorem :
—

If a and m are two numbers prime to one another,

and
<j> (m) the number of integers, including unity, which

are less than m and prime to m; then a*^'^ — 1 =

{m,od. m).
Let the

<p (m) integers less than m and prime to m be
denoted by 1, a, /3, 7,... , (m — 1). Then the products a. 1,

aa, a/3, 07,. • ., a(m—l) must all leave different remainders
when divided by m, for if any two, ra and sa suppose, left

the same remainder, (r
—
s)a would be a multiple of m,

which is impossible since a is prime to m and r ~ s is less

than m. Moreover the remainders must all be prime to

m, since the two factors of any one of the products are both

prime to m
;
and therefore as the

</> (m) remainders are

all different, and are all prime to m, they must be, in some
order or other, the <^(m) numbers 1, a, /3, 7...

Hence

a.aoL. ayS a (m - 1) = 1 . a . /8 . 7. . . (m — 1) (mod. m) ;

.-. {«*("»)- 1} 1 . a .^...(m- 1)= (mod. m).
Hence as 1. a.y8...(m--l) is prime to m, we have

a<^(»»)_l = 0(mod. m).

If m be a prime number, <^ (m) = m —
1, and we have

Fermat's Theorem.
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394. Lagrange's Theorem. Ifip he a prime number,
the sum of all the 'products r together of the numbers 1, 2, 3

..., p — 1, is divisible by p, r being any integer not greater
than p — 2.

Consider the identity

Change x into x—1; then

(x'-2){x-S),..(x--p)=^(x-iy-'-8,{x-iy-'+..,

Hence

(x -p) {x^-' -S.x^'-hS^x^' +...+(- 1)'^' 8,_;\

=(^-i){(^-ir^-^,(^-ir^+... + (-ir^^,.j.

Equate the coeiBficients of the different powers of x in

the above identity ;
and we have

* 1.2 '

2 .<?
-P(P-^)(P'^)

, s (P'^)(P-^)

p(p-l)(p-2)(p-S) (p-i)(p-2)(p--S)
^•'^»'" 17273".^ "^^^* 17273

(p-2)(p-3)• *• 1.2 '

(^^2) 8 - P(P-^)"-^ ,s (p-l)(p-2)...2
KP

^^'^p^-l.2...(^-l)
+ ^»•

1.2...(p-2)

^'^»*1.2...(jp-3)^ "^^^f-s'i 2*

Since ^ is a prime the first term in each right-hand
member is divisible by p ;

whence it follows from the first

equation that 8^ is a multiple of p, and then that 8^ is a

multiple of p, and so on to
^S^.^.
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Lagrange's Theorem may also be deduced from the

Theorem of Art. 387, assuming that Fermat's Theorem is

known.

For the congruence

{x- l){x
-

'i)...{x-p + 1) -a?'^^ + 1 = (mod. _p),

is of the {p
—

2)th degree in a?, and by Fermat's Theorem
it is satisfied by the p—\ values 1, 2, ..., ^ — 1, which are

such that the difference between any pair is either unity
or is prime to p. Hence, by Art. 387 it is true for all

integral values of a?, and the coefficients of all the different

powers of a? are multiples oip.

It should be remarked that Wilson s Theorem follows

at once by putting x = 0,

395. Reduction of fractions to circulating
decimals.

It is obvious that a fraction whose denominator con-

tains only the factors 2 and 5 can be reduced to a ter-

minating decimal, for

0. ^ a.5^.2»

2'*5«~ 10*^
*

If, however, the denominator contains any factor which
is prime to 10, the fraction can only be reduced to a cir-

culating decimal.

Let the fraction in its lowest terms be
,
where

6 is prime to 10. Let this fraction be equivalent to a cir-

culating decimal with a recurring and /3 non-recurring

figures.

Then
a

__
g . 5^ 2^ ^ N

^

2^5^6" l0^^^6 "lO^(iO'^-i)*

/. 10^.6.A^ = a.5''.2M0^(10*-l).

Hence, as h is prime to a and to 10, 10* — 1 =M (h),

a/nd OL is the lowest power of \0 for which this is true, for
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otherwise the fraction could be expressed as a circulating
decimal with fewer than a recurring figures.

It should be noticed that the number of recurring

figures in the circulating decimal depends only on h and is

not affected by the presence of 2^5* in the denominator,
for the number is a, where a is the lowest power of 10
which is equal to M {h) + l.

We will now prove that a is either equal to ^ (6) or to

one of its sub-multiples.

By the extension of Fermat's Theorem [Art. 393] we
have

10</'(6)-l= if (6).

We have also 10*-l =
if(6).

Hence, if a be not
(f> (h) or one of its sub-multiples, let

<^ (6)
— ka-\-ry where r < a.

. Then 10*^ - 1 = 10** . lO*" - 1

= {M (b) + 1}* . lO*- - 1 = if (6) + lO*- - 1
;

.-. 10- -1 = if (6),

which is impossible since r < a, and a is the lowest power
of 10 which is equal to if (6) 4- 1.

Hence, ifhhe the factor of the denominator of afraclian
which is prime ^o 10, the number of recurring figures in the

equivalent decimal is either
cj> (6) or one of its sub-multiples.

396. We shall conclude this chapter by considering
the following examples :

—
Ex. 1. Shew that B^+^ - 8w - 9 is a multiple of 64.

We have

32n+9_8„_9= (i + 8)'»+i-8n-9= l + (n+l)8 + Jlf(82)-8n-9=.

Ex. 2. Shew that '6^ - S2ri>+ 24n - 1 = (mod. 612).

Let u„= 32n_32w» + 24n-l;
then w^i= 32»»+« - 32 (n+ 1)'+ 24 (« + 1)

- 1.

Hence u„+i
-
9m„= 25Qn^ - 256n= 266n (n

-
1)
=M (512),

sinoe n (»
-

1) is divisible by 2.
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And since Uj^i-9u^ = (mod. 612), it follows that tt„4.i
=

(mod. 512) provided m„= (mod. 512). The theorem is therefore

true for all values of n provided it is true for «= 1, which is the case

since Mi= 0.

Ex. 3. Shew that no prime factor of «*+ 1 can be of the form 4m - 1.

Every pritne number, except 2, is of the form 2ft + 1. Let then
2/c + l be a prime factor of n^+ 1. Then n is prime to 2/c + l, and
therefore by Fermat's theorem n^*= JI (2ft + 1) + 1.

But, by supposition, n^ + l =M (2ft + 1) ;

n2*={lf(2ft+ l)-l}*= M(2ft + l) + (-l)*.

Since n^=M [2k + 1) + 1 and ii^ = Mi2k + l) + {-l)^ it follows

that ft must be even, and therefore every prime factor of w''+ 1 is of

the form 4/71 + 1, and therefore no prime factor can be of the form
4m-l.

Since the product of any number of factors of the form 4wi + 1 is

of the same form, it follows that every odd divisor of «' + 1 is of the

form 4w + 1.

Ex. 4. Shew that every whole number is a divisor of a series of nines

followed by zeros.

Divide the successive powers of 10 by the number, n suppose, then

there can only be n different remainders including zero, and hence

any particular remainder must recur. Let then 10^ and 10^' leave

the same remainder when divided by n ; then 10* - 10" is divisible by w
and is of the required form.

EXAMPLES XXXIX
1. Prove the following :

—
(i)

2'"**-9n'^ + 3n-2 = if(54).

(ii)
5^"-^' + n' - 5n» + 4w - 5 = if (120).

(iii)
4=^-^* + 3"-^« = 0(mod. 13).

(iv) 3*»-^' + 2 . 4*"+^ = (mod. 17).

2. Shew that, if a be a prime number, and b be prime to

a; then IV, 2«6', , ^^Y fe» will give different re-

mainders when divided by a.

3. Shew that, if 47i + 1 be a prime number, it will be a

factor of
{ j 2nY + 1

; and that, if 4n - 1 be a prime, it will be a

factorof{|2^-l}'-l.

4. Shew that, if n be a prime number, and r be less than

n; then will Ir-l ln-r + (-l)''-'
=

J[/(w).
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6. Shew that, if m and n are prime to one another, every
odd divisor of m' + n^ is of the form 4A; + 1.

6. Shew that ts+oS +
o;: + 7s + •••*<> in6nity

(4.r(>-«"('-r
where 2, 3, 5,... are the prime numbers in order.

7. Shew that the arithmetic mean of all numbers less than

n and prime to it (including unity) is ^n.

8. Shew that, if N be any number, and a, 6, c, ... be its

different prime factors
;
then the sum of all the numbers less

than N and prime to iV is —
(1
—

j (1-t) (1~") •••> *^^

the sum of the squares of all such numbers is

fl(,-!)(.-!)....f„-.„.-«...
9. If

<;|!> (m) denote the number of integers less than m
and prime to it; and if

c?j, d^, c?^,...
be the different divisors

of n] then will %<^{d) = n.

10. Shew that, if a fraction ^ ,
where h is prime and prime

to 10, be reduced to a decimal, and if the number of figures
in the recurring period is even

;
then the sum of the first half of

the figures added to the last half will consist wholly of niues.

11. If - be converted to a circulating decimal with p -\

figures in its recurring period, shew that p must be prime and
that the recurring period being multiplied by 2, 3, (jP

-
1)

will reproduce its own digits in the same order.

12. Shew that, if
-p

has a circulating period of jo figures, ^

of q figures, and p <^^ ** figures,..., and if P, Q, JR,... are prime,

then
y
— will have a circulating period of n figures, where

n is the l.o. m. of p, q^ r....



CHAPTER XXTX.

Indeterminate Equations.

397. We have already seen that a single equation
with more than one unknown quantity, or n equations
with more than n unknown quantities, can be satisfied in

an indefinite number of ways, provided there is no restric-

tion on the values which the unknown quantities may
have. If, however, the values of the unknown quantities
are subject to any restriction, n equations may suffice to

determine the values of more than n unknown quantities.

We shall in the present chapter consider some cases of

equations in which the unknown quantities are restricted

to integral values.

398. It is clear that every equation of the first degree
with two unknown quantities x and y can be reduced
to one or other of the forms ax-\-hy=±c, ax — hy=±c,
where a, b, c are positive integers.

By changing x into — x and y into —y, ax^-hy — c

will become ax + by = — c, and ax — by = c will become
—
a^-\-by=C'y hence in order to shew how to find

integral solutions of any equation of the first degree in x
and y, it is only necessary to consider the two types

ax -i-by
— c and ax—by—c.

Now, it is evident that the equation ax ±by — c cannotl
be satisfied by integral values of x and y, if a and b havej
any common factor which is not also a factor of c

; and, ifj

a, b and c have any common factor, the equation can be

s. A. 34
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divided throughout by that factor. In what follows it

will therefore be supposed that a and h are prime to one

another.

899. To shew that integral values can always he found
which will satisfy the equation aw ±by = c, provided a and
h are prime to one another.

Let T be reduced to a continued fraction, and let

- be the convergent immediately preceding -r. Then,

from Art. 357,

aq—ph=±l;
/. a{±cq)-b(±cp) = c (i),

and ci(±cq) + 6(+ cp)
= c (ii).

Hence it follows from (i) that either x = cqy y = cp or

a; = — eg, y = — cp is a solution of the equation ax — by = c;

and from (ii) that either x = cq, y — — cp or x = — cq,

y = cp ia a solution of the equation ax + hy = c.

Hence at least one set of integral values of x and y can

always be found which will satisfy the equation ax ±by=c.
The above investigation fails when a or 6 is unity.

But the equation ax ±y — c is obviously satisfied by the

values x — a, ±y = c — acL, where a is any integer. So also

x±by = cis satisfied by the values x = c^ b/3, y = ^, where

yS is any integer.

Hence the equation ax±by = c always admits of at

least one set of integral values.

400. Having given one set of integral values which

satisfy the equation aw — by
=

Cy to find all other possible

integral solutions.

Let x — a, y = j3 be one solution of the equation
ax — by — c'j then a/x-b^ = c. Hence, by subtraction,

a(x-a)-b(2/-^) = 0.
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Now since a divides a{x— a), it must also divide

b(y
—

fi); a must therefore be a factor of y
—

ft since it is

prime to b.

Let then y
—

ff
= ma, where m is any integer ;

then

a(x—a) = mba, and therefore ic=a-\- mb.

Hence, if a; = a, y — ^ Ke one solution in integers of

the equation ax — by = Cy all other solutions are given by
x = a + mb, y = ^ + ma,

where m is any integer.

It is clear from the above that there are an indefinite

number of sets of integral values which satisfy the equation

ax—by — c, provided there is one such set
; and, from the

preceding article, we know that there is one set of integral
values.

It is also clear that, whether a and ^ are positive
or not, an indefinite number of values can be given to m
which will make a + mb and fi + ma both positive.

Hence there are an infinite number oi positive integral
solutions of the equation ax — by = c.

401. Having given one set of integral values which

satisfy the equation a^ -\-by
=

c, to find all other possible

integral solutions.

Let x^a^ y =fi he one integral solution of the

equation ax + by =c; then a(x+ b^ = c. Hence, by sub-

traction, a(x — a)-\-b(y
— ^) = 0.

Now, since a divides a(x— a), it must also divide

b(y —ff); a must therefore be a factor oiy — ^, since it is

prime to b.

Let then y —13 = ma, where m is any integer ;
then

a(x — a)= — b{y-^) = — mab
;
and therefore x = a — mb.

Hence, ii x= a, y = fi he one solution in integers of the

equation ax — by = c, all other integral solutions are given

by
a; = a — mb, y — ^-\- ma,

where m is any integer.
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From the above, together with Art. 399, it follows that

there are an indefinite number of sets of integral values

which satisfy the equation ax + hy = c. The number of

positive integral solutions of the equation is, however,

limited in number.

402. To find the number of positive integral solutions

of the equation ax-\-hy
— c.

We have proved in Art. 399, that the equation
ax + hy = c is satisfied by the values x = cq, y = — cp, or

by the values x — — cq,y = cp, where p/q is the penultimate

convergent to a/b.

First suppose that x = cq, y
— —

cp satisfy the equa-
tion

;
then all other integral -values which satisfy the

equation are given by

x—cq—m\ y — — cp-\-ma (i),

where m is any integer.

From (i) it is clear that in order that x and y ma/both
be positive, and not zero, m must be a positive integer,

and that the greatest permissible value of m is
J^(-r)

and its least value /(
—

)
+ l, so that the number of

different values of m is -^(^J
~ ^

{ ]
• Hence, as one

set of values of x and y corresponds to each value of m,

the number of solutions is/f-^j
— I

(-^j
.

Letf
=
/.+/. andf

= /,./, the.£ = «(l«^^
=f-f =/.-/.+/.-/.. Hence /

(^^^)
is 7.

-
/, or

fj
—

/,
— 1 according asf is not or is less thanf .

Thus the number of solutions is
ll-jj + l or/f-yj
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according as the fractional part of
-^

is or is not less than

the fractional part of — .

It can be shewn in a similar manner that if

x= —
cq, y = cp satisfy the equation, the number of solu-

tions in positive integers is 7 ( -y
j
+ 1 or 7 f -^

J
according

as the fractional part of — is or is not less than the frac-

tional part of
-^ .

Ex. 1. Find the positive integral values of x and y which satisfy the

equation 'Jx-lSy = 2Q.

7 111
We have 7^5 = 7 7 ? . the penultimate convergent is therefore

13 1 + 1 +

i. Then 7.2-13. 1= 1; .-. 7 (2 x 26)
- 13 (26)= 26.

2

Hence one solution is a;=52, 2/
= 26; the general solution is there-

fore «= 52 + 13wi, y = 26 + 7m.

[In this case the solution x=0, y— -2 can be seen by inspection;
and hence the general solution is a;= 13ot, y= -2 + 7m, which is

easily seen to agree with the previous result.]

Ex. 2. Find the positive integral values of x and y which satisfy the

equation 7x+ 10^ = 280.

7 111 2
Here tr = t s o » *^® penultimate convergent being -

. Then
10 1 + 2 + o

7 . 3 - 10 . 2=1; .-. 7 (3 . 280) + 10
(
- 2 . 280)= 280.

Hence x ~ 840, y = - 660 is one solution in integers. The general
solution in integers is therefore a;= 840 -10m, y= -660 + 7m; and,
in order that x aud y may be positive m 4- 84 and m -^ 80. Thus the

only values are a; = 40, y= 0; x= SO, y= 7; a;= 20, 2/
= 14; «= 10,

2/
= 21; x= 0,y=28.

Ex. 3. Find the number of solutions in positive integers of the equation
3x + 5y= 1306.

3 111
Here c=t ,

t
, 5, whence 3 .2-5. 1= 1;

o X + 1 + J

.-. 3 . (2 X 1306) + 5
(
-
1306)= 1306.

Hence the general solution is a;=2612- 5m, y=3m- 1306.

For positive values of x and y we must have m>436 and m:^522.
Hence the number of solutions is 522 - 435=87.
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403. Integral solutions of the two equations

cus -\- by + cz = d, a'x + h'y + cz = dl

can be obtained as follows.

Eliminate one of the variables, z suppose; we then

have the equation

{ad
—

a'c) X + (be'
—

b'c) y=^dc'
— d'c (i),

and this equation has integral solutions provided ac' — a'o

and be' — b'c are prime to one another, or will become

prime to one another after division by any common factor

which is also a factor of dc' — d'c.

Hence from (i) we obtain, as in the preceding articles,

the general solution

x = a-\- (be'
-

b'c) n, y = ^ — (ac
—

a'c) n,

where a; = a, y =^ is any integral solution, and n is any
integer.

Now substitute these values of x and y in either of

the original equations : we then obtain an equation of the
form Az + Bn— G, from which we can obtain integral
solutions of the form z = y-\- Bm, n = 8 — Am, provided A
and B are prime to one another, or will become so after

division by any common factor which is also a factor of (7.

Ex. Find integral Bolutions of the simultaneous equations
5x+ 7y + 2zz=24, 3ar-y-4z= 4.

Eliminating «, we have 13a; + 131/ = 62, or x+ y= 4:. Whence
x=2 + n,y = 2-n. Then 5 (2 + n) + 7 (2-n) + 22= 24, thatis«-n=0.

Hence the general solution isa?=2 + n, y= 2-n, z— n.

If X, y and z are to be positive, the only solutions are a;=4, y= 0,

«=2; x=S, y= l, z= l; &nd x=2, y= 2, z= 0; and, if zero values are

excluded, there is only one solution, namely a;=3, y= l, «=1.

404. The following are examples of some other forms
of indeterminate equations. Other cases will be found in

Barlow's Theory of Numbers.

Ex. 1. Find the positive integral solutions (excluding zero values) of
the equation 3x + 2y + 8z=40.

It is clear that z cannot be greater than 4, if zero and negative
values of x and y are inadmissible.
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Hence we have the following equations :

«=4, Sx + 2y= 8;

2= 3, 3a; + 2y = 16;

z = 2, 3a;+ 2y = 24;

« = 1, 3a; + 2y= 32.

And it will be found that all the solutions required are 2, 1, 4,

4, 2, 3; 2, 5, 3; 6, 3, 2; 4, 6, 2; 2, 9, 2; 10, 1, 1; 8, 4, 1; 6, 7, 1;

4, 10, 1; and 2, 13, 1.

Ex. 2. Find the positive integral solutions of the equation

6x^-lSxy + &y^=16.

We have (3a;
-
2y) {2x

-
3y) = 16 ; hence, as x and y are integers,

3x ~ 2y must be an integer, and must therefore be a factor of 16.

Thus one or other of the following simultaneous equations must
hold good

3x-2y=^16, 2x-3y=± 1
(i) ;

3a;-2y=± 8, 2x-3y=± 2
(ii) ;

Sx-2y==L 4, 2x-3y=± 4 (iii);

8a;-2y=± 2, 2x-3y=± 8 (iv);

3a;-2y=± 1, 2a;-3y=±16 (v).

Whence we find that 5x must be ± (48
-

2),
=t (24

-
4), ± (12

-
8),

i
(6

-
16) or dt

(3
-

32).

Hence the only integral values of x are 4 and 2, the corresponding
values of y being 2 and 4.

Ex. 3. Solve in positive integers the equation

3x^ + 7xy-2x-5y-35= 0,

We have y {7x
-

5) + 3a^»- 2aj- 35=0;

3a;a-2a;-35 ^
••• y+ —n s

— =0;*
7a; -5 *

.-. 49y +21a:+l-^H
= o.

Hence „-— > °i"st be an integer, and therefore 7a; - 5 must be a

factor of 1710. Whence it will be found that the only positive integral
solutions are x= 2, y= 3 and a;=:l, ^= 17.
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EXAMPLES XL.

L Find all the positive integral solutions of the equations :

(1) 7a; +152/ = 59. (2) Sx + Uy = 13S.

(3) 7a;+9y=100. (4) 15a; + 712/
= 10653.

2. Find the number of positive integral solutions of

2x + Sy= 133 and oi7x + Uy = 2312.

3. Find the general integral solutions of the equations

(1) 7a;- 133/= 16. (2) 9a;-ll2/ = 4.

(3) 119a;- 1052/
= 217. W 49a;- 692/= 100.

4. Find the positive integral solutions (excluding zero)
of the equations

(1) 2x+Sy + 7z=23. (2) 7a; + 42/ +182!= 109.

(3) 5a; + 2/
+ 7» = 39, (4) 3a; + 2^/ + 3« = 250,

2a; + 42/ + 9« = 63. 9x- ^y + 5z= 170.

5. Solve in positive integers (excluding zero) the equa-
tions :

(i) 2a;2/-3a; + 22/=1329.

(ii) a^-xy+2x-3y=ll.

(iii)
2a;" + 5a;2/-122/' = 28.

(iv) 2x^ - xy - y' + 2x + 7y = 84.

6. Shew that integral values of x, y and z which satisfy the

equation ax + by -hcz^dj form three arithmetical progressions.

7. Divide 316 into two parts so that one part may be
divisible by 13 and the other by 11.

8. In how many ways can £1, 6». Qd. be paid with
half-crowns and florins?

9. In how i?iany ways can ^£100 be made up of guineas and
crowns 1
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10. In how many ways can a man who has only 8 crown

pieces pay 11 shillings to another who has only florins?

11. Find the greatest and least sums of money which can

be paid in eight ways and no more with half-crowns and florins,

both sorts of coins being used.

12. Find all the different sums of money which can be paid
in three ways and no more with four-penny pieces and three-

penny pieces, both sorts of coins being used.

13. Find all the numbers of two digits which are multiples
of the product of their digits.

14. Two different numbers each of two digits, and which
end with the same digit, are such that when divided by 9 the

quotient of each is the remainder of the other. Find all the

sets of numbers which satisfy the conditions.

15. A man's age in 1887 was equal to the sum of the digits
in the year of his birth : how old was he 1

16. Shew that, if

(1 -JB«i)(l-a3^«)...(l -(C««)
*

then the number of solutions in positive integers (including

zero) of the equation a^x^ + a^x^ -I- ... -I- ajic^ ^m^ is A^, a^jU^j ...,

a^ being all integers.

The number of solutions of the equations x+2y = n is

i{27i + 3 + (-in.

At an entertainment the prices of admission were Is., 2s. and

£5, and the total receipts ,£1000; shew that there are 1006201

ways in which the audience might have been made up.

17. The money paid for admission to a concert was £300,
the prices of admission being 55., 3s. and Is.; shew that the

number of ways in which the audience may have been made up
is 1201801.



CHAPTER XXX.

Probability.

405. The following is generally given as tlie defini-

tions of probability or chance:—
Definition. If an event can happen in a ways and fail

in b ways, and all these ways are equally likely to occur,

then the probability of its happening is r and the pro-

bability of its failing is
-^

.

To make the above definition complete it is necessary
to explain what is meant by

*

equally likely.' Events are

said to be equally likely when we have no reason to expect

any one rather than any other. For example, if we have
to draw a ball from a bag which we know contains

unknown numbers of black and white balls, and none of

any other colour, we have just as much reason to expect
a black ball as a white

;
the drawing of a black ball and of

a white one are thus equally likely. Hence, as either a

black ball or a white ball must be chosen, the probability
of drawing either is J, for there are two equally likely

cases, in one of which the event happens and in the other

it fails. Again, if we have to draw a ball from a bag
which we know contains only black, white and red balls,

but in unknown proportions, we have just as much reason
to expect one colour as to expect either of the others, so

that the drawing of a black, of a white and of a red ball
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are all equally likely ;
and hence the probability of draw-

ing any particular colour is J, for there are three equally
likely cases, and any particular colour is drawn in one case

and is not drawn in the other two cases.

Another meaning may however be given to
'

equally

likely ;' for events may be said to be equally likely when

they occur equally often, in the long run. For example, if

a coin be tossed up, we may know that in a very great
number of trials, although the number of * heads

'

is by no
means necessarily the same as the number of '

tails,' yet
the ratio of these numbers becomes more and more nearly

equal to unity as the number of trials is increased, and that

the ratio of the number of heads to the number of tails will

differ from unity by a very small fraction when the number
of trials is very great; and this is what is meant by saying
that heads and tails occur equally often in the long run.

Now, if each of the a ways in which an event can

happen and each of the 6 ways in which it can fail occur

equally often, in the long run, it follows that the event

happens, in the long run, a times and fails 6 times out of

every a + 6 cases. We may therefore say, consistently with

the former definition, that the prohahility of an event is the

ratio of the number of times in which the event occurs, in the

long run, to the sum of the number of times in which events

of that description occur and in which they fail to occur.

Thus, if it be known that, in the long run, out of every 41
children born, there are 21 boys and 20 girls, the probability-of any

21
particular birth being that of a boy is ^r •

Again, if one of two players at any game win, in the long run,
6 games out of every 8, the probability of his winning any particular

. 6
game is - .

We may remark that, in the great majority of cases,

including all the cases of practical utility, such as the data

used by Assurance Companies, the only way in which pro-

bability can be estimated is by the last method, namely, by
finding the ratio of the actual number of times the event
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occurs, in a large number of cases, to the whole number
of times in which it occurs and in which it fails.

406. If an event is certain it will occur without fail

in every case : its probability is therefore unity.

It follows at once from the definition of probability
that if p be the probability that any event should occur,
1 — ^ will be the probability of its failing to occur.

When the probability of the happening of an event is

to the probability of its failure as a is to 6, the odds are

said to be a to 6 for the event, or 6 to a against it,

according as a is greater or less than h.

407. Exclusive events. Events are said to be

mutually exclusive when the supposition that any one
takes place is incompatible with the supposition that any
other takes place.

When different events are mutually exclusive the chance
that one or other of the different events occurs is the sum of
the chances of the separate events.

It will be sufficient to consider three events.

Let the respective probabilities of the three events,

expressed as fractions with the same denominator, be

^^ ^ and -»

d' d
^"""^

d'

Then, out of d equally likely ways, the three events
can happen in a,, a^ and a, ways respectively.

Hence, as the events never concur, one or other of
them will happen in a^ + a, + a^ out of d equally likely
ways. Hence the probability of one or other of the three
events happening is

°- +
y°Sthatis| + |^

+
|^

This proves the proposition for three mutually ex-
clusive events; and any other case can be proved in a
similar manner.
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Ex. 1. Find the chance of throwing 3 with an ordinary six-faced

die.

Since any one face is as likely to be exposed as any other face,

there is one favourable and five unfavourable cases which are all

equally likely ; hence the required probability is
^

.

Ex. 2. Find the chance of throwing an odd number with an ordinary

die. Am. -.

Ex. 3. Find the chance of drawing a red ball from a bag which con-

tains 6 white and 7 red balls.

Here any one ball is as likely to be drawn as any other ; thus there

are 7 favourable and 5 unfavourable cases which are all equally
7

likely ;
the required probability is therefore — . ^'

Ex. 4. Two balls are to be drawn from a bag containing 6 red and 7
white balls ; find the chance that they will both be white.

Here any one pair of balls is as hkely to be drawn as any other

pair. The total number of pairs is 13^2 > ^^^ *^6 number of pairs
which are both white iq ^G^: the required chance is therefore

7.6 / 12 . 11 _ 7

1.2 / 1.2"~22'

Ex. 6. Shew that the odds are 7 to 3 against drawing 2 red balls

from a bag containing 3 red and 2 white balls.

Ex. 6. Three balls are to be drawn from a bag containing 2 black,
2 white and 2 red balls

;
shew that the odds are 3 to 2 against drawing

a ball of each colour, and 4 to 1 against drawing 2 white balls.

Ex. 7. A party of w persons take their seats at random at a round
table : shew that it is n - 3 to 2 against two specified persons
sitting together.

408. Independent Events. The probability that two

independent events should both happen is the product of the

separate probabilities of their happening.

Suppose that the first event can happen in a^ and fail

in \ equally likely ways; and suppose that the second

event can happen in a, and fail in 63 equally likely ways.
Then each of the a^-\-b^ cases may be associated with each

of the eta + 6, cases to make {(ii-\-h^{a^-\-b^ compound
cases which are all equally likely; and in a^a^ of these

compound cases both events happen. Hence the proba-
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bilitv that both events happen is , ~-^——^. , that

IS —^-7- X —V »
which proves the proposition.

ai + 61 aj+62'
^ ^ ^

Thus the probability of the concurrence of two inde-

pendent events whose respective probabilities are
jp^

and f^

Cor. If ^ and
'p^

be the probabilities of two inde-

pendent events, the chance that they will both fail is

(1
—
^i)(l

—
i?a),

the chance that the first happens and the

second fails is
'p^ (1

—
jo,), and the chance that the second

happens and the first fails is (1
—

Pi)Pi.

It can be shewn in a similar manner that, if Pi, p^^p^,...

be the probabilities of any number of independent events,

then the probability that they all happen will be jp, .^j .^s- • •>

and that they all fail (1 —^1) (1 —pd 0- ~Pi)' • •> <^c.

409. Dependent Events. If two events are not

independent, but the probability of the second is different

when the first happens from what it is when the first fails,

the reasoning of the previous article will still hold good
provided that p^ is the probability that the second event

happens when the first is known to have happened. Thus
if pi be the probability of any event, and jo, the probability
of any other event on the supposition that the first has

happened ;
then the probabilitythat both events will happen

in the order specified will be PiXp,. And similarly for

any number of dependent events.

Ex. 1. Find the probability of throwing two heads with two throws of

a coin.

The probability of throwing heads is 5 for each throw
;
hence the

required probability is, by Art. 408, s >< 5 = 7 •

2 2 4

Ex. 2. Find the proteability of throwing one 6 at least in six throws
with a die. ,.^__
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The probability of not throwing 6 is ^ in each throw. Hence the
o

probabiUty of not throwing a 6 in six throws is, by Art. 408,
(
«

)
«

and therefore the probability of throwing one six at least is

Ex. 3- Find the chance of drawing 2 white balls in succession from a

bag containing 6 red and 7 white balls, the balls drawn not being re-

placed.

7
The chance of drawing a white ball the first time is

=-^
; and,

having drawn a white ball the first time, there will be 5 red and 6
white balls left, and therefore the chance of drawing a white ball

the second time will be
jrr

. Hence, from Art. 409, the chance of

7 6 7
drawing two white balls in succession will ^ ts >< tt = on •

[Compare Ex. 4, Art. 407.]

Ex. 4. There are two bags, one of which contains 5 red and 7 white
balls and the other 3 red and 12 white balls, and a ball is to be
drawn from one or other of the two bags ; find the chance of drawing
a red ball.

The chance of choosing the first bag is ^ , and if the first bag be

chosen the chance of drawing a red ball from it is t^; ; hence the

chance of drawing a red ball from the first bag is o '^
12
~
24

*

Similarly the chance of drawing a red ball from the second bag is13 1

2
X
r^

s=
z^

. Hence, as these events are mutually exclusive, the

, ... 5 1 37
chance required is — + — =— .

Ex. 5. In two bags there are to be put altogether 2 red and 10 white

balls, neither bag being empty. How must the balls be divided so as
to give to a person who draws one ball from either bag, (1) the least

chance and (2) the greatest chance of drawing a red ball.

[The least chance is when one bag contains only one white ball,
and the greatest chance is when one bag contains only one red ball,

1 fi

the chances being —r and
:pr respectively.]
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410. When the probability of the happening of an

event in one trial is known, the probability of its happen-

ing exactly once, twice, three times, &c. in n trials can be

at ODce written down.

For, if p be the probability of the happening of the

event, the probability of its failing is 1 —p — q. Hence,
from Art. 408, the probability of its happening r times

and failing n — r times in any specified order is
p'^q'"'''.

But the whole number of ways in which the event

could happen r times exactly in n trials is „C^, and these

ways are all equally probable and are mutually exclusive.

Hence the probability of the event happening r times

exactly in n trials is „C^p''g**"''.

Thus, if (^ + qY be expanded by the binomial theorem,
the successive terms will be the probability of the happen-

ing of the event exactly n times, n — 1 times, n — 2 times,

&c. in n trials.

Cor. I. To find the most probable number of successes

and failures in n trials it is only necessary to find the

greatest term in the expansion of (p + qy.

Cor. II. The probability of the event happening at

least r times in n trials is

Ex. 1. Find the chance of throwing 10 with 4 dice.

The whole number of different throws is 6*, for any one of six
numbers can be exposed on each die; also the number of ways of

throwing 10 is the coefficient of x^^ in {x + x^+ ...+x^)\ for this co-
efficient gives the number of ways in which 10 can be made up by the
addition of four of the numbers 1, 2, ..., 6, repetitions being allowed.

Now the coefficient of x^° in {x+ x^+ ...+x^)*', that is in x^
[ ) ,

is easily found to be 80. Hence the required chance is

80 5

6.6.6.6 «1*

Ex. 2. Find the ohance of throwing 8 with two dice. Ans. — ,

36
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Ex. 3. Find the chance of throwmg 10 with two dice. Am,
^h •

5

108'

Ex. 5. A and B each throws a die; shew that it is 7 : 5 that ^'s throw
is not greater than B's.

Ex. 6- A and B each throw with two dice : find the chance that their

throws are equal. - 73
'^'"-

648-

Ex. 7. A and B have equal chances of winning a single game at tennis :

find the chance of A winning the 'set' (1) when A has won 5

games and B has won 4, (2) when A has won 6 games and B has won
3, and (3) when A has won 4 games and B has won 2.

Am.
(l)|,(2)|,(3)g.

Ex. 8. A and B have equal chances of winning a single game; and A
wants 2 games and B wants 3 games to win a match : shew that it is

11 to 5 that A wins the match.

Ex. 9. A and B have equal chances of winning a single game ; and A
wants n games and B wants n+1 games to win a match : shew that

^, ,, , ,
1.3.5. ..(2n-l), , 1.3.5...(2n-l)theoddson^ aore 1^
2.4.6...2n

*^ ^-
2.4.6...2n

'

3
Ex. 10. A*s chance of winning a single game against B ia-=: find the

5

chance of his winning at least 2 games out of 8.

^"•-
125-

2
Ex. 11. A'b chance of winning a single game against B is -

: find the
o

chance of his winning at least 3 games out of 6. , 192 v

^"*-243-

Ex. 12. What is the chance of throwing at least 2 sixes in 6 throws
with a die?

^ 12281
^^^-

4-665-6-

Ex. 13. A coin is tossed five times in succession : shew that it is an
even chance that three consecutive throws will be the same.

Ex. 14. Three men toss in succession for a prize which is to be given
to the first who gets 'heads'. Find their respective chances.

A
4 2 1

7 7' 7

S. A, 35
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411. The value of a given chance of obtaining a given
sum of money is called the expectation.

If is the chance of obtaining a sum of money M,
a + o

a
then the expectation is ifx——7 .

For if E be the expectation in one trial, E(a-[-h) will

be the expectation in a + b trials. But the chance being

=
,
the sum M will, on the average, be won a times in

every a -\-b trials ;
and hence the expectation in a-\-b

trials is Ma. Hence E{a-\-b) = Ma; therefore

E=^Mx
a + b

Thus the expectation is the sum which may be won

multiplied by the chance of winning it.

Ex. 1. A bag contains 5 white balls and 7 black ones. Find the

expectation of a man who is allowed to draw a ball from the bag and
who is to receive one shilling if he draws a black ball, and a crown if

he draws a white one.

7
The chance of drawing a black ball is — ; and therefore the

expectation from drawing a black ball is 7d. The chance of drawing
5

a white ball is —
; and therefore the expectation from drawing a

white ball is 2s. Id. Hence, as these events are exclusive, the whole

expectation is 2s. 8d,

Ex. 2. A purse contains 2 sovereigns, 3 half-crowns and 7 shillings.
What should be paid for permission to draw (1) one coin and (2)
two coins ? Am. (1) 4«. 6^^. (2) 9s. Id.

Ex. 3. Two persons toss a shilling alternately on condition that the
first who gets 'heads' wins the shilling: find their expectations.

Ans. 8d., id.

Ex. 4. Two persons throw a die alternately, and the first who throws
6 is to receive 11 shillings : find their expectations.

Ana. 6s., 5s.
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412. Inverse Probability. When it is known that

an event has happened and that it must have followed

from some one of a certain number of causes, the deter-

mination of the probabilities of the different possible
causes is said to be a problem of inverse probability.

For example, it may be known that a black ball was drawn from
one or other of two bags, one of which was known to contain 2

black and 7 white balls and the other 5 black and 4 white balls ; and
it may be required to determine the probability that the ball was
drawn from the first bag.

Now, if we suppose a great number, 2N, of drawings to be made,
there will in the long run be N from each bag. But in N drawings

2
from the first bag there are, on the average, ^ N which give a black

ball ; and in N drawings from the second bag there are ^N which

2
give a black ball. Hence, in the long run, ^N out of a total of

2 5

^N+-N black balls are due to drawings from the first bag; thus

the probability that the ball was drawn from the first bag is

2 _ /2 „ 5„\ ., . . 2

iV^-j-Qi^+^J^y
thatis

We now proceed to the general proposition :
—

Let Pj, Pg,..., P„ 6e the probabilities of the eodstence ofn
causes, which are mutually exclusive and are such that a
certain event must have followedfrom one of them; and let

i>i, Pi, "-yPn ^^ ^^^ respective probabilities that when one

of the causes P^, P^, ..., P^ eodsts it will befollowed by the

event in question; then on any occasion when the event is

known to have occurred the probability of the rih cause is

Let a great number iV of trials be made
;
then the

first cause will exist in JV.P, cases, and the event will

follow in N .P^.p^ cases. So also the second cause exists

and the event follows \u N .P^.p^ cases
;
and so on.

Hence the event is due to the rih. cause in N .P^.p^
35—2
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cases out of a total of iV' (P^^^ + P^Pa + • • • + -P«P«) 5
*^e

P V
probability of the rth cause is therefore y^-

Having found the probability of the existence of each

of the different causes, the probability that the event

would occur on a second trial can be at once found.

For let P/ be the probability of the existence of the

rth cause
;
then p^ is the probability that the event will

happen when the rth cause exists
;
and therefore P/ . p^ is

the probability that the event will happen from the rth

cause.

Hence, as the causes are mutually exclusive, the

probability that the event would happen on a second

trial is

Ex. 1. There are 8 bags which are known to contain 2 white and 3

black, 4 white and 1 black, and 3 white and 7 black balls respectively.
A ball was drawn at random from one of the bags and found to be a
black ball. Find the chance that it was drawn from the bag con-

taining the most black balls.

1 3 17
Here

Py^=P^=^P^=^.
Also

jpi=g, p^:=-^
and

i>3=io-

Hence the required probability is

Ex. 2. From a bag which is known to contain 4 balls each of which is

just as hkely to be black as white, a ball is drawn at random and
found to be white. Find the chance that the bag contained 3 white
and 1 black balls.

The bag may have contained (1) 4 white, (2) 3 white and 1 black,

(3) 2 white and 2 black, (4) 1 white and 3 black, and (5) 4 black ; and14 6 4 1
the chances of these are respectively ^r^ , ^ , -^ ,

—
; and —

^ .

lb io Id lb lb
Art. 410. Also the chances of drawing a white baU in these

3 11
different cases will be 1,

-
,
-

, j and respectively.

1

3
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413. Probability of testimony. The method of

dealing with questions relating to the credibility of wit-

nesses will be seen from the following examples :

Ex. 1. A ball has been drawn at random from a bag containing 99
black balls and 1 white ball; and a man whose statements are

accurate 9 times out of 10 asserts that the white ball was drawn.
Find the chance that the white ball was really drawn.

The probability that the white ball will really be drawn in any case

is =^r^ ,
and therefore the probability that the man will truly assert

1 9
that the white ball is drawn is r^ x

=^
.

99
The probability that the white ball will not be drawn is

-rrpr , and
100

therefore the probability that the man will falsely assert that the

99 1
white ball is drawn is =^ x

-^
,

Hence as in Art. 412 the required probability is

100 ^10 1

1 9 99 1 12

100
^
10

"^
100

^
10

Ex. 2. From a bag containing 100 tickets numbered 1, 2, ..., 100

respectively, a ticket has been drawn at random ; and a witness,

whose statements are accurate 9 times out of 10, asserts that a

particular ticket has been drawn. Find the chance that this ticket

was really drawn.

In 1000 iV^ trials the ticket in question will be drawn ION times;
and the witness will correctly assert that it has been drawn 9 JV times.

The ticket will not be drawn in 990N cases, and the witness will

make a wrong assertion in 99 -N" of these cases ;
but there are 99 ways

of making a wrong assertion and these may all be supposed to be

equally likely; hence the witness will wrongly assert that the

particular ticket has been drawn in N cases. Hence the required
9

probability is
r^ ,

so that the probability is in this case equal to the

probability of the witness speaking the truth.

Ex. 3. A speaks the truth three times out of four, and B five times
out of six ;

and they agree in stating that a white ball has been drawn
from a bag whicL was known to contain 1 white and 9 black balls.

Find the chance that the white ball was really drawn.

The probability that the white ball will be drawn in any case is
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—r
,
and therefore the probability that A and B will agree in truly

jl^
3 5

10^4^6*
The probability that a black ball will really be drawn in any

9
case is

^tx ; and therefore the probability that A and B will agree in

9 11
falsely asserting that a white ball is drawn is

r^
x
^
x
^

.

Hence, as in Art. 412, the required probability is

J^
3 5

10
^
4
^
6 5

1 £ 5
9^

1 1 8*

10 ^4^6"^ 10 ^4^6

Ex. 4. A speaks truth three times out of four, and B five times out of

six ; and they agree in stating that a white ball has been drawn from
a bag which was known to contain 10 balls all of different colours,
white being one. What is the chance that a white ball was reaUy
drawn?

The probability that the white ball will really be drawn in any

case is
jr-

,
and therefore the probability that A and B wiU agree in

l ft K "l

truly asserting that the white ball is drawn is=7rX:rX;; = =^.
10 4 D Id

The probability that the white ball wiU not be drawn in any case
9 1

is
jtr

. The probability that A will make a wrong statement is j ;

hence, as there are nine ways of making a wrong statement which,

may all be supposed to be equally Ukely, the chance that A will

wrongly assert that a white ball is drawn is ^r x ;r. Therefore the
4 9

chance that A and B will agree in falsely asserting that a white ball'

is drawn is

^ _1_ 11
10^4x9^6x9~2160*

ifi mE
Hence the required probability is ,

= —— .

1 1 136

16"*" 2160

Ex. 5. It is 3 to 1 that A speaks truth, 4 to 1 tbat B does and 6 to 1
that C does : find the probability that an event really took place
which A and B assert to have happened and which G denies

; the
event being, independently of tiiis evidence, as likely to have
happened as not. Am. |.
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414. We shall conclude this chapter by considering
the following examples, referring the reader who wishes

for fuller information on the subject of Probabilities to

the article in the Encyclopaedia Britannica, and to Tod-
hunter's History of the Mathematical Theory of Proba-

bility.

Ex. 1. A bag contains n balls, and all numbers of white balls from
to n are equally likely ; find the chance that r white balls in succes-

sion will be drawn, the balls not being replaced.

The chance that the bag contains s white balls is—^ ; and the
n+ l

chance that r balls in succession will be drawn from a bag contain-

1- n i. T-- t- x.-i. • s (s-l)...(»-r+l)
ing n balls of which « are white is —j =4

—
) \ •

n(w-l)...(n-r+ l)

Hence the chance required is

1 fw(7i-l)...(n-r+l) (w-1) (w- 2). ..(n-r)

n+l\n{n-l)...{n-r+ l) n{n-l)...{n-r + l)

r(r-l)...l \

'"
n(n-l)...(n-r+l)j

*

Now {1.2...r} + {2.3...(r+l)} + ... + {(n-r+l)...(n-l)n}

^(n-r+l)(n-r + 2)...n(n+ l) ^^ g^g
r+1

Hence the required chance is —-. , which is independent of the

whole number of balls in the bag.

If it be known that r white balls in succession have been drawn,
the probability of the next drawing giving a white ball can be at

once found from the preceding result.

For in a great number N^ of cases, there will be r white balls in

N N
succession in ——

y cases, and r+1 white balls in succession in—-

cases. Hence the required chance is—^ -i =—-
,^

r + 2 r+ 1 r+ 2

Ex. 2. Two men A and B, who have a and b counters respectively to

begin with, play a match consisting of separate games, none of which
can be drawn, and the winner of a game receives a counter from the
loser. Find their respective chances of winning the match, which is

supposed to be continued until one of the players has no more
counters, the odds being p : q that A wins any particular game.
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Let -4'b chance of ultimate success when he has » counters be w^.

Then A'b chance of winning the next game is ——— ,
and his chance

of ultimate success will then be w»4.i; also -4*8 chance of losing the

next came is —^ , and his chance of ultimate success will then be

Hence «„=-^ WnrW ! r" ^n-i »

P + 9. P + 2

.'. pu^i-{p + q)Un + qu^-i=0, from which it follows that w„

will be the coefficient of «•* in the expansion of —
;

—
r
—

;
,

p-{p + q) x + qar

provided A and B be properly chosen.

Now ; r-^ J can be expressed in the form + ;

p-{p +q)x + qx^ P-2^ 1-^

and hence the coefficient of a;** is D +— (
-

J
.

Thus w„=D +-(-j , where G and D have to be determined.

But it is obvious that ^'s chance of winning is zero if he has no
counters and unity if he has a+ b, so that

W(,
= and ^^+6=1 ; hence

0=Z>+-, and l=D + -l-] , whence the values of C and D
P P \jpj

are found, and we have

-{-(I)"} / HT)-
Hence A'b chance of winning the game is

Similarly JS's chance of winning the game is

I-©} /{-(in-

EXAMPLES XLI.

1. A and B throw alternately with two dice, and a prize
is to be won by the one who first throws 8. Find their

respective chances of winning if A throws first.
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2. -4, B and G throw alternately with three dice, and a

prize is to be won by the one who first throws 6. Find their

respective chances of winning if they throw in the order Aj

B, C,

3. Three white balls and five black are placed in a bag,
and three men draw a ball in succession (the balls drawn not

beiQg replaced) until a white ball is drawn : shew that their

respective chances are as 27 : 18 : 11.

4. What is the most likely number of sixes in 50 throws

of a die 1

5. Shew that with two dice the chance of throwing more
than 7 is equal to the chance of throwing less than 7.

6. In a bag there are three tickets numbered 1, 2, 3.

A ticket is drawn at random and put back; and this is done
four times : shew that it is 41 to 40 that the sum of the

numbers drawn is even.

7. From a bag containing 100 tickets numbered 1, 2,

3, ...100, two tickets are drawn at random; shew that it is 50
to 49 that the sum of the numbers on the tickets will be odd.

8. There are n tickets in a bag numbered 1, 2, ..., w. A
man draws two tickets together at random, and is to receive a

number of shillings equal to the product of the numbers he
draws : find the value of his expectation.

9. An event is known to have happened n times in

n years : shew that the chance that it did not happen in a

particular year is f 1—
j

.

10. If p things be distributed at random among p persons ;

shew that the chance that one at least of the persons will be

void is 1- L^ .

11. A writes a letter to B and does not get an answer;
assuming that one letter in rn is lost in passing through the

post, shew that the chance that B received the letter is

vn ~~ 1
=-

,
it being considered certain that B would have answered

2m -I
the letter if he had received it.
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12. From a bag containing 3 sovereigns and 3 shillings,

four coins are drawn at random and placed in a purse; two
coins are then drawn out of the purse and found to be both

sovereigns. Shew that the value of the expectation of the

remaining coins in the purse is 11». Qd.

13. From a bag containing 4 sovereigns and 4 shillings,

four coins are drawn at random and placed in a purse; two
coins are then drawn out of the purse and found to be both

sovereigns. Shew that the probable value of the coins left in

the bag is 29J shillings.

14. If three points are taken at random on a circle the

chance of their lying on the same semi-circle ia J.

15. A rod is broken at random into three pieces : find the

chance that no one of the pieces is greater than the sum of the

other two.

16. A rod is broken at random into four pieces : find the

chance that no one of the pieces is greater than the sum of the

other three.

17. Three of the sides of a regular polygon of 4w sides are

chosen at random; prove that the chance that they being

produced will form an acute-angled triangle which will contain

^,
. . (n-l)(n-2)_the polygon IS

^^—3^^-^^-^.
18. Out of m persons who are sitting in a circle three are

selected at random; prove that the chance that no two of

.1 . (m - 4) (m - 5)
those selected are sitting next one another is 7 :— ^rr .

{m — i) ym — ^)

19. If m odd integers and n even integers be written down
at random, shew that the chance that no two odd numbers are

\n \n+l
adjacent to one another is

;
*=f =- ,

m being i> w + 1.

\m + n\n — m+i

20. If 771 things are distributed amongst a men and b

women, shew that the chance that the number of things

AX. .1. ^ ' AA • l{b-^ar-(b-arreceived by the group of men is odd, is -x
^^
—

--; .
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21. The sum of two whole numbers is 100; find the chance
that their product is greater than 1000.

22. The sum of two positive quantities is given; prove
that it is an even chance that their product will not be less

than three-fourths of their greatest product; prove also that

the chance of their product being less than one-half their

greatest product is 1—j^.

23. Two men A and B have a and h counters respectively,
and they play a match consisting of separate games, none of

which can be drawn, and the winner of a game receives a
counter from the loser. The two players have an equal chance
of winning any single game, and the match is continued until

one of the players has no more counters. Shew that J.'s chance of

winning the match is ^ •

a + o

24. An urn contains a number of balls which are known
to be either white or black, and all numbers are equally likely.
If the result oip + q drawings (the balls not being replaced) is

to give p white and q black balls, shew that the chance that the
,1

next drawing will give a black ball is -^ k •° ®
p + q + 'i

25. Two sides play at a game in which the total number
of points that can be scored is 2m + 1 ; and the chances of any
point being scored by one side or the other are as 2m +1—0!
to 2m + 1 — y, where x and y are the points already scored by
the respective sides. Shew that the chance that the side

which scores the first point will just win the game ia

(
2m! 2m+ iy

{mXfm-^ 11 4m4-ir



CHAPTER XXXL

Determinants.

415. If there are nine quantities arranged in a square
as under :

«.
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The expression (A) is called the determinant of the

nine quantities a^, a,, &c., which are called its elements;
and the products afi^c^, cififpii

<^c. are called the terms of

the determinant.

416. Definition. If there are n^ quantities arranged
in a square as under :

a^
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determinant is also often represented by the notation

2(±a,6,c,...mJ.
When only one determinant is considered it is

generally denoted by the symbol A.

A determinant is said to be of the nth order when
there are n elements iii each of its rows or columns, and
therefore also n elements in each of its terma

417. Since there are as many terms in a determinant
of the nth order as there are permutations of the n suffixes,

it follows that there are \n terms in a determinant of the

nth order. There are, for example, six terms in a deter-

minant of the third order.

418. The law by which the sign of any term of a

determinant is found is equivalent to the following :

Take the elements in order frma the successive rows

beginning at the first ; then the sign of any term is positive
or negative according as there is an even or an odd number

of inversimis in the order of the colwmns from which the

elements are taken.

We will now shew that the words row and column may
be interchanged in the above law. To prove this, consider

any product, for example, ^A^i^i^eJ's ^^^ ^^ equivalent

Cj/jfegS^a^eg, where in the first form the letters follow the

alphabetical order and in the second form the numbers
follow the natural order.

We have to shew that the number of inversions

in the suffixes in the first form is the same as the number
of inversions of the alphabetical order in the second form.

This follows immediately from the fact that if, in the first

form, any suffix follow r suffixes greater than itself; then,
in the second form, the letter corresponding to that suffix

must precede r letters earlier than itself in alphabetical
order. Thus, in the example, 2 follows four suffixes greater
than itself in afi^c^d^e^f, and/ precedes four letters earlier

than itself in
c^fb^d^a^e^.
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Since the words rows and columns are interchangeable
in the law which determines the sign of any term, we have

the following

Theorem. A determinant is unaltered by changing its

rows into columns and its columns into rows.

For example
a„ 6, k k

Ex. 1. Count the number of inversions in 2314, 3142 and 4231.

Am. 2, 3, 6.

Ex. 2. Count the number of inversions in 4132, 35142 and 531264.

Ans. 4, 6, 7.

Ex. 3. What are the signs of the terms bfg, cdh and ceg in the

determinant a b c

d e f

g h k

[The order of the columns is 231, 312 and 321.]

Ans. +, +, -.

Ex. 4. What are the signs of the terms bgiq, celn and dfkm in the

determinant a b c d 1

e f g h

i j k I

[The order of the columns is 2314, 3142 and 4231.]
Ans. +,

' 419. Theorem I. Ifin any term ofa determinant any
two suffixes be interchanged, another term of the determinant

will be obtained whose sign is opposite to that of the original
term.

Let P .ha. kfi be any term of a determinant, P being
the product of all the elements except ha and k^ ; then, by
interchanging a and yS we have P.h^.ka. Now since

P . ha. kp is a term of the determinant, P can contain no
element from the rows of ^'s and k's and no element from
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the a or ^ columns
;
and this is a sufficient condition that

Phpka should also be a term of the determinant.

We have now to shew that the two terms have

different signs.
First suppose that two consecutive suffixes are inter-

changed.
Consider the term AhJc^B where A denotes the product

of all the elements which precede h^ and B the product of

all the elements which follow k^. By interchanging a and

fi we have Ah^kaB, which we have already found is a term
of the determinant.

Now the number of inversions in the two terms must
be the same so far as the suffixes contained in J., or in B,
are concerned, whether compared with one another or with
a and ^ ;

but there must be an inversion in one or other of

a/3 and y8a but not in both. Hence the numbers of

the inversions in the two terms differ by unity, and therefore

the signs of the terms must be different.

Now suppose that two non-consecutive suffixes are

interchanged ;
and let there be r elements between the two

whose suffixes, a and fi suppose, are to be interchanged.
Then a will be brought into the place of ^ by r+1 in-

terchanges ofconsecutive suffixes,and /3 can then be brought
into the original place occupied by a by r interchanges
of consecutive suffixes

;
and therefore the interchange of

a and ff can be made by means of 2r + 1, that is by an odd

number, of interchanges of successive suffixes. But, by the

first case, each such interchange gives rise to a loss or gain
of one inversion

;
and hence there must on the whole be a

loss or gain of an odd number of inversions : the sign of the

new term will therefore be different from the sign of the

original term.

420. Theorem II. A determinant is unaltered in

absolute value, but is changed in sign, by the interchange

of any two columns or any two rows.

Suppose that in any determinant the rows in which
the letters h and k occur are interchanged. Then, if
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A .ha.B .kp .G he any term of the original determinant,
the term of the new determinant formed by the elements

which occur in the same places as before will be AJcaBhpG;
and these two terms must have the same sign in the two de-

terminants. Now by Art. 419 we know that A .ka.B .hp,G
is a term of the original determinant and that its sign
is different from that of A . ha . B . kp . G. Hence any
term of the new determinant is also a term of the original
determinant but the sign of the term is different : the two
determinants must therefore be equal in absolute magni-
tude but different in sign.

The proposition being true for rows is, from Art. 418,
true also for columns.

For
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Ex. 2. Find the value of

6a 6»1 6

1 e C c
1 d d^ d?

Ans. -
(6
-

c) (c
-

a) {a ~h) (a-d) (b-d) {c- d).

Ex. 3. Find *he value of

6 &2 64

Ans.

1 d d^ d*

{h-c) {c~a) {a-b) {a-d){h-d) (c-d) (a + b + c+ d).

422. Theorem IV. If all the elements of one row or

of one cohjLmn of a determinant be multiplied hy the same

quantityy the whole determinant will he multiplied by that

quantity.
For every term of the determinant contains one

element and only one from each column and from each

row
-y
and it therefore follows that if all the terms of one

row or of one column be multiplied by the same quantity,

every term of the determinant, and therefore the sum of

all the terms, will be multiplied by that quantity.

Cor. From the above, together with Theorem III, it

follows that if two rows or two columns of a determinant

only differ by a constant factor, the determinant must
vanish.

For example

mttj m&i
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A minor determinant is said to be of the first order, or

to be a first minor, when one column and one row are

suppressed ;
it is said to be of the second order, or to be a

second minor, when two columns and two rows are sup-

pressed ;
and so on.

The determinant obtained by suppressing the line and
the column through any particular element is called the

minor of that element, and will be denoted by A^, where x
is the element in question.

Thus ai
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inversions. Hence the sum of all the terms of A which

contain a^ is Oj. A^,.
So also, every term of A which contains a, is the

product of fla and some term of A^,, and the product of a,

and any term, T, of A^, will be a term of A, but there is

one more inversion in the term ci^.T oi A than there is in

the term T of A^^, since 2 precedes 1. Hence the sum of

all the terms in A which contain a^ is — a, . A^^.

Similarly the sum of all the terms of A which contain

ttj are a, . A^j,; and the sum of all the terms which con-

tain a^ are — a^ . A
at'

Hence

A = a, . A
a^
-

a, . A^ + a, . A«,
-

a, 'a*' .(ii).

By means of Articles 419 and 420, we can shew in a
similar manner that

A = - 6i Aft, + 62 Aj,
-

6, Aj, + 6, As^
=

«! A«^
-

61 Aj^ + Cj Ae,
-

(^1 Ad, = &c.

Cor. By comparing (i) and (ii) we see that the co-

factors of the elements a^, a^, &c., are equal in absolute

magnitude to the minors of the same elements.

425. We have in the previous article considered the
case of a determinant of the fourth order

;
the reasoning is

however perfectly general, so that if A be a determinant
of the nth. order having a,, a,,..., a^ for the elements of its

first row or column; then will

A = a,.A«.-a,A«. + ... + (-ir^a„A„,.
So also

A = (-irMA;,.A,,-A;,.A,.4-...+ (-irA:„AU.
Where \,k^y...yk^ are the elements of the rth row.

For example

% ^2 Oj
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Prove the following

6.

1

1

2

2

1

3

6

6

a+b

-12 2

2-12
2 2-1

:27.

:18.

= 2al3C.

4.

6.

c c

a b+c a

b b c + a

3 2 2 2

2 3 2 2

2 2 3 2

2 2 2 3

iabc. 8.

lO.

6

5

5

a

a

a b

b + c

5 5

6 5

5 6

a a

b b

= 16.

a{b-c) {a-b).

e b

c c + a a

b a a+b

Aabc.

1 1

1 2

1 3

1 4

1
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Now consider the determinant which differs from the

original determinant only in having the 5th column
identical with the rth; then A,, B„ &c. will be the same
in the new determinant as in the original one.

The value of the new determinant will therefore, by
Art. 425, be equal to

±{a..A,-\-h,.B,+ ..,}

= ±K.A + 6,.^,+ ...},

since a^ = a„ b^
—

b,, &c.

But, from Art. 421, we know that the new determinant
is zero.

Hence a^. A, + b^.B,+ ...=0.

Thus in the determinant A=[aib^c^d^, we have

A= o^^j+ a^^+ OfAg+ a^A^]

also = b^Ai+ ftjjiia+ 63^,+ 64^4 ,

= Oi^j+ ^1-^8+ CjCg+ diDg , &c.

427. Theorem VI. If each element of any row (or

colwmn) of a determinant be the sum of two quantities, the

determinant can be expressed as the sum of two deter-

minants of the same order.

It will be sufficient to take as an example the deter-

minant

«« + «« K c,

«. + «8 ^8 C3

By Art. 424, we have, if A^, A^, ul„ be the co-factors of
the elements of the first column,

A = (a^ + a,) JLj + (a, + a,) ^a + (a, ^aj) ^,

&3

c^ + a, h (h

Ca a, \ c,

Cj a, \ %
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Similarly it can be proved that

Oj+ ai i,
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Add the first row to each of the others: then
=A abed

26 2c 2d

2c 2d

2d

Ex. 3. Shew that

a 2b 2c 2d

2c 2d

2d

2ab\ 2c 2d
\

= Qabcd.

2d

a+ 26 a+ 46 a+ Qb =0.
a+ 36 a+5b a+7b
a + 4& a+ 6b a + 8b

ll^nJ"^
'"''^''^ '^'^ ^'^^ *^^ *^^'^' ^^d then the first iron,the second.

Ex. 4. Shew that

Ex. 6. Find the value of

A= 1

12

15

6

4

b+c a-e a-h
b-c c+a b-a
c-b c-a a+b

1 15 14

12 6 7

8 10 11

13 3 2

= 4814 4

7 9

4 -4
12 -12 -12 12

= 48

Ex. 6. Find the values of

-1-11

1 16 14 4

12 6 7 9

-11 1-1

: 8a6c.

6

IG

1 16 14 4

12 6 7 9

-11 1 -]

1-1-11
= 0.

4 6 11
3 9 4 1

-4441

anjd 3 2 2 2

2 3 2 2

2 2 3 2

2 2 2 3

Ans. 0, 9.

429. The following is an important example.
To shew that

P

«8 /S;

m
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It is in the first place clear that a term of the determinant of the

sixth order will be obtained by taking any term of [aj&aCgJ with any
term of [ai/Sa78]. Thus /^ = [a-fi^^.{a^^y^ together with terms

involving I, m, n, &c. ; and we have to shew that all terms involving

any of tide letters I, m, n, &c. will vanish.

Now, in every term of the minor of I, three elements must be

chosen from the last three rows, and two only of these can be chosen
from the last two columns ; hence one of the three elements must be

zero, and therefore every term of A; is zero. Hence the minor of Z,

and so also the minor of each of the elements m, n, &c. is zero
; this

proves that there are no terms involving any of the letters Z, m, », &c.

It can be proved in a similar manner that any determinant of the
2nth order is the product of two determinants of the nth order,

provided every element of one of the nth minors of the original
determinant is zero.

480. Multiplication of determinants. We shall

consider the case of two determinants of the third order:

the method is however perfectly general.

To express as a determincmt of the third order, the

product of the two determinants.

A,=
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-1,



For
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that is [a^ 6, c^]
x = \k^ \ cj,

for from Art. 426 the coefficients of y and z are zero.

Similarly we obtain

[»! K ^3] y = K ^2 cj,

and [«! 62 C3]
<2 =

[ttj 62 A^g].

Now consider n equations of the form

^1^1 + M« + ^1^8 + ^1^4 + ^h'
As before, multiply the equations in order by A^, -4.,,

^3, &c. the co-factors respectively of a,, a^, a^, &c. in the

determinant [a^ b^ c,...] ;
then we have by addition

(a^A^ + a,A^ + %A^ +...)«?= Mi + M* +Ms +• • •»

the coefficients of y, z, &c. being all zero by Art. 426.

Hence

So also

Ex. 1. Solve the equations

2x+ 4y + « =7,

The values of a;, y, 2 are respectively

&C.

6 2 3



We have
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It can be shewn in a similar manner that the condition

that n equations of the form a^x + b^y -^ ... + k^
= 0, with

(n
—

1) unknown quantities, may be simultaneously true is

434 Sylvester's method of Elimination. This is

a method by which x can be eliminated from any two
rational and integral equations in x. The method will be
understood from the following examples.
Ex. 1. Eliminate x from the equations

ax^+ 6a5+ c =0 and px^ + qx+ r=0.
From the given equations we have

ax^+ bx^+cx =0,
ax^+ bx+ c=:0,

px^ + qx^+ rx =0,
Aud px^+ qx + r=0.

Now we may consider the different powers of x as so many different

unknown quantities ; and the result of eliminating x\ x^ and x from
the four last equations is by Art. 433

a b e =0.

a b c

p q r

p q r

[This result is equivalent to that obtained in Art, 153, Ex. 3.]

Ex. 2. Eliminate x from the equations ax^ + bx^ + cx+d=0 and
px^+ qx+ r=0.

From the given equations we have

ax^+ bx'+ cx^+ dx =0,
ax^ + bx^+ cx +d=0,

px^+ qx^ + rx^ =0,

px^+ qx^-^rx =0,

px^+ qx + r=0.

Eliminating x*, a^, x\ x from the five last equations as if the
different powers of

have the condition

were so many different unknown quantities, we

d = 0.
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EXAMPLES XLn.

1. Shew that

2. Shew that

3. Shew that

Shew that

6. Shew that

6. Shew that

7. Shew that

o. Shew that

e. Shew that

lO. Shew that

6>+c2 ab

c^+ a^

cb

ac

be

a^+ b^

=4a2&2c«.

1 a a?-bc

1 6 b^-ca

1 c c^-ab
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13.

12. Shew that
j

1 1 1

il 1+a 1

11 1 1+&

|l 1 1

Shew that

1+a 111
11+6 1 1

1 1 1+c 1

1 1 1 1+d

Shew that abed14.

1

1

1

1 + c

sabc*

..aicd(l
+
l
+
l
+Ul)

b c

a d e

dab
e b a

= (a+ 6 + c+ d)(a+ 6-c-d)(a+ c-6-d)(a+d-6-c).

15. Shew that

16. Shew that

17. Shew that

18. Shew that

19. Shew that

20. Shew that

1+a?

1

1

1

a

-h
-c
-d

2 3 4

2 + x 3 4

2 3 + a; 4

3 4 + a;

c d

-d c

a -b
b a

2

h

a

d

-c

=:a;»(a; + 10).

(a2+ 62+c2 + d2)a.

a^ a^+ bcd

63 6'+ cda

c2 c*+ da6

= a(6-a)

a

t-by-cz
ay+ bx

cx+ az

^-(a-b)*.

ay + bx

by-cz- ax

bz + cy

cx + az

bz+ey
cz -ax -by

: (a2+ 6» + c2) {a;2 + y
a+ «a) (ax+ 6y + cz) .



EXAMPLES. 551

ai. Shew that

aa a2-(6-c)2 be

62 62_(c-a)» ca

c2 c2-(a-6)' a6

22. Shew that

{6-c)2 (a -6)2 (a-c)2

(6-a)» (c-a)2 (6-c)2

(c_a)a (c-6)a (a -6)3

23. Shew that, if any determinant vanishes, the minors of any one
row will be proportional to the minors of any other row.

= {b-c) (c -a) (a-b) {a + b + c) (a^ + b^ + c^).

= -2(a2 + 62 + c2-6c-ca-a6)3.

24.

25.

26.

Shew that
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Theory of Equations.

435. Any algebraical expression which contains x is

called a function of x, and is denoted for brevity by / {x\
F (x), <f> (x), or some similar symbol.

The most general rational and iotegral expression

[Art. 76] of the nth degree in x may be written

aoX"' + Oiic"-^ + ajpz;"-* + . . . + a„,

where cto* <^i> ctav do not contain x.

Since all the terms of any equation can be transposed
to one side, every equation of the nth. degree in x can be
written in the form

ttoo?" + Oia?**-^ + aao;"-* 4- . . . 4- a„ = 0,

where n is any integer, and the coefficients a©, (h, (h---

do not contain x.

Now any equation in x is equivalent to that obtained

by dividing every one of its terms by any quantity which
does not contam x

; and, if we divide the left side of the

above equation by ao, the coefficient of a;**, we shall obtain

the equation of the nth degree in its simplest form,

namely
a?" 'hpix''-^ -f ^2^**-^ + ...+;?„ = 0,

where pi, p^, ps,... do not contain x, but are otherwise

unrestricted.
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436. If we assume the fundamental theorem* that

every equation has a root real or imaginary, it is easy to

prove that an equation of the wth degree has n roots.

For suppose the equation to be/ {x)
= 0, where

Since /(/r)
= has a root, a^ suppose, we have /(oi) = 0,

and therefore [Art. 88] f {x) must be divisible by x — a^,

so that f (x)
—

(x
—

Oi) ^ (x\ where 0(a?) is an integral
function of x and of the (n

~
l)th degree. Similarly,

since the equation <f> (x)
= has a root, Oj suppose, we

have (p (x)
= (x

— a^ yjr (x), where
'xjr (x) is an integral

function of x of the (n
—

2)th degree. Hence

f(x) =:=(x- aj)(x-ai)± (x). ^

Proceeding in this way we shall find n factors o{ f(x) of

the form x — ai, and we have finally

/(x) = (x- ai) (x
-

aa). . .(x
-

a„)i

It is now clear that Oi, a^,..., an are roots of the

equation f{x)
—

0', also no other value of x will make

f{x) vanish, so that the equation can only have these

n roots.

In the above the quantities a^, a,, as,." need not be
all different from one another

;
but if the factors x- Oy,

x — a^fX — Ot, &c. be repeated p, q, r, &c. times respectively

inf(x), we must have

f(x) = {x- a^y {x
- a^y {x

-
a^f. . .,

where p-\-q-{-r-\-...—n.

The equation/(a;)
= has in this case p roots each Oi,

q roots each a^, &c., the whole number of roots being

p-\-q^-r-\- ... =n.

• Proofs of this fnndamental proposition have been given by Cauohy,
Clifford and others: the proofs are, however, long and difficult.

37—2
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437. Relations between the roots and the coeffi-

cients of an equation.
We have seen that if Oj, Oj, a„... be the roots of the

equation/ (a?)
=

;
then

Hence [Art. 260]

x^ + p^a^-"^ +_pjpr"-» +...+;)„
= a;«- ^1 . x^-^ + S^.x-^-^ - ...+(- If Sn,

where Sr is the sum of all the products of Oi, a^, a^,...

taken r together.

Equating the coefficients of the different powers of x
on the two sides of the above identity, we have

438. By means of the relations obtained in Art. 437, which give the

values of certain symmetrical functions of the roots of an equation
in terms of its coefficients, the values of many other symmetrical
functions of the roots can be easily obtained without knowing the

roots themselves.

The following are simple examples :

Ex. 1. If a, b, c be the roots of the equation

a^+pa^+ qx + r^O,
find the value of (i)

Sa^ and (ii) Za^b\

"We have a + b+ c=: -p^

be + ca + ab= q

and abc = - r.

Hence

a* + b^ + c^={a + b+ c)^-2{bc + ca + ab)=p^-2g.

Also,

262ca= (&c + ca+ a6)»
- 2abc {a+ b + c)

= q^- 2pr.

Ex. 2. If a, &, c,... be the roots of x^+PiX^~^+p^*~^+ ...+p^=0,
find the values of Sa' and Ha^.

We know that 2a= -p^, i:ab=p^ and Sa6c= -
p^.

Now(Sa)a=(a+ 6 + c+...)2=Sa2 + 2Sa6[Art. 65];

2a2= (2a)''
- 22a6 =p^^ -2p^.

Again 2a2 . 2a= 2a3 + 2a2&,

and I>a%= 2a6 . 2o - 32a6c.
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[For in 2a6 . Sa there can only be terms of the types a^b and abc
; of

these the term a^b will occur once, bnt the term abc will occur three

times, for we can take either a or 6 or c from Sa and multiply by 6c,

ca or ab respectively from 2a6. Thus 25a6 . 2o= 2a'6+ SSaZ/c]

Hence

2a»= Sa3 . 2a - 2a6 . 2a+ 32a&c= {2)i»
-

22)3) ( -pj) -p^ ( -^j)
-
Spj.

439. Theorem. If there are any n quantities Oi,

Oj, Os, &c., and m be any positive integer not greater than
n

;
then will

+ Xoi . SoiCta. . .amr-i ± 'fri . Saifta. . .a^.

The following relations hold good :

...[A].

To prove the first relation it is only necessary to notice

that the product Xa^ . Xoi"^^ can only give rise to terms
of the types Oi"* and Oa^^^^ch; also every term of either

type will occur, and no term can occur more than once.

Thus 2ai . Soi"^* = Soi"* + Soi^^'aa.

The other relations, except the last, will be seen to be
true in a similar manner.

Also, the product Xoia^. . .a„^i . Soi can only give
rise to terms of the types Oi^a^cis" -dm-i and Oitta-.-a^;
the first of these terms can only occur"once, namely as

OiO^ai. . .afn_i X tti ;
the second term will, however, occur

m times, for we get the term by taking any one of the

m factors it contains from 2ai and multiplying this by
the proper term of SctiOa-.-cw-i.

Hence
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From the relations [A], we have at once

Sai"* = Soi*^^ . Xoi ~ Soi"*-'' . Xoifl, + Soi^^'SaiaaO,— ...

± m.taia^...am [B].

If now Oi, a,, a„ &c. be the n roots of the equation

we know that

Xai = — pi, Saiaa=«^a> Saia^ai
—
—pty &c.

Hence, by substituting in [B] and transposing we have

+pm.m^0 [0].

The formula [C] gives the sum of the mth powers of

the roots of an equation of the Tith degree [m if n] in

terms of the coefficients and the sums of lower powers of

the roots. [See also Art. 471.]

The sum of the mth powers of the roots of an

equation can therefore be obtained from the formulae

Xoi' +i?iSai» + piXon. + 3p,
= 0,

Xtti* + PiSoi* + p^Xa^^ + Ps • 2)ai + 47)4
= 0,

If we eliminate ^Oj* and Soi from the first three

equations we have

Pi Pi Sjps + Soi*

1 ^1 2^a

1 Pr

= Soi' + p^ Pi 3^8

1 pi 2p,

1 p.

= 0.

To find toy"^ we must eliminate Xai"»-\ Xal"*-^..., ^Oj

from the first m equations, and we have
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^1 i>3 Pz"'Pm-i m.pm -^^Oi'"

1 pi Pi.,.prr^^ {m-l)ptr,^,
1 pi...prn-., (m-2)^^2

l...pm-A {m-S)prf^s

1 Pi

0.

The coefficient of Xa^^ is a determinant of which all

the elements on one side of its principal diagonal are

zeros, the elements along the principal diagonal being all

equal to 1
;
the determinant is therefore equal to 1. Hence

Soi"* is equal to an integral function oi pi, p^, &c.

If m be greater than n the relation corresponding to

[C] can be very easily obtained. For, since Oi, ctj,... are

roots off(x) = 0, we have n equations of the type

< + jPiOi"-! + p^a^""-^ + . . . + pn = 0.

Multiply by Oj*"'"^, a^*"'"^,... respectively; then we shall

have n equations of the type

Ch^ + ^i^i"^' +P^Oa^^ + . . . + pnOa"^ = 0.

Hence, by addition, we have

+ j[)n5:ai"^^
=

0...[D].

By means of the relations [C] and [D], which were
first given by Newton, it is easily seen that the sum of the

mth powers of the roots of any equation can be expressed as

a rational and integral function of the coefficients, m being
any positive integer.

440. Any rational and integral symmetrical function

of the roots of an equation can be expressed in terms of

the coefficients by means of the relations

Xax = —px, Soiaj|=j9a, ^a,ia^i — — pt, &c.

Consider the symmetric functions of the third degree.
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It is easily seen that

Thus we have three equations to determine Soi*, Soi^Oj

and XoiaaOa, and these are the only symmetrical functions

of the third degree.

Similarly each of the products pi\ Pi*Pi, PiPi, p^ and p^
can be expressed in terms of symmetric functions of the

fourth degree, and there will be as many such equations as

there are symmetric /mictions of the fourth degree.
The same will hold good with respect to symmetric

functions of any other degree.
The sum of the suffixes of the p's will in all cases be

equal to the degree of the symmetrical function.

441. A rational and integral symmetrical function of

the roots of an equation can also be expressed in terms of

sums of powers of the roots, and thence by Newton's
Theorem in terms of the coefficients of the equation.
The method will be seen from the following examples.

Ex. 1. Express "La^a^ in terms of 2a/, Soj* and Sai»^+«.

'La^=a^^ + a^^-\-aj^-^

Sai«=ai«+ a3«+a,«+

.'. Za^P . 2ai«= Zaj*^ + 'La^^a^^.

Thus 2ajPa3<?
= 2ajP . 2ai«

-
Soi*^.

If, however, p^q; then we have

Thus l,aTj'a^J>
= \ {^La^^f

-
\ Zoj-^p.

Ex. 2. Express ^a^^a^n{' in terms of the sumv of powers of the

separate roots.

2a/=/Sp= ai«'+ a/+ ajP+

2ai«=/Sfg = aj«+ a,«+tt8«+

2ai''
= 5^=ai'-+ a/+a3'-+
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Hence Sp.S^.Sr= ^Oj^^^ + Sa/+«fl/

Hence, from Ex. 1,

"Zor^ac^a^= Sp.Sq.Sf~ Sp.^^ . Sf
— Sp^ . Sq

— Sq^ . Sp+ 2Sp+^4^ .

The above will only hold good when jp, q, r are all different. If

p = g =: r we shall have

.-. 2a/a/a3P= i {Sp^-SS^p . Sp + 2>Ssp}.

Transformation of Equations.

442. We now consider some cases in which an equa-
tion is to be found such that its roots are connected with

the roots of a given equation in some specified manner.

I. To find an equation whose roots are those of a

given equation with contrary signs.

If the given equation be / (x)
= 0, the required equa-

tion will be f(—y) = 0. For, if a be any root of the

given equation so that/(a) = 0, then — a will be a root of

/(-y) = o.

Thus if the given equation be

Pi/v*" + jhx"^"^ -|-j[>aa;"-« -I- -\-pn
= 0,

the required equation will be

i>*(- y)** +Pi i-yT-'' +i>a (- 2/)""' + +i?n = o,

or ^o2/" -i>i3^' +^^**-^
-

-I- (- lYpn = 0.

II. To find an equation whose roots are those of a

given equation each multiplied hy a given quantity.

Let f(x) = be the given equation, and let c be the

quantity by which each of its roots is to be multiplied.

Let
2/
=

CO?, or ^ = x; then /(-)
= is the equation
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required. For, if a be any root of / (x)
= 0, so that

/ (a) = 0, ac will be a root of/ (^^ == 0.

Thus, if the given equation be

the required equation will be

^»(f)"+^'(!r+^'(fr+ +^''="'

or j3oy** + Picy^~^ + PiC^f^ + 4-^nC" = 0.

The above transformation is useful for getting rid of fractional

coefficients.

Ex. Find the equation whose roots are the roots of

x^-ia^ +^x +^^O
each multiplied by c.

The required equation is

y3
_ ^ya +^2y + ^^c»= 0.

We can now choose c so that all the coefficients may be integers ;

the smallest possible value of c is easily seen to be 6.

III. To find an equation whose roots are those of a

given equation each diminished by the same given quantity.

Let / (a?)
= be the given equation, and let c be the

quantity by which each of its roots is to be diminished.

Let y = x— c, or aj = y+c; then / (y + c)
= will be

the equation required. For, if a be any root of/ (x)
= 0,

so that/ (a)
=

0, a — c will be a root of/(y -f c)
= 0.

An expeditious method of finding /(y + c) will be

given later on. [Art. 472.]

The chief use of above transformation is in finding

approximate solutions of numerical equations ;
it can also

be used to obtain fi*om any given equation another equa-
tion in which a particular term is absent.

Ex. Find the equation whose roots are those of ar'- 3x'-9x + 5 =
each diminished by c, and fuQd what c must be in order that in
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the transformed equation (i)
the sum of the roots, and (ii) the

sum of the products two together of the roots, may be zero.

The equation required is /(y+c)=0, that is

(y + c)»-3(y + c)»-9(y + c) + 6=0,

or y»+(3c-3)y»+ (3c«-6c-9)y + c»-3c2-9c+ 5=0.
The sum of the roots will be zero if the ooefl&cient of y' be zero ;

that is, if c= l.

The sum of the products two together of the roots will be
zero if the ooeflGioient of y be zeroj that is, if c'- 2c -3=0, or

(c-3)(c+ l)=0.

IV. To find an equation whose roots are the reciprocals

of the roots of a given equation.

Let f{x) — be the given equation. Then the equa-

tion /( -j
= is satisfied by the reciprocal of any value of

a which satisfies the original equation.

This transformation enables us to find the sum of any
negative power of the roots . of the equation f(x) = 0, for

we have only to find the sum of the corresponding positive

power of the roots of the equation/ (

-
j

= 0.

443. A reciprocal equation is one in which the

reciprocal of any root is also a root.

To find the conditions that an equation may be a

reciprocal equation.

Let the equation be

p^ -\- PiOf-^ + p^""-* -^ -\-p„
= 0.

Then the equation whose roots are the reciprocals of
the roots of the given equation is

P' S)"+ ^' ©""+ P' ©"""+
•••••• ^P" = 0-

or, multiplying by a^,

P9-^Pia!+pap[f+ +i3fta;"
= 0.
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The equation last written must be the same as the

original equation, the ratio of corresponding coefficients

must therefore be the same throughout. Thus

Pn Pnr-i Pn^i Po'

From the first and last we have p^^^p^^ so that

/>n= ±i?o> whence it follows that the coefficients are the

same when read backwards as forwards, or else that all

the coefficients read in order backwards differ in sign only
from the coefficients read in order forwards. These two
forms of reciprocal equations are often said to be of the

first and of the second class respectively.

444. The following important properties of reciprocal

equations can easily be proved.

I. A reciprocal equation of the first class and of odd degree has one
root equal to - 1.

II. A reciprocal equation of the second class and of odd degree has
one root equal to + 1.

ni. A reciprocal equation of the second class and of even degree has
the two roots ± 1.

[These follow at once from Art. 87.]

IV. After rejecting the factor corresponding to the roots given in I,

II, III, we are in all cases left with a reciprocal equation of the

first class and of even degree.

V. The problem of solving a reciprocal equation of the first class and
of even degree can, by means of the substitution x-\-x~^=y^ be

reduced to that of solving an equation of half the dimensions. For
the equation may be written

ao (a;'* + 1) + Oi («*»-^+ a;) + . . . = 0.

Divide by «" ; then

a© (^*+ «"•*) + <h (^""^ + «~'*'*"^) + . . . = 0.

Now, if aj+ar-i=i/, x^+ x-^=y^ - 2
;

and, from the general relation

a;« + a;-"= (x^-i + x-^^) {x + «"») - {x*-^ + «-»+-),

it follows by induction that x'^+ x~'^ can be expressed as a rational

and integral expression of the nth degree in y.
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Ex. Solve the equation 6x^ - 25oc^+ Slx^ -Slx^+ 25x -6= 0.

As in III, the expression on the left has the factor x^-1 corre-

sponding to the roots ± 1. Thus we have

6 (x«
-

1)
- 25a: (x*

-
1) + 31a;3 (aJ!

-
1)
= 0.

Hence the required roots are ± 1 and the roots of

6x* - 25*3 + 37a;2 - 25a; + 6= 0.

Divide by x^\ then

6
(^'

+
^)

- 25
^x

+ 1^+37 = 0.

Put x + -= y; .'. a^+ -^
= y^-2.

Hence 6i/2_25y + 25 = 0;

5 5
y=^oxy

=
^.

From X + - = -
, we have x= 2 or ^ •

X 2 2

\ Q 1 ,

From x + - = 5, we have x=-^ (6±v-ll).X o o

Thus the required roots are ± 1, 2,
-

, ^ (5 =t»y
-

11).2 D

445. The method of dealing with other cases of trans-

formation will be seen from the following examples.

Ex. 1. If a, b, e be the roots of the equation x^+px^+ qx + r=0, find

the equation whose roots are be, ca, ab.

Since bc=— = -, if we put w = -, the three values of y cor-

responding to the values a, 6, c of x will be 6c, ca, ab. Hence the

T
equation required will be obtained by substituting

- for x in the

given equation, so that the required equation is

r* +pry + qy^+ y«= 0.

Ex. 2. Find the equation whose roots are the squares of the roots of

the equation sfi+px^ + qx + r=0.
We have x (x" + ^) = -

(px^+ r) ;

x2(x2 + 5)2=(2)x2 + r)2.

Now put y=x^, and we have the required equation, namely
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Ex. 8. If a, 6, c be the roots of a^+px^+ qx + r=:0, find the equation
whose roots are a{b+ c), b{c + a), c (a+ b).

a(b+ c)=a{-p-a) ; &o.

Hence, if we put y=x{-p-x), y will have the values required

provided x is restricted to the three values a,b,c; that is provided
X satisfies the equation

x*+px^+ qx + r= 0.

Thus if we eliminate s between the given equation and the equa-
tion

x*+px + y=:0,

we shall get the required equation in y.

Multiply the second equation by x and subtract; then {y-q)x=r.
Now substitute for x in the second equation, and we obtain the

equation required, namely

r^+pr{y-q) + yiy-q)^=0.

EXAMPLES XLin.

1. If Oj, a,, a, be the roots of the equation s^+px + q=Ot find

the values of

(i) (aa+ a3)(a, + ai)(ai+ aa). (ii) {a2+ a^-2a^){a^ + a^-2a^{ai + a^-2a^).

(iii) 2ai». (iv) SajS. (v) Zoj*. (vi) Z^jV (vii) ^a^*a^.

(viii) S (aa^
-
a^a{) [a^^

-
a^a^). (ix) (oj^

- a^) {a^^
-

cu^a^) (oj*
-
a^a^,

(X) S—i-. (xi) S ^
. (xii) S

^

2. Find the sum (i) of the squares, (ii) of the cubes and (iii) of

the fourth powers of the roots of the equation x*+px + q=0.

3. If a, 6, c be the roots of the equation x^+px^ + qx + r=0, find

the values of

(i) (6 + c-3o)(c + a-36)(a+ 6-3c).

<^) {h-c-l){l^l-l){Wb-l)'

4. Pind the sum of the squares and the sum of the cubes of the roots

of the equations

(i) x3-14x + 8=0. (ii) «*- 22x3 + 84x- 49=0.



THEORY OF EQUATIONS. 565

6. If a, &, c,... be the roots of the equation

find the values of

(i) Sa«. (ii) Sa8. (iii) sl.

a^ a' a^
(iv) S|. (y) S^. (vi) S|,.

6. Find the equation each of whose roots exceeds by 2 a root of

the equation
a;3-4a;2 + 3x-l= 0.

7. Find the equation whose roots are those of the equation

&x^-5x^-i=0,
each multiplied by c, and find the least value of c in order that the

resulting equation may have integral coeJQQcients with unity for the coef-

ficient of the highest power.

8. If a, 6, c be the roots of the equation x^-{-px^ + qx+r=0, find
the equation whose roots are

(i) be. ca, ah. (ii) h + c. c-^a, a + b. (iii) ^ . , r •^' '
b + e c-\-a a + b

(iv) a (6+ c), 6 (c+ a), c{a-k- 6), (v) b^ + c>, c^+ a\ a?+ 6^

(vi) bc-a^,ca-b\ ab-c\

9. If a, 6, c, d be the roots of the equation x^ +px^ + qx^ + rx + s=0,
find the equation whose roots are

(i) b + c + d,&o. (ii) b + c + d-2a, &q.

(iii) 6«+ c» + d2-a3, &c.

10. Find the equation whose roots are the cubes of the roots of

the equation a:* +px^+ qx + r= 0.

446. In any equation with real coefficients imaginary
roots occur in pairs.

For, if a +6V^ be a root of/ (x)
= 0,x-a-b V -1

will be a factor of f(oo), and therefore [Art. 193]
x^ a-\-h v^^ will also be a factor, whence it follows

that a — 6 V — 1 is also a root of / (a?)
= 0.

Corresponding to the two roots a±h V — 1 off{x) = 0,

/ (a?) will have the real quadratic faxitor [{x
—

a)^ + b^].
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447. In any equation with raiional coefficients quad-
ratic surd roots occur in pairs.

For, if a + '^b he a. root of f(x)==0, sjh being irra-

tional, X — a — isjh will be a factor of / (a?), and therefore

[Art. I79]a7
— a-hV^ will also be a factor of/ {x), whence

it follows that a — >^h will also be a root of/ {x)
= 0.

Corresponding to the roots a± ^h, f (x) will have the

rational quadratic factor [{x
—

a)^
—

b}.

Ex. 1. Solve the equation x* - 2x^ - 22a:2+ 62a! - 15= 0, having given
that one root is 2 + JS.

Since both 2 + /^3 and 2-^JS are roots of the equation,

{x-2-^B){x-2 + s/Sh

that is x^-4:X + l, must be a factor of the left-hand member of the

equation. Thus we have

{x^
- 4x + 1) {x^ + 2x- 16) =0.

Whence the roots required are 2JoJS and the roots of

a;3 + 2x-15= 0.

Ex. 2. Solve the equation 2x^ - ISx^ + 46a; - 42 = 0, having given that

one root is 3 + -^
- 5.

Since 3 ± ^7
- 5 are roots of the equation

{x-d-J~^){x~S+J~^)
must be a factor of the left-hand member of the equation, which

may be written

{(x-3)2 + 6}{2a;-3) = 0.

I 3
Whence the roots required are 3 ± a/

-
5, ^ •

Ex. 3. Solve the equation a;« - 4a;5 - llx*+ 4:0a^ + llx^ - 4a; - 1 = 0,

having given that one root is s/^+^S.

If fja+jb be a root of any equation with rational coefficients,

^a and ^Jb not being similar surds, then zk^a^Jb will all four be

roots.

Hence in the present case

{x-J2-s/S){x-s/2 + s/^){x +^2-jS){x +J2 + ^S),

that is x4-10a;2+ l will be a factor of f{x). The equation may
therefore be written

(a;*
- 10x3 + 1) (a;2

- 4a; - 1)
= 0,

whence the roots are ±(^2±^3, 2 ±^5.
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Ex.4. Solve ar^-ar^- 9x2- 14a; + 8= 0,

having given that one root is -1 + ^3.

«+l- v^3 is a factor of f{x); and therefore, as J (x) is rational,
the rational expression of lowest degree of which a; + l-^3 is a

factor, namely the expression (a;+ l)*-3, must be a factor of f{x).
Thus we have

{(a;+ l)3-3}(a;-4) = 0.

Thus the roots are

4, -1+4/3, -1 + 0,4/3, -l + «2^3,

where w is an imaginary cube root of unity.

448. Roots common to two equations. If the

two equations f(jc)
= and (f>{a))

= have one or more
roots in common, / (a?) and

</> (x) must have a common
factor, which will be found by the process of Art. 98.

Ex. Find the common roots of the equations

ar»-3a:2- 10a; + 24= and a;» - 6a;2 - 40ar + 192= 0.

The H. 0. F. of the left-hand members will be found to be a; - 4.

Hence a;=4 gives the common root.

449. When it is known that two roots of an equation
are connected by any given relation, these roots can be
found.

Ex. 1. Solve the cubic x' - Bx^ - 10a; + 24= 0, having given that one
root is double another.

Let a and 6 be the two roots and let a= 26.

Then, since a is a root of the given equation

a8-3a«-10a+ 24=0 (i).

Also, since 6 is a root,

(iy-(iy--(f)-^-«-
or a3-6a5»- 40a +192= (ii).

The factor common to the left-band members of (i) and (ii) will

be found to be a -4. Thus a= 4 and 6= 2; the remaining root of

the cubic is then easily found to be - 3.

Ex. 2. Solve the cubic 2a;2- 15a;2+ 37a; -30=0, having given that the

roots are in a. p.

The sum of the roots is equal to three times the mean root,

s. A. 38



568 THEORY OF EQUATIONS.

a suppose. Thus 3a = — , whence a = ^. Divide /(x) by the

factor 2x - 6, and the remaining roots are given by x^-5x + 6.

Hence the roots are 2,
-

, 3.

In the general case suppose that a and h are roots

of the equation /(a?)
= connected by the relation 6=

</)(a).

Then f(x) = and / {<^ (w)}
= have a common root,

namely a
;
and this common root can be found as in Art.

448. Thus a and
(f> (a) can both be found.

Ex. (i).
Find the condition that the roots of x^+px^ + qx + r=zO may

be
(i)

in Arithmetic Progression, (ii)
in Geometrical Progression.

Let a, h, e be the roots in order of magnitude.

(i)
a+ 6 + c = 36; .'. 6=

-|.
Hence, as & is a root, we have

(-iy-(-iy-*(-i)-=^
whence 2p»

- 9pg + 27r= 0.

(ii) a6c= 6»; .-. 6=4/^7.

Hence, as 6 is a root, we have

-r+p (- r)^ + q (- r)^ + r=0,

whence pH=q^.

450. Commensurable roots. When the coefficients

of an equation are all rational the commensurable roots

can easily be found.

It is at once seen that an equation with integral
coefficients and with unity for the coefficient of the first

term cannot have o. fractional root.

For if r be a root of f{x) = 0, ^ being a fraction in

its lowest terms, we have

s)"+^-(Fr+ +P"=^-

Multiply by 6^^; then all the terms will be integral

except the first which will be fractional [for a is prime to
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b and therefore a" is also prime to 6], and this is im-

possible.

Now, from Art. 442, ii., any equation can be trans-

formed into another with integral coefficients and with

unity for the coefficient of its first term
; hence, from the

above, we have only to find integral roots.

Now it is clear that if a be an integral root of/(a?)
=

0,

so that X — aia a. factor off {x), a must be a factor of the

term which is independent of x. Thus if we apply the

test of Art. 88 to all the factors of />„ we shall discover all

the integral roots.

Ex. Find the commensurable roots of ar* - 27a;'+ 42j; + 8 = 0.

Here the commensurable roots, if any, are factors of 8. Hence
we have only to test whether any of the numbers ±8, ±4, ±2, ±1
are roots. It will be found that 4 and 2 are roots. Having found
two roots the equation can be completely solved ; for we have

{«
-

2) (a;
-

4) (x*+ 6x+ 1)= 0.

Hence the roots of the equation are 2, 4,
- 3±2;^2.

EXAMPLES XLIV.

1. Solve the equation a:*+ 2x8 - ig^a - 22ar + 7=0, having given that

2 + /^3 is one root.

2. Solve the equation 3a:*-23a;2+ 72x-70=0, having given that

3+ sf-^ is one root.

a. One root of the equation

3aH^ - 4x* - 42a:»+ 56x»+ 27« - 36=
is ^2 -

ijb, find the remaining roots.

4. One root of the equation 2a:«-3a;'+ 6a;*+ 6a;'- 27a; + 81= is

J2 + J- 1. Find the remaining roots.

5. Find the biquadratic equation with rational coefficients one root

of which is J^->Jb.

6. Find the biquadratic equation with rational coefficients one root

of which is J2 + J^^.
7. Shew that a:^ - 2a;2 - 2a; + 1= and a:* - 7a;2 + 1= Q have two roots

in common.

8. Solve the equation ar*-4a:3 + llx'-14aj + 10=0 of which two

roots are of the form a+pj^l and a + 2§J^.
38—2
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0. Find the condition that the roots of x^ +px^ + qx + r= may be in

Barmonical Progression.

10. Find the conditions that the roots of x*+px^ + qx^+rx + 8 = may
be in a. p.

11. Find the roots of the equation a?' - 3x* - 13x + 15 = 0, having given
that the roots are in a. p.

12 . Solve the equation X* + 2a:» - 2Ix^ - 22a;+ 40= 0, having given that

the roots are in a. p.

13. Find the commensurable roots of

(i) x»-7ar^+ 17a; -15= 0,

(ii) x^-x^-lSx^+Ux-4S=0,
(iii) Ba^ - 26x^+ 34a; -12= 0.

14. Solve the equation 4a;3- 32x^-3;+ 8=0, having given that the

sum of two roots is zero.

15. Solve the equation a;* + 4a;'- 5x2-8a;+ 6=0, having given that

the sum of two roots is zero.

16. Find the condition that the sum of two roots of the equation

as*+px^ + qx^ + rx + 8=:0 may be equal to zero.

17. Solve the equation a;* - 79a; + 210= 0, having given that two of the

roots are connected by the relation a =2/3+ 1.

18. Solve the equation 3a;* -32a;»+ 33a; + 108=0, having given that

one root is the square of another.

10. Shew that, if the roots of the equation

-.iW(n — 1) _„ -
a;* + np x*^-^ +—V-i,- g «""'* + ...= 0,

1 . A

be in a. p., they will be obtained from -p + r
-[

^
^

^
l by giving to r

the values 1, 3, 5,... when n is even, and the values 2, 4, 6,... when
n is odd.

ao. Find the condition that the four roots a, /3, 7, 8 of the equation

x*+px^ + qx^+ rx + $= may be connected (i) by the relation aj8=75, and

(ii) by the relation ap+ y8=0.
21. Shew that, if four of the roots of the equation

ax*+ bx^+ cx'^ + dx+ e= 0,

be connected by the relation a+ /S=7 + 5, then will 4a6c-6'-8a'd=0.

22. If a, 6, Cy... be the roots of the equation

X^+J3lX"^l +^2^'»-2 +...+Pn= 0,

prove that (l-a^){l-b^){l-c^)... =A*+B^+C^-BABG,
where ^=i>n+i?n-3+— » B=P„-i+J>n-4+—l

and C=p„_2+jp„_6 + .«
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451. Derived functions. Let

f{x) = p^-^-\-p^af'-^+p^'^-^+ +p»;

then, a x + hhe put for x, we have

f{x + h)=p,{x-\^ hY +i?i (a? + hy-"^ +i?a (a? + hy-^ + . . . -^pn.

If now (x + hy, (x-\-hy-\ &c. be expanded by the Bi-

nomial Theorem, and the result arranged according to

powers of h, we shall have

f(x + h) =f(x) + h {npox'^-^ + {n-l) p^x

+ {n-1)p^^-^+,.....+Pr^,}

+ higher powers of h.

This expansion is usually written in the form

n—%

[The reader who is acquainted with the Differential

Calculus will see that the expansion of / (a; + A) in powers
of h is an example of Taylor s Theorem.]

It will be seen at once that /' {x) is obtained by multi-

plying every term of / {x) by the index of the power of x
it contains and then diminishing that index by unity.

It will also be easily seen that /" (x) can be obtained

from /' {x) in a similar manner, and so for f" (x), &c. in

succession. We shall however in what follows only be
concerned with /' (x).

Def. The function /' (x) is called the first derived
function off{x), the function /" (a?) is called the second
derived function off(x), and so on.

Thus if / (x)=p^ +i>ia;3 ^p^^ +jp^ +p^,

/' (x)= 4poaJ»+ ^p^x^+ 2p^ +i?3 ,

/" (x)= 12p^x-^+ Qp^x+ 2p^ ,
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452. Theorem. If (so) he any rational and integral

function of x andf {x) he its first derived function, then wiU

f'i^.)=m^m^fSEL^'.•^ ^ ^ x — Oi x — a^ x — a^

where Oi, aj, a,, are the n roots, real or imaginary, of
the equationf(x) = 0.

We know that

/ (a?)
=

i)o (a;
-

Oi) (a?
-

aa) (a?
-

tts)

Hence

f(x-\-h) =po (x
—

ai-\-h)(x
—

a^ + h)(x-a3-\- h)

The coefficient of h in the expression on the right is by
Art. 260 equal to p^ x (sum of all the products w — 1

together of the n quantities x — ai, x—a^, ,
x — a^.

Butf(x + h)=f(x) + hf (x) 4- higher powers of h.

Hence f'(x) = poX(sxim of all the products n — 1

together of the n quantities x — ai,x—a^, ,
x — an)-

Hence /'(^) =/M+/W+•'^^ x — a^ X — a^

In the above the quantities Oi, a^, , «« need not

be all different from one another
;
but if ai occur r times,

and a^ occur s times, &c., we shall have

/'(^)=^Z(?) +*/(?)+•^ x — ai aj — Oa

453. Equal Roots. We have seen in the preceding
Article that if ai, aj, , a„ be the n roots of the equa-
tion/ (x)

=
0, so that/ (a?)

= po(x
—

a^) (x
—

a^) (x
—

an)]

then will f'(x)=pQx(s\im of all the products n—1
together of the n quantities x — a^,x — a^, ,x — a„).

Now, if any root, for example Oi, is not repeated, so

that the factor x — a^ occurs only once in f (x), then the

factor X — ai will be left out of one of the terms of /' (x)

but will occur in all the others
;
whence it follows that

/'(a;) is not divisible hy x — a^. Thus a root off{x) =
which is not repeated is not a root off (x)

= 0.
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If, however, r roots of the equation f(ixi)=^0 are equal
to Oi, the factor a? — Oj will occur r times in f (oc), and
therefore as — Oi will occur at least r — 1 times in every
term of/' (x), for every term of/' (x) is formed from / (x)

by omitting one of its factors. Hence a root of f{x) =
which is repeated r times is also a root off {x)

= re-

peated r—1 times.

We can therefore find whether the equation f(x) =
has any equal roots, by finding the H. c. F. of / (x) and

/' (x) ;
and if / (x) be divided by this H. c. F. the quotient

when equated to zero will be an equation whose roots are

the different roots of/ (x)
= 0, but with each root occur-

ring only once.

Ex. 1. Find the equal roots of the equation

«* - 5x3 - 9a;a + 81a; - 108= 0.

Here f{x)^x*- 5x^ - 9x» + 81a; - 108,

/' (x) = 4ar» - 15a;2 - 18« + 81.

The H.O.F. of /(«) and/' (x) will be found to be x^-Qx+ 9, that

i8(x-3)».
Since {x

-
3)^ is a factor of /' (x), (x

-
3)" will be a factor of / (x),

and it will be found that / (x)
= (x

-
3)' (x+ 4).

Thus the roots of the given equation are 3, 3, 3,
- 4.

Ex. 2. Shew that in any cubic equation a multiple root must be
commensurable.

This follows from Art. 445 and 446, and from the fact that a
cubic equation can only have three roots.

Ex. 3. Solve the equation x» - 15x3+ i0a;3+ 60x - 72= by testing for

equal roots.

'. Here / (x) = x« - 15x»+ lOx^+ 60x - 72 ;

/' (x) = 5x4 - 45x2 + 20x + 60.

;
It will be found that the h.c.p. of /(x) and/' (x) is

x3-x2-8x + 12.

If now we divide /(x) by x3-x^-8x+ 12 the quotient will be

! x'+x-6, and the roots of x'^+ x- 6= are 2 and -3.

Thus the given equation has only two different roots, namely 2

and - 3 ; and it will be found that /(x) = (x
-

2)3 (x + 3)^. Thus the

roots of/(x) = are 2, 2, 2, -3, -3.
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454. Continuity of any ra4:lonal and integral
function of x.

Let po^" + p^x^~^ + _p2^"~2 + -\-pn be any rational

and integral function of x arranged according to descend-

ing powers of x.

Then each term will be finite provided x is finite
;
and

therefore, as the number of the terms is finite, the sum of

them all will be finite for any finite value of x.

It can be easily proved that the first (or any other

term) can be made to exceed the sum of all the terms
which follow it by giving to a; a value sufficiently great ;

and also that the last (or any other term) can be made to

exceed the sum of all the terms which precede it by
giving to a? a value sufficiently small.

For let k be the greatest of the coefficients; then

l>ix'^i + ... +p^
""

fc {x«-i + ... 1)
^

kx^
^

k ^' ">'

Now ^ (a;
-

1) can be made as great as we please by sufficientlyK

increasing x.

We can prove in a similar manner that
Pnl{Pn-i^+ "• +PoX*^) can

be made as great as we please by sufficiently diminishing x.

Now suppose that x is changed into x-\-h\ then we
shall have

f(x + h) -fix) = hfix) +
^f"{^)

+ >1

where the coefficients /'(a?), f"{oc), &c. of the different

powers of h are finite quantities.
Then by the above, the first term on the right (or if this

term vanishes for any particular value of x, then the first

term on the right which does not vanish for that value)
will exceed the sum of all the terms which follow it,

provided h be taken small enough. But the first term
will itself become indefinitely small when h is indefinitely
small. Therefore /{x-^-h)—/ (x) can be made as small

as we please by taking h sufficiently small. This shews
that as X changes from any value a to another value b
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f {x) will change gradually and without any interruption
from f (a) to fib), so that f {x) must pass once at least

through every value intermediate to / (a) and / (6).

It must be noticed that it is not proved that f {x)

always increases or always diminishes from / (a) to / (6),

it may be sometimes increasing and sometimes diminish-

ing as a; is changed from a to 6; what has been proved is

that there is no sudden change in the value of / {x).

455. Theorem. If f (a) and /(yS) have contrary

signs one root at least of the equationf (x) = must lie be-

tween a and /3.

For since /(a;) changes continuously from /(a) to/(/3),
it must pass once at least through any value intermediate
to /(a) and/()S); it therefore follows that for at least one

value of X intermediate to a and ^ it must pass through
the value zero, which is intermediate to / (a) and / (yS)

since /(a) and /(/S) are of contrary sign. Thus the

equation f(x) = is satisfied by at least one value of x
which lies between a and /3.

For example, if /(a:)= jr3- 4a; + 2, then /(1) = -1 and / (2)
= 2.

Hence one root of the equation x' - 4a: + 2=0 lies between 1 and 2.

456. Theorem. An equation of an odd degree has
at least one real root

Let the equation hef(x) = 0, where

f(x)=^x^+^ -f jhx"^ + +p^+i.
Then /(+x) is positive, f(0) = p^+^, and /(-oo)is
negative.

Thus there must in all cases be one real root, which
is positive or negative according as ^271+1 is negative or

positive.

457. Theorem. An equation of even degree, the

coefficient of whose first term is unity and whose last term
is negative, has at least two real roots which are of con-

trary signs.
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Let (c^ + p^aP^-^ + + ;)!m
= be the equation, pan

being negative.
Then /(+ oo ) is positive, /(O) =|)an, and /(— oo

) is

positive.

Hence, as ^an is negative, there must be one real root

at least between + oo and 0, and also one at least between
and — 00 .

458. The following is a very important example.

To prove that if a, &, c, /, ^, h he all real the roots of the equation

{x-a){x-h){x-c)-f^{x-a)-g''{x-h)-h''{x-c)-2fgh=0,

will always he real.

We may suppose without loss of generality that a->h>'C,

Write the equation in the form

{x-a){{x^h){x-c)-P]-{9''{x-h)-^h^{x-e) + 2fgh}=Q.

By substituting + oo
, 6, c,

- oo respectively for x in

(x-h){x-4)-f\

we see that the roots of the equation (x - 6) («
-

e) -P=0 are always
real ; and if a and /S be these roots, where a>/9, then a>6>c>/S.

Now substitute + oo
, a, /S,

-co for x in the left-hand member of

the cubic equation, and we shall have respectively the following
results

+ <».
- {gsl^-b + hja -

c}9, +{gJh-§+hJc-^}\ - oo.

Hence there is one root of the cubic between + od and a, one root

between a and
/9,

and one root between /3 and - oo .

If, however, a=/3 the above proof fails ;
but if o=/3, then

{x -h){x- c) -f\ must be a perfect square, whence it follows that

b=c and/=:0.

The cubic equation in this case becomes

(a?
-
o) (x

-
&)«

-
(5f2+ Zi3) (x

-
6) =0,

the roots of which are at once seen to be all real.

If a be a root of the cubic equation itself, there will be another
real root less than ^. Hence aU the roots of the cubic must be real,
for the equation cannot have one imaginary root.

The cubic equation considered above is of great importance in

Sohd Geometry, and is called the Discriminating Cubic.

459. Theorem. Iff(a) and f(0) are of contrary

signs, then an odd number of roots off {x)
—

lie between

a and ^ ; also iff (a) and f (fi) are of the same sign, then
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no roots or an even number of roots of /(x)^0 lie between

a and yS.

Let a, by c, , k be all the roots of the equation

f(is)
= which lie between a and /S ;

then

/ (at)
=

(sp
—

a) (w
—

b) (x
—

c) (a?
—

k)(^ {x\
where

<j> (x) is the product of quadratic factors (correspond-

ing to pairs of imaginary roots) which can never change
sign, and of real factors which do not change sign while x
lies between a and yS.

Then

/(a) = (a-a)(a-6)(a-c) (a-k)<t>(a\
and /(/S)=:()8-a)(ye-6)(;5-c) {^-k)<f>{P).

Now, supposing a > /3 all the factors a — a,a — bf ,

a — k are positive; and all the factors ^ —
a, ^ — b, ,

fi
— k are negative ;

also
</> (a) and <^ (/3) have the same sign.

Therefore if/ (a) and/(/3) have contrary signs there must
be an odd number of the roots a, 6, c, , k. Also, if

/ (a) and / (/5) have the same sign there must be no such
roots or an evert number of them.

460. Rollers Theorem. A real root of the equation

f'(x) — lies between every adjacent two of the real roots

of the equation f{x) = 0.

Let the real roots of f(x) = 0, arranged in descending
order of magnitude, be a, 6, c, . . ., k. Then

f(x) = (x-a)(x'- b). . ,(x -k)<j) (x\
where <^ (x) is the product of real quadratic factors corre-

sponding to pairs of imaginary roots and these quadratic

expressions keep their signs unchanged for all real values

of X.

Then

f{x-\-X) = (x-a + X)(x''b-\-X)...(x-k + X)
X

{<^ (x) + X<^' (x) + higher powers of \}

[See Art. 452.]



578 THEORY OF EQUATIONS.

*^^ x — a x—b x — k <p(x)

5 terms on the right except t!

;,
and that term is

(x
— b){x- c). ..(x

—
k)<p (x).

Hence , y^ ,
-

, ,,.... ,. , . .

<l>(x)

Now all the terms on the right except the first contain

the factor x — a, and that term is

Hence

f{a) = (a-b) (a
-

c)...(a-A;)<^ (a).

So f{b)=Q>-a){b-cy..Q>-k)<j>{b\

f{c)^{o-a){c-b)...{c-k)<i>(c\

Now </)(a), 0(&), </>(c), &;c. have all the same sign.
Hence as a > 6 > c. . ., the signs of /' (a), /' (6), f (c), &c.

are alternately positive and negative. Hence there is at

least one root of /' {x)
— between a and 6, one root

between b and c, &c.

461. Descartes' Rule of Signs. In any equation

f(x) — the number of real positive roots cannot exceed the

number of changes in the signs of the coefficients of the

terms in f(x), and the numiber of real negative roots cannot

exceed the number of changes in the signs of the coeffixyients

0/ /(.-'»)
We shall first shew that if any pol3rDomial be multi-

plied by a factor x — a, where a is positive, there will be
at least one more change in the product than in the original

polynomial.

Suppose that the signs of any polynomial succeed each

other in the order +H \--\ h— ,
in which there

are five changes of sign.
Then writing only the signs which occur we shall have

+ + - + + + -
+ -
+ + - + + + -

Now we cannot write down the second partial product
for we do not know that all the possible terms in the
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polynomial are present ;
but whenever there is a change

of sign in the first partial product it is clear that if there

is in the second row any term of the same degree in x,

so that it would be put under this term which has the

changed sign, it must arise from the multiplication of

the next preceding term so that the two terms would have

the same sign. Thus whenever there is a change of sign
in the first partial product that sign will be retained in

the addition of the two lines of partial products. The
number of changes of sign, exclusive of the additional one
which must be added at the end, cannot therefore be

diminished.

Hence the product of any poljrnomial by the factor

x — a will contain at least one more change of sign than
there are in the original polynomial.

If then we suppose the product of all the factors

corresponding to negative and imaginary roots to be first

formed, one more change of sign at least is introduced by
multipl3dng by the factor corresponding to each positive
root. Therefore the equation f(x) = cannot have more

positive roots than there are changes of sign in the

coefficients of the terms in f{x).
The second part of the theorem follows at once from

the first, for the positive roots of /(— a;)
= are the nega-

tive roots of f{x) = 0.

The above proof may be made clearer by taking as a definite

example the multiplication of «'+ 2x^ - ar* + 4a;3+ 3a; _ l by «-l.
The signs of the two lines of partial products will be

+ + - + + -
- - + - ~ +

+ - + - +
In the third line the only signs written down are those under

the changes in the first line, which changes are all retained in the

final product. Hence no matter what has occurred in the intervals

the number of changes (exclusive of the one at the end) cannot be
diminished.

462. Descartes' Rule of Signs only gives a superior
limit to the number of real roots of an equation, but does
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not determine the actual number of real roots. The
number of the real roots of any equation with numerical

coefficients can be found by means of Sturm's Theorem.
Before considering Sturm's Theorem we shall shew how
to find algebraical solutions of cubic and biquadratic

(quartic) equations in their most general forms. Abel
has proved that an algebraical solution, that is a solution

by radicals, of a general equation of higher degree than
the fourth cannot be found, although particular forms

of such equations can be solved, for example any reciprocal

equation of the fifth degree can always be solved.

EXAMPLES XLV.

1. Solve the following equations each of which has equal roots :

(i) 4a;2^12a;3-15a;-4=0,

(ii) aj*-6a;3 + 13a;»-24x+ 36=0,

(iii) 16a;4-24a;» + 16x~3= 0,

(iv) 2x* - 23x3 + 84a;3 _ 80a; - 64 = 0.

2. Find the condition that the equation ax^+ 3bx^+ Scx+d=0 may
have two equal roots.

3. Shew that, if the equation ax^ + 36a;'+ 3ca; +d= have two equal

roots, they are each equal to

1 be -ad
2 ac-b^*

4. Shew that the roots of the equation

x-a' x-b' x-c' x-k'
are all real.

6. Shew that all the roots of the equation

a' 62 c» ,+ - + +...=w + n=a;
z-a «- /S

X- 7
are real.
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0. It a^y a^y a^, ...f a^^he in descending order of magnitude, and if

b be positive, prove that the roots of the equation

will all be real, and find their positions.

7. Prove that if a, &, c, d be unequal positive quantities, the roots of

the equation

X X z , ^+ r+ — +x + d=0x~a x-b x-e

will all be real ; and that, if the roots be a, /S, y, 8, then will

(a-a)(a-i8)(a-7)(a-5)'^(6-a)(6-/S)(6-7)(&-5)
C8 = 0.

^(c-a)(c-^)(c-7)(c-5)

a. Form the equation whose roots are the values of pu + jw"^, where
w is a fifth root of unity, and shew that tlie equation is

:fi-5pqx^ + Bp^q^x -p^-q^—0,

O. If o, /S, 7, 3 be the roots of the equation

a;^+ 4^3?'+ Cgx'+ 4rx + s =

form the equations whose roots are

(i) a/S+ 75, a7 + jS5, a5+ /S7.

(ii) (a+/3)(7+ 5), (a+ 7)(|3 + 5), (a + 5)(/3+ 7).

10. If a, /S, 7, 5 be the roots of the equation

it^+ 4pa;8 + 6ga;'+ 4ra: + «=

form the equation whose roots are

(a+ /S_7-5)a, (a-/S+ 7-5)2, (a
-

/S
-- 7+ 5)'.

11. If Oj, a,, a^ be the roots of

shew that Za^a^— '2p-^pg
-
'p^p^ +J^aPs •
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CtJBic Equations.

463. The most general form of a cubic equation is

a? + aa? + 6a; + c = 0.

We have however seen [Art. 442, iii.] that by in-

creasing each root by ^ , the equation will take the simpler

form ^'" + pa? + g = 0.

We shall therefore suppose that the equation has

already been reduced to this simplified form.

464. To solve the cubic equation a^ -\-px-\-q
= 0.

The solution is at once obtained by comparing the

equation with
a? - Sabx + a» + 6» = 0,

i.e. (a; 4- a + 6) (a? + wa + (o^b) (x + (o^a -\- mb) = 0,

where o) is an imaginary cube root of unity [Art. 139].
Thus the roots required are

— a — b,
— coa — oy^b,

— a>^a — ooh,

where a and b have to be determined from the equations

p = ^Sab, q=^a* + b\

Whence a* and 6' are given by

|iV(M?))-
465. The foregoing solution is a slight modification of

that called Garden's solution. It is a complete algebraical
solution of the equation and the values found for x would

satisfy the given equation identically. If, however, nu-

merical values be given to p and q, the numerical values

of a and b cannot be found when
j;
+ 9^ is negative, for we



THEORY OF EQUATIONS. 583

cannot reduce an expression of the form (3 + 5\/ — l)i for

example, to the form a + /SV — 1. Thus when p and q are

numerical quantities such that ^ +
9I7

is negative, Garden's

solution altogether fails to give a numerical result.

This case is called the 'irreducible case/ and
we shall see further on [Art. 467, Ex. 3] that when
p^ Q* , .

^ +^ is negative all the roots of the cubic are real.

It should also be noted that in any case the approxi-
mate values of the real roots of a cubic can be obtained

much more easily by Horner's general process [Art. 475]
than by Garden's solution.

Ex. Solve the cubic equation x*+ 4x - 6= 0.

Comparing with «» - Sabx+ a'+ 6*= 0,

we have -3a6=4 and a' + 6*=-6,

whence a and b are given by

{-I4./2793}*.
The approximate values of a and 6 can therefore be found, and then

the roots are
- a - 6, -wa- 0)^6,

- w^a - w6.

In this example the solution can be obtained in a very simple
manner. For, using the test given in Art. 449 for commensurable

roots, we are led to find that 1 is a commensurable root, and writing
the equation in the form {x-1) (a;^ + a; + 6)=0, the roots are at once
seen to be

1, -i(liV^^).

Biquadratic Equations.

466. Several methods of solution of a biquadratic

equation have been given. In all of them the solution is

shewn to follow from the solution of a cubic equation.

IThe

simplest method of solution is that due to Ferrai-i.

§ s. A. 39
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To solve the equation a^ + poc^ + qa^ \-rx-\- s=0.

Ferrari's Solution. Add {ax-\-^y to both sides of

the equation; then

a^^-px''^{q-\-a')a?-^{r-\-2a^)x-\-s-¥^ = {oLX-\-^)\

Now the left-hand member will be a perfect square,

namely f a?* + ^ a? + X
j

, provided

2X + ^ = g + a», ;)\
= r-l-2a/9 and X» = 5 + ^^

Eliminating a and ^S, we have a cubic equation to

determine \, namely

4 (X» -.s){^X^^-q\- {p\
- ry = 0.

One root of this cubic equation is always real, and if

this root be found the values of a and yS are determined.

We then have

(x'-^^x-^xj
= (ax + l3)\

whence
ai'+^x -{-\ ±(ouc + ^) = 0,

where a, /8 and \ are known. Thus the biquadratic

equation can be completely solved.

Ex. Solve the equation

Add (cur+ /S)* to both sides ; then

ar*+ 6x3+ (14 + a2) a;«+ (22 + 2a^) a;+ 6 + /Sa
=

(aa;+ /3)2.

The left-hand member is the square of a;^+ 3a; + X provider?

9 + 2\=14 + a2, 6X= 22 + 2aj3 and \^=5 +^\
Whence (X'-S) (2\- 6)- (3\- 11)2= 0;

X8-7X»+ 28X-48= 0.

The real root of the oubio is 3.
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Then, taking \=3, we have a^=l, 2aj8= -4, /S2=4.

Hence {x^ + 3a; + 3)'
=

(a;
-

2)»,

whence we obtain the roots - 2 ± «y3,
- 1 ±2^-1.

Sturm's Theorem.

467. Sturm's Theorem. Let /(a;)
= be an equa-

tion cleared of equal roots, and let /i (x) be the first derived

function of f (x). Let the process of finding the highest
common factor of / (x) and /i (x) be performed with the

modification that the sign of every remainder is changed
before using it as a divisor, and let the operation be con-

tinued until a remainder is arrived at which does not

contain x (this will always happen since f(x) = has

no equal roots and therefore f(x) and fi (x) have no
common measure in a?), and change also the sign of this

last remainder.

Let /a (a?), fs(x\..., fm(^) be the series of modified

remainders so obtained, of which the last, fm (x), does not

contain x.

Then the number of real roots of the equationf(x) =
between a and yS, [/8 > a] is equal to the excess of the num-
ber of changes of sign in the series f(x),f (x) ,f (x), . . . ,/m (^)
when x = a over the nu/mber of changes of sign when x = 0.

For, let qi, g',,..., qm-i be the successive quotients;
then we have the series of identities

f,(x) = qsfi(x)-f^(x),

/m-a (a?)
= qm-ifm^i ((c) -fm («?)•

Now (i) it is clear that no two consecutive functions

n vanish for the same value of x, for in that case all the

iceeding functions, including fmi^c), would vanish for

,hat value of (x) ; and, (ii) it is also clear that when any
89—S
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one of the functions except /(a;) vanishes, the two adjacent
functions will have contrary signs.

It follows from (i) and (ii) that so long as the increasing
value of X does not make f{x) itself vanish, that is unless

we pass through a real root of the equation f{x) = 0, there

can he no alteration in the number of changes of sign in the

series of Sturm's functions ; for no function will change
sign unless it passes through a zero value, and when this

is the case for any function, since the two adjacent func-

tions have opposite signs, there must be one and only one

change in the group of three.

Next suppose that a is a real root of the equation

/(a7)
= 0. Then /(a + X) =/(a) + X/' (a) + &c.

;
and as

f{a)
= 0, the sign of the series on the right will, if \ be

very small, be the same as the sign of + >f' {a). Hence,
however small \ may be, the sign of f{a — X) must be

opposite to that of /' (a), and the sign of f(a + X) must
be the same as the sign of /' (a).

Thus as X increases through a real root of the equation

f(x) = 0, the series of Sturm's functions will lose one change
of sign.

Since we have proved that as x increases the series of

Sturm's functions never lose or gain a change of sign

except when x passes through a real root of the equation

f(x) — 0, in which case one change of sign is always lost, it

follows that the excess of the number of changes of sign
when x = a over the number of changes when x = ^ must
be equal to the number of real roots of the equation which
lie between a and ff.

To find the total number of real roots of an equation
we must substitute — oo and + oo in Sturm's functions

;

then the excess of the number of changes of sign in the

series in the former case over that in the latter will give
the whole number of real roots,

Ex. 1. Find the number of the real roots of the equation

Here f{x)=x* + 4^-^x- 13,

/i(x)
=

4(a;3 + 3x2-l).
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N.B. We may clearly multiply or divide by positive numerical

quantities as in the ordinary process for finding h.c.f. It will be
found thai

f^{x)=x^ + x + 4.,

/g(a;)
= 2.r + 3,

f,{x)=-19.

Substitute -oo
, 0, +qo in the above functions, and the series of

signs will be

+ - + --; -- + + -; + + + + -.

Thus there is one real root between - oo and 0, and one real root
between and + oo .

Ex. 2. Find the number and the position of the real roots of the

equation a:" - 5a;+ 1= 0.

Here f{x)=x^-6x+lf
and f^{x)= 5(^-1).

It will be found that

Mx)= ^x-1,

/,(a;)=+255.

The following are the series of signs corresponding to the values
of X written in the same line

-2, - + - +

-1, + - +

0, + - - +

1, - + +

2, + + + +
Hence there is one real negative root between - 2 and -

1, one

positive root between and 1 and another between 1 and 2, the

remaining two roots being imaginary.

Ex. 3. Find the condition that all the roots of the equation

afi+px+q=0
may be real.

f{x)=x^+px+ q,

f^(x)= 3x^+p.

The other functions will be found to be

f^{x)=-2px-^3q,

Mx)=-{27q^ + ip^).
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-, +, +2p, -(27g«+ 4p»),

and +, +, -2p, -
{27q^ + ip^).

In order that the roots may be all real, it is necessary and
sufficient that there shall be three changes of sign in the first line

and none in the second, the conditions for which are that p and
27g2^4^3 must both be negative, the second of which implies the
first.

468. Although Sturm's Theorem completely solves

the problem of determining the number and the position
of the real roots of an equation, it is often a very laborious

process. In some cases the position of the real roots can
be determined without difficulty by actual substitution;
and sometimes the necessity for using Sturm's Theorem
can be obviated by some special device.

Ex. 1. Find the number and position of the real roots of the equation

a^_41a;2+ 40a.+ 126= 0.

Substitute in f{x) the values 1, 2, 3, 4, 5, 6 in succession, and
the signs will be +,+,-, -,-,+. Hence there is one root (at

least) between 2 and 3, and one (at least) between 5 and 6
; but by

Descartes' Rule of Signs there cannot be more than two positive
roots.

Hence there are two positive roots which lie between 2 and 3 and
between 6 and 6 respectively.

We can find in a similar manner that there are two negative roots
which lie between - 1 and - 2 and between - 6 and - 7 respectively.

Ex. 2. Find the number and position of the real roots of the equation

x*-14a;»+ 16a; + 9=0.

In this case wo should easily find the two negative roots which
lie between and - 1 and between - 4 and - 6 respectively. The

positive roots would, however, probably escape notice (unless Sturm's
Theorem were used) as they both lie between 2 and 3 ; it will in fact

be found that/ (2) is +,/(2i) is -, and/ (3) is +.

Ex. 3. Find in any manner the number and position of the real roots

of the equation
a:« - 6a:» - 7*^+ 8a; + 20= 0.

By Descartes' Rule of Signs we see by inspection that there

cannot be more than two positive roots and there cannot be m<>re

than two negative roots.

Now /(I) is +, /(2) is -; thus one real root lies between 1 and
2. Since / (co )

is + ,
there must be another positive root which is

. easily found to lie between 5 and 6.
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Change x into -
x, then the negative roots of the given equation

are positive roots of

a:« + 5x»-7a;2-8aj+ 20= 0.

Now f{x) must clearly be positive for all positive values between
and 1 ; and if a;> 1,

/ (a;)
>6x*- 15x2 + 20,

which is always positive since

4x6x20-15«>0.

Hence there can be no real negative roots.

469. Equation of DifTerences. If /(a?)
= be any

equation of which a and /3 are any two roots, and if

y = OL
—

P, we shall obtain an equation in y whose roots

are the differences of the roots of the given equation by
eliminating /3 from the equations /(y + /8)

=
and/(y8) = 0.

Since a — yS and y8
— a will both be roots of this equation,

it follows that the equation in y will only contain even

powers of y ;
and it is easily seen that the equation in y^

has as many positive roots as there are pairs of real roots

of the equation f{x)
=

0, and that the equation in
y'^

has

all its roots real and positive if the roots of the equation

f{x) = are all real.

In the case of the cubic a^-{-px + q = the equation
in y^ can be found more easily as under.

To find the equation whose roots are the differences of the roots

of the cubic «* +px + q= 0.

Let y^— {a-^)\ where a, /3, y are the roots of tne cubic.

Then
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if ip^ + 27q^ be negative the equation in y^ will have three positive
roots which are separated by +ao, -2p, -p, 0.

Thus a necessary and sufficient condition that the cubic

a^ +px + q=

may have all its roots real is that 42)» + 27g' may be negative.

470. We shall conclude by shewing how to find the

approximate values of the real roots of any equation.
This can be done in various ways; we shall, however, only

give Horner's method. We must first give the explan-
ations of the separate processes which are employed.

471. Synthetic Division. Suppose that when

/(x) = a^/c'^ + Oia?**-! + a^'^-^ + . . . + On

is divided hy x — X the quotient is

Q = 6oa;"-^ + M«-» + 62^"-' + . . . + hn-i,

and that the remainder is R, where R does not contain x

Then f(x)
= Qx(a!-X) + E.

But Q X (a?
—
X) + jR is at once seen to be

60^" + (61
-

X60) x""-' + (b,
-

\h,) x^-^ + . . .

Equating coefficients of the dififerent powers of x mf(x)
and in the expression last written, we have

bo
= ao, hi

— \bo = (ii, bfi
—

Xbi = a»i,

br^i
- \bn^ = a„_i ,

R — Xbn-^ = an.

From the above relations it will be seen that the values

of 60, 61, 62, (fee. can be obtained at once by the process
indicated below :

Oq Oi a^ as an-i an

Xbff Xbi X63 Xbn-i Xbn-i

bo bi 6, 63 bn-i R

First 60 = «o; multiply &<, by X and add to Oi, the sum ii
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61; multiply 61 by \ and add to a^, the sum is 63; proceed
in this way to the end.

Ex. Find the quotient and the remainder when

is divided by a; - 2.

l_6 + 2 + 15 + 04- 7
2-8-12 + 6 + 12

1-4-6+ 3 + 6 + 19

Thus the required quotient is

x4-4a;»-6x2 + 3a; + 6,

the remainder being 19.

The -above process is called the method of Synthetic
Division. The method can easily be extended to the

case when the divisor is a multinomial expression, but
this extension is not needed for our present purposes.

472. The actual values of &„, \, 63, &o. in terms of a^, a^, a^, &o.

and X can be at once written down
; they are

&o= ^o» 6i=ai + Xao> 62=^+ ^% + ^X»

and i2= a^+Xa„_i+...=/(X).

Thus ^^=aoa;'»-i+ (ai+ Xao)a;»-»+...

From the above we can obtain the formula of Art. 439.

For, if a, 6, c, ... be the roots of the equation /(a;) =0; then

x-a x-b

= {agX*-^ + («i + ««o) a;"~" + (oa + aoi + a^do) a;*"* + ... }

+ {a^«-i + («! + 6ao) ar^-a+ (aj+ feoi + b^a^) x^-^+ . . . }

+ ...

= na^x^^^ + (nttj + ao2a) a:**"'

+ (noa+ ajSa + a^Za^) ar"-' + . . .

But /' {x)
= naoxn-i + (n

-
1) ajX^-^+ (n

-
2) aaa;»-^ + .„
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Equating the coefficients of like powers in the two expansions,
we have

naQ=naQj

(n
-

1) Oj= noj + ttflSa,

(n
-

2) a,= na^+ aj2a + aoZa*,

Whence the required result follows at once.

473. We have already seen [Art. 442, ill.] that in

order to dimmish each of the roots of the equation /(ai)
=

by \, we have only to substitute y + X for a; in /(a?).

Let the equation whose roots are those of

aoa;« + Oja;'*-^ + aaa;'*-^+ . . . + an = 0,

each diminished by \, be

boy"" + &i2/"-^ + %"-' + . . . + 6„ = 0.

Then, since y — x — \ the last equation is equivalent to

h, {x
- \Y + h^{x- xy^^ + . . . + fe„-i (a;

-
X) + 6n = 0.

The equation last written must be identical with f(x)
—

0.

Hence we have identically

f{x) = h,{x-Xf + \ {x
-

X)*^! + ... + 6n-i («-X) + 6n.

From the form of the right-hand member of the above

identity, it follows that if we divide f{x) by a; — \, and
then divide the quotient by {x

—
\), and so on, the suc-

cessive remainders will be the quantities 6n> &n-i»"»» ^i> ^o-

Ex. 1. Find the equation whose roots are those of

a;*-2a58+ 3x-6=0,
each diminished by 2.

Using the method of Art. 469 to perform the successive divisions,

the whole operation is indicated below, the successive remainders

being printed in black type.

1_2+ 0+ 3-5
2 6

1
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The first division gives the quotient «*+3 with remainder 1; the
second division gives the quotient 05^^+ 20;+ 4 with remainder 11; the
third division gives the quotient x + A with remainder 12, and the
last division gives the quotient 1, and remainder 6,

Ex. 2. Find the equation whose roots are those of

x»-x^-x+ A=0,
each increased by 3.

The divisor is here a;+ 3, and the work is as under.

1- i_ 1+ 4 i_ i_ 1 + 4
- 3 + 12-33 i_ 4 + 111^29

" ^ + ^^ 1-10
1- 7 + 32
- 3

1-10

Thus the transformed equation is

ar>-10a;2+ 32a; -29= 0.

We shall in future write the operation as on the right, the multi-

plication and addition being performed mentally, and the result only
being written down.

474. In order to multiply all the roots of the equation

a^ + Oia?**-^ + a^''*^ + ... -f On =

by ten, we must substitute :^ for a? in its left-hand

member. If we then multiply throughout by 10**, the

transformed equation will be

Ooa?** + lOoia?**-! + Wa^"^ + ... + lO'^a* = 0.

Thus in an equation with numerical coefficients the roots will be

multiplied by 10 by affixing one nought to the coefficient of «"~^, two

noughts to the coefficient of x^~\ and so on.

For example, the equation whose roots are those of

X*- 2*34. 5a;+ 8=0,
each multiplied by ten, is

X* - 20a:»+ 5000a?+ 80000= 0.

475. Homer's method of approximating to the
real roots of equations with numerical coefficients.

Having found (by trial or by Sturm's Theorem) two
consecutive integers between which a real positive root of
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the given equation must lie, the first step is to diminish

all the roots of the given equation by the smaller of those

integers. Then, by supposition, the transformed equation
will have a root between and 1. We now multiply
all the roots of the last equation by 10 by the process of

Art. 472, so that this new equation has by supposition a

root between and 10; now find by trial between what two

integers less than 10 the root lies, and diminish the roots

of the equation by the smaller of these integers. Then

again multiply the roots by 10, and continue the process
until the required degree of accuracy is attained.

After the roots of the given equation have been di-

minished by the integral part of the required root, the

roots are multiplied by 10 in order to avoid decimals in

the work, the next integral root found must therefore

originally have been so many tenths. After again multi-

plying the roots by ten, the next integral root found

corresponds to hundredths in the original equation; and

so on.

By the above process it is clear that we are con-

tinually approximating to the root sought; care must,

however, be taken that we do not pass beyond the root,

which would be shewn by the change in sign of the

constant term.

The negative roots can be found approximately in a

similar manner after changing x into — x.

Ex. 1. Find to two places of decimals, the positive root of the equation

«»-3a:-4=0.

There can only be one positive root, and by trial this must lie

between 2 and 3. First diminish the roots by 2, and the transformed

equation will be found to be «*+6a;2+ 9a;-2= 0. Multiply the

roots by 10 and we have the equation ««+ 60a;*+ 900ar- 2000= 0,

which will be found to have a root between 1 and 2. Diminish the

roots of this last equation by 1, and the transformed equation will

be a;" + 630;''+ 1023a; -1039= 0. Multiply the roots of this equation

by 10, and the resulting equation will be found to have a root

between 9 and 10. Diminish the roots of the last equation by 9,

and the resulting equation is a;3 + 657a;8 + 113883a; -66641 = 0, which

could be used to obtain a more accurate result.
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The work is written as under, lines being drawn to indicate the

completion of each stage of the process.
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at each successive stage, as in the ordinary method of contracted

division.

476. Zmasinary root*. The nnmerioal values of the imaginary
roots of an equation can theoretically be obtained in the following

manner, but the work would except in very simple cases be very
laborious.

Ex. Find the numerical values of the imaginary roots of the equation
«»+ 3a;-l=0.

Put a+ 1/3 for « in /{«), and equate the real and imaginary ex-

pressions separately to zero; then we shall have

a»+ 3a-l-3a/32=0 and 3a»/3-/S»+ 3/3=0.

Rejecting the factor /S=0, which corresponds to a real root of the

given equation, we have by eliminating /3
the equation

8a»+ 6an 1=0.

Now a must be a real root of the equation last written, and this

real root will be found to be - '16109

Then /S«=3(a«+1), whence /5
is found to be 1-75438.... Thus

the required roots are - -16109... ±1-75438...V^^

EXAMPLES XLVI.

1. Solve the following equations :

(i) «»-12a;+66=0. (ii) «»-9a;+28=0.

(ui) a^- 48a; -620=0. (iv) «»- 21a; -344= 0.

(v) a;'-2a;+5=0. (vi) a;» - 6a? - 11= 0.

2. Solve the following equations :

(i) ar^-f 2x3 + 14a;+15=0. (iij a:*- 12a; -5=0.

(iii) a;*-12a;3+ 24a;+ 140=0. (iv) 4a;*+ 4a;»-7a;a-4a;-12=0.

3. Apply Sturm's Theorem to find the number and position of the
real roots of the following equations :

(i) «»-3«+6=0. (ii) a;»-a;»-33x + 61=0.

(iii) 2a;<-a;»-10a; + 8=0. (iv) a;*-14a;3 + 16a; + 9=0.

(v) a;*-7a-a+ 3a;-20=0.

4. Find all Sturm's functions for the equation a?+ 3px^ + 3qx + r= 0,

and hence shew that, if p^-<q, there must be two imaginary roots.

6. Prove that the roots of a;' +px^ + r=0 are all real if either porr
be negative, and -

4p'r be greater than 27r^.



THEORY OF EQUATIONS. 597

6. The coefl&cients of the algebraical equation f{x)=0 are all

integers. Shew that, if / (0) and / (1) are both odd numbers, the equa-
tion can have no integral roots.

7. Shew that one root of the equation a:» - 2* - 5=0 is 2-09465 148,

8. Find the real positive roots of the following equations, each to

4 places of decimals :

(i) x3-7a;+7=0. (iv) x*+i>t^-4a^-16=0.

(ii)
a»-8a;-40= 0. (v) a:4-14ar» + 16x + 9= 0.

(iii) x^-Qx^ + 9x-S=0. (vi) {r»-2= 0.

O. Find the number and position of the real roots of

(i) X* + 2a;3 _ 23x3 - 24a; + 144= 0,

and (ii) x*- 26x3+ 48a?+9=0.

10. Prove that the equation
x« - 7x3 + 15x3+ 3x- 4=0

cannot have more than 4 real roots ; prove also that these roots must lie

between 1 and -1.

1 1. Solve the equation

2x«-7x*+ 6x«-llx2+ 4x + 6=0,
having given that the real roots are commensurable.

12. Find the equation whose roots are the square of the roots of

x» - 3px^
- 3 (1

-
i?) X+ 1= 0,

hence shew that the given equation has three real roots for all real

values of p.

18. Prove that the equation

x»-3i)x3-3(l-^)x + l=0
has three real roots for all real values of p.

Prove also that, if these roots be o, )S, y then

|8(l-7)=7(l-a)= a(l-/S) = l,

or /3(l-a)=7(l-/3) = a(l-7)= l.

14. Shew that the equation whose roots are the sum of pairs of

roots of the quintic x° +px + g = is

xW - 3px«
-
llgxB

-
4p2x3 + 4^gx -q^=0.

16. Prove that the equation

X*+ 4ax»+ Sa^x^ + 4ax + 1=

has no real roots unless

and that the equation has two real roots if a* is between these limits.
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16. Prove that, if a be the root of the equation

a?*+ oa?* - 6a;2 - oac + 1= 0,

, . 1 + a
80 also IB

;,
.

1-a

Prove also that the other two roots are

1 , a-1— and -.
a a-t-1

17. Prove that, if a, /S, 7, ... be the roots of

then Sa2/9^7= -
p^p^+ Bp^Pi

-
^Ps •

18. Shew that, if Oj, a2,...be the roots of

x"^ - 5pa^ + 5p^x -q= 0,

then Zaj*a^'ai^a^ + Sq^ + 60()p»= 0.
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1. Find the factors of the expressions :

(i)
a^ {b

-
c)(c + a - h){a + b - c) + b^ {c

-
a)(a + b - c) (h + e-a)

^-(^ (a-b){b + c-a){c + a-b).

(ii)
abed (a* + b^ + c^ + (P)^ b^c'd^ - c^6?d? - d^a'b^ - a*bh\

(iii) 2 (a» + 6* + c') + a'b + a'c + b^'c + b^a + c»a + c% - Zabc.

(iv)a*(6+c)+6*(c + a)4-c''(a + 5) + a»(6 + c)^+6»(c+a)»
+ c* (a + 6)' + 2abc (be + ca + ah).

2. If a' - a» = 6=* - y8*
= c« - 7^ prove that

6y - c/3 ca - ay aB - ba .
_£ ^ + _^

—^ + -i:: = 0.
a — a — p C-y

3. Shew that, il yz \- zx + oyy
=

a', then111
jf. 4-

yz {a^ + a^) zx (a* + y*) xy (a' + z^)

2a*

xyz V{(a* + £c») (a« + y=) (a» + «»)}

'

4. Shew that, if
2/2;

+ «a; + ay = 0, then

(y + 2)» (« + a)* (a + y)« + 2ar»2/V

= «*
(2/
+ zf + y* (» + x)' + 2;* (a; + g/)*

5. Prove that, \if{x), any rational integral function of a;,

be divided by (a: -a){x- 6), the remainder will be

a— 6 a— 6

6. Prove that 2 {(6
-

c)* + (c
-

«z)* + (a
-

6)*} is a perfect

square.

7. Find the square root of

3{(6-c)« + (c-a)« + (a-6)«-2(a« + 6»+c«-6c-ca-a6)»}.

8. Shew that

S. A. 40

1^
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9. Shew that, if a, 6, c be positive quantities and not

all equal to one another,

be (a -b){a-c) + ca {b
—
c)(b-a) + ab (c -a){e- b)

will be positive,

10. Shew that, if a + 6 + c = 0, then will

a{a-bf{a-cY + b(b-cf(b-ay + c{c-ay{c^by
+ 27 abc (be + ca+ ab)

= 0.

11. Shew that, ifa+5 + c + c? = 0,

(i) (Sa»)»
= 2^a' + Sabcd, (ii) ^'

=
-^'

. ^ .

Shew also that %a^^'^^ is divisible by 2a', if n be a positive

integer.

12. Shew that, ii a + b +c + d = = a^ -^-b^ -i- c* + (P, then

a^^b' + c^ + d' =
^(a'

+ b* + c' + (P)\

13. Shew that, ifa + 6 + c + c?+e +/= 0,

and a* + b* + (^-^<P^e* +/» = 0,

then will (a+ 6)(6 + c)(c + a) + (c? + e)(e +/)(/+ (^ = 0,

and = Sa' = V ^a^ x - Sa*.
7 o

^
^

14. Shew that, if one of the three quantities

ax + by -k-cz, by + cx + az, cz+ay + bx

vanishes, the sum of the cubes of the other two will be equal to

(a^ + b^ + c^- 3abc) {a? + y^ + s? — 3xyz).

15. Prove that, if

u = x + y + z-\-a(y + z- 2x\
v = x+y + z + a{z + x — 2y\
to=iX + y + z-^a(x + y — 2z),

then 27a' (a^ + y^ + z^ - Sxyz) ^u^+v^ + tu^ - Zuvw.
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16. Shew that, if

X— ax + by+ cZy A = ax + cy + bZf

T= cx + ay + bZj B = bx + ay + c«,

Z = bx + ci/ +aZf C = cx + by + aZy

then will

{X-A){X-B){X-^G)^{Y-A){T-B){Y-C)
= {Z- A) {Z - B) (Z -G) = XYZ - ABG.

17. Prove that, if 6' < 4ac and 6'* < 4a'c', then

{be'
-

b'c) {aV
-

a'b) < {ca'
-

ac')\

18. Having given that

6, be - 1^ and abc + 2lmn - al^ — btm? — cn^

are all positive, prove that a, c, ac — m' and ab — n^ are all

positive, all the letters denoting real quantities.

19. Shew that, if a, b, c be unequal, and

a(b -c) x + b{c-a) y + c{a-b) » = 0,

a(b
—
c)yz+b{c

—
a) zx+ c(a

—
b) xy= 0,

then x^^y^z.

20. Shew that, if

aa? + by^ + c^r^ + 2fyz + 2gzx + 2hxy
=

{Ix + my 4- nz) (Vx + m'y + n'z),

then (mw'
—
m'w) {gh

—
of) = (wZ'

—
n'l) {hf- bg)

= (Im! — I'm) {fg
—

ch).

21. Eliminate
(i) a;, y, « and

(ii) a, 6, c from the equations

cy -^bz =^ az + ex = bx + ay =^ ax + by + cz,

22. Shew that, if

x—a y—b_ x^b y

y—b x—a y—a x-b*
then either a = b or x = y or x + y = a + b.

40—2



602 MISCELLANEOUS EXAMPLES.

23. Shew that, if a + 6 + c = 0, then

a' \ aj
. I§

24. Prove that the necessary and sufficient conditions that

the roots of

X {a:^ + bx+c) + fx {a'a? + h'x + c')
=

may be real for all real values of X and
/i,

are that

6» - 4ac>

and (he'
-

h'c) (ah'
-

a'h)
-

(ca!
-
c'af > 0.

25. Find the condition that the solution of the equations

2a (1
-

a;) + (6 + c) as = 26 (1
-

y) + (c + a) y,

2c? (1
-
«) + (e +/) aj= 2e (1 -y) + (/+ (^) y

may be indeterminate.

26. Having given that a + y + « = 0, and

a? f s» ^
b — c e — a a — b

prove that 2 (6
-

c) (6 + c - lafla? = 0.

27. Prove that, if

x + y +« = = a'^ic + 6'y + c*«,

then (a + 6 + c) (a'a; + h^y + c's;)

=
(he + ca + a6) (6ca; + cay + a6«).

28. Solve the equations :

(i) j27?-\ +Joc*-3x-2=:^j2x' + 2x + 3-i-Joe'-x + 2.

^ '
\a; + a/ \x + hj \x + c)

+ 2^"-^4^4^^.1 = 0.

(oj
+ a) (a;

+ o) (a;
+ c)
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(iv) x + y + z=Oj
ax + hy + cz = 0,

aV + by + cV - 3 (6
-

c) (c
-

a) (a
-

6).

(v) 2yz = 2/ + «, (vi) a; (a + 2/
+ ») + «/« = «^

2205 = z + x, y(x + y + z)-^zx = h\

2xy = x-i-y. z (x + y + z) -^ xy = c^.

(vii) o^{x' + ^)
= y''{y'+4) = z^z''i-4)=bxyz.

(viii) ay« + by + cz = hzx + cz + ax

=
0072/ + ax + by = a + b + c.

(ix) a; - y = 2, rr^ - yt^ = 3, ic«'' - ytcr^
=

5,

and 0^2;* — yid^
== 9.

(x) x + y + z =0f
a b e = 0.

(c
-
a) oj (a

-
b) y {b-c)z

*

b—e e-a a-b 111
+ + = - + -+ -.

X y z a b c

. .. cy + bz az + ex bx + ay
(xi)

^ = = ^ = x + y + z,^ '

y + z z + x x + y
^

(xii) yz + bcx 4- aby + caz = 0,

zx + ahx + cay + 6c« = 0,

xy + caa; + bey + afta; = 0.

29. Shew that, if

X y z ^

a; + a 6+a c + aay*
and + r-^— + =1:

a + y 6 + y c +y

then will
a; V « 1 tti^Y

a 6 c aba
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30. Prove that the three equations

a h a h' f.— a-T7y + — + — = 0,a h
" X y

b c b' c' f.

c y z

c a c' a' f.

-tZ ^3?+— +— =0,
c a z X

are inconsistent unless a + b + G = 0.

31. Eliminate x, y, z from the equations

p = ax + cy + bzj

q = cx + by + aZy

r=bx + ay + cZj

(x^ + 1^ + z^ — yz
— zx — xy -0.

32. Determine those pairs of positive integers whose

product is twelve times their sum.

33. Prove that, if

be the three solutions of the equations

^ + ^ + ^ + ci'Xyz
= 0, Ix-^ my + na? = 0,

then x^x^x^ + y^y^ys + z^z^^
= 0.

34. Shew that, if

ic + 2/+«=j»i, yz + zx+ocy=Piy xyz=psy
and if a?-\-yz

= a, y' + zx=bf s^ + xy = c;

then a+b + c = p*—p^, bc + ca + ab-p^p^-2p^^-p^,
and abc =p^p^ - ^PxPiPi + Pi + ^Pz-

35. Shew that, if

Xx = x^-\- x^ + x^ + ... ad inf.,

x^ = x^+'x^ -k- x^ + ... ad inf.,

then nx^ = nx^ +
n'^a;,,'

+ n%' + . . . ad in£
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36. Find four numbers a;, y, z, u such that x-l, y-1,
z+1, u+1 are in arithmetical progression, as are also x', y^, 7?

and ic", «*, w*.

37. Shew that any number can be expressed in the form

where /7i, jOj, ... are positive integers, and^i<2, P2<3, and
so on. Express 999 in this way.

38. Find N so that the arithmetic, geometric and harmonic
means of the first and last terms of the series

25, 26, 27, iV-2, N-\, N,

may be terms of the series.

39. The result of multiplying a whole number of three

digits in the scale of r by (r
- 1

)
is to interchange the first and

last digits and to increase the middle digit by the difierence

between the first and last. Find the number.

40. Shew that the number of permutations of n things
r together when two of the things are excluded from having
definite positions is

(n»-3n + 3)„_3P,_3.

41. Shew that, if n be a positive integer, the series

(2n-l) (2n-l)(2n-2)
"TT"^ |2

-

+ / nn-> (2.^-l)(2n -2)...(n+l)

is equal to

(
-

!)»-» (2w
-

2) (2n
-

3) ... (w + 1) nj \n-l .

42. Sum the series111 1
^

1
12 \n-2 [2 |n-3 [3

•*• ^
[1. \

n-l
'

43. By means of the identity

{\-x('i-x)\-i = (\-x)-\
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prove that

|2n |2n-2 |2n-4
... = 2».

|w |w |1 |n-l |n-2 |2 |n-2 |

n-4

44. Shew that, if a, 6, c, c? be the coefficients of any four

consecutive terms in the expansion of (1 + a;)**,
then

{a + h) {c»
-

hd) = {c + d) (6»
-

ac).

45. Prove that the coefficient of of in the expansion of

(l+a;)"(l-a;)-»
IS

+ r-l
^ [^

+ ^-2
_^
n(n-l) ^^_,h

+ ^-3

|n-l |r

""'^

[w-2[r^ 1.2 |n-3 |r

^

+ (-l)"-in. 2.

46. Sum the series

(1> + 1) |l
+ (2»+l) |2

+ (3»+l) [3+...+(n»
+ l)[w.

47. Shew that, if ?* be any positive integer greater than 2,

l.„_!^I(.-l).

(-^H-^)
(n-2)

-("-l)("-^)("-^)(n-3)....

to » terms is equal to zero.

48. Shew that, if

j-^i-^
= 1 +:P.x + p.r' + ... +p^ + ... .

then

iz^
. ^ ^ ^ } ^

= 1 + p^^x +p^^a? + ... ,

oj being such that both series are convergent.

49. Prove that, if oj < 1,

X a? a?

(T3^»
"*•

(1
- xy

^
(r=^)»

^ •*•

X 2rr» 3a^

1-03^ 1-fic^ 1-ar
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50. Prove that

k
+
(l-a)(l-6)...(l k)}

a{2-a) b(2-b) k{2-k)~
(1 -ay

"^

(l-ay (1-6)'"*"
•••

^(l-a)^(l -b)\..{l-kf
'

51. Find the value of the infinite series

1 . 4 1.4.7.10 1. 4 . 7 .10.13. 16
"^

4. 8"*" 4.8. 12. 16 "^4. 8. 12.16.20. 24
*"••

52. Sum the series

32 5a fji

l* + rT + 7-^+T^+-«« ^ infinity.

11 ll 11

53. Find the nth term of the series

2 + £c + 4ar'+ 19a^4-70£c* + 229a^+ ... ,

it being assumed that there is a linear relation between every
four consecutive coefficients.

54. Find the nth term of the recurring series 1, 2, 3, 5, 8,

13, &c., in which each term, after the second, is the sum of

the two preceding terms. Shew that in this series the number
of terms which have the same number of digits is always either

4 or 5.

55. Find the sum to infinity of the series

3 6 7

66. Prove that, if n be a positive integer,

1 n 1 n.n-1 1
^

r
,

v5 + —5
—

TT- 7 HTi
— ... to n + 1 terms

(x+iy I {x + 2y 1.2 (x + sy
/ 1 n 1 n.n-1 _1 \f ^ ^

'

\^+ 1

~
1

*

a; + 2
"^

1.2
'

x+3~"') \xTl
"*"

.r ++ 2^

-1-.).x + nj
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57. If

|2n
y = x + a^ + 2a:^+... +

, V~ t^*^+"- ad inf.,^ w
\n + l

prove that y^
— y + x = Of

and deduce that

3 \2n

\n—l In + 2

68. If n^r denote the sum of all the homogeneous pro-
ducts of r dimensions of the n letters a^b, c^ . . .

;
shew that

the sum of all the homogeneous products of r dimensions

wherein no letter is raised to so high a power as the mth,
will be

59. Shew that the sum of all the homogeneous products of

a, 6, c of all dimensions from to w is

„»+8 5»+8 ^n+8

(a_6)(a-.c)(a_l)
"*"

{h-c){h-a){h-\)
"^

{c-a){c-h){c-\)
1

"(a-l)(6-l)(c-l)-

60. A man addresses n envelopes and writes n cheques
in payment of n bills; shew that the number of ways of en-

closing within each envelope one bill and one cheque in such
a manner that in no instance are the enclosures completely
correct, is

,
r

, (n-l)I («-2)! , ,,^1!)

61. In a plane n circles are drawn so that each circle inter-

sects all the others, and no three meet in a point. Prove that

the plane is divided into n^ — n + 2 parts.
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62. Shew that

n" _ n (n-iy n(n - 1) (w-2)*
x + n la5 + w-l 1.2 x + n — 2

xr~'\n

(x+l)(x+2)...(x+ny

63. Test the convergency of the following series :

... 2 3 n

/•x 2 3 n
(") 2^1 + 3»—l^-^r.^:^ '••••

,...,
2»-2 + l - n^-n+1 „

(^") ^^2^r2Mri«^-^n^3^?:n"-'—
2'. 4» 2' . 4» . 5» . 7'

(!) 38 , 33
+

3» 3» 68 08+
•••

2». 4». 5». 7»...(3n--l)»(3n + l)»* 3^ 3». 6» . 6»...(3n)»(37i)»

^

(v) (l.log|-l)
+
(21og|-l)

+ ...

/
,

2w + l -\

^r^"^2^r=-i-V+-

f 64. Find the condition that the series whose rth term is

(m + nY {2m — n) (3m -
2??) ... (rm

— r-1 n)

{m — ny (2m + n) (3m + 2n) . . . {rm + r — 1 n)

may be convergent.

65. Shew that the limit when n is infinite of

r r(m+l)(m+2)(m+3)...(m + n))" . _

1' 1.2.3...n -\
''^'

66. Shew that 1111
2V(n"+l) = 2n + - -L ± -L ... ,^^ ' w + 4n+w+4n +
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67. If

, , . - a 1 a* 1 a*

X 2! cc(a;+l) 3! a;(a + l)(a; + 2)
'

., .„ a</)(a;+l) a a a
then will -_i-Y_\ «_ _ _ ... ,

X€l>{x) a;+a; + l + a! + 2 +

68. If Pnjqn and Pn-i/qn-i ^6 the last and last but one

convergents to

11 11
a + b + ... + k+ I

*

prove that

11 1111 1 "^ ^ Pnqn+PnPn-l
a+b + ... + k+ I + a + b + ... + k + I qn+Pn.9n-i

69. Shew that the wth convergent to the continued fraction

12 3 ji^ . Vi2;__
2 - 3 - 4 - ... - n + i - .!.

^^
1 + ^7* \r_

'

70. Find the nth convergent to the continued fraction

1 i A -^'

2-5- 10-...-7i« + l-....

71. Prove that the nth convergent to the continued fraction

Oj + i— ttg+l— aj + l-

is
cTnfio-n + 1

),
where o-„

= Oi + a^a^ + a^a^a^ + . . . to n terms.

72. Prove that the continued fraction

1 a a^{l--a) a^{l-a^)
1

I -a I -a l-a"

»(l+a)(l + a»)(l+a»)....
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73. Prove that a being greater than 1, the nth. convergent
to the continued fraction

1 (o-l)(2a-l ) (2a-l)(3a-l) (^a-\){na-\)
2a- 1+ 2a 4-

"
2a +

"*
2a +

is equal to

.(a
-

1) (2a- 1) (2a
-

1) (3a - 1)

{na
-

1) (w + 1 a - 1)-l)(w + la^l)i

74. The difference of the first convergents of the square
roots of two consecutive odd integers expressed as continued

fractions is 1, and the difference of their third convergents is

497

oQ^piK
i fiiid the integers.

75. Shew that, in the ascending continued fraction

6i+ 63+ 6,+ 64 -f

ttj a^ a^ a^
*

the n convergent Pnl<l% is given by the laws

Pu = <^nPn-l + *n» 5'»
= «»^n-l»

Hence shew that the value of the fraction

1+2+3+4+
2 3 4 5

-"^^"^

is unity.

76. Prove that the continued fraction

1^
X a;+l 2 (a + 2) (n- 1) (a;

+ n+ 1)

l-a;+l-a;+3— a; + 5 - ***
a5 + 2»-l

is equal to

(a:+ l)(a;+2) . . . (a; + n)/ [n.

77. If %!^a+- i ... -,'

a, + ag + + a^

shew that 2^ . 2," = :Si" . X^-x -
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78. Prove that, if Prj^r be the rth convergent to the con-

tinued fraction

1 + 1 +
••*

+ 1
'

and Prl^r b© ^^6 *^^ convergent to the continued fraction

1 + 1 +
*••

+ 1
*

then ^n=/»-i + ?'„_i, qn-x = q'n-i

and Pn-i = (hqn-i'

79. Shew that the value of the continued fraction

^;
—~T- ^7 ^ ^^ ^ ••• ad inf. IS m.
2m + 1-2/71 + 3- 2wi+5-

1

80. Shew that, if n be any positive integer, N^ can be

expressed as a non-recurring continued fraction with unit

numerators, and in the particular case when iV"=2, w = 3,

prove that

4 5 29

3' 4* 23

are convergents to it.

81. Find the greatest value of

{a - aj) (6
-

y) (c
—

z) (ax + hy + cz),

where a, 6, c are known positive quantities, and

a — x, b —
1/f

c — z

are also positive.

82. If a, 6, c be three positive quantities such that the sum
of any two is greater than the third, and if

ax + by + cx = 0,

prove that ayz + bzx + cxy

is always negative for real values of as.
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83. If m and n be positive integers and m>n, shew that if

X be positive

1 +x + 3s' + ... + x^-^> 1 +x + x^ + ... + x^-'^

m < n *

according as as ^ 1.

84. Shew that, if a be any positive quantity and p > q^

aP-\ a'^-l

p q
unless p > > q.

85. Prove that, if x be any positive quantity,

a;~^ > a;"* > 1 + x -x^.

88. Prove that, if all the letters denote positive quantities,

m + n/

and deduce the minimum value oi x + y when

a;™y"
= a.

87. If a, 5, c be positive, prove that the least value which

can take for positive values of a, y, » occurs when
a; =.

ctj y = 6, a = c.

88. Shew that, if a, 6, c, c?, a, j8, y, 8 be positive quantities
such that a>a, h'> p, c>y, c?>S, then

^abcd + 8a)Sy8 > (a + a) (6 + yS) (c + y) (c? + S).

89. If

Oj, ttj, a,, ..., a„; Jj, 63, 6,, ..., h^; Ci> ^2) c,, ..., c^

be three sets of positive quantities which in each set are

arranged in descending order of magnitude ;
then will

OiftiCj + a^b^c^ + as^jCj + . . . Soj 56i ^Cj

n n
'

n
'

w
'
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90. Prove that, if a, 6, c be positive quantities,

and (b + cf (c + a)** (a + 6)*
<

-^5 (a
-»- 6 +

c)[-

a+ft-fe

91. Prove that, if a is any prime number greater than 19,
then a^' — 1 is a multiple of 9576.

92. Prove that, if the radix of a scale of notation be the

product of the different prime numbers m+ 1, n+ l,jt? + l, the

(mnp + l)th power of any integer will end in the same digit as

the integer itself.

93. Shew that the number of solutions in positive integers,
zero included, of the equation

x + 2y + 3z = Qn

is 3w«+3n + l.

94. Shew that, if n be any positive integer,

(n+l)(n+2){n + 3)...(n + n)
will be a multiple of 2".

95. Prove that, if g be a prime number and p prime to q,
then

I!?

will, when reduced to its lowest terms, have for its deno-

minator a power of q.

96. Shew that, if p be any prime number, the sum of the

products p-2 together of the numbers 1, 2, 3, i i?-l
will be divisible by p*.

97. Shew that, if p be any prime number, the sum of the

rth powers of the numbers 1, 2, 3, , p- 1 will be divisible

by Pf if r be any positive integer ^ p—2.
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98. Shew that, if jo be prime,

[2£-2|£|^
is divisible by j9*.

99. If a white balls and h black balls be placed in a bag,
and be withdrawn one at a time, without replacing them ;

shew
that the probability that all the black balls will have been
drawn in the process of drawing a balls is

[a
+ 6 \a

— h
*

a being not less than h.

100. A bag contains 10 coins, and it is known that 2 of these

are sovereigns. Two coins are drawn out and neither is a

sovereign ;
shew that the probability there were only two

sovereigns in the bag is one-third.

101. A bag contains any number of balls, which are equally

likely to be white or black
;
one is drawn and found to be

white. Shew that the chance of drawing another white one,
the first ball not being replaced, is two-thirds.

102. Prove that, if a, ft y be the roots of the cubic

then the equation whose roots are

(a-^)(a-y), (/?-y)(^-a), (y-a)(y~^),
is Q^ + ^H^ - 27 {G'' + 4Zf

2)
= 0.

103. If Sf denote the sum. of the rth powers of the roots of

the equation
a"* 4- oar* + 6 = 0,

shew that, if w > 6, S^_x = 0.

104. Two roots of the equation

are of the form a + t^, y8 + la.

Find all the roots of the equation.

S. A. 41



616 MISCELLANEOUS EXAMPLES.

105. In the equation
a^n+a + (2

-
a) x^^' +{b-a+l)a^-\-(a+ 2nb) x

+ a + (271- 1)6 = 0,

prove that two of the roots are equal, and that of the rest the
sum one, two, three, &c. together are in arithmetical pro-

gression.

106. If n be an even integer, and p^, jpi, ^, ...be all

positive, and if H be the greatest of the ratios

Pi Pz

Po Pi

Pn-l

Pn-i

Pn-l

and K be the least of the ratios

Pi Pa

Pi' Pz'

then will all the real roots of the equation

lie between H and iT, and all the roots of the equation will be

imaginary unless H be greater than K.

107. Shew that

1 1 1

1 1 + a 1

1 1 1 + a

to n rows and columns

108. Shew that

1+a 1 1

1 1+a 1

1 1 1+a

to n rows and columns

109. Prove that1111
a h c d

V c' d'

aa' hh' cc' dd

a

{a-b)(c-d){a'-c')(b'-d')

'{a-c){h-d){a'-h'){c'-d:).



MISCELLANEOUS EXAMPLES

110. Shew that

a' + 6" + c", bc + ca + ab, hc+ca + ah

bc + ca + aby a' + 6* + c^, bc + ca + ab

be + ca+ ab, bc + ca-\- ab, a' + 6' + c*

111. Solve the equation



ANSWERS TO THE EXAMPLES.



ANSWERS TO THE EXAMPLES. 619

12. 4e8 - lOx'^y + 10a;^3 _ 21a;32/3
_

5^:22,4 ^ s^^s + ^e,

13. 6a8 + lla56-16a463^20a36S_29a264 + 15a65_36«.

14. 2a«x8 - 3a«a:5i/2^ Qa*xHf*
-

lla^xh/'^+^^x^ + ^Oaxy^^
-

lOy^*.

16. 2a - 3a2+ a^+ Ga* - Ba^ - ISa*+ 44a' - 42a8.

10. o»+ &»+ c»-3a/;c. 17. «»+ y»+ «3_3a;i/2.

18. 8a3 + 2763-c»+18a6c. 19. x^-\.

20. «8-256i/8. 21. a:«-2a;V + y^-

22. xi2- 3x8 + 3x^-1. 28. «8+ 2a;6+8«4+ 2a;Hl.

24. a8 + 8a862+ 48a464+ l28a«6«+ 25668.

25. (i) a2+ 463+ 9c2+ 4a6-6ac-12&c,

(ii) a* - 2a36 + 3a26a _ 2a6»+ 6*,

(iii) h^e^+ e^a^+ a?h^+ 2a26c + 2a62<; + 2a&c».

(iv) l-4a; + 10ara-12a;3+ 9a;*.

(v) ««+2a;6 + 3x*+ 4a:3 + 3a;3+ 2a; + l.

26.
(i)

a»+ 6»+ c3 + 3 (a^ft+ aft*+ a^c+ flc'+ &«c + 6c«) + 6a&c.

(ii) 8a3 - 2763 -^ - SGa^ft+ 54a6a - 24a2c + 24ac2 - 546ac

-366c>+72a6c.

(iii)
l+ 3«+6aj»+7«»+6«*+3a;5+ a;«. 27. 8a;«.

80. X* - 2a3a; - 2a«3 - a*. 41. 0. «0. Sa'-32a6c.

EXAMPLES in.

1. x-Zy. 2. ««+4y2. 8. 9a^ - 12a;y+ 16t/*.

4. -3a;-2y. 6. l+«+ a;''*+ x»-4a;*.

6. ar* + x3t/ +xV+ *2/'-4y*. 7. l+ 2a:+ 3«'»+ 4a;3+5a;*.

8. m* + 2m3n+3m2n*+ 4mn»+ 5n*.

O. l + 2x+ 3x2+ 4x3+ 6a*+6*«.

10. H-x2 + x*+ x«. 11. l-2x + 3x3.

12. 2-3a5+2x2. 18. 2ac2-3xy+y».
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14. x^-xy-2x + y^+ y + l,

16. x^-2xy-2y\

18. a+ 2b+ Sc.

ao. a^+ y^ + z^-l.

22. cfi+^1^+ c^-2dh+ ac + 2bc.

24. 9a»+ 46»+ 9c2 - 66c + 9co+ 6ad.

26. c«"+ da;-c. 26. 2ax-{Sb-Ac)y.

28. a;2-a;y + 2/», (a;+ y)2-« (ar+ y)+2».

29. x^+ xy + y\ {x+ y)^+2z{x+y) + 4z\

16. x3 + y».

17. a + 26 -3c.

10. 3a«+4a6 + 62.

21. a^-2ab + ac + b^-bc + c'.

23. a + 26+ 3c.

27. a2-3a6 + 62.

EXAMPLES IV.

{2x - 3a&) {2x + Bab) {ix^+ 9a^^.

{2y + 2z-x) {2y-2z + x).

l&{a-b){a+ b){a^+ b^).

I. (a-2&)(a + 26)(a2+ 462). 2.

a. (4+3a-2&)(4-3a+26). 4.

6. 5ax (2aa;+ Sy) {2ax
~
By). 6.

7. 8(a-6)(a+6)(a*+62). q.

9. 24x(x-l) («+ !)«.

11. 46»(2a-62)(4a2 + 2a&2 + 64).

18. (a -4) (a + 2).

16. (l-21a;)(l + 3x).

17. oft (a -6) (a -36).

19. (6+ c-a)(6 + c-5a).

21. {x^2){x + 2){x-5){x + 5y

28. (a:»- 4^22-2)8= (a;+ 2^2)2 (x-2yz)a.

24. a« (a+ 6) (a -6) (3a +6) (3a -6).

26. (a:-6)(«+ 6-2a). 26. («-a)(a; + 2y + a).

27. (a + 6+ c-fl!) (a + 6-c + d) (a-6 + c + d)( -a + 6 + c-i-(i).

28. {x + y + a + b){x+y-a-b){x-y + a-b)(-x + y + a-b).

lO. 16«(2-3ar»).

12. (aa-46c)(a4-2a26c + 462c2).

14. (4- a;) (3+ a;).

16. -4 (a -1)3.

18. a26(a+ 6)(a+46).

20. (3a+ 36-c-d)».

22. (5x
-
y) {5x + y){2x- y) (2a; + y).
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EXAMPLES V.

1. {x+ l){x-l){x + a). 2. (a+ 6)(c-^.

3. {a-b){c + d){c-d), 4. {ax + by) (cx + dy).

5. {ax+ b){cx^+ d). 6. 2{a-d) {a+ b + c + d).

7. {a+ b){a-b)(a^ + ab + b^). 8. (a-6)«(a«+ a6+ &2).

9. (a+ l)(a-l)(6 + l)(6-l). lO. {x + z){x-z)iy + z) {y -z).

11. (a;22;_l){y2;j_l), 12. {x + y){x + z){x^-xz + z^).

13. (a;-y)(a; + y + «). 14.
(ar+ 3) (a;-3) (a:2+ 2).

1 6. {x^+ 5a; + 1) (a;^
-5x+ 1). 1 6. (x^+ 4:xy + y'^) [x"^

-
4:xy + y^).

17. (a;3+ a:+ l)(a;»-a;+ l)(a:4-aa + l).

18. {x+ a-\-b){x-a- b) {x-\-a
-

b) {x
- a+ &).

19. {x^-2yh^)\ 20. {x-2b + ab){x-2a-db).

21.
(a;+ 6)(ar + a).

22. (l-x^){l-\.y + x{l-y)}{l + y-x{l-y)}.

23.
(a; +y-3«)(x-y + «). 24. {piy -x->ra) [y -2x-a).

26. (a-36 + c)(a + 6-3c). 26. (2a- ll& + l)(a + 2&-3).

27. (l-aa;)(l + ax+ &a?*). 28. (1
- oa) (1

- oa; - ca;-).

20. ~{b-c){c-a){a-b). 30. (6 + c) (c + a) (a + 6).

31. (a-6)(a-c)(6 + c).

32. {x^-xy + y^){x{a+l)+y{b + l)),

33. (a;?/ + db) {ay^ + b'^x) . 34. (2a; -z){x- y)\

36. {x'^-yz){y^-zx){z^-Ty).

36. (a;+4)(a;+ 2)(a;-l)(a;-3). 37.
(a; + 4) (a; + 2) (a;2 + 5a;+8).

38. x(;c + 5)(a;2 + 5a; + 10). 30.
(a; + 2) (a; + 6) (a:^ + 8x + 10).

40. (x + 8) (2a; + 15) (2x2 + 35a; + 120).
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EXAMPLES VI.

1. 3{y-z){z-x){x-y).

2. 5 {y -z) {z
-
x) (x-y) {x^ + y^+z^-yz- ^x -

xy).

3. {b + c){b-c){c + a){e-a){a+ b){a-b).

4. {b-e){c-a){a-b){a + b+ c).

6. {b-c){c-a){a-b){a^ + b^ + c^+b^c + bc^ + c^a + ca^ + a''b + ab'^

-
9a6c).

6. -
(6
-

c) (c
-

a) (a
-

6).

7. -
(&
-

c) (c
-
a) (a

-
6) \b\^+ c^a^ + a^ft^+ a&c (a + & + c)].

8. -(6-c)(c-o)(a-6){a2 + 62 + ca+ &c + ca+ a6).

9. _(6_c)(c-a)(a-&)(a» + &»+ c8+ &'»c + 6c2+ c2tt + ca3 + a26 + a&3

+ a6c).

lO. 24a&c. 11. 80a6c(a2 + 63 + c»).
la. 4aic.

18. 2a&c. 14. 4a6c. 15. -4(6-c) (c-a) {a-6).

16. 3(2/ + «)(« + a;)(a; + y).

17. 5 (y + «) (z + a;) («+ J/) (a^ + 2/''
+ 2'' + |/2 + 2;a; + a;t/).

18. -(6-c)(c-a)(a-6).
19. -2 (6-c) (c-a) (a-6) (a + 6 + c).

20. -
(6
-

c) (c
-

a) (a
-

6) (Sa" + 363^ ScS + gftc + 5ca + 5a6).

21. (6 + c)(c+a)(a + 6). 22. -(6-c) (c-a) (a-6) (a + 6 + c)=^,

23. {x + y+z){yz+zx + xy). 24. (6 + c) (c + a) (a + 6) (a + 6 + c).

25. 12x1/2 (x + y + «).
as- -3 (6-c) (c-a) (a -6).

27. 16 (6-c) (c
-
a) (a-6) (d -a) (d- 6) (d- c).

82. 27a26Ma+ fe)'.
S*" (aH62)2(c2 + d2)^

86. (6-c)(c-o)(a-6)(a-d)(6-d)(c-d).

37. -(6-c)(c-a)(a-6)(a-d)(6-d)(c-d)(6cd +
cda + d«6 + a6c).
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"•
^a-h +cH-a+ b+ cy

"• yz + zx-^xy.

18. 'h{y-z)(z-x){x-y), 14.
^-^.

15 yz+zx + xy o^ + ft'

x+ y + z
' '

a^-b^'

17. .-4^. 18^ ^^y'
l-9a;3 ar3-42/

2x + 4a 48
18. ^^7— . 20,

81

2a
"

{x + 2){x + 4:){x + 6){x+ B)'

48a» _^ 24a*

(a;+ a)(a; + 3a)(a; + 5a)(x+ 7a)*
"

x {x^
- a^x^ -la^'

83. 0. 24. 0. 85. 1. 86. -1.

87. <2. 28. a 89. 1. 30. 2.

81. a + 6+ c. 38. a^+ b^ + c^+ bc + ca + ab.

33. (a+6 + c)2. 84. a+ b+e.

35. . 88. 0.
(-a + & + c)(a-6+c) (a+ft-c)

'°V^*-aV
^®-

^a^x^-b'y^'

2a6c(a+ 6+ c)*'•
(-a + 6 + c){a-6 + c){a + &-c)'

*''• 2(x + t/ + .).

EXAMPLES X.

* o- ^ o». _ 1
6 + c-2a « A 2a5

1. 2a - 6, a - 26. 8. 1,
—

. 8. 0, t ,

c + a-26 ' h-a

4. a -26, 6 -2a. 6. ±1. 6. ±1.

7. 1, -3. 8. 1.

8. 0, ±5^2. lO. 6, -ei.
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60 a^c + b^a + c'^b - 3abc
11. r^r. 12.

29 a^ + b^ + c^-bc-ca~ab

18. 0,-s{a+b+ c^y/{a*+b*+c!'-bc-ea-ab)}.

14. [6c + ca+ ab ±^{6V+ c^a^+ a%^ - aJc (a+ 6+ c)}]-^ (a+ 6 + c).

16.
6,-|.

16. ±V6.

17. ±v/«^ ^J-ab. 18. 0, --.

20. {a+ 6+ c±V(a' + J^+ c»-6c-(ja-a6)}.

21.
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48. ± -L.
J{2a%'^c^ (a«+62+ c^)

- Wc^ - c*a* - a^ft*}

= ±——^J{{be+ ca+ ab) (-bc + ca+ ab) {be-ca+ ab) {bc + ca-ab)),

4
49. Values between 3 and - -

.

62. Values between 3 and ~ .

u

63. X lies between - 2 and 8, and y between - 9 and 1.

64. X between - 2 and 10, and y between - 1 and 5.

«
I-

69. (i) a>a^+(6«-3a6c)aj+ c»=r0.

(ii) a^cx^+ xb(ir^-Bac) + ac^= 0.

(iii) x^-bx+ac= 0.

EXAMPLES XL

1. ±2, JkJ^.

2. a, aw, aw^, -2a, -2aw, -2aci»'.

3. -a, —aw, -aw', 2a, 2aw, 2aw^

4. 1, j(l±7^ri6).
5. 0,1,3,-8.

6. 1, -2, ^(-1±V^19). 7. -1, -6, li-7^3^5).

®- §•"¥• i(-7=^^N/2).
». 8. -1, l=t2Vi9.

lO. i(-l±N/^3), i(a:fc^i^^:4).
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11. 0, -6, i(-5±V-15). 12. a, -9a, -4a±aV^Il6.

13. 7a, -8a, |(-1±V^^I67J.
14. -4, -6, ^(-16± ^129).

21
16. 3, -T^. 16. ±^(a + 6). 17. dba±6.

18.
2.^, 1(-3±^A^). 19. 3,i, |(-liV^).

20.

3' 3

1.. ,.. ,, „ 1
~1,

^[l
+ v/5±^/{ + 2V6-10}], |[1-n/5±V(-2n/5-10)].

ai. ±1, ±^31; ii_±yr|. aa. 2, 2,
I

23. -1, 2, 8, -4. 24. ±1, -(-7±3J6).

26. a, 6, c. 26. 9, -8±^-47.

27. 9, -6, i(8±^-215). 23. a, 6,
^(a

+ 6).

29. a, 6; l{a +b)^~{a-b)J^.

30. a, 6, i(a+ 6). i(a + 6)±^(a^6)V"r3.

81. a, 6,
2(a

+ &). 32. a, 6, |{a
+ J±l(a-&) ^"1681.

83. a, 5, ^{a + b±{a-b)J^}.

34. a, 6. 36. a, 6, and roots of (a
-

a;) (a?
-

&)= 16 (a
-

1>)'.

v^a . / - 3a2

87. a-26, 6-2a, -^ {a+ 6±(a-6) V" 15}.

38. B.ootaof X [a- z) = (jb:i=/i^^
+ ^\\
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««, (^^ &' /—r ^ be ca ab

o a ^ a o e

42.
|{-6=t^(62

+ 4)|, ||_„±^(^a+ 4)}. 43.
| {a±V(«*-46»)}.

44. -(a + 6 + c), -.|(a
+ 6 + c)±i^(Sa2-226c).

2 1
46. a+ 6+ c, -(a+ 6 + 0)^5^(20" -7S6c). 46. a, ft, c.

o o

47. ft =fc /J cd(a + 6) + o&(c + d)[ / |
a6 (c + d) -cd(a + 6) )

* V t ^6+7+d r VI c+d-a-h r

EXAMPLES Xn.

18 8
1. a;= l, y=-l. a.

a;=y, y=^.

2
3. a;=3, y= 6. 4.

«=:g, y=3.

6. «= &, y=ra. 6. «= o6, y=-a-6.

7. a;=a+ 6, y=a-6. 8. aj=y= a.

9. a;= a, y= 6. lO. x= a{a-b), y= b{a-b).

11. a;=-3, y = 3, « = 1. 12. «=
2'y

=
3»*

=
6'

13. a:=y=i;= l.

14. a;=6 + c-a, y=:c + a-b, z=:a+b-e,

16. »=6 + c, y= c + a, z= a + b.

10.
a;=-^(2a

+ 6 + c), y= --(a + 2& + c), «=
-^ (a + 6 + 2c).

17. z= y=z= a + b + e

18. x= ^{2a + b + c), j/
= -(a + 2& + c), 2= 5(0 + 6 + 20).
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b

629

20. X

21. X

22. X:

23. X:

24. X.

26. 2;=

27. a;r

{a-6)(a-c)'^ (6-c)(6-a)' '"(c-a) (c-6)-
= a, y = 6, z=c.

= -a + 6+ c, y=a-6+ c, z= a + b-e,

= a{b-c), y= b{c-a), z= c{a-b).
= 1, y= 0, «= 0.

= a6c, y=6c + ca + a&, «=«+ ?> + «.

_m {m - b) {m - c)

a(a-b){a- c)

&o.

b + c, y=c + a, z=:a + b.

26. x=a, y = b, z=e,

28. ar-J^J'^
+ ^+ c)

(a-6)(a-c)
, &o.

29. :r

80. a; =

31. Ix:

32. a;=

34. x=

z~

10=

(a + a)(a + 6)(a+ c) . 1

aftcd, y= -
(6cd + cda + dab + abc),

bc + ca+ ab+ ad + bd + cd,

-{a + b + c + d).

EXAMPLES Xin.

1. 12, 11.

3. ±3, ±1; ±4

2. 1, 1,
1 1

15' 15'

Vs' ^ivs'
4. ^2, ±3;

=..^^3. :^^^3.
6. 12, 7; -7, -12.

^
2ab 2ab

b^a '

a+6*

6. a, 6; 2a-6, 2&-a.

8.
±fx/^N^, ±^VW6"^
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_ a , b
O. ±-, =fc&; ±a, ±-.

lO. /5»-a» / &« - a8

11. ±7, =p6; ±5, T=7.

13. 64, 8; 8, 64.

12. 9, 4; 4, 9.

14. -6±s/30, 6=1=^/30.

16. i(ld=V-ll), ^(l=F^/-ll); 2. -1; -1,2.

7 14

3' 3
*

19. 2a, 26 J -a, -&,

ai. &, a.

16. 1, 1; 2=fc^7, 2tx/7. 17. 2,4;

18. 2, 1; 1,2.

ao. i,2.

aa. 6,6; -|(ldbV6). -|(1=fn/5).

/ ±a6 ^ / ±a&

24. ±i Vl + «^ =^jT+a\ as. 8, 4; 2,4.

ae. 4, 2; 2, 4; 3±V-13, Stn/^H^

1111
2' 6' 6' 2

a9.
l,^;

-1,-2.

81. haij,~.

a8. 3, -6; - 1 2

3' 3"

80. 0, 0;
a+b b-a
2a6

'

2ab
'

8a. 6,a; 6, ^; y.a; ^/a^fi, 4/^.

1.

EXAMPLES XIV.

he ca db be ca ah

a. -„ = 2/_«

a
'

6
'

c

1

aa-&a-c3"" s/(aa+ 6^ + c^)

*



ANSWEES TO THE EXAMPLES. 631

{b + e)
= y{c + a)= z{a + b)=± ^ i^{b

+ c){c + a) (a +
b)^

,

4. 0,0,0;

9. X

2abc 2abc 2abc

6. 0, 0, 0;

-bc + ca+ ab^ bc-ca + ab* bc + ca-ab'

26c 2ac 2ab

b+c-a* c+a-b* a+b-e'

6. x=y =z= J=2.

» * y _ « _^ 1

b+c-a c + a-b a+ b-e ,J{2a + 2b + 2c)*

» .6c t. ^ca ,
ab

8. -ai— , -6±--, -c±— .

a c

o. ? y '
-jL

1

a2(62 + c2) 62(c3 + a3)~c2(a2 + 62)- 2a6(j'

lo.
^ _ y _ '

a(-a + 6 + c) 6(a-6 + c) c{a + b-c)

^{{-a+ b + c){a-b+c){a + b-c)}

b +e-a c + a-b a+b-c
1

^ {{b + c-a) {c+a-b) {a + b-c)}

j^2
a; ^ y „ g 2{a^ + b^ + c^)

b+e-a c + a-b a + b-c {b + c-a)^+ {c + a-b)^+{a + b~c)^'

z= y = z= 0»

13. .=1. /(»±iH£±i),&„.V a+1

le 1 2 3-
^ ^ 2

16. 1,2, 3,-,
^,

-.

17. 1, 2, 3. 18. 3, 5. 7. 19. 0, 4, 6.

20. 3, 3, 4 21. 0, 0, 0; ^, t, £.' '
2 2' 2

s. A. 42
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22. -a, 6, c; a, -&, c; a, 6, -c; |(lix/-7), |{1±n/^7),

^®'
*-^7{(^^ + c)(a+ 6-c)}V*^-

^** ^~
v/{2a6 + 26« + 2c« - ea^feV)

*

26.
{6 + c)2-(c + a)(a+ &) {c + a)2- (a+ 6) (6 + c)

« 1

(a + 6)3-(6 + c)(c + a) 2 ^(3a&c
- a» - 6» - c^)

27. a, 6, c; ^(2&
+ 2c-a), 5(2c + 2a-6), K(2a + 26-c).

28. a;= =tj-7- (6c- ca + a6) (6c + ca-a&), &c.

-^AAA 3 a a b S, b c c 3
80. 0, 0. 0; -^a, ^^ 2,' g' "3^' 2' 2* 2' "2"^

_(-a + 6 + c), 2(a-6 + c), ^C^
+ ^-c).

_ a^x b^y c^z ,,
32. T— =—^ = -.=V(-a6c),

6 -c c-a a-6

ax _ by _ cz _
h-c~ c-a~ a- b~ \/ bc + ca+ ab'

_ I
— abc~

\/ 6c + ca+ <

EXAMPLES XV.

I. 20, 30. 2. A £10, £ £15, (7 £25. 8. 20 years ago.

4. 28. 6. 6, 15, 30. 6. 5 days.

7. 1800. 8. 58. 9. 30 miles.

10. 120 lbs. 11. 4 days. 12. 36,9,12,15.
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13. 48 miles. 14. 15 miles. 16. 54, 81, 108.

17. A £450, B £225, G £237. 10s., D £87. 10«.

18. rb5. 19. 38,83. 20. 18 miles.

21. At 1 o'clock, 15 miles from Cambridge. 22. A £10, J5 £5, G £1000,

23. 25. 24. 9, 7; 8^/2, v'2. 25. 50 miles.

26. 576. 28. 3 miles an hoar. 29. 3 hours.

80. 253. 31. 2 gals, from the first, and 12 gals, from the second.

32. 15 minutes past 10. 33. 9 o'clock, 30 miles from Cambridge.

34. 45 and 22^ miles an hour. 35. £3.

86. 450 miles. 87. 30 miles.

EXAMPLES XVI.

8. a+ & + c + a&c = 0. 4. (6+ c-a) (c + a-6) (a+ 6-c)=8.

8. a»+ 2c3_3a5a_o. 16, p+ 7n«+ n»-Zmn-4= 0.

16. aZ2+ 6m''+ cn3+ Z7?m=4a&c. 17. a2 + &2 + c2-a6c-4= 0.

18. a3+ 63 + c«-5a6c= 0, y3z3 +«V+a;V+ «V«'^=0.

19. S6»c8= 5a262c2.

20. a3 + &^+ c'-&c(6 + c)-ca(c + a)-a6{a + 6)
= 0.

EXAMPLES XVIL

1. aUi 2. 1. 3. ^4-» 4. 1.

5. x-y, 6. a:*+ l + ar-*. 7. a;+ t/+«-3a;^?/^A

8. x^-x~^' 9. a^+ a"'nra;T + aT^a;^+at*'^a;^ + x^. lO. a?+ y.

12. 4a;H 3a; + 2 - 3x-i. 13. a;^+ 2a;i + 1 + 2a;-i + a;"^.

42—2
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14. a^ x~^ + as x~^ + oT^ x^ + a~^x^ .

16. x^y~^ - x'Sy~^ + x^y~^ -l + x~^y^ - x~^y^ + x-^y^ .

20. (i) a^-a^b^ + Jb^-ab* +aib^-b^.

(ii) a » x'* — a^x^'y^ + a^a;*y — a^x^y^+ a^x* y^
— w* ,

(iii) a^+ b^x^ + c^x^-bcx-cax^-abx^.

(iv) [x'^ +y's + z^ -y^ z''^
- z^x'^ - x^y^ {{x + y + z)*

+ 3x^y^ z^ {x + y + z)} +9x^y^ z^.

EXAMPLES XVm.

1. 2-^3. 2. 6-^15. 8. ~>J2. 4. 52.

5. 0. e. 14i. 7. V3 + V2^>y30 ^^
V30 + 2V3-3V2

_

O. i(V21+^/10-^/14-^15). lO. 1(^6+^/10-^/21-^35).»•
2^*^ '^ '^
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lO. x^-2x^-x^. 11. x^-2x^ + x^. 12. a~^x^-x^-a^.

13. x-8. 14. x^-xy+y\ 16. l-3a;2 + 2iB*.

16. 2{bc + ca+ab). 17. x^-x{y + z)-yz. 18. a^ + ft^.

ai. 4=20,5= 68, C=-U; or 4 = 52, £=-68, C=76.

23. af=gh, hg= hf^ and ch=fg.

EXAMPLES XX.

6. x= 3. 6. a:6:c=2:3:4.

17. (i) |,1. (ii) 0,1. (iii) 00,0. 18.
^^, -j=.

EXAMPLES XXI.

a. 2, 4, 6, 8; -2, -4, -6, -8. 4. 2,4,8.

14. 6, ±12, 24, &o. 17. 3, 9, 15.

EXAMPLES XXn.

1. 31. a. (r-l)(r-l) ,1000.... 4. lib., 21b., 10241b.

7. 46. 8. 6. 13. 502 or 361. 16. 288, 289 or 290.

16. 2775 or 2525. 17. 135. 18. a=8, 6=0, c=6.

19. 7. ao. 1089. as. 142857, 285714. 34. 166, 199.

EXAMPLES XXIIL

I.
[20/{|4}».

a. 145. 3. 3i»; [12 /([£)'.

6. 260. 7. ^n(n-l). 8. in(n-l) -im(m-l) + l.

9.
g{n(7i-l){n-2)-m(m-l)(m-2)}.
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11.
gn(n-l)(n-2)(n-3).

12. SmK 13.
'_^ . -^'

I \p + l \mn
14. ^w(w-4)(w-5). 17.

, , .,

. 20.
, -;— ,^

23. 2(mn+m+ n-l).

24. 2Sa+ 2Sa6 - 2 (n
-

1), where n is the number of given diameters.

EXAMPLES XXIV.

1 . x'^ + baa^+ 10aV+ lOa^x^+ &a*x+ a».

2 . 32a8 - 80a% + 80aV _ 40a«xS+ lOao^ - «».

3. 1 - 6ar»+ Ibx*' - 20a;« + 15a:« - 6«io + a^^.

4. 16a4-96a» + 216a«-216a7+ 81a».

a. 16a;8-96««+ 216a;4-216a;2+ 81.

6. a;i0-10a;V+ 40a;V-80A^ + 80a;22/i3-32yi».

120
7. 405a;V- 8- TTi=T 3^«4*a;i». O. 9242r'»,

|16^

142 121 !21

In In

13. (-irr-^=— 3''a;»-'-y'-. 14. —^
^in-r [r p- r

15. {3x)i»
- 30 (3a;)i^ + 420 (3a;)i3ya. . .

- Ubx^ {2yy* + 45a; (2y)i*
-

{2y)i».

16. 924a;«. 17. 64354;^ 6435ir8.

22. (
-

1)** [2tc / [n [w.
23. 7 or 14. 24. 7.

EXAMPLES XXVI.

1. Convergent. 2. Convergent. 3. Convergent.

4. Convergent. 6. Convergent. 6. Divergent.

7. Divergent. 8. Convergent if x > 1
; Divergent if a; i> 1.

9. Divergent if x= 1
; Convergent if a: 4= 1.

lO. Convergent if a;> 1
; Divergent if a;

4* 1.



ANSWERS TO THE EXAMPLES. 637

11. Convergent if x :^ 1
; Divergent if a: > 1.

12. Convergent if a: 4* 1
; Divergent if x > 1. 13. Divergent.

14. Divergent. 15. Convergent if m < 1
; Divergent if w

<j; 1.

16. Convergent if m < 1
; Divergent if m 5 1. 17. Divergent.

18. Divergent. 19. Divergent. 20. Divergent.

21. Divergent. 22. Convergent if a; < 1, Divergent if a; > 1.

If x= 1, then Convergent if A; > 1 and Divergent if &
::f

1.

23. Convergent if a; < 1 ; Divergent if a;
-f:

1.

24. Convergent if a;
i^

1
; Divergent if a; > 1.

26. Convergent if a; < 1, Divergent if a; > 1. If a;= l, then Convergent
if m < i and Divergent if m -^ ^.

27. Convergent if a; < 1, Divergent if a; > 1. If a;=l, then Convergent
if A < i and Divergent if /c 4^ i.

EXAMPLES XXVn.

1. (i)(r + l).rr (ii)Hr+ l)(r+ 2)xr. (^,)
(^+ 1)

(r+^(r
+n-l) ^^

_ 2.5.8...(3r-l) _ 2.1.4...(3r-5)
^'"^^^ ^^

3.6,9...3r
*• ^^^ ^ ^^

3.6.9...3r
^-

,
..

, ,,_5.2.1.4.7...(3r-8) ^ ,
... 8. 8 . 13...{5r-2) ,

2.3.8.13...(5r-7) .. . g (g+i>) (g + 2p)...(g +f3I. j,)
^^^^ 1.2.3...r

• ^ '

^j7
*•

/ x
g»8.1.1.3 .5...(2r-7) , . , .

(xi)
i '

x^a^, r>3.

,
... 2.6. 12.. .(7r- 9) ,,o

2. (i)
The ninth term, (ii) the eighth term.

3. The 39th term. 4. The first and second terms.
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6. After the 12th term. 8. (i) ^-4 l̂"'}^''~^K^-^''x^.o • o . y . . . or

(ii) 2a-*'x*". (iii) 4ra-^x^. (iv)

' '

.

""'' a-^x^ when n is^ ' ^'2.4. 6...»

1.3.6...(»-2) „ „ , . ^,
even, ^r

—
^
—

j;
—

7 =-; a-"x" when n is odd.
2.4. 6,..(n-l)

(v) (2r2 + 2r+ l)a-'-ix'-. (vi) (
-

1)*" 16 (r
-

1) aS-'-a;*'.

EXAMPLES XXVin.

J. (i) 2. (ii) ^|. (iii) 44/4. (iv) J27-2.

(V) 1. (vi) 4/4. (vii) ^^. (viii) |.

,,. (_!).,.
(n-2)(.-3)...(n-r)

^ ^^ ^ ^^ ^^^
\
r — L

81. -245/8. 82. 246,792. 88. 462. 84. 35.

36. Coefficient of x^^ is 33*"2-8»-3o-3'^3, of x^^^ is - 3=^^i 2-3''-3 a-^»
and of x=^'^^ is 0.

38. ^(n + l)(n + 2)(w+3)(n+ 4)(n + 6).

39. 2«+'' [3n +r-l J |r_ |37t
- 1 .

EXAMPLES XXIX.

18 3 _4 8_•

5(x + 6) 5(a; + l)'
"•

ar-3 x-2'

33 5 1
•

4(a: + 3) 8(x + 6) 8(a; + l)*

1 2 2 1 1_
x~(x + l)^'

®-
(x-2)2 a;-2''"x+ l*

1 7 13 „ 1 4a5-8
+ -7-/ ST' 7- ^-7 .-K^ +

12(a;+l) 3(a;-2)^4(a;-3)' 5 (a; + 2)
^

6 (a:»"+l)'



ANSWERS TO THE EXAMPLES. 639

1 1 1 « 1
.

1

l-10x^3(l + 3a;) 3{1 + Sx)^'
'

2 (x^+ l)

^
2 (a;-!)^'

3 21 21 7

2(l-3a;)8 8(l-3a;)3 32(1 -3a;) 32(H-x)

1^ J. 1_ 2 4 a; + 2
^^'

a;3+I''*«-2 a; + 3' («
-

2)8
"•"

5
(a;
-

2)
*"

5 (a:^+ 1)
'

2 11 11a; -4
^®*

6(x-l)3'*"25(a;-l) 25(a;2+ 4)*

3 11 a; + 2
14.

6{a;-2) 2(a;-l)2 2(a;-l) 10(a;2+ l)'

l^J- 1_ 17 1 3
"'

8a;3 16a; a;+ l
"^

16 (a; + 2)
"''

(a; + 2)2'^ 4 (x+ 2)3*

1 1 11 1 1 3_"•
4(« + 2)»"'"6(a; + 2)2'^144(a; + 2)''"9(a;-l) Sa;^ 16aj'

4 / l\«+i 1
17. (-l)"{2-"-3-~-i}. 18.

-(^-^j -9(3n
+ 7).

20.
^{3«~l)-5{(-l)«-l}.

21. l{9 + 5«-W-2.3"+«-2'*+<}.

22. (n3 + 7Ji+ 8)2«-8; ^ (n» + 9»8+ 14n) 2»-*.

EXAMPLES XXXII.

1. 1-262. 2. 1-48169. 8. £1146-74.

6. £742. 19«. 6d. 7. £785. 10».

8. £1979. 68. 6d. O. £1736 nearly. lO. £122-58.

EXAMPI^ES XXXIII.

I. i{(3n + l)(3n + 4)(3n + 7)(3n+ 10)-1.4.7.10}.

8 |3.7' {4n+ 3)(4n+ 7))
* " 168*

3. in(n + l)(3w2 + 23n + 46). 4. |to(w+1) (n4-2)-3n.
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6. in(7H-l)2(n+ 2). 6.
j^n(n

+ l) (n+ 2) (3»+ 6).

7.
2-4(2n-l)(2»+l){2n

+ 3){6n+ 7)+g.

21 6n+ ll
Q -^L®-

180 12 (2n + l)"(2n + 3) {2n+6)
' * ~ 180

'

_5
3n+ 5 _^

36 6{w + l)(n+ 2)(n+ 3)' *"36*

4 2(n+ l)(n+ 2)'
"" 4

•

8 8(2w + l)(2n+ 8)' «~8*

29 6na+ 27n-h29 _29
36 6(n + l)(n+ 2)(n+ 3)' ^^'"se*

"•
^'^~=^' ^• = ^- "• ^(«+ l)(«+ 2)(4n + 3)-|.

16.
ji^n{n+l)(n+2)(8n»

+ lln+ l).

16. na3 +n(n-l)a6 + g(w-l)n(2ro-l)6>.

17. na^+ ln {n
-

1) a^ft+ i (n- 1) to (2n
-

1) afts + ^na (n
-

1)»6«.

18. i«(4na-l). 10. in(16n2-12n-l).o o

23. in(n+ l)(n+ 2). 24.
^n(n

+ l)(4n -1).

26. na6-iTO(n-l)(a+ 6)+iTO(n-l)(2n-l).

27. (i) ^;-i. (ii) 1-j^^
("^) 2-n+ l (3)

• ^^") 4
-
2(n^l)(n + 2

) (tJ

/\ B 3 (By 6 /6\"
^^^ 2 (n+ l)(n+ 2)V4;

' ^""'^
"*

(n + 1) (n+ 2) ^7^
*
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EXAMPLES XXXIV.

4.7.10...(3n+ 4) 2. 5. 8... (3n+2)*• ^^'
2.5.8...(3» + 2)

^' ^"^
4.7.10...(3n+ l)

^'

,...,, 5.7...(2n+ 3) , /. X 1, f, 13.15...(2w+ ll)) ,,

2. (i)
2 + 3(71-1) (w-2); 2n+ n(n-l) (n-2).

(ii) 7n-(n-l)(n-2); ! n (n+ l)-in(n- 1) (n-2).

(iii) 2"+i-n-2; 2«+2-l_^(n+ 2) (n+ 3).

(iv) 2»+i-n(n+l)-n; 2»+2-4-|n (w+ 1) (n+ 2) -in(n+l).

(v) ^n(n+ l)(n+ 2)(n+ 8); y|Qn(n+l) (n+ 2) (« + 3) (w + 4).

(vi) (n-2)(n-l)w(n + l) + (n-l)w-n+ 2;

i(n-2)(n-l)n(»+ l)(n+ 2)+i(n-l)»(n+ l)-in(n + l)+2n.

^ ... 2-4x .... l-2«
^.... l-6a:

l-4x + x^' ^ ' l-5ar+ 4«a' ^ ' l-12a; + 32a^»

^^ 16-14x-35a;«-42ar8* ^"^^

(l-a;)«*

4. (i) 2»+i-2; 2«+2-2n-4.

(ii) ^{3»+ll(-4)-}4 + ^-|^^-4)-.

(iii)
i

{3'»
-

(
-

1)«} ;

g {3«+i
-
3} when n is even, and i

{3»+i
-
1}

when n is odd.

2«
•• ii{(l + N/5)" + (l-N/5)'*}. 6 a=l, 6=4, c= l, d=0.

2-3a;-a;* 1
9.•

(l-«)»(l-ac)*
"•

(l-a;)2(l-2a;)*

a6c...Z

"•
^n^y -

K^4)'°«'^->-J-i
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a*.
l-(l-^)log(l-.,.

«. «-^^. 80. .<!.

82.
(i) Divergent, (ii) Divergent, (iii) Convergent, (iv) Convergent,

(v) Convergent if 7 > a + /3, Divergent if 7 < a + /3.

EXAMPLES XXXVL

n+ 1

n+ 2'

10. b^.^\ -
{b^a^ + &V«-l) P\-l -

«»&«-! iKK-l+ «n) J»'n-«

EXAMPLES XXXVn.

*• W ^ +
8 +

^"^ 11 +
1 + 4 + 1 + 22 +

,..., ^1111M 6+1+2+1+10+.111111111 1^
(IV) t>+i^i + 3^i + 5+ j+ 3 + l + l + 12+

8. (i) ^|. (ii) J(4
+ x/37). (ill) ^(28-^30)

16. i(n2 + 3n). 26. «~i.

EXAMPLES XXXVin.

6. 266. 10. 3, 7, 9, 11, 13, 19. X8. 604»-6.

EXAMPLES XL.

1. (i) x=2, y=3. (ii) x=l, y= 10; x=U, y = 2.

(iii) a;= 4, 2/
= 8; a; = 13, y= l.

(iv) 696, 3; 626, 18; 554, 33; ; 57, 138.
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a. 22, 30.

a. (i) a?=4 + 13m, y= l + 7m. (ii;
a;= 9 + llm, y= 7 + 9m.

(iii) x=15m-7, y= 17m-lO. (iv) a;=644-69m, i/
= 44 + 49m.

4. (i) 3, 1, 2; 6, 2, 1; 2, 4, 1.

(ii) 1, 21, 1; 5, 14, 1; 9, 7, 1; 3, 13, 2; 7, 6, 2; 5, 5, 3; 3, 4, 4;

1, 12, 3; 1, 3, 5.

(iii) 2, 8, 3. (iv) 8, 38, 50; 19, 44, 36 ; 30, 50, 20; 41, 56, 5.

5.
(i) 1326, 2; 441, 3; 101, 8; 77, 10; 33, 21; 25, 27; 5, 112; 1, 333.

(ii) 6, 3. (iii) 8, 6. (iv) 6, 1; 13, 14.

7. 195, 121; 62, 264.

8. 8. ©. 20. lO. 3. 11. £3. 14s. 6d., £4. 5s. 6d.

12. 2s. Id., 2«. lOd., 2«. lid., Bs. Id., 3s. 2d., 3s. 3d., 3s. 4d., 3s. 5d.,

St. 6d., 8s. 6d., 8s. 9d. and 4s.

18. 11,12,15,24,36. 14. 15, 55; 26, 65; 35, 75. 15. 21.

EXAMPLES XLI.

86 31 11664 11124 10609
•

67' 67*
•

33397' 33397' 33397*
*'117

8. 3n2 + 6n + 2 pence. 15. -:. 16. 5. 21. 5.4 ^ (7

EXAMPLES XLIII.

1.
(i) q. (ii) 27g. (iii)

-
2p. (iv)

-
3q. (v) 2pK (vi) Sq.

(vii) -2i>2. (viii) Sp^. (ix) -p^. (x) piq. (xi) i?/2g.

(xii) -2>2/(8gr2+^3). 2. (i)
0. (ii) -Sp. (iii) -4g.

3.
(i) 8i)3-16p^ + 64r. (ii) {q^-4:pqr + 8r^)lT^. (iii) {q^-p^r)lr*.

4.
(i) 28, -24.

(ii) 44, -252.

5. {i)pi'-2p,. {ii) Bp^p^-p^^-Sps. (iii) (Pn-l'-2Pn-2Pn)/Pn'.
•

(iv) 2'i+2'n-i(2p2-V)/2>n- (V) (2'i' + 32^3 -3piPo)p«_i/i)„ + 2^2 -i)!^.

(vi) {BpiP^-pj^
-

Bp^) (jp„-i3
-
2p^_^p^)lp^^+p^.
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e. ar3-10a;3 + 31a; -31 = 0. 7. 6. 8. (i) x'-qx'^+prx-^r^=0,

(ii) s(^ + 2px^ + {p^+ q)y -r+pq = 0.

{iu).x^^{r-pq)+x^{Sr-2pq+p'^) + x(Sr-pq) + r=0.
^'

(iv) a^-2qx^+{q^+pr)x+ r^-pqr= 0.

2r
(v) Eliminate x between given equation and y= {p + xy^-i

—
.

X

(vi) y3
-
{Sq

-
jp«) y^ + (Sq^

-
qp^) y + rp^-q^= 0.

9. (i) Substitute - {y +p) for x.

(ii) Substitute -^{y +p) for x.

(iii) Substitute ^ {p^ -^q-y) for x\

lO. (y + r)3 + q^y +pY - ^pqy (y+ r)= 0.

EXAMPLES XLIV.

1. 2±JS, -3±J2. a. |,3±V^.o

6. x^-16x^+ 4.= 0. 6. a;*+ 2ar»+ 25= 0.

8. l±v^^l±2V^. 9. 2g^-9pqr+ 21r*=0.

10. 2)3
- 4pg+ 8r= and {p^ + 4$) (36g

- IV) - 1600s. = 0.

11. 6,1, -3. 12. 4, 1, -2, -5.

13. (i) 3. (ii) +4, -4. (iii) |.
14. 8, ±^.

16. ±J2, -2±V7. 16- r3-pgr+i)2g^o.

17. 3, 7, -10. 18. 3, 9, -|.

20.
(i) r2- 2)25=0. (ii) 2)2s+r2=42«.

EXAMPLES XLV.

1. (1) -i, -|,4. (ii) 3,3, ±2 V^i. (iii) i,
|.

i. -|.

(iv) 4, 4, 4,
- i

. 2. (6c
-
ad)2= 4

(ft^
_
^c) (c'

-
bd).

9. (i) y3-6^t/2+ 4(4py_s)y_8(22)2«_3grs+ 2r2).

(ii) {y
-
6q)^ + 6g (t/

-
6q)^ + 4 (42)r

-
«) (y

-
Qq) + 8 (2^)%

-
Sqs + 2r») =0.

lO. (y
-

162)2 + 24^)3
- 24g {y

-
16p^ + 24g)2

+ 64 (ipr -s)(y- IQp- + 24g)
- 512 {2ph

-
Sqs + 2r'^)

= 0.
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EXAMPLES XLVI.

1. (i) -5, -w-4w2, ~u^-^(a,i.e. -6, 0=^0'^"^*

(ii) -4, -w-3a;», -w^-Sw. (iii) 10, 2a; + 8w2, 2w3+ 8w.

(iv) 8, a)+ 7&>2, w3+ 7a,.

(v) -2094..., - 1-703. ..w- -391. ..w^ - 1-703. ..w»--391...w.

(vi) 30913, 2-1699w+-9214w2, 2-1699w2+-9214w.

a. (i) -1, -3, l±2i. (ii) 1±V2, -1=*= 2 v'"^

(iii) 3±V^ -3±V^rT. (iv) -2,
|, i(-l±7^0[5).

3. (i) One real root between - 3 and - 2.

(ii)
One between -7 and -6, one between 1 and 2, and one

between 6 and 6.

(iii) One between and 1, and one between 1 and 2.

(iv) Two between 2 and 3, one between and -
1, and one between

- 4 and - 5.

(v) One between 2 and 3, and one between - 3 and - 4.

8. (i) 1.-3569, 1-6920.
(ii) 4-189L (iii) -4679, 1-6527, 3-8793.

(iv) 2-2317. (v) 2-1622, 2-4142. (vi) 1-1487.

9. (i) 3, 3, -4, -4. (ii) 3, 3, -3±V8.

11. 1.3, -g, ±V^2.

MISCELLANEOUS EXAMPLES.

I.
(i) -{h-e){c-a){a-b){2a)\ (ii) iab-cd){ac-dh){ad-bc).

(iii) Sa (2Sa2
-
S6c). (iv) (6 + c) (c + a) (a + 6) Sa^.

6. {(6-c)»+ (c-a)« + (a-6)a}». 7. 3 (6-c) (c-a)(a-6).
21. (6+c-a)(c+ a-6)(a+ 6-c)=0, (y + z-x){z +x-y){x + y-t)=0.

28. (i) -2, |(-3±V5). (ii) a, 6, i{a+6=fc(a-6)^-3}.

(iii) 0, ±,^6c±>^ca±/^a6 (ail signs being positive or only one

positive).

(iv)
A =^L = * =^. (V) 0,0, 0; 1, 1, 1.

^ ' b-c c-a a-b ^abc

(vi) 2abc a;= =t {c^-i + a'ft^ - V^c^), &c.

(vii) 0,0,0; ±4, ±4, ±4; ±1, ±1, ±1. [Signs in ambiguities
must be taken so that xyz may be positive.]

. .... - - - a + b + c a + b + c a+ b-^c
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(ix) 1, -1, 1, 2; 1, -1, 2, 1. (x) a{b-c),b{e-a),c{a-h)i

a-b b-e c-a \a-b b-e c-a)l\a^ b"^ cj'

(xi) 0,0,0;0,^^>,a^;&c.O — C C —

(xii) 0, 0, 0; a'^-bc, b^-ca, d^-db.

31.
'p'^ + q^+ 7^-qr-rp-'pq=^0.

32. 13, 156; 14, 84; 15, 60; 16, 48; 18, 36; 20, 30; 21, 28; 24, 24.

36. 49, 225, 1225. 37. Digits 1, 0, r-1.

38. 7,13,17,23; -\, 1, -\, \.

39.
l+|^+2|3_+|4_+2(5+|6. 42. (2«-2)/n! 46. n(n + l)!

61.
sl^+K/Tj'

ea. l + 6<. es. 3»-i-3n + 4.

64. {(V5 + ir+i+ (
-
1)" (v/5

-
l)«+i}/ 2«+i . ^5.

2, « 1
66.

3log.2--.
83. (i) 2). (ii) 0. (iii) If a>l, D. If a:f 1, C. (iv) D. . (v) C.

64. m<n<m(V2 + l). 70. -^^y__^. 74. 63 and 65.

81. (a2+ 63+ cY/256a&c. 104. 2±73i, 1±V^.
113. 2p (6

-
c) (c

-
a) (a

-
6) {he + ca + a6).

JWv'c'v
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