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I. Notes on the Theory of Lubrication. ~~~ 
By Lord Rayuzies, 0.1, F.RS.* 

ODERN views respecting mechanical lubrication are 
founded mainly on the experiments of B. Towert, 

condueted upon journal bearings. He insisted upon the 
importance of a complete film of oil between the opposed 
solid surfaces, and he showed how in this case the main- 
tenance of the film may be attained by the dragging action of 
the surfaces themselves, playing the part of a pump. To 
this end it is “‘ necessary that the layer should be thicker.on_ 
the ingoing than on the outgoing side”, which involves a 
slight displacement of the centre of the journal from that of 
the bearing. The theory was afterwards developed by 
Q. Reynolds, whose important memoir § includes most of 
what is now known upon the subject. In a later paper 
Sommerfeld has improved considerably upon the mathe- 
matics, especially in the case where the bearing completely 
envelops the journal, and his exposition || is much to be 
recommended to those who wish to follow the details of the 
investigation. Reference may also be made to Harrison {, 
who includes the consideration of compressible lubricants 
(air). 

* Communicated by the Author. 
+ Proc. Inst. Mech. Eng, 1883, 1884. 
¢ British Association Address at Montreal, 1884; Rayleigh’s Scientific 

Papers, vol. ii. p. 344. 
§ Phil. Trans, vol. 177. p. 157 (1886). 
|| Zettschr. f. Math. t. 50. p. 97 (1904). 
{| Camb. Trans. vol. xxii. p. 39 (1918). 

Phil. Mag. 8. 6. Vol. 35. No. 205. Jan, 1918. B 

/ 



2 Lord Rayleigh on the 

In all these investigations the question is treated as two- 
dimensional. For instance, in the case of the journal the 
width—axial dimension—of the bearing must be large in 
comparison with the arc of contact, a condition not usually 
fulfilled in practice. But Michell* “has succeeded in solving 
the problem for a plane rectangular block, moving at a 
slight inclination over another plane surface, "free from this 
limitation, and he has developed a system of pivoted bearings 
with valuable practical results. 

It is of interest to consider more generally than hitherto 
the case of two dimensions. In the present paper attention 
is given more especially to the case where one of the opposed 
surfaces is plane, but the second not necessarily so. /As an 

) alternative to an inclined plane surface, consideration is given 
to a broken surface consisting of two parts, each of which is 
parallel to the first plane surface but at a different distance 
from it. /It appears that this is the form which must be 
approached if we wish the total pressure supported to bea 
maximum, when the length of the bearing and the closest 
approach are prescribed. In these questions we may anti- 
cipate that our calculations correspond pretty closely with 
what actually happens,—more than can be said of some 
branches of hydrodynamics. 

In forming the necessary equation it is best, following 
Sommerfeld, to begin with the simplest possible case. The 
layer of fluid is contained between two parallel planes at 
y=0Oand at y=h. The motion is everywhere parallel to a, 
so that the velocity-component u alone occurs, v and w being 
everywhere zero. Moreover wu is a function of y only. The 
tangential traction acting across an element of area repre- 
sented by dz is u(du/dy)dx, where pu is the viscosity, so 
that the element of volume (da dy) is subject to the force 
p(d?u/dy*) dx dy. Since there is no acceleration, this force is 
balanced by that due to the pressure, viz. —(dp/da) dz dy, and 
thus 

dp as 
ohae tr 

In this equation p is independent of y, since there is in this 
direction neither motion nor components of traction, and (1), 
which may also be derived directly from the general hydro- 
dynamical equations, is immediately integrable. We have 

_ 1 dy» ! Vii Oa da! +A + Bye. ee 

where A and B are constants of integration. We now 

* Zeitschr. f. Math. t. 52. p. 123 (1905). 



Theory of Lubrication. 3 

suppose that when y=0, u=—U, and that when y=A, 
u=(. Thus 

_ Yahy dp _ y ie ua Ue (1— z) Olle SA 

The whole flow of liquid, regarded as incompressible, between 
0 and his 

Oe eR: apr. ORO 
(ea=- 5 -F=-0 

where Q is a constant, so that 

7720) 2Q 
de ae (A (4) 

If we suppose the passage to be absolutely blocked ata place 
where @ is negatively great, we are to make Q=0 and (4) 
gives the rise of pressure as # decreases algebraically. But 
for the present purpose Q is to be taken finite. Denoting 
2Q/U by H, we write (4) 

d 6uU 
= = Ca ERE Aad eat ee (3 

When y=0, we get from (3) and (5) 

du ,4h—3H 
dy = re ones Satie si). tele ys (6) 

which represents the tangential traction exercised by the 
liquid upon the moving plane. 

It may be remarked that in the case of a simple shearing 
motion Q=4AU, making H=A, and accordingly 

dp/da=9, du/dy=U/h. 

Our equations allow for a different value of Q and a pressure 
variable with «. 

So far we have regarded h as absolutely constant. But it 
is evident that Reynolds’ equation (5) remains approximately 
applicable to the lubrication problem in two dimensions even 
when h is variable, though always very small, provided that 
the changes are not too sudden, # being measured circum- 
ferentially and y normally to the opposed surfaces. If the 
whole changes of direction are large, as in the journal-bearing 
witha large are of contact, complication arises in the 
reckoning of the resultant ferces operative upon the solid 
parts concerned ; but this does not interfere with the appli- 
eability of (5) when h is suitably expressed as a function 
of z. In the present paper we confine ourselves to the case 

By 

be 

a 



4. Lord Rayleigh on the 

where one surface (at y=0) may be treated as absolutely 
plane. The second surface is supposed to be limited at e=a 
and at e=b, where h is equal to h, and hy respectively, and 
the pressure at both these places is taken to be zero. 

For the total pressure, or load, (P) we have 

b > dp 
Pa) pdv=—( wads, 

on integration by parts with regard to the evanescence of 
p at both limits. Hence by (5) | 

PL ot eae °xvda ay ee a 

Again, by direct integration of (5), 

odax odx 
o= (5-H, _ . . 

by which His determined. It is the thickness of the layer 
at the place, or places, where pis a maximum ora minimum. 
A change in the sign of U reverses also that of P. 

Again, if be the value of « which gives the point of 
application of the resultant force, 

b b 
a. p={ pede=3{ a dx, 

z.P_ (?xdx o eda ee = Wes nn 

By (7), (8), (9) # is determined. 

As regards the total friction (IF), we have by (6) 

EF kee odx 
“0 =4(°—3H( aa es eee (10) 

Comparing (7) and (10), we see that the ratio of the tota 
friction to the total load is independent of » and of U. And, 
since the right-hand members of (7) and (10) are dimen- 
sionless, the ratio is also independent of the linear scale. 
But if the scale of h only be altered, F/P varies as h. 

so that 

We may now consider particular cases, of which the 
simplest and the most important is when the second surface 
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also is flat, but inclined at a very small angle to the first 
surface. We take 

Sa] ESE ON a, SOE a aman Oa 

and we write \for convenience 

a ded bib a= hey cy SEED) 
so that 

(ees. tre Sch a ae es) 

We find in terms of ¢,.k, and h, 

_ 2khy 
a acai sar ie tea e, 

(eg NOE ty 

gat Gant eet ee f+ 8). 
x k?—1—2klogk 
Pea ilon kOe lon eva (16) 

Seen mee Se) (17) 
P~ ¢ 3(&+1) logk—6(k—]) ° 

U being positive, the sign of P is that of 

2(k—1) 
ona em 

If k>1, that is when h,>/,, this quantity is positive. 
For its derivative is positive, as is also the initial value when 
k exceeds unity but slightly. In order that a load may be 
sustained, the layer must be thicker where the liquid enters. 

In the above formulz we have taken as data the length 
of the bearing ¢ and the minimum distance h, between the 
surfaces. So far &, giving the maximum distance, is open. 
It may be determined by various considerations. Reynolds 
examines for what value P, as expressed in (15), is a maxi- 
mum, and he gives (in a different notation) k=2°2. For 
values of k equal to 2°0, 2°J, 2:2, 2°3I find for the coefficient 
of c*/h;? on the right of (14) respectively 

"02648, -02665, -02670, -02663. 

In agreement with Reynolds the maximum occurs when 
k=2-2 nearly, and the maximum value is 

pUc? 
A 

It should be observed—and it is true whatever value be 
taken for kK—that P varies as the square of e/hy. 

log k — 

P=0-1602 arent ae.) 



6 Lord Rayleigh on the 

With the above value of k, viz. 2°2, 

HS UOT hig.) ee 
fixing the place of maximum pressure. 

Again, from (16) with the same value of f, 

#@—a=0-4231¢, . 9. . 2 ae 

which gives the distance of the centre of pressure from the 
trailing edge. 

And, again with the same value of k, by (17) 

BP=470h fe. .. 

Since hy may be very small, it would seem that F may be 
reduced to insignificance. 

In (18) .... (21) the choice of & has been such as to make 
P a maximum. An alternative would be to make F/P a 
minimum. But it does not appear that this would make 
much practical difference. In Michell’s bearings it is the 
position of the centre of pressure which determines the vaiue 
of k by (16). If we use (20), & will be-2°2, or thereabouts, 
as above. 

When in (16) £is very large, the right-hand member tends 
to zero, as also does a/c, so that x—a tends to vanish, ¢ being 
given. As might be expected, the centre of pressure is then 
close to the trailing edge. On the other hand, when & exceeds 
unity but little, the right-hand member of (16) assumes an 
indeterminate form. When we evaluate it, we find . 

X—-A= Ce. 

For all values of k(>1) the centre of pressure lies nearer 
the narrower end of the layer of fluid. 

The above calculations suppose that the second surface is 
plane. The question suggests itself whether any advantage 
would arise from another choice of form. The integrations 
are scarcely more complicated if we take 

Line Uo) 

We denote, as before, the ratio of the extreme thicknesses 
(Ao/h,) by k, and ¢ still denotes b—a. For the total pressure 
we get from (15) 

Poa ft) tae ee 6uU is mee jes 1) (8n—2) postin 

‘ i fi fp-2+2/n— 1 

ea | Sia 
from which we may fall back on (15) by making n=1. 
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For example, if n=2, so that the curve of the second sur- 
face is part of a common parabola, P is a maximum at 

2 

P=0163 ee, Dee ERGs eM) 
1 

when k=2°3. The departure from (18) with k=2:2 is 
but small. In order to estimate the curvature involved we 
may compare 4$(fh,;+A,) with the middle ordinate of the 
curve, viz. 

dm(a + b)?=44 Why + V(2°3h)) PP =1'58 Ay, 

which is but little less than 

3(hy + he) = ghy(1+2°3)=1 65h. 

It appears that curvature following the parabolic law is of 
small advantage. 

I have also examined the case of n=~x. It is perhaps 
simpler and comes to the same to assume 

BPE IE RIN LS Oe (25) 

The integrals required in (7), (8) are easily evaluated. 

Thus 

dz  e 784—e~ Bb — 

{G- 2B ~ 2BKh,?’ 

“dx  e7?8a—e-38 8] 

a) aes 38 BBR h,?’ 

the _ 3kh,(k?—1) 
making ‘El = SCPE y ° : 5 3 - ‘ - (26) 

In like manner 

\: de k(1+2@Ga)—1—28d 
| ae AB*k*h? ; 

adz_ k(1+38a)—1—3Bb 
Bayi 9h? 

Using these in (7), we get on reduction 

pa seu awe , B@-#)O—a) 
~ PRREU 6 pay it 

or, since Bc=log k, 

DL ops Oo Cee ae eT) lop RD)? 
= Fab | A aa ane i. “tia (27) 
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If we introduce the value of 8, the equation of the curve 
may be written 

R= ke). 

When we determine & so as to make P a maximum, we get 
b= 23 and 

2 

P0654", ., 
1 

again with an advantage which is but small. 
In all the cases so far considered the thickness h increases 

all the way along the length, and the resultant pressure is 
proportional to the square of this length (c). In view of 
some suggestions which have been made, it is of interest to 
inquire what is the effect of (say) r repetitions of the same 
curve, as, for instance, a succession ef inclined lines 
ABCDEF (fig. 1). It appears from (8) that H has the 

Hige 1. 

ae a) ear 

A Cc E 
x 

@) U 

same value for the aggregate as for each member singly, 
and from (5) that the increment of p in passing along the 
series is 7 times the increment due to one member. Since 
the former increment is zero, it follows. that the pressure is 
zero at the beginning and end of each member. The 
circumstances are thus precisely the same for each member, 
and the total pressure is r times that due to the first, sup- 
posed to be isolated. But if we imagine the curve spread 
once over the entire length by merely increasing the scale 
of w, we see that the resultant pressure would be increased 
r* times, instead of merely 7 times. Accordingly a repeti- 
tion of a curve is very unfavourable. But at this point it is 
well to recall that we are limiting ourselves to the case of 
two dimensions. An extension in the third dimension, which 
would suffice for a particular length, might be inadequate 
when this length is multiplied ~ times. 

The forms of curve hitherto examined have heen chosen 
with regard to practical or mathematical convenience, and 
it remains open to find the ferm which according to (5) 
makes Pa maximum, subject to the conditions of a given 
length and a given minimum thickness (f,) of the layer of 
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liquid. If we suppose that 2 becomes h+6h, where 6 is the 
symbol of the calculus of variations, (8) gives, 

oh dh dx ; 
2 ede 8H | ede + 3H Fi =O: ctu) 

and from (7) 

OF i) Oh(—2h+3H eda _ sy (22 
6nU a Hs Dh el ca 

the integrations being always over the length. Hlimi- 
nating oH, we get 

are Sh-Seda> E 3G) 
waa as bh eB foe a 
The evanescence of SP for all possible variations 6h would 

demand that over the whole range either 

Jh-sada 
L4= = 

\h-3dax ? 

(31) 

Ort an) ORs 90.3) 638) 

But this is not the requirement postulated. It suffices 
that the coefficient of dh on the right of (32) vanish over 
that part of the range where h>h,, and that it be negative 
when h=/y, so that a positive dh in this region involves a 
decrease in P,a negative 6h here being excluded a priori. 
These conditions may be satisfied if we make h=h, from 
2=0 at the edge where the layer is thin to =c,, where ¢, is 
finite, and h=3H over the remainder of the range from ¢ to 
(j+¢:, where c¢,+c,=c, the whole length concerned (fig. 2). 
For the moment we regard c, and c, as prescribed. 

Fig. 2, 

For the first condition we have by (8) 

Ey Ae ait €,/hy? + ¢2/he? 

3h.=H= €,/fy? + Co] hg?” 

so that 

Glo (2E— SY ww FEU C84) 

determining /, where as before k=h,/hy. The fulfilment of (34) 
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secures that h=3H over that part of the range where h=hy. 
When h=h,, h—§H is negative ; and the second condition 
requires that over the range from 0 to ¢ 

Sh-sade 
Sh “8d 

be positive, or since c, is the greatest value of 2 involved, 
that 

1 

fh-8ada—e\h-da= +. Ji(cete (35) 

The integrals can be written down at once, and the con- 
dition becomes 

B< C97 /¢;", ° i wee (36) 

whence on substitution of the value of c,/c, from (34), 

kK2b—3)?>1.  . . 

If & be such as to satisfy (37) and ¢/c, be then chosen in 
accordance with (34) and regarded as fixed, every admissible 
variation of h diminishes P. But the ratio c,/c, is still at 
disposal within certain limits, while c, +c, (=c)lis prescribed. 

In terms of £ and c by (34) 

d ¢ _ o(2k®—27) 
AS 1+2e23e, 3 14-2 ae ae 

and by (7) 

(38) 

ey tsi : en Oe 2k—-3 se? 
pee). Ry? {4 (3-28) + a 7 ie ee oes 

(39) 
The maximum of /(k) is 0°20626, and it occurs when 

k=1'87. The following shows also the neighbouring values: 

he, H(k). k(2k—8)?. 
1°86 0°20624 0:964 
1:87 0°20626 1°024 
1°88 0:20617 1:086 

It will seen that while £=1°86 is inadmissible as not 
satisfying (37), k==1°'87 is admissible and makes 

2 

P—-20gpeeee 0 9 b) 

hy 

no great increase on (18). It may be repeated that & is 
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the ratio of the two thicknesses of the layer (h2/h,), and that 

by (34) | 
CeO ees Taal Nia ow CeL 

This defines the form of the upper surface which gives the 
maximum total pressure when the minimum thickness and 
the total length are given, and itis the solution of the problem 
as proposed. But it must not be overlooked that it violates 
the supposition upon which the original equation (5) was 
founded. The solution of an accurate equation would pro- 
bably involve some rounding off of the sharp corners, not 
greatly affecting the numerical results. 

The distance w of the centre of pressure from the narrow 
end is given by 

BV AZO Ce cM ip fete in NN CED) 

differing very little from the value found in (20). From 
(10) with use of (38) we get 

F 4c(k—1)? 4¢ 

FFG GWE] eT) anny 02) at Ee i ids ae es) 

and 

F 4h (k—1) 
P ¢(2k—3) ° > 

It k=1°87, , 

P/PSs09ra te, Oy sok) ala) 

a little less than was found in (21). The maximum total 
pressure and the corresponding ratio F/P are both rather 
more advantageous in the arrangement now under discussion 
than for the simply inclined line. But the choice would 
doubtless depend upon other considerations. 

The particular case treated above is that which makes P a 
maximum. We might inquire as to the form of the curve 
for which F/P isa minimum, for a given length and closest 
approach to the axis of « Inthe expression corresponding 
with (32), instead of a product of two linear factors, the 
coefficient of 6/ will involve a quadratic factor of the form 

Bah+Ch?+De+Eh+F,. ... . (46) 

so that the curve is again hyperbolic in the general sense. 
But its precise determination would be troublesome and 
probably only to be effected by trial anderror. Itis unlikely 
that any great reduction in the value of F/P would ensue. 
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Fig. 3 is a sketch of a suggested arrangement for a foot- 
step. The white parts are portions of an original plane 

surface. The 4 black radii represent grooves for the easy 
passage of lubricant. The shaded parts are slight depressions 
of uniform depth, such as might be obtained by etching with 
acid. It is understood that the opposed surface is plane 
throughout. 

P.S. Dec. 13.—In a small model the opposed pieces were 
two pennies ground with carborundum to a fit. One of 
them—the stationary one—was afterwards grooved by the 
file and etched with dilute nitric acid according to fig. 3, 
sealing-wax, applied to the hot metal, being used as a 

_ “resist.” They were mounted ina small cell of tin plate, 
the upper one carrying an inertia bar. With oil as a lubricant 
the contrast between the two directions of rotation was very 
marked. 

Opportunity has not yet been found for trying polished 
glass plates, such as are used in optical observations on 
‘“interference.” In this case the etching would be by hydro- 
fluoric acid *, and air should suffice as a lubricant. 

* Compare‘ Nature,’ vol, Ixiv. p- 885 (1901) ; Scientific Papers, vol. iv. 
p. 546, ' 
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II. On the Calculation of the Maximum Force between Two 

Coaxial Circular Currents. By H. Nacaoxa, Professor 
of Physics, Imperial University, Tokyo *. 

< thors problem of calculating the maximum force between 
two coaxial circular currents originated in the absolute 

measurement of electric current by means of a balance. The 
formula for calculating the force was developed by Lord 
Rayleigh + in his investigation on the electro-chemical equiva- 
lent of silver. Recently a similar method was used by 
Rosa, Dorsey, and Miller{, in the determination of the 
international ampere. The interesting question as to the 
position of the coils and the maximum force acting 
between them was taken up by F. W. Grover §, who 
expressed the said quantities by means of Jacobi’s q-series. 
In a note on the potential and the lines of force of a circular 
eurrent ||, | have shown how the expansion in g-series of 
S-functions converges very rapidly in calculations of like 
nature. The expression for the mutual inductance between 
two coaxial coils and the force between the currents passing 
through them can be conveniently expressed in terms of q. 
Grover extended the expression for the force to terms in- 
volving g'* and g,° in the power series, thus increasing the 
accuracy of the expression to decimal places scarcely needed 
in practical measurements. From the integral expression 
for the force, we can by differentiation arrive at an expres- 
sion giving the condition of maximum force. This method 
was followed by Grover, who obtained an expression for 
calculating the maximum force that can be applied for given 
coils in finding the distance between them. The expression 
in its final form is sufficiently convergent to be of practical 
value, but the approximation leading to the value of g which 
corresponds to the required maximum seems to offer another 
solution. Obviously the reduction of the integral involves 
the use of elliptic functions, which can be expressed in terms 
of S-functions ; there is, in addition, a factor containing the 
distance between the coils. This factor gives rise to a very 
convenient formula for finding the required distance when 
once the value of gis known. Thus the first step is essen- 
tially the evaluation of g. According to the method followed 

* Communicated by the Author. 
+ Rayleigh, B. A. R. p, 445 (1882); Phil. Trans. clxxv. pp. 411-460 

(1884) ; Scientific Papers, ii. p. 278. 
t Rosa, Dorsey, & Miller, Bull. Bureau Stand. viii. pp. 269-393 (1911). 
§ Grover, Bull. Bureau Stand. xii. pp. 317-374 (1916). 
|| Nagaoka, Journ. Coll. Sci., Tokyo, xvi. Art. 15 (1903); Phil. Mag. 

vi. p. 19 (1903) ; Proc. Math. Phys. Soc. vi. p. 156 (1911). 

¥ 
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by Grover, this difficulty is overcome by finding the approxi- 
mate value of the distance by means of Rayleigh’s formula, 
and by using a relation which is rather empirical, and the 
ultimate result is arrived at after a number of successive 
approximations. 

The process which lam now going to develop is similar 
to that already used in my former papers and is characterized 
by giving the value of g corresponding to the maximum force 
by a simple relation ; it does not necessitate the knowledge 
of the approximate value of the required distance, but by 
two or three processes of approximation in finding the value 
of q, it leads to results which can be used in measurements of 
great accuracy even in the most unfavourable case. 

Denote the radii of the coils by a and A, the distance 
between them by z, then the mutual inductance is given by 

ane = cos 0dé ; 

AGiay af VA? +a?+22—2Aacos@’ ~ ~ Be 

whence the force between the unit currents passing through 
them is given by 

oM : cos 0d0 
=— =4r7 Aaz + 
mae » (A? +a?4+22—2Aa cos 6)? (2) 

For evaluating (1) and (2), we have to put, as usual, 

4(s—e,)(s—e,)(s—e3) = 48° —gos —93=8, 
where 

9 ers 

Qy= a eh ei) eee 
cL 7 y 

oe A? +a? + 2? re \3 

o GAg 0? Soe” 

and = = or) S= Ge (uw). 

We easily find that (2) is given by 

ea 24 hepa CS) 

Oz oe Jas 1924) ~28 
dey 

2(e, — @2)(41— 3) 

Tz 2 1 1 1 I 
fe ara | 3,7(0) + on (sa) alg 5H) (0)32(0) ; 

ae a ae 

= —mAay'z} )— (m+ exor) } 
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Expressing the quantity under the parenthesis in terms 
of g, we obtain 

OM _ 19272 , 
ag ae 

+ 680529! + 3374659"? + 15137409"! 
= EL Ser aS Ge ae a ee cera gi 

= {1+ 209? + 2259*+ 184096 + 1212098 

The expression in terms of g, is 

uy. Te 

mao Vv Aag; 

+ 216489,’ —73600qi1° + 2269449,’ — 6481899,2+ ....) 

} (1+ 129,—1929,? + 12329,3— 56349,4 

—12q, logn 2 . (1—109, + 6091? — 3009,? + 13009,4 
1 

— 48849, + 16320;5— 499209," + 1425009,8+....) I. 

(I’.) 
These formulz include many terms extended by Grover. 
The condition required for the maximum force is simply 

given by 

oly hates 07M 
on 2 

This evidently leads to the following relation between two 
integrals 

a: 

act" | cos 6 dé 

‘ : (A? + 9?+22—2Aacos 6)? 

S cos 6 dé 
- ch Sais a 2! 2 

at (A24 a? 4+2°—2Aa cos 6)? Sh 

This equation was utilized by Grover for finding the 
distance between the coils when the said condition is 
satisfied. The evaluation of the integrals is not an easy 
process, and for finding g from (4'), we have to assume an 
approximate value of < given by Rayleigh’s formula, and 
arrive at the final result by successive steps. The solution 
of the problem can, however, be obtained in another form 
by finding the value of g directly from the known value of 
a/A. 
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Reverting to the expression (I.) for F', we see that (4) is 
equivalent tc ) 

ale: 
oy 

provided z can be expressed by means of 3-functions. For 
this purpose we take advantage of the relation’ 

0, 

éy—e, — (A—a)?+2? 

€y— 3 4Aa i 

éy— 63 ies (A +a)?+2? 

€g— e3 ny 4Aa 

Expressed by means of 3-functions 

2, S04(0) _ (Aa)? 
Aa ~3,4(0) Aa 

and 2 33°(0) 

Adding them, we obtain, by utilizing the relation 

33°(0) —S0*(0) =52'(0), 

J -1Q2NB)-(E49). - @ 
which enables us to expand < in terms of q. 

For expansion, it is convenient to use the product series 
of 3’s: thus 

$,(0)=HA-g@)it+ge ty, 

$(0)=M(1—g™)A—g""", 

by which (1—g*) being common to the numerator and 
denominator is eliminated. On evaluation we obtain 

2? 

Aa 

_1+ 20g! 624" + 216g°— 641g! + 1686937789" + 82489" 
Ag > 

f ° +) eee 

a. 
where ety 
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For expressing z in terms of g,, we remark that 

1 
Pe) cia Cais, (Gee) A oy 
Aa 3,4 (0, 25 Aa 

—— === ummm 

whence we obtain 

2 ee (0, ei 7) + 3H(0; — ) -(< a (5') ee. 6) 
ACSC aaa 

A similar remark as for (6) applies to the calculation of (7) 
in terms of g;, resulting in the expression 

32 
7 =2+ 649;(14 89, + 4497 + 1929)? + 71894 + 24009,° 

SM SOG AUT OAG ys nate I. Cowie cs A) 

It is generally sufficient to retain g,°, the remaining terms 
being negligible even in the most accurate work that can at 
present be attempted. 

a? 
Squaring (I.) and substituting for Agia (6) and (6’), we 

find the required condition to be equivalent to 

on 
0g 

All the rest is a simple mechanical operation; the final 
equations for obtaining g or qg; from the known ratio of the 

=). 

dimensions of the coils r ee (=a++ according. to 

Grover’s notation) may be ae under the following 
form 

ahs - +6°8 g—-51°6 q+ 6144 g?—7934°6 g? 
+ 103683-6 g°— 1353676"4 91-4 176493006 9! 
—230°1 x 10% g%+.. MEN sooihatyy (AE) 

Phil. Mag. 8. 6. Vol. 35. No. 205. Ten. 1918. C 
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The coefficients are exact up to that of g!*; the rest of 
higher terms are insignificant and may be neglected even 
in the most unfavourable cases. For practical calculation, 
the above equation is applicable to values of » ranging from 
r=a0 to r=2°'5, the latter corresponding to the case of 
a/A=0°5. From this value down to r= 2, which is the smallest 
occurring in practice for the case of coils of equal radii, we 
have to use an expression in terms of q;, which can be ex- 

2 

pressed by substituting (5) in (I.) and making =(0: The 
formula is as follows :— fe) 

Lr {1-— 16q; + 3769,°>—46729;3 + 38948q,*— 2521929;° 

+ 1365888 9,°—64633609,7 + 27500946q5—.... 

1209, logn = (1169, + 1549,2— 1120938 
1 

+ 66809,t—342729)5 + 156268g;°—. ...} 
=2{1—2649,? + 409693 —36828y,* + 2457609) 

— 860712q,° + 64143369,’ —273772629)° +..-. 

4 249 loon = (3—64qi-+ 102g, - 53769,8 
1 

+ 327129,4—1693749,° + 775908q,°— ....)}. CII’.) 

It is worthy of remark that (II’.) is to be used from 
a/A=0°5 to 1, the value of g,; ranging from g,=0:0113 to 
g:=0. The series in the numerator and denominator con- 
verge very rapidly, and we can sometimes utilize the formula 
for a somewhat larger value of g,; the only tedious process 

of calculation is finding logn = 
1 

When once the value of either qg or g; is found, we can 
calculate z by (6) or (6’) ; and then IF by (1.) or (I’.). 

As an example of practical calculation, let us take the case 
aj/A=0°5; i.e. r=2°5. From the first three terms in (I1.), 
we find by inspection that g is nearly 0°11; putting this 
value in (II.) and calculating to 97, we find that the right- 
hand side is about 2°5059, giving Ar=—0-°0059, and hence 
Ag=0:00054 ; next putting g=0°11054, we find 

Ar= —0:00003476 

by taking all the terms into account; thus the final value 
of qg corresponding to the required maximum is 

q=0°110543224, log g=1:04353213. 
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The number given by Grover is log g=1°4035322; the 
value for 2/A is 0°38353439, while Grover gives for it 
0°3835341, agreeing to within a ten-millionth part. 

For the convenience of practical calculation, the following 
tables of Ar and r are given for different values of g and qy 
respectively, calculated for me by Mr. Shobei Shimizu; 
Ar in the first table are residuals 

614°4 g? —7934°6 97+ ....—230'1 x 10%? 

in (II.), while rin the second table refers to those calculated 
according to (II’.). 

| | 

| q: Ar. ne: | q- | ir. | A - 

Lite SRA ETA | A Ieowes: (ere (ie 
; 

| 0-00 | o-co00000 _ | 0000 — 20000000 
| aa 339002 

0:01 | 0-0000001 | | 0-001 | 2-0389002 
19 | | 366859 

0:02 | 0-0000020 0:002 | 2:0705861 
| 128 | | 389351 
| 0:03 | 0-0000148 0-003 21095212 
| 469 | 409255 
— 0:04 | 0:0000616 0004 | 2:1504467 
| 1244 | | 427502 
| 9:05 | 0-0001860 | | 0-005 | 21931969 
| 2705 | | 444584 
| 0-06 | 0:0004565 | | 0-006 | 2-2376553 
| 5147 | 460811 
| 0:07 | 00009712 0:007. | 2-2837364 
| | 8885 | | 476382 
| 0-08 | 0:0018597 | | | 0008 | 23313746 

| 14251 | | 491447 
0:09 | 0:0032848 | | 0-009 | 2:3805193 

| 21574 | | 506120 
| C10 | 0-0054422 | | | 0-010, | 2-4311313 | 
| | 31175. | | | 

0-11 | 0:0085597 

From the table, it will be noticed that the residuals ap- 
parently cover a wide range in the calculation with g; this 
is at once evident from the fact that the range covered by 
the g-series is very great compared with that in which the 
gi-series are applicable. This is in no way an impediment 
in practical calculations, as the formula in terms of g is 
simpler than that in g,; especially in numerical evaluation 
of g from known values of 7, the formula (II.) is characterized 
by the great facility with which all the terms can be calcu- 
lated and the required approximations brought to test. As 
all the rest of the calculation depends on the value of g, 

C2 
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when once this is accurately known, the distance between 
the coils and the force exerted at that distance can be found 
by the formulze (1) and (6). 

As regards the utility of the solution of the present pro- 
blem, it would be unnecessary to spend words on its bearing 
in the construction of the current-balance for the absolute 
measurement of electric current. The numerical data caleu- 
lated by Grover are of great value in researches of this kind. 
The solution which I have here given may be of service in 
the direct calculation when the dimensions of the coils are 
given. How far the accuracy of the instrument can be 
relied upon is of great interest to me, as I believe that the 
instrument can be used for a purpose totally different from 
the usual measurement of the electric current, and which 
seems not yet to have been well noticed. 

The most exact method of measuring relative values of 
gravity is that of comparing the periods of invariable pen- 
dulums at the place of observation with those at the standard. 
station. The great inconvenience and difficulty accom- 
panying the method of observation lie in the extremely 
accurate measurement of time; the rate of the clock must 
be known to 1/60th part of a second per day, if the period | 
is to be exact to one part in five million. For this we have to 
take a transit instrument of fairly large aperture, and when 
obstructed by bad weather we have to wait for days. In 
addition to this, the occasional change of the clock-rate 
necessitates the unintermittent continuation of observation 
which imposes a great burden on the observer. This 
tedious and unwelcome obstruction to the usual method of 
gravity determination may, to a great extent, be overcome by 
using a current-balance instead of invariable pendulums. 
The strength of the current is to be evaluated by means of 
known resistance of the circuit and the terminal potential 
difference, for which the electromotive force of the cadmium 
cell must be relied upon. Itis a question if we can bring the 
constancy of the cadmium cells and of the coils to the same 
order as that of the pendulum and clock. The weight 
counterbalancing the attraction of the coils is an immediate 
measure of the force of gravity at the place of observation. 
For this purpose it is perhaps necessary to design an instru- 
ment anew in a transportable form, and construct the coils 
such that the attraction is of sufficient amount to give the 
desired accuracy. It must however be well noticed that 
the method of current-balance is not free from objections, as 
the current is liable to fluctuations and the coils are heated 
in course of measurement and give rise to convection current; 
moreover, the correction to be applied to such disturbances 
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is difficult to calculate and almost impossible to estimate 
exactly. ‘There may be other methods of dispensing with 
astronomical observations in gravity measurements, but I 
believe that the method of current-balance is one of the 
most accurate that can be easily brought into practice with- 
out sacrificing to any great extent the degree of precision 
usually attainable with invariable pendulums. 

In the theory of atomic constitution, it is generally as- 
sumed that there are rings of electrons in rapid rotation : 
these are no doubt equivalent to currents and must exert 
mutual influence upon each other. When such atoms com- 
bine into a molecule and are in such a position that the- 
planes of the rings are parallel to each other, then the posi- 
tion of maximum force between two circular rings here 
discussed will be of some significance in the atomic 
configuration of molecules. 

III. On the Nodal-Slide Method of Focometry. By J. A. 
Tomxnins, A.R.C.S. (Lond.), Lecturer in Physics, Technical 
College, Bradford *. 

ia A. ANDERSON has recently described (Phil. 
Mag. Jan. 1917, p. 157) an elegant method of deter- 

mining the focal length, and other constants, of a lens system 
based upon a general theorem of which the ordinary nodal- 
slide method is but a particular application. This theorem 
is that for any lens system there is always one, and only one, 
point on the optic axis such that a small rotation of the system 
about a perpendicular axis through it will cause no lateral 
displacement of the image of an object in a given position. 
This point was shown by Prof. Anderson to divide the 
distance between the object and image, andalso that between 
the nodal points, externally in a ratio equal to the value of 
the magnification. . 
A numerical example of the determination of the focal 

length of a diverging combination by this method was given, 
butit was pointed out by Mr. R. EH. Baynes (Phil. Mag. 
April 1917, p. 357) that these data yielded very different 
results for the focal length and the positions of the nodal 
points when calculated in different ways. These discrepancies 
were explained by Prof. Anderson (Phil. Mag. July 1917, 
p- 76), who discussed the effect of various errors and showed 
that, while the method gave quite satisfactory values for 
the focal length, it failed to do so for the distance between 

* Communicated by the Author. 
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the nodal points, because small errors are multiplied by the 
numerical value of d, the distance through which the com- 
bination is moved, which may be large. He also described 
another method which gave satisfactory values for this 
distance. In a third paper (Phil. Mag. Sept. 1917, p. 174) 
he gave some further properties of this point, which he terms 
the nul point. There are, however, two possible sources of 
error mentioned by Prof. Anderson, viz. (1) want of pre- 
cision in determining whether there is any displacement of 
the image, and (2) error in determining its position, which 
seem to call for further consideration. 

With reference to the first it is to be noted that in the 
ordinary nodal-slide method there is one, and only one, 
possible axis of rotation of the lens system, viz. that passing 
through the second nodal point, whereas in the general 
method described by Prof. Anderson there is an infinite, or 
doubly infinite, number of possible axes. The object of this 
communication is to investigate the best position, if any, for 
the nul point, and to compare the results with those obtained 
by the ordinary nodal-slide method. 

For the purpose of observing the displacement of the image 
the best position will be that for which a given small dis- 
placement of the axis from the nul position will, for a given 
small rotation of the lens system, produce the greatest 
displacement of the image. 

To determine this it is necessary first to find an expression 
for the displacement of the image due to a small rotation 
about any axis. 

Pie. 1. 

Fig. 1 shows the displacement produced by a convergent 
combination in the general case in which the first and last 
media are different, and in which, therefore, the principal 
and nodal points are not coincident. P,Q, and P,Q, are the 
object and image respectively, H, and H, the principal 
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points, N, and N, the nodal points, Ff and F, the principal 
foci. Suppose the system to be rotated about O through a 
small angle @ so that the principal axis moves into the 
position indicated by the dotted line. Then, to a first approxi- 
mation, the nodal points N,; and N, will move into the positions 
N,’ and N,’ and the image P,Q, will move in the same plane 
into the position P,'Q,' obtained by drawing N,'P,' and Ny'Q,, 
parallel to PN,’ and Q,N,’ respectively. 

Let N,O = l, N.N, = a, NP, =U; Noes =v. 

Bien!) NN 36 and NON = (a2 ye: 
Hence the displacement of the image is given by 

PN, 
s=Q.Q.’=N.N,'+ NP, -N,NY 

=(a+l)0—~.16 
u 

See WC Lm me) EO e. if, (LE) 

where m= = , the magnification. 

In order that the displacement of the image may be zero 
for a given value of 8 we must have 

s=at+l(1—m)=0, 

or Fe TRS EN ANE 

There is thus one, and only one, position of the axis of rotation 
for which there wil! be no displacement of the image, viz. 
that which divides the distance between the nodal points 
externally in a ratio equal to the value of the magnification— 
a result obtained in another way by Prof. Anderson. The 
best position for the axis of rotation will, as already pointed 

out, be that for which . is a maximum subject to the con- 

dition given by equation (2). 
Differentiating (1) and substituting from (2), we get 

d g qa Gd—mea- Fee 8) 

The rate of change of the displacement thus varies directly 
as a, the distance between the nodal points and inversely as /, 
the distance of the nul point from the first nodal point. 

It is greatest when /=0, i.e. when m=, and the nul 
point coincides with N,. It thus appears that the best 



24 Mr. J. A. Tomkins on the 

position is attained when the axis of rotation passes through 
the first nodal point, in which case the object, real or virtual, 
will be situated at the first principal focus. 

The light will then emerge as a parallel pencil, and the 
image can be viewed through a telescope focussed for parallel 
rays, as in one of the well-known methods of determining 
the focal length of a thin lens. A further advantage of this 
position is that the nodal points are determined directly as 
in the ordinary nodal-slide method. Cares 
We will now apply these formule to the example given in 

Prof. Anderson’s second paper (Phil. Mag. July 1917, p. 76), 
where 

"4 
OP, =2,=142 em.; OP, =yj4=9'4 cm.; and m= = 0°0662. 

OP,'=2,=29'1em.; OP,’/=y,=8'3em.; and m= at =0'285. 

#=113°3 cm.; HoH,=a@=2°43 cm. 

The distance H,O in Prof. Anderson’s figure (Phil. Mag. 
Jan. 1917, p. 158), in which the principal and nodal points 
are coincident, is given by 

OP, a OS yc. a 
FD OF, OP, ne? ae ° ° (4) 

which is but a particular case of the general expression 
obtained by Prof. Anderson. 

a 
l—m 

a 
and in the second position H,O=— ae —3°40 cm. 

sma?) 

Hence in the first position H,O=— = — 2°60 cm. 
1 

These positions in relation to the nodal points are shown to 
scale in fig. 2. 

Hip, 2. 

JT LES a een 
(0) 0: lpg yy 

2 \ 

Suppose now that 0==5°=0-0873 radian and that the axis 
of rotation is moved 1 mm. from the nul position towards the 
object. 

Then, in the first case, l,==— 2-604+0-1=— 2°5 ecm.; 
m,=0°0662; and the displacement of the image calculated 
by equation (1) is 0:0083 cm. In the second case we have 
l,= —3'40+0:1=—3:3 cm.; m,=0°285 and the dis- 
placement is 0:0062 cm. If, however, the ordinary nodal- 
slide method had been employed, in which case O would 
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coincide with H., then J=—2°33, m=0, and the dis- 
placement under the same conditions would have been 
0°0087 cm. 

These small displacements may also be calculated more 
simply by using the approximate formula 

ds aé 
sl él. be a Cea tata C75 

In the first case 1,:= —2°6 and 6s=0°0082, in the second 
case /,=—3°4 and 6s=0:0062; while in the ordinary 
nodal-slide method J=— 2°43 and 6s=0-0087. These 
results agree closely with those obtained by the more 
exact formula. Or, to put the matter rather differently, 
if we suppose the smallest observable displacement to 
be 0°01 cm., then the distances through which the axis 
would have to be moved from the nul position to produce 
this displacement would be 1°20, 1°61, and 1:15 mm. in the 
three cases respectively. These examples show that in this 
particular case the nul point can be determined with greater 
accuracy by the ordinary nodal-slide method than by the 
general method. 

If, however, a convergent combination forming a real 
image, as in fig. 1, had been employed, the nul point 
would lie between N, and N,. and its position could be 
determined with greater accuracy by the general method 
than by the ordinary nodal-slide method. In this case thie 
nul point is indicated by Oo, which is the point of inter- 
section of Q,Q, with the optic axis. 

Again, if, with the same convergent combination, a virtual 
image were formed, a case not likely to arise in the deter- 
mination of focal length, the magnification would be positive 
and greater than unity. The nul point would therefore lie 
on the side of N, remote from No», and its position could be 
determined by the general method with greater or less 
accuracy than by the ordinary nodal-slide end) according 
as it is at a distance from N, less or greater than a 
respectively. 

If the nodal points are determined by either of the two 
direct nodal-slide methods, which will here be distinguished 
as the first and second nul methods respectively, the principal 
foci and focal lengths may be most readily and directly 
found by measuring the distances from the nul point of the 
object in the first method and of the image in the second. 
Now in obtaining the position of the image there will be 

a certain range along the axis within which the object may 



26 On the Nodal-Slide Method of Focometry. 

lie and yet produce a distinct image ona fixed screen. And, 
conversely, there will be a certain range within which the 
screen may be moved and yet give a distinct image of an 
object in a given position. 

The former range is called the depth of focus of the in- 
strument, and may be shown (Heath’s ‘ Optics,’ pp. 269, 270) 
to be given by the expression 

Nee 
— m tan a’ 

where & is the distance of the object from the entrance pupil, 
e the maximum value of the circle of indistinctness, m the 
magnifying power, and « the angular aperture of the 
instrument. 

In the second case the range through which the screen may 
be moved may be similarly shown to be given by the equation 

ME 
hia APS, 

where &' is the distance of the image from the exit pupil. 
In order to determine with precision the positions of the 

object and image the property required will be the inverse of 
these. In the first case, it will vary directly as the mag- 
nifying power and the angular aperture, and, in the second 
case, it will vary inversely as the magnifying power and 
directly as the angular aperture. 

By comparing these magnitudes in the two cases just. 
referred to it will be seen that the principal foci can be 
determined with greater accuracy by the first than by the 
second nul method. 

Finally, the similarity of object and image will depend 
on the resolving power of the system, which increases with 
the angular aperture, and this again will be greater in the 
first nul method than in the second. 

The conclusions arrived at in the foregoing were tested by 
the following experiments :— 

Two thin plano-convex lenses, each having a focal length 
of 25°8 cm., were mounted with their convex surfaces inwards 
and ata distance of 12°9 cm. apart. The calcalated focal 
length of the combination was 17:2 cm., and the distances of 
the first and second nodal points were 8°6 cm. measured 
inwards from the first and second lenses respectively, so that 
the distance between the nodal points was 4:3 cm. 

The positions of the nodal points were then determined by 
the first and second nul methods. 

In the first method it was found that the lens system could 
be moved through a total distance 1:7 mm. before any 
sensible disp!acement of the image was caused by a small 
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rotation, whereas in the second method a motion through 
5 mm. was required to produce the same result. 

The principal foci of the combination were also found,a 
needle being used as object in the first method and to locate 
the image in the second method. The distances through 
which the needle could be moved before any sensible parallax 
was observed were 2 mm. and 4 mm. respectively. 

This particular combination was chosen in order to get a 
fairly large distance between the nodal points, but as the 
lenses were uncorrected quite a small rotation caused tie 
image to become confused owing to oblique aberration. 
A further test was therefore made with a 15 in. (38:1 em.) 
Ross photographic lens in which the distance between the 
nodal points was only 16 cm. The following results were 
obtained for the ranges of adjustment in the two cases:— 

First Method. For nodal points 0°2 mm.; for principal 
foci 3°5 mm. 

Second Method. For nodal points 1°5 mm.; for principal 
foci 11 mm. 

These figures must be taken as indicating the relative 
rather than the absolute accuracies of the two methods, 
since the nodal-slide employed, though not of the roughest, 
had no fine adjustments. They appear, however, to show 
that the first nul method is in every respect superior to the 
second. 

In conclusion, I wish to thank my colleague, Mr. J. E. 
Rycroft, for his kindness in making the diagrams. 

IV. On the Value of the Mechanical Equivalent of Heat. 
By T. Caruiton Sutton, B.Sc.* 

ier following values of the Mechanical Equivalent of 
Heat (for references see Kaye and Laby’s ‘Tables’ 

and Guiiths ‘Thermal Measurement of Energy’) have 
been reduced to joules per mean calorie :— 

TSAS samen ers a sine ene 4173 
ERPS) Enea oe oS ls oS lactis 4:184 
DOS REA 8 Gh scl fa aie v's, «os 4:188 
1894 Schuster and Gannon ...... 4:185 
1897 Reynolds and Moorby ...... 4184 
1899 Callendar and Barnes ...... 4184 
1900 Griffiths (deduced) ........ 4184 
1906 Jager and Steinwehr ...... 4:188 
1908 Crémieu and Rispail........ 4:189 
1909 Barnes (deduced) .......... 4:185 
WORD). SECU se chk ke wal 2 caters, 3s 4179 

1914-5 Sutton-Henning (see below).. 4185 

* Communicated by Principal E. H. Griffiths. 
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The results obtained since the year 1905 are not as concor- — 
dant as might have been expected. It may be of interest 
therefore to compare the value of the heat of vaporization of 
water at 100° C. obtained electrically at the Reichsanstalt 
by Henning (Ann. d. Phys. 1906-9) with that obtained by 
the author in terms of the mean calorie directly (Proc. Roy. 
Soc. April 1917). : 

Henning’s results are shown in the following graph, which 
indicates that the value at 100° C. is 538°5+0°3. Probably 
the constant errors are even less than 0°3. 

Henning’s work may also be checked by comparing it 
with that of Griffiths’ at 30° C. The values for the heat of 
vaporization at that temperature are in good agreement, 
579°9 and 579°3 mean calories respectively. 

Fig. 1. 

4-188 joules) 
- _ 1 73) 102) 1S) 

HENNING 

Latent Heat(J oS V.&S. cals. } Ww 00 

@ 100°C 100:5°C 
Temperature 

The corresponding values obtained by the author (Proce. 
Roy. Soc. April 1917) give 538°8+0°1 mean calories at 
OOS 0: 

If, then, Henning’s mean value is correct to 1 part in 2000, 
the deduced value of the Mechanical Equivalent should be 
correct to within two units in the third decimal figure. 

Henning uses the Jager and Steinwehr valne of the 
15° calorie to convert joules to calories, and takes the Reicls- 
anstalt value of the e.m.f. of the Clark Cell. What he 
actually determines as the Energy of Vaporization at 100° C. 
is 538°5 x 4°188 Reichsanstalt joules. 



of the Mechanical Equivalent of Heat. 29 

Fig. 2. 
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The theoretical curve is obtained from Clapeyron’s relation 

=(V—v)T L=(V—»v)T ST 

to show the change of latent heat with temperature. (Since the values of 

V and a are not known with the same accuracy as L, the slope of the 

curve ouly has been taken from this relation. This is sufficient for the 
purpose of reducing the results.) 

It will be noticed that the more accurate methods of measurement 
give values which show clearly the agreement with the thermo- 
dynamical result. 

On comparing this with the author’s results, which are 
measured directly in mean calories, it follows that 

538°5 x 4:188=538°88 J, 

Bis J =4:185+0-002 joules per mean calorie. 

It will be noticed that this is in exact agreement with the 
values obtained by the earlier experimenters—Schuster and 
Gannon, Reynolds and Moorby, Callendar and Barnes,—and 
with the values deduced on separate occasions (from all data 
then available) by Griffiths and by Barnes; on the other 
hand, this value and those obtained by the more recent experi- 
menters are certainly too discordant to be reconciled. 

This agreement between the values given by the classical 
experiments and the value given by a method so different as 
the present substantially increases the probability that the 
value of the Mechanical Equivalent lies between 4:184 and 
4-185 joules per mean calorie. 
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VV. Light Distribution round the Focus of a Lens, at 
various Apertures. By L. SILBERSTEIN, Ph.D., Lecturer 
in Natural Philosophy at the University of Rome”. 

Bibliographic and*Introductory. 

YINHE distribution of the intensity of light in the 
neighbourhood of a caustic has been studied by Sir G. 

Airy as early as in 1838 (Camb, Phil. Trans. vol. vi.), for 
the case, however, of an unlimited beam only. Some of 
the effects of spherical aberration of limited beams upon the 
central intensity and the definition of the image have been 
investigated by Lord Rayleigh in 1879 (Phil. Mag. vol. viii. 
pp. 403-411). The chief problem considered by him relates 
to a beam of cylindrical waves of rectangular section, their 
aberration being assumed proportional to the cube of the 
lateral coordinate «. The solution is reduced to the evalua- 
tion of an integral of the form J cos (av+be*)dx. Availing 
himself of the numerical results of the mechanical quadratures 
recorded in Airy’s paper, Lord Rayleigh calculates and draws 
three intensity curves for the focal plane (loc. cit. p. 406), 
corresponding to the case of no aberration (b=0), and to 
those in which the marginal aberrations amount to + and 
4 period. The practically important consequence drawn 
from the aspect of these curves is that ‘‘ aberration begins 
to be distinctly mischievous when it amounts to about a 
quarter-period.”” In the next case studied, that of sym- 
metrical aberration proportional to #*, Lord Rayleigh 
calculates, by the aid of a series, the intensity at the central 
point only. Passing, finally, to beams of circular section, 
he limits himself again to the calculation of the central 
intensity, viz. in the case of axially symmetric aberration 
proportional to the fourth power of the distance, and finds 
that, as in the preceding cases, aberration begins to be 
prejudicial when it mounts up to a quarter of a period. 
This result has since become widely known, having been 
incorporated into the Enc. Brit.t and several English 
text-books. In 1884 Lommel investigated the distribution 
of illumination in the diffraction image of a point given bya 
circular aperture t. The problem in this case reduces to the 
evaluation of integrals of the form 

J Jo(aa) cos (b2*)ada, J Jo(az) sin (ba?) adx 

* Communicated by the Author, 
+ Cf. Lord Rayleigh’s article on “ Diffraction of Light” in the 

11th ed. of Enc. Brit. vol. viii. pp. 2388-255. 
t E. Lommel, Bayer. Akad. d. Wiss, vol. xv. 
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which are developed into power series of the upper limit or of 
its reciprocal. Lommel’s results have been adapted, in 1891, 
to the problem of pin-hole photography by Lord Rayleigh*, 
whose paper, besides a theoretical and experimental discussion 
of the subject, gives also five curves exhibiting the distri- 
bution of light round the centre of the image corresponding 
to different apertures. As will be seen later on, the typical 
phase aberrations of wave-surfaces emerging from lenses 
differ in kind from those involved in the pin-hole problem. 
Investigationsiaiming directly at a diffractional treatment of 
the images produced by lenses were undertaken, in 1893, by 
R. Straubel, whose papers are quoted in Winkelmann’s 
* Handbuch’ (1906, vol. vi. p. 106), but unfortunately are 
not accessible to the writer, and a little later by K. Strehl in 
a very attractive book entitled ‘Theorie des Fernrohrs auf 
Grund der Beugung des Lichts’ (Barth: Leipzig, 1894)f. 
The earlier part of the work being dedicated to preparatory 
matter, Strehl investigates in Chap. V. and VI. the intensity 
along the optical axis and in the focal plane of an aplanatic 
object-glass, and since this is materially the same problem as 
that of a circular aperture treated by Lommel (loc. cit.), 
Strehl bases himself upon Lommel’s results, as had already 
been done by Lord Rayleigh, and enunciates a number of 
theorems on the general features of the light distribution for 
the case in question. The effects of “ spherical aberration” 
are treated in Chap. VII., where the intensity formula is 
developed for the case in which the emergent wave is an 
ellipsoid of revolution ; the series developments (pp. 62-63) 
are very complicated, and it does not appear that they could 
conveniently be applied to concrete numerical calculations. 
They enable Strehl, however, to enunciate some general 
theorems about the symmetry relations of the diffraction 
effects associated with spherical aberration of the said kind, 
and an important conclusion on the true measure of the mis- 
chievous effect of spherical aberration (p. 65). In a sense, 
Strehl is right in declaring that by his investigation “the 
problem of spherical aberration is completely solved.” So 

* Phil. Mag. vol. xxxi. (1891) pp. 87-99. 
+ After that Strehl has published several papers in Zettschr. f. 

Instrumentenkunde for 1895-98 which I have not been able to consult. 
However, to judge from Winkelmann’s quotation, the ground covered 
by these papers is essentially that of Strehl’s book. Winkelmann (Joc. 
cu. p. 403) quotes also, in connexion with the diffractional theory of 
the telescope, Ch. André’s “ Etude de la diffraction dans les instruments 
d’optique ” (Paris, 1876), without, however, describing the contents of 
a paper, which was published in Ann. se. de l’école norm. supérieure, 
vol. v. 
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fact it is, inits essence. None the less it seems desirable to 
treat problems relating to concrete lenses with all numerical 
(or graphical) details, and to express the results in terms of 
the attributes of the given lens or lens system. 

Ii is precisely the object of the present paper to give ~ 
a fully worked out example of this kind, as a part of investi- 
gations undertaken at the instance of Messrs. Adam Hilger 
in connexion with their Lens Interferometer which exhibits 
ad oculos, through its ‘‘ contour map,” the phase retardation 
of al! the elements of an originally plane wave produced 
by the passage through a given lens. The example selected 
for the present purpose relates to the simplest possible lens, 
viz. the plano-convex lens, traversed by a beam of finite 
circular section along the optical axis. It has seemed that, 
owing to its extreme simplicity, it may be the best to show 
the reader a practicable and easy way of dealing with more 
complicated telescopic objectives. 

To complete the above bibliographic sketch we have 
still to mention that the remaining chapters of Strehl’s 
work are dedicated to the diffractional aspect of astigmatism 
and coma which are treated on similar lines as spherical 
aberration, to cylindrical waves, etc. These subjects, how- 
ever, are beyond the scope of the present communication. 
Lastly, we have to mention a more recent paper by James 
Walker (Proc. Phys. Soc. London, vol. xxiv. 1912, pp. 160- 
164) in which the subject of Strehl’s Chapter VIL., viz. the 
intensity due to a rotationally ellipsoidal wave, is again 
taken up. Here the expression for the intensity is deve- 
loped into a complicated double series (cf. last line of the 
paper quoted) which, although mathematically unobjection- 
able, does not seem convenient for actual calculation *. 

It must be kept in mind that for physical applications 
hardly more than two significant figures in the final light 
intensity are required. Under these circumstances the 
method of mechanical quadraiures or a graphic methed, 
analogous to that of the Cornu spiral, seems by far the 
most convenient. Although laborious for very accurate 
work, it certainly becomes very handy when only the said 
degree of precision is aimed at. It wiil be explained and 
applied in what follows. 

* Tt has occurred to me that some of Walker’s intermediate formule, 
as for instance that on top of p. 163, would easily yield a more 
“ eommodious” expression than is the final one. 
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General Formule. 

Let the portion s of the surface of a fixed sphere, of 
centre O and radius R, which we will take as our reference 
sphere, be the seat of monochromatic luminous oscillations 
of constant amplitude a, but of different phases 7, 

a COs mtn) 

(F oy 
Given the distribution of 7 over s, find the intensity of light 
at the centre O and at points P near O. Let ds be an element 
of the reference surface, r its distance from the point P in 
question, c the light velocity and X\=c7Z the wave-length, in 
vacuo. Then the usual way of applying Huyghens’ principle 
gives, for the luminous vibration at P, 

avi kv. 20r \ 
—§ {Zain (nt <7» =) ds, shoge Ts (1) 

where n=27/T. Let N (fig. 1) be the pole of angular 
coordinates, 7. e. ON the axis, @ and @ the pole distance 
and the longitude of anelement ds. Let $, be the longitude 

Fig. 1. 

tee, 
%. 

of the point P, further p its distance from the axis and 
o its axial distance from O, away from N. Then, neglecting 
the squares of p/R, o/R, 

r= |1-§ sin 8. cos (¢-$2) +5 cos 6]. 

Phil. Mag. 8. 6. Vol. 35. No. 205. Jan, 1918. D 
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Introduce this into (1), writing in the denominator, r—A, 

and develop, remembering that n i" is constant all 

over s. Then the integral will split into two others 

multiplied by sin, and by cos n(t—2) Thus, taking the 

intensity at the sphere s as our unit, i. e, putting a?=1, the 
intensity of light at P will be 

i= C48), 1.00 
wa eRe | 

where 

Cos = { cos, sin | »— 228 sin 0. cos (6—¢p) 

+o cos a]. ds. 

These formule are valid for any distribution of phase, 
n=n(0, ¢), and for any form of the edge of s (diaphragm). 

If, as corresponds to the subject of the present paper, 7 is 
a function of @ alone * , and if the edge is itself a circle of 
latitude, 0=0,= const., then we have axial symmetry round 
ON, so ‘that Oh become independent of the longitude of 
the point Ps and we can put ¢,=0. The most convenient 
integration vatinble: being now @ and ¢ themselves, take 

ds = R? sin 0 .dé . dd 

and integrate over 6=0 to 27 and over 0=0 to 0,. Develop 
(3) and introduce the abbreviations 

a= =P, B= 7 a 

Then, after some easy transformations, the expression for the 
light intensity at the point ee o) will be 

where || is the absolute value of the complex integral 
at 

w ={ ertntB eos) Jo(asin@).sin@d@. . . (6) 
0 

For the focal plane, as we shall henceforth call the plane 

* That is, if the “contour lines” exhibited by the Lens Interfero- 
meter are circles of latitude, 
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o=(0, or B=0, for cophasal vibrations (n=O), and for 
small 6,, the integral (6) reduces to the familiar form 

w = | 129) 006 = 7 5, (abs), 

giving for the intensity the well-known expression 

i a) 2(27p ) L=(—) 4; (=? 41). 

Formule (5) and (6) are valid for any angular aperture 

0, < =, and for any given axially symmetrical phase dis- 

tribution 7=7(8). The axial displacement @ (of P) from the 
centre enters only through the factor e®°°8; the transversal 
displacement a enters through the zeroth Bessel function, 
and the phase heterogeneity through e”. Notice in passing 
that, by (6), a phase distribution of the type »=g.cos@* 
is equivalent to a rigid shift of the whole image (luminous 

region) along the axis by 38 and is, therefore, unessential. 

In the case of a wave issuing from a lens, with the centre O 
placed in its focus, and NO along its optical axis, the series 
development of » does not at all contain such a term, 2. ¢., 
practically, no term in 6”. In fact, it will be seen that, with 
the above choice of the reference sphere, the series for 7 
starts, for any “‘uncorrected”’ lens (such as the simple plano- 
convex lens), with 6‘, the next term being in 6°. 

In all practical cases, connected with lenses, the angular 
semiaperture 6, hardly exceeds 4° or 5°. Under these 
circumstances we can write in (6), both in the factor 
of Jy and in Jy itself, sin@=@, and in the exponential, 
Bcos@=8—t80?. The first term, @, giving only the 
factor e** outside the integral, dees not influence the value 
of |w|? and can, therefore, be rejected. 

Thus, introducing the new variable 
al te 

the formula for small 0, will be 

2w =| elln—Bu) J (a /u).du,- . « . « (7) 
0 

where 7 is a given function of u. The corresponding 
intensity at P will be determined by (5), a and @ being 

* Which in the case of a small 9, becomes y= —5g6”, the additive 
constant term g being irrelevant. 
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the coordinates of P (with \/27 as unit length). The upper 
limit of the integral stands for 9@,°, the suffix having been 
dropped. 

For certain forms of 7 the integral (7) can be developed 
into more or less complicated series, as has been done by 
various authors, especially for the focal plane (@=0). In 
general, however, whether the phase distribution » be given 
graphically or analytically, the gaol will be reached much 
more easily and quickly by a number of comparatively small 
steps Aw or “du,” starting from 0 and leading to the 
required u=6,’, either by mechanical quadratures or by 
a graphical construction analogous to that of the famous 
Cornu spiral. The latter method can now and then be 
checked by the former, which is particularly advisable 
for the first stages of the procedure. A curve drawn in 
this manner (for any fixed a, 8) has also the advantage 
of exhibiting the local intensity as a function of the 
aperture; the process corresponds, in fact, to a gradual 
opening of (the pupil of) a lens, from no to the full 
required aperture. 

Consider the plane of the complex variable 

2w = a+ = 2, 

so that, L being the distance of the point z from the origin, 
the corresponding intensity will be 

I = (@RL/d)?. 

To every fixed point P(a, @) of the luminous region belongs, 
in the z-plane, a curve whose element is fully given by 

dz = et PYJ)(a,/u) . du. 

Thus the sloping angle ¢ at any point of the P-curve will be 

eianig— Bu; .). ) 4) i) i 

the length of an arc element 

dl =|Jo(ar/u)|.du,. . . . . 

and, therefore, the curvature 

k= =a (e-P) a 

By means of these formule any P-curve can easily be 
drawn step by step, much in the same way as the Cornu 
spiral. For any point P of the focal plane (@=0) the 
angle e¢ is simply equal to the phase excess 7, and for 
points outside the focal plane it is smaller by Bu. The 
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arc elements d/ corresponding to equal steps du, for axial 
points P(«=0), are all equal, as in the case of the Cornu 
spiral. Outside the optical axis, however, the steps d/ 
become smaller and smaller as we approach the first zero 
of J), which happens the sooner the larger a. At the 

same time the radius of curvature : dwindles to nothing 

(unless an 2); at the apertures corresponding to the zeros 
— 

of Jo(#V u) the P-curves have cusps, from which they emerge 
with increasing steps to be lessened again when the next 
zero is approached, andsoon. Foruw=0,7=0 and, therefore, 
e=0 ; thus, all P-curves start from the origin tangentially 
to the z-axis. Again, since, in all cases of actual interest, 

“1-0 for u=0, the initial curvature of all curves belonging 

to the focal plane is nil ; and the initial curvature for any other 

point P is k=—6= i But for any not highly corrected 

lens the term = in (10) soon becomes the more important 

one, unless o mounts to many wave-lengtls. Thus, with 
the exception of the first steps, the sloping angle is given 

primarily by 7, and the curvature by = :|Jo|, the modifi- 

cations due to an axial displacement being comparatively 
small. 

In most cases, therefore, it will be found that it is sufficient 
to draw in detail the P-curves for the focal plane only, when 

- the construction data become 

AL 
Th dinar 

If dn/du preserves its sign, the sense of the windings of a 
P-curve remains throughout the same (say, anticlockwise), 
even in passing through a cusp. If 7 passes through a 
maximum or minimum (and J)¥#0), the curve becomes 
flat and inflected. If a P-curve, no matter after how 
many windings, happens to pass again through the origin, 
the light at P * is extinguished, and while the curve passes 
on (increasing aperture), the light will reappear there, and 
soon. A good check at any stage of the curve construction 
may be to measure the whole length / of the path already 
covered and to compare it with its correct length, which can 

ES dl — |g da. 

* i,e., along the circle through P, centred upon and normal to the 
optical axis. 



38 Dr. L. Silberstein on Light Distribution 

at once be derived from (9). Up to the first cusp, 7. ¢., as 
long as the first root of J is not exceeded, we have, in re 
of that formula, 

a ze 
Jy(ar/u), ar/u2-4048.. . (10’) 

If a/u is contained between the first two roots 2, x, of 
Jo(z)=0, then 

aie PAP ei 4 2a ie = ) Ju(e)ede— | Jo(a)rdz = —7 Ji(a1) —=5 Ji(2), 

2°4969 wa 
i ae ee ae VY Si(a/u), 2,Sa/u<a, (10a) 

and so on. 
The are length (10’) has, as well as the chord ZL, a note- 

worthy physical meaning. In fact, it represents the value 
of 2w, for any point of the focal plane, for a perfect wave 
(q= 0), so that the normal intensity, due to such a wave, can 
be written, by (5), 

Ne =) B on/uX 24048. . 

On the other hand, the intensity due to the defective wave 
has been 

5 ‘ 

More generally, for a ring-shaped aperture contained 
between 0, and @, the chord Z in (12) is to be replaced by 
the chord ad joining the corresponding pair of points wa, us of © 
the curve. Thus, up to the jirst cusp, the ratio of the two 
intensities, at the same point of the focal plane, is 

ieN S23: aoe ee 

In words, the defective intensity is to the normal intensity 
as the squared chord to the squared arc of the P-curve, from 
the origin to the point win question. The latter will obviously 
be the longer of the two, the more so the greater the value 
attained by 7 at the aperture wu. More generally, for a ring- 
shaped aperture 0,, 63, the ratio of the two intensities will be 
equal to the square of the ratio of the chord Lig, to the are ly 
of the curve. The simple relation (13) will enable us to see 
at a glance on the P-curves the relative value of the intensity 
due to the defective wave, for various apertures. The 
“definition” of the image will be exhibited by the mutual 
position of curves corresponding to various points of the 
field. 

r=(™) ii. . a 
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When the first cusp is exceeded, the are length J loses 
its simple physical meaning *. But this will oceur the 
farther away from the focus, the smaller the angular semi- 
aperture \/u. | 

If the wave-surface which we are projecting, so to speak, 
on the sphere s, is produced by a centred lens or lens system 
from, say, a plane, axially incident, perfect wave, and if the 
centre O is the focus of that lens, then, as has already been 
mentioned, 7 will be of the form 664+0/6°+..., or in 
terms of wu, 

=a tO Ue es PSB CA) 

The constant coefficients 6, 6’, etc. will depend on the 
individual properties of the lens. 

The above generalities will be made plain presently by 
working out in detail the case of the most simple lens. 
Other cases can be treated on similar lines. 

The Plano-Convex Lens. 
Let a beam of parallel, cophasal, rays of monochromatic 

light of wave-length impinge upon the flat face of a plano- 
convex lens of refractive index n. Let 7 be the radius of 
curvature of the convex (spherical) face. Let our centre O 
be the focus, and R=ON its shortest distance from the 

Fig. 2. 

~ 

convex face of the lens. Asour reference surface s (hitherto 
so called) let us take the sphere of radius R and centre O 
(fig. 2). A ray incident at height h will be refracted at A, 

* Tf 2, <a,/u<vx,, and if J, be the arc from the origin to the first 
cusp, then /, in (11) and (13), is to be replaced by /, manus the arc length 
from the first cusp to the point ~; and so on. 
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and will continue its path in air along BO’, piercing the 
sphere s at B. Write AB=m. Then, taking »=0 at N, 
the phase at B, corresponding to the angle NOB=@, 
will be 

Qa h2 
==T{ m—nr (Goa oe 4) 

The required length m will be determined, for every h *, by 
the following trigonometric set : 

nh e 0 e A ‘7; . 

sing =-, sin? =—; wo =1'—1i, 
7 Lis 

] 

/sin 2’ Peek. 'N A x ' / ! I 

esate = (a ee 

. mb 2 1 ; 
? = w—in, where sin2, = R | As'| sin, 

and, finally, 
rsini—Rsin 6 

m= a 
sin @ 

By successive series developments I find, up to (FF 

inclusively, the spherical aberration t ‘ 

RON ie Gy 
As’ = 2n—-1\e 1+ 4 ? 

peine- 041 ae 
and o=s, = = of course ; next, for the angle 0, 

eae 2 

sind = (n—1)"f1-™@e¥) (‘) 
? 2 r 

wk teas 4 _ n(n a n?) (*) in (17) 

and ultimately, for the phase, as defined by (15), 

dar n?(n—1) ay TT ah eae ae 
nA ee () 5}. as) 

a series starting with the fou: th power of the relative aperture, 
as has been expected [the coefficient of the second power in 
the series of m is 4nr, and this is exactly cancelled by the 

reflexion. 
+ Which, although not needed ultimately, may be of some interest. 

* Subject to the obvious condition h< S beyond which there is total 
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corresponding coefficient in the second term of (15)]. If, for 
instance, n=1°5, then 

Qarr 9 (h\4 =) 

n= — Se eee) (1 +5 a) 
and h (1 3h? 39 ) 

nn? Fae (igor las = 
Passing to the application of formula (18) to our diffrac- 

: Senos ire h 
tional problem, we can readily limit ourselves to values of ‘ 

less than or at any rate not considerably exceeding 1). 
Under such circumstances, (17) can be written, with sufficient 
accuracy, 

sin G== 9 = (wea, 

and, therefore, : 
See ES ig 

oh ise 4(n—1)? 

The negative sign can be dropped, which makes no difference 
for points of the focal plane, and, for all other points, requires 
only a sign reversal of their abscissee 8. Thus, in our previous 
notation, 

LG a eS NITTE ieh  eh eG 
ae 4An(n—1)® - Go) 

Tt will be convenient to introduce as the integration 
variable, instead of wu, 

ie 2B / rh 20 pa un/ amy CE eR aT Male 
so that 

ee A oe land 'ona/an = alsa: 
Aa): 

where aa We Dero (F) 
J pees = OL = ° ° e . AND 

nee (55) » \20 et) 
Thus the sloping angle, the arc element, and the curvature 

of any P-curve will be, by (8), (9), (10), remembering the 
sign reversal of @, 

TV" 1, ch or \ 1? ae 

=" +8(z) , a= (5) \Jo(a! Vv) | de, an 

geen Ob 558s 8), [Jol 
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It will be enough to consider in detail the intensity * at 
points P of the focal plane only. Then the required data 
are 

vw Me - V Qarbv os al = (F) Tela) (dv, k= , (22) 

where now «’ defines the distance of P from the optical axis, 
and v the aperture at any stage. If Z be the chord from the 
origin to the point v of the P-curve, then the intensity at P 
is, as in (12), 

Lear tee ith Sees : I =(*) Basalt... + 8) 

This is the graphical equivalent of the explicit expression 

_ (7k Fue 2 2 1=(%) ap (At+B), . . . (23a) 

v 2 
A,B =| cos, sin (=) .Ju(a'V a) de, . (24) 

; 

where 

12 °€- AE times the previous 2 and y, respectively. 

The angle ¢ is independent of a’, i.e. of p. Thus the tangents 
to the various curves at corresponding points (same 2, i. e. 
same aperture) are parallel to one another, while their 
curvature is inversely proportional to |Jo|. For v=1, 

/ 2, 1/3, etc., ¢ becomes equal to one, two, three, etc., right 
angles. For the central point or focus, A, B become 
identical with the usual Fresnelian integrals, 

v 2 v 2 

Ay = C(v) ={ Cos a a, Bo = Se) =| sin ee ; 
0 0 

the corresponding curve is the Cornu spiral {, well-known 
in connexion with the straight-edge problem. With in- 
creasing distance p from the focus, 7. e. with increasing 2’, 
the curves change rapidly, and soon lose their simple spiral 
character, owing to the Bessel factor of the integrand. 
Starting from v=0 and ascending by steps “dv” =0'1, the 
desired P-curves, or «’-curves, are at first more conveniently 
drawn by quadratures, the rectangular coordinates A, B 
being calculated by (24) as far as v=1'5 or 2:0; after that 

* In applying the diffraction formula to the present case we disregard, 
of course, the inequalities of amplitude at points of the sphere s due to 
the slightly different incident angles 7 and glass thicknesses traversed by 
the rays. 

+ In the present case, only one of its two branches comes into play. 
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the curves are more conveniently drawn by the help of (22 a). 
Formule (10’), or (10 a), ete. may, now and then, be used for 
a control of the length / of arc attained. 

In this manner four curves have been drawn on milli- 

metrated paper and are reproduced in the annexed fig. 3. 

Fig. 3. 

B-0.5 

(0 

C!0] 

“0.5 

The curves marked [1], [10], [20],and [30], correspond to 
/ 

Ms  =h 10, 20, and 30. 

If, for example, n=1°'5, and r= 510% (say, X= micron, 

and r=5°55...em.), then these curves will correspond, by 
(21) and (19), to points of the focal plane whose distances 
from the focus are p=X, 10A, 20A, and 30X, respectively. 
Similarly for any other plano-convex lens. The circlets on 

Q 1.2 

Te "EE: 0.2 A=0.5 c 0.75 
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the curves mark, by their centres, the apertures corre- 
sponding to v=0'l, 0:2, and so on, up to v=3°0. The 
solitary circlets near v=1:0, 2:0, 3:0 belong to p=0, 2.e. to 
the central or focal curve which is the usual Cornu spiral. 
It will be seen that the curve [1] deviates but little from the 
central one. The intensity, proportional to the square of 
distance from the origin, increases with v, or with the square 
of the aperture, first rapidly and then more and more slowly, 
and reaches its maawnum a little beyond v=1:2. Then it 
falls to a minimum which is considerably smaller than that 
maximum, and so on. The spiral character of the curve [1] 
would go on for over 3000 windings (v over 140) which, 
however, for any reasonable lens, would lie much beyond 
the limit-aperture (h=7/n) ; the spiral would reach its cusp, 
or first zero of Jo, much beyond that limit. The next curve, 
[10], is very soon deprived of its simple spiral character ; the 
Bessel function vanishes already at v=1'465, where k=, 
and the curve has a cusp in the neighbourhood of which the 
stations v=1:1, 1:2, etc. are more and more crowded. Then 
the curve emerges from the singular point in an elegant 
fashion and follows on a nearly circular path ; it is drawn 
up to v=3'0 only, but even beyond that it would never go 
far away from the spot. The intensity, for [10], reaches its 
maximum a little beyond v=2°7; the value of this maximum 
is only about 4 of that of the curve[1]. The curve [20] has 
one cusp at, v=0°3662, and another at v=1'929. It also is 
drawn up to v=3'0. Finally, the curve [30] has in the 
interval studied as many as three cusps, one between v=0°1 
and 0-2, another between 0°8 and 0°9, and yet another between 
2-1 and 2:2. Neither the [30]-, nor the [20]-curve goes far 
away from the origin. The illumination is here very scanty, 
especially at v=1:2 which is the most favourable aperture for 
the centre, and also for [1]. Other details can be seen trom 
the drawing itself. Here but two more remarks: First, that 
it seems very doubtful whether there is at all a curve re- 
passing exactly through the origin, 2. e. whether there is 
at all a rigorously dark ring round the focus of the lens 
(physically it is enough that the light becomes very weak 
already for [20]). And, second, that the best illumination at 
the focus and, at the same time, the best definition is reached 
a little beyond v=1°2. Opening the plano-convex lens so far 
as v= 2°0, for instance, would not only darken the focus, but 
make the intensity at [10] nearly as great as at the focus. 

In the process of constructing the curves of fig. 3 many 
of the values of A, B needed have been calculated by 
quadratures ; to make the set complete all others have also 
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been calculated. These values of A, B, as defined by (24), 
are not by themselves interesting, and will not be given 
here; the square sums A?+ B’, however, proportional to the 
intensity, (23.a),may be useful. They are collected, together 
with those for a’ =0, in the following Table, which may be a 
good supplement to the P-curves themselves. The second 
column contains the sum of the squares of the Fresnelian 
integrals, the third etc. the values of A?+ B?, for v=0'1, 0°2 
up to v=3:0, corresponding to a’= 27 .10-4? etc., that is, to 
the above curves [1], and so on. 

| (0? av? a \2 

A? + B?= \ eb 2 Jo(a! Vv) dv 
0 | 

v. EPO) yee te bi 10, 20. 30. 
27 

0:0 0°0000 0:0000 0:0000 0-:0000 0:0000 

0-1 ‘0099, _ 099, "0096 ‘0068 0042 

0-2 “0399 0399 "0327 ‘0174 0050 

03 0898 "0895 ‘0663 "0243 ‘0025 

0°4 *1591 °1583 "1058 "0253 ‘0003 

05 ‘2466 *2450 "1474 0218 ‘0010 

0-6 "3499 3471 "1879 . "0162 0042 

07 “4648 ‘4604 "2243 "0202 ‘0078 

08 "5849 ‘5781 "2542 “0099 0101 

0:9 ‘7004 6913 ‘2758 0131 ‘0108 

10 “8004 “7886 "2886 0213 0101 

i tet | 0°8728 0°8571 0:2932 0:03387 0°0103 

2 -9004 "8847 "2918 "0481 ‘0117 

1:3 8788 ‘8668 "2875 70618 0183 

1-4 *8040 "7952 ‘2838 0722 "0318 

15 6848 *6792 "2833 ‘0774 “0494 

16 5410 -5408 -2868 OF77 "0643 

i Se 4065 ‘4106 2923 0747 "0715 

1°8 *3164 3228 "2957 ‘0711 0712 

1°9 *3029 3044 "2923 0691 0673 

2:0 3564 *3630 "2795 0693 ‘0636 

21 0°4781 0°4786 02599 0:0701 0:0611 

22 6123 “6049 ‘2411 0687 ‘0614 

2°3 6981 "6852 2332 0634 "0617 

2°4 “6921 ‘6786 "2434 "0554 "0588 

2°5 "5926 "5860 2693 0494 *0521 

26 "4537 4578 2973 ‘0504 "0449 

271 *3593 6712 *3094 0595 “0480 

2°8 3718 -3820 "2957 ‘0714 ‘0486 

29 “4846 "4832 *2636 ‘0771 ‘0589 

3°0 0°6132 0°5987 02368 0:0715 0:0659 
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The curves in fig. 4 (which could also be taken from 
those of fig. 3) are drawn * directly according to this table, 
with v as abscisse and A?+B? as ordinates, and thus 
represent the intensity at selected places of the focal plane 

Fig. 4, 

as a function of the aperture of the lens. It will be 
remembered that v is proportional to the square of the 
aperture, viz., by (20), 

rn? hy? r 
e/a oman (fh) Begs os (25) 

Thus, for example, if n=1:5 and r= : 10°, then 
9 

2 

(o= 1000 x) . The uppermost curve in fig. 4 corresponds 

* My thanks are due to Mr. W. Widigjor for the execution of both 
sets of curves. 
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to the centre or the focus, and to the usual Cornu spiral ; 
that curve is well-known from the distribution of light 
outside the shadow of a semiplane; here its physical 
meaning is different: it represents the central intensity 
as function of (the area of) the aperture. It has its first, 
and highest, maximum at about v=1-23, as already men- 
tioned. A number of isolated points below and near this 

; 2 
curve represent the intensity at the circle a! = (1. e. 

p=xA, for the said example). These points are too near the 
first curve to be joined into a continuous line. The next 

BU, (i.e. p=10A for the 
/ 1000 

above example) ; its first, as well as its second, maximum is 
very flat. Its interesting feature is that it nearly reaches 
the focal curve at about v=1°9. The moral is obvious: at 
v=1:23 the definition as well as the light intensity are 
excellent, at v=1°9 very bad ; at about v=2-3 much better 

407 

Rae SIT: 

curve, | 10], corresponds to «= 

again. The next curve, [20], corresponds 
607 

a i nd the lowest, | 30], to vat 

To form an opinion about the intensity as function of 
distance from the focus, at any fixed aperture v=3-0, it is 
enough to read the above numerical table in horizontal rows 
(instead of columns). The corresponding curves would again 
corroborate the above remark, viz. that the greatest central 
intensity and the best definition of the image produced by a 
plano-convex lens, of refractive index n and curvature 
radius 7, are obtained at an aperture corresponding to about 
v= 1-23, and to be determined for any concrete case by (25). 
If, for instance, n=1°5 and A= micron, then the best 
relative aperture is, in round figures, 

for * = 5°56.em. 273'em. \ 6-9 mm... 1mm: 
hfe) 070352" O20 057 090 

The last of these would be a very minute lens indeed. 
Practically, net going much below r=3 cm., the best 
relative aperture will not exceed 55. Opening the lens u 
to v=1-'9 would spoil the central intensity and the definition 
considerably. The next best aperture, after v=1°23, would 
correspond to about v=2°3 ; the next favourable opportunity 
will lie a little beyond v=3. The marginal phase retardation 

is, for the best aperture v=1°23, n=1515 or a little over 
3/8 of a period, 
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Returning once more to the table on p. 45, notice that the 
v-values arrayed in the first column have themselves a simple 
meaning, their squares being proportional to the “‘ normal ” 
central intensity No which would correspond to a perfect 
wave. Thus the relative central intensity, which is the 
squared ratio of chord and arc of the Cornu spiral, is 
given by 

Ty: No = (Ag? + Bo?) : 2, 

i.e. simply by the figures of the second divided by the squares 

of those of the first column. Thus, for v=0°5, I): No= Sey 

and for v=1, or y equal to a quarter-period, I,: No =*8004, 
agreeing with Lord Rayleigh’s result of 1879 *, and so on. 
The relative intensity at the focus decreases steadily, of 
course; the absolute intensity, due to the defective wave, 
increases only up to a certain maximum and oscillates in 
decreasing amplitudes round a limit corresponding to the 
asymptotic value A,’+B)"=3. The central intensity by 
itself cannot, of course, inform us about the “ definition.” 
It so happens however that, in the case of the plano-convex 
lens at least, the best aperture, v==1°23, for the focal absolute 
intensity is also sensibly the best for the definition of the 
image. 

So much about the distribution of intensity in the focal 
plane of the lens. The intensity at points outside the focal 
plane will require but a few remarks, owing to the relative 
smallness of the axial intensity gradient (for small @) already 
hinted at. Consider, for instance, the points of the optical 
axis itself, that is, a’=a«=0. Then, according to (22), the 

1/2 
arc element is dl= 5 dv, precisely as for the foeal or 

Cornu-spiral itself, and, the sloping angle and the curvature 
of a 8-curve, 

2 1/2 nei lt’ 

=" +8(5) vb = vv 2b 48, 

where @=27rc/d measures the axial coordinate of the point 
in question. Take, for instance, our previous example 

Se Ne a Then, by (19), 

a hae ob e= 3 +7000” k=100070+ 8. 

* Phil. Mag. viii. p. 409. Rayleigh’s figure, 0:8003, differs but 
insignificantly from the above one. 
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The B-curve even for c=102 will, therefore, deviate but 
very little from the central or Cornu-spiral. In other words, 
the axial intensity-gradient, for appreciable v, will. be very 
small (as compared with the transversal one, dI/dp). Both 
eurves will start from the origin horizontally. The Cornu 
spiral is initially flat while the @-curve has the initial 
curvature @=270/d, and, if «<0, an inflexion point for 

Pick. 
Be eaSOOX? t € 

With the exception of such details the @-curves deviate 
but insignificantly from the focal Cornu spiral, and it 
would therefore be hardly worth the trouble te draw them 
accurately. 

London, October 1917, 
Research Dept., Adam Hilger, Ltd. 

.. even for |o| =50A, very near the origin. 

VI. Interferometers for the Experimental Study of Optical 
Systems from the point of view of the Wave Theory. By 
F. TwyMan*. 

CoNTENTS. 

1. Description of the Interferometers. 

2. Various Uses. 

1. Description of the Interferometers. 

rFX\HESE instruments in their simplest form resemble the 
well-known Michelson interferometer, the main essential 

optical difference being that the two interfering beams of 
light are brought to a focus at the eye of the observer. 

Optical elements or combinations suitable for examination 
by means of these instruments may almost all be classed in 
two categories. Into the one category fall those combinations 
which are required to receive a beam of light which has a 
plane wave-front and deliver it again after transmission with 
a plane wave-front ; and into the other fall those the object 
of which is to impart spherical wave-fronts to beams which 
are incident on them with plane wave-fronts. The two corre- 
sponding arrangements will be referred toas the prism inter- 
ferometer and the lens interferometer respectively. 

The Prism Interferometer. 

The prism interferometer is shown in diagram (fig. 1) as 
arranged for the correction of a 60° prism, such asis used for 
spectroscopy. 

The light used must consist of monochromatic rays. Such 
* Communicated by the Author. 

Phil. Mag. 8. 6. Vol. 35. No. 205. Jan. 1918. 1D) 



50 Mr. F. Twyman on Interferometers jor 

a light may be obtained from a Cooper-Hewett Mercury- 
Vapour Lamp, combined with a suitable filter. 

The light from the source is reflected by the adjustable 
mirror A through the condensing-lens B, by means of which 
itis condensed on the aperture of the diaphragm C. 

The diverging beam of light is collimated by a lens D, and 
falls as a parallel beam ona plane parallel plate K, the second 
surface of which is silvered lightly so that a part of the 

Fig. 1. 

Diagram of Prism Interferometer. 

light is transmitted and part reflected. The major part 
should be reflected. One part passes through the prism L 
in the same way as in actual use, and being reflected by the 
mirror F passes back through the prism to the plate K. 
The other part of the light is reflected to the mirror G and 
back again to the plate K. Here the separated beams re- 
combine, and passing through the lens E each forms on the 
eye placed somewhat beyond the aperture in the diaphragm P 
an image of the hole in the diaphragm C. One of the re- 
flecting mirrors in its mount is shown in fig. 2. : 
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When the mirrors are adjusted, interference-bands are 
seen which form a contour map toa scale of wave-lengths of 
the extent to which passage of the beam twice through the 
prism has distorted the wave-front. This distortion can be 

Fig. 2. 

Mirror in Mount. 

corrected by removing from each point of one prism face, by 
local polishing,an amountof glass proportional tothe distortion 
of the wave-front at that point; hence it follows that the bands 
also form a contour map of the glass requiring to be removed 
in order to make the optical performance of the prism perfect. 

Fig. 3. 

Fig. 3 represents in diagram a typical map, where Q 
represents the highest point of a “ hill.” The procedure in 
such a case is to mark out the contour lines on the surface 
of the prism with a a hen ane dipped in rouge, and then to 

2 
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polish first on the region Q, subsequently extending the area 
of polishing first partly, then wholly, to the next contour line; 
and soon. The marking out of the prism surface can be 
done while observing the bands. 

Fig. 4. 

Fig. 5. 
et) 

It should be noted that variations in the contour lines are 
obtained by a tilt of the plane of reference. Thus a slight 
adjustment of mirror F (fig. 1) might change a contour map 
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from that shown in fig. 4 to that shown in fig. 5. The form 
of surface is in each case the same (see the sectional diagrams 
at the top of the figures), but correction can be carried out 
according to whichever plane of reference is the most favour- 
able from the point of view of the operator. In order to find 
whether Q (fig. 3) is a hill or a valley, the cast-iron table M 

(fig. 1) can be bent with the fingers so as to tilt the mirror F 
in such a way as to lengthen the ray-path. If the contour line 
at () expands to enclose a larger area, a hill is indicated, and 
vice versa. Although the words “hill” and “valley” are 
convenient to use, it must not be supposed that the imper- 
fections necessarily result from want of flatness either of one 
or of both surfaces of the prism. The contour map gives the 
total effect on the wave-front produced by double passage 
through the prism, and shows in wave-lengths the departure 
from planeness of the resulting wave-surface. 

The Lens Interferometer. 

(See figs. 6, 7, and 8.) 
Fig. 6. 
fart 

rs > 
\ 

Diagram of Lens Interferometer. 

In the lens interferometer all parts are left as in the prism 
arrangement except that the mirror F is removed and replaced 
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Fig. 7. 

SSeS 

Lens Interferometer. 

Lens Interferometer. 
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by the lens and mirror mount shown in fig. 9. T represents 
the lens under test, U a convex mirror in such a position 
that it reflects back along their own paths the rays received 
from T. The mirror U can be moved by a screw motion 

Fig. 9. 

Lens and Mirror Mount. 

actuated by the handle V, so that its distance from T can be 
varied at will. It will be seen that when the adjustment of 
this part of the apparatus is correct, the whole lens addition 
will, if the lens T be perfect, receive the beam of plane wave- 
front and deliver it back again with a plane wave-front. 
If it does not do so the departures from planeness of the so 
delivered wave-front will form a contour map of the cor- 
rections which have to be applied to the lens in order to 
make its performance, when in actual use, perfect. 

The general procedure is the same as in the case of prisms, 
namely, to choose such an adjustment as presents a favourable 
aspect for working and to polish off those portions of the 
surface corresponding with the parts of the contour map 
which represent hills. 

2. Various Uses of the Interferometers. 

(a) Control of “ retouching.” 

The instruments were primarily designed for the correction 
by retouching of object-glasses and prisms. 

The process of retouching (viz. local polishing away of the 
glass) appears to have beenadopted byall the great constructors 
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of large astronomical lenses*. Although the necessity for 
this device has not generally been referred by them to the want 
of homogeneity of the glass, yet the almost invariable pre- 
sence of such heterogeneity would render retouching essential 
even were there no other causes of optical imperfection. 
The method of carrying out the process with the aid of this 
apparatus has been sufficiently described above. It has been 
found both speedy and effectivein the manufacture of prisms 
and lenses where the highest accuracy is desired. 

Many other methods of testing telescope or camera objec- 
tives have been devised with a view to the control of retouching. 
With each of the well-known methods results have been 
attained of an excellence commensurate with the reputation 
for optical work of high quality which has distinguished the 
individual exponents; but none of the methods appear to give 
indications upon which the optician could take action without 
a more or less complex process of reasoning. 

The apparatus here described, on the other hand, produces, 
as has been shown above, a system of interference-bands 
which may be regarded as a “ contour map” of the imper- 
fections. This contour map can for practical purposes be 
considered as located at any of the optical surfaces involved ; 
and in the case of the control of retouching, the observer 
may, if he likes, draw this map upon the surface under 
treatmeat. He is then in a position without further preli- 
minary to remove the superfluous material from the pro- 
minences by polishing with pads of suitable size and shape, 
the “contour map” giving all that is necessary for him to 
know both as to the location and the magnitude of the 
sources of the imperfections. 

(b) The testing of lens systems. 

The apparatus obviously affords, when applied to any 
optical system, all the data necessary for a complete and 
precise statement of the degree of optical perfection of that 
system. As regards small aberrations it is sufficient to quote 
the well-known and valuable generalization :— 

‘‘An obvious inference from the necessary imperfection of 
optical images is the uselessness of attempting anything like 

* The opinions of Schroeder, Grubb, Czapski, and Alvan Clark on 
this subject are cited in a summary by H. Fassbender of the then known 

methods of testing object-glasses: “ Altere und neuere Methoden zur 
Priifung von Objektiven,” Deutsche Mechaniker Zeitung, July 1918, 
pp. 1383-188 & 149-155. This report should be read by all interested 
in the subject. It omits, however, an ingenious method due to 
Dr. Chalmers, see Proc. of the Optical Convention, vol. ii. p. 56 (1912). 
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an absolute destruction of aberration. In an instrument 
free from aberration the waves arrive at the focal point in 
the same phase. It will suffice for practical purposes if the 
error of phase nowhere exceeds}. This corresponds to an 
error of 3A in a reflecting and $A in a (glass) refracting 
surface, the incidence in both cases being perpendicular ”’*. 

In the case of larger aberrations (implying by that word 
the effect on the “ image ” of the deviation from sphericity of 
the wave-front) the writer is firmly of the opinion that the 
departure (expressed in wave-lengths) of the wave surface 
as it leaves the dioptric element from a spherical wave 
surface, should form the basis of all statements of imper- 
fections of definition, and believes that such a procedure, 
besides being most rational according to our present know- 
ledge, is at the same time very convenient in application by 
the manufacturer. 

The co-ordination of the phenomena observed on this 
interferometer with the image-forming properties of the 
optical system under test is one of the objects of Dr. L. 
Silberstein’s investigations, part of which appear in another 
paper in this Magazine. 

(c) The use of aspherical surfaces. 

In spite of the great advances in the technique of optical 
manufacture during the past thirty years, the definition of 
actual optical systems still leaves ample room for improvement. 
Hiven if we confine our remarks to the best makers, it is only 
in certain of the smaller optical instruments that the imper- 
fections of definition are inconsiderable, and even then only on 
the best part of the field of view. This isin great part due 
to the difficulty with a limited choice of suitable dioptric 
materials (for, although extensive, the choice is not as varied 
as the lens designer could wish) of obtaining the results 
desired by calculations based on the utilization of spherical 
surfaces alone. 

If we look for the reason why opticians have so far almost 
entirely limited themselves to the production of dioptric 
elements bounded by spherical surfaces, we find it at once in 
the comparative ease with which such surfaces can be generated 
with precision. But, given a sufficient incentive, it cannot 
be doubted that surfaces other than spherical could be 
produced. Indeed this has already been done with an 

* Scientific Papers of John William Strutt, Baron Rayleigh, vol. ii. 
Article on Optics, Encyclopedia Britannica, xvii. 1884. 
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accuracy suitable for the purpose in the case of a few ex- 
ceptional types of lenses, for instance the special spectacle 
lenses designed by Von Rohr for those whose eyes have 
been operated on for cataract*; and with considerable 
accuracy (though with a smaller departure from true sphe- 
ricity) in the “ figured ” lenses or mirrors for large telescopes 
and for other special purposes. 

Now, experience has shown that with the aid of this 
apparatus, and even with the ordinary means of retouching, 
the optician can face without dismay the task of making with 
precision quite considerable departures from the sphericity 
of his surfaces. It appears to the writer certain that by 
modifying from true sphericity the surfaces of systems which 
have been suitably computed for the purpose, results will be 
attained more perfect than has hitherto been possible in, for 
instance, camera lenses. It is even likely that valuable 
results may be attained at some future time by using 
apparatus of this kind to assist the correction to a pitch of 
high accuracy of lens systems wherein definitely aspherical 
surfaces have been generated by processes essentially different 
from those ordinarily used by opticians. 

(d) The experimental study of lens systems. 

There are probably few interested in optical systems who 
have not felt disappointment at the comparative lack of 
success which has attended attempts to deal with the passage 
of light through such systems by means of the Wave Theory. 
The difficulties are mathematical, and not of course to be 
directly relieved by such instrumental aids us those now 
described. 

But itis perhaps not too much to hope that the existence 
of means of direct demonstration of the effect on wave 
surfaces of passage through optical systems may attract the 
attention of mathematicians to this aspect of the subject of 
dioptrics, with good result. 

Research Department, 
Adam Hilger Ltd. 

* See Proc. of the Optical Convention, 1912, p. 118. 
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VII. On a New Secondary Radiation of Positive Rays. By 
M. WotrkE, Dr. phil., Lecturer at the Federal Technical 
High School ‘and at the Universit, y of Zurich, Switzerland”. 

P to now, two secondary radiations of positive rays 
have been known: the slow electron rays { and the 

very soft X-rays recently discovered by J. J. Thomson f, 
which are probably caused by a retardation of the ions when 
encountering a rigid body. 

Some years ago Chadwick § and Russell || showed that 
e-rays are capable of exciting the y-radiation of heavy 
elements. 

So far, however, it has not been known whether positive 
rays were capable of producing a similar effect. Now this 
question is of very vital interest, for if it can be proved that 
positive rays are able to excite characteristic rays, it then 
becomes possible to obtain a better insight into the connexion 
between the process of excitation and the chemical nature and 
charge of the exciting particles. And such an investigation 
might throw new light on the questions relating to the 
mechanism of excitation and emission of X-spectra. 

These considerations have prompted me to investigate the 
question as to whether positive rays are capable of exciting 
the characteristic X-radiation. 

The experimental method was based upon similar principles 
to that employed by Chadwick{ in his investigation of the 
excitation of the characteristic y-radiation of gold by a-rays. 

Througha channel of circular section 10 mm. widea pencil 
of positive rays was let fall upon a circular opening provided 
in a brass box. This opening is divided into two halves, and 
each of these is covered up by a double foil made up of one 
foil of a heavy metal, say tin or lead, and of a second foil of a 
light metal, say aluminium, laid over the first one. These 
foils are so placed that over one half of the opening the 
heavy-metal foil is on the outside with the aluminium foil 
turned towards the inside of the box, while the second 
similar double foil is so arranged over the other half of the 

* Communicated by the Author. 
+ J. J. Thomson, Proc. of Cambr. Phil. Soc. xiii. p. 212 (1905) ; 

Ch. Fiichtbauer, Phys. Z. S. vii. p. 153 (1906) ; L. W. Mer Phys. Rev, 
Xxil. p. 312 (1906). 

t J. J. Thomson, Phil. Mag. [6] xxviii. p. 620 (1914). 
§ J. Chadwick, Phil. Mag. [6] xxiv. p. 504 (1912) ; xxv. p. 193 (1913). 
|| J. Chadwick & A. S. “Russell, Proc. Roy. Soc. A. lxxxviii. p. 217 

(1913); A. S. Russell & J. Chadwick, Phil. Mag. 6] xxvii, p. 112 (1914). 
q J. Chadwick, Phil. Mag. [6] xxv. p. 193 (1913). 
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opening as to have its aluminium side outwards. Behind 
these foils the photographic plate is placed. 

Thus on one half of the opening the positive rays fall 
upon a heavy-metal surface, and on the other half upon an 
aluminium surface. The characteristic radiation of the 
heavy metal being more intense and harder than that of 
aluminium, it reaches the photographic plate with an in- 
tensity not perceptibly diminished. On the other hand, the 
characteristic radiation of aluminium is weak and soft and is 
absorbed to a large extent by the layer of heavy metal through 
which it has to pass. Therefore, if it is true that the cha- 
racteristic radiation of the heavy metal is excited by positive 
rays, then the impression produced on the photographic plate 
must be stronger beneath that half of the opening where the 
positive rays fall upon heavy metal, and less strong beneath 
the other half, where they encounter an aluminium foil. 
The higher the intensity of excitation of the characteristic 
rays, the more pronounced will be this difference in the 
strength of the impression obtained. ; 

Such secondary cathode rays as might have been produced 
by the positive ‘rays and the X-rays in the channel itself were 
deflected behind the channel, and prevented from entering 
the opening in the box by means of a field of sufficient power 
created between channel and box. 

In order to eliminate the effect that might have been pro- 
duced by any irregularity of thickness in the two foils, every 
test made was checked by a second exposure with the same 
foils as in the first case, but turned about so as to have their 
relative position reversed. 

In order to avoid too strong heating of the foils by these 
powerful positive rays, the exposures were intermittent so 
that short exposures alternated with longer breaks. 

Two heavy metals, tin and lead, were treated. The foils 
used were ‘016 mm. thick in the case of tin and ‘028 mm. in 
the case of lead; the thickness of the aluminium foil was 
‘007 mm. ; 

The experiments have shown that when acted upon by positive 
rays, either of these metals emitted a penetrating radiation of 
fair intensity which is probably tts characteristic radiation. 

When tin was tested, all photographs without exception 
showed a very marked contrast—that is, where the positive 
rays fell upon the tin surface, the darkening of the plate was 
strongly pronounced, while the other half of the circular 
imprint showed but a faint darkening. The photograph 
obtained is seen in the annexed figure, and this result.was in 
accordance with anticipation. 
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Several similar exposures were made with an induction-coil 
and others with an influence-machine. The duration of ex- 
posure was varied between 2°5 and 22 minutes, the potential 
between 25 and 40 mm. spark-gap, and the pressure between 
"0007 and :0037 mm. mercury. 

The annexed photograph was obtained with an influence- 
machine and an exposure of 22 minutes. The spark-gap was 
25-30 mm. and the pressure ‘(0037 mm. mercury. 
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When photographs were taken with lead foil, with 
potentials ranging between 25 mm. and 40 mm. spark-gap, 
the darkening of the plate was only faint, and no difference 
was visible in intensity of the impression on either half of the 
image. As soon, however, as the spark-gap was increased to 
45 mm.a very distinct contrast became visible in the darkening 
of the two halves. 

The intensity of the photograph was greatest on that half 
where the positive rays fell upon the lead surface, and there 
only on that part where the intensity of the positive rays 
would be a maximum. 

From this it would seem that the energy required for the 
excitation of characteristic X-rays has a lower limit, just as 
Duane, Hunt, Hull, Webster and others have observed in the 
case of cathode rays in a Coolidge tube. 

For cathode rays the relation e>hv has been established, 
where ¢ is the minimum energy of the electron necessary for 
exciting the K-series, and v tlhe maximum frequency of the 
line Kf, that corresponds to this series. Supposing this 
relation to hold also for the excitation of characteristic rays 
by positive particles, then to excite the KA, line of tin 
(A='432.10-® cm.) the voltage required would have to 
exceed 57 KV. In the described experiments, however, the 
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maximum width of spark-gap used was 45 mm., the spheres 
being 31 mm. in diameter; so that according to tests made 
by C. Miiller* the voltage applied could not have exceeded 
50 KV. The K-series could not then have been excited, and 
it is probable that the wave-length excited belonged to the 
L-series of either metal. 

I propose to investigate further the wave-lengths and other 
properties of these radiations. A report of such studies will 
be published shortly. 

Summary of Results. 

1. For the first time the excitation of a penetrating radiation 
by positive rays was observed. This effect was retained 
on photographic plates in the case of tin and lead, and 
it is surmised that it is the characteristic X-radiation 
of these elements. 

2. A lower limit was found to exist for the voltage necessary 
for excitation. 

3. Hinstein’s quantum condition leads to the supposition 
that the new effect that has been observed is excitation 
of the L-characteristic rays of either element. 

The Physical Laboratory, 
Technical High School of Zurich. 

August 1917. 

VIII. Variably-Coupled Vibrations: Il. Unequal Masses or 
Periods. By Evwin H. Barton, D.Sc., F.R.S., Professor 
of Physics, and H. Mary BROWNING, B. Se., Lecturer and 
Demonstrator in Physics, University College, ’ Nottinghamt. 
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I. INTRODUCTION. 

| fa a recent paper * two types of coupled pendulums were 
experimented with, their lengths and the masses of 

their bobs being in each case equal. The present paper, the 
second of the series, deals with the double-cord pendulum 
only, but in cases where either the masses of the bobs are 
unequal or else the lengths of their suspensions are unequal. 

These mechanical cases may he regarded as somewhat 
analogous to the electrical cases of inductively-coupled circuits 
with unequal inductances or unequal periods respectively. 

With unequal masses and equal lengths it is noticeable 
that with small couplings a great increase in the amplitude 
of vibration of the small bob entailed very little loss in that 
of the large bob. Indeed, for masses as 20:1 we almost 
realised the case of forced vibrations. 

The funnel of the light bob was here of cardboard and so 
had an appreciable damping. This rendered it necessary to 
make corresponding modifications in the theory. 

With unequal lengths and equal masses the response 
showed a great diminution for small couplings, whereas for 
larger couplings the mistuning seemed without appreciable 
effect. 

The paper includes twenty-seven photographic repro- 
ductions of double sand traces obtained simultaneously one 
from each bob of the coupled pendulum. 

Il. THrory ror UnEquat Massss. 

Equations of Motion and Coupling.—Throughout the work 
described in the present paper the double-cord pendulum 
was used. This was shown in figs. 1, 2, and 4 of the first 
paper. The equations of motion and coupling were given 
as (27)-(29) and may now be rewritten here as follows :— . 
pty, P+Q+AQ pe get PQ 9g, 

dt? © (1+8)(P+Q) 1 ere Ee Oe (1) 

ee ee ees a | 
dt * (1+8)(P+Q) *l~” (148) ° (P4+Q 77 J 

sn 2 De) ae 9 

Y— (POQ1AQ(P4EP1Q) ° «= ®) 
* Phil. Mag. (6) vol. xxxiy. no. 202, pp. 246-270 (Oct. 1917). 
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Let us now write in the above 

2 =p. ee i. 

Also divide the two equations (1) by P and Q respectively, 
and insert the frictional term 2k dy/dt in the first of them. 
We then obtain 

dy dy 1+p+ fp goal ys e 2 4 

etn > Weep)! SR) nee 
aie 0 a A 
aft Uted+p)”” Ase) Cee) 

These may be written 

LOUD ae dé + 2ka + ay = pbz, - + + + (6) 

and a ; 
aa ee by;, |. (7) 

iui 00 a : Al Bi ea \ (8) 
es eS caw daa Ane 

(L+)(1+p) J 
Solution and Frequencies.—To solve (6) and (7) let us write 

Boe ei, Q 

and, on inserting in (7), we have 

#" +c at | pales |e. 
Then (9) substituted in (6) gives 

a2 

(* 7) (2? + 2ka+a)=pb, 

re w+ 2kar+(ce+a)a’+2ker+ca—pb?=0, . (10) 

which is the auxiliary biquadraticin z. Though this equation 
has the form of the general biquadratic, an approximate 
solution, presenting all the accuracy needed for our purpose, 
may be easily obtained by noting that & is small compared 
with the other constants. For, as appears from the experi- 
ments, & is of the order one-thousandth of the coefficient of 
x? and of the constant term. 

Then we may write for the roots of x in the biquadratic 
(10) the values 

(9) 

OI OPTI, pre EO, 1 tice! a 
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where 7 denotes »/(—1), and 7 and s (being comparable to £) 
are to be treated as small quantities whose squares or products 
are negligible in comparison with p and g which Hones 
upon the larger constants of the equation. 

Thus, with the roots from (11) we may write instead of 
(10) the equivalent equation 

(2+r—ip)(a+r+ip)(e@+s—ig)(a@+s+ig)=0, 

OF 2442 (r+s)a®+(p?+qtrts? +4rs)a? 
+2(p*st+q?¢r+r7?s+rs’) 2+ (p?+77)(q?+s7)=0. (12) 

This, on omittin @ the negligible quantities, becomes the 
approximate equation ce ote! accurate for our purpose, 

a+ 2 (r+ 8)a8+ (pi + q?)a? + 2(pist gr)x+ peg’ =0. (13) 
The epuparisen of coefficients in ae and (13) yields 

res=k, Li Mpat ni isat oad neat) 
PET G6 Pay hey a) aie) Oo) CED) 

Pe ge Clay le ie hee aban maa (CLOW 
VEG CUO a Win, Vinriis Shea CLe) 

From (15) and (17) we may eliminate 7 and oe a 
quadratic in p? whose roots may be called p? and g?. We 
thus find 

2p? =c+a+ VW{(a—c)?+4pb7}, > | 
and ONS Ei eND 2 : (18) 27 =e+a— V{(a—c)* +4 pb}. 

Again, from (14) and (16) we obtain 
a — 

r= gai)? and s= ag 
ae 

And by use of (18) these become 

_ a—c+ VW {(a—c)*? + 4b} 
T= te : : ° (19) 

and ke —¢)? c--a+t /{(a—c)?+4 pb? tas S808 BGs 
nl 2V{(a—c)?+4pb"} 

Then, inserting the values of a, b, and c from (8) in 
ee (19), and (20), we obtain 

m 
t= me.) t= WA+8)’ ut iAan Mw) 

BATE BY) oa POL 699) 

Wa Ha | Eaten, BO NLHY . TRATES Leet ees) 

k 
bg er ° - is : 3 : ° (24) 

Phil. Mag. 8. 6. Vol. 35. No. 205. Jan. 1918. F 
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Thus, using (11) in (9) and introducing the usual constants, 
the general solution may be written in the form 

ese" Ae + Be) +e "(Ce + De“™), « (25) 
and, omitting 7? and s?, 

Ne) ; oe a 
y= ( a "(Ae + Be?) fy ( a 2" (ee De“) | 

Or, by transformation of (25) and (26) and use of (21)- 
(24), we may write the general solution in the form 

fi) (— Ac? + Bett) eee (eee (26) 

mt 
z= He" sin (mt +e) + Fe-“sin( Frm +4), (27) 

and 

! —pst f | —st_s mt f y= —pl'e sin (mt+e') + He ain ae +4"), (28) 

where 
(Bye we AU + 8)?k? | 

B?m? 

and eNO SB) 6 ae 
tan(e Reena. ig 

wi (F!)?= F? Bm? +4(1 + 8) k? 4 

and ae i : (30) 
tan(¢’—¢)= vt 4, 

the exponential coefficient s being given by (24), and H, e, 
F, and @ being the arbitrary constants dependent on the 
initial conditions. In many of the experimental cases EH’ 
may be assimilated to H and F’ to F without appreciable 
error. The changes (e’—e) and (¢'—@) of the phase angles 
may be distinctly appreciable for very small values of B. 
But in these cases the vibrations show a slow waxing and 
waning of amplitude and the phase is of very little importance. 
On the other hand, for 8 equal to unity, we have 

tan(e'—e)=4k/m and tan(¢'—¢)=—2%/2k/m. 

And the numerical values of these are of the order 0-020 
and 0:014, hence e’—e=1° 10' and ¢'—g¢=0° 48’ nearly. 
Hence for all our present experimental cases, we may drop 
the four accents in equation (28). 



Coupled Vibrations: Unequal Masses or Periods. 67 

Initial Conditions. Case I—Suppose the heavy bob of 
mass Q (which =pP) is pulled aside and that the light one 
of mass P is allowed to hang at rest in its more or less 
displaced position according to the coupling in use. Then 
we may write: 

For ¢=0 let z=/, ] 

- then it follows statically that y= eae 5 | 
Lt p+ Bp op setat 0H) 

also put Pe dy 
ae 0 and oh =(). J 

Differentiating with respect to time (27) and (28) without 
its accents, and writing in the latter n for m/(1+ 8), we 
find 

= = He? [m cos (mt + €)—ps sin (mt +e)] 

+Fe~"[neos(nt+)—ssin(nt+¢)], . (32) 

oy = —pHe~ "| m cos (mt +e) —ps sin (mt +e) ] 
dt 

+ Fe~“[n cos (nt +$)—ssin (nt+¢)]. . (33) 

The conditions (31) introduced in equations (27), (28), 
(32), and (33) give 

j—lisne+ sind,  . '.  .) (34) 
Bef co ote ie 3 itp fees pli sine--F sind). 2 <)> (393) 

0=H(m.cose—ps sine)+F(ncos¢—ssing), . (36) 

0=—pEH(m cos e—pssine) + F(ncos¢—ssin d). (37) 

But, by reason of the smallness of ps in comparison with 
m (of the order 0°01) and of sin comparison with n (still 
less), we may write instead of (36) and (37) the following : 

O=Hmecose+Fneos¢d, . . . . (38) 

and o= —pHmcose+Fneosg. . . ~. (39) 

These are satisfied by 

e=F and gar. Ue Dek eee Pita ()) 

These values inserted in (34) and (35) give 

r f=E+F, 

an Bef _ 
; 1+p+B8p ‘caeiok 

whence 
i iA d om (1+p)Bf aap and F ore ye . (Al) 

| ee 



68 Prof. Barton and Miss Browning on 

Hence, for the special solution with these initial conditions, 
we have 

eta a —pst CEPA) a mt 

Biter ie! aces Wisi Wi 
SE ES —pst (1+ p)PF —a 
a T+p+Bp° eae <B5° te OEE (43) 

where s= : 
a: ea 

Thus the ratios of the amplitudes of the quick and slow 
components in the y and z vibrations are respectively given by 

a a ee: | ep tae | (T+ py B° and + p)8° a (43 a) 

Case II.—Suppose now that the heavy bob (of mass 
Q=pP) is pulled aside while the light one (of mass P) is held 
undisplaced. Then we have: 

For bem ay i), ; 

d Ny dz ; at (44) 

Putting (44) in (27), (28) without accents, (32) and (33), 
and omitting small quantities as before, we find 

peal ieee } (45) 

O=—pHsine+F sing; 

0=Em ce e+ Fncos ¢, (46) 

O=—plim cose+Fncos ¢. 

Then (46) is satisfied by 

7 My 
e=5 and $= 95> 

and putting these values in (45), we obtain 

di nd ih ei F= 
l+p tie l+p' 

Hence, for the special solution with these initial conditions, 
we have 

dll pe ef oa mt 

ee: J U+B)’ 
oon eo ?* cos mt + cp en 

“a mt : aire ip Sh aay - (48) 

cos mt + e cos p 
l+p (47) 
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Accordingly the ratios of the amplitudes of the quick and 
slow vibrations in the y and < traces are respectively 

—(p—1)st 

p 

Relation of Dampings in the Vibrations separate and 
coupled.—The vibrations of a separate damped pendulum 
of length / are derived from the equation of motion 

d*y d 
de + 2h +my=0, Ay Sure Ah (50) 

ee and one (49) 

where m?=q/l. 
The solution of this involves simple harmonic vibrations 

of approximate period 
T= 27|m, 

and of damping factor 
7 ata 

Thus the ratio of successive amplitudes is 
pee eas eas /m 

nearly. 
But the logarithmic decrement » (per half wave) is 
a as the logarithm to base e of this ratio. 

ence 
_ kr 
Or ig ae 

m 
Soke (or riihe) OD 

which gives the relation between damping coefficient and 
logarithmic decrement for a separate pendulum. 

We have now to express in terms of \ the two damping 
coefficients r and s which apply to the superposed vibrations 
when the pendulums are coupled. Thus, combining (23) 
and (24) with (51), we find 

ee ease D) 
Aa Pa gk 7? e ° e e . ° e (52) 

and 

Emax 5 
Se Geaanan (53) 

Ill. THrory For UNEQUAL PERIODs. 

Equations of Motion and Coupling.—Still using the 
double-cord pendulum, as shown in figs. 1, 2, and 4 of the 
first paper, we now make the masses of the bobs equal, but 
the lengths of the suspensions unequal. (The droops of 
the two bridles always remain equal.) In other words, 
Q=P or p=1, while the lengths of the suspensions for the 



70 Prof. Barton and Miss Browning on 

y and z vibrations are now denoted by 7/ and / respectively, 
the droop of each bridle being @/ as before. 

Then the equations of motion of the pendulums may be 
written at first in the form : 

d? oo =0, “i alta nn 

QS + Qv=o, oh a 

where @ and y are the inclinations of the suspensions to the 
vertical. 

But we have also 
g—¥—Rlo . ee) 

nl 
nd y= —— (56) 

where @ is the inclination to the vertical of the planes of 
the bridles. 

Neglecting masses of bridles, connector, and suspensions, 
® must satisfy 

Qo(y—o)=Po(w—8) =P9(p—o). . . (57) 
Then (56) in (57) gives 

ljo= 

And (58) in (56) yields 

_ (2+8)y—Bez _ (8+2n)z—By 
~ UB+ Bn+2n) mee (B+Bn+2) ° © 

Then by (59), equations (54) and (55) become 

YNZ 5 8n = oa ey 

d*y 2+ Bet Bm? 

dt? * eameyeea, B+ Bn+2n” sia 
d*z B+2n m2 Bm? 
— + 5 mz = = y, - -. (6 
d® * B+Bnt+2y"*~ B+Bn+2n” ist) 

where m? is written for g/l. 
So, for the Te ry, we have 

‘Si 

SUNN e ECR Jbl ~ @4BBt Ry oe 
Hence, for n=1, we recover the original relation 

rare aileron un) we 

which agrees with (32) of the first paper. 
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Solution and Frequencies.—In equation (61) try 

ee" 7 
then we have 64 

(B+ Bn+2n)+(B+2n)m?,,¢ > + (4) 
Uke a ee ae a Bm 

And, by (64) in (60), we obtain 

{2° (8+ 8n+2n) + (B+2n)m?} $2?(8B + Bn + 2) 
+ (2+ 8)m?}=f?m*, 

This reduces to the auxiliary biquadratic in z, 

x(B+ Bn+2n)+2(14+84+7)m?x?+2m*=0. . (65) 

Solving this as a quadratic in 2, we have 

2 2 ee ae eee z= —mM B4+Bn+2 eli ee COG) 

Or, let us write 
ea Ob. Gia sh eon a COG) 

Then, for the sake of brevity putting A? for (l—n)?+ 6’, 
we have 

1+8+7+A 25 2 

P= B+Bn+2n "’ 

== ne 2 . e e e 

TBE Baton oe 

ees Sos ea 
q Les ase 

sad 

Thus, using (67) in (64) and introducing the usual con- 
stants, we obtain 

2=E sin (ptt+e)+Fsin(gtt+¢), . . . (69) 
and 

1—7+A,,. —(1-— : y= — FE sin (pete) + 9 EY P sin (Ge + 9), (70) 
p and q being defined by (68). 

Initial Conditions.—Consider the case of pulling aside the 
bob Q of the pendulum of length / whose vibrations are 
denoted by z, the other bob hanging at rest in a more or 
less displaced position according to the magnitude of the 
coupling. 
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Thus, we may write : 

For b=; z=f, \ 

when it follows statically that, y= sf | oe ae 

and we have also a =) a =/0 | 
NAS ag dt ine 

Differentiating (69) and (70) with respect to the time, 
and introducing (71) gives equations which are satishied by 

7 T 
e=5 and $= 5. wis a 

Then, introducing (71) and (72) in (69) and (70) we find 

pce a ld 
if 2(2 + BYA , 

pa 2tB\=n+ayre, |" 
ie 2(2+8)A 1A 

Finally, (72) and (73) in (69) and (70) give as the re- 
quired special solution 

_ (2+8)(—1+7+4)—£? 
a Rae LIGA qty f cos pet 

2 1— A 2 
Se a feosqt, . (TA) 

(73) 

and 
14+8+7—A 

yc mpperayary Coe 
1+B+n+A a a Bfecosgt. . . . . (7) 

IV. RELATIONS AMONG VARIABLES. 

It is instructive to plot graphs with the values of the 
coupling y as ordinates, the abscissee being the corresponding 
values of 8 (ratio of droop of bridle to pendulum length). 
A different graph is needed for each value of » and p (which 
are respectively the ratios of pendulum lengths and masses 
of bobs). 

The data for these graphs are derived from the equations 
and are given in Tables I., II., and III. (and Table I. p. 265 
of October paper). 
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TaBLE I.— Masses 20: 1 and lengths equal 

: Bridle Droo Actual Droo Frequenc 
Soplng gc sea for total ar | Baio ‘ 

Lf Pendulum length. 229 em. em | BE :q= NV(1 a= N(1+B). 

Per cent. cm. 
0:0 0-0 1:00 
0:05 10:9 1:025 
0:10 20°8 1:05 
0-151 29:9 | 1:07 
0207 39°7 1:10 
0°265 48°1 | 1-12) 
0:60 85°9 1:27 
1:53 138°6 | 1:59 
3°00 171°8 | 2:00 

| 

TaBLE I].—Masses 5:1 and lengths equal. 

Bridle Droop Actual Droop Frequency 
Coupling ——_—— = 6} for total length Ratio 

a Pendulum length. 229 em. p:g= N(1+ 68). 

Per cent. em. 
0 0 0 | 1:00 
] 0°027 6:0 1-014 
2 0:058 13°3 1-029 
5:2 07141 28°2 1-07 
94 0259 ail 1-12 

25°5 1 114°5 1-414 
39°5 2 ‘152°7 1°732 
48°8 3 1718 2 

TaBLE JI].—Masses equal and lengths 3 

: Bridle Droo Actual Droo Frequenc 
Coupling Ee sg for total on Ratio : 

th Pendulum length. 229 cm. Pig: 

Per cent. ‘ em. | 
0 1:154 

55 O01 20°8 1:16 
10°3 02 38'2 1175 
22°4 05 — 763 1:29 
36°5 1 114°5 1:48 
59°9 2°6 165°4 2-00 
63°2 3 171°8 rg 
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The graphs referred to are given in fig. 1. 
e may now, from the data in the same tables, plot 

graphs with the values of the frequency ratios p:g as ordi- 
nates, the abscissee being the corresponding values of the 
coupling y. 

These are shown in fig. 2, separate graphs being plotted 
for mass ratios 1, 5, and 20 and lengths equal, and also for 
lengths 3:4 and masses equal. 

S Ay 

JOT. 

5S oO 

Coupling. 
@® °o 

Droep + Length. 

Fig. 1.—Couplings and Droop. 

With the separate frequencies equal and a given coupling, 
it may be noted that the greater the inequality of the masses 
the greater is the inequality of the frequencies of the result- 
ing superposed vibrations of the coupled system. 
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he 
pq p=e0 5 pz 

ik Tie ae 
ee. 

Ratio of Frequencies. 

} 

Coupling. ¥ 

Fig. 2.—Frequency Ratios and Coupling. 
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When the coupling vanishes the frequencies of the separate 
vibrations are of course undisturbed. Thus for equal lengths, 
but any ratio of masses, we have for y=0, p:g equals unity. 
But for different separate frequencies (2. e., 7 not equal to 
unity) we have for y=0, p:q greater than unity. But with 
large couplings the effect of unequal separate frequencies 
gradually disappears. 

V. EXPERIMENTAL RESULTS. 

Masses 20:1.—The bobs used in these experiments were 
of the order 1000 gms. and 50 gms. respectively. Figs. 1-11 
of Plate I. give photographic reproductions of the double 
sand traces simultaneously obtained when the masses of the 
bobs Q and P were as 20:1, 2. e., p= 20. 

The couplings vary from 1 per cent. in the first to a little 
over 30 per cent. in the last, and are shown as percentages 
on every figure. 

Figs. 1-8 were obtained by drawing the heavy bob aside 
horizontally, the light bob being allowed to hang at rest in 
its more or less displaced position according as the coupling 
was tight or loose. In figs. 9-11, while the heavy bob was 
pulled aside, the light one was held in its undisplaced posi- 
tion. Figs. 1-6 show a very marked effect due to the 
inequality of the masses. Tor, as the resultant vibrations of 
the light bob wax and wane in amplitude, those of the heavy 
bob scarcely change. Thus showing that with masses 20: 1 
we have in this respect almost reached the limiting case of 
forced vibrations in which the reaction of the driven on the 
driver is negligible. The frequencies, however, are still 
appreciably affected. The contrast with the case of equal 
masses may be seen by referring to figs. 1-5 in Plate V. of 
the October paper, where the waxings and wanings occur 
equally and alternately in both traces. Figs. 1-8 show that 
as the coupling increases the inequality of the frequencies 
of the superposed vibrations increases also. Hence there are 
fewer vibrations in the beat cycle and this fulfils the theory. 

In fig. 9 the initial displacement of the heavy bob was so 
great that a collision occurred between the two as indicated. 
But its effect passed away after a few vibrations. This may 
be seen by fig. 10,in which with a slightly smaller displace- 
ment the collision was avoided. 

Fig. 11 shows appreciable damping of the vibration of 
the light bob which was held undisplaced while the heavy 
one was drawn aside, whereas that of the heavy bob is not 
appreciably damped. Thisis exactly what might be expected 
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from general considerations. But it seems at first sight in 
direct contradiction to the theory which shows that the y and 
z vibrations for the light and heavy bobs respectively involve 
the selfsame damping factors. But by equations (23) and 
(24) we see that one damping coefficient is p-times the other. 
Again, by equation (48) the amplitude of the slow vibrations 
of the heavy bob is p-times that of its quick ones. In the 
present experimental case p equals 20, hence almost all the 
vibration visible is the slow one with the negligibly small 
damping coefficient. On the other hand, by equation (47) 
we see that the amplitudes of the slow and quick vibrations 
of the light bob are numerically equal. Consequently the 
large damping coefficient, which is 20 times the small one, 
affects at least half of the amplitude visible. 

Logarithmic decrements.—The lower trace on fig. 11 just 
dealt with, led to the theoretical introduction of the damping 
of the light bob as expressed by the constant & in equation 
(4). It also became necessary to estimate the experimental 
value of k. To do this one pendulum with a light bob was 
allowed to oscillate alone, the other being meanwhile dis- 
connected. The traces for the lighter bobs P were taken 
when their masses were respectively as used in the experi- 
ments, so as to be one-twentieth and one-fifth of those of the 
corresponding heavy ones. The results are given in fig. 12. 
From the upper trace with the very light bob consisting 
simply of a cardboard funnel, a few weights and sand (total 
mass about 50 gms.), we find that the logarithmic decrement 
is of the order \=0°017. 

Then by (57) we have 

b= =(0:005)m. . . . . . (76) 

The lower trace with bob about 120 gms. shows consider- 
ably less damping and the decrement need not be evaluated. 

Masses 5:1—The masses of the bobs used in these 
experiments were of the order 600 gms. and 120 gms. 
respectively. 

Figs. 13-19 in Plate II. show double traces obtained with 
this arrangement. In figs. 13-16 we see very plainly the 
beat effects on the lower trace which is left by the lighter 
bob. The traces of the heavier bob also show distinct but 
much slighter fluctuations of amplitude. In this respect 
they are seen to present an intermediate state between the 
cases of equal masses and masses as 20:1. And this is just 
what we should naturally expect. Further, the beat cycles 
contain fewer and fewer vibrations as the coupling increases. 
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This again is in accord with theory, for the frequencies of 
the superposed vibrations are then more unequal and there- 
fore gain more quickly on each other. 

Lengths 3:4.—Figs. 20-28 show double traces simul- 
taneously obtained with the masses of the bobs equal, but 
the lengths of the suspensions as 3:4. The lower trace on 
each figure is that made by the shorter pendulum. In the 
case of fig. 20, the short pendulum was pulled aside, the 
long one hanging still in its slightly displaced position. In 
the cases of figs. 21-25, the long one was drawn aside while 
the short one hung at rest in its more or less displaced 
position. In figs. 26-28 the long pendulum was pulled 
aside while the short one was held in its zero position, as 
this favoured the exhibition of the compound harmonic trace 
which it was then sought to obtain. 

The couplings in this set vary from about 5 per cent. to 
over 60 per cent. In the 5 and 10 per cent. couplings the 
response of the second pendulum is feeble and the beat 
cycles contain very few vibrations. These are the effects of 
the inequality of lengths. But as the coupling is further 
increased these effects of the inequality of the separate 
frequencies are seen to be overpowered. ‘This is exactly 
in accord with the theory as exhibited in the graphs on 
fig. 2. 
"Hig. 26 shows an accidental collision of the lighter bob 

with the releasing apparatus. But the effect of the blow is 
seen to pass away after a few vibrations, as shown by com- 
parison with fig. 27, which is a repetition of the conditions 
first intended. Figs. 26 and 27 are seen to present almost 
the appearance of the compound harmonic motion of a tone 
and its octave, the latter being too sharp. Fig. 28 shows 
the coupling reduced to 60 per cent., and this gives the 
relation of frequencies almost exactly 2:1. 

The pair of simultaneous traces in fig. 28 is almost 
identical in type with those in fig. 11 of Plate V. in the 
October paper, in which latter case the lengths were equal. 
It may well seem surprising that the effect of the present 
mistuning (in which the frequency ratio exceeds 8 : 7) should 
be so completely obliterated by this coupling. But experi- 
ment and theory agree that it should be so. 

VI. SumMMARY. 

1. This second paper describes further experiments with 
the double-cord pendulum, but with the masses unequal as 
20:1 and as 5:1, or the lengths unequal as 3:4. These 
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are somewhat analogous to coupled electrical circuits with 
different inductances or different periods. 

2. The case of masses 20:1 is seen to be very nearly that 
of forced vibrations in which the light bob is driven by 
receiving energy from the heavy bob or driver, while the 
latter’s loss, though equal in energy, entails only a very 
small decrease of amplitude. The case of masses as 5:1 is 
about midway in character between that of 20:1 and equal 
masses. Highteen photographic reproductions of double 
traces are given for unequal masses. 

3. It was noticeable on one of the traces that the light 
bob showed diminution of amplitude as the trace proceeded. 
This led to taking resistance into account in the equation of 
motion. It was also necessary to determine experimentally 
the actual damping of the light bob when vibrating sepa- 
rately. The theory thus developed and numerically applied 
fitted the observed facts. 

4. In the case of unequal lengths but equal masses, a 
feebler response and a shorter beat cycle may naturally be 
expected than if mistuning were absent. Both these effects 
are quite striking with loose couplings. But with the tighter 
couplings the effect of mistuning is practically unnoticeable. 
The theory agrees with this experimental result. Nine sets 
of double traces are given for the unequal periods. 

5. It is hoped that these methods may be shortly applied 
to the illustration of important phenomena in other branches 
of Physics. 

Nottingham, 
Nov. 19, 1917. 

TX. On the Diffraction of Light by Cylinders of Large Radius. 
By Nawinimowan Basu, M.S8e., Sir Rashbehari Ghosh 
Research Scholar in the University of Calcutta *. 

[Plate IIL] 

Introduction. 

1. C. F. Brusu has recently published a paper containing 
some interesting observations on the diffraction of light by 
the edge of a cylindrical obstacle t. Brush worked with 

* Communicated by Prof. C. V. Raman. 
+ “Some Diffraction Phenomena: Superposed Fringes,” by C. F. Brush, 

Proceedings of the American Philosophical Society, 1913, pp. 276-282. 
See also ‘Science Abstracts,’ No. 1810 (1913). 
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cylinders of various radii (the finer ones being screened on 
one side so as to confine diffraction to the other side only), 
and observing the fringes formed within a few millimetres of 
the diffracting edge through a microscope, found that they 
appeared brighter and sharper with every increase in the 
radius of the cylinder. The fringes obtained with a smooth 
rod of one or two centimetres radius differed very markedly 
from those formed by a sharp edge or by a cylinder of small 
radius. They were brighter, more numerous, showed greater 
contrast between the maxima and minima of illumination, 
and their spacing was different from that given by the usual 
Fresnel formule. Brush also observed that when the radius 
of the cylinder was a millimetre or more, the fringes did not 
vanish when the focal plane of the microscope was put 
forward so as to coincide with the edge of the cylinder. 
Sharp narrow fringes were observed with the focal plane in 
this position, becoming broader and more numerous as the 
radius of the cylinder was increased. 

2. To account for these phenomena Brush has suggested 
an explanation, the nature of which is indicated by the title 
of his paper. The diffraction-pattern formed by the cylinder 
is, according to Brush, the result of the superposition of a 
number of diffraction-patterns which are almost, but not 
quite, in register. He regards the cylindrical diffracting 
surface as consisting of a great many parallel elements, each 
of which acts as a diffracting edge and produces its own 
fringe-pattern, which is superposed on those of the other 
elements. Brush has made no attempt to arrive, mathe- 
matically or empirically, at any quantitative laws of the 
phenomena described in his paper. A careful examination 

of the subject shows that the view put forward by him 
presents serious difficulties, and is open to objection. One 
of the defects of the treatment suggested by Brush is that 
it entirely ignores the part played by the light regularly 
reflected from the surface of the obstacle at oblique or nearly 
grazing incidences. I propose in the present paper (a) to 
describe the observed effects in some detail, drawing attention 
to some interesting features overlooked by Brush ; (b) to show 
that they can be “interpreted in a manner entirely different 
from that suggested by him; and (c) to give a mathematical 
theory together with the results of a quantitative expe- 
rimental test. 

3. Reference should be made here to the problem of the 
diffraction of plane electromagnetic waves by a cylinder 
with its axis parallel to the incident waves. The solution of 
this problem for a perfectly conducting cylinder has been 



Laght by Cylinders of Large Radius. 81 

given by J.J. Thomson%, and for a dielectric cylinder by 
Lord Rayleigh t. These solutions are, however, suitable for 
numerical computation only when the radius of the cylinder 
is comparable with the wave-length. A treatment of the 
problem in the case of a cylinder of any radius has been 
recently given by Debyet. He considers the electromagnetic 
field round a perfectly reflecting cylinder, whose axis is taken 
for axis of z, with polar co-ordinates r, ¢, and waves in the 
plane zy polarized in the direction of z, the electric component 
in z being e**, Expressing the disturbance-field in the form 

eS in= J, (Ka) 

an (ea) 
(in which J,, is the usual Bessel function, H, is Hankel’s 
second cylindrical function, and «= 277/X), Debye transforms 
the solution into the simple form 

a eon” 

2r 

. H,(«r) cos nd 

: e7tk(r—2a oe) ZL=— 

Debye’s work is of considerable significance, but his final 
solution is valid only for points at a great distance from the 
surface of the cylinder, whereas the phenomena considered 
in the present paper are those observed in its immediate 
neighbourhood. No complete mathematical treatment of 
the subject now dealt with appears to have been given 
so far. 

General Description of the Phenomena. 

Fig. 1. 

4, The experimental arrangements are those shown in the 
diagram (fig. 1). Light from a slit 8 falls on a polished 

* ‘Recent Researches in Electricity and Magnetism,’ p. 428. 
+ Phil. Mag. 188). ‘Scientific Works,’ vol. i. p. 534. 
t P. Debye, “On the Electromagnetic Field surrounding a Cylinder 

and the Theory of the Rainbow,” Phys. Zeitschr. ix. pp. 775-778, Nov. 
1908. Also Deutsch. Phys. Gesell. Verh. 10, 20, pp. 741-749, Oct. 1908 ; 
and ‘ Science Abstracts,’ No. 258 (1909). 

Phil. Mag. 8. 6. Vol. 35. No. 205. Jan. 1918. G 
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cylinder of metal or glass and passes it tangentially at C*. 
The axis of the cylinder is parallel to the slit. A collimating 
lens may, if necessary, be interposed between the slit and 
the eylinder. The fringes bordering the shadow of the edge 
C are observed through the microscope-objective M and the 
micrometer eyepiece EH. The latter may be placed at any 
convenient distance from the objective so as to give the 
necessary magnification. The effects are best seen with 
monochromatic light obtained by focussing the spectrum of 
the electric arc on the slit with a small direct-vision prism. 
For photographic work, the eyepiece E is removed and 
replaced by a long light-tight box in front of which the 
objective M is fixed, and at the other end of which the 
photographic plate is exposed. Sufficient illumination for 
photographing the fringes may be secured by using the are 
and illuminating the slit by the greenish-yellow light trans- 
mitted by a mixture of solutions of copper sulphate and 
potassium bichromate. 

5. The phenomena observed depend on the position of the 
focal plane of the objective with reference to the diffracting 
edge of the cylinder, and an interesting sequence of changes 
is observed as the focal plane of the objective is gradually 
moved, towards the light, up toand beyond the edge OC (fig. 1) 
at which the incident light grazes the cylinder. Some idea 
of these changes will be obtained on a reference to Plate III., 
figs. I. to VIII., in which the fringes photographed with a 
cylinder of radius 1°54 cm. are reproduced. (A Zeiss 
objective of focal length 1:7 cm. was used, and the magni- 
fication on the original negative was 135 diameters.) 

6. To interpret the phenomena it is convenient to compare 
them with those obtained by a sharp diffracting edge in the 
same position. Using the cylinder, it is found that when 
the focal plane is between the objective and the cylinder, but 
several centimetres distant from the latter, the fringes are 
practically of the same type as those due toa sharp diffracting 
edge. They are diffuse, few in number (not more than seven 
or eight being visible even in monochromatic light), and the 
first bright band is considerably broader and more luminous 
than the rest. The fringes become narrower (retaining their 
characteristics) as the focal plane is brought nearer the 
cylinder till the distance between the two is about two 
centimetres. At this stage some new features appear; the 

* A glass cylinder may be used without inconvenience as the light 
transmitted through the cylinder is refracted out to one side, and does 
not enter into the field under observation. Very little light is, in fact, 
transmitted through the cylinder at oblique incidences. 
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contrast between the minima and maxima of illumination 
becomes greater than in the fringes of the usual Fresnel type, 
and the number that can be seen and counted in mono- 
chromatic light increases considerably. These features 
become more and more marked as the focal plane approaches 
the cylinder, and the dark bands then become almost per- 
fectly black. The difference between the intensity of the 
first maximum and of those following it also becomes less 
conspicuous. Figs. I., I1., and III. in the Plate represent 
these stages. A considerable brightening-up of the whole 
field is also noticed as the focal plane approaches the cylinder, 
but this is not shown in the photographs, as the exposures 
obtained with the light of the are were very variable. When 
the focal plane is within a millimetre or two of the edge at 
which the incident light grazes the cylinder, a change in the 
law of spacing of the fringes also becomes evident, the widths 
of the successive bright bands decreasing less rapidly than in 
the fringes of the Fresnel type. Fig. LV. in the plate illus- 
trates this feature, which is most marked when the focal plane 
coincides with the edge of the cylinder. At this stage, of 
course, the fringes due to a sharp diffracting edge would 
vanish altogether. 

7. When the focal plane is gradually moved further in, so 
that it lies between the cylinder and the source of light, some 
very interesting effects are observed. The fringes contract 
a little, and the first band, instead of remaining in the fixed 
position defined by the geometrical edge, moves into the 
region of the shadow, and is followed by a new system 
of fringes, characterized by intensely dark minima, that 
appears to emerge from the field occupied by the fringes 
seen in the previous stages. (See figs. V.and VI.) The 
first band of this new system is considerably more brilliant 
than those that followit. It is evident on careful inspection 
that the fringes that move into the shadow form an inde- 
pendent system. For it is found that the part of the field 
from which the new system has separated out appears greatly 
reduced in intensity in comparison with the part on which it 
is still superimposed. When the separation of the field into 
two parts is complete, a few diffraction-fringes of the usual 
Fresnel type are observed at the geometrical edge of the 
shadow of the cylinder. (See figs. VII. and VIII. in the 
Plate, in which this position is indicated by an arrow.) 

8. A comparison of the effects described in the preceding 
paragraph and of those obtained with a sharp diffracting 
edge in the same position, furnishes the clue to the correct 
explanation of the phenomena observed and dealt with in the 

G 2 



84 Mr. Nalinimohan Basu on the Diffraction of 

present paper. Withasharp edge, the fringes of the Fresnel 
type disappear when the focal plane coincides with it, and 
reappear without alteration of type when the focal plane is 
between the edge and the source of light. As mentioned 
above and shown in figs. VII. and VIII. of the Plate, fringes 
of this type may also be observed with the cylinder when the 
focal plane is in this position, and in addition we have, 
inside the shadow, an entirely separate system of fringes 
characterized by perfectly black minima and a series of 
maxima with intensities converging to zero. This latter 
system has nothing in common with the diffraction phe- 
nomena of the Fresnel class, and has obviously an entirely 
different origin. That it is formed exclusively by the light 
reflected from the surface of the cylinder is proved by the 
fact that it may be cut off without affecting the rest of the 
field by screening the surface. It is accordingly clear that 
the light reflected from the surface of the cylinder plays a 
most important part in the explanation of the phenomena, 
and that the edge of the cylinder grazed by the incident rays 
alone acts as a diffracting edge in the usual way, and not all 
the elements of the surface as supposed by Brush. We shall 
accordingly proceed on this basis to consider the theory of 
the fringes observed in various positions of the focal plane 
of the objective. 

Theory of the Fringes at the edge of the cylinder. 

9. When the focal plane coincides with the edge at which 
the incident light grazes the cylinder, it is permissible to 
regard the fringes seen as formed by simple interference 
between the light that passes the cylinder unobstructed and 
the light that suffers reflexion at the surface of the cylinder 
at various incidences; for, if a sharp diffracting edge be put 
in the focal plane in the same position, no diffraction-fringes 
would be visible. The positions of the minima of illumination 
in the field may be readily calculated. 

In fig. 2, let O be the centre of the cross-section of 
the cylinder in the plane of incidence, and let C be the 
point at which the light grazes the cylinder. It is sufficient 
for practical purposes to consider the incident beam as a 
parallel pencil of rays. The ray meeting the cylinder at the 
point Q is reflected in the direction QP. Let 2 QOA=8@, so 

that 7 OQP= Boe and ZOPQ=5 —20. Let a be the 

radius of the cylinder and CP=a. The difference of path, 8, 
between the direct ray and the reflected ray reaching the 
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point P is evidently equal to QP—RP, which can be easily 
shown to be given by 

d=asin O(sec 20—1). 

Fig, 2. 

Similarly, we shall have 

“=a sec 20(cos @—cos 20). 

Therefore, neglecting 4th and higher powers of 0, we have 

6=Fae and | #=3aG?/2. 

2x \8 so that 52a (=). 

3a 

Since by reflexion the rays suffer a phase change of half a 
wave-length, the edge © will form the centre of a dark band, 
and the successive minima are therefore given by 

nr\3 3a “ee 1 \2 2= oa) = 7 Cah. (nary, 

where n=1, 2, 3, &c. The resuits calculated according to 
the above theory and those found in experiment are given in 
Table I. 
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TABLE L. 

a==1°>4 em.) A=6562 x 107" am 

if Calculated width Observed width 
; of Band. of Band. 

i; "001775 cm. 00174 cm. 

| 2, 001019 ,, 00102 ,, 

| 3. 000875. ,, 00086 _,, 

4, 000781 ,, 00076 ,, 

Be OOOCLT "5, 00069 ,, 

6. | 000671 ,, -00068_,, 

The discrepancies are within the limits of experimental 
error. When making these measurements, the focal plane 
was, in the first instance, set in approximate coincidence with 
the edge of the cylinder by noting the stage at which a further 
movement of the focal plane towards the light results ina 
movement of the fringes into the region of the shadow. There 
was, however, a slight uncertainty in regard to this adjust- 
ment, and the best position of the focal plane was finally 
ascertained by actual trial. 

10. The ratio between the maxima and minima of illumi- 
nation in the fringes at the edge may readily be calculated. 
Dividing up the pencil of rays incident on the cylinder into 
elements of width asin @d@ or a@d@ approximately, the 
width of the corresponding elements of the reflected pencil 
in the plane of the edge is dw, that is, 3a0 d@. The amplitude 
of the disturbance at any point in this plane due to the 
reflected rays is thus only 1/3 of that due to the direct 
rays, multiplied by the reflecting power of the surface. If 
the reflecting power be unity (as is practically the case at 
such oblique incidences), the ratio of the intensities of the 
maxima and minima is (1+1/73)?/(1—1/v3)’, that is 
approximately 14:1. The dark bands are thus nearly, but 
not quite, perfectly black. 

Theory of the Fringes at the edge of the shadow. 

11. If the fringes be observed in a plane (such as O’P’ 
in fig. 2) which is farther from the source of light than the 
edge of the cylinder, the diffraction and mutual interference 
of the direct and the reflected rays have both to be taken 
into account. Since the reflected rays form a divergent 
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pencil while the incident rays are parallel, the effect of the 
former at any point sufficiently removed from the cylinder 
would be negligible in comparison with the effect of the 
latter. If d, the distance of the plane of observation from 
the edge of the cylinder, be sufficiently large, the problem 
thus practically reduces to one of simple diffraction of the 
incident waves by the straight edge C. The positions of 
the minima of illumination with reference to the geometrical 
edge of the shadow would then be given approximately by 
the simple formula 

a! =/Qndr=/4nv/dr/2, 

where v7’ =C’P’ and d=CCO’, 

or with great accuracy by Schuster’s formula, 

av’ =y/ (8n—1)drf4=V (8n—1)/2V/ dd/2. 

The two formule give results which do not differ materially 
except in regard to the first two or three bands, as can be 
seen from Table II. 

TasueE II. 

ace 2, a | 4. | ; 
13 Proportionate | Proportionate 

n, V 4n. WV (8n—1)/2. {widths of bands |widths of bands 
| as per column 2./as per column 8. 

a SE eee ee ee | eee ee eee eee 

) 
ie i) «2-000 1871 2-000 1871 
2. 2°828 2°739 0-828 0868 

3. ) 3°464 3391 0°636 0-652 

Bcie| 4-000 3:937 | 0-536 0-546 
5. ) 4-472 4-416 / 0-472 0:479 

ent 4-899 4-848 | 0427 0432 

7 | 5-292 5244 | = 0398 0:396 
} 

12. If d be not large, the intensity of the reflected rays is 
not negligible. The following considerations enable us to 
find a simple formula for the positions of the minima of 
illumination which takes both diffraction and interference 
into account. We may, to begin with, find the positions of 
the minima assuming the case to be one of simple inter- 
ference between the direct and the reflected rays. The 
expression for the path difference, 8’, of the rays arriving 
at the point P’ is readily seen from fig. 2 to be given by the 
formula 

6'=(d+asin @)(sec 20—1). 
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Also, a' =d tan 20+ a(cos 0 sec 20—1). 

These two relations may, to a close approximation, be written 
in the form 

6’ = 2d6? + 2a6*, 

and a! = 2d0+ 3a0?/2. 

Putting d=0, we get the formula already deduced (see 
paragraph 9 above) for the fringes at the edge of the 
cylinder. On the other hand, if d be greater than a, we 
may, to a sufficient approximation, write 

Oo =2d6", 

and g' =2d0, 

and the positions of the points at which the direct and the 
reflected rays are in opposite phases are given by the formula 

we! =+/ 2ndnr. 

13. But, as remarked above, the simple formula z'= VW 2ndxr 
also gives the approximate positions of the minima in the 
diffraction-fringes at a considerable distance from the cylinder, 
where the effect of the reflected rays is negligible. Itis thus 
seen that the formule 

nv = 2d6? + 2a6’, ; (A) 

and a! =2d0 + 3067/2, 

suffice to give the approximate positions of the minima of 
illumination at the edge of the cylinder (at which point the 
fringes are due to simple interference of the direct and the 
reflected rays) and also ata considerable distance from it 
(in which case they are due only to the diffraction of the 
incident light). A priort, therefore, it would seem probable 
that the formule would hold good also at intermediate 
points, that is for all values of d. That this is the result 
actually to be expected may be shown by considering the 
effect due to the reflected rays at various points in the plane 
of observation. The reflected wave-front is the involute of 
the virtual caustic (see fig. 3 below). Atthe edge C, the radius 
of curvature of the wave-front is zero, and increases rapidly 
as we move outwards from the edge of the cylinder. The 
reflected rays accordingly suffer the most rapid attenuation 
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due to divergence in the direction of the incident rays, and 
less rapid attenuation in other directions. In any plane 
C’P’, therefore, the effect of the reflected light is negligible 
in the immediate neighbourhood of the point C’, and would 
be most perceptible at points farthest removed from 0'*, 
On the other hand, the fluctuations of intensity due to the 
diffraction of the direct rays are most marked in the neigh- 
bourhood of C', that is, for the smallest values of 6. We 
should accordingly expect to find that when d is not zero, 
the first few bands are practically identical in position with 
those due to simple diffraction, and ihose following are due 
to simple interference between the direct and the reflected 
rays. The formule given above satisfy both of these re- 
quirements. For it is obvious from the manner in which 
they have been deduced that they satisfy the second 
requirement. The first requirement is also satisfied, as, by 
putting @ small, the formule reduce to nXN=2d6? and 
a' =2d@; or, in other words, 2'=1/2ndn, for the minima of 
illumination, which is also the usual approximate diffraction 
formula. Accordingly, the complete formuls n\= 2d + 2a03 
and «' =2d0+ 3a6?/2 would (on eliminating @) give the posi- 
tions of the minima over the entire field with considerable 
accuracy. 

14. The statements made in the preceding paragraph are, 
however, subject to animportant qualification. ‘The validity 
of the formula obtained rests on the basis that, for large 
values of d, the positions of the minima of illumination are 
given by the simple relation 2/=/2ndr. This, however, is 
only an approximation, as the accurate values are to be 
found from Schuster’s formula (see Table II., above), when 
the effect of the reflected light is negligible. When d is so 
large that the formule n= 2d6? + 2a6* and w' =2d0 +-3a0?/2 
give nearly the same positions for the minima as the simple 
relation 2’ = V 2ndx, they should therefore cease to be strictly 
valid. The actual positions of the minima for such values 
of d should agree more closely with those given by Schuster’s 
formula, and should, when d is very large, agree absolutely 
with the same. This qualification is, however, of importance 
only with reference to the first two or three bands obtained 
for fairly large values of d. The differences in respect of the 
other bands would be negligibly small. 

15. To test the foregoing results, measurements were made 
of the widths of the bright bands for a series of values of d 

* Debye’s formula (Joc, cit.) shows that the intensity of the reflected 
light becomes very small as ¢ approaches =. 
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up to 2. cm. Table III. shows the observed values, the values 
calculated from my formule, and the values according to. 
Schuster’s formula (which would be valid for a sharp dif- 
fracting edge in the same position). To calculate the posi- 
tions of the minima given by the relations nX=2d6? + 2a6, 
and #'=2d0+ 3a0?/2, the first equation was solved for 6 by 
Horner’s method, and the resulting values substituted in the 
second equation. The measurements of the width of the first 
band were rather rough on account of the indefiniteness of 
its outer edge. The agreement between the observed widths 
and the widths calculated from my formule is seen to be 
fairly satisfactory for values of dup to 3mm. For larger 
values of d the observed widths agree more closely with those 
calculated from Schuster’s formula, as explained in paragraphs 
11 and 14 above. 

Theory of the Fringes between the edge and the source of light. 

16. As already remarked in paragraph 7, the direct and 
the reflected pencils tend to separate into distinct parts of 
the field when the focal plane of the observing microscope is 

Fig. 3. 

put forward so as to lie between the edge of the cylinder 
and the source of light. Why this is so will be readily 
understood on a reference to fig. 3. The rays reflected 
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from the surface when produced backwards would touch the 
enveloping surface which lies within the cylinder. This 
surface, which is virtually the caustic of the reflected rays, 
terminates at the edge C of the cylinder, and when the focal 
plane of the observing microscope is moved forward from 
CP to a position P’C’P, in front of the edge, the boundary 
of the field on the right-hand side would shift into the region 
of the shadow, and would, in fact, lie on the surface of the 
caustic at the point P,;. Ifthe focal plane P’C'P; is consi- 
derably forward of PC, the field is seen divided into two 
parts. The first part P’C’ consists of the direct rays alone 
(the reflected rays meeting P’C’ being too oblique to enter into 
the field of the microscope), and should obviously be bounded 
at C’ by a few diffraction-fringes of the ordinary Fresnel 
type. The second part of the field P,C’ is due to the reflected 
rays alone, and requires separate consideration. 

17. In the case considered above, that is, when the focal 
plane is considerably in advance of the edge, the fringe- 
system within the shadow due to the reflected light is of the 
same type as that found by Airy in his well-known investi- 
gation on the intensity of light in the neighbourhood of a 
caustic. For the elementary pencilsinto which the reflected 
rays may be divided up diverge from points lying along the 
caustic, and if the point P, at which the focal plane intersects 
the caustic is sufficiently removed from the edge C at which 
the latter terminates, Airy’s investigation becomes fully 
applicable, but not otherwise. ‘The rays emerging from the 
point P, after passage through the objective of the micro- 
scope become a parallel pencil, while pencils emerging from 
points on either side of P; become convergent and divergent 
respectively. The reflected wave-front after passage through 
the objective has thus a point of inflexion on either side of 
which it may be taken to extend indefinitely, provided the 
arc CP, be long enough. Assuming the focal length to be f 
and the equation of the wave-front to be = Av’, the value of 
A may be readily found. ‘I'he equation of the caustic is 

(Ax? + 4y?—a?)?—27a42?=0. 

From this, or directly by an approximate treatment, it may 
readily be shown that the radius of curvature of the caustic 
at the point © is # the radius of the cylinder. For our 
present purpose, it is thus sufficient to treat the caustic as 
equivalent to a cylinder of radius 3a/4 touching the reflecting 



Light by Cylinders of Large Radius. 93 

surface at C. We have 

nae o14 (28) 
~ 6dr? 6 adn\dn?2)’ 

areY . ; é a Ai (53) is the measure of the convergence or divergence 
n 

of the normals to the wave-front in the neighbourhood of the 

point of inflexion. Substituting the values obtained from 
the formule of geometrical optics, it is found that 

jf a Z 

oO rig 
The equation of the wave-front is accordingly 

E=a7/8/". 
The illumination in the fringe-system alongside the caustic is 
then given by Airy’s formula 

0 2 
I=4 a cos (10? + mac) do | : 

0 
—1 S24 

where W459 24 8X) 2.4), 

x, being the distance of any point in the focal plane measured 
from the point of intersection with the caustic. The integral 
gives a series of maxima of which the first is the largest, and 
the rest gradually converge to zero. The minima of illumi- 
nation are zeroes”. As the focal plane is moved further and 
further towards the source of light, the fringe-system moves 
inwards along the caustic, but remains otherwise unaltered. 

18. The foregoing treatment of the reflected fringe-system 
in terms of Airy’s theory ceases te be valid when the focal 
plane is not sufficiently in advance of the edge, and the are 
CP, of the caustic is therefore not large enough. For the 
reflected wave-front on one side of the point of inflexion then 
becomes limited in extent, and its equation cannot with 
sufficient accuracy be assumed to be of the simple form 
&=An?’, extending to infinity in either direction. In fact, 
when the focal plane is at the edge of the cylinder and CP, 
is zero, the point of inflexion coincides with the extreme edge 
of the reflected wave-front. At this stage, of course, the 

* Graphs of Airy’s integral and references to the literature will be 
found in an interesting paper by Aichi and Tanakadate (Journal of the 
College of Science, Tokyo, vol. xxi. Art. 3). 
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fringes seen in the field are due only to the interference 
of the direct and reflected wave-trains. The phenomena 
noticed as the focal plane is advanced towards the source of 
light, represent a gradual transition from this stage to one 
in which Airy’s theory becomes fully applicable. In the 
transition-stages the field of illumination is a continuous 
whole, of which, however, the different parts present distinct 
characteristics. First, within the geometrical edge of the 
shadow, we have a finite number of fringes (one, two, or 
more according to the position of the plane of observation, 
but not an indefinitely large number as contemplated by 
Airy’s theory); these may be regarded as the interference- 
fringes in the neighbourhood of the caustic due to the 
reflected light alone. Following these we have a long train 
of fringes due to the interference of the direct and the 
reflected pencils. The first few of these should evidently be 
modified by the diffraction which the direct rays suffer at the 
edge C before they reach the observing microscope. Finally, 
we may also have a part of the field in which the illumination 
is due only to the direct pencil, the reflected rays not entering 
the objective of the microscope owing to their obliquity. 
This part of the field should appear less brightly iluminated 
than the rest. 

19. A complete theoretical treatment of the transition- 
stages described in the preceding paragraph is somewhat 
difficult, and has to be deferred to some future occasion. 
There is no difficulty, however, in caleulating the positions 
of the fringes due to the interference of the direct and the 
reflected pencils when the focal plane is in advance of the 
edge, provided the diffraction-effect due to the edge is 
neglected. It is easily shown that the path-difference 
between the direct and reflected rays ata point 2’ is given by 

6' = 206? —2d6?, 

xv! =3a0?/2—2d0, ; Ge 

where x’ is measured from ©’ and d=CC’. By putting 
§'=nd and eliminating 0, the positions of the minima of 
illumination may be calculated. A complete agreement 

of the results thus obtained with those found in experiment 

cannot, however, be expected, as the fringes are narrow and 
the modifications due to diffraction are not negligible. As 
regards the fringes alongside the caustic due to the reflected 
rays, we cannot expect to find a complete agreement between 

their widths and those found from Airy’s theory, so long as 

the latter is not fully applicable. The divergence, if any, 
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should be most marked when the region of the caustic under 
observation is nearest the edge of the cylinder, and for the 
fringes which are farthest from the caustic. 

20. The foregoing conclusions have been tested by a series 
of measurements made with the focal plane in various 
positions in advance of the edge. To prove that the 
boundary of the field within the shadow is the caustic and 
not the surface of the cylinder, measurements were made of 
the length C'P,, the rays incident on the cylinder being a 
parallel pencil. 

Observed value of C’P,. Calculated value. 

@— 1 mm.).2.2 700454. em: "00433 em. 
d=1°3 mm.... *00750 cm. ‘00733 cm. 

The following shows the widths of the fringes observed in 
the neighbourhood of the caustic when the focal plane was 
1:6 mm. in advance of the edge, and the widths calculated 
from Airy’s theory. 

Width of fringes in em. x 1075. 

Observed ... 159, 69, S18 yi A5, A3 
Calculated... 155, 70, Os 50, 46, 43 

(Airy’s theory.) 

The agreement in beth cases is satisfactory. 
21. Table IV. shows the results of measurements made of 

the fringes in the transition-stages when the focal plane was 
only a little in advance of the edge, and Airy’s theory is not 
fully applicable. ‘The observed results are in general agree- 
ment with the indications of theory set out in paragraph 19. 
It will be seen that the fringes farthest within the region of 
the shadow show a fair agreement with Airy’s theory, and the 
others are more nearly in agreement with the widths calcu- 
lated from formula (B). 

Summary and Conclusion. 

22. C. F. Brush has recently published some observations 
of considerable interest on the diffraction of light by cylin- 
drical edges. The views put forward by him to explain the 
phenomena, however, present serious difficulties and are 
open to objection. My attention was drawn to this subject 
by Prof. C. V. Raman, at whose suggestion the present work 
was undertaken by me in order to find the true explanation 
of the effects, and to develop a mathematical theory which 
would stand a quantitative test in experiment. This has now 
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TaBie LV. 

Widths of Bright Bands in em. x10~°, 

a=1°54em: X= 6562 x 1073 em. 

: Calculated | Calculated Calculated | Calculated 
Deas [Airy’s | [Formula See [Airy’s | [Formula 
LS Formula]. (B)}. yee Formula]. (B)]. 

| 
d='2 mm. d='4 mm. 

1546 LopO ane, 1555 1550 | jee 
852 696 894 777 696 | 754 
722 570 777 628 570 674 
672 504 705 590 504 636 
622 461 637 566 461 594 
590 429 602 500 429 543 

d=‘6 mm. d=*8 mm, 

1513 TBO al pon ans 1466 1550 | sida 
700 OS) CARS Net MRP 706 G9G.. |) Sieeoees 
626 570 586 563 570 || os ame 
536 504 549 503 504 508 
493 461 520 475 461 483 
446 | 429 497 448 429 463 | 

been done, and in the course of the investigation various 
features of importance overlooked by Brush have come to 
light. The following are the principal conclusions arrived at: 
(a) The fringes seen in the plane at which the incident light 
grazes the cylinder are due to the simple interference of 
the direct and the reflected rays, the positions of the 
dark bands being given by the formula #=3. (2a)3. (nd)? ; 
(6) the fringes in a plane further removed from the source 
of light than the cylinder are due to diffraction at the edge 
grazed by the incident rays but modified by interference 
with the light reflected from the surface of the cylinder. 
The positions of the dark bands in these fringes are (to a close 
approximation) given by the formule * #=2d0@ + 3a6?/2, and 
nn = 2d6? + 2a6%, from which @ is to be eliminated; (c) when 
the focal plane of the observing microscope is on the side of 
the cylinder towards the light, the direct and reflected rays 
do not both cover exactly the same part of the field, and by 
putting the focal plane sufficiently forward towards the light, 

* This formula is subject to a small correction which is of importance 
only when d is large. 
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they may be entirely separated. When this is the case, the 
fringes of the ordinary Fresnel type due to the edge of the 
cylinder may be observed, and inside the shadow we have also 
an entirely separate system of fringes due to the reflected rays, 
the first and principal maximum of which lies alongside the 
virtual caustic formed by oblique reflexion; the distribution 
of intensity in this system can be found from the well-known 
integral due to Airy; (d) but when the focal plane is only a 
little in advance of the edge, the caustic and the reflecting 
surface are nearly in contact, and Airy’s investigation of 
the intensity in the neighbourhood of a caustic requires 
modification. Itis then found that only a finite number of 
bands (one, two, three, or more according to the position 
of the plane of observation) is formed within the limits of 
the shadow, and not an indefinitely large number as con- 
templated by Airy’s theory. The rest of the fringes seen in 
the field are due to the interference of the direct and reflected 
rays, but modified by diffraction at the edge of the cylinder. 

The Indian Association 
for the Cultivation of Science, 

Calcutta, 8th May, 1917. 

X. On Aerial Waves generated by Impact. Part II. By 
SupHansukumMAR Banersi, M.Sc., Assistant Professor of 
Applied Mathematics, University of Calcutta *. 

[Plate IV. | 

1. Introduction. 

ee origin and characteristics of the sound produced by 
the collision of two solid spheres were discussed by me 

at some length in the first paper under the same title that 
was published in the Philosophical Magazine for July, 1916. 
It was shown in that paper that the sound is not due to the 
vibrations set up in the spheres, which in any ordinary 
material are both too high in pitch to be audible and too faint 
in intensity, but to aerial waves set up by the reversal of the 
motion of the spheres asa whole. The intensity of the sound 
in different directions for the case in which the two spheres 
were of the same material and diameter, was investigated by 
the aid of a new instrument which will be referred to as 

* Communicated by Prof. C. V. Raman. 

Phil. Mag. 8. 6. Vol. 35. No. 205. Jan. 1918. H 
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“the ballistic phonometer *.” The intensity was found to 
be a maximum along the line of collision, falling off gradu- 
ally in other directions to a value which is practically zero 
on the surface of a cone of semi-vertical angle 67°, and 
rising again to a second but feebler maximum in a plane at 
right angles to the line of collision. 

In view of the interesting results obtained for the case of 
two equal spheres, it was arranged to continue the investiga- 
tion and to measure the distribution of intensity when the 
colliding spheres were not both of the same radius or material. 
A mathematical investigation of the nature of the results to 
be expected in these cases was also undertaken. In order 
to exhibit the results of the measurements and of the 
theoretical calculation, a plan has now been adopted which 
is much more suitable than the one used in the first paper. 
This will be best understood by reference to fig. 1 (PI. IV.), 
which refers to the case of two spheres of the same material 
and diameter. The figure has been drawn by taking the point 
at which the spheres impinge as origin, and the line of 
collision as the axis of w, and setting off the indications of 
the ballistic phonometer as radii vectores at the respective 
angles which the directions in which the sound is measured 
make with the line of collision. The curve thus represents 
the distribution of intensity round the colliding spheres in 
polar coordinates, the points at which the intensity of the 
sound is measured being assumed to be all at the same 
distance from the spheres. The results are brought much 
more vividly before the eye by a diagram of this kind than 
by plotting the results on squared paper. 

2. Case of two spheres of the same material but of 
different diameters. 

Fig. 2, which shows the observed distribution of intensity 
when two spheres of wood of diameters 3 inches and 24 
inches collide with each other, is typical of the results 
obtained when the impinging spheres are nearly of the same 
density and are of different diameters. There is a distinct 
asymmetry about a plane perpendicular to the line of impact. 
In addition to the maxima of intensity in the two direc- 
tions of the line of collision, we have the maxima in lateral] 
directions, which are not at right angles to this line. The 

* This name was suggested by Prof. E. H. Barton, D.S8c., F.R.S., 
writing in the ‘Science Abstracts,’ p. 399, Sept. 1916. 
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directions in which the intensity is a minimum are: also 
asymmetrically situated. 

For the explanation of these and other results, we have 
naturally to turn to the mathematical theory which rests 
upon the fact that the sound is due to the wave-motion set 
up in the fluid by the sudden reversal of the motion of the 
spheres. Let a and 0 be the radii of the two spheres and 
p, and p, be their densities. Then the masses of the spheres 

are ST pat and smp,b° respectively. Denoting the changes 

in velocity which the balls undergo as a result of the impact 
by U, and U, respectively, by the principle of constant 

momentum we have U_,/U,=p,0?/p,a?. The ratio Ue ras 
Us 

depends only on the diameters and the densities of the 
spheres, while, of course, the actual values of U, and U, 

would depend on the relative velocity before impact and the 
coefficient of restitution. It is obvious that if we leave out 
of account the duration of impact, that is, regard the changes 
in velocity of the spheres as taking place practically instan- 
taneously, the character and the ratio of the intensities of 
the sound produced in different directions would be com- 
pletely determined by the sizes of the spheres and the ratio 
of their changes of velocity, that is, by their diameters and 
their masses ; when the spheres are of the same material, 
the nature of the motion in the fluid set up by the impact 
would depend only on the radii of the spheres. 

The complete mathematical problem of finding the nature 
of the fluid motion set up by the reversal of the motion of 
the spheres, taking the finite duration of impact into account, 
would appear to be of great difficulty. In my first paper, I 
have shown that when a single sphere of radius a undergoes 
an instantaneous change of velocity U, the wave-motion 
produced is given by the expression 

= 3 _(e¢é+a-—r 

v= — Me < (s ee (A4e=" im) Joos GF (1) 

which indicates that it is of the damped harmonic type, 
confined to a small region near the front of the advancing 
wave. The wave-motion set up in the case of two spheres 
in contact assumed to undergo instantaneous changes of 
velocity would be of a more complicated type. In order to 
obtain a general idea of the results to be expected, particu- 
larly as to the intensity and character of the sound in 

H 2 
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different directions, we may consider the analogous acoustical 
problem of two rigid spheres nearly in contact, which execute 
small oscillations to and fro on the line of their centres. 
This problem may be mathematically formulated and approx- 
imately solved in the following manner :— 

Given prescribed vibrations 

U, cos 0, . e** and U, cos @,. e%# 

on the surfaces of two spheres of radii a and 6 nearly in 
contact, it is required to determine the velocity potential of 
the wave-motion started and the distribution of intensities 
round the spheres, where 6, and @, are the angles measured 
at the centres A and B of the two spheres in opposite senses 
from the line joining the centres. 

Supposing, now, that an imaginary. sphere is constructed 
which is of just sufficient radius to envelop the two actual 
spheres (touching them externally), it is possible from a 
consideration of the nature of the motion that takes place in 
the immediate neighbourhood of the two spheres, to deter- 
mine the aerial vibration on the surface of the imaginary 
sphere which would produce on the external atmosphere the 
same effect as the vibrations on the surfaces of the real 
spheres A and B. When the equivalent vibration on the 
surface of the enveloping sphere has been obtained, we can, 
by the use of the well-known solution for a single sphere, at 
once determine the wave-motion at any external point. 

The radius of the enveloping sphere is evidently a+), 
and its centre is at a point CO, such that BC=a and CA=b. 

If the point C be taken as origin, and if the equivalent 
vibration on the surface of the enveloping sphere be expressed 
by the series 

BAP. (cos 6), 1s). ) 
nn nN 

where A,’s are known constants, the velocity potential of 
the wave-motion is given by 

mt asl) (cos 0) 

Wr F Gk.arp oe” . (3) 

where 

PNMUE ON ros) 6 [hae (Seal Le aR Cer 
Foti) 1 ot oraaaae i 2.4. (ikr)? OY 

| pay Rg Sei 

VY Ckr)=(1+tkr)f (thr) —tkr f,'(ikr). | a 
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To obtain the equivalent vibrations on the surface of the 
imaginary enveloping sphere, we shall regard the small 
quantity of fluid enclosed by this sphere as ; practically i in- 
compressible, and use the well-known solution by the method 
“ successive images for two spheres in an incompressible 
uid. 
We know that the velocity potential due to such a system 

of two spheres in an incompressible fluid can be expressed 
in the form 

Be Ui gry ai) heen iee ce 2) CO) 

where ¢ and @¢’ are to be determined by the conditions 

V7p=0, Vg" =0, 
Sg =—cos@,, and ae =0, when 7,=a, 

1 

of =—cos@,, and oF =(0, when 7,=8, 
2 2 

11, 7, being radii vectores drawn from A and B. 
When ¢ and @¢’ have been determined so as to satisfy 

these conditions, the equivalent vibrations on the surface of 
the imaginary sphere can be taken to be very approximately 
given by the ase 7 

—[U. Ce ool ae SM BOE ie 
— ete. 

The functions ¢ and ¢', as is well known, can be deter- 
mined by the method of successive images, and if the 
expressions for the velocity potential due to these images be 
all transferred to the coordinates r, 0 referred to the centre 
C of the enveloping sphere, we easily obtain 

Bb b° b? 
a AP Reta. De: Ak ON 

26=4 E (a+b)° a5 (a+ 26)° (2a + 2b)° 

Poy Rive Jae? 
(a aby ” 

F,_P@+ab—8) , B(20—a") _ V'Ga? + ab— 28") 
+2a k ha Ba + (a +2)! Cs 

4 O(Bb'—2a") _ 7] Ps (cos 8) 
Besa en coe 
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+30 [pV +H) |, VON 0) Re aa 
(a +b)’ (a+ 26)’ (2a+ 2b) 

b*(3b?—2a")* _ ie (cos 0) 

(2a 4 3by oa 

stat [PLE LADVY | HEM —a! _ B80 tab 20) 
(a+ 6) ~ (a+ 26)* (Qa + 2by8 

‘ar 
(2a +30) , 

+é&., . . . | 
and 

ola elie Oa Ra 
hex ak @+aj'* O+2a)  (2b+ 2a) 

Mone 1 et 
(2b + 3a)’ ae y? 

4 OF [a— a’(b*+ab—a’) , a'(2a°—b*) _ a*(26°+ab—2a’) 
— (6+a)* (6+ 2a)4 (26 + 2a)* 

a’ (3a?— 267) P, (cos @) 

(26+4+3a)? | Y 

_ 33° [a a’(b’+ab—a’)? a'(2a?— 67)? a’(26?+ ab— 2a’)? 
(6+a)’ (6+ 2a)’ (2b + 2a)’ 

a’(3a?— 267)? P; (cos 8) 
(204-3) ] 

4p [ ; e(?+ab—a*)® | aX(2a°—6*)*? a*(26?+ab—207)* 
(6+a)® (6+ 2a)° (26 + 2a)° 

a®(3a?— 2b7)8 ] P, (cos @) 
(264-30) J ee 

— &e., «< » « = - nnn 

the law of formation of the series within the brackets being 
obvious. 

Coming now to the present problem of two unequal spheres 
of the same material, let us take 

a=2 inches and 6=1 inch. 

Since the changes of velocities of the two spheres are in- 
versely proportional to their masses, we must have 

U, = 8U,,. 
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Substituting the values for a and 8, we easily find that 

1 1 
2p=28| (1+ 5 ae stip t-. ) 

Pew t P, (cos @) 

DEY ts 2. | 1- (J+ eto + 55: +---) 

ee = 9.0 P, (cos @) 
= (53 so 7 isn To: = ih — 

pa Gees 2S ) pt ptigt- 
a we 8 P3 (cos 8) 

(Stet gt --)) Oa 
AS 3 3 A3 

+4.0(1- (4 ot tit.) Page 9°" 198 
= fe BN P, (cos @) 

ie (7 petit te aut 
HG. ee tne ee) 

29 = -2| (+5 53 a :) 

1 7] Bi (cos @) 

“Gobo 7? 

42. 2| (Gi + a +a ee.) 
4 1 NE: Age s (4 tat art ait. JAS Z 

ge Te a £3? 

ne [(s+ hepa ay - -) 
i an s P; Ps (cos 8) 8) 
(5 aang? ) 

. ae # a 

+4. 2[ (5+ aa 

Be ata lO. 1a. \ 12: (cos 8) 

H(atat ge tipt eae. 
pear e N22 TO Fe) AMT (EO) 
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Summing the series, we easily find that the vibration on the 
surface of the enveloping sphere 

a u,[ 22 rr 

r=8 inches 

4 
ae U.| 496 P; (cos @) + 3°180 Pz (cos 0) 

— 1-708 P; (cos 6) + 2°600 P, (cos 8) + By a: (11) 

We have seen that when the vibration on the surface of 
the enveloping sphere is 

> A,P. (cos 0) . et, 

the velocity potential of the wave-disturbance is 

(a+b)? ix(ct-r+a+s) .AnP, (cos 8) |. 
SS ee —__—__——— f,, kr), 

¥ a F(ik.aton”? 
Now when r is large, f,(ikr)=1, so that the factor on which 
the relative intensities in various directions depend is 

P,, (cos 0) 
Ae epee 

F,(tk a+b) 

Thus if we put this quantity = F +7G, the intensity of the 
vibrations in various directions is measured by F?+ G?. 

The distribution of intensities in different directions round 
the spheres will be influenced to a considerable extent by 
the value of the wave-length chosen. If we take k(a+6)=2, 
the wave-length is 3a inches, and if we take k(a+6)=3, 
the wave-length is 27 inches. From the expression (1) for 
the wave-motion produced by a single sphere undergoing an 
instantaneous change of velocity, it is seen that the wave- 
length to be chosen is of the same order as the circumference 
of the sphere. From this, it appears that for a system of 
two spheres whose radii are 1 inch and 2 inches respectively, 
the wave-length to be chosen should be some value inter- 
mediate between 27 and 47, probably nearer 2m than 47; 
for, in the actual case of impact, the smaller ball which 
would undergo by far the greater change in velocity would 
probably influence the character of the motion to a greater 
extent than the larger sphere. At the same time, it must 
not be forgotten that the analogy between the cases of 
impact and of periodic motion cannot be pushed very far, 
inasmuch as the fluid motion due to impact is undoubtedly 
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of different character in different directions, and not all 
throughout the same as in the periodic case. 

Now taking k(a+6)=2, we find (neglecting a constant 
factor) 

F=:0992 P, (cos @) +°2840 P, (cos €)—:0354 P3 (cos @) 

—°0146 P, (cos 0) + &c., 

G='0496 P; (cos #)—°4040 P, (cos 8) —:0177 P (cos @) 

+°0315 P, (cos 8) + &e. , (12) 

The values of F and G for different directions have been 
calculated and are shown in the following table :— 

ngl 
aa F X const. 

0 +3829000 

10 +325908 

20 +297435 

30 +251537 

40 +189095 

50 +114215 

60 + 33341 

70 — 43647 

80 —107073 

90 — 147250 

100 — 158815 

110 — 140329 

120 — 95149 

130 — 34099 

140 + 35677 

150 + 102819 

160 + 157869 

170 +192648 

180 +201000 

TABLE I. 

G X eonst. 

— 338000 
— 326525 
—~273545 
— 2143387 
—114659 
— 24167 
+ 74407 
4.155306 
4.205212 
4213625 
+178920 
+106238 
+ 8675 
— 99267 
~ 202159 
289237 
— 353605 
—392229 
— 404000 

(E?+G?) x const. 

223144 

212552 

162738 

109300 

48946 

13572 

6565 

25961 

53574 

67405 

57322 

30836 

9106 

10957 

42100 

94130 

150280 

190913 

203617 

Now taking k(a+6)=3, we find (neglecting a constant 
factor) 

F= +105 P; (cos @)+1°060 P, (cos @)+°016 P3 (cos 6) 

— ‘281 P, (cos €) —&c. 

= — 122 P, (cos #)+ +186 P; (cos 0) —-024 P, (cos @) 

— &. . AES) 
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The values in different directions have been calculated 
from these expressions and are shown in the following 
table :-— 

TABLE IT. 

Angles F by is 
(in degrees). x const. G X const. (F?+G?) x const. 

0 +900000 + 38000 811444 

10 +890608 + 28804 794265 

20 + 849305 — 23890 720805 

30 +752167 — 45754 567620 

40 +572469 — 90446 335284 

50 +309902 — 1238998 111476 

60 — 5783 — 1353846 18261 

70 —313014 — 118446 111893 

80 — 542728 — 73554 300178 

90 — 635375 — 9000 403306 

100 — 571364 + 60786 329762 

110 — 371618 + 118638 154545 

120 — 96799 +149218 31610 

130 +184472 +144494 54592 

140 +412409 +105758 180980 

150 +559907 + 44650 315625 

160 +630625 — 21410 398602 

170 +654606 — 69748 433925 

180 +658000 — 88000 440708 

The values of F?+ G? shown in Tables I. and II., have 
been plotted in polar coordinates in figs. 3 and 4 (Pl. IV.). 
It is seen that in both cases the intensity in the direction of 
the larger ball is greater than in the direction of the smaller 
ball. The asymmetry is more marked when k(a+6) has 
the larger value. 

The intensity of the sound in different directions due to 
the impact of two spheres of wood of diameters 3 inches and 
14 inches respectively has been measured with the ballistic 
phonometer and is shown in fig. 5. It is seen that this 
curve is intermediate in form between those shown in fig. 3 
and fig. 4, exactly as anticipated. The agreement between 
theory and experiment is thus very striking in this case. 
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3. Two spheres of the same drameter but of 
diferent materials. 

We have seen in the preceding section that in the expres- 
sions for F and G for two spheres of the same material but 
of unequal diameters, the terms containing the zonal harmonic 
of the second order Ps (cos @) usually preponderate, and that 
the intensity diagram is, accordingly, a curve which consists 
of four loops. A different result is obtained in the case of 
two spheres of the same diameter but of markedly unequal 
densities. The zonal harmonic of the first order preponde- 
rates in this case, and the intensity diagram is a curve 
consisting of only two loops. To obtain this result theore- 
tically, we have to proceed on exactly the same lines as in 
the preceding pages. 

Taking a=1 inch and 6=1 inch, we easily find from the 
expressions (7) and (8) that 

1 1coe UN SO P, (cos 8) 

1 : 1 P, (cos @) 
+2 aoe i4 avd aL ela 

[1-5 94 Se 5! eee ] 

Bia dk 1aee Bi! P3 (cos @ 
+3[1 - =| ee) eta pts 

7? 

+4[l-st+e—ptac i 

Data? FAO PD? y 

EY UC irae we taiss Ue snes UA.) 

and 

is |) eee ae) 
a. E pega 4st eo oh ange 

1 ] 1 1 wets 0) 

+ [1+ x gto | 
es [1- £ i 1 1 3 (1 cae, 0) 

Di =F Say AP 1s ee =? 

Doe a Gana ices P, (cos @) 
+[l- n+ ppt RR ei 

— &e. . (15) 
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Summing the series, we find that the vibrations on the 
surface of the enveloping sphere, namely 

| Ue eh +Us sa) oa 
or r=2 inches 

can be expressed in the form 

al (U,—U,) x °2254 P,(cos 0) + (U_+ U,) x 3550 P, (cos 8) 

+ (U,—U,) x 3645 P;(cos @) + (U,+ U,) x °3080 P,(cos 8) 

+. (U,U,) x"2320 Pe(eos 0) + &e. le 

If the ball of radius 6 is four times heavier than the one 
of radius a, we have 

U, = 4U,. 

So that the vibration on the surface of the enveloping sphere 
is proportional to the expression 

°6762 P,(cos 6) + 1°7750 P.(cos 8) + 1:0935 P3(cos 8) 

+ 1:5400 Py(cos @) +6975 P;(cos @) + &e. 

Now taking k(a+6)=1, which will give a wave-length 
equal to the circumference of the enveloping sphere, we get 
(neglecting a constant factor) 

F= 13524 P,(cos 6)—-04987 P.(cos 0) —-0074 P;(cos 8) 

+:°0007 P, (cos 8)+ &e. 

G=— °0676 P;(cos 0)—-:0798 P.(cos 6) +0047 P3(cos 6) 

+°0012 P,(cos@)— &. . . (17) 

The values of F and G, and of F?+ G? in different directions 
obtained from the preceding expressions are shown in 
Table ITI. 

The values of (F?+G’*) shown in Table III. have been 
plotted in polar coordinates and are shown in fig. 6. It is 
seen that the maximum intensity in the direction of the 
heavier ball is greater than that in the direction of the 
lighter one. 

The experimental curve of intensity of sound due to 
impact of a sphere of wood, diameter 2+ inches, with a billiard 
ball of nearly the same size is shown in fig. 7. Itis found 
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that the directions of minimum intensity are not quite in the 
plane perpendicular to the line of impact, being nearer the 
side of the lighter ball. 

TaseE III. 

(a dees). F x const. G xX const. (F?+G?) x const. 

0 + 786000 — 1415000 2620021 

10 + 793732 — 1374897 2521061 

20 + 813819 — 1256037 2240132 

30 + 835068 — 1068615 1839986 

40 + 845629 — 826059 1397992 

50 + 828667 — 549652 989741 

60 + 768690 — 262257 660005 

70 + 654594 + 7901 427780 

80 + 482433 + 237049 288493 

90 + 252125 + 403500 225913 

100 + 228907 + 495515 297466 

110 — 331298 + 509107 368642 

120 — 647986 + 454821 626929 

130 — 954405 + 347884 1031220 

140 — 1229335 + 211923 1555385 

150 — 1458496 + 71667 2130948 

160 — 1629521 — 47667 2655850 

170 — 1734880 — 128811 3026866 

180 — 1770000 — 157000 3157549 

A result of some importance indicated by theory is that 
when one of the spheres is much heavier than the other, 
replacing the former by a still heavier sphere of the same 
diameter should not result in any important alteration in 
the distribution of the intensity of sound in different direc- 
tions due to impact. This is clear from expression (16). 
For when U, is much larger than U,, any diminution in the 
value of U, should not appreciably affect the value of the 
expression. ‘This indication of theory is in agreement with 
experiment. ‘Several series of measurements have been 
made with various pairs of balls of the same size but of 
different densities, e. 9., wood and marble, wood and iron, 
billiard ball and-iron ball, and so forth. Generally, similar 
results are obtained in all cases. It was noticed also that 
the form of the intensity distribution as shown by the ballistic 
phonometer was not altogether independent of the thickness 
of the mica disk used in the instrument. This is not sur- 
prising, as the behaviour of the mica disk before the pointer 
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attached to it ceases to touch the mirror of the indicator 
would no doubt depend, to some extent, on the relation 
between its natural frequency and the frequency of the 
sound-waves set up by the impact. The best results were 
obtained with a disk neither so thick as to be relatively 
insensitive nor so thin as to remain with its pointer in contact 
with the indicator longer than absolutely necessary. 

4, The general case of spheres of any diameter 
and density. 

When the impinging spheres are both of different diameter 
and of different density, the result generally obtained is that 
the sound is a maximum on the line of impact in either 
direction, and a minimum which approaches zero in direc- 
tions asymmetrically situated with reference thereto. 
Generally speaking, no maxima in lateral directions are 
noticed, that is, the curve consists of two nearly closed loops. 
The difference of the intensity of the sound in the two 
directions of the line of impact may sometimes he very con- 
siderable. As a typical case, the results obtained by the 
impact of a sphere of wood 3 inches in diameter with a brass 
sphere only 12 inch in diameter are shown in fig. 8. It is 
observed that the sound due to impact is actually of greater 
intensity on the side of the small brass ball. As a matter 
of fact, the result generally obtained is that the intensity is 
greater on the side of the ball of the denser material even if 
its diameter be the smaller. 

The mathematical treatment of the general case is precisely 
on the same lines as in the two preceding sections. It is 
found in agreement with the experimental result that in 
practically all cases in which both the densities and the 
diameters are different, the zonal harmonic of the first 
order is of importance and that the intensity curve consists 
of two nearly closed loops, as in the case of two spheres of 
the same diameter but of different density. 

5. Summary and Conclusion. 

The investigation of the origin and characteristics of the 
sound due to the direct impact of two similar solid spheres 
which was described in the Phil. Mag. for July, 1916, has 
been extended in the present paper to the cases in which the 
impinging spheres are not both of the same diameter or 
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material. The relative intensities of the sound in different 
directions have been measured by the aid of the ballistic 
phonometer, and in order to exhibit the results in an effective 
manner, they have been plotted in polar coordinates, the 
point at which the spheres impinge being taken as the origin, 
and the line of collision as the axis of 2 As might be ex- 
pected, the curves thus drawn show marked asymmetry in 
respect of the plane perpendicular to the line of impact. 
A detailed mathematical discussion of the nature of the 

results to be expected is possible by considering the analogous 
case of two rigid spheres nearly in contact which vibrate 
bodily along their line of centres. By choosing an appro- 
priate wave-length for the resulting motion, intensity curves 
similar to those found experimentally for the case of impact 
are arrived at. A further confirmation is thus obtained of 
the hypothesis regarding the origin of the sound suggested 
by the work of Hertz and of Lord Rayleigh on the theory of 
elastic impact. 

When the impinging spheres, though not equal in size, are 
of the same or nearly the same density, the intensity-curve 
drawn for the plane of observation shows the sound to be a 
maximum along the line of impact in either direction, and 
also along two directions making equal acute angles with 
this line. The sound is a minimum along four directions in 
the plane. In practically all other cases, that is when the 
spheres differ considerably either in density alone, or both 
in diameter and density, the intensity is found to be a 
maximum along the line of impact in either direction, and 
to be a minimum along directions which are nearly but not 
quite perpendicular to the line of impact. The form of the 

intensity curve is practically determined by the diameters 
and the masses of the spheres. 

The investigation was carried out in the Physical Labora- 
tory of the Indian Association for the Cultivation of Science. 
It is hoped when a suitable opportunity arises to study also 
the case of oblique impact. The writer has much pleasure 
in acknowledging the helpful interest taken by Prof. C. V. 
Raman in the progress of the work described in the present 
paper. 

Calcutta, 
15th June, 1917. 
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XI. On the Asymmetry of the Illumination - Curves in 
Oblique Diffraction. By Sistz Kumar Mirra, M.Se., 
Sir Rashbehary Ghosh Research Scholar in the University 
of Calcutta *. 

[Plate V.| 

Introduction. 

N the Phil. Mag. for May 1911, C. V. Raman has given 
At the results of a photometric study of the unsymmetrical 
diffraction-bands due to an obliquely held rectangular re- 
flecting surface previously observed by himt. The measure- 
ments showed a very marked asymmetry in the distribution 
of intensity in the diffraction pattern, the theoretical expla- 
nation of which is discussed in the papers quoted. The 
following were the principal conclusions arrived at by Raman 
as the result of the quantitative experimental study of the 
case :— 

(a) The illumination at the points of minimum intensity 
in the diffraction pattern is zero at all angles of incidence, 
and the positions of the minima are accurately given by the 
formula | 

d=+7, +20, +37, &e., ; 

where 6= a (sin i—sin @), a being the width of the aperture, 

»X the wave-length, and 7, @ the angles of incidence and 
diffraction respectively ; the fringes are wider on the side 
on which @>1: and their number is limited on that side, as 0 

cannot be greater than a 

(b) The formula of the usual type (I=sin? 6/6?) for the 
illumination in the pattern fails to represent the observed 
intensity-curves at oblique incidences except in regard to 
the position of the minima (6= +77, +27, &.). The inten- 
sities at corresponding points on either side of the central 
fringe for which the values of 6 are numerically the same 
are not equal. 

c) The observed distribution of intensity was found to fit 
in with the theoretical formula, if the latter is multiplied by 
a factor proportional to the square of the cosine of the 

* Communicated by Prof. C. V. Raman. 
+ C. V. Raman, M.A., “On the Unsymmetrical Diffraction Bands due 

to a Rectangular Aperture,” Phil. Mag. Nov. 1906, See also Phil, Mag. 
Jan. 1909. 
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obliquity, which, of course, is not the same at all points in 
the diffraction pattern. In other words, the ordinates of the 
illumination curve were found to be proportional to the ex- 
pression cos?@ sin? 6/6”. 

The question arises whether these results, practically those 
indicated in (6) and (c) above, are peculiar to the case of a 
surface of rectangular form, or whether similar phenomena 
might be expected with other forms of surface as well. 
The cases which it seemed of particular interest to examine 
are tiose in which the reflecting surface is not a single 
individual area but consists of two, three, or more parallel 
elements lying in the same plane. A satisfactory surface of 
this kind which can be used at very oblique incidences may 
be prepared by etching out deep grooves on the optically 
plane surface of a thick plate of glass with hydrofluoric acid, 
the edges of the reflecting strips left on the surface being 
subsequently ground so as to be sharp, straight, and parallel. 
I have prepared several such surfaces containing two and 
three equidistant reflecting strips respectively. By placing 
one of these on the table of a spectrometer, the diffraction 
pattern produced by reflexion at very oblique incidences 
may be readily observed through the telescope of the instru- 
ment. The present paper describes the results of the 
quantitative study of the phenomena thus obtained. Inci- 
dentally the opportunity has also been taken of testing the 
results obtained by Raman for the case of a single’ aperture 
using improved optical and photographic appliances. The 
experiments and determinations have throughout been made 
using monochromatic light. This was secured by illuminat- 
ing the slit of the spectrometer with light of a definite 
wave-length isolated by a monochromator from sunlight or 
are light. 

Unsymmetrical, Interference-fringes due to two 
parallel apertures. 

Fig. I (Pl. V.) reproduces a photograph of the diffraction 
pattern due to a surface containing two reflecting elements 
each of width 0°48 cm., and 3°60 cm. apart. The direct 
image of the slit of the spectrometer also appears in the 
figures to the right of the diffraction-pattern. The photo- 
graph is reproduced from a dense negative taken to show 
the perfect blackness of the minima of illumination, and the 
progressive increase (from left to right) in the width of the 
interference-fringes of the light diffracted by the two re- 
flecting elements. It was obtained by replacing the telescope 

Phil. Mag. 8. 6. Vol. 35. No. 205. Jan. 1918: I 
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of the spectrometer by a camera with a lens of long focus 
(176cm.). Figs. I, I1],and IV reproduce three photographs 
taken at three different angles of incidence, the reflecting 
strips in this case being 0°754 cm. wide and 1:446 cm. 
apart. In all the figures, the central fringe of the pattern 
is indicated by a small cross x. The asymmetry of the 
luminosity curve will be evident on comparing the brightness 
of the corresponding bands on either side of the central 
fringe ; for instance, the second band on the right and the 
second band on the left in figs. IT and III, or the first band 
on the right and the first band on the left in fig. IV. , 

The positions of the interference minima in the pattern 
are given by the formula of the usual type 

T 30 5 
a =e + _— — kK Orgs) Ey) Eig ae 

where 6=(a+0) (sin z—sin @)/X, a being the width of 
each of the apertures, 6 their distance apart, and 2, 0,2r 
having their usual significance. To test whether the formula 
holds good at the oblique incidences used, the negatives 
were measured under a travelling microscope. In photo- 
graph I, the distances between the successive interference 
minima were determined to find whether the relations 

sin 6,—sin 0. = sin 0.—sin 0; = sin 0;— sin 04, &e., 

indicated by the formula were valid. The results are shown 
in Table I. 

TABLE I, 

a=048 cm. 6 = 3°60 cm. 

Minima on the |Observed value of| Minima on the | Observed value of 
; right of the sin 0,41—sin 8, left of the sin @,—sin On+41 
centra x constant. central fringe. < constant. 

sin 6,—sin 6, 0°712 sin 6, —sin @, 0°705 

sin 0,—sin 0, 0:703 sin @,—sin 0, 0-710 

sin 6,—sin 0, 0711 sin 6,—sin @, 0-711 

sin 9,—sin 0, 0-711 | sin @,—sin 6, 0°710 

histecarat: Weipa CM voMteesets sin 0,—sin 0, 0713 

EE —  — er 
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For photographs II, III, and IV, the actual values of 0 
for the interference minima were calculated from the known 
constants a, b, 7, X and compared with the observed values. 
These are shown in Tables II., III., and IV. 

TABLE II. 

a=0°754 em. b=1:446 cm. A="0000435 cm. 
4=89° 15'-27. 

Calculated diffraction | Observed diffraction 
Interference Minima. angle, 90° —@ angle, 90°—@ 

(in minutes). (in minutes). 

2nd on the right. 35/-98 | 3585 

BR hiss oe Al! 97 | 41-83 

| 
Wat 0 3, lett 47'°-21 46':95 

| 
51'-92 | 52-05 

64:02 | 63'°95 

TasBueE III. 

a=0°'754cem. b6=1:°446 cm. 2A="0000435 cm. 
Oo 22-1. 

Interference Minima. res oe ee the 

2nd on the right. . 26'°15 26'-12 

SR i ne 9s + 33'°88 33'°85 

ist 3104).) Jere: 40'-25 40'09 

A207, A a 45’-69 

5th a9, iss ” 58’90 
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TaBLeE LV. 

a='754em. b=1:446 cm. r=-0000435 cm. 
i= 89° 29'-90. 

Interference Minima. | aaa | pea | 

Ist on the right. 25/72 25'-62 

1st on the left, | Ste Mar (lr) 33'°45 = 

Briel | 40'-08 39/94 | 

bk Aa | 54'-94 54/96 

The Asymmetry of the Illumination-Curves. 

As remarked above, there is a very marked difference in 
the luminosity of the corresponding bands on either side of 
the central fringe of the pattern due to the reflecting surface 
ef two elements. Similar effects are also noticeable when 
the reflecting surface consists of three elements. Figs. V 
and VI in the Plate reproduce two photographs obtained 
with a reflecting surface consisting of three elements. The 
difference between the intensities of the 2nd principal 
maximum on either side of the central one is very evident 
in the reproductions and might be made out even in respect 
of the secondary maxima on either side. This asymmetry 
demands an explanation. As is shown by the measurements. 
given in Tables I. to IV., the positions of the minima of 
illumination are in good agreement with those calculated 
from the formula of the usual type, which are obtained on 
the assumption that each of the elements into which the 
reflecting surface may be divided diffracts light strictly 
in proportion to its area, and that the phase and intensity of 
the disturbance incident on the surface are the same as when 
the waves travel undisturbed. Further, the intensities at 
the points ef minimum illumination are shown by observa- 
tion and by the photographs to be zero, in agreement with 
the results indicated by these formule. On the other hand, 
the difference in the intensity at corresponding points of the 
pattern on either side of the central fringe remains unex- 
plained according to such formule unless regarded as an 
obliquity effect. 
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A series of cemparisons of the intensities of corresponding 
bands on the two sides of the pattern has been made for the 
cases in which the reflecting surface consists of one, two, 
and three reflecting elements respectively, for various angles 
of incidence. For this purpose, I have used a rotating- 
sector photometer of the Abney type supplied by Messrs. 
Adam Hilger, in which the free disk, which can be adjusted 
by handle while in rotation, is smaller in radius than the 
fixed disk. The sectors when in rotation thus present two 
annuli of different intensities, the ratio of which can be 
adjusted at pleasure by moving the handle of the instrument. 
The disk of the photometer is placed at the focal plane of 
the observing telescope, so that the diffraction pattern can 
be seen through it with an eyepiece, the fringes on the 
brighter side being observed through the inner annulus of 
the disk, and those on the fainter side through the outer 
annulus. To enable the intensities at corresponding points 
on the two sides of the pattern to be compared, a screen 
with two vertical slits is interposed immediately in front of 
the photometric disk so as to cut off everything except the 
regions under observation, which are then adjusted to equality 
of brightness by moving the handle of the photometer. 
Several readings can be taken in succession and their 
average struck. The diffraction angles @ and 6’ of the two 
bands under comparison may then be measured under a 
micrometer eyepiece. Tables V., VI., and VII. show the 
observed ratios of the illumination and those calculated on 
the assumption that the formula for illumination includes a 
factor proportional to the square of the cosine of the obli- 
quity. It is seen that the agreement is good except when 
the ratio is so large that it cannot be measured accurately, 
owing to the near approach of the fainter band towards the 
direct image of the slit. 

- Taste V. 
Single Reflecting Surface, width 0:90 cm. 

Ratio of intensity of the first band on the right and 
the first band on the left. 

: Observed ratio Calculated ratio 
Se of illumination. cos? 0/cos? 6’. 

Ege 49 | 1:80 | 1-78 
88° 53’ | 231 | 2°46 
88° 56’ 2°81 | 2°89 

| 88° 4’ ) 4:09 4°21 
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Tasie VI. 

Reflexion grating of two elements. 
a=0°7384 em. b=1°446 cm. 

Ratio of the 1st maxima|Ratio of the 2nd maxim 
on the right and left. | on the right and left. 

Angle of Incidence. 
Observed. | Calculated.) Observed. | Calculated: 

89° 6’ 1°43 1-40 2:09 2:01 

89° 23 2:25 2-01 3:91 4:88 

89° 28’ OL 2°44. 7-50 11°06 

TABLE VII. 

Reflexion grating of three elements. 
a=0°'440 cm. 6=0°741 cm. 

Ratio of the 1st two Ratio of the 2nd two 
Principal Maxima on either | Principal Maxima on either 

Angle of Incidence. side of the central one. side of the central one. 

Observed. | Calculated. | Observed. | Calculated. 

88° 49' 148 | 148 1:83 1TH 
89° 5! 163 1-71 2-90 S15 

! ‘ .Qn more than 89° 27 2°65 2-87 x 100 eae 

Summary and Conclusion. 

1. The unsymmetrical interference fringes of the light 
obliquely diffracted by two parallel reflecting surfaces in 
the same plane have been observed and photographed. 

2. The illumination curve in the diffraction pattern (of 
the Fraunhofer class) due to an obliquely-held reflecting 
surface (which may consist of two or more separate parts in 
the same plane), is found to be markedly asymmetrical, 
corresponding points on either side of the central fringe 
being of very different intensities. As the positions of the 
points of minimum (i. e. zero) illumination are found to be 
in close agreement with those given by the formula of the 
usual type, the asymmetry of the illumination curve may be 
explained as due to the varying obliquity at different points 
in the diffraction pattern. Measurements of the ratio of the 
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intensities at corresponding points have been made with 
reflecting surfaces of rectangular form or consisting of either 
two or three elements in the same plane for various angles 
of incidence; the results show that the expression for the 
illumination at any point of the diffraction pattern contains 
a factor proportional to the square of the cosine of the obli- 
quity at such point. 

The experiments and observations described in the note 
were carried out in the Palit Laboratory of Physics. The 
writer hopes to carry out further work on the subject of 
oblique diffraction by various forms of aperture, and parti- 
cularly in regard to the positions of the points of maximum 
intensity in the pattern, which would no doubt differ from 
those given by the usual formule owing to the asymmetry 
of the illumination curves. 

Calcutta, 
8th June, 1917. 

XII. On the Two-Dimensional Motion of Infinite Liquid 
produced by the Translation or Rotation of a Contained 
Solid. By J. G. Leatuem, V.A., D.Sc., Fellow of 
St. John’s College, Cambridge *. 

+. ERIODIC conformal transformations—that is, trans- 
formations by which doubly connected regions in 

the plane of a variable z=x+1y, externally unbounded and 
bounded internally by a closed polygon or curve, may be 
represented conformally and repeatedly upon successive 
semi-infinite strips of width % in the half-plane 7>0 of a 
variable €=£+7y—have been studied by the present writer 
in a previous paper ft. It has there been shown how the 
knowledge of such a transformation for any particular curve 
makes possible the specification of a field of circulatory 
liquid flow (with or without logarithmic singularities) round 
a fixed solid body bounded by the curve. 

It is now proposed to show that such knowledge makes 
possible also the determination of the field of irrotational 
motion due to any translation or rotation of the same solid 
in surrounding infinite liquid. 

* Communicated by the Author. 
+ J. G. Leathem, “ On Periodic Conformal Curve-Factors and Corner- 

Factors,” Proc. Royal Irish Academy, vol. xxxiii. Sec. A, August 
1916. 
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2. The geometrical, or (z, €), relation may be either in the 
form 

2= (0), -) » see ee 

or in the differential form 

d= 6d. Vi 

where &({) is a periodic curve-factor of linear period \ and 
angular period 27. With this angular period itis necessary * 
that both @(€) and /(€) should, for » great and positive, 
tend to infinity like exp (Zan/X). In fact, G(€) is expan- 
sible in the form 

G(C) = exp (—2mC/r) . Scsexp (2rsif/rA), ~. (3) 

where s=0, 2, 3, 4..., and the coefficients may be complex. 
The periodicity of < makes it necessary + that c;=0. 

From integration of (3) it follows that 

z=f(€)=c+(ir/277) exp(— 26/2) . S{c,/(1—s) } exp (2arstgA), (4) 

where c is another complex constant f. 
It is also to be noticed that, if | (€)| =h, and if 

C,=K, exp (2y,), 

h?=exp (=") E + exp (— =o) 2kKoks cos( “Z + Y2 —n) 

6 6 
+ exp (- =) 2reoecos( ——* +7—1) 

8 8 
+exp(— ze) { 2eqeacos( ==" +u-90) +e} ax - . (5) 

the terms containing ascending integral powers of 

exp (—2z7rn/2). 

FUE ORS 08 
t Lic. § 4. 
t The problem of obtaining a transformation of the type of formula (4), 

so that a given closed curve shall correspond to n=0, is the same as that 
of the parametric representation of the given curve by a formula of the 
type 

a-+i=mexp (—7¢)+p + IS p eX (2s¢), 

where ¢ is a real parameter, m and the p’s are complex constants, and s 
takes positive integral values. 

It is to be noted that a formula of this type need not represent a curve 
free from nodes unless the constants are suitably restricted. 
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It is understood that the boundary in the z plane is the 
locus corresponding to 7=0. 

3. Field of flow due to translation of the boundary.—lt 
the boundary have a velocity V in a direction making an 
angle w with the axis of 2, the superposition on the whole 
system of such uniform velocity as brings the boundary to 
rest gives an irrotational fluid motion which has zero normal 
velocity at the boundary and tends, for z infinite, to flow V 
in the direction w+. If this motion have velocity poten- 
tial @ and stream-function w, so defined that the velocity is 
the upward gradient of ¢, and if w=¢+iy, w must tend, 
for z infinite, to the form 

—Vzexp(—im)+const., . . . . (6) 

or, in terms of €, 

— Vxo(tr/27) expi(yo—w—27G/rA). . « (7) 

Now if 
w=—(V«A/7) sin (27g/A—yotpu), - ~ (8) 

this tends, for n—>+, to the form (7) ; and as 

= — (Vx A/7) cos (27E/A—y+ ») sinh (27/2), 

it is clear that is zero along the boundary 7=0. The 
corresponding form of @ shows that there is no circulation 
round the boundary ; and w is free from infinities in the 
relevant region. 

Hence formula (8) specifies that irrotational motion 
past the fixed boundary whose limit form, at indefinitely 
great distance, is the assigned uniform flow. 

4. The impulse of ¢he motion due to translation.--Though 
modern speculation tends to regard wave-motion as the 
prependerating factor in suction and other inertia pheno- 
mena of floating bodies, it can hardly be doubted that, in 
the case of a submarine at least, the ordinary inertia coeffi- 
cients measure approximately the resistance to quick changes 
of velocity. Thus the evaluation of the impulse (X, Y) of 
the combined motion of solid and fluid, when the solid has 
translatory motion, is of interest. 

If an approximation to w for | z| great, closer than that 
afforded by formula (6), be 

w=—Vzexp(—i)+C+D/z,. . . (6a) 
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where © and D are complex constants, it is known * that 

X+1Y =—27pD, 

where p is the density of the liquid, and it is supposed that 
the mean density of the solid is also p. 

If formula (6a) be expressed in terms of € by means of 
formula (4), it yields the approximation 

in ; 2 
w= —~Veo(5~ Jexpi(qo—p— “a +C' 

yy : 2 hae j + {Ves exp (yeu) + D(5™ ) exp (—ino) boxp(2™ 
where C’ is a constant. On comparison of this with 
formula (8), it appears that the coefficient of exp (2a7¢/A) 
must equal Vxo(tA/27) expz(u—yo). Hence 

D = —(VA?/4r?) {x o" exp (14) —Koky EXP 1(Y¥o + Yo— pf) }, 

and therefore 

X+tY =(pVA*/2a7){ | ¢ |? exp (tu) —Coceexp (—tw)}. . (9) 

5. Field of flow due to rotation of the boundary.— When 
the boundary has a motion of rotation, the specification of 
the liquid motion presents greater difficulty ; the outline 
of the procedure is as follows. 

One motion is known which satisfies the proper condition 
at the moving boundary—namely, a rotation of the whole 
liquid, as if rigid, with the same angular velocity as the 
boundary. ‘This may be called the first motion. It is not 
the required motion because it is rotational, and because. it 
has infinite velocity at infinity. 

Another motion, which will be called the second motion, 
can be specified. This also is rotational, having the same 
vorticity at every point as the first motion; but at the 
boundary its normal velocity is zero. It has infinite velocity 
at infinity. 

If the second motion be subtracted from the first motion, 
the result is an irrotational motion whose normal velocity 
at the boundary is the same as that of the boundary itself. 
This may be called the difference motion. If the velocities 
of the first and second motions tend to equality at infinity in 
such manner that the difference motion tends to zero at 
infinity and has no circulation round the solid, the difference 

* J. G. Leathem, “Some Applications of Conformal Transformation 
to Problems in Hydrodynamics,” Phil. Trans. Roy. Soc., A, vol. cexy. 
1915, § 17. 
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motion satisfies all the requirements of the problem, and is 
the motion due to the rotation of the solid. 

6. The jirst motion.—The first motion will be taken to be 
a rotation, as if rigid, with angular velocity w, about the 
point z=« exp (iy). There is no loss of generality in this 
choice, as the substitution of another centre of rotation can 
always be effected by superposing a motion due to trans- 
lation of the boundary as explained in article 3. 

The first motion may be specified by its stream function Wy, 
namely 

Views ~KeRp (iy) | 2p. Wei atic) CLO} 

which is also expressible as a function of and 7. Another 
specification is by w,, v1, where 

m=dW/07, wu=—dW/os ~. . (11) 
these also being regarded as functions of and 7. It is to 
be noted that wu, and v, are not velocity components, but that 
the velocity components in the directions corresponding 
respectively to € and y increasing are u,/h and v,/h. 

From formula (4) it follows that 

r (ant 
&=KcCOSyt ee { Koe274/- sin (e-m) 

Ks 4 -on(e-Inid gin ( 27ST DE )} ee rok 4 sin ( 1 i Ve Hotes 

— 7 r 27/A 2a ) y=e« sin yt oe} woe “ cos(=ZE—yp 

2 ey, e cos a ae He Yel Cs 

so that, when 7 is great, 

—wh? oe Wi= ya | Keele" — Quote, 008 (= E+) 

— Koyk3e 270A Cos (es 13—0) + eve \ 5 (12) 

and 
ye 1 6 | uj= = } ReneS Kykge7271* cos (= E+s—Y0) “Fw. Me 

(13) 
OX . {4 

N= 5 { 2KoK, Sin (Ze+y-m) 

+5 eege20 sin (7 é+1-n) Te i } , (14) 

the terms being arranged in descending order of importance. 
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7. The second motion.—The second motion, a rotational 
motion having zero normal velocity at the boundary, is got 
by an imaging of the vortex distribution ; and the utility of 
the periodic conformal transformation consists in the fact 
that it makes this imaging process possible. 

The specification of the motion may be by a stream- 
function y, or by functions (us, v) equal to Ow,/dy, 
—Ov,/0&, the corresponding velocity components in the 
z plane being uo/h, vo/h. 3 

It is convenient, for a moment, to think of Wp as the 
stream-function of a motion in the € plane, of which (ug, v) 
would be the velocity. If such a motion, unhampered by 
any rigid boundary, were due to a line-vortex representing 
a circulation m, situated at €=¢', and periodically repeated 
at C+rr, (r=1, 2, 3,...), it is known * that the corre- 
sponding stream-function would be 

m a aT , 
—3, log sin 5 (6-0) |. 

When the line »=0 is a rigid boundary an image must be 
introduced at the point €={'', where €” is the complex 
conjugate to ¢', and the stream-function is 

sin 7 (6-8) /sin 7 E—£") 
Instead of single vortices a continuous periodic distri- 
bution of vorticity may be postulated over the whole area 
between »=0 and n=7, the former line being still a rigid 
boundary; and if m be replaced by o(&')dS', where d§'’ is 
an element of area and o a density of distribution, the 
stream-function is 

— x fot log 

EEL a 
2a °8 

sin  (6—£')/ sin =(¢—0") | dS’, (15) 

the area integral being taken over a rectangle of length ¢ 
and breadth 2X. 

If dS in the z plane and dW! in the ¢ plane be corre- 
sponding elements of area, 

dS = §h(2)}2d8' ; 
so, if the circulation round the contour of any area in the 
€ plane is to be equal to 2 times the corresponding area in 
the z plane, it is necessary that 

o(t') = 2wfh(E) 2... (16) 
* Proc. Royal Irish Academy, J. c. § 13. 
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The stream-function is then 

Ee tr sin 5 (6—£') | | 

v= | | {h(&') }? log A aaa dé'dn', (17) 
$ f 1a) 

Be sin 5 (S—¢ ) 

and this specifies a motion in the z plane which has vorticity o 
at all points for which t>7>0, and has the curve corre- 
sponding to 7=0 as a fixed boundary. 

The corresponding u, » functions are 

- 27 
Nears sinh — (n—7') 

1 = OH zs | Uys * 
Ce Pa cosh = (nn!) — cos" (E—-#') 

sinh = (9 +7) 

anes NS I : cosh —- (n + 1H) 608 (ons) 

i Pr sinh = (£—£') ot Ov:  @ 1) V2 : oa =| \ Se credence aos HoRaCT a ey). cosh (n—7) —e0s-—- (eo) 

sina (£—£) 
St) 

21 A ae I cosh 2 (1+ 9!) cos (E- £') 

It is to be noticed that if € is inside the area of integration 
the subjects of integration in (17), (18), and (19) have 
infinities at ¢’=€; these infinities, however, are not suffi- 
ciently powerful to make the integrals divergent. 

8. These formule may be checked by noting directly what 
conditions uw, v; must satisfy if they are to represent the kind 
of motion in the z plane which has been described in the 
previous article. 

& and 7 are curvilinear coordinates in the z plane, and the 
corresponding velocity components are U=u,/h and V=w,/h. 
The boundary condition V=0 or v,=0, when »=0, is clearly 
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satisfied. The equations of continuity and of vorticity are 
respectively 

fo) U 0 Vh) = ) VA) = 2260 = 26 
5E! ie oa hi a 3E! i 3a 0 

or Out , O% Ove Os _ Y12 
Ee ioe hii Of On mat 

when @ is inside the area of integration. 
The testing of these equalities involves the differentiation 

of the integrals of formule (18) and (19), and this cannot 
be done by the ordinary rule of differentiation under the 
sign of integration, since that would yield semi-convergent 
integrals. It is, however, easy to apply the method of 
differentiation explained in the Cambridge Tract on ‘ Volume 
and Surface Integrals used in Physies,’ articles 21 and 23, 
and it is then readily verified that «% and x satisfy both 
conditions. 
A single compact formula giving both u,; and x% is 

U+W= a | (e/)}2 | cot (6— ¢’)—cot - (f— | dé' dn’. (21) 

The integral on the right-hand side has the appearance of 
being a function of the complex variable €; but this appear- 
ance is deceptive, for if v and u were conjugate functions 
there would be no vorticity *. 

9. The next step that suggests itself is a passage to limits 
for ¢ infinitely great. This is feasible in the case of 2%, but 
the integral representing u; proves to be divergent. 

It will be shown that this can be remedied by adding to uw, 
before passage to limit, a suitable function of ¢ which does 
not involve & or 7. An addition to uw means simply the 
superposition of an irrotational motion with circulation 
round the fixed boundary. This will serve to cancel an 
undesired circulation at infinity in the motion defined by 
Uuzand v%. 

No corresponding addition to y need be or could be 
made. 

It being necessary to consider not only the convergence 
of the w and v integrals but also the forms to which these, 
regarded as functions of € and , tend for » very great and 
positive, it is important to notice two expansions of the 
function which appears in square brackets in formula (21). 

* On this point compare the writer’s note “On Functionality of a 
Complex Variable” in the ‘Mathematical Gazette,’ early in 1918. 
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If y'>n>0 

cots ($—£') — cob (6-8) 
By; [s+> exp ( 2571) cosh 4 fn —i(E— ey}, (22) 

and if 7>7'>0 

cot (f—£') cots (f—8") 

= — 415 sinh( 2") oxp 7 GigE) —n},- (23) 
where s=1, 2, 3,.... The formule can be verified by 
noticing that each side of each equality is equivalent to 

1 i! 
2i 2 mt 2 aed © aay rare eer) 

For 7' great the most important terms of {A(f')}? are 

4arn! Arré' 
{h(f’) |}? = Noe exp (FS2) + 2a COs = +%—1) 

; 9 / “6 / 

+ 2Kok3 EXP (=== ) cos (“ee +9590) + Ue Pe). 

the terms decreasing by successive negative powers of 
exp (277’/A); it is to be noted that the functions of & 
which multiply these exponentials are sums which may 
contain constant as well as harmonic terms. 

In studying the form of the subject of integration in 
formula (21), for great values of 7’, with a view to 
examining the divergence for t->«, the product of the 
series (22) and (24) may be used. Tor this purpose a term 
of the product may be ignored if its integral with respect 
to &' through a range J is zero, or if it contains as factor the 
exponential of a negative multiple of 7'/A. By one or other 
of these tests every term is negligible except one, namely, 

21K, exp (41rn'/2), 

which contributes to the integral, at its upper limit (after 
integration with respect to &’), 

(2x 9°A?/22r) exp (47rt/2). 
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Hence the subtraction of (ix ’@A/277) exp (47t/X) from 
the right-hand side of formula (21) gives an expression 
which has a definite limit for too. This justifies the 
definition 

an 2) 2 

0+ iu, =< Lim f ves oo 
AV t>o 2a 

+( ("a0 ¥ { cot= (£—£')—cot < (= ¢") bag dr} |. (25) 

10. Limiting form of the second motion at infinity——The 
formula (25) defines a motion which has all the characteristics 
required for the second motion, with the, as vet, possible 
exception of tending to the proper form at infinity. It 
is now necessary to inquire what are the limiting forms to 
which wz and v2, functions of £ and 7, tend with indefinite 
increase of 7. 

For this purpose the series-expansions of formule (22) 
and (23) may be used, each within the appropriate range 
of 7’. If [22], [23] be used as abbreviations for the 
expressions on the right-hand side of these formule, 

Or. tKy Amt/A pe: 12 Lge Vg tu, = 1 Lim me é =F {h(g )} [ 22] dé dn 

re n/ 0 

As the integral of formula (25) is absolutely convergent 
in respect of the infinity of the subject of integration 
at €'=6€, it is safe to use the series [22] and [23] right up 
to the critical value n'=7 which separates the ranges within 
which they are respectively valid. For {h(&’)}? the series 
of formula (24) is again employed. 

In taking the term-by-term products of the two series 
which are multiplied under the sign of integration, any 
resulting term may be passed over whose integral with 
respect to £&’ over a range X is zero. Thus a term of the 
the type 

cos { (2arm/2)(E' + «)} cos {(2arnfr) ('+ 8)} 

need not be considered unless m=n. Further, when only 
an approximation for 7 great is desired, an estimate of the 
importance of an exponential in 7’ and 7 is to be made 
on the hypothesis that 7 is very great but that 7’ is of 
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a higher order of greatness at one of the limits of inte- 
gration, while »'=7 at another of the limits. These con- 
siderations reduce the important terms in the equivalent 
of the square bracket in formula (26) to 

Ug ant 4 43 (* aL 4mn!)® 
a “4 49 Fe eon 

ke ele 

92 —4iry'/X Aor : F Ar / d Md ! 
+2e xox.cosh {9 —(E— E')} cos ae +%2—Y0 ) | dE dy 

yee ee Arn! 4 
—1i{ { 2K Kg sinh (=") cos(=" £ +7-%) 

Arr .. 
x exp — {i(E—£')—n} dé'dy/, 

which reduces, after omission of some negligible elements, 
to a form whose limit, for t->oo, on substitution in (26) 
yields the formula 

, Ve mre ss . [4 
v2 tin Os | — iko’ EXP (=") + 2K ok, Sin (ZF +9) | . 

(27) 
11. The difference motion.—If formula (27) be compared 

with formule (13) and (14) it is seen that 

Vo+ig—(¥,+iu,) >0. © . . . (28) 

Hence if (u, v) specify the difference motion, so that 

OSes Uo, «U == Uy—- 095 

u and v tend to zero at infinity. 
Thus the difference motion is an irrotational motion, 

vanishing at infinity and having at the boundary a normal 
velocity corresponding to rotation about the point « exp (7y). 
It is free from circulation, as a circulation would involve, 
for 7 infinite, a definite limit value of w different from zero. 
It therefore constitutes the solution of the problem of motion 
due to the rotation of the boundary. 

12. Forms of boundary to which the method applies——The 
applicability of this method to solving the problems of 
motion due to translation and rotation depends upon the 
knowledge of a periodic conformal transformation which 
will make any particular form of boundary correspond to 
the real axis in the € plane. That a considerable variety of 
such transformations and their corresponding boundaries is 

Phil. Mag. 8. 6. Vol. 35. No. 205. Jan. 1918. K 
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available is demonstrated in the writer’s paper on the 
subject referred to above. In particular, mention may be 
made of polygonal boundaries (/. c. § 8); and it may be 
noticed that for a regular polygon of n sides the trans- 
formation is 

2 
dz mamta AY 5 sn K sme |e perth TOs”. ta) Onna ae ae K | a sins (¢ ~)| at sin > , eee 

so that 2 
K? 2 NTN 2nié n : 

2 — ‘ iS re .f SESE S Pete. $ (i ig | 2 { cosh Wc 4] > Ve ie 

K being a constant ; the latter expression, with accented 
letters, would be the first factor under the sign of inte- 
gration in formula (25). 

In all cases where the periodic transformation is known 
the solution of the hydrodynamical problems is reduced to 
quadratures. 

In certain cases the integrations can be completed ; this 
is noticeably the case when /(f), and therefore also h?, is the 
sum of a finite number of terms harmonic in ¢. The inte- 
gration may be accurately effected by the method used for 
approximation in article 10 above. Of the terms arising 
from the multiplication of h? into the series [22] and [23] 
there are only a finite number which do not yield zero result 
when integrated with respect to & through a range 2, and 
each of these can be integrated separately with respect 
to 7’. 

The simplest example is the ellipse, for which the trans- 
formation is 

3) bo 

z= ccosh {a—(Qri/r)t}, . . . . (BI) 

so that | 
2.2 / 9 

Higa aut { cosh 2 a+— 1) — Cos (= e)t. ae 

The working out of this case may be used to test the 
method, as the results are otherwise known. 

Another simple integrable case corresponds to a boundary 
whose polar equation is 

r=a@+2bc0s 20, (a>2b). . ..).) (ao 

The transformation is 

z = bexp (—27ig/A) +a exp (2726/X) + bexp (671f/r). (34) 

12th November, 1917. 
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XIII. On the Relation of the Audibility Factor of a Shunted 
Telephone to the Antenna Current as used in the Reception 
of Wireless Signals. By Prot. G. W. O. Hows, D.Sce., 
MLE E.* 

[See paper with the same title by M. van der Pol, vol. xxxiv. p. 184.] 

ie audibility factor of a radio-telegraph signal is defined 
as the ratio of the actual sound-producing current in 

the telephone-receiver to the minimum value to which this 
current could be reduced for the signals to remain just 
readable. It is assumed that the wave-form of the telephone 
current, and therefore also the character of the sound, 
remain the same in the two cases. This ratio is usually 
determined by shunting the telephone-receivers with a non- 
inductive resistance until the signals are only just readable. 
If there is any possibility of the total rectified current being 
affected by the decreased resistance of the detector circuit 
due to the addition of the shunt, a resistance should be 
inserted in series with the shunted receiver to maintain the 
total resistance of the detector circuit approximately constant. 
From the value of the shunt it is then necessary to calculate 
the ratio of the total or joint current to that through the 
receiver. 

It is not clear from Mr. van der Pol’s paper how he deter- 
mined the resistance of the receiver which he gives as 
1240 ohms; but since nothing is stated to the contrary, it 
would appear that he has treated the receiver as a non- 
inductive resistance equal in value to the actual resistance 
of the receiver to continuous current. If so, the results 
obtained will be in error for two reasons: firstly, because 
the effective resistance of a telephone-receiver at the fre- 
quency employed, viz. 467, is considerably greater than its 
resistance to continuous current ; and secondly, because an 
alternating current divides between two alternative paths in 
a manner depending on the impedances and not on the 
resistances. 

As an example of the magnitude of the error thus intro- 
duced, the following figures may be quoted: a 3200-ohm 
receiver had an effective resistance Ry at 750 cycles per 
second of 6200 ohms and an impedance Z of 9320 ohms, 
whilst at a frequency of 1000 these values were increased to 
7250 and 11,200 ohms respectively. Thus Z75>=2°9R, and 

* Communicated by the Author, 
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LZio0=3'15 Ry. In the case of a 60-ohm receiver, it was 
found that Ze37=4°27R, and Zi135=6'35R,. As a rule at 
such frequencies the reactance is of the same order as the 
effective resistance, so that the current lags about 45° behind 
the terminal P.D.; this is, of course, merely a rough 
approximation. 

There may be some doubt as to the correctness of treating 
the pulsating telephone current as a simple alternating 
current; but in the opinion of the writer, the pulsating 
current of audible frequency produced by the detector as the 
result of the successive wave-trains may be regarded as a 
steady current with a fundamental alternating current and a 
number of harmonics superposed upon it, the fundamental 
giving the pitch, and the harmonies the character of the sound 
heard in the receiver. If the character of the note remain 
constant, it would appear sufficient to consider the amplitude 
of the fundamental, and to assume that this sinusoidal current 
divides between the receiver and the shunt in accordance 
with the ordinary laws of alternating-current circuits. 

The writer is well aware that references can be given to 
papers in which the ordinary continuous current-resistance 
of the receiver was apparently used in calculating the audi- 
bility factor, but in a recent paper Austin, who has done 
much experimental work on this subject, is careful to point 
out that the effective resistance of the receiver must be 
determined for the given frequency and telephone pulse 
form *, 

Since Mr. van der Pol refers to papers by Hogan and 
Love, both of whom refer to the impedance and not the 
resistance of the telephone-receiver, it is possible that he has 
also used the impedance, notwithstanding the statement in his 
paper. If so, the paper would be of greater value and 
interest were this definitely stated. 

If Mr. van der Pol did not take the precaution to keep 
the resistance of the detector circuit approximately con- 
stant, as mentioned above, the correctness of his experimental 
results is open to some doubt. 

In order to see in what direction his results would be 
modified by employing the impedance of the receiver 
instead of the resistance, it has been assumed in the follow- 
ing table that the impedance Z is equal to four times the 
resistance Ro, and that the telephone current lags 45 degrees 
behind the P.D. 

The values obtained from the simple vector diagram are 
as follows :— 

* Proc. Inst. Radio-Engineers, 1917, v. p. 289. 
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| | Ros Z+8 | I (total) R,+8| I 
) Fal® S | S I (receiver) 108 S | 108 Ir 

To ee el be Zeal) Les 0-097 | 0:267 
0) ee 3 2°8 0176 | 0447 
1 ia | 5 4°77 0301 0-679 
3 4 vos ks 12-72 0602 | 1104 

10 Ls aed Irs seed 40°71 1041 | 161 
30 es | 121 120-7 1491 | 2-081 

100 101 | 401 | 400-7 2-004 2°602 | 

In view of the unavoidable lack of precision in all audi- 
bility tests it is obviously sufficientiy accurate to neglect the 

phase of the telephone current and take z z : as the 
audibility factor. ~ 

The figure is a reproduction of fig. 2 in Mr. van der Pol’s 
paper, with the addition of two dotted lines which represent 

log M plotted against log + instead of log ae a For the 

upper dotted line it has been assumed that Z= ks whilst for 

x (total) 
iL (receiver) 

Sates 06 OS) VEO 2) 4 / 66) FE 20922 3 24 26 

the lower Z=4R, as in the table above. Itisseen that if the 
impedance of the receivers is three or four times their con- 
tinuous current resistance, the resultant curve is considerably 
modified, and with it the conclusions based thereon. If 
further tests show that the results are not modified when the 
resistance of the detector circuit is kept constant, it would 
appear from the slope of the dotted lines that the audibility 
factor varies as a higher power than the square of the radio- 
frequency current. This appears improbable. 
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Notre By Mr. vAN DER POL, JUNR. 

The well-known facts respecting the division of current 
between a telephone and its shunt circuit are correctly stated 
by Prof. Howe, but he has rather lost sight of the motive of 
my paper and of certain experimental difficulties. The 
principal object in view was to test whether the audibility 
factor could be considered to vary as suggested by Prof. 
Love with the received antenna-current. 

In discussing some experiments by Dr. Austin, Prof. Love 
makes use of the audibility factor defined as R+8/S, where 
S is the resistance of the shunt and R the telephone resistance*. 
Jn order to test experimentally his suggestions as to the 
proportionality of the so-defined audibility factor to the first 
power or square of the antenna-current I had to use the 
same constants. My experimental results appeared to be in 
close agreement with Prof. Love’s suggestions. 

The same definition (with the aid of the telephone resist- 
ance) of the audibility factor is used by several other writers. 
Prof. Howe refers in his paper to a very recent publication 
by Austin which was published after my paper had been 
sent to the Philosophical Magazine. Here Austin refers 
to the telephone-impedance, but on the other hand, in a 
former paper by the same experimentalist, he defines the 
audibility factor using the telephone resistance instead of the 
impedance f. 

It is by no means clear whether Austin or Hogan em- 
ployed the true impedance of their telephones in the 
audibility factor, as in their papers cited no references at 
all are given how they determined these impedances. 

Farther, itis a matter of considerable difficulty to measure 
the true impedance of a telephone when used as in Wireless 
Telegraphy in series with a crystal detector, and therefore 
traversed by an intermittent or pulsatory current, the wave- 
form of which is not known. From the pronounced variation 
in character of the tone in the telephone-receiver with dif- 
ferent couplings it may further be concluded that, probably 
as a consequence of the irregular shape of the characteristic 
of mosi crystal detectors, the telephone current, while varying 
in intensity also (opposite to the suggestion of Prof. Howe) 
varies in wave-form, so that it is doubtful if the ordinary 
well-known theory of sine-form currents may be applied to 
the shunted telephone method. 

Moreover, the current in the telephone circuit at the 

* Phil. Trans. Roy. Soc. Lond. cexy. A. p. 128 (1915). 
+ Bull. Bureau of Standards, vi. no. 4, p. 581 (1910). See also 

J. ae Murray, ‘A Handbook of Wireless Telegraphy’ (1914), 
p- 349, 
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moment when the measurement is made is extremely small 
and quite beyond reach of any thermo-electric ammeter. 
The writer is therefore of opinion that an exact experimental 
determination of the telephone impedance under actual 
working conditions is a matter of higher order of difficulty 
than the measurement of received antenna-current itself. 

It must further be borne in mind that in any ease the 
shunt value which quenches the telephone sound is difficult 
to determine in practice with any but a rough approxima- 
tion. Ina very quiet room it may perhaps be determined to 
within 5 or 10 per cent., but in a wireless station or on board 
ship perhaps not within 30 or 40 per cent. 

No assumptions as that made by Prof. Howe that the true 
impedance of the telephone under actual working conditions 
is equal to four times the steady resistance has been justified 
by any experiments. Hence, to avoid suppositions not based 
on experiment, the value taken for the calculation of the 
audibility factor in the case of my experiinents was the 
steady resistance, although I was perfectly well aware that 
this was not identical with the true impedance for the wave- 
form and frequencies used. 

Having regard to the uncertainty attending the constants 
employed by Austin and Hogan, and the difficulty of deter- 
mining exact values, it seemed better to base the reduction 
of the observations on known measurements rather than on 
assumptions as to the ratio of impedance to resistance. 

XIV. Proceedings of Learned Societies. 

GEOLOGICAL SOCIETY. 

{Continued from vol. xxxiv. p. 528.] 

June 20th, 1917.—Dr. Alfred Harker, F.R.S., President, 
in the Chair. 

{i as following communications were read :— 

1. ‘The Pre-Cambrian and Associated Rocks of the District 
of Mozambique.’ By Arthur Holmes, A.R.C.S., D.I.C., B.Sc., 
F.G:S. 

Beyond the coastal and voleanic beds of Mozambique (described 
in a previous contribution—Abs. Proc. Geol. Soc. 1916, No. 994, 
p- 72) the country assumes the form of a gently undulating plateau, 
gradually rising towards the west and diversified by innumerable 
inselberg peaks and abruptly-rising clusters of hills. The 
dominant rock throughout is a grey biotite-gneiss. Interfoliated 
with this are occasional lenticular masses of hornblende-gneiss and 
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amphibolite, and within these smaller bands of crystalline lime- 
stone are sometimes preserved. In many places the gneisses 
become garnetiferous, while eclogites and basic granulites also 
occur. Schists—referable to arenaceous sediments—are found 
only near the coast, where they are interbanded with gneisses; 
and, as the latter are mainly of igneous origin, they are thought 
to be intrusive into, and therefore younger than, the schists. As 
a general rule, the foliation and the banding of the gneisses are 
well defined in parallel uncontorted planes, the strike being com- 
monly along, or somewhat north of, a north-east to south-west 
direction. In certain inselberg peaks, the strike sweeps round 
the contours, while the foliation-surfaces dip quaquaversally from 
the summits. Into the gneisses later granites, belonging to at 
least two different periods, have penetrated, riddling them with 
enormous numbers of small intrusions, lit-par-lit injections, 
tongues, and apophyses. Rocks of later age are rarely met with ; 
but, in a few places, dykes of picrite and pyroxenite have been 
found cutting the youngest pegmatites. 

The succession of rocks in eight of the better-known districts is 
described, and the following general classification is based on the 
details thus provided :— 

Ultrabasic Pyroxenites. 
Dykes. Picrite. | Age unknown, 

Intrusive Contact. 

Granites and f Biotite-Granites. Pre-Cretaceous 
Coarse Graphic Granite and other Pegmatites. and Post-Middle 

Pegmatites. Quartz- Veins. Pre-Cambrian. 

Intrusive Contact. 

eee hoe if acne ae (including porphyritic 
Granites: | varie ties). 

Poemiaribos ie Pegmatites and Aplites. | Middle 
A eat fi a | Pyroxene-Granite and Pyroxene Quartz- | Pre-Cambrian. 

Aya |  Diorite Series. ; Pb/U=0'14 to 
he | Pyroxene-Granulites ? ) 0°17, 

Intrusive Contact. 

( Biotite-Gneisses and ) 
Gneisses | Gneissose Granites. | 

and 4 Hornblende-Gneisses. Pb/U=0°21. 
Associated | Amphibolites. 

Rocks. ; Garnetiferous Gneisses, 
| Granulites, and Eclogites. 

Intrusive Contact. | yee 
Pre-Cambrian. 

Quartz-Mica-Schists. 
artz-Magnetite-Schists. 
ornblende-Garnet-Schists. 

. Qu Crystalline H 

Heematite-Schists. 

Fo 
Cr 

Schists and i 

| 
Limestones. rsterite-Marbles, and other 

ystalline Limestones. ee 
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The above correlations of certain groups of rocks with the 
Lower and Middle Pre-Cambrian of other regions are based on 
the determination of lead-uranium ratios of zircons derived from 
the gneisses and granulitic granites respectively, the zircons 
having been obtained by crushing and panning the rocks in the 
field. The gneisses give a ratio of 0:21, comparable with a ratio 
of 0:24 obtained for Canadian zircons of Laurentian age. The 
granulitic granites give ratios of 0-14 to 0:17, comparable to those 
of radioactive minerals of late Archean: that is, late Middle Pre- 
Cambrian, age in Scandinavia (Moss 0°12 to 0:15, Arendal 0°16 to 
0-18, and Ytterby 0°15 to 0°17), Canada (Villeneuve, Quebec, 0°17), 
and India (Singar 0°14). 

The rocks are described in detail, with tables giving the quanti- 
tative mineral composition and the specific gravities and radium 
contents. Numerous examples of contact-phenomena between 
crystalline limestones and various types of igneous rock are 
recorded: pyroxene, amphibole, sphene, and soda-lime felspar 
being the new minerals chiefly developed between granite and 
limestone, with garnet and scapolite also in special cases. 

With reference to the origin of the crystalline limestones and 
gneisses, the following conclusions are arrived at :— 

(a) The crystalline schists and limestones are interpreted as arenaceous 
and caleareous facies respectively of an ancient sedimentary series, 
their argillaceous complements being unrepresented unless they 
enter into the composition of the biotite-gneisses. 

(b) The limestones have controlled the formation of hornblende - 
gneiss and amphibolite by their interaction with a granitic 
magma that elsewhere is represented by biotite-gneisses. The 
cores of the limestones have been enabled to resist further 
silicification by being thus enclosed within a blanket of rocks 
impoverished in silica. 

(c) If the ancient sedimentary series included argillaceous formations, 
it is thought probable that the gneisses are composite rocks 
produced by the concordant injection of granitic magma into 
such formations. This view, although not proved, is supported 
by mineralogical and radioactive evidence, and by the fact that 
in certain inselberg peaks the banding of the gneisses gradually 
dies away as the slopes are ascended, the rocks passing into 
granulitic granite nearly free from biotite and showing few 
traces of foliation. These peaks are interpreted as the irruptive 
foci of granulitic magmas which fed the lateral intrusions repre- 
sented by the surrounding gneisses. 

It is shown that there are at least three types of inselberg 
peaks that owe their survival to peculiarities of structure and 
composition. The first type is that just mentioned, in which 
the foliation is less marked and the biotite-content appreciably 
lower than in the surrounding gneisses. In the second, the 
peaks are mainly composed of granulitic granite (again poor 
in biotite compared with the gneisses), and in the third type 
the peaks are riddled with tongues and apophyses of pegmatite 

Phil. Mag. S. 6. Vol. 35, No. 205. Jan. 1918. L 
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and aplite. In each case the greater resistance offered to denu- 
dation is related to the presence of less foliated and more felsic 
rocks than are found in the adjacent plains. There remains a 
fourth type—perhaps the most abundant—in which no differences 
have been recognized. Many of these seem to be isolated relics 
of gneissic escarpments; and it is suggested that desert erosion, 
involving the attack of slopes at their base by arid weathering, 
and the removai of disintegrated material by wind, is the most 
favourable condition for the development and maintenance of 
an inselberg landscape. Existing conditions of denudation are 
considered to be unfavourable to inselberg survival; for the 
peaks appear to be worn down by the removal of superficial 
layers by exfoliation more rapidly than the surface of the plateau 
is lowered. 

2. ‘The Inferior Oolite and Contiguous Deposits of the Crew- 
kerne District (Somerset).’ By Jinsdall Richardson, F.R.S.E., 
BG:S: 

November 7th.—Dr. Alfred Harker, F.R.S., President, 
in the Chair. 

A Lecture on ‘The Nimrud Crater in Turkish Armenia’ 
was delivered by Fetrx Oswaxp, B.A., D.Sc., F.G.S. 

The Nimrud voleano, one of the largest volcanic craters in the 
world, is situated on the western shore of Lake Van, and was 
surveyed and investigated geologically for the first time by the 
speaker in 1898. The western half of the crater is occupied by a 
deep lake of fresh water, while the eastern half is composed of 
recent augite-rhyolites, partly cloaked in white volcanic ash. The 
erater-wall is highest on the north (9903 feet), rising in abrupt 
precipices over 2000 feet above the lake (7653 feet). The southern 
wall is also precipitous, but only reaches the height of 9434 feet 
(the south-eastern part). A large slice of the crater-wall has 
slipped down on the south-west, so as to form a narrow shelf, 
800 feet above the lake. The crater is nearly circular, 8405 yards — 
from west-south-west to east-north-east, while the transverse axis 
is 7905 yards. The lowest points lie on the long axis, reaching 
only 8139 feet on the western, and 8148 feet on the eastern rim. 

The ecrater-wall has an external slope of 338° on the south and 
east, where it consists exclusively of overlapping lenticular flows of 
augite-rhyolite and obsidian. On the south-west, west, north-west, 
and north these are capped by thin sheets of cindery basalt which 
must have possessed great fluidity, extending for many mules to 
form wide plains of gentle slope and great fertility down to Lake 
Van on the east and into the Plain of Mush on the west. These 
basalt-flows dammed up the north-east to south-west valley between . 
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the Bendimahi and Bitlis rivers, and thus brought Lake Van into 
being. 

The history of the Nimrud voleano may be summarized.as follows 
from the speaker’s observations :— 

1. Its forerunner was the Kerkur Dagh on its southern eget 
a denuded mass of grey augite-trachyte, rising to 9000 feet, and 
crowned by many peaks. It was probably erupted i in the Pliocene 
Period, subsequently to the folding of the Armenian area, in which 
the latest folded rocks are of Miocene (Helvetian—Tortonian ) 
age, occurring north of the Nimrud Dagh and consisting of lime- 
stones with corals (Cladocora articulata, Orbicella defrancez, &c.), 
Tithothamnion, Foraminifera (Lepidocycline Orbitotdes, Amphi- 
stegina, &c.), beds of Pecten (P. urmiensis, &c.) and of oysters 
(Alectryonia virleti). Nimrud and the other numerous volcanoes 
of Armenia came into existence at a period when the sedimentary 
rocks could no longer be folded, but were fractured along definite 
lines, and Nimrud is sce on the great fracture transverse to the 
Armenian folds at the apex of their bending round from the Anti- 
tauric (west-south-west to east-north-east) to the Persian (north- 
west to south-east) direction, and it also marks the point of inter- 
section of this fracture with a great north-east to north-west 
fracture (Caucasian direction), which delimits on the south Lake 
Van and the faulted depression of the Plain of Mush, abruptly 
cutting off the Tauric horst of pre-Devonian marbles and mica- 
schists. 

2. Numerous flows of augite-rhyolite built up the vast cone of. 
the Nimrud Dagh, and the 1 increasing pressure on the central vent 
became relieved by extrusions of ‘augite- trachyte along radial 
fissures, forming the present promontories of Kizvag, Zighag, and 
Karmuch. 

3. A presumably long period of inactivity was followed by violent 
explosions destroying the summit of the cone, and from this crater 
(smaller than the present one) vast lava-flows of a very fluid basalt 
(crowded with phenocrysts of labradorite, pale-green augite, and 
some olivine) flooded the country and filled up the Bitlis and 
Akhlat valleys, which have since then been eroded a little below 
their former depth. The Sheikh Ora crater of basic tuff (now 
breached by Lake Van) probably belongs to this period. 

4. Further explosions widened the erater in which a large lake 
was formed, while the eastern half of the crater became filled by a 
succession of outflows of augite-rhyolite, in which numerous blow- 
holes were drilled, bringing to the surface large blocks of basaltic 
agglomerate and also affording sections showing the transition 
downwards from obsidian, spherulitic obsidian, and spherulitic 
rhyolite to banded augite-rhyolite (with sanidine and green augite 
in a micropecilitic ground-mass). 

. The last eruption was. recorded in 1441 by a contemporary 
thio chronicler, and resulted in the extrusion of a very viscous 
augite-rhyolite along a north-to-south zone of weakness, both inside 
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the Nimrud crater where it separated off part of the large lake to 
form the shallow, so-called ‘hot lake,’ and also to the north of 
Nimrud, where it rose up fissures and in a small crater. 

6. A violent earthquake in 1881 which destroyed the village of 
Teghurt, at the eastern base of the crater-wall, was the last sign of 
activity; but earthquakes are still frequent in the Plain of Mush at 
the western foot of the Nimrud Dagh, and recent fault-scarps are 
clearly visible along the borders of this faulted depression. 

The speaker mentioned that he had presented his model of the 
crater to the Museum of Practical Geology (Jermyn St.) and the 
rocks and slides to the British Museum (Natural History), where 
his fossils from Armenia are already preserved. 

XV. Intelligence and Miscellaneous Articles. 

COUPLED CIRCUITS AND MECHANICAL ANALOGIES, 

Phil. Mag. Dec. 1917. 

To the Editors of the Philosophical Magazine. 

GENTLEMEN,— 

(GENTEN ARIAN PERIGAL is clean forgotten today, and his 
_ yaluable kinematic work on his lathe. His method should 

be revived of drawing the ellipse or other Lissajous figures of 
combined vibration, as on p. 515, fig. 2. 

The enveloping rectangle is divided up into elementary rect- 
angles by lines spaced, not equidistant, but in equal time of 
simple vibration. 

Perigal does this by describing a semicircle on each side of the 
rectangle, and then produces the ordinates of points at equal 
angular interval round the circumference. 

Starting at any point of crossing and tacking across the 
diagonal of an elementary rectangle, a succession of points is 
made on an ellipse inscribed in the rectangle, and the points 
are close enough to be joined up in a continuous curve, such 
as Perigal could cut in his lathe. 

If m and 7 steps are taken for a diagonal, the Lissajous curve 
appears for a combination of two vibrations of m and n fold 
frequency, and the phase difference of lead or lag is settled by 
the position of the starting point. 

Yours sincerely, 
Dec. 18, 1917. G. GREENHILL. 

1 Staple Inn, W.C. 1, 
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Fie. 7.—Observed Foym of Titensity Curve due to impact of Spheres 
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of nearly equal diameters but different materials, 

Fic. equal colliding spheres. Sa 
Sphere on left: Material, billiard ball; Diameter, 22 inches; Mass, SiR ! 

ies, HO) eseeont Tn . : ss oar Pia. 3.—Culeulated Form of Intensity Curve due to two Spheres Tre. 5. pe ef eRe) due to impact of _— of diameters 2:1. [k(a+-b)=2.] (Material, wood; diameters 3 inches and 12 inches respectively, : 
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150 gms. Sphere on right: Material, Wood; mi 
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Fie. 2. Ob ved distribution of intensity due to impac' 
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sl eS Iie. 8.—Observed Form of Tntehsity Curve due to impact of two \ 
Spheres of different diameters and densities, 1c, 6.—Caleulated Form of Intensity Curye due to two equal Sphere on left: Material, brass ; Diameter, 1} inches; Mass, 118 gins. 
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Illustrating the asymmetry of the fringes and of the illumination-curves in 
oblique diffraction by a reflecting surface consisting of two parts (Figs. I 
te IV) or three parts (Figs. V and VI) in the same plane. 
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XVI. Continued Discussion of the Astronomical and Gravi- 
tational Bearings of the Electrical Theory of Matter. By 
Sir Ottver Lover *. 

Part I. 

M* short summary in the December number of the 
Phil. Mag., page 519, put prominently forward the 

idea that the expected effect required that the additional 
inertia due to motion should be independent of gravitative 
influence ; for the conclusion seemed obvious that if weight 
and mass varied together there would be no change in accele- 
ration, and that in that case it did not matter how much the 
mass of a revolving body varied. But I soon perceived that 
this was only attending to the transverse acceleration and 
neglecting the longitudinal, which is taken into account in 
Professor Eddington’s completer theory in the October 
number of the Phil. Mag., page 322. He there re-deter- 
mines the fundamental equation of particle dynamics, with 
momentum a function of speed, and shows that not the ratio 
F/m, but the product Fm, enters into the absolute term of 
’ : u — Ef/m m 
that equation, so that it becomes 1 + Y= Fae rh 

I take up the thread again here, and point out that that 
being so, the unexpected result follows, that if the additional 
inertia is acted on by gravity, in accordance with the ordinary 

* Communicated by the Author. 

Phil. Mag. 8. 6. Vol. 35. No. 206. Feb. 1918. M 
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Newtonian law F=ymm’/r?, the varying factor m will enter 
twice into the equation of motion, and the whole perturbation 
will be increased instead of being annihilated. In other words, 
if the gravitative pull on the planet increases in the same 
way as the inertia increases, the effect is not to cancel, but to 
double the perturbing effect. On the other hand, if the extra 
inertia is not affected by gravity the perturbing effect is as 
already calculated. Consequently from this point of view 
some perturbation seems inevitable ;—either the value reckoned 
by me in August, with the extra inertia independent of gravity, 
or else double that value, if the extra inertia is fully subject 
to the Newtonian law of attraction. 7 

The question arises therefore, rather pressingly, how much 
dependence can be placed on the theory ? It willbe granted 
I think that the fact that.a correct value for Mercurial apsidal 
progress can be deduced from the electrical theory of matter 
by a reasonable assumption of solar drift is not a negligible 
fact. For if the theory were completely inapplicable the 
value of drift required might have been of an altogether 
unreasonable order of magnitude. The fact that the same 
drift gave a Martial apsidal progress also of the right 
magnitude (see August Phil. Mag. pp. 91 & 92) seemed to 
me at the time very confirmatory. But I admit that the 
changes in excentricity are not thus accounted for correctly, 
and that the calculated perturbations for Earth and Venus 
exceed any probable value for those planets. 

I perceived in my August paper that a difficulty of this 
kind would arise, but thought that it might be got over by 
choosing a particular longitude for the projected component 
of the solar drift which should almost nullify the result for 
those two planets; and so I chose the longitude 294° as 
being half-way between the perihelia of Mercury and Mars, 
and inclined to their major axes at a reasonable angle, while 
at the same time it happens to be practically half-way 
between the perihelia of Harth and Venus, though inclined 
to their major axes at a much smaller angle, and so being 
less effective. I hoped therefore that it might be possible.to. 
contrive to get rid of the calculated too great progress of 
perihelion for Harth and Venus, especially as the roundness 
of their orbits must make the exact position of perihelion 
difficult to determine. 

Professor Eddington, however, countered all this con- 
trivance, in September, by working out the theoretical 
changes of excentricity more thoroughly than I had done, 
and showed that it was highly improbable that the calculated 
perturbations could be admitted for some and evaded for 
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others of the four inner planets, by any judiciously selected 
direction for solar drift. 

If therefore the theory fails to give all the known pertur- 
bations correctly, something must be wrong ; and by finding 
out what is wrong, we may perhaps discover something 
instructive. At first I thought that it would suffice to say 
that the extra inertia must after all be fully subject to 
gravity, and that therefore the acceleration was unaltered. 
But in the light of Eddingion’s improved theory, that 
loop-hole is closed; for the ratio F/m turns out not to be 
really involved. Sothe alternative that next occurred to me 
was to suppose that the gravitative constant y may likewise 
be a function of velocity, and that its changes act in a com- 
pensating manner; that is to say, that the y for bodiés 
in motion through the ether differs from the value appro- 
priate for bodies at rest in one or other of the two 
following ways :— Hibs 

r=w/ Js =) 
if extra inertia is independent of gravity, 

‘or uv 

Y= Ve i 7) 

if the extra inertia has its full complement of weight. But 
then, so far as I know, there has never been any reason for 
suspecting sucha variability in the Newtonian gravitative 
constant. 

If there should really turn out to be such a change in the 
value of the gravitative attraction between bodies in rapid 
motion, it would be a very remarkable and noteworthy fact, 
and one that would serve to strengthen belief in some form 
of the Principle of Relativity. Hitherto the experimental 
foundation of that Principle has been the fact that whether 
luminous or telegraphic signals were used, or whether the 
interval of time between reception and transmission of 
signals was made to depend on cohesion or some other 
property of solid matter, there was always a disconcertingly 
complete compensation, so that no motion of matter as a 
whole through the ether could be demonstrated. I had 
hoped that by aid of the astronomical perturbations calculable 
from the electrical theory of matter this compensating 
influence might be overcome, and that the force of gravity 
would not, so to speak, join the conspiracy to defeat our 

M 2 
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object. We must, however, now face the possibility that 
gravitation too obeys a compensating law, and declines to 
enable us to receive information about absolute motion of 
matter through ether. 
We must face the possibility: I do not say we must 

accept it; but it becomes necessary to consider what other 
loop-holes there are out of the conclusion which has thus 
suggested itself. 

Is it possible that there is anything wrong about the 
theory that the inertia of matter is increased as a certain 
function of the speed? There can hardly be any doubt 
about it for an isolated charge such as an electron, inasmuch 
as the calculation based upon the behaviour of its lines of 
force is very straightforward, and because in the case of 
certain extra-high-speed ejections from radium the extra 
inertia has been observed and measured and found to cor- 
respond with theory. 

But it may be argued that when electrons are packed 
together into an atom,—positive and negative together, so as 
to be on the whole neutral,—this effect, due to their individual 
electrostatic lines of force, is masked, and that the whole 
neutral atom ought not to show any but perhaps a residual 
effect of that kind. | 

Against this argument I urge several considerations :— 
First, that if the inertia of the negative electron is wholly 

electrical, it becomes exceedingly probable that all inertia is 
of that kind; and if so, the abolition of electrical inertia 
would mean the abolition of all inertia. 

Secondly, although we may speak of electronsas “ packed 
together ” into an atom, the packing is very far from being 
close; for to all intents and purposes they are well sepa- 
rated from each other and almost isolated, even though several 
are contained in a sphere the ten-millionth of a millimetre 
in diameter. It will be remembered that inertia is due to 
the concentration of the electric charge, and this concentration 
is only marked within a minute distance from a sphere so 
small as an electron. Taking its linear dimensions as 107}, 
all but one-hundred-thousandth of the inertia lies within a 
range smaller than 107%. Regarding the electron of a 
hydrogen atom as a sphere an inch in radius, the adjacent 
opposite charge is something like a mile away. Moreover, 
the fields of opposite charges are subject to the law of simple 
superposition. And again, the inertia in superposed fields of 
force does not depend on the sign of each component, but is 
proportional to the square of each component. Consequently 
there seems no adequate reason against merely adding their 
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inertias in simple arithmetical fashion, even for atoms much 
more closely packed than hydrogen. 

It may be said that little is known about the positive 
nucleus, wherein most of the mass of an atom resides 
according to the now prevalent view. That is true; but 
then, according to analogy, it would appear likely that the 
additional mass is due to still further concentration, and that 
the size of the positive unit, at least in a hydrogen atom, 
must be a thousand or say seventeen-hundred times smaller 
lineally than even the electron ; in which case the argument 
for its practical isolation, and for its effective inertia being 
within an exceedingly small distance of its surface, is 
intensified. 

On the whole then, | think that the weight of argument is 
strongly in favour of the full applicability of the theory of 
electrical inertia to every kind of atom, and to all masses 
of matter ; though it is just possible that for atoms of high 
atomic weight some modification may have to be made 
owing to their presumably more complicated structure, 
especially the more complicated structure of their nuclei. 

If this loop-hole is to be considered closed, what other is 
there? Yetin view of the importance of the threatening 
deduction that the gravitative constant is a function of 
velocity, we must seek every way out of the negative con- 
clusion that the perturbations predicted by the electrical 
theory of matter do not in the case of the two planets Harth 
and Venus really occur ; or do not occur to anything like 
the extent required by the quantitative explanation of the 
perturbations of Mercury by the same theory. If the theory 
fails to account correctly for the outstanding perturbations 
of the four inner planets—especially if it makes those per- 
turbations too great,—it seems at present as if a variation of 
the gravitative constant for bodies in motion is proved: a 
result too important to be lightly regarded. 

It seems therefore worth while to expend some labour in 
calculating what those perturbations would be for the four 
inner planets, given some favourable value of the solar 
drift. 

Part II. 

It may be remembered that in the October Philosophical 
Magazine Professor Eddington tentatively adopted but 
partly modified my theory, and also introduced terms 
depending on the excentricity, getting as his final result 
two equations representing the main perturbations to be 
expected from varying inertia, correct up to the first power 
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of e. These equations, for convenience, I will here quote 
from page 326, vol. xxxiv. as they stand :— 

z 2 \ 

eda= — ease sin ao + Bae plc, cos 2, | 
2c? 2c? 8c? 1) 

upVO 2 c - 
je COs a+ e sin 2a, 

J 

where V is the component of true solar drift projected on 
plane of orbit, 

@ is longitude of planet’s perihelion reckoned from 
the direction of V as zero, 

uy is that constant component of the velocity of a 
planet which is normal to its radius vector, 

6 is the angle turned through by radius vector per 
century, 

and ¢ is the velocity of light. 

Dor 

I proceed to apply this improvement on what I published 
in August, so as to ascertain whether or not the theory can 
be made to work. 

Let the solar drift be & times the planet’s velocity as 
specified, say V=fuy; and introduce an aberration angle 
a=u,/c ; then we can write the above equations thus :— 

eda =%4e°0(—k sina + the cos2a +e), (2) 

de=420(kcos@a+ ike sin 2a). 

The common factor outside the brackets, 3«70, is inde- 
pendent of solar drift and cannot be evaded. It varies as. 
the reciprocal of the 5/3rd power of the periodic time for 
different planets, or as the —2°5th power of their distances ;. 
as can be seen thus :— 

The large angle @ is 2an, so it is inversely as T; «@ is 
proportional to uw), which is practically the same in magni- 
tude as the average orbital velocity ; so # varies inversely 

as ,/7 or as 1 by Kepler’s third law. 

Hence 4a24 is proportional to T° or n or 7 It 
becomes small, therefore, for the outer planets. It is also 
plain that the values of $«°0xk for different planets vary 
inversely as the square of their distances from the sun. 

The value of 444 for the Earth is 1007 x 10-*=0'"648, 
and from this it can be reckoned for the other planets by 

5 —5 
= 
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dividing by r’?. The result is tabulated here, along with 
other fixed planetary data for convenience of reference. 

I. Fixed Planetary Data. 

| Perturbation Excentricity | Longitude of | Distance Bou Fe 
of orbit. perihelion. | trom sun. 12°0 : 

a Ti (064877 7”). 

Mercury..........-. 2056 75 0-387 6-95 

Wenust oi.te sais. "0068 129 0723 1-46 

Barling. .02.2383.2 95: ‘0167 100 1-000 0-648 

RESP Ae. 0933 333 1-524 0-227 

dimptten 26.2 52005: "0483 12 5°203 0:0105 

SRGMEI |) ce cans 0559 90 9-539 0:0023 

MEANS | oe ic: 50-4 ‘0463 168 19°18 00004 

Neptune............ 0090 / 47 30°04 0:00013 

Now consider the bracketed factors of (2). We see that 
the dominating part of both of these factors is &, and 
that whatever longitude is chosen for @ neither factor can 
exceed + to any considerable extent ; they will, in fact, 
usually be both smaller than &. By suitable choice of w 
either of the factors may be made small or zero; but if so, 
the other will thereby usually tend to be big. 

To make this more obtrusively clear we might write them 
respectively 

—ksin o(1+ $he sin ce We (3) 

keosa(1+4kesin a). hes 

If & is zero or small,7.e.if the solar system is nearly 
at rest in the ether, the de perturbation vanishes, but not 
the dw. It is rather remarkable that there should be any 
residual perturbation due to fluctuating mass in a stationary 
solar system. But of course the velocity in an orbit with 
any excentricity is not quite constant, and the equations 
show that when & is 0, whatever the value of e, there will 
still be a cumulative da (progress of perihelion) equal to 
300; that is, 4a? times the angle turned through by the 
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radius vector in any given time. This is a curious and 
interesting result, since it is independent of V and of e and 
of w. The fact may require attention in another branch of 
physics later on (see concluding remarks in Part III.). 

Over the main factor, $270, we have no control; but we 
can partly determine the bracketed factors of (2) by judi- 
cious selection of # and k for any particular planet ; though, 
having chosen for one, the others all follow. 

The observational values to be accommodated by theory 
are stated by Mr. Harold Jeffreys in the ‘ Monthly Notices ’ 
of the Royal Astronomical Society for December 1916, 
whence I get the permissible range :—— 

Il. Unexplained Secular Variations per century, as observed. 

ed. de. 

eure Permissible de. Permissible 
range. range. 

Mercury ...... 3:48+0-43 |+8-91 to +8:05|—0:88+0:50 |—1:38 to —0:38 

Venus oe... —0:05+0-25 |—0:30 to +0:20] 0-21+0°31 |4+0:52 to --0-10 

Earth ......... 0'10+0-13 |-+0-23 to —0-03| 0:02-+0:10 |+0-12 to —0-08 

Mars.......0..0. 0°75+0:34 |+1-09 to +0°41) 0-29+0:27 |+0:56 to +002 

Hence to get results for Mercury and Mars from the 
-above equations, such as will correspond in sign with the 
entries in the above table, a solar drift must be chosen so 
as to make sina negative for both planets, with cosa 
negative for Mercury and positive for Mars. This suggests 
an obtuse negative angle between Mercury’s perihelion and 
the solar drift, and an acute negative angle for that of Mars; 
but this can be seen to be impossible, though the converse 
would be easy. A troublesome accommodation difficulty 
lies in the fact that the major axes of these two planets 
happen to cross nearly at right-angles, so that what suits 
one is hardly likely thoroughly to suit the other. 

The above table shows moreover that both the observed 
perturbations for Earth and Venusare small, and might even 
be zero. But looking at the equations (3), we see that in 
general both the theoretical perturbations cannot vanish or 
be small together for any reasonable value of k. (There is 
no sense in a negative value for k such as —2/e.) 
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Alternatives. 

Now let us consider the numerical values of the theoretical 
perturbations for different planets, with specially selected 
values for the solar drift. Write them 

eda =4070.k.(—sina+tke cos 2a+e/k), 

de=4a°?.k.(cosa+ikesin 2a), 
(4) 

so as to show in each case 

(1) A purely planetary factor 4276, concerning which 
we have no choice ; 

(2) A numerical factor k, depending on the magnitude 
of assumed solar drift and varying directly as ,/r 
for different planets ; 

(3) A trigonometrical factor, depending mainly on the 
direction of the assumed solar drift. 

For moderate values of &, and for round orbits, the first 
term of each direction factor (viz. —sin a for the one, cosa 
for the other) is by far the most important. 

Large values of & require delicate and practically im- 
possible adjustments, so that if for any planet both pertur- 
bations are wanted small (as they are), it is essential to keep 
k down to the smallest value which will give anything like 
the desired result for some one definite planet. 

Let us then choose k or V/u) as small as possible. We 
- might even try it no greater, for the Earth, than suits the 

AGNES, fee 
directed 

see. 

towards R.A. 18° 2™ or longitude 270° 46’, and declination 
34° or latitude 57° 30’), of which the projected component 
will be about half of two-thirds of the earth’s orbital speed, 
or 4x10-‘*c, which makes & for the earth =}. Then for 
the other planets we shall have & varying as 1/ug or ,/7, and 
so get the column f, in Table III. below. 

But the resulting value of & for Mercury, viz. °21, is far 
too small to explain the progress of Mercury’s perihelion: 
for that purpose Mercury’s £ must be comparable to unity, 
in order to give a reasonable factor with which to multiply 
32°@: but what its necessary value is will depend on a, 
7. e. on the direction chosen for the solar drift with reference 
to the planet’s major axis. Consider then what is the best 
direction to choose. 

The idea on which we started (see Phil. Mag. for last 

known solar motion towards Vega (viz. 19°5 
eo 
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August) was to explain simply the outstanding perihelion 
progression of Mercury, 43’’ per century or eda=8''"6; so 
it is natural to select values of £ and @ which shall give an 
approximation to this value in the case of Mercury and yet. 
keep & small enough not to spoil agreement for the other — 
planets. The most favourable possible direction is 90° beyond 
the perihelion longitude of Mercury, which is 75°. For this. 
drift longitude of 165° will make «= —90 and sina=—1. 
The drift-factor for eda then attains its maximum, viz. 

k+e(1—4), 

while the factor for de is zero. In that case the value of & 
for Mercury may be as low as ‘9 ; for, since e="2, this will 
give a factor, 1:1, sufficient to convert the 7” belonging to 
3a°0 for Mercury into very near the desired 8”. Corre- 
sponding values of & for other planets are tabulated in the- 
column k, below. 

But then the perihelion longitude for Mars happens to be 
333°, so that with drift longitude 165° the a for Mars would 
be + 168° or 180—12° ; and the value of sin a will be small 
and positive, and of cos@ big and negative—an arrange- 
ment which does not suit Mars at all; hence a compromise 
is necessary. 

If we choose the compromise which I suggested in the 
August Phil. Mag., page 91, viz. 294°, or rather that direc- 
tion reversed, viz. 114°, we have got a direction equally 
inclined to the major axes of Mercury and Mars, and also, 
as it happens, practically equally inclined to the major axes 
of Earth and Venus, which are another pair that may be 
considered together. The angle a for Mercury in this case 
is —39°, and for Mars is 180+39°; so in both cases sin @ is 
negative, as wanted, though the less said about cos@ the 
better. The corresponding values of & for all the planets, 
including that needed to suit Mercury’s perihelion for this 
drift direction 114°, namely 1°5, are tabulated below 
as hae 

The table shows some corresponding values of k and @ for 
all the planets, with the corresponding assumed longitude 
for solar drift. This is here called 7; and it must be 
remembered that this solar drift direction, and not the first 
point of Aries, is the artificial zero from which to reckon oa. 
The @ are got by subtracting / from the perihelion longitude, 
as cited. The & vary as “7. 
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Ill. Alternative values of k and aw. 

Longitude of | Distance 
perihelion, | from sun. 

a+. | r. 

75 ) “4 

129 | i 

100 1-0 

333 15 

12 5:2 

90 9°5 

168 19 

47 30 

Mercury. 

Venus. 

Earth. 

Mars. 

Jupiter. 

Saturn. 

| Uranus. 

| Neptune. 

1,=271°. 1,=165°. 

218 

189 

101 

179 

257 

136 

1:03 

1-45} 3/61 

1:82 | 242| 7:5 | 293 |13-1 

1,=114°. 

151 

(ema Tae 

54 10°5 

il igs | 2a 4° 

————l 

262 |1-056 

316 |1-44 

287 |1°7 

160 |2°1 

199 

277 

305 

234 

The columns with suffix 1 represent the known solar motion 
with reference to the stars; but for the present purpose 
this has no necessary importance. 

The columns with suffix 2 represent the most favourable. 
direction for explaining Mercury’s perihelion-progress. 
alone. 

The columns with suffix 3 represent a compromise intended 
to suit the perihelion-progress of the four inner planets. 
so far as possible. 

The columns with suffix 4 represent the values got by satis- 
fying both the observed perturbations for Mercury, and 
letting other planets look after themselves; i. e. by 
solving the equations, 

eda—to?8 = —ksina+thk’e cos 2a +e 

= §"-38—6'"95= 1:206, 

de—4e?8=kcosa+th'e sin 2a 

= —0!"90-+-6"-95= —-13; 
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or, since e=*206, or say ‘2 for correction terms, 

ke? 

=. cos 2a —k sina=1, 

a i 
k 2 ». e 50 Sn 2@a+keosa=—'13. 

A solution of these equations * is very nearly 

@ = 262°= —98°, 

k =1-056. 

And since the perihelion position for Mercury is 

75S =at+l, 

we get as the longitude of solar drift proper to account for 
both perturbations of Mercury 

l= 75°— 262°= —187°=173°. 

We attend to this case further in Table V. below. 

Numerical calculation for special cases. 

In taking out the trigonometrical functions so as to get 
the proper factors in each case we have to pay particular 

* I solved these by successive approximation, the upper equation 
mainly determining k, while the lower mainly determines w; general 
consideration, about signs, etc., showing that w must be something big 
in the third quadrant, 2. e. not far from 270°; but my brother has now 
solved them in much neater fashion, as thus :— 

x* cos 20—20x sind=20, | 
2 sin 20-+202 cos 0= —2°6, { 

x?(cos 20-+-7 sin 26) +20 tx(cos 0+7 sin 6) =20— 2°62, 

(xe'®)” +202(xe"*) +102) = —80—2°6:, 
(we'® +102) =(a+7b)’, 

where a’—b’=—80 and ab=—1'3. 

“. cceos@=a, xsiné=b—10, and 2?=a>+é?+100—208. 

The value of a?-+-6? is 80°04224 nearly, and 

a= +'1453252, b= +8'94545. 

x cos = + °1453825 x cos 0= —'145325, 
2 sin @= —18-94545 OF asin 0=—1:05455 ; 

x=18°9460 or x«=1:0640, 
6=270° 963), { 0 = 262° of 
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attention to sign. It may be worth while to give details 
just for one case, and we may as well choose the one (No. 3) 
in Table III. when solar drift has longitude 114°. 

The perturbations are 

eda =1270 kA 
i ; - (6) 

de=ta @ k o B 

where A=-— sinw+ the cos 2a +eJk, 
and B= cosa+Hihe sin 2a. 

They consist therefore of a purely planetary factor 
depending only on wp and T; a solar drift magnitude factor 
k=V/uo; anda relative direction factor A and B respectively. 
We have now to reckon the direction factors A and B for 

the particular case marked above with the suffix 3. 
For the values of $70 and e see Table I. 

IV. Calculated Perturbations for the Case of 
[=114 tond, V-—-2-4 x 105%; 

/ ) 
.|cos w.|sin2@.cos2a.} &. | A. wz. sine B. | eda. | de. 

—-—— —_- eee | eee ee [Seas 

Mercury, —39 63 4777 | 98 | +21 15] -78 | -70l+81 [+72 
Venus.... +15 |+-26 |+-97 ]+:50 | +87] 20) —-26] -97/-0-76 |+2:8 
Earth... —14 |—-24 |4-97 ]—-47 | +8824) -24 | 96/4037 +15 
Mars ...180+39—63 |—-777]+-98 | +21] 3:0) -675|—-71]+0-46 |~-048 
Jupiter . 180-++78 —-978 |~-208] +41 |—-91] 55, 93 |—-18/+-054 —01 
Saturn. —24 —-407/+°91 |—74 | +67] 74) -48 | -83]+-0083 +014 
Uranus. +54 (+809 +°50 | +95 | "31 05-84 | -71)—-0035 |+-003 
Neptune —67 —-92 |+-39 13-1) -92 —72 | —-70 -37 fon + ‘0007 

The last two columns of this Table show that the superior 
planets will give us no trouble, whatever their aspect, and in 
spite of their comparatively large value of £; the smallness 
of their own factor 4270 reduces all perturbations due to 
varying inertia to practically nil. Even if V were as high 
as 10 times the earth’s orbital velocity, or say 200 miles a 
second, the superior planets would still give no trouble. 

Of the four inner planets the entries for eda, compared 
with those in Table II., are not bad; but the de are deplor- 
able. And no choice of direction or of drift which satisfies 
one set of perturbations seems likely to satisfy all. 

| 

| 
; 
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Perhaps the simplest plan of calculating perturbations for 
-a given V, is to reckon $270k for one planet, say the Harth ; 
‘divide this by relative r? for all the others; and then 
multiply the numbers so obtained by the respective direc- 
‘tion factors A and B; which consist of — sina and cosa 
primarily, corrected by addition or subtraction of small 
functions of k and e and sin2@ and cos 2a. Thus a first 
approximation is | 

648k, 
v2 

.sinaw, for eda, 

oe 648 hy 
yan | COS Gy LOR te, 

7 

where fp refers to the Harth, being V/10~4 c. 
The next approximation can be taken from equations (3) 

above, viz. the faetor (1+4hkesinaw) for both, with a 
supplementary term for one. 

The only other case which [ will work in detail is the case 
when a direction is chosen to satisfy both edw and de for 
Mercury. We can then sce what happens to the others. 
This is the case which we previously tabulated as k, and 
@, in Table I[LI., and which depends on the solution of 
equations (5). 

V. Calculated Perturbations for the Case of 

1=173° and V=1:7x 10>‘ ce. 

| l 
w. sinw.|cosa.| &. | ey a eae cdw. | de. 

Mereury...| 1804-82 |—-990 |—-139] 1-056] 1-14 |—-124/]+8:34 |—0-91 
Venus...... —44 |—°695|+°719] 1-44 70 | °72 ||+1°46 |4+152 

Earth...... —73 |—'956 |+--292] 1:7 "96 | 29 ||+1:04 |+0°32 

Mars. :5.: 180—20 |+ 342 |— 940] 2:1 —'26 |—‘97 ||—0°12|—0°46 

On the whole perhaps these perturbations agree rather 
better with observation than do those in Table IV., though 
now Mars is disappointing. If they are in any degree 
tolerable, one may note that the drift, of magnitude 1:7 in 
-direction 173°, thus postulated, can be considered as the 

= 
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resultant of a component of the known solar motion with 
reference to the stars 

ee x cos 075°='352, x 10~*¢, in direction 270%46 

compounded with a true drift in plane of ecliptic 

1°78 x 10~‘ ¢ in direction 162°. 

I really do not know whether astronomers could pass, as 
at all possible, outstanding perturbations such as those last 
tabulated. Comparing Tables V. and II. they are clearly 
not of orthodox size ; they are too big for Harth and Venus, 
and too small for Mars. But I suppose that the recognized 
values are in reality dissected out from a group system of 
small discrepancies of which the total is more certain than 
the precise distribution among individual members. 

I submit also that even the forced agreement for Mercury 
is not to be wholly set aside as mere algebra; for the 
postulated solar drift is of a not unreasonable order of 
magnitude, and the figures are got from it absolutely by a 
theory which if not in the least degree valid might have 
‘given them millions of times wrong. So the fact that 
absolute values not quite hopelessly discordant with ob- 
servation can be thus reckoned ought to be taken into 
account. 

Assuming that astronomers will not pass them, however, 
we must face the question why not. Full gravitational 
influence on the extra inertia might halve the necessary 
values of k, but would not otherwise improve things. Total 
absence of solar drift is unlikely ; so in order to explain the 
hypothetical absence of perturbations which ought to occur 
but do not, we may be driven to conclude that the gravitation- 
constant itself is a function of the speed of the attracting 
masses, in some such way as that suggested in Part I. above : 
thus adding to the evidence for an uncompromising Principle 
of Relativity. 

Part Ill.—Suggested Possibilities. 

In support of the idea that gravitative attraction may be a 
fuuction of speed, I may point out that if the attraction were 
of an electrical order, such dependence on speed would be 
reasonable, and even the amount of the dependence would 
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be appropriate; for the attraction between two charges 

Kr 

one charge is revolving round another, the attraction between 
them presumably has for its main term 

Vu sin 6 
F= ren £5(1- een 5 

(See J. J. Thomson’s ‘‘ Report on Hlectrical Theories,” 
British Association volume for Aberdeen, p. 110 (1885).) 

Hence if 
- yy We 2V : 

m=m(1— “) = mo( 1— bi Bs Bh a 
c? 

2 2 

moving together in parallel lines is ee (1- “5 while if 

then, u being in this case far larger than any probable V, 
; okie 

Fin = Fyanal qi Vu He g in 2Vusin@ ui Ve +u ), 

2¢? 2c? 

and the terms involving sin @, which are responsible for the 
cumulative terms in the solution of the differential equation 
quoted in paragraph 1, cancel. 

Were it not so, some curious consequences could be deduced 
for an electron revolving at immense speed inside an atom 
round a nucleus under the inverse-square law, especially 
when such an atom is shot away at high speed ; for the 
angle @ or 27n is enormous. 

Assuming it possible, then, that a quantitatively similar 
law holds in the case of gravity, the force of attraction 
F=ymM/r* will diminish as m increases (M the central 
body, moving steadily at speed V, will not change its value. 
whatever it is), and accordingly the product Fm (involving 
ym") will remain constant at whatever varying speed m 
moves through the ether: the variation of the gravity- 
constant y just compensating for the double variation of 
mass m. 

But it will be very remarkable if such compensation really 
occurs ; and if such a fact is established it may begin to 
throw some light on the family relationship of the force of 
gravity. 
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XVII. On the Lubricating and other Properties of Thin Oily 
Films. By Lord Rayurien, O0.M., F.R.S.* 

| Cir experiments about to be described were undertaken 
to examine more particularly a fact well known in most 

households. A cup of tea, standing in a dry saucer, is apt 
to slip about in an awkward manner, for which a remedy is 
found in the introduction of a few drops of water, or tea, 
wetting the parts in contact. The explanation is not obvious, 
and J remember discussing the question with Kelvin many 
years ago, with but little progress. 

Itis true that a drop of liquid between two curved sur- 
faeces draws them together and so may increase the friction. 
If d be the distance between the plates at the edge of the 
film, T the capillary tension, and « the angle of contact, the 
whole force is + - 

2AT cose 

d 

A being the area of the film between the plates and B its 
circumference. If the fluid wets the plate, e-=0 and we 
have simply 2AT/d. For example, if d=6 x 10~’cm., equal 
to a wave-length of ordinary light, and T (as for water) be 
74 dynes per cm., the force per sq. cm. is 25 x 10° dynes, a 
suction of 24 atmospheres. For the present purpose we 
may express d in terms of the radius of curvature (p) of one 
of the surfaces, the other being supposed flat, and the dis- 
tance (#) from the centre to the edge of the film. In two 
dimensions d=.2?/2p, and A (per unit of length in the third 
dimension) =22, so that the force per unit of length is 
8pT/z, inversely as x On the other hand, in the more 
important case of symmetry round the common normal 
A=72", and the whole force is 4apT, independent of x, but 
inereasing with the radius of curvature. For example, if 
T=74 dynes per cm., and p=100 cm., the force is 925 
dynes, or the weight of about 1 gram. The radius of cur- 
vature (p) might of course be much greater. There are 
circumstances where this force is of importance ; but, as we 
shall see presently, it does not avail to explain the effects 
now under consideration. 
My first experiments were very simple ones, with a slab of 

+ BT sin «, 

* Communicated by the Author. 
+ See for example Maxwell on Capillarity. Collected Papers, vol. ii. 

p- 571. 

Phil. Mag. 8. 6. Vol. 35. No. 206. Feb. 1918. N 
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thick plate glass and a small glass bottle weighing about 
4 oz. The diameter of the bottle is 44 cm., and the bottom 
is concave, bounded by a rim which is not ground but makes 
a fairly good fit with the plate. The slab is placed upon a 
slope, and the subject of observation is the slipping of the 
bottle upon it. If we begin with surfaces washed and well 
rubbed with an ordinary cloth, or gone over with a recently 
wiped hand, we find that at a suitable inclination the con- 
ditions are uniform, the bottle starting slowly and moving 
freely from every position. If now we breathe upon the 
slab, maintained in a fixed position, or upon the bottle, or 
upon both, we find that the bottle sticks and requires very 
sensible forces to make it move down. A like result ensues 
when the contacts are thoroughly wetted with water instead 
of being merely damped. When, after damping with the 
breath, evaporation removes the moisture, almost complete 
recovery of the original slipperiness recurs. 

In the slippery condition the surfaces, though apparently 
clean, are undoubtedly coated with an invisible greasy 
layer. If, after a thorough washing and rubbing under the 
tap, the surfaces are dried by evaporation after shaking off 
as much of the water as possible, they are found to be sticky 
as compared with the condition after wiping. A_ better 
experiment was made with substitution of a strip of thinner 
glass about 5 cm. wide for the thick slab. This was heated 
strongly by an alcohol flame, preferably with use of a blow- 
pipe. Ata certain angle of inclination the bottle was held 
every where, but on going over the surface with the fingers, 
not purposely greased, free movement ensued. As might 
have been expected, the clean surface is sticky as compared 
with one slightly greased; the difficulty so far is to explain 
the effect of moisture upon a surface already slightly greased. 
It was not surprising that the effect of alcohol was similar 
to that of water. 

At this stage it was important to make sure that the 
stickiness due to water was not connected with the minute- 
ness of the quantity in operation. Accordingly a glass plate 
was mounted at a suitable angle in a dish filled with water. 
Upon this fully drowned surface the bottle stuck, the inclina- 
tion being such that on the slightest greasing the motion 
became free. In another experiment the water in the dish 
was replaced by paraffin oil. ‘There was decided stickiness 
as compared with surfaces slightly greasy. 

The better to guard against the ordinary operation of sur- 
face tension, the weight of the bottle was increased by 
inclusion of mercury until it reached 20 oz., but without 
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material modification of the effects observed. The moisture 
of the breath, or drowning in water whether clean or soapy, 
developed the same stickiness as before. 

The next series of experiments was a little more elaborate. 
In order to obtain measures more readily, and to facilitate 
drowning of the contacts, the slab was used in the horizontal 
position and the movable piece was pulled by a thread which 
started horizontally, and passing over a pulley carried a small 
pan into which weights could be placed. The pan itself 
weighed 1 oz. (28 grams). Another change was the substi- 
tution for the bottle of a small carriage standing on glass 
legs terminating in three feet of hemispherical form and 
2 mm.in diameter. The whole weight of the carriage, as 
loaded, was 72 0z. The object of the substitution was to 
eliminate any effects which might arise from the compara- 
tively large area of approximate contact presented by the 
rim of the bottle, although in that case also the actual con- 
tacts would doubtless be only three in number and of very 
small area. 

With 4 oz. in pan and surfaces treated with the hand, the 
carriage would move within a second or two after being 
placed in position, but after four or five seconds’ contact 
would stick. After a few minutes’ contact it may require 
13 oz. in pan to start it. When the slab is breathed upon it 
requires, even at first, 34 oz. in the pan to start the motion. 
As soon as the breath has evaporated, $ oz. in pan again 
suffices. When the weight of the pan is included, the forces 
are seen to be as 1:3. When the feet stand in a pool of 
water the stickiness is nearly the same as with the breath, and 
the substitution of soapy for clean water makes little 
difference. 

In another day’s experiment paraffin (lamp) oil was used. 
After handling, there was free motion with 1 oz. in pan. 
When the feet stood in the oil, from 22 to 3 oz. were needed 
in the pan. Most of the oil was next removed by rubbing 
with blotting-paper until the slab looked clean. Atthis stage 
2 oz. in pan sufficed to start the motion. On again wetting 
with oil 2 oz. sufficed instead of the 22 0z. required before. 
After another cleaning with blotting-paper 4 oz. in pan 
sufficed. From these results it appears that the friction is 
greater with a large dose than with a minute quantity of the 
same oil, and this what is hard to explain. When olive oil 
was substituted for the paraffin oil, the results were less 
strongly marked. 

Similar experiments with a carriage standing on brass 
N 2 
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feet of about the same size and shape as the glass ones 
gave different results. It should, however, be noticed that 
the brass feet, though fairly polished, could not have been 
so smooth as the fire surfaces of the glass. The present 
carriage weighed (with its load) 64 oz., and on the well- 
handled glass slide moved with + oz. in pan. When the 
slide was breathed upon, the motion was as free as, perhaps 
more free than, before. And when the feet stood in a pool 
of water, there was equal freedom. A repetition gave 
confirmatory results. On another day paraffin oil was 
tried. At the beginning + oz. in pan sufiiced on the 
handled slab. With a pool of oil the carriage still moved 
with + oz. in pan, but perhaps not quite so certainly. As 
the oil was removed with blotting-paper the motion became 
freer, and when the oil-film had visibly disappeared the 
+ oz. in pan could about be dispensed with. Doubtless 
a trace of oil remained. ‘The blotting-paper was of course 
applied to the feet and legs of the carriage, as well as to 
the slab. 

In attempting to interpret these results, it is desirable to 
know what sort of thickness to attribute to the greasy films 
on handled surfaces. But this not so easy a matter as when 
films are spread upon water. In an experiment made some 
years ago * I found that the mean thickness of the layer on 
a glass plate, heavily greased with fingers which had touched 
the hair, was about 4 of the wave-length of visible light, 
viz. about 10-* mm. The thickness of the layer necessary 
to induce slipperiness must be a small fraction of this, 
possibly ;1,, but perhaps much less. We may compare this 
with the thickness of olive oil required to stop the camphor- 
movements on water, which I foundt to be about 2 x 10-* mm. 
It may well be that there is little difference in the quantities 
required for the two effects. 

In view of the above estimate and of the probability that 
the point at which surface-tension begins to fall corresponds 
to a thickness of a single layer of moleules{, we see that 
the phenomena here in question probably lie outside the 
field of the usual theory of lubrication, where the layer of 
lubricant is assumed io be at least many molecules thick. We 
are rather in the region of incipient seizing, as is perhaps not 
surprising when we consider the smallness of the surfaces 

* Phil. Mag. vol. xix. p. 96 (1910); Scientific Papers, vol. v. p. 538. 
t+ Proc. Roy. Soe. vol. xlvii. p. 364 (1890) ; Scientific Papers, vol. iii. 

p- 349. : 
¢ Phil. Mag. vol. xlviii. p. 321 (1899); Scientific Papers, vol. iv. 

p- 430. 
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actually in contact. And as regards seizing, there is 
difficulty in understanding why, when it actually occurs, 
rupture should ensue at another place rather than at the 
recently engaged surfaces. 

It may perhaps be doubted whether the time is yet ripe 
for a full discussion of the behaviour of the thinnest films, 
but I will take this opportunity to put forward a few remarks. 
Two recent French writers, Devaux * and Marcelin t, who 
have made interesting contributions to the subject, accept my 
suggestion that the drop of tension in contaminated surfaces 
commences when the jayer is one molecule thick ; but 
Hardy tf points out a difficulty in the case of pure oleic acid, 
where it appears that the drop commences at a thickness of 
1-3 x 107° mm., while the thickness of a molecule should be 
decidedly less. Many of Devaux’ observations relate to the 
case where the quantity of oil exceeds that required for the 
formation of the mono-molecular layer, and he formulates a 
conclusion, not accepted by Marcelin, that the thickness of 
the layer depends upon the existence and dimensions of the 
globules into which most of the superfluous oil is collected, 
inasmuch as experiment proves that when a layer with fine 
globules exists beside a layer with large globules, the former 
always contracts at the expense of the latter. As to this, it 
may be worth notice that the tension T of the contaminated 
surface could not be expressed as a function merely of the 
volume of the drop and of the two other tensions, viz. T; 
the tension of an air-oil surface and T, that of a water-oil 
surface. It would benecessary to introduce other quantities, 
such as gravity, or molecular dimensions. I am still of the 
opinion formerly expressed that these complications are 
the result of zmpurity in the oil. If the oil were really 
homogeneous, Devaux’ views would lead one to regard the 
continued existence of two sizes of globules on the same 
surface as impossible. What would there be to hinder the 
rapid growth of the smaller at the expense of the greater 
until equality was established? On the other hand, an 
impurity, present only in small proportion, would naturally 
experience more difficulty in finding its way about. 

The importance of impurities in influencing the transfor- 
mations of oil-films was insisted on long ago by Tomlinson §; 

* A summary of Devaux’ work, dating from 1903 onwards, will be 
found in the Revue Gén. d. Sciences for Feb. 28, 1913. 

+ Annales d. Physique, t.1. p. 19 (1914). 
{ Proc. Roy. Soc. A, vol. lxxxviii. p. 319 (1913). 
§ Phil. Mag. vol. xxvi. p. 187 (1863). 
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and as regards olive oil, Miss Pockels showed that the 
behaviour of purified oil is quite different from that of 
the common oil. She quotes Richter (Nature, vol. xlix. 
p. 488) as expressing the opinion that the tendency of oil 
to spread itself on water is only due to the free oleic acid 
contained in it, and that if it were possible to completely 
purify the oil from oleic acid, it would not spread at all*. 
Some confusion arises from the different meanings attached 
to the word “spreading.” I suppose no one disputes the 
rapid spreading upon a clean surface which results in the 
formation of the invisible mono-molecular layer. Miss 
Pockels calls this a solution current—a rather misleading 
term, which has tended to obscure the meaning of her 
really valuable work. It is the second kind of spreading in 
a thicker layer, resulting in more or less rapid subsequent 
transformations, which is attributed to the presence of oleic 
acid. Miss Pockels says :—‘‘The Provence oil used in my 
experiment was shaken up twice with pure alcohol, and the 
rest (residue) of the latter being carefully removed, a drop 
of the oil was placed upon the freshly formed water-surface 
in a small dish by means of a brass wire previously cleaned 
by ignition. The oil did not really spread, but after a 
momentary centrifugal movement, during which several 
small drops were separated from it, it contracted itself 
in the middle of the surface, and a second drop deposited 
on the same vessel remained absolutely motionless.” I have 
repeated this experiment, using oil which is believed to 
have come direct from Italy. A drop of this placed upon 
a clean water-surface at once drives dust to the boundary in 
forming the mono-molecular layer, and in addition flattens 
itself out into a disk of considerable size, which rapidly 
undergoes the transformations well described and figured by 
Devaux. The same oil, purified by means of alcohol on 
Miss Pockels’ plan, behaves quite differently. The first 
spreading, driving dust to the boundary, takes place 
entirely as before. But the drop remains upon the water as 
a lens, and flattens itself out, if at all, only very slowly. Small 
admixtures of the original oil with the purified oil behave in 
an intermediate manner, flattening out slowly and allowing 
the beautiful transformations which follow to be observed at 
leisure. 

Another point of importance does not appear to have been 
noticed. Water-surfaces on which purified olive oil stands 
in drops still allow the camphor movements. Very small 
fragments spin merrily, while larger ones by their slower 

* ‘Nature,’ vol. 1. p. 223 (1894). 
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movements testify to the presence of the oil. Perhaps this 
was the reason why in my experiments of 1890 I found 
the approximate, rather than the absolute, stoppage of the 
movements to give the sharpest results. The absolute 
stoppage, dependent upon the presence of impurity, might 
well be less defined. 

If, after the deposition of a drop of purified oil, the 
surface be again dusted over with sulphur or tale and then 
touched with a very small quantity of the original oil, 
the dust is driven away a second time and camphor- 
movements cease. 

The manner in which impurity operates in these phenomena 
merits close attention. It seems pretty clear that from pure 
oil water will only take a layer one molecule thick. But 
when oleic acid is available, a further drop of tension ensues. 
The question arises how does this oleic acid distribute 
itself? Is it in substitution for the molecules of oil, or 
an addition to them constituting a second layer? The 
latter seems the more probable. Again, how does the 
impurity act when it leads the general mass into the un- 
stable flattened-out form? In considering such questions 
Laplace’s theory is of little service, its fundamental postulate 
of forces operating over distances large in comparison with 
molecular dimensions being plainly violated. 

Terling Place, Witham, ; 
Dec. 31, 1917. 

XVIII. On the Second Postulate of the Theory of Relativity : 
Experimental Demonstration of the Constancy of Velo- 
city of the Light reflected from a Moving Mirror. By 
Q. Masorana, Professor of Physics at the Polytechnic 
School of Turin*. 

HE Theory of Relativity is based upon two well-known 
fundamental postulates. The first affirms the impos- 

sibility of discovering the movement of a system without 
referring this system to other systems ; that is to say, it 
denies the physical reality of absolute motion. The second 
postulate affirms that the velocity c of propagation of light 
in vacuo is a universal constant. Both these postulates are 
generalizations of facts or principles already admitted by 
physicists. 

In fact, we may regard the first as the extension to optical 
or electrical phenomena of a classical principle of mechanics, 

* Communicated by the Author. 
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an extension justified by the negative results of certain ex- 
periments (Michelson and Morley, Trouton and Noble) by 
which it was sought to discover the absolute motion of the 
earth, or the ethereal wind which must traverse all terrestrial 
objects. The second postulate is the generalization of a 
fundamental principle in the theory of ethereal or electro- 
magnetic undulations. 

But if these two principles, derived from quite different 
chapters of physics, have been fully accepted severally by 
modern physicists, their origin has been almost forgotten ; 
an ingenious structure arose upon their union: the theory 
of relativity. This theory, while repudiating according to 
Einstein and others a theoretical conception which had given 
occasion for the formulation of the second postulate (the 
ether), serves well to explain the insuecess of the above- 
cited experiments. 

Now our imagination, accustomed, as W. Ritz has said, 
to “ substantialize ” physical phenomena, if it easily grasps 
the essence of the first postulate, does not do so in the case 
ot the second ; and the more so since, as has already been 
said, some adherents to relativistic theories do not retain as 
necessary the existence of a medium of transmission (the 
zether) in order to explain the constancy of c. Moreover on 
the second postulate, or, more precisely, on a certain portion 
of this, depend the conclusions which appear artificial or 
extraordinary in the whole relativistic theory *. The second 
postulate must be understood in the sense that an observer 
who measures the velocity of light finds always the same 
value if both he and the source be at rest, relative or (if the 
possibility be admitted) absolute, or if the source or the 
observer, or both, have a uniform motion of translation. In 
short, the second postulate affirms the absolute independence 
of ¢ of any contingency whatever of uniform motion of 
translation of the source or of the observer. 

It is known that an !:ypothesis of a mechanical character 
(emissive or ballistic), according to which to the ordinary 
velocity of light must be added that of the source, can 
explain, like the theory of relativity, the failure of the above- 
quoted experiments. But this hypothesis is radically in 
contrast with the electromagnetic theory, and consequently 
is not much favoured f. But in any case laboratory experi- 
‘ments can be conceived which should decide between the 

* Carmichael, Phys. Rev. xxxv. p. 168 (1912). 
+ In this connexion should be recalled the important critical work of 

W. Ritz (Gwvres, p. 317) which perhaps has not been taken into sufii- 
cient consideration by physicists. 
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above-mentioned hypothesis or mechanical theory and the 
relativistic one. It is indeed possible to see that some 
method, one moreover already in use, adopted for the verifi- 
cation of Doppler’s principle may serve for the solution of 
the above-quoted problem. 

In order to see this, let us consider a luminous source 8 
which emits waves of length A and of frequency x moving 
towards the observer fixed at O (fig. 1). If we suppose 

fig. 1. 
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that the waves are transmitted through a stationary ether, 
the n waves emitted in a second by 8 will be distributed 
over the segment S’A=c—v. In the same time all the n 
waves distributed in the segment OB=ec will have passed 
through O ; we have therefore 

c—v  ¢ ; c 
— =—, or n'=n—. 
n n c—v 

If we put v/c=8 and neglect terms of higher order than the 
first in 8 we have 

n'=n(1+ 8). 

The new wave-length is obtained by the relations 
fT == n'D' 

A’=A(1— 8B). 

If now instead of the hypothesis of a stationary medium we 
adopt the ballistic or emissive hypothesis of which we have 
spoken above, we shal! find that in one second the n waves 
emitted by S will be distributed over the segment §’A’=c. 
In the same time there will pass through O, n'’ waves which 
will be distributed over the segment OB'=c+v. We have, 
therefore, 

Co G28 “an 
Sr orn =n(1+). 

And since c=nX and e+v=n'd' we see that, in this case, 
=A. 

As regards the frequency we arrive, therefore, at the same 
conclusions (with the exception of the terms in 8”) whether 
we adopt the ethereal or the ballistic hypothesis ; but for 
the wave-length we obtain different values from the two 
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hypotheses, and these values differ by a term of the first 
order in ®. If then the Doppler effect is measured, by 
observation of the wave-length, different results should be 
obtained according as the one or the other hypothesis is 
adopted *. Now observations of the Doppler effect have 
already been made by measuring the displacement of the 
spectral lines, employing either prisms or diffraction-gratings. 
In the case of prisms it may be observed that all the theories 
of dispersion hitherto admitted lead to the supposition that 
this phenomenon can only depend on the frequency of the 
incident luminous vibrations. Consequently the displace- 
ment of the spectral lines may be caused by the simple 
variation in frequency due to the Doppler effect, and this 
whether, for the light, the hypothesis of a stationary ether is 
adopted, or a ballistic or emissive theory. From this point 
of view, therefore, the question whether the velocity of 
propagation of the light emitted by a source does or does 
not change with the velocity of the latter remains unanswered. 

But the Doppler effect has been established with diffraction- 
gratings as well as with prisms, and for astronomical as well 
as terrestrial sources tf. Now the function of a grating, from 
the geometrical point of view, may be regarded as depending 
exclusively on the values of the incident wave-lengths ; the 
positions of the successive spectral lines remain exactly 
determined by those values. But since, according to the 
ballistic or emissive hypothesis, the value of X does not vary 
with the velocity of the source, we see that the grating 
should not give an appreciable result in the study of the 
Doppler effect, and this, as is known, is not in agreement 
with experience. We may then conclude from observations 
of the Doppler phenomenon in the stars and the limb of the 
sun with moving mirrors (Galitzin & Wilip), or again in 
the canal rays (Stark, Paschen), that the velocity of light is 
absolutely constant and independent of the movement of the 
source ; this is equivalent to the rejection of the ballistic or 
emissive theory. Thisis Tolman’s opinion f, in contradiction 
to that of Stewart §. Indeed, it should be borne in mind 
that the ordinary grating theory || may not apply exactly in 
the case of a mechanical (ballistic or emissive) theory of 

* These conclusions are identical with those already published by 
other authors; see, e. g., Tolman, Phys. Rev. xxi. p. 26 (1910). 
+ Galitzin & Wilip, Communications Acc. Russe, 1907, p. 2138: Stark, 

Ann. d. Phys. xxviii. p. 974 (1909). 
ft Phys. Rev. xxxv. p. 136 (1912). 
§ Phys. Rev. xxxii. p. 418 (1911). 
i| La Rosa, Nuovo Cimento, ili. p. 356 (1912). 
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light. In any case it should be remarked that astronomical 
observations of the Doppler effect are not always made with 
an @ priort knowledge of the relative velocities of source and 
observer. In the case of the solar limb it is necessary, 
moreover, to be cautious in establishing a relation between 
the measure of displacement of the lines and the velocity of 
the limb established by observation of the solar spots; in 
fact, the light from the limb may be strongly refracted by 
the perispherical incandescent gases, and consequently the 
value of the Doppler effect may vary considerably *. So 
far as terrestrial observations are concerned, and those on 
the canal rays (Stark, Paschen), they give measures of the 
phenomenon of only small precision, and it is impossible to 
foresee by another method the exact velocity of the luminous 
particles ; finally, observations made with moving mirrors 
bear no relation to those with moving sources, and these may 
produce different consequences f. 

From all this we may conclude that up to the present 
time we do not possess any quite certain evidence of the 
immutability of ¢ with variable veloeity of the source if, be 
it understood, we are not willing to admit as conclusive the 
simple electromagnetic theory or that of bodies in motion 
according to Lorentz or else Hinstein’s theory of relativity. 
This conclusion is confirmed by the study of the works of 
the chief supporters of the last theory, and, implicitly, of 
the second postulate. In these works we frequently find 
expressed the desire to discover further facts which will 
definitely confirm the said theory: this desire corresponds 
with the crisis of the latter years of the said theory. 

But on the other hand, as Levi-Civita observes, after the 
latest researches of Hinstein, which collect in an admirably 
comprehensive synthesis all the physical pnenomena (gravi- 
tation included), it is difficult to avoid the impression that 
we are, as regards the theory of relativity, face to face with 
some definite acquisition. But, while taking account of this, 
it is not expedient to neglect any attempt ata definite con- 
firmation, from an experimental point of view, of a theory 
which has subverted to so large an extent our simplest 
physical notions. This confirmation may follow from a 
precise study of the velocity of propagation of light emitted 
from a moving source, or, which is equivalent, of the wave- 
length of this light. 

To realize this study we must devise an arrangement 

* Michelson, Astrophys. Journ. xiii. p. 192 (1901) ; Harnack, Ann. d.. 
Phys. xlvi. p. 558 (1915). 

+ See the theory proposed by Ritz, Guwvres, pp. 821, 371, 444. 
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which will permit us to identify the structure of the luminous 
wave, freed from all external action, in its free propagation 
(or transmission) when the velocity of translation of the 
source can be varied at will. But, apart from the fact that 
we must inevitably experiment under the eventual action of 
our earth *, two serious and almost insurmountable difficulties 
oppose themselves to the realization of such a programme. 
In the first place, it is not easy artificially to endow a 
luminous source with rapid movement f, especially if this 
source (as is necessary in some interference methods) has to 
be very rigorously monochromatic ; moreover, I shall publish 
an account in a forthcoming paper of a disposition of this 
nature with which I am about to experiment. Secondly, in 
order to be able to examine the structure of the light emitted 
by a moving source, with whatever disposition, the light 
itself has to be subjected tu reflexions, refractions, &c., some- 
times fairly numerous ; that is to say, the luminous ray must 
encounter ponderable matter after leaving the source. It 
does not follow, therefore, that even if cin a vacuum varies 
with the particular velocity of the source, this quantity does 
not return to the same fixed value after the said phenomena 
of reflexion, refraction, &c. It will be well, therefore, to 
endeavour to eliminate as far as possible, in an experiment of 
this nature, all causes tending to complicate the phenomenon, 
and in every case to consider its results carefully. 

Meanwhile, to begin with a relatively simple experiment, 
we may undertake the study of the wave-length of a ray of 
light reflected by a moving mirror{. This may correspond 
with the experiment already realized, some years ago, by 
Belopolski, and afterwards repeated by Galitzin & Wilip ; 
but if the first of these authors employed prisms for the 
observation of the Doppler effect (and consequently the 
question of the eventual variation of \ remained unsolved), 
the other two made use of a diffraction-grating, by which 
the controversy spoken of above arises. It would be better 

* T cannot succeed in imagining an interplanetary experiment of the 
nature of that proposed (in jest) by Rose-Innes ; see Phil. Mag. xxvii. 
p. 150 (1914). | 

+ I understand by this a velocity higher thansome hundreds of metres 
per second; this value may perhaps be attained, but it is difficult to 
conceive a practical disposition for a higher velocity. Naturally I leave 
out of account the employment of canal rays, which do not give simple 
and well-known velocities. 

+t While this article was in the press, M. Michelson has called my 
attention to his paper on the same subject, published in the ‘Astro- 
physical Journal,’ April 1913, the conclusions of which agree with those 
that I am stating. 
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therefore to examine the ray reflected from a moving mirror 
by an interference method simpler than that on which the. 
action of the diffraction depends, as has been said above. 

Before expounding this method it is well to recall that 
many theoretical researches have been made on the influence 
of the motion of the mirror upon the reflected luminous 
wave, amongst them those of Abraham, Brown, Edser, 
Harnack, Larmor, Planck. These researches make of the 
problem either a simply geometrical investigation, or an 
application of the electromagnetic theory of light. But 
without discussing the result of these researches we may 
accept the conclusion of Harnack * respecting the frequency 
of the vibrations reflected by a mirror in uniform motion. 
Let v be the velocity of the latter, normal to its plane, 
reckoned as positive towards the source; c the velocity of 
the luminous ray zn vacuo which makes the angle of inci- 
dence @ with the mirror ; n, x’ the frequencies of the ray 
before and after reflexion, the source and observer being at 
rest. If we put 8=v/c we shall have 

,__1+28 cos 0+? 
Tk at 1-- . 

which, neglecting the terms in 8”, reduces to 

n'=n(1+28 cos 6). 

This relation is the same as that of Ketteler Tf, which was 
employed by Belopolski f in his investigation of the Doppler 
effect, and follows simply from the consideration that the 
image of the source moves with the velocity 2v in the direc- 
tion of the normal to the mirror and, consequently, the 
component of this velocity in the direction of the reflected 
ray is 2v cos @. 

If now we suppose that the ray is, by suitable arrange- 
ments, reflected with the incidence 6, k times from several 
mirrors in motion with the velocity v, we shall have 

n'=n(1+ 2kB cos 8). 

Therefore, according to the hypothesis of constant velocity 
of light, neglecting the terms in 6? we shall have 

r’=A(1—2kB cos A). 

If, on the contrary, we suppose that the velocity of the 

* Ann. d. Phys, xxxix. p. 1053 (1912) and xlv. p. 547 (1915). 
+ Astronomische Undulationstheorie. 
t Communications Acc. Russe, xiii. p. 451 (1900). 
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reflected light is variable (and equal to the sum of e=3.10!°cm. 
and the component of the velocity of the image in the direc- 
tion of the ray) we shall have 

ce’ =c+ 2kv cos 6. 

And since c'=n/v' and c=nav we have A’=nxr. (It remains 
then to see by experiment whether or not we can observe, 
in addition to the Doppler effect, a variation in the value 
of X; from this we can ascertain whether c remains constant 
or not on reflexion from a moving mirror. I have not pro- 
ceeded to the observation of the Doppler effect in these 
researches since there is no doubt about its existence, already 
proved experimentally by the authors quoted ; I have rather 
sought to find out whether and in what way A varies when 
the velocity of the moving mirrors changes. 

Belopolski’s arrangement for the study of the Doppler 
effect was inconvenient on account of the excessive subtility 
of the luminous ray necessary to obtain multiple reflexions 
from the same mirrors ; for this reason the author mentioned 
was unable to observe the displacement of the rays except 
by photography. I prefer to adopt the arrangement shown 
diagrammatically in fig. 2. A horizontal brass wheel R, 35 cm. 

Fig. 2. 
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in diameter (6 mm. thick), which can be made to revolve 
with a maximum velocity of 80 turns per second, bears on its 
‘periphery ten mirrors similar to M, rectangular, plane, 
vertical, of glass silvered at the back. The velocity of the 
centres of the mirrors, corresponding to the greatest velocity 
of rotation, amounts therefore to more than 100 metres per 
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second. The number of revolutions of the wheel was deter- 
mined acoustically in each experiment. The mirrors, at 
equal intervals on the periphery of the wheel, are inclined 
to the radius from R passing through the centre of each of 
them at an angle 2=29°. They are fixed solidly to R by 
screw movements capable of permitting a rigorous adjust- 
ment. The support for the bearings of the axle of R carries 
also fixed mirrors F, vertical like M, of which the number 
in the figure is three ; ; but this number may, at will, be 
reduced, or increased up to nine. The position of the F’s 
and M’s is such that a parallel beam of light L, after a 
certain number of reflexions from the F’s and M’s (seven in 
the figure), may be received at L’ when R has determinate 
angular positions. Naturally the intensity of L’ is much 
weaker than that of L, and this enfeeblement is much more 
marked if R is in rotation, because in this case the light 
arrives at L’ only during certain very short instants (ten 
times per revolution). I have observed in practice, however, 
that the four moving and three fixed reflexions of the fioure 
allow of experimenting with light sufficiently intense at L! 
even if R is in motion: that is to say, that direct observation 
(without photography) suffices to ‘establish the luminous 
phenomenon of which we have spoken above. 

To study the value of X the light L’ was examined with 
the well-known interferometer of Michelson, shown diagram- 
matically in the figure. It is known that ‘if the distances 
8,8; and 8,8; are exactly equal fringes are observed with 
the telescope C even if the light is not monochromatic ; 
these fringes then have the coloration of Newton’s rings. 
As soon as a difference of path occurs (even if only of a few 
microns) observation with white light is no longer possible. 
Monochromatic light must then be used, and the order of the 
interference fringes increases with this difference. Their 
visibility is greater, the simpler the luminous vibrations. 
From the researches of Michelson * it is known that from 
this point of view the line that gives the greatest visibility 
of the fringes with the greatest difference in path is the 
green one of mercury (A=546uy). In this case numberless 
circular fringes are visible even for a difference of path 
1=2(8,8;—S8,83) =40 cm. I have therefore employed as 
source La mercury arc zn vacuo the light of which is con- 
veniently filtered by solutions of chromate of potassium 
and chloride of nickel to absorb the violet and yellow rays ; 

ee, Travaux et Mémoires, Bur. Int. de poids et mésures, xi. p. 146 
( 



172 Prof. Q. Majorana on the Second 

in this manner I have been able to observe with the tele- 
scope CU, with sufficient clearness, countless circular fringes, 
even forJ=32cm. But for these researches I have limited 
the difference of path to =13 cm., or still less. 

The disposition described above is particularly suitable 
for detecting very small differences in the value of the 
incident wave-length ; in fact, the value of / being large a 
very great number of wave-lengths is comprised in this length 
(e. g., 200,000 if A=0'5u, and J=10 em.), and correspond- 
ingly for the same variations very sensible displacements 
can be observed in the position of a fringe. 

With the apparatus disposed as above, let us note with 
the micrometer wire of the telescope the position of a fringe, 
for instance the first central bright one, when R is in the 
position shown in the figure, or, still better, when it revolves 
with a negligible velocity (one turn per second). If, now, 
this velocity be increased to sixty turns per second a displace- 
ment of the fringe under observation is distinctly visible ; if 
the mirrors are moving against the incident ray this dis- 
placement indicates a diminution of A, and it changes sign 
when the direction of rotation of the wheel is reversed, and 
this indicates an increase of X. In order to define the sense 
of the displacement, I will say that on examining the system of 
circular fringes with the telescope focussed for infinite distance 
the diameter of each of these increases when the mirrors 
move against the incident ray, and the fringes themselves 
crowd together as those of large diameter are very little 
displaced; at the same time some new fringes come out 
from the centre of the system. On the other hand, when 
the mirrors are moving in the sense of propagation of the 
incident light the diameter of each fringe diminishes ; they 
become more widely separated, and some of them are as it 
were swallowed up by the centre. 

Before stating the measure of the displacement observed 
we will see what it should amount to, making the hypothesis 
that the velocity of the light reflected from a mirror is the 
same as that of the incident light. Let g be the number of 
revolutions of R per second and d its diameter, reckoned 
between the centres of two opposite mirrors M, then wdg 
will be the instantaneous velocity of translation of the latter. 
Since the mirrors are inclined at an angle « to the radius of 
the wheel passing through each of them, the component 
of the given velocity in the direction normal to the plane of 
each mirror will be 

v = dg COs 2. 
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We have, therefore, 

n'=n(1+ 3 

2kadg cos « cos | 
C 

and, by the hypothesis of the invariability of c, 

N= fz 2krdg 08 a COS = 
C 

If 1 is the difference of path of two interfering rays in 
Michelson’s apparatus, the number of fringes which are seen 
to cross the micrometer thread of the telescope when » 
becomes 2’ (that is to say when the velocity of rotation 
varies between zero and g turns per second) is 

__ & 2kmdg cos x cos 0 

I Xr Cc 

If the observation is made by noting the position of the 
fringes when the wheel turns in one sense with the velocity 
g, and that corresponding to an equal and contrary velocity, 
the number of fringes crossing the micrometer thread will 
be 2f. 

Now, in my apparatus d=38 cm., a=29°, @=27°, k=4 
(as in the figure); if X is put equal to 0°546u (green mercury 
line), J=13 em., c=3.10'° cm., and g=60 (turns of R per 
second in one sense and afterwards in the other), we may 
expect, according to the preceding formula, a fringe dis- 
placement 2/=0°71. 

Experiment gives, for the case mentioned, a displacement 
of between 0-7 and 0°8 fringes ; and it is not possible, for 
reasons of visibility, to carry the precision of the observa- 
tions further. But, as is seen, the agreement between the 
predicted result and observation is sufficient ; this agreement 
is confirmed by observations made by choosing other con- 
venient values of J and g, of which for brevity’s sake I shall 
not speak here. 

Experiment, therefore, authorizes the conclusion that 
reflexion of light by a moving metallic mirror does not alter 
the velocity of propagation of the light itself, in air, and con- 
sequently, with great probability, also in vacuo; at least, in 
the conditions of the experiment above described. This 
experimental result, as to which no doubt can be entertained, 
is contrary to the hypothesis of some physicists who, like 
Stewart *, basing themselves upon the electromagnetic 
emission theory of Thomson, maintain the possibility that 

* Phys. Rev. xxxii. p. 418 (1911). 

Phil. Mag. 8. 6. Vol. 35. No. 206, Feb. 1918. ‘) 
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light, after reflexion, is propagated with the velocity c+v, 
where v is the component of the velocity of the image in the 
direction of the reflected ray. 

To complete these researches I intend, as I have said 
above, to investigate further with the same interferential 
arrangements, the velocity of propagation of light from a 
source set in motion artificially ; but of these, and of the 
general conclusions to be drawn from these investigations, I 

reserve mention for a future occasion. 

XIX. The Visibility of Radiation. : 
By PRENTICE REEVES *. 

fae theory of this subject has been given previously by 
Nutting t and Ives {, and in those papers may be 

found a thorough treatment of the early literature. In 
this paper the writer wishes to present further data obtained 
by a method similar to that employed by the above writers 
but using a different apparatus. The writer has data from 
thirteen subjects, five of whom were also used as observers 
by Nutting in his list of twenty-one subjects. The values 
for the spectral energy distribution of acetylene were those 
offered by Nutting, and were obtained by weighting the data 
accessible up to that time as well as his own results in this 
laboratory. By using these values the writer was able to 
directly compare results with those of the other writers, and 
by using the values offered by Coblentz$ and revised by 
Coblentz and Emerson ||, we can see the effect of various 
values for the spectral energy distribution of acetylene. 
The variations in the acetylene values are probably due to 
the different kinds of burners used, as Coblentz has shown 
that the spectral energy distribution in the longer wave- 
lengths is affected by the thickness of the radiating layer of 
incandescent particles in the flame. 

The apparatus represented in fig. 1 is a modification of 
the Nutting monochromatic colorimeter{] as manufactured 

* Communicated by Dr. C. E. Kennett Mees, being communication 
No. 55 from the Research Laboratory of the Eastman Kodak Company. 

+ P. G. Nutting, Phil. Mag. xxix. p. 801 (1915); Trans. lum. Eng. 
Soc. ix. p. 633 (1914). 

+ H. E. Ives, Phil. Mag. xxiv. p. 149 (1912). 
§ W. W. Coblentz, Bull. Bur. Stds. vii. p. 248 (1911); reprinted, ix. 

p- 109 (1912). 
|| W. W. Coblentz and W. B. Emerson, Bull. Bur. Stds. xiii. p. 1 

1916). 
q 3 G. Nutting, Bull. Bur. Stds. ix. p. 1 (1918); Zsch. f. Instrument- 

enkund., xxxiii. p. 20 (1918), 
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by Adam Hilger of London. This type of apparatus has 
been described by Jones*, but the modifications made for 
its use in this experiment warrant a separate description in 
this paper. The light from an acetylene burner 8, is 

Fig. 1. 

Modification of Nutting Colorimeter. 

focussed on the slit O, by the lens L. The pressure of the 
gas was kept constant at 9 cm. as indicated on a water 
manometer, and the width of O, was determined by a series 
of preliminary experiments. A pair of nicol prisms N con- 
trolled the intensity of light from S,, and by means of the 
vernier V and a graduated quadrant attached to the movable 
nicol we are able to determine the ratio of the incident to 
the transmitted intensities. C, is a collimating lens, P a 
constant deviation dispersing prism operated by a screw 
carrying a wave-length drum D, which indicates directly 

a 1b). A. Jones, Phys. Rey. iv. p. 454 (1914); Trans. I. E. S. ix. p. 687 

7 L. A. Jones, Trans, I. E. 8. ey 716 (1914). 
2 
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the quality of the light through this part of the system. §, 
isa gas-filled tungsten lamp the light from which passes 
through a daylight filter, F, and by means of the collimating 
lens C, strikes the matte surface on the Whitman disk W. 
This disk, shown in fig. 1 a, is rotated by a motor belted to 
M and turns so that at one instant a reflecting quadrant 
sends a beam of standard white light from 8, to the eye, 
and the next instant a blank quadrant allows the coloured 
light through P to reach the eye. The eye sees the light 
image at O,, which is screened down so as to restrict vision 
to the fovea, and an artificial pupil A was used. 

The white light source 8, was regulated so as to give an 
illumination of 13 foot candles at W, and was kept constant 
at this intensity by means of connexions through a Wolff 
potentiometer and a sensitive galvanometer. With both 
light sources constant and three independent series taken on 
different days, we may safely assume the resultant average 
curves to be representative of the observers. 
A constant width of slit was used throughout. In order 

to determine the necessary slit-width correction, the wave- 
length interval corresponding to the width of the slit, as one 
edge of the image is moved across the field, was determined 
throughout the spectrum by sighting on certain lines of mer- 
cury, hydrogen, and helium. The relative slit-width for any 
wave-length thus determined multiplied by the corresponding 
acetylene emission gave the value of the relative energy. 
When taking a series of observations the necessary pre- 

liminary adjustments were made, the movable nicol N (fig. 1) 
was set for maximum intensity and the balance was made by 
shifting the wave-length drum. For observations between 
wave-lengths 500 and 680 the balance was made by setting 
the drum and moving the nicol. An electric tachometer 
was belted to the motor and the speed could be changed by 
variable resistance. As all observers were familiar with 
the theory of the so-called “critical frequency.” in flicker 
balances, each observer regulated the speed, but no record 
was kept of these values. The relative energy for a given 
wave-length and the sine square of the angle read at V 
gives us the relative energy for equivalent luminosity. The 
values for the three independent series are averaged and 
plotted for each individual’s curve. From this average curve 
the visibility curve for that observer was obtained, and the 
visibility curves were reduced to equal areas by weighting 
the ordinates according to height in order to compare 
separate curves and obtain the average curve of the group. 
These results are shown in Table I., and fig. 2 shows the 
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mean curve as compared with the curves of other writers. 
In Table II. are shown the results obtained by using the 
different values for the acetylene emission and the mean 

ign i { NY, f fi , 

WAVE | LENGIY int | 
AG 50 whl 52 59 54 5S 56 57 58 59 60 6) 62 63 .6F 

—— Authors mean of [3 subjects. 
a Nattings i ha as 

SD -ofyes. ee ae oe 

= == Curve calculated from formula ( by 
Netting). 

from Nutting’s and Ives’s results, as well as the results com- 
puted from the formula offered by Nutting. This formula 
was found to represent visibility very closely between the 
wave-lengths of -48 and ‘67 and is of the form 

V = Vm Re" -®) 

where R=) max./A and a=181. When the writer used 
Coblentz’s revised data for acetylene the results agreed re- 
markably well with these computed results. 

In Table III. the acetylene values used by the writer and 
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Nutting are given, as well as the two sets of values published 
by Coblentz. The greatest differences in these values occur 
in the region of the longer wave-lengths and, as has been 
said, are probably due to the different types of burners used. 

Taste [l.—Comparative Visibility Results. 

Mean V- Coblentz Coblentz SAEs : Computed 
ash oh. from data publ. data publ. Se ; is ii 

Table I. 1911. 1916. * formula. 

“49 “175 172 172 227 °235 232 

50 "289 °283 215 330 363 358 

‘bl “475 ‘471 474 °477 596 514 

52 “702 *705 686 ‘671 794 675 

"53 "842 851 ‘841 "835 912 *824 

D4 “950 "947 "935 "944 tere 933. 

"5D "990 ‘988 “993 "995 1:000 "994 

56 "O77 "982 "985 "993 ‘990 “993: 

“5 "898 ‘926 935 ‘944 948 "939 

58 ‘807 "825 "836 ‘851 875 839 

‘59 ‘676 693 ‘710 "735 ‘763 af Ay 

60 548 "DD2 “580 605 *635 “585 

‘61 ‘409 ‘417 —°446 ‘468 ‘509 "456. 

62 "293 "294 319 "342 387 343 

63 194 "185 214 ‘247 272 “235. 

64 "127 "125 "140 163 al I 65 "158 

Taste II1.—Spectral Energy Distribution of 
an Acetylene Flame. 

2 i oblentz oblentz 
oe 7 - ea - ere i oe. 

“48 Me 16°5 170 

“50 14-4 21-7 21°9 

“52 184 27°6 219 

54 23°2 34'8 39°0 

was) 26°1 A 389 

56 29°1 43°7 42:9 

58 36°2 54°0 522 

‘60 44:2 66°3 62:1 

62 33°7 80°5 73°0 

‘64 63°8 96°5 84:7 

66 746 112°8 97°4 

68 861 130°1 110-9 

‘70 98:2 147°0 124°6 

The spectral energy distribution of acetylene is probably 
better known than that of any other light source, and the 
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burner used in this experiment gives an extremely constant 
quality of light *. | 

In comparison with the other curves shown in fig. 2, the 
writer’s visibility curve for the thirteen subjects is slightly 

10 

58 
~ 

36 : J2 ry ; y 
raf WAVE LENGTH IN l—Aythor’s mean of 5S subjects. 

==<Nulftings: oe 4 

more contracted. The maximum visibility occurs at wave- 
length -553 in agreement with Ives’s curve, as against *555 
for Nutting’s curve. 

* Standardized burners may be obtained from the Research Labora- 
tory, Eastman Kodak Company, Rochester, N.Y. 
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Fig. 3 shows the mean of the writer’s resultsand Nutting’s 
results on the five subjects who served as observers in both 
experiments. The average maximum visibility found by the 
writer is °555, and by Nutting -554. 

This work was carried out at the suggestion of Dr. P. G. 
Nutting, and the writer wishes to thank him and the other 
members of the laboratory for their assistance. 

Author's Note.—This paper had been completed before a 
paper by Coblentz and Emerson* appeared, so that their 
latest data have not been included. 

XX. On the Hodographic Treatment and the Energetics of 
undisturied Planetary Motion. By Professor ANDREW 
Gray, #.B.S.t 

J. * Ga following bit of Newtonian dynamics was sug- 
gested by some passages in a recent discussion 

in the Philosophical Magazine. It sets forth a mode of 
dealing with the elementary theory of planetary motion 
which may have some novelty, and states certain results, 
which J think are interesting, with regard to the energetics 
of such motion. Into problems of relativity I do not at 
present enter. 

As a matter of scientific history there would seem to be 
no doubt that the first idea of the hodograph is due to 
August Ferdinand Mobius, the inventor of the barycentric 
calculus. In § 22 of his book, Die Elemente der Mechanik 
des Himmels, which was published in 1843, Mobius specifies 
a point H which moves so that its distance OH from a fixed 
point O is continually equal in length to, and in the same 
direction as, the line which represents the velocity of a 
particle moving in a given path. He derives the result 
that the acceleration of the particle in the path is repre- 
sented in magnitude and direction by the velocity of the 
point H. This of course is the whole idea of the hodo- 
graph very clearly stated. So far as I have been able 
to see, Mobius does not make any particular use of the 
idea; and he does not seem to be aware that the curve 
described by the point H is, for a planet moving in a conic 
section, a circle, with O as an eccentric point within it. 

* Coblentz, W. W., Emerson, W. B. ‘Relative Sensibility of the 
Average Eye to Light of Different Colors and some Practical Appli- 
cations to Radiation Problems.” Scientific Paper 303, Bureau of 
Standards, issued Sept. 12, 1917. 

+ Communicated by the Author. 
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2. Apparently Hamilton was ignorant of the work of 
Mobius, when he published his paper on “ The Law of the 
Circular Hodograph” in the Proceedings of the Royai 
Irish Academy in 1847. More than ten years after, in 
a letter of date March 3, 1858, to De Morgan, he says :— 
“Do you know much about Mobius and his works? . . 
He wrote to me a couple of years ago... that he had been 
lecturing on my theory of the circular hodograph, to which 
he might, very plausibly, have put in a sort of claim, or 
at least a claim to the general conception.” [Graves, ‘ Life 
of Hamilton,’ vol. iii. p. 543. | 

That the hodograph for the motion of an undisturbed 
planet is a circle, was of course the great discovery, and 
without doubt this discovery was Hamilton’s, and Hamilton’s 
alone. That a name was given to the curve may have had 
something to do with the progress of discovery. When the 
curve had thus been endowed with a kind of personality, 
such questions naturally presented themselves as: What 
is the nature of the hodograph of a planet? What is the 
hodograph of an unresisted projectile? and so on. The 
names given to electric and magnetic quantities have 
certainly helped to distinguish sharply between one idea 
and another closely related to it, and led to the evaluation 
of the individualities which the names emphasized. 

3. I was surprised to see Professor Eddington’s statement 
in the Philosophical Magazine for October that the theorem 
of the resolution of the orbital velocity of a planet into two 
components of constant amount, one of them also in a 
constant direction, seemed to be overlooked in dynamical 
textbooks. It was given in Frost’s ‘Newton’ in 1854, and 
is stated on p. 147 of the fourth edition. It is to be found 
in Routh’s ‘ Dynamics of a Particle,’ § 397, and in a book 
on Dynamics by Dr. J. G. Gray and myself, § 134. In the 
last mentioned work there is a rather full treatment of the 
subject referred to recently in the Phil. Mag.—the motion 
of bodies of varying mass. 

The existence of these two components of velocity, one of 
constant amount 2, say, and constant direction, the other 
of constant amount ve, directed always forward at right 
angles to the radius vector, affords the most elegant mode 
of passing from the circular hodograph to the orbit. I shall 
show first that the hodograph is a circle, and then pass from 
the hodograph to the orbit. 

Let the planet, denoted by P and supposed to be of unit 
mass, be acted on by a force directed towards a fixed point 8, 

and varying inversely as the square of the distance SP. If@ 
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be the angular speed with which SP is turning about S, and 
r=SP, we have 7°6=h, where h isaconstant. Thus @=h/r’. 
From a centre C let a circle be described with some radius 2a 
in the plane of the path or in a parallel plane. Let a radius 
CH of the circle be always parallel to SP. The veiocity of H 
is 2a, and is therefore proportional to 1/r?._ If the force per 
unit mass on the planet at distance r be u/r?, the acceleration 
is 6/h, and so 

velocity of H= = E a's} ty aise teen ae 
7? 

Thus, to the factor 2ah/p, the velocity of H represents the 
magnitude of the acceleration of the planet. Its direction is 
at right angles to SP, aud represents the direction that PS 
would have if SP were turned 90° about P in the opposite 
direction to that in which SP turns, as P moves in the 
orbit. 

Drawing the chord H,H, which on the scale adopted 
represents the total change of velocity, between a previous. 
point Hy, corresponding to a radius vector SPo, and H, we 
see that, if we choose the proper point O in the plane of the 
circle, OH, and OH will represent the velocities at the 
beginning and end of the time ¢. It is clear that O must lie 
within the circle, for the vector OH, which represents the 
velocity, must turn through an angle 27 while the planet 
traverses the orbit once, which would not be the case if O 
were outside the circle. 

The position of O must be independent of the value of ¢, 
otherwise the speed for the radius vector SP would depend 
on the choice of the initial radius vector SP). Thus O is a 
definite point. This result, taken along with the repre- 
sentation of the acceleration by the motion of a point in 
the circle, shows that the hodograph of the planet is a circle. 
The velocities are represented in magnitude and direction by 
the radii vectores drawn to the circle from the eccentric 
point O. 

OH, is perpendicular to the direction of motion at Py, and 
OH to the direction of motion at P. The members of the 
family of lines drawn from O to the sequence of points H 
are perpendiculars to the corresponding tangents to the 
pat : 

4. It is obvious that OH may be resolved into the two 
components OC, CH, that is into two components of fixed 
amounts, v, v2, at right angles respectively to the line OC 
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and to the radius vector SP. We can now instantaneously 
find the orbit. 

Let 6 be the angle which SP makes with the direction OC. 
The angular momentum of the planet about § is 7(v.+ v, cos @), 
which has a constant value h. Thus if we write e for v/v, 
we get 

r(1+ecos 0) = fi .,)) Ce 
Us 

“ 

that is the path is a conic section of which § is a focus. 
The length of the major axis is the sum of the lengths 7, 72 

of r obtained by putting cos@=1, cos 0=—1, respectively. 
If it is denoted by 2a we have 

h i if Qh 
2a = Vo (5+ a = v(1—e)' - : . (3) 

Thus the perihelion and aphelion distances are a(1—e) and 
a(l+e). 

5. It is convenient to make the radius of the hodograph 
equal to the 2a just found. The length of the line OH, 
representing the velocity, is then equal to twice the length of 
the perpendicular let fall from O on a line which is parallel 
to the tangent to the orbit at the corresponding position of 
the planet. In fact a circle of radius 2a described from 8 as 
centre serves very conveniently as hodograph. The hodo- 
graphic origin O is then coincident with the empty focus, as 
will easily be seen from the fact that the perpendicular from 
the empty focus to any tangent of the ellipse at a point P 
intersects the radius vector SP on the circle. 

6. As has been seen in (2) the two components 4, v2 of 
velocity give an instantaneous integration of the differential 
equations of the orbit. The radial differential equation 

es 4 B& > 
r— 76? =— a ©) eit) ye) oh ee (4) 

shows this more clearly, and incidentally gives the value of h 
in terms of v.. Since the component v, is at right angles to 
the major axis, and is directed towards the side of that axis 
to;which the planet passes at perihelion, we have 

pS ysind, 6 = ON ee 

where @ is the angle traversed by the radius vector from 
perihelion to the position considered. Hence 

T = v, 0080.0 = v1, cos 8(v2+ 2% Cos 8)/7, 
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and the equation of motion is 

V_(Vg+v, cos 7) = = 

or bb 

os 
— eeeos: - “ - s ° . (6) 

the equation again of the path. But we have already 
obtained by considerations of the angular momentum the 
equation 

He 
U2 

= I+ecos @ oh htoAn | hc tat Drernd., 6 (7) ff 

and therefore we obtain the very simple and remarkable 
relations 

Laven rig Ra) aN (8) 

that is the double rate of description of area by the radius 
vector is equal to the ratio of the “intensity of the centre” 
to the constant component of velocity at right angles to the 
radius vector. 

The time ¢ occupied in describing any part of an orbit is 
thus equal to 2Av,/u, where A is the corresponding area 
swept over by the radius vector. This, expressed in terms 
of the focal radii and the chord of the are described and the 
axes, is Lambert’s theorem. 
A steamer rounding a buoy, in a uniform tidal stream, 

with constant speed v, always directed at right angles to a 
line joining it with the buoy, describes a conie section with 
reference to the land. The curve is a hyperbola if vp is less 
than the speed v, of the stream, and an ellipse in the contrary 
case. The focal axis is at right angles to the stream, and 
e€=v,/v.. [I believe that this illustration is originally due 
to Greenhill. | 

When 0=0, (7) becomes 

a(1—e)(1+e) = h/v, 

or (with v,/v,=e) 

vaca antes} (8) 
| 

1 
2 See ae 

m=laq a | 
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7. We deduce the energy equation as follows. The 
resultant speed v is given in terms of v4, v2 by 

Ut == 0)? + Ug" + 20102 COS.0,,) 2 |. 2 

which by (6) and (9) can be written 

? = 2(-—3-). oe V0 Sr i 

The term p/r represents the potential energy exhausted by 
‘the passage of the planet under the central attraction from 
infinity to the distance 7. Writing the equation in the 
‘form 

1 
3 ae = Tae os! at Oe a 

and taking —,/r as the potential energy, we see that the 
kinetic and potential energies have a constant negative sum, 
—p/2a. From this equation we shall draw some conclusions 
which appear interesting. [It is to be understood that when 
e>1, that is when the orbit is a hyperbola, the sum of the 
energies 4v? and —y/ris + p/2a.} 

The constant angular momentum is p/vy=eu/v,=)(p/a)?. 
Hence the period of revolution is 

24 T= 20 = an(“), ho A 
Ps ro) 

and is therefore independent of the eccentricity. 
8. This gives an interesting instantaneous solution of the 

elementary problem of polar dynamics. The orbital motion 
of a planet is annulled when the distance from the sun is d; 
Jind the teme which the planet will take to fall to the centre of 
force. Since the period is independent of the eccentricity, 
let e be less than but very nearly equal to 1. The foci are 
practically at the ends of the major axis. When the planet 
has just passed (not rounded) the aphelion end, the speed 
along the major axis is zero. The time taken to reach the 
other focus is half the period, and so the time taken by 
the planet to fall into the sun is w(}d3/u)?, as may be 
verified at once by direct integration. 

The earth in the circumstances stated would fall into the 
sun in 17/2472, that is in about 65 days. 

[It may be noticed incidentally that if we use the value of 
v? given on the right of (11), with the values of 2, v, given 
in (9) and (10), and the values of the action and the period 
just found, we obtain after a little reduction the integral 

27 cos 0 dd e DAD cs A On Pea a 
> (1 +e cos 8)? i Tee 
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Some years ago I came upon the examination question : 
Prove that the action for a complete revolution of a planet in 
its orbit 1s independent of the eccentricity of the orbit. The 
following proof of this interesting proposition presented 
itself: it is simple and I think elegant. The action, A, is 
given by the equation 

KS Vrdt — \ ods, SCs nN a 

where the space integration is taken round the orbit and the 
time integration for a complete period. Let p, p’ be the 
lengths of the perpendiculars let fall from S and the empty 
focus on the tangent at P to the orbit. We have 

py=h=plv, or v= (u/v.b’)p' = (u/ab?)*p', by (9), 

Hence 

A = jvds = (4,) Sv'a Si Darl gud etn EEN) 

since \ pds is 27ab, twice the area of the (elliptic) orbit. 
The action is thus independent of the eccentricity, and 
there is no variation of the total action from one orbit 
to another, provided both possess the same major axis. 
The action may also be written as 2abv.. [There is no 
difficulty in writing down an expression for the action in 
any finite part of the orbit.] 

lf T be the period we get by (13) 

Hy uae as Y (eal Ai regen ats het ss oy) AB) 

This is the time integral of v?. The time average of the 
kinetic energy in the orbit is p/2a. 

From this proof * it appeared that the action is pro- 
portional to the area swept over in any time by the radius 
vector from the empty focus to the planet. Thus while the 
radius vector from the sun to the planet is the timekeeper, 
measuring as it does time in the orbit by the area it sweeps 
over, the other radius vector “keeps” the action. This 
proposition I found had already been stated by Professor 
Tait. 

* Another proof naturally occurs in which the integration is effected 
with the aid of the eccentric angle: but it is long and unsuggestive. 
Since this paper was sent in I have found a memoir by Grinwis, Akad. 
van Wetens., Amsterdam, ix. 1891-2, in which the proposition regarding 
the action is given. Probably this was the origin of the examination 
question. 
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9. The term y/r in the energy equation is the potential energy 
exhausted when the planet is brought by the sun’s attraction 
from infinity to the distance r. ‘Thus we obtain by (11) the 
curious theorem that the time-average value of this term for a 
complete revolution of the planet is twice the time-average 
of the kinetic energy in the orbit, that in fact the time- 
average of this exhaustion of potential energy is equal to 
the action. This is also, of course, independent of the 
eccentricity. 

As a particular case of this the kinetic energy of a planet 
in a circular orbit is half the potential energy exhausted in 
the journey from infinity. Hence also, if the planet were 
transferred from one circular orbit to one of (say) smaller 
radius, the increase of kinetic energy would be only one 
half of the additional potential energy exhausted in the 
passage. 

This result for the circular orbit is of course well known; 
the corresponding relation which holds for the mean kinetic 
energy in an elliptic orbit was, I believe, first stated by myself 
in a letter in ‘ Nature,’ August 7, 1913. The fixed ratio (4) 
of the mean. orbital kinetic energy to the mean potential 
energy, exhausted to the different points of the orbit, is 
curious ; but there is always a fixed ratio of the energy 
dissipated in the interactions of bodies to the whole available 
energy. For example, a body of mass m moving with 
speed v collides inelastically with a body of mass m’ at rest; 
and the kinetic energy dissipated bears to the original kinetic 
energy the ratio m’/(m+m’), which is quite independent of 
the details of the action between the bodies. 

The theorem for passage from one elliptic orbit to another 
is exactly parallel to that stated above for a circular orbit. 

In the planetary case then, the bodies are only left moving 
in elliptic orbits, when the proper adjustment has taken place; — 
others if left moving too slowly will fall into the central 
body, or if moving too quickly may recede from the central 
body to undergo further energy modifications by collision or 
otherwise. 

Now let us comparea hyperbolic orbit with an elliptic orbit 
as regards this affair of energy. We have the theorem that 
the kinetic energy at distance r in a hyperbolic orbit exceeds, 
and in an elliptic orbit falls short of, the potential energy 
exhausted from infinity to this distance by the mean value of 
the kinetic energy in the orbit. This result has not been 
formally proved for the hyperbolic orbit, but has been inferred 
by analogy from the result for the ellipse. There is no 
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difficulty in framing a formal proof, but the following may 
be sufficient. 

At a considerable distance trom the centre of force the 
kinetic energy in the hyperbolic orbit will have become 
practically constant and equal to w/2a. For r has become 
very great and p/r very small, so that $v?=p/2a. The 
planet therefore moves along the curve, ultimately along 
the asymptote, with more and more exactly constant speed, 

(w/a)*, and as it continues at this speed, in its coming and its 
going, for an infinite time, the time-average of the kinetic 
energy is /2a, as in the elliptic orbit. 

It may seem a hard saying that the time-average of the 
kinetic energy in a parabolic orbit is zero, but in this case 
the energy equation is $v’=y/r, and so v is very small when 
ris very large. Thus during an infinite time the value of 
3v? is the evanescent quantity u/r, and thus the time-average 
of the kinetic energy is evanescent. 

This theory leads to the result that the exhaustion of 
gravitational potential energy alone cannot have led to 
motion of a planet or comet in a hyperbolic orbit. It would 
seem that the necessary excess of mean kinetic energy must 
have been produced by some cataclysm within a body, from 
which the planet was thrown off after the sun had done the 
work of bringing the body within a finite distance r of the 
centre of force. Only by exhaustion of internal energy 
does it seem possible to make up the necessary additional 
energy. 

The question of equipartition of energy between the 
different stars has been a good deal discussed. If a system 
of stars has its origin in the exhaustion of potential energy 
by the attraction of some great central system, the energy 
relations here discussed would appear to negative equipartition. 
If there is an approach to equipartition of kinetic energy of 
translational motion, and there is evidence apparently that 
the more massive stars move the slower, such an origin 
becomes on one more. ground improbable. 

The University, Glasgow, 
Dec. 31, 1917. 

Phil. Mag. 8. 6. Vol. 35. No. 206. Feb. 1918. P 
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XXI. A Criticism of Wien’s Distribution Law. 
By Frank Epwin Woop *. 

1. Introduction. 

ae purpose of this article is to criticise Wien’s distri- 
bution law from a mathematical point of view :—To 

show (1) that although the derivation of Wien’s distribution 
law is generally made by steps which are not mathematically 
justified, or for which no rigorous justification is given, still, 
by using Wien’s assumptions}, a rigorous derivation is 
possible; (2) that the law obtained by Wien is inconsistent 
with other results which follow from the same assumptions ; 
and (3) that this inconsistency is eliminated and a new law { 
obtained if Wien’s implicit assumption be replaced by a 
simpler and more probable one. 

Incidentally several theorems, new so far as the author 
knows, in the kinetic theory of gases will be obtained from 
the Maxwell law for the distribution, with respect to their 
velocities, of the molecules in a gas; a simple proof of the 
Wien displacement law will be obtained from these theorems 
and the Wien assumptions, and two interesting relations 
regarding the dependence of the radiation of a molecule upon 
its velocity will be given. Also there will be found some 
criticisms of the treatment of the distribution !aw and of 
the displacement law as given in the standard treatises. 

Mendenhall and Saunders$, Waidner and Burgess |, 
Rayleigh { and others have criticised from a physical point 
of view the assumptions used by Wien to prove his distri- 
bution law, while Lummer and Pringsheim **, Paschen ff, 
and others have considered the agreement of this law with 
experimental results. So far as the author knows, no 
criticism from a mathematical point of view has been 
published. 

* Communicated by the Author. 
+ It will be necessary to include under Wien’s assumptions one which 

he has made implicitly, but not explicitly; or else to assume that he 
has made a fundamental error. 

+ [ am indebted to Professor Lunn, of the University of Chicago, for 
this new formula, and for the observation that Wien either made a 
mistuke or an unstated assumption. 

§ Astrophysical Journal, xiii. p. 25 (1901). 
|| Bull. Bur. of Standards, i. p. 189 (1904). 
q Phil. Mag. xlix. p. 539 (1900). 

*#* Verh, d. Deutsch. Phys. Ges. i. p. 1 (1900). 
+t Astrophysical Journal, x. p. 40 (1899); xi. p, 288 (1900), 
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Wien’s distribution law is 

eer? 
f(A, 7) = aap. ? a) ee ise ne, | Stee ts (1) 

where $(A, @)dX represents the intensity of radiation of a 
black body at a temperature @ produced by waves whose 
lengths lie between >X and X%+dX, aud where C and ¢ are 
constants *. M. Planck { obtained this same formula (and 
also another {t) but from considerations entirely different 
from those used by Wien. The criticism of this article does 
not apply to Planck’s work ; however, it has been suggested 
that a similar criticism might apply to Planck’s derivation 
of this same law. Other formulas for ¢(A, 0) have been 
obtained by Callendar§ and Rayleigh ||; although these 
formulas may be in closer accord with experimental results, 
still the Wien formula has considerable importance due to 
its use by Drude and many other investigators. 

2. A derivation of the Distribution Law along the lines 
proposed by Wien. 

Wien takes a gas as the black body, and uses Maxwell’s 
law that the number of molecules whose velocities lie between 
v and v+dv is proportional to 

Hagges da, inch ws (6:49 
where «?= 2%", and v is the root-mean-square velocity ; a? is 
proportional to @, the absolute temperature of the gas. 

Wien makes the hypotheses : 
(a) That the length of the wave sent out by a molecule 

depends only upon the velocity of that molecule :—then v is 
a function of 2X only. 

(6) That the intensity of the radiation for wave-lengths 
between X and X+dX is proportional to the number of 
molecules, as given by Maxwell’s law (2), which send out 
waves with lengths between A and A+ dn. 

Wien states that it follows from these two hypotheses that 
Fa) 

Di eco mee 5s es (8) 

where F(A) and f(A) are two unknown functions]. 

* Wied. Aun. lviii. p. 662 (1896). 
+ Wied. Ann. i. pp. 69, 719 (1900). 
t Verh. d. Deutsch. Phys. Ges. 11. p. 202 (1900). 
g Phil. Mag. xxvi. pp. 787 (1918) ; xxvii. p. 870 (1914). 
| Phil. Mag. xlix. p. 5389 (1900). 
q In our development of Wien’s distribution law, it is assumed that 

F(A) and f(A) are continuous functions. Just what physical significance 
these assumptions have can be seen from § 6 of this article. 

P2 
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He then states: ‘‘ Now the variation of the radiation with 
the temperature according to the law given by Boltzmann 
and myself consists of an increase of the total energy in 
proportion to the fourth power of the absolute temperature, 
and a variation of the length of the waves associated with an 
energy quantum and lying between X and A+4dA in such a 
way that the corresponding wave-lengths are inversely pro- 
portional to the temperature. So if one plots for any one 
temperature the energy as a function of the wave-length, 
then for any other temperature this curve will be the same 
if the scale units of the graph are so varied that the ordinates 

are made smaller in the ratio = and the abscissee are made 

larger inthe ratio 8. This latter is possible for our value of 
(A, 8) only when A and @ appear in the exponential as a 
product X@. Then 

ee) fa = 0 ) ° . ° . ° ° (4) 

where c denotes a constant.” 
Since I have found no simple proof of (4) from the above 

statements, I propose the following derivation of the form 
of F(A) and /(A) based entirely upon Wien’s statements. 
Let C, be the curve obtained by plotting X as abscissa and 
y=@(A, 8) as ordinate for an arbitrary temperature 0, ; then 
the equation of Q,; will be 

I), 
Bem (X)e "4. 

Let C, be a corresponding curve for a temperature 0, ; 
then the equation of C, will be i 

(A) 
Get n)e 9. 

Now Wien’s statement, as corrected, is that the trans- 
formation 

ale an ! : 

= a, a 
2 

will transform ©, into a curve congruent to ©,. This trans- 
formation gives as the equation of the transform of C, 

-p (2% 
/@ ) Q he 65 

— ge Fr ( Je 62 6). i (3, 0, (6) 

* This ratio should be = see Wien, Berlin Sitzungsberichte, vi. p. 55 

18938) ; Lorentz, ‘ The Theory of Electrons,’ p. 74. 
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Now if we make the transformation y'=y, =A, this 
curve with equation (6) coincides with C,, and so 

a _ fA Pe rg) i \i ee oe 
F 01 =(3 F “| JS a Gy OD: z) (% ¢ (7) 

This is an identity for all values of 6,, 6,, and X. 
Now (7) can be written in the form 

| 
Fe *) 12 p(@A) Legg? 

7 @5 02 6, 

(3:) : ee (8) 
If @, and @, be replaced by £0, and k@,, where & is an 

arbitrary constant different from zero, the value of the left- 
hand member of (8) is unchanged, and therefore the value 
of the right member is also unchanged. This gives 

iif 32) - Foy} ita Va, — 5 ft 
2 2 

3 

which is an identity for all values of k40. Therefore 

é 

xt (= — ZF 0) =0, AOS Saeioy 
or 

(lo) ») =e eee al) 

Substituting (9) in (8) gives 

0, 
(ale) _, PPS WRU ats 

In order to obtain the form of F(A) and f(A) we will 
prove the Lemma: The most general solution of the functional 
equation sb (ke) 

“D( ek 
eek iw ee (12 50 a 

is b(x 2) — = , where k (\k\60), C, and a are constants. and > 

1s a ee function of #. 

Let ee lays, - 5/1 aieiuee ne cuss ile) 
then A(z) is a continuous function of « From (12) and 

(13) it follows that 
ACT ACB): 9 shu inentavte sorters: wx: (hap 
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Suppose first (4|<1,; then the A function has the same 
value at the points z, tae seis k*x,... This set of points 
converges to the point x=0, and therefore A(z) ak Algye 
but since A(z) is continuous 

lim A(w) = A(0), and A(2) AO) 

This is true for every value of 2, and therefore A(z) is a 
constant. 

Now suppose |£|>1; make the transformation kv=y in 

(14), then (14) becomes A(y)=A(2), and therefore the 

function has the same value at the set of points y, = pe 

oe ... which converges to the point =0, and therefore, by 

the same reasoning as for |k| <1, A(z) is a constant. 
Therefore A(v)=C in every case, and by (13) d(#) = 

which proves the lemma. 

Equations (10) and (11) are of the form (12), where 

= Zi and therefore 
0, 

od ==;) 5) 

F(A) = 55- a” Lorihgieiat eae aan (15’) 

These values, substituted in (3), give Wien’s distribution 
law. 

3. A criticism of Drude’s proof of the Wien Displacement * 
and Distribution Laws. 

Equation (5) is the Wien displacement law and is 
generally derived from the Stefan-Boltzmann law, which 
states that 

{Sp an=a const, . . 

or that the total radiation varies directly as the fourth power 

* The relation \6=a const. is sometimes known as the Wien dis- 
placement law, and sometimes as a part of that law, but in this paper 
will be regarded asa distinct law. The equation \@=a const. of itself 
means nothing, since A and ¥) are independent. The equation is a short- 
hand way of stating that the radiation for A\=A,, 6=6, will become the 
radiation for A=A, when 6=62, where A,9,=A oe Wien obtains this 
relation by actually determining the change of wave-length, the tem- 
perature being increased by an adiabatic compression of the gas. No 
criticism of the derivation of this relation is intended in this article. 
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of the absolute temperature. Another form of the Stefan- 
Boltzmann law is that >(6)=C6*, where W(@) is the total 
radiation, and C is a constant. 7 

Drude™* attempts to prove a statement that is equivalent 
to (5), namely that 

ced, oy was Oe a eae rg 

where f is an unknown function of X@ alone. He states 
that (17) follows from 

wa) = {25 as), . 50 (05 fai6) 

an equation which is an immediate consequence of the 
definition of (@), viz. 

¥@=( $0, Hdr. 
0 e 

Now (17) cannot follow from (18) unless ba =a const. ; 

since this is true, by the Stefan-Boltzmann law, Drude’s 
conclusion is not impossible. Suppose then that 

{259 aney=s Coustl o . eo)) 
0 

Now (17) does not follow from (19) alone, as the following 
: EVEL E f(r, 7) 

example will show. Let ¢(A, @)= ipe? then ra 

is not a function of X@ alone ; however, 

64 

t+ x 6 1 
{ 75 ans)={ Bp agi tO) =a T- 

fF) 
Even if we put d(,@)=F(Aj)e ®° , it is still possible to 

choose F(A) and /(A) so that (19) is satisfied, while (17) is 
not. 

For if F(A) =A, f(A)=A, then _ @) is not a function 
of X16 while 

© Nee 

0 

* Lehrbuch der Optik, p. 480 (1900). This treatment is repeated in 
the second edition. 

T Pierce, ‘A Short Table of Integrals,’ formulas 480 and 493. 
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Therefcre, Drude has not proved ihe displacement law ; 
if, however, (17) be regarded as proved, then the remainder 
of Drude’s argument for proving the distribution law can be 
made rigorous *. 

Let FA) -& | F a ¢ =O(A0)) 4 

where F(A), f(A), and @(A@) are unknown functions. Put 

AA) , BA Fa)= 8), py=— 2, 
then (20) becomes 

a 1 
A(A)je °° =—D(rA0). « . . oe 

~ 0 

Now if X be replaced by kA and 6 by 7 the right-hand 

member of (21) is unchanged, and therefore 

Ba) BOA) 
Aime” =ACkr)e ™. . 0) 

Ba) Bla) 
If the expressions e ** ,e¢ ** be expanded, (22) becomes 

Bayo (BA) A(n) ba +31 ey A 

bi B(kA) 1 B2(KA) ] = A(kA) [1+ a tee te | 
or 

[A (A) — ACAA) ] +5914 Q)BA)—A()BOA)] +...=0.,(23) 

Since (23) is an identity in 0, 

AW) = AKA) 300 a. 

and since (24) is an identity in k, A(A)=C where Cisa 
constant. Also from (23) 

A(A) BA) — A(AA) BAA) =0, 

from which B(X)=c, where c is a constant; so 

C C 

* This derivation of the form of F(A) and f(A) is due to Professor 
Moulton, of Northwestern University. 

\ 
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4. A proof of some auxiliary theorems in the Kinetic theory 
of Gases. 

Before giving our derivation of Wien’s displacement law, 
it will be necessary to obtain some laws in the kinetic theory 
of gases. Let us consider the distribution of the molecules 
of a given homogeneous gas at a temperature 0, with regard 
to their velocities, v; if we plot v? as abscissa, and y, the 
corresponding number of molecules, as ordinate *, then the 
curve ©, which gives the distribution, will by Maxwell’s + 

2 ly2 

law have the equation y= pe’ 4, where k and J are inde- 
1 

pendent of v and 6. The equation of the corresponding 
curve (', for the temperature 0,>6, (this restriction Is 
convenient, but unnecessary) upon the (V?, Y) plane will be 

Biph Ve 
Y= ai Bact e a 

2 . 2 0, 0, X ° 

The transformation V =o Ye a,Y takes Cy into 
1 2 

C,. Let v, and x/ 2 v, be called corresponding velocities for 
1 

the temperatures 6, and 0, respectively; and the intervals 

Vj<v=v, and A ee Ay “o be called corresponding 
2 1 

velocity intervals for the temperatures 0, and 0, respectively. 
OW 

Me ky? = es dv?) 0, 0 Oa kV? 7 d(V?) (25) 

v,2 6°? 6, bap 63” 

1 

and (25) holds for all finite values of v, and v, and also for 
=O: Y= ,, 1. €. 

odd PR Iv? A. 2 Zoe ONS 
{ me edo) =a/ are # (VW), (26) 

0 1 4/0 2 

It iollows from (26) that the total area under the curve 
C, does not equal the total area under the curve C,, as one 
might expect from tie fact that in each case the area is 
proportional to the total number of molecules in the gas, a 
number which is unchanged by the rise in temperature. 

* Strictly speaking, there will be in general no molecule of the gas 
haying a given velocity » at a given instant; however, if N molecules 
have their velocities within a very small interval dv about v, where the 
width of 6v is preassigned, then we shall say for brevity that N molecules 
have the velocity v. 
t Scientific Papers of James Clerk Maxwell, i. p. 381. 
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However, the areas associated with corresponding velocity 
intervals have the same ratio, by (25), as the ratio of the 
total areas, and so we have . 

Theorem I. The number of molecules in a gas at temper- 
ature 6, which have velocities in a given interval is equal to 
the number of molecules of this gas at temperature 0, having 
velocities in the corresponding velocity interval. 

From this theorem we have the 
Corollary. The number of molecules in a gas at temper- 

ature 0, which have velocities less than or equal to an arbitrary 
velocity V1 1s equal to the number of molecules in the same gas 
at temperature 0, which have velocities less than or equal to 

the corresponding velocity a / a “P 
1 

The velocity of any particular molecule of this gas at 
temperature 0, is constantly changing, owing to impacts, etc. ;, 
so it is difficult to consider the change of velocity due to a 
rise of temperature alone. Let us consider an ideal gas in 
which the velocities of the various molecules are such that 
(1) the distribution of velocities obeys Maxwell’s law for 
any temperature, and (2) the velocity of each molecule does 
not change while the temperature remains constant. We 
assume that the results obtained from a study of this ideal 
gas will hold also for an actual gas. By this device, we can 
consider a single molecule, or a group of molecules, at a 
given velocity instead of the succession of molecules, or 
groups, which have that velocity at various moments of time. 
Moreover, if the temperature of this gas be raised to 05, each 
molecule. in general, will have a new velocity, since the 
mean-square velocity has been changed, and the new distri- 
bution of velocities will also obey Maxwell’s law. The new 
velocity of a molecule for given values of @; and @, will be a 
continuous function of the former velocity ; also molecules 
whose velocities for = 6, are zero, will again have zero (or 
nearly zero) velocities for 06=@,. Then the molecules 
having velocities in the interval 0<v<v, for 92=0@, must have 

their velocities in some interval 0<v<v, for 62=60,. From 

* If the velocity at which the maximum number of molecules move 
be called the mode, then it follows from this theorem and corollary, 
(1) that the mode varies directly as the square root of the absolute tem- 
perature, (2) that when the temperature is increased, the number of 
molecules whose velocity is at the new mode is less than the number 
whose velocity was at the former mode, varying inversely as the tem- 
perature, and (3) that the fraction of the total number of molecules 
which have velocities less than or equal to the mode is independent of 
the temperature. 
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this and the Corollary to Theorem I. we have 

Theorem II. The molecules having velocities in a given 
interval for @=0, will have their new velocities in the corre- 
sponding velocity interval for = 6. 

If the given velocity interval be taken sufficiently small, 
we have 

Theorem III. The velocities vy and vz of a molecule of a 
gas at temperatures 0, and 0, respectively, satisfy the relation 

VAS 

Theorem III. may be restated in this way :—If with 
certain units v,7=«0,, where v, is the velocity of a molecule 
of a gas at temperature 0; and « is independent of @, and y, 
then the velocity of this molecule when the temperature of 
the gas is 6, will be v, where v,?=«0,, and this relation 
holds for any velocity v, and any two temperatures 0; and 63. 
Consider two molecules m, and m, of a gas at temperature 0, 
having velocities v; and v, respectively, and producing waves 
of length A, and A, respectively ; if the temperature he 
increased so that the velocity of m, is v2, the temperature 
now being @,, then by Wien’s first hypothesis the length, 
A,', of the waves produced by m, will be the same as the 
length, X», of the waves produced by mz, when the tem- 
perature was 0,. Now, from (27) and the law X@=a const., 
and since A, =A, , 

my _ Vm 
ee ae 

This proves 

Theorem IV. The length of the waves produced by a 
molecule in a gas at temperature 0 varies inversely as the 
square of the velocity ; 1. e. 

v= = , where bisa constant. . . . (28) 

5. A derivation of the Displacement Law from Wien’s 
hypotheses. 

Let us consider the distribution of ¢, the intensity of 
radiation from a gas at temperature 6, with regard to X, the 
wave-length. Denote by K, the curve obtained by taking 
> as the abscissa and ¢ as the ordinate. We will fix our 
attention upon the radiation associated with values of X in 
the interval, Ay<ASA, + Ay, where A, and 8A, are arbitrarily 
chosen (except that 6A, is very small). Suppose that the 
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temperature be raised to 0, and that the corresponding curve 
be plotted. From the above theorems and the relation 
’9=const., it follows that the molecules which produced 

waves of length 2», will now produce waves of length oy 
A. 

and those which produeed waves of length \,+ 6A, will now 

produce waves of length 4 (A; +6r,). Therefore the number 
2 

of molecules producing waves with lengths in an interval 
with width 6A, about.d, in a gas at a temperature 0, is equal 
to the number producing waves with lengths in an interval 

with width A about a when the temperature is 09. 
A, A, 

Now (Aj, 0;)6A, is the intensity of radiation carried by 
waves with lengths in the interval A;X<A<A,+ 6A, for 0=6), 

and 8(F ms, 02) 5 dh is the intensity of radiation carried by 
; z 6 7 

the waves with lengths in the interval q, MEAS + ou) R 
2 @ @ 2 

When 6, and 0, are given, (Aj, 0;)6A; and $(3m, 05) SBA, 
2 2 

will be called corresponding radiation elements. In general, 
two corresponding radiation elements are not equal, since 
the total radiation increases wlien the temperature is increased 
(Stefan-Boltzmann law). 

The intensity of radiation produced by a molecule is a 
function of the velocity of that molecule ; then 

e=9(0"), <0 4) a rr 

where ¢ is the intensity of radiation produced by a molecule 
with velocity v and g is an unknown function of v? alone. 

Therefore, using Wien’s second hypothesis, 

OGre — _ Note ge (30) 
. (0 0 Notas?) oe.) ae (7m, 02) G5d 9(vs") —-g(v2") 

2 2 

where N is the number of molecules producing waves with 
lengths in the interval AySAXA, + 6Aq, and v; and v, are the 
velocities of these molecules when the temperature is 0, and 
6, respectively. 

It follows from (30) and Theorem III. that 

b(dy 61)8a.__ _ glebh) 
0 \ Oy a kana ere (Bris Os) gdm ‘ 

(31) 
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Therefore, the ratio of corresponding radiation elements is a 
Junction of 0, and 6, respectively ; in particular this ratio 
does not depend upon the value of X about which one element 1s 
chosen. ? : 

Since the area of each radiation element under K, is 
equal to a constant times the area of the corresponding 
radiation element under K,, then the total area under Kg is 
equal to the total area under K, multiplied by this constant ; 

4 

but by the Stefan-Boltzmann law this constant. is (3) , 
Therefore 2 

B(A,, 0,)6r Gas ; Sa eet ee as Gem cao 
1 1 

p (Gide 02) g,o™ 

and therefore 

b(Aa Gi) O( gv 0.) 

This is another form of equation (5), and our derivation of 
the displacement law is complete. 

From (31) and (82) it follows that 

g(KO;) _ 4 
g(«0s) O32? 

from which g(kO;) __ g(«O,) 2 
6, . 2 

where ¢ is a constant. Then 

CASE | 5 aR ROD em (Fs 

and from (29) it follows that e=c?v'; i. e. the intensity of 
radiation given off by a molecule varies directly as the eighth 
power of its velocity. 

* In Wien’s first article upon the displacement law he assumed that 
(32) followed immediately from the Stefan-Boltzmann law; in his 
second article the error is corrected, but the derivation given is difficult, 
even though rigorous, so most authors have followed Wien’s first 
method and have not remedied the errors: ef. Wood, Physical Optics, 
p- 620; Sachur, Thermochemie und Thermodynamk, p. 302; Winkel- 
mann, Handbuch der Physik, 111. pp. 379-80. 
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6. The inconsistency in the Wien Distribution Law, and 
the revised form. 

Let us consider the method by which Wien obtained (3) 
from his two hypotheses. From the first hypothesis one 
can write 

p= (V), > oe oe 

where m is an unknown function of X*. 

Tf e=p(r) o:de (2) bye 

denote the intensity of radiation produced by a molecule 
giving off waves of length A, then by using (34), (35), and 
Wien’s second hypothesis 

Kym?(n) 

b(r, O)=hyp(rA)m(rA)m'(AJe® 

where k, and k, are constants and m'(A)= £ m(Q). So 

Wien has written for brevity r 

FO)=hpmaym'y; . . . (36) 
JHNS=—hWA). ~.. . 2) 

Now, from (37) and (15) ide 

: BS. Te é m(X) = Ex? (38) 

and from (28), (29), (33), and (35) 

p=, ees 

where a is a constant. Substituting (38) and (39) in (36) 
gives 

A 
F(A) = 13/2? e e . ° e e (40) 

where A is a constant depending upon the constants a, c, hy, 
and k, But (40) is inconsistent with (15'). Therefore, 
the Wien formulats inconsistent with other results obtained 
from the same hypotheses. 

Now by the Maxwell law Tt, the number of molecules 
having velocities between v and v+dv is 

i 

Vi | 
* However, the form of m(A) has already been obtained in this article 

from the relation \9=a const., and certain theorems in the kinetic theory 
of gases; see Theorem IV. That this form agrees with the form obtained 
by Wien’s method is an agreeable fact. 
+ Scientific Papers of James Clerk Maxwell, i. p. 381. 

es 2 
N 5 ACCME, ek 
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where N is the total number of molecules in the gas, and «” 

is proportional to the absolute temperature 0—see §2. If 

one assumes that N does not change with 6 *, then (3) does 

not follow from Wien’s assumptions, but instead 

F Sia) 
t Xr mat A. < OL eee oh? ool bys 242) 

If (3) be replaced by (42) and the argument given in §1 
be repeated, it will be found that 

A 6 
FQ) = susp} SM= >; 

where A and ¢ are constants. 
Moreover (43) is consistent with (40) and (27), and so 

Wien’s assumptions lead to the law 

(43) 

Oy ) 
d(A, 0) = i152 © Ag . ° e ° 9 (44) 

Evanston, Illinois, 
July 5, 1917. 

XXII. Coupled Cirewts and Mechanical Analogies. By 
HK. H. Barton, D.Sc., #.RS., and H. M. Brownine, 
B.Se.F 

if S the valuable ‘“‘ Note on the Action of Coupled 
Circuits and their Mechanical Analogies” by 

Prof. H. C. Plummert seems in places to imply a slight mis- 
understanding of a previous one dealing with the same 
subject, a brief reply appears desirable. 

Prof. Plummer regards the matter chiefly from the 
mathematical standpoint, whereas the authors of the October 
paper§ were concerned chiefly with the physical phenomena 
and their visible representation to average electrical students 
(see pp. 246-7). And in some colleges not one per cent. of 
these are masters of the problem mathematically. 

2. Prof. Plummer expresses “a doubt whether a simple 
electrical problem really is made easier for the average 
student by a complicated mechanical analogy” (p.510). It 
was never intended that the mathematics of the mechanical 

* If N=o(6), where o is an undetermined function, and if Theorem 
IV. §4 be regarded as valid, then it can be proved that ¢(6)=a const. 
Wien’s implicit assumption is that N=c'6®”, where c’ is a constant. 

+ Communicated by the Authors. 
{ Phil. Mag. pp. 510-517, vol. xxxiv., Dec, 1917. 
§ Phil. Mag. pp. 246-270, vol. xxxiv., Oct. 1917. 
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analogy should explain or render easier that of the electrical 
case. In its mathematical aspect the electrical case is prob- 
ably simpler than that of any mechanical model yet put 
forward. 

The utility of the mechanical analogies given in the 
October paper lies in their power to give with such simple 
apparatus actual traces of the vibrations in question, and 
that under the most various conditions as to masses of bobs, 
lengths of the separate pendulums, and looseness or closeness 
of their coupling. And these advantages can be reaped by 
students who are too weak to assimilate the mathematics 
either of the original problem or its analogies, though for 
completeness’ sake the equations of both were naturally 
included in the paper. 

There is also another aspect of the matter. For it may 
be hoped that the study of these mechanical models may 
throw some light on the hidden mechanism of the electro- 
magnetic phenomena. 

3. Equations (27) and (28) of the October paper for the 
double-cord pendulum were in the form 

dy | P+Q+AQ P4y = BBQ ae 
dt? ~ (1+8)(P+Q) 1+6 Pee 

dz, P+®8P+Q og, B PQ g on 
Qa t (+B P+Q) 21° 1+8°P ue 

Prof. Plummer prefers the form 

B 

a? d?z ) (P + Q+,P) “ + (P+ Q)gly=—BQ7,, | 
Cr 

(P+ Q+8Q) 5 + (P+ Qygl-!e= PY, | 
and adds “the analogy is now exact.” Is not this too much 
to claim? As to the occurrence of the variables and their 
derivatives the equations (2) do indeed present a formal 
agreement with those for the electrical circuits, viz., 

dt? 

Ben aaa} 
dt +R= oo 

Ge 2 = | ( 
oe 5 = Se 

Hence in a certain restricted mathematical sense the analogy 
is exact. But this exactness of analogy does not extend to 



Coupled Circuits and Mechanical Analogies. 205 

the coefficients and their physical significance. Thus in (3) 
for the electrical case it will be seen that the same coefficient 
occurs on the right side of each equation. This is M the 
coefficient of mutual induction. Also the first coefficients at 
the left of each equation respectively are Land N the separate 
self-inductions. Now this correspondence of coefticients does 
not hold between (3) and (2) but does hold between (3) and 
(1). And for this reason the form (1) is probably preferable 
to the experimental physicist, though the other form (2) 
is distinctly illuminating and may be preferred by the 
mathematician. 

4. That the pendulums represented by equations (1) and 
(2) are not in the complete sense an exact analogy to the 
electrical case of (3) may also be seen from the relations of 
the frequencies of the coupled vibrations in the two cases. 
Suppose the two separate vibrations for pendulums or those 
for the electrical circuits to be equal and denote them by 
cos mt. Let the superposed coupled vibrations for each 
system be denoted by cos pt and cos gt. Then, for the 
electrical case, we have 

prm> gq. 

Whereas, for the mechanical analogy, we have 

p=m, and m > q. 

5. What would seem to the writers to be an exact 
mechanical analogy to the electrical case would be one 
capable of representation as follows: 

d*y y d*z ) 
aiean ae | m 

e 4 

d*z ee 
Qa — Qnte = 3 TY, | 

In these P and Q denote the masses which vibrate in the 
two systems. Their separate vibrations are to be obtained 
by writing J=0. Thus giving as their separate vibrations 
cos mt and cos nt respectively. Further, it should be noted 
that in the above we are supposing that the introduction of 
the cross-connexion terms on the right has not modified 
the coefficients on the left. A model fulfilling these condi- 
tions seems to be still a desideratum. In these equations it 
may be seen by the theory of dimensions that J must be a 
mass like P and Q. 

Phil. Mag. 8. 6. Vol. 35. No. 206. Feb. 1918. Q 
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6. Prof. Plummer appears to consider it a mistake to 
regard asa mass the mutuai induction M of the electrical 
case. 

But does not the current view regard the mutual induc- 
tion as an inertia factor of some sort? Thus in Sir J. J. 
Thomson’s model referred to in the October paper (p. 251) 
both self and mutual inductions are represented by masses. 
In Prof. J. A. Fleming’s ‘ Alternate Current Transformer’ 
(vol. i. pp. 97-98, 1889), the electrical energy 3Li? is 
likened to the mechanical energy of rotation 4lw?. Again, 
in Sir Oliver Lodge’s ‘ Modern Views of Hlectricity ’ (p. 496, 
1907), coefficient of induction (self or mutual) is given as 
inertia per unit area. 

It is true that the coupling in the electrical case is made 
by a change of configuration which fixes the value of M. 
But this does not prevent M from being a mass (7. e., an 
inertia) like the inductances L and N which are also 
dependent solely on configurations, provided no iron or 
other magnetizable substances are present. As to whether 
the coefficient M in the electrical equations is to be repre- 
sented by a mass in any one mechanical model incompletely 
analogous to it, is another matter. 

Nottingham, 
Dec. 17, 1917, 

XXIII. The Radioactivity of Archean Rocks from the Mysore 
State, South India. By W. F. Smuetu, D.Sc., ARS, 
and H. EK. Watson, D.Sc., A.L.C.* 

Preliminary Investigation. 

HIS investigation was started some years ago on a 
number of samples of the hornblendic schists of the 

Kolar Gold Field, selected by Mr. H. M. A. Cooke, Super- 
intendent of the Ooregum Gold Mining Company. 

The samples were taken from the Kolar mines at different 
depths, with a view to ascertaining whether the radium con- 
tent varied with the depth from the surface in rock of fairlv 
uniform character and composition. These hornblendic 
schists and epidiorites are all ancient lava flows, or sills, of 
fairly uniform composition, notwithstanding petrological dis- 
tinctions in texture and structure. 

* Communicated by the Authors, 



Archean Rocks from the Mysore State. 207 

An account of the method used and results obtained was 
published in the Philosophical Magazine (6) xxviii. p. 44, 
1914, and the results are repeated in Table I., Nos. 1 to 15. 
It will be seen that the radium content is very low, remark- 
ably constant, and that there is no variation in depth down 
to a vertical depth of some 3500 feet from the surface. 

Two of the samples—Nos. 12 and 15—gave results con- 
siderably higher than the others, but microscopic examination 
showed that these samples did not represent normal types of 
the hornblendic schists or “ country” of the mines, but bad 
undergone considerable mineral alteration, such as is common 

in the immediate vicinity of the quartz veins or other acid 
intrusives, and there is no doubt that the higher values are 
due to the intrusion of acid material of higher radium 
content. 

Further Investigation. 

It was then decided to obtain a number of representative 
samples from the various components of the Archean com- 
plex of Mysore, in order to ascertain how far the various 
formations or groups might be distinguishable from one 
another by their radioactivity, and what variations existed 
amongst the members of each group as a result of magmatic 
segregation. The experimental procedure was the same as 
before, viz., 10 gms. of the finely powdered rock were fused 
with potassium hydroxide, under reduced pressure, and the 
resulting gases led to an electroscope after removal of the 
hydrogen and drying. ‘Towards the middle of the experi-. 
ments the leaf system in the electroscope broke down, and 
was replaced by a smaller and more sensitive one, which was 
subsequently carefully standardized. With this a leak of 
1 scale division an hour corresponded to 1°67 x 10~"* gm. of 
radium. Oontrol experiments showed no discontinuity be- 
tween the two series of values obtained. All experimental 
details have already been given (loc. cit.), and will not be 
repeated. Altogether, fifty samples have been selected from 
specimens in the Department of Mines and Geology of 
Mysore and the radium determined, but each group is itself 
so complex and variable that a much larger number would be 
required before fair averages or estimates could be obtained. 
In spite of this, certain interesting variations appear to be 
indicated, and the results obtained have been grouped, in 
Table I., under the various formations taken in order of aye 
from the oldest to the youngest. 

G2 
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The following classification is inserted for convenience of 
reference, and shows the order of succession and relationship 
of the various formations in Mysore as at present adopted by 
the Mysore Geological Survey. 

Classification of Mysore Rocks. 

1. Recent soils and gravels. 
Possibly Tertiary. 2. Laterite. Horizontal sheet capping Archezans, 
Pre-Cambrian 

(Animikean) . Basic dykes. Chiefly various dolerites. 

Great Eparchean Interval. 

. Felsite and porphyry dykes. 
. Closepet granite and other massifs of corresponding 

age. ; 
; Ohaesockite, norite, and pyroxenite dykes. 
. Charnockite massifs. (Complex.) 
. Various hornblendic and pyroxene-granulite dykes, 
. Peninsular gneiss. (Granite and gneissic complex.) 
. Champion gneiss. (Granite porphyry, micaceous 

gneisses, felsites and quartz porphyries ; usually con- 
taining opalescent quartz and frequently associated 
with autoclastic conglomerates.) 

Ooonto Of = 

Eruptive Unconformity. 

Including also :— 
Amphibolites, peridotites, &c., 

mostly intrusive. RE 
Conglomerates (autoclastic). Res « 

and echloritic | Banded ferruginous quartzites, 
een schists). origin doubtful, possibly igneous. 
ei 412, Lower (horn- { Quartzites and quartz-schists, 
wp ee ual blendic) di- mostly intrusive. 

eewatin). vision (epi- | Limestones, probably secondary. 
diorites and | Mica schists; metamorphic ig- 
hornblendic neous. 

L schists). Intrusive masses of dioritic} and 
\ diabasic character. 

11. Upper (chlori- PP 
tic) division 
(greenstones 

Archeean. 

Se 

Dharwar 

\ Unknown. 

We may now very briefly consider the groups of figures 
presented in Table I., and the following summary of the 
results will help to bring out such points of similarity or 
distinction as exist amongst them, although the cbservations 
are too few in number to permit of final conclusions being 
drawn. 

* ‘Outline of the Geological History of Mysore,’ by W. F. Smeeth, 
Bulletin No. 6—Department of Mines and Geology, Mysore State. 
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(Numbers in brackets refer to the classification given above. ) 
Radium, gm. per 

eee 10! gm. of rock. 

Limits. 
; Hornblends serie (Ia) eects. -nnen ss sc cssenees 0:14 to 0°25 

Diarwar x 3) walbened( Gyjpes! os... 60.205: 0°34 ,, 0°96 
Piloritic'series (I) oaie ee os kes cca ben 0:20 ,, 0°54 
Basic intrusives (11) and (12) .................. 0:05 ,, 0-16 

Obum pion gneiss 0). case ease. si dasies en ecens st 0°85 to 1°45 
2 3 auriferous quartz °.....4..-... 1:28 

Peninsular’ eneiss:(9) sores nese. vets boaeces cos 0:40 to 1:50 
is sf POP MIA IbeSH S04 La.8. 6226500. 1°44 to 6°90 

@hurnockites (A). eee alsa cSacetoee | 0-04 to 0°12 
2 hypersthkenite (G)).... sb. .cc0c.cec00 0-06 
Hf quartz-magnetite ore ............ 0:08 

losepet: cranite tO) ic. peat teen Sedan te dees 2 = | 0°27 to 2:14 
5 3 porphytiesH@):)...56. BS | 1°37 ,, 2°42 

Dolerite dykes (Post-Archwan) (8) ............ 0°45 

The hornblendie rocks of the Dharwar System (Nos. 1-18) 
are low in radium and exhibit no great variation from the 
mean, though many petrological types are included, such as 
hornblende schists, hornblende diabases, amphibolite, and 
hornblende granulite. When, however, these rocks are 
altered in contact with intrusions of the Champion gneiss 
and of the related quartz veins of the Kolar Field (Nos. 26- 
30), all of which contain much more radium than the 
normal schists, the radioactivity of the altered types is con- 
siderably increased (Nos. 12, 15, and 16) to a point inter- 
mediate between the radioactivities of the two reacting 
masses. 

The rocks of the Chloritic series (Nos. 19-21) do not appear 
to differ much in radium from those of the hornblendic series. 
The higher value in No. 21 may possibly be the result of 
alteration due to a neighbouring granitic intrusion. 

The basic intrusives of Dharwar age—that is to say, intru- 
Sives into the general body of the Dharwar schists prior to 
the period of the Peninsular gneiss—contain much less 
radium than even theschiststhemselves. This is particularly 
noticeable in the Bellara trap (No. 23) and the Grey trap of 
Chitaldrug (No. 24), and these rocks afford an interesting 
example of the possible use of such determinations in the 
correlation of these very old and much altered Archean 
types. Some years ago the Grey trap was considered to be 
a modification of the less altered Bellara trap, but subsequent 
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work showed that the Santaveri trap of the Kadur District 
possessed a considerable resemblance to the Grey trap of 
Chitaldrug, so much so that it had almost been decided to 
class these two formations together and separate them from 
the Bellara trap. The radium determinations, however, 
show that the Grey trap and the Bellara trap have practically 
the same radioactivity (wide Nos. 23 and 24), which is about 
one third of that of any of the schists proper, while the 
Santaveri trap (No. 19) contains about three times as much 
radium and falls within the limits so far ascertained for the 
schists. This appears to confirm the original classification, 
which correlated the Grey trap with the Bellara trap, and 
which, consequently, has been allowed to stand. The case 
affords an illustration of the possible use of radium deter- 
minations as an aid to correlation of the highly metamorphosed 
members of the Archzean complex,amongst which it may often 
happen that the chemical and mineral composition, and the 
field relationships, do not afford sufficiently definite points of 
similarity or distinction. The value of such determinations 
will depend on the possibility of ascertaining fairly definite 
limits for the radium contents of the various rock groups or 
of the various members of such groups. 
Amongst the various gneisses and granites, which have 

|een divided into four great groups of distinctly different 
ages, it will be noted that the Charnockites stand apart from 
the others in virtue of their excessively low radioactivity, 
which is much lower even than that of the Dharwar schists. 

The Champion gneiss, Peninsular gneiss and the Closepet 
granite—which last is also a variable complex—all contain 
from 12 to 15 times as much radium as the Charnockites 
and four to five times as much as the Dharwar schists. 
The Charnockites have been shown by Holland to form a 
distinct petrographical province amongst the gneisses of 
Southern India and vary, as the result of magmatic segre- 
gation, from highly acid granites to norites and hypersthenites 
—all characterized by the presence of hypersthene and certain 
physical features—and the radium determinations fully con- 
firm the distinct individuality of the parent magma. The 
varieties of Charnockite which have been examined show an 
increase of radium with increasing basicity, but the hyper- 
sthenite and quartz-magnetite ore—which are considered to 
be end products of the segregative process—show a relapse 
towards the mean value. 

The other gneisses and granites are very complex, and the 
determinations are not sufficiently numerous to permit of 
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very definite conclusions. It may be noted that the 
members of the Champion gneiss series show least variation, 
those of the Peninsular gneiss rather more, and those of the 
Closepet granite the greatest variation. | 

The auriferous quartz of the Kolar Field (No. 29) is inter- 
esting as falling into line with the members of the Champion 
gneiss series, with which it has been correlated on other 
grounds, and, as already pointed out, the altered schists (lode 
matter) in contact with, or in continuation of, the auriferous 
quartz veins show values intermediate between those of the 
normal schists and of the quartz. 

It is interesting also to note that the matrix of the Con- 
glomerate (No. 27) has the same radioactivity as the clearly 
intrusive granite (No. 28), and this is in accordance with the 
view that the conglomerate is autoclastic and due to crushing 
of portions of the Champion gneiss series. 

The pegmatite cross-course (No. 39) is remarkable as 
yielding the highest result so far obtained. The pegmatite 
contains a large amount of tourmaline, and it was thought 
that this mineral might account for the high value. A small 
quantity of the tourmaline was separated and, though a 
definite determination was not made, the test was sufficient 
to show that it was not abnormally high, and that the high 
result of the rock as a whole was not due to this mineral. 
A single determination (No. 50) has been made of one of 

the very numerous dolerite dykes which are considered to be 
of Pre-Cambrian age but subsequent to the formation and 
folding of the Archean complex. This rock is very similar 
in composition to the old hornblendic schists, which probably 
were originally diabasic flows and sills of a much earlier 
period. The resuit shows that the later rock contains more 
than twice as much radium as the earlier type, but no further 
inference can be drawn from a single observation. 

| Summary. 

1. These very ancient rocks, all of which are considered 
to be of igneous origin, contain remarkably little radium. 

2. Amongst the various groups which have been differ- 
entiated on geological grounds, there are some striking 
differences in the radium contents of some of them. 

3. In the case of a fairly uniform group of rocks (viz., the 
hornblendic schists of the Kolar Field) the radium content 
does not appear to vary with the depth from the surface. 

4, Different igneous magmas appear to contain very 
different amounts of radium, and the latter, or the minerals 
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which carry it, is subject to magmatic segregation. The 
amount of radium in the segregated portions of a magma 
sometimes increases and sometimes decreases with increase 
of basicity. 

5. Amongst magmas, the more basic appear to be lower in 
radium than the more acid, and, in the products of granitic 
magmas, the pegmatites appear to carry more radium than 
the corresponding granites. The Charnockite magma, which 
was probably of intermediate composition, forms a striking 
exception, and is notable for its extremely low radioactivity. 

6. In the case of rocks of somewhat similar character and 
composition, and in which other means of distinction or 
identification are lacking, a marked difference in the radium 
contents may afford a means of correlating them with known 
groups or formations for which the radium limits have been 
sufficiently determined. 

Bangalore, March 1917. 

TaB.e I. 

Radioactivity of Rocks from the Mysore State. 
(The rock groups are arranged in order of age from the oldest 

to the youngest. The radium is given in units of 107” gramme 
per gramme of rock.) 

ea ie Sa Description. Radium. Remarks. 

Group 1. Dharwar System—Lower (hornblendic) series. 
ft. 

A Balaghat Mine — depth 1000) 0-21 | (The first 15 samples are 
2. 9 a ,» 2000} O14 all hornblende schists 
3. r »  SUOG! * OE and epidiorites from the 
4. Nundydroog Mine ,, 1000) 017 Kolar Gold Field. Tho 
5. | » " » 9000) O14 depths are measured on 
6. |Ooregum Mine ,, 1000; O18 the dip of the lode.) 
(fe 3 i »y 2000) 20:17 
8. | et ‘S », 4000) 0-21 
9. |Champion Reef Mine,, 2000} 0:24 

10. ” ” Dan) 99 3000 0-18 

i) 2 a: AGED wOule 
12. | Mysore Mine », 1000; 034 | Altered schist. 
13. fs 53 js 2000) F021 
14, i x », 3000} 0:23 
1: 4 gt », 4000) 096 | Much altered schist, part 

to quartz of lode. 
16. | §2/877 | Amphibolite, footwall oflode,| 0°82 | Contact alteration, 

Ooregum. 
17. | Z3/510 | Fine hornblende schist, Baba-| 0°25 

budan Hills, Kadur District ‘ 
18 .| 91/535 | Hornblende granulite; Kolar} 0°19 

schists. 

of the lode formation; 
contact alteration close 
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Radium. Remarks, ag a Deseription. 

Group 2. Dharwar System—Upper (Chloritic) series. 

19. | Z3/258 |Santaveri trap, Bababudan 
| Hills. 

20. | Z4/757 | Banded chlorite schist, Sacre- 
bail, Shimoga, 

21. | 24/703 = Cale- chlorite trap, Tarikere 
series. 

0:20 | Chloritic trap, with some 
hornblende. 

0:27 

0:54 | Probably altered horn- 
blendic trap. 

Group 3. Intrusives of Dharwar age—subsequent to the schists. 

22. | S2/943 |Hornblende diabase, Baba-! 
budan Hills. 

23. | W23/69 |Bellara trap, Tumkur Dis- 
trict. 

24. Z4/95 |Grey trap, Chitaldrug oa 
trict. 

25. | J4/117 | Titaniferous iron ore, Ubrani,| 
Shimoga. 

Group 4. 
26. | J1/335 | Grey micro granite, Kolar. 
27. | J1/156 | Fine micaceous granite-ma- 

trix of crush conglomerate, 
Kolar Gold Field. 

28. | §3/313 | Fine mica granite, Mysore 
Mine at depth of 3000 ft. 

29. Auriferons quartz from the 
Mysore Mine. 

30. A/624 | Quartz-felspar porphyry. 
31. $/402 | Massive phyrrhotite from 

Champion Reef Mine 

0°16 

0:05 | Altered diabase intrusive 
into echloritic series. 

0:07 | Chloritie trap, probably 
related to Bellara trap. 

0°05 | Associated with ultra- 
basic intrusives. 

Champion Gneiss Series—intrusive into Dharwars. 

0.85 | 
1°45 | 

1:34 | 

1:28 | | These are considered to be 
products of the Cham- 

1:05 | pion gneiss magma. 
007 | From Gifford’s shaft. 

Group 5. Peninsular Gneiss Series—later Bs Champion Gneiss. 
32. | J3/238 : pee porphyritic granite, 

| Kolar. 
33. | J3/278 | Dark grey granite, Kolar. 
34. | J8/212 | Fine dark grey granite, Kolar. 
35. | J3/276 (Fine light grey granite, 

| Kolar. 
36. J3/63 | Light crushed granite, east of 

| Koiar Field. 
37. | J3/122 | Uniform granite mass, Patna, 

| Kolar, 

38. $/326 | Pegmatite cross-course, Bala- 
ghat Mine. 

39. $/354 | Pegmatite cross-course, with 
| tourmaline, Ooregum Mine. 

0-91 ) 
| | These are in order of in- 

0°99 }| trusion, beginning with 
1:28 || the oldest. 
0-47 J 

0:40 

1:50 

1: 44 \ These probably belong to 
the Peninsular gneiss. 

In No. 39 the tourma- 

Group 6. Charnockite Series—later than the Peninsular Gneiss. 
40, J2/824 | Acid Charnockite, Chamraj- 

nagar, Mysore District. 
41. | J2/822 | Intermediate Charnockite, | 

Chamrajnagar, Mysore Dis-| 
trict. | 

42. | J2/722 | Basic Charnockite, Heggad- 
devankotte, Mysore Dis- 
trict. 

43. | J3/631 | Hypersthenite, Nanjangud. 
44. | J3/713 | Quartz-magnetite ore, Heg- 

_gaddevankotte. 

6:90 | | line itself is not abnor- 
) | mally high in radium. 

0-04 \ 

0:10 
Ceae of intrusion doubt- 

"12 

These are considered to be 
derived from the Char- 
meckite magiias oo | magma. 

| OF 

el 
io 

ged 
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eu on Description. Radium. Remarks. 

Group 7. Closepet Granite—later than Charnockite. 

45. | J3/434 |Coarse grey porphyritic| 0°27 \ 
granite, Closepet, Bangalore | |In order of intrusion, 
District. +| beginning with the 

46. 33/430 | Grey granite, Closepet. 0°63 | | oldest. 
47. | J3/429 | Red granite, Closepet. 2°14) 
48. | Z2/621 | Dark quartz-felsparporphyry,| 2°42) | These porphyries are sub- 

Yelwal, Mysore District. sequent to the Closepet 
49. | Z2/648 | Pinkfelspar-porphyry, Kiran-| 1°37 granite and may belong 

gur, Mysore District. to the same magma. 

Group 8. Post-Archean dykes. 

50. | J1/333 |Normal dolerite dyke, Kolar} 0°45 | Typical of a large series 
Gold Field. of Post-Arehzan dykes: 

which may be of Cud- 
dapah age (Animikean). 

XXIV. The Effect of Interionic Force in Electrolytes. 
By 8. R. Mizner, D.Sc.* 

ART dls 

O the electrical forces which exist between the ions in 
an electrolytic solution produce an effect on the ionie 

mobilities ? This question has often been asked but has never 
received a satisfactory answer, although it is of fundamental 
importance in the theory of electrolytic dissociation. In 
Part II. of the following paper an attempt is made to 
provide an answer by establishing on the principles of the 
kinetic theory a general proposition on the effect of inter- 
ionic forces. Briefly stated this is that whatever effect such 
forces produce on the osmotic pressure of the free ions in an 
electrolyte in reducing it below what it would be were the 
forces nonexistent, they will produce the same reduction in 
the average velocity with which the ions move in carrying 
a current. The bearing of this result on the theory of the 
extent and character of the dissociation of strong electro- 
lytes is then considered. In this part it is proposed to 
consider in this connexion the well-known difficulty in the 
theory of Arrhenius connected with the failure of the law 
of mass action for strong electrolytes. The failure can, 
I think, be shown to be of such a kind as to form an 
objection apparently insuperable, not only to the original 

* Communicated by the Author. 
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theory, but to any theory of dissociation in which the 
reduction of the molecular conductivity is ascribed solely 
to a reduction in the number of the free ions, instead of to 
a direct effect produced by the interionic forces on their 
mobilities. In considering it we will confine attention to 
dilute solutions of strong binary electrolytes in water, 
where the essential facts to be explained by any theory are 
these :— 

(1) The molecular lowering of the freezing-point 7 is 
found to be nearly, but not quite, twice as great as the theo- 
retical value 7, valid for a non-electrolyte. Let us express 
this fact thus : 

2 
sep Cea sk he. ay Mae a ete (a) 
To ae 

8; is in the first place a purely experimental quantity, 
but by strict thermodynamic reasoning it can be identified 

with the reduction in the value of a for the electrolyte 

below the value which would apply to an eijectrolyte com- 
pletely dissociated and obeying the gas law. In the theory 
of Arrhenius it is further identified with the fraction of the 
whole number of ions which, as the concentration is increased 
from zero, have associated into molecules. Equation (1) is 
usually written with the symbol y for the fraction of mole- 
cules dissociated, but for the present purpose the use of 
8, (=1—y) in the equation is more convenient. We are 
dealing with strong electrolytes where at the most there 
are only small departures from complete dissociation, and 
of these according to the theory 8, forms the direct 
measure. | | 

(2) The molecular conductivity \ diminishes with increase 
in the concentration, or we may write, if Apo is its extrapolated 
value at zero concentration, 

Xr 
is «aes ° ° «6 ee (2) 

B, can not be identified thermodynamically with anything, 
but on the theory it also represents the fraction of the ions 
associated. 

(3) i= Poa aeoximatelys. / seat y. (3) 

Much work has been done in testing the extent of the 
agreement, the general result of which seems to be that 
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the equality is practically complete but the limit of experi- 
mental error is still somewhat wide *. 

(4) @, and ®, both vary with the concentration in a way 
which requires to be accounted for. 

Tbe original theory of Arrhenius of course explains per- 
fectly the equality 6;=. by identifying each of them with 
8 the fraction of the ions associated. The variation of 8 
with the concentration C which it requires, namely 

‘= 2 

aa =o. 

is, however, quite inconsistent with the experimental varia- 
tion of 8; and B,. Numerous attempts have been made to 
get over the difficulty by modifications in the mass action 
equation (4), but this procedure, whether the modifications 
have a theoretical basis or are purely empirical, will be 

. found to increase rather than diminish the difficulty in which 
the theory isinvolved. For the law (4) is a thermodynamical 
result the truth of which is independent of any theory of 
the mechanism, and rests solely on the assumption that thie 
osmotic pressure of the ions and the molecules obeys the law 
for perfect gases. If the phenomenon is one of pure dis- 
sociation (and no successful explanations of the discrepancy 
have been reached on other lines), the fact that (4) is not 
obeyed is conclusive evidence that either the ions or the 
molecules do not obey the gas law. But when this is’ 
the case, the experimental quantity 8, in (1) is no longer 
the same as @ the true association. §; will in fact be 
equal to 8 plus the additional reduction in the value of 
PV/RT for the electrolyte due to the non-obedience of the 
osmotic pressure to the gas law, and calculation shows that, 
as far as can be estimated from the experimental curves, the 
last term is many times greater than the first. Comparison 
of 8, with a modified mass-action law is thus invalid. 

An equally great objection applies to any attempt to 
represent the 8, of the conductivity variation by means 
of a modification of the mass-action law. For if @, is 
actually the same as 8 the true association it must be 
different from §), which is not the same as 8 except in tlie 
single case when (4) is obeyed. This is, however, in conflict 
with the experimental result (3). It may be thought that 
the differences between (; and @, thus necessitated are small 
second order ones concerning which experiment is incon- 
clusive, but this is not the case. They are of the same order 

* Cf. A. A. Noyes and K. G. Falk, Amer. Chem. Soc. Journ. xxxiy. 
p. 484 (1912), where a systematic comparison of all the best data is 
given. 

(4) 
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of magnitude as those which occur in the comparison of f, 
with the unmodified mass-action law. The point may be 
illustrated by a brief consideration of one of the most recent 
positions reached in the development of the original theory. 

Kraus and Bray”* have found as a result of a detailed 
examination of a great many solutions in various solvents, 
that the variation of X can be closely represented by thie 
empirical formula 

20 ion =K+D(Cy)”, 

where y= ~ (=1-6,), and K and D are constants. 
0 

According to this formula the law of mass action (4) is 
obeyed when the concentration is sufficiently small, the 
term D(Cy)” being ultimately negligible. As the solution 
becomes more concentrated the mass-action ‘ constant” K 
becomes increased by a term depending on the concen- 
tration of the ions. They conclude from their examination 
that in all cases the conductivity ratio X/A, is a true measure 
of the ionization, and that the simple law of mass action 
applies if the solution is made sufficiently dilute. This view 
has been mentioned with approval by Arrhenius ft, who, 
however, lays stress on the fact that the fundamental 
difficulty of the failure of the strict mass-action law is still 
unremoved by the use of an empirical equation. Curve I., 
fig. 1, shows the agreement of the equation 

ae 3() 4. De f 673 “= Xr apr a 080 + 2°707%, Cy) &?, Y= [983° 

with experiment in aqueous solutions of KCl (the constants 
are given by Kraus and Bray, and the experimental numbers 
by Noyes and Falk, oc. cit.). The curve represents well 
the conductivities over a wide range except at the lowest 

Xr 

Xo 
ionization, it is a simple matter to apply the general differ- 
ential equation of mass action which is applicable in all 
circumstances, to determine the variation of the molecular 
freezing-point lowering with the concentration which is 
thermodynamically necessitated by this assumption t. The 

concentrations. Now assuming that — represents the true 

* Amer. Chem. Soc. Journ, xxxv. p. 1515 (1913). 
t Chem. Soc. Journ. cy. p. 1414 (1914). 
t See Appendix. 
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result is shown in Curve II. along with the experimental 
variation of t/t) (Curve III.). The difference between the 
curves is several times as great as the amount (@,) by which 
the experimental curve differs from the theoretical value 2. 

Fig. 1. 
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This type of difficulty is inherent in any theory in which 

8, 1s identified with B, 7. e., in which the reduction in the 
conductivity with increasing "concentration is ascribed solely 
to a reduction in the number of the free ions, their mobilities 
remaining unchanged. We may say in general that with a 
suitable assumption as to the osmotic pressure of the ions it 
is always possible to derive a mass-action law which will 
express the experimental results either for 8, or for B, 
whatever they may be, but only at the cost of entailing a 
theoretical difference between these two quantities which 
does not actually exist. The view that the electrical forces 
between the ions affect their mobilities (to a sufficient 
extent to account for the greater part of the variation of X 
in strong electrolytes) will of course dispose of this diffi- 
culty; and so far as I can see it is the only view that will 
do so. 
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APPENDIX. 

The problem to be solved is as follows :-— 
Being given 

2 
(1) YC =K+D(Cy)” 

i. 

an empirical equation for an experimental fact when y stands 
r 

for “ag 

(2) C=ctcet=p-+p, 

where the capitals, undashed, and dashed letters mark the 
total, molecular, and ionic, concentrations and pressures. 

(3) v=o 

an assumption which the result of the calculation shows to 
be erroneous, 

dp __dp' __dP (4) oo an 
a thermodynamic result indisputable in all cases if the 
phenomenon is to be ascribed to dissociation, 

() p=Eic, but 7 is not = Rie’, 

an admission that the failure of the strict mass-action law is 
connected with the non-obedience of p’ to the gas law (this 
has to be made for either p or p’ if (4) is to hold), 

T P 

(6) a RTO? 
a thermodynamic ; sees equation indisputable in dilute 
== , oes a a 

solutions—express ~ — as a function of the measured quantities 
qx: Peencend ; 2 & 0 

C and 
Xo 

We have from (1), (2), and (3), 
12 

(7) —=K+De™, 

and from (4) and (5), 

dp' = —RTde, 
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Substituting the values of c and dc in terms of ec! and de’ 
obtained from (7) we get 

bi mDe'™ 

Integrating this equation we get pn’ as a function of ¢’, 
i.e., of yO; substituting this in (2) we get P and from (6) 
ce 
— in the form 
T9 

T mY _Di(Cy)™ 
—=l+y--7 = d (Ory). ne). KeDOye 

In order to draw the curve of fig. 1 the integral was 
evaluated graphically using the constants given by Kraus 
and Bray. 

XXV. Notices respecting New Books. 

Researches of the Department of Terrastrial Magnetism. Vol. III. 
Ocean Magnetic Observations 1905-1916, and Reports on Special 
Researches. By L. A. Baver, Director, Washington D.C. 
Published by the Carnegie Institution of Washington, 1917. 
Quarto, pp. v+447, with 25 plates and 35 figures in the 
text. 

i) Las volume is issued also in three parts, dealing respectively 
with the earlier magnetic observations taken at sea by the 

‘Galilee’? 1905-1908, the later sea magnetic observations by 
the ‘Carnegie’ 1909-1916, and the results of the observations 
on Atmospheric Electricity taken on both vessels. There is a 
very full account of the instruments, the methods of observation 
and the reduction formule, and elaborate tables of results and 
particulars of the errors in existing charts—American, British, 
and German. The vessels and the instruments are illustrated in 
the plates from a variety of points of view. ‘lhe observing vessel 
‘Carnegie’ was specially built for magnetic work and is almost 
free from magnetic material. This has proved a great simplification 
in the reduction of the observations. 

: 
| : 
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XXVI. Rain, Wind, and Cyclones. 
By R. M. Destry, MInst.C.£., F.G.S.* 

Oboes G recent years our conceptions respecting the 
conditions obtaining in cyclones have undergone very 

considerable alterations. The old idea, which madea cyclone 
consist of a lower spirally inflowing current of air directed 
towards the centre of an area of low barometric pressure, an 
internal rising current of warm air, and an upper stream of 
air flowing outwards from the same area, requires very con- 
siderable modification in view of modern discoveries. 

That the cause of rain is due to the upward flow of masses 
of air, which being cooled below the dew-point by expansion, 
condense out some of their moisture, still holds true ; but the 
distribution of temperature and the actual nature of the air 
circulation prove to be very different from what was once 
thought to be the case. © 
In all scientific work accurate observation and correct records 

are essential. Here, however, meteorological records fail us 
in a very important particular. The wind directions shown 
on our charts are not always accurate. In Great Britain, 
for example, wind directions are given to the nearest of 
sixteen points of the compass. It thus comes about that 
winds which are observed to differ in direction only one or 
two degrees from each other, may be charted as differing 
by as much as twenty degrees. 

* Communicated by the Author. 

Phil. Mag. 8. 6. Vol. 35. No. 207. March 1918. R 
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Owing to the direct flow of the wind being prevented by 
trees, buildings, hills, &., it is by no means easy to observe 
the correct direction of movement. It often happens that a 
wind blowing up a river will follow closely the river 
windings ; passing clouds, especially rain-clouds, also pro- 
duce, for short intervals, marked changes both in the 
direction and force of the wind; but the difficulties that 
are met with in observing the general direction should be 
overcome by the exercise of extreme care so as to obtain a 
result as accurate as possible. The observed results should 
then be recorded in degrees from the true north, working 
clockwise round the compass. 

To render the points I wish to draw attention to clear, a 
number of charts or diagrams of cyclonic disturbances &e. 
have been taken from Shaw and Lempfert’s paper on “* The 
Life History of Surface Air Currents”*. The wind direc- 
tions are sometimes shown by continuous lines instead of 
arrows, and the isobars -by dotted lines. In the original 
charts the arrows often show many irregularities in the wind 
directions of the same wind province; but these are due to local 
causes such as hills, falling rain, &c. It is near the centres 
of cyclones that the errors arising from the methods of obser- 
vation now adopted appear to be most marked. Indeed, until 
strict accuracy is arrived atin recording and plotting obser- 
vations of wind directions, many features of atmospheric 
circulation will continue to be obscure. 

Shaw and Lempfert, in the paper already referred to, show 
that the wind directions in cyclones, if they do not always 
close in as regular spirals towards the cyclonic centre, do 
travel in such a way that the air suffers horizontal contraction 
and rises. That this is the case is rendered evident by the 
consideration of the air trajectories they have worked out. 

In the case of quite a deep cyclone the difference of 
pressure between the centre and the margin seldom amounts 
to more than one inch of mercury, and this is about the 
change of pressure due toa rise of 400 feet. To give rise to 
heavy rain, masses of land over which winds are blowing 
and rising as they advance must be much higher than this. 
In a cyclone the rain-producing effect resulting from the 
fall of the barometer is very small indeed. Rain when it:does 
fall nearly always results from the rise of air in the cyclone 
or the mounting of one air current over another, the quantity 
of rain depending upon the humidity of the rising air and 
the height to which it is lifted. 

According to the old view, the air rises spirally in the 

* Meteorological Office Publication No. 174. 
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central portion of a depression. If such were the case, the 
greatest rainfall would occur around the centre. Butit does 
not often do so. The greatest rainfall is generally on one 
of its sides, and considered with regard to the direction in 
which the cyclone is moving, not always on the same side. 
However, we may safely conclude that the area over which 
rain is falling is that above which the air is rising, and this 
fact, considered in the light of the directions of the wind on 

Fig. 1. 
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the earth’s surface at the time, throws light upon some points 
in the construction of the upper portion of the cyclone which 
might otherwise be obscure. 
A very obvious case of a rising wind producing rain, 

without any marked barometric changes, is described by 
Shaw and Lempfert*. The wind directions are shown in 
fig. 1. Here we have a wind from the south-west blowing 
against one coming from a little west of south; the line 

* Meteorological Office Publication No. 174, p. 62. 
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separating the two wind provinces was moving westwards at 
about 29 miles per hour, whereas the wind following it up 
was only moving at 20 miles per hour. Rain was falling 
near to and on both sides the dividing line between the winds. 
The upper portion of the westerly wind appears to have 
been travelling more rapidly than the portion near the ground, 
and was descending and forcing itself beneath the more 
southerly wind. The latter being forced to rise precipitated 
some of its moisture through the lower south-westerly wind 
as well as along its westerly margin. 

Fig. 2. 
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All the weather charts figured are for the area of the 
British Isles and portions of western Europe. The points 
where rain was falling were generally on land, observations 
out at sea not being available in many instances. 

Occasionally cyclones, accomipanied by rain, do occur 
which show, even as far as their lower levels are concerned, a 
striking resemblance to the old theoretical cyclone*. Fig. 2 
is such aone. Its centre lay over the sea between Wales 

* Met. Office Pub. 174, Plate IV. fig. 3. 



Rain, Wind, and Cyclones. 225 

and Ireland. The wind directions show that the air was 
circulating around the centre of the depression, and was 
rising over the whole of it, with the exception, perhaps, of 
a small area to the south-west. It was travelling from west 
to east at a velocity of about 35 miles per hour, and the wind 
velocities were high. The irregular nature of the wind 
directions shown by the arrows is most probably due to the 
flow of air from areas of heavy rainfall, resulting from the 
mechanical effect of thefalling rain. To the east of the storm 
centre, in the direction of Holland, a south-westerly wind 

Fig. 3. 

and westerly wind were in conflict, and rain was the result 
there as well as near the centre. 

With the exception, perhaps, of the portions near their 
centres, the cyclones now to be illustrated do not show a 
regular spiral flow of the lower air into the cyclone; but 
are areas where several winds are approaching or receding 
from an area of low pressure. These lower winds often pass 
ever or beneath each other, and cause rain. 

Fig. 3 shows the conditions in a cyclone which passed over 
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England on Nov. 13, 1901, based upon a chart given by 
Shaw and Lempfert*. The wind over France, Germany, and 
the south-east of England blew from the south-west. An 
easterly wind from the Baltic Sea cut off abruptly the 
south-westerly wind, and backing as it travelled round the 
western side of the depression, finally became a northerly 
wind. The conditions obtaining in this depression are 
well described by Shaw and Lempfert. Its average rate 
of motion from west to east was only about 17 miles per 
hour, whereas in one locality the velocity of the wind was 
59 miles per hour. The rainfall was exceptionally heavy, 
four inches being recorded at several stations in Ireland. The 
area of precipitation was a broad band stretching from west 
to east along the line separating the south-westerly wind from 
the easterly Baltic wind. Shaw and Lempfert remark, “As 
might be expected, the air from these two sources was at 
decidedly different temperatures, and... . suggest that the 
process going on in the depression consisted in the warm air 
from the south rising up over the top of the cold air from 
the north-east.” The fact that rain was falling in Scotland 
when the centre of the depression was well over the centre 
of the North Sea, shows that the south-westerly wind, after 
rising over the easterly wind, curved round and passed to 
the north and west of the cyclonic centre. 

A peculiar feature of the above described depression was 
the area of westerly wind that prevailed over the Channel. 
This small wind province was to the south-west of the cyclonic 
centre and travelled with it to the east. Over this area the 
south-westerly winds were interrupted. 

Another cyclone is shown in fig. 4, which reproduces 
many of the features of the one already described. It was 
of the slow travelling type, moving from west to east at 
about 11°3 miles per hour. It originated over the west of 
the British Isles and grew deeper and deeper as it moved in 
an easterly direction. Atthe time of its formation, October 7, 
1903, there were south-westerly winds over the area and easy 
pressure gradients. At 8 a.m, on October 8 there was a 
well-marked but shallow depression over the south-west of 
Hngland. An inflow set in from the Baltic area, the southerly 
wind commenced to rise over it, and rain fell in the northern 
counties of England. These features had become well marked 
at 8 a.m. on Oct. 9, and the depression amounted to 0°6 inch 
of mercury. Fig. 4 shows the conditions obtaining at this 

* Met. Office Pub. 174, Plate VII. fig. 14. 
+ Ibid. Plate IX. fig. 12. 
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time. The growth of the depression appears to have been 
from above downwards. Re 

Another condition of wind and pressure which oftenigives 
rise to heavy rain is known as a V-shaped depression. Such 
a one formed over England during the interval from Jan. 6 
to 8in 1900. There was a low-pressure area over Iceland, and 

Fig. 4, 
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a tongue of it was thrust in between a high-pressure area over 
Scandinavia, and another in the region of the Bay of Biscay. 
Fig. § shows the condition of affairs at 6 P.M. on Jan. 6th. 
The depression subsequently extended in a south-westerly 
direction, low pressure still holding to the north-west. It 
shows a strip of southerly wind, with westerly winds to the 
west of it, and easterly winds to the east. The southerly 
wind is moving ata low angle across the isobars, from high 
to lower pressures. The depression is thusa marginal feature 
of the great Icelandic depression. The rain is considered by 
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Shaw and Lempfert to have been due to the mounting of the 
southerly current over the northerly and westerly wind on its 
westerly margin. 

But there are other phenomena, of which rain and wind 
are features, which are not the result of great differences of 
barometric pressure, but arise from the variable heating 

Fig. 5, 
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and cooling of the land and water areas by the sun. In 
the Troposphere we have the atmosphere in a condition 
approaching convective equilibrium ; due to the upward rise 
ot heated air, such air cooling by expansion as it rises. 
There is a generally held opinion that the full moon dissipates 
the clouds. The fact that clouds often melt away after sunset 
is probably the cause of this view. During the day in quiet 
weather, the air over the land is more heated than is the case 
over the surrounding seas, and it rises, thereby producing 
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clouds ; but during the night the land cools more than the 
seas, the air descends and the clouds melt away. Thunder- 
storms originate in this way, the air rising locally to such 
great heights that heavy rain and hail result. | 

The conditions shown on the diagrams that have been consi- 
dered are such as occur near the earth’s surface. At low levels 
the winds often approach and recede from the low-pressure 
area much as comets approach and recede from the sun. But 
the wind near the earth’s surface encounters considerable 
frictional resistance, and some of it is drawn in and rises in 
the cyclone. Indeed, if it were not for the friction of the air 
and the ground, a cyclone once started should persist by 
reason of its own momentum. 

It must be remembered that the water content of the air 
rapidly decreases with elevation, owing to the decrease of 
temperature. Above 3000 metres the moisture content of the 
atmosphere is very small owing to the low temperatures 
prevailing at that level. Indeed, this lower region of the 
atmosphere has been called the storm layer. In it the tem- 
perature gradients are very irregular, for all upward currents 
throw down moisture as they rise, and are prevented from 
falling in temperature as much as they otherwise would do 
by the liberation of the latent heat of condensation, whereas 
descending currents undergo simple adiabatic changes of 
temperature. Invery cold weather the temperature gradient 
is often reversed by reason of the cooling of the air in contact 
with the ground. 

The diagrams of cyclones shown in the figures that have 
been given make it clear that the winds near the earth’s surface 
very often cross the gradients at high angles. Gold* has 
carefully considered the relationship of the isobars and winds 
at heights of about 3000.feet. Assuming that the isobars near 
the earth’s surface hold true for greater heights, it is found that 
the strength of the upper winds closely approximates, by calcu- 
lation, to what would be expected from the gradients at the 
earth’s surface. Gold remarks “It is to be noted, however, 
that on the average, even for anticyclones, the tendency is for 
the wind at 1000 metres altitude to blow slightly across the 
isobars from high pressure to low.” Ina preface to the paper 
referred to, Shaw says: “The general result of the investi- 
gation is, in my opinion, to confirm the suggestion that the 
adjustment of wind velocity to gradient is an automatic 

* “Barometric Gradient and Wind Force,” Meteorological Office 
Publication 190, p. 9. 
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process which may be looked upon as a primary meteoro- 
logical law, the results of which are more and more apparent 
as the conditions are more and more free from disturbing 
causes, mechanical or meteorological.” 

It was previously suggested that the surface winds often 
followed directions resembling the eccentric paths of comets. 
Their courses, however, at higher levels more closely resemble 
planetary orbits. In the last paragraph of the preface to 
Gold’s paper Shaw remarks: “The whole question of the 
cause and meaning of the discrepancies between the gradient 
wind and the actual wind is, of course, bound up with the 
origin of pressure differences. To put the point in a crude 
form, I do not know whether, in practice, the winds have to 
adjust themselves to the pressure conditions, or the pressure 
distribution is the result of the motion of the air.” 

Perhaps the most promising way of ascertaining the 
cause of the circulation of the winds is to be found by 
studying the distribution of atmospheric temperatures. In 
this direction a great deal has been done in the exploration 
of the upper atmosphere by means of pilot balloons. In this 
connexion we cannot do better than consult a paper by Shaw 
and Dines* on “‘The Free Atmosphere in the Region of the 
British Isles.” 
Fig. 6 isa diagram showing the distribution of temperature 

within a cyclone 2000 miles in diameter. It will be noticed 
that the temperatures below about 10 kilometres are lower in 
the centre than in the margin of the depression. It is clear, 
therefore, that the temperature distribution below this level 
is such as would cause a descent of air at the cyclonic centre. 
The old theory that a cyclone results from the ascent of warm 
air from the earth’s surface must be abandoned. 

The dotted line B B shows the dividing line between the 
Stratosphere and Troposphere. In the stratosphere the 
temperature not only rises as the height increases, but over 
the cyclone there is a local mass of heated air. I would 
suggest that this heated air extends to the confines of the 
atmosphere, and there is there formed a gravity gradient 
for the flow of air outwards. The displacement of this air 
reduces the weight of the air column, and the result is felt 
at the earth’s surface. 

Instead of the air moving into and filling up the low-pressure 
area at once, it circulates round it, in a manner depending 
upon the direction of the air-currents in the atmosphere at 

* Meteorological Office Report, No. 2100. 
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the time of its formation. Dines* remarks: ‘“‘ The inference 
drawn is that a cyclone is produced by the withdrawal 
laterally of the air at a height of from 8 to 10 kilometres ; 
for if we choose this height the observed and the theoretical. 

Fig. 6. 

ooo Mines. 500 | aa JOOO MILES, 

variations of pressure and temperature agree, whereas they 
would not do so if any other height were chosen for the 
outflow of the air which undoubtedly flows in along the 
earth’s surface.” My suggestion is that the air does not 
flow outwards from the cyclone in any volume anywhere 
except where a corresponding volume enters somewhere else; 
there being, as regards horizontal flow to or from the centre, 
above 2000 or 3000 feet—except at very great heights,— 
a balance maintained between incoming and outgoing air. 

* Met. Oftice Pub. 2104, p. 50. 
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The low pressure and inward flow of surface currents are 
maintained by the buoyancy of the warm air of the strato- 
sphere, in which there is also a cyclonic circulation. 

According to this conception a cyclone is the result of the 
outward flow of a volume of heated air in the upper portion 
of the stratosphere, an inflow near the earth’s surface, and a 
slight bodily lifting of the mass of air between. 
A section of the atmosphere between the equator and the 

pole shows the same temperature distributions as does a 
cyclone. Fig. 7 is a generalized section from the pole to the 
equator showing what would appear to be the temperature 
distribution in the atmosphere, as revealed by observations 
made with self-registering pilot balloons. The dotted iso- 
therms are purely theoretical. A A is the earth’s surface 
and the dotted line B B the lower surface of the stratosphere. 
Fig. 7, it will be noticed, closely resembles the left side of 
the cyclone shown in fig. 6. Over both low-pressure areas 
there are masses of warm air in the stratosphere. 

It is only possible to obtain an idea of the temperatures of 
the upper portions of the stratosphere by a study of the atmo- 
spheric pressure on the earth’s surface and the temperature 
of the troposphere. The troposphere has been sounded in 
many places, and its temperature is fairly well known at 
several latitudes. In constructing the diagram fig. 7 the 
temperatures of the troposphere, as ascertained for Batavia, 
Milan, Pavia, England, and Pavlovsk, have been plotted, 
and the isotherms drawn in. Comparing the variations in 
weight of the air columns at these places resulting from their 
different temperatures with the actual barometric readings, it 
is clear that a ridge of cold air in the stratosphere must encircle 
the earth at latitude 30° north and south of the equator, 
and there is a trough of heated air in the upper atmosphere 
over the equatorial regions, and a basin of hot air over each 
pole. Isotherms have been drawn in the stratosphere to 
illustrate this; but to obtain an accurate representation 
of the variation of temperature further observations are 
necessary. 

The high-pressure ridge is rather a string of anticyclones 
and the north polar basin has two minima, one over the North 
Atlantic and the other over the Behring Sea. The South 
Polar Continent is the centre of one great cyclone due to the 
heated basin of air in the stratosphere. Were it not for the 
powerful action of this basin, anticyclonic conditions would 
prevail there. 
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The general surface winds of the globe, like those of 
cyclones, generally cross the isobars at angles more or less 
acute. Itis probable, however, that all the winds of the 
world above 1000 metres, or even lower, follow the isobars 
very closely, and that the energy of cyclones both large and 
small is dissipated mainly by friction at or near the earth’s 
surface. Although the energy represented by such move- 
ments is very large, it would be easy to overrate the strength 
of the forces required to keep them going or to start them. 
We must regard the circulation of the atmosphere much as 
we do the movement of the planets, moons, comets, &c. of the 
solar system ; but the retarding frictional forces are greater 
in the case of the atmosphere than they are in the case of the 
solar system. 

I have ventured to show what I regard as the general 
directions of the slow movement of the winds across the 
isobars in figs. 6 & 7. 

In the case of fig. 6, the arrows show the assumed very 
slow movement to or from the centre of the cyclone during 
its growth. The velocity of the wind along the isobars may 
be high. In fig. 7 the arrows also show the assumed steady 
movement to and from the centre ofthe cyclone. The velocity 
along the isobars may also be great. 

The temperature distribution in the atmosphere appears 
to be the result of heating mainly in two ways. At the 
upper surface there may be arrested many kinds of radiation 
(undulatory and material) and also cosmic matter moving at 
high velocities. It is thus heated at its upper surface, and 
this heat passes downwards and gives us the conditions of 
temperature found in the stratosphere. Light and heat rays 
pass through the atmosphere until they reach clouds in the 
lower atmosphere or the earth’s surface. From here the heat 
rises and the temperature conditions of convective equilibrium 
are established in the lower atmosphere. 

I have suggested * that the great heating of the upper 
surface of the atmosphere over the poles is primarily due to 
the electrons shot out by the sun, which, being caught by the 
earth’s magnetic field, are directed towards the poles, the air 
in the neighbourhood of which they heat and probably ionize. 
But we have to, account for the local heating of the upper 
surface of the atmosphere required to produce cyclones. It 
may be due to pencils of high-velocity cosmic matter; for the 
optical properties of the upper atmosphere, as indicated by 

* Phil. Trans. vol. xxxi., April 1916. 
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the varying sunrise and sunset effects, are otherwise difficult 
to explain. | 

The energy of impact of the cosmic dust need not be as 
great as the energy of the cyclone produced ; for the winds 
and isobars of a cyclone are to a large extent a modified 
arrangement of existing isobars and winds. 

Cyclones according to this theory must travel with the 
winds of the upper atmosphere. That cyclones originate at 
high levels and extend downwards would seem to be implied 
by the following remark of Shaw and Lempfert*: “This 
disturbance moved slowly in a north-westerly direction 
and finally passed away to the North Sea. In the early 
stages small ‘secondary ’ minima of pressure developed near 
the primary minimum, and the process of travel appears to 
consist in the formation of a ‘ secondary ’ in front of the storm, 
and the filling up of the original minimum.” 

The local heating of the upper portion of the stratosphere 
which is considered to result in the formation of travelling 
eyclones, is regarded as being produced rapidly and as dying 
away slowly. In the case of the polar fixed cyclones the 
heating of the upper atmosphere must be a continuous 
process or nearly so; the heat is always passing downwards 
as rapidly as the air moving into the lower portion of the 
cyclone raises the upper surface of the stratosphere, and the 
vertical distribution of temperature in the atmosphere remains 
nearly constant. 

One would expect the weather conditions to be much less 
variable if they depended wholly upon the physical features 
of the earth’s surface and the radiations received from the sun. 
Indeed the Trade Winds, and even the general circulation 
of the atmosphere, are fairly regular. It is to wandering 
eyclones that our short-period weather variability is due, and 
the want of regularity in the manner of their occurrence 
would be only what might be expected if they were caused by 
irregular streams of cosmic matter. Indeed, our atmosphere 
probably protects us from a bombardment from space, not only 
of matter but of many undesirable radiations. However, 
the energy received from the sun is probably somewhat 
irregular in its amount owing to the formation and dis- 
appearance of spots on the sun, and some relationship 
undoubtedly exists between weather condition variations 
and sun-spot periods. 

* Met. Office Pub. 174, p. 45. 
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If the driving force of cyclones originates in the upper 
portion of the stratosphere where it is locally heated, then 
this heated air must be carried along with the stratosphere 
wind, and the course of the cyclone on the earth’s surface 
should indicate the direction of flow of the stratosphere wind 
above. The generally easterly movement of cyclones favours 
this assumption ; but the track of cyclones from south to 
north in North America seems to require explanation. In 
this connexion it is interesting to note that the dust of the 
Krakatoa eruption adhered closely to the area of the equa- 
torial trade winds, except over the Atlantic, where the dust 
was carried to the north apparently along the American 
Cyclone track. 

XXVII. Resonance Spectra of Iodine. By R. W. Woop, 
Professor of Experimental Physics, Johns Hopkins 
University”. 

[Plates VI.-VIIL7 
INCE the appearance of the last paper on this subject 

(Phil. Mag. ser. 6. vol. xxvi.), the stuly of these inter- 
esting spectra has been continued without interruption, and 
some new and very important relations have been brought to 
light. As has been shown in previous communications, the 
vapour of iodine in vacuo, when excited to luminosity by the 
light of the Cooper-Hewitt mercury lamp (glass), emits a 
spectrum consisting of a series of doublets, with a separation 
of about 1:5 AU., very regularly spaced along the spectrum 
and separated by intervals of about 70 AU. These intervals 
increase gradually, however, as we pass away from the green 
mercury line, at which point the doublet series has its origin, 
until, in the extreme red, the distance between the last two 
doublets observed is about 102 AU.,and the separation of the 
components of the doublet has increased to 2°83 AU. By the 
use of dicyanine plates the series has been followed to its 
termination at wave-length 7685 and the wave-lengths of 
the seven new doublets accurately measured. The doublets are 
not all of uniform intensity, and some are missing entirely, 
and it is the connexion between this circumstance and the 
way in which the doublet series is related to the band absorp- 
tion spectrum, that 1s the most interesting point brought out 
by the recent investigations. By varying the conditions of the 
experiment it has been found possible to excite by the green 
mercury line not only the doublet series, but a simplified 

* Communicated by the Author. 
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system of fluted bands, few in number and regularly spaced 
if the iodine is in vacuo, increasing in number and-com- 
plexity if a gas of the helium group is mixed with the iodine, 
or if more than a single iodine absorption line is excited by 
the mercury lamp. It is probable that the lines forming the 
doublets are themselves constituents of the fluted bands, and 
the transfer of energy from one part of the vibrating system 
to another, as a result of collisions between iodine and 
helium molecules, enables us to build up, so to speak, the 
complicated system of fluted bands shown in the absorption 
spectrum, out of a number of simpler systems which can be 
excited separately. ‘This constitutes a very great advance in 
the analysis of band spectra, and brings usa step nearer to the 
point at which we can picture some idea of the vibrating 
mechanism. 

In the more recent work, a method of illumination has 
been employed which is distinctly superior to any previously 
used, and as it is well adapted to purposes of demonstration 
I shall describe it in some detail. The iodine tubes which I 
now employ are of soft glass, about 40 cm. long and 3 cm. 
in diameter. One end is blown out into a thin bulb, taking 
care to avoid having the thick drop near the centre of the 
bulb. This is best accomplished by drawing off the tube in 
an oblique direction, which brings the drop—formed by the 
melting down of the pointed end—well to one side. If this 
is not done the drop is apt to form a small lens on the surface 
of the bulb exactly on the axis of the tube. 

The other end is drawn down, and a few flakes of iodine 
introduced into the tube. Itis a good plan to provide the 
tube with a lateral branch, by which the density of the vapour 
ean be controlled, though this is not necessary for demonstra- 
tion purposes. The iodine takes are now brought into the 
bulb, or to the bottom of the lateral tube, and the tube joined 
to a Gaede pump, interposing a U-tube immersed in liquid 
air or solid COz,, or a tube filled with caustic potash, to keep 
the iodine out of the pump. During the exhaustion it isa 
good plan to heat the walls with a bunsen flame, except 
where the iodine is located. Then allow the tube to cool 
down to the temperature of the room, and heat the portion 
where the iodine is located. The flakes will sublime rapidly 

and crystallize on the cooler portions of the wall. The tube 
is now sealed off from the pump and the drawn-down end 
painted black for a distance of a few centimetres. For the 
illumination I used a very simple modification of the “light 
furnace ” described in the earlier paper. 

The iodine tube is fastened alongside of and in contact 
Phil. Mag. 8. 6. Vol. 35. No. 207. March 1918. S 
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with a small Cooper-Hewitt mercury lamp (glass, not quartz). 
The bulb should project a centimetre or two beyond the cap 
on the positive electrode, and the drawn-down end should 

reach not quite down to the negative electrode bulb. Two 
small pads of thick asbestos paper should be placed between 

the two tubes, which are then securely fastened together 
with copper wire. 

The Cooper-Hewitt lamp is supported in a clamp fastened 

close to the negative bulb, just beyond the end of the iodine 
tube, as shown in fig. 1. 

Fig. 1. 

A cylindrical reflector is now prepared by cutting off the 
bottom of a beaker glass measuring about 12x 25 em., and 
silvering the outside with Brashear’s solution. This can be 
done with a minimum amount of solution by rotating the 
beaker slowly in a glass or porcelain tray, tipped slightly on 
its longer side. A preliminary trial with water shows at 
once the minimum amount that can be used. It is sufficient 
if the solution wets one side of the beaker from one end to 
the other. After the silvering the inside of the beaker is 
cleaned with a cloth dampened with dilute nitric acid, and 
the hollow reflecting cylinder slipped over the iodine tube 
and mercury lamp. The lamp is clamped at a suitable angle 
for operating, say 5° from the horizontal, and started by 
tipping the clamp-stand. The reflector should be supported 
so that the tubes are centrally placed. The luminous iodine 
vapour is viewed “end-on”’ through the bulb. Ifa prism of 
about 8°, such as is used for mounting Lippman photographs, 
is placed in front of and close to the bulb, it has the effect 
of bringing the tube into the horizontal position, which is 
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advantageous if an image is to be projected on the slit of a 
spectroscope. ; 

This is the arrangement which I[ have used in all of the 
recent work, and besides having a very high efficiency, it is 
easy to construct. 

The fluorescence of the iodine is so intense that the 
doublets excited by the green mercury line can be seen widely 
separated in the first order spectrum of a large grating 
with a telescope of three metres focus. In a small prism 
spectroscope the complete resonance spectrum is extremely 
brilliant. 

The excitation of the iodine vapour results from the cir- 
cumstance that the green mercury line and the two yellow 
lines coincide with absorption lines of the iodine, of which, 
as I have previously shown, there are between forty and fifty 
thousand in the visible spectrum. 
We will consider, first, the resonance spectrum excited by 

the green Hg line. To obtain this pure, it is necessary to 
screen off the light of the two yellow lines. This can be 
done with a solution of neodymium chloride, or the double 
salt of neodymium and ammonium, and as the use of a fluid 
screen is impractical in the case of the method of illumina- 
tion just described, it is necessary in this case to illuminate 
the tube with a large condensing lens. As a matter of fact, 
however, the yellow lines are comparatively feeble in the 
ease of the Cooper-Hewitt glass lamp, and the doublets 
excited by the green line are so intense that, in the greater 
part of the work, no screen has been employed. 

The more recent investigations have brought some ex- 
tremely interesting phenomena to light, especially with 
respect to the transfer of energy from the doublet series to 
the band spectra, as a result of the admixture of helium or 
other rare gases with the iodine. 

On account of the complexity of the subject, it will be 
necessary to touch briefly on some of the relations which 
have been discussed in the earlier papers. 

The band absorption spectrum of iodine covers the spectrum 
range comprised between wave-lengths 5100 and 7700. It 
is made up of exceedingly fine lines averaging 20 to the 
ngstro6m unit in the green and yellow regions, or some 

50,000 in all making the estimate on the above average. It 
is covered on the short wave-length side by a band of con- 
tinuous absorption in the blue-green region, which makes 
the exact determination of its end impossible. In the red it 
has been followed by means of dicyanine plates sensitive to 
» = 9000, and its termination discovered at about 7 = 7700. 

S 2 
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A portion of this spectrum, in the vicinity of the green mer- 
cury line, reproduced from an earlier paper, is shown by 
fig. a, Plate VI. The entire spectrum, reproduced on the 
same scale, would be about 80 metres in length. In the 
yellow, orange, and red regions the lines form fluted bands, 
or rather series of overlapping bands. In the green region 
there appears to be so much superposition of bands that all 
appearance of regularity vanishes. A good idea of the 
general appearance of this spectrum in the region 5460— 
5700 is given by fig. d, Plate VJ. This is in reality the 
emission spectrum of iodine in a vacuum-tube, reproduced as 
a negative, and with the dispersion employed could scarcely 
be distinguished from the absorption spectrum, except for 
the strong dark lines, which are iodine emission lines not 
belonging to the band emission. 

With this as an introduction, we will now take up the 
remarkable spectrum emitted by the iodine when illuminated 
by the green line of the Cooper-Hewitt lamp. This line 
is shown in coincidence with the absorption speetrum in 
fig. a, Plate VI. As will be seen, the main line falls nearly 
midway between two of the iodine abscrption lines. It is 
probable that only the left-hand absorption line is stimulated, 
as the width of the mercury line is not quite sufficient to 
enable it to reach the other. The short wave-length satellite 
is also in coincidence with an absorption line, but, for the 
present, we shall neglect the effect due to this. The reso- 
nance spectrum excited by the stimulation of this absorption 
line consists of a series of close doublets (doublet separation 
about 1°50 AU.) very regularly spaced along the spectrum. 
For convenience we will designate, as before, the one in co- 
incidence with the exciting line as the doublet of 0 order, 
those lying on the long wave-length side as +1, +2, 43, 
&c., orders, and those on the other side as —1, —2, &e. 

The doublet of 0 order is indicated on fig. a (Plate VI.) 
immediately above the absorption spectrum. One line 
(5460-74) is in coincidence with the iodine absorption line 
covered by the mercury line, the other (5462-25) lies 1°5 
U. to the right. The former is in reality a re-emission of 

the absorbed energy without change of wave-length (Reso- 
nance radiation), and I have accordingly named this line 
the R.R. line. The other line we may designate the com- 
panion line. On the scale of fig. 1 the next doublet (+1 
order) would lie on the right at a distance of nearly two » 
metres. 

By means of plates sensitized with dicyanine, which were 
prepared for me by Mr. Meggers, I have succeeded in 
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photographing the doublets as far as the 27th order, with a 
large plane grating and a Cooke lens of one metre focus. 

| a permits of wave-length determinations correct to about 
"1 AU. : 
This marks the end of the resonance spectrum, | believe, 

as the wave-length of the last doublet recorded on the plate 
was 7685, and the plates are highly sensitive to well beyond 
$500. Moreover, the absorption spectrum terminates at 
about this point. 

Photographs of the doublets are reproduced on Plate VI. 
Fig. e shows the orders 0, +1, and +3. The doublet of 
order +2 is missing, though a pair of faint lines appear 
nearly in the position in whicl: it should be found. 

Fig. b shows the doublets +6 to +13 inclusive, and fig. ¢ 
+15 to +22 inclusive; orders 9, 14, 16,19, and 21 are also 
missing. The variable intensity of the doublets is also to be 
noted. 

Comparison Spectrum Neon Short Line. 

The law governing the spacing of these doublets will be 
discussed in a separate communication immediately follow- 
ing the present one, in which only the general nature of the 
phenomena will be treated. 

Fig. d shows the doublets of order 0, +1, and +3 taken 
with a large plane grating and an objective of 3 metres focus 
(exposure 15 minutes), in superposition with the emission 
band spectrum of iodine electrically excited in a vacuum- 
tube. All of the photographs, with the exception of fig. a, are 
reproduced as negatives. The resolving power employed in 
the case of d was, of course, quite insufficient to completely 
resolve the band spectrum, as can be seen by comparing the 
width of the doublets with the width indicated in fig. a. It 
nevertheless gives an idea of the relation of the doublets to 
the band absorption spectrum. : 

If we give a longer exposure, we find that the doublets 
are accompanied by faint companion lines. These appear in 
fig. e, which was exposed for an hour and a quarter. Some 
of these lines are due to the excitation of other iodine absorp- 
tion lines by the satellites of the green mercury line, but 
others, I feel sure, result from the stimulation of the absorp- 
tion line covered by the main line. The former come out 
strong when the iodine is excited by the quartz mercury arc, 
in which case the green line can be broadened until it covers 
all of the seven absorption lines between the two arrows in 
fig. a. 

If now we give a greatly prolonged exposure, we find that 
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a band spectrum also appears. Fig. 7 is a 20-hour exposure 
for the same region of the spectrum. The doublets have 
fused to a wide band, owing to over exposure. Thecom- 
panion lines, above referred to, come out strong, and in addi- 
tion there is a fluted band to the right of the doublets of 
order +1 and +3. 

It will be observed that these doublets lie just within the 
heads of the fluted bands, a circumstance which is better 
shown by fig. 4, in which the heads of the bands are indi- 
cated by arrows. In the case of fig. g the iodine tube, 
instead of being highly exhausted, contained xenon at a 
pressure of 15 mm. As is apparent, the effect of the xenon 
is to reduce tremendously the intensity of the doublets, and 
bring out strongly a number of fluted bands between the 
doublets, of which scarcely a trace can be seen in the case of 
iodine in vacuo. In the case of fig. h, we have the iodine in 
helium at 4mm. The doublets are still further reduced in 
intensity, the bands are stronger, and a new band appears at 
the centre, no trace of which can be seen in fig. g. The heads 
of the bands are not resolved, though on the original plate a 
number of the component lines can be seen to the left of the 
doublets. The doublet of the second order, which is missing, 
would fall at a considerable distance from the head of the 
band. There is in fact a group of lines at this point in 
fig. f, but it is my opinion tnat they result from excitation 
of the vapour by some of the satellite lines; at all events, 
none of them fits into the series of doublets excited by the 
main line. 

If we compare fig. h with fig. d, we see at once that the 
band spectrum emitted by iodine in helium with monochro- 
matic excitation is much simpler than the complete band 
spectrum. For example, there is in fig. da strong band-head 
at A, of which no trace appears in fig. h. Moreover, fewer 
of the bands appear in the case of iodine in vacuo than in the 
case of iodine in helium. 

If the excitation is by the quartz mercury are the bands 
become more complicated, and in place of the doublets we 
have groups of lines, which will be discussed more in detail 
presently. 

Relation between the Doublets and the Band Spectrum. 

The absorption spectrum of iodine is made up of more or 
less regular fluted bands, resolvable under high dispersion 
into fine lines. The heads of these bands lie towards the 
region of shorter wave-lengths, and there is considerable 
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overlapping which gives rise to considerable irregularity in 
appearance, especially in the green region. The emission 
spectrum of iodine, electrically excited in a vacuum-tube, 
closely resembles the absorption spectrum, though they are 
not exactly complementary, as has been shown recently 
(Wood and Kimura, Astrophysical Journal, Sept. 1917). 
Now the green line of mercury, which excites the series of 
doublets, lies just within the head of a well-marked band in 
the emission spectrum, and it will be observed that the 
doublets of order +1 and +3 are similarly located. This 
was ascertained by superposing the resonance spectrum on a 
band emission spectrum. It is less well shown, except for 
the doublet of the +3 order, by fig. d, Plate VI., which was 
taken under conditions not well suited to emphasize the 
heads of the bands, the line spectrum being too prominent. 
The three bands above specified appear as emission bands 
accompanying the doublets when the iodine is excited in 
vacuo, as shown diagrammatically by fig. 2, in which the 

Fig. 2. 

mi ILI 
doublets have been drawn a little longer than the lines 

forming the bands. The band accompanying the doublet of 

0 order is not as strongly developed as the other two, and 

only its head shows in fig. /, Plate VI. 
By comparing the plates of the resonance spectrum with 

those of the band spectrum, it has been found that the 

doublet of the fourth order also lies just within the head of 

a band. Above this point the relations have not yet been 

exactly determined, for the band spectrnm accompanying 

the resonance doublets has not yet been photographed in the 

red. Though the fourth order doublet, which is faint, les 

near the head of a band shown on the plate made ot the 

electrically excited vapour, it does not occupy a correspond- 

ing position with respect to the band which forms a member 

of the simpler system shown in fig. h, the spacing of which 
is two-fifths of the distance between the doublets, 7. e., there 

are five bands between the doublets of first and third order. 
It will be necessary to trace this simpler band spectrum 

throughout the orange and red region, before we can be sure 

i 

ANT 
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that all of the strong doublets are located near the heads of 
the bands, and the missing ones near the tails. 

The doublet of the sixth order is very strong, and it lies 
just within the head of a strong band shown by electrical 
excitation, and the same thing appears to be true of the 
eighth and tenth order doublets. The interesting point, 
however, is that a simple system of fluted bands, spaced 
apparently according to a law similar to that which governs 
the spacing of the doublets, is excited by the stimulation of a 
single absorption line. 

Multiplex Excitation. 

If, instead of the glass Cooper-Hewitt lamp, we employ a 
quartz mercury are ( Westinghouse, Cooper-Hewitt) for the 
excitation of the iodine vapour, we find complicated groups 
of lines in place of the simple doublets. This is due to the 
fact that the green mercury line has broadened to such a 
degree that it covers a number of the iodine absorption lines. 
This we may call multiplex excitation. 

The first point of interest which we should note is that the 
intensity distribution among the groups is practically the 
same as for the doublets, 2. e., groups of strong lines are 
built up around the strong doublets, weak groups around 
weak doublets, and only a few very faint lines at the points 
where the doublets are missing. This means that the 
dynamics of the vibrating system excited is very much the 
same in the case of the several absorption lines covered by 
the broadened mercury line. 

The complexity of the groups depends upon the width of 
the green line which increases with the potential drop across 
the terminals of the quartz arc, as has been shown in previous 
communications. 

If sufficient resistance is put in circuit with the are to 
keep the potential down to 35 volts, the iodine emits the 
doublets only, fig.7, Plate VII. With the potential at 60 volts 
we have two new lines to the left of the doublets, as shown 
by fig. &, Plate VII., while with a potential difference of 
110 volts we have tie complicated groups shown by figs. / 
and m, the latter showing the group of —1 order. These 
groups are so similar in appearance that, until very recently, 
J have considered that the lines corresponded to each other, 
that is to say, that the fourth line from the left in each group 
was excited by the same absorption line. I now feel certain, 
however, that we must be a little careful about accepting 
this conclusion, for reasons which will appear presently. 
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In discussing the manner in which the groups are formed 
by multiplex excitation, we must recall that in the case of 
strictly monochromatic excitation, where a single absorption 
line only is stimulated, we have a series of doublets, the 
shorter wave-length component of the first doublet coinciding 
with the absorption line. 

It has been found that the doublets conform very nearly 
to the following formula, in which 1/) represents the 
frequency of the left-hand component of the doublet of 
order m, 

ne + = 183075 —2132m-+ ‘elt 13. 

or, putting it in words, that (approximately) the distance 
between the doublets increases by a constant amount as we 
pass from each one to the one of next higher order. The 
degree of accuracy with which this formula is followed will 
be discussed in the communication following this one. The 
circumstance that we have a group of lines formed around 
the (unresolved) absorption lines which are excited by the 
broadened mercury line, furnishes us with the clue as to how 
the groups originate. 

These groups originate in the following way: The seven 
absorption lines which are covered by the broadened green 
mercury line are simultaneously excited, and the vapour 
emits these seven wave-lengths withont change. These lines 
we may call the R.R. lines (resonance radiation). Hach one 
of these is moreover the first member of a series such as is 
expressed by the formula previously given. The R.R. lines 
are not resolved by the spectrograph employed in photo- 
graphing the resonance spectra and consequently appear 
superposed. But each one is accompanied by one or more 
companion lines, lying to tne right or left, and it is these 
companion lines which form the group of 0 order. 

The actual width of the group of seven R.R. liues is 
only about 1/30 of the width of the group formed by the 
companion lines. 

Let ns now see how the groups of higher order are built 
up. Snppose each of the seven R.R. lines to be the first 
member of a series such as was represented by our formula, 
and suppose that for each one we have the same values 
of the constants. Suppose moreover that each member of 
any given series 1s accompanied by a companion line. In 
this case the group of 0 order will be exactly duplicated at 
intervals along the spectrum. The centre of each group will 
be composed of seven superposed lines (in reality separated 
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by the same small intervals as the R.R. lines) each one of 
which is accompanied by a companion line to the right or 
left as the case may be. In an earlier paper I spoke of 
the seven superposed lines as the “core” of the group. As 
a matter of fact, the spacing is not exactly the same for the 
seven series of main lines, consequently, as we ascend to. 
higher group orders they begin to separate, even with the 
resolving power employed in photographing the resonance 
spectra. This accounts for the fact that the groups of higher 
order differ in appearance from those of lower. 

I have photographed the groups of 0 and +1 order with 
the 7-inch grating and 3-metre objective in the fourth 
order spectrum with an exposure of 48 hours. The lines. 
were very faint but perfectly sharp. The appearance of the- 
two groups is shown in fig. 3. The resolving power in this. 

Fig. 3. 
ia 4 3 45 6 7 *Si\5 pS 

0 order | 
group i | 
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case was but little less than that required to separate the- 
iodine absorption lines, and we find that the centre of the 
group of 0 order is a narrow band (line No. 6 in the figure) 
made up of five barely resolved lines. It was possible to 
count the lines by holding the plate somewhat foreshortened 
under a magnifying-glass. These are the R.R. lines. The 
other lines which form the group are the companion lines, 
and the fact that there are more of them than R.R. lines: 
suggests that probably some of the R.R. lines have two 
companions instead of one. 

Passing now to the first order group, we find that the 
main lines which form the core (each one of which belongs. 
to a series of which a R.R. line is the first member) are 
more widely separated than in the 0 order group, the spectral 
range having about doubled. This is due to the fact that 
the value of the constant in the second term of our formula 
is not the same for each series. 
We will now consider the subject of the companion lines. 
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In the case of the doublets excited by the Cooper-Hewitt 
lamp the companion lines lie on the long wave-length side 
of the main lines, at distances which gradually increase 
with increasing group order. The widths of the doublets in 
the various orders are given in the following table :— 

Order. Width. Order. Width. 

0 1:48 15 2°04 
1 1°54 ee 2°19 
3 1°64 18 2°25 
5 ae 20 2°43 
8 1°76 22 2°45 

10 1°85. 23 ps 
11 1:90 25 2-50 
12 1°95 2 2°80 
13 1°96 

The increment is not quite regular, and it is my hope that 
a new set of plates made with a more powerful spectrograph 
will show no discrepancies. It is pretty clearly established, 
however, that the distance of the companion line from the 
main line increases progressively. If this is true of the 
companion lines of the other main lines, this circumstance, 
combined with the fact that the group of main lines widens 
as we pass to groups of higher orders, explains fully the fact 
that the groups gradually change in appearance as we ascend 
the series. 

Groups 4, 5,6, 7, and 8 are shown by figs. n and o of 
Plate VII., the former excited by the Cooper-Hewitt lamp, 
the latter by the quartz are at 115 volts. In the case of 
fig. n we have faint series excited by the two yellow mercury 
lines, one of which (5790) lies within the fifth order group 
excited by the green line. The lines marked by small crosses 
are the ghosts of the yellow mercury lines, and should not be 
confused with the resonance lines. 

In fig. o it will be observed that the doublets shown in 
fig. n have become relatively weak, and that we have a new 
series of strong doublets displaced towards the left with 
respect to the old ones. This is due to the fact that, in the 
case of the quartz are operating at 115 volts, the green 
mercury line is strongly reversed and the excitation of 
absorption line No. 4 (Plate VI. fig. a) becomes relatively 
weak, as it coincides with the reversed core of the mercury 
line. In the seventh order of fig. there are four lines. 
Two of these, marked by dots, form the doublet excited by 
the green mercury line; the other two belong to a series of 
doublets excited by the yellow line 5790. The same con- 
dition is found in the fourth order group, the dotted doublet 
in this case lying to the right of the doublet of order —1 
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excited by 5790. Similar complications, of course, oceur at 
other higher orders. 

If we could excite the iodine absorption lines one at a time 
there would be no difficulty in finding out how the groups 
are built up, but this is impossible with present facilities. 

By varying the voltage at which the mercury lamp 
operates, and by filtering the light through bromine vapour, 
some clues have been obtained regarding the relations existing 
between the absorption lines and the lines forming the groups, 
but a complete analysis has not yet been made. 

In fig. 4 I have given a diagram of the groups up to the 

Fig. 4. 

L pees 45.638 S Order. 

: I i z: }: : ye 
: : ee : ? 

: n J | . 

A al if ‘ He ts ; 

: if a (ttt fj ri 
i = R LE : 3 

ante t | ba 
1a 

- . F 3 

I~ | , hae 
t 1 t : 412 

ia be 13 

—_ eEeD 
er otticge 

eD ut 

a | j 7 

seventeenth order excited by the green mercury line of the 
quartz lamp operating at 115 volts. The doublets (lines 6 
and 7) excited by the Cooper-Hewitt lamp appear in all of 

these groups, though they are relatively faint owing to the 
reversal of the exciting line, and these doublets are brought 
into coincidence in the diagram. 

When the iodine is excited by the lamp operating at 
60 volts, lines 2, 4, 5, 6, and 7 appear in the group of 
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0 order, line 6 being of course the unresolved complex of 
emission lines corresponding to the absorption lines covered 
by the green mercury line. Line 7 is the companion line 
which, together with the “R.R.”’ line corresponding to 
absorption line 3, forms the doublet of 0 order. The 
doublets of higher order lie immediately below, the increasing 
distance between the components being very apparent. 

Now line 2 is a companion line to the R.R. line corre- 
sponding to absorption line 4, indicated also by line 6 in 
the diagram. ‘These two lines form another doublet of zero 
order. The higher orders do not lie immediately below, but 
drift to the left, as indicated by the dotted lines. This is 
due to the fact that the constant in the second term of the 
formula is a little less than in the case of the first series of 
doublets considered, in other words the doublets are closer 
together. 

In the group of the first order the main line of this series 
of doublets can be separated from the main line of the other 
series only in the fourth order spectrum of the grating. In 
the third order group it is so far detached, that it was con- 
fused for a long time with line 5 of the first order group. 
lf we compare the orders 0 and 6 we shall see another case 
of this kind: If it were not for this diagram arrangement of 
the groups, we should probably assume that the first line to 
the left of group 6 corresponded to line 1 in group 0, whereas 
the diagram shows clearly that it corresponds to line 2. 
Moreover, it appears in the 60-volt excitation, which does 
not bring out lines 1 and 3. 

In the construction of the diagram it is, of course, 
necessary to leave blank spaces for the missing orders, . 
otherwise the corresponding lines will not lie on a smooth 
curve. : 

It is a little difficult to explain in words just how this 
diagram is to be interpreted, though it is clear enough if the 
theory of the group formation which I have given is under- 
stood. All of the lines with the exception of 6 in the 0 order 
group must be companion lines, line 6 being made up of 

the unresolved R.R. lines. In the case of the doublets, the 
superposition of which forms the other groups, we must 
distinguish between what I have called the main line and 
the companion. As we run up the diagram the main lines 
should lie on curves intersecting line 6, for example, the 
dotted curve shown which belongs to the 2, 6 doublet. 

I have not yet been able to identify certainly any other 
main lines, though I suspect that the one corresponding to 
companion line 9 descends from line 6 on a curve sloping 
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to the left at a lesser angle than the dotted curves, 2. ¢., at 
about the angle taken by companion line 3. 

Various modifications in the conditions of excitation have 
been made with a view of establishing which absorption lines 
are responsible for the various doublets. 

For example, it was found that the lateral emission and 
the end-on emission of a Cooper-Hewitt lamp showed a very 
different intensity distribution in the green mercury line, as 
shown by figs. r and s, Plate VIIL., which were made with a 
very fine plane grating by Dr. Anderson. If the iodine 
vapour is excited by the lateral emission of the lamp, as with 
the ‘‘light-fnrnace ” companion line No. 1 appears in addition 
to the strong doublets. See 0 and +1 orders of fig. J, 
Plate VII. After several failures I succeeded in obtaining 
a record of the iodine resonance excited by the end-on 
emission, and in this spectrum companion line No. 2 appeared 
also. Now companion line No. 1 does not appear in the case 
of excitation by the quartz arc operating at 35 volts, and the 
short wave-length satellite of the green line is weaker, with 
respect to the main line, in this case, than in the case of the 
Cooper-Hewitt lamp, as is shown by figs. ¢ and wu, Plate VIII. 
(¢ being the Cooper-Hewitt line and wu the quartz arc). This 
makes it appear probable that companion line No. 1 arises 
from the excitation of the absorption line which is in 
coincidence with the short wave-length satellite. 

Companion line No. 2 is probably due to the excitation of 
absorption line No. 4. It comes out with excitation by the 
““end-on” emission of the Cooper-Hewitt lamp owing to 
the broadening of the main line which occurs under this 
condition, and for the same reason it is the first line to appear 
when the terminal voltage of the quartz are is increased. No 
very definite conclusions have been drawn from the numerous 
experiments which have been made with the exciting light 
filtered through bromine vapour and nitrogen tetroxide. 
With a potential of 90 volts on the quartz arc companion 
lines 4 and 5 appear. If the exciting light is filtered through 
bromine vapour contained in an exhausted bulb about 30 em. 
in diameter, line No. 5 disappears in the groups of order 0 
and + 1. In the third order group line No.5 is much 
stronger than 4 and bromine filtration of the exciting light 
equalizes the intensity. Line No. 4 must therefore be due 
to the excitation of an absorption line which is not in 
coincidence with a bromine line, and which is first covered 
by the mercury line when the lamp operates at 90 volts. 
‘This seems to be absorption line No. 5, while the other 
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component, which is removed by filtration of the exciting 
light through bromine, is probably due to absorption 
line 6. 

With a potential of 110 volts on the lamp, companion line 
No. 3 appears, and this also is removed by the bromine 
filtration of the exciting light, as is shown by figs. p and gq, 
Plate VIII., in which g is the resonance spectrum obtained 
when the exciting light is filtered through bromine. It 
appears to be due to the stimulation of absorption line 7 
which isin coincidence with a bromine line. 

The difficulty in interpreting the results obtained is due to 
the fact that the mercury line widens both to the right and 
left as the voltage increases, so that two absorption lines 
may be attacked simultaneously. If this happens, we can 
differentiate between them only if one of them is in coin- 
cidence with a bromine line and the other not. What is 
most needed just now is one or more other filters similar to 
bromine vapour, but I have not been able to find anything 
with sufficiently narrow lines, though I have tried a number 
of vapours which looked promising. What would be still 
better would be to alter the wave-length of a narrow exciting 
line so as to cause it to pass by degrees from one absorption 
line to the next. 

Excitation by the Yellow Lines. 

The resonance spectra excited by the two yellow lines have 
not been completely investigated as yet, though a large 
number of photographs have been made. LHach yellow line 
excites a series of nearly equidistant groups which resemble 
roughly the groups excited by the green line. Six pairs of 
these groups, from —l1 order to +4 order, photographed 
with rather low dispersion are shown by fig. i, Plate VI. In 
this case the excitation was by the quartz mercury arc 
operating at 140 volts, the green line having been cut off 
by means of a glass trough filled with a solution of eosine. 
Some difficulty was found in securing the spectrum excited 
by the Cooper-Hewitt arc, as the yellow lines are com- 
paratively weak in this case, but satisfactory results were 
finally obtained with the light furnace, the iodine tube being 
wrapped around with a sheet of gelatine stained to a deep 
orange-yellow. 

In this case each yellow line excited a series of doublets, 
but both series were much more irregular than the series 
excited by the green line. 
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The separation of the components of the doublets excited 
by the 57907 line varied in an irregular manner from 2:1 
to 5:6 AU. In the case of the excitation by the 5769°6 line 
we have also a series of doublets, though the companion line 
is missing at the zero order, in other words the R.R. line 
has no companion. The separation of the components of the 
doublets is less irregular in this case, varying from 4°8 to 
5'4 AU. The table of wave-lengths will be given in the 
communication following this one. 

XXVIII. The Series Law of Resonance Spectra. By Prof. R. 
W. Woon, Johns Hopkins University, and Prof. M. Kimura, 
University of Kyoto™. 

‘le the previous communication a general account of the 
results which have been obtained, up to the present time, 

on the resonance spectra of iodine has been given. 
The present paper will deal with the measurements of 

wave-length of the lines in the groups, and the subject of the 
series law which governs their spacing. 

The wave-lengths in the lines in the groups of 0 and +1 
order were determined from plates made in the fourth order 
spectrum of a large plane grating with a telescope of 3 metres 
focus. They are correct probably to 0°01 AU. The groups 
+2, +3, and +4 were made in the second order spectrum, 
and the higher order groups in the first order spectrum. 

The series which has been most definitely determined, and 
to which the greatest amount of study has been given, is 
the series of strong doublets excited by the Cooper-Hewitt 
lamp. 

The two components of each doublet appear to be of equal 
intensity, although, in the case of two or three, a different 
ratio appears in the photograph as a result of absorption. It 
was found, as has been stated in earlier papers, that the first 
order group, which is usually recorded with the component 
of shorter wave-length three or four times as intense as the 
other, comes out with its lines of nearly equal intensity if 
the lateral branch of the iodine tube is cooled to zero, while 
the right hand component disappears entirely if the light 
from the tube is passed througha large glass bulb containing 
iodine vapour before it enters the spectroscope. 

In studying the series law it has been found necessary to 

* Communicated by the Authors. 
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reduce all wave-lengths to vacuum, and convert them into 
frequencies. ‘wes 
We will take up first the study of the doublets, the wave- 

lengths of which and their reciprocals are given in the fol- 
lowing table, on the International Scale and reduced to 
vacuum. 

Doublets excited by Green Line of Cooper-Hewitt 
Lamp. 

| j 
G 1 RYE. 1 Difference 
es 7 (Obs.) D; © | x (Cal.) spoweeen 

Hg or R.R. | 
ae 5462-23 M895 183075 «50 183075 0 

546374 183025 
ee 5526°55 180945 51 180942 43 

5528'10 180894 

Benes. Missing 

= 5658°71 176719 52 176715 204 
5660°38 176667 

oe 5726-59 174624 51 174621 +3 
5728°25 174573 

ee 5795°79 172539 bt 172539 0 
5797-51 172488 

MUS 5866714 170469 49 170470 1 
5867°85 170420 

CR MeRe Missing 

ee 6010-66 166371 51 166370 +1 
6012-50 166320 

ee Missing 

| 6160°63 162321 49 166322 mt 
6162-48 162272 

e... 6237-68 160316 48 160316 0 
6239°56 160268 | 

| eae 6216°16 ~ 158324 50 158324 0 
6218°14 158270 

Ge 6396-08 156346 49 156344 +2 
6398°05 156297 

14....... Missing 

A): 6560°56 152426 49 152423 +8 
6562°68 152377 

i = 6645:0 150489 46 150481 +8 
6647-0 150443 | 

7 ae 6731:12 148564 48 148552 +12 
6733°28 148516 

Phil. Mag. 8. 6. Vol. 35. No. 207. March 1918. A 
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From this point on values determined from plates made 
with telescope of 1 metre focus. They are correct only to 
about 0°1 AU. 

be SAMY 6618°63 146657 49 146636 +21 
6820°01 146608 

NS Bors Faint and masked |by mercury line 

7 6998°96 142878 50 142842 +36 
7001°39 142828 

Qe iaee Missing 

ya 7186:23 139155 48 139099 +h6 
7188'68 139107 

Pa eee 7282'39 137318 48 137247 ae 
728492 137270 

7p RASS Missing 

2D.seee)  LaOO Ee 133682 44 133580 +102 
74829 133638 

BAO. ss06 Missing 

eet eee 7685°7 130110 50 129964 +146 
7688°5 130060 

The first point established by this table is that, while the 
separation of the components of the doublets increases pro- 
gressively from 1°51 AU. at 0 order to 2°5 AU. at the twenty- 
seventh order, THE FREQUENCY DIFFERENCE BETWEEN THE 
COMPONENTS IS A CONSTANT, 50. The extreme low values 
46 and 44 found in the sixteenth and twenty-fifth orders 
are undoubtedly due to the fact that the lines were extremely 
faint, and the wave-lengths could not be very accurately 
determined. The last doublet (the twenty-seventh order) 
was fairly strong, and the frequency difference in this case 
is exactly the same as in the case of the 0 order. 
We will now consider the law governing the spacing of 

the doublets along the spectrum, applying the calculations 
to the first member of each doublet (shorter ) component). 
If we confine our attention to the first few orders, it seems 
as if the distance between the doublets increased by a con- 
stant small increment. This:would mean a constant second 
difference of wave-lengths. It was found, however, that this 
condition held only for the first few orders. The reciprocals 
of the wave-lengths were next examined, and it was found 
that a constant second difference existed, at least over a 
considerable range of the spectrum. 
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If this condition held rigorously the series would be 
represented by the formula . 

1 m(m—1) 
= 183075 — 2132 m + Lore p> 

in which X,, is the wave-length of the doublet of the mth 
order, 2132 is the frequency difference between orders 0 and 
+1, 13 the constant second difference of frequency, and m the 
order of the doublet. The most accurate value of the second 
constant would be obtained by calculating it from a doublet 
of high order, as a small error would be enormously magnified 

by the term Nae the value of which is 351 for the 

twenty-seventh order. 
Calculating the constants 2130 and 12:2 from orders 0 and 

3d gave calculated values of 1/X which differed from the 
observed by the following amounts :— 

Doublet Order. Difference. Doublet Order. Difference. 

1 0 Ff + 2 
3 +1 10 + 4 
4 —l : is + 14 
5 —] 18 65 
5 0 23 +166 
6 —l 27 +284 

The large discrepancies in the higher orders are due to 
incorrect determination of the constants. In spite of this, 
though, the series is well represented up to the seventh 
order. The following formula gave the best results over the 
entire range :— 

= = 183075 — 2131-414 = m — 1273) 

The values given in the table were calculated by this for- 
mula and, as will be seen, the agreement is good up to the 
doublet of the fifteenth order. There is a small discrepancy 
in the orders 1, 3, and 4, which appears to be inevitable if 
the constants are so chosen as to make the formula cover a 
wide range. Of course, the formula is not correct for the 
entire series, and though we have tried formule involving 
higher powers of m than the square, we have been unable to 
develop anything superior to the one given. The discovery 
of the fact that the frequency difference between the com- 
ponents of tbe doublets is a constant, has been of assistance 

T2 
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in picking out other series of doublets in the series of com- 
plicated groups excited by the quartz arc. | 

For example, we may take the wider doublets shown 
united by dotted lines in the previous paper (fig. 4). 

The frequency differences for these doublets are given in 
the following table :— 

Order. Freq. Dif. Order. Freq. Dif. 

0 161 8 158 
1 159 10 157 
3 159 12 157 
5 158 15 152 
6 157 iy 156 

It will be remembered that the frequency difference of the 
first series of doublets considered was 50. 

The spacing of this series along the spectrum is only fairly 
well represented by the formula 

= = 183075 — 2119 m + ae 

The observed and calculated values of 1/X for the com- 
ponents of longer wave-length (the companion line is to the 
left in this case) are given in the following table. It will be 
observed that the doublets are missing in the fourth, eleventh, 
and thirteenth orders, as well as in the orders in which the 
doublets of the first series failed to appear. 

Order: S (Obs.) + (Cal.) Dif, 
0 183075 183075 0 
1 180956 180956 0 
3 176754 176757 3 
A 172599 172600 1 
6 170543 170556 13 
8 166470 166487 17 

10 162448 162470 99 
12 158479 158505 26 
15 152621 152655 34 
17 148786 148820 34 

In the following table are given the -wave-lengths and 
their reciprocals, on the International Scale and reduced to 
vacuum, of all of the lines in the groups between 0 and 17, 
in the case of iodine vapour excited by the quartz mercury 
are operating at 115 volts. \ 

The doublets excited by the Cooper-Hewitt lamp are 
marked thus * and the other doublets which we have studied 
thus t. This table corresponds to the diagram in the pre- 
vious paper. In the fourth order group lines A and B were 
added from an old series of measurements. The line between 
them is the only one which appears on our recent plates, and 
this line only is given in the table. 
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0 Order. Fourth Order. - 
No. of . 1 No. of I 
Line. ; i Line. ¥ nN 

im). 5 +25719°62 174837 
|e 5457°43 1832386 5722°05 174763 
Vara 5458°33 183189 22-55 A747 
Rt , 5460°88 183121 24:47 4688 
Pipa 5461-07 183114 24-72 4681 

eG a3 cs 5462-23 183075 +5725°18 4668 
ee 5463-74 183025 25°35 A661 
ese 5464:05 183014 *57 26°59 4624 
Shee. 5466-04 182948 26°84 4616 

: *5728:25 4573 
Eh ata | 28:56 4564 

1 SOSA 5520°30 181149 98:95 4552 

: pe. $5521°33 181115 
‘A 5522-92 181064 | 
ee 5525°17 180989 Fifth Order. 
Bie 5525°38 180983 +5788°45 172757 
Se 5526-20 180956 91:03 2681 
Toe 22 955 +5793-77 2599 

6 } a ie 47 94-48 2578 
i *5526°55 45 94-88 2566 

‘71 39 *5795-79 2539 
\ ‘80 Sasa | *5797-51 2488 

(ia al *5528-10 180894. 98°70 2452 
3 5528°39 180884 
Bas, 5530-06 180830 Sixth Order. 

Second Order. +585823 170700 
5585-08 179048 60°8 625 

86°33 179008 63-2 555 
86°81 178992 15863°6 543 
89-05 921 64:75 510 

89:42 909 64:9 505 
91-02 858 *5866:14 469 
9117 853 *5867°85 420 

91°38 847 68:1 413 
93°33 784 68:1 395 
93:77 770 : 

Third Order. mee Naik Bolu 
ie. 5651-06 176958 ; 
ot. +5652°49 76913 +6001:38 628 
Bey) 5654°55 176849 _ 04°88 531 

+5657°57 176754 +6007-07 471 
“ae *5658-71 176719 09°32 411 
ae *5660'38 176667 anteiae we 
oA... 566197 «176617 6010-66 371 

566315 176580 pes Sis 
: i 6012°50 320 

and, in addition, faint lines as 12°80 310 
follows: 

5656-87 Tenth Order. 

oT li 4614987. 162605 
07°35 54:07 494 
57°98 +6155'81 448 
58°24 57°52 403 
58°96 58:31 382 
59°27 5914 360 
59°50 *6160°63 321 
60°70 *6162:48 272 
61°02 63°65 241 



258 Profs. Wood and Kimura on the 

Eleventh Order. Thirteenth Order. 

1 1 
= Xr. es 

aM: r A 

6228°79 160545 6388°24 156538 
31°44 477 92°14 4492 

1 36°12 356 92°82 425 

*6237-68 316 94°54 383 
*6239°56 268 *6396°08 346 

42:0 205 *6398°05 297 

Twelfth Order. Fifteenth Order. 

6294:°87 158859 16545°65 152773 
99°40 745 +6552°19 621 

+6303°71 636 59°05 461 

08°57 514. *6560°56 426 

16309°99 479 *6562°64 378 

*6§316°16 324 

*6§318°14 274 Seventeenth Order. 

alk <i #671400 148923 
+6721:03 787 
*6731:09 564 

*6733°27 516 

Excitation by the Yellow Lines. 

We have measured the wave-lengths of the lines in the 
resonance spectrum excited by the yellow lines of the Cooper- 
Hewitt arc, and the quartz are operating at 115 volts. The 
values given in the following table are on the International 
Scale and reduced to vacuum. They were determined from 
plates made with the plane grating and Cooke lens of 1 metre 
focus, and can be considered correct only to about 0-1 AU. 
We have, however, made some measurements of the doublets 
photographed with the 3-metre lens, which are correct pro- 
bably to 0°02 AU.,and as the same irregularities were 
found in the spacing, we have not thought it worth while 
to measure the complete spectrum to the highest degree of 
accuracy. 

The wave-lengths are given in the following table. The 
lines or doublets excited by the Cooper-Hewitt lamp are 
marked thus *. 

The series excited by the Cooper-Hewitt lamp in the case 
of the 5769 line differs from that excited by the green line 
in a number of respects. 

In the first place, at the point of excitation we have only 
the R.R. line with no companion. At orders 1, 2, 3, 6, and 
9 we have doublets, 4 and 8 are missing, and at 5, 7, and 10 
we have single lines. 
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Excitation by Hg 5769°6 (5771:2 Reduced to Vacuum). 

—1 Order. Fifth Order. 

L 1 
X r 

5701'S 175383 6139-0 162893 
5705°2 278 ak an 

8 
0 Order. 

5766-0 1734380 Sixth Order. 

67:8 376 
*5771-2 O74 eee onaee 

*29-1 ria ae 
+1 Order. *27-1 53a} 129 

5834-4 171397 
aiele ae Seventh Order. 

*5847-2 022 \ 137 62049 158858 
4 

Second Order. *6303'5 641 

cok ee Eighth Order. 
*5915:8 039 : ated iene 6374°3 156879 

Third Order. Ninth Order. 

5985-2 167078 Bee ree 

Sacks Mite *67-9 609 ae 
*95:1 803 } oe *73-2 459 ee 

Fourth Order. Tenth Order. 

60604 165006 6544'1 152809 
64-6 164891 48°7 702 
69:1 164769 *53-0 602 

The 1/A difference, in the case of the components of the 
doublets, is not constant, as in the previous case, but varies 
from 143 to 126. 

As to the spacing of the doublets along the spectrum, 
we find that in this case the 1/X difference is very nearly 
constant, as is shown by the following table :— 

1 gies 1 iimiad 1 l Dit. = ev hatta Order. x x 1 Order X x Dif 

ey 175383 pais 5 162784 ae 
0 173274 ae 6 160715 ae, 
1 171159 7 158641 2120 
- 169039 2094 8 2014 3 166945 “th 9 154612 lee 
4 10 152602 
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The variation is irregular, and it is obvious that the series 
is of a different type from the one excited by the green line, a 
portion of which at least was well represented by a formula. 

In the case of the excitation by the 5790°7 line, we ob- 
tained different values of X in the case of the Cooper- Hewitt 
lamp, consequently these values only are given in the table. 
It is probable that in the case of the quartz lamp at 115 volts 
reversal of the line causes the disappearance of the doublets 
excited by the lamp running at a lower temperature :— 

Excitation by Cooper-Hewitt 5790°7 (5792°3 Reduced 
to Vacuum.) 

1 1 1 1 
r. ss it, r. ke" =a Sine 

r A A X 

— 2 Order. Fourth Order. 

5658°6 176722 6084:'3 164357 
5660°3 669 53 88:3 o49f «+108 

—1 Order. Fifth Order. 

57221 174761 34 6163'9 162235 58 
5bj2Zo2 eae 66-1 1T7 

0 Order. Sixth Order. 

5792'3 172644 6242°3 160197 
5797°9 476 } tee dba) aie 128 69 

First Order. Seventh Order. 

5871°3 170320 61 6325'8 158083 86 
5873°4 259 29:2 157997 

Second Order. Highth Order. 

59368 168441 61 6404-0 156152 66 
38'°9 380 06°7 086 

Third Order. 

6010°8 166367 69 
13°3 298 

In the case of the series excited by this line the doublets 
are present in all orders, but the 1/X difference between 
their components varies in a very irregular manner from a 
minimum value of 34 to a maximum value of 168. 

The spacing of the series along the spectrum is more 
regular, however, tbe 1/X differences being as follows (the 
last significant figure is omitted) : 

196 205 
211 211 
232 193 
188 212 
207 200 
203 209 
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It does not appear to be worth while at this stage of the 
investigation to give the wave-lengths of the lines in the 
more complicated groups excited by the quartz arc operating 
at various voltages, as the simpler series excited by the 
Cooper-Hewitt lamp does not appear at the present time to 
conform to any law. The cause of this may appear when 
the relation of this spectrum to the band spectrum developed 
‘when the iodine is in helium has been studied. This will 
require exposures of many days, however. 

XXIX. On the Pressure Effect in Corona Discharge. 
By A. M. Trnpauu, D.Se., and Miss N. 8. Staruz, B.Se.* 

~ | ade papers have been published within the past few 
years on what has been termed “the ionization pres- 

sure in corona discharge.” When a glow or “corona” 
discharge starts between a cylinder and an axial wire in a 
closed tube at atmospheric pressure, a sudden rise in pressure 
is observed. Farwellf and Kunzt have contended that this 
pressure effect is quite distinct from that produced by the 
heating effect of the discharge, and have suggested that it is 
due to the increase in the number of gas particles resulting 
from ionization in the tube. 

Kunz also has deduced the following formula connecting 
the rise in pressure “ p,—p,” with the current “2,” potential 
difference “‘e,” and the volume of the tube “ %?:— 

- Uv, 

‘= ~ (p1—Po)- 

In support of this formula Warner § has shown experi- 
mentally in a number of. gases that, if the potential differ- 
ence is constant, “2” is proportional to “p,;—p,.” Arnold|l, 

however, has suggested that the pressure effect can be 
accounted for by thermal considerations alone, and has 
pointed out that the small magnitude of the current excluded 
the possibility of any appreciable contribution to pressure by 
ionization. Recently Warner has replied to this criticism. 
He has described a number of experiments on the pressure 

* Communicated by the Authors. 
t Farwell, Proc. A. M.I. E. E. vol. xxxiii. p. 1717 (1914). 
t Kunz, Phys. Rev. vol. viii. p. 28 (1916). 
§ Warner, Phys. Rev. vol. viii. p. 285 (1916). 
|| Arnold, Phys. Rev. vol. ix. p. 93 (1917). 
{| Warner, Phys. Rey. vol. x. p. 483 (1917). 
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effect (1) due to discharge, and (2) due to a heating current 
passed through the wire, and has re-affirmed the view that 
the two effects are quite distinct. 
Now in the past there has been general agreement among 

physicists that in an ordinary glow discharge the fraction of 
inolecules which are ionized is a negligible quantity. Itseems 
therefore desirable to settle conclusively what is the origin 
of the pressure rise. 

The object of the present paper is to point out several 
fallacies in the arguments of the advocates of the ionization 
theory, and to present a quantitative verification of the 
statement that this sudden rise of pressure accompanying 
the start of corona discharge is purely a thermal effect. 

It must first be pointed out that the formula given above, 
upon which the advocates of the ionization theory base much 
of their work, is necessarily incorrect. This may readily be 
seen by applying the test of dimensions to the terms of the 
equation. Before the dimensions of the two terms can be 
equated, the left-hand term must be multiplied by a time “¢.” 
The equation then takes the form it would have if the 
pressure effect was due entirely to heat generated in a 
vessel of constant volume, from which the radiation losses. 
were always a constant traction of the heat supplied. If 
reference be made to the proof of this formula in Kunz’s 
paper, it will be seen thatin steps L and 4 a time factor has 
been erroneously omitted. 

But this does not dispose of a further argument which has 
been brought forward: namely, that the pressure effect at 
the start of the discharge is far too sudden to be accounted 
for by heat generated during discharge, and that the rise 
in pressure due to the latter is only appreciable after the 
discharge has been passing for some time. 

Thus Warner has published a number of curves showing 
that the ‘“‘ corona pressure” reached its full value within 
3 seconds of the start of discharge, whereas in the corre- 
sponding effect produced by heating the wire this did 
not occur until about 15 seconds after the heating current 
was switched on. Moreover, the rise in pressure produced 
by the dissipation of a given amount of energy in the wire 
was much greater than that accompanying the same dissi- 
pation of energy in the glow discharge. 

But the argument that the pressure effects in the two 
cases must therefore be different in origin entirely breaks 

Se ee ee See 
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down if one takes into account the potent influence of the 
electric wind in distributing the heat generated in the gas 
and conveying it to the walls of the surrounding tube. It 
may be presumed that the following process is in operation. 
As in all cases of discharge from wires or points, the outgoing 
ions set up movements of the gas to which the name electric 
wind has been given. Heat generated in the gas by the 
corona discharge causes a rise in pressure; but since the 
wind distributes this heat throughout the gas, the rise in 
pressure is quickly checked by the large cooling effect of the 
metal wall of the tube to which the heat is being rapidly 
conveyed. Witha large cooling surface and a small rate of 
dissipation of electrical energy, the heat may be removed by 
the walls as fast as it is generated, in which case the pressure, 
after a small initial sudden rise, remains constant. If the 
rate of generation is, however, too great for this to be the 
case, a subsequent gradual rise in pressure will occur as 
the temperature of the gas and of the wall of the tube rises. 
This is well seen in figures 3 and 4in Warner’s second paper. 

In the case of a supply of heat by a current in the wire, 
no electric wind is present and the cooling effect of the walls 
can only operate through the ordinary convection currents, 
which are far less effective. Hence, for the same energy 
supply the rise in temperature of the gas, and consequently 
its pressure, is considerably greater and reaches its full value 
later in time than when the electric wind is present. This is. 
in agreement with experimental results. 

Again, Warner states that the return to normal pressure 
after a heating current in the wire is cut off is less rapid than 
it is after the cessation of corona discharge; the numbers 
quoted for the two cases under similar conditions being 25 
and 18 seconds respectively. But this also receives a simple 
explanation in terms of the electric wind, since the movement 
of air does not instantaneously cease when the discharge 
current is cut off. 

It follows that computations in which conduction and 
convection losses are neglected break down entirely when 
the electric wind is present, however admissible they may be 
in its absence. 

Exception must also be taken to some other opipvions 
expressed in support of the ionization theory. 

First, the statement that near the wire every molecule 
may be ionized and still the resultant current may be very 
small is incompatible with the statement that the potential 
gradient near the wire is very high. The latter is, no doubt, 
correct, and the result is that the ions near the wire have a 
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high ionic velocity. But if this is coupled with a huge ionic 
density the currents would greatly exceed those whieh are 
observed. 

Secondly, Warner attempts to obtain support for the 
theory from the variation of discharge current with the 
initial pressure “yp,” for a constant potential difference 
between the wire and the tube. Since, however, the 
pressure “ p,” is not a constant and its variation with “ po” 
is unknown, it is impossible that the curves he gives can 
furnish us with any information on the subject. 

Perhaps it may be well to show that the ordinary pressure 
of the electric wind makes no appreciable contribution to the 
effect. In the experiments cited above, the manometer com- 
municated directly with a hole in the wall of the metal tube 
receiving the current. Now the discharge sets up a radial 
gradient of pressure between the wire and the tube, the 
pressure at the former being below, and at the latter above, 
atmospheric pressure. The following argument gives the 
maximum value of excess pressure which the wind can set up 
at the tube-wall. Circulation of air would decrease this 
value. 

Let the radii of the wire and of the metal tube be “a” and 
‘“A” respectively. Consider a thin cylindrical layer of gas, 
of thickness 67 and radius “7,” coaxial with the wire. Let 
a discharge current of ‘i,’ per unit length of the wire, pass 
uniformly through the layer. This will give rise to the 
transfer of a small quantity of gas through the layer, and to 
a difference in pressure, 6P, per unit area, between the two 
sides of the layer. 
Now 107r 

a Qarrk ’ 

where & is the specific ionic velocity. 
This difference in pressure e may be expressed as a rise of 

pressure Op per unit area outside the layer, and a fall 6p’ 
Inside it, so that 

d6P=dp+o6p!. 

Then dp(A?—7?) = dp! (7? —a”) ; 

_ t6r(a?—a*) 
ay Qarrk( A?— a?) 

* Chattock, Phil. Mag. {5} vol. xlviii. p. 401. 
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The excess pressure “p” at the wall of the metal tube is 
given by 

2 ine a wwiog, A/G 
p= dp= Wea Fah ka) 

When “A” is large compared with “a,” this approximately 

== (liad 
Anrk 
Putting K=1'4 em./sec., volt/cm., 

and io OE amps per CM, 

p approximately ==0°003 cm. of water. 

This is about 0°5 per cent. of the pressure actually observed 
by the authors under those conditions, and is therefore a 
quantity which may be neglected. 

The authors have been able to verify quantitatively that 
the corona pressure effect is solely due to heat generated in 
the discharge, by supplying heat simultaneously from a 
current in the wire and from corona discharge, instead of 

experimenting separately with each source of supply. The 
electric wind thus operates in rapidly conveying heat to the 
wall of the tube from both sources of supply. Let it be 
assumed that the heat from corona discharge is mainly 
evolved close to the wire; then the wind will be almost 
equally effective in distributing heat, whether it comes from 
discharge or from a current in the wire. In other words, if 
the observed pressure rise is due to heat, it should be approxi- 
mately independent of the source of the heat when wind is 
present. Hxperiments confirming this conclusion are herewith 
described. 

EHzperiments. 

The discharge vessel consisted of a platinum wire of diameter 
‘006 mm. placed along the axis of a horizontal brass tube of 
diameter 2°21 cm. and length 28 cm. Toa side tube in the 
latter, one limb of an oil manometer was attached. The brass 
tube was closed by ebonite stoppers, through which the axial 
wire passed. The wire was attached to one pole of a high- 
potential dynamo giving voltages up to 5500 volts. The 
current between wire and tube was measured by a Paul 
microammeter, shunted when necessary. The potential dif- 
ference was measured by a Braun electrometer previously 
calibrated. Qne terminal of the galvanometer, the case of 
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the electrometer, and one pole of the dynamo were earthed. 
The wire also formed part of a separate heating circuit ; the 
heat generated in the wire was measured by a voltmeter 
anda milliammeter. The electrical arrangements included 
a key so arranged that the discharge and heating currents 
-could be switched on simultaneously or separately, as 
desired. 

It may be noted in passing that the tube for which 
Farwell gives dimensions was 4°45 cm., and the wire 
"019 mm. in diameter. This necessitated the use of higher 
potentials, but these were not so convenient in the present 
‘experiments. 

In Table I. some results for positive and negative discharge 
are given ; “‘ ,—) ’’ is the initial corona pressure effect due 
to a current “2” and a potential difference “e.” The last 
column gives the ratio of “ »,—” to “ze,” the watts dissi- 
pated in the tube. 

TABLE I. 

Sign of U e Pie 
Discharge. PIVGes Fs 19-2 amp. volts. 7e 

a ‘08 (?) 6:2 4450 2°96 (2) 
“13 16°5 4620 1°78 
"16 22°¢ 4600 1°58 
20 pire a 4780 1-50 
24. 34:1 4780 1°51 
35 555 5050 1:26 
“46 76:0 5200 EEE 
“52 87:0 5230 Lis 
66 110-0 5350 ie 
WA 120:0 5500 1:08 

= 09 21°7 ' 4700 ‘90 
16 35°4 4820 ‘91 
-20 44:5 4770 93 
"29 64:2 5030 ‘91 
ror 81:0 - 5150 89 
“42 94:3 5200 86 
7 169:0 5400 "84 

1:01 220°0 5480 "84 

It will be noticed that in positive discharge the ratio shows 
‘a marked decrease in value as the current increases, though 
it appears to approach some limiting value at still higher 
currents. This decrease may be attributed to the growing 
strength of the wind as the current increases. Though a 
decrease is also observable in negative discharge, it is much 
-smaller. 



Pressure Effect in Corona Discharge. 267 

In positive discharge the value of the ratio is consistently 
higher than that in negative. This may be simply ex- 
plained in the following way. Ifa circulation of air is to be 
set up, air dragged from the neighbourhood of the wire by 
discharge must be returned to it by other paths. The greater 
the uniformity of discharge along the length of the tube the 
less easily can this occur. Now the uniform nature of 
the positive corona implies that the discharge in this case is 
sensibly uniform along the whole length of the tube; whereas 
in the negative corona the glow is concentrated in a number 
of small beads on the wire. Consequently, the circulation 
is more restricted in positive discharge and the cooling 
action of the wall of the tube less effective than in negative. 
This is less noticeable at higher currents when the wind 
pressure gradient causing circulation is steeper ; hence the 
decrease in the value of the ratio under these conditions. 

The degree of circulation, other conditions being the same, 
will no doubt depend upon ‘the size of the tube, and this will 
have its effect upon the value of the ratio ‘obtained and 
its dependence upon discharge current. 

The results of discharging from the wire, and heating it 
simultaneously, are shown in Table II. (a) for positive and 
Table Il. (6) for negative discharge. “w,” and “w,’’ are 
the watts dissipated in discharge and heating coe re- 
spectively; ‘‘ W ” is the total ee As before, “ p1—po” 
the initial rise of pressure. 

TABLE IT. 

(P1—Po)/W. 

Pi —Ps- Wy. W 5. W. Calculated 
milk: ; : Observed. from Table I. 

(a) AS + -O7eN tal 102 1:75 1:66 
"26 "103 "084 178 1°46 1:44 
38 "158 "137 "295 1:28 1-25 
48 ‘204 "213 ‘417 Leas" 1:16 
56 263 256 519 1:08 1°12 

(b) 17-091 «= 093-—S “184 95 92 
28 A157 138 "295 "94 ‘90 
"52 240 338 ‘578 *92 "86 
78 "242 573 815 96 84 

(c) ‘Bay LE 045-045 55 
ABI) (iste "094 "094 5k 
GG, | 4258 137 "137 4:8 
Lt eee 2 *300 *330 3°6 
5 ae! 66 66 30 
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The values of the ratio of “‘ p,;—po” to “ W ” are givenina 
separate column, and may be compared with the values of the 
ratio for the same dissipation of watts with discharge operating 
alone. The latter have been calculated from a smooth graph 
constructed from the values in Table I. 

The agreement between corresponding numbers in the two 
columns is striking. In fact such a close agreement was 
somewhat unexpected, since the strength of the wind is not 
the same in the two cases which are compared. Such differ- 
ences as exist between the observed and calculated values 
are in general in the direction which neglect of wind variation 
would cause. These results show conclusively that the 
pressure effect is purely a heating effect. 

Table II. (c) shows values obtained for the rise in pressure 
produced by heat alone. It will be seen that owing to the 
absence of the electric wind the values of the ratio are much 
higher. 

This is also shown in curves A, B, and ©, which are 
typical of a.number which have been obtained. Curve A is 
the pressure time curve when 0:091 watt was supplied by 

Time tn seconds — 

discharge alone. Curve B, that for combined supply of 

0:094 by discharge and 0:091 by a heating current in the 

wire. Curve ©, up to the point D, for 0-094 watt supplied 

by current alone. 
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At the time marked by the point D, in curve C, a discharge 
current supplying ‘094 watt was switched on. The cooling 
effect of the wind is well shown by the drop in pressure, the 
final value of which was practically that which would have 
been reached after combined action from zero time. 

Lastly, mention must be made of an experiment by Warner, 
by which he claims to have shown that instead of a heating 
elfect at the instant of starting of the discharge from an 
unheated wire, the gas near the wire actually cools. This 
he deduced from the movement of the spot of a galvanometer 
connected to a thermo-junction, placed in the tube at a 
distance of about 4 mm. from the axial wire. 

The authors repeated this experiment, and found that the 
deflexion observed is not due to a thermo-electric current, 
but to an electrostatic effect when the thermo-junction takes 
up the potential of the air. Thus this deflexion is also 
observed when the galvanometer is notincluded in the circuit 
containing the thermo-couple, but is merely in electrical 
contact with it. The cooling of a red-hot wire which Warner 
quotes as occurring when discharge starts from it, is un- 
doubtedly caused by the electric wind which is thus set up. 

Summary. 

When glow discharge starts between a cylinder and an 
' axial wire, in a closed tube at atmospheric pressure, a sudden 
rise of pressure is observed. It has been argued by some 
that this cannot be due to heat generated in the discharge, 
and an alternative theory, that it is due to ionization, has 
been advanced. 

In the above paper the authors criticise the argument for the © 
ionization theory, and the interpretation of the experimental 
results upon which it is based. They also verify quanti- 
tatively that the effect is purely thermal in origin. 

Physics Department, 
University of Bristol. 

Jan. 7, 1918. 

Phil. Mag. 8. 6. Vol. 35. No. 207. March 1918. U 
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XXX. Some Problems of Evaporation. By Haroup 
JEFFREYS, M.A., D.Sc., Fellow of St. John’s College, 
Cambridge*. 

‘| eae problem of evaporation is practically one of gaseous 
diffusion: that is to say, if V denote the fraction of 

the density of the air at any point that is due to water 
vapour, V will vary from time to time and place to place 
according to the equation 

d~ Bal ae) * dy ("9y) * ela) 
where & is the effective coefficient of diffusion, ¢ the time, 
and d/dt denotes the total differential following a particle of 
the fluid. In general V, as above defined, will be referred 
to as the concentration. 

Then if u, v, w be the components of velocity and V be 
supposed expressed as a function of a, y, z, and ¢, 

av’ OV: OV OV OV 
aera ae igs ai a sph (2) 

The boundary conditions are that the air in contact with 
a liquid surface is saturated, so that V is there equal to the 
concentration in saturated air at the temperature of the 
liquid, and that at a great distance from any liquid V tends 
to a finite value. 

The equation (1) is identical in form with those that 
determine the transference of heat and momentum ; and 
when the transference is due entirely to turbulence the 
quantity & has the same value in all three casés f. In contact 
with a solid or liquid surface, on the other hand, the velocity 
of the medium is zero, and i diminishes to the value it has 
when there is no turbulence: that is to say, in the evaporation 
problem & is equal to the coefficient of diffusion of the 
vapour ; in the thermal problem it is the thermometric con- 
ductivity of air; and in the equations of motion it is the 
kinematic viscosity of air. These three quantities are of 
the same order of magnitude, but are not equal. When the 
air is at rest kis a constant in all cases and the problem is 
simply that of solving the equation 

ot kV, Qi ee 

where \/? denotes the Laplacian operator. 

* Communicated by the Author. 
+ G. I. Taylor, “Eddy Motion in the Atmosphere,” Phil. Trans. 

215 A, (1915). 
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When the air is in motion, kat a distance from a boundary 
is almost wholly due to turbulence, and is_ practically 
independent of position. The velocity near a boundary 
rapidly increases from zero to about half its amount at a 
considerable distance; this transition is accomplished in a 
thin layer of shearing, whose thickness in centimetres is 
estimated at 40/U, where U is the velocity in centimetres 
per second ata considerable distance *. In outdoor problems 
it is therefore usually of the order of a millimetre or smaller. 
The concentration and temperature also change rapidly 
within this layer, and in most cases it will be justifiable to 
assume that at the outer boundary of it each is constant and 
midway between the values at the surface and ata great 
distance. Outside this layer transference of heat and vapour 
will take place according to equation (3), where k is now 
put equal to the eddy viscosity. 

If the dimensions of the liquid surface are of order J, and 
the time needed for any considerable change of condition 
over it is of order 7, we see that the terms like 0V/0dt, 
ud V/dx, and kd?V/0#’ are relatively of orders 

Las Ui andl bie: 

Taking k to be of the order of 10? cm.?/sec., which is a 
somewhat small estimate for outdoor problems, r=1 second, 
and U=400 cm./sec., we see that the first term is small 
compared with the last provided / isless than 10 cm., and for 
slower variations this term will be small for stili larger values 
of 1. Again, we see that the second term is small compared 
with the last, ‘provided lis less than 2cm.; otherwise it must 
be taken into account. In indoor problems U is probably not 
far from zero, k=0°24 cm.?/sec., and the whole of d/dét can 
therefore be neglected for a surface 1 cm. across provided 
the saturation near it does not change considerably in 
8 seconds. 
When J is sufficiently small to satisfy both these conditions 

the equation of transference reduces to V?V =0, subject to 
the same boundary conditions as before. Without loss of 
generality we can take the concentration at a great distance 
to be zero. For if it is actually Vz, V— Va will satisfy the 
same differential equation and will be constant over all the 
wetted surfaces, and hence if a problem is solved for Vz=0 
the solution for any other value of Vz can at once be found 
by merely bei V—Vz for V throughout. 

Now, V?V=0 is the equation of steady diffusion and 

* Private communication from Major G. I. Taylor. 

U 2 
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is also satisfied by the potential in electrostatic problems ;}it 
follows that, provided the initial change is not too abrupt 
and the dimensions are not too great, the value of V at any 
point is the same as the electric potential at that point when 
the wetted surface is regarded as a conductor charged to 
potential Vo, where V, is the concentration at the edge of 
the layer of shearing when the air is moving, and the 
saturation concentration at the boundary when it is at rest. 
The charge needed for this is CVo. where C is the electro- 
static capacity of the conductor. Now the rate of trans- 
ference outwards from the boundary is 

ov 
P a 

where Qv denotes the element of the outward normal, p is 
the density of air, and the integral is taken over . the 
boundary. 

But in the electrostatic problem, if o denotes the density 
of the electric charge on the surface, 

av 
Ov 

ie = ser { ( cit Aa 

dS, 

=: —Aro, 

and hence} DY 
is { S 

Hence the rate of transference outwards is 

AmnkpCVo. . . . ° . . ° (4) 

This determines the rate of evaporation, which is shown, 
other things being equal, to be proportional to the linear 
dimensions, since the electrostatie capacity varies in this 
way for bodies of the same shape. 

The above is practically Stefan’s* solution, which has 
been experimentally proved to be correct subject to the 
conditions stated {. When the velocity is large enough to 
need to be taken into account, a general solution is no longer 
possible, but for a large wetted surface the curvature may 
be neglected, and the problem reduces to that of a wind 
blowing over a flat surface. This is treated in the next 
section. 

* Wien, Akad. Ber. \xxxiii. Abteil 2, p. 618 (1881). 
+ H. T. Brown & F. Escombe, Phil. Trans. 198 B. pp. 223-291. 
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Steady wind blowing over a flat surface of water. 

Take the plane of the surface for that of z=0. Let u be 
the velocity of the wind in the direction of the « axis. 
There is no wind in the directions of the other two axes. 
Then outside of the layer of rapid shearing the equation of 
diffusion when a steady state has been attained is 

BY _,0°V 
uae es a ea (5) 

provided the distance from the margin is great enough for 

o°V o’7V Me: : Pa Oar 
a7? and ae to be neglected in comparison with ayer 

The a oaiey, wis a function of z only, and k/u is supposed 
constant, equal to h?, say. The value of V over the surface 
when 2 is positive is Vy. Then all the conditions are 
satisfied if 

‘= =V.(1- 3h a) when # is positive. . (6) 

V=0 when wz is negative. 
Vv 

ron’ 
Th 2 ee | is makes ae Gel over the wet surface. 

Hence the rate of evaporation is 

kp ine = Vie oe per unit areas 2a (a) 

Then the amount evaporated between 0 and 2 over a strip 
dy in diameter is by integration 

2pV (kua/m)2dy. 

Finally, if the length of the strip from one margin to the 
other be /, and parts near enough to the edges for the end 
corrections at both ends to be important be neglected, the 
amount’evaporated can be found at once to be 

2pVo St) (ay . of sR grail) 

taken over the whole area. 
Hence for areas of the same shape and linear dimensions 

proportional to a the rate of evaporation would be proportional 
to at®. In particular, for a circular area of radius a it 
would be 

SOO KUL) 3) Coal haeh ist) 24 39) 
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It has been assumed in this treatment that the linear 
di o7V 0’V . ee 
imensions are so large that —, and =, are negligible in 

Da eae OF 
comparison with ya 

Now the value of V in (6) makes the first two quantities 
of order Vo/a? and the last of order V,/h?a. The condition 
required for the method to be justifiable is therefore that a 
shall be large compared with h?; in other words, ua/k shall 
be large. 

It has also been assumed that k/u is constant. This 
requires that the distance out to which the disturbance 
extends shall be sufficiently small for the change in k/u from 
its value just outside a thin surface-layer to be small compared 
with the whole. This distance is of order 2ha?. Thus 

2atdh/dz must be small. Now si is probably of the same 

order as al But kp when z=0 is about ‘003pu?, for 

each quantity is equal to the skin friction per unit area. 
Thus ‘006(ua/k)? must be small. This method is therefore 
correct provided ua/k lies between, say, 4 and 10+. 

Consider first an outdoor case, with u=400 cm./sec., 
k=1000 cm.?/sec. Then a must be between 10 cms. and 
250 metres. In a room with little draught, we may have 
u=4 cm./sec., k=1 cm.?/sec., and a must be between 1 cm. 
and 25 metres. 

When wa/k is much less than unity, the velocity of the 
wind may be neglected and the problem becomes one of 
steady diffusion; the rate of evaporation is then proportional 
to the linear dimensions. When wa/kis large compared with 
104, the effect will extend upwards for such a distance that 
in most of the volume concerned u and & will be nearly 
constant and equal to their values at a considerable height. 
The air up to such a height will be practically saturated, 
and vapour will diffuse from the upper surface of the 
saturated air precisely as before; the law that the rate of 
evaporation is proportional to a!® will therefore still hold, 
with different values of u and k. 

The result that for bodies of medium dimensions the rate 
of evaporation is practically proportional to a'® has been 
discovered experimentally by Thomas and Ferguson*, who 
also point out that this gives a fair representation of Renner’s t 

* N. Thomas and A. Ferguson, Phil. Mag. xxxiv. pp. 8308-321 (1917). 
+ O. Renner, Flora, 100. p. 474 (1910). 
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results. Brownand Escombe also found that the actual rate. 
of evaporation varied more rapidly than the radius but not 
so rapidly as thearea. Thomasand Ferguson find that when 
the surface of the water is below the rim of the containing 
vessel and the evaporation is assumed proportional to a”, 
where n is a constant for a given depth, n tends to 2 when 
the depth is large. 

The evaporation from a circular cylinder, wet at the 
bottom and open at the top, may be considered here. So 
long as the depth is either great or small compared with the 
radius, we can assume that within the cylinder the layers of 
equal concentration are parallel to the base. Let / be the 
depth, a the radius, and R the rate of evaporation. Let the 
concentration at the bottom be Vo, and at the top Vj. 
Then inside the cylinder the condition for steady flow makes. 

Moa R=qa’*kp oY == wa*kp—>— : 

Outside the cylinder, if the air is at rest, the vapour is 
practically diffusing from one side of a disk at concentration 
V,, and therefore the rate of evaporation is 4kpaV,* ; this 
also must be equal to R, else the concentration at the mouth 
would be changing. Eliminating V, we find at once 

R=ma’kpV,/(l+ ita), 

agreeing with a result of Brown and Hscombe (loc. cit. 
p- 258). 

If a strong wind is blowing over the top, the conditions. 
inside will be unaltered, but at the top we shall have 

R=3°95 pV, (kua?)2, 

giving, after elimination of Vj, 

l 1 \ 
— — a EES on erie eae ee | 

A eo T 3-95 (kua®)2/? 

which varies with / in the way found by Thomas and Ferguson. 

Evaporation from the surface of a leaf. 

The surface of a leaf consists of an almest impermeable 
cuticle perforated by a large number of small holes, called 
stomata, through which respiration and absorption of carbon 
dioxide take place. It is a matter of some uncertainty 

* The capacity of a circular disk is 2a/m, and therefore that of one- 
side of it is a/z. 
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whether carbon dioxide can by simple diffnsion enter these 
holes as fast as is indicated by the observed rate of carbon 
assimilation. If the rate of absorption were proportional to 
the area of the holes it could not be great enough, but if 
each hole absorbed at a rate proportional to its radius (this 
being the correct law for an isolated hole as small as a stoma) 
the total absorption would be much greater than is required. 
Some points in the theory still require examination ; it is 
not obvious that the surrounding stomata will not interfere 
with the action of any individual to an important extent, 
and a wind blowing over the surface, though unimportant 
for a single stoma, may be important when there are thousands 
of them spread over a considerable area. The problem is 
mathematically the same as that of evaporation from the 
stomata, by which it will be replaced. 

First, consider the leaf to be in a steady state and 
wind absent. Let the radius of a stoma be a, and the 
number per unitarea n?. Then the average distance between 
stomata is of order 1/n, and is large compared with a. The 
value of V over the surface of any stoma is Vj. Then at a 
distance r from an isolated stoma V is of order Voa/r. Now, 
if the stomata acted independently of one another, consider 
some particular stoma. By itself it would make V=V, 
over it; the others will together add to this an amount 

ie , which is not very different from vot n2d8, taken 

over the whole surface of the leaf. ‘'Thisis of order 27V,an?l, 
where / is of the order of the dimensions of the leaf. Now 
Jorgensen and Stiles give * for a typical case 2a=0:00107 
em. ;_ n?==33,000/em.? Thus the addition to V by the 
neighbouring stomata would be of the order of 300 Vy for a 
leaf of radius 8 em. This is of course impossible, for V 
cannot be greater than Vy. The meaning of the result is 
that the surroundings are enough to cause the air at any 
point to be practically saturated, and only a small portion of 
the vapour-pressure over any stoma is maintained by that 
stoma itself. The total evaporation from the surface of a 
leaf is therefore the same as would take place if V were 
equal to Vy over the whole surface, and its amount is there- 
fore 4a7kOVo, where C is the electrostatic capacity of the 
whole surface of the leaf. 

Looking at the matter in another way, the rate of evapor- 
ation from a single stoma uninfluenced by its surroundings 

* Carbon Assimilation,’ p. 63. 



Problems of Evaporation. 277 

would be 2arkeV, *, where ¢ is the electrostatic capacity of a 
disk of the dimension of the stoma, and from all the stomata 
on a leaf of area A it would be 2kncV,A, if they did not 
influence one another. On the other hand, the evaporation 
in unit time from the whole surface of a leaf when completely 
wet is 47kCV>. The ratio of these two rates is of order 
n*aA/2l, or practically n?al. Now, taking | to be 3 cm., 
and a=0-:00053 em., it follows that nal is unity if n? is as 
large as 600. Hence, if there are more than 600 stomata 
per square centimetre, the rate of evaporation from them 
will be greater than that from the whole surface of a wet 
leaf, which is absurd. If follows that evaporation must be 
enormously restricted by the presence of other stomata. 
Brown and Hscombe have stated that “the interference of 
the density shells of small holes set at 10 diameters or more 
apart is small, each hole beyond this limit acting almost 
independently according to the diameter law.” The above 
result shows that this is erroneous f ; in fact, the authors 
themselves imply its error in the diagram they give of the 
lines of flow through a multiperforate septum, when they 
make them become approximately parallel at a short distance 
from the septum. | 

Again, taking n?=33000/cem.? and /=3 cm., we see that 
nal is greater than unity unless a is less than 107° cm. 
Hence we shall still have the result that the evaporation is 
practically independent of the opening of the stomata as long 
as a exceeds this limit ; in other words, until the stomata 
contract to 5, of their original diameter, the rate of 
evaporation will be practically independent of the diameter f; 
when they have closed still further it will decrease, and will 
finally vanish when they are quite closed. This appears to 
contain the answer to Sir F. Darwin’s criticism § of some 
results of Lloyd||. Lloyd has stated that the regulatory 
function of stomata is almost nil, which Sir F. Darwin 

* We must have 2 instead of 4, as evaporation can only take place 
from one side of the stoma. 

+t In Brown and Escombe’s experiments with multiperforate septa 
the radius a was 0-019 cm., n? was 10U to 2°77, and J about 2 cm., 
making n’al equal to about 4 at the most, and in most cases much 
smaller. The results are therefore irrelevant to the case of a leaf. 

¢ Brown and Escombe, Phil. Trans. 193 B. p. 278 (1900), say that 

stomata can close to 7 of their diameter without affecting assimilation. 
§ “The Relation leeen Transpiration and Stomatal Aperture,” 

Phil. Trans. 207 B. p. 413 (1915-16). 
ee a E. Lloyd, “The Physiology of Stomata,” Carnegie Institution, 
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regards as inconsistent with his further results that “ com- 
plete closure..... reduces transpiration to or nearly to: 
cuticular rate,’ and “‘when the stomata are open to their 
utmost limit the highest rate of transpiration is the maximum 
of which the leaf is capable.” A more satisfactory statement 
would be that until the stomatal aperture is reduced to a 
certain very small value the possible rate of transpiration is. 
practically independent of the aperture, and nearly all of the 
reduction to zero when the stoma closes takes place in the 
last 2 per cent. of the reduction of aperture. 

Next, consider the effect of wind. Suppose for simplicity 
that the stomata are arranged in straight rows, the distance 
between consecutive rows and between consecutive stomata 
on the same row being b. Then b=1/n. Consider a square 
column of air of side 6. To pass over a stoma it would take 
a time b/u, and if it were unsaturated at the commencement 
it would therefore acquire a weight of vapour 27rkpeVob/u, 
if there were no mutual influence between stomata. Now 
suppose the air to have moved forward a distance a, in time 
x/u. Then the vapour in it will have spread out by diffusion 
through a radius comparable with 2(ka/u)?; and if a/b is 
great diffusion parallel to the surface of the leaf and across. 
the wind will have practically ceased, and thus the vapour 
will occupy half a flat cylinder of radius 2(kw/u)? and 
thickness 6, its centre being of course at the point 2. Thus 
the concentration in it will be of order cV)/z. Further, the 
number of stomata much affected will be of order 

An*b( ka]? =4n(ka/u)?. 

Similarly, the number of stomata whose influence at this. 
time will have affected the column of air when it has 
travelled a distance between «—4b and #+4b is 4n(ka/u)?, 
and therefore the total concentration produced by them is 
AncV)(k/ux)?. This is then the concentration acquired by a 
mass of air on account of what happened between times 
(a+4b)/u previously, and the total produced by all times is. 
to be found by summing the series for all such intervals. 
Put z/b=r. The total is then 4xcVo(k/ub)2r—2, the summa- 
tion being from r=1 to r=1/b, where / is the distance of the 
mass from the stoma nearest the margin. When / is great 
this is of the order of 8n?cV)(kl/u)?. Now bis about 0°05 mm., 
and thus is usually small compared with the thickness of the- 
layer of rapid shearing *. A fortiori a, and hence ¢, are 

* See p. 271. 



Problems of Evaporation. 279: 

smaller. Thus u, being the velocity within the region to 
which the diffusion from a stoma extends, is much less than 
the velocity outside. Similarly & is the true coefficient of 
diffusion, about 0°24 cm.?/sec. The thickness of the layer of 
shearing being 40/U, it follows that wis of order U*a/40. 
Thus the quantity just obtained is of order 100n?V,(kla)?/U, 
which is about 100 Vo. It follows by argument similar to 
that used in the case of no wind that the eariier stomata 
saturate the air before the later ones are reached. Thus the 
total evaporation is not very different from that in the case 
where the whole surface of the leaf is wet *, and is therefore 
proportional to /+°, where / is now proportional to the linear 
dimensions of the leaf. 

This approximation will break down if n?ais much smaller, 
for then the residual saturation from the earlier stomata may 
be small compared with Vo, and the rate of evaporation will 
then be the same as that obtained by summing the results 
for the individual stomata, each being supposed isolated ; 
this sum is 2an?kpcV,A. A similar result may be obtained 
if u/k is much greater. It must always be noted, however, 
that this formula can be applied only when the result it gives 
is less than the rate of evaporation from a wet leaf with the 
wind blowing over it; otherwise we should again have the 
absurdity of the evaporation from a part being greater than 
that from the whole. 

The best method of determining whether it is better to 
employ the sum of the possible evaporations from the 
individual stomata, or to regard the whole surface of the leaf 
as wet, is probably to calculate the rate of evaporation on 
both bases and take the smaller of the two results as 
supplying the correct upper limit to the amount of respiration 
the leaf can perform. Similar remarks will apply to the 
possible absorption of substances from the air. 

It may be remarked that when the number of stomata is 
so large as to make the problem reduce to that of a wet leaf, 
the total evaporation is not a function of the number of 
stomata, but that from any single stoma is inversely pro- 
portional to the number. Thus increasing the number 
diminishes the work thrown on any individual, which may 
be of some physiological importance. 

The above investigation concerns only the purely physical 

* O. Renner, Flora, vol. 100. pp. 451-547 (1910), states on p. 485 
that the evaporation from a leaf is the same as that from a water 
surface 
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side of diffusion. It does not preclude the possibility that a 
reduction of the stomatal aperture may be associated with a 
reduction of the rate of evaporation; but it does show 
that in most cases the cause of such reduction is not the 
mere extra mechanical obstruction to the passage of water 
vapour, but must depend on the internal conditions. The 
importance of these is obvious. For instance, in the 
problem considered here the air has been supposed saturated 
when in contact with a stoma and perfectly dry at a great 
distance. Actually the concentration at a great distance 
has the finite value Va; and that at a stomatal aperture is 
probably somewhat less than the saturation concentration. 
Let it be V,;. The latter question is further complicated by 
the facts that the dissolved substances within the cells must 
diminish the pressure of saturated vapour ; that the leaf 
is normally at a somewhat higher temperature than its 
surroundings, so that the pressure of saturated vapour will 
on this account be greater than that at the temperature of 
the surroundings; and that owing to internal restrictions to 
the supply of water to the stoma the vapour-pressure may 
be reduced. The effect of these changes is that in all the 
formulee we must substitute V,— Vz for Vo. 

Another complication arises from the fact that the 
stomata are not usually mere pores with saturated air in 
their planes ; in most cases they are pits sunk in the leaf- 
surface. As long as their number is large this is not likely 
to produce any great effect on the rate of evaporation, for in 
exactly the same way as with flat stomata the earlier ones 
met by the air will partially saturate it, and the air when it 
meets the later ones will be nearly at the same saturation 
as that inside them. When the number is small, on the 
other hand, the formula for evaporation from depressed 
stomata must be used. For circular cylindrical stomata this 
gives for the rate of evaporation when the depth / is great 
compared with the radius 

mnvkpa?(V;—Va)A 
(+ita 
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XXXII. General Curves for the Velocity of Complete Homo- 
geneous Reactions between Two Substances at Constant 
Volume. By George W. Toop, D.Sc.(Birm.), B.A. 
(Camb.)*. 

[Plate IX. ] 

x HEN m molecules of a substance A react with n 
molecules of a substance B to give one or more 

resultants, there being no back reaction, the velocity of the 
reaction is given by 

SE ee 
where 2 is the change in the concentration C in time ¢ and 
k is the velocity constant. If & is known, the changes in 
concentration for various initial concentrations of the reacting 
substances can be worked out by integrating the above 
equation, but the integration often absorbs valuable time. 
By choosing suitable quantities it is possible to plot curves 
which will apply generally to all reactions of a similar type. 
The author has worked out some of these, and puts them on 
record koping that they may save much time and labour. 

Bi-molecular Reaction. 

If the reaction is bi-molecular of the type A+B-1 or 
more resultants, the reaction velocity is given by 

dx 
ai =k(a—a«)(b—2), 

where a, 0 are the initial concentrations of A, B respectively. 
The equation may be written 

ie a 7b 
ar = Ha (1-5) (2-2). 

Putting “=X, where X= fraction changed, 

dX 
HKU) (p—X), 

where K=ka and p=. 

Take (i.) initial concentrations equal, 7. e. a=b or p=1, 
then 

Ki= ee le N 

. |} cesses 1X7 

* Communicated by the Author. 
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The maximum value of X=1. Giving X values up to 1 
we gel 
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These are plotted on fig. 1 (p=1), and the curve will 
apply to any bi-molecular reaction in which the initial 
concentrations are equal. 

Take (ii.) one of the substances in excess, say ped 
where p>1l. Then we have 

ee { lop. uae 

Li) Seer oD, > Gilichil nee Tie ‘94 +97 10 
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These are plotted on fig. 1 (PI. IX.), and the curves will 
apply to any bi-molecular reaction of the type A+B >1 
-or more resultants. 

l-p p-—xX 
p=Vo. 
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p= 

HO 

eee) 

Ter-molecular Reaction. 

Let the reaction be represented by 2A+B->1 or more 
resultants, then the velocity of reaction is given by 

& _h(a—2)"(0—2) 
2 

Mey *\{o. 2 
= ha (1 “\(° =) 

Bringing to the same notation as before gives 

x dX 

Kem | ax peKy 
~where K=ka?. 

Take (i.) equal initial concentrations, 2. e. p= 1, then 

ak 2 Ke 
MOS SS 

o (2X)? 32 a—X)? 
‘which gives 

PAS persis Oot 2 3 4 5 6 wi Bo 2 

Gio ala 0 ‘117 :281 -520 °889 1:50 263 506 120 50 o 
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These are plotted on figs. 2 and 3, and the curve applies to 
any ter-molecular reaction in which the initial concentrations 
are equal. b 

Take (ii1.) B in excess, 7. e. p= sed 1. We have 

ee (* dX aed flog PAX) ua 
Ree yr) eae pas ee ee 
p15. 
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These figures and the graphs plotted from them (fig. 2) 
will apply to any ter-molecular reaction of the type 2A + B->1 
or more resultants, B being in excess. 

Take (iii.) A in excess, and let c= p>1, then we have 

= aX 1 p-xX X(p—-1) gE Eling PoE, BOD \, (p -XPU=X)~ @=TPU Sp —X) © p(p—X) 
where K=kb?. 

p=li. 

ee es 0 4 oT 8 ‘9 1-0 

Wee o2 0c. 0k 0 ‘O76. 2:05 3°69 8°24 va) 

p=1é. 

ae it ene | a 73) ‘7 8 ‘9 94 1:0 

Ws ses O>: O50. aetl4) 462 eris:.. 185, 354-4 6°02 ora) 

g=2. 

1 ee O° «I “2 'D "4 #3) zi 9 95 | 97 0 

MGs ces O° 027) C62 010° “1627 3259. 3503) 1-29 Si 23) co 

p=3. 

2 ae yk “5 a | ‘9 * 95 ‘98 1:0 

: CC PETe 0 012 093 "224 D381 ‘575 797 oo 
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These figures and the corresponding graphs (fig. 3) apply 
to any ter-molecular reaction of the type 2A +B->1 or more 
resultants, A being in excess. 

Quadri-molecular Reaction. 

Let the reaction be of the type 3A + B->1 or more resultants, 
and let the initial concentrations be equal. The general 
equation is 

aes 
dt 2) (6-2) 

3 
ee (i- f © on *), ; ra | 

when . —] 
soe BA 1 ee 

a (1—X)# 3 1 (1—X)3 “14 
and K=ka?’. 

=< aR Ms a O° “i ee fo “4 "5 6 65 4 32 

IK Geen cte QO 128 °32 -64 121 233 487 7438 120 @ 

Now take B in excess, putting LSS | The equation 
becomes i 

x aX 

k=) (—G=H) 
P Xx C i 

= —A log.(l—X)+By—y + 2 | ax tf + Dea —¥? 

where A, B, C, Dare constants depending on the value of p, 

p=2, Tho A=1. B=-1. O=1) D==t 
Lee 0 + “4 6 ‘7 8 1:0 

KU. eneek 0 149 ‘501 1:68 3°49 9°09 00 

f d 1 1 
pa Then A=. a ae C=5. D=— ,- 

IK Gicathie ate 0 3 *D of 8 9 1:0 

Re iecscane 0 184 "564 2:06 516 22°7 ee) 

1 1 1 1 
p=—6. Then A=Joz- B= — 5. C= 5° D=— Fog: 

cape 0 5 of 8 g 1:0 

HKG too: 0 *265 ‘925 ‘25 9-52 00 

These figures give the graphs (fig. 4) for a quadri- 
molecular reaction of the type 3A+B->, the substance B 
being in excess. 
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Now let the substance A be in excess, so that z= poi. 
We have 

ae = dX 

where K=0’. oka at ek): 

The solution is 

—X Xx Meee Aloo! = 2 Be 
P p(p—%) 

C us if 
a tea are — Dlog,(1—X), 

A, B, C, D being constants depending on p. 

p=1k. Then A=—64. B=—16. C=--4. D=64. 

ee 0 “2 “4 6 sie 8 10 

ME es... 0 15 ‘47 151 3°01 11°49 oo 

p=1i. Then A=—8 B=—4. C=--2. D=8. 

a eee 0 ya D 6 =f 8 9 1:0 

ae 0 082 “411 602 115 2°15 4°76 ee) 

p=, Then A=—1. -B=—k,-C==1. D=h 

eae 0 3 6 8 =) “95 97 1:0 

1 ...... 0 065 ‘216 ‘O79 1-01 1°58 202 oo 

The graphs for these are shown in fig. 5. 

There is yet the quadri-molecular reaction of the type 
2A +2B->1 or more resultants. In this case we have 

Ki yi heh ana 
T Dy Gh eae 

where K=ka? and p=" =. 

The solution is 

ee |), Pe) ee ety 
tp 1) Pee. (Pol) LOS )p SX). ap 
pli 

mee... 9 2 ‘4 6 7 8 10 
_ a 0 21 ‘70 2-2 47 11:7 00 

pT: 

ae. Oa aE 3 5 ‘75 "85 ‘9 1:0 
ee) QO, \03 + (a0: sam 1-465. 3°33), GOD.’ 

gS 

te 0 5 ‘8 9 ‘95 10 
i 0 ‘141 ‘707 1:80 4°14 Ps 

The general curves for this type of quadri-molecular 
reaction are shown in fig. 6. 

Phil. Mag. 8. 6. Vol. 35. No. 207. March 1918. X 
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Application of the Curves. 

(i.) To find the velocity coefficient k. 
When the order of the reaction and the initial concen- 

trations are known we have only to measure the fraction 
(X) changed in a given time ¢ in order to find Ké from the 
curve and therefore k. 

(ii.) To find the fraction (X) changed in a given time ¢. 
This requires a knowledge of &, the order of the reaction, 

and the initial concentrations. Then X for a given ¢ can be 
read straight from the curve. 

(iii.) To find the Order of a reaction. 
Two or more determinations of X and¢ are needed together 

with a knowledge of the initial concentrations. The 
particular curve on which the points (X, ¢) best lie, determines 
the order of the reaction. 

London, 
December 1917. 

XXXII. On the Coefficients of Potential of Two Conducting 
Spheres. By Prot. A. ANDERSON ™*. 

i ie may be of interest to show how the coefficients of 
potential of two conducting spheres may be obtained 

directly without a previous determination of the coefficients 
of capacity and induction, and without making use of electric 
images. For this purpose the following elementary pro- 
position, which is easily seen to be true, may be used. 

If a conducting sphere whose radius is a have a charge H, 
and if other charged bodies be brought into the field, the 
potential V of the charge Ei at an external point P whose 
distance from the centre of the sphere is 7 wil] be given by 
the equation 

rV =H+a(U—U’), 

where U is the potential at the centre of the sphere of the 
introduced charges, and U' their potential at P’, the inverse 
point of P in the sphere. 

Let A and B be the centres of two spheres whose radii 
are a and 0, the distance AB being c. Let I, be the inverse 
point of A in the sphere B, I, the inverse of I, in A, I; the 
inverse of I, in B, and so on. Also, let J, be the inverse 
of B in the sphere A, J, the inverse of J, in B, J3 the inverse 
of J. in A, and so on. : 

Let U be the potential of the sphere A at B, U,;, U., Us, 
&ec. its potentials at 1, L, 1; &e., and Uy’, U,', U,', &e. its 
potentials at J,, Jo, Jz, &c. Also, let V be the potential of 
the sphere B at A, Vy, Vo, V3, &c. its potentials at I,, I, I, 

* Communicated by the Author. 
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&c., and V,', V,’, V;', &c. its potentials at Jj, J, Js, &e. 
Let the charge on A be unity, and let B have no charge. 

ie 1! 

We have, then, the two sets of equations,— 

cU=1+a(V—Vj’), 
Bay =. b(U = U,'). 
AJ,. U,'=1+a(V—V;’), 

BJ;.V;/= 6(U—U,), 

AJ,. U,{=1+a(V—V,’). 

ye ees 11), 
Ab ie (sv y), 
BE 4 DS, 
Al, e U,=1+a(V—V,), 

BL .= b(U—U,;). 

The first set gives at once 

ab a? bh? 
+e Gos BjOBI.. Ade. Al U=(14aV)|1 

a®b? 

‘Dae RAISE A TS. Ad, Adie a 
Bee et | ab 

—abU | ey + By BEAT, 
al? 

+ 4) SBI aBIeSBI Ady. Any | 
or cU=¢1 +aV)G;—abUF,, 
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where G; and H; are the sums of the two series, the sub- 
script 7 denoting that J’s enter into the expressions. 

In like manner, the second set gives immediately 

ab a*b? 

ae Bee cseg Ki ki Bt, Be | 
ab | 

— BU av) lar + AL Al, Bi ee 

or eV =bUG,;—b(1+aV)Fi. 

Now pu=V+ = and pe—U; 

hence (c+abF;) py.=aGjpnu, 

i 
and e(pi— “| + ab; pu= bGy pie 

Hence i 

Gee ) Sa, 

mo Oe oc ate 

a 
P22 =; ab PPR ui 

Since, GaN: Piz must be ue tO Po, it follows that 
Gi=G,, ‘and, in fact, on examining the two series, it will be 
seen that they are identical if 

BJ, . 2 Al, ° BI,, 

Ee Ad,—Al, «Bly 
fie Vo e= > ie. 

These equalities, though they can be proved without 
difficulty, are not at all self-evident, and imply the further 
relations 

2 

AT, BT ty ee aT, aM ee Aan 
c 

Thus we have a case where theorems in ptre geometry 
are suggested by purely electrical ones. 
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We have, then, writing G for G, and G;, 

1 eer 

i oe er. abe Ab, ‘Ga te)(+ 2H) 26 
C ¢ ¢ 

1 G 
Pe arma ah ab Pa; (ia) (1+ 8) - 4 

ab 
1 ee ts 

rae Su nnn ale No ab Mab ia) 

(1+ %R)(1+28)-Ge 
It will be seen that a 

m=e(1+ “| 

ab 
FO oars ies G, 

It has thus been shown that the values of the coefficients 
of induction, capacity, and potential depend on the sums of 
two series, | 

1+ ab a*b? 

Ce RD A RT a 
a®h? 

a hs RIT BE Rae: 
which we have denoted by G, and 

Be * ab 4 abe ia 

fe Al. Be AG Ad As VAT. Bis. Bilge a0 

which we have denoted by I’. Both of these series can be 
expressed in terms of a, 0, c. 

Taking the first series and denoting 

Al, . Bi, by P12) Al, . Bay by P345 wal : BI, by P56» &e.. aes 

it can be shown that 

(? —a°— 0") pin — ab? 
PAS Coie ; 

P12 

(ce? —a°—b*) p3,—a°b? 
Doge Varer erie ye are 

P34 

&e., &e., 
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or, if we write for c?—a?— 6”, x’, and for ab, p’, 

P=’, 

Ke —— 

P3a= Ke ae 9 

Ki —24 
Ps ~~ ? 

a K a 

fe 

The series is, therefore, 

Pp a Kp Letie: Stale wae BPE 
Aap! (=p) (= 2p) 

«8 

* (=p (2 — Ip) (i — 3p) * 
: a e’—a’—b? 

or, denoting > OF ae by 4, 

2 

yey eae i a 
a e—1 @ ia?) | (@_- jee ae 

Hence we have 

aya) 4 il i il Pf a A ) 

Oa ( a a @-—1° (a@—l)(a’?@—2) “7 

Similarly, for the second series, we can show that 

Posie — a? —b?) —a*l? 
P45 ’ 

P23 

2 4 
has) oe ay Y 
Te ae 9 

P23 

2 4 
_ Kk Pas P 

vis 5 ? 
Pas 

&e... a) 

(?—b?+ac)(?— ae) 

ce — 

2__ f2 

also 1 2 5 and P23 

Let p23 be denoted by Ah’. 
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Then pak, 

Kh? — p* 
Pale ar ia? 

eth? — (x? + h?)p* 
Per Pay Cae p ; 

woh? — KK? + 2h?) p* + p® 
Kh? — (x? + h?)p* 

The series is therefore 

Ps9= 

é ab a?b? . ies BEN 

a) E tet ei—pt* ae + Rp 
a*h* 

Ba Koh — KK? + 2h?) pt + p® coal ? 

or 

c Ak 1 i: ) 
re oe we ha ee Ee ee 
ce — | | a (iz: 2(h?a—1) I: (ite? Naan is a) | 

Ke 

Thus 
a*b? arb? ) 

Gy=at+ Sa | h2 che —p* Kh? — (x? + h?)p4 ce 

For go. we must write > for a and a for 0, and A? will now 

denote 
(e?—a? + be) (c? —a? — be) 
Si Cen eee 

XXXII. Notices respecting New Books. 

Centennial Celebration of the United States Coast and Geodetic 
. Survey, April 5 and 6,1916. Washington Government Printing 

Office, 1916. Large octavo, pp. 196. 

a Coast and Geodetic Survey, under its present Superinten- 
dent, Mr. E. Lester Jones, celebrated the 100th Anniversary 

of its institution in April 1916. Addresses dealing with various 
aspects of the scientific work of the Survey were delivered by 
fifteen eminent Americans, and further addresses, including one 
by the President of the United States, were delivered at a banquet, 
which completed the proceedings. The volume contains these 
addresses, and extracts from the principal Acts of Congress 
relating to the Survey. A series of plates contain illustrations of 
surveying vessels and apparatus of various kinds, and there are 
full page photographs of the eleven gentlemen who have succes- 
sively held the post of superintendent. There is much in the 
volume that is of interest even to those who are not Americans. 
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GEOLOGICAL SOCIETY. 

| [Continued from p. 140.] 

November 21st, 1917.—Dr. Alfred Harker, F.R.S., President, 
in the Chair. 

HE following communication was read :— 

‘The Shap Minor Intrusions.’ By James Morrison, B.A., B.Sc. 

The paper deals with the minor igneous intrusions occurring in 
the triangular area between Shap, Windermere, and Sedbergh. 

From their field relations and petrographic characters the in- 
trusions are found to belong to one or the other of two well-marked 
groups, a division which is regarded as connoting also an age- 
classification. 

The rocks of. the earlier set, characterized by the presence of large 
orthoclase-felspars of the granitic type, are intimately associated 
with the granite, to the immediate neighbourhood of which they 
are practically confined. The rocks range from quartz-felsites to 
lamprophyres. Of considerable interest in this group is a series of 
hybrid intrusions, consisting essentially of rocks of a more or less 
basic magma enclosing xenocrysts of a more acid (but allied) 
magma obtained by settlement under intratelluric conditions. The 
constitution of any given member of the series is determined by 
two factors: the abundance of xenocrysts and the composition of the 
matrix, an increasing basicity in the latter (due to original magmatic 
differentiation) and a decrease in the former marking the successive 
stages. The more acid have affinities with the porphyrites, the 
more basic with the lamprophyres, the series ranging from modified 
biotite-porphyrites to modified pilitic lamprophyres. 

The later intrusions are typically free from the large orthoclase- 
felspars, though quartz-grains may occur even in the basic members. 
Associated centrally with the earlier set they are distributed over 
a much wider area, overlapping the former in every direction. They 
are the result of a further differentiation, and are assigned to a 
later period when igneous activity was renewed on a more or less 
regional scale. The rocks include acid felsites and spessartites. 

The rocks of the earlier set agree in general direction with the 
north-north-west fractures transverse to the strike of the country- 
rock, while the later intrusions trend generally east of north. 
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XXXV. The X-Ray Spectra and the Constitution of the Atom. 
By L. Vecard, Dr. phil. University Christiania *. 

at: CCORDING to. Rutherford ¢ the atom consists 
of a positive nucleus and electrons circulating 

round it. A number of different methods have led to the 
result that the number of electrons in the neutral atom is 
equal to the atomic number N, and that consequently the 
charge of the nucleus is +Ne. The stability of the system 
is not secured by the usual electrodynamic forces, but 
Bohr i by his ingenious explanation of the series spectra 
has been able to fix orbits of stability by means of the 
energy quanta introduced by Planck. 

The fundamental assumptions underlying Bohr’s theory of 
atoms and their light emission are the following :— 

I. In the normal state of the atom the electrons are 
arranged in groups (rings) in such a way that for each 

electron the angular momentum is equal to Qn OF 

h 
pe ae : Weegee oe (1 a) 

where m is the mass, » the angular velocity of the electron, 
a the radius of the circular orbit, and 4 Planck’s constant. 

* Communicated by the Author. The results of the present investi- 
gation were communicated to the Kristiania Vid. Selsk. on October 23 
and 30, and read before the Society November 23. 
+ E. Rutherford, Phil. Mag. xxi. p. 669 (1911), and xxviii. p. 488 

(1914). 
} N. Bohr, Phil. Mag. xxvi. pp. 1, 476, 857 (1913). 

Phil. Mag. 8. 6. Vol. 35. No. 208. April 1918. ¥ 
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II. To produce the line of a series it is necessary that an 
electron should be removed in some way or other from one 
of the rings. The recombination of an electron towards the 
broken ring may take place in steps between stability orbits 
determined by the condition : 

Moa" =T 5. eye) Ge te en (1 b) 

III. To each stability circle of the recombining electron 
corresponds a certain energy of the atomic system. When 
the electron in one step passes from a stability circle 72 to 
one 7, the energy must be removed from the system, and 
Bohr assumes it to be radiated out in one quantum homo- 
geneous radiation, or 

hv=W.— W;, ol) ee le (2) 

where v is the frequency and W the total energy. The 
latter relation we may call Bohr’s frequency law. The orbits 
corresponding to the normal state of the atom we shall call 
primary orbits, and the stability orbits which the electron 
may take up during its recombination we denote as secondary 
orbits. 

By means of these assumptions Bohr was able to deduce 
the complete series spectrum of hydrogen and a spectrum of 
helium which was emitted when a single electron recombined 
to the isolated nucleus. He was also able to give an ex- 
planation of the appearance in the series formula of the 
universal frequency constant (R) of Rydberg, and his fre- 
quency law explained in a simple manner the combination 
principle of Ritz. But up to the present the atomic model 
based on the assumption I. has not been able to yield any 
theoretical deduction of the series spectra in general. 

In the case of hydrogen and those spectra similar to that 
of hydrogen, the theory of Bohr has proved to be very 
successful indeed. Through the introduction of noncireular 
orbits already Bohr * was able to deduce a formula for the 

' Stark-effect which gave the right order of magnitude and 
the right type of variation. Later on the question of non- 
circular orbits has been much more completely treated by 
Sommerfeld +, Schwarzschild {, and Epstein §. 

Sommerfeld gave a generalization of the quant-conditions 

* N. Bohr, Phil. Mag. xxviii. p. 506 (1914). 
+ A. Sommerfeld, Sztz. Ber. d. Miinchener Akad. d. Wiss. 1915; 

Ann. d. Phys. li. pp. 1 & 125 (1916). 
$+ K. Schwarzschild, Berliner Akad. d. Wiss. p. 548 (1916). 
§ P. Epstein, Ann. d. Phys. 1. p. 489 (1916). 
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which proved to be of very great importance. He intro- 
duces generalized coordinates g; (coordinates of position) 
and ; (coordinates of momentum), and takes as the genera] 
quant-condition for stable orbits : 

( psdq=nh, rele] oh eco ena EC eb.) 

where the integral is to be extended over one period. 
This general quant-condition involves the new question as 

to the choice of coordinates. 
Sommerfeld carries out the calculation in polar coordinates 

(mS) for a single electron moving round a positive charge. 
The three quant-conditions then take the form 

(* pydypanh, ( p.d,=n'h, (rao=na. . (4) 
0 ry 

If we merely consider orbits in a plane, only the first two 
conditions will be wanted. 

Carrying out the calculation in the case of hydrogen 

m,, m' being the value of 7, n’ for the orbit from which the 
electrons recombine. 

In order to give the ordinary Balmer series it is 
necessary that 

N=n,+n'=2 

and that M=m,+m’ is an integer number > 2. Further, 
the number of combinations is limited by the conditions 

m > 21, 

m' Sn’. 

This new form of the frequency formula is so far identical 
with that of Bohr that it gives the same position of the 
lines, but it is different with regard to the way in which we 
may imagine the lines to be produced. Thus the H-line 
may be produced in four different ways, as, e.g., by re- 
combination from an elliptic orbit (mj=2, m’=1). The 
case of circular orbits treated by Bohr is only a special 
case of many, and corresponds to a recombination from 
(m,=3, m'=0) to (n,;=2, n'=0). 

The H-lines which are produced in these different ways 
are only with certainty identical provided we may treat the 
system as consisting of two a masses attracting each 

2 
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other by a force inversely proportional to the square of the 
distance. When other forces come into play, or if the 
masses are not to be regarded as constant, the H-lines 
produced in the different possible ways will no longer be 
identical. 

In fact, when the mass of the electron is supposed to vary 
with the velocity according to the law given by Lorentz or 
the principle of relativity, Sommerfeld finds that the lines 
are split up, and carrying out the calculation he has been 
able to explain even quantitatively the splitting up of the 
hydrogen lines and to give a general theory of the formation 
of multiple lines. 

Further, we see that the frequency formula of Sommerfeld 
gives us a possibility of explaining the Stark-effect, for when 
a uniform electrostatic field is introduced into the system the 
various ways in which a certain line may be produced will 
no longer give the same frequency. 
A complete determination of the Stark-effect was finally 

given by Epstein*, by an ingenious method of selecting 
the generalized coordinates by means of the equations of 
Hamilton-Jacobi. 

Application of Bohr’s Conceptions to the High Frequency 
Spectra of the Elements. 

§ 2. The law connecting the high-frequency spectra of 
the elements which was brought out through the beautiful 
experiments of Moseley tT was simply explained by the 
atomic model of Rutherford{t and showed that the atomic 
number played a fundamental part in the constitution of 
atoms. In fact, we may say that the evidence gathered 
from various sources leaves no doubt as to the correctness 
of Rutherford’s conception of the atom. I think we may 
safely take it as a fact that the normal atom has a positive 
nucleus of charge Ne, surrounded by N electrons. 

The atomic problem is then resolved into the following 
two questions :— 

1. The arrangement of the electrons which surround the 
nucleus and the laws that govern this arrangement. 

2. The constitution of the nucleus. 
The nucleus is the seat of gravitation and the radioactive 

transformations, and a possible theory of the nucleus would 
have to gather evidence from these two phenomena. The 

* P. Epstein, 1. ¢. 
7 H. G. J. Moseley, Phil. Mag. xxvi. p. 1024 (1918), and xxvii. 

p. 703 (1914). 
t Loe. ct. 
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outer electronic system is responsible for the light emission, 
for the homogeneous X-rays, and for the chemical properties 
of the atom. 
Bohr * was able to show that the K-spectrum could be 

approximately explained by assuming it to be produced 
by the removal and recombination of an electron next to 
the nucleus. 

Moseley + found a better agreement by assuming four 
electrons in the system next to the nucleus; but the way 
in which he deduced his formula was open to criticism. 
His formula may therefore be regarded as empirical, 
although Nicholson { points out that it can be deduced by 
a proper modification of Bohr’s frequency law to systems 
of electrons. 

Kossel § was the first to point out some very interesting 
relations between the lines of the K- and L-series. Denoting 
the frequency by v, the following relation very nearly 
holds true : 

Vyeg—Vx, =yp,. aie a0) 

According to Bohr’s frequency law aun) ig frequency 
is proportional to the differences of energy of the electron in 
the initial and final state, and, as pointed out by Bohr ||, the 
above relations would naturally convey the following con- 
ception with regard to the formation of the high-frequency 
spectra. 

The electrons may be supposed to be arranged in rings 
round the nucleus. When an electron is removed from the 
ring nearest the nucleus, an electron from the next ring may 
replace it and give rise to the emission of K,. If the electron 
is taken from the third ring, we get Kg. When an electron 
of the second ring is removed and replaced by one from the 
third, we might get L,, and in this way Kossel’s frequency 
relations should be explained. 

Sommerfeld, following up this line of thought, has 
been able to express a number of lines of the X-ray 
spectra by introducing a number of “terms” peculiar to the 
various X-ray series. Thus, e.g., he introduces a K-term 

oth )\2 

K= —— and a L-term L= ee and finds 

VR=K— 198 

* N. Bohr, Phil. Mag. (6) xxvi. p. 408 (1913). 
+ Loc. cit. 
t J. W. Nicholson, Phil. Mag. (6) xxviii. p. 562 (1914), 
§ bh Kossel, Verh. d. D. Phys. Ges. 1914. 
|| N. Bohr, Phil. Mag. xxx. p. 394 (1915). 
q A. Sommerfeld, Ann. d. Phys. li. p. 125 (1916). 
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Further, he has been able to show that a number of lines 
in the X-ray spectra appear as doublets. Thus he can show 
that K, and K,’ form a doublet, and the difference of 
frequency can be calculated from his theoretical formula. 

The L-series consists of at least 13 lines. It is of 
importance to adopt definite names for these lines. 

Arranging them in the order of increasing frequency, 
Siegbahn * and Sommerfeld f have the following somewhat 
different denotation :— 

Siegbahn RVelehainddele 0/0/01» | oy &19 8481 B2B3R57, 2934 

Sommerfeld ......... edanvBy OC d3xwa 

Sommerfeld finds the following doublets : 

(al) or perhaps (28), (98), (en), and (2). 
All four doublets give nearly the same value for the dif- 
ference of frequency of its two components, thus : 

B—a=6—y=n-—e=S—6. 

Recently Debye t has attacked the problem in a some- 
what different way. His method may be considered as an 
application of Bohr’s frequency law to systems consisting 
ot more than one electron. 

Assuming that all atoms which give the K-radiation have a 
ring next to the nucleus of p electrons, he is able to deduce 
a theoretical formula for the K-line by putting p=3. 

His deduction is based on the following assumptions :— 
(a) The angular momentum of each electron in the normal 

ring is that supposed by Bohr for the nermal state of the 
atom (equation 1). 

(6) When an electron is removed from the ring the 
angular momentum of the remaining electrons is supposed 
to be preserved. 

(c) A line belonging to the K-series is supposed to be 
formed when an electron recombines to the broken ring 
from a secondary stability state (circle) corresponding to 

U ° 
an angular momentum 7 oe where 7 is a whole number 
greater than 1. a 

(d) When an electron recombines in one step from a 

* M. Siegbahn, “Bericht iiber die Rontgenspektren der chemischen 
Elemente,” Jahrbuch d. Radioakt. u. Elektronik, xiii. p. 296 (1916). 

ft Loe. cit. p. 138. 
t P. Debye, Phys. Z.S, xviii. p. 276 (1917). 
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secondary circle to re-establish a normal circuit, the dif- 
ference of energy of the whole system (electron + circuit) 
before and after reeombination is radiated in a single 
quantum. 7 } 

Let the effective charge of the nucleus be + Ne and the 

ay, 
angular momentum of each electron T 573 then, as shown 

by Bohr and Debye, the total energy of a ring of p electrons 
will be 

ae ye 
E=(—pRaG—eP) 

where C is a constant, and as we have only to deal with 
differences we put 

N—Sp)? W=phRO— SP) URAL TS ‘as 

and we take simply — W asthe total energy. R is Rydberg’s 
universal frequency. Debye puts R=2-°7337 .10% —, orin 
wave-number per cm. 

| R=109740 —. 

Further, 

SEY iB 
t=1 S1In 21— 

P 

Let the total energy of the restored ring be — W,, that 
of the broken ring — W., and that of the electron in the 
secondary circuit — W.’', then Debye’s application of Bohr’s 
frequency law gives 

lv=W, —(W.+ W,’). - e ° ° ° (8) 

Putting p=3 and t=2 he finds a frequency formula which 
gives very good agreement with observations for values of N 
smaller than 30. Above this value there is a considerable 
deviation, which he shows to be due to the fact that for 
higher atomic numbers the mass of the electron will increase 
on account of increase of velocity. 

Adopting a similar way of procedure to that followed by 
Sommerfeld in his theory of doublets, Debye calculates the 
energy on the supposition that the motion takes place subject 
to the principle of relativity. The equations of motion under 
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these conditions can be derived from the ordinary equations 
simply by putting 

Th C) : (9) 

In this case a fairly simple calculation gives for the total 
energy 

=e Ny p w= 25 {1 1-2-8)" } 
where 

p= 2 =5:30.10- za 
0 

Forming from equation (10) the expressions for the 
energies of the broken and unbroken system, the equation 
(8) gives the frequency of the radiation. 

Letting the electron recombine from a state corresponding 
to t=3, Debye finds frequencies which are fairly near to 
those of Kg. 

Ambiguities with regard to the Determination of 
the K-System. 

§ 3. The question as to the system of electrons which 
produces the K-series is a most important one, being the 
first step towards a determination of the outer system of 
electrons in the atom, and it should not be out of place 
to see how far the most promising solution found by Debye 
is the only one which may give a satisfactory agreement 
with observations. 
When we stick to the assumptions of Debye (a, 8, c, d) 

and suppose the K-lines to be produced by the removal of 
one single electron, his result that there are three electrons 
in the inner ring is the only one possible. 
We might, however, more generally assume that a group 

of qg electrons were removed from the inner circuit of 
p electrons, and we could assume that the lines were formed 
when the system of g electrons reproduced the original 
system under the emission of g energy quanta. 

From equation (7) we get for the energies :— 

For the normal ring, 

W,=pAR(N—Sp)?. 

For the broken system, 
hR W2=(p—@kR(N—S,_.)?-+95¢(N—p+9—Sq) 
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Hence we get for the frequency: 

v_p (N—p+q—Sq)? OS Dee Go| Soo io 
= 3/4N?+B,,N + Cpo, | 

where B,, and C,, are functions of p and g. Independent of 
p and g we get the undoubtedly right factor 3/4 of N’. 

The combination y=3 and qg=1 represents the solution 
found by Debye. 

If q is different from 1, there is one and only one other 
possible solution corresponding to 

p=4 and g=4, 

which give for the frequency : 

R= 3/AN—0°9571)%, . RO LD 

which is just the formula given by Moseley *. 

When we take into account the variation of the mass 
according to equation (10), we easily get from equation (11): 

R=5 {a/1-2 w—sy—4/1-pN-8.) | (12 6) 

or approximately 

v/R=3/4(N —S,)?(1+ 5/16p(N—8,)”). . (12 €) 

The accuracy of the formula (12c) will be seen from 

Table I., where the values of = are calculated for a number 
of elements. 

TABLE I. 

N v/R v/R Difference v/R Difference 
te obs. Debye. jin Percent.| from 12 c. | in Percent. 

i 2 1477 146°4 0:9 148°4 0-4 
cs UY 0 ee 271°6 272°4 0°3 ~  273°6 0°7 
5h | aaa 435°4 437°3 0°4 437°7 0°5 
2 eee 635°9 641°5 0:9 641°5 0-9 
= TT eee 880°4 885°6 06 8859 06 
Le a Ee 11560 1171-0 1:3 1172°0 14 
IN ee 1482-0 1499-0 11 15020 1:3 

UL. eS 1871:0 1877-0 03 _ 1876-0 03 
if Le eee 2290°0 2297°0 03 2296°0 03 
LM. Sas eee 2761°0 27770 0°6 2766°0 0-2 

* Loe. cit. 
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We see that the formula (12c) satisfies the observations 
with the same accuracy as does Debye’s formula. In fact 
the two formulas give almost identical values. If we assume 
the whole ring of four electrons to the normal state from a 
three-quantical secondary, we should get frequencies nearly 
equal to those of K. ‘The accuracy would be about the 
same as that found by Debye. 

If we adopt the frequency law in this more general sense 
there are two possible solutions. The one would give four, 
the other three electrons in the K-ring. Which of the two 
is the right solution cannot be determined from a mere 
numerical comparison with the observations, but we must 
have regard to the physical consequences to which they lead, 
and in this respect the solution of Debye has the advantage. 

In the case of four electrons the whole ring of electrons 
would have to operate intact. We should have to assume 
that the system formed a kind of unity, in such a way that 
they tried to keep the same angular momentum. I think 
that there is reason to believe that as a component of the 
atomic system the electrons are not to be considered as 
independent unities ; but that they are linked together by 
forces which are different from the ordinary central attrac- 
tion and repulsion between the centres. The arrangement 
of electrons in conformity with certain quant-conditions is 
one aspect of these as yet unknown forces. But energy 
considerations seem to show that this mutual attachment 
cannot be so close as to prevent one single electron from 
leaving the system. 

The experiments of Barkla and Sadler * have shown that 
in order to excite the K-radiation by means of Réntgen rays 
the hardness of the incident rays must just surpass that of 
the excited radiation. The frequency Ky of those rays which 
are just sufficient to produce the K-radiation is accurately 
determined by Wagner f and de Broglie t, and they also 
find K, just a little greater than the frequency Kg. 

This fact is simply explained by the quantum theory and 
Bohr’s conception of the X-ray-and-light emission. An 
electron will be expelled from the ring when the energy 
quantum is equal to or greater than the energy required to 
remove it from the atom. Debye’s formula involves the 
assumption that one quantum is sufficient to excite radiation. 
The assumption of four electrons would mean that four 

* ©. G. Barkla and C. A. Sadler, Phil. Mag. xvi. p. 550 (1908). 
+ E. Wagner, Ann. d. Phys. xlvi. p. 868 (1915) ; Phys. ZS. p. 482 

(1917). 
t M. de Broglie, C. R. elxiii. pp. 87, 354 (1916). 
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energy quanta fyg, should be necessary to produce the 
K-radiation. If so, an atom should have the power of 
accumulating energy until it had taken up a sufficient 
number of quanta to break the whole ring. In trying 
to explain the mutual relation between y- and §-rays 
Rutherford * has supposed that several quanta ean accu- 
mulate to give energy to one @-particle ; but the assumption 
of such an accumulation would, on the other hand, make it 
very difficult indeed to understand why a certain frequency 
at all should be necessary to produce the K-radiation. 

Also the transformation of cathode-ray energy to that of 
Roéntgen rays gives a similar result. The most important 
investigations of Whiddingten + and the more recent mea- 
surements of Webster { by means of the reflexion method 
have proved, that in order to excite the K-radiation the 
energy of one cathode ray must surpass the energy quantum 
hyz,. If we suppose that a single cathode particle can 

produce radiation, the assumption of four electrons is 
therefore not justified ; but the assumption of Debye should 
be in accordance with physical facts. The fact that we can 
deduce two formule which both give a satisfactory agree- 
ment with observations is still of some importance, as it 
shows that we should be cautious in relying too much on a 
mere numerical agreement. 

The Explanation of the L-Radtation. 

§ 4. Although the agreement between observed and 
calculated values was less good in the case of Kg, there is 
probably no doubt that also this line is caused by a recom- 
bination to the inner circle, from a three-quantical secondary. 
Kossel’s relation (6), if it indicates a physical connexion 
between the K- and the L-lines, would indicate that L, 
should be produced by an electron recombining towards 
the K-circles, between the two secondaries corresponding 
to7T=3 andt=2. This assumption would indeed give the 

right factor (5-3) to N? in the formula for L,. 

This assumption, however, does not agree with the 
absorption phenomena. According to Barkla§ and Sadler|| 
an L-absorption takes place when the hardness of the 

* E. Rutherford, Phil. Mag. (6) xxviii. p. 305 (1914). 
+ R. Whiddington, Proc. Roy. Soc. 1911. 
t¢ D. L. Webster, Proc. Amer. Acad. vol. ii. p. 90 (1916). 
§ C. G. Barkla, Phil. Mag. xxiii. p. 987 (1912). 

C, A. Sadler, Phil. Mag. xviii. p. 107 (1909). 
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incident rays surpasses that of the L-radiation of the sub- 
stance; and Wagner * and de Broglie t have by means of 
the reflexion method observed two absorption bands in the 
L-region and accurately determined the sharp edges La, 
and La,, which have just the sufficient frequency to give 
absorption. The measurements of Wagner and de Broglie 
show that the frequency La, is just a little greater than L,, 
and La, just greater than Ly. 

If we stick to the assumption that one quantum hy is 
sufficient to excite radiation, an energy quantum Ay, or hye, 
cannot produce L, if this line is emitted by an electron 
recombining to a broken K-ring. Now absorption takes 
place when the radiation falls upon atoms in the normal 
state, and we cannot assume that atoms are found in the 
normal state with a broken K-ring and the recombining 
electron in some secondary circuit. 
We might then naturally try to follow up the idea 

suggested by Bohr to explain Kossel’s frequency relations, 
and assume the electron removed from the K-ring to be 
replaced by electrons belonging to some outer system. If, 
however, we uphold Bohr’s first assumption that each 

electron in the normal state has an angular momentum — 

there seems to be no possibility of explaining the high- 
frequency spectra by interchange of electrons from outer to 
inner systems. 

Suppose we have a ring of p electrons, and inside this, 
systems which are made up of electrons surrounding the 
nucleus. Outside the p-ring follows a ring of g electrons. 
According to Bohr {, when the diameters of the rings are 
not nearly equal, the forces due to the external systems can 
be neglected, and the effect of inner systems is approximately 
equivalent to a reduction of the charge of the nucleus equal 
to the charge of the inner electrons. 

Hence the effective nucleus charge of the p-ring : 

N, = N-7; 

of the q-ring : 
N =N—-(p+r). 

We now regard the system when one electron is removed 
from the p-ring. The energy of the p- and q-ring is then : 

W,= W,y-1+ W, = AR$ (p—I)Q,—8,4)? +9Q, Sa . 

* Loe. cit. 
+ Loe. cit. 
¢ N. Bohr, Phil. Mag. xxvi. p. 476 (1918). 
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The energy after an electron from the g-ring has regenerated 
the p-ring will be : 

W,= AR {p(No— Sy kg Y)Q.- S¢q-1)? t . 

Applying Bohr’s emission law | 

hv = W,-—W, 

and inserting the values of W, and Wg, the frequency takes 
the form : | 

v R= ay pat [a1 emer tee cor ay ts) 

where A, , and By, are functions of p,g,andr. We see 
that the factor of N? vanishes for all values of (p, q, 7) ; 
whence we conclude that the above equation cannot express 
any of the Rontgen-ray spectra, or the high-frequency 
radiation cannot be explained by interchange of electrons 
between rings of the normal atom, when each electron in 

this state has an angular momentum oe 

It can also be shown that from the assumptions of Bohr 
and Debye we cannot get the right formula for L, by any 
recombination to a system, where each electron has an 

angular momentum of I On the other hand, the relation 

between the absorption and emission frequencies leads us to 
the assumption that the L-series is produced by a recom- 
bination to some system which exists in the atom in its normal 
state. If then we are to explain the L-radiation, we must 
in some way alter at least one of the assumptions at first 
made by Bohr. 

In all cases where Bohr’s principles have led to a complete 
or satisfactory determination of the spectrum, we have always 
dealt with systems next to the nucleus. It might then be 
natural to suppose that it is only for this inner ring that 
Bohr’s assumption I. is fulfilled. The quant-condition to be 
satisfied by circular systems in the normal state of the atom 
might more generally be written 

h 
4 Lc Uk (14). 

where n is an integer. 
This would indeed seem to complicate matters, as we 

introduce a new parameter m into the conditions which 
secure the stability of the electronic systems. But still it 
seems the right procedure to begin work with n as an 
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arbitrary whole number to be determined so as to fit in 
with observations, because there seems @ priort no necessity 
for putting n=1 for all systems in the normal state of the 
atom. 

Under these generalized conditions we shall calculate 
the frequencies which are produced when an electron is 
recombining to a normal system with g electrons which 
have lost one electron. 

Let the number of electrons between the q-ring and the 
nucleus be p, then the effective nucleus charge is 

N, = N-p; 

and forming the energies from equation (7) in the same way 
as before, we get:— 

Bnergy of unbroken g-ring: W, = 4 (N/ —§,)?hR; 

‘9 broken = ae (N,—S_-1)7AR ; 

and energy of recombining electron in the secondary circle: 

W,! = 5(N,—q+ DR. 
If we still stick to Bohr’s frequency law, we get 

hy W,—(W./+ W,”). 

Hence 

z —_ i a) N+ flr, gq, n, TN +f2(7, 7, 2, 7), 
ne 7? 

A(pgnt) = 3 (p+9-1)—75(P+ 81-1) — 73 SoS), 15) Licey ae 

A pqnr) = Gp +8, +84-1)(8,— 8,1) + (2) 
Lf Pt ia Cees 

On the more general assumption (14) we might now also 
possibly explain the formation of lines by assuming that an 
electron removed from a ring is replaced by an electron 
coming from one of the other normal ring-systems. 

Let, as before, an electron be removed from the g-ring, 
and let it be replaced by an electron from another ring with 
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q ain Let the effective charge of the gq’-ring be 

‘In aler to find expressions for the energy, we suppose 
that the removal of an electron from one ring does not 
change the energy of any of the other systems which keep 
their electron number unaltered. This will mean that the 
removal of an electron will change the radius of the external 
rings if we suppose the angular momenta to be kept 
unaltered. 

Let the energy of the normal and broken 
g-ring be W, and W,.-3. 

ie =a . 
59 > >3 »  @-ring be W,and W,_3. 

Then vh = Wo+ We-1— (Wo + Wo-1). 

From equation (7) we get: 

1 i | 

= wee : q(N,—8,)?—-(¢-D (Na— Sy-1)"} 

i ! / — {55 9' Ne Sp) (4 - (Ny 8y-1)?t 
n and n, being the quant numbers corresponding to the two 
circles g and g’. The formula may also take the form : 

v_(1_1)\ne_ 9 (filpg) _ bi(p'g’) 7m ie) Cae) | 
bo( Pq) $2(p'9') 

where a n? Ri r . (16) 

o1(pg) = 9(S~—Sq-1) +8y-1 +P, | 

d2( pg) = 9(2pt Sot 8q-1)(Se—So_1) + (p +8y-1)?. J 

Comparing the equations (15) and (16) we see that, if we 
assume the normal atom to have rings with increasing number 
of n as we pass from the centre, the assumption that the 
recombining electron comes from one other ring with a 
higher quant number leads to an equation of the right type. 
Whether we shall assume that the X-ray spectra are pro- 
duced by recombination from a secondary or a primary circle 
is a question to be decided by the ability of the assumption 
to give a satisfactory agreement with observational data. 

To test whether the second hypothesis (eq. 16) may be 
possible, let us try if the K-line can be explained by a 
recombination from an L-ring. 
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In this case we put 

n=1, m=2, p=9, P=4% 
and get : 

=3/4N?—2 (da (0g)— POD) N + gu(og) — 22090) Pol ~ 
(17) Ot 

R= 3/4N?+ BN+C. 

The factor 3/4 is an accordance with observations. The 
essential further condition is that the factor B has the proper 
value, and in order to fit in with observations it should be 
nearly equal to —1°5. 

Putting $(¢) = Q(S_—Sq-1) ia 

we should have 

46(q)—q—3 = $(q’). 
This equation is to be approximately fulfilled for whole 
numbers g and q’. 

Values of ¢(q) for varying g are given in the following 
Table :— 

Tas eE II. 

q. (9). 46(9)—¢—3. 

1 0 —4:000 

2 0500 —3-000 

3 1-231 —2:307 

4 2-097 1388 

5 3:052 4208 

6 4:082 7-328 

7 5173 10-692 

8 6305 | 14-220 

9 7-512 | 18-048 

First we have to select nearly equal values in the second 
and third columns, and the corresponding values of q¢ give 
the number of electrons in the K- and L-ring. As is seen, 
the following values of g and g' might be possible: 

9 | 4 | 5 | 6 

¢|3s|e6|9 
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If we now calculate the coefficients B and € of equation 
(17), we find the values set up in Table III. 

Taste III. 

qi. q’. B. C. 

= 3 —1°578 — 402 

5 6 —1°563 —13°29 

6 9 — 1-408 — 29°18 

For the sake of comparison we can write down the corre- 
sponding formule of Moseley and Debye, which give very 
close agreement with observations for N < 40. 

R= BAN?-15N+3 (Moseley), 

R = 3/4N?—1-464N—0:125 (Debye). 

The combination g=4 and g'=3 gives the best agreement 
and leads to the formula : 

A= 3/4N?—1:578N—4:02. . . . . (18) 

For substances with fairly small atomic numbers the 
Debye formula gives a much closer agreement. But if 
we would correct for the variation of mass with velocity, 
the corrected formula (18) would probably give better 
agreement for the interval 35< N<55, where the Debye 

formula gives too high values for = but as a whole 

it must be said that the Debye formula gives by far the 
better agreement. But still the difference is so small, that 
we cannot decide from a mere numerical comparison which 
is the right formula so long as the calculations are not 
carried out with perfect exactness, and there may of course 
also be effects of unknown origin, which taken into account 
might put the assumption of recombination between primary 
systems in a more favourable position. But so far as the 
present investigation has been carried, it must he said that 
the assumption of Debye that the K-spectrum is produced 
by recombination from secondary circles has given the best 

Phil. Mag. 8. 6. Vol. 35. No. 208. April 1918. Z 
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agreement with observations ; and we shall also see that the 
assumption of an inner ring of three electrons very well 
fits in with the chemical relations of the elements as they 
are expressed in the periodic system. It may also in this 
connexion be mentioned that Sommerfeld *, from his 
expresssions of the frequencies by means of his “ terms,” 
comes to the conclusion “‘ that none of the L-lines can be 
derived from the K-lines by means of the principle of 
combination.” 

In our further investigation we shall then build on the 
assumption that the electron producing the X-radiation 
recombines from secondary systems in a way which is 
independent of the systems exterior to the primary ring to 
which recombination takes place. 

On the Explanation of the Lea-Line. 

§ 5. We now suppose the result of Debye as regards the 
K-radiation to be true, and we ask whether it is possible 
in equation (15) to give qg, », and 7 such values that the 
observations are satisfied. 
We put p=3, and from the formula of Moseley for 

the L;-line, 

a= =(5- R) ( N—7-4)2, 

we see that we must put 

2, Toe 

If in (15) we further put 

a 1.) 25 ore ‘ 

we find that g=7 gives : 

Sip, % % T) = —2°0846, 

Tol ps q, ”; T) ==(s oo 5 

and we get for the frequency : 

5 
A= = 3,” —2‘0846N +9°3. °. . 3) (iis 

The formula of Moseley put into the same form gives : 

V ee 3° 2 ope . R= ao —2°0556N+76. . . . (198) 

* A, Sommerfeld, Ann. d. Phys. li. p. 155 (1916). 
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We see that the agreement between the two formule is 
remarkably good. Curiously enough, we can alse in this 
case find a good agreement when we assume the whole 
L-ring to recombine from a secondary circle. If we now 
suppose 4 electrons in the K-ring and 9 electrons in the 
L-ring, we get 

V 1S Rags 
R= 36% 7°328)?, 

in close agreement with Moseley’s formula. 
If we take into account the variation of the mass of the 

electron with its velocity, we can easily find the frequency 
by means of equations (2) and (10). 

Putting 3+8, = 53048 = a, 

3+S, = 4°8274 = 3, 

we obtain 

Ra oa/ 1-2-8 P(N—b)? +a/ 1-8 (N-9} 

-14/1-4(N—ay |; 200 

and if expanded into series, we have approximately 

v f 6 1 Bn Bt (gq N—2)*— Gg —B)'— 353 N—9)'), (200) 
vo being the frequency calculated from the uncorrected 
formula (19 a). 

Observed and calculated values are given in Table IV. 

TABLE LV. 
; } ) 

| v/R | 
y- | obs. (v/R) (v,/R)_. | (v/R),. dears i (ee 

} ; Ss a fie Aleph 
aR Pike... | 738 71-0: “| aes 67-9 =F St = Se 
Be Br l...... | 1086 105°8 | 102-5 102°8 Ser 53 
eS) Ss: 53. | 1498 1476 | 1441 | 1448 =e ss 
a | 198-3 196-4 1927 | 1939 aes 
m Sn......... | 2535 2520 | 2483 | 2505 —06 | —1-2 
ee O82... 32: | 315-2 3147 | 3108 | 3140 —02 | —04 
60 Nd ...... | 394-6 3843 3802 | 3349 —01 0-0 
aE D.....:. 4618 | 4608 | 4566 | 463-4 —02 | +03 
7 5456 | 6443 5399 | 549°5 —02 | +07 
ee i... | 7349 | 7321 | 7274 | 7455 —04 | +414 
DTN... | 952-2 947°6 9427 | 9725 —05 | +21 

Z 2 
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The column headed 

(g) contains values from the formula of Moseley. 
ARJ/ aw 

(x) As » calculated from (20d). 

V 
(7 ae 29 99 oD) py) (19 a). 

Py and Py give the errors in percent. for the formula of 
Moseley and that of the writer. 

The agreement between theory and experiment is seen to 
be remarkably good. The variation of Py with the atomic 
number may be due to influences of external systems which 
we have not taken into account. 

If our conception as to the production of the L,-line 
is right, the relation of Kossel does not mean that L, is 
produced by an electron recombining towards a broken 
K-ring between secondaries corresponding to t=3 and 
t=2. Nor does it involve that the lines are produced 
in the way suggested by Bohr by recombination between 
primaries, ‘The relation is more or less accidental, and due 
to the fact that the first secondary K-circle has the same 
quant number as the primary L-ring. 

On the Origin of the other L-Lines. 

§ 6. As already mentioned, Sommerfeld found” that a 
number of lines in the L-series could be grouped into 
doublets. 

To L, corresponds Lg as a second component of the 
doublet, and if we stick to the explanation given by 
Sommerfeld, we should have to suppose that the normal 
L-system has two stationary states—one circular and one 
elliptic. Now the recombination to the elliptic state gives 
the higher frequency, and we should suppose, as we have 
already done, that L, corresponds to the circular and Lg to 
the elliptic state. We are then led to the conception of one 
elliptic state common to a whole system of electrons, which 
would mean that the electrons forming one ring are in some 
way mutually connected. 
Now Wagner has shown that the absorption edges A; and 

A, have the same difference of frequency as the doublet, or 

Pas —Ya, = Vtg "4," 

This leads to the assumption that L,, and Ly, are due to 
the transference of an electron from the circular and the 

* A. Sommerfeld, Ann. d. Phys. li. p. 125 (1916). 
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elliptic state respectively to the same final state, and that 
both states are to be found in the normal atom. | . 

Absorptien will set in when the quantum of energy hy is 
great enough to overcome a certain amount of energy. 
Wagner has adopted the idea that absorption sets in when 
hy is just sufficiently great to bring the electron from its 
place in the atom outside the sphere of influence of the 
atom ; but in the case of the L-absorption the quanta hy, 
and hy, are probably too small to bring the electron outside 
the atom. Thus in the case of gold, A, =1°042, r,,=0°914; 
but some of the lines belonging to the L-series have an even 
smaller wave-length, or an electron recombining to the 
L-circle should be able to radiate more energy than hy,,. 

Neither does absorption set in when hv is just sufficient to 
bring an electron to some secondary circle; for if so, the 
absorption edges should give the same wave-length as some 
of the emission lines. 

Valuable information as to the relation between absorption 
and emission lines would be got by studying the relative 
intensity of the spectrum for velocities of the cathode rays 
varying from just below to just above the critical value. 

With regard to the origin of the other lines of the 
L-spectrum, we might naturally assume the doublet (y, 6) 
to be produced by recombination from secondaries corre- 
sponding to r=4 to the two primary states. 

Tf in equation (15) we put 

n= 2, fe es = A; 
we get 3 yee 69-9. oe (21) ae —— 

16 

Valnes of v/R calculated from this formula and corrected 
for variation of mass are given in Table V., which also 
contains the corresponding values for some of the lines 
of the L-series. 

TABLE V. 

pf R. 

| | | ) iN: et Calor: Y 0. x 

RODS ss Rf a 
One al ORY: | 448 486 | 513 
| 65 6| (GIG | 549 505, fh ego 
y 370 «| On | ee 720 745 
Da 1021 | 906 1054 1085 
| 90 1297 | «(1148 1392 1435 
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It appears that the calculated frequencies come out consi- 
derably greater than those of L ; at any rate, for lower atomic 
numbers they very nearly fall into the y region of Siegbahn, 
being quite close to Sommerfeld’s lines 6 and y. As to how 
this discrepancy is to be explained, I should not venture 
to express any definite idea. In any case it shows that 
equation (15) cannot be applied for values of 7 higher than 3 
without the introduction of certain correction terms,—or the 
secondary stability circles of higher quant numbers cannot 
be determined as if the electrons outside the normal L-ring 
were removed. 
When proceeding to interpret the L-spectrum we should 

also be aware of the possibility that an L-radiation can be 
produced when an electron is recombining towards the 
K-ring—to a secondary corresponding to r=2. A re- 
combination from a cirele corresponding to t=3 would 

ah 5 13 id 2 Pp 9)2 f= (N-2) {1476 2) . oie 

This formula, which takes into account the variation of 
mass, would give frequencies in the @-region of Siegbahn. 

Whether lines of the L-series are produced by a recombina- 
tion towards a broken K-ring, can be tested experimentally 
by exciting the L-radiation with cathode rays which have not 
sufficient energy to excite the K-radiation. 

The l-Series. 

§7. The softest line given by the ring of 7 electrons 
should be the L,-line; but now we have in the L-series 
the J-line discovered by Siegbahn, with a wave-length con- 
siderably greater than that of L,; and to this line the 
lines 9, €, 3 are probably closely related. ‘These lines we 
shall call the l-series. 

The explanation suggests itself that the /-series is due to a 
second ring surrounding the L-ring and with the same quant 
number n=2. This /-ring would have a radius just a little 
greater than that of the L-ring, and the calculation of the 
frequencies due to the /-ring would be very complicated, as 
we can no longer suppose the effective atomic number to be 
N —p, where p is the number of electrons inside the ring. 

If, however, we take N—p to represent the effective 
atomic number, and assuming 8 electrons in the U-ring, 
we get: 

Yo 5 
p= gg N?-437N +308... . . (23a) 
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Corrected for variation of mass with velocity, we get: 

Vv Vo 1, a... So oN o'\t een 174. (23 

where 

a’ = 10+S8s = 12°805, 

6' = 10487 = 12°305. 

The agreement between observed and calculated values 
will be seen from Table VI. 

TABLE VI. 

v/R v/R 
N. obs. cale. 

70 482 411 

74 545 475 

78 608 | 544 

82 676 618 

92 855 826 

The calculated frequencies are too small, especially for 
low atomic numbers, but, as already mentioned, we cannot 
claim any great accuracy. 

This /-ring should probably be responsible for the doublets 

(en) and (¢3). 
Weshould also expect the /-ring to give absorption bands. 

An idea which might naturally suggest itself, is that the 
absorption bands A, and A, are due to the two rings re- 
spectively. Such a coordination is not impossible, but 
still the assumption that A, and A, are due to different 
states of the same ring seems, for the reasons previously 
mentioned, to be the more probable. As the /-lines are 
very weak, also the absorption ought to be weak and thus 
may have escaped detection. 

The M-Series. 

We have seen that the typical features of the L-radiation 
can be explained by the assumption of two rings with 
7 and 8 electrons both with a quant number n=2. We 
might naturally try to explain the M-radiation by means of 
an M-ring with quant number 3. 
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The line M,, say, can be approximately expressed by the 
empirical formula : 

Ms : 2 ies Tee 237N+40. . . 

If in equation (15) we would try to give p and gq such 
values as to agree with this empirical equation, we should 
find the best possible agreement by putting 

Roe and .¢== 9108 i 

Thus in order to explain the M-series we should have to 
assume a number of electrons inside the M-ring just equal 
to that found for the K- and L-rings. Thus the assumption 
of an outer l-ring of 8 electrons is also necessary to explain 
the M-radiation. 9 electrons in the M-ring give 

v i 
—— Tce e 4 . R- iN 245N4+28; . . . (240) 

10 electrons give 

v 7 
R= gg 795 N +31. . 2) oa 

Although the agreement between observed and calculated 
values is not so good as in the case of L,, the empirical and 
theoretical equations are of essentially the same type, and 
even the numerical agreement is surprisingly good. 

The radius of the rings is given by the expression 

e*n? 7 
“= . SER(N—p=s,y foe, a 

where p and g have the same meaning as in equation (15). 
To correct for variation of mass we should have to multiply 

with af 1—£ (N—p—8,)*. 

The expression for the velocity is 

wie jue N=p—Sq _ 2. if Pee . (26) 
m n 7d 

and is not changed when the variation of the mass is taken 
into account. 

The values of a for the K-, L-, J-, and M-rings for a 
couple of elements are given in Table VII. and in fig. 1. 
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TABLE VII. 

| 
@. | Zr (N=40). He (N=80). 

ae Se | 134x107 1° em. | 0:63x107 em. 

on a ena 1 (GS ae O89 )) oe 

Cates scteeten a0 ea ack a 3:18 i" 

mR CH NA: 4 25-4 | SHOU 

I am far from claiming that the theoretical interpretation 
of the L- and M-series given in this paper can be considered 
as proved. As I have already stated, we must be cautious 
in building too much on a numerical agreement; but if 
at all we shall be able to proceed further in the direction 
pointed out by Bohr, I think we can hardly avoid the 
assumption that systems of electrons exist in the normal atom 
with quant numbers greater than 1. 

So long as we do not know ali the forces which are 
engaged in forming the stability of the atoms, we have more 
or less to grope in the darkness and feel our way forward. 

The test of the correctness of the previous theory will be 
whether it is in accordance with observation. At any rate, 
I hope the attempt made to elucidate the laws governing the 
X-ray spectra may prove to be of importance as a guidance. 
in experimental research. 
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Lhe Constitution of the Elements based on the 
X-ray Spectra. 

The theory of the X-ray spectra involves the determination 
of the electronic systems next to the nucleus, and may give 
us valuable information as to the way in which the electrons 
round the nucleus are grouped together. 

The previous investigation has shown that the K-series 
should be attached to a ring with quant number 1 next 
to the nucleus and containing 3 electrons. The L-series 
should be due to two rings with quant numbers 2 and con- 
sisting of 7 and 8 electrons. The M-series should probably 
have rings with a quant number 3 and 9-10 electrons. 

If this theory is right, it would mean that if a ring is 
formed for lower atomic numbers the same ring is kept 
throughout the whole system of elements. Indeed I think 
that this is to be considered as a necessary consequence to 
be derived from the simple laws governing the X-ray 
spectra, and is independent of any special theory which we 
propose to explain the frequencies and the type of the 
spectra. For a change in the number of electrons in the 
K-ring, say, would necessarily involve a discontinuity in 
the formula expressing the relation between frequency and 
atomic number. 

Now it might be legitimate as an hypothesis to take this 
rule as a fundamental property of the atomic structure, and 
quite general to assume that a system of electrons once 
formed is kept also for elements of higher atomic numbers. 
There is no reason why this rule should cease to hold because 
we pass to lower frequencies. 
Now if we would further build on the result of our present 

theory as to the number of electrons in the K- and L-rings, 
we should get a quite definite system for the first eighteen 
elements, and from this start we should be able to see kow 
the electrons are arranged in a series of elements forming 
one period in the periodic system. If we have proceeded so 
far, we can get further by the assumption that elements of 
the same family, such as Li, Na, and K say, must have the 
same number of electrons in the outer ring. I think this is 
an assumption which is very well founded, because the 
chemical properties must be mainly determined by the 
outer electrons, and the assumption is independent of any 
other special hypothesis with regard to the grouping of 
the electrons. 

Proceeding in this way, we assume in accordance with 
Bohr that the strongest electropositive elements have 

ee 
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1 electron in the outer ring. Now the elements from Li 
to Fl are assumed to maintain an internal system of 
2 electrons and add one in the external ring for each step 
in atomic number. This will make an external ring of 
7 electrons. By Ne one electron is added which, however, 
goes to the central ring, and hence forward we get the K-ring. 
If so, the K-radiation should begin with Ne or Na; and 
in fact this result is in agreement with experiments, for 
Na is the first element for which the K-radiation has been 
observed. Now the ring of 7 electrons is kept to form the 
inner L-ring, and a new ring comes into existence for Na. 
From Ar we have both L-rings with 7 and 8 electrons 
formed, and the L-radiation might perhaps be expected to 
begin with potassium ; perhaps some of the lines might be 
traced to Na. 

Now we come to the long period from Arto Kr. At first 
a ring of 10 electrons is formed, completed by the elements 
Fe, Co, and Ni with 8, 9, and 10 electrons in the external 
ring respectively ; this should be the first M-ring with quant 
number 3. At Cua new ring comes into existence, and we 
get a monovalent electropositive element. During the next 
long period from Kr to Xe the same process is repeated. 

The next and longest of all periods which go from Xe 
to Ra Em is peculiar because it contains the rare earths. 
Now I think that the view here adopted with regard to the 
constitution of the electronic systems may afford a very 
simple and natural explanation of this peculiar group of 
elements. 

When we pass from Xe, a new external ring is formed, 
with 1 electron for Cs, 2 for Ba, and so on until for Ce we 
get a ring of 4 electrons. Passing now to the next elements 
we assume the external ring to be kept, and that the new 
electrons are forming a new internal ring. From our point 
of view such an assumption is a quite legitimate one. 
It would only mean that the new electronic system had a 
smaller quant number than the external ring: for a smaller 
quant number will, according to equation (25), give a 
smaller radius of the ring. Thus the new electrons which 
are taken up in the series of rare earths when we pass to 
higher atomic numbers are, so to speak, soaked into the 
atom, and the surface systems mainly determining the 
chemical properties are kept unaltered. How these new 
internal electrons are arranged we do not know. In the 
graphical representation (fig. 2) I have assumed them to 
form one system inside the surface electrons. 

When at last the atom has become saturated as it were, 
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we pass fron: the rare earths ; new electrons are added as 
before to the surface system, and we get systems of the same 
type as those of the two long series. 

The whole system here shortly sketched is graphically re- 
presented in fig. 2. Along the horizontal axis the elements 
are arranged in the order of increasing atomic numbers. 
The principle adopted, that an electronic system once formed 
is kept throughout the whole series of elements, makes it 
natural to represent an electron by a horizontal line. These 
lines are arranged into groups, and each group represents an 
electronic ring system. The arrangement of electrons for 
a certain element is got by drawing a vertical line from the 
place of the element on the horizontal axis. The points 
of intersection with the horizontal lines give the number of 
electrons and their arrangement into ring systems. 

On the Electron Affinity of the Elements. 

When we pass from elements that follow an inert gas, we 
begin with the strong electropositive elements, and as we 
pass on they. become more electronegative. The transition 
from electronegative to electropositive elements may either 
take place by the passage through an inert gas or by passing 
the groups Fe Co Ni, Ru Rh Pd, and OsIr Pt. In our 
system the strong electropositive elements set in with the 
formation of a new surface ring. 

It might now be asked which quantity might rightly be 
selected to express the chemical electro-affinity. 

The idea would naturally suggest itself that the electron 
affinity is measured by the energy necessary to remove an 
electron from the external ring. ‘This, however, is identical 
with the energy necessary to ionize the atom and is propor- 
tional to the ionizing potential, which is no measure of the 
chemical electronegativity *. 

Nor can we take the energy which binds an additional 
electron ; for the experiments of J. J. Thomson + on positive 
rays have shown that the power of an atom to bind electrons 
does not follow the chemical electronegativity. 

I think the explanation of these facts may be found in the 
following considerations. The electrons forming part of a 
normal atomic ring system are not to be considered as free 
electrons, but as linked together in some way, the nature of 

* See J. Stark, ‘ Ionisierung der chemischen Jtlemente dureh Elektro- 
nenstoss,” Jahrb. d. Rad. u. Elektronik, xiii. 
+ Sir J. J. Thomson, ‘Rays of Positive Electricity, p. 40 (1913), 

p. 395 (1916). 
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Fig. 2. 
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which we do not know. Now the forces which are engaged 
in the chemical binding of elements do not act on a single 
electron as in the case of an ionizing agency, but much more 
on the ring asa unity. From this consideration it might 
be more natural to take the energy necessary to remove an 
electron when all the other electrons of the ring were 
removed simultaneously. According to Bohr this energy 
is equal to the kinetic energy of the electron, and thus 
elements with the more slowly moving electrons are the 
more electropositive. Equation (7) gives for this energy 

w=hR OO Se 
n i 

where approximately: N'=p and p is the number of electrons 
in the surface ring ; AR is the value of the energy wy for 
hydrogen. 

eee "pay 
WH nN 

. 2 

Let us first consider the variation of o for elements which 
have the same number of ring systems and only differ with 
regard to the number of electrons in the external ring. 
Suppose, e¢. g., that we consider the elements from Na 
to Cl. For such a series the quant number n is constant 
and o consequently proportional to (p—S,)*, and we can easily 
see that o increases with increasing values of p by forming 

Op41— Sp= {2p +1—(S,11—-Sp) 11 — (Spyi— Sp) }- 

As both factors on the right side are positive, op,1 > op. 
If o could be taken to represent the electronegativity, the 

elements in each such group would pass from electropositive 
to more electronegative as we proceed towards increasing 
atomic numbers. 

Let us next consider elements which are chemically 
related ; such elements have the same value of p. As we 
pass from lew to high atomic numbers, the quant number n 
will increase and the value of o will diminish. Thus elements 
of the same chemical family should be more electropositive 
as we pass towards increasing atomic numbers, which is 
indeed a well-known property of the elements. 

The Electric Conductivity. 

There can probably be no doubt that the electric conductivity 

in some way or other is related to the energy which binds 

the electrons of the surface system. Introducing a quantity 
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which he calls the atomic conductive capacity, Benedicks * 
has given a curve which most beautifully brings out the 
periodic character of the electric conductivity. This curve 
is shown in fig. 3. : 
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Now it is to be expected that a great atomic conductive 
capacity corresponds to a small value of c. For, taking the 
view of Benedicks, the atomic conductivity should be propor- 
tional to the frequency v of the atom and equal to cv, where 
c is the conductive capacity. But c¢ must be proportional] to 
the probability that an oscillation shall result in a free 
electron. Now this probability, and thus c, ought to increase 
when o diminishes, and thus we might expect the conduc- 
tivity to show a similar variation to 1/c. 

Fig. 4 gives the variation of o and 1/o when for a given 
value of n the number of electrons in the surface ring 
increase from p=1. From this curve we should expect 
the conductivity suddenly to take a high value each time 
a new surface ring is commenced. This is exactly the 
type of variation which is brought out in the curve of 
Benedicks. 

* C. Benedicks, Jahrb. d. Rad. u. Elektronik, xiii. p. 362 (1916). 
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For the same value of p the conductivity ought to 
increase with the atomic number on account of the increase 
of n. Also this variation is clearly exhibited by the eurve 
of Benedicks. At any rate the rule seems to hold without 

Fig. 4. 
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exception for elements with atomic numbers smaller than 
those of the rare earths. Above these elements there is 
again a drop in the conductivity, as if there had been a drop 
in the quant numbers. 

The Electron Systems and Radioactivity. 

The constitution of atoms here proposed gives us also 
the simplest possible conception with regard to the changes 
of the electronic system which accompany a transformation 
process. The elements formed only have to add one or drop 
two electrons from the surface ring, according as the product 
is formed by a §-ray or an e@-ray transformation, and the 
element comes into its right place in the periodic system. 
No further arrangement of the external system should be 
necessary. | 

According to the view put forward in this paper the quant 
number may vary as an integer from the value n=1 nearest 
to the nucleus. Now the idea suggests itself that passing 
inwards from the K-ring the electrons which partake in the 
constitution of the nucleus might have quant numbers smaller 
than unity. 
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As I have already shown in previous papers *, an electron 
moving with an angular momentum which is a fraction of 
h/2m would possess a very great kinetic energy and move 
in an orbit with very small diameter. Now according to 
Rutherford f and his collaborators the radioactive elements 
give y-radiations which are very much more penetrating than 
those of the K-series, and we might ask whether these 
y-radiations could be due to electronic systems moving 
inside the K-ring and with an angular momentum 

nh 

m 2a’ 

where n and m are whole numbers and 

m>n. 

This assumption, however, would meet with the difficulty 
that for elements of high atomic numbers the velocity would 
soon exceed the velocity of light. The velocity of an electron 

moving inside the K-ring with an angular momentum 5 a 
vis would be 

v=2.10°(N+1)m. 

For uranium N=92, and if v is to be smaller than the 
velocity of light, we must have 

m <1°6. 

It might, however, be argued that electrons bound up in 
the atom may acquire velocities greater than that of light, 
because they are not setting up any radiating electromagnetic 
field when moving in astationary state. Of course, when an 
electron is set free in the form of a @-ray, the ordinary 
electromagnetic field would be active; the electron would 
meet a sudden retarding impulse which at once would reduce 
its velocity to less than that of light. Or we might say, at 
the very moment of release the electron moves according 
to the principle of relativity, which makes the light velocity 
an upper limit. 

The line A=0-072.10-* cm. observed by Rutherford and 

* L. Vegard, Phil. Mag. xxix. p. 651 (1915) ; Ann. d. Phys. liii. p. 27 
(1917). 
+ E. Rutherford and E. N. da C. Andrade, Phil. Mag. xxviii. p. 263 

(1914). 
Phil. Mag. S. 6. Vol. 35. No. 208. April 1918. 2A 
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Andrade *, which forms a mixture of RaB and RaC, might 
be accounted for by assuming an electron to recombine 

4 3A t les with angul Ek omy between circles with angular momenta 6 On and 6 On 

Let more generally an electron pass from a circle with 

angular momentum ph to one with a momenta «ame 
m 2c m 27 

If we take into account the variation of mass with velocity, 
we get 

RaW +1ym(5—- 5) {126
07 (28) 

Putting N=82, m=6, n,=3, n»=4, we get 

a |: 4 R 1°23) ae 

while the observed wave-length gives 

Paps 7s 4 hm 1:26. 10%, 

The numerical agreement is good enough, but I think we 
must be very careful in drawing conclusions from a single 
coincidence. I merely put it down as a suggestion which 
might be worth consideration. 

Recent experiments of Barkla and Miss White have given 
indications of a homogeneous J-radiation more penetrating 
than the K-radiation, which Barkla calls the Y-series. From 
the absorption coefficient of the rays just hard enough to 
excite the J-radiation they find for Al a wave-length 

A=0°37 .107° cm. 

If this series really exists it can hardly be explained by 
electrons belonging to the external system, but should be 
produced by the electrons forming part of the nucleus. 
The equation (28) would give nearly the right frequency 
when. we put 

MA ny =1, and j2,—2. 

Physical Institute, Christiania. 
December 14, 1917. 

* E. Rutherford and EK. N..daC. Andrade, Phil. Mag. xxviii. p. 263 
(1914). 
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XXXVI. Relativity and Electrodynamics. By G. W. 
Waker, VA. FAS, AR.C.Sc., formerly Fellow of 
Trinity College, Cambridge™. | 

[Plate X. ] 

IR OLIVER LODGH’S recent papers in the Philoso- 
phical Magazine have brought into prominence once 

more the difference of attitude of the protagonists in “ Rela- 
tivity Doctrine” and “Newtonian Dynamics.” That Sir 
Oliver’s equation of motion for a moving planet requires 
some amplification in order to take full account of the 
special features of electrical inertia, will be recognized, 
and Prof. Eddington has suggested a method of dealing 
with the problem. Unfortunately, Hddington’s method 
introduces an assumption which is frequently made by 
relativists in dealing with electrical inertia, and which in 
my opinion is inconsistent with the fundamental equations 
of electrodynamics. In former papers I have drawn atten- 
tion to this assumption, which is closely linked with the 
“‘ quasi-stationary principle,’ and I had not intended to raise 
the point again. But Sir Oliver has suggested to me that 
an exposition of my views as to the parting of the ways 
between the logical development of electrodynamics and the 
doctrine of relativity would be of value, and I have agreed 
to his request. My remarks must, however, be confined to 
electric inertia, and I do not propose to enter on the gravi- 
tational and astronomical developments of Hinstein’s hypo- 
thesis. 

‘The main point at issue may, I think, be put very concisely. 
Relativists assume that “the kinetic energy of a moving 
electrical system is a function of the resultant speed only 
and is independent of the direction of motion.”’ 
My thesis is that this assumption is not consistent with 

the fundamental electromagnetic equations for the ether 
(supposed immobile), and that ‘the energy, or preferably 
the modified Lagrangean function, depends on the accele- 
ration as well as on the speed of the system and involves 
also the relative direction of these.” 

While the above appears to me to be the main point, there 
is no doubt that subsidiary considerations arise. Theory and 
experiment have interacted in a curious way, and I think 
the discussion should proceed by taking notice of the his- 
torical development. Sir Joseph Thomson was the first to 

* Communicated by Sir Oliver Lodge. 

2A2 
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prove theoretically that a moving electrified system would 
possess inertia, which Heaviside showed would depend on the 
speed with which the system moves. A later calculation by 
Thomson referred to a particular form of nucleus and to the 
momentum which it would carry with it in virtue of a 
uniform translation. It is extremely important to realize that 
the character of the nucleus determines the manner in which 
the speed enters in the expression for the momentum or for the 
energy. It is also vital to realize that while the momentum 
or the energy can be calculated for a particular form of 
nucleus moving with a uniform speed, it has not so far been 
found possible to give a complete solution when the speed is 
variable. 

M. Abraham extended Thomson’s calculations, and he 
assumed that while the nucleus was still a sphere it was a 
perfect conductor, and he consequently obtained a value for 
the momentum in a state of uniform translation which differed 
from that found by Thomson when squares of the speed were 
retained. He emphasized the distinction between the effec- 
tive inertia for acceleration along and perpendicular to the 
direction of motion. 

But finding that he could not obtain the exact solution for 
a variable speed, Abraham made use of what is called the 
“‘ quasi-stationary principle,’ which amounts to saying that 
if we can calculate the momentum, or if we preter it the 
Lagrangean function, for a uniform motion we can infer the 
equations of motion for a small departure from this state in 
the ordinary way. My contention is that we can no more 
do this logically for electromagnetic systems than we can 
for ordinary dynamical systems. We know quite well that 
we do not get the correct equations for small departures 
from a steady state, when the steady motion values are 
inserted in the Lagrangean function before the differential 
equations of motion are formed. The steady motion values 
may be inserted after the equations have been formed from 
the general Lagrangean function. 

Abraham calculated expressions for longitudinal and trans- 
versal electric inertia by means of the quasi-stationary 
principle. Experiments on transverse inertia became possible 
with the discovery of the Becquerel rays, and of the minute 
negatively charged particles projected from radium with 
speeds only little short of that of light. 

The matter was taken up first by W. Kaufmann, and I 
have a special personal interest in this since I was working 
side by side with him in the laboratory at Gottingen while 
his experiments were in progress. 
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Kaufmann deflected the particles by crossed electric and 
magnetic fields, by which the particles are sifted out accord- 
ing to their speed, so that the ends of their trajectories form 
a curve on a photographic plate. 

Kaufmann considered that his measurements proved that 
Abraham’s expression for transverse inertia was correct, and 
that the inertia of the particles was purely electromagnetic 
in origin. 
We must now retrace our steps to consider the important 

contributions to the theory of moving systems made by 
Prof. H. A. Lorentz and Sir Joseph Larmor. They proved 
that a mathematical correlation held between an electrical 
system at rest and a certain system maintained in uniform 
translation. “If the moving system has a uniform speed 
ke (where ¢ is the velocity of light) in the direction x, and 

the «x linear extent of the moving system is (1—k?)? of the 
linear extent of the fixed system, and the variables time 
and distance w in the fixed system are transformed to ¢’ and 
x' in the moving system by a certain linear transformation in- 
volving &, then the state of the fixed system in terms of ¢and & 
is the same as that of the moving system in terms of t' and 2’.” 

It is reasonable to inquire if the contraction in the pro- 
portion (1—£*) actually takes place when a system at rest 
is put into uniform translation, for if so it provides an 
explanation of the Michelson-Morley experiment. 

Now it is quite certain that the mathematical transforma- 
tion is not true when & is variable, and therefore not true 
at any intermediate stage by which the system at rest might 
conceivably pass‘to the correlated system in uniform motion, 
if it ever does so at all. But relativists have assumed that 
the correlation proved by Lorentz and Larmor for a uniform 
translation only is true, and that the change actually takes 
place, when the speed is variable. It appears to me that if 
the primary equations are correct, the assumption is not 
merely not permissible, but is not true; and, on the con- 
trary, if the assumption does represent actual truth, then the 
primary equations are wrong and must go. We await 
proof, which so far has not been offered. 

The longitudinal and transverse inertia of a “ contracted ” 
electron have been calculated by the quasi-stationary method, 
so that there is a double source of error in the result. 

Experiments by Kaufmann, Bestelmeyer, and others have 
been offered as experimental proof that the formula for 
transverse inertia of a contracted electron on relativity 
doctrine is correct. My contention is that while the expe- 
riments do not conflict with the relativity formula, the 

— 
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formula is inconsistent with the electrodynamic equations, 
and that several other formule correctly deduced from the 
primary equations agree with the experiments equally well. 

I doubt if many people in this country realize the very 
meagre character of the experimental results, and I therefore 
give a full-sized reproduction (Pl. X.) of the photographic 
plate from which Kaufmann made his measurements. The 
electric deflexion is across the paper and the magnetic 
deflexion up the paper, and it may be pointed out that if the 
inertia of the particles were quite independent of speed, the 
small curved arcs would be parabolas, and that it is only in 
so far as these arcs differ from parabolas that any depen- 
dence of inertia on speed can be made out at all. Further, 
the highest speed particles are those for which the deflexion 
is least. 

I now return to the theoretical treatment of electric 
inertia. In order to avoid the error of the quasi-stationary 
principle, I developed some time ago a method of obtaining 
the longitudinal and transversal inertia directly from the 
primary equations by Newtonian methods. The method is 
rather tedious, but its correctness has not been called in 
question. Its application is general, but to get definite 
results the character of the nucleus must be specified. 
Various systems may be examined provided they do not 
violate any fundamental restriction imposed by electro- 
dynamic conditions. In this way I examined the nucleus 
assumed by Sir Joseph Thomson and was able to confirm his 
result for transverse inertia, but obtained a different result 
for longitudinal inertia. On the other hand, with the 
nucleus assumed by Abraham I was able to confirm his_ 
result for longitudinal inertia, but not that for transverse 
inertia. 

Again, recently I examined the case of a contracted con- 
ducting spheroid which agreed in form with Lorentz’s con- 
tracted electron for the uniform speed, but did not alter its 
form when acceleration was imposed *. The results for both 
longitudinal and transverse inertia differ from those adopted 
by relativists. 

The differences that arise in these examples only become 
important when squares and higher terms in the speed are 
retained, and they arise from the fact that when acceleration 
is imposed, additional electric forces are set up which have 
to be allowed for in utilizing the boundary conditions at 

* The restriction is unnecessary, as I now find that my results are 
not altered when has surface deforms under acceleration as Lorentz 

assumes. 
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the surface of the electron. Thus, for instance, with a 
conductor there is a redistribution of the charge, which 
depends on the acceleration, the speed, and the direction of 
the acceleration relative to that of the speed. So the 
Lagrangean function must involve these things, and I am 
doubtful if it is the resultant speed that alone enters. 

The results I have obtained for electric inertia by my 
direct, if pedestrian, method, can be shown to prove that the 
energy cannot be expressed as a function of resultant speed 
only. For if 

T=/@) 

we find that in the direction of motion, say along 2, we get 

a at 
dt dé 

and at right angles to this, say along y, we get 

d dP 
died! 

— &(2f" + 4y?f""), 

therefore longitudinal inertia =m,=2/'+ 4v7/", 

and transversal inertia =m,=2/'. 

Hence, since 

kg Myv= = 2uf'=2f' +47", 
dv 

wa dmv 

dv 

must be satisfied. But it does not follow that T=/(v’) if 

ne is satisfied. m= 

My results for the cases mentioned do not satisfy this 
condition, and unless it can be shown directly from the 
primary equations that arithmetical error has entered into my 
calculations, it follows that the kinetic energy of a system in 
variable motion is not expressible as a function of ithe 
resultant speed only. 

The conclusion is that Eddington’s proposed treatment of 
the astronomical problem is invalid, and I see no help for it 
but to start with the equations in the tangential form, 

dv 
ds" 

M_v*/p = aN. 

Mv 

where m, and mz, are different functions of v?, which can be 
calculated when the electrical system is fully specified. 
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Starting thus with longitudinal and transverse electric 
inertia given by m, and m, as functions of the resultant 
speed, and employing what I hold to be the correct pro- 
cedure in forming the equations of motion, viz., resolving 
along and perpendicular to the resultant direction of motion, 
we can proceed as follows :— 

Let the origin be the sun moving in space with com- 
ponents of velocity u, v, w, which are constant, and let 
a, y, 2 be the co-ordinates of a planet relative to the sun 
and referred to axes through the sun. The components of | 
relative velocity of the planet are 

Bs Ds 

and of velocity in space ¢+u, y+, z+w, with resultant 
say V. 

The components of acceleration are 

The acceleration along the resultant direction of velocity is 

{(¢-+u)é+ (9 +») ++w)2}/V, 
and if the components of force are X, Y, Z, the component 
along the direction of V is 

{X(@+u) + Y(y+v)+Z(2+w)}/V. 

Hence the equation 

mil (é+ulit (ytv)9jt+(z+w)z} | 

=X(#+u) + YV¥(y¥+v)+Z(z+w) 

=S .Say.<), +s ee ee 

Resolve along any direction X, p, v, at right angles to the 
direction of V, 

then Mo{rAG+ py +vz}= XA+ Yu Dp, 

and (@+u)rA+ (y+tv)w+(ze+w)v=0. 

Hence m= X+ (#+u)k, 

my = Y + (y+ v)k, 

where & is some quantity to be determined. Multiply these 
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in order by = (@+), etc., and add and use (1). Then we 
hy | 

find 

S= “184 *rv2, 
Mo Mop 

or 

p=") gry2 where V?=(e+u)?-+(y-+0)*+ (4-0)? 
aay 

Hence the Cartesian equations of motion are 

meé= X + ee — {X(@+u)+ YV¥(y+v)+Z(z+wv)}, 

m= V4 = Ma) I) Xe 4 u) + Veg te) + ZE+ud }, 
(m_,—m,) (z + w) 

Myz=L+ lin SWE +Y(y+v) + Z(z +w)}. 
1 

Also for a central attraction 

X=—pa/r, Y=—py/r", = — pe/r*. 

From these it appears that a planet’s orbit cannot remain 
a plane orbit during transference through the ether, except 
in the special case when the direction of the sun’s motion is 
in and remains in the plane of the orbit. 
We can readily transform the equations to polars since 

the disturbance is along the direction of the resultant 
velocity in space. 

For the example under recent discussion by Sir Oliver 
Lodge and as a first approximation, we might take 

mM, =m,(1+aV?/c?), Mo = m(1+bV?/c*), 

and neglecting squares of V?/c?, treat the problem as one of 
a disturbed central orbit. 

Astronomers doubtless know the best mode of dealing 
with this, and could obtain a solution without difficulty. 

It is important to remember that these equations are first 
approximations only to the general equations connecting 
moving material systems with the state of the ether. 

A special case amenable to elementary treatment is that 
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of the orbit of a particle, having electric inertia, round a 
fixed centre which is at rest in space. 

0 

Let v=resultant velocity at any point of the orbit. 
p=radius of curvature. 
y=radius vector. 
p=perpendicular on tangent. 

p/r?=attraction to the centre. 
m, = longitudinal inertia=m,(1+ kv*/c’). 
m,= transverse inertia =m(1+4,v*/c?) neglecting 

squares of v?/c?. 

The orbit is plane, and resolving along and perpendicular 
to the path we get 

dv pe dr : 
7. ae aie (1) 

and m3v"/p= = - (2) 

Integrating (1) we get 

mMo(v + $kyv'/c?) = zs = ” 

where a is a constant. 

ppdr dr 7 4/2) — Mp @ . ee From (2) mMo(v? + kyv*/c?) = = de since Paes 

Let w=1/r and w=1/a, 

*, mo(v? + $h,v4/c?) = 2uu— pr, 

aaa mo(v? + kyv*/c?) = — up ~ 
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; 3 : 
Ps approximately Mov" = = 2mu— Puy — a (2uu— Huy)? ’ 

and 4 (azanly 3 du 
(2uu— pup) 4+ aca ae (2 — pup)? = — pp + dp’ 

or putting x= 2puu— pu, 

and N= (kg —$hy)/myc?, 

we get A dz 
@+Ar*=—Z =P To, 

or Hodpus ey ae | 
os =ae} 2 1+Arx J’ 

*, integrating we get 

Ey thd 
Fi a ee =2—)2” neglecting squares of A, 

where 0 is a constant of integration. 

Now 1 Aes 

p “ae (79 

a 2 

b? u?+ (a) i = (2pu— pup) —A(Qpu— pro)’, 

“() = (2p — pto) —A(2pu— pg)? — 

so that the integral is of the form 

a2 > 
lu=l+e cos[ 4 ‘0-2 

where 7 is an arbitrary constant and / and e are determinate 
constants in wu, a,b, and». This solution implies an elliptic 

- orbit slowly revolving in its own plane. The eccentricity 
does not change, but the apses will advance in the direction 
of description of the orbit by 

2 ve 
Tey for each description of the orbit, 

1+ t 

1. €. since A is small, 
by _ Amp’nr 

Meee 
Be ae 2/0) SNPS 
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Expressed in terms of the semi-major axis Rp, eccentricity 
e and periodic time T, the progress per revolution is 

27rRo } *(Lky — ke) 

Tae) a Aor. 

The apses therefore progress or regress according as 
(44,;—k,) is positive or negative. 
We have no knowledge as to the proper forms of m, and 

m, for matter in bulk, but the following are results for 
hypothetical single nuclei. 

For the contracted electron using relativity methods, 

m,=m(1+3v?/c”), Mg= Mo 1+ 4v?/c?), 

so that 44;—k,=+ (or progression). 
From the primary electromagnetic equations my results* 

are :— 

For the contracted conducting electron : 

ily Al 
My =m(1+ 10°!) My=M(1+ BoP le), 

so that 1k, —ky= — = (or regression). 

For Thomson’s electron with special surface condition : 

My =m(1 + a w/c), mg=m (1+ = v"/c?) See 10 ’ eal 10 ’ 

ghy—hg= eI (or regression). 
20 

For spherical conductor which does not change in shape : 

19 
m= m(1 + $y? /c”) ) m= m1 + 60 v*/¢?), 

cet thy—ke= = (or progression). 

This last case is numerically almost the same as that for 

the contracted electron by relativity methods. This is im- 

portant, because it shows that so far as inertia enters in the 

astronomical problem we can get practically the same result 

* Proved only for disturbance from a steady state. 



Relativity and Electrodynamics. 337 

as a logical sequence from the fundamental equations as has 
been obtained by relativity doctrine. 

Our results for the apsidal progression per revolution are: 
Contracted electron by relativity method, 

27Ry ais 

Td Sey c* 

Spherical electron by orthodox method, 

f 27Ry } 2 17 a 

UTd=ays Be 

Now Einstein obtained 

27 Ry 2 67r 

Til-e)F fe? 

which numerically is in close agreement with observations 
on “ Mercury.” 

This result is obtained by assuming that the attraction 
depends on the velocity. It is easily seen from our analysis 
that if 

= po (1+ kyv*/c”), 

we get for the apsidal progress 

3 —hy), { 27Ry 2 4a k 

Tae} ; 1 = 
(1—e?)? Ce ($4,+ 

In order to get the observed value for “ Mercury” k; 
would have to be 5/2 if 3k,—k, is 1/4. 

It is important to recognize that it is only by introducing 
either explicitly or implicitly this comparatively large de- 
pendence on speed, of the attraction between bodies that 
Kinstein can get the numerical agreement. Such depen- 
dence based on the known forces between electrical currents 
has been recognized before now in the theory of electro- 
dynamics, but is hardly acceptable in gravitational theory. 
On these lines it appears that orthodox electrodynamics 
is quite as capable of providing an explanation of this astro- 
nomical feature as Hinstein’s theory. It is, however, im- 
portant that endeavour should be made to determine, if 
possible, the numerical value of $4,+3k;—k, for matter in 
bulk. 

There still remains the question of the effect of transference 
in space as suggested by Sir Oliver Lodge. Hddington’s 
conclusions on this problem may be modified considerably 



338 Dr. H. S. Allen on Molecular 

when what I hold to be more correct equations of motion 
are used. iad 
Notr.—At_ Sir Oliver Lodge’s request I have calculated 

m, and m, for Bucherer’s electron which has the same form 
as Lorentz’s electron but keeps its volume unchanged. My 
results are 

17 ol my = m{ 1 + 3% v?/ e), ia mal 1 T 66 v?/ a), 

so that ee, — 1 
90° 

XXXVII. Molecular Frequency and Molecular Number. By 
H. Srantey Aen, 1.A., D.Sc., University of London, 
King’s College*. ; 

Part I. 

§ 1. Molecular Number. 

A work of Moseley on the high-frequency spectra of 
the elements has established securely the importance 

of the “atomic number ” of an element: that is, the number 
which determines the place in the periodic classification and 
fixes the charge carried by the central part of the atom. It 
is now certain that the atomic number is more fundamental 
than the atomic weight. Recent investigations of the atomic 
weight of lead of radioactive origin have shown that the 
value obtained for this quantity depends upon the source 
from which the material is derived. An interesting account 
of these researches has been given by Soddyf, who points 
out that the atomic weight as ordinarily understood is not 
the unique quantity hitherto supposed. In the future in- 
creasing importance will be attached to the atomic number. 
It is the conviction of the present author that this will prove 
true not only in connexion with the properties of the chemical 
elements but also in dealing with compounds. In the latter 
case it is convenient to introduce the term “molecular 
number ” to signify the sum of the positive charges carried 
by the atomic nuclei contained in the molecule. Thus when 
a molecule contains a atoms of an element A, 6 atoms of B, 
c atoms of C, so that its chemical formula is A,B,C, the 
molecular number N=aN,+6Nz+cN¢-, where Ng, Nz, N. are 
the atomic numbers of the component elements. For 

* Communicated by the Author. 
+ Royal Institution Lecture, ‘ Nature,’ vol. xcix. p. 414 (1917). 
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example, the molecular number of water (H,O, hydrol) is 
10*, for:the nuclear charge of hydrogen is 1, and of oxygen 
is 8. 

It may be remarked that the molecular number is usually 
even. This arises from the fact that when the valency is 
odd, the atomic number is usually odd also. But in the case 
of an element such as copper, which may be either univalent 
or divalent, or in the case of some of the metals of the eighth 
group, the molecular number may be odd. 

In former paperst it has been shown that simple relations 
exist between the atomic number of an element and the 
characteristic frequency deduced from observations of the 
specific heat in the solid state. In the present communication 
similar results are found in connexion with the molecular 
number of a compound and its characteristic frequency. 
So far as the writer is aware, this is the first attempt to 
establish a relationship involving molecular number, previous 
work in different branches of physics having been restricted 
to considerations of atomic number only. 

§ 2. Characteristic Molecular Frequency. 

At high temperatures the law as to the specific heat of 
compounds enunciated by Joule{ and verified by Kopp§ 
shows that, as the specific heat is then mainly additive, the 
heat energy arises for the most part from the vibrations of 
the individual atoms|]. At sufficiently high temperatures the 
vibrational energy of each atom approaches the value 3RT. 
At low temperatures, on the other hand, Nernst supposes 
that the vibrations of the molecules play a more important 
part than the vibrations of the atoms in the molecule. In 
the case of regular monatomic solids Debye has deduced an 

* This fact is probably at the bottom of the remarkable numerical 
telations involving powers of 10, pointed out by the author in a paper 
read before the Physical Society of London (Proceedings, vol. xxvii. 
p. 425, 1915). It wasshown that there must be a numerical connexion 
between the unit of length and the unit of mass in the C.G.S. system, 
‘“‘and there is no reason why it should not involve ‘the number 10.” 
This negative statement may now be changed to a positive one. There 
zs a reason, in the constitution of water itself, why the number 10 should 
be introduced. 
+ H. S. Allen, Proc. Roy. Soc. vol. xciv. p. 100 (1917); Phil. Mag. 

vol. xxxiv. p. 478, p. 488 (1917). 
t Joule, Phil. Mag. [3] vol, xxv. p. 334 (1844), 
§ Kopp, Leb. Ann. vol. iii. pp. 1 & 289 (1864). 
|| Cf. Sutherland, Phil. Mag. [5] vol. xxxii. p. 550 (1891). 
q Nernst, Vortrdage tiber die Kinetische Theorie, p. 79 (1914). ‘The 

Theory of the Solid State,’ p. 81 (1914). 
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expression for the specific heat, C,, which is reduced, at 
sufficiently low temperatures, to a simple law of propor- 
tionality between C, and T*. That this is also true for certain 
regular polyatomic substances has been shown experimentally 
by Eucken and Schwers* in the case of fluorite, CaF, and 
pyrites, FeS,.. Thus it would appear that near the absolute 
zero the forces uniting the atoms in the molecule are sufii- 
ciently great, as compared with the forces uniting the 
molecules, to compel the individual atoms to follow the 
movements of the molecule of which each forms a part. At 
low temperatures the specific heat can be represented by 
Debye’s formula assuming a single characteristic frequency. 
At higher temperatures Nernst introduces one or more 
Hinstein terms, with appropriate characteristic frequencies, 
to include the vibrations of the atoms in the molecule. It 
will be shown that the characteristic frequency, v, for the 
molecular movement conforms to the relation previously 
found to hold for the elements, viz. 

Nv=nv, or Nv=(n+4)r, 

where N is now the molecular instead of the atomic number, 
nis an integer, and v4 is a fundamental frequency having a 
value very near to 21x10”sec.~'. The term “ frequency 
number ” is suggested to denote the numerical factor, n or 
n+. 

It would, of course, be possible to avoid the introduction 
of the fraction } by introducing a fundamental frequency 
which is 4 that just quoted, but as the number of cases 
requiring the fractional value is comparatively small, it 
seems better to retain for the present the larger value for v,. 

§ 3. Characteristic Frequency from Specific Heat. 

For a small number of compounds low-temperature mea- 
surements are available, and the characteristic frequency 
can be deduced from the specific heat. In 1912 Nernst and 
Lindemann f published observations on the specific heat of 
rock-salt and sylvin at temperatures down to 22° K. For 
NaCl the characteristic frequency, v, was determined by 
the equation By=287°3, whilst for KCl By=217-6, where 
B=4:78x10-". From these results we find the value of 
Nv for rock-salt to be 8 x 21:0 x 10”, whilst for sylvin it is 
nearly the same, 8x 20°5x10. In his address on the 
Kinetic Theory Nernst gives different values for the Debye 

* Eucken and Schwers, Ber. deutsch. phys. Gesell. vol. xv. p. 578 (1913). 
+ Preuss. Akad. Berlin, p. 1160 (1912). 
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term which is predominant at low temperatures. For NaCl 
he finds Bv= 229, which would require Nv=64 x 20°6 x 10”. 
As Lindemann’s formula gives a smaller value (215) for Ay, 
it may be suspected that the true value for Nv at very low 
temperatures is 6X21x10”. This is supported by the 
value for KCl, for which Nernst gives Bv=166, so that 
Nv=6 x 20°8x 10!7- The change in the frequency number 
from 8 to 6 must be attributed to the introduction of the 
Einstein term, and points to the relation Nv=nv, being 
obeyed by the corresponding frequency. This is actually 
found to be the case, as is shown in a separate paper by the 
writer. 

Nernst also gives values for the characteristic frequency 
of chloride of mercury and chloride of silver. For HgCl 
SBv=115, from which we find Nv=11 x 21:'2x 10", and for 
AgCl Bv=102, giving Nv=64x 21:0 x 10”. 

Experiments by Hucken and Schwers* which are believed 
to be very accurate give the characteristic frequency for 
two compounds containing three atoms in the molecule. For 
fluorite (CaF) Bv=474, resulting in Nv=18 x 20°9x 10”. 
For pyrites (FeS,) @v=645, and as N=58 the product Nv 
is so large (782°6x10™”) that it is difficult to be certain of 
the value to be assigned to n. If n= 37 the product 
Nv=37x21'2x 10"; if, as is more probable, n=36 the 
product Nv=36 x 21°8 x 10”. 

EKuckent found for carbon dioxide (CO,) in the solid state 
Bv=119, giving Nv=24x21:9x10". This is of interest as 
indicating that the rule applies in the case of non-metallic 
compounds. 

§ 4. Characteristic Frequency from Lindemann’s Formula. 

For the majority of compounds no measurements of the 
specific heat at low temperatures have been made, and in such 
cases itis necessary to have recourse to some more or less 
empirical formula such as thatof Lindemann. This formula 
gives 

y= 3:08 x 10%\/(T,/MV9), 
where T, denotes the melting-point, M the molecular weight, 
and V the molecular volume. 7 

It is easy to understand that the frequency calculated in 
this way may not be identical with the frequency deter- 
mined from the specific heat at low temperatures, for the 

* Eucken & Schwers, D. P. G. V. vol. xv. p. 578 (1913). 
+ Eucken, D. P. G. V. vol. xviii. p. 4 (1916). 

Phil. Mag. 8. 6. Vol. 35. No. 208. April 1918. 2B 



342 Dr. H. 8. Allen on Molecular 

molecule of the solid at or near the melting-point may not 
have the same constitution as the molecule near the absolute 
zero of temperature. The frequency as given by Lindemann’s 
formula must be taken to represent the characteristic frequency 
the substance would take at low temperatures, on the assump- 
tion that the molecular structure remained unchanged in 
cooling from the melting-point to the absolute zero. If 
either polymerization or dissociation occur in the process of 
cooling, then a change in the characteristic frequency is to 
be anticipated. 

A definite decision as to whether the relation between N 
and v is exact or only approximate cannot be reached until 
further accurate determinations of the specific heat of com- 
pounds at very low temperatures are available. Hmpirical 
formuls, such as that of Lindemann, may be employed for 
the evaluation of v, but it must be remembered that such 
formule generally give only approximations to the true 
value, and therefore cannot furnish a decisive test. It has 
been suggested that to render Lindemann’s formula accurate 
an additional factor is required depending upon the relation 
between the molecular volume at absolute zero and that at 
the melting-point™. It may be anticipated that the formula 
in its present form should give comparable results for 
chemical compounds of similar constitution. This would 
be shown by agreement between the values of Ny, or by 
concordant values of v4. It has, in fact, been shown pre- 
viously that such agreement exists in the case of similar 

- elements, and evidence is now put forward that relations of 
the same kind hold for similar compounds. 

It must be borne in mind in considering the results not 
only that Lindemann’s formula is merely an approximate 
one, but that the numerical factor is purely empirical. 
Further, it is to be noticed that the molecular volume is 
usually found from determinations of the density made at 
ordinary temperatures. It might be better to employ the 
density of the solid near the absolute zero of temperature or 
at the melting-point. 

The data employed for the calculation of the characteristic 
frequencies in the following paragraphs have been taken 
mainly from Nostrand’s ‘ Chemical Annual’ for 1913, which 
gives Tables convenient for this purpose. Kaye and Laby’s 
‘Physical and Chemical Constants’ (1911), and the Smith- 
sonian Physical Tables (1914) have also been made use of 
for certain compounds. In cases where a range of values 

* Cf. Sutherland, Phil. Mag. vol. xxx. p. 318 (1890); vol. xxxii. 
p. 524 (1891) ; and Griineisen, Ann, d. Phystk, vol. xxxix. p. 298 (1912), 
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is given for the melting-point, the highest value quoted has 
been used ; similarly the largest value of the density has been 
taken in calculating the molecular volume. 

§ 5. Inorganic Compounds (Lindemann’s Formula). 

It may be pointed out in the first place that the product 
Ny frequently has the same value for compounds which are 
similar in their chemical constitution and behaviour. Thus 
in the case of the alkali metals we find for the chlorides 
of sodium, potassium, and rubidium the values :— 

NaCl, 123:2x 10"; KCI, 125°8x10"; RbCl, 124:7 x 10", 

Similarly for the iodides of the same metals :— 

Mat t452 x 102; KI; 143-1 x10"; Rbl, 145-4 x10". 

Further it may be noted that the product for the iodide 
exceeds that for the chloride by an amount which is approxi- 
mately constant, and equal to about 20x10. Similarly 
the difference between the product for sodium chloride 
(123°2 x 10") and that for lithium chloride (101°6 x 10) is 
21:6 x 10", whilst the difference between the product for 
sodium iodide (145°2x 10) and that for lithium iodide 
(124:7 x 107) is 20°5x10'%. All such relations, and their 
number is far too great for them to be fortuitous, may be 
included in the formule 

Nv=nvy, and Nv=(n+3)p,, 

where v, is approximately 21 x 10” sec.7}. 

These formule have now been tested for those inorganic 
compounds for which the necessary data are recorded, and 
it has been found that the number of cases in which one or 
other of the formule cannot be applied issmall. It is hoped 
to publish details of these results later; at present it will 
suffice to quote the figures for twe series of compounds. In 
Table I. are given the results for all the lithium compounds 
for which data are available. This element has been selected 
on account of the small atomic number (N =3) rendering the 
product Nv comparatively small; consequently it is not 
necessary to employ Jarge values for n, and a more satis- 
factory test of the new relation can be obtained. The 
frequency number in the last column of the Table falls 
between 34 and 8, whilst the extreme values for yy, are 
20°1 x 10 sec.-! and 21°3x 10” sec.-1 Application of the 
theory of probability to the figures shows that there is only 
1 chance in 282 that these results should occur by accident, 

2B2 
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TaBLe I. 

Lithium Compounds. 

Name. Formula, N. | VX10-12,| Ny x10-22, 

LitHIuM 
AMIGO. cece tce eee LiNH, 12 6:073 2x 20°8 
bromide .5.2..<-sncaske LiBr 38 3°234 6 x20°5 
carbonate ....:2..2.56 Li,CO, » a6 3°435 6 xX206 
chloride (5/2. seer LiCl 20 5079 5 x20°3 
MUOLIAG. ..20csh eee Lik 12 9:207 53x 20°1 
HOMIGS cov ccnecneese ieee Lil 56 2°227 6 x20°8 
MIETAGE {sles ho eee LiNO, 34 2°821 42x 21'°3 
perchlorate::...... 0... LiClO, 52 1°742 43x 20°1 
phosphate .....ss.... Li,PO,.H,O| 66 | 2345 | 74x206 
Biligate”™ 2. 52.chacsee Li, SiO, 44 3°756 8 x20°8 
sulphate (acid) ...... LiHSO, 52 1°636 4 xX21°3 
sulphate (normal) ...| Li,SO, 54 2°680 7 X20°7 

Mean value of v, =20°66x 10. 

In Table II. are recorded the figures for the chlorides of 
the alkali metals, and the monochlorides of copper and silver. 
No data have been obtained for aurous chloride. The pro- 
bability calculated in the same way as for Table I. is 
about 1/18. It will be noticed, however, that all the 
frequency numbers in Table II. are integers. The pro- 
bability that this should be the case is about 1/2000. 

TasueE IT. 

Monochlorides of the Metals of Group I. 

Formula. N. vx10-}, Nvx 10712, 

LiCl... 2 eee 20 5-079 5x 20°3 
Na) ccsreeeene 28 4401 6x 20°5 
RCI epcbeneeeee 36 3°493 6x 20°9 
RIDOL Aeon 54 2°310 6x 20°8 
CsCl): coveeeee: 72: 2:065 7X21:2 
CuCl 22 46 2°726 6x 20°9 
AoOls 2 eceereee 64 2°343 7x21°4 

Mean value of v4 =20°86 x 10!2. 

In view of the fact that so many other inorganic com- 
pounds as well show fair agreement with the proposed 
relation, it is hardly possible to doubt that it must give at 
least a close approximation to the truth. 

* The melting-point of lithium silicate is given as a standard tempe- 
rature (1201°) in the Smithsonian Physical Tables, 
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One point of interest may be mentioned. Inorganic com- 
pounds which contain water of crystallization conform to the 
general rule. In some cases the frequency number of the 
dehydrated salt is the same as that of the hydrated compound. 
Thus for sodium sulphate (Na,SO,) the value of Ny is 
8x 20°4 x 10”, for the hydrated salt (Na,SO,.10H,O) it is 
8x 20°6x 10. In other cases there is a change in the 
frequency number. An example is afforded by calcium 
nitrate—the anhydrous salt (Ca(NO3).) gives for the product 
Np the value 64 x 21°3 x 10, whilst the hydrated compound 
(Ca(NO,),.4H,O) gives 4 x 21°5 x 10”. 
A comparison between the results obtained from the specific 

heat at low temperatures and those found by calculation from 
Lindemanno’s formula is only possible in a few cases. 

TaB_e III. 

Compound. | Nv x 10722. 

/ Specific heat. . | Lindemann’s formula. | 

Ae 
a | 8 x21-0 | hes | 

| +x 206 | 6X 205 

es ed 2 At ) eed / 6x 20°9 

20 2 ere 63 x 21-0 | 7X21°4 
Sia: -n2. 23. 18 x20°9 | 9x 2071 
os eee 36 X21°8 | 10x 21°7 

It is curious that there should be such a large difference 
between the two values of the frequency numbers for calcium 
fluoride and iron disulphide. Interpreted according to the 
theory of Nernst, this may indicate that for these compounds 
the contribution to the specific heat arising from the internal 
vibrations of the molecule forms an important part of the 
whole. 

§ 6. Organic Compounds (Lindemann’s Formula). 

Chemists have not, as a rule, devoted great attention to 
the determination of the density of organic compounds in the 
solid state. On examining such a Table as that given in 
the ‘ Chemical Annual ’ it will be found in general that where 
the density of the solid is recorded, the melting-point is 
wanting and vice versa. Amongst the results available up 
to the present time are to be found many suggestive cross- 
relationships between the values of Nvx10-, in which 
a number approximating to 21 or 4x21 is of frequent 
occurrence. This is illustrated for some aliphatic derivatives 
in the following Table. 
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TABLE LV, 

Name. Formula. N. |Nvx10-, 

Maleic anhydride ...| <(CH. 00),>0 50 60°17, 
Succinic anhydride...) <(CH,CO).>0 52 70°56 
Malic acid (¢) ......... CO,H.CW,.CHOH .CO,H 70 82°11 
Oxalic acidv320) 08, CO,H .CO,H+2H,0 66 82°24 
Maleic acid ............ CO,H.CH:0H .CO,H 60 | 82-42 
Citrie arid aster (CO,H .CH,),C(OH)CO,H+H,0 | 110 93°71 
Tartaric acid ......... CO,H[CH(OH)],CO,H 78 93°79 

Here the characteristic difference is found between the 
two anhydrides ; the three dibasic acids, malic, oxalic, and 
maleic, have a common value for the product but different 
values for N; and citric acid (a monohydroxy tribasic 
acid) and tartaric acid (a dihydroxy dibasic acid) have the 
same value for Nyx 107%, but a value exceeding the previous 
common value by the characteristic difference. 

Data are available for a larger number of aromatic deri- 
vatives, and amongst these compounds many interestiug 
correspondences occur. In Table V. are given the results 
for a number of hydroxyl derivatives containing the benzene 
ring, and in Table VI. some of the halogen derivatives of 
benzene in which the two substituted groups occupy the 
para position. 

TABLE V. 

Name. Formula. N. Nvx1o—!, 

Phenol o.écis. te. seers C,H,OH 50 63:29 
Cresole (p) ............ OH, .C,H,OH 58 64°23 
Mylenol sii) isass eee (CH,),.C,H,0H 66 72:84 
Hydroquinone (p) ...| C,H,(OH), 58 82:07 
Pyropallol. cocci escsee C,H,(OH), 66 82°52 

TasBie VI. 

Name. Formula, N. Nvx107), 

Chlor phenol ......... Cl1C,H,OH 66 68:40 
Dichlor benzene ...... C,H,Cl, 74 69°63 
Chlor nitrobenzene ... ClO,H,NO, 80 78°86 
Brom phenol ......... BrC,H,OH 84 79°41 
Dibrom benzene ...... ,H,Br, 110 88°64 
Brom nitrobenzene ... BrO,H,NO, 98 89°95 
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Data are available for a number of ketones of the benzene 
series. 

TaBLE VII. 

| —12 
Name. Formula. Ne Ne LO 

Methyl-pheny! ketone OH, . 0O.0,H, 64 63°16 
(aceto-phenone) ... 

Kthyl-phenyl ketone ...| C,H, .0O0.C,H; 72 64-48 
Methyl-benzyl ketone .. CH, . co. CH, ‘oh HH, 72 65°03 
Propyl-phenyi ketone ...| C, H, COG? i, 80 65°81 

Here the values of Nv x 10-™,though not differing greatly 
for the various compounds, tend to increase slightly with the 
complexity of the chemical molecule, indicating the presence 
of a constitutive influence. 

An attentive examination of the results just recorded for 
organic compounds will have shown that in a large number 
of cases the value of the product Nv can be expressed in 
the form already employed for inorganic compounds. In 
other cases, however, the simple form of the relation cannot 
be applied successtully. The two Tables following (VIII. 
and IX.) contain the figures for a number of well-known 
aliphatic and aromatic compounds for which the relation is 
found to hold good. 

It is noteworthy that the frequency number for organic 
compounds is usually small, varying from about 3 to about 5. 
This fact may be correlated with the low melting-point of 
these compounds and the small atomic numbers of the con- 
stituent elements. 

Tasue VIII. 

Aliphatic Compounds. 

Name. Formula. N. | vx107”- | Ny x107 

Butyl carbinol (tert.) .. | .| (CH,),C .CH,OH 50 1-242 3 X20°7 
WUPORIE iia ncedese cs NH,OO, .C,8, 48 1-307 3 X20°9 
U¥eatis22).. heb? ESSE | CO(NH,), 32| 2°243 34 x 20°5 
Ethylurea .............4. C,H,NH . CONH, 48|  1:500 33 X 206 
Kthylene iodide ......... | CH,I.CH,1 122} 0-672 4 x20°5 
iC as CHI; 166)  0:549 4°-X 20°3 
Carbon tetrabromide ...| CBr, 146| 0-703 5 X20°5 
| Oxamide po casthteon steel CON H,  COMMyh®, | 46). 2208. | 15, 203 
SSS 
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TABLE IX. 

Aromatic Compounds. 

Name. Formula. N. | »x10-™. | Nex iat 

Xylidene (1:4:2) ...... (CH,),0,H3. NH, 66| 0:954 3 x210 
Chlorquinoline (py 2)... C,H,CLN 84} 0°842 34 X 20:2 
Chlorquinoline (py 4)...| C,H,CIN 84| 0-858 34x 20°6 
Naphthalene.. ............ Coa O,H, 68} 1:062 33 X 20°5 
Triphenyl phosphine ...| (C,H,),P 138| 0-592 4 x 204 
Hydrazo benzene......... C,H,.NH.NH.O,H,| 98} 0842 4 x20°6 
Camphoryiiiic (2k store Oe 0 84/ 0:989 4 x20°8 
Nitraniline (p) «0.0.0.0... NO, .C,H, . NH, 72| 1173 4 x21:1 
Tetrachlor benzene (s)...| C,H,Cl, 106} 0°874 4% x 20°6 
Camphorie acid (d) ...... O,H, ,(CO.H), 108} 0-859 43 Xx 20°6 
Camphoric anhydride...| C,,H,,0, 98; 0949 435X207 
Anthraquinone ......... C7, = (CO), :C,H, 108) O86 5 x207 

It has been mentioned already that for a censiderable 
number of organic compounds the proposed relation, in its 
simple form, does not hold. One possible suggestion as to 
the reason for this failure will be considered in the following 
section. 

§ 7. Molecular Association in Solids. 
A question of great importance, which can only be con- 

sidered briefly in this paper, is the determination of the true 
value of the molecular weight of a solid compound. Nernst 
has shown how the constitution of the molecule may be 
inferred from the correspondence between the molecular heat 
at low temperatures and the value calculated by Debye’s 
formula. For example, he concludes that the molecule of ice is 
not hydrol (@v= 227) but dihydrol (@v=155). On the first 
supposition we find Nv=47:5x10", which cannot be ex- 
pressed as a multiple of v,, but the second supposition gives 
Ny=64°8 x 10¥=3x21'6x10", showing good agreement 
with the new relation. 

If, in the next place, we apply the formula of Lindemann 
to ice (Ts=273%1 K, p=0°917), we find that neither H,O 
nor (H,O), gives satisfactory agreement. When, however, 
we assume that the ice molecule at the melting-point is 
trihydrol, (H,O);, we find Nv=24x 21:4 x10". The method 
does not give a unique determination of the degree of asso- 
ciation, for equally good concordance is obtained by assuming 
that the ice molecule contains 9 groups of H,O, which makes 
Nv=3x21'4x 10". 

On general grounds it seems most probable that ice at the 
melting-point is pure tribydrol. This was the conclusion 

“g 
| 
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reached by Sutherland*, who emphasized the fact that water 
erystallizes in the hexagonal system, whilst trihydrol can 
be represented by three linked oxygen atoms at the corner 
of an equilateral triangle with the six hydrogen atoms 
arranged symmetrically round them. . 

It is easy to examine the effect of association on the 
frequency as determined by Lindemann’s formula. If M 
denote the molecular weight of the simplest molecule, that 
of the associated molecule may be written «M. The molecular 
volume V will also be increased x times. Hence the frequency, 

determined by the equation 

AV ®) 
will be divided by a*+?=2*, The atomic number will be 
inereased x times, and consequently the value of Ny will 
be multiplied by 2*. It is, then, a simple matter to find an 
integral value for aso as to satisfy the relation Nv=ny,. As 
in most cases there is no independent check on the degree 
of association of a solid, it does not seem desirable in the 
present state of our knowledge to attempt to apply this 
method in detail. 

§ 8. Conclusion. 

In this preliminary survey of the subject of the relation 
between molecular frequency, v, and the molecular number, 
N, it has been proved that the product Nv frequently shows 
related values for analogous compounds. There is considerable 
evidence for the validity of a formula of the type Nv=nv, in 
the case of most inorganic solid compounds and of a number 
of organic compounds. To what extent the formula is to be 
considered approximate can be decided only when further 
data as to the specific heat of solids at low temperatures are 
available. The physical significance of such a formula has 
been discussed in an earlier paper. Perhaps the simplest 
interpretation that can be suggested for the “ frequency 
number,” n, is that it is related to the number of valency 
electrons concerned in imparting to the solid its crystalline 
structure. Further investigation on these lines may serve 
to throw more light on the nature of the forces connecting 
the molecules, and the problem of molecular association, in 
crystalline solids. 

- * ache: Phil. Mag. vol. 1. p. 460 (1900); Faraday Soc. vol. vi. 
(1910). 
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XXXVIII. On Transpiration through Leaf-Stomata. 
By Sir Josepn Larmor, F.R.S.* 

ieee acute and valuable paper by Dr. Harold Jeffreys 
(Phil. Mag. for March, pp. 270-280) on evaporation 

and diffusion shows, by inadvertence, less than due apprecia- 
tion of the investigations of H. T. Brown and EF. Escombe on 
transpiration through the stomata of leaves. The question is 
so important in plant-economy that misunderstandings should 
not be allowed to persist. The statement held to be erroneous 
on p. 277 (for which originally I had some degree of respon- 
sibility) still appears to me to be quite correct, in its proper 
context. The diffusional suction to or from each stomatal 
opening is local ; thus, when the openings are as much as 
ten diameters apart the interference between the adjacent 
shells of diffusion is surely very slight, as stated. But 
Dr. Jeffreys finds that this would make the transpiration of 
vapour from the stomata very many times greater than the 
evaporation from the entire leaf when wet. Whence, then, 
the discrepancy ? His calculation compares a system of 
actual stomata, each of diameter 107? cm., and at about 
5.107? cm. apart, with a single giant stoma the size of the 
whole wet leaf and so of diaineter 6 cm. But the calcula- 
tion for the latter case implies that the air is absolutely still 
throughout the shells of diffusion, which then extend to 
several diameters from the leaf, so that most of this mass of 
air remains highly saturated with vapour. Under natural 
conditions, where the atmosphere and the leaf are not quite 
still, the evaporation will be at the very least hundreds of 
times greater. 

The natural comparison is that discussed later by 
Dr. Jeffreys (p. 279), where he passes on to consider the 
effect of wind or movement of the air. But here again, by 
reasoning similar to that described above, he seems to arrive 
at misunderstanding of Sir F. Darwin, and holds that when 
the stomata become constricted ‘“ until the stomatal aperture 
is reduced to a certain very small value the possible rate of 
transpiration is practically independent of the aperture and 
nearly all of the reduction to zero when the stoma closes 
takes place on the last 2 per cent. of the reduction of aper- 
ture.” The reasoning on which this statement is based should 
be capable of some Jess paradoxical form of conclusion. If I 
am not mistaken, the underlying idea may be developed in 
altered form as follows. We may imagine partitions erected 
perpendicular to the surface of the leaf, so that each stomatal 

* Communicated by the Author, 
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aperture is isolated from the others and the transpiration occurs 
within its own cylindrical tube of diffusion ; this will not 
sensibly affect the course of the phenomena. The electric 
idea of conductance of the diffusion-current along this path 
is now the appropriate aid to discussion. We can imagine 
the tube prolonged on the other side beyond the stoma, and 
thus consider the parallel case of electric flow along a con- 
ductor having a sharp local constriction representing the 
stoma, whose area is much smaller than the cross-section of 
the conductor. The resistance of the whole tube is propor- 
tional to its length, provided the latter is increased by a 
constant correction in order to include the extra resistance 
arising at the constriction*. The methods by which this 
correction may be practically estimated were developed by 
Lord Rayleigh in 1870: ef. ‘Theory of Sound,’ ii. ch. xvi. 
The current being the same all along the tube, the resistance 
in any segment of it is proportional to the fall of head (of 
potential, or of density of diffusing substance) between its 
ends. When the constriction by a transverse barrier is, as 
here, to less than one-fifth of the radius of the tube, it will 
not be far wrong to estimate the fall of head across the con- 
striction as if the enclosing tube were absent. This procedure 
leads, on the same lines as in Brown and Escombe quoted by 
Dr. Jeffreys (p. 275), for a circular constriction of radius a, 
to a correction to the length of each half / of the doubled 
tube, of amount equal to the area of the section of the tube 
divided by 4a. 

Now Dr. Jeffreys considers that under natural conditions a 
layer of air, as much as 1 mm. thick before the disturbed motion 
beyond is reached around the leaf, may be regarded as still. 
For the dimensions of stomata quoted by him, a would be 
4.1073 cm. and the area of section 3.10~* em.?, while J would 
be taken as 1mm. The correction to / would then be } mm. 
As this is a small fraction of ] the main resistance to tran- 
spiration would arise in getting across this highly saturated 
layer of air, as much as 1 mm. thick around the leaf. The 
stomata would transpire into it, and the vapour would not 
get away as rapidly as it could be supplied; the case is 
analogous in a lesser degree to a leaf enclosed in a bottle 
with narrow, open neck, in which the air would soon become 
nearly saturated with vapour and the transpiration would be 

* For the problem in two dimensions of space the exact solution is 
known, and a diagram of flow is given by Prof. Lamb, ‘ Hydrodynamics,’ 
§ 306. In that case the correction to be added to the half length J (infra) 
in order to obtain the effective half length, when the resistance of the 
constrictions is included, proves to be — loge sin 37k, where k is the ratio of 
the area of the straight stomatal strips to the whole area. But this result 
is hardly applicable even to illustrate the actual problem of local stomata. 
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reduced to avery small amount. Hach stoma is fully efficient 
in proportion to its radius; but the output will be diminished 
for all sizes of stoma because it has to transpire into a 
nearly saturated space. When the stoma becomes constricted 
it operates more feebly, but under better conditions ; ifa 
circular stomatal aperture of dimensions as above is con- 
stricted to + of its radius, its own resistance will be half the 
total resistance to transpiration instead of only 3; if it is 
constricted to =!,, the resistance of the stoma itself will be 
% of the whole, and the layer of moist air outside will hardly 
count. The question is whether we can assume a still layer 
of air anything like | mm. thick. As moist air is sensibly 
lighter than dry, such a layer could hardly be established if 
the leaf itself is not quite still, unless possibly to some degree 
on the lower surface of a horizontal leaf. 

The problem whether a cause like this, which I take to be 
the essence of Dr. Jeffreys’s important suggestion, has really 
intervened in observations such as those quoted by Darwin 
from F. &. Lloyd (p. 277) could only be probed by further 
experiment under suitable precautions. 

The question whether the sap-current in trees is reduced 
on still days is much simpler, for the whole region of the 
tree-top may become nearly saturated. 

These considerations, which apply to the transpiration of 
vapour from the stomata, are pertinent, of course, equally 
to the diffusion of carbon dioxide into them. They seem 
directly to confirm, from a different aspect, the conclusions 
of Brown and Hscombe that the stomatal cavities are 
capable of much more absorption than they are called upon 
to perform. 

Cambridge, March 9. 

XAXXIX. The Hfect of Interionie Force in Electrolytes. 
By 8. R. Mirygr, D.Sc.* 

Part II. 

Ionic Mosinity AND Osmotic PRESSURF. 

A lists first attempt to determine the. effect of interionic 
force on the ionic mobility is due to Sutherland f, 

whose method is based on the following idea :—The effect of 
the forces will approximate to what would be obtained if the 
ions were regularly distributed throughout the liquid, say 
at the centres of equal cubes. When they are displaced 

* Communicated by the Author. 
+ Phil. Mag. xiv. p. 1 (1907). 
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from these positions by an applied electric field, the interionic 
forces act as restoring forces in a way which would give rise 
to a sort of rigidity. of the ionic configuration were. it not 
for the fact that the “actions which produced the original 
uniformity ” (thermal motions ?) will cause the rigidity to be 
continually breaking down. The process of breaking down 
originates a special type of viscosity, which acts in addition 
to ordinary viscosity when conduction is taking place. A 
second type of viscosity due to the polarization of the medium 
is also discussed, and the conclusion is reached that when 
these viscosities are taken into consideration the diminution 
of X, with increase in the concentration, can be accounted 
for without any association of the ions into molecules taking 
place. 

Sutherland’s calculation does not bring the conductivity 
variation into any relation with that of the freezing-point ; 
and it is based on several speculative hypotheses which are 
not always convincing. This is particularly the case in 
regard to the assumed configuration of the ions ; the special 
type of regularity of this is a feature which is inconsistent 
with the general theory of the distribution of ions to which 
the kinetic theory leads. 

Effect of permanence of the distributzon on the mobility.—The 
method of calculation adopted here is based on the assumption 
that the distribution of the ions remains undisturbed in the 
interior of the electrolyte when a current is being carried. 
Suppose we have a mixture of positive and negative ions 
contained in a volume, and in the first place suppose that 
they are subject to no interionic forces. We must assume 
that they are distributed at random throughout the volume, 
for there are no data for assuming anything else. Now 
suppose that an external electric field is applied which gives 
each positive ion a velocity to the right, and each negative 
ion one to the left. In the interior of the volume the 
random distribution will not be disturbed, as is easily seen 
whether the velocities are all equal or whether they vary 
arbitrarily from ion to ion. 

When interionic forces are present the distribution is no 
longer random. It becomes modified in such a way that the 
chance of a positive ion being found in a given position will 
depend on the mutual potential energy which it possesses in 
that position with the other ions. ‘Tf we now imagine all 
the positive ions displaced to the right and the negative ones 
to the left—with the same or with arbitrary velocities—the 
distribution will be disturbed. It will, in fact, tend to be 
converted into a random distribution, Consequently we see 
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that, if the distribution is to remain permanent when the 
electrolyte is carrying a current, the velocity with which 
each ion must be supposed to move under the influence of 
the applied electric field must be a function at each instant 
of the mutual potential energy which the ion possesses with 
the others. 

The way in which the random distribution will be modified 
when the ions are subject to interionic force is given by a 
theorem due to Boltzmann. Let us suppose that we take 
a large number of instantaneous views of a certain region 
of the liquid, and that in each view we observe the positions 
and signs of all the ions which are present in it. We 
will confine our attention in the first place to those views 
alone, m in number, in which the region contains m ions, 
A,...Am, and no more, and we will suppose that these are 
all so far away from the ions outside the region that the 
forces between the ions inside and outside are negligible. 
This will simplify the statement of the argument without 
affecting the generality of it in any way, since the region 
may, if necessary, comprise the whole of the liquid. In a 
certain number, say v, of the n views, the m ions will be 
found in small equal volumes dv...dv,, situated at the 
points Py...Pm. For shortness we will call this the P confi- 
guration, and speak of the ion A, as “‘ occupying the position ” 
P,, the uniform size of the elementary volumes being under- 
stood. In another number v’ of views the ions will be found 
in positions P,'...P,,'(P' configuration). Ona purely random 
distribution we should have 

p=v', 

but in the modification caused by the presence of interionic 
force, 

le Tew a eer (5) 

v/v' here stands for the probability of the P configuration 
relative to that of the P’. ¢ and @’ are the respective 
mutual potential energies of the ions in each configuration, 
2. e. the work done by the system when the ions are moved 
to infinite distances apart. When the forces are attractive 
and ¢’ are negative quantities. *T= % x average translatory 
kinetic energy of an ion. 

Equation (5) can easily be transformed so as to represent 
the absolute probability of a given configuration (estimated 
under the special conditions attached to the total number of 
views n) by writing it in the form 

pe aes hoy, setae di ss ae fete.) 
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The essential feature of the ionic distribution represented 
by (6) is of course its permanence, that is, that it is un- 
disturbed by the thermal motions of the ions. Let us suppose 
that the m views were taken at certain times ¢,....¢,. If we 
were to take another set of views at times t,+T,....t, FT, 
where 7 is a very small time, we should find the same number 
of views in which the ions have the configuration P ; the 
actual views will not be identical in the two cases, in some 
of the n views at t the ions will have left the volumes dv, 
but in an equal number of other cases ions will have come 
into them. | 

Now suppose that the electrolyte is under the influence of 
an external electric field when these two sets of views are 
being taken. In addition to the thermal displacement 
which each ion undergoes in each of the times 7, it will be 
dragged by the electric field a certain distance to the right 
or left. We can effect a considerable simplification by 
observing that, since the thermal displacements do not affect 
the distribution, we can imagine them to be non-existent 
without affecting in any way the result of reasoning con- 
cerning the effect on the distribution of the displacements 
due to the electric field. With this simplification the 
problem to be solved becomes this :—A set of views at times 
ty,...tn, and another set at t;+7,...t,a+7, being taken of a 
system of ions existing in configurations the probability of 
which is given by (6) and at rest during the intervals 7 so 
far as thermal motions are concerned, but in which each ion 
is dragged during the intervals by an external force to right 
or left according as it is positive or negative, what is the 
average velocity with which an ion such as A, in a given 
position must move in order that the distribution may not 
be disturbed ? By the average velocity is meant the average 
for all the views which show the ion in the given position, 
but as it makes no difference whether it varies from view to 
view or is uniform, we may in the calculation treat it as 
uniform. 

Let w,...U¢m be the velocities of eachion Ay,...A,,. Describe 
small cylinders of area a and of arbitrary lengths dx,...dxm, 
near each of the points P,,...P,, to the right or left of the 
points according to the sign of the ion. The number of 
cases in which an ion is to be found in each of these cylinders 
will be the same in the views at¢+7 as it is in the views at ¢. 
Consequently the number y, of views in which an ion 
will enter each cylinder during the intervals 7 is the same 
as the number y, in which an ion will leave each cylinder. 
But », coniprises all those views in which the m ions are 
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situated in the infinitesimal volumes aujT,...aupT at P53: ee 
or 

— /KT v= Ke ayt.. dt. 

A similar expression holds for v, except that both @ and the 
w’s are infinitesimally different : 

Vo= Kn heat ++ Leda, a+ fe 
i 

du, dum 
a ( + Ta 1)? a tin + Tate) 7 

Hquating v, and v, we get 

Gb ig ern Gs ig OE i 
ia, *° Mab =..= 7 fe OFT at =0. * (7) 

Now, if we write ¢ in the form 

p= hit oi =$2t go’, 
where ¢, is the mutual energy of A, with all the rest, o,/ the 
mutual energy of all the m—1 ions other than Aj, ¢, that 
of A, with all the rest, &., we see that the only part of ¢ 
which is affected by d/da, is $;, and similarly for each of 
the other ions. Consequently, integrating (7), we see that 
the conditions which must be satisfied in order that the 
distribution may not be disturbed are 

ue?" = const., 

use” °2"* —const., &e. 

The constant is independent of 2, that is, of $1, do, &e., 
and is equal to the velocity with which an ion will move 
when it is so far away from the others that its mutual energy 
with them is zero. In these circumstances the velocity will 
be conditioned simply by the friction of the water, and it is 
clearly the same for all ions of the same sign. Calling it up 
in unit field, we shall then have for the mobility u,, which an 
ion must be reckoned to possess when it exists in a place 
where its mutual energy with other ions is qy, 

Uy = uperuet . e ° e (8) 

Effect on Osmotic Pressure.—In the method of the kinetic 
theory of considering the pressure of a gas as the rate at 
which momentum is transferred through a unit plane within 
it, a careful distinction must be made between “internal ”’ 
and “external” pressure. Consider a gas in which—say by 
impressed mechanical forces—the potential energy of a 
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molecule when in a certain region R is @ (a negative 
quantity) and zero elsewhere. ‘The distribution will be such 
that the chance of a molecule occupying a position inside R is 
to that of its occupying one outside as e~®”": 1, and, in fact, 
the densities in the two parts will adjast themselves in this 
proportion. If we imagine a unit plane situated inside R, 
the momentum transferred through it per second will be the 
total pressure inside R, but it is only a certain fraction— 
e*?**__of the molecules passing through the plane which 
are capable of transferring their momentum outside the 
region. We can thus divide the pressure in R into two 
parts—the external pressure, which is due to momentum 
eapable of being transferred outside it, and which is, in fact, 
in equilibrium with the pressure outside, and the internal 
pressure, which in this case will be exerted on the mechanical 
constraints which cause the increased density in R. 
A similar state of things occurs when we deal with a group 

of ions existing momentarily in a liquid. The whole 
momentum passed per second by the ions of the group 
through a unit area drawn in the interior or the group will 
not be delivered to places of zero potential energy, and the 
fraction of it that is so delivered will be in statistical 
equilibrium with the pressure exerted by those ions which 
are in positions of zero energy. We may call this fraction 
the external pressure p of the ions in the group or the 
pressure of the “free” ions—understanding by free ions 
those which momentarily have no mutual energy with any 
others. Let us inquire how much of the momentum of an 
ion existing in a group such as that considered above would, 
on the average, be capable of being transferred to a place of 
zero potential. 

Consider a single ion of mass m moving in a random 
direction with velocity v. The average rate at which it 
transfers, parallel to a given direction, the component in 
that direction of its momentum is 4mv’, or, if we take into 
the average all the possible velocities which it may have, 
dmv? or kT. The sum of this quantity for every ion in the 
mixture gives the total (2. e. internal+external) pressure 
x volume, PV, of the electrolyte. The contribution of each 
ion to the total PV is thus a scalar quantity 4mv? associated 
with the ion—these contributions will therefore obey the 
same law of distribution as do the ions themselves. 

Consider now two configurations P and P’ of the group 
of m ions dealt with above. In P the ions occupy the 

Phil. Mag. 8. 6. Vol. 35, No. 208. April 1918. 2C 



358 Dr. 8. R. Milner on the Effect of 

positions P,...P,, the mutual energy is 6=¢,+¢,’, and the 
number of views in which it is found is 

y= KneW oe Ou dy. Ane a 

In P’ let Ay...A,, be in the same positions as before, but 
let A, be in a place of zero mutual energy. The mutual 
energy of the group is now ¢,/ and the number of views in 
which this configuration is found is , 

-_ "Kk 
v'=Kne P11 Tdv,...dVm. 

In the series of » views taken one after the other at 
arbitrary times the configuration of the system is changed 
between one view and the next by complex thermal motions. 
Omitting all the other views, let us confine our attention to 
the}y views of the configuration P and the v’ views of P’. 
These are observed at certain successive times and are all 
the views of these configurations which are observed in the 
series, In the intervals between them the configurations 
change over one into the other as the result of thermal 
motions, but not indiscriminately. It is only in a fraction 
v'/v of the v views of the P configuration that a change by 
thermal motions into the P’ configuration will occur. Ona 
random distribution the fraction would be unity. The change 
in the configuration considered consists simply in the trans- 
ference by thermal motion of the ion A, from a position of 
mutual energy dq, to one of zero mutual energy. We see 
that, given the ion in this position, the probability that such 
a transference will take place is not the same as it would be 
on a random distribution (7. e. in the absence of interionic 
forces), but v’/v or e*"" times as great *. 

On a random distribution the whole of the scalar property 
1 Lmv® associated with each ion is capable of being transferred 
from one position to another. This gives a random, or on the 
large scalea uniform, distribution of the pressure throughout 
the volume. It follows from the preceding proposition that, 

* The proposition is so far only proved for the case in which the 
m—1 ions other than A, remain fixed during the transference of Aj. 
If these also undergo displacements we shall have a simultaneous 
alteration of gd, and ¢,'. In so far as these displacements affect ¢, only, 
it is immaterial to the argument whether A, reaches a state of zero 
mutual energy by its own displacement or by suitable ones of the other 
ions, the expression for v'/y being the same in either case. If, on the 
other hand, they alter ¢,', the expression (9) shows that this is an event 
independent of the change in A,’s mutual energy, the probability of the 
simultaneous occurrence of the two events being the product of the two 
probabilities. The truth of the proposition is thus unaffected by all 
other ionic changes which may proceed simultaneously with the trans- 
ference of the ion A, to a position of zero energy. 
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when interionic force is present, the average amount of the 
property which is capable of being transferred from a position 
in which the mutual energy of its ion is ¢, to a position of 
zero mutual energy, is 

WE ess). ah ey eee (LO) 

This quantity represents the contribution to the external 
pV made by the ion when it forms part of a group. The 
summation of it for each ion in the electrolyte would give 
the external pV or, strictly speaking, its instantaneous 
value in the view observed. The external pressure of a 
system of ions subject to interionic force determined in this 
way is a perfectly definite thing everywhere in equilibrium 
throughout the volume. It is identical with the pressure of 
the free ions as defined above. Superposed on it in the 
interior of groups is the internal pressure (got by summing 
Lmv?(1—e*") for each ion), which is exeried against the 
mutual forces and is not effective on the walls. 
A comparison of the result (10) for the contribution of 

an ion to the external pV when it is in a position of mutual 
energy with others with that (8) for the mobility of the ion 
in the same circumstances, shows that both are affected 
by the mutual energy in exactly the same way. Suppose 
now we follow in imagination the history of an individual 
ion in an electrolyte for a long time. We shall observe that 
its state as regards the mutual energy ¢, which it possesses 
with other ions is continually varying. If we take the average 
value over a sufficiently long time of the quantities 

ue * and kT. 6%", 

we shall get in the first instance the average value of the 
mobility «u, of the ion (which is of course the same as 
that w of any other ion of the same kind, but up differs if 
the kind differs), and in the second instance a quantity 
which, when multiplied by the total number N of ions in the 
electrolyte (combined or not) gives the product pV of the 
pressure of the free ions into the volume. It is clear that, 
whatever the effect of ¢; may be on the actual values, we 
shall always have 

uty 
pV N&T 

Hence in an electrolyte, while alterations with the concen- 
tration of w and pV may, and indeed will, be produced as 
the result of the presence of interionic forces, the alterations 
will always be such that the ratio of u to pV remains 
unaffected, 

= G0lisb: esas CL) 

202 
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Part ITI. 

The theorem thus proved can be applied to throw some 
light on the nature of the interionic forces in strong electro- 
lytes, but before applying it it is necessary to identify u, 
and p clearly with measured physical quantities. As regards 
uo there is no difficulty : it represents the mobility of an ion 
in a region where it is free from interionic force. wp is 
there conditioned only by the friction of the water, and can 
thus be identified with the experimentally determined 
mobility at zero concentration to which the same condition 
applies. The case is different for p the free ionic pressure. 
In what relation does this stand to tlie measured osmotic 
pressure? It will be useful to consider this point in 
connexion with three possible theories of the constitution of 
electrolytes. . 

(1) In the original theory of Arrhenius electric interionic 
forces are neglected, and an ion is assumed to be definitely 
either associated (when it contributes nothing to the free 
lonic pressure p) or free. Although p is not susceptible 
to direct measurement, a clear conception of it can 
be got. 

The general theorem is of course independent of the law 
of force between the ions and applies to this theory equally 
with others. Interionic forces (of the kind referred to 
below as “chemical” forces) produce an increase in the 
frequency of occurrence of ions in an associated state with a 
consequent reduction in the pressure of the free ions in the 
ratio of 1—@:1. The average mobility of an ion, taken 
over a period long enough to include its being combined as 
well as free, is reduced in the same ratio. This agrees with 
the experimental requirement of an equality in the freezing- 
point and conductivity variations, for in calculating the 
complete osmotic pressure P, allowance must be made for 
the molecular pressure of the fraction @/2 of associated ions. 

The reduction in P is thus in the ratio (1- B+ e) : 1, and 
consequently 

Toe Nici Mu 
ee a Le B, 

in agreement with the experimental results (v. Part I.). 
The difficulty here, as already mentioned, is the failure of 

the mass action law (4) to represent correctly the variation 
of 8. When we consider the dynamical assumptions on 
which (4) is based, we find it essential that the forces which 
tend to produce association of the ions must fall off very 
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rapidly with the distance*. The law indeed forms a limiting 
case for which the field of force surrounding each ion is 
infinitely strong but confined to an infinitely thin shell. 
This means that the mass law (4) applies solely to asso- 
ciation and dissociation which is the result of what we may 
call “ chemical ”’ forces, using this name to distinguish forces 
of this type from the electrical forces of the free ionic 
charges which fall off very slowly with the distance. It 
association is produced by these (4) will not apply to it. 

(2) The preceding conclusion suggests that the failure of 
the mass law may be due to a mistaken view of the nature 
of the interionic forces which cause association. The 
apparent association may be partly—or wholly—due to the 
electric forces. In attempting to investigate this view the 
first difficulty is to know exactly what is the law of force 
between the ions. Are we to assume that every + ion 
attracts every — ion and repels every + ion in the liquid 
according to the inverse square law? If the mixture of ions 
were a gaseous one this assumption would presumably be a 
sound one, but its validity is more doubtful in the case of an 
electrolyte, where the forces between the ions are affected by 
the intervening water molecules. As the first step, however, 
it seems the most straightforward assumption to make, and 
in previous papers ft I have worked out by what is, I think, 
a strict method, the approximate effect on the osmotic pressure 
of a mixture of ions in which interionic force of this charaeter 
is assumed to exist. The calculation, as might be expected 
from the complexity of the forces, is lengthy and need not 
be further referred to. The net effect of the interionic 
forces was found to give a reduction of the osmotic pressure 
which appears to be in accurate agreement with the experi- 
mentally found results for dilute aqueous solutions of strong 
binary electrolytes. Inthese cases therefore there is ground 
for believing that “chemical association,’ if existent, is 
extremely small, and that the effects observed are due 
entirely to the electrical interionie forces. Before we can 
apply to this view the proposition of the present paper, it is 
necessary to settle the relation in which the free ionic 
pressure p stands to the measured osmotic pressure P. 
Unless they are different from each other, an znequality 

* This is the kinetic aspect of the thermodynamical stipulation that 
the osmotic pressures of the ions must obey the perfect gas law. The 
assumption is formally made in Boltzmann’s original deduction, and it 
can easily be shown that any other will result in a law different 
from (A). 

+ Phil. Mag. xxiii. p. 551 (1912); xxv. p. 742 (1913). 
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between the freezing-point and conductivity variations will | 
result from the proposition. For if 8 is the fractional 
alteration of pV, and therefore of u, and if further p=P, 
we shall get 

Tt) Via i. Gada 
eT Ree Rp 20-8) ; x =1—8, 

which is in conflict with the experimental result (3) 
(Part I.). | 
p and P, however, cannot be the same, as is evident from 

the following consideration :-—Consider a pair of ions which 
happen to be fairly close together and under the influence 
of each other’s attraction, and let a number of representative 
views be taken. In a certain fraction—e®/“"—of the cases 
the ions contribute to the free ionic pV, in the remainder of 
the cases the ions act as though bound together and contribute 
nothing to pV, but in these cases the pair will make to the 
measured PV exactly the same contribution as if the ions 
formed an actual molecule. ‘The effect of electrical forces is 
in this respect exactly similar to that produced by chemical 
association. The electrical bond it is true persists when the 
ions are well separated from each other, while the chemical 
bond acts only at very small distances, but this difference is 
immaterial in considering the molecular pressure which a 
pair of bound ions will exert. For the type of force con- 
sidered, however, the bonds are not confined to single pairs 
of ions, but each pair must be considered as forming part of 
a large group, with the rest of the ions in which it possesses 
a certain mutual energy, and so is not free to exercise its 
full molecular pressure. While a difference between p and 
P may on these lines be inferred to exist, it is difficult to 
settle exactly what it is*. It seems doubtful that it would 
be such as to give the exact equality between ®, and B, 
which experiment suggests unless the mutual energy between 
each pair and the rest of the group is negligible. 

(3) A theory which is to some extent intermediate 
between (1) and (2) has much to recommend it. We must 
infer from the preceding comparisons that the interionic 
forces must extend over considerable distances, as it is only 

* The straightforward way to settle this point is to calculate p by a 
method in accordance with its definition on p. 357 and compare it with P, 
The calculation can be carried out strictly by exactly the same method 
as that by which P was originally determined (Joe. ct.). It has been 
done, but unfortunately the numerical results in both cases can only be 
obtained in an approximate form which is not sufficiently accurate to 
determine definitely what is the difference between them. 
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in this way that a satisfactory explanation of the failure of 
the mass action law can be got. On the other hand, the 
idea of the molecular pressure of a pair of associated ions 
seems also necessary to obtain an accurate agreement with 
the experimental equality of the freezing-point and con- 
ductivity variations. Both conditions will be satisfied if 
the law of interionic force be such as practically to confine 
the electrical attraction to pairs of nearest ions. Now, the 
view that in an electrolyte each + ion attracts every — ion 
and repels every + ion is undoubtedly a highly artificial 
one. How artificial it is is made evident by observing that 
the mutual energy. of an ion with others would have to be 
expressed as a sum of hundreds of terms before any close 
approximation to its value could be obtained. These repre- 
sent the mutual energies with the nearest ion, the next 
nearest, the third nearest, &c., and form terms which partly 
cancel each other as the successive ions are + and —. 
It is unlikely that this state of things represents a physical 
reality. Indeed, the assumption on which it is based, that 
the action of the water molecules can be simulated by that 
of a continuous medium of S8.1.C. the same as that of water in 
mass, is hardly likely to be true. It is probably a good deal 
nearer to the truth to imagine surrounding each ion a 
number of polarized water molecules which tend to form 
chains linking together pairs of temporarily nearest oppo- 
sitely charged ions. Such an action would not be the same 
as that of a uniform medium; it would be more analogous 
to the action of iron filings in forming chains between two 
magnetic poles. The general effect would be to increase the 
attraction between an ion and the nearest one to it of unlike 
sign at the expense of the attraction of more distant ones, 
which latter might well be negligible in consequence. 

The view of the constitution of an electrolyte which is 
thus attained will satisfy both the requirements mentioned 
above, which are essential to a satisfactory theory. On it 
we may imagine all the ions divided into pairs formed of ions 
which are temporarily nearest together, the individuals of 
each pair undergoing continual change. Between the ions 
of each pair electrical force exists, which in many ways is 
similar to a chemical bond, but is different in others. Thus, 
with chemical association, an ion is either free or combined, 
it cannot be both together, but here it possesses simultaneously 
characteristics of both conditions. The ions in each pair, 
for instance, will be separated spatially from each other 
nearly as widely as if they were quite free; they are free 
(e. g. to carry current or exert ionic pressure) in a fraction 
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of the cases in which the pair is observed, while they act as 
combined (exert a molecular pressure) in the remainder. 
It seems to me that it is a theory on lines similar to these 
which will ultimately succeed in reconciling all the difficulties 
connected with strong electrolytes. 

SUMMARY. 

(1) A critical discussion of the way in which the law of 
mass action fails for strong electrolytes leads to the conclusion 
that the reduction in the molecular conductivity with 
increasing concentration must be ascribed mainly to a 
reduction in the mobilities of the ions, and not to a reduction 
in their number by association into molecules. 

(2) A theoretical investigation of the effect of interionic 
force shows that identical variations with the concentration 
will be produced in the conductivity and in the osmotic 
pressure of the “free” ions (as defined on p. 357). 

(3) The application of this result to strong electrolytes 
shows that the variation in the conductivity and the freezing- 
point can be best explained by a modification in the view we 
take of what constitutes association. According to this ions 
in strong electrolytes are not associated into molecules; they 
are neither completely associated nor completely free, but 
pairs of ions which are temporarily nearest together, in 
consequence of the electric forces between them, will, in 
a fraction of cases, act as if bound together, and in the 
remaining cases as if free. 

The University, Sheffield, 
December 1917. 

XL. Bessel Functions of Equal Order and Argument. By 
G. N. Watson, 1.A., D.Sc., Assistant Professor of Pure 
Mathematics at University College, London*. - 

1. PPROXIMATE formule for the Bessel function 
and its derivate, J,(n) and J,'(n), (when n is 

large) have been discussed in numerous papers during the 
last few years} ; several of these papers have appeared in 
this Magazine. 

* Communieated by the Author. 
t Debye, Math. Ann. lxvii. pp. 5385-558 (1909). Rayleigh, Phil. 

Mag. Dec. 1910. Nicholson, Phil. Mag. Dec. 1907, Aug. 1908, Feb. 
1910. Watson, Proc. London Math. Soe. (2) xvi. pp. 150-174 (1917) ; 
Proc. Camb. Phil. Soc. xix. pp. 42-48 (1917). Various numerical results 
have also been given by Airey in a series of recent papers in the Phil. 
Mag. 
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The associated function 

1 
i} Jn(nz)dx, 

0 
which does not occur in many of the physical problems in 
which the other Bessel functions present themselves, appears 
to play a prominent part in connexion with various series 
arising in the theory of Hlectromagnetic Radiation, and 
consequently Professor Schott has asked me to determine 
whether there is any approximate formula analogous to the 
results 

Eg) 3°L(8) 
Jn OO 2 aa 19 J 3 ° 

My mT 2338ns ya m2iné 

This note, in which I prove the remarkably simple result 
that 

(*S.eadeood, os Vi atiiaene aah 

is the outcome of his inquiry. A closer approximation is 
given in $4, but it involves the gamma function of 1/3 ; 
this more precise result is 

(5 (ndaneeee eee 
Joe ieee B85 nT Dh 

In order to obtain this approximate formula I propose to 
employ not the elementary methods which I have used 
elsewhere * in connexion with J,(n) and J,'(n), but the 
methods which depend on the contour integrals of Debye ; 
the latter methods yield the desired result with a much 
smaller expenditure of labour. 

2. We take the well-known contour integral 
(0+) 

J,(n@) = : 5 pe), - Babs 

Gin which the contour starts from —, encircles the origin 
once counter-clockwise, and then returns to —), and on 
integrating under the integral sign we get 

‘i Le hree Re 4n(t—1/t) t—"dt \ J,(nz)da= nineties se 1! Fa] 

iy. dt == St eae v9 1} 

nit Y_« t?7—1 

1 (1-1 
+f" oni 

* See the last of the papers cited. 
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In the last integral of all, we deform the contour into a 
circular are of indefinitely great radius, starting and ending 
at —o. Since n is supposed to be positive the integrand 
is O(t~*) on the deformed contour, and so the integral is zero. 
We thus obtain the formula 

*O+) dt. 1 , 
) Jn(na)da= al gage) 1 

0 —o t —l 

i 
nT 

Now that the large variable x only occurs in a single 
term of the integrand, we proceed to apply the methods of 
Debye by choosing a contour on which 

$£(t—1/t) —logt 
is purely real. 

Writing t=re", we see that the contour has to satisfy the 

condition (r+1/r) sin@—20=0; 

this equation is satisfied if @=0 or if 

r= 6 cosec 0{1+,/(1—6-? sin? 9}. 
Taking the upper sign, so that 

r= 6 cosec 0{1+,/(1—0-? sin? @)}, . |, (8) 

we obtain a contour of the required type if we take @ to 
vary from —7 to 7. 

The contour, which is symmetrical with respect to the 
real axis, passes through (1, 0) and has an abrupt change of 
direction at that point ; its direction immediately above the 
real axis is inclined 4m to the positive direction of the real 
axis *. 
We thus get 

- pie i e —nFE(6) t if dr : 

where 7 is given as a function of @ by equation (3), t=re® 
and f 

F(6)=4(r—1/r) cos O— log r. 
Now wat 1 

t#—1° (r—1/r) cos 0 +2(r + 1/r) sin 6 

_ (l/r) cos 0—1(7 + 1/r) sin 8 
ie r* + 1/r?—2 cos 20 

* This is easily proved; it is suggested by the fact that $(¢—1/t) —logt 
has a triple zero at t=1. Various properties of the contour are given 
in the first of my papers to which reference is made in§1. The curve 
obtained by giving the lower sign to the radical is the inverse of the 
curve obtained by taking the upper sign. 

+t In my previous paper, it was convenient to call this function F(6, 1). 
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Since 7 is an even function of 6, we easily deduce that 
‘Tt “or 

{ Jy(na)da= = = {1a 
0 

ae + 1/r) sin 0(dr/rd@) — (—1/r) cos 6 
y? + 1/7? —2 cos 20 

Now it is easy to show that 

(r+1/r) sin 0(dr/rd@) —(r—1/r) cos @ 
7 + 1/7?—2 cos 20 

led ,27 sin 0 

= ee 1—?7 

jo sin 6 ie en sin. G4) 

=3 a0 l+r asd 1—rcos@ j * 

But the contour starts from (1, 0) in a direction making 
an angle 27 with the line joining this point to the co ; 
and so tan-1{rsin@/(1—rcos@)} decreases from 37 to 0 
as @ increases from 0 to 7, while tan~'{rsin 6/(1+7 cos @) 
increases from 0 to 7 in the same circumstances. 

We therefore write equation (4) in the form 
a i 9 e 

\ J,(nxz)da= aa, ji—e*} a }tan™ a —n} dé 

ae! =<[{1- enna} { tan- He ee -o} | 

rs =e ae {n— oad ae sind F’(6)d0 

To 1—r 

on integrating by parts ; that is to say 
1 7 ; 

if Jn(na)dz= s ere { tan =r F’(6)d@, (5) 

it being observed that F(0)=0, F(7)=, so that the 
integrated part vanishes at each limit. 

Now F’(@) is positive* when 0=6=7, so that F(@) isa 
steadily increasing function of 6. Moreover, we can show 
that m—tan~1{2r sin 6/(1—7r’)} is a steadily decreasing 
function of 8. For we have 

1d -2rsin 

eG + ‘a. sin in O(de /rd0) — (r—1]r) cos 6 
7 + 1/r*?—2 cos 26 

By 6+ sin @ cos @— 26 cot 8 iu ‘ 

~ 2(6?— sin? 6 cos? @),/(0?— sin? 6) ae to 

* Proc. London Math. Soc, (2) xvi. p. 153. 

“d6. (4) 
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Now 6+ sin 8 cos 0 — 26? cot 8 vanishes when 6=0 and has 
the positive derivate 2(cos 0 —6 cosec @)? ; hence it is positive 
when 0<@<7. The function 

7 — tan~' {2rsin 0/(1—7’)} 

therefore has a negative derivate, and the desired result is 
roved. ° 
Taking F(@) as a new variable, I, and writing $(F) for 

the function m— tan! {2r sin 6/(1—7”)}, we have 

- 1 5 V\ .—2k 
( Jn(na)dae= — ( b(F)e "dk, 
wOt te Le Fi) 

where $(F) is a positive decreasing function of F such that 

P(O)=37. . vs Mae 
Hence, since the integral on the right is uniformly con- 

vergent for large values of n*, 
1 ies) 

Lim [nf Ty(nse)de | = Lim =| h(u/n)e—“du 
n> 0 n~—>o 7) 

= (0)/r=3. 
That is to say, 

a) 

{ Jn(na)da os ne 
; 3n’ 

which is the result stated. 
From the formula 

Ty oO 

n nn dae = a) h(u/n edu 
0 To 

it is evident that the function on the left steadily increases 
(for all positive values of n) as n increases. 

3. When v is an odd integer we can express the integral 
as a sum of Bessel functions, since we have 

wa nN 

n| Tn(na)da= | Jn(y)dy 
e/ 0- 

In(Y) =In—2(y) — 25 m—1Y) 
and 

whence we find 

1 

nf Jn(nx) da 
Q 

=| 105 (y) —2J3_'(y) —— 2S 4'(y) eiates Soa 2J,-1(y) dy 

0 

=1—$Jo(n) + 232(n) + 23n(n) +... + 2d n-a() f. 

* Bromwich, ‘Infinite Series,’ pp. 434, 436. 
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When n is an even integer, we find that 

DY J. nzjde— \ "Jo(y)dy —24Fi(n) +I;(n) +... +In_aln) f- 
20 0 

The integral on the right does not séem to be expressible 
by elementary functions, but we have 

( Jo(y)dy =1— | Joly ay 

sin (}7 —n) 

/ (a7) 
by integrating the ordinary asymptotic expansion of J(y). 

The following table indicates the mode of increase of 

ool — 

1 

nf J,(nx)d# to its limit (namely 4) as n increases through 
Jo 
the odd putegral values: L, 35 eae! . 

:. th, J,(nx)de. | nN. ng n(mzjdz. 

1 02348023 | 13 0:3175245 
3 02878604 =| 15 03190390 

har 5 03020018 =|, 03202397 
Pare 0:3087657 || 19 0:3212187 
| 9 03128134 || 2 0:3220347 
ae 03155424 | 283 0:3227271 

4, We can obtain a closer approximation to the integral. 
in the following manner :— 
When @ is small we have 

9+ sin 6 cos O—26? cot dw 86°/45, 

6? — sin? 0 w 64/3, 

6? — sin? @ cos? 6 ow 464/3, 

F(0) ww 469/(9,/3). 

Hence from (6) we find that m—tan7!{2r sin 6/(1—77) } 
is a function of @ approximately equal to 

37 —O'/(5\/3), 
and the complete expansion of this function involves even 
powers of @ only. 
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Since F'(@) is an odd function of 0, it follows that $(F) is 
expansible in a series of ascending powers of F%, convergent 
when F is sufficiently small, in which the first two terms are 
given by the formula 

b(F) coda — 2238 3/20, 
and hence the integral of J,(na#) possesses an asymptotic 
expansion in which the ratio of consecutive terms is of 
order n*, the first two terms being given by the formula 

: LY 2888 
J,(nw)dwoo5- — - =I 

{ mi. on 20nnt 
a 23 

wo — —— 
dn 385nsT\(4) 

This approximation gives the value of the integral correct 
to four places of decimals when n= 23. 

201 

XLI. Notices respecting New Books. 

The Electron. Its isolateon and measurement and the determination 
of some of rts properties. By Ropurt ANDREWS MILLIKAN, 
Pp. xii+268. The University of Chicago Press. Price 7s. net. 

~TARTING with a brief historical account of the rise of the 
electron theory, the author soon reaches the question of the 

determination of the electronic charge e, and, after describing 
briefly the early work of the Cavendish school, and the difficulties 
encountered, he devotes special attention to the experiments 
carried out by himself and his students in the Ryerson laboratory 
of the University of Chicago. In these experiments, in place of 
Wilson’s cloud, a single oil drop was observed; and Professor 
Millikan gives a most interesting account of the method by which the 
capture of single electrons by a drop was observed, the corrections 
to Stokes’ law necessitated by the small radii of some of the drops, 
and the final determination of e to be (+'774+:005) x 10-1” electro- 
static units, and N, Avogadro’s constant, to be (6°062 +°006) x 1023. 
Healso details experiments carried out on the Brownian movement 
in gases to determine N. 

Not long before the war Ehrenhaft published an account of 
series of experiments which he considered to demonstrate the 
existence of a sub-electron, or charge very much smaller than the 
electron. Few English physicists found the work convincing, 
but, nevertheless, it aroused some attention. Professor Milhkan 
devotes a chapter of his book to discussing this question of a 
sub-electron, and brings forward very strong arguments, based on 
his own experience, for supposing Ehrenhaft’s results to be a 
development of experimental errors and uncertainties. There 
seems no doubt that, according to the best experimental evidence 
at present available, the electronic charge e is constant and indi- 
visible, as was universally assumed. 
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The last two chapters are devoted to the structure of the atom, 
and the nature of radiant energy. The author gives a clear 
account of Moseley’s famous experiments on the characteristic 
X rays, and of Bohr’s very successful atom model of Rutherford 
type. In discussing the quantum theory he describes his expe- 
riments on the initial velocity of the photo-electrons, and the 
consequent determination of #. He concludes with a sketch of 
the still unexplained difficulties which beset the construction of a 
satisfactory theory of radiation. 

The style of the book is very clear and pleasant, all but the very 
simplest mathematical considerations being dealt with in a little 
series of appendices. The Cavendish work, so familiar to English 
physicists, is dealt with briefly, while Professor Millikan’s own 
work, which has been less described in text-books, is exposed at 
greater length. The short accounts of the most recent theories 
are excellent. The book will be read with pleasure and profit by 
the physicist, while at the same time its clarity and directness 
render it available to any man of general scientific training. 

Napier Tercentenary Memorial Volume. Edited by C. G. Knorr. 
Published for the Royal Society of Edinburgh by Longmans, 
Green and Co. Quarto. Price 21s. net. 

THis volume of Essays and Addresses, contributed to the Ter- 
centenary Congress, forms a worthy memorial of the publication 
of Napier’s wonderful discovery. It is appropriate, too, that on 
this occasion special attention should be drawn to the extensive 
logarithmic tables calculated by Edward Sang, which have too 
long remained unpublished. ‘* What more fitting outcome of the 
Napier Tercentenary could there be than making accessible to 
the civilized world the fundamental part of these great tables, 
calculated in the very city where John Napier invented the 
logarithm and gained undying tame as a benefactor of his 
race ?” 

In his inaugural address, Lord Moulton traces the different stages 
in the development of the discovery of logarithms, whilst other 
papers deal with the life and work of Napier. The question of 
Napier’s claim to priority of discovery is fully discussed, and valuable 
papers on logarithms and logarithmic computations form an im- 
portant part of the volume. The Essays more directly concerned 
with mathematical tables will be of most interest to calculators, 
whose labours will be considerably reduced thereby. Prof. Andoyer 
contributes an interesting and suggestive paper on fundamental 
trigonometric and logarithmic tables. The arrangement of tables, 
the reduction of the number of entries and of the mean error, and 
a method of extending the accuracy of tables by improvement of 
differences, include only a few of the numerous and important 
essays contained in the volume. Mathematicians interested in 
history and methods of calculation are greatly indebted to the 
Editor, Dr. Knott, and to the experts who have made such valuable 
contributions to the study of this subject. 
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Modern Instruments and Methods of Calculation. A Handbook of 
the Napier Tercentenary Exhibition. Edited by HE. M. Horspuren. 
Geo. Bell & Sons and the Royal Society of Edinburgh. Price 6s. 

Tae Handbook is a mine of information on all questions relating 
to calculations, and the aim of the Editor and the Committee to 
make this volume useful to those engaged in computation has 
been fully realized. Special mention should be made of the list of 
mathematical tables, including tables of logarithms and other 
functions and of the chapters devoted to calculating machines and 
mathematical laboratory instruments. Logarithmic computation 
is being extensively supplemented by that of mechanical calculators, 
and the increasing number of those who use these machines will 
find the descriptive article on this subject of much interest. The 
chapter on instruments gives a detailed account of integrometers, 
planimeters, harmonic analyzers, and other mechanisms required 
for special purposes. Other chapters deal with slide-rules, ruled 
papers, and mathematical models. Ihe Handbook forms a fitting 
companion to the Memorial volume, and will be a valuable addition 
to the library of every student of mathematics. 

Elliptic Integrals (Mathematical Monographs, No. 18). By Pro- 
fessor Harris Hancock. Pp. 104. New York: John Wiley 
& Sons; London: Chapman & Hall. 1917. Price 6s. net. 

Tis excellently produced volume is one of a series of mathe- 
matical monographs now. appearing in America. It contains 
an account of the three elliptic integrals, the integral of the 
third kind, however, receiving only: passing notice. Starting 
with the definition of elliptic integrals as the integrals of ex- 
pressions when cubics and quartics occur under the root sign, the 
author gives the reduction to Legendre’s normal form, and illus- 
trates some of the more obvious properties of the functions with 
excellent graphs. After treating the sn, cn, dn, functions and the 
Gudermannian he deals in detail with the reduction of various 
types of integrals of the first kind to Legendre’s form, and then 
passes on to the methods of numerical computation of the first 
and second kind of integral. This part of the subject is developed 
at some length, and illustrated with detailed numerical workings. 
After a few well-selected examples and exercises the book closes 
with five place tables of elliptic functions of the first and second 
kind, taken from Levy’s well-known work. 

The book is well-planned and clearly written, and can be under- 
stood by any student well-grounded in the elements of the calculus. 
Tt forms an excellent introduction, and will, we think, be weleomed 
by those who, without having much time to devote to the subject, 
wish to possess a concise and accurate account of the fundamental 
properties of elliptic integrals, 
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XLII. On the Scattering of Light by a Cloud of similar 
small Particles of any Shape and oriented at random. 
By ord Rayueien, O.M., P.RS.* 

OR distinctness of conception the material of the par- 
i ticles may be supposed to be uniform and non-magnetic, 
but of dielectric capacity different from that of the sur- 
rounding medium; at the same time the results at which we 
shall arrive are doubtless more general. The smallness is, of 
course, to be understood as relative to the wave-length of the 
vibrations. 
When the particles are spherical, the problem is simple, as 

their orientation does not then enter t. If the incident light 
be polarized, there is no scattered ray in the direction of 
primary electric vibration, or if the incident light be un- 
polarized there is complete polarization of the light scattered 
at right angles to the direction of primary propagation. The 
consideration of elongated particles shows at once that a want 
of symmetry must usually entail a departure from the above 
law of polarization and may be one of the causes, though 
probably not the most important, of the incomplete polariza- 
tion of sky-light at 90° from the sun. My son’s recent 
experiments upon light scattered by carefully filtered gases t 
reveal a decided deficiency of polarization in the light emitted 

* Communicated by the Author. 
+ Phil. Mag. vol. xli. pp. 107, 274, 447 (1871), vol. xii. p. 81 (1881), 

vol. xlvii. p. 375 (1899); Scientific Papers, vol. i. pp. 87, 104, 518 
vol. iv. p. 397. 

t Roy. Soc. Proc. Feb. 28, 1918. 

Phil. Mag. 8. 6. Vol. 35. No. 209. May 1918. 2D 
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perpendicularly, and seem to call for a calculation of what is 
to be expected from particles of arbitrary shape. 

As a preliminary to a more complete treatment, it may be 
well to take first the case of particles symmetrical about an 
axis, or at any rate behaving as if they were such, for the 
calculation is then a good deal simpler. We may also limit 
ourselves to finding the ratio of intensities of the two polarized 
components in the light scattered at right angles, the prin- 
cipal component being that which vibrates parallel to the 
primary vibrations, and the subordinate component 
(vanishing for spherical particles) being that in which the 
vibrations are perpendicular to the primary vibrations. 
All that we are then concerned with are certain resolving 
factors, and the integration over angular space required to 
take account of the random orientations. In virtue of the 
postulated symmetry, a revolution of a particle about its own 
axis has no effect, so that in the integration we have to deal 
only with the direction of this axis. It is to be observed 
that the system of vibrations scattered by a particle depends 
upon the direction of primary vibration without regard to 
that of primary propagation. In the case of a spherical 
particle the system of scattered vibrations is symmetrical 
with respect to this direction and the amplitude of the 
scattered vibration is proportional to the cosine of the angle 
between the primary and secondary vibrations. When we 
pass to unsymmetrical particles, we have first to resolve the 
primary vibrations in directions corresponding to certain 
principal axes of the disturbing particle and to introduce 
separate coefficients of radiation for the different axes. 
Hach of the three component radiations is symmetrical with 
respect to its own axis, and follows the same law as obtains 
for the sphere *. 

In fig. 1 the various directions are represented by points 
on a spherical surface with centre O. ‘Thus in the rect- 
angular system XYZ, OZ is the direction of primary 
vibration, corresponding (we may suppose) to primary pro- 
pagation parallel to OX. The rectangular system UVW 
represents in like manner the principal axes of a particle, 
so that UV, VW, WU are quadrants. Since symmetry of 
the particle round W has been postulated, there is no loss 
of generality in taking U upon the prolongation of ZW. 
As usual, we denote ZW by 0, and XZW by ¢. 

The first step is the resolving of the primary vibration Z 
in the directions U, V, W. We have 

cosZU=—sin@, cosZV=0, cos ZW=cos@. . (1) 

* Phil. Mag. vol. xliv. p. 28 (1897) ; Sci. Papers, vol. iv. p. 305. 
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The coefficients, dependent upon the character of the par- 
ticle, corresponding to U, V, W may be denoted by A, A, 
C; and we seek the effect along the scattered ray OY, 

Fig. 1. 

Z, 

U 

perpendicular to both primary vibrations and primary pro- 
pagation. The ray scattered in this direction will not be 
completely polarized, and we consider separately vibrations 
parallel to Z and to X. As regards the former, we have 
the same set of factors over again, as in (1), so that the 
vibration is Asin?@+Ccos?@, reducing to C simply, if 
A=C. This is the result for a single particle whose axis is 
at W. What we are aiming at is the aggregate intensity 
due to a large number of particles with their positions and 
their axes distributed at random. The mean intensity is 

u 

fi 4 A+ (C—A) cos? 6}? sin ado | sin 0d0 
e 0 0 

0. ead | 
=A? 4 ACT AS 4, Co AY = (8A? +3074 440). (2) 

This represents the intensity of that polarized component of 
the scattered light along OY whose vibrations are parallel 
to OZ. 

For the vibrations parallel to OX the second set of re- 
solving factors is cos UX, cos VX, cosWX. Now from 
the spherical triangle UZX, 

cos UX =sin (90°+ @) cos 6=cos 6 cos ¢g. 

Also from the triangles VZX, WZX, 

cos VX=cos VZW =cos (90°+ ¢) = —sin ¢, 

cos WX=sin @ cos ¢. 
2D2 
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The first set of factors remains as before. Taking both sets 
into account, we get for the vibration parallel to X 

—Asin @cos 8 cosf+ CU cos 6 sin @ cos ¢, 

the square of which is 

(CA? sin? 0 cos? 0 cos’ @. ) . a 

The mean value of cos? is $. That of cos?@ is 3 and that 
of cost is 4, as above, so that corresponding to (2) we have 
for the mean intensity of the vibrations parallel to X 

KC-A)A—-H=7(C-A. . . . @ 
The ratio of intensities of the two components is thus 

(C—A)? 
GAP+3074 400” 

Two particular cases are worthy of notice. If A can be 
neglected in comparison with CU, (5) becomes simply one- 
third. On the other hand, if A is predominant, (5) reduces 
to one-eighth. 

The above expressions apply when the primary light, pro- 
pagated parallel to X,is completely polarized with vibrations 
parallel to Z, the direction of the secondary ray being along 
OY. If the primary light be unpolarized, we have further 
to include the effect of the primary vibrations parallel to Y. 
The two polarized components scattered along OY, resulting 
therefrom, both vibrate in directions perpendicular to OY, 
and accordingly are bota represented by (4). In the case of 

unpolarized primary light we have therefore to double (4) 
for the secondary vibrations parallel to X, and to add to- 
gether (2) and (4) for the vibrations parallel to Z. The 
latter becomes 

qs (9A? +4074 2AC), 

and for the ratio of intensities of the two components 

2(0— A)? (6) 
OP 4-107 OAM eae 

When A=0, this ratio is one-half. 

For a more general treatment, which shall include all 
forms of particle, we must introduce another angle > to 

sil 
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represent the inclination of WU to ZW produced, fig. 2. 
The direction cosines of either set of axes with respect to 

Fig. 2. 

"a 

the other are given by the formule * 

cos XU =—sin ¢ sin W+cos ¢ cos f cos @ 

cos YU = cosd¢dsiny+sin ¢ cos vf cos @ 

cos ZU =-—sin 6 cosy 

cos XV = —sin ¢ cos W—Ccos ¢ sin > cos 0 

cos YV = cosdcosw—sin ¢ sin cos 0 

cosZV = sin@siny 

cosXW= sin@cos¢d } 

cos YW= sin @sing i Sth ot) Ce eRe dy as HD) 

cos ZW= _ cos Y | 

Oy a) 

» + (8) 
ae ae) Se ee se) 

Supposing, as before, that the primary vibration is parallel 
to Z, we have as the first set of factors 

cos ZU = —sin @ cos yy, i 

cos ZV =sin @ sin yp, ' 

cos ZW =cos 6 J 

For the vibrations propagated along OY which are parallel 
to Z, we have the same factors over again with coefficients 

(10) 

* See, for example, Routh’s ‘ Rigid Dynamics,’ Part I. § 258, 1897. 
y and ¢ are interchanged. 
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A, B, C as before, and the vibration is expressed by 

A sin? 0 cos’ + B sin’ @sin? y+ Ceos?6; . (11) 

while for the intensity 

T= A’ sin‘ @ cos* a + B? sin* @ sin* + ©? cost 8 

+ 2AB sin‘ 6 cos? W sin? + 2BC sin? @ cos? @ sin? 

+2CA sin? 6 cos? 6 cos? Wr. . . . . .) {i 

This is for a single particle, and we have now to take the 
mean for all orientations. The mean value of sin*ty, or 
costa, is 23 that of sin?ycos*y is }; and that of sin?’y 
is 3. The averaging with respect to > thus yields 

[= 3(A? + B?) sint 0+ C? cost @+1AB sin* @ 

+ (A+ B)C sin? @cos?6.". .. . 

Again, the mean value of sin‘ @ is 48, that of cos*@ is }, and 
that of sin?@ cos?@ is 3%. Thus, finally, the mean value 
ot I over the sphere is given by 

mean I=}, {3(A?+ B?+ C?) + 2(AB+ BC+CA)}. . (14) 

This refers to the vibrations parallel to Z which are propa- 
gated along OY. 

For the vibrations parallel to X, the second set of factors 
is cos XU, cos XV, cos XW, as given above, and the vibra- 
‘ion is expressed by 

— A sin @ cos y(—sin ¢ sin p+ cos ¢ cos cos @) 

+ B sin 6 sin y(—sin ¢ cos f—cos ¢ sin cos 6) 

4+Ccos?'sin@icor>. . .. (ss oye 

Accordingly for the intensity 

[= A? sin? 0 cos? (sin? $ sin? yr + cos? d cos? y cos? 0 

—2 sin ¢ cos ¢ sin cos cos @) 

+ B? sin? 6 sin? y(sin? ¢ cos? yr + cos? d sin? cos? 6 

+2 sin ¢ cos ¢ sin ~ cos yr cos 8) 
+ C? sin? @ cos? @ cos? h 

—2AB sin? 6 sin cos ¥(sin? ¢ sin W cos p 

— cos’ d sin cos cos? 8+ sin ¢ cos ¢ sin? cos 8 

—sin ¢ cos ¢ cos? > cos 6) 

+2BC sin? @ cos @ sin cos 6(—sin ¢ cos 

—cos ¢ sin y cos 0) 

—2CA sin? @ cos 8 cos cos ¢(—sin ¢ sin p 

+cos@coswcos9). . (16) 
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In taking the mean with respect to ¢, the terms which are 
odd in sing, or cos ¢, disappear, while the mean value of 
sin? @, or cos? ¢, is}. We get for the mean 

T=1A? sin? @ cos? (sin? w + cos? v cos? 8) 

+ 3B? sin? @ sin? wv (cos? y+ sin? cos? @) 

+43? sin? @ cos? 0 

— AB sin? @ sinyy cos . sin W cos W sin’ @ 

— BC sin? @ cos 6 sin > « sin y cos 6 

—CA sin’? @ cos Ocosy.cosycos#@. . . . (17) 

The averaging with respect to y now goes as before, and 
we obtain 

4(A?+ B?) sin? 6(£+ 2cos? 6) + $C’ sin? 6 cos? 8 

— iABsin‘@—3(A+B)Csin?6@cos?6;. . . . (18) 

and, finally, the averaging with respect to @ gives 

A? 
andl g pees CF_ AB_ (A+B) 
16 oa 15 1d 15 

= J {A?4 B? +6 eb BO—CA 0 2 .(19) 

mean [= 

This represents the intensity of the vibrations parallel to X 
dispersed along OY, due to primary vibrations parallel to Z. 
It vanishes, of course, if A=B=C; while, if A=B merely, 
it reduces to (4). 

The ratio of the two polarized components is 

A? + B?4+@—AB—BC—CA (20) 

3(A?+ B? + C’) + 2(AB4- BC+ CA)’ . . 4 

reducing to (5) when B=A. 
If the primary light travelling in direction OX is un- 

polarized, we have also to include primary vibrations 
parallel to Y. The secondary vibrations scattered along 
OY are of the same intensity whether they are parallel to Z 
orto X. They are given by (19), where all that is essential 
is the perpendicularity of the primary and secondary vibra- 
tions. Thus, in order to obtain the effect along OY of 
unpolarized primary light travelling along OX, we have 
merely to add (19) to both components. The intensity of 
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the component vibrating parallel to Z is thus 

151 3( A? + B74 C*) + 2 AB+ BOT CAT 

+ |, {A’ + B?+C?—AB-—BC—CA} 

= {4(A?+ B?+ 0?) 4+ AB+BC4CA};. (21) 

while that of the component vibrating parallel to X is 
simply 

{A?+ B?+C?—AB—BC—CA). . . (22) 

The ratio of the two intensities is 

(A? 4+ BE C?—AB—BC—CA) s 
4(A?+B?+0)+AB+BC+0a’  ~ & 

reducing to (6) when B=A. 
It may be observed that, since (21)=(14)+(19), we 

obtain the same intensity whether we use a polarizer trans- 
mitting vibrations parallel to Z and no analyser, or whether 
we use an analyser transmitting vibrations parallel to Z and 
no polarizer. 

If neither polarizing nor analysing apparatus is employed, 
we may add (21) and (22), thus obtaining 

zi, [ 6(A?+ B?+C?) -AB—BC—CA]. . . (24) 

When the particles are supposed to be of uniform quality, 
with a specific inductive capacity K’ as compared with K for 
the undisturbed medium, and to be of ellipsoidal form with 
seml-axes a, 6, c, we have 

: K/—K K'’—K K'—K Sta. Hr eee eT, 5 oe See a ee Att Oh ee aK L:1+ rea M:1+ re N, 

where 2 

ey dn . 
L=2mabel (a? +r)? (0? + r) 72(c? +r)? - (26) 

with similar expressions for M and N. 

If the ellipsoid be of revolution the case is simplified *. 
For example, if it be of the elongated or ovary form with 
eccentricity ¢, 

a=b=cV/(l—e’);. Vitehtide (hE Te hee) aa 

Lt) Tse 
Tanke “log +h yen tm it 
e 2e° l—e 

Layee! 
L= mati 

visitas | pee N=4n}.,-1} | slog eit. (29) 

* See the paper of 1897. 
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For the sphere (e=0) 

4 RE cp tL) ee) 

In the case of a very elongated ovoid, L and M approximate 
to the value 277, while N approximates to the form 

a? 2c bs N=4nS (log { —1). Haale Maes 

vanishing when e=1. It appears that, when K'/K is finite, 
mere elongation does not suffice to render A and B negli- 
gible in comparison with C. The limiting value of C: A is 
in fact 3(1+K’'/K). If, however, as for a perfectly con- 
ducting body, K'=x, then C becomes paramount, and the 
simplified values already given for this case acquire 
validity™. 

Another question which naturally presents itself 1s whether 
a want of equality among the coefficients A, B, C interferes 
with the relation between attenuation and refractive index, 
explained in my paper of 1899T. The answer appears to 
be in the affirmative, since the attenuation depends upon 
A?+B?+C’, while the refractive index depends upon 
A+B+GC, so that no simple relation obtains in general. 
But it may well be that in cases of interest the disturbance 
thus arising is not great. 

The problem of an ellipsoidal particle of uniform dielectric 
quality can be no more than illustrative of what happens 
in the case of a molecule; but we may anticipate that the 
general form with suitable values of A, B, C still applies, 
except it may be under special circumstances where reso- 
nance occurs and where the effective values of the co- 
le may vary greatly with the wave-length of the 
light 

* But the particle must still be small relatively to the wave-length 
within the medium of which it is composed. 

Tt An equivalent formula was given by Lorenz in 1890, ‘Ciuvres 
Scientifiques, t. 1. p- 496, Copenhagen, 1898. See also ’ Schuster’s 
‘Theory of Optics,’ 2nd ed. p. 326 (1909). 
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XLII. Note on Fou Talbot's Method of obtaining Coloured 
Flames of Great Intensity. By G. A. Hemsautycu, Ho- 
norary Research Fellow in the University of Manchester*. 

| ies RAYLEIGH has very kindly called my attention 
to a short but interesting paper by Talbot, in which 

the latter describes an exceedingly simple device of pro- 
ducing intensely luminous metal vapours in the flame of a 
spirit-lampt. In view of the historic interest attached to 
this paper as recording an example of the endeavours made 
by the early spectroscopists to improve upon the efficiency 
of the light sources at their disposal, and also in consideration 
of the fact that the method is not mentioned in modern works 
on spectroscopy, it may perhaps be of some use to recall 
Talbot’s experiment, and to give the results of a few 
personal observations on the same subject. 

In Talbot’s own words the method is as follows :—“ It is 
only requisite to place a lump of common salt upon the wick 
of a spirit-lamp, and to direct a stream of oxygen gas from 
a blowpipe upon the salt. The light emitted is quite homo- 
geneous and of dazzling brightness. If instead of common 
salt we use the various salts of strontium, barytes, etc., we 
obtain the well-known coloured flames, which are charac- 
teristic uf those substances, with far more brilliancy than by 
any other method with which I am acquainted.” It is to be 
noted that Talbot precisely states that the stream of oxygen 
is directed upon the salt. Noexplanation is, however, given 
to account for the result achieved, and it is not certain 
whether the greater luminosity obtained in the manner set 
forth is due to an actual combustion of the salt or to a more 
effective dissociation of the latter, caused by a rise in tem- 
perature of the flame. The following series of experiments 
was made with the object of elucidating the mode of action 
of the oxygen in Talbot’s experiment and of applying his 
method to the air-coal gas flame. 

1. Observations with a spirit flame. 

With a small piece of salt on the wick the flame appeared 
feebly coloured yellow and showed the D-lines only. A 
current of oxygen gas escaping from a glass nozzle was then 
directed towards the salt, and the latter immediately burst 
out in a brilliant light, emitting the D-lines most strongly, 

* Communicated by Sir E. Rutherford, F.R.S. 
+ H. F. Talbot, Philosophical Magazine, vol. iii. p. 35 (1833). 
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as alsoa fainter line on the more refrangible side of the 
former, probably the pair at 25685. The greater part of 
the flame, although more intensely coloured than without 
the oxygen, remained, however, relatively feeble as com- 
pared with the vivid brightness exhibited by the immediate 
vicinity of the salt. Thus the light distribution in the flame 
is not very uniform, there being a most pronounced maximum 
near the salt. 

In addition to the solium lines the bands of the Swan 
spectrum were likewise very prominent near the base of the 
flame where the oxygen passed through. In fact the path of 
the oxygen through the flame is rendered visible by the 
more vigorous combustion of unburnt hydrocarbons, which 
gives rise to the emission of a greenish light (more bluish 
and fainter when the oxygen passes through the upper parts 
of the flame, where less unburnt gas prevails). 

When the oxygen was passed through the coloured region 
of the flame situated just above the salt there was hardly any 
increase in the intensity of the light emitted, as though the 
free radiating sodium atoms remained unaffected by a rise in 
temperature. (The fact that the temperature of the flame 
is “aa raised by the oxygen will be demonstrated 
in § 2.) 

Similar results were obtained with calcium chloride. But 
in this case there was a notable brightening of the spectrum 
bands when the oxygen was sent through the middle region of 
the flame well above the salt. This may be due to undissociated 
particles of the salt being carried upwards through the flame 
and broken up as they enter the presumably hotter zone of 
the oxygen path. 

Thallium chloride showed no line when placed on the wick 
of the spirit-lamp. But as soon as oxygen was blown against 
it, the green line appeared not only in the vicinity of the 
salt but also in the upper part of the flame. 

Thus it is evident that Talbot’s method constituted an 
important improvement in the days when the spirit flame 
was practically the only means in general use of vaporizing 
substances for spectroscopic purposes. 

2. Observations with an air-coal gas flame. 

When oxygen is passed into the flame given by an ordinary 
Bunsen or Méker burner, there is a great tendency for the 
former to strike down the burner-tube, owing to the increased 
velocity of the explosion. This inconvenience was completely 
obviated by placing on the top of a Méker burner a perforated 



384 Mr. G. A. Hemsalech on Fox Talbot's Method of 

brass plate, } inch thick, having 49 one-millimetre holes per 
square centimetre. Experiments were made with the salts 
of sodium and calcium. The greatest intensity of the metal 
vapour emission was also in this case obtained when the salts 
were held near the base of tlie flame or placed on the per- 
forated plate. When the oxygen was passed through the 
luminous vapour in the region above the salt, about half way 
up the flame, the brightening along the oxygen path was 
relatively feeble; but when now the salt was raised and held 
in the path of the oxygen, the intensity again was fairly 
great, though much less so than when both the stream of 
oxygen and the salt were close to the explosion region. On 
the other hand, near the tip of the flame, where combustion 
of the gases is nearly complete, no luminous effect was ob- 
served when oxygen was blown against the salt. Thus the 
oxygen, in order to be effective by this method, must be 
directed upon the substance to be vaporized in the presence 
of unburnt gases (hydrocarbons and hydrogen). This fact 
is further illustrated by the following observations, which at 
the same time prove that the light effect obtained in Talbot’s 
experiment is not due to mere combustion of the material 
placed on the wick: when the salt is held in the flame near 
the border, and the oxygen enters from the opposite side 
(fig. 1) in such a way that it traverses a long zone of flame 

Fig. 1. 

[—Explosion region 

Maximum Effect. 

containing unburnt gases before encountering the salt, the 
luminous effect is a maximum. If, however, the salt be held 
near to the point of the border at which the oxygen enters, 
no effect is observed (fig. 2). 
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That the temperature of the flame is raised when oxygen 
is passed through near the base is easily shown in the 
following way:—A piece of iron wire 1 millimetre thick is 
held in the fame about half way up from the burner-plate. 

j / | \ 
(oe tae 

| ie ba ) x ; i i sed 

\ acai eel 

| 
No Effect. 

In this position it will be raised to a bright red heat. If now 
a stream of oxygen be directed through the flame just above 
the explosion region, but well below the wire, the latter 
immediately becomes very much brighter. The same heating 
effect is observed when the oxygen is blown against the wire 
within the flame. 

Hence it is evident thatthe increased intensity of the light 
emission in Talbot’s experiment is of thermal origin, at least 
in so far as the rise in the temperature of the flame entails a 
more vigorous chemical dissociation of the salt. This con- 
clusion was further corroborated by directing the high- 
temperature flame from an oxy-coal gas blowpipe upon the 
salt on the wick of the spirit-lamp. The salt in this case gave 
out an exceedingly brilliant light, in fact much more so than 
with the oxygen alone, anda large volume of luminous vapour 
rose into the spirit flame above. 

3. Application of Talbot’s method to flames coloured by 
means of a sprayer. 

The foregoing experiments were made in accordance with 
Talbot’s original procedure of blowing the oxygen against a 
lump of salt held in the flame. Butthe method is equally well 
applicable to flames into which the material to be vaporized 
is introduced in a very finely divided state, such as is provided 
by a sprayer. Also in this case it was found that the greatest 
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effect is obtained when the oxygen enters the flame near its 
base, and the effect vanishes near the top. The reason for 
this is of course the same as before, namely, the accelerated 
combustion of the unburnt gases which predominate near 
the base. It is, however, well to remark that the intensity 
of the coloured flame produced in this way falls appreciably 
short of that obtained when the oxygen is thoroughly mixed 
with the air and coal gas before these gases reach the burner 
plate ™. 

In order to observe the effect of varying the relative pro- 
portions of the gases in the air-coal gas mixture, an electric 
sprayer was used in connexion with burner No. 1 described 
ina previous paper. With this arrangement the funda- 
mental condition for the successful working of Talbot’s 
method, namely, the presence of unburnt gases, is most 
strikingly demonstrated by the following experiment:—The 
glass nozzle through which passes the oxygen is held close 
to the edge of the flame about 4 inch above the burner- 
plate. The velocity of the oxygen is such that its curved 
path can be distinctly followed to the opposite edge. When 
the air-coal gas mixture is so adjusted that the explosion 
region just begins to rise from the burner-plate, otherwise 
stated when there is an excess of coal gas in the mixture 
with consequent deficiency of combustion, then the portion 

Fig. 3. 

WN 

Path of Oxygen 

\ 
/ 

LL; ie 

Hixeess of Coal Gas. 

of the coloured flame situated above the sharply defined 

oxygen path is most notably increased in luminosity, as 

indicated by the shaded portion of fig. 3. If now more air 

* Hemealech, Philosophical Magazine, vol. xxxiv. p. 243 (1917). 
+ Hemsalech, ibid. vol. xxxiil. p. 6 (1917). 
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be admitted and the combustion of the coal gas thereby 
rendered more complete, the luminosity of the flame above 
the oxygen path gradually decreases and finally becomes 
less than that of the region below, as sketched in fig. 4. In 

Excess of Air. 

fact, when viewed in the direction of the oxygen path, the 
luminosity along and above it is found to have been com- 
pletely arrested, the reduced light as seen sideways being 
merely due to the thin borders of flame rising up on either 
side of the oxygen stream. That the extinction of the 
luminous vibrations in this case is caused principally by 
actual cooling of the vapour and not merely by oxidation, is 
shown by the fact that when a stream of nitrogen is passed 
into the flame the same extinction is observed. On the other 
hand, a stream of ammonia does not reduce the intensity of the 
light emission in the upper zone; the feebly luminous flame 
with which the ammonia burnsas it passes through the air-coal 
gas flame seems to be just sufficient to keep up the tempe- 
rature of the latter. Also when a high temperature oxy-coal 
gas flame is directed through the air-coal gas flame under 
these conditions, the portion of the latter situated above the 
path of the oxy-coal eas flame remains always a little 
brighter. All the above observations were made on the 
luminous vapours of sodium, strontium, lithium, calcium, and 
barium. 

Summary. 

The series of observations recorded in this note clearly 

shows that the rédle of the oxygen in Talbot’s experiment is 

to increase the rate of combustion of the unburnt gases in 
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the flame, thus causing a rise in temperature of the latter. 
The temperature is highest along the path of the oxygen, and 
when the latter flows in the direction of the substance to be 
vaporized, the full effect of the temperature is, as it were, 
concentrated upon it. The effect is greatest near the base 
of the flame, where combustion is only beginning, and least 
near the tip. It is consequently essential that the oxygen, 
prior to reaching the substance, should pass through a region 
of the flame containing unburnt gases. 

In conclusion, I wish to thank ‘Lord Rayleigh for having 
provided me with the opportunity of paying a modest 
tribute to the work of one who came so near to “discovering 
spectrum analysis. 

Manchester, Feb. 18, 1918. 

XLIV. On the Problem of Two and that of Three Electrified 
Spherical Conductors. By Prof. A. ANDERSON, J.A.* 

\ 7 HEN an insulated conducting sphere of radius a is 
charged to potential A, the potential V due to the 

charge at any external point, P, whose distance from the 
centre of the sphere is 7, is given by 

rV=aA. 

If now, charged bodies are brought into the field, this 
equation no longer holds: we have, instead, 

rV +aV'=aA, 

where V' is the potential that the introduced bodies have 
at P’ the inverse point or, as we may call it for shortness, 
the image of P in the sphere. A has, of course, altered in 
value and V is, as before, the potential due to the charge on 
the sphere. 

This equation may be used to find the coefficients of capacity 
and induction of two conducting spheres. 

Let the potentials of the spheres be A and B, their centres 
O, and Os, their radii a and 6, and the distance apart of their 
eentres c. Also, am fig. 1, let I, be the image of QO, in B, 
I, the image of J, in A. ia the image of I, in ce and so on, 
raha in oie sphere being the image of [, in that sphere. 
We have thus a series of points L. ie I;, I,, &c. inside the 

* Communicated by the Author. 

lee 
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sphere B, and a series I,, Iy, Ig, Ig, &e. inside A. Let A,, 
B,, denote the potentials due to the charges on the spheres A 
and B at the point I, and By the potential due to the charge 
on B at the centre of A. 

Fig. 1. 

an 

We have , cBy +0A,=0B, 

Ori ° Ay + aB, = aA. 

C a aA 

| BO Ouageean OGEP 
and, likewise, 

Oot. aA 
ae B,— OT: B,=B- 0,1,’ 

Ont, a e. aA 

b ° B,- Ow . B,=B-—- 0,1. . 

Oss, a aA 
| = ite Bo, ona a Bo, 9= BD O; 1. aie 

Hence we have 

aA ab 

,: Bo=B oF “te OL Oi) OT, 01 1c Oulg 
aA a*l? 

+(B— 57) qnemp., 0s Ou, 
ao cA ash? 

+ 7 Oks eT... 0,1; . Os Oe 1041, 
RE, 
+(B- ad oi) ahr 

Osten. 0,140 Onley, Ogls, 
St 

Phil. Mag. 8. 6. Vol. 35. No. 209. May 1918. 2K 
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But if E is the charge on A, A=By+ a and therefore 

E ee — a Bo- 

Thus 

ab 

aie {a+ (ort 20,1, . Oe 
ab? 

7 0,1, 0), 04: ee 
nn 

isk 3 O iy e eee Ox Tena. ele ee me OS a - : 

-B2 fit a 7+ azb? ‘ 

O Le ° Gy . Oye Te ° On; 

ab” 

echo ON MMONKE cE OH Fes 07, ae 

Thus 91, and giz have been found, and, of course, also qos, 
by a simple application of the above equation. 

The same method is applicable to the case of several 
conducting spheres. for three spheres whose centres are 
at the corners of a triangle the work is necessarily much 
longer than that for two, but it is possible to find the values 
of the coefficients of induction and capacity to any degree of 
approximation. 

We require for the solution of the problem a set of points 
1, L, 1,... inside B, and a set I,, 1, I¢,... inside Aj asm 
the problem for two spheres, and corresponding to these, 
for A and C, a set Ky, K3, K;,... inside C, and a set K,, Ky, 
K,,... inside A. But other points besides these are needed. 
Take one of the points, say I;, inside B. We take its image 
in C and denote it by L;,, the image of this in A by Lg, 
the image of L3. in B by L33, and so on, going round again 
and again in the positive direction. 

For the I points inside A we do a similar thing, the image 
of I, in © being Ly, and that of this in B Ly, and so on, 
going round in ‘the negative direction. We do the same 
thing for the K points. Thus the image of K; in B is M;,, 
and the image of this in A is M;., and so on. But this does 
not exhaust all the points required. Starting from any 
Lor M point, we reverse the direction and find an infinite 
series of points for it. Thus, taking the point M5, its 
image in Cis M;3, but we also take its image in B and call 
it Ms, the image of this in C, M59, and so on. A few of 
the points are shown in fig. 2. 
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The centres cf the spheres are the points A, B, C, and we 
shall use these letters to denote also their potentials; «, 8, y 
are the lengths of the radii of the spheres, and a, 6, ¢ the 

lengths of the sides of the triangle. The potential due to 
the ; sphere A at any point, say @., will be denoted by Ag,,, 
the potential due to B at Ls; by B;,,, and so on. The object 
of the problem is to find B,+ Cy. 
We have 

c. Be +@(A;i,+Ci,) =@B, 

b . Caty(Az,+ Bz) == ry). 

eu ca eene | B Yay) ie Cian 
B,+C,+ Aa F pant 7 Un a 5 Pn = ~P ee C. 

Thus the first two terms of the exprassion for B,+C, are 

Pp+to. 
c b 
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Again, AT, . A; +a(B,, +0;,) =A, 

AK, . Ay, +2(B;,4+ C,) = ; 

hence 

fk ea ene a8 
BatCat Vat + Bag oe ay, (Bi + C; )- Bn wi (Bz, + C;,) 

ieee. YA 
ees (% Ale ws AK, )a. 

Also, BK, 2B, + 8( An. + Ca.) =e: 

CI. Ci, +9(An, is B,,) ae YC, 

and Aly . Ar,+ «(Bz,. Se Ci,.) a= aA. 

AM,, . 3 ae + aC ben > Cri) = aA, 

from which we get, by substitution, 

Bz ac Cy.- acl (B,. ie CJ- 
1 By 1 

c. AL, rs TAK, (Bx, + C;, )— +. Be Jims . 

ee bel | (Bye a 
Seay One ee bh. BK. AM,, my 2 ny») 

Pics os oe 

+ golly, 6 + Se) 

Be oe 
AL, 

eae, Py | ss ee 
bh e A Sonat ie B Kee -B- Gis OL : C 

1 
+ ary i a AMG,” ¢. CL, Alig 5 

Thus, as far as the sixth term, 

DAA B 
Boe (A WR fe 

+B(P- an ae 
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Proceeding in this way, we find that as far as the fourteenth 
term, 

i Biss 1 
By+ C= —a[ A, ae AK — ay ( ; BK as 

1 

BAPTA ar) a 

+B [fe - By af" a: Bry 
b. BRoe Cc. Al, 6 Bisy Dx AK,. Bk, 

Bry | 
De Ces Bis 

Vee ay" 1 eey 1) 
Sees SUCK ee CK, 7 ook sO, 

4. YB ] 
DBR SOME, | 

By continuing this process we may find any number of 
terms of the expression for B,+ Cy. 

Now, if E is the charge on A, we have 

sprue lt 
A=B,+Ga7 =, 

a 

or K=Aa—(B,4-C,). 

oe ea a pa 

vy b ° BK, .AM,, Gas Cl, . Alina tek 

aS) aby) ea 
=B|* h. BK, Ge BT, 

ea apy 
oy epee cL BL | 

ea a ee By ary? 

= co. Cl, | Ape CK; 

By _ay*B sf: 
TAL, Clee bi: PBK: . CMe 

Thus the first terms of the expressions for q,, 912, 913 
have been determined and the corresponding terms of qa, 
933) 923 may be got by changing the letters. We can get 
the formula for two spheres. from this by making b, AK,, 
BK,, AL,,, BL, all intinite and C=0. 
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Thus 
aa ee 22 B a3 223? 

B=A [a+ "ey +...|-B[S 4 
f c? — 8? a 

or, since Al,;= B’, and BI,=c—— —;, 
c e—p 

a’ B ap a2? nma[a+ 8, 4..]-3[24 7, 
c"— 8? oe c  e(c?— 8? — a”) % 

As an example, suppose we have three small equal con- 
ducting spheres, whose centres are at the corners of an 
equilateral triangle the length of whose side is c. The terms 

3 
we have found will give 911, Giz, Gis correctly to (*) 

2af Dee 
p= qn=qu=4( 1+ pment =), 

a” 1 a Qa? 
Vin = 913 = 923= — = ‘ah aie =); 

from which we obtain the coefficients of potential 

a Pa £ 2a 
PT fee 8 (1— Po TF =) ? 

i dat at) hae 
Pie Pies 5 (1+ a a 20 ee 

The energy of the system, each sphere being supposed to 
have unit charge, is 

a ; 3 G+) Be. @ Cc 

and the force acting on one of them is 

= 15) poe 
J3(5 ea =); ct 

the force being oe in the case of point charges. 

By the above method the potential due to two charged 
conducting spheres at an external point can be written down 
easily. Let the centres of the spheres be A and B, their 
radii a and 6b, the distance between the centres c, and the 
potentials U and V. Let the image of any external point 
P in B be P,, the image of P, in A, P,, the image of P, in B, 
P;, and so on. Also, let the image of P in A be Q,, the 
image of Q, in B, Q:, the image of Q, in A, Q;, and so on. 
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The potential at P is 

Uae = ped — ‘ie eee 
Beebe AP, APSR) ZAG. 

a*b? arl? 

=BP.AP,.AP,.BP, AP. BQ,.BQ,.A0..AQ 4 

a®h? 4 ) 

fon OAL, Ab. ompaees BPs: 

4V 2) hf ab ab? 

(ep AP< BQ, BE. AP). BP, 
a2b? a2h3 

PAP. 6O,. 60,40) BP.AP, AP,. BP, BP, 
a®bh? 

ao no eee a) 

If, now, the image of A in B is J, the image of I, in A, I,, 
the image of I, in B, I;, and so on, and if the image of B in 
A is J,, the image of J, in B, Jo, the image of J, in A, Js, 
and so on, it is easy to show from similar triangles that 

BP. AB=6.PI,, 
AP. BQ, A@e=e. PT,. Aly. 

BP /AP(( BP,. Meee Pl, . BE! AT, 

AP. BQ,.AQ.BQ;.AQ,=c. PI,. Al;. BI,. Al, 

Hence the potential is 

a ab ab 

U(xp -ePE ¢. Presse 
a7b? a®b? 

elPl BE, An MeaeL, Al, BI, AT, 
abe HS ) 

i e,P1,. DE, AREAL, 5 

b ab ab? a*b? 

a V(ap Saeed, * ¢ POEL 2. PJ, Alga +) ; 

which shows that the potential outside the spheres has the 
same value as that due to a series of point charges at 
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A, B, i, Ji, L, Jo, Is, J3, I, Ju, &e., equal respectively to 

Ua. vp. Usb Mab Ua Nalt Se 
Tee Gs? eT,” Gola eine eer 

Va?b? Uae? Va2b3 
Soceses 

6h Ads Boy? CEL BI, . All? ets eae eee 

which are the image charges in the usual way of treating 
the subject. 

Note.—The above paper was written before the one that 
appeared in the March number of the Philosophical Magazine 
on the same subject. It is, perhaps, unfortunate that the 
word ‘“‘image” has been used for “inverse point.” The 
method has, of course, nothing to do with electrical images. 

XLV. Some Two-Dimensional Potential Problems connected 
with the Circular Are. By W.G. Bicxury, B.Sc.* 

§ 1. iL this paper a method of dealing with potential 
problems in two dimensions, depending on the 

use of functions of a complex variable and of the method of 
images, is applied to the solution of problems connected with 
un infinitely long lamina, the section of which is a circular 
arc. The results obtained are interpreted in terms of 
electricity and hydrodynamics. 

§ 2. The first stepin the investigation is the determination 
of the transformation by which the two sides of the are in 
the z-plane become the real axis in the plane of an auxiliary 
variable € (=&+). The arc is taken as that part of the 
circle z=—ve® for which —«=@<za, so that the angle sub- 
tended at the centre is 2«. For any point on this circle the 

ratio (1+.e2)/(¢+4) is purely real, its value being cobs, sO 

that when @ lies within the above limits, the values of 

tne 4 / tate ow (=) —] os 

are purely real, but become complex when @ lies outside 
them. Also, when <>—1, the expression (1) tends to 0 or # 
according as the root is taken negatively or positively ; and 
when 0=-+a, the expression has the values +1. 

* Communicated by the Author. 



Problems connected with the Circular Are. 397 

Hence the transformation 

sin (1+u2) + y/ sin? (1+12)?—cos?4 7 us 

pe ee) 
a 

COS 5 (+2) 

transforms the two sides of the z are into the real axis of 
the &-plane, the extremities of the arc into the points f= +1. 
This relation may also be written’ 

bo 
Ccoss + 2uesing + cos— 

Jape aga Se Li heey! 
Maem? 96 aie? Me 
¢ COS 5 —20€sin 9 + C085 2 

It is easily found from (3) that z=2 corresponds to 

c=1(sing +1)]cos5. 

only one of which is in the upper half of the €-plaue. 
§3. Suppose that in the &-plane there is a charge at the 

point 

R 

_ & a 
—— (2 + sin 5)) COs 5, 

and that the real axis is a conductor. This will correspond 
to a charge at infinity in the <-plane, with the are a conductor, 
or, what is practically the same, to the charged conducting 
are in space. Letw,as usual, denote the potential d together 
with ¢ times the conjugate function y. Then in the €plane, 
the method of images gives 

“ 

{ 1+ sin; 1+ sin , ( 

w= lov €—, —__— | || ¢+ .—_— a a) coo) i a 

OSs COS . 
i | 2 

[bOI R 

or, what is the same thing, 
ye 

1+ sin; 

c= 7 Ree | Pa rarer . . . ° (9) 

2 

The elimination of & between (3) und (5) then gives, after 
some reduction, 

as 
1+e-”’sin 5 

z=—t a) GY 5) 
if Oe 

1l+e”sin= 
2 
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or 
ub paneer nee a eh 8 

w= —— log | 5 e cosees { (e+ t) +4/ 2? + Quz cos 2—i} |. (7) 

‘With regard to the branch of the two-valued function to 
be taken, the arc may be considered as the branch line 
joining the two branch points (its extremities) and that 
branch is to be taken which, inter alia, is equal to +4 when 
z=0(0, and tends to +z asz>u. 

Equations (6) and (7) then give the potential due to the 
charged arc. Separating the real and imaginary parts of 
(6), after writing —(¢ +s) for w (since the real part is to 
be negative) we obtain 

2 sin; cosh g sin y + sin? 5 sin 2p | 

L£= | 
1+ 2e-% sin = cos w+e7? sin? = | f 

2 2 

i | ae | 
1+2 sin 3 cosh cos r+ sin” 5 COs 2p | ; 

Ls Camm a } 
20-% sin— =p 1+2e sing coswp +e sin 9 J 

Fig. 1. | 

aml 

‘i NY Wee He 
7 a rants 

Vo 

Using (8), the equipotentials and lines of force are easily 
plotted. In fig. 1 they are drawn for the case of a semicircle, 
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with intervals °25 of @, and 73 of. These show distinctly 

the physical features, which of course were anticipated in 
a general way. The charge resides for the most part on 
the outer face, the surface-density becomes infinite at the 
edges, and at a distance the equipotentials are approximately 
circular. One point of some interest appears in the figure, 
namely, the approximate uniformity of the field on the axis, 
just beyond the centre. 

If we expand (6) on the supposition that | w| (and conse- 
quently |z|) is large, we obtain 

_ ae ing +e" os?) z~ —ve-" (sing +e" cos’ ) , 

ere e+ (CO ie sing, Be PELE he i) 

showing that the field at a great distance is approximately 

that due to an equal charge at the point —1eos?5. It is 

seen that this point, the “centre of charge,” is the mid 
point of that portion of the central radius cut off by the 
chord of the are. This result may also be obtained by 
integration from the expressions for the surface-density now 
to be obtained. 

§4. On the lamina, w=ap, while z= —ve’, and from (6) 
or (7) we obtain the relation 

: GN ia Je 
sin (— 5)sing =P SUNS eas 24 (3 (10) 

. . . dp 

Now the surface-density is proportional to Wa” and so 

cos i 
+ 1}convex face, 

a ) 

wae vi ha | 2 2 
matt. <UL) 

ox [_ si a concave face. | 

Ta _ sin? J 

The values of c, multiplied by the factor sin 5 (which makes 

ox 

the mean of the values at the pole equal to 1, and so 



| 

(1-000 | -913/|1-087 {1-000 |! -741 1 
1-020 | -933|1-107 {1-020 | -761 |1-2 
£091 1-003 |1-177 |1:090 | -828 1:3 
(1-250 [1-162 |1-336 |1-249 || -981 |1°5 

1-9 

Plane.| a—10°. a—30°. 

1-667 |1:577 {1-758 |1-664 1-383 
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facilitates comparison), are tabulated for the values 10°, 30°, 
90°, and 170°, of «, for the central point and for four more 
dividing the semi-arc into five equal parts. The fractions of 
charge on the two faces are added, and also the values for 
a plane lamina. The third column in each case gives the 
mean of the first two, and even for «=30° shows no great 
difference from the values for the plane. 

Table of Surface Densities. 

ago ||) + cea 
| 

1-000 | 

ba 
000 | -293 

"240 404 

| 472. +528 aT 585 25 | +47 
| a | 

These may be compared with the values obtained by 
Lord Kelvin for the analogous problem of the spherical 
bowl. 

§ 5. Of course, the above results may also be interpreted 
as applying to the motion of an incompressible fluid cireu- 
lating round the iamina, but this is passed over as of relatively 
small importance. The more interesting problem of the 
flow past such a lamina when placed in a steady stream, or 
the motion in an incompressible fluid due to a motion of 
translation of the lamina, may be solved in a similar manner, 
by taking a double source in the €-plane. In view of the 
final hydrodynamical interpretation it will be convenient to 
make w purely real along the real axis and to choose the 
strength and inclination of the source, so that w->—ze-* as 
SPD, 

This gives the value of w as a function of €:— 

/ 
5 | 0278) -9782 

¢ eB eB 

2 sin $ (1+ sin$) | cts vie i 2h ee 1+ sIn 5 1+ sing L 
re Pe ane 1 €—-e——— + e-—--—— f COS 5 | Gan wae NG 

L 2 By 

409 sin 5 sin eC, (iz 

where the last term has been added to give the final result a 

i |1-707 -0038 |1-9962 | 1-0000 
1-020 '-305 |1-720 1-018 |:0042 |1-9962 | 1-0002 

6 1-087 |*358 |1°772 1-065 |-0055 /1:9966 | 1:0010 
1 1868 
1 2:163 

me | 
| 
| 

‘1:161 |-0097 |2°0017 | 10057: 
642 °749 |2°163 |1:456 ||-028) |2°0198 | 1024 | 
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neater form. The elimination of € between (3) and (12) is 
rather lengthy, but not difficult. We obtain 

° - a 

ezw” + uw(z + )(ze~® —ue*) + (240)? — sin? 5 (ze~"F + ce’8)?=0, (13) 

from which we have as the value of w 

(z+4)(ze—*? — se") + (ze? + 0e*),/(2? + 2uz cosa — a1) 
2Z 

w= _— (14) 

where the same branch of the multiform function is to be 
taken as in $3 above. The real and imaginary parts of w 
give the velocity potentialand stream function of the motion 
due to the disturbance of a uniform stream by the lamina, 
the undisturbed velocity of the stream being unity and its 
direction inclined at an angle 8 to the axis of x The 
corresponding values for the motion of the lamina in a 
liquid at rest at infinity are obtained by adding <e-‘* to the 
above value of w. Owing to the computation of square roots 
of complex. quantities being a laborions process in practice, 
the stream-lines have not been plotted, though of course, 
(13) could be used if it were required to do so. In the 
above the radius of the are, and the velocity, have been taken 
as unity. The only modifications to include the case of a 
velocity U and radius a are that in (14) a factor U must be 
introduced on the left-hand side, and z, w replaced. by </a, 
w/a respectively. 
§ 6. To obtain the “impulse” of the second of the above 

motions, we have only to expand in terms of 1/z and take 
—2mp times the coefficient of 1/z (p=density of liquid). 
The required coefficient is found to be 

—4{e8(1— cos a)—4 sin? ae-*}, 

so for the components of impulse we have 

* a i : a sap “ Ct pce Ne La: yo ca cee X = 2arp cos 8 { sin 5 — sin aI =2p cos 6 sin 33 } 

Y=2npsing | sin” + jsinta b =2npsin Bsin®s (1+ cos" “<). 

On epee the velocity U and radius a, these become 

(15) 

X = 2arpa’? sint eu cos8, X=2zrpa? sin?S ( 1+ cos?) Sie Bat (ioe 

We may proceed to the limiting case of a plane lamina of 

width 2/ ‘by making a> and ios in such a manner that 
asina->b. We ohtat 

=U eer 0 U sie 8, 6. 3) LB) 
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a known result. Also by making «=7, we have the case of 
a complete cylinder, supposed to be filled with liquid of the 
same density as surrounds it :— 

AX=2rpea7U cos 8, ‘Y=2rpa7U sin 8, 2 eee 

another known result. For the kinetic enerey, we easily 
derive from (15’) 

i eetdlo ce" U)~ | cos? sin*5 + sin? @ sin? : (1 + cos? ah ao hoe 

Equations (15') and (18) show that the lamina behaves as 
if it had a mass depending on the direction of motion, 
compounded of masses m,, my, the coefficients of U cos 8, 
U sin B, respectively in (15’). 

§ 7. Next to determine the resultant of the pressures on 
the lamina. Substituting z= —ve in (14), w is found to be 
real (as it should be) when | 6! <a, and so we have 

ii 7 

“tT 

o=—2 { sinSeos{ 5 - ) + <in(§ —8)4/ sin? 
— sint§ | seh sin’s b, (19) 

the ambiguous sign referring to opposite faces of the lamina, 
+ to the concave side. The velocity g at any point is given 

O¢ by — 50° so that 

DS 
g= < cos(O—B) + cos (5-8) sin! ic: af 

fond 

0 
sin "cosy sin( = met 

== 

a/ sind? Fst sin? = 

But p=const—4pq?, so denoting the excess of pressure on 
the concave face at any point Ap, we have 

(20) 

2 cos (0@—8) { cos (5 —)(sin®5 =~ — sin? a) — sin = 5 5 0085 sin {5 (5-8) 

ye 29 x / sin?” 5 sin 5) 

(21) 
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Let the total thrust, which evidently must act through the 
centre, have components P,,, Py, then 

P= | Ap sin 0 d@=m7p sin? a cos « sin 8 cos B, 
nite . (22) 

P= —{ Ap cos 0 d@= —7p sin’ a ( cos? B sin? 5 + sin? 8 cos? 4) 

These results are apparently in contradiction with the 
known fact that the resultant of the pressures should reduce 
toa couple. The explanation is that the velocity at the edge 
becomes infinite, and consequently the pressure also, and 
though the thickness of the lamina is assumed to be infinitely 
small, yet considered as the limiting case of a thin lamina, 
with finite velocities and pressures, the resultant pressure at 
the end tends to a finite limit as the thickness decreases. 
To see this, consider the case of the flow round a semi-infinite 
plane, given by w=Az*. Suppose the fluid inside one of 
the parabolic stream lines is solidified. The motion of the 
remaining fluid is unaffected, and when we calculate the 
resultant thrust exerted by it on the solid, we obtain a force 

PA parallel to the axis, tending to drag the solid further 

into the liquid. The magnitude of this force is independent 
of the particular stream-line selected. Turning now to the 
problem in hand, the flow in the vicinity of the edge is of 
the type just mentioned, for on substituting e’*(—7e+ ¢) for z, 
where € is small, we obtain from (14) 

w=const—1/2 sin «. sin : —B)e + higher powers of €. (23) 

Hence there is a force along the tangent at the end, of 
; at ii 

magnitude Tpsin a sin®(S ~B). and consequently at the 

other end, one of magnitude 5 P sin asin?(5 +8). The 

resultant of these has components 

a 5m gin a { sin’ (5 —8) — sin alae +8)} COS a, 

=—mpsin?acosasin 8 cos 8; 

Py = : Tp sin a { sin? (5 —8) + sin (5 +8)\ sin a, oe (24 

J 
. . a 

= 7p sin? a { cos? 8 sin? 9 + sin? B cos?s ne ; 
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and passes through the point —zssec ae. Nowcombining (22) 
and (24), the resultant of all the pressures is seen to reduce 
to a couple of moment —47rpsin’asin 228. 

Introducing the velocity and radius, we have 

Couple = —47pa?U? sin? asin28. . . (25) 

This becomes zero in the case of the complete cylinder, 
a==7, and reduces, in the case of a plane, to 

—trpob?U* sn 28, . 2. 7 ae 

which are a m to be correct results. 
§8. In (23) above, it follows that if B=5 ~, there is no 

term in @. This corresponds to the case in which the 
stream-line yw=0 divides at the edge of the lamina. It this 
may be applied to the case of an aeroplane wing, itis seen to 
lead to the conclusion that the entering edge should point 
downwards, at an angle equal to the angle of attack of the 
chord of the (eambered) plane. Observation and _photo- 
graphs would. seem to show that in practice such a condition 
has been found most favourable. 

P.S.—Since the majority of the above results were 
obtained, a paper has appeared (Dr. J. G. Leathem, Phil. 
Mag. (6) xxxv. Jan. 1918) in which it is shown by a general 
method, that (14) above is deducible from (6), and, in fact, 
when applied, does give the result (14) obtained indepen- 
dently above. 

Loughborough, 
Feb. 5th, 1918. 

XLVI. Molecular Frequency and Molecular Number. Part L.. 
The Frequency of the Longer Residual Rays. By 
H. Svantry ALLEN, d1.A4., D.Sc., University of London, 
King’s College*. 

METHOD of studying the frequency of vibration of 
the atoms in compounds is afforded by the “ residual 

rays”? obtained by repeated reflexions from the surfaces of 
solids, and studied by Rubens and his collaborators. It may 
be assumed that the frequency of such infra-red radiation 
corresponds with the frequency of vibration of an electrically 
charged ion, and, in certain cases at least, it is to be expected 
that the ion in question may be identified with one of the 

* Communicated by the Author. 
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atoms contained in the compound. The writer has shown* 
that the characteristic frequency, v, of the atom of a solid 
element is connected with the atomic number N by the 
relation 

Nv= ap, or Nv=(n+4)y, 

where is an integer, and vy, a constant frequency having a 
value not far from 21x10 sec.-1. Seeing that the forces 
which control the vibrations of the atoms in solids are the 
same whether it be a question of the specific heat of the solid 
or the reflexion of radiation, it might be anticipated that the 
same relation would hold in connexion with the residual 
rays. 
Be costa to the theory developed by Nernst + the heat 

energy of a compound in the solid state is made up of the 
energy due to the motion of the molecules relative to one 
another and that due to the vibrations of the atoms in the 
molecule. The first contribution is calculated by the formula 
of Debye, the second by the formula of Hinstein. Hach 
calculation involves a knowledge of the corresponding 
characteristic frequency; the first, »,, is given, approxi- 
mately at least, by Lindemann’s formula; the second, v9, 
is found from the residual rays of Rubens. Nernst has 
pointed out that in the case of KCl and NaCl, the value of v, 
is almost 0°75 times the value of v.; and in other cases, 
although the molecular frequency is slower than the internal 
frequency, the two are not very different. Indeed, in 
his earlier work Nernst obtained fairly good agreement by 
calculating the values of the atomic heat on the assumption 
of only one frequency, v. The writer has shown{ that the 
molecular frequency is connected with the ‘“ molecular 
number” by a relation of the same form as that already 
quoted for the atomic frequency and the atomic number. The 
collective results suggest that the internal frequency may 
conform to the same relation. In the following pages the 
experimental results are examined for a number of com- 
pounds, and it is found that there is a strong presumption in 
favour of the establishment of the relation suggested. 

NaCl. In the case of rock salt§ two rays of different 
strengths were observed, a stronger at 53°6m and a 
weaker at 46°9. The corresponding frequencies are 
5°60x 10" and 6°40x10" sec.-1, Assuming the former 

* H. 5. Allen, Roy. Soc. Proce. vol. xciv. p. 100 (1917); Phil. Mag. 
vol. xxxiv. p. 478 (1917). 
+ Nernst, ‘The Theory of the Solid State ’ (London, 1914). 
t H.S. Allen, Phil. Mag. vol. xxxv., April 1918. 
§ Rubens and Hollnagel, Preuss. Akad. Berlin, vol. iv. p. 26 (1910). 

Phil. Mag. 8. 6. Vol. 35. No. 209. May 1918. 2F 
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to correspond with the atom of sodium (N=11), and the 
latter with the atom of chlorine (N=17), we find for the 
sodium atom Nv=3 x 20°5 x 10” and for the chlorine atom 
Nv=5 x 21'7x10!*. If, however, we associate the chlorine 
atom with the stronger line and the sodium atom with the 
weaker, we obtain for the products 95:1 x 10 and 70°4 x 10”, 
which are not integral multiples of 21 x 10”. 

KCl. For sylvin{ similar results are found, but in this case 
the stronger line (62°0y or 4°84 x 10" sec.~1)imust be associated © 
with chlorine, the weaker (70°3y or 4°27 X 10! sec.~!) with 
potassium (N=19). In this case we find Nv=4x 20°6 x 10” 
and Nvy=4 x 20°3x10” respectively. The products obtained 
when the atoms are interchanged are 91:9 x 10” and 
72°6 x 10”, which are not integral multiples of 21 x 10”. 

KBr. The stronger line* is at 86°5 w (v=3'47 x 10” sec™?), 
the weaker at 75:64 (v=3°97x10"sec.-1). The former 
must be associated with the potassium atom, giving 
Nv=3 x 21°9x 10”, the latter with the bromine atom, giving 
Nv=64 x 21:'4x10". The occurrence of 4 in the latter 
case is noteworthy, as it is supported by independent evi- 
dence in connexion with specific heats. 

It may be noted that for these three compounds the 
stronger line is associated with the element of smaller 
atomic number. 

KI. The residual radiation has not been separated into 
two rays of different strengths, but it is stated by the expe- 
rimenters + that such a constitution is possible. In sucha 
case we may call v, and v, the frequencies corresponding to 
elements having atomic numbers N, and Ng, and put 

Nyy, =NjVa, Nove =NoVa. 

By addition, Ys 
N,v, + Nove= (ny +72), 

But if vy, and vy. are not very different, we may replace either 
frequency by the arithmetic mean $(v,+ 172), and so obtain 

VPia-V5\ = 
(N,+N,) ae = (n+ M2 )V 45 

The observed wave-length for KI is 96°7y, so that we have 
4(v, +2) =3°10 x 10” sec.—!. 

For N, +N, we may substitute N the “ molecular number.” 
Taking N;=19 and N,=53, the product is found to be 
11 x 20°3 x 10", which is in satisfactory agreement with the 
suggested relation. 

* Rubens and Hollnagel, loc. cit. 
+ Rubens and Hollnagel, loc. cit. 
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AgCl. The average wave-length cf the residual radiation* 
was found to be 815m (v=3'68x10"). The value of 
(N, + N,)v=11 x 21:5 x 10”. 

PpCl,, The average wave-length. in this case* was 
91-0 (v=3'30 x 10”), giving (N,+2N, jv=18 x 21-2 x 10”. 
When such large integers are involved, it is always possible 
to find an integer Which will give a Govcontant value for v,. 

HegCl. The average wave-length observed* was 98°8u 
(v=3°04x10"). Taking N,;=80, N,=17, we find 

(N, + N.)v=14x 21:0 x 10”. 

AgBr. For this salt* A=112°-7p (v=2°66 x10"), and 
(N,+N.)v=102 x 20°8 x 10”. 

CaC0;. The case of cale sparf is interesting as it contains 
three elements, whilst only two bands have been recorded, a 
strong band at 93:04 (v= 3°23xX10”) and a weaker at 
116*lw (v=2°58x10"). It is found that the strong band 
must be assigned to calcium, giving Nv=3~x21'5x 10”, 
the weaker to oxygen, giving Nv=1x20°7x 10”. 

In a later paper Rubens and Wartenberg{ have given the 
wave-lengths for two ammonium salts and three compounds 
of thallium. 

NH,Cl. The observed wave-lengths are very nearly the 
same as those for NaCl, being a4 Ou v=d 56x10”) and 
46-3y (v=6°48 x 10”) respectiv ely. This is what might be 
expected if the group NH, be regarded as a compound 
radicle replacing Na, for the “ molecular number” of am- 
monium (7+4) is the same as the atomic number of 
sodium (11). ‘Taking the first line as associated with the 
NH, group, Nv=3 x 20°4x 10", whilst the second line gives 
for the chlorine atom Sv=5 x 22:0 x 10. 

NH,Br. Here again two wave-lengths have been ob- 
served, 62°34 (v=4°82 x 10”) and 55°34 (v=5°42 x 10”). 
The former line must be associated with bromine, giving 
Nv=8X21:1x10; the latter with the ammonium group, 
yielding Nv=3 x 20:0 x 10”. 

TICl. The mean wave-length recorded is 91*6u (v=38'27 
x10). The atomic number of thallium being 81 and that 
of chlorine 17, we find Nv=15 x 21°4 x 10. 

T1Br. For the bromide the mean wave-length is 117-0u 
(v=2-°56x10'). In this case we find Nvy=14~x 21:2 x 10". 

THI. For the iodide the mean wave-length is 151°8u 
(v=1-98 x10”), giving for Nv the value 13 x 20'4x 10. 

* Rubens, Preuss. Akad. Berlin, vol. xxviii. p. 513 (1918). 
+ Rubens, D. P. G. V. vol. xiii. p. 102 (1911). 
t Rubens and Wartenberg, Beas Akad. Berlin, p. 169 (1914). 
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Thus for the halogen derivatives of thallium the interesting 
result is found that the “frequency numbers” (15, 14, 13) 
diminish by unity in passing from chloride to bromide and 
from bromide to iodide. 

It must be stated that the suggestion which attributes the 
two absorption bands of NaCl, KCl, KBr to separate atoms 
is not anew one”. Nernst is of opinion that it was a mere 
coincidence—“ a very curious and misleading one indeed ”— 
that calculations of the specific heat on that supposition gave 
quite good results. Rubens was unable to find two bands 
in the case of AgCl and PbCl,, and came to the conclusion 
that the two apparent bands were due simply to water vapour, 
which has a great number of absorption bands. Ifthis con- 
clusion be accepted the results quoted above will require 
modification in the sense that the “ molecular number ” must 
be employed instead of the atomic number; but the pro- 
posed relation will still hold good. Thus for NaCl we find 
Nv=8 x'20°6 x 10%, for KCl Nv=8xX20°1x10", angie 
KBr Nv=9x 21°6 x 10”. 

It would appear probable that the relation here discussed 
applies only in the case of the longer residual rays, having a 
wave-length greater than say 20m. For shorter wave- 
lengths, corresponding to a higher frequency, the value of 
the product, Nv, is so large that no real test of the proposed 
relation can be obtained. It is unfortunate for our present 
purpose that although the residual rays from quartz in the 
region of 9uand 13 have been measured with considerable 
accuracy, the longer waves have not as yet been determined 
accurately; we knuw only that quartz shows strong selective 
absorption for the region between 60 and 80uy. 

It may be worthy of mention that water vapour has an 
absorption band at 14:3, which is the wave-length corre- 
sponding to a frequency 21:0 x 10"sec.~1, that is the 
frequency here denoted by v,. Further, the vapour of carbon 
dioxide has an absorption band at 14:1yu. It would be of 
interest to know whether other substances show absorption 
in the same region. 

The possibility of deducing the wave-length of the infra-red 
radiation from the elastic properties of the solid has been 
discussed by Madelung and by Sutherland. By considering 
a cubical space-lattice the former obtained for the wave-length 
the expression 

oe MM, 7.3 D) 

* Cf. Nernst, ‘The Theory of the Solid State,’ p. 80 (1914). 
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where M,, M, are the masses of the atoms, K is the com- 
pressibility, and D the density. This may be compared 
with Hinstein’s formula. Rubens and Wartenberg have 
shown that this formula gives results in moderately good 
agreement with their observations. 

They have also obtained fair agreement by employing a 
modified form of the equation of Lindemann, viz. 

ue MM, *) 
a= Ca/ (at PME) 

where V is the molecular volume and T, the melting- 
point. 

In both formule the constant must be determined em- 
pirically. 

The results of this and preceding papers support the 
following conclusions:— 

(1) The forces binding the atoms in the molecule are 
similar in character to those which bind the molecules of 
the solid, that is the forces of chemical affinity are of the 
same nature as the forces of molecular cohesion”. 

(2) There must be something of a discrete character in 
the nature of these forces, in order to account for the 
occurrence of integral values of x. The simplest hypothesis 
is to assume that the forces arise from the presence of 
valency electrons. As it is probable that these forces act 
only in definite directions, it is a plausible suggestion that 
the linkages between the atoms are constituted by Faraday 
tubes of force, which would then be regarded as physical 
entities. The fundamental frequencies, v, and vz, would 
depend on the properties of the unit tube of force. It has 
been pointed out by Prof. Nicholson} that such a view seems 
to be required in order to explain the relations between the 
frequencies of spectral series. Attention may also be drawn 
to an important article by Sir J. J. Thomson on the Forces 
between Atoms and Chemical Affinity, in which chemical 
valency is discussed from the same standpoint. 

* Compare Nernst, ‘The Theory of the Solid State,’ pp. 4-9 (1914) ; 
Langmuir, Ann. Chem. Soc. Journ. vol. xxxviii. p. 2221 (1916). 

+ Nicholson, Phil. Mag. vol. xxvii. p. 541, vol. xxviii. p. 90 (1914). 
¢ J. J. Thomson, Phil. Mag. vol. xxvii. p. 757 (1914). 
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XLVI. On Wood’s Criticism of Wien’s Distribution Law. 
By Haroup Jerrreys, VW.A., D.Sc.* 

| ta the February number of the Philosophical Magazine, 
pp. 190-203, Mr. F. E. Wood offers a criticism of 

Wien’s law of the distribution of energy in the spectrum 
of a radiating gas. If 2 denote the wave-length and 6 the 
absolute temperature, Wien’s law is that the energy of the 
part of the radiation with wave-leneths between > and 
V+ dn is 

b(A, 0)dx= # Paice hs 

where C and & are constants. Wood shows from the same 
assumptions as Wien that the omission of a factor by Wien 
in his first equation led to an error in the final result and 
that the correct formula based on these hypotheses is 

(A, 0)drA= ne an. 

With reference to this law it must be noted that the total 
radiation is obtained by integrating ddv from zero to infinity, 
and as this must by Stefan’s law be proportional to 0*, it 
can easily be shown that Ck-** in Wood’s equation is not a 
constant, but is proportional to 6-3. As Wood’s argument 
is involved and in places somewhat obscure +, I offer an 
alternative proof which is shorter and appears to be equally 
satisfactory subject to substantially the same assumptions. 

If N be the total number of molecules in a mass of gas, 
the number whose absolute velocities lie between v and 
v+dv is 

dN =4Nor 2a ee dy, 

where a is a velocity whose square is proportional to the 
temperature. Then Wien’s first assumption is that the 
wave-length and intensity of the radiation emitted by a 
molecule depends on v alone. If € be the rate of emission 

* Communicated by the Author. 
+ The argument at the foot of p. 197 and the top of the next page 

implies that the number of molecules with velocities between v and 

v+dv is kv? * egy instead of kv?6~ 26 9 dy, 
The introduction of an ideal type of gas on p. 198, with the notion of 

corresponding velocities, is unnecessary ; so is the use of the meaningless 
law AO=constant, which requires such careful interpretation that it is: 
more difficult to apply than the second and third hypotheses of the 
present paper, expressed in equations (5) and (14), which are equivalent 
to it. 
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of energy by a molecule of velocity v, that emitted by all 
the molecules whose velocities lie between v and v+ dv is 

dR=¢(d, 0)dX=4Na 2% ede, . . (23 
where e is a function of v only. 
Now the total radiation for all wave-lengths together is 

obtained by integrating this from v=0 to v=o, and must 
by Stefan’s law be proportional to 6*, and therefore to 2°. 
We have thus an integral equation fore. Assume that e(v) 
can be expanded in powers of v for all values of v, so that 

eo) Sao, cr Dai elt ane ieee 
0 

n+2o-"/@? can be integrated term by 
eo 

and that the series Sa,v 
term. : 

Then R can be expressed as a power series in a, thus: 
i fea) @o — Ra? _ S a ook La s eo... (26 1) ta 4 

4N ar 2™ °* “2K—1 ei 9xtl 2K—2 

By hypothesis R is equal to Ne’a®, where ¢ is an absolute 
constant, and therefore all the a’s are zero exceptag. Hence 

ae 
Ne? 94 Nag, 

and therefore 

_ 64m tag 3 10 ,-v%/a? div= 945 Ne?a~*y%e FL RAN i gic Eaam C: 

Thus the distribution of energy with regard to the 
molecular velocities is completely found from the first 
assumption alone, and all that is now required is to determine 
the relation of the velocity to the wave-length. 

At this stage a further assumption is needed; and this 
will be that the graph of ¢ against » for any temperature 
can be derived from that for any other temperature by 
homogeneous strain in two dimensions. In other words, if 
the temperature be changed from @ to k°0, or, what is the 
same thing, if « be replaced by ka, two numbers a and 6 will 
exist, so that 

pan, ee sea, 8): Ss pe) 4) 

for all values of X, where a and 6 are functions of k alone. 
Now it is evident from (4), by putting v?=/(d), that 

(A, @) is of the form 
we eee ie oon See)? ¢6} 

where F and fare at present unknown, but are connected 
by a differential relation. 
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Hence we must have, by (5), 

Now k, a, 6 and X are perfectly independent of «, and 
therefore this transformation cannot be possible for other 
values of the temperature unless 

Jian) =f) \.)'.0 
for all values of 2X. 

Hence f(aa'r) =k2(a')f (ar) = H2(a')k2(a) fir), 

and also = h?(aa’) f(r). 

Therefore k(aa’)=k(a)k(a'), and thence it is easily shown 
that k(a) must be equal to u log k(e), where e is the base of — 
the Napierian logarithms, and k(e) is an unknown constant. 
Log k(e) may therefore be put equal to a further constant h. 

Therefore fiar)=a"{r), .. (2. 3 

and fen =... 

whatever a may be, showing that 

F(A)/rx™ is an absolute constant. 

Hence vis proportional tor, . . . . (11) 
making 

64-2 dv -3 es 24—3,10 2U aT BN) = 945 Ne?a rr 

== NO-29N Ts 

where g is another absolute constant. 
Altogether ; 

br, 0)=Ngo-I ee 
where g, h, and J are unknown constants. 

Wien introduces the further assumption that the number 
a is equal to k~?, making 

ha — Sov Mela er 
and v” proportional to 1/A. In this case the distribution 
Jaw reduces to Wood’s form as modified in the first paragraph 
of this paper, namely 

13 

b(r, 0) =NgO-in- 207, 2... (15) 
a ee eal tLe. 
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XLVI. The Resolution of Mixed Colours by Differential 
Visual Digfusivity. By Herpert E. Ives, Ph.D., Captain, 
Saget... USA 

. Introduction. 
. Experimental procedure. 
. Results with purple light. 

. Results with monochromatic and compound yellow. 

. Discussion. 

po 
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1. Introduction. 

NDER the title “ Visual Diffusivity,’ the writer de- 
scribed some time agoft experiments on the lagging 

of different colour impressions relatively to eachother. These 
were predicted on the basis of a theory developed to explain 
the behaviour of the flicker photometer t. An essential part 
of this theory was the ascription to each colour impression 
of a characteristic rate of transmission along the visual 
channel. In developing the theory it wasassumed that each 
colour acted quite independently. 

In two instances it appeared necessary to modify this last 
assumption. One was the case of alternated colours exposed 
for unequal lengths of time. Here the flicker-photometer 
theory apparently called for much greater effects of dis- 
symmetry than experiment showed. ‘The other was the 
failure of an attempt to resolve a purple into its constituents 
by moving it across the field of view. It was concluded in 
the light of these experiments that some mutual action of 
colours in the act of transmission must take place. 

Later work on the flicker-photometer theory showed that 
when the complete equations were employed, dispensing with 
the earlier assumption that the effect of varying speed could 
be neglected, the case of unequal exposures did not require 
the assumption that the individual colours affect each other 
in transmission. There remained then to be explained the 
failure to resolve purple in the manner described. In view 
of the very satisfactory quantitative success of the flicker- 
photometer theory as demonstrated by the more recent work 
with the polarization design, it appeared highly desirable to 

* Communicated by the Author. 
+ “ Visual Diffusivity,” Ives, Phil. Mag. Jan. 1917, p. 18. 
1 “Theory of the Flicker Photometer,” Ives and Kingsbury, Phil. 

Mag. Noy. 1914, p. 708, and April 1916, p. 290. “A Polarization Flicker 
Photometer and some Data of Theoretical Bearing obtained with it,” 
Ives, Phil. Mag. April 1917, p, 360. “ Hue Difference and Flicker Photo- 
meter Speed,” Ives, Phil. Mag. August 1917, p. 99. 
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go more fully into the question of visual diffusivity with 
mixed colours. The outcome of this further study has been 
to establish the experimental conditions pre-requisite to the 
detection of the resolution of mixed colours by the different 
visual diffusivity of the components. With the proper con- 
ditions, not only has it been possible to resolve purple into 
red and blue, but observations have been made on both 
monochromatic and compound yellows, with results of 
interest in colour-vision theory. 

2. Experimental procedure. 
In making the experiments recorded in the paper on 

‘“‘ Visual Diffusivity,” full use was made of the fact that the 
eye is very sensitive to a break in the continuity of a straight 
line. The two coloured strips under observation were set 
slightly out of line, and then passed before the eye at a speed 
such that they appeared to form a continuous instead of a 
broken line. In attempting to resolve a purple into red and 
blue this peculiarity of the eye was not taken advantage of. 
A purple strip was moved across the visual field and evidences 
of widening or duplication were looked for. To this the eye 
is much less sensitive. 

On reconsidering the problem recently it was realized that 
the criterion of linear continuity should, if possible, be used 
to judge of a resolution of the kind expected. The arrange- 
ment cf coloured areas finally decided upon was that of a 
continuous slit—red at one end, blue at the other, with purple 
in the middle, the purple being the mixture of the two end 
colours. This arrangement is shown in fig. la. When this 
strip was moved across the field it was hoped that not only 
would the red and blue be displaced, in agreement with the. 
previous experiments, but that it would be evident that the 
displacements overlapped, in the manner shown in fig. 1 6.. 
That is, instead of looking for the duplicity of the portion p, 
which could not be detected previously, attention would be 
directed to a possible widening which would continue the 
straight line of both parts, r and 6. 

The production of such an overlapping red and blue 
strip, which could be placed in the disk apparatus formerly 
used, was first attempted by photographs on an autochrome 
plate, but the purity of the resultant colours was not sztis- 
factory. The final apparatus used was a simple colour- 
projection scheme, the requisite motion of the colour patches 
being provided for by the movement of a mirror before the 
eye. A plan of it is shown in fig. 2, where ais a box con- 
taining two point-source tungsten lamps, controlled by separate- 
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resistances >. The light from these lamps passes through 
diaphragms c and coloured glasses d to the matte white 
screen ¢, which is viewed through the slit f by the eye at h, 
after being reflected from the mirror g, arranged to rotate 

Fig. 1. 

La Lb 
1a. Stationary slit coloured red (7) at one end, blue (4) at the other, 

and the purple formed by their mixture (p) in the middle. 
16. Appearance of slit when in motion in the direction of the arrow. 

about a vertical axis. At are movable screens of short 
vertical length, which can be so placed that either top or 
bottom of the screen e is illuminated by one colour of light 
alone. With this arrangement it is possible to have the 
slit / appear of either colour given by the glasses at d, half of 
one colour and half of the other, or eise part one colour, part 
the other colour, and part the mixture of the two as in 
fig. La. 

3. Results with purple light. 

Four possible behaviours of the purple mixture region of 
the strip shown in fig. la may be imagined. On lateral 
movement either (1) the purple may move bodily as the red 
constituent, or (2) as the blue constituent, or (3) it may 
exhibit an intermediate shift, or (4) it may spread out into 
red and blue. Hither (1), (2), or (3) would be possible 
interpretations of the previous trial. 
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On making the experiment with the new arrangement, it 
was found that the appearance presented was unmistakably 
that of fig.1 b—that is, the mixed colour when passed across the 
field of vision was resolved into its components, just as it would 
have been if viewed through a weak prism. By careful 

Arrangement of Apparatus. 
a, box containing two point-source tungsten lamps. 
b, resistance for controlling current through lamps. 
c, c, diaphragms. 
d, d, coloured glasses. 
e, matte white surface. 
fy slit. 
g, mairror. 
h, observer's eye. 
jy, movable screens of short vertical length. 
k, monochromatic illuminator. 
i, opal glass. 

adjustment of the intensities the effect was made so clear-cut 
as to be immediately apparent, and was verified by a number 
of observers. This effect is shown very strikingly if the 
slit image is oscillated by the proper mirror movement. In 
this case the two colours appear to slide over each other at 
their overlapping portion. The appearance here is as though 
a purple slit of moderate length were viewed through a prism 
set with its edge at right angles to the direction of the slit, 
and then rotated back and forth with the line of sight as 
an axis. 
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It appears from this that we have here a new method of 
colour analysis, dependent on the properties of the eye and 
not on those of an inanimate physical instrument. It is of 
interest to apply this new method to other mixed colours—in 
particular to yellow. 

A. Results with monochromatic and compound yellow. 

Yellow is of peculiar interest in the study of colour vision 
because the same sensation may be produced in two different 
ways. One is by the pure yellow of the spectrum, the other 
is by the mixture of red and green light. Unlike the blue- 

_ green of the spectrum, which may be matched similarly by a 
mixture of the colours to either side, yellow gives a sensation 
totally distinct in character from its components. So defi- 
nitely is this so that the psychological elementary colours, 
not recognizable as mixtures, are red, yellow, green, and blue. 
MacDougall, Schenck, and others consider it probable that 
the red and green sensations have been developed from a 
more primitive yellow sensation, the latter one of the two 
sensations (warm and cold), into which primitive mono- 
chromatic vision first separated. 

Trial by this new method (provided it proved sensitive 
enough to give definite results) offered the possibility of 
answering the following questions, suggested by the nature 
of yellow light, as just discussed :— 

(1) Does a mixed yellow become resolved into its con- 
stituent red and green ? 

(2) Does a pure yellow become resolved into a red and a 
green ? 

If the answer to both these questions is affirmative, it 
might be interpreted as meaning that the action of both 
kinds of yellow light is to break down two substances, red 
and green, at the surface of incidence, which then travel back 
at different speeds to a point where the double product either 
combines into a yellow substance or is interpreted as yellow. 

If the answer to both these questions is negative, it might 
be interpreted as meaning that either kind of yellow light 
breaks down a yellow substanee, which travels back with its 
own individual velocity, 2. e., that colour fusion takes place 
at the surface of incidence. A third possible answer—namely, 
that the mixed colour is resolved and the pure is not—might 
be interpreted to mean that distinct red, yellow, and green 
substances are broken down by the light, travel back with 
their appropriate velocities, and that red and green fusion 
occurs after this transmission. The answer to these questions 
can be obtained only by experiment. 



A18 Dr. H. E. Ives on the Resolution of Mixed 

For the yellow light tests the apparatus as above described 
was provided with red and green glasses of narrow spectral 
transmissions for the mixed yellow, and a monochromatic 
illuminator & was added, illuminating an opal glass /, which 
could be viewed through an opening in the screen e. By this 
means either red light or green light or their mixture, or a 
monochromatic yellow matching the mixed yellow may be 
obtained, disposed in any desired way along the slit 7. 

The slit was first arranged to show half red and half green, 
and the intensities adjusted until on movement of the mirror 
the lag of green behind red was well shown. ‘This occurs at 
a rather low intensity, and care must be taken to have ab- 
solutely no stray light in the room. (In these experiments 
the slit f was placed over a hole ina door between two rooms, 
so that an assistant could make the necessary manipulations, 
without any stray light reaching the observer.) When this 
condition was found the screens j were placed so that the 
middle of the slit showed the compound yellow. This com- 
pound yellow was clearly resolved by lateral motion across the 
field of view. In fact, the resolution was even more satis- 
factory than it had been with purple, because the two edges 
of the centre patch were seen on several occasions to be red 
and green. ‘This greater success is probably due to the very 
distinct difference in appearance between yellow and its 
constituents. 

The next point taken up was the behaviour of the pure 
yellow, adjusted to be a subjective match with the compound 
yellow, and arranged to exactly take its place between the 
red and green. It wasat once apparent that pure yellow 
does not separate into red and green. ‘This fact is strikingly 
shown by arranging the slit so as to be all compound yellow, 
-excepta small portion of pure yellow. When stationary the slit 
appears alike thoughout its whole length in brightness, hue, and 
definition. But upon moving the image sideways, or oscil- 
lating it, the compound yellow immediately broadens out and 
becomes ill-defined, the pure yellow remaining narrow and 
sharp. The appearance is identical with that produced by a 
weak prism, and again demonstrates that this phenomenon 
provides a new, if rough, method of spectrum analysis. 

5. Diseussion. 

The results obtained with purple light are of chief interest 
as justifying the assumption made in the flicker-photometer 
theory, that each colour is transmitted with its own cha- 
racteristic speed, irrespective of whether it occurs alone or 

me!) 

a 
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with other colours. The results from the yellow light expe- 
riments are, however, of great interest from the standpoint 
of theories of colour vision. 

If we consider these experiments without reference to any 
other work on colour vision, it is evident that the explanation 
called for is one in which wave-length composition rather than 
appearance or colour-sensation analysis determines behaviour. 
Recently Houstoun has suggested a theory of colour vision 
according to which colours do maintain their physical wave- 
length identity in transmission to the brain. He supposes 
the spectral colours cause retinal vibrators “‘ to set up waves 
in the nerves and that the nerves carry these waves to the 
brain,” the dominant wave-length of the transmitted dis- 
turbance being that of the incident light. The results of the 
present paper might be interpreted as supporting this theory. 
A place at which the new phenomena might at first sight 
appear to fit into Houstoun’s theory may be noted as suggestive. 
If the writer understands the theory correctly, it calls for 
the production of fluorescence at the retina, which illuminates 
the brain through the transparent nerves (for the “‘ waves in 
the nerves ”’ must, because of their frequency, be light waves). 
Now it is one of the elementary facts of physical optics that 
a reduced rate of transmission of light waves occurs in a 
medium of high refractive index, and that a different rate of 
transmission of colours, in the order of wave-length, occurs 
in a medium possessing, as most transparent media do, an 
absorption-band in the ultra-violet. Thus the velocity of light 
in carbon bisulphide is less than in air, and red light travels 
faster than blue. If, then, to the transparent nerves, which 
appear to be a part of Houstoun’s theory, we ascribe a high 
refractive index varying in the usual manner through the 
spectrum, we have a system which would give the differential 
speed effects found by the present experiments. Unfortu- 
nately the necessary refractive index to reduce the speed of 
light to the order of magnitude such that even a hundredth 

- of asecond lag of blue light would be possible in any distance 
available in the human head, is enormous and fantastic. 
Apart from this quantitative difficulty, the parallelism between 
the behaviour of light in the eye and in the highly dis- 
persive medium is close. There is, however, no obvious 
explanation along this line of the variation of speed of 
transmission with the intensity of the stimulus. 

Whether or not the visual diffusivity phenomenaagree with 
the Houstoun theory, the latter requires, in the writer’s 
opinion, much more support before it is profitable to attempt 
to harmonize new observations with it. The objections 



420 Dr. H. Ei. Ives on the Resolution of Mixed 

presented to it or any “‘ wave-length” theory by the facts of 
colour mixture and colour blindness are very great. In 
particular, the production of white by various pairs of com- 
plementaries of different centres of gravity, and the neutral 
points in the spectra of the two types of red-green blind, 
present serious difficulty of interpretation. 
A great deal of evidence points to the probability of 

vision being a process of photochemical decomposition, in 
which either the decomposition products or electric currents 
set up by the process pass along the nerve tracks at the 
speeds characteristic of nerve impulses. Apart from the 
facts of colour mixture and colour blindness there is no 
reason why the number of separate decomposable retinal 
substances should not be very large. There is nothing in 
the present experimental work to indicate that the number 
is restricted to the red, yellow, green, and blue experimented 
with, although the method is so crude as a means of spectrum 
analysis that it would be difficult to show conclusively that 
a much greater number of speeds of transmission than four 
are exhibited in the length of the visible spectrum. As the 
method stands, it is inferior as a means of colour analysis to 
the single prism and wide slit first employed to exhibit the 
spectrum. Ifor an answer to the question of how many 
reacting substances of different velocities of transmission 
exist, the resolving power should be more nearly that re- 
quired to show the Fraunhofer lines. What is required to 
effect an improvement: comparable with the instrumental 
advance quoted is some drug which will slow down the rate 
of transmission of the visual impressions, or the “time 
machine” of Mr. H. G. Wells. . 

Actually the mixture phenomena point to the existence of 
three, and only three, such reacting substances—a red, a 
green, anda blue. The question of paramount.interest then 
is, how can the different behaviour of the spectrally pure 
yellow and its subjectively equivalent mixed yellow be 
harmonized with three-colour theory? It is evident that 
the “three different types of nerve fibre”’ postulated by 
Young, or the “ three different, independent, and mutually 
unopposed elementary activities”? in the statement of the 
theory by Helmholtz, must be located (if existent) at some 
distance along the conducting path between receiving surface 

-and brain. By this new method of analysis we can actually 
see red and green being transmitted a certain distance at 
different speeds* before combining to make yellow, and we 

* Or possibly with the same speed for different distances. In this 
connexion see Koenig, ‘Ueber die lichtempfindliche Schicht in der 
Netzhaut des menschlichen Anges,” Ges. Abh. p. 333. 
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can see yellow being similarly transmitted, as yellow. Red 
and green light acting together do not cause a yellow 
reaction or the breaking down of a “yellow substance” at 
the surface of incidence. Neither does yellow light cause at 
this surface the breaking down of a red substance and a 
green substance. Jf a trichromatic mechanism is necessary, as 
wt appears to be from the phenomena of colour mixture and 
colour blindness, then the present experiments call for the 
additional complication of an antecedent transmitting process 
where colours retain their physical (spectral) individuality. 

Along the lines of the Schenck modification of the Young- 
Helmholtz theory the diffusivity results might be interpreted 
as showing that the primitive yellow substance is still present 
in the retina, as well as the red and green substances which 
have developed from it. Only upon the red and green sub- 
stances reaching a certain depthis their equivalence with the 
yellow substance established. It may be imagined that this 
isolation is due to their going along separate channels. This 
interpretation practically amounts to assuming four reacting 
substances in theretina. The fourth is superfluous from the 
standpoint of colour mixture, and so appears in contradiction 
to the bases of the three-colour theory, which the Schenck mo- 
dification is not. This throws us back, if we hold to the three- 
colour theory, upon the above suggestion that the diffusivity 
phenomena take place before the trichromatic mechanism is 
reached. Unless, therefore, a theory appears which is in 
accord with all the facts of colour mixture, but calls for a 
wave-length basis of colour vision, these new facts appear 
merely to add complications to an already too complex 
problem. Unfortanately, this has been the almost uniform 
history of research in vision. 

Physical Laboratory, 
The United Gas Improvement Company 

Philadelphia, Pa., Sept. 1917. 

Note added on correction of proof. 

The transmission of colour impressions in order of wave- 
length, which is indicated as taking place antecedent to the 
trichromatic mechanism, has every appearance of being a 
purely optical effect. It could be accounted for by the 
assumption of strong chromatic aberration in annular focussing 
elements in the retina, concentrating the incident light on 
photo-sensitive fibres lying in the axes of the elements. The 
different periods of transmission of the various colours would 
then be due to the different distances the resultant decompo- 
sition products had to travel along these fibres. Further dis- 
cussion of this possible explanation is deferred for the present. 

Phil. Mag. 8. 6. Vol. 35. No. 209. May 1918. 2G 
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XLIX. An Astronomer on the Law of Error. 
By Professor F. Y. Epcewortu, F.B.A.* 

ies law of error has been disputed by the Astronomer 
Royal for Scotland + on two distinct grounds. 

I. He finds that the law is not perfectly fulfilled by 
astronomical observations, not even by those made by 
Bradley which Bessel tested, still less by others. This 
verdict does not disconcert the statistician who (after 
Laplace) grounds his expectation of the law on the inter- 
action of numerous independent causes. Where that 
condition is imperfectly fulfilled there is no reason to expect 
the Jaw of error to be realised perfectly, any more than we 
expect a body attracted to another according to the law of 
gravitation to move in a perfect conic when there is a 
resisting medium. In the case of astronomical observations 
we have reason to believe that the conditions will be some- 
times badly, sometimes fairly well fulfilled t. The like is 
true of physical observations generally, with which may be 
classed shots aimed at an object§. Similarly the neigh- 
bouring class. of statistics not grouped about an objective 
thing (e.g. statures of a population) fulfil the law more or 
less perfectly. Greater perfection may be expected in those 
classes of phenomena to which Laplace and Poisson confined 
the application of the law, namely magnitudes each of which 
is an average—or more generally a linear function—of 
numerous observations or statistics of the two classes above 
mentioned and (exemplifying such functions ||) occurrences 
at games of chance. The most perfect fulfilment is pre- 
sumably presented in a molecular medley by velocities 
considered as the resultants of innumerable compositions. 

* Communicated by the Author. 
t+ “On the Law of Distribution of Errors.” By R. A. Sampson. 

Fifth International Congress of Mathematicians, 1912, vol. i. p. 163 

: P Halaiment of the law is not to. be expected where the observations 
are affected by a few dommant sources of error, as pointed out by 
Morgan Crofton in some instructive remarks on the nature of errors 
in astronomical observations,” Philosophical Transactions, 1870, p. 177. 

§ In the class of shots may be included guesses e.g. as to the age of 
an individual and even estimates of a less objective magnitude, such as 
the worth of an examination paper; as to which see Phil. Mag. August 
1890. As to the classification of phenomena obeying the law of error, 
see article on “Probability,” Encyclopedia Britannica, 11th ed., § 117 
et seg. Cp. as to imperfect fulfilment of the conditions, § 157. 

| £.g. a great number of dice being tossed, the frequency with which 
certain faces turn up. If the dice are not perfectly symmetrical (as 
Weldon found, Phil. Mag. vol. 50. 1900, p. 168), the data have some 
affinity to statistics not representing an objective magnitude. 
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TI. The ground for expecting that the law of error will be 
fulfilled more or less approximately in the preceding. cases 
would be cut away if Dr. Sampson’s objection to the proof 
of the law were held valid. His attack (loc. cit. p. 167) on 
the proof given by Poisson after Laplace strikes at all the 
applications of the law *; it cannot be limited to the par- 
ticular class of astronomical (or more generally physical) 
observations—to which indeed Laplace+ and Poisson did 
not propose to apply the law. The objection here combated 
is not based on the want of that independence which the law 
postulates ; whether as between the (total) errors of succes- 
sive observations, considered as not “‘ accidental”? (Sampson, 
loe. cit. p. 168), or between the “small errors” (p. 166) the 
components { of the entities which may be expected to fulfil 
the law §. It is here conceded that so far as such inde- 
pendence is not present perfect fulfilment of the law is not 
to be expected ; the case will present imperfection of the 
kind admitted under head [. But Dr. Sampson in his 
attack on the theory of Laplace and Poisson (loc. czt. p. 167) 
does not dispute the initial stages of the proof in which 
this independence is implied. It is implied that if one 
component error is distributed according to the frequency- 
function /;(x)|| and another according to /,(a2), the proba- 
bility that the respective component errors x, and x, should 
concur is proportionate to /{(2;) X fo(ze). What the point of 
Dr. Sampson’s objection is may be shown by a free version 
of his argument in a simplified case. Let us suppose that 

* Including the method of sampling which is becoming so important 
in social statistics; as to the theory of which see Bowley’s Presidential 
Address to Section F of the British Association, 1906, and as to the 
practice ‘ Livelihood and Poverty,’ 1915, by Bowley and another. 

+ Glaisher more than once remarks on the fact that Laplace did not 
employ his theorem to establish a presumption that observations them- 
selyes—as distinguished from averages thereof—iulfil the law of error. 
See ‘Memoirs of the Astronomical Society,’ vol. xxxix. pp. 104, 106; 
and ‘ Monthly Notices of the Astronomical Society,’ vol. xxxiii. p. 397, 
par. 3 (1878). 

t{ Where the entities are averages their components consist of the 
original data, observations or statistics of the kinds described above 
(divided by the number thereof). 

§ For an example of the fist sort of interdependence, see Article on 
*‘ Probability’ (Zinc. Brit.), §157. Where the figures grouped were 
each an average of aset of consecutive observations of the kind instanced, 
the materials would illustrate interdependence of the second kind. 

|| Meaning that the number of observations which occur between 
x and r+Ar=Nf,(x)Az, where N is the total number of observations: 
=f,(x)4z=1; Az is small, so that for the purpose in hand it may be 
replaced by dz. 

2G 2 
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the law of frequency is one and the same for all the com- 
ponents, say f(z). Let this function be symmetrical about 
a point which is taken as the origin. Further, let the 
weights, called by Dr. Sampson after Todhunter* y, be equal. 
Then in the place of p; in Dr. Sampson’s (and Todhunter’s) 
notation we have 

A= ( J (a) cos axda, 
e~-a 

where a and —a are the limits which the errors cannot 
exceed t. Then, since 

( _Ke)de= 1, 
ee — 

p= 1—42? | a? f(a)da + 5 athe 

a ml 

—]—olk,+..., 

if we put k, for the mean square of deviation from the mean, 
that is twee Dr. Sampson’s h? §. If s is the number of the 
components, we have | 

R=p'= (l—a?ik?+. : Nee log R= —arsth?+. aia 

‘“‘Then approximately,” as Todhunter has it in his version 
of Poisson’s reasoning ||, 

Re=e 2c, where | e=2sk. 

Accordingly the required expression for the frequency of 
observations between assigned values of the abscissa is given 
by multiplying R upon a certain function of « and the said 
values of the abscissa, and integrating the expression thus 
formed with respect to « between limits © and 0. To this 
procedure it is objected by Dr. Sampson that “the terms 

* See Todhunter, “‘ History of the Theory of Probability,” Art. 1002. 
+ In Todhunter’s version respectively a and 6. 
t This condition seems to obviate Dr. Sampson’s objection. “If the 

arbitrary distributions f;(2) have any zero—and this is not excluded by 
the process of demonstration—I do not see how they can fail to re- 
appear as zero in the product R”’ (doc. cit. p. 168, par. 1). 

§ Loc. cit. p. 167, par. 3; “A” is used differently elsewhere, p. 167, 
par. 1, pp. 169--172. 

|| Op. cit. p. 565; Todhunter’s Y corresponding to Dr. Sampson’s and 
our R, and Todhunter’s x? to our 3@ and to twice Dr. Sampson’s =h;? 
(when the A’s are identical). 
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in a‘ in the separate factors have been omitted” * ; meaning 
no doubt that had the terms been taken into account the 
coefficient of a* in R would not have proved approximately 
equai to the corresponding coefficient in the expansion of e—2¢. 

Now this is exactly what was maintained by the present 
writer in the Philosophical Magazine for 1883 f. There, and 
elsewhere subsequently, he has instanced forms of 7(2) such 
that when any number of components are superposed in the 
manner of Laplace, the compound does not contorm to the 
law of error §. Dr.: Sampson, then, is right so far as he 
teaches that the independence || above postulated is not 
sufficient by itself and without any additional conditions to 
secure the fulfilment of the law of error. But he should 
have added that commonly and practically such additional 
conditions are present. 

What those conditions are may be shown by continuing 
the expansion of R. Put sé, for the mean fourth power 
of deviations for one of the components from the mean 
(identical with Todhunter’s £’’ now that the mean is coin- 
cident with the origin). We have then for the logarithm 
of p, 

1 — asa +a! (Fb Bhs?) 
(kf. as before denoting the mean square of deviation for any 
one of the component elements). Whence 

log = —a?shkyo+ a (kg okey) 

In the coefficient of a* in the expansion of R the remainder 

after the first term tends to be negligible in comparison with 
that term as s increases. For the first term contains s? con- 

* So the quesitum is defined by Todhunter after Poisson. But it 
seems much simpler en the lines of Laplace to investigate the proba- 
bility of an observation occurring az (or in the immediate neighbourhood 
of) a particular point ; as to which conception see “ Law of Error” (by the 

_ present writer), Camb. Phil. Trans. vol. xx. p. 181 (1905). Cp. p. 40, 
et passim. 

+ Vol. xvi. pp. 304 & 307. 
} “ Law of Error,” Camb. Phil. Trans. vol. xiv. p. 140 (1885). 
§ The functions are of the family specified below (p. 429) as ‘‘repro- 

ductive.” They may be expanded in ascending powers of z—by a series 
of integrations with respect to a between limits o and 0. 

|| Absence of interdependence or correlation, both between the several 
component small errors which make up a total or composite error of 
observation and also between successive composite errors; these terms 
being used in a wide sense so as to cover the case where the compound 
is an average (or other linear function) and the components are (errors of) 
observations or the same divided by m the number of observations 
(ep. above, p. 423 note) ; and where the “error” is not a deviation from 
an objective magnitude. 
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stituents of the order of magnitude k, (or k,”). Whereas the 
remainder tends to contain only s constituents of that order; 

since the central term in the expansion of ky, viz. 6hok2 ae 

is cancelled by the main term in the expansion of 3(sk,)?*. 
It must be postulated that the mean second and fourth 
powers of deviation are finite: a postulate which may be 
taken for granted when the range of the component 
frequency-functions is finite. The reasoning may be ex- 
tended—if the postulate also is—to further terms in the 
expansion of R. Accordingly Laplace was quite right 
when, referring to symmetrical identical frequency-functions 
with limited range, he affirmed that “taking hyperbolic 
logarithms, we have very approximately (@ trés-peu prés), 
when s is a large number” + for the (Napierian) logarithm 
of R (in the notation above used) an expression equivalent 
to that which has been given above. 

The conclusion may be extended to the case of frequency- 
functions not identical ; provided that their mean powers of 
deviation are of the same order. The conditions have been 
stated elsewhere by the present writer with more precision f. 
Tt is needless to reproduce that statement here, since the con- 
ditions (for even trequency-functions) have been adequately 
stated in a treatise to which Dr. Sampson has referred, 
Poincaré’s Calcul des Probabilités§. Poincaré supposes 
“the functions even, or in other words no_ systematic 
errors”’|| (Calcul, p. 184) ;“‘that the errors are independent” 

* For a fuller exposition, see the present writer's article on the “ Law 
of Error” in the Transactions of the Cambridge Philosophical Society, 
vol. xx. p. 42 e¢ seg. (1905). 

+ Théorie analytique des Probabilités, liv. 2, Art. 18, p. 336, National 
edn. 1847. 

t In the 1905 Paper referred to in the penultimate note. 
§ The proof of the law of error by way of approximate identity 

between the mean powers of the representative function and those of 
the actual locus was put forward by the present writer in 1905 without 
acknowledgment, because without knowledge, of Poincaré’s similar 
roof for the case of even functions, published in 1896. Priority may 

still be claimed for the essay of 1905 as having extended that proof to 
odd functions, having proposed several collateral proofs, and having 
carried the approximation beyond the stage at which it was left by 
Poisson (the “ second approximation ” referred to below note p. 428). 

|| It may be worth while to recall that ‘‘symmetrical” and “ svste- 
matic” errors are not necessarily coincident. The centre of asymmetrical 
group may not coincide with the true point, and the centroid of an 
unsymmetrical group may. In the case of symmetry as well as of 
asymmetry something must be known or presumed as to the relation 
of the true point to the group as a whole. Cp. Phil. Mag. vol. xvi. 
p- 873 (1888) and Journal of the Royal Statistical Society, vol. Ixxi. 
p- 500 (1908). 
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(op. eit. p. 182); “that the individual errors, though 
not following the same law, are practicably (senszblement) 
of the same order of magnitude, and each contributes little 
to the total error” (op. cit. p. 183). Recapitulating these 
conditions he concludes that “in this case the resultant 
error suivra sensiblement la lot de Gauss” *. 

The reasoning whereby the (proper or normal {) law of 
error has been found as an approximation to the actual locus 
(which results from the composition of several independent 
elements) may be extended to obtain a closer approximation 
by taking into account the first of the terms which have 
been neglected. 

Put = S92, S denoting summation with respect to all 
the elements and /, the mean square of deviation (not now 
identical for all the elements). And for S(4,—34,”) put 
K,. Then R may be written 

= ee (1+ 7 +— (= Ke: 3) cos axdu. 
~0 

The first and main term of the integral is the normal 
error-function 

ar if 
<p — 5» Say 

ofa G oo 

The second term, the sought correction, is 

( enter A 4K, cos arda; 
0 

which integral may be replaced by ee ES ia process 

may be extended to terms of Baier one so as to form a 
descending series, the “ generalized law of error” { for even 
functions. 

The transition to odd components is effected by obtaining 
likewise an odd descending series; the whole of the odd 
series—like the part of the even series which remains after 
the first main term—tending to vanish as the number of the 

* Op. cit. § 4, Legon xvi. Cp. end of § 11, Legon xiv. 
+ The term “law of error” in this Paper may be understood ac- 

cording to the context either as the “generalized law,” or only the 
first and main term of that approximation, the so-called “ Gaussian,” or 
“ normal,” law. 
t Camb. Phil. Trans. Joc. eit. (1905). Cp. Journal of the Royal 

Statistical Society, 1906, “ Law of Great Numbers,” by the present 
writer. 
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components is increased. Thus the first term of the odd 
series may be written 

1 ae 

~ BY Stage” 
where K,, =S3*, is the mean third power of deviation for any 
element from its mean value; the mean value being taken as 
the origin for each of the elements, (and for their sum) f. 
When the differentiation is performed it is seen that the 
term is affected with a coefficient which diminishes as the 
number of components, say s, is increased. For example, 
if each element is a binomial assuming the value 0 or a with 
respective probabilities g and p, 

ks=3(q—p)sa*/ (4spq)*a°, 
that is of the order 1/,/spg. Thus not only Laplace’s proof 
of the law of error for even frequency-functions, but also 
Poisson’s proof thereof for odd functions, together with his 
determination of a second approximation {, are found to hold 
good upon certain conditions. One who considers that those 
conditions are very generally realized will regard as mis- 
leading the Astronomer Royal’s statement : “The conclusion 
is therefore unwarranted and there is no proof at all that 
peculiarities of the functions f efface themselves in the final 
result” (loc. cat. pp. 167-8). 

III. It remains to notice two other proofs § of Laplace’s 
law || which have been likewise approached and missed by 
Dr. Sampson. 

There is first Morgan Crofton’s proof—either by way of a 
partial differential equation], or more directly **—that the 
continued superimposition of frequency-curves of any form 
will result in the normal law of error. Dr. Sampson 
applies Morgan Crofton’s method of composition to certain 

* It will be noticed that the subscripts of the %’s correspond to 
powers (of the component errors). The subscripts of the K’s correspond 
to corrections of the normal function. 

+ Mutatis mutandis, if the elements are weighted. 
t Given by Todhunter, op. cit. pp. 567-8. 
§ Two among several variant proofs which are referred to in the 

article on “ Probability” (Ency. Brit.) §§ 104-111. 
|| Laplace rather than Gauss deserves to be the eponym of the law of 

error when, as throughout in this paper, it is considered as resulting 
from the random combination of numerous independently fluctuating 
constituents. 
q Cited in the article on “ Probability” (Zncy. Brit.), § 109. 
** See Phil. Trans. 1870. 
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frequency-curves obtained by grafting an oscillating element 
on the normal law, as thus 

1 
Oe) SS 

#2) WV 7(1+ A) 
He shows that when curves of this type are compounded the 
divergence from the normal law tends to disappear. This 
curlosum may have some bearing on astronomical obser- 
vations. But it may be doubted whether observations 
extending to infinity—-other than the law of error—have 
much concrete significance. 

The result of continued composition may often be more 
advantageously contemplated by means of Laplace’s method 
above indicated. Let the frequency-function tor one element 
be (2), for another ¢.(x), ranging between given limits, 
which may be infinite. If the functions are evenf, 

put pi=¢,(2x) cosav. And let | p,da (between extreme 
limits) =0,(«). Let 6,(a) be formed likewise from ¢,(2). 
Then for the compound of the two frequencies we have 

| 0,(a) X 0,(a) cos aada. 
0 

This method may be employed to obtain an answer toa 
question which Dr. Sampson has raised, but has not rightly 
answered: namely, what frequency-curves enjoy the property 
that when two of a family are compounded the result belongs 
to the same family. Dr. Sampson appears to think that the 
normal law of error is the only curve which possesses this 
property in perfection, “with any generality ” (loc. cit. 
p. 170). He is not aware that the property appertains to 
a wide class of which the normal law is a species: namely, 
the class for which 6(«) (as above defined) is of the form 
exp—at. There is here disclosed a variant proof of the law 
of error. If there is a final form resulting from continued 
composition, it must be reproductive ; and reproduction is the 
proprium of curves for which @(a) is of the form exp—e‘. 
A further condition (borrowed from Morgan Crofton) which 
must be fulfilled by the sought form limits ¢ to the value 2. 
Using the value of (a) thus obtained, viz. exp—a’?, we 
obtain the normal law f. 

e—Wx"(1 + acos hax) *. 

* A simple case of the more general type proposed by Dr. Sampson 
(loc. cit. p. 170). Note that a is less than unity, and A is taken so that 
the integral of the function between limits +00 and —o is unity. 

As in the case above instanced. For the case of odd functions 
see Camb. Phil. Trans. loc. cit. p. 53 (1905). 

t~ See Camb. Phil. Trans. 1905, “ Law of Error,” Part 1. § 4, and 
Appendix, § 6. 
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Dr. Sampson is thrown off the track by a little slip in a 
mathematical operation such as the best may incur when 
not put on their guard by prior knowledge of the subject. 
Dr. Sampson experiments on frequency-functions of the 

ee (or the more general form which is presented 
(0+ 

when we take a for the parameter of #*). Here it may be 
observed O(x) is of the form e—4 (or e—24), and accordingly 
we know a priort that the continued superposition of a com- 

a 
ponents of the era) will have for result 4a 

Dr. Sampson, employing Morgan Crofton’s method of com- 
position by way of integration, finds this result true for two 
components; but not true in general, for any number of 
components. That is, in our notation, if the frequency-. 

a the 
: M : : 

function —-~——~ is compounded with alata 
m(1+ 2”) 

1 eS: when a=1: 

m (a+1)?+ 2’ Le tos 

but not for larger values of a. 
In Dr. Sampson’s own symbols, © the abscissa, and ® the 

form of the resultant frequency-curve, 

result is 

i ae Ween yg 0 d) 

bg at a4A7'14+(@—A') 
an 2am 30? 

~ Of+ 207(a? + 1) + (4-1 

This result is evidently untenable; since it imports that if 
we put together two frequency-curves, each symmetricak 
about a central point and thence descending continuously, 
the central ordinate for the compound will be zero! But if 
we resolve the expression above equated to ®(®) into two 
rational fractions according to the general rule for inte- 
gration, we shall find that while the denominator of the 
result is rightly given by Dr. Sampson, the numerator ought 
to have been (a +1)|@?+(a?—1)?]; the expression in square: 
brackets being a factor of the denominator. Dividing out 
we obtain, as we ought, for the result 

1 a+l1 

er @’+(a+1)" 

ri (loc. cat. p. 170). 

* Substituting in the last-written expression for x, z/a and dividing: 
the expression by a (substituting for dr, dx/a). 
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This is not the only passage in the paper under con- 
sideration where an inappropriate conception has led to 
inexact work*. In connexion with his peculiar notion as 
to the nature of an error of observation, the writer appears 
to hold that if the extent of an error varies with the time 
according to the law y=sint, the frequency of error between 
the extreme values which it can-assume is constant tT. Not 
so, surely ; the number of errors per unit of time being - 
constant, the number of errors per unit of space { is propor- 

tioned to a , that is gyi ED 
dé V1—# 

not a straight line but a symmetrical curve of the fourth 
degree with an infinite ordinate at the centre and contact 
with the abscissa at the points distant ¢ from the centre in 
either direction. 

In this connexion it is remarked by Dr. Sampson, “it 
seems probable that Laplace and Poisson were on the wrong 
lines.” To those who have followed the preceding com- 
ments it will seem more probable that Dr. Sampson is on 
the wrong lines. 

The frequency-curve is 

L. On Transpiration from Leaf-Stomata. 
By Haroup Jerrreys, W/.A., D.Sc.§ 

wes most of Sir Joseph Larmor’s note in the April 
Philosophical Magazine I am in agreement. It is 

clear that the amount of water evaporated from the stomata 
ofa leaf ina given time must be less than that from the whole 
surface of a wet leaf of the same size; it must also be less 
than the amount that could be evaporated from all the 
stomata if their total number were the same and all were so 
much separated that they could be treated as isolated. 
Hitherto only the latter criterion has been used to indicate 
the upper limit, and the important question is to decide 
whether the former imposes a further restriction or not. 
When the air is at rest the question is simple, for both limits 

* The following criticism is due to Professor Bowley. 
+ “For y=sin¢ .... the distribution is represented by n=1 for 

—1<£<1 and n=0 beyond those limits (fig. 3).” Fig. 3 and the 
context bear out the interpretation here given. 
¢ The number which multiplied upon Ag a small fraction of (the 

unit of) the abscissa, £ gives the (proportionate) number of observations 
occurring between 2 and ++Aé (or a+3Az and 2—348). 

§ Communicated by the Author. 
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can be well determined; the wet-leaf limit is then found to 
be the smaller and therefore gives the more useful criterion. 
When the air isin motion the question is much more difficult, 
for while the evaporation from isolated stomata remains prac- 
tically constant with ordinary wind velocities, that from a 
wet leaf increases rapidly with the velocity and may come 
to exceed the isolated-stomata limit. In most particular 
cases it is probably best to find the wet-leaf limit by direct 
experiment, for its theoretical value depends on the wind 
velocity and the amount of turbulence, which are more 
difficult to determine. The isolated-stomata limit can be 
calculated without difficulty from the formula I gave. 

I stated in my paper that to decide which limit was the 
more important in a wind depended on the particular cireum- 
stances considered. When a wind is blowing over a fixed flat 
surface the air behaves differently in two regions. In contact 
with the surface the velocity is zero, and within a certain 
small distance, estimated by Major Taylor as 40/U centimetres, 
where U is the velocity ata great distance measured in centi- 
metres per second, the motion is purely laminar. The 
velocity at the edge of this layer is a considerable fraction 
of U, say3U or 4U. Within this layer heat is communicated 
by heat-conduction, momentum by ordinary viscosity, and 
gaseous constituents by ordinary diffusion. Outside of it 
the motion ceases to be laminar and becomes turbulent. 
The turbulence causes masses of air to be transported bodily 
for considerable distances in all directions, and their mixture 
with surrounding air causes a great increase in the ease of 
transference of heat, momentum, and gases. The effect of 
this is to add to the coefficients of kinematic viscosity, 
thermometric conductivity, and diffusion the same quantity, 
called the eddy conductivity, which is much greater than any 
of their values in non-turbulent motion. Now the problem 
of evaporation consists of two parts: first, the diffusion across 
the layer of laminar motion, and second, through the tur- 
bulent region. Sir Joseph Larmor neglects the resistance 
to diffusion in this region, thus practically taking the eddy 
conductivity as infinite, which appears to be justifiable in the 
ase he considers. In the notation I used previously the 
rate of evaporation on the isolated-stomata hypothesis is 
2arn*kpcV A, and for a circular leaf of radius / and circular 
‘stomata of radius a this becomes 47rn*kpal?Vo. The wet-leaf 
hypothesis gives 3°95pVo(KU/*)?, where K is the eddy con- 

ankalt : 
- With 

(KU)3 
n? =33000/cm.?, a=5 x 10-* cm., =5 cm., k=0°24 cm.*/sec., 

‘ductivity. The ratio of these is practically 
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K=1000 em.?/sec., U=400 em./sec., this becomes 0°05 
roughly. Thus the isolated-stomata law gives much the 
smaller limit and is therefore correct. For indoor expe- 
riments, however (and most transpiration experiments have 
been done indoors), K and U are both much smaller than is 
above assumed, and the limits will occur in the other order, 
so that the wet-leaf law will apply and evaporation from 
individual stomata will accordingly be restricted. 

Consider then a leaf in air moving sufficiently slowly for 
the wet-leaf law to hold. What happens when the stomata 
contract ? At first they are capable of sending into the air 
more water vapour than the turbulent air can carry away; 
and as long as this remains true it seems to me that vapour 
will stay in the layer of shearing, and practically saturate it; 
then the rate of evaporation remains nearly constant, for it 
depends almost entirely on the outer region, which is in the 
same state throughout. As soon as the contraction reduces 
the possible supply of vapour to below the maximum amount 
that the turbulence can remove, the rate of evaporation will 
diminish, finally reaching the limit zero when the stomata are 
quite closed. Thus most of the reduction to zero will take 
place in this last stage. I do not see in what respect this 
result is paradoxical, and it does appear to be well confirmed 
by experiment. 

The amount of transpiration possible on the wet-leaf 
hypothesis seems to be quite adequate. Thus, consider a leaf 
of 5 cm. radius, in an atmosphere containing 0:04 per cent. 
of carbon dioxide by volume. Then even in still air the 
volume of CO, absorbed per hour could be 13 ¢.c., or 0°17 c.c. 
per sq.cm. ‘Thoday finds experimentally that Helianthus 
annuus in the open air can at the utmost absorb 0°14 c.c. of 
carbon dioxide per sq. cm. per hour. On the question of 
evaporation I have seen no quantitative statement amenable 
to numerical calculation except Renner’s definite assertion 
that the evaporation from a leaf is the same as that froma 
water surface of the same size. 

Note by Sir Josern Larmor. 

Dr. JEFFREYS agrees that the standard discussions on this. 
subject are not in error, though there isa question of how 
closely they conform to the conditions of any particular 
experiment. The idea of an eddy conductivity may prove 
useful with due limitation; but I find it difficult to. 
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attach any definite value to K. It may be of use to sum up 
in other terms the broad essentials, which seem to include 
all the calculation that the facts are definite enough to 
warrant. 

The sensitive surfaces of a leaf are protected from injury, 
by being the walls of interior chambers which are connected 
with the outer air by narrow necks called stomata. Their 
efficiency as absorbers of carbon dioxide or as transpirers of 
water vapour depends of course inversely on the narrowness 
of these necks. The reciprocal of this efficiency is the quantity 
that can be discussed directly ; for it is proportional to the 
total resistance of the channel of diffusion, which is made up 
by addition from that of the chamber, that of the neck itself, 
and that of the tube of diffusion outside extending to where 
the atmosphere becomes normal as regards its carbon dioxide 
or its vapour. The length that may be assumed for this 
latter tube depends on circumstances inv olving the degree of 
stillness of the air: and it is this that Dr. Jeffreys proposes 
to elucidate by introducing the modulus K. Perhaps with 
moderate motion of the leaf it has practically no length at all, 
the air sweeping over the leaf and being renewed even close 
to its surface. Ifa large proportion of the wall of a chamber 
is fully efficient, the air in the chamber is, except near the 
neck, practically free from carbon dioxide or saturated with 
vapour, as the case may be: this follows from the usual 
electrostatic analogy. If both these conditions hold good, 
the one just stated on the inside and free sweep of air close 
to the leaf on the outside, the total resistance is that of the 
meck alone including the corrections usual in electric problems 
for its ends, there being none for its outer end if the air is 
renewed constantly close over that end. Ifthe stoma were 
a mere aperture ina thin plate, its resistance would then 
reduce to this correction for the inner end alone, as 
Dr. Horace Brown remarks: it would be inversely as the — 

linear dimensions, being for a circular aperture measured by 
the reciprocal of its diameter, multiplied by the specific 
resistance for air. This is the reason that a large number of 
very small stomata can permit almost free interchange 
‘between the interior of the leaf and the outside. 
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LI. A Method of obtaining General Reaction- Velocity Curves 
for complete Homogeneous Gas Reactions at Constant 
Pressure. By Georce W. Topp, 1).Sc. (Birm.), B.A. 
(Camb.) *. | 

HE writer has already worked out general curves for 
homogeneous complete reactions between two sub- 

stances when the volume of the reaction space remains 
constantt. In many binary gas reactions a continuous 
change of volume takes place during the reaction at constant 
pressure. The concentrations of the reacting gases therefore 
not only depend on the amounts transformed but also on the 
volume of the products. Since many technical gas-reactions 
take place at constant pressure, sets of general curves for 
such reactions should prove of great value. The paper gives 
a method of obtaining the curves. 

Bi-molecular Reactions. 

Take a reaction of the type A+B-1 or more resultants. 
The resultants need not necessarily be gaseous. We will 
assume that B is in excess. 

Let a gm. mols. of A react with b gm. mols. of B. 
Let 2 gm. mols. of either reactant be changed in time ¢. 
Let v be the the total volume of reactants and resultants. 
The velocity of the reaction is given by 

CAE RTL —2 b—x 

di\v) ~ <a 
where k= velocity constant, or 

ldx xdv 
fat. wie dt = 5 (a—a)(b-2). < ; = (1) 

Pato -=X, 1. e. the fraction of A changed. 

If the pressure is maintained constant esha! the 
reaction, then the volume at any time will be proportional 
to the number of gas molecules present. 

The initial volume when ¢=0 is 

v) « 2a+(b—a), 

(b—a) is the excess of B present. 

* Communicated by the Author, 
+ Phil. Mag. vol. xxxv. p. 281. 
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The volume after a time ¢, when the fraction of A changed 
is X, is 

v « 2a(1+aX) + (d—a), 
where « is a constant for the particular reaction. 

If the volume increases a is positive, if the volume 
decreases « is negative. 

We get la 2a(1+«X)+(b—a), 

: 2a+ (b—a) f 

and dv Zavox aX 

ai 2a+ (6a)? dt 

. Equation (1) now becomes 

adX aX2anedX ,a’ b 

ia Aa a eee 
or dX a 

which is independent of «. Hence a volume-change at 

constant pressure does not affect fa} so that the general 

curves given in the paper previously alluded to will do for 
the case of bi-molecular reactions at constant pressure as 
well as at constant volume. 

Ter-molecular Reactions. 

Many binary gas-reactions are of the type 2A+B-1 or 
more resultants. Let us work out this case assuming first 
that B is in excess. 

Let 2a gm. mols. of A react with 6 gm. mols. of B. 
At time ¢, 22 gm. mols. of A and x gm. mols. of B will 

be changed. 
Let v be the total volume at time f. 
The velocity of reaction is given by 

d(x ah we) (=*) 

as) = .( DLN a re 

: Liv rd k - = a = g(a—2)*(b—-2). | ia 

(N.B. The concentration of the gas A has been taken as 
half the number of A molecules per unit volume.) 

* If there is also initially present m molecules of an inert gas, then 

2a(1+aX)+(b—a)+m 
Qa+(b—a)+m ” 

but this does not affect the final expression for Te 

=Vo 
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Put —=x, the fraction of A changed. The volume at 

any ees being proportional to the number of gas- -molecules 
present, we have 

vu « 3a+(b—a), 

and v « 3a(1+aX)+(b—a), 

aa( a(l+eX)+ (b— oe 

3a+ (b—a) j 
whence v=vt- 

and dv Baug dX 

dt 3a+(b—a)° dt 

Substituting in equation (2) gives 

F() dt 14. "10d ay ae 

2a+b 

or, putting = Ps | 

dX _) = aCe 
dt re G ; 

2+p™ 
da 

Xx je SE sidan 2 x 2+ 

7 law = EE i aR) a 
i J0 (1— x) ( p— X) Co 

This is the general equation for B in excess. 

* If in addition to the 2a molecules of A and the 6 molecules of B, 
there are also initially present za molecules of an inactive gas, then 

3a(1+aX)+(b—a)-+na 

3at(b—a)+na ‘ cae Vo 

so that a ,(1—-xy? eal 

dt =h (5 a SE es 
at 2a+b-+na 

and equation (3) becomes 
3a E 

ay? (Xt at pt 
x (“) i oe AX. ») =) T=X¥@-X) 

Phil, Mag. 8. 6. Vol. 35, No. 209. May 1918. 2H 
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When A 2s in excess we have by similar reasoning, 

since % « 3b4+2(a—bd), 

and v x 3b( Co 

x 1+ 
1+2p 7: dX, a Kc) See X) 4) 

p in this case being — 

If nb molecules of an inactive gas are also present in the 
initial mixture, equation (4) becomes 

3a 

k(--) al Ot Tp tn ox 
Y% 0 (—XPU-K) 

Reactions with B in excess. 

Let the volume-change when neither reactant is in excess 
be given by 

2 vols. + 1 vol. -> 2 vols. 

5 —— 1 
te a a= 3° 

Equation (3) becomes 

nf 
i 

K(2) t= ee 
U 9 1=XP(p— a 

iL 2 1—X +1 X 
are Mog Dieu? ) i Bat 

pt+2 \(p—1)? p—-X ~ p-11-X 

For p=1 

Ries mie Ta a (Se 9 10 

z (2) hae 0 271 815 1:333 2253 4147 9333 3600 o 
0 

p=], 
Se eee 0 3 5 6 7 8 9 10 

e(S)¢ iA 0 Sh 98 158 270 530 170 
Vo 

p=2. 

RE el Gees 5 7 8 5 16 

u(Z) « ene 0 -296 -547 #+%+41368 #245 590 
Vo 
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6:0 

VELOC/TY OF THE REACTION 

- 2ZAtB —->2C 

al 
Ne 

p=3s. 

BoP. 0 5 7 8 9 ‘95 10 

id eae ee 0 349-839 «1-470 «3-406 7-389 «sao 
0. 

p=4 
Be 0 6 3 9 95 10 

a(S) ¢ Wes 0 389 1060 2424 5180 Pa 
0 

2—6. 

7 Sa 0 7 8 9 ‘95 10 

& (2) « ee 0 295 507 1148 2-43 s 
0 

Fig. 1. 

Lo 5 1-0 5 2:0 2:5 278-0 35 40 45 5:0 5:5 : 
_ SERRE 2 eee eee 
jee. 

(EG eee eee oe 
tot s ine e=. Pt mela at i eee 
HAA ay pease eee 
Ca Ce Ee 
A a oeea 

6 7 al 

UL ae 

Binvexcess,  a=> 4y 

X= fraction of Aconverted intime t SRR eebaw 

pe ee OPN Ae 

2 initial concentration of A 

_ initial concentration of B b 

“initial concentration of A a 

2 a) tS k=velocity constant 
Seas ee 
See | | | ere 
Sea | 
0 =< ‘0 15 20 2a 35. 40 4) 50 Ss 60 

These figures have been plotted in fig. 1. The curves 
obtained are applicable to all ter-molecular gas-reactions of 
the type 2A+B- at constant pressure, the volume-change 
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being such that a2=—1},and the gas B in excess. Hxamples 
of such reactions are 

2H,+0,>2H,0 oxygen in excess. 

2CO0 +0, 2C0, a 

2NOAOs 2NO3 oe 

Now let the volume-change, when neither reactant is in 
excess, be given by 

2 vo. + 1 vyol.-sa wol: 

1 = —2 
Ue &. a= 3° 

93 

99 

Hquation (3) becomes 

5 eee 

79% i( Yi=(" Jp Lame 
Vo (1— — X)' (p— X) 

i 1 { ee nb ss: —X Ne Xx 
pre Vad pk) pee 

For p=! : 

ROR Oe reniesey (°° oR. CUBR ip, Meenas 9 10 
; 2 

#(S) Vas 0 -261 -751 1167 1-874 3235 6666 22°50 o 
0 

p=1}. 

Gis GAS, Kes |e 7 8 9 10 
2 

z(=) Bos eus O +358 -864 1242 217° 399 1OOkM ae 
0 

p=2,. 

BO VNR en a we 
2 

z(S) ¢ Bane 0 -214 -500 750 1166 2-000 4:500 9500 o 
0 

pS, 

Bi 8 Cs My Hie «6 eee | ge 
2 

z (2) FU 0 218 -485 747 1265 2-797 5830 oc 
0 

p=. 

saad Tame et an ae = 9 95-87 
2 

z(S) ane 0 +195 -444 -758 1-667 8465 5868 o 
0 

p=s. 

a A, OH eg 8 9 95 ry A 
2 

z(<) ¢ ete 0 -281  -475 1055 2205 3731 @ 
Wer EA 
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These numbers give the curves in fig. 2. The curves are 
applicable to all ter-molecular gas-reactions of the type 

Fig. 2. 

150. (55. 60 

ane ACK 
\ a | 

D>. 

ea 
‘a 
a 
a 
g, 
aj VELOCITY OF THE REACTION 

2AtB —> C 

Binexcess; @a@=- % 

N= fraction of A converted in time t 

= = initial concentration of A 

_ intial conéentration of B - 2 
inttial concentration of A a 

P 

ae | Ae kh =velocity constant 

Ale *p— 

= 

een 35° 426 Tee Boe Son len gett NAN yy ot 

2A + B-> at constant pressure when the volume-change is 
such that «= —2 and gas B isin excess. Such a reaction 
is 2NO+0O,->N,O, oxygen in excess. 

Reactions with A in excess. 

Let us reconsider these reactions in which a=—1 and 
a= —2 when the A gas is in excess. 

Take first a= —4, 
Hquation (4) becomes 

| ae 

(a (" ax 
a Jake Se 

1 { 2p p—-X p+l xX \. 
—— OD if EE eb BASS | eeu ess 

1+2p ((p—1)? “*pG—X) p(p—1) p—X 
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For p=1. 

Bai igi pee re) te Rete mere Pye payee 9 10 
2 

u(>) « jae 0 -271 ‘815 1:333 2-253 4147 9:333 3600 © 
0 

p=lyo 
ihe eee. aie 6 7 5% 8 10 

2 

“(-) Patan 0 Sl) 97 164 O74. 37) aoe 
0 

p=lt. 

Maes ba: OF a8 5 "7 8 9 10 
b 2 

z (=) Nah ae 0 1909 -558 (145 262° “ogee 
0 

p=li. 

Tue at DO. vee 6 7 8 9 1-0 

x ( =) e ate 0 394 657 995 1578 “SeeLe 
0 

p=2, 

Ae See Pe ey i eo 9 9 19 
2 

a(>) sae 0  -294 -319 -455 679 41115 1706 o 
0 

The curves obtained from these numbers are given in 

fig. 3. 

Now take a= —2. 
Hquation (4) becomes 

-ie a 

eo) (5 a poe x 
26- 2p-1), p—xX I x}. 

= hp (p—1)' “©"p1—X) pl) poe 

For p=1 

bgt ean aU Oe neds) | SB eee 9 10 

R(o)e aes 0 -261 751 1167 1:874 3-235 0°666 22:50 o 

pHlis 

Gea ney 0:3) a ee 6 7 8 9 10 

eS) Agee 0 36 86 140 222 409 96 
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p=li. 

meee. Dees nae Yun Queene 1D 
b 2 

z (=) ¢ Bi 0 -271 641 -956 1465 2395 473 
0 

Fig. 3. 
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ae 
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ct ee 2ATB Ze 

Ainexcess, a=-% 

i7aiias = fraction of 8 converted.in time t 

ey a 

| 

é = inttial concentration of 8 
f 
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ee k = velocity constant 

et St ef 
__TEaSRee 
0 5 FSI 40 ee SO Ss) 60 

p=1i. 

= 4 ae a Wea 7 8 9 105.) 11:0 
5 2 

z(-) Be, Tp ec Wa ey cs 
0 

p=z2. 

at | 0. “4n\ ee +9 95 9 10 
b 2 

«(=) ae 0 +147 -292 -592 -938 1318 1616 o 
i?) 

These numbers are plotted in fig. 4. 

Curves for reactions in which « has other values can 
easily be worked out from equations (3) and (4). Values of 
a other than —} are uncommon. When the resultants of 
the reaction are solid or liquid, e= —1, 
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General Curves for Reactions of Higher Orders. 

Gas-reactions of higher orders are rarely met with (except 
in the case of combustion of many hydrocarbons), therefore 

Fig. 4, 

VELOCITY OF THE REACTION 
2AtB — C 

Ain.excess; a=- % 

N= fraction of B converted in time t 

é = initial concentration of B 

p= intial concentration ofA _@ 
initial concentration of 8/ ~ b 

k= velocity codstant 

5 0 “tt 20°25 30 35 40. 4:5) sagen 

examples have not been worked out. General curves for 
any particular type of reaction can be obtained by following 
a procedure similar to that used in this paper. 

London, February, 1918. 

LIL. Notices respecting New Books. 
Annuaire du Bureau des Longitudes pour Vannée 1918. 

Pp. viiit+869. Paris: Gauthier-Villars. Price 2 francs. 
MP\HIS excellent almanack contains, in addition to the usual astro- 

nomical data, many other tables of interest relating to meteoro- 
logy, terrestrial magnetism, and kindred subjects, together with a 
very useful collection of physical constants. Besides the tables there 
are special articles, written by good authorities, on the following 
subjects: Sundials, the Egyptian Calendar, Time at Sea, the Sun 
and Terrestrial Magnetism, and an obituary notice on Professor 
Gaston Darboux by M. Picard. 

The book is embellished with star maps and figures, and is a 
very useful and wonderfully cheap publication, 
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LITT. Molecular Frequency and Molecular Number Part EIT: 
Inorganic Compounds. Lindemann’s Formula. By H. 
STanteEy ALLEN, M.A., D.Sc., University of London, 
King’s College*. 

N the present communication are given the values of the 
characteristic molecular frequency, v, calculated by 

Lindemann’s formula for those inorganic compounds for 
which data are available. The formula in question may be 
written 

ik 

i uh Mv? 
where T, is the absolute temperature of the melting-point, 
M is the molecular weight, and V the molecular volume. 
The coefficient & has been assumed constant, and Nernst’s 
empirical value, 3°08 x10", has been employed. 

For each compound is tabulated the value of the molecular 
number, N, and of the product Nvx10-¥. In the majority 
of cases it has been found possible to express Ny either in the 
form av, or in the form (7+ 4)v,, where mis an integer and vy 
is a constant frequency having a value about 21 x 10” see.-1. 
In the few exceptional cases where neither of the above forms 
is applicable the product has been expressed as (n++2)y, or 
(n+2\v,, but no special significance is at present attached 
to such results. All the results here given must be con- 
sidered in the light of the general considerations affecting 
Lindemann’s formula put forward in Part I. of this papert. 

* Communicated by the Author. 
t+ Phil. Mag. vol. xxxv. p. 338, April 1918. 

Phil. Mag. 8. 6, Vol, 35. No, 210, June 1918. 21 
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Compounds containing water of crystallization have not 
been included, as in such cases it is often difficult to decide 
whether the recorded temperature is a true melting-point or 
the temperature at which the solid dissolves in the water 
of crystallization. 

Groupl. ., 

Of inorganic compounds for which the density and the 
melting-point are known, a larger proportion belongs to the 
first group than to any other group in the Periodic Table. 
With a small number of exceptional or doubtful cases, the 
results show good agreement with the suggested relations. It 
is noteworthy that when the temperature of the melting-point 
is known accurately, the agreement is better than when this 
temperature is uncertain. 

For several of the lithium compounds the melting-point 
has not been determined with great accuracy, yet the values 
of v, do not differ widely from the mean value which is 
20°7 x 10! sec.~' The mean value for the elements, given 
in a former paper *, was 20°9 x 10'sec.~1, when the same 
factor was employed in Lindemann’s formula as that here 
used. It has been pointed out previously} that the chance 
of these results for the lithium compounds (including 
Li;PO,.H,O) agreeing accidentally was about 1 in 280. 

Grove I. 

Lithium Compounds (N=8). 

Name. Formula. N. Vv x10-12, Ny x10-12, 

LitHrum 
AMNVABL, Yee eeeees exec oeee LiNH, 12 6:073 33 X 20°8 
browmitde, Nye ss.a eee LiBr 38 3°234 6 x20°5 
GATHONAEO  oieweeeeeunr Li,CO, 36 3°435 6 X206 
chloridle (4)... 3.000 LiCl 20 5-079 5 x203 
fluoride ..... mash eie Lik 12 9:207 53x 20°1 
LOGS cu. Wen senna Lil 56 2°227 6 x20°8 

TIAN BAC pts aetiess a5 ee LiNO, 34 2°821 44 X21°3 
perchlorate............. Liclo, 52 1-742 +X 20°1 
piliga te. (8)... cs.ine seen Li,Si0, 44 3°756 8 x20°8 
sulphate acid ......... LiHso, 52 1-636 4 X21°3 
SulpHAabe: cea (hae Li,SO, 54 2°680 7 X207 

(2) Richards and Meldrum (1917) give the melting-point of pure 

lithium chloride as 618° C. This makes for better agreement, giving 

Nv x 10717 =5x 2056. 
(b) The melting-point of lithium silicate is given as a standard tem- 

perature (1201° ©.) in the Smithsonian Physical Tables. 

* H.§. Allen, Phil. Mag. vol. xxxiv. p. 478 (1917). 
+ H.S. Allen, Phil. Mag. vol. xxxv. p. 338 (1918), 
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Sodium Compounds (N=11). 

Name. Formula. N. »xl07. Nyx fo-™. 
Sopium 
borate tetra- ......... Na,B,O, 98° 1:596 73 X20°9 
BRGHIAUE! Ceccts sess: NaBrO, 70 1-801 6 X21:0 
SMO MhO: 22) con dSe sce e ce NaBr 46 3037 63 x 20°7 
GREROOALE | .--s 2. a 5.'. Na,CO, 52 2878 7 x214 
CEREALS ici sacdesss sus NaCloO, 52 1°962 5 xX20°4 
ehiloride (@)...:.....'... . NaCl 28 4-407 6 x206 
MMGLIGE 5.05.62 0200 65% NaF 20 6-794 +x 209 
hydroxide 30.3.5... NaOH 20 6°787 65 X 20°9 
MILO Vc cicciecls oe sian ci Nal 64 2°268 tx 207 
MPERGES ooo fh ews aden: NaNO, 42 2417 5 x20°3 
MaMMIEG)(O). 2.0. eds NaNO, 34 2°724 4>xX206 
phosphate meta...... Na,P,0O;,5 200 0°829 8 X20°7 
MMI PHELO . 0 ..s0s.ee nc a,SO, 70 2337 8 x20-4 
sulphate acid (¢).,...  NaHSO, 60 1°859 52x 20°3 

(a) Melting-point of sodium ehloride (801° C.) has been used as a 
standard temperature. 

(0) Melting-point of sodium nitrite, 271° C. (Divers, 1899), 
(c) Melting-point of NaHSO, “ over 315° C.” (Gmelin- Kraut). 

Potassium Compounds (N=19). . 

Name. Formula. Ne 107-4, Nv pein; 14. 

PorassIUM 
arsenate acid ......... KH, AsO, 86 1-564 53 X21°3 
EOMALE 252.0605 5.0.) KBrO, 78 1°708 63x 20°5 
EOMIES) 555004000... KBr 54 2°575 62 x 20°6 
carbonate ............ K,CO, 68 2-310 73x 21:0 
EIOEBIS <. co ccsoe inet KCI1O, 60 1886 53x 20°6 
BAMGRIGE 5.025 cies KCl 36 3°493 6 x20°9 
Giromate <..:..:..... K,CrO, 94 1-882 83x 20°8 
dichromate............ K,Cr,0, 142 0-974 65 x 21-4 
MATING. cso 2: . 2 32+ KE 28 4°789 63 x 20°6 
PONMUALE feos -2 oc 0s0e 00 KCHO, 42 1955 AX 205 
hydroxide ............ KOH 28 3°431 4*-X 21:3 
MEDD ape a vacev covets. KIO, 96 1-609 6 x204 
STL ee KI 72 1:988 7 X20°4 
AOORAGI EET oo ve tiece KI, 178 0-543 45X21-5 
MEREMED SC. 522 d-iis 4000 KNO, 50 2:080 5 X20'8 
perchlorate............ KCIO, 68 2-046 65 X 21:4 
poriadate. 6.2 :.-cse2- KIO, 104 1-488 74X 206 
hosphate 12 AL Ae ON: ae } KH,PO, 68 1308  41x209 

ROLDDALG (J). oc1k0 2500 K,SO, 86 2°121 9 X20'3 
Be RILEY ag 5 coe ae: KHSO, 68 1:536 5 x20°9 

sulphocyanate......... KCNS 48 1778 4 x213 

(a) Melting-point of the anhydrous salt, 96° C.,’Tilden (1884). 
(6) The melting-point of potassium sulphate (1070° C.) is used as a 

standard temperature. 

The results for sodium and potassium compounds are 
specially interesting, and should be compared with one 
another where that is possible. There are eleven cases in 

212 
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which compounds of sodium are represented in the second 
list by the corresponding potassium salts. For five of these 
(the bromide, chloride, fluoride, iodide, nitrate) the frequency 
number is the same for the sodium as for the potassium salt. 
For the bromate, carbonate, chlorate, the frequency number 
for the potassium compound is greater by 4 than that for 
the sodium compound. for normal potassium sulphate 
Nvx 10-”=9 x 20°3, as compared with 8x 20:4 for the 
sodium salt. The results for the acid sulphates and the 
hydroxides are less reliable. 

The bromides of sodium and potassium require special 
consideration. For NaBr the melting-points recorded fall. 
between the early value of Carnelley (708° C.) and that 
of Ruff and Plato (765° C.). Taking the latter value, 
Nv = 139:'7 x 10%. For KBr Carnelley gave the value 
699° ©., whilst Ruff and Plato in 1903 found 750° C. 
Using the highest value according to the principle adopted 
generally, it is found that Nv=139'0x10". Thus if the 
melting-points of Ruff and Plato are correct, the values of 
Nv for NaBr and KBr are in close agreement with one 
another; but they cannot be represented by using frequency 
numbers of the form n or n+ 4 unless high values for vp, are 
employed, the product for NaBr being equal to 64 x 21°5 x 10 
and that for KBr being equal to 64 x 21-4 x10”. A redeter- 
mination of the density and melting-point for each of these 
salts is to be desired. It may be noticed that both LiBr 
and RbBr give normal results, the value of Nv for the 
former salt being 6 x 20°5 x 107, for the latter 7 x 20°5 x 10!2; 
the melting-point of CsBr is not recorded. 

Assuming that the value of Nyx 10~” for NaBr is written 
in the form 64x 21°5, calculation of the probability by the 
formula of Laplace shows that the chance of an accidental 
concordance in the values of v, for the sodium salts is about 
1 in 36. 

The agreement between the values of v, in the case of the 
compounds of rubidium and cesium is only moderately 
good. Perhaps it may be safe to predict from a comparison 
of the results with those already given that the melting- 
point of cesium iodide will prove to be higher than the 
recorded value, 621° C., so as to give a frequency number 8 
instead of 73. It will be noticed that in general the 
frequency numbers for the compounds of the alkali 
metals tend to increase as the atomic number of the metal 
increases. 
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Rubidium Compounds (N=37). 

Name. Formula, N. vx10-!% Nvyx10—): 
Rvusipium 
PenmNGe 66. os eeccceess RbBr 72 1:990 7 x20°5 
chloride (a) ......... RbOl 54- 2-310 6 x20°8 
i = Se RbF 46 3021 62x 21-4 

| PpRRPTIANG — oo occas. sc RbOH 46 2:297 5 x211 
“LOTT aS A Rbl 90 1-616 7 x208 

Gonde Ga. Sk ita Rb,O, 90 1-674 hi SAU 

pentasulphide......... Rb,S, 154 0-685 5 x21 
(@) Melting-point of rubidium chloride, 714° C. (Richards & Meldrum, 1917). 

Cesium Compounds (N=55). 
CzsIuM 
chloride (a)............ CsCl 72 2:065 7 X212 
7S) Dee eeenreere CsI 108 1-480 74X213 
A eh ere CsNO, 86 1-542 63 x 20°4 
baie tri-. ....:.....-- Cs,0, 134 1-076 7 X206 

SEP ROLY = Leet ss. s suk Cs,0, 142 1-073 73 X 20°3 
pentasulphide.. ...... Cs,S, 190 0°612 5321-1 

(a) Melting-point of cesium chloride, 645° C. (Richards & Meldrum, 1917). 

Only a few copper compounds can be included ; it is of 
interest to note that the frequency number for cupric 
chloride is 63 as compared with 6 for the cuprous salt. 

Copper Compounds (N= 29). 

Name. Formula. Wp K10T Ne 103: 
Cuprovus 
Bromide oo cc cce CuBr 64 2:267 1 ST 
LE ee CuCl 46 2-726 6 x20°9 
MMO bodes cas eue Cul 82 2048 8 x21°0 
sulphide ........-.:.-. Cu,S 74 3002 11 x202 

Curric 
eaeterthe . 3. sos ean CuCl, 63 2°136 63 x 20-7 
SLE RES ee eee CuO 37 5°458 10 x20:2 

Silver Compounds (N=47). 
SILVER 
TE 2 ee ree ee AgBr 82 1-935 tae 2 2 
chlorate ........ cere _ AgClO, 88 1-421 6 x20°8 
BUREN Yoo oct owcivecue = Ag(Cl 64 2°343 (fees ie 
20 TES CS et ra ele AgF 56 2-609 7 X21:0 
MUA 5 3, -sonntscebane AgI 100 1657 8 xX20°7 
MATOS (1) © 2-2 cons o 00 AgNO, 78 1-543 6 xX201 
phosphate ortho...... Ag,PO, 188 1309 15 x206 

J Pyro ..5..; Ag,P,0O, 274 0756 10 x20°7 
BUI BAEG oo. svese<se-00- Ag,SOx 142 1°378 3X 20°8 
2 ATT Aas Ag,S 110 2004 103x21-0 
felitieide 2. 3.05<305- Ag,Te 146 1686 12 x205 

(a) Silver nitrate changes from the rhombic to the hexagonal-rhombo- 
hedric form at 159°°8 C. The density of the rhombic form has been 
used in the calculation. 

The salts of silver show fair agreement with the proposed 
relation. It is doubtful whether silver nitrate should have 
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been included, as the density corresponds to a crystalline 
form different from that to which the melting-point applies. 

No results are available for compounds of gold. 
The melting-point and the density are known for the 

greater number of the halogen derivatives of Group L, so 
that it is possible to institute a comparison between the 
frequency numbers for this group of compounds. ‘The 
results are collected in the Table following, which contains 
the atomic or molecular number in italics and the product 
Nv x 107" in roman numerals. The values for the thallium 
compounds have been added as they resemble closely the © 
corresponding rubidium compounds*. A close examination 
of the table will reveal many interesting relationships ; the 
close resemblance between the sodium and the potassium 
salts is at once evident; the frequency numbers for these 
compounds exceed the corresponding numbers for the 
lithium salts by unity (the bromide excepted); the fre- 
quency numbers for cuprous chloride, bromide, iodide form 
the sequence 6, 7, 8; the frequency numbers for silver 
chloride, bromide, iodide form the sequence 7, 74, 8. 
Further, it will be noticed that silver chloride, cuprous 
bromide, sodium iodide have the same frequency number, 7; 
ceesium chloride, rubidium bromide, potassium iodide form a 
similar chain with frequency number, 7. 

Monohalides of Group I. 

Element. Fluoride Chlorde Bromide Iodide 
P93: Cl=77,. Br=35, 1=53, 

li=3 12 20 38 56 

54x 201 5x 203 6 x 20°5 6x 20°8 

Naor 320 28 46 64 

63x 20°9 6 x 20°6 62x 20°8 TX207 

K=i9 28 36 54 72 
63 x 20°6 6 x 20°9 62 x 20°6 7X 20°4 

Cu=29 38 46 64 82 

—_— 6 x 20°9 x 20% 8x 21:0 

Rb=387 46 54 72 90 

64x 21-4 6 x20°8 7x 20°5 7x20°8 

Ag=47 56 64 82 100 
7x 21:0 7 X21°4 72X21:2 8xX20°7 

osligan Vey 2 60 108 
—- rp ob | — 743X213 

T1=81 90 98 116 134 
LUNES 8 x 21-4 dl (iB heal. \ hens 

* Tutton, Roy. Soc. Proc. vol. Ixxix. p. 351 (1907). 
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Group II. 

On the whole the results tor compounds containing 
elements belonging to the second group are less reliable 
than those already considered. This arises partly from the 
fact that in many cases there is uncertainty as io the true 
value of the melting-point, no values later than those of 
Carnelley being recorded for several compounds*; further, 
the product Nv is in general greater for these compounds 
than it is for the corresponding compounds containing 
elements of the first group, so that larger frequency numbers 
are required. Consequently the frequency numbers given in 
the following Tables are not to be regarded in all cases as 
final; some of them—especially amongst the larger numbers 
—may require revision when more exact data have been 
obtained. 

In spite of such uncertainties a comparison between the 
compounds in these Tables, and also between these and the 
corresponding compounds for the first group, will show 
many suggestive relationships. 

Grovp II. 

Beryllium Compounds (N=4). 

Name. Formula. Ne 107 7) No 107 

BeEryLuium 
That Cah See eee BeF, 22 5213 535 X 20°9 
ERAS 2. eo Sac esa eke sae Bel, 110 1:339 oe xX21-0 

Magnesium Compounds (N=12). 
Macnesium 
ehloride C .......:.... MgCl, 46 2°807 6x21°5 
PUBIC io cosas MeF, 30 5-446 8 x 20°4 

Calcium Compounds (N = 20). 
CaLciuM 
aluminate ........+++- CaAl0, 78 S011 112%20-4 
BEBHUGOG! (202.8 ews th a CaBro 90 1:783 8 x20°1 
PERI G) occ cations CaCl, 54 2°302 6 x20-7 
MOEVGG ys tients teks ye CaF, 388° 4757 9 x2071 
BARE a o's osicutva sais Calz 126 1464 9° <20°5 
nitrate (2) Cece... Ca(NOs)2 82 1715 7 x20-1 
rE rs es Ca3No 74 2°532 9 X20°8 
EET eS a eee Pe CaO 28 7696. 10520°5 
SELES ois oe weet twe CaSiO3 58 3°53 10 x20°5 
PIEGUAGO 22s. ocieenes' CaSO, 68 2979) TOK 20'S 

(a) Highest. density recorded, 2°472 (Landolt-Bornstein). 

* These cases are indicated in the tables by the letter C following the 
name of the compound. 
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Strontium Compounds (N=38). 
Name. Formula. N. x10 

STRONTIUM 
bromiden€ ccs: nemees SrBr, 108 1512 
chloride 22... 0 hncaetee SrCle 72 2:201 
fuoridejG, 3:25 SrF, 56 3°037 
hydroxide #3.:55.208 Sr(OH) 56 2:204. 
1OUUEC,.2 sk ek cence aces Srl, 144 1197 
NitKate Clg... .c cena Sr(NOs3)2 100 1549 
ORIG “soc ee aso eee SrO 46 67195 
silicate; 2... tees SrSi03 76 2°940 

Bien. Barium Compounds (N=56). 
EORTC ition ee cearne BaBr, 126 1°531 
carbonate (@) ......... BaCO3 86 2°485 
chloride @.ir/iaraees BaCl, 90 1-982 
HUGE see dieccteue eee BaF, 74 2°768 
TOUTS rose se de eae Bal, 162 1°153 
narrate: OC [i.o. cues Ba(NOs), 118 1:298 
StlVeaie! wartiesueeseeee Ba(Si0,) 94 2°418 

Nyx107”, 

8 x 20-4 
74X21°1 
8 X21°3 
6 X20°6 
82 Xx 20°3 
73 X20°7 

14 x20-4 
11 x20°3 

9. X2is 
103 x 20°4 
83x 21-0 
9 x20°5 
9 x20°7 
74 X 20°4 

Ll. 207 

(a) ‘“Schmilzt in CO, bei 1380° noch nicht” (Boeke). 

Comparing together the compounds of calcium, strontium, 
and barium we find that, in general, the frequency number 
corresponding to a particular radicle tends to increase with 
an increase in the atomic number of the metal. Again, 
comparing the chloride, bromide, and iodide for a particular 
metal, itis noticed that the frequency number for the bromide 
is greater than that for the chloride, and the frequency 
number for the iodide is at least as great as that for the 
bromide. In the case of the fluoride, however, the frequency 
number is about the same as that for the iodide. 

Zine Compounds (N=30). 
Name. Formula. N. vx107!%. Nvyx10-”. 

ZINC 
SUCOUAEC,.cokan viene conte Zn(C,H30,), 92 11138 5 xX20°5 
bromide CO nee Zn Bro 100 1:408 7 x204 
chloride (a): cens che ZnCl, 64 1849 54x 21°5 
fluorides Gz c.csnenee ZnF, 48 3410 8 x 20°5 
POMUAG IO. sce mame Zul, 136 1143 73 X20°5 
sulphide, ..c: Hc anate ZnsS 46 3°936 9 x20'1 

‘‘All lower values are (a) Melting-point of zine chloride, 365° C. 
obtained from impure material.” 

Cadmium Compounds (N=48). CADMIUM 
bromide cc. eoraee CdBr, 118 1°412 8 xX20°8 
chloride sc. seccscac: CdCl, 82 1:846 75 X20°2 
finomde.C “i kos) ee CdF, 66 2°500 8 x206 
TOMI ota. cnts vehement Cal, 154 1:027 Gatst 
eyo) oo: ie aR RCORE RED CdSO4 96 2°153 10 x207 

Wpeutae Mercury Compounds (N=80). 
romrdelie,c cscs ae HeBr, 150 0-927 65 X 21:4 
chloride: (cise HegCl, 114 1:200 63 x 21°1 
LOMO scat ececes nae Hgl, 186 0°798 7. x2t2 

Mercurovus 
LOGIC (@) ec vnesupenee Hel 133 1157 74X 21:2 

(a) Melting-point of mercurous iodide, 290° C., Yvon (1878). 



a 

Frequency and Molecular Number. 453 

Group III. 
The compounds met with in connexion with elements of 

the third group do not require much discussion. The 
melting-points of boron oxide and boric acid are determi- 
nations of Carnelley in 1878, whilst those for aluminium 
bromide and aluminium iodide are of an even earlier date, 
for these latter compounds the degree of molecular asso- 
ciation is uncertain also. 

The results for the compounds of thallium form a fairly 
consistent series, and it is of interest to compare the frequency 
numbers with those previously given for the compounds of 
the alkali metals. The mean value of v, deduced from the 
thallium salts is 21:05 x 10'sec.~1, and the chance that the 
agreement should be purely accidental is about 1 in 39. 

Grove ITI. 

Boron Compounds (N=5). 
Name. Formula. NS oo M105 1, Nom 

Boron 
oxide 0 eens ts B,O3 34 3°185 5 X2E7 
sulphide tri ......... B.S, 58 1613 45 X20°8 

Bi) cjeeuta:..... B.S. 90 1271 528x208 
Boric 
Pe HBO, 32 2387 = 32 x 218 

Aluminium Compounds (N=13). 
ALUMINIUM 
MGC. o-tona use: Al; Br; 236 0°858 5 X20°3 
dee ee ALI, 344 0682 58x 21°3 
TLS ee Al,O, 50 4949 12 x206 
Berne. oa... woe. sess A1,S3 76 2°212 8 x20°5 

Yttrium Compound (N =339). 
YrrriuM 
PRMET EAR Foo 2 28 sce YtCl 90 1114 5X 20-1 

Lanthanum Compound (N=57). 
LANTHANUM 
paberide) 5.092 25a2 Lets LaCl 3 108 1-693 9X 20°3 

Cerium Compound (N=58). 
Crrovus 
CLC 2 [a eee CeCl3 109 1°645 9x 20:0 

Thallium Compounds (N=81). 
THALLIUM 
UD) ae TlBr, 116 1-466 8 xX21°3 
CATDOWALS. ....2-0---- T1,CO3 192 0°825 73 X 211 
e.g (Cee ee T1Cl 98 1-623 6 X21'1 
On Ee NA a Ti 134 1:247 8 X<20'9 
TRAE in is as o's TINO; 112 1-137 6 X21:2 
Guide Cmy eo... T1,0, 186 1067 923x209 
perchlorate ........... TIC1O, 130 1-310 8 X21°3 
sulphate ............... TLSO, 210 0981 10 x206 
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Group LY. 

The compounds of carbon are so numerous as to require 
separate consideration. It is only necessary to mention for 
the sake of comparison with compounds containing other 
elements of the same group, that for carbon tetrabromide 
(N=146) the value of Nv is 5x 20°5x 10”, and for carbon 
trichloride (C,Cl,) the value is 44 x 20°6x 10". For silicon, 
titanium, and zirconium only a few results can be given. 

Grove LV. 

Silicon Compound (N=14). 

Name. Formula. N. »xl107?. Ny xloo: 
SILICON 
tetrabromide ......... SiBr, 154 0°553 4x21:3 

Titanium Compounds (N=22). 
TiraNium 
tetrafluoride ......... a, 58 1848 5X 21-4 
tetrabromide (a)...... TiBr, 162 0°545 4x 22:0 
OWES: Wr RIN TO, 38 5°536 10x 21:0 

(a) Melting-point, 39° C., Duppa (1856). 

Zirconium Compound (N=40). 
ZIRCONIUM 
CSREES + ah seca nee ZrO, 56 5°283 14x211 

Disregarding the high value for v, in the case of titanium 
bromide, for which no modern determination of the melting- 
point is recorded, the values of vs for the compounds of this 
group are generally higher than those for the earlier groups. 
In the case of the lead salts, however, a lower value is found 
for the chloride, bromide, and iodide; but the close agreement 
between the values of the product Nv for these three salts 
deserves special notice, as also the agreement for the oxide 
and the sulphide. 

Tin Compounds (N=50). 

Name. Formula. NN. yxlo-!. Nex 10s 
STANNIC 
Mupride b..sc/e.veee ee SnF, 86 2°049 85 X20°7 
MOCECE sik. sce Sucugeenmaees SnI, 262 0-491 6 x21°4 
15-6116 | Ree Ae p55 SnO, 66 oo0e 105x211 

STannous 
DrOnaTde YU. bak eens SnBr, 120 1:075 G xis 
sulphide: <:./ecveueedene SnS ~ 66 2-780 9 x20°4 
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Lead Compounds (N =82). 
Name. Formula N. y»xlo7 Nvxio7™. 

LEap 
UCCTICTS (SSR ae a ee PbBr, 152 1:067 8 x203 
ING Fence Ocenia sal as PbCl, 116 1-414 8 x20°5 
CE 0 LeU ee me dado is 188 0-865 8 x203 
ch eae PbO 909 2448 103x21-0 
PleMUMOWice a iccsesaee ste: PbSe 116 2-029 ll x21-4 
SDIBRE GS deca Cate wic ees PbSO, 130 L795 Ih <2Te2 
BIPPHUES, foi. 2 kolo nns ye PbS 98 2°274 103 X 21:2 

Thorium Compound (N =90). 
THORIUM 
EIOEIME och eno secees ThCl, 158 1-214 9x 21°3 

Group V. 

Almost all the ccmpounds so far considered have been 
metallic salts. In the fifth group a number of non-metallic 
compounds are met with; and. although many of these 
conform to the proposed relation with frequency numbers n 
or n+4, several require the use of values n+2 orn+?. It 
is at present impossible to decide whether this means that the 
relation fails to hold in these two cases, or whether the 
apparent failure is to be attributed to our ignorance of 
the degree of molecular association in such compounds. It 
may be pointed out that the compounds in question belong 
to the ‘‘ non-polar” type*. According to Langmuir solid 
polar compounds are built up of atoms bound together by 
secondary valencies, whilst solid non-polar compounds consist 
of “ group molecules” in which the atoms are usually held 
together by primary valencies; these group molecules in turn 
are bound together by secondary valencies to form a large 
“‘erystal molecule.” As data for determining the molecular 
frequency are available for only a small number of inorganic 
non-polar compounds, further discussion may be deferred till 
organic compounds are considered. | 

Group V. 

Nitrogen Compounds (N=7). 

Name. Formula. Ni vxdo—? Ny x 10n: 
NirroGen 
chlorophosphide ... N,P3Cl, 168 0'580 45X21°6 
pentoxide ............ NO, 54 1-278 4X 21°2 
sulphide 3...032c.00-.5% N,S, 92 1117 5 X20°5 

* See Langmuir, Amer. Chem. Soc. Journ. vol. xxxvili. p. 2221 (1916). 
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Phosphorus Compounds (N=15). 
Name. Formula N. vx107 Nyx107™. 

Puospuoric ; 
ACIAUORTMO=~. sesctoee H3P0, 50 1-470 35 X 21-0 

PuosPHorous 
acid hypo-............ H3P0, 34 1855 3 X21:0 

pio HOLUNO=\5.4 de, Sener HsPQ3 42 1°794 33 X21°5 
Puospnorus 
Oxige trina a aus P40, 108 0-761 4 x20°5 
oxybromide ......... POBr; 128 0°706 +201 
oxybromdichloride.. | POBrCl, 92 0°807 32 X 21'2 
oxychloride............ POCI, 74 0-920 34 X20°9 
sulphobromide ...... PSBr3 136 0659 444X211 
sesquisulphide ...... P4S3 108 0-913 43 x 207 
pentasulphide ...... P.S, 110 1024 523x205 

Vanadium Compound (N=23). 
VANADIUM 
pentoxide ...... ..... v0; 86 1-841 73 X21:1 

Columbium Compound (N =41). 
CoLUMBIUM 
pentachloride ........ CbCl, 126 0-876 55 X20°1 

Arsenic Compounds (N=383). 
ARSENIC 
disulphide ........-. maa. 98 1299 6 x212 

ARSENOUS 
DY OMMOC Giada odhene AsBr3 138 0-688 42x 21:1 
TORUS | erty: cee eetmeeeie AsI3 192 0:629 6 X20°] 
OXIGS Aus. secon eee As,O, 180 0712 6 X21°3 
Selenide: t.csccsae<n seme As,Se3 168 0-910 75 X 20°4 
Bulpliide’ if. .j.asceweees As,83 114 1144 6 x21-'7 

Antimony Compounds (N=51). 
ANTIMONY 
bromide tri-  .......es SbBr3 156 0°702 5 x21°9? 
chloride tri=..tssas SbCl 102 0:907 42x 20°6 
fluoride tri-............ SbF3 78 1-602 6 x20°8 
Lodide viri= toe ae SbI3 210 0°615 6 x21°5 

Bismuth Compounds (N=83). 
BismuTHu 
bromide: cee. ceee BiBrs 188 0-749 1. x20Ts 
chloride di-.......-.... Bicl, 117. «0999 s«BS x 21-2 
chloride tri- ......... BiCls3 134 0 943 6 K2Ich 

Tantalum Compounds (N=73). 
TANTALUM 
chloride ...... Ak Nee TaCl, 158 OFT 6 x20°5 
FIMOKIIS 1 check ees TaF, 118 0-930 5 X2ZL9% 
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Group VI. 

In the sixth group of the Periodic Table only a dozen 
compounds need be considered. Several of these are oxides, 
and it is noticeable, both here and elsewhere, that these in 
general necessitate large values for va. 

It is interesting to find that salts of the heaviest metal, 
uranium, appear to conform to the same rule as salts of the 
lightest metal, lithium. Thus lithium fluoride, with molecular 
number 12, has for Nv the value 54x 21:0x10!", uranium 
hexafluoride, with molecular number 146, has the value 
5x 21:0x 10”; lithium iodide (N=56) gives Nv=6 x 20°8 
x 10”, whilst uranium tetra-iodide, with the large molecular 
number of 304, gives Nv=9 x 20°7 x 10”. 

Grovur VI. 

Sulphur Compounds (N=16). 

Name. Formula, N. vx10—!2. Nyx10—!”. 

SuLPHUR 
trioxide 6 ...........- (SO3), 80 0-816 3 X21°7 

SULPHURIC 
ML YEO «2.04. - Ree H,8,0, 90 0-890 4 x20°0 

Selenium Compounds (N=34). 
SELENIUM 
dioxide ....... Rae ee SeO, 50 2-473 6 x20°6 
oxychloride........... SeOCl, 76 0:984 33 xX 21°4 

SELENIC 
BRIM eae ect ans, as-i0- H,SeO, 68 1-269 4 x216 

Tellurium Compound (N=52), 
TELLURIUM 
tetrabromide ......... TeBr, 192 0-792 75 X 20°3 

Chromium Compounds (N= 24). 
Curoaium 
EEIOMIONG ) S.ceesentlt. . CrO, 48 2:030 42 21°7 

CHROMIC 
LE a eee Cr,0, 72 3°876 13 X 215 

Curomous 
ct) gl Ea ie CrF, 42 4°300 83 X 21-2 

Molybdenum Compound (N= 42). 
Mo.tyspEnuM 
PEABRAMG yo 5 foc ds tense MoOz3 66 2576 8 x<21:2 

Uranium Compounds (N=92). 
URANIUM 
fluoride hexa-......... UF, 146 0°719 5 x21°0 
iodide tetra- ........ (ag 304 0°614 9 x20°7 
RING Cie 5. ares: <ycaws vO, 108 3°182 16 X21°5 
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Group VII. 

In the seventh group the only metallic compounds repre- 
sented are those of manganese. ‘The four sults in question 
give concordant values for y,. The chance of an accidental 
agreement is about 1 in 180. 

Group VII. 

Manganese Compounds (N=25). 

Name. Formulaa N. vx107-'. Nvx10-2, 
MANGANESE 
ehiloride i pesa. scapes MnCl, 59 2°252 63 X 20-4 
MOPIDE oh ccesacenseeer MnF, 43 3°756 8 x20°2 
CUBE TCE RO Ey any ERE esc MnSiO; 63 3°057 93 x 20°3 
SUL pH ebe ). J, <eseasen one MnSO, 73 2°107 73 X 20°5 

In the same group are a number of compounds containing 

chlorine or iodine. Most of these require the provisional use 
of frequency numbers of the form n+ 4 or n+32. 

Chlorine and Iodine Compounds. 

Chlorosulphonicacid... C]SO,.OH 58 1:335 53 X 20°6 
Iodine monochloride &, ICl 70 1°125 3¢ xX 21-0 
Iodine tetrachloride ... ICls 104 0°836 41x 20°5 
lodine fluoride ......... TF. 98 0-869 4 X213 
Lodic anid’ csectieacee HIOs 78 1:342 5 x20°9 

Grovur VIII. 

In the eighth group the data are scanty, only six com- 
pounds of iron being represented, two of cobalt, and one 
each of nickel, ruthenium, and osmium. Rhodium, palladium, 
platinum, and iridium are not represented atall. The results, 
as far as they go, tend to show that the compounds of this 
group fall into line with the metallic salts of the earlier groups, 
the only serious discrepancy being the case of cobalt carbony] 
where it is possible that molecular association occurs. 
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Group VIII. 

Iron Compounds (N= 26). 

Name. Formula. N. vxl0-!*, Nvyx10-. 

Iron 

disulphide ............ FeS2 58 3°748 103 x 2U'7 
phosphide ............ Fe,P 67 3°653 12 x204 

Ferric 
Tt a ri FeCl 83 1-498 6 x20°7 
Sammapeey eco O88 Fe,03 76 3°330 12 x21-1 

Ferrous 
Nelphide ......2..... we FeS 42 4°856 10 x20°4 

Ferroso-Ferric 
TT Ess 2 Os Eee Fe304 110 2-762 15 x20°3 

Cobalt Compounds (N = 27). 
CoBaLT 
EERE. £2, 2 bores: Co(CO)s 83 0:927 3% x 20°5 

CoBALTOUS 
AE MAEG 201. <2. 202005 CoSO, 75 2477 9 x20°6 

Nickel Compound (N= 28). 
NIcKEL 
sulphide mono-...... NiS 44 3914 83 x 20°3 

Ruthenium Compound (N=44). 
RoUTHENIUM 

2 RuO, 76 1-399 5 x213 

Osmium Compound (N=76). 
OsMIUM 
tetroxide ............06- OsO, 108 1:079 52x 21°2 

In the foregoing pages a number of cross-correspondences 
between the values of the frequency numbers for related 
compounds have been noticed. But instances might also be 
cited in which the frequency number has not the value which 
might have been predicted for it byanalogy. For example, 
the chlorides of potassium and rubidium have the same 
frequency number 6, but though the frequency number for 
calcium chloride is 6 that for strontium chloride is 734; 
again the iodides of calcium, strontium, barium give the 
unexpected sequence of numbers 9, 83, 9. In view of the 
hypothesis that has been put forward relating the frequency 
number to the number of valency electrons, it may be sug- 
gested that the frequency number determined from the 
melting-point may not have, in all cases, a unique value, 
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In consequence of the presence of traces of impurity, or 
through imperfect crystallization, it is at least possible that 
fusion may sometimes occur when the number of valency 
electrons is smaller than the normal value. 

It is noticeable that for a large number of compounds the 
frequency number is one of the series — — 44, 6, 74, 9,-—; 
suggesting that the factor 3 plays an important part in the 
determination of its value. Itmay not be entirely accidental 
that a number belonging to this series frequently occurs when 
the compound contains an element of valency 3 (e. g. amongst 
the compounds of As, Sb, Bi, and Fe). It is not unlikely 
that the factor 3 should occur in such cases if it is supposed 
that the chemical valency is associated with a certain number 
of valency electrons. 

The facts recorded in this paper are regarded as proving 
that the characteristic frequency calculated for a metallic 
compound by means of Lindemann’s formula can, in general, 
be expressed in the form ny, or in the form (n+ 4)y,, where n 
is an integer and vy, is approximately 21x10! sec.-1. The 
evidence for this may not be considered conclusive when com- 
pounds of one single metal are examined, but the evidence in 
the present case is cumulative. The degree of probability 
of this result may be small when compounds of a single 
element are found to conform to the rule; but it is larger 
when the compounds of all the elements in a group are found 
to give concordant values for v4, and becomes very great 
when the number of compounds is extended to include all the 
groups in Mendeléeff’s classification. Further, these results 
for compounds and those recorded previously for the elements 
mutually support one another, and lead to the conclusion that 
we have to deal with a property that is fundamental and 
characteristic of the solid state of matter. It is to be borne 
in mind that the formula of Lindemann is looked upon as 
giving only an approximate value for the characteristic 
frequency, and the final justification for the proposed 
relation must come from observations on the specific heat 
of compounds at low temperatures. 
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LIV. On the Operator V in Combination with Homogeneous 
Functions. Second Paper. By Frank L. Hircucoc., 
Massachusetts Institute of Technology, Cambridge, Mass.* 

1. JNTRODUCTION.—In a former paper (Phil. Mag. 
vol. xxix. May 1915, p. 700), two theorems were 

developed, which yield properties of any homogeneous vector 
in connexion with the operators SV and VY. I now pro- 
pose to study in a somewhat similar manner the Laplacean 
operator A, or — \/”, defined by 

OL een. O- Aa Se a eae (1) 

in three dimensions (with analogous definition for two di- 
mensions). The results obtained are of two sorts. First, as 
a more elementary matter, I shall show how a large number 
of reduction formulas may be written down, usefu! in the 
evaluation of multiple integrals. Later I shall prove a 
theorem similar to those of the first paper, giving the form 
of the function by which various homogeneous sealars or 
vectors differ from harmonic functions of the same degree. 

2. The fundamental reduction formula.—Let us first take, 
as in the former paper, F(p) a function of the point-vector p, 
homogeneous of degree m. In this case, however, I restrict 
m to be positive, and shall at first suppose F'(p) to be a scalar 
function. Write r=Tp, and let f(r) be a scalar function 
of r. Consider the problem of integrating the product 
I(r). F(p; over the volume of a sphere of radius a with 
centre at the origin of coordinates: I shall prove the 
following reduction formula,— 

Formula (A) 

INFO) : ye (dV = pa Dat imran \((AFm(p)aV, (A) 

where the triple integrations are to be taken over the volume 
of the sphere. We begin with Gauss’s theorem, 

\\(UX+4 mY +nZ)dS= (\((S == SH ag a) ie ie 0) 

where X, Y, and Zare scalars, J, m, and n are the direction 
cosines of the oulward normal to a closed surface, and the 
integrations are carried over the surface and throughout its 

* Communicated by the Author. 
Phil. Mag. 8. 6, Vol. 35. No. 210. June 1918, 2K 
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volume, respectively. On the surface of the sphere l, m, 

and n become ~, - and =. Now let X= — oe . Yee a and 

lie o Substituting i in (2) we have 

siie (0S tyS' +287) as =(((AFdv.. (3) 

The left side simplifies by Euler’s theorem giving 

—(jF.dS=(((ArdY, <7. 

where F’,, is any homogeneous scalar function of positive 
degree m and the integrations are with reference to the 
sphere of radius a with centre at the origin. 

Next start afresh with the left member of (A). By the 
form of the definition of a homogeneous function which was 
laid down in the first paper, F,,(p)=r"F(u), where F(w) 
denotes a function of Up, that is, a function of a point on 
a unit sphere. Therefore by performing the integration with 
respect to r (writing dS =7? dS, and dV=r?d8odr), we shall 
obtain 

SSS7@)-En(pdV=[2r"+2f(r)dr . [FECu)dS, 5) 
where the double integral is carried over the surface of a 
sphere of unit radius. “But on the surface of the sphere of 
radius a we have r constant and equal to a, hence 

(fE(u)dSy= 5 I, (p) a5, -. op (6) 

the integral on the right being taken over the sphere of 
radius a. ‘The formula (A) now follows at once by elimi- 
nation of the double integrals between (4), (5), and (6). 

By (A) we may solve a variety of simple problems. As an 
example, if the density at a point in the sphere is equal to 
the distance from the centre, the moment of inertia about 
OZ is found by writing f(r)=", and F(p)=2?-+y?, when (A) 
becomes 

3 
== 5 ae LOT pune (yi r(a?+y")d\ =i dr. iV AdV = ra = g 70. 

3. Extension to vector functions—In proving (A) by the 
aid of Gauss’s theorem, (Fp) was a scalar function of p. 
There is nothing in the result itself a require this restriction. 



Combination with Homogeneous Functions. 463 

In fact, since A is a scalar operator, the formula can be 
applied in turn to the scalar components of a vector F(p), 
hence is true for the vector. That is, F(p) in formula (A) 
may be either vector, scalar, or quaternion, /(7) remaining a 
scalar. 

4. Laxtension by geometrical transformation.—Any problem 
which can be worked out by (A) for the sphere may be made 
to yield an indefinite number of other examples by performing 
geometrical transformations upon both members of (A). Let 
y(p) be a veetor function of (p). If we replace p by ¥(p) 
and if dy(p)=¢dp, the Jacobian of the transformation is 
Hamilton’s third invariant for the linear vector function 
which in this case I shall call J. The Laplacean operator A, 
which is the same as —V7”, is transformed into —(g!-1V/)?, 
that is to say the operator V is transformed by the reciprocal 
conjugate of the operator ¢. And r is transformed into 
T'y(p), the tensor of the transformed point-vector. Formula 
(A) now becomes, supposing that we began with a sphere of 
radius unity, | 

S\\A2yp) . F..(yp) I (p)aV 

== famtagtr) de [MSV Crp) T(erdV, 

where both triple integrals are taken throughout the trans- 
formed surface. On the right we note that V, as indicated 
by the stop, acts on F(yp) but not on J(p). In general V 
acts on the constituents of ¢. The propriety of the inte- 
erations is assumed. In case yp is a homogeneous function 
of p of degree n, Fn(yp) is homogeneous of degree mn, 
and may therefore be taken as any homogeneous function 
which gives the problem a meaning. 

As perhaps the simplest illustration, let yp=¢p, a self- 
conjugate linear vector function. The unit sphere is carried 
into an ellipsoid. The scalar f(r) becomes a function whose 
level surfaces are similar to and concentric with the bounding 
ellipsoid. Since n=1, F,.(yp) may be any homogeneous 
function of p under the same restrictions of continuity as in 
Gauss’s theorem. The constant Jacobian cancels out. Hence 

[SS AC$p) -F,(—aV= =F em2finddr SOV YE, (p)aV, 
where ¢@ is any self-conjugate linear vector function with 
constant constituents, and the triple integrals imply inte- 
gration over the ellipsoid ’¢p=1. 

22 
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To take a specific example, let us extend to the volume of the 
ellipsoid the problem worked at the close of Art. 2, the equation 

peg: 2 
of the surface being = 73 + ~ =1, the density equal to 
the square root of the left side of this equation, and the moment 
of inertia about OZ required. The transformation is given 

by bo=i+j% -- k-, The Laplacean operator A trans- 
) 

forms into —(f-!\7)?, that is into 

0 Ou wee a? A hee 
Ox? | Oy Uy ee 

and the transformed equation reads 

2 2 pee 

BRC Sars: Se mates Be) WW atty ee a eee 

: 0 0 fe : = an pdr . ese + 6° ae +053) (2? + y?)dV, 

where the voiume integrals are taken over the volume of 
the ellipsoid. The right side by inspection is Lf (\(et b*)dV, 

or 27(a?+0* )abe. 
5. Inverse method of transformation.— When a surface is 

given, and when we can transform it into a sphere, we can 
apply (A) directly if the integrand is homogeneous after the 
transformation. The transformation is then the inverse of 
yp in the last article. This method, while resting on the 
same principles as the foregoing, differs in using an untrans- 
formed A. To illustrate, let p=A(p')=y~*(p') be the trans- 
formation which carries a given surface into a sphere. Let 
the Jacobian of the transformation % be J’, and let 2x be 
homogeneous of degree n. We then obtain by (A) 

(SSAC yp) - F,(p)aV 

=\fA(r') - FinQye) J'(o)dV, by the trl. p=Ap’, 

u . ig ! / I I 

= Pe ret? t(r)dr \(VATF,OA,p') -J'(p!)]aV", 

where p=mn+3(n—1), the degree of the integrand after 
the transformation. The integration on the left is carried 
over the volume of the original surface, the others are over 
a sphere of radius a and centre at the origin of coordinates 
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into which the given surface is carried by the transformation 
p=A,(p'), or simply Ap’. We note that A, as indicated by 
the brackets, operates on J’ as well as F. To take an 
example, the problem worked at the close of Art. 4 would 
read by the present method 

{ile + Treas Hawes ty AatoaV’ 
where the right-hand integral is over a unit sphere, leading 
to the same answer as before. Here Ap’ =iaw' + jby' + kez’, 
so that the transformation is equivalent to putting aa’ 
for x, &e. 

6. Analogue in two dimensions.—By parallel reasoning we 
may work problems of the same character ina plane. Thusif 
F be homogeneous in a plane point-vector p, that is in wand y, 

and if A= 2, + se 

Formula (B) 

- I Ca ee Wie). B(p)dA= —_lPertf(r)dr. NAB, (dA, - (B) 

where the double integrals are to be taken over the area of a 
circle of radius a with centre at the origin of p. 

As an example easy to verify by other methods, let it be 
gree a 

required to carry the integral | ease dA over the area 

included within the circle a?+y?=2ax. The transfor- 
mation #=2'?, y=a'y’, carries the area within the circle into 
the area included between the axis of X’ and the new 
circle z'?+y'?=2a, on either side of OX’. The Jacobian 

19 
. . . fe % . . 

is 2x”. The transformed integral is (\> wd A’, which if 
xe 

taken over the whole of the new circle gives twice the 
original quantity. We therefore have, dropping accents am: 

applying (B), (remembering that the new radius is VW 2a), 

1 1) ee A 
ig Ge ( dr | AvdA=2 1a’, 

mim « 0 

the double integral being over the whole circle. _ 
7. Application to a hemisphere.—By the combined use of 

(A) and (B) we may obtain a reduction process for inte- 

grating a homogeneous function over a hemispherical volume. 

The relation (5) is unchanged in form, but we now carry the 
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triple and the double integrals over the volume and curved sur- 
face of the hemisphere, respectively. In employing Gauss’s 
theorem, however, we must add a term to the left member of (2) 
corresponding to integration over the base of the hemisphere. 
If the base is taken in the wy plane J and m vanish and n=1. 

it Zi e as before, the term to be added to the left of the 

equations (2)—(4) is | a dA, where the integration is over 

a circle of radius a in the xy plane with centre at the 
origin. Eliminating the integration over the curved surface 
as before we now have 

Formula (C) 

(Wf) .F(p)dV = = ily tflr)de | ( onda + SISAF av | 

| (C) 
where the triple integrals are carried over the volume of 

_ the hemisphere, the double integral over its base, the latter 
to be further reduced by (B) if necessary. 

Asan elementary example, let us find the gravitational 
moment of the hemisphere with respect to its base, the 
density being any function of the radius. We have 

(Sif) -2dV = 508407) dr. [fad +0] =m fers) dr, 

Such formulas and examples can be multiplied in great 
number, Thus by quite similar reasoning we have the two- 
dimensional analogue of (C), 

Formula (D) 
a ta, EK 

400) +n (p) Ca =~ pot lt(n) dr| Ce aes \(AF aA | 
-a OY 

(D) 
where the notation is as in (B), and the double integrals are 
over a semicircle of radius a and centre at the origin, having 
its diameter on the w axis. The single integral is taken 
along this diameter, that is, y is set equal to zero before 
integrating. 

These formulas may be extended to cover cones, cylinders, 
segments of parabolas, and even triangles. As a final 
exumple of the sort let us use (D) to find the area between 
the parabola #?—162+4y=0 and the axis of w. By writing 
47? for y and leaving « unchanged we carry the segment of 
the parabola intoa semicircle. We need not move the origin, 
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since the new integrand does not contain x. The-area is 
therefore given by integration over a semicircle of radius 8 
standing on the 2 axis, by (D), 

| 08 16 S° D912 
§ fay ia a) 7 eT, » de—0]= a 3° 16s ae 

It may fairly be said, however, that we are here intruding 
on ground properly belonging to ordinary rectangular coor- 
dinates. Yet the method may with equal ease be applied to 
problems of much greater complexity; and has some theoretic 
interest in that we use a process of differentiation to arrive 
at the definite integral. 

8. A more general problem.— We may now travel a little 
further afield and bring the foregoing integrals in touch with 
the theory of the potential function. As a first step in this 
direction let it be required to extend formula (A) so as to 
evaluate 

{{ [S10 Fear. pense teisi at: 

where 7” is the distance from the variable point p to some 
fixed point other than the origin. Thisis the same as finding 
the potential, at the fixed point, due to the attraction of the 
sphere if its density at p is f(r).F(p). The homogeneous 
function F'(p) is, however, assumed at present to be a 
polynomial. 

9, Theorem on the expansion of a polynomial in terms of 
harmonics.—The solution of the above problem depends on 
the following theorem:— 

Any homogeneous polynomial F,,(p) differs from an harmonic 
function by a sum of terms, each of which consists of an even 
power of the radius vector multiplied by an harmonic function of 
lower degree. 

In symbols this Seen may be stated as 
Formula (£) 

A a eee ie Pe. Eg oe at CD) 

if m is even; whileif m is odd the last term is 7”~1H,. Here 
the H’s are harmonic polynomials of degrees indicated by 
their subscripts. 

To prove this result we have first to find the effect of V 
on any term of the form r’t, where ¢ is any homogeneous 
scalar function of degree n inp. By direct expansion, (re- 
membering Vr=u), 

V (rt) = hr tut + Vt kr" pt +rFVt, . . (8) 
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and by operating a second time with V7 

V2 (rt) =k(k— 2 re 4 pt —Bhr*-*t + Dkrk-*SpV7 t + Vt 

=V7t—khan+k+ jr’ 2. |. sr 

because p?=—?”, and SpVt=—nt by EHuler’s theorem. If 
we prefer to put V*=— A we may state this identity as 

Formula (F) 

A(Mt) =r Ai+k(2n+k+1)r).,” (ae 

where ¢ is homogeneous of degree n. 
If ¢ is harmonic we may conveniently write 

Formula (G) 

A(T) =cr' "He, ; . . 

where c denotes the constant k(2n+4+1). 
Weare now able to prove the existence of the expansion (E) 

inductively, by showing that if it exists for all polynomials 
Fy of degree p it exists for all polynomials of degree p+2. 
Let m=p+2. Then AF, is of degree p. If the theorem 
is true for degree p we may write 

A¥a=Hy477b,2 tb at...y . 

but by operating with A a both sides of (K) 

AF a=cH, 2-er,_,+¢ rb, +... 

where the c’s are positive constants by formula (G). Since 
p=m—2 we may take as a possible set of values 

1 1 1 
1 baat ee é H 3 H,,-4= rips 3 HH, -6= a fa Ve &e. 

By substituting these values in (H), since Fis known, H,, is 
known. It is therefore evident that the expansion (11) is 
known by comparison with (10). Hence (H) is known. 
Now a constant and a linear expression are always harmonic. 
That is, (E) exists when m=0 and when m=1. Hence it 
exists when m=2 and when m=3, and so universally. 

The same inductive argument shows that the expansion 
(EH) is unique; for if expansion in the form (10) is uniquely 
possible (11) is uniquely possible. But the expansion is 
unique for polynomials of degree 0 and 1, hence for all 
polynomials. 
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Asa simple example let it be required to expand a* in the 
form 

f=, 2 Hs rH, 
where the subscripts denote the degrees of the harmonics, 
Operating with A and determining the numerical coefficients 
on the right by (F), 

he ee A 207 ee Ala = 2212005, 
whence 

H,=}, H,=1(62?~2r?), Hy=at—1r?(62? —2r’) —} aaa 

Tt appears that, in general, each of the H’s will be expressed 
in terms of all the H’s of lower subscript. 

10. Term by term evaluation of the integral.—Let us now 
use the elementary theory of the potential function to evaluate 
the integral 

{ (\ 7) Hav 

over a sphere of radius a with centre at the origin. ‘This is 
the same as finding the potential at a point O' due to a 
volume-density of f(7).H, throughout the sphere. Suppose 
first that O’ is outside the sphere. Following Maxwell’s 
notation*, we may write H,=r"Y,, where Y, is a surface 
harmonic. The potential at an external point due toa 
surface-distribution Y, over a sphere of radius a with 

om . . . Aa Ne s 

centre at the origin is known to be = —» that is 
Amant? (2n +1)r” 

it af nes Nips + ° ° 

n+ 1)rt and, since H,=Y,a" at the surface, a distri- 

bution /(a)H,, over the surface will give an external potential 
Anat?(q) Ee 

(2n+ | Vieigli : 

sphere we therefore have 

Formula (HH) 
+ 13 | Uae oe Aq H.,, Cd onto US 

(\[Fs0) Baa = Fy eet y ede Sa) 

the accents being dropped after the integration, i. e. r is put 
for T(00’). We can now evaluate the integral propounded 

For the external potential due to the solid 

* Elect. and Mag. 3rd Ed. vol. i. Art. 131 a. 
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in Art. 8 when the point O’ is outside the sphere by applying 
(E) and (H) in succession, viz. 

ArH, 
\\\; nite F ma V = me Lyeto Tate (r r)dr 

4a, a, 2m 

(2m— ye pny) det ie. 

To illustrate, let us find the external potential when the 
density of the solid sphere varies as the fourth power of the 
distance from a diametral plane. By the expansion of a4 
already obtained 

(( Sav 4a Hy a Agen ae AnH a! 

f Ve A es) 

where the values of the H’s are those calculated in Art. 9 
for the expansion of 2*, and ris written for T(OO’) on the 
right. 

11. The potential inside the sphere.—It is known thata 
surface-distribution Y, over a sphere of radius a and centre 

at the origin causes a potential inside the sphere a 
4H, aati! Genin: 

or Qn+ 1a" The potential at a point inside the soli 

sphere may be regarded as due to two additive causes, first a 
solid sphere of radius r on whose surface the point lies, 
second a shell of thickness a —r fitting outside the first. The 
first part of the resulting potential is, by (H), 

apie pen F rar; 

and the second part, due to a surface-density /(7)H,dr on 
each infinitesimal shell of radius greater than 7, is by the 
formula quoted at the beginning of “this ar ticle, 

AqrH,,- 

(2n + 1) Sr eh 

Hence the potential inside the solid sphere due to volume- 
distribution /(7rH),, is given by 

Formula (A’) 
ort AdrHn Laie tee Y . 

ih od (”) HadV= (Qn ap 1) | ei gent vie, dr + iN rf (7) dr \ ; 

(H’) 
whence by means of the expansion (H) we can find the value 
of (7) when the point is inside the sphere. 
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Completing the application to a distribution 2, we have 
the internal potential 

Lo 4nH, ¢ 7? oe Appa Rye. hen 

\\{eav= Cie she ae Bi Wa 7 

4m Ho (7° eit 
paresis a 

* 1 7? 6 

As a yerification, the internal and external expansions 
coincide if we write r=a. The external potential satisfies 
Laplace’s equation while the other yields 47a* when operated 
on with A, agreeing with Peisson’s equation*. 

LY. On Graphical Methods of correcting Telescopic Objectives. 
By A. O. Auten, Lecturer in Optics, The University of 
Leeds t. 

AVING had occasion recently to use the N.P.L. tables 
relating to small objectives, it occurred to me that the 

information there furnished, as well as much more of equal 
or even greater importance, could be given in a very small 
compass by means of a few formule, in combination with 
graphical methods. It is true that this means substituting 
calculation for a direct extraction of values from tables, but 
a number of considerations may be set vffagainst this. First, 
the calculations I propose are quitesimple; most of them are 
also fairly short. Such as they are, they are not likely to act 
as a deterrent ; for it must be remembered that both the 
tables and the equivalent calculations lead to figures such as 
no manufacturer with a reputation to keep up would employ. 
It may safely be assumed that in future all lens-makers will 
use the services of an expert computer, and the labour 
of computing is so great in any case that a little more 
at the outset will not be objected to, especially if that 
little extra work saves a great deal of labour further on. 
Again, the tables are only for a few selected glasses; no 
tables of reasonable bulk could include all available glasses, 
and even with these few it is necessary to apply sundry 
corrections for variations of refractive index and dispersive 

* Tn general the polynomial 

r?Hm mH yo il ey 
D(2m+3) t d2m+1) + 62m—l) 1” 

yields the right member of (E) when operated on by 4, (proof by (F)). 
+ Communicated by the Author. 
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power. All the lenses are achromatic doublets for C and F, 
whereas in practice the objective will often be required to 
have some chromatic error. All the lenses are cemented, so 
that they are corrected either for sphericity or for coma, but 
not for both; no tables of moderate bulk could include the 
possibility of air-gaps. 

Again, all the lenses are computed for an object at infinity; 
whereas reading-telescopes should be computed for a com- 
paratively near object. Finally, the tables refer only to 
doublets, whereas the methods given below can be applied 
also to triplets; or, for that matter, to systems with any 
number of thin components, but combinations of four or five 
lenses as telescopic objectives are to be regarded as mere 
scientific bizarreries. Now all these variables (refractive 
index, dispersive power, position of object, air-gaps, number 
of components) are taken account of below, and without any 
serious addition to the labour involved. But it must always 
be remembered that the results arrived at in this way (or by 
the tables) ought never to be seen by the lens-grinder; they 
are simply intended to give the computer a favourable start. 

The assumptions made are: (1) that the thickness of each 
lens or gap is negligible ; (2) thatall the angles in the caleu- 
lation are so small that the excess of any angle above its 
sine is exactly equal to a sixth of the cube of the angle. In 
other words, the rays could all travel within a capillary tube 
lying along the axis of the lens. 

The symbols employed below are chosen to suit the present 
problem, and would not necessarily fit into a more general 
scheme. Focal lengths, radii, and intersection-distances are 
avoided; it is the reciprocals of these quantities which are 
more important. The four curvatures are ¢, Co, ¢3, ¢4, from 
left to right; the powers of the two lenses are p;, po, and it 
is assumed that the power of the combination is chosen as a 
unit, so that p,+p,=1. So far as this paper is concerned 
there is no condition whatever connecting p,; and po; they 
may be quite independent, or may be chosen to give achro- 
matism between any two colours, or to give a desired 
chromatic error, or to satisfy some other condition not 
stated ; they may be of like or unlike signs. Ifa ray incident 
on the system is converging toward a point beyond the 
system, the reciprocal of its intersection-distance will give 
the initial convergence, uw. 
After the ray has passed through the first surface the quantity 

u, becomes u,’; and as the thickness of the lens is neglected, 
u;'=Uz,and soon. All these c’s, u’s and p’s are to be thought 
of as “angles per unit height of incidence.” ‘The excess of 
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¢3 above ¢., called g, is the air-gap between the two lenses ; 

when it is ee } the gap is age aay The 
negative aseial ss 

refractive index of the first lens is N; of the second n; 
these may be taken to refer, for instance, to the brightest 
part of the spectrum. Clearly 

Cg = Cy P1 =, ey ee qe OR Oia Ol = GASES ——— -+ Is 
N-1 N-1 N-1 n—1l 

so that any one of the c’s determines the rest; c, will be 
used as the independent one. 

The problem is to express (1) the spherical aberration, 
(2) the offence against the sine-condition, as functions of 
N, ”, ¢, 4, 9g. The only rational way to express the first is 
by means of the angle between the emergent ray (in air) 
and the line joining the point of emergence to the ideal 
image-point. The other aberration can also be expressed as 
an angle. If the sine-condition were fulfilled the locus of 
the intersections of corresponding incident and emergent 
rays would be a circle of curvature u,+w,' (see Steinheil & 
Voit, p. 66; Southall, p. 409; Cheshire, J. R. Mier. Soc.). 
The excess of the actual curvature above u,+ uw,’ is the an gle 
required. The expressions I obtain are these :— 

_ (1) The spherical aberration is 

Ac? + Buy? + Cg? + Dewy + Heyg + Pug + Gey + Huy + Ky + L; 
(1) 

(2) The sine-error is 

Deeg FS, see, Wena aa 

where | 
9 

A=4p,(1+ nyt Spo( 1+ 4 
n 

2 2 2 
C=}p,(1 ae ) D=—m(2+ =) —p(2+ a ; 
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These expressions have perhaps a forbidding aspect; but 
it is to be noticed that owing to the constant occurrence of 

: and * along with integers, the computation is not nearly 

as toilsome as it looks; even L and 8 yield quite readily. 
The expression (1) is merely an expansion of Seidel’s first 
term, $8;. Hissecond term, 48,, expands into a form which, — 
if S; is zero, contains expression (2) as a factor; so that the 
expression is only to be regarded as measuring the departure 
from the sine-condition, and the amount of coma, provided 
there is no spherical aberration; and the meaning of Cheshire’s 
‘‘intersection-surface” is subject to the same limitation. More 
generally, the connexion with the Seidel terms may be stated 
thus:—If the object-point is at a finite distance, and ata height 
y; above the axis, then the spherical aberration of a ray from 

S LS 
it, striking the objective at height h, is (yi—h)?(p1 + pro)” - 7 
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and the comatic error is —3y;(y,—h)?(p, +p). Se. and ex- 

pression (2) is (S.—S8 )u,; butif the object is at infinity, and 
the ray from it strikes at height h and slope @, the spherical 

aberration is then {9 —A(p, +p.) }*. a the comatic error is 

30{6—h(pi+pz2)}?. iL and expression (2) is (S,—S2)(p1 + p2)3 

and in either case expression (1) is $8). Of course only 
rays in a meridian plane through the object are here 
considered. 

For the purpose of merely calculating the aberrations, 
without discussion, I find it very convenient to follow 
Professor Conrady’s plan of introducing a fictitious air-gap 
between all cemented surfaces, and then computing (by slide- 
rule) the aberrations for each lens, rather than for each sur- 
face. The ray is first taken through the system by the schedule 
1;=Cy—y, Nay’ =1, wy'=c,—%', ug=u,', and so on. Then 

the form taken by 8; is (i- x) Stiri —uy') + (%9')?(tg—1') F, 

while the expression ts x) D{i,(4;— uy’) + to! (ug—t,')} is 

S.—S, multiplied by uw, or by —P as the case may be; 
P denotes the power of the whole combination, p,+ pe. 

There is no difficulty about modifying the coefficients 
A, B, &c. to allow for a third component, especially as most 
examples of this class would be cemented, so that all terms 
in g, or g2 would disappear. 

I now proceed to deduce some consequences of the above 
formule. As (2) and (1) are respectively of the same shape 
as the equations of a plane and a conicoid, it is natural that 
a number of familiar expressions should occur in the 
deductions from them. 
We notice first that (2) is linear. Therefore when two 

of the variables (say c,; and u,) have been fixed to remove 
spherical aberration, there is only one value of the third which 
will remove coma, and there always is one; 7.¢., with the 
form of the leading lens fixed, as well as the position of the 
object, there is only one air-gap, and therefere only one form 
appropriate for the second lens. And a cemented lens cannot 
be free from coma (except by good luck) if ¢, and wu, have 
been fixed by other considerations. The graph of the comatic 
error is, for spherically corrected combinations, a straight line, 
whether it is plotted against g, or uw, or any of the c’s. For 
all other combinations, as soon as two variables are selected, 
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the graph of the comatic error against the third is a 
parabola. 

Expression (L) is quadratic in c,, u,, or g; when any two 
of the variables have been fixed, there are two values of the 
third which will remove spherical aberration (though these 
two may coincide, or be imaginary). With g and uw, fixed, 
the graph of the aberration against any one of the c’sisa 
parabola with its axis vertical ; its vertex will be downward 
if p, and p, are both positive, and also if p, is positive and p, 
negative, provided the combination is a converging one. 
The matter upon which above all I would lay stress is that 
the latus rectum of this parabola, being the reciprocal of A, 
is entirely independent of ¢,, w,, and g; in other words, so 
long as we keep to the same two glasses, and to the same two 
powers, we may vary the curves and the air-gap and the 
position of the object as much as we please, but we shall 
always get the same parabola; all that will change will be 
the position of its vertex. Therefore we need only calculate 
the latus rectum (1/A), plot the parabola once for all (either 
by the focus-directrix property with compusses, or from the 
equation y* =cw with logarithms or a slide-rule), and then cut 
out a templet of this parabolic form. Thereafter, in any 
problem on lenses of these two glasses, and of powers pro- 
portionate to p, and pg all we need do is to calculate the 
position of the vertex, lay the templet in position and draw 
the parabola (1), and immediately we see all the possibilities 
within reach by variations of the four curves. We can see 
what curves (if any) will remove spherical error (or introduce 
a desired amount), and whether these curves will also correct 
for coma, and if not, how bad the coma will be. The vertex 
is to be found thus:—Knowing w, and g, calculate c, from 
the equation 

2Ac,+ Du, + Eg+G=0. e ° ° ° (3) 

This gives the abscissa; then calculate the ordinate (the 
aberration) by substituting for c,, uw, and g in (1). 

But it may be asked, how can the method be made to 
include all values of u; and g, when the above graph is for a 
particular u, and g? Suppose in the first place that we do 
not object to having a fixed value for w, but wish to exhibit 
all the possibilities which follow from varying g as well as ¢. 
We begin by finding the locus of the vertices of all such 
parabolas as the above, as g is varied with uw, fixed. It is 
easy to see what this locus will be; it means plotting the 
aberration (1) with the restriction (3) imposed upon it ; and 
as (3) is linear, the graph will still be a parabola, although of 
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a new shape (II). Itis easy to show tliat the reciprocal 

of the new latus rectum is A(4ho —1). At the vertex of 

this parabola we not only satisfy equation (3), but also 

He, +Fujt2Cg+K=0. . . . . (4) 

We therefore find the vertex by solving (3) and (4) together 
(uw; is given), which gives the abscissa ¢,, while the aberration 
is calculated from (1). Having the vertex and the latus rectum 
the locus is quickly drawn. It would be used as follows. 
The position of the object is given by uw, and we wish to know 
what can be done with a series of values for g. Begin with one 
of them, insert it and w, in (3), and find c,. Pick out the point 
on parabola II which has this ¢,. Lay the templet for 
parabola I with its vertex at this point, and immediately we 
see all the possible aberrations with that air-gap. Now 
change g, make the necessary change in ¢, (by simple pro- 
portion, as we see from (3)), shift the templet to this new 
vertex, and so on. 

Had it been desired to vary wu, while g was fixed, the only 
difference would be that we should get parabola III; its 

jatus rectum is the reciprocal of A(4 hs = 1), and its vertex 
is given by using 

DC,+2Bu,4+Fg+H=0, ... . (3) 

instead of (4). 
Finally, suppose we wish to generalize parabola II so as to 

include all values of u,; we must first find the locus of the 
vertices of all such parabolas as IT while u, varies. It will 
again be a parabola (LV); its latus rectum is the reciprocal 

4AC— TE? pene . of Geb =F} CABC + DEF—AF*—BE*— CD"), and its 
vertex is found by solving (3), (4), and (5) for c,, and then 
finding the ordinate from (1). 

If LIT is generalized in this way, we get parabola V, with 
the same vertex as IV, but its latus rectum is the reciprocal 

of CAB— ©) (4ABC +DEF—AF?—BE?—CD") gen—pry OO 3 
To use V, weshould first assign a value tog; solve (3) and 

(5) for c, and pick out the corresponding point on V; fit 
to that point as vertex the templet of III, and draw III. 
Assigna value to 1, solve (3) for ¢, pick out the point on III, 
and use it as a vertex for the templet of I. All variations in 

Phil. Mag. 8. 6. Vol. 35. No. 210. June 1918. 21 
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aberration as the curvatures are altered are now shown for 
the selected g and 2}. 

I propose next to illustrate the use of these methods by 
solving a few numerical problems, but instead of employing 
vraphs (which would involve expensive plates) the solutions 
will be entirely algebraical. In a discussion of principles it 
it desirable to use 5-figure accuracy, although in practice 
4 figures would be ample. I take the case of two glasses 
for which 1/N=0°658805, 1/n=°61721; also p,;=2°508, 
pz —1:508. These two powers were, as a matter of fact, 
selected for C—F achromatism, but we have no concern 
with that. The combination is ene which was studied 
in some detail in Professor Conrady’s autumn class last 
year. I take first a few simple questions on the front 
lens alone; », must then be put equal to zero in the coeffi- 
cients; A =2°9063, B=5°4143, D= —8°3206, G= —24:5088, 
B=63' (267, L= bite: 

Problem (1). If the object is at infinity, what curves give 
least spherical aberration? Solve equation (3) with w, and 
G=9;3 ¢=—G/2A=4:2165; c, is less than c, by 4°8426 in 
each example, and is here —0°6261; the so-called “ crossed 
lens.” The aberration, according to (1), is 16°089. 

Problem (2). If the Jens is given, for what point will 
its aberration be least? For example, suppose ¢,=38°'0, 
(y= —1°8426. Solve (5) with cq =3 and g=0; y4=—(B8D 
+ H)/2B= —0°80942, 2. e. the object is about 12 focal 
lengths in front of the lens, and the aberration is 16°843. 

Problem (3). Is it possible for a single thin lens to be 
free from aberration? For correction, parabola I must cross 
the horizontal axis, so that its vertex must not be above that 
line. The critical positions are where parabola III crosses 
the line. Its vertex is given by solving (3) and (5), with 

g=O0; these give w= Ors | 254, ¢,= = 2°4213, RI NON —= 

2 2(N —1) 

as common-sense shows. For these values the aberration 
is 16°9400. Parabola III is therefore given by: “ excess 
aberration above 16°9400=square of excess curvature above 
24213.” Where it crosses the line, aberration =0, there- 
fore cy=10°4309 or —5°5883, and, by (3), u,=4°3396 or 
—6°8494, So that aberration cannot be corrected except 
for object-points within about + of the focal length on one 
side (real) and } on the other (virtual), and even then the 
curves have to be very strong. ‘There is no useful case. As 
a mere arithmetical exercise, we may take u,= —8; then c 
has to be —8'5342, and c, is —13°377. 

ai 
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Problem (4). To correct simultaneously for spherical aber- 
ration and for sine-error; in other words, to tind the two 
‘“aplanatic points.” The position of these is well-known, so 
that the exercise affords a useful check on the foregoing 
formule. quate the expressions (1) and (2) to zero, 
and solve simultaneously, with P=4°1603, Q=—6°6683, 
S=—18-4354, and g=0; the solutions are u,=4°8426, 
18-1922, c,—7-3506, or) = —7°3506, c= —7°3506, 
€9=—12°1932. These tally with the familiar solutions 
Us! =Co=p,/(N —1); w=4=—p,/(N—1). In one case the 
rays enter the first face normally, in the other they leave 
the second face normally. The cases are both useless, so far 
as telescopic work is concerned. 

I take next a few examples onthe doublet. The coefficients 
are. now :-—A = 1°22153, B= 2°-22153, C = —1°6847a, 
D=—3-44306, E=—3°36951, F=4-87751, G= —3:'73215, 
ae3o46, Kk = 20° T1990. = 181770, P= L72158, 

= —2°72153, R= —2°43875, 8S = —2-66771. 
The Jatus rectum of all parabolas of class I is 1/(1°22153); 

TI, —1/(2°10720); Ill, —1/(0-103042); LV, —1/(0-099481) ; 
V, —1/(1°19840). 

Problem (5). With parallel light and a cemented lens, 
what curves give (algebraically) least aberration? Solve 
Poway 2,0, g—0 .c =F a2ii, co=t3=—3' 3149, t= 63 
+ 2°4315=0°8834 ; the aberration is —1°0330. 
Problem (6). Given u,=0 and g=0, find the aberration 

for ¢-=—4'5. Parabola (1) gives: excess aberration above 
—1:0330 = 1°22153 x (square of excess curvature above 
—3°3149), so that the aberration =— 1:0330 + 1°7155 

Problem (7). Given u,=0 and g=0, what curves will 
remove spherical aberration? We must have 1°0330 = 
1°22153(e,—1°5277)?, or c,=0°60806 or 2°4473. Then, as 
usual, deduct 4°8426 for c,, and add 2°4315 to ¢3 for cy. 

Problem (8). Repeat (5), with g=0°1. The vertex of the 
parabola is now given by ¢;=1'6656 instead of 1°5277; 
indeed, every 0°1 in g means 0°1379 extra in ¢,; so, an avial 
gap (g= —0°1) would mean c,=1:3898. With u=0, g=0'1, 
and e,=1°'6656, the aberration is 0°4897. Asthis is positive, 
no choice of curves with air-gap 0°1 (and parallel rays) can 
give freedom from aberration. Yet for a suitable value of 
uy this could be done. 

Problem (9). Over what range of values of u; could it be 
done? To answer this, we require parabola III. Its latus 
rectum has been given above; its vertex is found by solving (3) 
and(5) with g=0°1; namely, ¢, =0°24933, aberration =0°6965. 

2L2 
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It crosses the axis, where — 0°6965 = — "103042 (¢,— 0°24933)?, 
2. @. where c,=2°8492 and —2°3505, and (3) gives for the 
corresponding values u,=0°8398 to —2°8497. Provided 
that w, does not lie within this range, an air-gap 0:1 is not 
incompatible with spherical correction. 

Problem (10). What is the largest air-gap which could be 
substituted for 0°1 in problem (8) so as to make spherical 
correction possible? This time parabola IJ is needed. For 
the vertex, solve (3) and (4) with w,=0; namely, cy =4°2164. 
aberration =14°201. It crosses the axis where —14:201= 
— 2°1072(¢,—4°2164)*, 2. e. where c,=1°6204 or 6°5124, and 
(3) then gives for g the values 0°06726 and 3°8317. So:that 
for spherical correction for a distant object the air-gap must 
not exceed 0°06726 (unless it has an absurdly high value). 

Problem (11). Jf uw, lies outsidea certain range, all values 
of the air-gap are compatible with spherical correction ; what 
is this range? Parabola IV supplies the answer. Its vertex 
is found by solving (3), (4), and (5) simultaneously; namely, 
¢y=3°6073, w= —0°42546, and g=19426; aberration= 
14-2374. Itsequation is: (aberration —14°2374) = — 0:099481 
(c,—3 6073). It crosses the axis at c;=15°570 or —8°356,. 
which means, by equations (3) and (4), that uy=7-931 or 
—8:783. For stronger convergence or divergence than 
this, correction is possible with any air-gap, provided the 
curvatures are chosen properly. 

Problem (12), Returning to problem (7), let us find the 
comatic error for the two spherically corrected lenses there 
given. Hxpression (2) gives (for c,=0°60806) the value 
—1°62092; and for c,=2°4473, the error is 15454. Hquating 
(2) to zero, with u,; =0 and g=0, we have ¢; = 1:5496 to comply 
with the sine-condition. What the manufacturer would pro- 
bably do, if he were tied down to these two glasses and a 
cemented doublet, would be to adopt a compromise; and this 
again shows the difficulty of dealing with lenses by tables, 
for no tables can be so voluminous as to provide for 
compromises. 

Problem (13). Giving up the idea of a cemented doublet, 
let us find what air-gap will remove both spherical aberration 
and coma for a distant object. quate (1) and (2) to zero, and 
solve with w;=0. The result is: y='06721 (or 3°8339, which 
does not matter), c,=1°6448, c.=—3°1978, c,;= —3°1306, 
Cy= —0°6991. These curves, then, forma favourable starting 
point for calculating an achromatic aplanat. They would be 
improved by making small allowances for the thickness of 
the lenses, but this matter must be postponed. It also 
remains to show what actual residue of error remains in all 
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three respects; this involves trigonometric computation. 
Most important of all is the question how best to utilise the 
above methods in order to make a much better attempt for 
the next trigonometric computation, instead of striking out 
blindly. 

Two other similarly computed objectives are :— 
(1) For u.=—0°5 (object equal to image): ¢,=0°83d1, 

€9= —4:0075, c3= —3°9539, c,= —1°5224. 
(2) For ujy=—1:0 (object at focus): ¢,=0°0414, = 

—4°8012, c3= —4:7498, cy= —2°3183: this may be regarded 
as corrected for infinity, but with flint leading. 

LVI. Electrical Theories of Matter and their Astronomical 
Consequences with special reference to the Principle of 
Relativity. By A 8S. Npvineron, I.A., P.RS., Plumian 
Professor of Astronomy in the University of Cambridge™. 

M* WALKER’S paper in the Philosophical Magazine 
for April has given a new turn to the discussion 

arising out of the motions of the perihelia of the planets, 
and perhaps some remarks on the points raised may be 
useful. I think that he greatly overestimates the differences 
of opinion between us; our views seem to coincide on what 
he calls “‘the main point at issue,” and itis difficult to believe 
that relativists in general hold any other view. 

Walker describes my method of dealing with the problem 
as depending on an unsatisfactory assumption, and concludes 
therefore that my treatment is invalid; but I am afraid he 
gives a wrong impression by not mentioning that my argu- 
ment tended to disprove the assumption in question. 1 did 
not advocate the assumption leading to the equations of 
motion used in my paper; on the contrary I showed that 
the results disagreed with observation. ‘The suggestion had 
been made that the famous discordance of Mercury could 
be accounted for by the variation of mass with velocity, 
according to the well-known hypothesis m=m(1—w?/c?)~?, 
if account be taken of its interaction with the sun’s motion 
through the «ther. ‘his hypothesis was examined, and the 
conclusion was unfavourable, the detailed results being irre- 
concilable with astronomical observation. That is to say, 
I attempted to disprove the hypothesis m=mo(1—w?/c?)~* 
which Walker rejects more summarily. Sir Oliver Lodge 
also concludes that ‘‘ If therefore the theory fails to give all 
the known perturbations correctly, something must be wrong; 

* Communicated by Sir Oliver Lodge. 
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and by finding out what is wrong, we may perhaps discover 
something instructive”*. We may therefore start from this 
point of general agreement. 

The foregoing law of inertia corresponds to the Lorentz 
electron in steady motion, but the method applies equally 
to any other law of variation of inertia with velocity; the 
only difference is a numerical factor which is of no con- 
sequence to the argument. A fundamental revision of the 
theory is therefore necessary. Walker has stepped in with 
the suggestion that a trial should be made with the more 
general (and, I consider, more plausible) assumption that 
the inertia involves the acceleration as well as the velocity. 
I cannot predict whether his mode of developing this view 
will lead to an accordance with observation ; but I certainly 
do not undertake to prove a general negative. 

Walker’s thesis that the Lagrangian function depends on 
the acceleration as well as on the velocity cannot be a point 
of cleavage between relativity dynamics and non-relativity 
dynamics—if I have rightly grasped the meaning of the 
statement. In Newtonian particle dynamics, and also in the 
quasi-stationary treatment of these problems, the Lagrangian 
function is supposed to consist of two parts, (1) the kinetic 
energy, involving the velocity only, and (2) the force- 
function involving position in the field of force. The con- 
tention is that this separation is inadmissible, and that there 
is a cross-term involving both the velocity and the force (or 
acceleration). Walker’s standpoint tends to associate this 
cross-term with the kinetic energy, so that the kinetic 
energy differs from the value calculated without regard to 
the acceleration. Sir Oliver Lodgef and the writer find it 
more natural to group the term with the force-function, and 
say that the force of gravitation involves a term depending 
on the velocity. The distinction appears to be purely verbal. 

It is essential to an out-and-out relativity theory that this 
cross-term should exist, and it is surprising to find relativists 
represented as opposed to it. 

Nor can the quasi-stationary assumption be regarded as a 
fundamental point of difference. It would, I think, be 
absurd either to affirm or deny the quasi-stationary principle 
irrespective of the particular application proposed. The 
question is whether it is a legitimate approximation in a 
definite problem. I sympathize with Walker in demanding 
a justification of this approximation in the cases where it has 
been used—whether by relativists or others. The problem of 

* Phil. Mag. February 1918, p. 143. 
tT Loc. cit. pp. 155-156. 
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the motion of the planets seems to afford a good illustration 
of its fallibility. But it seems rather unfair to blame 
relativists for a method which was introduced by Abraham 
in a non-relativity theory. I am not sufficiently versed in 
the history of the subject to know how extensively relativists 
have followed his example; but I should have regarded it as. 
one of the sins of our youth—due to the influence of evil 
associates—and long since repented. 

I understand that the true relativity theory of Kaufmann’s. 
experiment (which seems to be the point in dispute) runs 
something like this:—Consider an electron momentarily at 
rest, but continually accelerated, in an electric field of force 
Hf and a magnetic field H; then the acceleration « is given 
by the equation 

Ke = ma, 

where e/m is a certain universal constant fer the negative 
electron ; we need not inquire into its nature. This equation 
expresses the ordinary definition of H. Now choose new 
axes of coordinates with respect to which the electron bas. 
an instantaneous velocity w. Referred to these axes the 
electric and magnetic forces take known values EK’, H’, and 
the new value of the acceleration @’ is obtained by making 
Lorentz’s transformation of the coordinates and the time. 
Accordingly the relativity-theory predicts that an electron 
moving with velocity w in an electromagnetic field HE’, H' 
will experience this acceleration «’. Keeping Hi’ and H’ 
constant, we find how a’ depends on w. Kaufmann’s expe- 
riment—or rather the recent repetitions of it—confirm the 
predicted relation with considerable accuracy. Not only 
does this give the prestige of successful prediction to the 
relativity theory, but it confirms that part of the hypothesis 
most in doubt. It is generally admitted that the Lorentz 
transformation holds for the differential equations of the 
field; the question is, Does it hold for the boundary con- 
ditions (whatever they may be) at the surface of an electron ? 
The Kaufmann experiment, -dealing with a single isolated 
electron, answers this in the affirmative. If then the 
differential equations and the boundary conditions satisfy 
the transformation, nothing more is needed to establish its 
validity*. It should be noted that the experiment does not 

* Experiments are, however, still needed to test whether the Lorentz 
transformation covers the phenomena of quanta, which appear to involve 
something outside the ordinary electromagnetic theory. The exception 
is of special importance because it includes the vibration of an atom, which 
is the simplest form of a natural clock that could be used for measuring 
the time in the two systems. 
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tell us what are the boundary conditions at the electron, but 
only how they are transformed by uniform motion. 

There is no reference to the quasi-stationary principle in 
this theory. It is true also that there is no reference to the 
mass, energy or momentum of the electron ; the motion is 
treated geometrically. It is, I think, inappropriate to speak 
of the energy or momentum of an electron in accelerated 
motion: these quantities are being radiated, and it is im- 
possible to define the precise moment at which an element 
of energy or momentum ceases to be attached to the electron 
and passes into the general field. For uniform motion, 
however, the values can be clearly defined. We do not 
determine them directly from Kaufmann’s experiment ; but 
we arrive at them indirectly because the relativity trans- 
formation is verified. These expressions for the momentum 
and energy of a uniformly moving electron are of limited 
utility; as Walker rightly points out, it is not permissible to 
differentiate them. 

I gather from Walker’s remarks on p. 329 that he has 
doubts whether the Fitzgerald-Lorentz contraction should 
theoretically take place under circumstances such as those of 
the Michelson-Morley experiment; that is to say, the cor- 
telation found by Lorentz and Larmor is a possible one, but 
it need not necessarily be the correlation occurring in Nature. 
But a proof based on statistical mechanics has been put 
forward, which seems to be sound*. The arrangement of 
the particles constituting a solid is one of an infinite number 
of possible states, and the form taken up by the solid is that 
which is statistically most probable ; since the possible states 
of the stationary and moving solid are correlated one to one, 
the most, probable states (and therefore the actual states) 
satisfy the same correlation. In other words entropy is 
invariant for the Lorentz transformation. 

The relativity principle has the great advantage that it 
leads directly to the law m=m,(1—w?/c?)~? for uniform 
motion of matter in bulk, and it is unnecessary to consider 
the behaviour of an electron, or indeed to adopt an electrical 
theory of matter. I seeno way of deducing from the various 
electrons treated by Walker the corresponding laws of mass 
for matter in bulk, so that the discussion of these does not 
seem to advance the astronomical problem except by sug- 
gesting possible analogies. 

* E. Cunningham, ‘The Principle of Relativity,’ p. 206. Elsewhere 
this book warns the reader against assuming that the correlation holds 
for a non-uniform translation; and indeed those who accept Einstein’s 
latest theory assert definitely that it does not hold. 
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Turning now to Walker’s astronomical calculations, it may 
be pointed out that his detailed calculations deal with a solar 
system at rest inthe ether. The discussion therefore does 
not relate to Sir Oliver Lodge’s suggestion as to the effects 
of a solar motion, nor does it throw light on the point sub- 
sequently brought out—that the motion of the solar system 
(if any) bas no . observable effect on the motions of Venus 
and the Earth. At the end of his investigation Walker hints 
that a satisfactory theory similar to Lodge’s might be con- 
structed by using the more general type of Lagrangian 
function. He has, however, already three unknown con- 
stants, kj, ko, k3; the components of the unknown solar 
motion will give him three more; with six constants at 
disposal, he can scarcely fail to secure a forced agreement 
of the perihelia and eccentricities of the four inner planets, 
and it is difficult to find any observational test for sucha 
theory. 

On p. 337 it is stated that the observed motion of peri- 
helion of Mercury is satisfied by supposing that the attraction 
depends on the velocity (2. e. relative velocity) according to 
the law 

= plo(1+3 w/c’), 
and that Einstein implicitly introduces this comparatively 
large dependence on speed. WHinstein’s law may be trans-_ 
formed in a great many ways; but | do not think any 
possible interpretation of it reduces to this. If it is desired 
to put the new wine into old bottles, | think we must say 
that the theory involves different effects of the radial and 
transverse components of velocity in modifying gravitation, or 
to quote Walker’s earlier remark “ the modified Lagrangian 
function depends on the acceleration as well as on the speed 
of the system and involves also the relative direction of these”’*. 
The point is perhaps not of great importance; because in any 
case a theory which deduces the exact motion of Mercury 
from a general principle stands on a different footing from 
theories which merely use the motion of Mercury to obtain 
an empirical determination of their arbitrary constants. 

As a closely connected subject, the question of the alleged 
discordance of the node of Venus deserves some remarks. 
Dr. Jeffreys (Nature, April 11, p. 103) has commented on 

* Walker's method of taking this into account is to give k, and k, 
appropriate values, but in calculating the number % he has used the 
quasi-stationary values, presumably as a concession to relativists. Iam 
afraid I must reject the concession, and insist on agreeing with his true 
opinion on this point. 
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the scant attention paid to this as compared with the peri- 
helion of Mercury. It may be well to explain why the 
former discordance has been considered unimportant. The 
residual of the node of Venus is 43 times its probable error”, 
and the theoretical chances against such an error are about 
400 to 1. But it must not be forgotten that this element has 
been deliberately selected out of 16 elements as showing the 
greatest discordance. To apply the test of probable error we 
must select fairly and not pick out the worst cases. Let « be 
the probability of an error less than a, then the probability 
that all sixteen residuals are less than zis a!®, For a limit 
of 44 times the probable error this gives a probability 
(9976)!®=-962, so that the chance of the largest residual 
being as much as 42 times the probable error is *038, or 
about 1 in 26—an adverse probability, but not very emphatic. 
To put the matter another way, we find (by solving a®=3 
that the largest discordance of the 16 elements should just 
exceed 3 times the probable error. We may therefore ask, 
What is the probability that Newcomb underestimated his 
errors in the ratio 2 owing to unsuspected sources of error ? 
The evidence for a genuine discordance seems very flimsy. 
To the astronomer, no doubt, it is an indication well worth 
looking into; but it would be extremely rash to build a theory 
on so slight a foundation. 

The present state of the problem of the elements of the 
four inner planets appears to be as follows:—The theory 
given in Sir Oliver Lodge’s and my own papers leads to 
secular perturbations of the Earth and Venus, which ought 
to be perceptible to observation if the sun’s motion is greater 
than about 10 km. per sec. Since these are not observed, 
we conclude either that the sun’s motion happens to be very 
small, or that there must be compensating terms in the more 
complete theory. Following out the second alternative, there 
are again two possibilities. Hither the compensation is an 
accident due to the particular elements of the orbits and their 
relation to the direction of the sun’s motion, or it is a general 
compensation. <A theory can no doubt be constructed which 
gives an accidental cancelling for Venus and the Harth, pro- 
vided it contains a sufficient number of disposable constants 
not otherwise determined ; but such a theory cannot carry 
much conviction. If we suppose that the compensation is 
general, then we are adopting effectively a relativity. theory 
of gravitation—that uniform motion of a gravitating system 
produces no observable effects. This involves a dependence 

* The discordance of the perihelion of Mercury from tle Newtonian 
theory is 30 times its probable error. 



Audibility Factor of a Shunted Telephone. 487 

of gravitation on the velocity of the planets; or, if preferred, 
the same thing may be expressed in Walker’s phraseology. 

In this last case the motion of the sun can have no influence 
on the perihelion of Mercury, and the observed excess must 
be ascribed either to outside causes, such as the mass or 
resistance* of the Zodiacal Light, or to the laws of relative 
motion. In my paper only 4 of the observed excess} is 
given by the relative motion; and the difficulty is to bring 
it up to the required amount without extravagant or ad hoc 
assumptions. Walker’s investigation appears rather to em- 
phasize this difficulty. Nevertheless Hinstein’s generalized 
relativity theory gives the precise value required without 
any arbitrary constants. It may perhaps be said that the 
factor 6 (or 3) must be implicitly contained in the assumptions 
of his theory. I suppose that the results of any theory are 
implicitly contained in its postulates; so I cannot deny that 
the factor 6 is concealed in Einstein’s Principle of Equi- 
valence—‘“‘ that it is impossible by any experiment to dis- 
eriminate between a gravitational field and a field of force 
(such as the centrifugal force) arising from a transformation 
of the coordinates of reference.” But at least it is cleverly 
camouflaged ! Many pages of analysis are required to 
obtain the result for Mercury, and | do not think any simple 
interpretation of the occurrence of the factor can be given 
at present. 

LVII. On the Relation of the Audibility Factor of a Shunted 
Telephone to the Antenna Current as used in the recepticn 

of Wireless Signals. 

To the Editors of the Philosophical Magazine. 

GENTLEMEN ,— | 

i your January number you published a paper with 
the above title in which I criticised a previous 

communication from Mr. van der Pol; my paper was 
followed by an explanatory note in which Mr. van der Pol 
attempted to justify his methods and conclusions. He 
suggests that I had rather lost sight of the motives of his 
paper and of certain experimental difficulties; I wish to 
show, however, that, through depending too much on 
Prof. Love’s account of Austin’s work and apparently 

* Sir Oliver Lodge, ‘ Nature,’ March 21, p. 44. 
+ Or 3, if the added inertia is subject to gravitation, 
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failing to consult Austin’s original paper, he has lost sight 
of the facts and has attempted to prove something which 
arose solely owing to an unfortunate misunderstanding on 
the part of Prof. Love. 

Mr. van der Pol says, “In discussing some experiments 
by Dr. Austin, Prof. Love makes use of the audibility 
factor defined as (R+8)/S, where S is the resistance of the 
shunt and R the telephone resistance.” This is true, but 
unfortunately Prof. Love overlooked the fact that, although 
Austin gives the resistance of the telephone receiver as 
600 ohms, he adds a footnote to the effect that “the in- 
ductive resistance of each telephone used in calculating the 
shunt ratio was 2000 ohms.’ No one can doubt that by 
inductive resistance Austin means impedance, so that both 
Austin and Hogan used the impedance in calculating the 
audibility factors which constitute the ordinates of the points 
in figs. 3 & 4 which Prof. Love reproduces from Hogan’s 
paper. Prof. Love's Table IV. based on the simple re- 
sistance of the telephone receiver gives results which are 
quite incomparable with the plotted results of Hogan’s 
observations. It should also be pointed out that Hogan 
definitely states that in bis experiments R is the zmpedance 
of the telephone, as correctly quoted by Prot. Love (p. 126). 
For this reason his adverse criticism of the conclusions 
reached by Austin and Hogan needs revision. 

If Table IV.is recalculated using the value of R employed 
by Austin, viz. 2000 ohms, the following results are obtained: 

Shunt 8. Current I. LP S 
Ohms. 10-6 amp. Rae 

0:5 672 113 
1 474 112 

10 150 112 
50 68 1125 

100 49 114 
400 26 112°5 

3000 is Lis 

The last column shows that there is not the slightest 
foundation for Prof. Love’s statement that ‘the results of 
these experiments are recorded by him | Austin] in a table 
which does not support the conclusion that the current is 
proportional to the square root, of the audibility factor.” In 
view of the experimental difficulties the preportionality, as 
indicated by the constancy of the values given in the last 
column, is wonderfully exact and speaks well for the expe- 
rimental skill of those who carried out the measurements. 

It is seen therefore that the peculiar relationship which 
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Prof. Love found between the received current and the 
audibility factor was due entirely to this oversight; his 
results involve the relationship between the impedance and 
the resistance of the telephone and would vary with different 
receivers. There can obviously be no simple relation between 
the antenna current and the audibility factor, unless the latter 
be calculated in such away as to give correctly the ratio between 
the total sound-producing current and that fraction of it which 
passes through the telephone receiver. It is obvious, moreover, 
that for large values of (R+S8)/S, the wrongly calculated 
audibility factor will also vary as the square of the antenna 
current, but that for small values of (R+S8)/S, that is, for 
weak signals, the wrongly calculated audibility factor will 
vary less rapidly, as is clearly shown in the table given in 
my paper (Phil. Mag. Jan. p. 133). 

' This then is the simple explanation of Prof. Love’s sug- 
gestions which the experiments of Mr. van der Pol were 
intended to test. 

Mr. van der Pol’s experiments have simply confirmed the 
fact that if, when using such detectors, one miscalculates the 
audibility factor by taking the resistance instead of the im- 
pedance of the telephone receiver, the result will have the 
peculiarity found by Prof. Love. This was obvious, however, 
without any experimental confirmation. 

Mr. van der Pol’s remark that “it is by no means clear 
whether Austin or Hogan employed the true impedance of 
their telephones, as in their papers no references at all are 
given how they determined these impedances ” is obviously 
unjust in view of the work of these two experimenters. 
The table given above indicates, if it does not prove, that 
the impedance of the receiver has been fairly accurately 
determined. 

In reply to Mr. van der Pol’s statement that “‘ no assump- 
tions as that made by Prof. Howe that the true impedance of 
the telephone under actual working conditions is equal to four 
times | I gave 3 and 4 as alternatives] the steady resistance 
has been justified by any experiments,” I wish to say that the 
figures given were not assumptions but measured values at 
the frequencies quoted. It will be noticed that Austin’s 
receiver had an inductive resistance 34 times the steady 
current resistance. 

With respect to the closing paragraph of the note I think 
that “ the uncertainty attending the constants employed by 
Austin and Hogan and the difficulty of determining exact 
values”? are by no means so great as Mr. van der Pol 
imagines; but even were it otherwise, I cannot agree that it 
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is “‘ better to base the reduction of the observations on known 
measurements rather than on assumptions as to the ratio of 
impedance to resistance,” unless the known measurements 
are of some magnitude on which the observed phenomena 
depend. In the case in point, no uncertainty as to the exact 
wave-form can be regarded as a legitimate excuse for 
neglecting the fact that one is dealing with an alternating 
or pulsating current. 

Yours truly, 
31st January, 1918. 

South Kensington. G. W. O. Hown. 

LVI. A Doctrine on Material Stresses. 
By R. F. Gwytuer*. 

T is intended to provide a reasoned basis for a theory of 
stresses, applicable in the first case to a body which 

satisfies the geometrical conditions for acting as a Rigid 
Body (not being in a state of constaint), but which shall be 
capable of extension to Hlastic Bodies or to other approxi- 
mations to Natural Bodies, without introducing the fiction of 
an ‘undisturbed ” condition in which the body is assumed 
to be free from stress. The doctrine, for the development 
of which the several stages are indicated below, is the outeome 
of a series of papers on the ‘“‘Specification of Stress,” pub- 
lished by the Manchester Literary and Philosophical Societyf, 
but it cannot be described as the motive of the papers, since 
it has formulated itself during the progress of the series. 

The body contemplated is not supposed to be crystalline, 
fibrous, or annealed, and not to be subject to any special 
conditions either locally or at the surface. The body may, 
in the first instance, be regarded as either at rest or in 
motion under the geometrical conditions which define rigidity, 
and any modification of those geometrical conditions, such as 
elastic modifications, are to be deduced from the stresses in 
the initial instance, and from such definitions as may prove 
necessary in the sequel. 

The stages by which the theory is developed are stated 
below. No analytical expressions are used, but reference is 
made to such analytical expressions at all the stages. This is 
inevitable, since the question is, at this stage, an analytical 
question. 

* Communicated by the Author. 
+ Manchester Memoirs, No. 10, vol. 1vi. (1912), No. 5, vol. lvii. (1913), 

No.5, vol. lviii. (1914), No. 14, vol. lx. (1916), No. 1, vol Lxii. (1917). 
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(1) The nine elements of mechanical stress obey well- 
known laws of resolution. By introducing the notion of infi- 
nitesimal rotations of the coordinate axes about their own 
positions, we can, for our present purposes, replace these 
relations by the three differential-operators*, acting upon 
the elements of stress, the determination of which follows 
from the laws of their resolution ; that is, these operators 
are based on mechanical considerations. 

2) If we now consider any arbitrary vector (which we 
shall speak of conveniently as a virtual or ee dis- 
placement), we may look upon the nine first differential 
cvefficients of its components as being replaced by the nine 
elements of virtual or potential strain (including among them 
the three rotations). 

These nine virtual strains may now be affected by the 
same infinitesimal rotation of the axes as is employed 
in (1), and the three consequent difterential-operators * 
acting upon the elements of strain may be deduced; in this 
case on geometrical grounds. It will be noticed that the 
forms of the two sets of operators are similar, and may easily 
be made identical. 

(3) I shall now introduce the fundamental assumption on 
which the theory is based ; that the elements of a material 
stress are functions of the first differential coefficients of the 
components of some vector quantity ; in other words, functions 
of some set of nine virtual strains. 

(4) If we now turn to the two sets of differential-operators 
concerning elements of stress and of virtual strain, we are 
able, in consequence of assumption (3), to express each 
element of stress in terms of the nine elements of virtual 
strain; or, conversely, each element of strain in terms of the 
nine elements of stress, by means of sets of simple partial 
differential equations. 

In obtaining these solutions constants will be regarded as 
uniform and isotropic, and, consequently, we shall exclude, 
among other things, the possibility of a crystalline structure. 
We shall also suppose the body not to be in a state of con- 
straint, or otherwise that that state has been eased. JI shall, 
further, limit the solutions to relations of a linear form. 
From this it will follow that the relations between the 
elements of stress and of virtual strain agree, in form, with 
the corresponding relations familiar to us in the Theory of 
Hiasticity. 

(5) Supposing the elements of virtual strain to be expressed 

* Manchester Memoirs, No. 3, vol. ix. (1895), No. 1, vol. xii. (1917). 
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in terms of the elements of stress, we may eliminate the former 
by differentiation, and obtain a set of relations involving only 
the elements of stress (stress-relations). 

(6) I shall now suppose the set of three mechanical stress- 
equations to be introduced which correspond to the state of 
rest or motion of the body as a rigid body. With these 
equations I shall suppose the stress-relations of the preceding 
paragraph to be combined. From this combination we 
may obtain Stress-Hquations, by which we may regard the 
elements of stress to be defined : as far as they are capable of 
being defined so long as the surface-traction conditions have 
not been considered. 

(7) Up to this point I have been contemplating such 
cases as a cube of metal on a rough inclined plane, or a 
connecting-rod moving in a prescribed manner, the geo- 
metrical conditions for rigidity being preserved. The stresses 
are not to be regarded as undefined, but as being determinate. 

(8) The Theory of Elasticity is now introduced by the 
definition of an Hlastic Body as a body such that the strain, 
hitherto considered as a virtual or potential strain, is the 
actual strain experienced by the parts of the body. The 
stresses being definite, the strains become definite, ‘and the 
displacement may be deduced. 

The acceptance of the principles involved in this doctrine 
would have the effect of removing the subject of stresses 
from its accepted place in the Theory of Elasticity, and of 
making it an integral part of the Statics and Dynamics of a 
Rigid Body. Apart from the introduction of the cases of 
motion of the body, this would appear, at first sight, to be 
merely a matter of exposition of the Elastic Theory. Buta 
further consequence would be that the determination of the 
elastic strains from the Rigid Body Stresses would be only 
the first stage in the Theory of Elasticity. A closer approxi- 
mation to the values of the stresses would follow from the 
estimated alteration of the surface-traction conditions con- 
sequent on the displaced condition of the surface of the body, 
and the subject would become one of continued approxi- 
mations on the lines of certain other subjects of Mathematical 
Physics, and an opportunity would be provided for a theory 
of permanent set and of rupture. 

Lymm, Cheshire. 
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LIX. On the Wolf-note in Bowed Stringed Instruments. By 
C. V. Raman, W.A., Sir Taraknath Palit Professor of 
Physics in the Calcutta University”. 

-: a the Phil. Mag. for June 1917 (page 536), Mr. J. W. 
Giltay has questioned the correctness of the remark. 

made by me in the Phil. Mag. for Oct. 1916 (page 394), that 
the explanation of the effect of a“ mute” on the tone of 
bowed stringed instruments is chiefly to be sought for in the 
lowering of the frequencies of resonance of the instrument 
produced by the loading of the bridge. 

2. Before replying to the specific issues raised by 
Mr. Giltay, I may be permitted to point out that the view 
of the action of the mute suggested by me rests upon the 
secure foundation of mathematical analysis. The effect of 
adding inertia to any part of a dynamical system has been 
considered by Lord Rayleigh, Routh and others, and it hag 
been shown that the natural frequencies as altered by the 
addition of the load are given by the roots of the equation 
(see Routh’s ‘Advanced Rigid Dynamies,’ Section 76) 

(N?P—n?)(N,2—17) &e., —an?(n? —n?)(n3?—n?) &e.=0, 

In the above, N,, Nz, &e. are the frequencies before the 
addition of load, 7, m2, n3, &c. are the limiting values of the 
frequencies attained when the load becomes infinitely large, 
and zis a positive quantity proportionate to the added inertia. 

[n,=0, no >N,, n3>No, &e., according to the theorem 
due to Routh]. 

The forced vibration due toa periodic force of frequency n 
(assumed to act on the system at the point at which the 
load is fixed) also depends on the magnitude of the ex- 
pression on the left-hand side of the preceding equation, 
being in fact inversely proportional to it except in the 
immediate neighbourhood of the frequencies of resonance. 
The expression may, for convenience, be written in the form 
(p—aq). Assuming that the frequency n of the impressed 
force lies between two of the natural frequencies, say N, 
and No, of the system without any load, the effect of the load 
on the forced vibration evidently depends on whether p and q 
are of the same or of opposite sign. If n be less than n,, 
they are of opposite signs, while if n be greater than ng, they 
are of the same sign. In the former case, the load decreases 
the amplitude of the forced vibration throughout. In the 

* Communicated by the Author. 

Phil, Mag. 8, 6. Vol. 35. No, 210, June 1918, 2M 
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latter case, the vibration is increased by the addition of load 
till the stage is reached at which p=ag, the amplitude then 
becoming very large. Subsequent additions of load decrease 
the forced vibration till it finally vanishes in the limit. 

3. If, however, the point at which the load is fixed is not 
the same as that at which the impressed force acts on the 
system, the treatment is not equally simple. The expression 

_ for the forced vibration then obtained from the Lagrangian 
equations has the determinant for the free periods as its 
denominator; but the numerator contains some additional 
terms, the magnitude of which is proportional to the applied 
Joad. If these terms are ignored, the sequence of changes 
with increasing load would be exactly the same as that 
stated in the preceding paragraph. 

4. There is no difficulty in verifying the foregoing indi- 
cations of theory experimentally. In the case of the violin 
or ’cello, at least the first three of the natural modes of 
vibration of the instrument have to be taken into account to 
explain the phenomena produced by the mute within the 
ordinary range of tone of the instrument. The two first 
resonance-frequencies are those mentioned by Helmholtz in 
his work. The pitch of the first is only slightly lowered by 
the mute. The second is the well-known “ wolf-note,” and 
the pitch of this is depressed by about 450 cents by the mute. 
The pitch of the third resonance is about an octave higher 
than that of the second, and this also gives a marked 
‘“ wolf-note.” The mute lowers the pitch of this by about 
700 cents. The mass of an ordinary brass mute is sufficient 
to make the second, third, and higher resonance-frequencies 
approximate to their limiting values. The effect of the mute 
should accordingly be to increase the intensity of the graver 
tones and harmonics of the instrument, and to decrease those 
of high pitch. This is exactly what has been found experi- 
mentally by Edwards (Physical Review, Jan. 1911). 

5. Mr. Giltay’s criticisms may now be easily disposed of. 
Experiment shows that he is incorrect in saying “ I suppose 
that the change of pitch of the note of maximum resonance 
of bridge, belly, &e. will practically be the same whether the 
bridge be loaded at its highest point or as low as possible 
and near to its left foot.”” Asa matter of fact, trial shows 
that the lowering of the pitch of either of the two “ wolf- 
notes ” is three to five times as much in the former case as 
in the latter. As the observed mute-effect is less when the 
load is placed at the foot of the bridge, the experiment 
actually furnishes a strong confirmation of the correctness of 
my views, and shows also that the interpretation given by 
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Giltay and De Haas to their observations (Proc. Roy. Soe. 
Amsterdam, January 1910) requires revision. As a matter 
of fact, it appears from my detailed observations that Giltay 
and De Haas were in error in assum: ing that the motion of 
the bridge in its own plane is practically that of a rigid body. 
Owing to the form of the bridge, the cuts in it, &., this is 
very far indeed from being the case, the elastic distortions 
being very large. for instance, it makes all the difference 
in the pitch of the wolfifa load be fixed immediately above 
instead of immediately below the cut on the G-string side of 
the bridge. This fact is inconsistent with the supposition 
made by Giltay and De Haas that the motion of the bridge 
in its own plane is one of simple rotation about an axis, and 
proves that the theory of the action of the mute put forward 
by these writers is untenable. 

6. In view of what has been said in para. 4, the observed 
muting of the high notes of the instrument which Mr. Giltay 
suggests asa difficulty, is easily seen to be exactly what is to 
be expected according to the view of the action of the mute 
put forward by me. ‘In the absence of a mute, the resonance 
of the violin is by far the strongest at the pitch of the 
two wolf-notes. Theory thus indicates that the quality of 
violin-tone and the effect of a mute upon it may be cha- 
racterized as follows: the gravest tones have a weak funda- 
mental with strong second and third harmonics, muting 
increasing the fundamental at the expense of the harmonics : 
in the middle of the scale the tones should have strong 
fundamental and second harmonic with relatively weak 
higher harmonics, all except the fundamental being decreased 
by muting; the highest tones should have strong fundamental 
and weak upper partials, all the components being decreased 
by muting. The observations of Hewlett (Physical Review, 
Noy. 1912) and those of Edwards already quoted are in 
aan agreement with the above. 

. Another interesting question which arises regarding 
the Beton of ple imu a ss effect on the minimum “bowing 
pressure necessary in order to elicit a steady vibration of the 
usual type. I have investigated this question theoretically 
by considering the effect of the mute on the motion of the 
bridge and consequently on the minimum frictional force 
which should be exerted by the bow on the string in order 
that a steady vibration should be possible. The question has 
also been studied experimentally using a mechanical player 
in which an erdinary violin- bow excites the shine of a 
violin under strictly controlled pressure and velocity of 
movement, The quantitative data obtained clearly show the 

Ia 2 
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great increase in the bowing pressure which becomes 
necessary at the wolf-note pitch, and prove that the effect 
of the mute is to increase the bowing pressure necessary at 
low frequencies and to decrease itat high frequencies. With 
this mechanical player, the “ cyclical” or “beating” tones 
obtained in certain cases (Phil. Mag. Oct. 1916 and Feb. 1917) 
may be steadily maintained and controlled by suitable adjust- 
ment of the bowing pressure. 

Indian Association for the 
Cultivation of Science, 

Calcutta. 

LX. On a New Type of Rough Surface the Motion of a 
Heavy Particle on which is determinable by Quadratures. 
By Nauiimowan Basu, M.Sc., University Lecturer in’ 
Applied Mathematics, Calcutta *. 

1. PT is well known that the motion of a heavy particle on 
a rough surface is determinable by quadratures when 

the surface is an inclined plane, a circular cylinder, a circular 
cone, or a vertical cylinder standing on a logarithmic spiral 
as the basef. | 

The object of the present paper is to make known another 
surface which has, in a certain sense, the same property as 
the four surfaces mentioned above and which, it is believed, 
has not been considered by any previous writer. 

2. Let us consider the surface whose equation is 

VvY=c—tana. tan-*2 —(x#?+y?—1)P(z)=0, . (1) 

where P(z) is given by the relation 

6 
1 1+ tan; 1 

2u cot a cosa a /1—p? cot? a 

2 
eee meee aE Ny 

V1—pcotat V1+pcota.tan 5 

x log a= =c—h, . (2) 
V1—pcota— 71+pcote.tans 

bo 

tan 9 standing for 2P cos # and the awis of z being drawn 
vertically upwards. 

* Communicated hy Prof. G. Prasad. 
+ For the first three cases, see any well known text-book on the 

‘‘Dynamics of a Particle,” e.g. Routh’s book; for the last case, see 
A. Razzaboni’s paper, ‘‘ Sul movimento d’un punto materiale sopra una 
superficie non levigata.” (Giornale di matematiche, vol, xxxiv.) 
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Then we proceed to investigate the path of a heavy particle 
moving on this surface, the coefficient of friction being pz. 

3. The equations of motion are: 

oe eS : 

g=mR—pRY, 

oie pro 9, 

where R is the normal reaction per unit mass and l, m, n are 
the direction-cosines of the normal to that side of the surface 
on which the particle lies. 

Eliminating R we have 
adil 2 

ae nk: :) v on y igvpset J 

WeeAh dy & dz —po 
ae i Py et 

Thus we have 

ly iL 
vii = (us — 1) “(5 oe +42), 

> dy d/(l1., 
BUY = bes va m) i ii 9° +92). 

Writing 

=4(,42), pad (ett), dood 
AO HN dar Go meek ds Aaa: 

and simplifying, we get 

5 dv dz\ dz 
po? a ee (1p «9 qe 

oly dy de 
v7 +m ws - + a+ (m—n ba. = A ==|/ 

Hence we obtain 

v? yt? dz 

Be | eS ES ae ds ih, Saleen, 

(; dw -1") =" (i da d?y ( _ dy\ Px mot ey 
EN ds ds Pe i a ey 

nt 1 dy 

dz "ds ds 

UP da Bae. ay’ (3) 
mds ds? 
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and 

eee 
de _ dz JE \ds det de dst) a 
is en ae re \ g 

Me 7-5 Tee 
ds?) as 

The path of the particle must therefore satisfy the 
equation 

moe a) dy 
d dz ds ds 

ds ds’ d?x d*y 
m 732 les 

ce ax da - 
im 

‘ dz ds’ ds? a ° 

=e ds* dx | a (4) 
mM 73 = 173 

The problem before us is therefore to find a curve 
ste equations will satisfy 

(i.) The initial conditions, 

(ii.) The equation (1), 

and Giii.) The equation (4). 

Now from (1) we have 

Ox ogy tan a MEE ey 

or w+ y? 

OY _ wtane ue 

OY a+ y? gh) 

Ox dP 
—# =1—(2?+y7’?—1) — OX <1 (t+ yl) F 
fe i ie tan @ _9 P(e)| 

Te a? aaa ee 
2 ine 

es 2, m=— 9/3 zi +2 yb) |, 

pe gatiane sl 
das aL Bet oie ae? 
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tan? a : y dP eu Dp 2\ Ogee pee OF=1 + ae + 4 P(e? + y*) — 2(e* +y?—1) a 

F 2 

+(e +y—1) (S=) : 

Assuming the equations of the path to be given by 

w=cos(zcota), y=sin(zcote), . . . (5) 

we have, for points on the curve, 

OF = A4P?+sec? a, 

QO.t = ytana—22P, 

O .m=—(@ tan «+2yP), 

and Oni ae 

Also we find, for downward motion, 

dz : 
— =—sine 
ds ‘ 

da ° 

Ge COS # SIN (z cot a), 
( 

d 
= = — C08 a cos (z cot a), 

d'z 
aaa — cos” a cos (z cot «), 

d*1 
a = — cos” a sin (2 cot #). 

Substituting these in the equation (4) and putting for w 
and y their values given by (5), we see that the equation 

saa 

dz 

must be true in order that the curve described by the 
particle may be represented by the equations (5). But 
differentiating (2) we find that the above eyuation is true. 

The equations (5) also satisl'y the equation (1). 
Therefore it 1s proved that, if a particle be placed on the 

surface (1) and projected with « suitable velocity along the 
helix (5), tt will continue to describe that curve. 

—4{1—pcoota.cosaV4P?+ sec? a} 
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5. The velocity at any point of the curve is found from 
(3) to be given by 

v’?=29P(z). 

We see from (2) that z=h makes P(z)=0. Thus the 
level of no velocity is given by <=h. 

6. To study the nature of the surface we observe at the 
outset that, when w=0, 7. e. when the surface is smooth, 
the limiting form of (2) becomes 

P(z)=h—z, 

and taking h=0, we obtain * 
” 

2(2?+y7)=tan a. tan“, 
x 

Now consider the general equation (1). Then we find 
that (i.) the section by the cylinder #?+y?=1 is the helix 
x =cos (z cota), y=sin (zcot«) ; (i1.) the section by the hori- 
zontal plane z=/ is the straight line y=2 tan (hcota),z=h; 
(iii.) the other horizontal sections are spirals of the form 
r=ap+b; (iv.) generally, sections by vertical circular 
cylinders are different from helices; (v.) the surface is not 
a minimal one like the helicoid. Hence we conclude that, 
although for small values of w the surface has nearly the 
same shape as the surface discussed by Catalan, for fairly 
large values of yw it differs essentially from Catalan’s surface 
as well as from the helicoid. 

I wish to express my thanks to Prof. Prasad for his kind 
interest in the paper. 

LXI. Two-Dimensional Motion of an Infinite Liquid. 
By W. G. Bicxuiry, B.Se.f 

§1. FN a recent paper (Phil. Mag. (6) xxxv. no. 205, 
p. 119, Jan. 1918) Dr. J. G. Leathem has shown 

how to determine the motion in two dimensions of an infinite 
liquid occupying the space outside a solid body bounded by 
a closed curve or polygon, due to prescribed motion of the 
boundary. ‘The method used depends on the use of periodic 
conformal transformations whereby the doubly connected 
space outside the boundary is transformed into a semi-infinite 
rectangle. The solution for the case of translatory motion 
is neat and immediate, but this can hardly be said of the 
solution in the case of rotation, although it is perfectly 

x This is the surface discussed by Catalan (Journal de mathématiques, 
ser. 1, tome xi.). 
+ Communicated by the Author. 
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complete and general. Whenthe paper appeared, the author 
of the present paper was engaged in an attempt, since com- 
pleted, to solve a particular case of the above problem, and 
was led toa general method of attack which seems to give 
results more immediately, and with a less complicated pro- 
cedure, and it is thought that an outline of the method may 
be of interest. 

§ 2. Needless to mention, conformal representation plays a 
large part. Instead of the periodic transformation advocated 
by Dr. Leathem, it was found more convenient to use one 
whereby the doubly connected region of the z-plane becomes 
the upper half of the &-plane, the boundary in the <-plane 
becoming the real axis in the ¢-plane. If the periodic 
transformation is known, this may be effected by taking as 

the auxiliary variable tan = in the notation of Dr. Leathem. 

This will for the present be denoted by £(=&+ im). The 
transformation may be written 

a ea 
In particular for the ellipse, of semiaxes ccosh a, csinh a, 

e=c{2 cosh a+c(1—€?) sinh «}/(14 €?). 

§ 3. The method now depends on the fact that, except.as 
to a constant, the value of the stream function is known on 
the boundary, and therefore on the axis of &. In particular, 
if the motion is one of uniform translation with velocity U 
in the direction inclined at an angle 8 to the z-axis, we 
have on the boundary 

yi =tU x ieee } + consis cuieeee | he) 

For the case of rotation about the point 2) with angular 
velocity w, on the boundary 

2=7o|z—z|?+ const. . . - . (3) 

On the boundary z=/(&) since »=0, therefore we have 
as the values of y on the real axis in the &-plane, 

“rian lifer. } + const...) 2. C2) 

iota {(©)—2z9) + const: ©.) 2. (84) 

Hence, as the corresponding values cf w (=¢+ uh), 

st: dé Revi oet ey ee se ee oh ee. 
PW ae il 

W2= So M20)? pee 

provided these integrals converge. This may always be 
secured, since the boundary in the <-plane is by hypothesis 
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finite, and so /(£) tends to a finite limit as £+co. Thus we 
obtain finally 

mS Wyte ye) Sk ee 

jk. OM (£)—fla » 1E =e) Woes... @ 
These integrals, which express was a function of ¢, may 

be evaluated by the method of residues, and the elimination 
of ¢ between (1) and the results give w as a function of 2, as 
1s required. 

Loughborough, 
March 5, 1918. 

LXII. Proceedings of Learned Societies. 

GEOLOGICAL SOCIETY. 
(Continued from p. 292.] 

January 9th, 1918.—Dr. Alfred Harker, F.R.S., President, 

in the Chair. 

HE following communication was read :— 

‘The Highest Silurian Rocks of the Clun Forest District 
(Shropshire).’ By Laurence Dudley Stamp, B.Sc., A.K.C.L. 

Clun Forest is a large district—extending on both sides of the 
Welsh Border—in which Upper Silurian rocks crop out over a wide 
area, interrupted by outliers of Old Red Sandstone. The district 
is separated from the typical Silurian area of Ludlow, which lies 
some 15 miles away to the east, by the great line of disturbance 
that passes through Church Stretton and Old Radnor. 

The classification adopted for the highest Silurian strata is as 
follows oT Thickness 

an feet. 
OLD RED) SANDSTONE! Jc ieee... .. cuca Purplish-red sandstones. 

(Temeside Shales ......... 350 Olive-green shales with bands 
of micaceous green grit; a 
fragment-bed, with Eury- 

TEMESIDE | pterid- and plant-remains, 
GROUP. } forms the upper limit. 

Downton Castle Sandstone 110 Yellow sandstones and tile- 
Series. stones, with shales and 

L Platyschisma Limestones. 
C Upper... 50 Green laminated flags and blue 
ee flagstones. 

betas ‘ | ees Bes Lower ... 300 Ivregularly-bedded calcareous 
Lana NS flagstones 

GROUP. | 4 . . 
‘| Rhynchonella Beds ...... 300 Grey calcareous flags with 

massive blue flagstones. 
Arumustry { Dayia Shales............... ?300 Striped laminated shales and 

GROUP. { mudstones. 
Lower Ludlow Shales............. Dark-grey shales and indu- 

rated mudstones. 

Towel) co. 1410 
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The distribution and characters of the beds are described. The 
succession compares very closely with that in the Ludlow district 
itself. The main differences are: (1) that the Aymestry Lime- 
stone is represented by mudstones west of the great fault-line, and 
(2) that all other divisions show greatly increased thicknesses. 

There is no evidence of any stratigraphical break. On the.con- 
trary, the sequence is complete from the Lower Ludlow rocks up 
into the Old Red Sandstone, and the changes in lithology are usually 
quite gradual. The oncoming of the Old “Red Sandstone conditions 
is discussed, with regard to their effect on the lithological and 
paleontological characters of the strata. 

The extent of Old Red Sandstone, as indicated on present maps, 
must be greatly restricted, since most of the supposed Old Red 
Sandstone has been found to belong to the Temeside Group, which 
in this district attains a great development. The Silurian age of 
the beds in question is shown by the occurrence in them of “Lin- 
gula minima, and of characteristic lamellibranchs, etc., also by 
comparison with similar strata in the Ludlow area. 

A comparison with other districts in which Upper Silurian rocks 
are developed shows ‘that deposition attained its maximum along 
the Welsh Border, the thickness of the formations decreasing 
rapidly southwards and eastwards. 

On the east of the district—in the neighbourhood of the great 
fault-line—the strata are considerably folded along axes ranging 
north-north-eastwards parallel to the main fault, with minor faults 
following the same direction. Away from the major faults the 
foiding is gentler in character, and a series of folds ranging nearly 
due east and west make their appearance. Farther w est the north- 
north-eastward folding and fracturing reappear. 

January 23rd.—Dr. Alfred Harker, F.R.S., President, 
in the Chair. 

The following communication was read :— 

‘On a Flaked Flint from the Red Crag.’ By Professor William 
Johnson Sollas, M.A., Se.D., LL.D., F.R.S., V.P.G.S. 

The remarkable specimen forming the subject of the paper 
was obtained by Mr. Reid Moir from the base of the Red Crag 
exposed in the brick-pit worked by Messrs. Bolton & Company 
near Ipswich. 

It is a fragment of a nodule of chalk-flint, irregularly rhombic in 
outline, with a nearly flat base and a rounded upper surface which 
retains the whitish weathered crust of the original nodule. 

The base was formed by a natural fracture which exposes the 
fresh flint bordered by its weathered crust. 

Both upper and under surfaces of the specimen are scored with 
scratches which are mainly straight, but in some cases curvilinear. 

Two adjacent sides have been flaked bya force acting from below 
upwards, in a manner that recalls Aurignacian or Neolithic work- 
manship. The two edges in which the flaked faces meet the base 
are marked by irregular minute and secondary chipping, such as 
might be produced by use. On the hypothesis that the flint has 
been flaked by design, these edges will correspond to the ‘surface 
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‘dutilisation’ of M. Rutt, and we should expect to find on the 
opposite edges of the flint the ‘surface d’accommodation,’ as in 
fact we do. 

A singular feature, which seems difficult to reconcile with its use 
as an implement, is the restriction of the flaking on one edge to the 
weathered crust. 

The origin of the flaking is discussed, and the author, while 
admitting that the fashioning of the flint is not inconsistent with 
intelligent design, concludes that the evidence is not sufficient to 
establish this beyond dispute. It is eminently a case of,‘ not proven.’ 

February 6th.—Dr. Alfred Harker, F.R.S., President, 
in the Chair. 

The following communication was read :— 

‘Some Considerations arising from the Frequency of Earth- 
quakes.’ By Richard Dixon Oldham, F.R.S., F.G.S. 

The publication* of an abstract of twenty years’ record of earth- 
quakes in Italy gives an opportunity for studying the effect of the 
gravitational attraction-of the sun; the period is so nearly coin- 
cident with the lunar cycles of 19 and 18°6 years that the effect of 
the moon may be regarded as eliminated, the record is of excep- 
tional continuity and completeness, and the number of observations 
is large enough to allow of the extraction of groups sufficiently 
numerous to give good averages. 

The distribution of the stresses is dealt with in text-books; there 
is a Maximum upward stress, in diminution of the earth’s attraction 
at its surface, at the two points where the sun is in the zenith or 
nadir, and a maximum downward stress along the great circle 
where it is on the horizon; but as, for the purpose of this investi- 
gation, a decrease of downward pressure is equivalent to an increase 
of upward, I shall take the line along which the downward stress is 
greatest as the zero-line, and express the amount of stress at any 
other time or place as a fraction of the difference between the net 
force of gravity along this line and at the point where the sun is 
in the zenith. The fraction, at any given time and place, depends 
solely on the zenith distance of the sun, which is continually varying 
with the revolution of the earth. At the equinox, when the sun is 
on the equator, the curve of variation between 6 a.m. and 6 P.M. 
is the same as in the other half of the day; at any other part of 
the year it is not symmetrical in the two halves of the day, but 
is the same during the day in the summer half of the year as during 
the night in the corresponding part of the winter half, when the 
declination of the sun is equal in amount, though opposite in 
direction. 

This gave the first suggestion for grouping the records. The 
year was divided into two halves by the equinoxes, and the day 
into two halves at six hours before or after noon, called day and 
night for convenience, irrespective of the time of sunrise or sunset. 
The result is given in the tabular statement below, the frequency 

* Boll. Soc. Sismol. Italiana, vol. xx. (1916) p. 30. 
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being expressed as a ratio to the mean, of each group, taken 
as 100 :-— 

DISTRIBUTION OF SHOCKS BY DAY AND NIGHT. 

Italy, 1891-1910. Day. Night. 
sleerte liege es. oes cs ae Se oe os os 50 § Ato 
SANs og 1 Aree... 88 : 112 
WWNIOR SYGATE ro sa. 4k STREP <3 oe 84 : 116 
LUO ie: en... a SL dg 
Peecember—January ....1.. sss +--+ (¢ 2. 123 

Japan, 1885-1892. Day. Night. 
Siren ese CY |e eee). 102; > ~_ 98 
(CUS (ee) eres.” 5. ee Di er 403 
VCE eld (i nce... 93e LOF 

Assam Aftershocks. 
SMAIEMBE TRIE 7. 255.5. ss eae os 0s LIB a 87 
VAS 2 Ge er 10hiee 293 
Misuse Halt. | Boo. 3. eee... TON Oo 

From this statement it will be seen that the mean ratio of day 
to night shocks over the whole period is represented by the figures 
84:116; for the summer half of the year they become 88 : 112, 
and for the winter half 81: 119, showing that during the day the 
shocks are somewhat less frequent than the average in summer 
and somewhat more frequent in the winter, with an opposite varia- 
tion during the night. Taken by itself this difference might be 
merely fortuitous, and further confirmation is required: this can 
be got in two ways. In the first place by comparison with other 
records, two of which, Milne’s catalogue of Japanese earthquakes 
from 1885 to 1892*, and the aftershocks of the Indian earthquake 
of 1897+ stood ready for use. They show a variation identical in 
character with that of the Italian record. A second test depends 
on the argument that, if the variation is in any way seasonal, the 
divergence should be increased at the height of each season; the 
figures for the months of January-February and of June—July 
were taken out, as representing midwinter and midsummer respec- 
tively, and found to show a divergence in each case greater than, 
and in the same direction as, the respective half-years. 

Taken by itself the variation, as between any pair of ratios, is as 
likely to be in one direction as in the other, but the odds against 
a complete concordance throughout the whole series is 31 to 1; 
there is, therefore, a strong presumption that the variations are 
not fortuitous, but due to some common cause which tends to 
increase the frequency during the day and decrease it during the 
night in summer, with the opposite in winter. 

The variation in the frequency of earthquakes may, or may not, 
be connected with the variation in the gravitational stresses due to 
the sun ; but there is another line of investigation by which a con- 
nexion may be better traced, dependent on the fact that the 
prevailing effect of the vertical stress is in the direction of 
lightening the load, and the prevailing direction of the horizontal 
stress between east and south, during the six hours before the 
meridian passages at noon and midnight, and of an increase in the 

* Seismol. Journ. Japan, vol. iv. (1895). 
+t Mem, Geol, Surv. India, vol. xxxv. pt. 2 (1903). 
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downward pressure and a horizontal stress between south and west 
during the next six hours. The record was accordingly grouped by 
the successive two-hour periods from XIT to XII o’clock, and the 
mean amount of variation in the stresses was calculated for the 
same periods. The result is set forth in the appended tabular 
statement :— 

DISTRIBUTION OF STRESSES AND SHOCKS IN Two-HouR PzRIoDs, 
BEFORE AND AFTER MIDDAY AND MIDNIGHT. 

MET Gap oretan cis 5 ke eae XE II Til Vi. VRE x XII 

] 

STRESSES. 

Mean range of stress in each 
two-hours, in Italy. 

Wotal etresit s.) a6. .euedee —10 | —-27 | —-23 | 4-23 | 487 | 20 
Horizontal component .. ... +°07 |---11 | —°20 | +:20 | +:11 | —"OF 
Vertical component ......... —"14 | —-27 | —13 | 4°18) 22 

SHOCKS. 

Ratio of actual to mean fre- 

quency of each two-hour | 

) 
| 

period. | 
TrAny, £69h-Lol0 cee £06 | eee ot 90 | 

Japan, Aftershocks of Mino- | . 
Owari, Oct. 28th, 1891 ...} 1°01 "95 96 ‘97 | 108 | ime 

JAPAN, 1885-1890............ 00 |e ‘89 | ‘98 |) 106 “99 

| 

From these figures it is seen that, while there is no apparent 
relation between the frequency and the total, or the horizontal, 
stress, there is a close one with the variation of the vertical stress ; 
the greatest number of earthquakes being in the period in which 
there is the greatest increase of downward pressure; as the rate of 
increase diminishes the number of shocks is less, suffering a further 
diminution as the pressure begins to decrease, and reaching its mini- 
mum in the period where the decrease in pressure is greatest, 
increasing again in the same way to the maximum. 

An attempt to apply the same method to the Japan record gave 
a result which was, at first sight, contradictory and also inconsistent 
in itself, for it gave an absolute maximum at the time when the 
Italian gave a minimum, with another maximum, almost as great, 
in coincidence with the Italian; but, in any comparison, it is neces- 
sary to allow for the contrast in the character of the two records. 
The Italian does not contain more than two, or at most three, great 
earthquakes of the type that gives rise to long-distance records 
(bathyseisms), and the aftershocks account for no more than a 
quarter of the whole record; the Japanese record, on the other 
hand, is dominated by bathyseisms and aftershocks. Not only 
does the region give origin to an unusually large number of tele- 
seisms, or bathyseisms, but aftershocks form fully three-quarters of 
the record, and nearly a half consists of aftershocks of the Mino- 
Owari earthquake of October 28th, 1891. Taking these separately, 



On the Frequency of Earthquakes. 507 

we get a curve of frequency similar to the Italian, except that the 
maximum and minimum are reversed, the greatest number of 
shocks corresponding to the period when the load is being lightened 
most rapidly, indicating that these shocks are due to a general 
movement of elevation rather than depression, a conclusion in accord 
with field observations of other great earthquakes. In addition, 
the shocks which occurred during the period 1885-90 were taken 
out, as representing a more normal activity, though still one in 
which aftershocks form fully half of the record, and the curve 
was found, as might have been expected from the character of the 
record, to combine the features of the Mino-Owari aftershocks with 
those of the Italian curve of frequency, of earthquakes prevailingly 
of the so-called ‘ tectonic ’ type. 

These results are of twofold geological interest. In the first 
place they confirm the conclusion drawn from a study of the Cali- 
fornian earthquake of 1906*, that the great earthquakes differ from 
the ordinary, not merely in degree but in kind. They indicate that 
in the latter the main stress is compressive, probably due to settle- 
ment, and in the former to elevation or tension, a conclusion which 
is in accord with the fact that, in those cases in which it has been 
possible to compare accurate measurements made before and after 
the earthquake, the comparison has indicated an expansion, eleva- 
tion, or both, of the area affected by the disturbance. 

The second point of interest is that the figures give a means of 
estimating the rate of growth of the strain which produces earth- 
quakes. If we accept the hypothesis that earthquakes, in the limited 
sense of their orchesis, are due to the relief by fracture of a growing 
strain when this has reached the breaking point, it can be easily 
shown that a variable strain, acting in alternate periods in increase 
or decrease of the general growth of strain, while leaving the average 
rate unaltered, will give rise to a corresponding variation in the 
frequency of shocks in each period; and, besides that, there is a 
simple relation between the magnitudes of the two stresses, to 
which the strains are due, and the variations from the mean fre- 
quency of earthquakes. A calculation on these lines shows that 
the growth of strain, for Italy, is such that, accepting the pub- 
lished estimates that an area of the earth’s crust of the magnitude 
of Italy would crush under its own weight if left unsupported to 
the extent of 1/400 of the force of gravity, the breaking strain 
would be reached in about 33 years, starting from a condition of 
no strain. The aftershocks of the Mino-Owari earthquake give a 
little less than half this figure, which is again reduced to from five 
to six months if account is taken of the difference between the 
resistance of rock to tension and to compression. These figures are 
given for what they are worth; at the least, they are of interest as 
being the first authentic estimate which it has been possible to 
make of the time required to prepare for, and, thence, of the rate 
of growth of the particular tectonic process involved in the 
production of earthquakes. 

* Q. J. G. S, vol. Ixv. (1909) p. 14. 
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LXIII. Intelligence and Miscellaneous Articles. 

On Relativity and Electrodynamics. 

To the Editors of the Philosophical Magazine. 

Dear Sirs, 27th April, 1918. 

S the result of some correspondence, Dr. G. A. Schott has 
detected an error of sign in my calculation of the trans- 

verse inertia of a ‘“‘ contracted conducting electron.” In con- 
sequence of this the following numerical correction should be 
inserted in my recent paper on “ Relativity and Electrodynamics.” 

For a contracted conducting electron 

m,=m, (i- .) 

in place of 41 v? 
p Mm, =M, (1+ 75) 

leading t 2 eading to pee ie _ 

in pl f if in place o h—k,=— = 

There is a corresponding correction for a Bucherer electron, 
viz. 

21 2 
N,=M, (1 a 50 =.) 

7 ‘ 2 in place of em, (1+ ae 

giving ee ae 

in place of , ae it 
PLS 2°~ 90)" 

I am, 

Yours faithfully, 

Grorce W. WALKER. 
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413, 
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Coupled circuits and mechanical 
analogies, on, 140, 203. 
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Cyclones, on rain, wind, and, 221. 
Cylinders, on the diffraction of light 

by, 79. 
Dee (R. M.) on rain, wind, and 

cyclones, 221. 
Diffraction, on the asymmetry of the 

illumination - curves in oblique, 
112. 

Distribution law, on Wien’s, 190, 
410. 

Eddington (Prof. A. 8.) on electrical 
theories of matter and their astro- 
nomical consequences with special 
reference to the principle of rela- 
tivity, 481. 

Edgeworth (Prof. F. Y.) on the law 
of error, 422. 

Electrical circuits, on coupled, and 
mechanical analogies, 140, 203. 

currents, on the maximum 
force between two coaxial circular, 
13. 

discharge, on the pressure 
effect in, 261. 

potential of two conducting 
spheres, on the coefficients of, 
286. 

theory of matter, astronomical 
and gravitational bearings of the, 
141, 481. 

Electrified spherical conductors, on 
the problem of two and that of 
three, 388. 

Electrodynamics, on relativity and, 
327, 508. 

Electrolytes, on the effect of inter- 
ionic force in, 214, 352. 

Error, on the law of, 422. 
Evaporation, on some problems of, 

270, 350, 481. 
Films, on the lubricating and other 

properties of thin oily, 157 
Flames, note on Fox Talbot's method 

of obtaining coloured, 382. 
Focometry, on the nodal - slide 

method of, 21. 
Focus, on light distribution round 

the, of a lens, 380. 
Gas reactions, on velocity-curves 

for, 281, 485. 
Gaseous diffusion, on, 270, 350, 431. 
Geological Society, proceedings of 

the, 185, 292, 502. 
Graphical methods of correcting 

telescopic objectives, on, 471. 
Gravitational bearings of the elec- 

trical theory of matter, on the, 141. 

Gray (Prof. A.) on the hodographic 
treatment and the energetics of 
a kia planetary motion, 
181. 

Greenhill (Sir G.) on coupled circuits 
and mechanical analogies, 140. 

Gwyther (R. F.) on a theory of 
material stresses, 490. 

Heat, on the value of the mechani- 
cal equivalent of, 27. 

Hemsalech (G. A.) on Fox Talbot's 
method of obtaining coloured 
flames, 382. 

Hitchcock (Dr. F. L.) on the operator 
V in combination with homo- 
ceneous functions, 461. 

Hodographic treatment of undis- 
turbed planetary motion, on the, 
181. 

Holmes (A.) on the Pre-Cambrian 
rocks of Mozambique, 135. 

Howe (Prof. G. W. O.) on the rela- 
tion of the audibility factor of a 
shunted telephone to the antenna 
current, 131, 487. 

Dluminatiou-curves in oblique dif- 
fraction, on the asymmetry of 
the, 112. . 

Interferometers for the study of 
optical systems, on, 49. 

Interionic force, on the effect of, 
in electrolytes, 214, 352. 

Todine, on the resonance spectra of, 
236. 

Ionization pressure in corona dis- 
charge, on the, 261. 

Ives (Dr. H. E.) on the resolution 
of mixed colours by differential 
visual diffusivity, 413. 

Jeffreys (Dr. H.) on some problems 
of evaporation, 270; on Wien’s 
distribution law, 410; on trans- 
piration from leat-stomata, 431. 

Kimura (M.) on the series law of 
resonance spectra, 252. 

Laplacean operator, note on the, 461. 
Larmor (Sir J.) on transpiration 

through leaf-stomata, 350, 433. 
Leaf - stomata, on _ transpiration 

through, 275, 350, 481. 
Leathem (Dr. J. G.) on the two- 

dimensional motion of infinite 
liquid produced by the translation 
or rotation of a contained solid, 
119. 

Lens, on light distribution round 
the focus of a, 30. 
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Light, on the distribution of, round 
the focus of a lens, 30; on the 
diffraction of, by cylinders of large 
radius, 79; on the constancy of 
velocity of, reflected from a moy- 
ing mirror, 163; on the scattering 
of, by a cloud of small particles, 
3738. 

Liquid, on the two-dimensional 
motion of infinite, 119, 500. 

Lodge (Sir O.) on the astronomical 
and gravitational bearings of the 
electrical theory of matter, 141. 

Lubrication, notes on the theory of, 
Faye 

Majorana (Prof. Q.) on an experi- 
mental demonstration of the con- 
stancy of velocity of light reflected 
from a moving mirror, 163. 

Mechanical equivalent of heat, on 
the value ot the, 27. 

Mercury, on the motion of the peri- 
helion of, 141, 327, 481. 

Milner (Dr. S. R.) on the effect of 
interionic force in electrolytes, 
214, 352. 

Mitra (S. K.) on the asymmetry of 
the illumination-curves in oblique 
diffraction, 112. 

Molecular frequency and molecular 
number, on, 338, 404, 445, 

Morrison (J.) on the Shap minor in- 
trusions, 292. 

Motion, on the two-dimensional, of 
an infinite liquid produced by the 
motion of a contained solid, 119, 
500; on the, of a heavy particle 
on a new type of rough surface, 
496. 

Moving mirror, on the constancy of 
velocity of light reflected from a, 
163. 

Mute, on the action of the, in bowed 
stringed instruments, 493. 

Nabla, on the operator, in combina- 
tion with homogeneous functions, 
461. 

Nagaoka (Prof. H.) on the calcula- 
tion of the maximum force be- 
tween two coaxial circular cur- 
rents, 13. 

Nodal-slide method of focometry, 
on the, 21. 

Objectives, on graphical methods of 
correcting, 471. 

Oil films, on the lubricating and 
other properties of, 1, 157. 

dll 

Oldham (R. D.) on the frequency of 
earthquakes, 504. 

Oswald (Dr. F.) on the Nimrud 
- volcano, 138. 
Pendulums, on the vibrations of 

coupled, 62. 
Perihelia of certain planets, on the 

motion of the, 141, 327, 481. 
Planetary motion, on the hodo- 

graphic treatment and the ener- 
getics of undisturbed, 181. 

van der Pol (B., jr.) on the relation 
of the audibility factor of a 
shunted telephone to the antenna 
current, 154. 

Positive rays, on a new secondary 
radiation of, 59. ; 

Potential of conducting spheres, on 
the coefficients of, 286, 388. 

Potential problems connected with 
the circular arc, on some, 396. 

Radiation, on a new secondary, of 
positive rays, 59 ; on the visibility 
of, 174. 

Radicactivity of Archean rocks, on 
the, 206. 

Radio-telegraphy, on the audibility 
factor in, 1381. 

Rain, wind, and cyclones, on, 221. 
Raman (Prot. C. V.) on the wolf-note 

in bowed string instruments, 493. 
Rayleigh (Lord) on the theory of 

lubrication, 1; on the lubricating 
and other properties of thin oily 
films, 157; on the scattering of 
light by a cloud of small particles, 
373. 

Reactions, on general curves for the 
velocity of complete homogeneous, 
281, 435. 

Reeves (P.) on the visibility of 
radiation, 174. 

Relativity, on the second postulate 
of the theory of, 163; on, and 
electrodynamics, 327, 508. 

Resonance spectra of iodine, on the, 
256 ; on the series law of, 252. 

Rocks, on the radioactivity of 
Archean, 206. 

Searle {Miss N.S.) on the pressure 
effect in corona discharge, 26]. 

Silberstein (Dr. L.) on light distri- 
bution round the focus of a lens, 

Smeeth (Dr. W. F.) on the radio- 
activity of Archean rocks from 
the Mysore State, 206. 
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Sollas (Prof. W. J.) on a flaked flint 
from the Red Crag, 503. 

Sound, on the, produced by the 
impact of two spheres, 97. 

Spectra, on the resonance, of iodine, 
236; on the series law of reson- 
ance, 252; on X-ray, and the 
constitution of the atom, 298. 

Spheres, on the coefficients of poten- 
tial of conducting, 286, 388. 

Stamp (L. D.) on the Silurian rocks 
of Clun Forest, 502. 

Stresses, on a doctrine of material, 
490. 

Surface, on a new type of rough, 496. 
Sutton (T. C.) on the value of the 

mechanical equivalent of heat, 27. 
Talbot’s method of obtaining co- 

loured flames, note on, 382. 
Telephone, on the audibility factor 

of a shunted, 131, 487. 
Telescopic objectives, on graphical 

methods of correcting, 471. 
Todd (Dr. G. W.) on general curves 

for the velocity of complete homo- 
geneous reactions, 281, 435, 

Tomkins (J. A.) on the nodal-slide 
method of focometry, 21. 

Twyman (F.) on interferometers for 
the study of optical systems, 49. 

Tyndall (Dr. A. M.) on the pressure 
effect in corona discharge, 261. 

Vegard (Dr. L.) on the X-ray 
spectra and the constitution of 
the atom, 293. 

Vibrations, on variably-coupled, 62, 
203. 

Visibility of radiation, on the, 174. 
Visual diffusivity, on the resolution 

of mixed colours by differential, 
413. : 

Walker (G. W.) on relativity and 
electrodynamics, 227,508. 

Watson (Prof. G. N.) on Bessel 
functions of equal order and argu- 
ment, 364, 

Watson. (Dr. H. E.) on the radio- 
activity of Archean rocks from 
the Mysore State, 206. 

Waves, on aerial, generated by im- 
act, 97. 

Wien’s distribution law, on, 190, 
410. 

Wind, rain, and cyclones, on, 221. 
Wireless telegraphy, on the audi- 

bility factor of a shunted telephone 
in, 131, 487. 

Wolf-note, on the, in bowed string 
instruments, 4938. 

Wolfke (Dr. M.) on a new secon- 
dary radiation of positive rays, 
59. 

Wood (F. E.) on Wien’s distri- 
bution law, 190. 

Wood (Prof. R. W.) on the reson- 
auce spectra of iodine, 236: on 
the series law of resonance spectra, 
252. 

X-ray spectra and the constitution 
of the atom, on, 295. 
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