Low-Level Monitoring of Bottlenose Dolphins, Tursiops truncatus, in Tampa Bay, Florida 1988-1993

By
R. S. Wells, K. W. Urian, A. J. Read, M. K. Bassos, W. J. Carr, and M. D. Scott

U.S. Department of Commerce National Oceanographic and Atmospheric Administration
National Marine Fisheries Service
Southeast Fisheries Science Center 75 Virginia Beach Drive
Miami, FL 33149

NOAA TFCHNICAL MEMORANDUM NMFS-SEFSC-385

Low-Level Monitoring of Bottlenose Dolphins, Tursiops truncatus, in Tampa Bay, Florida
 1988-1993

By
R. S. Wells, K. W. Urian, A. J. Read,
M. K. Bassos, W. J. Carr, and M. D. Scott

U.S. DEPARTMENT OF COMMERCE
Mickey Cantor, Secretary
NATIONAL OCEANIC AND ATMOSPIIERIC ADMINISTRATION
D. James Baker, Administrator

ATIONAL MARINE FISHERIES SERVICE

olland A. Schmitten. Assistant Administrator for Fisheries
me 1996
his Teehnical Memorandum series is used for doeumentation and timely communication of reliminary results, interim reports, or similar special-purpose information. Although the ıemoranda are not subject to complete formal review, editorial control, or detailed editing, they re expected to refleet sound professional work.

NOTICE

The National Marine Fisheries Service (NMFS) does not approve, recommend, or endorse any proprietary product or material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends, or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose or intent to cause directly or indirectly the advertised product to be used or purchased because of NMFS publication.

This report should be cited as follows:
Wells, R. S., K. W. Urian, A. J. Read, M. K. Bassos, W. J. Carr, and M. D. Scott. 1996. Lowlevel monitoring of bottlenose dolphins, Tursiops truncatus, in Tampa Bay, Florida, 1988-1993. NOAA Tech. Mem. NMFS-SEFSC-385, 25 pp. +6 Tables, 8 Figures, and 4 Appendices.

Authors’ affiliations: (RSW, KWU, MKB,WJC) Chicago Zoological Society/Dolphin Biology Research Institute , c/o Mote Marine Laboratory, 1600 Thompson Parkway, Sarasota, FL 34236; (AJR) Duke University Marine Lab, 123 Duke Marine Lab Road, Beaufort, NC 28516: (MDS). InterAmerican Tropical Tuna Commission, c/o Scripps Inst. of Oceanography, La Jolla, CA 92037.

Copies may be obtained by writing the Southeast Fisheries Science Center, the primary author or:

National Technical lnformation Service
5258 Port Royal Road
Springfield, VA 22161
Telephone: (703) 487-4650
FAX: (703) 321-8547
Rush Orders: (800) 336-4300

This is Southeast Fisheries Science Center Contribution MIA-94/95-43.

Table of Contents

Introduction 1
Methods
Study Area 2
Survey Schedule 3
Field Techniques and Logistics 3
Photo-Identification Catalog 4
Analysis of Photographs
5
5
Data Processing 6
Estimation Procedures
Abundance 7
Interannual Trends and Power Analyses 9
Natality 10
Mortality 10
Immigration, Emigration, Transience 10
Results
Survey Effort
11
11
Photo-ID Catalog Development 12
Abundance Estimates and Trends 13
Power Analysis 13
Natality 14
Mortality 14
Immigration
14
14
Emigration
15
15 15
Transience
Transience
Discussion
Photo-Identification Catalog
15
15
Abundance Estimates and Trends 16
Natality 17
Mortality 17
Immigration, Emigration, Transience 18
Summary of Population Rate Parameters 18
Comparison of Abundance Estimation Methods 19
Power Analyses
20
20
Survey Design
20
20
Recommendations 21
Acknowledgments
21
21
Literature Cited 22
List of Tables
List of Tables 24
List of Figures 24
List of Appendices 25

This page intentionally left blank

The National Marine Fisheries Service (NMFS) is responsible for establishing quotas for take of bottlenose dolphins (Tursiops truncatus) and for monitoring the populations of dolphins in the southeastern United States waters. Quotas have been based on a rule-of-thumb developed by the Marine Mammal Commission in which the annual quota has been set at 2% of the estimated dolphin abundance for a geographical location. Most of the live-capture fishery for bottlenose dolphins has occurred in the coastal Gulf of Mexico and the Florida east-coast waters. The NMFS completed sampling surveys in these areas for abundance estimation, and recognized a need for low-level monitoring of bottlenose dolphin stocks in southeastern US waters, designed to detect catastrophic changes in the stocks. The main goals of the monitoring were detection of large-scale changes in dolphin abundance and establishment of archival databases for long-term trend detection. Low-level monitoring could provide a short-term means of detecting large-scale changes in population abundance and give decision makers the information necessary to determine if modification of management plans is necessary. To these ends, in 1987 the NMFS began funding several local research efforts in the southeastern US with the following stated objectives:

1) Detection of large-scale (halving or doubling) interannual changes in relative abundance and/or production of the bottlenose dolphin stocks in the southeast US. The population rate parameters of relevance include: a reliable index or estimate of local relative abundance, natality, mortality, emigration, and immigration.
2) Establishment of archival databases for long-term trend detection in localized geographical regions around the southeast US.

One of the regions selected by NMFS for low-level monitoring was Tampa Bay, Florida. Prior to the regional aerial surveys conducted by NMFS during 1983-1986 (Scott et al. 1989), no data were available to support any level of take from Tampa Bay (Scott 1990). Several earlier aerial survey efforts included portions of Tampa Bay and/or waters immediately offshore (Leatherwood and Show 1980; Odell and Reynolds 1980; Thompson 1981). Wells (1986) and Weigle (1990) conducted photographic identification studies in parts of the bay, but there had been no complete systematic estimation of the numbers of dolphins using Tampa Bay. NMFS regional aerial surveys during June-August 1985 (= summer), September - October 1985 (= autumn), and January - February 1986 ($=$ winter) provided the first available estimates of abundance for Tampa Bay proper (Scott et al. 1989, Table 26):

Season	Abundance Estimate	Lower $95 \% \mathrm{CL}$	Upper Sp
Summer	198	78	318
Autumn	248	148	$3+8$
Winter	217	130	304

The approach selected for the low-level monitoring of Tampa Bay dolphins was photographic identification (photo-ID) surveys from small boats (see reviews by Würsig and Jefferson 1990; Scott et al. 1990a). This technique has proven effective in long-term studies of population-rate parameters in Sarasota Bay, immediately to the south (Wells and Scott 1990). The large numbers of distinctive dolphins photographed by Wells (1986) during surveys initiated in 1975, and later by Weigle
(1990) indicated that Tampa Bay would be an excellent case study for photo-ID surveys.

Photo-ID offers several advantages over aerial surveys for measuring certain population rate parameters. The greatest advantage of using photo-ID methods is the accumulation of information on the occurrence, distribution, and ranging patterns of specific individuals. The ability to recognize individuals over time provides opportunities to estimate abundance using mark-resight methods, to evaluate possible cases of immigration, emigration, or transience, to monitor individual female reproductive case histories, to determine the origins of carcasses for mortality estimates, and to examine community structure (Wells 1986).

This report summarizes the results of six years of NMFS-sponsored bottlenose dolphin research in Tampa Bay, conducted by Dolphin Biology Research Institute (DBRI) and the Chicago Zoological Society (CZS). Annual photo-ID surveys were conducted during September and October of each year from 1988 through 1993. Photographs and sighting data were collected to examine trends in abundance, natality, mortality, immigration, and emigration.

Methods

Study Area

The Tampa Bay study area includes the enclosed bay waters eastward of the chain of barrier islands at the mouth of Tampa Bay, as well as the shallow Gulf coastal waters and passes immediately surrounding the barrier islands (Figure 1). The region is composed of a variety of habitats and conditions, including highly productive seagrass meadows and mangrove shorelines, deep passes between barrier islands, shallow, sandy Gulf waters, dredged channels, open bays, as well as highly altered and polluted regions. This study area was selected in part because of its proximity to the long-term Sarasota study site (Scott et al. 1990b; Wells 1991). The location facilitated logistics for the field work, because we were able to use an existing field station. Preliminary studies indicated that a number of distinctively marked dolphins inhabited the region, and at least some were present over a number of years (Wells 1986). The ongoing photo-ID research being conducted in the Sarasota waters immediately to the south facilitated examination of immigration and emigration, at least between adjacent regions.

We have divided the $852-\mathrm{km}^{2}$ study area into seven regions for assessment of survey effort (Figure 1). Regions were identified by physiographic and effort criteria. Because of the distances of some parts of the study area from our field stations, it was not possible to survey all of Tampa Bay with uniform effort. The segmentation was done in order to be able to quantify effort in different parts of the study area in an attempt to make the within-region effort comparable across years.

The southernmost sector, Region 1, includes northern Anna Maria Sound, the Manatee River, and Passage Key Inlet. Water depths range from less than one m nearshore, to 12 m in the pass, but generally are $2-4 \mathrm{~m}$. This overlaps the northernmost portion of the long-term Sarasota study area. Immediately to the north, Region 2 includes South Tampa Bay, Southwest Channel, and Terra Ceia Bay. Depths range up to 8 m in the channel, but generally are 3-6 m. Region 3 , North Tampa Bay, extends eastward from the Sunshine Skyway Bridge to just west of Egmont Key, and includes the main shipping channel into Tampa Bay. Depths range up to 30
m in the channel, but generally are 6-10 m. Region 4, Boca Ciega Bay, includes a complex of barrier islands, shallow seagrass meadows, and channels. Water depths up to 7 m may be found in the channels, but the waters are typically much more shallow. Region 5, Tampa Bay northeast of the Sunshine Skyway Bridge, is the largest region, including the mostly undeveloped southeastern shoreline of Tampa Bay and associated mangrove/seagrass shallows, the main shipping channel, and to the northwest the highly developed St. Petersburg shoreline. The ship channel is dredged to about 14 m , but most of the region is $2-8 \mathrm{~m}$ in depth. Old Tampa Bay, Region 6, is an open bay region crossed by three bridge/causeway systems. In the south, channels reach 8 m in depth, but most of the waters are less than 4 m deep. Region 7, Hillsborough Bay, is the most extensively altered portion of Tampa Bay. To the east, heavy industry has impacted much of the shoreline, and dredge spoils from the shipping channel have filled significant portions of the bay. To the north, dredge and fill activities associated with shipping and with the development of Tampa have defined the shoreline. Influx of water from the polluted Hillsborough and Alafia Rivers, as well as from occasional industrial waste spills, have adversely impacted the water quality in this region. Water depths outside of the channel average less than 5 m . Gulf and Sarasota Bay waters adjacent to the Tampa Bay Regions 1-7 were also surveyed to address the questions of immigration and emigration.

Survey Schedule

A six-week window during September-October was selected to provide ample opportunity to fully survey each region of the study area at least three to five times. Surveys were initiated in early September and were continued into October for as long as was logistically feasible to complete the desired level of coverage. This timing was selected for several reasons. Late summer-early autumn historically brought a period of calm weather, providing a window of favorable survey conditions before the cold fronts begin to penetrate southward into central Florida. The timing was also considered to be advantageous for natality estimates. In adjacent waters to the south, most of the year's calves were born by September-October (Wells et al. 1987). Based on an assumption of similar patterns of reproductive seasonality in Tampa Bay and Sarasota, it seemed that a late summer-early autumn survey would provide the best estimate of numbers of calves born during that year (young-of-theyear). Previous surveys conducted during this period found a peak in abundance (Scott et al. 1989; Weigle 1990). The timing of our surveys thus allowed us to take advantage of high dolphin densities, and to be able to compare our findings with those from previous surveys.

Additional information on the occurrence of identifiable dolphins in Tampa Bay was provided by surveys in support of a dolphin reintroduction study (Bassos 1993). Data from outside of the NMFS survey period each year were not included in quantitative analyses for this report, but provided perspective.

Field Techniques and Logistics

Surveys were conducted from $6-7 \mathrm{~m}$ outboard-powered boats. Two, three, or four boats were used during each survey. Each boat was equipped with a VHF radio, depth sounder, compass, thermometer, and eventually a hand-held LORAN. Survey crews ranged in size from two to six people per boat. Survey routes were selected each day based on predicted weather conditions and the status of survey coverage. While searching for dolphin schools, the boats were operated at the slowest possible speed that would still allow the vessel to plane, typically 33 to $46 \mathrm{~km} / \mathrm{hr}$, depending
on the vessel. Once schools were encountered, the boats were slowed to match the speed of the dolphins and moved parallel to the schools to obtain photographs.

Every dolphin school encountered along a survey route was approached for photographs. We remained with each dolphin school until we were satisfied that we had photographed the dorsal fin of each member of the school, or until conditions precluded complete coverage of the group. A suite of data including date, time, location, activities, headings, and environmental conditions were recorded for each sighting. Numbers of dolphins were recorded in real time as minimum, maximum, and best point estimates of numbers of total dolphins, calves (dolphins \leq about $80-85 \%$ adult size, typically swimming alongside an adult), and young-of-the-year (as a subset of the number of calves). A young-of-the-year is defined as a calf in the first calendar year of life and is recognized by one or more of the following features: (1) small size; 50\%-75\% of the presumed mother's length, (2) darker coloration than the presumed mother, (3) non-rigid dorsal fin, (4) characteristic head-out surfacing pattern, (5) presence of neonatal vertical stripes, (6) consistently surfacing in "calf position". The specific parameters recorded are defined, and a sample data sheet is presented, in the Appendices 1 and 2.

We used Nikon camera systems (FE, F3, 2020, 8008) with zoom-telephoto lenses, motor drives, and data backs to photograph each school. Over the course of the project, longer lenses (up to 300 mm) and auto-focus cameras and lenses were incorporated, resulting in improved photo quality, and decreasing the time required to obtain satisfactory photographic coverage of each group. Kodachrome 64 color slide film was used throughout the surveys. The fine grain of this film provided excellent clarity for resolution of fin features. Color film allowed evaluation of the age of some wounds and fin features.

During the first four years, the survey team was based on Anna Maria Island, in Region 1. This field station was 72 km from the farthest extent of the study area in Region 6, and 68 km from the most distant point in Region 7. The long distance and the large areas of exposed waters in Tampa Bay meant that the boats often faced abrupt changes in weather conditions and sea states during any given day, at times preventing us from reaching or adequately covering some regions. To facilitate access to the more distant regions, a second field station was established at Ruskin, in Region 5 along the southeastern shore of Tampa Bay, during 1992 and 1993.

Photo-Identification Catalog

The patterns of nicks, notches, and scars on the dorsal fin and visible body scars have been used successfully in numerous studies of bottlenose dolphins to identify individuals over time (Würsig and Jefferson 1990, Scott et al. 1990a). Our photographic catalog is based on exclusive categories that classify individuals with similar features together. Each of the 14 categories of the catalog is based on: (1) the division of the trailing edge of the dorsal fin into thirds and distinctive features located in each third; (2) distinctive features on the leading edge of the fin; (3) distinctive features on the anterior portion of the peduncle and (4) evidence of permanent scarring or pigmentation patterns on the fin or body.

The primary photo-ID catalog is composed of the most diagnostic and best quality original slides of each animal, filed alphabetically by each individual dolphin's unique four-place code. Prints are made from the original slides and filed in a working catalog used for initial searching for matches. A duplicate catalog made from color photocopies of the color prints is maintained off-site as a backup copy.

We maintain three photo-ID catalogs that represent our different study areas: the Sarasota Bay region, Charlotte Harbor, and Tampa Bay and the inshore waters of the Gulf of Mexico. The catalog used for these analyses is a subset of a larger catalog incorporating dolphins sighted outside of the limited Tampa Bay region considered for this report. All catalogs are ultimately searched before an addition is made to the appropriate catalog.

The photo-ID catalog included 150 dolphins identified from the Tampa Bay study area during 1975 through 1987 when the census was initiated in 1988. In 1993 we collaborated with Eckerd College (J. Reynolds, pers. comm.) in examination of a portion of the photo-ID catalog established by B. Weigle (Weigle 1990). We made no additions to our catalog, but found 94 matches to dolphins in our existing Tampa and Sarasota catalogs. As of September 1994, there were 2,045 dolphins (1,749 distinctive non-calves) in the DBRI photo-ID catalogs for all study areas, including Tampa Bay.

Analysis of Photographs

Photographic slides are labeled with information from the corresponding sighting: date, film roll number, sighting number, and location code. Labeled slides are filed chronologically in archival-quality storage pages in binders. Comments from sighting data sheets are read for clues and additional information to assist in identification of animals (for example, distinctive features noted in the field, or features distinguishing between two similar animals). Each slide is examined using a 15 -power lupe eyepiece to find all distinctive dolphins. Slides are sorted by each identifiable individual within a sighting and the best-quality slides of each animal showing the distinctive features of the fin are selected to compare with the photo-ID catalog.

The most prominent feature of the fin is identified and the category that best describes that feature is searched for a potential match. Matches are often made by comparing the slide directly to the print in the catalog. However, with a close match or to distinguish between fins with similar features, the original slide is used for comparison. To verify a match between similar fins, both fins are projected using a slide projector with a zoom lens and traced to line up distinguishing features. To confirm long-term or difficult matches, three experienced photo-ID researchers examine the potential matches and must vote unanimously on the final match. When a match is made with a fin in our catalog, all slides are labeled with the dolphin's unique 4 -place code and its name, and the dolphin is scored as a positive identification.

When a match is not found in the first category searched, all other possible categories are searched to account for dolphins that have multiple identifying characteristics. The entire catalog is searched before a new animal is added to the catalog. If we are confident the fin is reliably recognizable, the dolphin is given a name that describes the most obvious feature of the fin and an original 4-place code that abbreviates the name is selected. To be considered a catalog-quality image, a new entry into the catalog must meet the following criteria: the entire fin, from the anterior insertion to the posterior insertion of the dorsal fin and the trailing edge of the fin must be visible, the image must be in focus and perpendicular to the photographer, and, when available, both right and left side images of the fin are selected for the catalog. The best-quality slide is labeled with the name, code and catalog category that describes the most prominent feature of the fin. A print is made and added to the print catalog and the original slide is filed alphabetically in the slide catalog.

An animal is occasionally "visually confirmed" in the field when it is recognized because it was familiar to an observer and it was counted as a positive identification for photo-analysis even though it may not have been documented photographically.

For photo-analysis, a calf or young-of-the-year is considered positively identifiable only if it can be recognized because of distinctive features that make it identifiable independent of its mother. A small animal that appears in all slides next to a larger animal in the "calf position," (i.e., alongside and slightly behind the presumed mother), is assumed to be a calf. If the calf is with an identifiable mother, but the calf is not distinctive, it is not scored as a positive identification.

In some cases it is possible to identify animals in a sighting that are not sufficiently distinctive to make long-term matches, or appear distinctive but are unidentifiable because the entire fin is not visible, photo coverage is incomplete, or photo quality is substandard. Each of these dolphins is classified as an "other..." with some reference to the most distinguishing feature. Although it is not considered a positive identification, an "other..." dolphin is counted toward revision of the group-size estimates.

Fins that lack distinctive markings are considered "clean" but may also be used in calculating or adjusting group size estimates. In some cases, "clean" fins may be distinguished from one another within a sighting based on differences in fin shape. This minimum count of "clean" fins is added to the positive identifications and "other" fins to calculate the minimum, maximum and best group size estimates. Thus, the minimum estimate is a minimum count of distinguishable fins within a sighting.

A grading system that integrates recognizability, photographic quality, and coverage is used to identify the quality of a given sighting:

Grade-1 - All dolphins in the group were photographed or otherwise positively identified. All the animals in the best field estimate are accounted for as a) confirmed positive identifications; or b) as individuals that can be distinguished within a sighting from a high quality photograph but do not warrant status as a 'marked' dolphin in the catalog.
Grade-2 - There are photographs of some dolphins with distinctive fins that may be in the catalog, but because of the quality of photographs it is not possible to make appropriate comparisons with the catalog and make a match or assign an identification.
Grade-3 - Photographic coverage is known to be incomplete, because all dolphins were not approached for photographs, no photos were taken, film did not turn out, sighting conditions were poor, etc.

Data Processing

Sighting data and results from photo-analysis are entered into the Dolphin Biology Research Institute (DBRI) database. The database currently includes 8,192 sighting records from Sarasota Bay, Tampa Bay, Charlotte Harbor and the inshore Gulf waters from 1975 to 1993. We use the FoxBase+/Mac Version 1.1 relational database management system containing dBase programming language that permits us to write specific programs to manipulate the database. A Macintosh IIsi computer is used for data entry and a Macintosh Centris 650 computer is used primarily for data manipulations.

We defined our dataset based on temporal and geographic criteria. We included sightings collected during the September-October surveys of 1988, 1989, 1990, 1991, 1992, and 1993 within the designated boundaries considered to comprise Tampa Bay (Figure 1).

Group size estimates were derived from adjustments of field estimates based on photo-analysis (see Appendix 2). Minimum, maximum, and best field estimates were increased if the sum of the number of positively identified individuals plus the number of "other..." dolphins, plus the number of "clean" dolphins exceeded the original field estimates. The resulting revised minimum, revised maximum, and final best estimates were used in all calculations involving group size.

Several of the abundance and trend estimates and the power analyses were conducted at the Inter-American Tropical Tuna Commission with a VAX 3100/80 micro-computer and a 486 IBM-compatible personal computer. Linear regressions were performed using a SAS procedure (SAS, 1990). A FORTRAN program designed for use on IBM-compatible personal computers (TRENDS2; Gerrodette 1993) allowed us to conduct a power analysis to detect trends in abundance (Gerrodette 1987).

Estimation procedures: Abundance

The basic questions considered by this project were: "How many dolphins use the Tampa Bay study area during the September-October survey period, and how does this number vary from year to year?" A closed population was assumed because of the short interval during which the surveys took place. There are a variety of ways to calculate indices of abundance of bottlenose dolphins inhabiting Tampa Bay.

Method 1 (catalog-size method) simply involves tallying the number of positively identified ("marked") individuals (M) sighted within the study area during the survey period. We derived our overall catalog of marked animals for each survey year by considering all sightings during the survey period regardless of the photo grade. The inclusion of a fin in the catalog was dependent on the recognizability of a dolphin, not the overall quality of coverage of a sighting. The catalog-size method does not account for dolphins that are not distinctively marked. The size of the annual Tampa Bay catalog (M) is an integral part of each of the following three abundance estimation procedures.

Assuming comparable levels of sighting effort from year to year, the catalogsize approach may provide a reasonable index for detection of trends of abundance. To conduct a power analysis, however, a coefficient of variation ($C V=v^{1 / 2} / \mathrm{N}$) could only be calculated by considering each year (1988-1993) as a replicate sample. A regression analysis of the six annual estimates was conducted to remove the effects of a potential trend; the CV was then calculated from the residuals.

Method 2 (mark-proportion method) calculated the proportion of positively identified dolphins (m) relative to the total group size (n) in each sighting of "Grade$1^{\prime \prime}$ quality. The accuracy of the population-size estimates depends on the confidence in identifications. Therefore, only Grade-1 sightings were used to derive the proportion of marked animals. There was no relationship between group size and the proportion of dolphins identified ($\mathrm{r}^{2}=0.007$).

The proportions of marked dolphins to group size (m / n) for each sighting were averaged for each year. The total number of marked dolphins in the catalog for
a given year (M) was divided by the average proportion of marked dolphins to yield a population estimate (N). A 2000 -replicate non-parametric bootstrap resampled the m / n proportions from observed groups to produce variance estimates and percentile confidence limits.

Method 3 (mark-resight method) uses the Bailey modification of the Petersen method to estimate abundance (Bailey 1951; Seber 1982; Hammond 1986). The Bailey modification incorporates resampling with replacement in the model. Because both marked and unmarked dolphins may be resighted multiple times, this modification was deemed appropriate. The equation used was:
$\mathrm{N}=\mathrm{M}\left(\mathrm{n}_{2}+1\right) /\left(\mathrm{m}_{2}+1\right)$
with a binomial variance of
$\mathrm{v}=\mathrm{M}^{2}\left(\mathrm{n}_{2}+1\right)\left(\mathrm{n}_{2}-\mathrm{m}_{2}\right) /\left(\mathrm{m}_{2}+1\right)^{2}\left(\mathrm{~m}_{2}+2\right)$
where N is the population size, M is the total number of different marked dolphins sighted during the year, n_{2} is the total number of dolphins sighted during all complete surveys of the area, and m_{2} is the total number of marked dolphins sighted during the same surveys. A complete survey consisted of a combination of daily surveys that covered all of the regions (Figure 1) once during good or excellent sighting conditions. These combinations were developed a posteriori for the purpose of testing this estimation technique. The "complete surveys" required six to nine boat days over periods of 4 to 38 days for completion due to the large area to cover and the incidences of poor weather conditions. Only "Grade-1" sightings were used to ensure that all marked dolphins present during these sightings were identified and the group size was accurately counted. Because of the difficulties of covering such a large area, only l-3 complete surveys were conducted each year. CVs were calculated from binomial variance estimates.

Method 4 (resighting-rate method) attempts to first estimate the number of unmarked dolphins (u) in the area and then add them to the number of marked dolphins in the catalog sighted that year (M) to estimate N. By assuming that unmarked dolphins are resighted at the same rate as marked dolphins, the following equation would estimate the number of unmarked dolphins:

$$
\mathrm{u}=\left(\mathrm{M} / \mathrm{m}_{2}\right)\left(\mathrm{n}_{2}-\mathrm{m}_{2}\right)
$$

where M is the number of different marked dolphins sighted during the annual 6week survey period, n_{2} is the total number of dolphins counted from "Grade-1" sightings during the annual survey period, m_{2} is the total number of marked dolphins counted from "Grade-1" sightings during these same sightings, $\mathrm{n}_{2}-\mathrm{m}_{2}$ is the number of unmarked dolphins counted from these sightings, and N / m_{2} is the proportion of the number of marked individuals to the number of sightings of these marked individuals. The population size is then estimated by

$$
N=M+u
$$

and the $C V$ is estimated by the regression analysis described in Method 1.

Estimation procedures: Interannual Trends and Power Analysis
Linear regression analyses were conducted to determine whether a trend was present in the indices or estimates of abundance (i.e., the slope of the regression line of abundance vs. year was significantly different from zero).

We used a power analysis to calculate the number of surveys or the CVs of the estimates required to detect a trend (Gerrodette 1987). The power analysis relates five parameters: alpha (the probability of making a Type-1 error, i.e. concluding that a trend exists when in fact it does not), the power, or 1 - beta (beta is the probability of making a Type-2 error, i.e. concluding that a trend does not exist when in fact it does), n (the number of surveys), r (the rate of change in population size), and the CV of the abundance estimate. Additionally, one must choose whether a t - or z distribution and a one- or two-tailed test is appropriate, and whether r changes exponentially or linearly. It is also necessary to determine whether the CV is constant with abundance, the square root of abundance, or to the inverse of the square root of abundance. Notice that the actual estimate is not used, only the coefficient of variation of the estimate. This estimate can be the actual abundance (population size as determined from mark-resight methods or censuses) or indices of abundance (such as total number of marked animals in the photo-ID catalog for a particular year, or total number of dolphins sighted per survey or time period).

One of the objectives of this research was to determine whether the photo-ID method could detect a doubling or halving of population size with 80% certainty. Thus, alpha $=0.05$, beta $=0.20$, power $=0.80, r=1.00$ or $-0.50, \mathrm{n}=2$ annual surveys, and it is only necessary to calculate the CV required to detect a trend and compare it with the CV of the abundance estimate calculated from the data. Alternatively, one can use the CV of the estimate to solve for n, the number of surveys necessary to detect the trend. In general, the lower the CV, the fewer the number of surveys required to detect a trend (Gerrodette 1987). For mark-resight estimates, the CV decreases as the proportion of marked animals in the population increases (Wells and Scott 1990).

Traditionally in research, one is concerned mainly with alpha and Type-1 errors. This is conservative when considering whether to accept an alternate hypothesis as truth or not, but may not be conservative from a management point of view. Such a case might occur when the null hypothesis that a population is stable is accepted when, in fact, it is declining (Type-2 error). Gerrodette (1987) applied power analysis to linear regressions of abundance. Because the question posed is whether a large change can be detected from one year to the next, and because we used an annual survey period as the sampling unit, the sample size (n), equals two. A linear regression is not feasible with only two data points, so it is necessary to compare two distributions presumed to have known variances rather than use a linear regression (TRENDS2 does this automatically).

Given the initial parameters specified by the NMFS (alpha $=0.05$, power $=0.80$, $r=1.00$ or -0.50 , and $n=2$), one can calculate the CV necessary to detect trends in abundance. We used a 1 -tailed t-distribution for the TRENDS2 program, and specified that rates of increase or decrease be exponential. We made this choice because an exponential function is more typical of biological processes and because detecting a 50% linear decline is a moot exercise given that the population would be reduced to zero at the end of the second year. TRENDS2 also requires that the model of the relationship between CV and abundance be specified. As suggested by Gerrodette (1987) and a graph of our data, the "CV proportional to the square root of abundance"
option was selected. Given these parameters, a maximum CV of 0.05 is required to detect an increasing trend and a CV of 0.07 is required for a decreasing trend.

Assuming that the calculated estimates and variances are the true population parameters, then a less conservative z-distribution can be used and the maximum CVs would be 0.16 (increasing trend) and 0.23 (decreasing trend). Conversely, if a moreconservative 2-tailed test were used, the maximum CVs would be 0.02 (increasing trend) and 0.03 (decreasing trend). We chose the 1 -tailed t-distribution option because it better fits the situation of considering a change in only one direction at a time and because it could be argued that calculated variances may not truly represent those of the population.

Estimation procedures: Natality

Natality was calculated as the proportion of dolphins in each sighting considered to have been born within the year. Though the total number of calves was recorded for each group sighted, only the subset of calves considered to be young-of-the-year was considered to be relevant to the measurement of natality (Wells and Scott 1990). The average proportion of young-of-the-year was calculated for each year.

Estimation procedures: Mortality

We obtained stranding records from the Southeast U.S. Marine Mammal Stranding Network (D. Odell, pers. comm.) for bottlenose dolphins recovered from Manatee, Hillsborough and Pinellas counties from 1977 to 1993 to estimate a minimum mortality rate for the Tampa Bay area. We examined photographs of dorsal fins of carcasses provided by the Florida Marine Research Institute and Clearwater Marine Science Center and compared them to our photo-ID catalog to identify known mortalities (Urian and Wells 1993). We used photographs of animals that died during the period 1988 through 1993 and were recovered within the counties encompassing the Tampa Bay study area. Stranding records from outside our specified study area may be included because the exact locations of strandings within the counties were not available and Pinellas and Manatee county waters extend beyond our Tampa Bay study area. Photographs of the stranded animals were examined to determine if the markings occurred post-mortem or if decomposition obscured recognition.

Estimation procedures: Immigration/Emigration/Transience

To estimate rates of immigration and emigration, the Tampa Bay catalog of marked animals from 1988-1993 was used to identify individuals that showed "permanent" movement into or out of the study area during our entire survey period. "Permanent" is defined as being present or absent for a period of at least two years (Wells and Scott 1990). Marked dolphins were considered to be "residents" during the survey season if they were identified in at least five of the six survey years.

To derive an immigration rate, we identified individual dolphins not sighted in the first two years of the surveys, 1988 and 1989, but were initially sighted in 1990 and subsequently in 1991, 1992, and 1993. We also identified animals that were not sighted in 1988, 1989, and 1990 but were first sighted in 1991 and subsequently in 1992, and 1993. We searched for these animals in our photo-ID catalogs from other regions (e.g., Sarasota Bay, Charlotte Harbor and the inshore waters of the Gulf of Mexico) and searched for sighting records from times other than during our survey period. An immigration rate was calculated based on the proportion of the number
of known and potential immigrants relative to the total catalog size. This immigration rate should be considered an overestimate because it was not possible to factor out additions to the catalog resulting from undetected changes to the fins of existing residents, and animals present but not photographed during 1988-1990.

Emigrants from the Tampa Bay study area were defined as: (1) dolphins identified in the first three years of the surveys but not identified in the last three years, and (2) dolphins identified in the first four years, but not identified in the last two years. Potential emigrants were checked against known mortalities from stranding records and photographs. Sighting records from the DBRI database were examined to identify sightings of these individuals in other areas and years. An emigration rate was calculated based on the proportion of the number of known and potential emigrants relative to the total number of marked animals in the catalog. The rate of emigration should be considered an overestimate because we were not able to differentiate between disappearances due to emigration, mortality and undetected changes to the dorsal fin, and animals present but not photographed during the last two or three years.

The incidence of transience was estimated by identifying individuals that were sighted in only one year of the six-year survey period and had no other sighting records in the DBRI database. To calculate a rate of transience, we selected the years 1990 and 1991 to minimize the probability that an animal might be an immigrant or emigrant. The incidence of transience was estimated to be the proportion of individuals that met the criteria above relative to the total catalog size for each survey year. This rate is probably an overestimate because it may include dolphins that in fact are not transients, but were missed during other surveys, died, or their fins changed without being detected.

The strict criteria used for defining immigrants, emigrants and transients preclude calculating rates for more than the two years, 1990 and 1991. Therefore, trend analyses were not possible for these parameters.

Results

Survey Effort

Surveys were conducted during windows of 34-42 days each year (Table 1). The size of the window each year depended on weather and the number of boats available. Unseasonable cold fronts or tropical storms adversely affected survey schedules in several years. During the first years of the project, only two boats were used, but beginning in 1990 as many as three or four boats were used. Survey effort was measured in several ways. One measure was a count of the number of boat days. A boat day was scored when a boat left the dock to search for dolphins. On average, 42 boat days were spent in the study area each year (range $=30-54$ days, Table 1). A more refined measure of survey effort is provided by considering the numbers of hours spent searching for dolphins within the survey area. The total number of search hours (exclusive of time spent with each sighting) spent "on-effort" (under excellent, good, or fair survey conditions, see appendix) is presented in Table 1. An average of 113 hours of on-effort search time was spent each year (range $=85-141$ hours).

Another measure of effort is the number of linear kilometers covered by our survey boats. These data are summarized in Table 1, and are presented by region to
allow a comparison of within-region effort across years. Differences across years reflect the effects of weather, variable numbers of boats, and the use of different field stations that facilitated access to different regions.

Dolphins were seen throughout the study area, but they were not uniformly distributed. Larger groups tended to be found in the more open and deeper waters (Figures 2a-e). The total number of sightings and dolphins seen each year closely track the level of survey effort (Figure 3). The number of photographs taken was related to the number of dolphins. On average, $5-6$ photographs per dolphin were taken each year.

Photo-ID Catalog Development

The level of survey effort was considered sufficient to warrant generation of abundance estimates based on mark-resighting analyses. This conclusion was supported by the high proportion of identifiable dolphins in the population (62% to 82%, Table 2), and the frequency distribution of resightings of identifiable dolphins within survey years (Figures $4 a-f$). One third to one half of the dolphins were sighted at least twice during a given survey year, up to a maximum of 13 times each. A low number of resightings would have suggested insufficient coverage of the pool of marked animals, resulting in population estimates that varied with the level of survey effort rather than being independent of effort.

Our Tampa Bay catalog for 1988-1993 included 858 different dolphins. The catalog size provides a minimum population estimate for the Tampa Bay study area ranging from 319 identifications in 1990 to 456 in 1992. On average, 57% of the dolphins in an annual catalog were also seen in either the previous or subsequent year, 52% were seen two years earlier or later, 47% were seen three years earlier or later, 44% were seen four years earlier or later, and 35% were seen five years earlier or later (Table 3).

Photographs taken during the 1988-1993 NMFS surveys built upon an existing Tampa Bay catalog of 150 animals identified during 1975-1987 (Figure 5; Wells 1986). As expected, during the initial years of the surveys a large number of identifications were added to the catalog. New fins were added to the catalog at a slower rate during subsequent years (Figure 5). The proportion of first-time identifications comprising the total catalog each year declined from 74% in 1988 to 14% in 1993. These results are comparable to those from the Sarasota community (Wells and Scott 1990), suggesting a relatively closed population for the Tampa Bay study area. Identifications added to the catalog over the years may represent changes to the fins of known animals, non-distinctive calves acquiring new markings (only a small number of calves are in our catalog), or animals that may have been missed in previous years. We found that overall there were few changes to fin markings throughout the surveys, and minor changes could be detected by a skilled observer familiar with the catalog. However, dramatic changes to fin markings could easily be undetected and could result in a previously identified animal being entered twice in the catalog.

The stability of fin markings over time enhances the probability of resighting individuals. The high frequency of resighting individuals and the long-term sighting histories suggest a high degree of residency for some animals in the Tampa Bay study area during the survey period (Figure 4a-f). The consistency of the catalog and stability of fin markings over time contribute to our confidence in meeting the
assumptions associated with generating abundance estimates from mark-resighting analyses.

Abundance Estimates and Trends

The catalog-size index (Method 1) resulted in minimum population estimates of 319 to 456 dolphins over the six years of the study, with an average of 386 (Table 2). The Method-1 estimates are known to be underestimates because they do not take into account the unmarked dolphins. Methods 2,3 , and 4 attempted to correct for this underestimation.

Method 2 (mark-proportion method) calculated population-size estimates from proportions of marked animals relative to revised minimum, revised maximum, and final best group size estimates. The differences between minimum and maximum population-size estimates were so small that we present only the estimates based on the final best group size. The number of dolphins estimated by Method 2 ranged from 488 to 567 , with an average of 524 (Table 2).

Method 3 (mark-resight method) obtained point estimates for each of the one to three "complete surveys" during each year. The estimates ranged from 479 to 675 across all years, with an average of 564 (Table 2).

Method 4 (resighting-rate method) provided annual point estimates ranging from 416 to 602 dolphins, with an average of 516 (Table 2).

The abundance estimates were examined for trends across the six years of the surveys. Population-size estimates varied from one year to the next independently of effort (Figure 6), and therefore were considered to reflect accurately changes in abundance. Comparison of 95% CL for Methods 2 and 3 (Figure 7) suggest that there were no significant differences in the abundance estimates across all six years of the survey. Additional support for this conclusion was derived from linear regression analyses of the four abundance indices and estimates. These analyses indicated that the slope of the regression lines of abundance vs. year did not significantly differ from zero during 1988-1993 ($p=0.15$ for Method 1; $p=0.84$ for Method 2; $p=0.55$ for Method 3; $\mathrm{p}=0.31$ for Method 4).

Power Analysis

The catalog-size index (Method 1) used a regression analysis of the six annual estimates to remove the effect of a potential trend and calculated a CV of 0.11 from the residuals (although no trend was apparent, a test with only six data points would be sensitive to outliers and would have low power). Given that alpha $=0.05$, power $=0.80$, $\mathrm{r}=1.00$ or -0.50 , and $\mathrm{CV}=0.11$, we can then calculate the minimum number of surveys necessary to detect a trend. Three survey sessions would be required to detect either an increasing or a decreasing trend.

A bootstrap variance procedure applied to Method 2 (mark-proportion method) yielded CVs ranging from 0.04 to 0.06 , with an average CV of 0.05 . This would allow an increasing or a decreasing trend to be detected in two surveys.

The CVs for the estimates from each "complete survey" for the mark-resight method (Method 3) ranged from 0.03 to 0.07 , with an average CV of 0.05 for 1988-1993. This would allow an increasing or a decreasing trend to be detected in two surveys.

Method 4 (resighting-rate method) used the regression analysis described in Method 1 to yield a CV of 0.11 . Three field seasons would be required to detect either an increasing trend or a decreasing trend.

Abstract

Natality The natality rate, the proportion of dolphins considered young-of-the-year, varied little during the course of the surveys, ranging from 0.028 to 0.040 (Table 4). If these rates are applied to the population size estimates derived by Method 2 (markproportion method), then annual estimates of 14 to 20 young-of-the-year are derived for the Tampa Bay study area. The mark-proportion estimates are used here because the variances were low, and the estimates for population size and natality were calculated in a similar manner, i.e. on a proportion-of-school basis.

Mortality

There were 314 records of stranded animals from Hillsborough, Pinellas and Manatee counties from 1977-1993; 238 of these records were from 1988 to 1993 (Table 5 , Figure 8). We were unable to calculate a mortality rate due to the bias associated with an increase in stranding response effort since the mid-1980s. Coastal development and boating activity on Tampa Bay waters have also increased dramatically, possibly contributing to the discovery of carcasses in previously isolated areas. However, there are still many remote and inaccessible areas within Tampa Bay where carcasses are unlikely to be found. All these factors confound determination of the actual number of strandings and make it impractical to calculate a mortality rate based on stranding records alone.

In an attempt to distinguish between mortalities and other kinds of losses from the population, photographs of stranded dolphins were examined. A total of 47 photographs were available to compare with the photo-ID catalog. Dorsal fins in photographs of 30 animals were deemed non-distinctive, i.e., they belonged to neonates, calves or otherwise had no diagnostic markings, they were too decomposed to be used for matching or had obvious signs of post-mortem changes. Seventeen animals were considered distinctive and were used to compare with the photo-ID catalog (Table 5). We identified seven of the stranded animals: five were Sarasota dolphin community members, and two were from Tampa Bay. One of the Tampa Bay animals was not seen during our surveys, but had a sighting history dating back to 1983 and died in 1991. The other was first identified in 1984 and died in 1990.

Of the 858 dolphins in the 1988-1993 Tampa Bay catalog, 459 were not seen during the last year of the study. Six of these (0.013) were confirmed as mortalities based on fin identifications.

Immigration

Fourteen dolphins were identified first in 1990, and were seen in each year thereafter, resulting in their consideration as potential immigrants. Six of these dolphins were sighted in 1990 in months other than September and October, but within the same general areas as during the surveys. Four of these dolphins were identified for the first time during surveys in 1991, but were initially seen outside of the survey period in 1990.

Six of the 14 dolphins considered immigrants had subtle features and may have been seen in previous years before acquiring distinctive markings. Eight dolphins were rated as distinctive with multiple diagnostic features that would have been difficult to miss if the dolphins had been present in a sighting.

There were 28 dolphins considered immigrants in 1991 because they were first identified in 1991 and subsequently in 1992 and 1993. Twelve dolphins had sightings in months outside our census period but no sighting histories in adjacent study areas. One animal had a sighting record outside our artificial Tampa boundary but within the range of its other sightings. Again, approximately half the animals were described as having subtle features and half were considered distinctive with multiple diagnostic features.

The proportion of dolphins in the catalog that met the criteria for immigration was 0.044 in 1990, and 0.066 in 1991, for an average of 0.055 across both years (Table 6). None of these animals was observed outside the Tampa Bay study area prior to their first sighting in the study area, so it was not possible to confirm that they were indeed immigrants, nor was it possible to determine their points of origin.

Emigration

Seven dolphins were considered to be emigrants in 1990 because they were identified in each of the first three years of the study but not in the last three years. Two of these animals were identified during the first three years in months outside the survey period. All of their sightings were within the Tampa Bay study area. All were considered distinctive, however none of these potential emigrants was identified from the stranding records or photographs we examined.

Ten dolphins were identified during each of the first four years of our study but not in the last two years and thus were defined as potential emigrants from Tampa Bay during 1991. Nine of these dolphins were identified in Tampa Bay in months outside the survey period but had no sighting records from the adjacent communities. All were distinctively marked and five had initial sightings between 1975 and 1983.

The proportion of potential emigrants in 1990 was 0.022 of the catalog size for that year, and 0.023 in 1991 (Table 6). None of these animals was seen in other regions after disappearing from the Tampa Bay study area, so it was not possible to confirm that they were actual emigrants, nor was it possible to determine their destinations because there were no sighting records of these dolphins after disappearing.

Transience

Dolphins identified during only one year of the surveys were defined as transients. There were 12 dolphins that met our criteria in 1990 (Table 6). This was 0.038 of the catalog size in 1990. In 1991, 22 dolphins were defined as transients (0.052 of the catalog). None of these animals was seen in the Tampa Bay study area outside of the survey season, nor were they seen in adjacent study areas, so their origins and destinations remain undetermined.

Discussion

Photo-Identification Catalog

The ability to identify individuals over time using natural markings has proved to be a valuable and benign research tool and a standard in population studies of marine mammals. Maintaining a photographic database of individual dolphins
enables researchers to monitor not only population parameters but habitat use, social association and distribution patterns.

The high proportion of marked dolphins and the high frequency of resightings underscores the importance of including only excellent quality images of distinctively marked individuals in the photo-ID catalog. This minimizes subjectivity in the matching process and reduces the chance of making incorrect identifications or missing them altogether.

Abundance Estimates and Trends

Comparison of the point abundance estimates from Methods 2, 3, and 4 indicates striking consistency across methods, and lack of change across the six years of the study (Figure 6). In all cases the lower 95\% CLs were greater than or equal to the minimum count provided by the catalog-size method. Thus, if we consider the most extreme $95 \% \mathrm{CL}$ values to be the limits to our estimates, the number of dolphins using the Tampa Bay study area during the surveys was between 437 and 728.

Our estimates are considerably larger than the aerial survey estimate of 148 348 (95\% CL) reported by Scott et al. (1989) for the same months in 1985. In most cases the numbers of dolphins from the catalog-size method exceed the aerial survey estimates as well. It seems unlikely that the differences in the estimates over the three years from 1985 to 1988 are due to dramatic changes in abundance, given the lack of change in abundance over the six year period from 1988 through 1993. A more likely explanation may be the differences in survey methods.

A similar conclusion was reached by Scott et al. (1989) when they compared their 1985 aerial survey maximum estimate of 23 (95\% CL=12-34) dolphins in Sarasota Bay to published population size estimates of about 100 individuals. Aerial surveys may tend to substantially underestimate the numbers of bottlenose dolphins present, especially where there is high turbidity and/or low contrast between dolphin coloration and water color, as is often the case in Sarasota. The Sarasota Bay comparison may also exaggerate the differences resulting from survey methodology because the study areas did not exactly coincide. The Scott et al. (1989) aerial surveys did not include the entire home range occupied by the 91 known members of the Sarasota dolphin community in 1985 (Wells and Scott 1990), and therefore may not have included some resident dolphins in their estimate. Scott et al. (1989) also suggested that the estimated resident abundance may not accurately reflect the average daily abundance for the Sarasota dolphin community. While it is true that some Sarasota residents may not be present in the home range every day, nonresidents passing through Sarasota may at least partially compensate for this decrease in daily abundance (Wells and Scott 1990). Thus, short-term movements alone probably do not adequately explain the fact that the aerial survey estimates were only 25% of the known 1985 Sarasota population. We are left with methodological rather than biological differences to account for much of the difference in estimates.

The estimates we have derived reflect the numbers of dolphins found in the Tampa Bay study area at least once during a six-week period in September and October of each year. The estimates are based on a catalog that includes all of those dolphins for which satisfactory identification photographs were obtained during the survey period, without distinguishing between differences in the degree of use of the study area waters by different dolphins.

The catalog makes no distinction between those dolphins using the waters of the study area on a regular basis vs. those photographed during an infrequent passage through the study area. A number of overlapping home ranges occur along the central west coast of Florida, including Tampa Bay (Wells 1986). The degree of overlap in home ranges in the Tampa Bay study area varies. The probability of finding a given dolphin occupying a partially overlapping home range would be a function of the degree of overlap. The limits of our study area are not biologically based. They do not necessarily coincide with home range boundaries, for example, and therefore do not address the relative importance of waters and habitat features in the study area. Evaluation of the biological basis of population units has important management implications, but this requires more-detailed analysis of the community structure of dolphins in the Tampa Bay area.

Natality

The natality estimate probably underestimates the total number of births in a given year. If a diffuse calving season is assumed, then it is likely that some young calves were lost prior to each annual survey, and some may have been born after the survey. A spring through early fall peak in calving with occasional births occurring at anytime during the year has been reported for Sarasota Bay (Wells et al. 1987) and for the west coast of Florida in general (Urian et al. in prep.). Thus, the actual crude birth rate may have been higher than the 0.028 to 0.040 reported from the 1988-1993 surveys.

The average natality estimate of 0.033 ± 0.0909 is slightly lower than that reported for Sarasota Bay. A mean crude birth rate of 0.055 ± 0.0089 for Sarasota dolphins was calculated for the period 1980-1987 (Wells and Scott 1990). Observational effort in Sarasota has been ongoing, providing opportunities to observe a higher proportion of births. The narrow window for the Tampa Bay survey means that some calves are likely missed. Thus, the Tampa Bay natality measure should be compared to a Sarasota measure between the crude birth rate and the recruitment rate (the proportion of calves surviving to age 1). For Sarasota Bay, the mean recruitment rate for $1980-1987$ was 0.048 ± 0.0085 (Wells and Scott 1990). Therefore, a comparable measure of Sarasota natality might be between 0.048 and 0.055 .

The consistency of the natality rate over the six-year survey period also supports the conclusions drawn from the abundance estimates regarding the stability of the population size.

Mortality

Measurements of dolphin mortality rates for Tampa Bay proved to be difficult to obtain during our survey period. In most cases we were unable to distinguish between mortalities, emigrations, undetected fin changes, and animals missed during the Tampa Bay surveys. In Sarasota, it has been possible to evaluate losses from the population from two directions, through the collection and examination of carcasses of identifiable individuals, and through records of disappearances of known individuals (Wells and Scott 1990). Mortality estimates are facilitated in Sarasota as compared to the Tampa Bay project because Sarasota involves a smaller number of dolphins with a higher proportion of them being identifiable, a smaller study area, a more-intensive, year-round monitoring effort, and more-complete and consistent stranding response effort.

The situation in Tampa Bay could improve in time. Stranding response teams are becoming more active in Tampa Bay, and communication between teams is improving. We know that good photographs of fresh carcasses can provide the basis for identifications (Urian and Wells 1993). These identifications are important not only for monitoring the population, but also because knowing the origin of a carcass can provide information that may aid in understanding cause of death or interpreting levels of environmental contaminants in tissues. Long-term and more frequent photographic monitoring of the dolphins in Tampa Bay would improve the basis for identifying and evaluating disappearances of catalog members.

Uneven stranding response effort in Tampa Bay over the six years of the survey precluded trend analyses over the entire period of the project. The unusually high numbers of strandings in 1991 and 1992, followed by a decline in 1993 (Figure 8) may be real. Dolphin strandings, both in Sarasota and more generally along the central west coast of Florida, reached levels two to three times normal from late 1991 through 1992 (unpublished data). The size of the Sarasota population was estimated to have declined about 10% as a result of these unusual mortalities. The data in Figure 7 hint at a similar decline in Tampa Bay, but no significant trend (comparison of 95% CLs) was found.

Immigration/Emigration/Transience

Both immigration and emigration rates are difficult to interpret because of a number of potentially confounding factors. The survey effort was limited to a sixweek period, thereby minimizing the opportunity to identify dolphins in other times of the year and other areas. Changes to the fins may hinder our ability to identify individuals, resulting in the scoring of the changed fin as a new identification and the original identification as a loss. Unidentified or missed mortalities obscure actual emigration rates by counting them as losses instead of as known mortalities. It is also possible animals were in the study area but not sighted, or were photographed but not identified because of inadequate photographic quality or coverage (Slooten et al. 1992).

Overall, a maximum of about 0.123 of the Tampa population was estimated to be in flux each year, as immigrants, emigrants, or transients (Table 6). The low rates of immigration, emigration and transience found for the dolphins in the Tampa Bay study area in the six-year period suggest a relatively closed population. Resident dolphins have a greater chance of being resighted than do animals that are known to have extended home ranges. Based on the high proportion of marked animals (0.70) that were only sighted once, Weigle (1990) concluded that a large number of transients used Tampa Bay. Contrary to Weigle's findings, our results suggest there is a high proportion of resident dolphins using Tampa Bay, some with extended home ranges, and few transient animals.

Summary of Population Rate Parameters for Tampa Bay

Under stable circumstances during September - October, between 437 and 728 dolphins use the Tampa Bay study area. About 0.035 of these animals are young-of-the-year, but this is likely an underestimate. At most, 0.055 of the dolphins present are recent immigrants, but this value is elevated from the inclusion of dolphins that have not immigrated, but have fins that have changed, or may have been present but not photographed in previous years. About 0.023 of the dolphins will be considered to be lost, through emigration, death, or because of undetected fin changes. Transients account for 0.045 of the total population size. Immigration, emigration, and transience are not major influences on the number of animals present at any
given time, but they may be important ecologically by providing a means of genetic exchange between populations, as demonstrated for the Sarasota dolphin community (Duffield and Wells 1991).

Comparison of Abundance Estimation Methods

Methods 2, 3, and 4 produced similar estimates of population size (Table 2) even though the sampling units and calculations differed. All three of these methods have similar assumptions: a closed population, an equal probability of sighting all animals, random samples of dolphins resighted, and permanent and reliable marks on the dolphins.

To detect a trend in abundance, the method with the lowest bias, greatest precision, and easiest implementation in the field would be preferred. The accuracy of the estimates depends greatly on the adherence to the assumptions above. The problem of heterogeneity of sighting probabilities can cause a negative bias in the estimate of N (e.g., Hammond 1986), and has been shown to occur in mark-resight studies on bottlenose dolphins in Sarasota Bay (Wells and Scott 1990). To examine the effects of heterogeneity on the different methods, a greater understanding of the community structure of the area is necessary. Method 3, the mark-resight method, attempted to reduce the potential effect of heterogeneity by balancing the coverage of the regions within the study area, under the assumption that multiple communities of dolphins having restricted home ranges could be over- or undersampled if coverage is not equal for all regions. Piecing together segments surveyed over a period of several weeks, however, could lead to biases if the assumption of population closure was violated. This assumption, based on the dolphin communities of Sarasota Bay, could be tested when the movements and ranges of Tampa Bay dolphins are better known.

The precision of the estimates is largely a result of the size and number of the samples and the proportion of marked dolphins in the population (M / N). Three of the above methods illustrate a range of compromises that can be made between the first two factors. The mark-proportion method (Method 2) sampled individual dolphin schools as units; this led to a large number of replicates, but the small size of these schools (mean school size $=5.85 \pm 6.012 \mathrm{SD}, \mathrm{n}=480$) led to relatively high variation in the proportion of marked dolphins in the groups. Alternatively, the resighting-rate method (Method 4) used the entire survey season as a sampling unit, yielding large sample sizes per season (about 200-600 dolphins), but at the expense of replicate sampling. The mark-resight method (Method 3) used one to three "complete surveys" of the area as a sampling unit, and about 100-380 dolphins per field season, with sample sizes of about 20-170 dolphins per survey. The CVs calculated from Methods 2 and 3 were both acceptably low, although they cannot be compared directly because of the difference in variance methods (Method $2=$ non-parametric bootstrap; Method 3 = binomial).

All of these methods may be prone to a negative bias due to heterogeneity of sighting probabilities, but this would be particularly true for Methods 2 and 4 if care was not taken to survey all areas at least some time during the six-week period. The similarity of the estimates from Methods 2,3 , and 4 suggest that, in practice, the effect of this potential bias due to unequal effort in different regions was relatively small. Estimates from Methods 2 and 4 averaged 6.0% and 8.0% lower than those of Method 3, but a Wilcoxen paired-sample test revealed no significant differences between any of these methods.

Power Analyses

The power analysis has proved to be a useful tool for survey design and management decisions. One can make a priori management decisions about the duration, sampling intensity, and statistical certainty of survey programs if one can estimate the CV of the methods being contemplated. Given the objectives to detect a halving or doubling in the population from one year to the next, it appears that Method 2 (mark-proportion method) and Method 3 (mark-resight method) can accomplish this goal for Tampa Bay dolphins with annual surveys. The other methods require additional assumptions about the 1988-1993 abundance stability and are thus less useful. CVs can be obtained or improved, however, by sampling more often than the annual surveys chosen for this study, although care must be taken that additional variation due to seasonal differences in dolphin abundance, movements, and behavior is taken into account.

Survey Design

Selection of a survey technique for detecting trends in dolphin populationrate parameters should take into account the relative accuracy, precision, repeatability, and efficiency of the available methodology. Our findings from Tampa Bay indicate that coastal aerial surveys, while more efficient than photo-ID surveys at covering large areas, provide estimates that are less accurate and less precise.

The main reason for the close agreement among the estimates calculated from the different methods and the precision of the CVs was the high percentage of marked dolphins identified each year (eventually over 80\%). A large amount of survey effort is required to maintain such a high percentage. Ideally, the surveys should have two components: an intensive effort to photograph and identify dolphins (at the potential expense of not following a rigorous survey route or sampling design), and an effort to cover the whole area in a short period of time with repeatable survey routes. The first component allows the development of the photoID catalog so that sufficient numbers of marked dolphins are identified to estimate abundance precisely, while the second component would provide a standardized effort each year so that annual comparisons can be made.

Method 3 (mark-resight method) would provide satisfactory estimates from the second component of such a survey because the statistical properties of the moretraditional mark-recapture methods are well-known and the sampling units provided adequate sample sizes of marked animals. In Tampa Bay, however, it proved difficult to conduct "complete surveys" within the available survey window. Instead, we could only survey regions repeatedly while conditions were favorable when other regions were unworkable, and then shift our efforts opportunistically. If "complete surveys" can not be conducted, then Method 2 (mark-proportion) provides an acceptable alternative as long as the numbers of sightings and proportion of marked dolphins are high, and the effort among different regions is not greatly biased. This method is particularly useful because it can be more-readily calculated from the first component of the survey design during which the largest numbers of groups would be sighted. Methods 1 (catalog-size method) and 4 (resighting-rate method) provided useful double-checks on the estimates of the other two methods.

- Monitoring should be continued at least annually. The more frequent the surveys the better the chance of detecting a trend towards a catastrophic decline. Moreintensive surveys would permit more-refined determinations of natality, immigration, emigration, transience, and mortality.
- Community structure needs to be examined in more detail to define biologically meaningful management units. Existing information on residency, ranging and social patterns, and genetics should be integrated to arrive at population designations. Analysis of community structure is necessary to interpret immigration, emigration, and transience relative to population size.
- Photo-ID efforts should be expanded to greater distances offshore and north along the coast to examine immigration, emigration, and transience in greater detail.
- Patterns of habitat use in Tampa Bay should be examined through integration of GIS habitat data with our sighting data.
- Additional data are needed to describe community structure. In particular, sample sizes for examination of mt-DNA haplotype distributions in Tampa Bay should be augmented through biopsy darting or capture-release efforts. The genetics data should be supplemented with telemetry data on movements and additional photoID efforts.
- Photo-ID work should be expanded to other seasons to examine previous reports of seasonal fluctuations in abundance. If we have surveyed during the peak of abundance, then which of these animals move out during other seasons? Do others move in? The results of other studies indicate that at least some of the Tampa Bay dolphins are present year-around (Bassos 1993).
- The ability of the NMFS to compare rate parameters from one study site to another would benefit from standardization of methodology. A manual describing our research approach and techniques, from design through analysis should be developed.

Acknowledgments

The National Marine Fisheries Service supported all six years of this survey project. We thank Earthwatch and the many intrepid volunteers for participating in and supporting the project during the first four years of the project. The Chicago Zoological Society provided RSW and KWU with funding and logistical field support. Additional assistance was provided by the Woods Hole Oceanographic Institution, Dolphin Biology Research Institute, Mote Marine Laboratory, and the InterAmerican Tropical Tuna Commission. Dan Odell, coordinator of the SEUS Stranding Network, provided stranding data summaries, and photographs of stranded dolphins were provided by Donna Banowetz and Mark Sweat of the Florida Marine Research Institute, and the Clearwater Marine Science Center. We would like to thank West Marine Products, Cannon's Marina, Mako Marine, Mariner Outboards, Yamaha Outboards, Capt. Tom and Lee Sehorne, "Poppy" Donoghue, Casey Silvey, Mrs. A.G. Wimpy, and Jack and Fran Wells for their crucial assistance with the logistics of the field work. Blair Irvine and Paul Harrison were responsible for developing our Foxbase database system and associated programming - without their tireless efforts we would not have been able to effectively process the large quantities of data collected. The Sarasota Macintosh User's Group helped us over the inevitable hurdles of problems with cantankerous new computers and software. We very much appreciate the field and lab contributions of Jill Madden, Michelle Wells, Kate Grellier, Forbes Darby, Tristen Moors, Sue Hofmann, Gabi Prochnow, Monica Oring, and Chris Dold. Alejandro Angenuzzi helped with the bootstrap variance estimates.

Tim Gerrodette provided excellent advice on the power analyses. Special thanks go to our NMFS COTRs, Larry Hansen and Ben Blaylock, for their support and patience. Finally, we would like to acknowledge the services of KWU's optometrists for making the necessary and frequent corrections to her prescription so she could press on with the fin matching.

This project was conducted under Scientific Research Permits Nos. 638 and 805 issued by the National Marine Fisheries Service.

Literature Cited

Bailey, N.T.J. 1951. On estimating the size of mobile populations from mark-recapture data, Biometrika 38: 293-306.

Bassos, M.K. 1993. A behavioral assessment of the reintroduction of two bottlenose dolphins. M.S. thesis, University of California, Santa Cruz, 84 pp.

Duffield, D.A. and R.S. Wells. 1991. The combined application of chromosome, protein and molecular data for the investigation of social unit structure and dynamics in Tursiops truncatus. Rep. int. Whal. Commn (Spec. Issue) 13:155-169.

Gerrodette, T. 1987. A power analysis for detecting trends. Ecology 68(5): 1364-1372.
Gerrodette, T. 1993. Program Trends: User's Guide. Available from author, Southwest Fisheries Science Center, La Jolla, CA.

Hammond, P.S. 1986. Estimating the size of naturally marked whale populations using mark-recapture techniques. Rep. int. Whal. Commn (Special Issue 8) 253-282).

Leatherwood, S., and I. T. Show. 1980. Development of systematic procedures for estimating sizes of "population(s)" of bottlenose dolphins and estimates of sizes of "population(s)" of bottlenose dolphins in three geographical areas; with incidental observations on densities of West Indian manatees and marine turtles. Final Report, contract No. NA79-GA-C-0038.

Odell, D. K. and J. E Reynolds III. 1980. Abundance of the bottlenose dolphin, Tursiops truncatus, on the west coast of Florida. National Technical Information Service PB-80-197650. 47 pp. US Department of Commerce, Springfield, VA 22161.

SAS Institute Inc. 1989. SAS/STAT User's Guide, Version 6, Fourth Edition. SAS Institute Inc., Cary, NC.

Scott, G. P. 1990. Management-oriented research on bottlenose dolphins by the Southeast Fisheries Center. Pp. 623-639, In The Bottlenose Dolphin (S. Leatherwood and R.R. Reeves, eds.). Academic Press, San Diego, 653 pp.

Scott, G.P., D.M. Burn, LJ. Hansen and R.E. Owen. 1989. Estimates of bottlenose dolphin abundance in the Gulf of Mexico from regional aerial surveys. CRD-88/89-07.

Scott, M.D., R.S. Wells, A. B. Irvine and B.R. Mate. 1990a. Tagging and marking studies on small cetaceans. Pp. 489-514, In The Bottlenose Dolphin (S. Leatherwood and R.R. Reeves, eds.). Academic Press, San Diego, 653 pp.

Scott, M.D., R.S. Wells, and A. B. Irvine. 1990b. A long-term study of bottlenose dolphins on the west coast of Florida. Pp. 235-244, In The Bottlenose Dolphin (S. Leatherwood and R.R. Reeves, eds.). Academic Press, San Diego, 653 pp.

Seber, G.A.F. The estimation of animal abundance. MacMillan Publ. Co., New York. 654 pp .

Slooten, E. S. M. Dawson, and F. Lad. 1992. Survival rates of photographically identified Hector's dolphins from 1984 to 1988. Mar. Mamm. Sci. 8:327-343.

Thompson, N.B. 1981. Estimates of abundance of Tursiops truncatus in Tampa Bay, Florida. National Marine Fisheries Service-SEFL, Miami Laboratory, Fishery Anal. Div. Rept. 14 pp.

Urian, K.W. and R.S. Wells. 1993. Identification of stranded bottlenose dolphins from the central west coast of Florida: 1991-1992. Contract No. 40-GENF-2-00613. 3 pp .

Urian, K. W., D. A. Duffield, A. J. Read, R. S. Wells, and E. D. Shell. (in press) Seasonality of reproduction in bottlenose dolphins, Tursiops truncatus. J. Mamm.

Weigle, B. 1990. Abundance, distribution and movements of bottlenose dolphins (Tursiops truncatus) in lower Tampa Bay, Florida. Rep. int. Whal. Commn (Spec. Issue) 12:195-201.

Wells, R.S. 1986. Population structure of bottlenose dolphins: behavioral studies along the central west coast of Florida. Contract Rept. to National Marine Fisheries Service, Southeast Fisheries Center. Contract No.45-WCNF-5-00366. 58 pp .

Wells, R. S. 1991. The role of long-term study in understanding the social structure of a bottlenose dolphin community. Pp. 199-225, In: Dolphin Societies: Discoveries and Puzzles (K. Pryor and K. S. Norris, eds.). University of California Press, Berkeley. 397 pp.

Wells, R. S., M. D. Scott and A. B. Irvine. 1987. The social structure of free-ranging bottlenose dolphins. Pp. 247-305, In: Current Mammalogy (H. Genoways, ed.). Plenum Press, New York, 519 pp.

Wells, R.S. and M.D. Scott. 1990. Estimating bottlenose dolphin population parameters from individual identification and capture-release techniques. Rep. int. Whal. Commn (Spec. Issue) 12:407-415.

Würsig, B. and T. A. Jefferson. 1990. Methods of photo-identification for small cetaceans. Rep. Int. Whal. Commn (Spec. Issue) 12: 43-52.

List of Tables

Table 1. Summary of survey effort, 1988-1993.
Table 2. Annual Tampa Bay dolphin population size estimates.
Table 3. Matrix of number of dolphins identified in one year that were seen in previous or subsequent years.

Table 4. Young-of-the-year proportions of the mark-proportion annual population estimates.

Table 5. Summary of known mortalities based on records of stranded dolphins in the three counties encompassing the Tampa Bay study area.

Table 6. Estimated proportion of the Tampa Bay dolphin population that is in flux each year: Annual immigration, emigration, and transience rates. See text for explanation of rate derivations.

List of Figures

Figure 1. Tampa Bay study area.
Figure 2a. Locations of sightings during 1988-1993: Groups of 1-5 dolphins.
Figure 2b. Locations of sightings during 1988-1993: Groups of 6-10 dolphins.
Figure 2c. Locations of sightings during 1988-1993: Groups of 11-15 dolphins.
Figure 2d. Locations of sightings during 1988-1993: Groups of 16-20 dolphins.
Figure 2e. Locations of sightings during 1988-1993: Groups of ≥ 20 dolphins.
Figure 3. Survey effort and sighting results.
Figure 4a. Frequency distribution of resightings: 1988.
Figure 4b. Frequency distribution of resightings: 1989.
Figure 4c. Frequency distribution of resightings: 1990.
Figure 4d. Frequency distribution of resightings: 1991.
Figure 4 e . Frequency distribution of resightings: 1992.
Figure 4f. Frequency distribution of resightings: 1993.
Figure 5. Annual catalog size and numbers of additions to the catalog.
Figure 6. Relationships between survey effort and population size estimates.
Figure 7. Comparison of Method 2 (mark-proportion) and Method 3 (markresight) abundance estimates, with 95% CLs. The CLs are not directly
comparable because Method 2 used a non-parametric bootstrap variance estimate and Method 3 used a binomial variance estimate.

Figure 8. Number of reported strandings, by county.

Appendices

Appendix 1. Sample data form and environmental condition codes.
Appendix 2. Definitions of relevant parameters from the sighting data forms. Appendix 3. List of sightings, by year, 1988-1993.
Appendix 4. List of identified dolphins in each sighting, by year, 1988-1993.

This page intentionally left blank.

	1988	1989	1990	1991	1992	1993	Total
Survey Dates:							
Begin	9-Sep	5-Sep	5-Sep	3-Sep	1-Sep	9-Sep	
End	12 -Oct	10-Oct	14-0ct	14-Oct	8-Oct	20-Oct	
Number of Boat Days:							
All Regions	54	46	58	66	47	56	327
Tampa Bay Regions 1-7	35	30	39	54	40	51	249
Number of Survey Hours in Regions 1-7:							
Excellent Conditions	25.38	20.28	47.98	49.75	29.58	44.78	217.75
Good Conditions	61.22	50.80	57.18	57.25	50.12	79.03	355.60
Fair Conditions	25.05	13.55	18.55	15.50	13.58	$\underline{17.12}$	103.35
Total	111.65	84.63	123.71	122.50	93.28	140.93	676.70
Number of Kilometers Surveyed in Regions 1-7:							
Region 1	455	371	371	407	256	166	
Region 2	337	336	366	366	270	279	
Region 3	236	125	151	159	163	142	
Region 4	150	66	142	131	137	126	
Region 5	744	600	571	756	691	1,421	
Region 6	404	294	214	454	406	568	
Region 7	145	40	160	139	197	$\underline{289}$	
Total	2,471	1,832	1,975	2,412	2,120	2,991	13,801
Number of Sightings:							
All Regions	359	324	381	349	277	322	2.012
Tampa Bay Regions 1-7	241	217	211	251	219	262	1,401
Number of Dolphins Observed (best point estimate):							
All Regions	2,187	1.955	2,162	2,181	1,814	1,810	12,109
Tampa Bay Regions 1-7	1,642	1,323	1,334	1,688	1,446	1,631	9,064
No. of Young-of-the-Year Observed (best point estimate):							
:ii kegrons	135	68	124	89	183	65	60.4
Tampa Bay Regions 1-7	81	36	82	71	52	63	38.5
Number of Photographs: All Regions	11,688	10,068	11.795	11,857	10,425	9,952	65,785

l.tble 2. Annual Tampa Ray doiphin population size estimates.

	1988	1989	1990	1991	1992	1993	Average
Method 1 (Cataiog-size)							
No. of dolphins in catalog (M)	337	379	319	425	456	399	386
Method 2 (Mark-proportion)							
No. of Grade 1 sightings (s)	78	100	93	97	68	44	
Mean proportion of marked dolphins/group (m /n)	0.65	0.75	0.62	0.75	0.82	0.82	
Population size estimate (N)	515	505	517	567	554	488	524
5 Sandard deviation (SD)	27.5	20.9	30.0	23.5	23.6	24.5	
Cocefficient of variation (CV)	0.05	0.04	0.06	0.04	0.04	0.05	0.05
${ }^{\prime}$ uper 95\% CL	578	581	581	617	607	542	
lower 95\% Cl .	469	467	464	525	515	447	
Method 3 (Mark-resight)							
Number of "complete surveys"	2	1	3	3	2	3	
Average population size estimate (N)	635	487	554	675	554	479	564
Standard deviation (SD)	44.2	24.3	24.5	26.4	18.5	21.1	
Corefficient of variation (CV)	0.07	0.05	0.0-4	0.04	0.03	0.04	0.05
'pper 95\% Cl	723	536	603	728	591	521	
lower 95\% CL	547	438	505	622	517	437	
Method 4 (Resighuing-rate)							
No. of dolphins sighted per season (n)	550	542	527	594	387	208	
No. of marked dolphins sighted per season (m)	350	391	322	411	321	166	
Population size estimate (N)	530	525	522	602	502	416	516

Table 3. Number (\%) of dolphins in the catalog of a given year (bold) that were identified in previous or subsequent years.

| YEAR | 1988 | 1989 | 1990 | 1991 | 1992 | 1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 9 8 8}$ | $\mathbf{3 3 7}$ | $201(60 \%)$ | $162(48 \%)$ | $178(53 \%)$ | $172(51 \%)$ | $130(36 \%)$ |
| 1989 | $201(53 \%)$ | $\mathbf{3 7 9}$ | $186(49 \%)$ | $210(55 \%)$ | $212(56 \%)$ | $167(44 \%)$ |
| 1990 | $162(51 \%)$ | $186(58 \%)$ | 319 | $199(62 \%)$ | $195(61 \%)$ | $151(47 \%)$ |
| 1991 | $178(42 \%)$ | $210(49 \%)$ | $199(47 \%)$ | 425 | $268(63 \%)$ | $230(54 \%)$ |
| 1992 | $172(38 \%)$ | $212(46 \%)$ | $195(43 \%)$ | $268(59 \%)$ | 456 | $261(61 \%)$ |
| 1993 | $130(33 \%)$ | $167(42 \%)$ | $151(38 \%)$ | $230(58 \%)$ | $261(56 \%)$ | 399 |

Table 4. Young-of-the-year proportions of the mark-proportion annual population estimates.

	1988	1989	1990	1991	1992	1993	Average
Mean Young-of the-Year Proportion	0.040	0.030	0.038	0.028	0.036	0028	0033
Standard Deviation (SD)	0.0860	0.1041	0.0803	0.0631	01197	00923	
Calcuiated No. of Young-of-the-Year in Population	20	15	20	16	20	14	18
Upper 95\& CL (+2 SD)	23	18	23	18	25	17	
Lower 95\& CL (-2 SD)	17	12	17	14	15	11	
Number of Grade 1 Sightings Used for Mean	78	100	93	97	68	44	
Mark-Proportion Population Sıze Estumate (N)	515	505	517	567	554	488	

Table 5. Summary of known mortalities based on examination and photographs of stranded dolphins in the three counties

All Counties			Hillsborough County				Pinellas County				Manatee County			
Year	Total No. of Stranded doiphins	$\begin{aligned} & \text { No. of Stranded } \\ & \text { Dolphlns } \\ & \text { from Catalog } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { No. of } \\ \text { Strandings } \end{array}$		No. of Distuctuve Fins	$\begin{gathered} \text { No. ID } \\ \text { from Catalog } \end{gathered}$		No. Fins Examined	No. of Distinctive Fins	$\begin{gathered} \text { No. DD } \\ \text { from Catatog } \end{gathered}$		$\begin{aligned} & \text { No. Fins } \\ & \text { Examined } \end{aligned}$	$\begin{aligned} & \text { No. of } \\ & \text { Distinctive } \\ & \text { Fins } \end{aligned}$	$\begin{gathered} \text { No. ID } \\ \text { from Catalog } \end{gathered}$
1988	30	0	3	0	0	0	18	0	0	0	9	5	2	0
1989	26	0	2	1	0	0	18	.	0	0	6	4	0	0
1990	32	1	10	0	0	0	15	1	0	0	7	5	1	1
1991	54	2	6	1	1	1	33	8	3	0	15	8	4	1
1992	55	3	10	0	0	0	35	0	0	0	10	5	4	3
1993	41	1	8	0	0	0	24	1	1	1	9	8	1	0
Total	238	7	39	2	1	1	143	10	4	1	56	35	12	5

Table 6 Estumated proportion of the Tampa Bay dolphin population that is in flux each year Annual immigration, emigration, and transtence rates. See text for explanation of rate derivation

Year	Immigration Rate	Emigration Rate	Transience Rate	Sum
1990	0.044	0.022	0.038	0104
1991	0.066	0023	0.052	0.141
Average	$\mathbf{0 . 0 5 5}$	0.023	0.045	$\mathbf{0 . 1 2 3}$

Figure 1. Tampa Bay study area depicting survey Regions 1-7.

Figure 2a. Locations of sightings during 1988-1993: Groups of 1-5 dolphins.

Figure 2b. Locations of sightings during 1988-1993: Groups of 6-10 dolphins.

Figure 2c. Locations of sightings during 1988-1993: Groups of 11-15 dolphins.

Figure 2d. Locations of sightings during 1988-1993: Groups of 16-20 dolphins.

Figure 2e. Locations of sightings during 1988-1993: Groups of >20 dolphins.
Figure 3. Survey effort and sighting results.

Figure 4e. Frequency distribution of number of sightings per individual dolphin during 1992.

Figure 5. Annual catalog size and numbers of additions to the catalog.

Figure 6. Population size estimates relative to survey effort.

MUIPHAH LIUIUğy INCDCAICARASALULE Sighting Sheets

Comments:

Associated Organisms:

Pnotos: (roll. frame->frame)
Tape: (tape counter)

CONDITION CODES:							
SEA STATE		WEATHER		6LARE		SIGHTABILITY	
Wave Height 0-0.2m (8 in)	0	Clear or few clouds	0	None	0	Excelient	0
Weve Height 0.2-0.4m (8-16 in)	1	Partly cloudy	1	Little, non-interfering	1	Good, unlikely to miss dolphins	1
Wave Height $0.4-0.6 \mathrm{~m}$ ($16-24 \mathrm{in}$)	2	Overcest	2	Some, could interfere	2	Fair, may miss some dolphins	2
Wave Height 0.6-0.8m ($24-32 \mathrm{in}$)	3	Rain	3	Much, interfering	3	Poor, probably missing dolphins	3
Weve Height 0.8-1 0 m ($32-40 \mathrm{in}$)	4	Thunderstorm	4			Not on effort	4
Weve Height > 1.0 m ($>40 \mathrm{in}$)	5	Fog	5				
INITIAL OR OENERAL HEADINB:							
Use degrees in most cases, ${ }^{*} 360^{\prime \prime}=$ North							
Milling="000"							
In passes, rivers, use "IN" or "OUT" if degrees ars less eppropriate							
SIGHIING NUMBERS:							
Makila Sightings, beging number ing serially from "1" each day							
Wellcreft Sightings, begin number ing serielly from "51" each day							

Appendix 2
 Definitions of Relevant Parameters from the Sighting Data Forms

Field Hours: The time the boat left the dock and time it returned. Time "off effort" is recorded when no systematic effort is being made to search for dolphins.
Date: The date is entered as DAY/MONTH/YEAR
Sighting No.: This is entered serially for each day.
Photographic Coverage: The box to the right of "Platform" is for an indication of the quality of the photographic coverage of the group and is filled in during photo analysis. $1=$ Excellent: all dolphins in the group were photographed or otherwise positively identified; $2=$ Good: there are photographs of dolphins with distinctive fins that might be in the catalog, but because of the photo quality it is not possible to make appropriate comparisons with the catalog (e.g., it is possible the out-of-focus fins may already be in the catalog, but can't be certain); $3=$ Poor: photo coverage is known to be incomplete, because not all dolphins were approached for photographs, no photos were taken, film did not turn out, etc.
Time: Time the dolphins were first sighted and the time they were left or last seen.
Location: A description of the location of the initial sighting.
LOC: A 3-letter code based on physiographical features.
Latitude and Longitude: These coordinates are calculated from a chart or from a LORAN and entered as degrees, minutes, and $1 / 100$ ths of a minute.
Conditions and COND: This refers to meteorological and sea state conditions. They are described briefly, and entered as a code in the box. The condition codes are given on the attached page. A running \log of environmental conditions relative to survey effort (noted at each major change in conditions or significant location) are kept in a separate logbook.
Field Estimates: These nine values are entered in real time in the field. The number of TOTAL DOLPHINS includes all age classes in the sighting. The MINimum estimated number present, the MAXimum estimated number present. and the BESTestimate (between min and max) are entered. The BEST estimate is a point estimate, count, or midpoint of a range of estimates. The number of TOTAL CALVES includes all calves in the sighting, including young-of-the-year. The number of YOUNG OF YEAR are all of the calves born within the year. Typically, these are recognizable as newborns during the first six months of life.
Photo Analysis: These values are entered after completion of photographic analyses, and the Dolphins Sighted section at the bottom of the page. Pos IDs is the number of animals positively identified from photographs or in real time. Min not IDed is the MIN minus Pos IDs, or the minimum number of dolphins that were not identified. Max not IDed is the MAX minus the Pos IDs, or the maximum number of dolphins not identified. Revised MIN is the sum of the number of Pos IDs plus the Min not IDed. In most cases it will be the same as the MIN, except when the number of Pos 1Ds exceeds the MIN. Similarly, the Revised MAX will be the sum of the Pos IDs plus the Max not IDed. It will equal the MAX except in those cases where the Pos IDs exceed the MAX. The Final BEST estimate is the best point estimate, literal count, or midpoint of the Revised MIN and Revised MAX estimates. It will be about the same as the BEST field estimate except in those cases where Pos IDs exceed MIN, MAX, or BEST. Dolphins Sighted: Dolphins positively identified in real time in the field are listed by their Name and a "V" is entered under Conf. as a visual confirmation. Most identifications are made in the lab, when the name and four place identification Code are entered for each dolphin along with the Photographic Confirmations.
Photos: The photographer, roll and frame numbers.

$\geqslant \frac{2}{2}$	－	－	0	0	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	－	0	0	0	\bigcirc	－	0	－	0	N	－	0	N	N	N	0	0	\bigcirc	0	N	－	0	\bigcirc	\bigcirc	0	0
	－	\bigcirc	－	－	0	0	0	0	0	0	－	0	0	0	0	0	\bigcirc	O	\bigcirc	0	C	0	0	\bigcirc	\bigcirc	O	0	\bigcirc	N	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	0
ふ		0	－	\bigcirc	0	O	－	O	－	\bigcirc	\bigcirc	－	O	－	N	\bigcirc	－	\sim	N	－	O	N	N	N	0	\bigcirc	0	\bigcirc	N	－	0	N	\bigcirc	N	－
158	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	0	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	O	O	\bigcirc	0	0	－	0	0	0	0	0	0	\bigcirc	N	O	\bigcirc	－	0	N	O
0	－	す	才	大	寸	－	N	9	∞	\square	m	N	in	\cdots	∞	\cdots	m	N	$\stackrel{N}{N}$	m	\bigcirc	\sim	∇	a	N	\sim	N	N	N	\pm	m	a	N	n	\sim
	$-$	－	－	－	O－	\bigcirc	\bigcirc	\wedge	－	－	\rightarrow	0	m	－	－	0	N	－	－	N	N	0	－	m	－	v	N	N	N	\bigcirc	－	\bigcirc	n	N	\bigcirc
$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\|\hat{6}\|$	$\|\infty\|$	$\|\infty\|$	8	m	$\|\mathbf{o}\|$	$\underset{\nabla}{ }$	$\underset{N}{ }$	$\|m\|$	$\ln \mid$	∞	ब\|	$\left\lvert\, \begin{gathered} N \end{gathered}\right.$	∞	10	0	$\mid \infty$	8	$\|\underset{N}{\mathbf{N}}\|$	$\mid \infty$	\cdots	N	$\|n\|$	$\left\lvert\, \begin{gathered} N \\ 0 \end{gathered}\right.$	N	N	∞_{∞}^{∞}	앗	$\left\lvert\, \begin{gathered} \mathrm{m} \end{gathered}\right.$	0	0	\cdots	in	N	N
$\frac{2}{2} \underset{\sim}{2}$	$\left\lvert\, \begin{gathered} 9 \\ m \end{gathered}\right.$	$\left\|\begin{array}{l} \mathbf{j} \end{array}\right\|$	$\|\boldsymbol{N}\|$	m	$\left\lvert\, \begin{aligned} & 9 \\ & m \end{aligned}\right.$	$\|0\|$	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	$\left\lvert\, \begin{gathered} n \\ \hline \end{gathered}\right.$	$\left\lvert\, \begin{gathered} m \\ m \end{gathered}\right.$	\vec{F}	$\left\lvert\, \begin{aligned} & 9 \\ & \mid \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & m \end{aligned}\right.$	$\|\mathbf{m}\|$	$\|0\|$	$\begin{array}{\|c\|} n \\ m \end{array}$	$\begin{array}{\|c\|} \mathbf{N} \\ \hline \end{array}$	$\left\|\begin{array}{\|c} \mathbf{N} \end{array}\right\|$	$\stackrel{N}{N}$	$\left\|\begin{array}{l} n \\ n \end{array}\right\|$	\％	$\underset{\sim}{\mathcal{F}} \mid$	\hat{m}	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	$\left\|\begin{array}{c} 0 \\ m \end{array}\right\|$	N	N	F	$\underset{\sim}{*}$	\cdots	7	\％	$\vec{\nabla}$	$\stackrel{\text { \％}}{\sim}$	\％	\％
$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\|\infty\|$	$\|\infty\|$	$\|\infty\|$	$\|\infty\|$	$\|\infty\|$	$\mid \infty$	$\|\infty\|$	$\left\|\begin{array}{c} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	$\|\infty\|$	$\|\infty\|$	$\mid \infty$	$\|\infty\|$	$\|\infty\|$	$\|\infty\|$	$\mid \infty$	$\|\infty\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\|\infty\|$	$\mid \infty$	$\mid \infty$	$\|\infty\|$	$\|\infty\|$	$\|\underset{\infty}{\infty}\|$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	∞	∞	$\|\infty\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\|\infty\|$	N	－	N	∞
$\mid \underset{y}{s}$	－	N	\cdots	－	¢	m	$\stackrel{n}{n}$	∞	N	∞	N	∞	in	$\stackrel{\text { ® }}{ }$	$\underset{\nabla}{\infty}$	$\stackrel{\bigcirc}{\sim}$	∞	$\stackrel{N}{m}$	$\stackrel{\rightharpoonup}{N}$	$\underset{\sim}{\infty}$	$\binom{\infty}{n}$	0	$\stackrel{\rightharpoonup}{n}$	\cdots	\sim	m	$\underset{\sim}{N} \mid$	\sim	$\left\lvert\, \begin{aligned} & 0 \\ & \infty \end{aligned}\right.$	$\mid \infty$	N	∞	$\mid \infty$	\bigcirc	\cdots
$\underset{y}{z}$	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	n	\cdots	7	m	$\underset{\sim}{m}$	寸	\log	$\|n\|$	$\left\lvert\, \begin{gathered} m \\ \mid \end{gathered}\right.$	\％	F	$\underset{\sim}{N}$	F	$\mid 8$	$\stackrel{\infty}{\infty}$	$\mid \infty$	$\begin{array}{\|c} + \\ \sim \end{array}$	$\ln \mid$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \end{aligned}\right.$	$\|0\|$	$\left\|\begin{array}{l} \infty \\ n \\ n \end{array}\right\|$	$\ln \mid$	$\left\|\begin{array}{c} \infty \\ 1 \end{array}\right\|$	$\|n\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{n} \end{gathered}\right.$	n	$\|N\|$	\cdots	\cdots	7	m	m	n	N
F	N	N	$\xrightarrow{\text { N}}$	$\stackrel{\sim}{N}$	N	$\underset{\sim}{N}$	$\stackrel{N}{N}$	N	\cdots	$\stackrel{\sim}{N}$	N	N	N	$\stackrel{N}{N}$	\cdots	N	$\stackrel{N}{N}$	N	N	\cdots	N	N	N	$\stackrel{N}{N}$	N	N	\cdots	N	N	N	N	\cdots	N	N	$\stackrel{N}{N}$
$\underset{\underline{E}}{\underline{E}}$	$\stackrel{N}{N}$	$\left\|\begin{array}{l} - \\ \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{N}{N} \\ \underset{\sim}{2} \end{gathered}\right.$	$\frac{n}{n}$	$\begin{array}{c\|c} \infty & n \\ m & \vdots \\ m & 1 \end{array}$	$\stackrel{r}{\square}$	$\begin{gathered} m \\ \tilde{v} \\ \sim \end{gathered}$	$\begin{aligned} & n \\ & n \\ & n \end{aligned}$	$\begin{gathered} n \\ n \\ 0 \end{gathered}$	$\begin{array}{\|c} 7 \\ n \\ n \\ \hline \end{array}$	$\left[\left.\begin{array}{l} -1 \\ \mathbf{n} \\ \mathbf{n} \end{array} \right\rvert\,\right.$	$\left\|\begin{array}{l} \vec{j} \\ m \end{array}\right\|$	$\underset{\sim}{\exists}$	$\begin{array}{\|c} 0 \\ n \\ \square \end{array}$	$\begin{array}{\|c\|} \hline \frac{7}{n} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \sim \\ & n \end{aligned}$	$\begin{gathered} \sim \\ \underset{\sim}{*} \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathrm{N} \\ \underset{寸}{\mathrm{I}} \end{array}$	$\begin{aligned} & \mathrm{e} \\ & \underset{\sim}{n} \end{aligned}$	$\left(\begin{array}{l} \infty \\ 1 \\ \sim \\ \sim \end{array}\right)$	$\begin{array}{\|c} \mathbf{n} \\ \mathbf{m} \\ \mathbf{n} \end{array}$	寺	－	$\frac{n}{a}$	$\left\|\begin{array}{c} -\underset{\sim}{8} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & -- \\ & \hline- \\ & ल \end{aligned}$	$\frac{m}{\lambda}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$	$\left.\begin{gathered} m \\ n \\ n \\ n \end{gathered} \right\rvert\,$	∞ \sim \sim -1	$\begin{aligned} & \infty \\ & \underset{\sim}{a} \end{aligned}$	$\left.\begin{gathered} \nabla \\ \underset{\sim}{N} \end{gathered} \right\rvert\,$	$\left\|\begin{array}{l} n \\ n \\ \end{array}\right\|$	$\frac{\nabla}{\pi}$	a $\begin{aligned} & 9 \\ & 8 \\ & \vdots\end{aligned}$
$\underset{\sim}{E}$	$\frac{0}{\mathrm{~N}}$	$\left\|\begin{array}{l} 0 \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{n} \\ \end{array}\right\|$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~m} \end{aligned}$	$\frac{0}{7}$	$\begin{aligned} & \infty \\ & 7 \\ & \square \end{aligned}$	$\left\|\begin{array}{l} n \\ 0 \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{l} 9 \\ 9 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}\right.$	$\vec{N} \mid$	$\begin{array}{\|c} \mathbf{N} \\ \mathbf{N} \\ \hline \end{array}$	$\begin{gathered} n \\ n \\ n \end{gathered}$	$\left\|\begin{array}{c} m \\ \underset{\sim}{7} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\mathbf{N}}$	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$	$\left\|\begin{array}{l} n \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} n \\ \underset{\sim}{n} \end{array}\right\|$	$\left(\begin{array}{l} 0 \\ \underset{y}{n} \end{array}\right.$	$\left.\begin{array}{\|c} n \\ e \\ n \end{array} \right\rvert\,$	$\left.\frac{ \pm}{ \pm} \right\rvert\,$	$\underset{\sim}{9}$	$\left\|\begin{array}{l} m \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} n \\ n \\ n \end{array}\right\|$	$\begin{aligned} & \infty \\ & n \\ & n \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 10 \\ 0 \end{array}\right\|$	$\frac{n}{2}$	$\left\|\begin{array}{l} 9 \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{aligned} & 9 \\ & \mathrm{~N} \\ & \mathbf{N} \end{aligned}$	\exists	$\vec{\sim}$	$\left\|\begin{array}{l} n \\ \underset{y}{n} \end{array}\right\|$	$\underset{\underset{\sim}{J}}{\substack{2}}$	n n n
$\underset{\sim}{2}$	N	N	N	N	N	－	N	－	\sim	$-$	N	－	N	－	－	N	N	－	－	－	N	$-$	N	N	－	N	－	\square	\square	－	N	\square	－	－	N
	0	\exists	ㅇN	N	$\left\lvert\, \begin{gathered} m \\ N \end{gathered}\right.$	$\left\|\begin{array}{c} \mathbf{N} \end{array}\right\|$	$\underset{\sim}{n} \mid$	$\left\|\begin{array}{l} \infty \\ \sim \end{array}\right\|$	9	m	＊	（s）	\bigcirc	N	∞	a	－	N	아N	\cdots	$\underset{N}{N}$	$\left\lvert\, \begin{gathered} n \\ N \end{gathered}\right.$	N	아N	$\left\lvert\, \begin{gathered} N \\ N \end{gathered}\right.$	∇	－	인	\sim	－	－	N	m	－	in
$\stackrel{H}{\Sigma}$	0 9 8 8 ∞ ∞ 0 0	$\begin{aligned} & 9 \\ & 9 \\ & 8 \\ & \infty \\ & \infty \\ & 0 \\ & -1 \end{aligned}$	0 0 ∞ ∞ ∞ 0 0	9 8 8 ∞ 0 0 0	\mid	$\left\|\begin{array}{l} 9 \\ 9 \\ 8 \\ 8 \\ \infty \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & \hline 8 \\ & 8 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	9 8 8 0 ∞ 0 0	$\begin{aligned} & 9 \\ & 98 \\ & \hline 8 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{aligned} & 9 \\ & \hline 8 \\ & 8 \\ & \infty \\ & \infty \\ & 0 \end{aligned} \right\rvert\,$		0 9 8 8 0 0 0 -1	$\begin{aligned} & 9 \\ & 9 \\ & 8 \\ & 0 \\ & \infty \\ & 0 \\ & -1 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \hline 8 \\ 8 \\ \infty \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & 9 \\ & \hline 8 \\ & 8 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \hline 8 \\ & 8 \\ & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & \underset{N}{2} \\ & \mathbf{O} \\ & 8 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~N} \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \mathrm{~N} \\ & \mathbf{8} \\ & 8 \\ & \infty \\ & \infty \\ & { }_{2}^{2} \\ & \hline \end{aligned}$			$\left\|\begin{array}{l} \overline{2} \\ 8 \\ 8 \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\begin{aligned} & \vec{N} \\ & \underset{\sim}{2} \\ & \underset{\infty}{\infty} \\ & { }_{2}^{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & N \\ & N \\ & 8 \\ & 8 \\ & \infty \\ & \infty \\ & 0 \\ & -1 \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ 2 \\ 8 \\ 8 \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\begin{aligned} & n \\ & \aleph \\ & 8 \\ & 8 \\ & \infty \\ & \infty \\ & \infty \end{aligned}$			$\begin{aligned} & n \\ & \underset{\sim}{2} \\ & 8 \\ & \infty \\ & \infty \\ & 0 \\ & \end{aligned}$	$\left\lvert\, \begin{gathered} \sim \\ N \\ 2 \\ 0 \\ \infty \\ \infty \\ 0 \\ - \end{gathered}\right.$	$\left\|\begin{array}{l} n \\ \sim \\ 8 \\ 8 \\ \infty \\ \infty \\ 0 \\ 2 \end{array}\right\|$	$\left\|\begin{array}{l} n \\ N \\ 8 \\ 8 \\ \infty \\ \infty \\ 0 \\ 0 \end{array}\right\|$

	7	$\overrightarrow{7}$	F	\％	n	$\stackrel{\sim}{*}$	a_{m}	F	F	F	$\vec{\nabla}$	\％	\％	F	于	于	\cdots	\％	m	T	$\stackrel{\sim}{\square}$	\cdots	\sim	\％	$\stackrel{m}{7}$	N	m	F	m	N	F	\cdots	$\stackrel{m}{n}$	응	$\stackrel{\square}{3}$
	$\|\infty\|$	N	N	－	$\mid \infty$	$\|\infty\|$	∞	∞	$\left\lvert\, \begin{gathered} N \\ \infty \end{gathered}\right.$	∞	∞	$\|\infty\|$	$\|\infty\|$	$\mid \infty$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	$\|\infty\|$	N	$\mid \infty$	$\left\|\begin{array}{c} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	$\|\infty\|$	\cdots	∞	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	N	$\|\infty\|$	∞	∞	N	∞	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	∞	∞	∞
芯	$\mid \infty$	$\left\|\begin{array}{c} \infty \\ i n \end{array}\right\|$	$\|\infty\|$	$\mid \underset{N}{N}$	N	\bigcirc	$\underset{\infty}{\infty}$	8	\mathbb{N}	7	\ln	$\|\infty\|$	$\ln \mid$	－	앙	∞	$\|\mathbf{m}\|$	m	$\ln \mid$	$\underset{\sim}{m}$	n	$\|\underset{N}{N}\|$	$\left\|\begin{array}{c} \infty \\ 0 \end{array}\right\|$	$\ln \mid$	$\underset{\sim}{\sim}$	8	P\|	今	∞	\cdots	N	in	\bigcirc	m	∞
$\leq \frac{z}{\Sigma}$	\ln	n	\cdots	$\underset{m}{n} ;$	\cdots	\cdots	\vec{m}	\vec{n}	\cdots	\ln	$\underset{m}{N}$	\vec{m}	\vec{m}	\bar{m}	N	0	$\left\lvert\, \begin{aligned} & n \\ & m \end{aligned}\right.$	m	$\|\underset{m}{ }\|$	$\|n\|$	\pm	$\|\bar{m}\|$	\cdots	\mid	$\left\|\begin{array}{l} \mathbf{m} \end{array}\right\|$	$\left\lvert\, \begin{gathered} m \\ \square \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & a \\ & m \end{aligned}\right.$	\bar{m}	n	m	$\mid \infty$	\％	F	$\underset{\sim}{N}$	$\stackrel{\infty}{*}$
乌	$\|N\|$	$\stackrel{N}{N}$	N	\cdots	N	N	N	N	N	N	$\stackrel{N}{N}$	N	$\underset{N}{N}$	\cdots	N	$\stackrel{N}{N}$	$\stackrel{\sim}{N}$	N	$\underset{N}{N}$	N	$\stackrel{N}{N}$	N	N	$\stackrel{N}{N}$	$\stackrel{\text { N }}{ }$	N	N	N	N	N	N	N	N	N	N
$\sum_{i} \underset{\sim}{2}$	$\begin{aligned} & \infty \\ & n \\ & n \\ & n \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{N}{N} \end{aligned}\right.$	$\frac{\nabla}{n}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 0 \end{aligned}$	$\underset{\sim}{n}$	$\begin{aligned} & 0 \\ & 12 \\ & 18 \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{\underset{N}{N}} \\ \underset{\sim}{0} \end{array}\right\|$	$\begin{aligned} & \underset{\sim}{\underset{N}{N}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|c\|} 9 \\ n \\ n \\ n \end{array}$	$\begin{array}{\|l\|} \hline n \\ n \\ n \\ n \end{array}$	$\begin{array}{\|c} n \\ n \\ 0 \\ 0 \end{array}$	$\begin{gathered} n \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & m \\ & 8 \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ \underset{\sim}{2} \\ \hline \end{array}$	$\begin{aligned} & n \\ & \\ & \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 2 \\ -2 \end{array}$	$\begin{aligned} & 9 \\ & \mathbf{f} \end{aligned}$	$\begin{aligned} & \infty \\ & m \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} n \\ n \\ 0 \\ 0 \end{array}$	$\begin{array}{\|c} 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \approx \\ & \hline \end{aligned}$	$\frac{9}{7}$	$\frac{\ln }{n}$	$\begin{array}{\|c} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{array}$	$\left.\begin{array}{\|c\|} \infty \\ n \\ n \\ n \end{array} \right\rvert\,$	$\left\|\begin{array}{l} \infty \\ 0 \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\left\|\begin{array}{l} 9 \\ n \\ m \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ n \\ \mathbf{t} \end{array}\right\|$	$\begin{array}{\|} \vec{n} \\ n \\ n \end{array}$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{\infty} \\ \hline \end{array}\right\|$	$\begin{aligned} & n \\ & N \\ & \end{aligned}$	$\left\|\begin{array}{c} n \\ \sim \\ \sim \end{array}\right\|$	N \sim \sim \sim
E	\cdots	$\underset{\beth}{\mathrm{I}}$	$\left\|\begin{array}{c} \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathbf{N} \\ \underset{\sim}{2} \end{gathered}\right.$	$\underset{\sim}{n}$	$\left.\begin{array}{\|c} 0 \\ \dot{\sigma} \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} \infty \\ m \\ \underset{\sim}{n} \end{gathered}\right.$	$\left\|\begin{array}{c} \mathbf{J} \\ \mathbf{0} \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{N} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \Psi \\ i n \\ n \end{array}\right\|$	$\begin{gathered} 9 \\ 0 \\ 0 \end{gathered}$	$\begin{array}{\|c} 0 \\ \\ 0 \end{array}$	$\frac{m}{0}$	$\left\lvert\, \begin{aligned} & 9 \\ & \text { a } \\ & \hline \end{aligned}\right.$	$\underset{\square}{\Psi}$	$\frac{J}{\mathrm{~N}}$	$\left\|\begin{array}{c} 9 \\ \underset{\sim}{4} \end{array}\right\|$	$\begin{aligned} & \mathbf{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} 9 \\ 7 \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & \hat{m} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	Ξ	Ξ	$\left.\begin{array}{\|c} \infty \\ 0 \\ \underset{\sim}{2} \end{array} \right\rvert\,$	$\begin{aligned} & 9 \\ & \mathbf{c} \\ & 2 \end{aligned}$	$\underset{\sim}{\infty} \mid$	$\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}\right.$	$\left\|\begin{array}{l} \dot{+} \\ \stackrel{\rightharpoonup}{0} \\ \underset{\sim}{2} \end{array}\right\|$	$\frac{n}{N}$	$\begin{aligned} & \circ \\ & \mathrm{n} \\ & \mathrm{~m} \end{aligned}$	$\begin{array}{\|c} \mathrm{N} \\ \mathrm{~N} \\ \mathrm{n} \end{array}$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{n} \end{array}\right\|$	\mid	$\frac{\square}{n}$
		－	\rightarrow	N	N	N		－	1	N	N	－	－	－	N	－	－	N	N	N	N	－	－	－	N	N	N	N	N	\cdots	－	N	－	N	N
	N	∞	O	\cdots	\mid	N	$\stackrel{ \pm}{N}$	$\stackrel{n}{n}$	－	0	\exists	\pm	N	N	$\underset{N}{m}$	$\underset{N}{J}$	\sim	0	$\underset{\sim}{\infty}$	m	0	F	in	0	∞	9	N	Oi	$\underset{\sim}{n}$	$\|\underset{\sim}{ \pm}\|$	$\left\lvert\, \begin{gathered} 0 \\ N \end{gathered}\right.$	m	\checkmark	in	0
	$\begin{aligned} & n \\ & n \\ & 8 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} 1 \\ 2 \\ 8 \\ 0 \\ 0 \\ \infty \\ \infty \\ 0 \\ -1 \end{array}\right\|$	$\begin{aligned} & n \\ & \sim \\ & \mathbf{8} \\ & 0 \\ & \infty \\ & \infty \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & n \\ & 2 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 2 \end{aligned}\right.$	$\begin{aligned} & N \\ & N \\ & \mathbf{N} \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & \infty \\ & \sim \\ & \AA \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & - \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{\Omega} \\ \underset{8}{0} \\ \infty \\ \infty \\ 0 \end{array}\right\|$	∞ \sim \AA 8 ∞ ∞ 0 -1	$\begin{aligned} & 9 \\ & \underset{\lambda}{2} \\ & 8 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{8} \\ & 8 \\ & 8 \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	9 λ 2 0 0 ∞ 0 0 -1	$\begin{aligned} & 9 \\ & \widetilde{\sim} \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & 9 \\ & \underset{\sim}{2} \\ & 8 \\ & \infty \\ & \infty \\ & 0 \\ & - \end{aligned}$	0 λ 8 ∞ ∞ 0 0	$\begin{aligned} & 0 \\ & \underset{1}{1} \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{8} \\ & 0 \\ & \infty \\ & \infty \\ & \Omega \\ & 0 \end{aligned}$	19880929	$\begin{aligned} & 9 \\ & 2 \\ & 2 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{N}{2} \\ & 8 \\ & \infty \\ & \infty \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & 9 \\ & \underset{\sim}{2} \\ & 8 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 9 \\ & \underset{\sim}{2} \\ & 8 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$$	$\begin{aligned} & 0 \\ & \underset{\sim}{2} \\ & \underset{8}{2} \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{l\|} \hline 0 \\ \underset{m}{2} \\ \underset{\infty}{2} \\ \infty \\ 0 \\ 0 \end{array}$	$\left\|\begin{array}{c} 0 \\ \\ \hline \\ 0 \\ \infty \\ \infty \\ 0 \end{array}\right\|$			$\left\|\begin{array}{c} 0 \\ \\ \underset{\sim}{2} \\ \infty \\ \infty \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|l\|} \hline 0 \\ m \\ 2 \\ \infty \\ \infty \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \hline \\ & \\ & 0 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \hline \\ & \hline \\ & \hline \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\left.\begin{array}{\|l\|} \hline 0 \\ \\ \hline \end{array} \right\rvert\,$

\begin{tabular}{|c|}
\hline $$
\frac{1}{2} \text { z }
$$ \& \cdots \& $$
0
$$ \& N \& \％ \& ∞ \& \cdots \& \％ \& 7 \& $\underset{\sim}{\sim}$ \& $$
\left\lvert\, \begin{aligned}
& \mathrm{m} \\
& \mathrm{~m}
\end{aligned}\right.
$$ \& \％ \& $\underset{\sim}{\sim}$ \& $$
9
$$ \& 有 \& F \& ∞ \& n \& |en \& $$
\vec{\nabla}
$$ \& F \& $$
\left|\begin{array}{l}
\infty \\
\sim
\end{array}\right|
$$ \& m \& \cdots \& $$
|\hat{m}|
$$ \& $$
\left\lvert\, \begin{array}{|c|}
\hline 0 \\
m
\end{array}\right.
$$ \& $\underset{\sim}{\sim}$ \& \sim \& $\stackrel{\sim}{8}$ \& \sim \& F \& \＃ \& 7 \& \cdots \& \％ \& m

\hline \& ∞ \& ∞ \& － \& $$
\mid \infty
$$ \& \sim \& $$
\underset{\infty}{\sim}
$$ \& $$
\mid \underset{\infty}{N}
$$ \& $$
\mid \infty
$$ \& $$
\left\lvert\, \begin{aligned}
& N \\
& \infty
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\mid \infty
$$ \& $$
|\infty|
$$ \& ∞ \& $$
|\infty|
$$ \& $$
|\infty|
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
|\infty|
$$ \& $$
|\underset{\infty}{\infty}|
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
|\infty|
$$ \& $$
\mid \infty
$$ \& $$
|\infty|
$$ \& $$
\mid \infty
$$ \& N \& ∞ \& $$
\mid \infty
$$ \& $$
\underset{\infty}{\infty}
$$ \& $$
\mid \infty
$$ \& ∞ \& ∞ \& ∞ \& $$
\mid \infty
$$ \& ∞ \& ∞ \& ∞

\hline $$
\underset{y}{\leftarrow}
$$ \& N \& n \& － \& $$
10
$$ \& $\stackrel{\infty}{\sim}$ \& ㅇ \& $$
|0|
$$ \& $$
\left|\begin{array}{l}
\infty \\
n
\end{array}\right|
$$ \& N \& $$
\underset{\nabla}{ }
$$ \& $$
\ln \mid
$$ \& $$
\mathbb{N}
$$ \& $$
\left\lvert\, \begin{aligned}
& n \\
& n
\end{aligned}\right.
$$ \& un \& $$
\infty
$$ \& $$
\infty
$$ \& $$
\mid \infty
$$ \& $$
\ln
$$ \& O \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& n \\
& n
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \stackrel{1}{2}
\end{aligned}\right.
$$ \& $$
10
$$ \& $$
\left|\begin{array}{l}
\infty \\
n
\end{array}\right|
$$ \& $$
\left\lvert\, \begin{gathered}
\infty \\
\sim
\end{gathered}\right.
$$ \& $$
|\infty|
$$ \& $$
|n|
$$ \& $$
|\infty|
$$ \& $$
\operatorname{lo}
$$ \& $$
\ln
$$ \& $$
\infty
$$ \& \pm \& in \& ∞ \& $\stackrel{\sim}{n}$ \& $\underset{\sim}{\infty}$

\hline $$
\underset{y}{\mid}
$$ \& ＊ \& 今 \& N \& $$
|\underset{m}{ }|
$$ \& $$
\left\lvert\, \begin{gathered}
9 \\
\hline
\end{gathered}\right.
$$ \& $$
|\underset{m}{\mid}|
$$ \& $$
\left\lvert\, \begin{gathered}
n \\
m
\end{gathered}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& \mathrm{m} \\
& \mathrm{~m}
\end{aligned}\right.
$$ \& |im \& $$
9
$$ \& $$
\mid \infty
$$ \& $$
\bar{m}
$$ \& $$
\left\lvert\, \begin{gathered}
\mathbf{m}
\end{gathered}\right.
$$ \& $$
\infty
$$ \& $$
m
$$ \& $$
m
$$ \& m \& $$
\mid \infty
$$ \& |a \& $$
\underset{m}{ }
$$ \& B \& ＊ \& $$
\because
$$ \& $$
|n|
$$ \& $$
F
$$ \& $$
|\vec{m}|
$$ \& m \& $$
\underset{m}{ } \mid
$$ \& $$
|\underset{m}{ }|
$$ \& n \& $$
|\underset{m}{N}|
$$ \& $$
\left\lvert\, \begin{gathered}
n \\
m
\end{gathered}\right.
$$ \& m \& 은 \& \％

\hline $$
\underset{\substack{4 \\ \hline \\ \hline \\ \hline}}{ }
$$ \& \cdots \& N \& N \& N \& \cdots \& \cdots \& N \& $$
\mid N
$$ \& $$
|\underset{N}{N}|
$$ \& $$
|N|
$$ \& \cdots \& $$
\stackrel{N}{N}
$$ \& $$
\underset{N}{N}
$$ \& N \& $$
N
$$ \& $\stackrel{N}{N}$ \& \cdots \& $$
\stackrel{N}{N}
$$ \& N \& $$
\mid N
$$ \& $$
N \mid
$$ \& N \& N \& N \& N \& $\stackrel{N}{N}$ \& N \& N \& N \& N \& N \& $\stackrel{N}{N}$ \& N \& \cdots \& N

\hline $$
\sum_{i}{ }^{\underline{E}}
$$ \& $$
\begin{aligned}
& n \\
& n \\
& n \\
& \hline
\end{aligned}
$$ \& $$
\begin{array}{|c}
0 \\
0 \\
0
\end{array}
$$ \& $$
\begin{array}{|l|}
\hline 0 \\
\mathbf{T} \\
0
\end{array}
$$ \& $$
\underset{\sim}{N}
$$ \& $$
\begin{array}{|c|}
\hline 9 \\
n \\
n
\end{array}
$$ \& $$
\left\lvert\, \begin{gathered}
0 \\
n \\
n \\
n
\end{gathered}\right.
$$ \& $$
\underset{\sim}{7}
$$ \& $$
\left\lvert\, \begin{aligned}
& n \\
& n \\
& n
\end{aligned}\right.
$$ \& $$
\begin{array}{|c|}
\hline \\
\underset{\sim}{m} \\
\hline
\end{array}
$$ \& $$
\begin{aligned}
& n \\
& n \\
& n \\
& n
\end{aligned}
$$ \& $$
\frac{n}{0}
$$ \& $$
\begin{aligned}
& 0 \\
& \hline 0 \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& 8 \\
& 8 \\
& 9 \\
& \hline
\end{aligned}
$$ \& $$
\frac{7}{7}
$$ \& $$
\hat{\Xi}
$$ \& $$
\begin{array}{|c}
-\underset{n}{n} \\
\underset{-}{2}
\end{array}
$$ \& $$
\left|\begin{array}{l}
\vec{m} \\
\underset{\sim}{n}
\end{array}\right|
$$ \& $$
\begin{aligned}
& N \\
& N \\
& \underset{\sim}{n}
\end{aligned}
$$ \& $$
\left|\begin{array}{l}
9 \\
0 \\
9
\end{array}\right|
$$ \& $$
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& -1
\end{aligned}
$$ \& $$
\left.\frac{m}{n} \right\rvert\,
$$ \& $$

$$ \& $$
\left|\begin{array}{l}
9 \\
\mathbf{y} \\
0
\end{array}\right|
$$ \& $$
\begin{array}{|c}
0 \\
0 \\
0 \\
0
\end{array}
$$ \& $$
\left[\left.\begin{array}{c}
\infty \\
\sim \\
\infty \\
-
\end{array} \right\rvert\,\right.
$$ \& $$
\begin{array}{|c}
n \\
n \\
0
\end{array}
$$ \& $$
\left|\begin{array}{l}
0 \\
n \\
2
\end{array}\right|
$$ \& $$
\stackrel{N}{\dot{\nabla}}
$$ \& $$
\left|\begin{array}{l}
\ln \\
\sim \\
\end{array}\right|
$$ \& $$
\left\lvert\, \begin{gathered}
\underset{\sim}{n} \\
\underset{y}{2}
\end{gathered}\right.
$$ \& $$
\left.\begin{array}{|c}
0 \\
\underset{\sim}{n}
\end{array} \right\rvert\,
$$ \& $$
\left|\begin{array}{l}
\hat{N} \\
\underset{\sim}{2}
\end{array}\right|
$$ \& $$
\overrightarrow{\mathrm{N}} \mid
$$ \& － \& N

N

\hline \& $$
\begin{gathered}
n \\
n \\
n
\end{gathered}
$$ \& \[

\frac{m}{6}

\] \& \[

$$
\begin{aligned}
& \underset{N}{N} \\
& \underset{\sim}{\mathbf{O}}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& m \\
& m \\
& =
\end{aligned}
$$

\] \& \& \[

\left|$$
\begin{array}{c}
m \\
m \\
m
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{l}
0 \\
0 \\
\underset{\sim}{2}
\end{array}
$$\right|

\] \& \[

\mid

\] \& \[

\left.$$
\begin{array}{l|l}
n \\
N \\
m \\
m
\end{array}
$$ \right\rvert\,

\] \& \[

\left|$$
\begin{array}{c}
n \\
n \\
n
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{l}
2 \\
8 \\
-1
\end{array}
$$\right|

\] \& \[

\stackrel{\rightharpoonup}{\mathrm{N}}

\] \& \[

\left|$$
\begin{array}{c}
n \\
\infty \\
-\infty
\end{array}
$$\right|

\] \& \[

$$
\begin{aligned}
& 9 \\
& \underset{Z}{a} \\
&
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l}
\mathrm{N} \\
\underset{Z}{2} \\
\hline
\end{array}
$$

\] \& \[

\underset{\sim}{N}

\] \& \[

\left.\frac{\nabla}{\sqrt{2}} \right\rvert\,

\] \& \[

$$
\begin{aligned}
& n \\
& n \\
& n \\
& n
\end{aligned}
$$

\] \& \[

\left|$$
\begin{array}{l}
n \\
n \\
n \\
n
\end{array}
$$\right|

\] \& \[

\left\lvert\, $$
\begin{aligned}
& 9 \\
& \tilde{e} \\
& -
\end{aligned}
$$\right.

\] \& \[

$$
\begin{gathered}
\infty \\
\underset{\sim}{\infty}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c}
m \\
\underset{0}{6}
\end{array}
$$

\] \& \[

\left\lvert\, $$
\begin{array}{l|l}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$\right.

\] \& \[

\left|$$
\begin{array}{c}
o \\
\underset{\sim}{0} \\
0
\end{array}
$$\right|

\] \& \[

\mid

\] \& \[

\frac{7}{0}

\] \& \[

\underset{\exists}{\mathrm{N}}

\] \& \[

|\Xi|

\] \& \[

\left|$$
\begin{array}{l}
9 \\
n \\
n \\
n
\end{array}
$$\right|

\] \& \[

\binom{N}{\underset{N}{2}}

\] \& \[

\left|$$
\begin{array}{c}
m \\
\underset{\sim}{n}
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{l}
0 \\
\underset{\sim}{n} \\
\underset{\sim}{2}
\end{array}
$$\right|

\] \& \[

\left\lvert\, $$
\begin{gathered}
\infty \\
\hline 8 \\
\hline
\end{gathered}
$$\right.

\] \& \[

8
\] \& ¢

\sim
\sim

\hline $$
\begin{aligned}
& 0 \\
& 0 \\
& 2 \\
& 2
\end{aligned}
$$ \& N \& N \& － \& N \& N \& － \& N \& N \& $\underline{ }$ \& N \& N \& － \& N \& N \& $-$ \& N \& － \& － \& － \& － \& F－ \& N \& $-$ \& N \& N \& \cdots \& N \& N \& \& － \& \sim \& － \& N \& － \& －

\hline $$
\begin{array}{|c}
5 \\
5 \\
5 \\
5 \\
\hline
\end{array}
$$ \& \& σ \& N \& \[

\mid \underset{N}{N}

\] \& $\stackrel{ \pm}{\sim}$ \& \[

|n|

\] \& m \& 才 \& $\sim \infty$ \& ∞ \& a \& － \& － \& N \& \[

\stackrel{\otimes}{\mathrm{N}}

\] \& \cdots \& \[

\underset{N}{N} \mid ?

\] \& \[

\underset{N}{N} \mid \underset{~}{n}

\] \& \[

n

\] \& \[

\stackrel{0}{n}

\] \& 7 \& in \& \bigcirc \& \checkmark \& σ \& － \& N \& \[

\mid \underset{N}{ }
\] \& \cdots \& m \& － \& is \& － \& $\stackrel{\sim}{N}$ \& $\stackrel{\sim}{\sim}$

\hline \& 0
0
2
8
∞
∞
∞

0 \& $$
\left|\begin{array}{l}
0 \\
0 \\
2 \\
2 \\
0 \\
\infty \\
\infty \\
0 \\
0
\end{array}\right|
$$ \& \[

\left|$$
\begin{array}{l}
8 \\
8 \\
\infty \\
\infty \\
\infty \\
-
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{l}
\mathbf{8} \\
0 \\
\infty \\
\infty \\
\infty \\
\hline
\end{array}
$$\right|

\] \& | $\boxed{8}$ |
| :---: |
| | \& \[

$$
\begin{aligned}
& \mathbf{8} \\
& 8 \\
& \infty \\
& \infty \\
& \infty \\
& 0
\end{aligned}
$$

\] \& | 8 | |
| :--- | :--- |
| 8 | |
| $-\infty$ | |
| ∞ | |
| 0 | | \& -8

0
∞
∞
0

-1 \& | 8 | |
| :--- | :--- |
| 8 | |
| | |
| ∞ | |
| ∞ | | \& \[

$$
\begin{array}{l|l}
\hline 8 & \\
- & \\
\infty & \\
\infty & 0 \\
0 & 0
\end{array}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& \hline 8 \\
& 0 \\
& \infty \\
& \infty \\
& 0 \\
& -1
\end{aligned}
$$\right.

\] \& \[

\left|$$
\begin{array}{l}
\pm \\
8 \\
-\infty \\
\infty \\
0 \\
0
\end{array}
$$\right|

\] \& \& \[

\left|$$
\begin{array}{c}
\mathbf{8} \\
-\infty \\
\infty \\
\infty \\
0
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{l}
8 \\
8 \\
-\infty \\
\infty \\
0 \\
0
\end{array}
$$\right|

\] \& \[

\left.$$
\begin{aligned}
& \mathbf{~} \\
& \hline 8 \\
& -\infty \\
& \infty \\
& 0 \\
& 0
\end{aligned}
$$ \right\rvert\,

\] \& \[

\left|$$
\begin{array}{l}
7 \\
8 \\
-\infty \\
\infty \\
\infty \\
0
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{c}
8 \\
8 \\
\infty \\
\infty \\
0
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{c}
7 \\
8 \\
\infty \\
\infty \\
\infty \\
\sigma
\end{array}
$$\right|

\] \& \& \[

\left|$$
\begin{array}{l}
7 \\
8 \\
-8 \\
0 \\
\infty \\
0
\end{array}
$$\right|

\] \& \[

$$
\begin{aligned}
& \pm \\
& 8 \\
& \infty \\
& \infty \\
& 0 \\
& \infty
\end{aligned}
$$

\] \& \& \[

$$
\begin{array}{|c|}
\hline 8 \\
8 \\
\infty \\
\infty \\
\infty \\
2
\end{array}
$$

\] \& \[

\left.$$
\begin{aligned}
& 4 \\
& 8 \\
& 8 \\
& \infty \\
& \infty \\
& 0
\end{aligned}
$$ \right\rvert\,

\] \& \[

$$
\begin{aligned}
& n \\
& 8 \\
& \infty \\
& \infty \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

\left.$$
\begin{gathered}
n \\
8 \\
\infty \\
\infty \\
0 \\
0
\end{gathered}
$$ \right\rvert\,

\] \& \[

\left|$$
\begin{array}{c}
\infty \\
8 \\
-\infty \\
\infty \\
0 \\
0
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{c}
n \\
8 \\
\infty \\
\infty \\
\infty \\
0
\end{array}
$$\right|

\] \& \[

\left|$$
\begin{array}{l}
0 \\
8 \\
-\infty \\
\infty \\
0 \\
0
\end{array}
$$\right|

\] \& \[

$$
\begin{aligned}
& 0 \\
& 8 \\
& 6 \\
& \infty \\
& \infty \\
& 0
\end{aligned}
$$

\] \& \[

\left|$$
\begin{array}{l}
9 \\
8 \\
0 \\
\infty \\
\infty \\
0
\end{array}
$$\right|

\] \& \[

\mid

\] \& \[

\left\lvert\, $$
\begin{aligned}
& 0 \\
& \underline{0} \\
& \infty \\
& \infty \\
& \infty \\
& 0 \\
& 0
\end{aligned}
$$\right.

\] \& \[

\left|$$
\begin{array}{l}
0 \\
0 \\
0 \\
\infty \\
\infty \\
0
\end{array}
$$\right|
\]

\hline
\end{tabular}

$\geqslant \frac{\pi}{\infty}$	O	－	－	\bigcirc	0	0	0	\bigcirc	\bigcirc	0	－	N	－	－	\bigcirc	\bigcirc	0	m	\bigcirc	\bigcirc	0	n	0	\bigcirc	\bigcirc	n	－	0
		0	0	\bigcirc	0	\bigcirc	0	0	0	0	0	0	\bigcirc	0	\bigcirc	0	\bigcirc	N	\bigcirc	－	0	m	\bigcirc	0	\bigcirc	\bigcirc	0	0
$\sum \frac{\infty}{\infty}$		－	\cdots	－	N	N	0	\bigcirc	N	－	m	N	－	－	－	－	\bigcirc	m	0	\bigcirc	－	m	O	0	－	n	－	0
\mathcal{S}		\bigcirc	\bigcirc	0	0	\bigcirc	O	\bigcirc	N	\bigcirc	\bigcirc	\bigcirc	\cdots	－	－	\sim	\bigcirc	n	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc
0	N	－	0	N	in	∞	m	－	\cdots	寸	n	$\left\|\begin{array}{l} \infty \\ N \end{array}\right\|$	n	m	n	0	N	a	N	in	＋	0	N	于	F	n	$=$	in
		－	－	\bigcirc	0	N	－	0	a	N	a	N	n	N	－	＊	N	∞	v	in	－	m	－	寸	＋	N	\cdots	n
$\begin{aligned} & 2 \\ & 2 \\ & \hline \end{aligned}$	∞	$\|8\|$	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & n \end{aligned}\right.$	$\ln \mid$	$\left\lvert\, \begin{aligned} & n \\ & n \end{aligned}\right.$	$\|\mathrm{m}\|$	$\|N\|$	∞	∞	N	∞	$\|\hat{0}\|$	7	m	n	∞	m	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	∞	\％	\bigcirc	m	勺	$\stackrel{\sim}{*}$	N	0
$\frac{1}{2} \underset{C}{2}$	$\|\mathrm{m}\|$	$\mid \infty$	$\left\|\begin{array}{l} \infty \\ m \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ m \end{array}\right\|$	$\left\lvert\, \begin{gathered} n \\ \hline \end{gathered}\right.$	$\mid m$	$\left\lvert\, \begin{aligned} & \vec{m} \end{aligned}\right.$	8	$\left\lvert\, \begin{aligned} & a \\ & m \end{aligned}\right.$	∞	\ln	m	$于$	$\left\lvert\, \begin{aligned} & n \\ & m \end{aligned}\right.$	\cdots	n	～	\％	$\underset{\nabla}{\sim}$	m	\cdots	\ddagger	n	$\|\vec{~}\|$	ल	F	\cdots	\％
	$\|\infty\|$	N	N	$\|\infty\|$	$\|\infty\|$	N	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\|\infty\|$	$\|\infty\|$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\mid \infty$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\|\infty\|$	$\mid \infty$	$\underset{\infty}{N}$	$\|\infty\|$	N	∞	∞	N	N	∞	N	N	N	∞
\sum	m	\cdots	앙	\|잉	∞	$a \mid$	∞	N	$\left\lvert\, \begin{gathered} N \\ \infty \end{gathered}\right.$	∞	$\mid \infty$	\mid	$m \mid$	n	$\underset{\sim}{n} \mid$	$\|0\|$	∞	$\left\lvert\, \begin{aligned} & n \\ & \mid \end{aligned}\right.$	N	－	$\left\|\begin{array}{l} n \\ \mid \end{array}\right\|$	in	\bigcirc	\％	N	$\left\lvert\, \begin{gathered} n \\ \sigma \end{gathered}\right.$	N	∞
$\underset{\leq}{z}$	n	\％	F	于	$\left\|\begin{array}{l} N \\ n \end{array}\right\|$	$\ln \mid$	$\left\lvert\, \begin{aligned} & 9 \\ & 7 \end{aligned}\right.$	$\underset{n}{N}$	$\|\vec{m}\|$	$\operatorname{m} \mid$	$\|n\| m \mid$	\mid	$\bar{n} \mid$	$\left\lvert\, \begin{aligned} & N \\ & m \end{aligned}\right.$	m	$\left\|\begin{array}{c} N \\ m \end{array}\right\|$	\bar{n}	n	$\|\underset{m}{N}\|$	\bar{m}	$\underset{\sim}{m}$	$\|8\|$	18	$\left\lvert\, \begin{gathered} 9 \\ m \end{gathered}\right.$	\cdots	\cdots	m	\cdots
\leq	N	\cdots	$\stackrel{N}{N}$	N	\xrightarrow{N}	N	N	$\stackrel{N}{N}$	N	N	$\stackrel{N}{N}$	N	N	N	\cdots	$\stackrel{N}{N}$	N	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\sim}{\mathrm{N}}$	N	N	N	N	N	N	－	N	N
$\sum_{\underline{1}}^{\underline{E}}$	$\left\|\begin{array}{l} 0 \\ n \\ 0 \end{array}\right\|$	$\stackrel{N}{\mathrm{~N}}$	$\begin{aligned} & \hat{A} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{N}{2}} \end{aligned}$	$\left.\begin{aligned} & 0 \\ & n \\ & n \end{aligned} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ m \end{array} \right\rvert\,$	$\left.\begin{gathered} n \\ n \\ n \end{gathered} \right\rvert\,$	8	$\left\|\begin{array}{c} n \\ n \\ 0 \\ -1 \end{array}\right\|$	$\begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned}$	$\begin{array}{\|c} N \\ N \\ N \\ \hline \end{array}$	$\begin{aligned} & N \\ & N \\ & N \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & 9 \\ & \infty \end{aligned}\right.$	$\begin{array}{\|c} n \\ \underset{\sim}{n} \end{array}$	$\begin{aligned} & \mathrm{s} \\ & \mathrm{n} \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \\ \end{array}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline-1 \end{aligned}$	$\left\lvert\, \begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}\right.$	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$	$\left\|\begin{array}{l} n \\ 0 \\ 0 \\ -1 \end{array}\right\|$	$\begin{aligned} & \infty \\ & \ln \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline n \\ \underset{\sim}{n} \\ \hline \end{array}$	$\stackrel{\underset{\sim}{\sim}}{\underset{\sim}{7}}$	$\begin{gathered} 0 \\ \underset{\sim}{2} \\ \end{gathered}$	$\begin{aligned} & \hat{N} \\ & \hat{y} \\ & - \end{aligned}$	$\left\|\begin{array}{l} 8 \\ 0 \\ n \end{array}\right\|$	$\left.\begin{array}{\|l\|} \hat{r} \\ \hat{m} \end{array} \right\rvert\,$	0 10 \square
	$\stackrel{N}{\hat{0}}$	$\frac{n}{n}$	$\begin{aligned} & n \\ & n \\ & 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\Xi}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \underset{\sim}{2} \\ \underset{\sim}{4} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \sim \\ n \end{array}\right\|$	8	$\left\|\begin{array}{l} N \\ \underset{\sim}{8} \end{array}\right\|$	n	$\left\|\begin{array}{l} \infty \\ 8 \\ -1 \end{array}\right\|$	$\left\lvert\, \begin{gathered} \tilde{m} \\ \underset{-1}{2} \end{gathered}\right.$	$\left\|\begin{array}{c} \sim \\ \infty \\ -\infty \end{array}\right\|$	\pm	$\begin{aligned} & N \\ & \underset{\sim}{n} \end{aligned}$	\mid	$\begin{aligned} & \overline{8} \\ & \underline{0} \end{aligned}$	$\frac{r}{n}$	$\left\|\begin{array}{l} n \\ n \\ n \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathbf{y} \\ & 8 \end{aligned}\right.$	$\begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}$	$\frac{n}{2}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ m \\ m \end{array}\right\|$	$\left\|\begin{array}{c} m \\ \underset{\sim}{5} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & N \\ & N \\ & J \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ 2 \\ \end{array}\right\|$	$\stackrel{\square}{\sim}$
온	N	N	－	－	\square	N	\cdots	\square	N	N	\cdots	N	\square	－	N	N	－	－	－	－	N	－	N	－	－	N	N	，
$\begin{aligned} & \text { 準 } \\ & \stackrel{y}{5} \end{aligned}$	$\|N\|$	$\mid \infty$	Ј	n	0	N	a	－	N	악	N	$\underset{N}{n}$	\cdots	m	才	is	$\mid \infty$	\bigcirc	－	त	\cdots	N	n	$\|n\|$	$\|N\|$	$\stackrel{\infty}{\sim}$	＋	0
$\stackrel{\leftrightarrow}{\boxed{L}}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}\right.$	$\left\|\begin{array}{c} 0 \\ 0 \\ \infty \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 2 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ \infty \\ \infty \\ \alpha \\ - \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & -1 \end{aligned}\right.$	0 0 0 0 ∞ 0 0	$\left\|\begin{array}{l} 0 \\ 0 \\ \hline \infty \\ \infty \\ 0 \end{array}\right\|$		-1 0 ∞ ∞ 0 -1	$\begin{aligned} & \overline{2} \\ & 0 \\ & \infty \\ & \infty \\ & \infty \\ & -1 \end{aligned}$	$=$ 0 0 ∞ ∞ 0 0	$\begin{aligned} & \vec{z} \\ & 0 \\ & -\infty \\ & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & -1 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	-7 - -1 ∞ 0 -1	$\left\|\begin{array}{l} 7 \\ 0 \\ -\infty \\ \infty \\ -1 \end{array}\right\|$	$\left.\begin{aligned} & - \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	- 0 0 ∞ 0 0 0	- 0 0 ∞ ∞ 0	$\left\|\begin{array}{l} N \\ 0 \\ \infty \\ \infty \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} N \\ 0 \\ -\infty \\ \infty \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \sim \\ 0 \\ \infty \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} N \\ 0 \\ \infty \\ \infty \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & N \\ & 0 \\ & -\infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} N \\ 0 \\ \infty \\ \infty \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \sim \\ 0 \\ -\infty \\ \infty \\ \infty \\ 0 \end{array}\right\|$	N \vdots 0 ∞ ∞ 0	$\left\|\begin{array}{l} \sim \\ \underset{\sim}{N} \\ -\infty \\ \infty \\ \underset{\infty}{\infty} \end{array}\right\|$	N

DATE	SIGHT\#	$\begin{aligned} & \text { PIIOTO } \\ & \text { GRADE } \end{aligned}$	T1ME BEGIN	TIME END	LAT DEC	$\begin{aligned} & \text { IAT } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { IAT } \\ & \text { SEC } \end{aligned}$	LONG DEG	LONG MIN	LONG SEC	$\begin{gathered} \text { TOT } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { BEST } \end{aligned}$	CAIF POSII)	$\begin{aligned} & \text { CAII } \\ & \text { BESI } \end{aligned}$	$\begin{gathered} \text { YOY } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { YOY } \\ & \text { BES } \end{aligned}$
19890905	3	1	1452	1538	2^{-}	31	50	82	42	0	10	10	0	0	0	0
19890906	1 A	1	841	855	27	31	38	82	40	42	2	2	1	1	1	1
19890906	1 B	1	1122	1126	27	30	50	82	38	20	2	2	1	1	1	1
19890906	2	2	846	946	27	31	50	82	40	45	1	4	0	0	0	()
19890906	3	1	957	1100	27	31	33	82	39	75	10	19	1	2	0	1
19890906	4	1	1138	1208	27	30	0	82	36	28	3	4	1	1	0	0
19890906	5	1	1225	1250	27	30	75	82	38	28	4	5	1	2	0	1
19890906	6	1	1345	1405	27	31	33	82	43	22	14	15	2	2	0	0
19890907	1	1	922	1033	27	36	50	82	43	67	7	37	0	4	0	1
19890907	10	1	1430	1445	27	31	60	82	42	7	2	4	1	1	0	0
19890907	2	2	1052	1114	27	37	25	82	41	10	2	3	0	1	0	0
19890907	3	1	1123	1127	27	39	33	82	40	85	2	2	0	0	0	0
19890907	5	1	1212	1233	27	38	75	82	- 44	15	4	6	0	1	0	0
19890907	6	1	1302	1315	27	39	0	82	45	20	2	6	0	1	0	0
19890907	7	1	1321	1326	2^{-}	38	10	82	45	90	1	2	0	0	0	0
19890907	8	1	1349	1405	2^{-}	32	60	82	44	22	3	6	0	2	0	0
19890907	9	1	1413	1425	27	31	96	82	42	72	4	6	0	0	0	()
19890909	1	1	957	1005	27	33	67	82	38	17	1	2	0	0	0	0
19890909	2	1	1013	1028	2^{-}	34	67	82	38	17	3	7	0	0	0	0
19890909	3	1	1051	1107	27	36	67	82	34	75	0	4	0	0	0	0
19890909	4	2	1126	1130	2^{-}	41	10	82	31	83	1	2	0	1	0	0
19890909	5	1	1135	1146	27	42	8	82	31	80	1	3	0	0	0	0
19890909	6	1	1313	1352	27	46	30	82	28	80	4	5	0	1	0	0
19890909	7	2	1428	1453	27	42	15	82	31	82	6	17	0	3	0	2
19890909	8	2	1530	1600	27	37	15	82	39	25	1	4	0	2	0	0
19890909	9	1	1530	1600	27	37	2	82	38	62	2	3	1	1	0	0
19890911	1	2	949	957	2	37	67	82	40	97	5	12	0	4	0	1
19890911	10	2	1610	1633	2^{-}	35	72	82	36	83	2	9	1	2	0	0
19890911	11	2	1654	1704	2	31	55	82	41	92	7	10	0	0	0	0
19890911	2	2	1016	1029	2^{-}	37	82	82	40	63	3	4	0	0	0	0
19890911	3	1	1041	1056	2	40	35	82	40	90	1	2	0	0	0	0
19890911	4	2	1105	1133	2	41	62	82	39	52	3	6	1	3	0	0
19890911	5	1	1140	1211	2	41	75	82	38	48	0	5	0	2	0	0
19890911	6	2	1215	1236	2	41	95	82	37	92	1	6	0	2	0	1
19890911	8	2	1500	1526	2	38	73	82	34	8	5	8	0	1	0	0

	－	－	0	\bigcirc	0	\bigcirc	0	0	\bigcirc	0	O	\bigcirc	0	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	0	－	0	\bigcirc	0	0	\bigcirc	\bigcirc	－	0	－	0	0	4	0	0
	\bigcirc	0	－	0	0	\bigcirc	－	0	\bigcirc	\bigcirc	0	－	－	－	0	0	0	\bigcirc	\bigcirc	0	－	0	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	0	0	0	N	－	0
$\left\lvert\, \begin{gathered} \bar{\omega} \\ \dot{心} \end{gathered}\right.$	O	N	\bigcirc	－	\bigcirc	－	－	\bigcirc	0	\bigcirc	0	－	N	N	\bigcirc	0	\bigcirc	m	N	－	\bigcirc	0	\bigcirc	－	－	\bigcirc	－	N	N	\bigcirc	m	\bigcirc	in	\bigcirc	\bigcirc
$\begin{aligned} & 4 \\ & \frac{3}{5} \\ & \hline 8 \end{aligned}$	－	\bigcirc	\bigcirc	0	\bigcirc	0	－	0	\bigcirc	\bigcirc	\bigcirc	－	－	－	0	O	0	\bigcirc	N	$-$	0	0	\bigcirc	0	0	0	0	－	\bigcirc	$-$	0	\bigcirc	in	\bigcirc	0
$\underbrace{6}_{6}$	\sim	a	m	\bigcirc	\cdots	∞	\bigcirc	ナ	m	u	N	n	二	∞	m	∞	∞	\bigcirc	\bigcirc	ナ	N	∇	－	∇	N	N	\cdots	0	\cdots	9	\bigcirc	－	三	－	N
E	N	－	N	m	才	n	m	m	N	m	－	－	0	∞	n	0	m	N	n	T	v	v	$-$	N	－	N	\bigcirc	m	\cdots	∞	0	0	二	－	\bigcirc
$\left\lvert\, \begin{array}{ll} 0 & u \\ 2 & M \\ \hline & \\ \hline \end{array}\right.$	0	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	N	∞	\％	人	$\stackrel{\infty}{-}$	in	앙	0	\bigcirc	$\left\|\begin{array}{l} \infty \\ m \end{array}\right\|$	$\mid \sim 2$	$\mid \infty$	$0 \mid$	－	m	N	N	O	$\stackrel{\infty}{+}$	广	F	∞	$\|\infty\|$	1	in	N	N	O	\cdots	in	N	∞	안
	m	N	\％	o.	$\stackrel{\rightharpoonup}{m}$	$\underset{m}{\infty}$	∞	$\underset{\sim}{N}$	$\vec{\sigma}$	m	$\left\|\frac{10}{\square}\right\|$	\vec{m}	n	m	on	\vec{m}	n	\vec{m}	$\stackrel{p}{n}$	$\stackrel{\rightharpoonup}{m}$	N	\dot{m}	\vec{m}	\cdots	$\left\lvert\, \begin{aligned} & N \\ & m \end{aligned}\right.$	\dot{m}	(9)	Ψ	\sim	？	m	$\underset{\sim}{n}$	7	\％	\＃
$\underset{0}{2}$	\cdots	$\|\underset{\infty}{\infty}\|$	$\mid \infty$	$\|\underset{\infty}{\infty}\|$	$\|\sim\|$	$\mid \underset{\infty}{\infty}$	$\|\infty\|$	$\left\|\begin{array}{c} N \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} \sim \\ \infty \end{array}\right\|$	$\mid \underset{\infty}{\infty}$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\|\infty\|$	$\mid \infty$	$\mid \infty$	$\|\infty\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\mid \infty$	∞	$\|\infty\|$	∞	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	$\|\infty\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\underset{\infty}{\sim}$	∞	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	\cdots
E	θ	N	\hat{n}	N	N	∞	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	∞	¢	$\left\lvert\, \begin{aligned} & \infty \\ & \sim \end{aligned}\right.$	N	O	F	∞	\bigcirc	$\mid \infty$	∞	\bigcirc	0	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\|\infty\|$	m	$\left\lvert\, \begin{aligned} & N \\ & m \end{aligned}\right.$	$\mid \mathrm{r}$	¢	\sim	$\stackrel{\sim}{\sim}$	$\left\lvert\, \begin{aligned} & \infty \\ & n \\ & n \end{aligned}\right.$	\cdots	\bigcirc	$\mid \infty$	$\underset{\sigma}{\alpha}$	$\mid \infty$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \end{aligned}\right.$	\bigcirc
$\leq \frac{Z}{\Sigma}$	$\left\lvert\, \begin{aligned} & 0 \\ & 1 n \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ i n \end{array}\right\|$	$\mid 6$	$\left\|\begin{array}{l} \infty \\ \nabla \end{array}\right\|$	$\|n\|$	m	$\begin{gathered} n \\ m \end{gathered}$	$\begin{gathered} n \\ m \end{gathered}$	0	$\vec{m} \mid$		$\underset{n}{N}$	\dot{m}	$\left\lvert\, \begin{gathered} N \\ m \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \infty \\ m \end{gathered}\right.$	$\left\lvert\, \begin{gathered} a \\ m \end{gathered}\right.$	$\%$	$\underset{\nabla}{n}$	m	$\vec{m} \mid$	$\left\lvert\, \begin{array}{r} n \\ m \end{array}\right.$	$\left\|\begin{array}{l} \infty \\ m \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & m \end{aligned}\right.$	$\mid ?$	$\left\lvert\, \begin{gathered} n \\ \nabla \end{gathered}\right.$	$\left\|\begin{array}{l} \infty \\ m \end{array}\right\|$	m	m	$\mid ?$	$\stackrel{a}{m}$	\vec{n}	n	m	9
\leqslant	N	N	N	$\stackrel{N}{N}$	N	N	N	N	N	N	N	$\stackrel{N}{N}$	\cdots	$\stackrel{\sim}{\sim}$	\cdots	N	N	N	N	N	\cdots	N	N	N	N	N	N	N	N	$\stackrel{N}{N}$	$\stackrel{N}{N}$	N	N	N	\cdots
$\sum_{i} \sum_{i}$	$\begin{aligned} & 0 \\ & n \\ & n \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} n \\ n \\ n \\ n \end{array}\right\|$	$\left\lvert\, \begin{gathered} 9 \\ \dot{\sim} \\ \underset{\sim}{2} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} N \\ \underset{\sim}{2} \\ \mid-1 \end{gathered}\right.$	$\left.\left\lvert\, \begin{array}{l} \sim \\ \underset{\nabla}{\sim} \end{array}\right.\right\}$	$\left\|\begin{array}{l} 2 \\ \hat{2} \\ \alpha \\ \alpha \end{array}\right\|$	\mid	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \cdots \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{c} n \\ 0 \\ \end{array}\right\|$	$\underset{\sim}{\infty}$	$\left(\begin{array}{l} \mathrm{N} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{array}\right.$	$\left\lvert\, \begin{gathered} n \\ \underset{\sim}{n} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{l} 0 \\ m \\ n \\ n \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{\sim}{8} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left(\begin{array}{l} n \\ \underset{\sim}{n} \\ n \end{array}\right)$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{\sim}{2} \\ & \underset{2}{ } \end{aligned}\right.$	$\left\|\begin{array}{l} \bar{\sim} \\ \overline{-} \end{array}\right\|$	$\left\|\begin{array}{l} N \\ \underset{\sim}{2} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ m \\ m \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & n \\ & -1 \end{aligned}$	$\left\|\begin{array}{c} n \\ \sim \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 9 \\ & ल \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} n \\ 0 \\ 0 \end{array}\right\|$	8	8	$\left\lvert\, \begin{aligned} & \underset{\sim}{\underset{~}{2}} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & -1 \\ & \end{aligned}$	$\left\lvert\, \begin{aligned} & 7 \\ & +\infty \end{aligned}\right.$	$\left\|\begin{array}{l} 10 \\ 10 \\ \infty \end{array}\right\|$	n
	$\begin{aligned} & 0 \\ & \underset{n}{n} \\ & \end{aligned}$	$\begin{aligned} & 8 \\ & 0 \\ & \hdashline \end{aligned}$	$\left\|\begin{array}{c} 0 \\ 0 \\ \pm \\ \mathbf{y} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \underset{O}{8} \\ -1 \end{array}\right\|$	$\begin{gathered} \underset{\sim}{0} \\ m \\ m \end{gathered}$	O	$\frac{-}{6}$	$\left\|\begin{array}{l} \dot{7} \\ 0 \\ \hdashline \end{array}\right\|$	$\left.\begin{array}{\|c} 9 \\ ल \\ \sigma \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{\sim}{2} \\ & \mathbf{O} \end{aligned}\right.$	$\left\|\begin{array}{l} \dot{\prime} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\frac{ \pm}{0}$	$\left(\begin{array}{l} \infty \\ \square \end{array}\right.$	$\left.\left\lvert\, \begin{array}{l} \mathbf{J} \\ \\ \underset{\sim}{2} \end{array}\right.\right\}$	$\left\|\frac{a}{n}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \cdots \\ & \vec{m} \\ & \hline \end{aligned}\right.$	$\stackrel{r}{\mathcal{J}}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$	$\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{n} \\ & \sim \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}\right.$	$\left\|\begin{array}{c} o \\ \vdots \\ m \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{gathered} 8 \\ 7 \\ - \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \mathbf{N} \\ \mathbf{m} \\ \underset{\sim}{n} \end{gathered}\right.$	$\frac{r}{0}$	$\left\|\begin{array}{l} \sigma \\ n \\ \sigma \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \mathbf{2} \\ \mathbf{0} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{\infty} \end{array}\right\|$	$\begin{aligned} & 9 \\ & 0 \\ & \underset{y}{2} \end{aligned}$	$\left\|\begin{array}{c} 0 \\ \underset{\sim}{\sim} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \underset{\infty}{\infty} \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ \infty \\ \infty \end{array}\right\|$	$\stackrel{0}{10}$
		N	－	\sim	N	－	\sim	N	\sim	－	N	－	－	－	－	N	\sim	N	\sim	－	－	－	－	－	－	－	N	\sim	－	N	－	－	－	－	\sim
E	$\mid \underset{N}{N}$		$\underset{N}{n}$	9	m	${ }^{0}$	in	\bigcirc	-1	N	\cdots	n	才	\cdots	$\|\underset{N}{N}\|$	$\left\lvert\, \begin{aligned} & n \\ & \sim \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \pm \\ & N \end{aligned}\right.$	$\|\ln \|$	$\underset{\sim}{0}$	－	N	m	＊	u	0	N	N	\cdots	N	m	T	in	－	N	N
$\stackrel{\leftrightarrow}{\Sigma}$	$\begin{aligned} & \hat{N} \\ & \hat{2} \\ & 8 \\ & 8 \\ & \infty \\ & 2 \\ & 2 \end{aligned}$			$\left.\begin{array}{\|c\|} \hline \\ \hat{N} \\ 2 \\ 2 \\ \infty \\ 0 \\ 0 \end{array} \right\rvert\,$			$\begin{aligned} & n \\ & \hat{n} \\ & \mathbf{8} \\ & \mathbf{8} \\ & \infty \\ & 0 \\ & -1 \end{aligned}$	$\begin{array}{\|c\|} \hline 1 \\ \hat{2} \\ 2 \\ 8 \\ \infty \\ 0 \\ -1 \end{array}$				$\left\|\begin{array}{l} \infty \\ n \\ 2 \\ 8 \\ 0 \\ \infty \\ 2 \\ -1 \end{array}\right\|$	$\begin{aligned} & \infty \\ & \underset{\alpha}{\infty} \\ & 8 \\ & 8 \\ & \infty \\ & 0 \\ & -1 \end{aligned}$			2 $\underset{\sim}{2}$ 2 8 ∞ 0 -1	2 $\stackrel{1}{2}$ 8 8 ∞ 0 -1	9 0 ∞ 0 -1		$\left\lvert\, \begin{gathered} 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ \infty \\ 0 \\ -1 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline \\ 2 \\ \mathbf{8} \\ \mathbf{8} \\ \infty \\ 0 \\ -1 \end{array}$		$\begin{array}{\|c\|} \hline 8 \\ 0 \\ \gamma_{1} \\ 8 \\ \infty \\ 0 \\ -1 \end{array}$			$\left.\begin{array}{\|l\|} \hline 0 \\ 2 \\ 2 \\ 0 \\ \infty \\ 0 \end{array} \right\rvert\,$	$$	$\begin{array}{\|c\|} \hline 2 \\ 8 \\ 0 \\ 8 \\ \infty \\ 0 \\ \hline \end{array}$	$$	$$	$$	$\begin{aligned} & \sim \\ & 8 \\ & \underset{8}{8} \\ & \infty \\ & 0 \\ & -1 \end{aligned}$	$\begin{array}{\|c} 1 \\ 8 \\ \mathbf{8} \\ \infty \\ 0 \\ - \\ \hline \end{array}$	$\left.\begin{array}{\|c\|} \hline 0 \\ 0 \\ -8 \\ \infty \\ -1 \end{array} \right\rvert\,$	\square 8 0 0 0 -

Sighting Data 1989																
DATE	SIGITT\#	PIIOTO GRADE	$\begin{gathered} \text { TMME } \\ \text { BEGIN } \end{gathered}$	T1ME END	$\begin{aligned} & \text { LAT } \\ & \text { DEG } \end{aligned}$	$\begin{aligned} & \mathrm{IAT} \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { IAT } \\ & \text { SEC } \end{aligned}$	LONG DEG	LONG MIN	LONG SEC	$\begin{array}{\|c\|} \hline \text { TO'T } \\ \text { POSID } \end{array}$	$\begin{gathered} \text { TOT } \\ \text { BEST } \end{gathered}$	CALF POSII)	$\begin{aligned} & \text { CAIF } \\ & \text { BESI } \end{aligned}$	$\begin{gathered} \text { YOY } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { YOY } \\ & \text { BI:SI } \end{aligned}$
19891009	24	1	1507	1516	27	34	83	82	46	23	3	3	0	0	0	0
19891009	25	2	1522	1533	27	35	35	82	46	23	2	3	0	0	0	0
19891009	27	1	1623	1633	27	32	88	82	42	75	3	3	0	0	0	0
19891009	28	2	1640	1707	27	32	73	82	42	35	3	4	0	0	0	0
19891010	3	1	1010	1019	27	33	50	82	40	18	2	2	0	0	0	0
19891010	4	2	1033	1052	27	34	83	82	43	17	4	9	0	3	0	0
19891010	6	2	1125	1137	27	34	13	82	44	90	1	2	0	1	0	0
19891010	7	1	1152	1159	27	31	88	82	42	98	1	1	0	0	0	0
19891010	8	1	1201	1203	27	31	73	82	42	70	1	1	0	0	0	0

DATE	SIGHT\#	PHOTO GRADE	$\begin{aligned} & \text { TTME } \\ & \text { BEGIN } \end{aligned}$	T1ME END	$\begin{aligned} & \text { IAT } \\ & \text { DEG } \end{aligned}$	LAT MIN	$\begin{aligned} & \text { LAT } \\ & \text { SEC } \end{aligned}$	$\begin{gathered} \text { LONG } \\ \text { DEG } \end{gathered}$	$\begin{gathered} \text { LONG } \\ \text { MIN } \end{gathered}$	LONG SEC	$\begin{gathered} \text { TOT } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { BEST } \end{aligned}$	$\begin{aligned} & \text { CAIF } \\ & \text { POSID } \end{aligned}$	CAIF BEST	$\begin{gathered} \text { YOY } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { YOY } \\ & \text { BEST } \end{aligned}$
19900905	6	1	1239	1241	27	31	45	82	44	45	1	1	0	0	0	0
19900905	7	2	1351	1414	27	36	5	82	46	25	3	4	0	0	0	0
19900905	8	1	1438	1500	27	36	30	82	44	0	1	1	0	0	0	0
19900906	1	1	904	935	27	31	5	82	42	7	6	9	1	1	0	0
19900906	51	2	905	920	27	31	45	82	42	0	1	3	0	1	0	0
19900907	1	2	1042	1103	27	41	43	82	38	30	1	4	0	2	0	2
19900907	3	2	1254	1356	27	44	30	82	36	15	1	5	0	1	0	1
19900907	4	1	1404	1420	27	43	47	82	36	58	4	6	0	0	0	0
19900907	5	2	1456	1517	27	46	15	82	37	5	3	6	0	0	0	0
19900907	52	2	948	957	27	32	25	82	42	40	2	5	0	0	0	0
19900907	56	1	1305	1325	27	33	54	82	38	15	5	6	0	0	0	0
19900907	57	1	1336	1343	27	35	0	82	37	8	1	1	0	0	0	0
19900907	58	2	1432	1450	27	43	15	82	30	40	1	3	0	1	0	0
19900907	6	1	1354	1610	27	40	41	82	37	43	1	2	0	0	0	0
19900907	60	1	1601	1626	27	37	35	82	38	38	6	10	0	3	0	1
19900909	10	2	1619	1720	27	39	28	82	36	0	7	13	0	1	0	1
19900909	2	1	1023	1033	27	38	15	82	34	5	3	4	1	1	0	0
19900909	3	1	1041	1103	27	38	20	82	33	43	2	2	0	0	0	0
19900909	4	1	1121	1138	27	41	30	82	32	0	7	9	0	0	0	0
19900909	5	1	1212	1219	27	42	40	82	31	10	1	2	0	1	0	0
19900909	51	2	937	1019	27	37	4	82	35	20	2	4	0	0	0	0
19900909	52	2	1030	1134	27	37	30	82	35	5	7	21	0	8	0	2
19900909	53	1	1213	1250	27	35	15	82	39	34	9	10	0	0	0	0
19900909	54	1	1329	1352	27	32	5	82	35	54	2	2	0	0	0	0
19900909	55	2	1410	1440	27	30	32	82	35	21	0	3	0	1	0	1
19900909	6	1	1225	1240	27	42	43	82	31	25	2	2	0	0	0	0
19900909	7	1	1358	1409	27	46	37	82	31	18	1	1	0	0	0	0
19900909	8	2	1411	1443	27	46	48	82	31	17	5	8	0	1	0	0
19900909	9	2	1520	1553	27	41	41	82	33	10	9	17	0	6	0	1
19900910	1	1	1240	1300	27	31	50	82	42	19	4	4	1	1	0	0
19900910	2	2	1315	1348	27	32	15	82	45	5	1	4	0	2	0	0
19900910	3	1	1410	1430	27	33	29	82	44	10	0	1	0	0	0	0
19900910	4	1	1446	1410	27	35	15	82	45	5	25	45	1	15	0	5
19900910	5	1	1715	1720	27	33	55	82	43	40	1	1	0	0	0	()

交		0	－	\bigcirc	0	0	n	\bigcirc	－	－	－	－	0	0	－	－	\bigcirc	－	0	－	－	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	－	－	\bigcirc	$=$	0	－	－	$=$	0
$\left\lvert\, \begin{array}{ll} \geqslant & \bar{\omega} \\ 0 & 0 \\ 0 \end{array}\right.$	\bigcirc	－	\bigcirc	0	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	0	0	－	\bigcirc	\bigcirc	\bigcirc	0	O	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	－	0	$=$	0	0
家	0	－	N	－	0	\bigcirc	N	\bigcirc	－	in	T	n	－	\bigcirc	N	N	－	－	\bigcirc	－	\bigcirc	\bigcirc	－	0	0	－	0	\bigcirc	n	－	－	－	－	－	0
灾	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	－	－	0	\bigcirc	－	0
$\underset{\sim}{\square}$	ナ	N	T	－	\bigcirc	N	$\|\stackrel{\rightharpoonup}{\mathrm{m}}\|$	∞	N	∞	N	N	in	0	$+$	∞	N	n	N	n	N	\bigcirc	－	\pm	\cdots	n	n	n	∞	N	in	\sim	二	\sim	\pm
5	n	－	0	－	n	－	N	－	\bigcirc	2	in	\bigcirc	\bigcirc	T	0	－	T	O	0	－	\bigcirc	n	\bigcirc	n	－	－	N	0	n	－	＋	－	v．	－	in
	in	$\operatorname{lin} \mid$	in	안	∞	$\stackrel{\sim}{\sim}$	$\|n\|$	은	10	\％	∞	\bigcirc	\bigcirc	0	$\left\|\begin{array}{l} n \\ n \end{array}\right\|$	N	\cdots	$\left\|\begin{array}{c} \infty \\ N \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ n \end{array}\right\|$	$\left\|\begin{array}{l} n \\ 10 \end{array}\right\|$	\bigcirc	\pm	2	2	$\ln \mid$	\cdots	0		앙	－	\bigcirc	$\stackrel{\sim}{2}$	\sim	$\stackrel{\square}{+}$	$\stackrel{\infty}{\sim}$
	7	士	M	$\left\|\begin{array}{c} \infty \\ n \end{array}\right\|$	∞	$\underset{\sim}{\mathcal{N}}$	$\|7\|$	？	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	\bar{n}	$\bar{\sim}$	n	$\left\|\begin{array}{c} \infty \\ n \end{array}\right\|$	F	$\left\lvert\, \begin{aligned} & \pm \\ & \end{aligned}\right.$	$\|n\|$	$\frac{10}{7}$	\sim	$\stackrel{\sim}{\sim}$	$\|\vec{N}\|$	$\|n\|$	N	N	N	于	¢	$\underset{\sim}{N}$	$\left\lvert\, \begin{gathered} 7 \\ 7 \end{gathered}\right.$	$\underset{\sim}{T}$	\mathcal{F}	$\underset{\sim}{N} \mid$	9	\cdots	$\stackrel{\sim}{n}$	\sim
$\begin{aligned} & 0 \\ & Z \\ & 0 \\ & \hline \end{aligned}$	\mid	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\mid \infty$	$\underset{\infty}{\sim}$	∞	$\left\|\begin{array}{c} \infty \\ \infty \end{array}\right\|$	\mid	$\left\|\begin{array}{c} \infty \\ \infty \end{array}\right\|$	$\mid \infty$	$\mid \infty$	$\|\infty\|$	$\mid \infty$	∞	$\mid \infty$	$\|\infty\|$	∞	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	∞	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\underset{\infty}{\infty}$	$\mid \infty$	$\underset{\infty}{\infty}$	$\underset{\infty}{N}$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	∞	$\underset{\infty}{N}$	$\|\infty\|$	\cdots	∞	∞	∞
¢	안	\bigcirc	\％	$\operatorname{in} \mid$	\sim	\sim	$\stackrel{\square}{\sim}$	\cdots	n	10	\cdots	$\left\lvert\, \begin{aligned} & n \\ & N \end{aligned}\right.$	$\stackrel{\text { N }}{\sim}$	$\stackrel{\sim}{\sim}$	$\|0\|$	$\stackrel{\sim}{+}$	$\mid 0$	－	\bigcirc	$\operatorname{lo} \mid$	\ln	寺	아N	0	∞	∞	\sim	in	N	N	m	in	0	C_{\sim}^{4}	\cdots
$\stackrel{z}{\Sigma}$	$\|n\|$	앙	$\mid \underset{N}{N}$	$\|n\|$	\sim	\bar{n}	\cdots	\ln	$\|n\|$	示	N	$\dot{N} \mid$	N	I	示	n	∞	$\|n\|$	0	in	$\left\lvert\, \begin{gathered} N \\ n \end{gathered}\right.$	lon	lo	0	n	\cdots	\pm	\cdots	士	$\stackrel{\sim}{\sim}$	\bar{n}	$\stackrel{N}{\sim}$	\sim	さ	\pm
\mid	\cdots	N	$\stackrel{N}{N}$	N	N	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\text { N }}{\sim}$	N	N	$\stackrel{N}{N}$	N	N	N	N	N	$\stackrel{N}{N}$	$\stackrel{N}{2}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	N	$\left\lvert\, \begin{aligned} & n \\ & \end{aligned}\right.$	$\stackrel{N}{N}$	\cdots	\cdots	N	N	$\stackrel{\sim}{N}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{N}{N}$	N	\cdots	N
$\sum_{\underline{2}}^{2} \sum_{3}$	$\frac{n}{n}$	$\left\|\begin{array}{l} 0 \\ \mathbf{N} \\ \mathbf{I} \end{array}\right\|$	$\frac{\overline{1}}{10}$	$\left.\begin{gathered} 7 \\ n \\ n \\ n \end{gathered} \right\rvert\,$	$$	$\begin{aligned} & \infty \\ & \underset{\sim}{\tau} \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \underset{N}{\infty} \\ \infty \end{array}\right\|$	$\left.\begin{array}{\|c} n \\ \lambda \\ \lambda \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & n \\ & 0 \\ & -1 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathcal{N} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & \Psi \\ & \underset{\sim}{J} \\ & \sim \end{aligned}$	$\begin{aligned} & a \\ & \\ & m \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \pm \end{array}\right\|$	$\begin{aligned} & \vec{n} \\ & \underset{\sim}{n} \end{aligned}$	$\left\lvert\, \begin{aligned} & -2 \\ & 0 \\ & 0 \end{aligned}\right.$	$\left.\frac{ \pm}{n} \right\rvert\,$	$\begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}$	$\left.\begin{gathered} T \\ n \\ n \\ \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{aligned} & \vec{r} \\ & \hat{0} \\ & \underline{2} \end{aligned}\right.$	$\left\|\begin{array}{c} \sim \\ \underset{\sim}{2} \end{array}\right\|$	$\frac{\infty}{ \pm}$	$\begin{aligned} & \vec{n} \\ & n \\ & -1 \end{aligned}$	$\underset{\sim}{\square}$	$\left\lvert\, \begin{aligned} & \mathbf{~} \\ & \mathbf{~} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \hat{e} \\ & \mathbf{o} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{O} \end{aligned}\right.$	$\begin{array}{\|c} 10 \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \\ & -1 \end{aligned}$	$\begin{gathered} 9 \\ 10 \\ m \\ 1 \end{gathered}$	$\left.\begin{aligned} & 8 \\ & n \\ & n \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} n \\ n \\ n \\ n \end{array}\right\|$	$\begin{aligned} & n \\ & \underset{n}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\left(\left.\begin{array}{l} \pm \\ \underset{\sim}{N} \end{array} \right\rvert\,\right.$	$\begin{aligned} & n \\ & 0 \\ & 2 \\ & - \end{aligned}$	足
$\underset{\sim}{\underset{\sim}{x}}$	$\left\|\begin{array}{c} \underset{\sim}{n} \\ \sim \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{\sim}{1} \end{aligned}\right.$	$\begin{aligned} & \stackrel{n}{ \pm} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{gathered} \vec{T} \\ \text { n } \end{gathered}$	$\frac{0}{0}$	$\begin{aligned} & 0 \\ & \mathbf{T} \\ & \mathbf{N} \end{aligned}$	$\left\|\begin{array}{l} 10 \\ N \\ \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \cdots \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \mathbf{5} \\ & 8 \\ & -1 \end{aligned}\right.$	$\left\|\begin{array}{l} 9 \\ 0 \\ - \end{array}\right\|$	$\begin{aligned} & n \\ & n \\ & \end{aligned}$	$\begin{gathered} \pm \\ n \\ m \end{gathered}$	$\left\|\begin{array}{l} 0 \\ 0 \\ n \\ n \end{array}\right\|$	$\begin{aligned} & n \\ & \sim \\ & \sim \end{aligned}$	$\left\|\begin{array}{l} 0 \\ \hat{N} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 8 \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & n \\ & \mathbf{n} \\ & n \end{aligned}$	$\left\|\begin{array}{l} n \\ n \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right\|$	$\frac{2}{2}$	\mid	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{1}{2} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left.\begin{array}{\|c} \infty \\ n \\ n \\ n \end{array} \right\rvert\,$	$\left\|\begin{array}{l} n \\ \Xi \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 1 \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ a \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \ln \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 2 \\ n \\ \end{array}\right\|$	$\left\|\begin{array}{l} \underset{N}{n} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \\ & n \end{aligned}\right.$	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$	$\frac{10}{6}$	$\begin{aligned} & n \\ & n \\ & n \end{aligned}$	－
	－	－	－	－	N	N	N	N	－	－	－	－	－	N	－	－	－	－	－	－	－	N	－	－	N	N	－	N	N	－	\sim	－	\sim	N	N
翌	$\|\vec{n}\|$	n	$\|\overrightarrow{i n}\|$	$\left\|\begin{array}{l} n \\ i n \end{array}\right\|$	0	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	0	－	in	\mid	$\left\|\begin{array}{l} \infty \\ \underset{n}{n} \end{array}\right\|$	\|피	$\left\lvert\, \begin{aligned} & n \\ & n \end{aligned}\right.$	$\|0\|$	$\|\bar{n}\|$	$\left\lvert\, \begin{gathered} \infty \\ n \end{gathered}\right.$	$\|\vec{n}\|$	$\ln \mid$	$\bar{n} \mid$	$\left\|\begin{array}{c} N \\ n \end{array}\right\|$	$\left\|\begin{array}{\|c\|} 2 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 1 n \end{array}\right\|$	\hat{n}	∞	$\vec{n} \mid$	$\left\lvert\, \begin{aligned} & 2 \\ & i n \end{aligned}\right.$	n	$\left\lvert\, \begin{aligned} & 10 \end{aligned}\right.$	$\hat{i n}$	$\left.\begin{array}{l} \infty \\ i \end{array}\right)$	$\ln 18$	응	T	号	0
巨			$\begin{aligned} & 0 \\ & \stackrel{0}{8} \\ & 8 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$		$\begin{aligned} & 0 \\ & 6 \\ & 8 \\ & 8 \\ & 8 \\ & 6 \\ & 0 \end{aligned}$		$\left.\begin{array}{\|c\|} \hline \\ \stackrel{8}{8} \\ 8 \\ 8 \\ 0 \\ -2 \end{array} \right\rvert\,$	$\begin{aligned} & \overline{-} \\ & \stackrel{\rightharpoonup}{8} \\ & 8 \\ & \mathbf{8} \\ & -1 \end{aligned}$	- - 8 8 6 -	- - 8 8 8 $\stackrel{\rightharpoonup}{6}$ -	$\begin{aligned} & \vec{~} \\ & \stackrel{\rightharpoonup}{8} \\ & \stackrel{8}{6} \\ & \stackrel{\rightharpoonup}{9} \end{aligned}$	- 8 8 8 8 6		$=$ \vdots 8 8 \vdots \vdots	- 8 8 8 8 9	$\begin{array}{\|c} n \\ \stackrel{n}{8} \\ 8 \\ 8 \\ \underset{C}{2} \\ \underset{\sigma}{2} \\ \hline \end{array}$	2 2 8 8 8 0	n 0 0 8 0 0 0	$\begin{aligned} & \hline \\ & \hline 8 \\ & 8 \\ & 8 \\ & 8 \\ & \underset{-}{2} \end{aligned}$	7 8 8 8 8 -2 -2	7 8 8 8 \vdots		$\left.\begin{aligned} & \frac{1}{0} \\ & 8 \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$		$\begin{array}{\|c\|} \hline n \\ \hline 8 \\ 8 \\ 8 \\ 6 \\ 6 \\ \hline \end{array}$				n 0 8 8 0 0 -	n 8 8 8 0 2 2	$\left.\begin{array}{\|l\|} \hline n \\ 8 \\ 8 \\ 0 \\ 0 \end{array} \right\rvert\,$		$\begin{aligned} & n \\ & \hline 8 \\ & 8 \\ & 8 \\ & \underset{8}{6} \end{aligned}$		n 9 8 8 8 -8

Sighting Data 1990

DATE	SIGHT\#	PHOTO GRADE	$\begin{aligned} & \hline \text { TIME } \\ & \text { BEGIN } \end{aligned}$	$\begin{aligned} & \text { TIME } \\ & \text { END } \end{aligned}$	$\begin{aligned} & \text { LAT } \\ & \text { DEG } \end{aligned}$	$\begin{aligned} & \text { LAT } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { LAT } \\ & \text { SEC } \end{aligned}$	$\begin{aligned} & \text { LONG } \\ & \text { DEG } \end{aligned}$	LONG MIN	$\begin{gathered} \text { LONG } \\ \text { SEC } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { BEST } \end{aligned}$	$\begin{aligned} & \text { CAIF } \\ & \text { POSID } \end{aligned}$	$\begin{aligned} & \text { CAIF } \\ & \text { BEST } \end{aligned}$	$\begin{gathered} \text { YOY } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \hline \text { YOY } \\ & \text { BEST } \end{aligned}$
19901013	52	1	1119	1158	27	43	55	82	29	0	1	6	0	3	0	0
19901013 1	53	1	1225	1244	27	45	0	82	28	15	1	1	0	0	0	0
19901013	54	2	1358	1408	27	36	40	82	34	30	1	3	0	0	0	0
19901013	55	2	1425	1449	27	36	10	82	36	15	4	7	0	3	0	0
19901013	56	1	1543	1620	27	33	20	82	38	30	7	9	2	4	0	1
19901013	57	1	1655	1703	27	32	5	82	44	0	2	2	0	0	0	0
19901014	51	1	1345	1411	27	44	89	82	30	66	4	7	0	0	0	0
19901014	52	2	1416	1429	27	44	87	82	29	90	6	13	0	0	0	0
19901014	53	1	1556	1611	27	38	33	82	33	94	1	2	0	0	0	0
19901014	55	1	1656	1658	27	31	48	82	41	96	4	4	1	1	0	0

	O	0	n	－	\bigcirc	－	0	\bigcirc	－	0	\bigcirc	\bigcirc	N	\bigcirc	0	－	\bigcirc	0	－	0	\bigcirc	m	－	\bigcirc	－	0	－	\bigcirc	c	\sim	0	0
12	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	0	\bigcirc	\bigcirc	0	\bigcirc	－	\bigcirc	0	\bigcirc	0	\bigcirc	0	－	\bigcirc	\bigcirc	0	\bigcirc	－	－	$=$	－	$=$
$\underset{\sim}{\infty}$	\checkmark	0	∞	\bigcirc	－	0	N	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	m	\bigcirc	$-$	0	N	m	\bigcirc	－	N	N	0	\cdots	0	－	\bigcirc	0	－	－	N
$\left\lvert\, \begin{array}{ll} \dot{4} & 9 \\ \dot{S} \\ 8 \end{array}\right.$	0	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	$-$	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	0	－	0	\sim	0	O	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	－	0
$\stackrel{9}{9}$	0	m	\cdots	in	12	∞	∞	0	च	N	N	m	in	\bigcirc	－	a	N	N	\bigcirc	N	m	$\underset{N}{0}$	0	ナ	0	m	N	악	士	J	m	∞
5	0	n	三	寸	\bigcirc	∞	N	in	N	N	－	－	\bigcirc	in	－	a	N	\bigcirc	in	\bigcirc	－	\bigcirc	n	N	m	－	－	0	N	∞	n	0
$\left\lvert\, \begin{array}{ll} 0 & 0 \\ 2 & 4 \\ 0 & 0 \end{array}\right.$	$\begin{gathered} \mathbf{j} \\ m \end{gathered}$	101	$\left\|\begin{array}{l} \infty \\ 0 \end{array}\right\|$	$\pm \mid$	∞	$\overline{i n}$	$\left\|\begin{array}{c} \infty \\ \sim \end{array}\right\|$	$\|n\|$	$\left\lvert\, \begin{aligned} & n \\ & n \end{aligned}\right.$	\％	0	$\left\lvert\, \begin{aligned} & n \\ & 0 \end{aligned}\right.$	0	$\left\|\begin{array}{l} \infty \\ n \\ n \end{array}\right\|$	$\|n\|$	\ln	$\underset{\sim}{N}$	π	$\underset{\sim}{N}$	$\left\lvert\, \begin{aligned} & 9 \\ & \AA \end{aligned}\right.$	$\hat{\sigma}$	0	∞	m	n	三	$\left\lvert\, \begin{array}{\|c\|} \infty \\ \infty \end{array}\right.$	\cdots	N	N	9	\pm
	$\|n\|$	$\left\|\begin{array}{c} \mathbf{m} \end{array}\right\|$	$\ln \mid$	$\underset{m}{\infty}$	F	$\left\lvert\, \begin{gathered} N \\ m \end{gathered}\right.$	ol,	$\left\lvert\, \begin{gathered} 0 \\ \hline \end{gathered}\right.$	\％	$\underset{~}{\infty}$	m	N	$\underset{\sim}{N} \mid$	J	$\left\lvert\, \begin{aligned} & m \\ & 7 \end{aligned}\right.$	\cdots	N	－	m	$\left\lvert\, \begin{gathered} n \\ m \end{gathered}\right.$	m	$\underset{\sim}{N}$	\sim	\sim	す	\cdots	N	\pm	m	\vec{m}	N	F
$\left\lvert\, \begin{array}{ll} 0 & y \\ 2 & 3 \\ 0 & 0 \end{array}\right.$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	N	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\underset{\infty}{\infty}$	$\underset{\infty}{\infty}$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	∞	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\mid \infty$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\|\infty\|$	$\mid \infty$	$\|\infty\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\mid \infty$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	$\mid \infty$	N	N	N	N
$\leq u$	$\|\hat{a}\|$	m	$\left\lvert\, \begin{aligned} & 0 \\ & N \end{aligned}\right.$	$\begin{gathered} \pm \\ n \end{gathered}$	$\stackrel{\rightharpoonup}{\mathbf{v}}$	$\hat{0}$	$\vec{\sigma}$	\bigcirc	∞	0	$\hat{0}$	$\bar{\sigma}$	二	in	－	－	n	0	$\mid n$	$\left\lvert\, \begin{aligned} & \pi \\ & \sigma \end{aligned}\right.$	0	in	$\left\lvert\, \begin{aligned} & T \\ & 0 \end{aligned}\right.$	－	$\left\|\begin{array}{l} N \\ 0 \end{array}\right\|$	$\|\infty\|$	$\|n\|$	\bigcirc	∞	n	\cdots	σ
$\leq \underset{\sum}{Z}$	$\mid \stackrel{N}{\mathrm{f}}$	$\left\|\begin{array}{c} \infty \\ \infty \end{array}\right\|$	0	F	च	$\left\|\begin{array}{c} 7 \\ n \end{array}\right\|$	\cdots	\cdots	$\begin{array}{\|c\|} N \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} n \\ m \end{gathered}\right.$	$\left\|\begin{array}{l} \infty \\ m \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \nabla \end{aligned}\right.$	m	$\left\|\begin{array}{c} m \\ m \end{array}\right\|$	$\begin{gathered} N \\ N \end{gathered}$	$\begin{gathered} N \\ n \end{gathered}$	\vec{n}	$\left.\begin{gathered} \infty \\ m \end{gathered} \right\rvert\,$	9	n	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & i n \end{aligned}\right.$	$\left\|\begin{array}{c} \infty \\ m \end{array}\right\|$	$\left\lvert\, \begin{gathered} a \\ m \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \infty \\ m \end{gathered}\right.$	$\left\|\begin{array}{c} \infty \\ m \end{array}\right\|$	n	$\underset{\nabla}{ }$	$\underset{7}{n}$	σ	F	\bar{m}
$\leqslant \begin{gathered} 4 \\ S \end{gathered}$	$\stackrel{N}{N}$	N	\cdots	\cdots	$\underset{N}{N}$	N	$\underset{N}{N}$	$\underset{N}{N}$	$\stackrel{N}{N}$	$\underset{N}{N}$	\cdots	$\stackrel{\sim}{N}$	$\stackrel{N}{N}$	N	$\stackrel{N}{N}$	$\stackrel{n}{n} \underset{ }{n}$	$\underset{N}{N}$	\hat{N}	$\left\|\begin{array}{r} n \\ N \end{array}\right\|$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\stackrel{N}{N}$	N	N	$\stackrel{\sim}{\sim}$	\cdots	$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{\sim}{\sim}$	$\stackrel{N}{N}$
$\frac{\square}{\Sigma}$	$\begin{aligned} & \infty \\ & \underline{7} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & m \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathbf{n} \\ & \underset{\sim}{4} \end{aligned}\right.$	$\begin{aligned} & 9 \\ & N \\ & n \\ & n \end{aligned}$	$\stackrel{N}{\mathbf{O}}$	$\begin{array}{\|c} \infty \\ \underset{\sim}{2} \\ -1 \end{array}$	$\begin{aligned} & 9 \\ & \underset{\sim}{4} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{N}{\sim}$	$\left\lvert\, \begin{gathered} \mathrm{N} \\ \underset{\sim}{\mathrm{O}} \end{gathered}\right.$	$$	$$	$\begin{aligned} & 0 \\ & n \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \\ & 7 \end{aligned}$	$\left\|\begin{array}{l} n \\ n \\ n \\ n \end{array}\right\|$	$\begin{array}{\|c} n \\ \stackrel{n}{n} \\ \stackrel{n}{2} \end{array}$	$\frac{n}{6}$	$\begin{aligned} & \infty \\ & n \\ & 0 \end{aligned}$	$\stackrel{\infty}{\square}$	$\begin{aligned} & n \\ & \hdashline \\ & \hdashline \end{aligned}$	$\begin{aligned} & 9 \\ & m \\ & \vdots \end{aligned}$	$\stackrel{\substack{\mathrm{N}}}{\underset{\sim}{\mathrm{~N}}}$	$\left\|\begin{array}{l} J \\ 0 \\ 0 \end{array}\right\|$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & \infty \\ & n \\ & n \\ & \sim \end{aligned}$	$\left.\frac{n}{n} \right\rvert\,$	$\begin{aligned} & n \\ & m \\ & n \end{aligned}$	$\left\lvert\, \begin{gathered} { }_{2} \\ \AA \end{gathered}\right.$	$\underset{\sim}{\beth}$	$\stackrel{n}{\sim}$	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	－	¢
	$\stackrel{8}{0}$	$\left\lvert\, \begin{gathered} N \\ \mathbf{n} \\ \sim \\ \sim \end{gathered}\right.$	$\left\|\begin{array}{l} \infty \\ \cdots \\ \bar{n} \end{array}\right\|$	$\begin{aligned} & \circ \\ & \underset{y}{2} \\ & \text { N } \end{aligned}$	8	$\begin{array}{\|c} m \\ n \\ n \\ n \end{array}$	$\begin{array}{\|c} N \\ N \\ \underset{N}{2} \end{array}$	$\begin{aligned} & 0 \\ & \infty \\ & \nabla \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} m \\ m \\ m \\ m \end{array}\right\|$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{m}{\mathbf{v}}$	$\left\|\begin{array}{l} \mathbf{o} \\ \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} N \\ \underset{\sim}{\sigma} \end{array}\right\|$	$\left.\begin{gathered} n \\ 0 \\ n \end{gathered} \right\rvert\,$	$\left.\begin{array}{\|c} n \\ 5 \\ n \end{array} \right\rvert\,$	$\begin{gathered} \infty \\ \pm \\ n \\ n \end{gathered}$	$\begin{gathered} N \\ \sim \\ - \\ \hline \end{gathered}$	$\begin{aligned} & N \\ & \underset{\sim}{N} \end{aligned}$	$\left\|\begin{array}{l} \infty \\ 0 \\ -1 \end{array}\right\|$	$\left\|\begin{array}{l} n \\ \end{array}\right\|$	$\begin{gathered} N \\ \underset{N}{N} \end{gathered}$	$\stackrel{\mathrm{N}}{\mathrm{Y}}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{gathered} 0 \\ \underset{\sim}{N} \\ \underset{\sim}{1} \end{gathered}$	$\begin{array}{\|c} n \\ \mathrm{e} \\ \hline-2 \end{array}$	$\left\|\begin{array}{c} \mathbf{~} \\ n \\ - \end{array}\right\|$	$\vec{a} \mid$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	＋	$\begin{aligned} & J \\ & \vec{~} \\ & m \end{aligned}$	$\begin{aligned} & m \\ & n \\ & n \end{aligned}$	\cdots
	N	－	N	－	－	－	－	N	－	－	－	N	－	－	－	－	－	－	－	－	N	－	N	N	－	N	N	\square	N	－	－	N
考	－	$\stackrel{m}{0}$	N	m	in	$\begin{array}{r} 7 \\ n \end{array}$	$\underset{-}{ \pm}$	N	0	$\underset{\sim}{\infty}$	0	$\left\|\begin{array}{l} \infty \\ 0 \end{array}\right\|$	\cdots	N	\cdots	\pm	\sim	才	in	$\left\lvert\, \begin{gathered} N \\ n \end{gathered}\right.$	m	$\left\|\begin{array}{r} 7 \\ i n \end{array}\right\|$	0	－	∞	a	잉	in	$\begin{aligned} & n \\ & n \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathrm{J} \\ & \hline \end{aligned}\right.$	$\underset{\sim}{\mathrm{O}}$	0
$\stackrel{\leftrightarrow}{\stackrel{\rightharpoonup}{*}}$		2 8 8 8 2 2 -			$\begin{aligned} & m \\ & 8 \\ & 8 \\ & \underset{\sigma}{6} \\ & \sigma \end{aligned}$	$\begin{aligned} & m \\ & 8 \\ & 8 \\ & 0 \\ & \sigma \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{8} \\ & \dot{\theta} \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \square \\ & 8 \\ & 8 \\ & - \\ & - \\ & -1 \end{aligned}$	$\left\|\begin{array}{l} n \\ 8 \\ 8 \\ \vdots \\ \underset{\Omega}{2} \end{array}\right\|$	$\left\|\begin{array}{l} n \\ 8 \\ 8 \\ 0 \\ \underset{\sim}{2} \\ 0 \end{array}\right\|$		$\left\|\begin{array}{l} n \\ \stackrel{n}{8} \\ \frac{8}{8} \\ \end{array}\right\|$		n 0 0 0 0 0 2 -2		$\begin{aligned} & n \\ & \stackrel{8}{0} \\ & \stackrel{8}{8} \\ & 2 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & 9 \\ & 9 \end{aligned}$	n 8 0 0 \vdots 2 2	n 8 8 0 \vdots 8 0		n 8 8 8 \vdots 2	n 8 8 0 0 \vdots 0	n 0 8 0 0 0 0	$\begin{aligned} & n \\ & 8 \\ & 0 \\ & -8 \\ & 2 \end{aligned}$			0 $\stackrel{\circ}{8}$ - - \vdots - -		0 8 8 8 - - -	19910906	0 8 8 8 2 2	

\begin{tabular}{|c|}
\hline $$
\geq
$$ \& － \& 0 \& － \& m \& \bigcirc \& \bigcirc \& － \& \bigcirc \& \bigcirc \& N \& － \& \bigcirc \& N \& \bigcirc \& \bigcirc \& O \& 0 \& \bigcirc \& \bigcirc \& \bigcirc \& O \& N \& 0 \& － \& － \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& 0 \& N \& －

\hline $$
2
$$ \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& － \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& － \& \bigcirc \& \bigcirc \& O \& \bigcirc \& \bigcirc \& 0 \& － \& 0 \& － \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& － \& 0 \& － \& －

\hline \& \bigcirc \& N \& \bigcirc \& \bigcirc \& N \& O \& 0 \& \bigcirc \& \bigcirc \& N \& N \& \bigcirc \& ∞ \& \bigcirc \& － \& \bigcirc \& － \& 0 \& N \& \bigcirc \& 0 \& ヲ \& N \& ＊ \& － \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& 0 \& n

\hline \& － \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& O \& \bigcirc \& 0 \& \bigcirc \& N \& N \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& \bigcirc \& 0 \& \bigcirc \& \bigcirc \& \bigcirc

\hline $$
6
$$ \& N \& 0 \& in \& $$
\left|\begin{array}{l}
\infty \\
\sim
\end{array}\right|
$$ \& ∇ \& － \& N \& m \& \bigcirc \& $$
0
$$ \& 二 \& N \& N \& in \& N \& \square \& n \& N \& ∞ \& ∞ \& \bigcirc \& \bigcirc \& N \& \bigcirc \& 0 \& m \& N \& ＊ \& m \& ∞ \& ∞ \& N

\hline $$
-\frac{9}{6}
$$ \& － \& ＊ \& in \& u \& N \& \bigcirc \& － \& m \& － \& \bigcirc \& a \& \bigcirc \& N \& 寸 \& 0 \& $-$ \& N \& N \& の \& F \& ∞ \& \bigcirc \& \bullet \& 0 \& N \& m \& N \& N \& m \& N \& \bigcirc \& m

\hline \& $$
N
$$ \& $$
\underset{n}{n}
$$ \& $$
\underset{\sim}{N}
$$ \& en \& 合| \& in \& $$
\left\lvert\, \begin{aligned}
& m \\
& \hline
\end{aligned}\right.
$$ \& $$
\stackrel{\rightharpoonup}{N}
$$ \& $$
\begin{aligned}
& n \\
& \sigma
\end{aligned}
$$ \& $$
\left\lvert\, \begin{gathered}
\pi \\
6
\end{gathered}\right.
$$ \& $$
\infty
$$ \& $$
\ln
$$ \& ∞ \& $$
0
$$ \& $$
\left|\begin{array}{l}
0 \\
\mathrm{~N}
\end{array}\right|
$$ \& $$
n
$$ \& $$
\left\lvert\, \begin{aligned}
& 7 \\
& n
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& 9 \\
& 1
\end{aligned}\right.
$$ \& ∞ \& $$
\left\lvert\, \begin{aligned}
& N \\
& \infty
\end{aligned}\right.
$$ \& $$
n
$$ \& \bigcirc \& \bigcirc \& ∞ \& $$
|N|
$$ \& $$
\left\lvert\, \begin{gathered}
N \\
N
\end{gathered}\right.
$$ \& $$
19
$$ \& $$
\left\lvert\, \begin{gathered}
\infty \\
\infty
\end{gathered}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& \mathbf{m}
\end{aligned}\right.
$$ \& N \& ∞ \& \bar{N}

\hline \& $$
\mid \underset{N}{2}
$$ \& \％ \& $$
\stackrel{\rightharpoonup}{m}
$$ \& $$
n
$$ \& $$
\underset{N}{N}
$$ \& $$
|m|
$$ \& $$
\underset{m}{n}
$$ \& $$
\underset{m}{N}
$$ \& $$
\left\lvert\, \begin{gathered}
0 \\
m
\end{gathered}\right.
$$ \& $$
m
$$ \& $$
\vec{m}
$$ \& $$
\left.\begin{array}{|c}
\infty \\
\sim
\end{array} \right\rvert\,
$$ \& $$
\left|\begin{array}{l}
0 \\
\mathrm{~N}
\end{array}\right|
$$ \& $$
\underset{N}{N}
$$ \& $$
\left|\begin{array}{c}
0 \\
m
\end{array}\right|
$$ \& $$
\left\lvert\, \begin{gathered}
n \\
m
\end{gathered}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& \mathbf{m}
\end{aligned}\right.
$$ \& $$
\dot{m}
$$ \& $$
\left\lvert\, \begin{aligned}
& \mathbf{e} \mid
\end{aligned}\right.
$$ \& $$
n
$$ \& F \& $$
\mid \underset{\sim}{N}
$$ \& F \& $$
|\underset{F}{ }|
$$ \& $$
\ln
$$ \& $$
\frac{10}{7}
$$ \& $$
\underset{\sim}{N}
$$ \& $$
\underset{\sim}{m}
$$ \& $$
|0|
$$ \& $$
\left\lvert\, \begin{aligned}
& 9 \\
& m
\end{aligned}\right.
$$ \& m \& \cdots

\hline \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\underset{\infty}{N}
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\mid
$$ \& $$
\mid \infty
$$ \& $$
\infty
$$ \& $$
|\infty|
$$ \& $$
\infty
$$ \& $$
\left|\begin{array}{l}
N \\
\infty
\end{array}\right|
$$ \& $$
\mid \infty
$$ \& $$
|\infty|
$$ \& $$
\left\lvert\, \begin{aligned}
& N \\
& \infty
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& N \\
& \infty
\end{aligned}\right.
$$ \& $$
\mid \infty
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{gathered}
N \\
\infty
\end{gathered}\right.
$$ \& $$
\mid \infty
$$ \& $$
\mid \infty
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\infty
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& \infty
\end{aligned}\right.
$$ \& $$
\left|\begin{array}{l}
\infty \\
\infty
\end{array}\right|
$$ \& $$
\mid \infty
$$ \& $$
\left\lvert\, \begin{aligned}
& N \\
& \infty
\end{aligned}\right.
$$ \& $$
\left|\begin{array}{l}
\infty \\
\infty
\end{array}\right|
$$ \& $$
\left|\begin{array}{l}
N \\
\infty
\end{array}\right|
$$ \& $$
\left\lvert\, \begin{aligned}
& N \\
& \infty
\end{aligned}\right.
$$ \& $\stackrel{\sim}{\infty}$ \& N

\hline $$
\stackrel{\psi}{\zeta}
$$ \& ∞ \& $$
\stackrel{N}{N}
$$ \& $$
\left|\begin{array}{c}
N \\
n
\end{array}\right|
$$ \& $$
0
$$ \& N \& $$
\left|\begin{array}{l}
9 \\
N
\end{array}\right|
$$ \& $$
n
$$ \& $$
n
$$ \& $$
\left\lvert\, \begin{aligned}
& \infty \\
& 0
\end{aligned}\right.
$$ \& $$
\left|\begin{array}{l}
\mathrm{F}
\end{array}\right|
$$ \& $$
\vec{N}
$$ \& $$
\underset{\sim}{m}
$$ \& 8 \& $$
\stackrel{n}{n}
$$ \& $$
\left|\begin{array}{l}
n \\
m
\end{array}\right|
$$ \& N \& $$
\pm \underset{\sim}{ \pm}
$$ \& $$
0
$$ \& $$
i n
$$ \& ∞ \& $$
10
$$ \& $$
10
$$ \& $$
\left\lvert\, \begin{aligned}
& 0 \\
& n
\end{aligned}\right.
$$ \& $$
\left\lvert\, \begin{array}{|c}
n \\
\hline
\end{array}\right.
$$ \& न \& 앙 \& $$
\underset{N}{N}
$$ \& $$
|\hat{\sigma}|
$$ \& \cdots \& n \& च \& \bigcirc

\hline $$
\underset{\leq}{z}
$$ \& $$
\left\lvert\, \begin{aligned}
& n \\
& 0
\end{aligned}\right.
$$ \& $$
m
$$ \& $$
\begin{gathered}
0 \\
m
\end{gathered}
$$ \& $$
\infty
$$ \& $$
\bar{n}
$$ \& $$
\bar{n} \mid
$$ \& $$
\left\lvert\, \begin{gathered}
n \\
i n
\end{gathered}\right.
$$ \& $$
\begin{aligned}
& n \\
& i n
\end{aligned}
$$ \& $$
\left\lvert\, \begin{gathered}
5 \\
n
\end{gathered}\right.
$$ \& $$
\left\lvert\, \begin{aligned}
& m \\
& n
\end{aligned}\right.
$$ \& $$
\begin{gathered}
\infty \\
m
\end{gathered}
$$ \& $$
\underset{\sim}{m}
$$ \& $$
0
$$ \& $$
9
$$ \& $$
\infty
$$ \& $$
n
$$ \& $$
9
$$ \& $$
9
$$ \& $$
\underset{\sim}{7}
$$ \& $$
\underset{\nabla}{N}
$$ \& $$
\left\lvert\, \begin{gathered}
\pm \\
m
\end{gathered}\right.
$$ \& m \& \cdots \& $$
\left\lvert\, \begin{aligned}
& 0 \\
& m
\end{aligned}\right.
$$ \& $$
\pm
$$ \& $$
\left\lvert\, \begin{aligned}
& \mathrm{m}
\end{aligned}\right.
$$ \& \cdots \& \bar{m} \& $$
\left\lvert\, \begin{aligned}
& \mathrm{m}
\end{aligned}\right.
$$ \& $$
\underset{m}{m}
$$ \& $$
\left.\right|_{m} ^{\infty}
$$ \& $\stackrel{9}{9}$

\hline \& $\stackrel{N}{N}$ \& $\stackrel{N}{N}$ \& $$
N
$$ \& $$
\underset{N}{N}
$$ \& $$
\underset{N}{N}
$$ \& $$
N
$$ \& $$
N
$$ \& $$
N
$$ \& N \& $$
|N|
$$ \& $$
\stackrel{N}{N}
$$ \& $$
\underset{N}{N}
$$ \& $\stackrel{N}{N}$ \& N \& N \& N \& N \& $\stackrel{N}{N}$ \& $$
|\mathrm{N}|
$$ \& $\stackrel{N}{\mathrm{~N}}$ \& N \& N \& $$
\underset{N}{N}
$$ \& $\stackrel{N}{N}$ \& $$
\underset{N}{n}
$$ \& N \& N \& N \& N \& N \& N \& N

\hline $$
\sum_{i=1}^{n} 0
$$ \& $$
\left|\begin{array}{l}
0 \\
2 \\
0 \\
0
\end{array}\right|
$$ \& $$
\begin{aligned}
& 8 \\
& 8
\end{aligned}
$$ \& $$
\begin{aligned}
& 0 \\
& \underset{\sim}{7} \\
& \underset{\sim}{2}
\end{aligned}
$$ \& $$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& -
\end{aligned}
$$ \& $$
\begin{aligned}
& - \\
& 0 \\
& n
\end{aligned}
$$ \& $$
\begin{aligned}
& N \\
& \mathbf{N} \\
&
\end{aligned}
$$ \& $$
\begin{gathered}
N \\
N \\
N \\
\end{gathered}
$$ \& $$
\underset{\sim}{9}
$$ \& $$
\underset{m}{\infty}
$$ \& $$
\begin{aligned}
& n \\
& n \\
& n \\
& \hline
\end{aligned}
$$ \& $$
\begin{array}{|c}
\mathbf{8} \\
8 \\
\hline
\end{array}
$$ \& $$
\left(\begin{array}{l}
\infty \\
\infty \\
0 \\
-1
\end{array}\right.
$$ \& $$
\left|\frac{n}{m}\right|
$$ \& $$
\begin{array}{|c}
\hline 7 \\
n \\
n \\
n
\end{array}
$$ \& $$
\begin{aligned}
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$ \& $$
\begin{aligned}
& n \\
& \sim \\
& \sim \\
& \sim
\end{aligned}
$$ \& $$
\begin{aligned}
& m \\
& n \\
& m \\
& m
\end{aligned}
$$ \& $$
\begin{aligned}
& 0 \\
& \mathbf{y} \\
& m
\end{aligned}
$$ \& $$
\begin{aligned}
& 9 \\
& 7 \\
& -
\end{aligned}
$$ \& $$
\begin{aligned}
& 0 \\
& n \\
& n
\end{aligned}
$$ \& $$
\begin{aligned}
& 0 \\
& n \\
& n \\
& n
\end{aligned}
$$ \& $$
\left|\begin{array}{c}
寸 \\
\infty \\
\infty
\end{array}\right|
$$ \& $$
\begin{aligned}
& n \\
& n \\
& 0
\end{aligned}
$$ \& 豆 \& $$
\left\lvert\, \begin{aligned}
& n \\
& 0 \\
& 0 \\
& 0
\end{aligned}\right.
$$ \& $$
\begin{gathered}
0 \\
n \\
n \\
n
\end{gathered}
$$ \& $$
\left|\begin{array}{l}
0 \\
-a
\end{array}\right|
$$ \& $$
\left|\begin{array}{l}
n \\
n \\
2
\end{array}\right|
$$ \& $$
\begin{aligned}
& \underset{9}{9} \\
& \stackrel{9}{9}
\end{aligned}
$$ \& $$

$$ \& 0
\sim

\sim \& n
n
\cdots

\hline 运 \& $$

$$ \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{2}
\end{aligned}
$$

\] \& \[

\frac{n}{n}

\] \& \[

\underset{\sim}{7}

\] \& \[

$$
\begin{aligned}
& \vec{m} \\
& \stackrel{\rightharpoonup}{n}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& N \\
& 0 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\underset{\sim}{\underset{\sim}{N}}
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& m \\
& n \\
& n
\end{aligned}
$$

\] \& \[

\stackrel{N}{\boldsymbol{J}}

\] \& \[

$$
\begin{aligned}
& \infty \\
& 0 \\
& 1 \\
& n
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{gathered}
N \\
\sigma
\end{gathered}
$$\right.

\] \& \[

0

\] \& \[

\underset{\sim}{q}

\] \& \[

$$
\begin{aligned}
& \infty \\
& m \\
& m \\
& m
\end{aligned}
$$

\] \& \[

\underset{y}{n}

\] \& \[

\underset{\sim}{J}

\] \& \[

\left|$$
\begin{array}{l}
n \\
n \\
n
\end{array}
$$\right|

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{n}{2} \\
& m \\
& n
\end{aligned}
$$

\] \& \[

\left|$$
\begin{array}{l}
0 \\
n \\
n \\
n
\end{array}
$$\right|

\] \& \[

\frac{7}{7}

\] \& \[

$$
\begin{aligned}
& 0 \\
& \mathbf{N} \\
& 6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& 9 \\
& \mathbf{f}
\end{aligned}
$$\right.

\] \& \[

$$
\begin{gathered}
n \\
\underset{n}{n} \\
n
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& n \\
& m \\
& \mathbf{n}
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& \underset{\sim}{n} \\
& n
\end{aligned}
$$\right.

\] \& \[

\left\lvert\, $$
\begin{gathered}
8 \\
\hline
\end{gathered}
$$\right.

\] \& \[

|\stackrel{\rightharpoonup}{\mathrm{N}}|

\] \& \[

\left|$$
\begin{array}{l}
0 \\
e \\
0
\end{array}
$$\right|

\] \& \[

\left\lvert\, $$
\begin{aligned}
& \infty \\
& 0 \\
& -
\end{aligned}
$$\right.
\] \& F \& 0

0
0

\hline $$
\begin{array}{ll}
0 & 1 \\
0 & 9 \\
0 & 3 \\
2 & 3 \\
2 & 0
\end{array}
$$ \& N \& N \& － \& N \& － \& － \& N \& － \& N \& － \& N \& － \& N \& N \& － \& － \& － \& N \& N \& N \& N \& \sim \& － \& － \& \square \& － \& － \& N \& － \& N \& － \& －

\hline $$
\frac{5}{c}
$$ \& － \& \[

0

\] \& \[

\varrho

\] \& m \& V \& \[

\bar{n}

\] \& \[

$$
\begin{gathered}
N \\
n
\end{gathered}
$$

\] \& \[

m

\] \& \[

\stackrel{\rightharpoonup}{\mathbf{N}}

\] \& \[

0

\] \& － \& N \& m \& ＊ \& \[

\bar{n}

\] \& \[

|n|

\] \& \[

|0|

\] \& \[

i

\] \& \[

\infty

\] \& \[

\left.$$
\begin{array}{|c|}
a \\
i n
\end{array}
$$ \right\rvert\,

\] \& \bigcirc \& － \& \[

\left|$$
\begin{array}{l}
\pm \\
0
\end{array}
$$\right|

\] \& 二 \& \sim \& \cdots \& N \& m \& in \& \[

\left|$$
\begin{array}{c}
1 \\
i
\end{array}
$$\right|
\] \& n \& \bigcirc

\hline $$
\stackrel{\pi}{\Sigma}
$$ \& \[

19910910

\] \& \[

$$
\begin{aligned}
& 0 \\
& 9 \\
& 8 \\
& 6 \\
& 6 \\
& 0
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \sigma \\
& \sigma
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \underset{8}{8} \\
& 0 \\
& \underset{\Omega}{2} \\
& -
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 0 \\
& \vec{\circ} \\
& 0 \\
& \vec{\sigma} \\
& \underset{-}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& 6 \\
& 6 \\
& 6 \\
& 6 \\
& 6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \frac{0}{8} \\
& \frac{6}{\sigma} \\
& \underset{n}{2}
\end{aligned}
$$
\] \& 0

-

0
-
-
-

- \& 0
8
8
-

0

- \& a
a
0
a

a \& \& $$
\begin{aligned}
& \vec{a} \\
& \mathbf{o} \\
& \vec{\alpha} \\
& \underset{-}{2}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \vec{a} \\
& \sigma \\
& \hat{e} \\
& \vec{\sigma} \\
& \hat{\sigma} \\
& 2
\end{aligned}
$$
\] \& \vec{a}

a
-
-
a \& a
o
0
a
a

- \& | - |
| :--- |
| \vdots |
| 8 |
| \vdots |
| 2 | \& \& \& \& a

－
－
－
g

- \& \& \& $$
\left\lvert\, \begin{aligned}
& n \\
& \hat{a} \\
& \mathbf{\theta} \\
& \mathbf{g} \\
& \hat{2}
\end{aligned}\right.
$$ \& \& \[

\left|$$
\begin{array}{l}
N \\
\sigma \\
8 \\
\underset{\sigma}{\alpha} \\
\sigma
\end{array}
$$\right|
\] \& n

\cdots
0
2
2
\vdots

- \& \& \& \& $$
\begin{aligned}
& n \\
& a \\
& 6 \\
& -6 \\
& \sigma
\end{aligned}
$$ \& N

\hline
\end{tabular}

安	0	0	0	0	0	0	－	0	0	－	0	－	0	0	－	0	O	\bigcirc	0	0	0	－	n	O	－	O	－	0	－	0	0	－
28	0	\bigcirc	0	0	0	\bigcirc	－	0	O	O	O	－	0	0	0	\bigcirc	\bigcirc	\bigcirc	0	0	O	0	－	\bigcirc	0	0	0	\bigcirc	0	0	0	c
	N	O	－	O	0	\bigcirc	－	－	O	\bigcirc	0	m	0	N	\bigcirc	－	O	0	0	\bigcirc	\bigcirc	in	\checkmark	O	n	－	m	in	m	\bigcirc	\bigcirc	m
	0	O	0	\bigcirc	0	0	0	0	\bigcirc	0	0	\bigcirc	0	0	0	－	0	\bigcirc	0	0	0	0	－	0	0	－	0	O	0	－	0	0
0	N	m	in	0	寸	N	0	Ξ	N	n	－	N	N	＊	－	（	N	F	in	N	m	\bigcirc	－	N	\bigcirc	\cdots	0	9	∞	∞	N	∞
	0	0	F	\bigcirc	N	－	－	\cdots	N	n	\sim	－	N	－	－	n	N	寸	n	N	m	0	N	N	\bigcirc	二	N	∞	－	m	－	\bigcirc
${\underset{W}{0}}_{2}^{S}$	$\stackrel{ }{ } \stackrel{ }{ }$	N	n	$\begin{gathered} n \\ n \end{gathered}$	$\|\underset{\alpha}{ }\|$	N	\rightarrow	ᄋᄋ	o	$\left\lvert\, \begin{gathered} \infty \\ \infty \end{gathered}\right.$	$\|m\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{1}{2} \end{aligned}\right.$	n	N	$\|\infty\|$	∇	n	－	9	∞	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \end{aligned}\right.$	∞	0	\bigcirc	$\underset{\sim}{N}$	∞	\cdots	$\mid \infty$	0	N	∞	\bigcirc
	$\left\|\frac{n}{2}\right\|$	$\ln \mid$	\％	$\|0\|$	$\left\lvert\, \begin{array}{\|c\|} \hline \\ \hline \end{array}\right.$	$\underset{\nabla}{ } \mid$	$\left\lvert\, \begin{aligned} & n \\ & m \end{aligned}\right.$		m	$\|\bar{m}\|$		$\left\lvert\, \begin{gathered} 9 \\ \hline \end{gathered}\right.$	$\|\underset{m}{ }\|$	$\left\lvert\, \begin{gathered} n \\ m \end{gathered}\right.$	$\left\|\begin{array}{c} \infty \\ \sim \end{array}\right\|$	$\left\lvert\, \begin{gathered} n \\ m \end{gathered}\right.$	\pm	$\left\lvert\, \begin{aligned} & \nabla \\ & m \end{aligned}\right.$	m	m	$\begin{gathered} N \\ m \end{gathered}$	0	$\stackrel{9}{n}$	$\|\stackrel{\otimes}{\|c\|}\|$	\vec{m}	\dot{m}	19	$\left\lvert\, \begin{aligned} & 9 \\ & i \end{aligned}\right.$	$\stackrel{1}{\sim}$	$\left\lvert\, \begin{gathered} n \\ m \end{gathered}\right.$	0	\cdots
\sum_{0}^{∞}	$\|\infty\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\|\infty\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{gathered} N \\ \infty \end{gathered}\right.$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\underset{\infty}{\infty}$	$\left\lvert\, \begin{aligned} & x \\ & \infty \end{aligned}\right.$	$\|\underset{\infty}{\infty}\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{l} 1 \\ \infty \end{array}\right\|$	$\mid \infty$	$\|\underset{\infty}{ }\|$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\mid \infty$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\|\infty\|$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\|\underset{\infty}{\infty}\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	∞	$\underset{\infty}{N}$	$\underset{\infty}{\infty}$	$\mid \infty$	$\underset{\infty}{N}$	$\underset{\infty}{N}$	$\left\|\begin{array}{c} N \\ \infty \end{array}\right\|$	N	∞
菦	－	จ	\％	\％	∞	$\left\lvert\, \begin{array}{\|c} \nabla \end{array}\right.$	m	$\|n\|$	$\left\lvert\, \begin{aligned} & N \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	n	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	$\|n\|$	$\begin{aligned} & \infty \\ & n \end{aligned}$	$\begin{array}{\|c} \mathbf{~} \\ \hline \end{array}$	$\mid n$	会\|	\vec{N}	N	$\|\underset{\sim}{n}\|$	$\left.\begin{aligned} & n \\ & n \end{aligned} \right\rvert\,$	$\dot{a} \mid$	n	$\|0\|$	$\underset{\infty}{\infty}$	$\left\lvert\, \begin{array}{r} n \end{array}\right.$	O	$\frac{\ln }{\mathrm{v}}$	m	σ	n	0
$\underset{z}{z}$	$\left\|\begin{array}{c} 9 \\ m \end{array}\right\|$	$\left\|\begin{array}{c} 9 \\ m \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ m \end{array}\right\|$	m	च	\vec{m}	$\underset{m}{N}$	$\underset{m}{N}$	$\begin{aligned} & 9 \\ & m \end{aligned}$	F	$\left\lvert\, \begin{aligned} & m \\ & \nabla \end{aligned}\right.$	$\|m\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \nabla \end{aligned}\right.$	$\|\underset{\sim}{\infty}\|$	$\ln \mid$	$\ln \mid$	\mid	$\left\|\begin{array}{c} \infty \\ m \end{array}\right\|$	$\left\lvert\, \begin{gathered} \infty \\ m \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \mathrm{m} \end{gathered}\right.$	9	$\stackrel{\sim}{\boldsymbol{N}}$	7	$\left\lvert\, \begin{array}{r} n \\ \nabla \end{array}\right.$	\mathcal{F}	$\left\|\begin{array}{l} \infty \\ m \end{array}\right\|$	\ln	\ln	10	$\left\lvert\, \begin{gathered} 5 \\ \sim \end{gathered}\right.$	\％	\cdots
$\underset{\sim}{4}$	\cdots	$\stackrel{N}{N}$	\xrightarrow{N}	N	N	N	N	N	\cdots	N	\xrightarrow{N}	$\stackrel{N}{N}$	N	N	\cdots	\cdots	$\stackrel{N}{N}$	N	$\stackrel{N}{N}$	\cdots	$\underset{N}{N}$	N	N	N	N	$\stackrel{N}{N}$	N	N	$\underset{\sim}{N}$	\cdots	N	\cdots
$\sum_{i} \underset{i}{2}$	$\underset{\sim}{8}$	\cdots	$\left\|\begin{array}{c} \mathbf{~} \\ \underset{\sim}{n} \end{array}\right\|$	$\vec{n} \mid$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	\vec{N}	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \underset{-}{ } \mid \\ & \hline \end{aligned}\right.$	$\underset{\sim}{\mathbf{N}}$	$\begin{array}{\|c} \sim \\ \sim \\ \underset{\sim}{n} \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{*} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{aligned} & O_{N} \\ & \mathrm{~N} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & n \\ & \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & n \\ & n \\ & n \\ & \sim \end{aligned}$	$$	$\begin{array}{\|c\|} \hline N \\ 0 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{9} \\ & \underset{\sim}{0} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & 0 \\ & \exists \\ & \exists \end{aligned}$	$\begin{aligned} & 9 \\ & \exists \end{aligned}$	$\begin{aligned} & 7 \\ & \square \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$	$\underset{\sim}{\nabla}$	$\underset{-}{9}$	$\stackrel{\rightharpoonup}{n}$	$\begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & 9 \\ & 8 \\ & \hline \end{aligned}$	$\left[\begin{array}{l} 0 \\ 10 \\ 7 \end{array}\right.$	$\begin{aligned} & - \\ & \underset{\sim}{2} \\ & \cdots \end{aligned}$	$\left[\begin{array}{l} n \\ 0 \\ \hdashline \end{array}\right.$	끌	च
$\sum_{E} \sum_{\substack{2 \\ \hline}}^{Z}$	$\begin{aligned} & \stackrel{\ominus}{寸} \\ & \underset{-}{2} \end{aligned}$	$\underset{\sim}{C}$	$\begin{gathered} \infty \\ \infty \\ \cdots \end{gathered}$	$\left\lvert\, \begin{aligned} & \infty \\ & -1 \end{aligned}\right.$	$\left\|\begin{array}{\|c} 0 \\ 0 \\ 10 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \frac{1}{2} \end{aligned}\right.$	$\left\|\begin{array}{c} a \\ i \\ n \end{array}\right\|$	$\begin{array}{\|c} n \\ \underset{\sim}{e} \end{array}$	$\left\|\begin{array}{l} 0 \\ 0 \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{l} n \\ m \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{2} \\ \underset{-}{ } \end{array}\right\|$	$\begin{aligned} & N \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & N \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\circ} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{array}{\|l\|} N \\ 8 \\ \hline \end{array}$	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \pm \\ & \Xi \end{aligned}$	$\begin{aligned} & n \\ & \Xi \end{aligned}$	$\begin{aligned} & n \\ & \underset{Z}{n} \end{aligned}$	$\stackrel{n}{\underset{\sim}{x}}$	$\begin{gathered} \sim \\ \underset{\sim}{N} \\ \sim \end{gathered}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \underset{\sim}{N} \\ & N \\ & \sim \end{aligned}$	$\begin{aligned} & n \\ & n \\ & \underset{y}{n} \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 寸 \\ & \hline \end{aligned}\right.$	$\begin{aligned} & 0 \\ & n \\ & n \end{aligned}$	$\frac{n}{0}$	$\underline{=}$	$\begin{aligned} & 0 \\ & \underset{\sim}{1} \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & \\ & \underline{n} \end{aligned}$	$\begin{aligned} & N \\ & N \\ & Z \end{aligned}$	10 10 n
	－	－	\rightarrow	－	N	－	N	\checkmark	－	\square	－	N	－	－	－	－	－	－	N	N	－	N	N	－	N	－	－	N	N	N	N	\sim
E	N	∞	σ	－	\bigcirc	$\stackrel{N}{N}$	N	m	寸	n	0	N	∞	a	－	－	$\underset{\sim}{N}$	$\underset{n}{n}$	0	∞_{0}^{∞}	0	N	$\left\lvert\, \begin{gathered} \infty \\ 0 \\ 0 \end{gathered}\right.$	$\begin{aligned} & 9 \\ & 0 \\ & 0 \end{aligned}$	응	\pm	N	F	in	N	\cdots	in
岕		$\begin{aligned} & 2 \\ & \overline{8} \\ & 0 \\ & 2 \\ & -2 \end{aligned}$	$\begin{aligned} & \sim \\ & \sigma \\ & \sigma \\ & - \\ & \sigma \\ & - \end{aligned}$	$\left.\begin{aligned} & m \\ & a \\ & 0 \\ & 6 \\ & a \\ & - \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} n \\ - \\ 0 \\ -1 \\ 0 \\ 9 \end{array}\right\|$	$\begin{aligned} & m \\ & \frac{m}{0} \\ & 0 \\ & \frac{8}{2} \\ & - \end{aligned}$		$\begin{aligned} & m \\ & \frac{\sigma}{6} \\ & \frac{\sigma}{g} \end{aligned}$				$\begin{aligned} & n \\ & 8 \\ & 8 \\ & -8 \\ & \sigma \end{aligned}$	$\left.\begin{aligned} & n \\ & 0 \\ & 8 \\ & 9 \\ & \Omega \end{aligned} \right\rvert\,$	$\begin{aligned} & \frac{n}{8} \\ & 0 \\ & 0 \\ & \sigma \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{0} \\ & \underset{\sigma}{2} \end{aligned}$	0 0 0 0 0 0 \square	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & 0 \\ & \sigma \\ & - \end{aligned}$	$\begin{aligned} & 0 \\ & \frac{a}{g} \\ & 0 \\ & \hat{a} \\ & \square \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 6 \\ & \Omega \\ & 6 \end{aligned}$	$\begin{aligned} & 0 \\ & 9 \\ & 0 \\ & -8 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & 0 \\ & -7 \\ & 0 \\ & -6 \\ & 2 \\ & -2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		0 0 0 0 -1 0 - -	0 2 0 0 \vdots 2 2	0 0 0 9 σ - -	0 0 0 - -	0 0 0 0 \vdots \vdots -	0 0 0 0 - - -	$\begin{aligned} & 0 \\ & \frac{0}{8} \\ & -8 \\ & \sigma \end{aligned}$	0 0 0 - 6 0 -	0 - 0 - - -

$\underset{\sim}{2}$		－			O－	－	0	00	0	00	0	00	00	\bigcirc	00			－	0	\bigcirc	\bigcirc		0	$=$	v	－	0	－	0	－	$=$	$=$
	－	0	0	0	0	0	0	0	－ 0	0	00	0	0	0	－ 0	0	－	0	－	－	0	－	0	0	0	－	0	－		0	0	0
宏我	－	0	0 N	v	-10	0	－	－	－ 0	00	－－	－－	－ 0	0	－m	mo	$0 \sim$	n	0	0	－	－	0	－	N	N	\bigcirc	N		0	－	0
S	\bigcirc	0	0	0	0	－	－ 0	0	－ 0	00	0	－ 0	00	0	00	－	－	0	－	－	0	0	0	－	\bigcirc	\sim	－	－		0	－	0
	in	\cdots	－	N	\pm	\pm O	\bigcirc	$\cdots=$	7 m	$\cdots \infty$	∞	m \％	V n	in	$-\infty$	∞	m	\bigcirc	－	－	－	\sim	inm	m	$\stackrel{\infty}{\sim}$	in	－	\sim		n	\pm	∞
$\begin{aligned} & 5 \\ & \hline 0 \\ & 6 \end{aligned}$	N	10	－	＋	T	TO	$\cdots \infty$	∞ ）	ㅇN	No	－－	－－	－－	－	\bigcirc	m	N		－	∇	$-$	$=$	－	N	－	＊	－	in		－	O	n
$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	ス	R	\cdots	\cdots	∞	べす	－	\bigcirc	Non	in ${ }^{\text {a }}$	$\nabla \stackrel{\infty}{\sim}$	N	\cdots	N			\bigcirc	∞	\cdots	in	N	σ	－		∞	0		\sim		\sim	m	－
$\sum_{0}^{2} \underline{z}$	O	$\stackrel{\sim}{\circ}$	\cdots	$\vec{\nabla}$	$\vec{\sim}$	\cdots	m	\sim	∞	∞	\cdots	F ${ }^{\sim}$	\cdots	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{3}$	\％	＊	\％	$\stackrel{\sim}{m}$	\cdots		\％	O	\％	仡	寸	\％	示		N	N	m
$\begin{array}{ll} 0 & 0 \\ 2 & 0 \\ 0 & 0 \end{array}$	∞	－	∞	－	N	N	N ${ }_{\sim}^{\text {N }}$	N	N	∞	N ${ }_{\sim}^{\sim}$	N ${ }_{\sim}$	$\infty \times$	∞	${ }_{\infty} \times$	∞	∞	－	∞	N	N	∞	N	∞	∞	N	$\infty \times$	∞	∞	∞	N	N
	\cdots	¢	in		ה	二小	\cdots	\cdots	入 $\bar{\sigma}$	の～	\cdots	2\％	2		0	－ $\bar{\sigma}$	\％	ず	∞	은	へ－m	m	∞	${ }^{\circ} \mathrm{m}$	m	－	N	m	－	\cdots	－	\cdots
$\stackrel{\zeta}{\Sigma}$	$\left\|\begin{array}{l} \infty \\ i n \end{array}\right\|$	\bigcirc	N	${ }^{1}$	N	O	\cdots	\cdots	m m	N	m / m	n m	\cdots	\％	\cdots	$\sim_{n} \times$	0	\cdots	\＃	m	m	m	$\sim \sim$	m ${ }^{\text {m }}$	n	N／	¢ 9	\％		O	m	∞
؟	N	N	N	N	－	N	N	N	N	N	N	N	N	N	N	N	－	N	N	N	N	N	$\stackrel{\text { N }}{ }$	N	$\stackrel{ }{ }$	$\stackrel{ }{\lambda}$	N	N			N	N
\sum_{i}^{M}	$\left\lvert\, \begin{aligned} & n \\ & n \\ & n \end{aligned}\right.$		$\underset{\sim}{n}$	$\underset{\sim}{2}$							$\underset{\sim}{n} \underset{\sim}{n}$									$\underset{\sim}{\mathrm{N}} \underset{7}{7}$	$\underset{\sim}{\underset{Z}{*}}$			$\stackrel{7}{n}$					$\underset{\sim}{\tilde{\sim}}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	¥	$\xrightarrow{\square}$
	$\left\|\begin{array}{l} n \\ \underset{\sim}{f} \end{array}\right\|$	0	0	$\begin{aligned} & 0 \\ & \underset{\sim}{2} \end{aligned}$		$\begin{array}{c\|c} 0 & i n \\ n & 0 \end{array}$	$\underset{\sim}{n}$	$\stackrel{\infty}{\sim}=\underset{\sim}{2}$		$\underset{\sim}{\mathrm{N}} \underset{\sim}{0}$	$\underset{\sim}{9} \underset{\sim}{0}$	$\underset{\sim}{\tilde{N}} \underset{\sim}{N}$	N					$\begin{aligned} & \infty \\ & 0 \\ & \hdashline \\ & \end{aligned}$		$\underset{\sim}{\mathcal{N}} \underset{\sim}{2}$	8				$\begin{array}{c\|c} \infty \\ \underset{\sim}{c} \\ \underset{\sim}{1} \\ \end{array}$				\pm	${ }_{2}^{N}$	\cdots	$\underset{\sim}{2}$
$\begin{array}{ll} \hline 0 & 4 \\ 0 & 0 \\ 0 & 3 \\ 2 & 3 \\ \hline \end{array}$	N	N	N		$\cdots-$	－	N	N－	$-N$										\rightarrow	－	\sim	\sim	\sim	N－	－	－	N	N		N	－	N
$\begin{aligned} & \text { F } \\ & \frac{5}{4} \\ & \hline \end{aligned}$	$\stackrel{\sim}{n}$	in	\bigcirc	－	\bigcirc	$\underset{\sim}{2} 0$	\％	H	\bigcirc				－	－ 0			m			in	0	in	－	n	0	\bigcirc	\％	－		N	m	\checkmark
$\stackrel{\rightharpoonup}{\Sigma}$	$\begin{array}{\|c} 0 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}$	$\left\{\begin{array}{l} 0 \\ 2 \\ 0 \\ \frac{2}{2} \\ 2 \end{array}\right.$	$\left\{\begin{array}{l} 0 \\ 0 \\ 0 \\ 2 \\ 2 \end{array}\right.$																											$\begin{aligned} & \text { a } \\ & \underset{8}{8} \\ & \underset{\sim}{n} \end{aligned}$	\mathfrak{l}	－

$\underset{\sim}{2}$	0		－	00	00	00	00	00	0	－－		0	10	0			0	0	－	N	0	N	0	0	\bigcirc	0	0	－	$=$	－		$=$
$\begin{array}{ll} >0 & 9 \\ > & 2 \end{array}$	－		0	0	0	0	0	00	0	0	－	0	0	0	－		0	\bigcirc	0	0	\bigcirc	0	0	0	0	0	0	－	－	0		\bigcirc
S	0		\bigcirc	0	0	0	0	0 m	0	N	－	0	－	0	－	－	N	N	T	n	－	N	－	－	－	0	N	－	－	－	\sim	0
	0	0	0	0	0	0	0	0	0	－	－	0	0	0	－	0	－	\bigcirc	－	－	－	0	0	0	0	－	－	0	0	－	－	0
$\bar{\circ}$	in	N	$\mathrm{V} \sim$	4 m	－	－N	1 m	$\cdots \infty$	\cdots	－	\checkmark	$\rightarrow \mathrm{m}$	m	$\infty \sim$	n	n	\checkmark	－	σ	\bigcirc	－	\checkmark	in	－	N	0	$\underline{0}$	0	∞	n	0	－
$\begin{array}{ll} 5 & 2 \\ 0 & 8 \\ 2 \end{array}$	in	－	T－	m	∞	$-N$	1 m	\cdots	＋ 0	m	n	n	n	－	\checkmark	\sim	－	N	in	T	\bigcirc	－	T	－	－	in	∞	\pm	n	＝	二	N
$\begin{aligned} & 0 \\ & 20 \\ & 0 \\ & \hline \end{aligned}$	\bigcirc	令	于	N	，	$\stackrel{\sim}{0}$	0	0	$\stackrel{\square}{\square}$	－	∞	\bigcirc	\bigcirc	in	a	合	$\stackrel{\circ}{2}$	\cdots	∞	in	∞	\bigcirc	N	m	\bigcirc	0	σ	σ	N	∞	－	π
$\begin{aligned} & 0 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	m	\cdots	\％	J	J	7	7 m	\cdots	$\underset{\sim}{\sim}$	\％	F	F	F	N		¢	\hat{n}	\hat{m}	\cdots	0	n	\％	F	\％	－	n	－	7	m	N 7	～	0_{0}^{0}
$\begin{array}{\|cc\|} \hline & 0 \\ 2 & 0 \\ O & 0 \end{array}$	∞	N	$\bigcirc \times$	N	－	N	N	\cdots	\bigcirc	∞	\cdots	－${ }^{\text {N }}$	∞	∞	\cdots	\cdots	∞	N	∞	－	－	－	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	∞	∞	∞	－	∞	∞	∞	∞
\|	an	$\stackrel{\infty}{\sim}$	\cdots	V	T	¢	$\stackrel{\sim}{\sim}$	\cdots	m	～	2	∞	F	～	N	\cdots	\bigcirc	3	in	N	in	m	N	in	N	N	N	$\stackrel{\sim}{\sim}$	\bigcirc	N0	10	$\stackrel{\infty}{\sim}$
$\leq \frac{\Sigma}{\Sigma}$	－	n	\vec{m}	－	\cdots	${ }^{\infty}$	N	Y	\cdots	碗	$\mid \underset{m}{n}$	$n\|m\|$	$\stackrel{0}{0}$	的	n	F	$\|\underset{\sim}{\mathcal{T}}\|$	子	\bigcirc	寸	7	$\vec{\nabla}$	\cdots	\bar{m}	m	m	\cdots	N	N	m	N	\cdots
$\mid \leq$	N	N	N	N	N	N	N	\cdots	N	N	N	\cdots	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	\hat{N}	\cdots	N	N
\sum_{i}	$\left\|\begin{array}{l} \vec{N} \\ n \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$		$2 \mid$	$\underbrace{\infty}_{2}$	$\begin{array}{\|l\|l\|} \hline \\ \\ \\ \hline \end{array}$	$\begin{array}{c\|c\|c} y \\ 0 \\ 0 \end{array}$	$\underset{\sim}{3}$	$\begin{gathered} \infty \\ \cline { 1 - 1 } \\ \\ \underset{\sim}{2} \\ \hline \end{gathered}$	$\begin{array}{l\|l\|} 0 \\ \end{array}$	$\left\lvert\, \begin{aligned} & Y \\ & y \\ & \hline \end{aligned}\right.$	$\begin{array}{l\|l\|} 4 & 0 \\ 4 \\ 0 \\ 0 \end{array}$	$\frac{n}{n}$	$\underset{\sim}{n}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	8	$\left\lvert\, \begin{aligned} & \text { 엿 } \\ & \text { a } \end{aligned}\right.$	$\left\|\begin{array}{c} 9 \\ \underset{\sim}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} n \\ \vdots \\ \underset{y}{2} \end{gathered}\right.$	$\left\|\begin{array}{c} n \\ 7 \\ m \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ n \\ 2 \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \infty \\ 4 \\ 0 \\ -1 \end{gathered}\right.$	$\left\|\begin{array}{l} n \\ n \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 9 \\ \vdots \\ \vdots \end{array}\right\|$	$\stackrel{\nabla}{\square}$	$\left\lvert\, \begin{gathered} 0 \\ \tilde{n} \\ \hline \end{gathered}\right.$	$\left\lvert\, \begin{gathered} m \\ m \\ m \end{gathered}\right.$	0	$\underset{\sim}{n}$	J		$\frac{\sim}{7}$
$\sum_{i}^{2} \underset{\sim}{2}$	in	$\left\lvert\, \begin{aligned} & \text { of } \end{aligned}\right.$	$\underset{y}{2}$	$\underset{\sim}{\infty} \mid$	$\underset{\sim}{2}$	$\begin{array}{c\|c} 4 \\ 0 \\ 0 \\ 0 \end{array}$	$3: \begin{aligned} & n \\ & m \\ & m \end{aligned}$	n_{n}^{n}	$$	$\stackrel{\rightharpoonup}{2}$	\vec{n}	$n \mid y$	$\underset{\sim}{0}$		$\begin{array}{\|l\|} \hline \\ \hline \end{array}$	$\left\|\begin{array}{l} 0 \\ \overparen{W} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & n \\ & 0 \end{aligned}\right.$	\approx	$\left\|\begin{array}{l} \mathrm{F} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{Z} \\ \mathrm{~J} \end{array}\right\|$	$\left\|\begin{array}{c} 8 \\ 1 \\ 1 \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{l} -7 \\ 0 \end{array}\right\|$	$\frac{n}{n}$	\because	n	$\frac{n}{n}$	$\left\lvert\, \begin{gathered} 0 \\ \mathrm{~g} \end{gathered}\right.$	$\begin{array}{\|c} 0 \\ \underset{\sim}{N} \end{array}$	\cdots		$\xrightarrow{\sim}$
	－	\sim	N	－	N	－-	－	\cdots	\cdots	－	－	－	－	N	N	N	N	－	N	N	\sim	N	－	N	N	－	N	N	$-$	N	\sim	－
	in	ज	Nin	0	ज	in	0	N	$\left\|\begin{array}{l} 0 \\ 0 \end{array}\right\|$	$1-$	N	m	\checkmark		－	0	\bigcirc							을	N	n	\checkmark	N	－	이		2
$\stackrel{\ddot{U}}{\stackrel{\rightharpoonup}{\Sigma}}$	$\left\|\begin{array}{l} n \\ \hat{y} \\ 8 \\ \vdots \\ 2 \\ 2 \end{array}\right\|$				$\left\{\begin{array}{l} n \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right.$		\mathfrak{c}	\hat{i}			$\begin{array}{\|c\|} \hline \\ 8 \\ - \\ \sigma \\ - \end{array}$			$\left\{\begin{array}{l} n \\ \bar{c} \\ \overline{2} \\ \end{array}\right.$	$\begin{array}{\|l\|} \hline 2 \\ 8 \\ 2 \\ 2 \\ -2 \end{array}$		$\begin{array}{\|l\|} \hline 2 \\ 8 \\ \cdots \\ \sigma \\ \sigma \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ \overline{2} \\ 2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \left.\begin{array}{c} 8 \\ - \\ \bar{\sigma} \\ 9 \end{array} \right\rvert\, \end{array}$	$\begin{array}{\|c\|} \hline 2 \\ \mathbf{8} \\ \overline{2} \\ 2 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \\ 8 \\ \hdashline \\ 2 \\ 2 \\ - \end{array}$	$\begin{array}{\|c\|} \hline 2 \\ \overline{8} \\ \overline{2} \\ 2 \end{array}$	$\begin{array}{\|c\|} \hline 2 \\ \mathbf{o} \\ = \\ 2 \\ 2 \\ \end{array}$	$\begin{array}{\|c\|} \hline 2 \\ \mathbf{n} \\ \overline{2} \\ 2 \\ - \end{array}$	2 2 2 2 2 2	$\begin{aligned} & 2 \\ & 8 \\ & - \\ & \overline{2} \\ & -1 \end{aligned}$	$\begin{aligned} & n \\ & \hat{8} \\ & \overline{8} \\ & \underset{-}{2} \end{aligned}$		$\begin{aligned} & 3 \\ & 8 \\ & 3 \\ & - \\ & - \end{aligned}$		$\begin{aligned} & \overline{2} \\ & \stackrel{y}{2} \end{aligned}$	7 8 \vdots \vdots

1)Al':	SIGIIT\#	PIIOTO GRADE	$\begin{aligned} & \text { TIME } \\ & \text { BEGIN } \end{aligned}$	TIME END	$\mathrm{I} \mathrm{~A}^{\prime} \mathrm{T}$ DEG;	IAT MIN	IAT SEC	$\begin{gathered} \text { LONG } \\ \text { DEG } \end{gathered}$	I.ONG MIN	$\overline{\mathrm{LONG}}$ SEC	TOT POSID	$\begin{aligned} & \text { TOT } \\ & \text { BEST } \end{aligned}$	$\begin{aligned} & \text { CALI: } \\ & \text { POSID } \end{aligned}$	$\begin{aligned} & \text { CALI } \\ & \text { BEST } \end{aligned}$	$\begin{gathered} \text { YOY } \\ \text { POSII) } \end{gathered}$	$\begin{aligned} & \text { YOY } \\ & \text { BIST } \end{aligned}$
19911004	104	1	1531	1600	27	31	54	82	43	7	7	7	1	1	1	1
19911004	2	1	1254	1309	27	38	8	82	33	99	2	2	()	()	()	()
19911004	3	1	1333	1352	27	39	93	82	33	9	9	10	1	1	()	()
19911004	4	1	1433	1446	27	38	7	82	34	80	4	4	()	()	0	()
19911004	51	1	1140	1155	27	35	12	82	45	49	2	2	()	0	()	()
19911004	52	2	1224	1305	27	36	65	82	43	3	4	8	0	1	0	()
19911004	53	2	1343	1500	27	34	44	82	43	14	9	28	()	6	0	1
19911004	54	1	1532	1548	27	32	13	82	41	47	1	1	0	0	0	()
19911005	101	2	916	941	27	34	28	82	38	55	5	15	0	3	0	()
19911005	103	2	1107	1200	27	41	60	82	33	67	4	12	0	5	()	2
19911005	104	2	1212	1258	27	41	55	82	33	75	3	7	0	0	()	()
19911005	105	2	1323	1355	27	42	12	82	- 35	23	2	6	0	3	()	()
19911005	2	1	1235	1250	27	34	74	82	38	16	6	7	()	1	()	()
19911005	3	2	1314	1417	27	32	38	82	38	36	11	25	()	10	()	2
19911005	51	1	901	933	27	32	27	82	42	1	5	8	0	2	0	()
19911005	52	2	1011	1203	27	40	26	82	36	35	10	28	0	5	()	()
19911005	53	2	1259	9999	27	44	28	82	34	38	7	8	0	0	()	()
19911009	55	1	1436	1453	27	31	33	82	41	87	2	2	0	0	()	()
19911009	56	2	1526	1542	27	32	6	82	14	22	3	4	1	1	0	()
19911012	1	1	955	958	27	31	81	82	42	51	1	1	()	0	()	()
19911012	2	2	1005	1045	27	32	18	82	43	33	2	5	0	1	()	1
19911012	3	2	1147	1239	27	33	70	82	44	69	5	9	0	2	()	()
19911012	52	2	1343	1420	27	32	6	82	44	22	3	5	0	0	()	$1)$
19911012	53	2	1505	1537	27	32	6	82	44	22	9	13	2	3	()	1
19911014	101	2	1010	1048	27	40	8	82	33	5	7	13	0	1	()	()
19911014	102	1	1053	1102	27	39	8	82	33	15	4	5	1	1	()	0

DATE	SIGHT\#	PHOTO GRADE	TIME BEGIN	TIME END	$\begin{aligned} & \text { IAT } \\ & \text { DLEG } \end{aligned}$	$\begin{aligned} & \text { LAT } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { LAT } \\ & \text { SEC } \end{aligned}$	LONG DEG	LONG MIN	LONG SEC	$\begin{gathered} \text { TOT } \\ \text { POSII } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { BEST } \end{aligned}$	CAIF POSID	$\begin{aligned} & \text { CAIF } \\ & \text { BESI } \end{aligned}$	$\begin{gathered} \text { YOY } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { YOY } \\ & \text { BESI } \end{aligned}$
19920901	1	1	1458	1552	27	30	88	82	87	8	11	12	0	1	0	0
19920901	51	2	1432	1507	27	42	4	82	43	70	12	15	4	4	3	3
19920901	52	2	1551	1600	27	37	39	82	45	45	2	7	0	0	0	0
19920901	53	1	1617	1645	27	36	30	82	44	18	15	22	0	2	0	0
19920902	2	1	1118	1152	27	37	15	82	34	48	3	3	0	0	0	0
19920902	3	1	1235	1340	27	41	82	82	31	30	6	6	0	0	0	0
19920902	4	1	1351	1401	27	40	22	82	33	1	2	2	0	0	0	0
19920902	5	2	1454	1529	27	36	90	82	40	30	7	11	0	3	0	0
19920902	51	1	1004	1026	27	35	31	82	43	86	6	9	0	1	0	0
19920902	54	2	1309	410	27	53	4	82	34	99	13	22	0	7	0	4
19920902	55	2	1420	1434	27	51	88	82	35	8	1	2	0	0	0	0
19920902	56	2	1429	1511	27	48	18	82	35	12	12	19	0	9	0	4
19920902	6	2	1540	1553	27	35	91	82	41	15	1	4	0	0	0	0
19920903	1	2	1046	1128	27	40	34	82	45	23	3	5	0	0	0	0
19920903	2	2	1132	1150	27	40	49	82	44	72	2	4	0	0	0	0
19920903	4	2	1234	1251	27	38	84	82	46	6	2	7	0	3	0	0
19920903	53	2	1032	1112	27	39	6	82	44	95	4	6	0	1	0	0
19920903	55	2	1249	1315	27	33	78	82	42	38	2	6	0	0	()	0
19920904	1	2	925	957	27	31	72	82	42	72	14	15	3	3	1	1
19920904	3	2	1142	1157	27	35	46	82	43	55	2	6	0	2	0	0
19920904	51	2	941	953	27	31	62	82	40	2	1	2	0	0	0	0
19920904	52	2	1039	1120	27	32	47	82	35	52	6	8	0	2	0	0
19920904	6	1	1248	1253	27	31	97	82	42	47	3	3	0	0	0	0
19920907	1	1	1024	1040	27	39	8	82	33	39	5	5	0	0	0	0
19920907	2	2	1058	1231	27	40	30	82	34	45	7	18	1	4	0	0
19920907	3	1	1502	1550	27	32	0	82	42	50	20	23	2	2	1	1
19920907	51	1	952	1009	27	39	20	82	33	19	4	4	0	0	0	0
19920907	52	2	1022	1051	27	40	83	82	32	47	2	7	0	3	0	0
19920907	56	2	1208	1224	27	42	19	82	37	24	4	8	0	0	0	0
19920907	57	1	1256	1304	27	41	73	82	39	46	2	2	0	0	0	0
19920907	58	2	1316	1405	27	41	3	82	40	30	8	13	0	5	0	2
19920907	59	2	1440	1511	27	37	26	82	41	69	2	8	0	2	0	()
19920908	2	2	1039	1134	27	39	58	82	35	58	3	8	0	0	0	()
19920908	3	1	1151	1200	27	39	25	82	34	42	2	2	0	0	0	0

DATE	SIGHT\#	$\begin{aligned} & \text { PHOTO } \\ & \text { GRADE } \end{aligned}$	TTME BLGIN	ITME END	$\begin{aligned} & \hline \text { LAT } \\ & \text { DEG } \end{aligned}$	IAT MIN	IAT SEC	$\begin{gathered} \text { LONG } \\ \text { DEG } \end{gathered}$	$\begin{gathered} \text { LONG } \\ \text { MIN } \\ \hline \end{gathered}$	$\begin{gathered} \text { 1.ONG } \\ \text { SLCC } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { TOT } \\ \text { POSID } \end{array}$	$\begin{gathered} \text { TOT } \\ \text { BL:ST } \end{gathered}$	$\begin{aligned} & \text { CN. } \\ & \text { POSII } \end{aligned}$	CAIF BESI	$\begin{gathered} \text { YOY } \\ \text { POSII) } \end{gathered}$	$\begin{gathered} \text { YOY } \\ \text { BI: } \mathrm{S}^{\prime} \end{gathered}$
19920908	4	1	1200	1209	27	39	8	82	34	16	3	3	0	0	0	0
19920908	5	2	1304	1312	27	42	67	82	31	0	1	2	0	0	0	0
19920908	53	1	1220	1224	27	41	92	82	41	22	1	1	0	0	0	0
19920908	54	1	1240	1242	27	43	62	82	43	84	1	1	0	0	0	0
19920908	55	1	1255	1302	27	43	64	82	43	90	3	3	0	0	0	()
19920908	56	1	1303	1317	27	44	10	82	44	6	1	2	0	1	0	1
19920908	57	2	1410	1419	27	34	77	82	43	62	2	3	0	0	0	0
19920908	58	2	1421	1437	27	34	95	82	43	75	3	5	0	0	0	0
19920908	59	2	1437	1447	27	35	17	82	44	11	7	13	0	0	0	0
19920908	6	1	1317	1325	27	42	88	82	31	32	2	2	1	1	1	I
19920908	7	1	1405	1423	27	35	89	82	36	42	4	4	0	0	0	0
19920908	8	1	1430	1455	27	35	95	82	36	67	3	3	0	0	0	0
19920909	1	2	1019	1047	27	43	93	82	43	22	2	3	0	0	0	0
19920909	3	2	1129	1140	27	39	31	82	45	22	1	4	0	2	0	0
19920909	4	2	1142	1202	27	39	16	82	45	43	5	6	0	2	0	0
19920909	5	1	1300	1325	27	36	26	82	44	50	2	2	0	1	0	0
19920909	51	1	920	935	27	35	7	82	36	81	1	1	0	0	0	0
19920909	53	2	1028	1048	27	40	74	82	32	47	2	5	0	1	0	0
19920909	54	2	1050	1105	27	40	97	82	32	31	3	4	1	1	1	1
19920909	55	2	1107	1119	27	41	32	82	32	0	3	5	0	0	0	0
19920909	56	2	1123	1236	27	41	96	82	31	81	4	6	0	0	0	0
19920909	57	2	1236	1324	27	42	90	82	30	81	10	15	0	1	0	0
19920909	58	2	1354	1431	27	41	22	82	33	44	4	6	0	0	0	0
19920909	59	2	1441	1456	27	39	82	82	35	30	4	7	0	2	0	0
19920909	6	1	1334	1405	27	37	26	82	44	24	6	6	0	0	0	0
19920909	7	1	1412	1423	27	35	65	82	43	67	3	4	0	1	0	0
19920909	9	1	1502	1555	27	33	92	82	42	21	15	18	0	0	0	0
19920910	2	2	908	951	27	31	82	82	53	69	19	28	0	0	0	0
19920910	3	1	1011	1019	27	32	31	82	44	35	1	1	0	0	0	0
19920910	4	1	1021	1057	27	32	11	82	44	26	13	13	3	3	2	2
19920910	5	2	1108	1120	27	32	3	82	43	84	9	12	0	0	0	0
19920910	51	2	1003	1013	27	36	15	82	35	63	3	7	0	0	0	0
19920910	52	2	1018	1031	27	36	94	82	34	92	2	3	0	0	0	0
19920910	53	1	1036	1041	27	36	84	82	35	26	3	3	0	0	()	()

$\frac{2}{2}$		－		0	0	0	\bigcirc	0	0	0	－	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	\bigcirc	0	－	\bigcirc	\cdots	O	－	\bigcirc	0	0	0	－	－	－	－
$\frac{2}{2}$	\bigcirc	0	\bigcirc	O	－	0	\bigcirc	\bigcirc	\bigcirc	0	－	\bigcirc	\bigcirc	－	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	0	0	0	－	0	\bigcirc	－	0	0	0
$\frac{4}{4}$		\bigcirc	m	\bigcirc	－	－	\bigcirc	－	\bigcirc	0	n	$-$	0	\bigcirc	m	∞	0	m	－	0	0	－	0	N	0	0	0	n	\bigcirc	0	ナ	0	n	N
$$	\bigcirc	O	0	0	－	0	0	\bigcirc	\bigcirc	－	\bigcirc	－	－	\bigcirc	－	\sim	0	\square	O	0	0	\bigcirc	\bigcirc	－	0	0	0	0	\bigcirc	0	0	\bigcirc	－	－
$\underset{\sim}{6}$	m	\sim	0	m	\bigcirc	ナ	m	ナ	N	in	\bigcirc	才	m	N	\bigcirc	∞	$\left\|\begin{array}{c} \infty \\ n \end{array}\right\|$	0	N	ナ	n	m	\cdots	0	101	\vec{N}	n	\bigcirc	n	N	\cdots	in	N	0
6	－	σ	N	n	in	\cdots	N	N	0	T	N	N	－	\bigcirc	a	∞	\bigcirc	0	－	サ	N	N	の	\bigcirc	N	0	N	N	3	\sim	－	T	n	\bigcirc
	$\|n\|$	m	$\ln \mid$	$\left\|\begin{array}{l} \ln \\ \operatorname{non} \end{array}\right\|$	\％	9	9	in	$\|\infty\|$	n	$\left\lvert\, \begin{gathered} 0 \\ n \end{gathered}\right.$	$\hat{\aleph}$	\square	10	$\left\|\begin{array}{l} \infty \\ 0 \end{array}\right\|$	3	－	$\left\lvert\, \begin{gathered} m \\ 子 \end{gathered}\right.$	$\mid \infty$	$\|\infty\|$	$\underset{N}{N}$	\cdots	$\left\lvert\, \begin{aligned} & 1 \\ & \hline \end{aligned}\right.$	$\begin{aligned} & n \\ & 0 \end{aligned}$	n	$\|0\|$	$\left\|\begin{array}{l} n \\ 0 \end{array}\right\|$	in	in	¢	¢	∞	\bigcirc	n
$\frac{e_{2}^{2}}{2}$	$\text { } \ddagger$	∞	$\left\lvert\, \begin{aligned} & \mathrm{m} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \pm \\ & m \end{aligned}\right.$	$\left\|\begin{array}{l} n \\ m \end{array}\right\|$	\ln	$\left\lvert\, \begin{aligned} & n \\ & m \end{aligned}\right.$	$\mid \mathbf{m}$	N	F	F	\ln	$\left\|\begin{array}{\|c} 0 \\ m \end{array}\right\|$	$\underset{F}{\sim}$	\ln	$\dot{\psi}$	$\stackrel{0}{7}$	Ψ	9	$\begin{gathered} a \\ m \end{gathered}$	\ln	m	m	\vec{m}	m	$\left\|\begin{array}{l} n \\ m \end{array}\right\|$	$\|8\|$	\sim	$\mid 9$	¢	$\left\lvert\, \begin{aligned} & m \\ & m \end{aligned}\right.$	m	N	N
	$\mid \infty$	$\underset{\infty}{N}$	$\mid \infty$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{c} \infty \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & x \\ & \infty \end{aligned}\right.$	$\mid \infty$	$\|\infty\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	$\mid \infty$	$\underset{\infty}{N}$	$\mid \infty$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\underset{\infty}{N}$	∞	$\|\infty\|$	$\mid \infty$	$\left\|\begin{array}{c} N \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} 1 \\ \infty \end{array}\right\|$	$\|\infty\|$	$\|\infty\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\mid \infty$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	$\mid \infty$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	∞	∞
$\left\lvert\, \begin{aligned} & G \\ & \leq \\ & \aleph \end{aligned}\right.$	$n \mid$	\bar{m}	－	$\left\lvert\, \begin{aligned} & a \\ & i n \end{aligned}\right.$	10	0	in	$\mathrm{N} \mid$	$\left\|\begin{array}{l} \infty \\ \ln \end{array}\right\|$	0	0	$\left\lvert\, \begin{aligned} & 9 \\ & m \end{aligned}\right.$	N	$\left\lvert\, \begin{gathered} n \\ m \end{gathered}\right.$	$\ln \mid$	N	\vec{m}	in	181	$\left\|\begin{array}{l} \ln \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	$\vec{n} \mid$	$\underset{N}{N}$	－	$\|\infty\|$	$\mid \infty$	$\left\lvert\, \begin{aligned} & n \\ & n \end{aligned}\right.$	二	$\|0\|$	n	\bigcirc	0	0	n n
$\underset{\leq}{E} \underset{x}{z}$	$\left\lvert\, \begin{aligned} & 0 \\ & m \end{aligned}\right.$	\％	7	$\underset{\sim}{\sim}$	$\begin{aligned} & \infty \\ & m \end{aligned}$	$\vec{\nabla} \mid$	$\underset{\sim}{N}$	F	∞	$\left\lvert\, \begin{array}{\|c\|} \hline 0 \\ m \end{array}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{N} \\ & \hline \end{aligned}\right.$	0	\mid	m	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	$\left\lvert\, \begin{array}{\|c\|} 0 \\ \mid \end{array}\right.$	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	$\left\lvert\, \begin{array}{r} n \\ \hline \end{array}\right.$	\bar{m}	m	$\left\lvert\, \begin{aligned} & \infty \\ & m \end{aligned}\right.$	∞	$\underset{\sim}{\sim}$	$\Psi \mid$	$\mid 9$	$\left\lvert\, \begin{aligned} & \infty \\ & m \end{aligned}\right.$	\mid	7	$\left\lvert\, \begin{aligned} & 0 \\ & 1 \end{aligned}\right.$	9	E	n	\sim
$\mid \underset{\substack{4 \\ \hline \\ \hline \\ \hline \\ \hline}}{ }$	N	N	N	N	N	N	N	\cdots	N	N	$\mid \mathbf{N}$	$\underset{N}{n}$	$\stackrel{\sim}{N}$	$\underset{N}{N}$	$\stackrel{N}{N}$	$\stackrel{\sim}{N}$	\hat{N}	N	\hat{N}	$\stackrel{N}{N}$	$\stackrel{N}{N}$	$\left\lvert\, \begin{array}{r} n \\ N \end{array}\right.$	$\left\|\begin{array}{r} n \\ \end{array}\right\|$	$\stackrel{N}{N}$	$\underset{N}{N}$	$\left\lvert\, \begin{array}{r} N \\ N \end{array}\right.$	$\stackrel{N}{N}$	$\mid \underset{N}{n}$	$\|n\|$	N	$\stackrel{N}{\sim}$	N	N	$\stackrel{N}{N}$
$\sum_{\underline{E}}^{\underline{y}}$	$\stackrel{\rightharpoonup}{n}$	$\overrightarrow{\boldsymbol{T}}$	$\begin{aligned} & \infty \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \mathbf{7} \\ & \mathbf{n} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	三	$\begin{aligned} & \operatorname{non} \\ & n \\ & =1 \end{aligned}$	$\left\|\begin{array}{l} \infty \\ \sim \\ \sim \\ \sim \end{array}\right\|$	$\frac{0}{n}$	$\left\|\begin{array}{c} n \\ 0 \\ n \\ n \end{array}\right\|$	$\begin{gathered} n \\ n \\ n \\ n \end{gathered}$	$\begin{aligned} & m \\ & \mathbf{j} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} 0 \\ n \\ n \\ n \end{gathered}\right.$	$\left\|\begin{array}{l} n \\ 寸 \end{array}\right\|$	$\begin{gathered} \infty \\ \underset{n}{n} \\ n \end{gathered}$	$\begin{aligned} & 9 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \exists \\ & \approx \end{aligned}$	$\left\|\begin{array}{l} n \\ 0 \\ \end{array}\right\|$	$\stackrel{9}{9}$	$\begin{aligned} & n \\ & n \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{m} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\left\|\begin{array}{c} 0 \\ \underset{1}{n} \\ n \end{array}\right\|$	$\left.\begin{gathered} n \\ n \\ n \end{gathered} \right\rvert\,$	$\left\|\begin{array}{l} \infty \\ \stackrel{3}{7} \\ \square \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ n \\ n \\ n \end{array}\right\|$	$\begin{gathered} 9 \\ \text { n } \\ \hline \end{gathered}$	$\left\|\begin{array}{l} a \\ m \\ = \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{aligned} & n \\ & n \\ & n \end{aligned}$	$\left.\begin{gathered} 0 \\ \mathbf{N} \\ n \end{gathered} \right\rvert\,$	$\stackrel{8}{\mathrm{~g}}$	9 \sim \sim \square
\underline{E}	$\left\|\begin{array}{l} n \\ \pm \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 2 \\ 2 \end{array}\right\|$	$\left(\left.\begin{array}{c} n \\ n \\ n \end{array} \right\rvert\,\right.$	$\begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}$	$\left\lvert\, \begin{array}{l\|l} n \\ 2 \\ 0 & 1 \\ \hline \end{array}\right.$	$\begin{gathered} m \\ \underset{\sim}{m} \end{gathered}$	$\left\|\begin{array}{l} a \\ = \\ -1 \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{\infty} \end{array}\right\|$	$\begin{array}{\|c} \underset{\sim}{\sim} \\ \underset{\sim}{2} \\ \hline \end{array}$	$\left\|\begin{array}{l} n \\ n \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ i n \\ i n \end{array}\right\|$	$\frac{n}{0}$	$\left\|\begin{array}{l} n \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ n \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{l} m \\ n \\ n \end{array}\right\|$	$\left.\begin{gathered} 7 \\ n \\ n \end{gathered} \right\rvert\,$	$\begin{array}{\|c} n \\ \underset{\sim}{2} \end{array}$	$\left\|\begin{array}{l} 0 \\ n \\ = \end{array}\right\|$	$\stackrel{N}{\mathrm{O}}$	5	$\left\|\begin{array}{l} 0 \\ \stackrel{N}{0} \\ \underset{O}{2} \end{array}\right\|$	$\frac{7}{\square}$	$\left\|\begin{array}{l} \pm \\ 0 \\ \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{7} \\ \hline \end{array}\right\|$	$\frac{n}{n}$	$\begin{aligned} & 0 \\ & \Xi \end{aligned}$	$\left\|\begin{array}{l} m \\ n \\ n \end{array}\right\|$	$\begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & 0 \\ & = \\ & = \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{n}{n}$	$\begin{aligned} & 0 \\ & \underset{n}{n} \\ & n \end{aligned}$	$\begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}$	$\xrightarrow{\sim}$
	N	N	N	N	N	N	N	N	N	N	\sim	\sim	N	N	－	N	N	－	－	－	N	N	－	N	\sim	－	－	N	－	－	N	－	\sim	－
$\begin{aligned} & 38 \\ & 5 \\ & 5 \\ & 0 \end{aligned}$	$\operatorname{lin} \mid$	m	サ	in	$\overline{i n} \mid 0$	$\begin{aligned} & m \\ & n \end{aligned}$	$\underset{\sim}{n}$	lin	0	in	$\mid \infty$	$\|\vec{n}\|$	$\left\lvert\, \begin{aligned} & N \\ & i n \end{aligned}\right.$	$\mid m$	ナ	in	n	ナ	in	\vec{n}	n	$\begin{aligned} & 7 \\ & 10 \end{aligned}$	\ln	0	\hat{N}	$\begin{aligned} & \infty \\ & n \\ & n \end{aligned}$	\bigcirc	∞	－	0	$\left\lvert\, \begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}\right.$	0	0	－
$\stackrel{\rightharpoonup}{2}$	$\begin{aligned} & 9 \\ & - \\ & \hat{N} \\ & \hat{0} \end{aligned}$							$=$ 0 0 N बे $=$	$\begin{aligned} & \overrightarrow{-} \\ & \hline \\ & 0 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$		-2 8 2 2 2 2	$\left\|\begin{array}{l} 10 \\ \underset{8}{2} \\ 0 \\ 2 \\ 2 \\ 9 \end{array}\right\|$	$\left\|\begin{array}{l} 10 \\ 8 \\ 0 \\ \hat{2} \\ \AA \\ 0 \end{array}\right\|$			$\left\|\begin{array}{l} 0 \\ \mathbf{g} \\ \mathbf{2} \\ \Omega \\ 0 \end{array}\right\|$	$\begin{aligned} & n \\ & \underset{a}{2} \\ & \underset{\sim}{\alpha} \\ & \underset{\alpha}{2} \end{aligned}$	$\begin{aligned} & n \\ & \hline \mathbf{a} \\ & 0 \\ & N \\ & 0 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & n \\ & \mathbf{o} \\ & 0 \\ & \hat{N} \\ & \mathbf{O} \end{aligned}$				$\begin{aligned} & \mathrm{N} \\ & \mathbf{\sigma} \\ & \underset{\sim}{2} \\ & \mathbf{\Omega} \end{aligned}$	$\left\|\begin{array}{l} n \\ 2 \\ 2 \\ \underset{2}{2} \\ 2 \\ -1 \end{array}\right\|$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{o} \\ & \mathbf{8} \\ & \mathrm{~N} \\ & \mathbf{\sigma} \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \hline \mathrm{O} \\ & \mathrm{C} \\ & \mathrm{~N} \\ & \mathrm{~S} \\ & -1 \end{aligned}$	$\begin{aligned} & n \\ & \underset{\Omega}{2} \\ & \underset{1}{2} \\ & \Omega \end{aligned}$		$\begin{aligned} & \mathrm{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & N \\ & \underset{1}{2} \\ & 8 \\ & \underset{\sim}{2} \\ & \AA \\ & 2 \end{aligned}\right.$	$\begin{aligned} & N \\ & \lambda_{1} \\ & \dot{8} \\ & \underset{1}{2} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$		

$\underset{\sim}{\infty}$		N	0	－	\bigcirc	－	－	－	0	\bigcirc	0	－	0	0	0	\bigcirc	0	\bigcirc	c	0	－	\bigcirc	0	0	－	－	v．	0	N	－	0	－	－	－
$\underset{\sim}{\circ}$	\bigcirc	0	0	0	\bigcirc	\bigcirc	－	\bigcirc	0	\bigcirc	\bigcirc	－	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	－	\bigcirc	－	O	－	\bigcirc	\bigcirc	0	\bigcirc	0	－	\bigcirc	\bigcirc	0
$\left\lvert\, \frac{i}{\infty}\right.$	\bigcirc	L	N	\cdots	\bigcirc	n	0	N	\bigcirc	\bigcirc	\bigcirc	N	\bigcirc	0	\bigcirc	N	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	Ј	－	0	n	－	in	\bigcirc	∞	\bigcirc	\bigcirc	－	N	－
$\overline{5}$	\bigcirc	0	\bigcirc	\bigcirc	0	0	\bigcirc	0	－	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	0	\bigcirc	\bigcirc
E	∞	N	10	\cdots	is	∞	in	\bigcirc	\sim	\dagger	－	N	m	\bigcirc	N	\bigcirc	v	N	T	N	\sim	∞	0	\sim	\bigcirc	N	\pm	－	\sim	－	0	\bigcirc	∞	\sim
106	∞	n	∞	in	in	∞	σ	0	o	0	－	∞	N	0	－	in	－	N	－	－	－	n	N	－	N	－	n	－		－	T	T	N	－
$\left\lvert\, \begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 \end{array}\right.$	10	\cdots	\bigcirc	¢	N	N	人	\pm	$\mid \underset{N}{N}$	\sim	\％	10	안	¢	in	\％	\bigcirc	\bigcirc	\bar{m}	¢	\bigcirc	$\hat{0}$	＊	∞	\bigcirc	7	J	σ	N	∞	\bigcirc	¢	$\stackrel{\infty}{+}$	in
	$\left\lvert\, \begin{aligned} & n \\ & \hline \end{aligned}\right.$	0	N	N	in	\cdots	\pm	？	$\stackrel{9}{\sim}$	n	\cdots	$\left\lvert\, \begin{gathered} n \\ \hline \end{gathered}\right.$	∞	0	＋	\cdots	\cdots	－	0	¢	\cdots	n	N	\sim	\cdots	0	¢	$\stackrel{n}{n}$	\sim	\cdots	$\stackrel{\mathrm{N}}{\mathrm{N}}$	\％	\sim	N
$\begin{aligned} & 0 \\ & \\ & \hline \end{aligned}$	$\|\underset{\infty}{\infty}\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\underset{\sim}{\sim}$	$\|\infty\|$	$\mid \infty$	$\|\infty\|$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\|\infty\|$	∞	$\left\|\begin{array}{l} 1 \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{gathered} 1 \\ \infty \end{gathered}\right.$	∞	∞	$\mid \infty$	$\left\lvert\, \begin{gathered} \infty \\ \infty \end{gathered}\right.$	$\mid \infty$	$\mid \infty$	－	∞	－	∞	$\underset{\infty}{\infty}$	∞	∞	∞	\cdots	∞	N	∞	－				
\leq	m	lin	\sim_{0}	0	in	\bigcirc	$\mid \infty$	\sim	N	\cdots	\sim	∞	N	n	nn	n	$\stackrel{n}{0}$	¢	∞	0	N	in	8	\vec{N}	$\stackrel{N}{\infty}$	10	0	0	n	0	\cdots	0	$\stackrel{\square}{1}$	T
$\leq \frac{z}{\Sigma}$	\ln	$\|0\|$	$\stackrel{\sim}{7}$	$\|\infty\|$	－	$\mid \infty$	0	∞	\mid	$\left\lvert\, \begin{aligned} & \mathbf{N} \end{aligned}\right.$	0	0	$i n$	in	in	$\vec{\sim}$	$\underset{7}{7}$	$\stackrel{q}{7}$	10	\bigcirc	N	in	$\underset{+}{\infty}$	9	$\underset{7}{0}$	\%	$\stackrel{*}{*}$	\pm	n	$\stackrel{7}{\sim}$	\cdots	N	N	\cdots
	$\stackrel{N}{N}$	N	N	N	$\stackrel{N}{N}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{N}{N}$	\cdots	$\stackrel{N}{N}$	N	\xrightarrow{N}	N	\cdots	N	N	N	N	N	$\underset{\sim}{\infty}$	$\stackrel{\infty}{\sim}$	N	N	\xrightarrow{N}	N	N	N	N	\cdots	N	N	N	\cdots	\cdots
$\sum_{i} \underset{i}{2}$	$\left.\begin{aligned} & 8 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \Psi \\ & \underset{\sim}{0} \end{aligned}$	$\left\|\begin{array}{l} \mathrm{N} \\ \mathrm{I} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ i n \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} a \\ \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & n \\ & \sim \end{aligned}\right.$	$\stackrel{m}{n}$	$\begin{aligned} & 8 \\ & \end{aligned}$	$\stackrel{9}{9}$	$\underset{-}{9}$	$\frac{N}{N}$	$\begin{aligned} & a \\ & n \\ & n \\ & \end{aligned}$	$\begin{aligned} & n \\ & n \\ & n \\ & \sim \end{aligned}$	$\begin{aligned} & 9 \\ & \mathbf{T} \\ & \mathbf{I} \end{aligned}$	$\begin{aligned} & w \\ & w_{1} \\ & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & n \\ & i n \\ & n \end{aligned}$	$\frac{2}{N}$	$\stackrel{0}{\boldsymbol{\tau}}$	$\begin{gathered} \pm \\ \mathbf{N} \\ \underset{\sim}{2} \end{gathered}$	$\left\lvert\, \begin{aligned} & 0 \\ & n \\ & n \end{aligned}\right.$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \end{aligned}$	$\overline{0}$	$\left\|\begin{array}{l} 0 \\ n \\ \underset{\sim}{n} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \stackrel{n}{n} \\ & \end{aligned}$	$\left\lvert\, \begin{gathered} n \\ \underset{\sim}{7} \\ \hline \end{gathered}\right.$	$\overline{i n}$	$$	$\left\lvert\, \begin{array}{r} \mathbf{J} \\ \underset{\sim}{6} \end{array}\right.$	$\begin{gathered} N \\ 0 \\ 0 \end{gathered}$	$\left\|\begin{array}{l} \underset{\sim}{\lambda} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & \hat{N} \\ & \mathbf{\theta} \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{y}{2} \end{aligned}$	－
$\underset{\sim}{E}$	$\stackrel{I}{1}$	$\left\|\begin{array}{c} n \\ 0 \\ \end{array}\right\|$	$\begin{aligned} & 0 \\ & 2 \\ & N \end{aligned}$	$\left\|\begin{array}{c} 0 \\ 1 \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{l} n \\ 0 \\ n \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \underset{y}{n} \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ 0 \\ \end{array}\right\|$	$\underset{\sim}{\infty}$	$\left\|\begin{array}{c} n \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{1}{0} \\ 0 \end{array}\right\|$	$\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{N} \end{aligned}$	$\begin{gathered} 0 \\ \underset{1}{n} \\ \end{gathered}$	$\stackrel{\rightharpoonup}{\mathbf{q}}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} 9 \\ \underline{1} \\ n \end{gathered}$	8	$\underset{Z}{\underline{Z}}$	$\frac{n}{n}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\bar{于}$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{7} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \underset{\sim}{n} \\ \end{array}\right\|$	$\begin{aligned} & 0 \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} 0 \\ 10 \\ n \\ 2 \end{gathered}$	$\begin{aligned} & 0 \\ & \ddagger \\ & - \end{aligned}$	$\begin{aligned} & \pm \\ & \ddagger \end{aligned}$	$\left\lvert\, \begin{aligned} & n \\ & n \\ & n \\ & -1 \end{aligned}\right.$	$\begin{array}{\|c} \infty \\ \underset{\sim}{0} \end{array}$	$\vec{\sigma} \mid$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	＋	\cdots
$\begin{array}{ll} \overline{0} & \stackrel{y}{c} \\ \underset{\sim}{c} \end{array}$	－	N	－	N	－	\sim	N	N	\sim	N	－	N	\sim	－	N	N	N	N	\sim	－	－	N	\sim	\sim		－	N	－	N	－	N	N	N	
者	∞	N	m	ナ	10	in	in	is	\bigcirc	－	$\underset{\sim}{\mathrm{O}}$	$\stackrel{\infty}{0}$	\mathbf{O}	0	－	\bigcirc	$\stackrel{\infty}{\circ}$	¢¢	N	n	T	in	in	in	$\underset{n}{n}$	$\begin{array}{r} 7 \\ \sim \end{array}$	\sim	\bigcirc	∞	－	\bigcirc	$\underset{\sim}{\sim}$	N	n
$\stackrel{1}{5}$	$\begin{aligned} & N \\ & \underset{N}{8} \\ & \underset{N}{6} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{2} \\ & \underset{\sim}{\alpha} \\ & \underset{\Omega}{2} \end{aligned}$	$\begin{aligned} & \sim \\ & \underset{\sim}{8} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$						$\begin{aligned} & \underset{\sim}{N} \\ & \underset{S}{\delta} \\ & \underset{\alpha}{\alpha} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & n \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\Omega}{2} \\ & \end{aligned}$	$\begin{aligned} & n \\ & \underset{\alpha}{\delta} \\ & \underset{\sim}{\alpha} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \AA \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\alpha} \\ & \underset{\alpha}{2} \\ & \underset{\sim}{\alpha} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{\alpha} \\ \underset{\sim}{\underset{\sim}{2}} \\ \underset{\sim}{\alpha} \\ \underset{-}{2} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \\ & \underset{\sim}{\delta} \\ & \underset{\Omega}{2} \end{aligned}$						$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \\ & \underset{\sim}{\alpha} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & n \\ & \underset{\sim}{8} \\ & \underset{\sim}{2} \\ & \underset{\sim}{\Omega} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \tilde{n} \\ & \underset{\sim}{8} \\ & \underset{\sim}{2} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{~}{2}} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\delta}{8} \\ & \underset{\sim}{\delta} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \vec{N} \\ & \underset{\sim}{8} \\ & \underset{\sim}{\alpha} \\ & \underset{\sim}{2} \end{aligned}$	

DA'E	SIGHT\#	PHOTO GRADE	$\begin{aligned} & \text { TIME } \\ & \text { BEGIN } \end{aligned}$	T1ME END	$\begin{aligned} & \text { LAT } \\ & \text { DEG } \end{aligned}$	$\begin{aligned} & \text { IAT } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { IAT } \\ & \text { SEC } \end{aligned}$	$\begin{gathered} \text { LONG } \\ \text { DEG } \end{gathered}$	$\begin{aligned} & \text { LONG } \\ & \text { MIN } \end{aligned}$	LONG SEC	$\begin{gathered} \text { TOT } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { TOT } \\ & \text { BEST } \end{aligned}$	CAIF POSII)	$\begin{aligned} & \text { CAIF } \\ & \text { BESI } \end{aligned}$	$\begin{gathered} \text { YOY } \\ \text { POSID } \end{gathered}$	$\begin{aligned} & \text { YOY } \\ & \text { BL:SI } \end{aligned}$
19920924	4	1	1321	1352	27	47	88	82	27	87	9	9	0	1	0	()
19920924	51	1	1022	1034	27	55	72	82	32	30	2	2	0	0	0	0
19920924	52	1	1047	1107	27	55	59	82	34	3	1	2	0	1	0	0
19920924	53	1	1125	1137	27	57	43	82	34	54	1	4	0	2	0	0
19920924	54	1	1144	1220	27	57	63	82	36	39	4	5	0	0	0	0
19920924	56	2	1412	1432	27	55	71	82	33	78	1	3	0	0	0	0
19920924	58	1	1454	1459	27	53	30	82	33	44	0	2	0	1	0	0
19920924	59	2	1512	1536	27	42	80	82	31	70	10	16	0	5	0	1
19920924	6	2	1532	1628	27	43	64	82	29	92	6	8	0	1	0	1
19920925	1	2	941	1006	27	45	86	82	27	18	2	3	0	0	0	0
19920925	2	1	1020	1034	27	46	63	82	26	29	1	2	0	1	0	0
19920925	3	2	1100	1140	27	49	69	82	26	77	4	8	0	1	0	0
19920925	4	2	1307	1330	27	45	12	82	28	38	4	10	0	4	0	2
19920925	5	1	1347	1357	27	44	3	82	29	81	0	2	0	1	0	1
19920925	52	2	1046	1113	27	56	75	82	33	14	1	2	0	0	0	0
19920925	53	2	1125	1140	27	57	88	82	36	14	3	4	0	0	0	0
19920925	54	1	1153	1157	27	58	93	82	38	20	0	1	0	0	0	0
19920925	55	2	1236	1254	27	58	93	82	38	19	3	7	0	3	0	1
19920928	2	2	1105	1216	27	39	87	82	40	22	8	13	0	5	0	1
19920929	1	1	937	955	27	33	84	82	41	73	2	2	0	0	0	0
19920929	2	2	1014	1050	27	35	94	82	40	14	2	7	0	3	0	0
19920929	4	2	1304	1320	27	47	73	82	35	76	4	10	0	4	0	0
19920929	5	2	1326	1420	27	47	36	82	36	3	18	27	0	5	0	1
19920929	6	2	1430	1459	27	46	9	82	37	32	8	12	0	4	0	0
19921005	8	2	1355	1404	27	31	43	82	42	88	1	2	0	0	0	0
19921008	1	2	942	1016	27	28	72	82	42	5	4	7	0	2	0	0
19921008	2	2	1128	1142	27	37	58	82	40	4	1	3	0	0	0	0
19921008	3	1	1145	1200	27	37	58	82	40	4	3	3	0	0	0	0
19921008	5	2	1240	1325	27	37	58	82	40	4	2	4	0	2	0	0
19921008	51	1	930	950	27	37	43	82	35	6	3	3	0	0	0	0
19921008	53	2	1008	1030	27	39	36	82	33	92	3	6	0	1	0	0
19921008	54	2	1036	1107	27	40	65	82	33	27	1	4	0	0	0	0
19921008	55	1	1116	1134	27	41	59	82	32	67	6	7	0	0	0	0
19921008	57	1	1159	1222	27	41	85	82	32	85	16	16	0	0	0	0

Sighuing Data 1992

DATE	SIGHT\#	PHOTO GRADE	TIME BEGIN	TIME END	LAT DEG	IAT MIN	LAT SEC	LONG DEG	LONG MIN	LONG SEC	TOT POSID	TOT BEST	CAIF POSID	CAIF BEST	YOY POSID	YOY BESI
19921008	59	1	1308	1328	27	45	89	82	33	48	5	5	0	0	0	0
19921008	6	1	1325	1442	27	41	0	82	37	78	12	20	0	9	0	2
19921008	7	1	1502	1545	27	41	57	82	37	87	9	10	0	0	0	0

 U

 Page 1

DATE	SIGIIT\#	PllOTO GRADE	$\begin{gathered} \text { T1ME } \\ \text { BEGIN } \end{gathered}$	TIME END	$\begin{aligned} & \text { LAT } \\ & \text { DEG } \end{aligned}$	$\begin{aligned} & \mathrm{IAT} \\ & \mathrm{MIN} \end{aligned}$	$\begin{aligned} & \text { IAT } \\ & \text { SEC } \end{aligned}$	LONG DEG	LONG MIN	LONG SEC	$\begin{gathered} \text { TOT } \\ \text { POSID } \end{gathered}$	$\begin{gathered} \text { TOT } \\ \text { BEST } \end{gathered}$	$\begin{aligned} & \text { CALF } \\ & \text { POSID } \end{aligned}$	$\begin{aligned} & \text { CAIF } \\ & \text { BEST } \end{aligned}$	$\begin{gathered} \mathrm{YOY} \\ \mathrm{POSI} \mathrm{I} \end{gathered}$	$\begin{aligned} & \text { YOY } \\ & \text { BIS' } \end{aligned}$
19930916	55	2	1158	1238	27	42	16	82	42	92	5	6	0	0	0	0
19930916	57	1	1312	1314	27	40	64	82	44	76	1	1	0	0	0	0
19930916	6	2	1321	1348	27	53	80	82	32	86	10	12	0	3	0	1
19930916	8	2	1416	1431	27	50	40	82	33	88	5	10	0	3	0	2
19930916	9	2	1458	1511	27	46	84	82	31	86	7	11	0	4	0	0
19930917	1	1	934	1043	27	52	89	82	32	78	3	3	0	0	0	0
19930917	10	2	1448	1500	27	44	37	82	33	16	1	2	0	0	0	0
19930917	101	1	920	935	27	48	24	82	25	58	1	2	0	1	0	0
19930917	102	2	1013	1048	27	49	30	82	26	0	9	13	0	6	0	1
19930917	103	1	1129	1155	27	53	88	82	26	31	1	1	0	0	0	0
19930917	104	2	1204	1223	27	54	27	82	26	11	2	6	0	2	0	0
19930917	106	2	1340	1410	27	51	57	82	28	50	6	10	0	5	0	1
19930917	2	2	1044	1119	27	52	46	82	32	85	5	9	0	0	0	0
19930917	3	2	1120	1125	27	53	15	82	32	84	4	7	0	1	0	0
19930917	4	1	1126	1135	27	53	45	82	33	6	3	3	0	0	0	0
19930917	5	2	1136	1154	27	53	87	82	32	89	2	4	0	1	0	1
19930917	51	2	927	1027	27	41	43	82	41	7	3	4	0	0	0	0
19930917	52	1	1041	1056	27	42	56	82	41	65	3	4	0	1	0	I
19930917	53	1	1128	1142	27	41	54	82	43	98	1	1	0	0	0	0
19930917	54	1	1150	1205	27	40	43	82	44	70	3	3	0	0	0	0
19930917	55	2	1220	1258	27	40	43	82	44	70	5	8	0	0	0	0
19930917	56	1	1318	1330	27	38	89	82	44	89	1	2	0	I	0	()
19930917	6	2	1218	1225	27	55	19	82	32	95	3	5	0	1	0	0
19930920	1	1	1140	1204	27	43	37	82	30	54	7	8	1	1	0)
19930920	101	2	1225	1247	27	49	6	82	35	1	2	3	0	0	0	0
19930920	102	2	1256	1400	27	50	51	82	34	7	12	19	0	7	0	2
19930920	105	2	1625	1650	27	47	93	82	29	65	7	9	0	0	0	0
19930920	2	2	1210	1226	27	42	89	82	30	92	5	8	0	4	0	3
19930920	4	2	1315	1327	27	40	22	82	33	59	2	3	0	0	0	()
19930920	5	1	1446	1453	27	37	69	82	34	0	1	1	0	0	0	0
19930920	54	2	1435	1520	27	37	90	82	39	25	6	12	0	2	0)
19930920	55	2	1555	1630	27	38	45	82	37	43	8	16	0	5	0	2
19930921	1	2	952	1033	27	48	13	82	35	38	4	8	0	1	0	0
19930921	102	2	957	1020	27	45	58	82	31	20	3	6	O	3	0	()
19930921	103	2	1050	1152	27	50	4	82	34	4	3	5	0	2	0	()

		\bigcirc	ナ	\bigcirc	0	0	O	－	\bigcirc	\bigcirc	0	N	\bigcirc	0	\bigcirc	－	\bigcirc	O	0	0	0	0	－	0	0	O	0	0	0	T	0	0	\bigcirc	－	－
10	－	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	－	－	－	0	0	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－	－	c
出	\bigcirc	N	－	0	－	0	－	－	－	m	\bigcirc	\bigcirc	0	in	O	N	N	－	0	0	ナ	\checkmark	\bigcirc	in	\bigcirc	－	0	－	－	\cdots	－	－	0	－	－
$\underset{3}{3}$		0	\bigcirc	0	－	\bigcirc	－	0	\bigcirc	\bigcirc	\bigcirc	－	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	0	0	－	O	－	0	0	0
$\bigotimes_{\infty}^{\infty}$	N	T	\cdots	N	F	∞	m	0	V	\＃	N	윽	N	$\begin{aligned} & \infty \\ & \sim \end{aligned}$	m	＋	∞	7	N	\pm	\cdots	∞	\pm	\pm	N	N	v	N	\cdots	$\left\lvert\, \begin{gathered} 0 \\ m \end{gathered}\right.$	\checkmark	－	∞	∞	N
$E 8$	\rightarrow	\sim	$\stackrel{\sim}{N}$	－	\cdots	∞	N	n	\cdots	∞	－	\cdots	－	N	m	N	m	N	\cdots	in	∞	－	－	－	－	\cdots	N	－	－	$\underset{\sim}{\infty}$	n	$-$	N	T	－
$\left\|\begin{array}{ll} 0 & 0 \\ 2 & 0 \\ 0 & 4 \\ \hline \end{array}\right\|$	18	7	\cdots	N	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \infty \\ \hline \end{gathered}\right.$	$\|n\|$	$\left\|\begin{array}{l} n \\ n \end{array}\right\|$	$\stackrel{0}{0}$	\pm	0	7	$\stackrel{ }{-}$	$\|\infty\|$	$\left\lvert\, \begin{gathered} 9 \\ n \end{gathered}\right.$	ब	N	0	$\left\lvert\, \begin{gathered} 0 \\ R \end{gathered}\right.$	ज	in	9	인	q	\bar{m}	$\left\|\begin{array}{c} \infty \\ \sim \end{array}\right\|$	8	∞	10	9	－	\bigcirc	9	n	$\stackrel{N}{\sim}$
$\frac{1}{2} \underset{y}{2}$	$\underset{\sim}{\mathcal{F}}$	$\left\|\begin{array}{l} n \\ m \end{array}\right\|$	n	$\left\lvert\, \begin{aligned} & 0 \\ & n \end{aligned}\right.$	$\left\lvert\, \begin{gathered} n \\ \hline \end{gathered}\right.$	$\mid \infty$	$\stackrel{\rightharpoonup}{\mathrm{p}}$	pip	\cdots	n	$\left\lvert\, \begin{aligned} & \pm \\ & m \end{aligned}\right.$	$\underset{\sim}{\infty}$	$\underset{m}{\infty}$	\pm	10	$\underset{m}{n}$	$\left\|\begin{array}{c} \infty \\ m \end{array}\right\|$	$\left\lvert\, \begin{gathered} \infty \\ m \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & n \\ & n \end{aligned}\right.$	$\left\|\begin{array}{l} n \\ m \end{array}\right\|$	$\|0\|$	m	m	$\left\|\begin{array}{c} \infty \\ n \end{array}\right\|$	∞	\pm		$\left\lvert\, \begin{array}{\|c} 0 \\ \hline \end{array}\right.$	$\underset{m}{N}$	\bar{m}	$\stackrel{\infty}{\sim}$	N	\cdots	\cdots	m
	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\mid \infty$	$\left\|\begin{array}{c} N \\ \infty \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	∞	$\left\lvert\, \begin{aligned} & N \\ & \infty \end{aligned}\right.$	N	∞	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\mid \infty$	\mid	N	$\left\|\begin{array}{l} \infty \\ \infty \end{array}\right\|$	$\mid \infty$	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \end{aligned}\right.$	$\|\infty\|$	$\left\|\begin{array}{l} N \\ \infty \end{array}\right\|$	$\|\infty\|$	$\mid \infty$	\mid	$\underset{\infty}{\sim}$	－	$\underset{\infty}{N}$	$\mid \infty$	－	$\mid \infty$	$\mid \infty$	N	∞	∞	∞	∞	∞
ζ	$\|n\|$	$\hat{0}$	$\left\lvert\, \begin{aligned} & \infty \\ & \alpha \end{aligned}\right.$	N	in	$\|0\|$	0	0	N	∞	N	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \end{aligned}\right.$	0	∞	ナ	0	m	$\stackrel{\rightharpoonup}{n}$	$\left\lvert\, \begin{aligned} & n \\ & 0 \end{aligned}\right.$	$\left(\begin{array}{l} \infty \\ n \end{array}\right.$	10	$\underset{F}{N}$	Pl	\ln	in	\simeq	$\stackrel{N}{\mathrm{f}}$	a	∞	$\mid \infty$	9	\cdots	$\stackrel{\sim}{r}$	\bigcirc	\bigcirc
$\leq \underset{\Sigma}{\Sigma}$	0	N	$\|0\|$	$\|\underset{\sim}{m}\|$	$\vec{\nabla}$	7	$\underset{\nabla}{m}$	$\mid \infty$	$\left\lvert\, \begin{gathered} m \\ m \end{gathered}\right.$	g	$\mid 9$	$\|n\|$	n	$\|m\|$	$\ln \mid$	$\left\lvert\, \begin{aligned} & 9 \\ & N \end{aligned}\right.$	$\overrightarrow{7} \mid$	F	$\left\lvert\, \begin{gathered} \mathrm{F} \\ \hline \end{gathered}\right.$	$\underset{F}{ }$	0	in	7	F	$\vec{\nabla}$	$\|\nabla\|$	$\left\lvert\, \begin{gathered} n \\ m \end{gathered}\right.$	$\left\lvert\, \begin{gathered} n \\ m \end{gathered}\right.$	\％	$\underset{T}{ } \mid$	$\|0\|$	$\left\lvert\, \begin{aligned} & 0 \\ & 7 \end{aligned}\right.$	\pm	F	$\stackrel{\infty}{+}$
$\xi \underset{\sim}{\square}$	$\left\lvert\, \begin{aligned} & n \\ & n \end{aligned}\right.$	N	N	$\stackrel{\sim}{\sim}$	\cdots	\cdots	N	N	N	N	\cdots	\cdots	N	N	$\stackrel{N}{N}$	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	\cdots	$\stackrel{N}{N}$	N	N
	$\begin{aligned} & n \\ & \underset{\sim}{n} \end{aligned}$	$\left\|\begin{array}{l} \hat{N} \\ \AA \\ \AA \\ \sigma \end{array}\right\|$	$\begin{aligned} & 8 \\ & \text { n } \\ & \text { n } \end{aligned}$	$\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{n} \\ & \sim \end{aligned}\right.$	$\frac{\infty}{n}$	$\underset{\sim}{\sim}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & \mathbf{n} \end{aligned}$	$\begin{gathered} 1 \\ n \\ \\ \hline \end{gathered}$	$\begin{gathered} -1 \\ \underset{-n}{2} \end{gathered}$	$\left\|\begin{array}{l} n \\ \sim \\ \sim \end{array}\right\|$	$\left.\begin{aligned} & n \\ & 0 \\ & \end{aligned} \right\rvert\,$	$\stackrel{N}{\mathrm{~J}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{2} \end{aligned}$	$\frac{n}{n}$	$\left\lvert\, \begin{gathered} n \\ \sim \\ \underset{\sim}{n} \end{gathered}\right.$	$\stackrel{f}{0}$	$\left.\begin{aligned} & \hat{\alpha} \\ & \hat{\alpha} \\ & \AA \end{aligned} \right\rvert\,$	$\begin{gathered} n \\ \underset{\sim}{n} \\ \end{gathered}$	$\begin{aligned} & n \\ & m \\ & m \\ & 1 \end{aligned}$	$\left\|\begin{array}{l} n \\ 0 \\ n \\ n \end{array}\right\|$	$\left\|\begin{array}{l} n \\ 0 \\ 0 \\ -1 \end{array}\right\|$	$\begin{gathered} 0 \\ \hat{0} \\ -1 \end{gathered}$	$\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{\prime} \end{aligned}\right.$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \end{aligned}$	$\|\overrightarrow{2}\|$	$\begin{aligned} & n \\ & \underset{N}{n} \end{aligned}$	$\left\|\begin{array}{c} 0 \\ -m \\ \sim \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 7 \\ 7 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 10 \\ 0 \\ -1 \end{array}\right\|$	$\begin{gathered} \underset{\sim}{m} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{aligned} & \vec{m} \\ & 0 \\ & - \end{aligned} \right\rvert\,$	$\begin{aligned} & 7 \\ & n \\ & n \\ & n \end{aligned}$	－
롤	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} n \\ n \\ n \\ \sim \end{array}\right\|$	$\frac{n}{\pi}$	$\left\|\begin{array}{l} 7 \\ \square \end{array}\right\|$		$\begin{aligned} & \underset{\sim}{2} \\ & \underset{N}{2} \end{aligned}$	$\stackrel{\infty}{O}$	$\underset{\sim}{7}$	$\begin{aligned} & \ln \\ & n \\ & n \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \hline \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} \sim \\ 8 \\ \sim \\ \sim \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \mathrm{~N} \\ \mathbf{0} \end{array}\right\|$	$\underset{\sim}{m}$	$\underset{-}{9}$	$\begin{gathered} m \\ \underset{\sim}{n} \\ \sim \end{gathered}$	$\left\|\begin{array}{l} \pm \\ \dot{J} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{N}{0} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 8 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 7 \end{aligned}$	$\begin{gathered} \pm \\ \mathbf{n} \\ \end{gathered}$	$\stackrel{N}{\mathrm{f}}$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{y}{c} \\ & \end{aligned}\right.$	\mid	$\left\lvert\, \begin{aligned} & 0 \\ & \dot{1} \\ & 0 \end{aligned}\right.$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{array}\right\|$	$\|\vec{N}\|$	$\left\|\begin{array}{l} n \\ 0 \\ \underset{\sim}{n} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & - \\ & \underset{\sim}{2} \\ & \hline \end{aligned}\right.$	$\stackrel{\ominus}{\underset{\sim}{f}}$	$\left\lvert\, \begin{gathered} 0 \\ 9 \\ n \\ \hline \end{gathered}\right.$	$\begin{aligned} & n \\ & \underset{~}{n} \end{aligned}$	$\begin{aligned} & \pm \\ & 0 \\ & 6 \end{aligned}$	$\left\lvert\, \begin{gathered} \hat{n} \\ \underset{\sigma}{2} \end{gathered}\right.$	0	$\stackrel{\sim}{\sim}$
$\underset{\mathrm{E}}{\mathrm{E}} \underset{\mathrm{~s}}{\substack{s}}$	N	N	－	N	N	－	N	\sim	N	N	N	N	－	N	－	N	N	\sim	\sim	N	N	N	\sim	N	\sim	N	－	－	－	－	N	－	\sim	\sim	－
$\begin{aligned} & 5 \\ & \stackrel{3}{5} \\ & \frac{5}{5} \end{aligned}$	\pm	0	$\left\|\begin{array}{l} 0 \\ 0 \end{array}\right\|$	n	∇	in	n_{n}^{n}	$\stackrel{\rightharpoonup}{n}$	$\|\underset{\sim}{\mathrm{N}}\|$	$\stackrel{n}{0}$	\pm	$\|\stackrel{n}{0}\|$	\％	$\vec{n} \mid$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{n} \end{aligned}$	$\ln \mid$	－	$\underset{\sim}{\mathcal{O}}$	$\begin{array}{\|c} \mathbf{~} \\ 0 \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & n \\ & 0 \\ & 0 \end{aligned}\right.$	$\mid \hat{O}$	0	三	N	n	$\|\vec{n}\|$	in	$i n$	$\left\|\begin{array}{l} \infty \\ n \end{array}\right\|$	8	N	σ	－	0	$\stackrel{m}{0}$
$\stackrel{H}{\Sigma}$			$\left\lvert\, \begin{aligned} & n \\ & \hat{N} \\ & \hat{e} \\ & \tilde{2} \\ & \underset{\sim}{2} \\ & - \end{aligned}\right.$			$\begin{aligned} & \vec{N} \\ & \underset{\alpha}{2} \\ & \hat{N} \\ & \hat{\Omega} \end{aligned}$			$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{2} \\ & \dot{8} \\ & \tilde{\Omega} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\Omega}{2} \end{aligned}$								$\begin{aligned} & n \\ & \underset{\sim}{2} \\ & \underset{8}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$						$\left\|\begin{array}{l} n \\ \sim \\ 8 \\ 8 \\ 2 \\ 2 \\ - \end{array}\right\|$					$\left\|\begin{array}{c} n \\ \underset{y}{2} \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \end{array}\right\|$	$\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & n \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} n \\ n \\ 2 \\ 0 \\ 2 \\ 2 \\ -1 \end{gathered}\right.$		$\left\|\begin{array}{c} \vec{j} \\ \underset{2}{2} \\ \underset{\sim}{2} \\ \underset{2}{2} \end{array}\right\|$	

Sighting Data 1993

DATE	SIGHT\#	$\begin{array}{l\|} \hline \text { PHOTO } \\ \text { GRADE } \end{array}$	$\begin{aligned} & \text { TIME } \\ & \text { BEGIN } \end{aligned}$	$\begin{aligned} & \hline \text { TIME } \\ & \text { END } \end{aligned}$	$\begin{aligned} & \hline \text { IAT } \\ & \text { DEG } \end{aligned}$	$\begin{aligned} & \hline \text { IAT } \\ & \text { MIN } \end{aligned}$	$\begin{aligned} & \text { IAT } \\ & \text { SEC } \end{aligned}$	$\begin{gathered} \hline \text { LONG } \\ \text { DEG } \end{gathered}$	LONG MIN	$\begin{gathered} \text { LONG } \\ \text { SEC } \end{gathered}$	$\begin{array}{\|c} \hline \text { TOT } \\ \text { POSID } \end{array}$	$\begin{aligned} & \text { TOT } \\ & \text { BEST } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { CAIF } \\ \text { POSID } \\ \hline \end{array}$	$\begin{aligned} & \text { CALF } \\ & \text { BEST } \end{aligned}$	$\begin{aligned} & \text { YOY } \\ & \text { POSID } \end{aligned}$	$\begin{aligned} & \hline \text { YOY } \\ & \text { BEST } \end{aligned}$
19931019	6	2	1341	1406	27	36	2	82	43	76	9	16	1	2	0	0
19931019	8	2	1448	1511	27	32	61	82	44	72	7	12	0	4	0	0
19931019	9	2	1511	1530	27	32	60	82	44	69	5	7	0	1	0	1
19931020	203	2	1213	1228	27	42	87	82	30	97	4	12	1	3	0	0
19931020	206	2	1536	1603	27	43	16	82	30	29	8	18	0	3	0	0

Dolphins Identified in 1988
BUCB HKPK TRK2 FMS2 MORX MDSF SCTP TNHS KNIN TTM2 TM21
ETET LAPL HKNB DZSO BTLR HUMP SHAT MNTS MDBK UPRF MINP MBFN
WIP LA51 FNTM FMS2 PIJZL SODS LCLN LVMN TTHS ALN2 MM72 SPSD LBUB SQF2
BTLR LAPL MTNP HUMP SAMN MBPN DZSO MDBK UPRF MNTS WCMS SHAT
FB07 FB06
FB67 FB60 FBM FB61 FB65 FB67 FBO6 FB32 F106F132 F134 FB08
F161
9880919
9880919
9880919
19880919
19880919
19880919
19880920
19880920
19880920
19880920
19880920
0
O
O
0
0
0
19880921
19880921
19880921

19880923
19880923
19880924
19880925
19880925
19880925
n
0
0
0
∞
0
0
n
N
∞
∞
∞
0
19880925
19880925
19880925
19880927
19880927
19880928
19880928

∞
$\underset{8}{8}$
8
∞
∞
8

0
\AA
8
∞
∞
0
$=$
19880929
19880929
19880929
19880929
19880929
19880929
19880929
DOLPHIN CODES

F106
LAMN BTTL
LFLM LFIC PAPI PFLG
MLBA
室
F210C210
WLP
CLLA CCLI
2EUS PRGO SFHD NASC RSFG HSPN
MARM TBEL 5NK2 LNST LNTF LNTR
MARX PFMB
CHMP STPO
LAMN
SNLA
MOPK
CHTO
FB59 F106 C592 F134
SKHK SKHC
SFMH SPNM
KSLW
KSLW EIFS DMBK
LAMN ETHF KMSL
MTNP BTLS
ETOO MBLS KEYM LUFR BTAS FTIS BTMT
BBAN TINT TPNM
BBAN TINT TPNM

DOUPIIN CODES SIGHTA

ZEUS INCY
LACH THMN NOFN
FB8 7 WTMA 49 LA PHNE
FB27 HB33 FB6 7 FB83 FB90 DRSN FB76 FB50
FB35 F893
FB45 FB08
FB45 FB54 FB75 SURR AHLA TTOO
CHWK
FLTH HKMA TINT NUNS HNDB
NFMS
LA84
THRM CLMW CLMC LDMA LDMC USL LUSC CTHM
FB53 FB57 CLLA F104F130 F132 F134 F106 CCLI
CHMA CCHM THLA 2SDN CHK2 FRIL JAGG MORN ETHR JIG3 CHKC
CHMA CCHS CHSC CHMA CCHM TTM 3 CHKC 2SDN THLA IOBE PLOB JAGG FRIL JIG 3 CHK 2 MORN BRCH HNBT TFMS IDBZ TRNO RT90 ETMLA $41 I A$ FB75 FB90 FB50
F145 F147
F161
FB26 FB48 SUMO CMRS
FB26 FB48
FB07 FB63 FB75 FB90 FB84 FB22 FB50 FB92
FB65 FB67
FB54 FB14 FB66 FB76 FB94
SHRD
LA71 L17C PAPI LFLM LFLC
LFLM
BTTL ECPS ISGL BAT3
DPST BBAN FUP TPSP
CHMS CHSC TOD8
MARX BTM2 DEDO
FB54 FB14 FB66 FB76 FB94 FB75 FB90 FB50
F145 F147
F161
FB26 FB48 SUMO CMRS
FB26 FB48
FB07 FB63 FB75 FB90 FB84 FB22 FB50 FB92
FB65 FB67
FB54 FB14 FB66 FB76 FB94
SHRD
LA71 L17C PAPI LFLM LFLC
LFLM
BTTL ECPS ISGL BAT3
DPST BBAN FUP TPSP
CHMS CHSC TODB
MARX BTM2 DEDO
FB54 FB14 FB66 FB76 FB94 FB75 FB90 FB50
F145 F147
F161
FB26 FB48 SUMO CMRS
FB26 FB48
FB07 FB63 FB75 FB90 FB84 FB22 FB50 FB92
FB65 FB67
FB54 FB14 FB66 FB76 FB94
SHRD
LA71 L17C PAPI LFLM LFLC
LFLM
BTTL ECPS ISGL BAT3
DPST BBAN FUP TPSP
CHMS CHSC TODB
MARX BTM2 DEDO
FB54 FB14 FB66 FB76 FB94 FB75 FB90 FB50
F145 F147
F161
FB26 FB48 SUMO CMRS
FB26 FB48
FB07 FB63 FB75 FB90 FB84 FB22 FB50 FB92
FB65 FB67
FB54 FB14 FB66 FB76 FB94
SHRD
LA71 L17C PAPI LFLM LFLC
LFLM
BTTL ECPS ISGL BAT3
DPST BBAN FUP TPSP
CHMS CHSC TODB
MARX BTM2 DEDO
FB54 FB14 FB66 FB76 FB94 FB75 FB90 FB50
F145 F147
F161
FB26 FB48 SUMO CMRS
FB26 FB48
FB07 FB63 FB75 FB90 FB84 FB22 FB50 FB92
FB65 FB67
FB54 FB14 FB66 FB76 FB94
SHRD
LA71 L17C PAPI LFLM LFLC
LFLM
BTTL ECPS ISGL BAT3
DPST BBAN FUP TPSP
CHMS CHSC TODB
MARX BTM2 DEDO
FB54 FB14 FB66 FB76 FB94 $\begin{array}{cl}25 & \text { FB75 FB90 FB50 } \\ 3 & \text { F145 F147 } \\ 4 & \text { F161 } \\ 5 A & \text { FB26 FB48 SUMO CMRS } \\ \text { SB } & \text { FB26 FB48 } \\ 6 & \text { FB07 FB63 FB75 FB90 FB84 FB22 FB50 FB92 } \\ 1 & \text { FB65 FB67 } \\ 20 & \text { FB54 FB14 FB66 FB76 FB94 } \\ 21 & \text { SHRD } \\ 22 & \text { LA71 L17C PAPI LFLM LFLC } \\ 23 & \text { LFLM } \\ 25 & \text { BTTL ECPS ISGL BAT3 } \\ 27 & \text { DPST BBAN FUP TPSP } \\ 28 & \text { CHMS CHSC TODB } \\ 4 & \text { MARX BTM2 DEDO } \\ 0 & \text { FB54 FB14 FB66 FB76 FB94 } 4\end{array}$
욱
2
0
∞
∞
∞
19881005

8
8
∞
∞
∞
0

19881009
19881009
19881010
19881010
19881010
0
0
0
∞
∞
∞
0
∞
∞
∞
∞
∞
19881010
19881010
19881010
19881010

0
0
0
∞
0

19881011
19881011
19881011
$\overline{3}$
∞
∞
∞
∞
$\bar{\sigma}$
∞
∞
∞
∞
こ

$\overline{0}$
0
∞
0
0

19881011
च
19881011

$\bar{\circ}$
\vdots
∞
∞
∞

N
0
∞
∞
∞
\sim
N
0
∞
∞
0
0

\approx
0
∞
∞
∞

\approx
0
∞
∞
0
0

\because
0
∞
∞
∞

$\overline{2}$
$\stackrel{7}{2}$

N
∞

19881012
Dolphins Identified in 1989
SLGUTH DOLPHIN CODES CUA FB20 Clla fb20
F210C210 FB26 F120 F124F126 F154 FB48 F136 CONS
F210 C210 FB26 F120 F124 F126 F154FB48 F136CONS
F105 Clua
FB09 FB11 FB31 FB57 FB53 FB06 FB08 FB22 F104 FB67 F1 30 F132 FB65 POOF MLTS TFLG LOBE RLDX MNIP BHOP NASC FB50 FB90
PRNS FIGS
SFLG WMPY
ZORO ZORC MLCB
LFLG
WTMA 49LA
WTMA 49LA CWT2 49C1 LWMN
FB65 FB67 F106 F132
MBAS
BTTV
SFAN
CPCR SHVB BXBT HSLV
RNMA RNMC
TFLG ETHR HBBT BBLN MTLR
F163 F168
F102 F104 F106 F132 F154 POOF HAWK
PLOB 2SDN TFLG
PS72 TTRS STEN
LA68 BTM2 BTTV KATT FB99
LA68 BTM2 BTTV KATT FB99
F200 F2 10 RP19 MSLB RTFN BTIV HBUT FB99 BTTV SFAN KATT F157 FISB
绿
 F154 F156 F162 POOF F160
CLLA FB20 RTMW RTMC CCLA
LOBE LSPL MOFG LDBZ JAGG NPNT CSTK 4lla FRIL KMSN PSDQ

THRC RSFG KUBT
LBSN CIBS TFBT NI82 SCOB
PNSY ALHM
CHTO BBET HFLY HSLW DEDO BNLN
ETFR SMET ETLN
LNKM LNKC
FNTM LVMN MSLS
FLTH NPKR FLBB TRK2 LBBT MTFS HNHN TNT3 LCMN CONS
WHIT HVTF
WRCH ALHK MDS2
BUZN BOZO NFMS LRUF IFLG
ABEL LNKM THMS HSMB HSMS
LCDB
FB65 FB67 F104 F130 F132 POOF
F140 SUMO
TMWG RP19 HNIP
SFAN
FB28 MSLB BTTV F116 KATT
F130 F132 F206
LFIM LA71 MDIN
URPL FLBC FLBT
LNBT 5NK2 WTAB PRNS
FNGD WHIT AAR2 HTHR BOLT BZPN BZPC BOLT BZPN BZPC
RTMW
RTMW
BUT
(1)
CLLA FB20
F145 F147

MA SCBT NAMW WHN SPNM
SIGHTH DOAPHIN CODES
DOHPHIN CODES
MORB
CSTK ISPL PSDQ NPNT TRNO HRLB FTMS ETMN TLN2
F130 POOF
POOF HAWK F156
F104 F106 F132 HAWK
49LA 49C2 F154
NNLA SSMB SJMC
SB2 TSMV CTSM 3 FB38 PINC PRNS LSL1 MNCB LNBT
MAWK POOF F104 F106
FLMA FLMC
FLMA FLAC
LAPL HGLS
LAPL HGLS SHAT MDBK TNT3 MBLS HUMP TNMB HFMB LNDF MNTS FTMS

ETMS

DULF THLN
NUNS
MJSU MTPN USLR
LBSH LNLN SHVB ETFR
TMWG LNTB BGSQ HNHW FTLN
SPGT RP19 R19C
F104 F106 F132
F206 F132
HAWK CONS FTTP
FB39 F143 F161 F164
F145 F147 F102 RP19 R19C SPGT HIQQF160 F162 BAIN
F145 F147 F1S6 F154 BALN H！QQF160 F162
F156 F160 F162
CHWK BTMN FTMP BTHV FTDB TODB
TMLN TODB BTHV
CHTO PSBZ R61M
F145 F147 SPGT MSOS
MARM TBEI
SUMO F140
HKWT
ETSN BITE
号
INIIF SFAN
PNOI SKHK SKHC RNMA FIJP HIWN FLBT
N～N～N Nの呙
DATE
9890918
9890918
9890918
9890924
9890926
9890926
19890926
19890926
19890926
9890926
9890926
9890926
19890927 27
19890927
19890927
19890927
19890927
19890927

19890927
19890927
19890928

∞
0
0
0
0
0
0

19890928 19890928
19890928

19890929
19890929
19890929
19890929

19890930
0ع60686I

19890930
19890930
19890930
19890930
19891002
Dolphins Identified in 1989

FB63 FB22 FB25
PLOB THLA TTM3 훕

22 PLOB THLA TTM3 TM31 ETHIR DPST TFLG NIK2
FNMA FNMC TLON KMSL BGSQ NAAN MTSD HNDB ETHF ALHM
BUTF BTMN KUBT NPAL SBHN FLBT HBUK DEDO FTMP
FB19 FB25 FB54 C542 FB05 FB15 FB97 FB55 FB03 FB63 FB22 MBOX

MBUT

TTM2 BANR

LCMN THBX HIBX PUZL
MTFS NUNS HSLV NUNC MORX
NUNS NUNC HSLV MTPS MORX BTLR
HKMA HKMC ETMW STEN SFHD SCTP MSBB TPNM BKLB
PNO1 SPLT QJOB LFLG JAWM BZPN NITB KMLS RNMA FBLN TSAB URPL INMA
TTHS
HFBG HNHN
STEN ETFR
TDNK
MTSD TDOT
SOBT TBE MARM MRMES CKIC BTHV INTB
F134
FB35 FB93 FB95 FB:1 FB13 F821 FB24
F140 RTLN
MNP2 RLDX
LFLM IFLC PFLG LATI MDIN LCAP PAPI PAPC
TNPF HNLB SFAN JBAK
TODB LA19 HWLS STPO
F145 F147 HAWK CONS SPGT FTTP TABB GITR MSQS F136 RTMW RTMC
THMN
F191 49LA 49C1 FJSR DRAC LMBT
FB09 HITS
FB07 FB79 FB76 FB10 FB32 FB34 FB46 FB66 TWHN F104 F106 F160 F162 F132 F130 F106 FB32

5NK2 WTAB
F102 F104 F106F132F134F206 F160 HIQQ WTAB F136 5NK2 F162 BCLW POOF FB25 F827 FB97 FB26 FB48 RTLA

FB74
BTHV RTIN WHINM AAR?
F130 HLNK
FB08 FB1 8 FB44 F $10+$ F106F132F134 POOF WTAB PRNS
LDBZ KMSN
FB73 F191 SURR
19891004
19891004
19891004
19891004
19891004
19891004
$t 0016861$

7
$\$$
0
0

3
9
9
9
9

1
6

ふ

n
8
0
0
∞
0

19891005
n
6
0
0
6
19891005
n
δ
6
0
0
0

19891005
19891005
19891005
19891005
19891006

19891007
19891007
19891007
19891007
19891009
8
8
8
0
0
19891009
F163 F1S4 F168 F156 LBMN FB48
FB39
LA84 L84C

fNTM MSLS MORX
PRNS LNBT
FNGD SOBT NANT MORB CKFC
MSOS
JBAK
MOON SKHK SKHC FLAG LNTB RNMA RNMC FUP
FNGD SPNM SPNC HTHR INMA INMC FILN FUP THRC SUMO MRSL CMRS
ROOS STIP

JBAK JBAC TBE MARM
 OUL LNMA
 F120 F124
 LBMA
 HKWT
 F104 FB90 FB50 F134
 MGWT MGWC

F200 LBMN TNPF WARO SFAN RTFN INHF
OUL LNMA TNET ANMB TRBU UPSN BLUG
fNGD INBT WTAB PRNS NIK2 STMN 5NK2 HIWN FLIP
CPCR SCIP RCLV TINT HNSQ
DALS INMA BABX FBIN VTHN TODB MBLN FIBT BUTF
$\begin{array}{lcl}19900910 & 3 & \\ 19900910 & 4 & \text { THLA PLOB 2SDN MORN BFMB LSB2 CHK2 HKSK NIPP BRCH HNBT JIG } 3 \text { ETHR TTM3 TSCB MPNM MPNC } 2 \text { SDC SURR } \\ & & \text { HBBT HBBC MLTS ALJN TNTN TFMS ETMA ETMC BTHS FJSR } \\ 19900910 & 5 & \text { TFMS } \\ 19900910 & 51 & \text { WTAB BTLN 5NK2 } \\ 19900910 & 53 & \text { F105 1052 } \\ 19900910 & 54 & \\ 19900910 & 55 & \text { SUMЮ } \\ 19900910 & 56 & \text { TBEL FLMB SUMO } \\ 19900910 & S 8 & \text { F134 } \\ 19900910 & 6 & \text { LOBE PLOB JAGG TSNV 41LA TFMS HNLN FB87 MNCB FB73 F191 FRIL } \\ 19900911 & 1 & \text { BTHV }\end{array}$
SIGHTH DOLPHIN CODES
Dolphons Identified in 1990
F126 TTM2 TM2 1 STMN QLOB TNPF BABX JBAK TFBT SPLT INLN OLOC BTTV RTFN UNLN TTM2 TM2 1 SPLT TFBT STMN QJOB
DALS FBLN FNMA MBLC PRN2 MWDG MBLN FNMC
TTM3 TM31 RT90 FLGS UPBK TMHK SURR HSL4
THLA THLC ALN MLTS MORN
RFHS
SHAT DZSO TNT3 RBMS SQJF
HGLS MSLS QJOB
EUFF
SNLA
LDMA LDME WMPY WMPC THRC
MARM
FB5 1 FB79 FB59 F131
SKHK SkHC
HPTR BOLT BOLC SNLA
CKFC
LNBT PRNS SNK2 MBAB RTFN
RIDX
PFLG
BCRK
F136 FB17 C172 FB28 F134 F191
SPLT SBHN RDPT CLBS PRG3 HLD 27 FB5 FBS9 FB26 F131 F168
SPLT SBHN RDPT CLBS PRG3 HL1B
NUNS WVET KEYM LULP
NUNS WVET KEYM LULP
BUZN FRLB WGRV BANR IGMS
DDM1 HKMA DDMA
SMET STEN HFBG
SFIM SFLC HDMA JDFL ETTA ZEUS LCLN SFHD

19900911
19900911
19900911
19900913
19900913
9900913
9900914
19900914
19900914
19900914
19900914 19900914
19900915
n
$\%$
0
0
0
19900915

19900915
n
0
0
0
0
0
19900917
N
名
g
N
§̀
فे
$=$

N
है
ूे
on

N
8
\vdots

19900925
19900925
19900926
19900926
19900926
19900926
9900926
19900926
0
8
8
8
है

2
2
2
2
2

19900926
19900926
19900926

SIGHTH DOIPHN CODES

Dolphıns identified in 1990

DATE S	SIGHTH	DOLPHIN CODES
19900926	6	LSLS HSLN
19900926	7	GSLL WCMS LSIS UPRF
19900926	8	LTSM LTSC
19900927	14	CLIA FB20 F104 F132 F136
19900927	53	F104 F102 FB-46 FB08
19900927	55	F191
19900928	1	LBMA LBMK
19900928	2	F105 1052
19900928	3	F162 F160 TABB SPGT SPGC SUMO MRSL HAIR GITR CMRS F126 RTMW MSOS F140
19900930	3	FB90 FB50 FB65 FB67 C673 FB84 FB92
19900930	4	FB94 FB66 FB76 FB26 F130 FB48 F106 FTTP F136 F102 F162 HIQQ F160
19900930	5	FB17 C172 F191
19901001	10	MOON
19901001	2	FMS2 ANET MDBK
19901001	3	GSLL MTMM HFMA MORX BTLS TPNC TPNM
19901001	4	BBAN FTTS LUFR STM
19901001	5	CHTO HSLW
19901001	51	
19901001	53	TSCP USMB JDFL
19901001	54	LA51 SODS
19901001	55	FLBB SSLN HFBG HNHN
19901001	56	MBUT
19901001	57	LCMN SLIA FNTM LVMN MSLS STEN
19901001	58	THLN BGUB DULF STEN STNC
19901001	59	BBET HSMN
19901001	59A	ININ BUZN NFMS LULP QJOB
19901001	6	ETSN
19901001	7	BOZO PFMB NIKO
19901001	8	LAMN BTLN MTGW SKSW BTMB HSET MOFF THMS
19901001	9	
19901002	1	HVTF
19901002	2	
19901002	4	MVPN PRNG
19901002	5	LOBE PLOB TFMS TFLG TMHK HNBT HNBC BHOP NOMS ETMA
19901003	3	F145 F147
19901003	52	F134 F105 F143 HAWK HIQQ LBMA
19901003	53	FTTP
19901003	54	
19901003	55	F163 F162 F160 F168 RP61
19901004	52	ElfF
19901005	1	F104F102F132 HIQQ
19901005	2	F102 F104 F132
19901005	3	F10S INPF CILA FTIP

BTIR WVET IDMS PNBT NKMA FGSF
F129 FBS8 TNLV
BTMB THMS MTGW BISP
ALHM THRM BTMB LUSL STFN TTRS
ECHO SMET TDOT HNHN DTMB UBLS MM28 RBSP TABB SUMO SPGT SPGC GITR F147 MRSL F126
FB57 FB53 FBSS F102 F106
SCRT FLMB
RP61
THRC
TBEL MNCB NIB2 CNI2 RTFN BTON SNSC
FB62
FB71 FB07
HKLA ETMN SNIS BHIB LNET ARIA
STPO MRBL ALN2 TRK2 HNNS SFLM DTIN PUZL SLLA ETTA
PFLG BTSP LCAP ETMB SMNC
ETMB THMS
LAMN KMSL HVTF
MTWF
CLIA
YWMN WARO BTO3 PRGO STIB URPL SPIT YWMN WARO BTO3 PRGO STLB URPL SPIT
MJSU TNMB LNLN CLNN SPLT BUTF BUZN
MJSU TNMB LNLN CLNN SPLT BUTF BUZN R61M DAIS TBXS NPAL CLBS BTAS TAIS PNOI NOLA HINP MYLV DEDO CDAL SPL
MSLB F158 F157
FB94 FB66 FB76 FB33 LFIA STET
五河
FB11 FB55 TMSP F134
STIP ROOS MISH FB28
STIP ROOS MISH FB28 F116
BTLR TNMB SQF2 PNBT TPNM
BTLR TNMB SQF2 PNBT TPNM
HFMA HFMC MTMM CMTM
NESS

8
4
4
4
4
3
3

19910903
19910903
19910903
19910903
19910903
19910904 19910904
19910905
19910905
19910905
19910905
19910905
19910905
19910905
19910905

19910905 19910905
19910905
19910905
19910905
19910905
n
Q
0
0
σ
19910905

\circ
8
8
6
6
－
8
g
g 19910909
19910909
19910909
19910910
19910910

\circ
$\stackrel{\circ}{8}$
$\frac{8}{2}$

영
万，
g

19910910
19910910
19910910
19910910
19910910
Dolphıns Identified in 1991

TTM2 BABX URIN LDMA OLIL UNLN THRC TUSC HAW2 TT21
IDMA THRC
OLL BABX UN

OLLL BABX UNLN TTM 2 HAW2 URIN
F158 F129 MSLB F1 16 FB28 TNLV FBS
SIGHTH DOIPHIN CODES
DOLPAIN CODES
F126 STIP INHF F140 LBMN LNST BGSQUBMN TNST
RIDX
MOGB LFLM NIPY
THMS
FB58 TNLV BTO3
FB58 TNLV BIO3
BABX OLIL URLN UNLN BABC
F104 F134 FB27 FB67 FB65 FB62 FB76 FB66 FB54 FB20
F104 F134 FB27 FB67 FB65 FB62 FB76 FB66 FB54 FB20
CLLA FTLN FB20 FTLC
F104 F132 MRSL
MBAB F172 TWHN
F102 FB39 HICQ
F134 F104 F132 CMRS SFMH F124 AAR2 F120
KMSL
PSBL TCSN
DALS TFBT BTRE CDAL FLBT FLBC MOGB WMPY FTMLS MOTF BTTN DINO
BCBX BCBC
HIQQ F102 NIK2 CMRS
F104
MGWC MGWT
F158 F157 F200 MSLB SFAN
TABB SUMO F126 SPGT NIK2 HWLS TMSP MSOS PSDQ L4NK TRSC MTSS
FTTP F120 F124
PBMS HAWK SURR TSC8 LOBE F 30 RIL ETN SFMH BBTT
F162 F136 FB07 C071 F160 FB55 F154
FB99 ROOS
F129 FB58 TNLV SKHK
FB70 FB72
IINBT HNBC TFLG ALIN BRCH
HBBT HBBC CAT2 MOLA HLNK SHOT HFFR MM62 SPIK HSL 4 CHSL.
TTOO FLAG SFMH LBDN AAR2
DAIS CHMP FTWT CIPN CDAL
BTM2 UNIN TNTB
DATE

19910930
19911002
19911002

O
§
§

$\hat{8}$
$\hat{8}$

19911003
19911003
19911003

19911003
19911003
19911003
19911003
19911003
19911003
19911003

2
8
\vdots

19911003 $\frac{4}{8}$
8
8
 4.
8
8
g
$=2$ +0011661
+0011661 19911004
19911004 19911004
19911004
19911004
19911004
19911004
19911004
19911004
19911004
19911004
19911005
19911005
$\begin{array}{lll}\text { FB48 FB26 F168 F124 F120 LBMA CONS } \\ \text { FB6 } & \text { FB11 FB90 FB75 F175 FB27 FB17 F191 FB35 C651 F122 C354 }\end{array}$
THLA HKSK 3 ETMA FLGS TMHK CAT2 TFMS MLTS JIG3 HBMB NACK ETSS MHBT MM68
MS18 F158 F157
MSLB F158 F157
FB28 F116 BTTV F200 SFAN KATT
FBS8 TNLV
BOLT KUBT BZPN FLAG MWDG NITB HILB BOLC BZPC
CHMP PRNS INBT FTMS BTTN HIWN
NPKR ZEUS LCMN FNTM LA21 BUZN MUBT SFHD DULF ETLN TNT3 STSG LGMS LCLN
DALS SPLT NPAL FTHN HFMB GRLA BUTF FRNK THIW DEDO QUB HLIB
NIPY
FB70 FB72 SNKR
THOR MDIN
LFLM THMS SMNC SMHK
TWHN F172
FB35 FB75 F175 F134 FB90 FB09 FB32 F104 F132 F130 F162 FB65 F122 C354
FB70 FB72
LBMA
F154F156 7 ABB 144 F12 + SPGT
F136F132 CMRS
RTMW SNK 2 F206 MARX MBAS FNGD UBMN
FB90 FBS5 FB65 FB4B FB11 FB26 F106 F134 FB36 FB38 FB7S F175 HIQQF132 F102 F160 F162 F104 F122 HiTs FB2 8 MSLB F158 F157
DALS CDAL RUF2 HWLS SKHK
LBPN PS72
PNSY THRM ALHM PS 72 LBPN BCBX LUSL LUSC NKJG BCBC AIHC CTHM SNSC NIB2 CNI2
WTAB FNGD HTHR
FB2B F116
FB58 TNLV MSQ2
PFMB
ULWD
을
momex
KMSN SPIK

wax

[^0]56
57

Page 1

SIGHT\＃	DOUPHIN CODE
58	SPIK ELFF HVTF
59	FB70 HFFR SPIK KNLSN KMBT MM62 LYLU
6	GITR GRIM
7	FB28 F116 STIP F140
8	FB58 TNLV MSQ2
1	UNIK GM8Y
3	PAPI PAPC
4	THOR SNKR ETHF DIPY SMHK
5	NOPO LSPT
51	STIP
53	BTTV KATT
54	F129 GRIM GITR
55	F158 F157 RP61
56	MLSH F157 MSLB FAL2
57	MSLB F158 MLSH RP61 F140 TFBT LNMA FOFN NNIP BIST
58	VTHN STMN NNIP PINI
59	HKWT TODB RSFG SUR2
6	JIG3 BTIN F130 ETSS RFTN BTMV
7	MHBT HSL4 HIWN
9	SUMO F136 F134 F104 F132 F106 MRSL CMRS UPBK GTFG IITS POOF HNMW DBBN MBOX
2	F172 F104 F102 F132 BTIN TMSP JIG 3 LNST HWLS HIQQ TMHK F160 F162 BUZLETSS HNMW POOF MHBT LIo6
3	LFLG
4	FB05 FB07 FB09 F155 FB84 FB55 FB63 FB13 F160 SRAT C845 C055 F138
5	TBEL ARIA TIN2 ETMN NKAL MIDF SFRL CLSA STDO
51	TNLV FB58 MSQ2
52	FNGD HTHR
53	PRN2 NIK 8LUG
55	BRCH
3	BOLT SLLP RTMW RSFG RNMA TAL2 CTL 2 M8LN SUR2 NACK
4	NPST BNLN CNPS CBNL
5	SKHK NPST UNDF
51	FNGD HTHR FALC PRN2 BLUG
53	FLJP RUF2 ETSN
54	SKHK LNDF
55	PFMB MYLV
56	HGIS DEDO LUFR BTMT BRH2 RCLV
57	NOPO LSPT TFLG DBBN
58	TSMV SPNM
51	SBLN 3HNK
52	LBMN
53	F102 F136 F104 HIQQ F132 POOF
4	TTM3 TM31 NOPO LANK MT1R MPNM THLG MPNC H8MB FjSR

ज
末
领
－

$=$

19920911
19920911
न
O
ू
相
19920911
19920911
긍
O
－
－

0
0
0
2
2
2
19920916
RT90 HKSK MDS2 ISPT NIPP RFTN TFLG MPNM L.4NK HBMB EFHT RFTC DIDO
TMHK MHBT FB7O SRAT HBMB LYLU TFLG TIN2 FISS L4NK LCDB LOBE SCBT SHRD BGIS NOMS TBEL NKAL SCIN NASC SCBT MOLA FLMB IBPN LA5S KMSL
F131 CONS SFAN F200
F106 F147
F129 WARO MSQ2 SPIT LRUF SKHK VTHN STMN FTWT
F129 GITR GRIM STIP FITP MM72 SXNK
MM72 MTWT SNAG YAMO F126 STIP SXNk
DALS CHMP BOZO PRN2 FLUN LNTN MDJG HINP BTMN PFMB MBLN F158 F157 F129 11LIB NIKI PSNP MYLV CHNC CDAL LNT2 RLDX MNP2
LSPL RT90 FJSR SRAT TLN2 CLSA POLV
F126 HAIR TIBU
CPCR HNSQ
CPCR BARF HSLV TINT ULP MTSQ TCSN MORX TIPV DLNL BSLV HBWB SFHD TNT3 DULF STSG
SMHW FSLP VTWW
ECHO THBX MM28 LBBT STEN HNHN PEND MNCH BBKB ECHO STEN MM2B HNHN PEND MNCH HWKY BBKB
LBSH QUOB TTM2
HGLS BTO 3 SQF2 LTIP MBLS TTHS BOLF TWSO
HFMB TNMB DZSO GRLA BXBT
SPLT TAL2 HLIB FRNK HBUK PRG 3 USIR MUSE TALC SPLC USLC
ZEUS FRIB TDOOT FTHN SOJF MTSD SOMV IDHB HKD2
SFLM TRK2 STYO HNNS HWKB DTTP
MISH F126 ROOS LBMN STIP RP61 HAIR F140 TIBU

PEND

ECHO MDBK ETFR
SIEN MNCH
MM 28 NWLN
MM28 NWLN HFBG SMET NESS BBBN
WGV2
WGV2 ETMW NUNS SMET FSIP
F163
F163 F129
NUNS
TNHS
JDFL
ETTA IIWKB NPBT ANTT TNMO
LULP MTSQ DINL TINT HFMB FLGM HBWB
\square

2
3
4
5
51 DAIIE 19920916
19920917
19920917
19920917
19920917
19920917
19920917
19920917
19920917
등
긍
-
-
19920917
19920917
19920922
19920922

N
©
N
O
g
19920922
N
S
S
§
N
N
S
2
g
N
§
O
N
S
19920922
19920922

N
S
S
ू
g
a
N
or
N
g
ה
N
O
O
ू
O
2
2
0
2
2
N

2
8
0
0
N
N

19920923
n
ö
ò
ö
-
n
O
O
ू
g
N
ö
ô
ō
g

19920923
n
on
on
on
g

19920923
IBSII QLOB TWSO USIR NOLA CLBHI QJOC
TDN2
SOSF ABEL WGRV MORX BGUB THLN DDMA TIPV BNLN TDOT DINO BBLK THMM
LEAT
HAIR F126 MM72 SXNK
TSCP USMB JDFL ETTA
LTSM HSLN
TTHS TTHC
TINT R61M HBWB TTHS NLSQ BTFG BTLS EEEL UMIN TNT3 TTHC MM28 HKD2
BUZN BUZC
LNKM LNKC
HFBG MRBL NWLN ETFR
MM28
TTM2 DAIS SPLT MJSU MBIN PNOI LNLN BABX SSLN NOLA SPLC CDAL F126 RP61 STIP MSLB HAIR FIBB RTFN F129
SHAT EEEL TNMB BTFG
PIFI RTFN PNBT YEIP
STEN
NWLN HFBG MRBL
NPBT HDMA HWKY
ETHF BTHV USMI LNBT HBMW TUTR MNCB LBTY
F102 HIQ
R6IM TALS FOFN TPBT
MOLA PNOI HINP BTAS HNSQ BUTF FOOP HAWK FRNK LNLN NPAL SBPE THIW BIMT MTIR TUSC LNT2 AIYIV BSLV TBXS SXNK LCMN NNIP TTRS MM72 NKMA FB09
PLOB TFMS FLTZ LWMN
RTLN
PINC LSLI BTON
MNCB LBTY
NKNN NKAL TBEI
SLIP NITB MM6B
19920923
19920923
19920923 19920924
\pm
S
O
ू
g
19920924
19920924
19920924
19920924
19920924
19920924

19920924
19920924
19920924
$\vec{~}$
oै
N
ूे
9920925
19920925
\sim
$\tilde{\sim}$
0
α
ふ

19920925

19920925
19920925

2
§
ou
末े
a
8
ì
gis
N
है
－
末े
o
ì
on
ö
on

19921005
19921008

19921008
19921008

19921008
Dolphins Identified in 1992

$$
\begin{array}{lcl}
\text { DATE } & \text { SIGHT\# DOUPHIN CODES } \\
19921008 & 54 & \text { NPAL } \\
19921008 & 5 S & \text { PFMB YAMO MM72 NIKI SSIN FLBB } \\
19921008 & 57 & \text { BLUG NIKI SNK2 SXNK FOFN WTAB NPAL YAMO BTM2 LA68 PFMB BUTF MM72 FLBB HIWN SSLN } \\
19921008 & 59 & \text { NNIP URPL KMLS KSLW HFLY } \\
19921008 & 6 & \text { BOZO TAL2 INMA DALS TUTR FTDB FLUN LBHL MBLN TFBT FRNK SCTN CDALCTI2 MBLC } \\
19921008 & 7 & \text { STMN TUTR UBMN LBHL IVTT SCGL HLK HUBX CDOT }
\end{array}
$$

SIGHTH DOLPHNCODN
BOZO TTOO F163 PFMB MBLN TFBT TNST SBPE
SCLP MNCH TJAW NESS PEND HFBG SMET TNHS FANG
JBAK Jbac
F157 FB26 FB48 MSLB TNLV FB58
DCAP
INT3 HKD2 NESS HNHN SMET LVLD TDOT HWKS VANI TNPN LOBX STWB NPBT USMB JDFL TSCP RTST ETTA JDFL ANTT RTST

LNTB INST HOWL
LCMN FTTP
FTMU
SPLT SPLC SUP BOLT RUF2 STMN PN01 VTHN BTMT SBPE HOWL
FRIB
N PNO1 VTHN BTMT SBPE HOWL
MISH LBMN GITR GRIM HAIR
SUMO FTTP
BTTV KATT
GESS TIW UBIS MNCH TNH BGTR SMET TDN 2 BBEN TNPN TUNI TIGO
FB99 BUTF CHMP HINP BTMN INTZ STMN PSNP SCGL FALC HAW2 LOCS FINS
MB9 E F158 F200 FB99 F157 SUNO BTTV FB28 TNLV KATT FB39 FOFN CMRS FI
PRNS
SUMO BTTV KATT HAIR
FTWT
STLB MLTI
SUMO CMRS F126 FTHN MTPN INLN
DZSO UMIN
STMN FINS LOCS SKHK URIN
flem
ETTA ETHM
NKIG
SMHK SMNC
PBMS
TLN2 CHMA LA3B TINS SOFA
LFIG
DDMC TJAW MNCH hFBG UBLS DDMA SMET NESS WGRV VTWW QLOB TCSN TALS R61M NOLA
bSLL FUP SKIK BNLN TBXS SCSI FINK

 いけぶがいから。
0∞
か－

\because DAIE 19930909 웅 | \circ |
| :--- |
| $\stackrel{0}{6}$ |
| $\stackrel{0}{2}$ | 19930910 19930913

19930913
19930913
19930913

登

3

m
흥
ה
꿍

m
\bar{W}
亏ू

 19930914

19930914

\pm
$\mathbf{0}_{2}$

～
～
尔
n
0
0
6
6
19930915
19930915
－
－
$\stackrel{0}{\circ}$
0
$\stackrel{0}{6}$
$\stackrel{0}{6}$

0
\vdots

19930916
．
19930916

－
．
．

19930917
19930917
Dolphins Identified in 1993 DOLPHIN CODES
TSMN CTSM
TNMB KEYM LBSH TPNM LA49 MTSQ STWB DLNL SULO NPKR
HBUT FGSF
YELP CYEL．PNBT MPNS MORX PNED PIFI
TDOT ECHO HFBG SCRM LA21 SCRM HFBG ECHO BUZN
SCRM ECHO HFBG DDMA DDMC TNHS
FB20 TTRS PCUT
MLCB CMLC MIMI FTMM
MDIN
CHWI LFLM ECPS
CHWI SMNC LFLM BUMK MARS
DDMA BUZN TNHS DDMC
F126 GITR GRIM SUMO FISB HAIR BIST
ZEUS SOMV MDBK TALS FTHN TBXS SFHD MBUT R61M DICE RFHS PLET LA49 MTSQ KEYM DLNL LTTP TNMB BOLF F129 SUMO YAMO CONS CONC BIST
FOOP LNTZ
MOLA LNTB TWHN LNST MNCB HOWL
PNO1 TFBT TAL2 KUBT SCGL PRN2 MTLR ZIPP
WGV2 NUN2 ETMW LDHB
WGV2 NUN2 ETMW LDHB
BABX TTM2 TUSC
BABX TTM2 TUSC
PEND TSCP HSMN

105 JDFL UBLS
106 TDOT BCHO MM28 BANR TJAW TNPN FSLP TNT3 MSLS LGMS LOBX TIPV VTWW BUZN HWKS VANI LVID FANG TDN2 TIGO WGRV EFLP TPBN WDGI NUNS TUNI STBD
PNOI CPNI URPL
MM72 SXNK PRGO BUZL FTMS BTTN SBPN INDT
forn mlit
INHF FORN MSLB
TABB F147 SPGT
CLPN SBPE FOOP F120 TNET BUTF FAFT F124
WARO BTAS PFMB TNMB GRIM CONS GITR F126 TWSO F129 SPIT HAIR L130
hNHW

19930917
19930917

N
웅
敛
侖
侖

N

0
0

응
믈
응

o
O
응
중
19930921
ス̈
亏
12606661
12608661
19930921
19930921
敢
I
ন
N

19930922

19930922
ETMS BGUB MYLV CPCR PRG3
TWSO MYLV PFMB TSCP JDFL USMB CDOT NIKO
LVLD ETMS TIGO WGV2 BGUB TDOT NUN2 TNLV FB58 SPIT WARO 5NK2 BLUG LNBT WTAB HBMW NIKI SPLT BOZO SPLC HOWL STLB PNOI FRNK FLIN
TAL3 CTA
LFLG LSPT
SPGT SPGC
F126 F140 MISH GITR GRIM SUMO LBMN RP61 ROOS FTTP KATT F157 F129 MSLB BTTV HAIR LOCS CMRS BIST HUBX TNTB RFHM NPAL MJSU MTPN FTWT FOFN BUTF F120 LDMA F124
BTMT SBPN NIK2 POOF LUFR MBOX F132
5NKZ WTAB MBAB LNBT
BKBTT TPUC CF NPAL IBSN SCOB MDJG
SPLT BOZO PNO1 TAL2 MJSU TNST SBHN FLBT MUSE FLIN BLUG NIKi
PFMB 5 NK2 MBAB F170 TWSO PRNS STLB NIKO TTM2 TM22
FRLB HFMB LaSH TPNM SULO PNED AWRT BNLN LCMN
FRLB HFMB LBSH TPNM SULO PNED AWRT BNLN LCMN
DZSO
RUF2 FTMU
FBGB
SPIT MORB LSLI HWLS ALHK RTLN MRMS
FRLB HFMB LBSH TPNM SULO PNED AWRT BNLN LCMN
DZSO
RUF2 FTMU
FBGB
SPIT MORB LSLI HWLS ALHK RTLN MRMS
FRLB HFMB LBSH TPNM SULO PNED AWRT BNLN LCMN
DZSO
RUF2 FTMU
FBGB
SPIT MORB LSLI HWLS ALHK RTLN MRMS
SPIT MORB LSLLI HWLS ALHK RTLN MRMS
LA68 TMLN
DALS CDAL BOZO LNMA SUP FOOP TFBT FLBT
TNT3
ETFR DTLN OPSS FGLS
F120 F124 L130 TNHB
BTTV KATT
STIP RP61
F157 MSLB F200 SFAN

～
19930922
19930923
N
N
N
N
合

～

19930923
N
19930923
19930923
19930923

19930924
19930924
19930924

药

J
19930924
19930924
19930924

N

～

界
19930928
19930928

Page 3
Dolphins Identified in 1993

$$
\begin{array}{lcl}
\text { DATE } & \text { SIGHTH } & \text { DOLPHIN CODES } \\
19931004 & 207 & \text { DRSN BFWT } \\
19931008 & 153 & \text { HINI LNI } \\
19931008 & 154 & \text { 2SDN ALIN HNBT GTFG UPBK HFFR CAT2 BRCH MLTS TFMS BTM2 BTHS DBBN L106 HBBT NASC LA55 SHOT DEDO WICK } \\
19931008 & 155 & \text { F112 } \\
19931012 & 201 & \text { PFMB F157 MSLB NIKO } \\
19931013 & 204 & \text { TTRS TTRC } \\
19931013 & 206 & \text { LFLM SMNC } \\
19931013 & 208 & \text { LAMN HVTF RLDX TPSY } \\
19931018 & 5 & \text { FBO7 FB90 F122 FB11 F106 FBO6 } \\
19931019 & 1 & \text { SFMH BOLT BBTT BLC2 } \\
19931019 & 2 & \text { F160 F162 } \\
19931019 & 3 & \text { PRNS FB68 } \\
19931019 & 4 & \text { MTWT ANMB SNAG WHIT FLMB PSBZ DEDO SCBT } \\
19931019 & 5 & \text { TBEL LA68 DEDO BTM2 NKAL } \\
19931019 & 6 & \text { CAT2 NIB2 HFFR DBBN NOMS NASC LA55 TFIG HUCH } \\
19931019 & 8 & \text { ELFF 49LA LOBE 49C3 HNBT TWHN JAGG HBMB } \\
19931019 & 9 & \text { BBLN TTOO TFLG ELFF TWHN } \\
19931020 & 203 & \text { HAWK BABX GRIM F129 } \\
19931020 & 206 & \text { MISH SUMO BTTV F126 F162 KATT LNLN BIST }
\end{array}
$$

[^0]: 9920901

 19920901
 2
 0
 0
 2
 g
 19920902
 19920902

 N
 के
 N
 ू
 g
 N
 oे
 o
 के
 gin
 19920902
 19920902
 19920902
 19920903
 19920903
 19920903
 19920903
 19920903
 19920904
 19920904
 19920904
 19920904

 19920907
 19920907
 19920907
 19920907

