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PREFACE.

It is the author's hope and desire that this book, which is

the outcome of years of study, work and observation, may be
a help to the class of people to which he himself has the honor
to belong, the working mechanics of the world.

This is not intended solely as a reference book, but it may
also be studied advantageously by the ambitious young engineer
and machinist; and, therefore, as far as believed practical
within the scope of the work, the fundamental principles upon
which the rules and formulas rest are given and explained.

The use of abstruse theories and complicated formulas is

avoided, as it is thought preferable to sacrifice scientific hair-

splitting and be satisfied with rules and formulas which will

give intelligent approximations within practical limits, rather
than to go into intricate and complicated formulas which can

hardly be handled except by mathematical and mechanical
experts.

In practical work everyone knows it is far more important
to understand the correct principles and requirements of the job
in hand than to be able to make elaborate scientific demonstra-
tions of the subject; in short, it is only results which count in

the commercial world, and every young mechanic must remem-
ber that few employers will pay for science only. What they
want is practical science. Should, therefore, scientific men, (for
whom the author has the greatest respect, as it is to the scien-
tific investigators that the working mechanics are indebted for
their progress in utilizing the forces of nature), find nothing of
interest in the book, they will kindly remember that the author
does not pretend it to be of scientific interest, and they will

therefore, in criticizing both the book and the author, remember
that the work was not written with the desire to show the reader
how vulgarly or how scientifically he could handle the subject,
but with the sole desire to promote and assist the ambitious

young working mechanic in the world's march of progress.

P. LOBBEN.
NEW YORK, October, 1899.
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IRotes on flfoatbematics.

A Unit Js any quantity represented by a single thing, as a

magnitude, or a number regarded as one undivided whole.
Numbers are the measure of the relation between quanti-

ties of things of the same kind and are expressed by figures.
Numbers which are capable of being divided by two without

a remainder are called even numbers. 2? 4, 6, 8, etc., are

even numbers.
Numbers which are not capable of division by two without

giving a remainder are called odd numbers. 1, 3, 5, 7, 9, etc.,

are odd numbers.
A number which can not be divided by any whole number

but itself and the number 1 without giving a remainder is

called a prime number. 1, 2, 3, 5, 7, 11, 13, 17, 19, etc
,
are

prime numbers.
All numbers that are not prime are said to be composite

numbers, because they are composed of two or more factors
;

4, 6, 8, 9, 10, 12, etc., are composite numbers.
Whole numbers are called integers. Whole numbers are

also called integral numbers.
A mixed number is the sum of a whole number and a

fraction.

The least common multiple of several given numbers is

the smallest number that can be divided by each without a
remainder. For instance, the least common multiple of 3, 4, 6,

and 5 is 60, because 60 is the smallest number that can be
divided by those numbers without a remainder.

Signs.

+ (plus) is the sign of addition.

(minus or less), is the sign of subtraction.
The signs -f and are also used to indicate positive and

negative quantities.
X (times or multiply) is the sign of multiplication, but in-

stead of this sign, sometimes a single point (.) is used, especially
in formulas; in algebraic expressions very frequently factors
are written without any signs at all between them. For in-

stance, aKb or a.b or ab. All these three expressions indicate
that the quantity a is to be multiplied by the quantity b.



2 NOTES ON MATHEMATICS.

-^- (divided by) is the sign of division.= (equal). When this sign is placed between two quanti-
ties, it indicates that they are of equal value. For instance :

4 + 5 + 2 = 11

8 X 12 = 96
100-4- 5 = 20

. (decimal point) signifies that the number written after it

has some power of 10 for its denominator.
' " means degrees, minutes and seconds of an angle." means feet and inches.

a' a 1 ' a 1" reads a prime, a second, a third.

a\ az as reads a sub 1, a sub 2, a sub 3, and is always
used to designate corresponding values of the same element.

n _
\/ This is the radical sign and signifies that a root is to be

extracted of the quantity coming under the sign ;
this may be

square root, cube root, or any other root, according to what
there is signified by the number prefixed in place of the letter n

.

For instance : \/reads square root, \/reads cube root, \/reads

fourth root, V reads fifth root, \/64~= 8, because 8 X 8 = 64
3_
V 64 = 4, because 4 X 4 X 4 = 04
4_
V 81 = 3, because 3X3X8X8 = 81
The sign that a quantity is to be raised to a certain

power is a small number placed at the upper right hand corner
of the quantity ;

this number is called the exponent. For in-

stance, 72 signifies that 7 is to be squared or multiplied by itself,

that is :

72 = 7 x 7 = 49
73 =7x7X7 = 343, etc.

> braces, [ ] brackets, ( ) parentheses, signify that

the quantities which they include are to be considered as one

quantity. For instance : 35 (8 + 6) is equal to 35 14 = 21.

In this case the parenthesis indicates that not only 8, but the

sum of 8 + 6 is to be subtracted from 35.- (vinculum or bar) is a straight line placed over
two or more quantities, indicating that they are to be operated

upon as one quantity. For instance, \/25 + 11. The vinculum
attached to the radical sign indicates that the square root shall

be extracted from the sum of 25+11, which is the same as the

square root of 36.

In an expression as ' the bar indicates that
3X b
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the sum of 35+154-22 shall be divided by the product of 3X8
which is the same as 72 divided by 24.

Whenever a number or a
quantity

is placed over a line

and a number or a quantity is placed under the same line it

always indicates that the number or quantity over the line shall

be divided by the number or quantity under the line. Such a

quantity is called a fraction.

The quantity above the line is called the numerator, and
the quantity below the line is called the denominator. A frac-

tion may be either proper or improper. The fraction is proper
when the numerator is smaller than the denominator; for

instance, -?; but improper if the numerator is larger than the

denominator, for instance, V = 1^.
A fraction can always be considered simply as a problem

in division.

Formulas.

A formula is an algebraic expression for some general
rule, law or principle. Formulas are used in mechanical
books, because they are much more convenient than rules.

Generally speaking, the knowledge of algebra is not required
for the use of formulas, because the numerical values corre-

sponding to the conditions of the problem are inserted for

every letter in the formula except the letter representing the
unknown quantity, which then is obtained by simple arithmet-
ical calculations. It is generally most convenient to begin the

interpretation of formulas from the right-hand side
;
for instance,

the formula for the velocity of water in long pipes is :

v = 8.02J h. d.

f. /.

In this formula v represents the velocity of the water in

feet per second.
h represents the "head"* in feet.

d represents the diameter of the pipe in feet.

f represents the friction factor determined by experiments.
/ represents the length of the pipe in feet, and 8.02 is a

constant equal to the square root ol twice acceleration due to

gravity.
Assume, for instance, that it is required to find the velocity

of the flow of water in a pipe of 3 inches diameter ( % foot ) ;

the length of the pipe is 1,440 feet, the "head" is 9 feet, and
the friction factor is 0.025.

Inserting in the formula these numerical values, and
for convenience writing the diameter of the pipe in decimals,
we have:

* In hydraulics the word " head
" means the vertical difference between the

level of the water at the receiving end of the pipe and the point of discharge, or
its equivalent in pressure. See Hydraulics, page 413.
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v = 8.02 XJ 9 X0.25
* 0.025 X 1440

Solving the problem step by step we have :

v = 8.02 XJ 2 -25

>~3'
v = 8.02 X Vo.0626"

V 8.02 X 0.25.

v = 2.005 feet per second.

In mechanical formulas, if not otherwise specified, it

is always safe to assume the letter g to mean acceleration
due to gravity, usually taken as 32.2 feet or 9.82 meters. In
formulas relating to heat the letter / usually signifies the
mechanical equivalent of heat = 778 foot pounds of energy ;

but in formulas relating to strength of materials the letter J
usually signifies the polar moment of inertia, and the letter /
the least rectangular moment of inertia. The letter x always
expresses the unknown quantity. The following Greek letters

are also used more or less. The letter TT, called pi, is used to

signify the ratio of the circumference to the diameter of a

circle, and is usually taken as 3.1416. 2, called sigma, usually

signifies the sum of a number of quantities. The letter A,
called delta, usually signifies small increments of matter.

The letter 0, called theta, or the lefter $, called phi, usually
signifies some particular angle, sometimes also the coefficient

of friction. But all these letters may be employed to express
anything, although it is usually safe, if not otherwise specified.
to expect their meaning to be as stated. It is always customary
to express known quantities by the first letters in the alphabet,
such as a, <, c, etc., and unknown quantities by such letters as

x,y,z, etc.



arithmetic

Addition.

All quantities to be added must be of the same unit; we can

not add 3 feet + 8 inches + 2 meters, without first reducing
these three terms either to feet, inches or meters. The same
also with numbers. Units must be added to units, tens to tens,

hundreds to hundreds, etc.

EXAMPLE.

318 + 5 + 38 + 10 + H5 = 486

Solution : 318
5

38
10

115

486 = Sum.

Subtraction.

Two quantities to be subtracted must be of the same
unit.

In subtraction, the same as in addition, the units are

placed under each other, and units are subtracted from units,

tens from tens, hundreds from hundreds, etc.

EXAMPLE.
2543 1828 = 715

Solution: 2543 . . Minuend.

1828 . . Subtrahend.

715 .. Difference.

Subtrahend -}- Difference = Minuend.

(S)
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Hultiplication.

A quantity is multiplied by a number by adding it to itself

as many times' as the number indicates.

EXAMPLE.

314 X 3 = 314 + 314 + 314 = 942

Solution : 314 .. Multiplicand
3 . . Multiplier

942 . , Product.

Product

Multiplicand
=
Multiplier.

Product

Multiplier
= Multiplicand.

Division.

The quantity or number to be divided is called the dividend.
The number by which we divide is called the divisor. The
number that shows how many times the divisor is contained in

the dividend is called the quotient.

EXAMPLE.
6852 -4- 3 = 2284

Solution: 3)6852(2284 6852 . . Dividend.
6 3 . . Divisor.

2284 . . Quotient.
8 Divisor X Quotient = Dividend,
6

25
24

12
12
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FRACTIONS.

Addition.

Fractions to be added must have a common denominator ;

thus we cannot add % + % + X + 3
/i unless they be reduced

to a common denominator instead of the denominators two,
three and four

;
in other words, we must find the least common

multiple of the numbers 2, 3 and 4, which is 12. Thus we
have:

i = A
t-A

f| = 2A = 2i

EXAMPLE 2.

Add : A + 1+ J + A + I 4- T 4- I + t

The common denominator is found in the following
manner: Write in a line all the denominators, and divide with
the prime number, 2, as many numbers as can be divided with-
out a remainder. The numbers that cannot be divided without
a remainder remain unchanged, and these together with the

quotients of the divided numbers, are written in the next line

below. Repeat this operation as long as more than one num-
ber can be divided without remainder, then try to divide

by the next prime number, and so on. These divisors and all

those numbers remaining undivided in the last line are multi-

plied together, and the product is the least common denominator.

2)_J0 * n 9 7 p 9

2) *"? "p 3 7 jt 9

2) g ? 1 337?9
3) 211 3?71?

211 11713
The common denominator is thus :

2X2X2X3X2X7X3= 1008

Thus 1008 is the least common multiple of 16, 8, 4, 12, 7

and 9.
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The principle of this solution can probably be better

understood by resolving these numbers into prime numbers,
and also resolving 1008 into prime numbers

;
we then find that

1008 contains all the prime numbers necessary to make 16, 8, 4,

12, 6, 7 and 9.

Prime numbers in 1008 are 2 2 2 2 7 3 3
" 16 " 2 2 2 2

< 8 " 2 2 2

" " " 4 " 2 2
" " " 12 " 2 2 3
" " " 6 " 2 3
" " " 7

"
7

" " " 9 " 3 3

Solution of Example 2 :

1008

T̂ 63 X 7 = 441

| 126 X 5 = 630

i 252 X 1 = 252

-^2 84 X 7 = 588

| 168 X 5 = 840

| 144 X 5 = 720

% 126 X 3 = 378

112 X 4 = 448

Subtraction.

When fractions are to be subtracted, they must first be

reduced to a common denominator, the same as in addition.

EXAMPLE.

|
;

J must be reduced to | i
=

I

EXAMPLES.
No.l. f-^f-f^f
No. 2. &-i=f&-if=H
No. 3. - = - =
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Multiplication.

Fractions are multiplied by fractions, by multiplying numer-
ator by numerator and denominator by denominator

;
thus :

t X j\ = f J
= 3\

The correctness of this rule can easily be understood if

we consider these two fractions as two problems in division.

-* X i
7
! will then be 3 divided by 8 and the quotient multiplied

by 7 and the product divided by 12; thus, 3 is to be multiplied
by 7 and the product is to be divided by 8 times 12. Therefore :

_ 3 X7 1 X 7 __ r< '**
~

8 X n -
8X~4

-

A mixed number may first be reduced to an improper frac-

tion and then multiplied as a common fraction, numerator by
numerator and denominator by denominator. For instance:

3| X f == f X f = Y == 2f

A fraction may be multiplied by a whole number by multi-

plying the numerator and letting the denominator remain un-

changed. For instance :

i
7
! X 2 = If = lT

2
f = U

This must be correct, because we may consider 7 as indicat-

ing the quantity and 12 as indicating what kind of quantity in

exactly the same sense as we may say 7 dollars or 7 cents
;

if

either of those were multiplied by 2 the product would, of

course, be either dollars or cents respectively, and for the same
reason 7 twelfths multiplied by 2 must be 14 twelfths.

A fraction may also be multiplied by a whole number, by
dividing the denominator by the number and letting the numer-
ator remain unchanged. For instance :

T
r
j X 2 = |'-, 11, because ^ is equal to

,
so must T̂ X 2

EXAMPLES.

No. 1. 31 X f = V- X f = f

No. 2. ljxU = fXf = f

No. 3. AX1 = A
No. 4. lXA= X& =
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Division.

A fraction is divided by a fraction by writing the fractions

after each other, then inverting the divisor (that is, changing
its numerator to denominator and its denominator to numer-

ator), proceed as in multiplication. For instance :

t* i'= * X 'fs?-ff = t

The reason for this rule can very easily be understood,
when we consider the fractions as problems in division. That is

to say, 5 shall be divided by 8 and the quotient is to be divided

by one-fourth of 3. But if the quantity f is divided by 3 instead
of one-fourth of 3, we must, of course, multiply the quotient by
4 to make the result correct. Therefore :

A fraction may be divided by a whole number by dividing
the numerator by the number and letting the denominator re-

main unchanged. For instance :

A fraction may be divided by a whole number by multiply-

ing the denominator by the whole number and letting the

numerator remain unchanged. For instance :

Mixed numbers are reduced to improper fractions the

same as in multiplication ; they are then figured the same as if

they were proper fractions.

EXAMPLES.

No. 1.

No. 2.

. No. 3.

No. 4.

No. 5.

In No. 4 it will be understood that f divided by 6 must be

fF,
because T̂ is exactly a sixth of $.

In No. 5, also, it will be understood that if -1/ is divided by
4, the quotient must be

, because 4 is one-fourth of 16.
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To Reduce a Fraction of One Denomination to a Fraction

of Another Fixed Denomination, and Approx-

imately of the Same Value.

In mechanical calculations, on drawings, and on other oc-

casions, it is very frequently necessary to reduce fractions of

other denominations to eighths, sixteenths, thirty-seconds, or

sixty-fourths. This may be done by multiplying the numerator
and the denominator of the given fraction by the number which
is to be the denominator in the new fraction, then dividing this

new numerator and denominator by the denominator of the

given fraction.

EXAMPLE.
Reduce % to eighths, sixteenths, thirty-seconds, sixty-

fourths, or to hundredths.

|f = -*- or ft approximately.

f xi



1 2 DECIMALS.

Figures on the left side of the decimal point are whole num-
bers. When there are no whole numbers, sometimes a cipher
is written on the left side of the decimal point, but this is not

always done, as it is common with many writers not to write

anything on the left side of the decimal point when there is

no whole number.

Thus:
X niay be written .5

X " " "
.25

% " " "
.125

It is, however, preferable to fill in a cipher on the left-

hand side of the decimal point when there is no whole number,
as by so doing the mistake of reading a decimal for a whole
numoer is prevented.

To Reduce a Vulgar Fraction to a Decimal Fraction.

Annex a sufficient number of ciphers to the numerator,
divide the numerator by the denominator, and point off as many
decimals in the quotient as there are ciphers annexed to the
numerator.

EXAMPLE.

Reduce ^ to a decimal fraction.

Solution :

8 ) 7.000 ( 0.875

64

60
56

40
40

00

Thus, % is equal to the decimal fraction 0.875.
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Fractions Reduced to Exact Decimals.

A
A
A
A
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Solution :

0.484375 X 16 = 7.75, gives 7^_5,
Or T̂ , approximately.

0.484375 X 32 = 15.5, gives l^s, or ^*, approximately.
0.484375 X 64 = 31, gives |l exactly.

If the result does not need to be very exact, probably /*,
which is 6\ too small, is near enough, or the result,

7
f ,1% may be

called l/2 ,
which is ^ too large. |f is ^ too small, therefore

either l/2 or |f is only ^T different from the true value. The
first is ^ too large and the last is -g* too small, and which
fraction, if either, should be preferred, will depend entirely upon
the purpose for which the problem is solved. ^ is the exact
value.

Addition of Decimal Fractions.

In adding decimal fractions, care should be taken to place
the decimal points under each other

;
then add as if they were

whole numbers.

EXAMPLE.
Add 50.5 + 5.05 + 0.505 + 0.0505

Solution :

50.5

5.05

0.505

0.0505

56.1055

To prevent mistakes and mixing up of the figures during
addition, it is preferable to make all the decimal fractions in

the problem of the same denomination by annexing ciphers.

Thus : 50.5000
5.0500
0.5050
0.0505

56.1055

Subtraction of Decimal Fractions.

The decimal point in the subtrahend must be placed under
that in the minuend

;
the fractions are both brought to the

same denomination by annexing ciphers, then the subtraction
is performed just as- if they were whole numbers, but close
attention must be paid to have the decimal point in the same
place in the difference as it is in the minuend and subtrahend.

EXAMPLE.
318.05 121.6542
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Solution : 318.0500 Minuend.

121.6542 Subtrahend.

196.3958 Difference.

riultiplication of Decimal Fractions.

Multiply the factors as if they were whole numbers. After

multiplication is performed, count the number of decimals in

both multiplier and multiplicand and point off (from the right)
the same number of decimals in the product.

If there are not enough figures in the product to give as

many decimals as required, then prefix ciphers on the left until

the required number of decimals is obtained.

EXAMPLE 1.

0.08 X O.OG5 = 0.00520 = 0.0052

In this example it is necessary after the multiplication is

performed, to prefix two ciphers to the product in order
to obtain the necessary number of decimals, because the pro-

duct, 520, consists of only three figures, but the two numbers,
0.08 and 0.065, contain five decimals.

EXAMPLE No. 2.

3.1416 X 5 = 15.7080 = 15.708

EXAMPLE No. 3.

3.1416 X 0.5 = 1.57080 = 1.5708

Division of Decimal Fractions.

Divide same as in whole numbers, and point off in the

quotient as many decimals as the number of decimals in the

dividend exceeds the number of decimals in the divisor.

If the divisor contains more decimals than the dividend,
then before dividing annex ciphers (on the right-hand side) in

the dividend until dividend and divisor are both of the same
denomination, then the quotient will be a whole number.

EXAMPLE.
43.62 -r- 0.003 14,540

Solution : 0.003 ) 43.620 ( 14,540
3

13
12

16
15

12
12

00
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In this example the dividend consists of only two decimals,
but the divisor has three, therefore we have to annex a cipher
to the dividend. This brings divisor and dividend to the same
denomination, and the quotient is a whole number.

EXAMPLE 2.

43.62 ^- 0.3 = 145.4

In this example the dividend has one decimal more than
the divisor, therefore the quotient has one decimal.

RATIO.

The word ratio causes considerable ambiguity in mechani-
cal books, as it is frequently used with different meaning by
different writers.

The common understanding seems to be that the ratio be-
tween two quantities is the quotient when the first quantity is

divided by the last quantity ;
for instance, the ratio between 3

and 12 is X> but the ratio between 12 and 3 is 4. The ratio be-
tween the circumference of a circle and its diameter is TT or

8.1410, but the ratio between the diameter and the circumfer-
ence is ^- or 0.3183, etc. This is the sense in which the word is

used in this book, as this seems to agree with the common cus-
tom with most mechanical writers.

The term ratio is also sometimes applied to the difference
of two quantities as well as to their quotient ;

in which case the
former is called arithmetical ratio, and the latter geometrical
ratio. (See Progressions, page 68.)

PROPORTION.

In simple proportion there are three 'known quantities by
which wre are able to find the fourth unknown quantity ;

there-

fore proportion is also called "the rule of three", and it is either

direct or inverse proportion.
It is called direct proportion if the terms are in such ratio to

one another that if one is doubled then the other will also have
to be doubled, or if one is halved the other must also be halved.
For instance, if 50 pounds of steel cost $25, how much will 250

pounds cost?

50 Ibs. cost $25; 250 must cost -50 X ' = $125.
50

This is direct proportion, because the more steel we buy,
the more money we have to pay.

In inverse proportion the terms are in such ratio that if one
is doubled the other is halved, or if one is halved the other is

doubled.
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EXAMPLE.

Eight men can finish a certain work in 12 days. How many
men are required to do the same work in 3 days ?

Here we see that the fewer days in which the work is to be
done, the more men are required. Therefore, this example is

in inverse proportion.
In 12 days the work was done by 8 men

; therefore, in order

to do the work in 3 days it will require - L2 = 32 men.

It requires 4 times as many men because the work is to be
done in one quarter of the time.

Compound Proportion.

A proportion is called compound, if to the three terms there
are combined other terms which must be taken into considera-
tion in solving the problem.

A very easy way to solve a compound proportion is to

(same as is shown in the following examples) place the .con-
ditional proposition under the interrogative sentence, term
for term, and write x for the unknown quantity in the inter-

rogative sentence
;
draw a vertical line

; place x at the top at the
left-hand side

;
then try term for term and see if they are direct

or inverse proportionally relative to .r, exactly the same way as
if each term in the conditional proposition and the correspond-
ing term in the interrogative sentence were terms in a simple
rule-of-three problem. Arrange each term in the interrogative
sentence either on the right or left of the vertical line, according
to whether it is found to be either a multiplier or a divisor, when
the problem, independent of the other terms, is considered as a

simple rule-of-three problem.
After all the terms in the interrogative sentence are thus

arranged, place each corresponding term in the conditional

proposition on the opposite side of the vertical line. Then
clear away all fractions by reducing them to improper frac-

tions, and let the numerator remain on the same side of the verti-

cal line where it is, but transfer the denominator to the opposite
side. Now cancel any term with another on the opposite
side of the vertical line; then multiply all the quantities on the

right side of the vertical line with each other. Also multiply
all the quantities on the left side of the vertical line with each
other.

Divide the product on the right side by the product on the

left, and the quotient is the answer to the problem,

EXAMPLE 1.

A certain work is executed by 15 men in G days, by work-

ing 8 hours each day. How many days would it take to do the

same amount of work if 12 men are working 7^ hours each

day?
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Solution :

15 Men 6 Days 8 Hours.
12 " x "

i 2
"

ty*

8 Days.

EXAMPLE 2.

A steam engine of 25 horse power is using 1500 pounds of

coal in 1 day of 9^ working hours. How many pounds of coal
in the same proportion will be required for 2 steam engines each

having 30 horse power, working 6 days of 12% hours each day ?

Solution :

1 Machine 25 Hp. 1,500 pounds 1 Day
2 " 30 x "6 "

x
\ im 300

1 2

hours.

28,800 pounds of coal.

EXAMPLE 3.

A piece of composition metal which is 12 inches long, % l/2
inches thick and 4> inches wide, weighs 45 pounds. How many
pounds will another piece of the same alloy weigh, if it meas-
ures 8 inches long, 1% inches thick and 6% inches wide?

12"
8

2

1
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INTEREST.

The money paid for the use of borrowed capital is called

interest. It is usually figured by the year per 100 of the

principal.

Simple Interest.

Simple interest is computed by multiplying the principal by
the percentage, by the time, and dividing by 100.

What is the interest of $125, for 3 years, at 4% per year?

Solution :

125 X 4 X 3 = 15
100

In Table No. 1, under the given rate per cent., find the
interest for the number of years, months, and days-; add these

together, and multiply by the principal invested, and the

product is the interest.

EXAMPLE.

What is the interest of $600, invested at 6%, in 5 years,
3 months, and (> days?

Solution :

$1.00 in 5 years at 6% = 0.30
" " 3 months " " = 0.015
" " 6 days

" " = 0.001

0.316
600 = Principal.

$189.60 = Interest
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Compound Interest Computed Annually.

If the interest is not withdrawn, but added to the principal,
so that it will also draw interest, it is called compound interest.

EXAMPLE.

What is the amount of #300, in 3 years, at ~>% ? The
interest is added to the principal at the end of each year.

Solution :

Principal and interest at the end of first year,

105 XJ
100

Principal and interest at the end of second year,

105 X 315 -
#330.75.

Principal and interest at the end of third year,

105 X 330.75

100
= #347.2875, = #347.29 = Amount.

When compound interest for a great number of years is to be
calculated, the above method of figuring will take too mucli

time, and the following interest tables, No. 2 and No. 3, are

computed in order to facilitate such calculations.

In Table No. 2, under the given rate per cent., and opposite
the given number of years, find the amount of one dollar in-

vested at that rate for the time taken. Multiply this by the

principal invested and the product is the amount.

EXAMPLE.

#400 is invested at 5% compound interest for 17 years, com-
puted annually. What is the amount?

Solution :

In Table No. 2, under 5%, and opposite 17 years, we find

2.292011. Multiply this by the principal.

Thus:

2.292011
400

916.8044 = #910.80 = Amount.
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Compound Interest Computed Semi=AnnualIy.

When compound interest is to be computed semi-annually,.
use Table No. 3. Under the given rate and opposite the given
number of years, find the amount of one dollar invested and
interest computed semi-annually for the time taken. Multiply
this by the principal invested, and the product is the amount.

EXAMPLE.

$350 is put in a savings bank paying 4%, computed semi-

annually. What is the amount in 10 years ?

Solution :

Under 4%, and opposite 10 years, we find the number
1.4860. This we multiply by the principal invested.

Thus:

1.485949

350

520.08215 = $520.08 = Amount.

To compute compound interest for longer time than
is given in the tables, figure the amount for as long a time
as the table gives ;

then consider this amount as a new princi-

pal invested, and use the table and figure again for the rest of
the time.

EXAMPLE.

What is the amount of $40, left in a savings bank 18 years,
at 4%, and the interest computed semi-annually. The table

only gives 12 years, therefore we will look opposite 12 years,
under 4%, and find the number 1.608440. This we multiply by
the principal invested.

Thus:
1.608440

40

64.3376

But now we have to compute for 6 years more, therefore
under 4%, and opposite 6 years, we find the number 1.2(58243.

Multiplying this by the principal, which is now considered as

being invested 6 years more, we have :

1.268243 X 64.3376 = $81.60 = Amount.

Thus, $40, invested at 4% interest, computed semi-annually,
will, after 18 years of time, amount to $81.60.



COMPOUND INTEREST.

o % 3 22

1̂/5

(M^COXO O O O

>sQ

G^ 1- ?C X -t -t C:Nco*M^TCpTt<j-o o >o T-I i co cr. --c co o t ff co *-i

T-iCO^t^5i~-CtO5<lTfOt-OS^COO O O rH 1-1 I-H ^ I-H -H (>1 7-1

O(?:lXCO'*fX Ci 74 'N >C

\N

1-1 ~t
t^* COT - " "^ *"^ - ^*

(N O t O *J I O "4" X '7^1 O O >^ Ci -f Ci O O tC 7-1 X ^ O 1

(N



26 INTEREST.

Table No. 4 gives time in which money will be doubled if

it is invested either on simple or compound interest, compounded
annually.

TABLE No. 4.

SIMPLE INTEREST.
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EQUATION OF PAYMENTS.
When several debts are due at different dates the average

time when all the debts are due is calculated by the following
rule:

Multiply each debt separately by the number of days be-

tween its own date of maturity and the date of the debt earliest

due. Divide the sum of these products by the sum of the debts ;

the quotient will express the number of days subsequent to the

leading day when the whole debt should be paid in one sum.

EXAMPLE.
A owed to B the following sums: $250 due May 12, $120

due July 19, $410 due August 1(5, and $60 due September 21, all

in the same year. When should the whole sum be paid at once
in order that neither shall lose any interest?

Solution :

May 12 $250

May 12 to July 11) is 08 days ;
120 X 68 = 8160

May 12 to Aug. 16 is 96 days; 410 X 96 = 39360

May 12 to Sept. 21 is 132 days; 60 X 132 = 7920

$840 )
55440 = 65.9

66 days after May 12 will be July 17.

When several debts are due after different lengths of time,
the average time is calculated by this rule : Multiply the debt

by the time
;
divide the sum of the products by the sum of the

debts, and the quotient is the time when all the debts may be
considered due.

EXAMPLE.
A owed B $600, due in 7 months

; $200 due in one month, and
$700 due in 3 months. When should the whole debt be paid in

one sum in order that neither shall lose any interest?

Solution :

(500 X 7 = 4200
700 X 3 = 2100
200 X 1 = 200

1500 ) 6500 = 4J4 months.

NOTE : If the debts contain both dollars and cents the
cents may, if such refinement is required, be considered as deci-
mal parts of a dollar, but practically in such problems the cents

may be omitted in the calculation.

PARTNERSHIP,
or calculating of proportional parts, is the calculation of the

parts of a certain quantity in such a way that the ratio between
the separate parts is equal to the ratio of certain given numbers.
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EXAMPLE 1.

A composition for welding cast steel consists of 9 parts of

borax and one part of sal-ammoniac. How much of each,
borax and sal-ammoniac, must be taken for a mixture of 5 Ibs.?

Solution :

T̂ x 5 = l/2 Ibs. borax.

TO X 5 = YZ Ib. sal-ammoniac.

EXAMPLE 2.

An alloy shall consist of 1(50 parts of copper, 15 parts of tin

and 5 parts of zinc. How much of each will be used for a cast-

ing weighing 360 Ibs.?

Solution :

160 iffy X 360 = 320 Ibs. of copper.

15 . ro X 360 = 30 Ibs. of tin.

5 T! o X 360 = 10 Ibs. of zinc.

180

EXAMPLE 3.

Four persons A, B, C and D, are buying a certain amount,
of goods together. A's part is $500, B's, $100, C's, $250, and

D's, $150. On the undertaking they are clearing a net profit
of $120. How much of this is each to have ?

Solution :

500 A's Part = tVA X 120 = $60

100 B's " = TVo<i X 120 = 12

250 C's
" = T

2
foo- X 120 - 30

150 D's " = X 120 = 18

$1000

EXAMPLE 4.

Two persons A and B, are putting money into business, A,
$2,000 and B, $3,000, but A has his money invested in the busi-

ness 2 years and B 2>^ years ;
the net profit of the undertaking

is $2,300. How much is each to have of the profit ?

Solution:

A, 2000 X 2 = 4000

B, 3000 X 2^ =_ 7500

11500

A's Part is T$& X 2300 $ 800

B's " "
rtV o <y

X 2300 = 1500

In cases like this it must be taken into consideration that
the time is not equal ;

B has not only had the largest capital in-

vested but he has also had the capital at work in the business
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the longest time, namely, 2> years, while A has only had his

capital invested 2 years. The ratio is, therefore, not #2,000 to

$3,000 but #4,000 to $7,500, because $2,000 in 2 years is equal
to $4,000 in one year, and $3,000 in 2^ years is equal to $7,500 in

one year.

SQUARE ROOT.

When the square root is to be extracted the number is di-

vided into periods consisting of two figures, commencing from
the extreme right if the number has no decimals, or from the

decimal point towards the left for the whole numbers and
towards the right for the decimals. (If the last period of deci-

mals should have but one figure then annex a cipher, so that

this period also has two figures, but if the period to the extreme
left in the integer should happen to have only one figure it

makes no difference; leave it as it is.) Ascertain the highest
root of the first period and place it to the right of the number
as in long division. Square this root and subtract the product
of this from the first period. To the remainder annex the next

period of numbers. Take for divisor 20 times the part of the

root already found* and the quotient is the next figure in the

root, if the product of this figure and the divisor added to the

square of the figure does not exceed the dividend. To the

difference between this sum and the dividend is annexed the

next period of numbers. For divisor take again 20 times the

part of the root already found, etc. Continue in this manner
until the last period is used. If there is any remainder, and a
more exact root is required, ciphers may be annexed in pairs and
the operation continued until as many decimals in the root are

obtained as are wanted.

EXAMPLE 1.

Extract the square root of 271,441.

Solution :

\/27jl4 41

52 =
25|

20 X 5 = 100 ) 214
100 X 2 + 22 = 204

20 X 52 = 1040 ) 1041
1040 X 1 + I2 1041

= 521

0000

Thus: \/27M4i = 521, because 521 X 521 = 271,441.

* If this divisor exceeds the dividend, write a cipher in the root; annex the next

period of numbers, calculate a new divisor, corresponding to the increased rpot, and

proceed as explained.
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EXAMPLE 2.

Extract the square root of 26.6256.

Solution :

\/266256 =5.16

20 X 5 = 100 ) 162
100 X 1 + I 2 = 101

20 X 51 = 1020 ) 6156
1020 X 6 + 6a = 6156

0000

CUBE ROOT.

When the cube root is to be extracted, the number is

divided into periods consisting of three figures. Commencing
from the extreme right if the number has no decimals, or from
the decimal point, toward the left, for the whole number, and
toward the right for the decimals. (If the last period of deci-

mals should not have three figures, then annex ciphers until

this period also has three figures, but if the period to the

extreme left in the integer should happen to consist of less than
three figures it makes no difference

;
leave it as it is.) Ascer-

tain highest cube root in the first period and place it to the

right of the number, the same as in long division. Cube this

root and subtract the product from the first period. To the
remainder annex next period of numbers. For the divisor in

this number take 300 times the square of the part of the root

already found,* and the quotient is the next figure in the root, if

the product of this figure multiplied by the divisor and added
to 30 times the part of the root already found, multiplied by the

square of this quotient and added to the cube of the quotient,
does not exceed this dividend. To the difference between this

sum and the dividend is annexed the next period of numbers.
For divisor take again 300 times the square of the part of the

root already found, etc. Continue in this manner until the last

period is used. If there is any remainder from last period, and
a more exact root is required, ciphers may be annexed three at

a time, and the operation continued until as many decimals are

obtained in the root as are waated.

* If this divisor exceeds the dividend, write a cipher in the root, annex the next

period of numbers, calculating a new divisor corresponding to the increased root,
and proceed as explained.



CUBE ROOT. 31

EXAMPLE l.

Extract the cube root of 275,894,451.

Solution :

X/2751894
68 =

216|
300 X 62 == 10800 ) 59894

10800 X 5 + 30 X 6 X 52 + 53= 58625

451

300 X 652= 1207500 ) 1269451
1267500 X 1 + 30 X 65 X I 2 + I 3 = 1269451

651

0000000

Thus :

3

\/275,894,451
= 651, because 651 X 651 X 651 = 275,894,451.

EXAMPLE 2 :

Extract the cube root of 551.368.

Solution : 3

\/551
83= 512

8.2

300 X 82 = 19200 ) 39368
19200 X 2 + 30 X 8 X 22 + 2 3

=_39368
00000

The square root of a number consisting of two figures
will never consist of more than one figure, and the square
root of a number consisting of four figures will never consist of
more than two figures; hence, the rule to divide numbers into

periods consisting of two figures.

The cube root of a number consisting of three figures will

never consist of more than one figure, and the cube root of a
number consisting of six figures will never consist of more than
two figures ; hence, the rule to divide the numbers into periods
consisting of three figures.

There will always be one decimal in the root for each

period of decimals in the number of which the root is extracted.

This relates to both cube and square root.

The root of a fraction may be found by extracting the

separate roots of numerator and denominator, or the fraction

may be first reduced to a decimal fraction before the root is

extracted.

The root of a mixed number may be extracted by first re-

ducing the number to an improper fraction and then extracting
the separate roots of numerator and denominator, or the number
may be first reduced to consist of integer and decimal fractions,
and the root extracted as usual.
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Radical Quantities Expressed without the Radical Sign.

The radical sign is not always used in signifying radical

quantities. Sometimes a quantity expressing a root is written

as a quantity to be raised into a fractional power. For instance :

>/16~may be written 16^. This is the same value
; thus,

Vl6~= 4 and 16* = 4.

3

V 27 may be written, 27* = 3.

3 3

8t =V82= >V 64 =4.
The denominator in the exponent always indicates which

root is to be extracted. Thus, 8^ will be square 8 and extract

the cube root from the product.

EXAMPLE.

*,_ 4 __

16l = V 163 = V 4096 = 8.

Thus, cube 16 and extract the fourth root of the product.

RECIPROCALS.

The reciprocal of any number is the quotient which is ob-
tained when 1 is divided by the number. For instance, the

reciprocal of 4 is X 0-25
5

the reciprocal of 16 is T
a

ff
=

0.0625, etc.

Frequently it is a saving of time when performing long
division to use the reciprocal, as multiplying the dividend by
the reciprocal of the divisor gives the quotient. For instance,
divide 4 by 758. In Table No. 6 the reciprocal of 758 is given
as 0.0013193. Multiplying 0.0013193 by 4 gives 0.0052772,
which is correct to six decimals. When reducing vulgar frac-

tions to decimals the reciprocal may be used with advantage.
For instance, reduce j to decimals. In Table No. 6 the recip-
rocal of 64 is given as 0.015625, and 15 X 0.015625 = 0.234375,
which is the decimal of .

IMPORTANT. Whenever the exact reciprocal is not ex-

pressible by decimals the result obtained by its use is, as

explained above, only approximate.
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TABLE No. 5. Giving Squares, Cubes, Square Roots,
Cube Roots, and Reciprocals of Fractions and

flixed Numbers, from J to 10.

n
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TABLE No. 6. Giving Squares, Cubes, Square Roots,
Cube Roots, and Reciprocals of Numbers from

o.i to 1000.

n
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IRotes on Hlgebra.

Algebra is that branch of mathematics in which the quan-
tities are denoted by letters and the operations to be performed
upon them are indicated by signs. The same signs are used to

indicate the same operations as in arithmetic.

Signs of Quantity and Signs of Operation.

If a quantity is written a -f ( ), the sign that precedes the

parenthesis is called the sign of operation, and the sign within

the parenthesis is called the sign of quantity with respect to b,

but expressions of this kind can be reduced to have only one

sign. Thus, a -f ( ft)
= a b and this final sign is called the

essential sign.

a + (+ b} = a + b.

a --
( b)

= a b.

Thus, when the sign of operation and the sign of quantity
are alike the essential sign is +, but if they are unlike the es-

sential sign is .

In multiplying any two quantities, like signs in the two
factors give 4- in the product, but unlike signs in the two factors

give in the product ; thus, (-f a) X ( b}
= ab, and ( a]

X ( b)
= ab.

In division, like signs in dividend and divisor give -f- in the

quotient, but unlike signs in dividend and divisor give in the

quotient; thus:
a a

Useful Formulas and Rules in Algebra.

The following rules are very useful to remember in solv-

ing practical problems in algebra. Let a and b represent any
two quantities ;

then a + b will represent their sum and a b

their difference; then (a + b) X (a -f b) = a2 + 2 ab + 2
.

(a + b) X (a + b) is also written (a + ).

(63)
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This rule reads:

The square of the sum of any two quantities is equal to

the square of thefirst quantity plus double the product of both

quantities, plus the square of the second quantity.

This rule reads:

The square of the difference ofany two quantities is equal
to the square of thefirst quantity minus twice the product of
both quantities, plus the square of the second quantity.

(a + b) X ( b]
= a2 P.

This rule reads :

The sum of any two quantities multiplied by their differ-
ence is equal to the difference of their squares.

Extracting Roots.

An even root of a positive quantity is either -f or . An
even root cannot be extracted of a negative quantity, as \/~a*

may be either a or a
;
but -v a 1 is impossible, because

( a) X ( a) = a'2 and (+ a) X (+ a) = a2
.

An odd root may be extracted as well of a negative quantity
as a positive quantity, and the sign of the root is always the
same as the sign of the quantity before the root was extracted.

3 3

Thus : V a3 = a, but V ( a)
3 =

( a).

Powers.

When a number or a quantity is to be multiplied by itself

a given number of times, the operation is indicated by a small
number at the right-hand corner of the quantity ;

for instance,
0-2 = x a.

A quantity of this kind is called a power; the small number
is called the exponent, or the index of the power. Two powers
of the same kind may be multiplied by adding the exponents ;

for instance, a2 a* = a'2 + 3 = ab
.

Two powers of the same kind may be divided by subtract-

ing their exponents ;
for instance,

J^. = 05-2 = 03 = a X X a.
a2

ab

-^ = 05-3 = 02 = a X a.

4 = a 1 = a.
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Thus, any quantity in power must be 1, because always
when dividend and divisor are alike the quotient must be 1.

= fl
5-6 = a~l

,
but a5 divided by a5 is equal to 1

;
therefore

4 must be -L
; 4 = <r* _ J_.

a6 a a 1 a2

Thus, any quantity with a negative exponent is one divided

by that quantity considering the exponent as positive. We
may, therefore, say that as a positive exponent indicates how
many times a quantity is to be used as a factor, a negative ex-

ponent indicates how many times a quantity should be used as
a divisor

;
for instance,

<r* =
a

'

a X a
'

a Xa X a
Thus :

6-1=1; o-a = (1)2
= ^ . 3-2 = (1)2 = ^ etC.

Equations.

An algebraic expression of equality between two quantities
is called an equation. The two quantities are connected by the

sign of equality, and the quantity on the left-hand side of the

sign is called the first member, and the quantity on the right-
hand side is called the second member of the equation.

If a part or all of the known quantities are expressed in

letters it is called a literal equation: ax = a + b 2c is a
literal equation.

If the equation contains no letters except the unknown
quantity, usually expressed by x, it is called a numerical equa-
tion

;
for instance, 5 x = 12 7 + 9, is a numerical equation.

In solving equations, we may, without destroying the equal-

ity of the equation, add an equal quantity to both members,
subtract an equal quantity from both members, multiply both
members by an equal quantity, divide both members by an

equal quantity, extract the same root of both members, raise

both members to the same power.

Quantities inclosed by parentheses, a bar, or under a radical

sign, and quantities connected by the sign of multiplication,
must always be considered and operated upon as one quantity.

EXAMPLE 1.

* = 3XS + 10 3 + 3X10.
x = 24 + 10 3 + 30.

x = 64 3.

x = 61.
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EXAMPLE 2.

3 + 8 + 10*= ~W~
21

EXAMPLE 3.

X

x =12 X

x = 12 X ( 7

x =92

EXAMPLE 4.

.Wx
(^if2j

fVo)

8 3 8 + 10
.* - = 12 X

3 3

, JL jt_
^*" == 12 X o + o

J O

or = 20 + 6

x =26

EXAMPLE 5.

X =
(
5? x (8 3) + \/20 + ie)

X 2

=
( |- X 5 + \/36")

X 2

r= (6X5 + 6) X 2

r == 36 X 2

When an equation consists of more than one unknown quan-
tity, as many equations may be arranged as there are unknown
quantities, and one equation is solved so that the value of one of

its unknown quantities is expressed in terms of the other, and
this value is substituted in the other equation.

EXAMPLE.
Two shafts are to be connected by two gears of 16 diam-

etral pitch ;
the distance between centers is 6^ inches. The

ratio of gearing shall be 1 to 3. How many teeth in each gear ?
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Call small gear x and large geary ;
then x+ y must be 108,

because 6% X 16 = 108, which is the number of teeth in both
gears added together. The ratio is 1 to 3; therefore x =y.

Thus:
x + y = 108, transposed to
x + 3 x= 108.
4 x= 108.

jr= 27 teeth for small gear.
The large gear = 27 X 3 = 81 teeth.

Quadratic Equations.

Equations containing one or more unknown quantities in
the second power are called quadratic equations. If the un-
known quantity only exists in the second power the equation
may be brought to the form x2 = a and x = /v/~0T

This square root may be either plus or minus.

If the unknown quantity exists in both the first and the
second power the equation may be brought to the form x* -{-a x=

b, or it may be brought to the form x2 a x= b.

The coefficient a may be any number. After the equation
is brought to this form, complete the square of the first member
by adding to both members of the equation the square of half
the coefficients; this will make the left member of the equa-
tion a complete square.

EXAMPLE.
A coal bin is to hold six tons of coal. Allow 40 cubic

feet per ton. (It takes 35 to 40 cubic feet to hold a ton of
coal in a bin). Make the width of the bin 6 feet, and the

length equal to the width and the depth added together. How
deep and how long will the bin be ?

Depth = x and length = y.
6 xy = 240, because 6 times 40 equals 240.

6 + x = y, because width + depth = length.

Thus:
6 x (6 + *) = 240.

6 ** + 36 x = 240.

Dividing by 6 we have : x* + Qx = 40.

Completing the square : x* + Qx + 32 = 40 + 3*.

x + 3 = V 40 + 9.

Extracting the square root: x + 3 = \/ 49.

* + 3 = 7.

x = 7 3.

x= 4 feet deep.
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Length = width + depth, =6+4, =10 feet.

This satisfies the conditions of the problem, because

6 X 4 X 10 = 240 cubic feet,

and the width and depth added together equal the length.

Progressions.

A progression is a series of numbers increasing or decreas-

ing, according to a fixed law.

The successive numbers of which the progression consists

are called terms ; the first and the last terms are called the
extremes and the others are called the means.

ARITHMETICAL PROGRESSION.

An arithmetical progression is a series of numbers which
increase or decrease by a constant difference. For instance :

2, 4, 6, 8, 10, 12, 14, 16, is an ascending series
;

20, 18, 16, 14, 12, 10, 8, is a descending series.

In each of these series the common difference is 2.

The following are the elements considered in an arith-

metical progression :

a First term
;
/ = Ic.st term

;
d= the common difference

;

n =. the number of terms
;
j = the sum of all the terms.

When any three of these quantities are known the other two

may be calculated :

In the above example of an ascending series :

a 2
;

/ = 16
;
d 2

;
;/ = 8

;
s = 72.

Formulas : Examples :

a I (;/ !) X d a 16 (8 1) X 2 = 2

l=a + (n 1) X d /=2 + (S 1) X 2 = 16

1

_ (2 + 16) X 8 _
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In the above example of a descending series :

a = 20
;

/= 8
;
d 2

;
= 7

;
J = 98.

Formulas : Examples :

a / -f ( i)x^/ = 8 + (7 1) X 2 = 20

l=a (n l)Xd /=20 (7 1) X 2 = 8

1 71

-
7 X , = 2--+8 X 7 = 98

GEOMETRICAL PROGRESSION.

A Geometrical Progression is a series of numbers which
increase or decrease by a common constant ratio. For
instance :

3, 6, 12, 24, 48, is an ascending series; 48, 24, 12, 6, 3 is a

descending series.

The following are the elements considered in a geometrical
progression :

a = first term ; / = last term
;
r = ratio

;
n = number

of term
;
s sum of the terms.

When three of these are known the other two may be cal-

culated.

In this example of an ascending series :

a 3
;

/ = 48
;

r = 2
;

n = 5
;

s = 93.

Formulas : Examples :

a = _4_ = _48_ _ 48_ _ 3
2 6-1 24

"

16

l=aX r*~ l /=3X2 *~l = 3 X 16 = 48

n - 1 5-14

log. 48

_ log. I log, a ,

f _
r 1 21

log. 2

1.681241 0.477121 +1 _^
0.30103

48 X 2 3 _
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In this example of a descending series :

a == 48
;

/= 3
;

r = 2
;

n = 5
;

s = 93.

Formulas : Examples :

asr/XrV 1 a = 3 X 2 5-! = 3 X 16 = 48

l= _a_ f= 48 _^ 48 ^ 48 _ 3
r n-i 2 6~1 24

"

16

n-1 _ 5-1 4

w= fly. 48 log. 3

log, a -log. I log.*

lom r 1.681241 0.477121 ,

l
_ 5

0.30103

_aXrl 48 X 2--
The Arithmetical Mean.

The arithmetical mean of two or more quantities is obtained

by adding the quantities and dividing the sum by their number.

For instance, the arithmetical mean of 14 and 16 is
14 + 16

^5

Thus : The arithmetical mean is simply the average.

The Geometrical Mean.

The geometrical mean of two quantities is the square root
of their product. For instance, the geometrical mean of 14 and

16 is \/14 X 16 = 14.9666.

The geometrical mean of two numbers is also called their

mean proportional.
When the difference between two numbers is small as com-

pared to either of them, their arithmetical mean is approxi-
mately equal to their geometrical mean.

This fact may be used to advantage for calculating approxi-
mately a root of any number.

For instance, find the square root of 148.

Knowing that the square of 12 is 144, twelve is used as a
divisor, thus :

148 A 12.333 + 12
12.333, and--- = 12.166,

which is correct within 0.005.
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Logarithms are a series of numbers computed in order to

facilitate all kinds of laborious calculations, such as evolution,

involution, multiplication and division.

Addition takes the place of multiplication, subtraction the

place of division; multiplication that of involution, and divi-

sion of evolution.

The logarithm of any given number is the exponent of the

power to which another fixed number, called the base, must be
raised in order to produce the given number.

There are two systems of logarithms in more or less general
use in mechanical calculations: namely, the Napierian system
and the Briggs system.

The Napierian system of logarithms was invented and
tables published by Baron John Napier, a Scotch mathema-

tician, in 1614, but these tables were improved by John Speidell
in 1019.

The modulus of any system of logarithms is a constant by
which the Napierian logarithm of any given number must be

multiplied in order to obtain the logarithm for the same number
in the other system.

The base of the Napierian system of logarithms is an in-

commensurable number expressed approximately by 2.718281828.

In mathematical works this base is usually denoted by the

letter e.

The Napierian logarithms are frequently called hyperbolic

logarithms, from their relation to certain areas included Between
the equilateral hyperbola and its asymptotes.

The Napierian logarithms are sometimes called natural

logarithms.
The Briggs system of logarithms was first invented and

computed by Professor Henry Briggs of London in 1615, and
is usually termed the common system of logarithms. When-
ever logarithms in general is mentioned the Briggs system is

always the one referred to.

The Briggs system of logarithms has for its modulus

0.4342945, and 10 for its base. Therefore the Briggs logarithm
of a number is the exponent of the power to which 10 must be
raised in order to give the number. Thus :
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Log. 1=0 because 10 = 1.

" 10 = 1
" 101 = 10.

" 100 = 2 " 102 = 100.

1,000 = 3 " 103 = 1,000.
"

10,000 = 4 " 104 = 10,000.

The logarithm of any number between 1 and 10 is a frac-
tion smaller than 1. The logarithm of any number between 10
and 100 is a number between 1 and 2. The logarithm of any
number between 100 and 1000 is a number between 2 and 3, etc.

The decimal part of the logarithms is called the mantissa,
and is given in the table commencing on page 88.

The integer part of a logarithm is called the index or some-
times the characteristic, and is not given in the table, but
is obtained by the rule that it is one less than the number
of figures in the integer part of the number

; thus, the index of a

logarithm for any number consisting of two figures must be 1;
the index of the logarithm for a number consisting of three

figures must be 2, etc.

The index of the logarithm of a decimal fraction is a nega-
tive number. Sometimes the negative index is denoted by
writing a minus sign over it; for instance, log. 0.5240= 1.719331,
or the negative index is denoted by writing it after the mantissa

;

thus, log. 0.5240 = 9.719331 10. This, of course, is of exactly
the same value whether written 1 or 9 10. Either of
these expressions is minus one in value, but it is more con-
venient in logarithmic calculations to write the negative index

after the mantissa
; thus, instead of writing 1, write 9

10
;
instead of 2, write 8 10, etc. Only the mantissa

is given in the table, but the index (as already explained) is

obtained by the rule: One less than the number offigures on
the left side of the decimal point . Therefore, in order to

memorize and explain this rule, the following examples are
inserted :

Number.



LOGARITHMS. 73

Log. 0.5 = 9.698970 10,
and Log. 500 = 2.698970, etc.

Thus, the mantissa of a logarithm is the same whether the
number is 0.5, 5, 50, 500, 5,000, etc. It is only the index that

is changed ; therefore, when a number consists of three or less

figures, its logarithm is found in the tables by taking the
mantissa found in the first column to the right of the number

;

that is, in the column under cipher. The index is found
by

the

same rule as before. For instance, logarithm to 537 will be
2.729974.

To Find the Logarithm of a Number Consisting of

Four Figures.

First find the figures in the column headed " N "
corre-

sponding to the first three figures of the number
;

in line with
these figures, in the column headed by the fourth figure, will be
found the mantissa of the logarithm corresponding to the

complete number. By prefixing the index, according to the

rule already given, the complete logarithm is obtained.

EXAMPLE.
Find logarithm of 5375.

Solution :

Under the heading
" N " find 537

;
and in the column at the

top of the table find "5"; under 5 in the line with 537 is

730378.
This is the mantissa of the logarithm. The index for a

number consisting of four integers is 3, therefore the complete
logarithm of 5375 is 3.730378.

To Find the Logarithm of a Number Having flore Than
Four Figures.

EXAMPLE 1.

Find the logarithm to 3658.2.

Solution :

Log. 3658 = 3.563244 and log. 3659= 3.563362
;
therefore the

logarithm for 3658.2 must be somewhere between the two logar-
ithms thus found in the table. The difference between these

two logarithms is 0.000118; that is, if the number is increased

by 1 the logarithm increases 0.000118, therefore if this number
is increased 0.2 the corresponding logarithm must increase 0.2

times, 0.000118 = 0.0000236, which may be taken as 0.000024.

Thus :

Log. 3658 = 3.563244
Difference corresponding to 0.2 = 0.000024

Log. 3658.2 = 3.563268
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It is unnecessary to calculate the difference, as the average
difference between the logarithms in each line is given in the
column headed " i>" in the tables. The difference in this case
is given in the table as 119.

EXAMPLE 2.

Find logarithm to 1892.5.

Solution :

The mantissa of the number 1892 is given in the table as
276921. The difference is given as 229. The index for a num-
ber consisting of four integers is 3. Thus :

Log. 1892 3.276921
0.5 X 0.000229 = 0.0001145 = 115

Log. 1892.5 = 3.277036

EXAMPLE 3.

Find logarithm to 85673.

Solution :

The mantissa for the number 85670 is given in the table as
932829. The difference is given in the table as 51. The index
for a number consisting of five integers is 4.

When an increase of 10 in the number increases the log-
arithm 0.000051 an increase of 3 must increase the correspond-
ing logarithm 0.3 times 0.000051. Thus:

Log. 85670 = 4.932829
0.3 X 0.000051 = 0.0000153 = 15

Log. 85673 = 4.932844

These calculations (or- interpolations as they are usually
called) are based upon the principle that the difference between
the numbers and the difference between their corresponding
logarithms are directly proportional to each other. This, how-

ever, is not strictly true
;
but within limits, as it is used here,

it is near enough for practical results.

To Find the Number Corresponding to a Given

Logarithm.

EXAMPLE 1.

Find the number corresponding to the logarithm 2.610979.

Solution :

Always remember when looking for the number not to

consider the index, but find the mantissa 610979 in the table.

In the same line as this mantissa, under the heading
"
N," is

408, and on the top of the table in the same column as this

mantissa is 3; thus, the number corresponding to this mantissa

is 4083 and the in4ex of the logarithm is 2
\ consequently the
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number is to have three figures on the left-hand side of the

decimal point; thus, the number corresponding to the logarithm
2.610979 will be 408.3.

EXAMPLE 2.

Find the number corresponding to the logarithm 3.883991.

Solution :

This mantissa is not in the table. The nearest smaller

mantissa is 883945, and to this mantissa corresponds the number
7055. The nearest larger mantissa is 884002, and to this

corresponds the number 7656.

Thus, an increment in the mantissa of 57 increases the

number by 1, but the difference between the mantissa 883945
and 883991 is 46, therefore the number must increase if =0.807.

Number of Log. 3.883945 = 7655
Difference 0.000046 = 0.807

Number of Log. 3.883991 = 7655.807

Addition of Logarithms.

(MULTIPLICATION.)

Where the logarithms of the factors have positive indexes,
add as if they were decimal fractions, and the sum is the log-
arithm corresponding to the product.

EXAMPLE 1.

Multiply 81 by 65 by means of logarithms.

Solution :

Log. 81 = 1.908485

Log. 65 = 1.812913

3.721398

and to this mantissa corresponds the number 5265. The index
is 3; therefore the number has no decimals, as it consists of only
four figures.

To Add Two Logarithms when One Has a Positive and
the Other a Negative Index.

EXAMPLE 2.

Multiply 0.58 by 32.6 by means of logarithms.

Solution ;

Log. 0.58 = 9,763428 10
, 38.8 as 1.513218

11,270646 ~~10
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This reduces to 1.276646 and to this logarithm corresponds
the number 18.908. This mantissa, 276646, cannot be found in the

table, but the nearest smaller mantissa is 276462, and the differ-

ence between this and the next is found by subtraction to be
230, and the difference between this and the given mantissa
is 184.

Thus:
Given logarithm 1.276646

To the tabulated log. 1.276462 corresponds 18.90

Difference 0.000184 gives _i _i
Thus, logarithm 1.276646 gives number 18J908

To Add Two Logarithms, Both Having a Negative
Index.

Add both logarithms in the same manner as decimal frac-

tions, and afterwards subtract 10 from the index on each side
of the mantissa.

EXAMPLE.

Multiply 0.82 by 0.082 by means of logarithms.
Solution :

Log. 0.82 = 9.913814 10

Log. 0.082 = 8.913814 10

18.827628 20

By subtracting 10 on each side of the mantissa this logar-
ithm reduces to 8.827628 10 and to the mantissa 827628 corre-

sponds the number 6724, but the negative index 8 10
indicates that this first figure 6 is not a whole number, but that

it is six-hundredths
;
therefore a cipher must be placed between

this 6 and the decimal point in order to give 6 the right value

according to the index; thus, to the logarithm 8.827628 10

corresponds the number 0.06724.

Subtraction of Logarithms.

(DIVISION.)

Logarithms are subtracted as common decimal fractions.

To Subtract Two Logarithms, Both Having a Positive

Index.

EXAMPLE.
Divide 490 by 70 by means of logarithms.

Solution :

Log. 490 = 2.690196

Log. 70 1.845098

0.845098
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and to the mantissa of this logarithm corresponds the number
7 or 70 or 700 or 7000, etc., in the table of logarithms, but the
index of this logarithm is a cipher ;

therefore the answer must
be a number consisting of one figure, thus it must be 7.

To Subtract a Larger Logarithm From a Smaller One.

This is the same as to divide a smaller number by a larger
one. Before the subtraction is commenced add 10 to the index
of the smaller logarithm (that is, to the minuend) and place

10 after the mantissa, then proceed with the subtraction as
if they were decimal fractions.

EXAMPLE.
Divide 242 by 367 by means of logarithms.
Solution :

Log. 242 = 2.383815 = 12.383815 10

Log. 367 = 2.564666

9.819149 10

and to the mantissa of this logarithm corresponds, according
to the table, the number 6594, but the negative index, 9 10,
indicates it to be 0.6594.

Thus, 242 divided by 367 = 0.6594.

Multiplication of Logarithms.

(INVOLUTION.)

To multiply a logarithm is the same as to raise its corre-

sponding number into the power of the multiplier.

Logarithms having a positive index are multiplied the same
as decimal fractions. Thus :

Square 224 by means of logarithms.

Solution:

2 X log. 224 = 2 X 2.350248 = 4.700496 = 50176

Logarithms having a negative index are multiplied the
same as decimal fractions, but an equal number is subtracted
from both the positive and the negative parts of the logarithm,
in order to bring the negative part of the index to 10.

EXAMPLE 1.

Square 0.82 by means of logarithms.

Solution :

2 X log. 0.82 = 2 X (9.913814 10) = 19.827628 10, and
subtracting 10 from both the positive and the negative parts of

the logarithm, the result is 9,827628 10
;

this gives the num-
ber 0.6724,
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EXAMPLE 2.

Raise 0.9 to the 1.41 power.
Solution :

1.41 X log. 0.9 = 1.41 X (9.954243 10) = 14.035483 14.1

In this example 10 cannot be subtracted from both parts
of the logarithm, but 4.1 must be subtracted in order to get 10,
after the subtraction is performed. The logarithm will then
read 9.935483 10, which corresponds to the number 86195, and
the negative index, 9 10, makes this 0.86195.

Division of Logarithms.

(EVOLUTION.)

To divide a logarithm is the same as to extract a root of
the number corresponding to the logarithm.

Logarithms having a positive index are divided the same
as common decimal fractions.

EXAMPLE.

Extract the cube root of 512 by means of logarithms.
Solution :

** 512 = 2.70927 =30O

and the number corresponding to this logarithm is 8, 80, 800,

8,000, etc., but the index of this logarithm is a cipher ;
there-

fore the answer must be a number consisting of one integer,

consequently it must be 8.

To Divide a Logarithm Having a Negative Index.

Select and add such a number to the index as will give
10 without a remainder for the quotient in the negative index
on the right-hand side of the mantissa after division is per-
formed.

EXAMPLE 1.

Extract the square root of 0.64 by means of logarithms.

= 19^18-20
2 2

and to this logarithm corresponds the number 0.8".

EXAMPLE 2.

Extract the cube root of 0.125 by means of logarithms.
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Solution :

log. 0.125_ 9.0961)110_ 29.0969130_ 9 69g97_ 1Q33 3

and to this logarithm corresponds the number 0.5.

EXAMPLE 3.

Extract the 1.7 root of 0.78.

Solution :

log. 0.78 9.892095 10

1.7 1.7

We cannot here, as in previous examples, add a multiple of
10 to the index on each side of the mantissa, but 7 must be
added in order that the negative quotient shall be 10 after

the division is performed. Thus:

9.892095-10 10.892005 -17
1.7 1.7

and to this logarithm corresponds the number 0.864.

Short Rules for Figuring by Logarithms.

MULTIPLICATION.

Add the logarithms of the factors and the sum is the logar-
ithm of the product.

DIVISION.

Subtract divisor's logarithm from the logarithm of the divi-

dend and the difference is the logarithm of the quotient.

INVOLUTION.

Multiply the logarithm of the root by the exponent of the

power and the product is the logarithm of the power.

EXAMPLE.

Log. 862 = 2 X log. 86 = 2 X 1.934498 = 3.868996

and to this logarithm corresponds the number 7396.

EVOLUTION.

The logarithm of the number or quantity under the radical

sign is divided by the index of the root, and the quotient is the

logarithm of the root.
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EXAMPLE.
4

log. 2401 3.380392
Log. y 2401 = -

"^j =
|

= 0.845098

and this logarithm corresponds to the number 7.

EXPONENTS.

The logarithm of a power divided by the logarithm of the
root is equal to the exponent of the power.

EXAMPLE.
8* = 64

x

x =
log.S

1.80618

0.90309

x = 2

The logarithm of a quantity under the radical sign divided

by the logarithm of the root is equal to the index of the root.

EXAMPLE. x _
8 = \/512

x = l 8' 512

x = 2.70927

0.90309

x =3
The reason for these last rules may be understood by re-

ferring to the rules for Involution and Evolution
;
for instance :

862= 7396, and this expressed by logarithms is:

2 X log. 86 = log. 7396.

Therefore:
lo
?'

7896 = 2.

log. 86

FRACTIONS.

The logarithm of a common fraction is found, either by first

reducing the fraction to a decimal fraction, or by taking the

logarithm of the numerator and the logarithm of the denominator
and subtracting the logarithm of the denominator from the log-
arithm of the numerator; the difference is the logarithm of

the fraction,
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EXAMPLE.

Log. % = log. 3 log. 4

Log. 3 = 0.477121 = 10.477121 10

Log. 4 0.602060

Thus, log. % = 9.875061 10

This is also the logarithm of the decimal fraction 0.75.

RECIPROCALS.

Subtract the logarithm of the number from log. 1, which is

10.000000 10, and the difference is the logarithm of the reci-

procal.

EXAMPLE.

Find the reciprocal of 315.

Solution :

Log. 1 = 10.DOOOOO 10

Log. 315 2.498311

Log. reciprocal of 315 = 7.501689 10

To this logarithm corresponds the decimal fraction

0.0031746, which is, therefore, the reciprocal of 315.

Simple Interest by Logarithms.

Add logarithm of principal, logarithm of rate of interest,
and logarithm of number of years ;

from this sum subtract log-
arithm of 100. The difference is the logarithm of the interest.

EXAMPLE.

Find the interest of #800 at 4% in 5 years.

Solution :

Log. 800 = 2.90309

Log. 4 = 0.60206

0.69897

40412

Log. 100 = 2.00000

Log. interest = 2.20412 = $160 = Interest.
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Compound Interest by Logarithms.

When the interest, at the end of each period of time, is

added to the principal the amount will increase at a constant

rate; and this rate will be the amount of one dollar invested
for one period of the time. For instance : If the periods of time
be one year each, then $30 in 3 years at 5 % compound interest

will be :

$30 X 1.05 = $31.50 at the end of first year.

$31.50 X 1.05 = $33.075 at the end of second year.

$33.075 X 1.05 = $34.73 at the end of third year.

This calculation may be written :

$30 X 1.05 X 1.05 X 1.05 = $34.73

which also may be written

$30 X (1.05)
3 = $34.73.

Thus, compound interest is a form of geometrical progres-

sion, and may be calculated by the following formulas :

a =p X r"

Log, a == n X log. r + log. p

Log. p = log. a n X log. r

log. r

Log. r = !og.
n

p = Principal invested.

n = The number of periods of time.

a = The amount due after n periods of time.

r = The amount of $1 invested one period of time.

NOTE. The quantity r is always obtained by the rule :

Divide the rate of interest per period of time by 100, and
add 1 to the quotient.

EXAMPLE.

What is the amount of $816 invested 6 years at 4% com-

pound interest?
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Solution by formula :

Log. a = n X log. r -j- log. p
Log. a = 6 X log. 1.04 + log. 816

Log. a = 6 X 0.017033+ 2.911690

Log. a = 0.102198 + 2.911690

Log. a = 3.013888

a = $1032.49 = Amount.

EXAMPLE.

If $750 is invested at 3% compound interest, how many
years will it take before the amount will be $950.

Solution by formula:

n= log- a

log. r

lo&- 95 ~ l - 75

log. 1.03

2.977724 -
0.012837

EXAMPLE.

A principal of $3750 is to be invested so that by compound
interest it will amount to $5000 in six years. Find rate of
interest.

Solution by formula :

Log. r =

Lo r =
n

3-698970 3.574031

6

Log. r = 0.020823

r = 1.0491

Rate of interest = lOOr 100 = 100 X 1.0491 100 = 4.91% ;

or 5 % per year (very nearly).

Discount or Rebate.

When calculating discount or rebate, which is a deduction

upon money paid before it is due, use formula:

Log. p = log. a n X log. r
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EXAMPLE.
A bill of $500 is due in 3 years. How much cash is it worth

if 3% compound interest should be deducted.

Log. p = log, a n X log. r

Log.p = 2.698970 3 X 0.012837

Log.p = 2.698970 0.038511

Log.p = 2.660459

p = $457.57 = Cash payment.

NOTE. Such examples may be checked to prevent miscal-

culations, by multiplying the result (the cash payment), by the
tabular number given for corresponding number of years and

percentage of interest in table on page 23
;

if calculations are
correct, the product will be equal to the original bill. For in-

stance, 457.57 X 1.092727 = 499.99909339 = $500.00. Thus, the
calculation in the example is correct.

Sinking Funds and Savings.

If a sum of money denoted by ,
set apart or saved dur-

ing each period of time, is put at compound interest at the end
of each period, the amount will be :

a = b at the end of the first period.

a = b + br at the end of the second period.
a = b + br + bi* at the end of the third period.

At the end of n periods the last term in this geometrical
series is br n ~ l and the first term is

,
while the ratio is r.

The sum of the series is the amount which according to the
rules for geometrical progression (see page 69) will be :

r 1

r 1

EXAMPLE.
At the end of his first year's business a man sets apart

$1200 for a sinking fund, which he invests at 4% per year. At
the end of each succeeding year he sets apart $1200 which is

invested at the same rate. What is the value of the sinking
fund after 7 years of business ?

Solution :

= 1200 X (1.04
7

1)

1.04 1

a = 1200 X 0.31593

0.04

a = $9477.90
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EXAMPLE.

A man 20 years old commences to save 25 cents every
working day, and places this in a savings bank at 4% interest,

computed semi-annually. How much will he have in the bank
when he is 36 years old? (NOTE. 25c. a day = #1.50 a
week = 26 X $1.50 = $39 in six months. 4 % per year = 2 %
per period of time

;
36 20 = 16 = 32 periods of time).

Solution by formula:

r 1

= 39 X (1.02
32

1)

1.02 1

= 39 X (1.8845 1)

0.02

a = 39 X 0.8845 X 50

a = 1724.775 = $1724.77 = Amount.

Thus, in 16 years a saving of 25c. a day amounts to $1724.77.

If the money is paid in advance of the first period of time
the terms will be :

a = br at the end of the first period.

a = br + br* at the end of the second period.

a = br + br* -\- br* at the end of the third period.

At the end of n years the last term in this geometrical
series is br 11 and the first term is br, while the ratio is r. The
sum of the series is the amount, which, according to rules for

geometrical progressions (see page 69), will be :

r r ~~ br

r 1

_ br (r
n _

1}

r 1

EXAMPLE.

Assume that the man mentioned in previous example,
instead of commencing to save money when 20 years old,

already had $39 to put in the bank at 4 % the first period of

time, and that he always kept up paying $39 in advance semi-

annually. How much money would he then save in 16 years ?
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Solution :

= 39 X 1.02 X (102
32

1)

1.02 1

_ 39 X 1.02 X 0.8845

~002-
a = 1759.27

Thus, by paying the money in advance semi-annually, he
will gain (1759.27 1724.77) = #34.50.

If a principal denoted by P is invested at a given rate of

compound interest, and successive smaller or larger equal pay-
ments denoted by b are made at the end of each period of time
so that they will commence to draw interest at the beginning of
the following period at the same rate as the principal, the

formula will be :

but for logarithmic calculations it is more convenient to denote
the rate of interest by y % and the formula will read :

a = p X r n + ~J~
100

a = j xr * + 100*(r-l)
y

b _ aypy X rn

100 rn 100

rn =. a.y + 100*

py + 100 6

4- 100 b

=
log. r

lo?
* y + 10 *

*'
p y + 100 ^- - -

S
-

NOTE. Using these formulas it must be understood that

represents the number of periods of time that the principal is

invested, and that this first period is considered to be the period
at the end of which the first payment, b, is made.

EXAMPLE.
A man has $50 in a savings bank and he also puts in $25

every month, which goes on interest every 6 months
;
the bank

pays 4% interest, computed semi-annually. How much money
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can he save in 5 years in this way? (NOTE. 4% per year =
2% per 6 months, or per period of time, and $25 a month= $150

every 6 months, or per period of time. The interest is computed
semi-annually ;

therefore 5 years = 10 periods of time).

Solution by formula :

y

a = 50 X 1.02- + 100 X 150 X (102"-I)

a = 50 X 1.219 + 100 X 150 X 0.219

2

a = 60.95 + 1642.50

a = $1703.45 = Amount.

The original sum of $50 has increased to $60.95, and the

monthly payments amounted to $1500. The last six payments
did not draw any interest, as they were deposited in the last

six months of the fifth year and would commence to draw inter-

est at the beginning of the sixth year if the amount had not
been withdrawn.

EXAMPLE.
A man has $800 invested at 5%. How much must he save

and invest at the same interest every year in order to increase it

to $3000 in five years ? Interest is computed annually.

Solution by formula :

b _ ay py X r*

100 r* 100

b __ 3000 X 5 800 X 5 X 1.05s

100 X 1.055 100

b _ 15000 1.2763 X 4000

100 X 1.2763 100

15000 5105.2

b

127.63 100

9894.8

27.63

b = 358.118 = $358.12 to be paid in each year.

The total payments will be :

800 + 5 X 358.12 = $800 + $1790.60 = $2590.60.

The rest of the amount is accumulated interest. The last pay-
ment is made at the end of the fifth year ;

therefore this money
does not draw interest.
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EXAMPLE.
A man calculates that if he had $1800 he would start

in business. He has
only $120, but is earning $15 a week and

figures that he can save half of his weekly earnings. He puts
his money in a savings bank, where it goes on interest every
six months, at the rate of 4% a year. How many years will it

take him to save the required amount? (NOTE. $7.50 a week
== 26 X 7> = $195 in six months, and 4% per year = 2% per
six months, or per period of time).

Solution by formula :

log.

n =

log.

log, r

1800X2+ 100X195

_ 120 X 2 + 100 X 195

log. 1.02

, 3600+ 19500
l S' 240+ 19500

log. 1.02

One period = 6 months
;
8 periods = 4 years ; therefore,

under these conditions it takes four years to save this amount
of money.

If a certain sum of money is withdrawn instead of added,
at the end of each period of time, the formula on page 86 will

change to :

y
Every letter denotes the same value as it had in the formula

on page 86, except that b represents the sum withdrawn instead
of the sum added.

EXAMPLE.
A man has $5000 invested at 5% interest compounded an-

nually, but at the end of each year he withdraws $200. How
much money has he left after six years ?

Solution :

a = 1.05" X 5000 - 100 X 200 X (1.05*
-

1)

5

a = 1.34 X 5000 - 10 X X '34

a = 6700 1360

a = $5340 = Amount.
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If the deducted sum, ,
exceeds the interest due at the first

period of time, the amount a will become smaller than the prin-

cipal/, and in time the whole principal will be used up. This
will be when :

100(r 1)
P X r = -

-y-
This transposes to

100
=

log.

-py
1003

100 b _ py

log.r
EXAMPLE.
A principal of $5000 is invested at 4% per year, but at the

end of each year $600 is withdrawn. How long will it take to

use the whole principal ?

100 X 600

_
l S- 100 x 600 5000 X 4

'log. 1.04

60000

60000 20000

n =

log. 1.04

log. 1.50

log. 1.04

0.176091

0.017033

n = 10.3 years.

Paying a Debt by Instalments.

This same formula applies also in this case; for instance:
A man uses $1500 every year toward paying a debt of $10,000,
and 5% interest per year. How long will it take to pay it?

100 X 1500
'

100 X 1500 10000 X 5
n =

log. 1.05

150000

100000

n=
log. 1.05

log* 1.5

log. 1.05

= .
0.176091

0.021189

n = 8.3 years,
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HYPERBOLIC LOGARITHMS.
The hyperbolic or Napierian logarithm of any number may

be obtained by multiplying the common logarithm by the con-
stant 2.302585; practically 2.3.

Table No. 6 gives the hyperbolic logarithms from 1.01 to
30. The hyperbolic logarithm of numbers intermediate between
those which are given in the table may be obtained by inter-

polating proportional differences.

TADLE No. 6. Hyperbolic or Napierian Logarithms

of Numbers.

N
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Weights anb Measures.

The yard is the standard unit for length in the United
States and Great Britain. To determine the length of the yard,
a pendulum vibrating seconds in a vacuum at the level of the
sea in the latitude of London, with the Fahrenheit thermometer
at 62, is supposed to be divided into 301,393 equal parts ; 360,-
000 of these parts is the length of the standard yard. Actually,
the standard yard in both the United States and Great Britain
is a metallic scale made with great care and kept by the respec-
tive governments, and from this standard other measures of

length have oeen produced.
The standard unit of weight in the United States and

Great Britain is the Troy pound, which is equal in weight to

22.2157 cubic inches of distilled water at 62 Fahrenheit, the
barometer being 30 inches. The Troy pound contains 5,760

Troy grains; the Pound Avoirdupois, which is the unit of

weight used in commercial transactions and mechanical cal-

culations in the United States and Great Britain, is equal to

7,000 Troy grains.
In the United States the standard unit of liquid measure

is the wine gallon, containing 231 cubic inches or 8.3389 pounds
avoirdupois of distilled water at a temperature of its greatest

density (39-40 F).
In the United States the standard unit for dry measure is

the Winchester Bushel, containing 2150.42 cubic inches.

In Great Britain the standard measure for both liquid and

dry substances is the Imperial Gallon, which is defined as the
volume of 10 pounds avoirdupois of distilled water, when weighed
at 62 Fahrenheit with the barometer at 30 inches. The Im-

perial Gallon contains 277.463 cubic inches. The Imperial
Bushel of 8 gallons contains 2219.704 cubic inches.

Long Measure.

12 inches = 1 foot = 0.30479 meters.
3 feet = 1 yard = 0.91437 meters.

5>^ yards = 1 rod or pole = 16^ feet = 198 inches.
40 rods = 1 furlong = 220 yards = 660 feet.

8 furlongs = 1 statute or land mile = 320 rods = 1760 yards.
3 miles = 1 league = 24 furlongs = 960 rods.
5280 feet = 1 statute or land mile = 1.609 kilometer.
1 geographical or nautical mile = 1 minute = ^ degree.

(I33-)
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As adopted by the British admiralty,* a nautical mile is 6080 ft.

I nautical mile = 1.1515 statute or land miles.

1 statute or land mile = 0.869 nautical miles.

Square Measure.

1 square yard = 9 square feet= 0.836 square meters.
1 square foot = 144 square inches = 929 square centi-

meters.
1 square inch = 6.4514 square centimeters.
A section of land is 1 mile square = 640 acres.

1 acre = 43,560 square feet = 0.40467 hectare.
1 square acre is 208.71 feet on each side.

Cubic fleasure.

1 cubic yard = 27 cubic feet = 0.7645 cubic meters.
1 cubic yard = 201.97 (wine) gallons = 7.645 hectoliter.

1 cubic foot = 1728 cubic inches = 28315.3 cubic centi-

meters.
1 cubic foot == 7.4805 (wine) gallons = 28.315 liters.

NOTE. 1 cubic foot contains 6.2355 imperial (English) gal-
lons.

A cord of wood = 128 cubic feet, being 4X4X8 feet.

A perch of stone = 24^ cubic feet, being IQ% X 1 1A X 1

foot, but it is generally taken as 25 cubic feet.

Liquid Hea&ure.

1 pint = 28.88 cubic inches.
2 pints = 1 quart = 57.75 cubic inches = 0.9463 liter.

4 quarts = 1 gallon = 231 cubic inches = 3.7852 liters.

NOTE. 1 imperial (English) gallon is 277.274 cubic inches.

Dry Measure.

1 standard U. S. bushel = 2150.42 cubic inches.
1 standard U. S. bushel = 4 pecks.
1 peck = 2 gallons = 8 quarts.
1 gallon = 4 quarts = 268* cubic inches.
1 quart = 2 pints = 67| cubic inches.
100 bushels (approximately) = 124> cubic feet.

80 bushels (approximately) = 100 cubic feet.

Avoirdupois Weight.

(Used in business and mechanical calculations.)

1 pound = 16 ounces = 0.45359 kilograms.
1 ton = 2240 pounds. A short ton is 2000 pounds.

* See Machinery, page 23, Sept., 1897.
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Troy Weight.

(Used when weighing gold, silver and jewelry.)

1 pound = 12 ounces = 0.37324 kilogram.
1 ounce = 20 pennyweights = 1.0971 ounces avdp.

Apothecaries' Weight.

1 pound = 1 pound troy weight = 12 ounces.
1 ounce = 8 drachms.
1 drachm = 3 scruples.
1 scruple = 20 grains.

135

Weights of Produce.

The following are the weights of certain articles of produce:

Pounds
per bushel.

Wheat, 60
Corn in the ear, 70
Corn shelled, 56

Rye, 56

Buckwheat, 48

Barley, 48
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Length.

1 Meter = 10 Decimeters = 39.37 inches.

1 Decimeter = 10 Centimeters = 3.937 inches.

1 Centimeter = 10 Millimeters = 0.3937 inches.

1 Millimeter = ^v Meter = 0.03937 inches.

1 Decameter = 10 Meters = 32 feet 9.7 inches.

1 Hektometer= 100 Meters =328 "
1 inch.

1 Kilometer = 1000 Meters = 0.6214 mile.

1 Myriameter = 10000 Meters = 6.214 miles.

Area.

1 square millimeter = 0.00155 square inch.

100 square millimeters = 1 square centimeter = 0.155 sq. inch.

100 " centimeters= 1
" decimeter =15.5 sq. inch.

100 " decimeters =1 " meter = 10.764 sq. feet.

1 Centare = 1
" meter = 1550 sq. inches.

1 Are =100" meters = 119.6 sq. yards.
1 Hectare = 10000 sq. meters = 2.471 acres.

Solids.

1 cubic millimeter = 0.000061 cubic inch.

1000 cubic millimeters = 1 cubic centimeter = 0.061 cubic inch.

1000 " centimeters = 1
" decimeter = 61.027 " "

1000 " decimeters =1 " meter =35.3 "
feet.

Liquid.

1 liter = 10 deciliters = 1 cubic decimeter.

1 deciliter = 10 centiliters = 100 cubic centimeter.

1 centiliter = 10 milliliters = 10 cubic centimeters.

1 milliliter = y^- liters = 1 cubic centimeter.

1 decaliter = 10 liters = 10 cubic decimeters.

1 hectoliter = 100 liters = 100 cubic decimeters.

1 kiloliter = 1000 liters = 1 cubic meter.

1 liter = 61.027 cubic inches = 1.0567 quarts.



WEIGHTS AND MEASURES. 137

TABLE No. 7. Reducing Millimeters to Inches.

Mm.
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Table of Reduction for Pressure per Unit of Surface.

1 kilogram per sq. centimeter = 14.223 pounds per sq. inch.

1 kilogram per sq. centimeter = 0.968 atmosphere.
1 pound per sq. inch = 0.0703 kilograms per sq. centimeter.
1 pound per sq. inch = 0.068 atmosphere.

Table of Reduction for Length and Weight.

1 kilogram per kilometer 3.548 pounds per mile.

1 kilogram per meter = 0.672 pounds per foot.

1 pound per mile = 0.282 kilograms per kilometer.

1 pound per foot = 1.488 kilograms per meter.

Weight of Water (4 C.)

1 cubic cm. weighs 1 gram.
1 cubic inch weighs 0.036125 pounds = 16.386 grams.
1 liter weighs 1 kilogram = 2.2046 pounds.
1 quart weighs 2.0862 pounds 0.9463 kilograms.
1 cubic meter weighs 1000 kilograms = 2204.6 pounds.
1 cubic foot weighs 62.425 pounds = 28.32 kilograms.

Measure of Water.

1 kilogram measures 1 liter =1.057 quarts.
1 kilogram measures 0.353 cubic feet= 61.03 cubic inches.

1 pound measures 0.01602 cubic ft. = 0.454 liter.

1 pound measures 27.68 cubic ins. = 453.59 cubic centimeters.

SPECIFIC GRAVITY.

The specific gravity of a body is its weight as compared
with the weight of an equal volume of another body which

^

is

adopted as a standard. For all solid substances, water at its

maximum density (4 C.) is the usual standard. For instance,
the specific gravity of zinc is 7

;
this simply means that one

cubic foot of zinc is 7 times as heavy as one cubic foot of

water. One cubic foot of water weighs 62.425 pounds. There-

fore, by multiplying the specific gravity of any solid body by
62.425 its weight per cubic foot is obtained. In the metric

system of measure and weight, one cubic centimeter of water

weighs one gram; therefore the table of specific gravity will

also directly give the weight of the material in grams per cubic

centimeter, in kilograms per cubic decimeter, or in 1000 kilo-

grams (the so-called metric ton) per cubic meter.
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TABLE No. 9. Specific Gravity, Weights and Values.

METALS.

Metric.

Kilog. per
;ubic dec. or

specific

gravity

American.

Pounds per
cubic inch.

Pounds per
cubic foot.

Approximate
value

per
pound.

Water . . .

Gold (24 k) .

Platinum . .

Silver . . .

Wrought iron
Cast iron . .

Tool Steel .

Zinc ....
Antimony . .

Copper . . .

Mercury . . .

Tin . . .

Aluminum .

Lead .

1

19.361

21.531

10.474
7.78
7.21

7.85

7

6.72

8.607
13.596
7.291

2.67

11.36

0.036125
0.697
0.775

0.377
0.28
0.26
0.284

0.252
0.242
0.31

0.489
0.262
0.096
0.408

62.425
1208
1344
654
485
450
490
437
419
537
849
455
166
708

$299.70
122.00
12.14

0.015
0.008
0.10
0.10

0.12

0.15

0.25

0.05

TABLE No. 10. Specific Gravity and Weight of Medium
Dry Wood.

VARIETY.

Metric.

Kilog. per cubic
dec. specific gravity.

American.

Pounds per cubic
foot.

Birch
Ash
Beech
Oak
Ebony
Lignum-vitas . .

Spanish mahogany
Hickory
Spruce
Pine
Pitch pine ....

0.60 to 0.80

0.50 to 0.80

0.60 to 0.80

0.60 to 0.90

1.19

1.33

0.85

0.50

0.50

0.40 to 0.80

0.80

37.5 to 50
31 to 50
37.5 to 50
37.5 to 56

74
83
53
32
32

25 to 50
50
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TABLE No. ii. Specific Gravity and Weight per Cubic

Foot of Various Haterials.

(The weight may vary according to the properties of the material).

MATERIALS.

Metric.

Kilog. per cubic dec.

specific gravity.

American.

Pounds
per cubic foot.

Asphalt ....
Brick

Gray granite . .

Red granite . .

Limestone . . .

Sand
Portland cement
Brickwork . .

Slate
Glass

Emery ....
Grindstone . .

Coal
Porcelain . . .

Lime .

1.4

1.6 to 2

2.4

2.5 to 3

2.7
1.5

1.26

1.75

2.8

2.52

4.0

2.4

1.5

2.4

0.96

87
100 to 125

150
157 to 187

168
94
78

110
175
157
250
150
64
150
60

TABLE No. 12. Specific Gravity and Weight of Liquids.

LIQUIDS.
>

Metric.

Kilog.
per cubic

dec.

Kilog.
per

liter.

American.

Pounds
per

cub. inch.

Pounds

gallon.

Water . . .

Sea water .

Sulphuric acid
Muriatic acid
Nitric acid .

Alcohol . . .

Linseed oil .

Turpentine .

Petroleum
Machine oil .

1

1.03

1.841

1.2

1.217
0.833
0.94

0.87
0.878
0.9

1

1.03

1.841

1.2

1.217
0.833
0.94

0.87
0.878
0.9

.03

.841

.2

.217

0.833
0.94

0.87

0.878
0.9

0.036125
0.037
0.067
0.043
0.044
0.03
0.034
0.031
0.032
0.0324

8.33
8.55

15.48
9.93

10.16

6.93

7.85

7.16

7.39

7.5
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To Calculate Weight of Casting from Weight of Pattern.

When pattern is made from pine and no nails used, .the

rule is : Multiply the weight of the pattern by 17 and the prod-
uct is the weight of the castings.

When nails are used in the pattern, multiply its weight by
a little less, probably 15 or 16.

When the pattern has core prints, their weight must be
calculated and also the weight of what there is to be cored out
in the casting, which must all be deducted. This mode of cal-

culating the weight of castings is, of course, only approxima-
tion, but it is frequently very useful.

Weight of an Iron Bar of any Shape of Cross Section.

A wrought iron bar of 1 square inch area of cross section

and one yard long weighs 10 pounds. Therefore, the weight of

wrought iron bars of any shape, as, for instance, railroad rails,

I beams, etc., may very conveniently be obtained by first mak-

ing a correct, full size drawing of the cross section and measur-

ing its area by a planimeter, which gives the area in square
inches. Multiply this area by 10 and the product is the weight
in pounds per yard; or multiply the area by 3.33 and the product
is the weight in pounds per foot.

To Calculate Weight of Sheet Iron of any Thickness.

One square foot of wrought iron, 1 inch thick, weighs very
nearly 40 pounds (40.2 pounds) and one square foot y, which
is

joffo thick, weighs 1 pound. Therefore, a practical rule for

quick calculation of the weight of sheet iron is: Divide the

thickness of the iron as measured by a micrometer calliper in

thousandths of inches by 25, and the quotient is the weight in

pounds per square foot.

To Calculate the Weight of Metals Not Given in the Tables.

Find the weight of wrought iron, and multiply by the fol-

lowing constants :

Weight of wrought iron X 0.928 = cast iron.
" X 1.014 = steel.

" " " " X 0.918 = zinc.
" " " " X 1.144 = copper.
' ' X 1.468 ~ lead,
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To Calculate the Weight of Zinc, Copper, Lead, etc.,

in Sheets.

First find the weight by the rule given for sheet iron, and

multiply by the constant as given in the above table, and the

product is the weight of each metal in pounds per square foot.

To Calculate the Weight of Cast Iron Balls.

Multiply the cube of the diameter in inches by 0.1377, and
the product is the weight of the ball in pounds.

Thus :

WD^y. 0.1377. D = 1.

D = diameter of ball in inches.

W= weight of ball in pounds.
In metric measure, multiply the cube of the diameter in

centimeters by 0.003775, and the product is the weight of the

ball in kilograms.
Thus :

IV= M* X 0.003775. M 6.422 X
W= weight in kilograms.M diameter of ball in centimeters.

TABLE No. 13. Weight of Round Steel per Lineal Foot.

Steel weighing 489 pounds per Cubic Foot.

Diameter in

inches.
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TABLE No. 1 4. Weights of Square and Round Bars of

Wrought Iron in Pounds per Lineal Foot.

(Iron weighing 480 pounds per cvibic foot).

Thickness
or Dinmeter

in

Inches.
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TABLE No. i4. (Continued).

Thickness
or Diameter

in



TABLE No. 16. Sizes of Numbers of the U. S. Standard
Gage for Sheet and Plate Iron and Steel.

(Brown & Sharpe Mfg. Co.)

Number
of

Gage.
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TABLE No. 1 7. Different Standards for Wire Gage in

Use in the United States.

Dimensions of Sizes in Decimal Parts of an Inch.

(Brown & Sharpe Mfg. Co.)

Number

of

Wire

Gage.
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TABLE No. 17. (Continued).

jiJ



TABLE No. 10. Decimal Equivalents of the Numbers of Twist Drill

and Steel Wire Gage. (Brown & Sharpe Mfg. Co.)



Geometry

Geometry is the science which teaches the properties of
lines, angles, surfaces and solids.

A point indicates only position and has neither length,
breadth or thickness. A point has no magnitude.

A line has length, but no breadth or thickness
;

it is either

straight, curved or mixed.
A straight line is the shortest distance between two points.A curved line is continuously changing its position.
A mixed line is composed of straight and curved lines.
A surface has length and breadth, but no thickness

;
it may

be either plane or curved.
A solid has length, breadth, and thickness or depth.
An angle is the inclination of two lines which intersect or

meet each other. The point of intersection is called the vertex
of the angle. An angle is either right, acute or obtuse.

A right angle contains 90 degrees. An acute angle contains
less than 90 degrees. An obtuse angle contains more than 90
degrees.

FIG. i. \ \ FIG. 3

Right Angle. Acute Angle. Obtuse Angle.

*
Polygons.

Polygons are plane figures bounded on all sides by straight
lines, and are either regular or irregular, according to whether
their sides and angles are equal or unequal. The points at
which the sides meet are called vertices of the polygon. The
distance around any polygon is called the perimeter.

A figure bounded by three straight lines, forming three

angles, is called a triangle.
The sum of the three angles in any triangle, independent of

its size or shape, makes 180 degrees.
All triangles consist of six parts ; namely, three sides and

three angles. If three of these parts are known, one at least

being a side, the other parts may be calculated.
A triangle is called equilateral when all its three sides have

equal length. Then all the three angles are equal, namely, 60

degrees, because CO X 3 = 180. ( See Fig. 4).

* Some authorities define as polygons only figures having more than four sides.
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A triangle is called a right-angled triangle when one angle
is 00 degrees ;

the other two angles will then together consist of
90 degrees, because 90 -f 90 = 180. ( See Fig. 5).

An acute-angled triangle has all its angles acute. (See

FIG. 4.

FIG. 6.

Equilateral Triangle. Right-Angled Triangle. Acute Triangle.

The longest side in a right-angled triangle is called the

hypothenuse and the other two sides are called the base and

perpendicular. The square of the length of the hypothenuse is

equal to the sum of the squares of the lengths of the other two
sides. ( See Fig. 5).

=
From this law the third side of a right-angled triangle can

always be found, when the length of the other two sides is

known. Thus : ( See Fig. 5).

If, instead of the letters a, b, and c, numbers are used, for

instance, a = 3 and b = 4
;
what then is the length of c ?

A square is a plane figure having four right angles and
bounded by four straight lines of equal length. (See Fig. 7).

FIG. 7.
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A parallelogram is a plane figure whose opposite sides are

parallel and of equal length. ( See Fig. 8).

A rectangle is a parallelogram having all its angles right
angles. ( See Fig. <J).

A trapezoid is a plane figure bounded by four straight
lines, of which only two are parallel. (See Fig. 10).

FIG. a. FIG. 9.
FIG. 10.

Parallelogram. Rectangle. Trapezoid.

FIG. 11. A trapezium is a plane figure bounded by
four sides, all of which have unequal length.

(See Fig. 11).

Polygons having four sides, and conse-

quently four angles, are usually called quad-
rangles. Polygons having more than four

sides are named from the number of their

sides.

Trapezium.

Thus:
A polygon having five

" " " six
" " " seven
" " "

eight
" " " nine
" " " ten

" " eleven
" " " twelve

sides is called a pentagon.
" " " a hexagon.
" " " a heptagon.
" " " an octagon.
" " " a nonagon.
" " " a decagon.
" " " an undecagon.
" " " a dodecagon.

The sum of the degrees of all the angles of any polygon
can always be found by subtracting 2 from the number of sides

and multiplying the remainder by 180.

For instance :

The sum of degrees in any quadrangle is always (4 2)
X 180 = 360 degrees.

The sum of degrees in any pentagon will always be (5 2)
X 180 = 540 degrees.

This is a useful fact to remember in making drawings, as it

may be used for verifying angles of polygons.
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FIG.

Circles.

The Circle is a plane figure bound-
ed by a curved line called the circum-
ference or perphery, which is at all

points the same distance from a fixed

point in the plane, and this point is

called the center of the circle. ( See

point c, Fig. 12).

A Diameter is a straight line

passing through the center of a circle or
a sphere, terminating at the circumfer-

Circle. ence or surface. (See line e-d, Fig. 12).

A Radius is a straight line from the center to the circum-

ference of circle or sphere. ( See line c-f, Fig. 12).

Diameter = 2 X radius. The ratio of the circumference to

the diameter of a circle is usually denoted by the Greek letter TT

and is expressed approximately by the number 3.1416 or

Thus, if the circumference is required, multiply the diameter

by 3.1416. If the diameter is required, divide the circumference

by 3.1416.

A Chord is a straight line terminating at the circumference
of a circle but not passing through the center of the circle. (See
line0-, Fig. 12). The curved line a-b, or any other part of the

circumference of a circle, is called an arc.

Any surface bounded by the chord and an arc, like the

shaded surface a-b, is called a segment.

Any surface bounded by a chord and its two radii, like the

shaded surface c-f-d, is called a sector.

PROPERTIES OF THE CIRCLE.

Circumference = Diameter X 3.1416

Area =
( Diameter)

2 X 0.7854

Diameter = Circumference X 0.31831

Diameter =-J^
Diameter = 1.1283 X
Circumference = 3.5449 X area

Length of any arc= Number of degrees X 0.017453 X radius.

Length of arc of 1 Degree when radius is 1 is 0.017453.

Length of an arc of 1 Minute when radius is 1 is 0.000290888.

Length of an arc of 1 Second when radius is 1 is 0.000004848.

When the length of the arc is equal to the radius the angle
is 57 17' 45" = 57.2957795 degrees.
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TRIGONOMETRY.

Trigonometry is that branch of geometry which treats of
the solution of triangles by means of the trigonometrical
functions.

When the circumference of a circle is divided into 360 equal
parts each part is called one degree.

One fourth of a circle is 90 degrees = right angle, because
4 X 90 = 360. ( See Fig. 13.)

FIG. 13. fc

1 degree = 60 minutes (60'.)
1 minute = 60 seconds (60".)

cotangent (cot.)

FIG 14.

Circle = 4 right angles.
Circle = 360 degrees (360.)

Concerning the angle n (see Fig. 14) the following are the

trigonometrical functions :

c g radius = 1. c h cosecant (cosec.)
d b sine ( sin.) gf tangent ( tan.)
c d cosine (cos.) k h
c f secant (sec.)

The complement of an angle is what remains after sub-

tracting the angle from 90. Thus, the complement of an angle
of 30 is 60 because 90 30 60.

The supplement of an angle is what remains after subtract-

ing the angle from 180. Thus, the supplement of an angle of
30 is 150 because 180 30 = 150.

As all circles, regardless of their size, are divided into 360

degrees, the trigonomical functions must always be alike if the
radius and the angle that they denote are alike.

It is on this basis that the tables of trigonometrical func-
tions are calculated, and as radius is used the figure 1 .

In Table No. 20, the natural sine of 30 is given as 0.5; this
means that if the line c g (see Fig. 14) is 1 foot, meter, or any
other unit, and the angle n is 30 degrees, the line db will be 0.5
of the same unit as the line eg.

Sine 45 = 0.70711
;
that is, if the the angle n is 45 degrees

and the line c g is 1 of any unit, the line d b is 0.70711 of the
same unit.

Cos. 30 == 0.86603
;
that is, if the angle n is 30 degrees and

the line c g is 1 of any unit, the line a b or c rf is 0,86603 of the
same unit,
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Sec. 30 = 1.1547
;
that is, if the angle n is 30 degrees and

the line cgis 1 of any unit, the line cf is 1.1547 of the same unit.

Cosec. 30 = 2; that is, if the angle ;/ is 30 degrees and the
line eg is 1 of any unit, the line c h is 2 of the same unit.

Tang. 30 = 0.57735
;
that is, if the angle n is 30 degrees

and the line c g is 1 of any unit, the line gf is 0.57735 of the
same unit.

Cot. 30 = 1.73205
;
that is, if the angle n is 30 degrees and

the line c g is 1 of any unit, the line k h is 1.73205 of the
same unit.

Increasing the angle n will increase sine, tangent and
secant, but will decrease cosine, cotangent and cosecant.

When the angle n approaches 90, the tangents gf increase
more and more to infinite length. When n actually reaches 90
of course c b coincides with c k and becomes parallel to gf, so
that in an angle of 90 both /the secant and the tangent have
infinite length, which is denoted by the sign oo, and cosine and
cotangent have vanished.

In the first quadrant (that is when angle n does not exceed
90) the trigonometrical functions are all considered to be
positive and are denoted by + (plus). When the angle n
exceeds 90, only sine and cosecants remain positive ;

all the
other functions have become negative and are denoted by
(minus).

The following table gives the properties of the trigono-
metrical functions in the four different quadrants :

Degree.
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Sin.2 + cos.2 = radius2
.

Tang.
2

-f- radius2 = secant2 .

Cot.2 + radius2 = cosecant2 .

But the trigonometrical tables are calculated with radius

1, hence,

sin.2 -fcos.2 =l.
tang.

2 +1 sec.2

cotang.
2

-j- 1 cosecant2 .

tang. =

secant =

cotang.=

cosec. =

cosm.

1

cosin.

sin.

1

cotang.

cosin. =
tang.

- Vl sin.5

tang. =

secant =

sin. =

sin.

sin. =

cosm. =

FIG. is. FIG. 16. FIG. 17.

Sine and Cosine of the Sum of Two Angles.
(See Fig. 15).

Sine (a -f b} = sin. a X cos. b -f- cos. a X sin. b.

Cos. (a + b} = cos. a X cos. b sin. a X sin. b.

Sine and Cosine of Twice any Angle.
(See Fig. 16).

Sin. 2 a = 2 X sin. a X cos. a.

Cos. 2 a = cos.2 a sin.2 a.

Sine and Cosine of the Difference of Two Angles.
(See Fig. 17).

Sin. (a b} = sin. a X cos. b cos. a X sin. b.

Cosin. (a b] = cos, a X cos. b -f- sin, a X sin, b,
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The Trigonometrical Table and Its Use.

Table No. 21 gives sine, cosine, tangent, and cotang, to

angles from to 90 degrees with intervals of 10 minutes.
For sine or tangent find the degree in the left-hand column

and find the minutes on the top of the table. For instance,
sine to 18 40' = 0.32006.

If cosine or cotangent is wanted, find the degree in the

column at the extreme right and the minutes at the bottom of

the table. For instance, cotang 48 10' = 0.89515.

As the table only gives the angles and their trigonometrical
functions with 10-minute intervals, any intermediate angle must
be calculated by interpolations. For instance, find sine of 60
15' 10".

Solution :

Sine 60 20' 0" = 0.86892
Sine 60 10' 0" = 0.86748

Difference of 10' 0" = 0.00144

60 15' 10" 60 10' 0" = 5' 10' = 310 seconds and a
difference of 10' = 600" increases this sine 0.00144. Therefore
a difference of 310 seconds will increase the sine.

310 *
t

M = 0.00074

and sine 60 10' 0" 0.86748

Therefore sine 60 15' 5" = 0.86822

IMPORTANT. During all interpolations concerning the

trigonometrical functions, remember the fact that if the angle
is increasing both sine and tangent are also increasing, and
corrections found by interpolations must be added to the num-
ber already found

;
but as the cosine and cotangent decrease

when the angle is increased, for these functions the corrections
must be subtracted.

Interpolations of this kind are not strictly correct, as neither
the trigonometrical functions nor their logarithms differ in pro-
portion to the angle. The error within such small limits as
10 minutes is very slight. When very close calculations of

great distances are required, tables are used which give the
functions with less difference than 10 minutes; but for mechan-
ical purposes in general these interpolations are correct for all

ordinary requirements. It is very seldom in a draughting office or
a machine shop that any angle is measured for a difference of
less than 10'.

To Find Secant and Cosecant of Any Angle.

Divide 1 by cosine of the angle and the quotient is secant
of the same angle.

Divide 1 by sine of the angle and the quotient is cosecant
of the same angle.
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Logarithms Corresponding to the Trigonometrical
Functions.

Table No. 22 gives the logarithms corresponding to sine,

cosine, tangent ana cotang. for angles from to 00 degrees,
with intervals of 10 minutes. For sine and tangent find the

degree in the column to the left and the minutes at the top of

the table. For instance :

Log. sine 19 30' = 9.523495 10.

This, of course, is also logarithm to the fraction 0.33381,
which is sine of 19 30'.

For cosine and cotang. find the degree in the column to the
extreme right in the table, and find the minutes at the bottom
of table. For instance :

Log. cotang. 37 10' = 10.120259 10 = 0.120259.

NOTE. In this table the index of the logarithm is increased

by 10, therefore 10 must always be annexed in the logarithm.
Logarithms to angles between those in the table may be

obtained by interpolations. For instance, find log. sine 25 45'.

Solution :

Log. sine 25 50' = 9.639242 10

Log. sine 25 40' = 9.636623 10

Difference 0.002619
This difference in the logarithm corresponds to a difference

in this angle of 10 minutes ; therefore a difference of 5 minutes
in the angle will make a difference of 0.001309 in the logarithm.
Thus :

Log. sine 25 40' = 9.636623 10
Difference 5' = 0.001309

Log. sine 25 45' = 9~637932 10

EXAMPLE 2.

Find angle corresponding to logarithmic sine 9.894246 10.

Solution :

In the table of logarithms of sine :

9.894546 10 corresponds to 51 40'

9.S93544 10 corresponds to 51 30'

Difference 0.001002
~~

corresponds to 10'

To logarithm 9.894246 10 must, therefore, correspond an

angle somewhere between 51 30' and 51 40', which is found
thus :

The given logarithm is 9.894246 10
Nearest less logarithm 9.893544 10 for 51 30'

Difference 0.000702

Therefore, the correction to be added to the angle already
found will be :

0.000702 X 10 _
0.001002

Thus, the logarithmic sine 9.894246 10 gives 51 37'
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EXAMPLE 3.

Find log. to tangent of 50 45'

Solution :

Log. tangent 50 50' = 0.089049

Log. tangent 50 40' = 0.086471

Difference 10' = 0.002578 in the logarithm. There-
fore a difference of 5' in the angle will give 0.001289 in the

logarithm.
Thus:

Log. tangent 50 40' = 0.086471
Difference 5' = Q.QQ1289

Log. tangent 50 45' = 0.087760

EXAMPLE 4.

Find the angle corresponding to log. tangent 9.899049 10.

Solution :

Log. tangent 38 30' = 9.900605 10

Log. tangent 38 20' 9.898010 10

Difference 107

corresponds to 0.002595

The given logarithm = 9.899049 10
Nearest less logarithm = 9.898010 10 gives 38 20'

D ifference = 0.001039

The difference to be added to the angle already found will
0.001039 X^lO _De

0.002595
4 '

The tabulated logarithm 9.898010 10 gives angle 38 20'

Difference 0.001039 gives angle 4'

Logarithm 9.899049 10 gives angle 38 24'

To Find Logarithm for Secants and Cosecants.

Logarithm for secants is found by subtracting log. cosine
from log. 1.

For instance, find logarithmic secant 30.
Solution :

Log. 1 = 10.000000 10

Log. cosine 30 = 9.937531 10

Log. secant 80 = 0.062469

Logarithm for cosecants is found by subtracting log. sine
from log. 1. For instance, find logarithmic cosecant 35.

Solution :

Log. 1 = 10.000000 10

Log. sine 35 = 9.758591 10

Log. co-secant 35 = 0.241409

NOTE. What is said concerning interpolations of trigono-
metrical functions in general in the note headed "Important"
on page 157, will also apply to their logarithms.
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Solutions of Right>Angled Triangles.

FIG. 18.

Right-angled triangles (see Fig. 18)

may be solved by the following for-
A

mulas :

Solving for Any Side.

A = CXsmea = *X tang.*=. = -*

B = C X cos. a = A X cot. a = - A
sec. tang. #

c =

Solving for Any Function or for Any Angle.

Sin.
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Fie. 1 9

EXAMPLE.

Find angles a and b and the
side X in the right-angled triangle.

(Fig. 19).

i- 12.5 feet

Tangent corresponding to a = ~f2jj-
= 0.4

Tangent corresponding to b = j
= 2.5

By the trigonometrical table the angles are obtained thus :

Tangent 0.40000 gives 21 48'

Tangent 2.50000 gives 68 12'

Therefore :

Angle a = 21 48' and angle b = 68 12'.

Angle b may also be found by subtracting angle a from
90, thus :

Angle b = 90 21 48' = 68 12'

The length of the side X may be found thus :

X

thus :

sin. c

5
x

0.37137

x = 13.464 feet long.

By means of logarithms the length of the side x is obtained

Log. x log. 5 log. sin. 21 48'

Log. x 0.698970 (9.569804 10)

Log.x 1.129166
x 13.464 feet long.

Solution of Oblique-Angled Triangles.

FIG. 20.

/ Oblique-angled triangles
A (see Figs. 20-21-22) may be solved(see Y igs. 20-21-22) may be s

by the following formulas :
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Solving for Any Side.

Csin. b A sin. b

sin. c
~ ~

sin. a

Solving for Any Angle.

Cos. a
B*

"*" C * ~ A *

2 A C

2A B
A A

Sin. a = sin. b - = sin. cB C
T> ry

Sin. b = sin. - = sin. a
C A
C C

Sin. c= sin. # = sin. b
A B

# = 180 (b + c)

b = 180 (a + c)

c =180 (a+b)

Solving for Area.

Area
sin - c X A x B sin, a X C X ^? _ sin, b X A X C222

EXAMPLE 1.

Find the length of the side C (see Fig. 20) when angle a
20 38' 12", angle c 117 48' 5", and side A 12.75 feet long.

NOTE. The angle c exceeds 90, therefore the supplement
of the angle must be used, which is 180 117 48' 5"
62 11' 55".

Thus the solution :

c_ 12.75 X sin. 62 11' 55"

sin. 20 38' 12"

c_ 12.75 X 0.88456

0.35243

C 32 feet long.



TRIGONOMETRY. 179

EXAMPLE 2.

Find the length of the side B (see Fig. 20) when angle b

is 41 33' 43", side C is 32 feet and side A is 12.75 feet.

In this example two sides and their included angle are

given and the third side is required ;
therefore the formula

B \/A 2 + C 2 2 A C cos. b must be used.

Solution :

B Vl2.752 + 322 2 X 12.75 X 32 X 0.748238

B VH86.562 610.562

B \/576 = 24 feet long.

EXAMPLE 3.

Find the length of the side B when side A is 12.75 feet

long, angle b is 41 33' 43" and angle c is 117 48' 5' . ( See

Fig. 20).
In this problem one side and its two adjacent angles are

given ;
therefore it can not be solved directly by any of the

preceding formulas, but the first thing to do is to find the angle

opposite to side A.
Thus: Angle a = 180 (41 33' 43" + 117 48' 5") =

20 38' 12". The side B may be found by the formula
A sin. b

**
sin. a

Solution :

A sin. 41 33' 43"B =
sin. 20 38' 12"

B = 12 '75 * 0.66343

0.35242

B = 24 feet long.

EXAMPLE 4.

Find length of the side C when B is 24 feet long, angle c is

117 48' 5" and the side A is 12.75 feet long. ( See Fig. 20).

Solution :

C = A* + J5* 2A cos. c

C Vl2?752 242 2 X 12.75 X 24 X ( 0.4664)

C Vl 62.56 + 576 + 285.44

C Vl02T = 32 feet long.

NOTE. In this example the cos. of 117 48' 5" is used,
which, in numerical value, is equal to cos. of 62 11' 55" =
0.4004, but cos. in the second quadrant is negative (see page 154):
therefore cos. 117 48'' 5" = ( 0.40045) and the essential sign
of the last product after it is multiplied by this negative cos.

must change from to -f ( See Algebra, page 63).
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EXAMPLE 5.

Find the length of the side A when C is 32 feet long, angle
a is 20 38' 12" and angle c is 117 48' 15".

NOTE. Supplement to c is 62 11' 55".

Solution :

_ Csin. a

A =
sin. c

32 X 0.35242

0.88456

A 12.75 feet long.

In this example, as in the preceding one, we use the sup-
plement of the angle in obtaining its function, but here it has no
influence on the signs because sin. is positive as well in the

second as in the first quadrant.

EXAMPLE 6.

Find angle a in Fig. 20, when A is 12.75 feet, B is 24 feet

and C is 32 feet.

Solution :

_ 576+ 1024 162.5625
C S - a ^

-1636-
cos. a 0.93583

Angle a 20 38' 12"

EXAMPLE 7.

Find angle ft, Fig. 20, by the same formula.

Solution :

co, = - + --*
, _ 12.752 + 322 242

2 X 12.75 X 32

cos, ft = 610 ' 5625

816

cos. ft = 0.748238

Angle ft = 41 33' 43"
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EXAMPLE 8.

Find angle c, Fig. 20, by the same formula.

Solution :

cos e
_ 12.752 + 242 322

COS. C =
2 X 12.75 X 4

738.5625 1024

612

cos. c = 0.46640

Supplement to angle c = 62 11' 55", and angle c = 117 48' 5"

NOTE. The negative cosine indicates that it is in the sec-

ond quadrant, therefore the angle is over 90.
The angle corresponding to this cosine is the supplement

of angle c. To obtain angle c, the angle of its supplement must
be subtracted from 180.

EXAMPLE 9.

Find angles a, b and c in Fig. 20, when side A is 12.75

feet, B 32 feet, and C 24 feet.

cos.^ 32^ 242- 12 - 75"

cos. a =
2 X 32 X 24

1437.4375

1536

cos. a = 0.93583

Angle a = 20 38' 12"

Angle b may be found by the formula :

n
sin. b = sin. a -

A
sin. b = sin. 20 38' 12"

A
sin. b = 0.35244 X -

32

12.75

sin. b = 0.35244 X 1.8824

sin. b = 0.66343

Angle b = 41 33' 43"
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Angle c may be found by the formula:

c = 180 (a + b)

c = 180 (20 38' 12" + 41 33' 43")

c = 180 62 11' 55"

c = 117 48' 5"

EXAMPLE 10.

Find the area of a triangle (see Fig. 20), when it is known
that side A is 12.75 feet, side B is 24 feet, and the including

angle C= 117 48' 5".

Solution :

Sin. to supplement of 117 48' 5" = sin. 62 11' 55" =
0.88456.

Area = gjn.
C X ^ X Z?

Area =
0-88456X^12.75X24

= 135 34 square cet

EXAMPLE 11.

Find angle c and the sides X and y in the triangle, Fig. 23.

Solution :

c = 180 (40 -f- 60) = 80 F.Q. 23

The side ;r=:?5_Xsm.40

y

sin. 60

25 X 0.64279

0.86603

x 16 -06975"
0.86603

X 18.556 meters long.

By the use of logarithms the side X is solved thus :

Log. X log. 25 -f log. sin. 40 log. sin. 60.

Log.X= 1.39794 + (9.80806710) (9.93753110).
Log.X= 1.268476

X 18.556 meters long.

The side y = 25 X sin '

G
80

sin. 60

_ 25 X 0.98481

0.86603

y 28.429 meters long.

By the use of logarithms the sidejj/ is solved thus:

Log. y = log. 25 -f log. sin. 80 log. sin. 60.

Log. y 1.39794 + (9.99335110) (9.93753110).
Log. y = 1.45376

y 28.429 meters long.
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EXAMPLE 12.

Find angles c and b and the length
of the side X in Fig. 24.

35

Sin c
42 X 0-80902

35

Sin. c = 0.97082 ^ ^^
Angle c = 76 7' 26"

Angle = 180 (54 0' 0" + 76 T 26") = 49 52' 34"

c . , y 35 X sin. 49 52' 34"
bide X=

= ^^
0.80901

By means of logarithms the side ^T is solved thus :

Log. X log. 35 -f /^. sin. 49 52' 34" log. sin. 54.

Log. X^ 1.544068 + (9.88346310) (9.90795810).

Log.X 1.519573

X 33.08 meters long.

NOTE. The angle c is obtained by interpolation thus : In
the table of trigonometrical functions the sine 0.97100 corre-

sponds to the angle 76 10' and the sine 0.97030 corresponds to

the angle 76. Thus, a difference of 0.00070 in the sine gives
a difference of 10' 600" in the angle.

The sine to angle c is 0.97082
The nearest less sine in the table is 0.97030 corresponding

to angle 76 0' 0".
Difference, 0.00052

Therefore when an increase in sine of 0.00070 corresponds
to an increase of 600" in the angle, an increase of 0.00052 will

increase the angle
60 X -00052== 446" = Q 7' 26"

0.00070

thus, the angle corresponding to the sine 0.97082 must be
76 7' 26".
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PROBLEMS IN GEOMETRICAL DRAWING.

cf

/, e, d,

To divide a straight line into a

given number of equal parts. (See
Fig. 1).

Given line a b, which is to be
divided into a given number of equal
parts. Draw the line b c, of indefinite

length, and point off from b the re-

quired number of equal parts, as h,g,
join c 1 and 0, and draw the other lines parallel to c1

a.

To erect a perpendicular at a

given point on a straight line.

FIG. 1

FIG. 2 (See Fig. 2).

Given line a b, and the point
x. The required perpendicular
is xy.

5 Solution :

'1 '2 With x as center and any
radius, as x 1, cut the line a b at 1 and 2. With 1 and 2 as
centers and with a radius somewhat greater than 1 to x, describe
arcs intersecting each other at y. Draw x y. This will be the

required perpendicular.

From a given point without a straight line to draw a per-
pendicular to the line. (See Fig. 3).

Given line a b and the point c.

The required perpendicular is x.

Solution :

With the point c as center and any
radius as c 1, strike the arc 1 to 2. With
1 and 2 as centers and any suitable

radius, describe arcs intersecting each
other at

, lay the straight edge through
points n and c and draw the perpendicular x.

To erect a perpendicular at the extremity of a straight line.

FIG.

(See Fig. 4).
li

n

The required perpendicular is x.

Solution :

From any point, as c, with radius
as a c, draw the circle. From point
of intersection, #, through center, c,

draw the diameter n p. From the

points, through the point of intersec-

tion at p, draw the perpendicular x.

__, The correctness of this con-
struction is founded on the principle
that inside a half circle no other
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FIG

angle but an angle of 90 can simultaneously touch three points
in the circumference when two of these points are in the point
of intersection with the diameter and
the circumference and the third one
anywhere on the circumference of the
half circle. The pattern maker is mak-
ing practical use of this geometrical
principle, when he by a common car-

penter's square is trying the correctness
of a semi-circular core box, as shown
in Fig. 5.

FIG. 6

FIG. 7

Draw a line parallel to a

given line. (See Fig. 6).

Given line a b. The required
line x y.

Solution :

Describe with the compass a
from the line a b, the arcs 1 and
2

;
draw line x y, touching these arcs.

To divide a given angle into two

equal angles.
The given angle, a b c, is divid-

ed by the line b d.

Solution :

With b as center and any radius,
as b 1, describe the arc 1 to 2. With
1 and 2 as centers and any suitable

radius, describe arcs cutting each
other at d. Draw line b d, which
will divide the angle into two equal parts.

To draw an angle equal to a given angle.
Given angle a b c. Construct

angle xy z.

With b as center and any radius,
as b 1, describe the arc 1 to 2.

Usingy as center and without alter-

ing the compass, describe the arc /,

intersecting y z. Measuring the
distance from 2 to 1 on the given
angle, transfer this measure to the 2

arc /, through the point of intersection. Draw the line y *,
and this angle will be equal to the first angle.

NOTE. Angles are usually measured by a tool called a pro-

tractor, looking somewhat like Fig. 9 or 10, usually made from

metal, and supplied by dealers in draughting instruments. A

FIG. 8
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protractor may also be constructed on paper and used for

measuring angles, but it should then always be made on as

large a scale as convenient.

FIG. 9

FIG. 10

To draw a protractor with a division of 5. (See Fig. 10).

Construct an angle of exactly 90 degrees, divide the arc into

nine equal parts, then each part is 10C
;
divide each part into

two equal parts and each is 5.

Prove that the sum of the three angles in a triangle consists
of 180. (See Fig. 11).

a F|C - 11 Solution:

In the triangle a b c, extend
the base line to i. Draw the line

o p, parallel to the side a b,

thereby the angle g will be equal
to the angle d, and the angle h
must be equal to angle c. The
angle/is one angle in the triangle
and /+ g -\- h = 180, therefore

/ + d + c must also be 180.

To draw on a given base line a triangle having angles 90,
30 and 60. (See Fig. 12).

Given line a b, required triangle is a, c, b.

Solution :

Extend the line a b to twice its

length, to the point e. With e and b as
centers strike arcs intersecting each
other and erect the perpendicular a c.

With b as center and any radius as /,

draw the arc / m. With / as center
and with the same radius, describe arc

intersecting at m. From b through
point of intersection at m, draw line b

intersecting the perpendicular at c.

This will complete the triangle.

FIG. 12
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To draw a square inside a

given circle. (See Fig. 13).

Solution :

Draw the line a b through the

center of the circle. From points
of intersection at a and b, describe
with any suitable radius arcs inter-

secting at;* and ///. Draw through
the points the line c d. Connect
the points of intersection on the

circle and the required square is

constructed.
FIG. 13,

To draw a square outside a

given circle. (See Fig. 14).

Solution :

Draw lines a b and c d, and
from points of intersection at b and
r, describe half circles; their points
of intersection determine the sides
of the square.

To draw a hexagon within a given
circle. (See Fig. 15).

Apply the radius as a chord succes-

sively about the circle; the resulting
figure will be a hexagon.

FIG. 15-

FIG. 16.
To inscribe in a circle a regular polygon of

any given number of sides.

Solution:

Divide .360 by the number of sides, and the

quotient is the number of degrees, minutes, and
seconds contained in the center angle of a triangle,
of which one side will make one of the sides in

the polygon. For instance, draw a hexagon by this method.

(See Fig. 10). 360 = 6QO
6
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FIG. 17 To find the center in a given
circle. (See Fig. 17).

Solution :

Draw anywhere on the circumfer-
ence of the circle two chords at ap-
proximately right angles to each other,
bisect these by the perpendiculars x
and ^, and their point of intersection
is the center of the circle.

FIG. 18 To draw any number of
circles between two inclined
lines touching themselves and
the lines. (See Fig. 18).

Solution :

Draw center line ef. Draw
first circle on line i g. From
point of intersection between

this circle and the center line draw the line //, perpendicular to

a b. Describe with a radius equal to
^,

the arc intersecting at

g\ draw line^
1

1
1
, parallel to g i, and its point of intersection

with the center line gives the center for the next circle, etc.

FIG.

-Xr-4 1-

To draw a circle through
three given points. (See Fig. 19).

The given points are #, ,
and c.

Solution :

From a and b as centers with
suitable radius, describe arcs inter-

secting at e e. Draw a line through
these points. From b and c as cen-

ters, describe arcs intersecting at d
d; draw a line through these points.

The point where these two lines intersect is the center of the

circle.

FIG. 20 To draw two tangents to a
circle from a given point without
same circle. (See Fig. 20).

Given point ,
and the circle

with the center . The required
tangents are a d, and a b.

Solution :

Bisect line n a. With c as

center and radius a c, describe
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the arc b d through the center of the circle. The points of

intersection at b and d are the points where the required tan-

gents a b and a d will touch the circle.

F/G

FIG. 22.

To draw a tangent to a given point in

a given circle. (See Fig. 21).
Given circle and the point h, x y is

required.

Solution :

The radius is drawn to the point h and
a line constructed perpendicular to it at the

point h. This perpendicular, touching the
circle at ^, is called a tangent.

To draw a circle of a certain size that
will touch the perphery of two given cir-

cles. (See Fig. 22).
Given the diameter of circles a, b,

and c. Locate the center for circle
,

when centers for a and b are given.

Solution :

From center of a, describe an arc
with a radius equal to the sum of radii of a and c. From b as

center, describe another arc using a radius equal to the sum of
the radii of b and c. The point of intersection of those two
arcs is the center of the circle c.

NOTE. This construction is useful when locating the center
for an intermediate gear. For instance, if a and b are the pitch
circles of two gears, c would be the pitch circle located in correct

position to connect a and b.

To draw an ellipse, the longest
and shortest diameter being given.
The diameters a b and c d are

given. The required ellipse is

constructed thus : (See Fig. 23).
From c as center with a radius

a n, describe an arc fl
f. The

points where this arc intersects a
b are foci. The distance fn is

divided into any number of parts,
as 1, 2, 3, 4, 5. With radius 1 to b,

and the focus/ as center, describe arcs 6 and 61
;
with the same

radius and with f 1 as center describe arcs 62 and 63. With
radius 1 to a and/ 1 as center, describe arcs intersecting at 6 and
61

;
with the same radius and with / as center, describe arcs

intersecting at 62 and 68 . Continue this operation for points 2,

3, etc., and when all the points for the circumference are in this

FIG. 23
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way marked out, draw the ellipse by using a scroll. It is a
property with ellipses that the sum of any two lines drawn from
the foci to any point in the circumference is equal to the largest
diameter. For instance :

e + fe, = ab, or/6 1 61
,
= a b.

Cycloids.

Suppose that a round disc, c, rolls on a straight line, a b, and
that a lead pencil is fastened at the point r; it will then describe

a curved line, a, /, r, ;/, b. This
line is called a cycloid. (See
Fig. 24).

This supposed disk is usual-

ly called the generating circle.

The line a b is the base line of
the cycloid and is equal in length

to TT times m r, or practically 3.1416 times the diameter of the

generating circle. The length of the curved line a, /, r, , 3, is

four times r m, (four times as long as the diameter of the

generating circle).

A circle rolling on a straight line generates a cycloid.

(See Figs. 24 and 25).

A circle rolling upon another circle is generating an

epicycloid. (See Fig. 26).

A circle rolling within another circle generates a hypo-
cycloid. (See Fig. 27).

To draw a cycloid, the generating circle being given.

Solution :

Divide the diameter of the

rolling circle in 7 equal parts.
Set off 11 of these parts on each
side of a on the line d e. This
will give a base line practically
equal to the circumference.
Divide the base line from the

point a into any number of equal parts; erect the perpendicu-
lars, with center-line as centers and a radius equal to the radius
of the generating circle describe the arcs. On the first arc from
d or e set off one part of the base line. On the second arc set
off two parts of the baseline; on the third arc three parts, etc.

This will give the points through which to draw the cycloid.
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To draw an epicycloid (see Fig. 26), the generating circle a
and the fundamental circle B being given.

Solution

FIG. 26Concentric with the circle B, describe
an arc through the center of the generating
circle. Divide the circumference of the

generating circle into any number of equal
parts and set this off on the circumference
of the circle B. Through those points draw
radial lines extending until they intersect
the arc passing through the center of the

generating circle. These points of inter-

section give the centers for the different positions of the gener-
ating circle, and for the rest, the construction is essentially the
same as the cycloids. In Fig. 26, the generating circle is shown
in seven different positions, and the point ,

in the circumfer-
ence of the generating circle, may be followed from the position
at the extreme left for one full rotation, to the position where it

again touches the circle B.

To draw a hypocycloid. (See Fig. 27).

The hypocycloid is the line generated
by a point in a circle rolling within another

larger circle, and is constructed thus: (See
Fig. 27).

FIG- 27.

Divide the circumference of the gener-
ating circle into any number of equal parts.
Set off these on the circumference of the
fundamental circle. From each point of
division draw radial lines, 1, 2, 3, 4, 5, 6.

From 11 as center describe an arc through
the center of the generating circle, as the

arc c d. The point of intersection between this arc and the
radial lines are centers for the different positions of the gener-
ating circle. The distance from 1 to a on the fundamental
circle

1

is set off from 1 on the generating circle in its first new
position ;

the distance 2 to a on the fundamental circle is set off

from 2 on the generating circle in its second position, etc. For
the rest, the construction is substantially the same as Figs. 25
and 26.

NOTE. If the diameter of the generating circle is equal to

the radius of the fundamental circle, the hypocycloids will be a

straight line, which is the diameter of the fundamental circle.
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Involute.

An involute is a curved line which may be assumed to be

generated in the following manner : Suppose a string be placed
around a cylinder from a to ^, in the
direction of the arrow (see Fig. 28),

and having a pencil attached at b
;

FIG. 28

keep the string tight and move the

pencil toward r, and the involute,
b c, is generated.

To draw an involute.

Solution :

From the point b, (see Fig. 28)
set off any number of radial lines at

equal distances, as 1, 2, 3, 4, 5. From
points of intersection draw the tangents (perpendicular to the

radial lines). Set off on the first tangent the length of the arc 1

to b\ on the second tangent the arc 2 to b, etc. This will give
the points through which to draw the involute.

To draw a spiral from a given

F,G. 29 point,*.

Solution:

Draw the line a b through the

point c. Set off the centers r and

S, one-fourth as far from c as the

distance is to be between two lines

in the spiral. Using r as center,
describe the arc from c to 1, and

using ,5* as center, describe the arc

from 1 to 2
; using r as center, de-

scribe the arc from 2 to 3, etc.

FIG.

Conical Sections.

If a cone (see Fig. 30), is cut by a plane on the line a b,

which is parallel to the center line, the

section will be a hyperbola,
If cut by a plane on the line c d, which

is parallel to the side, the section will be a

parabola.
If cut by a plane on the line^, which

is parallel to the base line, the section will

be a circle.

If cut by a line, e /, which is

neither parallel to the side, the center-

line nor the base, the section will be an

ellipse*
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MENSURATION.

If each side in a square (see Fig. 1) is two feet long, the

area of the figure will be 4 square feet; that is, it contains four

squares, each of which is one square foot.

Thus the area of any square or rectangle is FIG. 1

calculated by multiplying the length by the

width.

EXAMPLE 1.

What is the area of a piece of land

having right angles and measuring 108 feet

long and 20 feet wide ?

Solution :

108 X 20 = 2160 square feet.

-2 :feet

EXAMPLE 2.

What is the area in square meters of a square house-lot 30
meters long and 30 meters wide.

Solution :

30 X 30 = 900 square meters.

( Square meter is frequently written m* and cubic meter is

written m s
).

A square inscribed in a circle is half in area of a square
outside the same circle. Divide the side of a square by 0.8862,
and the quotient is the diameter of a circle of the same area as

the square.

The Difference between One Square Foot and One Foot

Square.

One foot square means one foot long and one foot wide,
but one square foot may be any shape, providing the area is one

square foot. For instance, Fig. 1 is two feet square, but it con-

tains four square feet. One inch square means one inch long
and one inch wide, but one square inch may be any shape,

provided the area is one square inch. One mile square means
one mile long and one mile wide, but one square mile may have

any shape, provided the area is one square mile.

Area of Triangles.

The area of any triangle may be found by multiplying the

base by the perpendicular height and dividing the product by 2.
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EXAMPLE.

Find the area of a triangle 16 inches long and 5 inches per-

pendicular height.

Solution :

Area = 5 X 16 = 40 square inches.

The perpendicular height in any triangle is equal to the
area multiplied by 2 and the product divided by the base.

The area of any triangle is equal to half the base multiplied
by the perpendicular height.

The perpendicular height of any equilateral triangle is

equal to one of its sides multiplied by 0.866.

The area of any equilateral triangle may be found by mul-

tiplying the square of one of the sides by 0.433.

EXAMPLE.

f
Find the area of an equilateral triangle when the sides are

12 inches long.

Solution :

Area = 12 X 12 X 0.433 = 62.352

The side of any equilateral triangle multiplied by 0.6582

gives the side of a square of the same area.

The side of any equilateral triangle divided by 1.3468 gives
the diameter of a circle of the same area.

To Figure the Area of Any Triangle when Only the

Length of the Three Sides is Given.

RULE.
From half the sum of the three sides subtract each side

separately; multiply these three remainders with each other
and the product by half the sum of the sides, and the square
root of this result is the area of the triangle.

EXAMPLE.

Find the area of a triangle having sides 12 inches, 9 inches
and 15 inches long.

Solution :

Half the sum of the sides = 18

Area = V(18 12) X (18 9) X (18 15) X 18

Area = \/6 X 9 X 3 X 18

Area = \/2916

Area = 54 square inches.
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To Find the Height in any Triangle when the Length
of the Three Sides is Given.

(See Fig. 2).

The base line is to the sum of the other
two sides as the difference of the sides is to

the difference between the. two parts of the
base line, on each side of the line measuring
the perpendicular height. If half this dif-

ference is either added to or subtracted c

from half the base line, there will be obtained two right-angled
triangles, in which the base and hypothenuse are known and
the perpendicular may be calculated thus : Using Fig. 2 for an
example, and adding half the difference to half the base line,
this may be written in the formula:

-*/~^2 f ( a 4- b} X (a b} \
c \ 2

x \ a* f - ^ : + IV V 2c 2 /

RULE.

Multiply the sum of the sides by their difference and divide
this product by twice the base; to the quotient add half the

base; square this sum (that is, multiply it by itself); subtract
this from the square of the longest side, and the square root of

the difference is the perpendicular height of the triangle.

EXAMPLE.

In the triangle, Fig. 2, the sides are:

c = 12 inches.

a = 9 inches.

b = 6 inches
;

find the perpendicular height x.

_ / (9 + 6) X (9
-

6) 12_
2 X 12 2

x ~ 81 7.875 2

x- = J 81 62.015

x= J 18.985

x = 4.357 inches.
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To Find the Area of a Parallelogram.

Multiply the length by the width, and the product is the

area.

NOTE. The width must not be measured on the slant side,
but perpendicular to its length.

To Find the Area of a Trapezoid.

Add the two parallel sides and divide by two
; multiply the

quotient by the width, and the product is the area. (See Fig. 3).

FIG. 3. EXAMPLE.
h 7 feet. -^ F

.

nd the area of a trapezo jd

(Fig. 3).

Solution :

Area = ' "*" v X 4 32 square feet.

NOTE. The correctness of this may be best understood by
assuming the triangle b cut off and placed in the position a,
and the trapezoid will be changed into a rectangle 8 feet long
and 4 feet wide.

The area of any polygon may be found by dividing it into

triangles and calculating the area of each separately, and the

sum of the areas of all the triangles is the area of the polygon.

The Area of a Circle.

The area of a circle is equal to the square of the radius

multiplied by 3.1416, which written in a formula is,

Area = 3.1416 r*.

The area of a circle is also equal to the

FIG. *. square of the diameter multiplied by 0.7854,
which may be written,

Area = 0.7854 </2

The area of a circle is also equal to its

circumference multiplied by the radius and
the product divided by 2, which may be

written,

Area = C-*^

The correctness of these formulas may be best understood

by assuming the circle to be divided into triangles (see Fig. 4), of

which the height // radius and the sum of the bases, b, of all

the triangles is equal to the circumference of the circle.
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Therefore, according to the formulas,

the area of a triangle = base X perpendicular height

the area of a circle must be = radius X circumference

2

and from this follow all the other formulas.

To Change a Circle into a Square of the Same Area.

RULE.

Multiply the diameter of the circle by the constant 0.8862

and the product is the length of one side in a square of the same
area.

EXAMPLE.
A circular water-tank 5 feet in diameter and 3 feet high is

to be replaced by a square tank of the same height and volume.
How long will each side in the new tank be?

Solution:

Side = 5 X 0.8862 = 4.431 feet long.

To Find the Side of the Largest Square which can be

Inscribed in a Circle.

RULE.

Multiply the diameter of the circle by the constant 0.7071
;

the product is the length of the side of the square.

EXAMPLE.
What is the largest square beam which can be cut from a

log 30 inches in diameter.

Solution :

30 X 0.7071 = 21.213 inches square.

NOTE. A round log of any diameter will always cut into a

square beam having sides seven-tenths the diameter of the

round log. For instance, a 10-inch log will cut 7 inches square,
a 15-inch log will cut 10.5 inches square, a 20-inch log will cut
14 inches square, etc.

To Find the Area of Any Irregular Figure.

(See Fig. 5). F|G-

Divide the figure into any
number of equal parts, as shown
by the perpendiculars 1, 2, 3, etc.

Measure the width of the figure
at the middle of each division;
add these measurements together,
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divide this sum by the number of divisions (in Fig. 5 it is
'

),

multiply this quotient by the length a b, and the product is the

area, approximately.
NOTE. Sometimes the figure is of such shape that it is

more convenient to divide some of it into squares, rectangles,
or triangles, and figure the rest as explained above.

To Find the Area of a Sector of a Circle.

The area of a sector of a circle is to the area of the whole
circle as the number of degrees in the arc of the sector is to 300

degrees.

Thus:

A = r * X 816 X * = 0.008727

r

I= 3-1416 X a X r = 01745329 x a x r

r=J 360 A _ 10.7046A/^ 3.1416 a > a

a = 180/ 57.2956 /

3714167-
"

r

A = Area of sector.

r= radius of sector.

a = number of degrees in arc.

/= length of arc in same units as A and r.

EXAMPLE.
The arc of the sector (Fig. 6) is 60 no.

and the radius is 6 feet. Find area.

360 TT r2

60 Area
) ?*

2 7T

860

Area = 60 X 6 X 6 X 3 - 1416

36~0

Area = 18.849 square feet.

If the length of the arc is known instead of the number of

degrees, multiply the length of the arc by the length of the

radius, divide product by 2, and the quotient is the area of the
sector. The correctness of this rule will be understood by the
rule for area of circles, explained under Fig. 4.
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To Find the Length of Arc of a Segment of a Circle.

The length of the arc may be calculated by the formula,*

7 8c C

1-= Length of arc, a fb \

c = Length of chord from a tof ( ( See Fig. 7).

C = Length of chord from a to b )

RULE.
Multiply the length of the chord of half the arc by

8
;
from the product subtract the length of the chord of the arc

;

divide the remainder by 3, and the quotient is the length of
the arc.

When chord and height of segment are known, the chord of
half the arc is calculated thus :

Chord of half the arc = f^/ ni
_|_ ^2

h = Height of segment (see d f, Fig. 7).

n = Half the length of chord (see a d or b d, Fig. 7).

When only the radius and the height of the segment are

known, the length of the chord of the whole arc expressed in

these terms will be : 2 X *J 2 r /t _ /fc
2

The chord of half the arc will be : r fr

Therefore the length of the arc will be :

\/2r h 2 )

I = 8 X r h

/= length of arc (afb, Fig. 7).

h = height of segment ( df, Fig. 7 ).

r radius of circle (cf, Fig. 7).

To Find the Area of a Segment of a Circle.

(See Fig. 7).

Ascertain the area of the whole
sector and from this area subtract the

area of the triangle, and the rest is the
area of the segment.

EXAMPLE.
Find the the area of the segment

when the radius is 9 inches and the
arc 60.

* This formula is called
"
Huyghens's approximate formula for circular arcs,"

but it is so close that it may for any practical purpose be considered absolutely cor-
rect for arcs having small center angles; for center angles as large as 120 , the
result is only one quarter of one per cent, too small, and even for half a circle the
result is scarcely more than one per cent, small as compared to results calculated by
taking TT as 3.1416.

FIG. 7
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Solution :

Area .of segment = A *JL 0.433 r 2

360

A = 60X9X9X3.1416_ g Q
360

A 42.4116 35.073

A = 7.3386 square inches.

In this example the arc was 60, consequently the triangle
is equilateral ;

therefore its area is found by the formula
0.433 r2. ( See area of equilateral triangles, page 194).

NOTE. When the segment is greater than a semicircle,
calculate by preceding rules and formulas the area of the lesser

portion of the circle
;
subtract it from the area of the whole

circle. The remainder is the area of the segment.

To Find the Radius Corresponding to the Arc, when the

Chord and the Height of the Segment Are Given.

RULE.
Add the square of the height to the square of half the

chord
;
divide this sum by twice the height, and the quotient is

the radius. In a formula this may be written :

I radius c b or cf ( See Fig. 7).

n = half the chord = db
h height df
The above rule and formula may be proved by rules for

right-angled triangles; thus, c b or r equals hypothenuse, and ;/,

or half the chord, equals perpendicular, and c d, which is equal
tor h, is the base. From the rule that the square of the

hypothenuse is equal to the sum of the square of the base and
the square of the perpendicular, we have :

2 rh =

The perpendicular height of the triangle is always equal to

the radius minus the height of the segment. ( See triangle a b c,

and height, df, Fig. 7).
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TABLE No. 23 Areas of Segments of a Circle.

The diameter of a circle = 1, and it is divided into 100

equal parts.

h

D
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To Calculate the Number of Gallons of Oil in a Tank.

EXAMPLE.
A gasoline tank car is standing on a horizontal track, and

by putting a stick through its bung-hole on top it is ascertained
that the gasoline stands 15 inches high in the tank. The
diameter of the tank is GO inches and the length is 25 feet. How
many gallons of gasoline are there in the tank?

Solution :

15 divided by 60 is 0.25

In Table No. 23, the area corresponding to 0.25 is 0.153546.
Area of cross section of the gasoline is 60 X 60 X 0.153546 =
552.7656 square inches.

Twenty-five feet is 300 inches
;

the tank contains 300 X
552.7656 165829.68 cubic inches. One gallon is 231 cubic
inches. The tank contains 165829.68 divided by 231 = 717.88,
or 718 gallons.

'

NOTE. If the tank is more than half full, figure first the
cubical contents of the whole tank if full, then figure the cubical
contents of the empty space and subtract the last quantity from
the first, and the difference is the cubical contents of the fluid

in the tank.

Circular Lune.

The circular lune is a crescent-shaped
figure bounded by two arcs, as a b c and
adc. (Fig. 8).

Its area is obtained by first finding
the area of the segment a dc (having c%

for center of the circle), then the area
of the segment a b c (having c\ for center
of circle), then by subtracting the area of
the last segment from the area of the first ;

the difference is the area of the lune.

A practical example of a circular lune is the area of the

opening in a straight-way valve when it is partly shut.

FIG. 9.

Circular Zone.

Circular Zone.

The shaded part, a b c d, of the figure
is called a circular zone. Its area is ob-
tained by first finding the area of the
circle and then subtracting the area of the
two segments ;

the difference is the area of
the zone. When the zone is narrow in

proportion to the diameter, its area is ob-
tained very nearly by following the rule :

Add line a b or c d to the diameter of the

circle, divide the sum by 2 and multiply
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the quotient by the width of the zone, and the product is the

area.

To Compute the Volume of a Segment of a Sphere.

RULE. FIG. 10.

Square half the length of its base, and
|

8- -I ,

multiply by 3. To this product add square ^^ ^ \-jf-

of the height. Multiply the sum by the "\

height and by 0.5230. /\^ /\1
EXAMPLE.

(

Find volume of the spherical segment \
shown in Fig. 10; base line is 8" and \
height is 2".

Solution : Segment of a Sphere.

Volume = v = (3 X 42 -f 22
) X 2 X 0.5236

v = (3 X 16 + 4) X 2 X 0.5236

v = 52 X 2 X 0.5236

v = 54.4544 cubic inches.

To Find the Volume of a Spherical Segment, when the

Height of the Segment and the Diameter of

the Sphere are Known.

RULE.

Multiply the diameter of sphere by 3, and from this product
subtract twice the height of segment. Multiply the remainder

by the square of the height and the product by 0.5236.

EXAMPLE.
The segment (Fig. 10) is cut from a sphere 10 inches in

diameter and it is 2 inches high. Figure it by this last rule.

Solution :

Volume = v = (10 X 3 2 X 2) X 22 X 0.5236

v = (30 4) X 4 X 0.5236

v = 26 X 4 X 0.5236

i/ = 54.4544 square inches.

To Find the Surface of a Cylinder.

RULE.

Multiply the circumference by the length, and to this pro-
duct add the area of the two ends.

A cylinder has the largest volume with the smallest surface

when length and diameter are equal to each other.
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To Find the Volume of a Cylinder.

RULE.

Multiply area of end by length of cylinder, and the product
is the volume of the cylinder.

EXAMPLE.
What is the volume of a cylinder 4 inches in diameter and 9

inches long?
Solution :

Area of end r2 TT

Volume = r2 TT / 2 X 2 X 3.1416 X 9 = 113.0976 cubic inches.

To Find the Solid Contents of a Hollow Cylinder.
RULE.
Find area of end according to outside diameter

;
also find

area according to inside diameter
;
subtract the last area from

the first and multiply the difference by the length of the

cylinder.

Formula :

Area = (/?
2 r2

)
TT /

R = Outside radius.

r Inside radius.

/= Length of cylinder.

EXAMPLE.
Find the solid contents of a hollow cylinder of 6 feet outside

diameter, 4 feet inside diameter and 5 feet long.
Solution :

Solid contents = x (3
2 22

) X 3.1416 X 5

x (9 4) X 3.1416 X 5

x- 5 X 3.1416 X 5

x = 78.54 cubic feet.

FIG. 10.
^--~

To Find the Area of the Curved
Surface of a Cone.

(See Fig. 10).

RULE.

Multiply the circumference
of the base by the slant height
and divide the product by 2

;
the

quotient is the area of the curved
surface. If the total surface is

wanted, the area of the base is

added to the curved area.Cone,
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If the perpendicular height is known, the length of the slant

side or the slant height is found by adding the square of the per-

pendicular height to the square of the radius and extracting the

square root of the sum.

Formula :

Curved area = x =
r = Radius of base.

*/= Diameter of base.

h = Perpendicular height.

To Find the Volume of a Cone.

RULE.

Multiply the area of the base by the perpendicular height,
and divide the product by 3.

By formula :

Volume = r*" h

To Find the Area of the Curved Surface of a Frustum
of a Cone.

(See Fig. 11).

RULE.
Add circumference of small end to

circumference of large end, multi-

ply this sum by the slant height and
divide the product by 2.

Formula :

Curved area = (21?ir + 2r *)

which reduces to

Curved area = (^? -f- r)
* S

If the perpendicular height instead of
the slant height is known, we have :

Curved area = (R -}- r) K

R = Large radius.

r = Small radius.

Frustum of a Cone.

_ r^ _j_ j

h = Perpendicular height,

^ = Slant height,
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To Find the Volume of a Frustum of a Cone.

RULE.

Square the largest radius
; square the smallest radius.

Multiply largest radius by smallest radius
;
add these three pro-

ducts and multiply their sum by 3.1416
; multiply this last

product by one-third of the perpendicular height.

Formula :

Volume = (R* -f r 2
-f- Rr) K _A_

3

EXAMPLE.
Find the volume of a frustum of a cone. The largest

diameter is 6 feet, the smallest diameter is 4 feet, and perpen-
dicular height is 12 feet.

Solution:

Volume = x (3
2 + 22 + 3 X 2) X 3.1416 X

3

x (9 -f 4 -f- 6) X 3.1416 X 4

x = 19 X 3.1416 X 4

x 238.7616 cubic feet.

NOTE. This rule will also apply for finding the solid con-
tents of wood in a log.

12.

Pyramid

To Find the Area of the Slanted

Surface of a Pyramid.

(See Fig. 12).

RULE.

Multiply the length of the perim-
eter of the base by the slant height of
the side (not the slant height of the

edge). Divide the product by 2, and
the quotient is the area.

To Find the Total Area of the Surface of a Pyramid.

RULE.
Find area of the slanted surface as explained above, and to

this add the area of a polygon equal to the base of the pyramid.

To Find the Volume of a Pyramid.
RULE.

Multiply the area^ of the base by one-third of the perpen-
dicular height
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frlG. 13,

Frustum Of a Pyramid

To Find the Area of the Slanted

Surface of a Frustum of

a Pyramid.

RULE.
Add perimeter of the small end

to the perimeter of the large end.

Multiply this sum by the slant height
of the side (not slant height of edge).
Divide the product by 2.

To Find the Total Area of the Surface of a Frustum of a

Pyramid.
RULE.
Find the area of the slanted surface as explained above,

and to this area add the area of the two ends. Their areas are
obtained in the same way as areas of polygons. (See page 196).

To Compute the Volume of a Frustum of a Pyramid.

RULE.

Multiply the area of the small end by the area of the large

end, extract the square root of the product, and to this add the

area of the small end and the area of the large end
; multiply the

sum by one-third of the perpendicular height.

Formula :

Volume =A (a + A -f \f~A~a)
3

EXAMPLE.
Find volume of a frustum of a pyramid when the area of

the small end is 8 square feet, the area of the large end is 18

square feet and the perpendicular height is 30 feet.

Of\

Volume = v= - 18 _j_ x/18 X 8 )

v = WX (
8 + 18 + l44~ )

v = 10 X ( 8 -f- 18 -f 12 )

v = 10 X 38

v = 380 cubic feet.

To Find the Surface of a Sphere.
RULE.

Multiply the circumference by the diameter.

NOTE. The surface of a sphere is equal to the curved sur-

face of a cylinder having diameter and length equal to the

diameter of the sphere.
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To Find the Volume of a Sphere.

RULE.

Multiply the cube of the diameter by 3.1416, divide the

product by 6 and the quotient is the volume of the sphere. Or,
another rule is : Multiply the cube of the diameter by 0.5236 and
the product is the volume of the sphere.

EXAMPLE.
Find the volume of a sphere 15'' diameter.

Solution :

0.5236 X 15 X 15 X 15 = 1767.15 cubic inches.

A sphere twice as large in diameter as another has twice the

circumference, four times the surface, eight times the volume,
and if of the same material will weigh eight times as much.

To Compute the Diameter of a Sphere when the Volume
is Known.

RULE.
Divide the volume by 0.5236 and the cube root of the

quotient is the diameter of the sphere.

To Compute the Circumference of an Ellipse.

RULE.
Add the square of the largest diameter to the square of the

smallest diameter and divide the sum by 2; multiply the square
root of the quotient by 3.1416.

*

EXAMPLE.
Find the circumference of an ellipse. The largest diameter

is 24 inches and the smallest diameter is 18 mches.

Solution :

Circumference = c= 3.1416

c = 3.1416^450
c 3.1416 X 21.2132

c 66.643 inches.

To Compute the Area of an Ellipse.

RULE.

Multiply the smallest diameter by the largest diameter, and
this product by 0.7854.

* This Rule gives only approximate results. There is no known rule giving
exact results.
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TABLE No. 24. Giving Circumferences and Areas of

Circles.

Diameter.
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Diameter.
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Diameter
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Diameter



Strength of flfoaterfals.

The strength of materials may be divided into Tensile,

Crushing, Transverse, Torsional, or Shearing, and besides

this, the elasticity of the material or its resistance against
deflection must also be taken into consideration in figuring for

strength.

Tensile Strength.

From experiments it is known that it it will take from
40,000 to 70,000 pounds to tear off a bar of wrought iron one
inch square. Therefore we usually say that the tensile strength
of wrought iron is from 40,000 to 70,000 pounds, according to

quality. The average is 50,000 to 55,000 pounds. The tensile

strength of any body is in proportion to its cross sectional area
;

thus, if a bar of iron of one square inch area will pull asunder
under a load of 40,000 pounds, it will take 80,000 pounds to pull
asunder another bar of the same kind of iron but of two square
inches area. The tensile strength is independent of the length
of the bar, if it is not so long that its own weight must be
taken into consideration. Table No. 24 gives the load which
will pull asunder one square inch of the most common materials.

No part of any machine should be strained to that limit. A
high factor of safety must be used, sometimes from 4 to 30 or
even more, which will depend upon the kind of stress the mem-
ber is exposed to, as dead load, variable load, shocks, etc. Dif-
ferent factors of safety are also used for different kinds of
material. (See page 274).

flodulus of Elasticity.

The modulus of elasticity for any kind of material is usually
defined as the amount of force which would be required to
stretch a straight bar of one square inch area to double its

length or compress it to nothing, if this were possible. But a
more comprehensive definition is to say that the modulus of

elasticity is the reciprocal of the fractional part of the length
which one unit of force will, within elastic limit, stretch or com-
press one unit of area. For instance, if the modulus of elasticity
for a certain kind of wrought iron is 25,000,000, it means that it

would take 25,000,000 pounds of pulling force to stretch a bar of

(213)
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one square inch area to double its length, if this could possibly
be done

;
but it means also which is exactly equivalent

that one pound of pulling force will stretch a bar of one square
inch area one 25-millionth part of its length, or one pound
compressive force will shorten the same bar one 25-millionth

part of its length, and that two pounds of force will stretch or

compress twice as much, three pounds thrice as much, etc.

Strength of Wrought Iron.

From experiments it is known that wrought iron can not

very well be stretched or compressed more than one-thousandth

part of its length without destroying its elasticity ;
therefore if

a bar of wrought iron has 25,000,000 as its modulus of elas-

ticity, one pound will stretch it ^5 o oV OOIF of its length and it

would take 25,000 pounds to stretch it ysVo of itslength. Thus,
25,000 pounds would then be said to be its strength at the limit
of elasticity for that kind of iron

;
80 to 100 per cent, more will

usually be the ultimate breaking load.

The pull or load which such a bar can sustain with safety
will depend a great deal on circumstances, but it must never
exceed 25,000 pounds per square inch of area. It must not
even approach this limit if the structure is of any importance or
if the load is to be sustained for any lengtty

of time, or if it is,

besides the load, also exposed to shocks or jar.

Strength of Cast Iron.

Cast iron of good quality has a modulus of elasticity of

15,000,000 pounds, but if strained so it will stretch y^o o of its

length its elasticity is usually destroyed. For instance, a bar of

cast iron of one square incn area is exposed to tensile strain,
its modulus of elasticity being 15,000,000 pounds and its elas-

ticity being destroyed if it stretches ysV o of its length, what
then would be its strength at limit of elasticity? One pound
will stretch it ^-.^^^ of its length, therefore it must take

10,000 pounds to stretch it ysW of its length; thus we would

say that 10,000 pounds is its strength at limit of elasticity. It

is not always that cast iron is of as good quality as that; very
frequently its elasticity is destroyed if it is exposed to a tensile

stress of 6,000 pounds per square inch of area; thus the strength
of cast iron at its limit of elasticity is often found to be only
6,000 pounds instead of 10,000 pounds. Besides, it is very
often found that a pulling force of 10,000 pounds will stretcn

a bar of one square inch area one twelve-hundredth part of its

length, and this, of course, gives the modulus of elasticity

12,000,000 pounds. Frequently cast iron is of such quality that

it cannot be stretched over ^^^ of its length before its elas-

ticity is destroyed. Cast iron is very variable in quality, and
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especially so with regard to its tensile strength. Generally
speaking, we may say that for cast iron the

Modulus of elasticity is 12,000.000 to 15,000,000 pounds.
Tensile strength at limit of elasticity, 5,000 to 10,000 pounds.
Ultimate tensile strength, 10,000 to 20,000 pounds.

Elongation Under Tension.

The total stretch or elongation of any specimen when
exposed to tensile stress within the elastic limit is directly pro-

portional to the length of the specimen, but it is inversely

proportional to the modulus of elasticity and the cross sectional

area of the specimen. The following formulas may, therefore,
be used in such calculations :

F _ P X L p _ E X s X A
s'xTA L
P X L A PX L
~y^4~ ~7x~E

_ E X sX A

E = Modulus of elasticity in pounds per square inch.

P Load or force in pounds acting to elongate the specimen.
s Total stretch of specimen in inches in the length /,.

L Original length of specimen in inches before force is

applied.
A Cross-sectional area of specimen in square inches.

EXAMPLE.
From experiments it is known that the modulus of elasticity

for a certain kind of wrought iron is 28,000,000; what will then

be the total stretch or elongation in a round boiler stay, \%
inches in diameter and 6 feet long, when exposed to a stress of

5000 pounds?
Solution :

1 14 inches diameter = 1.227 inches area (see table, page 209)
C feet long = 72 inches.

P X L

s =
X A
5000 X 72

28000000 X 1227
s = 0.0105 inches = total stretch in the stay.

NOTE. As already stated, wrought iron can not be
stretched as much as one-thousandth part of its original length
without danger of destroying its elasticity; thus, for this stay,
which is 72 inches, the limit of elasticity will be at a stretch of

0.072 inches
;

therefore the stretch produced by a load of 5,000

pounds, which is calculated to be 0.0105 inches, is well within

the safe limit.
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TABLE No. 25. Modulus of Elasticity and Ultimate
Tensile Strength of Various Materials.

MATERIALS.
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EXAMPLE.
A piece of iron l/2 inch square is tested in a testing machine

and breaks at a total stress of 14,210 pounds. What is the
ultimate tensile strength per square inch ?

Solution :

A bar y2 inch square has a cross-sectional area of %" X % n

is X square inch.

S= !i?L = 56,840 pounds per square inch.

EXAMPLE.
What will be the breaking load for a wrought iron bar

}i" X y& " when exposed to tensile stress, the ultimate tensile

strength of the iron being 55,000 pounds per square inch, as

given in Table No. 25, page 210 ?

Solution :

A bar y%" X y%" is B
9
r square inches in area.

P fa x 55,000 = 7734 pounds, which will break the bar.

In order to obtain the safe working stress introduce a suit-

able factor of safety, from 5 to 10, according to circumstances,
and calculate by the following formulas :

P Xf=A X S \~P~X~f
. v c Side of a square bar \ __ *.

P = &

A _ P X f Diameter of a round bar = -y
f

s ^0.7854 6*

P Load in pounds.

/=. Factor of safety.

EXAMPLE.
A load of 24,000 pounds is suspended on a round wrought

iron bar. The ultimate tensile strength of the iron is 55,000

pounds per square inch. What should be the diameter of the

bar to sustain the load, with 10 as the factor of safety ?

Solution:

A = 24000X1 = 4.363 square inches.
55000

In Table No. 24, we find the nearest larger diameter to be

2}i inches.

The diameter may also be calculated directly by the fol-

lowing formula :
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-J/'X/
5" X 0.7854

^24000 X 10

55000 X 0.7854

D = 2.358, or nearly 2^ inches diameter.

To Find the Diameter of a Bolt to Resist a Given Load.

RULE.

Multiply pull in pounds by the factor of safety. Multiply
the ultimate tensile strength of the material by 0.7854

;
divide

this first product by the last and extract the square root from
the quotient which will then be diameter of bolt at the bottom
of the thread.

P =
T X 0.7854

X S X 0.7854

D'2 X S X 0.7854

D = Diameter of bolt or screw in the bottom of the thread.

P = Load or pull in pounds.

y= Factor of safety.

S = Ultimate tensile strength per square inch.

NOTE. Bolts are frequently exposed to a considerable
amount of initial stress, due to the tightening of nuts, which
must always be allowed for when deciding upon the load to be
considered when calculating their diameter.

EXAMPLE.
Find diameter of a bolt to sustain a load of 4,450 pounds,

taking 10 as factor of safety and ultimate tensile strength of the
iron to be 50,000 pounds per square inch.

Solution :

"4450 X_ /"4450
" ^ 50000 X 0.7854

D 1.064" in the bottom of thread
; thus, a 1%" screw,

standard thread, which is l^s inches in diameter at the bottom
of thread, will be the bolt to use.
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EXAMPLE 2.

What size of bolt is required to sustain the same load as is

mentioned in the previous example, if only 5 is wanted as a
factor of safety?

Solution :

D - J 4450 X 5
* 50000 X 0.7854

D ~ \A).5G7

D 0.75 inch diameter in bottom of thread.

Thus a J^-inch standard screw is too small, as that is only
fij" in bottom of thread, but a 1-inch standard screw is suffi-

cient, being ||-" in bottom of thread.

To Find the Thickness of a Cylinder to Resist a Given
Pressure.

When the walls of cylinders are thin in proportion to their

diameters use the formula :

__ S X /

x x/
t
_ P X R X /

P X/
P = Pressure per square inch.

R = Radius of cylinder in inches.

/ = Thickness of cylinder wall in inches.

f Factor of safety.

S = Ultimate tensile strength of material.

When cylinder walls are thick in proportion to the diameter,
such as hydraulic cylinders, their thickness is usually figured
by the formula :

_ P X R
s

-cf>-f
/ Thickness of cylinder wall in inches.

P = Pressure in pounds per square inch.

7? = Radius of cylinder.

S Ultimate tensile strength.

f= Factor of safety.

EXAMPLE.

^
Find necessary thickness of a hydraulic cylinder of 10-inch

inside diameter, made from cast-iron, to stand a pressure of 1000
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pounds per square inch, with 4 as factor of safety. The ulti-

mate tensile strength of the iron is, by experiments, found to be
20,000 pounds per square inch. ( See Table No. 25).

Solution :

10-inch diameter = 5-inch radius.

f_ 1000 X 5
"

1000 X 5

5000 1000

5000

4000

IX inch.

Strength of Flat Cylinder Heads.

The American Machinist, in Question No, 147, March 22,

1894, gives the following formula for flat circular heads firmly
fixed to the flange of the cylinder :

/ _ /2 X rz X P
' 3 X Si

t == Thickness of cylinder head in inches,

r = Radius of cylinder head in inches.

P == Pressure in pounds per square inch.

Si= Allowable working stress in the material.

The allowable working stress may be taken as to A of
the ultimate tensile strength and may, for cast iron, be from
1500 to 2500 and for wrought iron from 4000 to 6000. The
above formula was used to calculate the thickness of a cast iron

cylinder head of 30 inches diameter, to resist a pressure of 100

pounds per square inch. This formula is in that case con-
sidered to give sufficient thickness, so that no ribs or braces are
needed.

The above formula may also be used for wrought iron, by
selecting the proper value for Si. Assuming the tensile strength
of wrought iron to be 44,000 pounds, and allowing a factor of

safety of 8, the value of Si for wrought iron will be 5500.

Strength of Dished Cylinder Heads.

The American Machinist, in Question 183, April 12, 1894,
ves the following formula for dished circular heads, firmly"

to the flanges of the cylinder :

*
<TX Si xw~
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/ = Thickness of cylinder head in inches.

R = Radius of cylinder head in inches.

P Pressure in pounds per square inch.

d Depth in inches of dishing of the head at its center.

Si = Allowable working stress in the material, which may
be the same as given above.

This formula was used to calculate the thickness of a cast
iron head 44 inches in diameter, dished 7 inches, steam pressure
75 pounds per square inch.

NOTE. In these examples the radius of the bolt circle

should be considered as the radius of the head when calculat-

ing the thickness. P^or diameter of bolts and spacing of bolts
see examples under Steam Engine.

The above formula may also be used for dished cylinder
heads of wrought iron or steel, by allowing the proper value for

5*1. For soft steel Si may be 9000 to 12,000 pounds, and for

wrought iron 5000 to 8000 pounds.
CAUTION. Cast iron is not a desirable material to use for

large unribbed cylinder heads; either flat or dished wrought
iron or steel is far superior.

Strength of a Hollow Sphere Exposed to Internal

Pressure.
d* TT

The pressure acts on a surface equal to -7 and it is re-
/") I .V

sisted by a metal area equal to
^

X if X /.

D External diameter.

</ Internal diameter.

/ = Thickness of metal.

When the difference between inside and outside diameter
is small it need not be considered in practice, and the formula
will be :

P X - = dX K X t X Si

which reduces to

p _ 4 X / X Si
d

P X d
'=-sT

Si Allowable tensile stress in the material.

NOTE. This formula only allows for tensile strength; if it

is used for calculating the thickness of the body of a globe
valve or anything similar a liberal amount of metal must be,

added, in order to obtain good results when casting.
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Strength of Chains.

The following table gives approximately the weight of

wrought iron chains, in pounds per foot and kilograms per
meter; and also their strength, with six as factor of safety.
Chains ought to be tested with twice the load given in the
table. Never lose sight of the fact that a chain in use will wear
and consequently become reduced in strength; also, that a
chain is no stronger than its weakest link.

Diameter
of Links
in Inches.
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CRUSHING STRENGTH.

Short posts having square ends well fitted may be
considered to give away under pure crushing stress. Their

strength is in proportion to their area; therefore, when the

length of a post does not exceed four to five times its diameter
or smallest side, its strength or size may be calculated by the

following formulas :

f
Side.of a square post = \ ~^-

j- Diameter of a round post = -v/-*

P = Safe load in pounds to be supported by the post.

A Area of post in square inches.

S = Ultimate crushing strength of the material in pounds
per square inch, given in Table No. 26.

f = Factor of safety.

TABLE No. 26. Modulus of Elasticity and Ultimate

Crushing Strength of Various Materials.

MATERIALS.
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FIG. 1

When a post or column is long compared to its diameter,
its strength will decrease as the length is increased. Anyone
will, from every-day observation, know that a short post will

support with perfect safety a load which will break a long one.

Short columns break under crushing, but long ones break
under comparatively light load by the combined effect due to

both crushing and flexure. It is, therefore, evident that the

strength of long columns follows laws very different from those

which apply to short ones.

The form of the ends has also

great influence on the strength of a
column when under crushing and
deflective stress. ( See Fig. 1).

When both ends are round the
column has least strength; if one
end is round and one end flat it is

stronger, but if both ends are flat

and square with the center-line, it is

strongest. The proportions are ap-

proximately as 1, 2 and 3.

Eccentric loading on columns will also have a very destruct-
ive effect upon their strength.

Theoretical calculations regarding the strength of columns
and posts are difficult, and such empirical formulas as the
well-known Hodgkingson's or Gordon's formulas are usually re-

sorted to.

The Hodgkingson formulas for long columns having square
ends well fitted are :

P= 99,000 X for solid cast iron columns.

P= 99,000 X D ~,f for hollow cast iron columns.
J~*

P= 285,000 X D
\2

for solid wrought iron columns.

P = Breaking load in pounds.
D= External diameter in inches.

d= Internal diameter in inches.

L = Length in feet.

When the breaking load as calculated by these formulas
exceeds one quarter of the crushing load of a short column of
the same metal area, the result must be corrected by the for-

mula;
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PX C

225

- P 4- % C X A
P\ = Corrected breaking load of column.
C= Crushing strength of material (see Table No. 26).
A = Metal area of column in square inches.

IMPORTANT. Applying the last formula, the result, /
must always be smaller than /'.

Table No. 27 was calculated by the following formulas :

(
36000

Column I. Safe Load = 0.1 X <
~

~fz
~

x

(1 -f- (=T2
- X 0.00025)

36000 X 0.07031

+(~ X
0.00025)

Column II. Safe Load = 0.1 X

36000

Column III. Safe Load = 0.1 X

Column IV. Safe Load = 0.1 X

1 + / X 0.0004
v/3*

36000 X 0.07031

0.0004)

80000

Column V. Safe Load = 0.1 X
j

1 -f t X 0.0025 )

80000 X 0.07031

Column VI. Safe Load = 0.1 X
) 1 + ( X 0.0025 ^

( 80000
Column VII. Safe Load = 0.1 X

Column VIII. Safe Load 0.1 X

Column IX. Safe Load = 0.1 X

Column X. Safe Load = 0.1 X

1 +
(

_ x 0.0035
)

80000 X 0.07031

1 +(^X 0.0035)

5000

I
1 + (^X 0.004)

5000 X 0.07031

{

-,
,

] h
Z2
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TABLE No. 27. Safe Load on Pillars Having Square
Ends Well Fitted.

(10 is used as Factor of Safety).

U
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smallest side. Find the quotient in the column headed -p-
and find the safe load per square unit of area in the cor-

responding column of the table. Multiply this by the metal
area of the pillar, and the product is the safe load, with 10 as

factor of safety, on a pillar well fitted and having square ends.

For any other kind of ends and any other unit of safety, allow-

ance must be made as explained on previous pages.
EXAMPLE 1.

Find the safe load in pounds, according to Table No. 27,
for a round, hollow, cast-iron pillar five feet long, five inches
outside and four inches inside diameter, having square ends
well fitted and being evenly loaded.

Solution :

Five feet equals 60 inches, and 00 divided by 5 gives 12.

In the first column, under the heading
"
Length divided by

diameter, or smallest side,
"

is 12, and in that line, in the column
headed **

pounds per square inch "
for hollow cast-iron pillars,

is 5882. The metal area of this pillar is obtained by subtract-

ing the area of a circle four inches in diameter from the area of
a circle five inches in diameter (see area of circles, page 196;

Table, page 209), which is 19.68 12.57 = 7.06, or practically
seven square inches, and seven times 5882 equals 41,174 pounds.

EXAMPLE 2.

Find the safe load in kilograms, according to Table No. 27,
for a round spruce post 2 meters long and 20 centimeters in

diameter.

Solution :

Two meters = 200 centimeters and 2^s 10. The corre-

sponding constant in the table is 25 kilograms. The area of a
circle 20 centimeters in diameter is 814.2 square centimeters,
and 25 times 314.2 = 7855 kilograms, as safe load.

EXAMPLE 3.

What would be the safe load on the same post if it had
been 20 centimeters square, instead of round ?

Solution :

The length is the same; therefore the length divided by the
side gives 10, as before, and the corresponding constant is 25

kilograms, but as the cross-sectional area in square centimeters
is 20 X 20 = 400, the corresponding load will be 400 X 25 =
10,000 kilograms as the safe load.

NOTE. It will be noticed that in figuring the strength of

pillars according to this table, the strength of a square pillar
will always be to the strength of a round pillar as 1 to 0.7854,
while theoretically the strength of a square pillar compared to

that of a round pillar will vary with the length, the extremes

being 1 to 0.589 for extremely long pillars and 1 to 0.7854 for
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very short ones. This discrepancy is frequently unimportant in

practical work, because pillars are usually comparatively short,
and also because a high factor of safety is always used, but it

is well to remember and provide for this fact in cases of very
long pillars.

Hollow Cast=Iron Pillars.

By referring to the formulas and considering the laws

governing the strength of pillars, it is seen that the strength
of pillars increases very fast by increasing their diameter or
their sides. In cast-iron pillars this is taken advantage of by
making them large in diameter and coring out the stock on the
inside.

The thickness of the metal may be about TV of the diameter
of the pillar. In small pillars it must be thicker in order to

obtain good results when casting. A flange is cast on each end
to form enough bearing surface, and the pillar is squared off

very carefully so that both ends are square with the center-line.

This is an important point, as the strength is enormously
destroyed by squaring the ends carelessly and thereby bringing
the load to act corner-ways on the pillar.

Table No. 28 was calculated by the formula :

80000 X metal area >>
( J

Safe Load = 0.1 X
j 1 + (^X 0.0025)

and the result obtained reduced to long tons (2240 pounds).
Ten is thus used as a factor of safety ;

both ends of the pillar
are supposed to be square and evenly loaded. For other shapes
of ends, mode of loading, or other factors of safety, propor-
tional allowance must be made. For instance, if 15 is required
as factor of safety, allow only two-thirds of the load given in

the table.

If the pillar has only one square end and one round end,
allow only two-thirds as much load. If it has both ends

rounded, or, which is the same, if the ends have only a very
imperfect bearing, allow only one-third as much load.

Weight of Cast=Iron Pillars.

The weight of a cast-iron pillar may be calculated by the
formula :

W (D* d'2} X L X 2.45

W = Weight of pillar in pounds.
D = Outside diameter in inches.

d Inside diameter in inches.

L = Length of pillar in feet.

The weight given in Table No. 28 was calculated by this

formula, and the length taken as one foot.
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TABLE No. 28. Safe Load on Round Cast-Iron Pillars.

11
-S (J
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TABLE No. 28. (Continued).

11
2.s
c.S
gj l-i
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Wrought Iron Pillars.

In important work, cast-iron pillars are rapidly going out of
use. Wrought iron pillars are now made which compare
favorably in price and are far more reliable than those of cast
iron. For full information regarding weight and strength of

wrought iron pillars and Z bar columns, see manufacturers'

catalogues.

Wooden Posts.

Table No. 29 was calculated by the formula :

, 5000 X Area

Safe load = 0.1 X <

nj x /\rea -\

-j^-X
0.004

) \

and the result divided by 2240.

L = Length of post in inches.

D = Side of post in inches.

TABLE No. 29. Safe Load in Tons on Square Pine or

Spruce Posts Having Square Ends Well Fitted.

(10 as Factor of Safety).

!J
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The preceding Table gives the safe load in long tons corre-

sponding to a square post of the dimensions of sides given at

top of the columns, and lengths given in the first column. For
round posts the load should be 0.75 to 0.6 of the given load de-

pending upon the length of post.

EXAMPLE.
What size of post is required, with 10 as factor of safety,

to support a load of five tons, when the length of the post is 16
feet?

Solution :

In the column headed "Length of post in feet" find 10,
and in line with 16 find the numbers nearest to five tons, which
are 4.34 and 6.43. Thus, a post 16 feet long and 8 inches square
will support 4.34 tons, and a post 16 feet long and 9 inches

square will support 6.43 tons. It is, therefore, best to select a

post 9 inches square.

To Calculate the Strength of Rectangular Posts from
the Table.

Find, in the Table, the strength of the post according to

its smallest side, and increase the tabular value in proportion
to the largest side of the post.

EXAMPLE.
What is the strength, with 10 as factor of safety, of a spruce

post 10 feet long, 6 inches thick, 8}4 inches wide, with square
ends well fitted, calculated by Table No. 29.

Solution :

In the Table we find the strength of a post 10 feet long
and 6 inches square to be 3.09 tons. Therefore, when the pillar
is 6 inches thick and 8% inches wide its corresponding strength

will be 3.09 X ^ = 4.38 tons.

It is a waste of material to use a post of rectangular cross-

section. For example, this post is 6 X 8% inches = 51 square
inches of cross-section and will support 4.38 tons, but a post of
the same length and 7X7 inches = 49 square inches of cross-

section, will support 5.03 tons. ( See Table No. 29).

To Obtain the Weight of Pillars in Kilograms per Meter
when the Weight in Pounds per Foot is Known.

Multiply the weight in pounds per foot by the constant

1.4882, and the product is the weight in kilograms per meter.
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TRANSVERSE STRENGTH.

A beam placed in a horizontal position, fastened at one
end and loaded at the other, is exposed to transverse stress,
and will usually bend more or less, as shown (exaggerated) in

Fig. 1, before it will break. The line
F|G- * a b is called the neutral line, and all

fibres above the neutral line are exposed
to tensile stress, and all fibers below
are exposed to crushing stress, but the
neutral fiber is neither stretched nor

compressed. A line drawn in a hori-

zontal direction, at right angles to, and
through the neutral line, is called the

neutral axis with reference to this particular place of the section
of the beam. The neutral axis is considered to pass through
the center of gravity of the section, which, for beams of round,
square or rectangular section, is always in the geometrical cen-
ter. Therefore, all beams of such section will have an equal
amount of material on the upper and under side of the neutral

axis, but it is not always desirable for all materials or for all

kinds of load to have an equal amount of material on both the
side exposed to compression and that exposed to tension. For
instance, cast-iron beams are usually made in T formed sec-

tion and should always be laid so that the largest web is

exposed
^

to tensile stress, because cast-iron offers much
more resistance to compression than it does to tension. Cast-
iron beams of such section ought, therefore, to be laid in this

position (T), if fastened at one end and loaded at the other,
but should be laid in this position ( -X. ), if they are supported
under both ends and loaded between the supports. If

this is taken into consideration in placing a cast-iron beam, its

ultimate transverse breaking strength is greatly increased, but
under a moderate load the deflection will be practically equal
in either position, because as long as the load is small, well
within the elastic limit, cast-iron will stretch under tensile stress

as much as it will compress under an equal amount of crushing
stress; therefore, the modulus of elasticity for tension and
compression of cast-iron is considered to be equal, but under
increased crushing load the compression becomes less in pro-

portion to the load until the point is reached when the cast-iron

can not compress more, and the casting will break. The
ultimate crushing strength of cast-iron is five to six times as

much as its ultimate tensile strength.

A beam supported under both ends and loaded in the

middle will carry four times as great a load as another beam of

the same size and material fixed at one end and loaded at the
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251bs. FIG. 2.

100 Ibs.

ft. J. 2 feet_._

FIG. 3. 50 Ibs.

other. This may be understood by . l foot.

referring to Fig. 2, as when the beam ,

is one foot long and loaded with 4~
100 pounds in the middle, each half /A
of the beam supports only 50 pounds,
and this 50 pounds acts only upon an
arm y2 foot long, consequently it

exerts no more force toward break-

ing this beam than the 25 pounds
would upon the end of the other
beam one foot long.

A beam twice as wide as another and of the same length,

thickness, and material, will carry twice the load, because the

wide beam could, of course, be split into two equal beams
;

consequently it must, as a whole
beam, have twice the strength of
another one of the same material
but of only half the width.

A beam twice as long as another
will break under half the load. This

/
is seen by referring to Fig. 3, be- looibs.
cause 50 pounds on an arm two feet

long will balance 100 pounds on an arm one foot long.

A beam twice as thick as another, of the same material,

length and width, will carry four times the load. ( See Fig. 4).

Suppose the weight a is act-

ing on the arm b, tending to swing
it around the center c, and this

action being counteracted by the

weights g and h, also by the

arrows e and /. If the weight h
is taking hold twice as far from
the center as the weighty it will

offer twice the resistance against
swinging the beam that ^will;
and exactly the same with the

arrowsyand e. Consider the line c b as the neutral fiber, the
arrows e and f as representing the fibers resisting crushing,
and the weights^and h as representing the fibers resisting tensile

stress. It will be understood that if the fibers are twice as far

above or below the neutral fiber they are in a position to offer

twice the resistance to the breaking action of the load
;
but a

beam of twice the thickness has not only its average fiber twice
as far from the neutral point, but it has also twice the area or
twice as many fibers, consequently the result must be that it

can resist four times the load,

FIG. 4.

O.
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For instance : The beam a in Fig-
ure 5 is four times as strong as the

beam b, if placed on the edge, as shown
in the figure, and loaded on the top ;

but a would be only twice as strong as

b if it was laid on the side and loaded
on top.

FIG. 5.

4in.

Formulas and Rules for Calculating Transverse Strength
of Beams.

The fundamental formula for transverse stress in beams is:

BENDING MOMENT = RESISTING MOMENT.

The bending moment for a beam fixed at one end and
loaded at the other (see Fig. 1) is obtained by multiplying the
load by the horizontal distance from the neutral axis to the

point where the load is applied. The distance is taken in

inches and the load in pounds.
The resisting moment is obtained by multiplying the mo-

ment of inertia by the unit stress, tensile or compressive, upon
the fiber most remote from the neutral axis, and dividing the

product by the distance from this fiber to the neutral axis.

The theoreticarformula for the transverse strength of a
beam fastened in a horizontal position at one end and loaded at
the extremity of the other end, as shown in Fig. C, is,

L X a

When the beam is fastened at one end and loaded evenly
throughout its whole length, as shown in Fig. 7, the formula
will be,

C V VP = 2 X x l

L X a

When a beam is placed in a horizontal position and sup-
ported under both ends and loaded in the middle (see Fig. 8)
the formula is,

s x r
L X a

When a beam is placed in a horizontal position and sup-
ported under both ends and loaded throughout its whole length

(see fig, 9), the formula will be,
p w /D Q NX *^ ^ *
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When a beam is laid in a horizontal position, fixed at both
ends and loaded in the middle between fastenings (see Fig. 10),
the formula will be,

r> Q \s -J X /f o A
L X a

When a beam is laid in a horizontal position, fixed at both
ends and the load evenly distributed over its whole length (see

Fig. 11), the formula will be,

P 12 X ^ * ^
L X a

P Breaking load in pounds.
.5" = Modulus of rupture, which is 72 times the weight, in

pounds, which will break a beam one inch square and one foot

long when fixed in a horizontal position, as shown in Fig. (>,

and loaded at the extreme end, and which may be taken as
follows :

Cast-Iron, 36,000.

Wrought Iron, 50,000.

Spruce and Pine, 9,000.

Pitch Pine, 10,000.

These are the nearest values, in round numbers, of 72 times
the average value of the constant given in Table No. 30.

For the safe load, ^ may be taken as follows :

For timber, 1,000 to 1,200 pounds.
For cast-iron, 3,000 to 5,000 pounds.
For wrought iron, 10,000 to 12,000 pounds.
For steel, 12,000 to 20,000 pounds.

L = Length of beam in inches.

a = The distance in inches from the neutral surface of
the section to the most strained fiber.

/ = Rectangular moment of inertia.

The tables on pages 237 and 238 give the moment of inertia

about the neutral axis X Y, and the distance a, for a few of the

most common sections :

(For explanation of moment of inertia and center of gravity
see page 293).

These formulas have the great advantage of being theoretic-

ally correct for beams of any shape of cross-section, made from

any material, providing the load is within the elastic limit of

the beam, and a correct constant is used for 6" and the correct

value obtained for the moment of inertia.
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Beams of symmetrical section, as square, round, elliptical,

or H section, may be calculated on theoretically correct prin-

ciples in a simpler way, obviating the use of the moment of

inertia and the modulus of rupture, as explained below.

P

For a beam fixed at one end and loaded at the other,

ff-^
r,...

CX B

L =

When beam is square,

Side =

B =
CX// 2

r x L

When beam is round,

-v;Diameter X L
X 0.589

P = Breaking load in pounds.

H Thickness or height of beam in inches.

B Width of beam in inches.

L Length of beam in feet.

C Constant which is obtained from experiments, and is

the weight in pounds which will break a beam 1 foot long and
1 inch square fixed at one end and loaded at the other. Con-
stant C is given in Table No. 30.

A rectangular beam fixed at one end
and loaded evenly throughout its whole

length will carry
twice the load of a beam

fixed at one end and loaded at the other;

therefore,

2 X C X H* X B

FIG. 7.

P =-
L

For a rectangular beam supported under both ends and
loaded at the center, FIG. B.

P = 4 X CX X B

A rectangular beam supported under both ends and loaded

evenly throughout its whole length will carry twice the load of
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a beam supported under both ends and loaded at the center;
therefore, FIG. 9.

P = 8 X C X X B J3L

For a beam fixed at both ends
and loaded at the center,

P = X B

For a beam fixed at both ends
and the load distributed evenly
throughout its whole length,

P = 12 X C X H 2 X B

Each letter in these formulas has the same meaning as in

formula for Fig. 6, page 239, and each formula may be transposed
the same as that formula. The most convenient way is, in each

case, to multiply the numerical value of Cfrom Table No. 30, by
its proper coefficient according to mode of loading, before it is

inserted in the formula.

NOTE. A square beam laid

more transverse strength than
this * position.

in this position has 40 %
the same beam laid in

TABLE No. 30. Constant C.

Giving the weight in pounds which will break a beam one
foot long and one inch square which is fastened at one end, in a
horizontal position, and loaded at the other end.

Material.
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The following formulas will apply to the strength of beams
of the shape shown in the adjacent sectional cuts. These for-

mulas pertain only to the ultimate breaking strength of beams,
and have nothing to do with deflection, which follows entirely
different laws.

SOLID SQUARE BEAMS.

p = CXH*
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FIG. 17.

FIG. 18.

STRENGTH OF MATERIALS.

HOLLOW ROUND BEAMS.

p _ 0.589 CX(D* d*)
L X D

SOLID ELLIPTICAL OR OVAL BEAMS.

p _ 0.589 C X Pi X D2

HOLLOW ELLIPTICAL OR OVAL BEAMS.

FIG. 19.

P 0.589 X D* </i X
LD

FIG. 20.
I BEAMS.

As a general rule, wrought iron I beams
should always be selected of such size that their

depth is not less than one-twenty-fourth of the

span; and their strength may be calculated by the
formula :

P= C x (B x H* ~^b x h^
L X H

In the preceding formulas:

P = Breaking load when beam is fastened at one end and
loaded at the other.

L = Length of beam in feet.

C = Constant, and is the load in pounds which will break a
bar one inch square and one foot long when fastened at one
end and loaded at the other, and may be obtained from
Table No. 30.

These formulas give the breaking load when the beam is

fastened at one end and loaded at the other, but for other

fastenings and loads C must be multiplied by either 2, 4, 6, 8,

or 12, depending upon conditions. (See pages 239 and 240).
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To Find the Transverse Strength of Beams when Their

Section is Not Uniform Throughout the

Whole Length.

EXAMPLE.

A beam made of wrought iron is fastened at one end and
loaded at the other (as shown in Fig. 21). The largest part
is 5 inches in diameter and the smallest part is 4 inches in

diameter. Where will it break?
and what is the breaking load ? FIG 21

NOTE. Naturally, the beam
will break at either A or ^;
therefore, calculate first the break-

ing load of a round beam of

wrought iron 4^ feet long and 5

inches in diameter, next a beam 3

3 feet long (the distance from P to

B} .and 4 inches in diameter.

Solving for strength at A :

p _ D* 0.6 C

53 X 0.6 X 600

P = 10,000 pounds.

Solving for strength at B :

p _ 48 X 0.6 X 600

3

p _ 64 X 360

3

P 7680 pounds.

Thus, the weakest point of the beam is at B, where its cal-

culated breaking load is only 7860 pounds, while the calculated

breaking load at A is 10,000 pounds.
When a beam is not of uniform section throughout its

whole length and is supported under both ends and loaded
somewhere between the supports, calculate first the reaction

on each support ; then consider the beam as if it was fastened

by the load, and consider the reaction at each support as a load
at the free end of a beam of length and section equal to the

length and section between its load and support.

EXAMPLE.
The largest diameter of a round cast-iron shaft is 3 inches

and the smallest diameter is 2 inches. The length, mode of
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loading aad support is as shown in Fig. 22. Where will it

break ? and what is the breaking load ?

Solution :

The reaction at y will be Y* of the load and the reaction
at x will be ft of the load. The beam will evidently break
either at a, b or n. (Find constant C in Table No. 30 and
multiply by 0.6, because the beam is round).

Solving for strength at n :

y p _ 23 X 500 X 0.6

P
3

X 300 X 8

3X3
P 2133^ pounds.

Solving for strength at b :

_ 33 X 500 X 0.6

P
5

27 X 300 X 8

5X3
P 4320 pounds.

Solving for strength at a :

s
, p _ 23 X 500 X 0.6

/s
3

p _ 8 X 300 X 8

5X2
P = 1920 pounds.

Thus, the weakest place in the beam is at a, where it will

break when loaded at b with 1920 pounds. If the load is moved
nearer ;z, it will at a certain point exert the same breaking stress

on both a and n.

Regular beams of this kind are seldom dealt with, but shafts

or spindles of similar shape and loaded in a similar manner are

frequently used, and their strength and stiffness may be calcu-

lated and their weakest spot ascertained by this way of reason-

ing, which applies as well to hollow as to solid shafts and

spindles made from wrought iron, steel or cast-iron.
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Beams fastened at one end and loaded at the other may be
reduced in size toward the loaded end and still have the same
strength. Suppose the beam to be fastened in the wall at X
(Fig. 23) and loaded at the other end with a given load, this load
will then have the greatest breaking effect upon
the beam at X; at half way between X and d
the load has only half the breaking effect, at c

only one-quarter the effect. Therefore, the beam d c b

may be tapered off toward b in such proportion
that the square of the height a is equal to

three-quarters the square of the height at X.
The square of the thickness at b is one-half the

square of the thickness at X, and the square of the thickness at

c is one-quarter the square of the height at X.

EXAMPLE.

An iron bracket is four feet long, projecting from a wall

(as Fig. 23). It is strong enough when 24 inches high at X.
How high will it have to be at a, b and ?

Solution :

X = 242 576 Height atX= 24"

a = \/ % X 576 = \/432 Height at a = 20.78"

b = V )4 X 576 = \/288 Height at b = 16.97"

c V % X 576 = \/144 Height at c 12"

The curved boundary line of such a beam is a parabolic
curve, because the property of a parabola is that the square of
the length of any one of the vertical lines (ordinates) is in pro-
portion as their distance from the extreme point d. By this

construction one-third of the material may be
saved and the same strength be maintained. F|G - 24 -

If the load is distributed along the
whole length of the bracket instead of at its

extreme end, it would have the form shown in

Fig. 24.

Square and Rectangular Wooden Beams.

The strength increases directly as the width and as the

square of the thickness. The strength decreases in the same
proportion as the length of the span increases.

EXAMPLE 1.

Find the ultimate breaking load in pounds of a spruce
beam 6 inches square and 8 feet long, when supported under
both ends and loaded at the center.
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Solution :

v _ 4 CX H*
L

^,^4X125X6X6X6
~8~

P = 13,500 pounds.

NOTE. C is obtained from Table No. 30, and is multiplied
by 4 because the beam is supported under both ends and loaded
at the center. The beam is square; therefore the cube of the
thickness is equal to the square of the thickness multiplied by
the width. Consequently, for a square beam (thickness)

3 or

(width)
3 or square of thickness multiplied by width is the same

thing.

EXAMPLE 2.

Find the load which will break a spruce beam 8 inches
thick, 4> inches wide, and 8 feet long, supported under both
ends and loaded at the center.

Solution :

J,_CXBXH*

_4 X 125 X 4^ X 8 X 8

8

P 18,000 pounds.

EXAMPLE 3.

Find the load which will break the beam mentioned in

Example 2, if beam is laid flatwise.

_ 4 X 125 X 8 X y2 X 4^

P 10,125 pounds.

In the first example the beam is square, 6" X 6" = 36

square inches, and its calculated breaking load is 13,500 pounds.
In the second example the beam is rectangular, 8" X 4>"

' =
36 square inches, and laid edgewise its figured breaking load
is 18,000 pounds. In the third example the same beam is laid

flatwise, and its breaking load is only 10,125 pounds. Thus, by
making a beam deep it is possible to secure great strength with

only a small quantity of material, but the limit is soon reached
where it will not be practical to increase the depth at the ex-

pense of the width, because the beam will deflect sidewise and
twist and break if it is not prevented by suitable means. The
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strongest beam which can be cut from a round log is one hav-

ing the thickness 1% times the width. The stiffest beam cut
from a round log has its thickness l T

7
o times its width. The

best beam for most practical purposes which can be cut from a
round log has its thickness l l/2 times its width; for instance,
4 X 6, or 6 X 9, or 8 X 12, etc. The largest side in a beam
having its thickness \ l/2 times its width which can be cut from
a round log is found by multiplying the diameter by 0.832. The
diameter required in a round log to be large enough for such a
beam is found by multiplying the largest side of the beam

by
L.2; for instance, the diameter of a round log to cut 6" X 9" will

be 9" X 1.2 = 10.8 inches, or the diameter of a round log re-

quired to cut 8" X 12" will be 12" X 1.2 14.4 inches, etc.

To Calculate the Size of Beam to Carry a Given Load.

Most frequently the load and the length of span are known
and the required size of beam is to be calculated. For a rect-

angular beam there would then be two unknown quantities,
the width and the thickness, but if it is decided to use a beam
having its thickness 1 l/2 times its width, the thickness may be

expressed in terms of the width.

H Thickness.

B Width.

Use formula for rectangular beams, page 239, and it will

read,

C X (l/^ -B)
2 X B

L
This will reduce to,

C X 2X X B9

1

This will transpose to,

C X 2#
EXAMPLE.

Find width and thickness of a spruce beam 10 feet long,
when fastened at one end and required to carry, with 8 as factor

of safety, a load of 1800 pounds at the other end, the thickness

to be 1 l/2 times the width.

When the beam is to carry 1800 pounds, with 8 as a factor

of safety, its breaking load is 8 X 1800 = 14,400 pounds.
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Solution :

B
B S inches in width.

H\yz X 8" = 12 inches in thickness.

The weight of the beam itself is not considered in this

problem.

To Find the Size of a Beam to Carry a Given Load When
Also the Weight of the Beam is to be Considered.

RULE.
Calculate first the size of beam required to carry the load?

then figure what such a beam will weigh and add half of this

weight to the load, if the beam is fastened at one end and loaded
at the other, or supported under both ends and loaded at the

center, but add the whole weight of the beam to the weight of
the load if the load is distributed along the whole length of the
beam. Then figure the size of the required beam for this new
load.

EXAMPLE.
Find width and thickness of a pitch pine beam to carry

2000 pounds, with 8 as factor of safety, and a span of 27 feet.

The beam is supported under both ends and loaded at the center
;

its own weight is also to be taken into consideration.

Solution :

Find the constant for pitch pine in Table No. 30 to be 150,
and find the weight of pitch pine in Table No. 10 to be 50 pounds
per cubic foot. When the beam is supported under both ends
and loaded at the center it is four times as strong as if fastened
at one end and loaded at the other; therefore, constant 150 is

multiplied by 4. The load, 2000 pounds, multiplied by 8 as a
factor of safety, gives 10,000 pounds as breaking load of the

beam.

^ ,
16000 X 27

j> =
2X X 150 X 4

3

B = 6.84 " = width, and 1# X 6.84" = 10.26" = thickness.

The area is 6.84 X 10.26 = 70 square inches
;
the weight per

foot is 70 times 50 divided by 144, which equals 24.3 pounds, say 25

pounds. The weight of the beam is 25 X 27= 675 pounds. This
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weight is distributed along the whole beam and, therefore, it does
not have any more effect than if half of it, or 337 J^ pounds,
was placed at the center, but as the beam is to be calculated with
8 as factor of safety, the weight allowed for the beam must be

337^2 X 8 = 2700 pounds. Thus, adding this weight to 16,000

pounds gives 18,700 pounds ;
this new weight is used for calcu-

ing the size of the required beam.

J5 =

374

B = 7.2 inches = width, and IY2 X 7.2 ff = 10.8 inches,
thickness.

This, of course is also a little too small, as only the weight
of a beam 6.84 inches by 10.25 inches is taken into account, but
if more exactness should be required the weight of this new
beam may be calculated and the whole figured over again,
and the result will be closer. This operation may be repeated
as many times as is wished, and the result will each time be
closer and closer, but never exact; but for all practical purposes
one calculation, as shown in this example, is sufficient.

EXAMPLE 2.

Find width and thickness of a spruce beam to carry 4200

pounds distributed along its whole length. The span is 24 feet
;

use 10 as factor of safety, and also allow for the weight of beam.
The thickness of the beam is to be 1% times its width.

Solution :

3

/ 4200 X 24 X 10
> 2X X 125 X 8

B = 7.65 inches, and H 11.48 inches.

iir u,. r u 7 -65 X 11.48 X 24 X 32
Weight of beam = = 468 pounds.

144

Adding ten times the weight of the beam to ten times the

weight to be supported, gives 46,680 pounds.
3

/ 46680 X 24

2X X 125 X 8
3

V 497.9

/? = 7.93 inches, and H \% B= 11.9 inches, or prac-
tically, a beam 8 inches by 12 inches is required.
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Crushing and Shearing Load of Beams Crosswise on the

Fiber.

Too much crushing load must not be allowed at the ends of

the beams where they rest on their supports, as all kinds of

wood has comparatively low crushing strength when the load is

acting crosswise on the fiber.

Approximately, the average ultimate crushing strength of

wood, crosswise of the fiber, is as follows :

White oak, 2000 pounds per square inch.

Pitch pine, 1400 pounds per square inch.

Chestnut, 900 pounds per square inch.

Spruce and pine, 500 to 1000 pounds per square inch.

Hemlock, 500 to 800 pounds per square inch.

The safe load may be from one-tenth to one-fifth of the

ultimate crushing load. When the wood is green or water-

soaked, its crushing strength is less than is given above.

EXAMPLE.

How much bearing surface must be allowed under each
end of the beam mentioned in Example 2, providing it also

has 10 as a factor of safety ? The crushing strength of spruce
crosswise on the fiber is 500 pounds, and using 10 as factor of

safety, the load allowed per square inch must be only 50 pounds.
The beam is 8 inches wide, and half of 4685 pounds is sup-

ported at each end
;
thus the length of bearing required under

2:}42
each end will be _ x g

= 5.85 inches. Thus, the least bearing

allowable should be about 6 inches long.
When beams are heavily loaded and resting on posts, or

have supports of small area, either hardwood slabs or cast-iron

plates should be placed under their ends, in order to obtain

sufficient bearing surface for the soft wood.
The same care must be exercised when a beam is loaded at

one point; the bearing surface under the load should at least

be as long as the bearing surface of both ends added together.
Short beams are liable to break from shearing at the point

of support, especially when loaded throughout their whole length
to the limit of their transverse strength.

The ultimate shearing strength for spruce, crosswise of the

fiber, is 3000 pounds per square inch (see page 273). Safe load

may be 300 pounds per square inch.

In the above example the beam is 8" X 12" 96 square
inches, and its center load is 4085 pounds, or 2342 ]/2 pounds at

2342 1/

each end. The shearing stress is -^p = 24.6 pounds per

square inch. Hence, the factor of safety against shearing is

about 100, and there is not the least danger that this beam will

give way under shearing; but such is not always the result*



STRENGTH OF MATERIALS. 25 1

Round Wooden Beams.

A round beam has 0.589 times the strength of a square
beam of same length and material, when the diameter is equal
to the side of the square beam. The area of a square beam
compared to the area of the round beam is as 0.7854 to 1

; there-

fore it might seem as if that also should be the proportion be-
tween their strength, which is the case for tensile, crush-
i ig and shearing strength, but not for transverse strength
or for deflection, because the material is not applied to such

advantage in the round beam as it is in the square one. All

preceding formulas for transverse strength of square beams may
also be used for round beams if only constant C is multiplied
by 0.589, or, say, 0.6.

Thus, the formula for a round beam fastened at one end
and loaded at the other will be :

0.6 C X Z>3

NOTE. In a round beam, of course, it will be Z>3 instead of
//"2 b for a rectangular one.

EXAMPLE.

Find the load in pounds which will break a spruce beam 12
feet long and inches in diameter when supported under both
ends and loaded at the center. (Find constant C in Table No. 30.)

Solution :

4 X 0.6 C X Z>3

L
4 X 0.6 X 125 X 6 X 6 X 6

12

P = 5400 pounds.

To Calculate the Size of Round Beams to Carry a Given
Load When Span is Known.

Where the load and span are known, the diameter of the
beam is calculated, when fastened at one end and loaded at the
other, by the formula :

_ iP XLX factor of safety=
>~~ 0.6 C

RULE.

Multiply together the load in pounds, factor of safety and
length of span in feet, divide this product by six-teji<;hs of the
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constant in Table No. 30, and the cube root of this quotient is

the diameter of the beam.

EXAMPLE.
A round spruce beam is fastened into a wall, and is to

carry 1200 pounds on the free end projecting 4 feet from the

wall, with 8 as a factor of safety, the weight of the beam not to

be considered. Find diameter of beam.

Solution :

1200 X 4 X 8

0.6 X 125

38400

75

V 512

D = 8 inches diameter.

Load Concentrated at Any Point, Not at the Center of

a Beam.

If a beam is supported at both ends and loaded anywhere
between the supports but not at the center (see Fig. 25), it will

carry more load than if it was loaded at the center. With

regard to breaking, the carrying capacity is inversely as the

square of half the beam to the product of the short and the long
ends between the load and the support. For instance, a beam
10 feet long is of such size that when it is supported under

both ends and loaded at the center it will carry 1400 pounds.
How many pounds will the same beam carry if loaded 3 feet

from one end and 7 feet from the other ?

Solution :

^ 1400 X 52

y
7X3

1400 X 25

21

FIG. 25.

X= 1666% pounds.
If weight of beam is also in-

cluded in its center-breaking-load,
the formula will be :

P Breaking load (including

weight of beam) if applied at the center in pounds.

F= Half the length of the span.
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JF= Weight of beam.

P\ = Breaking load applied at n.

Load at n X distance b
Load on Pier A =

Load on Pier B =
span

Load at n X distance a

span

Beams Loaded at Several Places,

FIG. 26.

"i * -s

1 i

10-ffa

When a beam is loaded at several places the equivalent
center load and the load on each support may be calculated as

shown in the following example: (See Fig. 26).

The equivalent center load for a = 4 X 2
-- X 1000 = 555.6 Ibs.

12 X 12

The equivalent center load for b = 10 X
12 X 12

X 800 = 777.8 Ibs.

The equivalent center load for c = 1

f
X 8 X 900 = 800 lbs.

The equivalent center load for d 19 X 5 X 300 = 197.9 lbs.
12 X 12

The equivalent center load for loads a, b, c and d is 2331.3

pounds.

The load on Pier A =
(5 X 300) + (8 X 900) + (14 X 800) + (20 X 1000)_ WQ2y lbs

24

The load on Pier B =
(4 X 1000) + (10 X 800) + (16 X 900)+ (19 X 300) = 1337 y lbs

24

NOTE. The sum of the load on supports A and B is always
equal to the sum of all the loads

; therefore, by subtracting the,
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calculated load on B from the total load the load on A is ob-
tained. By subtracting the calculated load at A from the total

load, the load on B is obtained.
To each load as calculated above for each support also add

half the weight of the beam.

To Figure Sizes of

FIG. 23.

Beams When Placed in an Inclined

Position.

Figure all calculations concerning
the transverse strength from the dis-

tance S, and leave the length L out of
consideration. If the distance S cannot
be obtained by measurement it may
be found by multiplying L by cosine of

angle a.

DEFLECTION IN BEAMS WHEN LOADED
TRANSVERSELY.

Experiments and theory both prove that if the span is

increased and the width of the beam increased in the same pro-
portion the transverse strength of the beam is unchanged ;

but
such is not the case with its stiffness. If a beam is to have the
same stiffness its depth must be increased in the same ratio as
the span, providing the width is unchanged. Within the

elastic limit of the beam the deflection is directly proportional
to the load; that is, half the load produces half the deflection,
out doubling the load will double the deflection.

Deflection is proportional to the cube of the span ;
that is,

with twice the length of span the same load will, when the other

dimensions of the beam are unchanged, produce eight times as

much deflection.

Deflection is inversely as the cube of the depth (thickness)
of the beam. For instance, if the depth of a beam is doubled
but the length of span and the width of beam is unchanged, the

same load will produce only one-eighth as much deflection.

Deflection is inversely as the width of the beam
;
for instance,

when a beam is twice as wide as another beam of the same
material but all the other dimensions are unchanged, the same
load will produce only half as much deflection.

The deflection in a beam caused by various modes of load-

ing is calculated by the following formulas :

For beams laid in a horizontal position and loaded trans-

versely, fastened at one end and loaded at the other : (See Fig. 6).

3X^X7
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For beams laid in a horizontal position, fastened at one end
and loaded thoroughout the whole length : (See Fig. 7.)

P X Z3
C* "

8 X E X S

For beams laid in a horizontal position, supported under both
ends and loaded at the center: (See Fig. 8).

S
48 X E X I

This formula may be transposed and used to calculate
modulus of elasticity from the results obtained when specimens
are tested for transverse stiffness. Deflection should be care-

fully measured but the specimen must not be bent beyond its

elastic limit
;
the modulus of elasticity is calculated by the trans-

posed formula :

48 X S X /
For a square specimen / is (side of beam)

4 divided by 12.

(See moment of inertia, page 237).

(Also see rule for calculating modulus of elasticity,

page 265).

For beams laid in a horizontal position, supported under both
ends and loaded uniformly throughout their whole length : (See
Fig. D).

S= 5 X P X L*

384 XE X r
For beams laid in a horizontal position, fixed at both ends,

and loaded at the center : (See Fig. 10).

S=
192 XEXf

For beams laid in a horizontal position, fixed at both ends and
loaded uniformly throughout their whole length : (See Fig. 11).

384 X E X /

In these formulas the definitions of the letters are :

S = Deflection in inches.

P = Load in pounds.
L = Length of span in inches.

E = Modulus of elasticity in pounds per square inch.

/= Rectangular moment of inertia. (See pages 237-238).

These formulas are applicable to any shape of section
or material, when the load is within the elastic limit.
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For beams of symmetrical section it is more convenient to

use the following equally correct but more practical formulas, by
which the deflection is calculated directly from the size of the
beam by simply using a constant obtained by experiment and
reduced by calculation to a unit beam one foot long and one
inch square, thus avoiding both the use of the modulus of elas-

ticity and the moment of inertia.

When beams are supported under both ends and loaded at
the center, and the weight of the beam itself is not considered,
the following formulas may be used for solid rectangular beams
laid in a horizontal position :

? _ L8 X P X c 3_
H*XB L =. J// 3 X B XS

^ '

X B X c S X H* X B
S X B L*X P

B _ Z,3 X P X c p _ H* X. B X S
SXH* L*Xc

S = Deflection in inches.

ff= Thickness of beam in inches.

B =. Width of beam in inches.

L = Length of beam in feet.

P = Load in pounds.
c Constant obtained by experiment, and is the deflec-

tion, in fractions of an inch, which a beam one foot long and
one inch square will have if supported under both ends and
loaded at the center; the average value for this constant is

given in Table No. 31.

For any other mode of loading, see rules and explanations
on page 261.

In previous formulas and rules, the weight of the beam
itself was not considered. The deflection in a beam caused by
its own weight when it is of rectangular shape and uniform
size, and laid in a horizontal position, is obtained by the
formula,

Z3 X # W X c

H*XB
When both the weight and the load are to be considered,

the deflection in a solid rectangular beam laid in a horizontal

position, supported under both ends and loaded at the center, is

calculated by the formula,

H*X B
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6*= Deflection in inches.

L = Length of span in feet.

P= Load in pounds.
W Weight of beam in pounds.
c Constant obtained by experiments, and is the deflec-

tion in fractions of an inch, which a beam one foot long and
one inch square will have if supported under both ends and
loaded at the center, and may be found in Table No. 31.

//= Thickness of beam in inches.

B= Width of beam in inches.

RULE.
To the load add five-eighths of the weight of beam, mul-

tiply this by the cube of the length of the span in feet, and
multiply by a constant from Table No. 31. Divide this product
by the product of the cube of the thickness and the width of
the beam

;
the quotient is the deflection in inches.

The deflection in a beam supported under both ends and
loaded evenly throughout is five-eighths of that of a beam
supported under both ends and loaded at the center. Therefore,
in the following formulas, the weight of the beam itself is multi-

plied by five-eighths to reduce the effect of the weight of the
beam to the equivalent of a load placed at its center.

FOR SOLID SQUARE BEAMS.

FIG. 28

FOR SOLID RECTANGULAR BEAMS.

B H*

-\

x
FIG. 29

I
B

FOR HOLLOW SQUARE BEAMS.

FIG. 3O
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FOR HOLLOW RECTANGULAR BEAMS.

FOR I BEAMS.

FIG. 31

2 b h*

b-

FIG. 32

c^.g

FOR SOLID ROUND BEAMS.

h X W\ Z3

Z*

FOR HOLLOW ROUND BEAMS.

1.7<:CP + & W) Z3

FIG. 33

FIG. 34

FOR SOLID ELLIPTICAL OR OVAL BEAMS.

S=
Dl X FIG. 35

FOR HOLLOW ELLIPTICAL OR OVAL BEAMS.

1.7
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S = Deflection in inches.

L Length of span in feet.

P= Load in pounds.
W=- Weight of beam in pounds.
c = Constant obtained from experiments, or may be ob-

tained from Table No. 31.

For meaning of the other letters, see figure opposite each
formula.

A round beam equal in diameter to the side of a square
beam will deflect 1.698 times as much, and for convenience,
when the deflection of a square or a rectangular beam, whether
solid or hollow, is known, it may be multiplied by 1.7, and the

product is the deflection of a corresponding round, oval, or

elliptical beam of the same material and diameter and laid in

the same relative position and loaded in the same manner as
the calculated beam. It is well to remember that a round or

elliptical beam weighs a little less than a square or rectangular
one, when the sides and diameters are equal, and the deflection
due to its own weight is, therefore, a little less.

TABLE No. 3 1. Constant c,

Giving deflection in inches per pound of load when the beam
is supported under both ends and loaded at the center.

MATERIAL.
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Therefore, if this beam had been curved 0.16 inch upward,
by increasing its thickness on the upper side, it would have been

straight after the load was applied.*

In this example the weight of the beam itself is not
considered either in figuring the strength or the deflection,
because the beam is comparatively short in proportion to its

width and thickness. The weight of the beam itself will only
be about 200 pounds, and this will be of no account in propor-
tion to the load that the beam will carry, with 10 as a factor of

safety. The weight of the beam will increase its deflection cnly
0.006 inch. In such a beam the danger is probably greater from
crushing of the ends at the supports, if it has not enough bear-

ing surface. In long beams the weight of the beam must not
be neglected, either in calculating safe load or in calculating
deflection.

EXAMPLE 2.

A round bar of wrought iron is 5 feet long and 3 inches in

diameter, and loaded at the center with 800 pounds. How much
will it deflect ? A round bar of iron 3 inches in diameter and
5 feet long weighs 119 pounds. (See table of weights of iron,

page 143.)

Solution :

e _ 53 X (800 -f # X 119) X 1.7 X 0.0000156

~3*~
S= 0.0359 inch.

Thus, such a shaft loaded with 800 pounds will deflect T
-

7
of an inch in the length of 5 feet, or 60 inches. If the deflec-
tion must not exceed ir̂ of the span (see page 266), then the

greatest allowable deflection for this span would be 0.04 inch,
and the calculated deflection is within this limit.

NOTE. T3W of the span is equal to a deflection of 0.008
inch per foot of length.

EXAMPLE 2.

A shaft of machinery steel, 11 inches in diameter and 6 feet
between bearings, carries in the center a 12-ton fly wheel. How
much deflection will the weight of the fly wheel cause?

NOTE. Such shafts are usually considered as a beam sup-
ported under both ends. (See formula for deflection in solid

round beams, page 258.)

Solution :

12 tons = 24,000 pounds. (Weight of shaft is not taken
into consideration.)

* This is a thing frequently done in practice.
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X 1.7 c

63 X 24000 X 1.7 X 0.0000156

II4

e_ 216 X 24000 X 0.00002652

14641

S= 0.00939 inches.

Thus, the calculated deflection caused by the fly wheel is a
little less than Tfa of an inch. The deflection per foot of span
will be

Q,-Qo^9_-3
9 which equals 0.001565 inch.

EXAMPLE 3.

Calculate the deflection of shaft mentioned in the previous
example, when both the weight of fly wheel and the weight of

shaft are to be considered.

Solution :

s _ 68 X (24000 -f H X 1920) X 1.7 X 0.0000156

_ 216 X 25200 X 0.00002652
o

14641

.S"= 0.00986 inch.

Practically, the deflection is likely to be a little less than

what is figured in the two previous examples, because if the

hub of the fly wheel fits well on the shaft, it will stiffen it some.

(It is a g^ood practice to make such shafts a little larger in

diameter in the place where the hub of the wheel is keyed on
;

this enlargement will then compensate for what the shaft is

weakened by cutting the key-way.)
The weight of the shaft may be obtained by considering a

cubic foot of machinery steel to weigh 485 pounds, and a shaft

11 inches in diameter will then weigh 320.1 pounds per foot in

length, and 6 feet will weigh 1920 pounds. Multiplying this by
# gives 1200 pounds, to be added to the weight of the fly wheel,
which gives 25,200 pounds. The weight of the shaft may also

be found in the table of weight of round iron, page 144.

To Calculate Deflection in Beams Under Different Modes
of Support and Load.

Constant c in Table No. 31 is the deflection in fractions of

an inch per pound of load when a beam one foot long and one
inch square is supported under both ends and loaded at the

center, and when this constant for any given material is known,
the deflection for beams subjected to other modes of fastening
and loads may be calculated thus :

For beams supported under both ends with the load dis-

tributed evenly throughout their whole length, multiply c by # .



262 STRENGTH OF MATERIALS.

For beams fixed at both ends and loaded at the center,
multiply c by #.

For beams fixed at both ends with the load distributed

evenly throughout their whole length, multiply c by y%.

For beams fixed at one end and loaded at the other, mul-
tiply c by 16.

For beams fixed at one end with load distributed evenly
throughout their whole length, multiply c by 6.

EXAMPLE.

A square, hollow beam of cast-iron, 8 inches outside and 6
inches inside diameter, and 9-foot span, supported under both
ends, is loaded at the center with 8000 pounds. How much
will it deflect ?

Solution :

Weight of beam = 9 X 12 X (8
2 62

) X 0.26 786 pounds.

.S
1 = g3 X (800 + ^ x 786 ) x 0.0000288

8* 6*

y_729 X 8492 X 0.0000288

4096 1296

s_ 178.291

2800

^=0.064 inches.

EXAMPLE.

How much would this same beam deflect if the load had
been distributed evenly throughout its whole span?

Solution :

S = L* (P + W "> 5/8 c

s _ 9 3 X 8786 X ^ X 0.0000288

115.289

2800

.9 = 0.041 inch.

EXAMPLE.

A round cast-iron beam of 7 inches outside and 5 inches
inside diameter is 4 feet between supports, with a load of 2000

pounds distributed evenly throughout its span. How much will
it deflect, the weight of beam itself not being considered in the
calculation ?
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Solution :

o 43 X 2000 X 0.0000288 X 1.7 X
74 _ 54

S= 256 X 200 X 0.0000288 X 1.7 X ft

1776^
^= 0.0085 inch.

In this example, 1.7 is used as a multiplier because the
beam is round, and ^ because the load is distributed evenly
throughout the length of the span.

EXAMPLE.
A fly wheel weighing 800 pounds is carried on the free end

of a 3-inch shaft, 1 foot from the bearing. How much will the

shaft deflect?

This is the same as a round beam loaded at one end and
fastened at the other; therefore, constant c is multiplied by
16 X 1.7.

Solution :

~ L8 P 1.7 c X 16

C* 1 X 800 X 1.7 X 0.0000156 X 16

S = 0.0042 inch.

Previous calculations for breaking load and also for

deflection are based upon a dead load slowly applied and not

exposed to jar and vibrations. If the load is applied suddenly
it will have greater effect toward breaking the beam than ff

applied slowly. For instance, imagine a load having its whole

weight hanging on a rope, like Fig. 37, just touching the beam
but not actually resting upon it.

If that rope was cut off suddenly
this load would produce twice as

much effect toward breaking the

beam and would cause twice as
much deflection as if it was loaded
on gradually. A railroad train

running over a bridge will, for the

same reason, strain the bridge
more when running fast than it

would if running slow.

FIG. 37

To Find a Suitable Size of Beam for

Deflection.

a Given Limit ol

For a square beam supported under both ends and loaded
at the center, use the formula :
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4 ''

//"3 P /

Side of the beam -i/l-_
o

A round beam supported under both ends and loaded at the

center may be calculated by the formula :

Diameter of beam = J^-
8 p 1 -7 c

O
A rectangular beam supported under both ends and loaded

at the center, and having its depth 1^ times its width, may be
calculated by the formula :

Depth or thickness of beam = 2S
L = Length of span in feet.

P = Center load in pounds.
S= Given deflection in inches.

c = Constant given in Table No. 31.

NOTE. These three formulas are only approximate, as

the weight of the beam itself is not considered
;

but if

necessary, after the size of beam is obtained, its weight may
be calculated and five-eighths of it added to the center load,

P\ and using the same formula again, another beam may
be calculated for this new center-load, and this new calculation
will give a beam only a mere trifle too small. Constants in

Table No. 31 are for beams supported under both ends and
loaded at the center. For any other mode of loading or fasten-

ing, constant c must be multiplied according to rules on
page 261.

To Find the Constant for Deflection.

If experiments are made upon rectangular beams, use

formula, SH*B
L* (P + ft W)

EXAMPLE.
Calculate the constant r, or deflection in inches per pound

of load, for a beam of 1 foot span and 1 inch square, supported
under both ends and loaded at the center, when experiments are
made upon a pitch pine beam 40 feet long, 12" by 8'', weighing
1200 pounds and deflecting 1^ inches for a center-load of 500

pounds.
Solution :

_ 1.5 X 123 X 8

403 X (500 + % X 1200)

c = 0.000259 inch.
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Modulus of Elasticity Calculated from the Transverse
Deflection in a Beam.

When experiments are made upon rectangular beams sup-
ported under both ends and loaded at the center, the modulus
of elasticity may be calculated by the formula,

E =
ST*B

E = Modulus of elasticity.

L = Length of span in inches (not in feet).

P = Load in pounds.W= Weight of beam in pounds.
S = Deflection of beam in inches.

T= Thickness of beam in inches.

B = Width of beam in inches.

EXAMPLE.

Calculate the modulus of elasticity for a pitch pine rec-

tangular beam weighing 1200 pounds, 40 feet span, and 12" by
8", deflecting 1)4 inches for a center-load of 500 pounds.
(This beam and conditions are the same as mentioned in

the previous example for calculating constants.)

Solution :

E _ 4808 X (500+#X 1200)

4 X l l/2 X 123 X 8

E _ 138240000000

82944

E 1,666,666 pounds per square inch.

This deflection was obtained by actual experiments on a

pitch pine beam of the dimensions given, and the calculated
modulus of elasticity agrees fairly well with what is usually

given by different authorities in tables of modulus of elasticity.
When experimenting it is necessary to take the average of

several experiments with different loads and to try the beam by
turning it upside down, as very frequently it will then deflect a

different amount under the same load. Care should be taken
that the load is not so great as to strain the beam beyond
its elastic limit. As long as the deflection increases regularly in

proportion to the load, it is a sign that the elastic limit is not

reached. It is very difficult to ascertain exactly when deflection

will commence to increase faster than the load, because material

is never so homogeneous but that the deflection will be more or

less irregular, although by care and patience fairly good re-

sults may be obtained,



266 STRENGTH OF MATERIALS.

Allowable Deflection.

The greatest amount of deflection which may be allowed in
different kinds of construction can only be determined by prac-
tical experience and good judgment of the designer. As a rule,
in iron work the deflection is seldom allowed to exceedy^ of the

span, which is equal to T^, or 0.008 inch per foot of span. Line
shaftings are sometimes allowed to deflect j^ of the distance
between hangers which is equal to 0.01 inch per foot of span,
but head shafts carrying large pulleys are generally not allowed
to deflect more than 0.005 per foot of span.

In woodwork, considerable more deflection is allowed than
in iron structures. Beams in houses are frequently allowed to

deflect -gfa, or even T| of the span; this is equal to 0.024 to

0.025 inch*, per foot of span. Woodwork to which machinery is

to be fastened must never be allowed to deflect so much. Such
woodwork must always be so stiff that it supports the machinery,
and not vice versa; for instance, in beams or posts by which
hangers and shafting are supported, it is not all-sufficient that

they are strong enough, but they must also always be stiff enough.
In factories it is very important that floor beams as well

as beams supporting heavy shafting have sufficient stiff-

ness as well as strength. Floors in factories are frequently
loaded up to 300 pounds per square foot of surface. For floors
in public buildings, which are never loaded with more than the

weight of the people who can get room, the load will hardly ex-

ceed 150 pounds per square foot of surface. Floors in tene-

ment houses are seldom loaded more than 60 pounds per square
foot.

Slate roofs weigh about 8.5 pounds per square foot of
surface. Snow may be reckoned, when newly fallen, to weigh
5 to 15 pounds per cubic foot, and when saturated with water
it may weigh 40 to 50 pounds per cubic foot. Usual practice is

to allow 15 to 20 pounds per square foot for snow and wind on
roofs.

TORSIONAL STRENGTH.
The fundamental formula for torsional strength is,

Pm = Twisting moment, and is the product of the length
of the arm, m, in inches and the force, /*, in pounds.

S Constant computed from experiments, and is some-
times called the modulus of torsion

;
its value usually agrees

closely to the ultimate shearing strength per square inch of the

material.

J Polar moment of inertia (see page 297).

a The distance in inches from the axis about which the

twisting occurs to the most remote part of the cross section.

*
0.025 is one-fortieth inch per foot of span.
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EXAMPLE 1.

A round cast-iron bar 3 inches in diameter, is exposed to

torsional stress; the length of the lever, OT, is 18 inches. Find
the breaking force, P, in pounds when the modulus of torsion

for cast-iron is taken as 25,000 pounds.
Polar moment of inertia for a circle of diameter, </, is,

32

The distance a = */* d.

25000 X 3* X 3.1416 X

_
18 X 1%

25000 X 81 X 3.1416

27 X 32

pounds.

The advantage of the above formula is that it may be
used for any form of section, because it takes in the polar
moment of inertia of the section; but it is seldom that
calculations of torsional strength are required for other than
beams of round or square section, either hollow or solid, and
the strength of such beams may be more conveniently cal-

culated in an equally correct, but easier way, obviating the use
of both the polar moment of inertia and the modulus of torsion,

by reasoning thus :

Consider two shafts, a and
, Fig 38. Shaft a has twice

the diameter of shaft b, and consequently four times the area
;

therefore it has, so to say, four times as many fibers to resist

the stress, and for this reason it must be four times as strong
as shaft b

; but, further, the outside fibers in a are twice as far
from the center, therefore the fibers in shaft a must also have
on an average twice the advantage over the fibers in shaft b to

resist the twisting effort of any load exerting a twisting stress,
and for this reason shaft a must have twice the strength of b

;

and taking these two reasons together, shaft a must, conse-

quently, be eight times as strong as shaft ,
in resisting tor-

sional stress.

Thus, the strength of a solid shaft /?%%ffi%fo>.
Flc' 38-

increases as the cube of the diameter.
Shaft a is twice as large in diameter
as shaft ft, and is, therefore, eight times
as strong as

,
because 23 = 8. If

shaft a had been three times as large
as b it would have been 27 times as

strong, because 3s = 27
;
if shafts had

been four times as large as
,
it would have been 64 times as

strong, because 43 = 64.
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Therefore, if the constant corresponding to a load, which,
applied to an arm one foot long will twist off or destroy a bar
one inch in diameter, is found, the breaking load for any round
shaft of the same material when under torsional stress may be

easily calculated. The torsional strength (but not the torsional
deflection in degrees) is independent of the length of the shaft.
The strength depends only upon the kind and the amount of

material, and the form of cross-section. A square shaft having
its sides equal to the diameter of a round shaft will have ap-
proximately 20% more strength than the round one, but it will

take nearly 28% more material. A square shaft of the same
area as a round shaft has approximately 15% less torsional

strength than the round one.

Thus:
Formulas for torsional strength relating to solid round

shafts will be :

Pm

P = Breaking load in pounds.
D = Diameter of shaft in inches.

;// = Length in feet of the arm on which load P is acting.

c = Constant, and it is the load in pounds which, when
applied to an arm one foot long, will twist off or destroy a round
bar one inch in diameter. This constant is obtained from ex-

periments, and is given in Table No. 32.

RULE. Multiply the cube of the diameter in inches by the

constants, in pounds, divide this product by the length of the
lever /, in feet, and the quotient is the breaking load in pounds.

TABLE No. 32. Constant c.

The ultimate torsional strength in pounds of a round beam
one inch in diameter, when load is acting at the end of a lever

one foot long.

MATERIAL.
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EXAMPLE 1.

A wrought iron shaft is eight inches in diameter, and the
force acts upon a lever two feet long. How much force must
be applied in order to twist off or to destroy the shaft?

Solution :

P _ 83 X 580 _ 512 X 580

2 ~2~
EXAMPLE 2.

A force of 870 pounds is acting with a leverage of four feet

in twisting a wrought iron shaft. What must be the diameter
of the shaft in order to resist the twisting stress, with 10 as a
factor of safety?

Solution :

3

r^ _ . / P *n X 10

X 4 X 10

580

D V60" = 3.914, or, practically, a 4-inch shaft.

NOTE. Ten is used as a multiplier of the twisting moment,
P m, because 10 is the factor of safety. Constant 580 is taken
from Table No. 32.

EXAMPLE 3.

A round bar of cast-iron four inches in diameter is to be
twisted off by a force of 3200 pounds. How long a leverage is

necessary ? (c for cast-iron, in Table No. 32, is 450).

Solution :

EXAMPLE 4.

Experiments are made upon a cast-iron round bar 2 inches
in diameter with a leverage of 5X feet

;
the bar is twisted off at

a force of 832 pounds. Calculate constant c, or the force in

pounds if acting with a leverage of one foot, which will break a
round bar of the same material one inch in diameter.

Solution :

'^TT
^882X5X^4368 = 540 pounc,5 .
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Hollow Round Shafts.

In proportion to the amount of material used, around hollow
shaft has more torsional strength than a solid shaft of the same
diameter. This is because the fibers in any shaft exposed to

twisting stress only offer resistance to the load in proportion to

their stretch. Therefore, the fibers near the center are always
in position to offer less resistance than the fibers more remote
from the center.

The formula for torsional strength in round hollow shafts
will be :

d*

P Ultimate breaking load in pounds applied at a leverage
of m feet.

D Outside diameter of shaft in inches.

d= Inside diameter of shaft in inches.

m Length of lever in feet.

c = Constant (same as for a solid shaft).

Square Beams Exposed to Torsional Stress.

The theoretical formula for twisting strength (on page 26(5)

will apply to square as well as round beams. The proportional
strength between a round and a square beam may, therefore, be

compared by using that formula. Let S represent the side of a

square beam and the polar moment of inertia is J S*.

The distance from the center of the beam to the most

remote fiber in a square beam is S -v %, and, dividing the polar
moment of inertia by this distance, we have,

sV y2
Let D represent the diameter of a round beam. The

polar moment of inertia is _! = 0.098 LP

The distance from the center to the most remote fiber in the

round beam is l/2 D. Dividing the polar moment of inertia by

this distance, we have -Q98 ^
0.195 D*

Suppose, now, that S and D are equal, for instance.

one inch
;
the proportion in torsional strength between the two

beams must be 0.23 divided by 0.19G, which equals 1.18.

Thus, for square beams, use the formulas given for round

beams, but multiply constant <:,
in Table No. 32, by 1.2, and
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take the side instead of the diameter. The formula for tor-

sional strength in a square beam will be :

P_ ( Side )
3 X 1.2 X c

Length of leverage.

c = Constant (same as for a round beam).P= Load in pounds.
Side is measured in inches.

Length of leverage is measured in feet.

Torsional Deflection.

The torsional deflection in degrees will increase directly
with the length of the shaft and the twisting load, and inversely
as the fourth power of the diameter of the shaft

; therefore, the

formula for torsional deflection is :

?_c X m X L X P
D^~

S = Deflection in degrees for the length of the shaft.

m = Length of lever in feet.

L = Length of shaft in feet.

P = Load in pounds.
D = Diameter of shaft in inches.

c = Constant obtained from experiments for different

kinds of material, and is the deflection in degrees for a shaft

one inch in diameter and one foot long, when loaded with one

pound on the end of a lever one foot long.
The author of this book has made experiments on tor-

sional deflection in wrought iron shafts two inches in diameter.
The average deflection was l l/2 degrees in 10 feet of length,
when a load of 50 pounds was applied on a lever 5# feet long.
Constant <:, as calculated from these experiments, will be 0.00914.

Using this constant, the formula for torsional deflection for

wrought iron will be :

9 L x m x p x -00914

D*

Machinery steel and wrought iron will deflect about the

same. Cast-iron will deflect twice as much as wrought iron. A
square bar will deflect 0.589 times as much as a round bar when
side and diameter are alike.

Formula for Torsional Deflection in Hollow Round Shafts.

~_L X m X PXc
Lfi-d*

D = Outside diameter in inches.

d= Inside diameter in inches.

All the other letters have the same meaning as explained
under formulas for solid shafts.
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TABLE No. 33. Constant c.

The torsional deflection in degrees per foot of length for a
shaft of one inch side or diameter when loaded with one pound
at the end of a lever one foot long :

MATERIAL.
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In cast-iron the ultimate shearing strength is usually between
20,000 and 30,000 pounds per square inch. In steel the ultimate

shearing strength will vary from 40,000 to 80,000 pounds per
square inch.

The resistance offered to shearing is in proportion to

the sheared area. Thus, it will take twice as much force
to punch a hole two inches in diameter through a three-eighths
inch plate as it would to punch a hole only one inch in diameter

through the same plate, and it will take four times as much
force to shear off a one-inch bolt as it would to shear off a one-
half inch bolt, because the area of a one-inch bolt is four times
as large as the area of a one-half inch bolt.

EXAMPLE 1.

How much force is required to shear off a wrought iron
rivet of one-inch diameter if the shearing strength of the

wrought iron is 40,000 pounds.

Solution :

One-inch diameter 0.7854 square inches; therefore the
force required will be 0.7854 X 40,000 31,416 pounds.

EXAMPLE 2.

A wrought iron plate is one-quarter of an inch thick and
the ultimate shearing strength of the iron is 40,000 pounds per
square inch. How much pressure is required to punch a hole

three-quarters of an inch in diameter ?

Solution :

The circumference of a ^-inch circle is 2.356 inches. The
plate is X-inch thick; therefore the area of shearing surface,
2.3562 X X = 0.58905

; thus, the force required will be 40,000
X 0.58905 = 23,562 pounds.

TABLE No. 34. Shearing Strength Per Square Inch.

MATERIAL.
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FACTOR OF SAFETY.
The factor of safety can only be fixed upon by the experi-

ence and good judgment of the designer. It may vary from 4 to

40. In a temporary structure, when the greatest possible load to

which it will be exposed is known, a factor of safety of four

may be safe enough, but frequently a greater factor is necessary.
Different factors of safety are also necessary for different

materials; a different factor of safety may also be necessary
in different parts of the same machine. The following Table,
No. 35, is only offered as a guide in selecting factor of safety :

TABLE No. 35. Factor of Safety.
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Cast-iron is variable ; it has usually five to six and a-half

times as much crushing as tensile strength, and when loaded

transversely it will deflect under the same load nearly twice as

much as wrought iron. It is especially useful -for short pillars

or anything exposed to crushing stress, where there is little

danger of breakage by flexure; it is very much less reliable

when exposed to tensile or torsional stress.

Wood is not adapted to resist torsion, but is useful to resist

tensile, crushing and transverse stress, also to resist flexure.

It has nearly twice as much tensile as crushing strength ,;
there-

fore, it would seem specially well adapted, in all kinds of con-

struction, to be the member exposed to tensile stress, but where
wood and iron enter into construction together, iron is

always used as the member to take the tensile stress and wood
as the compressive member, because wood has suck low shear-

ing strength lengthwise with its fibers that, with any kind of

fastening at the ends, it will tear and split at the holes under

comparatively little stress; but this difficulty is easily overcome
when wood is used as the compressive member. Wood has

comparatively low tensile and crushing strength crosswise on the

fiber. This is well to remember with beams loaded transversely
and laid on posts. The beams may be sufficiently strong, but
under heavy load, if suitable precautions are not taken (see

page 250) the top of the post may press into the beam, especially
if the lumber is green.

Stone has high crushing strength but low tensile strength,

and, in consequence, very low transverse strength. It is very
well adapted for foundations when supported and laid in such a

way that its crushing strength comes into play, but when laid as

a beam to resist transverse stress it is very unreliable, as it will

break for a comparatively small load and it may break from a

blow or jar.

Brickwork is only suitable for crushing stress, and there is

great difference in the strength of different kinds of brick.

In calculating strength and stiffness in any kind of design-

ing, it should be remembered that it is only possible to deter-

mine the strength of any material by actual test, and that the

tabular and constant numbers here given are only an average
approximate.



Mechanics,

The science which treats of the action offerees upon bodies
and the effect they produce is called Mechanics.

Newton's Laws of Motion.

The three fundamental principles of the relation between
force and motion were first stated by Sir Isaac Newton, and are
therefore called Newton's laws of motion.

NEWTON'S FIRST LAW.

All bodies continue in a state of rest or of uniform motion
in a straight line, unless acted upon by some external force that

compels change.
NEWTON'S SECOND LAW.

Every motion or change of motion is proportional to the

acting force, and the motion always takes place in the direction

of a straight line in which the force acts.

NEWTON'S THIRD LAW.

To every action there is always an equal and contrary re-

action.

Gravity.

The natural attraction of the earth on everything on its

surface which will cause any body left free to move to fall in the
direction of the center of the earth is called the force of

gravity.

Acceleration Due to Gravity.

If a body is left free to fall from a height, its velocity will

not be constant throughout the whole fall, but it will increase at

a uniform rate. It is this uniform increment in velocity which
is called acceleration of gravity. It is usually reckoned in feet

per second. A body falling free will at the end of one second
have acquired a velocity of 32M$ feet, or, practically, 32.2 feet

per second; but it has fallen through a space of 16.1 feet,

because it started from rest and the velocity was increasing at a
uniform rate until, at the end of the second, it was 32.2 feet per
second ; therefore, the average velocity during the first.second
can only be 16.1 feet. At the end of two seconds the velocity
has increased to 64.4 feet per second and the space fallen

(276)
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through is 64.4 feet, because the average velocity per second
must be half of the final velocity ; therefore, the average
velocity is 32.2 feet per second, and, as the time is two seconds
the space will be 04.4 feet. At the end of three seconds the
final velocity has increased to 3 X 32.2 96.6 feet per second
and the space fallen through is -9

|
ii x 3 = 144.9 feet, etc. This

is supposing the body was falling freely in vacuum, but while
the air will offer a resistance and somewhat reduce the actual,

motion, the principle is the same. Acceleration due to gravity
varies but little at different latitudes of the earth. At the

equator it is calculated to be :J2.088 and at the pole 32.253 feet.

Acceleration due to gravity decreases at higher altitudes,* but
all these variations on the earth's surface are so small that they
hardly need to be considered in any calculation concerning
practical problems in mechanics.

Velocity.

The velocity of falling bodies increases at a uniform rate of
32.2 feet per second

; therefore, when commencing from rest, the
final velocity in feet per second must be,

RULE.

Multiply the time in seconds by 32.2 and the product is the
final velocity in feet per second

; or, multiply the height of the
fall in feet by 64.4 and the square root ot the product is the

velocity in feet per second.

EXAMPLE.

What final velocity will a body acquire in a free fall during
seven seconds ?

Solution :

if 7 X 32.2 = 225.4 feet per second.

Height of Fall.

The average velocity per second is always half of the final

velocity per second. Therefore the space fallen through in a

given time is found by multiplying half of the final velocity by
the number of seconds which produced that velocity. Thus, the

formulas :

h = f-^- = tQ.$v= v 0.5 /= -?! = =
2 2*2

* Above the surface of the earth the weight of a body is inversely propor.
tional to the square of its distance from the center ot the earth.

Below the surface of the earth the weight of a body is directly proportional to

its distance from the center ot the earth.
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EXAMPLE.
A fly-wheel has a rim speed of 48 feet per second. From

hat height must a body drop to acquire the same velocity?w
Solution :

= = 85.78 feet.
2 g 64.4 644

Time.
RULE.
Divide the space by 16.1, and the square root of the

quotient is the time
; or, divide given velocity by 32.2, and the

quotient is the time.

r

S * 0.5 g
EXAMPLE.
How long a time does it take before a body in a free fall

acquires a velocity of 100 feet per second ?

Solution :

,-JL= ^ = 3.1 seconds.
g 32.2

Distance a Body Drops During the Last Second.

The space through which a body will drop in the last

second is equal to the final velocity minus half of acceleration
due to gravity. Therefore, this space is found by the formula:

x = v y2 g = g(t y2 )

x = Space in feet which the body drops the last second of

the fall.

/ = Time in seconds.

v = Final velocity.

g = Acceleration of gravity = 32.2 feet.

h Height of fall in feet.

EXAMPLE.
A body has in a free fall obtained a final velocity of 40 feet

per second. What space did it drop the last second ?

Solution:

x v y2g 40 ^L
2 = 40 16.1 = 23.9 feet.

EXAMPLE.
A body was falling four seconds. How many feet did it

drop the last second ?

Solution :

x g(t - */2 )
= 32.2 X (4 #) = 32.2 X 3.5 = 1 12.7 feet.
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TABLE No. 35. Time, Velocity and Height.

=32.161 Feet.

Time in Seconds.
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a vertical line. At the end of the first second the force of

gravity has caused this moving body to drop 16.1 feet out of its

path; therefore, instead of being at 1 at the end of the first

second, it is at a point 16.1 feet vertically under 1
;
instead of

being at 2 at the end of two seconds, it is at a point 2 X 2 X
16.1 = 64.4 feet vertically below 2; instead of being at 3 at the

end of the third second, it is at a point 3 X 3 X 16.1 = 144.9

feet vertically below 3
;
and instead of being at 4 at the end of

the fourth second, it is at a point 4 X 4 X 16.1 = 257.6 feet

vertically below 4, etc.

FIG. 1.

When a body is projected in a vertical upward direction

with an initial velocity of v feet per second, it proceeds to a

z/
2

height ~2~zr; therefore, when projected at an angle, a (see Fig.

1), with a velocity of i> feet per second, it will proceed to the

?/
2 sin.2 a

height 2^
When a body is projected in a vertical upward dirction with

a velocity of v feet per second, the time for ascent is
- and the

time for descent is equal to the time for ascent; therefore,
v

the total time will be 2
;
but when the body is projected

upward at an angle of a degrees, the total time for ascent and

2 v sin. a
descent will be

o

The horizontal distance, or the range from d to n, will be

equal to the velocity in feet per second multiplied by the total



MECHANICS. 28l

number of seconds consumed in the ascent and descent, and
this multiplied by cos. of the angle a; therefore,

/2 T/ sin. a\ 2 7/
2 sin. a cos. a

Horizontal range = v
^

) cos. a = _

but 2 X sin. a X cos. a is always equal to sin. of an angle of

twice as many degrees as the angle a. Therefore, the formula

z/
2 sin. 2 a

Deduces to horizontal range

Thus, the following formulas will apply to bodies projected
at an angle. ( See Fig. 1).

The greatest possible height will be,

* = **

The greatest possible range! will be,

g
The time in seconds will be,

t
_ 2 v sin, a _

g
v =. Velocity in feet per second.

g= Acceleration of gravity = 32.2.

TO FIND THE HEIGHT TO WHICH A BODY CAN ASCEND.

RULE.

Multiply the velocity in feet per second by the sine of the

angle (to the horizontal line), square this product and divide

by 64.4, and the quotient is the height in feet.

TO FIND THE LONGEST POSSIBLE RANGE.

RULE.

Multiply the square of the velocity in feet per second by
sine of an angle of twice as many degrees as the angle of the

throw (to the horizontal line), and divide
by 32.2. The

quotient is the longest distance the body can be thrown.

TO FIND THE TIME OF FLIGHT.

RULE.

Multiply the velocity in feet per second by sine of the

angle (to the horizontal line), and divide by 16.1. The
quotient is the time in seconds.

EXAMPLE.
of 55 to the horizontal

line, with an initial velocity of 120 feet per second. How high

A body is projected at an angle

j, with an initial velocity of 120 fee
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will it go ? How far will it go in a horizontal direction ? How
many seconds will it take to finish the flight?

Solution for height :

T 2/
2 sin.2 a

11 -- -

^ _ 1202 X sin.2 55

h =
-644

1202 X 0.819152

64.4

h _ 14400 X 0.673

d4.4

h 150.5 feet.

Solving for horizontal range :

^ __ -z/
2 sin. 2 a

g
Twice the angle of 55 is 110 and sine of 110 will be sine

of 70, because 180 110 = 70
; therefore, sine of 110 equals

sine of 70 in the second quadrant, and the solution will be :

1202 X sin. 70
b =

32.2

r 14400 X 0.93969

322
" = 128 '4 feet

Solving for time of flight:

0.5 g
. _ 120 X sin. 55

16.1

. _ 120 X 0.81915*-
jTTj

- = 6.1 seconds.

EXAMPLE.
A nozzle on a hose is placed at an angle of 28 to the

horizontal line and the spouting water when leaving the nozzle

has a velocity of 36 feet per second. How far will it theoretic-

ally reach in a horizontal direction?

Solution :

Range = b = * sin ' 2 *

g
362 X sin. 56

b =
g

, _ 1296 X 0.82904
feet '
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EXAMPLE 3.

A nozzle on a hose is placed at an angle of 38 to the

horizontal line and is spouting water a distance of 40 feet in a

horizontal direction. What is, theoretically, the velocity of the

water when leaving the nozzle ?

Solution:

sin. 76

_ (40 X o2.2 o/j A r~~i. ,^ sprond
0.9703

NOTE. In Example 2 we multiply by sine of 56 degrees,
because water is leaving the nozzle at an angle of 28 degrees,
and twice 28 equals 56. In Example 3 we multiply by sine of 76

degrees, because twice 38 equals 76. See previous explanations.

The greatest possible height will be reached if the body is

thrown perpendicularly upward. The greatest possible range is

obtained if the body is thrown at an angle of 45 and will then be :

"

~g~
At an angle of 45 the horizontal range will be twice

the greatest possible height which could have been reached if

the body had been thrown perpendicularly upward. At this

angle the horizontal range is four times the height. For an

equal number of degrees over or under 45 degrees the horizontal

range will be equal ;
for instance, if a body is thrown out at an

angle of 30 or 60 degrees, the horizontal distance is the same,
but the height of ascension will be much more at 60 degrees
than at 30 degrees. It is frequently useful to notice this in

practical work. For instance, water under pressure is thrown
the farthest distance in a horizontal direction from a hose when
the nozzle is held at an angle of 45 degrees to the horizontal

line. It is possible by the same pressure to throw water twice

as far in a horizontal distance as in vertical height.

Motion Down an Inclined Plane.

A ball rolling along an incline, as n f-*^ F|G- 2 .

a c (Fig. 2), will have the same
velocity when it gets to c as it would
have had if dropping freely from a
to

, supposing all friction to be left

out of consideration.
The average velocity will also be

half of the final
velocity,

and the

time used in the fall will be the distance a c (the length of the

incline), divided by the average velocity per second.
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Body Projected in a Horizontal Direction Prom an
Elevated Place.

When a body is projected in a horizontal direction from a
place which is higher than the one where it strikes the ground,
the range in feet in a horizontal direction will be equal to the
product of velocity in feet per second and the time in seconds
which it will take for a body in a free fall to drop a distance
equal to the difference in vertical height between the two
places. Thus :

VO~T
~JL
s

v = Initial velocity in feet per second.

h = Vertical height in feet.

g= Acceleration of gravity = 32.2 feet.

EXAMPLE.
Water spouts from a nozzle in a horizontal direction at a

velocity of 30 feet per second and the nozzle is placed 12 feet
above the ground. What is the horizontal range of the water ?

Solution :

Horizontal range = v
-\j

= 30
-^

12 X2 = 22.45 feet.

To Calculate the Speed of a Bursted Fly-Wheel from
the Distance the Fragments are Thrown.

The angle of 45 degrees is the one most favorable to the

range ; therefore, suppose the fragments to leave the wheel at
that angle and use the formula,

z/
2

Horizontal distance = b = which transposes to v = ^/^ g
RULE.

Multiply the horizontal distance by 32.2, and the square root
of the product is the slowest possible rim-speed the wheel could
have had at the time of the accident.

EXAMPLE.
A 30-foot fly-wheel bursts from the stress due to centri-

fugal force, and fragments were thrown a distance of 300 feet

from the place of accident. What was the slowest possible
speed the wheel could have had at the time the accident
occurred ? and what was the corresponding number of revolu-
tions per minute?
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Solution :

-v V300 X 32.2 = V 9660 = 98.3 feet per second.

The length of the circumference of a 30-foot wheel is 94.25

feet, therefore the fly-wheel was running at a speed not less than
98.3

60 X 94^5
= 62-6 revolutions per minute. This calculation

does not prove that the wheel did not run faster than 62.6
revolutions per minute when it burst; it may have revolved a

great deal faster, as it is not at all sure that any fragments left

the wheel at an angle of 45 degrees, but it is certain that the

speed of the wheel was not slower. Sometimes it may be pos-
sible to settle upon the angle at which a certain fragment left

the wheel by noticing traces and marks where it went, and,
figuring from the angle and the range, a pretty fair idea of the

bursting speed may be obtained. (See formula on page 283).

Force, Energy and Power.

Force is a pressure expressed in a push or a pull.

Energy is the ability to do work. It is divided into poten-
tial energy and kinetic energy.

Potential energy is the ability of a body to perform work
at any time when it is set free to do so.

Kinetic energy is the ability of a moving body to do work
when its motion is arrested. Kinetic energy is very frequently
called

"
stored-up energy."

Work is overcoming resistance through space. In the

English system of weights and measures the common unit of

work is the foot-pound.

Power is the rate of doing work. Work is an expression
entirely independent of time, but power always takes time into

consideration. For instance, to lift one pound one foot is one

foot-pound of work, no matter in what time it is done, but it

takes 60 times as much power to do it in one second as it would
lake to do it in one minute.

Inertia.

Inertia is the inability of dead bodies to change either their

state of rest or motion. In order to bring about any change,
either of motion or rest, dead bodies must always be acted upon
by some outside force.

Resistance due to inertia is the resistance which a dead

body free to move presents to any external force acting tq

change either its state of motion or rest.
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Mass.

The mass of a body is the quantity of matter which it con-
tains. By common consent the unit of mass is, in mechanics,
considered to be that quantity of matter to which one unit of

force can give one unit of acceleration in one unit of time;
therefore, when the weight of a body is divided by acceleration

of gravity, the Quotient is the mass of the body. Thus :

W = m X g
- W

Momentum.

The product of the mass of a moving body and its velocity
is called its momentum or, also, its quantity of motion. The
unit for momentum is the product when unit of mass is multi-

plied by unit of velocity per second. In mechanical calcula-

tions, using English weights and measures, the unit of mass is

weight divided by 32.2; therefore, unit of momentum will be:

Weight of the moving body in pounds multiplied by velocity in

feet per second and the product divided by 32.2. Thus :

q = m X v m = mass =
; therefore,

g

q =. Momentum, or quantity of motion.

W Weight of moving body in pounds.
V Velocity of moving body in feet per second.

g= Acceleration of gravity.

is the formula by which the time in a free fall is

obtained, and, consequently, the momentum of a falling body
can also be expressed by the product of the weight of the body
in pounds and the time in seconds during the fall. This product
is usually called

" time effect."

Impulse.

The product of the force and the time in which it is acting
as a blow against a body is called impulse, and it is always
of the same numerical value as the momentum of the moving
body.
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Kinetic Energy.

The kinetic energy stored in any moving body is always
expressed in foot-pounds, by the product of the force in pounds
acting to overcome the inertia of the body, and the distance in

feet through which the force was acting in starting the body,
and is always equal to the weight of the body multiplied by the

square of the velocity and this product divided by twice the
acceleration of gravity. Thus :

K = W X t/
2

2*
K Kinetic energy in foot-pounds.
IV = Weight of the body in pounds.
v = Velocity of the body in feet per second.

2 g 64.4.

In a free fall the height, /;, corresponding to a given
,0

velocity, is found by the formula, -^- ; therefore, K'= W X h.

Thus, multiplying the weight of a moving body by the height
which in a free fall corresponds to its velocity, the product will

be the kinetic energy stored in the body.
frTX-z/2

The formula K = ^ transposes to K ^ m v'1 .

Hence the simple rule :

Multiply half the mass of a moving body by the square of
its velocity in feet per second, and the product is the kinetic

energy in loot-pounds stored in the body.
The kinetic energy stored in any moving body always

represents a corresponding amount of mechanical work which
is required in order to again bring the body to rest.

EXAMPLE.
A body weighing 1610 pounds is moving at a constant

velocity of 18 feet per second. How many foot-pounds of
kinetic energy is stored in the body ?

Solution :

W X 7/2 1610 X 18 X 18K =
2

= r eO == 8
'
100 foot-pounds.

If this moving body was brought to rest and all its stored

energy could be utilized to do work it could lift 8,100 pounds
one foot, or it could lift 81 pounds 100 feet, or any other combi-
nation of distance and resistance which, when multiplied by
one another, will give 8,100 foot-pounds.

It is very important always to keep in mind a clear dis-

tinction between work ?CN\ power, as power is the rate of doing
work, and time must, therefore, always be considered in the

question of power. For instance, when 33,000 foot-pounds of
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work is performed in one minute it is said to be one horse-power ;

therefore, if this 32,400 foot-pounds of energy was utilized to do
work and used up in one minute, it would do work at a rate of

fi^lro M horse-power, but if utilized during a time of two
minutes it would only do work at a rate of |i horse-power, or if

utilized in a second the rate of work would be i* X 60 = 58 |f
horse-power, etc.

To Calculate the Force of a Blow.

The force of a blow may be calculated by the change
it produces. For instance, a drop-hammer weighing 800 pounds
drops three feet, and compresses the hot iron on the anvil %
inch. How much is the average force? (% inch = Vtsfoot).

The kinetic energy stored in the hammer at the moment it

commences to compress the iron is 800 X 3 = 2400 foot-pounds.

The average force = 240 = 115,200 Ibs.
Vis

In the above example, friction is neglected.
The shorter the duration of the blow the more intense it

will be. Therefore the force of the hammer mentioned above, if,

instead of striking against hot iron, compressing it % inch, had
been struck against cold iron, compressing it only a few thou-

sandths, the blow would have been as many times more intense
as the duration of the blow had been shorter. Therefore it is

entirely meaningless to say that a drop-hammer or any other
similar machine is giving a blow of any certain number of

pounds by falling a certain number of feet, because the in-

tensity of the blow will depend upon its duration.

Formulas for Force, Acceleration and Motion.

From the laws of gravitation, it is known that when one

pound of force acts upon one pound of matter it produces an
acceleration of 82.2 feet per second each successive second as

long as the force continues to act.

From Newton's laws of motion, it is known that the motion
is always in proportion to the force by which it is produced ;

therefore, when one pound offorce acts for one second upon 32.2

pounds of matter, it will produce an acceleration of one footper
second.

Hence the following formulas:

;// Mass of the moving body, which is considered to be

weight divided by 32.2.

f= Constant force in pounds acting on a body free to

move.

G = Constant acceleration in feet per second due to the

acting force, F.
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T= Time in seconds in which the force F acts upon a

body free to move.

i> final velocity acquired by the moving body in the

time of T seconds.

G in

G = -?L T= ^L=.JL. vm=-FT'

T G T m

-u^L2L m = J L F= 2^L T- vm
m v T F

When a moving body is arrested the product of the resist-

ance and time is equal to its momentum. Thus:

z>A =

#= Constant resistance in pounds acting against the

moving body.
The average velocity of the moving body is half of the final

velocity, and the space 'passed over by the moving body when
acquiring the given velocity is half of the final velocity in feet

per second multiplied by the time in seconds. Thus :

F-* Sm

- o_" "

6* = Space in feet.

The work in foot-pounds required to overcome the inertia of
a given body when brought from a state of rest to a given
velocity is equal to the kinetic energy stored in the moving
body. Thus :

K SF "!
"
l
'~ F>v T G m<v T22 2

K = Kinetic energy stored in the moving body.
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The force required to obtain a given velocity in a given
time, when both resistance due to inertia and resistance due to

friction is considered, is calculated by the formula:

Force /Velocity x Mass^j + (weight X coefficient of friction).
\ Time /

which may be written :

Force = (
Velocitv x Mass^ + (resistance due to friction).

V Time /

IMPORTANT. Always calculate the force required to over-
come the resistance due to inertia and the force required to

overcome the resistance due to friction separately, and add the
two forces in order to obtain the total force required.

It is sometimes assumed that adding so much to the mass,
as gVof the product of weight and coefficient of friction, should

give" the result in one operation ;
but such an assumption is

erroneous, because the correct value ior the required force is :

which cannot be transposed to

J?= Required force
;
v = velocity ;

T= time
;
W= -weight

of moving body in pounds ; ^ acceleration due to gravity, or
32.2

; f=- coefficient of friction.

EXAMPLE. 1.

A railroad train weighing 225,400 pounds is started from
rest to a velocity of 50 feet per second

;
the road is straight and

level
;
the resistance due to friction is assumed to remain con-

stant and to be 1000 pounds. What average constant pull in

pounds must be exerted by the locomotive at the draw-bar in

order to bring the train up to this speed in 40 seconds ?

Solution : v
For the inertia,

velocity X mass __*A * 225400

-BST- L^_M =8750 ibs.

For friction the force = 1000

Total force, 9750 Ibs.

NOTE. This constant force of 9750 pounds has been acting
under a uniformly increasing velocity from rest or nothing at
the start, to 50 feet per second at the end of 40 seconds ; therefore,
the average velocity has been half of the final velocity, or 25 feet

;t second. The average work of the locomotive in starting the
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train during this 40 seconds was 25 X 0750 = 243,750 foot-

pounds per second, and the horse-power exerted by the locomo-
tive on the draw-bar in starting this train was 2

~V?;
7
(r
a 443.18

horse-power, but the power required to keep this train in motion
at a speed of 50 feet per second on a level road will be only

*L*p!!
= 90.91 horse-power. From this i t may be seen what an

immense power there has to be produced in order to start heavy
machinery in a short time, in comparison to the power requirea
to keep it going after it is started.

EXAMPLE 2.

How far did the train move before it got up to the required
speed of 50 feet per second ?

Solution :

S = ll7: = $1X40
2 2

EXAMPLE 3.

Suppose that after the train had acquired this speed of 50
feet a second, the locomotive was detached and that the resist-

ance due to friction continued to be 1000 pounds. How many
seconds would the train be kept in motion by its momentum on
a level road ?

Solution :

225400
T-- v w 50 X 099^ =

iooiT
1 = S5 seconds -

EXAMPLE 4.

How many foot-pounds of kinetic energy is stored in this

train, which weighs 225,400 pounds and runs at a constant speed
of 50 feet a second ?

K = ^!_X-^- _ 5 a x 12^" = 8,750,000 foot-pounds.
2 2

EXAMPLE 5.

How far will this kinetic energy drive the train on a hori-
zontal road if we suppose the constant resistance due to friction,
as in Example 3, to be 1000 pounds?

Solution :

Distance = er& = 875000 = 8750 feet.
resistance 1000

When a body free to move is acted upon by a constant
force the space passed over increases as the square of time.
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EXAMPLE 6.

Under the influence of a constant force a body moves five

feet the first second. How far will it move in eight seconds,
friction not considered?

Solution :

Distance = S2 X 5 = 320 feet.

Centers.

Center of gravity is the point in a body about which all its

parts can be balanced. If a body is supported at its center of

gravity the whole body will remain at rest under the action of

gravity.

Center of gyration is a point in a rotating body at which
the whole mass could be concentrated (theoretically) without

altering the resistance, due to the inertia of the body, to angular
acceleration or retardation.

Center of oscillation is a point at which, if the whole matter
of a suspended body was collected, the time of oscillation

would be the same as it is in the actual form of the body.
Center of percussion is a point in a body moving about a

fixed axis at which it may strike an obstacle without communi-
cating the shock to the axis.

Moments.

The measures of tendency to

produce motion about a fixed point
or axis, is called moment. The pro-
duct of the length of a lever and the

force acting on the end of it. tending
to swing it around its center, is called

the moment of force or the statical

moment, and may be expressed in

either foot-pounds or inch-pounds. In Fig. 3, the arm is 18
inches long and the force is 40 pounds; the moment is 18 X 40
= 720 inch-pounds, or l l/2 X 40 = 00 foot-pounds.

Levers.

When a lever is balanced, the distance a,

multiplied by the weight w, is always equal to

the distance b, multiplied by the force F.
In a bent lever (as Fig. 5) it is not the length
of the lever but the distance from the fulcrum
at right angles to the line in which the force is

acting, that must be multiplied. Thus:

a X iv b X F.

In Fig. 6, the force is acting at a right angle
to the lever, and, therefore, the distance a is equal
to the length of the long end of the lever.

FIG. 4.
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The force is applied to more advantage in FIG. e.

Fig. 6 than in Fig. 5. As a rule, the force should

always be applied so as to act at right angles to

the lever.

Radius of Gyration.

The radius of gyration of a rotating body is the distance
from its center of rotation to its center of gyration.

moment oT
Radius of gyration -

^rnass ol rotating body
or, for a plane surface:

Radius of gyration = iyrta* area of surface

The radius of gyration of a round, solid disc, such as a grind-
stone, when rotating on its shaft, is equal to its geometrical
radius multiplied by N/^~or radius multiplied by 0.7071 very
nearly. The radius of gyration of a round disc, if indefinitely
thin and rotating about one of its diameters, is equal to radius
divided by 2. The radius of gyration of a ring, of uniform cross-

section, rotating about its center, such as a rim of a fly-wheel
when rotating on its shaft, is:

Radius of gyration = -y

R Outside radius.

r Inside radius.

The radius of gyration of a hollow circle when rotating
about one of its diameters is :

Radius of gyration = %/
"*" r

' 4
R Outside radius.

r = Inside radius.

Moment of Inertia.

The moment of inertia is a mathematical expression used
in mechanical calculations. It is an expression causing con-
siderable ambiguity, as it is not always used to mean the same
thing.

The least rectangular moment of inertia, as used when
calculating transverse strength of beams, columns, etc., is the
sum of the products of all the elementary areas of cross-sections
into the square of their distances from the axis of rotation.
The axis of rotation is considered to pass through the center
of gravity of the section.
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The least rectangular moment of inertia is always equal
to the area of surface of cross-section, multiplied by the square
of the radius of gyration, when the surface is assumed to rotate
about the neutral axis of the section.

Mathematicians calculate the moment of inertia by means
of the higher mathematics, but it may also be calculated

approximately by dividing the cross-section of the beam into

any convenient number of small strips and multiplying the area
of each strip by the square of its distance from its center-line to

the neutral axis, and the sum of these products is the moment
of inertia, very nearly.

The narrower each strip is taken, the more exact the result
will be

;
but it will always be a trifle too small.

EXAMPLE 1.

Find approximately the rectangular moment of inertia for

a surface (or section of [a beam) 6" X 2", about its axis x y.
(See Fig. 7.)

Divide the surface into narrow strips, as #, #, c, d, e, f^ g,

h, i,j\ k, I, and multiply each strip by the square of its distance
from the neutral axis, xy, and the sum of these products is the
moment of inertia of the surface.

---2^
>\

FIG. 7.

a - 2

b = 2

X (2^)
2 = 7.5625

X (2X)
2 = 5.0625

c 2 X y2 X (IX)
2 = 3.0625

d= 2 X ft X (IX)
2 = 1.5625

e = 2 X ft X ( X)2 = 0.5625

/ 2 X y2 X ( X)2 = 0.0625

^=2 X # X ( X)2 = 0.0625

//: = 2 X # X ( X)2 = 0.5625

2 2 X y2 X (IX)
2 = 1.5625

y= 2 X # X (IX)
2 = 3.0625

k 2 X Yz X (2X)
2 = 5.0625

1= 2 X Yz X (2X)
2 = 7.5625

Moment of inertia = 35^.75 (approximately).
The correct value for the least rectangular moment of

inertia for such a surface is obtained by the formula,

(Depth)
3 X width

and for Fig. 7 will be
X 2 = 36. Thus, the

12 12

approximate rule gives results a trifle too small, but if the sur-
face had been divided into smaller strips, the result would have
been more correct.

Radius of gyration for this surface, when rotating about
the axis x- y, is :

moment of inertia

area
= 1.78 inches.
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EXAMPLE 2.

Find by approximation the rectangular moment of inertia

for a surface, as Fig. 8, (the sectional area of an I beam) about
the axis x y.

When the beam is symmetrical, the neutral axis is at an

equal distance from the upper and lower side, and the moment
of inertia for the upper and lower half of the beam is equal ;

consequently, when calculating momentof inertia for a surface
like Figs. 8 and 7, it is only nec-

essary to calculate the moment
of inertia for half the beam,
and multiply by 2 in order to

get the moment of the whole
beam.

Solution :

a = 3 X >/2 X
/; = 3 X % X
c =1 X Y2 X
d 1 X
e = 1 X
/= 1 X

X (IX)'
2=

X ( K) -2 =
X ( X)2 =

= 11.34375

nr 7.59375

= 1.53125

0.78125

0.28125

0.03125

Moment of inertia = 21.5625

Moment of inertia = 21.5625

for upper half,

for lower half,

for beam (approximately).Moment of inertia = 43.125

Area of cross-section of beam is 10 square inches.

Radius of gyration = ^
43 '125 = 2.07 inches.

EXAMPLE 3.

Find approximately the moment of inertia of a surface, as

Fig. 9 (usual section for cast-iron beams), about the axis, x jr9

passing through the center of gravity of the surface.

In shapes of this kind the axis through the center of gravity
is not at an equal distance from the upper and lower side, but it

can be obtained experimentally by cutting a templet to the
exact shape and size of the surface and balancing it over a
knife's edge, or it maybe calculated by the principle of moments,
as shown in this example. Divide the surfaces into three

rectangles, the upper flange, the web and the lower flange.
Assume some line as the axis, for instance, the line n m, which
is the center line through the lower flange; multiply the area of
each rectangle by the distance of its center of gravity from the
axis n in, and add the products. Divide this sum by the area of
the entire section, and the quotient is the distance between the
center of gravity of the section and the axis n m.
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-2 FIG. 9.

SOLVING FOR CENTER OF GRAVITY I

(AREA.) (DISTANCE.)

Area of upper flange = 2X1 = 2 square inches X 5 =10
Area of web 4X1=4 square inches X 2)4 = 10

Area of lower flange =4X1 = 4 square inches X =0
10 20

and 20 divided by 10 = 2'' which is the distance from the center
of gravity of the lower flange to center of gravity of the section
of the beam, or the neutral axis x y.

SOLVING FOR MOMENT OF INERTIA :

= 10.56250

= 7.56250

= 2.53175

X l/2
X 2

d
e =
f=

j 1

k = 4

/ 4

X &]

X
xxx
XXX (IX)

2 =
X X ( X)2 =

X X ( X)2 =
l

/2 X ( X)2 =
X x (ix)

2 =
JA X

1.53225

0.78125

0.28125

0.03125

0.03125

0.28125

0.78125

6.12500

X (2#)
2 = 10.12500

Moment of inertia of beam = 40.6266 (approximately).

Area of cross-section of beam = 10 square inches

Radius of gyration of beam = - '- = 2.015 inches.
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FIG. 1O.

Polar Moment of Inertia.

The polar moment of inertia is a mathematical expression,
used especially when calculating the torsional strength of

beams, shafting, etc. It is very frequently denoted by the letter

/. The polar moment of inertia is the sum of the products of

each elementary area of the sur-

face multiplied by the square of

its distance from the center of

gravity of surface. Suppose (in

Fig. 10) that the area is divided
into circular rings, as a, b, c, d, e,

f,g,h, /, j\ k, /, ;//, , o,p, and the

area of each ring multiplied by
the square of its distance from
the center, c

;
the sum of all these

products is the polar moment of
inertia. The moment, calculated
this way, will always be a trifle

too small, but the smaller each

ring is taken the more correct the
result will be. If each ring could
be taken infinitely small the result would be correct.

The polar moment of inertia is equal to the square of the
radius of gyration about the geometrical center of the shaft, mul-

tiplied by the area of cross-section of the shaft; therefore, for a

round, solid shaft (as the section shown in Fig. 10), the polar
moment of inertia is always expressed by the formula :

(Radius)
4 X * (Diameter)

4 X v

2
'

32

For a hollow, round shaft, the polar moment of inertia is

expressed by the formula,

D = Outside diameter. d= Inside diameter.

The fundamental principle for the polar moment of inertia

for any shape of section is that, if two rectangular moments of
inertia are taken, one being the least rectangular moment of

inertia, about an axis passing through the center of gravity, and
the other, the least rectangular moment, about an axis perpendic-
ular to the first one, also through the center of gravity, the sum
of those two rectangular moments is equal to the polar moment.

In Fig. 10, the rectangular moment of inertia about the axis

x y will be (diameter)* X TT

and the rectangular moment about

the axis *' y' will also be (c*iameter)4 X-T
;
thus the polarmoment

will be (diameter)
4 x T
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EXAMPLE.

Find the polar moment of inertia and radius of gyration of a
round shaft of 4" diameter.

Solution :

y=
32

4X 3.1416

32

Radius of gyration = ^/
Polar moment of inertia

area of section.

Radius of gyration = 25 - 1328

X 3.1410

Radius of gyration = 1.414 inches.

The term, moment of inertia, as used in calculating stored

energy in revolving bodies, is frequently and certainly more
concisely called moment of rotation, and is a mathematical
expression by which the effect of the whole mass (theoretically)
is transferred to the unit distance from center of rotation. This
term (moment of inertia or moment of rotation) is obtained by
multiplying the square of radius of gyration by mass of moving
body.* In English measure, mass is taken as ^\ v of the weigh t

of the revolving body, and the radius of gyration is always taken
in feet.

EXAMPLE.

A solid disc of cast-iron, rotating about its geometrical
center, is six feet in diameter and of such thickness that it will

weigh 4073.3 pounds. What is its moment of rotation or
moment of inertia?

Radius of gyration = 3 X \/~f and (radius of gyration)
2= 32 X $

Mass- . 126.5
32.2

Moment of rotation = 126.5 X 32 X % = 569.25.

NOTE. In all such problems relating to stored energy in

rotating bodies, the radius of gyration is usually taken in feet

and not in inches, as jn previous examples of moment of inertia,
when relating to strength of material.

* Instead of multiplying the mass of the body by the square of radius of

gyration in feet and calling the product moment of inertia, some writers multiply the

weight of the body by the square of the radius of gyration in feet and call this

product moment of inertia. Thus last expression for moment of inertia, of course,
will have a numerical value of 32.2 times the first one. It does not make any differ-

ence in the result of the calculation whether weight or mass is used, but the same
unit must be adhered to throughout the whole calculation.
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Angular Velocity.

When a body revolves about any axis, the parts furthest

from the axis of rotation move the fastest. The linear 'velocity

at a radius of one footfrom the center of rotation is called the

angular velocity of the body. It is usually reckoned in feet per
second. The angular velocity of any revolving body is ex-

pressed by the formula,
Fa = 2 TT n

V* = Angular velocity in feet per second.

n Number of revolutions per second.

RULE.

Multiply the number of revolutions per second by 6.2832,
and the product is the angular velocity in feet per second.

EXAMPLE.

What is the angular velocity of a fly-wheel making 300
revolutions per minute?

Solution :

300 revolutions per minute = 5 revolutions per second,

therefore, angular velocity = 6.2832 X 5 = 31.416 feet per
second. Angular velocity expresses the velocity at unit dis-

tance from center of rotation and in English measure this unit is

feet. As already stated, the moment of rotation is an expres-
sion for the mass of the rotating body (theoretically) transferred

to unit distance from center of rotation
;
the product of angular

velocity and moment of rotation will, therefore, be the

momentum of the rotating body. The constant resistance

which has to be exerted at unit radius in order to bring the

body to rest in jT seconds will be :

The resistance which has to be exerted at any radius of r
feet to bring the body to rest in T seconds will be :

R Resistance in pounds.
Fa Angular velocity in feet per second.

/= Moment of rotation (also called moment of inertia).

The constant force which has to be exerted at unit radius
in order to bring the body from a state of rest to an angular
velocity Fa in T seconds will be:



300 MECHANICS.

The constant force which has to be exerted at any radius,
r, in order to bring the body from a state of rest to an angular
velocity Fa in T seconds will be :

R = Constant resistance in pounds.
F = Constant force in pounds.
Fa= Angular velocity in feet per second.

/ = Moment of rotation (also called moment of inertia).

r = Radius in feet at which the force is applied.
T ~ Time in seconds that the force is acting.

EXAMPLE.

A fly-wheel making 120 revolutions per minute and weigh-
ing 483 pounds, is brought to rest in two seconds by a resistance

acting at a six-inch radius. The radius of gyration of the fly-
wheel is 1.2 feet. What is the average force exerted against the
resistance during these two seconds ?

Solution :

120 revolutions per minute = 2 revolutions per second.

Angular velocity = 6.2832 X 2 = 12.5664 feet per second.

Moment of rotation = 1.2 X 1.2 X 483- =21.6
32.2

Radius of resistance, 6 inches = 0.5 feet.

* = .12.6664 X 21.6 = 271 .43 pounds .

2 X 0.5

If a rotating body is not brought to rest, but only reduced
in speed to an angular velocity of Fa ,

in T seconds, then the

average force or resistance acting at unit radius is :

F =_ (Fa Fai)7

The average force which has to be exerted at any radius at
r feet to reduce the angular velocity to Fa ,

in /"seconds will be :

F = Fai)/
T r

EXAMPLE.

A fly-wheel on a punching machine weighs 644 pounds, its

radius of gyration is 1^ feet, and it makes at normal speed 300
revolutions per minute, but when the machine .is punching the
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speed is in of a second reduced to a rate of 280 revolutions

per minute. What average force has the fly-wheel communi-
cated to the pitch-line of a 6-inch gear on the fly-wheel shaft ?

Solution :

The mass of the fly-wheel = 644 = 20
32.2

The moment of rotation = (1J^)
2 X 20 = 45

300 revolutions per minute = 5 revolutions per second.

Angular velocity = 5 X 6.2832 = 31.416

280 revolutions per minute = 4% revolutions per second.

Corresponding angular velocity = 4^ X 6.2832 = 29.3216

6-inch diameter of gear = 3-inch radius = % foot.

F _ (31.416 29.3216) X 45

ix X
F = 2.0944 X 45 X 5 X 4 = 1884.96 pounds.

The kinetic energy in foot-pounds stored in the revolving
body may be obtained by the formula :

Fa
2 X = kinetic energy.

2

Decreasing the angular velocity to Fi, the stored-up
energy will also decrease to

W X -.

and the work done by the revolving body will be

(Fa
2 - Fai2)X JL

EXAMPLE 1.

The moment of rotation in a fly-wheel is 1040
;

its angular
velocity is 5 feet per second. What is the stored-up energy in

the wheel ?

Solution :

Kinetic energy = 52 X !-*- = 13,000 foot-pounds.

EXAMPLE 2.

At certain intervals, when machinery is started, the angular
velocity of this fly-wheel is reduced to ^/2 feet per second.
How many foot-pounds of energy has the fly-wheel given up in

helping to drive the machinery ?
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Solution :

x = (5
2

(4>^)
2
) X 520

x (25 20#) X 520

:r = 4% X 520 = 2470 foot-pounds of energy given
out by the fly-wheel during this change of speed.

EXAMPLE 3.

How much stored energy is left in the wheel after its angu-
lar velocity is reduced to 4> feet per second ?

Solution :

K= (Fa)
2 -

X 520 = 20# X 520 = 10,530 foot-pounds.

The same result may be obtained by subtracting, thus :

13,000 2470 = 10,530 foot-pounds.

Centrifugal Force.

The centrifugal force is the force with which a revolving

body tends to depart from its center of motion and fly in a
direction tangent to the path which it describes. The centrip-
etal force is the force by which a revolving body is prevented
from departing from the center of motion. When the centri-

fugal force exceeds the centripetal force the body will move
away from the center of motion, but if the centripetal force ex-

ceeds the centrifugal force, the body will move toward the center

of motion. The centrifugal force in any revolving body is equal
to the mass of the body (see page 286) multiplied by the square
of its velocity, and this product divided by the radius of the

revolving body.

W X v2 m X v2

~
32.2 X r

~
r

cf Centrifugal force in pounds.
r = Radius in feet.

-v = Velocity in feet per second.

W =: Weight of moving body in pounds.

m = Mass of moving body.
F|G - 1 1

EXAMPLE.
The weight #, in Fig. 11, is four pounds, and the length of

the string is two feet; the weight is made to swing around the

center c, three revolutions per second. What is the stress on
the string due to centrifugal force?



MECHANICS. 303

Solution :

The distance from c, to the center of the ball is two feet,

and making three revolutions per second, the velocity will be
2 X 3 X 3.1410 X 2 37.7 feet per second.

cf=
4 X 37 '7 X 37 '7 = 88.2 pounds.

32.2 X 2

In metric measure,

^
9.81 X r

cf= Centrifugal force in kilograms.

r = Radius in meters.

v = Velocity in meters per second.

W= Weight of moving body in kilograms.

EXAMPLE.

Suppose that the weight a, in Fig. 11, is five kilograms,

swinging around the center, c, one revolution per second
;
the

distance from a to c isl}4 meters. What is the stress on the

string due to centrifugal force ?

Solution :

The velocity will be 1.5 X 3.1416 X 2 9.4248 meters per
second.

5 X 9.4248 X 9.4248 = ^ kilograms .

9.81 X iy2

Friction.

The resistance which a body meets with from the surface

on which it moves is called friction. It is called sliding friction

when one body slides on another
;
for instance, a sleigh is pulled

along on ice the friction between the runners of the sleigh and
the ice is sliding friction. It is said to be rolling friction when
one body is rolling on another so that new surfaces continually
are coming into contact; for instance, when a wagon is

pulled
along a road, the friction between the wheels and the road is roll-

ing friction, but the friction between the wheels and their axles

is sliding friction. Sliding friction varies greatly between
different materials, as everybody knows from daily observation.

For instance, a sleigh with iron runners can be pulled with less

effort on ice than on sand, even if the road is ever so smooth.
This is because the friction between iron and ice is a great
deal less than the friction between iron and sand,
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Coefficient of Friction.

The ratio between the force required to overcome the re-

sistance due to friction and the weight of a body sliding along
a horizontal plane is called coefficient of friction.

For instance, in Fig. 12 a

piece of iron weighing 300 Ibs.

rests on a horizontal plate b. A
string fastened to

, goes over a

pulley, c. At the end of the

string is applied a weight, d. If

this weight is increased until

the body a just starts to move
along on b, and the weight is found to be 50 pounds, the co-

efficient of friction will be -
50 = 0.166
300 6

When the weight of a moving body is multiplied by the

coefficient of friction, the product is the force required to keep
the body in motion. Of course, any pressure applied to the

moving body, perpendicular to its line of motion, may be sub-

stituted for its weight. For instance, the frictional resistance

of the slide in a slide-valve engine is not due to the weight of the

valve, but to the unbalanced steam pressure on the valve. In all

cases the rule is :

Multiply the coefficient of friction by the pressure perpen-
dicular to the line of motion, and the product is the force

required to overcome the frictional resistance.

EXAMPLE.
The coefficient of friction is 0.1, and the weight of the

sliding body is 800 pounds. What force is required to slide it

along a horizontal surface ?

Solution :

Force = 800 X 0.1 = 80 pounds.
'

Rolling Friction.

If the body, a, (see Fig. 12) was lifted up from the plane, b,

high enough so that two rollers could be placed between a and

,
it would be found that the body would move with much less

force than 50 pounds because, instead of sliding friction, as in

the first experiment, it would be rolling friction. Suppose it is

found that a commenced to move when the load, d, was four

pounds, then the coefficient of friction for this particular case

would be
4- 0.0133

300 75

In these experiments the whole force at d is not used to

move the load a, as a small part of it is used to move the pulley
at c, but in order to make the principle plain, this loss has not

been considered.
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Axle Friction.

The friction between bearings and shafts is frequently
called axle friction. This, of course, is sliding friction, but

owing to the fact that the surfaces in question are usually very
smooth and well lubricated, the coefficient of friction is smaller
than for ordinary slides.

EXAMPLE 2.

A fly-wheel weighs 24,000 pounds, the diameter of the shaft

is 10 inches, and the coefficient of friction in the bearings is 0.08.

What force must be applied 20 inches from the center in order to

keep the wheel turning ?

Resistance due to friction = 24000 X 0.08 = 1920 pounds.

This resistance is acting at a radius of 5 inches, but the

force is acting at a radius of 20 inches
; therefore, the required

force necessary to overcome friction will be 1- 2()
-*J? 480 pounds.

How much power is absorbed by this frictional resistance if

the wheel is moving 72 revolutions per minute ?

Solution :

72 X 20 X 2 X 3.1416

12

= 753.984 feet, and 753.934 X 480 361,912.32 foot-pounds and

The space moved through by the force is

Horse=Power Absorbed by Friction in Bearings.

The horse-power absorbed by the friction in the bearings
for any shaft may be figured directly by the formula,

HP W/x / x n X 3.1416 X d
S30"00"X 12

This reduces to :

H-P =WXfXnXdX 0.000008

H-P Horse-power absorbed by friction.

W= Load on bearings in pounds.
d= Diameter of shaft in inches.

/=. Coefficient of friction.

n = Number of revolutions per minute.

Calculating the previous example by this formula, we have:

H-P = 24000 X 0.08 X 72 X 10 X 0.000008 = 11.06 horse-

power, which is practically the same as figured before.
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Angle of Friction.

Suppose, instead of using the string and the weight d (see

Fig. 12), that one end of the plane is lifted until a commences to

slide
;
the angle between b and the horizontal line, when a com-

mences to move, is called the angle of friction. The coefficient

of friction may also be calculated from the angle of friction, thus :

If the body commences to slide under an angle of a degrees, the

coefficient of friction will be sm - a
tang. a. Thus, the coefficient

cos. a
of friction is always equal to tangent of the angle of friction.

Rules for Friction.

1. Friction is in direct proportion to the pressure with
which the bodies are bearing against each other.

2. Friction is dependent upon the qualities of the surfaces
of contact.

3. The velocity has, within ordinary limits, no influence on
the value of the coefficient of friction.

4. Sliding friction is greater than rolling friction.

5. Friction offers greater resistance against starting a body
than it does after it is set in motion.

6. The area of surfaces of contact has, within ordinary
limits, no influence upon the value of the coefficient of friction,
but if they are unproportionally large or small the friction will

increase.

TABLE No. 36. Coefficient of Friction.

MATERIALS.
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FIG. 13.

150 Ibs.

Pulley Blocks.

When friction is not considered, the
force and the load will be equal in a single
fixed pulley (as A, Fig. 13).

Thus,. a single fixed pulley does not

accomplish anything further than to change
the direction of motion. In a single movable
pulley (as -at B, Fig. 13), the force is equal
to only half the load; thus, 75 pounds of
force will lift 150 pounds of load, but the
force must act through twice the space that
the load is moved. The tension in any part
of the rope in B is half of the load W\ thus, when the load is

150 pounds the tension in the rope is 75 pounds, when arranged
at B, but it is 150 pounds when arranged! as at A.

Fig. 14 shows a pair of single sheave pulley blocks in

position to pull a car; when the blocks are arranged as at A,
and friction is not consid-

ered, a force of 100 pounds
on the hauling part of the

rope exerts a force of 300

pounds on the post, but only
200 pounds on the car; but,

turning the blocks end for

end, as shown at B, a force
of 100 pounds on the hauling
part of the rope exerts a
force of 300 pounds on the car and 200 pounds on the post.
This is a point well worth remembering when using pulley blocks.

Suppose, for instance, that a man exerted a force of 100

pounds on the hauling part, and that it required 250 pounds
of force to move the car

;
if he used the pulley blocks as

shown at A, his work would be useless, as far as moving the car
is concerned, as he could not do it, but turning his blocks end
for end he could accomplish the desired result. Always re-

member whenever it is possible to have the hauling part of the

rope coming from the movable block and pull in the same
direction as the load is moving.

FIG. 14.

Friction in Pulley Blocks.

In practical work, friction will have some influence, and, to

a certain extent, change these results, because some of the ten-

sion in the rope is lost by friction in each sheave the rope passes
over, therefore the tension in each following part of the rope is

always less than it was in the preceding part. This loss must
be obtained from experiments. In good pulley blocks, having
roller bearings, this loss is probably not more than 0.1, and we
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get a useful effect of 0.9 of the force from one part of the rope
to the next

; therefore, when friction is considered, the useful

effect in the following cases will be :

In single sheave blocks having the hauling part from the
movable block (pulling with the load as in B, Fig. 14).

W=F(\ + 0.9 + 0.92)

W= F X 2.71

In single sheave blocks having the hauling part from the
fixed block (pulling against the load as in A, Fig. 14),

W = F (0.9 + 0.92)

tV=FXl.1\
In double sheave blocks having the hauling part from the

movable block,

0.92 + 0.93 + 0.94)

W=FX 4.1

In double sheave blocks having the hauling part from the

fixed block,

W= F (0.9 + 0.92 + 0.93 + 0.94)

IV=FX 3.1

Differential Pulley Blocks.

In a differential pulley block (see Fig. 15), the

proportion between the force and the weight,
when friction is neglected, is expressed by the

formula :

F_ W X (R r)

2X7?

The actual force required to lift a weight by
such a pulley block is about three times the
theoretical force, as calculated above.

Inclined Plane.

When a weight is pulled upward FIG. 16.

on an inclined plane, as shown in Fig.
16, and the force F is acting parallel
to the plane, the required force for

moving the body will be F W X
sin. a plus friction, and the perpen- *'

dicular pressure P. against the plane
will be IV X cos, .

r_-eos.-a-

FIG. 15.
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EXAMPLE 1.

The weight, W, (Fig. 16) is 100 pounds ;
the angle a is 30.

What force, F, is required to sustain this weight, friction not
considered ?

Solution :

Sin. 30 = 0.5

Thus:
F W X sin. 30 = 100 X 0.5 = 50 pounds.

EXAMPLE 2.

What is the perpendicular pressure under conditions stated
in Example 1 ?

Solution :

P = IV X cos. a = 100 X 0.86603 = 86.6 pounds.
Therefore, the frictional resistance between the sliding

body and the inclined plane will be only what is due to 86.6

pounds pressure ;
in other words, the force required to over-

come friction will be W X f X cos. a.

EXAMPLE 3.

What force is required to move the body mentioned in

Example 1 when friction is also considered, taking coefficient
of friction, F, as 0.15?

Solution :

F = W (sin. a + cos. a X /)
.F = 100X (0. 5 -f- 0.86603X0. 15)= 100 X 0.6290 =62.99 pounds.

NOTE. This is the force required for moving the load.
In order to put it in motion more force must be applied, varying
according to velocity, but after motion is commenced the speed
would be, under these conditions, maintained forever by this

force of 62.99 pounds.
When a load is moving down an inclined plane the force

due to W X sin. a will assist in moving the body, and if the

product W X sin. a exceeds the product W X cos. a X f the

body will slide by itself. For instance, in the body mentioned
in the previous example, the force required to overcome gravity,
regardless of friction, is 50 pounds, and the force required to
overcome friction is 12.99 pounds; thus, if the body should be
let down the plane instead of pulled up, it would have to be
held back with a force of 50 12.99 = 37.01 pounds.

NOTE. When the incline is less than 1 in 35, cosine is so

nearly equal to 1 that it may be neglected, and the force required
to overcome friction may be considered to be the same as on a
level plane. For instance, a horse is pulling a load and ascend-

ing a gradient of 1 in 35
;

if the tractive force required to pull
the load on a level road was 30 pounds and the weight of the
load was 1400 pounds, when ascending the hill, the horse will first
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have to exert a force of 30 pounds, which is all due to friction,
but beside that he must also exert a force of ^ times 1400 40

pounds ; thus the total pull exerted by the horse will be 70

pounds.

Inclined Plane With the Force Acting Parallel to the Base.

When the pressure is continually FIG. 17.

acting in a line parallel to the base of ./ F"

the incline, as F, (see Fig. 17) which
J/?^/'^ *

is frequently the case in mechanical F^* ^2^^ **

movements, as for instance, in screws, /* *f
some kinds of cam motions, etc., it /^ ^ _
will require more force to move the

body than it would if the force was i* Cos a >i

acting parallel to the incline. When
force acts parallel to the base, as in Fig. 17, the force required
to move the body, if friction is not considered, will be :

F WK sm'^ = W X tang, a
cos. a

EXAMPLE 1.

What force is required to move 100 pounds upward an
incline of 30, as in Example 1, excepting that the force is acting

parallel to the base instead of parallel to the incline ?

Solution :

FWY. tang. 30

F W X 100 X 0.57735 = 57.74 pounds.

When both the friction and the weight of the body are con-

sidered, the force required to move the body will be :

/r_ W x s'm.a + (f X cos. a)

(fX sin.rt)

EXAMPLE 2.

What force is required to move 100 pounds upward an in-

cline of 30 (as in Example 1) if the force is acting parallel to

the base line instead of parallel to the incline
;

coefficient of

friction is supposed to be 0.15?

Solution :

F_ 100
sin. 30 + (0.15 X cos. 30)
cos. 30 (0.15 X sin. 30)~

p_ 100 x 0.5 + (0.15 X 0.86603)

0.86603 (0.15 X 0.5)

yr^pox '5 + 0.1277045

0.86603 0.075

.F 100 X 0.7936 79.36 pounds.



MECHANICS. 311

NOTE. From these calculations it is seen that it is more
advantageous to apply the force parallel to the incline than

parallel to the base. When force is applied parallel to the in-

cline :

The force required to overcome gravity 50 pounds.
The force required to overcome friction = 12.99 pounds.

Total force 62.99 pounds.
When the force is acting parallel to the base :

The force required to overcome gravity = 57.74 pounds.
The force required to overcome friction = 21.62 pounds.

Total force = 79.36 pounds.

Screws.

When friction is not considered, the force which may be
exerted by a screw (see Fig. 18) will be :

~~
P R X 2?r

W Weight of the load lifted, or force exerted, if the
screw acts as a press.

F = Acting force.

R = Radius in inches at which the force acts.

P = Pitch of screw in inches.
FIG. 18

i

Regarding friction in

screws, the thread of a screw

may be considered as an in-

clined plane, of which the
cos. is the middle circum-
ference of the screw, the
sin. is the pitch, and the
force is acting parallel to

the base. Hence the fol-

lowing formula :

F Force, acting at a radius of R inches.

W Weight.
P = Pitch of screw in inches.

/ = Coefficient of friction, usually taken as 0.15.

R = Radius in inches at which the force is acting.

r = Middle radius of screw in inches.

d = Middle diameter of screw in inches.
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EXAMPLE.
Find the force required to act on a lever 30 inches long (see

Fig. 18) in order to lift the load W, which is 8000 pounds ? The
screw is ^-inch pitch and IX'inch middle radius

;
coefficient of

friction, 0.15.

Solution :

F= 8000 X -5 + -15 x 3-1416 X 2.5 1.25

2.5 X 3.1416 0.15 X 0.5
>

30

.F=8000 X X 0.0416 == 89.6 pounds.
< .7 lo

When the screw has V thread, the frictional resistance will

be increased as -*- of the angle a (see Fig. 18), or equal to

secant of half the angle of the thread. For United States
standard screws the angle of thread is 60, half the angle is 30,
and secant of 30 is 1.1547, and the formula will, for United
States standard thread, become :

-

dK 1.15//> R
All the letters having the same meaning as in the formulas

for the square-threaded screws.

The following table is calculated for square-threaded screws,
the pitch of the screw being double that of the United States
standard screw of same diameter. The depth of the thread is

equal to its width. We see no good reason why the depth of a
square-threaded screw should be, as frequently given in tech-
nical books, of the pitch of the screw

; fJ, as given in pre-
vious tables, is more convenient, and also gives a little more
wearing surface to the thread. The use of this table is so
plain that it needs very little explanation. In the fourth column
is the area of the outside diameter of the screw. In the fifth

column, the sectional area of the screw at the bottom of the

thread, which may be used in calculating the tensile and crush-

ing strength of the screw. Subtracting the fifth column
from the fourth gives the sixth column, which is the projected
area of one thread

;
this may be used in calculating the allow-

able pressure on the thread, etc. The fourteenth column gives
the tangential force which is required to act with a leverage of
one foot in order to lift one pound by the screw if there was no
friction. The fifteenth column gives the total tangential force

required per pound of load when both load and friction are
included. The sixteenth column gives the difference between
the fourteenth and the fifteenth columns, and is the tangential
force absorbed by friction alone. The coefficient of friction in
both columns is assumed as 0.16. The last four columns in
the table give the load or axial pressure which may be allowed
on the screw corresponding to 200, 400, 600 and 1000 pounds
pressure per square inch of projected area of screw thread
when the length of the nut is twice the diameter of the screw.
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The table on page 313 was calculated by the following
formulas :

When friction is not considered :

Force to balance load = Pjtch
m

m|hes
=

Pitch^inches

When both one pound of load and friction are considered,

p x pitch in inches -f- middle circum. X f \ ^ / middle radius \

^middle circum. pitch in inches X f 12

CALCULATIONS BY TABLE ON PRECEDING PAGE.

EXAMPLE 1.

A jack screw, as shown in

Fig. 19, is 1*4" diameter, three

threads per inch. What tan-

gential force is required to act

with a leverage of 18 inches in

order to lift 5000 pounds ? Co-
efficient of friction in the thread
is assumed as 0.16. Tangen-
tial force absorbed in friction

by the collar at a is assumed
to be equal to force absorbed

by friction in the thread of

the screw, and may, therefore,
be taken from the thirteenth

column in the table.

Solution :

Tangential force per pound at 1 foot radius = 0.0133

Tangential force absorbed by friction in collar = 0.0089

Total force per pound of load at 1 foot radius = 0.0222

The tangential force is acting with 18 inches leverage =
1)4 feetj

and the load is 5000 pounds; therefore, the required
force will be,

F 0.0222 X 5000
74 pounds.

EXAMPLE 2.

A load of 16,000 pounds rests on a slide and is moved back
and forth on a horizontal plane by a screw. The coefficient of
friction between slide and plane is 0.1, and the screw should
not be loaded with more than 400 pounds per square inch of

projected area or thread. Find the suitable diameter of screw.
If a pulley of 20-inch diameter is attached to the end of the

screw, also find the tangential force required to act at the rim
of the pulley in order to turn the screw.
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Solution :

The coefficient of friction for the slide is 0.10, therefore the
axial pressure on the screw will be 16,000 X Vio = 1600 pounds.
The allowable force on a 1 j^-inch screw will be found in the
table to be 1742 pounds ; therefore, select a screw of 1^ inches
diameter and a length of nut of 2^ inches. Assuming the
friction due to the reaction of the screw against its collar and
bearing to be equal to the friction in the thread, and using the

table, we have :

Force per pound at one foot radius = 0.0112

Force absorbed by friction in collar = 0.0074

Total force per pound of load at one foot radius = 0.0186

The leverage of a 20-inch pulley is 10 inches = ^As foot,
and the axial force is 1(500 pounds ; therefore, the tangential
force required at the rim of the pulley will be :

F~ -0186 X 160 =36.7 pounds.
*%

36.7 pounds is really the force required to keep the body in

motion after it is started. To start the body from rest requires
somewhat additional force, depending on the time used in over-

coming its inertia. It is not certain that the friction due to the
reaction of the screw against the collar is equal to the friction

in the screw. It may be more or it may be less
;

this will, to a
certain extent, depend on the size of the collar, and also on the
finish of its surfaces, its means of lubrication, etc. Therefore,
instead of 'assuming this resistance to be equal to the friction of
the thread as found in column 10, it may be calculated for
each individual case by assuming a proper coefficient of friction

and assuming that this friction acts as resistance at a radius

equal to the middle radius of the collar. If a screw is acting
under the circumstances illustrated in Fig. 18, there is no collar

to absorb any of the force by friction ; but whenever the screw
acts against a shoulder this friction must never be forgotten in

calculation. Ball bearings may be used to very good advan-

tage in the thrust collar on a screw. If a screw works a load

continuously up and down, and the weight of the load always
rests on the screw, it is necessary to be very careful and allow

only a limited load on the screw (only a fraction of what is given
in the table), because the pressure of the load always acts on
the same side of the thread, and this is very disadvantageous
for lubrication, as it does not give the oil a good chance to get
onto the surfaces which rub against each other; but when the
screw works a slide with an alternate push and pull, the wear
comes on both sides of the thread, which gives a good chance
for lubrication, and an axial pressure of 400 pounds per square
inch of projected area of bearing surface in the thread will be
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safe, although, under certain circumstances, for instance, in a
mechanism working continuously, such a load may be too much
for the best results with regard to wear.

For anything working like a jack-screw, when the diameter
of the screw is over one inch, the load given in the last column
is perfectly safe. It is impossible to give rules which will suit

all cases
;

the experience and judgment of the designer are the
best guide with regard to the selection of the proper load. It

may seem too much to use 0.16 as the coefficient of friction in
the thread of the screw, but the author believes, from careful

experiments made on common square-thread screws, as used in
commercial machinery, not made for experimental purposes,
but for every-day use, that this coefficient of friction is a safe

average. It is well to remember that the surfaces of the thread
on screws with cast-iron nuts do not always have the best of

finish, and the nut especially is liable to be a little rough when
new

; therefore, this coefficient of friction may be a little greater
than that found in screws in machinery when well lubricated
and with surfaces smoothed down and glazed over from wear.

The Parallelogram of Forces.

A line may be drawn to such FIG. 20.

scale that its length represents a

given force acting in the direction
of the line. Another line is drawn
to the same scale, from the same
point of application, and its length
represents another force acting in

the same direction as this line. If

these two lines are connected by
two auxiliary lines, a parallelogram
is formed and the diagonal of the parallelogram will represent
both the magnitude and the direction of the resulting force.

EXAMPLE.
Let the lines a and b in Fig. 20 represent two forces acting

in the direction of the arrows. Draw the lines to any scale, for

instance, TV inch to a pound ;
if the force represented by a is 64

pounds, the line a will be 64 X TV = 4" long. If the force rep-
resented by b is 50 pounds, this line will be 50 X TV = 3>"
long. Completing the parallelogram by drawing lines c and dy

the diagonal, x, will indicate the magnitude and direction of the

resulting force. Suppose these two forces act in such direc-

tions that when the parallelogram is completed and the diagonal

drawn, it is, by measurement, found to be 4%." long = |f;
then the result of the two forces, a and b, is a force of 76

pounds. In many cases, the result of force and stress in ma-

chinery and structures may very conveniently be obtained in this

way with much less labor than by calculation, and with accuracy
consistent with good, legitimate practice,
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HORSE-POWER.
The term horse-power, as applied in mechanical calcula'

tions, is 33,000 foot-pounds of work performed per minute, or
550 foot-pounds of work per second.

To Calculate the Horse-Power of a Steam Engine.

RULE.

Multiply the area of piston in square inches by the mean
effective steam pressure, and this by the piston speed in feet

per minute, and divide this product by 33,000. The quotient is

the horse-power of the engine.

Formula :

Horse-power = 0.7854 Z* X X 8 , X
33000

D = Diameter of piston in inches.

p = Mean effective steam pressure in pounds per square
inch.

s = Length of stroke in feet.

n = Number of revolutions per minute.

EXAMPLE.

What is the horse-power of a steam engine of the following
dimensions ?

Cylinder, 20 inches diameter
; length of stroke, 3 feet

;

number of revolutions per minute, 75
;
mean effective steam

pressure in cylinder during the stroke, 60 pounds per square
inch.

Horse-power = 20* X -7854 X 2 X 3 X 75 X 60

Horse-power =
33000

314.16 X 450 X 60

33000

Horse-power 257.04

To Calculate the Horse=Power of a Compound or Triple

Expansion Engine.
RULE.
Calculate the mean effective pressure of the steam (accord-

ing to its number of expansions and initial pressure), and cal-

culate the horse-power exactly as if it was a single cylinder
engine of the same size as the size of the last cylinder.

Another way is to take indicator diagrams of each cylinder,
and calculate the power of each cylinder separately.
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To Judge Approximately the Horse=Power which may be

Developed by Any Common Single Cylinder Engine.

RULE.

Square the diameter of the piston in inches and divide

by 2
;

the quotient is the horse-power which the engine may
develop.

NOTE. This rule gives the exact horse-power, if the prod-
uct of the piston speed in feet and the average pressure per
square inch in the cylinder is 21,000.

Horse=Power of Waterfalls.

RULE.

Multiply the quantity of water in cubic feet falling in a
minute by 62.5

;
and multiply this by the height of the fall in

feet; divide this product by 33,000, and the quotient is the

horse-power of the waterfall. Or, multiply the quantity of
water in cubic meters falling in a minute, by 1000, and multiply
this by the height of the fall in meters

;
divide the product by

4500, and the quotient is the horse-power of the waterfall.

NOTE. The above rules give the gross power of the water-

fall, but the useful effect of the fall is a great deal less and will

depend on the construction of the motor. It may be only from
40% to 80% of the natural power of the waterfall.

Animal Power.

Under favorable circumstances, a horse can perform 22,000

foot-pounds of work per minute. For instance, a horse walking
in a circle turning the lever in a so-called horse-power may
exert a pull of 100 pounds, walking at a speed of 220 feet per
minute. For the horse to work to advantage, the diameter of
the circle ought to be at least 25 feet.

Hauling a Load.

The average speed when horses are used in hauling a load
one way and returning without load the other way, allowing for

necessary stoppages, may not be more than 175 feet per minute,
and, in estimating, time must also be allowed for loading and
unloading. Loads may vary from 1000 to 2000 pounds, accord-

ing to the road. Commonly speaking, the force required to

pull a loaded wagon on a good, level road increases in propor-
tion to the load and decreases in proportion to the diameter of
the wheels, and on soft roads it is less with wide tires than with
narrow ones. The idea that a wagon having small wheels
would be easier to pull up-hill than one having larger wheels is

a fallacy.
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Power of Man.

A man may be able to do work at a rate of 4000 foot-

pounds per minute
;
for instance, in turning a crank on a crane

or derrick, a force of 15 pounds may be exerted on a crank, 18
inches long and, with 30 turns per minute, the work would be
4228 foot-pounds per minute.

NOTE. In derricks, pulley blocks, jack-screws, etc., a large
part of the expended power is consumed in overcoming friction.

Power Required to Drive Various Kinds of Machinery.
In the nature of the thing it is impossible from experiments

on one machine to tell exactly what power it takes to run an-
other similar machine, as there are so many different factors

entering into the problem ;
for instance, the speed and feed on

the machine, the hardness of the stock it works on, the
quality

of the tools used, the kind of lubrication, etc. Therefore, such
assertions are only approximations at the best.

16-inch engine lathe, back geared, % horse-power.
26-inch engine lathe, back geared, 1 % horse-power.

Planer, 22" x 22" x 6 feet,
l/2 horse-power.

Planer, 32" x 32" x 10 feet, % horse-power.

Shaping machine, 10-inch stroke, # horse-power.
20-inch drill press, ]/2 horse-power.
26-inch drill press, back gear, boring

a 3-inch hole, using boring bar, 1 horse-power.
Plain milling machines (Lincoln

pattern, No. 2), 1%. horse-power.
Small Universal milling machines, % horse-power.
Circular saws (for wood), 24" di-

ameter (light work), 3> horse-power.
Circular saws (for wood), 36" di-

ameter (light work), 6 horse-power.
Fan blower for cupola, melting four

tons of iron per hour, 10 horse-power.
Fan blower for five blacksmith fires, 1 horse-power.

Drop hammer, 800 pounds, 8 horse-power.

In machine shops and similar places, from 40% to 70% of
the total power required is consumed in running the line shaft-

ing and counter-shafts. An average of from 55% to 60% is

probably the most common ratio.

In exceptionally well-arranged establishments, under favor-
able conditions, in light manufacturing it may be possible that

only 30% of the power is consumed in driving line and counter

shafting, and that 70% is used for actual work.
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SPEED OF MACHINERY.
The peripheral velocity of circular saws ought not to exceed

10,000 feet per minute. Table No. 37 gives the number of revo-

lutions per minute for circular saws of different diameters.

TABLE No. 37-

Diameter of
saw in inches.
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about 40 feet per minute. Oil is used for lubrication. Cast-

iron is milled without oil.

Grindstones.

When grindstones are used to grind steel and iron in manu-

facturing, they work at a surface speed of 2000 to 2500 feet per
minute, but grindstones for common shop use, to grind tools,

chisels, etc., run at much slower speed.

Emery Wheels and Emery Straps.

Emery wheels and straps do good work at a speed of 5000

to 6000 feet per minute, but all such high-speed machinery,
especially grindstones and emery wheels, must be used very

carefully and special attention paid to the strength, so that they
will not break under the stress of centrifugal force.

Calculating Size of Pulleys.

TO FIND SIZE OF PULLEY ON MAIN SHAFT.

Multiply the diameter of pulley on counter-shaft by its

number of revolutions per minute, and divide this product by
the number of revolutions of the main shaft, and the quotient is

the diameter of the pulley on the main shaft.

EXAMPLE.
A main shaft makes 150 revolutions per minute ;

the counter-
shaft has a pulley 9 inches in diameter and is to make 400 revolu-

tions per minute. What size of pulley is required on the main
shaft?

Solution :

Diameter of pulley
40 * 9 = 24 inches.

150

TO FIND SIZE OF PULLEY ON COUNTER-SHAFT.

RULE.

Multiply the diameter of pulley on the main shaft by its

number of revolutions per minute, and divide this product by
the number of revolutions of the counter-shaft; the quotient is

the diameter of the pulley on the counter-shaft.

EXAMPLE.
The pulley on a main shaft is 30 inches in diameter and it

makes 150 revolutions per minute
;
the counter-shaft is to make

450 revolutions per minute. What size of pulley is required ?

Solution :

Diameter of pulley = 36 X 15 = 12 inches.
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TO FIND THE NUMBER OF REVOLUTIONS OF THE COUNTER
SHAFT.

RULE.

Multiply the diameter of pulley on the main shaft by its

number of revolutions per minute and divide this product by
the diameter of pulley on the counter-shaft, and the quotient is

the number of revolutions of the counter-shaft per minute.

EXAMPLE.
The pulley on a main shaft is 24 inches in diameter and

makes 150 revolutions per minute, and the pulley on the counter-

shaft is 15 inches in diameter. How many revolutions per
minute will the counter-shaft make?

Number of revolutions = = 240 revolutions per minute.
15

To Calculate the Speed of Gearing.

In calculating the speed of gearing, use the same rules as

for belting, but take the number of teeth instead of the

diameter.

EXAMPLE.
The back gearing on a lathe consists of a gear and pinion

of 8 pitch, 90 teeth and 32 teeth, and the other gear and pinion
are 10 pitch, 120 teeth and 40 teeth. How many revolutions will

the cone pulley make while the spindle makes one revolution ?

Solution :

Cone pulley makes = 9
^
X 12 = 9 revolutions.

o^ /\ 40

Efficiency of Machinery.

Divide the energy given out by a machine by the energy
put into the same machine

; multiply the quotient by 100, and
the result is the per cent, of efficiency of the machine.

A dynamo requires 15 horse-power, but the electrical power
given out is only 12 horse-power. What is the efficiency?

Solution :

Efficiency = -If- X 100 =
15

A steam engine is to develop 60 horse-power net. What
will be the gross horse-power if the efficiency is 75% ?

Solution :

Gross power = 60 * 10 = 80 horse-power.
<5
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CRANE HOOKS.

3*3

FIG. 3.

Crane hooks, as shown in Figs. 1, 2 and 3, may be designed

by the following formulas :

P = Load in tons.

D = Diameter of iron in inches.

d\y2 D

S Standard screw of diameter r * Vl6 D

When a rectangular iron plate is substituted

for a washer, the bearing surface of the plate

against the wood should at least be equal to

the area of the washer, calculated by the above
formula.

Chain Links.

(See Figure 4.)

D = Diameter of iron.

L = y2 to5Z>.

(For strength of chains, see page 222).

FIG. 4.
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CRANES.

Cranes and derricks are

machines used for raising and
lowering heavy weights. In
its simplest form, a crane con-
sists of three principal mem-
bers : The upright post, the
horizontal jib and the diagonal
brace. (See Fig. 5). The
weight P will produce tensile

stress in the jib, compressive
stress in the brace, and both

compressive and transverse
stress in the post.

Tension in jib = P X x

FIG. 5.

Compression in brace = -
y

. PKkStress in the upper bearing =
e

When the post is held at both ends, as in Fig. 5, it may,
with regard to transverse strength, be considered as a beam of

length t, fastened at one end and loaded at the other with a load

equal to the force
h X P

The compression on the post caused by the load is equal
to />.

The downward pressure on the lower bearing is equal to

the sum of the weight of the crane and the load which it

supports.

Proportions for a Two-Ton Derrick

(Of the construction shown in Fig. 6) .

Pulley blocks should be double-sheave (only single are
shown in the cut). Circumference of manila rope, 3# inches.

Mast, 8X8 inches, 26 feet long. Boom, 7X7 inches, 20 feet long.
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FIG. 6.

Large gear, 72 teeth, 1-

inch circular pitch, 2-inch
face. Small pinion, 12

teeth, 1-inch circular pitch,
2-inch face. Crank shaft.

\ l/2 inches in diameter.

Bearings, 2^ inches long.
Crank, 18 inches long,
Drum, 7 inches in diame-

ter, 24 inches long. Drum-
shaft, 2X inches in di-

ameter. The drum and
large gear are fitted and
keyed to the drum shaft
and also bolted together,

thereby relieving this shaft
from twisting stress.

The radius of the
drum added to the radius
of the rope makes four

inches, and the force is

multiplied five times by
the double-sheave pulley
block; therefore, when Gear

the friction in thecrank
mechanism is not consid-

ered, the force required
on the crank in order to

lift 4400 pounds will be :

F = -_LX_12 X 440
33 pounds, very nearly.

18 X 72 X 5

Thus, when two men are working the derrick (one at each

crank), each man has to exert a force of \Q l/2 pounds,
but, including friction, each man probably exerts a force of 20
to 25 pounds, when the derrick is loaded to its full capacity.

For very rapid work it is necessary to have four men (two
on each winch-handle) to work the derrick, if it is kept loaded
to its maximum capacity, but for ordinary stone work such a
derrick is usually worked by two men. Stones as heavy
as two tons are seldom handled, except where larger derricks
and steam power are used.

When the derrick is to be worked constantly, the limit of
the average stress on the crank handle to be allowed for each
man is 15 pounds. When working an 18-inch crank, 48 turns

per minute, this corresponds to a force of 15 pounds acting
through a space of a little over 220 feet 3300 foot-pounds of
work per minute =

jV horse-power.
When the crank swings in a shorter radius a few more

turns per minute may be expected, but experience indicates that
an 18" radius is the most practical proportion.
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BELTS.

Oak-tanned leather is considered the best for belting. The
so-called "short lap" is cut lengthwise from the middle of the
back of the hide, where it has the most firmness and strength.
Single belting more than three inches in width is about Ty
thick, and weighs 15 to 16 ounces per square foot

j
when less

than three inches in width it is usually -f.," thick and weighs
about 13 ounces to the square foot.

Light double belts, as used for dynamos and other ma-
chinery having pulleys of comparatively small diameter, are
about y thick and weigh about 21 ounces per square foot.

Double "belting, as used for main belts, is a little heavier and
weighs from 25 to 28 ounces per square foot. Belts as heavy as
30 ounces per square foot are frequently used, and are usually
termed "heavy double." Large engine belts are sometimes
made with three thicknesses of leather.

Belts should be soft, pliable and of even thickness. When
a belt is of uneven thickness and has very long joints, so that
it looks as if it was partly single and partly double, it is very
doubtful if it will do good service, for this is a sure sign that the
thin and flimsy parts of the hide have been taken into the stock
in making the belt.

The ultimate tensile strength of leather belting is from 2600
to 4800 pounds per square inch of section. Thus, a leather belt

Ty thick will break at a stress of 500 to 900 pounds per inch of
width.

The lacing of belts will reduce their strength from 50 to 60

per cent.; therefore, when practicable, belts ought to be made
endless by cementing instead of lacing.

A belt will transmit more power, wear better and last

longer, if it is run with the grain side next to the pulley.

Belts should never be tighter than is necessary in order to

transmit the power without undue slipping ;
too tight belts cause

hot bearings, excessive wear and tear, and loss of power in over-

coming friction
; but, on the other hand, it is necessary to have a

belt tight enough to prevent it from slipping on the pulley, be-
cause if a belt slips there is not only a direct loss in velocity, but

the, belt will wear out in a short time
;

it is, therefore, very im-

portant to use belts of such proportions that the power shall be
transmitted with ease.

Belts always run toward the side of the pulley which is

largest in diameter (therefore pulleys are crowned, in order to

keep the belt running straight).

A belt will always run toward the side where the centers of
the shafts are nearest together.

Open belts will cause two shafts to run in the same direction,
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A crossed belt will cause the shafts to run in opposite direc-

tions. If the distance between the shafts is' short, crossed belts

will not work well. A short belt will wear out faster than a

long one.

Very long and heavy belts should be supported by idlers as

well under the slack as under the working side
;

if not, the

weight of a long belt will cause too much stress on itself and
also cause too much pressure on the bearings, as well on the

driver as on the driven shaft. Belts should never, when it can
be avoided, be run vertically, as the weight of the belt always
tends to keep it away from the lower pulley, thereby reducing
its transmitting capacity; the longer the belt the worse this is.

Belts are most effective when they are run in a horizontal direc-

tion and, whenever possible, the lower part of the belt should be
the working part, as the slackness in the upper part, by its

weight, will cause the belt to lay around the pulley for a longer
distance, and this will, in a measure, increase its transmitting

capacity; but if the upper part is the working part, the slackness
in the lower part tends to keep the belt away from the pulleys,
and thereby reduces its transmitting capacity.

Lacing Belts.

Figure 1 shows a good way of lacing belts
;
a is the side run-

ning next to the pulley and b is the outside. Holes should be

punched and not made by an awl, as punched holes are less lia-

ble to tear. The lacing is commenced by putting each end of

the lace through holes 1 and 2 from the side next to pulley, and
then continuing toward the edges, both sides simultaneously,

FIG. 1.

a

w\

JL

making a double stitch at the edges and sewing back again un-

til holes 1 and 2 are reached
; and, lastly, by drawing each end

of the lace through .r and y. Each stitch w'ill be double, except-
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ing- the middle one. The holes x and y, where the ends of the
lacing are finally drawn through for fastening, are made by the
belt awl and should always be made small, and the lacing, if laid
out rightly, always enters these holes from the inside of the belt

;

after it is pulled through, a small cut is made in the lacing on
the outside, which will prevent it from drawing back again, then
the ends are cut off about l/2 " long, as shown in the figure at.r
and j>. It is a bad practice to leave the lace-ends on the inside of
belts, because they will then soon wear off, allowing the joint to

rip.
A 1-inch belt ought to have three lace-holes in each end.

Length of lacing, 12 inches.
A 2-inch belt ought to have three lace-holes in each end.

Length of lacing, 18 inches.
A 3-inch belt ought to have five lace-holes in each end.

Length of lacing, 24 inches.
A 4-inch belt ought to have five lace-holes in each end.

Length of lacing, 32 inches.
A 5-inch belt ought to have seven lace-holes in each end.

Length of lacing, 40 inches.
A 6-inch belt ought to have seven lace-holes in each end.

Length of lacing, 48 inches.
An 8-inch belt ought to have nine lace-holes in each end.

Length of lacing, 60 inches.
A 10-inch belt ought to have eleven lace-holes in each end.

Length of lacing, 72 inches.
A 12-inch belt ought to have thirteen lace-holes in each end.

Length of lacing, 84 inches.

Always have the row having the most holes nearest the end
of the belt.

Cementing Belts.

When belts are cemented together, a 3-inch belt is lapped
four inches and a 4-inch belt 4^ inches. In larger belts the lap
is usually made equal to the width of the belt, but it may be
made even shorter when the width of the belt is over 12 inches.
The two ends are jointed together, so that the thickness is even
with the rest of the belt.

The American Machinist, in answer to Question No. 430,
Dec. 5, 1895, says :

" For leather belts take of common glue and
American isinglass equal parts; place them in a glue pot and
add water sufficient to just cover the whole. Let it soak 10

hours, then,bring the whole to a boiling heat, and add pure tan-
nin until the whole appears like the white of an egg. Applywarm. Buff the grain of the leather where it is to be cemented;
rub the joint surfaces solidly together, let it dry for a few hours,
and the belt will be ready for use. For rubber belts take 16

parts gutta percha, 4 parts India rubber, 2 parts common caulk-
er's pitch, 1 part linseed oil

;
melt together and use hot. This

cement can also be used for leather,"
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Length of Belts.

Small belts, such as 4 inches wide or less, will work well
when the distance between the shafts is from 12 to 15 feet, larger
belts when from 20 to 25 feet, and for large main belts 25 to 30
feet distance is satisfactory.

Horse=Power Transmitted by Belting.

A single belt weighing about 15 ounces per square foot is

capable of transmitting one horse-power per inch of width,
when running at a speed .of 800 feet per minute over pulleys of

proper size, both of equal diameter. As one horse-power is

33,000 foot-pounds of work per minute, this will make the tension
38000

due to the power the belt is transmitting = ^ '= 41 y^ Ibs.

per inch of width, but the total tension in the belt is, of course,
considerably more per inch of width, because the belt must be

tight enough to prevent its slipping on the pulley. For belts

lighter than 15 ounces per square foot it is better to allow 1000

running feet per horse-power per inch of width of belt. For light
double belts weighing 21 ounces per square foot, 600 running
feet per horse-power per inch of width may be allowed. For
double belts weighing 25 ounces per square foot, 500 running
feet per horse-power per inch of width may be allowed. Hence
the following formulas :

For light single belts weighing less than 15 ounces per
square foot,

TT _ v X b JJX 1000

~~Iobo~ ~^~
For single belts weighing 15 to 16 ounces per square foot,

H -v X b HX 800

800"" v

For light double belts weighing about 21 ounces per square
foot,

7,X* //X600
<><)<) v

For double belts weighing about 25 ounces per square foot,

ff -
"" X b t= //X500
500 v

H = Horse-power.
b Width of belt in inches.

v Velocity of belt in feet per minute, which will be di-

ameter of pulley in inches multiplied by 3.1416 and by the num-
ber of revolutions per minute, and the product divided by 12,
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EXAMPLE 1.

A double belt 10 inches wide, weighing 25 ounces per square
foot, runs over 50-inch pulleys, making 240 revolutions per min-
ute. How many horse-power will it properly transmit ?

Solution :

'. . , .
,

50 X 3.1416 X 240
Velocity of belt = -

12
- = 3141.6 ft. per minute.

3141.6 X 10
~

500
-- = ^2'^ norse'P wer -

EXAMPLE 2.

One hundred horse-power is to be transmitted by a double
belt weighing 25 ounces per square foot. The pulleys are 66
inches in diameter and make 150 revolutions per minute. What
is the necessary width of belt ?

Solution :

Pulleys of 66 inches diameter, running 150 revolutions per

minute, will give a belt speed of
15 X 3 '1416 X 66 _

3591.8;

say, 2592 feet per minute.
100 X 500

2592
- 19 - 3 inches; thus, a double belt 20

inches wide will do the work.

EXAMPLE 3.

A light single belt 4 inches wide, weighing 13 ounces per
square foot, runs over pulleys of 36 inches diameter, making 100
revolutions per minute. How many horse-power may be trans-
mitted?

Solution :

36 X 3.1416 X 100
Velocity of belt = -

^
- = 942.48 ft. per minute.

The belt is a light single belt and its transmitting capacity
4 X 942.48

will be, H = -- -- = 3.76992, about 3^ horse-power.

To Calculate Size of Belt for Given Horse-Power when
Diameter of Pulley and Number of Revolutions

of Shaft Are Known.

The following formulas may be used for calculating belt

transmission, and will give results approximately consistent
with previously given rules, but they are more convenient for

use, as the velocity of the belt does not need to be first calculat-

ed, but the velocity of the belt must not exceed the practical
limit.
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This formula will do for either single or double leather belts
with cemented joints (no lacing), of any weight from 12 to 30
ounces per square foot and of any width from one to thirty

inches, when the pulleys are of suitable size to correspond with
the thickness of the belt, and the diameter of both pulleys is

equal or nearly so :

_ d X n X b X w _ HX 50000

~liOOOO~~
d ~ nXbXw

H X 50000 _ H X 50000 H X 50000

H = Horse-power transmitted by the belt.

d Diameter of pulley in inches.
n = Number of revolutions per minute.
b = Width of belt in inches.

iv = Weight of belt in ounces per square foot.

50,000 is constant.

EXAMPLE.
Calculate Example 2 by the above formula.

Solution:
100 X 50000

^ ~
06 X 150~X~25

= 20'^ mcnes
'
wnicn f r aU practical

purposes, is the same as the result when calculated by the other

rule.

Wide and thin belts are unsatisfactory. It is far better

when transmitting power to use double and narrow rather

than single and wide belts. It is a very bad practice to run
at too slow belt speed, and also to use pulleys of too small diam-
eter. The smallest pulley for a light double belt should never
be less than 12" in diameter, for a heavy double belt never less

than 20" in diameter, and for a triple belt the pulley should not

be less than 30" in diameter.

To Calculate Width of Belt when Pulleys are of Unequal
Diameter.

When the pulleys are of different diameters the belt will lay
around the smallest pulley less than ISO degrees, and the trans-

mitting capacity of the belt is correspondingly reduced. The
pressure on the pulley due to the tension of the belt will vary as

the sine of half the angle of contact, and the adhesion of the belt

to the pulley will vary as the pressure; consequently, also, the

transmitting capacity of the belt will vary as the sine of half of

the angle of contact, but it is usually advisable in practice to

allow a little more on the width of the belt than is called for

by this rule. A practical rule is :

First calculate the width of the belt by the above rules

and formulas, as though both pulleys had the same diameter,
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then multiply the result by the following constants, according to

the arc of contact between the belt and the small pulley.

When the arc of contact between the belt and the small

pulley is 90 multiply by 1.60.

100 " "
1.45 140 multiply by 1.15

110 " "
1.35 150 " "

1.10

120 " "
1.25 160 " "

1.06

130 "
1.20 170 " "

1.04

EXAMPLE.
The pulley on a dynamo is 15" in diameter, and it makes

1200 revolutions per minute. The driving pulley is so large that

the belt only lays around the dynamo pulley for a distance of

150 degrees. What is the necessary width of a light double belt,

weighing 21 ounces per square foot, when it takes 40 horse-power
to run the dynamo ?

Solution :

If the arc of contact had been 180 degrees the belt would
40 X 50000

be b =
1200 X 15~X~2T

: : inches wide, but as the arc

of contact is not 180 degrees, but only 150 degrees, this width
is multiplied by the constant 1.10, as given in the preceding
table. Thus, the width of the belt will be 5.3 X 1.1 = 5.83

inches or, practically, a belt six inches wide is required.

When belts are running in a horizontal direction,
and the driven pulley and the driver are of equal diameter
and finish, the belt will always, when overloaded, commence to

slip on the driver, and when pulleys are of unequal size it is

always more favorable for the belt when the driving pulley is

the larger than when vice versa.

To Find the Arc of Contact of Belts.

Make a scale drawing of the pulleys and the belt, and
measure the arc of contact from the drawing by means of a

protractor, or the arc of contact in degrees on the small

pulley for an open belt may be calculated by the formula:

Cosine of half the angle = R ~ r

R = Radius of large pulley in inches.

r = Radius of small pulley in inches.

/ = Distance in inches between centers of the shafts.

EXAMPLE.
The distance between centers of two shafts is 16 feet

;
the

large pulley is 60 inches and the small pulley is 20 inches

in diameter. What is the arc of contact of the belt?
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Solution :

16 feet = 192 inches.

60 inches diameter = 30 inches radius.

20 inches diameter = 10 inches radius.

Cos. of half the angle = (30 10) .104
192

In tables of natural cosine (page 158), the corresponding
angle is found to be 84 degrees, very nearly ; thus, the angle
for arc of contact will be 2 X 84 = 168 degrees on the small

pulley. On the large pulley the arc of contact will be 360
168 = 192 degrees.

For a crossed belt the arc of contact is always the same on
both pulleys, and it may be calculated by the formula :

Cos. of half the angle = j

A* = Radius of large pulley.

r Radius of small pulley.

/ = Distance between centers.

EXAMPLE.
What will be the arc of contact for the belt on the pulleys

in the previous examples if belt is run crossed instead ofopen ?

Solution :

Cosine of half the angle = 30 + 10 = 0.208
;

the
192

corresponding angle will be 180 77 = 103 degrees, and the
arc of contact will be 103 X 2 = 206 degrees.

Pressure on the Bearings Caused by the Belt.

Approximately, the pressure on the bearings caused by the
belt may be considered to be three times the force which the
belt is transmitting. Therefore, the pressure may be calculated

by the formula :

p = 3 X 33000 X H
v

P = Pressure on the bearings due to pull of belt.

H= Number of horse-power transmitted by the belt.

v = Velocity of belt in feet per minute.

EXAMPLE 1.

A belt is transmitting 60 horse-power and its velocity is 900
feet per minute. What is the pressure in the bearings due to

the belt?
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Solution :

900

EXAMPLE 2.

Suppose the diameters of the pulleys are increased until a
belt speed of 3000 feet per minute is obtained. What will then
be the pressure in the bearings caused by the belt when trans-

mitting 60 horse-power ?

Solution :

p = 3 X 33000 X 60 = 1980 ^
3000

By the above examples it is conclusively shown what a

great advantage there is in using pulleys so large in di-

ameter that proper belt speed is obtained. (See velocity of

belts, page 337).
The approximate pressure may also be very conveniently

obtained from the width of the belt, thus: For light single

belts, allow 1000 feet of belt speed per horse-power transmitted

per inch of width of belt. The effective pull in such a belt will

be 33 pounds per inch of width, and the pressure on the bearings
due to the belt will accordingly be 33 X 3 = 99 pounds per inch
of width of belt. For convenience, say 100 pounds pressure in

the bearings per inch of width of such belts. For belts where
800 running feet are allowed per horse-power per inch of width
of belt, this reasoning will give a pressure on the bearing equal
to i23# pounds per inch of belt. For convenience, say 125

pounds pressure in the bearings per inch of width of such
belts. For belts where 600 running feet are allowed per horse-

power per inch of width, the pressure in the bearing is equal
to 165 pounds per inch of width of belt, and where the belt is

so heavy that only 500 feet of belt speed per horse-power per
inch of width is allowed, the pressure in the bearings will be
198 pounds per inch of width. A good, practical rule, which
can very easily be remembered, is, (when belts are in good order

and have the proper size and the proper tension) :

Multiply weight of belt in ounces per square foot by eight
times' the width of the belt in inches, and the product is

approximately the pressure in pounds upon the bearings caused

by the belt.

EXAMPLE.
A belt is calculated with regard to the horse-power it has

to transmit under a given velocity, and found to be 8-inch

double belting, weighing 25 ounces per square foot. What pres-
sure will it cause on the bearings when working at proper
tension ?
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Solution, by the last rule :

1600 pounds.

Solution, by the first rule:

At a speed of 3000 feet per minute such a belt will transmit

X 8

X)
:

formula :

~~500
' ^ horse-power, and calculating the pressure by the

p _ 3 X 33000 X H

p = 3 X 33000 X 48 = 15g4 ^
3000

Both rules give nearly the same result, and one is just as
correct as the other, as all such figuring is nothing more than

approximation at the best. The pressure on the bearings may
be a great deal more than calculated above. Sometimes the

pulleys are roughly made, belts are poor, and consequently the
coefficient of friction between belt and pulley is small, and as
the belt has to be a great deal tighter in order to do the work,
the pressure on the bearing will be greatly increased. Very
frequently, from pure ignorance or carelessness, belts sare made
very much tighter than necessary, and enormous sums of money
may be wasted in this way in large factories, as the steam

engines, at the expense of the coal pile, have to furnish power
not only to do the useful work, but also to overcome all the
friction produced by such over-strained belts, hot bearings, etc.

A belt will transmit more power over a good, smooth pulley
than over a rough one. When pulleys are covered with leather
a belt will transmit about 25% more power than it will when
running over bare iron pulleys, and in transmitting the same
power a much slacker belt may be used, thereby reducing the
friction in the bearings.

Special Arrangement of Belts.

By the use of suitable guide pulleys it is possible to connect
with belts shafts at almost any angle to each other. But
experience is required and care must be exercised to do it suc-

cessfully. When guide pulleys are used in order to change the
direction of a belt, always remember that when the belt is run-

ning the most pressure is thrown on the pulley guiding the

working part of the belt. This pulley is, therefore, very liable

to heat in its bearings, if not designed to have bearing surface

enough and also to have proper means for oiling.
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Fig. 2 shows an arrangement
by which the direction of motion
of two shafts may be reversed,
when the distance between the
shafts is too short for the use of a
crossed belt or when a crossed

belt, for any other reason, cannot
be used.

Suppose pulley A to be the
driver and to run in the direction of the arrow. C and D are

guide pulleys, and the motion of the driven shaft B is in the op-

posite direction to the shaft A. In this case the guide pulley C is

on the working part of the belt and is the one to which^special
attention must be paid in regard to heating. If the direction

of shaft A is reversed, guide pulley D will be on the working
part of the belt.

Crossed Belts.

If the distance between A and B (Fig. 2) had been long

enough, it would have been preferable to reverse the motion of

B by means of a crossed belt, instead of by the arrangement
shown in Fig. 2.

Crossed belts do not work well when running on pulleys
small in diameter as compared to the width of the belt.

Too short distance between the shafts must be avoided.

Wide crossed belts are very unsatisfactory; therefore,

instead of running one wide crossed belt it is preferable to use

two belts, each of half the width, and run them on two separate

pairs of pulleys. Such belts should be of equal thickness, and

the pulleys should be crowned, well finished and of correct

size, so that each belt will do its share of the work.

Quarter=Turn Belts.

Fig. 3 shows a so-called quarter-
turn belt, used to connect two shafts
when running at an angle and laying
in different planes. The principal
point to look out for is to place the

pulleys (as shown in Fig. 3) so that
the belt runs straight from the de-

livering to the receiving side of each

pulley.
The pulleys shown in Fig. 3 are

set right for belts running in the
direction of the arrows. If the mo-
tion is reversed, the belt will run off

the pulleys.

FIG. 3.
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Angle Belts.

The belt arrangement shown in Fig. 4 is usually called an

angle belt, and is used to connect two shafts at an angle. Either

one, A or B, may be the driver, and
there are two guide pulleys (one for F|G - 4 -

,

each part of the belt at C), one of which,
of course, is on the driving part of the
belt.

Crossed belts, quarter-turn belts,
and angle belts must never be wide and
thin

;
much better results are obtained

by narrow, double belts than by wide,

single ones.

Angle belts and quarter-turn belts

are frequently bothersome contrivances.
Their running is sometimes improved
by making a twist in the belt when
joining its ends

;
that is, lacing the flesh side of one end and the

hair side of the other end on the outside. This will prevent one
side of the belt from stretching more than the other.

Slipping of Belts.

Owing to the elasticity of belts, there must always be more
or less slip or

"
creep

"
of the belts on the pulleys. Under

favorable conditions it may be as low as 2%, but frequently the

slip is more. Therefore, if two shafts are connected by belts,
and both should have very nearly the same speed, the diameter
of the driver should be at least 2% larger than the diameter of
the driven pulley. When the driver is comparatively large in

diameter and the driven pulley is small, it is advisable to have
the driver from 2 to 5% over size, in order to get the required
speed.

Tighteners on Belts.

If tighteners are used they should always be placed on the
slack part of the belt.

Velocity of Belts.

Belts are run at almost all velocities from less than 500 to

5000 feet per minute, but good practice indicates that whenever
possible main belts having to transmit quantities of power are
run most economically at a speed of 3000 to 4000 feet per min-
ute. At a higher speed both practice and theory seem to agree
that the loss due to the action of the centrifugal force in the belt

when passing around the pulley, and that the wear and tear is so

great when the speed is much over 4000 feet per minute that
there is not much practical gain in increasing the speed. But,
as a general rule, whenever possible the higher the belt speed
the more economical is the transmission as long as the belt

speed does not exceed the neighborhood of 4000 feet per minute.
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Oiling of Belts.

Belts should be kept soft and pliable and are, therefore,

usually oiled with either neat's-foot oil or castor oil. Too much

piling
is hurtful, but the right amount of oiling at proper times

is very beneficial to the action of the belt and will prolong its

utility to a great extent.

REMARKS. All previous rules for calculating belting are

founded upon good, legitimate practice, but are only offered as

a guide, as no rule can be given which will fit all cases.

For instance, a belt may be amply large to transmit

a given horse-power when running in a horizontal direction,
but it may fail to do the same work if running in a vertical di-

rection. A belt may be large enough to do its work when run-

ning in a vertical direction over pulleys of unequal size with
the large pulley on the lower shaft, but it may fail to do the

same work satisfactorily with the large pulley on the upper shaft

and the small pulley on the lower one.

Leather belts should not be used where it is damp or wet,
but rubber belting will usually give good service in such

places.

For information regarding rubber belts, see manufacturers'

catalogues.

WIRE ROPE TRANSMISSION.

Transmitting power by wire ropes running at a high speed
over grooved pulleys, or "

telodynamic transmission." as it is

also called, is the invention of the brothers Him of Switzerland.
For long distances this mode of transmission is far cheaper than
leather baiting or lines of shafting. Fig. 1 shows a section of a

pulley as u^ed for this kind of transmission
;
a is an elastic fill-

ing, usually made from leather cut out and packed in edgewise.
The groove is made wide, so that the rope will rest entirely

against the packing and not touch the iron. This is different

from transmission with hemp rope, which is made to wedge into

the groove of the pulley.

The diameter of the pulley in the groove, where the wire

rope runs, ought to be at least 150 times the diameter of the

rope ;
the larger the better, so long as the velocity of the rope

does not exceed 5000 feet per minute. The pulleys must run
true and be in balance and in exact line with each other, and the
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shafts must be parallel. The distance between shafts should
never be less than 60 feet and should preferably be from 150 lo

400 feet.* For distances longer than 400 feet, either carrying

pulleys or intermediate jack shafts are generally used, although
spans as long as (500 feet or more have been used, but only when
it is possible to give the rope the proper deflection without its

touching the ground. Usually the speed is from 3000 to 6000

feet per minute. Higher speed would be dangerous from the

stress in cast-iron wheels due to centrifugal force.
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Tightening pulleys should not be used, because if the distance

between centers of shaft is top short to give the proper tightness
to the rope without a tightening pulley, wire rope transmission
is not the form best adapted to the circumstances. Guide

pulleys or idlers should be avoided as much as possible, but
when necessary they should be as carefully made and put up as

the main pulleys, and they ought not to be less than half the

diameter of the main pulley if on the slack part, but of the same
size if they are on the tight part of the rope. Wire rope for

transmission is usually made from the best quality of iron,
has seven wires to a strand and consists of six strands laid

around a hemp core in the center of the rope. The diameter
of the wire rope is from nine to ten times the diameter of each

single wire.

Never use galvanized rope for power transmission, but pre-
serve the rope by painting with heavy coats of linseed oil and

lampblack.

* When distance between shafts is less than 60 feet, leather belts are prefer-
able to wire rope.
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Transmission Capacity of Wire Ropes.

A one-inch rope running 5000 feet per minute is capable of

transmitting 200 horse-power. The transmitting capacity of the

rope is in proportion to the square of its diameter, and the power
transmitted by the rope when the velocity is less than 5000 feet

per minute is practically in proportion to its velocity.* Hence
the formula:

H= d * X FX 20
which reduces to H = 0.04 X d* X V

5000

H= Horse-power transmitted.

d Diameter of rope in inches.

V Velocity of rope in feet per minute.

EXAMPLE.

How many horse-power may be transmitted by a wire rope
y2 inch in diameter running over proper pulleys at a velocity of
2500 feet per minute ?

Solution :

H= 0.04 X l/2 X y2 X 2500 = 25 horse-power.
The pressure on the bearings will not be less than three

times the force transmitted, and may be calculated thus :

Pressure on bearings = S X "Q^e-power X 33000

Velocity in feet per mm.

EXAMPLE.

What will be the least pressure in bearings for a wire rope
transmitting 150 horse-power at a velocity of 5000 feet per
minute ?

Pressure on bearings = 2Jli50_><_??_ 2 = 2970 pounds.
5000

If there is one bearing on each side at an equal distance
from the pulley, the pressure on each bearing will be -2-y-ft

=
1485 pounds. This is the calculated pressure, and represents
what the pressure should be, but it is not certain that this is the

actual pressure. It may be greatly increased by having the rope
too tight, t

* When the velocity of the rope exceeds 6000 feet per minute the stress caused

by centrifugal force when the rope is bending around the pulley considerably
reduces its transmitting capacity. This loss increases very fast above this speed,
because the centrifugal force increases as the square of the velocity. It is very
doubtful if there is practically any gain to run wire ropes at a speed exceeding 6000
feet per minute when wear and tear, loss due to centrifugal force, etc., are

considered.

t Sometimes a pulley is put on the free end of a line of shafting projecting

through the wall and drawn by a wire rope outside the shop; this will do only
when 3 comparatively small amount of power is to be transmitted.
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The tension of the rope may be calculated from its de-

flection when at rest (see Fig. 2), and for a rope running hor-

izontally the usual formula is :

(very nearly)

P = Force in pounds at f.

W= Weight of rope in pounds from d to f, which is half
the span.

b = Half the span in feet.

a = Twice the deflection in feet.

NOTE. (See Fig. 2.) If the length of the line a represents
the weight of the part of the rope from */to/~, the length of the
line .r represents the tension in the rope at/"; therefore the ten-

sion will be as many times the weight as the length of line a is

contained in the line x.

EXAMPLE.
The horizontal distance between two pulleys is 200 feet

;

when standing still the deflection in a wire rope of %"
diameter is 5 feet. What is the tension in the rope ?

Solution :

In Table No. 38 the weight of %" wire rope is given as 1.12

pounds per foot; therefore, 100 feet of %" rope will weigh 112

pounds.

112 X V 1002 + 10* _ 112

10
= 1125.6 pounds.

This is the tension in each part of the rope ;
therefore the

force against the pulley, due to the weight of the rope, is 1125.6

X 2 2251.2 pounds. If this is supported by a bearing on each
side of the pulley, the pressure on each bearing, if both are the

same distance from the pulley, will be 1125.0 pounds.
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The tension is increased by reducing the deflection. For
instance, if the deflection is reduced to 4 feet the tension on the

rope will be,

P = U2 X

p= 112JOOO.S = 1404.2 pounds.

Thus, the tension might be increased to any amount within
the ultimate breaking strength of the rope.

Deflection in Wire Ropes.

When the rope is in motion the deflection will increase on
the slack side and decrease on the tight side

; therefore, if the

span is long the rope may touch the ground when running if the

pulleys are not placed on sufficiently high towers. There is

really nothing else which, within practical limits, determines the

length of the span, which may just as well be 1000 feet, or even

more, providing the proper deflection can be given to the rope
without touching the ground. When possible the lower part of
the rope should be the working side, but in a long span this is

impossible, because, when running, the lower part of the rope
would be tight and the upper part slack, causing the two parts
of the rope to strike together, which must never be allowed.
When the length of the span exceeds 35 times the diameter of
the pulleys it is safest to have the upper part of the rope the

working side and the lower part the slack side.

When the lower part of the rope is the slack side, the least

space allowable for the slack of the rope at the center of the

span will (when the rope is as tight as given in Table No. 38), be
obtained by the formula :

Distance = 0.00015 X (span)
2

but, to allow for contingencies, it is better to have more room.
When the lower side of the rope is the tight side, the rope will

be clear from the ground when running if the space is 0.0001 X
(span)'

2
. The deflection in the rope when standing still which

will produce a pressure on the bearings and give tension enough
to transmit the horse-power given in Table No. 38, may be cal-

culated approximately by the formula :

d 0.00009 X / 2

d = Deflection in feet.

/ = Distance between pulleys in feet. (See Fig. 2).

EXAMPLE.
The distance between the pulleys being 400 feet, find the

greatest allowable deflection in the rope, when standing still, in

order to transmit the horse-power given in Table No. 38.
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Solution :

d = 0.00009 X 400 X 400 14.4 feet.

When the rope is new it is always put on with more
tension than is necessary to transmit the power, because new
rope will stretch. It is, therefore, very important when de-

signing such transmission to calculate the maximum pressure
which the rope will exert on the bearings when put on with the

least deflection ever wanted, and calculate size of bearings and

shafting for pulleys according to this stress, with due considera-

tion not only for strength but also for heat and wear. (See page
360 and page 367.) The correct amount to allow for stretch will

vary with different kinds of rope and also with the tempera-
ture. If a rope is spliced on a warm summer day it must be
made slacker than if it was spliced on a cold winter day, as the

length of the rope will be changed considerably by the difference

in temperature ;
the only guide is practical experience and good

judgment. As a general rule, it may be safe to allow about half

of the deflection as previously calculated when splicing a new
rope, provided that the shafts and bearings are constructed so

as to allow such tension. The rope is always strong enough.
The splicing of the rope should be done by a man ex-

perienced in that kind of work. The splice itself is usually
made at least 240 times the diameter of the rope.

TABLE No. 38.-Giving Suitable-Sized Pulleys for Different Sizes of

Wire Rope, Weight of Rope, Horse-Power which Different Sizes

of Wire Rope Hay Transmit at Different Velocities, the least Stress

at which it may be done and the Least Corresponding Pressure on

the Bearings ; also, the Ultimate Average Strength of Wire Rope.

1
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EXAMPLE.
From a shaft running 150 revolutions per minute 100 horse-

power is to be taken off by a wire rope. The velocity of the rope
is to be 5000 feet per minute. What size of pulley and rope
will be required ?

Solution :

In Table No. 38 it will be found that a ^-inch wire rope, run-

ning at 5000 feet per minute, is capable of transmitting 112 horse-

power ; thus, select a %-inch rope. The diameter of the pulley

will be
i5Q x 3 1416

= 10 '6 feetp In the table
'

lt wil1 be

found that a 10-foot pulley is the smallest advisable to run
with a %-inch wire rope, therefore the pulley 10.6 feet in diame-
ter is within the requirements. The next step is to calculate the

pressure on the bearings. In the table it is found that the least

pressure due to the transmission of 112 horse-power is 1908

pounds. This cannot be used in calculating sizes of shafts and

bearings, but use the maximum pressure, which is calculated ac-

cording to the allowable deflection in the rope, as explained
on page 341. Also consider weight of pulley and shaft, then
calculate size of shaft and bearings, with due consideration to

strength, stiffness, wear, heat, etc. ( See pages 360-367.)

Transmission of Power by Manila Ropes.

Manila ropes are used more or less for transmission of

power. In this country one continuous rope, going back and
forth in separate grooves over the pulleys several times, is fre-

quently used, and a tightening arrangement is placed on one of

the slack parts, which automatically keeps the rope at the

proper tension, regardless of changes due to weather or stretch

due to wear. This arrangement has its advantages in keeping
the rope at more even tension than is possible with the Euro-

pean system, but the disadvantage is that if a break occurs the

transmission is entirely disabled until it is repaired. The Euro-

pean practice is to use several single ropes running in separate

grooves side by side on the same pulley. This has the advan-

tage that if one of the ropes should break it is usually possible
to run undisturbed until there is a chance to repair it, because
it is always advisable to have margin enough in the transmission

capacity of the ropes so that the shaft will run satisfactorily,
even if one rope is taken off. The disadvantage of this system
is the difficulty in keeping all the ropes at equal tightness and

getting them to pull evenly.

Fig. 3 shows the usual shape of pulley used for manila

ropes, which may be made from either wood or iron. The
European practice is to use iron, but whichever material is used
it is very important to have the sides of the grooves care-

fully polished, as the rope rubs on the sides in entering and
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leaving the pulley and will wear out in a short time if the

pulley is left as it comes from the lathe tool. Sand and blow-
holes must also be avoided. The angle of groove is usually 45,
and the rope is made to wedge into it, as shown in Fig. 3.

The usual shape of grooves for guide pulleys is shown in

Fig. 4.
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FIG. 4.

The best speed for ropes is from 1500 to 5000 feet per
minute. When the velocity of the rope exceeds 6000 feet per
minute the loss, due to the centrifugal force, is so great that it

will hardly pay to increase the velocity. The diameter of the

pulleys ought to be at least 50 times the diameter of the rope.

Transmission Capacity of Manila Rope.

A manila rope two inches in diameter, running over

properly-shaped pulleys at a speed of 5000 feet per minute, is

capable of transmitting 50 horse-power. The transmitting
capacity of the rope is in proportion to the square of its

diameter, and the power transmitted by the rope is in propor-
tion to its velocity ; therefore, a one-inch rope, running 5000 feet

per minute, will transmit 12% horse-power, and the formula
will be :

Horse-power = * X * * 12 '5

5000
which reduces to

Horse-power = 0.0025 X d* X v
d = Diameter of rope in inches.

v Velocity of rope in feet per minute.
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EXAMPLE.
What horse-power may be transmitted by a manila rope

\Yz inches in diameter, running over nine-foot pulleys at a speed
of 150 revolutions per minute ?

Solution :

Nine-foot pulleys, running 150 revolutions per minute, give
the rope a velocity of 3.1416 X 9 X 150 = 4241 feet per minute,
and the horse-power transmitted will be :

H-P = 0.0025 X l l/2 X l l/2 X 4241

H-P = 0.0025 X 2# X 4241

H-P = 23.85
; practically, 24 horse-power.

Weight of Manila Rope.
The weight of one foot of manila rope of one-inch diameter is

T
3
o pound ; therefore, the weight per foot of any size may be

calculated approximately by the formula :

W=d* X 0.3

dT Diameter of rope in inches.

W = Weight of rope in pounds per foot.

EXAMPLE.
What is the weight of 360 feet of manila rope of 1^-inch

diameter?

Solution :

Weight of 360 feet = 0.3 X 360 X l l/2 X 1% = 243 pounds.

TABLE No. 39,

Giving the Weight of Rope in Pounds per Foot, Driving Force in

Pounds, and Corresponding Horse=Po\ver Transmitted at Differ*

ent Velocities.

*l
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The transmitted horse-power, as given in Table No. 39, is

calculated by the formula,

H-P = 0.00025 X d* X v

EXAMPLE. (Showing application of Table No. 39.)

What size of rope is required to transmit 50 horse-power
when three independent ropes are used, running over the same
pulley at a velocity of 4000 feet per minute ?

Solution :

It is always advisable to select ropes having sufficient trans-

mitting capacity to continue the transmission undisturbed, even
if one rope breaks

; therefore, select ropes of such size that two
ropes will transmit nearly 25 horse-power each. In Table No.
39 it is found that a manila rope l l/2 inches in diameter, running
4000 feet per minute, will transmit 22.5 horse-power. Thus, this

will be the size of rope to use. The small pulley in the trans-

mission must not be less than five feet in diameter. (See Table
No. 39.)

The pressure on the bearings, due to tension of the rope,
will not exceed three times the driving force, because manila
ropes run comparatively slack, as the adhesion to the pulley
does not depend so much on the tightness of the rope as it does
on its wedging into the groove in the pulley. The driving
force of manila rope of IX -inch diameter is given in the table
as 132 pounds; therefore, the pressure due to one rope will be
3 X 132 = 396 pounds, and the pressure due to three ropes will

be 3 X 396 = 1188 pounds ;
besides this, the weight of the shaft

and the pulley should be considered when calculating the size of
shaft and bearings, with due consideration for strength, stiffness,

wear, heat, etc. (See page 367.)

Preservation of Manila Rope.

The life of the rope is prolonged by slushing once in a
while with tallow mixed with plumbago. The rope will not only
wear on the outside but also within itself, because the fibers

chafe on each other as the rope bends over the pulleys ;
hence

the preference for pulleys of large diameter. If the rope is not

specially prepared for transmission purposes, it ought to be
soaked in a mixture of plumbago and melted tallow when new,
before it is used. There is on the market manila rope especial-

ly manufactured for transmission purposes, having the fibers

treated with plumbago and tallow, and, whenever obtainable,
such rope should be used, as it will last much longer and give
much better service than ordinary manila rope.
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PULLEYS.
The following empirical rule gives arms of nice shape and

good proportions :

When the diameter of the pulley is at least 4 times its face,
use 6 arms for pulleys from 12 to 60 inches. For a 12-inch pulley
make the arms 1 X inches wide at the hub and add T̂ of an inch
to the width of the arm for each inch the pulley is increased in

diameter.
Formula : * D 12

i i y
16

h = Width of arm in inches projected to center of hub.

(See Fig. 1.)

D = Diameter of pulley in inches.

EXAMPLE.
Find width of arms at the hub for a 60-inch pulley.

Solution :

60 12
h =

^g + IX 4X inches.

The width of the arm at the rim should be three-fourths of
the width at the hub, and the thickness should be one-half of the
width for arms with segmental sections (see^x Fig. 1) and four-
tenths of the width for elliptical form of section

; (see x Fig. 1.)
For double belts multiply these diameters by 1.3.

Large, well-round-
ed fillets must be used
where the rim and arms
meet at #2. (See Fig. 1.)

For very wide pulleys
it is always better to use
two sets of arms. For
small pulleys, under 12
inches in diameter, 4
arms are better than 0,

as they are less liable to

break while being cast.

Using 4 arms, the width
of the arm at h, in a

pulley 10 inches in di-

ameter, may be 1 T\ in.
;

pulley 8 inches in di-

ameter, 1 1

/$ in.
; pulley 6

inches in diameter, 1

inch
;
and the thickness

and taper as given
above. When pulley arms crack from shrinkage in casting, the

trouble may usually 'be prevented by either increasing the thick-

ness of the rim of the pattern or by reducing the size of the hub,

FIG. 1

m
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or both
;

it will also help the matter to remove the core and the
sand from the hub as soon as possible after the pulley is cast,
and leave the casting in the sand undisturbed until cool.

When the diameter of the shaft is less than 4 inches, the di-

ameter of the hub is usually made twice the diameter of the
shaft. When shafts are over 4 inches in diameter the hub of
the pulley is usually made a little less than twice the diameter
of the shaft. The length of the hub may be made three-fourths

the width of the rim, for a tight pulley, and five-fourths the width
of the rim for a loose pulley.

The thickness of rim, measured at the edge, is usually :

For pulleys under 12 inches in diameter, T
3
g inch.

For pulleys from 12 to 24 inches in diameter, # inch.

For pulleys from 24 to 36 inches in diameter, ^ inch.

For pulleys from 36 to 48 inches in diameter, A inch.

For pulleys from 48 to 60 inches in diameter, y2 inch.

For double belts increase the thickness of the rim one-

eighth of an inch.

The thickness in the middle may be about \% times the

thickness at the edge.

Pulleys which are to run at high velocity ought to be turned
both inside and outside, in order to be in good balance. Pulleys
to go on line shafts ought to be made in halves, so that they can
be put on and taken off the shaft with convenience. Pulleys on
which the belts are to be shifted must be a little over twice as
wide as the belt, and they should be turned straight across the
face on the outside. Pulleys on which the belts are not to be
shifted ought to be only 1.2 times as wide as the belt, and they
ought to be turned curved across the face; that is, the outside
diameter of the pulley must be largest at the middle. Most fre-

quently a straight taper is turned each way from the middle to

the edges, and the following proportions will give good results :

Pulleys under six inches wide, |^-inch taper per foot.

Pulleys from 6 to 12 inches wide, J^-inch taper per foot.

Pulleys from 12 to 18 inches wide, 24-inch taper per foot.

When pulleys are turned in a lathe where the tail-stock can be
set over, a taper of ^-inch per foot is practically obtained when
the tail-stock is set over j^-inch per 1 inch lengtn of arbor. For
instance, if a crown pulley is to be turned %-inch per foot, and
the arbor is 12 inches long, the back center must be set over \\= ^5-inch. If the arbor had been 14 inches long the back cen-
ter would have had to be set over f = ^-inch to obtain the
same result.

All pulleys must be well rounded on the edges. They must
also be carefully balanced, especially if they are to run at high
speed.

Loose pulleys ought to have longer hubs than tight pulleys.

They ought never to have hubs shorter than the width of the,

rim, and must always be provided with means for oiling.
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Stepped Pulleys.

Stepped pulleys, or cone pulleys, as they are usually called,

may be considered as several pulleys of different diameters cast

together. Their proportions and sizes are calculated to get the

required changes of speed, and the belt must have practically
the same tension on all the different changes.

Frequently it is required to have both pulleys of the same size,

in order that they may be cast from the same pattern. In such
cases the shaft of constant speed (usually a counter-shaft) must
be run at a velocity equal to the square root of the product
of the fastest and the slowest speed of the shaft of changeable
speed (which usually is a spindle in a lathe or a similar machine).
For convenience, in the following formulas we will call the

driver, which is the shaft of constant speed, a counter-shaft, and
the shaft of changeable speed, a spindle.

The number of revolutions of the counter-shaft per minute
is calculated by the formula :

N = Number of revolutions of the counter-shaft per
minute.

F = Number of revolutions of the spindle per minute,
when run at its fastest speed.

6" = Number of revolutions of the spindle per minute, when
run at its slowest speed.

The diameter of either the largest or the smallest step is

then obtained by choosing one diameter and calculating the

other by the formula :

D d X N d D X *
~n N

D = Diameter of largest step on spindle.
d = Diameter of smallest step on counter-shaft.

n = Slowest number of revolutions of the spindle per
minute.N = Revolutions of the counter-shaft per minute.

The intermediate steps may be obtained by drawing a

straight line, a b, and constructing steps within the angle
formed by the line a b and the center line (see Fig. 2). The sum
of the diameters of the two opposite steps will then be equal,
and this is the way in which stepped pulleys may primarily be laid

out, whether both pulleys are of the same size or not. After-
wards the diameters will have to be slightly changed, in order
to give the belt the same tension on any of the different steps,
as explained further on.

EXAMPLE 1.

A pair of stepped pulleys, for four changes of speed, both

pulleys of the same size, are to be used on a milling machine
spindle and its counter, the fastest speed to be 250 revolutions,
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and the slowest speed 00 revolutions, per minute. The diam-
eter of the largest step is 15 inches. What should be the speed
of the counter-shaft, and what is the diameter of each inter-

mediate step ?

Solution :

Speed of counter = V'ltf) X 250 = 150 revolutions per
minute.

The diameter of the largest step is 15".

90 X 15
Diameter of smallest step = ^ = 9 inches.

By the method as shown in Fig. 2, the intermediate diam-
eters are found to be 11" and 13". The speed of spindle will be :

First speed = 15 X 15 = 250 revolutions per minute.
9

150 X 13
Second speed = --

^
-- = 177 revolutions per minute.

Third speed = 15 11 127 revolutions per minute.
13

Fourth speed = -
'

* = 90 revolutions per minute.
15

These calculations are only correct for speed, and must be
slightly modified in order to get the proper tension on the belt,
if an open belt is used

;
for a crossed belt the tension is cor-

rect if the pulleys are laid out in this manner. (See page 352.)

When the number of revolutions per minute for each change
of speed is given, the diameters of the intermediate steps may,
with regard to speed, be calculated by the following formulas :

DI= Diameter of any step on spindle.
D = Diameter of largest step on spindle.
d = Diameter of smallest step on counter-shaft.
n =- Revolutions of spindle per minute, corresponding to

the diameter D\.N = Revolutions of counter-shaft per minute.

After the diameter of any step on the spindle is calculated,
the diameter of the corresponding step on the counter-shaft may
be obtained by subtracting the diameter of the step on the spin-
dle from the value of (D + d).

EXAMPLE 2.

A lathe spindle is required to run at 40, 120 and 360 revolu-
tions per minute, and the diameter of the largest step is 18
inches. Calculate speed of counter-shaft and diameter of steps.
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Solution :

Speed of counter-shaft will be:

N= \/ F X -S
1 =V 360 X 40 = 120 revolutions per minute.

Diameter of smallest step on spindle will be :

18 X 40

120
= 6 inches.

Diameter of the intermediate step on spindle will be:

Z>i = (18 + 6)_XJL20 _ 12 inches<
(120 + 120)

Thus, the sizes of each step, with regard to speed, should
be 6, 12 and 18 inches, but with regard to belt tension these

sizes have to be slightly altered.

To Correct the Diameter of Stepped Pulleys so that the

Belt will have the Same Tension on all the Steps.

At first thought, it may seem as if the belt would have

equal tension on each step when the sum of the diameters of

the largest and the smallest steps of the two pulleys are equal
to the sum of the diameters of the two middle steps ;

but this is

only correct if a crossed belt is used on the pulleys. For a two-

step pulley it is also correct for either open or crossed belt, if

both pulleys are of the same size
;
but if the pulleys are of dif-

ferent sizes, the diameter of the steps must be calculated for

two steps as well as if there were more.
It is evident from Fig. 2, that an open belt will be tighter

over the largest and the smallest pulleys than it would be over
the two middle pulleys, as the part a of the belt runs parallel to

the center line and will be as long as the distance between

centers, but the inclined line, b, will be as much larger as the
distance dto e. (See Fig. 2).

A convenient way to solve this is : First calculate pulleys
that will give the required speed, and of such sizes that the sum
of the diameters of the two steps which are to work together
will be equal, then calculate the length of the belt when laying
on the largest and smallest steps, with a given distance between
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the centers of the shafts. Then, by calculating the same way,
try the belt on the other steps, which will then have to be cor-

rected until the belt will fit each of the different pairs of steps.
The length of the belt can be most conveniently calculated by

the geometrical rule that the square of the perpendicular added
to the square of the base is equal to the square of the hypothe-
nuse. (See page 150.) The space between the centers of the
shafts is considered as the base, and the difference in radius of
the two corresponding steps is considered as the perpendicular,
which are both known, and from this the length of the line b is

calculated (see Fig. 2), which is considered as the hypothenuse.
Assuming that the belt covers half the circumference of both

pulleys, the length of the belt can be found by adding half

the circumference of each step to twice the length of b.

NOTE. This mode of calculation is not exactly correct, but
is very well within practical requirements.

The length of half the circumference of the pulley is most
conveniently obtained by the use of Table No. 24, page 209, by
dividing the circumference of the corresponding circle by 2.

A practical rule is simply to calculate the distance from d
to *, and for each Tyinch the belt is found to be too [long, add

aVinch to the diameter of the corresponding step on each pulley.
For instance, the stepped pulleys in Example No. 2 are cal-

culated so that they will give the required speed to the machinery
when the three steps are 18, 12 and 6 inches in diameter and
both pulleys are equal. Assume the distance between centers
to be 5 feet. What will be the diameter of the middle step, after

it has been corrected so that it will give the right tension to the
belt?

Solution :

Five feet = 60 inches, and the difference between the
radius of the corresponding steps is 9 3 = 6 inches. The
distance from e to d will be :

x \/602 + 62 60 =V 3636 60 = 60.3 60 = 0.3

Thus, each part of the belt will be 0.3" too long, or the whole
belt will be 0.6" too long when on the middle step ; therefore, in

order to make up for this, the middle step on each pulley must
be increased /.," = fY' in diameter. Thus, the middle step on
each pulley will be 12T

3
ff
inches instead of 12 inches in diameter

;

but, as both pulleys are increased, this does not change the
relative speed of the shafts when the belt is on the middle step,
and the similarity of the pulleys is also preserved, which will

admit that both may be cast from the same pattern.
The square root of 3636 may be obtained by use of log-

arithms (see page 71), thus :

. log. 3636 3.560624
Log. X/3636 = -^ =

%
= 1-780312

and the number corresponding to this logarithm is 60.3.
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Stepped Pulleys for Back =Geared Lathes.

On machinery having changeable reducing gearing, such as

lathes, milling machines, etc., it is frequently the aim of the

designer to arrange the speed of the counter and the diameters
of the different steps of the cone pulley in such proportions that

the same ratio of speed will be maintained on each step and also

from the slowest speed, with back gears out, to the fastest

speed, with back gears in. When the ratio of the back gearing
is given, the ratio of speed for each step will be obtained by the

formula :

m
s =V^

S = Ratio of speed for each step.
m = Number of changes of speed on the cone pulley.
7? = Reduction of speed by the back gearing.

EXAMPLE.
The back gearing of a lathe reduces its speed 8 times. The

cone pulley has 5 changes of speed. The largest diameter of

cone pulley on the spindle is 10> inches. The cone pulley on
the counter-shaft is to be of the same size as the cone pulley on
the spindle, and an even ratio of speed is to be maintained

throughout the whole range of the ten changes of speed.
The slowest speed, when back gears are in, is 6 revolutions per.
minute. Calculate the speed of the counter-shaft, the speed of

the spindle for each change, and the diameter of each step on
the cone pulley of the spindle.

Solution :

The ratio of speed for each step will be :.

. /7T Ql = ! =: 0.18062V 8 5 5

The corresponding number is 1.516.

With back gears in, the speed of spindle :

On first cone is 6 revolutions per minute.

On second cone is 6 X 1.516 = 9 revolutions per minute.

On third cone is 9 X 1.516 = 14 revolutions per minute.

On fourth cone is 14 X 1.516 = 21 revolutions per minute.

On fifth cone is 21 X 1.516 = 32 revolutions per minute.

With back gears out, speed of spindle :

On first cone will be 6X8= 48 revolutions per minute.

On second cone will be 9X8= 72 revolutions per minute.

On third cone will be 14 X 8 = 112 revolutions per minute.

On fourth cone will be 21 X 8 = 168 revolutions per minute.

On fifth cone will be 32 X 8 = 256 revolutions per minute.



PULLEYS.

The speed of the counter-shaft will be:

N=V 48 X 256 = 112 revolutions per minute.

As the speed of main lines in factories usually runs at some
multiple of 10, we may, for convenience in getting even-sized

pulleys for connections between counter and main shaft, in

practical work, decide to run the counter-shaft 110 revolutions

per minute.

(When a pair of cone pulleys has an uneven number of

steps, and are cast from the same pattern, the speed of the
counter should be equal to the speed of the machine when the
belt is run on the middle step).

The diameter of the largest step of the cone pulley on the

spindle is 10)4 inches. The corresponding step on the counter
1054 X 48

will be
~iJ(j

= 4.581"; practically, 4%" diameter.

The largest and smallest step on the counter-shaft will also
be 10^ and 4^ inches in diameter.

Any of the intermediate steps on the spindle may be cal-

culated by the formula :

- (P + <*) x N

= 9 .065 .

practically,

= 5.932
; practically, 6 in.

Thus, assuming the counter-shaft to run 110 revolutions per
minute, the speed of the spindle, with back gears out, on the five

different steps will be :

X 10^ 265 revolutions per minute.
4/

110 X 9 = 165 revolutions per minute.
6

110 X _ 110 revoiutions per minute.

110 X 6 = 73 revolutions per minute.

* ^ = 47 revolutions per minute.
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When the back gears are in action the speed will be :

Q/K
fr = 33> revolutions per minute.
8

= 20>6 revolutions per minute.

_J_ = 13% revolutions per minute.
8
rq

_!_ = 9^6 revolutions per minute.
8

JZ = 5 #5 revolutions per minute.
8

These speeds are all within the practical requirements of
the problem, and now the next operation is to modify the diam-
eters slightly in order to get proper tension on the belt. (See
page 352.)

FLY-WHEELS.

Fly-wheels are used to regulate the motion in machinery by
storing up energy during increasing velocity, and giving out

energy during decreasing velocity. Fly-wheels cannot perform
either of these functions without a corresponding change in

velocity. The rim of the wheel may be very heavy and moving
at a high velocity, the change in speed may be small and hardly
perceptible if the energy absorbed and given out is small, but
there must always be a change in velocity to enable a fly-wheel
to act. The common expression of gaining power by a heavy
fly-wheel is very misleading, to say the least. There is no
power gained by a fly-wheel but, on the contrary, considerable

power is absorbed by friction in the bearings when a shaft is

loaded with a heavy fly-wheel, (see example in calculating fric-

tion, page 305). Nevertheless, a fly-wheel performs a very use-

ful function in machinery by storing up energy when the supply
exceeds the demand and giving it out at the time it is needed to

do the work. ( For momentum of fly-wheels see example, page
300. For kinetic energy, see example, page 301 ).

Weight of Rim of a FIy=Wheel.

The weight of a rim of a cast-iron fly-wheel will be :

Wd^y. 0.7854 X D X 3.1416 X 0.26
;
this reduces to,W=D X d2 X 0.64

D = Middle diameter of rim in inches.

d Diameter of section of rim in inches.

W= Weight in pounds.
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EXAMPLE.
A round rim of a fly-wheel is 4 inches in diameter and the

middle diameter of the -wheel is 36 inches. What is the weight
of the rim ?

Solution:
^=36X4X4X 0.64 = 369 pounds.

For a rim of rectangular section the weight will be :

W Width X thickness X D X 3.1416 X 0.26

IV = Width X thickness X D X 0.816

EXAMPLE.
The width of the rim is six inches, the thickness is two

inches, and the middle diameter of the rim is 48 inches. What
is the weight of the rim ?

Solution :W 2 X 6 X 48 X 0.816 = 470 pounds.

Centrifugal Force in Fly-Wheels and Pulleys.

Pulleys are not only liable to be broken by the stress due to

the action of the driving belt, but in fast-running pulleys and
fly-wheels the stress due to centrifugal force is far more dan-

gerous. This stress increases as the square of the velocity and
directly as the weight, therefore there is a limit to the velocity
at which fly-wheels and pulleys can be run with safety.

Generally speaking, increasing the thickness of the rim
does not increase its strength, because the total tensile strength,
the total weight of the rim, and, consequently, also the

centrifugal force, increase in the same proportion; but it has

great influence upon the strength of the wheel to have the ma-
terial in the rim distributed to the best advantage. At the same
time it is very important to construct the rim and arms of such

proportions that the initial stress due to uneven cooling in the

foundry, is avoided.
The common formula is :

Mass X (velocity)
2

Centrifugal force = - ----
-v.
----

n X r X 2 KMa^ Weight
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W= Weight of revolving body in pounds.
n = Number of revolutions per minute.
r Middle radius of pulley rim in feet.

Thus, for any body 'whose center of gravity swings in a
circle of onefoot radius, at a speed ofone revolution per min-
ute, the centrifugal force will be 0.00034 times the weight of
the body.

EXAMPLE.
The rim of a fly-wheel is five feet in middle radius and

weighs 8000 pounds. It makes 75 revolutions per minute.
What is the stress due to centrifugal force?

Solution :

Centrifugal force = 8000 X 752 X 5 X 0.00034 = 76500 pounds.

PIG 3> This is the total centrifugal force
~ i *w tending to burst the rim, (see arrows in

/\ A /\ Fig. 3); the force tending to> tear the

Xs^ ^A rim asunder in any two opposite points

a._L* 1-6 as a, b, is
3 ^Q x 2

= 12175 pounds.

\+ ^J The next question is : Has the sec-
X * \7 tion of the rim tensile strength enough to

^<JL,^ resist this stress with safety? If not,
either decrease the rim speed or make the rim of material having
more tensile strength.

The centrifugal force for the same number of revolutions

increases as the radius, therefore the average centrifugal force

acting in the arms is only about half of the centrifugal force

acting in the rim, and as the stretch is in proportion to the stress,
the rim tends to stretch more than the arms, and, consequently,
it can not yield freely to the action of the centrifugal force,
but is to a certain extent held back at the junction with the
arms. This action is shown in an exaggerated form at a, Fig. 4.

In regard to this action, the part of the rim between the
arms may be considered
as a beam fastened at both
ends and uniformly loaded

throughout its whole length
equal to that amount of cen-

trifugal force in the rim
which is resisted by the
arms

; therefore, the rims of

large pulleys should always
be ribbed on the inside.

(See cross-section of rim at

X, Fig. 4).

Another bad feature frequently seen in pulleys is the
counter-balance. (See b, Fig. 4). This little piece itself, weigh-
ing probably only five pounds, holds the pulley neatly in balance

FIG 4 _
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and is very innocent as long as the pulley is standing still, but

imagine what stress it will produce on the rim of a 6-foot pulley
running at a rim speed of 80 feet per second.

Solution :

c f= = 331 pounds.
3 X 32.2

Thus, when that pulley is running at a speed of 80 feet per
second this counter-balance of five pounds will produce the
same stress as if it was loaded with 331 pounds when standing
still; therefore, it is evident how important it is to turn fast-

running pulleys both inside and outside in order to reduce

counter-balancing to the least possible amount.
The danger of the rim deflecting or breaking from the stress

due to the resistance from the arms (as shown in Fig. 4), can be
avoided by running ribs on the inside of the rim, and the danger
caused by counter-balancing can be entirely eliminated by mak-
ing the pulley balance without adding any balancing pieces.

Thus, one danger of breaking is avoided by proper designing
and the other by good workmanship.

The direct action of the centrifugal force on the rim is cal-

culated by the formula,

cf iu X n2 X r X 0.0034,

and the weight of the rim of a cast-iron fly-wheel having one

square inch of sectional area and a radius of one foot will be
2 X TT X 12 X 0.26 pounds, and a ring of r-foot radius will

weigh ;- X 2 X TT X 12 X 0.26 pounds. As already stated, the

centrifugal force increases as the square of the velocity ;
that

is, if the number of revolutions is doubled the centrifugal force
is increased four times

;
thus is the dangerous limit approached

very rapidly under increased speed, and in order to prevent
accident, if the speed should happen to increase, it is necessary
always to use a high factor of safety in such calculations.

Thus, using 15 as a factor of safety* and assuming the tensile

strength of cast-iron as 12,000t pounds per square inch, the
stress in each cross-section at a and b must not exceed 800

pounds per square inch. The allowable centrifugal force in

both sections of the rim is 2 X 800 pounds, and inserting those
values and solving for n the greatest number of revolutions
allowable for a cast-iron fly-wheel will be :

2 TT X 12 X 0.26 X r X n 2 X r X 0.000340568 = 800 X 2

n* r* = 752891

n r = \/752891

n = 868
r = 868

r n

* 15 as factor of safety with regard to strength, is only yl5 = 3.873, or
ICES than 4, as factor of safety with regard to speed.

t This tensile strength for cast-iron may seem very low, but it is dangerous to
assume more, because ot inside stress in arms or rim already, due to uneven cool-

ing of the casting in the foundry.
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Transposing this to diameter in inches, the constant will be
24 X 868 20832. The formula will be :

Number of revolutions per minute =
Diameter in inches.

Diameter in inches = 20832

Revolutions per minute.

Rule for Calculating Safe Speed.
Divide 20832 by the diameter of the fly-wheel in inches, and

the quotient is the allowable number of revolutions per minute
at which a well-constructed fly-wheel may be run with safety.

Rule for Calculating Safe Diameter.
Divide 20832 by the number of revolutions per minute, and

the quotient is the safe diameter in inches for a well-constructed

fly-wheel.

SHAFTING.
When calculating strength of shafting, both transverse and

torsional stress should be considered. Transverse stress is

produced by the weight of the shaft itself, the pulleys and the
tension of the belts, the effect of which is very severe if the
distance between the hangers is too long. Torsional stress is

produced by the power which the shaft transmits. Usually the
distance between the hangers is made so short that the torsional
stress on a shaft is the greater. For transverse stress the shaft

may be considered as a round beam, supported under the ends and
loaded somewhere between supports. According to Table No.
30 the transverse stress which will destroy a wrought iron beam
one inch square, fastened at one end and loaded at the other, is

600 pounds ;
the strength of a round beam of the same diameter

is (see page 251) 0.6 that of a square beam. When the beam
is supported under both ends and loaded in the middle, its

breaking load will increase four times
; therefore, the constant,

c, will be 600 X 4 X0.6 1440. Using 10 as factor of safety,
the formula for transverse strength of a wrought iron shaft will

be:

L _ 144 Z> 3 Trr_ 144 Z>3

w
D = Diameter of shaft in inches.
L = Distance between hangers in feet.W= Transverse load in pounds, supposed to be at the

middle, between the hangers.
144 = Constant for wrought iron, and 100 to 120 may be

used as constant for cast-iron, with 10 as factor of safety for
transverse strength^
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Formula 1, expressed as a rule, will be:

Multiply the distance between hangers, measured in feet,

by the transverse load in pounds ;
divide this product by 144, and

the cube root of the quotient will be the diameter of the shaft
in inches, calculated with 10 as factor of safety for transverse

strength.

Shaft not Loaded at the Middle Between the Hangers.

When a shaft is not loaded at the middle of the span, but
somewhere toward one of the hangers, it will carry a heavier

load, with the same degree of safety, than it would if loaded in

the middle, and the ratio is in inverse proportion as the square
of half the distance between hangers to the product of the short
and the long ends of the shaft. For instance, a shaft is six feet

between hangers and loaded at the middle. What would be the
difference in transverse strength if it was loaded two feet from
one hanger and four feet from the other?

3X3 = 9 and 2X4 = 8.

Thus, find the transverse load for a shaft when loaded in

the middle, multiply by 9 and divide by 8, and the quotient is

the load which the same shaft will carry with the same degree
of safety against transverse stress, if loaded two feet from one
end and four feet from the other.

This rule only applies to the transverse strength, and not to

the transverse stiffness of the shaft. For different shapes of
shafts and different modes of loading, see beams, pages 243-244.

When shafts are heavily loaded near one hanger, and the hanger
on the other side of the pulley is further off, most of the load is

thrown on the bearing nearest to the pulley, and this bearing is,

therefore, liable to heat and to cause trouble, even if the shaft
is both stiff and strong enough. ( See reaction on the support
of beams, page 252).

Transverse Deflection in Shafts.

The transverse deflection in a shaft may be calculated by
the formula:

L =

L*WC
~L*~C

S Deflection in inches.
D = Diameter of shaft in inches.
L = Length of span in feet.W = Load on middle of shaft in pounds.
C Constant = 1.7 X constant in Table No. 31, and for

wrought iron or Bessemer steel may be taken as 0.00002652.
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Constant C may be calculated from experiments by the

formula,

C= T^W
S = Deflection in inches noted in the specimen, when

supported under both ends and loaded transversely
at the middle between supports.D = Diameter of specimen in inches.

L = Distance between supports of specimen in feet.W= Experimental load in pounds.

EXAMPLE.
A round specimen placed in a testing machine, supported

under both ends and loaded at the middle with 2000 pounds,
deflects 0.1 inch. The diameter of the specimen is two inches
and the distance between supports is three feet. Calculate
constant C for this kind of material.

Solution :

c _ 0.1 X 2*

3 3 X 2000

C = L6 = 0.0000296 inch.
54000

Thus, the deflection for this kind of material is 0.0000296
inch per pound of load, applied at the middle, between supports,
for a round bar one inch in diameter and one foot between
supports.

Allowable Deflection in Shafts.

The distance between the hangers must always be deter-
mined with due consideration to the allowable transverse deflec-
tion in the shafting, especially when the shaft is loaded with

large pulleys and heavy belts, remembering that the deflection
increases directly with the transverse load and with the cube of
the length between the bearings, (see page 254). The allowable
transverse deflection in shafting ought not to exceed 0.006 to
0.008 inch per foot of span ( see page 266). A beam of wrought
iron one foot long and one inch square, when supported under
both ends and loaded at the middle, will deflect 0.0000156 inch

per pound of load, (see Table No. 31, page 259),and a round beam
deflects 1.7 times as much as a square beam, when the diameter
and side are equal. A round shaft, one inch in diameter and
one foot long, when loaded at the middle with 144 pounds will,

therefore, deflect 144 X 1.7 X 0.0000156 = 0.00382 inch.

Thus, this load does not give more than an allowable de-
flection. But, suppose the distance between bearings is doubled
and the load decreased one-half; the ultimate strength of the
shaft will be the same, but the deflection will be 72 X 1.7 X 23 X
0.0000156 = 0,01528 = 0.0764 inch per foot.
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This calculation shows plainly how very necessary it is to

have bearings near the pulleys where shafts are loaded with

heavy pulleys and large belts. There is nothing more liable to

destroy a shaft than too much deflection, because the shaft is,

when running, continually bent back and forth, and at last it

must break. The fact must never be lost sight of that strength
and stiffness are two entirely different things and follow entirely
different laws; therefore, after calculations are made for

strength, the stiffness must also be investigated, as stiffness is

a very important property in shafting. The best way to over-
come too much transverse deflection is to shorten the distance
between the bearings. Of course, increasing the diameter of the
shaft will also overcome deflection, but shafting should never be
larger in diameter than necessary, because the first cost increases
with the

\yeight,
which increases as the square of the diameter,

and the frictional resistance will also increase with the increased
diameter

; consequently, also, the running expenses.

Torsional Strength of Shafting.

Shafting may be considered as a beam fastened at one end
and having a torsional load applied at the other end equal to
the pull of the belt on an arm of the same length as the radius of
the pulley. In Table No. 32, page 268, constant c is given as 580

pounds for wrought iron.

The formula for twisting stress, as explained under beams
( see page 267) is,

P = D * c D = JZ*Im \
~
c

;;/ = the length of the lever or arm in feet, and will here
be the radius of the pulley and be denoted by r. The length of
the shaft has no influence on its torsional strength, but only on
its angle of torsional deflection (see page 268). Using 10 as
factor of safety, the formula will be :

58

D = Diameter of shaft in inches.
r = Radius of pulley in feet.W= Pull of belt in pounds.
58 = Constant, with 10 as factor of safety = Vio X 580,

taken from Table No. 32, page 268.

Frequently it is more convenient to calculate the torsional

strength of shafting according to the number of horse-power the
shaft is to transmit ( see page 317 ).

In the above formula, assume W to be 58 pounds, r to be
one foot, and D will be one inch. That is, a shaft one inch in

diameter is strong enough to resist, with 10 as factor of safety,
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a torsional load of 58 pounds acting on an arm one foot long.
Assuming this 58 pounds to act on the rim of a pulley of one
foot radius, two feet in diameter, and making one revolution per
minute, it will transmit power at a rate of 58 X 6% = 364 f foot-

pounds per minute
;
but one horse-power is 33,000 foot-pounds

per minute, and if the shaft should transmit one horse-power it

33000
must make

0^44 90.52 revolutions per minute. Hence the

practical formulas for torsional strength of shafting :

90 H X 90

90

D Diameter of shaft in inches.

H= Number of horse-power transmitted by the shaft.

11 =. Number of revolutions made by the shaft per minute.
90 Constant, using 10 as factor of safety, and assuming

the torsional strength to be as given in Table No. 32.

Torsional Deflection in Shafting.

In constructing different kinds of machinery it is frequently
necessary to consider the torsional deflection. The formula
for torsional deflection for wrought iron ( see page 271) will be :

c _ 0.00914 X m L P
>4

This will transpose to

s _ 48 HL
'~n D

S = Deflection in degrees.
H'

Number of horse-power transmitted.

0.00914 X 33000 _
48 Constant

;
calculated thus, 2X3 1416

L = Length of shaft in feet between the force and the
resistance.

n = Number of revolutions made by the shaft per minute.

D = Diameter of shaft in inches.

EXAMPLE.
How many degrees is the deflection of a shaft two inches

in diameter, 50 feet long, making 300 revolutions per minute and

transmitting 15 horse-power, applied at one end and taken off at

the other?

Solution :

48 HL _ 48 X 15 X 50 _^ -
~^~D~

~
300 X 2*

~ 7/2
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Classification of Shafting.

Shafting may be divided into three different kinds.
First. Shafts where the main belts are transmitting the

power, or so-called
"
Jack Shafts." Such shafts must have their

boxes as near the pulleys as possible. For torsional strength
their diameter may be calculated by the formula,

D = V
*

(See Table No. 40.)

Second. Common shafting in shops and factories, where
the power is taken off at different places for driving machinery.
Such shafts ought to be supported by hangers as given in

Table No. 43, and their supports must also be reinforced by
extra hangers, if necessary, where an extraordinary large pulley
or heavy belt is carried. For torsional strength the diameter of

such shafts may be calculated by the formula,

=

\--^- (See Table No. 41.)

Third. Shafting having practically no transverse stress,
but used simply to transmit power from one place to another.

Such shafts ought to be supported by hangers according to

Table No. 43, and the diameter may be calculated by the

formula,

- ^ \ H X 50
(See Table No. 42.)

TABLE No. 40. Giving Horse-Power of Main Shafting
at Various Speeds.

III
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TABLE No. 41. Giving Horse=Power of Line Shafting

at Various Speeds.

Ill
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Distance Between the Bearings.

Jack shafts should always have bearings as near the pulleys
as possible.

Ordinary line shafts, as given in Table No. 41, and shafts

for simply transmitting power, may have the distance between
the hangers as given in the following table :

TABLE No. 43-

Diameter of Shaft in Inches.
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The reaction at the pitch line between C and B, is also
2188 pounds; therefore, the total pressure (besides the weight
of C, which is omitted in this calculation ) on both bearings will

be 2 X 2188 = 4376 pounds and the pressure of each bearing of
C will be 2188 pounds. Allowing a pressure on the bearings of
100 pounds per square inch, the necessary bearing surface
will be

218S- = 21.88 square inches for each bearing.
J.UU

Assuming the length of the bearing to be twice its diameter,

D X 2 D 21.88

ja-21.88

Calculating the size required with regard to transverse

strength by the formula on page 360,
3

= J
\

-J1X487U =8.12 inches.
144

Thus, a shaft 3.3 inches in diameter is of ample size for

strength. The surface velocity of this shaft will be,

8.3 X 3.1416 X 40 = 34
.
feet

per minute, and at that velocity a pressure of 100 pounds per
square inch of bearing surface is very safe from liability of

heating if the bearing is well made and amply provided with oil.

Proportion of Keys.

The breadth of the key is usually made to be one-fourth of
the diameter of the shaft, and the thickness to be one-sixth of
the diameter of the shaft.

Keys and key-ways are usually made straight and should

always be a very good fit sidewise. Frequently set-screws are

used on top of keys in mill gearing. Sometimes in heavy ma-

chinery keys are made tapering in thickness, usually one-eighth
inch per foot of length. A corresponding taper is made in the

depth of the key-way in the hub. Key-ways in shafts are always
made straight.

For light and fine machinery taper keys are never used*



SHAFTING.

TABLE No. 44. Dimensions of Couplings for Shafts.

(All dimensions in inches.)

Diameter
of Shaft.
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of the bearing, arrangements for oiling, etc. For common line

shafting from two to four inches in diameter, not making over
200 revolutions per minute, a pressure not exceeding forty
pounds per square inch ought to work well. Greater pressure
or greater speed may make it difficult to keep the bearings cool.

EXAMPLE.
What pressure may be allowed on a bearing twelve inches

long and four inches in diameter ?

Solution :

Pressure = 4 X 12 X 40 = 1920 pounds.
In well constructed machinery there should not be any

trouble from heating, if the surface velocity and the pressure in

the bearings does not exceed the values given in the following
table :

METRIC MEASURE. ENGLISH MEASURE.

Kilograms per Square
Centimeter.
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FIGURE 1 shows a cheap, solid cast-iron box used for com-

paratively small and less important shafts. Dimensions, suita-

l)le for bearings from one to two inches in diameter, are given
in the following table :

(All Dimensions in Inches.)

55 73
bJ3 bJO

C C ^
(11 **"" >*

25/^

3A

2A
334

6
4

6^4

5/8

m

FIGURE 2 shows a babbitted split box suitable for shafts
from one to four inches in diameter, and running at a com-
paratively slow speed.

FIG. 2.

d= Diameter of shaft.

a 2)^ X d.

b\#Kd.
c 3 X d -f- % inch.

k 4 X </+ 1^ inches.

* = X X d + % inch.

/= # X ^/+ Xinch.

^=1^ X d.

/=2 X ^

Thickness of babbitt metal, t=V\Q d+ % inch.

Diameter of bolt, // = y$d + ^ inch.

Diameter of bolt, /' = Vzd -{- ^ inch.

FIGURE 3 shows the same general design of box as Figure
2, excepting that the bearing is longer and the base wider.
This box is more suitable for comparatively high-speed shafts.
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FIG. 3.

= Diameter of shaft.

IX inches.

inch.

c 2y2 d-\- 2 inches.

k 3 d + 3 inches.

<?== X</ + X inch.

r=5 X V </

i y% d + ft inch.

FIGURE 4 shows a babbitted box or pedestal suitable for

comparatively heavy-loaded shafts, from three to eight inches

in diameter, such as outer bearings for steam engine shafts,

bearings for jack shafts, etc.

Flo. 4.

d Diameter of shaft; <z = 2</-MX inch; b =
inch; c ^ </+2 inches; = 3X ^+ 3 inches; ^=
inch; /=:# ^+ X inch

; ^-1^^; /=2^;

Diameter of bolts, // = 0.2 ^/+ X inch (approximately).

Diameter of bolts, i = 0.2 d -f- ^ inch (approximately).
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FIG. 5.
FIGURE 5 shows a bearing

fitted into the frame of a ma-

chine, suitable for shafts from
one to three inches in diameter.
The cut shows a part of the
head-stock of a speed lathe

fitted with this kind of a bear-

ing. The bearing itself, which

may be of gun metal or cast

iron, is carefully fitted into the
frame by planing and scrap-
ing.

This kind of a bearing is

sometimes lined with babbitt,
but more frequently the spindle
is carefully fitted into the bear-

ing by scraping.

d= Diameter of bearing ;
/= 2 d\ a=.2 l4 d-\- 1 inch

;

b \y2 d + % inch;.*: = 1# d\ e = f = 1% d + % inch
;

/= e = lX<t+ys>

inch
; S= %<*+ % inch; = !#</+#

inch
;

i = 2 d. Diameter of screws = 3A$ d -f- %e inch.

FIGURE 6 shows the form of a self-lining and self-oiling

bearing, very suitable for high-speed machinery, and used to a

great extent for dynamos and electric motors. The figure
shows a part of a dynamo frame with the box in section, cut

through the center line of bearing, and also a partly sectional
cut from the top. For dimensions see Table No. 46.

The bearing n n may be cast in one piece from gun metal, as
shown in the cut, or it may be (preferably for the larger size)
made in two parts. The seat for this box is turned in spherical
form on the outside, and a fit is obtained between this bearing
and the frame of the machine by casting in type metal or bab-
bitt metal, as shown at m m.

The loose rings, n n, are continually dipping into the
oil reservoir, and carrying oil to the shaft. (Chains are fre-

quently used instead of rings). The stop-rings should be set so
that the spindle has room for a little motion lengthwise in the

bearing. This will in a great measure prevent heating and cut-

ting, and by their peculiar shape the stop-rings will, by the
action of centrifugal force, throw the oil off at a a, to return to

the oil reservoir; h h are plugs in the oil hole
;
the screw i pre-

vents the box from turning with the shaft, and also forms a
convenient projection to take hold of when taking the cap off

of the bearing.



374

FIG.

TABLE No. 46. Giving Dimensions of Fig. 6.

D
Inches Inch.

2/8

234
3 5%

5H

87/8
9,

10

125/Q

13

4

5

55/4

6

65/4

7

734
8

%

H*

6TV

7/8

10
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GEAR TEETH.

Circular Pitch.

The length of the pitch circle or pitch line from center of

one tooth to the center of the next is the circular pitch of a gear,
or a rack.

Cast gear teeth, constructed on the circular pitch system,

may be made of the following proportions :

Thickness of tooth on pitch line = T
6
3
-
pitch.

Space between teeth on pitch line = fj pitch.

Height of tooth outside of the pitch line = T
3
ff pitch.

Depth of space inside of pitch line = T% pitch.

_,. . .. circular pitch X number of teeth.
Pitch diameter of gear

For cut gears, use the following formulas :

Thickness of tooth on pitch line = 0.5 pitch.

Space between teeth on pitch line = 0.5 pitch.

Height of tooth outside pitch line 0.3183 pitch.

Depth of space inside of pitch line = 0.3683 pitch.

To Calculate Diameter of Gear According to Circular Pitch.

RULE.

Multiply the circular pitch by the number of teeth in

the gear and divide the product by 3.1416
;
the quotient is

the diameter of the pitch circle
;
add T% of the circular pitch to

obtain the whole diameter of the gear.

EXAMPLE.
Find whole diameter of a gear of 48 teeth and three-inch

circular pitch.

Solution :

Pitch diameter ^
*

*f = 45.84 inches.
3.1416

Double the addendum = 3 X 0.6 = 1.80

The whole diameter is 47.64 inches.

Table No. 47 is calculated for one-inch circular pitch; to

find the pitch diameter of a gear of any number of teeth given
in the table, multiply the diameter given in the table by the
circular pitch in the gear, and the product is the pitch diameter
of the gear. In order to find the whole diameter, add twice the

height of the tooth outside the pitch line, as calculated by the
above formula.
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TABLE No. 47 Giving Pitch Diameter of Gears of One
Inch Circular Pitch.

Teeth.
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EXAMPLE.
What will be the diameter of the gears to connect two shafts

when the distance between centers is 32 inches, and one shaft
is to make 135 revolutions and the other 105 revolutions per
minute ?

Solution :

2 X 32 X 135
L> =

135 -L iQ5
= 3" inches diameter.

, 2 X 32 X 105

135 4- 105
~ mcnes diameter.

After the diameter of the gears is calculated, the pitch is

decided upon according to the power the gears have to transmit.

Frequently the pitch will have to be altered somewhat, and
such gears sometimes have teeth of very odd pitch, in order to

obtain the right number of teeth to give the required ratio of

speed. The ratio between the number of teeth in the gears may
always be seen from the ratio of speed between the two shafts.

For instance, in the above example, the ratio of speed between
the shafts is 13%os, which, reduced to its lowest terms, is % ;

therefore, the number of teeth in the two gears may be any
multiple of 9 and 7, respectively.

For instance, 8 X 9 = 72 teeth for the large gear, and 8 X
7 = 56 teeth for the small gear ; or, 10 X 9 = 90 teeth for the

large gear, and 10 X 7 = 70 teeth for the small gear, etc.

The dimensions of teeth may be calculated according to

rules given on page 375.

Diametral Pitch.

The diametral pitch of a gear is the number of teeth

to each inch of its pitch diameter. In cut gearing it is always
customary to calculate the gears according to diametral pitch.
When gears are calculated according to circular pitch the corre-

sponding circumference of the pitch circle is usually an even
number, but the diameter will generally be a number having
cumbersome fractions, and therefore the distance between the
centers of the gears will be a number having fractions which
may be very inconvenient to measure with common scales.

This is because the circumference of a circle divided by
3.1416 is equal to its diameter and the diameter multi-

plied by 3.1416 is equal to the circumference. When
gearing is calculated according to diametral pitch this trouble
is entirely avoided, as this directly expresses the number of
teeth on the circumference of the gear according to its pitch
diameter. For instance, "six diametral pitch" means that
there are six teeth on the circumference of the gear for each
inch of pitch diameter. Thus, a gear of six diametral pitch and
forty-eight teeth will be eight inches pitch diameter. A gear of
"
eight diametral pitch

" means that the gear has eight teeth per
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inch of pitch diameter. A gear of " ten diametral pitch
" means

that the gear has ten teeth per inch of pitch diameter. A gear
of " twelve diametral pitch

" means that the gear has twelve
teeth per inch of pitch diameter, etc.

Thus, the pitch diameter and, consequently, the distance
between the centers, will be a number which may be conven-
iently measured, and the dimensions of tooth parts are also
much more easily calculated by this system.

Rules for Calculating Dimensions of Gears According to

Diametral Pitch.

The pitch diameter is obtained by dividing the number of
teeth by the diametral pitch.

EXAMPLE.
What is the pitch diameter of a gear of 48 teeth, 16 pitch?
Solution :

48 divided by 16 = 3, therefore the pitch diameter is 3
inches.

The number of teeth is obtained by multiplying the pitch
diameter by the diametral pitch.

EXAMPLE.
What is the number of teeth in a gear of 5 inches pitch

diameter and 12 pitch ?

Solution :

5 X 12 = 60, therefore the gear has 60 teeth.

The whole diameter of a spur gear is obtained by adding
2 to the number of teeth and dividing the sum by the diametral

pitch.

EXAMPLE.
What is the whole diameter of a gear blank for 68 teeth,

10 pitch ?

Solution :

68 I 2
Whole diameter = :

= 7 inches.

The number of teeth is obtained by multiplying the whole
diameter of the gear by the diametral pitch and subtracting 2
from the product.

EXAMPLE.
The whole diameter of a gear blank is 8 inches

;
it is to

be cut 10 diametral pitch. Find the number of teeth.

Solution :

Number of teeth = (8 X 10) 2 = 78.

The diametral pitch is obtained by adding 2 to the number
of teeth and dividing by the whole diameter.
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EXAMPLE.
A gear has 64 teeth and the whole diameter is \Q l/2 inches.

What is the diametral pitch ?

Solution :

Diametral pitch = r- = 4.

Thus, the gear is 4 diametral pitch.

NOTE. The term diameter of a gear usually means
ter of pitch circle.

The distance between the centers of two spur gears is ob-
tained by dividing half the sum of their teeth by the diametral

pitch.

EXAMPLE.
What is the distance between centers of two gears of 48

and 64 teeth and 8 diametral pitch ?

Solution :

Distance = 4
f j"^

4 = 7 inches.
2i X o

The circular pitch is obtained by dividing the constant
3.1416 by the diametral pitch.

EXAMPLE.
What is the circular pitch of a gear of eight diametral

pitch ?

Solution :

Circular pitch = . 0.393 inch.
o

The thickness of the tooth on the pitch line is obtained by
dividing the constant 1.5708 by the diametral pitch.

EXAMPLE.
What is the thickness of the tooth on the pitch line of a

gear of 6 diametral pitch ?

Solution :

1 P

Thickness of tooth = ^
,
= 0.262 inches.

6

The working depth of the tooth is obtained by dividing 2

by the diametral pitch. The clearance at the bottom of the
teeth is TV of the thickness of the tooth on the pitch line. The
whole depth to cut the gear is obtained by dividing the constant
2.157 by the diametral pitch.

EXAMPLE.
Find the depth to cut a gear of 8 diametral pitch.
Solution :

Depth =
2

-*
37

- = 0.27 inch.
o
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The whole depth is nearly equal to 0.0806 times the circular

pitch. The use of the following tables will facilitate calcula-
tions regarding dimensions of teeth in diametral pitch.

TABLE No. 48. Comparing Circular and Diametral Pitch.

Diametral Pitch.
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To Calculate the Number of Teeth when Distance Be-
tween Centers and Ratio of Speed is Given.

Select for a trial calculation, the diametral pitch which
seems most suitable for the work.

Calculate the sum of the number of teeth in both gears
corresponding to this pitch by multiplying twice the distance
between their centers by the diametral pitch selected.

The number of teeth in each gear is obtained by the follow-

ing formula :

._ n X A
i N+n

T= Number of teeth in large gear.
/ = Number of teeth in small gear.
N=. Number of revolutions of small gear.
n = Number of revolutions of large gear.
A = Number of teeth in both gears.

EXAMPLE.
The center distance between two shafts is 15 inches. The

small gear should make 126 and the large gear, 90 revolutions

per minute. Calculate the number of teeth in each gear, if 8
diametral pitch is wanted.

Solution :

The number of teeth in both gears is 2 X 15 X 8 = 240.

126 + 90

t = 90 x 24 = 100 teeth.
126 + 90

Frequently it is impossible to get gears of the desired pitch
to fit within the given center distance and to give the exact
ratio of speed. Some modifications must then be made

;
either

the exact ratio of speed must be sacrificed, the pitch must be
changed, or the distance between centers must be altered.

NOTE. The ratio of the number of teeth in the gears can be
seen from the ratio of the speed. For instance, in the above ex-

ample the ratio of speed is %26, which, reduced to its lowest

terms, is % ; therefore, the number of teeth in the two gears
may, with regard to speed ratio, be any multiple of 5 and 7,

respectively, but in order to fit the given center distance and
also to be 8 pitch, they must be 100 and 140, which is 20 X $= 100 and 20 X 7 = 140.
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FIG. 1

The shape of gear teeth is usually either Involute or Cycloid
( also frequently called Epicycloid ). The shape of a cycloid
looth for a rack is four equal cycloid curves, which may be con-

structed, so to speak, by letting the generating circle a, ( sec

Fig. 1
) roll along on the pitch line of the rack, both above and

below. /

Cycloid gears
have the curve out-

side the pitch circle

formed by an Epi-
cycloid (see Fig. 20,

page 191) and the
curve inside the
pitch circle by a

Hypocycloid.
The curves al-

ways meet on the

pitch line in both

gears and racks.
The theoretical

requirements for
correct form of Epi-
cycloid gear teeth
are that the face of
the teeth of one gear and the flank of the teeth of the other gear
must be produced by generating circles of the same diameter.

The diameter of the generating circle is limited by the size

of the smallest gear or pinion in the series of gears which are con-
structed to run together, because if the generating circle is as

large in diameter as half the pitch diameter of the gear, the

hypocycloid will be a straight line
; thus, the flank of the tooth

will be a straight radial line. If the generating circle is

larger than half the pitch diameter of the gear, the result will be
a weak and poor tooth with under-cut flank.

When the same size of generating circle is used for gears of
different diameters but of the same pitch, all such gears will work
correctly together, and for this reason it is possible to construct

interchangeable gears having cycloid teeth. If the diameter of
the generating circle is equal to half the diameter of the
smallest gear in the set, this gear will have teeth with radial

flanks but all the other gears and the rack will have double-
curved teeth. Fig. 1 shows a rack drawn to >-inch circular

pitch ;
the generating circle is 0.98 inch diameter, which is equal

to half of the pitch diameter of a gear of 12 teeth and y2 inch
circular pitch.

All gears of the same pitch having 12 teeth or more, con-
structed by the same generating circle in the same manner as
the rack, will match and be interchangeable with the rack, and
will also match and be interchangeable with each other.
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When internal teeth are constructed by the above method, the
difference between the number of teeth in the internal gear and
its external pinion must never be less than 12; practically, it is

better to limit the difference to 15 or 20 teeth.

As interchangeability is seldom required for internal gear-
ing, such gears and their mates are generally constructed together
and the designer chooses a generating circle of suitable size to

give the shape of tooth he considers best, and he may also vary
the size of the driving or the driven gear so as to reduce con-
tacts when the teeth are approaching each other, etc., according
to his own judgment and experience.

The difference in pitch diameter of the internal gear and its

pinion should never be less than the sum of the diameters of the

generating circles, and the diameter of the generating circle of
the flanks for the pinion should never be larger than half the

pitch diameter, but it should, preferably, be smaller.

As a rule, fillets at the bottom of the teeth are not used in
internal gears, but if used they should be very small.

In order that gears constructed with cycloid teeth should
run smoothly, it is very important to have the distance between
centers correct, so that the pitch lines will exactly meet each
other. For this reason, there are many kinds of machinery
where cycloid gears should not be used : for instance, for change
gears on lathes, involute teeth as far more suitable.

When making patterns, the shape of one tooth is usually
carefully drawn on a thin piece of sheet metal, either brass or
iron

;
this is then filed out and used as a templet in tracing

the other teeth on the pattern. Sometimes a fly-cutter is made
according to this constructed tooth, and all the teeth in the pat-
tern are cut on an index machine or a gear cutting machine

;
but

if such.a machine is not available, the next best way is to set out
the pitch line of the gear on this templet and also the center line
of the tooth, radially towards the center, then draw the pitch line
on the pattern, space off each tooth carefully with a pair of
dividers and draw the center line on each tooth prolonged across
the rim radially in the direction of the center of the gear, then

lay the templet carefully on each of these spacings, making
the pitch line and the center line of tooth on the templet to

exactly match the pitch line and center line of the tooth
drawn on the pattern, then trace around the templet and get the

shape of one tooth
;

then move the templet to the next spacing
and trace the next tooth, and so on for all the teeth on the gear.

For small patterns it is convenient to fasten the templet to
a strip of metal long enough to reach from the teeth to the cen-
ter of the gear wheel, placing a point in the center of the gear,
drilling a hole in the strip and letting it swing around this point,
then after all the teeth are spaced off on the pattern the tem-

piet is swung from one tooth to the other and all the teeth are
traced by the templet. This method has the advantage that
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it will mark all the teeth exactly alike, because ,the templet
being fastened to this strip, can not easily get out of position.

The distance from the pitch line of the templet to the cen-
ter hole in the strip must be laid off according to the shrinkage
rule, and is, of course, in numerical value equal to the pitch radius
of the gear, which should always be calculated and given on the

drawing. When gear patterns are less than six inches in diame-
ter it is preferable not to allow anything for shrinkage, as the
moulder will usually rap the pattern about as much as the cast-

ing will shrink in cooling.

When a pair of cycloid gears are constructed without con-

sidering interchangeability with other gears of the same pitch,
it is customary to choose a generating circle having a diameter

equal to three-fourths of the radius of the pitch circle of the
small gear, providing this gear has 24 or more teeth. A large
generating circle probably reduces the friction in a small
measure but gives teeth of less strength. The largest gen-
erating circle used ought never to exceed the radius of the

pitch circle of the small gear. Decreasing the generating
circle will probably increase friction somewhat in the gears, but
it gives teeth of greater strength. The smallest generating circle

used in practice is equal to half the diameter of the pitch circle

of a gear having 12 teeth of the same pitch as the gear to be con-
structed. Many eminent mechanics consider it preferable
never to use a generating circle smaller than half of the pitch
diameter of a gear of 15 teeth.

Cycloid gears are mostly used in large cast gears of one-
inch circular pitch or more.

Sometimes the driving gear is made of slightly larger di-

ameter, and the teeth spaced at a correspondingly greater pitch
than the theoretically calculated size. This is done in order
that the teeth shall not rub on each other on the approaching
side, but only touch as they are passing the center line and
commence to slide away from each other. This will make the

gears less noisy, but probably gears made in this manner will

wear faster, as there are fewer points of contact, although this

may be offset by the fact that the friction between the teeth
when they are meeting and pushing onto each other is more
injurious than the friction produced when they are sliding away
from each other.

The same idea is sometimes employed when constructing
bevel gears, in order to make them run quietly.

This mode of sizing gears is not, as a rule, used in modern
gear construction, but it is a point well worth remembering,
because if either of two gears is over or under size, the gear of
over-size should always be used as the driver, and the gear of
under-size should always be the driven

;
never vice versa. This

will apply as well to involute as to epicycloid gears.
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Involute Teeth.

Suppose a strap is fastened at a and b on the two round discs
in Fig. 2. If the disc b is turned in the
direction of the arrow, the strap will move
in a straight line from c, toward d. This
motion will cause the disc a to rotate with

exactly the same surface speed as the disc

b, but in the opposite direction.

Suppose, further, that to the under side
of the disc a (see Fig. 3) is fastened a piece
of sheet brass p, or other suitable material
of somewhat larger diameter than disc a,
and that a scratch awl is fastened in the

strap at the point ///
;
then by turning the

disc b in the direction of h to b, and
the strap moving with it, being kept tight

by the resistance of disc a, the scratch awl
will trace on the brass plate the curve from
in to h, but if the discs are moving in the

opposite direction, the scratch awl will

trace the curve from ;// to K, Take an-
other brass plate and do the same thing with the other disc, and
a similar curve will be produced. In these two brass plates the
stock may be filed away carefully, following the curves as shown
in Fig. 4. The discs are laid to match each other and free to

FIG. 2.

FIG. 4.

FIG. 3.

swing on their centers
; turning the disc a in the direction of the

arrow, it will give motion to b, and both discs will move with the
same speed in exactly the same manner as if they were connected
by the strap as shown in Fig. 2.
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The curve on these two discs represents the form of a gear
tooth in the involute system.*

The line h g, Fig. 4, is called the line of pressure or the line

of action. The circles, P and P, are the pitch circles. The line

B R, shows the direction of motion of the teeth at the moment
they are passing the center line, c c.

Approximate Construction of Involute Teeth.

It will be noticed that the line of pressure, h g, forms an

angle with the line B R. This angle is usually taken as 14)4

degrees. This makes the diameter of the base circle, ^, (see

Fig. 5) equal to 0.968 times the diameter of the pitch circle.

The base circle gg, in Fig. 5, corresponds to the disc in Fig. 3,

and the line of pressure in Figs. 5 and 6 corresponds to the strap
in Fig. 2. The line of pressure, h g, Fig. 5, is 75> degrees to

the center line,/Y.

A perpendicu-
lar is erected
from the line h
g, through the
center, c. Using
the point of in-

tersection at i as

center, the tooth
is drawn simply
by a circular arc.

This will, in prac-
tical work for
small gears hav-

ing more than
twenty teeth, cor-

respond nearly
enough to the
true involute, which was illustrated by means of the strap, disc
and scratch awl, as explained in Figs. 2, 3 and 4.

When the gear has less than twenty teeth, and is constructed

by circular arcs, as shown in Fig. 5, the top of the tooth will be
too thin

;
but the top of the tooth will be too thick to clear in

the rack, if the true involute curve is used.

When the teeth are of true involute curve, a smaller gear
than twenty-five teeth will not run freely in a rack having straight
teeth slanting 14^ degrees. (See Figs. 6 and 7). Therefore,

*The way to actually draw this curve on paper by means of drawing instru-
ments is explained on page 192. This way explained here, using the disc on the

strap, is merely for illustrating and explaining principles, and serves well for that

purpose, but would be inconvenient to use in actual construction of gear teeth. In
actual work one tooth is carefully constructed, and templets and cutters are made
and used, as was explained for Cycloid Gears, pa^e 383.
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when a gear has less than twenty-five teeth it is necessary to round
the teeth somewhat outside the pitch circle. By making either a

drawing or a templet, it is very easy to see how much to round

FIG. 6. Involute Teeth (Cast.)

the teeth to make them clear in the rack. In interchangeable
sets of cut involute gears it is customary to cut the rack with a

cutter shaped for a gear of 185 teeth. This will make the teeth

in the rack slightly curved instead of straight, as shown in Fig. 6,

and this will also make it possible to construct the small gears in

an interchangeable set nearer to a true involute, and still have
them run freely in the rack.
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When gear teeth are constructed as shown in Figs. 6 and 7,

the line g h, is 75^ degrees to the line c f, and the line c /, is

degrees to the line c f. (See Fig. 5).

FIG. 7. Involute Teeth (Cut).

The line h g, will always be tangent to the base circle

which is concentric to the pitch circle. The diameter of the
base circle is always 0.9G8 times the diameter of the pitch circle.

The circle forming the shape of the tooth must always have its

center on the circumference of the base circle, and its diameter
will be one-fourth of the pitch diameter of the gear. As shown
in Fig. 2, the same circle gives the form of tooth for coarser or
finer pitch. When gears are drawn by this method the pitch
circle is divided into as many teeth and spaces as there are to

be teeth in the gear ;
then the form of the tooth is simply struck

by the dividers, always using the periphery of the base circle as

center, and always taking the distance in the dividers equal to

one-fourth of the radius of the pitch circle.

The diameter of the base circle is 0.968 times the diameter of

the pitch circle, because cosine of 14^ degrees is 0.96815. The
diameter of the circle forming the shape of the tooth is 0.25 times

the diameter of the pitch circle of the gear, because sine of 14^
degrees is 0.25038. If the line of pressure is laid at any other angle
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than 14^ degrees, all these other proportions will also change.
Fig. shows a pattern for gears and rack constructed with

necessary clearance as used for cast gears. All tooth parts are
of the same dimensions as used for cycloid gears as given on

page 375. Fig. 7 shows a cut gear and rack constructed in the

same manner. The advantages of the involute system of gears
are in the strength of teeth, and also that the gears will trans-

mit uniform motion and run satisfactorily, even if the distance
between centers should be slightly incorrect.

Width of Gear Wheels.

Gears with cast teeth are usually made narrower than gears
with cut teeth. In spur gears with cast teeth it is customary to

make the width of the gear four to five times the thickness of
the teeth, or twice the circular pitch.

Width of Gears With Cut Teeth.

The following rule is recommended by Brown & Sharpe
Mfg. Co. in their

" Practical Treatise on Gearing":
Divide eight by the diametral pitch, and add one-fourth inch

to the quotient; the sum will be the width of face for the pitch
required.

EXAMPLE.
What width of face is required for a gear of four pitch ?

Solution :

Face = f + ]-
= 2% inches.

For change gears on lathes where it is desirable not to have
faces very wide, the following rule may be used :

Divide four by the diametral pitch and add one-half inch.

By the latter rule a four-pitch change gear would have but
a 1^-inch face.

BEVEL GEARS.

Fig. 8 is a diagram showing how to size bevel gear blanks.

First, lay off the pitch diameters of the two gears, which
may be calculated according to diametral pitch or to circular

pitch ; second, draw the pitch line of teeth
; third, lay off on the

back of the gear the line a b, square to the "
pitch line of teeth ;"

fourth, on the line a b, lay off the dimensions of the teeth exactly
in the same manner as if it was for a spur gear.

If the gear is calculated according to circular pitch, find

dimensions of teeth by formulas on page 375, but if tne gear is

calculated according to diametral pitch, find dimensions of teeth
in Table No. 49.
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Make the drawing carefully to scale ( full size preferable
whenever possible ), and measure the outside diameter as shown
in the diagram.

FIG. 8.

To Calculate Size of Bevel Gear for a Given
Ratio of Speed.

Ascertain the ratio of speed in its lowest terms. Multiply
each term separately by the same number, and the products
give the number of teeth in each gear.

EXAMPLE.
Two shafts are to be connected by bevel gears, one shaft to

make 80 revolutions and the other 170 revolutions per minute.
Find the number of teeth in the gears.
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Solution :

For

Ratio = = 8
/i7.

instance, multiplying by 6, the large gear on the shaft

making 80 revolutions will have 17X6 = 102 teeth. The small

gear on the shaft making 170 revolutions will have 8 X 6 = 48
teeth.

Assuming that on account of room it is necessary to use
smaller gears, a smaller multiplier may be used, but if it is desir-

able to have larger gears, use a larger multiplier.
Decide on the pitch of the gears according to the work they

are required to do. Make a scale drawing and get the
dimensions as explained on page 390.

Dimensions of Tooth Parts in Bevel Gears.

Fig. 9 shows a sectional drawing of a pair of bevel gears of
sixteen diametral pitch, 18 teeth in the small gear and 30 teeth
in the large gear. The pitch diameter of the small gear is - =
iVs inches. The pitch diameter of the large gear is ff = 1%
inches.

FIG. 9.

The addendum of the teeth on the back at a is TV inch,
the same as for a spur gear of 16 diametral pitch. The thickness
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and the total depth to cut the gear at a are 0.098 inch and 0.135

inch, respectively.
These dimensions are found in Table No. 40, as if it was

a spur gear of 10 diametral pitch. All the dimensions of the
tooth decrease gradually toward b, as the whole tooth is sup-
posed to vanish in a point in the center at c. The dimensions
of the teeth at b may be calculated and are always in tke same
proportion to the dimensions at a as the distance c b is to the
distance c a

; thus, if the length of the tooth from a to b is made
one-third of the length of the distance c X the distance b c is

two-thirds of the distance a c, and, consequently, all the dimen-
sions of the tooth at b are two-thirds of the dimensions at a.

Instead of calculating the size of the teeth at b, the dimensions

may be obtained by careful drawing. The depth of the tooth at
the smallest end is then measured directly at b, but the thickness
is measured at /; the distance / h is laid off equal to b d.

The length of the tooth from a to b is to a certain extent

arbitrary, but a good rule is seven inches divided by the diame-
tral pitch, but never longer than one-third of the distance from
a to c.

EXAMPLE.
What is the proper length for the teeth of a bevel gear of 8

diametral pitch ?

Solution :

Seven inches divided by 8 % inch, if the gears are of such
diameters that this will not make the length of the teeth more
than one-third of the distance from a to c.

Form of Tooth in Bevel Gears.

Extend the line a (see Fig. 9), until it intersects the axial

center line of the gear, as at h
;
use h as the center, and the shape

of tooth at a for the large gear is constructed as if it was a spur
gear having a pitch radius as large as a h.

The shape of the tooth at b is constructed in the same way,
by extending the line

^, (which always the same as line a, is

square to the pitch line of the tooth) until it intersects: the
axial center line of the gear, as at d. Using d as center, the

shape of the tooth is constructed as if it was a spur gear having
a pitch radius equal to db. The shape of the teeth of the small

gear is obtained in the same way, which is shown by the drawing.
The form of tooth is shown to be approximately involute,

constructed as explained for spur gears, page 386.

Measuring the back cone radius, a h, of the large gear, it is

found to be ff inch, and the diameter will be
f- 1 inch

; thus, the

shape of the tooth at a for the large gear will be the same as the

shape of the tooth in a spur gear of 58 teeth, sixteen diametral

pitch.
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Measuring the back cone radius of the small gear, it is

found to be f^ inch, and the diameter will be f |
inch

;
conse-

quently the shape of tooth at a for the small gear is the same as

the shape of tooth in a spur gear of 21 teeth, sixteen diametral

pitch.

Therefore, if this pair of gears is to be cut by a rotary
cutter having a fixed curve, a different cutter is required for

each gear.

When, in a pair of bevel gears, both gears are of the same
size and have the same number of teeth, and their axial center
lines are at right angles, they are called miter gears, and one

cutter, of course, will answer for both gears. One cutter will

also answer in practice when the difference of the back cone
radius of a pair of gears is so small that it comes within the

limit of one cutter as used for spur gears of the same size. Bevel

gears may also be made with cycloid form of teeth, but when-
ever cut by rotary cutters, as usually employed in producing
small bevel gears of diametral pitch, the involute form of tooth
should always be used.

Cutting Bevel Gears.

When bevel gear teeth are correctly formed, the tooth

curve will constantly change, from one end of the tooth to the

other. Therefore, bevel gears of theoretically correct form
cannot be produced by a cutter of fixed curve

; but, practically,

very satisfactory results are obtained in cutting bevel gears of

small and medium size in this way.
When a regular gear-cutting machine is not at hand, the

Universal milling machine is a very convenient tool for cutting
bevel gears of moderate size, and is used in the following way :

First, see that the gear blank is turned to correct size and

angle, and adjust the machine to the angle corresponding to the

bottom of the teeth in the gear. The correct index is set ac-

cording to the number of teeth in the gear. Adjust the cutter

to come right to the centre of the gear, cut the correct depth as

marked on the gear at a (see Fig. 9), according to Table No. 49,

and when the machine is adjusted to the correct angle, and the

correct depth is cut at a, the correct depth at b will, as a matter
of fact, be obtained.

Second, when a few teeth are cut in the gear (two or three)

bring, by means of the index, the first tooth back to the cutter.

By means f the index, rotate the gear, moving the tooth toward
the cutter

; but, by the slide, move the gear sidewise away from
the cutter, until the cutter coincides with the space'at b ; then cut

through from a to b. This operation will widen one side of the

tooth space at a.

Note the position of the machine, and, by the use of the

index and slide, return the cutter to its central position and in-
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dex into the next space, and rotate the other side of the tooth
toward the cutter as much as the first side

; but, by the slide,
the gear is moved sidewise away from the cutter until the
cutter coincides with the space at b; then cut through on this side
from a to b. Thus, by repeated cutting on each side alternate-

ly, one tooth is backed off equally on both sides and measured
by a gage, until the correct thickness on the pitch-line at a,

according to Table No. 49, is obtained.

Be very careful to have the machine set over the same
amount on each side of the tooth, or else the tooth will be
askew.

Third, when one tooth, thus by trial, is correctly cut,
note the position of the machine and cut all the teeth through
on one side, then set over to the other side in exactly the
same position as was found to be right for the first tooth

;
cut

through again and the gear is finished. Thus, when the correct

position of the machine is obtained, any number of gears of
the same size and same pitch may be cut, by simply letting the
cutter go through twice.

NOTE. As already stated, bevel gear cutting in this way is

only a compromise at the best, but by careful manipulation
and good judgment an experienced man is able to do a very
creditable job. A cutter is usually selected of the same curve
as is correct for a spur gear corresponding to the back cone
radius of the gear. Thus, it may be thought that the shape
of the tooth should be the shape of the cutter, but by investi-

gation it will be found that, on account of the "
backing off,"

the teeth will be of a little more rounding shape at the large end
than corresponds to the cutter; therefore, when the gear has few
teeth, less than 25, it is usually preferable to make the shape
of the cutter to correspond to a gear a little larger than would
be called for by the back cone radius of the bevel gear to be
cut; but when the gear has more than 25 teeth, a cutter of shape
corresponding to the back cone radius of the gear will give

fDod
results. For instance, in the pair of bevel gears shown in

ig. 9 the back cone radius of the large gear calls for a
cutter corresponding in shape to a cutter for a spur gear of 59

teeth, 16 diametral pitch ;
and this shape of cutter will, after

the teeth are backed off, make the teeth a trifle too round at

the large end, and a trifle too straight on the small end, but if

the teeth are not too long the job will be very satisfactory.

The back cone radius of the small gear calls for a cutter

corresponding in shape to a cutter for a spur gear of 21 teeth,
16 diametral pitch, but when the teeth are backed off they
will be a little too rounding on the large end

;
therefore a better

result is obtained by selecting a cutter having a shape corre-

sponding to a little larger spur gear ;
for instance, a gear of

24 teeth. Such a cutter will give the teeth a better shape on
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the large end, although it may be necessary to round the teeth

a little, outside the pitch line on the small end, by filing.

Of course, a spur gear cutter cannot be used for cut-

ting bevel gears, because, although it may have the correct

curve, it would be too thick. The thickness of a bevel gear
cutter must be at least 0.005 inch thinner than the space be-

tween the teeth at their small end.

Large bevel gears are made on theoretically correct prin-

ciples by planing on specially constructed machines.

WORMS AND WORM GEARS.

Fig. 10 shows a worm and worm gear.

7TF

f= Pitch diameter of gear.

f
= Smallest outside diameter.
= Largest outside diameter.

a = Outside diameter of worm.
b = Pitch diameter of worm.
c = Diameter of worm at bottom of thread.

The pitch and diameter of worm screws are usually of such

proportions that for single-thread the angle of the teeth on the

gear is from two to three degrees. This angle is most conven-

iently obtained by drawing a diagram as shown in Fig. 10.
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Draw a line ////, equal to 31 times the length of line b', this line

will be equal to the length of the circumference of the pitch
diameter of the screw. Erect the perpendicular, m o, equal to

the pitch of the screw. Connect the points /and o by the line

/
<?, and the angle s is the angle of the teeth on the worm gear.

NOTE. When the pitch diameter of the worm screw is

seven times the circular pitch of the worm gear and the worm
has single thread, the angle of the thread on the gear is very
nearly 2>^ degrees.

CAUTION. When cutting a worm gear, be careful and not

lay the angle of the teeth in the wrong'direction.

The diameter of worm gears is usually calculated according
to circular pitch, for convenience in cutting the worm with the

same gears as used for ordinary screw cutting in a lathe.

When a worm gear has comparatively few teeth, the flank

of the tooth will be undercut by the hob; to prevent this in a

measure, it is customary to have the blank somewhat over size,

so that from five-eighths to three-fourths of the depth of the tooth

may be outside the pitch line.

The form of teeth is usually involute, and the thread
on a worm screw is constructed of the same shape as the teeth

in a rack. Fig. 11 shows the shape of tooth and the tabh

gives the dimensions of finishing tool for the most common
pitches.

The surface speed of a worm screw ought not to exceed 300

feet per minute.

Table No. 50 is calculated by the following formulas. (See

Fig. 11.)

P = Circular pitch.

A'=" p

a = P X 0.3183

d P X 0.3683

S = P X 0.5

b = P X 0.31

C=P X 0.335

k = P X 0.1
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TABLE No. 50. Giving Proportions of Parts for Worms
and Worm Gears, Calculated According to Circular Pitch.

(See Fig. 11.)
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TABLE No. 51. Showing How to Gear Lathes when Cut=

ting Worms of the Pitches Given in Table No. 50.

2

la

sl
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Solution :

In Table No. 47 the pitch diameter of a gear of 68 teeth of
one-inch pitch is given as 21.65 inches; thus, the pitch diameter
for a gear of 68 teeth of |<-inch circular pitch will be 21.65 X
0.75 = 16.788 inches.

In column a, of Table No. 50, the addendum for %-inch
circular pitch is given as 0.2387 inch

;
fhis is multiplied by 2,

because it is to be added on both sides of the gear.
Thus, the smallest outside diameter of the gear is 16.738 +

0.2387 X 2 = 17.215 inches; or, practically, 17^ inches. If the

gear is to be made hollow to correspond to the "curve at bottom
of thread of the worm, make a scale drawing as shown in Fig.
10, and make line^-, 17^ inches

;
from this drawing the largest

outside diameter may be obtained by measurement.
The diameter of the worm on the pitch line was to be six

times the pitch = 6 X %" = 4^ inches.

The addendum for the thread on the worm can be obtained
from Table No. 50, column *z, and is 0.2387. The outside
diameter of the worm will be 4.5 -f 2 X 0.2387 = 4.977 inches, or,

practically, 4f inches.

The cutter to be used in roughing out the gear should have
a curve of involute form corresponding to a spur gear cutter for

68 teeth, and its thickness ought to be at least 0.005 inch less

than the width of space as given in column S of Table No. 50.

Therefore the thickness on the pitch line of the roughing cutter

will be 0.37 inch.

The angle of the teeth may be obtained from a drawing as

shown and explained in Fig. 10, or it may be calculated thus :

circular pitch
Tangent of angle S = ,

pitch circumference

In Table No. 21 the corresponding angle is given as 3

degrees, very nearly.
The depth to which the gear should be cut is given in col-

umn D as 0.515 inch. The gear is finished with a hob, as
described below, which is allowed to cut until it touches the
bottom of the spaces in the gear. The outside diameter of the
hob should be larger than the outside diameter of the worm, in

order that the teeth in the hob may reach the bottom of the

spaces in the gear and leave clearance for the worm, and at the
same time leave the gear tooth of the proper thickness on the

pitch line. This increment is obtained in column
,
Table No.

50, and for %-inch pitch is 0.075 inch
; thus, the outside diameter

of the hob is 0.075 inch larger than the outside diameter of the

worm, or 4.977 + 0.075 = 5.052 inches. The angle of the finish-

ing threading tool for both worm and hob is 14)4 degrees,

making the angle of space 29, as shown in Fig. 11. The clear-

ance angle of the threading tool must be a little more than the

angle of the thread.
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The width of the threading tool at the point is given in
Column b, Table No. 50, as 0.2325 inch. The depth of the space
to be cut in the worm is given in Column /?, as 0.515 inch. The
diameter of the worm at the bottom of the thread will be :

4.977 2 X 0.515 = 3.947 inches.

The depth of the space to be cut in the hob is given in col-
umn h in Table No. 50 as 0.5525 inch.

The diameter of the hob at bottom of thread will be :

5.052 2 X 0.5525 = 3.947 inches.

Thus the only difference in size between the hob and the
worm is in the outside diameter and in the depth of the cut.
Both may be finished by the same tool, as the diameter at the
bottom of the thread and the thickness of the teeth at the pitch
line should be the same for both hob and worm.

Elliptical Gear Wheels.

Elliptical gear wheels are sometimes used in order to change
a uniform rotary motion of one shaft to an alternately fast and
show motion of the other. See Fig. 12.

The pitch line is constructed and calculated the same as
the circumference of an ellipse. (See page 189.) The gear is

constructed involute the same as for spur gears. If the differ-

ence between the minor and the major diameters is large it may
be necessary to construct the teeth of different shapes at differ-

ent places on the circumference; in other words, the whole cir-

cumference of the gear cannot be cut with the same cutter. A
cutter of the same pitch, of course, but corresponding to a larger
diameter of gear, must be used where the curve of the pitch line

is less sharp.
The centers of the shafts are in the foci of the ellipse. If

two elliptical gear wheels, made from the same pattern, or cut

together at the same time, on the same arbor, are to work together
they must have an uneven number of teeth so that a space will

be diametrically opposite a tooth, as will be seen from Fig. 12,



SCREWS. 4OI

SCREWS.

"Pitch," "Inch Pitch" and "Lead" of Screws and Worms.

The term "
pitch of a screw," as commonly used, means its

number of threads per inch, while the " inch pitch
"

is the dis-

tance from the center of one thread to that of the next. For

instance, a one-inch screw of standard thread is usually said to

be an "
eight pitch" screw, because it has eight threads per inch of

length ;
but it might more correctly be said to be a screw of

>-inch pitch, because it is >-inch from the center of one thread
to the center of the next.

The " lead " of a worm or a screw means the advancement
of the thread in one complete revolution

; therefore, in a single-
threaded screw, the inch pitch and the lead is the same thing, but
in a double or triple-threaded screw the inch pitch and the lead are

two different things. The " lead
"
in a double-threaded screw will

be a distance equal to twice the distance from the center of one
thread to the center of the next, but in a triple-threaded screw the
lead is three times the distance from the center of one thread to

the center of the next.

Screw Cutting by the Engine Lathe.

When the stud and the spindle run at the same speed
( which they usually do) the ratio between the gears may always
be obtained by simply ascertaining the ratio between the num-
ber of threads per inch of the lead-screw and the screw to be
cut.

EXAMPLE.
The lead-screw on a lathe has four threads per inch and

the screw to be cut has \l l/2 threads per inch ( one-inch pipe-
thread). Find the gears to be used when the smallest change gear
lias 24 teeth and the gears advance by four teeth up to 96.

The ratio of the number of threads per inch of the two screws
is as 4 to \\yz .

As the smallest gear has 24 teeth and the gears all

advance by four teeth, this ratio of the screws must be mul-
tiplied by a number which is a multiple of 4 and which, at least,

gives the smallest gear 24 teeth. For instance, multiply by 8
and the result is 8 X 11^ = 92 teeth for the gear on the lead-
screw

;
8 X 4 = 32 teeth for the gear on the stud.

Cutting flultipIe-Threaded Screws or Nuts by the

Engine Lathe.

Calculate the change gears as if it was a single-threaded
screw of the same lead. Cut one thread and move the tool the
proper distance and cut the next thread.
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The most practical way to move the tool from one thread
to another, when cutting double-threaded screws or nuts, is

to select a gear for the stud or spindle of the lathe having a
number of teeth which is divisible by two, and when one thread is

cut make a chalk mark across a tooth in this gear onto the rim of
the intermediate gear ;

count half way around the gear on the stud
and make a chalk mark across that tooth; drop the swing plate

enough to separate the gears, pull the belt by hand until the oppo-
site mark on the gear on the stud comes in position to match the
chalk mark on the intermediate gear; clamp the swing plate again
and the tool is in proper position to cut the second thread.

When triple threads are to be cut, select a gear for the

spindle or stud whose number of teeth is divisible by three,
and in changing the tool from one thread to the next, only turn
the lathe enough so that the gear on the stud moves one-third
of one revolution.

If, for any reason, it should be inconvenient to make this

change by the gear on the stud, the change may be made by the
lead-screw gear. The intermediate gear is first released from the

gear on the lead-screw, which is then moved ahead the proper
number of teeth, and again connected with the intermediate gear.
The proper number of teeth to move the gear on the lead-screw
is obtained by the following rule :

Multiply the number of teeth in the gear on the lead-screw

by the number of threads per inch of the lead-screw
;
divide this

product by the number of threads per inch of the screw to be

cut, and the quotient is the number of teeth that the gear on the
lead-screw must be moved ahead.

EXAMPLE.
A square-threaded screw is to have ^-inch lead and triple

thread. The lead-screw in the lathe has two threads per inch,
and the gear on the lead screw has ninety-six teeth. How many
teeth must the gear on the lead-screw be moved, when changing
from one thread to the next ?

Solution :

A screw of J^-inch lead with triple thread has six threads
2 X 96

per inch, therefore the gear must be moved
^

= 32 teeth,

in order to change the tool from one thread to the next.

U. S. Standard Screws.

Fig. 1 shows the shape of
thread on United States stand-
ard screws. The sides are

straight and form an angle of

sixty degrees, and the thread is
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flat at the top and bottom for a distance equal to one-eighth of

the pitch, thus the depth of the thread is only three-fourths of

a full, sharp thread. (See Fig. 1.)

Fig. 2 shows the shape of the Whitworth (the English) sys-
tem of thread. As compared
with the American system,
the principal difference is in

the angle between the sides

of the thread, which is fifty-

five degrees, and one-sixth of

the depth of the full, sharp
thread is made rounding at

the top and bottom. There is also a difference in the pitch of

a few sizes.

The common V-thread screws have the angle of thread of

sixty degrees, the same as the United States standard screws,
but the thread is sharp at both top and bottom. This style of

thread is rapidly, as it should be, going out of use. The prin-

cipal disadvantages of this thread are that the screw has less

tensile strength, and it is also very difficult to keep a sharp-

pointed threading tool in order.

Diameter of Screw at Bottom of Thread.

The diameter of screws at the bottom of thread is obtained

by the following formulas :

United States Standard Screws:

n

For V-threaded screws :

n

For Whitworth screws :

n

d= Diameter of screw at bottom of thread.

D = Outside diameter of screw.

n = Number of threads per inch.

1.299 is constant for United States standard thread.

1.733 is constant for sharp V-thread.

1.281 is constant for Whitworth thread.
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TABLE No. 52. Dimensions of Whitworth Screws.

Diameter of

Screw in

Inches.

H

Number of

Threads per
Inch.

40
24
20
18
16
14
12
11

10
9

8

7

Diameter of Number of

Screw in Threads per
Inches. Lich.

Diameter of

Screw in

Inches.

3%
4

4%
5

Number of

Threads per
Inch.

Diameter of Tap Drill.

The diameter of the drill with which to drill for a tap is, if

we want full thread in the nut, equal to the diameter of the
screw at the bottom of the thread, and is, therefore, obtained by
the same formulas. However, in practical work it is always ad-
visable to use a drill a little larger than the diameter of the
screw at the bottom of thread, because in threading wrought iron
or steel the thread will swell out more or less, and a few thou-
sandths must be allowed in the size when drilling the hole. In

drilling holes for tapping cast-iron, a little larger drill is used,
because it is unnecessary in a cast-iron nut to have exactly full

thread. Table No. 53 gives sizes of drill for both wrought and
cast-iron, which give good practical results for United States
standard screws.

Table No. 53 gives sizes of hexagon bolts and nuts. The
size of the hexagon is equal to 1)4 times the diameter of bolt +
^-inch ;

the thickness of head is equal to half the hexagon.
The thickness of nut is equal to the diameter of the bolt.

When heads and nuts are finished they are ^-inch smaller.

The table is calculated by the following formulas :

d = D 1.299

C = 1.155 A

B = 1AUA

F=D
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TABLE No. 53. Dimensions of U. S. Standard Screws.

X

u
s*

0.185

0.240

0.294

0.345

0.400

0.454

0.507

0.620

# 0.731

0.838

0.939

1.065

1.158

1.284

1.389,

1.490

1.615

1.711

1.961

4tf

i^
2

'-V

5#

2.175 2A
2.425 2X
2.629 2d
2.8792

j

3.1003i^
3.3173
3.567

3.798 3j
4.028 4
4.255 4-, >

4.480 4^
4.730'4^
4.963 4f|
5.2035||
5.4236*1

0.0269
0.0452

0.0679
0.0935
0.1257

0-1619
0.2019
0.3019
0.4197
0.5515
0.6925
0.8892

1.0532

1.2928

1.5153

1.7437
2.0485
2.2993

3.0203

3.7154
4.6186

5.4284
6.5099

7.5477
8.6414
9.9930

11.3292

12.7366

14.2197
15.7633
17.5717

19.2676
21.2(U7

23.0978

0.0062

0.0069

0.0078
0.0089
0.0096
0.0104
0.0114

0.0125
0.0139

0.0156

0.0178

0.0178
0.0208

0.0208

0.0227
0.0250
0.0250

0.0278
0.0278
0.0313
0.0313
0.0357
0.0357
0.0384
0.0417
0.0417
0.0435
0.0455
0.0476
0.0500
0.0500
0.0526
0.0526
0.0556
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NOTE. In finished work, the thickness of the head of the
bolt and the nut is equal, and is Vie of an inch less than the
diameter of the bolt.

Columns B and C in Table No. 53 are very useful for many
purposes ;

for instance, in selecting size of counter-bore when
finishing castings, to give bearing for screw heads : in turning
blanks which are afterwards to be cut into square or hexagon
heads, etc.

Table No. 54. Coupling Bolts and Nuts.

(Hexagon).

(All Dimensions in Inches)

kl
<u
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TABLE No. 56. Dimensions of Hexagon and Square Head

Cap Screws.

(All Dimensions in Inches).

'o
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TABLE No. 58. Giving the Average Weight in Pouncj

per 100 Square Head ( iim let =Pointed Lag Screws.

LENGTH
in Inches.
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French System of Standard Threads.

In the French system of standard screws the thread has an
angle of 60, with flat top and bottom. (The French system is

in this respect identically the same as the United States stand-
ard thread.) The pitch and the diameter are given in millimeters

(see Table No. 59). The form of thread is an equilateral tri-

angle. The diameter of tap drill (or diameter of bolt or screw
at bottom of the thread) is obtained in the following way : The
height of an equilateral triangle is obtained by multiplying its

base by 0.86603 (this number is sin. of 60). Thus, assuming
that the base = 1, and taking off one-eighth of the depth at top
and bottom, that is reducing the depth of the thread one-fourth,

86603
the remaining depth will be 0.86603 -^ =0.64952

;
mul-

tiplying this by 2, to allow for the depth of the thread on both
sides of the screw, the constant will be 2 X 0.64952 = 1.29904,
which for all practical purposes may be reduced to 1.3. Thus,
when the pitch of the screw is 1 millimeter, the diameter of the
screw at the bottom of the thread is 1.3 millimeters less than
the outside diameter of the screw. Therefore, the diameter of
the screw at the bottom of the thread may always be calculated

by the simple rule :

Multiply the pitch in millimeters by 1.3, and subtract the

product from the outside diameter of the screw; the remainder
is the diameter of the screw at the bottom of the thread, which
is the same as the diameter of the tap drill, given in Table No. 59.

TABLE No. 59. French Standard Screws.

(All Dimensions in Millimeters).

Diameter of

Screw.
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FIG.

German System of Standard Threads.

In the German system of standard threads the angle is 53
7' 47/;

. The reason for adopting such an odd angle is that the
form of thread is a triangle, having its base equal to its height,

and the top angle of such a triangle
is 53 7' 47". The thread in this

system is also made flat at top and
bottom equal to one-eighth of the

pitch (see Fig. 4). The diameter
of the screw at the bottom of the
thread is, in this system, calculated

by this rule :

Multiply the pitch in millimeters by 1.5, subtract this pro-
duct from the outside diameter of the screw and the remainder
is the diameter of the screw at the bottom of the thread, which
is the same as the diameter of the tap drill given in Table No. 60.

TABLE No. 60. German Standard Screws.

(All Dimensions in Millimeters).

g
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To insure Intel-changeability, and to reduce the wear on taps
and dies, the congress recommended that the bottom of the
thread should be rounded off by any suitable curve, which should
not deepen the cut more than an amount equal to Vie of the

pitch beyond the standard Sellers type. The top of the thread
is to be left flat, as in the Sellers system. The following stand-
ard sizes and pitches were decided upon :

TABLE No. 6 1. International Standard Thread.

Diameter in Milli-

meters.
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EXAMPLE 1.

To gear a lathe in order to cut a metric standard screw
24 millimeters in diameter and of three millimeters pitch, the
lead-screw on the lathe having four threads per inch.

Solution :

Twenty divided by three gives 6%, therefore gear the lathe
as if it was to cut 6% threads per inch with a common inter-

mediate gear, and throw in the special intermediate gear as
shown in the cut, and the lathe will cut a screw of three milli-

meters pitch. The gearing is easily obtained, thus:
The ratio between the screw gear and the stud gear is as 6% to

4, which is the same as 20 to 12, or, reduced to its lowest terms, 5
to 3. Hence, the gears may have any number of teeth providing
the ratio is 5 to 8

;
for instance, multiplying by 9, 45 and 27

could be used, or, multiplying by 10, 50 and 30 could be used,
etc.

TABLE No. 62. How to Gear a Lathe when Cutting Metric Thread,
Using Inch-Divided Lead-Screw and Intermediate Gears, as
Shown in Fig. 5.

h i
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NOTES ON HYDRAULICS.

Hydraulics is the branch of engineering treating on fluid in

motion, especially of water, its action in rivers, canals and pipes,
the work of machinery for raising water, the work of water as
a prime mover, etc.

Pressure of Fluid in a Vessel.

When fluid is kept in a vessel the pressure will vary directly
as the perpendicular height, independent of the shape of the
vessel. For water, the pressure is 0.434 pounds per square inch,
when measured one foot under the surface. The pressure in

pounds per square inch may, therefore, always be obtained by
multiplying the head by 0.434. The head corresponding to a

given pressure is obtained by either dividing by 0.434 or multi-

plying by 2.304.

EXAMPLE.
What head corresponds to a pressure of 80 pounds per

square inch ?

Solution :

80 X 2.304 = 184 feet.

Velocity of Efflux.

The velocity of the efflux from a hole in a vessel will vary
directly as the square root of the vertical distance between the

hole and the surface of the water. For instance, if an opening
is made in a vessel four feet, and another 25 feet, below the sur-

face of the water, and the vessel is kept full, the theoretical

velocity of the efflux will be nearly 16 feet and 40 feet per second

respectively, friction not considered ; or, in other words, the

velocity will be as 2 to 5, because \^4 = 2 and \^26 = 5.

The velocity of efflux in feet per second may always be
calculated theoretically by the formula :

v = 8.02 X

Constant 8.02 is \S2g= \/64.4, and v velocity of efflux.

h = Head in feet.

Table No. 63 gives the theoretical velocity of efflux and the

static pressure corresponding to different heads, and is calcu-

lated by the following formulas :

^ ~
644

* =*VTX 64.4 v = V P X 2.3 X 64.4

v =V P X 148 P = h X 0.434 h P X 2.3
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TABLE No. 63. Head, Pressure, and Velocity of Efflux

of Water.

Head in

Feet.
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Velocity of Water in Pipes.

The theoretical velocity of water discharged from a pipe is

calculated by the same formula as is used in calculating veloci-

ties of falling bodies. ( See page 277).

v = \/2 g h
i> = Theoretical velocity of efflux per second.
h = Head.

2g= 64.4 if v and h are reckoned in feet.

2 g= 19.64 if v and h are reckoned in meters.
If the water, besides the pressure due to the head, is also

acted upon by some additional pressure, for instance, steam,
the theoretical velocity of the discharge is obtained by the

formula,

P = Pressure in pounds per square inch.

The constant 0.434 is used because a column of water one
foot high will exert a pressure of 0.434 pounds per square inch;
thus, by dividing by 0.434, we actually convert the pressure into
its corresponding head in feet.

All other quantities in this formula are, of course, taken in

English units.

NOTE. By head is always meant the vertical height
in feet, or its equivalent in pressure expressed in feet. Table
No. 63 gives the theoretical velocity of the discharge and the

pressure corresponding to different heads.
The theoretical velocity is never obtained in practice, be-

cause part of the total head is used to overcome the resistance
at the entrance of the pipe, and part is used to overcome
the frictional resistance to the flow of the water in the pipe.
Thus, only a part of the total head is left to give
velocity to the water, therefore the velocity of the water at dis-

charge will only be what is due to the velocity head, after deduc-
tions are made for resistance at the entrance and for friction in

the pipes. In short pipes, the resistance at the entrance to the

pipe is comparatively the larger loss, but in long pipes the fric-

tional resistance is the larger.
When both the resistance at the entrance and the friction

in the pipe are considered the formula will be :

v = Velocity of discharge in feet per second.
2 -=64.4
L = Length of pipe in feet.

d= Diameter of pipe in feet.

f= Coefficient of friction, which is obtained from experi-

ments, and will vary according to conditions, from 0.01 to 0.05.

It is usually in approximate calculations taken as 0.025.



41 6 NOTES ON HYDRAULICS.

EXAMPLE.

Find the velocity of discharge from a pipe six inches in diam-
eter. The head is 16 feet and the length of the pipe is 100

feet, and coefficient of friction 0.025.

Solution :

(NOTE. 6 inches = 0.5 foot.)

64.4 X 16

:.5 -f 0.025 X -7TT

6.5

v = 12.6 feet per second.

In Table No. 64 the quantity of water discharged per min-

ute by a pipe six inches in diameter, when the velocity is one foot

per second, is 88.14 gallons. Thus, the quantity of water deliv-

ered when the velocity is 12.6 feet per second, is 12.6 X 88.14 =
1110.6 gallons per minute.

When the length of the pipe is more than 4,000 diameters
tne velocity of the water may be calculated by the formula,

and the quantity is obtained by multiplying the velocity by the

constants given in Table No. 64.

EXAMPLE.

Find the velocity of efflux from a water pipe of three

inches diameter and 1200 feet long, having a head of six feet,

assuming coefficient of friction as 0.025.

Solution :

0.25

Discharge in gallons per minute :

q = 22.03 X 1.79 = 39.4 gallons per minute.
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TABLE No. 64. Quantity of Water Discharged Through
Pipes in One flinute, when Velocity of Efflux

is One Foot per Second.

-o
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NOTES ON STEAM.
When water is heated and converted into steam of atmos-

pheric pressure, one cubic foot of water will make 1646 cubic
feet of steam. (The common expression that ** a cubic inch of
water makes a cubic foot of steam "

is not strictly correct, as a
cubic foot contains 1728 cubic inches.)

The specific gravity of steam at atmospheric pressure, when

compared with water is, therefore. - = 0.000608.

The weight of one cubic foot of steam at atmospheric
pressure will, therefore, be 0.000608 X 62.5 = 0.038 pounds. At
any other pressure the weight per cubic foot of steam is given
in Table No. 65.

Saturated steam is steam at the temperature of the boiling
point which corresponds to its pressure. Saturated steam does
not need to be wet steam, as the word saturated does not mean
that the steam is saturated with water, but it means that it is

saturated with heat
;
that is to

say
: the temperature under the

given pressure cannot possibly be any higher as long as the
steam is in contact with water, because if more heat is added
more water will be evaporated, and if the volume is kept con-

stant, as in a steam boiler, both the pressure and temperature
will increase simultaneously.

High pressure steam is steam the pressure of which greatly
exceeds the pressure of the atmosphere.

Low pressure steam is steam the pressure of which is less

than the atmosphere, and also steam having a pressure equal
to, or not greatly above, the atmospheric pressure.

Wet steam is steam which contains water held in suspen-
sion mechanically.

Dry steam is steam which does not contain water held in

suspension mechanically.
Super-heated steam is steam which is heated to a tempera-

ture higher than the boiling point corresponding to its pressure.
It cannot exist in contact with water, nor contain water, and
resembles a perfect gas. Vertical boilers with tubes through
the steam space (such as the Manning boiler) give slightly super-
heated steam

;
but if steam is to be super-heated to any consid-

erable extent it must be passed through a super-heater, which
usually is in the form of a coil of pipes subjected to the hot

gases in the uptake from the boiler.

The sensible heat of steam is the temperature which can
be measured by a thermometer.

The latent heat of steam is that heat which is absorbed
when water of any given temperature is changed into steam of
the same temperature.

When water is evaporated under pressure the sensible heat
will increase and the latent heat will decrease. For instance,
at atmospheric pressure the sensible heat is 212 degrees, and the

latent heat of evaporation is 966 B. T. U., but at 100 pounds
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absolute pressure the sensible heat is 327.9 degrees, while the

latent heat of evaporation is only 883.1 B. T. U. (See steam

table, No. 65.)

TABLE No. 65. Properties of Saturated Steam.

ill.fMW
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TABLE No. 65. (Continued).

Absolute

Pres-

sure

in

Pounds

per

Square

Inch.
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maintained at 95 pounds per square inch, the temperature of

the water from the condensed steam will be 324 degrees, the

oame as the temperature of the steam, but each pound of steam
as it is condensing will give out 885.8 British thermal units of

heat.
The fifth column gives the number of cubic feet of satu-

rated steam which will weigh one pound at the given pressure
and temperature. The sixth column gives the weight of one
cubic foot of saturated steam of corresponding given tempera-
ture. For instance, one cubic foot of steam at 95 pounds per

square inch absolute pressure will weigh 0.2198 pounds, and 100

cubic feet of steam of 95 pounds per square inch absolute pres-
sure will weigh 100 X 0.2198 = 21.98 pounds. In other words, it

will take 0.2198 pounds of water to give one cubic foot of steam
at 95 pounds absolute pressure, and it will require 21.98 pounds
of water to make 100 cubic feet of steam of 95 pounds absolute

pressure.
The seventh or last column gives the relative volume of

steam at the given pressure as compared with water at 32

degrees F. For instance, one cubic foot of water will give
1046 cubic feet of steam at atmospheric pressure, but one cubic
foot of water gives only 219 cubic feet of steam at 125 pounds
absolute pressure.

Steam Heating.

In the ordinary practice of heating buildings by direct

radiation the quantity of heat given off by the radiators or steam

pipes will vary from 1^ to 3 heat units per hour per square foot

of radiating surface for each degree of difference in tempera-
ture; an average of from 2 to 2^ is a fair estimate.

One pound of steam at about atmospheric pressure contains

1146 heat units, and if the temperature in the room is to be
maintained at 70, while the temperature of the pipes is

212, the difference in temperature will be 142 degrees. Multi-

plying this by 2#, the emission of heat will be 229^ heat units

per hour per square foot of radiating surface. Dividing 229)4

by 1146 gives 0.2 pounds of steam condensed per hour, per square
foot of radiating surface. From this may be estimated the re-

quired size of boiler, as the boiler must always be capable of

generating as much steam as the radiators are condensing. A
rule frequently given is to have one square foot of heating sur-

face in the boiler for every 8 to 10 square feet of radiating sur-

face and one square foot of grate surface for every 350 to 500

square feet of radiating surface.

One pound of coal is required per hour per 30 to 40 square
feet of radiating surface.

When steam is used for heating dwelling-houses, one square
foot of radiating surface is required per 40 to 80 cubic feet of

space, according to location, number of windows, etc. As a
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general rule, one square foot of radiating surface is sufficient

for heating 40 to 60 cubic feet of air in outer or front rooms,
and 80 to 100 cubic feet in inner rooms. The following rule may
be used as a guide for different conditions : One square foot of

radiating surface is sufficient for' heating 60 to 80 cubic feet of

space in dwellings, schools and offices
;

75 to 100 cubic feet of

space in halls, store houses and factories
;
150 to 200 cubic feet

of space in churches and large auditoriums.
In heating mills 1^-inch steam pipes are generally used,

and one foot of pipe is allowed per 90 cubic feet of space to be
heated.

Value of Low Pressure Steam for Heating Purposes.

When steam at atmospheric pressure is condensed into

water at a temperature of 212, each pound of steam gives up
966 B. T. U. of heat, but if steam of 100 pounds gage pressure
(115 pounds absolute) is condensed into water at 212 degrees,
each pound of steam must give up 1004 B. T. U., which is only
38 heat units more than steam of atmospheric pressure. Hence
it is evident that for heating purposes there is no advantage in

using steam of high pressure ;
one pound of exhaust steam, only

a pound or two over atmospheric pressure, is almost as valuable
an agent for heating purposes as live steam at 100 pounds pres-
sure direct from the boiler.

Hot Water Heating in Dwelling Houses.

One square foot of heating surface is required per 30 to 60
cubic feet of space heated.

Quantity of Water Required to Make any Quantity of

Steam at any Pressure.

The weight of water required to make one cubic foot of
steam at any pressure is the same as the weight of one cubic
foot of steam as given in the sixth column in Table No. 65.

Therefore, the weight of water is obtained by multiplying
the number of cubic feet of steam required by the weight of one
cubic foot, as given in the table.

EXAMPLE.
How much water will it take to make 300 cubic feet of steam

at 100 pounds absolute pressure ?

Solution :

One cubic foot of steam at 100 pounds pressure is given in

the table as weighing 0.2307 pounds, therefore 300 cubic feet
will weigh 300 X 0.2307 = 69.21 pounds of water.

One cubic foot of water may, for any practical purpose, be
reckoned to weigh 62^ pounds and one gallon of water may be
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taken as &fo pounds, Therefore 69.21 pounds divided by 62.5

gives 1.1 cubic feet, or 69.21 pounds divided by 8.3 gives 8.34

gallons.
At atmospheric pressure one cubic foot of steam has nearly

the weight of one cubic inch of water, and the weight increases

very nearly as the pressure ; therefore, for an approximate estima-

tion, if no steam tables are at hand, it is well to remember the

rule:

Multiply the number of cubic feet of steam by the absolute

pressure in atmospheres, and the product is the number of cubic

inches of water required to give the steam.
NOTE. In all such calculations for practical purposes, a

liberal allowance must be made for loss and leakage.

Weight of Water Required to Condense One
Pound of Steam.

The following formula gives the theoretical amount of water

required to condense one pound of steam :

/2 t\

W = Weight of water required per pound of steam con-
densed.

// = Number of heat units above 32 in one pound of steam
at the pressure of exhaust. This temperature is

obtained from Table No. 65.

t\ = Temperature of water when entering the condenser.
/2 = Temperature of water when leaving the condenser.
/3 = Temperature of the condensed steam when leaving

the condenser and entering the air-pump.

EXAMPLE.
Steam of four pounds absolute pressure is exhausted into a

surface condenser. The temperature of the condensed steam
when leaving the condenser and entering the air-pump is 120.

The temperature of the cold water when entering the con-
denser is 65.

The temperature when leaving the condenser is 105.
How many pounds of condensing water is needed per pound of

steam condensed ?

NOTE. In the steam table, page 419, the total number of
heat units above 32 per pound of steam of four pounds absolute

pressure is given as 1128.

Solution :

_ 1128 + 32 120

105 65

1040
IV -- = 26 pounds of water per pound of steam.

40
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In a jet condenser the steam and the water are mixed to-

gether, and, therefore, the condensed steam and the water when
leaving the condenser are of equal temperature, and the formula
will change to

/2 = Temperature of mixture.

t\ = Temperature of water when entering condenser.

The other letters have the same meaning as in the previous
formula.

EXAMPLE.
Steam of three pounds absolute pressure in exhausted into

a jet condenser. The temperature of the cold water entering is

60. The temperature of the mixture leaving the condenser is

110. How many pounds of water are needed per pound of
steam condensed?

NOTE. In the steam table, page 419, the total number of
heat units above 32 per pound of steam of three pounds pres-
sure is given as 1124.0 or, for convenience, say 1125.

Solution :

1125 + 32 110
lA/ *

110 CO

W= = 20.1 pounds.

Weight of Steam Required to Boil Water.

An approximate rule is to allow that one pound of steam is

condensed for every five pounds of water to be heated to the

boiling point.
It does not make much difference about the pressure of the

steam, as long as it is a few pounds above atmospheric pres-
sure

;
for instance, one pound of steam at 10 pounds gage pres-

sure when condensed into water at 212 will give up 973 heat

units, and steam of 100 pounds gage pressure will give up 1003
heat units a difference of only 30 heat units in steam of 10

pounds gage pressure and steam of 100 pounds gage pressure.
More correctly, the weight of steam required to boil one

pound of water at 212 may be calculated by the formula,

_ 212 A~ //ISO
And the weight of steam required to heat one pound of water to

any temperature is obtained by the formula,

*~ H + 32 /2
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x = Weight of steam required.

H= Number of heat units above 32 in one pound of steam,
as given in Table No. 65.

/i = Temperature of water before heating.

t% = Temperature of water after heating.

Expansion of Steam in Steam Engines.

When steam is expanded without doing work and prac-
tically without losing heat by radiation, it will become super-
heated, but if it is doing work, as in a steam engine, it will lose

heat during expansion.

According to the best authorities, the pressure varies in-

jo < versely as the ^power of the volume, if heat is neither added
'nor taken* awayT>y any outside source during the time the steam
is being expanded in the steam engine cylinder. This is called

adiabatic expansion of steam.

The pressure varies inversely as the 1Vio power of the vol-

ume, if the steam is kept dry at the temperature of saturation,

during expansion, by means of a steam jacket outside the

cylinder.

When the pressure is considered to vary inversely as the

volume it is called isothermal expansion.
The isothermal curve is not exactly the correct curve to

represent the expansion of steam, but it is the theoretical curve

usually drawn on the indicator diagram, because it is so easy to

handle and is also very nearly correct.

The following formula gives the mean effective pressure
according to isothermal expansion.

M. E. P. = + hyp.log.rp.log.r\ __

Absolute terminal pressure = PI X

Pi = Absolute initial pressure.

r = Ratio of expansion.

PZ = Absolute back pressure.

M. E. P. Mean effective pressure.

Hyp. log. (hyperbolic logarithm), see page 126.

Table No. 66 gives the terminal and the mean effective

pressure of steam expanded under any of these three different
conditions.
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TABLE No. 66. Constants for Calculating Mean
Terminal Pressure of Expanding Steam.

and
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To Find the Mean Effective Pressure by the

Preceding Table.

Find the constant in the column corresponding to the con-

ditions of expansion, and to the given cut-off. Multiply this by
the absolute initial pressure, and the product is the average
pressure. Subtract the back pressure and the remainder is the

mean effective pressure.

EXAMPLE.
Find the mean effective pressure for isothermal expansion

when the engine is cutting off at one-quarter stroke. The initial

pressure is 90 pounds absolute. The absolute back pressure is

18 pounds.
Solution :

M. E. P. = 90 X 0.596 18 = 53.64 18 35.64 pounds.

NOTE. All such calculations must be made from absolute

pressure (not gage pressure), and when determining the cut-off

the clearance must be considered.

Clearance.

The clearance of an engine is usually expressed as a per-

centage of the piston displacement. The space between the

piston and the cylinder head at the end of the stroke, also the

cavities due to the steam ports, must be included in considering
clearance.

In high-class Corliss engines the clearance does not exceed
2 l

/z to 5 per cent., but in common slide-valve engines the clear-

ance may go as high as 5 to 15 per cent. When clearance is

taken into account the actual ratio of expansion is

R = Actual ratio of expansion.
r = Nominal ratio of expansion.
c = Clearance, expressed as a fractional part of the length

of the stroke.

EXAMPLE.
The nominal ratio of expansion is 4, and the clearance is

5 per cent. What is the actual ratio of expansion?
NOTE. 5 per cent, is %oo = Vso = 0.05 of the stroke.

Solution :

R _ 1 + 0.05

-- + 0.05

R = -j-- = 3.5 = Actual ratio of expansion.
O.o
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Weight of a Grindstone.

Multiply the constant 0.064 by the square of the diameter
in inches and this product by the thickness in inches; the result
is the weight of the grindstone in pounds.

EXAMPLE.
Find the weight of a grindstone 30 inches in diameter and

six inches thick.

Solution :

Weight = 0.064 X 30 X 30 X 6 = 346 pounds.

Lathe Centers.

In this country lathe centers are universally made 60 de-

grees, but in Europe the most common practice is to make lathe
centers 90 degrees.

Morse Taper.

The Morse Taper, which is so universally used for the
shanks of drills and other tools, is given in

TABLE No. 67. Horse Taper.

No. of

Taper.
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also very well adapted to the metric system, as 0.6 inch per
foot is equal to 0.05 millimeter per millimeter.

The following table is given to illustrate the system. The
table could be extended to as large size tapers as are required
for any work.

TABLE No. 68. Jarno Taper.

Number of

Taper.
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Soldering Fluids.

Add pieces of zinc to muriatic acid until the bubbles cease
to rise, and the acid may be used for soldering with soft solder.

Mix one pint of grain alcohol with two tablespoonfuls of
chloride of zinc. Shake well. This solution does not rust the

joint as acids are liable to do.

When soldering lead use tallow or resin for a flux, and use a
solder consisting of one part of tin and \yz parts of lead.

Spelter.
Hard spelter consists of one part of copper and one part of

zinc.

A softer spelter is made from two parts of copper and three

parts of zinc.

A spelter which will flow very easily at low heat consists of

46% of Copper, 46% of Zinc, and 8% of Silver. When making
any of these different kinds of spelter, melt the copper first in a
black lead crucible and then put in the zinc after the copper
has cooled enough to furnish

just sufficient heat to melt the

zinc, but not enough to burn it. Stir with an iron rod and
after the metals have compounded and the compound is still

molten, pour upon a basin of water. The metal in striking the

water will form into small globules or shot and will so cool,

leaving a coarse granular spelter ready for use. When pouring
the metal let a helper keep stirring the water with an old broom.

Alloy Which Expands in Cooling.
Melt together nine pounds of lead, two pounds of antimony

and one pound of bismuth. This alloy may be used in fastening
foundation bolts for machinery into foundation stones. In such

cases, collars or heads are left on the bolts and after the hole
is drilled in the stone a couple of short, small holes are drilled

at an angle to the big hole
;
when the metal is poured in, it will

flow around the bolts and also into these small holes, and it is

almost impossible for the bolt to pull out.

CAUTION. When drilling holes in stone, water is always
used, but this must be carefully dried out by the use of red-hot
iron rods before the melted metal is poured in. If this pre-
caution is not taken the metal will blow out, making a poor job,
and it may also cause accident by burning the hands and face

of the man who is pouring it in.

Shrinkage of Castings.
General rule :

% inch per foot for iron.
S
/IQ inch per foot for brass.

In small castings the molder generally raps the pattern
more than the casting will shrink, therefore no shrinkage is al-

lowed. Frequently castings are of such shape that the pressure
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of the fluid iron on some part of the mould is liable to make the

sand yield a little and thereby cause the casting to be as large

as, or even larger than the pattern. All such things a practical

pattern maker takes into consideration when allowing for

shrinkage in patterns.

Case Hardening Wrought Iron and Soft Steel.

Bone dust specially prepared for the purpose, or burnt
leather scrap, is placed in a cast-iron box, together with the
article to be hardened. Cover the top of the box with plenty of
the hardening material in order to keep the air out. Heat the
whole mass slowly in a furnace to a red heat from two to five

hours in order that it may be uniformly and thoroughly heated

through. A few iron rods about %<? inch in diameter are put in

when packing the box, one end of the rod reaching about to the
middle of the box, and the other end projecting out through the

hardening material on top. When the box appears to have the

right heat, these rods are pulled out one at a time, in order to

judge of the heat in the center of the mass. When the box
has been exposed to the fire the desired length of time, its

contents are quickly dumped into cool water.
Sieves of iron netting are laid on the bottom of the tub into

which the case hardening material is dumped so that the hard-
ened articles may be conveniently taken up from the water by
one of the sieves. The case hardening material itself is also

taken out by another sieve which is of very fine netting and
placed under the first one. The material is dried and used over

again, and a little new material is added when repacking the
boxes.

When articles are well finished before hardening, this pro-
cess gives a very fine color to both soft steel and wrought iron.

Case hardening may also be effected by packing the articles

in soot, but this process does not give a nice color.

Horn and hoof is also used for case hardening. Malleable
iron may also be case hardened, but it requires careful handling
in order to prevent its cracking and twisting out of shape.

Case Hardening Boxes

are made from cast-iron and are of various sizes. Small boxes

may be made nine inches long, five inches wide, and four inches

deep, and about one-fourth inch thick. They should be pro-
vided with legs at least one inch high so that the heat may get
under the bottom as at the top. An ear having a rectangular
hole through it should be cast under the bottom at each end of
the box. This gives a chance to handle the box with a fork

having flat prongs instead of taking it out of the hardening fur-

nace with a pair of tongs, which is liable to break the box,
as cast-iron is very inferior in strength when hot.



432 SHOP NOTES.

To Harden with Cyanide of Potassium.

Heat the cyanide of potassium in a wrought iron pot until

cherry red, and keep it so by a steady fire, immerse the pieces
to be hardened from three to five minutes, according to their

size and degree of hardness required, then plunge into cold

water. Large pieces require more time than small ones, and
the longer the article remains in the cyanide the deeper the

hardening becomes. New cyanide gives the best color and

cyanide previously used for hardening produces a harder surface.

BLUE PRINTING.

To Prepare Blue Print Paper.

Dissolve two ounces of citrate of iron and ammonium in 8#
ounces of soft water. Keep this in a dark bottle. Also dissolve

1% ounces of red prussiate of potash in 8X ounces of water and

keep in another dark bottle. When about to use, mix (in a

dark place) an equal quantity of each solution in a cup and

apply with a sponge or a camel's hair brush as evenly as pos-
sible' on one side of white rag paper (such as used for envelopes).
Let it dry and put it away in a dark drawer. The paper must
not be prepared in daylight but when taking prints it may be
handled then, providing care is used to expose it as little as

possible to the light before it is put into the printing frame.

Blue Print Frame.

Make a strong frame similar to a picture frame having a

strong and thick glass. Make a loose back, from boards about

y2 inch thick, which is held into the frame by four suitable

catches so arranged that they press this back firmly and evenly

against the glass. The surface next to the glass should be

covered by three thicknesses of flannel in order to make a

cushion so that the prepared paper and the tracing are kept close

together when put in the frame.

Blue Printing.

The drawing must be made on transparent material, for

instance, tracing cloth or tracing paper. Place the tracing in

the frame with the side on which the drawing is made next to

the glass. Place the prepared side of the sensitive paper against
the back of the tracing. Put the loose back into the frame with

the padded side against the prepared paper, and fasten it up so

that both paper and tracing are kept firmly against the glass.

Expose to sunlight from three to six minutes, according to the

brightness of the sun. Take the sensitive paper out of the

frame and quickly put it into a tub of clean cool water and wash
it off, and the drawing will appear in white lines on blue

ground. Hang the print up by one edge so that the water will

run off, and let the print hang until dry.
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Acceleration due to gravity, 276.

Addition, 5.

of decimals, 14.

of vulgar fractions, 12.

of logarithms, 75.

Algebra, notes on, 63.
Allowable deflection, 266.

Alloy which expands in cooling,

43-
Animal pow

r

er, 318.

Angular velocity, 299.
Area of circles, 196.

tables of, 209.
Area of segments of circles, 199.

of parallelograms, 196.
of triangles, 193.
of triangles, formulas for,

176-177.
of trapezoids, 196.
of a circular lune, 202.

of a zone, 202.

B.

Beams, deflection in, 254-266.
transverse strength of, 233-

254.
to calculate size to carry a

given load, 247.
round wooden, 251.
not loaded at the center of

span, 252.
loaded at several places, 253.

placed in an inclined posi-

tion, 254.

Bearings, 369-374.
area of, 369.
allowable pressure in, 369.

proportions of, 370-374.
Belts, 326-338.

arc of contact of, 332.

angle, 337.

cementing, 328.

lacing, 327.

length of, 329.

horse-power transmitted by,

329-
crossed, 336.

oiling of, 338.

quarter turn, 336.

slipping of, 337.

tighteners on, 337.

velocity of, 337.
Bevel gears, 389.

dimensions of tooth parts
in, 391.

Body projected at an angle up-
ward, 279.

in horizontal direction from
an elevated place, 284.

Blue print paper, how to prepare,

432.
Blue printing, 432.

C.

Case hardening, 431.
boxes, 431.

by cyanide of potassium,

432.

Cap screws, 407.
Center of gravity, 292.

433
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Center of gyration, 292.
of oscillation, 292.
of percussion, 292.

Centrifugal force, 302.
Chain Links, 323.

Circles, 152.
area and circumference of,

209.

Couplings, 369.

Coupling bolts, 406.

Compound proportions, 17.

Cone, surface of, 204.
volume of, 205.

Constant for deflection, how to

find, 264.
Crane Hooks, 323.

Cylinder, thickness of, 219.
surface of, 203.
volume of, 204.

Cube root, 30.
table of, 33.

Crushing strength, 223.

Clearance, 427.

D.

Debt paying by instalments, 89.
Deflection in beams when loaded

transversely, 254.
allowable, 266.

Derrick, proportions of a two ton,

324.
Difference between one square

foot and one foot square,

193-
Dimensions of U. S. standard

screws, 405.
of Whitword standard

screws, 404.
Diameter of tap-drill, 404.

of screws at bottom of

thread, 403.
Discount or rebate, 83.
Division, 6.

of decimal fractions, 15.
of vulgar fractions, 10.

of logarithms, 78.

Drawing, problems in geometri-
cal, 184.

E.

Efficiency of machinery, 322.

Ellipse, area of, 208.

circumference of, 208.

Elongation under tension, 215.

Energy, kinetic, 287.

Eye bolts, 407.

Equations, 65.

quadratic, 67.

Equation of payments, 27.

P.

Factor of Safety., 274.
Force energy and power, 285.

of a blow how to calculate,
288.

acceleration and motion
formulas for, 288.

centrifugal, 302.
Formulas, 3.

Fractions, addition of, 7, 14.

subtraction of, 8, 14.

multiplication of, 9, 15.
division of, 10, 15.
to reduce from one denom-

ination to another, n.
to reduce a decimal to a

vulgar, 13.
to reduce a vulgar to a deci-

mal, 12.

Friction, 303.
axle, 305.

angle of, 306.
co-efficient of, 304, 306.

rolling, 304.
rules for, 306.
in machinery, 306.
in pulley-blocks, 307.

Frustum of a cone, 205.
surface of, 205.
volume of, 206.

Frustum of a pyramid, 207.
surface of, 207.
volume of, 207.

Fly wheels, 356.

weight of, 356.

centrifugal force in, 357.
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Fly Wheels, to calculate speed of

bursted, 284.
safe speed of, 360.
safe diameter of, 360.

French standard screws, 409.

G.

Gage for sheet iron and sheet

steel, 145.
for wire, 146.
for twist drills and steel wire,

148.
for stubs, 148.

Geometry., 149-152.
Geometrical mean, 70.

Gravity, 276.

specific, 138.
Gear teeth, 375-400.

circular pitch of, 375.

comparing circular and di-

ametral pitch of, 380.
cycloid form of, 382.
dimensions of teeth, 380.
diametral pitch of, 377.
involute form of, 385.
width of, 389.

Gearing bevel, 389.
how to calculate speed of,

322.
dimensions of tooth parts

in, 380.
dimensions of tooth parts

in bevel, 391.
worm, 395.
dimensions of tooth parts

in worm, 397.

elliptical, 400.

Grindstone, weight of, 140, 428.

speed of, 321.

Hauling a load, 318.
Horse power, 317.

of a steam engine, 317.

compound or triple engine,

3*7.
of waterfalls, 318.

Hot water heating, 422.

Hydraulic, notes on, 413.

Hyperbolic logarithms, 71, 126,

I.

I beam, strength of, 242.

Impulse, 286.

Interest, compound, computed
annually, 22.

semi-annually, 24.

simple, 19.

tables, 20-25.

by logarithms, 81.

Impulse, 286.

Involute, 192.

Inertia, 285.
moment of, 293.

Inclined plane, 308.
International standard thread,

410.

J.

Jarno taper, 428.
table of, 429.

Keys, proportions of, 368.
Kinetic energy, 287.

L.

Lag screws, 408.
Lathe centers, 428.

Laws, Newton's, 276.

Logarithms, 71.
table of, 90.

hyperbolic, 71, 126.

table of, 126.

Levers, 292.
Lune, circular, 202.

Lubricant for milling and drill-

ing, 429.

M.

Machinery, efficiency of, 322.

power required to drive, 319.
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Machinery, speed of, 320.
Mathematics, notes on, i.

Manila ropes, transmission of

power by, 344.
transmission capacity of,

345-

preservation of, 347.

weight of, 346.

strength of, 222.

Marking solution, 429.

Mass, 286.

Multiplication, 6.

of decimals, 15.
of vulgar fractions, 9.

of logarithms, 77.

Mechanics, 276.

Mensuration, 193.
Metric system of weights and

measures, 135.
thread with inch divided

lead-screw, how to cut,

411, 412.
Modulus of elasticity, 213-216.

how to calculate, 213, 255,

265.
Moments, 292.
Moment of inertia, 293.

polar, 297.
Momentum, 286.

Morse taper, 428.

Motion, Newton's laws of, 276.
down an inclined plane, 283.

N.

Napierian logarithms, 71, 126.

Newton's laws of motion, 276.

O.

Oiling of belts, 338.

P.

Parallelogram of forces, 316.

Partnership, 27.

Payments, equation of, 27.

Pillars, safe load on 226-229.
hollow cast iron, 228.

Pillars, wrought iron, 231.

weight of, 228, 232.
Polar moment of inertia, 297.

Polygons, 149.

Posts, wooden, 231.
Power,, animal, 318.

of man, 319.

required to drive machinery,
3*9-

Pulley-blocks, 307.

differential, 308.

Pulleys, 348.
how to calculate size of, 321.
stepped, 350.
correct diameter of, 352.
for back-geared lathes, 354.

Pyramids, frustum of a, 207.
slanted area of a, 206.

total area of a, 206.

volume of a, 206.

Pressure on bearings caused by
the belt, 333.

Pressure of fluid in a vessel, 413.
Produce, weight of, 135.
Problems in geometrical draw-

ing, 184.

Progressions, 68.

Proportion, 16.

compound, 17.

Q.

Quadratic equations, 67.

Quantity of water discharged by
pipes, 417.

of water required to make

any quantity of steam,

422.

R.

Radius of gyration, 293.
Radical quantities expressed

without the radical sign,

32 -

Ratio, 1 6.

Reciprocals, 32.
table of, 33.

Results of small savings, 26.
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Rope, manila, 344, 345, 347* 346,
and 222.

wire, 338, 340, 342, 343 and
222.

s.

Safety, factor of, 274.

Savings, results of small, 26.

Sector of a circle, area of, 198.

Segmemt of a circle, 199.

length of arc of, 199.
area of, 199, 201.

of a sphere, volume of, 208.

Sinking funds and savings, 84.

Soda-water for drilling, 429.

Solder, 429.

Soldering fluid, 430.
Subtraction, 5.

of decimal fractions, 14.

of vulgar fractions, 8.

of logarithms, 76.

Screws, 311, 401.
"
pitch,"

" inch pitch," of

worms and, 401.
French standard, 409.
German standard, 410.
international standard, 410,

411.
U. S. standard, 402.
Whitworth standard, 404.
diameter at bottom of thread

of, 403.
round and fillister head, 406.

cap, 407.

Screw-cutting by the engine
lathe, 401.

multiple threaded, 401.

Shafting, 360.
allowable deflection in, 362.
classification of, 365.
horse power of, 365, 366.
not loaded at the middle be-

tween bearings, 361.
torsional strength of, 363.
torsional deflection of, 364.

transverse strength of, 360.
transverse deflection of, 361.

Shafts for idlers, 367.

Shearing strength, 272.

Shop notes, 428-432.
Shrinkage of castings, 430.

Spelter, 430.

Speed of machinery, 320.
of bandsaws, 320.
of drilling-machines (ircjn),

320.
of emery-wheels and straps,

321.
of grindstones, 321.
of lathes (for iron and wood),

320.
of milling machines, 320.
of planers, 320.

Specific gravity, 138.

Sphere, surface of a, 207.
volume of a, 208.

Steam, notes on, 418-427.

properties of saturated, 419
expansion of, 425-426.

weight of, required to boil

water, 424.

heating, 421.

Strength of materials, 213-275.
tensile strength, 213.

crushing, 223.
transverse, 233.

torsional, 266.

shearing, 272.
cast iron, 214.

wrought iron, 214.

cylinders, 219.
flat cylinder heads, 220.

of dished cylinder heads,
220.

of bolts, 218.

of hollow sphere, 221.

of chains, 222.

of wire rope, 222.

of manila rope, 222.

of beams when section is

not uniform, 243.
of square and rectangular
wooden beams, 245.

Square root, 29.
table of, 33.

by logarithms, 78.
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T.

Tank, to calculate number of

gallons in a, 202.
Tensile strength, 216.
Torsional deflection, 271.

in hollow round shafts, 271.
strength, 266.

strength in hollow round
shafts, 270.

Transverse strength, 233.

Upward motion, 279.
U. S. Standard screws, 402.

V.

Value of various metals, 139.
of the trigonometrical func-

tions for some of the most
common angles, 156.

low pressure steam for heat-

ing purposes, 422.

Velocity, angular, 299.
of efflux, 413-414.
of water in pipes, 415.

W.
Water, measure of, 138.

weight of, 138.

Water required to condense one
pound of steam, 423.

Weights and measures, 133.
metric system of, 135.

Weight of iron, square or round,

flat, 144.
of any shape of section, 141.
of sheet-iron of any thick-

ness, 141.
of steel, 142.
of casting from weight of pat-

tern, how to calculate, 141.
metals not given in the

tables, 141.
of cast-iron balls, 142.
and value of metals, 139.
of various materials, 140.
of liquids, 140.

Wire gages, 146.
Wire rope transmissions, 338.

capacity of, 340.
deflection in, 342.
weight of, 343.
strength of, 343.

Zone circular, 202.
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