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Abstract— This paper provides a framework with which a
humanoid robot can efficiently learn complex behavior. In this
framework, a robot is rewarded by learning how to generate
novel sensorimotor feedback—a form of native motivation. This
intrinsic drive biases the robot to learn increasingly complex
knowledge about itself and its effect on the environment. The
framework includes a mechanism for uncovering hidden state in
a well-structured state and action space. We present an example
wherein the robot, Dexter, learns a sequence of manual skills: (1)
searching for and grasping an object, (2) the length of its arms,
and (3) how to portray its intentions to human teachers in order
to induce them to help.

I. INTRODUCTION

Behavior can be decomposed into declarative and procedu-
ral components. The procedural structure captures knowledge
about how to implement an abstract policy in a particular
setting; e.g., use the left hand and an enveloping grasp [1].
The declarative structure captures abstract knowledge about
the task; e.g., to pick up an object, we must first find the
object, reach to it, and then grasp it. In this paper, we present
a framework for a robot to autonomously learn the declarative
structure.

The robot is motivated to explore new behavior in order to
cause stimuli on multiple channels of sensorimotor feedback.
This formulation provides the robot with native reward for
transforming exterior phenomena into new patterns of interior
stimulation. As a result, the robot accumulates knowledge
regarding itself and the environment using a representation
grounded in patterns of sensory and motor signals.

In many cases, the value of actions is obscured by hidden
state in the sensorimotor feedback. We present an algorithm
to resolve hidden state by finding sensorimotor variables
that reduce entropy in the distribution of probable outcomes
produced by action.

In this paper, we employ a platform for experimental
research in bi-manual manipulation called “Dexter” to explore
the development of behavior. Dexter has a 2-DOF pan/tilt
head equipped with two Sony cameras capable of stereo
triangulation and two 7-DOF whole-arm manipulators (Barrett
Technologies, Cambridge MA). Each arm is equipped with a
3-finger, 4 DOF Barret Hand and 6-axis finger-tip load cells.

II. THE CONTROL BASIS

The architecture presented in this paper employs the control
basis framework for discrete event dynamic systems [2], [3].
This approach is designed to provide a combinatoric basis

Fig. 1. Dexter, the UMass bi-manual humanoid.

for control that supports the representation of declarative
and procedural knowledge. Primitive actions are closed-loop
controllers that consist of an objective function φ ∈ Ωφ, a
subset of available “sensor” resource abstractions σ ∈ Ωσ ,
and a subset of available “effector” resource abstractions τ ∈
Ωτ . A fully specified controller with its sensor and effector
resources is denoted φσ

τ . The sequence of objective functions
invoked captures the declarative structure of a task, while the
σ and τ parameters capture procedural details appropriate for
the run-time context.

In the control basis, concurrent control commands are con-
structed by projecting the output of a subordinate controller,
φ2, into the nullspace of a higher priority controller, φ1

1. The
nullspace N1 of the control command of φ1 is (I − J+

1 J1)
where Ji is the Jacobian matrix of the objective with respect
to the configuration variables θ and J+

i is its pseudoinverse [4].
Our shorthand for this nullspace projection is written using the
“subject-to” operator “/” [2]. For example, φ2 / φ1 captures
the case where subordinate controller φ2 projects outputs into
the nullspace of the superior controller φ1.

A. Discrete Event Dynamic Systems

The control basis also provides for a discrete state repre-
sentation that reflects the status of underlying control tasks.
Closed-loop controllers provide asymptotically stable behavior
that is robust to local perturbations. The error dynamics

1Unless otherwise noted, we use φi to represent a particular instantiation
of a controller with defined objective, sensor, and effector resources.



of a controller (e, ė) support a natural discrete abstraction
of the continuous underlying state space. According to this
discrete abstraction, control events are defined by recognizable
temporal patterns in the control error.

The dynamic state of a controller φi can be characterized
by a predicate pi. In this paper we define three cases:

pi =







−1 : ei is undefined
0 : ėi < εφ

1 : ėi ≥ εφ,
(1)

where εφ is some small negative constant. A value of X for
predicate pi characterizes an aggregate “don’t care” value
over the three possible values and is often useful for state
abstraction. For asymptotically stable controllers, for which
e(t) can be considered a Lyapunov function, ė is negative
definite. A “schema” designates a set of possible actions and
a policy for selecting actions on the basis of patterns in the
feedback that they reveal. Two such schema will be used in
the experiments to follow: SEARCH-TRACK and GRASP.

SEARCH-TRACK is a schema constructed out of two primi-
tive, closed-loop controllers. Position controller φ0 moves a
pan/tilt stereo head to a random configuration drawn from
a context sensitive probability distribution. Another position
controller, φ1, moves a visual feature to the image center.
Both of these objectives are addressed by actuating the pan/tilt
motors of the stereo head. Together, they can be used to
construct a variety of behavior. States S = (p0, p1) and actions
φ0 and φ1 define a Markov Decision Process (MDP). A control
policy can be defined over this MDP that finds and tracks a
visual feature. Figure 2(a) shows the relevant states and non-
zero state transitions for this schema. This schema results in
a policy which moves the head to random pan/tilt locations
by executing φ0 until a feature is found. When this event
occurs, the feature is tracked in the center of the image plane.
The transition from state (1, 0) to state (1,−1) captures the
situation in which the visual feature “outruns” the tracking
controller.

Figure 2(b) shows a GRASP schema that employs actions φ2

and φ3 activated on states S = (p2, p3). Position controller φ2

flexes the fingers of the robot hand toward a reference “closed”
configuration. Force controller, φ3, applies a reference force
at each fingertip contact so as to generate a wrench closure
condition that defines a grasp. Assuming that the hand begins
in the “open” configuration, Figure 2(b) specifies that the hand
close through the execution of φ2. In the course of closing φ3

will either assert state (1,-1) if there is no object to inhibit
the movement, state (1,0) if contact with an object is made
but the force condition is not met, or state (1,1) if an object
is encountered and the force condition is achieved. Under the
right conditions, the GRASP schema yields grasps that allow
the hand to move the target object. Note that states (1,−1)
and (1, 1) are absorbing in this policy because there are no
transitions out of them.

B. Reward Structure

To guide the behavior of the robot, an intrinsic reward
function is used to encourage multi-modal events in the robot’s
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Fig. 2. Two simple sensorimotor schemas constructed from primitive closed
loop controllers: (a) shows the SEARCH-TRACK schema that finds and tracks a
visual feature using controllers φ0 and φ1; and (b) shows the GRASP schema
that moves the fingers of a hand to a closed position using controllers φ2 and
φ3. If an object is present, the fingers will envelop that object and take action
φ3 to grasp it.

sensorimotor feedback. Equipped with this function, a robot
will be biased toward behavior that causes the environment to
change in discernible ways. In general, this function rewards a
robot for bringing about control and sensory events that signify
the status of useful objectives.

For the experiments presented in this paper, a simple func-
tion is used pertaining to only a few possible sensory cues: a
positive unit reward is given to the robot when new foreground
regions appear in front of fixed backgrounds (a form of motion
cue) and also when tactile events occur on the robot’s finger-
tip sensors. A penalty of -0.2 was given for each action taken
to decrease the number of steps taken in each trial.

C. Hierarchical Composition of Behavior

Behavioral schemas like those defined in Figures 2(a)
and 2(b) can be reused hierarchically. We will use the notation
Φ to represent a policy used as an action. For each behavior
Φi, let Oi ⊆ Si be the set of absorbing states, and Ai be the
action set of available controllers and schema. When in state
s, the dynamic state of Φi is represented as a predicate pi,
according to the following three cases:

pi =







−1 : ej is undefined ∀φj ∈ Ai

0 : s /∈ Oi

1 : s ∈ Oi.
(2)

Adding hierarchy in this way allows for the transfer of behav-
ior across tasks as well as an increased efficiency in learning.
Coarticulation techniques for executing behavior schema con-
currently with other schema or primitive controllers have been
developed [5].

D. Learning Control Sequences

Reinforcement learning techniques such as Q-learning [6]
can be employed to choose actions that allow an agent to
cause rewarding transitions from one state to another [2], [7].
Q-learning estimates the action-value function Q(s, a) for each
state-action pair (s, a), where s ∈ S and a ∈ A. Values
are estimated by calculating the expected sum of discounted



reward for each state-action pair. This update rule is defined
as:

Q(s, a)← Q(s, a) + α
(

r(s, a) + γ maxa′Q(s′, a′)−Q(s, a)
)

where γ ∈ [0, 1] is the discount rate and α ∈ [0, 1] is the
learning rate. Reward function r is described in section II-
B. With sufficient experience, this estimate is guaranteed to
converge to the true value Q∗. A policy π maps states to
actions. The optimal policy π∗ maximizes the expected sum
of future reward such that:

π∗(s) = maxaQ∗(s, a)

E. Uncovering Hidden State in the MDP

In general, it is not possible to know all the state information
required to make optimal, deterministic control decisions for a
task a priori. However, in may cases hidden state is encoded
in the observable sensorimotor features available to a robot.
If we assume that the uncertainty in executing actions on
the robot is small, then the main cause of stochasticity in
the state transitions is due to factors that are not captured
in the current state description. Therefore, an increase in the
entropy of the state transitions indicates that the environment
has changed in a way that is unmodeled in our current state
representation. By attending to features that reduce entropy,
and incorporating them into the state representation, the robot’s
actions become more deterministic. In this section, we provide
a learning algorithm that monitors the entropy of the transition
probability distribution and inspects the available feature space
of sensorimotor data to uncover hidden state. When relevant
information is found, a predicate corresponding to the dynamic
state of a controller that tracks that information is added to the
state representation.

Let S = (p0, p1, . . . , pn) be the factored state representation
of control predicates. Let ~F ∈ F be a feature vector of
available sensorimotor data. Let the goal state set G ≡ {s ∈ S
s.t. r(s, a) > 0}. We can assign a label l ∈ {+, ◦} to an
episode according to whether it was rewarding or not as
follows. If the agent reaches an absorbing state that is also
a goal state s ∈ G, we assign the label l = +. If the agent
reaches an absorbing state s ∈ O that is not a goal state,
we assign the label l = ◦. A general outline of the process
used at each learning stage to uncover hidden state is given in
Algorithm 1.

III. LEARNING TRAJECTORIES

In this section, we present experimental results that show
Dexter learning to search for, reach, and touch objects. At first,
a human teacher presents an object to Dexter that is always
within reach. In this setting, Dexter quickly learns a policy
that will touch the object. Later, when the object is sometimes
placed out of reach, Dexter learns to avoid penalties associated
with actions by not reaching when the target is out of reach.
Finally, Dexter learns that it can often “request” the human
teacher to bring the object within its reach by executing certain
actions with communicative content.

Algorithm 1 Uncovering Hidden State
1: Use Q-learning to find the optimal policy π∗ given the

current state representation.
2: Use π∗ until it is determined that the entropy of a

particular s× a transition distribution is high.
3: Using stochastic exploration with π∗, complete a number

of trials and gather a data set D, where each d ∈ D is a
tuple ( ~F , l).

4: Using D, calculate a decision boundary, g, in feature
space F . Add a new controller φn+1 that attends to the
features of the decision boundary g( ~F ). Append the cor-
responding predicate pn+1 to S to form the new factored
state representation.

5: Go to step 1.

A. Dexter’s Native Structure

In the following experiments, the object presented to Dexter
is a small toy orange basketball, seen with Dexter in Figure 1,
approximately 5 inches in diameter and made out of soft foam.
A simple enveloping grasp reliably acquires the basketball.

During each trial, Dexter acquires a feature vector ~F ∈ F
of observable sensory signals. Background subtraction is used
to segment foreground and background regions in Dexter’s
field of view. Foreground regions indicate motion relative to
a fixed background. This kind of feature is determined to be
attractive by design; it is a native, motion-based saliency cue
that bootstraps Algorithm 1. F contains the first and second
moments of foreground pixel distributions, the spatial location
of the foreground objects relative to Dexter’s coordinate frame,
and the tactile response for each of Dexter’s 6-axis finger-tip
load cells.

We provided the robot with five native controllers: φ0, φ1,
φ2 and φ3 from Section II-A—instantiated with the robot’s
pan/tilt head and hands—and position controller φ4, which
achieves a “Reach” behavior implemented with one of the
robot’s arms. We also provide the robot with the two schemas,
SEARCH-TRACK and GRASP, presented in Figure 2.

We also provided Dexter with (prior learned) procedural
details for allocating controller resources σ and τ [1]. When
the object is placed on the robot’s left side, the left arm is used
to reach. When the object is placed on the robot’s right side,
the right arm is used to reach. It is the goal of the following
experiments to learn declarative knowledge—how to choose
actions that will reliably lead to the most accumulated reward.

B. Stage 1: Search-Reach-Grasp Behavior

The robot is provided with the action set A =
{SEARCH-TRACK, GRASP, φ4}. Providing the two schemas—
rather than the corresponding primitive controllers—allows for
encoding useful prior knowledge of the task. We will use a
three-predicate state description S = (pst, pg, p4), correspond-
ing to the dynamic status of SEARCH-TRACK, GRASP, and φ4.
These three predicates provide a preliminary representation
intended to guide the robot toward grasping behavior.



In the first experiment, consisting of 30 episodes, the robot
learns a policy to acquire the basketball using Q-learning with
an ε-greedy exploration strategy, where ε = 0.1. As described
in section II-B, a reward signal of 1 was given to the robot
both when the object was found visually and when it was
touched. A penalty of -0.2 was also given for each action
taken. As seen in Figure 3, it takes the robot approximately ten
trials to learn the optimal policy of π∗ = SEARCH-TRACK→
“Reach” → GRASP, which corresponds to searching for the
object, reaching to it, and grasping it. In this figure, the total
accumulated reward for each episode is shown as well as the
“task”-reward (what we know as the “goal” event of grasping
the object, plus the penalty). Episodes 30-35 show a testing
phase in which exploration was turned off.
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Fig. 3. Accumulated reward for Dexter learning search-reach-grasp policy
averaged over 4 runs. The solid line shows the return for the touch reward
and the penalty. The dotted line shows the total return for the search reward,
the touch reward, and the penalty. Dexter learns π∗ in about ten episodes.

C. Stage 2: Learning Arm Length

Once a policy was acquired for grasping the object, ten
episodes (35-45) were performed in which, half the time, the
object was placed out of Dexter’s reach—a context that had
never occurred before. Figure 4 shows how, using the policy
from stage 1, the average reward drops to about half its former
value. During episodes that Dexter could not reach the object,
the negative penalty for taking actions still accumulated, but no
final pay off for completing the task was rewarded. However,
Dexter still gathers reward for finding the object visually.

Although position information is present in the sensory
feedback, the robot is not attending to it. The current state rep-
resentation, therefore, does not capture information pertaining
to the “reachability” of the object. However, by computing
a new decision boundary in F , this state can be recovered
and added to the state description; thus allowing the robot to
learn not to reach if the object is unreachable. To uncover this
information, the {+, ◦} labels of episodes 35-45 were used
to separate F using a support vector machine (SVM) [8].
Figure 5 shows the xy position of the object for these
episodes, showing the clear cut at x = 1.09 meters. Given this
information, a new position controller φ5 can be constructed in

which the position reference is the set of robot configurations
where rewarding “touches” are forthcoming, i.e., x < 1.09m.
With this addition, the robot is free to query the controller’s
state to establish the “reachable” states and modify its policy
accordingly. The conjunction of the assertions (pst, p5) now
resolves important hidden state about the task.
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Fig. 4. Accumulated reward for the first two stages of learning. During
stage 2, the object is placed outside of Dexter’s workspace 50% of the time.
When the predicate p5 is added, the robot learns not to reach if the object is
too far away. As a result, average reward increases.

Figure 4 shows how Dexter, after 30 more episodes (45-75),
learns that if the object is too far away, not reaching is more
rewarding on average. Episodes 75-85 show a testing phase
in which exploration is turned off. If the object is reachable,
Dexter will touch the object for a reward. But when the object
is out of reach it has learned not to incur the penalty from a
failed reach attempt. However, Dexter is unable, given the less
constrained context, to achieve as much reward, on average,
as was possible in stage 1.
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Fig. 5. The xy positions of the object for the trials seen in Figure 4, episodes
35-45. The decision boundary at x = 1.09m best separates the {+, ◦} classes.
This data set was generated by constraining the robot to use only its right arm.
The learned boundary was transfered, through symmetry, to cases in which
the procedural context dictated that Dexter use its left arm.



D. Stage 3: Learning When Humans Can Help

In the next stages of learning, seen in Figure 6, a human
teacher appears in Dexter’s field of view during each episode
and the characteristics of the resulting foreground segment are
added to the feature vector F . In episodes 85-115, Dexter
explores stochastic variations of the stage 2 policy and dis-
covers a new context in which it can create a contingency for
touching an object that is currently out of reach. When Dexter
now reaches towards an out of reach object, the teacher moves
the object closer. This action conveys the robot’s intention to
the human. This new context triggers a search in Algorithm 1,
finding that the presence of a second, larger foreground object
(as seen in Figure 7) often distinguishes the case where
unreachable objects are ultimately graspable.

A new position controller φ6 is configured to test the
assertion that a large foreground object is present. In episodes
115-145, Dexter learns a new policy with the predicate p6

added to the state description. Here, another unit of reward
is received when Dexter finds a second foreground segment.
This policy differs from the policy learned in stage 2 in
that it causes Dexter to reach for unreachable objects in the
presence of features associated with a nearby human, but not
otherwise. For episodes 145-155, exploration is turned off to
show the noticeable accumulation of more average reward then
in stage 2. Note that, in stage 3, Dexter learns a policy that, on
average, accumulates more reward than in stage 1. However,
Dexter does not achieve the level of “goal” reward received
under the constrained conditions of the first stage when the
object was always placed within Dexter’s reach.
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Fig. 6. Accumulated reward for all three stages of learning. When the
predicate p6 is added to the state representation, Dexter can exploit the
presence of features associated with humans to achieve more reward.

IV. DISCUSSION AND CONCLUSIONS

We have presented a framework that provides a control theo-
retic basis for action, the hierarchical composition of behavior,
an intrinsic drive towards skill acquisition, and a means for
uncovering hidden state. Promising preliminary results have
shown how Dexter achieves significant developmental mile-
stones operating under this framework—including primitive
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Fig. 7. The foreground objects’ second moment (covariance) when the human
is present. These values represent the first two principle components of pixel
distributions on the left image plane. The distinct clusters correspond to the
basketball and the nearby human.

communicative actions—but many questions pertaining to the
full expressive power of the methodology remain unanswered.

It is possible that Algorithm 1 mayb introduce bias into
the system as the teacher “directs” the robot’s attention to
particular sensorimotor features. However, rather than being a
hindrance, we believe that this approach allows the teacher
to convey meaningful information to the robot, while still
allowing the robot to discern exactly how this information is
related to its sensorimotor signals.

For future work, we wish to examine the tractability of
learning declarative and procedural structure simultaneously.
We also wish to explore, in more detail, both the autonomous
acquisition of hierarchical behavior and the formulations
multi-modal reward signals. A study of convergence properties
of the overall system remains to be made.
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