











PREFACE.

THE object of this book is to set forth in a compact form those
parts of the Science of Mechanics which are practically applicable
to Structures and Machines. Its plan is sufficiently explained by
the Table of Contents, by the Introduction, and by the initial
articles of the six parts.into which the body of the treatise is
divideds

This work, like others of the same class, contains facts and
principles that have been long and widely known, mingled with
others, of which some are the results of the labours of recent
discoverers, some have been published only in scientific Transac-
tions and periodicals, not generally circulated, or in oral lectures,
and some are now published for the first time. I have endea-
vowred, to the best of my knowledge, to mention in their proper
places the authors of recent discoveries and improvements, and to
refer to scientific papers which have furnished sources of infor-
mation.

A branch of Mechanics not usually found in elementary treatises
is explained in this work, viz., that which relates to the equili- :
brium of stress, or internal pressure, at a point in a solid mass, and
to the general theory of the elasticity of solids. It is the basis of
a sound knowledge of the principles of the stability of earth, and
of the strength and stiffness of materials ; but, so far as I know,

{ the only elementary treatise on it that has hitherto been published-

is that ‘of M. Lam§, entitled Legons sur la Théorie mathématique de
U Elasticité des Corps solides.
In treating of the stability of arches, the lateral pressure of the
oad 1s taken into account. So far as T know, the only author who
has hitherto done so in an exact manner, is M. Yvon-Villarceaux,
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.T-hg 'lch)le- of: the stransformation of structures and its appli-
cations’ ha,{'e hithertor «appeared in the Proceedings of the Royal
Society alone.

The correct laws of the flow of elastic fluids (first investigated
by Dr. Joule and Dr. Thomson), and the true equations of the
action of steam and other vapours against pistons, as deduced from
the principles of thermodynamics, by Professor Clausius and myself,
contemporaneously, are now for the first time stated and applied in
an elementary manual.

Other portions of the Work which are wholly or partly new, are
indicated in their places.

In the arrangement of this treatise an effort has been made to
adhere as rigidly as possible to a methodical classification of its
subjects; and, in particular, care has been taken to keep in view
- the distinction between the comparison of motions with each other,
and the relations between motions and forces, which was first
pointed out by Monge and Ampére, and which Mr. Willis has
so successfully applied to the subject of mechanism. The observing
of that distinction is highly conducive to the correct understanding
and ready application of the principles of Mechanics.

W.J. M. R.

‘Grascow UNIversiry, May, 1858.

ADVERTISEMENT TO THE TENTH EDITION.

The Zenth Edition has been carefully revised, and new matter,
| bearing on subjects treated of in the text, has been added to the
Appendix. The Index has also been enlarged, and rendered
more suitable for reference.

For various notes and suggestions, the Editor begs to thank,
amongst others, Prof. Eddy, of Cincinnati University, an
Mr. Arthur W. Thompson, B.Sc., late of the Imperial Colleg!
of Engineering, Japan.

W. J. M. \

Guascow, Jan., 1882. . ; '
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PRELIMINARY DISSERTATION

ON THE

HARMONY OF THEORY AND PRACTICE IN MECHANICS.*

THE words, theory and practice, are of Greek origin : they carry
our thoughts back to the time of those ancient philosophers by
whom they were contrived ; and by whom also they were con-
trasted and placed in opposition, as denoting two conflicting and
mutually inconsistent ideas.

In geometry, in philosophy, in poetry, in rhetoric, and in the
fine arts, the Greeks are our masters ; and great are our obligations
to the ideas and the models which they have transmitted to our
times. But in physics and in mechanics their notions were very
generally pervaded by a great fallacy, which attained its complete
and most mischievous development amongst the mediseval school-
men, and the remains of whose influence can be traced even at the
present day—the fallacy of a double system of natural laws; one
theoretical, geometrical, rational, discoverable by contemplation,
applicable to celestial, setherial, indestructible bodies, and being an
object of the noble and liberal arts ; the other practical, mechanical,
empirical, discoverable by experience, applicable to terrestrial, gross,
destructible bodies, and being an object of what were once called
the vulgar and sordid arts.

The so-called physical theories of most of those whose under-
standings were under the influence of that fallacy, being empty
dreams, with but a trace of truth here and there, and at variance
with the results of every-day observation on the surface of the
planet we inhabit, were calculated to perpetuate the fallacy. The
stars were celestial, incorruptible bodies ; their orbits were circular
and their motions perpetual ; such orbits and motions being charac-
teristic of perfection. Objects on the earth’s surface were terrestrial

* This Dissertation contains the substance of a discourse, ¢ De Concordid inter
Scientiarum Machinalium Contemplationem et Usum,” read before the Senate of
the University of Glasgow on the 10th of December, 1855, and of an inaugural lec-
ture, delivered to the Class of Civil Engineering and Mechanics in that University on
the 3d of January, 1856.
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and corruptible ;" their-motions being characteristic of imperfection,
were in mixed straight and curved lines, and of limited duration.
Rational and practical mechanics' (as Newton observes in his
preface to the Principia) were considered as in a measure opposed
to each other, the latter being an inferior branch of study,
to be cultivated only for the sake of gain or some other material
advantage. Archytas of Tarentum might illustrate the truths of
geometry by mechanical contrivances ; his methods were regarded
by his pupil Plato as a lowering of the dignity of science. ~Archi-
medes, to the character of the first geometer and arithmetician of
his day, might add that of the first mechanician and physicist,—he
might, by his unaided strength acting through suitable machinery,
move a loaded ship on dry land,—he might contrive and execute
deadly engines of war, of which even the Roman soldiers stood in
dread,—he might, with an art afterwards regarded as fabulous
till it was revived by Buffon, burn fleets with the concentrated
sunbeams ; but that mechanical knowledge, and that practical skill,
which, in our eyes, render that great man so illustrious, were, by
men of learning, his contemporaries and successors, regarded as
accomplishments of an inferior order, to which the philosopher,
from the height of geometrical abstraction, condescended, with a
view to the service of the State. In those days the notion arose
that scientific men were unfit for the business of life, and various
facetious anecdotes were contrived illustrative of this notion, which
have been handed down from age to age, and in each age applied,
with little variation, to the eminent philosophers of the time.

That the Romans were eminently skilful in many departments
of practical mechanics, especially in masonry, road-making, and
hydraulics, is clearly established by the existing remains of their
magnificent works of engineering and architecture, from many of
which we should do well to take a lesson. But the fallacy of a
supposed discordance between rational and practical, celestial and
terrestrial mechanics, still continued in force, and seems to have
gathered strength, and to have attained its full vigour during the
middle ages. In those ages, indeed, were erected those incom-
parable ecclesiastical buildings, whose beauty, depending, as it does,
mainly on the nice adjustment of the form, strength, and position
of each part, to the forces which it has to sustain, evinces a pro-
found study of the principles of equilibrium on the part of the
architects. But the very names of those architects, with few and
doubtful exceptions, were suffered to be forgotten ; and the prin-
ciples which guided their work remain unrecorded, and were left to
be re-discovered in our own day ; for the scholars of those times,
despising practice and observation, were occupied in developing
and magnifying the numerous errory, and in perverting and obscur-
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ing the much more numerous truths, which are to be found in the
writings of Aristotle ; and those few men who, like Roger Bacon,
combined scientific with practical knowledge, were objects of fear
and persecution, as supposed allies of the powers of darkness.

At length, during the great revival of learning and reformation
of science in the fifteenth, sixteenth, and seventeenth centuries,
the system falsely styled Aristotelian was overthrown : so also was
the fallacy of a double system of natural laws ; and the truth began
to be duly appreciated, that sound theory in physical science con-
sists simply of facts, and the deductions of common sense from
them, reduced to a systematic form. The science of motion was
founded by Galileo, and perfected by Newton. Then it was estab-
lished that celestial and terrestrial mechanics are branches of one
science ; that they depend on one and the same system of clear and
simple first principles; that those very laws which regulate the
motion and the stability of bodies on earth, govern also the revolutions
of the stars, and extend their dominion throughout the immensity
of space. Then it'came to be acknowledged, that no material
object, however small,—mno force, however feeble,—no phenomenon,
however familiar, is insignificant, or beneath the attention of the
philosopher ; that the processes of the workshop, the labours of the
artizan, are full of instruction to the man of science; that the
scientific study of practical mechanies is well worthy of the atten-
tion of the most accomplished mathematician. Then the notion,
that scientific men are unfit for business, began to disappear. It
was not court favour, not high connection, not Parliamentary in-
fluence, which caused Newton to be appointed Warden, and after-
wards Master, of the Mint ; it was none of these; but it was the
knowledge possessed by a wise minister of the fact, that Newton’s
skill, both theoretical and practical, in those branches of knowledge
which that*office required, rendered him the fittest man in all’
Britain to direct the execution of a great reform of the coinage.
Of the manner in which Newton performed the business entrusted
to him, we have the following account in the words of Lord
Macaulay, an author who cannot be accused of undue partiality to
speculative science or its cultivators :— :

“The ability, the industry, and the strict uprightness of the great philo-
sopher, speedily produced a complete revolution throughout the depart-
ment which was under his direction. He devoted himself to the task
with an activity which left him no time to spare for those pursuits in which
he had surpassed Archimedes and Galileo.  Till the great work was com-
pletely done, he resisted firmly, and almost angrily, every attempt that
was made by men of science, here or on the Continent, to draw him away
from his official duties,”*

* Vol iv., p. 703.
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Then the historian proceeds to detail the.results of Newton’s
" exertions, and shows, that within a short time after his appoint-
ment, the weekly amount of the coinage of silver was increased to
eighifold of that which had been looked upon as the utmost practi-
cable amount by his predecessors.

The extension of experimental methods of investigation, has
caused even manual skill in practical mechanics, when scientifically
exercised, to be duly honoured, and not (as in ancient times) to be
regarded as beneath the dignity of science.

As a systematically avowed doctrine, there can be no doubt that
the fallacy of a discrepancy between rational and practical me-
chanics came long ago to an end; and that every well-informed
and sane man, expressing a deliberate opinion upon the mutual
relations of those two branches of science, would at once admit that
they agree in their principles, and assist each other’s progress, and
that such distinction as exists between them arises from the differ-
ence of the purposes to which the same body of principles is applied.

If this doctrine had as strong an influence over the actions of
men as it now has over their reasonings, it would have been unne-
cessary for me to describe, so fully as I have done, the great scienti-
fic fallacy of the ancients. I might, in fact, have passed it over in
silence, as dead and forgotten ; but, unfortunately, that discrepancy
between theory and practice, which in sound physical and mechani-
cal science is a delusion, has a real existence in the minds of men ;
and that fallacy, though rejected by their judgments, continues to
exert an influence over their acts. Therefore it is that I have
endeavoured to trace the prejudice as to the discrepancy of theory
and practice, especially in Mechanics, to its origin ; and to show
that it is the ghost of a defunct fallacy of the ancient Greeks and
of the mediseval schoolmen.

This prejudice, as I have stated, is not to be found, at the present
day, in the form of a definite and avowed principle : it is to be
traced only in its pernicious effects on the progress both of specula-
tive science and of practice, and sometimes in a sort of tacit influ-
ence which it exerts on the forms of expression of writers, who
have assuredly no intention of perpetuating a delusion. To exem-
plify the kind of influence last referred to, I shall cite a passage
from the same historical work which I recently quoted for a differ-
ent purpose. Lord Macaulay, in treating of the Act of Toleration
of William ITI., compares, metaphorically, the science of politics to
that of mechanics, and then proceeds as follows :—

‘‘The mathematician can easily demonstrate that a certain power, ap-
plied by means of a certain lever, or of a certain system of pulleys, will
suffice to raise a certain weight. But his demonstration proceeds on the
supposition that the machinery is such as no load will bend or break. If
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the engineer who has to lift a great mass of real granite by the instru-
mentality of real timber and real hemp, should absolutely rely on the pro-
positions which he finds in treatises on Dynamics, and should make no
allowance for the imperfection of his materials, his whole apparatus of
beams, wheels, and ropes, would soon come down in ruin, and with all his
geometrical skill, he would be found a far inferior builder to those painted
barbarians who, though they never heard of the parallelogram of forces,
managed to pile up Stonehenge.”*

It is impossible to read this passage without feeling admiration
for the force and clearness (and I may add, for the brilliancy and
wit) of the language in which it is expressed; and those very
qualities of force and clearness, as well as the author's eminence,
render it one of the best examples that can be found to illustrate
the lurking influence of the fallacy of a double set of mechanical
laws, rational and practical. . :

In fact, the mathematical theory of a machine,—that is, the body
of principles which enables the engineer to compute the arrange-
ment and dimensions of the parts of a machine intended to perform
given operations,—is divided by mathematicians, for the sake of
convenience of investigation, into two parts. The part first treated
of, as being the more simple, relates to the motions and mutual
actions of the solid pieces of a machine, and the forces exerted by
and upon them, each continuous solid piece being treated as a
whole, and of sensibly invariable figure. The second and more
intricate part relates to the actions of the forces tending to break
or to alter the figure of each such solid piece, and the dimensions
and form to be given to it in order to enable it to resist those
forces: this part of the theory depends, as much as the first part,
on the general laws of mechanics; and it is, as truly as the first
part, a subject for the reasonings of the mathematician, and equally
requisite for the completeness of the mathematical treatise which
the engineer is supposed to consnlt. It is true, that should the
engineer implicitly trust to a pretended mathematician, or an
incomplete treatise, his apparatus would come down in ruin, as
the historian has stated: it is true also that the same result would
follow, if the engineer was one who had not qualified himself, by
experience and observation, to distinguish between good and bad
materials and workmanship ; but the passage I have quoted conveys
an idea different from these; for it proceeds on the errcneous sup-
position, that the first part of the theory of a machine is the whole
theory, and is at variance with something else which is independent
of mathematics, and which constitutes, or is the foundation of,
practical mechanies.

The evil influence of the supposed inconsistency of theory and

* Vol. iii., p. 84.
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practice upon speculative science, although much less conspicuous
than it was in the ancient and middle ages, i3 still occasionally to
be traced. This it is which opposes the mutual communication of
ideas between men of science and men of practice, and which leads
scientific men sometimes to employ, on problems that can only be
regarded as ingenious mathematical exercises, much time and
mental exertion that would be better bestowed on questions having
some connection with the arts, and sometimes to state the results
of really important investigations on practical subjects in a form
too abstruse for ordinary use; so that the benefit which might be
derived from their application is for years lost to the public; and
valuable practical principles, which might have been anticipated by
reasoning, are left to be discovered by slow and costly experience.

But it is on the practice of mechanics and engineering that the
influence of the great fallacy is most conspicuous and most fatal.
There is assuredly, in Britain, no deficiency of men distinguished
by skill in judging of the quality of materials and work, and in
directing the operations of workmen,—by that sort of skill, in
fact, which is purely practical, and acquired by observation and
experience in business. But of that scientifically practical skill
which produces the greatest effect with the least possible expendi-
ture of material and work, the instances are comparatively rare.
In too many cases we see the strength and the stability, which
ought to be given by the skilful arrangement of the parts of a
structure, supplied by means of clumsy massiveness, and of lavish
expenditure of material, labour, and money; and the evil is
increased by a perversion of the public taste, which causes works
to be admired, not in proportion to their fitness for their purposes,
or to the skill evinced in attaining that fitness, but in proportion
to their size and cost.

‘With respect to those works which, from unscientific design,
give way during or immediately after their erection, I shall say
little ; for, with all their evils, they add to our experimental know-
ledge, and convey a lesson, though a costly one. But a class of
structures fraught with much greater evils exists in great abundance
throughout the country :—namely, those in which the faults of an
unscientific design have been so far counteracted by massive strength,
good materials, and careful workmanship, that a temporary stability
has been produced, but which contain within themselves sources of
weakness, obvious to a scientific examination only, that must inevi-
tably cause their destruction within a limited number of years.

Another evil, and one of the worst which arises from the separa-
tion of theoretical and practical knowledge, is the fact that a large
number of persons, possessed of an inventive turn of mind and of
considerable skill in the manual operations-of practical mechanics,
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are destitute of that kmowledge of scientific principles which is
requisite to prevent their being misled by their own ingenuity.
Such men too often spend their money, waste their lives, and it
may be lose their reason, in the vain pursuit of visionary inventions,
of which a moderate amount of theoretical knowledge would be
sufficient to demonstrate the fallacy; and for want of such know-
ledge, many a man who might have been a useful and happy
member of society, becomes a being than whom it would be hard
to find anything more miserable. °

The number of those unhappy persons—to judge from the patent-
lists, and from some of the mechanical journals—must be much
greater than is generally believed. The most absurd of all their
delusions,—that commonly called the perpetual motion, or to speak
more accurately, the inexhaustible source of power,—is, in various
forms, the subject of several patents in each year.

The ill success of the projects of misdirected ingenuity has very
naturally the effect of driving those men of practical skill who,
though without scientific knowledge, possess prudence and common
sense, to the opposite extreme of caution, and of inducing them to
avoid all experiments, and to confine themselves to the careful
copying of successful existing structures and machines: a course
which, although it avoids risk, would, if generally followed, stop
the progress of all improvement. A similar course has sometimes,
indeed, been adopted by men possessed of scientific as well as
practical skill: such men having, in certain cases, from deference
o popular prejudice, or from a dread of being reputed as theorists,
considered it advisable to adopt the worse and customary design
for a work in preference to a better but unusual design.

Some of the evils which are caused by the fallacy of an incom-
patibility between theory and practice having been described, it
must now be admitted, that at the present time those evils show a
decided tendency to decline. The extent of intercourse, and of
mutual assistance, between men of science and men of practice, the
practical knowledge of scientific men, and the scientific knowledge of
practical men, have been for some time steadily increasing ; and that
combination and harmony of theoretical and practical knowledge—
that skill in the application of scientific principles to practical
purposes, which in former times was confined to afew remarkable
individuals, now tends to become more generally diffused. With
a view to promote the diffusion of that kind of skill, Chairs were
instituted at periods of from fifteen to ten years ago, in the two
Colleges of the University of London, in the University of Dublin,
in the three Queen’s Colleges of Belfast, Cork, and Galway, and in
this University of Glasgow.

For the sake of a parallel, it may here be worth while to refer
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to another branch of practical science—that of Medicine. From the
time of the first establishment of Medical Schools in Universities,
there have existed, not only Chairs for the teaching of the purely
scientific departments of Medical Science, such as Anatomy and
Physiology, but also Chairs for instruction in the art of applying
scientific principles to practice, such as those of Surgery, the
Practice of Physic, and others. The institution of a Chair of
Mechanics and Engineering in a University where there have
long existed Chairs of Mathematics and Natural Philosophy, is an
endeavour to place Mechanical Science on the same footing with that
of Medicine.

Another parallel may be found in an Institution, which, though
not a University, and though established as much for the advance-
ment as for the diffusion of knowledge, has had a most beneficial
effect in promoting the appreciation of science by the public,—I
mean the British Association. When that body was first instituted,
both the theoretical advancement and the practical application of
Mechanics, and the several branches of Physics, werc allotted to a
single section, called Section A. The business before that Section
soon became so excessive in amount, and so multifarious in its
character, that it was found necessary to institute Section G, for the
purpose of considering the practical application of those branches
of science to whose theoretical advancement Section A was now
devoted ; and notwithstanding this separation, those two Sections
work harmoniously together for the promotion of kindred objects ;
and the same men are, in many instances, leading members of both.
‘What Section G is to Section A in the British Association, thig
class of Engineering and Mechanics is to those of Physics and
Mathematics in the University.

It being admitted, that Theoretical and Practical Mechanics are
in harmony with each other, and depend on the same first prin-
ciples, and that they differ only in the purposes to which those
principles are applied, it now remains to be considered, in what
manner that difference affects the mode of instruction to be followed
in communicating those branches of science.

Mechanical knowledge may obviously be distinguished into three
kinds: purely scientific knowledge,—purely practical knowledge—
and that intermediate knowledge which relates to the application
of scientific principles to practical purposes, and which arises
from understanding the harmony of theory and practice.

The objects of instruction in purely scientific mechanics and
physics are, first, to produce in the student that improvement of
the understanding which results from the cultivation of natural
knowledge, and that elevation of mind which flows from the con-
templation of the order of the universe; and secondly, if possible,
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to qualify him to become a scientific discoverer. In this branch of
study exactness is an essential feature; and mathematical difficulties
must not be shrunk from when the nature of the subject leads to
them. The ascertainment and illustration of truth are the objects;
and structures and machines are looked upon merely as natural
bodies are :—namely, as furnishing experimental data for the ascer-
taining of principles, and examples for their illustration.

Instruction in purely practical knowledge is that which the
student acquires by his own experience and observation of the
transaction of business. It enables him to judge of the quality of
materials and workmanship, and of questions of convenience and
commercial profit, to direct the operations of workmen, to imitate
existing structures and machines, to follow established practical
rules, and to transact the commercial business which is connected
with mechanical pursuits.

The third and intermediate kind of instruction, which connects
the first two, and for the promotion of which this Chair was estab-
lished, relates to the application of scientific principles to practical
purposes. It qualifies the student to plan a structure or a machine
for a given purpose, without the necessity of copying some existing
example, and to adapt his designs to situations to which no existin
example affords a parallel. Tt enables him to compute the theo-
retical limit of the strength or stability of a structure, or the
efficiency of a machine of a particular kind,—to ascertain how far
an actual structure or machine fails to attain that limit,—to dis-
cover the causes of such shortcomings,—and to devise improvements
for obviating such causes; and it enables him to judge how far an
established practical rule is founded on reason, how far on mere
custom, and how far on error.

There are certain characteristics in the mode of treating the
subjects, by which this practical-scientific instruction ought to be
distinguished from instruction for purely scientific purposes.

In the first place it will be universally admitted, that as far as is
possible, mathematical intricacy ought to be avoided.

In the original discovery of a proposition of practical utility, by
deduction from general principles and from experimental data, a
complex algebraical investigation is often not merely useful, but
indispensable; but in expounding such a proposition as a part of
Ppractical science, and applying it to practical purposes, simplicity is
of the first importance :—and, in fact, the more thoroughly a scien-
tific man has studied the higher mathematics, the more fully does
he become aware of this truth,—and, I may add, the better qualified
does he become to free the exposition and application of scientific
principles from mathematical intricacy. I cannot better support
this view than by referring to Sir John Herschel's Qutlines of



10 PRELIMINARY DISSERTATION.

A stronomy—a work in which one of the most profound mathema-
ticians in the world has succeeded admirably in divesting of all
mathematical intricacy the explanation of the principles of that
natural science which employs the higher mathematics most.

In fact, the symbols of algebra, when employed in abstruse and
complex theoretical investigations, constitute a sort of thought-
saving machine, by whose aid a person skilled in its use can solve

roblems respecting quantities, and dispense with the mental labour
- of thinking of the quantities denoted by the symbols, except at the
beginning and end of the operation. In treating of the practical
application of scientific principles, an algebraical formula should
only be employed when its shortness and simplicity are such as to
render it a clearer expression of a proposition or rule than common
language would be, and when there is no difficulty in keeping the
thing represented by each symbol constantly before the mind.

Another characteristic by which instruction in practical science
should be distinguished from purely scientific instruction, is one
which appears to me to possess the advantage of calling into opera-
tion a mental faculty distinct from those which are exercised by
theoretical science. It is of the following kind :—

In theoretical science, the question is—What are we to think?
and when a doubtful point arises, for the solution of which either
experimental data are wanting, or mathematical methods are not
sufficiently advanced, it is the duty of philosophic minds not to dis-
pute about the probability of conflicting suppositions, but to labour
for the advancement of experimental inquiry and of mathematies,
and await patiently the time when these shall be adequate to solve
the question.

But in practical science the question is— What are we to do?—
a question which involves the necessity for the immediate adoption
of some rule of working. In doubtful cases, we cannot allow our
machines and our works of improvement to wait for the advance-
ment of science ; and if existing data are insufficient to give an exact
solution of the question, that approximate solution must be acted
upon which the best data attainable show to be the most probable.
A prompt and sound judgment in cases of this kind is one of the
characteristics of a PRACTICAL MAN, in the right sense of that term.,

In conclusion, I will now observe, that the cultivation of the
Harmony between Theory and Practice in Mechanics—of the
application of Science to the Mechanical Arts—besides all the
benefits which it confers on us, by promoting the comfort and
prosperity of individuals, and augmenting the wealth and power of
the nation—confers on us also the more important benefit of raising
the character of the mechanical arts, and of those who practise
them. A great mechanical philosopher, the late Dr. Robison of
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Fdinburgh, after stating that the principles of Carpentry depend
on two branches of the science of Statics, remarks—¢“Tt is this
which makes Carpentry a liberal art.”

So also is Masonry a liberal art,—so is the art of working in
Iron, so is every art, when guided by scientific principles. Every
structure or machine, whose design evinces the guidance of science,
is to be regarded not merely as an instrument for promoting con-
venience and profit, but as a monument and testimony that those
who planned and made it had studied the laws of nature; and this
renders it an object of interest and value, how small soever its
bulk, how common soever its material.

For a century there has stood, in a room in this College, a small,
rude, and plain model, of appearance so uncouth, that when an
artist lately introduced its likeness into a historical painting, those
who saw the likeness, and knew nothing of the original, wondered
what the artist meant by painting an object so unattractive.

But the artist was right ; for ninety-one years ago a man took that
model, applied to it his knowledge of natural laws, and made it
into the first of those steam engines that now cover the land and
the sea; and ever since, in Reason’s eye, that small and uncouth
mass of wood and metal shines with imperishable beauty, as the
earliest embodiment of the genius of James Watt.

Thus it is that the commonest objects are by science rendered
precious; and in like manner the engineer or the mechanic, who
plans and works with understanding of the natural laws that redula.te
the results of his operations, rises to the dignity of a Sage.






'INTRODUCTION.

DEFINITION OF GENERAL TERMS AND DIVISION OF THE SUBJECT.

ART. 1. Mechanics is the science of rest, motion, and force.

The laws, or first principles of mechanics, are the same for all
bodies, celestial and terrestrial, natural and artificial.

The methods of upplying the principles of mechanics to particular
cases are moré or less different, according to the circumstances of
the case. Hence arise branches in the science of mechanics.

2. Applied Mechanics.—The branch to which the term ¢ AppPLIED
MecHANIcs” has been restricted by custom, consists of those*
consequences of the laws of mechanics which relate to works of
human art.

A treatise on applied mechanics must commence by setting forth
those first principles which are common to all branches of mechanics ;
but it must contain only such consequences of those principles as
are applicable to purposes of art.

3. Mauter (considered mechanically) is that which fills space.

4. Modies arc limited portions of matter. Bodies exist in three
conditions—the solid, the liquid, and the gaseous. Solid bodies
tend to preserve a definite size and shape. Liquid bodies tend to
preserve a definite size only. Gaseous bodies tend to expand inde-
finitely. Bodies also exist in conditions intermediate between the
solid and liquid, and possibly also between liquid and gaseous.

5. A Material or Physical Volume is the space occupied by a body
or by a part of a body.

6. A Material or Physical Surface is the boundary of a body, or
between two parts of a body.

"0 Line, Point, Physical Point, Measure of Lcngﬂl.——In mechanics,
as in geowetry, a LiNE is the boundary of a surface, or between two
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parts of a surface; and a Point is the boundary of a line, or be-
tween two parts of a line ; but the term “ Physical Povnt” is some-
times used by mechanical writers to denote an dmmeasurably small
body—a sense inconsistent with the strict meaning of the word
“ point ;” but still not leading to error, so long as it is rightly under-
stood.

In measuring the dimensions of bodies, the standard British unit
of length is the yard, being the length at the temperature of 62°
Fahrenheit, and at the mean atmospheric pressure, between the
two ends of a certain bar which is kept in the office of the Exchequer,
at Westminster.

In computations respecting motion and force, and in expressing
the dimensions of large structures, the unit of length commonly
employed in Britain is the foof, being one-third of the yard.

In expressing the dimensions of machinery, the unit of length
commonly employed in Britain is the inch, being one-thirty-sixth
part of the yard. Fractions of an inch are very commonly stated’
by mechanics and other artificers in halves, quarters, eighths, six-
teenths, and thirty-second parts ; but according to a resolution of
the Institution of Mechanical Engineers, passed at the meeting held
at Manchester in June, 1857, the practice has been introduced of
.expressing fractions of an inch in decimals.

R’he French unit of length is the matre, being about 15555500 of
the earth’s circumference, measured round the poles. (See table
-at the end of the volume.)

8. Rest is the relation between two points, when the straight
line joining them does not change in iength nor in direction.

A body is at rest relatively to a point, when every point in the
body is at rest relatively to the first mentioned point.

9. Motion is the relation between two points when the straight
line joining them changes in length, or in direction, or in both.

A body moves relatively to a point when any point in the body
moves relatively to the first mentioned point.

10. Wixed Point.—When a single point is spoken of as having
motion or rest, some other point, either actual or ideal, is always
either expressed or understood, relatively to which the motion or
rest of the first point takes place. Such a point is called a fixzed

int.

So far as the phenomena of motion alone indicate, the choice of
a fixed point with which to compare the positions of other points
appears to be arbitrary, and a matter of convenience alone; but
when the laws of force, as affecting motion, come to be considered,
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it will be seen that there are reasons for calling certain points
fixed, in preference to others.

In the mechanics of the solar system, the fixed point is what is
called the common centre of gravity of the bodies composing that
system. In applied mechanics, the fixed point is either a point
which is at rest relatively to the earth, or (if the structure or
machine under consideration be moveable from place to place on
the earth), a point which is at rest relatively to the structure, or to
the frame of the machine, as the case may be.

Points, lines, surfaces, and volumes, which are at rest relatively
to a fixed point, are fixed.

11. Cinematics.—The comparison of motions with each other,
without reference to their causes, is the subject of a branch of
geometry called “ Cinematics.” *

12. Force is an action between two bodies, either causing or
tending to cause change in their relative rest or motion.

The notion of force is first obtained directly by sensation; for
the forces exerted by the voluntary muscles can be felt. The ex-
istence of forces other than muscular tension is inferred from their
effects.

13. Equilibrium or Balance is the condition of two or more
forces which are so opposed that their combined action on a body
produces no change in its rest or motion.

The notion of balance is first obtained by sensation; for the
forces exerted by voluntary muscles can be felt to balance some-
times each other, and sometimes external pressures.

14. Statics and Dynamics.—Forces may take effect, either by
balancing other forces, or by producing change of motion. The
former of those effects is the subject of Statics; the latter that of
Dynamics; these, together with Cinematics, already defined, form
the three great divisions of pure, abstract, or general mechanics.

15. Structurcs and Machines.—The works of human art to which
the science of applied mechanics relates, are divided into two
classes, according as the parts of which they consist are intended to
rest or to move relatively to each other. In the former case they
are called Structures; in the latter, Machines. Structures are sub-
Jjects of Statics alone; Machines, when the motions of their parts
are considered alone, are subjects of Cinematics; when the forces
acting on and between their parts are also considered, machines are
subjects of Statics and Dynamics.
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16. & 1 Arrang t of the Subject.—The subject of the pre-
sent treatise will be arranged as follows :—
I. FirsT PRINCIPLES OF STATICS.
II. THEORY OF STRUCTURES.
III. First PriNcipLEs oF CINEMATICS.
1V. Taeory OoF MECHANISM.
V. First PrINCIPLES OF DyNAMICS

VI. TrEORY OF MACHINES,




PART I.

PRINCIPLES OF STATICS. Sey

CHAPTER L

BALANCE AND MEASUREMENT OF FORCES ACTING IN ONE
STRAIGHT LINE.

17. Forces how Determined. —Although every fq;;ce (as has been
stated in Art. 12) is an action between two bodies, still it is con-
ducive to simplicity to consider in the first place the condition of
one of those two bodies alone.

The nature of a force, as respects one of the two bodies between
which it acts, is determined, or made known, when the following
three things are known respecting it :—first, the place, or part of
the body to which it is applied; secondly, the direction of its
action ; thirdly, its magnitude.

18. Place of Application—Point of Application. —The place of the
application of a force to a body may be the whole or part of its in-
ternal mass; in which case the force is an attraction or a repulsion,
according as it tends to move the bodies between which it acts
towards or from each other; or the place of application may be the
surface at which two bodies touch each other, or the bounding
surface between two parts of the same body, in which case the force
is a tensjon or pull, a thrust or push, or a lateral stress, according
to circumstances.

Thus every force has its action distributed over a certain space,
vither a volume or a surface; and a force concentrated at a single
point has no real existence. Nevertheless it is necessary, in treating
of the principles of statics, to begin by demonstrating the properties
of such ideal forces, conceived to be concentrated at single points.
It will afterwards be shown how the conclusions so arrived at re-
specting single forces (as they may be called), are made applicable to
the distributed forces which really act in nature.

In illustrating the principles of statics experimentally, a force
concentrated at a single point may be represented with any required
degree of accuracy by a force distributed over a very small space, if
that space be made small enough.

C
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19. Supposition of Perfect Rigidity—In reasoning respecting
forces concentrated at single points, they are assumed to be applied
to solid bodies which are perfectly rigid, or incapable of alteration
of figure under any forces which can be applied to them. This
also 1s a supposition not realized in nature. It will afterwards be
shown how its consequences are applied to actual bodies.

20. Direction—Line of Action—The DIRECTION of a force is that
of the motion which it tends to produce. A. straight line drawn
through the point of application of a single force, and along its
direction, is the LINE oF AcrioN of that force.

21. Magnitude—Unit of Force.—The magnitudes of two forces
are equal, when being applied to the same body in opposite direc-
tions along the same line of action, they balance each other.

The magnitude of a force is expressed arithmetically by stating
in numbers its ratio to a certain wnit or standard of force, which is
usually the weight (or attraction towards the earth), at a certain
latitude, and at a certain level, of a known mass of a certain
material. Thus the British unit of force is the standard pound
awvoirdupois; which is the weight in the latitude of London of a
certain piece of platinum kept in the Exchequer office (See the Act

and 19 Vict., cap. 72; also a paper by Professor W. H. Miller,
in the Philosophical Transactions for 1856).

For the sake of convenience or of compliance with custom, other
units of force are occasionally employed in Britain, bearing certain
ratios to the standard pound; such as—

The grain = v of a pound avoirdupois.
The troy pound = 5,760 grains = 0-82285714 pound avoirdupois.
The hundredweight =112 pounds avoirdupois.
The ton = 2,240 pounds avoirdupois.

The French standard unit of force is the gramme, which is the
weight, in the latitude of Paris, of a cubic centimetre of pure water,
measured at the temperature at which the density of water is
greatest, viz,, 4°1 centigrade, or 39°4 Fahrenheit, and under the
pressure which supports a barometric column of 760 millimetres of
mercury.

A comparison of French and British measures of force and of
size 1S given in a table at the end of this volume.

22. Resultant of Forces Acting in One Straight Line—The RE-
SULTANT of any number of given forces applied to one body, is a
single force capable of balancing that single force which balances
the given forces ; that is to say, the resultant of the given forces is
equal and directly opposed to the force which balances the given
forces ; and is equivalent to the given forces so far as the balance of
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the body is concerned. The given forces are called components of
their resultant.

The resultant of any number of forces acting on one body in the
same straight line of action, acts along that line, and is equal in
magnitude to the sum of the component forces; it being under-
stood, that when some of the component forces are opposed to the
others, the word “swm” is to be taken in the algebraical sense ; that
is to say, that forcesacting in the same direction are to be added to,
and forces acting in opposite directions subtracted from each other.

23. Representation of Forces by Lines.—A. single force may be
represented in a drawing by a straight line ; an extremity of the
line indicating the point of i
application of the force,—the % -
direction of the line, the direc-
tion of the force,—and thelength
of the line, the magnitude of the
force, according to an arbitrary
scale. : } Fig. 1.

For example, in fig. 1, the _
fact that the body B BB B is acted upon at the point O, by a
given force, may be expressed by drawing from O, a straight line
O, F, in the direction of the force, and of a length representing the
magnitude of the force.

If the force represented by O, F, is balanced by a force applied
either at the same point, or at another point O, (which must be in
the line of action L L of the force to be balanced), then the second
force will be represented by a straight line O, F,, opposite in direc-
tion, and equal in length to O, F}, and lying in the same line of
action L L.

If the body BB B B (fig. 2), be balanced by several forces acting
in the same straight line LI, applied at points O, O,, &c., and re-
presented by lines O, F}, O, T, &c.; then either direction in the
line L L (such as the direc-
tion towards + L) is to be
considered as positive, and
the opposite direction (such
as the direction towards
— L) agnegative; and if the
sum of all the lines repre-
senting forces which point
positively be equal to the
sum of all those which point
negatively, the algebraical sum of all the forces is nothing, and the
body is balanced.
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24. Pressare.—Most writers on mechanics, in treating of the
first principles of statics, use the word “pressure” to denote any
balanced force.

In the popular sense, which is also the sense generally employed
in applied mechanics, the word pressure is used to denote a force,
of the nature of a thrust, distributed over a surface; in other words,
the kind of force with which a body tends to expand, or resists an
effort to compress it.

In this treatise care will be taken so to employ the word ¢ pres-
sure” that the context shall show in what sense it is used.
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CHAPTER IL
THEORY OF COUPLES AND OF THE BALANCE OF PARALLEL FORCES,

SecrioN 1.—O0n Couples with the Same Axis.

25. cCouples—Two forces of equal magnitude applied to the same

%

body in parallel and opposite directions, but not in the same line of

action, constitute what is called a “couple.”

26. Force of 2 Couple—Arm or Leverage.—The force of a couple is
the common magnitude of the two equal forces; the arm or leverage
of a couple is the perpendicular distance between the lines of action
of the two equal forces.

27, Tendency of a Couple—Plane of a Couple—Right-handed and
Left-handed Couples.—The tendency of a couple is to turn the body
to which it is applied in the plane of the couple—thatis, the plane
which contains the lines of action of the two forces. (The planein
which a body turns, is any plane parallel to those planes in the
body whose position is not altered by the turning). The axis of a
couple is any line perpendicular to its plane. The turning of a
body is said to be righi-handed when it appears to a spectator to
take place in the same direction
with that of the hands of a watch,
and left-handed when in the opposite
direction; and couples are desig-
nated asright-handed orleft-hanted
according to the direction of the
turning which they tend to pro
duce. :

Thus in fig. 3, the equal and
opposite forces O; F,, O, F,, whose
leverage is L, L, form a right- Fig. 8.
handed couple; and the equal and
opposite forces O; F3, O, F,, form a left-handed couple.

28. Equivalent Couples of Equal Force and Levemge-——In order
that two couples similar in direction, and of equal force and lever-
age, may be exactly alike or equivalent in their tendency to turn the
body, it is necessary and sufficient that their planesshould be either
identical or parallel.
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Two couples applied to the same body in the same plane, or in
parallel planes, of equal force and leverage, but opposite in direction,
balance each other; and if for either of the two an equivalent
couple be substituted, the equilibrium will not be disturbed.

29. nr t of a Couple—The moment of a couple means the
product of the magnitude of its force by the length of its arm. If
the force be a certain number of pounds, and the arm a certain
number of feet, the product of those two numbers is called the
woment in foot-pounds, and similarly for other measures.

30. Addition of Couplesof Equal Force.—LEMMA.  Two couples of
equal force acting in the same direction, with the same awis, are equiva-
lent to a couple whose moment is the sum of their moments. Let the
two couples be denoted by A and B; let F)=Fy be their equal

forces ; let L, and Ly be their
respective arms; then F, I, and

x5 Fy Ly are their moments, which,
as their forces are equal, are pro-
— 2 6 portional to the arms. In fig. 4,
3 = let the forces F, constituting A

EA By be applied in linespassing through
a and ¢, ac or L, being perpen-
\4 dicular to the lines of action of
Fig. 4. the forces; and if the forces con-
stituting B be not already applied as shown in the figure, sub-
stitute for B an equivalent couple of equal force and arm, having
its forces Fy applied in lines parallel to the lines of action of the
forces F,, and passing one through the point ¢ and the other through
b, so that the arm ¢ b or Lj shall be in the same straight line with
acor L,. Then the equal and opposite forces F',, Fy, applied at ¢,
balance each other, and there remain only the equal and opposite
forces F,, Fy, applied at a and b, which form a couple whose force
is F, = Fy, and its arm @ b= L, + Ly, being the sum of the arms of
the couples A and B; so that its moment is the sum of their
moments; and this couple is equivalent to the two couples A and B.

31. Equivalent Couples of Equal Moment.—THEOREM. If the mo-
ments of two couples acting in the same direction and with the same axis
are equal, those couples are equivalent. Let one of the couples be called
A, and let its force, arm, and moment be respectively F,, I,,, and
F, L,; let the other couple be called B, and let its force, arm, and
moment be respectively Fy, Ly, and Fp Ly The equality of the
moments of those couples is expressed by the equation

F,L, = FoL,

hIf the forces and arms of the two couples be commensurable, so
that

[

527
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P, By idlhga By omis»

(m and » being two whole numbers),

F., F
i Wi
and 3 Fode s
m K

Then the couple A is equivalent to m n couples of the moment /2
and so also is the couple B ; therefore the couples A and B are
equivalent to each other. i

If the forces and arms are incommensurable, it is always possible €+
to find forces and arms which shall be commensurable, and shall
differ from the given forces and arms by differences less than any
given quantity ; so that if the theorem were in error for incommen-
surable forces and arms, it would also be in error for certain com-
mensurable forces and arms ; but this is impossible ; therefore the
theorem is true for incommensurable as well as for commensurable
forces and arms.

32. Resultant of Couples with the Same Axis.—COROLLARY. 4
combination of any nwumber of couples howing the sume auxis is equiva- v
lent to @ couple whose moment is the algebraical sum of the moments
of the combined couples.

33. Eguilibrium of Couples having the Same Axis.—1Wwo0 opposite
couples of equal moment, having the same axis, balance each other.
Any number of couples, having the same axis, balance each other
when the moments of the right-handed couples are together equal
to the moments of the left-handed couples ; in other words, when
the resultant moment is nothing.

7 34. Representation of Couples by Lines.—The nature and amount
“of the tendency of a couple to turn a body are completely known
when the moment and direction of the couple, and the position of
its axis, are known. These circum- -

stances are expressed by means of a

line in the following manner. (Q

In fig. 5, from any point O draw a ¥|_ N
straight line O M, parallel to the axis s
(that is, perpendicular to the plane) of
the couple to be represented, and in such Fic. 5
a direction, that to an observer looking b
from O towards M the couple shall seem right-handed ; and make
the length of the line O M represent the moment of the couple,
according to any assigned scale.

v
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SecTION 2.—O0n Couples with Different Axes.

35. Resultant of Two Couples with Different Axes.— ] HEOREM.
If the two sides of a parallelogram represent the positions of the awes,
and the directions and moments, of two couples acting on the same
body, the diagonal of the parallelogram will in like manner represent
the position of the axis, the direction and the moment of the resultant
couple, which s equivalent to those two.

In fig. 6, let the plane of the paper represent a plane which con-
tains the axes of the two couples, and is therefore perpendicular to
both their planes. Let ac, cb be parts of the lines in which the

planes of the couples A,B,respectively intersect
+T the plane of the paper. If the couples are not
% already of equal force, reduce them to equiva-
. lent couples of equal force; let ¥ denote the

common magnitude of their forces, and let L,

Ly denote the respective arms of the couples.

From ¢, the intersection of the three planes

already mentioned, take ca = L,, ¢b = Ly,

e and join ad. Conceive the couple A (or an
/ equivalent couple) to consist of the force + F
M’,\

1 acting forwards at @, and the equal and opposite
* force — F acting backwards at ¢ ; also conceive

L the couple B (or an equivalent couple) to con-
o L P q’ P
Fig. 6. sist of the force + F acting forwards at ¢, and

the equal and opposite force — F acting back-
wards at . The forces + F, — F, at ¢ balance each other; and
there are left the equal and opposite forces + F at a,and — F at b,
forming the resultant couple, which is equivalent to the two couples
Aband B, and has for its arm the third side @b = Lg of the triangle
abe.
_ Now from any point O draw O M, perpendicular to @c, and
O Mj perpendicular to & ¢, and representing the axes, directions,
and moments of the couples A and B: complete the parallelogram
of which those lines are the sides, and draw its diagonal O Mg,
This diagonal will be perpendicular to @, and will therefore re-
present the axis and direction of the resultant couple ; and because
of the similarity of the triangles a b ¢, O My Mg, the following pro-
portions will exist :—

OM, : OM,; : OM,,
2L, Ly i Lg;

and consequently O M, will also represent the moment of the re-
sultant couples.—Q. E. D.
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36. Equilibrium of Three Con]iles with Different Axes in the Same
Plane— COROLLARY. A couple equal and opposite to that represented
by the diagonal O M, balances the couples represented by the sides
OM,, OM,. In other words, three couples represented by the three
sides of a triangle balance each other.

37. Equilibrium of any Number of Couples.— COROLLARY. [f o
number of couples acting on the same body be represented by a series
of lines joined end to end, so as
to form sides of a polygon, and if
the polygon s closed, these couples
balance each other. To fix the *
ideas let there be five couples,
whose moments are respectively **
M, M, M, M, M;; and let
them be represented by the sides
of the polygon in fig. 7 in such a
manner that

B

!

Ay
Fig. 7.

M, is represented by O A, and seems right-handed looking from A towards Q.

M, — @, - —- from B towards A.
M, — BG, —_ — from C towards B.
M, — CD, —_ —_— from D towards C.

My — I_)_O_, — — from O towards D.

Then by the theorem of Article 35, the resultant of M, and M, is
O B; the resultant of this and M, is O C; the resultant of this and
M, is O D, right-handed in looking from D towards O, and con-
sequently equal and opposite to M, which last couple balances it,
and reduces the final resultant to nothing.—Q. E. D.

This proposition evidently holds for any number of couples, and
whether the elosed polygon be plane or gauche (that is to say, not

iane).

5 Th)e resultant of the couples represented by all the sides of the
polygon, except one, is equal and opposite to the couple represented
by the excepted side.

SecTION 3.—On Parallel Forces.

38. Balanced Parallel Forces in General—A balanced system of
paraﬁlel forces consists either of pairs of directly opposed equal
forces, or of couples of equal forces, or of combinations of such
pairs and couples.

Hence the following propositions as to the relations amongst the
magnitudes of systems of parallel forces are obvious :— E

L TIn a balanced system of parallel forces, the sums of the forces
acting in opposite directions are equal; in other words, the alge-
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braical sum of the magnitudes of all the forces taken with their
proper signs is nothing.

II. The magnitude of the resultant of any combination of par-
allel forces is the algebraical sum of the magnitudes of the forces.

The relations amongst the positions of the lines of action of
balanced parallel forces remain to be investigated; and in this
inquiry, all pairs of directly opposed equal forces may be left out of
consideration ; for each such pair is independently balanced what-
soever its position may be ; so that the question in each case is to
be solved by means of the theory of couples.

39. Equilibrium of Three Parallel Forces in One Plane. Prin-
ciple of the Lever.—THEOREM. Ifthree parallel forces applied to one
body balance each other, they
must be in one plane; the two
extreme forces must act in the
same direction ; the middle force
must act in the opposite direc--
tion; and the magnitude of each
Jorce must be proportional fo
the distamce between the lines of
action of the other two. Let
a body (fig. 8) be maintained

S, in equilibrio by two opposite
couples having the same axis, and of equal moments,
FyL,=Fy Ly,

according to the notation already used ; and let those couples be so
applied to the body that the lines of action of two of these forces,
— F,, — Fp, which act in the same direction, shall coincide.
Then those two forces are equivalent to the single middle force
Fo = — (F, + Fy), equal and opposite to the sum of the extreme
forces + F,, + Fy, and in the same plane with them ; and if the
straight line A C B be drawn perpendicular to the lines of action
of the forces, then

AC=L,; CB=1Ly; AB=1L, + L;;
and consequently
FA:FB:FC::()—E:A—@—:E;
so that each of the three forces is proportional to the distance
between the lines of action of the other two; and if any three

parallel forces balance each other, they must be equivalent to two

couples, as shown in the figure.
40, XResultant of Two Parallel Forces.—The resultant of any two

of the three forces F,, Fy, Fg, is equal and opposite to the third.

Hence the resultant of two parallel forces is parallel to them,
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and in the same plane ; if they act in the same direction, then their
resultant is their sum, acts in the same direction, and lies between
them ; if they act in opposite directions, their resultant is their
difference, acts in the direction of, and lies beyond, the prepon-
derating force ; and the distance between the lines of action of any
two of those three forces—the resultant and its two components
—is proportional to the third force.

In order that twe opposite parallel forces may have a single
resultant, it is necessary that they should be unequal, the resultant
being their difference. Should they be equal, they constitute a ‘)/
couple, which has no single resultant. © i

4]1. Resultant of a Couple and a Single Force in Parallel Planes.—
Let M denote the moment of a couple applied to a body (fig. 9); \ ¢
and at a point O let a single
force F be applied, in a plane
parallel to that of the couple.
For the given couple substitute
an equivalent couple, consisting
of a force —F equal and directly
opposed to F at O, and a force

F applied at A, the arm A O

being = l\_%’ and of course paxr-

Fig. 9.

allel to the plane of the couple

M. Then the forces at O balance each other, and F applied at
A is the resultant of the single force F applied at O, and the couple
M ; that is to say, that if to a single force F' there be added a couple
M whose plane is parallel to the force, the effect of that addition is
to shift the line of action of the force parallel to itself through a

distance O A = L——I-';to the left if M is right-
handed—to the right if M is left-handed. =

42. Moment of a Force with respect to an Axis. o
—Let the straight line F represent a force ap-
plied to a body. Let O X be any straight line » o
of the force, and not intersecting it, and let A B \
be the common perpendicular of those two lines. * S
At B conceive a pair of equal and directly op- =
parallel to F, viz.: F'=T, and —F'=~F. The J
supposed application of such a pair of balanced Fig. 10.
forces does not alter the-statical condition of the

F J
perpendicular in direction to the line of action
posed forces to be applied in a line of action &
body. Then the original single force F, applied in a line tra-
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versing A, is equivalent to the force Fapplied in a line traversing B,
the point in O X which is nearest to A, combined with the couple
composed of F and — F, whose moment is F + AB.  This is
called the moment of the force F relatively to the axis O X, and
sometimes also, the moment of the force ¥ relatively to the plane
which contains O X, and is parallel to the line of action of the
force. :
If from the point B there be drawn two straight lines BD and
BE, to the extremities of the line F representing the force, the
area of the triangle BDE being = 1 F - AB, represents one-half of
the moment of F relatively to O X.

»43. Equilibrium of any System of Parallel Forces in One Plane.
—1In order that any system of parallel forces whose lines of action
are in one plane may balance each other, it is necessary and suffi-
cient that the following ‘conditions should be fulfilled :—

I (As already stated in Art. 38) that the algebraical sum of
the forces shall be nothing : —

II. That the algebraical sum of the moments of the forces rela-
tively to any axis perpendicular to the plane in which they act
shall be nothing :— :

two conditions which are expressed symbolically as follows :—
let F denote any one of the forces, considered as positive or nega-
tive, according to the direction in which it acts; let y be the per-
pendicular distance of the line of action of this force from an
arbitrarily assumed axis O X,  also being considered as positive ox
negative, according to its direction ; then,

Sum of forces, S & AF=50%
Sum of moments, =y F = 0.

For, by the last Article, each force F is equivalent to an equal and
parallel force F applied directly to O X, combined with a couple
y F; and the system of forces ¥, and the system of couples y F,
must each be in equilibrio, because when combined they are equiva-
lent to the balanced system of forces F.

In summing moments, right-handed couples are usually considered
as positive, and left-handed couples a3 negative.

44, Resultant of any Number of Parallel Forces in One Plane,—The
resultant of any number of parallel forces in cne plane is a force in
the same plane, whose magnitude is the algebraical sum of the
magnitudes of the component forces, and whose position is sucly,
that its moment relatively to any axis perpendicular to the plane in
which it acts is the algebraical sum of the moments of the com-

onent forces. Hence let F, denote the resultant of any number
of parallel forces in one plane, and y, the distance of the line of
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action of that resultant from the assumed axis O X to which the
positions of forces are referred : then

F.=3 F;
-y F
y'=2'y_F.

In some cases, the forces may have no single resultant, 2+ F
being = 0; and then, unless the forces balance each other com-
pletely, their resultant is a couple of the moment 2. y F.

45. Moments of a Force with respect to a Pair of Rectangular Axes
—In fig. 11, let F be any single
force; O an arbitrarily-assumed
point,called the “originof co-ordin-
ates;” - X0+ X, - YO+Y,
a pair of axes traversing O, ‘at
right angles to each other and to
the line of action of F. Let
A B =1y, be the common perpen-
dicular of F and OX ; let AC =z,
be the common perpendicular of F
and OY. zandy are the “rectan-
gular co-ordinates” of the line of
action of F relatively to the axes
- X0+ X,-YO0 + Y, re-
spectively. According to the ar-
rangement of the axes in the
figure, # is to be considered as Fig. 11.
positive to the right, and nega-
tive to the left, of — YO + Y ; and % is to be considered as
positive to the left, and negative to the right, of - X O + X ; right
and left referring to the spectator’s right and left hand. In the
particular case represented, « and y are both positive. Forces, in the
figure, are considered as positive upwards, and negative downwards ;
and in the particular case represented, F is positive.

At B conceive a pair of equal and opposite forces, F and — I,
to be applied ; ¥’ being equal and parallel to F, and in the same
direction. Then, asin Article 42, F is equivalent to the single force
F'=TF applied at B, combined with the couple constituted by F and
— F’ with the arm 7, whose moment is ¥ F'; being positive in the
case represented, because the couple is right-handed. Next, at the
origin O, conceive a pair of equal and opposite forces, F" and — F",
to be applied, F" being equal and parallel to F and ¥, and in the
same direction. Then the single force F' is equivalent to the
single force " = F' = F applied at O, combined with the couple
constituted by F' and — F’ with the arm OB = z, whose moment is

X
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— ¢ F ; being negative in the case represented, because the couple
is left-handed.

Hence it appears finally, that a force F' acting in a line whose
co-ordinates with respect to a pair of rectangular axes perpendicular
to that line are = and ¥, is equivalent to an equal and parallel
force acting through the origin, combined with two couples whose
moments are,

y F relatively to the axis O X, and — « F relatively to the axis
OY ; right-handed couples being considered positive ; and + Y
lying to the left of + X, as viewed by a spectator looking from
+ X towards O, with his head in the direction of positive forces.

46. Egquilibrinm of auy System of Parallel Forces.—In order
that any system of parallel forces, whether in one plane or not, may
balance each other, it is necessary and sufficient that the three
following conditions should be fulfilled :—

I (As already stated in Art. 38), that the algebraical sum of the
forces shall be nothing :—

IT. and ITI. That the algebraical sums of the moments of the
forces, relatively to a pair of axes at right angles to each other, and
to the lines of action of the forces, shall each be nothing :—

conditions which are expressed symbolically as follows :—

2:F=0;2-9yF=0;2-2F =035
for by the last Article, each force F is equivalent to an equal and
parallel force F" applied directly to O, combined with two couples,
y F with the axis OX, and — 2 F with the axis OY; and the
system of forces F", and the two systems of couples ¥ F and — = F,
must each be in equilibrio, because when combined they are equi-
valent to the balanced system of forces F.

47, Resultant of any Number of Parallel Forces.—Lhe resultant of
any number of parallel forces, whether in one plane or not, is a
force whose magnitude is the algebraical sum of the magnitudes of
the component forces, and whose moments relatively to a pair of
axes perpendicular to each other and to the lines of action of the
forces, are respectively equal to the algebraical sums of the moments
of the component forces relatively to the same axes. Hence let
F, denote the resultant, and «, and g, the co-ordinates of its line
of action, then

F,—2- E
” Bl
r"'E_ F’

_ -y F
W DT |

In some cases, the forces may have mno single resultant, > * F



CENTRE OF PARALLEY, FORCES. 31

being = 0; and then, unless the forces balance each other com-
pletely, their resultant is a couple, whose axis, direction, and
moment are found as follows :—

Let M,=:.9yF;, M\,=- 3.2 F;

be the moments of the pair of partial resultant couples relatively to
the axes O X and O Y respectively. From O, along those axes,
set off two lines representing respectively M, and M, according to
the rule of Art. 34 ; that is to say, proportional to those moments
in length; and pointing in the direction from which those couples
must respectively be viewed in order that they may appear right-
* handed. Complete the rectangle whose sides are those lines ; its
diagonal (as shown in Art. 35) will represent the axis, direction,
and moment of the final resultant couple. Let M, be the moment
of this couple ; then v

M,-—-\/ { Mo+ };

and if ¢ be the angle which its axis makes with O X,

e
cos § =3

SectioN 4.—O0n Centres of Parallel Forces.

) 48, Centre of a Pair of Paraliel Forces—In fig. 12, let A and
B represent a pair of points, to which a pair of parallel forces, F,
and Fy, of any given magnitudes, are applied. In the straight line
joining A and B take the point C such, 2
that its distances from A and B respec-
tively shall be inversely proportional to the
forces applied at those points. Then from
the principle of Art. 40 it is obvious that
the resultant of F, and Fy traverses C. It
is also obvious that the position of the point £, =, %
C depends solely on the proportionate mag- Fig. 12.
nitude of the parallel forces F', and Fg, and

not on their absolute magnitude, nor on the angular position of
their lines of action; so that if for those forces there be substituted
another pair of parallel forces, f,, f;, in any other angular position,
and if those new forces bear to each other the same proportion with
the original forces, viz. :—

foifs::F, :Fp::BC: AG,

the point C where the resultant cuts A B will still be the same,
This point is called the Centre of Parallel Forces, for a pair of
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forces applied at A. and B respectively, and having the given
ratio BC : AC.

49. Centre of any System of Parallel
Forces.—Let parallel forces, F, F;, be
applied at the points A, A, (fig. 13.),
Draw the straight line Ay A,, in which
take C,, so that

How B 2.2 O, AL {ERAC:

., then will C; be the centre of a pair of
Fig. 13. * parallel forces applied at Ajand A;, and

having the proportion F,: F;.. At a third

point, A,, let a third parallel force, F,, be applied. Then, because
the forces ¥, F;, are together equivalent to a parallel force, F, + ¥,
applied at C,, draw the straight line C; A,, in which take C,, so that

Fo+F, :F,::C,A,:C,0;
then will C, be the centre of three parallel forces applied at A, A,,
A,, and having the proportions Fy: F, : F,. At a fourth point,
Ag, let a fourth parallel force, Fy, be applied. Then, because the
forces Fy, I, F,, are together equivalent to a parallel force, Fy+

¥, + F,, applied at C,, draw the straight line C,, A;, in which take
C,, so that

Fo+F +F,:F;::CA;: C;Cy;

then will C; be the centre of four parallel forces applied at A, A,
A,, A, and having the proportion Ky : F, : F, : Fs. By continuing
this process the centre of any system of parallel forces, how nume-
rous soever, may be found; and hence results the following

THEOREM. If there be given a system of points, and the mutual
ratios of a system of parallel forces applied to those points, then there
is one point, and one only, which is traversed by the line of action of
the resultamt of every system of parallel forces having the given mutual
ratios and applied to the giwen system of points, whatsoever may be
the absolute magnitudes of those forces, and the angular position of
their lines of action.

50. Co-ordinates of Centre of Parallel Forces.—The method of
finding centres of parallel forces described in the preceding Article,
though suitable for the demonstration of the theorem just stated,
is tedious and inconvenient when the number of forces is great, in
which case the best method is to find the rectangular co-ordinates of
that point relatively to three fixed axes, as follows :—

Let O be any convenient point, taken as the origin of co-ordi-
nates, and OX, OY, OZ, three axes of co-ordinates at right angles
to each other.
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Let A be any one of the points to which the system of parallel
forces in question are applied. From A draw x parallel to OX,
and perpendicular to the plane Y Z, z
y parallel to OY, and perpendicular
to the plane ZX, and z parallel to
0 Z, and perpendicular to the plane
XY. =, y, and 2 are the rectangu- &
lar co-ordinates of A, which, being
known, the position of A is deter-
mined. ILet F denote either the
magnitude of the force applied at A, "
or any magnitude proportional to
that magnitude. w, ¥, 2, and I are
supposed to be known for every point of the given system of
points.

Then first, conceive all the parallel forces to act in lines parallel
to the plane Y Z. Then the sum of their moments relatively to
an axis in that plane is

Fig. 14.

sz F;
and consequently the distance of their resultant, and also of the

centre of parallel forces from that plane is given (as in Articles 44
and 47), by the equation
3 @B

X, = .
5 - F

Secondly, conceive all the parallel forces to act in lines parallel
to the plane ZX. Then the sum of their moments relatively to an
axis in that plane becomes

sy F;
and consequently the distance of their resultant, and also of the
centre of parallel forces from that plane is given by the equation

S5yl

Y= - F 2
Thirdly, conceive all the parallel forces to act in lines parallel to

the plane X'Y. Then the sum of their moments relatively to an
axis in that plane becomes

5> Ot 3
and consequently the distance of their resultant, and also of the
centre of parallel forces from that plane is given by the equation

SRR
r —"; T ¢
Thus are found a,, ¥,, #, the three rectangular co-ordinates of
D
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the centre of parallel forces, for a system of forces applied to any
iven system of points, and having any given mutual ratios.

If the parallel forces applied to a system of points are all equal,
then it is obvious that the distance of the centre of parallel forces
from any given plane is simply the mean of the distances of the
points of the system from that plane.
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CHAPTER IIL
BALANCE OF INCLINED FORCES.

SectioN 1.—Inclined Forces applied at One Point.

51. Parallelogram of Forces.— LHEOREM. If two forces whose lines
of action traverse one point be represented in direction and magnitude by
the sides of a parallelogram, their resultant is represented by the diagonal.

First Demonstration.—Through the point O (fig. 15), let two
forces act, represented in direction
and magnitude by OA and OB. S
The resultant or equivalent single X
force of those two forces must be a
force such, that its moment relatively
to any axis whatsoever perpendicu-
lar to the plane of O A and O B, is
the sum of the moments of O A and
O B relatively to the same axis.

Now, first, the force represented in
direction and magnitude by the dia-
gonal O C of the parallelogram A B
fulfils this condition. For let P be any point in the plane of O A
and O B, and let an axis perpendicular to that plane traverse P.
Join PA, PB, PC, PO. Then, as already shown in Art. 42, the
moments of the forces O A, OB, O C, relatively to the axis P, are
represented respectively by the doubles of the triangles PO A,
POB, POC. Draw AD || BE || OP, and join PD, PE.
Then A POD = APOA, and APOE = APOB; but be
cause OD + OE = 0C,.-APOC =APOD + aPOE =
4 POA + APOB; and the moment of OC relatively to P is
equal to the sum of the moments of OA and OB; and that
whatsoever the position of P may be.

Secondly. The force represented by O C is the only force which
fulfils this condition. Forlet O Q represent a force whose moment
relatively to P is equal to the sum of the moments of O A and O B.
JonPQ Then AOPQ = APOC,and.. CQJjPO; so that
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0 Q fulfils the required condition for those axes only which are
situated in a line O P || C Q, and not for any other axis.

Therefore the diagonal O C of the parallelogram A B represents
the resultant, and the only resultant, of the forces represented by
O A and O B—Q. E. D.

s d Demonstration.—Suppose a perpendicular to be erected to
the plane O A B at the point O, of any length whatsoever; call the
other extremity of that perpendicular R ; and at R conceive two
forces to be applied, respectively equal, parallel, and opposite to
O A and OB. Then O R is the arm common to two couples whose
axes and moments are represented (in the manner described in Art.
34) by lines perpendicular and proportional respectively to O A and
O B. On the lines so representing the couples, construct a paral-
lelogram ; then, as shown in Art. 35, the diagonal of that parallelo-
gram represents the resultant couple constituted by the resultant
of OA and O B acting at O, and an equal and opposite force at R ;
and as the parallelogram of couples has its sides perpendicular and
proportional to O A and O B, its diagonal must be perpendicular
and proportional to O C, which consequently represents the result-
ant of O A and 0 B—Q. E. D.

[There are various other modes of demonstrating the theorem of
the parallelogram of forces, all of which may be studied with ad-
vantage : especially those given by Dr. Whewell in his Elementary
Treatise on Mechanics, and by Mr. Moseley in his Mechanics of En-
gineering and Architecture.]

52. Equilibrium of Three Forces acting through One Point in One
Plane—To balance the forces O A and O B, a force is required
equal and directly opposed to their resultant O C. This may be
otherwise expressed by saying, that if the directions and mag-
nitudes of three forces be represented by the three sides of a triangle,
(suchas O A, A C, CO), then those three forces, acting through
one point, balance each other.

53. Equilibrium of any System of Forces acting through One Point.—
CoroLrLArY. If a number of forces acting through the same point be
represented by lines equal and parallel to the sides of a closed polygon,
those forces balance each other. To fix
the ideas, let there be five forces acting
through the point O (fig. 16), and re-
presented in direction and magnitude
by the lines F,, F,, F,, F,, F,, which
are equal and parallel to the sides
of the closed polygon OABCDO*

YViz. ;—
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F,=and]||OA;
F,=and || AB;
F;=and | BC;
F,=and ||CD;
F;=and || DO.

Then by the theorem of Art. 52, the resultant of F, and F, is O B;
the resultant of F,, ¥, and F, is O C; the resultant of F,, F,, F,,
and F, is O D, equal and opposite to F;, so that the final resultant
is nothing.

The closed polygon may be either plane or gauche.

54. Parallclopiped of Forces.—The simplest gauche polygon is
one of four sides. TLet O A B CEF G H (fig. 17), be a parallelopiped
whose diagonal is OH. Then any three

X & H
successive edges so placed as to begin at O <F
and end at H, form, together with the dia-
gonal HO, a closed quadrilateral ; conse- % / K
quently if three forces F,, F,, F; acting Py I’i o
through O, be represented by the three

edges OA, O B, OC, of a parallelopiped, e
the diagonal O H represents their resultant, o

and a fourth force F, equal and opposite to .

O H balances them. Fig. 17.

55. Resolution of a Force into Two Components.—From the theo-
rem of Art. 51, it is evident that in order that a given single force
may be resolvable into two components acting in given lines inclined
to each other, it is necessary, first, that the lines of action of those
components should intersect the line of action of the given force in
one point; and secondly, that those three lines of action should be
in one plane.

Returning, then, to fig. 15, let O C represent the given force,
which it is required to resolve into two component forces, acting in
the lines O X, O'Y, which lie in one plane with O C, and intersect
it in one point O.

Through C draw CA || OY, cutting O X in A, and CB || O X,
cutting OY in B. Then will O A and O B represent the com-
ponent forces required.

Two forces respectively equal to and directly opposed to O A
and O B will balance O C.

56. Resolution of a Forcc into Three Compouenu.—In order that a
given single force may be resolvable into three components acting
in given lines inclined to each other, it is only necessary that the
lines of action of the components should intersect the line of action
of the given force in one point.
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Returning to fig. 17, let O H represent the given force which it
is required to resolve into three component forces, acting in the
lines 0 X, OY, O Z, which intersect O H in one point O.

Through H draw three planes parallel respectively to the planes
YO0Z, Z0X, X0Y, and cutting respectively 0 X in A, O Y in
B,0ZinC. Then will 0A, OB, OC, represent the component
forces required.

__Three forces respectively equal to, and directly opposed to O A,
OB, and O C, will balance O H.

57. Rectangular Components—The rectangular components of a
force are those into which it is resolved when the directions of
their lines of action are at right angles to each other.

For example, in fig. 17, suppose O X, OY, O Z, to be three axes
of co-ordinates at right angles to each other. Then O H is resolved
into three rectangular components simply by letting fall from H
perpendiculars on O X, OY, O Z, cutting them at A, B, C,
respectively. iR

To express this case algebraically, let F= O H denote the force
to be resolved. Let e

a=_~XO0OH, f=—YOH, y=~ZO0H,
be the angles which its line of action makes with the three rect-
angular axes. Then, as is well known, those three angles are con-
nected by the equation

cos?a + cos?B + cosfy =1, cceiiiiininnn.. (L)
Let
F,=0A, F,=0B, F,=0C,
be the three rectangular components of F'; then
S LT T e PR (ORI P
Fy—=TFcosB.ccveeiiininiicneiiannnn 2.)
W5 NS eoslign IS o8, L S S

In order to distinguish properly the direction of the resultant F
as compared with the directions of the axes, it is to be borne in
mind that

: acute : ositive.
the cosine of an{ Bre } angle is {Eegative.}

From a well known property of right-angled triangles (also em-
bodied in equation 1), it follows that

Sl TR ) el D e AR R B A S (3.

To express algebraically the case in which a force is resolved into
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two rectangular components in one plane with it, let the plane in
question be that of OX and OY. Then the angles are subject to
the following equaticas :—

= d

v =a right angle ; « + # = a right angle;

cosy=0; cos B=sin «; cos & =sin A.......... 4)
and consequently the equations 2and 3are reduced to the following i—
Fi=Fcosee =T sin@;.ccoeceeuunnee )
F,=Fsinae=F cosBj.ccceruuruucne. (5.
15 U D) (i [y e At f

In using these equations, the rule respecting the positive and
negative signs of cosines isto be observed ; and it is also to be borne
in mind, that the angle e« is reckoned from O X in the direction
towards Y, and the angle 8 from OY in the reverse direction, that -
is, towards X, and that

. - 0°to 180° positive.
the sines of angles from { 180° to 360"} are { negative. }

If a system of forces acting through one point balance each other,
their resultant is nothing ; and therefore the rectangular components
of their resultant, which are the resultants of their parallel systems
of rectangular components, are each equal to nothing; a case re-
presented as follows :—

B =0 By = 0.5 ~Fe — 000000 0 o5 (6.)

SectioN 2.—TInclined Forces Applied to o System of Points.

58. Worces acting in One Plane.—Graphic Solution. — Let any
system of forces whose lines of action are in one plane, act together
on a rigid body, and let it be required to find their resultant.

Assume an axis perpendicular to the plane of action of the forces
at any point, and let it be called O Z. According to the principle
of Art. 42, et each force be resolved into an equal and parallel
force acting through O, and a couple tending to produce rotation
about O Z; so that if a force F be applied along a line whose per-
pendicular distance from O is I, that force shall be resolved into

F=and|F
acting through O, and a couple whose moment is
M = LF,

and which is right or left-handed according as O lies to the right or
left of the direction of F.
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The magnitude and direction of the resultant are to be found by
forming a polygon with lines equal and parallel to those representing
the forces, as in Art. 53, when, if the polygon is closed, the forces
have no single resultant; but if not, then the resultant is equal,
parallel, and opposite to that represented by the line which is
required in order to close the polygon. ILet R be its magnitude
if any.

‘The position of the line of action of the resultant is found as
follows :—

Let =M be the resultant of the moments of all the couples MM,
distinguishing right-handed from left-handed, as in Arts. 27 and
32. If M = 0, and also R =0, then the couples and forces
balance completely, and there is no resultant. If 3-M = 0, while
R has magnitude, then the resultant acts through O. If =-M
and R both have magnitude, then the line of action of the resultant
R is at the perpendicular distance from O given by the equation

5-
L2,
and the direction of that perpendicular is indicated by the sign of
=-M. IfR = 0, while =-M has magnitude, the only resultant of
the given system of forces is the couple 2-M.

59. Forces acting in One Plane.—Solution by Rectangular Co-or-
dinates.—Through the point O as origin of co-ordinates, let any two
axes be assumed, O X and OY, perpendicular to each other and
to O Z, and in the plane of action of the forces ; and in looking from
Z towards O, let Y lie to the right of X, so that rotation from X
towards Y shall be right-handed. Let F, as before, denote any one
of the forces; let « be the angle which its line of action makes to
the right of O X ; and let 2 and # be the co-ordinates of its point
of application, or of any point in its line of action, relatively to the
assumed origin and axes. Resolve each force F into its rectangular
components as in Art. 57,

F,=F-cosx; F;=F *sin «;

then the rectangular components of the resultant are respectively

parallel to O X, =(F cos ) = Ry, 1)

parallel to OY, 2(F-sina) = R,, f 7777 ;
its magnitude is given by the equation

RY =R} + RS SEE It oy L) (2)

and the angle «, which it makes to the right of O X'is found by the
equations
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The quadrant in which the direction of R lies is indicated by the
algebraical signs of R, and R,, as already stated in Art. 57.
The perpendicular distance from O of the lme of action of any
force F is
" L=z'sine—y-cose '
which is positive or negative accordmg as O lies to the right or to”
the left of that line of action; and hence the resultant moment of
the system of forces Telatively to the axig O Z is
3 FL=2'F (x sin « —y cos «)
= 2(@eF;— B oiie Al (4)
whence it follows, that the perpendicular distance of the resultant
force from O is

j Ak E_@ig_?/ﬂ ..................... (5)

Let @, and 7, be the co-ordinates of any pointin the line of actlon
of the resultant then the equation of that line is, ¢ )
2, Ry—y, R =RL,
Whlch is equivalent to }
z, sin &, — ¥, cos e, =L,
Asin Art. 58, if =-F L =0, the resultant acts through the
origin O; if >-FL has magnitude, and R = 0 (in which case
R, =0, R;=0) the resultant is a couple. The conditions of equili-
brium of the system of forces are

R,=0; R,=0; > FL=0; (7)
or in other symbols ;
‘nFl_O, 2 F=0; s(xF,—yF)=0.

The moment of the resultant relatively to the axis O Z can also
be arrived at by considering the moment F L of each force as the
resultant of « ¥,, which is right-handed when z and F, are both
positive, and of — » F,, which is left-handed when y and F, arc
both pesitive.

60. Any System of Forces—To find the resultant and the con-
ditions of equilibrium of any system of forces acting through
any system of points, the forces and points are to be referred to
three rectangular axes of co-ordinates.

As in Art. 57, let O denote the origin of co-ordinates, and
O0X, OY, OZ, the three rectangular axes; and let them be
arranged (as in fig. 17), so that in looking from
X Y towards Z
Y ;- towards O, rotation from < Z towards X
Z X towards Y
shall appear right-handed.
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Let F denote any one of the forces; =, , 2, the co-ordinates of a
point in its line of action; and «, 8, ¥, the angles which its direction
makes with the axes respectively. Then the three rectangular
components of F being as in Art. 57,

F, =TF - cos z along O X,
F,=F-cospgalong0Y,
Fs = F - cos v along O Z,

it can be shown by reasoning similar to that of Art. 59, that the
total moments of these components relatively to the three axes are
respectively

yFy— 2 F=F *(y cos y —2 cos B) relatively to O X,

2 B —aFs=TF (% cos « — x cos v) relatively to O Y, »(2.)

2z F,—y F, =F (x cos g —y cos ) relatively to O Z;

so that the force F is equivalent to the three forces of the formule
1 acting through O along the three axes, and the three couples of
the formule 2 acting round the three axes.

Taking the algebraical sums of all the forces which act along the
same axes, and of all the couples which act round the same axes,
the six following quantities are found, which compose the resultant
of the given system of forces ;—

Forces.
along O X ; Rj= ="' F cos «,
5. O 5 Ry =3 Gk, S ee i n (3.)
s OZ; Rg= =:F cos v
Couples.
round O X ; M, = *{F (y cos ¥ — 2 cos 3)}
» OY;M,=3{F (x cos & — zcos )}, } ........ 4.)

» OZ;M;=3{F (zcosp — ycosu)}’
The three forces Ry, R,, Ry, are equivalent to a single force

R=,/ (RE+RE+RY, i, 6.)

acting through O in a line which makes with the axes the angles
given by the equations

R R. R.
cos u,=R—‘; cos ﬁ,:.R_B; cos ¥, = Ei ............ (6.)

The three couples M,, M,, M, according to Article 87, are equi-
valent to one couple, whose magnitude is given by the equation

M o= (M MEE Mo, (1.)
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and whose axis makes with the axes of co-ordinates the angles given
by the equations w Z
o M Y M, M
cosz:l\—f'; 008 f6 = 3 ; cosu-:lTI"' ................ (8)

N
K

A ) denote respectively th 1 §52, ‘

- b pectively the angles
mwmc}l{"jf_made by the axis of M with 8% ’ 3
The Conditions of Equilibrium of the system of forces may be ex-

pressed in either of the two following forms :—

Ri=0;R;=0; Ry=0: M,=0; M;=0; M;=0...9.)
or R e N0 s e e, e (10.)

‘When the system is not balanced, its resultant may fall under
one or other of the following cases :—

Case L.—WWhen M = 0, the resultant is the single force R acting
through O.

Case XX—When the axis of M s at right angles to the direction of
R,—a case expressed by either of the two following equations :—

! COS ¢z, COS A + €OS B, COS g + €OS v, cos ¥ = 0 (11) .
o R, M +Ry M, + Ry M; =0; 0% s

the resultant of M and R is a single force equal and parallel to R,
acting in a plane perpendicular to the axis of M, and at a perpen-
dicular distance from O given by the equation

M
A el S M (12).

Case IIL.—When R = 0, there is no single resultant; and the
only resultant is the couple M. -

Case AV.— When the axis of M is parallel to the line of action of R,
that is, when either

B == o) =¥ BY Qe == L T, L L S e aets (13).

or N 0> == BV = Lol e e o o el (14).
there is no single resultant; and the system of forces is equiva-
lent to the force R and the couple M, being incapable of being
farther simplified.

Case V.—When the axis of M s oblique to the direction of R,
making with it the angle given by the equation

€08 § == COS 2 COS &, + COS ¢ COS B, + COS ¥ COS ¥,,....(15).

the couple M is to be resolved into two rectangular compenents,
viz. :—
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M sin 6 round an axis perpendicular to R, and in
the plane containing the direction of R and of | (16.)
the axis of M;
M cos ¢ round an axis parallel to R.

The force R and the couple M sin 4 are equivalent, as in Case
I1., to a single force equal and parallel to R, whose line of action
is in a plane perpendicular to that containing R and the axis of
M, and whose perpendicular distance from O is

The couple M cos 4, whose axis is parallel to the line of action of
R, is incapable of further combination.

Hence it appears finally, that every system of forces which is not
self-balanced, is equivalent either, (A); to a single force, as in Cases
I.and II. (B); to a couple, as in Case ITI. (C); to a force, com-
bined with a couple whose axis is parallel to the line of action of
the force, as in Cases IV. and V. This can occur with inclined
forces only, it having been shown in Article 47, that the resultant
of any number of parallel forces is either a single force or a couple.



45

CHAPTER 1V,
ON PARALLEL PROJECTIONS IN STATICS.

61. ®arallel Projection of a Figure defined.—If two ﬁgures be so
telated, that for each point in one there is a corresponding point
in the other, and that to each pair of equal and parallel lines in the
one there corresponds a pair of equal and parallel lines in the other,
those figures are said to be PARALLEL PROJECTIONS of each other.

The relation between such a pair of figures may be otherwise
expressed as follows :—Let any figure be referred to axes of co-
ordinates, whether rectangular or oblique ; let x, ¥, 2, denote the
co-ordinates of any point in it, which may be denoted by A : let a
second figure be constructed from a second set of axes of co-ordinates,
either agreeing with, or differing from, the first set as to rectan-
gularity or obliquity ; let o, %/, =/, be the co-ordinates in the second
figure, of the point A’ which corresponds to any point A in the
first figure, and let those co-ordinates be so related to the co-ordi-
nates of A, that for each pair of corresponding points, A, A’, in the
two figures, the three pairs of corresponding co-ordinates shall bear
to each other three constant ratios, such as

a5 g ?

g i ds ':;— T NS =GN
then are these two figures parallel projections of each other.

62, Geometrical Properties of Parallel Projections,.—The following
are the geometrical properties of parallel projections which are of
most importance in statics. Being purely geometrical propositions,
they are not here demonstrated.

LA parallel projection of a system of three points, lying in
one straight line and dividing it in a given proportion, is also a
system of three points, lying in one straight line and dividing it in
the same proportion. .

II.—A parallel projection of a system of parallel lines whose
lengths bear given ratios to each other, is also a system of parallel
lines whose lengths bear the same ratios to each other.

III.—A parallel projection of a closed polygon is a closed

polygon.
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IV.—A parallel projection of a parallelogram is a parallel-
ogram,

V.—A parallel projection of a parallelopiped is a parallelopiped.

VI.—A parallel projection of a pair of parallel plane surfaces,
" whose areas are in a given ratio, is also a pair of parallel plane
surfaces, whose areas are in the same ratio.

VIL—A parallel projection of a pair of volumes having a given
ratio, is a pair of volumes having the same ratio.

63. Application to Parallel Forces.—It has been shown in Chap.
TL., Sect. 3, that the equilibrium of any system of parallel forces
depends on the mutual proportions of the forces and on those of the -
distances of their lines of action from given planes. By considering
this in connection with the principles L. and II. of Axticle 62, it is
evident, that if a balanced system of parallel forces be represented
by a system of lines, then any system of lines which is a parallel
projection of the first system, will also represent a balanced system
of parallel forces ; and also, that if there be two systems of parallel
forces represented by systems of lines which are parallel projections
of each other, then are the respective resultants of those systems of
forces, whether single forces or couples, represented by lines which
are parallel projections of each other related in the same manner
with the other pairs of corresponding lines in the two systems. In
applying this principle to couples, it is to be observed, that they
are not to be represented by single lines, as in Art. 34, but by pairs
of equal and opposite lines, as in the previous articles, or by areas,
as in Articles 42 and 51.

64. Application 1o Centres of Parallel Forces.—If two systems of
points be parallel projections of each other ; and if to each of those
systems there be applied a system of parallel forces bearing to each
other the same system of  ratios, then, by considering the principles
L and IL of Article 62 in conjunction with those of Chap. IL., Sect.
4, it is evident that the centres of parallel forces for those two
systems of points will be parallel projections of each other, mutually
related in the same manner with the other pairs of corresponding
points in the two systems.

65. Application to Inclined Forces acting through One Point.—
From principles ITL., IV. and V., of Article 62, taken in conjunc-
tion with the principles of Chap. TIL.,Seet. 1,it follows, that if a given
system of lines represents a balanced system of forces acting through
one point, then will any parallel projection of that system of lines
also represent a balanced system of forces acting through one point ;
and also, that if two systems of forces, each acting through one
point, be represented by two systems of lines which are parallel
projections of each other, then will the respective resultants of those
two systems of forces be represented by a pair of lines which are
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parallel projections of each other, mutually related in the same
manner with other pairs of corresponding lines.

66. Application to any System of Forces.—As every sys’cem of
forces applied to any system of points can be reduced, as in Art, 60,
to a system of forces acting through one point, and certain systems
of parallel forces, it follows that if a balanced system of forces acting
through any system of points be represented by a system of lines,
then will any parallel projection of that system of lines represent a
balanced system of forces; and that if any two systems of forces
be represented by lines which are parallel projections of each other,
the lines, or sets of lines, representing their resultants, will be cor-
responding parallel projections of each other :—it being still ob-
served, as in Article 63, that couples are to be represented by pairs
of lines, as pairs of opposite forces, or by areas, and not by single
lines along their axes.
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CHAPTER V.
ON DISTRIBUTED FORCES.

67. Restriction of the Subject.—In Article 18 it has already been
explained, that the action of every real force is distributed through-
out some volume, or over some surface. It is always possible,
however, to find either a single resultant, or a resultant couple, or a
combination of a single force with a couple (like that described in
Art. 60), to which a given distributed force is equivalent, so far asit.
affects the equilibrium of the body, or part of a body, to which it is
applied.

pl?[n the application of Mechanics to Astronomy, Electricity, and
Magnetism, it is often necessary to find the resultant of a distri-
buted attraction or repulsion, whose direction is sensibly different
at different points of the body to which it is applied ; and problems
thus arise of great difficulty and complexity. But in the applica-
tion of Mechanics to Structures and Machines, the only force dis-
tributed throughout the volume of a body which it is necessary to
consider, is its weight, or attraction towards the earth ; and the
bodies considered are in every instance so small as compared with
the earth, that this attraction may, without appreciable error, be
held to act in parallel directions at each point in each body. More-
over, the forces distributed over surfaces, which have to be consi-
dered in applied mechanics, are either parallel at each point of
their surfaces of application, or capable of being resolved into sets
of parallel forces. Hence, in applied mechanics, parallel distributed
Jorces have alone to be considered ; every such force is statically
equivalent either to a single resultant, or to a resultant couple ;
and the problem of finding such resultant is comparatively simple.

G8. The Intensity of a Distributed Force is the ratio which the
magnitude of that force, expressed in units of force, bears to the
space over which it is distributed, expressed in units of volume, or
in units of surface, as the case may be. An unit of Infensity is an
unit of force distributed over an unit of volume or of surface, asthe
case may be ; so that there are two kinds of units of intensity.
For example, one pound per cubic foot is an unit of intensity for a
force distributed throughout & volume, such as weight ; and one
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pound per square foot is an unit of intensity for a force distributed
over a surface, such as pressure or friction.

The intensity of a force acting at a single point would be infinite,
if such a force were possible. !

Secrion 1.—Of Weight, and Centres of Gravity.

69. The Specifie Gravity of a body is a number proportional to
the weight of an unit of its volume; for example, the weight in
pounds, of a cubic foot of the volume of the body. The pound per
cubic jfoot is the most convenient unit of specific gravity for practi-
cal purposes ; but in tables of specific gravity, a special unit is usu-
ally employed, viz, the weight, at a fixed temperature, of unity of
volume of water. In Britain, that fixed temperature is usually
62° Fahrenheit; in France, and on the continent of Europe
generally, it is the temperature at which water is most dense, viz,
3°95 centigrade, or 39°'1 Fahrenheit.

In a table at the end of this volume are given the specific
gravities of such materials as most commonly occur in structures
and machines. So far as this and similar tables relate to solid
materials, they must be regarded as approximate only; for the
specific gravity of the same solid substance varies mot omly in
different specimens, but frequently even in different parts of the
same specimen ; still the approximate values are sufliciently near
the truth for practical purposes in the art of construction.

70. The Centre of Gravity of a body, or of a system of bodies, is
the point always traversed by the resultant of the weight of the
body or system of bodies,—in other words, the centre of parallel
Jorces for the weight of the body or system of bodies.

To support a body, that is, to balance its weight, the resultant of
the supporting force must act through the centre of gravity.

71. Centre of Gravity of a Ilomogeneous Body having a Centre of
Figure—Let a body be homogeneous, or of equal specific gravity
throughout ; let it also be so far symmaetrical, as to have a centre of
figure; that is, a point within the body, which bisects every
diameter of the body drawn through it; then it is self-evident,
that the centre of figure of the body must also be its centre of
gravity.

Amongst the bodies which answer this description are, the
sphere, the ellipsoid, the circular cylinder, the elliptic cylinder,
prisms whose bases have centres of figure, and parallelopipeds,
whether right or oblique.
£ 72. Bodies having Planes or Axes of Symmetry.—If a homogene-
ous body be of a figure which is symmetrical on either side of a
given plane, the centre of gravity must be in that plane. If two
or more such planes of symmetry intersect in one line, or awis of

=
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symmetry, the centre of gravity must be in that axis. If three or
more planes of symmetry intersect each other in a point, that point
must be the centre of gravity.

The following are examples :—

I. In fig. 18, let A B C be an equilateral triangle, the base of a
right equzlateml triangular prism, This prism has one plane of
symmetry parallel to its bases at the middle of its length. Yt has
also three planes of symmetry, A a, Bb, Ce¢, each traversing one
edge of the prism and bisesting the oppos1te side, and those “three
planes intersect in an axis G, whose perpendicular distance from
any edge is two-thirds of the distance from that edge to the oppos1te
side, that i is,

The centre of gravity of the prism is at the middle of this axis.

A
A,

Fig. 18. Fig. 19.

I1. In fig. 19,let ABCD be a regular tetraedron, or triangular
pyramid, bounded by four equilateral triangles. Bisect any edrfe
D Cin E; then the plane A BE drawn through the point of bisec-
tion and the opposite edge is a plane of symmetry There are six
such planes, and they intersect each other in one point G, which is
therefore the centre of gravity of the tetraedron.

It may be shown by geometry, that the point G can be found in
the following manner. From any summit, such as B, draw BE,
bisecting one of the opposite edges, such as DC. In BE take
BF = -% BE. Join A F, in which take 71&—G=-j2‘ AT; then
is G the centre of gravity sought.

73. System of Symmetrical Bodies—Let a connected system of
bodies whose absolute or proportional weights are known, and
whose centres of gravity are also known by reason of the symmetry
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and homogeneity of each body, be arranged in any manner ; then
the common centre of grawity of the whole system of bodies is the
sarne with the centre. of parallel forces for a system of forces equal or
proportional to the weights of the bodies, and acting through their
respective centres of gravity. i

Consequently, applying to this case the principles of Chap. IL.,
Section 4, Article 50, the centre of gravity is found in the following
manner. Let yz denote any fixed plane, « the perpendicular
distance of the centre of gravity of any one of the bodies from that
plane, and W the weight of that body, so that Wz is the moment
of the weight of the body in question with respect to any axis in
the plane yz.

Let 2, denote the perpendicular distance of the common centre
of gravity from the plane yz Then we have, total moment of the
system relatively to any axis in the plane y 2,

% 2 W=2 Wg;
and consequently.
] _ 2 Wg
Bk 08

By proceeding in a similar manner, the distances of the common
centre of gravity of the system of bodies from two other fixed
planes, either perpendicular or oblique to ¥z and to each other, are
found so as to determine its position completely.

The same process is applicable to any body whose figure is capable

of being divided into symmetrical figures.
Y 74. Ilomogeneous Body of any Figure.——-Let w be the speciﬁc
gravity of a homogeneous body of any figure, V its volume, and
W = wV its weight. Conceive three fixed co-ordinate planes,
Y2, 2%, and zy, perpendicular to each other, and let , ¥, 2, be
the co-ordinates of the centre of gravity, which it is required to
find ; so that wV ay, w 'V %, wV 2, are the moments of the body
relatively to the three co-ordinate planes respectively. Conceive the
space in and near the body to be divided by three series of equi-
distant planes parallel to the co-ordinate planes respectively, into
equal and similar small rectangular molecules, whose dimensions,
parallel to , ¥, and 2, respectively, are

A, AY, A%

Let , ¥, 2, be the co-ordinates of the centre of one of these mole-
cules. Then its volume is

AZAYAZ;
its weight WAL AY AR,
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and its morents relatively to the three co-ordinate planes re-
spectively,

TZWATAYAZ; YWAZAYAR; FWATAY A%

‘Whatsoever may be the figure of the body whose centre of gravity
is sought, a figure approximating to it may be built by putting
together a proper number of suitably arranged rectangular mole-
cules ; so that

V=z-azayaznewly; ]
W=wV=w- 3z azayaznenrly;
wVao,=w:s'zarayaznerly;
therefore omitting the common and constant factor w, ¢ ...... (L)

g ‘xALAY Az';,;;trl-y;
ZCATAYAR
and similar approximate formulz for 7, and 2,

Now, it is evident, that the smaller the dimensions a2, a7, az,
of each rectangular molecule,—or in other words, the more minute
the subdivision of the space in and near the body into small
rectangles, the more nearly will the approximate figure, built up of
" rectangular molecules, agree with the exact figure of the body, and,
consequently, the more nearly will the results of the approximate
formule (1.) agree with the true results; which, therefore, are the
limits towards which the results of these formule continually
approach nearer and nearer, as the dimensions A z, Ay, Az, are
diminished. Such limits are found by the process called integration,*
and are expressed in the following manner :—

volume V= dedydz;
B g o } 4

weight W=wV=w[f/dmdydz; ......
Wwo=wfffwdwdydz;
moments Wyo=w//fydwdydz; ...... (3)

W%:wfffzdwdydz; ,

_ * For further elucidation of the meaning of symbols of integration, and for explana
tions of processes of approximately computing the values of integrals, see Art. 81
the sequel.
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[ }ffwdmdydz

fffddedz

gl I ) FLLL L N
g‘fﬁ;f 1 Y= fffdmdydz, ......... 3

fffzdwdydi
e

Such are the general formulz for finding the centre of gravity of
a homogeneous body, of any form whatsoever.

75. Centre of Gravity found by Addition. —When the ﬁgure of a
body consists of parts, whose respective centres of gravity are known,
the centre of gravity of the whole is to be found as in Article 73.

o 76. Centre of Gravity found by Subtraction.—When the figure of
a homogeneous body, whose centre of gravity is sought, can be
made by taking away a figure whose
centre of gravity is known from a larger
figure whose centre of gravity is known

Let ACD be the larger figure, G, its
known centre of gravity, W, its weight.
Let ABE be the smaller figure, whose
centre of gravity G, is known, W, its
weight. Let EB C D be the figure whose
centre of gravity G is sought, made by
taking away A BE from A CD, so that Fig. 20.

W,=W,— W,

Join G, G,; G will be in the prolongation of that straight line be-
yond Grl In the same straight line produced, take any point O as
origin of co-ordinates, and an axis at O perpendicular to O G, G, as
axis of moments. Make O G, =2,; 0 G, = =, 0G, (the unknown
quantity) = a,

Then the moment of Wj relatively to the axis at O is

w;Ws =3 :J(,'lWl -— ngg,

. its weight is

and therefore
o W, — 2 W,
W, - W, °’
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/f 71. Centre of Gravity Altered by Transposition.—In fig. 21, let
ABCD be a body of the weight W,
whose centre of gravity G, is known. Let
the figure of this body be altered, by irans-
posing a part whose weight is W, from the
position E C ¥ to the position ¥ D H, so
that the new figure of thebodyis A BH E.
Let G, be the original, and G, the new
position of the centre of gravity of the
transposed part. Then the moment of the
body relatively to any axis in a plane per-
pendicular to G, G, will be altered by the
Fig. 21. amount W, G, G,; and the centre of gravity
of the whole body will be shifted to G, in a
direction G, G, parallel to G, G, and through a distance given
by the formula

;{;7 78. Centres of Gravity of Prisms and Flat Plates,—The general for-
mulee of Article 74 are intended not so much for direct use in
finding centres of gravity, as for the deduction of formulz of a more
simple form adapted to particular classes of cases. Of such the fol-
lowing is an example.

The centre of gravity of a right prism with parallel ends lies in

a plane midway between its ends ; that of a flat plate of uniform
thickness, which in fact is a short prism, in a plane midway between
its faces. Let such middle plane be taken for that of xy ; any
point in it O (fig. 22), for the origin,

and two rectangular axes in it, O X

and O Y, for axes of co-ordinates, to

which A B, the transverse section of
the plate, is referred. Conceive the
figure A B to be divided into narrow
bands, by equi-distant lines parallel to
one of the axes of co-ordinates O Y,
and at the distance a  apart. Leta
Fig. 22. be the distanee of the middle line of
one of these bands from O7Y, an¢

Y, Yo the distances of the two extremities of that middle line frox

O X. Then the band is approximately equal to a rectangular banc

of the length v, — ¥, and breadth Az, the co-ordinates of whost

Bty
2

centre are x, and Consequently, if 2 be the uniform thick
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ness of the plate, and w its specific gravity, we have for a single
band,

area = %yz - y,g A g nearly ; -

volume = % (y2—2) & = nearly ;

weight =w 2 (y,—y) A @ nearly;

moment relatively to OY,
=wzx (Y—y,) &% nearly ;
moment relatively to O X,

B-y .
—w=z A x nearly 3
and for the whole plate R
area — 2 (yy—9.) & x nearly; A
volume V = =23 (y:—%,) Az nearly;

weight W=wz*3 (y;—,) & 2 nearly;

moment relatively to O Y,
2,W =wz 3 (y,—y,) Az nearly;

moment relatively to O X,

YW =wz 2 y,,;g/f A zmearly; L ..., (1)

consequently, the co-ordinates of the centre of
gravity of the plate (omitting the common factors
w z), are

_Ea(p-y)aw
T3 (p-y)aw
e Y0 24
yo_zz.(gz_yl)Aw 4

The more minutely the cross-section A B is subdivided into
bands, the more nearly do these approximate formule agree with
the truth; so that the true results are the limits to which the
results of the approximate formule (1.) approach continually as

Az becomes smaller ; that is to say, in the notation of the integral
calculus,

X nearly ;

nearly.

HLED a3 f(?/s—:%) dzx;
volume V — 2z f (Yg—=1p) By [ oonersonssns (2)
weight w V = wzf(yg—y,) dx;
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w,,W:wzfm (ya—mp)da;

MOINERBEY Sve s ¢4 o 2 Y AN NG EERRRE oL, L (3.)
wW="3[ Gi-g)da;
fw(.%—z/:)dx.
0T ST R RS T
co-ordinates f G—y) d
of the 1 BRI et )

e oY i [t s
o[-y d=

The foregoing process is what is usually called by writers on
mechanics, “finding the centre of gravity of a plane surface ;” bub
this phrase ought always to be understood to signify “finding the
centre of grawity of a homogeneous plate of uniform thickness, the faces
of which are plane surfuces of a gwen figure.”

79. Body with Similar Cross-sections.— Let all the cross-sections of
a body made by planes parallel to a given plane (say that of z ),
be similar figures, but of different sizes. The areas of the different
cross-sections are to each other as the squares of their corresponding
linear dimensions. Let s denote some definite linear dimension of
a cross-section whose distance from the plane z y is 2, so that its
area shall be

L

a being a constant. Let a, ,, 2, be the co-ordinates of the centre of

gravity of a flat plate having its middle plane coincident with the

given cross-section. Then, by reasoning similar to that of Articles

74 and 78, we find the following results for the whole body :—
volume V= afg? dz;

.............. 2.
weight W=waf;? dz; 2)

moW=wafx,;?dz;
moments { 4, W — wafy; 207 A AETRDe 1 A 3.)
zoW=wafz sdz;
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( fwl 5t 2 ]
X, — ——
[eds
co-ordinates of [ ne d 2 i @
centre of gravity QR — T 5" caess OO OO, (2 55

tdz
f;s’?dz
f;’? dz j J

When the centres of all the cross-sections lie in one straight line,
as in pyramids, cones, conoids, and solids of revolution generally,
the centre of gravity lies in that line, which may be taken as the
axis of 2z, making z, = 0, y, = 0; so that z, is the only co-ordinate
which requires to be determined.

80. Curved Rod.—In fig. 23, let R R represent a curved rod so
slender, that its diameter may, without sensible error, be neglected
in comparison with its radius of curva-
ture at any point; let @ denote its
sectional area, uniform throughout, and
w, as usual, its specific gravity ; so that
the weight of an unit of length of the
rod iswa. Let OX, OY, OZ be rect-
angular axes of co-ordinates. Suppose
the rod to be divided into arcs, so short
as to be nearlystraight ; let the length of
any one of these arcs be denoted by A s;
let 88 represent it in the figure, and
let M be the middle of its length. Then
M is nearly the centre of gravity of A ¢ Leb MP =2 be the
perpendicular distance from M to the plane of 7z Then for the
short are 8 § we have,

weight =wa As;

5 =

Fig. 28.

moment with respect to an axis in the plane 7,

=waz A s nearly;
and for the entire rod,

W=waz:a;:;
moment 2, W=waZl 'z A snearly;

co-ordinate of | Nt 25, T P L0 (L)
centre of gravity [ % = g ™ArtY;
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and similar equations for 3, and z,. Proceeding by the method of
limits as before, we obtain as the exact formulse—

W=wafd;;
a:,W.:wwfwds; g
fa:d; ......... BRIV, S0y

[a

and similar equations for y, and 2z, The foregoing process is what
is often called by writers on Mechanics, “finding the centre of
gravity of a curved line,;” but what ought more properly to be
called, “finding the centre of gravity of @ slender curved rod of
uniform thickness.”

81. Approximate Computation of Integmls.——Frequent reference
having been made to the process of infegration, as being essential
to the solution of most problems connected with distributed force,
the present article is intended to afford to those who have not
made that branch of mathematics a special study, some elementary
information respecting it.

The meaning of the symbol of an integral, viz.:—

T, =

fud%

is of the following kind :—
In fig. 24, let ACDB be a plane area, of which one boundary, AB,
» D is a portion of an axis of absciss®
s O X, —the opposite boundary,
C D, a curve of any figure,—and
the remaining boundaries A C,
_ B D, ordinates perpendicular to
o A o) B> O X, whose respective abscisse,
Fig. 24. or distances from the origin O, are

OA=a;0B =2
Let EF = % be any ordinate whatsoever of the curve C D, and

OE = « the corresponding abscissa. Then the integral denoted
by the symbol,

f:udx,

nieans, the area of the figure ACD B. The abscissee ¢ and b
which are the least and greatest values of «, and which indicate
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the longitudinal extent of the area, are called the limits of in-
tegration ; bubt when the extent of the area is otherwise indicated,
the symbols of those limits are sometimes omitted, as in the pre-
ceding Articles.

‘When the relation between « and xis expressed by any ordinary
algebraical equation, the value of the integral for a given pair of
values of its limits can generally be found by means of formulae
which are contained in works on the Integral Calculus, or by means
of mathematical tables.

Cases may arise, however, in which «» cannot be so expressed in
terms of z; and then approximate methods must be employed.
Those approximate methods, of which two are here described, are
founded upon the division of the area to be measured into bands by
parallel and equi-distant ordinates, the approximate computation of
the areas of those bands, and the adding of them together ; and
the more minute that division is, the more mnear is the result to
the truth.

First Approvimation.

Divide the area A CD B, as in fig. 25, into any convenient
number of bands by parallel or- ]

dinates, whose uniform distance © >
apart is A z; so that if » be the
number of bands, » -- 1 will be the
number of ordinates, and ,
o - ol
b—-aznAa:, o Fig. 25.

the length of the figure.

Let +/, «', denote the two ordinates which bound one of the
bands ; then the area of that band is

2 —gu . A x, nearly;

and consequently, adding together the approximate areas of all the
bands,—denoting the extreme ordinates as follows,—

B D~ u;

and the intermediate ordinates by u;, we find for the approximate
value of the integral—

f:ud:;::(%‘.-{—%.-l-}u‘ A §0 e (1)
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DA Second A pproximation.
Divide the area A CD B, as in fig. 26, into an even number of

» bands, by parallel ordinates, whose
uniform distance apart is-A . The
ordinates are marked alternately by
plain lines and by dotted lines, so as
to arrange the bands in pairs. Con-

i ! sidering any one pair of bands, such
BAA R G B X as EF H G, and assuming that the
Fig. 26. curve F H is nearly a parabola, it

" appears, from the properties of that curve, that the area of that

pair of bands is

(u’+4u"+u”’) Az
3

, nearly ;

in which « and «” denote the plain ordinates E F and G H, and
o' the intermediate dotted ordinate ; and consequently, adding
together the approximate areas of all the pairs of bands, we find,
for the approximate value of the integral—

fbudm=(u,, + w, + 2 2 u; (plain)

+isy (dotted)) 2B v @)

It is obvious, that if the values of the ordinates % required in these
computations can be calculated, it is unnecessary to draw the figure
to a scale, although a sketch of it maybe useful to assist the memory.

‘When the symbol of integration is repeated, so as to make a

double integral, such as

f f u-dxdy,

or a triple integral, such as

fffu-dwdydz,

it is to be understood as follows :—

ot v=fu'dw

be the value of this single integral for a given value of . Con-
struct a curve whose absciss® are the various values of ¥ within the
prescribed limits, and its ordinates the corresponding values of v.
Then the area of that curve is denoted by

[oray=[[u-dzay
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Next,let t=fv.dy

be the value of this double integral for a given value of 2. Con-
struct a curve whose absciss® are the various values of z within the
prescribed limits, and its ordinates the corresponding values of ¢
Then the area of that curve is denoted by

ft.dz:ffv'dydz:fffu'dacdydz;

and so on for any number of successive integrations.

82. Centre of Gravity found by Projection-—:According to the geo-
metrical properties of parallel projections, as stated in Chap. IV.,
Article 62, a parallel projection of a pair of volumes having a given
ratio is a pair of volumes having the same ratio ; and hence, if a
body of any figure be divided by a system of plane or other sur-
faces into parts or molecules, either equal, or bearing any given
system of proportions to each other, and if a second body, whose
figure is a parallel projection of that of the first body, be divided
in the same manner by a system of plane or other surfaces which
are the corresponding projections of the first system of plane or
other surfaces, the parts or molecules of the second body will bear
to each other the same system of ratios, of equality or otherwise,
which the parts of the first body do.

Also, the centres of gravity of the parts of the second body will
be the parallel projections of the centres of gravity of the parts of
the first body.

And hence it follows (according to Article 64), that if the figures
of two bodies are parallel projections of each other, the centres of
gravity of these two bodies are corresponding points in these parallel
projections.

To express this symbolically,—as in Article 61, let , 7, 2, be the
co-ordinates, rectangular or oblique, of any point in the figure of
the first body ; «, ¥/, 2/, those of the corresponding point in the
second body ; x,, ¥,, 2, the co-ordinates of the centre of gravity of
the first body; «, ¥/, #, those of the centre of gravity of the
second body ; then

a o y 7 2
z

e —" > = —

£ x %o R

This theorem facilitates much the finding of the centres of gravity
of {igures which are parallel projections of more simple gr more sym-
metrical figures.

For example:—it appears, from symmetry, as in Art, 72, that
the centre of gravity of an equilateral triangular prism is at the
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point of intersection of the lines joining the three angles of the
middle section of the prism with the middle points of the opposite
sides of that section. But all triangular prisms are parallel pro-
jections of each other ; hence the above described point of inter-
section is the centre of gravity of any triangular prism.

Also, as in Art. 72, the centre of gravity of a regular tetraedron
is at the point of intersection of the planes joining each of the
edges with the middle point of the opposite edge. But all tetrae-
drons are parallel projections of each other ; hence that point of
intersection is the centre of gravity in any tetraedron.

As a third example, let it be supposed that a formula is known
(which will be given in the sequel) for finding the centre of gravity
of a sector of a circular disc, and
let it be required to find the centre
of gravity of a sector of an elliptic
dise. In fig. 27, let A B A B be
the ellipse, AOA = 2 g, and,
B OB =2 b, itsaxes,and C'O D’
the sector whose centre of gravity
isrequired. One of the parallel pro-
jections of the ellipse is a circle,
ABAB,whose radius is the semi-axis
major & The ellipse and the circle
being both referred to rectangular
co-ordinates, with their centre as

Fig. 27. origin, z and % denoting the co-
ordinates parallel to O A and O B respectively of a point in the
circle, and 2/ and 3/ those of the corresponding point in the ellipse,
those co-ordinates are thus related :—

£t y b
i y a
Through ¢/ and D’ respectively draw E ¢’ C and F D'D, parallel
to O B, and cutting the circle in C and D respectively; the cir-
cular sector C O D is the parallel projection of the elliptic sector
COD. Let G be the centre of gravity of the sector of the circular
disc, its co-ordinates being :

OH =0, HG =y

Then the co-ordinates of the centre of gravity G/ of the sector of
the elliptic disc are

. OH =a!o= xo;
—_G] =?/a =£__y_a'

a
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Further examples of the results of this processwill be found in the
next Article.

83. Examples of Centres of Gravity.—The following examples
consist of formulee for the weight, the moment with respect to some
specified axis, and the position of the centre of gravity, of homo-
geneous bodies of those forms which most commonly occur in
practice. In each case, as in the formulée of the preceding Articles,
w denotes the specific gravity of the body, W, its weight, and =,, &e.,
the co-ordinates of its centre of gravity, which in the diagrams
is marked G, the origin of co-ordinates being marked O.

A.—DPrisMs AND CYLINDERS WITH PARALLEL BASES.

The word cylinder is here to be taken in its most general meaning,
as comprehending all solids traced by the motion of a plane curvi-
linear figure parallel to itself.

The examples here given apply, of course, to flat plates of uni-
form thickness.

In the formule for weights and moments, the length or thickness
is supposed to be wunity.

The centre of gravity, in each case, is at the middle of the length
(or thickness); and the formule give its situation in the plane
figure which represents the cross-section of the prism or cylinder,
and which is specified at the commencement of each example.

I. Triangle. (Fig. 28) O, any angle. Bisect 0

-/ 4 =02140%¢
T ey /

W=w-0D -BC- mAODC.\‘/'

4 ] 2 ¢
II. Polygon. Divide it into triangles; find =

the centre of gravity of each; then find their Tig. 28.

common. centre of gravﬂ:y as in Art. 75, g
- IIL Trapezoid, z. 29.) b ”"s’{y % = §

ABJCE %™ £o° ~1259 £4 | s

Createst breadth, A B — B, Af =854 N

Least - OE—b °*%= X Le S

Bisect AB in O, CEmD“Mt /g/!. \g

join ODo@ﬁi -émg {)=
oG 0'_(‘” 1“B_3 . .
e &R
! 3BYT 4,9 1oy} CTHig W=flr= 0RO,
W=w-0D- L ‘sin =~ ODE,
YL —du<tle-4) B4 8% 1 AE G Lo
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o2/ IV. Trapexoid. (Second solution.) (Fig. 30.)
O, point where inclined sides meet. Let OF
=z, OD ==z, 0 G =

_ 2 #A-—a
! "= g
2 —ag

(cotan —O0AB + cotan = OBA).

z
(/70(6,/-5,’4 Fxtr 30 Bk
~ PAB = A ; s o — o3

)4, W = w "5 sin = OFB.

Sy 67@1,»' Ra

54

" rnnel o 1 :

(cotan4 0AB+cotan4 OBA).

tert V. _7( 2
T Y "' Y. Parabolic Half - Segment.
=T e, , / (OA B, fig. 31) O, vertex of
diameter O X; OA = a,; A B
=Y ordinate || tangent OCY.
3
A &y = ? L1e
& _ 3
o= 8 Y
2 3 i
Fig, 81, =—3—w'w,y1'sm4X0Y.
79 VYL Parabolic Spandril. (0BG, fig. 381.) G, centre of gravity,

3 3
Xy =— To—.z‘,,' y.,:—z-yl.

il

=—§-w RN *sin ~ XO0Y.

VII. Circular Sector. (O AC, fig. 32.) Let O X bisect the
angleAOC OYLOX.

X

3 Radius 0 A =r
c B A AC
Half-arc, to radius unity, 5——= = o.
\ £ ? ’2A0
2 sind 0.
o ¥ Rt g e B

Fig. 32. W=wrd
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VIII. Circular Half-Segment. (A BX, fig. 32.)
B=3"§ Tsindcoss

4 sin2——; — sin’® ¢ cos ¢

Yo=r" 3 (¢ — cos dsin g)
W=%wr’ (8 — cos ¢ sin §).

IX. Circular Spandril. (A DX, fig. 32.)
£ sin® 4
=g, 2sin d —sin dcos d — ¢

%

é
3 sin® 4 — 2 sin® dcos ¢ -4si.n’—2—

o - - 5
2sin d — sin dcos 4 — ¢

o) =

Yo—

E 1. A
W=uwus® - (sin d — g SiR 6 cos § — 2).
X. Sector of Ring. (ACTE, fig. 32.) OA =r; OE=1"
B2 o2 ~#% sind
e S e
%=0.
W=uw (-4

X1. Elliptic Sector, Half-Segment, or Spandril. Centre of gravity
to be found by projection from that of corresponding circular
figure, as in Article 82.

B.—WEDGES.

A Wedge is a solid bounded by two planes which meet in an
edge, and by a cylindrical ‘or prismatic surface (cylindrical, as
before, being used in the most general sense).

XIL General Formule for Wedges. (Fig. 33.) All wedges may
be divided into parts such as the figure here represented. O AY,
OXY, planes meeting in the edge OY; AXY, cylindrical (or pris-
matic) surface perpendicular to the
plane OXY; OXA, plane triangle 7 A
perpendicular to the edge OY; 0Z,

axis perpendicular to XOY. Let 0X o ’
=2 XA:zl. Thenz:ﬁ; ' x
X v

2
W=w‘?lf 2y da Fig. 38,



66 PRINCIPLES OF STATICS.

fm"g/'da:
®T [ay s
e fxy*'(lx
!/0—2—‘—‘—-/-%3[.(;”3
%y = '-;”:‘: (This last equation denoting

that G is in the plane which traverses O Y and bisects A X.)
In a symmetrical wedge, if O be taken at the middle of the edge,
o= 0. Such is the case in the following examples, in each of
which, length of edge = 2 y,.
51.2 XIIL Rectangulor Wedge. (== Triangular Prism.) (Fig. 34.)
Y=
We=w" "2y 2

Z

o

2
X _—
Fig. 34. -
XIV. Triangular Wedge. (= Triangular Pyramid.)
g
P y=v(1-3
4 i
: 1
> W= 3 W X%
2 x
Fig. 35. Ty = ]_'_ 2
. NET=— 2 10

XV. Semicircular Wedge. (Fig. 36.)
i Radius 0X =0Y =1

y= Jr*—a.
2 2
o W=-3-w'r’z1.
X
¥ ; Sz
wo= 16 7

(7 = 3 + 1416 nearly).
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XVI. Annular, or Hollow Semicircular Wedge. (Fig. 37.)

External radius, 7; internal, L ’ z
W:‘g@b'(ﬁ—r’s)f. o *
3z rt—ygt -

Fig. 87.
C.—CoxEs AND PYRAMIDS.

Let O denote the apex of the cone or pyramid, taken as the
origin, and X the centre of gravity of a supposed prism whose
middle section coincides with the base of the cone, or pyramid.
The centre of gravity will lie in the axis OX.

Denote the area of the base by A, and the angle which it makes
with the axis by é.

XVIL Complete Cone or Pyramid. Let the height 0X = h;

_3: h.
4

Xy =
1 d
W = gw'Ahmno.

XVIIL ZTruncated Cone or Pyramid. Height of portion trun-
cated = ¥.

W = —-wAlz.'(l = Es—)sin o

o
D.—PorTIONS OF A SPHERE

XIX. Zone or Ring of & Spherical Shell, bounded by two conical
surfaces having their common apex
at the centre O of the sphere (fig. 38).

0X, axis of cones and zone.

7, external radius

'r;, internal radius } of shell.
== XOA = ,half-angle of less
—=X0B=_48, 5 greater S
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3 ot — 2" cosa + cosB,
T P 2

W=27-:-3w(7,3_,,.va) ; (cosp—cosoc)-

XX. Sector of a Hemispherical Shell. (CX D, fig. 39.) OY
bisects angle DOC; % DOC=u

B 3
Xy = '8—‘ $

25 — %

s 3z 7 —7* sindg

WEIE - a

N 20 _ o),

W=‘—3‘

84. Meterogeneous Body.—If a body consists of parts of definite
figure and extent, whose specific gravities are different, although
each individual part is homogeneous, the centres of gravity of the
parts are to be found as in Article 74 and the subsequent Articles,
and the common centre of gravity of the whole as in Article 73.

85. Centre of Gravity found Experimeutally.——-The centre of
gravity of a body of moderate size may be found approximately by
experiment, by hanging it up successively by a single cord in two
different positions, and finding the single point in the body which
in both positions is intersected by the axis of the cord. For the
resistance of the cord is equivalent sensibly to a single force acting
along its axis ; and as that force balances the weight of the body
when hung by the cord, its line of action must, in all positions of
the body, traverse the centre of gravity of the body.

SecTION 2.—Of Stress, and its Resultunis and Centres.

86. Stress, its Nature and Intensity—The word STRESS has been
adopted as a general term to comprehend various forces which are
exerted between contiguous bodies, or parts of "bodies, and which
are distributed over the surface of contact of the masses between
which they act.

The INTENSITY of a stress is its amount in units of force, divided
by the extent of the surfacc over which it acts, in units of area.
The French and British units of intensity of stress are compared
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in a table annexed to this volume. - The following table shows a
comparison between different British units of intensity of stress :—
Pounds on the  Pounds on the
square foot. square inch.
One pound on the square inch,....cecceeeene
One pound on the square foot,...ceevuveee.s 1 iz
One mnch of mereury (that is, weight of a
column of mercury at 32° Falhr., one
inch high ) ema e aR £ 5. s e e eeveoses 7073 04712
One foot of water (at 39°'4 Fahr.),....... 62425 04835
One Inch of Water,.ee.vescereicrannensersenaes 52021 0036125
One atmosphere, of 29922 inches of
TNETCHBY, RRSR e oo - Lehtad R A A Do 21164 14-7

87. Classes of Stress.—Stress may be classed as follows :—

L. Thrust, or Pressure, is the force which acts between two con-
tiguous bodies, or parts of a body, when each pushes the other from
itself, and which tends to compress or shorten each body on which
it acts, in the direction of its action. It is the kind of force which
is exerted by a fluid tending to expand, against the bodies which
surround it. ;

Thrust may be either normai or oblique, relative to the surface
at which it acts.

II. Pull, or Tension, is the force which acts between two con-
tiguous bodies, or parts of a body, when each draws the other
towards itself, and which tends to lengthen each body on which it
acts, in the direction of its action,

Pull, like thrust, may be either normal or oblique, relatively to
the surface at which it acts.

II1. Shear, or Tangential Stress, is the force which acts between
two contiguous bodies or parts of a body, when each draws the other
sideways, in a direction parallel to their surface of contact, and
which tends to distort each body on which it acts.

In expressing a Thrust and a Pull in parallel directions algebrai-
cally, if one is treated as positive, the other must be treated as
negative. The choice of the positive or negative sign for either is
a matter of convenience. In treating of the general theory of
stress, the more usual system is to call a pull positive, and a thrusé
negative : thus, let p denote the intensity of a stress, and » a
certain number of pounds per square foot ; p = n will denote a
pull, and p = — n a thrust of the same intensity, But in treating
of certain special applications of the theory, to cases in which thrust.
is the only or the predominant stress, it becomes more convenient.
to reverse this system, calling thrust positive, and pull negative.

The word “ Pressure,” although, strictly speaking, equivalent to
“ thrust,” is sometimes applied to stress in general; and when this
is the case, it is to be understood that thrust is treated as positive.
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7~ 88. Resultant of Stress: fits Magnimde.—If to a plane surface of
any figure, whose arca is S, there be applied a stress, either normal,
oblique, or tangential, and parallel in direction at all points of the
surface (according to the restriction stated in Art. 67), then if the
intensity of the stress be uniform over all the surface, and denoted

by p, the amount or magnitude of its resultant will be
P=p8Biiiccrrrirecccussscrooensees (1.)

If the intensity of the stress is not uniform, that amount is to be
found by integration. For example, in
X fig. 40, let A A A be the plane surface, and

| - let it be referred to rectangular axes of
=N = co-ordinates in its own plane, OX, OY,
Conceive that plane to be divided into

4 small rectangles by a network of lines
parallel to O X and O Y respectively, and

4 let & 2, 2 y, be the dimensions of any one
Fig, 46. of these rectangles, such as that marked a

in the figure. Conceive a figure approximating to that of the given
planesurfacetobe composed of several of these smallrectangles, so that

B=2A28y 0600y, cveeueneennnnnsee oo 2.)

let p be the intensity of the stress at the centre of any particular
rectangle, so that the stress on that rectangle is

p Az ay nearly.

Then the amount of the resultant stress is given approximately by
the equation

P==zpacoynearly....ocevrsencuen... 3.)

Then passing, as in previous examples, to the integrals, or limits
towards which the sums in the equations 2 and 3 approach as the
minuteness of the subdivision into rectangles is indefinitely in-
creased, we find, for the exact equations,

S=ffdwdy;

The mean intensity of the stress is given by the following equation ;—

L oPog ffpclacdy
n=F= W tesevassesnssavens(DL)
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A convenient mode of representing to the mind the foregoing
process is as follows :—In fig. 41, let A A be the given plane
surface; O X, OY, the two axes of co-ordinates

2
in its plane; O Z, a third axis perpendicular to A
that plane. Conceive a solid to exist, bounded Ne
at one end by the given plane surface A A, =
laterally by a cylindrical or prismatic surface /4 o
—=or

generated by the motion of a straight line par- /S22
allel to O Z round the outline of A A, and at y B

the other end by a surface B B, of such a figure, Bk

that its ordinate 2 at any point shall be proportional to the intensity
of the stress at the point of the surface A A from which that
ordinate proceeds, as shown by the equation

P! ,
2= Lo ssndsnn{B)

The vol.ume of this ideal solid will be
V=ffz'd:z:dy........................(7.)

So that if it be conceived to consist of a material whose specific
gravity is w, the amount of the stress will be equal to the weight
of the solid, that is to say,

IR 2oV T g e b0 8.)

If the stress be of opposite signs at different points of the plane
surface A A, the surface B B and the solid which it terminates
will be partly at one side of A A and
partly at the opposite side, as in fig. 42;
and in this case, the two parts into
which the solid AB A B is divided by
.the plane X OY, are to be regarded as
having opposite signs, and V is to be
held to represent the difference of their
volumes. Fig. 42.

The mean stress of equation 5 is evidently

Do == W geersernaoraosesrase o B ),

in which 2, is the height of a parallel-ended prism or cylinder -
standing on the base A A A, and of volume equal to the solid
ABAB. -

89. The Centre of Stress, or of Pressure, in any surface, is the
point traversed by the resultant of the whole stress, or in other
words, the Centre of Parallel Forces for the whole stress. From the
principles already proved in Chap. IL., Section 4, it follows, that
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the position of this point does nof depend upon the direction of the
stress, nor upon its absolute magnitude ; but solely on the form of
the surface at which the stress acts, and on the proportions between
the intensities of the stress at different points.

As in Article 88, conceive a figure approximating to that of the
given plane surface A A A (fig. 40), to be composed of several small
rectangles ; let « 2 denote the angles which the direction of the stress
makes with O X, OY respectively. Then the moments, relative to
the co-ordinate planes, ZO X, ZOY, of the components parallel
to those planes of the stress on Az Ay, are given by the approxi-
mate equations.

Moment relatively to ZOX, ypazay Siﬁﬁ i
5 3 ZOY,-zpaxay sina g

Summing all such moments, and passing to the integral or limit of
the sum, as in former examples, we find the following expressions,
in which @, and 7, denote the co-ordinates of the centre of stress ;

yoP'sinﬁ=sinﬁffg/p'dacdy
2P sine=sine [ [ ap-dady

Consequently the co-ordinates of the centre of stress are

[[er-dedy Yay 1)y

e R e
- L 2

poem Y2 208y
IR TN

which are evidently the same with the co-ordinates, parallel to
OX and O, of the centre of yrawity of the ideal solid of fig. 41,
whose ordinates z are proportional to the intensity of the pressure
at the points on which they stand.

‘When the intensity of the stress is positive and negative at
different points of the surface A A A, cases occur in which the
positive and negative parts of the stress balance each other, so that
the total stress is nothing, that is to say,

ffpdxd:y:O.

4 !
In such cases, the resultant of the stress (if any) is a couple, and
there is no centre of stress. This case will be further considered
in the sequel.

et

Xy =
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90. Centre of Uniform Swess.—If the intensity of the stress be
uniform, the factor p in equation 2 of Axrticle 89 becomes constant,
and may be removed from both numerator and denominator of the
expressions for , and %, which then become simply the co-
ordinates of the centre of gravity of a flat plate of the figure A A A.

This also appears from the consideration, that the surface BB

" in fig, 41 becomes a plane parallel to A A, and the solid ABAB,

a parallel-ended prism or cylinder.

91. DIoment of Uniformly Varying Sn'ess.——By an un@'fbrmlg/
varying stress is understood a stress whose intensity, at a given
point of the surface to which it is applied, is proportional to the
distance of that point from a given straight line. For example, let
the given straight line be taken as the axis OY ; then the following
equation ‘ i

@ being a constant, represents the law of variation of the intensity
of an uniformly varying stress.
The amount of an uniformly varying stress is given by the equa-

tion
P=ffp'dmdy=affw'dwdy ........... 2.)

which, if the axis OY traverses the centre of gravity of a plate of
the figure of the surface of action A A A, becomes equal to nothing,
the positive and negative values of p balancing each other. In
this case, OY is called a NEUTRAL AXIS of the surface A A A.

In fig. 43, let A A A represent the plane surface of action of a
stress; let O be its centre of gravity (that is, the centre of gravity
of a flat plate of which A A A
is the figure); ~Y OY the ® =
neutral axis of the stress

B
applied ; — X OX perpendi- o

cular to — YOV, and in the - ~""0 : /A
plane of AAA; —ZOZ 15 |l —# x

perpendicular to that plane. e a2
Conceive a plane BB inclined 2Y
to AAA to traverse the <
neutral axis, and to form, =
with the plane A A A, a pair Fig. 48.

of wedges bounded by a v
cylindrical or prismatic surface parallel to —Z O Z. The ordinate
2, dl:awn i"rom any point of A AA to BB, will be proportional to
the intensity of the stress at that point of A A A, and will indicate
by its upward or downward direction whether that stress is positive
or negative ; and the nullity of the total stress will be indicated by




74 PRINCIPLES OF STATICS.

the equality of the positive wedge above A A A, and the negative
wedge below A AA. The resultant of the whole stress is a couple,
whose moment, and the position of its axis, are found in the
following manner, by the application of the process of Chap. IIL,
Sect. 2, Article 60.

Let «, B, v, be the angles which the direction of the stress makes
with OX, OY, OZ, respectively. Let AzAy denote, as before,
the area of a small rectangular portion of the surface, x, 7, the co-
ordinates of its centre (for which z=0), and p=ax, the intensity
of the stress on it, so that

AP=pazay=axzazay

is the force acting on this rectangle. &

The moments of this force relatively to the three axes of co-ordi-
nates, are found to be as follows, by making the proper substitutions
in equation 2 of Article 60 :— .

round O X ; AP -y cos y;
w OY; —aP-zcosy;
» OZj; AP (xcosp—ycose)

Summing and integrating those moments, the following are found
to be the total moments:—

round OX; M,=a,'cos7ffwy'dwdy
o OY;M2=——wcos'/ff 2 daxdy 3)

s OZ;Mz=a {cosﬁffm“"dwdy—cosuffwy’dwdy}
For the sake of brevity, let ’ )

ffﬁ'dwdy:I;ffmy'd:t:dy:K; ...... (3a.)

then, as in equation 7 of Article 60, we find, for the moment of
the resultant couple,
: M= /(M + M+ M
=a" /{({I*+ K% cos?y + I* - cos’ 8 + K* - cos® »
—2TK ‘cosa cosh.}
=a /(I* sin? e+ K* - sin® g— 2 I K * cos @ cos £);...(4)

and for the angles 2, #, », made by the axis of that couple with the
axes of co-ordinates, we find the angles whose cosines dre as follows:—

M M.
cosm:ﬁ; cosy:T\I—’; cosv=h—E ®.)
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The following equation is easily verified :—
€08 & COS A + €08 B oS g + €08 ¥ cos » = O........ «(54).

This indicates what is of itself obvious; that the axis of the resul-
tant couple M is perpendicular to the direction of the stress.

The following form is often the most convenient for the constant
a. Let p, be the intensity of the stress at some fixed distance, =,
from the neutral axis; then

P
L LT seceas(6.)

T 92. PIoment of Bending Siress—[f the uniformly varying stress
be normal to the surface at which it acts ; that is to say in symbols,
L cose=0; cosB=0; cosy=1;ceciuiiiunens (L)
then it is evident that ’

== 0icos s= 0, e (2)
or in words, that the axis of the resultant couple is in the plane of
the surface AAA. Such a stress as this is called a bending stress,
for reasons which will be explained in treating of the strength of
materials. The equations of Article 91, when apphed to tlus case,
become as follows:—

M,_.a.K My=—al;-
| M=a @ K);
COS A =sin p =
JI*-LK”
: ) BT (3.)
cos pp=sinrA= —1

-
J

K

>

K
. ta; = ——
n e 1

If the figure AAA is symmetrical on either side of the axis
OX, then for every point at which y has a given positive value,
lthere is & corresponding point for which ¥ has a negative value of
lequal amount ; so that for such a figure

K=ffa:y'dwdy=0,

ind the same equation may be fulfilled also for certain unsymme-
rrical figures. In this case we have
M1=0; M= M2=—aI; © =0;...............(4.)

;o that the axis of the couple coincides with the neutral axis,
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93. Moment of Twisting Stress.—If the stress be tangential, its
tendency is obviously to twist the surface A.A A about the axis
OZ. 1In this case we have

cosy=0; cose=sin3; cos f=sine;
M=M;=a (Isin —Kcos «); s (1)
cosA=0; cosg=0; cosv = 1.

In the cases referred to in Article 92, for which K =0, we find

WL == (O B R IRARRR S B, ¥ AP o €25

so that in these cases it is only the component of the stress parallel
to the neutral axis which produces the twisting couple.

94. Centre of Uniformly Varying Stress— When the amount of
an uniformly varying stress has magnitude, that stress may be con-
sidered as made up of two parts, viz. :—

Iirst, an uniform stress, whose intensity is the mean intensity of
the entire stress, and whose centre is the centre of figure, O, of
the surface of action. As in Article 88, equation 5, this mean
intensity may be represented by

P total stress
Po= g = (L)

area
Secondly, an uniformly-varying stress, whose neutral axis tra-
verses O, whose amount is = 0, and whose intensity, /, at a given
point, is the deviation of the intensity at that point from the mean;
s0 that the intensity of the entire stress is given by the equation

P=po+P =P+ AT evrrneen. eee(2)

Let M be the moment of this second part of the stress; its effect
as has been already shown in Article 60, case 2, is to shift the
resultant P parallel to itself through a distance

M
L& 2R 1. (3.)

to the opposite side to that whose name designates the tendency o
the couple M; and the direction of the line L is perpendicular a
once to that of the stress, and to that of the axis of the couple M.
The co-ordinates relatively to the point O of the centre of stres
as thus shifted, being the point where the line of action of th
shifted resultant cuts the plane of A A A, are most easily found b;
adapting the equation 2 of Art. 89 to the present case, as follows:—-
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 perpendicular zp dxd a a2 dxda al
to the }%:f/ PP 37l= ‘[‘[ J—

“neutral axis P e
|

along the } ffyvp"clwdy afjxy'dwdy aK
Yo = P ==

(£)

T ST
The angle ¢ which the line joining O and the centre of stress

makes with the neutral axis OY, is that whose cotangent is

% X

oy ol

This line will be called the axis conjugate to the neutral axis
' —YOY. When K = 0, it is perpendicular to the neutral axis.

95. Moments of Enertin of a Surface—The integra,l I= f 22

neutral axis

*dxdy is sometimes called the moment of inertia of the surface
A AA relatively to the neutral axis — YOY. This is a term
adopted from the science of Dynamics for reasons which will after-
wards appear. The present Article is intended to point out certain
relations which exist amongst the moments of inertia of a plane
surface of a given figure relatively to different neutral axes; a
knowledge of which relations is useful in the determination of the
oment of a bending or twisting stress.

Let A A in fig. 44 represent a plane surface of any figure, O its
centre of gravity, Y OY, X 0X, a pair of rectangular axes erossing
Ieach other at O, in any position.

| Taking YOY as a neutral axis, let
the moment of inertia relatively toithe

I=ffw"d.xd«; a

et the moment of inertia re-
ativelyto X O X as a neutral
hxis be v
J =ffy2 ‘dady;
rnd let
K=ffw3/'dwd3/- Fig. 44.

J,

Now let Y'OY', X’OX, be a new pair of rectangular axes, in
‘ny position making the angle

YOY = X0X' =¢
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with the original pair of axes; and let
Il___].fw!e.dx'dy‘; ]‘
T = [[yrdddys oo (2
K = ffw’y"dw’dy’.

The following relations exist between the original co-ordinates,
x, y, of a given point, and the new co-ordinates #, ¥, of the same

point; :
& = x cos £ — y sin 8;
y = sin g + y cos &;
a?+ Yt =at+ o~

(This last quantity, which is the square of the distance of the
given point from O, is what is called an Zsotropic Function of the
co-ordinates ; being of equal magnitude in whatsoever position the
rectangular co-ordinates are placed.)

From the equations (3), the following relations are easily deduced
between the original integrals I, J, K, and the new integrals
r,J,K:—

T =T-cos?B + J 'sin*8— 2K - cos 8 sin 8;
J =TI-sin’f+J-cos’@ + 2K *cos gsing; »...(4)
K' = (I —J)cos B sinp + K (cos’8 — sin?B.)

Also, the following functions of those integrals are found to T
isotropic;

I+J=.1'+J'=ff(x2+y2)-dwdy ...... (5)
(called the polar moment of inertia); fe
I3 K=& i (6.)

Equation 5 may be thus expressed in words :—
TaeoreM 1. The sum of the moments of inertia of a surfu
relatively to a pair of rectangular meutral axes is isotropic.
Equations 5 and 6 in conjunction lead to the following const
quences. Because the sum I' + J’ is constant, I' must be
maximum and J’ & minimum for that position of the rectangule
axes which makes the difference I’ — J’a maximum. And becaus

@ —JTP=@ + I —4TJ,

T’ — J’ must be a maximum for that position of the axis whic
makes I’ J' a minimum. But by equation 6, I' 3’ — K"is consta
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for all positions of the axes; therefore when K’ = 0, I'J is a
minimum, I' — J’ a maximum, I’ a maximum, and J/ a minimum.

Hence follows, in the first place,

Turorem IL In every plame surfuce there is a pair of rect-
angular neutral axes for one of which the moment of inertia is °
greater, and for the other less, than for any other neutral awis.

These axes are called Principal Awes. Let I,, J,, be the maximum
and minimum moments of inertia relatively to them, and let 3, be
the angle which their position makes with the originally-assumed
axes; then because K, = 0, we have, from the third of the equa-

= __ 408 By sin g3y s -
taDQﬁI—W—I_J ............ (7.)

and because I, + J, =1 + J,and I, J, = IJ — K2 we have, by
the solution of a quadratic equation, / ;

154 T —Jy }
I, = 5 +/\/{_*4 + K25 ......

a%y (8)
- LBVALEL SEHEE

The position of the principal axes, and the values of L, J,, being
once known, the integrals I', J', K, for any pair of axes which make
the angle &’ with the principal axes, are given by the equations

‘=T cos* 8 + J, sin’ 8 \( ’
I'=T1sin’ B + Jyco @; ... o deaba ) .
K = (I, — J) cos # sin 8. |

L =J,thnT =J =1, and K' = 0, for all axes whatso-
ever; and the given figure may be said to have its moment of
inertia completely isotropic.

Next, as to Conjugate Azes. By equation 5, Article 94, we have
for the angle which the axis conjugate to OY makes with OY

cotan 4 —= 1]?—

For the principal axes, K — 0, cotan ¢ = 0, and ¢ is a right
angle; from which follows—

Turorex ITL. The principal axes are conjugate to each other:—
that is, if either of them be taken for neutral axis, the other will
be the conjugate axis,

Returning to equation 4 of the present Article, let us suppose,
that the axis conjugate to the originally assumed neutral axis YOY,
has been determined, and that its position is Y'O Y, so that

B8=4
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Let this conjugate axis be assumed as a new neutral axis. Then the
integrals T', J', K, belonging to it are determined by substituting
¢ for 8 in the equation 4; that is, by substituting for cos # and
sin B, the values of cos ¢ and sin 4 in terms of K and I, viz.:—

K : I
8 f=—=—"——; sinf = ————,
Seea JIEI K JT &
which substitution having been made, we find
P (S
e 10
o ) } ......... reoreenn(10)
SRR .

Now let it be required to find the angle ¢, which the new con-
Jugate axis makes with the new neutral axis Y'OY’. This angle
is given by the equation /

K K

2 _ e = — = — [}
cotan ¢ T I cotan 4,

whence
(e R S e AP Hrplaly)

or i words,

TreoreM IV. If the axis conjugate to a given neutral axis be
taken as a new neutral axis, the original neutral axis will be the new
conjugate axis.

The following mode of graphically representing the preceding
theorems and relations depends on well
/ known properties of the ellipse.

J X7

e | Ny In fig. 45, let O X, OY, perpendicular
to each other, represent the principal axes
of a surface. 'With the semi-axes,

, © Y, :O——}T,= ,\/Il }.”(12‘)

a
b D-Yr = JTk

describe an ellipse, so that the square of
each semi-axis shall represent the moment
Fig. 45. of inertia round the other.

Let the semidiameter OY’ be drawn in the direction of any
assumed neutral axis, and let = Y,0Y’ = . Draw OC, the
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semidiameter conjugate to OY’, so that the tangent CT shall be

parallel to OY’. Let OT = ¢ and let the normal OT = #n. Then

it is well known that (
7’ =a® *cos’ @ + b%sin? g5

and that St e ISE)

nt = (a*-—b") *cos & sin §; f

consequently, comparing this equation with the equation 9, we find,

T =nt;
K =ant¢;
K ¢ 2 e (14.)

eotan § = — — — — cotan Y’ O C;
I n .

so that the square of the nmormal OT represents the moment of
inertia for the neutral axis OY’, and the semidiameter OC con-
jugate to OY’ is also the conjugate axis of the neutral axis OY'.
and wvice versd.

In finding the moment of inertia of a surface of complex figure,
it may sometimes be desirable to divide it into parts, each of more
simple figure, find the moment of inertia of each, and add the
results together.

In a case of this kind, the neutral axis of the whole surface will
not necessarily traversa the centre of gravity of each of its parts,
and it becomes necessary to use formula for finding the moment of
inertia of a figure relatively to an axis not traversing its centre of

avity.

Let OY denote such an axis, « the distance of any point of the
given figure from it, and «, the distance of the centre of gravity of
the given figure from the axis O'Y. Through that centre of gravity
conceive an axis O"Y’ to be drawn parallel to CY ; the point which
is at the distance  from O Y, is at the distance

¥?=x—x
| from O"Y".
The required moment of inertia is

I=]fw2dacdy;

| but =+ 2 ;2 + 2%
therefore,

I=a8+2a, [ [ o dedy+ [ [ 2 dudy;

and because O'Y' traverses the centre of gravity of S,

[« dzay=o; -
G
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so that the middle term of the expression for I vanishes, leaving

or in words,— ;

TuroreM V: The moment of inertia of a surface relatively to an
axis not traversing its centre of gravity is greater than the moment of
inertia round @ parallel axis traversing its centre of gravity, by the
product of the area of the surfuce into the square of the distance between
those two ames.

The following is a table of the principal (or maxima and minima)
moments of inertia of surfaces-of-action of stress of those figures
which most commonly occur in practice :—

Maximum I, Minimum J,

Figure. (nentralaxis OY). (neutral axis O X).
I. RecranaLE.—Length along OX, I h&®
% ; breadth along O Y, b.......... 127 12
IT. § Side = & A
. SQUARE.—Side == Aeeerrerrrnne o i
IT1. Errrese.—Longer axis, A...... 1 = h%b =h b
Shorter axis, b...... ) 64 64
T 1 '
(N.B— L =90°4 nearly).
4 4
IV. Circre.—Diameter, A.............. 16771— %{{-
V. Hollow symmetrical figures; sub- i
tract I or J for inner figure, from
I or J for outer figure.
V1. Symmetrical assemblage of rec- Slsn 5ot
tangles; dimensions of any one 2 yo 2o

k|| z, b || y; distance of its centre f
from OY, 4y ; from OX, gorerr. | +3hb&5  +3hB3k

SecrioN 3.—Of Internal Stress, its Composition and Resolution.

96. Xnternal Stress in General.—If a body be conceived to be
divided into two parts by ar ideal plane traversing it in any
direction, the force exerted betwien those two parts at the plane of
division is an infernal stress. The finding of the resultant, and
of the centre of stress, for an internal stress, depend upon the
principles relating to stress in general, which have been explained
in the last section. The present section refers to a different class
of problems, viz, the relations between the different stresses
which can exist together in one body at one point.
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A body may be divided into two parts by a plane traversing a
given point, in an indefinite number of ways, by varying the angular
position of the plane; and the stress which acts between the two
parts may vary in direction, or intensity, or in both, as the position
of the plane varies. The object of the present section is to show
the laws of such variation ; and also the effect of applying different
stresses simultaneously to one body.

The investigations in this section relate strictly to stress of
uniform intensity ; but their results are made applicable to stress of
variable intensity to any required degree of accuracy, by sufficiently
contracting the space under consideration, so that the variations of
the stress within its limits shall not exceed the assigned limits of

deviation from uniformity. d .
J 97. Simple Stress and its Normal Intensity.—A simple stress is a
pull or a thrust. In the following investigations a pull will be
treated as positive, and a thrust as negative.

In fig. 46, let a prismatic solid body, or part of a
solid body, whose sides are parallel to the axis O X, l [ ' |
be kept in equilibrio by a pull applied in opposite "\ =
dirvections to its two ends, of uniform intensity, and

of the amount P. i \\vg o
Let an ideal plane A A, perpendicular to O X, “2“
be conceived to divide the body into two parts, and 1

let the area of that plane of section be S. That
each of these parts may be in equilibrio, it is
necessary that they should act upon each other, at
the plane of section A A, with a pull in the direction Fig. 46.
O X, of the amount P, and of the intensity

s
pl_ S 3

This, which is the intensity of the stress as distributed over a plane
normal to its direction, may be called its normal intensity.

98. Reduction of Simple Stress to an Oblique Plane.—Next, let
the plane of section be conceived to have the position BB, oblique
to OX; let ON be a line normal to BB, and OT a line at the
intersection of the planes BB an1 X ON. Let the obliquity of
the plane of section be denoted b, '

0= ~XON=~TOA.

The two parts into which B B divides the body must exert on
each other, as in the former case, a pull of the amount P, and in
the direction O X ; but the area over which that pull is distributed
is now
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S
area B B= ey
consequently, the intensity of the stress, as reduced to the oblique
plare of section, is
Pcos
b= S
99. Resolution of Oblique Stress inte Normal and Tangential
Components.—The oblique stress P on the plane of section BB may
be resolved by the principles of Articles 55, 57, into two compo-
nents, viz. :—

Normal component a-
long O N, ............
Tangential component s

IBnOROIRY .. 5L } Py

and the intensities of these components are,

=p,"cosé,

P cos ¢; :

Normal; p,=p,cos §=p_ cos®4; a
Tangential ; p, = p, sin § =p," cos sin 4 { *"*" )

Suppose another oblique plane of section to cut the body at right
angles to B B, so that its obliquity is

¢ = 90°—4;

and let the intensity of the stress on the new plane be denoted by
accented letters ; then

p’,,:p,'cosga’:p,'sinw;} @)
pl‘=pt; pn+p/n =pt; ............... .
80 that we obtain the following

THEOREM. On a pair of planes of section whose obliquities are
together equal to a right angle, the tangential components of a simple
stress are of equal intensity, and the intensities of the normal com-
ponents are together equal to the normal intensity of the stress.

100. Compound Stress is that internal condition of a body which
is made by the combined action of two or more simple stresses in
different directions. A compound stress is known when the direc-
tions and the intensities, relatively to given planes, of the simple
stresses composing it are known. The same compound stress may
be analyzed (as the ensuing Articles will show) into groups of simple
stresses, in different ways ; such groups of simple stresses are said
to be equivalent to each other. The problems of finding of a group
of stresses equivalent to another, and of determining the relations
which must exist between co-existing stresses, are solved by con-
sidering the conditions of equilibrium of some internal part of the
solid, of prismatic or pyramidal figure, bounded by ideal planes.

r
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101. Pair of Conjugate Stresses—THEOREM. [f tlie stress on a
given plane in a body be tn a given direction, the _stress on any
plane parallel to that direction must be in a direction parallel to
the first-mentioned plane. : -

In fig. 47, let YOY represent, in section, a given plane tra-
versing a body, and let the stress on N
that plane be in the direction X O X.

Consider the condition of a prismatic / /;
portion of the body represented in sec- A

tion by ABCD, bounded by a pa% :
of planes A B, D C, parallel to the give
plane, and a pair of planes A D, BC,
parallel to each other and to the given
direction X OX,. and having for its
axis a line in the plane Y O Y, cutting Fig. 47.

XO0X in O.

The equal resultant forces exerted by the other parts of the body
on the faces AB and D C of this prism are directly opposed, their
common line of action traversing the axis O ; and they are there-
fore independently balanced. Therefore the forces exerted by the
other parts of the body on the faces A D and BC of the prism
must be independently balanced, and have their resultants directly
opposed; which cannot be unless their direction is parallel to the
plane YOY. Therefore, &c.—Q. E. D.

A pair of stresses, each acting on a plane parallel to the direction of
the other, are said to be conjugate. In arigid body, it is evident that
their intensities are independent of each other, and that they may -
be of the same, or of opposite kinds:—a pair of pulls, a pair of
thrusts, or a pull and a thrust.

In those cases (of frequent occurrence in practice) in which the
planes of action of a pair of conjugate stresses are both perpendi-
cular to the plane which contains their two directions, their obli-
quity is the same, being the complement of the angle which they
make with each other.

102. Three Conjugate Stresses may act together in one body, the
direction of each being parallel to the line of intersection of the
planes of action of the other two; and in a rigid body, the kinds
and intensities of those stresses are independent of each other.
Thus, in fig. 47,if X OX and YOY represent the directions of
two stresses, each acting on a plane which traverses the direction
of the other, the intersection of those planes (which may make any
angle with X OX and YO Y), will give a third direction, being
that of a third stress of either kind and of any intensity, which
n;?ly act on the plane X OY, and wili be conjugate to each of the
other two,
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Three is the greatest number of a group of conjugate stresses; for
it is evidently impossible to introduce a fourth stress which shall be
conjugate at once to each of the other three.

The relations between the three angles which the directions of
three conjugate stresses make with each other, the three obliguities
of those stresses (being the angles which they make with the per-
pendiculars to their respective planes of action), and the three angles
which those perpendiculars make with each other, as found by the
ordinary rules of spherical trigonometry, are given by the following
formulee. !

GeNERAL Case. Let @, 9, 2, denote the directions of the three
conj/t\lgate stresses;

A

Y 2, 2 %, x y, their inclinations to each other;
u, v, w, the directions of the perpendiculars to their planes of
action, so that » -L plane ¥ z, v -L plane 2z, w - plane z y;
A A

vw, wu, v, the inclinations of those perpendiculars to each
other ;
QTN 2 B / SRl
ux, vy, wz, the vespective obliquities of the stresses.
Then those nine angles are related as follows :—

A8 A A A A
Let 1 — cos® y 2 — cos® & — cos® ¢y + 2 cos yz cos za €OS T Y
== (b il s SR (1)
Then
A A s
o A NAS A cosSzaCOSXY—COSYZ
sinow=—-7R —;cosvw= x ~ ]
sinzx sin 2y sin zx *sin x y
A A A
T JC 4 A cosxy-cosyz—coszy | 2)
8D WU = —7 ;s wu=— s (2
singy  sinyz sin z y *sin y 2
A A A
VA NAS A COS Y% COSZ & — COS LY
Smuv:———/\———'x;cosu’v= A A .
siny z-sinz ' sinyz°sinzax ]

A A A
COS UL = "/(i ; COsVY = “/(/)\ 3 cOS W2 = "/(/}\-(3)
sin y 2 sin z & sin @y

REestrIcTED CASE L. Suppose two of the stresses, for example,

those parallel to « and 7, to be perpendicular to each other, and
oblique to the third. Then

A A
C =1 - cos®y z - cos® 2 x;

cosxAy=0; sinwAg/=1; } 4)
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A
By N — cos Yz
gin v w = A5 COS VW = ——p;
sin 2 sin z %
A JC A >
, — oS 2%
sin wu = ) COB Wi =————35 seeennne (D)
sin y z sin y 2
A A
WA NAY Y A coSyz.COSRE,
smu'vz—-—/\—-.——/\-, COS'LL’U-—"—A‘.—A,
sinyz - sin 2% sinyz sinzz |
A c A C A
coS UL = “/ s CosvY = f//\ scoswz =,/C...(6)
sin y 2 : sin zx

Restricrep Case II.  Suppose one of the stresses (such as z)
to be perpendicular to the other two, which are oblique to each
other. Then

A A
cosyz=0; coszw=0;

sinyz_—_l; S]'_nza;_—_—]_; cosssese

C=sin’zy.

A A A
gin vw = 1; cos vw = 0; (or v w = 90°;
SN
sin wu = 1; cos wu:(l)\; (or wu=9(l)\°); niee(8D
gin % v = sin 3 e e i
A
(or, wv + =y = 180°).

A RN A ghe /) A
cosu® =sinxy; cosvy =sinxy; coswz = 1; ©.)
orux =vy = 90" —zy; wz =0;

results identical with those given at the end of Article 101.

Restricrep Case ITI. Al three stresses perpendicular to each
other. In this case the normals to the three planes of action are
perpendicular to each other, and coincide with the directions of
the stresses. :

103. Planes of Equal Shear, or Tangential Stress,— ] HEOREM. If
the stresses on a given pair of planes be tangential to those planes, and
parallel to a third plane which is perpendicular to the pair of planes,
those stresses must be of equal intensity.

Let the third plane be represented by the plane of the paper in
fig. 48, and let the pair of planes on which the stresses are tangen-
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tial, and parallel to the plane of the paper, be parallel respectively
to AB and AD. Consider the condition of a right prism of any
length, represented in section by ABCD, and

B bounded by a pair of parallel planes, AB, CD,

and a pair of parallel planes, AD, CB. Let p,
denote the intensity of the shear or tangential
: stress on AB, CD, and planes parallel to them,
> / and p’, the intensity of the shear, or tangential
Fio. 48 stress on AD, CB, and planes parallel to them.
e The forces exerted by the other parts of the body

on the pair of faces AB, CD, form a couple (right-handed in the

figure), of which the arm is the perpendicular distance E¥, between
A B and CD, and the moment,—

‘ p,~area AB - EF.
The forces exerted by the other parts of the body on. the pair o
faces A D, CB, form a couple (left-handed in the drawing), of which

the arm is the perpendicular distance GH between AD and CB,
and the moment

P area AD - GH.
The equilibrium of the prism requires that these opposite moments
shall be equal. But the products, area AB*EF, and area AD -

G H are equal, each of them being the volume of the prism; there-
fore the intensities of the tangential stresses

Pe=p"
are equal. —Q. E. D.

The above demonstration shows that a shear upon a given plane
cannot exist alone as a solitary or simple stress, but must be com-
bined with a shear of equal intensity on a different plane. The
tendency of the action of the pair of shearing stresses represented
in the figure on the prism A BCD is obviously to distort it, by
lengthening the diagonal DB, and shortening the diagonal A C, so
as to sharpen the angles D and B, and flatten the angles A and C.

104. Stress on Three Rectangular Plancs.—THEOREM. [f there be
oblique stress on three planes at right angles to each other, the tangential
components of the stress on any two of those planes in directions
parallel to the third plane must be of equal intensity.

Let yz, zx, xy, denote the three rectangular planes whose intersec-
tions are the rectangular axes of x, 77, and 2.  Consider the condition
of a rectangular portion of the body, having its three pairs of faces
parallel respectively to the three planes, and its centre at the point
of intersection of the three axes. Let ABCD (fig. 49), represent

the section of that rectangular solid by the plane of xy, the faces
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AB, CD being parallel to the plane 4z, and the faces AD, CB,

to the plane z «. Let the equal and parallel lines XR represent
the intensities of the forces exerted by the other parts of the body
on the pair of faces AB, CD; resolve each of

these forces into a component X N, parallel to

the plane z z, and a tangential component, XT,
parallel to the axis-of y; the resultants of the
components X N will act through the axis of z, and '
will produce no couple round that axis; the com- e

ponents X T will form a couple acting round that & 7Y
axis. In the same manner the intensities of the =5,
forces exerted on the faces AD, CB, being re- T2 %

presented by the equal and parallel lines, Y7,

are resolved into the components, Yz, whose resul-
tants act through the axis of z, and the compo- N

uents Yz, which form a couple acting round that e
axis, which, by the conditions of equilibrium of the rectangular
solid ABCD, must be equal and opposite to the former couple ;
and by reasoning similar to that of Article 103, it is shown that
the intensities of the tangential stresses constituting these couples,
XU ==RYrps

must be equal; and similar demonstrations apply to the other
planes and stresses.

To represent this symbolically :—let p, as before, denote the
intensity of a stress; and let small letters affixed below p be used,
the first small letter to denote the direction perpendicular to the

plane on which the stress acts, and the second to denote the direc-
tion of the stress itself:—for example, let p,, denote the intensity
of the stress on the plane normal to y (that is, the plane z), in the
direction of 2. Then resolving the stress on each of the three
rectangular planes into three rectangular components, we have the
following notation :—

N_ R

™

PraxE. DIRECTION.
-5 x Y 2
Y& eeen i -~ e e T2 O ]
BX e o L. TR Poe } intensities.
Ty, Sy T oo Ji |

Then, in virtue of the Theorems of Articles 101 and 102, we
have the normal stresses, p.., P,y P.., conjugate and independent ; and



90 PRINCIPLES OF STATICS.

in virtue of the theorem of this Anrticle, there are three pairs of
tangential stresses of equal intensity,

py' =pfy.’ p:::p.n; sz =.p!/1'
[The reader who, wishes to confine his attention to the more
_ simple class of problems may pass at once to Article 108, page 95.]
105. Tetraedron of Swess.— PROBLEM L. The intensities of three
_ conjugate stresses on three planes traversing a body being given, it is
required to find the direction and intensity of the stress on a fourth

plane, traversing the same body in any direction.

In fig. 50, let YO Z, ZOX, XOY, be the
™ three planes, on which act conjugate stresses in
the directions O X, OY, O Z, of the intensities
o B . Pe> Py P Draw a plane parallel to the fourth
| A < plane, cutting the three conjugate planes in the
Y 7 triangle A B C, s0 as to form with them the tri-
& angular pyramid or tetraedron O A B C. Then
0 ¢ ® z  must the stresses on the four triangular faces of

Fig. 50. that tetraedron balance each other; and the
total stress on A B C will be equal and opposite
to the resultant of the total stresseson OBC, OC A, and O A B,
On 0 X, 0, O Z, respectively take

OD = total stress on OBC = p, * area OBC,
O E = total stress on 0 C A = p, *area O C A,
O F = total stress on O A B = p- * area O A B.

Complete the parallelopiped ODEF R ; then will its diagonal

OR represent the direction and amount of the total stress on an
area of the fourth plane equal to that of ABC; and the intensity

] OR
sl oA . E. L
of that stress will be S Ty Q

Hence it appears, that if the stresses on three conjugate planes
in a body be given, the stress on any other plane may be deter-
mined ; from which it follows, Zhat every possible system of stresses
which can co-exist in a body, is capable of being resolved into, or ex-
pressed by means of, a system of three conjugale stresses.

ProereM I1.  The directions and intensities of the stresses on three
rectangular co-ordinate planes being given, it is required to find the
direction and intensity of the stress on o fourth plane in any posi-
tion.

Let the planes YO Z, ZO X, X 0, in fig. 50, represent the
rectangular co-ordinate planes, so that O X, OY, O Z, are now at
right angles to each other (instead of being, as in Problem L, in

g
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any directions). Reduce the three given stresses, as in Axrticle 104,
to rectangular components, with the notation already explained.

Let A B C, as in Problem I., be a triangle parallel to the fourth
plane, enclosing, with three triangles in the: co-ordinate planes, the
tetraedron O A B C. The total stress on A B C will be equal and
opposite to the resultant of all the rectangular components of the
total stresses on 0 BC, OC A, and O A B.

Therefore, on O X; OY, O Z, respectively, take

O_]—)=p,,'area OBC + p,,rarea OCA + p,, rarea O A B,

OE=p,, area OBC + p, ‘areca OCA + p,, -area O A B,

OF =p,, ~area OBC + p,, ‘area OCA + p,, -area O A B;
Complete the rectangle OD EF R ; then will its diagonal O R re-

present the direction and amount of the total stress on an area of
the fourth plane equal to A B C, and the intensity of that stress

will he LSl 1 Q. B 1.
area ABC DNTHL N
To express this algebraically, let 2 n, ¥ », 2 n, denote the angles
which a normal to the fourth plane makes with the three rectangu-

lar axes respectively ; a:Ar, yA T, é\ r, the angles which the direction
of the stress on that plane makes with the three rectangular axes
respectively; and p, the intensity of that stress. Then, it is well
known that A
area O BC = area ABC *cos zn,

A
area O C A —area A BC * cos yn,
area OAB:areaABC'coszAn;

80 that the rectangular components of the intensity p, are
A A A

Pre == Pue *COS TN + P, " COS YN + P, *COS 2N
A A A 1)
Py = Pey "COS TN + Py, "COSYMN + P, *COSZM [ ororees (L.

- A A A
Pus=P:s"COSTN + P, °COS YN + P,, "COSZN

The resultant intensity of the stress required is given by the

equation
I 7 R i 8 [ R cereeenaeenas 2)
and its direction by the equation
A P A By AR . T (3.

008 ATt A COR Y ; COSRr=
D 2

r r r
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Hence it appears, that if the rectangular components of the stress
on three rectangular planes in a body be given, the stress on any
fourth plane may be determined; from which it follows, That every
possible system of stresses which can co-ewist in a body, is capable of
being resolved into, or expressed by means of, the three normal stresses,
and the six pairs of tangential stresses, on three rectangular co-ordinate
planes.

106. Transformation of Siress.—For the direction of the normal
to the new plane of action, A B C, which direction is denoted by n
in Problem II. of Article 105, let there be successively assumed
the directions of three mew rectangular axes x, 1/, #, and let it be
required to express the rectangular components, p.., &c., of a
given compound stress relatively to those new axes, in terms of the
rectangular components, p,,, &e., of the same compound stress
relatively to the original rectangular axes, x, ¥, 2.

To solve this question, let n be taken to denote any one of the
three new axes. The three components, parallel to the original
axes, of the stress on the plane normal to n, are given by equation
1 of Axrticle 105. Each of these components being further resolved
into its components parallel to the new axes, and the nine com-
ponents so found collected into three sums of intensities parallel to
the new axes, the following results are obtained :—

A A A,

DPrs =Pz "COSTE + Ppy* COSY XL + P, ' COSZX ;
; A A A

Doy =Puz" COSTY + D,,°COSYY + P, coszy ;

A A A,
P’ =Ppo"COSTZ + p,,COSYZ + p,, COS27.

For n are now to be substituted successively, both in p, ., &c., and
in the values of p,,, &e., according to equation 1 of Article 105, the
symbols &, ¥, #; and thus are obtained finally the following
equations of transformation :—
NORMAL STRESSES.—
% 3 A 5 A A
Pes =Pacos’xd + p,, cos’ y& + p,, cos?z
A A A A A A
+ 2 p,cosyalcosz '+ 2 p,, cosza cos o - 2p,, coszal cosy & ;
1 A A A
0y =Puwcostxy +p, cosyy -+ p,, cos’z y
A A A A A A
+2p,cosyycoszy 4 2p,,coszy cosxy + 2 p,cosxycosyy;
A A A
Pits =Peg OS2+ p,, cos’y 2+ p,, cos’ 2z

A A, A A A A
+2p,,cosyd cosed +2p,, cosz2 cosxd +2p,, cosx 7 cosy ¥ ;
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TANGENTIAL STRESSES.—

A A A A, R
D) =P cOSTY COSLE 4 p,, cosyy cosy +p,, coszy cosz
A A A A A A A A
+ p,, (coszy’ cosyz’ + cos Yy coszz’) + p,.(cosxy coszz + coszy cosxz)
A A A A
+ p.,(cos yy cosa 2 + cosaxy cosyz);
A, A A A A A,
Py =P, COSxZ COSTX -+ P,, COS Y 2 COS Y &/ + P, cos 27 oS Z
. (3 B A e Maeri =
+ p,.(cosz? cosya’ + cosy coszx’) + p, (cosxz'coszx’ + cosz cosar)
A A A A
+ ., (cosy & cosx & 4 cosx 2 cosy &) ;
: A A A A, A A

Py =Pz COs2T cOSTY + P, co8yx’ COSY Y + p,,c082x coszY’

A A, A A N arie A, A

+ p,.(cosza’ cosyy - cosya’ coszy’) -+ p..(cosxx’ coszy + coszx cosxy)
A A, At o
+ pay (cosy 2/ cosx gy + cosx & cos y /).
The two systems of component stresses, p,,, &c., relative to the
axes z, ¥, %, and p,’¥, &c., relative to the axes «/, ¢/, #/, which con-
stitute the same compound stress, are said to be equivalent to each
other.

107. Principal Axes of Stress. — THEOREM. For every state of
stress in a body, there is a system of three planes perpendicular to each
other, on each of which the stress is wholly normal.

Referring to the equation 3 of Article 105, it is evident that the

condition, that the direction of stress on a plane shall coincide with
the normal to that plane, is expressed by the equations

A A A A
cosar = L COS L7 ; COSYT = e 2 cosy m;
(3 "-. pr
A A
COSZT == == == COSZ Tlerrracrnssee Bl ok )

r

Introducing these values into the equation 1 of Article 105, we
obtain the following :—

A A A
(Pes —pr) cOSZN + P cO8Y M + p,.c082n=0;
A A A
Py C0s2n + (p,, — p,)cOsSYyn+ p, coszn=0; r....(2)
A A A
Pz COS TN -y, €OS Y 1 +(p,, ~ p,) OS2 =0. J
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From these equations, by elimination of the three cosines, is
obtained the following cubic equation ;—

Let Ea D, == A .1
PP+ o o ¥ P Py — P —Pa =Py =B; ()

Pz Py Pos+ 2Dps Puw Pay — Pra P — Py Pz = Pus P1y=C35 |
Then pP—Api4+Bp, —C=0.cccveenrennn.n, (4.)

The solution of this cubic equation gives three roots, or values of
the stress p,, which satisfy the condition of being normal to their
planes of action; and according to the properties of conjugate
stresses stated in Article 102, the directions of those three normal
stresses must be perpendicular to each other.—Q. E. D.

The three conjugate normal stresses are called principal stresses,
and their directions, principal axes of stress.

If p, denote the intensity of one of those principal stresses, the
angles which it makes with the originally assumed axes of , ¥, z, are
found by means of the following equations, deduced by elimination
from the equation 2 of this Article :—

A A
cosxmn '{pupzy sk (pr '_'pu) pyt} =cosyn {p-rypw i+ (pr —Pyy) pu}

A
= 008 2§Dy Pux + (Dr = Pes) Pay} o ovveneenne (5)

Let p,, ps, ps, denote the three values of p,, which satisfy equation
4. Then, from the well known properties of equations, it follows
that the co-efficients of that equation have the following values :—

A=p+ptps; |
B=papstpsp1 01025 Feenvennnnnnnns (6.)
C=p, p: P
Hence it appears, that for a given state of stress, the three functions
denoted by A, B, C, in the equations 3 and 6, are the same for all
positions of the set of rectangular axes of x, ¥, 2, or are isofropic, in
the sense already explained in Article 95.
Let the principal axes of stress now be taken for axes of rectan-
lar co-ordinates, and denoted by x, ¥, z; and let it be required to
find the direction and the intensity p, of the stress on a plane whose
A

A A
normal makes the angles «n, yn, 2n, with those axes. For this
purpose the equations 1, 2, and 3, of Article 105, are to be modified
by making

p" =pl 3 pyy =Pz ¢ 27:: =P85 p&" =.pll =pﬁ¥ = 0'
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Thus we obtain
A A A A
PCOSTP =2 COSTN; P COSYP =Py COSYN;
"

A
P COS ZP = P3 COS & MNu..... Sl PR a7 (7))
A A A
p= ,j{pf‘cos"’mn +p§‘0052yn+p§'cosgzn} .(8)

The equations 7 are easily transformed into the following :—

A A A A A
COSZM COSTP  COSYN COSYP  COSTM COSZP ©.)
= H = — seelde

? 2 P I7E0a Ps
Which equations being squared and added, and the square root of
the sum extracted, give the following value for the reciprocal of the
intensity required :—

1 b A 5N A A

T A AR SRLIL) ) R (10.)

P v P p3

the well known equation of an ellipsoid, in which p,, p,, ps, denote

the three semi-axes, and p the semidiameter in any given direction,
The cosine of the obliquity of the stress p is given by the equation

A A A A A A A
COSTP == COS LM COS & P + COS Y N COS %/ P —I COS 2N COS 2 p

cos® wAp cos’ y,,}o cos® z/;9
=R
yo! il P2 * s

1 2 0 2 . 2 2 .
=E(plcos Z n+p; cos® y n+ py cos’ 2 n) s.......(11)

~ and this cosine, by being

positive ) indicates (a pull

nothing *> that the < a shear -
negative ) stress p is { a thrust

108. Stress Parallel to One Plane—In most practical questions

respecting the stress in structures, the directions of the stresses
chiefly to be considered are parallel to one plane, to which their

| planes of action are perpendicular, the remaining stress, if any,
| being a principal stress, and perpendicular to the plane to which the

others are parallel.

The problems concerning the relations amongst stresses parallel
to one plane, might be solved by considering them as particular
cases of the more general problems respecting stresses in any direc-
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tion, which have been treated of in Articles 105, 106, and 107 ;
but the complexity of the investigations and results in those
Articles, makes it preferable to demonstrate the principles relating
to stresses parallel to one plane,.independently.

ProsrEM 1. The infensities and directions of a pair of conjugate
stresses, parallel to a plane which i3 perpendicular to their planes of
action, being given, it is required to find the direction and intensity of
the stress on a fourth plane, perpendicular also to the first mentioned

lane. .

3 In fig, 51, let the plane of the paper represent the plane to which

x the stresses are parallel ; let O X and

O Y represent the directions of the pair

7 - ®  of conjugate stresses, whose intensities

are p, and p,; and let AB be the plane,

the stress on which is sought. Consider

the condition of a prism, 0 A. B, bounded

dTTBTE TR by the plane A B, and by planes parallel

Fig. 51. to OX and OY respectively. The force

exerted by the other parts of the body on the face O A of the
prism, will be proportional to

s ? Py OA;
on OY take OE to represent that force. The force exerted by the
other parts of the body on the face O B of the prism, will be pro-
portional to

p."OB;
on O X take OD to represent this force. The force exerted by the

other parts of the body on the face A B of the prism, must balance
the forces exerted on O A and A B ; therefore complete the paral-

lelogram OD R E ; its diagonal OR will represent the direction and
amount of the stress on A B, and the infensity of that stress will be

OR
: —AB
_J{pﬁ'()‘ﬁ'-}-p;'(ﬁz+2p,py'(ﬁ'O—A'c054XOY}

D

OB*+0A?-20B:0OAcos ~=XO0Y.

The parallelogram marked in the figure with the capital letters
R, E, corresponds to the case in which p, and p, are of the same
kind, both pulls, or both thrusts, in which case p, is of the same
kind also ; the parallelogram marked with the small letters, 7, e,
corresponds to the case in which p, and p, are of opposite kinds, one
being a pull and the other a, thrust ; in which case p, agrees in kind
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with that one of the given conjugate stresses whose direction falls
to the same side of A B with it. When Or is parallel to A B, p, is
a shear, or tangential stress.

4% ProBuEM 1L, The intensities and directions of the stresses on @
pair of planes perpendicular to each other and to a plane to which the
stresses are parallel, being given, it is required to find the intensity
and direction of the stress on a plane in any position perpendicular to
that plane to which the stresses are parallel. ‘

In fig. 52, let the plane of the paper represent
the plane to which the stresses are parallel, and
0X, OY, the pair of rectangular planes on
which the stresses are given. Let those stresses
be resolved, as in Article 99, into rectangular
normal and tangential components. Let p,, de-
note the intensity of the normal stress on the
plane OY, wkich stress is parallel to O X ; let
2yy denote the intensity of the normal stress on o]
the plane O X, which stress is parallel to O Y. ralay

In virtue of the Theorem of Article 103, the T 02
tangential stresses on those two planes must be of equal intensity;
and they may therefore be denoted by one symbol, p,,, which sym-
bol may be read as meaning

the intensity of {2 ] onaplane (#] .
the stress along | / normal to {x}

Let ON be a line normal to the plane the stress on which is
sought, making'with O X the angle X O N = w/\n. Consider the
condition of a prism O A B, of the length unity, bounded by the

planes OA 1y, OB Laz, AB L ON. The areas of the faces of
that prism have the following proportions :—

— —_— A — _— A
OB=AB-coszn; OA = AB:sin zn.
The forces exerted on the faces O A and O B, 1n a direction parallel

to z, consist of the normal stress on O B, and the tangential stress
on OA ; that is to say, .
A

: AT Bits oy e A
P2z OB+ p, cOA=AB-. {pm'msxn—{-pxy'sinxn}-

Let this be represented by oD.

The forces exerted on the faces O A and O B, in a direction paral
lel to y, consist of the normal stress on OA, and the tangential
stress on O B that is to say,

b 218 Sl A A

Py OB+ p,°OA =AB" {p,,y' cos xm -I-pw‘sinxn} .

Let this be represented by O E.

X
D

A

u
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Complete the rectangle O D R E ; the amount and direction of
the stress on A B will be rppreaented by its diagonal,

OR= ,/(0D'+0E)
and the intensity of that stress by
oR LAl amlotid o
ﬁ = {pm’ cos? z n -+ py,? csint x n+ pryt
A A
+ 2Py (Prz + pyy) cos xn'sina;n}. ................ 1)

From R draw R P perpendicular to the normal O N; then the
normal and the tangential components of the total stress on A B will
be represented respectively by Z, L

A Alis A
OP = OD ‘cos 2% + OF sin 2 n; i 4
o A TN A
PR =0D sinm%—OE *cos xM;
and the infensities of these components by

o

=

o R e Wi Ve
Pn = :&_—]—3 = Pry * COS? TN+ Pyy * sin® & + 2,y * cOs Zn * sin xn;
()
PR

A A A
e = AB = (Pre=P,,) €08 TN *SID TR - P, (Sin® 2 —cos® n).
The oblzqmty, —=NOR = nr, of the stress on A B is given by
the equation

tan nr = _-pi. ........................... (3)

109, ®rincipal Axcs of Stress Parallel to One Planc.—THEOREM.
For every condition of stress parallel to one plane, there are two planes
perpendicular to each other, on which there is no tangential stress.

As in Article 108, let the three rectangular components, Pz
Pyp Prys Of the stress on two rectangular planes, OY, OX, be“given.
The condition, that there shall be no tangential stress on a plane
normal to O N, is expressed by making p,=0 in the second of the
equations 2 of that Article; and in order that thls may be fulfilled,
we must have

: cos £ n ° sin acAn _ _ Py .
cos? acAn —sin? wAn Paz—pn”
or, what is the same thing, .
tan 22 = —Z&L ............ o g @a.

Pxx -prw’
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A .
Now for two values of & n, differing by a right angle, the values of

tan 2 mAn are equal; hence there are two directions of the normal
ON perpendicular to each other, which fulfil the condition of having
no tangential stress.

Those two directions are called principal axes of stress, and the
stresses along them (which are conjugate to each other) principal
stresses.

There may be a third principal stress, conjugate and at right
angles to the first two; but as, with one exception, the ensuing in-
vestigations of this section relate to stresses upon planes parallel to
the direction of this third principal stress, which does not affect
such planes, it may be left out of consideration.

The most simple mode of expressing the relations amongst inter-
nal stresses parallel to a plane is obtained by taking the two prin-
cipal axes of stressin that plane for axes of co-ordinates; and this
77 is done in the ensuing Articles.

110. Equal Principal Stresses— Fluid Pressure—THEOREM L. Ifa
pair of principal stresses be of the same kind and of equal intensity,
every stress parallel to the same plane 1s of the same kind, of equal in-
tensity, and normal o its plane of action.

In fig. 53, let OX, OY, be the direc- x
tions of the given principal stresses, and
Py Py, their intensities. By the condi- r D ]
tions of the question, those intensities are
equal, or

=Dy
Let it be required to find the direction
and intensity of the stress on any plane ¥—7¢ W R T
A B. As in Article 108, consider the
condition of the triangular prism O A B;
and let the length of that prism, in a
direction perpendicular to the plane
X OY be unity. Then the total stresses Vg b

on the faces OB and OA will be respectively—
' p. OB andp,'O—A.
| On O X and O Y respectively, take O D to represent p, * O B, and
- OFE to represent p,*O A ; complete the rectangle O D R E; then

its diagonal O R will represent the amount and direction of the

::irﬁsi on the face A B of the prism, and the intensity of that stress
e

= p.

a1
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Now, because p. = p,, we have

ob _ OB _ OB
OB = 0A ~ AB’
and consequently
DPr=P:=Dy5

and because of the similarity of the triangles AOB, OER, OR

is perpendicular to A B. Therefore, the stress on each plane per-
pendicular to X OY is normal, and of equal intensity in all direc-
tions.—Q. E. D.

In this case it is obvious, that every direction in the plane
X O'Y has the properties of an axis of stress.

CoroLLARY. If the stress in all directions parallel to a given plane
be normal, it must be of equal intensity in all those directions.

Treorem II. In a perfect fluid, the pressure at o given point
s normal and of equal intensity in all directions.

Fluid is a term opposed to solid, and comprehending the liquid
and gaseous conditions of bodies, which have been defined in Article 4.
The property common to the liquid and the gaseous conditions is
that of not tending to preserve a definite shape, and the possession of
this property by a body in perfection throughout all its parts, con-
stitutes that body a perfect fluid. The parts of a body resisting
alteration of shape must exert tangential stress; a perfect fluid does
not resist alteration of shape; therefore the parts of a perfect fluid
cannot exert tangential stress; therefore the stress exerted amongst
and by them at every point and in every direction is normal ; there-
fore at a given point, it is of equal intensity in every direction.
—Q. E. D.

This theorem, and its consequences, form the Lranch of statics
called Hydrostatics, which is sometimes treated of separately, but
which, in this treatise, it has been considered more convenient to
include in the subject of the statics of distributed forces in general.

Gaseous fluids always tend to expand, so that the stress in them
is always a pressure. Liquid fluids are capable of exerting to a
slight extent fension, or resistance to dilatation, as well as pressure;
but in all cases of practical importance in applied mechanics, the
" only kind of stress in liquids which is of sufficient magnitude to be
considered, is pressure.

The term fluid pressure is used to denote a thrust which is normal
and equally intense in all directions round a point.

The idea of perfect fluidity is not absolutely realized by actual
liquids, they having all more or less a tendency in their parts to
resist distortion, which is called viscosity, and which constitutes an
approach to the solid condition ; nevertheless, in problems of applied
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hydrostatics, the assumption of perfect fluidity gives results near
»enough to the truth for practical purposes.; *, , . | LERT

111. opposite Principal Slresses.—-THEORElIag {f b, ;pair qf ym'n-
cipal stresses be of equal intensities, but of. opposite kinds, the stress
on_any plane perpendicular to the plane of. ihe direttions of ithe.,
principal stresses is of the same intensity, and the angles which its
direction makes with the normal to its plane are bisected by the axes
of principal stress.

In fig. 53, let the stresses acting along the rectangular axes OX,
07, be as before, of equal intensity; but let them now be, not as
before, of the same kind, but of opposite kinds, one being a thrust
and the other a pull:—a condition expressed by the equation

By = — Ds;

and let it be required to find the direction and intensity of the stress
on the plane A B, to which OR is normal. Sue i

In this case OD is to be taken as before, to represent p, * OB,
the total stress on the face OB of the triangular prism O A B;
but instead of taking OE in the direction from O towards B, to
represent the total stress on OA, viz., 2, OA, we are now to take
Oe of equal length, but in the contrary direction. Complete the
rectangle ODre; then the diagonal O will represent the total stress
on AB. The intensity of this stress is the same as before, viz.,

Dr = Pus

but its direction Or, instead of being perpendicular to A B, makes an
angle XOr on one side of the axis OX, equal to the angle XOR
which the normal OR makes on the other side of that axis; and
O X bisects the angle of obliquity R 0~.—Q. E. D.

The stress p, agrees in kind with that one of the principal stresses
to which its direction is nearest ; and when it makes angles of 45°
with each of the axes, it is shearing or tangential; so that a pull
and a thrust of equal intensity, on a pair of planes at right angles to
each other, are equivalent to a pair of shearing stresses of the
same intensity on a pair of planes at right angles to each other,
and making angles of 45° with the first pair.

112. Ellipse of Stress—PropLEM L. 4 puir of principal stresses:
of any intensities, and of the same or opposite kinds, being given, it is
required to find the direction and intensity of the stress on a plane in
any position at right angles to the plane parallel to which the two
principal stresses act,

Let OX and OY (figs. 54 and 55), be the directions of the two
principal stresses; O X being the direction of the greater stress. -
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Let p, be the intensity of the greater stress 5

\a.ndp,tha’rofﬂ:eless. R y —
R /&& a K ¢ % ;'4“
A PR x ¢ Hc.“ﬂ“.\ /
3 \ Y
P
2 N
N
A
-t X
SIS QY
B
b =2 x
Fig. 54. Tig. 55.

The kind of stress to which each of these belongs, pull or thrust,
is to be distinguished by means of the algebraical signs. Ifa pull
is considered as positive, a thrust is to be considered as negative,
and wvice versd. Itisin general convenient to consider that kind
of stress as positive to which the greater principal stress belongs.
Fig. 54 represents the case in which p, and p, are of the same kind;
fig. 55 the case in which they are of opposite kinds. In all the
following equations, the sign of p, is held to be ¢mplied in that

symbol.
Consider the two equations

LT

L 2
P+ p DPe— Py,
p,: 9 Y — 9 ':

From these it appeaxs, that the pair of stresses, p, and p,, may be
considered as made up of two pairs of stresses, viz.:—a pair of
stresses of equal intensity and of the same kind, whose common

value is 2’1__';_&’ and a pair of stresses of equal intensity, bub
opposite kinds, whose values are + Lg—ﬁ

Now let AB be the plane on which it is required to ascertain the
direction and mtens1ty of the stress, and ON a normal to that plane,
making with the axis of greatest stress the angle

' X0 B i
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On ON take OM =— —&—% ; this will represent a normal stress

on AB of the same kind with the greater principal stress, and of
an intensity which is a mean between the intensities of the two
principal stresses ; and this, according to Article 110, Theorem I.,

<will be the effect upon the plane A B, of the pair of stresses P’—;p-’i.

Through M draw PMQ, making with the axis of stress the same
angles which ON makes, but in the opposite direction; that is to
say, take MP = M Q=DMO. On the line thus found set off from

M towards the axis of greatest stress, MR =22 RN P = By This, ac-

cording to Article 111, will represent the direction and the intensity
of the oblique stress on AB, Wlnch is the effect of the pair of stresses

Y pv'
——2,

Join OR. Then will that line represent the resultant of the
forces represented by OM and MR ; that is to say, the direction and
intensity of the entire stress on AB. —Q. E. I

— The algebraical expression of this solution is easily obtained by
7 means of the formulz of plane trigonometry, and consists of the two
following equations:—

A A
 Intensity, ORor p, = \/ {p2-cos*en + pj ssimtarn}..... (1) |
an equation which might have been obtained by making p, = 0 in -

equation 1 of Article 108, Problem IT.
A
X Obliquity, .= NO R or nr.

P e AT
saresin - (sin 207 -Z’=2—Pv) PRy KM el £
This obliquity is always towards the axis of greatest stress.
In ﬁg 54, pand p, are represented as being of the same kind;

and MR is consequently less than OM, so that OR falls on the

same side of OX with ON, that is to say, ww = @n. In fig. 55,
p- and p, are of opposite kinds, MR is greater than OM and OR

falls on the opposite side of 0X to OM; that is to say, n'r = 91: .

The locus of the point M is obvmusly a circle of the radius
Bys B Ly > and that of the point R, an ellipse whose semi-axes are
p. and p,, and which may be called the ELLIPSE OF STRESS, because
1ts semidiameter in any direction represents the mtensﬂ;y of the
stress in that direction.
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The principal stresses, being represented by the semi-axes of this
ellipse, are respectwely the g'reatest and least of the stresses parallel
to the plane XOY.

The direct and shearing, or normal and tangential components of
OR = p, are found by letting fall a perpendicular from R upon
O N, and are as follows:—

A A
Direct, p, = p, *cos’nx + p,* sin*xn;............ (3.)
Shearing, p, = (p. — p,) cos xn - sinxnj.......... 4.)

equations which might have been deduced from the equations 2 of
Auxticle 108, Problem IL

From equatlon 3 it is obvious, that the sum of the normal st'resses
on a pair of planes at right angles to each other is equal to the sum
of the principal stresses ; and from equation 4 follows the principle,
already demonstrated otherwise in Article 104, of the equality of
the shearing stress on a pair of planes perpendicular to each other.

ProBrEM II. A pair of principal stresses being given, it is required
to find the positions of the plunes on which the shear, or tangential
component of the stress, is most intense, and the intensity of that shear.
It is evident that the shear is greatest when M R is perpendicular

to O M; and then M R itself represents the intensity of the shear;
that is to say,

maximum p, =

In this case, A B is either of the two planes which make angles
of 45° with the axes of stress.

ProuEM ITL. T find the planes on which the obliquity of the
stress i greatest, the intensily of that stress, and the angle of its
oblugquity.

CAsE 1. When the principal stresses are of the same kind. (Fig.54.)
In this case MR — MO, and it is evident that the angle of

A
obliquity, = M O R = nr is greatest, when M R is perpendicular
to O R, and that its value is given by the equation

MR

maximum Tl/;‘ = arc® Sin«___~
oM
e (4 51n£————];:’ ....................... (6.)
To find the position of the normal O N to the plane A. B, we have to
consider that,

xAn = %—4 PMN;
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I

but .= PMN = =~ MRO + = MOR

A
90° + max. nr;

consequently in this case,

A
A 90° + max. n

BN Mo b e (7.)
(an obtuse angle).
And for the position of the plane A B itself, we have
A
90° — max. nr

A
—=XO0A =90°—an= . e

(an acute angle),

These equations apply to a pair of planes, making equal angles
at opposite sides of O X,

The intensity of the most oblique stress is obviously

pe= N (UIW— M_R’)
=% { (Pau‘ZI%)2 _ (e zl’y)” } = (e porennn(9)

or a mean proportional between the principal stresses. This is
otherwise evident from the consideration, that when O R -L PRQ,
then OR = ,/ (PR * RQ), and that RQ = p,, PR = p,.

Case 2. When the principal stresses are of opposite kinds (fig. 55),
it is evident, that the most oblique stress possible is a tangential
stress, and that the problem amounts to finding the circumstances
under which O R lies in the plane AB. Inu this case it is evident,
that the triangle O M R becomes right-angled at O, and conse-
quently, that the intensity of the stress is given by the equation

P N/(ﬁ-ﬁe__ OT\P) = J{(p»z&v)z_ (- zpy)z}
STl gy A s e (10.)

being, as before, a mean proportional between the principal stresses.
The product — p, p, is a positive quantity, notwithstanding its
negative sign, because p, in this case is implicitly negative.

The position of the normal O N is found by considering, that

A
zn = —-; —PMN,

and that = PMN=_~-MOR + = MRO
P+ Py,

= 90° + arc *sin g
D= — Dy
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consequently,
wAn = 1‘- {90°+arc * sin E&}
2 Pz = Dy

(an obtuse angle);

. (1L.)
= XO0A = 90°—xAn e X {90°-——arc 'sin']—oi—t&'}

2 Pz — Dy
(an acute angle).

In these, as in the other formulz applicable to the case in which
p- and p, are of opposite kinds, it is to be borne in mind that p,
is umplicitly megative, and that consequently p, + p, means the
difference, and p, — p, the sum, of the arithmetical values of the
principal stresses.

ProBuEM IV. The intensities, kinds, and obliquities, of any two
stresses whose planes of action are perpendicular to the plane of their
directions, being given, it is required to find the
principal stresses and axes of stress. CAsE 1.
When the given stresses arve of the same kind,
and unequal.

In fig. 56, let A B, A’'B, represent the
given planes, O N, O N, their normals, OR, .
O R), the stresses upon them.

Let the intensities be denoted algebraically

by

p=O0OR; » =0R,
Fig. 56. and the obliquities by :

CHOBRER . ZNOR = Y.

In fig. 57, take ON to represent at once the normals to both
planes.

Make —= NOR ='nA'r; —=NOR = 'nl'\r';
OR =p; OR =p.

Join RR/, bisect it in 8, from which draw SM -L RR), cutting

y ONinM. Join MR, MR,
which lines are evidently
equal. Then from a com-
parison of the construction
of this figure with the gene-
ration of the ellipse of stress,
as described under Problem
L, is evident, that
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O = 21 5T - W - B2y

and consequently that the principal stresses are

p.=0OM+MR; p,=OM-MR;............(12.)
and it is also evident, that the angles made by the axis of greatest
stress, with the two normals respectively, are

o F : 4
xn=%4NMR; zn = %-ANMR’;.........(I&)

which data are sufficient to determine the position of the axes.—
|QETL

CasE 2. When the given stresses are of opposite kinds, the con-
struction is the same in every respect, except that the lesser of the
given stresses must be represented in fig. 57 by a line in the pro-
longation of its direction beyond O, making an obtuse angle with
O N, equal to the supplement of its obliquity.

In either of the two cases that have been stated, the angle
between the normals to the two given planes must have one or
other of the two following values :—

A, | either a:An' + wAn =~=NMS

G A A

) or an—xzn=-—RMS

. according as the two normals are at opposite sides, or at the same
side of the axis of greatest stress.

The solution of cases 1 and 2 is expressed algebraically by the
following equations, which are deduced from the geometrical
solution by means of well known formule of trigonometry :—

2 ]
P3P M- it BB TS V)
2(peosnr—p cosmy

Pl -MR-MF

2 A M"%""
= J{(——«p’zp’) +p’—(m+py)pcosm’} -

bl e
IS J{@I&+P'2“(Pm+ PP cosn/"\r'}; ..... (16.)

A
/A % ot
cos2:c'n=2pcosn’r P py;
pz/\p’ .......... (17')
" 4 ALy
cos2am’=2p SR e

P=—Dy,
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In using these equations, it is to be observed that the cosine of
an obtuse angle is negative.

Stmplified Forms of Cases 1 and 2.

CAsE 3. When the two given stresses are conjugate, they are of
equal obliquity; and the points O, R/, S, R, in fig. 47, are in one
straight line, to which M S is perpendicular ; the angle between
the two normals being

N MS =02 =9074 27 veereeeeseeenens ., (18)
In this case, equation 15 becomes » ok g
2+ O M — +p'

10—2”¥=0M~ e S M LN (19)
Z2cosnr 4 SR
equation 16 becomes Al foan £ A [ o £/
Pz =Py = MR =MEF = {(sz‘&)‘_pp,};

,J{ (p+ Py pp’} .................... (20)

4 cos’ nr

equations 17 are modified only by the equality of n'Avl to nAr.

CASE 4. When the planes of action of the two given stresses are
perpendicular to each other, MLS is perpendicular and R R’ parallel
to O N, in fig. 57, so that we have, for the tangential component of
each stress,

s A A
MS —=psinnr=psinn'r=p,
Let the normal components of the given stresses be denoted by
A A
pa=pcosnr; p,=p cosn
Then equation 15 becomes

J.'+ n+ In
b 2py=p 2? . (21_)

Jesssecsessesacsncanas

equation 16 becomes

o Y { (p. ;P'")a+p? } ............... (22.)

The equations 17 become

A A e
cos 2 n=—cos 2a'n =EL"P+,
=0
or, what is equivalent, s B)
A 2
tan2xn=—tan2u'n = 2Pt

o
being the same with equation 1 of Article 109.
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ProviEM V. The stress in every direction being a thrust, and the
greatest obliquity being given, it 1s required to find the mtw of two
conjugate thrusts whose common obliquity is given.

Let ¢ denote the given greatest obliquity. Then according to
Problem IIL.,

P=—Ps_ gin .
Pa- &R Dy N

A
Let n 7, which must not exceed @, denote the common obliquity
of a pair of conjugate thrusts, so that, as in Problem IV., case 3,

A X
90° + n o :
shall be the angle between the normals to their planes of action,?"i
and N
A NN
90°—mnr

the angle between those planes themselves. Let p be the intensity-

of the greater, and p’ that of the less, of those conjugate thrusts+
whose ratio is souorht then dividing equation 20 of this Article by‘* 3
equation 19, and squanng the result we find

. >
=

A
\ NG 4pp cos’nr
Sl]l2¢=( x py) - 1__£_p—n etecssone 24-

p:Tp, (ptpy i

or transposing

58 =g RS
Hence it follows that the ratio of the conJugate stresseé j3 p,
that of the two roots of a quadratic equation.

A
(p+p)= cosnr 304 (25) <

A
w—2cosnr* u+cos® = O....connvennerno(26.)
that is to say, let p be the greater thrust and  the less, then

o asl

cosnr—- ,j(cos n/>'—005 el -(27.)

P
2o .
» cosnr-l— A (cos® nr— cos® @)

A
When z r = 0, this becomes the ratio of the principal thrusts, viz. :—

A
when n7 =@, the ratio becomes that of equality.
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113. Combinea Stresses in One Plane.—PROBLEM. (Given the nor-
mal intensities and directions of any number of simple stresses whose
directions are in the same plane; required, the directions and inten-
sities of the pair of principal stresses resulting from their combination.

Distinguish the pulls from the thrusts by considering the kind
whose sum is greatest as positive, and the opposite kind as negative.
Assume two planes at right angles to each other (which may be
called planes of reduction), to each of which, by the process of
Article 98, reduce all the given stresses; and then resolve, asin
Axrticle 99, each of the reduced stresses thus obtained into a direct
or normal, and a shearing or tangential component. Compute
(attending to the positive and negative signs) the two sums of the
direct component stresses on the two planes of reduction respectively ;
compute also the sum of the shearing components, which will be
the same for each plane of reduction : lastly, from the pair of total
direct stresses, and the total shearing stress, thus computed, re-
latively to the assumed rectangular planes of reduction, determine,
as in Article 112, Problem IV., case 4, the directions and inten-
sities of the resulfant principal stresses.—Q. E. L.

The algebraical expression of this solution is as folows:—Let n
be taken to denote the normal to one of the rectangular planes of
reduction.

Let p denote the normal tntensity of any one of the given direct

stresses, and n/}o the angle which its direction makes with the
normal n. The symbol 3, as in previous examples, denotes the
operation of taking the sum of a set of quantities, with due regard
to their algebraical signs, that is to say, adding the positive and
subtracting the negative quantities.

The direct and shearing components of a single stress p, as
reduced to the rectangular planes of reduction respectively, accord-
ing to the principles of Article 99, are as follows :—

A
omnls { on the plane normal to n, p cos’ np;

A
on the other plane, psin’np;

A A
Tangential on each plane, p cosn p sinn p.

Consequently, the total direct and shearing stresses on the planes
of reduction, are as follows :—

Pa=3 (p cos? n/}o) 5

N 1
orma. ,{p'_= 5 (p sin? ’ﬂ/})) ;

NS Gap A
Tangential, p,= 2 (p cosmpsinn p).
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Introducing these values into the equations 21, 22, and 23, of
Article 112, and observing that

A A A A A
co’np +sin®np=1; cos’np —sin’n p=cos 2np,
2oy oA
cos np'smnp=§sm2np,
we obtain the following results :—
.+ 1
_2—2&252'1) ........................... 1)

J"”Q‘Q’: % N { (2 - p cos 2 ri\p)g-l- (2 psin 2 nAp)z}' -(2.)

p A
S W vy 2 AR 3)

A
8 2 peos2np

The equation 2 is capable of 'being expressed in another form, as
follows. Let a, & be any two angles. Then

cos @ cos @ + sin asin o' = cos (a— a’).

Now the quantity under the sign ./, in equation 2, consists of the
following classes of terms :—

A
1. All the squares p*cos’2n p ;

AN
9. All the products 2 p p' cos 2 n p cos 2 nA :
P pp p r;
where p, p, are any pair of the given stresses ;

> A
3. All the squares p*sin® 2 np;

A
4. Al the products 2 p p’ sin 2n psin 2 'r’L\ p.
The first and third of these classes being added together, make

A A
2 (p%); the second and fourth make 2 s (pp *cos 2 pp)); pp being
the angle between p and p. Equation 2 thus becomes

&;:2&=% N {_2 (p)+2= (pp' cos 219/}0')}- cerene(4)

From the equations (1) and (4) it appears that the infensities of
the principal stresses p, and p, can be computed without assuming
planes of reduction ; for the only angles involved in this pair of

A
equations are the several angles p g/, which the given stresses make
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with each other when compared by pairs in every possible com-
bination. To find the directions, however, of those principal stresses,
planes of reduction must be assumed.

In using the equation (4), it is to be remembered that when

A ’
2 p p’ exceeds 90° we have
A A
€os 2 p pr = — cos (180"-—-2 pp').

SectioN 4.—Of the Internal Equilibrium of Stress and Weight,
and the Principles of Hydrostatics.

114. Varying Xnternal Stress.—The investigations of the preced-
ing section have been conducted as if the internal stress, whether
simple or compound, were uniform at all points in the body under
consideration ; but their results are nevertheless correctly applicable
to internal stress which varies from point to point of the body ;
for those results are arrived at by considering the conditions of
equilibrium of a pyramidal or prismatic portion of the body con-
taining the point at which the relations amongst the components
of the stress are to be determined ; and when the stress varies from
point to point, then by supposing the pyramid or prism to be small
enough, its condition of stress may be made to deviate from uni-
formity to an extent less than any assigned limit of deviation ;
but the truth of the propositions of the preceding section for an
uniform stress is independent of the size of the prism or pyramid ;
therefore they can be proved to deviate from the truth for a vary-
ing stress by less than any assignable error ; therefore they must
be true for a varying as well as for an uniform stress.

115. Causes of Varying Stress.— The internal stress exerted
amongst the parts of a body, may vary from point to point, from
three classes of causes, viz. :—

I. Mutual attractions and repulsions between the parts of the
body ;

TL’ Atiractions and repulsions exerted between the parts of the
body in question and external bodies ;

III. Stress exerted between the body in question and external
bodies at their surfaces of contact.

I. The first of these classes of causes may be left out of considera-
tion in the present treatise ; because the mutual attractions and
repulsions of the parts of an artificial structure are too small to be
of practical importance in the art of construction.

II. Of the second class of causes, the only force which is of
sufficient magnitude to be considered in the art of construction, is

weight.
III. The consideration of the third class of causes belongs to
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the subject of the strength of materials, which will be treated of in
the sequel. i

The subject of the present section, therefore, is the relation be-
tween the weight of the parts of a body, and the variation of its
condition of stress from point to point.

116. General Problem of Internal Equilibrinm,—Let w denote
the weight per unit of volume of a body, or part of a body, and let
it be required to determine what modes of variation of internal
stress are consistent with that specific gravity.

Consider the condition of a rectangular
molecule A (fig. 58), bounded by ideal ¥
planes, whose edges are parallel to three
rectangular axes, OX, OY, OZ. The
position of this set of axes is immaterial
to the result; but the algebraic formulse
are simplified by assuming one axis to be
vertical ; let O Z, then, be vertical, and
let distances along it be positive upwards. ©
Then weight must be treated as a nega- TFie. 58
tive force ; and the weight of a portion e
of the body of the volume V will be denoted by

—wV.
Let the dimensions of the molecule A be

A g parallel to O X,
AY » LR o
AE TS » OZ

Then its weight is represented by

— W AT AY AZ
The six faces will be designated as follows :—
Farthest from Q.| Nearest to O.

The pair parallel to Y O Z + Ay A% — Ay A%
2 53 st L OEXS + A% am — Az AR
5 Ry o SXCOY + Az AY — AT AY

(That is, the horizontal pair.) } (the upper.) } (the lower.) }

Let the six intensities of the components of the stress be denoted
as in Article 104, viz. :—

Normal, Dazzy Pyyy Pezy
Tangential, p,,, Pz Pryr
As for the signs of normal stress, let pull be positive and thrust
1
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negative. As for the signs of tangential stress, let those stresses
be considered as { Pl } which tend to make the pair of cor-

negative
ners of the molecule which are nearest and farthest from O
sharper
flatter f°

In the first place, let the rafe of variation of the stress, of what
kind soever, from point to point, be uniform; that is to say, for
example, if the mean intensity of any one of the components of
the stress at the face — Ax Ay be p, then at the face + Az Ay,
whose distance from — Az Ay is Az, let the mean intensity of
the same component be

dp
p+’g—z‘ Az)

in which g_l; is a constant co-efficient or factor, meaning ¢ the rate
of variation of p along z,” which is positive or negative, according
as the variation of p is of the same or of the contrary kind to that
of 2. Rates of variation are also known by the name of differential
co-¢fficients. As there are six components in the stress, and three
axes of co-ordinates, there are eighteen possible differential co-
efficients of the stress with respect to the co-ordinates; butr it will
presently appear that nine only of those co-efficients are concerned
in the solution of the present problem.

The relations amongst the weight of the molecule A, and the
variations of the intensities of the component stresses on its differ-
ent faces, depend on this principle, that the jorce arising from the
variations of stress must balance the weight of the molecule; that is
to say, the resultant force parallel to each of the horizontal axes,
which arises from the variation of stress, must be nothing, and the
resultant force parallel to the vertical axis, which arises from the
variation of stress, must be upward, and equal to the weight of the
molecule—a principle expressed by the three following equa-
tions :—

Aprz , .. dpry , . P , . 2t
> b AyAz+-@Ay AzAa:+—d?Az AzAy=0;
dpry dpy ‘ dp
Az - Ay-AzZA Faz: =0;
To 2% ayar 5 Yy AzZAZ + d:A axAay=0; (1)
Apes 5 dpy: 3 dps , .
T AT AYAR +.@Ay AzAw+—d?A~ AZAY

=W AZAYAZ
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Each of the nine terms which compose the left sides of the above
equations is the product of four factors; the first being the rate of
variation of a stress, the second the distance between two faces on
which that stress acts, and the third and fourth the dimensions of
those faces, whose product is their common area. :

Each term of those three equations contains as a common factor
the volume of the molecule, az 4y a2 ; dividing by this, they are
reduced to the following :— ; :

dpaz EX dpay + AP _ 0; -

dx dy - et

dpzy dpy e __ .

B + o -+ Je = O 11 ol o st i (2)
&P Py apu

da:+dy+dz°—w'

In this second form, the equations are applicable to rates of varia-
tion which are not uniform as well as to those which are uniform.
For as the rectangular molecule, from the conditions of whose
equilibrium these equations are deduced, is of arbitrary size, it may
be supposed as small as we please; and when the rates of variation
of the stress are not uniform, we can always, by supposing the
molecule small enough, make the rates of variation of the stresses
throughout its bulk deviate from uniform rates to an extent less
than any given limit of error.

The equations 2 can easily be modified so as to adapt them to
any different arrangement of the axes of co-ordinates. Thus, if =
be made positive downwards instead of upwards, —w is to be put
for w in the third equation. If x or 7, instead of %, be made the
vertical axis, w is to be substituted for O in the first or the second
equation, as the case may be, and 0 for w in the third equation.
If the axes of @, 7, and z make respectively the angles «, &, and v,
with a line pointing vertically upwards, the force of gravity is to
be resolved into three rectangular components, each of which must
be separately balanced by variations of stress ; so that for

0, R w,

in the first, second, and third equations respectively, are to be
substituted -

w CoS e, w cos B, W COS ¥.

The equations of this Article are not in general sufficient of
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themselves to determine the mode of variation of the intensity of
the stress in a solid body, because of their number not being so
great as that of the number of unknown quantities to be determined.
They have therefore to be combined with other equations, deduced
from the relations which are found by experiment to exist between
the alterations of figure, which the parts of a solid body undergo
‘when a load acts on it, and the stresses which at the same time act
amongst the disfigured parts. These relations belong to the sub-
Jject of elasticity and of the strength of materials, and not to that
of the principles of statics. The remainder of the present section
will relate to those more simple problems which can be solved by
means of the equations 2 alone.
( = 117. Equilibrium of Finids—It has already been explained in
Article 110, that in a fluid the only stress to be considered in
practice is a thrust or pressure, normal and of equal intensity
in all directions. This is expressed symbolically in the following
manner :—

py: = 05 px.t = O; pz‘y = O;} cetssscscacenns (1')
Doz = Pyy = P=: =P

the single symbol p being used, for the sake of convenience and
brevity, to denote the intensity of the fluid pressure at any given point
in the fluid.

In adapting the equations 2 of Article 116 to this case, it is con-
venient to take = to denote vertical co-ordinates, and to make it
positive downwards. Then, bearing in mind that p is now a thrust,
being positive (and not & pull when positive and a thrust when
Degative, as in the general problem), we obtain the following

equations :— (
d
4 i) 3—Z=w5
dp .. 112 e RO T =g ()
AyRe s B,

The first of these equations expresses the fact, that in a balanced
Jid, the pressure increases with the vertical depth, ot a rate expressed
by the weight of the fluid per unit of volume; and the second and third
express the fact, that in a balanced fluid, the pressure has no variation
in any horizontal direction; in other words, that the pressure is equal
at all points in the same level surface.

[The exact figure of a level surface is spheroidal ; but for pur-
poses of applied mechanics it may be treated asa plane, without
sensible error.]
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Those principles may also be proved directly. ILet fig. 59 re-
present a vertical section of a fluid;

Y OY any horizontal plane, O0X a * T o
vertical axis. Let BB be a hori-

zontal plane at the depthz below O; & A B
CC another horizontal plane at the L1 3
depth  + az. Let A be a small

rectangular molecule contained be- x
tween those two horizontal planes; Fig. 59.

and let ay and 4 2 be its horizontal dimensions, so that its weight is

WAL LAY AR
The pressure exerted by the other portions of the fluid against the
vertical faces of this molecule are horizontal, and must balance each
other; therefore there can be no variation of pressure horizontally.
Let py, then, be the uniform pressure at the horizontal plane YOY,
d

P, that at the plane BB, and p + Z—I; A g that at the plane CC, «TZ
being the rate of increase of pressure with depth, The molecule is
pressed downwards by the pressure whose amount is

pAY Az
and upwards by the pressure whose amount is

(p + @ 'Aa:)ay Az
da
The difference between those forces, viz. :—
dp

Ta A% AYASY
has to be balanced by the weight of the molecule; equating it o
which, and dividing by the common factor 4z 4y Az, we obtain
the first of the equations 2 of this Article.
The pressure p, at the surface 'Y Y being given, the pressure p
at any given depth « below Y Y is found by means of the integral,

=d
P [13205

[ e 3)
= Py +j0wdao;

that is to say, it is equal to the pressure at the plane Y Y, added to
the weight of a vertical column of the fluid whose area of base is
unity, and which extends from the plane YY down to the given
depth x below that plane.

It is obviously necessary to the equilibrium of a fluid, that the



{C

118 PRINCIPLES OF STATICS.

specific gravity, as well as the pressure, should be the same at all
points in the same level surface.

The preceding principles are the base of the science of Hydro-
statics.

118. Equilibrium of a Liquid—A liquid is a fluid whose parts
tend to preserve a definite size; that is to say, a portion of a liquid
of a given weight tends to occupy a certain definite volume; and to
make it occupy a greater or a less volume, tension or pressure, as
the case may be, must be applied to it. The volume occupied by an
unit of weight is the reciprocal of the weight of an unit of volume;
so that the preceding principle might otherwise be stated by say-
ing, that a liquid tends to preserve a definite specific gravity, which
may be increased by pressure, or diminished by tension.

The volume which a given weight of a liquid tends to occupy
depends on its temperature according to laws which belong to the
science of Heat.

The alterations of the specific gravity of liquids produced by any
pressures which occur in practice, are so small, that in most pro-
blems respecting the equilibrium of liquids, the specific gravity w
may be treated without sensible error as a constant quantity, inde-
pendent of the pressure p. In the case of water, for example, the
compression of volume, and increase of specific gravity, produced by
a pressure of one atmosphere, or 14:7 pounds per square inch, is about
ZoooT, OF zvisov for each pound on the square inch.

If, then, the specific gravity w be treated as a constant in equation
3 of Article 117, it becomes as follows:—

PR 0 55 . o e onaeronsnnnnnonninas 1)

that is to say :—let p, be the pressure at the upper surface, Y O Y,
(fig. 59) of a mass of liquid; then the pressure p at any given depth
« below that surface is greater than the superficial pressure p, by
an amount found by multiplying that depth by the weight of an
unit of volume of the liquid. v

‘When the mass of liquid is in the open air, the superficial pres-
sure p,is that arising from the weight of the earth’s atmosphere
of air, and at places near the level of the sea, is estimated on an
average at 147 pounds on the square inch. In a close vessel,
the superficial pressure may be greater or less than that of the
atmosphere,

119. Equilibrium of different Fiuids in contact with each other.—
If two-different fluids exist in the same space, they may unite so
that each of them shall be distributed throughout the whole space,
either by chemical combination or by diffusion; but in such cases
they form, in fact, but one fluid, which is a compound or mixture,
as the case may be. The present Article has reference to the case
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when fluids of different kinds remain in contact, uncombined and
unmixed. In this case, the condition of equilibrium is, that the
pressures of two fluids at each point of their surface of contact shall
be equal to each other,—a condition which, when the two fluids
are of difierent specific gravities, can only be fulfilled when the
surface of contact is horizontal.

If, then, two or more fluids of different specific gravities, which
do not combine nor mix with each other, be contained in one vessel
uninterrupted by partitions, they will arrange themselves in hori-
zontal strata, the heavier fluids being below the lighter.

If two fluids of different specific gravities be contained in the
two legs of a tube shaped like the letter U (and called an “inverted
siphon”), or if one of the two fluids be contained in a vertical tube
open below, and the other in the space surrounding that tube; or,
generally, if the two fluids be partially separated from each other by
a vertical or nearly vertical partition, below which there is a com-
munication between the spaces on either side of it; the horizontal
surface of contact of the fluids will be at that side of the partition
at which the lighter fluid is found, so that it may be above, and the
heavier fluid below, that surface of contact.

Let p, denote the common pressure of the two fluids at their sur-
face of contact, and let any ordinate measured from that surface
upwards, be denoted by x. Let «/ denote the specific gravity, and
p the pressure, of the lighter fluid; «" the specific gravity, and p"
the pressure, of the heavier fluid. Then at any given elevation =
above the surface of contact

r =Po~f:w'd“’5
Al o

which equations, when the fluids are liguids, and w’, w'", constants,
become

...... isnsebl (2]

l

P =py—wa; p" =Py — W Eecoreereranen. )

As in the case of the barometer, and the mercurial pressure gauge,
the height at which a liquid stands in a tube, closed and empty at
the upper end, above its surface of contact with another fluid, may
be used to determine the pressure exerted by that other fluid at the
surface of contact. In this case, p" = 0, or nearly so; consequently

i A ol e i L A «..(3.)

Let «, «", be two heights above the surface of contact at which
the respective pressures of the lighter and the heavier fluid are
either equal to each other, or both equal to nothing; then p" = p,
and consequently, for fluids in general,
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L4 " )
[Jwde = [T 0 dapsssinsnn ()
If the fluids be both liquids, this becomes,
wa =wa.. ... Bt e

or, the heights are inversely as the specific gravities.

If the heavier fluid be a liquid (such as the mercury in the baro-
meter) and the lighter a gas (such ag the atmosphere) the equation
becomes

f:u/ BloR= R’ ol e B iodins (6.)

and on this last formula is founded the method of determining
differences of level by barometric observations of the atmospheric
pressure.
{ 120. Equilibrium of a Floating Body—THEOREM. A solid body
[ floating on the surface of a liguid is balanced, when it displaces a
volume of liquid whose weight is equal to the weight of the floating
body, and when the centre of gravity of the floating body, and that
of the wolume jfrom which the liguid ts displaced, are in the same
vertical line.
Let fig. 60 represent a solid body (such as a ship), floating in a
liquid, whose horizontal upper surfaceis YY. Suppose, in the first
place, that there is no pressure on
the surface YY. Consider a small

¢ portion S of the surface of the im-
o L 3 ¥ mersed part of the solid body. The
\L 2 / liquid will exert against S a normal
SNoT———T pressure, whose amount will be ex-
. pressed by
Fig. 60. Sp=8Swaz,

where S is the area of the small portion of the immersed surface, «
the depth of immersion of its centre below the level surface Y'Y,
and w the weight of unity of volume of the liquid.

Let « denote the angle of inclination of the area S to a horizontal
plane, or, what is the same thing, the angle of inclination of the
pressure on S to the vertical. Conceive a vertical prism H S to
stand on the area S; the area of the horizontal transverse section
of this prism is what is called the korizontal projection of the area
S, and 1ts value is

S cos =,

Conceive a horizontal prism ST to have its axis in the vertical
plane which is perpendicular to S, and to have the area S for an
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oblique section ; the vertical transverse section of this prism is what
is called the vertical projection of the area S, and its value is

Ssin .

This horizontal prism cuts the immersed surface in another small
area T, whose projection on a vertical plane perpendicular to the
axis of the prism ST is equal to that of S, and which is immersed
to the same depth, and sustains pressure of the same intensity.

Resolve the total pressure on S into a horizontal component and
a vertical component. The horizontal component is

Sp-sine =Swx-sin «,
being equal to the product of the intensity p by the vertical projection
of 8; but this component is balanced by an equal and opposite com-
ponent of the total pressure on T'; and the same is the case for
every portion such as S into which the immersed surface can be
divided; therefore the resultant of all the horizontal components of

the pressure exerted by the liquid against the solid is nothing.
The vertical component of the pressure on S is

Spcose = Swzcos «,

being equal to the product of the intensity p by the horizontal
projection. of 8. But S « cos « is the volume of the vertical prism
H S, standing upon the small area S, and bounded above by the
horizontal surface Y'Y, and w is the weight of unity of volume of
the liquid; therefore S w « cos « is the weight of liquid which the
prism H S would contain; so that the vertical component of the
pressure on S is an upward force, equal and opposite to the weight of the
liguid displaced by the prismatic portion of the solid body which stands
vertically above S. Then if the whole of the immersed surface be
divided into small arcas such as 8, the resultant of the pressure of
the liquid against that entire surface is the sum of all the vertical
components of the pressures on the small areas; that is, a force
equal and opposite to the sum of the weights of liquid displaced by all
the prisms such as HS; that is, a sum equal and opposite to the
weight of the whole volume of liquid displaced by the floating
body; and the line of action of that resultant traverses the centre
of gravity of the volume of liquid so displaced.

Let C denote that centre of gravity, which is also called the
Centre of Buoyancy.- Let G denote the centre of gravity of the
floating body. Let W denote the weight of the floating body, and
'V the volume of liquid displaced by it.

Then the conditions of equilibrium of the floating body are ob-
viously the following :—

First:—W = w 'V ; or its weight must be equal to the weight of
the volume of liquid displaced by it;—
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Seconaly:—its centre of gravity G, and the centre of buoyancy
C, must be in the same vertical line.—Q. E. D.

The preceding demonstration has reference to the case in which
the pressure on the horizontal surface Y'Y is nothing. In the case
of bodies floating on water, that surface, as well as the non-immersed
part of the surface of the floating body, have to sustain the pressure
of the air. To what extent this fact modifies the conclusions
arrived at will appear in the next Article.

121. Pressure on ar Xmmersed Body.— THEOREM, [, f a solid body
be wholly immersed in o fluid, the vesultant of the pressure of the fluid
on the solid body is a vertical force, equal and directly opposed to the
weight of the portion of the fluid which the solid body displaces.

Let fig. 61 represent a solid body totally immersed in a fluid,

¥ Y whether liquid or gaseous. Conceive a small
vertical prism SU to extend from a portion
\,34 e m— S of the lower surface of the body, to the

c portion U of the upper surface which is ver-
T tically above S. Alsolet ST be a horizontal

! prism of which S is an oblique section, and
?G’T UV a horizontal prism of which U is an
Fig 61 oblique section, as in Article 120.

e Then, as in Article 120, it may be proved
that the horizontal component of the pressure on S is balanced by
an equal and opposite component of the pressure on T, and the
horizontal component of the pressure on U by an equal and opposite
component of the pressure on V; so that the horizontal component
of the resultant of the pressure of the fluid on the entire body is
nothing, and that resultant is vertical.

The vertical component of the pressure on S is upward, and
equal to the weight of the prismatic portion of the fluid which
would stand vertically above § if a part of it were not displaced by
the solid body. The vertical component of the pressure on U is
downward, and equal to the weight of the prismatic portion of the
fluid which stands vertically above U. The vertical force arising
from the pressures on S and on U together is upward, and equal
to the difference between those two weights; that is, it is equal
and directly opposed to the weight of the portion of the fluid dis-
placed by the prismatic portion S U of the immersed body.

Hence the resultant of the pressure of the fluid over the entire
surface of the immersed body is equal and directly opposed to the
weight of the portion of fluid displaced by that body.—Q. E. D.

The centre of gravity C, of the portion of fluid which would
occupy the position of the body if it were not immersed, is called,
as before, the centre of buoyancy, and is traversed by the vertical
line of action of the resultant of the pressure of the fluid, which is
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itself called the buoyancy of the immersed body, and sometimes the
apparent loss of weight.

To maintain an immersed body in equilibrio, there must be applied
to it a force or couple, as the case may be, equal and directly op-
posed to the resultant, if any, of its downward weight and upward
buoyancy; that resultant being determined according tothe principles
of Articles 39 and 40.

‘When a body floats in a heavier fluid (as water) having its upper
portion surrounded by a lighter fluid (as air), its total buoyancy is
equal and opposite to the resultant of the weights of the two portions
of the respective fluids which it digplaces.

In practical questions relative to the equilibrium of ships, the
buoyancy arising from the displacement of air is too small as com-
pared with that arising from the displacement of water, to require
to be taken into account in calculation.

122. Apparent Weights—The only method of testing the equality
of the weights of two bodies which is sufficiently delicate for exact
scientific purposes, is that of hanging them from the opposite ends -
of a lever with equal arms.

If this process were performed in a vacuum, the balancing of the
bodies would prove their weights to be equal ; but as it must be
performed in air, the balancing only proves the equality of the
apparent weights of the bodies in air, that is, of the respective ex-
cesses of their weights above the weights of the volumes of air which
they displace. The real weights of the bodies, therefore, are not
equal unless their volumes are equal also. If their volumes are
unequal, the real weight of the larger body must be the greater by
an amount equal to the weight of the difference between the volumes
of air which they displace.

The weight of a cubic foot of pure dry air, under the pressure of
one atmosphere (147 lbs. on the square inch), and at the temperature
of melting ice (32° Fahrenheit) is

0-080728 pound avoirdupois.
Let this be denoted by w, Then the weight of a cubic foot of air
under any other pressure of p atmospheres, and at the temperature ¢
of Fahrenheit’s scale, is given with a degree of accuracy sufficient
for most purposes, by the formula,
o 493>2 L)
k) oy v e SRR LRI :

and if w, w, be the weights of a given volume of air, under the

respective pressures p,»’, and at the temperatures £, ¢, of Fahrenheit’s
scale, then

Pt + 46102 &
p'm'-‘uou-----uu-nun( -)

w
w
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Let W, denote the true weight of a body, V; its volume, w, its weight
per unit of volume, w the weight of unity of volume of air, Then

Wi=uV,
and the apparent weight of the same body in air is
Wo=(0,—w) V, =22 Wyeoerervunenee (3)

Let this body now be balanced against another body in an accurate
pair of scales, and let their apparent weights be equal. Then, if
‘W, denote the true weight, and w, the weight per unit of volume,
of the second body, we have

w; — W Wy — W
. W, ==
U We

so that the proportion between the real weights of the bodies is

) L wo(d)

123. Relative Specific Gravities—If the true weight of a solid
body be known, and that body be next weighed while immersed in
a liquid, the proportion ef the specific gravities of the solid body
and of the liquid can be deduced from the apparent loss of weight,
which is the weight of the volume of liquid displaced by the body.

Let W,, as in equation 3 of Article 122, denote the true weight
of the solid body, w, its weight per unit of volume, w, the weight of
an unit of volume of the liquid in which its apparent weight is
found, and W" the apparent weight; then by the equation already
referred to

W' = UWI i (1 — -,‘—U—A)VVL;
wy w,,
and consequently
% 2, -W1 saild 'W'"

S A |

w, W,

Let the first weighing take place in air and the second in the liquid,
and let W’ be the apparent weight in air ; then

W= — Yy

w,
and consequently
g e (2)
W’ = W —w e ceecetsttrectticrnnan e

so that if 2 is known, g may be found by the equation
2

w;
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& 'W'I i W" %
1 2
D Y T (3.)
‘When the object of weighing of this kind is to determine the
specific gravities of solids, the liquid usually employed is pure water ;
and the results obtained are the ratios of the specific gravities of
solid bodies to that of pure water. If these ratios, or relative spe-
cific gravities, be multiplied by the weight of a cubic foot of pure
water, the weight of a cubic foot of the solid is obtained.
The weight of a cubic fool of pure water at the temperature of its
maximum density (being, according to Playfair and Joule, 39°1
Fahrenheit) is, according to the best existing data,

62:425 pounds avoirdupois.

For any other temperature ¢ on Fahrenheit's scale, the weight of a
cubic foot of pure water is
62428, sl Sib e b (4)

v

where v denotes the volume to which a mass of water measuring one
cubic foot at 39°1 expands at °; a volume which may be computed
for temperatures from 32° to 77° Fahrenheit, by means of the follow-
ing empirical formula, extracted from Prof. W, H. Miller’s paper on
the Standard Pound in the Philosophical Transactions for 1856 :—

log. =101 (¢ — 39-1)2— 0-0369 (¢ — 39-1)3+~10,000,000. (5.)

The relative specific gravities of two liquids are determined by
weighing the same solid body immersed in them successively and

_ comparing its apparent losses of weight.

. ¥ 124, Pressure on an ¥mmersed Plane—If a horizontal plane sur-
face of any figure be immersed in
a fluid, the pressure on that sur-
face is vertical, and uniformly
distributed ; its amount is the
product of the intensity of the
pressure at the depth to which
the plane is immersed by the area
of the plane; and the centre of
pressure (as already shown in
Art. 90) is the centre of gravity
of a flat plate of the figure of
the plane surface, or, as it is LR
usually termed, the centre of gravity of the plane surface.

If an inclined or vertical plane surface be immersed in a liquid,
let OY (fig. 62), represent a section of the horizontal plane at
which the pressure is nothing, and BF a vertical section of the
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immersed plane. Let 2, = BE be the depth to which the lower
edge of this plane is immersed below OY. From B draw BD =
BE, and -L BF; produce the plane BF till it cuts the horizontal
plane of no pressure, OY, in the line represented in section by O;
through O and D draw a plane O HD, and conceive the prism
BD HF to stand normally upon the base BF and to be bounded
above by the plane D H. The pressure on the plane BF will be
normal; its amount will be equal to the weight of fluid contained
in the volume BD H F; that is to say, let «, denote the depth of
the centre of gravity of the plane BF below OY, and w the weight
of unity of the volume of liquid; then the mean intensity of the
pressure on BF is

P = W Lpyeoavsecossaessoconasssssanse (1.)
and the amount of the pressure
P =wx -area BF....ccoceeecerencenens (2.)

Let C be the centre of gravity of the volume BD HF; then the
centre of pressure of the surface B F' is the point where it is cut by
the perpendicular CP let fall on it from C.

As the intensity of the pressure on any point of BF is propor-
tional to its depth below OY, and consequently to its distance from
O, this is a case of uniformly varying stress, and the formule of
Article 94 are applicable to it. In the application of those formule
it is to be observed, that the ordinates y are to be measured hori-
zontally in the plane BF, whose centre of gravity is to be taken as
the origin; that the co-ordinates z are to be measured in the same
plane, along the direction of sfegpest declivity, and reckoned positive
downwards; and that the value of the constant a in the equations of
Axticle 94 is given by the formula 1

ARG, i1 v oo siasve L 3)

Wlhere « is the angle of inclination of the plane BF to a horizontal
ane.

125. Pressure in an Indefinitc Uniformly Sloping Solid.—Conceive
a mass of homogeneous solid mate-
rial to be indefinitely extended
laterally and downwards, and to
be bounded above by a plane sur-
face, making a given angle of de-
clivity ¢ with a horizontal plane.
In fig. 63, let Y OY represent a ver-
tical section of that upper sloping
surface along its direction of greatest
declivity, and O X a vertical plane
perpendicular to the plane of vertical
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section which is represented by the paper. Let w be the uniform
weight of unity of volume of the substance. Let BB be any
plane parallel to, and at a vertical depth 2 below the plane Y Y.
If the substance is exposed to no external force except its own
weight, the only pressure which any portion of the plane B B can
have to sustain is the weight of the material directly above it.
Hence follows—

TarorEM L. [n an indefinite homogeneous solid bounded above by
a sloping plane, the pressure on amy plane parallel to that sloping
surface s vertical, and of an uniform intensity equal to the weight of
the wvertical prism which stands on wnity of area of the given plane.

The area of the horizontal section of that prism is-cos 6, conse-
quently, the intensity of the vertical pressure on the plane BB at
the depth 2 is

Pe = WECOS fuuceenrnnrecensnnennacaanan (1)
From the above theorem, combined with the principle of conjugate
stresses of Article 101, there follows—

TreoreM IL.  The stress, if any, on any vertical plane is parallel
to the sloping surface, and conjugate to the stress on a plane parallel
to that surface.

Consider now the condition of a prismatic molecule A, bounded
above and below by planes B B, C C, parallel to the sloping surface
Y Y, and laterally by two pairs of parallel vertical planes. Let
the common area of the upper and lower surfaces of this prism be
unity, and its height Az ; then its volume is A - cos 4, and its
weight w A2 * cos 4, which is equal and opposite to, and balanced
by the excess of the vertical pressure on its lower face above the
vertical pressure on its upper face. Therefore, the pressures paral-
lel to the sloping surface, on the vertical faces of the prism, must
balance each other independently ; therefore they must be of equal
mean intensity throughout the whole extent of the layer between
the planes B B, C C ; whence follows— i

TuroreM ITI. The state of stress, at a given uniform depth below
the sloping surface, is uniform.

126. On the Parallel Projection of Stress and Weight-—IIl apply—
ing the principles of parallel projection to distributed forces, it is
to be borne in mind that those principles, as stated in Chapter IV.,
are applicable to lines representing the amounts or resultants of
distributed forces, and not their infensities. The relations amongst
the intensities of a system of distributed forces, whose resultants
have been obtained by the method of projection, are to be arrived
at by a subsequent process of dividing each projected resultant by
the projected space over which it is distributed.

Examples of the application of processes of this kiud to practical
questions will appear in the Second Part.
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CHAPTER VL
ON STABLE AND UNSTABLE EQUILIBRIUM,

127. Stiable and Unstable Equilibrium of a Free Body.——sup\
pose a body, which is in equilibrio under a balanced system of forces,
to be free to move, and to be caused to deviate to a small extent
from its position of equilibrium. Then if the body tends to deviate
further from its original position, its equilibrium is said to be un-
stable ; and if it tends to return to its original position, its equi-
librium is said to be stable.

Cases occur in which the equilibrium of the same body is stable
for one kind or direction of deviation, and unstable for another.

‘When the body neither tends to deviate further, nor to recover
its original position, itsequilibrium is said to be indifferent.

The solution of the question, whether the equilibrium of a given
body under given forces is stable, unstable, or indifferent, for a
given kind of deviation of position, is effected by supposing the
deviation made, and finding the resultant of the forces which act
on the body, altered as they may be by the deviation, in amount, in
position, or in both. If this resultant acts towards the same direc-
tion with the deviation, the equilibrium is unstable—if towairds the
opposition direction, stable—and if the resultant is still nothing,
the equilibrium is indifferent.

The disturbance of a free body from a position of stable equi-
librium causes it to oscillate about that position.

128. Stability of a Fixed Body.— The term ¢ stability,” as ap-
plied to the condition of a body forming part of a structure, has, in
most cases, a meaning different from that explained in the last
Article, viz., the property of remaining in equilibrio, without sen-
sible deviation of position, notwithstanding certain deviations of
the load, or externally applied force, from its mean amount or posi-
tion. Stability, in this sense, forms one of the principal subjects of
the second part of this treatise.



PART II.
THEORY OF STRUCTURES.

CHAPTER 1.
DEFINITIONS AND GENERAL PRINCIPLES.

129, Structures—Pieces—Joints.—Structures have already, in
Article 15, been distinguished from machines, A structure con-
sists of two or more solid bodies, called its pieces, which touch each
other, and are connected at portions of their surfaces called joints.

130. Supports—Foundations.—Although the pieces of a structure
are fixed relatively to each other, the structure as a whole may be
either fixed or moveable relatively to the earth.

A fixed structure is supported on a part of the solid material of
the earth, called the foundation of the structure ; the pressures by
which the structure is supported, being the resistances of the various
parts of the foundation, may be more or less oblique.

A moveable structure may be supported, as a ship, by floating in
water, or as a carriage, by resting on the solid ground through
wheels. When such a structure is actually in motion, it partakes
to a certain extent of the properties of a machine ; and the deter-
mination of the forces by which it is supported requires the con-
sideration of dynamical as well as of statical principles; but when it
is not in actual motion, though capable of being moved, the pres-
sures which support it are determined by the principles of statics ;
and it is obvious that they must be wholly vertical, and have their
resultant equal and directly opposed to the weight of the structure.

131. The Conditions of Equilibrium of a Structuve are the three
following :—

1. That the forces exerted on the whole structure by external bodies
shall balance each other. The forces to be considered under this head
are—(1.) the Attraction of the Earth, that is, the weight of the
structure ; (2.) the External Load, arising from the pressures exerted
against the structure by bodies not forming part of it nor of its
foundation ; (these two kinds of forces constitute the gross or total
load ; (3.) the Supporting Pressures, or resistance of the founda-
tion. Those three classes of forces will be spoken of together as
the External Forces.

X
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I1. That the forces exerted on each piece of the structure shall
balance each other. These consist of—(1.) the Weight of the piece,
and (2.) the External Load on it, making together the Gross Load; and
(3.) the Resistances, or stresses exerted at the joints, between the

iece under consideration and the pieces in contact with it.

III. That the forces exerted on each of the parts into which the
pieces of the structure can be conceived to be divided shall balance
each other. Suppose an ideal surface to divide any part of any one
of the pieces of the structure from the remainder of the piece; the
forces which act on the part so considered are—(1.) its weight, and
(2.) (if it is at the external surface of the piece) the external stress
applied to it, if any, making together its gross load; (3.) the stress
exerted at the ideal surface of division, between the part in ques-
tion and the other parts of the piece.

132. Sability, Sirength, and Stiffiness.—1t is necessary to the per-
manence of a structure, that the three foregoing conditions of
equilibrium should be fulfilled, not only under one amount and
one mode of distribution of load, but under all the variations of the
load as to amount and mode of distribution which can occur in the
use of the structure.

Stability consists in the fulfilment of the first and second condi-
tions of equilibrium of a structure under all variations of load
within given limits. A structure which is deficient in stability
gives way by the displacement of its pieces from their proper posi-
tions.

Strength consists in the fulfilment of the third condition of equi-
librium of a structure for all loads not exceeding prescribed limits;
that is to say, the greatest internal stress produced in any part of
any piece of the structure, by the prescribed greatest load, must be
such as the material can bear, not merely without immediate break-
ing, but without such injury to its texture as might endanger its
breaking in the course of time.

A piece of a structure may be rendered unfit for its purpose not
merely by being broken, but by being stretched, compressed, bent,
twisted, or otherwise strained out of its proper shape. It is neces-
rary, therefore, that each piece of a structure should be of such
dimensions that its alteration of figure under the greatest load
applied to it shall not exceed given limits. This property is called
stiffness, and is so connected with strength that it is necessary to
consider them together.

From the foregoing considerations, it is evident that the theory
of structures may be divided into two divisions, relating, the first
to STABILITY, or the property of resisting displacement of the pieces,
and the second to STRENGTH and STIFFNESS, or the power of each
piece to resist fracture and disfigurement.
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CHAPTER II.
STABILITY,

133. Resunltant Gross Load.—The mode of distribution of the I
intensity of the load upon a given piece of a structure affects the
strength and stiffpess only. So far as sfability alone is concerned, .
it is sufficient to know the magnitude and position of the resuligni ]
of that load, which is to be found by means of the principles ex-
plained in the First Part of this work, and may then be treated as
a single force.

134. Centre of Resistance of a Joint—In like manner, whex,
stability only is in question, it is sufficient to consider the position
and magnitude of the resulfant of the resistance or stress exerted
between two pieces of a structure at the joint where they meet,
and to treat that resultant as a single force. The point where its
line of action traverses the joint is called the centre ofresistamce of
that joint. &

135. A Line of Resistance is a line, straight, angular, or curved, ‘
traversing the centres of resistance of the joints of a structure. It
is to be borne in mind, that the direction of this line at any given
joint does not necessarily coincide with the direction of the resist-
ance at that joint, although it may so coincide in certain cases.

136. Joints Classed—dJoints, and the structures in which they
oceur, may be divided into three classes, according to the limits of the
variation of position of which their centres of resistance are capable.

L. Framework joints are such as occur in carpentry, in frames of t
metal bars, and in structures of ropes and chains, fixing the ends
of two or more pieces together, but offering little or no resistance
to change in the relative angular positions of those pieces. In a
joint of this class, the centre of resistance is at the middle of the
Joint, and does not admit of any variation of position consistently
with security,

1. Blockwork joints are such as occur in masonry and brickwork, §
being plane or curved surfaces of contact, of considerable extent as
compared with the dimensions of the pieces which they connect,
capable of resisting a thrust more or less oblique, according to
laws to be afterwards explained, but not of resisting a pull of suf-
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ficient intensity to be taken into account in practice. In such
joints the position of the centre of resistance may be varied within
certain limits.

I11. Fastened joinis, at which, by means of some strong cement,
or of bolts, rivets, or other fastenings, two pieces are so connected
that the joint fixes their relative angular position, and is capable of
resisting a pull as well as a thrust. In this case, the centre of
resistance may be at any distance from the centre of the joint ; and
there may even be no centre of resistance, when the resultant of
the stress at the joint is a couple, as explained in Articles 91, 92,
and 93. It is obvious that the effect of a joint thus cemented or
fastened is to make the two pieces which it connects act as one
piece, and that the resistance which it is capable of exerting is
a question not of stability but of strength.

SecTioN 1.—Equilibrium and Stability of Frames.

137. Frame is here used to denote a structure composed of bars,
rods, links, or cords, attached together or supported by joints of
the first class described in the last Article, the centre of resistance
being at the middle of each joint, and the line of resistance, con-
sequently, a polygon whose angles are at the centres of the joints.
The condition of a single bar will be considered first, then that of a
combination of two bars, then of three bars, and then of any number.
n 138, mie—Let fig. 64 represent a single bar of a

frame, L the centre of resistance where the load is ap-
s plied, and S the centre of resistance where the support-
ing force is applied ; so that the straight line L. S is the
“line of resistance.”

The bar is represented as being straight itself, that
being the figure which connects the points L and S, and
gives adequate stiffness and strength, with the least ex-
-~ S penditure of material. But the bar may, consistently

& ®*  with the principles of this Article, be of any other figure
connecting those two points, provided it is sufficiently strong and
stiff to prevent their distance from altering to an extent inconsistent
with the purposes of the structure.

The condition of the bar is the same with that of the solid in
Article 23; and it js obvious that the load P, and the supporting
resistance R, must be equal and directly opposed, and must both
act along the line of resistance L S.

In the present case those forces are supposed to be directed out-
ward, or from each other. The bar between L and § is in a state
of Zension, and the stress exerted between any two divisions of it is
a pull, equal and opposite to the loading and supporting forces, A
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bar in this condition is called a ¢ie. It is obvious that a rope or
chain will answer the purpose of a tie.

The equilibrium of a tie s stable ; for if its angular position be
deviated, the equal forces P and R, which originally were directly
opposed, now constitute a couple tending to restore the tie to its
original position.

139. soemt.—If the equal and opposite forces applied to the %
two ends, L and 8, of the line of resistance of a bar be direct-
ed (as'in fig. 65) inwards, or fowards each other, the bar, be-
tween L and 8, is in 4 state of compression, and the stress
exerted between any two divisions of it is a thrust equal and
opposite to the loading and supporting forces. It is obvious

_ that a flexible body will not answer the purpose of a strut.

The equilibrivm of @ moveable strut is unstable; for if its
angular position be deviated, the equal forces P and R, In
which originally were directly opposed, now constitute a gy, g5,
couple tending to make it deviate still farther from its
original position.

In order that a strut may have stability, its ends must be pre-
vented from deviating laterally. Pieces connected with the ends
of a strut for this purpose are called stays.

140. Treatment of the Weight of a Bar.—In the two preceding
Articles, the weight of the bar itself has not been taken into ac-
count. But the principles of those Articles, so far as they relate to
the equilibrium of the bar as o whole, continue to be applicable when
the weight of the bar is treated in the following manner. Resolve
that weight, by the principles of Articles 39 and 40, into two paral--
lel components, acting through L and S respectively. Let P now
represent not merely the external load, but the resultant of that
load, and of the component of the weight which acts through L.
Let R represent not merely the supporting force, but the resultant.
of that force and of the component of the weight which acts through
S. Then P and R, as before, must be equal and directly opposed.

In many cases, the weight of a strut or tie is too small as com-
pared with the load applied to it to require to be specially con-
sidered in practice.

141, Beam under Parallel Forces.— A bar supported at two
points, and loaded in a direction perpendicular or oblique to its
length is called a beam. In the first place, let the supporting
pressures be parallel to each other and to the =,
direction of the load ; and let the load act
between the points of support, as in fig. 66; —;},
where P represents the resultant of the gross 7
load, including the weight of the beam itself, ™
L, the point where the line of action of that Fig. 66.

S

Rt




134 THEORY OF STRUCTURES.

resultant intersects the axis of the beam, R,, R,, the two sup-
porting pressures or resistances of the props parallel to, and in the
same plane with P, and acting through the points 8, S,, in the
axis of the beam.

- Then, according to the Theorem of Article 39, each of those
three forces is proportional to the distance between the lines of
action of the other two; and the load is equal to the sum of the
two supporting pressures ; that is to say,

R B, o B.....non oot (2:)

Next, let the load act beyond the points of
support, as in fig. 67, which represents a canti-
lever or projecting beam, held up by a wall or
other prop at S, held down by a notch in a mass
of masonry or otherwise at 8,, and loaded so that
) P is the resultant of the load, including the

Fig. 67. weight of the beam. Then the proportional
equation (1) remains exactly as before; but the load is equal to
the difference of the supporting pressures ; that is to say,

R e B oo vienssensisanadinsne s 3.)

In these examples the beam is represented as horizontal ; but the
same principles would hold if it were inclined ; for the proportions
amongst the distances between parallel lines in the same plane are
the same, whether they be measured in a direction perpendicular
or oblique to those lines.

142. Beam under Enclined Worces.— Let the directions of the
: supporting forces R,, Ry be now inclined
to that of the resultant of the load, P, as
in fig. 68. This case is that of the equili-
. brium of three forces treated of in Articles
’ / 51 and 52; and consequently the following

//

rinciples apply to it.

L fhe lines of action of the supporting
Ji forces and of the resultant of the load must
Fig. 68. be in one plane.

II. They must intersect in one point (C, fig, 68).

ITI. Those three forces must be proportional to the three sides of
triangle A, respectively parallel to their directions; or in other
words, to the sides and diagonal of a parallelogram.

ProBLEM. Given the resultant of the load in magnitude and
posttion, P, the line of action of one of the supporting forces, Ry, and
the centre of resistance of the other, S;; required the line of action of
the second supporting force, and the magnitudes of both.
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Produce the line of action of R till it cuts the line of action of
P at the point C; join CS;; this will be the line of action of Rs;
construct a triangle A with its sides respectively parallel to those
three lines of action ; the ratios of the sides of that triangle will
give the ratios of the forces—Q. E. L.

To express this algebraically, let ,, 4;, be the angles made by the
lines of action of the supporting forces with that of the resultant
of the load ; then because each side of a triangle is proportional to
the sine of the angle between the other two,

P:R;:Ry::sin (3 +-4,): sin¢; : sin e,

143. X.oad supported by Three Parallel Fol:ces.—THEOREM. If
four parallel forces balance each other, let their lines of action be inter-
sected by a plane, and let the four points of intersection be joined by
six straight lines so as to jform jfour triangles; each jforce will be pro-
poriional to the area of the triangle whose angles are in the lines of
action of the other three.

In fig. 69, let the plane of the paper represent the plane which
is cut by the lines of action of the four forces s
in the points I, 8;, S;, 8;; let P, Ry, R, R,,
denote the four parallel forces. Join the four
points by six lines as in the figure, and pro- S¢ Br
duce each of the three lines S L till it cuts the
opposite line 8 8 in one of the points B.

Because the forces balance each other, the
resultant of R, and R;, whose magnitude is Fig. 69.
R;+ R,, must traverse B;; and because the

resultant of that resultant and R, is equal and opposite to P, we
must have the following proportion :—

B

B;

53

P:R,::ST_BI:I_EI;:ASIS,SB:ASZ,LSS;

and applying the same reasoning to the forces R, R,, we find the
proportions,

QI:’E:I]{).I:R,:R,'.':AS,sta:ASZLSB:ASBLSI:ASILS%

By the aid of this Theorem may be determined the proportion
in which the load of a given body is distributed amongst three
props, exerting parallel supporting forces.

144, X.ona supported by Three Enclined Worces.—The case of a
load supported by three inclined forces is that considered in Articles
54 and 56. The lines of action of the three supporting forces must
mtersect that of the load in one point ; and the magnitudes of the
three supporting forces are represented by the three edges of a
parallelopiped, whose diagonal represents the load.
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145. ¥rame of Two Bars— Equilibrium.—PROBLEM. Figures 70,
71, and 72 represent three cases in which a frame consisting of two

=
Fig. 70. s X Fig. 72.
bars, jointed to each other at the point L, isloaded at that point with
a given force, P, and is supported by the connection of the bars at
their farther extremities, S;, S,, with fixed bodies. It is required
to find the stress on each bar, and the supporting forces at S, and S,.

Resolve the load P (as in Article 55) into two components, R,, R;,
acting along the respective lines of resistance of the two bars.
Those components are the loads borne by the two bars respectively ;
to which loads the supporting forces at 8,, S,, are equal and directly
opposed.—Q. E. L.

The symbolical expression of this solution is as follows :—let 4, 7,
be the respective angles made by the lines of resistance of the bars
with the line of action of the load ; then

P:R;:Ry::sin (3 + i) :sinty:sing,
~ The inward or outward direction of the forces acting along each
bar indicates that the stress is a thrust or a pull, and the bar a
strut or a tie, as the case may be. Fig. 70 represents the case of
two ties; fig. 71 that of two struts (such as a pair of rafters abutting
against two walls); fig. 72 that of a strut, L. S,, and a tie, L S, (such
ag the gib and the tie-rod of a crane).

146. Frame of Two Bars—Stability.—A. frame of two bars is
stable as regards deviations in the plane of its lines of resistance.

‘With respect to lateral deviations of angular position, in a
direction perpendicular to that plane, a frame of two ties is stable;
so also is a frame consisting of a strut and a tie, when the direction
of the load inclines from the line 8, 8,, joining the points of support.

A frame consisting of a strut and a tie, when the direction of the
load inclines towards the line S, S;, and a frame of two struts in all
cases, are unstable laterally, unless provided with lateral stays.

These principles are true of any pair of adjacent bars whose farther
centres of resistance are fixed ; whether forming a frame by them-
selves, or a part of a more complex frame.

147. Treatment of Distributed Loads.—Before applying the prin-
ciples of Article 145, or those of the following Articles, to frames
in which the load, whether external or arising from the weight of
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the bars, is distributed over their length, it is necessary to reduce
that distributed load to an equivalent load, or seriesof loads, applied at
the centres of resistance. The steps in this process are as follows :—

L. Find the resultant load on each single bar.

IL. Resolve thatload, as in Article 141, into two parallel compo-
nents acting through the centresof resistance ab thetwo endsof the bar.

ITI. At each centre of resistance where two bars meet, combine
the component loads due to the loads on the two bars into one
resultant, which is to be considered as the total load acting through
that centre of resistance.

IV. When a centre of resistance is also a point of support, the
component load acting through it, as found by step IL. of the pro-
cess, is to be left out of consideration until the supporting force
required by the system of loads at the other joints has been detex-
mined ; with this supporting force is to be compounded a force
equal and opposite to the component load acting directly through the
point of support, and the resultant will be the total supporting force.

In the following Articles of this section, all the frames will be
supposed to be loaded only at those centres of resistance which
are not points of support; and therefore, in those cases in which
components of the load act directly through the points of support
also, forces equal and opposite to such components must be com-
bined with the supporting forces as determined in the following
Articles, in order to complete the solution.

148. wTriangular Frame.—Let fig. 73 represent a triangular

frame, consisting of the three bars A, B, C, con- Y

nected at the three joints 1, 2, 3, viz.: C and A at ¢

1, Aand Bat 2, B and Cat 3. Let aloadPlbes &
applied at the joint 1 in any given direction ; let D 2

supporting forces, P,, P;, be applied at the joints
2, 3; the lines of action of those two forces must
be m the same plane with that of P;, and must either be pa.rallel
to it or intersect it in one point. The latter case is taken first,
because its solution comprehends that of the former.

The three external forces, in virtue of Article
131, condition I., balance each other, and are
therefore proportional to the three sides of a tri-
angle respectively parallel to their divections. In
h(r 73%* let A B C be such a triangle, in which

C_A represents P,

AB P, ¥

Babaie P, Fig. 73*%.
Then by the conditions of equilibrium of a frame of two bars
(Article 145), the external force P, applied at the joint 1, and the

Fig. 73.
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resistances or stresses along the bars C and A which meet at that
joint, are. represented in magnitude by the sides of a triangle re-
spectively. parallel to their directions. Therefore, in fig. 73%, draw

CO parallel to the bar C, and A O parallel to the bar A, meeting
in the point O, and those two lines will represent the stresses on
the bars C and A respectively. In the same manner it is proved,

that BO represents the stress on the bar B. The three lines C O,
A 0, BO, meet in one point O, because the components along the
line of direction of a given bar, of the external forces applied at
its two extremities, are equal and directly opposed.
Hence follows the following
TaroreM. If three forces be represented by the three sides of a
triangle, and if three straight lines radiating from one point be drawn
to the three angles of that triangle, then a triangular frame whose
lines of resistance are parallel to the three radiating lines will be in
equilibrio under the three given jforces, each force being applied to the
joint where the two lines of resistance meet, which are parallel to the
radiating lines contiguous o that side of the original triangle which
represents the force in question.
Also, the lengths of the three radiating lines will represent the
stresses on the bars to which they are respectively parallel.
149, Triangular Frame under Parallel Forces.— W hen the three
" external forces are parallel to each other, the
¢ triangle of forces A B C of fig. 73* becomes a
A straight line C A, as in fig. 74*, divided into two
3 segments by the point B. Let straight lines radiate
P, 74 2 from O to A, B, C; and let fig. 74 represent a
R triangular frame whose sides 1 2 or A, 2 3 or B,
¢ 3 1lorC,are respectively parallel to 0A, OB, OC;
then if the load C A be applied at 1 (fig. 74), A B applied
at 2, and B O applied at 3, are the supporting forces
** required to balance it; and the radiating lines O A,
5 OB, OC, represent the stresses on the bars A, B, C,
respectively.
From O let fall O H perpendicular to C A, the com-
. .4~ mon direction of the external forces. Then that line
Fig. 74%  will represent a component of the stress, which is of
equal amount in each bar. When CA, as is usually the case, is
vertical, O H is horizontal ; and the force represented by it is
called the ¢ horizontal thrust” of the frame. Horizontal Stress or
LResistance would be a more precise term; because the force in
qguestion is a pull in some parts of the frame, and a thrust in others.
In fig. 74, A and C are struts, and B a tie. If the frame were
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exactly inverted, all the forces would bear the same proportions to
each other ; but A and C would be ties, and B a strut.
The trigonometrical expression of the relations amongst the forces
acting in a triangular frame, under parallel forces, is as follows :—
Let @, b, ¢, denote the respective angles of inclination of the bars

A, B, 0, to the line O H (that is, in general, to a horizontal line).
Then, Load CA = O H - (tan ¢ == tan a) ;
Supporting | AB=0H ‘(tana == tan b); }.eeeeue (1)
Forces ) B0 —0H- (tan & == tan ¢) ;

. + | is to be used when the two | opposite directions
e’ wge { - } inclinations are in }the same direction.

I’ﬁ =O0H -seca
Stresses 1 OB=O0H  sech f cooreeoennres(2)
OC=0H " sece

o

OB = oo qan g eeess (3.)

« 150. Polygonal Frame—Egquilibrium.—The Theorem of Article
148 is the simplest case of a general theorem e
respecting polygonal frames consisting of any

number of bars, which is arrived at in the fol-

lowing manner. In fig. 75, let A, B, C, D, E, be B
the lines of resistance of the bars of a polygonal

frame, connected together at the joints, whose o

centres of resistance are, 1 between A and B, 2

between B and C, 3 between C and D, 4 between

D and E, and 5 between E and A.  In the figure, 3
the frame consists of five bars; but the demonstra- Y
tion is applicable to any number. From a point Fig. 75%,
O, in fig. 75* (which may be called the Diagram  _ —

of Forces), draw radiating lines OA, OB, OC, OD, O E, parallel
respectively to the lines of resistance of the bars; and on those
radiating lines take any lengths whatsoever, to represent the stresses
on the several bars, which may
have any magnitudes within the
limits of strength of the material.
Join the points thus found by
straight lines, so as to form a
closed polygon ABCDEA ; then

it is evident that A B is the ex-

1

»

Q
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ternal force, which being applied at the joint 1 of A and B, will
produce the stress OA on A and OB on B ; that BC is the external
force which being applied at the joint 2 of B and C, will produce
the stress OB on B (already mentioned) and OC on C; and so
on for all the sides of the polygon of forces ABCDEA. Hence
follows this

TreoreM. If lines radiating from a point be drawn parallel to
the lines of resistance of the bars of a polygonal frame, then the sides
of any polygon whose angles lie in those radiating lines will represent
a system of forces, which, being applied to the joints of the frame, will
balance each other ; each such force being applied to the joint between
the bars whose lines of resistance are parallel to the pair of radiating
lines that enclose the side of the polygon of forces, representing the force
an question.  Also, the lengths of the radiating lines will represent the
stresses along the bars to whose lines of resistance they are respectively
parallel. 2

151. open Polygonal Frame.—When the polygonal frame, instead
of being closed, as in fig. 75, is converted into an OPEN frame, by
the omission of one bar, such as E, the corresponding modification
is made in the diagram of forces by omitting the lines O E, D E,
EA. Then the polygon of external forces becomes ABCDOA ; and

D.O and O A represent the supporting forces respectively, equal and
directly opposed to the stresses along the extreme bars of the frame,
D and A, which must be exerted by the foundations (called in this
case abutments), at the points 4 and 5, against the ends of those
bars, in order to maintain the equilibrium.

152. Peolygonal Frame—Stability.—The Stability or instability of
a polygonal frame depends on the principles already stated in
Articles 138 and 139, viz, that if a bar be free to change its
angular position, then if it is a tie it is stable, and if a strut,
unstable ; and that a strut may be rendered stable by fixing its
ends.

For example, in the frame of fig. 75, Eis a tie, and stable ; A, B,
C, and D, are struts, free to change their angular position, and
therefore unstable.

But these struts may be rendered stable in the plane of the frame
by-means of stays; for example, let two stay-bars connect the joints
1 with 4, and 3 with 5; then the points 1, 2, and 3, are all fixed,
so that none of the struts can change their angular positions. The
same effect might be produced by two stay-bars connecting the joint
2 with 5 and 4.

The frame, as a whole, is unstable, as being liable to overturn
laterally, unless provided with lateral stays, connecting its joints
with fixed points.
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Now, suppose the frame to be exactly inverted, the loads at 1, 2,
and 3, and the supporting forces at 4 and 5, being the same as
before. Then E becomes a strut ; but it is stable, because its ends
are fixed in position ; and A, B, C, and D become ties, and are
stable without being stayed.

An open polygon consisting of ties, such as is formed by A, B, C,
and D when inverted, is called by mathematicians a funicular poly-
gon, because it may be made of ropes.

It is to be observed, that the stability of an unstayed polygon of
ties is of the kind described in Article 127, and admits of oscillation
to and fro about the position of equilibrium. This oscillation may
be injurious in practice, and stays may be required to prevent it.

153. Polygonal ¥rame under FParallel Forces.—
When the external forces are parallel to each other,
the polygon of forces of fig. 75* becomes a straight
line A D, as in fig. 756**, divided into segments by
the radiating lines ; and each segment represents the ©
external force which acts at the joint of the bars
whose lines of resistance are parallel to the radiating
lines that bound the segment. Moreover, the seg-
ment of the straight A D which is intercepted be-
tween the radiating lines parallel to the lines of
resistance of any two bars whether contiguous or not,
represents the resultant of the external forces which  Fig, 75%,
act at points befween the bars.

Thus, A D represents the total load, consisting of the three por-
tions A B, BC, CD, applied at 1, 2, 3 respectively. D A represents
the total supporting force, equal and opposite to the load, consist-

ing of the two portions D E, E A, applied at 4 and 5 respectively.

A C represents the resultant of the load applied between the bars
A and C; and similarly for any other pair of bars.

From O draw OH perpendicular to A D ; then that line re-
presents a component of the stress, whose amount is the same in
each bar of the frame, When the load, as is usually the case, is
vertical, that component is called the “horizontal thrust” of the
frame, and, as in Article 149, might more correctly be called Zoxi-
zontal stress or resistamce, seeing that it is a pull in some of the
bars and a thrust in others. -

The trigonometrical expression of these principles is as follows:—

Let the force O H be denoted simply by H.

Let 7, 7, denote the inclinations to O H of the lines of resistance
of any two bars, contiguous or not.

Let R, R/, be the respective stresses which act along those bars.
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Let P be the resultant of the external forces acting through the
Jjoint or joints between those two bars.

Then R=H ‘'sect; RR=H *sec?;

P = H (tan ¢ == tan 7).
| The { sum } of the tangents of the inclinations is { opposite}
difference | to be used according as they are similar

154. Open Polygonal Frame under Parallel Forces.— When the
frame becomes an open polygon by the omission of the bar E, the
diagram of forces 75** is modified by omitting the line O E.

Then the supporting forces exerted by the abutments at 4 and 5,
are no longer represented by the segments D K and E A of the line
AD, but by the inclined lines DO and OA, equal and directly
opposed respectively to the stresses along the extreme bars of the
frame, D and A.

Let 4, and 4, denote the angles of inclination of those bars.

Let R;=0D and R,= 0O A be the stresses along them.

Let P = A D denote the total load on the frame, Then by
the equations of Article 153,

5P .
~ tan ":d + tan ia,
R; = H seciy; R, = H *sec,

155. Bracing of Frames.—A brace is a stay-bar on which there
is a permanent stress. When the external forces applied to a poly-
gonal frame, although balancing each other as an entire system, arq
distributed in a manner not consistent with the equilibrium of each
bar separately, then by connecting two or more joints together by
means of braces, which may be either struts or ties, the resistances
of those braces may be made to supply, at the joints which they
connect, the forces wanting to produce equilibrium of each bar.

The resistance of a brace introduces a pair of equal and opposite
forces, acting along the line of resistance of the brace, upon the
pair of joints which it connects. It therefore does not alter the
resultant of the forces applied to that pair of joints in amount nor
in position; but only the distribution of the components of that
resultant on the pair of joints.

The same remark applies to any number of joints connected by &
system of braces.

To exemplify the use of braces and the mode of determining the
stresses on them, let fig. 76 represent a frame such as frequently
occurs in iron roofS, consisting of two struts or rafters, A and E,
and three tie-bars, B, C, and D, forming a polygon of five sides,
jointed at 1, 2, 3, 4, 5, loaded vertically at 1,and supported by the
vertical resistance of a pair of walls at 2 and 5. The joints 3 and



BRACING OF FRAMES, 143

4, having no loads applied to them, are connected with 1 by the
: / :

5
Fig. 76.

braces 14 and 18. Tt is required to find the stresses on those
braces, and on the other pieces of the frame.

To make the diagram of forces (fig. 76*), draw the vertical line
E A, as in Article 153, to represent
the direction of the load and of the .z b
supporting forces. e

The two segments of that line, AB

and D E, are to be taken to represent d.e .
the supporting forces at 2 and 5; and Fig. 76.* "

the whole line E A will represent the

load at 1. From the ends, and from the point of division of the
scale of external forces E A, draw straight lines parallel respectively
to the lines of resistance of the frame, each line being drawn from
the point in E A that is marked with the corresponding letter.
Then A a and B b, meeting at @, b, will represent the stresses along
A and B respectively; and Ee and Dd, meeting in d, ¢, will
represent the stresses along D and E respectively; but those four
lines, instead of meeting each other and C ¢ parallel to C in one
point, leave gaps, which are to be filled up by drawing straight lines
parallel o the braces: that is say, from g, b, to ¢, parallel to 13;
and from d, ¢, to ¢, parallel to 4 1. Then those straight lines will
represent the stresses along the braces to which they are respectively
parallel ; and C ¢ will represent the tension along C. TUpon
analyzing the diagram of forces so constructed, it will be found
that to each joint in the frame, fig. 76, there corresponds in fig.
76*, a triangle, or other closed polygon, having its sides respec-
tively parallel, and therefore proportional, to the forces that act at
that joint. For example,

Joints, 1, 2, 3, 4, 5,
Polygons, EAaceE; ABbA; BcbB; DdeD; DEeD.
The order of the letters indicates the directions in which the

forces act relatively to the joints.*

The method of arranging the positions of braces, and determining
the stresses along them, of which an example has been given, may
be thus described in general terms.

If the distribution of the loads on the joints of a polygonal frame,
though consistent with its equilibrium as a whole, be not consistent

* This method of treating braced frames contains an improvement sug-
coctarl hoe M» (Marlr Mavwell 1n 1R427
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with the equilibrium of each bar, then, in the diagram of forces,
when converging lines respectively parallel to the lines of resistance
are drawn from the angles of the polygon of external forces, those
converging lines, instead of meeting in one point, will be found to
have gaps between them. The lines necessary to fill up those gaps
will indicate the forces to be supplied by means of the resistance
of braces.

156. migidity of a Truss.—The word fruss is applied in carpentry
and iron framing to a triangular frame, and to a polygonal frame to

*which rigidity is given by staying and bracing, so that its figure
shall be incapable of alteration by turning of the bars about their
Jjoints. If each joint were absolutely of the kind described as the
first class in Article 136, that is, like a hinge, incapable of offering
any resistance to alteration of the relative angular position of the
bars connected by it, it would be necessary, in order to fulfil the
condition of rigidity, that every polygonal frame should be divided
by the lines of resistance of stays and braces into triangles and other
polygons so arranged, that every polygon of four or more sides
should be surrounded by triangles on all but two sides and the
included angle at farthest. For every unstayed polygon of four sides
or more, with flexible joints, is flexible, unless all the angles except
one be fixed by being connected with triangles,

Sometimes, however, a certain amount of stiffness in the joints of
a frame, and sometimes the resistance of its bars to bending, is relied
upon to give rigidity to the frame, when the load upon it is sub-
ject to small variations only in its mode of distribution. For
example, in the truss of fig. 81 (for which see Article 161, farther
on), the tie-beam A A is made in one piece, or in two or more
pieces, so connected together as to act like one piece ; and part of
its weight is suspended from the joints C, C, by the rods C B, C B.
These rods also serve to make the resistance of the tie-beam C C to
being bent, act so as to prevent the struts A C, CC, C A, from
deviating from their proper angular positions, by turning on the
joints A, C, C, A, If A B, BB, and B A, were three distinct
pieces, with flexible joints at B, B, it is evident that the frame
might be disfigured by distortion of the quadrangle B C C B.

157, variations of Load on Truss.—The object of stiffening a
truss by braces is to enable it to sustain loads variously distributed ;
for were the load always distributed in one way, a frame might be
designed of a figure exactly suited to that load, so that there should
be no need of bracing.

The variations of load produce variations of stress on all the
pieces of the frame, but especially on the braces; and each piece
must be suited to withstand the greatest stress to which it is liable.

Some pieces, and especially braces, may have to act sometimes as
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struts and sometimes as ties, according to the mode of distribution
of the load.

158. Bar common to several Frames.— W hen the same bar forms
at the same time part of two or more different frames, the stress
along it is determined by the aid of the following

THEOREM. The stress on a bar common to two or more frames, is
the resultant of the different stresses to which it is subject, in virtue of
s position in the different frames.

Tllustrations of this will be found in the following Articles.

159. Secondary Trussing—A. secondary truss is a truss which is
supported by another truss.

‘When a load is distributed over a great number of centres of
resistance, it may be advantageous, instead of connecting all those
centres by one polygonal frame, to sustain them by means of several
small trusses, which are supported by larger trusses, and so on, the
whole structure of secondary trusses resting finally on one large
truss, which may be called the primary truss. In such a combina-
tion, the same piece may often form part of different trusses; and
then the stress upon it is to be determined according to the Theorem
of Article 158.

Example 1. Fig. 77 represents a kind of secondary trussing com-
mon in the framework of iron roofs.

Fig. 77.

The entire frame is supported by pillars at 2 and 3, each of which
sustains in all, half the weight. H

1 2 3 is the primary truss, consisting of two rafters 1 3, 1 2, and
a tie-rod 2 3.

The weight of a division of the roof is distributed over the
rafters.

The middle point of each rafter is supported by a secondary truss;
one of those is marked 1 4 3; it consists of a strut, 1 3 (the rafter
itself), two ties 4 1, 4 3, and a strut-brace, 5 4, for transmitting the
load, applied at 5, to the point where the ties meet.

Fach of the two larger secondary trusses just described supports
two smaller secondary trusses of similar form and construction to
itself; two of those are marked 17 5,5 6 3; and the subdivision of
the load might be carried still farther.

_ In determining the stresses on the pieces of this structure, it is
indifferent, so far as mathematical accuracy is concerned, whether we
L
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commence with the primary truss or with the secondary trusses;
but by commencing with the primary truss, the process is rendered
more simple.

(1.) Primary Truss123. Let W denote the weight of the roof ;
then 1 W is distributed over each rafter, the resultants acting
through the middle points of the rafters. Divide each of those
resultants into two equal and parallel components, each equal to
1 W, acting through the ends of the rafter; then } W is to be
considered as directly supported at 3, 1 W at 2, and 1 W+ 1'W
= 4 W at 1; therefore the load at the joint 1 is

, P=1W.
Let 4 be the inclination of the rafters to the horizon; then by the
equations of Article 149
H _ m—i - Zt—a—l’l'—i,----u..;--.ca---------u(l-)

This is the pull upon the horizontal tie-rod of the primary tfuss,
2 3; and the thrust on each of the rafters 1 3, 12,is given by the
equation

R=Hsectmm———.ciiirreerrrnrennenn (2)

(2.) Secondary Truss 1 43 5. The rafter 1 3 has the load 1 W
distributed over it; and reasoning as before, we are to leave two
quarters of this out of the calculation, as being directly supported
at 1 and 3, and to consider one-half, or 1 W, as being the vertical
load at the point 5. The truss is to be considered as consisting of
a polygon of four pieces, 51,1 4, 4 3, 3 5, two of which happen to be
in the same straight line, and of the strut-brace, 5 4, which exerts
obliquely upwards against 5, and obliquely downwards against 4, a
thrust equal to the component perpendicular to the rafter of the
load 1 W; which thrust is given by the equation

Then we easily obtain the following values of the stresses on the
rafter and ties, in which each stress is distinguished by having affixed
to the letter R the numbers denoting the two joints between which
it acts.

Pulls 354 1 3
onties{R“:R“ =m=§Wcotanz;
R Ly T
Thrusts B = Ddant. | 18 =8 4)
on
rafter Bl i1 <9 sing
R“—2tam' 8'Wsm'z_ SW(cosecz 2 sin¢)
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The difference between the thrusts on the two divisions of the
rafter,
Rss — Ry =4+ Wsing,

is the component along the rafter of the load at the point 5.

(3.) Smaller Secondary Trusses, 175, 56 3.—These trusses are
similar in every respect to the larger secondary trusses, except
that the load on each point is one-half, and consequently each of
the stresses is reduced to one-half of the corresponding stress in the
equations 3 and 4.

(4.) Resultant Stresses. The pull on the middle division of the
great tie-rod 2 3 is simply that due to the primary truss, 1 23. The
pull on the tie 4 7 is simply that due to- the secondary truss 1 4 3.
The pulls on the ties 5 7, 5 6, are simply those due to the smaller
secondarytrusses, 157, 5 6 3. But agreeably to the Theorem of Art.
158, the pull on the tie 1 7 is the sum of those due to the larger
secondary truss 1 4 3, and the smaller secondary truss 17 5. The
pull on 6 4 is the sum of those due to the primary truss 1 2 3 and to
the larger secondary truss 14 3. The pull on 6 3 is the sum of those
due to the primary truss 1 2 3, to the larger secondary truss 143, and
to the smaller secondary truss 5 6 3. The thrust on each of the four
divisions of the rafter 1 3, is the sum of three thrusts, due re-
spectively to the primary truss, the larger secondary truss, and one
or other of the smaller secondary trusses.

Example I1. Fig. 78 represents another form of truss common in
ronfs. Let 'W be the weight of the roof, as before, distributed over

Fig. 78.

therafters1 2,1 3. 2 3isthe great tie-rod; 17, 6 5, 8 9, suspension-
rods; 7 6,7 8,5 4,9 10, struts. v

(1.)11;9imary Truss12 3. The load at 1, as before, is to be taken
as = g 3

(2.) Secondary Trusses 7 6 3,7 8 2. The load at 6 is to be held to
consist of one-half of the load between 6 and 1, and one-half of the
load between 6 and 3 ; that is, one-half of the load between 1 and
3, or 1 W. The trusses are triangular, each consisting of two struts
and a tie, and the stresses are to be found as in Article 149,

The suspension-rod 1 7 supports two-thirds of the load on 7 6 3,
and two-thirds of the load on 7 8 2; that is, 3:5*W = } W; and
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this, together with # W which rests directly on 1, makes up the
load of # W, already mentioned.

(3.) Smaller Secondary Trusses 34 5,9 10 2. Each of the points
4 and 10 sustainsa load of ¥ W, from which the stresses on the bars
of those smaller trusses can be determined.

One-half of the load on 4, that is ¥ W, hangs by the suspension-
rod 6 5; and this, together with ¥ W, which rests directly on 6,
makes up the load of + W on that point, formerly mentioned. The
same remarks apply to the suspension-rod 8 9.

(4.) Resultant Stresses. The pull between § and 9 is the sum of
those due to the primary and larger secondary trusses; that between
5 and 3, and between 9 and 2, is the sum of the pulls due to the
primary, larger secondary, and smaller secondary trusses.

The thrust on 1 6 is due to the primary truss alone ; that on 6 4
to the primary and larger secondary truss; that on 4 3 to the
primary, larger secondary, and smaller secondary trusses; and
similarly for the divisions of the other rafter.

Example I11. Suppose that instead of only three divisions, there
are 7 divisions in each of the rafters 1 3, 1 2, of fig. 78 ; so that be-
sides the middle suspension-rod 1 7, there are » — 2 suspension-rods
under each rafter, or 27 — 4 in all; and n — 1 sloping struts
under each rafter, or 27 — 2 in all. There will thus be 27 — 1

centres of resistance; that is, the ridge-joint 1, and » — 1 on
each rafter ; and the load directly supported on each of these
W

points will be P
W
The total load on the ridge-joint, 1, will be as before, — ; that

; Wil w 1
is to say, T directly supported, and o5 (1 —;) hung by the
middle suspension-rod.

The total load on the upper joint of any secondary truss, distant

n—m+1
4n .
—_m

that is to say, 21% directly supported, and nﬂ—__l ‘W hung by

from the ridge-joint by m divisions of the rafter, will be,

a suspension-rod.

The stresses on the struts and tie of each iruss, primary and
sccondary, being determined as in Article 149, are to be combined
as in the preceding examples.

160. Compouna Trusses—Several frames, without being distin-
guishable into primary and secondary, may be combined and con-
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nected in such a manner, that certain pieces are common to two or
more of them, and require to have their stresses determined by the
Theorem of Article 158.

Example 1. In fig. 79, 8 9 represents part of the horizontal plat-
form of a suspension bridge, supported and balanced by being hung
from the top of a central pier, 1, by pairs of equally inclined rods or
ropes, viz.:—1 8and 1 9; 1 6and 1 7; 14and15; 12and1 3.

Fig. 79.

Here 8 1 9 is to be considered as a distinct triangular frame,
cousisting of a strut 8 9, and two ties 1 8 and 1 9, loaded with
equal weights at 8 and 9, and supported at 1. Let x denote the
height of the point of suspension 1 above the level of the loaded
points, 73 = ¥, the distance of those points on either side of the
middle of the pier, P the load at each point, Ry = R, the pull on
each of the ties, 1 8,1 9, Ty, the thrust between 8 and 9 along the
platform. Then we have

Py Q 3
Tyo = JBS Ry = P_____,Ja: £ %;

x x

and similar equations for each of the other distinct frames 6 1 7,
415,21 3.
Then using a similar notation in each case, the thrust along the
platform
between 8 and 6 ) . T

, Tand9 [ e

, ©Oand4}).

:’ 5and7}ls ng o1 T67,

and so on for as many pairs of divisions as the platform consists of.
Lxample 11. Fig. 80 represents the framework for supporting

2 5 7 8 6 3

7 z 4
L T S S T T T
Fig. 80,

one side of a timber bridge, resting on two pilersat 1 and 4. It
consists of four distinet trusses, viz.,
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1 2 3 4 loaded at 2 and 3,
1564 5, 6
1784 % (-
194
but all those trusses have the same tle-beam, 14; and the pull
along that tie-beam is the sum of the pulls due to the four trusses.
71 161 Resistance of Frame at a Section.—THEOREM. [f a frame
For e acted upon by any system of external forces, und if that frame be
conceived to be completely divided into two parts by an ideal surface,
the stresses along the bars which are intersected by that surface, balance
the external forces which act on each of the two parts of the frame.

This theorem, which requires no demonstration, furnishes in
some cases the most convenient method of determining the stresses
along the pieces of a frame. The following consideration shows to
what extent its use is limited.

CasE 1. When the lines of resistance of the bars, and the lines
of action of the external forces, are all in one plane, let the frame
be supposed to be intersected anywhere by a plane at right angles
to its own plane. Take the line of intersection of these two planes
for an axis of co-ordinates ; say for the axis of ¥, and any convenient
point in it for the origin O ; let the axis of = be perpendicular to
this, and in the plane of the frame, and the axis of z perpendicular
to both, and in the plane of sectio.

The external forces applied to the part of the frame at one side
of the plane of section (either may be chosen) being treated as in
Article 59, give three data, viz., the total force along x = F,; the
total force along y = F,, and the moment of the couple acting
round z = M ; and the bars which are cut by the plane of section
must exerb resistances capable of balancing those two forces and
that couple. If not more than three bars are cut by the plane of
section, there are not more than three unknown quantities, and
three relations between them and given quantities, so that the
problem is determinate ; if more than three bars are tut by the
plane of section, the problem is or may be indeterminate.

The formule to which this reasoning leads are as follows :—Let
« be positive in a direction from the plane of section towards the
part of the structure which is considered in determining F,, F,, and
M; let + y lie to the right of 4+ when looking from 2 ; let angles
measured from O 2 towards -+ y, that is, towards the right, be
positive ; and let the lines of resistance of the three bars cut by the
plane of section make the angles 4, %, 45, with @.  Let ny, n,, 15, be
the perpendicular distances of those three lines of resistance from
0, distances towards the

nght} of O  being considered as { P }

left negative
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Let Ry, R, Ry, be the resistances, or total stresses, along the
three bars, pulls being positive, and thrusts negative, Then we
have the following three equations :—

F. =R, cos 4, + Rs cos 3, + R cos %;
F, =R, sin 4 + R, sin ¢; + Ry sin PR S e s,
—~ M =R, n, + R; 5y + Ry ny;

from which the three quantities sought, Ry, R,, Rs, can be found.

Speaking with reference to the given plane of section, F, may be
called the normal stress, B, the shearing stress, and M the moment
of flexure or bending stress; for it tends to bend the frame at the
section under consideration. -,

CasE 2. 'When the bars of the frame, and the forces applied to
them, act in any direction, the forces applied to one of the two
divisions of the frame are to be reduced to rectangular components;
and the three resultant forces along these rectangular axes, F,, F,,
F,, and the three resultant couples round these three axes, M,, M,,
M,, are to be found as in Article 60. Those forces and couples
must be equal and opposite to the corresponding forces and couples
arising from the stresses along the bars cut by the section; and
thus are obtained six equations between those stresses and known
quantities ; so that if the section cuts not more than six bars, the
problem is determinate; if more, it is or may be indeterminate.

The equations are obtained as follows :—Let R denote the stress
along any one of the bars, pull being positive and thrust negative.
Let «, 3, v, be the inclinations of the line of resistance of that bar
to the axes of x,7,2. Let » be its perpendicular distance from Q.
Conceive a plane to pass through O and through the line of resistance
of the bar, and a normal to be drawn to that plane in such a direc-
tion, that looking from the end of that normal towards O, the bar
is seen to Le to the right of O, and let 2, g, », be the angles of
* inclination of that normal to the three axes. Let = denote the
summation of six corresponding quantities for the six bars. Then
the six equations are,

F,=2'Recosz; F,—=3"Rcosp; F,=32 Rcosv;

—M, =3 Rncosr; —M,=3 Rmncosp; 2).
— M, =3*Rmncosv;
from which the six stresses sought can be computed by elimination,

The planeof 5 zbeing as before, that of the section, F, is the total
direct stress on it; F,and F, are the total shearing stresses ; M, and
M, arc bending couples, and M, a twisting couple.

Remarks.—Every problem respecting the equilibrium of frames
which can be solved by the method of sections explained in this
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Article, can also be solved by the method of polygons explained in

the previous Articles; and the choice between the two methods is
a question of convenience and simplicity in each particular case.

The following is one of the simplest examples of the solution of

a problem in both ways. Fig. 81 represents a truss of a form very

¢ c common in carpentry (already referred

to in Article 156), and consisting of

- three struts, A C, CC, C A, a tie-

2 A
—t >4 beam A A, and two suspension-rods
T 7 )
///47//? % N j/é/% CB, CB, which serve to suspend part

: of the weight of the tie-beam from
Hig:81; the joints C C, and also to stiffen the
truss in the manner mentioned in Article 156.

Let ¢ denote the equal and opposite inclinations of the rafters
A C, CA, to the horizontal tie-beam A A ; and leaving out of
consideration the portions of the load directly supported at A A,
let P, P, denote equal vertical loads applied at C C, and — P,
— P, equal upward vertical supporting forces applied at A A, by
the resistance of the props. Let H denote the pull on the tie-
beam, R the thrust on each of the sloping rafters, and T the thrust
on the horizontal strut C C.

Proceeding by the method of polygons, as in Article 153, we find
at once, N

H=—-T=Pcotani;]

= — P cosec. J

(Thrusts being considered as negative.)

To solve the same question by the method of sections, suppose a
vertical section to be made by a plane traversing the centre of the
right hand joint C ; take that centre for the origin of co-ordinates;
let  be positive towards the right, and ¥ positive downwards ; let
x;, Y1, be the co-ordinates of the centre of resistance at the right
hand point of support A. When the plane of section traverses the
centre of resistance of a joint, we are at liberty to suppose either
of the two bars which meet at that joint on opposite sides of
the plane of section to be cut by it at an insensible distance from
the joint. X

First, consider the plane of section as cutting C A, The forces
and couple acting on the part of the frame to the right of the
section are

05— — P
M=—P .
Then, observing that for the strut A C, n = 0, and that for the tie
A A, n = y,, we have, by the equations 1 of this Article
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RCOS’I:+H=F,=O; 3 L]

Rsint = — P; s
Hyy=—M=+ Pa;

whence we obtain, from the last equation,

= he = Pcotant
hn
from the first, or from the second L L. )’
R=——£=—Pcoseci. ;
cos ¢

Next, conceive the section to cut CC at an insensible distance
to the left of C. Then the equal and opposite applied forces + P
at O, and — P at A, have to be taken into account ; so that

F,:O,‘ F,:O,‘ M=-—Px1;
from the first of which equations we obtain
H+T=F,=0,and
e B e 1) 1y e S A A o (5.)

In the example just given, the method of sections is tedious and
complex as compared with the method of polygons, and is intro-
duced for the sake of illustration only; but in the problems which
are to follow, the reverse is the case, the solution by the method of
sections being by far the more simple.

162. A Half-Lattice Girder, sometimes called a “Warren Girder,”
is represented in fig. 82. It consists essentially of a horizontal upper
bar, a horizontal lower bar, and a series of diagonal bars sloping
alternately in opposite direc-
tions, and dividing the space
between the upper and lower
bars into a series of triangles.
In the example to be consi-
dered, the girder is supposed .
to be supported by the vertical resistance of piers at its ends A and
B, and loaded with weights acting at or through the joints at the
- angles of the several triangles.

This girder might be treated as a case of secondary trussing, by
considering the upper and lower and endmost diagonal bars as
forming a polygonal truss like fig. 81, but inverted, supporting a
smaller erect truss of the same kind, which supports a still smaller
inverted truss, which supports a still smaller erect truss, and so on
to the smallest truss, which is the middle triangle. But it is more

Fig. 82.
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simple to proceed by the method of sections, which must be applied
successively to each division of the girder.

The load at each joint being known, the two supporting forces
at A and B, are to be determined by the principles of the equili-
brium of parallel forces in one plane (Articles 43, 44). Let P,,
P, denote those supporting forces, upward forces being treated as
positive, and downward as negative ; and let — P denote the load
at any joint, which may be a constant or a varying quantity for
different joints,

Suppose now that it is required to find the stress along any one
of the diagonals, such as C E, along the top bar immediately to the
right of C, and along the bottom bar immediately to the left of E.
Conceive the girder to be divided by a vertical plane of section
C D, at an insensibly small distance to the right of C; take the
intersection of this plane with the line of resistance of the top bar
for the origin of co-ordinates, which sensibly coincides with C.

Let = denote the distance of any one of the joints to the left of
the plane of section, from that plane. ILet «; be the distance of the
point of support A to the left of the same plane. Let » be positive
upwards ; so that for the joints of the upper bar, ¥ = 0, and for
those of the lower bar, ¥ = — £, % denoting the vertical depth
between the lines of resistance of the upper and lower bars.

Let ¢ be the inclination of the diagonal CE to the horizontal
axis of z. In the present instance this is positive ; but had CE
sloped the other way, it would have been negative.

Let the symbol — 2§ - P denote the sum of the loads acting at
the joints between the plane of section and the point of support A,
the load at the joint C being included. Then for the total forces and
couple acting on the division of the girder to the left of the plane
of section, we have,—direct force, ¥, = 0, because the applied
forces are all vertical ;—shearing force, F, = P, — 3¢ - P; a force
which ’is { 112 ;:ii;l‘:;eoorr d‘j) I;;; a;;g‘r d } according as the plane of section
s { nearer to

farther from
divides the load into two portions equal respectively to the support-
ing pressures ;—bending couple M = P, x, — 5+ Px; which is
upward, and right-handed with respect to the axis of z.

Now let R, denote the stress along the upper bar at C, R, that
along the lower bar at D, and R, that along the diagonal CE;
then the equations 1 of Article 161 become the following :—

R, + R; + Ryeos ¢ = 0; or R, + Rycos ¢ = — R;...(a)
that is, the stress along the upper bar, and the horizontal component

}the point of support A, than a plane which
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of the stress along the diagonal, are equal and opposite to the stress
along the lower bar ;

Rysin§=F,=P,— 3 P;.crararrerons ®.)

that is, the vertical component of the stress along the diagonal,
balances the shearing force ;

-—-Ray=Rgh=M=P'Awl—!$'P:z:; ......... (c)
that is, the couple formed by the equal and opposite horizontal
stresses of equation (@), acting at the ends of the arm A, balances
the bending couple.

Finally, from the equations (a), (8), (c), are deduced the following
values of the stresses:—

-

Pull on lower bar, 1
R, = (Baty— 3t *P);
Stress on diagonal,
Ry=cosec i (P, — 25 P); r
Thrust on upper bar,
Ri=—R;— R;cos ¢

=_%(PAW1_ Es'Pm)_'comi(P‘_zé.P)'
h J

Another, and sometimes a more convenient form, can be found
for the second and third of those expressions. Let s denote the
length of the diagonal CE, and =, the horizontal distance of its
lower end E from the point of support A ; then

s=,J (B + (x/ — x)?),

and also ’
ks . x—

cosec & = = cotan ¢ = 7 o ()

which substitutions having been made, give

8
Ry = 7 (P,— 34+ P)

(3)

D

1
Ri= —7 {Bm— st Pa+ (/' —s) Ba— 3B |

1
= — 7 ®uz/— 2% Pz)
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in which & is taken to denote the horizcontal distance of any joint
to the left of a vertical plane traversing E. The last expression for
R, is exactly what would have been obtained by supposing the
plane of section to traverse E instead of C.

Any given diagonal is { aa;,flelt } according as it slopes { agalaﬁlhs " }
the direction of the shearing force F, acting on a plane of section
traversing it.

163. Half-Lattice Girder—Uniform Lond.—CASE 1. Every joint
loaded. 'When the joints of a half-lattice girder are at equal dis-
tances apart horizontally, and loaded with equal weights, the
equations take the following form :—

Let N denote the even number of divisions into which vertical
lines drawn through the joints divide the total length or span
between the points of support. Let 7 be the length of one of these
divisions, so that N 7 is the total span. The total number of
loaded joints is N —1 ; this must be an odd number, and there
must be a middle joint dividing the girder into two halves, sym-
metrical to each other in every respect, figure, load, support, and
stress, so that it is sufficient to consider one half only ; let the left
hand half be chosen. Let the middle joint be denoted by O, and
the other joints by numbers in the order of their distances from the
middle joint, so that the joint numbered » shall be at the distance
nl from O. The even numbers denote joints on the same horizontal
bar with O; the odd numbers those on the other.

The total load on the girder is

—@—1P,
of which one-half is supported on each pier ; that is to say,
N
PR 1o (1)

2

The stress on the upper bar is everywhere a thrust ;—that on

the lower bar a pull. Diagonals which { Eslf} from the middle
ties

towards the ends are { Sith } . By these principles the Zind of

stress on each piece is determined; it remains only to compute the
amount.

Let 7 be the number of any joint; it is required to find the stress
along the diagonal which runs from that joint towards the middle
of the girder, and the stress along that part of either of the hori-
zontal bars which iy opposite the joint.

Suppose a vertical section to be made at an insensible distance
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from the joint, intersecting the diagonal in question and the hori-
zontal bars.

N ¥
Between O and either pier there are % — 1 loaded joints ; be-

tween O and the plane of section in question, there are n—1
joints ; hence between the plane of section and the pier there are

g " joints. Consequently
i T
Pl B2 e ls—n) 108
C -
and the shearing force is
A 1
Iéy=PA—-2(-JP=( 2 R 2)
So that it increases at an uniform rate from the middle towards
the ends.
The distance of the n™ joint from the pier is x, = (g— 7) o/

Hence the upward moment of the supporting force is

o= (g_%) (g———n) Pl

The downward moment of the load at the joints between the
plane of section and the pier is found from the consideration, that
the leverage of the nearest portion of that load is nothing, and

that of the farthest (g— 1— n) {, so that the mean leverage is
1 /N

A
5(5— 1—mn)l; which being multiplied by the load = - P as
¢

found above, gives for the moment

A 1/N N

hence the bending couple is

A
M=P.,xl—z-Pm=1(§+n) (E_ ) B
c 2\2

=%(¥—n”)'l’l; ..................... 3)

that is to say, it is proportional to the product of the segments info
which the plame of section divides the length of the girder, and is
2

greatest at the middle, where it is I;L SR
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The uniform inclination of the diagonals, in one direction or the
other, being denoted by 7, we have
’ 2 i§
cosec § =+ = ki o

R

and hence the amounts of the stresses are,

Along the diagonal,
R’=F,'coseci=-%( ——%) R
Along the horizontal bar, U (4.)
M : )\ P!

These stresses are stated irrespective of their signs, which are to
be determined by the rules laid down after equation 1.
The least value of R’ is for the diagonals next the middle point,

for which n=1, and R’=%. Its greatest value is for the dia-
gonals next the piers, for which n= g, and R'= (I\T—:)___IIB_SE‘; in fact,

these diagonals sustain the entire load.
The least value of the horizontal stress R is at the divisions of

one of the horizontal bars next the piers, for which n:%— 1, and

_(N=-1)P¢
R= Ak ' ;
The greatest value of R is at the division of one of the horizontal

bars opposite the middle joint, for which »=0, and R =—1\I;%.
Case 2. Ewvery alternate joint loaded. Suppose those joints only
to be loaded which are distant by an even number of divisions from

the piers. The total number of loaded joints isg — 1, the load

on the girder — (g -~ 1) P, and the supporting pressures

e 5 4l
Bttt — = ) P.....cocitiioined 5.
| (4 2 ) * *)

Let » be the number of any loaded joint, n — 1 that of the
unloaded joint nearest to it on the side next the middle of the
girder, O. If a plane of section traverse the girder at.an insensible
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distance from either of those joints on the side next O, the shearing
force is the same, being the excess of the supporting pressure, P,
(equation 5) above the load on m, and the other loaded joints
between it and A, whose number is one-half of what it was in

case 1, that is g- - % Hence we find

The upward moment of the supporting force is
K N .1 N
at the joint n, P, », = (.Z o §) (._2.. —n) ‘Pl

at the joint n — 1, P, (& + ) = (1; _%) (?Tz- —-n-l—l) - P,

The downward moment of the load from the joint % inclusive to
the pier, relatively to the plane of section near that joint, is found
by considering that the leverage of the neayest portion of that load

is nothing, and that of the farthest (g — 2 — m) I; so that the

mean leverage is % (% -2 - n) {, which being multiplied by

the load — % - -g— P, gives for the moment,

—23-Pw=-—%(% —2—77,) (% - )';Pl.

- The corresponding moment for the joint # — 1 is

_zéP(w-lel):—i- %—n)2°Pl.

Hence the bending couples are—
At the loaded joint n,
o (N ] ) N 1 /N? ,) ;
M= (3 +n) (3—n)Ri= '4‘(‘4‘_" Pi;
At the unloaded joint n — 1,

1[N
M= {E—(n—-l)"'—l}PL

P (7))
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Using these data, we obtain for the stress along the diagonal con-
necting the joints # and n — 1,

R’=choseci=n g g «(8)

(The stress along the diagonal connecting the joints » — 1 and
n — 2 is of equal amount and opposite kind).

Along the bar opposite the loaded joint n, ]
RSN -\ P
B- 7-5(7—) 5% h
Along the bar opposite the unloaded joint n — 1, 453
i Sl { N® 5 }P l
= e— = — —_— — 1) =—= N
Bsweata "D 3

P

The last two stresses are of opposite kinds ; and the kind of each
stress is to be determined, as before, by the rule given after equa-
tion 1 of this Article.

164. Lattice Girder—Any Load.—In a lattice girder, as in a half-
lattice girder, there are a hori-
zontal upper and lower bar;

m but whereasa half-lattice girder
Am B contains but one zig-zag set of

o diagonal bars, a lattice girder
contains two or more sets, cross-
Fig. 85. ing each other, usually at equal

inclinations to the horizon.
Fig. 83 represents the simplest form of a lattice girder, in which
there are two sets of diagonals, crossing each other midway
between the upper and lower horizontal bars.

The load is supposed to be applied at the joints.

Suppose the girder to be cut by a vertical plane of section C D,
traversing one of the joints where the diagonals cross. The shearing
force and bending couple at this plane of section are to be deter-
mined exactly in the same manner as for a half-lattice girder, in
Article 162.

In the present case, because the plane of section C D cuts four
bars, the problem, in a strict mathematical sense, is indeterminate,
according to the principles stated in Article 161 ; but it is solved
by taking for granted what is the fact in well-constructed lattice
girders, that each of the two diagonals which cross each other at
the section C D bears one-half of the shearing force; and in like
manner, when several pairs of diagonals cross each other at the
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same cross section, it is assumed that the resistance to the shearing
force is equally distributed amongst them.

To fulfil this condition where a pair of diagonals, as in fig. 83,
cross each other, with equal and opposite inclinations, the stresses
along them must be equal, and of opposite kinds. Then let R and
— R’ be the stresses along the pair of diagonals, and ¢ and — ¢
their inclinations to the horizon, we shall have for the vertical
component of the force sustained by them

F,= R’sin ¢ — R/ sin (— )= 2 R’ sin ;........ (L)
and for the horizontal component,
R cos i — R cos (— @) =03

so that the horizontal components of the stresses along the two
diagonals at the plane of section balance each other.

Let 2 m be the number of diagonal bars which cross each othe:
at a given vertical section, the amount of the stress along each bar is

R F, cosec ¢ (
e N EAEE R R ET T T RT XN R IR P )
2m

with

against

which is a { tmt} for bars which slope{

} the shearing

force.

The pull along the lower bar, and the thrust along-the upper bar,
at the given vertical section, must constitute a couple which balances
the bending couple M ,-hence their common amount is

M
R 7

165. wattice Girder—Uniform Load.—If N denote the even num-
ber of equal divisions into which the length of a lattice girder is
divided by vertical lines traversing all the joints, whether of meeting
of diagonal and horizontal bars, or of crossing of diagonal bars, and
{ the length of one of those divisions, so that N [, as before, is the
span of the girder, then the effect of a load equally distributed
amongst all those vertical lines, or amongst the alternate lines,
may be found by means of the formule for a half-lattice girder,
Article 163, as follows :—

I When the load is distributed over all the vertical lines, the
formulze for case 1, equations 1, 2, 3, 4, are to be applied to vertical
sections, such as C D, traversing the joints of crossing of diagonals;
observing only, that the resistance to the shearing force is distributed
amongst the diagonals as shown by equation 2 of Article 164,

M
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II. When the load is distributed over those vertical lines only
which traverse joints of meeting of diagonal and horizontal bars,
the formule of case 2, equations 5, 6, 7, 8, 9, so far as they
relate to sections made at unloaded joints, are to be applied to vertical
sections, such as C D, traversing the joints of crossing of diagonals;
attending as before to the distribution of the stress amongst the
diagonals by equation 2 of this Article. i

166. Transformation of ¥rames—The principle explained in
Article 66, of the transformation of a set of lines representing one
balanced system of forces into another set of lines representing
another system of forces which is also balanced, by means of what
is called “PARALLEL PROJECTION,” being applied to the theory of
frames, takes obviously the following form :—

TueorEM. If @ frame whose lines of resistance constitute a given
figure, be balanced under a system of external jforces represented by a
gtven system of lines, then will a frame whose lines of resistance con-
stitute a figure which is a parallel projection of the original figure, be
balanced under a system of forces represenied by the corresponding
parallel projection of the given system of lines; and the lines repre-
senting the stresses along the bars of the new frame, will be the
corresponding parallel projections of the lines representing the stresses
along the bars of the original frame. |

This Theorem is called the “Principle of the Transformation of
Frames.” It enables the conditions of equilibrium of any unsym-
metrical frame which happens to be a parallel projection of a
symmetrical frame (for example, a sloping lattice girder), to be
deduced from the conditions of equilibrium of the symmetrical
frame,—a process which is often much more easy and simple than
that of finding the conditions of equilibrium of the unsymmetrical
frame directly.

SectioN 2.—Equilibrium of Chains, Cords, Ribs, and
Linear Arches.

167. Equilibrium of a Cord.—Let D A C in fig. 84 represent a
u\ ¢ flexible cord supported at
the points C and D, and

loaded by forces in any
direction, constant or vary-
ing, distributed over its
whole length with' con-
; ‘ stant or varying intensity.

s % g Lt A a6

two points in this cord ; from those points draw tangents to the
cord, A P and B P, meeting in P. The load acting on the cord
between the points A and B is balanced by the pulls along the
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cord at those two points respectively ; those pulls must respectively
act along the tangents A P, BP; hence follows—

TaeoreM L The resultant of the load between two given points
tn a balanced cord acts through the point of intersection of the tangents
to the cord at those poinis; and that resultant, and the pulls along the

" cord at the two given points, are proportional to the sides of a triangle
which are respectively parallel to their directions.

The more the number of loaded points in a funicular polygon (as
defined in Article 150) is increased,—or, in other words, the more
the number of sides in the polygon is multiplied,—the more nearly
does it approximate to the condition of a cord continuously loaded ;
while at the same time, the number of lines radiating from the
point O in the diagram of forces (exemplified in fig. 75%) increases
with the number of sides of the funicular polygon, and the polygon
of external forces of fig. 75% approximates to a continuous line,
curved or straight.

A diagram of forces for a continuously loaded cord may be con-
structed in the following manner (fig. 84¥). Let radiating lines be
drawn from the point O parallel to the tangents of the cord at any
points which may be under consideration:—for example, let O C,
O D, be parallel to the tangents at the points of support, and O A,
O B, parallel to the tangents at the points A and B of fig. 84 re-
spectively. Let the lengths of those radiating lines represent the
pulls along the cord at the points to whose tangents they are
parallel ; and let a line D A B C, curved or straight, as the case
may be, be drawn so as to pass through the extremities of all the
radiating lines which represent the pulls along the cord at different
points. Then from Theorem I. it appears, that a straight line
drawn from B to A in fig. 84% will represent in magnitude and
direction the resultant of the load on the cord o
between A and B (fig. 84). Now, suppose the
point marked A in fig. 84 to be taken gradually
nearer and nearer to B; then will O A in fig. 84*
approach gradually nearer and mnearer to O B;
and while the direction of the straight line drawn
from B to A gradually approaches nearer and
nearer to the direction of the tangent at the point
B to the line CB A D in fig. 84%, the resultant
load between B and A represented by that
straight line gradually approaches mearer and °
nearer in direction to the direction of the load at the point B in fig,
84; therefore, the direction of the load at any point B of the cord
(fig. 84), is represented by the direction of a tangent at B (fig. 84%),
to the line CBA D. Hence follows—

TureoreM 11, If a line (called a line of loads) be drawn, such

B
Fig. 84%,
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that while its radius-vector from a given point s parallel to a tangent
to a loaded cord at a given point, its own tangent is parallel to the
direction of the load ot the point in the cord ,; then will the length of
o radius-vector of the line of loads represent the pull at the corre-
sponding point of the cord; and a straight line drawn between any two
points in the line of loads will represent in magnitude and direction
the resultant load between the two corresponding points in the cord.

The supporting forces required at the points C and D (fig. 84),
are obviously represented in magnitude and direction by the ex-
treme radiating lines, 0C, O D.

A loaded cord, hanging freely, is obviously stable, but capable of
oscillation,

168. Cord under Parallel Loads.—If the direction of the load be
c everywhere parallel and vertical, the line of loads be-
comes a vertical straight line, as C B A D (fig. 84**).

i To express this case algebraically, let A in fig. 84
be the lowest point of the cord, so that the tangent
i , AP is horizontal. Then in fig. 84*% O A will be

horizontal, and perpendicular to CD. Let

H — OA = horizontal tension along the cord at A;
| R = OB = pull along the cord at B;

Fig. g4*+ f P — AB — load on the cord between A and B;

it — —~ X PB (fig. 84) = < A O B (fig. 84**) — inclination
of cord at B;

then,
P=Htani; R= /(P + H) = Hsect........(l.)

To deduce from these formule an equation by which the form of
the curve assumed by the cord can be determined when the distri-
bution of the load is known, let that curve be referred to rectangular
horizontal and vertical co-ordinates, measured from the lowest point

A, the co-ordinates of B being, AX =z, X B = y; then

fusiiid
tan: = (TZ;
whence we obtain v -
Yy i
TR CA IRt (2)

a differential equation which enables the form assumed by the cord
to be determined when the distribution of the load is known.

169. €Cord under Uniform Vertical Lond.—By an umfbrm vertical
load is here meant a vertical load uniformly distributed along a
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horizontal straight line; so that if A (fig. 85), be the lowest point of
the rope or cord, the load suspended between A and B shall be

D » [e)
gk
/1/f i
/A A i3 l X X
Fig. 85.

proportional to AX — x, the horizontal distance between those
points, and capable of being expressed by the equation

where p is a constant quantity, denoting the intensity of the load in
units of weight per unit of horizontal length: in pounds per lineal
foot, for example. It is required to find the form of the curve
D A B C, and the relations amongst the load P, the horizontal pull
at A (H), the pull at B (R), and the co-ordinates AX = x, BX = 4.

First Solution.—Because the load between A and B is uniformly
distributed, its resultant bisects A X; therefore, the tangent BP
bisects A X : this is a property characteristic of a PARABOLA whose
vertex is at A ; therefore, the curve assumed by the cord is such a
parabola.

Also, the proportions of the load, and the horizontal and oblique
tensions are as follows:—

P:H:R::ﬁ:ﬁ:ﬁ::y:gz,\/(y?+€)

L ( jcj)
..pm.zy.pa‘. N/ l+4y2 ................. (2)

Second Solution.—In the present case equation 2 of Article 168
becomes

which being integrated with due regard to the condition that when.
2= 0,y =0, gives

the equation of a parabola whose focal distance (or modulus, to use
_the term adopted in Dr. Booth’s paper on the “Trigonometry of the
Parabola,” Reports of the British Association, 1856), is,

«? H
=I-?/=— .......... esssssas ssenee (5.)
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For a parabola we have also the inclination ¢ to the horizon re-
lated to the co-ordinates by the following equations:—

®)
; d o 44
seci =,/ (1 +Zl—g’ = (1+m) =,/ (1+;,—);
whence we have the proportions

P:H:R::tani:l:seci::%:l:J(l-}-%z)

: m’
::pm:}—;—z;pm-J(l +4—:l/"')’ .............. (7.)

as before.

The following are the solutions of some useful problems respecting
uniformly loaded cords.

ProereM I Given the elevations, ¥y, Y, of the two points of support
of the cord above its lowest point, and also the horizontal distance, or
spam a, between those points of support; it is required to find the
horizontal distamces, x;, X,, of the lowest point from the two points of
support; also the modulus m.

In a parabola,

Yy Y ol

therefore,
N N Y
=gl - g IR S 8
1 ST R P e e
also
2 2 2 2
m = Zy =xi __m?+m3 ia @& (9.)

When the points of support are at the same level,
a o
h=ya=5; m= m...(m)

Prosrex II.  Given the same data, to find the inclinations iy, iy,
of the cord at the points of support.
By equations 6, we have,

taniy= 2 2T 2Tt o 292 29,20 g
-, @ ¢ 2, a s

when % = Y tan g, =tani,=%...............(12.)
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Proprey IIY. Given the same data, and the load per unit of
length ; required the horizontal tension H, and the tensions R;, R.
at the points of support.

By equation 5, we find,

pa’
H=2pm = e L T 13.
x 2yt 20 +4 iy, )

and by the proportional equation 7,

R, =Hseci1=HJ( 43”)-
Ry=Huseoiy=H /(1 +4-’/“ ............... (14)
‘When y, = ¥,, those equations become
H—S—— R,=R,= Hseci,=H -4/ (1+4=/1)
1647
=H,/ (1 R ) E— (15)

ProBrEmM IV. Given the same data as in Problem L., to find the
length of the cord.

The following are two well known formulse for the length of a
parabolic arc, commencing at the vertex, one being in terms of the
co-ordinates = and y of the farther extremity of the arc, and the
other in terms of the modulus m, and the inclination ¢ of the farther
extremity of the arc to a tangent at the vertex.

R
g Iz) wzh 1 y+'“/y+I
ee—,~/(y+Z +4—3-/ yp. log. ~

9
2

= m{tan ¢ * sec ¢ + hyp. log. (tan ¢ + sec 4)}...(16.)

The length of the cord is s, + s,, where s, is found by putting z,
and ¥, in the first of the above formula, or ¢, in the second, and
s, by putting @, and g, in the first formula, or 7, in the second.

. The following approximate formula for the length of a parabolic
arc is in many cases sufficiently near the truth for practical purposes;

2
’ s = o+ 2L naarlycvr an)

which gives for the total length of ‘the cord
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2 2
s,+s,=a,+3— N 4¥

2
2
&) )

) nearly. ...oeoe... (18.)

and when 3, = y,, this becomes

ProBLEM V. Given the same data, fo find, approximately, the small
elongation of the cord d (s, + s,) required to produce a given small
depression d y of the lowest point A, and conversely.

Differentiating equation 18, we find

d(ote)= 3 3L1+Z_z>dy ........... .20
1

which serves to compute the elongation from the depression; and
conversely,

B 3 .d(31+52). 9
dy = - et R JNErRURT (21.)
_+_
o @,

which serves to compute the depression of the lowest point from
the elongation of the cord. When y; = ¥,, those formule become,

2d31=-—1-3§% dy

Sa
dy= 16%.2d@,J

The preceding formule serve to compute the depression which
the middle point of a suspension bridge undergoes in consequence
of a given elongation of the cable or chain, whether caused by heat
or by tension.

170. Suspension Bridge with Vertical Reods—In 2 suspension
bridge the load is not continuous, the platform being hung by rods
from a certain number of points in each cable or chain ; neither is
it uniformly distributed ; for although the weight of the platform
per unit of length is uniform or sensibly so, the load arising from
the weight of the cables or chains and of the suspending rods is
more intense near the piers. Nevertheless, in most cases which
occur in practice, the condition of each cable or chain approaches
sufficiently near to that of a cord continuously and uniformly
loaded to enable the formule of Article 169 to be applied without
material error.
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‘When the piers of a suspension bridge are slender and vertical
(as is usually the case), the resultant pressure of the chain or cable
on the top of the pier ought to be vertical also. Thus, let CE, in
fig. 85, represent the vertical axis of a pier, and C G the portion of
the chain or cable behind the pier, which either supports another
division of the platform, or is made fast to a mass of rock, or of
masonry, or otherwise. If the chain or cable passes over a curved
plate on the top of the pier called a saddle, on which it is free to
slide, the tensions of the portions of the chain or cable on either
side of the saddle will be equal; and in order that those tensions may
compose a vertical pressure on the pier, their inclinations must be
equal and opposite. Let ¢ be the common value of those inclina-
tions ; R the common value of the two tensions; then the vertical
pressure on the pier is

V=2Rsini=2Htani =2pz;........... 1)

that is, twice the weight of the portion of the bridge between the
pier and the lowest point, A, of the curve C B A D.

But if the two divisions of the chain or cable D A C, C G, which
meet at C, be made fust to a sort of truck, which is supported by
rollers on a horizontal cast iron platform on the top of the pier,
then the pressure on the pier will be vertical, whether the inclina-
tions of the two divisions of the chain or cable be equal or unequal;
and it is only necessary that the Aorizontal components of their ten-
sion should be equal ; that is to say, let 7, 7, be the inclinations of
the two divisions of the chain or cable in opposite directions at C,
and R, R/, their tensions, then

R=Hseci; R =Hsec?;
V = R sin ¢ + R sin ¢ = H (tan @ + tan 7) ...... (2.)
171. ¥i1exible Tie.—Let a vertical load, P, be applied at A, fig. 86,

< ¢

mig S8y % ket
and sustained by means of a horizontal strut, A B, abutting against
a fixed body at B, and a sloping rope or chain, or other flexible tie,
A DG, fixed at C. The weight of the strut, A B, is supposed to
be divided into two components, one of which is supported at B,
while the other is included in the load P, The weight, W, of the
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flexible tie, A D C, is supposed to be known, and to be considered
separately ; and with these data there is proposed the following

ProorEs. 'W being small compared with P, to find approximately
the wertical depression ED of the flexible tie below the straight line
A C, the pulls along it at A, D, and C, and the horizontal thrust
along A B.

Because W is small compared with P, the curvature of the tie
will be small, and the distribution of its weight along & hori-
zontal line may be taken as approximately uniform ; therefore its
figure will be nearly a parabola ;. the tangent at D will be sensibly
parallel to A C, and the tangents at A and C will meet in a point
which will be near the vertical line E D F, which line bisects A C,
and is bisected in D. Hence we have the following construction :—

Draw the diagram of forces, fig. 86%, in the following manner.

On the vertical line of loads b¢, take b7 =P; be =P + V2_V; be

=P+ W. From 6 draw b O parallel to the strut A B ; that is,
horizontal ; from ¢ draw e O parallel to C A, cutting 60 in O;
join ¢ O, fO. ‘

In fig. 86, bisect A C in E, through which draw a vertical line ;
through A and C respectively draw A F || O/, CF || O ¢, cutting
that vertical line in F; bisect EF in D. Then will A F and
CF be tangents to the flexible tie at A and C, D will be its most
depressed point, and D E its greatest depression ; and the pulls
along the tie at C, D, and A, and the thrust along the strut A B,
will, in virtue of the principle of Article 168, be represented by
the radiating lines O ¢, O ¢, O.f; and O, in fig. 86%

This solution is in general sufficiently near the truth for practi-
cal purposes. To express it algebraically, let R,, Ry, R,, be the
tensions of the tie at A, D, C, respectively, and H the horizontal
thrust ; then

Razf\/<H9+P’); ‘
R,=4/ {m+ (P+‘_;f)”}; S
R {H’+(P+W)’},-

PR =i BF =} B0 —
=% F=BCP+

s:]ﬁ
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The difference of length between the curve A D C and the straight
line A EC is found very nearly, by substituting, in the second

term of equation 19, Article 169, A.C for @, and =0 for y,;
that is to say,
— . 8 KB DE 1 ABBG ( W )°

172. : Suspension Bridge with Sloping Rods—Let the uniformly-
loaded platform of 2 suspension bridge be hung from the chains by
parallel sloping rods, making an uniform angle ;7 with the vertical.
The condition of a chain thus loaded is the same with that of a
chain loaded vertically, except in the direction of the load; and
the form assumed by the chain is a parabola, having its axis paral-*
lel to the direction of the suspension rods.

In fig. 87, let C A represent a chain, or portion of a chain, sup-
ported or fixed at C, and horizontal at o
A, its lowest point. Let AH be a '
horizontal tangent at A, representing
the platform of the bridge; and let
the suspension rods be all parallel to
CE, which makes the angle .= ECH i
= j with the vertical. Let BX re- Fig. 87.
present any rod, and suppose a vertical load » to be supported at
the point X. Then, by the principles of the equilibrium of a frame
of two bars (Article 145), this load will produce a pull, p, on the rod
X B, and a thrust, ¢, on the platform between X and H ; and the
three forces v, p, ¢, will be proportional to the sides of a triangle
parallel to their directions, such as the triangle C EH ; that is to

say,

v:pigq::CH:CE:EH::1:secj:tanj ...... (1)

Next, instead of considering the load on one rod B X, consider the
entire vertical load V between A and X. This being the sum of
the loads supported by the rods between A and X, it is evident
that the proportional equation (1) may be applied to it; and that
if P represent the amount of the pull acting on the rods between
A and X, and Q the total thrust on the platform at the point X,
we shall have :

V:P:Q::CH:CE: EH :::1:secj:tanj.....(2)
The obligue load P ="V sec j is what hangs from the chain between

A and B. Being uniformly distributed, its resultant bisects A X
in P, which is also the point of intersection of the tangents A P,
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BP; and the ratio of the oblique load P, the horizontal tension
H along the chain at A, and the tension R along the chain at B,
is that of the sides of the triangle BX P ; that is to say,
2 e, AX e
P:H:R::BX:XP=—2—:BP ............ (3.)

Comparing this with the case of Article 169 and fig. 85, it is evi-
dent that the form of the chain in fig. 87 must be similar to that
of the chain in fig. 85, with the exception that the ordinate X B
= y is oblique to the abscissa A X = x, instead of perpendicular ;
that is to say, C BA is a parabola, having its axis parallel to the
inclined suspension rods.

The equation of such a parabola, referred to its oblique co-ordi-
nates, with the origin at A, is as follows :—

=

where m, as in Article 169, denotes the modulus of the parabola,
given by the equation

x and y being the co-ordinates of any knownr point in the curve.
The length of the tangent B P = ¢ is given by the following equa-

tion:—
t=/\/(%2+y2+my'sinj) ............... (6.)

Hence are deduced the following formule for the relations
amongst the forces which act in a suspension bridge with inclined
rods. Let v now be taken to denote the infensity of the vertical
load per unit of length of horizontal platform—per foot, for ex-
ample ; p the intensity of the oblique load ; ¢ the rate at which the
thrust along the platform increases from A towards H. Then

Vzvx; P=pa:='vw'secj;} (7)

Qg —tleltanygs . o i T ad b F
R

BT L o= BEll. opm *80C% s o S (8)

T2 T 2% T cosy
foaf it bz
B i,

.................. (9.
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The horizontal pull H at the point A may be sustained in three
different ways, viz.:—

L. The chain may be anchored or made fast ab A to a mass of
rock or masonry.

II. It may be attached at A to another equal and similar chain,
similarly loaded by means of oblique rods, sloping at an equal
angle in the direction opposite to that of the rods B X, &c., so that
A may be in the middle of the span of the bridge.

III. The chain may be made fast at A to the horizontal platform
A H, so that the pull at A shall be balanced by an equal and op-
posite thrust along the platform, which must be strong enough and
stiff enough to sustain that thrust. In this case, the total thrust at
any point, X, of the platform is'no longer simply Q = ¢ «, but

P
H+Q= (g +9)s
=v(2m sec’j x> tanj)................ (10.)

The length of the parabolic arc, A B, 1s given exactly by the
following formule. Let ¢ denote the inclination of the parabola
at the point B to a line perpendicular to its axis. Then

: &3 3
1 = arc * cos (2_:5 'cos,}) .................. (11)

which, when B.coincides with A, becomes simply ¢ = j. Then
from the known formulz for the lengths of parabolic arcs, we have

parabolic arc A B =m { tan ¢ sec i —tan j sec j

tan ¢ - sec ¢ }

hypilogy:s= i ars Sl 12.
byp Ogtanj—i-sec'} ()
In most cases which oceur in practice, however, it is sufficient to
use the following approximate formula :—

02 Jo i 2 g cost _
arc AB=ux+y "sinj} 3 x—{-y'si;lj’ nearly......(13.)

The formulee of this Article are applicable to Mr. Dredge’s sus-
pension bridges, in which the suspending rods are inclined, and
although not exactly parallel, are nearly so.

173. Extrados and Intrados.—When a cord is loaded with parallel
vertical forces, and ordinates are drawn downwards from the cord,
of lengths proportional to the intensity of the vertical load at the
points of the cord from which they are drawn, a line, straight or
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curved as the case may be, which traverses the lower ends of all
these ordinates, is called the extrados of the given load. The curve
formed by the cord itself is called the ¢ntrados. The load suspended
between any two points of the cord is proportional to the vertical
plane area, bounded laterally by the vertical ordinates at those two
points, above by the cord or intrados, and below by the extrados ;
and may be regarded as equal to the weight of a flexible sheet of
some heavy substance, of uniform thickness, bounded above by the
intrados, and below by the extrados. The following is the alge-
braical expression of the relations between the extrados and the
intrados.

Assume the horizontal axis of « to be taken at or below the level
of the lowest point of the extrados; and let the vertical axis of 7,
as in Articles 168, 169, and 170, traverse the point where the
intrados is lowest, For a given abscissa #, let % be the ordinate of
the extrados, and y that of the intrados, so that y — 4/ is the length
of the vertical ordinate intercepted between those two lines, to
which the intensity of the load is proportional. Let w be the
weight of unity of area of the vertical sheet by which the load is
considered to be represented. Then we have for the load between
the axis of ¥ and a given ordinate at the distance « from that axis,

the integral representing the area between the axis of , the given
ordinate, the extrados and the intrados. Combining this equation
with equation 2 of Article 168, we obtain the following equation :—

an equation which affords the means of determining, by an indirect
process, the equation of the intrados, when the horizontal tension H,
and the equations of the extrados are given, and also, by a some-
what more indirect process, the equation of the intrados and the
horizontal tension, when the equation of the extrados and one of
the points of the intrados are given. Both these processes are in
general of considerable algebraical intricacy.

% obviously represents the area of a portion of the sheet above

mentioned, whose weight is-equal to the horizontal tension. ILet
that area be the square of a certain line, @; that is, let

H
w

T NN 2 UL b A (3.)
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Then that line is called the parameter of the intrados, or curve in
which the cord hangs.

‘When the vertical load is of uniform intensity, as in Article
169, so that the intrados is a parabola, it is obvious that the extrados
is an equal and similar parabola, situated at an uniform depth
below the intrados.

[The reader who has not studied the properties of exponential
functions may pass at once to Article 176.]

174. Cord with' XXorizemtal Extrades.—If the extrados be a
horizontal straight line, that line may itself
be taken for the axis of . Thus, in fig. \
87 A, let OX be the straight horizontal
extrados, A the lowest point of the intrados,
and let the vertical line O A be the axis of
9. Denote the length of O A, which is the
least ordinate of the intrados, by 7, Let o
B X = y be any other ordinate, at the end LA
of the abscissa O X = . Let the area O A BX be denoted by
u. Then equations 1 and 2 of Article 172 become the following :—

x

in which A and B are constants, which are determined by the
special conditions of the problem in the following manner. When
#=0,64=¢ @ =1; but at the same time u = 0, therefore
A = B, and equation (a.), may be put in the form,

w == A fgeaBEga o S (.
This gives for the ordinate,
P )
' y=7(e°+e “) ..................... (c)

AY

which, for x = 0, becomes y, = 2—aé ; and therefore

A= %?/_0, .......... RPBLEIEOR (@)
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which value being introduced into the various preceding equations,
gives the following results, as to the geometrical properties of the
intrados :—

Area, u = ¥ (e7 = e_7);

2

Ordinate, y.—.%" (e% 2 E);
- (2)

T e SR TS (e &,
Slope,tanz_a-m—?_% et —e ),

2 = 8
Deviation, %=%= Qg’%;(e“ +e @ )

)

The relations amongst the forces which act on the cord are given

by the equations v
H=wda P=H-§2=wu;
dex
sl (3.)
R(tcnsionatB):JP"q-H’:—.HV1+d';2

In the course of the application of these principles, the following
problem may occur:—given, the extrados O X, the vertex A of the
entrados, and o potnt of support B; it is required to complete the
JSigure of the intrados. For this purpose it is necessary and sufficient
to find the parameter @; so that the problem in fact amounts to
this ; given the least ordinate ,, and the ordinate % corresponding
to one given value of the abscissa z, it is required to find a, so as to
fulfil the equation

B

e e
2

0

SR

)

= hyperbolic cosine of Z—i,

ag this function is called. Supposing a table of hyperbolic cosines

to be at hand, 2 is found by its being the number whose hyper-

bolic cosine is L ; so that
Yo

a= 2 86000 5330 ...;..(5.)

number to hyp. cos. £
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but such a table is rarely to be met with; and in its absence a is
found as follows :—
The value of z is given in terms of by the equation

@ = o *hyp. log. (y+\/——1 .......... (6.)

x

hyp. log. (y + :'Lg 4L
Y

175. cCatenary is the name given to the curve in which a cord or
chain of uniform material and sectional area (so that the weight of
any part is proportional to its length) hangs when loaded with its
own weight alone.

Let fig. 87 A, serve to represent this curve; but let A be taken as
the origin of co-ordmates so that the axis of z is a horizontal tangent
at A. Let s denote the length of any given arc A B. Then if p
be the weight of an unit of length of the cord or chain, the load
suspended between A and B is P = ps. The inclination ¢ of the
curve at B to a horizontal line is expressed by the equations

and hence

a =

.......... (7))

€
COST — —

ds

sk (TN

d s ]

Let the horizontal tension be equal to the weight of a certain
length of chain, m, so that

From these equations, and from the general equation 2 of Article
168, we deduce the following :—
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which, by a few reductions, is brought to the following form :—
da m

T3 = T ()

the integral of which (paying due regard to the conditions that
when s = 0, # = 0) is known to be

& = m * hyp. log. (.7% —{—«\/ 1 +-::’%) ......... (3.

This equation gives the abscissa « of the extremity of an arc A B
= s, when the parameter of the catenary (as m is called) is known.
Transforming the equation so as to have s in terms of «, we obtain

§= %L(e;—e_;') ...................... (6.)
The ordinate y is found in terms of # by integrating the equation
dy e ST W e s
z—x— = 'd—g—l"_"ﬂT:é (e"'—e "),..-....(7.)
which gives
Sk Zg e*+e'ﬁ—2) = JEFm —m .. (8)

the term — 2 being introduced in order that when = = 0, y may
bealso = 0. Thisis the equation of the catenary, so far as its form
is concerned. The mechanical condition is given by the equations

H=pm; P=ps;

s _= %3
R=p~}m*+s’=]—)—2—ﬂ—z- e® re "') =p(y + m);

g0 that the tension at any point s equal to the weight of a piece of
the chain, whose length s the ordinate added to the parameter.

Suppose the axis of &, instead of being a tangent at the vertex
of the curve, to be situated at a depth A O = m below the vertex,
and let o/ denote any ordinate measured from this lowered axis;
then

-

G m=7-%(e%+e—§'); ............... 10.)

which, being compared with the expression for the ordinate amongst
equations 2, Article 174, shows, that the intrados for a horizontal ex-
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trados when the least ordinateis equal to the parameter (y, = ), becomes:
identical with a catenary, having the same parameter (m = a = y,).

ProBLEM.  Giwven, two poinis in a catenary, and the length of
chain between them; vequired the remainder of the curve.

Let % be the horizontal distance between the two points, v their
difference of level, / the length of chain between them. Those three
quantities are the data.

The unknown quantities may be expressed in the following
manner. Let 2, 4, be the co-ordinates of the higher given point,
and s, the arc terminating at it, all measured from the yet unknown
vertex of the catenary, and @, 7, s, the corresponding quantities
for the lower given point. (The particular case when the points
are at the same level will be afterwards considered). Also let

@, + 2, = & (an unknown quantity).
Then we have
h+k h—Fk
@ = ; e LI (L)

Putting these values of # in the equations 6 and 8, we find

o =00 X L4
l=g—g=m (e:m+ e Qm)_(ei—;.._.e 2m

(12
g L =k, E
V=Y, —Y,—m (e ™ + ¢ "")-(e”"—e-“')

S}(lluare those two equations-and take the difference of the squares ;
then,

= [ é‘—m_e-e%) g (13)

In this equation the only unknown quantity is the parameter m,
which is to be determined by a series of approximations.
Next, divide the sum of the equations (12) by their difference.
This gives
b

e =

o~

<

and consequently

h = m~hyp. log. ;fz

RIERE e (o

Either or both of the abscisse #, and a, being computed by the
equations 11, we find the position of the vertical axis. Then com-
puting by equation 8, either or both of the ordinates, ¥, y,, we find
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the vertex of the catenary, which, together with the parameter,
being known, completely determines the curve.—Q. E. T.

When the given points are at the same level, that is, when v =0,
the vertical axis must be midway between them, so that

X = — X = 7, B =20, A (15.)

In this case equation 13 becomes

gLl eg":_e—m).......................(16;5

from which m is to be found by successive approximations. Then
the computation of y, = y, by means of equation 8 determines the
vertex of the curve, and completes the solution.

The following are some of the geometrical properties of the
catenary :— '

I The radius of curvature at the vertex is equal to the para-
meter, and at any other point is given by the equation

=m * sec?i....... B oot o0 . (17.)

I The length of a normal to the catenary, at any point, cut off
by & horizontal line at the depth m below the vertex, is equal to the
radius of curvature at that point.

III. The involute of a catenary commencing at its vertex, is the
tractory of the horizontal line before mentioned, with the constant
tangent m. (S

1V. If a parabola be rolled on a straight line, the focus of the
parabola traces a catenary whose parameter is equal to the focal
distance of- the parabola.’

176. Centre of Gravity of a Flexible Strncture.—In every case in
-which a perfectly” flexible structure, such as a cord, a chain, or a
funicular polygon;‘is loaded with weights only, the figure of stable
équilibrium in the structure is that which corresponds to the lowest
possible position of the centre of gravity of the entire load. This
principle enables all problems respecting the equilibrium of ver-
tically loaded flexible structures to be solved by means of the
“ Calculus of Variations.” :

177. Transformation of Cords and Chains.— The principle of
Transformation by Parallel Projection is applicable to continuously
loaded cords as well as to polygonal frames: it being always borne in
mind, that in order that forces may be correctly transformed by
parallel projection, their magnitudes must be represented by the
lengths of straight lines parallel to their directions, so thatif in any case
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the magnitude of a force is represented by an area (as in Articles
173 and 17 4) or by the length of a curve (as in Article 175),
we must, in transforming that force by projection, first consider
what length and position a straight line should have in order to
represent it

Some of the cases- already given might have been treated as ex-
amples of transformation by parallel projection. ~ For instance, the
bridge-chain with sloping rods of Article 172 might be treated as
a parallel projection of a bridge-chain with vertical rods, made by
substituting oblique for rectangular co-ordinates; and the intrados
for a horizontal extrados of Article 17 4, where the least ordinate Yo
and parameter ¢ have any ratio, mlght be treated as a parallel
projection deduced, by altering the proportions of the rectangular
co-ordinates, from the corresponding curve in which the least co-
ordinate is equal to the parameter; that is, from the catenary.

The algebraical expressions for the alterations made by parallel
projection in the co-ordinates of a loaded chain or cord, and in the
forces applied to it, are as follows :—

In the original ﬁﬂure, let y be the vertical co-ordinate of any-
point, and @ ‘the horizontal co-ordinate. Let P be the vertical load
applied between any point B of the chain and its lowest point A ;

letp = o be its intensity per horizontal unit of length; let H be

the horizontal component of the teusmn ;let R be the tension at

the point B.

Suppose that in the transfmmed figure, the vertmal ordinate 7/,
and the vertical load P, which is represented by a vertical line, are
unchanged in length and dlrectlon, 0 that we have

y =y; P’ B GRS oon (1)
but for each honzontal co-mdmate o let there be substituted an
oblzque co-ordinate o/, inclined at the angle j to the horizon, and
altered in leno'th by the constant ratlo ﬁ/—a Then' for the hori-

zontal tension H, there will be substltuted an oblzque tenszon H
parallel to o, and altered in the same proportlon with that co.
ordinate ; that is to say,

w.-—a:z: H';aII o atraves A IREY (7)

The original tension at B is the resultant of the vertical load P
and the horizontal tension H. - Let R be its' amount, and ¢ its in-
clination to H ; then : et

s = S 1 3
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and the ratios of those three forces are expressed by the proportion
P:H:R::tani:1:sect::sindg:coss: L....... (£)

Let R’ be the amount of the tension at the point B in. the new
structure, corresponding to B, and let ¢ be its inclination to the
oblique co-ordinate o ; then

R = /@*+H'== 2 P'H sinj)...... eeene(8)

P:H:R::sint:cos(d==7):co8j.cueeiennes (6.)
The alternative signs == are to be used according as ¢ and J
{ e} in direetion ,

The intensity of the load in the transformed structure per unit of
oblique length measured along d«, is

B e L e oGy

P=dad T a
but if the intensity of the load be estimated per wnit of horizontal
length, it becomes

................ e A0}

178. NLinear Arches or Ribs.—Conceive a cord or chain to be

3 4
Seciyi— o
P50 = gicos J

~ éxa'ctly inverted, so that the load applied to it, unchanged in direc-

tion, amount, and distribution, shall act inwards instead of out-
wards; suppose, further, that the cord or chain is in some manner
stayed or stiffened, so as to enable it to preserve its figure and to
resist a thrust; it then becomes a linear arch, or equilibrated rib ;
and for the pull at each point of the original cord is now substi-
tuted an exactly equal thrust along the rib at the corresponding
point.

Linear arches do not actually exist ; but the propositions respect-
ing them are applicable to the lines of resistance of real arches and
arched ribs, in those cases in which the direction of the thrust at
each joint is that of a tangent to the line of resistance, or curve
connecting the centres of pressure at the joints.

All the propositions and equations of the preceding Articles,
respecting cords or chains, are applicable to linear arches, substi-
tuting only a thrust for a pull, as the stress along the line of resist-
ance.

The principles of Article 167 are applicable to linear arches in
general, with external forces applied in any direction.

The principles of Article 168 are applicable to linear arches
under parallel loads; and in such arches, the quantity denoted by
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H in the formulee represents a constant thrust, in a direction per
pendicular to that of the load.

The form of equilibrium for a linear arch under an uniform load
is a parabole, similar to that described in Article 169.

In the case of a linear arch under a vertical load, tntrados denotes
the figure of the arch itself, and extrados a line traversing the upper
ends of ordinates, drawn upwards from the intrados, of lengths pro-
portional to the intensities of the load ; and the principles of
Article 173 are applicable to relations between the intrados and
the extrados.

The curve of Article 174 is the figure of equilibrium for a linear
arch with a horizontal extrados ; and from Article 175 it appears,

#that the figures of all such arches may be deduced from that of a
catenary, by inverting it and altering its horizontal and vertical
co-ordinates in given constant proportions for each case.

The principles of Article 177, relative to the transformation of
cords and chains, are applicable also to linear arches or ribs, This
subject will be further considered in the sequel.

The preceding Articles of this section contain propositions which,
though applicable both to cords and to linear arches, are of impor-
tance in practice chiefly in relation to cords or chains, The follow-
ing Articles contain propositions which, though applicable also to
cords as well as linear arches, are of importance in practice chiefly
in relation to linear arches.

179. Circular Arch for Uniform Fluid Pressure—It is evident
that a linear arch, to resist an uniform normal pressure from with-
out, should be circular ; because, as the force to which it is sub-
jected is similar all round, its figure ought to be similar to itself
all round—a property possessed by the circle alone.

In fig. 88, let AB A B be a circular linear arch, rib, or ring,

ALl - A A
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TFig. 88.

whose centre is O, pressed upon from without by a normal pressure
of uniform intensity.

In order that the intensity of that pressure may be conveniently
expressed in units of force per unit of area, conceive the ring in
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question to represent a vertical section of a cylindrical shell, whose
length, in a direction perpendicular to the plane of the figure, is
wnity. Let p denote the intensity of the external pressure, in
units of force per unit of area ; » the radius of the ring ; T the
thrust exerted round it, which, because its length is unity, is a
thrust per unit of length.

The uniform normal pressure p, if not actually caused by the
thrust of a fluid, is similar to fluid pressure ; and, according to
Article 110, it is equivalent to a pair of conjugate pressures in any
two directions at right angles to each other, of equal intensity.
For example, let 2 be vertical, y horizontal, and let p., p,, be the
intensities of the vertical and horizontal pressure respectively, then

B —17)): . .. . ooz ieneh e T (1)

and the same is true for any pair of rectangular pressures.

To find the thrust of the ring, conceive it to be divided into two
parts by any diametral plane, such as CC. The thrust of the ring
at the two ends of this diameter, of the amount 2 T, must balance
the component, in a direction perpendicular to the diameter, of the
pressure on the ring; the normal intensity of that component is p,
as already shown ; and the area on which it acts, projected on the
plane, C C, which is normal to its direction, is 27 ; hence we have
the equation

== Slprsior T = pr.. Rl e (2.)

for the thrust all round the ring; which is expressed in words by
this

TueoREM. The thrust round a circular ving wnder an uniform
normal pressure 18 the product of the pressure on an unit of circum-
Jerence by the radius.

180. Elliptical Arches for Uniform Pressures,—If a linear arch
has to sustain the pressure of a mass in which the pair of conjugate
thrusts at each point are uniform in amount and direction, but not
equal to each other, all the forces acting parallel to any given direc-
tion will be altered from those which act in a fluid mass, by a given
constant ratio ; so that they may be represented by parallel projec-
tions of the lines which represent the forces that act in a fluid mass.
Hence the figure of a linear arch which sustains such a system of
pressures as that now considered, must be a parallel projection of a
circle ; that is, an ellipse. To investigate the relations which must
exist amongst the dimensions of an elliptic linear arch under a pair
of conjugate pressures of uniform intensity, let A’B' A’'B, B'A"B’,
in fig. 88, represent elliptic ribs, transformed from the circular rib
A B A B by parallel projection, the vertical dimensions being un-
changed, and the horizontal dimensions either expanded (as B' B"),
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or contracted (as B' B)), in a given uniform ratio denoted by ¢ ; so
that r shall be the vertical and ¢ the horizontal semi-axis of the
ellipse ; and if z, 7, be respectively the vertical and horizontal co-
ordinates of any point in the circle, and #' 7, those of the corre-
sponding point in the ellipse, we shall have

If C C, D D, be any pair of diameters of the circle at right angles
to each other, their projections will be a pair of conjugate diameters
of the ellipse, as C'C/, D' D
Let P, be the total vertical pressure, and P, the total horizontal
pressure, on one quadrant of the circle A B.
Then
HO PS8 — 7

Let P’, be the total vertical pressure, and P’, the total horizontal
pressure, on one quadrant of the ellipse, as A’ B/, or A" B"; and let
T', be the vertical thrust on the rib at B’ or B, and T, the hori-
zontal thrust at A’ or A".

Then, by the principle of transformation,

JE == BN TR i
T =plEaN=ic P,=0T=cpr;}

or, the total thrusts are as the axes to which they are parallel.

- Further, let P’ = T be the total pressure, parallel to any semi-
diameter of the ellipse (as O' D' or O" D”) on the quadrant D' ¢’ or
D" C", which force is also the thrust of the rib at ¢’ or C", the ex-
tremity of the diameter conjugate to O’ D’ or O" D"; and let O'D’
or 0" D" = ¢ ; then

P’=T’=§P=p1'; ..................... 3.)

or, the total thrusts are as the diameters to which they are parallel.

Next, let p',, p,, be the intensities of the conjugate horizontal and
vertical pressures on the elliptic arch ; that is, of the “ principal
stresses” (Articles 109, 112). Each of those intensities being found
by dividing the corresponding total pressure by the area of the
plane to which it is normal, they are given by the following equa-
tion :—

7 P’z
i~
. R R o R 4.)
'] y .
p,= T cp;
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so that the intensities of the principal pressures are as the squares of
the awes of the elliptic arch to which they are parallel.

Hence the “ ellipse of stress” of Article 112 is an ellipse whose
axes are proportional to the squares of the axes of the elliptic arch;
and to adapt an elliptic arch to uniform vertical and horizontal
pressures, the ratio of the axes of the arch must be the square root of
the ratio of the intensities of the principal pressures ; that is,

/7y
c= . teeevtecess seseseeceriacnes (5)
P

The external pressure on any point, D' or D", of the elliptic arch,
is directed towards the centre, O’ or O’, and its intensity, per unit
of area of the plane to which it is conjugate (O’ C’%U"'U" , is given
by the following equation, in which #* denotes the semidiameter
(O'D’ or O"D") parallel to the pressure in question, and 7" the con-
jugate semidiameter (O'C’ or 0" C") :—

P r

= = P =) eecenssrneeriossnnnasons (B0
p T" p 9," 2) ( )
that is, the intensity of the pressure in the direction of a given dia-
meter is directly as that diameter and inversely as the conjugate dia-
meter.

Let p" be the intensity of the external pressure in the direcltion

of the semidiameter #. Then it iz fyiclfeapt that o0 o _ 0ty
¢ n: Jr 2ok AR
LA R R L SPRIO Ktk ewonn et TR)

that is, the intensities of a pair of conjugate pressures are to each other
as the squares of the conjugate diameters of the elliptic-rib to which
they are respectively parallel.

These results might also have been arrived at by means of the
principles relative to the ellipse of stress, which have been explained
in Article 112.

181. mistorted EMiptic Arch.—To adapt an elliptic linear arch
to the sustaining of the pressure of a mass in which, while the state
of stress is uniform, the pressure conjugate to a vertical pressure is
not horizontal, but inclined at a given angle j, the figure of the
ellipse must be derived from that of a circle by the substitution of
inclined for horizontal co-ordinates.

In fig. 89, let B A C be a semicircular arch on which the ex-
ternal pressures are normal and uniform, and of the intensity p, as
before ; the radius being #, and the thrust round the arch, and load
on a quadrant, being as before, P =T = p#. Let D be any point

in the circle, whose co-ordinates are, vertical, O E = x, horizontal,
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ED =y. Let B'A’C be a semi-elliptic arch, in which the verti-
cal ordinates are the same with those of the circle, while for each

d Id
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Fig. 89.

horizontal ordinate is substituted an ordinate inclined to the hori-
zon by the constant angle j, and bearing to the corresponding hori-
zontal ordinate of the circle the constant ratio ¢; that is to say,
let

OE=o=uw;
ED =y =cy; cehSabadas de swres d 15
—=EED =3

Then for the vertical semidiameter of the circle O A = #, will be
substituted the equal vertical semidiameter of the ellipse O’ A’ =
r ; and for the horizontal diameter of the circle CB = 2, will be
substituted the inclined diameter of the ellipse C'B =2 ¢ r, which
is conjugate to the vertical semidiameter.

The forces applied to the elliptic arch are to be resolved into
vertical and inclined components, parallel to O’ A’ and C' B, instead
of vertical and horizontal components. Let P’, denote the total
vertical pressure, and P, the total inclined pressure, on either of the
elliptic quadrants, ¢’ A, A’ B'; T', the inclined thrust of the arch
at A/, T', the vertical thrust at B’ or C. Then

T",'.::P’,-:T:P—_-pr; 9
le = Pr = cT a4 cP =L cpr; }oc..l uuuuuuuuuu ( I‘)

that is to say, those forces are, as before, proportional to the dia-
meters to which they are parallel.

Let p, be the intensity of the vertical pressure on the elliptic
arch per unit of area of the inclined plane to which it is conjugate,
U’ B'; let ', be the intensity of the inclined pressure per unit of
area of the vertical plane to which it is conjugate ; then
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o= -;—” =0P5 b eanesssedstaaarensesenaI(ON)
c = JZ:".
P )

so that, as before, the intensities of the conjugate pressures are as
the squaves of the diameters to which they are parallel.

The thrust of the arch at any point D' is as before, proportional
to the diameter conjugate to O’ D

It is sometimes convenient to express the intensity of the verti-
cal pressure per unit of area of the korizontal projection of the space
over which it is distributed ; this is given by the equation * -

P sec] = ;-fosj' ............ LN

It is to be borne in mind, that this is not the pressure on unity
of area of a horizontal plane (which pressure is inversely as the
horizontal diameter of the ellipse and directly as the diameter con-
jugate to that diameter, to which latter diameter it is parallel), but
the pressure on that area of a plane inclined at the angle j, whose
horizontal projection is unity.

The following geometrical construction serves to determine the
major and minor axes of the ellipse B' A’ C',

Draw O'a L and = O’ A’; join B'a, which bisect in m ; ; in Ba
produced both ways take mp = mq = O'm ; join O'p, O'q ; these
lines, which are perpendicular to each other, are the directions of
the axes of the ellipse, and the lengths of the semiaxes are respectively
equal to the segments of the line p ¢, viz.,, B’ p=aqg,Bg=ap.

The following is the algebraical expression of this solution. Let
A denote the major and B the minor semi-axis of the ellipse.

Then .

A+B=20m=r J(1+c+2c-cosj);

A-B=Ba=r, /(1+c—2c-cosj);
whence we have for the lengths of the semi-axes,

A=g{ JA+eE+2¢0cos )+ J(l+c"’—-2c'cosj)};
(5)
=7 1+c¢+2c cosj)—J(l+c—2¢ cosj) ¢
Y J J
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The angle -~ B’ O’ p — %, which the nearest axis makes with the
diameter C’ B, is found by the equation

sink = 2 <______A2—c9r'> or - (——Bz_ gy (6.)
Ter As—B? cr FASERRE /s

according as that axis is the longer; the shorter.

The axes of the elliptic arch are parallel to, and proportional
to the square roots of, the axes of the ellipse of stress in the
pressing mass; so that they might be found by the aid of case
3 of Problem IV., Article 112.

182. Arches for Normal Pressure in General.—The condition of
a linear arch of any figure at any point where the pressure is nor-
mal, is similar to that of a circular arch of the same curvature
under a pressure of the same intensity; and hence modifying the

eorem of Article 179 to suit this case, we have the following :—

HEOREM 1. The thrust at any normally pressed point of a linear
arch is the product of the radius of curvature by the intensity of
the pressure; that is, denoting the radius of curvature by ¢, the
normal pressure per unit of length of curve by p, and the thrust
by T,
: (3 m0 000 00O e o oo o)

Example. This Theorem is verified by the vertically and hori-
zontally pressed elliptic arches of Article 180 ; for the radii of
curvature of an ellipse at the ends of its two axes, + and ¢, are
respectively, . ;';. :

2
At the ends of 7 ¢, = 921 =>chell;

Attheendsofcr;ey'l g_ E; j

Introducing these values into the equations of Article 180, and into
equation 1 of this Article, we find,

<

o= ple="cp % = pr as before;

..... (3

T =S e = %0 *&r = cpr as before:

It is further evident, that if the pressure be normal at every point
| of the arch (which it is not in the cases cited), the thrust must be
| constant at every point ; for it can vary only by the application of
a tangential pressure to the arch; and hence follows
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THEOREM IL. In a linear arch sustaining @ pressure which is
everywhere normal, the thrust is uniform, and the radius of cwrva-
ture s tnwversely as the pressure—a theorem expressed symbolically
thus :— :
T =ipe = constanb.......coeeceereennes e (4)

The only arch of this class which has hitherto been considered is
the circular arch under uniform normal pressure. Another instance
will be given in the following Axticle.

"~ 183. The Hiydrostatic Arch is a linear arch suited for sustaining

normal pressure at each point proportional, like that of a liquid in
repose, to the depth below a given horizontal plane ; and is some-
times called ¢ the arch of Yvon-Villarceaux,” from the name of the
mathematician who first thoroughly investigated the properties of
its figure by the aid of elliptic functions.

The radius of curvature at a given point in the hydrostatic arch
being, in virtue of Theorem IL of the last Article, inversely propor-
tional to the intensity of the pressure, is also inversely proportional
to the depth below the horizontal plane at which vertical ordinates
representing that intensity commence.

In fig. 90, let 'Y OY represent the level surface from which the

Fig. 90.

pressure increases at an uniform rate downwards, so as to be similar
to the pressure of a liquid having its upper surface at YO Y. Let
A be the crown of the hydrostatic arch, being the point where it is
nearest the level surface, and consequently horizontal. Let co-ordi-
nates be measured from the point O in the level surface, directly
above the crown of the arch ; so that O X = Y C = « shall be the
vertical ordinate, and OY = X Qi y the horizontal ordinate, of
any point, C, in the arch. Let O A, the least depth of the arch
below the level surface, be denoted by z,, the radius of curvature
at the crown by 7, and the radius of curvature at any point C by r.

Let w be the weight of an unit of volume of the liquid, to whose
pressure the load on the arch is equivalent. Then the intensities of
the external normal pressure at the crown A, and at any point C,
are expressed respectively by
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PR ) 5 e e Py e e (1 )

The thrust of the arch, which, in virtue of the principles of Article
182, is a constant quantity, is given by the equation

= s SR =8 D — S I/ 131 . oo NSl )

from which follows the following geometrical equation, being that
which characterizes the figure of the arch : —

T e A ke S S e onss 3)

‘When z, and 7, are given, the property of having the radius of
curvature Inversely proportional to the vertical ordinate from a
given horizontal axis enables the curve to be drawn approximately,
by the junction of a number of short circular ares. It is found to
present some resemblance to a trochoid (with which, however, it is
by no means identical). At a certain point, B, it becomes vertical,
beyond which it continues to turn, until at D it becomes horizontal;
at this point its depth below the level surface is greatest, and its
radius of curvature least. Then ascending, it forms a loop, crosses
its former course, and proceeds towards E to form a second arch
similar to B A B. Tts coils, consisting of alternate arches and loops,
all similar, follow each other in an endless series.

Tt is obvious that only one coil or division of this curve, viz,
from one of the lowest points, D, through a vertex, A, to a second
point, D, is available for the figure of an arch ; and that the por-
tion B A B, above the points where the curve is vertical, is alone
available for supporting a load.

Let a;, 71, be the co-ordinates of the point B. The vertical load
above the semi-arch A B is represented by

wfi‘mdg/;

and this being sustained by the thrust T of the arch at B, must
obviously be equal to that thrust ; whence follows the equation

| That is to say, the area of the figure between the shortest wertical
| ordinate, and the vertical tangent ordinate, is equal to the constant
| product of the vertical ordinate and radius of curvature.

The vertical load above any point, C, is

wf:xdg'/;
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and this is sustained by and equal to the vertical component of the
thrust of the arch at C, which is T - sin ¢ (¢ being the inclination of
the arch to the horizon).
Hence follows the equation
%o "o

f’a;dg/zwo'ro'sini='\/1+@j;...... ...... (5.)
0 dat

That is to say, the area of the figure between the shortest wvertical
ordinate and any vertical ordinate, varies as the sine of the angle of
anclination to the horizon of the curve at the latter ordinate.

The horizontal external pressure on the semi-arch from B to A
is the same with that on a vertical plane, A F, immersed in a
liquid of the specific gravity w with its upper edge at the depth
x, below the surface (see Article 124); so that its amount is

z P B
wf Bl — e s
% 2

and this is balanced by the thrust of the arch, T, at the crown.
Hence follows the equation
' x—aj

G e (6.)

That is to say, kalf the difference of the squares of the least vertical
ordinate and of the tangent vertical ordinate is equal to the constant
product of the vertical ordinate and radius of curvature.

Equation 6 gives for the value of the vertical tangent ordinate,

iy = B RO s s A8 555 (7.)

et —

The horizontal external pressure between B and any point, C, is
equal to the pressure of a liquid of the specific gravity w on a ver-
tical plane X F with its upper edge immersed to the depth 2, so
that its amount is

z wz_x'z
w| xdr=w-'2> ;
x 2

and this is balanced by the horizontal component T -cos < of the
thrust of the arch at C; whence follows the equation

xj—a’
2

which gives for the value of any vertical ordinate,

SN T COB B} 0us aoess save snen sseslOn)



HYDROSTATIC ARCH. 193

x'== ,J(acf-—_.?az:oo"0 “cos @) = ,J’{m§+2w0ro (l;cosﬂ}

= r\/ (wf) + 4,7, * sin’ %) ....... e (9.)

. Let x, o, be any two vertical ordinates, Then from equation 8
it follows that X
"% ~—x“'_2xro(cosi-—cosi) -:(10: ] 1%

or, the difference of the squares of two ordinates varies as the diffevence
of the cosines of the respeotwe inclinations of the arc at their lower
ends.

From equation 9 is deduced the following expression of the in-
clination in terms of the vertical ordlnate —

C B P
2 sin? -Q—l—-cosz_l—,\/l_l_ ”2%::0....(11.)

The various properties of the figure of the hydrostatic arch ex-
pressed by the precedmg equatlons are thus summed up in one
formula : — ¢

‘ n . fxdy a?— o2 a2
AT e 0 S Uy DPRRE e
”0'0—_”f—f.,”‘?3’,— T == T ee(12)

To obtain expressions for the horizontal co-ordinate y, whose
maximum value is the half-span 7,, and also for the lengths of arcs
of the curve, it is necessary to use elliptic functions.

[The reader who has not studied elliptic functions may here pass
at once to Article 184.]

In the use of elliptic functions the notation employed will be
that of Legendre; and the classes of functions referred to will be
those called by that author the first and second kind respectively,
and tabulated by him in the second volume of his treatise.

Let 6 denote a constant angle, called the modulus of the func-
tions ; @, a variable angle called the amplitude ; then an elliptic
function of the first kind is expressed by

d
F (9; @) iy, @ fo J(l—sinfd csin® ¢) ............ (a)

and an elliptic function of the second kind is expressed by

E (4 9) =f:«/(l—sin'-'é-sin"'¢)d@.............(b.)

(4]
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The values of those functions, when the upper limit of integra-
tion is ¢ = ’2—', or 90 degrees, are called complete functions, and de-

noted respectively by
Fy (6) and B, () .ccceeneeiaennannnnenn (c.)

Tn order to apply those functions to the case of the hydrostatic
arch, let the amplitude be half the supplement of the inclination of
the curve; that is, let

50 that at D, ¢ =0, at B, ¢ = 45°, and at A, ¢ = 90°. Let the
vertical ordinate and radius of curvature at the point D be denoted
respectively by X, R ; then
X = J(@}+ 47,2) ; and }
RX —riz'= 7,2,;
for the modulus 6 take an angle such that
4R 4dnam
i Eare (e.)

Then equation 9, the expression for the vertical ordinate, becomes

r—= /\/ (w?,+4 oo 'sin’%‘) =X /\/ (1 —sin®d 'sin’?).(lli.)
The values of this for the points B and A are respectively
» = X\/ (I—Si12120> ot — X\/(l——sin’o)
= X *COS fuereens 30tA Seicttic S (14 A)

Introducing the above value of 2 into equation 5, we obtain for the
area between O A and any other vertical ordinate,

sin ¢ =

fv wdy =@, sint—=2XR *cos ¢ sin ¢
__ Xi-sin’g
= 2
The value of this expression for the point B is
X2 «ain? s
(15 )

Now differentiate the area (15) with respect to the amplitude ¢,
and divide by «; this gives

f:lmdy=woro=XR=
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dy _ x .sn'0 _cos’o—sin’p
do- T3 Ji—sm'e-sn’g)

2 —sin® SR g
=_X-{2J(1_sin,ﬂ_sin,¢)_ J(1 — sin? 6 sin ¢)}...(16.

- This differential being integrated between the limits ¢ = 90°,
which corresponds to g, =0, and ¢ = 90°— %, which corresponds

to the required value of y, gives

r=x{ (1= (R O-Fe9)—BO+EG0 }an)
For the point B, this gives for the half-span of the arch

n=X-{ (1=2") (n@—r(1)) —B@O+BE) | (18)

Let s denote the length of any arc of the curve, A C, commenc-
ing at the crown. Then

s=f:rd¢=2f‘:°rd¢ .................. (19.)

The value of the radius of curvature r in terms of the modulus
and amplitude is
x X - sin?d
?=4~/(1—sin”€'sin’¢)’ ............ (20.)
azcé this being introduced into the integral (19), gives for the are
$

r—

== .;im { F()—F(@9) } ...... veeees(B1)
The length of the semi-arch A B is
3o
r== v G{F: (4)—F(0,45°)} ...... ve(22.)

Such are the formule expressing the geometrical properties of
the hydrostatic arch. Numerical results-can easily be computed
from them by the aid of Legendre’s tables of the functions F
and E.

The relation between the thrust of the arch, the specific gravity
of the load, and the modulus is given by the equation

T=wre=

w X2 - sin? ww§+4rxosin’0
7\ & 8 4°) (23.)
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184. Geosiatic Arches.—It is proposed, by the term “ Geostatic
Arch,” to denote a linear arch of a figure suited to sustain a pressure
similar to that of ‘earth, which’ (as will be shown 'in Section 3 of
this Chapter) , consists, in a given vertical ‘plane, of a pair of con-
jugate pressures, one xfertlcal as'in: Article-125 of. Part I, and
proportional to the depth below a _given plane, horizontal or slopx v
and the other pa,ra.llel to the horizontal or sloping plane, and bearmnf
to_the vertical pressure ‘a certain’ constant ratio, depending on the
nature of the material, and other circumstances to be explained in
the sequel. In what fo]lows the horizontal or sloping plane will
be called the conjugate plane, and ordinates parallel to its line of
‘steepest dechv1ty, when it ‘slopes, or'to‘any line in it, when it is
horizontal, conjugate ordinates. The intensity of the vertical pres-
sure will be estimated per unit of area'of the conjugate plane; -and
the pressure parallel to the line of steepest declivity of that plane,
‘when it slopes, ‘or ‘to" any ‘line in'it, when it is horizontal, will be
called the conjugaté pressure, and its mtensﬂ;y will be estimated pe1

. unit of area of a vertical plane.

Let the origin of co-ordinates be taken at a pomt in the conJu-
gate plane vertically above the crown of the proposed arch ; let o’
dénote ‘the vertical- co-ordinate “of any point, and g’ the conJuvate
co-ordinate. Let jbe the angle of incliiation of the conjugate plane
‘to the' horizon. ' Tiet u/ be the welght of unity of volume'of the
material to which the pressure is due, and whose upper surface is
at, the conjugate plane. * Then the intensity of the vertical pressure
at a given depth «,'according to- Theorem I..of Article 125, is

= B T(CO8 52 v eacnpinestuinainsiatn (1.)
and that of the conJugate pressure ¥ ik
Py = P =0 W A €08 i turernnenrnenin 2)

¢ being a constant ratio, expressed-in the f01m of a square, for a
reason which will afterwards appear.

Conceive a hydrostatic arch, whose vertical and homzontal -co-
ordinates.are 2 and g, and which 'is subJected to ‘the pressure of a
materlal whose' Welght per cubic foot is

‘w=c wcosy(3)

Then at any glven point in that hydr ostatic arch, whose depth
below the surface is & = «, we shall have for the intensities of the
vertical and horizontal pressures . :

P ._p,_wa:—c'w'a:"cos_y—cp,_ —(4)

Now let the ﬁgure of an arch be transformed from that of the
hydrostatic arch by parallel projection, in such a manner that the
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* vertical: co-ordinate | of ;any point in the mew.arch .shall. be the
same with that of the corresponding point in the hydrostatic arch,
and -that the conjugate_ co-ordinate of any point in the new arch
shall bear to the horizontal co-ordinate of the corresponding point
in the hydrostatlc arch the constant ratio’c; that is to say, let

eEzy = y.,L.'...’.l..:..'.'.'._ ..... v (0. Yok
" The ‘total vertical and’ horizontal pressures-on’ the arc between
two glven pomts in the hydrostatlc arch are respectively [
fp, (ly, P = fp,d.z' ....... (6)

The total ver twal a,nd con]ugate pressures on the arc ‘between the
two correspondmg pomts in‘the new archare respectlvely

5

g e fp,d/, P, _fpydx, Fedae e
and if into these two expressions we mtroduce the values of Doy s
d i and dif, deduced from equations 4 and’5; viz. :—

v

.P’z :'— )p,y_cpw dm’ dx) dJ’—Cdy;
we find the followmv relatlons between the total vertical and
horizontal pressures in a given'arc of the hydrostatic arch, and the
total vertical and conjugate pressures on the correspondmg arc of
the transformed arch,

» LR By = e Bttt (8)

bemo' the ‘same. with the relations which, according to equatlon 5,
- exist between'the-co-ordinates respectwely parallel to the pressures
in’ question. - Therefore the transformed ‘arch is a parallel projection
of tlie original arch under forces represented by lines which are the
corresponding ‘parallel - projections of the lines representing 'the
forces acting on the- original-arch: - therefore it is in equilibrio.
The conclusions of the ‘preceding : 1nvest1gat10n may be summed up
in:the following . - .. i |

THEOREM. . A geostatic arch, h'ansformed Sfrom a /bydrostatw arch
by preserving the vertical - co-ordinates, and substztutmg Jor the hori-
zontal co-ordinates, conjugate co-ordinates, either horizontal or inclined,
and altered in o, given ratio, sustains vertical and conjugate pressures,
the ratio of the intensity of .the conjugate pressure to that of the vertical
pressure being the square of the ratio of the conjugate co-ordinates to
the original horizontal co-ordinates.

This transformation is _exactly analogous to that of a mrcular
arch into an elliptic arch, in‘Articles 180, 181. &

. Let T, be the. thrust, horizontal or. inclined as the case may be,
at the crown of a geostatic-arch, and: Ty the vertical thrust at the
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points where the arch is vertical, which in this, as in other cases,
1s the vertical load of the semi-arch; then

Y 2 R R (10.)

All the equations relative to the co-ordinates of a hydrostatic arch,
given in Article 183, are made applicable to a geostatic arch, by

substituting «’ for 2, and % for . This principle, however, is appli-

cable to co-ordinates only, and not to angles of inclination, radii of
curvature, nor lengths of arcs. The modulus ¢, and amplitude ¢,
are therefore to be considered as functions, not of inclinations, nor
of radii of curvature, but of vertical ordinates; that is to say, let
, be the least vertical ordinate at the crown, ; the vertical tangent
ordinate, and X the greatest vertical ordinate at the loop (which
are the same in both kinds of arch), then

8 = arc cos 2 = are cos $;
X N 24—

11.
S Ly (O
¢=am81n—m=ar031nJ m},J

and %iis the same function of 4 and @ for a geostatic arch, that y

is for a hydrostatic arch. )
185. Stcreostatic Arch.—This term is employed to denote a linear
23 o & arch sustaining the pressure of a

> il material in which, at any given
point, there are a pair of conjugate
H G = € I pressures, one vertical, and the

other in a fixed direction, hori-
zontal or inclined, but not bearing
to each other any constant propor-
tion, nor following any invariable
law as to their intensities, except
that of being of the same intensity
throughout each plane which is
conjugate to the vertical pressure,
—a condition which involves the
symmetrical distribution of the ver-
; tical load on either side of a verti-
T Z cal axis traversing the crown of the

W\

v arch,

. 3 The principal questions which
Fig. 91. arise respecting any stereostatic
arch are comprehended under the following
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ProBLEM. Given, the mode of distribution of the vertical pressure,
and, the figure of the arch; required, the mode of distribution of the
conjugate pressure necessary tn order to produce equilibrium, and
also, the thrust at each point of the arch.

CasE 1. When the direction of the conjugate pressure is horizontal.
This case is represented by the upper diagram in fig 91. Let O,
the crown of the arch, be taken as the origin of co-ordinates; let
O X be vertical and Y OY horizontal. Both the figure of the arch
and the forces acting on it are symmetrical on either side of the
vertical axis OX. Let p, denote the intensity of the vertical
pressure at the point O, and 7, the radius of curvature of the arch
at that point. Then because at the point O the pressure is normal
to the arch, the horizontal thrust along the arch at that point is

T = e R T R s (L)

Let C be any point in the arch, whose co-ordinates are O X = z,
X C =y, and let’

o dy

% ==arccotan 7 7
be the inclination of the arch at G to the horizon. Let P, denote
the vertical load on the arc between O and C.

From C draw the vertical line CW to represent P,, and the
tangent CT forming the diagonal of the rectangle CW T H. Then
CT will represent the thrust along the arch at C, and CH the
horizontal component of that thrust; and if this be different from
T,, the difference must be made up by means of the horizontal
pressure applied to the arch between O and C. To express this
symbolically, let P, be the amount of that horizontal pressure, and
T the thrust CT alonv the arch at C; then

P ds
T—st=P cosect =P, * T (2)
(where d's denotes the increment of the arc O C).
The horizontal component C H of this thrust is
T-:cost=DP, cotani = P _d_y

* dax’

consequently the horizontal pressure which must be applied to the
arch between O and C to maintain equilibrium is

: d
P,=T,— P, cotani =T, — By Zsoo.. 3.
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and if this equatlon be fulfilled at evcry pomt of the arch it will
be balanced. ——-Q SV

‘When P, is posutlve it represents inward pressure, such as may
arise from the resistance of the materials of the spandril of an arch:
to compression. . When P, is negative,. it - represents : outward
pressure, such as-may arise - from the resistance to compression of
a portion of material situated below the crown of the ideal linear
arch O C, or tension, such ‘as may arise from tenacity in the spandrll‘
and in the wmaterials connecting it with'the arch.

The intensity of the' horizontal rpressure is found by taking two
points in the arch indefinitely nearto each other, and finding the
ratio which the portion of the horizontal pressure applied between
them bears to the difference of their vertical ordinates.: Let the in-:
tensity required be denoted by 2y then

_;l_i’y__d(l’ M (P,, d_y).'..(4.)

(This equation comprehends the cases already. considered in Article
168, of a cord under vertical loads, or an arch whose figure is that
of such a cord inverted ; . for in.that case, P, = T, tan %, and
P, cotan 1 =T, = consta.nt so that p, = 0.

If it be required to express the intensity of the horizontal pressure
in terms of that of the vertical pressure, let the latter mtens1ty be

P,
d./

r= dx(dxff’= ). it g A

Restricted Case. - Let the arch have a horizontal extrados, at the
height @ above the crown O, and let the vertical pressure be due to
the Welvht of material below that extrados; then

then

po.=wa;p,=w(a,+w);

and the vertical load becomes

P2 =fp,dy=wf(a+z) VRSN TR (),

being ploportmnal to the area between the intrados and extrados,
and the vertical ordinates at O and C.

Example. Let the linear arch be part of a circle of the radius,
with a horizontal extrados at the distance 7+ @ from its centre.
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¢+ In this case it is convenient to express all the variables in terms
of the inclination ¢ of the alch Thus we have .
@ = r(l—cos 7);
y=r-sing; .
dz=r"sinitdi;
‘dy=r" cos ¢ d i J _
~ It is also useful to make '@ = m», m being the ratio which the

depth of .1oad at the crown bears to the radlus Then we have for
the thrust at O, : e

and for the verfical Iload between O and C,

,_wf(oﬁw)dJ—wrf(m+1——cosz)coszdz 1

cos 2 sin % z}
2 030

which value being introduced into equation 4, gives for the inten-
sity of the horizontal pressure

=wr {(1+m smz—

_dP, . d(P.cotan 9 1  d(P.cotanq)
P =g e T g TY di
wr d {(1+m)cosz—-cosgi i icosi}
T sine dé NN i)

- (10)

The value of the horizontal pressure itself is given by mtroducm"
the values of T, and P, from equations 8 and 9 into equation 3, and
is as follows :—

U 4 . t—costsing
=wr (l+m—cost——g——+

2s1n 2

y_wr’{m—-(l-l—m) cosz—l—cos z4—"”"0“.}...(11.) ;

2sine

The horizontal component of the thrust of the arch at C is given
by the equation .

Tcosi:T;,—P =wr’{(1'+m) €o8 % —

cos’s zcosz}( )
2 2sin v

When 4 = 0, that is, for the crown of the arch, p, takes the fol-

lowing value :—
wr (m — 3),
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so that for every circular linear arch in which the depth of load at
the crown, m 7, is less than one-third of the radius, p, has negative
values at and near the crown, showing that oufward horizontal
pressure or tension is required to preserve equilibrium. In such
cases, there is a certain value of the angle ¢ for which p,=0. At
the point where this takes place, P, consequently attains a negative
maximum, and the horizontal component T cos of the thrust
along the arch attains a positive mawvmum, greater than T, because
of P, being negative. Let this point be called C,, and let the in-
clination of the arch at it be denoted by ¢ This angle must
satisfy the transcendental equation

L. fy— o8, 8inY,

1+4m —cosq, 3 TR

and can therefore be found by approximation only. As a first
approximation, may be taken

3m+1
9 H

and then by successive substitutions, nearer and nearer approxi-
mations may be found.

Supposing 4, to have been thus determined to a sufficient degree
of accuracy, its substitution for < in the equation 12 will give the
maximum value of the horizontal component of the thrust of the
arch.

By expanding or contracting the horizontal dimensions of a cir-
cular arch, it can be transformed into an elliptic arch, which will
be balanced under forces deduced from those applied to the circular
arch according to the principles explained in Articles 180, 184.
In adapting the equations from 7 to 13 inclusive to an elliptic
arch, it is to be observed that ¢ represents not the inclination of the
elliptic arch itself at a given point, but that of the circular arch
from which the elliptic arch is derived at the corresponding point.

CASE 2. When the direction of the conjugate pressure is inclined.
This case is represented in the lower diagram of fig. 91. The in-
clined axis of co-ordinates, Y’ O’ Y’, is taken parallel to the direc-
tion of the conjugate pressure, and touching the arch at the point
O, which is now its crown. Each double ordinate of the arch,
CX'CU=2y, is bisected by the vertical axis, on either side of
which the vertical load is symmetrically distributed.

Let j denote the inclination of the conjugate pressure to the
horizon. Construct a parallel projection of the given arch, like the
upper diagram of the figure, having its vertical ordinates equal to
those of the distorted arch, and its horizontal ordinates less in the

%, = arc - cos *
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ratio cos j:1; conceive it to be under a vertical load, of equal
amount 4o that on the distorted arch, and similarly distributed ;
determine the horizontal pressures required to keep it in equilibrio ;
then will the proper projection of those pressures keep the dis-
torted arch in equilibrio.

. The relations amongst the co-ordinates of the two arches, and
the amounts and magnitudes of the vertical and conjugate . pres-
sures, are as follows, quantities relating to the distorted arch being
distinguished by accented letters :—.

¥=w;y =ysej;
Pe=P,; Ty="T,secj; P, =P, secj; .. (14.)
p’:' = P= COSj; p'y pr Secj‘

Let H’ denote the conjugate component of the thrust of the dis-
torted arch at any point. C'; then we have

H=T —P, =T,—P)secs;..cccee.n. (15.)
and if T' be the thrust along the distorted arch at C', then
P PSR 2 H P, < ity f)eunoeei. (16.) .

the positive or negative sign being used according as the point C'
is at the depressed or the elevated side of the arch.

186. wointed Arches.—If a linear arch, as in fig. 92, consists of
two ares, BC, CB, meeting in a point at C,itis ¥
necessary to equilibrium that there should be con- F-=wae. _--=-t-
centrated at the point C a load equal to that which c
would have been distributed over the two arcs A.C,
C A, extending from the point C to the respective
crowns, A, A, of the curves of which two portions
form the pointed arch.

187. Total Conjugate Thrust of Linear Arches.—The total con-
jugate thrust of an arch is the conjugate component, horizontal or
inclined, as the case may be, of the entire pressure exerted between
one semi-arch and its abutment, whether directly, at the point
from which the arch springs, or above that point, through the
material of the spandril.

‘When a linear arch is of such a figure as to be balanced under a
load of which the pressure is wholly vertical (as in the case de-
scribed in Article 174), that is to say, when its figure is that in
which a cord would hang, loaded with the same weight distributed
in the same manner, its conjugate thrust is exerted simply at the
point from which it springs, and is equal to the conjugate com-
ponent of the thrust along the arch, which is a constant quantity
throughout its whole extent.

B B
Fig. 92.
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' When an arch springs vertically from its abutments, the point
of springing sustains the vertical load of the semi-arch only ; and
the conjugate thrust is exerted wholly through the spandril. '

‘In other cases, the conjugate thrust.is ‘exerted partly at the
point of springing and partly through the spandril.

THEOREM. ' The amount of the conjugate thrust is equal to tlw con-
Jugate component of the thrust along the arch at the point where that
component is'a mavimuny; for at that point,' as appears from the
reasoning of Article 185, the'intensity of the conjugate pressuie
between the arch and its spandrll is nothing: it is, therefore, en-
tirely below that point that the conjugate ; thrust whether through
the' spandril or‘at the point of springing, is exerted and conse-
quently the amount of that thrust must be equal to the maximum
conjugate component of the thrust along the arch, which is balanced
byit. - The point’ of the arch where the. conjugate component of the
thrust along it is a maximum, is called the point of rupture,.for
reasons Whlch will afterwards appear. It may be at the crown; or -
it may be in a lower position, to be determined by solving the equa-
tion formed' by making ‘the intensity of the conjugate pressure
between the arch and spandrll as found by the method of Article
1835, equal to nothmg that T

is

. This equation having been solved so as to glve the position of the
point of rupture, the corresponding value of P., being the vertical
load supported at that point, is to be computed ; and then the conju-
gate thrust is given by the equation 4

dy
H)= BIeiof 1P« 3 e 20
— max. value o P’d ()
(Where the conjugate pressmes as is generally the case, are hon'
zontal, &Y — cotans % ; and the value of 4, the inclination of the ar ch

which fulﬁls equa,tlon 1, is called the angle of rupture).
‘When the point of rupture is the crown of the arch (as in hydro-
static and geostatic 'arches), equation 2 gives no result, because of

P vamshmv and _?; 1ncreasm0 indefinitely ; but it has alrefmdy

been shown by other methods that in this case, where the conJllﬂ'ttc
pressures are horizontol— ;

H°= Tn:=po'l'o;---...:...............‘..(3.)’

2, being the intensity of the vertical load, and 7, the radius of cur-
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“vature ; but in order to form an equation which shall be applicable
whether the conjugate pressures and co-ordinates are horizontal or
inclined, the above equation must be converted into one expressed
in terms of the co-ordinates ;" that is to say,

A gme
Hy — Tis

4% \ .
P, (fOI‘J 0)——--—(f01‘J—0) .(4)
dy SEgAPRET S 37’

2
For rectannrular co-ordinates %x = 717 at the crown of the arch, so
. T

that equatlon 4 is converted into equatlon 3.

Thus far as to finding the amount of the conjugate thrust. To
find the position of its fresultant that is to say, the depth of its line
of action below the conjugate co—ordma’oe plane, we must conceive
it to act against a vertical plane, extending from the depth of the
point of rupture below. the conjugate co-ordinate plane, down to
the depth of the point of springing below that plane, and find, by
the methods of Article 89, the vertical co-ordinate of the centre of
pressure of the plane so acted upon. That is to say, let «, denote
the depth of the point of rupture, and @, that of the point of spring-
ing below the conjugate co-ordinate plane ; p, the intensity of the
conJugate pressure between the arch and spandril at any point
between those points, and )

H =H— ["p,da,.cournnnaene. (4.

the conjugate component of the thrust of the arch at the poiut of
springing; also, let #; be the depth of the resultant conjugate
thrust below the conjugate co-ordinate plane; then

: /j:wp,-d¢+Hlx1
Ly = 2 Ho .......... ......(6.)

Example 1. Circular arch wnder uniform mormal pressure of
tntensity, p. 183 (Art. 179). S

Here p. =p, =p; and the pomt of rupture is at the crown,
the horizontal thrust is

i Ho — ik TP Teeecnianaceianens esessenns (7)

Let the crown be taken for origin of co-ordinates, so that z, = 0.
Case 1. Semicircle. Here z, = r; H, = 0; and
ipai »r
Xy = Q—P—l i o PO R R BN ()
=128 2 ®).
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OasE 2. Segment. Inclination at springing, 4., Here 2= r
(1 —coss); Hi=pr-coss; and

ipaltpra -coss
pr
=7 (% (1 — cos 2)* + cos ¢ (1 — cos z)) =.’2l - sin?4...(9.)

Ly =

Example I1. Semi-elliptic arch, under conjugate uniform vertical
and horizontal pressures (Art. 180). Let a = a be the rise, or
vertical semi-axis; ¢ @ the horizontal semi-axis, or kalf-span; and
let the origin of co-ordinates be at the crown. Then p, = p,;
and we have

B=T=ap,=¢ap,=cP,; xn.—_—g....(lo.)

Example II1, Semi-elliptic distorted arch, with conjugate uniform
vertical and oblique pressures (Art. 181). The vertical and conju-
gate semidiameters, or rise and inclined half-spam, being denoted
by @ and c @ respectively, the equations 10 apply to this case also.

Exomple IV. Hydrostatic arch (Art. 183). The origin of co-
ordinates being taken, as in the article referred to, at the point of
the extrados vertically above the crown, we have p, = p, = wu,

& ___ 2
H0=TO=W‘:11—2——w—O; Hl=0; and
7 w [ @dz_g d—ad .....(1L)
H, 3 al —aj

Example V. Geostatic arch, with horizontal or inclined extrados
(Axt. 184). Herep,:w:c “c0sf; p,=Cp,= Cwacosj; H=

=
Ty=cP, =c*wecos j ' —

5:4

g and consequently

as in the last example,

Example VI. Semicircular arch with horizontal extrados, In
this case the angle of rupture 4, is to be determined by means
of equation 13 of Article 185; and thence, by equation 12 of the
same Article, is to be found H, The springing being vertical,
we have 7, = 90°; H, = 0. Let the crown of the arch be taken as
origin ; then =7 (1 —cos i), d ¢ = r * sin i *'d ¢, and equation
6 of the present Article becomes
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2

xn=£[_o-f:""p,sini(l—cosz')-di; ......... (13)
Example VIL. Circular segmental arch with horizontal extrados.

Let 4, be the inclination of the arch at the springing, P, the total

vertical load; then

H, = P cotan feeieeceeciasinennenns(14)

Let i, be determined as in the last example.

Casg 1. % > or =4, In this case H; = H,, and the conjugate
thrust is simply the single horizontal force H, at the point of spring-
ing.
Case 2. 4 <7%,. Find Hjas in the last example, and let the
origin of co-ordinates be at the crown; then

@ =7 (1 — cos 1,); and we have
- ﬁlo {rzf:;pysini(l —cosi)-di+rH( -——cosil)} (15.)

188. Approximate -Hydrostatic and Geostatic Arches—The subject
of elliptic functions is so seldom studied, and complete tables of
them are so scarce, that it is useful to possess a method of finding
the proper proportions of hydrostatic and geostatic arches (Articles
183, 184) to a degree of approximation sufficient for practical pur-
poses, using algebraic functions alone.

Such a method is founded on the fact that a hydrostatic arch
approaches nearly to the figure of a semi-elliptic arch of the same
height, and having its maximum and minimum radii of curvature
in the same proportion.

Let x, ;, as in Article 183, be the depth of load of a hydrostatic
arch at the crown and springing respectively; 7, 7, its radii of
curvature at those points; @ = &, — =, its rise; %, its half-span,
given in Article 183 by means of elliptic functions.

Suppose a semi-elliptic arch to be drawn, having the same rise,
a, with the hydrostatic arch; let ', 7, be its radii of curvature at
the crown and springing, whose proportion to each other is the same
with that of the radii of the hydrostatic arch; that is to say,

Let  be the half-span of this semi-ellipse. Then because the cubes
of the semi-axes of an ellipse are to each other inversely as the radii
of curvature at the respective extremities of the semi-axes, we have

; 3 7 3z
b=a‘,\/17‘1 =(ac.——wo),\/;0(l)
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A rough approximation to the half-span of the hydrostatic arch
is found by making %, = b; but this, in the cases which occur in
practice, is too great by an excess which varies between 15 and ¥,
and is about #v on an average. Hence we may take, as a first
approximation whose utmost error in practice is about b, and
whose average error is about 135, the following formula, giving the
half-spam in terms of the depths of load at the crown and springing :—

19 , 8/,
Y = % (ac, 3 wo) '/\/a?o-...‘ ................ (2)

Suppose the rise a and half-span y, of a proposed hydrostatic arch
to be given, and that it is required to find the depths of load ; equa—
tion 2 gives us, as an approximation,

= (w2
z \l9a/’

and because z; — 2, = a, we have

20 4 1)"'
19a 1
ooy B — G - SR ()
: L v 5 3/1)3_. 1
19a 19a _
A closer approximation is given by the equations
b'-’
i G150 o’
b=y, + -3%%—‘1; : Sl 2

G e e
—bs—as’ o= a bs—aa'

T, =0a"

A semicircular or semi-elliptic arch may have its conjugate thrust
approximately determined, by considering it as an approximate geo-
static arch, as follows :— -

Let there be given, the half-span of the arch in question, horizontal
or inclined, as the case may be, y,, the depths of load at its crown
and springing, @, @;, and the vertical load at the springing, P;.
Determine, by equation 2 or equation 4, the span %, of a Aydro-
static arch for the depths of load ;, «;, and let

¥

R o oot (o)

K]
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be the ratio of the half-span of the actual arch to that of the hydro-
static arch.

' The actual arch may now be conceived as an approximation to
a geostatic arch, transformed from the hydrostatic arch by pre-
serving its vertical ordinates and load, and altering its conjugate
ordinates and thrust in the ratio ¢. The conjugate thrust of a
hydrostatic arch being equal to the load, we have, as an approxi-
mation to the conjugate thrust of the given semi-elliptic or semi-
circular arch,

R R L S vofo )

SectION 3.—O0n Frictional Stability.

189. ¥riction is that force which acts between two bodies at their
surface of contact, and in the direction of a tangent to that surface,
so as to resist their sliding on each other, and which depends on
the force with which the bodies are pressed together.

There is also a kind of resistance to the sliding of two bodies
upon each other, which is independent of the force with which
they are pressed together, and which is analogous to that kind of
strength which resists the division of a solid body by skearing,—
that 1s, by the sliding of one part upon another. This kind of
resistance is called adhesion. It will not be considered in the
present section.

Friction muay act either as a means of giving stability to struc-
tures, as a means of transmitting motion in machines, or as a cause
of loss of power in machines. - In the present section it is to be
considered in the first of those three capacities only.

190. Law of Solid ¥riction—The following law respecting the
friction of solid bodies has been ascertained by experiment :—

The friction which a given pair of soltd bodues, with their surfuces
in o given condition, are capable of exerting, is simply proportional
to the force with which they are pressed together. :

If the bodies be acted upon by a lateral force tending to make
them slide on each other, then so long as the lateral force is not
greater than the amount fixed by this law, the friction will be equal
and opposite to it, and will balance it.

There is a limit to the exactness of the above law, when the
pressure becomes so intense as to crush or grind the parts of the
bodies at and near their surface of contact. At and beyond that

- limit the friction increases more rapidly than the pressure; but

. that limit ought never to be attained in a structure.

~ From the law of friction ii follows, that the friction between
two bodies may he computed by multiplying the force with which



210 THEORY OF STRUCTURES.

-
they are pressed together by a constant co-efficient which is to be
determined by experiment, and which depends on the nature of the
bodies and the condition of their surfaces: that is to say, let N
denote the pressure, f the co-¢fficient of friction, and F the force of
friction, then

F=fN.

191, Angle of Repose—Let A A, in fig. 93, represent any solid
body, BB a portion of the surface of another
body, with which A A is in contact throughout
the plane surface of contact e . Let P C re-
present the amount, direction, and position of
the resultant of a force by which A A is urged
obliquely towards B B, so that C is the centre of
pressure of the surface of contact eE. (Art.
89.)

_ Let PC be resolved into two rectangular components: one,
N C, normal to the plane of contact, and pressing the bodies to-
gether: the other, T C, tangential to the plane of contact, and
tending to make the bodies slide on each other. Let the total
force P C, be denoted by P, its normal component by N, and its
tangential component by T ; and let the angle of obliquity T P C
or P C N be denoted by 4, so that

N = P-cosé }
T =P sing = N -tan 4

Then so long as the tangential force T is not greater than fN, it
will be balanced by the friction, which will be equal and opposite
to it ; but the friction cannot exceed f N; so that if T be greater
than this limit, it will be no longer balanced by the friction, but
will make the bodies slide oneach other. Now the condition, that

T shall not exceed f N, is equivalent to the condition, that X

N’
or tan 4, shall not exceed /.

Hence it follows, that the greatest amgle of obliquity of pressura
between two planes which is consistent with stability, is the angle
whose tangent i3 the co-effictent of friction.

This angle is called the angle of repose, and is denoted by ¢@. It
is the steepest inclination of a plane to the horizon, at which a
block of a given substance will remain in equilibrio upon it ; for if
P represents the weight of the body A A, so that P C is vertical,
and ¢ — @, then @ is the inclination of B B to the horizon.

The relations between the friction, the norma,}' nressure, and the

%

"
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total pressure, when the obliquity is equal to the angle of repose,
are given by the following equations :—

fP
-J_1+—fé~q.-(2.)

192. Table of Co-eflicients of Friction and Angles of Repose.—
Very extensive tables of the co-efficients of friction of different
materials used in construction are published in the works of
General Morin of the French Artillery, and have been reprinted
in various treatises. The following is a condensed table compiled
from General Morin’s tables and from other authorities, giving

F=T=fN=N'tan¢=P'sin¢=

! 1
those constants, and also the reciprocal, = = cotan @, for the

materials of structures, arranged in a few comprehensive classes.

Its practical utility is equal to that of the more voluminous and
detailed tables from which it bas been condensed :—
1
. J 4 F
Dx;y;roix;?sonry and brick- || .64, o | 31°%0 35° 167 to 1°43
Masonry and brickwork, : pes ;
withr{iamp mortar,..... °74 36% '35
Timber on stone,.......... about o4 22° 2'5
Tron on stone, ....cccuun.e. o to 03 | 35° to 16°% | 1°43 to 3°33
Timber on timber, ........ o5 to o'z | 26°% to 11% 2 to 5
Timber on metals,......... 06 to o2 | 31°to 11% | 1'6% to 5
Metals on metals,......... o'25 to o'15| 14°to 8% 4 to 6-67
Masonry on dry clay,.... 051 27% 1'96
Masonry on moist clay,.. 033 18% 3
Earth on earfilh, .......... 5 025 to 1°0 | 14°to 45° 4to1
Earth on eart san
clay, and mfxzﬁyegrth: 0'38 to o75| 21°t0 37° |263 to 1-33
Earth on earth, damp . S
clay, ... feee Sl sseda i 45 ¢
Earth on earth, wet clay, 0'31 17° 323
Earth on earth, shingle St 1 & 8 b i e
and gravel,..ccoeeeeen. }o - 5 ol R B R s i

193. Frictional Stability of Plane Joints.—In a structure com-

posed of a number of pieces connected only by touching each other
at plane surfaces (as is the case in masonry and brickwork), it is
necessary to stability that the obliquity of the pressure should at no
joint exceed the angle of repose.

s\
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In structures of masonry, this condition can almost always be
complied with by suitably placing the joints.

Both this and other principles depending on the effect of friction
in promoting the stability of masonry, will be considered in subse-
quent sections,

194. Frictional Stability of Earth.*—A structure of earth, whether
produced by excavation or by embankment, preserves its figure at
first partly by means of the friction between its grains, and partly
by means of their mutual eohesion or tenacity; which latter force
is considerable in some kinds of earth, such as clay, especially when
moist. It is by its tenacity that a bank of earth is enabled to stand
with a vertical face, or even an overhanging face, for a few feet
below its upper edge; whereas friction alone, as will afterwards
appear, would make it assume an uniform slope.

But the tenacity of earth is gradually destroyed by the action of
air and moisture, and of the changes of the weather; so that its
friction is the only force which can be relied upon to produce
permanent stability. In the present investigation, therefore, the
stability of a mass of earth, or of shingle or gravel, or of any other
material consisting of separate grains, will be treated as arising
wholly from the mutual friction of those grains, and not from any
adhesion amongst them.

Previous researches on this subject are based (so far as I am
acquainted with them) on some mathematical artifice or assumption,
suchas Coulomb’s “Wedge of Least Resistance.” Researches so based,
although leading to true solutions of many special problems, are
both limited in the application of their results, and unsatisfactory
in a scientific point of view. I propose, therefore, to investigate
the mathematical theory of the frictional stability of a granular
mass, without the aid of any artifice or assumption, and from the
following sole

PrincieLE.  The resistance to displacement by sliding along a
given plane in a loose granular mass, is equal Yo the normal pressure
exerted between the parts of the mass on either side of that plame,
multiplied by specific constant.

The specific constant is the co-efficient of friction of the mass, and
is the tangent of the angle of repose. Let p, denote the normal
pressure per unit of area of the plane in question; ¢ the resistance
to sliding (per unit of area also); @ the angle of repose; then the
symbolical expression of the above principle is as follows :—

* This and the ensuing Articles of the present section are to a great extent abridged
from a paper “On the Stability of Loose Earth” in the Philosophical Transactions
for 1856-7.
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This principle forms the basis of every investigation of the sta-
bility of earth. The peculiarity of the present investigation consists
in its deducing the laws of that stability from the above principle
alone, . without the aid of any other special principle. It will in
some instances be necessary to refer to Mr. Moseley’s “Principle
of the Least Resistance;” but this must be regarded not as a special
principle, but as a general principle of statics.

In a granular mass, any plane whatsoever may be considered as
a plane joint, in the sense in which that term has been employed in
Article 193 ; and hence, and from the principle already stated,
follows, N ¢

TreoreEM L. [t is mecessary to the stability of a granular mass,
that the direction of the pressure between the portions into which it is
divided by any plane should not at any point make with the normal
to that plane an angle exceeding the angle of repose.

From what has been already proved, respecting internal stress,
in Part L., Chap. V., Sect. 3, and especially in Articles 108 to 112
inclusive, it is evident, that the plane at any point in a mass, on
which the obliquity of the pressure is greatest, is perpendicular to
the plane which contains the axes of greatest and least pressure,
—the pressure of greatest obliquity being parallel to that plane of
greatest and least pressure.

The relations amongst the intensities of the pressures in a solid
mass, which are parallel to one plane, as represented by the * Ellipse
of Stress,” have been investigated in Article 112. The present
case, of a mass of earth, is one in which a limit to the greatest
obliquity is assigned; viz., that it shall not exceed the angle of re-
pose, ¢. The relation between that greatest obliquity and the
greatest and least pressures, has been found in Article 112, Pro-
blem III, Case 1, equation 6, viz. :—

e DL — P2
‘= arc "gin =—==
i RN
P, being taken to represent the greatest, and p, the least pressure,
and 4, the greatest obliquity of pressure. By Theorem I. we have

6 —¢ 3
(where — means, “less than or equal to;” that is, “not greater than”).
Hence follows the following equation :—

pl ‘—‘p2 | S0 . 3
Rl sin 4, — sin @;....... Rt (2)
or in words,

TraeoreM YI. At each point in a mass of earth, the ratio of the
difference of the greatest and least pressures to their sum cannot exceed

the sine of the angle of repose.
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Another symbolical expression of this Theorem is as follows :—

P 1l + sineg
p2_4_ T wn p A (2A))

‘When the directions of any pair of conjugate pressures in the
plane of greatest and least pressure in a mass of earth are given,
the limits of the ratio which the intensities of those pressures bear
to each other are given by the solution of Prob],,q_x;_x V. of Article 112,

equation 27. In that equation, make nlar\- =4, the common obliquity
of the pair of conjugate pressures, and let ¢, represent the greatest
actual obliquity of pressure in the mass, which must not exceed 0;
then p, as before, being the greater conjugate pressure, and p’ the
less, we obtain the following proposition :—

TreorEM III. The following is the expression of the condition of
the stability of a mass of earth, in terms of the ratio of a pair of con-
Jugate pressures in the plane of greatest and least pressures :—

P __cosd+ ./ (cos’ ¢ —cos’) _ cos ¢+ ,/(cos’ ¢ — cos’ p)
o 2 i 2 AR (3)
P’ cos 4 — ./ (cos® § — cos® ¢) cos ¢ — 4/ (cos® 4 — cos? p)

195. Mass of Earth with Plane Surface.—Although the preceding
principles can be applied to a mass of earth with a surface of any
figure, their most useful application is to a mass bounded above by
a plane surface, either horizontal or sloping. For such a mass, the
three Theorems of Article 125 are true, and may be summed up as
follows :—the pressure on a plane parallel to the upper plane sur-
face (which may be called a conjugate plane) is vertical, and pro-
portional to the depth :—the pressure on a vertical plane is parallel
to the upper plane surface, and conjugate to the vertical pressure:—
the state of stress at a given depth is uniform.

Let w be the weight of an unit of volume of the earth; « the
depth of a given conjugate plane below the surface; 4 the inclination
of that conjugate plane; then the intensity of the vertical pressure
on that conjugate plane is

The limits of the intensity p, of the conjugate pressure, parallel to
the direction of steepest declivity (when the surface slopes) on a
vertical plane, at the same depth z below the surface, are deduced
from the equation 3 of Article 194, by considering, that this con-
Jugate pressure may be either the greater or the less of the pair
of pressures the limits of whose ratio are given by that equation ;
so that if we use the symbol
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=3
a b=tc¢c

to signify, “a is not greater than b - ¢, and not less than b — ¢,”
we obtain the following result :—

cos ¢ == J (cos"' ¢ — cOs? q,) ' (2) "«
cos ¢ == J (COSzﬂ = 0052 ¢)..“...... o )Y

=
py7

wxcosd:

When the plane surface is horizontal, so that cos ¢ = 1, equations 1
and 2 become A
P 1 =sing, ]
=W py7ww TRt o 3) ‘
as might have been inferred from Theorem II. of Article 194.

‘When ¢ = ¢, or when the slope is the angle of repose, the limits of
the intensity of the conjugate pressure coincide, and it has but one
value, viz. :i—

Py= WX COS P = Pyreereeenn Ve S %)

For all values of ¢ greater than @, eqwmtion 2 becomes impossible ;
which shows what is otherwise evident, that the angle of repose is
the steepest possible slope.

There isa third pressure which may be denoted by p,,in a direction
perpendicular to the first two,.p, and p,; that is, horizontal, and
perpendicular to the vertical plane in which the declivity is steepest;
but the intensity of that third pressure will be considered in a
subsequent Article. It is of secondary importance in practice,
seeing that walls for the support of sloping banks of earth are gene-
rally placed so as to resist the pressure of the earth in the direction
of steepest declivity.

‘With the exception of equation 4, the equations of the present
Article give only the limits of the intensity of the conjugate pressure
parallel to the steepest declivity. To find the exact intensity of
that pressure, it is necessary to have recourse to a statical principle,
first discovered by Mr. Moseley, which is stated in the following
Article.

196. Principle of Least Resistance.—THEOREM. If the jforces
which balance each other in or upon @ given body or structure be
distinguished tnto two systems, called respectively active and passive,
which stand to each other in the relation of cause and ¢ffect, then will
the passive forces be the least which are capable of balancing the active
Jforces, consistently with the physical condition of the body or structure.
~ For the passive forces being caused by the application of the
“active forces to the body or structure, will not increase after the

ttive forces have been balanced by them; and will therefore not
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increase beyond the least amount capable of balancing the active
forces.—Q. E. D.

197. Earth Loaded with its own Weight—In a mass of earth
loaded with its own weight only, the gravitation of the earth causes
the vertical pressure, the vertical pressure causes a tendency to
spread laterally, and the tendency to spread causes the conjugate
pressure; therefore the vertical and conjugate pressures stand to
each other in the relation of cause and effect, or active and passive
respectively; therefore the intensity of the conjugate pressure is
the least which is consistent with the conditions of stability given
in Articles 194 and 195.

Applying this principle to the equations of Article 195, relative
to a bank with a plane upper surface, they become the following :—

Vertical pressure (as before), p, = wx cos b...covvevennninnnnnnnn(ll)

Conjugate pressure parallel to steepest declivity :—
General case,

conf—/ (oos' b —cos' o). o
cos 0 + ,/ (cos® § — cos® ¢)’

p,=wxcoséd.,

Horizontal surface, ¢ =0,cos § =1; p, = w x;

. —-'wa:-l_Sin(p'
= AR

¢ Natural slope,” § = o,
Py =Ps == WL * COS Puruserosaneenconnncns 4.)

The third pressure p, is found in the following manner. Being
perpendicular to the plane of p, and p,, it must be a principal pres-
sure (Arts. 107, 109). Being a passive force, it must have the least
intensity consistent with stability, and must therefore be equal to
the least pressure in the plane of p, and p,.

The greatest and least stresses, or principal pressures, in that
plane, are to be found by means of Problem IV. of Article 112, case
3, from the pair of conjugate pressures p,, p,, whose obliquity is 4
Let p, be the greatest, and p; the least principal pressure; then ix
equations 19 and 20 of Art. 112, for

y A
Dy P> N Ty Pes Py

we are to substitute respectively,

Dss Py 0, D1 P
giving the following results :—
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Pt p, w e cos b

2cosd  cos d T / (cos” — cos ¢)(5)

St

o WL Ccosdsin @ .
} = Cos 8- o/ (cos?I— cos' g)’ (6.)
and consequently,
@ cosg (l+sing) 7
+ J (COS"= g B COS’ Q)’ -------------- ( -)

The axis of greatest pressure I
direction of greatest declivity and the v¢
to the horizon, which may be denoted by
ing formula, deduced from equation I

cute angle between the
1; and its inclination
given by the follow-
icle 112, by making

the proper substitutions :— \‘\\_
é S— —
c0s21,lw—_—.2p"coS Lp’;\*
D1 — P

from which is easily deduced,

1 . sing) .
Y= 3 {l -+ arc - sin STIT@} RN ... ..(9.)

q 4
In using this formula, the arc sin —:%% is to be taken as greater

than a right angle.
The following are the results of the equations 7, 8, 9, for the
extreme cases :—

N

Horizontal surface, ¢ = 0;

DH=wWwe =p,;
; 1 —sin g ! + (10.)
P e T e
Y = 90°, or the axis of greatest pressure is vertical. |

Natural Slope, ¢ = ¢;

p=w2z(l + sin ¢);

| m=p=ws(l—sn); Cotaw
¥=3 (¢ + 90°), or the axis of greatest pressure bisects ‘

the angle between the slope and the vertical. T
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198. Pressure of Earth against a Vertical me—In ﬁg. 94, let

v O X represent & verftical plane in or in
contact with a mass of earth whose upper
surface Y QX is eitlier horizontal or in-
clined at any angle /4 and is cut by the
vertical plane in a d‘n'ectmn perpendicular
to that of steepest dleclivity. It is required
to find the pressufre exerted by the earth
¢ against that vertical plane, per wunit of
b ~ breddth, from £ down to X, at a depth

O X = x beneath the surface, and;?’direction and position of the

resultant of that pressure.

The direction of that resultant ig already known to be parallel to
the declivity YO Y.

Let BB be a plane tra ’fmg X, parallel to Y O Y. In that
plane take a point D, at ach a distance X D from X, that the
weight of a prism/of eg:th of the length X D and having an obligue
base of the area uuefcy in the plane ) X, shall replesent the inten-
sity of the co t;e ressuve per unit of area of & vertical plane at
the.depth X. déf straight line O D; then will the ordinate,
parallel t6 OY, from OX to OD at any depth, be the
length of'an obhque prism, whose weight, per unit of area of its
obhquo Lise, will be the intensity of the conjugate pressure at that
depth. Jet OD X be a triangular prism of earth of the thickness
unity; 96 weight of that prism will be the amount of the conju-
gate pressure souﬂht and a line parallel to OY, traversing its
centre of gravily, and cutting O X in the centre of pressure C, will
be the position of the resultant of that pressure. The depth O C
of that centre of pressure beneath the surface is evidently two-

thirds of the total depth O X.
To express this symbolically, make

‘Mf#’v”

2 2
T~ = = it sy
¢ 8 (by equation 2 of Axrticle 137);
| ‘~en th.a ‘amount of the conjugate pressure, or weight of the prism
’ XD)ls ; id
re : P, _fp, dm— fp,daa <

. o p, wat cos A—,\/(cos’e—-cos’ )
— £Y — —— +cosd 7o (2
,64& b P g % cosdF J(cost— cos' 9)’ (2)
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and the centre of pressure is given by the equation

In the extreme cases, equation 2 takes the following forms :—
For a horizontal surface; 6 = 0;

Py = _2—' v 1—+Ti11¢ ---------------- “sessne (4.)
For a surface sloping at the angle of repose; ¢ = @;
Py = 1—%‘ © COS @v coeesesscencnnaces aeneee (5.)

The principles of this Article serve to determine the pressure of
earth against retaining walls, as will afterwards be shown.

199. Supporting Power of Earth Foundations.—The two preced-
ing Articles refer to the case in which the conjugate pressure at a
given depth is caused solely by the vertical pressure due to the
weight of earth above that point, and is therefore, in virtue of the
¢ principle of least resistance,” the least conjugate pressure consis-
tent with the weight of the vertical column of earth in question.

But the conjugate pressure may be increased beyond that least
amount, by the application of the pressure of an external body; for
example, the weight of a building founded on the earth. In this
case, the conjugate pressure will be the least which is consistent
with the vertical pressure due to the weight of the building; and
if that conjugate pressure does not exceed the greatest conjugate
pressure consistent (according to equation 2, 3, or 4 of Aurticle
195) with the weight of the earth above the same stratum on which
the building rests, the mass of earth will be stable.

The most important case in practice is that in which the surface
of the ground is horizontal; so that the intensity of the vertical
pressure due to the weight of the earth is wa; @ being the depth
o the base of the foundation of the building below the surface of
the earth.

In this case, the greatest horizontal pressure, at the depth «, con-
fs.isl,’{,en(; with stability, as given by equation 3 of Article 195, is as

ollows :— :

J :in ¢
Py =WL " 5———;
y l—sine
The greatest mbensity of yerti ‘ consistent with this
horizontal prossarc y
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1+sing 1 -} sin g\2 i
— - e = e I b AR AR A 2.
B i 1—-5in¢)’ 2)

and this is the greatest intensity of pressure, consistent with stability, of a
building founded on a horizontal stratum of earth at the depth x, the
angle of repose being @,

If A be the area of the foundation of the building, wa A will
be the weight of earth displaced by it ; and if the pressure of
the building on its base be uniformly distributed, p' A will be
the weight of the building; so that

i Gj‘__zgg)(s)

wx

is the Lmit of the ratio in which the weight of a building exceeds the
weight of carth displaced by it, when the pressure is uniformly dis-

. tributed over the base.

~  If the pressure of the building be not uniformly distributed
over the base, its greatest intensity must not exceed that given
by equation 2, and its least intensity must not fall short of w .
This condition determines the greatest inequality of distribution
of the pressure of a building which is consistent with the stability
of a given kind of earth. The most useful and frequent example
of this case is that in which the base is rectangular, and the
intensity of the pressure increases at an uniform rate from one
edge to the opposite edge of the rectangle, being an wuniformly
varying stress (Articles 91, 92, 94). 1In this case, let p, denote
the mean intensity of the pressure of the building, b the breadth
of its base in the direction along which the pressure varies, anc
¢ b the utmost deviation of the centre of pressure of the base from it
centre of figure, consistent with the stability of the earth whict
. supports it; then 72 .o A

R 3

/2 J i
o —wax sin r
R 4 0

(e 2)

oS 6(p' + ww) Err 3 (1 + Sin” ¢)~-n.!-...(.':.¢_(5

/
] 200. Abutting Power of Earth.—If a vertical plane surfacOf .

3 some body which is pressed horizontally, such as a buttres®r

& retaining wall, abuts or presses horizontally against a horiz!
“layer of earth, of the depth @, the limit of the resistance w"

““ that layer is capable of opposirg to the horizontal thrust o'

vertical plane 1s determined by the greatest horizontal pre’®
consistent with the stability of th. Hence the amou®f
{
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that horizontal resistancé, per unit of horizontal breadth of the
vertical abutting plane, is given by the equation
| p @ Ltsne | iop4 f2/
»= T3 T_sing §IO N o o
2 pidA
The centre of resistance is at ?gz_c below the surface of the earth.

201. Table of Examples of the results of the formule in Articles
197, 198, 199, and 200.

o o° 15° 30° 45° 60°

e 1 S T S
Sf=tan o o 0268 0577 1000 " 1732
;.: cotan @ B3is 1732 1'000 o'B77
sin @ o 0259 0°500 ofoy 0860

1 —sin @ —
T I 0'588 0333 o'1y2 0072
;—___*‘:—2—1% I 100 3000 5826 13924
cos @ i 0966 0'866 ooy 0°'500
cos®* @ 3 0933 o750 0500 0'250.

1 — sin @\? )
i I 0346 O'III 0'0295 ©'0052

I + sin ¢\® ; r
(;:gm) I 2890  gooo 3394 1938

1 -} sin’@
(T — sin P /- ARIRERORES 5600, " 17°47 " 974
sin @ .
3(iFsm'e) o} o'081 0’133 o'157 0165

Reyark. The column headed o%is applicable to Liuids.
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202. Frictional Tenacity or Bond eof Masonry and Brickwork.—
The overlapping or breaking of the joints, commonly called the
bond, in masonry and brickwork, has three objects—first, to dis-
tribute the vertical load which rests on each stone or brick over
two or three of the stones or bricks of the course next below, and
80 to produce a more nearly uniform distribution of the load than
would otherwise take place; secondly, to enable the structure to
resist forces tending to break it by shearing, or sliding of one part
on another, in a vertical plane; and thirdly, to enable it to resist
forces tending to tear it asunder horizontally.

For masonry and brickwork laid either dry, or in common mor-
tar which has not had time to acquire practically appreciable
tenacity, the resistance to horizontal tension mentioned above as
the third object of the bond, is due to the mutual friction of the
overlapping portions of the beds or horizontal faces of the stones or
bricks, arid may be called ¢ frictional tenacity.” The amount of the
frictional tenacity at any horizontal joint is the product of the ver-
tical load upon the portion of that joint where two blocks of stone
or brick overlap each other, into the co-efficient of friction, which,
as stated in the table of Article 192, is about o7 4.

Let fig. 94 A represent a portion of a wall with a horizontal top
A ; and let it be required to determine

%) dr R ?A o= the frictional tenacity at a horizontal
LI L LD doint B, whose depth below A is «, the
A L LL L L intensity of that tenacity per unit of
J_I [T T TT I T T area of a vertiqal plane at B, and the
25 9 23 V5 0 I A aggregate tenacity of the wall from A
T T T T down to B, with which it is capable of

Fig. 94 A. resisting a force tending to tear it into
two parts by separation at the serrated
dark line which extends from A to B in the figure.
Let w be the weight of an unit of volume of the material of the
wall ; b the length of the overlap at each joint; ¢ the thickness of
the wall. Then

whix
is the vertical pressure on the overlapping portions of the stones or

bricks at B, and consequently, if £ be the co-efficient of friction, the
amount of frictional tenacity for the joint B is

o T i3 ep s S

The intensity of that tenacity per unit of area of a vertical
plane is found by dividing its amount by the area of a vertical
section of one course of stones or bricks. Let /4 be the depth of a
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course ; then A ¢ is the area of its vertical section ; and the intensity
of the frictional tenacity of the joint immediately below is

Let n be the number of courses from A down to B. Then the
value of « for the uppermost course is = %, and for the lowest

course, =— 7 A ; and the mean value of « is n—l2- L. h; so that the
mean tenacity per course is
ﬁ_;—l Swbth;
and the mean intensity,
7‘—-_12;1 * fwb.

Hence the amount of the aggregate frictional tenacity of the wall,
from A down to B, is

S L B WAL o L 3)

From the equations 2 and 3 it is obvious that the frictional
tenacity of masonry and brickwork is increased by increasing the

ratio 7’; which the length of the overlap bears to the depth of a

course. This may be effected either by increasing the length of the
stones or bricks (to which the overlap bears a definite proportion,
depending on the style of bond adopted), or by diminishing their
depth ; but to both those expedients there is a limit fixed by the
liability of stones and bricks to break across when the length
exceeds the depth in more than a certain ratio, which for brick
and stone of ordinary strength is about 3.

For English bond (as in fig. 94 A), consisting of a course of
stretchers (or bricks laid lengthwise), and a course of headers (or
bricks laid crosswise), alternately,—and also for Flemish bond, in
‘which each course consists of alternate headers and stretchers, the
overlap b is one-fourth of the length, or about three-fourths of the

depth, of a brick. The value of }% is therefore Z; but to allow for
irregularities of figure and of laying in the bricks, it is safe to make it

; in the formule. Substituting this in equations 2 and 3, and
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making = g, we find for the intensity of the frictional tenacity,
where one-half of the face of the wall consists of ends of headers,

wx
—‘;)7 Jeeeseses sessscsssatstsetrcnaanes (4)
and for the amount from the top of the wall down to the depth 2,
wt (z* + ha
( i ) el (3.)

The tenacity of the wall in the direction of its thickness, which
resists the separation of its front and back portions by splitting, is
. often as important as its longitudinal tenacity, and sometimes
more so. Where one-half of the face, as in fig. 94 A, consists of
ends of headers, the overlap of each course in the direction of the
thickness is generally one-half of the length of a brick instead of
one quarter ; so that 7 is to be made = % instead of two-thirds.
Hence in this case, the transverse frictional tenacity (as it may be
called) is double of the longitudinal frictional tenacity, its intensity
at the depth z being

AT 5o 00T &se(65)

and its amount from the top of the wall down to the depth z, for
a length of wall denoted by /,

wl(*+ha) i
———24——- ............ eeesacnas ....-.(I.)

In a brick wall consisting entirely of stretchers, as in fig. 94 B,

T T I I I the longitudinal tenacity is double of
T T T T ~ that of the wall in fig. 94 A, where

B ] I [ I one-half of the face consists of ends of
Xl

: | l T ' I : ] L headers. But that increased longitu-

Fig. 94 B. dinal tenacity is attained by a total

sacrifice of transverse tenacity, when

the wall is more than half a brick thick. In brickwork, therefore,

in which the longitudinal is of more importance than the transverse

tenacity (as is the case in furnace chimneys), a sufficient amount of

transverse tenacity is to be preserved by having courses of headers

?tumtervals. The effects of this arrangement are computed as
ollows :—

Let s be the number of courses of stretchers for each course of
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1 of the face of the wall consists of ends of
s+1 =

of sides of stretchers.

headers ; so that

s
GEPIL

Let L denote the intensity of the longitudinal frictional tenacity,
and T that of the transverse frictional tenacity, at the depth a.
The following table represents the values of those intensities in the
extreme cases i—

headers, and

1 8

g = o e e = i
1 1 1 L e
2 2 2
) 0 1 wx 0

Now, in intermediate cases, the longitudinal tenacity will vary
nearly as the proportion of sides of stretchers in the face of the wall

;‘—j_vf, and the transverse tenacity as the proportion of ends of
headers; whence we have the following formule for the intensi-
tios ;—

Consequently, for the aggregate tenacities down to a given depth z,
when the length of the wall is /, and its thickness £, we have

Longitudinal, s (2o R i O (10.)

-
4(s+1)
1
T'ransverse, CYES) cwl (@4 ha)...........(11)
To make the longitudinal and transverse frictional tenacities of

equal intensity, we should have s — 2, or two courses of stretchers
for one course of headers. This makes

2w
INE—NE— Ty et (12)
In round factory chimneys, it is usual to make s = 4 ; and then
we have
4 2
L=5'wx,T=-5—'ww...... ........ <(13)
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The preceding formula are applicable not only to brickwork, but
to ashler masonry in which the proportions of the dimensions of the
stones are on an average nearly the same with those of bricks.

The formule 9 and 11 may also be used to find the transverse
tenacity of a rubble wall, if E_—%-_T be taken to represent the propor-
tion of the fuce of the wall which consists of the ends of squared
headers or bond stones, connecting the front and back of the wall
together.

The principles of the present Article may be relied on as a means
of comparing one piece of masonry or brickwork with another, so
far as their security depends on the horizontal tenacity produced
by the friction of the courses. But inasmuch as the absolute
numerical results have been arrived at by an indirect process, from
the tangent of the angle of repose of masonry and brickwork laid
with damp mortar, these results are to be considered as uncertain,
and as requiring direct experiments for their verification or correc-
tion. No such experiments have yet been made.

203. Friction of Scrows, Keys, and Wedges.— The pieces of
structures in timber and metal are often attached together by tha
aid of keys or wedges, or of screws. The stability of those fasten-
ings arises from friction, and requires for its maintenance that the
obliquity of the pressure between the wedge or key and its seat, or
between the thread of the screw and that of its nut, shall not
exceed the smallest value of the angle of repose of the materials.

204. Friction of Rest and Friction of Motion—For some sub-
stances, especially those whose surfaces are sensibly indented by a
moderate pressure, such as timber, the friction between a pair of
surfaces which have remained for some time at rest, relatively to
each other, is somewhat greater than that between the same pair of
surfaces when sliding on each other. This excess, however, of the
Jriction of rest over the friction of motion, is instantly destroyed by
a slight vibration ; so that the friction of motion is alone to be
relied on as giving stability to a structure. In Article 192,
accordingly, the co-efficients of friction and angles of repose in the
table relate to the friction of motion, where there is any sensible
difference between it and the firiction of rest.

_ SectioN 4,—On the Stability of Abutments and Vaults.

205. Stability at a Plane Joint—The present section relates to
the stability of structures composed of blocks, such as stones or
bricks, touching each other at joints, which are plane surfaces,
capable of exerting pressure and friction, but not tension.

The conclusions of the present section are applicable to structures
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of masonry or brickwork, uncemented, or laid in ordinary mortar ;
for although ordinary mortar sometimes attains in the course of years
a tenacity equal to that of limestone, yet, when fresh, its tenacity is
too small to be relied on in practice as a means of resisting tension at
the joints of the structure; so that a structure of masonry or brick-
work, requiring, as it does, to possess stability while the mortar is
fresh, ought to be designed on the supposition, that the joints have no
appreciable tenacity. The mortar adds somewhat to the frictional
stability, as has already been stated in the table of Article 192, and
thus contributes indirectly to the frictional fenacity described in
Article 202, ;

There are kinds of cement whose tenacity becomes at once equal
to that of brick, or even to that of stone. So far as the joints are
cemented with such kinds of cement, a structure is to be considered
as one piece, and its safety is a question of strength.

A plane joint which has no tenacity is incapable of resisting any
force, except a pressure, whose centre of stress falls within the joint,
and whose obliquity does not exceed the angle of repose.

If the resistance of the material of the blocks which meet at the
joint to a crushing force were infinitely great, it would be stffi-
cient for stability that the centre of pressure should fall anywhere
within the joint, how close saever to the edge ; but for the actual
materials of construction, it is necessary that the centre of pressure
should not be so near the nearest edge of the joint as to produce a
pressure at that edge sufficiently intense to injure the material.
Hence it appears that the exact determination of the limiting posi-
tion of the ceéntre of pressure at a plane joint is, strictly speaking,
a question relating to the strength of materials. Nevertheless, an
approximation to that position can be deduced from an examina-
tion of the examples which occur in practice, without having
recourse to an investigation founded on the theory of the strength
of materials. Some of the most useful results of such an examina-~
tion are expressed as follows :—

Let ¢ denote the ratio which the distance of the centre of pressure
of a given plane joint from its centre of figure bears to the diameter
or breadth of the same joint, measured along the straight line
which traverses its centre of pressure and centre of figure ; so that
if ¢ be that diameter, ¢ ¢ shall be the distance of the centre of pres-
sure from the centre of figure. Then the ratio ¢ is found in prac-
tice to have the following values :—

In refaining walls designed by British engineers,. .%, or 0°375.

In refaining walls designed by French engineers,.. .1%, oro‘3.
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In the abutments of arches, in piers and detached buttresses, and in
towers and chimmeys exposed to the pressure of the wind, it has
been found by experience to be advisable so to limit the deviation
of the centre of pressure from the centre of figure, that the maxi-
mum intensity of the pressure, supposing it to be an uniformly
varying pressure (see Article 94), shall not exceed the double of the
mean intensity. Asin Article 94, let P be the total pressure ; S

the area of the joint ; let —g = p, be the mean intensity of the pres-

sure, which is also the intensity at the centre of figure of the joint,
and at each point in a neutral axis traversing that centre of figure;
let 2 be the perpendicular distance of any point from that axis, and
let the pressure at that point be p = p, + az, so that if z, be the
greatest positive distance of a point at the edge of the joint from
the neutral axis, the maximum pressure will be

p»=p,+ ax.
Now, by the condition stated above, p, = 2 p,, and, consequently,
_np_p_ F :
B . — o B A i (1)

If the diameter of the joint is bisected by the centre of figure,
and if x, (as in Article 94) be the distance of the centre of pressure
from the neutral axis, we shall have

i, 7
s . a

q 22’ 75

and by inserting in this equation the value of #,, as given by equa-
tion 4 of Article 94, and having regard to the valué of a, as given
by equation 1 of this Article, we find

al I
g = gﬁl == 2—8_'l, ..... Y (2.)

&y
an expression whose value depends wholly on the figure of the
joint—that is, of the transverse section of the abutment, pier,
buttress, tower, or chimney.

Referring to the table at the end of Article 95 for the values of
the moment of inertia I, the following results are obtained for
joints of different figures. In each case in which there is any
difference in the values of ¢ for different directions, the deviation
of the centre of pressure is supposed to take place in that direction
in which the greatest deviation is admissible—that is to say, at
right angles to the neutral axijs for which I is a maximum ; so that

if % be the diameter in that direction, a, =—;‘.
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FIGURE oF BASE. I ‘ S q
I. Rectangle—
Length% }ﬂ’_ Lb l
Breadth,.... 12 6
il. Square— 4 y 1
§1de].oc coensnnunnssssnsiaiet kR 17 o '
III. Ellipse—
Logger PRSTIRAL 5t h} =l =hb _1_
Shorter axis, reeesesvesens b 64 4 8
IV. Circle— It wh? 1 A
Diameter, vo.veersssesesees h 6 - 3 y IL
V., Hollowrectangle— fs 25 '
Qutside dimensi(?ns,...h, b Bb-1"0 i _M
Inside dimensions,...%, &'§ 12 1602 (hb— Kb
VI. Hollow square— " ;
Outside d?mensions, sk =Rt he— e ms
Inside dimensions, ...... e 12 6 A?
VIIL Circular ring— . ', ;
Diameter, Oﬁside, ...... n | =0 =R | = (B - 1%) el
Do.  Inside....... h’} 64 4 81t

When the solid parts of the hollow square and of the circular
ring are very thin, the expressions for ¢ in Examples VI. and VIL
become approximately equal to the following :—

VIIL. Hollow Squaneiies:. . ... .......0oiencsenensoon = % 5
IX. CirculanSuimGEmeemesiies.. . ... ......0L.. SesTat o = % .

which values are sufficiently accurate for practical purposes when
applied to square and round factory chimneys.

The conditions of stability of a block supported upon another
block at a plane joint may be thus summed up:—

Referring to fig. 93, Article 191, let A A represent the upper
block, B B part of the lower block, ¢ E the joint, C its centre of

pressure, P C the resultant of the whole pressure distributed over
the joint, whether arising from the weight of the upper block, or
from forces applied to it from without. Then the conditions of sta-
bility are the following :—

L. The obliquity of the pressure must not exceed the angle of repose,
that is to say,
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LPON =0 SR8y

I1. The ratio which the deviation of the centre of pressure from the
centre of figure of the joint beurs to the length of the diameter of the
joint traversing those two centres, must not exceed a certain fraction,
whose wvalue varies, according to circumstances, from one-eighth to
three-eighths, that is to say,

bO| =

e —C-
e E

The first of these conditions is called that of stability of friction,
the second, that of stability of position.

e

/

206. Stability of a Series of Blocks; Line of Resistance; Line of
Pressures.—In a structure composed of a series of blocks, or of a
series of courses so bonded that each may
be considered as one block, which blocks
or courses press against each other at
plane joints, the two conditions of sta-
bility must be fulfilled at each joint.

Let fig. 95 represent part of such a
structure, 1, 1, 2, 2, 3, 3, 4, 4, being some
of its plane joints.

Suppose the centre of pressure C, of the

Fig. 95. joint 1,1,to be known,and also the amount
and direction of the pressure, as indicated by the arrow traversing
C,. With that pressure combine the weight of the block 1, 2, 2, 1,
together with any other external force which may act on that block ;
the resultant will be the total pressure to be resisted at the joint
2, 2, will be given in magnitude, direction, and position, and
will intersect that joint in the centre of pressure C,. By continu-
ing this process there are found the centres of pressure C;, C,, &c.,
of any number of successive joints, and the directions and magni-
tudes of the resultant pressures acting at those joints.

The magnitude and position of the resultant pressure at any joint
whatsoever, and consequently the centre of“pressure at that joint,
may also be found simply by taking the resultant of all the forces
which act on one of the parts into which that joint divides the
structure, precisely as in the “method of sections” already described
in its application to framework, Article 161.

The centres of pressure at the joints are sometimes called centres
of resistance. A line traversing all those centres of resistance, such,
as the dotted line R, R, in fig. 95, has received from Mr. Moseley
the name of the “line of resistance,” and that author has also shown
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how in many cases the equation which expresses the form of that
line may be determined, and applied to the solution of useful
problems.

The straight lines representing the resultant pressures may be all
parallel, or may all liein the same straight line, or may all intersect
in one point. The more common case, however, is that in which
those straight lines intersect each other in a series of points, so as
to form a polygon. A curve, such as P, P, in fig. 95, touching all
the sides of that polygonm, is called by Mr. Moseley the “/Zline of
pressures.”

The properties which the line of resistance and line of pressures
must have, in order that the conditions of stability may be fulfilled,
are the following :—

To insure stability of position, the line of resistance must not
deviate from the centre of figure of any joint by more than o certain
Jraction (q) of the diameter of the joint, measured in the direction of
deviation.

To insure stability of friction, the normal to each joint must not
make an angle greater than the angle of repose with a tangent to the
line of pressures drawn through the centre of resistance of that joint.

207. Analogy of Blockwork and Framework.—he point of in-
tersection of the straight lines representing the resultant pressures
at any two joints of a structure, whether composed of blocks or of
bars, must be situated in the line of action of the resultant of the
entire load of the part of the structure which lies between the two
joints; and those three resultants must be proportional to the three
sides of a triangle parallel to their directions.

Hence the polygon formed by the intersections of the lines repre-
senting the pressures at the successive joints in fig. 95, is analogous
to a polygonal frame ; for the sides of that polygon represent the
directions of resistances, which sustain loads acting through its
angles, as in the instances of framework described in Articles 150, .
151, 153, and 154, and represented in fig. 75. A structure of blocks
is especially analogous to an open polygonal frame, like those in
Articles 151 and 154, represented by fig. 75, with the piece E
omitted because of the absence of ties.

The question of the stability of a structure composed of blocks with
plane joints may therefore be solved in the following manner :—

(1.) Determine and lay down on a drawing of the structure the
line of action and the magnitude of the resultant of the external
forces applied to each block, including its own weight. Either one
or two of those resultants, as the case may be, will be the support-
ing force or forces.

(2.) Draw a polygon of external forces, like that in fig. 75% or 75%¥,
Two contiguous sides of that polygon willrepresent the external fore &
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acting on the two extreme blocks of the series, of which one may
be a supporting pressure and the other a load, or both may be
supporting pressures. In either case their intersection gives the
point O, from which radiating lines are to be drawn to the angles
of the polygon of external forces, to represent the directions and
magnitudes of the resistances of the several joints,

(3.) Draw a polygon having its angles on the lines of action of
the external forces, as laid down in step (1.) of the process, and its
sides parallel to the radiating lines of step (2). This polygon will
represent the equivalent polygonal frame of the given structure,
and will have a side corresponding to each joint; and each side of
the polygon (produced if necessary) will cut the corresponding plane
Jjoint in its centre of pressure, and will show the direction of the
resultant pressure at the joint.

Then if each centre of pressure falls within the proper limits of
position, and the direction of each resultant pressure within the
proper limits of obliquity, as prescribed in Article 205, the structure
will be balanced; and the conditions of stability will be fulfilled
under variations of the distribution of the load, which will be the
greater, the greater is the diameter of each joint; for every increase
in the diameters of the joints increases the limits within which the
figure of the equivalent polygonal frame may vary, and every
variation of that figure corresponds to a variation in the distribu-
tion of the load.

208. Transformation of Blockwork Structures.— THEOREM. .[f
u slructure composed of blocks have stability of position when acted on
by forces represented by a given system of lines, then will @ structure
whose figure is a parallel projection of the original structure have
stability of position when acted on by forces represented by the corre-
sponding parallel projection of the original system of lines; also, the
centres of pressure and the lines representing the resultant pressures at
the joints of the new structure will be the corresponding projections of the
centres of pressure and the lines representing the resultant pressures at
the joints of the original structure.

For the relative volumes, and consequently the relative weights,
of the several blocks of which the structure is composed, are not
altered by the transformation; and if those weights in the new
structure be represented by lines, parallel projections of the lines
representing the original lines, and if the other forces applied
externally to the pieces of the new structure be represented by the
corresponding parallel projections of the lines representing the
corresponding forces applied to the pieces of the original structure,
then will each external force acting on the new structure be the
parallel projection of a force acting on the corresponding point of
the original structure; therefore the resultant pressures at the
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joints of the new structure, which balance the external forces, will
be represented by the parallel projections of the lines representing
the resultant pressures at the corresponding joints in the original
structure ; therefore (Article 62, Proposition L), the centres of
pressure, where those resultants cut the joints, will divide the
diameters of the joints in the same ratios in the new and in the
original structures ; therefore if the original structure have stability
of position, the new structure will also have stability of position.

This is the extension, to a structure composed of blocks, of the
principle of the transformation of structures, already proved for frames
in Article 166, and for cords and linear arches in Article 177.

209. Frictional Stability of a Transformed Structure—The ques-
tion, whether the new structure obtained by transformation will
possess stability of friction, is an independent problem, to be solved
by determining the obliquity of each of the transformed pressures
relatively to the joint at which it acts.

Should the pressure at any joint in the transformed structure
prove to be too oblique, frictional stability can in most cases be
secured, without appreciably affecting the stability of position, by
altering the angular position of the joint, without shifting its centre
of figure, until its plane lies sufficiently near to a normal to the
pressure as originally determined.

210. Structnre not Laterally Pressed.—If fig. 96 represents a
structure consisting of a single series of blocks, or n
courses, separated by plane joints, and has no lateral
pressure applied to it from without, then the centre of
resistance at any one of those joints, such as D E, is
simply the point C where that joint is intersected by
a vertical let fall from the centre of gravity G of the
part of the structure AB ED which lies above that » et
Joint; and the conditions of stability are,—that no joint
shall be inclined to the horizon at an angle steeper than
the angle of repose,—and that the point C shall not at  Fig: 96.
any joint approach the edge of the joint within a distance bearing
a certain proportion to the diameter of the joint.

211. The Moment of Stability of a body or structure supported
at a given plane joint is the moment of the couple of forces which
must be applied in a given vertical plane to that body or structure
in addition to its own weight, in order to transfer the centre of
resistance of the joint to the limiting position consistent with
stability. The applied couple usually consists of the thrust of a
frame, or an arch, or the pressure of a fluid, or of a mass of earth,
against the structure, together with the equal, opposite, and parallel,
})ut not directly opposed, resistance of the joint to that lateral

orce.

&




234 THEORY OF STRUCTURES.

The moment of stability may be different according to the position
of the axis of the applied couple. .

The moment of that couple is determined in the following
manner :—

Conceive a line to pass through all the limiting positions of the
centre of resistance of the joint, so as to enclose a space beyond
which that centre must not be found.

The product of the weight of the structure into the horizontal dis-
tance of a point in this line from a vertical line traversing the centre
of gravity of the structure is the MOMENT OF STABILITY of the struc-
ture, when the applied thrust acts in a vertical plane parallel to that
horizontal distance, and tends to overturn the structure in the direc-
tion of the given pownt in the line limiting the position of the centre of
resistance ; for that, according to Article 41, is the moment of the
couple, which, being combined with a single force equal to the
weight of the structure, transfers the line of action of that force
parallel to itself through a distance equal to the given horizontal
distance of the centre of resistance from the centre of gravity of
the structure. ,

To express this symbolically, let ¢ be the length of the diameter
of the joint where it is cut by the vertical plane traversing the
centre of gravity of the structure and parallel to the applied thrust;
let j be the inclination of that diameter to the horizon; let ¢ ¢ be
the distance of the given limiting centre of resistance from the
middle point of that diameter, and ¢ ¢ the distance from the same
middle point to the point where the diameter is cut by the vertical
line through the centre of gravity of the structure, and let W be
the weight of the structure. Then the moment of stability is

WA=E=10) € €08 fiu.uubihiiilie S5, (1)

the sign{ t }being used according as the centre of resistance,
and the vertical line through the centre of gravity, lie towards

: glll)cla) Os?fxfesgii;: } of the middle of the diameter.

Let % denote the height of the structure above the middle of the
plane joint which is its base, b the breadth of that joint in a direc-
tion perpendicular or conjugate to the diameter ¢, and w the weight
of an unit of volume of the material. Then we shall have

where n is a numerical factor depending on the figure of the
structure, and on the angles which the dimensions, %, b, {, make
with each other; that is, the angles of obliquity of the co-ordinates
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to which the figure of the structure is referred. Introducing this
value of the weight of the structure into the formula 1, we find the
following value for the moment of stability :—

n(g==q) cosg w hbf...ieeiiiinnnnana(3)

This quantity is divided by points into three factors, viz. :—

(1.) n (g ==¢') cosj, a numerical factor, depending on the figure
of the structure, the obliquities of its co-ordinates, and the direction
in which the applied force tends to overturn it.

(2) w, the specific gravity of the material.

(3.) & b t% a geometrical factor, depending on the dimensions of
the structure, )

Now the first factor is the same in all structures having figures
of the same class, with co-ordinates of equal obliquity, and exposed
to similarly applied external forces; that is say, to all structures
whose figures, together with the lines of action of the applied forces,
are parallel projections of each other, with co-ordinates of equal obli-
quity; hence for any set of structures which fulfil that condition,
the moments of stability are proportional to

I. The specific gravity of the material ;
IT. The height;

II1. The breadth ;

IV. The square of the thickness; that is, of the dimension of
the base which is parallel to the vertical plane of the applied force.

212." Abutments Classed.—In the title of the present section, the
word “abutment” is used in an extended sense, to denote every
structure, which by its stability of position and of friction, sustains
some pressure which abuts or acts laterally against it. The structures
comprehended under this definition may be classed as follows :—

1. Buttresses, which sustain the thrust of a frame or a rib, at one
or more definite points.

II. Towers and chimneys, which sustain the lateral pressure of
the wind, uniformly or almost uniformly distributed, and liable to
act in every horizontal direction.

IIL. Dams for sustaining the lateral pressure of water, and
vetoining walls for sustaining that of earth—the intensity of. the
pressure being proportional to the depth beneath the surface.

IV. Arch abutments, which resemble both buttresses and retain-
ing walls, and whose properties will be treated of after those of
stone and brick arches shall have first been considered with refer-
ence to the stability at their joints.

213. Battresses in General.—Let fig. 97 represent a vertical sec-
tion of a buttress, against which a strut, rib, or piece of frame-
work abuts at* €, exerting a given force P in a given direction
CA. In order that the buttress may be stable, it must fulfil’
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the conditions of stability at each of its bed-joints. Let D E be
one of those joints. ;

Should several pressures abut against the buttress,
the force P acting in the line C A may be held to
represent the resultant of all the forces which are
applied above the particular joint DE under con-
sideration.

Let G be the centre of gravity of that part of the
buttress which is above the joint D E, and let W
denote the weight of the same part. Through G
draw the vertical line A G B, cutting the direction
of the lateral thrust in A, and the joint D Ein B;
make AW = W, A P = P; complete the ‘parallelo-

gram A PR W ; then AR will represent the result-
ant of all the forces which act on the part of the buttress above
the joint D E, and to which the resultant of the resistance at that
joint must be equal and directly opposed. A R being produced,
cuts D E in F, the centre of resistance of that joint, which must not
fall beyond a certain prescribed limit, that the condition of stability
of position may be fulfilled. In order that the condition of stabi-
lity of friction may be fulfilled, the angle A F B must not be less
than the complement of the angle of repose.

The most convenient mode of expressing this problem algebrai-
cally depends on the circumstances of the particular case. The
following example is that which is most frequent and useful in
practice ; viz., when the inner face C D of the buttress is vertical,
and the joint D E horizontal.

In this case, let the point of application of the lateral force, C,
be taken for the origin of co-ordinates. Let

¢ denote the angle of inclination of the applied lateral pressure
to the horizon ;—

2 = C D, the depth of the joint in question below C ;—

%, = B D, the horizontal distance of the centre of gravity of -the
part of the buttress above that joint from the inner face ;— .

y = D F, the horizontal distance of the centre of resistance o
the joint from its inner edge. o

The resultant resistance, which acts through F in the direction
F A, may be resolved into two components, respectively parallel,
equal, and opposite to the weight W and applied force P. The
couple of forces W is right-handed, and has the arm ¥ B = Y~Ye
The couple of forces P is left-handed, and has for its arm the per-
pendicular distance of F from the line of action C A of the applied
force, viz. :—~

Fig. 97.

x cos ¢ — ¥ sin 4

PRV 2 A O b
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The former of those couples tends to maintain the stability of the
buttress : the latter tends to overturn it. Equating their magni-
tudes, we obtain for the expression of the condition of stability of
position the following :—

W (y—y,) = P(xcosi—y sin 3).......... (1)

From this fundamental equation the solutions of various pro-
blems may be deduced, of which the following are examples :—

I. The buttress and the lateral force being given, to find the
centre of resistance at a given joint.

Wy, +Pzcoss
Y= TN Pamg e (

This is the equation of the “line of resistance.”
The condition of stability is expressed in terms of y thus—

1 :
- yé(q+§ B daastodag Bk Tehs (3)

/
/

f

‘ ———

1L The relation between the weight and the dimensions of the
part of the buttress under consideration being given as in equations
2 and 3 of Article 211, it is required to find the least thickness at

/ the joint D E consistent with stability.

For this purpose we must substitute for W (y —g,) in equation 1
of this Article its limit ; that is to say, the moment of stability, as
expressed in equation 3 of Article 211 ; and for 7 we must substi-
tute its limiting value in terms of the thickness, as given by equa-
tion 3 of this Article. Thus we obtain the following equation : —

n(g+d)whbe =P @oosi=(g+g) tsin ) (b)
To simplify the form of this quadratic equation, make
‘ 1 S
Pwcosi ' , (q+§>P51uz—B
n(q+q)whd — "’ 2n(g+q)whd = ¢

then equation 4 becomes

the solution of which is

R T = B iveinvnsianinaly (.)

In detached buttresses, it is in general desirable to give ¢ the
value assigned by equation 2 of Article 205, for the reason there

stated.
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III. To find the obliquity of the pressure at the Jomt DE, we
have the equation

gty S

m ...... A T (6.)

As the resultant of the resistance at each joint must act in a line
traversing the point A, the locus of that point is the ¢ line of pres-
sures,” defined in Article 206.

The greatest obliquity of pressure occurs at that joint which is
immediately below the point of abutment C. Let W, therefore,
denote the weight of material above that joint, and the condition
of stability of friction will be given by the equation

Pcose

W,+Psns <= A0 @ veieriienniannnee (7.)

214. Rectangular Buiress. — In a rectangular buttress, the
breadth b and thickness ¢ are constant; and if 4, be taken to denote
the height of the top of the buttress above the point C,

h=h0+$

will be its height above a given joint. Also, because the centre of
gravity of the portion above any bed-joint is vertically above the

" centre of the joint, ¢ = 0, and y, = -l—t ; and because

2
W = whbt,

=3

These values being substituted in equations 2, 4, 5, and 7 of
Article 213, give the following results :—

Equation of the line of resistance—

%w(ko—l-w)bt'“’—l—l’a; cosd
Y= "0, *2)bt+ P s

The least thickness compatible with stability (z, being the depth of
the base of the wall below C) is found by making

__ Pazycosi | —(q+§)Psmz
Tqwh,Fayt’ T Zqw(h, T a)b

whence follows Z?, i »\,A' e o L A fv‘\[

“fa,



.

RECTANGULAR BUTTRESS—PINNACLE. 239

Pmlcosz
t=,JAFB —B= \/ )

((q-{- Psm:b)?] (q+% Psing @) ,‘
2qw(h,+a)b JL Sqw(hyFm)b
J

The least volume of material above the level of the point G
which is compatible with sta,blhty of friction, is given by making

Pcosi SN }4/\/1 ?_Y
AP
that is to say,
P fcost . N P cos(p+1)
hobt=1 (ta ¢—s1m) =z T ®)

The equation 1 of the line of resistance is that of a rectangular

hyperbola traversing the point A (which is in this case mvanable), )
and having a vertical asymptote, whose distance from the inner
face of the buttress is =
t , Pcosz
3 ah PP PP PRI (4)
being the limit which # continually approaches, but never attains, d

as the depth x increases without limit.
As the depth z increases without limit, the thickness required
for the wall approaches the following limit — ;

= \/ (1;‘;;’2“) ....................... )

which depends on the horizontal component of the lateral force
alone.

Supposing this value to be adopted for the thickness of the but-
tress, in order that it may be stable, how deep soever the base may
be below the point C,—then to insure stability of friction, the
height of the top above C must have the following value :—

}bo_—:.qt

Instead of the rectangular mass %, ¢, there may be substituted
a pinnacle of the same volume, and of any figure.

o
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215. Wowers and Chimneys are exposed to the lateral pressure
of the wind, which, without sensible error in practice, may be
assumed to be horizontal, and of uniform intensity at all heights
above the ground.

The surface exposed to the pressure of the wind by such struc-
tures is usually either flat, or cylindrical, or conical, and differing
very little from the cylindrical form. Octagonal chimneys, which
are occasionally erected, may be treated as sensibly circular in plan.
The inclination of the surface of a tower or chimney to the vertical
is seldom sufficient to be worth taking into account in determining
the pressure of the wind against it.

The greatest intensity of the pressure of the wind against a flat
surface directly opposed to it hitherto observed in Britain, has been
55 lbs. per square foot ; and this result, obtained by observations
with anemometers, has been verified by the effects of certain vio-
lent storms in destroying factory chimneys and other structures.

In any other climate, before designing a structure intended to
resist the lateral pressure of wind, the greatest intensity of that.
pressure should be ascertained, either by direct experiment, or by
observation of the effects of the wind on previous structures.

The total pressure of the wind against the side of a cylinder is
about one-half of the total pressure against a diametral plane of
that cylinder.

Let fig. 98 represent a chimney, square or circular, and let it be
required to determine the conditions of stability
of a given bed-joint D E.

Let S denote the area of a diametral vertical
section of the part of the chimney above the
given joint, and p the greatest intensity of pres-
sure of the wind against a flat surface. Then
the total pressure of the wind against the chim-
ney will be sensibly

P — p 8 for a square chimney ;

P=p g for a round chimney; J (1)

} and its resultant may, without appreciable error,
Fig. 98. 4t : =
be assumed to act in a horizontal line through
the centre of gravity of the wvertical diametral section, C. Let H
denote the height of that centre above the joint D E; then the
moment of the pressure is

H P = Hp S for a square chimney ;} (

HP — Hg iy for a round chimney ;
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and to this the least moment of stability of the portion of the chim-
ney above the joint D E, as determined by the methods of Article
211, should be equal.

For a chimney whose axis is vertical, the moment of stability is
the same in all directions. But few chimneys have their axes
exactly vertical ; and the least moment of stability is obviously
that which opposes a lateral pressure acting in that direction to-
ward which the chimney leans.

Let G be the centre of grawity of the part of the chimney which is
above the joint D E, and B a point in the joint D E vertically
below it ; and let the line D E == ¢ represent the diameter of that
joint which traverses the point B. Let ¢, as in former examples,
represent the ratio which the deviation of B from the middle of the
diameter D E bears to the length ¢ of that diameter.

Let T be the limiting position of the centre of resistance of the
joint D E, nearest the edge of that joint towards which the axis of
the chimney leans, and let g, as before, denote the ratio which the
deviation of that centre from the middle of the diameter D E bears
to the length ¢ of that diameter.

Then, as in equation 3 of Article 211, the least moment of stability
is denoted by

W BF=(1—¢) Wt.ue.. sinsanamd(S)

The value of the co-efficient ¢ is determined by considering the
manner in which chimneys are observed to give way to the pressure
~ of the wind. This is generally observed to commence by the opening
of one of the bed-joints, such as D E, at the windward side of the
chimney. A crack thus begins, which extends itself in a zig-zag form
diagonally downwards along both sides of the chimney, tending to
separate 1t into two parts, an upper leeward part, and a lower wind-
ward part, divided from each other by a fissure extending obliquely
downwards from windward to leeward. The final destruction of the
chimney takes place, either by the horizontal shifting of the upper
division until it loses its support from below, or by the crushing of
a portion of the brickwork at the leeward side, from the too great
concentration of pressure on it, or by both those causes combined ;
and in either case the upper portion of the structure falls in a
shower of fragments, partly into the interior of the portion left
standing, and partly on the ground beside its base.

It is obvious that in order that the stability of a chimney may be
secure, no bed-joint ought to tend to open at its windward edge ;
that is to say, there ought to be some pressure at every point of
each bed-joint, except the extreme windward edge, where the in-
tensity may diminish to nothing ; and this condition is fulfilled

R L}
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with sufficient accuracy for practical purposes, by assuming the
pressure to be an uniformly varying pressure, and so limiting the
position of the centre of pressure ¥, that the intensity at the lee-
ward edge E shall be double of the mean intensity.

It has already been shown, in Article 205, what values this con-
dition assigns to the co-efficient ¢ for different forms of the bed-joints.
Chimneys in general consist of a hollow shell of brickwork, whose
thickness is small as compared with its diameter ; and in that case
it is sufficiently accurate for practical purposes to give to ¢ the fol-
lowing values :— ,

For square chimneys, ¢ =%,- ]

For round chimneys, ¢ = i

The following general equation, between the moment of stability
and the moment of the external pressure, expresses the condition of
stability of a chimney :—

HP:(Q——-Q’)Wt .......................... (5.)

This becomes, when applied to square chimneys,

HpS = (—%-——g’)Wt;

and when applied to round chimneys, =} cescciienenns (6.)
HpS (1 )

The following approximate formule, deduced from these equations,
are useful in practice :—

Let B be the mean thickness of brickwork above the joint D E
under consideration, and b the thickness to which that brickwork
would be reduced, if it were spread out flat upon an area equal to
the external area of the chimney. That reduced thickness is given
with sufficient accuracy by the formula 8- 4 Q

B 3ed
b=B(1—2) i SBWY: ¢ )

but in most cases the difference between b and B may be neglected.
Let w be the weight of an unit of volume of brickwork; being,
on an average, about 112 lbs. per cubic foot, or, if the bricks are
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dense, and laid very closely, with thin layers of mortar in the joints,
from 115 to 120 Ibs. per cubic foot. Then we have, very nearly,

for square chimneys, W = 4wb ] . ‘ @)
fOl‘l‘Ound chimney-S"W=3.14wbS; ........... .

which values being substituted in the equation 6, give the following
formulee :—

For square chimneys, Hp = (% - 49’) “wbt;

, ()
For round chimneys, Hp = (]'57 - 6'28q’)wbt;

These formule serve two purposes; first, when the greatest in-
tensity of the pressure of the wind, p, and the external form and
dimensions of a proposed chimney are given, to find the mean re-
duced thickness of brickwork, b, required above each bed-joint, in
order to insure stability ; and secondly, when the dimensions and form
and the thickness of the brickwork of a chimney are given, to find
the greatest intensity of pressure of wind which it will sustain with
safety.

Thy; shell of a chimney consists of a series of divisions, one above
another, the thickness being uniform in each division, but diminish-
ing upwards from division to division. The bed-joints between the
divisions, where the thickness of brickwork changes (including the
bed-joint at the base of the chimney), have obviously less stability
than the intermediate bed-joints; hence it is only to the former set
of joints that it is necessary to apply the formule. To illustrate
the application of the formulsw, a table is given in the Appendix,
showing the dimensions and figure, and the stability against the

| wind, of the great chimney of the works of Messrs. Tennant and

Company, at St. Rollox, near Glasgow, which was erected from the
designs of Messrs. Gordon and Hill, and is, with the exception of
the spire of Strasburg, the Great Pyramid, and the spire of St.

"Stephen’s at Vienna, the most lofty building in the world.

216. Dams or Reservoir-Walls of masonry are intended to resist
the direct pressure of water. A dam, when a current of water
falls over its upper €dge; becomes a weir, and requires protection
for its base against the undermining action of the falling stream.
Such structures are not considered in the present Article, which is
confined to walls for resisting the pressure of water only.

In fig. 99, let E'D represent a horizontal bed-joint of a reservoir-
wall, which wall has a plane surface O D exposed to the pressure
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of the contained water, whose upper surface is the horizontal plane
OY. Consider a vertical layer of the wall of the length unity,
sustaining the pressure of a ver-
tical layer of water of the length
unity also. Then from Articles
89 and 124 it appears, that the
total pressure exerted against
that layer of the wall is equal
to the weight of the triangular
prism of water O D K, right
angled at D, whose thickness
: is unity, and whose side D K is

T equal to the depth of the joint
DE beneath the surface O Y ; and it also appears, that the resultant
of that pressure acts in the line H C, being a perpendicular upon
O D from the centre of gravity H of the prism of water; so that
= 93—D Let G be the centre of gravity of the vertical layer

of masonry above D E, and G B'W a vertical line drawn through
it ; produce H C, cutting that vertical line in A ; take AW to
represent the weight of the layer of masonry, and A P to represent
the pressure of the layer of water; complete the parallelogram
A PRW; AR will represent the total pressure on the joint D E
for each unit of length of the wall, and F, where that line cuts
D E, will be the centre of resistance of that joint, which must fall
within the limits consistent with stability of position, while at the
same time the angle A F D must not be less than the complement
of the angle of repose.

To treat this case algebraically, let 2 denote the depth of D
beneath the surface of the water, ' the weight of an unit of
volume of water, and j the inclination of O D to the vertical
Then the pressure of the vertical layer of water is

w' o’ )
X e 4 P =g 86y (1)

st dae 7y

its centhe C being at the depth ga:

This force, together with the equal and opposite oblique com-
ponent of the resistance of the joint D E at ¥, constitute a couple
tending to overturn the wall, whose arm is the perpendicular dis-
tance of F from C P ; that is to say,

'
CD-FD 'sinj
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Now 0D =2" ;ecy, and if, as before, we make ED =¢, F D =

(q == %) ¢; consequently we have for the arm of the couple in

B 1) in
3 (t_l i g)t sing, |
which being multiplied by the pressure, gives the moment of the

overturning couple ; and this being made equal to moment of
stability of “the wall, we obtain the following equation :— Y

question,

W-FB=W(g+ q’)t:zﬂf - sec® j —w' 2t <%+E) tan f....(2.)

When the inner face of the wall is vertical, sec j=1, and tan j=0;
and the above equation becomes

Wigekifhe 220 T @s) /)

] ;i
To obtain a convenient general formula for comparing walls of, ¢~

similar figures but different dimensions, let n, as in Article 211,\ 2

denote the ratio of the area of the vertical section of the wall to <

that of the circumseribed rectangle, so that if w be the weight of

an unit of volume of masonry, the weight of the vertical layer of z

masonry under consideration is

W = nwht,

where % is the depth of the joint D E below the top of the wall.
Then equations 2 and 2 A take the following forms :—

w x® 1 -
n(g+ ¢)wht’ =~ sec?j —w a* ¢ 2 +) tanjse...(3) \
@t uheE=2Z (3 )

—equations analogous to equation 4 of Article 213. To obtain a

- formula suitable for computing the requisite thickness of wall ¢, let
w z* * sec’y

Sa@E ) wh -

g 1 |
wm(2 4)’oa,nj 4 /

Aj

TagEqywh = O3



then
¢ =A-2B¢;

which quadratic equation being solved, gives
t = ,\/A_ i B:—B ;.....-...o-.........-...(4.)
or for a wall with a vertical inner face, for which B = 0,

Loz SR e ol Rt e sa oo (4 a) J

In most cases which occur in practice, the surface of the watet
OY either is, or may occasionally be, at or near the level of the
top of the wall, so that % may be made = «. In such cases, let

»
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o B
@ Gngtg)w =@

20 tan j
u/(2+4 tanj-

B
= 2n( + )w ¥
and we have ‘
o 4
E’ =a~-2b 5,
which being solved, gives
é: NZTT I TR DT veene(5)

and for a wall with a vertical inner face,

The vertical and horizontal components of the pressure of the
water are respectively

w o?

P ] Vertical, Psing = g tan 2
} " wa

Horizontal, P cosj = 53

Consequently the condition of stability of friction at the joint D E
is given by the equation
P cosy w &?
WEPskij = IW i ion] = tan @.oeeennnn. (6.)
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sl d
If the ratio 5 has been determined by means of equation 5, then
we have

W=nwazt=nwa’"

so that by cancelling the common factor «, equation 6 is brought
to the following form :—

7

z —tan Q......... i o 4B0)

4 )T e —
2nw—+w tan j
@

-

Example I. Rectangular Wall—In this case n=1;¢'=0;7j=0;
consequently,

equation 5 A becomes

but it is unnecessary to attend in practice to this last equation,
which is fulfilled for the greatest values of ¢ that ever occur.
Example IL. Triangular Wall, with the apex at O.

t . . £ b .
In this case . the same for every horizontal joint; so that if

the thickness be just sufficient for stability at any joint, it will be
just sufficient for stability at every other joint. A reservoir-wall
whose vertical section is triangular, may therefore be said to be of
uniform stability.

The value of n for a triangle is % ‘With respect to the value of
¢, that case will be considered in which the inner face of the wall
is vertical, so that ¢ = %, Y= 0
Then by equation 5 4,
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w
VA {W} il
and by equation 8
f,_?— ( (+5) % )4tan Orvvnnnnens(12)

This last equation fixes a limit to the value of ¢, independently
of the distribution of the pressure on each bed-joint, viz.:—

1
BCE ot e
<=3 tan’ Q- Foreem e eesenenens (13.)
The insertion of this value of ¢ in equation 11 gives
¢ W
.—’; = T e D2 0Te0 0005 (14)

The value of tan @ for masonry being about 0-74, w being on an
average 194 Ibs. and w’ 624 Ibs. per cubic foot, the limit of ¢ is
found to be

0421 —-0-167 = 0-254, orl

e nearly,

and that of é, by equation 14, is
0-585.

For brickwork, tan @ is about the same as for masonry, and w is
112 Thbs. per foot, nearly; hence the limit of ¢ is

0:327 —0°167 = 016, or ‘]33, nearly,

while that of & is 0-75.

Example 111. Triangular Wall with Vertical Axis.—When the
/wall stands on a soft foundation, it may be-desirable in some cases
8o to form it, that the centre of resistance F shall be at the middle
of each joint, and shall also be vertically beneath the centre of
gravity of the part of the wall above the joint. In this case, the
pomt of intersection A of the lines of action of the pressure and
weight must also fall in the middle of each joint. To fulfil these
conditions, the vertical section of the wall should be an isosceles
triangle, the outer and inner faces forming equal angles j on

-
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opposite sides of the vertical axis of the wall, and the angle j should
be such that a straight line perpendicular to O D at C shall bisect
the base ; that is to say,

. tsing  @wsecy,

- ¢ 2 = 3 2
but i
/ &
55 = tan g,
whence we have .
-~ Jﬂ > y & 2'——1 'cosz.__%_,
3. ;“‘ <aj Smj:g) .7‘—3:
3 3 5,
wtald A L ; tan j = P ’\/ g 0-707; + ..........(15.)
s ;
e g vl
2 g 1
and Jj=235 13

so that the base of the wall is to its height as the diagonal to the
side of a square.
Equation 8 in this case becomes

+ = ,.—w J_2._
w2+w,JEd 2w+ w—
This condition is always fulfilled so far as the frictional stability
of one course of masonry on another is concerned. As the object,
however, of giving the wall the figure now in question, is to dis-
tribute the pressure uniformly over a soft foundation, let it be

supposed that its base rests on a material for which tan ¢ =-};
Then we must have

e L

Q2w+ w —4°
and consequently

wé2( i %) w = 233w = 145 Ibs. per cubic foot;

and unless the masonry be of this weight per cubic foot, its friction
on a horizontal base, of a material for which tan ¢ = %, will not be

of itself sufficient to resist the thrust of the water. >
217. Retaining Walle.—Figs. 100 and 101 represent vertical
¢ sections of retaining walls against which banks of earth abut. In
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| each figure a vertical layer of the masonry and of the earth is
supposed to be considered, whose length is unity. D E is the base

Fig. 100. Fig. 101.

of the layer of masonry, F the centre of resistance of that base, B
a point vertically below G, the centre of gravity of the weight
which rests on that base, AW a line representing that weight, AP

a line representing the thrust of the earth; AR, the diagonal of the
parallelogram A PR'W, is a line representing the resultant pressure
at the base D E, and cutting that base in the centre of resistance F.

In each figure, D O is a vertical plane traversing the inner edge
D of the base of the wall, and cutting the plane of the surface of
the bank in O. In fig. 100, the whole of the wall lies in front of

that vertical plane ; so that the weight, represented by AW (or by
‘W simply), which rests on the base D E, consists of the weight of
the masonry fogether with the weight of the mass of ewrth, if any
(represented by O L M), which is vertically above that base; and G is
the common centre of gravity of the compound mass of masonry
and earth, which is situated in front of the plane O D.

In fig. 101, on the other hand, a part of the masonry, represented
by DLO, lies behind the plane O D. If the prism D L O consisted
of earth, its weight would be supported by the earth beneath it ;
therefore the earth beneath that prism exertsa pressure vertically
upwards sufficient to sustain the weight of a prism of earth of a
volume equal to that of the prism of masonry; therefore the weight
represented by A'W (or by W simply) which rests on the bage DE,
consists of the weight of the masonry in the vertical layer of the
wall, less the weight of earth which would fill D L. O; and G is the
common centre of gravity of the masonry E D O which lies before
the plane O D, and of the prism D L O, considered as having a
specific gravity equal to the excess of the specific gravity of masonry
above that of earth. '
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It has already been shown in Article 198, that the pressure of
the earth against the vertical plane O D (which pressure is parallel
to the surface of the bank, and represented by A P, or by P simply),
is equal to the weight of the prism of earth O D K, in which D K,
parallel to the surface of the bank, is equal to the vertical depth
O D multiplied by the ratio of the conjugate pressures at a point,

p, _ cosd— [ (cos® ¢ — cos® Q)
p.  cosd + [ (cos® ¢ — cos® @)’
which ratio depends on the slope ¢ of the bank, and angle of

repose ¢, and that the resultant of that pressure traverses C, at the
height

E == X
CD=3

above D. For the sake of brevity (w being the weight of unity of
volume of the earth), let

w’ cos d%‘:fw,; a

then equation 2 of Article 198 becomes

This force has to be multiplied, as in previous Articles, by the per-
pendicular distance of ¥ from C P, to give the moment of the
couple which tends to overturn the wall. Let ¢ be the thickness

DE, and ¢ the angle of inclination of D E to the horizon; then the
arm of the couple in question is '

1
-9§~(q+§)t sini) cos ¢ — (q+%)t'cosi°sinl

=wc§sé_ (q—f-%)t'siu(é-l-i);

which being multiplied by the force P, and equated to the moment
of stability of the weight which rests on the base D E, gives the
following condition of stability of position :—

3 2
W (g==q)¢-cosi= 2220 ’_”’1;“ ‘(q + %) sin (¢ + 9)...(2)
Now suppose (as in Article 211 and elsewhere) that W bears a |
definite ratio n to_the weight w 2 ¢ * cos % of a rectangle of masonry |
whose height is O D = «, and its breadth the horizontal distance
of E from O D, ¢cos?; then the first side of equation 2, being the |
moment of stability, becomes as follows :—




252 THEORY OF STRUCTURES.

n(g == ¢q)wx ffcos’t
Divide both sides of the equation by
n (g == ¢) wa’cos’ 4,
and for brevity’s sake, let

w, * cos 4 w
6n(g==qg)wcos’s

: :
w, (g —I-—2-) sin (¢ +4)
4n(g==q)wcos’i =

& t

= @ 25 = eeenscnnraesenninennen. (3.)
& X

a;

then

and consequently
5_—_- BT T — b...ooivinses kgt (4.

The inclination of the resultant A R to the vertical is given by
the equation
P coss

m ----a--clc-.o'..(5-)

‘When the base D E is horizontal, this should not exceed the tangent
of the angle of repose. 'When that base is inclined at the angle ¢
the condition of frictional stability is thus expressed :—

AR — i = ;.bsineieten (6.)

tan =~ WAR =

@' heing the angle of repose of the foundation of the wall.

The object of giving the base of the wall an inclined position is
to diminish the obliquity of the pressure on it,and so to enable the
condition of frictional stability to be fulfilled.

The values adopted for ¢ in practice vary from % to g.
| 218, Rectangular Retaining Walls.—In a vertical rectangular

|wall, n =1, ¢’ = 0,7 = 0; so that, in equations 3 and 4 of Article

1 | 217,
__ W, cos é

6gqw ’

b—wl(q—l-%) sind.

4quw
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Emmple I. When the surface of the bank is horizontal, so that

1 + sin @’
and
t U w (1 — sin ¢)
;—,\/a—/\/{m} ......... (2)
Also : t “
W =wa' < o= Vi ¥
k3
so that equation 5 of Article 217 becomes ' {
tan‘WAR:E':wl—mg:__lﬁ
w 9w 2wt
A
_\/ {3q'w'(1—sin¢)}
= 2w (1 + sin ¢)
ST ) T PTGy D0 (Aol (3)

If the material on which the wall rests is the same with that of
the bank, we may assume ¢/ — ¢; in which case, by squa.nng

equation 3 and attending to the fact that YA
2, Sin®e  / sing )g.l—sin«p
ta’nﬁv_'l—sin"t,i"—(l—sin(v l+sing’
we obtain the equation
Squ sing \2
b=
- S (1 e ¢> ..................... @)

Assuming that the specific gravity of the earth is four-fifths of

that of the masonry, or % = Z—, we find that this equation is ful-

._filled for the ordinary value of ¢, — 8 , 80 long as @ exceeds 27°.

r

[ Example II. When the surface of the bank slopes at the angle

’

'w1=w’l sm(pb_o &4%2’5(

/

of repose ¢, then w, = w' cos ¢, and P \—/L é ’/\-} e
R w cos® @ /"“' &
- H F J
“6quw e ,_’ / <7

(q+ )w €os ¢ sin ¢
" dgw 5
8o that equation 4 of Article 217 becomes
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£= cos¢{/\/( w +(q+z})’w”sin2¢) _(q+%)w’sin¢} )

79
:

{
|

B
{.

\

/

6qw 16 ¢° w? 4qw

219. Trapezoidal Walls—In fig. 102, let EQ represent the
vertical face of a rectangular wall, suited to sustain
the thrust of a given bank, and let F be the centre

of resistance of the base. Make QN =3 EF =3

4 (% —q) t; then the centre of gravity g of the

triangular prism of masonry E Q N will be vertically
above the centre of resistance F; therefore if that
& prism be removed, so as to reduce the cross section
= of the wall to a trapezoid with a sloping face E N,

c the position of the centre of resistance F will not be
F altered, and the wall will still fulfil the condition of
Fig. 102.  stability of position, the thickness ¢ being determined

Q=™

as for a rectangular wall. Ifq= —2— , the thickness of the wall at the

summit will be —g of the thickness at the base. The face of the wall

is said to batfer; the rate of the batter being the ratio Q_E =

EQ

()2

As the vertical component of the pressure on the base of the
wall is diminished by this change, the obliquity of that pressure
will be increased; and it may in some cases be necessary to make
the base slope backwards, as in fig. 101.
- 220. Mattering Walls of Uniform Thickness.—When a wall for
supporting a horizontal-topped
bank is of uniform thickness,
and has a sloping or curved face,
as in figs. 103 and 104, its mo-
ment of stability may be deter-
it mined with a degree of accuracy
g o sufficient for practical purposes,
in the following manner :—

Let E Q in each figure repre-
sent the vertical face of a rec-
= =t tangular wall of the same height

A ) 2 and thickness ¢ with the pro-

Sog e Fig. 104. posed wall, and let g be the

centre of gravity of that rectangular wall. Then

Q N Q N

_____
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Wegt=quwaxzt

will be its moment of stability per unit of length.

Divide the area E QN included between the vertical face E Q
and the face of the proposed wall, EN, by the height 2 Then

— EQN
gi=9g0G= S un RIRTTTR Y @)

will be the distance of the centre of gravity G of the sloping or
curved wall from that of the rectangular wall; and the change of
figure will increase the stability in the ratio ¢ + ¢’ : ¢; that is to
say, the moment of stability will now be g

Wh+@)t=(@Q+)watscnneeeannnnnne. (2)
If EN is a straight line (fig. 103),
i BN
= 9—2— e s s S A (3.)
If E N is a parabolic ar,
2QN
gt= —‘g—_ i SO (4.)

a formula which is also sensibly correct when E N is an arc of a
circle.

Walls with a “curved hatter” are usually
built as shown in fig. 105, with the bed-joints
perpendicular to the face of the wall. This
diminishes the obliquity of the pressure on
the base.

221, ¥oundation Courses of Retaining Walls
have their width increased beyond the thick-
ness of the wall by a series of steps in front,
as shown in figs. 102 and 105. The objects of —
this are, at once to distribute the pressure
over a greater area than that of any bed-joint
in the body of the wall, and to diffuse that
pressure more equally, by bringing the centre
of resistance nearer to the middle of the base
than it is in the body of the wall. The power of earth to support
foundations has already been considered in Article 199.

222. Counterforts are projections from the inner face of a retain-

0 ing wall. A wall and its counterforts, if the bond of the masonry
./is well preserved, constitute a wall having successive divisions
| of its length alternately of greater and of less thickness. The
| moment of stability of a wall with counterforts, per unit of length,

T
at i el
U

l,

)

/1]
,ﬁl
-lI,I[,II

Fig. 105,

| PN
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when the wall is well bonded, may be found, with sufficient
accuracy for practical purposes, by adding together the moments
of stability of one of the parts between two counterforts, and of
one of the parts whose thickness is augmented by the addition of
a counterfort, and dividing the sum by the joint length of those
two parts. i

For example, let fig. 106 represent a portion of the plan, or hori-
| zontal section, of a vertical rectangular retaining
A B wall whose height is 4, with a row of rectangular
counterforts of the same height with the wall

S ¢ Let t = FE be the thickness of a part of the

wall between two counterforts, and b = ED its
iy length ; iet T = A B be the thickness of a coun-
E terforted part of the wall, including the counter-
fort, and ¢ = B C its length.
The moment of stability of the first part is
quwhbdt;
2% and that of the second part,
Fig. 106, quwheT

Adding together those moments, and dividing their sum by the

total length b + ¢ = A F, the mean moment of stability per unit of
length is found to be

This is the same with the moment of stability per unit of length
of a wall of the uniform thickness,

tl=_\/{b‘%|“+°c_Tg}, ...... Ui ey

which may be called the equivalent uniform wall.
The quantity of masonry in the counterforted wall is to the
quantity in the equivalent uniform wall in the ratio

bt+cT : b+4c)¢,

which is always less than unity; so that there is a saving of
;‘nasonry (though in general but a small one) by the use of counter-
orts.

223. Arches of Masonry.—An arch of masonry consists of a ring
of wedge-formed stones, called arch-stones or woussoirs, pressing
against each other at surfaces called bed-joings, which are, or ought
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to be, perpendicular or nearly perpendicular to the soffif, or internal
concave surface of the arch. The outer or convex swrface of the
ring of arch-stones, which may be either a curved surface parallel
to the soffit, or, what is better, a series of steps, sustains the
vertical pressure of that part of the load which arises from the
weight of materials other than the arch-stones themselves; and
that outer surface also exerts in many cases a horizontal or inclined
thrust against the spandiils and abutments. The abutments sus-
tain also the thrust of the lowest voussoirs, vertical or inclined, as
the case may be. Sometimes an arch springs at once from the
ground, so that its abutments are its foundations. :

A wall standing on an arch, in the plane of the arch-ring, is
called a spandril woll. The arch of a bridge requires a pair of
external spandril walls, one over each face of the arch ; the space
between them is filled up to a certain level with solid masonry, and
above that level it is sometimes filled with earth or rubbish, and
sometimes occupied by a series of nternal spandril walls parallel to
the external spandril walls, and having vacant spaces between
them—a mode of construction favourable both to stability and to
lightness. In order to form a continuous platform for the road-
way, the spaces between the internal spandril walls are sometimes
covered with flags of some strong stone (such as slate), and some-
times arched over with small transverse arches. The external
spandril walls are the abutments of those arches, and must have
stability sufficient to sustain their thrust: when the spandrils are
filled with earth or rubbish, the external spandril walls must have
stability sufficient to withstand the pressure of the filling material.

In determining the conditions of stability of an arch, it is con-
venient to consider only a rib, or vertical layer, of arch, abutment,
and spandril, of the thickness unity (e. g., one foot). When there
are spandril walls with vacant spaces between, an ideal specific
gravity is to be adopted for the material of the spandrils, found by
supposing the weight of the material of the spandril walls to be
uniformly distributed, so as to fill the vacuities ; that is to say, let
w be the weight of an unit of volume of the material of the walls,
3+ T the sum of the thicknesses of all the walls, and = * S the sum
of the widths of the spaces between them ; then in computations
respecting the stability of the arch, the spandrils may be supposed
to be completely filled with a material whose weight per unit of
volume is
S
u/.—w m ....... ...unu...n.(l.)

2924, Line of Pressures in an Arch; Condition of Stability.—
According to the principles explained in Articles 206 and 207, if a

Q
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straight line be drawn through each bed-joint of the arch-ring
representing the position and direction of the resultant of the pres-
sure at that joint, the straight lines so drawn form a polygon, and
each of the angles of that polygon is situated in the line of action
of the resultant external force acting on the arch-stone, which
lies between the pair of joints to which the contiguous sides of the
polygon correspond ; so that the polygon is similar to a poly-
gonal frame, loaded at its angles with the forces which act on the
arch-stones (their own weight included). A curve inscribed in that
polygon, so as to touch all its sides, is the line of pressures of the
arch, The smaller and the more numerous the arch-stones into
which the arch-ring is subdivided, the more nearly does the poly-
gon coincide with the curve ; and the curve or line of pressures
represents an ideal linear arch, which would be balanced under the
continuously-distributed forces which act on the real arch under
consideration. From the near approach of this linear arch to the
polygon whose sides traverse the centres of resistance of the bed-
Jjoints, the points where the linear arch cuts those joints may be
taken without sensible error for the centres of resistanoe.

Now in order that the stability of the arch may be secure, it is
necessary that no joint should tend to open either at its outer or
at its inner edge; and in order that this may be the case, the
centre of resistance of each joint should not deviate from the centre
of the joint by more than one-sixth of the depth of the joint ; that
is to say, the centre of resistance should lie within the middle third
of the depth of the joint ; whence follows this

Taeorem. The stability of an arch s secure, if @ linear arch,
balanced under the forces which act on the real arch, can be drawn
within the middle third of the depth of the arch-ring.

It has already been stated that the tenacity of fresh mortar is not
sufficiently great to be taken into account in determining the stabi-
lity of masonry ; and hence, where cement is not used, all horizon-
tal or oblique conjugate forces which maintain the equilibrium of
the arch-ring must be pressures, acting on the arch from without
inwards. The linear arch, therefore, is limited in such cases to
those forms which are balanced under pressures from without alone;
that is to say, that the intensity of the horizontal or conjugate
pressure, denoted by p, in Article 185, equation 4, must not at any
point be negative. :

It is true that arches have stood, and still stand, in which the
centres of resistance of joints fall beyond the middle third of the
depth of the arch-ring ; but the stability of such arches is either
?owh‘precarious, or must have been precarious while the mortar was

Tes

‘When tenacity to resist horizontal or oblique tension is given to
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the spandrils of an arch, and to the joints between them and the
arch-stones, by means of cement, hoop-iron bond, iron eramps, or
otherwise, the conjugate tension denoted by —p, must not at any
point exceed a safe proportion of that tenacity ; that is to say,
about one-eighth. -By this means stability may be given to arches
of seemingly anomalous figures; but such structures are safe on a
small scale only.

// 225, Angle, Joint, and Point of Rupture—The first step towards

determining whether a proposed arch will be stable, is to assume a
linear arch parallel to the intrados or soffit of the proposed arch,
and loaded vertically with the same weight, distributed in the
same manner. The size of this assumed linear arch is a matter of
indifference, provided each point in it is considered as subjected to
the same forces which act at the corresponding joint in the real
arch; that is, the joint at which the inclination of the real arch to
the horizon s the same with thet of the assumed arch at the given
poind.

The assumed arch is next to be treated as a stereostatic arch,
according to the method of Article 185; and by equation 4 of that
Article is to be determined, either a general expression or a series
of values of the intensity p, of the conjugate pressure, horizontal or
oblique, as the case may be, required to keep the arch in equilibrio
under the given vertical load. If that pressure is nowhere negative,
a curve similar to the assumed arch, drawn through the middle of
the arch-ring, will be either exactly or very nearly the line of pres-
sures of the proposed arch; p, will represent, either exactly or very
nearly, the intensity of the lateral pressure which the real arch,
tending to spread outwards under its load, will exert at each point
against its spandril and abutments ; and the thrust along the linear
arch at each point will be the thrust of the real arch at the corre-
sponding joint.

On the other hand, if p, has some negative values for the assumed
linear arch, there must be a pair of points in that arch where that
quantity changes from positive to negative, and is equal to nothing,
The angle of inclination 4, at that point, called the angle of rupture,
is to be determined by solving equation 1 of Article 187. The
corresponding joints in the real arch are called the joints of rupture;
and it is below those joints only that conjugate pressure from with-
out is required to sustain the arch.

In fig. 107, let BC A represent one-half of a symmetrical arch,
O Y a horizontal axis of co-ordinates in or above the spandril,
K LDE an abutment, and C the joint of rupture, found by
the method already described. The point of rupture, which is the
centre of resistance of the joint of rupture, is somewhere within
the middle third of the depth of that joint; and from that point



260 THEORY OF STRUCTURES.

down to the springing joint B, the line of pressures is a curve
sxmllar to the assumed linear arch and parallel to the intrados,
being kept in ethbno by the lateral pres-
sure between the arch and its spandril and

A abutment.
From the joint of rupture C to the crown

€7

H—]A4 A, the fact that the assumed linear arch would
/ require lateral tension to keep it in equilibrio,
shows that the true line of pressures must be
a flatter curve than the assumed linear arch;
the figure of the true line of pressures being
determined by the condition, that it shall be
a linear arch balanced under vertical forces
only; that is to say, that the horizontal com-
ponent of the thrust along it at each point is
a constant quantity, and equal to the horizontal component of
the thrust along the arch at the joint of rupture.

That horizontal thrust, denoted by H,, is found by means of equa-
tion 2 of Article 187, and is the horizontal thrust of the entire arch.

[If the arch is distorted, conjugate thrust is to be read instead of
“ horizontal thrust,” wherever that phrase occurs.]

The only point in the line of pressures above the joints of rup-
ture which it is important to determine, is that which is at the
crown of the arch, A ; and it is found in the following manner :—

Find the centre of gravity of the load between the joint of rup-
ture C and the crown A ; and draw through that centre of gravity
a vertical line.

Then if it be possible, from one point in that vertical line, to
draw a pair of lines, one parallel to a tangent to the soffit at the joint
of rupture, and the other parallel to a tangent to the soffit at the
crown, so that the former of those lines shall cut the joint of rup-
ture, and the latter the keystone, in a pair of points which are both
within the middle third of the depth of the arch-ring, the stability
of the arch will be secure ; and if the first point be the point of
rupture, the second will be the centre of resistance at the crown of
the arch, and the crown of the true line of pressures.

When the pair of points related as above do not fall at opposite
limits of the middle third of the arch-ring, their exact positions arc
to a small extent uncertain ; but that uncertainty is of no conse-
quence in practice. Their most probable positions are equi-distant
from the middle line of the arch-ring.

Should the pair of points fall beyond the middle third of the
arch-ring, the depth of the arch-stones must be increased.

226. Thrust of an Arch of Masonry.—The line of pressures, or
equivalent linear arch, of an arch of masonry, with its point of rup-

~— o

A
=

Fig. 107.
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ture and total thrust, having been determined by the methods
described in the two preceding Articles, the distribution of that
thrust, and the line of action of its resultant, are to be found by
the methods of Article 187.

9227. Abutments of Arches.—The abutment of an arch, when it
is not simply a foundation, is a buttress, or a wall with or without
counterforts, which is bounded, or may be considered as bounded
by a vertical face L D (fig. 107) towards the arch.

Two external forces are applied to the abutment of an arch
besides its own weight, viz., the vertical load of the half-arch, P,
whose resultant acts through B, the centre of resistance of the
springing joint, and the thrust T, found in amount and position by
methods already referred to, which acts through B also if the angle
of rupture is equal to or greater than the inclination of the arch at
B; and which, if there is either no joint of rupture, or a joint of
rupture above B, is distributed between B and A, or B and C, as
the case may be. The resultant of the vertical load and conjugate
thrust being taken as the entire pressure applied to the abutment,
its conditions of stability and requisite dimensions are to be found
by the methods described in Articles 213, 214, and 222.

For the abutment of an arch, as for the arch-ring, the centre of
resistance should fall within the middle third of the base, so that
the proper value of ¢ is one-sixth.

If the figure of an arch be transformed by parallel projection, the
proper figures for the abutments of the new arch are the corre-
sponding parallel projections of the original abutments.

228. Skew Arches are of figures derived from those of symmetri-
cal arches by distortion in a
horizontal plane. The eleva-
tion of the face of a skew arch,
and every vertical section par-
allel to its face, being similar
to the corresponding elevation
and vertical section of a sym-
metrical arch, the forces which
act in a vertical layer or rib
of a skew arch with its abut- ;
ments, are the same with those o 3
which act in an equally thick B B 15T
vertical layer of a symmetrical
arch with its abutments, of the
samedimensionsand figure,and Fig. 109.
similarly and equally loaded.

Fig. 108 represents a plan of a skew arch, with counterforted
abutments. The angle of skew, or obliquity, is the angle which the

Fig. 108.

CaE =y
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axis of the archway, A A, makes with a perpendicular to the face
of the archy BCA B. The span of the archway, “on the square,”
as it is called (that is, the perpendicular distance between the abut-
ments), is less than the span on the skew, or parallel to the face of
the arch, in the ratio of the cosine of the obliquity to unity. It
is the span on the skew which is equal to that of the corresponding
symmetrical arch.

The best position for the bed-joints of the arch-stones is perpen-
dicular to the thrust along the arch. If, therefore, there be drawn
on the soffit of a skew arch, a series of parallel curves, made by the
intersections of the soffit with vertical planes parallel to the face
of the arch, the best forms for the bed-joints will be a series of
curves drawn on the soffit of the arch so as to cut the whole of the
former series of curves at right angles, such as C C in figs. 108 and
109. Joints of the best form being difficult to execute, spiral
Joints are used in practice as an approximation.

229. Groined Vaults.—A groined vault, represented in plan,
looking upwards, by fig. 110, is formed by the intersection of two
archways. The ribs at the edges where
the soffits of the archways interseet and
e interrupt each other, are called the
NN grovrs.  The portions of the arches

fél!l{!i‘k which form the groined vault, properly

0'0““\_ speaking, abut against the groins; the
X = groins themselves, and the four inde-

% pendent portions of the archways, abut
against four buttresses at the corners
of the vault. The crown of the vault is
the point where the groins meet.

The line marked B'is the length from

Fig. 110. the crown to the face of one of the arch-

ways; and B is the breadth of the por-

tion of one of the buttresses against which that archway abuts,
whether directly or through the groin. The thrust due to the
length of archway B’ is concentrated upon the breadth of abut-

ment B ; its intensity is therefore increased in the ratio % ; and

if ¢ be the thickness which an abutment requires to withstand the
thrust of the plain archway, the thickness D required for the but-
tress, in a direction perpendicular to B, will be

D=t«\/§. ................... Ly

At the left-hand side of the figure, the buttresses are compound
and rectangular :—at the right-hand side, a single diagonal buttress
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is opposed to the thrust of each groin, and to the combined thrusts
of the two archways which abut against it. The breadth of the dia~
gonal buttress being the resultant of the breadths of the compound
buttresses, its thickness is simply equal to theirs.

230. Clustered Arches are arched ribs, of which
several spring from one buttress, as is shown in plan
in fig. 111. The thrust against the buttress is the __
resultant of the thrusts of the ribs; the vertical —
pressure is the sum of their loads.

231. Piers of Arches—A pier is a pillar against
which two or more arches abut, in such a manner
that their horizontal thrusts balance each other, so that the pier
has only to sustain the vertical pressure of the half-arches which
vest on it. The piers of a bridge or viaduct are usually oblong
walls, of a length equal to that of the soffits of the arches, two of
which spring from the opposite sides of each pier. It is customary
to make the thickness of a pier, at the springing of the arches, from
one-sixth to one-ninth of the span of the arches which it sustains,
Mr. Hosking, in his ZTreatise on Bridges, has pointed out, that this
thickness is usually greater than is necessary ; and that there is in
general no reason that the thickness of the pier should be more than
is just sufficient to support the rings of arch-stones that spring from it.

If one of two arches which abut against the same pier falls, the
other arch, having its thrust unbalanced, usually overthrows the
pier, and consequently falls also ; so that if a viaduct consists of a
series of arches with piers between, the fall of a single arch causes
the destruction of the whole viaduct. To lessen the damage caused
by accidents of this kind, it is customary in long viaducts, to
introduce at intervals what are called abutment piers, which have
stability sufficient to resist the thrust of a single arch; so that
when an arch falls, the destruction is limited to the division of the
viaduct between the two nearest abutment piers.

In some important bridges over large rivers, where it has been
considered advisable to spare no expense in order to render th
structure durable, each pier is an abutment pier. ‘

232. Open and Hollow Piers and Abutments.~—In some cases the
piers and abutments of bridges, in order to save materials, and to
diminish the pressure on the foundations, are made with arched
openings through them, or with rectangular hollows in their in-
terior. The bottoms of such openings or hollows should be closed,
when they are small by courses of large stones, and when they are
large by inverted arches, in order that the area of the foundation,
over which the pressure is distributed, may be as large as if the
building were solid.

The moment of stability of an abutment, with arched openings
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through it, or hollows in its interior, is less than that of a solid
abutment of the same external dimensions, very nearly in the same
ratio in which the moment of inertia of the horizontal section of the
abutment is diminished by means of the vacuities. (See Article 95.)

233. Tunnels.—If the depth of a tunnel beneath the surface of
the ground is great compared with the height of its archway, the
proper form for the line of pressures, which must lie within the
middle third of the thickness of its arch, is the elliptic linear arch
of Article 180, in which the ratio of the horizontal to the vertical
semi-axis is the square root of the ratio of the horizontal to the
vertical pressure of the earth, as already shown in Article 180,
equation 5, and Article 197, equation 3; that is to say,

horizontal semi-axis 1—;; 1 —sin¢
: ——— =C = S et e vamt)ic s, (12)
vertical semi-axis Ps 1 +sing

¢ being the angle of repose.

If the earth is firm, and little liable to be disturbed, the propor-
tion of the half-span, or horizontal semi-axis, to the rise or vertical
semi-axis, may be made greafer than is given by the preceding
equation, and the earth will still resist the additional horizontal
thrust ; but that proportion should never be made less than the
value given by the equation, or the sides of the tunnel will be in
danger of being forced inwards.

In a drainage tunnel, the entire ellipse may be used as the figure
of the arch ; but in a railway tunnel, where it is necessary to have a
flat floor, the sides and roof of the tunnel comprise in height the
upper two-thirds, or three-fourths, of the ellipse, which is closed
below by a circular segmental inverted arch of a slight curvature,
its depression being one-eighth of its span, or thereabouts. By this
mode of construction, the vertical pressure of the sides of the
tunnel is concentrated upon foundation courses directly below
them, from which they spring. The ratio which the entire width
of the tunnel, measured outside the masonry or brickwork, bears to
the joint width of that pair of foundations, must not exceed the
limit of the ratio of the weight of a building to the weight of earth
displaced by it, as given by Article 199, equation 3. The inverted
arch serves to prevent the foundations of the sides of the tunnel
from being forced inwards by the horizontal pressure of the carth.

The exact form for the line of pressures in the sides and roof
of a tunnel is the geostatic arch of Article 184. This principle
requires attention when the roof of the tunnel is near the surface.
Let @, be the depth of the crown of the tunnel, and x, that of its
greatest horizontal diamcter, beneath the surface. From those
ordinates as data, design a hydrostatic arch, either by the exact
method of Article 183, or by the approximate method of Article
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188 ; contract the horizontal co-ordinates of that arch in the ratio

o \/ % » and the result will be the geostatic arch required,

234. womes.—A. true dome is a shell of masonry or brickwork,
of the figure of a solid of revolution with a vertical axis; that is,
it is spherical, spheroidal, conoidal, or conical, and is circular in
plan.  Its tendency to spread at its base is resisted by the stability
of a cylindrical wall, or of a series of buttresses surrounding the
base of the dome, or by the tenacity of a metal hoop encircling the
base of the dome.

The conditions of stability of a
dome are ascertained in the fol-

lowing manner :— Let fig. 112 5
represent a vertical section of a c
dome, springing from a cylindrical

wall BB. The shell of the dome

is supposed to be thin as compared -

with its external and internal di-
mensions. Let the centre of the
crown of the dome, O, be taken as
origin of co-ordinates; let = be the depth of any circular joint
in the shell, such as C C, below O, and y the radius of that Jjoint.
Let ¢ be the angle of inclination of the shell at C to the horizon,
and d s the length of an elementary arc of the vertical section of
the dome, such as C D, whose vertical height is d z, and the differ-
ence of its lower and upper radii ¢ y : so that

dy

J ‘cotan ¢ A 1
== ; 5— == cosec 4.
dax dw e

Fig. 112,

Let P, be the weight of the part of the dome above the circular joint
CC. Then tye .total t}n'ust, in the direction of a set of tangents to
the dome, radiating obliquely downwards all round the joint C C, is

d
kA ;l%.—_—]?, * cosec ¢;

and the total horizontal component of that radiating thrust is
d

,'ﬁ: e * cotan .

Let p, denote the intensity of that horizontal radiating thrust, per
unit of periphery of the joint C C; then because the periphery of
that joint is 2 7 y (= 62832 g), we have

— T. cotan g
py= 27":[/ LR T Y P P, (1.)
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It has been shown in Article 179, that if there be an inward
radiating pressure upon a ring, of a given intensity per unit of arc,
there is a thrust exerted all round that ring, whose amount is the
product of that intensity into the radius of the ring. The same
proposition is true, substituting an outward for an inward radiatin,
pressure, and a tension all round the ring for a thrust. If, there-
fore, the horizontal radiating pressure of the dome at the joint
C C be resisted by the tenacity of a hoop, the tension at each point
of that hoop, being denoted by P, is given by the equation

P, cotan ¢
Py=ypy= T..u ............ .....(2.)

Now conceive the hoop to be removed to the circular joint D D,
distant by the arc d s from CC, and let its tension in this new
position be

P,—-dP,

The difference, d P, when the tension of the hoop at C Cis the
greater, represents a thrust which must be exerted all round the
ring of brickwork C C D D, and whose intensity per unit of length
of the arc CD is

Buery ring of brickwork for which p, is either nothing, or positive,
1s stable, independently of the tenacity of cement ; for in each such
ring there is no tension in any direction. 3

‘When p, becomes negative, that is, when P, has passed its maxi-
mum, and begins to diminish, there is fension horizontally round
each ring of brickwork, which, in order to secure the stability of
the dome, must be resisted by the tenacity of cement, or of external
hoops, or by the resistance of abutments.

Such is the condition of stability of a dome. The inclination to
the horizon of the surface of the dome at the joint where p, = 0,
and below which that quantity becomes negative, is the angle of
rupture of the dome ; and the horizontal component of its thrust
at that joint, is its total horizontal thrust against the abutment,
hoop, or hoops, by which it is prevented from spreading.

A dome may have a circular opening in its crown. Oval arched
openings may also be made at lower points, provided at such points
there is no tension ; and the ratio of the horizontal to the inclined
axis of any such opening should be fixed by the equation

horiz. axis Py (4
inclined axis pysecs I

=c=
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Example 1. Spherical Dome.—Uniform thickness, ¢ ; weight of
material per unit of volume, w ; radius, 7.

x=r(l —cost); y=rsini; ds=rds.

P,=27witr(l—cosi);

_ wircosd __wircosising
P =TTocss’ *= I+tocose ° ceneens(B)
_dP cos?t+cosi—1

&= e
1’"7%‘““’” 1+4cose ° J

The angle of rupture, for which p, = 0, is
4, = arc * cos L/%:_l = 51°49 jiiiicsnrenseni(6.)

and from this angle we obtain, for the horizontal thrust of the
dome, per unit of periphery at the joint of rupture,
P2,=0382wtr;
and for the tension on a hoop to resist that thrust, { ....ceeeeee(7.)
P,=03wirs
Example 1X. Truncated Cowical Dome (fig. 113).— Apex, O.
Depth of top of dome below apex, #,; of base of dome, 2, ; 4, uni-

form inclination ; ¢, uniform thickness; y = @ cotan 4. -
Then at the base of the dome,

cos ¢ R
sin®¢ (#1—2i);

wtcos e w?,)
= =———=iileeei] £
Pr="gsints \ @/’

wicos®e
L ==Y 5
YT 2gind¢ (i —af);

P=zws-

P = wim °cotan? 7. J Tig. 113.

2. being everywhere positive, there is in this dome no joint of
rupture.

Example ITI1. Truncated Conical Dome, supporting on s summit
a turret or “lantern,” of the weight L
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cos ©

P=rwt o (ai- zg) +1L; 1

tcost 7 L
Gty Ut

2 sin® ¢ /) 27z’ S L)
w i cos® ¢ L cotan 7
P = 2
AT We=th +
P. = wtx *cotan® . J

235. Strength of Abutments and Vaults.—The dimensions required
in an abutment, arch, or dome, to insure stability, are in most
cases sufficient to insure strength also ; but instances occur, in
which the condition of sufficient strength requires to be indepen-
dently considered, and it may be convenient here so far to antici-
pate the subject of strength as to state that condition, viz., that the
antensity of the thrust in the materials shall at no point exceed a
certain limit, found by dividing the resistance of the material to
crushing by a number called the factor of safety. The factor of
safety in existing bridges ranges from 3 or 4 to 50 and upwards.
In tunnels it is about 4. Tredgold considers, that in bridges the
best value for the factor of safety is about 8 (ZTreatise on Masonry).
The resistance of some of the most important materials of masonry
to crushing is stated in a table at the end of this volume ; but a
prudent engineer, who contemplates a great work in masonry, will
not trust to tables alone, but will ascertain the strength of the
materials at his command by direct experiment.

235 A. Transformation of Structures in Masonry.—The principle
already stated in Article 126, that to determine the infensity of a
force in a transformed structure, the projected line representing the
amount of the force must be divided by the projected area over
which it is distributed, requires special attention in considering the
strength of transformed structures of masonry.

To exemplify the application of that principle, conceive a rec-
tangular prism whose dimensions are @, ¥, %, being vertical : its
volume is V = y % Let w be the weight of umty of volume of
the material of which it is composed ; and let the weight of the
prism be represented by a line parallel to @, of the length ‘W ; then

WA= 20 B B, 0.2 o oSS L (L)

The amount of an upward vertical pressure on the base of this
prism, which balances W, will be represented by a line equal and
opposite to W : that is

L FTE AR T (2.)
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and the sntensity of that pressure will be

Now let there bea parallel projection of this prism, whose dimen-
sions, & = ax, ¥ =by, 2 = cz, are oblique to each other. The
Welght of the new prlsm will be represented by a line parallel to o/, *
of the length

Let
C=1— cos y’z’—cosw’m —cos az’J
+2cosyz'coszm"cosac'g/.. ................ )

Then the volume of the new prism is

Vedyd JOC=Vabe /Ciuun.n. (6.)
consequently the intensity of vts weight is
W aW w
W= g = i i rial)

abe /C- L be JC
The area of the lower surface of the new prism is
y 2 sin y’/\z’ =yz-bcsin y’/\z’ FiobasobaPORo L)
The amount of the stress on that area is
SREEA= 0 P = D 9% een et erees 9.)

being represented by a line P, which is the projection of P, and
parallel to .
The intensity of this new stress is
’ R a
P= = LT R
Y& sinyZ be-siny? :

and if we consider the relation between stress and weight,

P=-W,
that is,
A
pydsinygd——-wdady L (11)
we find
s —wa JC

e e IOt



CHAPTER III.
STRENGTH AND STIFFNESS,

Secrron 1.—Summary of the Theory of Elasticity as applied to
Strength and Stiffness.

236. The Theory of Elasticity relates to the laws which connect
the stresses, or pressures and tensions, which act at the surface and
in the interior of a body, with the alterations of dimensions and
figure which the body and its parts simultaneously undergo. That
theory, therefore, is the foundation of the principles of the strength
and stiffness of materials of construction. The theory of elasticity
has many other applications,—to crystallography, to light, to sound,
to heat, and to other branches of physics. Its full discussion would
of itself require a voluminous work; in the present section, its
principles are to be briefly summed in so far as they are appli-
cable to the strength and stiffness of structures.

237. Elasdcity is the property which bodies possess of occupying,
and tending to occupy, portions of space of determinate volume and
figure, at given pressures and temperatures, and which, in a homo-
geneous body, manifests itself equally in every part of appreciable
magnitude.

238, An Elastic Force is a force exerted between two bodies at
their surface of contact, or between two parts into which a body
either is divided or is capable of being divided at the surface of
actual or ideal separation between those parts. The intensity of an
elastic force is stated in wnifs of weight per unit of area of the
surface at which it acts. That kind of force is in fact identical
with stress, the statical laws of which have already been explained
in Part I., Chapter V., Sections 2, 3, and 4, Articles 86 to 126.

239. ¥iuid Elasticity—The elasticity of a perfect fluid is such
that its parts resist change of volume only, and not change of
figure ; whence it follows, that the pressure exerted by a perfectly
fluid mass is wholly perpendicular to its surface at every point :
principles which form the basis of hydrostatics and hydrodynamics.
Fluids are either gaseous or liquid. A gaseous fluid is one whose
parts (so far as is known by experiment) exert a pressure against
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each other and against the vessel containing them, how great soever
the volume to which they are expanded. See Arts. 110, and 117
to 124,

240, Liquid Elasticity.—The elasticity of a perfect liguid resists
change of volume ouly, and differs from that of a gaseous fluid
chiefly in this : that the greatest variations of the pressure which
it is possible to apply to a liquid mass produce very small variations
of its volume. i

The compression undergone by a liquid mass in consequence of
the application of a given pressure over its surface, is measured by
the ratio of the diminution of volume produced by the given pres-
sure to the entire volume of the mass: a ratio which is always a
very small fraction. The compressibility of a given liquid is the
compression produced by a unit of elastic pressure ; in other words,
the ratio of a compression to the pressure producing it. The
modulus or co-¢fficient of elasticity of a liquid is the ratio of a pressure
applied to and exerted by the liquid, to the accompanying compres-
sion, and is therefore the reciprocal of the compressibility. The
following empirical formula for the compressibility of pure water
at any temperature between 32° and 128° Fahrenheit has been
deduced from the experiments of M. Grassi (Comptes Rendus, X1X. ;
Philos. May., June, 1851).—Compressibility per Atmosphere,

1
T40(r + 461% p

T, temperature in degrees of Fahrenheit. D, density of water ab
that temperature under one atmosphere, the maximum density of
water under the pressure of one atmosphere being taken as unity.
See Art. 123, equation 5. At the temperature of maximum density,
39-1 Fah., the compressibility of water per atmosphere is 0-00005,
and its modulus of elasticity, 20,000 atmospheres, or 294,000 lbs.
per square inch,

Comypressibilities of some Liquids, per Atmosphere, from
M. Grassi’s experiments.

Saturated aqueous solution of nitrate of potash,.......0'0000306565
Saturated aqueous solution of carbonate of potash,....0:0000303294
Artificial sea water,....... B i e AR e 00000445029
Saturated aqueous solution of chloride of calcium,....0:0000209830
ZHher, ... - e MRS RA A, oLt 0°0001I137 t0 0°000130%3
Adcohol, ..... . U AR e 0°00008245 0 0:0000858%

The compressibility of &ether and alcohol increases with the pressure.

241. Rigidity or Stiffness.—A. solid body, besides resisting changé
of volume like a liquid, possesses also rigidity, or the property of
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resisting change of figure. As in the case of liquids, the utmost
alteration of volume of which a solid body is capable by any pressure
which can be applied to it, is always a very small fraction of its
entire volume. The stresses at the surface of a solid body or particle
are not necessarily normal, but may have any direction, from normal
to tangential.

242. Strain and Fractare—In popular language the words strain
and sfress are applied indifferently to denote either the system of
forces at the surface of a solid body whereby its volume and figure
are altered, or the alteration of volume and figure of the body and
its parts thereby produced. For the sake of clearness in scientific
language, certain authors have recently endeavoured to appropriate
the word strain to the alterations, of what nature soever, in the
volume and figure of a solid body and of its parts, produced by
forces applied to it, and the word stress as formerly defined. This
nomenclature will be used in the present treatise. Fracture of a
solid occurs when a strain is carried so far as to cause actual division
of the solid into parts. The strains and fractures to which a solid,
considered as a whole, is subject, may be classified according to the
following table. To each kind of strain there corresponds a kind
of stress ; being the external force which produces that strain, and
the equal and opposite force wherewith the solid resists that strain :—

Strain. Fracture,
=g, Extension ......Tearing.
mbtydial... . { Compression...... Crushing and Cleaving.
Distortion ...... Shearing.
Transverse........ ANgrsiontive=: 1. . .. Wrenching.
Bending  ...... Breaking across.

243. Perfect and Imperfect Elasticity. Plasticity.—A body is said
to be perfectly elastic, which, if strained at a constant temperature
by the application of a stress, recovers its original volume, or volume
and figure, when such stress is withdrawn. Deviations from this
property constitute imperfect elasticity. Gases, and liquids perfectly
free from viscosity, are perfectly elastic.

The elasticity of every solid is sensibly perfect when the strain
does not exceed a certain limit. This has been proved to be the
case even for solids so plastic as moistened clay. For every solid
there are limits, which if a strain exceed, sef, or permanent altera-
tion of volume or figure, is produced, and such limits of elasticity
are less, and often considerably less, than the strains required to
produce fracture. It has been proved by Mr. Hodgkinson that
these limits depend on the duration of the strain, being less for a
long-continued strain than for a brief strain. The elasticity of volume

-
‘o
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in solids is in general much more nearly perfect than the elasticity
of figure. It is true that the density of many metals is perma-
nently increased by hammering, rolling, and wiredrawing, and that
of some other materials by intense pressure (Fairbairn ; Report of
the British Association, 1854); but the stresses which operate
during these processes are very great. A body which is capable of
undergoing great alterations of figure, and whoae elasticity of figure
is very imperfect, is a plastic solid. The gradations are insensible
between plastic solids and wiscous liquids, in which there is a resist-
ance to change of figure, but no tendency to recover any particular
figure.

gRise of temperature, so far as we yet know, increases elasticity of
volume in all substances, and at the same time diminishes the
amount and the perfection of elasticity of figure, so as to make
solids more plastic and liquids less viscous.

244. The Ultimate Swength of a solid is the stress required to
produce fracture in some specified way. The Proof Siengih is the
stress required to produce the greatest strain of a specific kind
consistent with safety ; that is, with the retention of the strength
of the material unimpaired. A stress exceeding the proof strength
of the material, although it may not produce instant fracture, pro-
duces fracture eventually by long-continued application and fre-
quent repetition. Strength, whether ultimate or proof, is the
product of two quantities, which may be called Toughness and
stifness.  Toughness, ultimate or proof, is here used to denote the
greatest strain which the body will bear without fracture or with-
out injury, as the case may be : stiffness, which might also be called
hardness, is used to denote the ratio borne to that strain by the
stress required to produce it,—being, in fact, a modulus of elusticity
of some specified kind. Malleable and ductile solids have ultimate
toughness greatly exceeding their proof toughmness. Brittle solids
have their ultimate and proof toughness equal or nearly equal.

Resilience Or Spring is the quantity of mechanical work required
to produce the proof strain, and is equal to the product of that
strain, by the mean stress in its own direction which takes place
during the production of that strain,—such stress being either
exactly or nearly equal to one-half of the stress corresponding to
the proof strain. Hence the resilience of a solid is exactly or
nearly one-half of the product of its proof toughness by its proof
strength ; in other words, one-half of the product of the square of
its proof toughness by its stiffness. :

Each solid has as many different kinds of stiffness, toughness,
strength, and resilience as there are different ways of straining it,
as the following table shows. In that table pliability is used as a
general term to denote the inverse of stijfness :—

7 3
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Stress. Straln, Stiffness, Pliability. Fracture. Strength.

Pall. Stretching or Extensibi- | Tearing. Tenacity.
Extension. lity.

Thrust. Squeezing or Compressibi-| Crushing. B4
Compres- lity.
sion. S

Shearing. | Distortion. e Shearing. &5

Twisting. | Twisting or ‘Wrenching. pe. |
Torsion.

Bending. Bending. Transverse | Flexibility. | Breaking i

Stiffness. Across,

Those kinds of stiffness and strength which have no single word to
designate them, are called resistance fo the kind of strain or frac-
ture to which they are opposed.

245. Determination of Proof Strength.—It was formerly supposed
that the proof strength of any material was the utmost stress con-
sistent with perfect ela.stlclty ; that is, the utmost stress which does
not produce a sef, as defined in Article 243, Mr. Hodgkinson,
however, has proved that a set is produced in many cases by a
stress perfectly consistent with safety. The determination of proof
strength by experiment is now, therefore, 2 matter of some obscu-
rity ; but 1t may be considered that the best test known is, the not
producing an INCREASING SET by repeated application.

246. The Working Stress on the material of a structure is made
less than the proof strength in a certain ratio determined by prac-
tical experience, in order to provide for unforeseen contingencies.

247. Wactors of Safety are of three kinds, viz :—the ratio in
which the ultimate strength exceeds the proof strength, the ratio in
which the wltimate strength exceeds the working stress, and the
ratio in which the proof strength exceeds the working stress. The
following table gives examples of the values of those factors which
oceur in practme —

TUlt. Strength.  Ult. Strength,  Proof Strength.

Proof Strength, Working Stress, Working Stress.

Strongest steel,....ceuvnaneeeerereieannananns 1}
Ordmnry steel andwr. iron, steady ]oad, 2 3 13
wf moving load, 4to 6 2t03
‘Wrought iron boilers, .ceeeceeseoseecsesses 2 8 4
Cast iron, steady load,.... 2t03 3to4 about 14
$é moving load, o 6to8 2to3
Timber; average, ..ce..ee.. 10 3

3 3
Stone and bricky...isierereesseseaeseneeeses] -about 2 |4 to 10, av.abt. 8| av. about 4
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248. Divisions of the Mathematical Theory of Elasticity.—The
theory of the elasticity of solids has been reduced to a body of
mathematical principles applicable to those cases in which the
strains of the particles of the body are so small, that quantities
in the stresses depending on the squares, products, and higher
powers of the strains may be neglected without appreciable error,
and that, consequently, Hooke's Law—*ut tensio sic vis”—is sen-
sibly true for all relations between strains and stresses. This con-
dition is fulfilled in nearly all cases in which the stresses are
within the limits of proof strength—the exceptions being a few
substances, very pliable, and at the same time very tough, such as
caoutchouc. The mathematical theory, as thus limited, consists of
three parts, viz., the resolution and composition of stresses, the
resolution and composition of strains, and the relations between
strains and stresses. The resolution and composition of stresses
has already been fully discussed in Part L, Chapter V., Section 3.

249. Mesolution and Composition of Strains.—Let a solid of any
figure be conceived to be ideally divided into a number of inde-
finitely small cubes by three series of planes parallel respectively
to three co-ordinate planes. Fach such elementary cube is dis-
tinguished by means of the distances, x, ¥, 2, of its centre from the
three co-ordinate planes. If the solid be strained in any manner,
each of the elementary cubical particles will have its dimensions
and figure changed, and will become a parallelopiped, which may
be right or oblique—its size being conceived to be so small, that
the curvature of its faces is inappreciable. The simple or elementary
strains of which a particle, cubical in its free state, is susceptible,
are six in number, viz.:—three longitudinal or direct strains, being
the three proportional variations of its linear dimensions, which are
elongations when positive, and compressions when negative ; and
three transverse strains, being the three distortions, or variations of
the angles between its faces from right angles, which are considered
as positive or negative according to some arbitrary but fixed rule,
and are expressed by the proportions of the arcs subtending them
to radius. When the values of those six strains for every particle
are expressed by functions of the co-ordinates, =, ¥, 2, the state of
strain of the solid is completely expressed mathematically. The
six elementary strains, in the cases to which the theory is limited,
are very small fractions.

The method of reducing the state of strain of the solid at a given
point, as expressed by a system of six elementary strains relatively
to one system of rectangular axes, to.an equivalent system of six
elementary strains relatively to a new system of rectangular axes,
is founded on the following theorem. Let «, 8, v, be the longitu-
dinal strains of the dimensions of a given particle along =, ¥, %
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2, &, v, the distortions of its angles in the planes 2, z @, 2 7. Con-
ceive the surface of the second order whose equation is

e’ + By + vy +Ayz + pre + vay=1

Transform this equation so as to refer the same surface to the new
axes of co-ordinates; the six co-efficients of the transformed equa-
tion will be the elementary strains referred to the new axes.
Other ways of resolving strains have been pointed out by Professor
'W. Thomson, Cambridge and Dublin M athematical Journal, May,
1855.

The sum of the direct strains « + 8 + o represents the cubic dila-
tation of a particle when positive, and the cubic compression when
negative. The state of strain of a transparent body may be ascer-
tained experimentally by its action on polarized light. On this
subject experiments have been made by Fresnel, Sir D. Brewster,
M. Wertheim, and Mr. Clerk Maxwell.

250. Displacements.—Let & 7, ¢, be the projections, parallel to
x, ¥, %, respectively, of the displacement of a particle in a strained
solid from its position when the solid is free, expressed as functions
of z, 7, 2. Then

d¢ dn d
iy v=d—§;
A:C—l——g+.@, M=Cﬁ+d—§‘
y z d'z ey
jRie d&
W™ d 5

251. Analogy of Stresses and Strains.—It has been shown in
Article 104, that the elastic forces exerted on and by an originally
cubical particle, which constitute the state of stress of the solid at
the point where that particle is situated, may be resolved into six
elementary stresses, viz.:—three normal stresses, perpendicular re-
spectively to the three pairs of faces, and tending directly to alter
the three linear dimensions of the particle—and three pairs of
tangential stresses acting along the double pairs of faces to which
they are applied, and tending directly to alter the angles made by
such double pairs of faces. To reduce the state of stress at a given
point expressed by a system of six elementary stresses referred to
one system of rectangular co-ordinates to an equivalent system of
elementary stresses referred to a new system of rectangular co-ordi-
nates, equations have been given in Articles 105, 106, 107, 108,
109, and 112. The whole of those equations are virtually compre-
hended under the following theorem i—Let p.., py, Pur be the
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three normal stresses, and p,,, p.., P,y the three tangential stresses;
conceive the surface whose equation is !

D@ + Py’ + P+ 20,97 + 2ppz2 + 2p 0y = 1.

Transform this equation so as to refer the same surface to the new
set of axes; the six co-efficients of the transformed equation will
be the six elementary stresses referred to the new axes. For the
complete investigation of this subject, see M. Lamé’s Legons sur la
Théorie mathématique de U Elasticité des Corps solides, Paris, 1852.
The above equation is transformed into the equation of Article 249
by substituting respectively «, 8, ¥, 2, ¢, », for P.oy Dy Prss 2 Pyss
2 Posy 2 P.y; and by making corresponding substitutions in all the
equations of Articles 105, 106, 107, 108, 109, and 112, they are
made applicable to strains instead of stresses.

252.  The Potential Energy of Elasticity of an originally cubic
particle in a given state of strain is the work which it is capable of
performing in returning from that state of strain to the free state ;
and is the product of the volume of the particle by the following
function :—

1
e é(“.pu &+ ﬁpyy + YP. + APy + ¢ Pra A+ "sz)-

This function was first employed by Mr. Green, Cambridge Trans-
actions, vol. vii.

25B. Co-eflicients of Elasticity.— A ccording to Hooke’s Law, each
of the six elementary stresses may, without sensible error, be
treated as a linear function of the six elementary strains, each
multiplied by a particular co-gfficient or modulus of elasticity. By
expressing all the stresses in terms of the strains, the potential
energy U is transformed into a homogeneous quadratic function of
the six elementary strains, which must have twenty-one terms,
and consequently fwenfy-one co-efficients, multiplying respectively
the six half-squares and the fifteen binary products of the six ele-

mentary strains. The co-efficient of % e’ in U is that of « in

P.s 5 the co-efficient of @ 8 in U is that of « in p,, and also that of
@ in p,, ; and so on.

254. Co-eflicients of Pliability.—A ccording to Hooke’s Law also,
each of the six elementary strains may be treated, without sensible
error, as a linear function of the six elementary stresses, so as to
transform U to a homogeneous quadratic function of the elemen-
tary stresses p,,, &c., having twenty-one terms, and twenty-one co-
efficients expressing different kinds of pliability. The word “ plia-
bility ” is here used in an extended sense, to include liability to
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alteration of figure of every kind, whether by elongation, linear
compression, or distortion.

Co-efficients, whether of elasticity or of pliability, may be thus
classified :— Direct, or longitudinal, when they express relations
between longitudinal strains, and normal stresses in the same
direction ; laferal, when they express relations between longitu-
dinal strains, and normal stresses in directions at right angles to
the strains; transverse, when they express relations between dis-
tortions, and tangential stresses in the same direction ; oblique,
when they express any other relations between strains and stresses.

255. An Axis of Elasticity is any direction in a solid body, with
respect to which some kind of symmetry exists in the relations
between strains and stresses. An awxis of direct elasticity is a direc-
tion in a solid body, such that a longitudinal strain in that direc-
tion produces a normal stress, and no tangential stress on a plane
normal to that direction. Every such axis is a direction of maxi-
mum or minimum direct elasticity relatively to the directions
adjacent. v i

By the aid of the calculus of forms, and of an improvement in
the geometry of oblique co-ordinates, it has been shown that every
homogeneous solid must have at least three axes of direct elasticity,
which may be rectangular or oblique with respect to each other,—
that the number of such axes increases as the symmetry of the
action of elastic forces becomes greater,—and that their various
possible arrangements correspond exactly with those of the normals
to the faces and edges of the various primitive crystalline forms
(Phil. Trams., 1856-T).

256. In an Esotrepic or Amorphous Solid the action of elastic
forces is alike in all directions. Every direction is an axis of elas-
ticity. The co-efficients of oblique elasticity and oblique pliability
are all null. The number of different co-efficients of elasticity, and
of different co-efficients of pliability, is three. The following nota-
tion and equations show their relations to each other :—

Elasticities.
Direct, ....... T T A AR A_az—iﬁ_f2h""
Lateral, ......... bbb 7. B= s
DENRETOIEE, o . . yoiseiss ansioniotts oo oo s ne C= A—;—E 3
Elasticity of volume,.....ccccuuuu.. L yfoed 2
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Pliabilities.
BDIDEO, .. .. oionbosiilssimin i mn bty asz%m;
(otherwise, the extensibility.)
ENeral, ... . i W R et o b= AT A]:?S— S
Transverse, .....ccceeeense. it =S (13 =2(a+h);
Cubic compressibility,........... = 3 a—6b

257. Modulus of Elasticity,—The quantity to which the term
“modulus of elasticity” was first applied by Dr. Young, is the
reciprocal of the extensibility, or longitudinal pliability ; that is
to say,

This quantity expresses the ratio of the normal stress on the trans-
verse section of a bar of an isotropic solid to the longitudinal
strain, only when the bar s perfectly free to wary in s transverse
dimensions, but not under other circumstances. The values of
Young’s modulus have been determined experimentally for almost
every solid substance of importance, and a table of them is given
at the end of the volume.

258. Examples of Co-eficients.—The only complete sets of co-
efficients of elasticity and pliability which have yet been computed
are those for brass and crystal, deduced from the experiments of
M. Wertheim (dnnales de Chimde, 3d series, vol. xxiii.), and are as
follows—the unit of pressure being one pound on the square inch:—

Brass. Crystal.

. WRRBRRRR T ERELOIUS000; | vos e 8,522,600.
B...coreeesls RSB 7 OJO00: wweawssl  45204,400,
(Obacar PR o oo 5,327,000 .ieeee 2,150,100,

1

oo eeeeaees 15,121,000 eeenes 5,043,800,

1

= J e oot AR T30 IO 00| s o, | 5174 6,000,

B o AR PERRR T vecess 0°0000000699 ...... 0'00000014 40.
T coned oo vs ©0'0000000230 «vsess OOO0000057 5.
DM e ceeesears O'000000IBTY tevese O'OO0000463 L,
Bir o i tvisesesesseses 00000000601 +0v0vs O°O00000ITY 2.
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259. The General Problem of the Internal Equilibrium of an Elas-
tic Solid is this :—Given the free form of a solid, the values of its
co-efficients of elasticity, the attractions acting on its particles, and
the stresses applied to its surface : to find its change of form, and
the strains of all its particles. This problem is to be solved, in
general, by the aid of an ideal division of the solid (as already
described) into molecules rectangular in their free state, and re-
ferred to rectangular co-ordinates. For isotropic solids, some par-
ticular cases are most readily solved by means of spherical, cylin-
drical, or otherwise curved co-ordinates. The general equation of
internal equilibrium in a solid acted on by its own weight, has
already been given in Article 116, equation 2. If, in that equa-
tion, the values of the stresses in terms of the strains, expressed, as
in Article 250, in terms of the displacements of the particles, be
introduced, equations are obtained, which being integrated, give
the displacements, and consequently the strains and stresses. The
general problem is of extreme complexity ; but the cases which
occur in practice, and to which the remainder of this chapter re-
lates, can generally be solved with sufficient accuracy by compara-
tively simple approximate methods. Most of those approximate
methods are analogous to the “method of sections” described in
its application to framework in Article 161. The body under
consideration is conceived to be divided into two parts by an ideal
plane of section ; the forces and couples acting on one of those
two parts are computed, and they must be equal and opposite to
the forces and couples resulting from the entire stress at the ideal
sectional plane, which is so found. Then as to the distribution
of that stress, direct and shearing, some law is assumed, which if
not exactly true, is known either by experiment or by theory, or
by both combined, to be a sufficiently close approximation to the
truth.

Except in a few comparatively simple cases, the strict method
of investigation, by means of the equations of internal equilibrium,
has hitherto been used only as a means of determining whether the
ordinary approximative methods are sufficiently close.

SEcTION 2.—On Relations between Strain and Stress.

260. Ellipse of Strain.—In Articles 249, 251, 252, 253, 254,
256, and 257, of the preceding section, certain general principles
respecting the relations amongst strains, and the analogies and
other relations between strain and stress, are stated without a
detailed demonstration. In the present section the more simple
cases of those principles, to which there will be occasion to refer in
the sequel, are to be demonstrated.
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Let a solid body be supposed to undergo a strain, or small
alteration of dimensions and figure, of such a nature that all the
displacements of its particles from their
original positions are parallel to one
plane ; and let that plane be repre-
sented by the plane of the paper in . “A® P
fig. 114. In the first instance, let the \ N
state of strain of the body be uniform S
throughout; that is, let all parts of the X ¥
body which originally were equal and /
similar to each other, continue equal g ;
and similar to each other notwithstand- st ¥ 7

ing their alteration of dimensions and

figure.

guRound any centre O, with the radius _/
unity, let a circle be traced amongst the
particles of the body, BCAF. Because
of the uniformity of the strain, this
circle will be changed into a parallel
projection of a circle; that is, into an
ellipse. Let b c af be that ellipse, and O
and Ob its semi-axes, the body being so placed
in its strained condition that the central par-
ticle O may remain unchanged in position, in
order that the circle and ellipse may be the
more easily compared. Then the particle which
was at A is displaced to @, and the particle
which was at B is displaced to 6; and particles
which were at points in the circle, such as C
and F, are displaced to corresponding points
in the ellipse, such as ¢ and /.

In the direction O A, the body has undergone the extension

Fig. 114,

Tig. 115.

I a4 =a;
and in the direction O B, at right angles to O A, the extension

and the combination of those two extensions or elementary direct
strains, in rectangular directions, constitutes the state of strain of
the body parallel to the given plane; that state of strain being
completely known, when e, 8, and the directions of the pair of
rectangular awxes of strain O A, O B, are known.

One or both of the elementary strains might have been compres-
sive, instead of tensile, in which case one or both of the quantities de-
noting them would have been negative, to express diminution of size.
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A square whose sides are unity, and parallel to O A and OB,
being traced amongst the particles of the body in the free state, is
converted by the strain into a rectangle whose sides are 1 + « and
1 + 8, and still parallel to O A and O B.

Let it now be required to express the state of strain of the body
with reference to two new rectangular axes, O C and O F, that is
to say, to find the alterations of dimensions and figure produced by
the strains on a figure originally square, described on O C and O F,

Let # = 0X, y = OY, be the original co-ordinates of C, and &
=0X, 9/ =0 those of F; and let the angle A OC = 90° —
AOF =¢ Then

rx=cosl=—9

y=sné=ua.

Also,let x +£=Y D, y + 2= 07Y + De, be the co-ordinates of
¢, the new position of C; and let @ + & =Y'G, 5 +» =0 Y' +
G.f; be the co-ordinates of £, the new position of F. Then because
of the uniformity of the strain, the component displacements &, u, &,
#, have the following values :—

5=(ﬁ)=uw=accso;

1=Dec=pfy=psind;
§=FG=aa/=ay=asni;

A=QGf=8y = —Bcosd

O ¢ and O f are the sides of the oblique parallelogram into which
the square on OC and OF has been transformed by the strain,
The relations between the new and the original figure are distin-
guished into two direct strains and a distortion, i the following
manner :—

From ¢ let fall ¢ M perpendicular to O C M ; and from f let fall
SN perpendicular to O F N. Then

« = O'M is the extension of O C;
£ = F N is the extension of O F;

and ¥ = ¢ M + /N is the distortion or deviation from rectan-
gularity ; and the values of those three new elementary strains,
relatively to the pair of axes which make the angle ¢ with the
principal axes O A, O B, in terms of the principal elementary stresses,
«, £, are as follows :—
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w==%cosd+nsind =« cos’ 0+ 3sin®d;
# = &sinl—1 cosd = « sin? 4 - B cos® ¢ ;
Yy —=1E&sind—uncosd+ & cosd+ #sin¢ e
= 2 (« — £) cos ¢ sin 4.

Those three equations are exactly analogous to the equations 3
and 4 of Article 112, from which they may be formed by substituting
e for p,, and @ for p, in both equations; and then, in the first place,

A
o for p,, and 6 for 2 n ; in the second place, & for p,, and (90° — ¢)

for mAn, and in the third place, v for p,, and ¢ for = n.

This illustrates the general principle of analogy of stresses and
strains stated in Article 251. That principle is further illustrated
by the following geometrical construction of the preceding problem.

In fig. 115, make 0 @ = &, 0 b = B, and draw the ellipse b ¢ ¢/, and
the circumscribing circle Ca F. Let .~ a0 C = 4, and let o F be
perpendicular to o C, so that those lines represent the direction of
the new rectangular axes, to which the strain composed of « and 8
is to be referred. Draw C ¢, F £, parallel to o b, cutting the ellipse
in ¢ and £, from which points respectively draw ¢m <L o C, and f'»
A 0oF. Then

0m=u’,on=ﬁ',2cm=2fn=u',

are the components of the strain, referred to the new axes; and the
ellipse of strain b e a f is analogous to the ellipse of stress of Article
112.

The results of the preceding investigation are applicable not only
to an uniform state of strain, but to a state of strain varying from
point to point of the body, provided the variation is continuous, so
that it shall be possible, by diminishing the space under considera-
tion, to make the strain within that space deviate from uniformity
by less than any given deviation.

261. Ellipsoid of Strain.—A strain by which the size and figure
of a body are altered in three dimensions may be represented in a
manner analogous to that of the preceding Article, by conceiving a
sphere of the radius unity to be transformed by the strain into an
ellipsoid, and considering the displacement of various particles,
from their original places in the sphere, to their new places in the
ellipsoid. The three axes of the ellipsoid are the principal axes of
strain, and their extensions or compressions, as compared with the
coincident diameters of the sphere, are the three principal elementary
strains which compose the entire strain. It is by this method, which
it is unnecessary here to give in detail, that the general principles
stated in Articles 249 and 251 are arrived at.
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262. Transverse Elasticity of am Xsotropic Substance.—Let the
two principal elementary strains in one plane be of equal magnitude,
but opposite kinds ; that is, supposing the strain in fig. 114 along
O A to be an extension, , let the strain along O B be a compression,
£ = —a The ellipse will fall beyond the circle at A, and as
much within it at B, and will cut it at an intermediate point near
the middle of each quadrant.

Take a pair of new axes bisecting the right angles between the
original axes ; that is, let ¢ = 45°; then the equations 2 of Article
260 give the following result :—

ot 0 8RS0 ipt—" oo NSNS (1)

that is to say, an extension, and an equal compression, along a pair
of rectangular axes, are equivalent to a simple distortion relatively to
o pair of axes making angles of 45° with the original axes; and the
amount of the distortion is double that of either of the two direct strains
which compose it ; a proposition which is otherwise evident, by con-
sidering that a distortion of a square is equivalent to an elongation
of one diagonal, and a shortening of the other, in equal proportions.

The body being 4sotropic, or equally elastic in all directions, let
A be its direct and B its lateral elasticity ; then the pair of principal
strains &, 8= — «, will be accompanied by a pair of principal stresses
along O A and OB respectively, given by the following equations :—

along O A, p, —=Ae+BE=(A —B)a;"
OB,_p,=Bw+Aﬁ=(B—A)a-=—p,; ...... (2)

that is to say, there will be a pull along O A, and an equal thrust
along O B.

It has already been proved, in Article 111, that such a pair of
principal stresses, of equal intensities and opposite kinds, are
equivalent to a pair of shearing stresses of the same intensity on a
pair of planes making angles of 45° with the axes of principal
stress; or taking p, to represent the intensity of the shearing stress
on each of a pair of planes normal to the new pair of axes,

p,:p,:(A-—-B)d; ..................... (3)
but if C be the co-efficient of transverse elasticity of the substance,
we have also

Jih = O B0 AP IO o ()
and consequently, for an isotropic substance,
A-B

Dot S h s v (5.)
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or the transverse elasticity is half the difference of the direct and lateral
elasticitres.

This is the demonstration of a principle already stated in Article
256. The corresponding principle for pliabilities, viz. :—that the
transverse  pliability is twice the sum of the direct and lateral extensi-
bilities, is demonstrated by a similar process, of which the steps may
be briefly summed as follows :—

e=ap,—bp,=(@+b)p.;
B=ap,—bp.=—@+h)p,=—«;
X v'=2u= 2(a+ﬁ)pl=2(a+h)p‘=£p,,
e (e ) = QIR . o e el (6.)

263. Cubic Elasticity—If the three rectangular dimensions of a
body or particle are changed in the respective proportions 1 - «,
1+ 8, 1 + v, its volume is altered in the proportion

I+az)(l+pA+);
and when the elementary strains «, 8, v, are very small fractions
this is sensibly equal to
1+a+p+o.

Consequently, as in Article 249,
etpty
may be called the cubic strain, or alteration of volume.
In an isotropic substance, the three rectangular direct stresses
which accompany those three strains are
¢x=A0‘+B('3+7)}
Py=AL+B(y+a); }
Pu=Av+B(=+8);
The third part of the sum of those stresses, which may be called the
mean direct stress, has the following value :—

Pas + Py + Pu _(A + 2B) . 2
3 = 3 (BT, (2)

The co-efficient contained in this expression, being the ratio of the
mean direct stress to the cubic strain, is the cubic elasticity, or
elasticity of volume, already mentioned in Article 256, its reciprocal
being the cubic compressibility.

264. Fluid Elasticity—The distinction between solids and fluids
is well illustrated by applying to fluids the equations of Articles 262
and 263. Fluids offer no resistance to distortion, that is, they have
no transverse elasticity; therefore for them

C=A_B=03 or A=B.
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Introducing this into the equations 1 and 2 of Article 263, we find

Lo =Dy =0 =B (@ +8+v),
and the cubic elasticity

The equality of the pressures in all directions at a given point in a
fluid has already been proved by another process in Article 110.

The equations of Article 256 show the pliabilities of a perfect
fluid to be infinite, with the exception of the cubic ecompressibility,
which is ]13— 0

SecrIoN 3.—On Resistance to Stretching and Tearing.

265. Stiffiness and Strength of a Tie-Bar—JIf a cylindrical or
prismatic bar, whose cross section is S (as in Article 97, fig. 46), be
subjected to a pull whose resultant acts along the axis of figure of
the bar, and whose amount is P, the intensity of the pull will be
uniform on each cross section of the bar, and will have the value

This direct stress will produce a strain, whose principal element
will be a longitudinal extension of each unit of length of the bar,
of the value .

where a denotes the direct extensibility, and E its reciprocal, the
modulus of elasticity, or co-efficient of resistance to stretching, as
explained in Articles 256 and 257.

Let x denote the length of the bar, or of any portion of it, in the
free or unloaded state; that length, under the tension p, becomes
1+ o;) .

The co-efficient

E=2

“’

is nearly constant until p passes the limit of the proof stress; but
after that limit has been passed, that co-efficient diminishes ; that
is to say, the extension « increases faster than the intensity of the
stretching force p, until the bar is torn asunder.

The wltimate strength of the bar, or the total pull required to
tear it instantly asunder—the proof strength, or the greatest pull
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of which it can safely bear the long-continued or repeated applica-
tion—and the working load—are computed by means of the formula

Pp=fHor P=f8, cutreerinees ssernasas 3)

where f represents the wltimate tenacity, the proof tenacity, or the
working stress, as the case may be.

The toughness of the bar, or the extension corresponding to the
proof load, is given by the formula

where f is the proof tenacity.

266. The Resilience, or spring of the bar, or the work performed
in stretching it to the limit of proof strain, is computed as follows :
— being the length, as before, the elongation of the bar under the
proof load is ¥
Sz,

‘i >
the force which acts through this space has for its least value 0, for

el =

its greatest value P =78, and for its mean value —f-2§ ; so that the

work performed in stretehing the bar to the proof strain is

S fz 2 Sz
f‘—._f]; -_—fE_.—_2 g R A )
2

2
The co-efficient %—, by which one-half of the volume of the bar is
multiplied in the above formula, is called the MobuLus or REsI-
LIENCE. .

267. Sudden Pull—A pull of f?S, or one-half of the proof load,
being suddenly applied to the bar, will produce the entire proof
strain of i which is produced by the gradual application of the
proof load itself ; for the work performed by the action of the con-
stant force 'Z‘Z—S- through a given space, is the same with the work
performed by the action, through the same space, of a force increas-
ing at an uniform rate from 0 up to fS. Hence a bar, to resist
with safety the sudden application of a given pull, requires to have
twice the strength that is necessary to resist the gradual applica-
tion and steady action of the same pull.

The principle here applied belongs to the subject of dynamics,
and is stated by anticipation, on account of its importance as
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respects the strength of materials. Tt is the chief reason for mak-
ing the factor of safety for a moving load considerably greater than
for a steady load (see Article 247).

268. A Table of the Resistance of Materials to Stretching and
Tearing, by a direct pull, in pounds per square inch, is given at the
end of the volume,

The tenacity, or resistance to tearing, given in that table, is in
each case the witimate fenacity, being the quantity as to which
experimental data are most abundant and precise. The proof ten-
acity and working tension, when required, are to be found by
dividing the ultimate tenacity by the proper factors, according to

" Article 247,

The modulus of elasticity in each case is given from experiments
made within the limits of proof strain.

Both co-efficients, for fibrous substances, have reference to the
effects of tension acting along the fibres, or “grain.” Both the ten-
acity and the elasticity of timber against forces acting across the
grain are much smaller than against forces acting along the grain,
and are also of uncertain amount, the results of experiments being
few and contradictory.

269. Additional Data. — The following are a few experimental
results in addition to those given in the table :—

Welded joint of a wrought iron retort.—Ultimate tena-
city, by a single experiment, in Ibs. per square inch,... 30750-
Iron wire-ropes.—Strength in 1bs., for each lb. weight per
fathom, ....... G ER RIS oAPOASEEORER 50 Ultimate, 4480
Proof, .... 2240-
‘Working load } of ultimate, or } of proof strength.
Hempen cables—Ultimate strength —(girth in inches)? x 4481b.
Leathern belts.—Working tension in lbs. per square inch,
according to General Morin ...cv.vveniiivenenen. ! WO 285¢

Chain cables, when the tendency of each link to collapse is
resisted by means of a cross-bar, as shown in fig. 116,
have a strength per square inch of cross section of the
link equal to that of the iron of which they are made,
when it is in the form of bars,

270. The Strength of Rivetted Joints of iron plates
is given in the table, in lbs. per square inch of section
of the plate, from the experiments of Mr. Fairbairn.
The strength of a double-rivetted joint is seven-tenths
of that of the iron plate, simply because of three-tenths
of the breadth of the plate being punched out in each

Fig. 116. row of rivet-holes. The strength of a single-rivetted
joint is diminished not merely by the removal of the iron at the
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rivet-holes, but by the unequal distribution of the stress. Rivetted
joints will be further considered in the sequel.
271. Thin Hollow Cylinders; Boilers; Pipes. — Let q denote
the uniform intensity of the pressure exerted by
a fluid which is confined within a hollow cylin-
der of the radius r, and of a thickness, ¢, which
is small as compared with that radius. ¢
The demonstration: in Article 179 shows, that
if we consider a ring;being a portion of the cylin-
der of the length wnify, the tension on that ring
will be Fig. 117.
D=kt SRR aed s o (1)
being the force per unit of length with which the internal pressure
tends to split the cylinder from end to end. :
The sectional area of the ring under consideration is £ Then
assuming, what is very nearly correct, that the tension is uniformly
distributed, the intensity of that tension is

The ratio of thickness to radius, which a thin hollow cylinder
requires, to fit it for a given intensity of bursting pressure, proof
pressure, or working pressure, is given by the formula

e %
e F R 3)

JSbeing the wltimate tenacity, the proof tension, or the working ten-
sion, as the case may be.

It is considered prudent, in STEAM-BOILERS, to make the working
tension only one-eighth of the ultimate tenacity. The joints of
plate iron boilers are single-rivetted ; but from the manner in
which the plates break joint, analogous to the bond in masonry,
the tenacity of such boilers is considered to approach more nearly
to that of a double-rivetted joint than that of a single-rivetted joint.
M. Fairbairn estimates it at 34,000 lbs. per square inch ; so that
the values of ffor wrought iron boilers may be thus stated :—

Bursting tension, ...ceeceeeeeenes 34,000
Proof tension,...eeeecunnes. ., 17,000
‘Working tension, ............... 4,250

For CAST IRON WATER PIPES, the working tension may be made
one-sizth of the bursting tension, which for cast iron, on an average,
is 16,500 lbs. per square inch ; that is to say, the values of f are

Bursting tension, .......... eeeee 16,600
Proof tension (one-third),...... 5,500
‘Working tension,.......... vee b 2400

U
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B:oit'steam-pipes, as for steam-boilers, the factor of safety should be
ag .

272. Thin Mollow Spheres,—Let fig. 117 now be conceived to
represent a diametral section of a thin hollow sphere, filled with a
fluid which presses from within with the 1ntens1ty ¢. The area of
the fluid cut by the section is

K 7' )
hence the whole force to be resisted by the tenacity of the section
of the spherical shell is
P=xgqgr’ ......... At A (L)

The area of the section of the spherical shell, supposing the thick-
ness ¢ to be small as compared with the radius 7, is very nearly

S =27t )

hence assuming, what is very nearly correct, that the tension is
uniform, its intensity is
P gr
p= S -27 5 eeeees eseesessacasasscann (3)

or, one-half of the tension round a cylindrical shell having the same
internal pressure, and the same proportion of thickness to radius;
50 that, in these circumstances, the sphere is tw1ce as strong as the
cylmder
Equation 3 gives also the longitudinal tension in a thin hollow
cylinder, which, being only one-half of the circumferential tension
round the cylinder, does not require to be considered in practice.
The proper ratio of thickness to radius in a thin hollow sphere
is given by the formula
14
1 2‘*’7,(4)

JS being the bursting, proof, or working tension, according as q is
the bursting, proof, or working pressure.

273. Thick Mollow Cylinder.—The assumption that the circum-

ferential tension, or hoop-tenswn as it may be called, in a hollow

cylinder is uniformly dls{;nbuted, is approxi-

mately true only when the thickness is small as

compared with the radius; for if a ring of the

R cylinder be conceived to be divided into several

concentric hoops, one within another, the tension

of the innermost hoop balances part of the radial

pressure of the confined fluid, so that a dimin-

Fig. 118. ished radial pressure is transmitted to the second

hoop, which has therefore a less tension than the first hoop, and

0 om.
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Equation 2 of Article 271 gives the mean hoop-tension in a
thick as well as in a thin cylinder ; but it is not the mean, but the
greatest hoop-tension (that is, the tension round the inner surface
of the cylinder), which is limited by the strength of the material.
The object of the present investigation is to show what law the
variation of hoop-tension follows, and thence, what relation the
maximum tension bears to the fluid pressure.

To make the solution perfectly general, it will be supposed that
the cylinder is pressed from without as well as from within. Let
fig. 118 represent a cross section of the cylinder; let R denote its
external and r its internal radius. Let g, denote the fluid pressure
from within, and ¢, that from without; p, the hoop-tension at the
inner surface of the cylinder, and p, the hoop-tension at the outer
surface.

Consider, as before, a ring whose length, parallel to the axis of
the cylinder, is unity. The radial section of that ring, from » to
R in fig. 118, has to sustain the difference between the total pressures
from within and without, in a direction perpendicular to the radius
O r R, on a quadrant bounded by that radius. That difference is

g r—q; R.

Conceive the ring to be divided into an indefinite number of con-
centric Loops, each of the thickness dr, and exerting a tension of
the intensity p; then the total hoop-tension will be

From the symmetry of the ring and f the forces acting on it in
all directions round the centre' O, it 1s obvious that the axes of
stress of any particle of metal must be respectively in the direction
of a radius, and perpendicular to that direction. The principal
stresses at any particle are a radial pressure, ¢ (which for each
particle at the inner surface is ¢,, and for each particle at the outer
surface, ¢;) and a hoop-tension p.

As in the case of the ellipse of stress, Article 112, we may con-
ceive this pair of principal stresses to be made up of two component
pairs, viz. :— -

A pair of equal stresses of the same kind, constituting a fluid
pressure or tension, whose common intensity, stated so as to be a
tension when positive, a pressure when negative, is

i 1
2

=m;

and a pair of equal stresses of contrary kinds, whose common
intensity is
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gty +

9 =

Thus we have p = n + m, ¢ = n — m; and the problem is to be

solved by first supposing m to act alone, then supposing = to act

alone, and lastly combining their effects; observing, that the only

solutions of equation 1 which are admissible, are those which are
true for all values of R and .

Case 1. Equal and similar stresses, or =10, In this case

n.

=_——g=m,
showing, that instead of a radial pressure, there is a radial tension
equal to the hoop-tension, and constituting along with it simply a

fluid tension of the intensity m at each point. Equation 1 is ful-
filled by making

Pp=—¢q=m = constalt,i.csceierecen.. (2)
which reduces both sides of equation 1 to
m (R — 7).
CAskE 2. Equal and contrary stresses, or m = 0. In this case
PR
and the solution of equation 1 is
p=g=n= % ................ DAY 3)

a being an arbitrary constant, and ' any value of the radius, from
r to R inclusive; for this reduces both sides of equation 1 to

*(;- )
e R/
CAsE 3. General solution. By combining the two partial solu-
tions of equations 2 and 3 together, we find

. a
Radial pressure, g=n—m=_z—mj

Hoop-tension, P=n +m= -% + m;

To determine the constants @ and m we have the equations
a a
= —Mm=4q; Eg—-m=ql;

whence we obtain by elimination
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(@o—q) B "

a=

RiEs= T
Qor'—q R &
m= R 5

giving, finally, for the maximum hoop-tension,

Ri4r)— 2, R?
%=%+m=%<i£1ﬁ% e

The mean hoop-tension is

—a R
v alin B o0 g

which is exceeded by the maximum in the proportion

@R t+r)—2q B €
e | e SRR )

a proportion which tends towards equality, as R and r become
more nearly equal.

A transposition of equation 6 gives the following value of the
ratio of the external to the internal radius, required in order that
po may be = f; the bursting, proof, or working tension, as the case

may be :— )
i {ff%ﬁ%i} ...... R 2 ©.)

In most cases which: occur in practice, the external fluid pressure
¢, is so small compared with the internal, that it may be neglected.
One important consequence of equation 9 is, that if the nternal
pressure q, s equal to or greater than the sum f+ 2 q, of the co-
efficient of strength and twice the external pressure, no thickness, how
great soever, will enable the cylinder to resist the pressure.
The following is a geometrical representation of the

foregoing solution. In fig. 119, let O represent the 4

centre of the cylinder; O 7 its internal, and O R its

external radius. To represent the value of » =%,

draw two ordinates 7 A, R B, at right angles to the ¢ o

direction of those radii, such that 0—s 3
rA:RB::R*:7% =R

Then A and B will be points in a hyperbola of the .Fig- 119.
second order, A B, which has the property that
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arear ABR =rxrA — RxRB;

so that it represents case 2.
Draw CD [| O r R, cutting off from the ordinates the parts C A,
D B, which bear to each other the proportions

CA:DB::g: ¢

Then 7 C = RD will represent o, the solution of <ase 1. Draw

EF || O r R at the same distance » i = » C on the opposite side.
Then if any ordinate be drawn across the two straight lines E ¥
and C D, and the curve A B, at a given distance 7/ from O, the
segment of that ordinate between C D and A B will represent the
radial pressure ¢, and the entire ordinate from E F to A B will
represent the hoop-tension p, at that distance from O; and in par-
ticular E A will represent the maximum hoop-tension p,

The formule of this Article are the same with those given by
M. Lamé in his T7raité de T Elasticité; but they are arrived at in a
different manner.

274. Cylinder of Strained Rings.—To obviate, in whole or in
part, the unequal distribution of the hoop-tension in thick hollow
cylinders for withstanding great pressures, it has been proposed to
construct such cylinders of concentric hoops or rings built together,
the outer hoops being * shrunk” on to the inner hoops, in such a
manner, that before any internal pressure is applied, the hoops
within a certain distance of the centre may be in a state of circum-
ferential compression, and those beyond that distance in a state of
circumferential tension. If the stress thus produced by the mutual
action of the concentric hoops could be adjusted with such accuracy,
as to be at each point exactly equal and opposite to the difference
between the actual hoop tension at the same point due to the
internal pressure, as given by equations 4, 5, and 6, of Article 273,
and the mean hoop-tension as given by equation 7, then upon -
applying the proper internal pressure, there would result simply an
uniform tension equal to the mean, and the formule of Article 271
would become apphcable to thick as well as to thin cylinders.
Even although it may be impracticable to adjust the previous stress
with the accuracy above described, any approach to its proper
distribution must increase the strength of the cylinder. This
method of construction has been carried into effect in Captain
Blakely’s gun, Mr. Mallet’s mortar, and some other pieces of artillery.

The only equation which the stress of the concentric hoops will
of itself fulfil is

f # pdr=0,
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275. Thick Hollow Sphere.—Let fig. 118 now represent a diame-
tral section of a hollow sphere, the fluid pressures within and
without being g, and ¢,, as before. The pressure to be resisted at
the section is ‘

7 (0r'—a R);

_and if the section of the metal be conceived to be divided into an
indefinite number of concentric rings, the breadth of one of these
rings being d 7, its radius ¢/, and the tension at it p, it appears that
the total resistance of the section will be

2rf prdr;

and hence the equation to be fulfilled, for all values of ¢, ¢;, 7, and
R, is

From symmetry it appears, that the axes of stress at any particle
must be, one in the direction of a radius, with the pressure ¢ along
it, and the other two in any two directions perpendicular to the
first and to each other, with equal tensions p along them. Two
partial solutions are obtained in the following manner :—

Let 2p—q_m
o s e L)

+ e

bTyqg

=mn;

.

so that
p=ntm; ¢g=2n—m

CasE 1. n=0, p=— g=1m; being the case of a fluid tension,
equal in all directions. In this case, equation 1 is solved by making
p=—g=m=constant, ,....cce ceereinao(2.)

which reduces both sides of that equation to

m (B — )

Case 2. m =0, p=3 L _p; ; being the case of -a. pan' of circumfer-

ential tensions, each equal to half of the radial pressure. In this
case, equation 1 is solved by making

q 4 s
p=g =n=g5; S0 )
which reduces both sides of that equation to

1% U
2“(71%
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CASE 3. General solution.

2a
g=2n-——m= ;:,—3-—777:, ]
ik ath

p=n+m=r—o:3+m, J
The constants @ and m, deduced from the equations
2a 2a
qo=?——m; q1=ﬁ-——m,

are found by elimination to have the following values :—

( %-q,) RB 7.3
(1 A — T 4 S S AN
2 (R*—19) J
ger*—gq, B [T Ceeesianeranae (4.)
i1 RS — o8 J
giving finally, for the maximum tension,
O LR A2r)—3q R
pO'——P'{-m— 2(R3__,ra) ...-....(6.)

A transformation of this equation gives the following value of
ratio of the external to the internal radius of the sphere, required
in order that p, may be = f, the bursting, proof, or working ten-
sion, as the case may be :—

RT S 2 (f +q0)
;:: {m}................-.-(7.)

This equation shows, that if
go=or = 2+ 3¢,
no thickness will be sufficient to enable the sphere to withstand
the pressure.

The formul® of this Article agree with those given by M. Lamé,
though arrived at by a different process.

276. Boiler Stays.—The sides of locomotive fire-boxes, the ends
of cylindrical boilers, and the sides of boilers” of irregular figures
like those of marine steam engines, are often made of flat plates,

r-=-, Which are fitted to resist the pressure from within

© 9 o:od by being connected together across the water-space
o o o oOr steam-space between them by tie-bars, called
stays when long, bolts when short. For example,
fig. 120 represents part of the flat side of a loco-
o o o o wmotive fire-box, and shows the arrangement of the

Fig. 120. bolts by which it is tied to the flat plate at the
other side of the water-space.
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Each of these bolts or stays sustains the pressure of the steam
against a certain area of the plate to which it is attached. Thus,
in fig. 120, the bolt & resists the pressure of the steam on the square
area which surrounds it, and whose side is equal to the distance
from centre to centre of the bolts.

Let @ be the sectional area of a stay; A, that of the portion of
flat plate which it holds; ¢, the bursting, proof, or working pres-
sure, and fthe ultimate, proof, or working tension of the material
of the stay. Then

f a=gq A.

The proper factor of safety is eight, as for other parts of boilers,
Experience has shown, that the plate, if its material is as strong as
that of the stay, should have its thickness equal to kalf the dia-
meter of the stay. If the plate be of a weaker material than the
stay, its thickness should be proportionally increased.

The flat ends of cylindrical boilers are sometimes stayed to the
cylindrical sides by means of triangular plates of iron called  gus-
sets.”  These plates are placed in planes radiating from the axis of
the boiler, and have one edge fixed to the flat end, and the other
to the cylindrical body. Xach gusset sustains the pressure of the
steam against a secfor of the flat circular end. Considering that
the resultant tension of a gusset must be concentrated near one
edge, it appears advisable that its sectional area should be three or
four times that of a stay-bar suited for sustaining the pressure on
the same area.

The best experimental data respecting the strength of boilers are
due to the researches of Mr. Fairbairn, especially those recorded in
his work called Usgful Information for Engineers.

277. Suspension Rod of Uniform Strength—In ﬁg. 121, let w
be a weight hung from the lower end of a vertical rod
B C, whose weight per unit of volume is w, and let it be
required to find how the transverse section S of the rod
must vary with the height « above B, in order that the
tension may be everywhere of equal intensity /-

The total load at any point is, W from the weight hung

at B, w / :S dx from the weight of the rod for a height x
above B; and this must be equal to the pull /S. Hence

Wtw [(8do=FS; omrrerrrrs (1)

which being solved, gives for the cross section of the rod,
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and for its weight, for a height 2 above B,

PR W W (o7 e ot S0, 3)

The most useful application of this is to the determination of the
dimensions of the pump-rods of deep mines. They are not made
with the section varying continuously, according to the formula 2,
but in a series of divisions, each of uniform scantling; neverthe-
less that formula will serve to show approximately the law which
the dimensions of those divisions should follow. |

SectioN 4.—On Resistance to Shearing.

9278. Condition of Uniform Entensity.— L he present section refers
to those cases only in which the shearing stress on a body is uni-
form in direction and in intensity. The effects of shearing stress
varying in intensity will be considered under the head of Resist-
ance to Bending, which isin general accompanied by such a stress ;
and the effects of shearing stress varying in direction as well as in
intensity under the head of Resistance to Torsion.

It has been shown in Article 103 that shearing stresses can only
exist in pairs, every shearing stress on a given plane being neces-
sarily accompanied by a shearing stress of equal intensity on
another plane. In Article 112, Problem IL, it is shown that for
any combination of stress parallel to a given plane, the planes rela-
tively to which the shearing stress is greatest are at right angles to
each other, and make angles of 45° with the axes of principal stress,

‘When equal forces are applied to the opposite sides of a wedge,
bolt, rivet, or other body, in such 2 manner as to tend to shear it
into two parts at a particular transverse plane of section, then at
any given point in that transverse sectional plane the shearing
stress is of equal intensity relatively to that plane itself, and t6 2
longitudinal plane traversing the same point, perpendicular to the
direction of the externally-applied shearing forces. If the wedge,
bolt, or rivet is loose in its hole or socket at and near the plane of
shearing, there can be no shearing stress on those free parts of its
external surface which are at right angles to-the direction of the
external shearing force ; and hence the intensity of the shearing
stress at the plane of shearing, how great soever it may be in the
internal parts of the body, must diminish to nothing at certain
parts of the external edges of that sectional plane, and must be
unequally distributed ; so that the most intense shearing stress
must be greater than the intensity of a stress of equal amount uni-
formly distributed. .

To insure uniform distribution of the stress, it is necessary that
the rivet or other fastening should fit so tight in its hole or socket,
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that the friction at its surface may be at least of equal intensity to
the shearing stress. When this condition is fulfilled, the intensity

of that stress is represented simply bylé1 ; T being the shearing

force, and S the sectional area which resists it.

279. A Table of the Resistance of Materials to Shearing and Dis-
tortion, in lbs. avoirdupois per square inch, is given at the end of
the volume. It is of small extent, because of the small number of
substances whose resistances to shearing and distortion have
been ascertained by satisfactory experiments. The resistance of
timber to shearing is in each case that which acts between conti-
guous layers of fibres. ;

280. Economy of Material in Bolts and Rivets.—There are many
structures, such as boilers, wrought iron bridges, and frames of tim-
ber or iron, in which the principal pieces, such as plates, links, or bars,
being themselves subjected to a direct pull, are connected with each
other at their joints by fastenings, such as rivets, bolts, pins, or
keys, which are under the action of a shearing force. It isin every
such case important, that the pieces connected and their fastenings
should be of equal strength ; for if the fastenings be the weaker,
either the whole structure is insufficiently strong, or the material
which gives the additional strength to the plates or bars is wasted :
and if the fastenings be the stronger, the plates and bars are weak-
ened more than is necessary by the holes or sockets ; and as before,
either the structure is too weak, or material is wasted.

Let f denote the resistance per square inch of the material of
the principal pieces to tearing ; S, the total sectional area, whether
of one piece or of two or more parallel pieces, which must be torn
asunder in order that the structure may be destroyed; £, the
resistance per square inch of the material of the fastenings to shear-
ing ; 8/, the total sectional area of fastenings at one joint, which
must be sheared across in order that the structure may be destroyed ;
then, if the conditions of uniform distribution of stress are fulfilled,
the principal pieces and their fastenings ought to be so propor-
tioned, that

] PR B Lff
fS___f’S,orS_f, ......... e (1.)

For wrought iron rivetted plates, taking the value of /* from the

table (as determined by the experiments of Mr. Doyne), we have

7= 1 nearly, and .=. 8'=S8..ccccoeeniniiennn. (2.)
For wrought iron bars connected by bolts or rivets, we have

f‘f,,=§~nearly, and .-. S':g P AR A
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Example 1. Plate-joint overlapped, single-rivetted. Fig. 122. A,
front view ; B, side view. Let
<5 A % ¢t = thickness of plate.
d = diameter of rivet.
4 B ¢ = distance from centre to centre of rivets.
Fig. 122. Then

Sectional area of one rivet
Sectional area of plate between two holes
0 7854 d*
T (o—a) A e 4.)
so that, d and ¢ being given, and ¢ required, we have
07854 d*
Lt T SR e (.

d in practice is usually from 2¢ to 13¢; and the overlap from ¢

SI
l=§=

to lro' C. i35
© o O o©o
SENORHG Example I1. Plate-joint overlapped double-

= B pivetted. Fig. 123.
Fig. 128.
Sy g Sectional area of two rivets
S Sectional area of plate between two holes in same line
15708 d* .
= = e SO i 4 Sl AT 6.
i (o—a) ’ (8
1-5708 a2
LALPI - e @)

¢

Overlap in practice = 1% ¢ to 13 c.
Example I11. Plate Butt-joint, with a pair

of covering plates, single-rivetted. Fig. 124
TS S Here each rivet can give way only by being
g = sheared across in two places at once; there-
= ol fore
. S
Fig. 124. l=-g
"y 2 x Sectional area of rivet __ 1-5708 @* ®)
T Sectional area of plate between two holes — ¢ (e—d)’ "
. 3
IR, (9)

t
Length of each covering plate = 2 x overlap = from 2¢ to 2§ c
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Example 1V. Plate Butt-joint, with a pair of covering plates, double-
rivetted. Fig. 125,

1 SEg 4 x Sectional area of rivet
=S T Sectional area of plate between two holes in one row
31416 d*
= m sesecccescecee (10.) 4 Qo
i s e £ B0
o =SBy o) iy e OTTR e S
¢ o] =]
Length of each covering-plate = 2 x overlap A B
= from 3} to 3% c. Fig. 125.

Note—The length of a rivet, before being clenched, measuring
from the head, is about 43 ¢ for overlapped-joints, and 5% ¢ for
butt-joints with covering-plates.

Example V. Suspension bridge chain-joint. The chain of a sus-
pension bridge consists of long and short links alternately. Each
long link consists of one or more, say of n, parallel flat bars, of a
shape resembling fig. 64, Article 138, placed side by side; each bar
has a round eye at each end. Each short link consists of » + 1
parallel flat bars, with round eyes at their ends, which are placed
between and outside of the ends of the parallel bars of the long
links; so that the end of each long bar is between the ends of a
pair of short bars. The eyes of the long and short bars at each
joint form one continuous cylindrical hole or socket, into which a
bolt or pin is fitted, to connect the links together. To break the
chain at a joint, by the giving way of the bolt, that bolt must be
sheared across at 2 n places at once. Hence, let S denote the total
sectional area of the bars in a link, and d the diameter of the bolt;
then §' = 2 n x 07854 d® = 1'5708 »n d?; and because ' should

be = g_- S, we have
S
= Baapeiz o) o Ll b ok Rl e 12.
= \/1-309 n (e

281. Fastenings of Timber Ties—In timber framing, a tie may
be connected with the adjoining pieces of the frame either by having
their ends abutting against notches cut in the tie (as shown at A, A,
fig. 81, Article 161), or by means of bolts or pins. In either case,
the tie may yield to the stress in two ways,—by being torn asunder
at the place where its transverse section is least (that is, where it is
notched or pierced, as the case may be),—or by having the part
beyond the notch, or beyond the bolt-hole, sheared off or sheared
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out, as the case may be. In order that the material may be econo-
mically used, equation 1 of Article 280 should be fulfilled, viz. :—

A A or%l:%, ...................... (1)

This condition serves to determine the distance of the notch, or of
the bolt-hole, or of the nearest bolt-hole where there are more than
one, from the end of the tie, in the following manner :— |

Let & be the effective depth of the tie, left after deducting the depth
of the notch, or the diameters of bolt-holes, and & the distance of
the notch, or of the nearest bolt-hole, from the end of the tie; then

for a notch 3
S d
§=7; =77b;...... .............. (2.)
and for bolt-holes, if # be their numbef,
Seeend . F
'§=T-.d— m‘;k ------------------ (3-)

In determining the number n, it is to be observed, that if two or
more bolts pierce the swme layer of fibres, the resistance to the shearing
out of the part of that layer between the end of the tie and the most
distant of the bolts is nearly the same as if that bolt existed alone;
so that the most distant only of such a set of bolts is to be reckoned in
using equation 3. In general, the piercing of the same layer of
fibres by more than one bolt is unfavourable to economy.

SectioN 5.—O0n Resistance to Direct Compression and Crushing.

282. Resistance to Compression, when the limit of proof stress is
not exceeded, is sensibly equal to the resistance to extension, and is
expressed by the same “modulus of elasticity,” already mentioned
and explained in Axrticles 257, 265, 266, and 268. When that
limit is exceeded, the irregular alterations undergone by the figure
of the substance render the precise determination of the resistance
to compression difficult, if not impossible.

283. Modes of Crunshing.—Splitting, Shearing, Bulging, Buckling,
Cross-breaking.—Crushing, or breaking by compression, is not a
simple phenomenon like tearing asunder, but is more or less complex
and varied, according to the texture of the substance. The modes
in which it takes place may be classed as follows :—

L Crushing by splitting (fig. 126) into a number of prismatic
fragments, separated by smooth surfaces whose general direction is
nearly parallel to the direction of the crushing force, is characteristic
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of hard homogeneous substances of a glassy texture, such as vitrified
bricks,

Fig. 126. Fig. 127. Fig. 128. Fig. 129.

II. Crushing by shearing or sliding of portions of the block along
oblique surfaces of separation is characteristic of substances of a
granular texture, like cast iron, and most kinds of stone and brick.
Sometimes the sliding takes place at a single plane surface, like
A B in fig. 127; sometimes two cones or pyramids are formed, like
¢, ¢, in fig. 128, which are forced towards each other, and split or
drive outwards a number of wedges surrounding them, like w, w, in
the same figure. Sometimes the block splits into four wedges, as
in fig. 129.

The surfaces of shearing make an angle with the direction of the
crushing force, which Mr. Hodgkinson (who first fully investigated
those phenomena) found to have values depending on the kind and
quality of material. For different qualities of cast iron, for example,
that angle ranges from 42° to 32°. The greatest intensity of shearing
stress is on a plane making an angle of 45° with the direction of the
crushing force ; and the deviation of the plane of shearing from that
angle shows that the resistance to shearing is not purely a cohesive
force, independent of the normal pressure at the plane of shearing,
but consists partly of a force analogous to friction, increasing with
the intensity of the normal pressure.

Mr. Hodgkinson considers that in order to determine the true
resistance of substances to direct crushing, experiments should be
made on blocks in which the proportion of length to diameter is not
less than that of 3 to 2, in order that the material may be free to
divide itself by shearing. When a block which is shorter in pro-
portion to its diameter is crushed, the friction of the flat surfaces
between which it is erushed has a perceptible effect in Aolding 1ts
parts together, so as to resist their separation by shearing; and thus
the apparent strength of the substance is increased beyond its real
strength.

In all substances which are crushed by splitting and by shearing,
the resistance to crushing considerably exceeds the tenacity, as an
examination of the tables will show. The resistance of cast iron
to crushing, for example, was found by Mr. Hodgkinson to be
somewhat more than siz times its tenacity.
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II1. Crushing by bulging, or lateral swelling and spreading of
the block which is crushed, is characteristic of ductile and tough
materials, such as wrought iron. Owing to the gradual manmner
in which materials of this nature give way to a crushing force, it
is difficult to determine their resistance to that force exactly; that
resistance is in general less, and sometimes considerably less, than
the tenacity. In wrought iron, the resistance to the direct crush-
ing of short blocks, as nearly as it can be ascertained, is from

2, 4 .
3 to 5 of the tenacity.

IV. Crushing by buckling or crippling is characteristic of fibrous
substances, under the action of a thrust along the fibres. It consists
‘in a lateral bending and wrinkling of the fibres, sometimes accom-
panied by a splitting of them asunder. It takes place in timber,
in plates of wrought iron, and in bars longer than those which give
way by bulging. The resistance of fibrous substances to crushing
is in general considerably less than their tenacity, especially where
the lateral adhesion of the fibres to each other is weak compared
with their tenacity. The resistance of most kinds of timber to

2
crushing, when dry, is from -;— to 3 of the tenacity. Moisture in the

timber weakens the lateral adhesion of the fibres, and reduces the
resistance to crushing to about one-half of its amount in the dry
state.

V. Crushing by cross-breaking is the mode of fracture of columns
and struts in which the length greatly exceeds the diameter. Under
the breaking load, they yield sideways, and are broken across like
beams under a transverse load. This mode of crushing will be con-
sidered after the subject of resistance to bending.

284. A Table of the Resistance of Matcrials to Crushing by a
Direct Thrust, in pounds avoirdupois per square inch, is given at
the end of the volume. So far as that table relates to the strength
of brick and stone, reference has already been made to it in Article
235. It is condensed from the experimental data given by various
authorities, especially by Tredgold, Mr. Fairbairn, Mr. Hodgkinson,
and Captain Fowke.

285. Unequal Distribution of the Pressure ON 3 pillar arises from
the line of action of the resultant of the load not coinciding with
the axis of figure of the pillar, so that the centre of pressure of a
cross section of the pillar does not coincide with its centre of figure,
but deviates from 1t in a certain direction by a certain distance,
which may be denoted by 7,

In this case the strength of the pillar is diminished in the same
ratio in which the mean intensity of the pressure is less than the
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maximum intensity; that is to say, in a ratio which may be
denoted by
mean intensity _ p,
maximum intensity  p,"

That ratio may be found with a precision sufficient for practical
purposes, by considering the pressure at any cross section of the
pillar as an uniformly varying stress, as defined in Article 94.
Consequently the following is the process to be pursued :—

Find, by the methods of Article 95, the principal axes and
moments of inertia of the cross section of the pillar ; and thence
determine the neutral axis conjugate to the direction of the devia-
tion 7. Let 4 be the angle made by that axis with the direction of
the deviation 7, ; then the perpendicular distance of the centre of
pressure from the neutral axis will be

Zg=Tosin b -

Find the moment of inertia of the cross section relatively to the
neutral axis, and denote it by I ; then from equations 1, 2, and 4
of Article 94, it appears that if @, be the greatest perpendicular
distance of the edge of the cross section from the neutral axis in the
same direction with a,, the greatest intensity of pressure will be

n=p+tax;

in which a=w°—1:£=mopo'%;J )
P being the total pressure, and S the area of the section of the
pillar. Consequently the ratio required is

LT .
P 4% xS
I
Values of 8, for certain symmetrical figures, and of I for the

principal axes of these figures, have already been given in the table

of Article 205, from which are computed the following values of the
factor a_cig in the denominator of the preceding formula :—

......... M| |

Ficure or Cross SECTION. -”_0_1]_:_.
L Rectangle, 4 5; b, neutral axis, 6
G o
ITI. Ellipse: neutral axis, b ; other axis, 4 ; 8
Rl L P s
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V. Hollow rectangle : outside d1mens10ns, h,b; } 6% (h0—RY)

inside d1mens10ns, K, b ; neutral axis, b,... | “ 35 — A0 °
' 6h
VI. Hollow square, A* — A%......comvvescnns St crsere [yt
5 : : g ey . 84
VIL Circular ring : diameter, outside, 4 ; inside, 7, ey ot

286. Limitations of the Preceding Formule,.— The formule of
the preceding Axrticle of this section have reference to direct crush-
ing only, and are therefore limited in their application to those
cases in which the pillars, blocks, or struts along which the pres-
sure acts are not so long in proportion to their diameter as to have
a sensible tendency to be crushed by bending. Those cases com-
prehend—

Stone and brick pillars, and blocks of ordinary proportions ;

Pillars and struts of cast iron, in which the length is not more
than five times the diameter, approximately ;

Pillars and struts of wrought iron, in which the length is not
more than ten times the diameter, approximately ;

Pillars and struts of dry timber, in which the length is not more
than about twenty times the diameter.

287. Crushing and Collapsing of Tubes— When a hollow cylin-
der is exposed to a pressure from without, there is a circumferen-
tial thrust round it, whose greatest intensity takes place at the
inner surface of the cylinder, and may be computed by suitably
modifying the formule of Article 273. That is to say, let R and
r denote respectively the outer and inner radii of the cylinder,
¢: the intensity of the radial pressure from without, ¢, that of the
radial pressure from within, and let p, now denote not a tension,
but a fhrust, viz., the maximum circumferential thrust which acts
round the inner surface of the cylinder. Then reversing the signs
of the second side. of equation 6 of Article 273, we obtain

_2q R —q,®R+1)

V2 o % Rz_ g o SCERERCELR S (1)
‘When the pressure from within is null or insensible, this becomes
i NR=
TS o T 2.

and supposing the material to give way by direct crushing, the
proper ratio of the internal to the external radius is given by
the equation
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- \/1_271‘(3)

¢, being the working, proof, or crushing external pressure, and f'
the working, proof, or crushing thrust of the material, as the case
may be.

This formula gives correct results for ¢hick hollow cylinders. But
where the thickness is small (as in the internal flues of boilers), the
cylinder gives way, not by direct crushing, but by COLLAPSING, which,
as it consists in an alteration of figure, is analogous to crushing by
bending. According to Mr. Fairbairn’s experiments, published in
the Philosophical Transactions for 1858, the intensity of the pressure
from without which makes a thin wrought iron tube collapse is in-
versely as the length, inversely as the radius, and directly as the
power of the thickness whose index ig 2:19. In most calculations
for practical purposes, the square of the thickness may be used in-
stead of that power. For plate iron flues, let 7 be the length, & the
diameter, ¢ the thickness, all in the same units of measure, and let
g be the collapsing pressure in lbs. on the square inch ; then

g= 9,672,000%near1y ..................... @)

Mzr. Fairbairn strengthens long flues by means of rings of T-iron ;
in which case / is the distance between two adjacent rings.

SecrioN 6.—O0n Resistance to Bending and Cross-Breaking.

288. Shearing Force and Bending NMoment in General—It has
already been shown, in Articles 141 and 142, how to determine the
proportions between the resultant of the gross load of a beam and
the two forces which support it,—whether those three forces are
perpendicular or oblique to the beam,—and whether they are par-
allel or inclined to each other. In the present section those cases
alone will be considered in which the loading and supporting forces
are perpendicular to the beam, and parallel to each other, and in one
plane ; for such forces alone tend simply to bend the beam, and if
sufficiently great, to break it across.

In Article 161 it has been shown how to determine the resist-
ances exerted by the pieces of a frame which are cut by an ideal
sectional plane, in terms of the forces and couples which act on one
of the portions into which that plane of section divides the frame ;
and in Articles 162, 163, 164, and 165, that method of sections, as
it s called, has been applied to the determination of the stresses
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acting along the bars of half-lattice or Warren girders and of lattice
irders.
: The method followed in determining the effect of a transverse
load on a continuous beam is similar ; except that the resistance at
the plane section, which is to be determined, does not consist of a
finite number of forces acting along the axes of certain bars, but of
a distributed stress, acting with various intensities, and, it may be,
in various directions, at different points of the section of the beam.

In what follows, the load of the beam will be conceived to con-
sist of weights acting vertically downwards, and the supporting
forces will also be conceived to be vertical. The longitudinal axis
of the beam being perpendicular to the applied forces, will accord-
ingly be horizontal. The conclusions arrived at will be applicable
to cases in which the axis of the beam and the direction of the
applied forces are inclined, so long as they are perpendicular to
each other.

Let any point in the longitudinal axis of the beam be taken as
the origin of co-ordinates ; and at a given horizontal distance
from that origin, conceive a vertical section perpendicular to the
longitudinal axis to divide the beam into two parts. To fix the
ideas, let horizontal distances to the { r:fl.ft} be considered as
{ggg&;} ; let vertical distances and forces in an { d(l)lvl&)r:?vl;i d

direction, be considered as { Eggﬁ;{i} ; and let the moments of

ositive . left-handed
couples be { II:ega e } according as they are { right-handed } .

Let F denote the resultant of all the vertical forces, whether
loading or supporting, which act on the part of the beam to the
left of the vertical plane of section, and let &’ be the horizontal
distance of the line of action of that resultant from the origin.

If the beam is strong enough to sustain the forces applied to it,
there will be a shearing stress whose amount is equal to F, distri-
buted (in what manner will afterwards apjear) over the given
vertical section ; and that shearing stress, or vertical resistance,
will constitute, along with the applied force F, a couple whose
moment is

M=F(@—)rerrrrerernrensen(ll)

This is called the bending moment or moment of flexure of the beam
at the vertical section in question ; and it is resisted by the normal
stress at that section, in a manner to be explained in the sequel.

+ TIf the bending moment is { r{):‘;;ili‘\rrz } , it tends to make the
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originally straight longitudinal axis of the beam become concave
upwards
{ downwards } :

The determination of the magnitude and position of the resultant
F consists simply in finding the resultant of a number of parallel
forces in one plane, as explained in Article 44, the supporting
forces having first been found by the principles of Articles 39 and
141. These processes are expressed by general formule as fol-
lows :—

Case 1. The load applied at detached points—Let W denote one
of the weights of which the load consists ; " its horizontal distance
from the origin ; then )

—3°W is the total load, made negative as acting downwards ;
and

— 3 - z" W is its moment relatively to the origin.

Let @, and @, be the horizontal distance of the points of support
from the origin, and let P;, P,, be the supporting forces ; then to
determine those forces we have the conditions of equilibrium

P+P,—-2W=0;
2P+ 2P, —-22"W=0;
from which follow the equations
2,3 W — 20" W

P, =
b @)
AR e
i

& — T3

To show how the shearing force and moment of flexure at any
cross section are found, let 'W be applied to the left of the origin,
and let the plane of section, whose distance from the origin is , lie
between P, and P;; then the force acting on the beam to the left
of z will be

F=P —-:32W;
and the moment of flexure ' e sRel(35)
M=@-2)P, -2 @"-2) W;

the symbol 2+ denoting in each case, that the summation extends
to that part of the beam only which lies between the given plane
of vertical section and the point of support (if any) to the left of
that plane.

CasE 2. The load continuously distributed.—On any indefinitely
ghort division of the beam whose length is d z, and distance from
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the origin 2", let the intensity of the load per unit of length be .
Then in the equations 2 and 3, given above, it is only necessary to

substitute w d  for W, and the sign f for the sign =

289. In Beams Fixed at One End Only, and loaded on the pro-
jecting portion, as in fig. 67 of Article 141, and figs. 133 to 136 of
& subsequent Article, the shearing force and moment of flexure can
be determined for any vertical section of the projecting part of
the beam, without considering the supporting pressures.

Let the plane at which the beam is fixed be taken ag the origin ;
let ¢ be the length of the projecting part of the beam. The results
in the cases most important in practice are given in the following

table :—

SHEARING FORCE BENDING MOMENT
F M
EXAMPLE,
Anywhere. Greatest. Anywhere. Greatest.
F F, M M,
I. Loaded at extreme = i g
end with W,...... o o Smpd be i
II. Uniform load of in- w(c—z)? wc?
tensity @y eeveneseres i) e AT T
III. Uniform load of in- _Wi(c__m)_
tensity w, and ad- |__ <o, - 2 we?
ditional load at |V (D) —W'—we|  w(c—a)’ ~Wo— 2
extreme end W/, 2

290. In Beams Supported at Both Ends, and loaded on the inter-
mediate portion, like those represented in fig. 66 of Article 141,
and in figs. 138 and 140 of a subsequent Article, it is most conve-
nient to take the muddle of the beam as the origin of co-ordinates.
Then let ¢ denote the kalf-span of the beam, so that 2¢ is the span,
or distance between the points of support ; the positions of those
points will be expressed by

Ty=0C;&y= —C; B—% = 2Cjursrecerenreses(l.)

which substitutions convert equation 2 of Axticle 288 into the
following :—

W | 3 W
ST T g
P. = W ='W
ETR 2 T T
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If the load is symmetrically distributed,

"W =0,
and
PoBym 2V ot W2 )
The equations 3 of Article 288 also become
F=h-3W; }mmmmm@)
M=(c-2)P =3 ("-2)W;

and for a symmetrically distributed load,
F=35"W; M= (—2)3; W-3"(2"—2) W....(3 A.)

The results in the cases most important in practice are given in
the following table :—

SHEARING FORCE BENDING MOMENT
F M
EXAMPLE.
Anywhere. | Greatest. Anywhere. Greatest.
¥ Fy or Fy M M, or M",
IV. Single load, W, in
middle—
Left of Oyuvvens W_V w
2 2 (c—x)W cW_M
T g TG o
Right of O,..... _"7" __vg 2 2

V. Single load, W, ap-

plied at o'— W (e
+2NW (¢ + 2" (c—ax)W)|
Left of 2y couen . G +2c’) { 20,) ( ’)2(0 ) (E—W
. —(c—a"YW|—(c—2")W|(c—a W -
nght of 0!',--... (c % ) ( %% ’) (C'-— ,)2(:+Z) = 1\1// at 1//
VI. Uniform load of in- G wc?
tensity, 10, veeeeieee e o Tz) o% -

291. Moments of Flexure in Terms of Load and Length.—Eor
practical purposes, it is often convenient to express the greatest
bending moment of a beam in terms of the fotal load, W, and un-
supported length, I, of a beam, by means of a formula of this kind,

M,=mWi...... T R Si3e00

where m is a numerical factor. For beams fixed at one end, l=c¢;
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for beams supported at both ends, /= 2¢= the span ; for an uniform
load, W = w/. Hence, comparing equation 1 with Examples L,
IL, IV., V., and VI. of Articles 289 and 290, we find the follow-
ing values of the factor m :—

m
I. Beam fixed at one end, loaded at the other,...... il
] 1
II. Beam fixed at one end, loaded uniformly,........ 5
IV. Beam supported at both ends, loaded in the} 1
51130 16 1 LT e PP T TT TR TS i
V. Beam supported at both ends, loaded at 2"] 1 4"
from the middle,...ccceeuimeciienrecaeiiciones A\
V1. Beam supported at both ends, uniformly loaded, é

292. Uniform Moment of Flexure.—If a pair of equal and oppo-
site couples, acting in the same longitudinal plane, be applied at
or near the ends of a beam, the part of the beam intermediate
between the portions to which the couples are applied is under the
influence of an uniform moment of flexure, and of no shearing force.

An illustration of this is the condition of that part of the axle
of a railway carriage which lies between the pair of wheels, if the
bearings are outside of the wheels, or between the bearings if the
bearings are inside of the wheels. Let W be the weight which

rests on one pair of wheels ; then 5 i the weight resting on each

wheel, and on each bearing. Let  be the distance from the centre
of each wheel to the middle of the adjoining bearing. Then a pair
of equal and opposite couples, each of the moment,

W,
M= al,
are applied to the two ends of the axle; and this is the uniform
moment of flexure of the portion of the axle lying between the
portions acted upon by the forces which constitute the couples ;
and the shearing force on the same portion is null.

293. Resistance of Flexure means, the moment of the resistance
which a beam opposes to being bent or broken across; and if the
beam is strong enough, that moment, at each cross section of the
beam, is equal and opposite to the moment of the bending forces
at the same cross section.
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Let fig. 130 represent a side view of part of a beam which is of
uniform cross section, and which is sub-
jected to an uniform moment of flexure;
and let fig. 130* represent the cross sec-
tion of the same beam. It is self-evident
that the curvature produced in the part
of the beam in question must be uniform ; y
that is to say, that any longitudinal line in Fig. 130.
the beam, such as its upper edge A A’, or its lower
edge BB' which inthe free condition of the beam
is straight, must be bent into an ‘arc of a circle ; and
that any surface originally plane and longitudinal,
and perpendicular to the plane in which the curva-
ture takes place, such as the upper surface A A’ or
the lower surface BB’, must be bent into a cylin-
drical form ; and the cylindrical surfaces so produced
will have a common axis. Any two transverse sectional planes, such
as A B and A’ B', which in the free state of the beam are parallel to
each other, will have in the curved state of the beam, pos1t10ns
radiating from the axis of curvature.

Therefore, if the portion of the beam between the transverse
planes A B, A B', be conceived to be divided into layers, such as
CC', originally plane, parallel, and of equal length, these layers,
in the bent condition of the beam, must have lengths proportional
to their distances from the axis of curvature. The layers near the
concave side of the beam, A A’, are shortened by the bending, and
the layers near the convex side, B B', lengthened ; and there must
be some intermediate layer which is neither lengthened nor short-
cned, but preserves its free length. Let O O' be the surface origi-
nally plane, now curved, at which that layer is situated ; this is
called the neutral surfuce of the beam, and the line O O, fig. 130%,
in which it intersects a given cross section, is called the neutral
axts of that section.

The direct strains, or proportionate elongations and compressions,
of the layers of the beam are proportional to their distances below
and above the neutral surface; and hence, within the limits of
proof stress, the direct stresses, or tensions and pressures, ab the
different points of the cross section A B, fig. 130%, have intensities
sensibly proportional to their distances from the neutral azis O O.

Therefore the direct stress at each section, such as A B, whose
moment constitutes the resistance to bending, is an uniformly-vary-
ing stress, as defined in Article 91 ; and in order that the longi-
tudinal resultamt of that stress may be null, the neutral axis (as
shown in that Article) must traverse the centre of grawity of the
cross section A B,

Fig. 180*,
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The moment of o bending stress has already been given in Article
92, equations 3 and 4 ; and the methods of determining the inte-
grals I and K, which occur in those equations, have been explained
and illustrated in Article 95.

To apply the equations of those Articles. to the present purpose,
let p be the intensity of the direct stress at a layer of the beam
whose distance from the neutral axis is y : height above the neutral
axis being considered as positive, and depth below it as negative.
Then because a moment of flexure tending to make the beam con-
cave upwards has been treated as positive, it is convenient, in order
to avoid the unnecessary use of negative signs, to consider the con-

stant ratio £ as positive when it is such as to give resistance to an
upward moment of flexure ; that is, when p is a thrust for positive
values of g, and a pull for negative values; consequently, p is to
be considered as { e } according as it is a VR
negative pull.
This being understood, we have, for the moment of the resistance
opposed by the beam to bending,

M=§.,\/(I“_;.K?);............ ....... (1)

and for the angle made ‘by the neutral axis with the direction of
the axes of the bending couples,

& = —arc tan %; ......... B (2)

I and K being found by the methods of Article 95.

In some cases, a more convenient form of equation 2 is that
which gives 4, the angle made by the neutral axis with its conju-
gate axis, in which the plane of the bending forces cuts the plane
of section A B, viz. :—

In almost every case which occurs in practice, the plane of the
bending forces cuts each cross section of the beam in one or other
of ity principal awxes, for which K =0, & =0, =900 ; and then equa-
tion 1 becomes |

_rl
= o=t ot s s (4)

In beams whose transverse sections and moments of flexure are not
uniform, no error appreciable in practice is produced by applying
equation 4 to each cross section, and to the moment of flexure which
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acts upon it, as if the given section and moment belonged to an
uniform beam with an uniform moment of flexure.

294. The Transverse Swength of a beam, ultimate, proof, or Work-
ing, as the case may be, is the load required to break it across, or
to produce the proof stress or the working stress, as the case may

It is found by equating the greatest moment of flexure, ex-
pressed in terms of the load and length, as in Article 291, to the
moment of resistance ab the cross section where that moment of
flexure acts : such moment of resistanee being found from the equa-~
tions of Article 293, by putting for p the ultimate, proof, or
working direct stress “of 'the material, as the case may be, and for
y the distance from the neutral axis to the point in the given cross
section where the limiting stress p is first attained. That point

will be at the ! coRTINy } side of the beam, according as the mate-
i b pressure.
rial gives way most readily to { AR
In fig. 131, A represents a beam of a granular material, like cast
iron, giving way by the crushing
of the concave side, out of which V —_—
a sort of wedge is forced. B re- PR
presents a beam giving way by N e B
the tearing asunder of the con- Fig. 131.
vex side. i
In a beam symmetrical above and below, or otherwise of such a
form that the neutral axis is at the middle of the depth of the
cross section, if A is that depth,
y ==t E 9 -
and the limiting value of p is the resistance to pressure or to ten-
sion, whichever is least.
For other forms of section, let

y = ¥, for the concave side ; and
= y, for the convex side ;
and let the limiting stresses be
p =f, for pressure ; and
= f; for tension ;

then the beam will give way by { ;’z::ih]f;g } according as Z¢ is

Ys
eater RN
{feer) tan T B

This point having been determined, the equation from which the
strength of the beam may be found is ‘
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My=m Wi = ff AR

‘When the breaking load is in question, the co-efficient f' is what
is called the modulus of rupture of the material. It does not always
agrec with the resistance of the same material to direct crushing or
direct tearing, but has a special value, which can be found by
experiments on cross-breaking only. One of the causes of this
phenomenon is probably the fact, already stated in Article 257,
that the resistance of a material to a direct stress is increased by
preventing or diminishing the alteration of its transverse dimen-
sions ; and another cause may be the fact, that the strength of
masses of metal, especially when cast, is greater in the external
layer, or skin, than in the interior of the mass. 'When a bar is
directly torn asunder, the strength indicated is that of the weakest
part of the mass, which is in the centre ; when it is broken across,
the strength indicated is that either of the skin, which is the
strongest part, or of some part near the skin (See the Article 296).

‘When the proof load or working load is in question, the co-effi-
cient fis the modulus of rupture divided by a suitable jfactor of
sajfety, as to which see Article 247.

295. Transverse Strength in Terms of Breadth and Depth.— From
the principles explained in Article 95, it is obvious that the
moments of inertia, I, of similar sections are to each other as the
breadths, and as the cubes of the depths. If, therefore, b be the
breadth, and % the depth, of the rectangle circumscribing the cros
section of a given beam at the point where the moment of flexure
is greatest, we may put

7' being a numerical factor depending on the form of the section.
It is also evident, that for similar figures, the values of y are as
the depths ; so that we may put

7 being another numerical factor depending on the form of section.
If the section is symmetrical above and below, m' = 4. Thus it
appears, that the resistances of flexure of similar cross sections are
as their breadths and as the squares of their depths, and that equation
2 of Article 294, which expresses equality between the greatest
moment of flexure, as stated in terms of the load and length, and
the resistance of the cross section where that moment acts, is equi-
valent to the following :—

My=mWI=nf bk ccvurrerrereerarns(3)
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’

where n = — i3 a numerical factor depending on the form of cross
m

section of the beam, and m is the numerical factor depending on
the mode of distribution of the loading and supporting forces, of
which examples have been given in Article 291.

The following table gives examples of the values of the three
factors, 7, m/, n, for some of the more usual forms of cross section :

L il it
_——a S0 1=
Fory oF Cross Sgcrroxs. | bA# h y b2
I. Rectangle b &, ......... i 1 ¥
(including square) 12 2 6
IT. Ellipse—
Vertical axis &, ...... Lt ~—12 1 3% = l_é_)
Horizontal axis b, ... 6420 9 %
(including circle) = 0-0491 = 00982
IIT. Hollow rectangle, 6 A
—b'¥; also I-formed 713 T
sectiox;, where &' is the 11—2(1 3 bb—}; 3) %— 1 (1 B :)
sum of the breadths of . 6 bl
the lateral hollows,...
IV. Hollow square— 1 4 1 1 I%
] L o Bk 8 _)
O LR ok 12 73 3 6 74
; 1 BUABNMELENI o' k3
M ) =2 Fer M) TN () VP
V. Hollow ellipse,......... 504 (1 7 h3) 5 Z( 2 h3)
. 1 s 1 1 k4
VI Hollow circle, ......... m(1 _74> 3 m(l 5 M)

In using the equation 3 for any of the purposes to which it may
be applied—such as computing the strength of a beam of which
the dimensions and figure are given, or fixing the transverse dimen-
sions of a beam of which the strength, length, and figure are given
—care is to be taken to use the same unit of measure throughout
the calculation; that is to say, when the transverse dimensions, as
is usually the case, are stated in inches, and the co-efficient of
strength fin pounds on the square inch, the length 7 should be
stated in inches also. This caution is necessary on account of that
diversity of units which is characteristic of British measures.

296. A Table of the Resistance of Materials to Breaking Across
is given at the end of the volume. It gives values of the modulus
of rupture, being that for which the co-efficient # stands in Article
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294, equation 2, and in Article 295, equation 3, when m W 7 is the
breaking moment. It will be observed, that this modulus is, for
most materials, intermediate between the tenacity and the resistance
to direct crushing.

297. ©ast Iron Beams.—The values of the modulus of rupture
for cast iron require special remark. It had for some time been
known, that while the direct tenacity of cast iron (as determined by
Mr. Hodgkinson) is on an average 16,500 lbs. per square inch, the
modulus of rupture of rectangular cast iron beams is on an average
about 40,000 lbs. per square inch, or two and a-half times as great.
This was supposed to be accounted for by the assumption, that the
stress on a cross section of a cast iron beam is not an uniformly
varying stress, and that the neutral axis does not traverse the
centre of gravity of the section. But in 1855, Mr. William Henry
Barlow, by experiments of which an account is published in the
Philosophical Transactions for that year, showed,—in the first place,
that the stress is an uniformly varying stress, and that the neutral
axis, in symmetrical sections at all events, traverses the centre of
gravity of the section,—and in the second place, that the modulus
of rupture has various values, ranging from the mere direct tenacity
of the iron up to about two and a-third times that tenacity, accord-
ing to the figure of the cross section of the beam.

The beams on which the experiments of Mr. Barlow, now referred
to, were made, were in some cases of a solid rectangular section,
and in other cases of an open-work rectangular section, consisting of
equal rectangular upper and lower horizontal bars, with alternate
open spaces and vertical connecting bars between. As far as those
experiments went, they were in accordance with the following
empirical formula :—

Bt — it A0

where f is the modulus of rupture of the beam in question; f;, the
direct tenacity of the iron of which it is made ; f', a co-efficient

determined empirically ; and %, the ratio which the depth of solid

metal H in the cross section of the beam bears to the fotal depth of
section h. The following were the values of the constants for the
cast iron experimented on :—
Direct tenacity, J":, = 18,750 lbs. per square inch ;
J' = 23,000 Ibs. per square inch; }
= 12 f; nearly.

Mr. Barlow has since made further experiments on cast iron
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beams of various forms of section, and also experiments on wrought
iron beams, showing, though not so conclusively, variations in the
modulus of rupture of wrought iron analogous to those which have
been proved to exist in the case of cast iron; but as those further
experiments, though communicated to the Royal Society, have not
yet been published in detail, it would be premature to make remarks
on them here.

Mr. Barlow has proposed a theory of those phenomena, to the
effect that the curvature of the layers of the beam produces a
peculiar kind of resistance to bending, distinct from that which
arises from the direct elasticity; and he adduces in support of that
theory the fact that the additional strength represented by the
second term of equation 1 increases with the ultimate curvature of
the beam ; that is, its curvature just before breaking. Another
conceivable theory has already been mentioned in Article 294, viz.,
that the strength of a metal bar, and in particular of a cast iron
bar, is greatest at the skin, and diminished towards the interior ;
that the tenacity found by directly tearing a bar asunder, f,, is the
tenacity of the interior; that the modulus of rupture of a solid
rectangular beam, f, + f7, is the tenacity of the skin, and that the
modulus of rupture of an open-work beam is the tenacity at a
distance from the skin depending on the form of section. But until
conclusive experimental data shall have been obtained, all theories
on the subject must be considered as provisional only.

298, The Section of Equal Strength for Cast Eron Beams Was
first proposed by Mr. Hodgkinson, in consequence
of his discovery of the fact, that the resistance of
cast iron to direct crushing is more than six times
its resistance to tearing, It consists, as in fig. 132,
of a lower flange B, an upper flange A, and a vertical
web connecting them. The sectional area of the
lower flange, which is subjected to tension, is nearly
six times that of the upper flange, which is subjected
to thrust. In order that the beam, when cast, may not be liable
to crack from unequal cooling, the vertical web has a thickness at
its lower side equal to that of the lower flange, and at its upper
side equal to that of the upper flange, _

The tendency of beams of this class to break by tearing of the
lower flange is slightly greater than the tendency to break by
crushing of the upper flange; and their modulus of rupture is equal,
or nearly equal, to the direct tenacity of the iron of which they are
made, being, on an average of different kinds of iron, 16,500 1bs.
per square inch.

Let the areas and depths of the parts of which the section in fig,
132 consists be denoted as follows :—

Fig. 132.
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Areas. Depths.

Wnneriflange; .55 S, -puicrpessen A, :
LR i SRS S ORISR e S0 A, b,
Wienticalweb, o i n. oo B tezie. o A, h

3
Totals,... A, 4 Ay Ag= A, by by 4+ g =/
No appreciable error will arise from treating the section of the
vertical web as rectangular instead of trapezoidal. The height of
the neutral axis above the lower side of this section is

yb=7_" _ (bt hy) Ag—(hythg) Ay—(hy=hy) Ay (L)
2 2A

Then by applying the formula of Article 95, Example VI., to this
case, the moment of inertia of the section is found to be as follows :—

AW Fi2 SEA ME2 5 AT
| s | 14 1222+ 3 8+H{A1A2(h1+h2+2k3)2

Ay Ay (b By Ay Ag (g 4 B)? } it @)
and the strength of the beam is expressed by the equation

S Wi =1L, 3)
Yo
It is seldom necessary, however, to use the formule 1 and 2 in
all their complexity; the following approximate formula being
usually sufficiently near the truth for practical purposes, and its
error being on the safe side. Let 2’ be the depth from the middle
of the upper flange to the middle of the lower flange ; then

R I 1 — /y 7' A itaains o e nen el (4

999. Beams of Uniform Strength are those in which the dimen-
sions of the cross section

2  are varied in such a man-

ner, that its ultimate or

B proof resistance bears at
B each.point of the beam the

same proportion to the

Tig. 133. Fig. 134. moment of flexure. That
resistance, for figures of

?
= A the same kind, being pro-
portional to the breadth
and to the square of the
s - depth, can be varied either

. d by varying the breadth
e 205 7 136 the (ilep’ch,b or both. The
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law of variation depends upon the mode of variation of the moment
of flexure of the beam from point to point, and this depends on the

TFig. 139.

Fig. 140.

distribution of the load and of the supporting forces, in a way
which has been exemplified in Articles 289 and 290. When the
depth of the beam is made uniform, and the breadth varied, the
vertical longitudinal section is rectangular, and the plan is of a
figure depending on the mode of variation of the breadth, When
the breadth of the beam is made uniform, and the depth varied,
the plan is rectangular, and the vertical longitudinal section is of a
figure depending on the mode of variation of the depth. The
following table gives examples of the results of those principles :—

) Breadth b constant;
Mode of Loading i

d b A2, Depth % constant; Figure of
and Supporting. proportional to Figure of Plan. Vertlcaé Longitudinal
J ection.

Distance from B.

1. (Figs. 133, 134).
FixedatA,load-
ed at By oernenens

I1. (Figs. 185, 136).
Fixed at A, uni-
formly loaded,...

IIT. (Figs. 137, 138).
Supported at A
and B, loaded at

3 secsesessssrsenne

IV. (Figs. 139, 140).
Supported at A
and B, uniformly
Joaded, .ocoeruenren

Triangle, apex at
B, fig. 133.

Parabola, vertex
at B, fig. 134.

Square of distance
from B.

Pair of parabolas,

vertices touching

each other at B,
fig. 135.

Triangle, apex at
B, fig. 136.

Distance from
adjacent point of

Fair of triangles,
common base at

Pair of parabolas,
vertices at A and

support. C, apices at A and | B, meeting at C,
. B, fig. 137. fig. 138.
Product of d's- | Pair of parabolas, { Ellipse A D B,
tances from points | vertices at C, C, fig. 140,
of support. in middle of beam;

common base A B,
fig. 189.
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The formulee and figures for a constant depth are applicable to the
breadths of the flanges of the J-shaped girders described in Article
298. In applying the principles of this Article, it is to be borne
in mind, that the shearing force has not yet been taken into account;
and that, consequently, the figures described in the above table
require, at and near the places where they taper to edges, some
additional material to enable them to withstand that force. In
figs. 137 and 139, such additional material is shown, disposed in
the form of projections or palms at the points of support, which
serve both to resist the shearing force, and to give lateral steadiness
to the beams.

300. Proof Deflection of Beams—Reverting to fig. 130, it is
evident that if « represents the proportionate elongation of the
layer C (', whose distance from the neutral surface O O'is y, and
if 7 be the radius of curvature of the neutral surface, we must have

(i oo 300 A K
and consequently, the radius of curvature is
g

r==;
o
and the curvature, which is the reciprocal of the radius of curvature,

is expressed by the equation
S~
Faig
Let p be the direct stress at the layer C C', and E the modulus
of elasticity of the material ; then « = %, and consequently, the cur-

vature has the following values :—
iI==n .M
S T e o e (1)

the second value being deduced from the first by means of equation
4 of Article 293.

‘When the quantity § = }LII varies for different points of the beam,

the curvature varies also.

Suppose now that the beam is under its progf load, and let M,
denote the greatest moment of flexure arising from that load, I, the
moment of inertia of the cross section at which that moment acts,
and 7, the distance from the neutral axis of that section to the
layer where the limiting intensity f of the stressisattained. Then
the curvature will be,
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' I
at the section of greatest stress, % = ﬁ = ]‘%]\—Io' 3
0 (i 0

o) (2.)

: TSNSl ML,
at any other section, G el R Al

The exact integration of this equation for slender springs, in
certain cases, will be considered in a subsequent Article. For
beams it is integrated approximately in the following manner :—

Let the middle of the neutral axis of the section of greatest stress
be taken as the origin of co-ordinates, and represented by A in figs.

[ c
= %

A

D
Fig. 141. ‘ Fig. 142,

141 and 142, For a beam supported at both ends and symme-
trically loaded, A is in the middle of the beam (fig. 141). For a
beam fixed at one end and projecting, A is at the fixed end (fig.
142). Let the beam be so fixed or supported that at this point its
neutral surface shall be horizontal, and let a horizontal tangent,
A X G, to that surface at that point be taken as the axis of abscisse.
Let A C, the horizontal distance from the origin to one end of the
beam, be denoted by ¢, which, as in Articles 289 and 290, is the
length of the projecting portion of a beam fixed at one end, and the
halfspan of a beam supported at both ends and symmetrically
loaded. TLet A X, the abscissa of any other point in the beam = .
Let A BD be the curved form assumed by the neutral surface when
the beam is bent, whigh form, in a beam supported at both ends, is
concave upwards, as in fig. 141, and in a beam fixed at one end
concave downwards, as in fig. 142. Let X B = v be the ordinate
of any point B in the curve A BD; being the difference of level
between ‘that point and the origin A. Let C D = 2, be the greatest
ordinate : this is what is termed the deflection.

The inclination of the beam at any point B, is expressed by the
equation

dv

t —arc tan —;
dax’

and the curvature, being the rate of variation of the inclination in
a given length of the curve, is expressed by
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ISH

)

Sl SR e, )
U g % dot
dar/ 1+
But in cases which occur in practice, the curvature of the beam is

so slight, that the arc ¢ is sensibly equal to its tangent, the slope

dv

e and the elementary arc d s is sensibly equal to its horizontal
@

projection d z ; so that the following equations may be used without
sensible error :—

o
r

Slope, = :%;
1 di & OTRD000E i (3.)
Curvature, e

Therefore, when the curvature at each point is given by equation
2, the slope and the ordinate are to be found by two successive
integrations, as shown by the following equations :—

. pedx__ f [*MI
SIOPG, 1= OT._.E—y—‘-). OITI'O.

i oL gt of (o e Mo
Ordinate, v_fozdm_ﬁ—g/—o.foonModx.

The greatest slope 1,—that is, the slope at D—and the deflection
or greatest ordinate v;, are found by performing the complete inte-
grations between the limits x = 0 and z = c.

[Readers who are not familiar with the integral calculus are
referred to Article 81 for explanations of the nature of the process
of integration.]

da;

In both the integrals of the formule 4, the quantity L-Igiis a

1M,
numerical ratio depending on the mode of distribution of the load-
ing and supporting forces, and the mode of variation of the section
of the beam. Hence it is evident that we must have the complete

integrals
eMI, RS rense MO, A mpap i
fom.dx—m [ _[OjOIl\Io.dw,—n 6’,.....(5-)

where m" and %" are two numerical factors depending on the dis-
tribution of the forces and the figure of the beam ; so that the
greatest slope and the deflection are given by the equations
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m'fe — n'fc
=) % s Eyo...................(6.)

il - E yo 3 U=
For beams of similar figures, and similarly loaded and supported,
%/, is as the depth, and c as the length ; hence, for such beams, the
greatest slope under the proof load is directly as the length, and
tnwversely as the depth ; and the proof deflection is directly as the
square of the length, and inversely as the depth.

The following table gives the values of the factors m” and »" for
some of the more ordinary cases of beams of wniform section, in
which the ratio %IITE’ being simply equal to %, depends on the

% ;
distribution of the load alone, and may be found by the aid of the
tables of Articles 289 and 290.

M "
i, m n'
I. Constant moment of flexure, 1 & 1
2

Fixep at ONE Exp. .
II. Loaded at extreme end, ..... ul 1 1
c 2 3
ITL. Usiformly loadedje rasieee. (1 Y ”f)z 1 1
c 3 4
SupPorTED AT BorH ENDS.
IV. Loaded in the middle, ....... B2 1 1
c 2 3
2

. Uniformly loaded,............ S & s
V. Uniformly loaded, 1 = 3 i3

For a beam of uniform strength and uniform depth, the quantity

M. ’
T 18 constant ; hence in every such beam, in what manner soever
it may be supported and loaded, the curvature is uniform, as in the

case of Example L of the above table. For a beam of uniform
strength and uniform breadth, the quantity %}b is constant ; and

therefore in such beams,
MI, 7,
I—i\—[; iy A RTTIISSIOLS ST (7)
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ko being the depth at the section of greatest bending moment, and
k the depth at any other section. The following table shows some
of the consequences of these principles :—

M Io m’/ n/;
IM,
- VI TUniform strength 1 1 1
and uniform depth,.. 3

VIL TUniform strength,
uniform breadth ; fixed
at one end, loaded at
the other,................

VIII. Uniform strength, }
J

S
&Il o
2o
eof vo

uniform breadth ; sup-
ported at both ends
loaded in the middle,..

IX. TUniform strength,
uniform breadth ; fixed
at one end, umformly
loaded;mis & s il o

X. Uniform strength, y
uniform breadth ; sup- x o
ported at both ,ends, —at |5 = 1-5708 5 —1=05708
uniformly loaded,......

= Infinite. 1

It is to be borne in mind, that the values of m” and %" for beams
of uniform strength, as given in the above table, are somewhat
less than those which occur in practice, because, in computing the
table, no account has been taken of the additional material which
is placed at the ends of such beams, in order to give sufficient
resistance to shearing.

The error thus arising applies chiefly to m”, the factor for the
maximum slope. For the factor for the deflection, »", the error is
inconsiderable, as experiment has shown,

301. Deflection found by Graphic Collslrucuon.——The great length
of the radii of curvature, which are the reciprocals of the curva-
tures given by equation 2 of Article 300, and the smallness of the
ordinates of the curve of the neutral surface, in all cases which
occur in practice, render it neither practicable nor useful to draw
the figure of that curve in its natural proportions. But the following
process, invented, so far as I am aware, by Mr. C. H. Wild, enables
a diagram to be drawn, which represents, with a near apploach to
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accuracy, that curve, with its vertical dimensions exaggerated, so as
to show conspicuously the slopes and ordinates

Compute, by equation 2 of Article 300, the radii of curvature
for a series of equi-distant points in the beam. Diminish all those
radii in any proportion which may be convenient, and draw a curve
composed of small circular arcs with the diminished radii. Then in
the same ratio that the radii, as compared with the horizontal scale
of the drawing, are diminished, will the vertical scale of the draw-
ing, according to which the ordinates are shown, be exaggerated.

302. The Proportion of the Greatest Depth of a Beam to the Span
is so regulated, that its greatest deflection shall not exceed a cer-
tain proportion. of the span which experience has shown to be con-
sistent with convenience. That proportion, from various examples,
appears to be—

1 1
For the working load, 2— = from —— 500 0 1900°

1 1
For the proof load, ... r2—-; = from 300 to 600"

The determination of the proportion, 2—k"c, of the greatest depth of

the beam to the span, so as to give the required stiffness, is effected
by the aid of equation 6 of Article 300, from which we obtain

" f c

2 ¢ 2Ky, Yo
Now 3 = m/’ hy, m' being a numerical factor, which for symmetri-
cal sections is 7 and consequently the required ratio is given by

the equation
he afe.. »'f  2¢

RO T oy e e R (1)

an expression consisting of three factors : a factor, :—;,, depending
on the distribution of the load and the figure of the.beam ; a factor,
%Tc, bein‘g the prescribed ratio of the span to the deflection ; and a
factor, B being the progf strain, or the working strain, of the

material, as the case may be.
To illustrate this, let the beam be under its working load, uni-
formly distributed, and let it be of uniform section, alike above and
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below., Then n” 152, m/ = % Le t — == 1000 be the prescribed
ratio of the span to the workmg deﬁectlon Let the material be

wrought iron, for which 45—

is a safe value for the working strain
I
TR Then

3000

hy 65 1000 5 1

2¢~ 24°3000 72T 144’
which is very nearly the average proportion of depth to span
adopted for wrought iron girders in practice.
303. The Slope and Deflection of a Beam under any Load are
given by the following formule :—

_fdac dac,

- [E-3 hee

To integrate these equations, it is only necessary to substitute
for the constant factor i in the equations 4, 5, 6, Article 300, its

equlvalent %, M, bemO' now not the proof moment of flexure, but

I ST,
the actual moment of flexure at the point where the beam is hori-
zontal ; that is to say,

7 " 1 2

Greatest slope 7; = _Fyi_ deflection v, = =~ Fll\ :I[;’c ..(2)

m" and »" being factors depending on the distribution of the load,
and baving the values given in the table of Article 300. Now the
value of the moment of flexure is given in terms of the load and
length by equation 1 of Article 291, and the ensuing table, viz,
M, = m W [; and the value of I, in terms of the dimensions of
the rectangle clrcumscnbmg the cross section, is glven by equation
1 of Article 295, and the ensuing table, viz., I, — »’ b A* ; hence the
above equations 2 become

, _m'mWlc, o _ wmWic 3.)
BT b V1=~ Ty gn (v !

Moreover, I=c, or = 2 ¢, according as the beam is fixed at one end
only, or supported at both ; so that if m", »", be a pair of numeri-
cal factors, whose values are, for beams fixed at one end only,
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nl"l = m"m; n"l - n"m;
and for beams supported at both ends,
< J " o
m" = 2m'm; n" = 2n"m;
the equations 3 become

S, W “)
@l_m, vl_n,Ebha ...... secssecnsss 5

‘Whence it appears, that the deflections of similar beams under
equal loads are as the cubes of their lengths, and inversely as their
breadths amd the cubes of their depths.

The values of #'= b_}oa;'" for the ordinary forms of cross section, are
given in the table of Article 295. The following table gives the
values of m" and »" for different modes of loading and support-
ing, for beams of uniform cross section, and for beams of uniform

strength :—

m n

m n

4. Unirorm CRrOSS SECTION. Fascltg;efor gﬁ:&ﬁ.
1. Fixed at one end, loaded at the other,....... % ...... :31}'
II. Fixed at one end, loaded uniformly,......... é ...... %
IIT. Supported at both ends, loaded in the middle, i ...... %
IV. Supported at both ends, uniformly loaded, .. -(1-) ...... 45_8

B. UnirorM STRENGTH AND UNIFORM
DerrH.

V. Fixed at one end, loaded at the other,....... q PHsis, %
VI. Fixed at one end, loaded uniformly,......... % ...... i
VII. Supported atboth ends, loaded in the middle, % ...... ‘%
VIII. Supported at both ends, loaded uniformly,.. i ...... %
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n "

n

C. UxirorM STRENGTH AND UNIFORM  Faetor for Factor for
BrrADTH. Slope.  Deflection.
IX. Fixed at one end, loaded at the other,....... ke, Noh g
X. Fixed at one end, uniformly loaded,....... Infinite. ...... é
XI. Supported at both ends, loaded in the middle, 1 ...... ;’-

XII. Supported at both ends, uniformly loaded, 0-3927 ... 0-1427.

304. Defiection with Uniform Moment.—In Article 292 the case
has already been described, in which a beam or bar of uniform
section has a pair of equal and opposite couples in the same plane
applied to its ends, and the same case is the first given in the table
of Article 300. In this case, M and I are constants, m"=1, and

n'= % ; and accordingly, if ¢ be the length of the part of the beam

under consideration, and ¢; the slope, and ¢/, the deflection, of one
end relatively to a tangent at the other,

g Mo, Md
“=g1’ "= 3T

305. The Resilience or Spring of a Beam is the work perfomned
in bending it to the proof deflection. This, if the load is concen-
trated at or near ome point, is the product of half the proof load
into the proof deflection ; that is to say,

Wo,
3 R et kb AR A 1)

If the load is distributed, the length of the beam is to be divided
into a number of small elements, and half the proof load on each
element multiplied by the distance through which that element is
moved during the proof deflection of the beam. Let % be that dis-
tance ; then for beams fixed at one end,

%w=9;
and for beams supported at both ends, e 1 oo ()
w = v~

Let d« be the length of an element of the beam; w the intensity
of the load on it, per unit of length; then the resilience is
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lfuw-dm ........... MR 3 )

The cases in which the determination of resilience is most useful
in practice are those in which the load is applied at one point.

Let the beam be fixed at one end and loaded at the other, ¢
being the length of its projecting part. Then by Article 295,
equation 3 (observing that m=1, {=¢),

2
wor SOk a
: c
(n being given by the table of Article 295), and by Article 300,
equation 6,
o o BSE 2T
'" Ey, wER

(" being given by the table of Article 300, and =/ by that of
Article 295). Consequently,

Wo, nn" f*

3 = 2—,’n, "E ({0 (S Pt (4.)
It will be observed that this expression consists of three factors,
viz, :— :

(1.) The volume of the prism circumscribed about the beam,
cbh.

2
(2.) A Modulus of Resilience, '[—};, of the kind already mentioned
in Article 266.
(3.) A numerical factor, %, 5 in which n and m’ (Article 295)

depend on the form of cross section of the beam, and " (Article
300) on the form of longitudinal section and of plan. The follow-
ing are values of this compound factor for a rectangular cross

Resilience =

. ] 1 1 nn' '
section, for which n= 7 m = o and therefore Ay Lhes
-
. 6
I Uniform breadth and depth,.......cccvvrvevereeseerecievenees 21]:8
II. Uniform strength, uniform depth,........ocevvveuvrinennnnne i-12
III. Uniform strength, uniform breadth,.......ccceevvemennrennnns ?1)
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If a beam be supported at both ends and loaded in the midadle,
its length being ! =2 ¢, its proof deflection is the same with that of
a beam of the same transverse dimensions and of the length ¢,
fixed at one end and loaded at the other; and its proof load is
double of that of the latter beam ; therefore its resilience is double
of that of the latter beam. Consequently, for rectangular beams of
the half-span ¢, supported at both ends and loaded in the middle,
we have the following values for the numerical factor of the
resilience :— L

6

IV. Uniform breadth and depth,............. semsassiasaner s RN %
1

V. Uniform strength, uniform depth,....ccvceivenianeiennaninees T

: 1 2

VI. Uniform strength, uniform breadth, ........ S AR AR 7

306. A Suddenly-Applied Transverse Load, like the suddenly-
applied pull of Article 267, produces at first double the maximum
stress, and double the strain, which the application of a load
gradually increasing from nothing to the amount of the given
load would produce. It is unnecessary to demonstrate this in
detail, the reasoning being the same with that employed in Article
267.

The contingency of the sudden application of a moving load is
provided for by the factor of safety, which expresses the ratio of
the proof load to the working load (Article 247).

The action of the rolling load to which a railway bridge is sub-
jected is intermediate between that of an absolutely sudden load
and a perfectly gradual load. It has been investigated mathemati-
cally by Mr. Stokes, and experimentally by Captain Galton, and
the results are given in the Report of the Commissioners on the
Application of Iron to Railway Structures. The practical con-
clusion to be drawn from them is, that a moving load requires a
larger factor of safety than a steady load.

307 Beam Fixed at Both Ends.—A beam is fized, as well as

c e 4 c supported, at both ends, when

A 4 .
a pair of equal and opposite
couples are made to act on the
vertical sectional planes at its
points of support, of magnitude
sufficient to maintain its longitudinal axis horizontal there, and so
to diminish the deflection, slope, and curvature of its middle por- °

Tig. 143.
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tion. This is generally accomplished by making the beam form
part of one continuous girder with several points of support, or by
making it project on either side beyond its points of support, and
so fastening or loading the projecting portions, that their loads, or
the resistance of their fastenings, shall give the required pair of
couples.

In fig. 143, let CB A B C represent a beam supported at the
points G, C, loaded along its intervening portion, and so fixed or
loaded beyond these points that at them its longitudinal axis is
horizontal, instead of having the slope %,, which it would have
if the beam were simply supported at C, C, and not fixed. At each
of the vertical sections above the points of support, C, C, there is
an uniformly-varying horizontal stress, being a pull above and a
thrust below the neutral axis; and the moment of that pair of
stresses is that of the pair of equal and opposite couples which
maintain the beam horizontal at the points of support. It is re-
quired to find,—in the first place, that resisting moment at the
vertical planes of support (from which the stress on the material
there may at once be found); and secondly, the effect of that
moment on the curvature, slope, deflection, and strength of the
beam.

The general method of solution of this question is as follows :—
Compute, by equation 3 of Article 303, ¢, the slope which the
neutral surface of the beam would have at the points C, C, if it
were simply supported there, and not fixed. Then, by Article
304, find the uniform moment of flexure, which, if it acted on the
beam in such a manner as to make it become convex upwards,
would produce ‘a slope at the points C, C, equal and contrary to
.. This will be the required moment of resistance at the vertical
sections C, C, from which the greatest stress on the material at
those sections can be found by equation 4 of Article 293. It will
afterwards appear that this is the greatest stress on the beam ; so
that by putting it instead of M;= m W [ in equations 2 of Article
294, and 3 of Article 295, the conditions of strength of the beam
are determined. Denote this moment by — M, the negative sign
denoting that it tends to produce convexity upwards, while the load
on the beam tends to produce convexity downwards.

Let M be what the moment of flexure at any point of the beam
would be, if it were simply supported at C, C. Then the actual
moment of flexure is

M-M,

and by substituting this for M in the equations of Articles 300 and
303, the curvature, slope, and deflection, with the proof load, or
with any load, are found.
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‘Where M is the greater, as at A, the beam is convex down-
wards. ‘Where M, is the greater, as at C, the beam is convex up-
wards. There are a pair of points, B, B, at which M = M, so
that the moment of flexure, and consequently the curvature, vanish,
and the beam is subjected to a shearing force alone; these are
called the points of contrary flexure; and they divide the middle
part of the beam, which is convex downwards, from the two end-
most parts, which are convex upwards.

In expressing the solution of this problem by formulwe, four
cases will be taken into consideration, viz.:—

1. The case of an uniform beam, with a symmetrical load in
general.

2. Beam of uniform section, loaded in the middle.

3. Beam of uniform section, loaded uniformly.

4. Beam of uniform strength and uniform depth, uniformly
loaded.

Case 1. Symmetrical load on a beam of uniform section. By
Article 303, equation 3, observing that I == 2 ¢, we have

, _2m'm W
nE T R
and by Article 304,

M,

__EIv, #Ebr4,

W TR e 2

consequently,
M,=2m"mWec=m"-mWI=m"+M,......... (1)

M, being what the moment of flexure at A would have been, had
the beam been simply supported.

The values of m’ are given in Article 300.

Let M, be the actual moment of flexure at A. Then

M, = (1—m") My....ooveune diiog )

The greatest moment of flexure must be either at A or C, or at
both, if the moments at these sections be equal and opposite. But

for beams of uniform section, m” is never less than 3 therefore

the greatest moment of flexure is at C, or both at C and A, and
never at A alone,

The strength of the beam is expressed by the following formula,
obtained by putting M, instead of 7 W /, in equation 3 of Article
295 :—

ity ) 0 s A NEIDI
M,=m"m W il=nfbh?; W—————m,,ml... ........... (3.)
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J being the limit of proof or working stress, as the case may be,
and n a factor suitable to the form of section of the beam, as given
by the table of Article 295.
Hence it appears, that by fizing the ends of an uniform beam, so
that they shall be horizontal, its strength is increased in the ratio 1 : m".
The deflection is found, by subtracting that due to the uniform
moment M, from that which the load would produce if the beam
were simply supported at C and C. The former of these quan-
tities, according to Article 304, is
M, m'Myc® |
2EI  2EI’
and the latter, according to Article 303, equation 2, is
' Mye®  n"M, &
EI ~— wEIL’
so that the deflection, their difference, is

(YK Mlc:?_(” m”) M,
q;i__(ﬂ——%T——:z).EI— n——T -—:E—I‘ ...... (4.)

From the last of those expressions, it appears that by fixing the
ends horizontal, an uniform beam is made stiffer under a given

load in the ratio
n" . (nn m”)
: 5 )
If, in the first expression for the deflection, it be considered that

M, is the moment of resistance corresponding to the proof or limit-
ing stress at the section C, we may make

R
o
80 as to obtain the following expression for the deflection under the
proof load :— ;
(7 o\
v = (W 53 '2—> E—% ....................... (5)

being less than the proof deflection of a beam simply supported, as
given by equation 6, Axticle 300, in the ratio

(3}1_1> -
o § n.

The points of contrary flexure are to be found in each particular
case by solving the equation

M =DM, = O.cvvvenereane it il (6))
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CasE 2. Uniform section, loaded in the middle.

1 " 1 " 1
M——-‘I;m__—ﬁ; _—g,
M’—M—-IM:—IWZ-—IW =nfbh’;
= l—§ 0_§ _Z C._.nf v, ,__(7,)
‘Ul—.6 ]T}go.

The points of contrary flexure are midway between A and C.
Case 3.— Uniform section, uniformly loaded.

"W=2cw
m_l.mu_g. n"-—5
=gy gy 12’
9 _1 __1 il 2
T Tt s A AL
T 1 1
L10=§M1=§:M:01
1=ye
“"=F Egp J

The points of contrary flexure are thus found. By the table of
Article 300, case 5,

x’ 3 a?
- (1-5) -3 (1- %) M
so that in order to have M — M,, we must make

2
1-%=§§01’“’=?/E:§=0'577c; ....... I

which equation gives the distance of each of the points of contrary

flexure B, from A, the'middle of the beam.
OasE 4. Uniform strength, uniform depth, uniform load. In this
case the uniformity of strength is attained by making the breadth
at each point proportional
\/‘ to the moment of flexure, as
A < ¢ shown in the plan, fig. 144,
preserving, at the points of
3 contrary flexure B, B, a
Fig 14 sufficient thickness only to

resist the shearing force.
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As shown in Article 300, case 6, the curvature of the beam is
uniform in amount, changing in direction only at the points of
contrary flexure. Therefore, in fig. 143, CB and B A, at each
side of the beam, are two arcs of circles of equal radii, horizontal
at A and C, and touching each other at Bj; therefore those arcs
are of equal length ; therefore each point of contrary flexure B is
midway between the middle of the beam A and the point of sup-

ort C.
P Tt is evident also, that the proof deflection of the beam must be
double of that of an uniformly curved beam of half the span, sup-.
ported at the ends without being fixed ; that is to say, one-half of
that of an uniformly curved beam of the same span, supported but
not fixed ; or symbolically

1 fe
'v,_z'm ......................... (10.)

The actual moment of flexure at A must be the same as in an

uniformly loaded beam, with the same intensity of load w = ) ,

2¢
" supported, but not fixed at B, B; that is to say,
We Wi _ M
e S — 0
M= 16 39 L oeeereresenesens (11.)
and therefore, the moment of flexure at C is
, 3M,_ 3We 3WI!
nfbllﬁ_—_Ml:Mo—- 0=T—_1‘g—‘ =*-'§2—;(12.)

b, being the breadth of the beam at C, which is three times the
breadth b, at A.

To find the breadth at any other point, it is to be observed, that
the moment of flexure at the distance x from A iy

_w(@—a) 3wc 1 44
M—M = 3 s =<§_W:)M';"'(13'>

and that consequently the breadth b, which is proportional to the
moment of flexure, is given by the equation

1 4 4 o
= (1_ Qb,:(l———(}z—)bo ......... (14)

In using this equation, the positive or negative sign of the result
merely indicates the direction of the curvature.
According to equation 14, the figure of the beam in plan (fig.
144) consists of two parabolas, having their vertices at A, and
Z
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intersecting each other in the points of contrary flexure, B, B, for

which z = i%

The breadth which must be left at B, to resist shearing, will
appear from the next Axrticle.

308. A Beam Fixed at One End and Supported at Both is sensibly
in the same condition with the part C B A B of the beam in fig.
143, extending from one of the fixed points C to the further point

. of contrary flexure, which now represents a point supporied, but not
fized. Hence if a continuous girder be supported on a series of
piers, the span of each of the endmost bays should be to the span
of each intermediate bay, in the ratio ¢+ 2,: 2 ¢, where z, is the
distance A. B from the lowest point to a point of contrary flexure.*

309. Shearing Stress in Beams.—JIt has already been shown, in
Article 288, how to find the amount F of the shearing force at a
given vertical cross section of a beam ; and examples of that force
in particular cases have been given in Articles 289 and 290. The
object of the present Article is to show the manner in which the
stress which resists that force is distributed.

In Article 104 it has been shown, that the intensities of the tan-
gential stresses at a given point, on a pair of planes at right angles
to each other and to the plane parallel to which the stresses act,
are necessarily equal. Hence, in order to determine the intensity of
the vertical shearing stress at a given point in a vertical section of

a beam, such as the point

Te E in the vertical section
x n = G E B of the beam repre-
" o sented in fig. 145, it is
b L | sufficient to find the equal

intensity of the horizontal
shearing stress at the same
point E in the horizontal plane E F. The existence of that hori-
zontal shearing stress is familiarly known by the fact, that if a
beam, instead of being one continuous mass, be divided into
separate horizontal layers, those layers will slide on each other like
the layers of a coach spring. The intensity of that stress is found
as follows :—

Let H F D be another vertical section near to G E B. If the
moment of flexure at H F D differs from thatat G E B, there must
be a corresponding difference in the amount of the direct stress on
two corresponding parts of the planes of section, such as G E and
HF. (In the case shownin the figure, that direct stress is a thrust,
and is greatest at G E). That difference constitutes a horizontal
force acting on the solid H F E G ; and in order to maintain the

* See Article 3084, p. 641.

Fig. 145.
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equilibrium of that solid, the amount of shearing stress on the plane
F E must be equal and opposite to that horizontal force. That
amount being divided by the area of the plane F E, gives the
intensity of the shearing stress.—Q. B. T.

From the foregoing solution it is obvious, that the shearing stress
is mothing at the upper and lower surfaces of the beam; because the
entire direct stress on each cross section is nothing. This might
also be proved by reasoning like that of Article 278. It is also
obvious that the shearing stress in the vertical layer between the
two planes of section is greatest at D B, where they cut the neutral
surface O C, at which the direct horizontal stress changes from
thrust to pull; for at that surface the horizontal force to be
balanced by the shearing stress reaches its maximum.

To express this solution symbolically in the case of a beam of
uniform cross section; letOB=2,0C =¢, BE=1y, BG =y,
BD = E I (sensibly) = d «; let the breadth of the beam at any
point E be denoted by 2, and at the neutral surface by =

Let p be the intensity of the direct horizontal stress at E, ¢ that
of the shearing stress at E, and g, that of the maximum shearing
stress ab B. Then by equation 4 of Article 293,

_M
P—-—I-y,

and the amount of the direct stress on the sectional plane between
G and E is

M L0 ; d

| B IR Adied
The horizontal force by which the solid H F EG is pressed from O
towards C, is the excess of the value of the above quantity for G E
above its value for H F'; which excess arises from the excess of the
moment of flexure M at G<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>