








PREFACE.

THE object of tliis book is to set forth in a compact form those

parts of the Science of Mechanics which are practically applicable

to Structures and Machines. Its plan is sufficiently explained by
the Table of Contents, by the Introduction, and by the initial

articles of the six parts- into which the body of the treatise is

divided:

This work, like others of the same class, contains facts and

principles that have been long and widely known, mingled with

others, of which some are the results of the labours of recent

discoverers, some have been published only in scientific Transac-

tions and periodicals, not generally circulated, or in oral lectures,

and some are now published for the first time. I have endea-

voured, to the best of my knowledge, to mention in their proper

places the authors of recent discoveries and improvements, and to

refer to scientific papers which have furnished sources of infor-

mation.

A branch of Mechanics not usually found in elementary treatises

is explained in this work, viz., that which relates to the equili-

brium of stress, or internal pressure, at a point in a solid mass, and

to the general theory of the elasticity of solids. It is the basis of

a sound knowledge of the principles of the stability of earth, and

of the strength and stiffness of materials
; but, so far as I know,

the only elementary treatise on it that has hitherto been published-
is that of M. Lame, entitled Legons sur la Tkeorie mathematique de

I'jElasticite
des Corps solides.

In treating of the stability of arches, the lateral pressure of the

load is taken into account. So far as I know, the only author who
flius hitherto done so ki an exact manner, is M. Yvon-Yillarceaux,

in the Mfmoires des
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t)f;$ie ^transformation of structures and its appli-

cations" hate* liiftierlx)- appeared in the Proceedings of the Royal

Society alone.

The correct laws of the flow of elastic fluids (first investigated

by Dr. Joule and Dr. Thomson), and the true equations of the

action of steam and other vapours against pistons, as deduced from

the principles of thermodynamics, by Professor Clausius and myself,

contemporaneously, are now for the first time stated and applied in

an elementary manual.

Other portions of the work, which are wholly or partly new_, arc

indicated in their places.

In the arrangement of this treatise an effort has been made to

adhere as rigidly as possible to a methodical classification, of its

subjects; and, in particular, care has been taken to keep in view

the distinction between the comparison of motions with each other,

and the relations between motions and forces, which was first

pointed out by Monge and Ampere, and which Mr. Willis has

so successfully applied to the subject of mechanism. The observing

of that distinction is highly conducive to the correct understanding
and ready application of the principles of Mechanics.

W. J. M. R.

GLASGOW UNIVEESITY, May, 1858.

ADVERTISEMENT TO THE TENTH EDITION.

The Tenth Edition has been carefully revised, and new matter,

bearing on subjects treated of in the text, has been added to the

Appendix. The Index has also been enlarged, and rendered

more suitable for reference.

For various notes and suggestions, the Editor begs to thank,

amongst others, Prof. Eddy, of Cincinnati University, anu

Mr. Arthur W. Thompson, B.Sc., late of the Imperial Collegw

of Engineering, Japan.

W. J. M.

GLASGOW, Jan., 1882.
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PRELIMINARY DISSERTATION

HARMONY OF THEORY AND PRACTICE IN MECHANICS/

THE words, theory and practice, are of Greek origin : they cany
our thoughts back to the time of those ancient philosophers by
whom they were contrived; and by whom also they were con-

trasted and placed in opposition, as denoting two conflicting and

mutually inconsistent ideas.

In geometry, in philosophy, in poetry, in rhetoric, and in the

fine arts, the Greeks are our masters j
and great are our obligations

to the ideas and the models which they have transmitted to our
times. But in physics and in mechanics their notions were very
generally pervaded by a great fallacy, which attained its complete
and most mischievous development amongst the mediaeval school-

men, and the remains of whose influence can be traced even at the

present day the fallacy of a double system of natural laws; one

theoretical, geometrical, rational, discoverable by contemplation,

applicable to celestial, setherial, indestructible bodies, and being an

object of the noble and liberal arts
; the other practical, mechanical,

empirical, discoverable by experience, applicable to terrestrial, gross,
destructible bodies, and being an object of what were once called

the vulgar and sordid arts.

The so-called physical theories of most of those whose under-

standings were under the influence of that fallacy, being empty
dreams, with but a trace of truth here and there, and at variance

with the results of every-day observation on the surface of the

planet we inhabit, were calculated to perpetuate the fallacy. The
stars were celestial, incorruptible bodies

;
their orbits were circular

and their motions perpetual ; such orbits and motions being charac-

teristic of perfection. Objects on the earth's surface were terrestrial

* This Dissertation contains the substance of a discourse,
" De ConcordiS, inter

Scientiarum Machinalium Coutemplationem et Usum," read before the Senate of
the University of Glasgow on the 10th of December, 1855, and of an inaugural lec-

ture, delivered to the Class of Civil Engineering and Mechanics in that University on
the 3d of January, 1856.

B
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and corruptible
"

their'moTJicttis being characteristic of imperfection,
were in mixed straight and curved lines, and of limited duration.

Rational and practical mechanics (as Newton observes in his

preface to the Principia) were considered as in a measure opposed
to each other, the latter being an inferior branch of study,
to be cultivated only for the sake of gain or some other material

advantage. Archytas of Tarentum might illustrate the truths of

geometry by mechanical contrivances ; his methods were regarded

by his pupil Plato as a lowering of the dignity of science. Archi-

medes, to the character of the first geometer and arithmetician of

his day, might add that of the first mechanician and physicist, he

might, by his unaided strength acting through suitable machinery,
move a loaded ship on dry land, he might contrive and execute

deadly engines of war, of which even the Roman soldiers stood in

dread, he might, with an art afterwards regarded as fabulous

till it was revived by Buffon, burn fleets with the concentrated

sunbeams ;
but that mechanical knowledge, and that practical skill,

which, in our eyes, render that great man so illustrious, were, by
men of learning, his contemporaries and successors, regarded as

accomplishments of an inferior order, to which the philosopher,
from the height of geometrical abstraction, condescended, with a

view to the service of the State. In those days the notion arose

that scientific men were unfit for the business of life, and various

facetious anecdotes were contrived illustrative of this notion, which
have been handed down from age to age, and in each age applied,
with little variation, to the eminent philosophers of the time.

That the Romans were eminently skilful in many departments
of practical mechanics, especially in masonry, road-making, and

hydraulics, is clearly established by the existing remains of their

magnificent works of engineering and architecture, from many of

which we should do well to take a lesson. But the- fallacy of a

supposed discordance between rational and practical, celestial and
terrestrial mechanics, still continued in force, and seems to have

gathered strength, and to have attained its full vigour during the

middle ages. In those ages, indeed, were erected those incom-

parable ecclesiastical buildings, whose beauty, depending, as it does,

mainly on the nice adjustment of the form, strength, and position
of each part, to the forces which it has to sustain, evinces a pro-
found study of the principles of equilibrium 011 the part of the
architects. But the very names of those architects, with few and
doubtful exceptions, were suffered to be forgotten. ;

and the prin-

ciples which guided their work remain unrecorded, and were left to

be re-discovered in our own day ;
for the scholars of those times,

despising practice and observation, were occupied in developing
and magnifying the numerous errors, and in perverting and obscur-
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ing the much more numerous truths, which are to be found in the

writings of Aristotle
;
and those few men who, like Roger Bacon,

combined scientific with practical knowledge, were objects of fear

and persecution, as supposed allies of the powers of darkness.

At length, during the great revival of learning and reformation

of science in the fifteenth, sixteenth, and seventeenth centuries,

the system falsely styled Aristotelian was overthrown : so also was
the fallacy of a double system of natural laws

;
and the truth began

to be duly appreciated, that sound theory in physical science con-

sists simply of facts, and the deductions of common sense from

them, reduced to a systematic form. The science of motion was
founded by Galileo, and perfected by Newton. Then it was estab-

lished that celestial and terrestrial mechanics are branches of one

science ;
that they depend on one and the same system of clear and

simple first principles; that those very laws which regulate the

motion and the stabilityofbodies on earth, govern also the revolutions

of the stars, and extend their dominion throughout the immensity
of space. Then it" came to be acknowledged, that no material

object, however small, no force, however feeble, no phenomenon,
however familiar, is insignificant, or beneath the attention of the

philosopher ;
that the processes of the workshop, the labours of the

artizan, are full of instruction to the man of science
;
that the

scientific study of practical mechanics is well worthy of the atten-

tion of the most accomplished mathematician. Then the notion,
that scientific men are unfit for business, began to disappear. It

was not court favour, not high connection, not Parliamentary in-

fluence, which caused Newton to be appointed Warden, and after-

wards Master, of the Mint j it was none of these
;
but it was the

knowledge possessed by a wise minister of the fact, that Newton's

skill, both theoretical and practical, in those branches of knowledge
which that* office required, rendered him the fittest man in all

Britain to direct the execution of a great reform of the coinage.
Of the manner in which Newton performed the business entrusted

to him, we have the following account in the words of Lord

Macaulay, an author who cannot be accused of undue partiality to

speculative science or its cultivators :

" The ability, the industry, and the strict uprightness of the great philo-

sopher, speedily produced a complete revolution throughout the depart-
ment which was under his direction. He devoted himself to the task
with an activity which left him no time to spare for those pursuits in which
he had surpassed Archimedes and Galileo. Till the great work was com-

pletely done, he resisted firmly, and almost angrily, every attempt that
was made by men of science, here or on the Continent, to draw him away
from his official duties."*

* Vol. iv., p. 703.
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Then the historian proceeds to detail the results of Newton's

exertions, and shows, that within a short time after his appoint-

ment, the weekly amount of the coinage of silver was increased to

eightfold of that which had been looked upon as the utmost practi-
cable amount by his predecessors.
The extension of experimental methods of investigation, has

caused even manual skill in practical mechanics, when scientifically

exercised, to be duly honoured, and not (as in ancient times) to be

regarded as beneath the dignity of science.

As a systematically avowed doctrine, there can be 110 doubt that

the fallacy of a discrepancy between rational and practical me-
chanics came long ago to an end

;
and that every well-informed

and sane man, expressing a deliberate opinion upon the mutual
relations of those two branches of science, would at once admit that

they agree in their principles, and assist each other's progress, and
that such distinction as exists between them arises from the differ-

ence of the purposes to which the same body of principles is applied.
If this doctrine had as strong an influence over the actions of

men as it now has over their reasonings, it would have been unne-

cessary forme to describe, so fully as I have done, the great scienti-

fic fallacy of the ancients. I might, in fact, have passed it over in

silence, as dead and forgotten ; but, unfortunately, that discrepancy
between theory and practice, which in sound physical and mechani-

cal science is a delusion, has a real existence in the minds of men ;

and that fallacy, though rejected by their judgments, continues to

exert an influence over their acts. Therefore it is that I have
endeavoured to trace the prejudice as to the discrepancy of theory
and practice, especially in Mechanics, to its origin ;

and to show
that it is the ghost of a defunct fallacy of the ancient Greeks and
of the mediaeval schoolmen.

This prejudice, as I have stated, is not to be found, at the present

day, in the form of a definite and avowed principle : it is to be

traced only in its pernicious effects on the progress both of specula-
tive science and of practice, and sometimes in a sort of tacit influ-

ence which it exerts on the forms of expression of writers, who
have assuredly no intention of perpetuating a delusion. To exem-

plify the kind of influence last referred to, I shall cite a passage
from the same historical work which I recently quoted for a differ-

ent purpose. Lord Macaulay, in treating of the Act of Toleration

of William III., compares, metaphorically, the science of politics to

that of mechanics, and then proceeds as follows :

"The mathematician can easily demonstrate that a certain power, ap-
plied by means of a certain lever, or of a certain system of pulleys, will

suffice to raise a certain weight. But his demonstration proceeds on the

supposition that the machinery is such as no load will bend or break. If
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the engineer
who has to lift a great mass of real granite by the instru-

mentality of real timber and real hemp, should absolutely rely on the pro-

positions which he finds in treatises on Dynamics, and should make no
allowance for the imperfection of his materials, his whole apparatus of

beams, wheels, and ropes, would soon come down in ruin, and with all his

geometrical skill, he would be found a far inferior builder to those painted
barbarians who, though they never heard of the parallelogram of forces,

managed to pile up Stonehenge."*

It is impossible to read this passage without feeling admiration

for the force and clearness (and I may add, for the brilliancy and

wit) of the language in which it is expressed; and those very

qualities of force and clearness, as well as the author's eminence,
render it one of the best examples that can be found to illustrate

the lurking influence of the fallacy of a double set of mechanical

laws, rational and practical.
In fact, the mathematical theoiy of a machine, that is, the body

of principles which enables the engineer to compute the arrange-
ment and dimensions of the parts of a machine intended to perform
given operations, is divided by mathematicians, for the sake of

convenience of investigation, into two parts. The part first treated

of, as being the more simple, relates to the motions and mutual
actions of the solid pieces of a machine, and the forces exerted by
and upon them, each continuous solid piece being treated as a

whole, and of sensibly invariable figure. The second and more
intricate part relates to the actions of the forces tending to break
or to alter the figure of each such solid piece, and the dimensions
and form to be given to it in order to enable it to resist those

forces : this part of the theory depends, as much as the first part,
on the general laws of mechanics; and it is, as truly as the first

part, a subject for the reasonings of the mathematician, and equally

requisite for the completeness of the mathematical treatise which
the engineer is supposed to consult. It is true, that should the

engineer implicitly trust to a pretended mathematician, or an

incomplete treatise, his apparatus would come down in ruin, as

the historian has stated : it is true also that the same result would

follow, if the engineer was one who had not qualified himself, by
experience and observation, to distinguish between good and bad
materials and workmanship ;

but the passage I have quoted conveys
an idea different from these; for it proceeds on the erroneous sup-
position, that the first part of the theoiy of a machine is the whole

theory, and is at variance with something else which is independent
of mathematics, and which constitutes, or is the foundation of,

practical mechanics.
The evil influence of the supposed inconsistency of theoiy and

* Vol. iii., p. 84.
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practice upon speculative science, although much less conspicuous
than it was in the ancient and middle ages, is still occasionally to

be traced. This it is which opposes the mutual communication of
ideas between men of science and men of practice, and which leads

scientific men sometimes to employ, on problems that can only be

regarded as ingenious mathematical exercises, much time and
mental exertion that would be better bestowed on questions having
some connection with the arts, and sometimes to state the results

of really important investigations on practical subjects in a form
too abstruse for ordinary use

j so that the benefit which might be
derived from their application is for years lost to the public; and
valuable practical principles, which might have been anticipated by
reasoning, are left to be discovered by slow and costly experience.
But it is on the practice of mechanics and engineering that the

influence of the great fallacy is most conspicuous and most fatal.

There is assuredly, in Britain, no deficiency of men distinguished

by skill in judging of the quality of materials and work, and in

directing the operations of workmen, by that sort of skill, in

fact, which is purely practical, and acquired by observation and

experience in business. But of that scientifically practical skill

which produces the greatest effect with the least possible expendi-
ture of material and work, the instances are comparatively rare.

In too many cases we see the strength and the stability, which

ought to be given by the skilful arrangement of the parts of a

structure, supplied by means of clumsy massiveness, and of lavish

expenditure of material, labour, and money ;
and the evil is

increased by a perversion of the public taste, which causes works
to be admired, not in proportion to their fitness for their purposes,
or to the skill evinced in attaining that fitness, but in proportion
to their size and cost.

With respect to those works which, from unscientific design,

give way during or immediately after their erection, I shall say
little

j for, with all their evils, they add to our experimental know-

ledge, and convey a lesson, though a costly one. But a class of

structures fraught with much greater evils exists in great abundance

throughout the country : namely, those in which the faults of an
unscientific design have been so far counteracted by massive strength,

good materials, and careful workmanship, that a temporary stability
has been produced, but which contain within themselves sources of

weakness, obvious to a scientific examination only, that must inevi-

tably cause their destruction within a limited number of years.
Another evil, and one of the worst which arises from the separa-

tion of theoretical and practical knowledge, is the fact that a large
number of persons, possessed of an inventive turn of mind and of

considerable skill in the manual operations of practical mechanics,
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are destitute of that knowledge of scientific principles which is

requisite to prevent their being misled by their own ingenuity.
Such men too often spend their money, waste their lives, and it

may be lose their reason, in the vain pursuit of visionary inventions,
of which a moderate amount of theoretical knowledge would be

sufficient to demonstrate the fallacy; and for want of such know-

ledge, many a man who might have been a useful and happy
member of society, becomes a being than whom it would be hard

to find anything more miserable.

The number of those unhappy persons to judge from the patent-

lists, and from some of the mechanical journals must be much

greater than is generally believed. The most absurd of all their

delusions, that commonly called the perpetual motion, or to speak
more accurately, the inexhaustible source of power, is, in various

forms, the subject of several patents in each year.
The ill success of the projects of misdirected ingenuity has very

naturally the effect of driving those men of practical skill who,

though without scientific knowledge, possess prudence and common
sense, to the opposite extreme of caution, and of inducing them to

avoid all experiments, and to confine themselves to the careful

copying of successful existing structures and machines : a course

which, although it avoids risk, would, if generally followed, stop
the progress of all improvement. A similar course has sometimes,

indeed, been adopted by men possessed of scientific as well as

practical skill : such men having, in certain cases, from deference

to popular prejudice, or from a dread of being reputed as theorists,
considered it advisable to adopt the worse and customary design
for a work in preference to a better but unusual design.
Some of the evils which are caused by the fallacy of an incom-

patibility between theory and practice having been described, it

must now be admitted, that at the present time those evils show a
decided tendency to decline. The extent of intercourse, and of

mutual assistance, between men of science and men of practice, the

practical knowledge of scientific men, and the scientific knowledge of

practical men, have been for some time steadily increasing ;
and that

combination and harmony of theoretical and practical knowledge
that skill in the application of scientific principles to practical

purposes, which in former times was confined to a- few remarkable

individuals, now tends to become more generally diffused. With
a view to promote the diffusion of that kind of skill, Chairs were
instituted at periods of from fifteen to ten years ago, in the two

Colleges of the University of London, in the University of Dublin,
in the three Queen's Colleges of Belfast, Cork, and Galway, and in
this University of Glasgow.

For the sake of a parallel, it may here be worth while to refer
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to another branch of practical science that of Medicine. From the

time of the first establishment of Medical Schools in Universities,

there have existed, not only Chairs for the teaching of the purely
scientific departments of Medical Science, such as Anatomy and

Physiology,, but also Chairs for instruction in the art of applying
scientific principles to practice, such as those of Surgery, the

Practice of Physic, and others. The institution of a Chair of

Mechanics and Engineering in a University where there have

long existed Chairs of Mathematics and Natural Philosophy, is an
endeavour to place Mechanical Science on the same footing with that

of Medicine.

Another parallel may be found in an Institution, which, though
not a University, and though established as much for the advance-

ment as for the diffusion of knowledge, has had a most beneficial

effect in promoting the appreciation of science by the public, I
mean the British Association. When that body was first instituted,

both the theoretical advancement and the practical application of

Mechanics, and the several branches of Physics, were allotted to a

single section, called Section A. The business before that Section

soon became so excessive in amount, and so multifarious in its

character, that it was found necessary to institute Section G, for the

purpose of considering the practical application of those branches

of science to whose theoretical advancement Section A was now
devoted; and notwithstanding this separation, those two Sections

work harmoniously together for the promotion of kindred objects ;

and the same men are, in many instances, leading members of both.

What Section G is to Section A in the British Association, this

class of Engineering and Mechanics is to those of Physics and
Mathematics in the University.

It being admitted, that Theoretical and Practical Mechanics are

in harmony with each other, and depend on the same first prin-

ciples, and that they differ only in the purposes to which those

principles are applied, it now remains to be considered, in what
manner that difference affects the mode of instruction to be followed

in communicating those branches of science.

Mechanical knowledge may obviously be distinguished into three

kinds : purely scientific knowledge, purely practical knowledge
and that intermediate knowledge which relates to the application
of scientific principles to practical purposes, and which arises

from understanding the harmony of theory and practice.
The objects of instruction in purely scientific mechanics and

physics are, first, to produce in the student that improvement of

the understanding which results from the cultivation of natural

knowledge, and that elevation of mind which flows from the con-

templation of the order of the universe; and secondly, if possible,
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to qualify him to become a scientific discoverer. In this branch of

study exactness is an essential feature
;
and mathematical difficulties

must not be shrunk from when the nature of the subject leads to

them. The ascertainment and illustration of truth are the objects;
and structures and machines are looked upon merely as natural

bodies are : namely, as furnishing experimental data for the ascer-

taining of principles, and examples for their illustration.

Instruction in purely practical knowledge is that which the

student acquires by his own experience and observation of the

transaction of business. It enables him to judge of the quality of

materials and workmanship, and of questions of convenience and
commercial profit, to direct the operations of workmen, to imitate

existing structures and machines, to follow established practical

rules, and to transact the commercial business which is connected

with mechanical pursuits.
The third and intermediate kind of instruction, which connects

the first two, and for the promotion of which this Chair was estab-

lished, relates to the application of scientific principles to practical

purposes. It qualifies the student to plan a structure or a machine
for a given purpose, without the necessity of copying some existing

example, and to adapt his designs to situations to which no existing

example aifords a parallel. It enables him to compute the theo-

retical limit of the strength or stability of a structure, or the

efficiency of a machine of a particular kind, to ascertain how far

an actual structure or machine fails to attain that limit, to dis-

cover the causes of such shortcomings, and to devise improvements
for obviating such causes

;
and it enables him to judge how far an

established practical rule is founded on reason, how far on mere

custom, and how far on error.

There are certain characteristics in the mode of treating the

subjects, by which this practical-scientific instruction ought to be

distinguished from instruction for purely scientific purposes.
In the first place it will be universally admitted, that as far as is

possible, mathematical intricacy ought to be avoided.

In the original discovery of a proposition of practical utility, by
deduction from general principles and from experimental data, a

complex algebraical investigation is often not merely useful, but

indispensable ;
but in expounding such a proposition as a part of

practical science, and applying it to practical purposes, simplicity is

of the first importance : and, in fact, the more thoroughly a scien-

tific man has studied the higher mathematics, the more fully does
he become aware of this truth, and, I may add, the better qualified
does he become to free the exposition and application of scientific

principles from mathematical intricacy. I cannot better support
this view than by referring to Sir John Herschel's Outlines of
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Astronomy a work in which one of the most profound mathema-
ticians in the world has succeeded admirably in divesting of all

mathematical intricacy the explanation of the principles of that

natural science which employs the higher mathematics most.

In fact, the symbols of algebra, when employed in abstruse and

complex theoretical investigations, constitute a sort of thought-

saving machine, by whose aid a person skilled in its use can solve

problems respecting quantities, and dispense with the mental labour
- of thinking of the quantities denoted by the symbols, except at the

beginning and end of the operation. In treating of the practical

application of scientific principles, an algebraical formula should

only be employed when its shortness and simplicity are such as to

render it a clearer expression of a proposition or rule than common
language would be, and when there is no difficulty in keeping the

thing represented by each symbol constantly before the mind.
Another characteristic by which instruction in practical science

should be distinguished from purely scientific instruction, is one
which appears to me to possess the advantage of calling into opera-
tion a mental faculty distinct from those which are exercised by
theoretical science. It is of the following kind :

In theoretical science, the question is What are we to think?

and when a doubtful point arises, for the solution of which either

experimental data are wanting, or mathematical methods are not

sufficiently advanced, it is the duty of philosophic minds not to dis-

pute about the probability of conflicting suppositions, but to labour
for the advancement of experimental inquiry and of mathematics,
and await patiently the time when these shall be adequate to solve

the question.
But in practical science the question is What are we to do?

a question which involves the necessity for the immediate adoption
of some rule of working. In doubtful cases, we cannot allow our
machines and our works of improvement to wait for the advance-
ment of science; and if existing data are insuflicient to give an exact
solution of the question, that approximate solution must be acted

upon which the best data attainable show to be the most probable.A prompt and sound judgment in cases of this kind is one of the
characteristics of a PRACTICAL MAN, in the right sense of that term.
In conclusion, I will now observe, that the cultivation of the

Harmony between Theory and Practice in Mechanics of the

application of Science to the Mechanical Arts besides all the
benefits which it confers on us, by promoting the comfort and

prosperity of individuals, and augmenting the wealth and power of
the nation confers on us also the more important benefit of raising
the character of the mechanical arts, and of those who practise
them. A great mechanical philosopher, the late Dr. Eobison of
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Edinburgh, after stating that the principles of Carpentry depend
on two branches of the science of Statics, remarks "It is thi&

which makes Carpentry a liberal art."

So also is Masonry a liberal art, so is the art of working in

Iron, so is every art, when guided by scientific principles. Every
structure or machine, whose design evinces the guidance of science,
is to be regarded not merely as an instrument for promoting con-

venience and profit, but as a monument and testimony that those

who planned and made it had studied the laws of nature; and this

renders it an object of interest and value, how small soever its

bulk, how common soever its material.

For a century there has stood, in a room in this College, a small,

rude, and plain model, of appearance so uncouth, that when an
artist lately introduced its likeness into a historical painting, those

who saw the likeness, and knew nothing of the original, wondered
what the artist meant by painting an object so unattractive.

But the artist was right ; for ninety-one years ago a man took that

model, applied to it his knowledge of natural laws, and made it

into the first of those steam engines that now cover the land and
the sea; and ever since, in Reason's eye, that small and uncouth
mass of wood and metal shines with imperishable beauty, as the
earliest embodiment of the genius of James Watt.
Thus it is that the commonest objects are by science rendered

precious; and in like manner the engineer or the mechanic, who
plans and works with understanding of the natural laws that regulate
the results of his operations, rises to the dignity of a Sage.





INTRODUCTION.

DEFINITION OF GENERAL TERMS AND DIVISION OF THE SUBJECT.

ART. 1. Mechanics is the science of rest, motion, and force.

The laws, or first principles of mechanics, are the same for all

bodies, celestial and terrestrial, natural and artificial.

The methods of applying the principles of mechanics to particular
cases are more or less different, according to the circumstances of

the case. Hence arise branches in the science of mechanics.

2. Applied Mechanics. The branch to which the term " APPLIED
MECHANICS" has been restricted by custom, consists of those

'

consequences of the laws of mechanics which relate to works of

human art.

A treatise on applied mechanics must commence by setting forth

those first principles which are common to all branches of mechanics ;

but it must contain only such consequences of those principles as

are applicable to purposes of art.

3. Matter (considered mechanically) is that which fills space.

4. Bodies are limited portions of matter. Bodies exist in three

conditions the solid, the liquid, and the gaseous. Solid bodies

tend to preserve a definite size and shape. Liquid bodies tend to

preserve a definite size only. Gaseous bodies tend to expand inde-

finitely. Bodies also exist in conditions intermediate between the

solid and liquid, and possibly also between liquid and gaseous.

5. A Material or Physical Volume is the space occupied by a body
or by a part of a body.

6. A Material or Physical Surface is the boundary of a body, or

between two parts of a body.

7. Line, Point, Physical Point, Measure of Length. In mechanics,
as in geometry, a LINE is the boundary of a surface, or between two
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parts of a surface ; and a POINT is the boundary of a line, or be-

tween two parts of a line j but the term "
Physical Point" is some-

times used by mechanical writers to denote an immeasurably small

body a sense inconsistent with the strict meaning of the word
"
point j" but still not leading to error, so long as it is rightly under-

stood.

In measuring the dimensions of bodies, the standard British unit

of length is the yard, being the length at the temperature of 62

Fahrenheit, and at the mean atmospheric pressure, between the

two ends ofa certainbar which is kept in the office of the Exchequer,
at Westminster.

In computations respecting motion and force, and in expressing
the dimensions of large structures, the unit of length commonly
employed in Britain is thefoot, being one-third of the yard.

In expressing the dimensions of machinery, the unit of length

commonly employed in Britain is the inch, being one-thirty-sixth

part of the yard. Fractions of an inch are very commonly stated

by mechanics and other artificers in halves, quarters, eighths, six-

teenths, and thirty-second parts ;
but according to a resolution of

the Institution of Mechanical Engineers, passed at the meeting held

at Manchester in June, 1857, the practice has been introduced of

expressing fractions of an inch in decimals.

The French unit of length is the metre, being about ^ooooooo of

the earth's circumference, measured round the poles. (See table

at the end of the volume.)

8. Rest is the relation between two points, when the straight
line joining them does not change in length nor in direction.

A body is at rest relatively to a point, when every point in the

body is at rest relatively to the first mentioned point.

9. Motion is the relation between two points when the straight
line joining them changes in length, or in direction, or in both.

A body moves relatively to a point when any point in the body
moves relatively to the first mentioned point.

10. Fixed Point. When a single point is spoken of as having
motion or rest, some other point, either actual or ideal, is always
either expressed or understood, relatively to which the motion or

rest of the first point takes place. Such a point is called a fixed

point.
So far as the phenomena of motion alone indicate, the choice of

a fixed point with which to compare the positions of other points

appears to be arbitrary, and a matter of convenience alone
;
but

when the laws of force, as affecting motion, come to be considered,
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it will be seen that there are reasons for calling certain points

fixed, in preference to others.

In the mechanics of the solar system, the fixed point is what is

called the common centre of gravity of the bodies composing that

system. In applied mechanics, the fixed point is either a point
which is at rest relatively to the earth, or (if the structure or

machine under consideration be moveable from place to place on
the earth), a point which is at rest relatively to the structure, or to

the frame of the machine, as the case may be.

Points, lines, surfaces, and volumes, which are at rest relatively
to a fixed point, are fixed.

11. Cinematics. The comparison of motions with each other,

without reference to their causes, is the subject of a branch of

geometry called "Cinematics"
'

12. Force is an action between two bodies, either causing or

tending to cause change in their relative rest or motion.

The notion of force is first obtained directly by sensation; for

the forces exerted by the voluntary Trmsjcjps can be felt. The ex-

istence of forces other than muscular tension is inferred from their

effects.

13. Equilibrium or Balance is the condition of two or more
forces which are so opposed that their combined action on a body
produces no change in its rest or motion.

The notion of balance is first obtained by sensation; for the

forces exerted by voluntary muscles can be felt to balance some-
times each other, and sometimes external pressures.

14. statics aud Dynamics. Forces may take effect, either by
balancing other forces, or by producing change of motion. The
former of those effects is the subject of Statics; the latter that of

Dynamics; these, together with Cinematics, already defined, form
the three great divisions of pure, abstract, or general mechanics.

15. Structures ami Machines. The works of human art to which
the science of applied mechanics relates, are divided into two
classes, according as the parts of which they consist are intended to

rest or to move relatively to each other. In the former case they
are called Structures; in the latter, Machines. Structures are sub-

jects of Statics alone; Machines, when the motions of their parts
are considered alone, are subjects of Cinematics; when the forces

acting on and between their parts are also considered, machines are

subjects of Statics and Dynamics.
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16. General Arrangement of the Subject. The subject of the pre-
sent treatise will be arranged as follows :

I. FIRST PRINCIPLES OP STATICS.

II. THEORY OF STRUCTURES.

III. FIRST PRINCIPLES OF CINEMATICS.

IV. THEORY OF MECHANISM.

"V. FIRST PRINCIPLES OF DYNAMICS.

VI. THEORY OF MACHINES.



PART I.

PRINCIPLES OF STATICS. -$4?

CHAPTER I.

BALANCE AND MEASUREMENT OF FORCES ACTING IN ONE
STRAIGHT LINE.

17. Forces how Determined. Although, every force (as has been
stated in Art. 12) is an action between two bodies, still it is con-

ducive to simplicity to consider in the first place the condition of

one of those two bodies alone.

The nature of a force, as respects one of the two bodies between
which it acts, is determined, or made known, when the following
three things are known respecting it : first, the place, or part of

the body to which it is applied; secondly, the direction of its

action; thirdly, its magnitude.
18. Place of Application Point of Application. The place of the

application of a force to_a body may be the whole or part of its in-

ternal mass
;
in which case the force is an attraction or a repulsion,

according~~as it tends to move the bodies between which it acts

towards or from each other; or the place of application may be t]je

surface at which two bodies touch each other, or the bounding
surface between two parts of the same body, in which case the force

is a tension or pull, a thrust or push, or a lateral stress, according
to circumstances.

Thus every force has its action distributed over a certain space,
uither a volume or a surface

;
and a force concentrated at a single

point has no real existence. Nevertheless it is necessary, in treating
of the principles of statics, to begin by demonstrating the properties
of such ideal forces, conceived to be concentrated at single points.
It will afterwards be shown how the conclusions so arrived at re-

specting singleforces (as they may be called), are made applicable to

the distributed forces which really act in nature.

In illustrating the principles of statics experimentally, a force

concentrated at a single point may be represented with any required
degree of accuracy "by a force distributed over a very small space, if

that space be made small enough.
c
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19. Supposition of Perfect Rigidity. In reasoning respecting
forces concentrated at single points, they are assumed to be applied
to solid bodies which are perfectly rigid, or incapable of alteration

of figure under any forces which can be applied to them. This

also is a supposition not realized in nature. It will afterwards be

shown how its consequences are applied to actual bodies.

20. Direction Line of Action. The DIRECTION of a force is that

of the motion which it tends to produce. A straight line drawn

through the point of application of a single force, and along its

direction, is the LINE OF ACTION of that force.

21. magnitude Unit of Force. The magnitudes of two forces

are equal, when being applied to the same body in opposite direc-

tions along the same line of action, they balance each other.

The magnitude of a force is expressed arithmetically by stating
in numbers its ratio to a certain unit or standard of force, which is

usually the weight (or attraction towards the earth), at a certain

latitude, and at a certain level, of a known mass of a certain

material. Thus the British unit of force is the standard pound
avoirdupois; which is the weight in the latitude of London of a

certain piece of platinum kept in the Exchequer office (See the Act
18 and 19 Yict., cap. 72; also a paper by Professor W. H. Miller,

in the Philosophical Transactions for 1856).
For the sake of convenience or of compliance with custom, other

units of force are occasionally employed in Britain, bearing certain

ratios to the standard pound; such as

The grain = TTO of a pound avoirdupois.

The troy pound = 5,760 grains = 0*82285714 pound avoirdupois.

The hundredweight = 112 pounds avoirdupois.

The ton = 2,240 pounds avoirdupois.

The French standard unit of force is the gramme, which is the

weight, in the latitude of Paris, of a cubic centimetre of pure water,
measured at the temperature at which the density of water is

greatest, viz., 4'l centigrade, or 39-4 Fahrenheit, and under the

pressure which supports a barometric column of 760 millimetres of

mercury.
A comparison of French and British measures of force and of

size is given in a table at the end of this volume.
22. Resultant of Forces Acting in One Straight Line. The RE-

SULTANT of any number of given forces applied to one body, is a

single force capable of balancing that single force which balances

the given forces ; that is to say, the resultant of the given forces is

equal and directly opposed to the force which balances the given
forces ; and is equivalent to the given forces so far as the balance of
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the body is concerned. The given forces are called components of

their resultant.

The resultant of any number of forces acting on one body in the
same straight line of action, acts along that line, and is equal in

magnitude to the sum of the component forces
; it being under-

stood, that when some of the component forces are opposed to the

others, the word " sum "
is to be taken in the algebraical sense ; that

is to say, that forces acting in the same direction are to be added to,
and forces acting in opposite directions subtracted from each other.

23. Representation of Forces by Lines. A single force may be

represented in a drawing by a straight line ; an extremity of the
line indicating the point of

application of the force, the

direction of the line, the direc-

tion ofthe force, andthelength
of the line, the magnitude of the

force, according to an arbitrary

For example, in fig. 1, the

fact that the body B B B B is acted upon at the point G! by a

given force, may be expressed by drawing from Ol
a straight Hne

G! F! in the direction of the force, and of a length representing the

magnitude of the force.

If the force represented by G^Fj is balanced by a force applied
either at the same point, or at another point G2 (which must be in

the line of action L L of the force to be balanced), then the second

force will be represented by a straight line G2 F2, opposite in direc-

tion, and equal in length to G! F1?
and lying in the same line of

action L L.

If the body B B B B (fig. 2), be balanced by several forces acting
in the same straight line LL, applied at points G x O2, &c., and re-

presented by lines Gx F1? 2 F2, &c. ;
then either direction in the

line L L (such as the direc-

tion towards + L) is to be
considered as positive, and
the opposite direction (such
as the direction towards

L) as negative; and ifthe
sum of all the lines repre-

senting forces which point
positively be equal to the

Fi 2.

sum of all those which point

negatively, the algebraical sum of all the forces is nothing, and the

body is balanced.
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24. Pressure. Most writers on mechanics, in treating of the

first principles of statics, use the word "pressure
"

to denote any
balancedforce.
In the popular sense, which is also the sense generally employed

in applied mechanics, the word pressure is used to denote a force,

of the nature of a thrust, distributed over a surface; in other words,
the kind of force with which a body tends to expand, or resists an
effort to compress it.

In this treatise care will be taken so to employ the word "
pres-

sure
"
that the context shall show in what sense it is used.



CHAPTER II.

THEOKY OP COUPLES AND OF THE BALANCE OF PARALLEL FORCES.

SECTION 1. On Couples with the Same Axis.

25. Couples. Two forces of equal magnitude applied to the same

body in parallel and opposite directions, but not in the same line of

action, constitute what is called a "
couple"

26. Force ofa Couple Arm or leverage. Theforce of a COUple is

the common magnitude of the two equal forces
;
the arm or leverage

of a couple is the perpendicular distance between the lines of action
of the two equal forces.

27. Tendency ofa Couple Plane of a Couple Right-handed and
Left-handed Couples. The tendency of a couple is to turn the body
to which it is applied in the plane of the couple that is, the plane
which contains the lines of action of the two forces. (The plane in

which a body turns, is any plane parallel to those planes in the

body whose position is not altered by the turning). T]ig^*.r?'.<?
nf a.

couple is any line perpendicular to its plane. The turning of a

body is said to be right-handed when it appears to a spectator to

take place in the same direction

with that of the hands of a watch,
and left-handed when in the opposite

direction; and couples are desig-
nated asright-handed orleft-handed

according to the direction of the

turning which they tend to pro-
duce.

Thus in fig. 3, the equal and

opposite forces C^ F1}
O2 F2,

whose

leverage is Lj L2,
form a right-

handed couple; and the equal and

opposite forces 3 F3, O4 F4,
form a left-handed couple.

28. Equivalent Couples of JEqual Force and [Leverage. In Order

that two couples similar in direction, and of equal force and lever-

age, may be exactly alike or equivalent in their tendency to turn the

body, it is necessary and sufficient that their planes should be either

identical or parallel.

Fig. 8.



22 PRINCIPLES OF STATICS.

Two couples applied to the same body in the same plane, or in

parallel planes, of equal force and leverage, but opposite in direction,

balance each other; and if for either of the two an equivalent

couple be substituted, the equilibrium will not be disturbed.

29. Moment of a Couple. The moment of a couple means the

product of the magnitude of its force by the length of its arm. If

the force be a certain number of pounds, and the arm a certain

number of feet, the product of those two numbers is called the

moment in. foot-pounds, and similarly for other measures.

30. Addition of CouplesofEqual Force. LEMMA. Two COUples of

equal^ force acting in the same direction, with the same axis* are equiva-
lent to a couple whose moment is the sum of their moments. Let the

two couples be denoted by A and B; let FA = FB be their equal

forces; let LA and LB be their

respective arms; then FA LA and
FB LB are their moments, which,
as their forces are equal, are pro-

portional to the arms. In fig. 4,

let the forces FA constituting A
be applied in linespassingthrough
a and c, a c or LA being perpen-
dicular to the lines of action of

Fig. 4. the forces; and if the forces con-

stituting B be not already applied as shown in the figure, sub-

stitute for B an equivalent couple of equal force and arm, having
its forces FB applied in lines parallel to the lines of action of the

forces FA,
and passing one through the point c and the other through

6, so that the arm c b or LB shall be in the same straight line with

a c or LA. Then the equal and opposite forces F^ FB, applied at c,

balance each other, and there remain only the equal and opposite
forces FA,

FB, applied at a and 6, which form a couple whose force

is FA = FB,
and its arm ~ab = LA + LB, being the sum of the arms of

the couples A and B
; so that its moment is the sum of their

moments; and this couple is equivalent to the two couplesA and B.

31. Equivalent Couples ofEqual Moment. THEOREM. If the mo-

ments of two couples acting in the same direction and with the same axis

are equal, those couples are equivalent. Let one of the couples be called

A, and let its force, arm, and moment be respectively FA ,
LA ,

and
FA LA ; let the other couple be called B, and let its force, arm, and
moment be respectively FB,

LB,
and FB LB . The equality of the

moments of those couples is expressed by the equation

FA LA = FB LB.

If the forces and arms of the two couples be commensurable, so

that
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FA : FB : : LB : LA : : m : n

(m and n being two whole numbers),

let /=*. = *.,m n

and I = ^ ~ I*
.

Tfi n

Then the couple A is equivalent to m n couples of the moment./ 1 ;

and so also is the couple B; therefore the couples A and B are

equivalent to each other.

If the forces and arms are incommensurable, it is always possible
to find forces and arms which shallHbe commensurable, and shall

differ from the given forces and arms by differences less than any
given quantity; so that if the theorem were in error for incommen-
surable forces and arms, it would also be in error for certain com-
mensurable forces and arms

;
but this is impossible ; therefore the

theorem is true for incommensurable as well as for commensurable
forces and arms.

32. Resultant of Couples with the Same Axis. COROLLARY. A
combination ofany number of couples having the same axis is equiva-
lent to a couple whose moment is the algebraical sum of the moments

of the combined couples.

33. Equilibrium of Couples having the Same Axis. Two opposite

couples of equal moment, having the same axis, balance each other.

Any number of couples, having the same axis, balance each other

when the moments of the right-handed couples are together equal
to the moments of the left-handed couples j

in other words, when
the resultant moment is nothing.

34. Representation of Couples by lines. The nature and amount
of the tendency of a couple to turn a body are completely known
when the moment and direction of the couple, and the position of

its axis, are known. These circum-

stances are expressed by means of a

line in the following manner.
In

fig. 5, from any point draw a

straight line O M, parallel to the axis

(that is, perpendicular to the plane) of

the couple to be represented, and in such
F* 5

a direction, that to an observer looking
from O towardsM the couple shall seem right-handed j and make

the length of the line OM represent the moment of the couple,

according to any assigned scale.
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SECTION 2. On Couples with Different Axes.

35. Resultant of Two Couples with Different Axes. THEOREM.

Iftlie two sides of a parallelogram represent the positions of the axes,

and the directions and moments, of two couples acting on the same

body, tJie diagonal of the parallelogram will in like manner represent

the position of the axis, tJie direction and the moment of the resultant

couple, which is equivalent to those two.

In
fig. 6, let the plane of the paper represent a plane which con-

tains the axes of the two couples, and is therefore perpendicular to

both their planes. Let a c, c b be parts of the lines in which the

planes of the couples A,B, respectively intersect

the plane of the paper. If the couples are not

already of equal force, reduce them to equiva-
lent couples of equal force

;
let F denote the

common magnitude of their forces, and let LA,

LB denote the respective arms of the couples.
From c, the intersection of the three planes

already mentioned, take ca LA,
c b = LB ,

and join a b. Conceive the couple A (or an

equivalent couple) to consist of the force + F
? acting forwards at a, and the equal and opposite
1

force F acting backwards at c
;
also conceive

the couple B (or an equivalent couple) to con-

sist of the force + F acting forwards at c, and
the equal and opposite force F acting back-

wards at b. The forces + F,
-

F, at c balance each other
;
and

there are left the equal and opposite forces + F at a, and F at b,

forming the resultant couple, which is equivalent to the two couples
A and B, and has for its arm the third side a b = Lc of the triangle
a be.

Now from any point O draw O MA perpendicular to a c, and
OMB perpendicular to b c, and representing the axes, directions,
and moments of the couples A and B : complete the parallelogram
of which those lines are the sides, and draw its diagonal O Mc .

This diagonal will be perpendicular to a b, and will therefore re-

present the axis and direction of the resultant couple ;
and because

of the similarity of the triangles a be, McMB,
the following pro-

portions will exist :

OMA :OMB :OMC,

ii L A : Li> : LP i

and consequently OMc will also represent the moment of the re-

sultant couples. Q. E. D.
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36. Equilibrium of Three Couples with Different Axes in the Same
Plane COROLLARY. A couple equal and opposite to that represented

by the diagonal OMC balances the couples represented by the sides

OMA,
OMB. In other words, three couples represented by the three

sides of a triangle balance each other.

37. Equilibrium of any Number of Couples. COROLLARY. If a
number of couples acting on tlie same body be represented by a series

of lines joined end to end, so as

to form sides of a polygon, and if
the polygon is closed, these couples
balance each other. To fix the

ideas let there be five couples,
whose moments are respectively

MI, M2, M3, M4,
M5 ;

and let

them be represented by the sides

of the polygon in fig. 7 in such a
manner that

M! is represented by O A, and seems right-handed looking from A towards 0.

M2 AB, from B towards A.

M3 BC, from C towards B.

M4 CD, from D towards C.

M5 D O, from towards D.

Then by the theorem of Article 35, the resultant of M
x
and Ma is

O B
;
the resultant of this and M3 is O~C j the resultant of this and

M4 is D, right-handed in looking from D towards O, and con-

sequently equal and opposite to M5 ,
which last couple balances it,

and reduces the final resultant to nothing. Q. E. D.
This proposition evidently holds for any number of couples, and

whether the closed polygon be plane or gauche (that is to say, not

plane).
The resultant of the couples represented by all the sides of the

polygon, except one, is equal and opposite to the couple represented
by the excepted side.

SECTION 3. On Parallel Forces.

38. Balanced Parallel Forces in General. A balanced system of

parallel forces consists either of pairs of directly opposed equal
forces, or of couples of equal forces, or of combinations of such

pairs and couples.
Hence the following propositions as to the relations amongst the

magnitudes of systems of parallel forces are obvious :

I. In a balanced system of parallel forces, the sums of the forces

acting in opposite directions are equal ; in other words, the alge-
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braical sum of the magnitudes of all the forces taken with their

proper signs is nothing.
II. The magnitude of the resultant of any combination of par-

allel forces is the algebraical sum of the magnitudes of the forces.

The relations amongst the positions of the lines of action of

balanced parallel forces remain to be investigated; and in this

inquiry, all pairs of directly opposed equal forces may be left out of

consideration j for each such pair is independently balanced what-

soever its position may be
; so that the question in each case is to

be solved by means of the theory of couples.
39. Equilibrium of Three Parallel Forces in One Plane. Prin-

ciple of the Lever. THEOREM. Ifthree parallelforces applied to one

body balance each other, they
must be in one plane; the two

extreme forces must act in the

same direction; the middleforce
must act in the opposite direc--

tion; and the magnitude ofeach

force must be proportional to

the distance between tJie lines oj
action of the other two. Let
a body (fig. 8) be maintained

8 * in equilibrio by two opposite

couples having the same axis, and of equal moments,

FA LA= FB LB ,

according to the notation already used ;
and let those couples be so

applied to the body that the lines of action of two of these forces,

FA,
FB,

which act in the same direction, shall coincide.

Then those two forces are equivalent to the single middle force

Fc = -
(FA + FB), equal and opposite to the sum of the extreme

forces + FA, + FB,
and in the same plane with them ; and if the

straight line A C B be drawn perpendicular to the lines of action

of the forces, then
~

AB = LA + LB ;

and consequently

FA :FB :F ::C~B:A~C~:AB;

so that each of the three forces is proportional to the distance

between the lines of action of the other two ;
and if any three

parallel forces balance each other, they must be equivalent to two

couples, as shown in the figure.

40. Resultant of Two Parallel Forces. The resultant of any two

of the three forces FA,
FB,

Fc ,
is equal and opposite to the third.

Hence the resultant of two parallel forces is parallel to them,
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and in the same plane j if they act in the same direction, then their

resultant is their sum, acts in the same direction, and lies between
them ;

if they act in opposite directions, their resultant is their

difference, acts in the direction of, and lies beyond, the prepon-

derating force ; and the distance between the lines of action of any
two of those three forces the resultant and its two components

is proportional to the third force.

In order that two opposite parallel forces may have a single

resultant, it is necessary that they should be unequal, the resultant

being their difference. Should they be equal, they constitute a "V

couple, which has no single resultant. ; ^
41. Resultant ofa Couple and a Single Force in Parallel Planes.

Let M denote the moment of a couple applied to a body (fig. 9);
and at a point O let a single
force F be applied, in a plane

parallel to that of the couple.
For the given couple substitute

an equivalent couple, consisting
of a force F equal and directly

opposed to F at O, and a force

F applied at A, the arm. A O
, . M , .

being = -
,
and 01 course par-

Jj

allel to the plane of the couple
M. Then the forces at balance each other, and F applied at

A is the resultant of the single force F applied at 0, and the couple
M ; that is to say, that if to a single force F there be added a couple
M whose plane is parallel to the force, the effect of that addition is

to shift the line of action of the force parallel to itself through a

M
distance O A = -=^-j to the left if M is right-

_b

handed to the right ifM is left-handed.

42. Moment of a Force with respect to an Axis.

Let the straight line F represent a force ap-

plied to a body. Let X be any straight line

perpendicular in direction to the line of action

of the force, and not intersecting it, and let AB
be the common perpendicular of those two lines.

At B conceive a pair of equal and directly op-

posed forces to be applied in a line of action

parallel to F, viz. : F= F, and -F= - F. The

supposed application of such a pair of balanced

forces does not alter the statical condition of the
Fig. 10.

body. Then the original single force F, applied in a line tra-
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versing A, is equivalent to the force F' applied in a line traversing B,
the point in OX which is nearest to A, combined with the couple

composed of F and F', whose moment is F AB. This is

called the moment of the force F relatively to the axis O X, and
sometimes also, the moment of the force F relatively to the plane
which contains X, and is parallel to the line of action of the

force.

If from the point B there be drawn two straight lines B D and
B E, to the extremities of the line F representing the force, the

area of the triangle BDE being = J F -AB, represents one-half of

the moment of F relatively to O X.
43. Equilibrium of any System of Parallel Forces in One Plane.

In order that any system of parallel forces whose lines of action

are in one plane may balance each other, it is necessary and suffi-

cient that the following conditions should be fulfilled :

I. (As already stated in Art. 38) that the algebraical sum of

the forces shall be nothing :

II. That the algebraical sum of the moments of the forces rela-

tively to any axis perpendicular to the plane in which they act

shall be nothing :

two conditions which are expressed symbolically as follows :
-

let F denote any one of the forces, considered as positive or nega-

tive, according to the direction in which it acts
;

let y be the per
j

pendicular distance of the line of action of this force from an

arbitrarily assumed axis O X, y also being considered as positive or

negative, according to its direction
; then,

Sum of forces, 2 F =
;

Sum of moments, 2 y F = 0.

For, by the last Article, each force F is equivalent to an equal and

parallel force F applied directly to O X, combined with a couple

y F ; and the system of forces F', and the system of couples y F,
must each be in equilibrio, because when combined they are equiva-
lent to the balanced system of forces F.

In summing moments, right-handed couples are usually considered

as positive, and left-handed couples as negative.
44. Resultant ofanyNumber ofParallel Forces in One Plane. The

resultant of any number of parallel forces in cne plane is a force in

the same plane, whose magnitude is the algebraical sum of the

magnitudes of the component forces, and whose position is such,

that its moment relatively to any axis perpendicular to the plane in

which it acts is the algebraical sum of the moments of the com-

ponent forces. Hence let Fr denote the resultant of any number
of parallel forces in one plane, and yr the distance of the line of
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action of that resultant from the assumed axis X to which the

positions of forces are referred : then

Fr
= 2 F

;

2-F

In some cases, the forces may have no single resultant, 2 J?

being =
; and then, unless the forces balance each other com-

pletely, their resultant is a couple of the moment 2 . y F.

4:5. Moments of a Force with respect to a Pair of Rectangular Axes
In fig. 11, let F be any single

force; O an arbitrarily-assumed

point,called the "originof co-ordin-

ates;" -X + X, - Y O + Y,
a pair of axes traversing O, 'at

right angles to each other and to

the line of action of F. Let
A B = y, be the common perpen-
dicular of F and OX

;
let AC = x,

be the common perpendicular ofF
and OY. x and y are the "rectan-

gular co-ordinates" of the line of

action of F relatively to the axes
- X + X, - Y + Y, re-

spectively. According to the ar-

rangement of the axes in the

figure, x is to be considered as

positive to the right, and nega-
tive to the left, of YO + Y; and y is to be considered as

positive to the left, and negative to the right, of-XO + X ; right
and left referring to the spectator's right and left hand. In the

particular case represented, x and y are both positive. Forces, in the

figure, are considered as positive upwards, and negative downwards ;

and in the particular case represented, F is positive.
At B conceive a pair of equal and opposite forces, F' and F',

to be applied ;
F' being equal and parallel to F, and in the same

direction. Then, as in Article 42, F is equivalent to the single force

F' = F applied at B, combined with the couple constituted by F and
- F' with the arm y, whose moment is y F ; being positive in the

case represented, because the couple is right-handed. Next, at the

origin 0, conceive a pair of equal and opposite forces, F" and F",
to be applied, F" being equal and parallel to F and F', and in the

same direction. Then the single force F' is equivalent to the

single force F'
f = F7 = F applied at O, combined with the couple

constituted by F' and - F" with the arm OB = x
}
whose moment is

11.
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x F
; being negative in the case represented, because the couple

is left-handed.

Hence it appears finally, that a force F acting in a line whose
co-ordinates with respect to a pair of rectangular axes perpendicular
to that line are x and y, is equivalent to an equal and parallel
force acting through the origin, combined with two couples whose
moments are,

y F relatively to the axis O X, and x F relatively to the axis

OY ; right-handed couples being considered positive ; and + Y
lying to the left of + X, as viewed by a spectator looking from
+ X towards O, with his head in the direction of positive forces.

46. Equilibrium of any System of Parallel Forces. In order

that any system of parallel forces, whether in one plane or not, may
balance each other, it is necessary and sufficient that the three

following conditions should be fulfilled :

I. (As already stated in Art. 38), that the algebraical sum of the

forces shall be nothing :

II. and III. That the algebraical sums of the moments of the

forces, relatively to a pair of axes at right angles to each other, and
to the lines of action of the forces, shall each be nothing :

conditions which are expressed symbolically as follows :

S-F = 0; S-yF = 0; 2 x F = 0;
for by the last Article, each force F is equivalent to an equal and

parallel force F" applied directly to O, combined with two couples,

y F with the axis OX, and a; F with the axis O Y; and the

system of forces F", and the two systems of couples y F and x F,
must each be in equilibrio, because when combined they are equi-
valent to the balanced system of forces F.

47. Resultant ofany Number of Parallel Forces. The resultant of

any number of parallel forces, whether in one plane or not, is a
force whose magnitude is the algebraical sum of the magnitudes of

the component forces, and whose moments relatively to a pair of

axes perpendicular to each other and to the lines of action of the

forces, are respectively equal to the algebraical sums of the moments
of the component forces relatively to the same axes. Hence let

Fr denote the resultant, and xr and yr the co-ordinates of its line

of action, then

In some cases, the forces may have no single resultant,
2 J1
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being = ; and then, unless the forces balance each other com-

pletely, their resultant is a couple, whose axis, direction, and
moment are found as follows :

Let M,= 2 . y F ;
M

y
= - 2 . x F ;

be the moments of the pair of partial resultant couples relatively to

the axes O X and Y respectively. From O, along those axes,
set off two lines representing respectively M, and M

y according to

the rule of Art. 34 ;
that is to say, proportional to those moments

in length, and pointing in the direction from which those couples
must respectively be viewed in order that they may appear right-
handed. Complete the rectangle whose sides are those lines ; its

diagonal (as shown in Art. 35) will represent the axis, direction,
and moment of the final resultant couple. Let Mr be the moment
of this couple ;

then

M;
+ Mj

and if 6 be the angle which its axis makes with O X,

SECTION 4. On Centres ofParallel Forces.

48. Centre of a Pair of Parallel Forces. In fig. 12, let A and
B represent a pair of points, to which a pair of parallel forces, FA

and FB,
of any given magnitudes, are applied. In the straight line

joining A and B take the point C such,
that its distances from A and B respec-

tively shall be inversely proportional to the

forces applied at those points. Then from
the principle of Art. 40 it is obvious that

the resultant of FA and FB traverses C. It

is also obvious that the position of the point fa y &
C depends solely on the proportionate mag- Fjg 12 .

nitude of the parallel forces FA and FB,
and

not on their absolute magnitude, nor on the angular position of
their lines of action; so that if for those forces there be substituted

another pair of parallel forces, fa,fb, in any other angular position,
and if those new forces bear to each other the same proportion with
the original forces, viz. :

/a :/6 ::FA :FB : : BC"

the point C where the resultant cuts A B will still be the same,
This point is called the Centre of Parallel Forces, for a pair of
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forces applied at A and B respectively, and having the given

ratio BC : AC.
49. Centre of any System of Parallel

Forces. Let parallel forces, F
, Fj, be

applied at the points A A! (fig. 13.),
Draw the straight line AQ A1?

in which
take Cj, so that

F :Fi:

then will Cx be the centre of a pair of

Fig 13
^'^

Parallel forces applied at A and Alt and

having the proportion F : Fx . At a third

point, A2 ,
let a third parallel force, F2 ,

be applied. Then, because
the forces F

,
F

15 are together equivalent to a parallel force, F + Fx ,

applied at 0^ draw the straight line Cj A 2 ,
in which take C

2 ,
so that

then will C
2 be the centre of three parallel forces applied at A

,
A1?

A
2 ,
and having the proportions F : Fj : F2

. At a fourth point,A
3 ,

let a fourth parallel force, F3 ,
be applied. Then, because the

forces F
,
F15 F2,

are together equivalent to a parallel force, F +
j + F2 , applied at C

2,
draw the straight line C

2 ,
A3,

in which take
C3,

so that

F2 : F8 : : C3 A3 : C3 C2 ;

then will C3 be the centre of four parallel forces applied at A
, A,,

A 2 ,
A3, and having the proportion F : F! : F2 : F3. By continuing

this process the centre of any system of parallel forces, how nume-
rous soever, may be found; and hence results the following

THEOREM. If there be given a system of points, and the mutual
ratios ofa system ofparallel forces applied to those points, then there

is one point, and one only, which is traversed by the line of action of
tJie resultant of every system ofparallelforces having the given mutual
ratios and applied to the given system ofpoints, wliatsoever may be

the absolute magnitudes of those forces, and tJie angular position of
their lines of action.

50. Co-ordinates of Centre of Parallel Forces. The method of

finding centres of parallel forces described in the preceding Article,

though suitable for the demonstration of the theorem just stated,

is tedious and inconvenient when the number of forces is great, in

which case the best method is to find the rectangular co-ordinates of

that point relatively to three fixed axes, as follows :

Let O be any convenient point, taken as the origin of co-ordi-

nates, and OX, Y, Z, three axes of co-ordinates at right angles
to each other.
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Let A be any one of the points to which the system of parallel

forces in question are applied. From A draw x parallel to OX,
and perpendicular to the plane YZ,
y parallel to O Y, and perpendicular
to the plane Z X, and z parallel to

O Z, and perpendicular to the plane
X Y. x, y, and z are the rectangu-
lar co-ordinates of A, which, being
known, the position of A is deter-

mined. Let F denote either the

magnitude of the force applied at A,
or any magnitude proportional to

that magnitude, x, y, z, and F are

supposed to be known for every point of the given system of

points.
Then first, conceive all the parallel forces to act in lines parallel

to the plane Y Z. Then the sum of their moments relatively to

an axis in that plane is

2- #F;
and consequently the distance of their resultant, and also of the

centre of parallel forces from that plane is given (as in Articles 44
and 47), by the equation

2 -aF

Ffc. 14.

Secondly, conceive all the parallel forces to act in lines parallel
to the plane Z X. Then the sum of their moments relatively to an
axis in that plane becomes

2'2/F;
and consequently the distance of their resultant, and also of the
centre of parallel forces from that plane is given by the equation

-
S> ^ F~
2 -F

*

Thirdly, conceive all the parallel forces to act in lines parallel to
the plane X Y. Then the sum of their moments relatively to an
axis in that plane becomes

and consequently the distance of their resultant, and also of the
centime of parallel forces from that plane is given by the equation

2 -

F
'

Thus are found xr, yr) zf, the three rectangular co-ordinates of
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the centre of parallel forces, for a system of forces applied to any
given system of points, and having any given mutual ratios.

If the parallel forces applied to a system of points are all equal,
then it is obvious that the distance of the centre of parallel forces

from any given plane is simply the mean of the distances of the

points of ie system from that plane.



CHAPTER HI.

BALANCE OP INCLINED FORCES.

SECTION 1. Inclined Forces applied at One Point.

51. Parallelogram of Forces. THEOREM. If tWO forces whose lines

of action traverse one point be represented in direction and magnitude by
the sides ofa parallelogram, their resultant is represented by the diagonal.

First Demonstration. Through the point O (fig. 15), let two

forces act, represented in direction

and magnitude by OA and OB. x --
x

The resultant or equivalent single
force of those two forces must be a

force such, that its moment relatively
to any axis whatsoever perpendicu-
lar to the plane of A and O B, is

the sum of the moments of O A and

O B relatively to the same axis.

Now, first, the force represented in

direction and magnitude by the dia- Fig. 15.

gonal O C of the parallelogram A B
fulfils this condition. For let P be any point in the plane of O A
and B, and let an axis perpendicular to that plane traverse P.

Join P A, P B, P C, P O. Then, as already shown in Art. 42, the

moments of the forces O A, OB, OC, relatively to the axis P, are

represented respectively by the doubles of the triangles POA,
POB, POO. Draw AD

||
BE

|| OP, and join PD, P E.

Then A_PO D_= AJM) A, and A POE = A P OB ; but be-

cause OD+OE = OC, .-. APOC = A POD + A P O E =
A P O A + A P B

;
and the momentj O~C relatively to P is

equal to the sum of the moments of OA and B ;
and that

whatsoever the position of P may be.

Secondly. The force represented by O is the only force which

fulfils this condition. For let O~Q represent a force whose moment

relatively to P is equal to the sum of the moments of O A and O B.

Join P Q. Then A O P Q = A P C, and .-. C Q ||
P 0; so that
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O Q fulfils the required condition for those axes only which are

situated in a line O P
||
C Q, and not for any other axis.

Therefore the diagonal O C of the parallelogram A B represents
the resultant, and the only resultant, of the forces represented by
OA and OR Q. E. D.

Second Demonstration. Suppose a perpendicular to be erected to

the plane O A B at the point O, of any length whatsoever
;

call the

other extremity of that perpendicular R ;
and at II conceive two

forces to be applied, respectively equal, parallel, and opposite to

O A and B. Then R is the arm common to two couples whose

axes and moments are represented (in the manner described in Art.

34) by lines perpendicular and proportional respectively to O A and
O B. On the lines so representing the couples, construct a paral-

lelogram ; then, as shown in Art. 35, the diagonal of that parallelo-

gram represents the resultant couple constituted by the resultant

of OA and O B acting at O, and an equal and opposite force at R
;

and as the parallelogram of couples has its sides perpendicular and

proportional to O A and O B, its diagonal must be perpendicular

and proportional to C, which consequently represents the result-

ant of OA and OB. Q. E. D.

[There are various other modes of demonstrating the theorem of

the parallelogram of forces, all of which may be studied with ad-

vantage : especially those given by Dr. Whewell in his Elementary
Treatise on Mechanics, and by Mr. Moseley in his Mechanics of En-

gineering and Architecture.]

52. Equilibrium of Three Forces acting through One Point in One

Plane. To balance the forces OA and OB, a force is required

equal and directly opposed to their resultant C. This may be
otherwise expressed by saying, that if the directions and mag-
nitudes of

JhreeJbrcesJ^represented by the three sides of a triangle,

(such as O A, AC, C O), then those three forces, acting through
one point, balance each other.

53. Equilibrium ofany System ofForces acting through One Point.

COROLLARY. If a number of forces acting through the same point be

represented by lines equal and parallel to the sides of a closed polygon,
thoseforces balance each other. To fix

the ideas, let there be five forces acting

through the point O (fig. 16), and re-

presented in direction and magnitude

-* ~'^"~
are equal and parallel to the sides

of the closed polygon O A B C D
viz. :
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Fi = and
||
A ;

F2 = and
||
A B

;

F5 = and
||
D 0.

Then by the theorem of Art. 52, the resultant of Fj and F2 is B
;

the resultant of F1;
F

,
and F3 is O C; the resultant of F,, F2,

F3,

and F4 is D, equal and opposite to F5 ,
so that the final resultant

is nothing.
The closed polygon may be either plane or gauche.
54. Paraiieiopiped of Forces. The simplest gauche polygon is

one offour sides. Let O A B C E F G H (fig. 17), be a parallelepiped
whose diagonal is OH. Then any three ^ &
successive edges so placed as to begin at O
and end at H, form, together with the dia-

gonal H 0, a closed quadrilateral ;
conse-

quently if three forces F
a ,
F2,

F3, acting

through O, be represented by the three

edges OA, Q~B, OCf, of a parallelepiped,

the diagonal H represents their resultant,
and a fourth force F4 equal and opposite to

Oil balances them. FiS- !7-

55. Resolution of a Force into Two Components. From the theo-

rem of Art. 51, it is evident that in order that a given single force

may be resolvable into two components acting in given lines inclined

to each other, it is necessary, first, that the lines of action of those

components should intersect the line of action of the given force in

one point ;
and secondly, that those three lines of action should be

in one plane.

Returning, then, to fig. 15, let C represent the given force,
which it is required to resolve into two component forces, acting in

the lines OX, O Y, which lie in one plane with C, and intersect

it in one point 0.

Through C draw C A
|| Y, cutting O X in A, and C B

|| X,
cutting OY in B. Then will O A and B represent the com-

ponent forces required.

Two forces respectively equal to and directly opposed to OA
and O~B will balanceUC.

56. Resolution ofa Force into Three Components. In Order that a

given single force may be resolvable into three components acting
in given lines inclined to each other, it is only necessary that the

lines of action of the components should intersect the line of action

of the given force in one point.
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Returning to fig. 17, let O H represent the given force which it

is required to resolve into three component forces, acting in the
lines O X, O Y, O Z, which intersect O H in one point 0.

Through H draw three planes parallel respectively to the planesY OZ, Z X, X Y, andcutting respectively O X in A, O Y in

B, O Z in C. Then will O A, OB, C, represent the component
forces required.

Three forces respectively equal to, and directly opposed to O A,
O B, and dC", will balance 0~H.

57. Rectangular Components. The rectangular components of a
force are those into which it is resolved when the directions of

their lines of action are at right angles to each other.

For example, in fig. 17, suppose O X, O Y, Z, to be three axes

of co-ordinates at right angles to each other. Then O H is resolved

into three rectangular components simply by letting fall from H
perpendiculars on O X, O Y, O Z, cutting them at A, B, C,

respectively.

To express this case algebraically, let F= O H denote the force

to be resolved. Let

be the angles which its line of action makes with the three rect-

angular axes. Then, as is well known, those three angles are con-

nected by the equation

cos2 * + cos
2

/3 4- cos
2
y = l, .................. (1.)

Let

be the three rectangular components of F
;
then

In order to distinguish properly the direction of the resultant F
as compared with the directions of the axes, it is to be borne in

mind that

f acute ) i ( positive.
the cosme of an

j obtuge j
angle *

| J
From a well known property of right-angled triangles (also em-

bodied in equation 1),
it follows that

F2 =F? + FS + F2
........................ (3.)

To express algebraically the case in which a force is resolved into
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two rectangular components in one plane with it, let the plane in

question be that of X and O Y. Then the angles are subject to

the following equations
'-

>a^

y = a right angle ;
* + /3 = a right angle;

cosy 0; cos /3 = sin ; cos sin /3. ......... (4.)

andconsequentlytheequations 2and 3 are reduced to the following :

F, = F- cos * = F- sin ;... ...........
)

F2
= F-sin * = F- cos/3;

In using these equations, the rule respecting the positive and

negative signs of cosines is to be observed ; and it is also to be borne

in mind, that the angle is reckoned from X in the direction

towards Y, and the angle /3 from Y in the reverse direction, that

is, towards X, and that

the sines of angles from
{ }

are

If a system of forces acting through one point balance each other,
their resultant is nothing ;

and therefore the rectangular components
of their resultant, which are the resultants of their parallel systems
of rectangular components, are each equal to nothing; a case re-

presented as follows :

2-F1 = 0; 2-F2 = 0; 2 F3 = ............. (6.)

SECTION 2. Inclined Forces Applied to a System of Points.

58. Forces acting in One Plane. Graphic Solution. Let any
system of forces whose lines of action are in one plane, act together
on a rigid body, and let it be required to find their resultant.

Assume an axis perpendicular to the plane of action of the forces

at any point, and let it be called O Z. According to the principle
of Art. 42, let each force be resolved into an equal and parallel
force acting through O, and a couple tending to produce rotation

about O Z; so that if a force F be applied along a line whose per-

pendicular distance from is L, that force shall be resolved into

F = and
||
F

acting through 0, and a couple whose moment is

M = LF,
and which is right or left-handed according as lies to the right or
left of the direction of F.
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The 'magnitude and direction of the resultant are to be found by
forming a polygon with lines equal and parallel to those representing
the forces, as in Art. 53, when, if the polygon is closed, the forces

have no single resultant; but if not, then the resultant is equal,

parallel, and opposite to that represented by the line which is

required in order to close the polygon. Let E be its magnitude
if any.
The position of the line of action of the resultant is found as

follows :

Let 2 M be the resultant of the moments of all the couples M,
distinguishing right-handed from left-handed, as in Arts. 27 and
32. If 2-M = 0, and also E =0, then the couples and forces

balance completely, and there is no resultant. If 2-M = 0, while

E has magnitude, then the resultant acts through 0. If 2 M
and E, both have magnitude, then the line of action of the resultant

E is at the perpendicular distance from given by the equation

2-M

and the direction of that perpendicular is indicated by the sign of

2-M. If E, = 0, while 2-M has magnitude, the only resultant of

the given system of forces is the couple 2-M.
59. Forces acting in One Plane. Solution by Rectangular Co-or-

dinates. Through the point O as origin of co-ordinates, let any two
axes be assumed, OX and Y, perpendicular to each other and
to O Z, and in the plane of action of the forces ;

and in looking from
Z towards 0, let Y lie to the right of X, so that rotation from X
towards Y shall be right-handed. Let F, as before, denote any one
of the forces ; let * be the angle which its line of action makes to

the right of O X
;
and let x and y be the co-ordinates of its point

of application, or of any point in its line of action, relatively to the

assumed origin and axes. Eesolve each force F into its rectangular

components as in Art. 57,

Fj =F cos
,',

Fo = F sin ;

then the rectangular components of the resultant are respectively

parallel to O X, 2 (F cos
)
= E1? ) ,, v

parallel to Y, 2
(F- sin

)
= E2 , j

'

its magnitude is given by the equation

E2 = E* + EI; ......................... (2.)

and the angle T which it makes to the right of X is found by the

equations

E/i . E<2 /o \
cos *r

= sm cer
=

-=g-
................... (3.)
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The quadrant in which the direction of R lies is indicated by the

algebraical signs of R
}
and R2, as already stated in Art. 57.

The perpendicular distance from of the line of action of any
force F is

L = x 'sin ee. y cos *

which is positive or negative according as lies to the right or to

the left of that line of action ; and hence the resultant moment of

the system of forces relatively to the axis O Z is

2'FL = 2'F (x sin a. y cos a)

= ?(xF2 yF,) ........................ (4.)

whence it follows, that the perpendicular distance of the resultant

force from is

.....................

Let xr and yr be the co-ordinates of any point in the line of action

of the resultant; then the equation of that line
is^
~

which is equivalent to V ............... (6.)
xr sin ctr yr cos ar

= Lr

As in Art. 58, if 2-F L = 0, the resultant acts through the

origin 0; if 2-FL has magnitude, and R =
(in which case

Rj= 0, R2= 0) the resultant is a couple. The conditions of equili-
brium of the system of forces are

or in other syj-nbols V ....
(7.)

The moment of the resultant relatively to the axis O Z can also

be arrived at by considering the moment F L of each force as the
resultant of x F2 ,

which is right-handed when x and F2 are both

positive, and of y F1? which is left-handed when y and F! aro

both positive.
60. Any System of Forces. To find the resultant and the con-

ditions of equilibrium of any system of forces acting through
any system of points, the forces and points are to be referred to

three rectangular axes of co-ordinates.

As in Art. 57, let O denote the origin of co-ordinates, and

OX, OY, OZ, the three rectangular axes; and let them be

arranged (as in fig. 17), so that in looking from

X ^
C
Y towards Z }

Y V towards O, rotation from < Z towards X V

ZJ (X towards Yj
shall appear right-handed.
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Let F denote any one of the forces
; x, y, z, the co-ordinates of a

point in its line of action ; and *, /3, y, the angles which its direction

makes with the axes respectively. Then the three rectangular

components of F being as in Art. 57,

F, = F cos * along OX,)
F2 = F-cos

l
3 along OY, V (1.)

F3 = F cos y along Z, ]

it can be shown by reasoning similar to that of Art. 59, that the

total moments of these components relatively to the three axes are

respectively

y F3 z F2= F (y cos y z cos 0) relatively to O X, \

% F! x F3 = F (z cos * x cos y) relatively to O Y, >
(2.)

x F2 y F! = F (x cos /3 y cos a) relatively to O Z
; j

so that the force F is equivalent to the three forces of the formulae

1 acting through along the three axes, and the three couples of

the formulae 2 acting round the three axes.

Taking the algebraical sums of all the forces which act along the

same axes, and of all the couples which act round the same axes,
the six following quantities are found, which compose the resultant

of the given system of forces
;

Forces.

X
j Ej= 2 F cos

,

OY; Ea
=: s-Fcos/3, V

(3.)
OZ

;
E3
= s-Fcosy,

Couples.

round OX; M,=

OZ -M3
=

F (y cos y - z cos
/3)

F (2 cos ex, x cos y)

F (x cos /3 2/
cos a)

The three forces Ej, E2 ,
E3, are equivalent to a single force

E|+E), (5.)

acting through O in a line which makes with the axes the angles
given by the equations

cos =5i- cos/3 =^2. cos -5l'"r ~~E ' CDS r~ E j
C S rr ~~

E '
'

The three couples M,, M2,
M3, according to Article 37, are equi-

valent to one couple, whose magnitude is given by the equation

M= ^(Mf + Mi + MS) (7.)
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and whose axis makes with the axes of co-ordinates the angles given

by the equations

M, M2 M3

*
I denote respectively the angles I r> v t

^
j

made by the axis of M with
J
A

j

"

The Conditions of Equilibrium of the system of forces may be ex-

pressed in either of the two following forms :

R 1 = 0; R2 = 0; R3
= 0: M

1
= 0; M2

= 0; M3
=

0...(9.)

or R= 0; M= ......................... (10.)

When the system is not balanced, its resultant may fall under
one or other of the following cases :

Case I. When M = 0, the resultant is the single force R acting

through 0.

Case II. When the axis o/*M is at right angles to tfie direction of

R, a case expressed by either of the two following equations :

COS ctr COS X -f COS /3r COS
ft,
+ COS yr COS V =

j

or R
1
M

1 + Ra M2 + E3 M3 = 0;

the resultant of M and R is a single force equal and parallel to R,
acting in a plane perpendicular to the axis of M, and at a perpen-
dicular distance from O given by the equation

Case in. When R, = 0, there is no single resultant; and the

only resultant is the couple M.
Case iv. When the axis ofM. is parallel to the line of action o/R,

that is, when either

* = *r-, t* = Pr ;
=

<? .................. (13).

or * = *r j f* = &', = %;
there is no single resultant; and the system of forces is equiva-
lent to the force R and the couple M, being incapable of being
farther simplified.

Case v. When the axis of M is oblique to the direction of R,
making with it the angle given by the equation

cos & = cos A cos oe,r + cos p cos /3r + cos v cos yrv ...(15).

the couple M is to be resolved into two rectangular components,
viz. :
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M sin 6 round an axis perpendicular to R, and in
^

the plane containing the direction of R and of (16.)
the axis of M;

M cos 6 round an axis parallel to R.

The force R and the couple M sin 6 are equivalent, as in Cast

II., to a single force equal and parallel to R, whose line of action

is in a plane perpendicular to that containing R and the axis of

M, and whose perpendicular distance from O is

L =HI ............ . ........... (17.)

The couple M cos 0, whose axis is parallel to the line of action of

R, is incapable of further combination.

Hence it appears finally, that every system of forces which is not

self-balanced, is equivalent either, (A) ;
to a single force, as in Cases

I. and II. (B) ;
to a couple, as in Case III. (C) ;

to a force, com-
bined with a couple whose axis is parallel to the line of action of

the force, as in Cases IY. and V. This can occur with inclined

forces only, it having been shown in Article 47, that the resultant

of any number of parallel forces is either a single force or a couple.



CHAPTER IT.

OX PARALLEL PROJECTIONS IN STATICS.

61. Parallel Projection ofa Figure defined. If two figures be SO

/elated, that for each point in one there is a corresponding point
in the other, and that to each pair of equal and parallel lines in the
one there corresponds a pair of equal and parallel lines in the other,
those figures are said to be PARALLEL PROJECTIONS of each other.

The relation between such a pair of figures may be otherwise

expressed as follows : Let any figure be referred to axes of co-

ordinates, whether rectangular or oblique ;
let x, y, z, denote the

co-ordinates of any point in it, which may be denoted by A : let a
second figure be constructed from a second set of axes of co-ordinates,
either agreeing with, or differing from, the first set as to rectan-

gularity or obliquity ; let
a?', y', z', be the co-ordinates in the second

figure, of the point A' which corresponds to any point A in the
first figure, and let those co-ordinates be so related to the co-ordi-
nates of A, that for each pair of corresponding points, A, A', in the
two figures, the three pairs of corresponding co-ordinates shall bear
to each other three constant ratios, such as

x' y' a!= a] ==b
;

= c :

x y z

then are these two figures parallel projections of each other.
62. Geometrical Properties of Parallel Projections. The following

are the geometrical properties of parallel projections which are of
most importance in statics. Being purely geometrical propositions,

they are not here demonstrated.

I. A parallel projection of a system of three points, lying in
one straight line and dividing it in a given proportion, is also a

system of three points, lying in one straight line and dividing it in
the same proportion.

II. A parallel projection of a system of parallel lines whose

lengths bear given ratios to each other, is also a system of parallel
lines whose lengths bear the same ratios to each other.

III. A parallel projection of a closed polygon is a closed

polygon.
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IV. A parallel projection of a parallelogram is a parallel-

ogram.
V. A parallel projection of a parallelepiped is a parallelepiped.
VI. A parallel projection of a pair of parallel plane surfaces,

whose areas are in a given ratio, is also a pair of parallel plane
surfaces, whose areas are in the same ratio.

VII. A parallel projection of a pair of volumes having a given
ratio, is a pair of volumes having the same ratio.

63. Application to Parallel Forces. It has been shown in Chap.
II., Sect. 3, that the equilibrium of any system of parallel forces

depends on the mutual proportions of the forces and on those of the

distances of their lines of action from given planes. By considering
this in connection with the principles I. and II. of Article 62, it. is

evident, that if a balanced system of parallel forces be represented

by a system of lines, then any system of lines -which is a parallel

projection of the first system, will also represent a balanced system
of parallel forces

;
and also, that if there be two systems of parallel

forces represented by systems of lines which are parallel projections
of each other, then are the respective resultants of those systems of

forces, whether single forces or couples, represented by lines which
are parallel projections of each other related in the same manner
with the other pairs of corresponding lines in the two systems. In

applying this principle to couples, it is to be observed, that they
are not to be represented by single lines, as in Art. 34, but by pairs
of equal and opposite lines, as in the previous articles, or by areas,
as in Articles 42 and 51.

64. Application to Centres of Parallel Forces. If two systems of

points be parallel projections of each other
;
and if to each of those

systems there be applied a system of parallel forces bearing to each
other the same system of ratios, then, by considering the principles
I. and II. of Article 62 in conjunction with those of Chap. II., Sect.

4, it is evident that the centres of parallel forces for those two

systems of points will be parallel projections of each other, mutually
related in the same manner with the other pairs of corresponding
points in the two systems.

65. Application to Inclined Forces acting through One Point.

From principles III., IV., and V., of Article 62, taken in conjunc-
tion with the principles of Chap. III., Sect. l,it follows, that if a given
system of lines represents a balanced system of forces acting through
one point, then will any parallel projection of that system of lines

also represent a balanced system of forces acting through one point ;

and also, that if two systems of forces, each acting through one

point, be represented by two systems of lines which are parallel

projections of each other, then will the respective resultants of those

two systems of forces be represented by a pair of lines which are
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parallel projections of each other, mutually related in the same
manner with other pairs of corresponding lines.

66. Application to any System of Forces. As every system of

forces applied to any system of points can be reduced, as in Art. 60,

to a system of forces acting through one point, and certain systems
of parallel forces, it follows that if a balanced system of forces acting

through any system of points be represented by a system of lines,

then will any parallel projection of that system of lines represent a
balanced system of forces

;
and that if any two systems of forces

be represented by lines which are parallel projections of each other,
the lines, or sets of lines, representing their resultants, will be cor-

responding parallel projections of each other : it being still ob-

served, as in Article 63, that couples are to be represented by pairs
of lines, as pairs of opposite forces, or by areas, and not by single
lines along their axes.
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CHAPTER V.

ON DISTRIBUTED FOKCES.

67. Restriction of the Subject. In Article 18 it has already been

explained, that the action of every real force is distributed through-
out some volume, or over some surface. It is always possible,

however, to find either a single resultant, or a resultant couple, or a

combination of a single force with a couple (like that described in

Art. 60), to which a given distributed force is equivalent, so far as it

affects the equilibrium of the body, or part of a body, to which it is

applied.
In the application of Mechanics to Astronomy, Electricity, and

Magnetism, it is often necessary to find the resultant of a distri-

buted attraction or repulsion, whose direction is sensibly different

at different points of the body to which it is applied ;
and problems

thus arise of great difficulty and complexity. But in the applica-
tion of Mechanics to Structures and Machines, the only force dis-

tributed throughout the volume of a body which it is necessary to

consider, is its weight, or attraction towards the earth
;
and the

bodies considered are in every instance so small as compared with

the earth, that this attraction may, without appreciable error, be

held to act in parallel directions at each point in each body. More-

over, the forces distributed over surfaces, which have to be consi-

dered in applied mechanics, are either parallel at each point of

their surfaces of application, or capable of being resolved into sets

of parallel forces. Hence, in applied mechanics, parallel distributed

forces have alone to be considered
; every such force is statically

equivalent either to a single resultant, or to a resultant couple ;

and the problem of finding such resultant is comparatively simple.
G8. The Intensity of a Distributed Force is the ratio which the

magnitude of that force, expressed in units of force, bears to the

space over which it is distributed, expressed in units of volume, or

in units of surface, as the case may be. An unit of Intensity is an
unit of force distributed over an unit of volume or of surface, as the

case may be
;
so that there are two kinds of units of intensity.

For example, one pound per cubic foot is an unit of intensity for a

force distributed throughout a volume, such as weight; and one
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pound per square foot is an unit of intensity for a force distributed

over a surface, such as pressure or friction.

The intensity of a force acting at a single point would be infinite,

if such a force were possible.

SECTION 1. Of Weight, and Centres of Gravity.

69. The Specific Gravity of a body is a number proportional to

the weight of an unit of its volume; for example, the weight in

pounds, of a cubic foot of the volume of the body. The pound per
cubic foot is the most convenient unit of specific gravity for practi-
cal purposes ;

but in tables of specific gravity, a special unit is usu-

ally employed, viz., the weight, at a fixed temperature, of unity of

volume of water. In Britain, that fixed temperature is usually
62 Fahrenheit; in France, and on the continent of Europe
generally, it is the temperature at which water is most dense, viz.,

3-95 centigrade, or 39-l Fahrenheit.

In a table at the end of this volume are given the specific

gravities of such materials as most commonly occur in structures

and machines. So far as this and similar tables relate to solid

materials, they must be regarded as approximate only; for the

specific gravity of the same solid substance varies not only in

different specimens, but frequently even in different parts of the

same specimen ;
still the approximate values are sufficiently near

the truth for practical purposes in the art of construction.

70. The Centre of Gravity of a body, or of a system of bodies, is

the point always traversed by the resultant of the weight of the

body or system of bodies, in other words, the centre ofparallel
forces for the weight of the body or system of bodies.

To support a body, that is, to balance its weight, the resultant of
the supporting force must act through the centre of gravity.

71. Centre of Gravity of a Homogeneous Body having a Centre of

Figure. Let a body be homogeneous, or of equal specific gravity
throughout ;

let it also be so far symmetrical, as to have a centre of
figure; that is, a point within the body, which bisects every
diameter of the body drawn through it; then it is self-evident,
that the centre of figure of the body must also be its centre of

gravity.

Amongst the bodies which answer this description are, the

sphere, the ellipsoid, the circular cylinder, the elliptic cylinder,
prisms whose bases have centres of figure, and parallelepipeds,
whether right or oblique.

72. Bodies having Planes or Axes of Symmetry. If a homogene-
ous body be of a figure which is symmetrical on either side of a
given plane, the centre of gravity must be in that plane. If two
or more such planes ofsymmetry intersect in one line, or a'xis of
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symmetry, the centre of gravity must be in that axis. If three or

more planes of symmetry intersect each other in a point, that point
must be the centre of gravity.
The following are examples :

I. In fig. 18, let AB C be an equilateral triangle, the base of a

right equilateral triangular prism. This prism has one plane of

symmetry parallel to its bases at the middle of its length. It has

also three planes of symmetry, A a, B6, Cc, each traversing one

edge of the prism and bisecting the opposite side, and those three

planes intersect in an axis G, whose perpendicular distance from

any edge is two-thirds of the distance from that edge to the opposite

side, that is,

GA _ WB GO _ J2

A.a B6 Cc 3

The centre of gravity of the prism is at the middle of this axis.

A

Fig. 18. Fig. 19.

II. In fig. 19, let A B C D be a regular tetraedron, or triangular

pyramid, bounded by four equilateral triangles. Bisect any edge
D C in E ; then the plane ABE drawn through the point of bisec-

tion and the opposite edge is a plane of symmetry. There are six

such planes, and they intersect each other in one point G, which is

therefore the centre of gravity of the tetraedron.

It may be shown by geometry, that the point G can be found in

the following manner. From any summit, such as B, draw B E,

bisecting one of the opposite edges, such as D C. In B E take

2 3
BF = BE. Join AF, in which take A~G = AF; then

o 4
is G the centre of gravity sought.

73. System of Symmetrical Bodies. Let a connected system of

bodies whose absolute or proportional weights are known, and
whose centres of gravity are also known by reason of the symmetry
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and homogeneity of each body, be arranged in any manner ; then

the common centre ofgravity of the whole system of bodies is the

same with the centre ofparallelforces for a system of forces equal or

proportional to the weights of the bodies, and acting through their

respective centres of gravity.

Consequently, applying to this case the principles of Chap. II.,

Section 4, Article 50, the centre of gravity is found in the following

manner. Let yz denote any fixed plane, x the perpendicular
distance of the centre of gravity of any one of the bodies from that

plane, and W the weight of that body, so that Wx is the moment
of the weight of the body in question with respect to any axis in

the plane y z.

Let XQ denote the perpendicular distance of the common centre

of gravity from the plane y z. Then we have, total moment of the

system relatively to any axis in the plane yz,

XQ '2 W =
and consequently,

By proceeding in a similar manner, the distances of the common
centre of gravity of the system of bodies from two other fixed

planes, either perpendicular or oblique to y z and to each other, are

found so as to determine its position completely.
The same process is applicable to any body whose figure is capable

of being divided into symmetrical figures.

l*-j
74. Homogeneous Body of any Figure. Let W be the specific

gravity of a homogeneous body of any figure, Y its volume, and
W = w~V its weight. Conceive three fixed co-ordinate planes,

yz, zx, and xy, perpendicular to each other, and let XQ, yQj ZQ) be
the co-ordinates of the centre of gravity, which it is required to

find
; so that wY #

,
w "V

2/o>
w "V" #o> are the moments of the body

relatively to the three co-ordinate planes respectively. Conceive the

space in and near the body to be divided by three series of equi-
distant planes parallel to the co-ordinate planes respectively, into

equal and similar small rectangular molecules, whose dimensions,

parallel to x, y, and z, respectively, are

AX, &y, AS.

Let a;, y, ,
be the co-ordinates of the centre of one of these mole-

cules. Then its volume is

its weight w A x A y A
,
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and its moments relatively to the three co-ordinate planes re-

spectively,

xw AX Ay AZ; yw AX Ay AZ'} zw AX Ay AZ.

Whatsoever may be the figure of the body whose centre of gravity
is sought, a figure approximating to it may be built by putting

together a proper number of suitably arranged rectangular mole-

cules ;
so that

V = 2 AX Ay AZ nearly;

'W = w'V w'2'AXAyAZ nearly;

toV x = w -2,'x A # Ay AZ nearly;

therefore omitting the common and constant factor w,

and similar approximate formulae for yQ and z .

a-)

Now, it is evident, that the smaller the dimensions AX, Ay, AZ,
of each rectangular molecule, or in other words, the more minute
the subdivision of the space in and near the body into small

rectangles, the more nearly will the approximate figure, built up of

rectangular molecules, agree with the exact figure of the body, and,

consequently, the more nearly will the results of the approximate
formulae (1.) agree with the true results ; which, therefore, are the

limits towards which the results of these formulse continually

approach nearer and nearer, as the dimensions A x, Ay, A z, are

diminished. Such limits are found by the process called integration*
and are expressed in the following manner :

volume

weight

moments

V=
f f f dxdydz;

= wV = w fjj dx dy dz ;

= w / / / xdxdydz-j

=
wJJJydxdydz-J

= wjjjzdxdydz;

(2.)

.(3.)

* For further elucidation of the meaning of symbols of integration, and for explana
tions of processes of approximately computing the values of integrals, see Art. 81 ii

the sequel.
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co-ordinates

of the

centre of

gravity

.(4.)

/ / / xdxdydz
XQ , - ~~ y

ill dxdydz

I ydxdydz
y ~=

r r r *

\ / / dxdydz

II zdxdydz

II dxdydz

Such are the general formulae for finding the centre of gravity of
a homogeneous body, of any form whatsoever.

75. Centre of Gravity found by Addition. When the figure of a

body consists of parts, whose respective centres of gravity are known,
the centre of gravity of the whole is to be found as in Article 73.

7G. Centre of Gravity found by Subtraction. When the figure of

a homogeneous body, whose centre of gravity is sought, can be
made by taking away a figure whose
centre of gravity is known from a larger

figure whose centre of gravity is known
also, the following method may be used.

Let A C D be the larger figure, G, its

known centre of gravity, Wi its weight.
Let A B E be the smaller figure, whose
centre of gravity G2 is known, W2 its

weight. Let E B C D be the figure whose
centre of gravity G3 is sought, made by
taking away ABE from A C D, so that

its weight is

W8
= W, W

fl
.

Join G! G2 ; G3 will be in the prolongation of that straight line be-

yond G!. In the same straight line produced, take any point as

origin of co-ordinates, and an axis at perpendicular to O G2 Gj as

axis of moments. Make OG^ = Xt, j OG2 = xa, O G8 (the unknown

quantity) = xa.

Then the moment ofW3 relatively to the axis at is

and therefore

_xlWlx*~ -
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77. Centre of Gravity Altered by Transposition. In fig. 21, let

A B C D be a body of the weight W ,

whose centre of gravity G is known. Let

the figure of this body be altered, by trans-

posing a part whose weight is Wj, from the

position E C F to the position F D H, so

that the new figure of the body is A B H E.

Let Gj be the . original, and G2 the new

position of the centre of gravity of the

transposed part. Then the moment of the

body relatively to any axis in a plane per-

pendicular to GjG2 will be altered by the

F
-

21.
amount"Wj G! G2; and the centre of gravity
of the whole body will be shifted to Gs,

in a

direction G G3 parallel to GI G2, and through a distance given

by the formula

w
/N /"^ /"N />* 1 '

78. Centres of Gravity ofPrisms and Flat Plates. The general for-

mulae of Article 74 are intended not so much for direct use in

finding centres of gravity, as for the deduction of formulae of a more

simple form adapted to particular classes of cases. Of such the fol-

lowing is an example.
The centre of gravity of a right prism with parallel ends lies in

a plane midway between its ends
;
that of a flat plate of uniform

thickness, which in fact is a short prism, in a plane midwayjbetween
its faces. Let such middle plane be taken for that of x y ; any

point in it
(fig. 22), for the origin,

and two rectangular axes in it, OX
and O Y, for axes of co-ordinates, to

which A B, the transverse section of

the plate, is referred. Conceive the

figure A B to be divided into narrow

bands, by equi-distant lines parallel to

one of the axes of co-ordinates O Y.
and at the distance A x apart. Let a

be the distance of the middle line ol

one of these bands from Y, anc
Fig. 22.

yi, 2/2, the distances of the two extremities of that middle line fron
O X. Then the band is approximately equal to a rectangular bane
of the length yz ylt and breadth A x, the co-ordinates of whose

centre are x, and ^-~ Consequently, if z be the uniform thick
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ness of the plate, and w its specific gravity, we have for a single

band,
area = (yz-y^x nearly ;

volume= (2/2
-

2/0
A x nearly ;

weight =w z (2/2-2/0 Ax nearly;

moment relatively to Y,

=w z x (yz
-

2/0
A a? nearly ;

moment relatively to X,

= wz J- - AX nearly;
2t

and for the whole plate

area = 2 '

(2/2 2/0 A ^ nearly ;

volume Y = z 2 (y2 2/0
A ^ nearly ;

weight W= w z 2 (y2 y^ A x nearly ;

moment relatively to Y,

xW= wz ' 2 x
(2/g 2/0

A ^

moment relatively to X,

y^T= wz -2^^ A xnearly; I
(1.)

consequently, the co-ordinates of the centre of

gravity of the plate (omitting the common factors

w
z), are

x _ 2>a; (2/2-2/0
A

**"> (2/2-2/0
A

nearly.

The more minutely the cross-section AB is subdivided into

bands, the more nearly do these approximate formulae agree with
the truth; so that the true results are the limits to which the

results of the approximate formulae (1.) approach continually as
A x becomes smaller

; that is to say, in the notation of the integral

calculus,

area

volume = z I (yz 2/1) dx;

weight w Y = w z f (y2 y^) d x ;
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moments

x W=
wzJ

x (y*-yi)dx-,

.(3.)

_/ a(y-yi)

J /2~2/i) da

.(4.)

co-ordinates

of the

centre of gravity

The foregoing process is what is usually called by writers on

mechanics, "finding the centre of gravity of a plane surface ;
"
but

this phrase ought always to be understood to signify "finding the

centre ofgravity ofa Iwmogeneous plate ofuniform thickness, thefaces

of which are plane surfaces of a givenfigure."
79. Body with Similar Cross-sections. Let all the CrOSS-sections of

a body made by planes parallel to a given plane (say that of x y\
be similar figures, but of different sizes. The areas of the different

cross-sections are to each other as the squares of their corresponding
linear dimensions. Let e denote some definite linear dimension of

a cross-section whose distance from the plane x y is z, so that its

area shall be

a being a constant. Let x\ t y^ z, be the co-ordinates of the centre of

gravity of a flat plate having its middle plane coincident with the

given cross-section. Then, by reasoning similar to that of Articles

74 and 78, we find the following results for the whole body :
>

volume

weight

moments

? dz;

'* dz;
.(2.)

x ~W = wa x^s
2
- dz^

y ~W =
wajyisldz; (3.)
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co-ordinates of

centre of gravity

/ Xi d z

jfdz

Z =

*. dz

[zt dz

.(4)

When the centres of all the cross-sections lie in one straight line,
as in pyramids, cones, conoids, and solids of revolution generally,
the centre of gravity lies in that line, which may be taken as the
axis of z, making x = 0, y = ;

so that z is the only co-ordinate

which requires to be determined.
80. Curved Rod. In fig. 23, let K B, represent a curved rod so

slender, that its diameter may, without sensible error, be neglected
in comparison with its radius of curva-
ture at any point ; let a denote its

sectional area, uniform throughout, and
w, as usual, its specific gravity ; so that
the weight of an unit of length of the
rod is wa. Let X, Y, OZ be rect-

angular axes of co-ordinates. Suppose
the rod to be divided into arcs, so short
as to be nearlystraight ; let the length of

any one of these arcs be denoted by A s ;

let S S represent it in the figure, and
letM be the middle of its length. Then
M is nearly the centre of gravity of A Let

Fig. 23.

M P = x be the

perpendicular distance from M to the plane of y z. Then for the
short arc S S we have,

weight wa A s;

moment with respect to an axis in the plane yz,

and for the entire rod,

= w a, x A

W = w a 2 A S ')

moment x W = w a 2 x A s nearly;

dinate of
}

2 x A s

of gravity JT
** ' = 2^^ nearly,

co-ordinate of

centre
a-)
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and similar equations for y and z . Proceeding by the method of

limits as before, we obtain as the exact formulae

.(2.)

and similar equations for y and z . The foregoing process is what
is often called by writers on Mechanics, "folding the centre of

gravity of a curved line /" but what ought more properly to be

called, "finding the centre of gravity of a slender curved rod of

uniform thickness."

81. Approximate Computation of integrals. Frequent reference

having been made to the process of integration, as being essential

to the solution of most problems connected with distributed force,

the present article is intended to afford to those who have not

made that branch of mathematics a special study, some elementary
information respecting it.

The meaning of the symbol of an integral, viz. :

is of the following kind:

/ u d xt

In fig. 24, let ACDB be a plane area, of which one boundary,AB,
is a portion of an axis of abscissae

OX, the opposite boundary,
C D, a curve of any figure, and
the remaining boundaries A C,

B D, ordinates perpendicular to

O X, whose respective abscissae,

or distances from the origin O, are

OA OB = b.

Let E F = u be any ordinate whatsoever of the curve C D, and
O E = x the corresponding abscissa. Then the integral denoted

by the symbol,

l\udx,

means, the area of tJte figure A C D B. The abscissae a and b

which are the least and greatest values of x, and which indicate
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the longitudinal extent of the area, are called the limits of in-

tegration; but when the extent of the area is otherwise indicated,
the symbols of those limits are sometimes omitted, as in the pre-

ceding Articles.

When the relation between u and x is expressed by any ordinary
algebraical equation, the value of the integral for a given pair of
values of its limits can generally be found by means of formulae
which are contained in works on the Integral Calculus, or by means
of mathematical tables.

Cases may arise, however, in which u cannot be so expressed in
terms of x; and then approximate methods must be employed.
Those approximate methods, of which two are here described, are
founded upon the division of the area to be measured into bands by
parallel and equi-distant ordinates, the approximate computation of
the areas of those bands, and the adding of them together j and
the more minute that division is, the more near is the result to
the truth.

First Approximation.

Divide the area A C D B, as in
fig. 25, into any convenient

number of bands by parallel or-

dinates, whose uniform distance

apart is A x; so that if n be the
number of bands, n -f 1 will be the
number of ordinates, and

. 25.
b a = n A a?,

the length of the figure.

Let u, u", denote the two ordinates which bound one of the
bands ; then the area of that band is

u' + u"
A X,

and consequently, adding together the approximate areas of all the
bands, denoting the extreme ordinates as follows,

AC = Um ; BD = ub
-

and the intermediate ordinates by u { ,
we find for the approximate

value of the integral
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Second Approximation.

Divide the area A C D B, as in fig. 26, into an even number of

bands, by parallel ordinates, whose
D uniform distance apart is A x. The

ordinates are marked alternately by
plain lines and by dotted lines, so as

to arrange the bands in pairs. Con-

sidering any one pair of bands, such.

as E FH G, and assuming that the

curve FH is nearly a parabola, it

appears, from the properties of that curve, that the area of that

pair of bands is

M + 4 u" -f u'")
A j

in which u' and u"r denote the plain ordinates E F and G H, and
u" the intermediate dotted ordinate ;

and consequently, adding

together the approximate areas of all the pairs of bands, we find,

for the approximate value of the integral

u d x= ( ua -p ub -}- 2 2 u
t (plain)

^

+ 4 2 -u,
(dotted))

*, ................... (2.)

It is obvious, that if the values of the ordinates u required in these

computations can be calculated, it is unnecessary to draw the figure
to a scale, although a sketch of it maybe useful to assist the memory.
When the symbol of integration is repeated, so as to make a

double integral, such as

/ / u'dxdy,

or a triple integral, such as

u-dxdydz,

it is to be understood as follows :

Let ..,Y.*
be the value of this single integral for a given value of y. Con-
struct a curve whose abscissae are the various values of y within the

prescribed limits, and its ordinates the corresponding values of v.

Then the area of that curve is denoted by

/ v ' dy = / / u dxdy.
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Next, let t= j v . dy

be the value of this double integral for a given value of z. Con-
struct a curve whose abscissae are the various values of z within the

prescribed limits, and its ordinates the corresponding values of t.

Then the area of that curve is denoted by

/ t.dz = l v'dydz = l I I u'dxdydz;

and so on for any number of successive integrations.
82. Centre of Gravity found by Projection* 'According to the geo-

metrical properties of parallel projections, as stated in Chap. IV.,
Article 62, a parallel projection of a pair of volumes having a given
ratio is a pair of volumes having the same ratio

j and hence, if a

body of any figure be divided by a system of plane or other sur-

faces into parts or molecules, either equal, or bearing any given

system of proportions to each other, and if a second body, whose

figure is a parallel projection of that of the first body, be divided

in the same manner by a system of plane or other surfaces which
are the corresponding projections of the first system of plane or

other surfaces, the parts or molecules of the second body will bear

to each other the same system of ratios, of equality or otherwise,
which the parts of the first body do.

Also, the centres of gravity of the parts of the second body will

be the parallel projections of the centres of gravity of the parts of

the first body.
And hence it follows (according to Article 64), that if thefigures

of two bodies are parallel projections of each other, the centres of
gravity of these two bodies are corresponding points in these parallel

projections.
To express this symbolically, as in Article 61, let x, y, z, be the

co-ordinates, rectangular or oblique, of any point in the figure of

the first body ; xf

, y', z, those of the corresponding point in the
second body ;

x
, y0) z0) the co-ordinates of the centre of gravity of

the first body ;
d

, tf , d^ those of the centre of gravity of the
second body; then

-._ . . . _ . . _
* '

y
~

y
'

z
' '

z'

This theorem facilitates much the finding of the centres of gravity
of figures which are parallel projections of more simple c* more sym-
metrical figures.

For example : it appears, from symmetry, as in Art. 72, that
the centre of gravity of an equilateral triangular prism is at the
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point of intersection of the lines joining the three angles of the

middle section of the prism with the middle points of the opposite
sides of that section. But all triangular prisms are parallel pro-

jections of each other ; hence the above described point of inter-

section is the centre of gravity of any triangular prism.

Also, as in Art. 72, the centre of gravity of a regular tetraedron

is at the point of intersection of the planes joining each of the

edges with the middle point of the opposite edge. But all tetrae-

drons are parallel projections of each other ; hence that point of

intersection is the centre of gravity in any tetraedron.

As a third example, let it be supposed that a formula is known

(which will be given in the sequel) for finding the centre of gravity
of a sector of a circular disc, and
let it be required to find the centre

of gravity of a sector of an elliptic

disc. In fig. 27, let A B' A B' be

the ellipse, A 6 A = 2 a, and
.

B' B' = 2 b, its axes, and C' O D'

the sector whose centre of gravity
is required. One of the parallel pro-

jections of the ellipse is a circle,

ABAB,whose radius is the semi-axis

major a. The ellipse and the circle

being both referred to rectangular

co-ordinates, with their centre as

Fig. 27.
origin, x and y denoting the co-

ordinates parallel to O A and O B respectively of a point in the

circle, and x' and ?/ those of the corresponding point in the ellipse,

those co-ordinates are thus related :

x y

Through C' and D' respectively draw EC'C and FD'D, parallel

to O B, and cutting the circle in C and D respectively ; the cir-

cular sector C D is the parallel projection of the elliptic sector

C' D'. Let G- be the centre of gravity of the sector of the circular

disc, its co-ordinates being

Then the co-ordinates of the centre of gravity G-' of the sector of

the elliptic disc are

"OH = af = oc ;

HG'= /0=
a
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Further examples of the results of this process will be found in the
next Article.

83. Examples of Centres of Gravity. The following examples
consist of formulae for the weight, the moment with respect to some

specified axis, and the position of the centre of gravity, of homo-

geneous bodies of those forms which most commonly occur in

practice. In each case, as in the formulae of the preceding Articles,
w denotes the specific gravity of the body, "W, its weight, and x

, &c.,
the co-ordinates of its centre of gravity, which in the diagrams
is marked G, the origin of co-ordinates being marked 0.

A. PRISMS AND CYLINDERS WITH PARALLEL BASES.

The word cylinder is here to be taken in its most general meaning,
as comprehending all solids traced by the motion of a plane curvi-

linear figure parallel to itself.

The examples here given apply, of course, to flat plates of uni-

form thickness.

In the formulae for weights and moments, the length or thickness

is supposed to be unity.
The centre of gravity, in each case, is at the middle of the length

(or thickness) ;
and the formulae give its situation in the plane

figure which represents the cross-section of the prism or cylinder,
and which is specified at the commencement of each example.

I. Triangle. (Fig. 28) O, any angle. Bisect .o

C in D. Join O D.opposite side B

W=
II. Polygon. Divide it into triangles; find

the centre of gravity of each; then find their
common centre of gravity as in Art. 75.

III. Trapezoid. fRScr 99\ 7 *C,=*j

AB.IICE.

Fig. 28.

29.)

Greatest breadth, A B = B. ff
Least C E = b.

Bisect A B in 0, C E in

W OD/ IB- bx =OG=--- I i __-_-
2 \

W = w -

-y<
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7 IV. Trapezoid. (Second solution.) (Fig. 30.)

O, point where inclined sides meet. Let O F
= x

lf
OD = xz) <TG = Xo.

x = J_ ^JZL^

w = w . ^=L^ . sin2^ OFB.

(cotan
^ O A B + cotan ^L B

A).

^
A B + cotan ^ O B A).

V. Parabolic Half- Segment.

(OAB, fig. 31.)__0, vertex of

diameter O Xj A = x,; A B
= y ordinate

|| tangent O C Y.

3

W w '
x, Vi

" sin^ X Y.
Fig. 31.

'

3

r
l

VI. Parabolic SpandrU. (0 B C, fig. 31.) G', centre of gravity,

3 3

"W = - sin ^: X Y.

VII. Sector. (0 A C, fig. 32.) Let X bisect the

angle AOCjOY-JLOX.
Badius O A = r

Half-arc, to radius unity, o A Q = e-

2 sin0
x = -Q- r

J-; y = 0.



CENTRES OF GRAVITY.

VIJ f. Circular Half-Segment. (A B X, fig. 32.)
9 oi-r>3 A

3 - sin 6 cos *

4 sin
2 sin

2
# cos &

2
2/0
==r

3 (6
- cos sin

B)

'

"W= - wr* (Q
- cos 6 sin

6).
2i

IX. Circular Spandril. (ADX, fig. 32.)

_1X ~~
sn

"W

2 sin 6 - sin cos 0-6'

3 sin
2
6 - 2 sin

2
tfcos 6 - 4 sin8 ^̂

2 sin 6 - sin cos 6 d

sin Q cos
/

. 1= ttr
2

f sin & ~ si

X. Sector of Ring. (A C F E, fig. 32.) OA= r ; OE= r.

2 r3 - r'
3

sin

W= w(r*-r'*)0.
XL Elliptic Sector, Half-Segment, or Spandril. Centre of gravity

to be found by projection from that of corresponding circular

figure, as in Article 82.

B. WEDGES.

A Wedge is a solid bounded by two planes which meet in an

edge, and by a cylindrical or prismatic surface (cylindrical, as

before, being used in the most general sense).
XII. General Formulaefor Wedges. (Fig. 33.) All wedges may

be divided into parts such as the figure here represented. O A Y,
OXY, planes meeting in the edge OYj AXY, cylindrical (or pris-

matic) surface perpendicular to the

plane OXY; OXA, plane triangle

perpendicular to the edge OY; OZ,
axis perpendicular to XOY. Let OX
= i; XA = Then z = j%

Fig. 33.
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I ofydx=
-r
--"I

\ xy dx

dx

2 I dx

(This iasfc equation denoting

that G is in the plane which traverses Y and bisects AX.)
In a symmetrical wedge, if be taken at the middle of the edge,

yQ = O. Such is the case in the following examples, in each of

which, length of edge = 2 yv

$A XIII. Rectangular Wedge. (= Triangular Prism.) (Fig. 34.)

W

Fig. 34.

XIY. Triangular Wedge. (= Triangular Pyramid.)

Fig. 35.
XQ =

XV. Semicircular Wedge. (Fig. 36.)

Kadius OX = OY = r.

Fig. 36.

= -5 w f* t
o

(
= 3 1416
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XVI. Annular, or Hollow Semicircular Wedge. (Fig. 37.)

External radius, r j internal, /.

16" r3
r'

3
'

C. CONES AND PYRAMIDS.

Fig. 37.

Let denote the apex of the cone or pyramid, taken as the

origin, and X the centre of gravity of a supposed prism whose
middle section coincides with the base of the cone, or pyramid.
The centre of gravity will lie in the axis OX.
Denote the area of the base by A, and the angle which it makes

with the axis by &.

XVII. Complete Cone or Pyramid. Let the height OX = fa;

3 h.

4

"W = - w A h sin &
o

XVIII. Truncated Cone or Pyramid. Height of portion trun-
cated = h'.

W- sin e.

hi D. POKTIONS OP A SPHEKE.

XIX. Zone or Ring ofa Spherical Shell, bounded by two conical
surfaces having their common aj
at the centre O of the sphere (fig.

OX, axis of cones and zone.

r, external radius )

/, internal radius }
fslie11

XO A.= a, half-angle of less )

cone'

greater /

*#-, Fig. 38.
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r4 r'
4 cos . + cos

2

_ cos

XX. Sector of a Hemispherical Shell.

bisects angle DOC; \ D C = 4.

(0 X D, fig. 39.) OY

3 r4 -

3 r4 - r'
4

^
sin

16"
*

r _ /
*

~T~*

84. Heterogeneous Body. If a body consists of parts of definite

figure and extent, whose specific gravities are different, although
each individual part is homogeneous, the centres of gravity of the

parts are to be found as in Article 74 and the subsequent Articles,
and the common centre of gravity of the whole as in Article 73.

85. Centre of Crravity found [Experimentally. The centre of

gravity of a body of moderate size may be found approximately by
experiment, by hanging it up successively by a single cord in two
different positions, and finding the single point in the body which
in both positions is intersected by the axis of the cord. For the

resistance of the cord is equivalent sensibly to a single force acting

along its axis ; and as that force balances the weight of the body
when hung by the cord, its line of action must, in all positions of

the body, traverse the centre of gravity of the body.

SECTION 2. Of Stress, and its Resultants and Centres.

86. Stress, its Nature and Intensity. The word STRESS has been

adopted as a general term to comprehend various forces which are

exerted between contiguous bodies, or parts of 'bodies, and which
are distributed over the surface of contact of the masses between
which they act.

The INTENSITY of a stress is its amount in units of force, divided

by the extent of the surface over which it acts, in units of area.

The French and British units of intensity of stress are compared
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in a table annexed to this volume. The following table shows a

comparison between different British units of intensity of stress :

Pounds on the Pounds on the
square foot. square inch.

One pound on the square inch, 144 1

One pound on the square foot, 1 ^T
One inch of mercury (that is, weight of a
column of mercury at 32 Falir., one
inch high), 70-73 0-4912

One foot of water (at 39-4 Fahr.), G2-425 0-4335
One inch of water, 5*2021 0-036125
One atmosphere, of 29 -922 inches of

mercury, 211C-4 14-7

87. Classes of stress. Stress may be classed as follows :

I. Thrust, or Pressure, is tjhe force which acts between two con-

tiguous bodies, or parts of a body, when each pushes the other from

itself, and which tends to compress or shorten each body on which
it acts, in the direction of its action. It is the kind of force which
is exerted by a fluid tending to expand, against the bodies which
surround it.

Thrust may be either normal or oblique, relative to the surface

at which it acts.

II. Pull, or Tension, is the force which acts between two con-

tiguous bodies, or parts of a body, when each draws the other
towards itself, and which tends to lengthen each body on which it

acts, in the direction of its action.

Pull, like thrust, may be either normal or oblique, relatively to
the surface at which it acts.

III. Sliear, or Tangential Stress, is the force which acts between
two contiguous bodies or parts of a body, when each draws the other

sidewaj^s, in a direction parallel to their surface of contact, and
which tends to distort each body on which it acts.

In expressing a Thrust and a Pull in parallel directions algebrai-

cally, if one is treated as positive, the other must be treated as

negative. The choice of the positive or negative sign for either is

a matter of convenience. In treating of the general theory of

stress, the more usual ^system is to call a pull positive, and a thrust

negative : thus, let p denote the intensity of a stress, and n a
certain number of pounds per square foot

; p = n will denote a

pull, and p= n a thrust of the same intensity. But in treating
of certain special applications of the theory, to cases in which thrust,

is the only or the predominant stress, it becomes more convenient
to reverse this system, calling thrust positive, and pull negative.
The word "

Pressure," although, strictly speaking, equivalent to
"
thrust," is sometimes applied to stress in general ;

and when this

is the case, it is to be understood that thrust is treated as positive.
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88. Resultant of Stress : its Magnitude. If to a plane surface of

any figure, whose area is S, there be applied a stress, either normal,

oblique, or tangential, and parallel in direction at all points of the

surface (according to the restriction stated in Art. 67), then if the

intensity of the stress be uniform over all the surface, and denoted

,
the amount or magnitude of its resultant will be

P=.PS..............................(1.)

If the intensity of the stress is not uniform, that amount is to be

found by integration. For example, in
x

fig. 40, letAAA be the plane surface, and
let it be referred to rectangular axes of

co-ordinates in its own plane, OX, O Y,
Conceive that plane to be divided into

small rectangles by a network of lines

parallel to OX and O Y respectively, and
let A x, *y}

be the dimensions of any one
Fig. 49. of^ege rectangles, such as that marked a

in the figure. Conceive a figure approximating to that of the given
plane surfacetobe composed ofseveralofthese small rectangles, so that

g = s-AajA^ nearly; ..................... ..(2.)

let p be the intensity of the stress at the centre of any particular

rectangle, so that the stress on that rectangle is

p A x A y nearly.

Then the amount of the resultant stress is given approximately by
the equation

P = 2 p&x&y nearly , (3.)

Then passing, as in previous examples, to the integrals, or limits

towards which the sums in the equations 2 and 3 approach as the

minuteness of the subdivision into rectangles is indefinitely in-

creased, we find, for the exact equations,

.(4.)

The mecm intensity of the stress is givenby the following equation :

P / jpdxdy= -- =
~T~~ (5>)

dxdy



CENTRE OP STKESS. 71

A convenient mode of representing to the mind the foregoing

process is as follows : In fig. 41, let AA be the given plane

surface; O X, O Y, the two axes of co-ordinates

in its plane; O Z, a third axis perpendicular to

that plane. Conceive a solid to exist, bounded
at one end by the given plane surface A A,
laterally by a cylindrical or prismatic surface

generated by the motion of a straight line par-
allel to Z round the outline ofA A, and at *

the other end by a surface B B, of such a figure,

that its ordinate z at any point shall be proportional to the intensity
of the stress at the point of the surface AA from which that

ordinate proceeds, as shown by the equation

S=P .................... ......(6.)w

The volume of this ideal solid will be

=ff z -dxdy........................(7.)

So that if it be conceived to consist of a material whose specific

gravity is w, the amount of the stress will be equal to the weight
of the solid, that is to say,

P = wV .............................(8.)

If the stress be of opposite signs at different points of the plane
surface A A, the surface B B and the solid which it terminates
will be partly at one side ofAA and

partly at the opposite side, as in
fig. 42;

and in this case, the two parts into

which the solid AB A B is divided by
.the plane X O Y, are to be regarded as

having opposite signs, and Y is to be
held to represent the difference of their

volumes. Fig. 42.

The mean stress of equation 5 is evidently

Po =
in which ZQ is the height of a parallel-ended prism or cylinder

standing on the base AA A, and of volume equal to the solid

ABAB.
89. The Centre of Stress, or of Pressure, in any surface, IS the

point traversed by the resultant of the whole stress, or in other

words, the Centre of Parallel Forces for the whole stress. From the

principles already proved in Chap. II., Section 4, it follows, that
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the position of this point does not depend upon the direction of the

stress, nor upon its absolute magnitude ;
but solely on the form of

the surface at which the stress acts, and on the proportions between
the intensities of the stress at different points.
As in Article 88, conceive a figure approximating to that of the

given plane surface AA A
(fig. 40), to be composed of several small

rectangles ;
let ex. /3 denote the angles which the direction of the stress

makes with O X, OY respectively. Then the moments, relative to

the co-ordinate planes, Z O X, Z O Y, of the components parallel
to those planes of the stress on A x A

y, are given by the approxi-
mate equations.

Moment relatively to Z X. yp&x&y sin /3\ 7
71

Summing all such moments, and passing to the integral or limit of

the sum, as in former examples, we find the following expressions,
in which XQ and y denote the co-ordinates of the centre of stress ;

yQ P sin /3 = sin /3 /
/ yp dx dy }

>. (1 )

XQ P '

sin t = sin a. I I xp dx dy j

Consequently the co-ordinates of the centre of stress are

-

r

J j
p-dxdy

which are evidently the same with the co-ordinates, parallel to

OX and Y, of the centre of yravity of the ideal solid of fig. 41,
whose ordinates z are proportional to the intensity of the pressure
at the points on which they stand.
When the intensity of the stress is positive and negative at

different points of the surface AA A, cases occur in which the

positive and negative parts of the stress balance each other, so that
the total stress is nothing, that is to say,

/ I pdxdy = 0.

In such cases, the resultant of the stress (if any) is a couple, and
there is no centre of stress. This case will be further considered
in the sequel.
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90. Centre of Uniform stress. If the inteiisit}^ of the stress be

uniform, the factor jp in equation 2 of Article 89 becomes constant,
and may be removed from, both numerator and denominator of the

expressions for OCQ and y ,
which then become simply the co-

ordinates of the centre ofgravity of aflat plate of the figure AA A.
This also appears from the consideration, that the surface B B

in fig. 41 becomes a plane parallel to A A, and the solid AB AB,
a parallel-ended prism or cylinder.

91. Moment of Uniformly Varying Stress. By an uniformly
varying stress is understood a stress whose intensity, at a given

point of the surface to which it is applied, is proportional to the

distance of that point from a given straight line. For example, let

the given straight line be taken as the axis OY
;
then the following

equation

p= ax, (1.)

a, being a constant, represents the law of variation of the intensity
of an uniformly varying stress.

The amount of an uniformly varying stress is given by the equa-
tion

P I i p-dxdy= a I I x'dxdy (2.)

which, if the axis OY traverses the centre ofgravity ofa plate of
the figure of the surface ofaction AAA, becomes equal to nothing*,
the positive and negative values of p balancing each other. In.

this case, OY is called a NEUTRAL AXIS of the surface AAA.
In fig. 43, let AAA represent the plane surface of action of a

stress
;

let be its centre of gravity (that is, the centre of gravity
of a flat plate of whichAAA
is the figure); -YOY the
neutral axis of the stress

applied ;
- X X perpendi-

cular to -YOY, and in the

plane of AAA ; ZOZ
perpendicular to that plane.
Conceive a planeBB inclined
to AAA to traverse the
neutral axis, and to form,
with the plane AAA, a pair Fig. 43.
of wedges bounded by a

cylindrical or prismatic surface parallel to ZOZ. The ordinate

z, drawn from any point of AAA to BB, will be proportional to
the intensity of the stress at that point of AAA, and will indicate

by its upward or downward direction whether that stress is positive
or negative ; and the nullity of the total stress will be indicated by
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the equality of the positive wedge above AA A, and the negative

wedge below AAA. The resultant of the whole stress is a couple,
whose moment, and the position of its axis, are found in the

following manner, by the application of the process of Chap. III.,

Sect. 2, Article 60.

Let #, /3, y, be the angles which the direction of the stress makes
with OX, OY, OZ, respectively. Let Ax&y denote, as before,

the area of a small rectangular portion of the surface, x} y, the co-

ordinates of its centre (for which z = Q), and p~ax, the intensity
of the stress on it, so that

A P P AX&y = Cl/XAXAy
is the force acting on this rectangle.
The moments of this force relatively to the three axes of co-ordi-

nates, are found to be as follows, by making the proper substitutions

in equation 2 of Article 60 :

round X;i P-2, cos
;e/"\ ~\.7~ T>U x ; A r ' x cos y :' *

OZ; AP(#eos/3 ycosot).

Summing and integrating those moments, the following are found
to be the total moments :

round OX ;
M

t
= a cos y f ( xy 'dxdy

OY;M2= acosy f
j

x* -dxdy

OZ; M3
= a

jcos/3
f fx2

'dxdy-coset f (xydxdyl

. For the sake of brevity, let

JJx
2 ' dxdy= 1, f f ay dxdy= K-, (3A.)

then, as in equation 7 of Article 60, we find, for the moment of
the resultant couple,

= a ,y {(I
2 + K2

)cos
2 y + F -cos

2
/3 + K2

cos2 a

-2IK-cos*-cos/3.}
= a J (I

2
sin

2 + K2
sin

2

p 2 I K cos * cos
/3);. ..(4.)

and for the angles A, <", v, made by the axis of that couple with the
axes of co-ordinates,we find the angleswhose cosines are as follows:

M! M2 M,_; cos^ =w ; cos,^ (5.)
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The following equation is easily verified :

cos os cos x + cos /3 cos p + cos y cos v = .........(5 A).

This indicates what is of itself obvious; that the axis of the resul-

tant couple M is perpendicular to the direction of the stress.

The following form is often the most convenient for the constant

a. Let pl be the intensity of the stress at some fixed distance, ccj,

from, the neutral axis; then

(6.)

92. Moment of Bending Stress. If the uniformly varying stress

be normal to the surface at which it acts
;
that is to say in symbols,

= 0j cos/3 = 0; cosy = (1.)

then it is evident that

M3
= Oj cos 9 =

j ........................ (2.)

or in words, that the axis of the resultant couple is in the plane of

the surface AAA. Such a stress as this is called a bending stress,

for reasons which will be explained in treating of the strength of

materials. The equations of Article 91, when applied to this case,

become as follows :

Mi = aK; M2= al,

cos A = sin ^= K
J r + K3

cos <s*
= sill A= I .(3.)

K
. . tan ft

= ;

If the figure AAA is symmetrical on either side of the axis

OX, then for every point at which y has a given positive value,

there is a corresponding point for which y has a negative value of

iqual amount ;
so that for such a figure

= / / xy

and the same equation may be fulfilled also for certain unsymme-
orical figures. In this case we have

M1= 0; M = M2 =: al;f* = 0; ..(4)

10 that the axis of the couple coincides with the neutral axis.
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93. Moment of Twisting stress. If the stress be tangential, its

tendency is
^
obviously to twist the surface AAA about the axis

O Z. In this case we have

cos y= ; cos a,= sin <3 ; cos /3= sin a
;
1

M1 = 0;M>= 0; n ,

M = M3= a (I sin -K cos *) ;

cos A =
; cos ^= j cos = 1.

J

In the cases referred to in Article 92, for which K= 0, we find

so that in these cases it is only the component of the stress parallel
to the neutral axis which prodaces the twisting couple.

94. Centre of Uniformly Varying Stress. When the amount of

an uniformly varying stress has magnitude, that stress may be con-

sidered as made up of two parts, viz. :

First, an uniform stress, whose intensity is the mean intensity of

the entire stress, and whose centre is the centre of figure, O, of

the surface of action. As in Article 88, equation 5, this mean

intensity may be represented by

P total stress

Secondly, an uniformly-varying stress, whose neutral axis tra-

verses O, whose amount is = 0, and whose intensity, p', at a given

point, is the deviation of the intensity at that point from the mean;
so that the intensity of the entire stress is given by the equation

P=Po + P'=Po + a* .................. (2.)

Let M be the moment of this second part of the stress ;
its effect

as has been already shown in Article 60, case 2, is to shift tl

resultant P parallel to itself through a distance

L = ............................. (3.)

to the opposite side to that whose name designates the tendency o

the couple M ;
and the direction of the line L is perpendicular a

once to that of the stress, and to that of the axis of the couple M.
The co-ordinates relatively to the point O of the centre of stres

as thus shifted, being the point where the line of action of th

shifted resultant cuts the plane of AAA, are most easily found b

adapting the equation 2 of Art. 89 to the present case, as follows:-
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perpendicular
to the

neutral axis

along the

neutral axis

/ xp'-dxdy a I x*' dxdy al
'=- p

"

p
=T

) / lyp''dxdy a I Ixydxdy aK

|2/o=
p- ~p =-p~

K*-)

The angle 6 which the line joining and the centre of stress

makes with the neutral axis O Y, is that whose cotangent is

(5.)
XQ I

This line will be called the axis conjugate to the neutral axis

YOY. When K =
0, it is perpendicular to the neutral axis.

95. Moments of Inertia of a Surface. The integral I = / / x3

dxdy is sometimes called the moment of inertia of the surface

AAA relatively to the neutral axis YOY. This is a term

adopted from the science of Dynamics for reasons which will after-

wards appear. The present Article is intended to point out certain

relations which exist amongst the moments of inertia of a plane
urface of a given figure relatively to different neutral axes

;
a

knowledge of which relations is useful in the determination of the

moment of a bending or twisting stress.

Let A A in
fig. 44 represent a plane surface of any figure, O its

entre of gravity, YOY, XOX, a pair of rectangular axes crossing
ach other at O, in any position.

Taking YOY as a neutral axis, let

hemoment of inertia relativelyto itbe

I =
J

/ x
3 '

dxdy;
et the moment of inertia re-

ativelyto XOX as a neutral
be

'dxdy;
ndlet

=
j j xydxdy.

,(1.)

Now let Y'OY', X'OX', be a new pair of rectangular axes, in
Jiy position making the angle

YOY' = XOX' = ft
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with the original pair of axes; and let

J' =
fftf'-dofdi/',

K' =ffo!y
f

-dafdy'.

.(2.)

The following relations exist between the original co-ordinates,

x, y, of a given point, and the new co-ordinates a/, ?/',
of the same

point;
a/ = x cos y sin /3

(3.)

(This last quantity, which is the square of the distance of the

given point from O, is what is called an Isotropic Function of the

co-ordinates j being of equal magnitude in whatsoever position the

rectangular co-ordinates are placed.)
From the equations (3),

the following relations are easily deduced

between the original integrals I, J, K, and the new integrals

I',J',K':-
Ir = I cos2 ft + J sin

2
/3 2 K cos /3 sin /3; ]

J' = I sin2 /3 + J cos
2

/3 + 2 K *

cos /3 sin /3; V
...(4.)

K' = (I J) cos /3 sin ft + K (cos
s
/3 sin2

/3.) j

Also, the following functions of those integrals are found to b<

isotropic;

I + J = T + J' = (x
2 + f)

' dxdy ...... (5.)

(called the polar moment of inertia)

I J K2 = I
1

J' K'2
.................. (6.)

Equation 5 may be thus expressed in words :

THEOREM I. The sum of the moments of inertia of
'"

a surfai

relatively to a pair of rectangular neutral axes is isotropic.

Equations 5 and 6 in conjunction lead to the following cons(

quences. Because the sum I' + J' is constant, I' must be

maximum and J; a minimum for that position of the rectangulr
axes which makes the difference I' J' a maximum. And becaus

(T J')
2 = (F + J')

2 41' J',

I' J' must be a maximum for that position of the axis whk
makes I' J' a minimum. Butby equation 6, 1' J' K/2

is constaj
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for all positions of the axes; therefore when K' == 0, I' J' is a
minimum, I' J' a maximum, I' a maximum, and J' a minimum.
Hence follows, in the first place,
THEOREM II. In every plane surface there is a pair of rect-

angular neutral axes for one of which the moment of inertia is

greater, and for the other less, than for any other neutral axis.
These axes are called Principal Axes. Let I

1? J15 be the maximum
and minimum moments of inertia relatively to them, and let ft be
the angle which their position makes with the originally-assumed
axes j then because K, =

0, we have, from the third of the equa-
tions (4)

and because I> + J, = I + J, and I, J = IJ __ K2
, we have, by

the solution of a quadratic equation,

The position of the principal axes, and the values of I,, Ju being
once known, the integrals I', J', K', for any pair of axes which make

le angle /3 with the principal axes, are given by the equations
r = I,co80 + JlSin'/3'j )J =

Ij
sm2 p + J, cos2

p; }.
, (9.)K' =

(I, JJ cos p sin
- (

If Ia
= J,, then I = J' = I,, and K' == 0, for all axes whatso-

ever; and the given figure may be said to have its moment of
inertia completely isotropic.

Next, as to Conjugate Axes. By equation 5, Article 94, we have
ie angle which the axis conjugate to Y makes with OY

TT

cotan 6 = -

-.

For the principal axes, K = 0, cotan 6 = 0, and 6 is a right
angle; from which follows
THEOREM III. The principal axes are conjugate to each other:

that is, if either of them be taken for neutral axis, the other will
be the conjugate axis.

Returning to_ equation 4 of the present Article, let us suppose,that the axis conjugate to the originally assumed neutral axis YOY
has been determined, and that its position is Y'O Y', so that
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Let this conjugate axis be assumed as a new neutral axis. Then the

integrals I', J', K', belonging to it are determined by substituting
6 for /3 in the equation 4 ;

that is, by substituting for cos /3 and
sin /3, the values of cos 6 and sin 6 in terms of K and I, viz. :

K I
cos d = r== -

; sin & =
J~F + E? ,yi

a + &
which substitution having been made, we find

.(10.)

Now let it be required to find the angle 0, which the new con-

jugate axis makes with the new neutral axis Y'O Y'. This angle
is given by the equation

TC' K.
cotan ff =

-^j-
= ,- = cotan 6,

whence

.(11.)

or in words,

THEOREM IT. If the axis conjugate to a given neutral axis be

taken as a new neutral axis, the original neutral axis will be the new

conjugate axis.

The following mode of graphically representing the preceding
theorems and relations depends on well

known properties of the ellipse.
*>

In fig. 45, let X
: Y, perpendicular

to each other, represent the principal axes

of a surface. With the semi-axes,

Fig. 45.

describe an ellipse, so that the square of

each semi-axis shall represent the moment
of inertia round the other.

Let the semidiameter OY' be drawn in the direction of any
assumed neutral axis, and let ^L YjO Y' = /3'. Draw 00, the
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semidiameter conjugate to OY', so that the tangent CT shall be

parallel to Y'. Let CT =
t, and let the normal OT = n. Then

it is well known that

n2 = a3 cos
2 p + V sin

2
/3';

)

and that I ............ (13.)
n t = (a

2 5
8

) cos ' sin
/3'; J

consequently, comparing this equation with the equation 9, we find,

I' = n';

cotan 6 = -=- = = cotaii Y' C ;In }

so that the square of the normal O T represents the moment of

inertia for the neutral axis O Y', and the semidiameter O con-

jugate to OY' is also the conjugate axis of the neutral axis OY'.
and vice versd.

5, & In finding the moment of inertia of a surface of complex figure,
it may sometimes be desirable to divide it into parts, each of more

simple figure, find the moment of inertia of each, and add the

results together.
In a case of this land, the neutral axis of the whole surface will

not necessarily traverse the centre of gravity of each of its parts,
and it becomes necessary to use formulae for finding the moment of

inertia of a figure relatively to an axis not traversing its centre of

gravity.
Let O Y denote such an axis, x the distance of any point of the

given figure from it, and XQ the distance of the centre of gravity of
the given figure from the axis O Y. Through that centre of gravity

I
conceive an axis 0' Y' to be drawn parallel to OY ; the point which
is at the distance x from O Y, is at the distance

O/ = X- XQ

I

from O'Y'.

The required moment of inertia is

therefore,

I = o?JS + 2fl3 / / x' 'dxdy + I I x'
3

'dxdy ;

and because O'Y' traverses the centre of gravity of S,

x' 'dxdy= ;

o
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so that the middle term of the expression for I vanishes, leaving

I = ic
2 S + jj x'*'dxdy} ............... (15.)

or in words,
THEOREM "V* The moment of inertia of a surface relatively to an

axis not traversing its centre ofgravity is greater than the moment of
inertia round a parallel axis traversing its centre ofgravity, by the

product ofthe area ofthe surface into the square of the distance between

those two axes.

The following is a table of the principal (or maxima and minima)
moments of inertia of surfaces-of-action of stress of those figures

which most commonly occur in practice :

-p. Maximum 1^ Minimum J t

(neutral axis Y). (neutral axis X).

I. RECTANGLE. Length along X, ) h s
b hbs

h'} breadth along O Y, b .......... J Ti2~ "12"

II. SQUARE. Side = h,. ......... ......
** ^u u

III. ELLIPSE. Longer axis, h ...... ) nl^b vhbs

Shorter axis, b ......
j ~~64~ 64

IV. CIRCLE. Diameter, h ..............

V. Hollow symmetrical figures; sub-

tract I or J for inner figure, from
I or J for outer figure.

VI. Symmetrical assemblage of rec- 1

tangles ;
dimensions of any one I

h\\x, b
|| w; distance of its centre

j

from Y, a? ; from OX, y ......
j

SECTION 3. Of Internal Stress, its Composition and Resolution.

96. internal stress in General. If a body be conceived to be

divided into two parts by ar ideal plane traversing it in any
direction, the force exerted between those two parts at the plane of

division is an internal stress. The finding of the resultant, and
of the centre of stress, for an internal stress, depend upon the

principles relating to stress in general, which have been explained
in the last section. The present section refers to a different class

of problems, viz., the relations between the different stresses

which can exist together in one body at one point.
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A body may be divided into two parts by a plane traversing a.

given point, in an indefinite number of ways, by varying the angular

position of the plane ; and the stress which acts between the two

parts may vary in direction, or intensity, or in both, as the position
of the plane varies. The object of the present section is to show
the laws of such variation ; and also the effect of applying different

stresses simultaneously to one body.
The investigations' in this section relate strictly to stress of

uniform intensity ; but their results are made applicable to stress of

variable intensity to any required degree of accuracy, by sufficiently

contracting the space under consideration, so that the variations of

the stress within its limits shall not exceed the assigned limits of

deviation from uniformity.
97. Simple Stress and its Normal Intensity. A simple stress is a

pull or a thrust. In the following investigations a pull will be
treated as positive, and a thrust as negative.

In fig. 46, let a prismatic solid body, or part of a

solid body, whose sides are parallel to the axis X,
be kept in equilibrio by a pull applied in opposite
directions to its two ends, of uniform intensity, and
of the amount P.

Let an ideal plane A A, perpendicular to O X,
be conceived to divide the body into two parts, and
let the area of that plane of section be S. That
each of these parts may be in equilibrio, it is

necessary that they should act upon each other, at

the plane of sectionAA, with a pull in the direction

O Xj of the amount P, and of the intensity

This, which is the intensity of the stress as distributed over a plane
normal to its direction, may be called its normal intensity.

98. Reduction of Simple Stress to an Oblique Plane. Next, let

the plane of section be conceived to have the position B B, oblique
to O X

; let N be a line normal to B B, and O T a line at the

intersection of the planes B B an \ X O N. Let the obliquity of

the plane of section be denoted b^

=^:XON=^:TOA.
The two parts into which B B divides the body must exert on

each other, as in the former case, a pull of the amount P, and in

the direction OX} but the area over which that pull is distributed

is now
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.

cos 4'

consequently, the intensity of the stress, as reduced to the oblique

plane of section, is

.=
g

-

99. Resolution of Oblique Stress into Normal and Tangential

Components. The oblique stress P on the plane of section B B may
be resolved by the principles of Articles 55, 57, into two compo-
nents, viz. :

Normal component a- ) T , a
i S\-KT r -t COS 1

long ON, ............ j

Tangential component ) T> /i .

i r\ m r Jt Sin
along OT, ............

J

and the intensities of these components are,

Normal ; pn =pr cos &=px
' cos2

6
',

Tangential ; pt =pr sin d=px
' cos 6 sin

Suppose another oblique plane of section to cut the body at right

angles to B B, so that its obliquity is

ff = 90 0;

and let the intensity of the stress on the new plane be denoted by
accented letters

;
then

(2 }= p t ',pn+p'n px ; J

so that we obtain the following
THEOREM. On a pair of planes of section whose obliquities are

together equal to a rigJit angle, the tangential components of a simple
stress are of equal intensity, and the intensities of the normal com-

ponents are together equal to the normal intensity of the stress.

100. Compound Stress is that internal condition of a body which
is made by the combined action of two or more simple stresses in

different directions. A compound stress is known when the direc-

tions and the intensities, relatively to given planes, of the simple
stresses composing it are known. The same compound stress may
be analyzed (as the ensuing Articles will show) into groups of simple

stresses, in different ways ;
such groups of simple stresses are said

to be equivalent to each other. The problems of finding of a group
of stresses equivalent to another, and of determining the relations

which must exist between co-existing stresses, are solved by con-

sidering the conditions of equilibrium of some internal part of the

solid, of prismatic or pyramidal figure, bounded by ideal planes.
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101. JPai* of Conjugate Stresses. THEOREM. If tfte stress OH a

given plane in a body be in a given direction, the stress on any
plane parallel to that direction must be in a direction parallel to

the first-mentioned plane.
In

fig. 47, let YOY represent, in section, a given plane tra-

versing a body, and let the stress on
that plane be in the direction X O X.
Consider the condition of a prismatic

portion of the body represented in sec-

tion by A B C D, bounded by a pan:
of planes AB, D C, parallel to the given
plane, and a pair of planes A D, B C,

parallel to each other and to the given
direction XOX, and having for its

axis a line in the plane YOY, cutting
7

Fig. 47.

XOX iii O.

The equal resultant forces exerted by the other parts of the body
on the faces AB and D C of this prism are directly opposed, their
common line of action traversing the axis and they are there-
fore independently balanced. Therefore the forces exerted by the
other parts of the body on the faces A D and B C of the prism
must be independently balanced, and have their resultants directly
opposed; which cannot be unless their direction is parallel to the

plane YOY. Therefore, &c. Q. E. D.
A pair of stresses, each acting on a plane parallel to the direction of

the other, are said to be conjugate. In a rigid body, it is evident that
their intensities are independent of each other, and that they may
be of the same, or of opposite kinds : a pair of pulls, a pair of
thrusts, or a pull and a thrust.

In those cases (of frequent occurrence in practice) in which the

planes of action of a pair of conjugate stresses are both perpendi-
cular to the plane which contains their two directions, their obli-

quity is the same, being the complement of the angle which theymake with each other.

102. Three Conjugate Stresses may act together in one body, the
direction of each being parallel to the line of intersection of the

planes of action of the other two; and in a rigid body, the kinds
and intensities of those stresses are independent of each other.

Thus, in
fig. 47, if X X and YOY represent the directions of

two stresses, each acting on a plane which traverses the direction
of the other, the intersection of those planes (which may make any
angle with X X and Y Y), will give a third direction, being
that of a third stress of either kind and of any intensity, which
may act on the plane X Y, and will be conjugate to each of the
other two.
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Three is the greatest number of a group of conjugate stresses; for

it is evidently impossible to introduce a fourth stress which shall be

conjugate at once to each of the other three.

The relations between the three angles which the directions of

three conjugate stresses make with each other, the three obliquities

of those stresses (being the angles which they make with the per-

pendiculars to their respective planes of action), and the three angles
which those perpendiculars make with each other, as found by the

ordinary rules of spherical trigonometry, are given by the following
formulae.

GENERAL CASE. Let x, y, z, denote the directions of the three

conjugate stresses;

y z, z x, xy, their inclinations to each other;

u, v, w, the directions of the perpendiculars to their planes of

action, so that u -L plane y z, v -L plane z x, w -L- plane xy,

vw, wu, uv, the inclinations of those perpendiculars to each

other ;

A A A
u x, vy, wz, the respective obliquities of the stresses.

Then those nine angles are related as follows :

T4.1 2
A

2
A

*
A A A A

.Let 1 cos* y z cos z x cos* x y + 2 cos y z cos z x cos x y= 0; (1:)
Then

A J C A cos z x cos xy
tt nil *y . f,f\0 / nit "

(2.)

3mvw, = ___
f_ _;cos^= _ ^ _

sin zx ' sin xy sin z x * sin x y
A A A

A / C A cos x y
' cos y z cos z x

8LVWU= ^ ^GOSWU= -* ^ ^ :

sin x y
' sin y z sin x y

' sin y z

A A A
A /C A cosy z' cos zx cosxySWUV=

t
A

. A jCOSMP= K- -
sin y z sin z x sin y z sin z x

A JO A /C A /C
cos u x = A ; cos v y = A ; cos wz = -^^ (3.)

sin y z sin z x sin xy

RESTRICTED CASE I. Suppose two of the stresses, for example,
those parallel to x and y, to be perpendicular to each other, and

oblique to the third. Then

A A \

cos x y = ; sin x y 1 ; (

C = 1 cos2 y z - cos2 z Xy )

...(4.)
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A
sin v w =

A
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tial, and parallel to the plane of the paper, be parallel respectively
to AB and AD. Consider the condition of a right prism of any

length, represented in section by ABCD, and

bounded by a pair of parallel planes, AB, CD,
and a pair of parallel planes, AD, C B. Let pt

denote the intensity of the shear or tangential
stress on AB, CD, and planes parallel to them,
and p't

the intensity of the shear, or tangential
stress on AD, CB, and planes parallel to them.

The- forces exerted by the other parts of the body
on the pair of faces AB, CD, form a couple (right-handed in the

figure), of which the arm is the perpendicular distance EF, between

AB and CD, and the moment,

2vareaAB-EF.
The forces exerted by the other parts of the body on the pair o

faces AD, CB, form a couple (left-handed in the drawing), of which

the arm is the perpendicular distance GH between AD and CB,
and the moment

p't

' area AD GH.
The equilibrium of the prism requires that these opposite moments

shall be equal. But the products, area AB EF, and area AD
GH are equal, each of them being the volume of the prism; there-

fore the intensities of the tangential stresses

Pt=P't
are equal. Q. E. D.
The above demonstration shows that a shear upon a given plane

cannot exist alone as a solitary or simple stress, but must be com-
bined with a shear of equal intensity on a different plane. The

tendency of the action of the pair of shearing stresses represented
in the figure on the prism ABCD is obviouily to distort it, by
lengthening the diagonal DB, and shortening the diagonal AC, so

as to sharpen the angles D and B, and flatten the angles A and C.

104. Stress on Three Rectangular Planes. THEOREM. If there bf

oblique stress on tlvree planes at riglit angles to each other, tJie tangential

components of the stress on any two of those planes in direction*

parallel to the third plane must be of equal intensity.

Let yz, zXj xy, denote the three rectangular planes whose intersec-

tions are the rectangular axes of x, y, and z. Consider the condition

of a rectangular portion of the body, having its three pairs of faces

parallel respectively to the three planes, and its centre at the point
of intersection of the three axes. Let ABCD

(fig. 49), represent

the section of that rectangular solid by the plane of xy, the faces
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AB, CD being parallel to the plane yz, and the faces AD, CB,
to the plane z x. Let the equal and parallel lines XR represent
the intensities of the forces exerted by the other parts of the body
on the pair of faces AB, CD; resolve each of

these forces into a component XN, parallel to

the plane z x, and a tangential component, XT,
parallel to the axis of y\ the resultants of the

componentsXN will act through the axis of z, and
will produce no couple round that axis; the com-

ponents XT will form a couple acting round that

axis. In the same manner the intensities of the

forces exerted on the faces AD, CB, being re-

presented by the equal and parallel lines, "Yr,

are resolved into the components, Yn, whose resul-

tants act through the axis of z, and the compo-
nents "Ytf which form, a couple acting round that

axis, which, by the conditions of equilibrium of the rectangular
solid ABC D, must be equal and opposite to the former couple;
and by reasoning similar to that of Article 103, it is shown that
the intensities of the tangential stresses constituting these couples,

XT==Y,
must be equal ;

and similar demonstrations apply to the other

planes and stresses.

To represent this symbolically: let p, as before, denote the

intensity of a stress; and let small letters affixed below p be used,
the first small letter to denote the direction perpendicular to the

plane on which the stress acts, and the second to denote the direc-

tion of the stress itself: for example, let pys
denote the intensity

of the stress on the plane normal to y (that is, the plane ex), in the
direction of z. Then resolving the stress on each of the three

rectangular planes into three rectangular components, we have the

following notation :

PLANE. DIRECTION.
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in virtue of the theorem of this Article, there are three pairs of

tangential stresses of equal intensity,

[The reader who wishes to confine his attention to the more

simple class of problems may pass at once to Article 108, page 95.]

(5 105. Tetraedron of stress. PROBLEM I. The intensities of three

conjugate stresses on three planes traversing a body being given, it is

required to find the direction and intensity oftJie stress, on a fourth

plane, traversing tlie same body in any direction.

In fig. 50, let Y O Z, Z O X, X O Y, be the

three planes, on which act conjugate stresses in

the directions OX, O Y, O Z, of the intensities

px, py p.,.
Draw a plane parallel to the fourth

plane, cutting the three conjugate planes in the

triangle ABC, so as to form with them the tri-

angular pyramid or tetraedron O A B C. Then
must the stresses on the four triangular faces of

Fig 50
*kat tetraedron balance each other; and the

total stress on A B C will be equal and opposite
to the resultant of the total stresses on B C, OCA, and A B.

On X, O Y, O Z, respectively take

Ol) = total stress on O B C = pK area O B C,

O E = total stress on O CA = py
' area OCA,

OF = total stress on AB = p*
' area A B.

Complete the parallelepiped O D E F E. ;
then will its diagonal

OK represent the direction and amount of the total stress on an

area of the fourth plane equal to that of A B C ;
and the intensity

of that stress will be
OR

_ Q. E. I.

area A B <J

Hence it appears, that if the stresses on three conjugate planes
in a body be given, the stress on any other plane may be deter-

mined ; from which it follows, That every possible system of stresses

which can co-exist in a body, is capable of being resolved into, or ex-

pressed by means of, a system of three conjugate stresses.

PROBLEM II. The directions and intensities of the stresses on three

rectangular co-ordinate planes being given, it is required to find tlie

direction and intensity of the stress on a fourth plane in any posi-

tion.

Let the planes Y Z, Z X, X Y, in fig. 50, represent the

rectangular co-ordinate planes, so that OX, Y, O Z, are now at

right angles to each other (instead of being, as in Problem I., in
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any directions). Reduce the three given stresses, as in Article 104,
to rectangular components, with the notation already explained.

Let A B C, as in Problem I., be a triangle parallel to the fourth

plane, enclosing, with three triangles in the co-ordinate planes, the
tetraedron O A B C. The total stress on A B C will be equal and

opposite to the resultant of all the rectangular components of the
total stresses on O B C, O C A, and O A B.

Therefore, on X, Y, O Z, respectively, take

OI> =pgx
' area B C + pKV

area OCA + pt,
- area O A B,

O E =pg9
' area O B C + pyy

' area OCA + pyg

- area O A B,

OF =pix
' area B C + pyt

area OCA + pa - area O A B;

Complete the rectangle D E F R then will its diagonal O R re-

present the direction and amount of the total stress on an area of

the fourth plane equal to ABC, and the intensity of that stress

be . Q. E. I.
area ABC A A A

To express this algebraically, let x n, y n, zn, denote the angles
which a normal to the fourth plane makes with the three rectangu-

lar axes respectively ;
x r, yr, z r, the angles which the direction

of the stress on that plane makes with the three rectangular axes

respectively; and pr the intensity of that stress. Then, it is well

known that A
area O B C = area ABC* cos x n,

area O C A = area ABC cos y nt

area A B = area ABC* cos z n;

so that the rectangular components of the intensity pr are

A A A "

pna =. pxie cos x n + pxy
cos yn-v pfa. cos z n

A A A
ft

\

pny
= px,j

cos x n + Pyy
' cos y n + pyg

cos z n r"
........

\
Lt)

A A A
png= pzx cos x n + pyz

' cos y n + pzis
cos z n

.

The resultant intensity of the stress required is given by the

equation

and its direction by the equation

A pne A pny A pnz

cosa;r = ; cos2/r= -; cosr=
Pr Pr Pr
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Hence it appears, that if the rectangular components of the stress

on three rectangular planes in a body be given, the stress on any
fourth plane may be determined ;

from which it follows, That every

possible system of stresses which can co-exist in a body, is capable of
being resolved into, or expressed by means of, the three normal stresses,

and the six pairs oftangential stresses, on three rectangular co-ordinate

planes.
106. Transformation of Stress. For the direction of the normal

to the new plane of action, ABC, which direction is denoted by n
in Problem II. of Article 105, let there be successively assumed
the directions of three new rectangular axes x', y

f

, z', and let it be

required to express the rectangular components, px
'

x', &c., of a

given compound stress relatively to those new axes, in terms of the

rectangular components, pfl , &c., of the same compound stress

relatively to the original rectangular axes, x, y, z.

To solve this question, let n be taken to denote any one of the

three new axes. The three components, parallel to the original

axes, of the stress on the plane normal to n, are given by equation
1 of Article 105. Each of these components being further resolved

into its components parallel to the new axes, and the nine com-

ponents so found collected into three sums of intensities parallel to

the new axes, the following results are obtained :

A A A
pnx

f =pnie 'cosxxf + pny
- cos y x' + p^ cos z x ;

A A A
/

-f >

A A A,
pMf =pM cosxz' + pny

cos yz + pM coszz.

For n are now to be substituted successively, both in pn ., &c., and
in the values ofpnx, &c., according to equation 1 of Article 105, the

symbols x', y', z'
;
and thus are obtained finally the following

equations of transformation :

NORMAL STRESSES.

pJJ =p,x cos
s x x' + pyy

cos2 y x' -fpu cos2 z x
f

+ 2 py,
cos y x' cos s x + 2pfx cosz x' cos xx'

-f- 2pjfy
cosxx' cosy x

1

',

Py

'

y'=P** cos2 x y' +pyy
cos2

y if +pzt cos
2 z y

A A A A A A
4- 2py,cosyy'coszy' + 2pu cos z y

f
cos x y -f 2pfy cosxycosyy' ;

PS* = Px c s
2
xz'-\- py}>

cos
2

y z' -\-pzt cos2 z zf

+ 2pyt
cos y z cos z z -f 2ptf cos z z cos xz'-\- 2p,y

cos xzcosyz*",
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TANGENTIAL STRESSES.

A A A A A A
p9

'

t
r

pxx cos x y' cos x z -\-pyy
cos y y cos y z -\-pzz cos z y' cos z z

1

AA AA AAAA
+ pvz (coszy'cosyz' + cosyy'coszz') +psx(cosxy'coszz + coszy'cosxz)

A A A A
+ pxy (cos y y' cos xz' + cos x y' cos y z') ;

A A A A A A,
pit =pxa;

cos x z cos x x' -rpyy
cos y zf cos y x

1

-f p^ cos cos z xAA AA A A, A A
+ pyz (coszz'cosy x' + cosyz coszx) + pix(cosxz coszx + coszz'cosxx')

A A A A
x

f^ (cos y z
1

cos # a/ + cos x z1

cos y x
1

) ;

A A A A A A
Pxy =Pxx COS X X'

COS X
'U' ^~Pyy COS 2/

^ COS
2/ 2/ + P*t COS ^^ COS Z V'

A A
,

A A A A, A, A
+py;s (coszx'cosyy -{- cosyx' coszy') + p.x(cosxx'coszy + coszx cosxy')

A A
,

A A
-j-^j, (cos y x' cos x y -f cos cc x' cos y y'\

The two systems of component stresses, pxx, &c., relative to the

axes x, y, z, and jp,V, &c., relative to the axes x'
} y, z

1

,
which con-

stitute the same compound stress, are said to be equivalent to each
other.

107. Principal Axes of Stress. THEOREM. For every state of
stress in a body, there is a system ofthree planes perpendicular to each

oilier, on each ofwhich the stress is wholly normal.

Referring to the equation 3 of Article 105, it is evident that the

condition, that the direction of stress on a plane shall coincide with
the normal to that plane, is expressed by the equations

A Pnx A A Pny A
cos x r = = cos x n ;

cos y r = = cos y n ;

A P~ A
/i \coszr = = coszn (I.)

Introducing these values into the equation 1 of Article 105, we
obtain the following :

A A A
(P pr) cosxn + p.^ cos y n + ptx cos z n= ;

p^ cos x n + (pyy
- pr)

cos y n + pye
cos z n= ;

j- (2.)

A A A
pa cos x n JTP^ cos y n+(pfz

- pr)
cos z n f= 0.

J
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From these equations, by elimination of the three cosines, is

obtained the following cubic equation ;

Let P*,+Pn +P = A-;
]

yy -pi -p*l -P'y= B ;
\
(3.)

**Pl -PyyP?*-P**P*y= C > J

Then pi- Ajp2 + B#.-C = ........ . ............ (4.)

The solution of this cubic equation gives three roots, or values of

the stress pr,
which satisfy the condition of being normal to their

planes of action; and according to the properties of conjugate
stresses stated in Article 102, the directions of those three normal

stresses must be perpendicular to each other. Q. E. D.

The three conjugate normal stresses are called principal stresses,

and their directions, principal axes of stress.

Ifpr denote the intensity of one of those principal stresses, the

angles which it makes with the originally assumed axes of x, y, z, are

found by means of the following equations, deduced by elimination

from the equation 2 of this Article :

cos x n {pgxpxy + (pr
- pxx)py,}

= cos y n
{pxypyz

+ (pf -pw)P**}

= coszn\pyzpzx + (Pr-p*,)pxy] ............ (&)

Letp l} p2, p3, denote the three values ofpr, which satisfy equation
4. Then, from the well known properties of equations, it follows

that the co-efficients of that equation have the following values :

A =Pi+P*+P m

,

'B=p*p3+p3 pi+pip2 ;
> ........... ...(6.)

G=p1paps.

Hence it appears, that for a given state of stress, the three functions

denoted by A, B, C, in the equations 3 and 6, are the same for all

positions of the set of rectangular axes of x, y, z, or are isotropic, in

the sense already explained in Article 95.

Let the principal axes of stress now be taken for axes of rectan-

gular co-ordinates, and denoted by x,y,z] and let it be required to

find the direction and the intensity p, of the stress on a plane whose

normal makes the angles x n, yn, zn, with those axes. For this

purpose the equations 1, 2, and 3, of Article 105, are to be modified

by making

P** =Pi ; Pvy =P*
'

P** =Ps ', Pyz =P** =P = -
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Thus we obtain

A A A A
p cos x p = pi cos x n

', p cos yp = p2 cosyn;
A A

p cos zp = ps cos zn.. ....... (7.)

p = ,J < p\
' cos

2 x n +p2
2 cos

2

y n -\-pl cos
3 z n I . . .(8.)

The equations 7 are easily transformed into the following :

A A A A A A
cos x n cosxp, cosyn eo&yp coszn coszp , .

P Pi

~
P P*~ P Ps

Which equations being squared and added, and the square root of

the sum extracted, give the following value for the reciprocal of the

intensity required :

1-./J
P

( *
A A

2
A

")

/ J cos
2^ cos- yp co^zp {

...HO.)/v \
1 -j- a / \ /

( P* V* PI j

the well known equation of an ellipsoid, in which p l9 p2, ps, denote

the three semi-axes, and p the semidiameter in any given direction.

The cosine of the obliquity of the stress p is given by the equation

A A A A A A A
cos np = cos x n cos x p {- cos y n cos yp+ cos z n cos zp

== p

A
cos2

2/
ft 4-

jp3

and this cosine, by being

positive )
indicates

(
a pull ^

nothing V that the < a shear

negative j
stress ^? is

(
a thrust j

108. Stress Parallel to One Plane. In most practical questions

respecting the stress in structures, the directions of the stresses

chiefly to be considered are parallel to one plane, to which their

planes of action are perpendicular, the remaining stress, if any,

being a principal stress, and perpendicular to the plane to which the

others are parallel.
The problems concerning the relations amongst stresses parallel

to one plane, might be solved by considering them as particular
cases of the more general problems respecting stresses in any direc-
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tion, which have been treated of in Articles 105, 106, and 107 ;

but the complexity of the investigations and results in those

Articles, makes it preferable to demonstrate the principles relating
to stresses parallel to one plane, .independently.
PROBLEM I. The intensities and directions of a pair of conjugate

stresses, parallel to a plane which is perpendicular to their planes of

action, being given, it is required to find the direction and intensity of
tlie stress on afourth plane, perpendicular also to the first mentioned

plane.
In fig. 51, let the plane of the paper represent the plane to which

the stresses are parallel ;
let X and

O Y represent the directions of the pair
of conjugate stresses, whose intensities

are px and py ;
and let AB be the plane,

the stress on which is sought. Consider

the condition of a prism, OA B, bounded
o R >j y by the plane A B, and by planes parallel
Fig- 51. to X and Y respectively. The force

exerted by the other parts of the body on the face A of the

prism, will be proportional to

on Y take OE to represent that force. The force exerted by the

other parts of the body on the face O B of the prism, will be pro-

portional to

J.'OBj
on O X take OD to represent this force. The force exerted by the

other parts of the body on the face A B of the prism, must balance

the forces exerted on O A and A B
;
therefore complete the paral-

lelogram OD R, E
;
its diagonal OR will represent the direction and

amount of the stress on A B, and the intensity of that stress will be

OR
n

AB

pi (7B2 + pi O"A2 + 2pfP,
OB OXcos^XOY \

OB2+OA2 -2OB-0~Acos^XOY.
J

The parallelogram marked in the figure with the capital letters

K, E, corresponds to the case in which px and py
are of the same

kind, both pulls, or both thrusts, in which case pr is of the same
kind also

;
the parallelogram marked with the small letters, r, e,

corresponds to the case in which px and py
are of opposite kinds, one

being a pull and the other a thrust ;
in which case pr agrees in kind
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with that one of the given conjugate stresses whose direction falls

to the same side ofA B with it. When Or is parallel to A B, pr is

a shear, or tangential stress.

PROBLEM II. The intensities and 'directions of the stresses on a,

pair ofplanes perpendicular to each other and to a plane to which the

stresses are parallel, being given, it is required to find the intensity
and direction of the stress on a plane in anyposition perpendicular to

tliat plane to which the stresses are parallel.

In fig. 52, let the plane of the paper represent
the plane to which the stresses are parallel, and

OX, O Y, the pair of rectangular planes on
which the stresses are given. Let those stresses

be resolved, as in Article 99, into rectangular
normal and tangential components. Let pxx de-

note the intensity of the normal stress on the

plane Y, which stress is parallel to O X , let

Pyy denote the intensity of the normal stress on
the plane X, which stress is parallel to O Y.

In virtue of the Theorem of Article 103, the 52 -

tangential stresses on those two planes must be of equal intensity;
and they may therefore be denoted by one symbol, pxy,

which sym-
bol may be read as meaning

the intensity of ( x \ on a plane ( y )

the stress along ( y J
normal to

(
x

J

Let O N be a line normal to the plane the stress on which is

sought, making with X the angle X N = x n. Consider the
condition of a prism A B, of the length unity, bounded by the

planes O A _L#, O B JL x, A B _L O K The areas of the faces of

that prism have the following proportions :_ _ A _ _ A
OB = AB -cosxn; OA = AB sin xn.

The forces exerted on the faces OA and O B, in a direction parallel
to x, consist of the normal stress on B, and the tangential stress

on OA
;
that is to say,

pxx
' O B -f pxy OA = A B < pxx cos x n + pxy

*
sin x n >

Let this be represented by O D.
The forces exerted on the faces OA and O B, in a direction paral

lei to y, consist of the normal stress on OA, and the tangential
stress on O B

;
that is to say,

Pxy B -|- pyy OA = AB '

|
pxy

' cos x n + pyy
sin x n i

Let this be represented by OE.
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Complete the rectangle O D R E
; the amount and direction of

the stress on A B will be represented by its diagonal,

and the intensity of that stress by_ -^.jL^^t.* ~-

OB, f A A

+ %Pxy (Pxx ~}-pyy) cos xn ' sin x n V ................. (1.)

From K draw BP perpendicular to the normal O Nj then the

normal and the tangential components of the total stress on A B will

be represented respectively by

OP = OD cos xn + OE sin xn;- _, A __ A "fe-'dZ'iT-
PB = O D sin x n - O E cos xn;

and the intensities of these components by

OP A
;

A
,

A Ax
pn = ^= = pxx cos2 xn -\~pyy

' sin2xn -f 2pxy
- cos xn sin am;

-X _D

A A
.

A A
f . w-z* ryy/ cos xn * sin xn -\-Pxy (sm

"
^' ft- -cos xn). {AB

The obliquity, ^ NOB = in, r, of the stress on A B is given by
the equation

ismnr -L (3-)

P
109. Principal Axes of Stress Parallel to One Plane. THEOREM.

For every condition of stress parallel to one plane, there are two planes

perpendicular to each other, on which there is no tangential stress.

As in Article 108, let the three rectangular components, pxx)

pyy, p^, of the stress on two rectangular planes, OY, OX, be"given.
The condition, that there shall be no tangential stress on a plane
normal to N, is expressed by making pt

= in the second of the

equations 2 of that Article ;
and in order that this may be fulfilled,

we must have
A A

cos x n sin x n _ pxy

,
A

.
A

:"
nxx -vm

9

GQ^ xn sm'xn

or, what is the same thing,
A

%Pxy n <

:

z IT*
'

PXX Pyy
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Now for two values of x n, differing by a right angle, the values of

tan 2xn are equal; hence there are two directions of the normal
ON perpendicular to each other, which fulfil the condition of having
no tangential stress.

Those two directions are called principal axes of stress, and the

stresses along them (which are conjugate to each other) principal

There may be a third principal stress, conjugate and at right

angles to the first two ;
but as, with one exception, the ensuing in-

vestigations of this section relate to stresses upon planes parallel to

the direction of this third principal stress, which does not affect

such planes, it may be left out of consideration.

The most simple mode of expressing the relations amongst inter-

nal stresses parallel to a plane is obtained by taking the two prin-

cipal axes of stress in that plane for axes of co-ordinates; and this
'

is done in the ensuing Articles.

110. Equal Principal Stresses Fluid Pres -THEOREM I. IfO,

pair ofprincipal stresses be of the same kind and of equal intensity,

every stress parallel to the same plane is of the same kind, of equal in-

tensity, and normal to its plane of action.

In fig. 53, let OX, OY, be the direc- x

tions of the given principal stresses, and

p*> Py) their intensities. By the condi-

tions of the question, those intensities are

equal, or

Let it be required to find the direction
and intensity of the stress on any plane

~T"

A B. As in Article 108, consider the
condition of the triangular prism O A B;
and let the length of that prism, in a
direction perpendicular to the planeX Y be unity. Then the total stresses Fig. 53.

on the faces OB and A will be respectively

px
' OB and py

OA.

On X and Y respectively, take OT> to represent p, B, and

O E to represent py
-

O~A; complete the rectangle O I> R E; then

its diagonal R will represent the amount and direction of the

stress on the face A B of the prism, and the intensity of that stress

will be

OB
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Now, because px = py ,
we have

or> OJE OR
OR OA AB'

and consequently

and because of the similarity of the triangles A B, E R, R
is perpendicular to A B. Therefore, the stress on each plane per-

pendicular to X Y is normal, and of equal intensity in all direc-

tions. Q. E. D.
In this case it is obvious, that eveiy direction in the plane

X O Y has the properties of an axis of stress.

COROLLARY. If the stress in all directions parallel to a given plane
be normal, it must be of equal intensity in all those directions.

THEOREM II. In a perfect fluid, the pressure at a given point
is normal and of equal intensity in all directions.

Fluid is a term opposed to solid, and comprehending the liquid
and gaseous conditions of bodies,which have been defined in Article 4.

The property common to the liquid and the gaseous conditions is

that of not tending to preserve a definite shape, and the possession of

this property by a body in perfection throughout all its parts, con-

stitutes that body a perfect fluid. The parts of a body resisting
alteration of shape must exert tangential stress; a perfect fluid does

not resist alteration of shape ;
therefore the parts of a perfect fluid

cannot exert tangential stress
;
therefore the stress exerted amongst

and by them at every point and in every direction is normal
; there-

fore at a given point, it is of equal intensity in every direction.

Q. E. D.
This theorem, and its consequences, form the branch of statics

called Hydrostatics, which is sometimes treated of separately, but

which, in this treatise, it has been considered more convenient to

include in the subject of the statics of distributed forces in general.
Gaseous fluids always tend to expand, so that the stress in them

is always a pressure. Liquid fluids are capable of exerting to a

slight extent tension, or resistance to dilatation, as well as pressure;
but in all cases of practical importance in applied mechanics, the

only kind of stress in liquids which is of sufficient magnitude to be

considered, is pressure.
The termfluid pressure is used to denote a thrust which is normal

and equally intense in all directions round a point.
The idea of perfect fluidity is not absolutely realized by actual

liquids, they having all more or less a tendency in their parts to

resist distortion, which is called viscosity, and which constitutes an

approach to the solid condition
; nevertheless, in problems of applied
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hydrostatics, the assumption of perfect fluidity gives results near

enough to the truth for practical purposes. ;

111. Opposite Principal Stresses. THEOREM.-'If a",pair of prin-

cipal stresses be of equal intensities, but of, opposite kinds, the stress

on any plane perpendicular to the plane yf, tfie 'directions bflt&e

principal stresses is of tlie same intensity, and the angles which its

direction makes with the normal to its plane are bisected by the axes

of principal stress.

In fig. 53, let the stresses acting along the rectangular axes OX,
OY, be as before, of equal intensity; but let them now be, not as

before, of the same kind, but of opposite kinds, one being a thrust

and the other a pull : a condition expressed by the equation

and let it be required to find the direction and intensity of the stress

on the plane A B, to which OE is normal.

In this case OD is to be taken as before, to represent^ OB,
the total stress on the face (JB of the triangular prism A B ;

but instead of taking OE in the direction from O towards B, to

represent the total stress on OA, viz.,^>y OA, we are now to take

Oe of equal length, but in the contrary direction. Complete the

rectangle ODre; then the diagonal Or will represent the total stress

on AB. The intensity of this stress is the same as before, viz.,

but its direction Or, instead of being perpendicular to AB, makes an

angle XOr on one side of the axis OX, equal to the angle XOE
which the normal OE makes on the other side of that axis; and
X bisects the angle of obliquity E Or. Q. E. D.
The stress pr agrees in kind with that one of the principal stresses

to which its direction is nearest ; and when it makes angles of 45
with each of the axes, it is shearing or tangential; so that a pull
and a thrust of equal intensity, on a pair of planes at right angles to
each other, are equivalent to a pair of shearing stresses of the
same intensity on a pair of planes at right angles to each other,.
and making angles of 45 with the first pair.

112. Ellipse of stress. PROBLEM I. A pair of principal stresses-

of any intensities, and of the same or opposite kinds, being given, it is

required tofind the direction and intensity of the stress on a plane in

any position at right angles to the plane parallel to which the two

principal stresses act.

Let X and Y (figs. 54 and 55), be the directions of the two

principal stresses; OX being the direction of the greater stress.
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Let pm be the intensity of the greater stress ;

. and p.. that- of the less**
-

* ^ - % v2) i / * 9

- A, .< ^ /^-^
l

Fig. 54. Fig. 55.

The kind of stress to which each of these belongs, pull or thrust,
is to be distinguished by means of the algebraical signs. If a pull
is considered as positive, a thrust is to be considered as negative,
and vice versd. It is in general convenient to consider that kind
of stress as positive to which the greater principal stress belongs.

Fig. 54 represents the case in which pm and j0y
are of the same kind;

fig. 55 the case in which they are of opposite kinds. In all the

following equations, the sign of py
is held to be implied in that

symbol.
Consider the two equations

From these it appears, that the pair of stresses, px and py, may be

considered as made up of two pairs of stresses, viz.: a pair of

stresses of equal intensity and of the same kind, whose common

value is
( ; ", and a pair of stresses of equal intensity, but
2

opposite kinds, whose values are + -
>

J

Now let AB be the plane on which it is required to ascertain the

direction and intensity of the stress, and ON a normal to that plane,

making with the axis of greatest stress the angle

^ XON = xn.
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On ON take M = ^* P"'
} this -will represent a normal stress

on AB of the same kind with the greater principal stress, and of
an intensity which is a mean between the intensities of the two

principal stresses ; and this, according to Article 110, Theorem L,

will be the effect upon the plane AB, of the pair of stresses ^
2

Through M draw PMQ, making with the axis of stress the same

angles which ON makes, but in the opposite direction; that is to

say, take MP = M~Q= MO. On the line thus found set off from

M towards the axis of greatest stress, ME, = ^*
9

. This, ac-

cording to Article 111, will represent the direction and the intensity
of the oblique stress on AB, which is the effect of the pair of stresses

P.P,
1

Join OK Then will that line represent the resultant of the

forces represented byOM and ME,; that is to say, the direction and

intensity of the entire stress on AB. Q. E. I.
"" The algebraical expression of this solution is easily obtained by

^ means of the formulae of plane trigonometry, and consists of the two

following equations:

'

Intensity, B, or pr
= J [pi' cos2 xn + pi' sin2 x n\ (1.)

an equation which might have been obtained by making p^ = in

equation 1 of Article 108, Problem II.
A

Obliquity, ^ N O B orn r.

= arc sin (sin 2 x n ^
) (2.)

This obliquity is always towards the axis of greatest stress.

k^J%- ^> px &n& py
are represented as being of the same kind;

and ME, is consequently less than OM, so that OR falls on the

same side of OX with ON, that is to say, n r^ x n. In
fig. 55,

px and^>y are of opposite kinds, ME is greater than OM, and OE
falls on the opposite side of OX to OM; that is to say, nr^xn.
The locus of the point M is obviously a circle of the radius

*

n > an^ that of the point E, an ellipse whose semi-axes are

px and py, and which may be called the ELLIPSE OF STRESS, because

its semidiameter in any direction represents the intensity of the

stress in that direction.
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The principal stresses, being represented by the semi-axes of this

ellipse, are respectively the greatest and least of the stresses parallel
to the plane XOY.
The direct and shearing, or normal and tangential components of

O R = pr are found by letting fall a perpendicular from H upon
O N, and are as follows:

Direct, pn = px cos2 nee + py

*
sin

2
xw; (3.)

A A
Shearing, pt

=
(px

- py)
cos x n ' sin x n; ...(4.)

equations which might have been deduced from the equations 2 of

Article 108, Problem II.

From equation 3 it is obvious, that the sum of tJie normal stresses

on a pair of planes at right angles to each other is equal to the sum
of the principal stresses j

and from equation 4 follows the principle,

already demonstrated otherwise in Article 104, of the equality of

the shearing stress on a pair of planes perpendicular to each other.

PROBLEM II. A pair ofprincipal stresses being given, it is required
to find the positions of the planes on which the shear, or tangential

component of the stress, is most intense, and the intensity of that shear.

It is evident that the shear is greatest when MR is perpendicular
to OM; and then M JR, itself represents the intensity of the shear;
that is to say,

maximum pt
= x ~

(5.)

In this case, A B is either of the two planes which make angles
of 45 with the axes of stress.

PROBLEM III. To find the planes on which the obliquity of the

stress is greatest, the intensity of that stress, and the angle of its

obliquity.
CASE!. W/ien the principal stresses are ofthe same kind. CFig. 54.)

In this case M R, ^ M O, and it is evident that the angle of

obliquity, ^ M O II = nris greatest, when M R, is perpendicular
to R, and that its value is given by the equation

A ME,maximum n r arc sin _ :

OM

To find the position of the normal O N" to the plane A B, we have to

consider that,

A= \^L PMN;
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but^: PMN = ^L MRO + ^ MOR

consequently in this case,

= 90 + max. r

(an obtuse angle).
And for the position of the plane AB itself, we have

^ X A = 90=- xn =
9-

......

-

-(&)2

(an acute angle).
These equations apply to a pair of planes, making equal angles

at opposite sides of X.
The intensity of the most oblique stress is obviously

pp
= ^off ME

or a wean proportional between the principal stresses. This is

otherwise evident from the consideration, that when OR -L PRQ,
then OR - J (PR

*

RQ), and that RQ = px,
PR = py

.

CASE 2. When the principal stresses are of opposite kinds
(fig. 55),

it is evident, that the most oblique stress possible is a tangential

stress, and that the problem amounts to finding the circumstances

under which R lies in the plane AB. In this case it is evident,

that the triangle M R becomes right-angled at 0, and conse-

quently, that the intensity of the stress is given by the equation

MK? - OW)
=

being, as before, a mean proportional between the principal stresses.

The product px py
is a positive quantity, notwithstanding its

negative sign, because py
in this case is implicitly negative.

The position of the normal N is found by considering, that

A 1

and that ^ PMN = ^ MOR -f ^L MRO

= 90 + arc -sin^
+ Py

';

P*
~

Pi
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consequently,

(an obtuse angle) ;
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x n = - < 90 + arc sin

XOA = 90 xn = ^ ( 90 arc sin
2 I

(11.)

P*~P
(an acute angle).

In these, as in the other formulas applicable to the case in which

px and py
are of opposite kinds, it is to be borne in mind that py

is implicitly negative, and that consequently pa + py
means the

difference, and px py
the sum, of the arithmetical values of the

principal stresses.

PROBLEM IV. The intensities, "kinds, and obliquities, of any two
stresses wJwse planes of action are perpendicular to the plane of their

directions, being given, it is required tofindtlie

principal stresses and axes of stress. CASE 1.

When the given stresses are oftJie same kind,
K and unequal.

In fig. 56, let A B, A'B', represent the

given planes, N, O N", their normals, O B,
O B', the stresses upon them.

Let the intensities be denoted algebraically

p = B; p = B',

and the obliquities by

\m ifr: ^. N'OB'= fy.

Fig. 56.

In fig. 57, take ON to represent at once the normals to both

planes.

Make ^ N B = n r ; ^ N B' = n' r';

OB = p; OB' =p'.

Join BB', bisect it in S, from which draw SM -L BB', cutting
ONinM. Join MB, MB',
which lines are evidently

equal. Then from a com-

parison of the construction

of this figure with the gene-
ration of the ellipse of stress,

* as described under Problem

Fig. 57. I., is evident, that
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= &&; MS = MR' = ^=&;
and consequently that the principal stresses are

MR; ............ (12.)

and it is also evident, that the angles made by the axis of greatest

stress, with the two normals respectively, are

A-^^NMB,; x
A
ri = i-^N MR' j .........(13.)

which data are sufficient to determine the position of the axes.

E. I.

CASE 2. WJien tJie given stresses are of opposite kinds, the con-

struction is the same in every respect, except that the lesser of the

given stresses must be represented in fig. 57 by a line in the pro-

longation of its direction beyond 0, making an obtuse angle with

O N, equal to the supplement of its obliquity.
In either of the two cases that have been stated, the angle

between the normals to the two given planes must have one or

other of the two following values :

A f either x ri + x n =^iNMS )nn =
\ A A V ......... (14.)
or xri- aw^^RMS

according as the two normals are at opposite sides, or at the same
side of the axis of greatest stress.

The solution of cases 1 and 2 is expressed algebraically by the

following equations, which are deduced from the geometrical
solution by means of well known formulse of trigonometry :

- p2
"

P/2- A A .>
2 (p cos n r p cos w r J

= MR = ME?
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In using these equations, it is to be observed that the cosine of

an obtuse angle is negative.

Simplified Forms of Cases 1 and 2.

CASE 3. When tJie two given stresses are conjugate, they are of

equal obliquity; and the points 0, R', S, R, in fig. 57, are in one

straight line, to which M S is perpendicular ; the angle between

the two normals being

^NMS = A' = 90^/fr...................
.,(18.)

In this case, equation 15 becomes 3 ~v~^ & ^
'

A >-<
2 cos n r

equation 16 becomes _JU- .

f^v

J >//J / 1

--
.................... (20.)

equations 17 are modified only by the equality of n' Y* to n r.

CASE 4. TFAe7& the planes of action of the two given stresses are

perpendicular to each otfier, M S is perpendicular and II R/ parallel
to N, in fig. 57, so that we have, for the tangential component of

each stress,
A A

MS =p sin nr=p' sin n' r1 =pt
.

Let the normal components of the given stresses be denoted by
A

, ^
pn =p cos n r

\ p n =p' cos n rf
.

Then equation 15 becomes

2
-

9.
' ()

equation 16 becomes

~2

The equations 17 become

cos 2 x n = - cos 2 x'ri =P~P -

}

or, what is equivalent,
|>

..... .. .(23.)

tan 2 x n= - tan 2 a' n' =

being the same with equation 1 of Article 109,
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PROBLEM V. The stress in every direction being a thrust, and the

greatest obliquity being given, it is required to find the ratio of two

conjugate thrusts whose common obliquity is given.
Let (p denote the given greatest obliquity. Then according to

Problem III.,

Let n r, which must not exceed
<p, denote the common obliquity

of a pair of conjugate thrusts, so that, as in Problem IV., case 3,

90 +
A
,

shall be the angle between the normals to their planes of action,^
and

A >^
90C nr y\

the angle between those planes themselves. Let p be the intensity;
of the greater, and p that of the less, of those conjugate thrusts

whose ratio is sought ; then dividing equation 20 of this Article by
*

equation 19, and squaring the result, we find

A

(24.)

or transposing

(p+p')- = cos2 n r
(25)

4pp
"

cos
2

<p

. .

Hence it follows that the ratio of the conjugate stresses, p, p', is

that of the two roots of a quadratic equation.

W2 2coswr* w+ cos
2

<p = (26.)

that is to say, let p be the greater thrust, and p' the less, then

p' _ cos nr J (cos
2 n r cos2

<p) /2y \

^ cos n r -f- J (cos
2 nr cos2

<p)

When n r = 0, this becomes the ratio of the principal thrusts, viz. :

^. =L sil^:,. ...(28.)
px 1 + sin <p

when nr = <P,
the ratio becomes that of equality.
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113. Combined Stresses in One Plane. PROBLEM. Given the nor-

mal intensities and directions ofany number of simple stresses whose

directions are in the same plane; required, the directions and inten-

sities ofthe pair ofprincipal stresses resultingfrom their combination.

Distinguish, the pulls from the thrusts by considering the kind
whose sum is greatest as positive, and the opposite kind as negative.
Assume two planes at right angles to each other (which may be
called planes of reduction), to each of which, by the process of

Article 98, reduce all the given stresses ;
and then resolve, as in

Article 99, each of the reduced stresses thus obtained into a direct

or normal, and a shearing or tangential component. Compute
(attending to the positive and negative signs) the two sums of the

direct component stresses on the two planes of reduction respectively ;

compute also the sum of the shearing components, which will be
the same for each plane of reduction : lastly, from the pair of total

direct stresses, and the total shearing stress, thus computed, re-

latively to the assumed rectangular planes of reduction, determine,
as in Article 112, Problem IV., case 4, the directions and inten-

sities of the resultant principal stresses. Q. E. I.

The algebraical expression of this solution is as follows: Let n
be taken to denote the normal to one of the rectangular planes of

reduction.

Let p denote the normal intensity of any one of the given direct

stresses, and np the angle which its direction makes with the

normal n. The symbol 2, as in previous examples, denotes the

operation of taking the sum of a set of quantities, with due regard
to their algebraical signs, that is to say, adding the positive and

subtracting the negative quantities.
The direct and shearing components of a single stress p, as

reduced to the rectangular planes of reduction respectively, accord-

ing to the principles of Article 99, are as follows :

- I \ on the plane normal to n, p cos
2

np ;

(
on the other plane, p sin2 np ;

Tangential on each plane, p cos np sinnp.

Consequently, the total direct and shearing stresses on the planes
of reduction, are as follows :

n = 2
NormalJ A ,

p'n
=? (psirf np)',

( A A ^
Tangential, pt

= 2
[p cos n p sin n p),
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Introducing these values into the equations 21, 22, and 23, of

Article 112, and observing that

cos
2

np + sin
2 np = 1

; cos
2

np sin
2 np = cos 2 np,

1
$

we obtain the following results :

<>>

i2

A

(3.)

The equation 2 is capable of being expressed in another form, as

follows. Let a, a' be any two angles. Then

cos a cos a' -f sin a sin d = cos (a a').

Now the quantity under the sign J, in equation 2, consists of the

following classes of terms :

1. All the squares p
2
cos

2 2 np ;

2. All the products 2p p cos 2 n p cos 2 wp' j

where p, p', are OMM/ ^air of the given stresses ;

3. All the squares p
2 sin

2 2 np ;

4. All the products 2 p p
f sin 2 wp sin 2np'.

The first and third of these classes being added together, make
A A

2 (p
s

); the second and fourth make 2 2 (p p'
' cos 2^>') ; pp' being

the angle between p and /. Equation 2 thus becomes

From the equations (1) and (4) it appears that the intensities of

the principal stresses px and ^>y
can be computed without assuming

planes of reduction ; for the only angles involved in this pair of

equations are the several angles pp', which the given stresses make
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with each other when compared by pairs in every possible com-
bination. To find the directions, however, of those principal stresses,

planes of reduction must be assumed.
In using the equation (4),

it is to be remembered that when

2pp exceeds 90
P
we have

A / A
= cos (lSO

SECTION 4. Of the Internal Equilibrium of Stress and Weight,
and the Principles of Hydrostatics.

114. Varying internal Stress. The investigations of the preced-

ing section have been conducted as if the internal stress, whether

simple or compound, were uniform at all points in the body under

consideration; but their results are nevertheless correctly applicable
to internal stress which varies from point to point of the body ;

for those results are arrived at by considering the conditions of

equilibrium of a pyramidal or prismatic portion of the body con-

taining the point at which the relations amongst the components
of the stress are to be determined

;
and when the stress varies from

point to point, then by supposing the pyramid or prism to be small

enough, its condition of stress may be made to deviate from uni-

formity to an extent less than any assigned limit of deviation
;

but the truth of the propositions of the preceding section for an
uniform stress is independent of the size of the prism or pyramid ;

therefore they can be proved to deviate from the truth for a vary-

ing stress by less than any assignable error
;
therefore they must

be true for a varying as well as for an uniform stress.

115. Causes of Varying Stress. The internal stress exerted

amongst the parts of a body, may vary from point to point, from
three classes of causes, viz. :

I. Mutual attractions and repulsions between the parts of the

body;
II. Attractions and repulsions exerted between the parts of the

body in question and external bodies
;

III. Stress exerted between the body in question and external

bodies at their surfaces of contact.

I. The first of these classes of causes may be left out of considera-

tion in the present treatise ;
because the mutual attractions and

repulsions of the parts of an artificial structure are too small to be

of practical importance in the art of construction.

II. Of the second class of causes, the only force which is of

sufficient magnitude to be considered in the art of construction, is

weight.
III. The consideration of the third class of causes belongs to
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the subject of the strength of materials, which will be treated of iii

the sequel.
The subject of the present section, therefore, is the relation be-

tween the weight of the parts of a body, and the variation of its

condition of stress from point to point.
116. General Problem of Internal Equilibrium. Let W denote

the weight per unit of volume of a body, or part of a body, and let

it be required to determine what modes of variation of internal
stress are consistent with that specific gravity.

Consider the condition of a rectangular
molecule A

(fig. 58), bounded by ideal

planes, whose edges are parallel to three

rectangular axes, OX, OY, OZ. The

position of this set of axes is immaterial

to the result; but the algebraic formulae

are simplified by assuming one axis to be

vertical; let O Z, then, be vertical, and
let distances along it be positive upwards.
Then weight must be treated as a nega-
tive force ; and the weight of a portion
of the body of the volume V will be denoted by

Fig. 58.

Let the dimensions of the molecule A be

AX parallel to OX,

A* OZ.

Then its weight is represented by

w ' AX Ay AZ.

The six faces will be designated as follows :

The pair parallel to Y Z
zox
XOY1

(That is, the horizontal pair.) J

Let the six intensities of the components of the stress be denoted
as in Article 104, viz. :

Normal, pxx, pyy, pzz
-

Tangential, pyzj pzx, pxy.

As for the signs of normal stress, let pull be positive and thrust

I

Farthest from 0.
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negative. As for the signs of tangential stress, let those stresses

be considered as <

*

^^7
e

I which tend to make the pair of cor-
( negative J

ners of the molecule which are nearest and farthest from O
( sharper )

\ natter
J

'

In the first place, let the rate ofvariation of the stress, of what
kind soever, from point to point, be uniform; that is to say, for

example, if the mean intensity of any one of the components of

the stress at the face A x A y be p, then at the face + A x A y,
whose distance from A x A y is A z, let the mean intensity of

the same component be

in which -~ is a constant co-efficient or factor, meaning
" the rate

cu z

ofvariation of p along z," which is positive or negative, according
as the variation of p is of the same or of the contrary kind to that

of z. Rates ofvariation are also known by the name of differential

co-efficients. As there are six components in the stress, and three

axes of co-ordinates, there are eighteen possible differential co-

efficients of the stress with respect to the co-ordinates j but- it will

presently appear that nine only of those co-efficients are concerned

in the solution of the present problem.
The relations amongst the weight of the molecule A, and the

variations of the intensities of the component stresses on its differ-

ent faces, depend on this principle, that the force arising from the

variations of stress must balance the weight of the molecule; that is

to say, tha resultant force parallel to each of the horizontal axes,
which arises from the variation of stress, must be nothing, and the

resultant force parallel to the vertical axis, which arises from the

variation of stress, must be upward, and equal to tlie weight of the

molecule a principle expressed by the three following equa-
tions :

OJ-A^AZ + -^-AyAZAX + -^ A Z ' A X A y = j

X'AyAZ+^Ax dy dz

AX" AV A Z + -- A1J-AZAX + - AZ'AXAy
dy dz

= W' A X Ay AZ.
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Eacii of the nine terms which, compose the left sides of the above

equations is the product of four factors; the first being the rate of

variation of a stress, the second the distance between two faces on
which that stress acts, and the third and fourth the dimensions of

those faces, whose product is their common area.

Each term of those three equations contains as a common factor

the volume of the molecule, A x A y A z ; dividing by this, they are

reduced to the following :

,
dPxy , dpzx

dx ~d dz

.

dx dy dz

dPzx ,
d

dpyz
.(2.)

, yz , zz

dx dy dz

In this second form, the equations are applicable to rates of varia-

tion which are not uniform as well as to those which are uniform.
For as the' rectangular molecule, from the conditions of whose

equilibrium these equations are deduced, is of arbitrary size, it may
be supposed as small as we please j

and when the rates of variation

of the stress are not uniform, we can always, by supposing the
molecule small enough, make the rates of variation of the stresses

throughout its bulk deviate from uniform rates to an extent less

than any given limit of error.

The equations 2 can easily be modified so as to adapt them to

any different arrangement of the axes of co-ordinates. Thus, if z
be made positive downwards instead of upwards, w is to be put
for w in the third equation. If x or y, instead of z, be made the
vertical axis, w is to be substituted for in the first or the second

equation, as the case may be, and for w in the third equation.
If the axes of x, y, and z make respectively the angles #, /3, and y,
with a line pointing vertically upwards, the force of gravity is to
be resolved into three rectangular components, each of which must
be separately balanced by variations of stress j so that for

0, 0, w,

in the first, second, and third equations respectively, are to be
substituted

w cos a, w cos /3,
w cos y.

The equations of this Article are not in general sufficient of



116 PRINCIPLES OF STATICS.

themselves to determine the mode of variation of the intensity of

the stress in a solid body, because of their number not being so

great as that of the number ofunknown quantities to be determined.

They have therefore to be combined with other equations, deduced
from the relations which are found by experiment to exist between
the alterations of figure, which the parts of a solid body undergo
when a load acts on it, and the stresses which at the same time act

amongst the disfigured parts. These relations belong to the sub-

ject of elasticity and of the strength of materials, and not to that

of the principles of statics. The remainder of the present section

will relate to those more simple problems which can be solved by
means of the equations 2 alone.

117. Equilibrium of Fluids. It has already been explained in

Article 110, that in a fluid the only stress to be considered in

practice is a thrust or pressure, normal and of equal intensity
in all directions. This is expressed symbolically in the following
manner :

pyt
=

', pgje
=

; pxy
=

Ptx = Pyy Pzz P ')

the single symbol p being used, for the sake of convenience and

brevity, to denote the intensity of thefluid pressure at any given point
in the fluid.

In adapting the equations 2 of Article 116 to this case, it is con-

venient to take x to denote vertical co-ordinates, and to make it

positive downwards. Then, bearing in mind that p is now a thrust,

being positive (and not a pull when positive and a thrust when

negative, as in the general problem), we obtain the following

equations;-
1**'$*

=
;

dy dz

(2.)

The first of these equations expresses the fact, that in a balanced

fluid, the pressure increases with the vertical depth, at a rate expressed

by the weight of the fluid per unit of volume; and the second and third

express the fact, that in a balancedfluid, the pressure has no variation

in any horizontal direction ; in other words, that the pressure is equal
at all points in the same level surface.

[The exact figure of a level surface is spheroidal ;
but for pur-

poses of applied mechanics it may be treated as a plane, without
sensible error.]
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Those principles may also be proved directly. Let
fig. 59 re-

present a vertical section of a fluid;
Y OY any horizontal plane, X a -~ '

vertical axis. Let BB be a hori-

zontal plane at the depth x below 0; *

C C another horizontal plane at the Z_ O-

depth x + AX. Let A be a small

rectangular molecule contained be-

tween those two horizontal planes;
FiS- 59.

and let A y and A z be its horizontal dimensions, so that its weight is

W A X A y A Z.

The pressure exerted by the other portions of the fluid against the

vertical faces of this molecule are horizontal, and must balance each

other; therefore there can be no variation of pressure horizontally.
Let PQ, then, be the uniform pressure at the horizontal plane YOY,

p, that at the plane B B, andp + --- A x that at the plane C 0, -=

(L x
,

d x

being the rate of increase of pressure with depth. The molecule is

pressed downwards by the pressure whose amount is

p A y A z,

and upwards by the pressure whose amount is

The difference between those forces, viz. :

dp~- ' A x A y A s,dx
has to be balanced by the weight of the molecule; equating it fo

which, and dividing by the common factor A x A y A zt we obtain

the first of the equations 2 of this Article.

The pressure pQ at the surface Y Y being given, the pressure p
at any given depth x below YY is found by means of the integral,

dp

(3.)

that is to say, it is equal to the pressure at the plane Y Y, added to

the weight of a vertical column of the fluid whose area of base is

unify, and which extends from the plane YY down to the given
depth x below that plane.

It is obviously necessary to the equilibrium of a fluid, that the
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specific gravity, as well as the pressure, should be the same at all

points in the same level surface.

The preceding principles are the base of the science of Hydro-
statics.

118. Equilibrium of a Liquid. A liquid is a fluid whose parts
tend to preserve a definite size ;

that is to say, a portion of a liquid

of a given weight tends to occupy a certain definite volume; and to

make it occupy a greater or a less volume, tension or pressure, as

the case may be, must be applied to it. The volume occupied by an

unit of weight is the reciprocal of the weight of an unit of volume ;

so that the preceding principle might otherwise be stated by say-

ing, that a liquid tends to preserve a definite specific gravity, which

may be increased by pressure, or diminished by tension.

The volume which a given weight of a liquid tends to occupy

depends on its temperature according to laws which belong to the

science of Heat.

The alterations of the specific gravity of liquids produced by any

pressures which occur in practice, are so small, that in most pro-
blems respecting the equilibrium of liquids, the specific gravity w
may be treated without sensible error as a constant quantity, inde-

pendent of the pressure p. In the case of water, for example, the

compression of volume, and increase of specific gravity, produced by
a pressure of one atmosphere, or 14*7 pounds per square inch, is about

20000, or 25/000 for each pound on the square inch.

If, then, the specific gravity w be treated as a constant in equation
3 of Article 117, it becomes as follows:

p = pQ + wx-j (1.)

that is to say : let p be the pressure at the upper surface, Y O Y,

(fig. 59) of a mass of liquid; then the pressure p at any given depth
x below that surface is greater than the superficial pressure p by
an amount found by multiplying that depth by the weight of an
unit of volume of the liquid.
When the mass of liquid is in the open air, the superficial pres-

sure PQ is that arising from the weight of the earth's atmosphere
of air, and at places near the level of the sea, is estimated on an

average at 14 -7 pounds on the square insh. In a close vessel,

the superficial pressure may be greater or less than that of the

atmosphere.
119. Equilibrium of different Fluids in contact with each other.

If two -different fluids exist in the same space, they may unite so

that each of them shall be distributed throughout the whole space,
either by chemical combination or by diffusion; but in such cases

they form, in fact, but one fluid, which is a compound or mixture,
as the case may be. The present Article has reference to the case



EQUILIBRIUM OF DIFFERENT FLUIDS. 119

when fluids of different kinds remain in contact, uncombined and
unmixed* In this case, the condition of equilibrium is, that the

pressures of two fluids at each point of their surface of contact shall

be equal to each other, a condition which, when the two fluids

are of difierent specific gravities, can only be fulfilled when the

surface of contact is horizontal.

If, then, two or more fluids of different specific gravities, which
do not combine nor mix with each other, be contained in one vessel

uninterrupted by partitions, they will arrange themselves in hori-

zontal strata, the heavier fluids being below the lighter.
If two fluids of different specific gravities be contained in the

two legs of a tube shaped like the letter TJ (and called an "inverted

siphon"), or if one of the two fluids be contained in a vertical tube

open below, and the other in the space surrounding that tube ; or,

generally, if the two fluids be partially separated from each other by
a vertical or nearly vertical partition, below which there is a com-
munication between the spaces on either side of it; the horizontal

surface of contact of the fluids will be at that side of the partition
at which the lighter fluid is found, so that it may be above, and the

heavier fluid below, that surface of contact.

Let PQ denote the common pressure of the two fluids at their sur-

face of contact, and let any ordinate measured from that surface

upwards, be denoted by x. Let w' denote the specific gravity, and

p' the pressure, of the lighter fluid; w" the specific gravity, and p"
the pressure, of the heavier fluid. Then at any given elevation a?

above the surface of contact

which equations, when the fluids are liquids, and u/t w", constants,
become

p'
= PQ

- wx-
} p"

-
pQ

- w" x................ (2.)

As in the case of the barometer, and the mercurial pressure gauge,
the height at which a liquid stands in a tube, closed and empty at
the upper end, above its surface of contact with another fluid, may
be used to determine the pressure exerted by that other fluid at the
surface of contact. In this case, p" =

0, or nearly so j consequently

(3.)

Let a/, x", be two heights above the surface of contact at which
the respective pressures of the lighter and the heavier fluid are
either equal to each other, or both equal to nothing; ihen p" = $/,
and consequently, for fluids in general,
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If the fluids be both liquids, this becomes,

w'x = w"x", (5.)

or, the heights are inversely as the specific gravities.
If the heavier fluid be a liquid (such as the mercury in the baro-

meter) and the lighter a gas (such as the atmosphere) the equation
becomes

w' dx w" x"', (6.)

and on this last formula is founded the method of determining
differences of level by barometric observations of the atmospheric

pressure.
/ 120. Equilibrium of a Floating Body. THEOREM. A solid body

floating on tlie surface of a liquid is balanced, wJien it displaces a
volume of liquid whose weight is equal to the weight of the floating

body, and when the centre of gravity of the floating body, and that

of the volume from which the liquid is displaced, are in the same
vertical line.

Let fig. 60 represent a solid body (such as a ship), floating in a

liquid, whose horizontal upper surface is YY. Suppose, in the first

place, that there is no pressure on
the surface YY. Consider a small

portion S of the surface of the im-

mersed part of the solid body. The

liquid will exert against S a normal

pressure, whose amount will be ex-

Fig. 60. &p = Swx,

where S is the area of the small portion of the immersed surface, x
the depth of immersion of its centre below the level surface YY,
and w the weight of unity of volume of the liquid.

Let <* denote the angle of inclination of the area S to a horizontal

plane, or, what is the same thing, the angle of inclination of the

pressure on S to the vertical. Conceive a vertical prism H S to

stand on the area S
; the area of the horizontal transverse section

of this prism is what is called the Iwrizontal projection of the area

S, and its value is

S cos .

Conceive a horizontal prism ST to have its axis in the vertical

plane which is perpendicular to S, and to have the area S for an
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oblique section ; the vertical transverse section of this prism is what
is called the vertical projection of the area S, and its value is

S sin .

This horizontal prism cuts the immersed surface in another small

area T, whose projection on a vertical plane perpendicular to the

axis of the prism S T is equal to that of S, and which is immersed
to the same depth, and sustains pressure of the same intensity.

Resolve the total pressure on S into a horizontal component and
a vertical component. The horizontal component is

Sp ' sin = S w x ' sin
,

being equal to the product of the intensity p by the vertical projection
of S ;

but this component is balanced by an equal and opposite com-

ponent of the total pressure on T; and the same is the case for

every portion such as S into which the immersed surface can be

divided; therefore the resultant of all the horizontal components of

the pressure exerted by the liquid against the solid is nothing.
The vertical component of the pressure on S is

$p cos = S w x cos
,

being equal to the product of the intensity p by the horizontal

projection of S. But S x cos & is the volume of the vertical prismH S, standing upon the small area S, and bounded above by the

horizontal surface YY, and w is the weight of unity of volume of

the liquid ; therefore S w x cos ex, is the weight of liquid which the

prism H S would contain
; so that the vertical component of the

pressure on S is an upward force, equal and opposite to the weight of the

liquid displaced by the prismatic portion of the solid body which stands

vertically above S. Then if the whole of the immersed surface be
divided into small areas such as S, the resultant of the pressure of

the liquid against that entire surface is the sum of all the vertical

components of the pressures on the small areas
;
that is, a force

equal and opposite to the sum ofthe weights ofliquid displaced by all

the prisms such as HS; that is, a sum equal and opposite to the

weight of the whole volume of liquid displaced by the floating

body ; and the line of action of that resultant traverses the centre

of gravity of the volume of liquid so displaced.
Let C denote that centre of gravity, which is also called the

Centre of Buoyancy. Let G denote the centre of gravity of the

floating body. Let "W denote the weight of the floating body, and
Y the volume of liquid displaced by it.

Then the conditions of equilibrium of the floating body are ob-

viously the following :

First: "W = w"V; or its weight must be equal to the weight of
the volume of liquid displaced by it;
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Secondly: its centre of gravity G, and the centre of buoyancy
C, must be in the same vertical line. Q. E. D.

The preceding demonstration has reference to the case in which
the pressure on the horizontal surface YY is nothing. In the case

of bodies floating on water, that surface, as well as the non-immersed

part of the surface of the floating body, have to sustain the pressure
of the air. To what extent this fact modifies the conclusions

arrived at will appear in the next Article.

121. Pressure on an Immersed Body. THEOREM. If a Solid body
l>e wholly immersed in a fluid, the resultant of the pressure of the fluid
on the solid body is a vertical force, equal and directly opposed to the

weight of the portion of the fluid which the solid body displaces.
Let fig.

61 represent a solid body totally immersed in a fluid,

whether liquid or gaseous. Conceive a small

vertical prism SU to extend from a portion
S of the lower surface of the body, to the

portion U of the upper surface which is ver-

tically above S. Also let S T be a horizontal

prism of which S is an oblique section, and
TJV a horizontal prism of which U is an

oblique section, as in Article 120.

Then, as in Article 120, it may be proved
that the horizontal component of the pressure on S is balanced by
an equal and opposite component of the pressure on T, and the

horizontal component of the pressure on U by an equal and opposite

component of the pressure on V; so that the horizontal component
of the resultant of the pressure of the fluid on the entire body is

nothing, and that resultant is vertical.

The vertical component of the pressure on S is upward, and

equal to the weight of the prismatic portion of the fluid which
would stand vertically above S if a part of it were not displaced by
the solid body. The vertical component of the pressure on U is

downward, and equal to the weight of the prismatic portion of the
fluid which stands vertically above U. The vertical force arising
from the pressures on S and on U together is upward, and equal
to the difference between those two weights; that is, it is equal
and directly opposed to the weight of the portion of the fluid dis-

placed by the prismatic portion S U of the immersed body.
Hence the resultant of the pressure of the fluid over the entire

surface of the immersed body is equal and directly opposed to the

weight of the portion of fluid displaced by that body. Q. E. D.
The centre of gravity C, of the portion of fluid which would

occupy the position of the body if it were not immersed, is called,
as before, the centre of buoyancy, and is traversed by the vertical

line of action of the resultant of the pressure of the fluid, which is
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itself called the buoyancy of the immersed body, and sometimes the

apparent loss ofweight.
To maintain an immersed body in equilibrio, there must "be applied

to it a force or couple, as the case may be, equal and directly op-

posed to the resultant, if any, of its downward weight and upward
buoyancy; that resultant being determined according tothe principles
of Articles 39 and 40.

"When a body floats in a heavier fluid (as water) having its upper

portion surrounded by a lighter fluid (as air), its total buoyancy is

equal and opposite to the resultant of the weights of the two portions
of the respective fluids which it displaces.
In practical questions relative to the equilibrium of ships, the

buoyancy arising from the displacement of air is too small as com-

pared with that arising from the displacement of water, to require
to be taken into account in calculation.

122. Apparent Weights. The only method of testing the equality
of the weights of two bodies which is sufficiently delicate for exact

scientific purposes, is that of hanging them from the opposite ends

of a lever with equal arms.

If this process were performed in a vacuum, the balancing of the

bodies would prove their weights to be equal ; but as it must be

performed in air, the balancing only proves the equality of the

apparent weights of the bodies in air, that is, of the respective ex-

cesses of their weights above the weights of the volumes of air which

they displace. The real weights of the bodies, therefore, are not

equal unless their volumes are equal also. If their volumes are

unequal, the real weight of the larger body must be the greater by
an amount equal to the weight of the difference between the volumes
of air which they displace.
The weight of a cubic foot of pure dry air, under the pressure of

one atmosphere (14 -7 Ibs. on the square inch), and at the temperature
of melting ice (32 Fahrenheit) is

0'080728 pound avoirdupois.

Let this be denoted by WQ. Then the weight of a cubic foot of air

under any other pressure of p atmospheres, and at the temperature t

of Fahrenheit's scale, is given with a degree of accuracy sufficient

for most purposes, by the formula,
493-2 , .

and if w, W, be the weights of a given volume of air, under the

respective pressures >,>', and at the temperatures t, t',
of Fahrenheit's

scale, then

w' _!/ t + 461-2
(2

.

w "'tf-f 461-2'" '"* ''
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Let Wi denote the true weight of a body, Vj its volume, Wi its weight
per unit of volume, w the weight of unity of volume of air. Then

and the apparent weight of the same body in air is

"""
' A/) * '

Let this body now be balanced against another body in an accurate

pair of scales, and let their apparent weights be equal. Then, if

W2 denote the true weight, and wa the weight per unit of volume,
of the second body, we have

!J
- w SL^W, (4)
Wi Wz

so that the proportion between the real weights of the bodies is

Wa = WjW.2-W.2W

123. Relative Specific Gravities. If the true weight of a solid

body be known, and that body be next weighed while immersed in

a liquid, the proportion of the specific gravities of the solid body
and of the liquid can be deduced from the apparent loss of weight,
which is the weight of the volume of liquid displaced by the body.

Let Wj, as in equation 3 of Article 122, denote the true weight
of the solid body, w^ its weight per unit of volume, w.2 the weight of

an unit of volume of the liquid in which its apparent weight is

found, and W" the apparent weight; then by the equation already
referred to

and consequently

g^Wi-w (1)

Let the first weighing take place in air and the second in the liquid,

and letW be the apparent weight in air ; then

Wi
Wi

and consequently

so that if is known, may be found by the equation
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Wa

(3.)
w,

- W~ W"
When the object of weighing of this kind is to determine the

specific gravities of solids, the liquid usually employed is pure water;
and the results obtained are the ratios of the specific gravities of

solid bodies to that of pure water. If these ratios, or relative spe-
cific gravities, be multiplied by the weight of a cubic foot of pure
water, the weight of a cubic foot of the solid is obtained.

The weight of a cubic foot of pure water at the temperature of its

maximum density (being, according to Playfair and Joule, 39'l

Fahrenheit) is, according to the best existing data,

62 '425 pounds avoirdupois.

For any other temperature t on Fahrenheit's scale, the weight of a
cubic foot of pure water is

62425 /A \

where v denotes the volume to which a mass of water measuring one

cubic foot at 39-l expands at t
Q
;
a volume which may be computed

for temperatures from 32 to 77 Fahrenheit, by means of the follow-

ing empirical formula, extracted from Prof. W. H. Miller's paper on
the Standard Pound in the Philosophical Transactions for 1856 :

log.
= 10-1 (t 39-1)

2 0-0369
(

39 -I)
3
-10,000,000. (5.)

The relative specific gravities of two liquids are determined by
weighing the same solid body immersed in them successively and

comparing its apparent losses of weight.
124. Pressure on an Immersed Plane. If a horizontal plane SUr-

face of any figure be immersed in

a fluid, the pressure on that sur-

face is vertical, and uniformly
distributed; its amount is the D
product of the intensity of the

pressure at the depth to which
the plane is immersed by the area
of the plane; and the centre of
pressure (as already shown in
Art. 90) is the centre of gravity
of a flat plate of the figure of
the plane surface, or, as it is Fig. 62.

usually termed, the centre of gravity of the plane surface.

If an inclined or vertical plane surface be immersed in a liquid,
let OY

(fig. 62), represent a section of the horizontal plane at
which the pressure is nothing, and B F a vertical section of the
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immersed plane. Let xv
= BE be the depth to which the lower

edge of this plane is immersed below OY. From B draw BD =

BE, and -L BF; produce the plane BF till it cuts the horizontal

plane of no pressure, O Y, in the line represented in section by O ;

through and D draw a plane O H D, and conceive the prism
B D H F to stand normally upon the base B F and to be bounded
above by the plane D H. The pressure on the plane BF will be

normal; its amount will be equal to the weight of fluid contained

in the volume B D H F
; that is to say, let x denote the depth of

the centre of gravity of the plane BF below O Y, and w the weight
of unity of the volume of liquid; then the mean intensity of the

pressure on B F is

Po = wxo, (1.)

and the amount of the pressure

P = wo; -areaBF (2.)

Let C be the centre of gravity of the volume B D H F; then the

centre ofpressure of the surface B F is the point where it is cut by
the perpendicular CP let fall on it from C.

As the intensity of the pressure on any point of BF is propor-
tional to its depth below OY, and consequently to its distance from

O, this is a case of uniformly varying stress, and the formulae of

Article 94 are applicable to it. In the application of those formulae

it is to be observed, that the ordinates y are to be measured hori-

zontally in the plane BF, whose centre of gravity is to be taken as

the origin; that the co-ordinates x are to be measured in the same

plane, along the direction of steepest declivity, and reckoned positive
downwards ;

and that the value of the constant a in the equations of

Article 94 is given by the formula

a = wsma. (3.)

where a is the angle of inclination of the plane B F to a horizontal

plane.
120. Pressure in an Indefinite Uniformly Sloping Solid. Conceive

a mass of homogeneous solid mate-

rial to be indefinitely extended

laterally and downwards, and to

be bounded above by a plane sur-

face, making a given angle of de-

clivity 6 with a horizontal plane.
In fig. 63, let Y O Y represent a ver-

tical section of that upper sloping
surface along its direction of greatest

declivity, and X a vertical plane

Fig. 63. perpendicular to the plane of vertical
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section which is represented by the paper. Let w be the -uniform

weight of unity of volume of the substance. Let B B be any
plane parallel to, and at a vertical depth x below the plane Y Y.
If the substance is exposed to no external force except its own
weight, the only pressure which any portion of the plane B B can

have to sustain is the weight of the material directly above it.

Hence follows

THEOREM I. In an indefinite homogeneous solid bounded above by
a sloping plane, the pressure on any plane parallel to that sloping

surface is vertical, and ofan uniform, intensity equal to the weight of
the vertical prism which stands on unity of area of the given plane.
The area of the horizontal section of that prism is cos 6, conse-

quently, the intensity of the vertical pressure on the plane B B at

the depth x is

p, = wxcosQ (1.)

From the above theorem, combined with the principle of conjugate
stresses of Article 101, there follows

THEOREM II. The stress, if any, on any vertical plane 'is parallel
to the sloping surface, and conjugate to the stress on a plane parallel
to that surface.

Consider now the condition of a prismatic molecule A, bounded
above and below by planes B B, C C, parallel to the sloping surface

Y Y, and laterally by two pairs of parallel vertical planes. Let
the common area of the upper and lower surfaces of this prism be

unity, and its height A x ; then its volume is A x cos d, and its

weight w A x ' cos 6, which is equal and opposite to, and balanced

by the excess of the vertical pressure on its lower face above the

vertical pressure on its upper face. Therefore, the pressures paral-
lel to the sloping surface, on the vertical faces of the prism, must
balance each other independently ; therefore they must be of equal
mean intensity throughout the whole extent of the layer between
the planes B B, CO; whence follows

THEOREM III. The state of stress, at a given uniform depth below

the sloping surface, is uniform.
126. On the Parallel Projection of Stress and Wei -lit. In apply-

ing the principles of parallel projection to distributed forces, it is

to be borne in mind that those principles, as stated in Chapter IV.,
are applicable to lines representing the amounts or resultants of

distributed forces, and not their intensities. The relations amongst
the intensities of a system of distributed forces, whose resultants

have been obtained by the method of projection, are to be arrived
at by a subsequent process of dividing each projected resultant by
the projected space over which it is distributed.

Examples of the application of processes of this kind to practical

questions will appear in the Second Part.
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CHAPTER VI

ON STABLE AND UNSTABLE EQUILIBRIUM.

127. Stable and Unstable Equilibrium of a Free Bodf. Siq>

pose a body, which is in equilibrio under a balanced system of forces,

to be free to move, and to be caused to deviate to a small extent

from its position of equilibrium. Then if the body tends to deviate

further from its original position, its equilibrium is said to be un-

stable; and if it tends to return to its original position, its equi-
librium is said to be stable.

Cases occur in which the equilibrium of the same body is stable

for one kind or direction of deviation, and unstable for another.

When the body neither tends to deviate further, nor to recover

its original position, its equilibrium is said to be indifferent.

The solution of the question, whether the equilibrium of a given

body under given forces is stable, unstable, or indifferent, for a

given kind of deviation of position, is effected by supposing the

deviation made, and finding the resultant of the forces which act

on the body, altered as they may be by the deviation, in amount, in

position, or in both. If this resultant acts towards the same direc-

tion with the deviation, the equilibrium is unstable if towards the

opposition direction, stable and if the resultant is still nothing,
the equilibrium is indifferent.

The disturbance of a free body from a position of stable equi-
librium causes it to oscillate about that position.

128. stability of a Fixed Body. The term "stability," as ap-

plied to the condition of a body forming part of a structure, has, in

most cases, a meaning different from that explained in the last

Article, viz., the property of remaining in equilibria, without sen-

sible deviation of position, notwithstanding certain deviations of

the load, or externally applied force, from its mean amount or posi-

tion. Stability, in this sense, forms one of the principal subjects of

the second part of this treatise.



PART II.

THEORY OF STRUCTURES.

CHAPTER I.

i%

DEFINITIONS AND GENEKAL PRINCIPLES.

129. Structures Pieces Joints. Structures have already, in

Article 15, been distinguished from machines. A structure con-

sists of two or more solid bodies, called its pieces, which touch each

other, and are connected at portions of their surfaces called joints.
130. Supports Foundations. Although the pieces of a structure

are fixed relatively to each other, the structure as a whole may be
either fixed or moveable relatively to the earth.

A fixed structure is supported on a part of the solid material of

the earth, called the foundation of the structure
j
the pressures by

which the structure is supported, being the resistances of the various

parts of the foundation, may be more or less oblique.A moveable structure may be supported, as a ship, by floating in

water, or as a carriage, by resting on the solid ground through
wheels. When such a structure is actually in motion, it partakes
to a certain extent of the properties of a machine

;
and the deter-

mination of the forces by which it is supported requires the con-

sideration of dynamical as well as of statical principles ;
but when it

is not in actual motion, though capable of being moved, the pres-
sures which support it are determined by the principles of statics ;

and it is obvious that they must be wholly vertical, and have their

resultant equal and directly opposed to the weight of the structure.

131. The Conditions of Equilibrium of a Structure are the three

following :

1 . That the forces exerted on the whole structure by external bodies

shall balance each other. The forces to be considered under this head
are (1.) the Attraction of the Earth, that is, the weight of the
structure

; (2.) the External Load, arising from the pressures exerted

against the structure by bodies not forming part of it nor of its

foundation ; (these two kinds of forces constitute the gross or total

load ; (3.) the Supporting Pressures, or resistance of the founda-
tion. Those three classes of forces will be spoken of together as
the External Forces.
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II. That the forces exerted on each piece of the structure shall

balance each other. These consist of (1.) the Weight of the piece,
and (2.) theExternalLoad on it, making together the GrossLoad; and

(3.)
the Resistances, or stresses exerted at the joints, between the

piece under consideration and the pieces in contact with it.

III. That the forces exerted on each of the parts into which the

pieces of the structure can be conceived to be divided shall balance

each other. Suppose an ideal surface to divide any part of any one

of the pieces of the structure from the remainder of the piece; the

forces which act on the part so considered are (1.) its weight, and

(2.) (if it is at the external surface of the piece) the external stress

applied to it, if any, making together its gross load; (3.) the stress

exerted at the ideal surface of division, between the part in ques-
tion and the other parts of the piece.

132. stability, strength, and stiffness. It is necessary to the per-
manence of a structure, that the three foregoing conditions of

equilibrium should be fulfilled, not only under one amount and
one mode of distribution of load, but under all the variations of the

load as to amount and mode of distribution which can occur in the

use of the structure.

Stability consists in the fulfilment of the first and second condi-

tions of equilibrium of a structure under all variations of load

within given limits. A structure which is deficient in stability

gives way by the displacement of its pieces from their proper posi-
tions.

Strength consists in the fulfilment of the third condition of equi-
librium of a structure for all loads not exceeding prescribed limits ;

that is to say, the greatest internal stress produced in any part of

any piece of the structure, by the prescribed greatest load, must be

such as the material can bear, not merely without immediate break-

ing, but without such injury to its texture as might endanger its

breaking in the course of time.

A piece of a structure may be rendered unfit for its purpose not

merely by being broken, but by being stretched, compressed, bent,

twisted, or otherwise strained out of its proper shape. It is neces-

sary, therefore, that each piece of a structure should be of such

dimensions that its alteration of figure under the greatest load

applied to it shall not exceed given limits. This property is called

stiffness, and is so connected with strength that it is necessary to

consider them together.
From the foregoing considerations, it is evident that the theory

of structures may be divided into two divisions, relating, the first

to STABILITY, or the property of resisting displacement of the pieces,

and the second to STRENGTH and STIFFNESS, or the power of each

piece to resist fracture and disfigurement.
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CHAPTER H,

STABILITY.

133. Resultant Gross Load. The mode of distribution of the

intensity of the load upon a given piece of
r
a~structure affects the

strength and s^jfoss only. So far as stability alone is concerned,
it is sufficient to know the magnitude and position of the resultant

of that load, which is to be found by means of the principles ex-

plained in the First Part of this work, and may then be treated as

a single force.

134. Centre of Resistance of a Joint. In like manner, when
stability only is in question, it is sufficient to consider the position
and magnitude of the resultant of the resistance or stress exerted

between two" pieces of a structure at the joint where they meet,
and to treat that resultant as a single force. The point where its

line of action traverses the joint is called the centre of^resistance of

that joint.
135. A Line of Resistance is a line, straight, angular, or curved,

traversing the centres of resistance of the joints of a structure. It

is to be borne in mind, that the direction of this line at any given

joint does not necessarily coincide with the direction of the resist-

ance at that joint, although it may so coincide in certain cases.

136. Joints Classed. Joints, and the structures in which they
occur, may be divided into three classes, according to the limits of the

variation of position of which their centres of resistance are capable.
I. Framework joints are such as occur in carpentry, in frames of

metal bars, and in structures of ropes and chains, fixing the ends

of two or more pieces together, but offering little or no resistance

to change in the relative angular positions of those pieces. In a

joint of this class, the centre of resistance is at the middle of the

joint, and does not admit of any variation of position consistently
with security,

II. Blockwork joints are such as occur in masonry and brickwork,

being plane or curved surfaces of contact, of considerable extent as

compared with the dimensions of the pieces which they connect,

capable of resisting a thrust more or less oblique, according to

laws to be afterwards explained, but not of resisting a pull of suf-
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ficient intensity to be taken into account in practice. In such

joints the position of the centre of resistance may be varied within

certain limits.

III. Fastened joints, at which, by means of some strong cement,
or of bolts, rivets, or other fastenings, two pieces are so connected

that the joint fixes their relative angular position, and is capable of

resisting a pull as well as a thrust. In this case, the centre of

resistance may be at any distance from the centre of the joint ;
and

there may even be no centre of resistance, when the resultant of

the stress at the joint is a couple, as explained in Articles 91, 92,
and 93. It is obvious that the effect of a joint thus cemented or

fastened is to make the two pieces which it connects act as one

piece, and that the resistance which it is capable of exerting is

a question not of stability but of strength.

SECTION 1. Equilibrium and Stability of Frames.

137. Frame is here used to denote a structure composed of bars,

rods, links, or cords, attached together or supported by joints of

the first class described in the last Article, the centre of resistance

being at the middle of each joint, and the line of resistance, con-

sequently, a polygon whose angles are at the centres of the joints.
The condition of a single bar will be considered first, then that of a

combination of two bars, then of three bars, and then of any number.
138. Tie. Let fig. 64 represent a single bar of a

frame, L the centre of resistance where the load is ap-

plied, and S the centre of resistance where the support-

ing force is applied ; so that the straight line L S is the
"line of resistance."

The bar is represented as being straight itself, that

being the figure which connects the points L and S, and

gives adequate stiffness and strength, with the least ex-

v G4 Penditure of material. But the bar may, consistently
with the principles of this Article, be of any other figure

connecting those two points, provided it is sufficiently strong and
stiff to prevent their distance from altering to an extent inconsistent
with the purposes of the structure.

The condition of the bar is the same with that of the solid in
Article 23; and it is obvious that the load P, and the supporting
resistance R, must be equal and directly opposed, and must both
act along the line of resistance L S.

In the present case those forces are supposed to be directed out-

ward, or from each other. The bar between L and S is in a state
of tension, and the stress exerted between any two divisions of it is

a pull, equal and opposite to the loading and supporting forces. A
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bar in this condition is called a tie. It is obvious that a rope or

chain will answer the purpose of a tie.

The equilibrium of a tie is stable for if its angular position be

deviated, the equal forces P and R, which originally were directly

opposed, now constitute a couple tending to restore the tie to its

original position.

I 139. strut. If the equal and opposite forces applied to the

two ends, L and S, of the line of resistance of a bar be direct-

ed (as in fig. 65) inwards, or towards each other, the bar, be-

tween L and S, is in a state of compression, and the stress

exerted between any two divisions of it is a thrust equal and

opposite to the loading and supporting forces. It is obvious

that a flexible body will not answer the purpose of a strut.

The equilibrium ofa moveable strut is unstable; for if its

angular position be deviated, the equal forces P and R,
which originally were directly opposed, now constitute a

Yig.65.

couple tending to make it deviate still farther from its

original position.
In order that a strut may have stability, its ends must be pre-

vented from deviating laterally. Pieces connected with the ends

of a strut for this purpose are called stays.
140. Treatment of the Weight of a Bar. In the two preceding

Articles, the weight of the bar itself has not been taken into ac-

count. But the principles of those Articles, so far as tJiey relate to

the equilibrium of the bar as a whole, continue to be applicable when
the weight of the bar is treated in the following manner. Resolve

that weight, by the principles of Articles 39 and 40, into two paral-
lel components, acting through L and S respectively. Let P now

represent not merely the external load, but the resultant of that

load, and of the component of the weight which acts through L.

Let R represent not merely the supporting force, but the resultant

of that force and of the component of the weight which acts through
S. Then P and R, as before, must be equal and directly opposed.

In many cases, the weight of a strut or tie is too small as com-

pared with the load applied to it to require to be specially con-

sidered in practice.
141. Beam under Parallel Forces. A bar supported at two

points, and loaded in a direction perpendicular or oblique to its

length is called a beam. In the first place, let the supporting

pressures be parallel to each other and to the xg Ri
direction of the load

; and let the load act ^ *

between the points of support, as in fig.
66 ; J^*|k

T

w"/~
where P represents the resultant of the gross '''<A

j ijm
load, including the weight of the beam, itself, .*(

L, the point where the line of action of that FiS- 66-
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resultant intersects the axis of the beam, Ru R2, the two sup-

porting pressures or resistances of the props parallel to, and in the

same plane with P, and acting through the points S1? S2, in the
axis of the beam.

Then, according to the Theorem of Article 39, each of those

three forces is proportional to the distance between the lines of

action of the other two
;
and the load is equal to the sum of the

two supporting pressures ;
that is to say,

R2 : : S

and P =
LS2 : LS,;

Fig. 67.

(1.)

+ R^ (2.)

Next, let the load act beyond the points of

support, as in fig. 67, which represents a canti-

lever or projecting beam, held up by a wall or

other prop at Sw held down by a notch in a mass
of masonry or otherwise at S2,

and loaded so that

P is the resultant of the load, including the

weight of the beam. Then the proportional
equation (1) remains exactly as before; but the load is equal to
the difference of the supporting pressures ; that is to say,

P = R!- R2..... ,...................... (3.)

In these examples the beam is represented as horizontal ;
but the

same principles would hold if it were inclined
; for the proportions

amongst the distances between parallel lines in the same plane are
the same, whether they be measured in a direction perpendicular
or oblique to those lines.

142. Beam under Inclined Forces. Let the directions of the

supporting forces R1? R2, be now inclined

to that of the resultant of the load, P, as

in fig.
68. This case is that of the equili-

brium of three forces treated of in Articles

51 and 52; and consequently the following

e lines of action of the supporting
forces and of the resultant of the load must
be in one plane.

II. They must intersect in one point (C, fig. 68).
III, Those three forces must be proportional to the three sides of

triangle A, respectively parallel to their directions; or in other

words, to the sides and diagonal of a parallelogram.
PROBLEM. Given the resultant of the load in magnitude and

position, P, the line of action of one of the supporting forces, Rj, and
the centre of resistance of the other, S2 ; required the line of action oj
the second supporting force, and tfte magnitudes of both.
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Produce the line of action of R till it cuts the line of action of

P at the point C ; join C S2 ;
this will be the line of action of R2 ;

construct a triangle A with its sides respectively parallel to those

three lines of action
;
the ratios of the sides of that triangle will

give the ratios of the forces. Q. E. I.

To express this algebraically, let i
lt

i2, be the angles made by the

lines of action of the supporting forces with that of the resultant

of the load
;
then because each side of a triangle is proportional to

the sine of the angle between the other two,

P : E-i ; K2
' '

si*1 fa "T **)
sin i^

'

sin %.

143. Load supported by Three Parallel Forces. THEOREM. If
four parallel forces balance each other, let their lines of action be inter-

sected by a plane, and let the four points of intersection be joined by

six straight lines so as to form four triangles; each force will be pro-

portional to the area of the triangle whose angles are in the lines of
action of the other three.

In fig. 69, let the plane of the paper represent the plane which
is cut by the lines of action of the four forces

in the points L, S,, S2, S3 ;
let P, R1? R,2, Rs,

denote the four parallel forces. Join the four

points by six lines as in the figure, and pro-
duce each of the three lines S L till it cuts the

opposite line S S in one of the points B.

Because the forces balance each other, the

resultant of R2 and R3, whose magnitude is Fig. 69.

K2+R3,
must traverse Bx ; and because the

resultant of that resultant and B^ is equal and opposite to P, we
must have the following proportion :

P iKi : : STBi : LB, ; : 48,8,83 : A S2 L S3 ;

and applying the same reasoning to the forces R2, R3, we find the

proportions,
P:E1 :R2 :B8 ;:AS1 S2 S3 :AS2 LS8:AS3 LS1 :AS1 LS2.

>-Q. E. D.

By the aid of this Theorem may be determined the proportion
in which the load of a given body is distributed amongst three

props, exerting parallel supporting forces.

144. Load supported by Three Inclined Forces. The Case of a
load supported by three inclined forces is that considered in Articles
54: and 56. The lines of action of the three supporting forces must
intersect that of the load in one point ; and the magnitudes of the
three supporting forces are represented by the three edges of a
parallelepiped, whose diagonal represents the load.
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145. Frame of Two Bars Equilibrium. PROBLEM. Figures 70,

71, and 72 represent three cases in which a frame consisting of two

p

Fig. 70. Fig. 71. Fig. 72.

bars, jointed to each other at the point L, is loaded at that point with
a given force, P, and is supported by the connection of the bars at

their farther extremities, Sb S2, with fixed bodies. It is required
to find the stress on each bar, and the supporting forces at SA and S2.

Resolve the load P (as in Article 55) into two components, RbR2,

acting along the respective lines of resistance of the two bars.

Those components are the loads borne by the two bars respectively;
to which loads the supporting forces at S,, S2, are equal and directly

opposed. Q. E. I.

The symbolical expression of this solution is as follows : let i2,

be the respective angles made by the lines of resistance of the bars

with the line of action of the load ;
then

P : Rj : R2 : : sin (^ + i2) : sin % : sin ij.

The inward or outward direction of the forces acting along each

bar indicates that the stress is a thrust or a pull, and the bar a

strut or a tie, as the case may be. Fig. 70 represents the case of

two ties
; fig. 71 that of two struts (such as a pair of rafters abutting

against two walls); fig. 72 that of a strut, L Sj, and a tie, L S2 (such
as the gib and the tie-rod of a crane).

146. Frame of Two Bars Stability. A frame of two bars is

stable as regards deviations in the plane of its lines of resistance.

With respect to lateral deviations of angular position, in a

direction perpendicular to that plane, a frame of two ties is stable
;

so also is a frame consisting of a strut and a tie, when the direction

of the load inclinesfrom the line Sj S2, joining the points of support.
A frame consisting of a strut and a tie, when the direction of the

load inclines towards the line Sj S2, and a frame of two struts in all

cases, are unstable laterally, unless provided with lateral stays.

These principles are true of any pair of adjacent bars whose farther
centres of resistance are fixed ; whether forming a frame by them-

selves, or a part of a more complex frame.

147. Treatment of Distributed Loads. Before applying the prin-

ciples of Article 145, or those of the following Articles, to frames

in which the load, whether external or arising from the weight of
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the bars, is distributed over their length, it is necessary to reduce
that distributed load to an equivalent load, or series of loads, applied at

the centres of resistance. The steps in this process are as follows :

I. Find the resultant load on each single bar.

II. Resolve that load, as in Article 141, into two parallel compo-
nents actingthroughthe centresofresistance at thetwo ends of the bar.

III. At each centre of resistance where two bars meet, combine
the component loads due to the loads on the two bars into one

resultant, which is to be considered as the total load acting through
that centre of resistance.

IY. "When a centre of resistance is also a point of support, the

component load acting through it, as found by step II. of the pro-

cess, is to be left out of consideration until the supporting force

required by the system of loads at the other joints has been deter-

mined
;
with this supporting force is to be compounded a force

equal and opposite to the component load acting directly through the

point of support, and the resultant will be the total supporting force.

In the following Articles of this section, all the frames will be

supposed to be loaded only at those centres of resistance which
are not points of support ;

and therefore, in those cases in which

components of the load act directly through the points of support
also, forces equal and opposite to such components must be com-
bined with the supporting forces as determined in the following
Articles, in order to complete the solution.

148. Triangular Frame. Let
fig. 73 represent a triangular

frame, consisting of the three bars A, B, C, con- /

nected at the three joints I, 2, 3, viz. : C and A at

1, A and B at 2, B and C at 3. Let a load P! be

applied at the joint 1 in any given direction ;
let

supporting forces, P2,
P3, be applied at the joints ^ 73

2, 3
;
the lines of action of those two forces must

be in the same plane with that of P1?
and musb either be parallel

to it or intersect it in one point. The latter case is taken first,

because its solution comprehends that of the former.

The three external forces, in virtue of Article

131, condition I., balance each other, and are

therefore proportional to the three sides of a tri-

angle respectively parallel to their directions. In

fig. 73* let A B C be such a triangle, in which

CA represents P,,

AB ... P2,

BC ... Ps,

Then by the conditions of equilibrium of a frame of two bars

(Article 145), the external force Pj applied at the joint 1, and the
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resistances or stresses along the bars C and A which meet at that

joint, are represented in magnitude by the sides of a triangle re-

spectively parallel to their directions. Therefore, in fig. 73*, draw

CO parallel to the bar C, and AO parallel to the bar A, meeting
in the point O, and those two lines will represent the stresses on

the bars C and A respectively. In the same manner it is proved,

that B O represents the stress on the bar B. The three lines C O,

A O, BO, meet in one point O, because the components along the

line of direction of a given bar, of the external forces applied at

its two extremities, are equal and directly opposed.
Hence follows the following
THEOREM. If three forces be represented by tJie three sides of a

triangle, and if three straight lines radiatingfrom one point be drawn
to the three angles of that triangle, then a triangular frame whose

lines of resistance are parallel to the three radiating lines will be in

equilibrio under the three given forces, each force being applied to the

joint wJiere the two lines of resistance meet, which are parallel to the

radiating lines contiguous to that side of the original triangle which

represents theforce in question.

Also, tJie lengths of the three radiating lines will represent the

stresses on the bars to which they are respectively parallel.

149. Triangular Frame under Parallel Forces. When the three

external forces are parallel to each other, the

triangle of forces A B C of fig. 73* becomes a

straight line C A, as in fig. 74*, divided into two

segments by the point B. Let straight lines radiate

from to A, B, C; and let fig. 74 represent a

triangular frame whose sides 1 2 or A, 2 3 or B,
3 1 or C, are respectively parallel to O A, OB, C;
then if

thejload
CA be applied at 1

(fig. 74), AB applied
at 2, and B C applied at 3, are the supporting forces

required to balance it
;
and the radiating lines <JA,

OB, OC, represent the stresses on the bars A, B, C,

respectively.

From O let fall OH perpendicular to C A, the com-
mon direction of the external forces. Then that line

will represent a component of the stress, which is of

equal amount in each bar. When C~A, as is usually the case, is

vertical, OH is horizontal; and the force represented by it is

called the " horizontal thrust" of the frame. Horizontal Stress or
Resistance would be a more precise term; because the force in

question is a pull in some parts of the frame, and a thrust in others.

In
fig. 74, A and C are struts, and B a tie. If the frame were

Jg-
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exactly inverted, all the forces would bear the same proportions to

each other ; but A and C would be ties, and B a strut,

The trigonometrical expression of the relations amongst the forces

acting in a triangular frame, under parallel forces, is as follows :

Let a, b, c, denote the respective angles of inclination of the bars

A, B, C, to the line O H (that is, in general, to a horizontal
line).

Then, Load OA = OH (tan c zdb tan a) ; 1

Supporting J
AB = OH (tan a =+=. tan b) j [ (1.)

Forces
|
BC = OH-(tan 6 tan c); j

Th
' f + ) is to be used when the two ) opposite directions

I J inclinations are in j the same direction.

.(2.)

.(3.)

O
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ternal force, which being applied at the joint 1 of A and B, will

produce the stress OA on A and OB on B ;
that BC is the external

force which being applied at the joint 2 of B and Q, will produce
the stress OB on B (already mentioned) and O<J on C; and so

on for all the sides of the polygon of forces A B C D E A. Hence
follows this

THEOREM. If lines radiating from a point be drawn parallel to

the lines of resistance of the bars of a polygonal frame, then the sides

of any polygon whose angles lie in those radiating lines will represent
a system offerees, which, being applied to the joints of theframe, will

balance each other ; each such force being applied to tlie joint between

the bars whose lines of resistance are parallel to the pair of radiating
lines that enclose the side of the polygon offorces, representing theforce
in question. Also, the lengths of tlie radiating lines will represent the

stresses along the bars to wlwse lines of resistance they are respectively

parallel.
151. Open Polygonal Frame. When the polygonal frame, instead

of being closed, as in fig. 75, is converted into an OPEN frame, by
the omission of one bar, such as E, the corresponding modification

is made in the diagram of forces by omitting the lines O E, D E,
EA. Then the polygon of external forces becomes ABCD A

;
and

D, O and O A represent the supportingforces respectively, equal and

directly opposed to the stresses along the extreme bars of the frame,
D and A, which must be exerted by the foundations (called in this

case abutments), at the points 4 and 5, against the ends of those

bars, in order to maintain the equilibrium.
152. Polygonal Frame Stability. The stability or instability of

a polygonal frame depends on the principles already stated in

Articles 138 and 139, viz., that if a bar be free to change its

angular position, then if it is a tie it is stable, and if a strut,

unstable
;
and that a strut may be rendered stable by fixing its

ends.

For example, in the frame of fig. 75, E is a tie, and stable
; A, B,

C, and D, are struts, free to change their angular position, and
therefore unstable.

But these struts may be rendered stable in the plane of the frame

by-means of stays ;
for example, let two stay-bars connect the joints

1 with 4, and 3 with 5
;
then the points 1, 2, and 3, are all fixed,

so that none of the struts can change their angular positions. The
same effect might be produced by two stay-bars connecting the joint
2 with 5 and 4.

The frame, as a whole, is unstable, as being liable to overturn

laterally, unless provided with lateral stays, connecting its joints
with fixed points.
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Now, suppose the frame to be exactly inverted, the loads at 1, 2,

and 3, and the supporting forces at 4 and 5, being the same as

before. Then E becomes a strut ;
but it is stable, because its ends

are fixed in position ;
and A, B, C, and D become ties, and are

stable without being stayed.
An open polygon consisting of ties, such as is formed by A, B, C,

and D when inverted, is called by mathematicians afunicular poly-

gon, because it may be made of ropes.
It is to be observed, that the stability of an unstated polygon of

ties is of the kind described in Article 127, and admits of oscillation

to and fro about the position of equilibrium. This oscillation may
be injurious in practice, and stays may be required to prevent it.

153. Polygonal Frame under Parallel Forces.

When the external forces are parallel to each other,
the polygon of forces of fig. 75* becomes a straight
line A D, as in fig. 75**, divided into segments by
the radiating lines ;

and each segment represents the

external force which acts at the joint of the bars

whose lines of resistance are parallel to the radiating
lines that bound the segment. Moreover, the seg-
ment of the straight AD which is intercepted be-

tween the radiating lines parallel to the lines of

resistance of any two bars whether contiguous or not,

represents the resultant of the external forces which Fig. 75**.

act at points between the bars.

Thus, AD represents the total load, consisting of the three por-

tions AB, B C, CD, applied at 1, 2, 3 respectively. DA represents
the total supporting force, equal and opposite to the load, consist-

ing of the two portions D E, E A, applied at 4 and 5 respectively.

AC represents the resultant of the load applied between the bars

A and C; and similarly for any other pair of bars.

From O draw O H perpendicular to A D ; then that line re-

presents a component of the stress, whose amount is the same in

each bar of the frame. When the load, as is usually the case, is

vertical, that component is called the "horizontal thrust" of the

frame, and, as in Article 149, might more correctly be called horji-

zontal stress or resistance, seeing that it is a pull in some of the
bars and a thrust in others.

The trigonometrical expression of these principles is as follows:

Let the force OH be denoted simply by H.
Let i, i', denote the inclinations to O H of the lines of resistance

of any two bars, contiguous or not.

Let It, B/, be the respective stresses which act along those bars.
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Let P be the resultant of the external forces acting through the

joint or joints between those two bars.

Then B, = H sec t R' = H sec i' ;

mi f sum ) of the tangents of the inclinations is ( opposite )

(
difference J to be used according as they are

(
similar /

'

154. Open Polygonal Frame under Parallel Forces. When the
frame becomes an open polygon by the omission of the bar E, the

diagram of forces 75** is modified by omitting the line E.

Then the supporting forces exerted by the abutments at 4 and 5,

are no longer represented by the segments P E and EA of the line

A D, but by the inclined lines DO and <JA, equal and directly

opposed respectively to the stresses along the extreme bars of the

frame, D and A.
Let id and ia denote the angles of inclination of those bars.

Let ~Rd = D and Ra
= O A be the stresses along them.

Let 2 P = A D denote the total load on the frame. Then by
the equations of Article 153,

Rtf = H '

sec id ; Ra = H sec ta.

155. Bracing of Frames. A brace is a stay-bar on which there

is a permanent stress. When the external forces applied to a poly-

gonal frame, although balancing each other as an entire system, arg

distributed in a manner not consistent with the equilibrium of eaclj

bar separately, then by connecting two or more joints together by
means of braces, which may be either struts or ties, the resistances

of those braces may be made to supply, at the joints which they
connect, the forces wanting to produce equilibrium of each bar.

The resistance of a brace introduces a pair of equal and opposite
forces, acting along the line of resistance of the brace, upon the

pair of joints which it connects. It therefore does not alter the

resultant of the forces applied to that pair of joints in amount nor
in position ; but only the distribution of the components of that

resultant on the pair of joints.
The same remark applies to any number of joints connected by a

system of braces.

To exemplify the use of braces and the mode of determining the

stresses on them, let fig. 76 represent a frame such as frequently
occurs in iron roofs, consisting of two struts or rafters, A and E,
and three tie-bars, B, C, and D, forming a polygon of five sides,

jointed at 1, 2, 3, 4, 5, loaded vertically at 1, and supported by the

vertical resistance of a pair of walls at 2 and 5. The joints 3 and



BRACING OP FRAMES. 143

4, having no loads applied to them, are connected with 1 by the

76.'

Fig. 76.

braces 1 4 and 1 3. It is required to find the stresses on those

braces, and on the other pieces of the frame.
To make the diagram of forces (fig. 76*), draw the vertical line

E A, as in Article 153, to represent
the direction of the load and of the

supporting forces.

The two segments of that line, AB
and D E, are to be taken to represent
the supporting forces at 2 and 5; and
the whole line E A will represent the

load at 1. From the ends, and from the point of division of the

scale of external forces E A, draw straight lines parallel respectively
to the lines of resistance of the frame, each line being drawn from
the point in E A that is marked with the corresponding letter.

Then A a and B b, meeting at a, b, will represent the stresses along
A and B respectively ;

and E e and D d, meeting in d, e, will

represent the stresses along D and E respectively; but those four

lines, instead of meeting each other and C c parallel to C in one

point, leave gaps, which are to be filled up by drawing straight lines

parallel to the braces: that is say, from a, b, to c, parallel to 13;
and from d, e, to c, parallel to 4 1. Then those straight lines will

represent the stresses along the braces to which they are respectively

parallel ;
and C c will represent the tension along C. Upon

analyzing the diagram of .forces so constructed, it will be found
that to each joint in the frame, fig. 76, there corresponds in fig.

76*, a triangle, or other closed polygon, having its sides respec-

tively parallel, and therefore proportional, to the forces that act at

that joint. For example,

Joints, 1, 2, 3, 4, 5,

Polygons, EAaceE; AB6A; Bc&B; DdcD; DEeD.
The order of the letters indicates the directions in which the

forces act relatively to the joints.*
The method of arranging the positions of braces, and determining

the stresses along them, of which an example has been given, may
be thus described in general terms.

If the distribution of the loads on the joints of a polygonal frame,

though consistent with its equilibrium as a whole, be not consistent

* This method of treating braced frames contains an improvement sug-
rrooforl V>TT M~y P.lort Ma.YWpl1 in
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with the equilibrium of each bar, then, in the diagram of forces,

when converging lines respectively parallel to the lines of resistance

are drawn from the angles of the polygon of external forces, those

converging lines, instead of meeting in one point, will be found to

have gaps between them. The lines necessary to fill up those gaps
will indicate the forces to be supplied by means of the resistance

of braces.

156. Rigidity of a Truss. The word trus is applied in carpentry
and iron framing to a triangular frame, and to a polygonal frame to

which rigidity is given by staying and bracing, so that its figure
shall be incapable of alteration by turning of the bars about their

joints. If each joint were absolutely of the kind described as the

first class in Article 136, that is, like a hinge, incapable of offering

any resistance to alteration of the relative angular position of the

bars connected by it, it would be necessary, in order to fulfil the

condition of rigidity, that every polygonal frame should be divided

by the lines of resistance of stays and braces into triangles and other

polygons so arranged, that every polygon of four or more sides

should be surrounded by triangles on all but two sides and the

included angle at farthest. For every unstayed polygon of four sides

or more, with flexible joints, is flexible, unless all the angles except
one be fixed by being connected with triangles.

Sometimes, however, a certain amount of stiffness in the joints of

a frame, and sometimes the resistance of its bars to bending, is relied

upon to give rigidity to the frame, when the load upon it is sub-

ject to small variations only in its mode of distribution. For

example, in the truss of fig. 81 (for which see Article 161, farther

on), the tie-beam A A is made in one piece, or in two or more

pieces, so connected together as to act like one piece ;
and part of

its weight is suspended from the joints C, C, by the rods C B, C B.

These rods also serve to make the resistance of the tie-beam C C to

being bent, act so as to prevent the struts AC, C C, C A, from

deviating from their proper angular positions, by turning on the

joints A, C, C, A. If A B, B B, and B A, were three distinct

pieces, with flexible joints at B, B, it is evident that the frame

might be disfigured by distortion of the quadrangle B C C B.

157- Variations of J,ou<i on Truss The object of stiffening a
truss by braces is to enable it to sustain loads variously distributed ;

for were the load always distributed in one way, a frame might be

designed of a figure exactly suited to that load, so that there should
be no need of bracing.

The variations of load produce variations of stress on all the

pieces of the frame, but especially on the braces
;
and each piece

must be suited to withstand the greatest stress to which it is liable.

Some pieces, and especially braces, may have to act sometimes as
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struts and sometimes as ties, according to the mode of distribution

of the load.

158. Bar common to several Frames. When the same bar forms

at the same time part of two or more different frames, the stress

along it is determined by the aid of the following
THEOREM. The stress on a bar common to two or more frames, is

the resultant of the different stresses to which it is subject, in virtue of
its position in the different frames.

Illustrations of this will be found in the following Articles.

159. Secondary Trussing. A secondary truss is a truss which is

supported by another truss.

When a load is distributed over a great number of centres of

resistance, it may be advantageous, instead of connecting all those

centres by one polygonal frame, to sustain them by means of several

small trusses, which are supported by larger trusses, and so on, the

whole structure of secondary trusses resting finally on one large

truss, which may be called the primary truss. In such a combina-

tion, the same piece may often form part of different trusses
;
and

then the stress upon it is to be determined according to the Theorem
of Article 158.

Example I. Fig. 77 represents a kind of secondary trussing com-

mon in the framework of iron roofs.

ft

Fig. 77.

The entire frame is supported by pillars at 2 and 3, each of which
sustains in all, half the weight.

1 2 3 is the primary truss, consisting of two rafters 1 3, 1 2, and
a tie-rod 2 3.

The weight of a division of the roof is distributed over the
rafters.

The middle point of each rafter is supported by & secondary truss;
one of those is marked 143; it consists of a strut, 1 3 (the rafter

itself), two ties 4 1, 4 3, and a strut-brace, 5 4, for transmitting the

load, applied at 5, to the point where the ties meet.
Each of the two larger secondary trusses just described supports

two smaller secondary trusses of similar form and construction to

itself; two of those are marked 1 7 5, 5 6 3
; and the subdivision of

the load might be carried still farther.
In determining the stresses on the pieces of this structure, it is

indifferent, so far as mathematical accuracy is concerned, whether we
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commence with the primary truss or with the secondary trusses ;

but by commencing with the primary truss, the process is rendered

more simple.

(1.) Primary Truss 123. Let .W denote the weight of the roof;

then ^ W is distributed over each rafter, the resultants acting

through the middle points of the rafters. Divide each of those

resultants into two equal and parallel components, each equal to

J "W, acting through the ends of the rafter ; then 1 W is to be

considered as directly supported at 3, "W at 2, and JW + JW= ^W at 1 ; therefore the load at the joint 1 is

Let i be the inclination of the rafters to the horizon ; then by the

equations of Article 149

H = -i^. = -^--... ...a.)
2tani 4tani;

"

This is the pull upon the horizontal tie-rod of the primary truss,

2 3
; and the thrust on each of the rafters 1 3, 1 2, is given by the

equation
/ox
(2.)

(2.) Secondary Truss 1435. The rafter 1 3 has the load | W
distributed over it

;
and reasoning as before, we are to leave two

quarters of this out of the calculation, as being directly supported
at 1 and 3, and to consider one-half, or ^ W, as being the vertical

load at the point 5. The truss is to be considered as consisting of

a polygon of four pieces, 5 1, 1 4, 4 3, 3 5, two of which happen to be

in the same straight line, and of the strut-brace, 5 4, which exerts

obliquely upwards against 5, and obliquely downwards against 4, a

thrust equal to the component perpendicular to the rafter of the

load JW ; which thrust is given by the equation

(3.)

Then we easily obtain the following values of the stresses on the

rafter and ties, in which each stress is distinguished by having affixed

to the letter E, the numbers denoting the two joints between which

it acts.

Thrusts
on

rafter
E, , = - _ -w sin i = W(cosec i- 2 siu-i)

o o
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The difference between the thrusts on the two divisions of the

rafter,

is the component along the rafter of the load at the point 5.

(3.) Smaller Secondary Trusses, 175, 56 3. These trusses are

similar in every respect to the larger secondary trusses, except
that the load on each point is one-half, and consequently each of

the stresses is reduced to one-half of the corresponding stress in the

equations 3 and 4.

(4.) Resultant Stresses. The pull on the middle division of the

great tie-rod 2 3 is simply that due to the primary truss, 123. The

pull on the tie 4 7 is simply that due to the secondary truss 143.
The pulls on the ties 5 7, 5 6, are simply those due to the smaller

secondarytrusses, 1 5 7, 5 6 3. But agreeably to the Theorem of Art.

158, the pull on the tie 1 7 is the sum of those due to the larger

secondary truss 143, and the smaller secondary truss 175. The

pull on 6 4 is the sum of those due to the primary truss 123 and to

the larger secondary truss 143. The pull on 6 3 is the sum of those

due to the primary truss 1 2 3, to the larger secondary truss 143, and
to the smaller secondary truss 563. The thrust on each of the four

divisions of the rafter 1 3, is the sum of three thrusts, due re-

spectively to the primary truss, the larger secondary truss, and one
or other of the smaller secondaiy trusses.

Example II. Fig. 78 represents another form of truss common in

roofs. Let W be the weight of the roof, as before, distributed over

the rafters 1 2, 1 3. 2 3 is the great tie-rod; 1 7, 6 5, 8 9, suspension-
rods; 7 6, 7 8, 5 4, 9 10, struts.

(1.) Primary Truss 123. The load at 1, as before, is to be taken
as = W.

(2.) Secondary Trusses 7 6 3, 7 8 2. The load at 6 is to be held to
consist of one-half of the load between 6 and 1, and one-half of the
load between 6 and 3

j that is, one-half of the load between 1 and
3, or W. The trusses are triangular, each consisting oftwo struts

and a tie, and the stresses are to be found as in Article 149.

The suspension-rod 1 7 supports two-thirds of the load on 7 6 3,
and two-thirds of the load on 7 8 2 ; that is, 1 W = Wj and
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this, together with W which rests directly on 1, makes up the

load of W, already mentioned.

(3.) Smaller Secondary Trusses 3 4 5, 9 102. Each of the points
4 and 10 sustains a load of W, from which the stresses on the bars

of those smaller trusses can be determined.

One-half of the load on 4, that is T'* W, hangs by the suspension-
rod 6 5

;
and this, together with i W, which rests directly on 6,

makes up the load of iW on that point, formerly mentioned. The
same remarks apply to the suspension-rod 8 9.

(4.) Resultant Stresses. The pull between 5 and 9 is the sum of

those due to the primary and larger secondary trusses; that between

5 and 3, and between 9 and 2, is the sum of the pulls due to the

primary, larger secondary, and smaller secondary trusses.

The thrust on 1 6 is due to the primary truss alone ; that on G 4

to the primary and larger secondary truss ; that on 4 3 to the

primary, larger secondary, and smaller secondary trusses ; and

similarly for the divisions of the other rafter.

Example III. Suppose that instead of only three divisions, there

are n divisions in each of the rafters 13, 12, of fig. 78 ; so that be-

sides the middle suspension-rod 1 7, there are n 2 suspension-rods
under each rafter, or 2 n 4 in all

;
and n 1 sloping struts

under each rafter, or 2 n 2 in all. There will thus be 2 n 1

centres of resistance
j
that is, the ridge-joint 1, and n 1 on

each rafter ; and the load directly supported on each of these

points will be -^.
2 n

W
The total load on the ridge-joint, 1, will be as before, -^r ;

that
2i

"W" W / 1\
is to say, directly supported, and (1 --

J hung by the

middle suspension-rod.

The total load on the upper joint of any secondary truss, distant

from the ridge-joint bym divisions of the rafter, will be,
^---- W;

that is to say,
-

directly supported, and - - - W hung by

a suspension-rod.

The stresses on the struts and tie of each truss, primary and

secondary, being determined as in Article 149, are to be combined
as in the preceding examples.

160. Compound Trusses. Several frames, without being distin-

guishable into primary and secondary, may be combined and con-
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nected in such a manner, that certain pieces are common to two or

more of them, and require to have their stresses determined by the

Theorem of Article 158.

Example I. In fig. 79, 8 9 represents part of the horizontal plat-
form of a suspension bridge, supported and balanced by being hung
from the top of a central pier, 1, by pairs of equally inclined rods or

ropes, viz. : 1 8 and 1 9; 1 6 and 1 7; 14 and 1 5j 1 2 and 1 3.

Fig. 79.

Here 8 1 9 is to be considered as a distinct triangular frame,

consisting of a strut 8 9, and two ties 1 8 and 1 9, loaded with

equal weights at 8 and 9, and supported at 1. Let x denote the

height of the point of suspension 1 above the level of the loaded

points, y8
=

2/9,
the distance of those points on either side of the

middle of the pier, P the load at each point, R8
= Rg the pull on

each of the ties, 1 8, 1 9, T89 the thrust between 8 and 9 along the

platform. Then we have

and similar equations for each of the other distinct frames 6 1 7y
4 1 5, 2 1 3.

Then using a similar notation in each case, the thrust along the

platform
between 8 and G ) . ^

7 and 9 /
1 l89 >

G and 4

5 and 7 }isT
8 -67,

and so on for as many pairs of divisions as the platform consists of.

Example II. Fig. 80 represents the framework for supporting

Fig. 80.

one side of a timber bridge, resting on two piers at 1 and 4.

consists of four distinct trusses, viz.,

It
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1234 loaded at 2 and 3,

15G4 5 6,

1784 7 8,

194 9
;

but all those trusses have the same tie-beam, 1 4
; and the pull

along that tie-beam is the sum of the pulls due to the four trusses.

161. Resistance of Frame at a Section. THEOREM. If a frame
acted upon by any system of external forces, and if that frame be

conceived to be completely divided into two parts by an ideal surface,
the stresses along the bars which are intersected by that surface, balance

the externalforces which act on each of the two parts of theframe.
This theorem, which requires no demonstration, furnishes in

some cases the most convenient method of determining the stresses

along the pieces of a frame. The following consideration shows to

what extent its use is limited.

CASE 1. When the lines of resistance of the bars, and the lines

of action of the external forces, are all in one plane, let the frame
be supposed to be intersected anywhere by a plane at right angles
to its own plane. Take the line of intersection of these two planes
for an axis of co-ordinates ; say for the axis of y, and any convenient

point in it for the origin O ;
let the axis of x be perpendicular to

this, and in the plane of the frame, and the axis of z perpendicular
to both, and in the plane of section.

The external forces applied to the part of the frame at one side

of the plane of section (either may be chosen) being treated as in

Article 59, give three data, viz., the total force along x = T?x ; the

total force along y = F
y ,

and the moment of the couple acting
round z = M

;
and the bars which are cut by the plane of section

must exert resistances capable of balancing those two forces and
that couple. If not more than three bars are cut by the plane of

section, there are not more than three unknown quantities, and
three relations between them and given quantities, so that the

problem is determinate
;

if more than three bars are Cut by the

plane of section, the problem is or may be indeterminate.

The formulae to which this reasoning leads are as follows : Let
x be positive in a direction from the plane of section towards the

part of the structure which is considered in determining F.,, Fy ,
and

M; let+ y lie to the right of+ x when looking from z
j

let angles
measured from x towards -f- y, that is, towards the right, be

positive ; and let the lines of resistance of the three bars cut by the

plane of section make the angles i
l} i?, is, with x. Let n

l} n2, ns,
be

the perpendicular distances of those three lines of resistance from

O, distances towards the

. being considered
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Let EJ, E2, RS> t>e the resistances, or total stresses, along the

three bars, pulls being positive, and thrusts negative. Then we
have the following three equations :

Fx = E! cos % + E2 cos ia + E3 cos t'3 ;

F
y E! sin ii + E2 sin i2 + E3 sin is ; ., (1.)

- M E! % + E2 n2 + E3 w3 ;

from which the three quantities sought, Eb E2 ,
E3,

can be found.

Speaking with reference to the given plane of section, F.,. may be

called the normal stress, Fy
the shearing stress, and M the moment

offlexure or lending stress; for it tends to bend the frame at the

section under consideration.

CASE 2. When the bars of the frame, and the forces applied to

them, act in any direction, the forces applied to one of the two

divisions of ne frame are to be reduced to rectangular components;
a.nd the three resultant forces along these rectangular axes, F,, Fy,

F,, and the three resultant couples round these three axes, M,, My,

M,, are to be found as in Article 60. Those forces and couples
must be equal and opposite to the corresponding forces and couples

arising from the stresses along the bars cut by the section; and
thus are obtained six equations between those stresses and known

quantities ;
so that if the section cuts not more than six bars, the

problem is determinate
;

if more, it is or may be indeterminate.

The equations are obtained as follows : Let E denote the stress

along any one of the bars, pull being positive and thrust negative.
Let a, '/3, y, be the inclinations of the line of resistance of that bar

to the axes of x, y, z. Let n be its perpendicular distance from O.

Conceive a plane to pass through O and through the line of resistance

of the bar, and a normal to be drawn to that plane in such a direc-

tion, that looking from the end of that normal towards O, the bar

is seen to lie to the right of 0, and let A, ^, ,
be the angles of

inclination of that normal to the three axes. Let s denote the

summation of six corresponding quantities for the six bars. Then
the six equations are,

Fx= 2 E cos , Fy = s E cos /3; Fr
= 2 E cos y ;

M, = 2 E n cos A
;

M
y
= 2 E n cos ^ ; j- (2).

M, = 2 E n cos "
;

from which the six stresses sought can be computed by elimination.

The plane of T/ zbeing as before, that of the section, Fa is the total

direct stress on it; F
y
and F, are the total shearing stresses ; My

and
Mz are lending couples, and M^. a twisting couple.

EEMARKS. Every problem respecting the equilibrium of frames
which can be solved by the method of sections explained in this
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Article, can also be solved by the method ofpolygons explained in

the previous Articles; and the choice between the two methods is

a question of convenience and simplicity in each particular case.

The following is one of the simplest examples of the solution of

a problem in both ways. Fig. 81 represents a truss of a form very
c c common in carpentry (already referred

to in Article 156), and consisting of

three struts, AC, CO, A, a tie-

beam A A, and two suspension-rods,
C B, C B, which serve to suspend part
of the weight of the tie-beam from

Flg" 81 *

the joints G C, and also to stiffen the

truss in the manner mentioned in Article 156.

Let i denote the equal and opposite inclinations of the rafters

AC, C A, to the horizontal tie-beam AA ;
and leaving out of

consideration the portions of the load directly supported at A A,
let P, P, denote equal vertical loads applied at C C, and P,

P, equal upward vertical supporting forces applied at A A, by
the resistance of the props. Let H denote the pull on the tie-

beam, R, the thrust on each of the sloping rafters, and T the thrust

on the horizontal strut C C.

Proceeding by the method ofpolygons, as in Article 153, we find

at once, x

H = T = P cotan i; }

\
................ (3.)

K- = P cosec i.

(Thrusts being considered as negative.)
To solve the same question by the method of sections, suppose a

vertical section to be made by a plane traversing the centre of the

right hand joint C ;
take that centre for the origin of co-ordinates;

let x be positive towards the right, and y positive downwards
;
let

as,, ylt
be the co-ordinates of the centre of resistance at the right

hand point of support A. When the plane of section traverses the
centre of resistance of a joint, we are at liberty to suppose either

of the two bars which meet at that joint on opposite sides of
the plane of section to be cut by it at an insensible distance from
the joint.

First, consider the plane of section as cutting C A. The forces

and couple acting on the part of the frame to the right of the
section are

Then, observing that for the strut A C, n =
0, and that for the tie

A A, n yl} we have, by the equations 1 of this Article
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B, cos i + H = F, = ;

K sin i = P ;

HTA^ M= +

whence we obtain, from the last equation,

Pa-
H =

2/i

from the first, or from the second
(4.)

-r -H- T
j> _. . _

j-> cosec i.

COS I

Next, conceive the section to cut C C at an insensible distance

to the left of C. Then the equal and opposite applied forces + P
at C, and P at A, have to be taken into account ; so that

F. = 0; F
y
= 0; M = -P*i;

from the first of which equations we obtain

H + T - F, - 0, and

T= -H= -Pcotani (5.)

In the example just given, the method of sections is tedious and

complex as compared with the method of polygons, and is intro-

duced for the sake of illustration only; but in the problems which
are to follow, the reverse is the case, the solution by the method of

sections being by far the more simple.
162. A Half-Lattice Girder, sometimes called a "Warren Girder,"

is represented in fig. 82. It consists essentially of a horizontal upper
bar, a horizontal lower bar, and a series of diagonal bars sloping

alternately in opposite direc-

tions, and dividing the space
between the upper and lower |fl\/\/\/!\/\/\/\/\/m
bars into a series of triangles.
In the example to be consi- -P. 00
i t -i -i -i

-^ '{? &"
dered, the girder is supposed
to be supported by the vertical resistance of piers at its ends A and
B, and loaded with weights acting at or through the joints at the

angles of the several triangles.
This girder might be treated as a case of secondary trussing, by

considering the upper and lower and endmost diagonal bars as

forming a polygonal truss like fig. 81, but inverted, supporting a
smaller erect truss of the same kind, which supports a still smaller
inverted truss, which supports a still smaller erect truss, and so on
to the smallest truss, which is the middle triangle. But it is more
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simple to proceed by the method of sections, which must be applied

successively to each division of the girder.
The load at each joint being known, the two supporting forces

at A and B, are to be determined by the principles of the equili-
brium of parallel forces in one plane (Articles 43, 44). Let PA,

PB,
denote those supporting forces, upward forces being treated as

positive, and downward as negative ; and let P denote the load

at any joint, which may be a constant or a varying quantity for

different joints.

Suppose now that it is required to find the stress along any one

of the diagonals, such as C E, along the top bar immediately to the

right of 0, and along the bottom bar immediately to the left of E.

Conceive the girder to be divided by a vertical plane of section

C D, at an insensibly small distance to the right of C
;
take the

intersection of this plane with the line of resistance of the top bar

for the origin of co-ordinates, which sensibly coincides with C.

Let x denote the distance of any one of the joints to the left of

the plane of section, from that plane. Let x1 be the distance of the

point of support A to the left of the same plane. Let y be positive

upwards ;
so that for the joints of the upper bar, y = 0, and for

those of the lower bar, y = h, h denoting the vertical depth
between the lines of resistance of the upper and lower bars.

Let i be the inclination of the diagonal C E to the horizontal

axis of x. In the present instance this is positive ;
but had C E

sloped the other way, it would have been negative.
Let the symbol s P denote the sum of the loads acting at

the joints between the plane of section and the point of support A,
the load at thejoint C being included. Then for the total forces and

couple acting on the division of the girder to the left of the plane
of section, we have, direct force, F.,.

=
0, because the applied

forces are all vertical j shearing force, Fy
= PA s P a force

lies < ^
*!rt?

rei

f f
the point of support A, than a plane which

divides the load into two portions equal respectively to the support-

ing pressures; bending couple M = PA xt s -Pa;; which is

upward, and right-handed with respect to the axis of z.

Now let R! denote the stress along the upper bar at C, R2 that

along the lower bar at D, and R3 that along the diagonal C E ;

then the equations 1 of Article 161 become the following :

H! + R2 + E3 cos t = ;
or K! + R3 cos i = "R...(a.)

that is, the stress along the upper bar, and the horizontal component
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of the stress along the diagonal, are equal and opposite to the stress

along the lower bar ;

K3 sin i = F
y
= PA ^ P j ............ ,.. .(&.)

that is, the vertical component of the stress along the diagonal,
balances the shearing force j

R2 y = E2 h = M = P'A xl ^ - P# ;......... (c.)

that is, the couple formed by the equal and opposite horizontal

stresses of equation (a), acting at the ends of the arm h, balances

the bending couple.

Finally, from the equations (a), (6), (c),
are deduced the following

values of the stresses :

Pull on lower bar, -i

K2 = -(PA o;j z

Stress on diagonal,

KK,= cosec i (PA 2 P); ,

Thrust on upper bar,

R! = R2 RS cos *

=
|(PA aj1 sj P

aj)
cotan i (PA _2j -P).

Another, and sometimes a more convenient form, can be found
for the second and third of those expressions. Let s denote the

length of the diagonal C E, and x{ the horizontal distance of its

lower end E from the point of support A; then

rr -<r
cosec i = -1; cotan i = Xl Xl

and also

which substitutions having been made, give

(3.)
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in which x' is taken to denote the Iwrizontal distance of any joint
to tlie left ofa vertical plane traversing E. The last expression for

Hj is exactly what would have been obtained by supposing the

plane of section to traverse E instead of C.

Any given diagonal is

{^^ }
according as it slopes

j
the direction of the shearing force P

y acting on a plane of section

traversing it.

163. Half-Lattice Girder Uniform Load. CASE 1. Every joint
loaded. When the joints of a half-lattice girder are at equal dis-

tances apart horizontally, and loaded with equal weights, the

equations take the following form :

Let N denote the even number of divisions into which vertical

lines drawn through the joints divide the total length or span
between the points of support. Let I be the length of one of these

divisions, so that N I is the total span. The total number of

loaded joints is N 1
; this must be an odd number, and there

must be a middle joint dividing the girder into two halves, sym-
metrical to each other in every respect, figure, load, support, and

stress, so that it is sufficient to consider one half only; let the left

hand half be chosen. Let the middle joint be denoted by O, and
the other joints by numbers in the order of their distances from the

middle joint, so that the joint numbered n shall be at the distance

n I from O. The even numbers denote joints on the same horizontal

bar with O
;
the odd numbers those on the other.

The total load on the girder is-

-(N 1)P,

of which one-half is supported on each pier ;
that is to say,

.(i.)

The stress on the upper bar is everywhere a thrust
;

that on

the lower bar a pull. Diagonals which <
J^jj

I from the middle

towards the ends are < ,

ie
*f V . By these principles the kind of

stress on each piece is determined
;

it remains only to compute the

amount.
Let n be the number of any joint ;

it is required to find the stress

along the diagonal which runs from that joint towards the middle
of the girder, and the stress along that part of either of the hori-

zontal bars which is opposite the joint.

Suppose a vertical section to be made at an insensible distance
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from the joint, intersecting the diagonal in question and the hori-

zontal bars.

N
Between and either pier there are -- 1 loaded joints ;

be-
'2

tween O and the plane of section in question, there are n 1

joints ; hence between the plane of section and the pier there are
N

n joints. Consequently
'

and the shearingforce is

F, = PA
- i -P=-. P; ............. (2.)

So that it increases at an uniform rate from the middle towards
the ends.

,-\r \

The distance of the nth
joint from the pier is x

l

(

-- n\ 'I.

Hence the upward moment of the supporting force is

The downward moment of the load at the joints between the

plane of section and the pier is found from the consideration, that
the leverage of the nearest portion of that load is nothing, and

(N"

\
-- 1

nj I, so that the mean leverage is

-(-- 1 n} I; which being multiplied by the load 2 P as
G

found above, gives for the moment

-'''"--ie- 1

-") (?-)"
hence the bending couple is

that is to say, it is proportional to the product of the segments into
which the plcme of section divides the length of the girder, and is

greatest at the middle, where it is P I.

o
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The uniform inclination of the diagonals, in one direction or the

other, being denoted by i, we have

s
cosec ^= T=h h

and hence the amounts of the stresses are,

Along the diagonal,

K' = F cosec i =

.(4.)
A long the Jwrizontal bar,

M

These stresses are stated irrespective of their signs, which are to

be determined by the rules laid down after equation 1.

The least value of R' is for the diagonals next the middle point,
sP

for which n=l, and R' = -. Its greatest value is for the dia-
2 hi

gonals next the piers, for which w = ,
and R' =

*
~

7

'
$

j in fact,
z j /1

these diagonals sustain the entire load.

The least value of the horizontal stress R is at the divisions of

N
one of the horizontal bars next the piers, for which n= 1, and

The greatest value of E is at the division of one of the horizontal

N2 P
bars opposite the middle joint, for which n = 0, and .B =

8 A
CASE 2. Every alternate joint loaded. Suppose those joints only

to be loaded which are distant by an even number of divisions from

the piers. The total number of loaded joints is -- 1, the load

on the girder
- ( ---

ij P, and the supporting pressures

Let n be the number of any loaded joint, n 1 that of the

unloaded joint nearest to it on the side next the middle of the

girder, 0. If a plane of section traverse the girder at an insensible
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distance from either of those joints on the side next O, the shearing
force is the same, being the excess of the supporting pressure, PA
(equation 5) above the load on n, and the other loaded joints
between it and A, whose number is one-half of what it was in

N n
case 1, that is - . Hence we find

The upward moment of the supporting force is

at the joint ^PA * I

at the joint n- l,PA (a?1+0= (
*L _ 1

) (^-n
The downward moment of the load from the joint n inclusive to

the pier, relatively to the plane of section near that joint, is found

by considering that the leverage of the nearest portion of that load

(N
\-- 2 - n\

I-,
so that the

leverage is-^-f
2 n\

I, which being multiplied bymean

the load I
J
P, gives for the moment,

The corresponding moment for the joint n 1 is

Hence the bending couples are

At the loaded joint n,

At the unloaded joint n 1,
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Using these data, we obtain for the stress along the diagonal con-

necting the joints n and n 1,

R' = F cosec i = ^
- -=

(8.)J li

(The stress along the diagonal connecting the joints n 1 and
n 2 is of equal amount and opposite kind).

Along the bar opposite the loaded joint n}

M

Along the bar opposite the unloadedjoint n 1,

The last two stresses are of opposite kinds
;
and the kind of each

stress is to be determined, as before, by the rule given after equa-
tion 1 of this Article.

164. Lattice Girder Any Load. In a lattice girder, as in a half-

lattice girder, there are a hori-

zontal upper and lower bar;
butwhereasa half-lattice girder
contains but one zig-zag set ofXXXXXXXXR^ I J diagonal bars, a lattice girder

| \
contains two or more sets, cross-

ly 33. ing each other, usually at equal
inclinations to the horizon.

Fig. 83 represents the simplest form of a lattice girder, in which
there are two sets of diagonals, crossing each other midway
between the upper and lower horizontal bars.

The load is supposed to be applied at the joints.

Suppose the girder to be cut by a vertical plane of section C D,
traversing one of the joints where the diagonals cross. The shearing
force and bending couple at this plane of section are to be deter-

mined exactly in the same manner as for a half-lattice girder, in

Article 162.

In the present case, because the plane of section C D cuts four
bars, the problem, in a strict mathematical sense, is indeterminate,

according to the principles stated in Article 161
; but it is solved

by taking for granted what is the fact in well-constructed lattice

girders, that each of the two diagonals which cross each other at

the section C D bears one-half of the shearing force ; and in like

manner, when several pairs of diagonals cross each other at the
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same cross section, it is assumed that the resistance to the shearing
force is equally distributed amongst them.

To fulfil this condition where a pair of diagonals, as in
fig. 83,

cross each other, with equal and opposite inclinations, the stresses

along them must be equal, and of opposite kinds. Then let R' and
R' be the stresses along the pair of diagonals, and i and i

their inclinations to the horizon, we shall have for the vertical

component of the force sustained by them

F
y
= R' sin i R' sin ( i)

= 2 R' sin i ; ........ (1.)

.and for the horizontal component,

R' cos i R' cos ( i)
=

;

so that the horizontal components of the stresses along the two

diagonals at the plane of section balance each other.

Let 2 m be the number of diagonal bars which cross each othei-

at a given vertical section, the amount of the stress along each bar is

which is a
| tP^t |

for bars which slope
j J^ j

the shearing

force.

The pull along the lower bar, and the thrust along the upper bar,
at the given vertical section, must constitute a couple which balances

the bending couple M , 'hence their common amount is

165. Lattice Girder- Uniform Load. If N" denote the even num-
ber of equal divisions into which the length of a lattice girder is

divided by vertical lines traversing all the joints, whether of meeting
of diagonal and horizontal bars, or of crossing of diagonal bars, and
I the length of one of those divisions, so that N" I, as before, is the

span of the girder, then the effect of a load equally distributed

amongst all those vertical lines, or amongst the alternate lines,

may be found by means of the formulae for a half-lattice girder,
Article 163, as follows :

I. When the load is distributed over all the vertical lines, the
formulae for case 1, equations 1, 2, 3, 4, are to be applied to vertical

sections, such as C D, traversing the joints of crossing of diagonals;
observing only, that the resistance to the shearing force is distributed

amongst the diagonals as shown by equation 2 of Article 164.
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II. When the load is distributed over those vertical lines only
which traverse joints of meeting of diagonal and horizontal bars,

the formulas of case 2, equations 5, 6, 7, 8, 9, so far as they
relate to sections made at unloaded joints, are to be applied to vertical

sections, such as C D, traversing the joints of crossing of diagonals;

attending as before to the distribution of the stress amongst the

diagonals by equation 2 of this Article.

166. Transformation of Frames. The principle explained in

Article 66, of the transformation of a set of lines representing one

balanced system of forces into another set of lines representing
another system of forces which is also balanced, by means of what
is called " PARALLEL PROJECTION," being applied to the theory of

frames, takes obviously the following form :

THEOREM. If a frame whose lines of resistance constitute a given

figure, be balanced under a system of external forces represented by a

given system of lines, then will a frame whose lines of resistance con-

stitute afigure which is a parallel projection of the originalfigure, be

balanced under a system offorces represented by itie corresponding

parallel projection oftlie given system of lines; and the lines repre-

senting the stresses along the bars of the new frame, will be the

corresponding parallel projections of the lines representing the stresses

along the bars of the originalframe.
This Theorem is called the "

Principle of the Transformation of

Frames." It enables the conditions of equilibrium of any unsym-
metrical frame which happens to be a parallel projection of a

symmetrical frame (for example, a sloping lattice girder), to be

deduced from the conditions of equilibrium of the symmetrical

frame, a process which is often much more easy and simple than

that of finding the conditions of equilibrium of the unsymmetrical
frame directly.

SECTION 2. Equilibrium of Chains, Cords, Ribs, and
Linear Arches.

167. Equilibrium of a Cord. Let D A C in
fig. 84 represent a

flexible cord supported at

the points C and D, and
loaded by forces in any
direction, constant orvary-

ing, distributed over its

whole length with con-

_,. .

^ "*"
stant or varying intensity.

Let A and B be any
two points in this cord

; from those points draw tangents to the

cord, A P and B P, meeting in P. The load acting on the cord

between the points A and B is balanced by the pulls along the
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cord at those two points respectively j
those pulls must respectively

act along the tangents A P, B P ; hence follows

THEOREM I. The resultant of the load between two given points
in a balanced cord acts through the point of intersection of the tangents
to the cord at those points; and that resultant, and the pulls along the

cord at the two given points, are proportional to the sides of a triangle
which are respectively parallel to their directions.

The more the number of loaded points in &funicular polygon (as
denned in Article 150) is increased, or, in other words, the more
the number of sides in the polygon is multiplied, the more nearly
does it approximate to the condition of a cord continuously loaded;
while at the same time, the number of lines radiating from the

point O in the diagram of forces (exemplified in fig. 75*) increases

with the number of sides of the funicular polygon, and the polygon
of external forces of fig. 75* approximates to a continuous line,

curved or straight.
A diagram offorces for a continuously loaded cord may be con-

structed in the following manner (fig. 84*). Let radiating lines be

drawn from the point O parallel to the tangents of the cord at any
points which may be under consideration : for example, let O C,
O D, be parallel to the tangents at the points of support, and A,

B, parallel to the tangents at the points A and B of fig.
84 re-

spectively. Let the lengths of those radiating lines represent the

pulls along the cord at the points to whose tangents they are

parallel ;
and let a line D A B C, curved or straight, as the case

may be, be drawn so as to pass through the extremities of all the

radiating lines which represent the pulls along the cord at different

points. Then from Theorem I. it appears, that a straight line

drawn from B to A in
fig. 84*, will represent in magnitude and

direction the resultant of the load on the cord

between A and B
(fig. 84). Now, suppose the

point marked A in fig. 84 to be taken gradually
nearer and nearer to B; then will OA in fig. 84*

approach gradually nearer and nearer to OB;
and while the direction of the straight line drawn
from B to A gradually approaches nearer and
nearer to the direction of the tangent at the point
B to the line C B A D in

fig. 84*, the resultant

load between B and A represented by that

straight line gradually approaches nearer and
nearer in direction to the direction of the load at the point B in fig.

84
; therefore, the direction of the load at any point B of the cord

(fig. 84), is represented by the direction of a tangent at B
(fig. 84*),

to the line C BA D. Hence follows

THEOREM II. If a line (called a line of loads) be drawn, suck
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tJiat while its radius-vectorfrom a given point is parallel to a tangent
to a loaded cord at a given point, its own tangent is parallel to the

direction of the load at the point in the cord, tJien will the length of
a radius-vector of the line of loads represent the pull at the corre-

sponding point of the cord; and a straight line drawn between any two

points in tlie line of loads will represent in magnitude and direction

the resultant load between the tivo corresponding points in the cord.

The supporting forces required at the points C and D
(fig. 84),

are obviously represented in magnitude and direction by the ex-

treme radiating lines, OC, O D.
A loaded cord, hanging freely, is obviously stable, but capable of

oscillation,

168. Cord under Parallel Loads. If the direction of the load be

eveiywhere parallel and vertical, the line of loads be-

comes a vertical straight line, as C BA D
(fig. 84**).

To express this case algebraically, let A in
fig. 84

be the lowest point of the cord, so that the tangent
AP is horizontal. Then in

fig. 84**, OA will be

horizontal, and perpendicular to C D. Let

H= OA = ttorizontal tension along the cord at A;

B, = O B = pull along the cord at B

Fig 84** p __ ^jg __ ioad on the cord between A and B:

i = ^ X P B (fig. 84) = ^ A B
(fig. 84**) = inclination

of cord at B
;

then,
P = Htani; B - J (P

3 + H2

)
= Hsec^ ........ (1.)

To deduce from these formulae an equation by which the form of

the curve assumed by the cord can be determined when the distri-

bution of the load is known, let that curve be referred to rectangular
horizontal and vertical co-ordinates, measured from the lowest point

A, the co-ordinates of B being, AX=a;, XB = ?/; then

dv
taut =

-f-ldx
whence we obtain

a differential equation which enables the form assumed by the cord
to be determined when the distribution of the load is known.

169. Cord under Uniform Vertical Load-By an Uniform, vertical

load is here meant a vertical load uniformly distributed along a
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horizontal straight line ; so that if A (fig. 85), be the lowest point of

the rope or cord, the load suspended between A and B shall be

Fig. 85.

proportional to AX = x, the horizontal distance between those

points, and capable of being expressed by the equation
p _ v . fi \r ~ P x

> (*)

where p is a constant quantity, denoting the intensity of the load in

units of weight per unit of horizontal length: in pounds per lineal

foot, for example. It is required to find the form of the curve

D A B C, and the relations amongst the load P, the horizontal pull

atA (H), the pull at B (R), and the co-ordinatesAX = x, BX =
y.

First Solution. Because the load between A and B is uniformly
distributed, its resultant bisects AX

; therefore, the tangent B P
bisects AX : this is a property characteristic of a PARABOLA whose
vertex is at A

, therefore, the curve assumed by the cord is such a

parabola.

Also, the proportions of the load, and the horizontal and oblique
tensions are as follows :

P : H : R : : BIT: XP : PB : : v :
?

:

Second Solution. In the present case equation 2 of Article 168

becomes

^ =^ (a)

which being integrated with due regard to the condition that when.
x 0, y =

0, gives

the equation of a parabola whose focal distance (or modulus, to use
the term adopted in Dr. Booth's paper on the "

Trigonometry of the

Parabola," Reports of the British Association, 1856), is,

a? H ,_m = = 5.
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For a parabola we have also the inclination i to the horizon re-

lated to the co-ordinates by the following equations :-

dy x 2y
tan ^ = - =

-5
=

jdx 2m x'
(6.)

whence we have the proportions

P :H : K : : tan i : 1 : sec i : :
^

: 1 : ^ (l + if
2

fly \ 32

+' .............. <7">

as before.

The following are the solutions of some useful problems respecting

uniformly loaded cords.

PROBLEM I. Given the elevations, yb y2, ofthe two points ofsupport

of the cord above its lowest point, and also the horizontal distance, or

span a, between those points of support; it is required to find the

horizontal distances, xa ,
x2, of the lowest point from the two points of

support; also the modulus m.
In a parabola,

'- :o:a
therefore,

; ......(8.)

*yi-r4ya-f-8,/ft

When the points of support are at the same level,

a a?

PROBLEM II. Given the same data, to find the inclinations iv i
2,

of the cord at the points of support.

By equations 6, we have,

x2

when 2/i = ya, tant, = tan is = -?
>(12.)

a
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PROBLEM III. Given the same data, and the load per unit of

length ; required the horizontal tension H, and the tensions B^, B^
at the points of support.

By equation 5, we find,

H = 2p m = ,

)

PO
\_

. ; .......... (13.)
2^/1 -f *

and by the proportional equation 7,

...............(H.)

When yj = y^ those equations become

H = f^-

8

j E, = B2 = H sec i, = HV f1 + r

PROBLEM IY. 6rwm the same data as in Problem I., tofind the

length of the cord.

The following are two well known formulae for the length of a

parabolic arc, commencing at the vertex, one being in terms of the

co-ordinates x and y of the farther extremity of the arc, and the

other in terms of the modulus m, and the inclination i of the farther

extremity of the arc to a tangent at the vertex.

=
w-jtan i sec i + hyp. log. (tan i + sec *)}... (16.)

The length of the cord is s
{
+ s2, where 81 is found by putting Xi

and
2/i

in the first of the above formula, or % in the second, and
s2 by putting x2 and yz in the first formula, or i2 in the second.

The following approximate formula for the length of a parabolic
arc is in many cases sufficiently near the truth for practical purposes ;

if" nea/rly '

which gives for the total length of the cord
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s, + s.2 = a + + nearly. .......... (18.)
O \Cj iCg '

and when yl
= y2,

this becomes

2s, = a + |-
' -

nearly, ................ (19.)

PROBLEM V. Given the same data, tofind, approximately, the small

elongation of the coi*d d
(sj

+ s2) required to produce a given small

depression d y of the lowest point A, and conversely.

Differentiating equation 18, we find

<* (,v^ = 4 (- +-)<*? -(2
-)O \Xi Xn /

which serves to compute the elongation from the depression ; and

conversely,

dy = ' (Sl '
s-'

'; (21.)
4 V, . i/a

'

which serves to compute the depression of the lowest point from
the elongation of the cord. When y^ = y2,

those formulae become,

.(22.)

The preceding formulae serve to compute the depression which
the middle point of a suspension bridge undergoes in consequence
of a given elongation of the cable or chain, whether caused by heat
or by tension.

170. Suspension Bridge with Vertical Rods. In a Suspension

bridge the load is not continuous, the platform being hung by rods

from a certain number of points in each cable or chain : neither is

it uniformly distributed ;
for although the weight of the platform

per unit of length is uniform or sensibly so, the load arising from
the weight of the cables or chains and of the suspending rods is

more intense near the piers. Nevertheless, in most cases which
occur in practice, the condition of each cable or chain approaches

sufficiently near to that of a cord continuously and uniformly
loaded to enable the formulae of Article 169 to be applied without
material error.
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When the piers of a suspension bridge are slender and vertical

(as is usually the case), the resultant pressure of the chain or cable

on the top of the pier ought to be vertical also. Thus, let E, in

fig. 85, represent the vertical axis of a pier, and C G the portion of

the chain or cable behind the pier, which either supports another
division of the platform, or is made fast to a mass of rock, or of

masomy, or otherwise. If the chain or cable passes over a curved

plate on the top of the pier called a saddle, on which it is free to

slide, the tensions of the portions of the chain or cable on either

side of the saddle will be equal; and in order that those tensions may
compose a vertical pressure on the pier, their inclinations must be

equal and opposite. Let i be the common value of those inclina-

tions
;
B, the common value of the two tensions

;
then the vertical

pressure on the pier is

Y = 2Rsin*=: 2Htani = 2px; ........... (1.)

that is, twice the weight of the portion of the bridge between the

pier and the lowest point, A, of the curve C B A D.
But if the two divisions of the chain or cable D A C, C G, which

meet at C, be made fast to a sort of truck, which is supported by
rollers on a horizontal cast iron platform on the top of the pier,
then the pressure on the pier will be vertical, whether the inclina-

tions of the two divisions of the chain or cable be equal or unequal;
and it is only necessary that the horizontal components of their ten-

sion should be equal ; that is to say, let i, i', be the inclinations of

the two divisions of the chain or cable in opposite directions at C,
and R, R', their tensions, then

V = R sin i + E' sin i' = H (tan i + tan i'} ...... (2.)

171. Flexible Tie. Let a vertical load, P, be applied at A, fig. 86,

t
Fig. 86*.

Fig. 86.

and sustained by means of a horizontal strut, A B, abutting against
a fixed body at B, and a sloping rope or chain, or other flexible tie,

ADC, fixed at C. The weight of the strut, A B, is supposed to
be divided into two components, one of which is supported at B,
while the other is included in the load P. The weight, W, of the
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flexible tie, A D C, is supposed to be known, and to be considered

separately ; and with these data there is proposed the following
PROBLEM. W being small compared with P, tofind approximately

the, vertical depression, E D of the flexible tie below the straight line

A C, the pulls along it at A, D, and C, and the horizontal thrust

along A B.

Because W is small compared with P, the curvature of the tie

will be small, and the distribution of its weight along a hori-

zontal line may be taken as approximately uniform j
therefore its

figure will be nearly a parabola .
the tangent at D will be sensibly

parallel to A C, and the tangents at A and C will meet in a point
which will be near the vertical line E D F, which line bisects A C,

and is bisected in D. Hence we have the following construction :

Draw the diagram of forces, fig. 86% in the following manner.
~\y

On the vertical line of loads b c, take &y =: P
;
be = P -\- ; be

Z

= P + W. From b draw b parallel to the strut A B
; that is,

horizontal j from e draw e parallel to C A, cutting b in
;

join c 0, /O.
In fig. 86, bisect A C in E, through which draw a vertical line ;

through A and C respectively draw A F
|| O/, C F

|| c, cutting
that vertical line in F

;
bisect E F in D. Then will A F and

C F be tangents to the flexible tie at A and C, D will be its most

depressed point, and D E its greatest depression ; and the pulls

along the tie at C, D, and A, and the thrust along the strut A B,

will, in virtue of the principle of Article 168, be represented by
the radiating lines O c, O e, O/, and b, in

fig. 86*.

This solution is in general sufficiently near the truth for practi-
cal purposes. To express it algebraically, let Ea,

Rd, B,,., be the

tensions of the tie at A, D, C, respectively, and H the horizontal

thrust
',
then

(I-)
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The difference of length between the curve ADC and the straight
line A E C is found very nearly, by substituting, in the second

AB-UE
term of equation 19, Article 169, AC for a, and === >r 2AJ

A. \j

that is to say,

ABO AW S.^'PE 8
1 A&-BC' W

=
3 T&- =24

172. Suspension Bridge with Sloping Bods. Let the uniformly-
loaded platform of a suspension bridge be hung from the chains by
parallel sloping rods, making an uniform angle j with the vertical.

The condition of a chain thus loaded is the same with that of a
chain loaded vertically, except in the direction of the load; and
the form assumed by the chain is a parabola, having its axis paral-'
lei to the direction of the suspension rods.

In fig. 87, let C A represent a chain, or portion of a chain, sup-
ported or fixed at C, and horizontal at

A, its lowest point. Let AH be a
horizontal tangent at A, representing
the platform of the bridge ; and let

the suspension rods be all parallel to

C E, which makes the angle ^ ECH
= j with the vertical. Let B X re- m& 87

present any rod, and suppose a vertical load v to be supported at

the point X. Then, by the principles of the equilibrium of a frame
of two bars (Article 145), this load will produce a putt, p, on the rod
X B, and a thrust, q, on the platform between X and H ; and the

three forces v, p, q, will be proportional to the sides of a triangle

parallel to their directions, such as the triangle C EH ; that is to

say,

v:p:q:: CH: CE :EH:: 1: sec,/: tan,/. (1.)

Next, instead of considering the load on one rod B X, consider the

entire vertical load Y between A and X. This being the sum of

the loads supported by the rods between A and X, it is evident

that the proportional equation (1) may be applied to it; and that

if P represent the amount of the pull acting on the rods between
A and X, and Q the total thrust on the platform at the point X,
we shall have

Y: P: Q ::CH: CE:E~H::1 : secj : tan,/. (2.)

The oblique load P = V sec j is what hangs from the chain between
A and B. Being uniformly distributed, its resultant bisects AX
in P, which is also the point of intersection of the tangents A P,
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BP; and the ratio of the oblique load P, the horizontal tension

H along the chain at A, and the tension K along the chain at B,
is that of the sides of the triangle BX P ;

that is to say,

(3.)

Comparing this with the case of Article 169 and fig. 85, it is evi-

dent that the form of the chain in
fig. 87 must be similar to that

of the chain in fig. 85, with the exception that the ordinate X B
= y is oblique to the abscissa AX = x, instead of perpendicular ;

that is to say, C BA is a parabola, having its axis parallel to the

inclined suspension rods.

The equation of such a parabola, referred to its oblique co-ordi-

nates, with the origin at A, is as follows :

where m, as in Article 169, denotes the modulus of the parabola,

given by the equation
x* ' cos

2
jm= - =

(5.)
4y

x and y being the co-ordinates of any known point in the curve.

The length of the tangent B P = t is given by the following equa-
tion :

t =

Hence are deduced the following formulae for the relations

amongst the forces which act in a suspension bridge with inclined

rods. Let v now be taken to denote the intensity of the vertical

load per unit of length of horizontal platform per foot, for ex-

ample ; p the intensity of the oblique load
; q the rate at which the

thrust along the platform increases from A towards H. Then

V = vx'
} P =px = vx ' sec j , }

, .

Q = q x v x tan j ; J

x P p x
9 2pmH = =V- =

2
= 2vm -sec3

? (8.)
2y 2y cos

2

,;

J
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The horizontal pull H at the point A may be sustained in three

different ways, viz. :

I. The chain may be anchored or made fast afc A to a mass of
rock or masonry.

II. It may be attached at A to another equal and similar chain,

similarly loaded by means of oblique rods, sloping at an equal
angle in the direction opposite to that of the rods B X, &c., so that
A may be in the middle of the span of the bridge.

III. The chain may be made fast at A to the horizontal platform
A H, so that the pull at A shall be balanced by an equal and op-

posite thrust along the platform, which must be strong enough and
stiff enough to sustain that thrust. In this case, the total thrust at

any point, X, of the platform is no longer simply Q = q x, but

-aj-tanj) (10.)

The length of the parabolic arc, A B, is given exactly by the

following formulae. Let i denote the inclination of the parabola
at the point B to a line perpendicular to its axis. Then

i arc* cos
fg-j -cosjj (11.)

which, when B coincides with A, becomes simply i = j. Then
from the known formulae for the lengths of parabolic arcs, we have

parabolic arc A B = m < tan i sec i tan j secj

+ hyp. log.fc^HL^.l ...(12.)
tan^ -f secj j

In most cases which occur in practice, however, it is sufficient to

use the following approximate formula :

arc AB = x + y
'

sin J + g ^~^ nearly. ..... (13.)

The formulae of this Article are applicable to Mr. Dredge's sus-

pension bridges, in which the suspending rods are inclined, and

although not exactly parallel, are nearly so.

173. Extratins and inirndos. When a cord is loaded with parallel
vertical forces, and ordinates are drawn downwards from the cord,
of lengths proportional to the intensity of the vertical load at the

points of the cord from which they are drawn, a line, straight or
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curved as the case may be, which traverses the lower ends of all

these ordinates, is called the extrados of the given load. The curve

formed by the cord itself is called the intrados. The load suspended
between any two points of the cord is proportional to the vertical

plane area, bounded laterally by the vertical ordinates at those two

points, above by the cord or intrados, and below by the extrados ;

and may be regarded as equal to the weight of a flexible sheet of

some heavy substance, of uniform thickness, bounded above by the

intrados, and below by the extrados. The following is the alge-
braical expression of the relations between the extrados and the

intrados.

Assume the horizontal axis of x to be taken at or below the level

of the lowest point of the extrados; and let the vertical axis of y,
as in Articles 168, 169, and 170, traverse the point where the

intrados is lowest. For a given abscissa x, let y' be the ordinate of

the extrados, and y that of the intrados, so that y ?/ is the length
of the vertical ordinate intercepted between those two lines, to

which the intensity of the load is proportional. Let w be the

weight of unity of area of the vertical sheet by which the load is

considered to be represented. Then we have for the load between
the axis of y and a given ordinate at the distance x from that axis,

(y
-
y'}dx; ....(i.)

the integral representing the area between the axis of y, the given
ordinate, the extrados and the intrados. Combining this equation
with equation 2 of Article 168, we obtain the following equation :

an equation which affords the means of determining, by an indirect

process, the equation of the intrados, when the horizontal tension H,
and the equations of the extrados are given, and also, by a some-

what more indirect process, the equation of the intrados and the

horizontal tension, when the equation of the extrados and one of

the points of the intrados are given. Both these processes are in

general of considerable algebraical intricacy.

-
obviously represents the area of a portion of the sheet above

mentioned, whose weight is equal to the horizontal tension. Let

that area be the square of a certain line, a j that is, let



CORD WITH HORIZONTAL EXTRADOS. 175
*

Then that line is called the parameter of the intrados, or curve in

which the cord hangs.
When the vertical load is of uniform intensity, as in Article

169, so that the intrados is a parabola, it is obvious that the extrados

is an equal and similar parabola, situated at an uniform depth
below the intrados.

[The reader who has not studied the properties of exponential
functions may pass at once to Article 176.]

174. Cord with Horizontal Extrados. If the extrados be a
horizontal straight line, that line may itself

be taken for the axis of x. Thus, in

87 A, let OX be the straight horizontal

extrados, A the lowest point of the intrados,
and let the vertical line O A be the axis of

y. Denote the length of OA, which is the

least ordinate of the intrados, by yQ. Let

B~X = y be any other ordinate, at the end Fig' 87 A>

of the abscissa OX x. Let the area OA B X be denoted by
. Then equations 1 and 2 of Article 172 become the following :

P = w u = w I ydx;
J o

== __ ==

dx~ dx*~ H ~a3

J

The general integral of the latter of these equations is

u= A e^ B e

in which A and B are constants, which are determined by the

special conditions of the problem in the following manner. When
X __ * '

& = 0, e* =e a = 1 ;
but at the same time u 0, therefore

A = B, and equation (a.\ may be put in the form,

This gives for the ordinate,
* - -

(c.)

A ( *- - -\\e+e a
)

which, for x = 0, becomes yQ= - ; and therefore
&
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which, value being introduced into the various preceding equations,

gives the following results, as to the geometrical properties of the

intradoa :

(2.)

V ( ^
Ordinate, y=~ \e a

-{-
e " J ;

Slop,, tan; = ==t
a

T^ ' . tt .y ,v 2/o |

Deviation, -j-~ = <> ^-^ \e a 4- e a
y.

d x a" 2 a'

The relations amongst the forces which act on the cord are given

by the equations

a x

B, (tension at B) = ^/P
3 + H2 = H \f 1 +

(3-)

In the course of the application of these principles, the following

problem may occur : given, the extrados O X, the vertex A of the

intrados, and a point of support B ;
it is required to complete the

figure of the intrados. For this purpose it is necessary and sufficient

to find the parameter a; so that the problem in fact amounts to

this
; given the least ordinate y ,

and the ordinate y corresponding
to one given value of the abscissa x, it is required to find a, so as to

fulfil the equation

hyperbolic cosine of -,

as this function is called. Supposing a table of hyperbolic cosines

or

to be at hand, - is found by its being the number whose hyper-

9
bolic cosine is ; so that

a =
number to hyp. cos.

,(5.)
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but such a table is rarely to be met with; and in its absence a is

found as follows :

The value of x is given in terms of y by the equation

and hence

a

175. Catenary is the name given to the curve in which a cord or

chain of uniform material and sectional area (so that the weight of

any part is proportional to its length) hangs when loaded with its

own weight alone.

Let fig. 87 A, serve to represent this curve; but let A be taken as

the origin of co-ordinates, so that the axis of & is a horizontal tangent
at A. Let s denote the length of any given arc A B. Then if p
be the weight of an unit of length of the cord or chain, the load

suspended between A and B is P = p s. The inclination i of the

curve at B to a horizontal line is expressed by the equations

cos* = dx

. . dy / dx2

in *= -7- = \/ I ---~z :

ds V dsz)

dy /~ ~dtf=
-y^-
= A / 1 --

dx V ds*
tan *

..(1.)

dx
ds

Let the horizontal tension be equal to the weight of a c&rtain

length of chain, m}
so that

(2.)

From these equations, and from the general equation 2 of Article

168, we deduce the following :

tani =
dx

^

IT m .(3.)
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which, bj a few reductions, is brought to the following form :

gg- m
(4)** Jni' + s

2
'

the integral of which (paying due regard to the conditions that

when s = 0, x =
0) is known to be

+ A / 1 +4) ......... (&m V m /

This equation gives the abscissa x of the extremity of an arc A B
= s, when the parameter of the catenary (as m is called) is known.

Transforming the equation so as to have s in terms of x, we obtain

=f (e
e~~\. ..................... (6.)

The ordinate y is found in terms of x by integrating the equation

dy / ds2
s 1 / - _-\

^=-V ^- 1=
^=2(e"- e

-)>
.......

(
7->

which gives

y = ^ (e^+e-* ^
= J t? + m2 m ;.... (8.)

the term 2 being introduced in order that when x = 0, y may
be also = 0. This is the equation of the catenary, so far as its form
is concerned. The mechanical condition is given by the equations

= pm; P =ps;
'

so that the tension at any point is equal to the weight of a piece oj

the chain, whose length is the ordinate added to the parameter.

Suppose the axis of cc,
instead of being a tangent at the vertex

of the curve, to be situated at a depth A O = m below the vertex,
and let y/ denote any ordinate measured from this lowered axis;
then

;...............(10.)

which, being compared with the expression for the ordinate amongst

equations 2, Article 174, shows, that the intradosfor a horizontal ex-
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trados when the least ordinate is equal to theparameter (y = a),
becomes

identical with a catenary, having the same parameter (m = a = yc).

PROBLEM. Given, two points in a catenary, and the length of
chain between them; required the remainder of the curve.

Let k be the horizontal distance between the two points, v their

difference of level, I the length of chain between them. Those three

quantities are the data.

The unknown quantities may be expressed in the following
manner. Let x^ y^ be the co-ordinates of the higher given point,
and $! the arc terminating at it, all measured from the yet unknown
vertex of the catenary, and x2, y2, s2, the corresponding quantities
for the lower given point. (The particular case when the points
are at the same level will be afterwards considered). Also let

xl + xs = h (an unknown quantity).
Then we have

Putting these values of a; in the equations 6 and 8, we find

-\ / _*- - \= 81- S9 =mte*m+e 2J.Je2m- e 2m\

.

...(12.)

*.\ / JL -ix.

=}(,*-,-.-) j

Square those two equations and take the difference of the squares ;

then,

*^'~K
)i

<
13

-)

In this equation the only unknown quantity is the parameter m,
which is to be determined by a series of approximations.

Next, divide the sum of the equations (12) by their difference.

This gives

6 "=rr^
and consequently

h = m- hyp. log.
?

-2
(14.)

Either or both of the abscissae Xj, and x2, being computed by the

equations 11, we find the position of the vertical axis. Then com-

puting by equation 8, either or both of the ordinates, yl9 y2, we find
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the vertex of the catenary, which, together with the parameter,

being known, completely determines the curve. Q. E. I.

When the given points are at the same level, that is, when v - 0,

the vertical axis must be midway between them, so that

x, = - x, =
|;

h = .................. (15.)

In this case equation 13 becomes

l = m (e*~^ e~**\ ....................... (16.)

from which m is to be found by successive approximations. Then
the computation of y^

= ya by means of equation 8 determines the

vertex of the curve, and completes the solution.

The following are some of the geometrical properties of the

catenary :

I. The radius of curvature at the vertex is equal to the para-

meter, and at any other point is given by the equation

(17.)

II. The length of a normal to the catenaiy, at any point, cut off

by a horizontal line at the depth m below the vertex, is equal to the

radius of curvature at that point.
III. The involute of a catenary commencing at its vertex, is the

tractory of the horizontal line before mentioned, with the constant

tangent m.

IY. If a parabola be rolled on a straight line, the focus of the

parabola traces a catenary whose parameter is equal to the focal

distance of the parabola.
176. Centre of Gravity of a Flexible Structure. In every case in

which a perfectly flexible structure, such as a cord, a chain, or a

funicular polygon, is loaded with weights only, the figure of stable

equilibrium in the structure is that which corresponds to the lowest

possible position of the centre of gravity of the entire load. This

principle enables all problems respecting the equilibrium of ver-

tically loaded flexible structures to be solved by means of the
" Calculus of Variations."

177. Transformation of Cords and Chains. The principle of

Transformation by Parallel Projection is applicable to continuously
loaded cords as well as to polygonal frames : it being always borne in

mind, that in order that forces may be correctly transformed by

parallel projection, their magnitudes must be represented by the

lengths of straight lines parallel to their directions, so that if in any case
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the magnitude of a force is represented by an area (as in Articles

173 and 174) or by the length of a curve (as in Article 175),
we must, in transforming that force by projection, first consider

what length and position a straight line should have in order to

represent it.

Some of the cases already given might have been treated as ex-

amples of transformation by parallel projection. For instance, the

bridge-chain with sloping rods of Article 172 might be treated as

a parallel projection of a bridge-chain with vertical rods, made by
substituting oblique for rectangular co-ordinates; and the intrados

for a horizontal extrados of Article 174, where the least ordinate yQ

and parameter a have any ratio, might be treated as a parallel

projection deduced, by altering the proportions of the rectangular
co-ordinates, from the corresponding curve in which the least co-

ordinate is equal to the parameter; that is, from the catenary.
The algebraical expressions for the alterations made by parallel

projection in the co-ordinates of a loaded chain or cord, and in the

forces applied to it, are as follows :

In the original figure, let y be the vertical co-ordinate of any
point, and x the horizontal co-ordinate. Let P be the vertical load

applied between any point B of the chain and its lowest point A;

let p = be its intensity per horizontal unit of length; let H be
CL 00 f

the horizontal component of the tension ; let R be the tension at

the point B.

Suppose that in the transformed figure, the vertical ordinate ?/,

and the vertical load P', which is represented by a vertical line, are

unchanged in length and direction, so that we have

tf = y,P = V; (1.)

but for each horizontal co-ordinate x, let there be substituted an

oblique co-ordinate x', inclined at the angle j to the horizon, and
#/

altered in length by the constant ratio = a. Then for the hori-

zontal tension H, there will be substituted an oblique tension H',

parallel to x', and altered in the same proportion with that co

ordinate ; that is to say,

x' = a x
;
H' == a II.. (2.)

The original tension at B is the resultant of the vertical load P
and the horizontal tension H. Let R be its amount, and i its in-

clination to H ;
then

R = VP- + H';........' ....(3.)
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and the ratios of those three forces are expressed by the proportion

P:H:B: ttani :1 :seci: :sini:cosi: 1 (4.)

Let B' be the amount of the tension at the point B in the new

structure, corresponding to B, and let i
f be its inclination to the

oblique co-ordinate x'
;
then

B' = ^(F
2 + H'2 =i 2 P'H' sin.;) (5.)

B' : H' : B' : : sin : cos
(t' =*=.;) : cos./ (6.)

The alternative signs are to be used according as i' and 3

{dMfer}
indirection-

The intensity of the load in the transformed structure per unit of

oblique length measured along dx
1

,
is

but if the intensity of the load be estimated per unit of horizontal

length, it becomes

p' sec ; = (8.")
a -cos.;

178. Linear Arches or Ribs. Conceive a cord or chain to be

exactly inverted, so that the load applied to it, unchanged in direc-

tion, amount, and distribution, shall act inwards instead of out-

wards
; suppose, further, that the cord or chain is in some manner

stayed or stiffened, so as to enable it to preserve its figure and to

resist a thrust
;

it then becomes a linear arch, or equilibrated rib ;

and for the pull at each point of the original cord is now substi-

tuted an exactly equal thrust along the rib at the corresponding

point.
Linear arches do not actually exist; but the propositions respect-

ing them are applicable to the lines of resistance of real arches and
arched ribs, in those cases in which the direction of the thrust at

each joint is that of a tangent to the line of resistance, or curve

connecting the centres of pressure at the joints.

All the propositions and equations of the preceding Articles,

respecting cords or chains, are applicable to linear arches, substi-

tuting only a thrust for a pull, as the stress along the line of resist-

ance.

The principles of Article 167 are applicable to linear arches in

general, with external forces applied in any direction.

The principles of Article 168 are applicable to linear arches

Tinder parallel loads; and in such arches, the quantity denoted by
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H in the formulae represents a constant thrust, in a direction per-

pendicular to that of the load.

The form of equilibrium for a linear arch under an uniform load
is & parabola, similar to that described in Article 169.

In the case of a linear arch under a vertical load, intrados denotes
the figure of the arch itself, and extrados a line traversing the upp&r
ends of ordinates, drawn upwards from the intrados, of lengths pro-

portional to the intensities of the load
;
and the principles of

Article 173 are applicable to relations between the intrados and
the extrados.

The curve of Article 174 is the figure of equilibrium for a linear

arch with a horizontal extrados ; and from Article 175 it appears,
*that the figures of all such arches may be deduced from that of a

catenary, by inverting it and altering its horizontal and vertical

co-ordinates in given constant proportions for each case.

The principles of Article 177, relative to the transformation of

cords and chains, are applicable also to linear arches or ribs. This

subject will be further considered in the sequel.
The preceding Articles of this section contain propositions which,

though applicable both to cords and to linear arches, are of impor-
tance in practice chiefly in relation to cords or chains. The follow-

ing Articles contain propositions which, though applicable also to
cords as well as linear arches, are of importance in practice chiefly
in relation to linear arches.

179. Circular Arch ibr Uniform Fluid Pressure. It is evident
that a linear arch, to resist an uniform normal pressure from with-

out, should be circular ; because, as the force to which it is sub-

jected is similar all round, its figure ought to be similar to itself

all round a property possessed by the circle alone.

In fig. 88, let A B A B be a circular linear arch, rib, or ring,

Fig. 88.

whose centre is O, pressed upon from without by a normal pressure
of uniform intensity.

In order that the intensity of that pressure may be conveniently
expressed in units of force per unit of area, conceive the ring in
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question to represent a vertical section of a cylindrical shell, whose

length, in a direction perpendicular to the plane of the figure, is

wtity. Let p denote the intensity of the external pressure, in

units of force per unit of area ;
r the radius of the ring ;

T the

thrust exerted round it, which, because its length is unity, is a

thrust per unit of length.
The uniform normal pressure p, if not actually caused by the

thrust of a fluid, is similar to fluid pressure ; and, according to

Article 110, it is equivalent to a pair of conjugate pressures in any
two directions at right angles to each other, of equal intensity.
For example, let x be vertical, y horizontal, and let px, py ,

be the

intensities of the vertical and horizontal pressure respectively, then

P*=py =p; ........................... (1.)

and the same is true for any pair of rectangular pressures.
To find the thrust of the ring, conceive it to be divided into two

parts by any diametral plane, such as C C. The thrust of the ring
at the two ends of this diameter, of the amount 2 T, must balance

the component, in a direction perpendicular to the diameter, of the

pressure on the ring; the normal intensity of that component is p,
as already shown ;

and the area on which it acts, projected 011 the

plane, C C, which is normal to its direction, is 2r ; hence we have

the equation
or T=pr ................... (2.)

for the thrust all round the ring ;
which is expressed in words by

this

THEOREM. The thrust round a circular ring under an uniform
normal pressure is the product of the pressure on an unit of circum-

ference by the radius.

180. Elliptical Arches for Uniform Pressures. If a linear arch

has to sustain the pressure of a mass in which the pair of conjugate
thrusts at each point are uniform in amount and direction, but not

equal to each other, all the forces acting parallel to any given direc-

tion will be altered from those which act in a fluid mass, by a given
constant ratio

;
so that they may be represented by parallel projec-

tions of the lines which represent the forces that act in a fluid mass.

Hence the figure of a linear arch which sustains such a system of

pressures as that now considered, must be a parallel projection of a
circle ; that is, an ellipse. To investigate the relations which must
exist amongst the dimensions of an elliptic linear arch under a pair
of conjugate pressures of uniform intensity, let A' B' A' B', B"A" B",
in fig. 88, represent elliptic ribs, transformed from the circular rib

A B A B by parallel projection, the vertical dimensions being un-

changed, and the horizontal dimensions either expanded (as B" B"),
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or contracted (as B' B'), in a given uniform ratio denoted by c ; so

that r shall be the vertical and c r the horizontal semi-axis of the

ellipse ;
and if x, y, be respectively the vertical and horizontal co-

ordinates of any point in the circle, and x1

y', those of the corre-

sponding point in the ellipse, we shall have

x' = x; y'
= cy...'. .................... (1.)

If C C, D D, be any pair of diameters of the circle at right angles
to each other, their projections will be a pair of conjugate diameters

of the ellipse, as CO', D'D'.

Let P.,. be the total vertical pressure, and P
y
the total horizontal

pressure, on one quadrant of the circle A B.

Then

Let P', be the total vertical pressure, and P',, the total horizontal

pressure, on one quadrant of the ellipse, as A' B', or A" B"
; and let

T'j. be the vertical thrust on the rib at B' or B", and T'
y
the hori-

zontal thrust at A' or A".

Then, by the principle of transformation,

. . .

T
y
= F, = cP,= C T = cP r;|"

or, the total thrusts are as ttie axes to which they are parallel.

Further, let P' = T be the total pressure, parallel to any semi-

diameter of the ellipse (as 0' D' or 0" D") on the quadrant D' C' or

D" C", which force is also the thrust of the rib at C' or C", the ex-

tremity of the diameter conjugate to O' D' or O" D"; and let 0' D'
or 0" D" = r' ;

then

(3.)

or, the total thrusts are as the diameters to which they are parallel.

Next, let p'JC, p'y, be the intensities of the conjugate horizontal and
vertical pressures on the elliptic arch ;

that is, of the "
principal

stresses" (Articles 109, 112). Each of those intensities being found

by dividing the corresponding total pressure by the area of the

plane to which it is normal, they are given by the following equa-
tion :

cr c

P'

yf=^
. V 4.
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so that the intensities of the principal pressures are as the squa/res of
the axes of the elliptic arch to which they are parallel.

Hence the "
ellipse of stress

"
of Article 112 is an ellipse whose

axes are proportional to the squares of the axes of the elliptic arch;
and to adapt an elliptic arch to uniform vertical and horizontal

pressures, the ratio ofilie axes of the arch must be the square root of
ike ratio of the intensities of'the principalpressures ; that is,

The external pressure on any point, D' or D", of the elliptic arch,
is directed towards the centre, O' or 0", and its intensity, per unit

ofarea of the plane to which it is conjugate (0' C' or <J U"), is given

by the following equation, in which r
1

denotes the semidiameter

(O' D' or O" D") parallel to the pressure in question, and r" the con-

jugate semidiameter (O' O or O" C") :

that is, tJie intensity of the pressure in the direction of a given dia-

meter is directly as that diameter and inversely as the conjugate dia-

meter.

Let p" be the intensity of the external pressure in the direction

of the semidiameter r
1

'. Then it is eidenij that
t

<<
*

'
/
"

(7.)

that is, the intensities ofa pair of conjugate pressures are to each other

as tJie squares of the conjugate diameters of the elliptic rib to which

they are respectively parallel.
These results might also have been arrived at by means of the

principles relative to the ellipse of stress, which have been explained
in Article 112.

181. Distorted Elliptic Arch. To adapt an elliptic linear arch

to the sustaining of the pressure of a mass in which, while the state

of stress is uniform, the pressure conjugate to a vertical pressure is

not horizontal, but inclined at a given angle j, the figure of the

ellipse must be derived from that of a circle by the substitution of

inclined for horizontal co-ordinates.

In fig. 89, let BAG be a semicircular arch on which the ex-

ternal pressures are normal and uniform, and of the intensity p, as

before; the radius being r, and the thrust round the arch, and load

on a quadrant, being as before, P = T = p r. Let D be any point

in the circle, whose co-ordinates are, vertical, E = x, horizontal,
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E D = y. Let B' A' C' be a semi-elliptic arch, in which the verti-

cal ordinates are the same with those of the circle, while for each

Fig. 89.

horizontal ordinate is substituted an ordinate inclined to the hori-

zon by the constant angle j, and bearing to the corresponding hori-

zontal ordinate of the circle the constant ratio c
;
that is to say,

let

O' E' = x' = x
;

(1.)

=
J- J

Then for the vertical semidiameter of the circle OA = r, will be

substituted the equal vertical semidiameter of the ellipse O' A' =
r ; and for the horizontal diameter of the circle B = 2 r, will be

substituted the inclined diameter of the ellipse C'B' = 2 c r, which
is conjugate to the vertical semidiameter.

The forces applied to the elliptic arch are to be resolved into

vertical and inclined components, parallel to O' A' and C' B', instead

of vertical and horizontal components. Let P'^, denote the total

vertical pressure, and Py
the total inclined pressure, on either of the

elliptic quadrants, C' A, A B'
;

T'
y
the inclined thrust of the arch

at A, T', the vertical thrust at B' or C'. Then

T'
y
= P, = cT = cP

JMPJ )

= cpr-} }"

that is to say, those forces are, as before, proportional to the dia-

meters to which they are parallel.
Let yfx be the intensity of the vertical pressure on the elliptic

arch per unit of area of the inclined plane to which it is conjugate,
C' B'

;
let p'y be the intensity of the inclined pressure per unit of

area of the vertical plane to which it is conjugate ;
then
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P' 7)
~J ._ x "

.

F
p'y

= -
(3.)

so that, as before, the intensities of the conjugate pressures are as

the squares of the diameters to which they are parallel.
The thrust of the arch at any point D' is as before, proportional

to the diameter conjugate to O' D'.

It is sometimes convenient to express the intensity of the verti-

cal pressure per unit of area of the horizontal projection of the space
over which it is distributed ; this is given by the equation

px
'

secj =
-.. ..................... (4.)

c ' cos j

It is to be borne in mind, that this is not the pressure on unity
of area of a horizontal plane (which pressure is inversely as the

horizontal diameter of the ellipse and directly as the diameter con-

jugate to that diameter, to which latter diameter it is parallel), but

the pressure on that area of a plane inclined at the angle j, whose
horizontal projection is unity.
The following geometrical construction serves to determine the

major and minor axes of the ellipse B' A' C'.

Draw O' a JL and = 0' A' ; join B' a, which bisect in m in B'a

produced both ways take mp = mq = Q'm ; join O'p, O'q ;
these

lines, which are perpendicular to each other, are the directions of

the axes of the ellipse, and the lengths of the semiaxes are respectively

equal to the segments of the lineup q, viz., B'^>
= a q, B'^ = ap.

The following is the algebraical expression of this solution. Let
A denote the major and B the minor semi-axis of the ellipse.
Then

whence we have for the lengths of the semi-axes,

9 fJ(l + c
2 + 2c'coBJ)-J(l+(f-2c' cos./)
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The angle ^ B' O'p = k, which the nearest axis makes with the

diameter C' B', is found by the equation

according as that axis is the longer; the shorter.

The axes of the elliptic arch are parallel to, and proportional
to the square roots of, the axes of the ellipse of stress in the

pressing mass
;

so that they might be found by the aid of case

3 of Problem IV., Article 112.

182. Arches for Normal Pressure in General. The condition of

a linear arch of any figure at any point where the pressure is nor-

mal, is similar to that of a circular arch of the same curvature

under a pressure of the same intensity; and hence modifying the

Therein of Article 179 to suit this case, we have the following :

THEOREM I. The thrust at any normally pressed point ofa linear

arch is the product of the radius of curvature ~by the intensity of
the pressure; that is, denoting the radius of curvature by ,

the

normal pressure per unit of length of curve by 7?, and the thrust

byT,
T=Pt (1.)

Example. This Theorem is verified by the vertically and hori-

zontally pressed elliptic arches of Article 180; for the radii of

curvature of an ellipse at the ends ^of its two axes, r and c r, are

respectively,

At the ends of r ; e* = = c
2r

'

T
*\>

*TK~ r* r
At the ends of c r ; e == = -

;

cr c

Introducing these values into the equations of Article 180, and into

equation 1 of this Article, we find,

Y
T'x =

p'y ?y
= cp - = pr as before

;

: .(3.)

' = p'x px
- c

2
r = cpr as before ;

c

It is further evident, that if the pressure be normal at every point
of the arch (which it is not in the cases cited), the thrust must be

constant at every point ; for it can vary only by the application of

a tangential pressure to the arch
;
and hence follows
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THEOREM II. In a linear arch sustaining a pressure which is

everywhere normal, the thrust is uniform, and the radius of curva-

ture is inversely as the pressure & theorem expressed symbolically
thus :

T = pe = constant (4.)

The only arch of this class which has hitherto been considered is

the circular arch under uniform normal pressure. Another instance

will be given in the following Article.

183. The Hydrostatic Arch is a linear arch suited for sustaining
normal pressure at each point proportional, like that of a liquid in

repose, to the depth below a given horizontal plane j and is some-

times called " the arch of Yvon-Villarceaux," from the name of the

mathematician who first thoroughly investigated the properties of

its figure by the aid of elliptic functions.

The radius of curvature at a given point in the hydrostatic arch

being, in virtue of Theorem II. of the last Article, inversely propor-
tional to the intensity of the pressure, is also inversely proportional
to the depth below the horizontal plane at which vertical ordinates

representing that intensity commence.
In

fig. 90, let Y O Y represent the level surface from which the

Fig. 90.

pressure increases at an uniform rate downwards, so as to be similar

to the pressure of a liquid having its upper surface at Y O Y. Let
A be the crown of the hydrostatic arch, being the point where it is

nearest the level surface, and consequently horizontal. Let co-ordi-

nates be measured from the point O in the level surface, directlj

above the crown of the
jirch ; so_that (JX = Y C = x shall be the

vertical ordinate, and O Y X C y the horizontal ordinate, of

any point, C, in the arch. Let O A, the least depth of the arch
below the level surface, be denoted by X

Q,
the radius of curvature

at the crown by r
,
and the radius of curvature at any point C by r.

Let w be the weight of an unit of volume of the liquid, to whose

pressure the load on the arch is equivalent. Then the intensities of

the external normal pressure at the crown A, and at any point C,
are expressed respectively by
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pQ
= wx

d ; p wx. t (1.)

The thrust of the arch, which, in virtue of the principles of Article

182, is a constant quantity, is given by the equation

= #> ro = wx
o
r
o
= pr = wxr-.

from which follows the following geometrical equation, being that

which characterizes the figure of the arch :

xr _ x^ (3 )

"When x
n
and r are given, the property of having the radius of

curvature inversely proportional to the vertical ordinate from a

given horizontal axis enables the curve to be drawn approximately,

by the junction of a number of short circular arcs. It is found to

present some resemblance to a trochoid (with which, however, it is

by no means identical). At a certain point, B, it becomes vertical,

beyond which it continues to turn, until at D it becomes horizontal;
at this point its depth below the level surface is greatest, and its

radius of curvature least. Then ascending, it forms a loop, crosses

its former course, and proceeds towards E to form a second arch
similar to BAB. Its coils, consisting of alternate arches and loops,
all similar, follow each other in an endless series.

It is obvious that only one coil or division of this curve, viz.,

from one of the lowest points, D, through a vertex, A, to a second

point, D, is available for the figure of an arch
;
and that the por-

tion BAB, above the points where the curve is vertical, is alone

available for supporting a load.

Let ajj, ylt
be the co-ordinates of the point B. The vertical load

above the semi-arch A B is represented by

w

and this being sustained by the thrust T of the arch.at B, must

obviously be equal to that thrust ; whence follows the equation

xr = x r = \ x-dy (4.)

That is to say, the area of the figure between the slwrtest vertical

ordinate, and the vertical tangent ordinate, is equal to the constant

product of the vertical ordinate and radius of curvature.

The vertical load above any point, C, is

/:
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and this is sustained by and equal to the vertical component of the
thrust of the arch at C, which is T sin i

(i being the inclination of
the arch to the horizon).
Hence follows the equation

j

'

xdy = x

That is to say, the area of the figure between the shortest vertical

ordinate and any vertical ordinate, varies as the sine of the angle of
inclination to tJie horizon of tJie curve at the latter ordinate.

The horizontal external pressure on the semi-arch from B to A
is the same with that on a vertical plane, AF, immersed in a

liquid of the specific gravity w with its upper edge at the depth
x below the surface (see Article 124), so that its amount is

/'*i

'V2 _'y2
T w\ *>VAxdx = w ' --

SJ
x 2

and this is balanced by the thrust of the arch, T, at the crown,

Hence follows the equation

/ r> \

(6.)

That is to say, half the difference of the squares of the least vertical

ordinate and of the tangent vertical ordinate is equal to the constant

product of the vertical ordinate and radius of curvature.

Equation 6 gives for the value of the vertical tangent ordinate,

...(7.)

The horizontal external pressure between B and any point, C, is

equal to the pressure of a liquid of the specific gravity w on a ver-

tical plane X F with its upper edge immersed to the depth x, so

that its amount is

ftwl xdx=z

and this is balanced by the horizontal component T cos i of the

thrust of the arch at C
;
whence follows the equation

x\a? . /QX

j~ = o
r
o

cos t ; (8.)

which gives for the value of any vertical ordinate,
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Let x, x', be any two vertical ordinates. Then from equation 8

it follows that

x'
2

or = 2# r (cos i cos i') .............. (10.)

or, the difference of the squares of two ordinates varies as the difference

of the cosines of the respective inclinations of the arc at tlieir lower

ends.

From equation 9 is deduced the following expression of the in-

clination in terms of the vertical ordinate :

1

2 sin
2

'I
= 1 cos i = 1 A /, ,

dx* = ^=^....(11.)V l

^djf
2 Vo

The various properties of the figure of the hydrostatic arch ex-

pressed by the preceding equations are thus summed up in one

formula :

To obtain expressions for the horizontal co-ordinate y, whose
maximum value is the half-span ylt

and also for the lengths of arcs

of the curve, it is necessary to use elliptic functions.

[The reader who has not studied elliptic functions may here pass
at once to Article 184.]

In the use of elliptic functions the notation employed will be

that of Legendre; and the classes of functions referred to will be

those called by that author the first and second kind respectively,
and tabulated by him in the second volume of his treatise.

Let & denote a constant angle, called the modulus of the func-

tions
; <p,

a variable angle called the amplitude ; then an elliptic
function of the first kind is expressed by

d<P

and an elliptic function of the second kind is expressed by

E
(6, <p)

= \ V(l sin
2
Q - sin

2

?) d $ ,...(6.)J Q

o
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The values of those functions, when the upper limit of integra-

tion is <p = -, or 90 degrees, are called complete functions, and de*
2

noted respectively by
Fj (&)

and E, (6)......................... (c.)

In order to apply those functions to the case of the hydrostatic

arch, let the amplitude be half the supplement of the inclination of

the curve; that is, let

(*)

so that at D, V = 0, at B, ? = 45, and at A, <p
= 90. Let the

vertical ordinate and radius of curvature at the point D be denoted

respectively by X, B ; then

;and ^
(13.)

for the modulus 6 take an angle such that

sin2 *bill V - X
Then equation 9, the expression for the vertical ordinate, becomes

l sin
2 6- sin8 *V (14.)

The values of this for the points B and A are respectively

= X - cos 6. ........................(14 A.)

Introducing the above value of x into equation 5, we obtain for the

area between O A and any other vertical ordinate,

/ x dy = xQ r sin i = 2 X R cos <P sin <P

sin<p

The value of this expression for the point B is

f''xdy = Vo = XR =
Now differentiate the area (15) with respect to the amplitude <p,

and divide by x ;
this gives
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d y _ ^.
sin2 & cos2

<P sin
2
<p

J<p
~

~T~ "^(l sin^-sin2 ^)
2 sin2

This differential being integrated between the limits <p = 90,

which corresponds to yQ
= 0, and <p = 90

^,
which corresponds

to the required value of y, gives

y= X
{ (l

- ^) (F, (t)
- F

(*,*))

- E, (f)+ E
(*, 9)

}
(17.)

For the point B, this gives for the half-spcm of the arch

Let s denote the length of any arc of the curve, A C, commenc-

ing at the crown. Then

s = lrdi = 2l rd<p (19-)
J o J

<p

The value of the radius of curvature r in terms of the modulus
and amplitude is

_"
x

~
4 ^(1 sin

2
sin8 1)

and this being introduced into the integral (19), gives for the arc

AC,

The length of the semi-arch A B is

, w- F c. 45
)

..........(
22

->

Such are the formulae expressing the geometrical properties of

the hydrostatic arch. Numerical results can easily be computed
from them by the aid of Legendre's tables of the functions F
andE.
The relation between the thrust of the arch, the specific gravity

of the load, and the modulus is given by the equation
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184. Ocosaatic Arches. It is proposed, by the term " Geostatic

Arch" to denote a linear arch of a figure suited to sustain a pressure
similar to that "of earth, which (as will be shown 'in Section 3 of

this Chapter) .consists, in a given vertical plane, of a pair of con-

jugate pressures, one vertical, as in Article 125 of Part I., and

proportional to the depth below a given. plane, horizontal or sloping,

and the other parallel to the horizontal or sloping plane, and bearing
.to the vertical pressure a certain 'constant ratio, depending on the

nature of the material, and other circumstances to be explained in

the sequel. In what follows, the horizontal or sloping plane will

be called the conjugate plane, and ordinates parallel to its line of

steepest declivity,! when it slopes, or to : any line in it, when it is

horizontal, conjugate ordinates. The intensity "of the vertical pres-
sure will be estimated per unit' of area" of the conjugate plane; aiid

the pressure parallel to the line of steepest declivity of that plane,
when it slopes, or to any line in it, when it is horizontal, will be

called the conjugate pressure, and its intensity will be estimated per
unit of area of a vertical plane.

Let the origin of co-ordinates be taken at a point in the conju-

gate plane vertically above the crown of the proposed arch
;

let x
denote the vertical co-ordinate of any point, and y' the conjugate
co-ordinate. Letj be the angle of inclination of the conjugate plane
to the horizon. Let w' be the weight of unity of volume of the

material to which the pressure is due, and whose upper surface is

at the conjugate, plane. Then the intensity of the
f

vertical pressure
at a given depth x', according to Theorem I. of Article 125, is

p'x = w' x -cos,/;... .............. ;......(!.}

and that of the conjugate pressure

Py
'

= 2

P'X
= c

*. w'x'-cosj-,..: (2.)

c2 being a constant ratio, expressed in the form of a square, for a

reason which will afterwards appear.
Conceive a hydrostatic arch, whose vertical and horizontal co-

ordinates are x and y, and which is subjected to the pressure of a
material whose weight per cubic foot is

w = c w'cosj. (3.)

Then at any given point in that hydrostatic arch, whose depth
below the surface is x = xf

,
we shall have for the intensities of the

vertical and horizontal pressures

px = py
= w x = c w' x' "cosj = cp'x = (4.)

Now let the figure of an arch be transformed from that of the

hydrostatic arch "by parallel projection, in such a manner that the
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vertical co-ordinate '. of saiiy point in the. new arch shall be the

same with that of the corresponding point in the hydrostatic arch,

and that the conjugate co-ordinate . of any point in the new arch

shall bear to the horizontal co-ordinate of the corresponding point
in the hydrostatic arch the constant ratio c; that is to say, let

.V
;

=>jV = cy.. ....... ..... ... ....... (5.)

The total vertical and horizontal pressures on the arc between

two given points in. the hydrostatic arch are respectively

y
dx.......... ...... (6.)

' The total vertical and conjugate pressures on the arc between the

two corresponding points in : the new arch are respectively

and if into these two expressions we introduce the values ofp'x,p'y,

dxf, aiid dy', deduced from equations 4 and 5, viz. :

v
./* = ^ '>'&,-= G Py> dx''= dx', dy* = cdy;
i o .

we find the following relations between the total vertical and
horizontal pressures in a given arc of the hydrostatic arch, and the

total vertical and conjugate pressures on the corresponding arc of

the transformed arch,

being the same with the relations which, according to equation 5,

exist between the co-ordinates respectively parallel to the pressures
in question. Therefore the transformed arch is a parallel projection
of the original arch under, forces represented by lines which are the

corresponding parallel projections of the lines representing the
forces acting on the original arch: therefore it is in equilibrio.
The conclusions of the preceding investigation may be summed up
in the following

THEOREM. A geostatic arch, transformed from a hydrostatic arch

by preserving tJie vertical co-ordinates, and substituting for the hori-

zontal co-ordinates, conjugate co-ordinates- either horizontal or inclined,
and altered in a given ratio, sustains vertical and conjugate pressures,
the ratio of the intensity of the conjugate pressure to that of the vertical

pressure being the square of the ratio of the conjugate co-ordinates to

the original horizontal co-ordinates.

This transformation is exactly analogous to that of a circular

arch into an elliptic arch, in Articles 180, 181.

Let T be the thrust, horizontal or inclined as the case may be/-

at the crown of a geostatic arch, arid Tf the vertical thrust at the
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points where the arch is vertical, which in this, as in other cases,

is the vertical load of the semi-arch ; then

T = cT, (10.)

All the equations relative to the co-ordinates of a hydrostatic arch,

given in Article 183, are made applicable to a geostatic arch, by

substituting ocf for x, and for y. This principle, however, is appli-

cable to co-ordinates only, and not to angles of inclination, radii of

curvature, nor lengths of arcs. The modulus 6, and amplitude q>,

are therefore to be considered as functions, not of inclinations, nor

of radii of curvature, but of vertical ordinates ;
that is to say, let

XQ be the least vertical ordinate at the crown, xl the vertical tangent

ordinate, and X the greatest vertical ordinate at the loop (which
are the same in both kinds of arch), then

6 arc cos ^ = arc cos
.X.

= arc sm X sin

(11.)

and is the same function of 6 and <p for a geostatic arch, that yc

is for a hydrostatic arch.

185. stcreostatic Arch. This term is employed to denote a linear

arch sustaining the pressure of a
material in which, at any given
point, there are a pair of conjugate
pressures, one vertical, and the
other in a fixed direction, hori-

zontal or inclined, but not bearing
to each other any constant propor-
tion, nor following any invariable

law as to their intensities, except
that of being of the same intensity

throughout each plane which is

conjugate to the vertical pressure,
a condition which involves the

symmetrical distribution ofthe ver-
tical load on either side of a verti-

cal axis traversing the crown of the
arch.

The principal questions which
arise respecting any stereostatio91 *

arch are comprehended under the following
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PROBLEM. Given, the mode of distribution of the vertical pressure,
and the figure of the arch; required, tJie mode of distribution of the

conjugate pressure necessary in order to produce equilibrium, and
also, the thrust at each point of the arch.

CASE 1. When the direction of the conjugate pressure is horizontal.

This case is represented by the upper diagram in fig 91. Let 0,
the crown of the arch, be taken as the origin of co-ordinates; let

OX be vertical and Y OY horizontal. Both the figure of the arch
and the forces acting on it are symmetrical on either side of the
vertical axis OX. Let p denote the intensity of the vertical

pressure at the point 0, and r the radius of curvature of the arch
at that point. Then because at the point the pressure is normal
to the arch, the horizontal thrust along the arch at that point is

T.=jp
i

o (1.)

Let C be any point in the arch, whose co-ordinates are O X = x
t

X C = y, and let

dy~-
dx

be the inclination of the arch at G to the horizon. Let Pa denote
the vertical load on the arc between O and C.

From C draw the vertical line CW to represent P,., and the

tangent C T forming the diagonal of the rectangle CW T H. Then
C T will represent the thrust along the arch at C, and CH the
horizontal component of that thrust; and if this be different from
T

,
the difference must be made up by means of the horizontal

pressure applied to the arch between O and C. To express this

symbolically, let P
y
be the amount of that horizontal pressure, and

T the thrust C T along the arch at C; then

(2.)sin i dx"

(where ds denotes the increment of the arc C).

The horizontal component CH of this thrust is

T cos i= P. cotan i = P_ ~ :

dx

consequently the horizontal pressure which must be applied to the

arch between O and G to maintain equilibrium is

P
y
= T P. cotan i = TO P.- ^; (3.)
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and if this equation be fulfilled at every point of the arch, it will

be balanced. Q. E. I.

When P
y

is positive, it represents inward pressure, such as may
arise from the resistance of the materials of the spandril of an arch

to compression. When P
y

is negative, it represents outivard

pressure, such as may arise from the resistance to compression of

a portion of material situated below the crown of the ideal linear

arch C, or tension, such as may arise from tenacity in the spandril;
and in the materials connecting it with the arch.

The intensity of the horizontal pressure is found by taking two

points in the arch indefinitely near to each other, and finding the

ratio which the portion of the horizontal pressure applied between
them bears to the difference of their .vertical ordinates. Let the in-

tensity required be denoted by^; then

-_ _
Py ~dx

'
dx

(This equation comprehends the cases already considered in Article

168, of a cord under vertical loads, or an arch whose figure is that

of such a cord inverted; for in that case, Pe = T tan i, and

P, cotan i = T = constant, so that py
=

0.)
If it be required to express the intensity of the horizontal pressure

in terms of that of the vertical pressure, let the latter intensity be
,

then

Restricted Case. Let the arch have a horizontal extrados, at the

height a above the crown O, and let the vertical pressure be due to

the weight of material below that extrados; then

Po = w a ; px = w (a + as);

and the vertical load becomes

*=
] Pdy=w I (a + x)dy;............. (6.)

being proportional to the area between the intrados and extrados,
and the vertical ordinates at and C.

Example. Let the linear arch be part of a circle of the radius r
t

with a horizontal extrados at the distance r + a from its centre.
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. In this case it is convenient to express all the variables in terms

of the inclination i of the arch. Thus we have

x = r (1 cos i) ;
1

y = r-smi;
dx= r'8Uiidi;

d y = r cos i d i.
J

It is also useful to make a = mr, m being the ratio which the

depth of load at the crown bears to the radius. Then we have for

the thrust at 0,

(8.)

and for the vertical load between O and C,

Px = w l (a>
+ x) d y = w r

2
1 (m -f- 1 cos i) cos i d i

... cos i sin i i }

(
1 -f m) sin t----- -

;

j
........ (9.)

= w r

which value being introduced into equation 4, gives for the inten-

sity of the horizontal pressure

_ dP,-_ d(Pcotant)_ 1
.
d (P. cotan t)

d x d x r sin i d i

wr d (

'

. cos2 i i cos i
\= --: . .<(! + m) cos i-- ff. . >

sin ^ d i (
^ 2 2 sin t J

cos * sin i\
........ (10.)

The value of the horizontal pressure itself is given by introducing
the values of T and P.,, from equations 8 and 9 into equation 3, and
is as follows :

</ /i i \ -_L cos2 * * cos *
rv = w r" < m (1 + m) cos ^ -\

horizontal component of the thrust of the arch at C is given
by the equation

When i = 0, that is, for the crown of the arch, py
takes the fol-

lowing value :

wr [m 3 I,
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so that for every circular linear arch in which the depth of load at

the crown, m r, is less than one-third of the radius, p9
has negative

values at and near the crown, showing that outward horizontal

pressure or tension is required to preserve equilibrium. In such

cases, there is a certain value of the angle i for which py
= 0. At

the point where this takes place, Py consequently attains a negative

maximum, and the horizontal component T cos i of the thrust

along the arch attains a positive maximum, greater than T
,
because

of P
y being negative. Let this point be called C ,

and let the in-

clination of the arch at it be denoted by v This angle must

satisfy the transcendental equation

L cos i sin n n .= 0,.; (13.)
2 sin3

1

and can therefore be found by approximation only. As a first

approximation, may be taken

3m+l

and then by successive substitutions, nearer and nearer approxi-
mations may be found.

Supposing iQ to have been thus determined to a sufficient degree
of accuracy, its substitution for i in the equation 12 will give the

maximum value of the horizontal component of the thrust of the

arch.

By expanding or contracting the horizontal dimensions of a cir-

cular arch, it can be transformed into an elliptic arch, which will

be balanced under forces deduced from those applied to the circular

arch according to the principles explained in Articles 180, 184.

In adapting the equations from 7 to 13 inclusive to an elliptic

arch, it is to be observed that i represents not the inclination of the

elliptic arch itself at a given point, but that of the circular arch

from which the elliptic arch is derived at the corresponding point.
CASE 2. When the direction of the conjugate pressure is inclined.

This case is represented in the lower diagram of fig. 91. The in-

clined axis of co-ordinates, Y' 0' Y', is taken parallel to the direc-

tion of the conjugate pressure, and touching the arch at the point

O', which is now its crown. Each double ordinate of the arch,

(T X' C'= 2
?/', is bisected by the vertical axis, on either side of

which the vertical load is symmetrically distributed.

Let j denote the inclination of the conjugate pressure to the

horizon. Construct a parallel projection of the given arch, like the

upper diagram of the figure, having its vertical ordinates equal to

those of the distorted arch, and its horizontal ordinates less in the
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ratio cos./: 1 j conceive it to be under a vertical load, of equal
amount -to that on the distorted arch, and similarly distributed ;

determine the horizontal pressures required to keep it in equilibrio ;

then will the proper projection of those pressures keep the dis-

torted arch in equilibrio.
The relations amongst the co-ordinates of the two arches, and

the amounts and magnitudes of the vertical and conjugate pres-

sures, are as follows, quantities relating to the distorted arch being
distinguished by accented letters :

F. = P, ;
T' = T sec j ; F, = P

y sec,/;
- ... (14.)

p'. = px cos j ; p'y = py
sec j.

Let H' denote the conjugate component of the thrust of the dis-

torted arch at any point C' j then we have

H' = T - F, = (T
_

P,) sec j; (15.)

and if T' be the thrust along the distorted arch at C', then

the positive or negative sign being used according as the point C'

is at the depressed or the elevated side of the arch.

186. Pointed Arches. If a linear arch, as in fig. 92, consists of

two arcs, BO, C B, meeting in a point at C, it is

necessary to equilibrium that there should be con-

centrated at the point C a load equal to that which
would have been distributed over the two arcs AC,
C A, extending from the point C to the respective

crowns, A, A, of the curves of which two portions
form the pointed arch.

187. Total Conjugate Thrust of Linear Arches. The total con-

jugate thrust of an arch is the conjugate component, horizontal or

inclined, as the case may be, of the entire pressure exerted between
one semi-arch and its abutment, whether directly, at the point
from which the arch springs, or above that point, through the
material of the spandril.
When a linear arch is of such a figure as to be balanced under a

load of which the pressure is wholly vertical (as in the case de-

scribed in Article 174), that is to say, when its figure is that in
which a cord would hang, loaded with the same weight distributed

in the same manner, its conjugate thrust is exerted simply at the

point from which it springs, and is equal to the conjugate com-

ponent of the thrust along the arch, which is a constant quantity
throughout its whole extent.
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"When an arch springs vertically from its abutments, the point
of springing sustains the vertical load of the semi-arch only ;

and
the conjugate thrust is exerted wholly through the spandril.
In other cases, the conjugate thrust is exerted partly at the

point, of springing and partly through the spandril.
;

THEOREM. TJie amount oftlie conjugate thrust is equal to the con-

jugate component of the thrust along the arch at the point where that

component is a maximum; for at that point, as appears from the

reasoning of Article 185, the intensity of the conjugate pressure
between the arch and its spandril is nothing : it is, therefore, en-

tirely below that point that the conjugate thrust, whether through
the spandril or at the point of springing, is exerted; and conse-

quently the amount of that thrust must be equal to the maximum

conjugate component of the thrust along the arch, which is balanced

by it. The point of the arch where the conjugate component of the

thrust along it is a maximum, is called the point of rupture, for

reasons which will afterwards appear. It may be at the crown; or

it may be in a lower position, to be determined by solving the equa-
tion formed by making the intensity of the conjugate pressure
between the arch and spandril, as found by the method of Article

185, equal to nothing : that is,

. This equation having been solved so as to give the position of the

point of rupture, the corresponding value of
P.,,, being the vertical

load supported at that point, is to be computed; and then the conju-

gate thrust is given by the equation

H =max. value of Px
-^

.................. (2.)

(Where the conjugate pressures, as is generally the case, are hon-

zontal, = cotan i ; and the value of i, the inclination of the arch,
o!/ X ,

which fulfils equation 1, is called the angle of rupture).
When the point of rupture is the crown of the arch (as in hydro-

static and geostatic arches), equation 2 gives no result, because of

P, vanishing and -^ increasing indefinitely ; but it has alreadyu x
been shown by other methods that in this case, where the conjugate
pressures are horizontal

... ............ ...(3.)

Po being the intensity of the vertical load, and r the radius of cur-
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vature
;
but in order to form an equation which shall be applicable

whether the conjugate pressures and co-ordinates are horizontal or

inclined, the above equation must be converted into one expressed
in terms of the co-ordinates ;" that is to say,

d?,

dy' dy dy*
d~x 1

For rectangular co-ordinates -7-7, = at the crown of the arch, so

dy*. r
^

.

that equation 4 is converted into equation 3.

Thus far as to finding the- amount of the conjugate thrust. To
find the position of its resultant, that is to say, the depth of its line

of action below the conjugate co-ordinate plane, we must conceive

it to act against a vertical plane, extending from the depth of the

point of rupture below the conjugate co-ordinate plane, down to

the depth of the point of springing below that plane, and find, by
the methods of Article 89, the vertical co-ordinate of the centre of

pressure of the plane so acted upon. That is to say, let # denote

the depth of the point of rupture, and x
{
that of the point of spring-

ing below the conjugate co-ordinate plane ; py
the intensity of the

conjugate pressure between the arch and spandril at any point
between those points, and

H, = HO
- r p,dx, (5.)

J xo

the conjugate component of the thrust of the arch at the point of

springing; also, let xa be the depth of the resultant conjugate
thrust below the conjugate co-ordinate plane; then

/"*' J -L.TT
/

' x Py
' a x "r" -^i xi

TT \ /

HO
Example I. Circular arch under uniform normal pressure of

intensity, p. 183 (Art. 179).
Here px = py

= p ; and the point of rupture is at the crown,
the horizontal thrust is

TT m /(T \

Let the crown be taken for origin of co-ordinates, so that x = 0.

CASE 1. Semicircle. Here x
{
= r; H! = 0; and
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CASE 2. Segment. Inclination at springing, z,. Here x = r

(1 cos i) ; H! =p r cos i; and

% P #1 + p T Xi cos i

"* = -
-^~

r
(l (1

_ cos
i)* + cos i (I cos

))
=1 sin2 f . .(9.)

.Example II. Semi-elliptic arch, under conjugate uniform vertical

and horizontal pressures (Art. 180). Let a = #, be the me, or

vertical semi-axis; cathe horizontal semi-axis, or half-span; and
let the origin of co-ordinates be at the crown. Then py

= c*px ;

and we have

H = TO = a py
= <? a p. = c Px ; XH = |

.... (10.)

Example III. Semi-elliptic distorted arch, with conjugate uniform
vertical and oblique pressures (Art. 181). The vertical and conju-

gate semidiameters, or rise and inclined Jialf-span, being denoted

by a and c a respectively, the equations 10 apply to this case also.

Example IY. Hydrostatic arch (Art. 183). The origin of co-

ordinates being taken, as in the article referred to, at the point of

the extrados vertically above the crown, we have py
=== px = w x,

H! = Oj and

2 37? .^

H 3

Example V. Geostatic arch, with horizontal or inclined 'extrados

(Art. 184). Here px= w x cosj; py
= <?px= c?wx' cosj; H ==

T = c P, = c
2 w cosj '^5 j

and consequently
t

2i

2 xs_ r3" ^ *

as in the last example.

Example VI. Semicircular arch with horizontal extrados. In
this case the angle of rupture is to be determined by means
of equation 13 of Article 185; and thence, by equation 12 of the

same Article, is to be found H . The springing being vertical,
we have t^= 90; H t

= 0. Let the crown of the arch be taken as

origin ;
then x r (1 cos

i),
d x = r sin i d i,

and equation
6 of the present Article becomes
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r2 rw
XR = -' I py smi(l cosi)-dij ......... (13.)H J a

Example VII. Circular segmented arch with horizontal extrados.

Let i
t
be the inclination of the arch at the springing, Pj the total

vertical load; then

H! = P! cotan ^ .......................(14.)

Let i be determined as in the last example.
CASE 1. iQ > or = it . In this case H = Hl5 and the conjugate

thrust is simply the single horizontal force Hj at the point of spring-

ing.
CASE 2. i < v Find H as in the last example, and let the

origin of co-ordinates be at the crown; then

Xi = r (1 cos
*j);

and we have

XB = {^/%,sin*(l- coBfy'di+ r'H.l (l cos^)l (15.)H ( J o )

188. Approximate Hydrostatic and Gcoslatic Arches. The Subject
of elliptic functions is so seldom studied, and complete tables of

them are so scarce, that it is useful to possess a method of finding
the proper proportions of hydrostatic and geostatic arches (Articles

183, 184) to a degree of approximation sufficient for practical pur-

poses, using algebraic functions alone.

Such a method is founded on the fact that a hydrostatic arch

approaches nearly to the figure of a semi-elliptic arch of the same

height, and having its maximum and minimum radii of curvature

in the same proportion.
Let x

,
x

lt
as in Article 183, be the depth of load of a hydrostatic

arch at the crown and springing respectively; r
,
rlt

its radii of

curvature at those points; a = Xi XQ, its rise; yl its half-span,

given in Article 183 by means of elliptic functions.

Suppose a semi-elliptic arch to be drawn, having the same rise,

a, with the hydrostatic arch; let r'
, r^, be its radii of curvature at

the crown and springing, whose proportion to each other is the same
with that of the radii of the hydrostatic arch; that is to say,

Let 6 be the half-span of this semi-ellipse. Then because the cubes

of the semi-axes of an ellipse are to each other inversely as the radii

of curvature at the respective extren^ities of the semi-axes, we have

............ a-)
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A rough approximation to the half-span of the hydrostatic arch

is found by making y {

= b ;
but this, in the cases which occur in

practice, is too great by an excess which varies between TS and -gV,

and is about -^V on an average. Hence we may take, as a first

approximation whose utmost error in practice is about TO, and
whose average error is about Tis, the following formula, giving the

half-span in terms of the deptJis ofload &t the crown and springing :

Suppose the rise a and half-span yl of a proposed hydrostatic arch

to be given, and that it is required to find the depths of load; equa-
tion 2 gives us, as an approximation,

xj_ _ /20j/A
3

x
~

\l9aj'

and because x\ XQ = a, we have

/aoyA'~U/ \19a/

A closer approximation is given by the equations

7)
2

2/i
= &

30 a'

(4.)

a3

A semicircular or semi-elliptic arch may have its conjugate thrust

approximately determined, by considering it as an approximate geo-
static arch, as follows :

Let there be given, the half-span of the arch in question, horizontal

or inclined, as the case may be, yK the depths of load at its crown
and springing, a?

, x^ and the vertical load at the springing, P,.

Determine, by equation 2 or equation 4, the span y^ of a hydro-
static arch for the depths of load XQ,

x
l}
and let

*=* (5.)
ft
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be the ratio of the half-span of the actual arch to that of the hydro-
static arch.

The actual arch may now be conceived as an approximation to

a geostatic arch, transformed from the hydrostatic arch by pre-

serving its vertical ordinates and load, and altering its conjugate
ordinates and thrust in the ratio c. The conjugate thrust of a

hydrostatic arch being equal to the load, we have, as an approxi-
mation to the conjugate thrust of the given semi-elliptic or semi-

circular arch,

Hi-eP,..............................(6.)

SECTION 3. On Frictional Stability.

189. Friction is that force which acts between two bodies at their

surface of contact, and in the direction of a tangent to that surface,

so as to resist their sliding on each other, and which depends on
the force with which the bodies are pressed together.

There is also a kind of resistance to the sliding of two bodies

upon each other, which is independent of the force with which

they are pressed together, and which is analogous to that kind of

strength which resists the division of a solid body by shearing,
that is, by the sliding of one part upon another. This kind of

resistance is called adhesion. It will not be considered in the

present section.

Friction may act either as a means of giving stability to struc-

tures, as a means of transmitting motion in machines, or as a cause

of loss of power in machines. In the present section it is to be

considered in the first of those three capacities only.
190. r,aw of Solid Friction. The following law respecting the

friction of solid bodies has been ascertained by experiment :

The friction which a given pair of solid bodies, with their surfaces
in a given condition, are capable of exerting, is simply proportional
to theforce with which they are pressed together.

If the bodies be acted upon by a lateral force tending to make
them slide on each other, then so long as the lateral force is not

greater than the amount fixed by this law, the friction will be equal
and opposite to it, and will balance it.

There is a limit to the exactness of the above law, when the

pressure becomes so intense as to crush or grind the parts of the

bodies at and near their surface of contact. At and beyond that

limit the friction increases more rapidly than the pressure ',
but

that limit ought never to be attained in a structure.

From the law of friction i; follows, that the friction between.

two bodies may be computed by multiplying the force with which
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they are pressed together by a constant co-efficient which is to be
determined by experiment, and which depends on the nature of the
bodies and the condition of their surfaces : that is to say, let N"

denote the pressure, f the co-efficient offriction, and F the force of

friction, then

191. Angle of Repose. Let AA, in fig. 93, represent any solid

body, B B a portion of the surface of another

body, with which AA is in contact throughout
the plane surface of contact e E. Let P C re-

present the amount, direction, and position of

the resultant of a force by which A A is urged
obliquely towards B B, so that C is the centre of

I?- no
B

pressure of the surface of contact eE. (Art.

89.)

Let P G be resolved into two rectangular components : one,

N C, normal to the plane of contact, and pressing the bodies to-

gether: the other, TO, tangential to the plane of contact, and

tending to make the bodies slide on each other. Let the total

force P C, be denoted by P, its normal component by N", and its

tangential component by T ;
and let the angle of obliquity T P C

or P C N be denoted by 6, so that

T = P -sin0 - N -tan

)

j
"

Then so long as the tangential force T is not greater than fN}
it

will be balanced by the friction, which will be equal and opposite
to it ; but the friction cannot exceed f "N; so that if T be greater
than this limit, it will be no longer balanced by the friction, but

will make the bodies slide on each other. Now the condition, that

T
T shall not exceed fN, is equivalent to the condition, that r-,

or tan &, shall not exceedf.
Hence it follows, that the greatest angle of obliquity of pressure

between two planes which is consistent with stability, is the angle
whose tangent is the co-efficient offriction.

This angle is called the angle of repose, and is denoted by (p. It

is the steepest inclination of a plane to the horizon, at which a

block of a given substance will remain in equilibrio upon it
;
for if

P represents the weight of the body A A, so that P C is vertical,

and & =
<p, then (f) is the inclination of B B to the horizon.

The relations between the friction, the normal pressure, and the
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total pressure, when the obliquity is equal to the angle of repose,
are given by the following equations :

F = T =
....(2.)

192. Table of Co-efficients of Friction and Angles of Repose.

Very extensive tables of the co-efficients of friction of different

materials used in construction are published in the works of

General Morin of the French Artillery, and have been reprinted
in various treatises. The following is a condensed table compiled
from General Morin's tables and from other authorities, giving

those constants, and also the reciprocal, -. = cotan
<p, for the

J
materials of structures, arranged in a few comprehensive classes.

Its practical utility is equal to that of the more voluminous and
detailed tables from which it has been condensed :

Dry masonry and brick- )

work -

J
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In structures of masonry, this condition can almost always be

complied with by suitably placing the joints.
Both this and other principles depending on the effect of friction

in promoting the stability of masonry, will be considered in subse-

quent sections.

194. Fractional Stability of Earth."' A structure of earth, whether

produced by excavation or by embankment, preserves its figure at

first partly by means of the friction between its grains, and partly

by means of their mutual cohesion or tenacity ;
which latter force

is considerable in some kinds of earth, such as clay, especially when
moist. It is by its tenacity that a bank of earth is enabled to stand

with a vertical face, or even an overhanging face, for a few feet

below its upper edge; whereas friction alone, as will afterwards

appear, would make it assume an uniform slope.

But the tenacity of earth is gradually destroyed by the action of

air and moisture, and of the changes of the weather; so that its

friction is the only force which can be relied upon to produce

permanent stability. In the present investigation, therefore, the

stability of a mass of earth, or of shingle or gravel, or of any other

material consisting of separate grains, will be treated as arising

wholly from the mutual friction of those grains, and not from any
adhesion amongst them.

Previous researches on this subject are based (so far as I am
acquainted with them) on some mathematical artifice or assumption,
suchas Coulomb's "Wedge of Least Resistance." Researches so based,

although leading to true solutions of many special problems, are

both limited in the application of their results, and unsatisfactory
in a scientific point of view. I propose, therefore, to investigate
the mathematical theory of the frictional stability of a granular

mass, without the aid of any artifice or assumption, and from the

following sole

PRINCIPLE. The resistance to displacement by sliding along a

given plane in a loose granular mass, is equ&Fto the normal pressure
exerted between the parts of the mass on either side of that plane,

multiplied by specific constant.

The specific constant is the co-efficient of friction of the mass, and
is the tangent of the angle of repose. Let pA denote the normal

pressure per unit of area of the plane in question; q the resistance

to sliding (per unit of area also); (p the angle of repose; then the

symbolical expression of the above principle is as follows :

(1.)

* This and the ensuing Articles of the present section are to a great extent abridged
from a paper

" On the Stability of Loose Earth" in the Philosophical Transactions

for 185C-7.
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This principle forms the basis of every investigation of the sta-

bility of earth. The peculiarity of the present investigation consists

in its deducing the laws of that stability from the above principle

alone, without the aid of any other special principle. It will in

some instances be necessary to refer to Mr. Moseley's "Principle
of the Least Resistance;" but this must be regarded not as a special

principle, but as a general principle of statics.

In a granular mass, any plane whatsoever may be considered as

a, plane joint, in the sense in which that term has been employed in

Article 193
;
and hence, and from the principle already stated,

follows,
THEOREM I. It is necessary to the stability of a granular mass,

that the direction of the pressure betiveen the portions into which it is

divided by any plane should not at any point make ivith the normal
to that plane an angle exceeding the angle of repose.
From what has been already proved, respecting internal stress,

in Part L, Chap. V., Sect. 3, and especially in Articles 108 to 112

inclusive, it is evident, that the plane at any point in a mass, on
Avhich the obliquity of the pressure is greatest, is perpendicular to

the plane which contains the axes of greatest and least pressure,
the pressure of greatest obliquity being parallel to that plane of

greatest and least pressure.
The relations amongst the intensities of the pressures in a solid

mass, which are parallel to one plane, as represented by the "
Ellipse

of Stress," have been investigated in Article 112. The present
case, of a mass of earth, is one in which a limit to the greatest

obliquity is assigned; viz., that it shall not exceed the angle of re-

pose, <p.
The relation between that greatest obliquity and the

greatest and least pressures, has been found in Article 112, Pro-
blem III., Case 1, equation 6, viz. :

= arc -am
Pi + P*

pY being taken to represent the greatest, and p2 the least pressure,
and ^ the greatest obliquity of pressure. By Theorem I. we have

1,^0;
(where^ means, "less than or equal to;" that is, "not greater than").
Hence follows the following equation :

Pl
~~ P* = sin ^^SUKP; ................... (2.)

Pi + Pa
or in words,
THEOREM II. At each point in a mass of earth, the ratio of the

difference of the greatest and least pressures to their sum cannot exceed

the sine of t/ie angle of repose.
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Another symbolical expression of this Theorem is as follows :

sm

When the directions of any pair of conjugate pressures in the

plane of greatest and least pressure in a mass of earth are given,
the limits of the ratio which the intensities of those pressures bear

to each other are given by the solution of Problem Y. of Article 112,

equation 27. In that equation, make nr=fd, the common obliquity
of the pair of conjugate pressures, and let ^ represent the greatest
actual obliquity of pressure in the mass, which must not exceed

<z>;

then p, as before, being the greater conjugate pressure, and p' the

less, we obtain the following proposition :

THEOREM III. The following is the expression oftJie condition of
the stability of a mass of earth, in terms of the ratio of a pair of con-

jugate pressures in the plane ofgreatest and least pressures :

p _ cos 6 -f- J (cos
2 6 cos

2

4])
.. cos 6+ J (cos

2 cos2 0)

p
f cos 6 ,J (cos

2
6 cos

2

61)
cos 6 V (cos

2
6 cos2

<p)"

195. Mass of Earth with Plane Surface. Although the preceding

principles can be applied to a mass of earth with a surface of any
figure, their most useful application is to a mass bounded above by
a plane surface, either horizontal or sloping. For such a mass, the

three Theorems of Article 125 are true, and may be summed up as

follows : the pressure on a plane parallel to the upper plane sur-

face (which may be called a conjugate plane) is vertical, and pro-

portional to the depth : the pressure on a vertical plane is parallel
to the up"per plane surface, and conjugate to the vertical pressure :

the state of stress at a given depth is uniform.

Let w be the weight of an unit of volume of the earth
;
x the

depth of a given conjugate plane below the surface ; 6 the inclination

of that conjugate plane; then the intensity of the vertical pressure
on that conjugate plane is

px -=.wx -cos 4.......................... (1.)

The limits of the intensity py
of the conjugate pressure, parallel to

the direction of steepest declivity (when the surface slopes) on a
vertical plane, at the same depth x below the surface, are deduced
from the equation 3 of Article 194, by considering, that this con-

jugate pressure may be either the greater or the less of the pair
of pressures the limits of whose ratio are given by that equation;
so that if we use the symbol
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to signify,
" a is not greater than b + c, and not less than b c

we obtain the following result :

.x* - ' cos 6 dtr J (cos
3
6 cos

2
<p) /n v

*^ *' M* 1 '
CO. /=

When the plane surface is horizontal, so that cos = 1, equations 1

and 2 become

_ wx .
^ w x .

I sin *P
. /3\

as might have been inferred from Theorem II. of Article 194.

When 6 = <p}
or when the slope is the angle of repose, the limits of

the intensity of the conjugate pressure coincide, and it has but one

value, viz. :

_ /A \
p = W X ' COS <4>

= px V*'/

For all values of greater than Q, equation 2 becomes impossible;
which shows what is otherwise evident, that the angle of repose is

the steepest possible slope.

There is a third pressure which may be denoted byj^,in a direction

perpendicular to the first two, .>.,. and py ;
that is, horizontal, and

perpendicular to the vertical plane in which the declivity is steepest;

but the intensity of that third pressure will be considered in a

subsequent Article. It is of secondary importance in practice,

seeing that walls for the support of sloping banks of earth are gene-

rally placed so as to resist the pressure of the earth in the direction

of steepest declivity.

With the exception of equation 4, the equations of the present
Article give only the limits of the intensity of the conjugate pressure

parallel to the steepest declivity. To find the exact intensity of

that pressure, it is necessary to have recourse to a statical principle,

first discovered by Mr. Moseley, which is stated in the following
Article.

196. Principle of Least Resistance. THEOREM. If the forces

which balance each other in or upon a given body or structure be

distinguished into two systems, called respectively active and passive,

which stand to each other in the relation of cause and effect, then will

the passive forces be the least which are capable of balancing the active

forces, consistently with the physical condition of the body or structure.

For the passive forces being caused by the application of the

^active forces to the body or structure, will not increase after the

)tive forces have been balanced by them
;
and will therefore notvacti
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increase beyond the least amount capable of balancing the active

forces. Q. E. D.
197. Earth Loaded with its own Weight. In a mass of earth

loaded with its own weight only, the gravitation of the earth causes

the vertical pressure, the vertical pressure causes a tendency to

spread laterally, and the tendency to spread causes the conjugate

pressure; therefore the vertical and conjugate pressures stand to

each other in the relation of cause and effect, or active and passive

respectively; therefore the intensity of the conjugate pressure is

the least which is consistent with the conditions of stability given
in Articles 194 and 195.

Applying this principle to the equations of Article 195, relative

to a bank with a plane upper surface, they become the following :

as before), jo,
= wx cos 6........................ (1.)

Conjugate pressure parallel to steepest declivity :

General case,

. cos 6 J (cos
2
& cos9

<p)

pv
= 10 x 'cos 0.--:

-
^-) =-:- ~y\...... (2.)

cos 6 + J (cos
2
6 cos2

<p)

Horizontal surface, 6 = 0, cos 6 = 1 px = w x
;

1 sin (t>

"Natural slope," 6 = 9,

py =pae
= w x - cos p., ................... (4.)

The third pressure p2 is found in the following manner. Being

perpendicular to the plane of px and py,
it must be a principal pres-

sure (Arts. 107, 109). Being a passive force, it must have the least

intensity consistent with stability, and must therefore be equal to

the least pressure in the plane of px and py
.

The greatest and least stresses, or principal pressures, in that

plane, are to be found by means of Problem IV. of Article 112, case

3, from the pair of conjugate pressures^,, py ,
whose obliquity is 6.

Let pl be the greatest, and pa the least principal pressure ;
then u

equations 19 and 20 of Art. 112, for

A
P,P, nr,px,pv,

we are to substitute respectively,

P*, Py> 0, Piy P

giving the following results :
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W X ' COS 6

217

& *,

Pi ft-
/
/ Gv+/?)l

2
~ *

( 4 cos

COR 6 COS 6 -}- ^ (COS
2

COS2

<?)

X

COS8

?)'
(
&)

and consequently,

to x ' cos *
'

(1 + sin
Greatest pressure, p. = + ,_ .(7.)

Least pressure, p2 =p2 =:
cos

x cos 4 (1 sin p)
TT rn a

>J (cos- 6 cosa .(8.)

The axis of greatest pressure lios in the acute angle between the
direction of greatest declivity and tjie vertical ; and its inclination

j to the horizon, which may be denoted by ^, is given by the follow-

ing formula, deduced from equation IT of Article ll2, by making
the proper substitutions :

cos 2 ilt =
Pi Ps

from which is easily deduced,

...-(9.)

In using this formula, the arc sin - - is to be ^aken as greater
smp

than a right angle.
The following are the results of the equations 7, 8, 9, for the

extreme cases :

Horizontal surface, 6
;

1 sin tp

1 + sin <p

v)

$ = 90, or the axis of greatest pressure is vertical.

Natural Slope, 6 = <p ;

Pi = w x (1 + sin
<p) ;

p2 = p, =. w x (1 sin
<p) ;

^ =r n (
6 + 90), or the axis of greatest pressure bisects

the angle between the slope and the vertical.

(11.)
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198. Pressure of Earth against a Vertical P* MIC. In fig. 94, let

O X represent a vertical plane in or in

contact with a mass o'f earth whose upper
surface Y O Y is either horizontal or in-

clined at any angle 6
t
and is cut by the

vertical plane in a direction perpendicular
to that of steepest declivity. It is required
to find the pressure exerted by the earth

against that ve/tical plane, per unit of

breadth, from > down to X, at a depth
OX = x beneath the surface, and the/direction and position of the

resultant of that pressure.
The direction of that resultant i?J already known to be parallel to

the declivity Y O Y.
Let B B be a plane traversing X, parallel to Y O Y. In that

plane take a point D, at srach a distance X D from X, that the

weight of a prism of earth of the length X D and having an oblique
base of the area unity in the plane O X, shall represent the inten-

sity of the conjugate pressure per unit of area of a vertical plane at

the depth X. Draw the straight line O D ;
then will the ordinate,

parallel
+< O Y, drawn from X to D at any depth, be the

;in oblique prism, whose weight, per unit of area of its

oe, will be the intensity of the conjugate pressure at that

jt O D X be a triangular prism of earth of the thickness

j weight of that prism will be the amount of the conju-

gate pressure sought, and a line parallel to Y, traversing its

centre of gravity, and cutting X in the centre ofpressure C, will

be the position of the resultant of that pressure. The depth O C
of that centre of pressure beneath the surface is evidently two-

thirds of the total depth OX.
To express this symbolically, make

^-f- py py
cos 6

/s/(cos
2
6 cos

2

<p)

w cos & px

J

cos 6 + ^/(cos
2
6 cos

2

f)
*

(by equation 2 of Article 197) j

en th3 amount of the conjugate pressure, or weight of the prism
XD,'is

P.= =^ I p.dx

p wx*

P.
=

~a~
' C S

'
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and the centre of pressure is given by the equation

2x
(3.)

In the extreme cases, equation 2 takes the following forms :

For a horizontal surface
;

=
;

_wx* 1 sin?

2 --"
For a surface sloping at the angle of repose; & -

$',

The principles of this Article serve to determine the pressure of

earth against retaining walls, as will afterwards be shown.

199. Supporting Power of Earth Foundations. The two preced-

ing Articles refer to the case in which the conjugate pressure at a

given depth is caused solely by the vertical pressure due to the

weight of earth above that point, and is therefore, in virtue of the
"
principle of least resistance," the least conjugate pressure consis-

tent with the weight of the vertical column of earth in question.
But the conjugate pressure may be increased beyond that least

amount, by the application of the pressure of an external body; for

example, the weight of a building founded on the earth. In this

case, the conjugate pressure will be the least which is consistent

with the vertical pressure due to the weight of the building; and
if that conjugate pressure does not exceed the greatest conjugate

pressure consistent (according to equation 2, 3, or 4 of Article

195) with the weight of the earth above the same stratum on which
the building rests, the mass of earth will be stable.

The most important case in practice is that in which the surface

of the ground is horizontal; so that the intensity of the vertical

pressure due to the weight of the earth is w x
; x being the depth

x
'

the base of the foundation of the building below the surface of

the earth.

In this case, the greatest horizontal pressure, at the depth x, con-

sistent with stability, as given by equation 3 of Article 195, is as

follows :

................... (1.)

The greater consistent with this

horizontal p
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i
1 sin <p

and tliis is the greatest intensity ofpressure, consistent with stability, of a

building founded on a horizontal stratum of earth at the depth x, the

angle of repose being <p.

If A be the area of the foundation of the building, w x A will

be the weight of earth displaced by it
;
and if the pressure of

the building on its base be uniformly distributed, p' A will be
the weight of the building; so that

JL /! + sin ?V
,3

x

wx \1 sinp/
" '"^ '

is the limit of the ratio in which the weight of a building exceeds the

weight of earth displaced by it, when the pressure is uniformly dis-

tributed over the base.

If the pressure of the building be not uniformly distributed

over the base, its greatest intensity must not exceed that given

by equation 2, and its least intensity must not fall short of w x.

This condition determines the greatest inequality of distribution

of the pressure of a building which is consistent with the stability
of a given kind of earth. The most useful and frequent example
of this case is that in which the base is rectangular, and the

intensity of the pressure increases at an uniform rate from one

edge to the opposite edge of the rectangle, being an uniformly
varying stress (Articles 91, 92, 94). In this case, let pQ denote

the mean intensity of the pressure of the building, b the breadth

of its base in the direction along which the pressure varies, anc

c b the utmost deviation of the centre of pressure of the base from it

centre of figure, consistent with the stability of the earth whic*

supports it; then / .... ^ ^/~
p' + w x 1 + sin

. Pn = o = wx

/I ri wx
sjU

c=6FT^ =
3ir+fe)-7

I

200. Abutting Power of Earth. If a vertical plane surfac ^

some body which is pressed horizontally, such as a buttres.<or

.

'

retaining wall, abuts or presses horizontally against a horizca^

layer of earth, of the depth x, the limit of the resistance \\^
that layer is capable of opposing to the horizontal thrust o:^

le

vertical plane is determined bv the greatest horizontal pre
re

consistent with the stability of -th. Hence the amoii ^
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that horizontal resistance, per unit of horizontal breadth of the

vertical abutting plane, is given by the equation

_ w x*
t
I + sin <p

*
=

~2~
'

1 , sin j

2x
The centre of resistance is at below the surface of the earth.

o

201. Table of Examples of the results of the formulae in Articles

197, 198, 199, and 200.

90 <P

2

f= tan <

sn

o 15

45 37"

= cotan (p oo

sin (p

i sin (p

i -f- sin (p

i + sin <p

i sin (p

cos (p

COS2
<P

/i sin (ff

\i + sin <p,

\i sin
<p.

i + sin
2

(p

(i sin
<p)

!

2-J

45 60

15

o 0*268 0-577 I'ooo 1732

3'732 1732 i-ooo 0-577

0-259 0-500 0-707 0-866

1 0-588 0-333 0>I 7 2 0-072

i 1-700 3-000 5-826 13*924

i 0-966 0-866 0-707 0-500

i 0-933 0-750 0-500 0-250.

i 0-346 o-iit 0-0295 0-0052

3(1

9-000 33-94 193-8

i i '945 S'ooo 17-47 97-4

o 0-081 0-133 0>I 57 0-165

KEJIARK. The column headed o'is applicable to liquids.
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202. Frictional Tenacity or Bond of Masonry and Brickwork.

The overlapping or breaking of the joints, commonly called the

bond, in masonry and brickwork, has three objects first, to dis-

tribute the vertical load which rests on each stone or brick over

two or three of the stones or bricks of the course next below, and
so to produce a more nearly uniform distribution of the load than
would otherwise take place; secondly, to enable the structure to

resist forces tending to break it by shearing, or sliding of one part
on another, in a vertical plane; and thirdly, to enable it to resist

forces tending to tear it asunder horizontally.
For masonry and brickwork laid either dry, or in common mor-

tar which has not had time to acquire practically appreciable

tenacity, the resistance to horizontal tension mentioned above as

the third object of the bond, is due to the mutual friction of the

overlapping portions of the beds or horizontal faces of the stones or

bricks, arid may be called "frictional tenacity" The amount of the

frictional tenacity at any horizontal joint is the product of the ver-

tical load upon the portion of that joint where two blocks of stone

or brick overlap each other, into the co-efficient of friction, which,
as stated in the table of Article 192, is about 074.

Let
fig. 94 A represent a portion of a wall with a horizontal top

^ A ; and let it be required to determine

! 1 i I i i the frictional tenacity at a horizontal

I

| 11

1

1 |

i

'

11

i

' '

|

i

' '

I

' '

joint B, whose depth below A is x, the

j

I '

|

I

|
\

' '

j-j

'

|

' I

t

|

intensity of that tenacity per unit of
' 11 'I i 1 11 ' i area of a vertical plane at B, and the
. ii i i II II i i . aggregate tenacity of the wall from A

!i i

J

i i

'

i i

*

i i

' r r~ down to B, with which it is capable of

-p. g4 A resisting a force tending to tear it into

two parts by separation at the serrated

dark line which extends from A to B in the figure.
Let w be the weight of an unit of volume of the material of the

wall ; b the length of the overlap at each joint; t the thickness of

the wall. Then

w b t x

is the vertical pressure on the overlapping portions of the stones or
bricks at B, and consequently, if/* be the co-efficient of friction, the
amount of frictional tenacity for the joint B is

fwbtx (1.)

The intensity of that tenacity per unit of area of a vertical

plane is found by dividing its amount by the area of a vertical

section of one course of stones or bricks. Let h be the depth of a



BOND OF MASONRY AND BRICKWORK. 223

course ; then h t is the area of its vertical section ; and the intensity
of the frictional tenacity of the joint immediately below is

Let n be the number of courses from A down to B. Then the

value of x for the uppermost course is = A, and for the lowest

course, = n h ; and the mean value of x is = h ; so that the

mean tenacity per course is

Y~ fwbth;

and the mean intensity,

"+ 1 s i

-j-:-/* .

Hence the amount of the aggregate frictional tenacity of the wall,
from A down to B, is

(3.)

From the equations 2 and 3 it is obvious that the frictional

tenacity of masonry and brickwork is increased by increasing the

ratio 7 which the length of the overlap bears to the depth of a
n/

course. This may be effected either by increasing the length of the

stones or bricks (to which the overlap bears a definite proportion,

depending on the style of bond adopted), or by diminishing their

depth ;
but to both those expedients there is a limit fixed by the

liability of stones and bricks to break across when the length
exceeds the depth in more than a certain ratio, which for brick

and stone of ordinary strength is about 3.

For English bond (as in fig. 94 A), consisting of a course of

stretchers (or bricks laid lengthwise), and a course of headers (or
bricks laid crosswise), alternately, and also for Flemish bond, in

which each course consists of alternate headers and stretchers, the

overlap b is one-fourth of the length, or about three-fourths of the
7 O

depth, of a brick. The value of
-7-

is therefore j ;
but to allow for

Ib 4:

irregularities of figure and of laying in the bricks, it is safe to make it
o
- in the formulae. Substituting this in equations 2 and 3, and
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o

making/= -, we find for the intensity of the frictional tenacity,

wJiere one-half of tJieface of the wall consists of ends of headers,

and for the amount from the top of the wall down to the depth x,

wt (x* + hx)
^

,

5
v

The tenacity of the wall in the direction of its thickness, which

resists the separation of its front and "back portions by splitting, i

often as important as its longitudinal tenacity, and sometimes

more so. "Where one-half of the face, as in fig.
94 A, consists of

ends of headers, the overlap of each course in the direction of the

thickness is generally one-half of the length of a brick instead of

one quarter ; so that - is to be made = - instead of two-thirds.

Hence in this case, the transverse frictional tenacity (as it may be

called) is double of the longitudinal frictional
tenacity^

its intensity

at the depth x being
wXj ................................. (6.)

and its amount from the top of the wall down to the depth x, for

a length of wall denoted by 13

w I (a? + h x)

2

In a brick wall consisting entirely of stretchers, as in fig.
94 B,

I

-
1

- the longitudinal tenacity is double of

[ | i

--
1

--
[-

that of the wall in fig. 94 A, where
I I I I I one-half of the face consists of ends of

-|

--
1

'

| I

- headers. But that increased longitu-

^ ^j~^j

"

dinal tenacity is attained by a total

sacrifice of transverse tenacity, when
the wall is more than half a brick thick. In brickwork, therefore,
in which the longitudinal is of more importance than the transverse

tenacity (as is the case in furnace chimneys), a sufficient amount of

transverse tenacity is to be preserved by having courses of headers
at intervals. The effects of this arrangement are computed as

follows :

Let s be the number of courses of stretchers for each course of
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Leaders j so that of the face of the wall consists of ends of

o

headers, and =
- of sides of stretchers.

s + 1

Let L denote the intensity of the longitudinal frictional tenacity,
and T that of the transverse frictional tenacity, at the depth x.

The following table represents the values of those intensities in the

extreme cases :

.-TT rh L
.'

1 1 wx wx

oo I wx

Now, in intermediate cases, the longitudinal tenacity will vary

nearly as the proportion of sides of stretchers in the face of the wall

-j_-Y,
and the transverse tenacity as the proportion of ends of

s ~T~ 1

headers; whence we have the following formula for the intensi-

ties :

(8.)

Consequently, for the aggregate tenacities down to a given depth x,
when the length of the wall is I, and its thickness t, we have

Longitudinal,
' w t (or + hx)'}......... (10.)4

(
s

' -v

Transverse, . wl (x* + hx) ........... (11.)

To make the longitudinal and transverse frictional tenacities of

equal intensity, we should have s = 2, or two courses of stretchers
for one course of headers. This makes

(130

In round factory chimneys, it is usual to make s = 4 ; and then
we have

L= **** = ,, (13.)

Q
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The preceding formulae are applicable not only to brickwork, but
to ashler masonry in which the proportions of the dimensions of the

stones are on an average nearly the same with those of bricks.

The formulae 9 and 11 may also be used to find the transverse

tenacity ofa rubble wall, if be taken to represent the propor-
S ~TT 1

tion of tJie face of the wall which consists of tlie ends of squared
headers or bond stones, connecting the front and back of the wall

together.
The principles of the present Article may be relied on as a means

of comparing one piece of masonry or brickwork with another, so

far as their security depends on the horizontal tenacity produced
by the friction of the courses. But inasmuch as the absolute

numerical results have been arrived at by an indirect process, from
the tangent of the angle of repose of masonry and brickwork laid

with damp mortar, these results are to be considered as uncertain,
and as requiring direct experiments for their verification or correc-

tion. No such experiments have yet been made.
203. Friction of Screws, Keys, and Wedges. The pieces of

structures in timber and metal are often attached together by tho

aid of keys or wedges, or of screws. The stability of those fasten-

ings arises from friction, and requires for its maintenance that the

obliquity of the pressure between the wedge or key and its seat, or

between the thread of the screw and that of its nut, shall not

exceed the smallest value of the angle of repose of the materials.

204. Friction oi Rest and Friction of Motion. For some Sub-

stances, especially those whose surfaces are sensibly indented by a
moderate pressure, such as timber, the friction between a pair of

surfaces which have remained for some time at rest, relatively to

each other, is somewhat greater than that between the same pair of

surfaces when sliding on each other. This excess, however, of the

friction of rest over the friction ofmotion, is instantly destroyed by
a slight vibration

; so that the friction of motion is alone to be
relied on as giving stability to a structure. In Article 192,

accordingly, the co-efficients of friction and angles of repose in the
table relate to the friction of motion, where there is any sensible

difference between it and thefriction of rest.

SECTION 4. On the Stability of Abutments and Vaults.

205. Stability at a Plane Joint. The present section relates to

the stability of structures composed of blocks, such as stones or

bricks, touching each other at joints, which are plane surfaces,

capable of exerting pressure and friction, but not tension.

The conclusions of the present section are applicable to structures
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of masonry or brickwork, uncemented, or laid in ordinary mortar ;

for although ordinary mortar sometimes attains in the course of years
a tenacity equal to that of limestone, yet, when fresh, its tenacity is

too small to be relied on in practice as a means of resisting tension at

the joints of the structure; so that a structure of masonry or brick-

work, requiring, as it does, to possess stability while the mortar is

fresh, ought to be designed on the supposition, that the joints have no

appreciable tenacity. The mortar adds somewhat to the frictional

stability, as has already been stated in the table of Article 192, and
thus contributes indirectly to the frictional tenacity described in

Article 202.

There are kinds of cement whose tenacity becomes at once equal
to that of brick, or even to that of stone. So far as the joints are

cemented with such kinds of cement, a structure is to be considered

as one piece, and its safety is a question of strength.
A plane joint which has no tenacity is incapable of resisting any

force, except a pressure, whose centre of stress falls within the joint,
and whose obliquity does not exceed the angle of repose.

If the resistance of the material of the blocks which meet at the

joint to a crushing force were infinitely great, it would be suffi-

cient for stability that the centre of pressure should fall anywhere
within the joint, how close soever to the edge ; but for the actual

materials of construction, it is necessary that the centre of pressure
should not be so near the nearest edge of the joint as to produce a

pressure at that edge sufficiently intense to injure the material.

Hence it appears that the exact determination of the limiting posi-
tion of the centre of pressure at a plane joint is, strictly speaking,
a question relating to the strength of materials. Nevertheless, an

approximation to that position can be deduced from an examina-
tion of the examples which occur in practice, without having
recourse to an investigation founded on the theory of the strength
of materials. Some of the most useful results of such an examina-
tion are expressed as follows :

Let q denote the ratio which the distance of the centre ofpressure
of a given plane joint from its centre offigure bears to the diameter
or breadth of the same joint, measured along the straight line
which traverses its centre of pressure and centre of figure ;

so that
if t be that diameter, q t shall be the distance of the centre of pres-
sure from the centre of figure. Then the ratio q is found in prac-
tice to have the following values :

o

In retaining walls designed by British engineers,..., or 0-375.

o

In retaining walls designed by French engineers,. ..
,
or 0-3.
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In the abutments of arches, in piers and detached buttresses, and in

towers and chimneys exposed to the pressure of the wind, it has
been found by experience to be advisable so to limit the deviation

of the centre of pressure from the centre of figure, that the maxi-
mum intensity of the pressure, supposing it to be an uniformly
varying pressure (see Article 94), shall not exceed the double of the

mean intensity. As in Article 94, let P be the total pressure ; S
p

the area of the joint ; let = pQ
be the mean intensity of the pres-

sure, which is also the intensity at the centre of figure of the joint,
and at each point in a neutral axis traversing that centre of figure ;

let x be the perpendicular distance of any point from that axis, and
let the pressure at that point be p = p + a x, so that if 05, be the

greatest positive distance of a point at the edge of the joint from
the neutral axis, the maximum pressure will be

p l =p -^-axl .

Now, by the condition stated above, p^ = 2pQ, and, consequently,

= ..................... .

XL Xi XL S

If the diameter of the joint is bisected by the centre of figure,
and if x (as in Article 94) be the distance of the centre of pressure
from the neutral axis, we shall have

<2X

and by inserting in this equation the value of #
,
as given by equa-

tion 4 of Article 94, and having regard to the value of a, as given
by equation 1 of this Article, we find

al I

an expression whose value depends wholly on the figure of the

joint that is, of the transverse section of the abutment, pier,

buttress, tower, or chimney.
Eeferring to the table at the end of Article 95 for the values of

the moment of inertia I, the following results are obtained for

joints of different figures. In each case in which there is any
difference in the values of q for different directions, the deviation

of the centre of pressure is supposed to take place in that direction

in which the greatest deviation is admissible that is to say, at

right angles to the neutral axis for which I is a maximum ;
so that

if h be the diameter in that direction, XL = ^.
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(3.)

II. The ratio which tJie deviation of the centre ofpressurefrom the

centre offigure of the joint bears to the length of the diameter of the

joint traversing those two centres, must not exceed a certain fraction,
ivhose value varies, according to circumstances, from one-eighth to

three-eighths, that is to say,

_ .

eE

The first of these conditions is called that of stability offrictiont

the second, that of stability ofposition.
206. Stability of a Series of Blocks; Line of Resistance ; lane of

Pressures. In a structure composed of a series of blocks, or of a

series of courses so bonded that each may
be considered as one block, which blocks

or courses press against each other at

plane joints, the two conditions of sta-

bility must be fulfilled at each joint.
Let fig.

95 represent part of such a

structure, 1, 1, 2, 2, 3, 3, 4, 4, being some
of its plane joints.

Suppose the centre of pressure Cj of the

Fig. 95.
joint 1

,
1

,
to be known, and also the amount

and direction of the pressure, as indicated by the arrow traversing
Cj. With that pressure combine the weight of the block 1, 2, 2, 1,

together with any other external force which may act on that block ;

the resultant will be the total pressure to be resisted at the joint

2, 2, will be given in magnitude, direction, and position, and
will intersect that joint in the centre of pressure C2. By continu-

ing this process there are found the centres of pressure C3, C4, &c.,
of any number of successive joints, and the directions and magni-
tudes of the resultant pressures acting at those joints.
The magnitude and position of the resultant pressure at any joint

whatsoever, and consequently the centre of pressure at that joint,

may also be found simply by taking the resultant of all the forces

which act on one of the parts into which that joint divides the

structure, precisely as in the " method of sections" already described

in its application to framework, Article 161.

The centres of pressure at the joints are sometimes called centres

of resistance. A line traversing all those centres of resistance, such.

as the dotted line E,, R, in fig. 95, has received from Mr. Moseley
the name of the " line of resistance;" and that author has also shown
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how in many cases the equation which expresses the form of that

line may be determined, and applied to the solution of useful

problems.
The straight lines representing the resultant pressures may be all

parallel, or may all lie in the same straight line, or may all intersect

in one point. The more common case, however, is that in which
those straight lines intersect each other in a series of points, so as

to form a polygon. A curve, such as P, P, in fig. 95, touching all

the sides of that polygon, is called by Mr. Moseley the " line of

pressures"
The properties which the line of resistance and line of pressures

must have, in order that the conditions of stability may be fulfilled,

are the following :

To insure stability of position, the line of resistance must not

deviate from the centre offigure ofany joint by more than a certain

fraction (q) of the diameter of the joint, measured in the direction of
deviation.

To insure stability of friction, the normal to each joint must not

make an angle greater than the angle of repose with a tangent to the

line ofpressures drawn through the centre of resistance of that joint.
207. Analogy of Block-work and Framework. The point of in-

tersection of the straight lines representing the resultant pressures
at any two joints of a structure, whether composed of blocks or of

bars, must be situated in the line of action of the resultant of the

entire load of the part of the structure which lies between the two

joints; and those three resultants must be proportional to the three

sides of a triangle parallel to their directions.

Hence the polygon formed by the intersections of the lines repre-

senting the pressures at the successive joints in
fig. 95, is analogous

to a polygonal frame
; for the sides of that polygon represent the

directions of resistances, which sustain loads acting through its

angles, as in the instances of framework described in Articles 150, .

151, 153, and 154, and represented in fig. 75. A structure ofblocks

is especially analogous to an open polygonal frame, like those in

Articles 151 and 154, represented by fig. 75, with the piece E
omitted because of the absence of ties.

The question of the stability of a structure composed ofblocks with

plane joints may therefore be solved in the following manner :

(1.) Determine and lay down on a drawing of the structure the
line of action and the magnitude of the resultant of the external

forces applied to each block, including its own weight. Either one
or two of those resultants, as the case may be, will be the support-
ing force or forces.

(2.) Draw a polygon ofexternalforces, like that in
fig. 75* or 75**.

Two contiguous sides ofthat polygonwillrepresent the external for 1 f
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acting on the two extreme blocks of the series, of which one may
be a supporting pressure and the other a load, or both may be

supporting pressures. In either case their intersection gives the

point O, from which radiating lines are to be drawn to the angles
of the polygon of external forces, to represent the directions and

magnitudes of the resistances of the several joints.

(3.) Draw a polygon having its angles on the lines of action of

the external forces, as laid down in step (1.) of the process, and its

sides parallel to the radiating lines of step (2). This polygon will

represent the equivalent polygonal frame of the given structure,
and will have a side corresponding to each joint; and each side of

the polygon (produced if necessary) will cut the corresponding plane

joint in its centre of pressure, and will show the direction of the

resultant pressure at the joint.
Then if each centre of pressure falls within the proper limits of

position, and the direction of each resultant pressure within the

proper limits of obliquity, as prescribed in Article 205, the structure

will be balanced ; and the conditions of stability will be fulfilled

under variations of the distribution of the load, which will be the

greater, the greater is the diameter of each joint; for every increase

in the diameters of the joints increases the limits within which the

figure of the equivalent polygonal frame may vary, and every
variation of that figure corresponds to a variation in the distribu-

tion of the load.

208. Transformation of Blockwork Structures. THEOREM. If
a structure composed of blocks have stability of position when, acted on

byforces represented by a given system of lines, then will a structure

whose figure is a parallel projection of the original structure have

stability of position when acted on by forces represented by the corre-

sponding parallel projection of the original system of lines; also, the

centres ofpressure and the lines representing the resultant pressures at

the joints of the new structure will be the corresponding projections of the

centres ofpressure and the lines representing the resultant pressures at

the joints of the original structure.

For the relative volumes, and consequently the relative weights,
of the several blocks of which the structure is composed, are not

altered by the transformation; and if those weights in the new
structure be represented by lines, parallel projections of the lines

representing the original lines, and if the other forces applied

externally to the pieces of the new structure be represented by the

corresponding parallel projections of the lines representing the

corresponding forces applied to the pieces of the original structure,
then will each external force acting on the new structure be the

parallel projection of a force acting on the corresponding point of

the original structure; therefore the resultant pressures at the
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joints of the new structure, which balance the external forces, will

be represented by the parallel projections of the lines representing
the resultant pressures at the corresponding joints in the original
structure j

therefore (Article 62, Proposition I.), the centres of

pressure, where those resultants cut the joints, will divide the

diameters of the joints in the same ratios in the new and in the

original structures
;
therefore if the original structure have stability

of position, the new structure will also have stability of position.
This is the extension, to a structure composed of blocks, of the

principle of the transformation of structures, already proved for frames
in Article 166, and for cords and linear arches in Article 177.

209. Frictional Stability of a Transformed Structure. The ques-

tion, whether the new structure obtained by transformation will

possess stability offriction, is an independent problem, to be solved

by determining the obliquity of each of the transformed pressures

relatively to the joint at which it acts.

Should the pressure at any joint in the transformed structure

prove to be too oblique, frictional stability can in most cases be

secured, without appreciably affecting the stability of position, by
altering the angular position of the joint, without shifting its centre

of figure, until its plane lies sufficiently near to a normal to the

pressure as originally determined.
I 210. Structure not Laterally Pressed. If fig. 96 represents a
structure consisting of a single series of blocks, or

courses, separated by plane joints, and has no lateral

pressure applied to it from without, then the centre of

resistance at any one of those joints, such as D E, is

simply the point C where that joint is intersected by
a vertical let fall from the centre of gravity G of the

part of the structure ABED which lies above that

joint ;
and the conditions of stability are, that no joint

shall be inclined to the horizon at an angle steeper than
the angle of repose, and that the point C shall not at

any joint approach the edge of the joint within a distance bearing
a certain proportion to the diameter of the joint.

211. The Moment of Stability of a body or structure supported
at a given plane joint is the moment of the couple of forces which
must be applied in a given vertical plane to that body or structure
in addition to its own weight, in order to transfer the centre of
resistance of the joint to the limiting position consistent with

stability. The applied couple usually consists of the thrust of a

frame, or an arch, or the pressure ^pf a fluid, or of a mass of earth,

against the structure, together with 'lie equal, opposite, and parallel,
but not directly opposed, resistance of the joint to that lateral

force.
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The moment of stability may be different according to tlie position
of the axis of the applied couple.
The moment of that couple is determined in the following

manner :

Conceive a line to pass through all the limiting positions of the

centre of resistance of the joint, so as to enclose a space beyond
which that centre must not be found.

TJie product of the weight of the structure into the horizontal dis-

tance ofa point in this line from a vertical line traversing the centre

ofgravity of the structure is the MOMENT OF STABILITY of the struc-

ture, when the applied thrust acts in a vertical plane parallel to that

Jwrizontal distance, and tends to overturn the structure in t/ie direc-

tion of the given point in the line limiting the position of the centre of

resistance; for that, according to Article 41, is the moment of the

couple, which, being combined with a single force equal to the

weight of the structure, transfers the line of action of that force

parallel to itself through a distance equal to the given horizontal

distance of the centre of resistance from the centre of gravity of

the structure.

To express this symbolically, let t be the length of the diameter

of the joint where it is cut by the vertical plane traversing the

centre of gravity of the structure and parallel to the applied thrust;
let j be the inclination of that diameter to the horizon; let q t be

the distance of the given limiting centre of resistance from the

middle point of that diameter, and </ 1 the distance from the same
middle point to the point where the diameter is cut by the vertical

line through the centre of gravity of the structure, and let W be
the weight of the structure. Then the moment of stability is

W (q
+ 4)t cos,/; (1.)

the sign < > being used according as the centre of resistance,

and the vertical line through the centre of gravity, lie towards

{r, }
f ae ***** f the**-

Let h denote the height of the structure above the middle of the

plane joint which is its base, b the breadth of that joint in a direc-

tion perpendicular or conjugate to the diameter
t, and w the weight

of an unit of volume of the material. Then we shall have

W = n -whbt, (2.)

where n is a numerical factor depending on the figure of the

structure, and on the angles which the dimensions, h, b, t, make
with each other; that is, the angles of obliquity of the co-ordinates
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to which the figure of the structure is referred. Introducing this

value of the weight of the structure into the formula 1, we find the

following value for the moment of stability :

n (q=zq') cosj-whbt
2

(3.)

This quantity is divided by points into three factors, viz. :

(1.) n (q
~+"

</) cosj, a numericalfactor, depending on faefigure
of the structure, the obliquities of its co-ordinates, and the direction

in which the applied force tends to overturn it.

(2.) w, the specific gravity of the material.

(3.) h b t
2
,
a geometrical factor, depending on the dimensions of

the structure.

Now the first factor is the same in all structures having figures
of the same class, with co-ordinates of equal obliquity, and exposed
to similarly applied external forces; that is say, to all structures

whose figures, together with the lines of action of the applied forces,

are parallel projections of each other, with co-ordinates of equal obli-

quity; hence for any set of structures which fulfil that condition,
the moments of stability are proportional to

I. The specific gravity of the material ;

II. The height ;

III. The breadth;
IY. The square of the thickness

;
that is, of the dimension of

the base which is parallel to the vertical plane of the applied force.

212.' Abutments Classed. In the title of the present section, the
word " abutment "

is used in an extended sense, to denote every
structure, which by its stability of position and of friction, sustains

some pressure which abuts or acts laterally against it. The structures

comprehended under this definition may be classed as follows :

I. Buttresses, which sustain the thrust of a frame or a rib, at one
or more definite points.

II. Towers and chimneys, which sustain the lateral pressure of

the wind, uniformly or almost uniformly distributed, and liable to

act in every horizontal direction.

III. Dams for sustaining the lateral pressure of water, and

retaining walls for sustaining that of earth the intensity of the

pressure being proportional to the depth beneath the surface.

IY. Arch abutments, which resemble both buttresses and retain-

ing walls, and whose properties will be treated of after those of
stone and brick arches shall have first been considered with refer-

ence to the stability at their joints.
213. Buttresses in General. Let fig. 97 represent a vertical sec-

tion of a buttress, against which a strut, rib, or piece of frame-
work abuts at* C, exerting a given force P in a given direction

CA. In order that the buttress may be stable, it must fulfil
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the conditions of stability at each of its bed-joints. Let D E be
one of those joints.

Should several pressures abut against the buttress,
the force P acting in the line CA may be held to

represent the resultant of all the forces which are

applied above the particular joint DE under con-

sideration.

Let G be the centre of gravity of that part of the

buttress which is above the joint D E, and let W
denote the weight of the same part. Through G
draw the vertical line A G B, cutting the direction

of the lateral thrust in A, and the joint D E in B
;

make AW = "W, AP = P ; complete the parallelo-

gram A P B,W ; then A~R will represent the result-

ant of all the forces which act on the part of the buttress above
the joint D E, and to which the resultant of the resistance at that

joint must be equal and directly opposed. A R being produced,
cuts D E in F, the centre of resistance of that joint, which must not
fall beyond a certain prescribed limit, that the condition of stability
of position may be fulfilled. In order that the condition of stabi-

lity of friction may be fulfilled, the angle A F B must not be less

than the complement of the angle of repose.
The most convenient mode of expressing this problem algebrai-

cally depends on the circumstances of the particular case. The
following example is that which is most frequent and useful in

practice ; viz., when the inner face D of the buttress is vertical,
and the joint D E horizontal.

In this case, let the point of application of the lateral force, C,
be taken for the origin of co-ordinates. Let

i denote the angle of inclination of the applied lateral pressure
to the horizon

;

x = CD, the depth of the joint in question below C ;

2/
= B D, the horizontal distance of the centre of gravity of the

part of the buttress above that joint from the inner face
;

*

y = D F, the horizontal distance of the centre of resistance 'of

the joint from its inner edge.
The resultant resistance, which acts through F in the direction

F A, may be resolved into two components, respectively parallel,

equal, and opposite to the weight W and applied force P. The

couple of forces W is right-handed, and has the arm F B = y y .

The couple of forces P is left-handed, and has for its arm the per-

pendicular distance of F from the line of action C A of the applied
force, viz. :

x cos i y sin i.

/vu
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The former of those couples tends to maintain the stability of the

buttress : the latter tends to overturn it. Equating their magni-
tudes, we obtain for the expression of the condition of stability of

position the following :

2/o)
= P(xcosi-ysini).............. (1.)

From this fundamental equation the solutions of various pro-
blems may be deduced, of which the following are examples :

I. The buttress and the lateral force being given, to find the

centre of resistance at a given joint.

Psini

This is the equation of the " line of resistance."

The condition of stability is expressed in terms of y thus

~-j
\ II. The relation between the weight and the dimensions of the

f part of the buttress under consideration being given as in equations
2 and 3 of Article 211, it is required to find the least thickness at

the joint D E consistent with stability.

For this purpose we must substitute forW (y ?/ )
in equation 1

of this Article its limit
;
that is to say, the moment of stability, as

expressed in equation 3 of Article 211
;
and for y we must substi-

tute its limiting value in terms of the thickness, as given by equa-
tion 3 of this Article. Thus we obtain the following equation :

n (q -f ^) w h b & = P (x cos i- (a + -^
t sin i)

...... (4.)

To simplify the form of this quadratic equation, make

[q -}- j
P sin i

=A) V V_ =B:' O .. / I _A ...T I t

then equation 4 becomes

t
2 = A 2 B t,

the solution of which is

t = VA + B2 B.. (5.)

In detached buttresses, it is in general desirable to give g the

value assigned by equation 2 of Article 205, for the reason there

stated.
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III. To find the obliquity of the pressure at the joint D E, we
have the equation

(6.)

As the resultant of the resistance at each joint must act in a line

traversing the point A, the locus of that point is the " line ofpres-
sures" defined in Article 206.

The greatest obliquity of pressure occurs at that joint which is

immediately below the point of abutment 0. Let ~W
, therefore,

denote the weight of material above that joint, and the condition

of stability of friction will be given by the equation

P cos i _ .

214. Rectangular Buttress. -In a rectangular buttress, the

breadth b and thickness t are constant ;
and if A be taken to denote

the height of the top of the buttress above the point C,

h = h + x

will be its height above a given joint. Also, because the centre of

gravity of the portion above any bed-joint is vertically above the

centre of the joint, qf
= 0, and yQ

= -= t; and because

W = w h b t,n= 1.

These values being substituted in equations 2, 4, 5, and 7 of

Article 213, give the following results :

Equation of the line of resistance

H w (hQ + x) b tf + P x cos i

............... '

The least thickness compatible with stability (x^ being the depth of

the base of the wall below C) is found by making

( q _i_ -
)

Xl S ^
P sin i

B ~

whence follows
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\

.
_. , ,

P X* COS i
t = ,jA + & B= - ' -

qw(hQ -\r 02,)
6

(2.)

The least volume of material above the level of the point
which is compatible with stability of friction, is given by making

w h
Q
b t H-

that is to say,

P fcosi . \ P cos (9 + j)hbt= - BBH*= '
: (3.)

which depends on the horizontal component of the lateral force

alone.

Supposing this value to be adopted for the thickness of the but-

tress, in order that it may be stable, how deep soever the base may
be below the point C, then to insure stability of friction, the

height of the top above C must have the following value :

.co1(^
sin ^> cos t v '

Instead of the rectangular mass h b t, there may be substituted

a pinnacle of the same volume, and of any figure.

w \tan <p ) w sin

The equation 1 of the line of resistance is that of a rectangular

hyperbola traversing the point A (which is in this case invariable),
and having a vertical asymptote, whose distance from the inner
face of the buttress is

t
,

P cos i

2 w b t
"\'J

being the limit which y continually approaches, but never attains,
as the depth x increases without limit.

As the depth x increases without limit, the thickness required
for the Avail approaches the following limit :
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215. Towers and Chimneys are exposed to the lateral pressure
of the wind, which, without sensible error in practice, may be
assumed to be horizontal, and of uniform intensity at all heights
above the ground.

The surface exposed to the pressure of the wind by such struc-

tures is usually either flat, or cylindrical, or conical, and differing

very little from the cylindrical form. Octagonal chimneys, which
are occasionally erected, may be treated as sensibly circular in plan.
The inclination of the surface of a tower or chimney to the vertical

is seldom sufficient to be worth taking into account in determining
the pressure of the wind against it.

The greatest intensity of the pressure of the wind against a flat

surface directly opposed to it hitherto observed in Britain, has been
55 Ibs. per square foot

;
and this result, obtained by observations

with anemometers, has been verified by the effects of certain vio-

lent storms in destroying factory chimneys and other structures.

In any other climate, before designing a structure intended to

resist the lateral pressure of wind, the greatest intensity of that.

pressure should be ascertained, either by direct experiment, or by
observation of the effects of the wind on previous structures.

The total pressure of the wind against the side of a cylinder is

about one-half of the total pressure against a diametral plane of

that cylinder.
Let

fig. 98 represent a chimney, square or circular, and let it be

required to determine the conditions of stability
of a given bed-joint D E.

Let S denote the area of a diametral vertical

section of the part of the chimney above the

given joint, and p the greatest intensity of pres-
sure of the wind against a flat surface. Then
the total pressure of the wind against the chim-

ney will be sensibly

P = p S for a square chimney ;
\

P = p -= for a round chimney) (

.p.
and its resultant may, without appreciable error,

be assumed to act in a horizontal line through
the centre of gravity of the vertical diametral section, C. Let H
denote the height of that centre above the joint D E

;
then the

moment of the pressure is

H P = Hp S for a square chimney ;

H P = for a round chimney

; \

;
J
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and to this the least moment of stability of the portion of the chim-

ney above the joint D E, as determined by the methods of Article

211, should be equal.
For a chimney whose axis is vertical, the moment of stability is

the same in all directions. But few chimneys have their axes

exactly vertical ;
and the least moment of stability is obviously

that which opposes a lateral pressure acting in that direction to-

ward which the chimney leans.

Let G be the centre ofgravity of the part of the chimney which is

above the joint D E, and B a point in the joint D E vertically

below it
;
and let the line D E = t represent the diameter of that

joint which traverses the point B. Let q', as in former examples,

represent the ratio which the deviation of B from the middle of the

diameter D E bears to the length t of that diameter.

Let F be the limiting position of the centre of resistance of the

joint D E, nearest the edge of that joint towards which the axis of

the chimney leans, and let q, as before, denote the ratio which the

deviation of that centre from the middle of the diameter D E bears

to the length t of that diameter.

Then, as in equation 3 of Article 211, the least moment of stability

is denoted by

W B~F = (q ^) Wt (3.)

The value of the co-efficient q is determined by considering the

manner in which chimneys are observed to give way to the pressure
of the wind. This is generally observed to commence by the opening
of one of the bed-joints, such as D E, at the windward side of the

chimney. A crack thus begins, which extends itself in a zig-zag form

diagonally downwards along both sides of the chimney, tending to

separate it into two parts, an upper leeward part, and a lower wind-
ward part, divided from each other by a fissure extending obliquely
downwards from windward to leeward. The final destruction of the

chimney takes place, either by the horizontal shifting of the upper
division until it loses its support from below, or by the crushing of

a portion of the brickwork at the leeward side, from the too great
concentration of pressure on it, or by both those causes combined j

and in either case the upper portion of the structure falls in a
shower of fragments, partly into the interior of the portion left

standing, and partly on the ground beside its base.

It is obvious that in order that the stability of a chimney may be

secure, no bed-joint ought to tend to open at its windward edge ;

that is to say, there ought to be some pressure at every point of

each bed-joint, except the extreme windward edge, where the in-

tensity may diminish to nothing ;
and this condition is fulfilled



242 THEORY OF STRUCTURES.

with sufficient accuracy for practical purposes, by assuming the

pressure to be an uniformly varying pressure, and so limiting the

position of the centre of pressure F, that the intensity at the lee-

ward edge E shall be double of the mean intensity.
It has already been shown, in .Article 205, what values this con-

dition assigns to the co-efficient q for different forms of the bed-joints.

Chimneys in general consist of a hollow shell of brickwork, whose
thickness is small as compared with its diameter j and in that case

it is sufficiently accurate for practical purposes to give to q the fol-

lowing values :

For square chimneys, q = -I
o

l
For round chimneys, q =

The following general equation, between the moment of stability
and the moment of the external pressure, expresses the condition of

stability of a chimney :

HP = (q
-

q')-Wt .......................... (5.)

This becomes, when applied to square chimneys,

and when applied to round chimneys,

-G-0
The following approximate formulae, deduced from these equations,
are useful in practice :

Let B be the mean thickness of brickwork above the joint D E
under consideration, and 6 the thickness to which that brickwork

would be reduced, if it were spread out flat upon an area equal to

the external area of the chimney. That reduced thickness is given
with sufficient accuracy by the formula *

_ t^
'

but in most cases the difference between b and B may be neglected.

Let w be the weight of an unit of volume of brickwork ; being,

on an average, about 112 Ibs. per cubic foot, or, if the bricks are
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dense, and laid very closely, with thin layers of mortar in the joints,

from 115 to 120 Ibs. per cubic foot. Then we have, very nearly,

for square chimneys, W = 4 10 5 S; ) /o\

for round chimneys, W = 3-UwbS;j"

which values being substituted in the equation 6, give the following
formulas :

For square chimneys, IBip = ( 4

For round chimneys, Up = ( 1 57 - 6 28
q'j

w b t'
}

These formulae serve two purposes ; first, when the greatest in-

tensity of the pressure of the wind, p}
and the external form and

dimensions of a proposed chimney are given, to find the mean re-

duced thickness of brickwork, 6, required above each bed-joint, in

order to insure stability ;
and secondly, when the dimensions and form

and the thickness of the brickwork of a chimney are given, to find

the greatest intensity of pressure of wind which it will sustain with

safety.
The shell of a chimney consists of a series of divisions, one above

another, the thickness being uniform in each division, but diminish-

ing upwards from division to division. The bed-joints between the

divisions, where the thickness of brickwork changes (including the

bed-joint at the base of the chimney), have obviously less stability
than the intermediate bed-joints ; hence it is only to the former set

of joints that it is necessary to apply the formulae. To illustrate

the application of the formulae, a table is given in the Appendix,
showing the dimensions and figure, and the stability against the

wind, of the great chimney of the works of Messrs. Tennant and

Company, at St. Rollox, near Glasgow, which was erected from the

designs of Messrs. Gordon and Hill, and is, with the exception of

the spire of Strasburg, the Great Pyramid, and the spire of St.

Stephen's at Vienna, the most lofty building in the world.

216. Wains or Reservoir-Walls of masonry are intended to resist

the direct pressure of water. A dam, when a current of water
/ falls over its upper edge, becomes a weir, and requires protection
for its base against the undermining action of the falling stream.

Such structures are not considered in the present Article, which is

confined to walls for resisting the pressure of water only.
In fig. 99, let ED represent a horizontal bed-joint of a reservoir-

; wall, which wall lias a plane surface O D exposed to the pressure
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of the contained water, whose upper surface is the horizontal plane

OY. Consider a vertical layer of the wall of the length unity,

sustaining the pressure of a ver-

tical layer of water of the length

unity also. Then from Articles

89 and 124 it appears, that the

total pressure exerted against

that layer of the wall is equal

to the weight of the triangular

prism of water O D K, right

angled at D, whose thickness

is unity, and whose side D K is

Fig. 99.
equal to the depth of the joint

DE beneath the surface OY; and it also appears, that the resultant

of that pressure acts in the line H C, being a perpendicular upon
O D from the centre of gravity H of the prism of water; so that

CD = . Let G be the centre of gravity of the vertical layer
O

of masonry above D E, and G BW a vertical line drawn through
it

; produce H C, cutting that vertical line in A ; take AW to

represent the weight of the layer of masonry, and A P to represent
the pressure of the layer of water; complete the parallelogram

A P KW ; A R will represent the total pressure on the joint D E
for each unit of length of the wall, and F, where that line cuts

D E, will be the centre of resistance of that joint, which must fall

within the limits consistent with stability of position, while at the

same time the angle A F D must not be less than the complement
of the angle of repose.
To treat this case algebraically, let x denote the depth of D

beneath the surface of the water, w' the weight of an unit of

volume of water, and j the inclination of O I) to the vertical.

Then the pressure of the vertical layer of water is

>&> 2
its cenifce C being at the depth

- x.

This force, together with the equal and opposite oblique com-

ponent of the resistance of the joint D E at F, constitute a couple

tending to overturn the wall, whose arm is the perpendicular dis-

tance of F from C P ;
that is to say,
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Now C D =
^ -, and if, as before, we make E D = t, F D =

( 9 ~J~ 9 ) t\ consequently we have for the arm of the couple in

question
x -

which being multiplied by the pressure, gives the moment of the

overturning couple ;
and this being made equal to moment of

stability of the wall, we obtain the following equation : u< ,

When the inner face of the wall is vertical, secj= 1, and tan^ 0;
and the above equation becomes

w/ ,
.. w'x*

^fe + sO* =
g-. (2 A.)

/

~~*"

To obtain a convenient general formula for comparing walls of

similar figures but different dimensions, let n, as in Article 211,
denote the ratio of the area of the vertical section of the wall to

that of the circumscribed rectangle, so that if w be the weight of

an unit of volume of masonry, the weight of the vertical layer of

masonry under consideration is

W = nwht,

where h is the depth of the joint D E below the top of the wall.

Then equations 2 and 2 A take the following forms :

+
-J tanjj...... (3.)

(3 A.)

equations analogous to equation 4 of Article 213. To obtain a
formula suitable for computing the requisite thickness of wall t, let

w' x* ' sec2
/

6 n (q + q) w h

w' x' (- + -
J
tan j
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then

t* - A-2B*;
which quadratic equation being solved, gives

or for a wall with a vertical inner face, for which B = 0,

t = JA.. (4 A.)

In most cases which occur in practice, the surface of the watet
O Y either is, or may occasionally be, at or near the level of the

top of the wall, so that h may be made = x. In such cases, let

A w' sec2
,/

x 2n(q+_q')w
and we have

=a-2&
x2 x9

which being solved, gives

; ()

and for a wall with a vertical inner face,

The vertical and horizontal components of the pressure of the
water are respectively

w'x*
Vertical, P sin,/

= -
tan,/,

Horizontal, P cosj = ~
',

Consequently the condition of stability offriction at the joint D E
is given by the equation

P cos./ w' a?

W + PsinJ
= SW + ti/artan/

^^ W
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If the ratio - has been determined by means of equation 5, then

we have

W = nwxt = nwx3 - :... ...(7.}
x

so that by cancelling the common factor xs

, equation 6 is brought
to the following form :

2 n w - + w tan /

Example I. Rectangular Watt. In this case n=l;q = ',j=Q ',

consequently,

equation 5 A becomes

and equation 8,

wf = \ / 5_i^.' -^ tan <p ; (10.)V 2w '

6qw

but it is unnecessary to attend in practice to this last equation,
which is fulfilled for the greatest values of q that ever occur.

Example II. Triangular Wall, with the apex at O.

In this case is the same for every horizontal joint j so that if

the thickness be just sufficient for stability at any joint, it will be

just sufficient for stability at every other joint. A reservoir-wall

whose vertical section is triangular, may therefore be said to be of

uniform stability.

The value of n for a triangle is . With respect to the value of
2

q',
that case will be considered in which the inner face of the wall

is vertical, so that c[ -, j = 0.

Then by equation 5 A,
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\ I

/
and by equation 8

This last equation fixes a limit to the value of q, independently
of the distribution of the pressure on each bed-joint, viz. :

(130

The insertion of this value of q in equation 1 1 gives

-- *
x

The value of tan $ for masonry being about 0-74, w being on an

average I^t4 Ibs. and w 62-4 Ibs. per cubic foot, the limit of q is

found to be

0-421 - 0-167 = 0-254, or -, nearly,

and that of -, by equation 14, is

0-585.

For brickwork, tan <p is about the same as for masonry, and w is

112 Ibs. per foot, nearly; hence the limit of q is

0-327 - 0-167 = 0-16, or L nearly,

while that of -is 0-75.
x

, Example III. Triangular Wall ivitk Vertical Axis. When the

Vail stands on a soft foundation, it may be desirable in some cases

so to form it, that the centre of resistance F shall be at the middle
of each joint, and shall also be vertically beneath the centre of

gravity of the part of the wall above the joint. In this case, the

point of intersection A of the lines of action of the pressure and

weight must also fall in the middle of each joint. To fulfil these

conditions, the vertical section of the wall should be an isosceles

triangle, the outer and inner faces forming equal angles j on
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opposite sides of the vertical axis of the wall, and the angle j should

be such that a straight line perpendicular to O D at C shall bisect

the base ; that is to say,

t sinj _ x sec,/

~~2~~ ~~3~~ ;

but

/ t

^
= tanj, ^jJ-J-

* X
o **

i fi jt *** f

whence we have
1

2
^

J?
*^

n f - 3^
S

^~3
>

i tanj = ^-= \/ 4 = 0707;

and
4

.(15.)

so that the base of the wall is to its height as the diagonal to the
side of a square.

Equation 8 in this case becomes

w
tan (p .(10.)

This condition is always fulfilled so far as the frictional stability
of one course of masonry on another is concerned. As the object,

however, of giving the wall the figure now in question, is to dis-

tribute the pressure uniformly over a soft foundation, let it be

supposed that its base rests on a material for which tan <p = .

Then we must have

2 w
1

I'

and consequently

w^%( JY- \ uf = 2-33 w = 145 Jbs. per cubic foot;

and unless the masonry be of this weight per cubic foot, its friction

on a horizontal base, of a material for which tan <P = -, will not be

of itself sufficient to resist the thrust of the water.

217. Retaining Wails. Figs. 100 and 101 represent vertical

sections of retaining walls against which banks of earth abut. In
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each figure a vertical layer of the masonry and of the earth is

supposed to be considered, whose length is unity. B E is the base

Fig. 101.

of the layer of masonry, F the centre of resistance of that base, B
a point vertically below G, the centre of gravity of the weight
which rests on that base, AW a line representing that weight, AP
a line representing the thrust of the earth; AR, the diagonal of the

parallelogram APRW, is a line representing the resultant pressure
at the base D E, and cutting that base in the centre of resistance F.

In each figure, D O is a vertical plane traversing the inner edge
D of the base of the wall, and cutting the plane of the surface of

the bank in O. In
fig. 100, the whole of the wall lies in front of

that vertical plane ;
so that the weight, represented byAW (or byW simply), which rests on the base D E, consists of the weight of

the masonry together with the weight of the mass of earth, tf any
(represented by O L M)y which is vertically above that base; and G is

the common centre of gravity of the compound mass of masonry
and earth, which is situated in front of the plane O D.
In fig. 101, on the other hand, a part of the masonry, represented

by DLO, lies behind the plane O D. If the prism D L O consisted

of earth, its weight would be supported by the earth beneath it
;

therefore the earth beneath that prism exerts a pressure vertically

upwards sufficient to sustain the weight of a prism of earth of a

volume equal to that of the prism of masonry; therefore the weight

represented byAW (or byW simply) which rests on the base DE,
consists of the weight of the masonry in the vertical layer of the

wall, less the weight of earth which would fill D L O
;
and Gr is the

common centre of gravity of the masonry EDO which lies before

the plane O D, and of the prism DLO, considered as having a

specific gravity equal to the excess of the specific gravity ofmasonry
above that of earth.
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It has already been shown in Article 198, that the pressure of

the earth against the vertical plane D (which pressure is parallel

to the surface of the bank, and represented by A P, or by P simply),
is equal to the weight of the prism of earth O D K, in which D K,

parallel to the surface of the bank, is equal to the vertical depth
O D multiplied by the ratio of the conjugate pressures at a point,

py
cos 6 J (cos

2
6 cos2

<p)

px

~
cos 6 + ,y (cos

2 6 cos
2

<P)

'

which ratio depends on the slope 6 of the bank, and angle of

repose <P,
and that the resultant of that pressure traverses C, at the

height

CD =f
above D. For the sake of brevity (w being the weight of unity of

volume of the earth), let

w' cos 4 =Wij GL<

then equation 2 of Article 198 becomes

This force has to be multiplied, as in previous Articles, by the per-

pendicular distance of F from C P, to give the moment of the

couple which tends to overturn the wall. Let t be the thickness

BE, and i the angle of inclination of D E to the horizon; then the

arm of the couple in question is

~~ v ~^~ 9" )
' cos

~)t -sin (* + *);

which being multiplied by the force P, and equated to the moment
of stability of the weight which rests on the base D E, gives the

following condition of
stability of position :

Now suppose (as in Article 211 and elsewhere) that "W bears a \
<-

definite ratio n to the weight w x t
" cos i of a rectangle of masonry t</

whose height is O D = x, and its breadth the horizontal distance \

of E from O D, t cos i; then the first side of equation 2, being the
moment of stability, becomes as follows :
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n (q q')
w x t

2 cos* L

Divide both sides of the equation by

n (q -==.q')wy? cos
2

i,

and for brevity's sake, let

Wi
' COS 6

6 n (q zr q')
w cosa

i

,;(+j)

. = a

4 n (q
"+"

q') w cos2 i

then

-,= a 2 6 - (3.)
x x

and consequently

The inclination of the resultant A R to the vertical is given by
the equation

tan^W A R = ^T ,

C S *

(5.)W+ P sm 6

When the base DE is horizontal, this should not exceed the tangent
of the angle of repose. When that base is inclined at the angle i,

the condition of frictional stability is thus expressed :

> i^#i (6.)

<p' being the angle of repose of the foundation of the wall.

The object of giving the base of the wall an inclined position is

to diminish the obliquity of the pressure on it, and so to enable the

condition of frictional stability to be fulfilled.

3 3
The values adopted for q in practice vary from - to .

10 o

218. Rectangular Retaining Wall*. In a vertical rectangular
wall, n = 1, q'

= 0, i = ; so that, in equations 3 and 4 of Article

217,

_ wl
cos 6

"~67^r
j

l v ~^~
2/

sin *sin.

4 q W
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Example I. When the surface of the bank is horizontal, so that

6 = 0, then

w, -
1 + sin <p'

and
- sn

-sinf)/" !'W
Also

W = w or ;x

so that equation 5 of Article 217 becomes

~

V \ 2 w (1 + sin p) J

^tan<p' (3.)

If the material on which the wall rests is the same with that of

the bank, we may assume tf = <p ;
in which case, by squaring

equation 3, and attending to the fact that

2
sin

2
<p / sin <p \ 2

1 sin <p~
1 - sin2

<P

~
\1 - sin <?/

'

1 + sin <p

'

we obtain the equation

sin?
,(4.)

Assuming that the specific gravity of the earth is four-fifths of

that of the masonry, or =
, we find that this equation is ful-

w 4

filled for the ordinary value of q,
-

,
so long as <p exceeds 27.

f Example II. When the surface of the bank slopes at the angle
of repose <p,

then w1
= w' cos

<p, and ^w- '^A */L

r

^

^' cos
2

<P"'
(q + 2)

w'

cos

"b = .

A
/

so that equation 4 of Article 217 becomes
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- ss COS ?
X {VI

w'

+ (g + w 2 sn

Qqw
(q + T|)

M?' sin

219. Trapezoidal Walls. In fig. 102, let EQ represent the

vertical face of a rectangular wall, suited to sustain

the thrust of a given bank, and let F be the centre

of resistance of the base. Make ON = 3 E~F = 3

(
q)

Fig. 102.

t ; then the centre of gravity g of the

triangular prism of masonry E QN will be vertically
above the centre of resistance F; therefore if that

prism be removed, so as to reduce the cross section

of the wall to a trapezoid with a sloping face E N,
the position of the centre of resistance F will not be

altered, and the wall will still fulfil the condition of

stability of position, the thickness t being determined
3

as for a rectangular wall. If q = -, the thickness of the wall at the
o

summit will be -5 of the thickness at the base. The face of the wall
o

O !N"
is said to batter; the rate of the batter being the ratio . ==

EQ

As the vertical component of the pressure on the base of the
wall is diminished by this change, the obliquity of that pressure
will be increased

;
and it may in some cases be necessary to make

X1
e base slope backwards, as in fig. 101.

220. Battering Walls of Uniform Thickness. When a wall for

supporting a horizontal-topped
bank is of uniform thickness,
and has a sloping or curved face,
as in figs. 103 and 104, its mo-
ment of stability may be deter-

mined with a degree ofaccuracy
sufficient for practical purposes,
in the following manner :

Let E Q in each figure repre-
sent the vertical face of a rec-

tangular wall of the same height
x and thickness t with the pro-

<f

Fig. 103.
posed wall, and let g be the

centre of gravity of that rectangular wall. Then
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W '

q t = q w x t
2

will be its moment of stability per unit of length.
Divide the area E Q-N included between the vertical face E Q

and the face of the proposed wall, E N, by the height x. Then

will be the distance of the centre of gravity G of the sloping or

curved wall from that of the rectangular wall
;
and the change of

figure will increase the stability in the ratio q + q' : q$ that is to

say, the moment of stability will now be

"W (q + q') t = (q + q') wxt*.................. (2.)

If E N is a straight line
(fig. 103),

4*-3; ........................... (3.)

If E N" is a parabolic arc,

(4.)

a formula which is also sensibly correct when E N is an arc of a
circle.

Walls with a " curved batter
"

are usually
built as shown in fig. 105, with the bed-joints,

perpendicular to the face of the wall. This
diminishes the obliquity of the pressure on
the base.

221. Foundation Courses of Retaining Walls

have their width increased beyond the thick-

ness of the wall by a series of steps in front,
as shown in figs. 102 and 105. The objects of

this are, at once to distribute the pressure
over a greater area than that of any bed-joint
in the body of the wall, and to diffuse that

pressure more equally, by bringing the centre

of resistance nearer to the middle of the base

than it is in the body of the wall. The power of earth to support
foundations has already been considered in Article 199.

0222.
Counterforts are projections from the inner face of a retain-

ing wall. A wall and its counterforts, if the bond of the masonry
is well preserved, constitute a wall having successive divisions

of its length alternately of greater and of less thickness. The
moment of stability of a Avail with counterforts, per unit of length,
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when the wall is well bonded, may be found, with sufficient

accuracy for practical purposes, by adding together the moments
of stability of one of the parts between two counterforts, and of

one of the parts whose thickness is augmented by the addition of

a counterfort, and dividing the sum by the joint length of those

two parts.
For example, let fig. 106 represent a portion of the plan}

or hori-

zontal section, of a vertical rectangular retaining
wall whose height is h

}
with a row of rectangular

counterforts of the same height with the wall.

c Let t = I^E be the thickness of a
part^of

the

wall between two counterforts, and b = E D its

length ;
let T = A B be the thickness of a coun-

terforted part of the wall, including the counter-

fort, and c = B C its length.
The moment of stability of the first part is

q w li b t
2

;

and that of the second part,

Adding together those moments, and dividing their sum by the

total length b + c = A F, the mean moment of stability per unit of

length is found to be

This is the same with the moment of stability per unit of length
of a wall of the uniform thickness,

which may be called the equivalent uniform wall.

The quantity of masonry in the counterforted wall is to the

quantity in the equivalent uniform wall in the ratio

which is always less than unity; so that there is a saving of

masonry (though in general but a small one) by the use of counter-

forts.

223. Arches of Masonry. An arch of masonry consists of a ring
of wedge-formed stones, called arch-stones or voussoirs, pressing

against each other at surfaces called bed-joints, which are, or ought
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to be, perpendicular or nearly perpendicular to the soffit, or internal

:cave surface of the arch. The outer or convex surface of the

ring of arch-stones, which may be either a curved surface parallel
the soffit, or, what is better, a series of steps, sustains the

tical pressure of that part of the load which arises from the

ight of materials other than the arch-stones themselves
;
and

that outer surface also exerts in many cases a horizontal or inclined

thrust against the spandrils and abutments. The abutments sus-

tain also the thrust of the lowest voussoirs, vertical or inclined, as

the case may be. Sometimes an arch springs at once from the

ground, so that its abutments are its foundations.

A wall standing on an arch, in the plane of the arch-ring, is

called a spandril wall. The arch of a bridge requires a pair of

external spandril walls, one over each face of the arch j
the space

between them is filled up to a certain level with solid masonry, and
above that level it is sometimes filled with earth or rubbish, and
sometimes occupied by a series of internal spandril ivalls parallel to

the external spandril walls, and having vacant spaces between
them a mode of construction favourable both to stability and to

lightness. In order to form a continuous platform for the road-

way, the spaces between the internal spandril walls are sometimes

covered with flags of some strong stone (such as slate), and some-

times arched over with small transverse arches. The external

spandril walls are the abutments of those arches, and must have

stability sufficient to sustain their thrust : when the spandrils are

filled with earth or rubbish, the external spandril walls must have

stability sufficient to withstand the pressure of the filling material.

In determining the conditions of stability of an arch, it is con-

venient to consider only a rib, or vertical layer, of arch, abutment,
and spandril, of the thickness unity (e. g., one foot). When there

are spandril walls with vacant spaces between, an ideal specific

gravity is to be adopted for the material of the spandrils, found by
supposing the weight of the material of the spandril walls to be

uniformly distributed, so as to fill the vacuities ;
that is to say, let

w be the weight of an unit of volume of the material of the walls,

2 T the sum of the thicknesses of all the walls, and 2 S the sum
of the widths of the spaces between them ;

then in computations

respecting the stability of the arch, the spandrils may be supposed
to be completely filled with a material whose weight per unit of

volume is

224. lane of Pressures in an Arch; Condition of Stability--
According to the principles explained in Articles 206 and 207, if a
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straight line be drawn through each bed-joint of the arch-ring

representing the position and direction of the resultant of the pres-

sure at that joint, the straight lines so drawn form a polygon, and
each of the angles of that polygon is situated in the line of action

of the resultant external force acting on the arch-stone, which
lies between the pair of joints to which the contiguous sides of the

polygon correspond ; so that the polygon is similar to a poly-

gonal frame, loaded at its angles with the forces which act on the

arch-stones (their own weight included). A curve inscribed in that

polygon, so as to touch all its sides, is the line of pressures of the

arch. The smaller and the more numerous the arch-stones into

which the arch-ring is subdivided, the more nearly does the poly-

gon coincide with the curve j
and the curve or line of pressures

represents an ideal linear arch, which would be balanced under the

continuously-distributed forces which a.ct on the real arch under
consideration. From the near approach of this linear arch to the

polygon whose sides traverse the centres of resistance of the bed-

joints, the points where the linear arch cuts those joints may be

taken without sensible error for the centres of resistance.

Now in order that the stability of the arch may be secure, it is

necessary that no joint should tend to open either at its outer or

at its inner edge ; and in order that this may be the case, the

centre of resistance of each joint should not deviate from the centre

of the joint by more than one-sixth of the depth of the joint ;
that

is to say, the centre of resistance should lie within the middle third

of the depth of the joint ; whence follows this

THEOREM. The stability of an arch is secure, if a linear arch,
balanced under the forces which act on the real arch, can be drawn
within the middle third of the depth of the arch-ring.

It has already been stated that the tenacity of fresh mortar is not

sufficiently great to be taken into account in determining the stabi-

lity of masonry ; and hence, where cement is not used, all horizon-
tal or oblique conjugate forces which maintain the equilibrium of

the arch-ring must be pressures, acting on the arch from without
inwards. The linear arch, therefore, is limited in such cases to

those forms which are balanced under pressuresfrom without alone;
that is to say, that the intensity of the horizontal or conjugate
pressure, denoted by^?y in Article 185, equation 4, must not at any
point be negative.

It is true that arches have stood, and still stand, in which the

centres of resistance of joints fall beyond the middle third of the

depth of the arch-ring ;
but the stability of such arches is either

now precarious, or must have been precarious while the mortar was
fresh.

When tenacity to resist horizontal or oblique tension is given to
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the spandrils of an arch, and to the joints between them and the

arch-stones, by means of cement, hoop-iron bond, iron cramps, or

otherwise, the conjugate tension denoted by py
must not at any

point exceed a safe proportion of that tenacity; that is to say,

about one-eighth. By this means stability may be given to arches

of seemingly anomalous figures; but such structures are safe on a

small scale only.
f 225. Angle, Joint, and Point of Rupture The first step towards

determining whether a proposed arch will be stable, is to assume a

linear arch parallel to the intrados or soffit of the proposed arch,

and loaded vertically with the same weight, distributed in the

same manner. The size of this assumed linear arch is a matter of

indifference, provided each point in it is considered as subjected to

the same forces which act at the corresponding joint in the real

arch ;
that is, the joint at which the inclination of the real arch to

the horizon is the same ivith that of the assumed arch at the given

point.
The assumed arch is next to be treated as a stereostatic arch,

according to the method of Article 185; and by equation 4 of that

Article is to be determined, either a general expression or a series

of values of the intensity py
of the conjugate pressure, horizontal or

oblique, as the case may be, required to keep the arch in equilibrio
under the given vertical load. If that pressure is nowhere negative,
a curve similar to the assumed arch, drawn through the middle of

the arch-ring, will be either exactly or very nearly the line of pres-
sures of the proposed arch

; py
will represent, either exactly or very

nearly, the intensity of the lateral pressure which the real arch,

tending to spread outwards under its load, will exert at each point

against its spandril and abutments ; and the thrust along the linear

arch at each point will be the thrust of the real arch at the corre-

sponding joint.
On the other hand, ifpy

has some negative values for the assumed
linear arch, there must be a pair of points in that arch where that

quantity changes from positive to negative, and is equal to nothing.
The angle of inclination i

Q
at that point, called the angle of rupture,

is to be determined by solving equation 1 of Article 187. The

corresponding joints in the real arch are called the joints ofrupture;
and it is below those joints only that conjugate pressure from with-
out is required to sustain the arch.

In fig. 107, let B C A represent one-half of a symmetrical arch,
O Y a horizontal axis of co-ordinates in or above the spandril,K L D E an abutment, and C the joint of rupture, found by
the method already described. The point of rupture, which is the
centre of resistance of the joint of rupture, is somewhere within
the middle third of the depth of that joint; and from that point
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down to the springing joint B, the line of pressures is a curve

similar to the assumed linear arch, and parallel to the intrados,
'

being kept in equilibria by the lateral pres-
'

sure between the arch and its spandril and
J*v abutment.

From the joint of rupture C to the crown

A, the fact that the assumed linear arch would

require lateral tension to keep it in equilibrio,
shows that the true line of pressures must be
a flatter curve than the assumed linear arch

;

the figure of the true line of pressures being
determined by the condition, that it shall be

a linear arch balanced under vertical forces

only; that is to say, that the horizontal com-

ponent of the thrust along it at each point is

a constant quantity, and equal to the horizontal component of

the thrust along the arch at the joint of rupture.
That horizontal thrust, denoted by H ,

is found by means of equa-
tion 2 of Article 187, and is the horizontal thrust of the entire arch.

[If the arch is distorted, conjugate thrust is to be read instead of
" horizontal thrust" wherever that phrase occurs.]
The only point in the line of pressures above the joints of rup-

ture which it is important to determine, is that which is at the

crown of the arch, A; and it is found in the following manner :

Find the centre of gravity of the load between the joint of rup-
ture C and the crown A ;

and draw through that centre of gravity
a vertical line.

Then if it be possible, from one point in that vertical line, to

draw a pair of lines, one parallel to a tangent to the soffit at the joint
of rupture, and the other parallel to a tangent to the soffit at the

crown, so that the former of those lines shall cut the joint of rup-

ture, and the latter the keystone, in a pair of points which are both

within the middle third of the depth of the arch-ring, the stability
of the arch will be secure

;
and if the first point be the point of

rupture, the second will be the centre of resistance at the crown of

the arch, and the crown of the true line of pressures.
When the pair of points related as above do not fall at opposite

limits of the middle third of the arch-ring, their exact positions are

to a small extent uncertain
;
but that uncertainty is of no conse-

quence in practice. Their most probable positions are equi-distant
from the middle line of the arch-ring.

Should the pair of points fall beyond the middle third of the

arch-ring, the depth of the arch-stones must be increased.

226. Thrust of an Arch of masonry. The line of pressures, or

equivalent linear arch, of an arch of masonry, with its point of rup-
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tvire and total thrust, having been determined by the methods

described in the two preceding Articles, the distribution of that

thrust, and the line of action of its resultant, are to be found by
the methods of Article 187.

227. Abutments of Arches. The abutment of an arch, when it

is not simply a foundation, is a buttress, or a wall with or without

counterforts, which is bounded, or may be considered as bounded

by a vertical face L D
(fig. 107) towards the arch.

Two external forces are applied to the abutment of an arch

besides its own weight, viz., the vertical load of the half-arch, P,

whose resultant acts through B, the centre of resistance of the

springing joint, and the thrust H, found in amount and position by
methods already referred to, which acts through B also if the angle
of rupture is equal to or greater than the inclination of the arch at

B; and which, if there is either no joint of rupture, or a joint of

rupture above B, is distributed between B and A, or B and C, as

the case may be. The resultant of the vertical load and conjugate
thrust being taken as the entire pressure applied to the abutment,
its conditions of stability and requisite dimensions are to be found

by the methods described in Articles 213, 214, and 222.

For the abutment of an arch, as for the arch-ring, the centre of

resistance should fall within the middle third of the base, so that

the proper value of q is one-sixth.

If the figure of an arch be transformed by parallel projection, the

proper figures for the abutments of the new arch are the corre-

sponding parallel projections of the original abutments.

228. Skew Arches are of figures derived from those of symmetri-
cal arches by distortion in a ^ f
horizontal plane. The eleva- i*

tion of the face of a skew arch,
and every vertical section par-
allel to its face, being similar

to the corresponding elevation

and vertical section of a sym-
metrical arch, the forces which
act in a vertical layer or rib

of a skew arch with its abut-

ments, are the same with those

which act in an equally thick

vertical layer of a symmetrical
arch with its abutments, of the

same dimensionsand figure, and

similarly and equally loaded.

Fig. 108.

Fig. 109.

Fig. 108 represents a plan of a skew arch, with counterforted

abutments. The angle ofskeiv, or obliquity, is the angle which the
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axis of the archway, A A, makes with a perpendicular to the face

of the arch, B C A B. The span of the archway,
" on the square"

as it is called (that is, the perpendicular distance between the abut-

ments), is less than the span on the skew, or parallel to the face of

the arch, in the ratio of the cosine of the obliquity to unity. It

is the span on the skew which is equal to that of the corresponding

symmetrical arch.

The best position for the bed-joints of the arch-stones is perpen-
dicular to the thrust along the arch. If, therefore, there be drawn
on the soffit of a skew arch, a series of parallel curves, made by the

intersections of the soffit with vertical planes parallel to the face

of the arch, the best forms for the bed-joints will be a series of

curves drawn on the soffit of the arch so as to cut the whole of the

former series of curves at right angles, such as C C in figs. 108 and
109. Joints of the best form being difficult to execute, spiral

joints are used in practice as an approximation.
229. Groined Vaults. A groined vault, represented in plan,

looking upwards, by fig. 110, is formed by the intersection of two

archways. The ribs at the edges where
the soffits of the archways intersect and

interrupt each other, are called the

groins. The portions of the arches
which form the groined vault, properly
speaking, abut against the groins ; the

groins themselves, and the four inde-

pendent portions of the archways, abut

against four buttresses at the corners
of the vault. The crown of the vault is

the point where the groins meet.
The line marked B' is the length from

the crown to the face of one of the arch-

ways; and B is the breadth of the por-

Fig. 110.

tion of one of the buttresses against which that archway abuts,
whether directly or through the groin. The thrust due to the

length of archway B' is concentrated upon the breadth of abut-
TW

ment B
; its intensity is therefore increased in the ratio ; and

B
if t be the thickness which an abutment requires to withstand the
thrust of the plain archway, the thickness D required for the but-

tress, in a direction perpendicular to B, will be

At the left-hand side of the figure, the buttresses are compound
and rectangular : at the right-hand side, a single diagonal buttress
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is opposed to the thrust of each groin, and to the combined.thrusts

of the two archways which abut against it. The breadth of the dia-

gonal buttress being the resultant of the breadths of the compound
buttresses, its thickness is simply equal to theirs.

230. Clustered Arches are arched ribs, of which

several spring from one buttress, as is shown in plan
in fig. Ill, The thrust against the buttress is the

resultant of the thrusts of the ribs; the vertical

pressure is the sum of their loads.

231. piers of Arches. A pier is a pillar against
which two or more arches abut, in such a manner lg*

that their horizontal thrusts balance each other, so that the pier
has only to sustain the vertical pressure of the half-arches which
rest on it. The piers of a bridge or viaduct are usually oblong
walls, of a length equal to that of the soffits of the arches, two of

which spring from the opposite sides of each pier. It is customary
to make the thickness of a pier, at the springing of the arches, from
one-sixth to one-ninth of the span of the arches which it sustains.

Mr. Hosking, in his Treatise on Bridges, has pointed out, that this

thickness is usually greater than is necessary ; and that there is in

general no reason that the thickness of the pier should be more than
is just sufficient to support the rings ofarch-stones that spring from it.

If one of two arches which abut against the same pier falls, the

other arch, having its thrust unbalanced, usually overthrows the

pier, and consequently falls also ; so that if a viaduct consists of a
series of arches with piers between, the fall of a single arch causes

the destruction of the whole viaduct. To lessen the damage caused"

by accidents of this kind, it is customary in long viaducts, to

introduce at intervals what are called abutment piers, which have

stability sufficient to resist the thrust of a single arch; so that

when an arch falls, the destruction is limited to the division of the

viaduct between the two nearest abutment piers.

In some important bridges over large rivers, where it has been
considered advisable to spare no expense in order to render the

structure durable, each pier is an abutment pier.
232. Open and Hollow Piers and Abutments. In some cases the

piers and abutments of bridges, in order to save materials, and to

diminish the pressure on the foundations, are made with arched

openings through them, or with rectangular hollows in their in-

terior. The bottoms of such openings or hollows should be closed,
when they are small by courses of large stones, and when they are

large by inverted arches, in order that the area of the foundation,
over which the pressure is distributed, may be as large as if the

building were solid.

The moment of stability of an abutment, with arched openings
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through it, or hollows in its interior, is less than that of a solid

abutment of the same external dimensions, very nearly in the same
ratio in which the moment of inertia of the horizontal section of the

abutment is diminished by means of the vacuities. (See Article 95.)
233. Tunnels. If the depth of a tunnel beneath the surface of

the ground is great compared with the height of its archway, the

proper form for the line of pressures, which must lie within the

middle third of the thickness of its arch, is the elliptic linear arch

of Article 1 80, in which the ratio of the horizontal to the vertical

semi-axis is the square root of the ratio of the horizontal to the

vertical pressure of the earth, as already shown in Article 180,

equation 5, and Article 197, equation 3; that is to say,

horizontal semi-axis /py
//I sin <?\

vertical semi-axis
" '

\/ px >/ \1 + sin <py
} '"^ ''

$ being the angle of repose.
If the earth is firm, and little liable to be disturbed, the propor-

tion of the half-span, or horizontal semi-axis, to the rise or vertical

semi-axis, may be made greater than is given by the preceding

equation, and the earth will still resist the additional horizontal

thrust; but that proportion should never be made less than the

value given by the equation, or the sides of the tunnel will be in

danger of being forced inwards.

In a drainage tunnel, the entire ellipse may be used as the figure
of the arch

;
but in a railway tunnel, where it is necessary to have a

flat floor, the sides and roof of the tunnel comprise in height the

.upper two-thirds, or three-fourths, of the ellipse, which is closed

below by a circular segmental inverted arch of a slight curvature,
its depression being one-eighth of its span, or thereabouts. By this

mode of construction, the vertical pressure of the sides of the

tunnel is concentrated upon foundation courses directly below

them, from which they spring. The ratio which the entire width
of the tunnel, measured outside the masonry or brickwork, bears to

the joint width of that pair of foundations, must not exceed the

limit of the ratio of the weight of a building to the weight of earth

displaced by it, as given by Article 199, equation 3. The inverted

arch serves to prevent the foundations of the sides of the tunnel

from being forced inwards by the horizontal pressure of the earth.

The exact form for the line of pressures in the sides and roof

of a tunnel is the geostatic arch of Article 184. This principle

requires attention when the roof of the tunnel is near the surface.

Let x be the depth of the crown of the tunnel, and x
l
that of its

greatest horizontal diameter, beneath the surface. From those

ordinates as data, design a hydrostatic arch, either by the exact

method of Article 183, or by the approximate method of Article
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188 ; contract the horizontal co-ordinates of that arch in the ratio

c = A/ PI
,
and the result will be the geostatic arch required.

234. Domes. A true dome is a shell of masonry or brickwork,
of the figure of a solid of revolution with a vertical axis

; that is'

it is spherical, spheroidal, conoidal, or conical, and is circular in

plan. Its tendency to spread at its base is resisted by the stability
of a cylindrical wall, or of a series of buttresses surrounding the
base of the dome, or by the tenacity of a metal hoop encircling the
base of the dome.

The conditions of stability of a
dome are ascertained in the fol-

lowing manner : Let
fig. 112

represent a vertical section of a

dome, springing from a cylindrical
wall B B. The shell of the dome
is supposed to be thin as compared
with its external and internal di-

mensions. Let the centre of the
crown of the dome, 0, be taken as

origin of co-ordinates; let x be the depth of any circular jointm the shell, such as C C, below O, and y the radius of that joint.
Let ^ be the angle of inclination of the shell at C to the horizon,and ds the length of an elementary arc of the vertical section of
the dome, such as CD, whose vertical height is dx, and the differ-
ence of its lower and upper radii d y \ so that

Fig. 112.

_
Let P be the weight ofthe part of the dome above the circularjointCO. Ihen the total thrust, in the direction of a set of tangents to

lome, radiating obliquely downwards all round the joint C C, is

T>
^ S

*'^ = P'' C SeC ^
and the total horizontal component of that radiating thrust is

Let Py denote the intensity of that horizontal radiating thrust per
unit of periphery of the joint C C

; then because the periphery of
that joint is 2 T y (

= 6-2832 y\ we have

_ P., cotan i
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It has been shown in Article 179, that if there be an inward

radiating pressure upon a ring, of a given intensity per unit of arc,

there is a thrust exerted all round that ring, whose amount is the

product of that intensity into the radius of the ring. The same

proposition is true, substituting an outward for an inward radiating

pressure, and a tension all round the ring for a thrust. If, there-

fore, the horizontal radiating pressure of the dome at the joint
C C be resisted by the tenacity of a hoop, the tension at each point
of that hoop, being denoted by P,,, is given by the equation

Now conceive the hoop to be removed to the circular joint D D,
distant by the arc d s from C C, and let its tension in this new

position be

p,-n r

The difference, d Pj,,
when the tension of the hoop at C C is the

greater, represents a thrust which must be exerted all round the

ring of brickwork C C D D, and whose intensity per unit of length

of the arc C D is

Every ring of brickwork for wliwh ps is either nothing, or positive,
is stable, independently of the tenacity of cement j for in each such

ring there is no tension in any direction.

When p, becomes negative, that is, when Py
has passed its maxi-

mum, and begins to diminish, there is tension horizontally round
each ring of brickwork, which, in order to secure the stability of
the dome, must be resisted by the tenacity of cement, or of external

hoops, or by the resistance of abutments.
Such is the condition of stability of a dome. The inclination to

the horizon of the surface of the dome at the joint where pg
= 0,

and below which that quantity becomes negative, is the angle of
rupture of the dome ;

and the horizontal component of its thrust
at that joint, is its total horizontal thrust against the abutment,
hoop, or hoops, by which it is prevented from spreading.A dome may have a circular opening in its crown. Oval arched

openings may also be made at lower points, provided at such points
there is no tension j and the ratio of the horizontal to the inclined
axis of any such opening should be fixed by the equation

horiz.

inclined axis
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Example I. Splierical Dome. Uniform thickness, t ; weight of

material per unit of volume, w j radius, r.

x= r(l cos
i) j y=.r sin

i', ds= rdi.

wtr cos i wtr2
cos i sin i

P>=l+cosi>
T>= 1+cosi

p. = r? = w t r
r d^

cos2
i 4- cos i 1

1 + cos i

<&)

The angle of rupture, for whichps = 0, is

= arc cos J&~~ 1 = 51 49' j.
2 .(6.)

and from this angle we obtain, for the horizontal thrust of the

dome, per unit of periphery at the joint of rupture,

py
= 0-382 wtr;

and for the tension on a hoop to resist that thrust, ,(7.)

Example II. Truncated Conical Dome (fig. 113). Apex, O.

Depth of top of dome below apex, a? ; of base of dome, a^ ; i, uni-
form inclination ; t

} uniform thickness ; y = x cotan i.

Then at the base of the dome,

...(8.)

w t cos i

2 sin2 *

W t COS3
t

- cotan2 i. Fig. 113.

Pz being everywhere positive, there is in this dome no joint of

rupture.

Example III. Truncated Conical Dome, supporting on its summit
a turret or " lantern" oftfte weight L.
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P. = ^ w t
-

. (x\ -xl) 4- L ;
sin i

wtcosi
( r| ^

(9-)
2 sin

2

w? cos2
* , . L cotan i

ps = w t x1 cotan2
i.

235. Strength of Abutments and Vaults. The dimensions required
in an abutment, arch, or dome, to insure stability, are in most
cases sufficient to insure strength also

;
but instances occur, in

which the condition of sufficient strength requires to be indepen-

dently considered, and it may be convenient here so far to antici-

pate the subject of strength as to state that condition, viz., that the

intensity of the thrust in the materials shall at no point exceed a
certain limit, found by dividing the resistance of the material to

crushing by a number called the factor of safety. The factor of

safety in existing bridges ranges from 3 or 4 to 50 and upwards.
In tunnels it is about 4. Tredgold considers, that in bridges the

best value for the factor of safety is about 8 (Treatise on Masonry).
The resistance of some of the most important materials of masonry
to crushing is stated in a table at the end of this volume

;
but a

prudent engineer, who contemplates a great work in masonry, will

not trust to tables alone, but will ascertain the strength of the

materials at his command by direct experiment.
235 A. Transformation of Structures in Masonry. The principle

already stated in Article 126, that to determine the intensity of a
force in a transformed structure, the projected line representing the

amount of the force must be divided by the projected area over
which it is distributed, requires special attention in considering the

strength of transformed structures of masonry.
To exemplify the application of that principle, conceive a rec-

tangular prism whose dimensions are x, y, z,
' x being vertical : its

volume is V = x y z. Let w be the weight of unity of volume of

the material of which it is composed ;
and let the weight of the

prism be represented by a line parallel to x, of the lengthW ;
then

W =r wxy z. ........................... (1.)

The amount of an upward vertical pressure on the base of this

prism, which balances W, will be represented by a line equal and

opposite to W : that is

P= -W;............................ (2.)
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arid the intensity of that pressure will be

p
= = wx......................... (3.)

yz
Now let there be a pai-allel projection of this prism, whose dimen-

sions, x' = ax, y = by, z = cz, are oblique to each other. The

weight of the new prism will be represented by a line parallel to x't

of the length W = aW............................ (4.)
Let

C = 1 cos
2

y' z' cos
2
z' x' cos

2
ct' y'

A A A
+ 2 cos y z ' cos z x' cos x' y . . ................ (o.)

Then the volume of the new prism is

Y' = x' y
f
z' /C"= V-abc ,/C; ............ (6.)

consequently the intensity of its weight is

' aW w
a b c ,/CT- Y

~
b c

The area of the lower surface of the new prism is

y' z' sin y' z' = y z ' b c sin y' z' ; ............... (8.)

The amount of the stress on that area is

_ W = F = a P = ap y z.................. (9.)

being represented by a line F, which is the projection of P, and

parallel to x'.

The intensity of this new stress is

y'
~ ~ "'

(10-)
,

A
y zf - sin y z" b c

' sin y' z'

and if we consider the relation between stress and weight,

F = - W,
that is,

p
f

y' z sin /'= - yf x y' z
1

JC. ............ (11.)

we find

sin
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CHAPTER III.

STRENGTH AND STIFFNESS.

SECTION 1. Summary of the Theory of Elasticity as applied to

Strength and Stiffness.

236. The Theory of Elasticity relates to the laws which connect
the stresses, or pressures and tensions, which act at the surface and
in the interior of a body, with the alterations of dimensions and

figure which the body and its parts simultaneously undergo. That

theory, therefore, is the foundation of the principles of the strength
and stiffness of materials of construction. The theory of elasticity
has many other applications, to crystallography, to light, to sound,
to heat, and to other branches of physics. Its full discussion would
of itself require a voluminous work; in the present section, its

principles are to be briefly summed in so far as they are appli-
cable to the strength and stiffness of structures.

237. Elasticity is the property which bodies possess of occupying,
and tending to occupy, portions of space of determinate volume and

figure, at given pressures and temperatures, and which, in a homo-

geneous body, manifests itself equally in every part of appreciable

magnitude.
238. An Elastic Force is a force exerted between two bodies at

their surface of contact, or between two parts into which a body
either is divided or is capable of being divided at the surface of

actual or ideal separation between those parts. The intensity of an
elastic force is stated in units of weight per unit of area of the

surface at which it acts. That kind of force is in fact identical

with stress, the statical laws of which have already been explained
in Part I., Chapter V., Sections 2, 3, and 4, Articles 86 to 126.

239. Fluid Elasticity The elasticity of a perfect fluid is such
that its parts resist change of volume only, and not change of

figure j whence it follows, that the pressure exerted by a perfectly
fluid mass is wholly perpendicular to its surface at every point :

principles which form the basis of hydrostatics and hydrodynamics.
Fluids are either gaseous or liquid. A gaseous fluid is one whose

parts (so far as is known by experiment) exert a pressure against
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each other and against the vessel containing them, how great soever

the volume to which they are expanded. See Arts. 110, and 117

to 124.

240. laqnid Elasticity. The elasticity of a perfect liquid resists

change of volume only, and differs from that of a gaseous fluid

chiefly in this : that the greatest variations of the pressure which

it is possible to apply to a liquid mass produce very small variations

of its volume.

The compression undergone by a liquid mass in consequence of

the application of a given pressure over its surface, is measured by
the ratio of the diminution of volume produced by the given pres-

sure to the entire volume of the mass : a ratio which is always a

very small fraction. The compressibility of a given liquid is the

compression produced by a unit of elastic pressure ; in other words,
the ratio of a compression to the pressure producing it. The
modulus or co-efficient of elasticity of a liquid is the ratio of a pressure

applied to and exerted by the liquid, to the accompanying compres-

sion, and is therefore the reciprocal of the compressibility. The

following empirical formula for the compressibility of pure water

at any temperature between 32 and 128 Fahrenheit has been

deduced from the experiments of M. Grassi (Comptes Rendus, XIX. ;

Philos. May., June, 1851). Compressibility per Atmosphere,

1~
40 (T + 461) D

*

T, temperature in degrees of Fahrenheit. D, density of water at

that temperature under one atmosphere, the maximum density of

water under the pressure of one atmosphere being taken as unity.
See Art. 123, equation 5. At the temperature of maximum density,
39-1 Fah., the compressibility of water per atmosphere is 0-00005,
and its modulus of elasticity, 20,000 atmospheres, or 294,000 Ibs.

per square inch.

Compressibilities of some Liquids, per Atmosphere, from
M. Grasses experiments.

Saturated aqueous solution of nitrate of potash, 0-0000306565
Saturated aqueous solution of carbonate of potash,....0*0000303294
Artificial sea water, 0*0000445029
Saturated aqueous solution of chloride of calcium,....0*0000209830
^Ether, 0*00011137 to 0*00013073
Alcohol, 0*00008245 to 0*00008587

The compressibility of Esther and alcohol increases with the pressure.

241. Rigidity or Stiffness. A solid body, besides resisting change
of volume like a liquid, possesses also rigidity, or the property of
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resisting change of figure. As in the case of liquids, the utmost
alteration of volume of which a solid body is capable by any pressure
which can be applied to it, is always a very small fraction of its

entire volume. The stresses at the surface of a solid body or particle
are not necessarily normal, but may have any direction, from normal
to tangential.

242. Strain and Fracture. In popular language the words strain

and stress are applied indifferently to denote either the system of

forces at the surface of a solid body whereby its volume and figure
are altered, or the alteration of volume and figure of the body and
its parts thereby produced. For the sake of clearness in scientific

language, certain authors have recently endeavoured to appropriate
the word strain to the alterations, of what nature soever, in the

volume and figure of a solid body and of its parts, produced by
forces applied to it, and the word stress as formerly defined. This
nomenclature will be used in the present treatise. Fracture of a
solid occurs when a strain is carried so far as to cause actual division

of the solid into parts. The strains and fractures to which a solid,

considered as a whole, is subject, may be classified according to the

following table. To each kind of strain there corresponds a kind
of stress

; being the external force which produces that strain, and
the equal and opposite force wherewith the solid resists that strain :

Strain. Fracture.

T ., ,. -, /Extension Tearing.al
| Compression Crushing and Cleaving.
( Distortion Shearing.

Transverse < Torsion Wrenching.
( Bending Breaking across.

243. Perfect and Imperfect Elasticity. Plasticity. A body IS Said

to be perfectly elastic, which, if strained at a constant temperature

by the application of a stress, recovers its original volume, or volume
and figure, when such stress is withdrawn. Deviations from this

property constitute imperfect elasticity. Gases, and liquids perfectly
free from viscosity, are perfectly elastic.

The elasticity of every solid is sensibly perfect when the strain

does not exceed a certain limit. This has been proved to be the

case even for solids so plastic as moistened clay. For every solid

there are limits, which if a strain exceed, set, or permanent altera-

tion of volume or figure, is produced ,
and such limits of elasticity

are less, and often considerably less, than the strains required to

produce fracture. It has been proved by Mr. Hodgkinson that

these limits depend on the duration of the strain, being less for a

long-continued strain than for a brief strain. The elasticity ofvolume
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in solids is in general much more nearly perfect than the elasticity

offigure. It is true that the density of many metals is perma-

nently increased by hammering, rolling, and wiredrawing, and that

of some other materials by intense pressure (Fairbairn ; Eeport of
the British Association, 1854) ;

but the stresses which operate

during these processes are very great. A body which is capable of

undergoing great alterations of figure, and whose elasticity of figure

is very imperfect, is a plastic solid. The gradations are insensible

between plastic solids and viscous liquids, in which there is a resist-

ance to change of figure, but no tendency to recover any particulai

figure.
Rise of temperature, so far as we yet know, increases elasticity of

volume in all substances, and at the same time diminishes the

amount and the perfection of elasticity of figure, so as to make
solids more plastic and liquids less viscous.

244. The Ultimate strength of a solid is the stress required to

produce fracture in some specified way. The Proof Strength is the

stress required to produce the greatest strain of a specific kind

consistent with safety ;
that is, with the retention of the strength

of the material unimpaired. A stress exceeding the proof strength
of the material, although it may not produce instant fracture, pro-
duces fracture eventually by long-continued application and fre-

quent repetition. Strength, whether ultimate or proof, is the

product of two quantities, which may be called Toughness and
stiffness. Toughness, ultimate or proof, is here used to denote the

greatest strain which the body will bear without fracture or with-

out injury, as the case may be : stiffness, which might also be called

hardness, is used to denote the ratio borne to that strain by the

stress required to produce it, being, in fact, a modulus of elasticity

of some specified kind. Malleable and ductile solids have ultimate

toughness greatly exceeding their proof toughness. Brittle solids

have their ultimate and proof toughness equal or nearly equal.
Resilience or Spring is the quantity of mechanical work required

to produce the proof strain, and is equal to the product of that

strain, by the mean stress in its own direction which takes place

during the production of that strain, such stress being either

exactly or nearly equal to one-half of the stress corresponding to

the proof strain. Hence the resilience of a solid is exactly or

nearly one-half of the product of its proof toughness by its proof

strength ;
in other words, one-half of the product of the square of

its proof toughness by its stiffness.

Each solid has as many different kinds of stiffness, toughness,

strength, and resilience as there are different ways of straining it,

as the following table shows. In that table pliability is used as a

general term to denote the inverse of stiffness :

T
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Stress.
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248. Divisions of the Mathematical Theory of Elasticity. The

theory of the elasticity of solids has been reduced to a body of

mathematical principles applicable to those cases in which the

strains of the particles of the body are so small, that quantities
in the stresses depending on the squares, products, and higher

powers of the strains may be neglected without appreciable error,

and that, consequently, Hooke's Law " ut tensio sic vis
"

is sen-

sibly true for all relations between strains and stresses. This con-

dition is fulfilled in nearly all cases in which the stresses are

within the limits of proof strength the exceptions being a few

substances, very pliable, and at the same time very tough, such as

caoutchouc. The mathematical theory, as thus limited, consists of

three parts, viz., the resolution and composition of stresses, the

resolution and composition of strains, and the relations between

strains and stresses. The resolution and composition of stresses

has already been fully discussed in Part I., Chapter V., Section 3.

249. Resolution and Composition of Strains. Let a solid of any
figure be conceived to be ideally divided into a number of inde-

finitely small cubes by three series of planes parallel respectively
to three co-ordinate planes. Each such elementary cube is dis-

tinguished by means of the distances, x, y, z, of its centre from the

three co-ordinate planes. If the solid be strained in any manner,
each of the elementary cubical particles will have its dimensions

and figure changed, and will become a parallelepiped, which may
be right or oblique its size being conceived to be so small, that

the curvature of its faces is inappreciable. The simple or elementary
strains of which a particle, cubical in its free state, is susceptible,
are six in number, viz. : three longitudinal or direct strains, being
the three proportional variations of its linear dimensions, which are

elongations when positive, and compressions when negative ',
and

three transverse strains, being the three distortions, or variations of

the angles between its faces from right angles, which are considered

as positive or negative according to some arbitrary but fixed rule,
and are expressed by the proportions of the arcs subtending them
to radius. When the values of those six strains for every particle
are expressed by functions of the co-ordinates, x, y, z, the state of

strain of the solid is completely expressed mathematically. The
six elementary strains, in the cases to which the theory is limited,
are very small fractions.

The method of reducing the state of strain of the solid at a given
point, as expressed by a system of six elementary strains relatively
to one system of rectangular axes, to an equivalent system of six

elementary strains relatively to a new system of rectangular axes,
is founded on the following theorem. Let #, /3, y, be the longitu-
dinal strains of the dimensions of a given particle along x, yt #,
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A, ft, v, the distortions of its angles in the planes y z, z x, x y. Con-
ceive the surface of the second order whose equation is

a-x* + /3?/
2 + y s? + A

?/
' z + (*zx + v xy = 1.

Transform this equation so as to refer the same surface to the new
axes of co-ordinates ;

the six co-efficients of the transformed equa-
tion will be the elementary strains referred to the new axes.

Other ways of resolving strains have been pointed out by Professor

W. Thomson, Cambridge and Dublin Mathematical Journal, May,
1855.

The sum of the direct strains a, + /3 + y represents the cubic dila-

tation of a particle when positive, and the cubic compression when

negative. The state of strain of a transparent body may be ascer-

tained experimentally by its action on polarized light. On this

subject experiments have been made by Fresnel, Sir D. Brewster,
M. Wertheim, and Mr. Clerk Maxwell.

250. Displacements. Let
, w, ,

be the projections, parallel to

x, y, z, respectively, of the displacement of a particle in a strained

solid from its position when the solid is free, expressed as functions

of x, y, z. Then

A _ + . - + .
~~

dy dz } dz dx*

d YI d%
V = - + - .

dx dy

251. Analogy of Stresses and Strains. It has been shown in

Article 104, that the elastic forces exerted on and by an originally
cubical particle, which constitute the state of stress of the solid at

the point where that particle is situated, may be resolved into six

elementary stresses, viz.: three normal stresses, perpendicular re-

spectively to the three pairs of faces, and tending directly to alter

the three linear dimensions of the particle and three pairs of

tangential stresses acting along the double pairs of faces to which

they are applied, and tending directly to alter the angles made by
such double pairs of faces. To reduce the state of stress at a given

point expressed by a system of six elementary stresses referred to

one system of rectangular co-ordinates to an equivalent system of

elementary stresses referred to a new system of rectangular co-ordi-

nates, equations have been given in Articles 105, 106, 107, 108,

109, and 112. The whole of those equations are virtually compre-
hended under the following theorem : Let pxx, pyy) p^ be the
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three normal stresses, and pyz, plx, p^, the three tangential stresses;

conceive the surface whose equation is

Transform this equation so as to refer the same surface to the new
set of axes ;

the six co-efficients of the transformed equation will

be the six elementary stresses referred to the new axes. For the

complete investigation of this subject, see M. Lame's Legons sur la

Theorie mathematique de TElasticite des Corps solides, Paris, 1852.

The above equation is transformed into the equation of Article 249

by substituting respectively *, /3, /, A, ^, v, for pxx, pyy, p*,, %Pyt,

2 PS*, 2pxy ;
and by making corresponding substitutions in all the

equations of Articles 105, 106, 107, 108, 109, and 112, they are

made applicable to strains instead of stresses.

252. The Potential Energy of Elasticity of an originally cubic

particle in a given state of strain is the work which it is capable of

performing in returning from that state of strain to the free state ;

and is the product of the volume of the particle by the following
function :

TJ = -(# + Ppyy
+ ypet + *pyz

+ ppzx + vpxy\

This function was first employed by Mr. Green, Cambridge Trans-

actions, vol. vii.

25JB. Co-efficients of Elasticity. According to Hooke's Law, each

of the six elementary stresses may, without sensible error, be

treated as a linear function of the six elementary strains, each

multiplied by a particular co-efficient or modulus of elasticity. By
expressing all the stresses in terms of the strains, the potential

energy TJ is transformed into a homogeneous quadratic function of

the six elementary strains, which must have twenty-one terms,
and consequently twenty-one co-efficients, multiplying respectively
the six half-squares and the fifteen binary products of the six ele-

mentary strains. The co-efficient of - a2 in U is that of in

pxx the co-efficient of ft in TJ is that of a. in pyy
and also that of

/3 in pxx ;
and so on.

254. Co-efficients of Pliability. According to Hooke's Law also,

each of the six elementary strains may be treated, without sensible

error, as a linear function of the six elementary stresses, so as to

transform TJ to a homogeneous quadratic function of the elemen-

tary stresses plx, &c., having twenty-one terms, and twenty-one co-

efficients expressing different kinds of pliability. The word "
plia-

bility
"

is here used in an extended sense, to include liability to
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alteration of figure of every kind, whether by elongation, linear

compression, or distortion.

Co-efficients, whether of elasticity or of pliability, may be thus

classified : Direct, or longitudinal, when they express relations

between longitudinal strains, and normal stresses in the same

direction; lateral, when they express relations between longitu-
dinal strains, and normal stresses in directions at right angles to

the strains
; transverse, when they express relations between dis-

tortions, and tangential stresses in the same direction
; oblique,

when they express any other relations between strains and stresses.

255. An Axis of Elasticity is any direction in a solid body, with

respect to which some kind of symmetry exists in the relations

between strains and stresses. An axis of direct elasticity is a direc-

tion in a solid body, such that a longitudinal strain in that direc-

tion produces a normal stress, and no tangential stress on a plane
normal to that direction. Every such axis is a direction of maxi-
mum or minimum direct elasticity relatively to the directions

adjacent.

By the aid of the calculus of forms, and of an improvement in

the geometry of oblique co-ordinates, it has been shown that every

homogeneous solid must have at least three axes of direct elasticity,
which may be rectangular or oblique with respect to each other,
that the number of such axes increases as the symmetry of the

action of elastic forces becomes greater, and that their various

possible arrangements correspond exactly with those of the normals
to the faces and edges of the various primitive crystalline forms
(Phil Trans., 1856-7).

256. In an isotropic or Amorphous Solid the action of elastic

forces is alike in all directions. Every direction is an axis of elas-

ticity. The co-efficients of oblique elasticity and oblique pliability
are all null. The number of different co-efficients of elasticity, and
of different co-efficients of pliability, is three. The following nota-

tion and equations show their relations to each other :

Elasticities.

a-b
Direct, . A =

Lateral, B = -5
-

Transverse, C = s ;
A

Elasticity of volume, - = .
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Pliabilities.

TV A+B
Direct, a =

+AB-2B2>

(otherwise, the extensibility.)

B
Lateral, fc =

+AB-2B3 '

Transverse, ........................ C = - = 2(a + fo);

Cubic compressibility, ........... tl = 3 a - 6 fo.

257. Modulus of Elasticity. The quantity to which the term
" modulus of elasticity

" was first applied by Dr. Young, is the

reciprocal of the extensibility, or longitudinal pliability; that is

to say,

This quantity expresses the ratio of the normal stress on the trans-

verse section of a bar of an isotropic solid to the longitudinal

strain, only when the bar is perfectly free to vary in its transverse

dimensions, but not under other circumstances. The values of

Young's modulus have been determined experimentally for almost

every solid substance of importance, and a table of them is given
at the end of the volume.

258. Examples of Co-ciiicicms. The only complete sets of co-

efficients of elasticity and pliability which have yet been computed
are those for brass and crystal, deduced from the experiments of

M. Wertheim (Annales de Chimie, 3d series, vol. xxiii.), and are as

follows the unit of pressure being one pound on the square inch :

Brass. Crystal.

A..................... 22,224,000 ...... 8,522,600.
B...................... 11,570,000 ...... 4,204,400.
C ...................... 5,327,000 ...... 2,159,100.

...................... 15,121,000 ...... 5,643,800.

1
- ..................... 14,300,000 . ..... 5,746,000.
tl

a ..................... 0-0000000699 ...... 0-0000001740.
fo ..................... 0-0000000239 ...... 0-0000000575.
C ..................... 0-0000001877 ...... 0-0000004631.
fo ..................... 0-0000000661 ...... 0-0000001772.
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259. The Oeneral Problem of the Internal Equilibrium of an Elas-

tic Solid is this : Given the free form of a solid, the values of its

co-efficients of elasticity, the attractions acting on its particles, and
the stresses applied to its surface : to find its change of form, and
the strains of all its particles. This problem is to be solved, in

general, by the aid of an ideal division of the solid (as already

described) into molecules rectangular in their free state, and re-

ferred to rectangular co-ordinates. For isotropic solids, some par-
ticular cases are most readily solved by means of spherical, cylin-

drical, or otherwise curved co-ordinates. The general equation of

internal equilibrium in a solid acted on by its own weight, has

already been given in Article 116, equation 2. If, in that equa-
tion, the values of the stresses in terms of the strains, expressed, as

in Article 250, in terms of the displacements of the particles, be

introduced, equations are obtained, which being integrated, give
the displacements, and consequently the strains and stresses. The

general problem is of extreme complexity ;
but the cases which

occur in practice, and to which the remainder of this chapter re-

lates, can generally be solved with sufficient accuracy by compara-
tively simple approximate methods. Most of those approximate
methods are analogous to the " method of sections

"
described in

its application to framework in Article 161. The body under
consideration is conceived to be divided into two parts by an ideal

plane of section j the forces and couples acting on one of those

two parts are computed, and they must be equal and opposite to

the forces and couples resulting from the entire stress at the ideal

sectional plane, which is so found. Then as to the distribution

of that stress, direct and shearing, some law is assumed, which if

not exactly true, is known either by experiment or by theory, or

by both combined, to be a sufficiently close approximation to the
truth.

Except in a few comparatively simple cases, the strict method
of investigation, by means of the equations of internal equilibrium,
has hitherto been used only as a means of determining whether the

ordinary approximative methods are sufficiently close.

SECTION 2. On Relations between Strain and Stress.

260. Ellipse of strain In Articles 249, 251, 252, 253, 254,

256, and 257, of the preceding section, certain general principled

respecting the relations amongst strains, and the analogies and
other relations between strain and stress, are stated without a
detailed demonstration. In the present section the more simple
cases of those principles, to which there will be occasion to refer in

the sequel, are to be demonstrated.
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Let a solid body be supposed to undergo a strain, or small

alteration of dimensions and figure, of such a nature that all the

displacements of its particles from their

original positions are parallel to one

plane ;
and let that plane be repre-

sented by the plane of the paper in

fig. 114. In the first instance, let the

state of strain of the body be uniform

throughout ;
that is, let all parts of the

body which originally were equal and
similar to each other, continue equal
and similar to each other notwithstand-

ing their alteration of dimensions and

figure.
Round any centre O, with the radius

unity, let a circle be traced amongst the

particles of the body, B CA F. Because

of the uniformity of the strain, this

circle will be changed into a parallel

projection of a circle; that is, into an

ellipse. Let b c af be that ellipse, and a
and Ob its semi-axes, the body being so placed
in its strained condition that the central par-
ticle O may remain unchanged in position, in

order that the circle and ellipse may be the

more easily compared. Then the particle which
was at A is displaced to a, and the particle
which was at B is displaced to b

;
and particles

which were at points in the circle, such as C
and F, are displaced to corresponding points
in the ellipse, such as c andy!
In the direction A, the body has undergone the extension

A a =
;

and in the direction O B, at right angles to O A, the extension

116*

and the combination of those two extensions or elementary direct

strains, in rectangular directions, constitutes the state of strain of

the body parallel to the given plane; that state of strain being
completely known, when a, /3, and the directions of the pair of

rectangular axes of strain O A, OB, are known.
One or both of the elementary strains might have been compres-

sive, instead of tensile, in which case one or both of the quantities de-

noting them would have been negative, to express diminution of size.
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A square whose sides are unity, and parallel to O A and O B,

being traced amongst the particles of the body in the free state, is

converted by the strain into a rectangle whose sides are 1 4~ a and
1 + /3, and still parallel to A and O B.

Let it now be required to express the state of strain of the body
with reference to two new rectangular axes, O C and F, that is

to say, to find the alterations of dimensions and figure produced by
the strains on a figure originally square, described on O C and O F.

Let x = O X, y = O Y, be the original co-ordinates of C, and xr

= OX', y'
= OY', those of F; and let the angle A O C = 90 -

A O F = 6. Then
x = cos 6 =

2/

y = sin 6 xf
.

Also, let x + | = Yl), y + * = OY + Dc,^be_the
co-ordinates of

c^the new position of ; and let of + % = Y'G, y' + tf = ()Y' +
Gf}

be the co-ordinates off, the new position of F. Then because
of the uniformity of the strain, the component displacements %, n, %t

tf, have the following values :

.(i.)

= ao; = a cos 6 ]

= /3 y = /3 sin 6

aaj' =
2/

otr sin 6
;

' = G~f= 13 y'
= - /3COS0.

O c and Of are the sides of the oblique parallelogram into which

the square on C and O F has been transformed by the strain.

The relations between the new and the original figure are distin-

guished into two direct strains and a distortion, in the following
manner :

From c let fall cM perpendicular to C M; and from./ let fall

/N perpendicular to F N. Then

a' = M is the extension of O C;

P = FN is the extension of OF;
and v' = c M +/2ST is the distortion or deviation from rectan-

gularity; and the values of those three new elementary strains,

relatively to the pair of axes which make the angle 6 with the

principal axes O A, O B, in terms of the principal elementary stresses,

, /3, are as follows :
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*'= i cos 6 -\- y sin 6 = at, cos
2
6 + /3 sin

2 d
;

iff = '

sin ^ n' cos 4= sin2 ^ + /3 cos
2

;

*' = sin 4 cos 4 -f- 1' cos 6 + / sin 4

= 2
(ec /3)

cos 6 sin

....(2.)

Those three equations are exactly analogous to the equations 3

and 4 of Article 112, from which they may be formed by substituting
for px,

and ft for py
in both equations; and then, in the first place,

of for pn,
and 6 for x n

;
in the second place, ft' for jt?n,

and (90 6)

for ic
?fc,

and in the third place,
'

for p(,
and 4 for x n.

This illustrates the general principle of analogy of stresses and
strains stated in Article 251. That principle is further illustrated

by the following geometrical construction of the preceding problem.

In fig. 115, make o a = a, o b ft, and draw the ellipse b c af, and
the circumscribing circle C a F. Let ^ ao C = 0, and let o F be

perpendicular to o C, so that those lines represent the direction of

the new rectangular axes, to which the strain composed of a and ft

is to be referred. Draw C c, F/j parallel to o b, cutting the ellipse
in c and/, from which points respectively draw cm -L o C, and/Ti
-L o F. Then

om = #', o T& =
/3',

2 cm = 2/w = *',

are the components of the strain, referred to the new axes; and the

ellipse of strain b c af is analogous to the ellipse ofstress of Article

112.

The results of the preceding investigation are applicable not only
to an uniform state of strain, but to a state of strain varying from

point to point of the body, provided the variation is continuous, so

that it shall be possible, by diminishing the space under considera-

tion, to make the strain within that space deviate from uniformity

by less than any given deviation.

261. Ellipsoid of strain. A strain by which the size and figure
of a body are altered in three dimensions may be represented in a
manner analogous to that of the preceding Article, by conceiving a

sphere of the radius unity to be transformed by the strain into an

ellipsoid, and considering the displacement of various particles,
from their original places in the sphere, to their new places in the

ellipsoid. The three axes of the ellipsoid are the principal axes of

strain, and their extensions or compressions, as compared with the

coincident diameters of the sphere, are the three principal elementary
strains which compose the entire strain. It is by this method, which
it is unnecessary here to give in detail, that the general principles
stated in Articles 249 and 251 are arrived at.
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262. Transverse Elasticity of an Isotropic Substance.-Let the
two principal elementary strains in one plane be of equal magnitude,
but opposite kinds; that is, supposing the strain in fig.

114 along
OA to be an extension, a-, let the strain along O B be a compression,
ft = ot. The ellipse will fall beyond the circle at A, and as

much within it at B, and will cut it at an intermediate point near
the middle of each quadrant.

Take a pair of new axes bisecting the right angles between the

original axes
; that is, let 6 = 45; then the equations 2 of Article

260 give the following result :

'=0j #=0; *' = 2*; .................. (1.)

that is to say, an extension, and an equal compression, along a pair
ofrectangular axes, are equivalent to a simple distortion relatively to

a pair of axes making angles of 45 with the original axes; and the

amount of the distortion is double tJiat of either of the two direct strains

tvhich compose it ; a proposition which is otherwise evident, by con-

sidering that a distortion of a square is equivalent to an elongation
of one diagonal, and a shortening of the other, in equal proportions.
The body being isotropic, or equally elastic in all directions, let

A be its direct and B its lateral elasticity; then the pair of principal
strains a,fi= ,

will be accompanied by a pair of principal stresses

along OA and OB respectively, given by the following equations :

along O A, px = A + B /3 = (A -
B) *

;

OB,j?, = B + A|S = (B-A).= -
p,; ...... (2.)

that is to say, there will be a pull along A, and an equal thrust

along O B.

It has already been proved, in Article 111, that such a pair of

principal stresses, of equal intensities and opposite kinds, are

equivalent to a pair of shearing stresses of the same intensity on a

pair of planes making angles of 45 with the axes of principal
stress; or taking pt

to represent the intensity of the shearing stress

on each of a pair of planes normal to the new pair of axes,

but if C be the co-efficient of transverse elasticity of the substance,
we have also

(3.)

tanc

(4.)

and consequently, for an isotropic substance,
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or the transverse elasticity is half the difference of the direct and lateral

elasticities.

This is the demonstration of a principle already stated in Article

256. The corresponding principle for pliabilities, viz. : that the

transverse pliability is twice the sum of the direct and lateral extensi-

bilities, is demonstrated by a similar process, of which the steps may
be briefly summed as follows :

upy %px= (a

. E. D................... (6.)

263. Cubic Elasticity. If the three rectangular dimensions of a

body or particle are changed in the respective proportions 1 + ,

1 + /3,
1 + <y, its volume is altered in the proportion

and when the elementary strains ec, /3, y, are very small fractions

this is sensibly equal to

l+
Consequently, as in Article 249,

may be called the cubic strain, or alteration ofvolume.
In an isotropic substance, the three rectangular direct stresses

which accompany those three strains are

(1.)

The third part of the sum of those stresses, which may be called the

mean direct stress, has the following value :

ft

3 3

The co-efficient contained in this expression, being the ratio of the

mean direct stress to the cubic strain, is the cubic elasticity, or

elasticity of volume, already mentioned in Article 256, its reciprocal

being the cubic compressibility.
264. Fluid Elasticity. The distinction between solids and fluids

is well illustrated by applying to fluids the equations of Articles 262

and 263. Fluids offer no resistance to distortion, that is, they have
no transverse elasticity; therefore for them

C = ^=-5= 0; orA==BL
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Introducing this into the equations 1 and 2 of Article 263, we find

p** =PW = P** = B
( + + y)

and the cubic elasticity

The equality of the pressures in all directions at a given point in a
fluid has already been proved by another process in Article 110.

The equations of Article 256 show the pliabilities of a perfect
fluid to be infinite, with the exception of the cubic compressibility,

which is T>- .

JD

SECTION" 3. On Resistance to Stretching and Tearing.

265. Stiffness and Strength of a Tie-Bar. If a Cylindrical or

prismatic bar, whose cross section is S (as in Article 97, fig. 46), be

subjected to a pull whose resultant acts along the axis of figure of

the bar, and whose amount is P, the intensity of the pull will be
uniform on each cross section of the bar, and will have the value

This direct stress will produce a strain, whose principal element
will be a longitudinal extension of each unit of length of the bar,
of the value

where a denotes the direct extensibility, and E its reciprocal, the

modulus of elasticity, or co-efficient of resistance to stretching, as

explained in Articles 256 and 257.

Let x denote the length of the bar, or of any portion of it, in the
free or unloaded state; that length, under the tension p, becomes

(1 + a) x.

The co-efficient

is nearly constant until p passes the limit of the proof stress; but

after that limit has been passed, that co-efficient diminishes j
that

is to say, the extension ex. increases faster than the intensity of the

stretching force p, until the bar is torn asunder.

The ultimate strength of the bar, or the total pull required to

tear it instantly asunder the proof strength, or the greatest pull
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of which it can safely bear the long-continued or repeated applica-
tion and the working load are computed by means of the formula

p=/,orP=/S, (3.)

wheref represents the ultimate tenacity, the proof tenacity, or the

working stress, as the case may be.

The toughness of the bar, or the extension corresponding to the

.proof load, is given by the formula

~~ =
! (*>

wheref is the'proof tenacity.

266. The Resilience, or spring of the bar, or the work performed
in stretching it to the limit of proof strain, is computed as follows :

x being the length, as before, the elongation of the bar under the

proof load is

fx~%j
the force which acts through this space has for its least value 0, for

its greatest value P =/S, and for its mean value ~- ; so that the
2i

work performed in stretching the bar to the proof strain is

/s fx_r s* a
2

*

E
~"

E
'

2
' "' v ;

/
2

The co-efficient ~-, by which one-half of the volume of the bar is
IS

multiplied in the above formula, is called the MODULUS OF RESI-

LIENCE.
/*S

267. Sadden Pull. A pull of ^~j or one-half of the proof load,
Z

being suddenly applied to the bar, will produce the entire proof

strain of ^, which is produced by the gradual application of the
Jii

proof load itself ; for the work performed by the action of the con-

/*S
stant force ^- through a given space, is the same with the work

performed by the action, through the same space, of a force increas-

ing at an uniform rate from up to/S. Hence a bar, to resist

with safety the sudden application of a given pull, requires to have

twice the strength that is necessary to resist the gradual applica-
tion and steady action of the same pull.

The principle here applied belongs to the subject of dynamics,
and is stated by anticipation, on account of its importance as
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respects the strength of materials. It is the chief reason for mak-
ing the factor of safety for a moving load considerably greater than
for a steady load (see Article 247).

268. A Table of the Resistance of Materials to Stretching and
Tearing, by a direct pull, in pounds per square inch, is given at the
end of the volume.
The tenacity, or resistance to tearing, given in that table, is in

each case the ultimate tenacity, being the quantity as to which

experimental data are most abundant and precise. The proof ten-

acity and working tension, when required, are to be found by
dividing the ultimate tenacity by the proper factors, according to
Article 247.

The modulus of elasticity in each case is given from experiments
made within the limits of proof strain.

Both co-efficients, for fibrous substances, have reference to the
effects of tension acting along tliefibres, or "

grain." Both the ten-

acity and the elasticity of timber against forces acting across the

grain are much smaller than against forces acting along the grain,
and are also of uncertain amount, the results of experiments being
few and contradictory.

269. Additional Data. The following are a few experimental
results in addition to those given in the table :

Welded joint of a wrought iron retort. Ultimate tena-

city, by a single experiment, in Ibs. per square inch,... 30750'
Iron wire-ropes. Strength in Ibs., for each Ib. weight per

fathom, Ultimate, 4480-

Proof,.... 2240-

"Working load J of ultimate, or J of proof strength.

Hempen cables. Ultimate strength= (girth in inches)
2 x 448 Ib.

Leathern belts. Working tension in Ibs. per square inch,

according to General Morin 285'

Chain cables, when the tendency of each link to collapse is

resisted by means of a cross-bar, as shown in fig. 116,
have a strength per square inch of cross section of the
link equal to that of the iron of which they are made,
when it is in the form of bars.

270. The Strength of Riretted Joints of iron plates
is given in the table, in Ibs. per square inch of section

of the plate, from the experiments of Mr. Fairbairn.

The strength of a double-rivetted joint is seven-tenths

of that of the iron plate, simply because of three-tenths

of the breadth of the plate being punched out in each

116. row of rivet-holes. The strength of a single-rivetted

joint is diminished not merely by the removal of the iron at the
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rivet-holes, but by the unequal distribution of the stress. Rivetted

joints will be further considered in the sequel.
271. Thin Hollow Cylinders; Boilers; Pipes. Let q denote

the uniform intensity of the pressure exerted by
a fluid which is confined within a hollow cylin-
der of the radius r, and of a thickness, t, which
is small as compared with that radius.

The demonstration in Article 179 shows, that \\ 11

if we consider a ring} being a portion of the cylin- \v Jr
der of the length unity, the tension on that ring ^==^
will be Pig. 117.

P=?r, (1.)

being the force per unit of length with which the internal pressure
tends to split the cylinder from end to end.

The sectional area of the ring under consideration is t. Then
assuming, what is very nearly correct, that the tension is uniformly
distributed, the intensity of that tension is

The ratio of thickness to radius, which a thin hollow cylinder

requires, to fit it for a given intensity of bursting pressure, proof
pressure}

or ivorking pressure, is given by the formula

/being the ultimate tenacity, the proof tension, or the working ten-

#ion, as the case may be.

It is considered prudent, in STEAM-BOILERS, to make the working
tension only one-eighth of the ultimate tenacity. The joints of

plate iron boilers are single-rivetted ;
but from the manner in

which the plates break joint, analogous to the bond in masonry,
the tenacity of such boilers is considered to approach more nearly
to that of a double-rivetted joint than that of a single-rivetted joint.
Mr. Fairbairn estimates it at 34,000 Ibs. per square inch ; so that

the values of /for wrought iron boilers may be thus stated :

Bursting tension, ................ 34,000
Proof tension, ..................... 17,000

Working tension, ............... 4,250

For CAST IRON WATER PIPES, the working tension may be made
one-sixth of the bursting tension, which for cast iron, on an average,
is 16,500 Ibs. per square inch ;

that is to say, the values of/are

Bursting tension, ............... 1 6,500
Proof tension (one-third), ...... 5,500

Working tension, ............... 2,750
U
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For steam-pipes, as for steam-boilers, the factor of safety should be

eight.

272. Thin Hollow Spheres. Let fig. 117 now be conceived to

represent a diametral section of a thin hollow sphere, filled with a

fluid which presses from within with the intensity q. The area of

the fluid cut by the section is

*r5
hence the whole force to be resisted by the tenacity of the section

of the spherical shell is

?= vqr\ (1.)

The area of the section of the spherical shell, supposing the thick-

ness t to be small as compared with the radius r, is very nearly

S = 2vrt'} (2.)

hence assuming, what is very nearly correct, that the tension is

uniform, its intensity is

or, one-half Q the tension round a cylindrical shell having the same
internal pressure, and the same proportion of thickness to radius

;

so that, in these circumstances, the sphere is twice as strong as the

cylinder.

Equation 3 gives also the longitudinal tension in a thin hollow

cylinder, which, being only one-half of the circumferential tension

round the cylinder, does not require to be considered in practice.
The proper ratio of thickness to radius in a thin hollow sphere

is given by the formula

*._!.. (4)r-2f"
"W

f being the bursting, proof, or working tension, according as q is

the bursting, proof, or working pressure.
273. Thick Hollow Cylinder. The assumption that the circum-

ferential tension, or hoop-tension as it may be called, in a hollow

cylinder is uniformly distributed, is approxi-

mately true only when the thickness is small as

compared with the radius
;
for if a ring of the

cylinder be conceived to be divided into several

concentric hoops, one within another, the tension

of the innermost hoop balances part of the radial

pressure of the confined fluid, so that a dimin-

Fig. 118. ished radial pressure is transmitted to the second

hoop, which has therefore a less tension than the first hoop, and
so on.
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Equation 2 of Article 271 gives the inean hoop-tension in a
thick as well as in a thin cylinder ;

but it is not the mean, but the

greatest hoop-tension (that is, the tension round the inner surface

of the cylinder), which is limited by the strength of the material.

The object of the present investigation is to show what law the

variation of hoop-tension follows, and thence, what relation the

maximum tension bears to the fluid pressure.
To make the solution perfectly general, it will be supposed that

the cylinder is pressed from without as well as from within. Let

fig. 118 represent a cross section of the cylinder; let R, denote its

external and r its internal radius. Let qQ denote the fluid pressure
from within, and g^ that from without ; p the hoop-tension at the

inner surface of the cylinder, and pl
the hoop-tension at the outer

surface.

Consider, as before, a ring whose length, parallel to the axis of

the cylinder, is unity. The radial section of that ring, from r to

R in fig. 118, has to sustain the difference between the total pressures
from within and without, in a direction perpendicular to the radius

O r R, on a quadrant bounded by that radius. That difference is

Conceive the ring to be divided into an indefinite number of con-

centric iioops, each of the thickness d r, and exerting a tension of

the intensity^; then the total hoop-tension will be

(1.)

From the symmetry of the ring and f the forces acting on it in

all directions round the centre 0, it is obvious that the axes of

stress of any particle of metal must be respectively in the direction

of a radius, and perpendicular to that direction. The principal
stresses at any particle are a radial pressure, q (which for each

particle at the inner surface is q0) and for each particle at the outer

surface, q } )
and a hoop-tension p.

As in the case of the ellipse of stress, Article 112, we may con-

ceive this pair of principal stresses to be made up of two component
pairs, viz. :

A pair of equal stresses of the same kind, constituting a Jiuid

pressure or tension, whose common intensity, stated so as to be a
tension when positive, a pressure when negative, is

and a pair of equal stresses of contrary kinds, whose common
intensity is
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-
2

- =n.

Thus we have p = n + m, q =n m ;
and the problem is to be

solved by first supposing m to act alone, then supposing n to act

alone, and lastly combining their effects
; observing, that the only

solutions of equation 1 which are admissible, are those which are

time for all values of E, and r.

CASE 1. Equal and similar stresses, or n= 0. In this case

p= q = m,

showing, that instead of a radial pressure, there is a radial tension

equal to the hoop-tension, and constituting along with it simply a

fluid tension of the intensity m at each point. Equation 1 is ful-

filled by making
p = q= m= constant, .................. (2.)

which reduces both sides of equation 1 to

m (R r).

CASE 2. Equal and contrary stresses, or m= 0. In this case

and the solution of equation 1 is

p = q= n=
-^

....................... (3.)

a being an arbitrary constant, and r' any value of the radius, from
r to E, inclusive

;
for this reduces both sides of equation 1 to

/I 1\
a [ ) .

\r R/

CASE 3. General solution. By combining the two partial solu-

tions of equations 2 and 3 together, we find

Radial pressure, q= n m m;

Hoop-tension, p = n + m = + m

To determine the constants a and m we have the equations

a am = q ; 2
m = ql ;

whence we obtain by elimination
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r"

(5.)

r
p2

' ""
R2 r? (")

The mean hoop-tension is

giving, finally, for the maximum Jioop-tension,

go r gi R
R, r '

which is exceeded by the maximum in the proportion

n /T?2 1 it*-\ 9 ft T?2

f. ()

a proportion which tends towards equality, as R and r become
more nearly equal.
A transposition of equation 6 gives the following value of the

ratio of the external to the internal radius, required in order that

p may be =f, the bursting, proof, or working tension, as the case

may be :

T / / J* I \

(9.)/
In most cases which occur in practice, the external fluid pressure

q {
is so small compared with the internal, that it may be neglected.
One important consequence of equation 9 is, that if the internal

pressure q is equal to or greater than the sum f+ 2 q, of the co-

efficient of strength and twice the external pressure, no thickness, how

great soever, will enable the cylinder to resist the pressure.
The following is a geometrical representation of the A

foregoing solution. In
fig. 119, let O represent the

centre of the cylinder ; O r its internal, and O R its

external radius. To represent the value of n= ,

draw two ordinates r A, R B, at right angles to the

direction of those radii, such that o

r~A : EJB : : R2
: r\

Then A and B will be points in a hyperbola of the Fig' 119 '

second order, A B, which has the property that
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area r A B R = r x fA~- R x RB;
so tliat it represents case 2.

Draw CD
||
O r R, cutting off from the ordinates the parts C A,

D B, which bear to each other the proportions

CA. : DB : : q : qv

Then r C = R D will represent m, the solution of ^ase 1 . Draw
E F

||
r R at the same distance r E = r C on the opposite side.

Then if any ordinate be drawn across the two straight lines E F
^and C D, and the curve A B, at a given distance r' from O, the

segment of that ordinate between C D and A B will represent the

radial pressure q, and the entire ordinate from E F to A B will

represent the hoop-tension p, at that distance from O
;
and in par-

ticular EA will represent the maximum hoop-tension p&
The formulse of this Article are the same with those given by

M. Lame* in his Traite de TElasticite; but they are arrived at in a

different manner.

274. Cylinder of Strained Rings. To obviate, in whole or in

part, the unequal distribution of the hoop-tension in thick hollow

cylinders for withstanding great pressures, it has been proposed to

construct such cylinders of concentric hoops or rings built together,
the outer hoops being "shrunk" on to the inner hoops, in such a

manner, that before any internal pressure is applied, the hoops
within a certain distance of the centre may be in a state of circum-

ferential compression, and those beyond that distance in a state of

circumferential tension. If the stress thus produced by the mutual
action of the concentric hoops could be adjusted with such accuracy,
as to be at each point exactly equal and opposite to the difference

between the actual hoop tension at the same point due to the

internal pressure, as given by equations 4, 5, and 6, of Article 273,
and the mean hoop-tension as given by equation 7, then upon
applying the proper internal pressure, there would result simply an
uniform tension equal to the mean, and the formulse of Article 271
would become applicable to thick as well as to thin cylinders.
Even although it may be impracticable to adjust the previous stress

with the accuracy above described, any approach to its proper
distribution must increase the strength of the cylinder. This

method of construction has been carried into effect in Captain

Blakely's gun, Mr. Mallet's mortar, and some other pieces of artillery.
The only equation which the stress of the concentric hoops will

of itself fulfil is
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275. Thick Hollow Sphere. Let fig. 118 now represent a diame-

tral section of a hollow sphere, the fluid pressures within and
without being q and qlt

as before. The pressure to be resisted at

the section is

^fer
2

?iR
2

);

and if the section of the metal be conceived to be divided into an
indefinite number of concentric rings, the breadth of one of these

rings being dr, its radius r', and the tension at it p, it appears that

the total resistance of the section will be

2v f^pr' dr;
J r*

and hence the equation to be fulfilled, for all values of q , qlt r, and

R, is

2 pr'dr= q r- ?iK
2
.................. (1.)

From symmetry it appears, that the axes of stress at any particle
must be, one in the direction of a radius, with the pressure q along
it, and the other two in any two directions perpendicular to the

first and to each other, with equal tensions p along them. Two
partial solutions are obtained in the following manner :

Let 2p q

BO that

p= n-\-m'} q= 2n ra.

CASE 1. n = Q, p = q=m', being the case of afluid tension,

equal in all directions. In this case, equation 1 is solved by making

p = q = m = constant, , ............. -.(2.)

which reduces both sides of that equation to

m(R
2 r 2

)

CASE 2. m = 0, p=-=n; being the case of a pair of circumfer-

ential tensions, each equal to half of the radial pressure. In this

case, equation 1 is solved by making

which reduces both sides of that equation to

-'-8-
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CASE 3. General solution.

2a
q=2n m = ^ m, \

\

The constants a and m, deduced from the equations

2a 2a
?o =

-^f
m; 21== m

,

are found by elimination to have the following values :

2(K
S r 3

)

R 3 r 3

giving finally, for the maximum tension,

(5.)

A transformation of this equation gives the following value of

ratio of the external to the internal radius of the sphere, required
in order that p may be =

f, the bursting, proof, or working ten-

sion, as the case may be :

This equation shows, that if

no thickness will be sufficient to enable the sphere to withstand

the pressure.
The formulae of this Article agree with those given by M. Lame,

though arrived at by a different process.

276. Boiler siays. The sides of locomotive fire-boxes, the ends

of cylindrical boilers, and the sides of boilers of irregular figures
like those of marine steam engines, are often made of flat plates,

r
, which are fitted to resist the pressure from withinooo

[^

ooj by being connected together across the water-spaceoooo or steam-space between them by tie-bars, called

stays when long, bolts when short. For example,

fig.
120 represents part of the flat side of a loco-oooo motive fire-box, and shows the arrangement of the

Fig. 120. bolts by which it is tied to the flat plate at the

other side of the water-space.
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Each of these bolts or stays sustains the pressure of the steam

against a certain area of the plate to which it is attached. Thus,
in fig. 120, the bolt a resists the pressure of the steam on the square
area which surrounds it, and whose side is equal to the distance

from centre to centre of the bolts.

Let a be the sectional area of a stay ; A, that of the portion of

flat plate which it holds ; q, the bursting, proof, or working pres-

sure, and/the ultimate, proof, or working tension of the material

of the stay. Then

fa = q A.

The proper factor of safety is eight, as for other parts of boilers.

Experience has shown, that the plate, if its material is as strong as

that of the stay, should have its thickness equal to half the dia-

meter of the stay. If the plate be of a weaker material than the

stay, its thickness should be proportionally increased.

The flat ends of cylindrical boilers are sometimes stayed to the

cylindrical sides by means of triangular plates of iron called "
gus-

sets" These plates are placed in planes radiating from the axis of

the boiler, and have one edge fixed to the flat end, and the other

to the cylindrical body. Each gusset sustains the pressure of the

steam against a sector of the flat circular end. Considering that

the resultant tension of a gusset must be concentrated near one

edge, it appears advisable that its sectional area should be three or

four times that of a stay-bar suited for sustaining the pressure on
the same area.

The best experimental data respecting the strength of boilers are

due to the researches of Mr. Fairbairn, especially those recorded in

his work called Useful Informationfor Engineers.
277. Suspension Rod of Uniform Strength. In fig. 121, let W

be a weight hung from the lower end of a vertical rod , ,

B C, whose weight per unit of volume is w, and let it be \ /
required to find how the transverse section S of the rod
must vary with the height x above B, in order that the

tension may be everywhere of equal intensity/
The total load at any point is, "W from the weight hung

at B, w \ Sdx from the weight of the rod for a height x

above B; and this must be equal to the pull /S. Hence ^f""

W + w f"
o
&dx=fS; (1.) Fig.121.

which being solved, gives for the cross section of the rod,

Ty -*

S = .e7; (2.)
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and for its weight, for a height x above B,

/S W = W (e? 1) (3.)

The most useful application of this is to the determination of the

dimensions of the pump-rods of deep mines. They are not made

with the section varying continuously, according to the formula
"2,

but in a series of divisions, each of uniform scantling ;
neverthe-

less that formula will serve to show approximately the law which

tlie dimensions of those divisions should follow.

SECTION 4. On Resistance to Shearing.

278. Condition of Uniform intensity The present section refers

to those cases only in which the shearing stress on a body is uni-

form in direction and in intensity. The effects of shearing stress

varying in intensity will be considered under the head of Resist-

ance to Bending, which is in general accompanied by such a stress
;

and the effects of shearing stress varying in direction as well as in

intensity under the head of Resistance to Torsion.

It has been shown in Article 103 that shearing stresses can only
exist in pairs, every shearing stress on a given plane being neces-

sarily accompanied by a shearing stress of equal intensity on

another plane. In Article 112, Problem II., it is shown that for

any combination of stress parallel to a given plane, the planes rela-

tively to which the shearing stress is greatest are at right angles to

each other, and make angles of 45 with the axes of principal stress.

When equal forces are applied to the opposite sides of a wedge,
bolt, rivet, or other body, in such a manner as to tend to shear it

into two parts at a particular transverse plane of section, then at

any given point in that transverse sectional plane the shearing
stress is of equal intensity relatively to that plane itself, and to a

longitudinal plane traversing the same point, perpendicular to the

direction of the externally-applied shearing forces. If the wedge,
bolt, or rivet is loose in its hole or socket at and near the plane of

shearing, there can be no shearing stress on those free parts of its

external surface which are at right angles to the direction of the

external shearing force ; and hence the intensity of the shearing
stress at the plane of shearing, how great soever it may be in the

internal parts of the body, must diminish to nothing at certain

parts of the external edges of that sectional plane, and must be

unequally distributed
;

so that the most intense shearing stress

must be greater than the intensity of a stress of equal amount uni-

formly distributed.

To insure uniform distribution of the stress, it is necessary that

the rivet or other fastening should fit so tight in its hole or socket,
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that the friction at its surface may be at least of equal intensity to

the shearing stress. "When this condition is fulfilled, the intensity
F

of that stress is represented simply by -g
; F being the shearing

force, and S the sectional area which resists it.

279. A Table of the Resistance of Materials to Shearing and Dis-

tortion, in Ibs. avoirdupois per square inch, is given at the end of

the volume. It is of small extent, because of the small number of

substances whose resistances to shearing and distortion have

been ascertained by satisfactory experiments. The resistance of

timber to shearing is in each case that which acts between conti-

guous layers of fibres.

280. Economy of Material in Bolts and Rivets. There are many
structures, such as boilers, wrought iron bridges, and frames of tim-

ber or iron, in which the principal pieces, such as plates, links, or bars,

being themselves subjected to a direct pull, are connected with each

other at their joints by fastenings, such as rivets, bolts, pins, or

keys, which are under the action of a shearing force. It is in every
such case important, that the pieces connected and their fastenings
should be of equal strength ;

for if the fastenings be the weaker,
either the whole structure is insufficiently strong, or the material

which gives the additional strength to the plates or bars is wasted :

and if the fastenings be the stronger, the plates and bars are weak-
ened more than is necessary by the holes or sockets

j
and as before,

either the structure is too weak, or material is wasted.

Let f denote the resistance per square inch of the material of

the principal pieces to tearing j S, the total sectional area, whether

of one piece or of two or more parallel pieces, which must be torn

asunder in order that the structure may be destroyed; f, the

resistance per square inch of the material of the fastenings to shear-

ing; S', the total sectional area of fastenings at one joint, which
must be sheared across in order that the structure may be destroyed ;

then, if the conditions of uniform distribution of stress are fulfilled,

the principal pieces and their fastenings ought to be so propor-

tioned, that

/S=/S' ;<*!'
= (1.)

For wrought iron rivetted plates, taking the value off from the

table (as determined by the experiments of Mr. Doyne), we have

-,= 1 nearly, and.-. S'=S (2.)

For wrought iron bars connected by bolts or rivets, we have

=
I nearly, and. . S' =

|
S (3.)
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Example I. Plate-joint overlapped, single-rivetted. Fig. 122. A,
front view

; B, side view. Let
g _ thickness of plate.
7 ). /. . ,d= diameter of nvet.

c = distance from centre to centre of rivets.

Fig. 122. Then

Sectional area of one rivet

S Sectional area of plate between two holes

._ 0-7854 d\~
t (cd)

'

so that, d and t being given, and c required, we have

0-7854 d 2

C ~~~
t

(5.)

d in practice is usually from 2 1 to l^t ; and the overlap from c

ii to ITS- c.

6 "6 5
"

ocoo 1

Example II. Plate-joint overlapped, double-
3

rivetted. Fig. 123.

Sectional area of two rivets

S Sectional area of plate between two holes in same line

A
Fig. 123.

(c d)
3

1-5708 d2

(6.)

(7.)

Overlap in practice = Ifcto Ifc.

Example III. Plate Butt-joint, with apair
of covering plates, single-rivetted. Pig. 124.

5
Here each rivet can give way only by being

}
sheared across in two places at once ;

there-

fore
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Example IV. Plate Butt-joint, with apair ofcoveringplates, double-

rivetted. Fig. 125.

Sf 4 x Sectional area of rivet

Sectional area of plate between two holes in one row

..8-U16J. ,m
-t(c d)'-

-^ >

.:c= 3

-l^+d (11.)

Length of each covering-plate = 2 x overlap

= from 3J to 3J c.
-pig. 125.

NOTE. The length of a rivet, before being clenched, measuring
from the head, is about 4^ t for overlapped-joints, and 5 t for

butt-joints with covering-plates.

Example V. Suspension bridge chain-joint. The chain of a sus-

pension bridge consists of long and short links alternately. Each

long link consists of one or more, say of n, parallel flat bars, of a

shape resembling fig. 64, Article 138, placed side by side; each bar

has a round eye at each end. Each short link consists of n + 1

parallel flat bars, with round eyes at their ends, which are placed
between and outside of the ends of the parallel bars of the long
links

;
so that the end of each long bar is between the ends of a

pair of short bars. The eyes of the long and short bars at each

joint form one continuous cylindrical hole or socket, into which a
bolt or pin is fitted, to connect the links together. To break the

chain at a joint, by the giving way of the bolt, that bolt must be

sheared across at 2 n places at once. Hence, let S denote the total

sectional area of the bars in a link, and d the diameter of the bolt;
then S' == 2 n x 07854 d2 = 1-5708 n d2

; and because S' should

be = -
S, we have

281. Fastenings of Timber Ties. In timber framing, a tie may
be connected with the adjoining pieces of the frame either by having
their ends abutting against notches cut in the tie (as shown at A, A,
fig. 81, Article 161), or by means of bolts or pins. In either case,
the tie may yield to the stress in two ways, by being torn asunder
at the place where its transverse section is least (that is, where it is

notched or pierced, as the case may be), or by having the part
beyond the notch, or beyond the bolt-hole, sheared off or sheared
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out, as the case may be. In order that the material may be econo-

mically used, equation 1 of Article 280 should be fulfilled, viz. :

(1.)

This condition serves to determine the distance of the notch, or of

the bolt-hole, or of the nearest bolt-hole where there are more than

one, from the end of the tie, in the following manner : .

Let h be the effective depth of the tie, left after deducting the depth
of the notch, or the diameters of bolt-holes, and d the distance of

the notch, or of the nearest bolt-hole, from the end of the tie
;
then

for a notch
B d f

and for bolt-holes, if n be their number,

'

.................. ( }

In determining the number n, it is to be observed, that if two or

more bolts pierce the same layer offibres, the resistance to the shearing
out of the part of that layer between the end of the tie and the most
distant of the bolts is nearly the same as if that bolt existed alone ;

so that the most distant only of such a set of bolts is to be reckoned in

using equation 3. In general, the piercing of the same layer of

fibres by more than one bolt is unfavourable to economy.

SECTION 5. On Resistance to Direct Compression and Crushing.

282. Resistance to Compression, when the limit of proof stress is

not exceeded, is sensibly equal to the resistance to extension, and is

expressed by the same " modulm of elasticity" already mentioned
and explained in Articles 257, 265, 266, and 268. When that

limit is exceeded, the irregular alterations undergone by the figure
of the substance render the precise determination of the resistance

to compression difficult, if not impossible.
283. Modes of Crushing. Splitting, Shearing, Bulging, Buckling,

Cross-breaking. Crushing, or breaking by compression, is not a

simple phenomenon like tearing asunder, but is more or less complex
and varied, according to the texture of the substance. The modes
in which it takes place may be classed as follows :

I. Crushing by splitting (fig. 126) into a number of prismatic

fragments, separated by smooth surfaces whose general direction is

nearly parallel to the direction of the crushing force, is characteristic
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of hard homogeneous substances of a glassy texture, such as vitrified

bricks.

Fig. 126. Fig. 127. Fig. 128. Fig. 129.

II. Crushing by shearing or sliding of portions of the block along

oblique surfaces of separation is characteristic of substances of a

granular texture, like cast iron, and most kinds of stone and brick.

Sometimes the sliding takes place at a single plane surface, like

A B in fig. 127; sometimes two cones or pyramids are formed, like

c, c, in fig. 128, which are forced towards each other, and split or

drive outwards a number of wedges surrounding them, like w, w, in

the same figure. Sometimes the block splits into four wedges, as

in fig. 129.

The surfaces of shearing make an angle with the direction of the

crushing force, which Mr. Hodgkinson (who first fully investigated
those phenomena) found to have values depending on the kind and

quality of material. For different qualities of cast iron, for example,
that angle ranges from 42 to 32. The greatest intensity of shearing
stress is on a plane making an angle of 45 with the direction of the

crushing force ;
and the deviation of the plane of shearing from that

angle shows that the resistance to shearing is not purely a cohesive

force, independent of the normal pressure at the plane of shearing,
but consists partly of a force analogous to friction, increasing with

the intensity of the normal pressure.
Mr. Hodgkinson considers that in order to determine the true

resistance of substances to direct crushing, experiments should be

made on blocks in which the proportion of length to diameter is not

less than that of 3 to 2, in order that the material may be free to

divide itself by shearing. "When a block which is shorter in pro-

portion to its diameter is crushed, the friction of the flat surfaces

between which it is crushed has a perceptible effect in holding its

parts together, so as to resist their separation by shearing; and thus

the apparent strength of the substance is increased beyond its real

strength.
In all substances which are crushed by splitting and by shearing,

the resistance to crushing considerably exceeds the tenacity, as an
examination of the tables will show. The resistance of cast iron

to crushing, for example, was found by Mr. Hodgkinson to be

somewhat more than six times its tenacity.
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III. Crushing by bulging, or lateral swelling and spreading of

the block which is crushed, is characteristic of ductile and tough

materials, such as wrought iron. Owing to the gradual manner
in which materials of this nature give way to a crushing force, it

is difficult to determine their resistance to that force exactly; that

resistance is in general less, and sometimes considerably less, than

the tenacity. In wrought iron, the resistance to the direct crush-

ing of short blocks, as nearly as it can be ascertained, is from

2 4
- to - of the tenacity.
o o

IY. Crushing by buckling or crippling is characteristic of fibrous

substances, under the action of a thrust along the fibres. It consists

in a lateral bending and wrinkling of the fibres, sometimes accom-

panied by a splitting of them asunder. It takes place in timber,
in plates of wrought iron, and in bars longer than those which give

way by bulging. The resistance of fibrous substances to crushing
is in general considerably less than their tenacity, especially where

the lateral adhesion of the fibres to each other is weak compared
with their tenacity. The resistance of most kinds of timber to

1 2
crushing, when dry, is from ^ to - of the tenacity. Moisture in the

J o

timber weakens the lateral adhesion of the fibres, and reduces the

resistance to crushing to about one-half of its amount in the dry
state.

V. Crushing by cross-breaking is the mode of fracture of columns
and struts in which the length greatly exceeds the diameter. Under
the breaking load, they yield sideways, and are broken across like

beams under a transverse load. This mode of crushing will be con-

sidered after the subject of resistance to bending.
2S4. A Table of the Resistance of Materials to Crushing by a

Direct Thrust, in pounds avoirdupois per square inch, is given at

the end of the volume. So far as that table relates to the strength
of brick and stone, reference has already been made to it in Article

235. It is condensed from the experimental data given by various

authorities, especially by Tredgold, Mr. Fairbairn, Mr. Hodgkinson,
and Captain Fowke.

285. Unequal Distribution of the Pressure On a pillar arises from
the line of action of the resultant of the load not coinciding with
the axis of figure of the pillar, so that the centre ofpressure of a
cross section of the pillar does not coincide with its centre offigure,
but deviates from it in a certain direction by a certain distance,
which may be denoted by TQ.

In this case the strength of the pillar is diminished in the same
ratio in which the mean intensity of the pressure is less than the
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maximum intensity; that is to say, in a ratio which may be

denoted by
mean intensity _ /?

maximum intensity pL
"

That ratio may be found with a precision sufficient for practical

purposes, by considering the pressure at any cross section of the

pillar as an uniformly varying stress, as denned in Article 94.

Consequently the following is the process to be pursued :

Find, by the methods of Article 95, the principal axes and
moments of inertia of the cross section of the pillar j

and thence

determine the neutral axis conjugate to the direction of the devia-

tion r . Let d be the angle made by that axis with the direction of

the deviation r
; then the perpendicular distance of the centre of

pressure from the neutral axis will be

XQ
= r sin 6.

Find the moment of inertia of the cross section relatively to the
neutral axis, and denote it by I

;
then from equations 1, 2, and 4

of Article 94, it appears that if x\ be the greatest perpendicular
distance of the edge of the cross section from the neutral axis in the
same direction with X

Q) the greatest intensity of pressure will be

in which a= *j =
XQpo

.
S

.

j

................ (I-)

P being the total pressure, and S the area of the section of the

pillar. Consequently the ratio required is

Pl

Values of S, for certain symmetrical figures, and of I for the

principal axes of these figures, have already been given in the table

of Article 205, from which are computed the following values of the

factor -=- in the denominator of the preceding formula :

FIGURE OF CROSS SECTION.
-j-.

I. Rectangle, h b; b, neutral axis, ) 6
II. Square, A2

, ....... , .................. f
.................

^

III. Ellipse : neutral axis, b
',
other axis, hj\ 8

IY. Circle : diameter, h, ........................
J

....... "

x
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V. Hollow rectangle : outside dimensions, 7i, b', ) 6 h (h b tib')

inside dimensions, h', b'
;
neutral axis, &,... j 7^5 #35*

/ 7

VI. Hollow square, h2
h'

2
, .* , 2 . , ,a

.

Q T

VII. Circular ring : diameter, outside, h ; inside, h', .

286. Limitations of the Preceding Formulae. The formulae of

the preceding Article of this section have reference to direct crush-

ing only, and are therefore limited in their application to those

cases in which the pillars, blocks, or struts along which the pres-
sure acts are not so long in proportion to their diameter as to have
a sensible tendency to be crushed by bending. Those cases com-

prehend
Stone and brick pillars, and blocks of ordinary proportions ;

Pillars and struts of cast iron, in which the length is not more
than five times the diameter, approximately ;

Pillars and struts of wrought iron, in which the length is not

more than ten times the diameter, approximately ;

Pillars and struts of dry timber, in which the length is not more
than about twenty times the diameter.

287. Crushing and Collapsing of Tubes. When a hollow cylin-
der is exposed to a pressure from without, there is a circumferen-

tial thrust round it, whose greatest intensity takes place at the

inner surface of the cylinder, and may be computed by suitably

modifying the formulae of Article 273. That is to say, let E and
r denote respectively the outer and inner radii of the cylinder,

qi the intensity of the radial pressure from without, <^
that of the

radial pressure from within, and let p now denote, not a tension,

but a thrust, viz., the maximum circumferential thrust which acts

round the inner surface of the cylinder. Then reversing the signs
of the second side, of equation 6 of Article 273, we obtain

When the pressure from within is null or insensible, this becomes

and supposing the material to give way by direct crushing, the

proper ratio of the internal to the external radius is given by
the equation
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K

^ being tlie -working, proof, or crushing external pressure, and f
the working, proof, or crushing thrust of the material, as the case

may be.

This formula gives correct results for thick hollow cylinders. But
where the thickness is small (as in the internal flues of boilers), the

cylinder gives way, not by direct crushing, but by COLLAPSING, which,
as it consists in an alteration of figure, is analogous to crushing by
bending. According to Mr. Fairbairn's experiments, published in

the Philosophical Transactions for 1858, the intensity of the pressure
from without which makes a thin wrought iron tube collapse is in-

versely as the length, inversely as the radius, and directly as the

power of the thickness whose index is 2 '19. In most calculations

for practical purposes, the square of the thickness may be used in-

stead of that power. For plate iron flues, let I be the length, d the

diameter, t the thickness, all in the same units of measure, and let

q be the collapsing pressure in Ibs. on the square inch ; then

.(4.)

Mr. Fairbairn strengthens long flues by means of rings of T-iron ;

in which case I is the distance between two adjacent rings.

SECTION 6. On Resistance to Bending and Cross-Breaking.

288. Shearing Force and Bending Moment in General. It has

already been shown, in Articles 141 and 142, how to determine the

proportions between the resultant of the gross load of a beam and
the two forces which support it, whether those three forces are

perpendicular or oblique to the beam, and whether they are par-
allel or inclined to each other. In the present section those cases

alone will be considered in which the loading and supporting forces

are perpendicular to the beam, and parallel to each other, and in one

plane ; for such forces alone tend simply to bend the beam, and if

sufficiently great, to break it across.

In Article 161 it has been shown how to determine the resist-

ances exerted by the pieces of a frame which are cut by an ideal

sectional plane, in terms of the forces and couples which act on one

of the portions into which that plane of section divides the frame j

and in Articles 162, 163, 164, and 165, that metliod of sections, as

it is called, has been applied to the determination of the stresses
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acting along the bars of half-lattice or Warren girders and of lattice

girders.
The method followed in determining the effect of a transverse

load on a continuous beam is similar ; except that the resistance at

the plane section, which is to be determined, does not consist of a

finite number of forces acting along the axes of certain bars, but of

a distributed stress, acting with various intensities, and, it may be,

in various directions, at different points of the section of the beam.

In what follows, the load of the beam will be conceived to con-

sist of weights acting vertically downwards, and the supporting
forces will also be conceived to be vertical. The longitudinal axis

of the beam being perpendicular to the applied forces, will accord-

ingly be horizontal. The conclusions arrived at will be applicable
to cases in which the axis of the beam and the direction of the

applied forces are inclined, so long as they are perpendicular to

each other.

Let any point in the longitudinal axis of the beam be taken as

the origin of co-ordinates ; and at a given horizontal distance x
from that origin, conceive a vertical section perpendicular to the

longitudinal axis to divide the beam into two parts. To fix the

ideas, let horizontal distances to the < .

e
, , > be considered as

{ ^tive }
*>

let vertical Dances and forces in an
j d^^d }

direction, be considered as <
negative I

> an(* *e* *^e moments ^

couples be (
Posife

1 according as they are I ^;
h
,

and
,

ed
, 1 .

} negative / ( right-handed /
Let F denote the resultant of all the vertical forces, whether

loading or supporting, which act on the part of the beam to the
left of the vertical plane of section, and let x' be the horizontal
distance of the line of action of that resultant from the origin.

If the beam is strong enough to sustain the forces applied to it,

there will be a shearing stress whose amount is equal to F, distri-

buted (in what manner will afterwards appear) over the given
vertical section

; and that shearing stress, or vertical resistance,
will constitute, along with the applied force F, a couple whose
moment is

M = F(or-oj) (1.)

This is called the bending moment or moment offlexure of the beam
at the vertical section in question ; and it is resisted by the normal
stress at that section, in a manner to be explained in the sequel.

If the bending moment is {
Posi*iye I it tends to make the

( negative j
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originally straight longitudinal axis of the beam become concave
( upwards )

(
downwards

j

'

The determination of the magnitude and position of the resultant

F consists simply in finding the resultant of a number of parallel
forces in one plane, as explained in Article 44, the supporting
forces having first been found by the principles of Articles 39 and
141. These processes are expressed by general formulae as fol-

lows :

CASE 1. The load applied at detached points. Let "W denote one
of the weights of which the load consists ; x" its horizontal distance

from the origin ;
then

2 W is the total load, made negative as acting downwards ;

and
2 x"W is its moment relatively to the origin.

Let x
l and x2 be the horizontal distance of the points of support

from the origin, and let Pj, P2,
be the supporting forces

; then to

determine those forces we have the conditions of equilibrium

Pi-HP,- 2-

.(2.)

from which follow the equations

x., 2 W - 2 x"W
1
=

x -x
~

j

Xi 2 'W - 2
' X"W

2
=

To show how the shearing force and moment of flexure at any
cross section are found, let W be applied to the left of the origin,
and let the plane of section, whose distance from the origin is x, lie

between P
x
and P2 j

then the force acting on the beam to the left

of x will be

and the moment of flexure

M = fa-x)

(3.)

the symbol 2* 1

denoting in each case, that the summation extends

to that part of the beam only which lies between the given plane
of vertical section and the point of support (if any) to the left of

that plane.
CASE 2. The load continuously distributed. On any indefinitely

short division of the beam whose length is d x
t
and distance from
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the origin x", let the intensity of the load per unit of length be w.

Then in the equations 2 and 3, given above, it is only necessary to

substitute w d x for W, and the sign I for the sign 2.

289. In Beams Fixed at One End Only, and loaded on the pro-

jecting portion, as in fig. 67 of Article 141, and figs. 133 to 136 of

a subsequent Article, the shearing force and moment of flexure can

be determined for any vertical section of the projecting part of

the beam, without considering the supporting pressures.
Let the plane at which the beam is fixed be taken as the origin ;

let c be the length of the projecting part of the beam. The results

in the cases most important in practice are given in the following
table :

EXAMPLE.



MOMENTS OF FLEXURE.

If the load is symmetrically distributed,

2 a?"W =
0,

^-Vvir^ Jin

311

and

The equations 3 of Article 288 also become

F = P
l
- 2 -W;

M = (c-x)?l
-?e

x >(x"-x)W

and for a symmetrically distributed load,

F = s-Wj M = (c-)2S'W-si-

.(2 A.)

,...(3.)

,(3 A.)

The results in the cases most important in practice are given in

the following table :
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for beams supported at both ends, I = 2 c = the span ; for an uniform

load, W = wl. Hence, comparing equation 1 with Examples I.,

II., IV., V., and VI. of Articles 289 and 290, we find the follow-

ipg values of the factor m :

m
I. Beam fixed at one end, loaded at the other, ...... 1.

II. Beam fixed at one end, loaded uniformly,........
^.

IV. Beam supported at both ends, loaded in the )

middle, ............................................. J 4'

V. Beam supported at both ends, loaded at x" ) 1 / 4:XI>2\

from the middle, ................................. j 4 \
l
~~lr~)'

VI. Beam supported at both ends, uniformly loaded, j%

292. Uniform moment of Flexure. If a pair of equal and oppo-
site couples, acting in the same longitudinal plane, be applied at

or near the ends of a beam, the part of the beam intermediate

between the portions to which the couples are applied is under the

influence of an uniform moment offlexure, and of no shearingforce.
An illustration of this is the condition of that part of the axle

of a railway carriage which lies between the pair of wheels, if the

bearings are outside of the wheels, or between the bearings if the

bearings are inside of the wheels. Let W be the weight which
W

rests on one pair of wheels ;
then is the weight resting on each

2i

wheel, and on each bearing. Let I be the distance from the centre

of each wheel to the middle of the adjoining bearing. Then a pair
of equal and opposite couples, each of the moment,

are applied to the two ends of the axle
; and this is the uniform

moment of flexure of the portion of the axle lying between the

portions acted upon by the forces which constitute the couples;
and the shearing force on the same portion is null.

293. Resistance of Flexure means, the moment of the resistance

which a beam opposes to being bent or broken across ;
and if the

beam is strong enough, that moment, at each cross section of the

beam, is equal and opposite to the moment of the bending forces

at the same cross section.
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Let fig.
130 represent a side view of part of a beam which is of

uniform cross section, and which is sub-

jected to an uniform moment of flexure;

and let fig.
130* represent the cross sec-

tion of the same beam. It is self-evident

that the curvature produced in the part
of the beam in question must be uniform

;

that is to say, that any longitudinal line in Fi - 13 -

the beam, such as its upper edge A A', or its lower

edge BB', which in the free condition of the beam
is straight, must be bent into an arc of a circle

;
and

that any surface originally plane and longitudinal,
and perpendicular to the plane in which the curva-

ture takes place, such as the upper surface A A', or

the lower surface B B', must be bent into a cylin-
drical form ; and the cylindrical surfaces so produced
will have a common axis. Any two transverse sectional planes, such

as A B and A B', which in the free state of the beam are parallel to

each other, will have, in the curved state of the beam, positions

radiating from the axis of curvature.

Therefore, if the portion of the beam between the transverse

planes A B, A' B', be conceived to be divided into layers, such as

CO', originally plane, parallel, and of equal length, these layers,
in the bent condition of the beam, must have lengths proportional
to their distances from the axis of curvature. The layers near the

concave side of the beam, A A', are shortened by the bending, and
the layers near the convex side, B B', lengthened ;

and there must
be some intermediate layer which is neither lengthened nor short-

ened, but preserves its free length. Let O 0' be the surface origi-

nally plane, now curved, at which that layer is situated ;
this is

called the neutral surface of the beam, and the line O 0, fig. 130%
in which it intersects a given cross section, is called the neutral

axis of that section.

The direct strains, or proportionate elongations and compressions,
of the layers of the beam are proportional to their distances below
and above the neutral surface; and hence, within the limits of

proof stress, the direct stresses, or tensions and pressures, at the

different points of the cross section AB, fig. 130*, have intensities

sensibly proportional to their distancesfrom the neutral axis O.

Therefore the direct stress at each section, such as A B, whose
moment constitutes the resistance to bending, is an uniformly-vary-
ing stress, as defined in Article 91

;
and in order that the longi-

tudinal resultant of that stress may be null, the neutral axis (as
shown in that Article) must traverse the centre of gravity of the

cross section A B.
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The moment of a bending stress has already been given in Article

92, equations 3 and 4
; and the methods of determining the inte-

grals I and K, which occur in those equations, have been explained
and illustrated in Article 95.

To apply the equations of those Articles to the present purpose,
let p be the intensity of the direct stress at a layer of the beam
whose distance from the neutral axis is y : height above the neutral
axis being considered as positive, and depth below it as negative.
Then because a moment of flexure tending to make the beam con-

cave upwards has been treated as positive, it is convenient, in order
to avoid the unnecessary use of negative signs, to consider the con-

stant ratio - as positive when it is such as to give resistance to an

upward moment of flexure
;
that is, when p is a thrust for positive

values of y, and a pull for negative values ; consequently, p is to

be considered
{P^ }

according aS it is a

This being understood, we have, for the moment of the resistance

opposed by the beam to bending,

(1.)

and for the angle made by the neutral axis with the direction of

the axes of the bending couples,
T7-

V- = - arc tan
j .................... (2.)

I and K being found by the methods of Article 95.

In some cases, a more convenient form of equation 2 is that
which gives &, the angle made by the neutral axis with its conju-

gate aods, in which the plane of the bending forces cuts the plane
of section A B, viz. :

cotan 6 = 5 ........................ (3.)

In almost every case which occurs in practice, the plane of the

bending forces cuts each cross section of the beam in one or other

of its principal axes, for which K = 0, ^ = 0, = 90; and then equa-
tion 1 becomes

M=** ............................ (4.)
y

In beams whose transverse sections and moments of flexure are not

uniform, no error appreciable in practice is produced by applying
equation 4 to each cross section, and to the moment of flexure which
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acts upon it, as if the given section and moment belonged to an
uniform beam with an uniform moment of flexure.

294. The Transverse strength of a beam, ultimate, proof, or work-

ing, as the case may be, is the load required to break it across, or

to produce the proof stress or the working stress, as the case may
be. It is found by equating the greatest moment of flexure, ex-

pressed in terms of the load and length, as in Article 291, to the

moment of resistance at the cross section where that moment of

flexure acts : such moment of resistance being found from the equa-
tions of Article 293, by putting for p the ultimate, proof, or

working direct stress of the material, as the case may be, and for

y the distance from the neutral axis to the point in the given cross

section where the limiting stress p is first attained. That point

will be at the <
c ncave

I side of the beam, according as the mate-
(
convex

J
,
reassure )

rial gives way most readily to
| Jengion>

'

j
In fig. 131, A represents a beam of a granular material, like cast

iron, giving way by the crushing
of the concave side, out of which
a sort of wedge is forced. B re- v"" A

__
presents a beam giving way by

"~~

4
"

the tearing asunder of the con- Fig. 131.

vex side.

In a beam symmetrical above and below, or otherwise of such a
form that the neutral axis is at the .middle of the depth of the
cross section, if h is that depth,

and the limiting value ofp is the resistance to pressure or to ten-

sion, whichever is least.

For other forms of section, let

y = ya for the concave side j and
= yb for the convex side ;

and let the limiting stresses be

p =fa for pressure j and
=fb for tension ;

then the beam will give way by \ +

us
.

m
^> I according as ^ is

( tearing J yb

.............................. a.)

This point having been determined, the equation from which the

strength of the beam may be found is
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M. =mWl = ^
(2.)

t/

"When the breaking load is in question, the co-efficient/ is what
is called the modulus of rupture of the material. It does not always

agree with the resistance of the same material to direct crushing or

direct tearing, but has a special value, which can be found by
experiments on cross-breaking only. One of the causes of this

phenomenon is probably the fact, already stated in Article 257,
that the resistance of a material to a direct stress is increased by
preventing or diminishing the alteration of its transverse dimen-
sions

; and another cause may be the fact, that the strength of

masses of metal, especially when cast, is greater in the external

layer, or skin, than in the interior of the mass. When a bar is

directly torn asunder, the strength indicated is that of the weakest

part of the mass, which is in the centre
;
when it is broken across,

the strength indicated is that either of the skin, which is the

strongest part, or of some part near the skin (See the Article 296).
"When the proof load or working load is in question, the co-effi-

cient /is the modulus of rupture divided by a suitable factor of
safety, as to which see Article 247.

295. Transverse Strength in Terms of Breadth and Depth. From
the principles explained in Article 95, it is obvious that the

moments of inertia, I, of similar sections are to each other as the

breadths, and as the cubes of the depths. If, therefore, b be the

breadth, and h the depth, of the rectangle circumscribing the cross

section of a given beam at the point where the moment of flexure

is greatest, we may put
I = ribh* (1.)

n' being a numerical factor depending on the form of the section.

It is also evident, that for similar figures, the values of y are as

the depths ;
so that we may put

y = m'h
(2.)

m' being another numerical factor depending on the form of section.

If the section is symmetrical above and below, m' = ^. Thus it

appears, that the resistances offlexure of similar cross sections are
as their breadtJis and as the squares of tJieir depths, and that equation
2 of Article 294, which expresses equality between the greatest
moment of flexure, as stated in terms of the load and length, and
the resistance of the cross section where that moment acts, is equi-
valent to the following :o

M = mW I = nfbh* (3.)
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where n = is a numerical factor depending on the form of cross
m'

section of the beam, and m is the numerical factor depending on

the mode of distribution of the loading and supporting forces, of

which examples have been given in Article 291.

The following table gives examples of the values of the three

factors, n', m', n, for some of the more usual forms of cross section :



318 THEORY OF STRUCTURES.

294, equation 2, and in Article 295, equation 3, when mW Us the

breaking moment. It will be observed, that this modulus is, for

most materials, intermediate between the tenacity and the resistance

to direct crushing.
297. Cast iron Beams. The values of the modulus of rupture

for cast iron require special remark. It had for some time been

known, that while the direct tenacity of cast iron (as determined by
Mr. Hodgkinson) is on an average 16,500 Ibs. per square inch, the

modulus of rupture of rectangular cast iron beams is on an average
about 40,000 Ibs. per square inch, or two and a-half times as great.
This was supposed to be accounted for by the assumption, that the
stress on a cross section of a cast iron beam is not an uniformly
varying stress, and that the neutral axis does not traverse the

centre of gravity of the section. But in 1855, Mr. William Henry
Barlow, by experiments of which an account is published in the

Philosophical Transactions for that year, showed, in the first place,
that the stress is an uniformly varying stress, and that the neutral

axis, in symmetrical sections at all events, traverses the centre of

gravity of the section, and in the second place, that the modulus
of rupture has various values, ranging from the mere direct tenacity
of the iron up to about two and a-third times that tenacity, accord-

ing to the figure of the cross section of the beam.
The beams on which the experiments of Mr. Barlow, now referred

to, were made, were in some cases of a solid rectangular section,
and in other cases of an open-work rectangular section, consisting of

equal rectangular upper and lower horizontal bars, with alternate

open spaces and vertical connecting bars between. As far as those

experiments went, they were in accordance with the following

empirical formula :

/=/+/?, (i.)

where/ is the modulus of rupture of the beam in question; f ,
the

direct tenacity of the iron of which it is made
; /', a co-efficient

TT

determined empirically; and , the ratio which the depth of solid

metal H in the cross section of the beam bears to the total depth of
section h. The following were the values of the constants for the
cast iron experimented on :

Direct tenacity, f = 18,750 Ibs. per square inch ;
\

f = 23,000 Ibs. per square inch ; V
(2.)

= l%fo nearly.

Mr. Barlow has since made further experiments on cast iron
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beams of various forms of section, and also experiments on wrought
iron beams, showing, though not so conclusively, variations in the

modulus of rupture of wrought iron analogous to those which have
been proved to exist in the case of cast iron

;
but as those further

experiments, though communicated to the Royal Society, have not

yet been published in detail, it would be premature to make remarks
on them here.

Mr. Barlow has proposed a theory of those phenomena, to the

effect that the curvature of the layers of the beam produces a

peculiar kind of resistance to bending, distinct from that which
arises from the direct elasticity; and he adduces in support of that

theory the fact that the additional strength represented by the

second term of equation 1 increases with the ultimate curvature of

the beam ;
that is, its curvature just before breaking. Another

conceivable theory has already been mentioned in Article 294, viz.,

that the strength of a metal bar, and in particular of a cast iron

bar, is greatest at the skin, and diminished towards the interior ;

that the tenacity found by directly tearing a bar asunder,f ,
is the

tenacity of the interior; that the modulus of rupture of a solid

rectangular beam,/ + /', is the tenacity of the skin, and that the

modulus of rupture of an open-work beam is the tenacity at a
distance from the skin depending on the form of section. But until

conclusive experimental data shall have been obtained, all theories

on the subject must be considered as provisional only.
298. The Section of Equal Strength for Cast Iron Beams was

first proposed by Mr. Hodgkinson, in consequence A
of his discovery of the fact, that the resistance of

cast iron to direct crushing is more than six times

its resistance to tearing. It consists, as in fig. 132,
of a lower flange B, an upper flange A, and a vertical

web connecting them. The sectional area of the

lower flange, which is subjected to tension, is nearly
six times that of the upper flange, which is subjected
to thrust. In order that the beam, when cast, may not be liable

to crack from unequal cooling, the vertical web has a thickness at

its lower side equal to that of the lower flange, and at its upper
side equal to that of the upper flange.
The tendency of beams of this class to break by tearing of the

lower flange is slightly greater than the tendency to break by
crushing of the upper flange; and their modulus of rupture is equal,
or nearly equal, to the direct tenacity of the iron of which they are

made, being, on an average of different kinds of iron, 16,500 Ibs.

per square inch.

Let the areas and depths of the parts of which the section in fig.

132 consists be denoted as follows :

O T-r-
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Areas. Depths.

Upper flange, A
1 ,

Lower flange, A
2,

Vertical web, A
3,

Totals,...AJ + A
2 -f-

A
3= A, 7^ -j- Ji

2 4. h
3= <

"No appreciable error will arise from treating the section of the

vertical web as rectangular instead of trapezoidal. The height of

the neutral axis above the lower side of this section is

Ji _ (7?,3 + ^) A2
h - h A

.(1.)

Then by applying the formula of Article 95, Example VI., to this

case, the moment of inertia of the section is found to be as follows :

; ......... (2.)

and the strength of the beam is expressed by the equation

(3.)
ifb

It is seldom necessary, however, to use the formulae 1 and 2 in

all their complexity; the following approximate formula being

usually sufficiently near the truth for practical purposes, and its

error being on the safe side. Let h' be the depth from the middle

of the upper flange to the middle of the lower flange ; then

2 ..................... (4.)

299. Beams of Uniform strength are those in which the dimen-
sions of the cross section

are varied in such a man-

ner, that its ultimate or

proof resistance bears at

each point ofthe beam the

same proportion to the

Fig. 133.
Fig. 134. moment of flexure. That

resistance, for figures of

the same kind, being pro-

portional to the breadth

and to the square of the

depth, can be varied either

by varying the breadth,
the depth, or both. TheFig. 135. Fig. 136.
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law of variation depends upon the mode of variation of the moment
of flexure of the beam from point to point, and this depends on the

Fig. 137.
Fig. 138.

r>

c

Fig. 139. Fig. 140.

distribution of the load and of the supporting forces, in a way
which has been exemplified in Articles 289 and 290. When the

depth of the beam is made uniform, and the breadth varied, the

vertical longitudinal section is rectangular, and the plan is of a

figure depending on the mode of variation of the breadth. When
the breadth of the beam is made uniform, and the depth varied,

the plan is rectangular, and the vertical longitudinal section is of a

figure depending on the mode of variation of the depth. The

following table gives examples of the results of those principles :

Mode of Loading
and Supporting.
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The fornmlse and figures for a constant depth are applicable to the

breadths of the flanges of the j^-shaped girders described in Article

298. In applying the principles of this Article, it is to be borne

in mind, that the shearingforce has not yet been taken into account;
and that, consequently, the figures described in the above table

require, at and near the places where they taper to edges, some
additional material to enable them to withstand that force. In

figs. 137 and 139, such additional material is shown, disposed in

the form of projections or palms at the points of support, which
serve both to resist the shearing force, and to give lateral steadiness

to the beams.

300. Proof Deflection of Beams. Reverting to
fig. 130, it is

evident that if ex. represents the proportionate elongation of the

layer C C', whose distance from the neutral surface O O' is y, and
if r be the radius of curvature of the neutral surface, we must have

and consequently, the radius of curvature is

and the curvature, which is the reciprocal of the radius of curvature,
is expressed by the equation

1
T
~

y
'

Let p be the direct stress at the layer C C', and E the modulus

of elasticity of the material; then a = ^ , and consequently, the cur-
iii

vature has the following values :

1 ' M

the second value being deduced from the first by means of equation
4 of Article 293.

When the quantity
- = varies for different points of the beam,

the curvature varies also.

Suppose now that the beam is under its proof load, and let MQ
denote the greatest moment of flexure arising from that load, I the

moment of inertia of the cross section at which that moment acts,
and 7/0 the distance from the neutral axis of that section to the

layer where the limiting intensity/of the stress is attained. Then
the curvature will be,
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at the section of greatest stress, = -^ =
r -&y

at any other section,
1 =^

The exact integration of this equation for slender springs, in

certain cases, will be considered in a subsequent Article. For
beams it is integrated approximately in the following manner :

Let the middle of the neutral axis of the section of greatest stress

be taken as the origin of co-ordinates, and represented byA in figs.

Fig. 141. Fig. 142.

141 and 142. For a beam supported at both ends and symme-
trically loaded, A is in the middle of the beam

(fig. 141). For a

beam fixed at one end and projecting, A is at the fixed end
(fig.

142). Let the beam be so fixed or supported that at this point its

neutral surface shall be horizontal, and let a horizontal tangent,
A X C, to that surface at that point be taken as the axis of abscissae.

Let A C, the horizontal distance from the origin to one end of the

beam, be denoted by c, which, as in Articles 289 and 290, is the

length of the projecting portion of a beam fixed at one end, and the

half-span of a beam supported at both ends and symmetrically

loaded. Let AX, the abscissa of any other point in the beam = x.

Let A B D be the curved form assumed by the neutral surface when
the beam is bent, whieh form, in a beam supported at both ends, is

concave upwards, as in fig. 141, and in a beam fixed at one end

concave downwards, as in
fig. 142. Let X B = v be the ordinate

of any point B in the curve A B D j being the difference of level

between that point and the origin A. Let C D = vl be the greatest

ordinate : this is what is termed the deflection.

The inclination of the beam at any point B, is expressed by the

equation
dv

^ = arc tan -7 :

dx

and the curvature, being the rate of variation of the inclination in

a given length of the curve, is expressed by
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di

~d~S

di

dx

But in cases which occur in practice, the curvature of the beam is

so slight, that the arc i is sensibly equal to its tangent, the slope

; and the elementary arc ds is sensibly equal to its horizontal
d x

projection dx ',
so that the following equations may be used without

sensible error :

Slope,

Curvature,

dv

1 _ di

r
~~
d x

d*v

d x2
'

.(3.)

Therefore, when the curvature at each point is given by equation

2, the slope and the ordinate are to be found by two successive

integrations, as shown by the following equations :

r*dx f /"*MIo ,

Slope, i = I = . ^r^.dx;
J o r E y ./ o I M

Ordinate, v = I idx=~ . I I ^-~ d x2
.

Jo E y J o J o I M

The greatest slope iv that is, the slope at D and the deflection

or greatest ordinate vl}
are found by performing the complete inte-

grations between the limits x = and x = c.

[Readers who are not familiar with the integral calculus are

referred to Article 81 for explanations of the nature of the process
of integration.]

MI
In both the integrals of the formulae 4, the quantity -j-^-is

a

numerical ratio depending on the mode of distribution of the load-

ing and supporting forces, and the mode of variation of the section

of the beam. Hence it is evident that we must have the complete

integrals

where m" and n" are two numerical factors depending on the dis-

tribution of the forces and the figure of the beam ;
so that the

greatest slope and the deflection are given by the equations
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m"fc ri'fc*
.(6.)

For beams of similar figures, and similarly loaded and supported,

2/
is as the depth, and c as the length ; hence, for such beams, the

greatest slope under the proof load is directly as the length, and

inversely as the depth ; and the proof deflection is directly as the

square of the length, and inversely as the depth.

The following table gives the values of the factors mr' and n" for

some of the more ordinary cases of beams of uniform section, in

which the ratio
ML M

being simply equal to
=-p depends on the

distribution of the load alone, and may be found by the aid of the

tables of Articles 289 and 290.
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^ being the depth at the section of greatest bending moment, and
h the depth at any other section. The following table shows some
of the consequences of these principles :
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accuracy, that curve, with its vertical dimensions exaggerated, so as

to show conspicuously the slopes and ordinates

Compute, by equation 2 of Article 300, the radii of curvature

for a series of equi-distant points in the beam. Diminish all those

radii in any proportion which may be convenient, and draw a curve

composed of small circular arcs with the diminished radii. Then in

the same ratio that the radii, as compared with the horizontal scale

of the drawing, are diminished, will the vertical scale of the draw-

ing, according to which the ordinates are shown, be exaggerated.
302. The Proportion of the Greatest Depth of a Beam to the Span

is so regulated, that its greatest deflection shall not exceed a cer-

tain proportion of the span which experience has shown to be con-

sistent with convenience. That proportion, from various examples,

appears to be
..

1

For the working load, -^-
= from -

tor
2 c

~
600

u"
1200*

For the proof load, ... = from A to _L.

The determination of the proportion, <p-,
of the greatest depth of

the beam to the span, so as to give the required stiffness, is effected

by the aid of equation 6 of Article 300, from which we obtain

^i _. n"fc

Now
2/0
= m' hQ, m' being a numerical factor, which for symmetri-

cal sections is
-^ j and consequently the required ratio is given by

the equation

_^o __2/o_ n"fc ri'f 2_c
2 c~2m'0~2m'Ev~~' ' ' "

nn
an expression consisting of three factors : a factor,

-
depending

on the distribution of the load and the figure of the.beam ;
a factor,

2 c

, being the prescribed ratio of the span to the deflection ;
and a

^i f
factor, -=-, being the proof strain, or the working strain, of the

material, as the case may be.

To illustrate this, let the beam be under its working load, uni-

formly distributed, and let it be of uniform section, alike above and
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below. Then n" = -, m' = -. Let = 1000 be the prescribed
12 2 Vi

ratio of the span to the working deflection. Let the material be

wrought iron, for which
^

is a safe value for the working strain

4- Tlien

A _ _
1000 _ 5_

1

2c
~"

24* 3000
~~

72
~ U4 j

which is very nearly the average proportion of depth to span
adopted for wrought iron girders in practice.

303. The Slope and Deflection of a Beam under any Load are

given by the following formulae :

dx 1 rM

M ,

To integrate these equations, it is only necessary to substitute

for the constant factor ,
in the equations 4, 5, 6, Article 300, its

M' y
equivalent -=^, M' being now not the proofmoment of flexure, but

*o

the actual moment of flexure at the point where the beam is hori-

zontal
; that is to say,

m"M' c n"
Greatest slope i

l
= T ; deflection v\ =

fj 1

m" and n" being factors depending on the distribution of the load,

and having the values given in the table of Article 300. Now the

value of the moment of flexure is given in terms of the load and

length by equation 1 of Article 291, and the ensuing table, viz.,

M = mW I ; and the value of IQ, in terms of the dimensions of

the rectangle circumscribing the cross section, is given by equation
1 of Article 295, and the ensuing table, viz., I = n' b h3

;
hence the

above equations 2 become

m"mWlc
,

....

' '
"

Moreover, I = c, or = 2 c, according as the beam is fixed at one end

only, or supported at both ;
so that if m'", n'", be a pair of numeri-

cal factors, whose values are, for beams fixed at one end only,
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m'" = m"mj ri" = ri'm;

and for beams supported at both ends,

mm = 2m"m; ri" = 2ri'm;

the equations 3 become

. m"'Wc2 ri"Wc*
,

.

Whence it appears, that the deflections of similar beams under

equal loads are as the cubes of their lengths, and inversely as their

breadths and the cubes of their depths.

The values of ri =
=-j-p

for the ordinary forms of cross section, are

given in the table of Article 295. The following table gives the

values of m'" and ri" for different modes of loading and support-

ing, for beams of uniform cross section, and for beams of uniform

strength :

m'" ri"

Factor for Factor for

A. UNIFORM CROSS SECTION. slope. Deflection.

I. Fixed at one end, loaded at the other, - -.

II. Fixed at one end, loaded uniformly,
- -.

III. Supported at both ends, loaded in the middle,
- -.

1 5
IV. Supported at both ends, uniformly loaded, ,. -r .

B. UNIFORM STRENGTH AND UNIFORM
DEPTH.

V. Fixed at one end, loaded at the other, 1 -.

VI. Fixed at one end, loaded uniformly,
- -.

VII. Supported at both ends, loaded in the middle, - -.

VIII. Supported at both ends, loaded uniformly,..
- -.
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C. UNIFORM STRENGTH AND UNIFORM Fa rfor Factor for

BREADTH. Slope. Deflection.

2
IX. Fixed at one end, loaded at the other, ....... 2 ......

-5.o

X. Fixed at one end, uniformly loaded, ....... infinite....... -.
2i

XL Supported at both ends, loaded in the middle, 1 ...... -.
o

XII. Supported at both ends, uniformly loaded, 0-3927 ... 0-1427.

304. Deflection with Uniform Moment. In Article 292 the case

has already been described, in which a beam or bar of uniform
section has a pair of equal and opposite couples in the same plane

applied to its ends, and the same case is the first given in the table

of Article 300. In this case, M and I are constants, m" = 1, and

w" = n j and accordingly, if c be the length of the part of the beam

under consideration, and i\ the slope, and v\ the deflection, of one
end relatively to a tangent at the other,

., _ Me ,
Me8

ll - EI ; Vl ~
2ET

305. The Resilience or Spring of a Beam is the worJc performed
in bending it to the proof deflection. This, if the load is concen-

trated at or near one point, is the product of half the proof load

into the proof deflection ; that is to say,

If the load is distributed, the length of the beam is to be divided

into a number of small elements, and half the proof load on each
element multiplied by the distance through which that element is

moved during the proof deflection of the beam. Let u be that dis-

tance ; then for beams fixed at one end,

u v

and for beams supported at both ends,

u = V, v.

.(2.)

Let c? a? be the length of an element of the beam ; w the intensity
of the load on it, per unit of length; then the resilience is



RESILIENCE OF BEAMS. 331

/ uw ' dx.

The cases in which the determination of resilience is most useful

in practice are those in which the load is applied at one point.
Let the beam be fixed at one end and loaded at the other, c

being the length of its projecting part. Then by Article 295,

equation 3 (observing that m= 1, l = c\

(n being given by the table of Article 295), and by Article 300,

equation 6,

= ^/^ - n"/ c2

(n" being given by the table of Ajrticle 300, and m' by that of

Article 295). Consequently,

W, . . ..._
^'cbh............ (4.)

It will be observed that this expression consists of three factors,

viz.:

(1.) The volume of the prism circumscribed about the beam,
cbh.

f2

(2.) A Modulus of Resilience, ^-, of the kind already mentioned

in Article 266.

(3.) A numerical factor, ^ , j in which n and m' (Article 295)
A JYl

depend on the form of cross section of the beam, and n" (Article

300) on the form of longitudinal section and of plan. The follow-

ing are values of this compound factor for a rectangular cross

* , . , 1,1 , , . nn" n"
section, for which n =

^,
m -

-, and therefore
^ , ~~Q

:

Hf

7P

I. Uniform breadth and depth, ................................... ?-.
lo

II. Uniform strength, uniform depth, ............................ ^-.

III. Uniform strength, unifoim breadth,
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If a beam be supported at both ends and loaded in the middle,
its length being I 2 c, its proof deflection is the same with that of

a beam of the same transverse dimensions and of the length c,

fixed at one end and loaded at the other
;
and its proof load is

double of that of the latter beam ; therefore its resilience is double

of that of the latter beam. Consequently, for rectangular beams of

the half-span c, supported at both ends and loaded in the middle,
we have the following values for the numerical factor of the

resilience :

IV. Uniform breadth and depth,..,,.., ...... . ......................
^.y

V. Uniform strength, uniform depth,.... ..........................

VI. Uniform strength, uniform breadth,

306. A Suddenly-Applied Transverse Load, like the suddenly-

applied pull of Article 267, produces at first double the maximum
stress, and double the strain, which the application of a load

gradually increasing from nothing to the amount of the given
load would produce. It is unnecessary to demonstrate this in

detail, the reasoning being the same with that employed in Article

267.

Th contingency of the sudden application of a moving load is

provided for by the factor of safety, which expresses the ratio of

the proof load to the working load (Article 247).
The action of the rolling load to which a railway bridge is sub-

jected is intermediate between that of an absolutely sudden load

and a perfectly gradual load. It has been investigated mathemati-

cally by Mr. Stokes, and experimentally by Captain Galton, and
the results are given in the Report of the Commissioners on the

Application of Iron to Railway Structures. The practical con-

clusion to be drawn from them is, that a moving load requires a

larger factor of safety than a steady load.

307 Beam Fixed at Both Ends. A beam is fixed, as well as

_c__ supported, at both ends, when
a pair of equal and opposite

couples are made to act on the

p. 143
' ' vertical sectional planes at its

points of support, of magnitude
sufficient to maintain its longitudinal axis horizontal there, and so

to diminish the deflection, slope, and curvature of its middle por-
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tion. This is generally accomplished by making the beam form

part of one continuous girder with several points of support, or by
making it project on either side beyond its points of support, and
so fastening or loading the projecting portions, that their loads, or

the resistance of their fastenings, shall give the required pair of

couples.
In fig. 143, let C B A B represent a beam supported at the

points C, C, loaded along its intervening portion, and so fixed or

loaded beyond these points that at them its longitudinal axis is

horizontal, instead of having the slope i
l}

which it would have
if the beam were simply supported at C, C, and not fixed. At each

of the vertical sections above the points of support, C, 0, there is

an uniformly-varying horizontal stress, being a pull above and a
thrust below the neutral axis; and the moment of that pair of

stresses is that of the pair of equal and opposite couples which
maintain the beam horizontal at the points of support. It is re-

quired to find, in the first place, that resisting moment at the

vertical planes of support (from which the stress on the material

there may at once be found); and secondly, the effect of that

moment on the curvature, slope, deflection, and strength of the

beam.
The general method of solution of this question is as follows :

Compute, by equation 3 of Article 303, i\, the slope which the

neutral surface of the beam would have at the points C, C, if it

were simply supported there, and not fixed. Then, by Article

304, find the uniform moment of flexure, which, if it acted on the

beam in such a manner as to make it become convex upwards,
would produce a slope at the points C, C, equal and contrary to

i\. This will be the required moment of resistance at the vertical

sections C, C, from which the greatest stress on the material at

those sections can be found by equation 4 of Article 293. It will

afterwards appear that this is the greatest stress on the beam
;
so

that by putting it instead of M = mW I in equations 2 of Article

294, and 3 of Article 295, the conditions of strength of the beam
are determined. Denote this moment by M,, the negative sign

denoting that it tends to produce convexity upwards, while the load

on the beam tends to produce convexity downwards.
Let M be what the moment of flexure at any point of the beam

would be, if it were simply supported at C, C. Then the actual

moment of flexure is

M-M*
and by substituting this for M in the equations of Articles 300 and

303, the curvature, slope, and deflection, with the proof load, or

with any load, are found.
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"Where M is the greater, as ai A, the beam is convex down-
wards. Where MI is the greater, as at C, the beam is convex up-
wards. There are a pair of points, B, B, at which M = M

1} so

that the moment of flexure, and consequently the curvature, vanish,
and the beam is subjected to a shearing force alone; these are

called the points of contrary flexure; and they divide the middle

part of the beam, which is convex downwards, from the two end-

most parts, which are convex upwards.
In expressing the solution of this problem by formulae, four

cases will be taken into consideration, viz. :

1. The case of an uniform beam, with a symmetrical load in

general.
2. Beam of uniform section, loaded in the middle.

3. Beam of uniform section, loaded uniformly.
4. Beam of uniform strength and uniform depth, uniformly

loaded.

CASE 1. Symmetrical load on a learn of uniform section. By
Article 303, equation 3, observing that I = 2 c, we have

., _2m"m We2

Zl ~

and by Article 304,

consequently,

M1
= 2m"mWc = ra" -mWl = m" MO, ......... (1.)

M being what the moment of flexure at A would have been, had
the beam been simply supported.
The values of m" are given in Article 300.

Let MQ be the actualmoment of flexure at A. Then

M' = (1 m") M .............. .........(2.)

The greatest moment of flexure must be either at A or 0, or at

both, if the moments at these sections be equal and opposite. But

for beams of uniform section, m" is never less than ^ ;
therefore

JL

the greatest moment of flexure is at C, or both at C and A, and
never at A alone.

The strength of the beam is expressed by the following formula,
obtained by putting Mx instead of m W I, in equation 3 of Article

295:

(3.)v 'm ml
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/ being the limit of proof or working stress, as the case may be,

and n a factor suitable to the form of section of the beam, as given

by the table of Article 295.

Hence it appears, that byfoomg the ends ofan uniform beam, so

that they shall be horizontal, its strength is increased in the ratio 1 : m".

The deflection is found, by subtracting that due to the uniform

moment M t
from that which the load would produce if the beam

were simply supported at C and C. The former of these quan-

tities, according to Article 304, is

M
1
c
a _m"M ca

2EI~ 2EI '

and the latter, according to Article 303, equation 2, is

n"M c
2 n" Mj c

2

so that the deflection, their difference, is

(n" 1\ MlC
2 / m"\ M c

2
...

*<= U a) -ET= (
n T) --BT

......
<*.)

From the last of those expressions, it appears that by fixing the

ends horizontal, an uniform beam is made stifier under a given
load in the ratio

If, in the first expression for the deflection, it be considered that

M! is the moment of resistance corresponding to the proof or limit-

ing stress at the section C, we may make

M. / .T :

-*'
so as to obtain the following expression for the deflection under the

proof load :

being less than the proof deflection of a beam simply supported, as

given by equation 6, Article 300, in the ratio

The points of contrary flexure are to be found in each particular
case by solving the equation

M-Mi = (6.)
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CASE 2. Uniform section, loaded in the middle.

= 1
-' w- = i. n = 1-'

l.f*
6

...(7.)

The points of contrary flexure are midway between A and C.

CASE 3. Uniform section, uniformly loaded.

W = 2cw
I 2_. m= _.

5_.

(8.)

The points of contrary flexure are thus found. By the table of

Article 300, case 5,

so that in order to have M = M,, we must make

.(9.)

which equation gives the distance of each of the points of contrary
flexure B, from A, the middle of the beam.

CASE 4. Uniform strength, uniform depth, uniform load. In this

case the uniformity of strength is attained by making the breadth

at each point proportional
to the moment of flexure, as

c shown in the plan, fig. ] 44,

preserving, at the points of

contrary flexure B, B, a
sufficient thickness only to144>

resist the shearing force.
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As shown in Article 300, case 6, the curvature of the beam is

uniform in amount, changing in direction only at the points of

contrary flexure. Therefore, in fig. 143, CB and B A, at each

side of the beam, are two arcs of circles of equal radii, horizontal

at A and C, and touching each other at B; therefore those arcs

are of equal length ;
therefore each point of contrary flexure B is

midway between the middle of the beam A and the point of sup-

port C.

It is evident also, that the proof deflection of the beam must be

double of that of an uniformly curved beam of half the span, sup-

ported at the ends without being fixed
;
that is to say, one-half of

that of an uniformly curved beam of the same span, supported but

not fixed; or symbolically

The actual moment of flexure at A must be the same as in an
W

uniformly loaded beam, with the same intensity of load w =
,

supported, but not fixed at B, B; that is to say,

____
" "" ~~

6
""

32
~~

and therefore, the moment of flexure at C is

,-r 70 TIT TIT TIT'
3M 3Wc 3WI

-

&! being the breadth of the beam at C, which is three times the
breadth b at A.
To find the breadth at any other point, it is to be observed, that

the moment of flexure at the distance x from A is

and that consequently the breadth 6, which is proportional to the
moment of flexure, is given by the equation

In using this equation, the positive or negative sign of the result

merely indicates the direction of the curvature.

According to equation 14, the figure of the beam in plan (fig.

144) consists of two parabolas, having their vertices at A, and
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intersecting each other in the points of contrary flexure, B, B, for

which x :r .

2t

The breadth which must be left at B, to resist shearing, will

appear from the next Article.

308. A Beam Fixed at One End and Supported at Both is sensibly
in the same condition with the part C B A B of the beam in fig.

143, extending from one of the fixed points C to the farther point
of contrary flexure, which now represents a, point supported, but not

fixed. Hence if a continuous girder be supported on a series of

piers, the span of each of the endmost bays should be to the span
of each intermediate bay, in the ratio c-+-XQ:2c, where XQ is the

distance A B from the lowest point to a point of contrary flexure.*

309. Shearing Stress in Beams. It has already been shown, in

Article 288, how to find the amount F of the shearing force at a

given vertical cross section of a beam ;
and examples of that force

in particular cases have been given in Articles 289 and 290. The

object of the present Article is to show the manner in which the

stress which resists that force is distributed.

In Article 104 it has been shown, that the intensities of the tan-

gential stresses at a given point, on a pair of planes at right angles
to each other and to the plane parallel to which the stresses act,

are necessarily equal. Hence, in order to determine the intensity of

the vertical shearing stress at a given point in a vertical section of

a beam, such as the point
E in the vertical section

G E B of the beam repre-
sented in fig. 145, it is

sufficient to find the equal

intensity of the horizontal
rig. 145. , ,

* '

,

shearing stress at the same

point E in the horizontal plane E F. The existence of that hori-

zontal shearing stress is familiarly known by the fact, that if a

beam, instead of being one continuous mass, be divided into

separate horizontal layers, those layers will slide on each other like

the layers of a coach spring. The intensity of that stress is found
as follows :

Let H F D be another vertical section near to G E B. If the

moment of flexure at H F D differs from that at G E B, there must
be a corresponding difference in the amount of the direct stress on
two corresponding parts of the planes of section, such as G E and
H F. (In the case shown in the figure, that direct stress is a thrust,
and is greatest at G E). That difference constitutes a horizontal

force acting on the solid H F E G
;
and in order to maintain the

* See Article 30SA, p. G41.
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equilibrium of that solid, the amount of shearing stress on the plane
F E must be equal and opposite to that horizontal force. That
amount being divided by the area of the plane F E, gives the

intensity of the shearing stress. Q. E. I.

From the foregoing solution it is obvious, that the shearing stress

is nothing at the upper and lower surfaces of the beam ; because the
entire direct stress on each cross section is nothing. This might
also be proved by reasoning like that of Article 278. It is also

obvious that the shearing stress in the vertical layer between the
two planes of section is greatest at D B, where they cut the neutral

surface O C, at which the direct horizontal stress changes from
thrust to pull; for at that surface the horizontal force to be
balanced by the shearing stress reaches its maximum.
To express this solution symbolically in the case of a beam of

uniform cross section; let O B= x, O C = c, B~E = y, B G = ylt

B D = E F (sensibly) = dx; let the breadth of the beam at any
point E be denoted by z, and at the neutral surface by # .

Let p be the intensity of the direct horizontal stress at E, q that
of the shearing stress at E, and qQ that of the maximum shearing
stress at B. Then by equation 4 of Article 293,

Mp= j-y

and the amount of the direct stress on the sectional plane between
G and E is

M /*-
J ^

y -dy.

The horizontal force by which the solid H F E G is pressed from O
towards C, is the excess of the value of the above quantity for G E
above its value for H F ; which excess arises from the excess of the

moment of flexure M at G E B above the moment of flexure at

H F D, farther from the middle of the beam by the distance d x.

That difference of the moments of flexure is obviously equal to

Fdx.

F being the arrwunt of the shearing force at the vertical layer in

question; consequently, the horizontal force, which the shearing
stress on the plane F E is to balance, is

Dividing this by the area of the plane F E, which is z d x
}
the

required intensity of the shearing stress is found to be



340 THEORY OF STRUCTURES.

and the maximum value of that intensity, for the given vertical

layer, which acts at D B in the neutral surface, is

pi

The same results are in eveiy case obtained, whether the upper or

the lower surface of the beam be taken as the limit of integration

indicated by yl ; the complete integral / y z d y, for the whole

cross section of the beam, being = 0, because of y being measured
from the neutral axis, which traverses the centre of gravity of that

section.

Let S = / % d y be the area of the cross section of the beam.

Then the mean intensity of the shearing stress is

I
S'

and the maximum intensity exceeds the mean in the following
ratio :

a ratio depending wholly on the figure of the cross section of the

beam. The following table gives some of its values :

FIGURE OP CROSS SECTION.

L Rectangle, z = 6,

IL Ellipse,

III. Hollow Rectangle

This includes I-shaped sec-

3 (6 h-V h')' (bh*-b'h'*)
2' (b-b')'(bh

3

-b'It,'>)

tions,

IV. Hollow square, V - V,
|(l

+J^).
Y. VI. Hollow ellipse and hollow circle; the numerical factor

;

9
the symbolical factor, the same as for the hollow rectangle
and hollow square respectively.
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For beams of variable cross section, the preceding results, though
not absolutely correct, are near enough to the truth for practical

purposes.
When a beam consists of strong upper and lower flanges or

horizontal bars, connected by a thin vertical web or webs, like the

wrought iron plate girders to be treated of in a subsequent section,

the shearing force is to be treated as if it were entirely borne by the

vertical web or webs, and uniformly distributed.

310. Lines of Principal Stress in Beams. Letp be the intensity
of the direct horizontal stress, and q that of the shearing stress, at

any point, such as E, fig. 145, in a beam. Then the axes of principal
stress at that point, and the intensities ofthe pair of principal stresses,

may be found by Article 112, Problem IV., case 4. In the equa-
tions 21, 22, 23, which solve that problem, for pM the normal com-

ponent of the stress on a vertical plane, is to be put p ;
for p'M the

normal component of the stress on a horizontal plane, is to be put
0; and for ptt the common tangential component, is to be put q.

x and y having already been taken to denote the horizontal and
vertical co-ordinates of the point E, p^ and p.2 may be taken to

represent the greatest and least principal stresses instead ofp, and

pst
and i

{
the angle which the axis of greatest stress makes with

the horizon, instead of x n.

Then equation 21 of Article 112 becomes

Pi * P-2 _ P
2

"
2>

equation 22 becomes

from which we have

These equations show, that the greatest principal stress is of the
same kind with the direct horizontal stress, and the least principal
stress of the contrary kind. Further, equation 23 becomes

"**-2i (2.)

or in another form
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If ia be the angle which the axis of least stress makes with the

horizon, then, because % i2 = 90, we have

Equations 3 and 4 show that the axes of greatest and least stress

are inclined opposite ways to the horizon (as indeed they must be,

being perpendicular to each other), the inclination of the axis of

least stress being the steeper.
If those inclinations be computed for a number of different points

in the vertical section of a beam, and the directions of the axes of

stress at,those points laid down on
a drawing, a network of lines, con-

sisting of two series of lines inter-

secting each other at right angles,
Fig. 146. as in fig. l4.Q

}
mav be drawn, so that

each line shall touch the axes of stress traversing a series of points,
and so that the tangents to the pair of lines which cross at any
given point shall be the axes of stress at that point. These lines

may be called the lines of principal stress. For a beam supported
at the ends, the lines convex upwards are lines of thrust, and those

convex downwards lines of tension. They all intersect the neutral

surface at angles of 45. The stress along each of those lines is

greatest where it is horizontal, and gradually diminishes to nothing
at the two ends of the line, where it meets the surface of the beam
in a vertical direction.

311. Direct Vertical Stress. It is to be observed, that no account
has yet been taken of the direct vertical stress upon such planes as

FE
(fig. 145) in a loaded beam, that stress having been treated in

the last Article as if it were null. The reasons for this are first,

That the direct vertical stress is in most practical cases of small

intensity compared with the other elements of stress ; secondly,
That the mode of its distribution can be modified in an indefinite

variety of ways by the modes of placing the load on or attaching
it to the beam, so that formulae applicable to one of those modes
would not be applicable to another (in fact, by a certain mode Ojc

loading, it can even be reduced to nothing) ; and thirdly, That its

introduction would complicate the formulae without adding mate-

rially to their accuracy.
312. Small Effect of Shearing Stress upon Deflection. A shearing

stress of the intensity q produces a distortion represented by ^,O
C being the transverse elasticity, as already explained in Article

262. The slope of any given originally horizontal layer of the
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beam at a given point will be increased by this distortion to the

extent denoted by

which additional slope is to be added to the slope due to the bend-

ing stress, in order to find the total slope. The curvature of the

layer will also be increased by the amount

di" dY I

for uniform beams, and to nearly the same amount for other beams j
"

and there will be an additional deflection of the layer under con-

sideration, of the amount

"dx , (3.)

Observing that \^dx = M , the above equation becomes, for

uniform
'

Supposing the beam to be under the proof load, we may put for

- its value
, making the equation

The greatest value of this is that for the neutral surface, for which
the limits of integration are and yv To compare this additional

deflection due to distortion with that due to flexure proper, let us

take the case of a rectangular beam, in which yl
=

-^
z = b, f*1 yz

dy = _-. Then

4C

For the same beam, according to equation 6 of Article 300, we have
the proof deflection due to flexure proper,

so that the ratio of those two parts of the deflection is
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For wrought iron (for example)
~ = about 3. Suppose --,

v" 9
which is an ordinary proportion in practice; then 1= -r^ nearly,

V-, 4Ju
a quantity practically inappreciable.

It appears, then, that the distortion produced by the shearing
stress in beams, even at the neutral surface, where it is greatest,

produces a deflection which is very small compared with that due
to the bending action of the load

; and that the alteration of the
external figure of the beam must be smaller still

;
from which it

may be concluded, that in ordinary practical cases there is no occa-

sion to compute the additional deflection due to the shearing stress.

313. Partially-Loaded Beam. In designing beams for the sup-

port of roads and railways, or for any other situation in which one

part of a beam may be loaded and another unloaded, it is necessary
to consider whether a partial load may or may not produce, at any
point of the beam, a more intense stress than an uniform load over
the whole beam.
The case of this kind, which is most important in practice, is

that in which a beam supported at both ends is uniformly loaded

throughout a certain portion of its length and unloaded throughout
the remainder ; and its solution depends on two theorems.

THEOREM I. For a given intensity of load per unit of length, an

uniform load over the whole beam produces a greater moment of
flexure at each cross section than any partial load.

Let the two ends of the beam be called C and D, and aoy inter-

mediate cross section E. Then for an uniform load, the moment
of flexure at E is an upward moment, being equal to the upward
moment of the supporting force at either of the ends relatively to

E, minus the downward moment of the imiform load between that

end and H A partial load is produced by removing the uniform
load from part of the beam, situated either between E and C, be-

tween E and D, or at both sides of E. First, let the load be

removed from any part of the beam between E and C. Then the

downward moment, relatively to E, of the load between E and D is

unaltered ;
and the upward moment, relatively to E, of the support-

ing force at D is diminished, in consequence of the diminution of

that force j
therefore the moment of flexure is dinmrished. A similar

demonstration applies to the case in which the load is removed
from a part of the beam between E and D ; and the combined effect

of those two operations takes place when the load is removed from

portions of the beam lying at both sides of E ; so that tJie removal
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of the loadfrom any portion of tlie beam diminisJies tJie moment of

flexure at each point. Q. E. D.
Hence it follows, that if a beam be strong enough to bear an uni-

form load of a given intensity, it will bear any partial load of the

same intensity.

THEOREM II. For a given intensity of load per unit of length, the

greatest shearingforce at any given cross section of a beam takes place
when the longer of the two parts into which that section divides the

beam is loaded and the shorter unloaded.

Let the ends of the beam, as before, be called C and D, and the

given cross section E ;
and let C E be the longer part, and E D the

shorter part of the beam. In the first place, let C E be loaded and
E D unloaded. Then the shearing force at E is equal to the support-

ing force at D, and consists in a tendency of E D to slide upwards
relatively to C E. The load may be altered, either by putting

weight between D and E, or by removing weight between C and E.

If any weight be put between D and E, a force equal to part of

that weight is added to the supporting force at D, and therefore to

the shearing force at E
;
but a force equal to the whole of that

weight is taken away from that shearing force
;
therefore the shear-

ing force at E is diminished by the alteration of the load. If

weight be removed from the load between C and E, the shearing
force at E is diminished also, because of the diminution of the

supporting force at D. Therefore any alteration from tliat distri-

bution of the load in which the longer segment C E is loaded., and the

shorter segment E D unloaded, diminishes the shearing force at E.

Q. E. D.
In designing beams where the shearing force is borne by a thin

vertical web, or by lattice work (as in plate, lattice, and other

compound girders, to be considered more fully in a subsequent sec-

tion), it is necessary to attend to this Theorem, and to provide
strength, at each cross section, sufficient to bear the shearing force

which may arise from the longer segment of the beam being loaded
and the shorter unloaded.

To find a formula for computing that force, let c be the half-span
of the beam, x the distance of the given cross section, E, from the
middle of the beam, and w the uniform load per unit of length on
the loaded part of the beam C E. The length of that part is

and the amount of the load upon it,

w (c + x).

The centre of gravity of that load lies at a distance from the end,
C, of the beam which is represented by
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and therefore the upward supporting force at the other end of the

beam, D, which is also the shearing force at E, is given by the

equation

It has already been shown, in Article 290, that the shearing force

at a given cross section with an uniform load is F = w x ;
hence

the excess of the greatest shearing force at a given cross section

with a partial load, above the shearing force at the same cross

section with an uniform load of the same intensity, is

(2.)

At the ends of the beam this excess vanishes. At the middle, it

consists of the whole shearing force 1? jwc, or one quarter of

the shearing force at the ends
;
that is, one-eighth of the amount

of an uniform load.

314. Allowance for Weight of Beam. When a beam is of great

span, its own weight may bear a proportion to the load which it

has to carry, sufficiently great to require to be taken into account in

determining the dimensions of the beam. Before the weight of the

beam can be known, however, its dimensions must have been de-

termined, so that to allow for that weight, an indirect process must
be employed.
As already explained in Article 302, the depth of a beam is de-

termined by the deflection which it is desired to allow ;
and the

breadth remains to be fixed by conditions of strength, the strength

being simply proportional to the breadth.

Let b' denote the breadth as computed by considering the ex-

ternal load alone, W. Compute the weight of the beam from that

provisional breadth, and let it be denoted by B'. Then ==; is the

proportion which the weight of the beam must bear to the entire orW
gross load which it is calculated to support; and ==, ^>

is the

proportion in which the gross load exceeds the external load.

Consequently, if for the provisional breadth b' there be substituted

the exact breadth,
b

'w'
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the beam will now be strong enough, to bear both the proposed
external load W, and its own weight, which will now be

B'W
B=ra; ...........................<2->

and the true gross load will be

W72

In the preceding formulae, both the external load and the weight
of the beam are treated as if uniformly distributed a supposition
which is sometimes exact, and always sufficiently near the truth

for the purposes of the present Article.

315. Limiting Length of Beam. The gross load of beams of

similar figures and proportions, varying as the breadth and square
of the depth directly, and inversely as the length, is proportional
to the square of a given linear dimension. The weights of such

beams are proportional to the cubes of corresponding linear dimen-
sions. Hence the weight increases at a faster rate than the gross
load

j
and for each particular figure of a beam of a given material

and proportion of its dimensions, there must be a certain size at

which the beam will bear its own weight only, without any addi-

tional load.

To reduce this to calculation, let the gross working uniformly-
distributed load of a beam of a given figure, as in Article 295, be

expressed as follows :

_ 8 nfb W .

l
>- >"^')

I, 5, and h being the length, breadth, and depth of the beam, f the
limit of working stress, and n a factor depending on the form of
cross section. The weight of the beam will be expressed by

(2.)

wr

being the weight of an unit of volume of the material, and k a
factor depending on the figure of the beam. Then the ratio of the

weight of the beam to the gross load is

__.
W~~ Snfh'"'

......W
which increases in the simple ratio of the length, if the proportion

is fixed. When this is the case, the length L of a beam, whose
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weight (treated as uniformly distributed) is its working load, is
T>

given by tlie condition = 1 ; that is,

B

This limiting length having once been determined for a given class

of beams, may be used to compute the ratios of the gross load,

weight of the beam, and external load to each other, for a beam of

the given class, and of any smaller length, Z, according to the fol-

lowing proportional equation :

L :l :L-J : :W :B : W-B (5.)

To illustrate this by a numerical example, let the beams in ques-

tion be plain rectangular cast iron beams, so that n = -, k = 1,

w' = 0-257 Ib. per cubic inch
;

let 40,000 Ibs. per square inch be

taken as the modulus of rupture, and 4 as the factor of safety, so

thaty= 10,000 Ibs. per square inch
;
and let - = . Then

I 15

L = 3,459 inches = 288 feet, nearly.

316. A Sloping Beam, like that represented in fig. 68, Article

142, is to be treated like a horizontal beam, so far as the bending
stress produced by that component of the load which is normal to

the beam, is concerned. The component of the load which acts

along the beam, is to be considered as producing a direct thrust

along the beam, which is to be combined with the stress due to the

bending component of the load.

317. An Originally Curved Beam, at any given cross section made
at right angles to its neutral surface, so far as the bending stress is

concerned, is in the same condition with r.n originally straight
beam at a similar and equal cross section to which the same
moment of flexure is applied. Beams are sometimes made with a

slight convexity upwards, called a camber, equal and opposite to

the curvature which the intended working load would produce in

an originally straight beam. The effect of this is to make the

beam become straight under the working load, instead of curved,
and to diminish the additional stress due to rapid motion of the

load, which additional stress arises partly from the curvature of the

beam.
318. The Expansion and Contraction of Long Beams, which



EXPANSION AND CONTRACTION OP BEAMS. 349

arise from the changes of atmospheric temperature, are usually pro-
vided for by supporting one end of each beam on rollers of steel or

hardened cast iron. The following table shows the proportion in

which the length of a bar of certain materials is increased by an
elevation of temperature from the melting point of ice (32 Fahr.,
or Centigrade) to the boiling point of water under the mean

atmospheric pressure (212 Fahr., or 100 Centigrade); that is, by
an elevation of 180 Fahr., or 100 Centigrade I-

METALS.

Brass, , -00216

Bronze, '00181

Copper, '00184

Gold, '0015
Cast iron, 'ooin

"Wrought iron and steel, '00114 to '00125
Lead, -0029

Platinum, -0009

Silver, '002

Tin, '002 to '0025

Zinc, '00294

EARTHY MATERIALS.

(The expansibilities of stone from the experiments of Mr. Adie.)

Brick, common, "00355

^e, -0005

Cement, -0014

Glass, average of different kinds, '0009

Granite, '0008 to '0009
Marble, '00065 to "oon
Sandstone, -0009 to -0012

Slate, '00104

TIMBER.

(Expansion along the grain, when dry, according to Mr. Joule,
Proceed. Roy. Soc., Nov. 5, 1857.)

Baywood, -000461 to '000566
Deal, '000428 to '000438

Mr. Joule found that moisture diminishes, annuls, and even re-

verses, the expansibility of timber by heat, and that tension in-

creases it.

319. The Elastic Carre, in the widest sense of the term, is the

figure assumed by the longitudinal axis of an originally straight
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bar under any system of bending forces. All the examples of the

curvature, slope, and deflection of beams in Article 300 and the

subsequent Articles, are cases in which the elastic curve has been
determined with a degree of approximation sufficiently close under
the circumstances; that is, when the deflection is a very small

fraction of the length. The present Article relates to the figure of

the elastic curve for a slender fiat spring of uniform section, when
acted upon either by a pair of equal and opposite couples, or by a

pair of equal and opposite forces.

The general equation of Article 300 applies to this case, viz.:

1 M

I being the uniform moment of inertia of the section of the spring,
E the modulus of elasticity, M the moment of flexure at a given
point, and r the radius of curvature at that point.
When a spring is under the action of a pair of equal and opposite

couples applied to its two ends, then, as in Article 304, M is constant,
r is constant, and the elastic curve is a circular arc of the radius r.

When a spring is under the action of a pair ofequal and opposite

forces, let A and B denote the two points to which those forces are

applied, and A B their common line of action. The figures from

Fig. 146 a.

tftP-
Fig. 146 c.

Fig. 146 b.

Fig. 146/

146 a to 146^ inclusive, represent various forms which the spring

may assume, viz. :

I. When the forces are directed towards each other
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a. A simple arc, like a bow, meeting A B at the points A and B
only.

b, c. An undulating figure, crossing A B at any number of inter-

mediate points.
d. The points A and B coinciding, which may give, with an

endless spring, a figure of 8.

II. When the forces are directed from each other

e. One or more loops, with the ends and intermediate portions

meeting or crossing A B.

f. The forces acting from each other at the points A, B, in two

rigid levers A3), BE, to which the spring is fixed at D and E : the

spring forming one or more looped coils, lying altogether at one side

of the line of action A B.

Let P be the common magnitude of the equal and opposite forces

applied at A and B, and x the perpendicular distance of any point
C in the elastic curve from the line of action A B. Then the mo-
ment of flexure at that point is obviously

M = o;P; ............................. (2.)

and consequently the radius of curvature at that point is given by
the equation

EI EI

that is to say, the radius of curvature is inversely proportional to the

perpendicular distancefrom the line of action of theforces. At each
of the points in figs. 146 a, b, c, d, and e, where the curve meets or

crosses A B, the radius of curvature is infinite ; that is, there is a

point of contrary flexure.

The above geometrical property is common to all the varieties of

curves formed by an uniform spring bent by a pair of forces, and
is sufficient to enable any one of them to be drawn approximately,

by means of a series of short circular arcs. It is sufficient, also, to

establish all their other geometrical properties, such as the rela-

tions between their rectangular co-ordinates, and the lengths of

their arcs. These are expressed by means of elliptic functions;
and it is unnecessary to give them in detail in this treatise,

except in one case, which will be mentioned in the next Article,
319 A.

There is one important proposition, however, which it is here

necessary to prove ; and that is the following
THEOREM. That a spring of a given length and section, to tJie ends

ofwhose neutral surface a pair offorces are applied',
will not be bent

{f those forces are less than a certain finite magnitude. Let A and
B in

fig.
146 a be the two ends of the spring, to which two equal
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and opposite forces of the magnitude P are applied, directed to-

wards each other
;
the spring forming a single arc ACE, of the

length 1. x being, as before, the ordinate of any point C, let y be

the distance of that ordinate from A.

The smaller the force P, the more nearly will the arc A C B
approach to the straight line A B

;
and in order to find the small-

est value of P Avhich is compatible with any bending of the spring,
that force must be computed on the supposition that the ordinate

x at each point is insensibly small compared with the length of the

spring, and consequently, that the length of the arc A C does not

sensibly differ from that of its abscissa y. This being the case, the

curvature at any point C is to be taken as sensibly given by the

following equation :

1 d~x

which value being inserted in equation 3, gives

d*x P

The integral of this equation is

yx = a ' sin -

/ E *
where c = \ / -=-.

In order that x may be = at the points A and B, it is necessary

that when y = I,
- should be = n v

} n being any whole number ;
c

and consequently that

c= (6.)UK

Now of all the possible values of n, that which gives the least value

of P is n = 1 ;
whence we find

"El
and P r=A /* l

=v -F=V>

and thisfinite quantity is the smallestforce which loill bend the given

spring in the manner proposed. Q. E. I).

This investigation proves the Theorem in question, and gives
the least bending force ;

but as it leaves the constant a indeter-
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ininate, it does not give the figure assumed by the spring, which
cannot be found exactly except by the use of elliptic functions.

319 A. The Hydrostatic Arch, described in Article 183, is of the

same figure with the coiled and looped elastic curve represented in

fig. 146y"; for its radius of curvature at any point is inversely pro-

portional to the perpendicular distance of that point from a given

straight line. In order to transform all the equations given in

that Article for the hydrostatic arch into the corresponding equa-
tions for the coiled and looped elastic curve of fig. 146 f, it is only

necessary to put for the constant product of the ordinate and radius

of curvature the following value :

Elxr=-.

An instrument consisting of an uniform spring attached to a pair
of levers, might be used for tracing the figures of hydrostatic
arches on paper.

This property of the coiled and looped elastic curve is analogous
to that discovered by James Bernouilli in the simple bow of fig.

14G a, viz., that it is the figure assumed by the vertical longitu-
dinal section of an indefinitely broad sheet, containing a liquid
mass whose upper horizontal surface is represented by A B.

SECTION 7. On Resistance to Twisting and Wrenching.

320. The Twisting moment, or moment of torsion, applied to a

bar, is the moment of a pair of equal and opposite couples applied
to two cross sections of the bar, in planes perpendicular to the
axis of the bar, and tending to make the portion of the bar between
those cross sections rotate in opposite directions about that axis.

In the following Articles, twisting moments are supposed to be

expressed in inch-pounds.
321. Strength of a Cylindrical Axle. A Cylindrical axle, A B, fig.

147, being subjected to the twisting
moment of a pair of equal and oppo-
site couples applied to the cross sec-

tions A and B, it is required to find

the condition of stress and strain at

any intermediate cross section such

as S, and also the angular displace-
ment of any cross section relatively to any other.

From the uniformity of the figure of the bar, and the uniformity
of the twisting moment, it is evident that the condition of stress

and strain of all cross sections is the same ; also, because of the
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circular figure of each cross section, the condition of stress and
strain of all particles at the same distance from the axis of the

cylinder must be alike.

Suppose a circular layer to be included between the cross section

S, and another cross section at the distance dx from it. The

twisting moment causes one of those cross sections to rotate rela-

tively to the other, about the axis of the cylinder, through an

angle which may be denoted by d i. Then if there be two points
at the same distance r from the axis of the cylinder, one in the one

cross section, and the other in the other, which points were origi-

nally opposite to each other, in a line parallel to the axis, the

twisting moment shifts one of those points laterally, relatively to

the other, through the distance rdi. Consequently the part of

the layer which lies between those points is in a condition of

distortion, in a plane perpendicular to the radius r
;
and the dis-

tortion is expressed by the ratio

di

'=*'**

which varies proportionally to the distancefrom the axis. There is

therefore a shearing stress at each point of the cross section C,
whose direction is perpendicular to the radius drawn from the
axis to that point, and whose intensity is proportional to that radius,

being represented by

The STRENGTH of the axle is determined in the following
manner : Let f be the limit of the shearing stress to which
the material is to be exposed, being the ultimate resistance to

wrenching if it is to be broken, the proof resistance if it is to

be tested, and the working resistance if the working moment of

torsion is to be determined. Let r be the external radius of the
axle. Then f is the value of q at the distance r from the axis

;

and at any other distance r
}
the intensity of the shearing stress is

Conceive the cross section S to be divided into narrow concentric

rings, each of the breadth dr. Let r be the mean radium of one of

these rings. Then its area is 2 rdr; the intensity of the shear-

ing stress on it is that given by equation 3, and the leverage of that

stress relatively to the axis of the cylinder is r; consequently, the
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moment of the shearing stress of the ring in question, being the

product of those three quantities,, is

which being integrated for all the rings from the centre to the
circumference of the cross section S, gives for the moment of

torsion, and of resistance to torsion,

1-5708
V

(I-

If the axle is hollow, r being the radius of the hollow, the integral
is to be taken from r = r to r = rl

'

}
and the moment of torsion

becomes

It is in general more convenient to express the strength of an
axle in terms of the diameter than in terms of the radius. Let h

t

be the external diameter of the axle, and h its internal diameter,
if hollow; then

For a solid axle,

For a hollow axle, M =
(6.)

If these formulae be compared with those applicable to solid and
hollow cylindrical beams in Article 295, it will be seen that they
differ only in the numerical factor, which, for the moment of

flexure, is ~ =
^-^

and for the moment of torsion,
~ =

^.
Hence we have this useful principle, that for equal values of the

limiting stress f, the resistance of a cylinder, solid or hollow, to

wrenching, is double of its resistance to breaking across.

Values of the co-efficient of ultimate resistance to shearing for

cast and wrought iron, are given in a table which has already been

referred to. The co-efficient for cast iron is somewhat doubtful,
because the experiments give varying results. That given in the
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table, viz., 27,700, is adopted on the authority of Mr. Hodgkin-
soii's work On Cast Iron, as the mean of the experiments considered

by him the most trustworthy; but some experiments give a value

as low as 24,000, and others a value as high as 30,000.
With respect to the working values of the limiting stress/, the

following are those adopted by Tredgold in his practical rules :

For cast iron, 7,650 Ibs. per square inch.

For wrought iron, 8,570

This amounts to allowing a factor of safety of about 4 for cast

iron and 6 for wrought. Practical experience of the strength of

wrought iron axles confirms the co-efficient given above for wrought
iron very closely, it having been found that such axles bear a work-

ing stress of 9,000 Ibs. per square inch for any length of time, if

well manufactured of good material. The co-efficient for cast iron

appears to leave too small a factor of safety for any motion except
one that is very smooth and steady, and it may be considered that

5,000 Ibs. per square inch is a safer co-efficient for general use.

Hence we may put, as the limit of working stress in shafts,

For cast iron, ./= 5,000 Ibs. per square inch.

For wrought iron, /= 9,000

322. Angle of Torsion of a Cylindrical Axle. Suppose a pair of

diameters, originally parallel, to be drawn across the two circular

ends, A and B, of a cylindrical axle, solid or hollow
;

it is proposed
to find the angle which the directions of those lines make with

each other when the axle is twisted, either by the working moment
of torsion, or by any other moment.

This question is solved by means of equation 2 of Article 321,
which gives for the angle of torsion per unit of length,

di q

clx
=
C7

"The condition of the axle being uniform at all points of its length,
the above quantity is constant

; and if x be the length of the axle,

and i the angle of torsion sought, expressed in length of arc to

radius 1, we have =
-y->

and therefore,

= <>>

I. Let the moment of torsion be the working moment, for which

lJ.
r r

l
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Then the angle of torsion is

and is the same whether the axle is solid or hollow.

A value of C, the co-efficient of transverse elasticity for cast iron,
is given in the table

;
but it is uncertain, as experiments are dis-

cordant. For wrought iron, that constant has been found with
more precision, its mean value being about 9,000,000 Ibs. per
square inch. Hence, for the working torsion of wrought iron

shafts, we may make

(3.)
1,000

II. Let the moment of torsion have any amount M consistent

with safety. Then for , we have to put the equal ratio deduced
r

from the equations 4 and 5 of Article 321, by substituting q
forf in the numerators and r for r

l
in the denominators j that is

to say,

For solid axles. - = ,- ; and
7* CT* */*

._qx 2Ma_32Mcc_ Ma;

For hollow axles,
- = ^-r. j

and
r vr\-r

.___ 32Mo;-~
323. The Resilience of a Cylindrical Axle is the product of one-

half of the greatest moment of torsion into the corresponding angle
of torsion ; and it is given by the following equation :

Mi /
2

h\ x _

= for a solid shaft ;
or

i O'L \j

M . '., ,
} a-)

jv/i
n tin h } 1(*

-Tr ^^-i-f^-j-/ for a hollow shaft.
2i o '

1 (_/ til
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324. Axles not Circular in Section. When the cross section of a

shaft is not circular, it is certain that the ratio - of the shearing

stress at a given point to the distance of that point from the axis

of the shaft, is not a constant quantity at different points of the

cross section, and that in many cases it is not even approximately
constant ;

so that formulae founded on the assumption of its being
constant are erroneous. The mathematical investigations of M. de

St. Yenant have shown how the intensity of the shearing stress is

distributed in certain cases.

The most important case in practice to which M. de St. Tenant's

method has been applied is that of a square shaft ; and it appears
that its moment of torsion is given by the formula

M = 0-281 /7*
8

nearly.

325. Bending and Twisting combined ; Crank and Axle. A shaft

is often acted upon by a bending load and a pair of twisting couples
at the same time. In that case, the greatest direct stress due to

the bending load, and the greatest shearing stress due to the moment
of torsion, are to be combined in the manner already illustrated for

beams, in Article 310.

That is to say, let p be the greatest stress due to bending, and q
that due to twisting j let p^ be the intensity of the greatest result-

ant stress, and i the angle which its direction makes with the axis

of the shaft. Then

(I-)

tan 2 i = ;

P

One of the most important examples of this is illustrated in

fig. 148, which represents a shaft having a crank
at one end. At the centre of the crank-pin,
P, is applied the pressure of the connecting
rod ;

and at the bearing, S, acts the equal and

opposite resistance of that bearing. Represent-

ing the common magnitude of those forces by P,

they form a couple whose moment is

M = P -SP.

. Draw P N perpendicular to S 1ST, the axis of the
shaft

;
and let the angle P S N =j. Then the

couple M may be resolved into
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A bending couple P N S = M cos j ;
and

A twisting couple P N P '= M sin j.

Equal and opposite couples act on the farther end of the shaft.

Let h be its diameter.

By the formulae of Article 295, the greatest stress produced at S

by the bending couple is

and that produced by the twisting couple, according to Article

321, is

5-1 Msinj _ ptsmj m (
.~~ ~~

consequently, by the equations 1 of this Article, the resultant

greatest stress at S, and its inclination to the axis of the shaft, are

Pi = | (sec j + 1) =rr~ (1 + cos j) ;

and by making p l =/*, the proper diameter can be determined.

These results may be represented graphically as follows : Draw
S Q bisecting the angle N S P, and P Q perpendicular to S Q. S Q
will be the direction of the resultant greatest stress at S, and the

intensity of that stress will be the same as if it were caused by the

bending action of a force equal to P and applied at Q, on an oblique
section of the shaft perpendicular to S Q ; and also the same as the

greatest intensity of the stress which would be produced at S by
the direct bending action of a force equal to P applied at M in the

axis of the shaft, with the leverage

.

(5.)

326. The Teeth of Wheels are made sufficiently strong, to provide

against an action analogous to combined twisting and bending,
which may arise from the whole force transmitted by a pair of

wheels happening to act on one corner of one tooth, such as

or D, fig. 149.

In fig. 150, let the shaded part represent a portion of a cross
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section of the rim of the wheel A of fig. 149, and let EHKP
be the face of a tooth, on
one corner of which, P, acts

the force represented by
that letter. Conceive any-
sectional plane E F to in-

tersect the tooth from the

x

Fig. 149.

Fig. 150.
side EP to the crest PK,

and let PG be perpendicular to that plane.
Let h be the thickness of the tooth, and let

EF = 6, PG = I

Then the moment of flexure at the section

EF is P, and the greatest stress produced by that moment of

flexure at that section is

_6JPjP=~
bh2 '

which is a maximum when ^L P E F = 45, and b = 21, having
then the value,

Consequently, the proper thickness for the tooth is given by ths

equation

This formula is Tredgold's ; according to whom the proper value

for the greatest working stress /is 4,500 Ibs. per square inch, when
the teeth are of cast iron.

SECTION 8. On Crushing by Bending.

327. introductory Remarks. Pillars and struts whose lengths
exceed their diameters in considerable proportions (as is

almost always the case with those of timber and metal),

give way not by direct crushing, but by bending sideways
and breaking across, being crushed at one side, as at A,
fig. 151, and torn asunder at the other, as at B.

There does not yet exist any complete theory of this

phenomenon. The formulae which have been provision-

F .

151 ally adopted are founded on a mode of investigation

partly theoretical and partly empirical. Those which
will first be explained are of a form proposed by Tredgold on theo-

retical grounds. Having fallen for a time into disuse, they were
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revived by Mr. Lewis Gordon, who determined the values of the

constants contained in them by a comparison of them with Mr.

Hodgkinson's experiments. Then will be given Mr. Hodgkinson's
own empirical formulae for the ultimate strength of cast iron pillars.

328. Strength of Iron Pillars and Struts. Let P be the load which
acts on a long pillar or strut, and S its sectional area. Then one

part of the intensity of the greatest stress on the material is simply
the intensity due to the uniform distribution of the load over the

section, and may be represented thus :

**".
Another part of the greatest stress is that which arises from the

lateral bending, which will take place in that direction in which
the pillar is most flexible ;

that is, in the direction of its least dia-

meter, if the diameters are unequal. Let h be that diameter, and
b the diameter perpendicular to it

j
let I be the length of the pillar,

and let v be the greatest deflection of the axis of the pillar from its

original straight position. Then, as in the case of a spring, Article

319, the greatest moment of flexure is P v
;
and the greatest stress

produced by that moment (which will be denoted by p") is directly
as the moment, and inversely as the breadth and square of the

thickness of the pillar (Article 295) ;
that is,

**"

But the greatest deflection consistent with safety is directly as the

square of the length, and inversely as the thickness (Article 300) ;

that is,

also, the product b h2
is proportional to the sectional area S and to

the thickness L Consequently we have the proportional equation

that is, the additional stress due to bending is to the stress due to

direct pressure, in a ratio which increases as the square of the propor-
tion in which the length of the pillar exceeds the least diameter.

The whole intensity of the greatest stress on the material of the

pillar, being made equal to a co-efficient of strength /, is expressed
by the following equation :

a.)
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in which a is a constant co-efficient, to be determined by experi-
ment. Hence the following is the strength of a long pillar :

F = /S
(20

The following are the values off and a for the ultimate strength,
as computed by Mr. Gordon from Mr. Hodgkinson's experiments
on pillars FIXED AT THE ENDS, by having fiat capitals and bases,

as in fig. 152 :

/, Ibs. per inch. a.

Wrought iron, solid rectangular section, 36,000

Cast iron, hollow cylinder, 80,000

solid .. 80,000

3,000'
1

I

400'

A pillar ROUNDED AT BOTH ENDS, as in fig. 154, is as flexible as

a pillar of the same diameter, fixed at both ends, and of double the

length ; and its strength might there-Ul I fore be expected to be the same; a
'

(\
'

(\ conclusion verified by the experiments
of Mr. Hodgkinson. Hence, for such

pillars,

Mr. Hodgkinson found the strength
ofa pillar^icec? at one endandrounded

Fig. 152. Fig. 153. Fig. 154.
between the strengths of two pillars of

the same length and diameter, one fixed at both ends, and the other

rounded at both ends.

Taking the proof load as one-half of the breaking load for wrought
iron, and one-third for cast iron, and the working load as from one-

fourth to one-sixth of the breaking load for both materials, the

following are the values to be assigned to the limit of stress/ under
different circumstances :

LOAD Breaking. Proof. Working.

Wrought iron, ........... 36,000 18,000 6,000 to 9,000
Cast iron, ................. 80,000 26,700 13,300 to 20,000
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In using the formulae 2 and 3, the ratio -is generally fixed before-

hand, to a degree of approximation sufficient for the purposes of the

calculation.

329. Connecting Rods of engines are to be considered as in the

condition of struts rounded at both ends
;
Piston Bods, as in the

condition of struts fixed at one end and rounded at the other.

330. Comparison of Cast and Wrought Iron. "When the ultimate

strength per square inch of section of pillars is computed by means

of equation 2 of Article 328, it appears that for the smaller pro-

portions of length to diameter, cast iron is the stronger material ;

but that its strength diminishes as the proportion of length to

diameter increases, faster than that of wrought iron; so that for

the proportion

I : h : : J~695 : 1 : : 26J : 1 nearly,

those materials in the shape of solid pillars, rectangular for wrought
iron, cylindrical for cast, are equally strong, and beyond that pro-

portion wrought iron is the stronger. This result was pointed out

by Mr. Gordon. The following table illustrates it :

i
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Tons.

S
(3.

For solid pillars with rounded ends, 14*9
flat ends, 44'*

For hollow pillars with rounded ends, 13-0
flat ends, 44'3

II. When the length is less than thirty times the diameter.

Let b denote the breaking load of the pillar, as computed by the

preceding formulae. Let c denote the crushing load of a short block

of the same sectional area S, as computed by the formula

c = 49 tons x S in square inches (3.)

Then the correct crushing load of the pillar is

be /I \

332. In Wrought iron Framework, the bars which act as struts,

in order that they may have sufficient stiffness, are made of various

figures in cross section,

ofwhich some examples
are given in figs. 155

(angle iron), 156 (chan-
nel iron), 157 (a cross-

Fig. 156. Fig. 157. Fig. 158.
s]mped s

'

ectioii;used in

half-lattice girders), and 158 (T-iron). In some large lattice girders,
the struts are composed of a pair of parallel T-iron bars, such

as fig. 158, with their middle ribs turned towards each other,
and connected together by a lattice work of small diagonal bars.

In applying to wrought-iron struts the formulae of Article 328,
72 72 Q

pages 361, 362, for ^ there is to be substituted npp J being the

least moment of inertia of the section (Article 95, pages 77-82).
333. Wrought iron Cells are rectangular tubes (generally square)

composed of four plate iron sides, rivetted to angle iron bars at the

corners, as shown in the section, fig. 159. This

mode of construction was designed by Mr. Fair-

bairn, to resist a thrust along the axis of the tube.

The ultimate resistance of a single square cell to

crushing by the buckling or bending of its sides,

when the thickness of the plates is not less than

one-thirtieth ofthe diameter of the cell, as determined

by Mr. Fairbairn and Mr. Hodgkinson, is

27,000 Ibs. per square inch section of iron ;
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but when a number of cells exist side by side in one girder, their

stiffness is increased, and their ultimate resistance to a thrust may
be taken at

33,000 to 36,000 Ibs. per square inch section of iron.

The latter co-efficients apply also to cylindrical cells.

334. The Sides of Plate iron Girders are subjected to a diagonal
thrust arising from the shearing stress, and are usually
stiffened by means of T-iron ribs, in the manner shown
in fig. 160. The entire depth across the ribs may be
taken to represent h in the formulae of Article 328. J"

335. Timber Posts and Struts. The following for- _J

mula is given on the authority of Mr. Hodgkinson's
experiments, for the ultimate resistance of posts of oak
and red pine to crushing by bending :

.

P =
A^S; ..................... (1.) Fig. 160 .

{

S being the sectional area in square inches, h : I the ratio of the

least diameter to the length, and A = 3,000,000 Ibs. per square
inch.

The factor of safety for the working load of timber being 10, A
is to be made = 300,000 only, if P is the working load.

For square posts and struts, the formula becomes

If the strength of a timber post be computed both by this formula

and by the formula for direct crushing, viz. :

P=/S, .............................(3.)

the lesser value should be adopted as the true strength.
The above formulae are for posts and struts fixed at both ends.

For those which are freely jointed at both ends, the strength is

reduced to one fourth.

Weisbach applies to timber posts and struts a formula identical

with equation 2 of page 362, with the following values of the con-

stants :

/= 7,200 Ibs. on the square inch.
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The resistance of timber to crushing, while green, is about one-
half of its resistance after having been dried.

SECTION 9. On Compound Girders, Frames, and Bridges.

336. Compound Girders in General. A compound girder is a
structure which, as a whole, acts as a beam, resisting bending and

breaking by a transverse load j but whose parts are subjected to

a variety of stresses of different kinds, requiring to be separately

considered; such as the Warren girder of Articles 162 and 163,
and the Lattice girder of Articles 164 and 165.

In Part II., Chapter II., Section 1, it has already been shown
how to determine the total stresses which act on the several pieces
of a frame

;
in section 6 of the present chapter, it has been shown

how the stress is distributed in a continuous beam ;
and in that and

other sections, the resistance of materials to the various kinds of

stress has been considered. The principal object of the present
section is to indicate, by referring back to previous Articles, where
the data and formulae for determining the strength of the different

parts of certain compound structures are to be found.

A girder consists of three principal parts : a lower rib, to resist

tension ; an upper rib, to resist thrust ;
and a vertical web orframe,

to resist shearing force.

337. Plate Iron Girders are treated of in this section rather than
in section 6, because the slender proportions of the parts subjected
to a thrust sometimes render it necessary to compute their strength

according to the laws of resistance to

crushing by bending, explained in Ar-
ticle 328. Some of the forms of cross sec-

tion employed in such beams are shown
in figs. 161, 162, 163, 164, and 165. Fig.
161 is a plain I-shaped beam, rolled in

one piece. In fig. 162, the upper and
lower ribs consist each of a flat bar or

narrow plate rivetted to a pair of angle

irons, the two pairs of angle irons being
rivetted to the upper and lower edges of

the vertical web. In fig. 163 the con-

struction is the same, except that the

vertical web is double : this is the " box-

beam" long employed in the platforms of
Fig. 164.

Fig. 163.

blast furnaces, and first used in a railway bridge by Andrew Thom-
son about 1832, on the Pollok and Govan Railway. In fig. 164,

the upper and lower ribs are each built of several layers of narrow

plates or flat bars, rivetted to each other and to a pair of angle
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irons j
the upper and lower pairs of angle irons are rivetted to the

upper and lower edges of the vertical web, and the plates of the

vertical web are connected and stiffened at each of their vertical

joints by a pair of T irons, in the manner of which a horizontal

section has been already given in fig. 160, Article 334. The object
of building the larger sizes of horizontal ribs in layers, instead of

making them in one piece, is to make them of those sizes of iron

which can easily be rolled of good quality, and which are usually
found in the market. Beams resembling fig.

164 are sometimes

made with a double vertical web, for the sake of lateral stiffness.

Fig. 165 represents the general form of the cross section of great
tubular or cellular girders, characterized by Mr.

Stephenson's principle, of carrying the railway

through the interior of the beam, and by Mr.
Fairbairn's principle, of giving stiffness by means
of cells, already described in Article 333. The

joints of the cells are connected and stiffened by
covering plates outside as well as angle irons

inside ]
and the plates of the two sides, which form

a double vertical web, are stiffened and connected

by T-irons, like those of fig. 164.

Smaller cellular girders are sometimes used, in

which the top alone consists of one or two lines
~

of cells, the girder in other respects being similar

to fig. 164, with either a single or a double vertical web.

In all plate iron girders, the joints exposed to tension should have

covering plates, double rivetted if the stress is great enough to

require it, which is almost always the case in the lower rib (see
Article 280). The joints exposed to thrust should be exactly plane,

exactly perpendicular to the direction of the thrust, accurately

fitted, and perfectly close, that the surfaces may abut equally over

their whole extent. Should open or irregular abutting joints be
discovered after the girder has been put together, they should be
filed out, and a flat plate of steel driven tight into each opening.
The plates or bars of which built ribs are composed should break

joint in a manner similar to the bond of brickwork.

In plate iron girders generally, it is sufficiently accurate for prac-
tical purposes to consider the whole bending moment M at any
vertical section as borne by the upper and lower ribs, and the whole

shearing stress F by the vertical web ; and also to consider the

resistance of each of the horizontal ribs as concentrated at the

centre of gravity of its section. Let h be the vertical depth between
the centres of gravity of the sections of the upper and lower ribs ;

then the common value of the thrust along the compressed rib, and
the tension along the stretched rib, is
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*-? ................ ..............

Let Si be tlie sectional area of the compressed rib,/J its resistance

to crushing per square inch, S2 the sectional area of the stretched

rib, /., its resistance to tearing per square inch
;
then

P _ M P M
1= 7

"
71' 2=

7"
=~

/I Jl /l J2

The values of the tenacityf2 have already been considered in sec-

tion 3. For plate beams with double-rivetted covering plates, its

ultimate value may be taken at about 45,000 Ibs. per square inch

of section of rib. The ultimate resistance to crushing, / may be

taken at its full value of 3G,000 Ibs. per square inch in great tubular

girders ;
but when the compressed rib is narrow as compared with

its length, the tendency to lateral bending may be allowed for by
means of the following empirical formula, of the kind already ex-

plained in section 8, Article 328 :

where/"= 36,000, a = .. m ,
ti = the breadth of the compressed

lib, and I' = the span of the girder, if it is not laterally stiffened

by framing. In cases in which parallel beams are stiffened by hori-

zontal diagonal braces, I' may be taken to denote the distance along
the rib between a pair of the points to which braces are attached.

Let t be the thickness of the vertical web if single, or the sum
of the thicknesses if double. Then its sectional area is h t nearly ;

consequently, iff3 be its resistance per unit of section to the shear-

ing force,

7**~;aiid = .^; ...................... (4.)
J 3 /$

and as the shearing stress is equivalent to a pull and a thrust in

directions perpendicular to each other, and at angles of 45 to the

horizon,fa should be the resistance of the vertical web to crushing,
as determined by equation 2 of Article 328, page 362, in which,

for y is to be substituted - h being the depth of the web, as before,
li li

and h" the width across the flanges of the stiffening ribs.

The shearing force F at each cross section is to be computed as

for a partial load, extending over the greater of the two segments
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into which the section divides the beam, as explained in Article

313. The weight of the beam itself may be allowed for, either

by the method of Article 314, or by the approximate method of

Article 315.

Owing probably to the yielding of the joints, it is found that in

computing the deflection of plate girders, when first loaded (Articles
300 to 303), a smaller modulus of elasticity ought to be taken than
for continuous iron bars. Its value in Ibs. per square inch is about
two-thirds of the value for a continuous bar, so that the deflection

is about one-half greater. But the part of that deflection due to

the yielding of the joints is permanent; so that after the joints
have "come to their bearing" the modulus of elasticity becomes the

same as for a continuous bar.

338. For Half-lattice Beams and Lattice Beams, the methods of

determining the total stresses have been fully considered in Articles

162, 163, 164, and 165; and it has only to be added here, that

the shearing force should be computed for a partial 'load, as

in Article 313. The ultimate tenacity of the ties may be

taken at /2
= from 50,000 to -60,000 Ibs. per square inch. The

resistance of the struts is to be computed as in Article 328. The

figure of the strut diagonals has been considered in Article 332.

The compressed rib may be a T-bar in small beams, and in larger
beams a built rib or a cell. The remarks made in the last Article

on abutting joints and on deflection are equally applicable in the

present case. In designing those joints which are connected by
means of bolts, rivets, or keys, the principles of Article 280 should
be observed.

339. A Bowstring Girder consists of an arched rib resisting
thrust ;

a horizontal tie resisting tension, and holding together the
ends of the arched rib; a series of vertical suspending bars, by

Fig. 166.

which the platform is hung from the arched rib, and a series of

diagonal braces between the suspending bars. Such girders are

executed in timber and in iron
;
sometimes the arched rib is made

of cast iron, as being stronger against crushing than wrought iron,

and the remainder of the structure of wrought iron.

The arched rib may be treated as uniformly loaded. Accord-

ing to Article 178, its condition is like that of an uniformly*
2 B
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loaded chain inverted, and its proper form a parabola; and the

thrust along it at each point is to be found by the fornmke of

Article 169. The tension along the horizontal tie is equal to

the uniform horizontal component of the thrust along the arched

rib.

The tension on each vertical suspending bar is the weight of those

portions of the platform and of the tie rod which hang from it.

To give lateral stability to the girder, the suspending bars are

usually made of considerable breadth, and of a form of horizontal

section resembling figs. 160 and 161, and are firmly bolted to the

cross beams of timber or of wrought iron which carry the roadway.
When the beam is uniformly loaded, the arched rib is equilibrated,

and there is no stress on the diagonals. The strength of the two

diagonals which cross each other at a given plane of section S S', is

to be adapted to sustain the excess of the greater shearing force due

to a partial load above that due to an uniform load, as given by the

formulae of Article 313.

340. Stiffened Suspension Bridges. The suspension bridge is that

which requires the least quantity of material to support a given
load. But when it consists, as in Article 169, solely of cables or

chains, suspending rods, and platform, it alters its figure with every
alteration of the distribution of the load

;
so that a moving load

causes it to oscillate in a manner which, if the load is heavy and
the speed great, or even if the application of a small load takes

place by repeated shocks, may endanger the bridge. To diminish

this evil, it has long been the practice partially to stiffen suspension

bridges by means of framework at the sides resembling a lattice

girder.
It was formerly supposed that, to make a suspension bridge as

stiff as a girder bridge, we should use lattice girders sufficiently

strong to bear the load of themselves, and that, such being the case,

there would be no use for the suspending chains. But Mr. P. W.
Barlow, having made some experiments upon models, finds that

very light girders, in comparison with what were supposed to be

necessary, are sufficient to stiffen a suspension bridge. If mathe-
maticians had directed their attention to the subject, they might
have anticipated this result.

The present is believed to be the first investigation of its theory
which has appeared in print.

The weight of the chain itself, being always distributed in the

same manner, resists alteration of the figure of the bridge. By
leaving it out of account, therefore, an error will be made on the

safe side as to the stiffness of the bridge, and the calculation will be

simplified.
Let

fig. 167 represent one side of a suspension bridge, in which a



STIFFENED SUSPENSION BRIDGE. 371

girder is used to stiffen the bridge. In order that it may do so

effectually, any partial or concentrated load on the platform must, by

Fig. 167.

means of the girder, be trans-

mitted to the chain in such

a manner as to be uniformly
distributed on the chain.

The girder must have its

ends so fixed to the piers as

to be incapable of rising or

falling. Then the forces

which act upon it may be
thus classed : downward,
the load as applied ; down- Fig. 170.

ward or upward, the resistances of the fastenings of the ends to

their vertical displacement; upward, the uniformly distributed

tension, acting through the suspension rods, between the girder
and the chain.

The girder will be supposed to be of uniform section throughout
its length.
Two cases will be considered : first, that in which a given load

is concentrated in the middle of the girder; and secondly, that in

which a given portion of the length of that girder is uniformly

loaded, and the remainder unloaded, like the partially loaded beam
of Article 313. The second case is the most important in practice.
In each case, the half-span of the bridge will be denoted by c,

and the horizontal distance of any point from the middle of the

bridge by x.

CASE I. A single load W, applied at the centre of the girder, tends

to depress the chain in the middle, and consequently to raise it at

the sides, and along with it to raise the beam near the ends; but
the beam being, by its attachment to the piers, prevented from

rising at the ends, takes a form like that represented by fig.
168 :

depressed in the middle at A, and concave upwards; elevated, and
convex upwards at C, C; having points of contrary flexure at B, B;
and again depressed at D, D, the points of attachment to the piers.

Now this curved figure is the effect of three downward forces,

applied at D, A, D, respectively, and of an uniformly distributed

upward force, acting on the whole length of the girder. Each half



372 THEORY OF STRUCTURES.

of the girder, therefore, is in the condition of the beam described in

Article 308, inverted; that is to say, the half-girder from A to D,
if inverted, becomes a beam supported at D, supported and fixed
horizontal at A, and loaded uniformly between A and D

;
and

hence (referring to the formulae of Article 307, case 3, and of

Article 308) we have the following proportions amongst the lengths
of the parts into which the half-girder is divided by the highest

point C, and the point of contrary flexure B,

BC = CD = ^.= 0-577 x ITC; ............ (1.)

N/3

and consequently, making A C, the distance between the lowest

and highest points, = c', we have

In order t(3 determine the greatest moment of flexure, and the

deflection, of the stiffening girder, A C = c' is to be taken as the

half-span of a girder like that considered in Article 307, case 3,

fixed at both ends, and loaded with an uniform load of the intensity

W _ W
~ 27~ F268^

....................... ( '

The greatest moment of flexure, as thus determined by the for-

mulae of Article 307, case 3, is at the point A, and has the following
value :

M, = ^f=~ = 0-1057 c W; ............(4.)

and to that moment of flexure must the strength of the stiffening

girder be adapted.
The proof deflection may be measured in two ways : either

between the highest and lowest points, C and A, or between the

ends
'

and the lowest point, D and A. The first may be called vc ,

and the second VD . Now by Article 307, case 3, we have

The points of support D are at the same level with the points

of contrary flexure B, being, in fact, points of no curvature them-

selves ; and from this it is easily found that
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CASE 2. The girder partially loaded. Let E B, in either of the

figs. 169, 170, represent the length of the loaded part of the

stiffening girder, and B D that of the unloaded part ; let w be
the uniform intensity of the load, and x the distance of the point
where the load terminates from the middle of the beam ; x being
considered as a positive quantity when the loaded part is the

longer, as in fig. 169, and as a negative quantity when the loaded

part is the shorter, as in fig. 170.

The ends E and D of the beam being fastened so as to be in-

capable of vertical displacement, the loaded segment E B is convex

downwards, and the unloaded segment B D convex upwards : the

loaded segment is in the condition of a beam supported at E and

B, and uniformly loaded with the excess of the weight sustained

above the force exerted between the girder and the chain j and the

unloaded segment is in the condition of a beam held down at B and

D, and loaded with an uniformly distributed upward force, being
that exerted between the girder and chain. The greatest moment
of flexure of each segment is at its middle point, being A for the

loaded part, and C for the unloaded part.
The length of the loaded segment being

ETB = c + x,

its gross load is

W = w(c+ x);

and the intensity of the force exerted between the girder and
chain

00

This is the intensity of the upward load on the segment B D,
whose length is B D = c x

;
and consequently, according to

Articles 290 and 291, the greatest moment of flexure of that seg-

ment, at C, is

MC __ c-* = -
.....

The amount of the upward force exerted between the chain and

BD is

and this also is the amount of the net load on E B, being the excess

of the gross load above the part borne by the chain. The half

of this quantity,
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is the value at once of the supporting force exerted by the pier

against the girder at E, of the shearing force between the two
divisions of the girder at B, and of the downward force by which
the end D of the girder is held at its point of attachment to the

pier.

The intensity of the net load on E B is

w(c-x) . .~ ~

and the length of that segment being c -f- x, its greatest moment of

flexure, at A, according to Articles 290 and 291, is

w

By the usual process of finding maxima and minima, it is easily

ascertained, that the greatest moment of flexure of the loaded

division of the girder occurs when x =
-^ ;

or when two-thirds of
o

the beam are loaded; and that the greatest moment of flexure of the
s\

unloaded division of the girder occurs when x = -, or when
6

two-thirds of the beam are unloaded ; and further, that those two

greatest moments are of equal magnitude though opposite in

direction, viz. :

max. MA = -max. Mc = -^- ; .............. (7.)

and the stiffening girder must be made sufficiently strong to bear

this bending moment safely in either direction. Now, the greatest
moment of flexure which would arise from an uniform load of the

given intensity w over the whole beam unsupported by the chain is

we2

therefore the transverse strength of the stiffening girder should be

four twenty-seventh parts of that of a simple girder of the same span
suited to bear an uniform load of tlie same intensity.

The greatest value of the shearing force F in equation 4 occurs

when one-half of the girder is loaded, or x = 0, and its amount is
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(8.)

When two-tLirds of the beam are loaded, the proof deflection of

A below a straight line joining E and B, according to Article

300, is

4, 5
./oj 5. /I

2

.

~9 12 E?~27 E'"' V '

or four-ninths of the proof deflection of a beam of the same figure,

uniformly loaded, of the span 2 c, unsupported by a chain. At the
same time, the elevation of C above a straight line joining B and
Dis

.

12 E 4y ~9 12 Es/~108 Bf
The proof depression of the lowest point of the beam, A, below

the highest, C, is given by the equation

_ 5.A ./*_-_?*./*:V* vc g 12 Ey 108 Ey'"

QYfive-nintlis of the proof deflection of an uniformly loaded beam. *

* In the preceding solution of Case 2, whiclrappeared in the first edition of this work,
the effect of the resistance of the chain to disfigurement upon the figure of the auxiliary

girder is neglected; and hence the result is in almost every case an approximation only;
but it can be shown that the error is always oa the safe side, four twenty-sevenths of

the strength of a simple girder being somewhat more than sufficient for the strength of

the stiffening girder. In order to make the solution exact, the extensibility of the

chain should be so great as to make its proofcentral depression nearly equal to the

proof deflection of the stiffening girder ;
but in practice the proof depression of the

chain is always much less-

The first solution in which the action of the chain just referred to is taken into

account appeared in an editorial article of the Civil Engineer and Architect's Journal
for November and December, 1860

;
and this is done by introducing into the conditions

of the problem an equation, expressing that under all the alterations of the figure
of the chain produced by the bending of the stiffening girder, the span continues

constant.

Having applied the principle just stated to the problem of Case 2, the author of this

work has arrived at the following results, supposing the chain to be inextensible.

The greatest bending moment of the stress on the stiffening girder takes place when

0-417, or about five-twelfths, of the span of the bridge are loaded, and 0-583, or about

seven-twelfths, unloaded.
That moment is 0-138 of the bending moment which would be produced by an uniform

load of the same intensity on a girder supported at the ends only.
Hence it appears that if the chain be supposed inextensible, the proportion

borne by the strength of the stiffening girder to that of a simple girder
of the same span, suited to bear an uniform load of the same intensity
with the travelling load, ought to be..............................................0*138:1;

while if the chain is supposed very extensible, as in the approximate solu-

tion, that proportion is found to be 4:27, or ...................................0*148:1;
so that in the intermediate cases that occur in practice no material error will

be committed if that proportion be made 1: 7, or ............. . ..............0-143:1.
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341. Bibbed Arches. Bridges are frequently constructed whose
arches consist of iron or timber ribs springing from stone abutments,

as in fig. 171. In such
cases it ought to be

considered, that each
rib fulfils at once the

functions of an equi-
librated arch, sustain-

ing an uniform load

of a certain intensity,
and having a certain thrust along it, to be computed by the principles
of Articles 169 and 178, and those of a stiffening girder, suited to

produce an uniform distribution of a partial load, according to the

principles of Article 340. Therefore, in designing the cross section

of a rib for such a bridge, a provisional cross section ought first to

be designed, suitable to bear a bending moment, upward or down-

ward, of four twenty-sevenths of that which an uniform load of the

given intensity would produce on a straight girder of the same

span; and in the second place, it should be determined in what

proportion the thrust along the rib, considered as an equilibrated

arch, will increase the intensity of the greatest stress on the pro-
visional section already designed, and the breadths of that section

should be increased in that proportion, to obtain the final cross.

section.

SECTION 10. Miscellaneous Remarks on Strength and Stiffness.

342. Effects of Temperature. At a temperature of 600 Fahren-

heit, the tenacity of iron was found by Mr. Fairbairn not to be
diminished. That of copper and brass, at the same temperature,
is reduced to about two-thirds of its ordinary magnitude. Sudden

cooling from a high temperature tends to make most substances

hard, stiff, and brittle
; gradual cooling tends to make them soft

and tough ;
and if often repeated or performed slowly from a very

high temperature, to weaken them. Various effects of temperature
on the elasticity of solids have been ascertained by Dr. Joule, Dr.

Thomson, and Professor Kupfer ;
but they are more important to

the science of molecular physics than to the art of construction.

343. The Effects of Repeated Meltings 011 Cast Iron have been

ascertained by Mr. Fairbairn. Up to and beyond the fourteenth

melting the resistance to crushing increases
;
but the resistance to

cross-breaking reaches its maximum about the twelfth melting, and
afterwards diminishes, from the metal becoming brittle and crys-
talline.

344. The Effects of Ductility on strength form the subject of a
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paper by Professor James Thomson in the Cambridge and Dublin
Mathematical Journal. That author shows, that a bent bar or a
twisted rod of a ductile material, by being slowly and gradually
strained, may be brought into such a condition as to have nearly
the whole of its cross section in the condition of proof or limiting
stress instead of the outer layers only, and may thus have its

strength increased much beyond that given by the ordinary formulae.

345. internal Friction is a term which may be used until a better

shall be devised to express a phenomenon recently observed by Sir

William Thomson in the extension of copper wire by a direct pull.
The tension of the wire is increased, step by step, by successive

augmentations of the load within the limits of permanent elasticity,
and the elongation is observed at each step. Then by successive

diminutions of the load, the tension is diminished by the same
series of steps in the reverse order, and the elongation observed.

When the load is completely removed, the wire recovers its original

length without " set
"
or permanent elongation, but for each degree

of tension the elongation is greater during the shortening of the

wire than during the lengthening ; as if there were some molecular

force analogous to friction, in so far as it impedes motion both ways,

making the elongation less than it would otherwise be while the

wire is being elongated, and greater than it would otherwise be
while the wire is returning to its original length. It appears also

that the force in question must depend in some way on the stress,

from its disappearing when the tension is removed.
346. It must be obvious that much of the subject of strength and

stiffness is in a provisional state, both as to mathematical theory
and as to experimental data. Considerable improvement in both
these respects may be anticipated from, researches now in progress.

CONDENSED SUMMARY OF EXPERIMENTS BY MESSRS. ROBERT NAPIEB
AND SONS ON THE TENACITY OF IRON AND STEEL.

(For details, see Transactions of the Institution of Engineers in /Scotland, 1858-59.)
nacity in Ibs. per
square inch.

Strongest Weakest
STEEL BARS- Quality. Quality.

Cast Steel 132,909 92,015
Blistered Steel (one quality

only) 104,298

Bessemer's (do.) .. 111,460

Homogeneous Metal, ....90,647 89.724

Puddled Steel, 71,486 62,761)

IRON BARS.
Yorkshire 66,392 60,075

Staffordshire, 62,231 66,715

Lanarkshire, 64,795 6,655

Lancashire, 60,110 63,775

Swedish, 48,232 47,855

Russian 56,805 49,564

Hammered Scrap 55,878 53,420

Cut out of lurjje forged

crank, 47,582 44,758

Tenacity in Ibs. per
square inch.

Strongest Weakest
STEEL PLATES. Quality. Quality.

CastSteel, 95.299 72,338

Homogeneous Metal 96,715 72.91)4

Puddled Steel, 93,979 72,366

IKON PLATES.

Yorkshire, 56,735 49,338
Durham (one quality only) 48,979
Staffordshire 64,) 28 45,584

Lanarkshire, 61,349 41,743

IRON STRAP.?, Ac.

Various districts, 55,937 41,386

The strength ot each quality is the mean of at least four experiments, and sometimes of eight.
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PART III.

PRINCIPLES OF CINEMATICS, OR THE COMPARISON OF
MOTIONS.

347. Division of the Subject. The science of cinematics, and
the fundamental notions of rest and motion to which it relates,

having already been defined in the Introduction, Articles 8, 9, 10,

1 1
;

it remains to be stated, that the principles of cinematics, or the

comparison of motions, will be divided and arranged in the present

part of this treatise in the following manner :

I. Motions of Points.

II Rigid Bodies or Systems.
Ill Pliable Bodies and Fluids.

IY. . Connected Bodies,

CHAPTER I.

MOTIONS OF POINTS.

SECTION 1. Motion of a Pair ofPoints.

348. Fixed and Nearly Fixed Directions. From the definition

of motion given in Article 9, it follows, that in order to determine

the relative motion of a pair of points, which consists in the change
of length and direction of the straight line joining them, that line

must be compared, at the beginning and end of the motion con-

sidered, with some fixed or standard length, and with at least two
fixed directions. Standard lengths have already been considered

in Article 7.

An absolutelyfixed direction may be ascertained by means whose

principles cannot be demonstrated until the subject of dynamics is

considered. For the present it is sufficient to state, that when a

solid body rotates free from the influence of any external force

tending to change its rotation, there is an absolutely fixed direction

called that of the axis of angular momentum, which bears certain

relations to the successive positions of the body.
A nearlyfixed direction is that of a straight line joining a pair
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of points in two bodies whose distance from each other is very-

great, such as the earth and a fixed star.

A line fixed relatively to tlie earth changes its absolute direction

(unless parallel to the earth's axis) in a manner depending on the
earth's rotation, and returns periodically to its original absolute

direction at the end of each sidereal day of 86,164 seconds. This
rate of change of direction is so slow compared with that which
takes place in almost all pieces of mechanism to which cinematical

and dynamical principles are applied, that in almost all questions
of applied mechanics, directions fixed relatively to the earth may
be treated as sufficiently nearly fixed for practical purposes.
When the motions of pieces of mechanism relatively to each

other, or to the frame by which they are carried, are under consi-

deration, directions fixed relatively to the frame, or to one of the

pieces of the machine, may be considered provisionally as fixed for

the purposes of the particular question.
349. Motion of a Pair of Points In fig. 172, let Aa B, repre-

sent the relative situation

of a pair of points at one

instant, and A2 B2 the

relative situation of the

same pair of points at a

later instant. Then the

change of the straight line

A B between those points,
from the length and direc-

tion represented by AJ Bi

to the length and direction

represented by A2 B2, constitutes the relative motion of the pair of

points A, B, during the interval between the two instants of time

considered.

To represent that relative motion by one
line^let

there be drawn,

from one point A, fig. 173, a pair of lines, AB,, AB2, equal and

parallel to A^Bj, A2 B2, of fig. 172 ; then A represents one of the

pair of points whose relative motion is under consideration, and

B,, B.,, represent the two successive positions of the other point B

relatively to A ;
and the line Bj B2 represents the motion of B rela-

tively to A.
Or otherwise, as in fig. 174, from a single point B let there be

drawn a pair of lines, BA,, BA2, equal and parallel to AiB,, A2B2,

of fig. 172; then Al5 A2 , represent the two successive positions of

A relatively to B; and the line Aj A,, equal and parallel to Bj Ba of

fig. 173, Outpointing in the contrary direction, represents the motion

ofA relatively to B.
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350. Fixed Point and moving Point In fig. 173, A is treated

as tlie fixed point, and B as the moving point ;
and in fig. 174, B

is treated as the fixed point, and A as the moving point ;
and these

are simply two different methods of representing to the mind the

same relation between the points A and B (see Article 10).
351. Component and Resultant Motions. Let O be a point

assumed as fixed, and A and B two suc-

cessive positions of a second point rela-

tively to O. In order to express mathe-

matically the amount and direction of

AB, the motion of the second point

.relatively to O, that line may be com-

pared with three axes, or lines in fixed

directions, traversing the fixed point O,
such as OX, OY, OZ.
Through A and B draw straight lines

AC, B D, parallel to the plane of O Y
and Z, and cutting the axis OX in C
and D. Then CD is said to be the com- FiS 175 -

ponent of the motion of the second point relatively to 0, along or

in tJie direction o/*the axis O X
;
and by a similar process are found

the components of the motion AB along O Y and O Z. The entire

motion A B is said to be the resultant of these components, and is

evidently the diagonal of a parallelepiped of which the components
are the sides.

The three axes are usually taken at right angles to each other
;

in which case A C and B D are perpendiculars let fall from A and
B upon OX j

and if be the angle made by the direction of the

motion A B with X,

CD = AB cos .

The relations between resultant and component motions are

exactly analogous to those between the lines representing resultant

and component couples, which have already been explained in

Articles 32, 33, 34, 35, 36, and 37.

352. The Measurement ofTime is effected by comparing the events,
and especially the motions, which take place in intervals of time.

Equal times are the times occupied by the same body, or by equal
and similar bodies, under precisely similar circumstances, in per-

forming equal and similar motions. The standard unit of time is

the period of the earth's rotation, or sidereal day, which has been

proved by Laplace, from the records of celestial phenomena, not to

have changed by so much as one eight-millionth part of its length
in the course of the last two thousand years.
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A subordinate unit is the second, being the time of one swing of

a pendulum, so adjusted as to make 86,400 oscillations in 1 -00273791
of a sidereal day ;

so that a sidereal day is 86164-09 seconds.

The length of a solar day is variable j
but the mean solar day,

being the exact mean of all its different lengths, is the period

already mentioned of 1-00273791 of a sidereal day, or 86,400
seconds. The divisions of the mean solar day into 24 hours, of

each hour into 60 minutes, and of each minute into 60 seconds, are

familiar to all.

Fractions of a second are measured by the oscillations of small

pendulums, or of springs, or by the rotations of bodies so contrived

as to rotate through equal angles in equal times.

353. Velocity is the ratio of the number of units of length
described by a point in its motion relatively to another point, to

the number of units of time in the interval occupied in describing
the length in question ;

and if that ratio is the same, whether it be

computed for a longer or a shorter, an earlier or a later, part of the

motion, the velocity is said to be UNIFOKM. Telocity is expressed
in units of distance per unit of time. For different purposes, there

are employed various units of velocity, some of which, together with
their proportions to each other, are given in the following table :

Comparison of Different Measures of Velocity.

Miles Feet Feet Feet

per hour. per second. per minute. per hour.

i 1-46 =88 = 5280-
0-6818

.
= 1

. ss 60 == 3600
0-01136^ = 0-016 = i 60

0*0001893 = 0-00027 = 01016 = i

1 nautical mile }

per hour, or >= 1-1507 = 1-6877 101*262 = 6075-74
"knot," J

In treating of the general principles of mechanics, thefoot per second
is the unit of velocity commonly employed in Britain. The units

of time being the same in all civilized countries, the proportions
amongst their units of velocity are the same with those amongst
their linear measures.

Component and resultant velocities are the velocities of component
and resultant motions, and are related to each other in the same

way with those motions, which have already been treated of in

Article 351.

354. Uniform Motion consists in the combination of uniform

velocity with uniform direction; that is, with motion along a

straight line whose direction is fixed.



MOTIONS OF POINTS. , 383

SECTION 2. Uniform Motion ofSeveral Points.

355. Motion of Three Points. THEOREM. The relative motions

of three points in a given interval oftime
are represented in direction and magni-
tude by the three sides ofa triangle. Let

0, A, B, denote the three points. Any
one of them may be taken as a fixed

point; let be so chosen; and let OX,
O Y, O Z, fig. 176, be axes traversing
it in fixed directions. Let Aj and Bx

be the positions of A and B relatively
to O at the beginning of the given interval of time, and A2 and B2

their positions at the end of that interval. Then A
x
A2 and Bj B>

are the respective motions ofA and B relatively to O. Complete
the parallelogram A! B: b A2 ;

then because Aa b is parallel and

equal to Aa B13
b is the position which B would have at the end of

the interval, if it had no motion relatively to A
;
but B2 is the actual

position of B at the end of the interval
; therefore, bB2 is the motion

of B relatively to A. Then in the triangle Bj b B2,

B! b = A! A2 is the motion of A relatively to 0,

b B2 is the motion of B relatively to A,

B! B2 is the motion of B relatively to O ;

so that those three motions are represented by the three sides of a

triangle. Q. E. D.

This Theorem might be otherwise expressed by saying, that if

three moving points be considered in any order, the motion oftJie third

relatively to thefirst is the resultant of the motion of the third relatively

to the second, and of the motion of the second relatively to the first;
the word "resultant" being understood as already explained in

Article 351.

356. Motions of a Series of Points. COROLLARY. If a series of

points be considered in any order, and the motion of each point deter-

mined relatively to that which precedes it in the series, and if the

relative motion of the last point and the first point be also determined,
then will those motions be represented by the sides of a closed polygon.
Let be the first point, A, B, C, &c., successive points following

it, M the last point but one, and N" the last point; and, for brevity's

sake, let the relative motion of two points, such as B and C, be

denoted thus (B, C). Then by the Theorem of Article 355 (0, A),

(A, B), and (0, B) are the three sides of a triangle ; also (0, B),

(B, C), and (0, C), are the three sides of a triangle; therefore
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(O, A), (A, B), (B, C), and (O, C), are the four sides of a quadri-
lateral

;
and by continuing the same process, it is shown, that how

great soever the number of points, (O, N), is the closing side of a

polygon, of which (O, A), (A, B), (B, C), (C, D), &c, (M, N) are

the other sides. Q. E. D. In other words, the motion of the last

point relatively to thefirst is the resultant of the motions of each point
of the series relatively to that preceding it.

This proposition is exactly analogous to that of the "
polygon of

couples," Article 37.

357. The Puraiieiopiped of Motions is a case of the polygon of

motions, analogous to the parallelepiped of forces in Article 54. In

fig. 177, let there be four points, O, A, B, C,
of which one, O, is assumed as fixed, and
is traversed by three axes in fixed direc-

tions, O X, O Y, O Z. In a given interval

of time, let A have the motion Aj A2

along or parallel to OX
;
let B have, in the

same interval, the motion b B3 parallel to

O Y, and relatively to A; then Bx B,,, the

diagonal of the parallelogram whose sides

Fig. 177. are prj __ AjAjand 6B~ is the motion of

B relatively to O. Let C have, relatively to B, the motion c C2

parallel to O Z; then C
t
C2, the diagonal of the parallelopiped

whose edges are A, A2, b BL>, and c C2,
is the motion of C relatively

to O, being the resultant of the motions represented by those three

edges. This is a mechanical explanation, of the composition of

motions, leading to results corresponding with the geometrical

explanation of Article 351.

358. Comparative Motion is the relation which exists between
the simultaneous motions of two points relatively to a third, which
is assumed as fixed. The comparative motion of two points is ex-

pressed, in the most general case, by means of four quantities,
viz. :

(1.) The velocity ratio* or the proportion which their velocities

bear to each other.

(2.) (3.) (4.) The directional relation* which requires, for its com-

plete expression, three angles. Those three angles may be measured
in different ways, and one of those ways is the following :

(2.) The angle made by the directions of the compared motions
with each other.

(3.) The angle made by a plane parallel to those two directions

with a fixed plane.

* These terms are adopted from Mr. Willis's work on Mechanism.
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(4.) The angle made by the intersection of those two planes with
a fixed direction in the fixed plane.

Thus, the comparative motion of two points relatively to a third,
is expressed by means of one of those groups of four elements which
Sir William Rowan Hamilton has called "quaternions" In most of
the practical applications of cinematics, the motions to be compared
are limited by conditions which render the comparison more simple
than it is in the general case just described. In machines, for

example, the motion of each point is limited to two directions,
forward or backward in a fixed path; so that the comparative
motion of two points is sufficiently expressed by means of the

velocity ratio, together with a directional relation expressed by + or

, according as the motions at the instant in question are similar

or contrary.

SECTION 3. Varied Motion of Points.

359. Velocity and Direction of" Varied Motion. The motion of
one point relatively to another may be

varied, either by change of velocity, or

by change of direction, or by both

combined, which last case will now be

considered, as being the most general.
In fig. 178, let O represent a point

assumed as fixed, O X, O Y, O Z, fixed

directions, and A B part of the path or

orbit traced by a second point in its

varied motion relatively to O. At the Fig" 178 '

instant when the second point reaches a given position, such as P,

in its path, the direction of its motion is obviously that of P T, a

tangent to the path at P.

To find the velocity at the instant of passing P, let A t denote an

interval of time which includes that instant, and A s the distance

traced in that interval. Then

is an approximation to the velocity at the instant in question, which

will approach, continually nearer and nearer to the exact velocity as

the interval A t and the distance A s are made shorter and shorter ;

and the limit towards which converges, as A s and A t are inde-
A t

finitely diminished, and which is denoted by
ds f , \

v =
dT...............................(L)

2o
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is the exact velocity at the instant of passing P. This is the process
called "differentiation.'"

Should the velocity at each instant of time be known, then the
distance s

l
s

,
described during an interval of time ^ tQ,

is found

by integration (see Article 81), as follows :

SI -SQ
= / vdt

(2.)

360. Components of Varied Motion. All the propositions of the

two preceding sections, respecting the composition and resolution

of motions, are applicable to the velocities of varied motions at a

given instant, each such velocity being represented by a line, such

as P T, in the direction of the tangent to the path of the point
which moves with that velocity, at the instant in question. For

example, if the axes OX, O Y, O Z, are at right angles to each

other, and if the tangent P T makes with their directions respec-

tively the angles , /3, y, then the three rectangular components of

the velocity of the point parallel to^fchose three axes are

v cos a.',
v cos /3; v cos y.

Let x, y, z
}
be the co-ordinates of any point, such as P, in the path

A P B, as referred to the three given axes. Then it is well known
that

d x d y d z
cos , = j

cos /3 = cos y = ;ds ds ds

and consequently the three components of the velocity v are

d x d y d z
vcos a = : v cos/3 = z. v cosy = ; (3.}

dt dt dt 3

and these are related to their resultant by the equation

361. Uniformly-varied Velocity. Let the velocity of a point
either increase or diminish at an uniform rate; so that if t repre-
sents the time elapsed from a fixed instant when the velocity was
v

,
the velocity at the end of that time shall be

v = v + at; ............................ (1.)

a being a constant quantity, which is the rate of variation of the

velocity, and is called acceleration when positive, and retardation

when negative. Then the mean velocity during the time t is
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and the distance described is

= *< + ............................
(3-)

To find the velocity of a point, whose velocity is uniformly varied,
at a given instant, and the rate of variation of that velocity, let

the distances, A sl9 A s2, described in two equal intervals of time,
each equal to A, before and after the instant in question, be
observed. Then the velocity at the instant between those inter-

vals is

.

.......

and its rate of variation is

~
At

362. Varied Rate of Variation of Velocity. When the velocity
of a point is neither constant nor uniformly-varied, its rate of

variation may still be found by applying to the velocity the sam^,
operation of differentiation, which, in Article 359, was applied to'

the distance described in order to find the velocity. The result of

this operation is expressed by the symbols,

dv _ d 2
s

m

dt dt2 '

and is the limit to which the quantity obtained by means of the

formula 5 of Article 361 continually approximates, as the interval

denoted by A t is indefinitely diminished.

363. uniform Deviation is the change of motion of a point which
moves with uniform velocity in a circular

path. The rate at which uniform deviation

takes place is determined in the following
manner.

Let C, fig. 179, be the centre of the cir-

cular path described by a point A with an

uniform velocity v, and let the radius C A be
denoted by r. At the beginning and end of

an interval of time A
t, let A, and A2 be the

positions of the moving point. Then

the arc A! A2
= v A t ; and

,
chord

the chord At A* = v A t

arc

The velocities at AI and A 2 are represented by the equal lines
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|
= A2 V2 = v, toucliing the circle at A! and A2 respec-

tively. From A
3
draw A2 v equal and parallel to A, V 17

and join

V2 v. Then the velocity A2 Y2 may be considered as compounded
of A* v and v V2 ;

so that v V2 is the deviation of the motion dur-

ing the interval A; and because the isosceles triangles A,vV2J

C A! A, are similar :

A7T2 A, A2 v*'At chord~-'~-

and the approximate rate of that deviation is

v2 chord

r
*

arc
J

but the deviation does not take place by instantaneous changes of

velocity, but by insensible degrees ; so that the true rate of deviation

is to be found by finding the limit to which the approximate rate

continually approaches as the interval At is diminished indefinitely.
V*

Now the factor remains unaltered by that diminution ; and the
r

ratio of the chord to the arc approximates continually to equality ;

so that the limit in question, or true rate of deviation, is expressed by

r-
................................. <>

364. Varying Deviation. When a point moves with a varying
velocity, or in a curve not circular, or has both these variations of

motion combined, the rate of deviation at a given instant is still

represented by equation 1 of Article 363, provided v be taken to

denote the velocity, and r the radius of curvature of the path, of

the' point at the instant in question.
365. The Resultant Rate of Variation of the motion of a point

is found by considering the rate of variation of velocity and the

rate of deviation as represented by two lines, the former in the

direction of a tangent to the path of the point, and the latter in

the direction of the radius of curvature at the instant in question,
and taking the diagonal of the rectangle of which those two lines

are the sides, which has the following value :

^ff (-<>
366. The Ratc of Variation of the Component Velocities of a point

parallel to three rectangular axes, are represented as follows :
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d z x d"~y d*z
'

and if a rectangular parallelepiped be constructed, of which the

edges represent these quantities, its diagonal, whose length is

(S)'}
............

will represent the resultant rate of variation, already given in
another form in equation 1 of Article 365.

367. The Comparison of the Varied Motions of a pair of points

relatively to a third point assumed as fixed, is made by finding the
ratio of their velocities, and the directional relation of the tangents
of their paths, at the same instant, in the manner already described

in Article 358 as applied to uniform motions. It is evident that
the comparative motions of a pair of points may be so regulated as

to be constant, although the motion of each point is varied, pro-
vided the variations take place for both points at the same instant,
and at rates proportional to their velocities.
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CHAPTER IL

MOTIONS OF KIGID BODIES.

SECTION 1. Rigid Bodies, and their Translation.

368. The term Rigid Body is to be understood to denote a body,
or an assemblage of bodies, or a system of points, whose figure

undergoes no alteration during the motion which is under con-

sideration.

369. Translation or Shifting is the motion of a rigid body rela-

tively to a fixed point, when the points of the rigid body have no
motion relatively to each other ;

that is to say, when they all move
with the same velocity and in the same direction at the same

instant, so that no line in the rigid body changes its direction.

It is obvious that if three points in the rigid body, not in the
same straight line, move in parallel directions with equal velocities

at each instant, the body must have a motion of translation.

The paths of the different points of the body, provided they are

all equal and similar, and at each instant parallel, may have any
figure whatsoever.

SECTION 2. Simple Rotation.

370. Rotation or Turning is the motion of a rigid body when
lines in it change their direction. Any point in or rigidly attached
to the body may be assumed as a fixed point to which to refer the
motions of the other points. Such a point is called centre ofrotation.

371. Axis of Rotation. THEOREM. In every possible change of
position of a rigid body, relatively to a fixed centre, there is a line

traversing that centre whose direc-

tion is not changed. In fig. 180,
let O be the centre of rotation, and
let A and B denote any two other

points in the body, whose situa-

tions relatively to O are, before

the turning, A,, B1?
and after the

turning, A?, B2. Join Aj A2,

Bj B2, forming the isosceles trian-

gles O Aj A 2, Bj B,. Bisect the bases of those triangles in C and
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D respectively, and through the points of bisection draw two planes

perpendicular to the respective bases, intersecting each other in the

straight line O E, which must traverse O. Let E be any point in
the line OE; then EAiAj, and EB

:
B2, are isosceles triangles;

and E is at the same distance from O, A, and B, before and after

the turning; therefore E is one and the same point in the body,
whose place is unchanged by the turning; and this demonstration

applies to every point in the straight line O E; therefore that line

is unchanged in direction. Q. E. D.

COROLLARY. It is evident that every line in the body, parallel
to the axis, has its direction unchanged.

372. The Plane of Rotation is any plane perpendicular to the

axis. The Angle of Rotation, or angular motion, is the angle made
by the two directions, before and after the turning, of a line per-

pendicular to the axis.

373. The Angular Velocity of a turning body is the ratio of the

angle of rotation, expressed in terms of radius, to the number of

units of time in the interval of time occupied by the angular motion.

Speed of turning is sometimes expressed also by the number of

turns or fractions of a turn in a given time. The relation between
these two modes of expression is the following : Let a be the

angular velocity, as above defined, and T the turns in the same unit

Gf time; then

(2 * = 6-2831852).

374. Uniform Rotation consists in uniformity of the angular velo-

city of the turning body, and constancy of the direction of its axis

of rotation.

375. Rotation common to all Parts of Body. Since the angular
motion of rotation consists in the change of direction of a line in

a plane of rotation, and since that change of direction is the same
how short soever the line may be, it is evident that the condition

of rotation, like that of translation, is common to every particle,

how small soever, of the turning rigid body, and that the angular

velocity of turning of each particle, how small soever, is the same

with that of the entire body This is otherwise evident by con-

sidering, that each part into which a rigid body can be divided

turns completely about in the same time with every other part, and
with the entire body.

376. Right and Lcft-Handed Rotation. The direction of rotation

round a given axis is distinguished in an arbitrary manner into
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right-handed and left-handed. One end of the axis is chosen, as

that from which an observer is supposed to look along the direction

of the axis towards the rotating body. Then if the body seems to

the observer to turn in the same direction in which the sun seems

to revolve to an observer north of the tropics, the rotation is said

to be right-handed ; if in the contrary direction, left-handed : and
it is usual to consider the angular velocity of right-handed rotation

to be positive, and that of left-handed rotation to be negative ;

but this is a matter of convenience. It is obvious that the

same rotation which seems right-handed when looked at from
one end of the axis, seems left-handed when looked at from the

other end.

377. Relative Motion of a Pair of Points in a Rotating Body. Let
O and A denote any two points in a rotating body ;

and consider-

ing O as fixed, let it be required to determine the motion of A
relatively to an axis of rotation drawn through O. On that axis

let fall a perpendicular from A ; let r be the length of that perpen-
dicular. Then the motion of A relatively to the axis traversing O
is one of revolution, or translation in a circular path of the radius

r j the centre of that circular path being at the point where the

perpendicular from A meets the axis. If a be the angular velocity
of the body, then the velocity of A relatively to the axis traversing
Oia

v = ar
; (1.)

and the direction of that velocity is at each instant perpendicular
to the plane drawn through A and the axis. The rate of deviation

of A in its motion relatively to the given axis is

?
= *'; (2.)

in which the first expression is that already found in Article 363,
and the second is deduced from the first by the aid of equation 1 of

this Article. It is evident that for a given rotation the motion of

O relatively to an axis of rotation traversing A is exactly the same
with that of A relatively to a parallel axis traversing O

;
for it

depends solely on the angular velocity a, the perpendicular distance

r of the moving point from the axis, and the direction of the axis ;

all which are the same in either case.

r is called the radius-vector of the moving point.
378. Cylindrical Surface of Equal Velocities. If a Cylindrical

surface of circular cross section be described about an axis of rota-

tion, all the points in that surface have equal velocities relatively
to the axis, and the direction of motion of each point in the cylin-
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drical surface relatively to tlie axis is a tangent to the surface in a

plane perpendicular to the axis.

379. Comparative Motions of Two Points relatively to an Axis.-
Let O, A, B, denote three points in a rotating rigid body ;

let be
considered as fixed, and let an axis of rotation be drawn through
it. Then the comparative motions of A and B relatively to that

axis are expressed as follows : the velocity-ratio is that oftlie radii-

vectores of the points, and the directional relation consists in the

angle between their directions of motion being the same ivith that

between their radii-vectores. Or symbolically : Let r
}) r%, be the per-

pendicular distances of A and B from the axis traversing O, and
vl and v% their velocities

;
then

v2 r2 A A
'

2 2=
',
and

vi n
380. Components of Velocity of a Point in a Rotating Body. The

component parallel to an axis of rotation, of the velocity of a point
in a rotating body relatively to that axis,

is null. That velocity may be resolved

into components in the plane of rotation.

Thus let 0, in fig. 181, represent an axis

of rotation of a body whose plane of rota-

tion is that of the figure ;
and let A be

any point in the body whose radius-vector

is O A = r. The velocity of that point

being v = a r, let that velocity be repre-

sented by the line AV perpendicular to

O A. Let B A be any direction in the plane of rotation, along
which it is desired to find the component of the velocity of A

;
and

let ^YAU = * be the angle made by that line with AY From

Y let fall YU perpendicular to BA
;
then AU represents the

component in question ,
and denoting it by u,

^(, = v ' cos 6 = ar cos $ ..................... (1.)

From O let fall B perpendicular to B A. Then ^LA O B =
^YA U = 6

;
and the right-angled triangles B A and A U Y

are similar ;
so that

AY : ALT : : OA : <JB = r cos 6 ............. (2.)

Now the entire velocity of B relatively to the axis O is

ar cos 6 = u, .........
,
................ (3.)

so that the component, along a given straight line in the plane of
rotation, of the velocity of any point in that line, is equal to the veto-

city of the point where a perpendicidarfrom the axis meets that line.
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SECTION 3. Combined Rotations and Translations.

381. Property of all Motions of Rigid Bodies. The foregoing pro-

position may be regarded as a particular case of the following, which
is true of all motions of a rigid body.

TIte components, along a given straight line in a rigid body, of the

velocities of the points in that line relatively to any point, whether in or

attached to the body or otlierwise, are all equal to each other ; for

otherwise, the distances between points in the given straight line

must alter, which is inconsistent with the idea of rigidity.
382. Helical Motion. Rotation is the only movement which a

rigid body as a whole can have relatively to a point belonging to

it or attached to it. But if the motion of the body be determined

relatively to a point not attached to it, a translation may be com-

bined with the rotation. When that translation takes place in

the direction of the axis of rotation, the motion of the rigid body is

said to be helical, or screw-like, because each point in the rigid body
describes a helix or screw, or a part of a helix or screw.

Let Vi denote the velocity of translation, parallel to the axis of

rotation, which is common to all points of the body ; this is called

the velocity of advance. The advance during one complete turn of

the rotating body is the pitch of each of the helical or screw-like

paths described by its particles ; that is, the distance, in a direc-

tion parallel to the axis, between one turn of each such helix and

the next; and a being the angular velocity, so that is the time

of one turn, the value of the pitch is

2 TT v
1

. ap
P = -

J whence ^ =^ ................. (1.)

Let r, as before, be the radius-vector of any point in the body, and
let

v2 = ar................... ........... (2.)

denote its velocity of revolution, or velocity relatively to the axis,
due to the rotation alone. Then the resultant velocity of that

point is

The inclination of the helix described by that point to the plane of
rotation is given by the equation

Vi p
i = arc tan - = arc tan : ............. (4.)' v '
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Fig. 182.

the tangent of that angle being the ratio of the pitch to the circum-

ference of the circle described by the point relatively to the axis of

rotation.

383. PROBLEM. To Find the Motion of a Rigid Body from the

Motions of Three of its Points.

Let A, B, C, fig. 182, be three

points in a rigid body, and at a

given instant let them have mo-
tions relatively to a point indepen-
dent of the body, which motions

are represented in velocity and

direction by the three lines AYa ,

BY6, C Y fl
. It is required to find

the motion of the entire rigid

body relatively to the same fixed

point.

Through any point o, fig. 183,
draw three lines o a, o b, o c, equal
and parallel to the three lines

AYa,
BY6 ,

C Ve . Through a, b, and c, draw a

plane a be, on which let fall a perpendicular o n
from o. Then o n represents a component, which
is common to the velocities of all the three points

A, B, C, and must therefore be common to all the

points in the body ; that is, it is a velocity of
translation.

From the points Ya,
Y6, Yc,

draw lines Y^
equal and parallel to o n, but opposite in direction to it

; and join

A Ua,
B U6 ,

C Uc, which will all be parallel to the same plane ;

that is, to the plane a b c. The last three lines will represent the

component velocities which, along with the common velocity of

translation parallel to o n, make up the resultant velocities of the

three points. Through any two of the points A, B, draw planes

perpendicular to the respective components of their motions which
are parallel to a b c. These two planes will intersect each other in

a line ODE, which will be parallel to o n. The perpendicular
distances of that line from the points A, B, being unchanged by the

motion, it represents one and the same line in or attached to the

rigid body, and it is therefore the axis of rotation. A plane drawn

through the third point C, perpendicular to C U,., will cut the other

two planes in the same axis : the three revolving component
velocities

183.

CU
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be respectively proportional to the perpendicular distances, or

radii-vectores,

AD, B~E, CF,

of the three points from that axis ; and the angular velocity
will be equal to each of the three quotients made by dividing the

revolving component velocities of the points by their respective
radii-vectores. This rotation, combined with a translation parallel
to the axis, with a velocity represented by o n, constitutes a liellcal

motion, being the required motion of the rigid body. Q. E. I.

384-. Special Cases of the preceding problem occur, in which
either a more simple method of solution is sufficient, or the general
method fails, and a special method has to be employed.

I. When the motions of the points of
the body are known to be all parallel to

one plane, it is sufficient to know the

motions of two points, such as A, B, fig.

184. Let A O, B O, be two planes tra-

versing A and B, and perpendicular to

the respective directions of the simul-

taneous velocities of those points; if those

planes cut each other, the entire motion
is a rotation

; the line of intersection of

the planes O, being the axis of rotation,
and the angular velocity, are found as in the last Article. If the
two planes are parallel, the motion is a translation.

II. If three points, not in the same plane, have parallel motions,
or if three points in the same plane have parallel motions oblique to

the plane, the motion is a translation.

III. If three points in the same plane move perpendicularly to the

plane, as A B C, fig. 184 a, then if their velocities are equal, the

Fig. 184 a.
Fig. 184 c.

motion is a translation; and if their velocities are unequal, the

motion is a rotation about the axis which is the intersection of the
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plane of the three points with the plane drawn through the extre-

mities Va ,
Y6,

V
e,
of the three lines which represent their veloci-

ties
;
the angular velocity being found as in Article 383.

If the plane of rotation is known, then the simultaneous veloci-

ties of two points, as A and B in figs. 184 b and 184 c, are sufficient

to determine the axis O.

385. Rotation Combined with Translation in the Same Plane.

Let a body rotate about an axis (fig. 185),
fixed relatively to the body, with an angular

velocity a, and at the same time let that axis

have a motion of translation in a straight path
perpendicular to the direction of the axis, with

the velocity u, represented by the line C U. It

is required to find the velocity and direction of

motion of any point in the body. From the

moving axis draw a straight line C T perpendi-
cular to that axis and to C U, and in that direction into which the

rotation (as represented by the feathered arrow) tends to turn C U,
and make

(i.)

Then the point T has, in virtue of translation along with the axis

C, a forward motion with the velocity u ;
and in virtue of rota-

tion about that axis, it has a backward motion with the velocity

a ' CTT = u,

equal and opposite to the former
;
and its resultant velocity is 0.

Hence every point in the body, which comes in succession into the

position T, situated at the distance from the axis C in the direc-
a

tion above described, is at rest at the instant of its arriving at that

position; that is, it has just ceased to move in one direction, and
is about to move in another direction

;
and this is true of every

point which arrives at a line traversing T parallel to C. Conse-

quently the resultant motion of the body, at any given instant, is

the same as if it were rotating about the line which at the instant

in question occupies the position T, parallel to C, at the distance

-
; and that line is called THE INSTANTANEOUS AXIS. To find the

a
motion of any point A in the body at a given instant, let fall the

perpendicular A T from that point on the instantaneous axis
j
then

the motion of A is in the direction A Y perpendicular to the plane
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of the instantaneous axis and of the instantaneous radius-vector

AT, and the velocity of that motion is

v = a-^T (2.)

386. Rolling Cylinder; Trochoid Every straight line parallel

to the moving axis C, in a, cylindrical surface described about C

Avith the radius -, becomes in turn the instantaneous axis. Hence
a

the motion of the body is the same with that produced by the roll-

ing of such a cylindrical
surface on a plane FTP parallel to C and

to CU, at the distance -.

The path described by any point in the body, such as A, which

is not in the moving axis G, is a curve well known by the name of

trochoid. The particular
form of trochoid called the cycloid, is

described by each of the points in the rolling cylindrical surface.

387. Plane Rolling on Cylinder; Spiral Paths Another mode
of representing the combination of rota-

tion with translation in the same plane
is as follows : Let O be an axis assumed
as fixed, about which let the plane O C

(containing the axis O) rotate (right-

handedly, in the figure), with the angu-
lar velocity a. Let a rigid body have,

relatively to the rotating plane, and in a

direction perpendicular to it, a transla-

tion with the velocity u. In the plane
O C, and at right angles to the axis O,

u
take O T ==

,
in such a direction that

the velocity

u = a-OT,

which the point T in the rotating plane has at a given instant, shall

be in the contrary direction to the equal velocity of translation

u, which the rigid body has relatively to the rotating plane. Then
each point in tlie rigid body which arrives at the position T, or at

any position in a line traversing T parallel to the fixed axis O, is

at rest at tlie instant of its occupying that position ; therefore the

line traversing T parallel to the fixed axis O is the instantaneous

axis; the motion at a given instant of any point in the rigid body,
such as A, is at right angles to the radius-vector A T drawn per-
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pendicular to the instantaneous axis; and the velocity of that

motion is given by the equation

v = a - AT.

All the lines in the rigid body which successively occupy the

position of instantaneous axis are situated in a plane of that body,
FTP, perpendicular to O C ; and all the positions of the instan-

taneous axis are situated in a cylinder described about O with the

radius O T
; so that the motion of the rigid body is such as is pro-

duced by the rolling oftJie plane P P on the cylinder whose radius is

O T = -. Each point in the rigid body, such as A, describes a

plane spiral about the fixed axis 0. For each point in the rolling

plane, P P, that spiral is the involute of the circle whose radius is

O T. For each point whose path of motion traverses the fixed axis

0, that is, for each point in a plane of the rigid body traversing O
parallel to P P, the spiral is Archimedean, having a radius-vector

increasing by the length u for each angle a through which it

rotates.

388. Combined Parallel Rotations In figs. 187, 188, and 189,

let O be an axis assumed as fixed, and C a plane traversing that

axis, and rotating about it with the angular velocity a. Let C be

an axis in that plane, parallel to the fixed axis O ; and about the

moving axis C let a rigid body rotate with the angular velocity b

relatively to the plane C
;
and let the directions of the rotations a

and b be distinguished by positive and negative signs. The body is

said to have the rotations about the parallel axes O and C combined

or compounded, and it is required to find the result of that com-
bination of parallel rotations.

Fig. 187 represents the case in which a and b are similar in

direction; fig. 188, that in which a and b are in opposite direc-
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tions, and b is the greater ; and fig. 189, that in which a and b are

in opposite directions, and a is the greater.
Let a common perpendicular O C to the fixed and moving axes

be intersected in T by a straight line parallel to both those axes, in

such a manner that the distances of T from the fixed and moving
axes respectively shall be inversely proportional to the angular
velocities of the component rotations about them, as is expressed

by the following proportion :

a :b: : CT : OT (1.)

When a and b are similar in direction, let T fall between O and C,
as in fig. 187 ;

when they are contrary, beyond, as in figs. 188 and

189. Then the velocity of the line T of the plane C is a OT
;

and the velocity of the line T of the rigid body, relatively to the

plane O C, is b C T, equal in amount and contrary in direction to

the former ; therefore each line of the rigid body which arrives at

the position T is at rest at the instant of its occupying that posi-

tion, and is then the instantaneous axis. The resultant angular

velocity is given by the equation

c = a + b; (2.)

regard being had to the directions or signs of a and b
;
that is to

say, if we now take a and b to represent arithmetical magnitudes,
and affix explicit signs to denote their directions, the direction of

c will be the same with that of the greater; the case of fig. 187

will be represented by the equation 2, already given ;
and those of

figs.
188 and 189 respectively by

c = b-a; c = a-b (2 A.)

The relative proportions of a, b, and c, and of the distances

between the fixed, moving, and instantaneous axes, are given by
the equation

a, :b :c : : CT : O~f : O~C (3.)

The motion of any point, such as A, in the rigid body, is at each

instant at right angles to the radius-vector A T drawn from the

point perpendicular to the instantaneous axis
;
and the velocity of

that motion is

v = c-AT (4.)

389. Cylinder Rolling on Cylinder; Epifrochoids. All the lines

in the rigid body which successively occupy the position of instan-

taneous axis are situated in a cylindrical surface described about C

with the radius CT ;
and all the positions of the instantaneous
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axis are contained in a cylindrical surface described about O with

the radius O T
;
therefore the resultant motion of the rigid body

is that which is produced by rolling the former cylinder, attached

to the body, on the latter cylinder, considered as fixed.

In fig. 187, a convex cylinder rolls on a convex cylinder ;
in fig.

188, a smaller convex cylinder rolls in a larger concave cylinder;
in fig. 189, a larger concave cylinder rolls on a smaller convex

cylinder.
Each point in the rolling rigid body traces, relatively to the

fixed axis, a curve of the kind called epitrochoids. The epitrochoid
traced by a point in the surface of the rolling cylinder is an epi-

cycloid.
In certain cases, the epitrochoids become curves of a more simple

class. For example, each point in the moving axis C traces a
circle.

When a cylinder, as in fig. 188, rolls within a concave cylinder
of double its radius, each point in the surface of the rolling cylinder
moves backwards and forwards in a straight line, being a diameter
of the fixed cylinder; each point in the axis of the rolling cylinder
traces a circle of the same radius with that cylinder, and each other

point in or attached to the rolling cylinder traces an ellipse of

greater or less eccentricity, having its centre in the fixed axis O.

This principle has been made available in instruments for drawing
and turning ellipses.

390. Curvature of Epitrochoids. The following being given :

the radius of the fixed cylinder, O~T = ^ ;

the radius of the rolling cylinder, C~T = rz ;

the instantaneous radius-vector of a tracing-point A, ATT = r ;

the angle made by that radius-vector with the rotating plane,

it is required to find the radius of curvature, p, of the path of the

tracing-point A, at the instant under consideration.

The radius of a convex cylinder is to be considered as positive,
and that of a concave cylinder as negative ; and regard is to be

paid to the principle, that cos 6 is <
POS1 *ve

I according as 6 is

( acute )

(
obtuse

j

'

Let dt be an indefinitely short interval of time; then during
that interval the tracing-point A moves through the distance crdt.
Let the direction of the radius-vector r, which is perpendicular to
the path traced by A, alter in the same time by the angle di.
Then the radius of curvature of the path of A is
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crdt

To determine the angular motion d i of the radius-vector, it has to

be considered, that the absolute angular velocity of the rolling

cylinder is c, which gives that cylinder an angular motion, c d t, in

the given interval ;
and also that, in the course of the same inter-

val, a new line comes to occupy the position of instantaneous axis,

distant from the original line by the length bra dt, in a direction

opposite to that of the rotation of the rolling cylinder. The effect

of this shifting of the instantaneous axis is, to turn the angular

position of the radius-vector r, in a negative direction relatively to

the rolling cylinder, through the angle

dt

which being combined with the angular motion of the cylinder,
c d tj gives as the resultant angular motion of the radius-vector,

. / & r2 cos A
i = (c = \

which being substituted in equation 1, gives for the radius of cur-

vature of the path traced by A,

cr

.. b r2 cos d

/2\

cr

Now,
7*i

c 7*
x -|- 7*2

"*

(attention being paid to the implicit signs of rx and r2) ; and con-

sequently,

= r . !i!J
(3.)

ri + r2 -?^co^

curve

are some

The sign of this result, when {
P081*1/6 I

?
shows that the

I HGfiTB/tlVO
J

traced by A is < > towards T. The following

limited cases :

I. When the tracing-point is the surface of the rolling cylinder,

r = 2 ra cos 6
; and therefore,
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which is the radius of curvature of an epicycloid.

II. When a cylinder rolls on a plane, r^ becomes infinitely great
as compared with r2, and thus reduces equation 3 to

p = -r-- ......................... (5.)
r2 cos 6

r

winch is the radius of curvature of a trochoid.

III. When a cylinder rolls on a plane, and the tracing-point is

in the surface of the cylinder, r = 2 rz cos 0, and

p = 2r = 4r2 cos 6, .....................(6.)

which is the radius of curvature of a cycloid.

IY. When a plane rolls on a cylinder, r2 becomes infinitely great
as compared with ^ and r; and equation 3 becomes

which is the radius of curvature of a spiral of the class mentioned
in Article 387.

V. When a plane rolls on a cylinder, and the tracing-point is in

tJie plane, cos 6 = and equation 7 becomes

which is the radius of curvature of the involute ofa circle.

"VI. When a plane rolls on a cylinder, and the tracing-point is

at the distance rr from the plane on the side next the cylinder,

cos 6 = ---
j and equation 7 takes the following form :

<
9
->

which is the radius of curvature of an Archimedean spiral. Let B,

be the distance of a point in that spiral from the fixed axis O ; then
and

(9A>)

As to rolling curves in general, see Professor Clerk Maxwell's paper
in the Transactions of the Eoyal Society ofEdinburgh, vol. xvi.
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391. Equal and Opposite Parallel Rotations Combined. Let a

plane C rotate with an angular velocity a about an axis O con-

tained in the plane, and let a rigid body rotate about the axis C
in that plane parallel to O, with an angular velocity a, equal and

opposite to that of the plane. Then the angular velocity of the

rigid body is nothing ; that is, its motion is one of translation only,

all its points moving in equal circles of the radius O C, with the

velocity a O C. This case is not capable of being represented by
a rolling action.

392. Rotations about Intersecting Axes Combined. In fig. 190,
let O A be an axis assumed as

fixed
;
and about it let the plane

A O C rotate with the angular
velocity a. Let C be an axis

in the rotating plane ;
and about

that axis let a rigid body rotate

with the angular velocity b re-

latively to the rotating plane.
Because the point O in the

rigid body is fixed, the instantaneous axis must traverse that point.
The direction of that axis is determined, as before, by considering
that each point which arrives at that line must have, in virtue of

the rotation about O C, a velocity relatively to the rotating plane,

equal and directly opposed to that which the coincident point of

the rotating plane has. Hence it follows, that the ratio of the per-

pendicular distances of each point in the instantaneous axis from
the fixed and moving axes respectively that is, the ratio of the

sines of the angles which the instantaneous axis makes with the

fixed and moving axes must be the reciprocal of the ratio of the

component angular velocities about those axes
;
or symbolically, if

O T be the instantaneous axis,

Fig. 190.

sin A O T : sin C T : : b : a ,(1.)

This determines the direction of the instantaneous axis, which may
also be found by graphic construction as follows : On O A take

O a proportional to a
;
and on O C take O b proportional to b. Let

those lines be taken in such directions, that to an observer looking
from their extremities towards O, the component rotations seem
both right-handed. Complete the parallelogram O b c a

;
the dia-

gonal c will be the instantaneous axis.

The resultant angular velocity about this instantaneous axis is

found by considering, that if C be any point in the Jnoving axis,

the linear velocity of that point must be the same, whether com-

puted from the angular velocity a of the rotating plane about the
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fixed axis A, or from the resultant angular velocity c of the rigid

body about the instantaneous axis. That is to say, let CD, C E,
be perpendiculars from C upon O A, T, respectively ; then

= c -CE;
but CD : CTE : : sin ^iAOC : sin ^C T and therefore

sin^COT : sin^AOC : :a : c;

and, combining this proportion with that given in equation 1, we
obtain the following proportional equation :

sin^COT : sin^rAOT :sin^:AOC}
: : _^ :

b_
: c_ > ..... (2.)

: : Oa : Ob : Oc )
-

that is to say, the angular velocities of the component and resultant

rotations are each proportional to the sine of the angle between the axes

of the otJier two ; and the diagonal oftJie parallelogram b c a repre-
sents both the direction of the instantaneous axis and the angular velo-

city about that axis.

393. Roiling c one*. All the lines which successively come into

the position of instantaneous axis are situated in the surface of a
cone described by the revolution of O T about C ;

and all the

positions of th instantaneous axis lie in the surface of a cone
described by the revolution of OT about OA. Therefore the

motion of the rigid body is such as would be produced by the roll-

ing of the former of those cones upon the latter.

It is to be understood, that either of the cones may become a
flat disc, or may be hollow, and touched internally by the other.

For example, should ^A O T become a right angle, the fixed cone
would become a flat disc

j
and should ^A T become obtuse,

that cone would be hollow, and would be touched internally by the

rolling cone ; and similar changes may be made in the rolling cone.

The path described by a point in or attached to the rolling cone

is a spherical epitrochoid; but for the purposes of the present trea-

tise, it is unnecessary to enter into details respecting the properties
of that class of curves.

394. Analogy of Rotations and Single Forces. If the proportional

equation 3 of Article 388, which shows the relations between the

component angular velocities of rotation about a pair of parallel

axes, the resultant angular velocity, and the position of the instan-

taneous axis, be compared with the proportional equation of Article

39, by means of which, as explained in Article 40, the magnitude
and position of the resultant of a pair of parallel forces are found,

it will be evident that those equations are exactly analogous.
The result of the combination of a rotation with a translation in
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the same plane, in producing a rotation of equal angular velocity
about an instantaneous axis at a certain distance to one side of the

moving axis, as explained in Article 385, is exactly analogous to

the result of the combination of a single force with a couple in pro-

ducing an equal single force transferred laterally to a certain dis-

tance, as explained in Article 41.

The result of the combination of two equal and opposite rotations

about parallel axes, in producing a translation with a velocity
which is the product of the angular velocity into the distance

between the axes, as explained in Article 391, is exactly analogous
to the production of a couple by means of a pair of equal and oppo-
site forces, as explained in Article 25.

The result of the combination of two rotations about intersecting

axes, as explained .in Article 392, is exactly analogous to the result

of the combination of a pair of inclined forces acting through one

point, as explained in Article 51.

The combination of a rotation about a given axis with a transla-

tion parallel to the same axis, as explained in Article 382, is exactly

analogous to the combination of a force acting in a given line with
a couple whose axis is parallel to the same line, as explained in

Article 60, cases 4 and 5.

It thus appears, that just as the composition and resolution of

translations are exactly analogous to the composition and resolution

of couples, so the composition and resolution of rotations are exactly

analogous to the composition and resolution of single forces; that is

to say, if lines be taken, representing in direction axes of rotation,
and in length the angular velocities of rotation about such axes, all

mathematical theorems which are true of lines representing single
forces are true of such lines representing rotations : and if with this

be combined the principle, that all mathematical theorems which
are true of lines representing in direction the axes and in length the

moments of couples are true also of lines representing the velocities

and directions of translations, all problems of the resolution and

composition of motions may be solved by referring to the solutions

of analogous problems of statics.

395. Comparative motions in Compound Rotation. The velocity
-

ratio of two points in a rotating rigid body at any instant is that of

their perpendicular distances from its instantaneous axis ;
and the

angle between the directions of motion of the two points is equal
to that between the two planes which traverse the points and the

instantaneous axis.

SECTION 4. Varied Rotation.

396. variation of Angular Telocity is measured like variation of

linear velocity, by comparing the change which takes place in the
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angular velocity of a rotating body, A
a, during a given interval of

time, with the length of that interval, A
t, and the rate ofvariation is

the value towards which the ratio of the change of angular velocity to

A (L

the interval of time, , converges, as the length of the interval is

indefinitely diminished ; being represented by

da

and found by the operation of differentiation.

397. Change of the Axis of Rotation has been already considered,
so far as it is consistent with uniform angular velocity, in the pre-

ceding section. All the propositions of that section are applicable
also to cases in which the angular velocity is varied, so long as the

ratio of each pair of component angular velocities, such as a : b, is

constant.

When that ratio varies, the propositions are true also, provided
it be understood, that the rolling cylinders and cones with circular

bases, spoken of in section 3, are simply the osculating cylinders and
cones Sit the lines of contact of rolling cylinders and cones with bases

not circular ; and that rv r
z ,

in each case, represent the values of

the variable radii of curvature of non-circular cylinders at their

lines of contact, and ^ A O T, ^ COT, the variable angles of

obliquity of the osculating circular cones of non-circular cones.

398. Components of Varied Rotation. The most convenient way,
in most cases, of expressing the mode of variation of a rotatory

motion, is to resolve the angular velocity at each instant into three

component angular velocities about three rectangular axes fixed in

direction. The values of those components, at any instant, show at

once the resultant angular velocity, and the direction of the instan-

taneous axis. For example, let a,., ay,*af, be the rectangular com-

ponents of the angular velocity of a rigid body at a given instant.

rotation about x from y towards z,

about y from z towards x,

and about z from x towards y,

being considered as positive ; then

a=V(<4+aJ+ <*;)
...................... (1.)

is the resultant angular velocity, and

cos=2?j cos /3= 2r; cos y= -'; ............... (2.)
a a a

are the cosines of the angles which the instantaneous axis makes
with the axes of x, y and z, respectively.



403

CHAPTER III.

MOTIONS OF PLIABLE BODIES, AND OP FLUIDS.

399. Division of the Subject. The subject of the present chapter,
so far as it comprehends the relative motions of the points of

pliable solids, has been already treated of in those portions of the

Third Chapter of Part II. which relate to strains. There remain
now to be considered the following branches :

I. The Motions of Flexible Cords.

II. The Motions of Fluids not altering in Yolume.
III. The Motions of Fluids altering in Yolume.

SECTION 1. Motions of Flexible Cords.

400. General Principles. As those relative motions of the points
of a cord which may arise from its extensibility, belong to the sub-

ject of resistance to tension, which is a branch of that of strength
and stiffness, the present section is confined to those motions of

which a flexible cord is capable when the length, not merely of the

whole cord, but of each part lying between two points fixed in the

cord, is invariable, or sensibly invariable.

In order that the figure and motions of a flexible cord may be

determined from cinematical considerations alone, independently of

the magnitude and distribution offerees acting on the cord, its weight
must be insensible compared with the tension on it, and it must

everywhere be tight ; and when that is the case, each part of the

cord which is not straight is maintained in a curved figure by pass-

ing over a convex surface. The line in which a tight cord lies on a
convex surface is the shortest line which it is possible to draw on
that surface between each pair of points in the course of the cord.

(It is a well known principle of the geometry of curved surfaces,
that the osculating plane at each point of such a line is perpendi-
cular to the curved surface.)
Hence it appears, that the motions of a tight flexible cord of

invariable length and insensible weight are regulated by the follow-

ing principles :

I. The length between each pair ofpoints in the cord is constant.

II. That length is itie shortest line which can be drawn between its

extremities over the surfaces by which the cord is guided.
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401. Motions Classed. The motions of a cord are of two kinds

I. Travelling of a cord along a track of invariable form; in

which case the velocities of all points of the cord are equal.
II. Alteration of the figure of the track by the motion of the

guiding surfaces.

Those two kinds of motion may be combined.

The most usual problems in practice respecting the motions of

cords are those in which cords are the means of transmitting mo-
tion between two pieces in a train of mechanism. Such problems
will be considered in Part IY. of this treatise.

Next in point of frequency in practice are the problems to be

considered in the ensuing Article.

402. Cord Guided by Surfaces of Revolution. Let a COrd in some

portions of its course be straight, and in others guided by the sur-

faces of circular drums or pulleys, over each of which its track is

a circular arc in a plane perpendicular to the axis of the guiding
surface. Let r be the radius of any one of the guiding surfaces,

i the angle of inclination which the two straight portions of the

cord contiguous to that surface make with each other, expressed in

length of arc to radius unity. Then the length of the portion of

the cord which lies on that surface is r i
; and if s be the length of

any straight portion of the cord, the total length between two given

points fixed in the cord may be expressed thus :

L = 2 + s ri (1.)

Let c be the distance between the centres of a given adjacent pair
of guiding surfaces, s the length of the straight portion of cord

which lies between them, and r, r', their respective radii; then

evidently

the upper signs being employed when the cord crosses, and the

lower when it does not cross the line of centres c.

Now let a given point in the cord, A, be considered as fixed, and
let L be the constant length of cord between A and another point
in the cord, B. Let one of the guiding surfaces between A and B
be moved through an indefinitely short distance, dx, in a, direction

which makes angles,/,/, with the two contiguous straight divisions

of the cord respectively. Then, in order to keep the cord tight, B
must be drawn longitudinally through the distance,

dx '

(cos /+ cos/) ; (3.)

and consequently, if u represent the velocity of translation of the
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guiding surface in the given direction, and v the longitudinal velo-

city of the point B in the cord,

and if any number of guiding surfaces between A and B be trans-

lated, each in its own direction,

V = 2
' U (COS^+COS/) .................... (5.)

The case most common in practice is that in which the plies, or

straight parts of the cord, are all parallel to each other
;
so that i

= 180 in each case, while a certain number, n, of the guiding
bodies or pulleys all move simultaneously in a direction parallel to

the plies of the cord with the same velocity, u. Then cos j= cos/
= 1 ; and

v = 2nu..............................(6.)

SECTION 2. Motions of Fluids of Constant Density.

403. Velocity and Flow. The density of a moving fluid mass

may be either exactly invariable, from the constancy or the adjust-
ment of its temperature and pressure, or sensibly invariable, from
the smallness of the alterations of volume which the actual altera-

tions of pressure and temperature are capable of producing. The
latter is the case in most problems of practical mechanics affecting

liquids.
Conceive an ideal surface of any figure, and of the area A, to be

situated within a fluid mass, the parts of which have motion rela-

tively to that surface
;
and let u denote, as the case may be, the uni-

form velocity, or flie mean value of the varying velocity, resolved

in a direction perpendicular to A, with which the particles of the

fluid pass A. Then
Q = uA ............................. (1.)

is the volume of fluid which passes from one side to the other of

the surface A in an unit of time, and is called \heflow, or rate of
flow, through A.

When the particles of fluid move obliquely to A, let ^ denote

the angle which the direction of motion of any particle passing A
makes with a normal to A, and v the velocity of that particle ;

then
u = v ' cos & ............................ (2.)

When the velocity normal to A varies at different points, either

from the variation of v, or of 6, or of both, the flow may also be

expressed as follows : Let A be divided into indefinitely small

elements, each of which is represented by dA
;
then



MOTIONS OF FLUIDS OF CONSTANT DENSITY. 411

Q = [ udA. =
I

v cos 6 dAj (3.)

and if we now distinguish, the mean normal velocity from the

velocity at any particular point by the symbol u ,
we have,

(4.)

404. Principle of Continuity. AXIOM. When the motion of afluid
of constant density is considered relatively to an enclosed space of
invariable volume which is always filled with the fluid, theflow into

the space and the flow out of it, in any one given interval of time,
must be equal a principle expressed symbolically by

2-Q =
(5.)

The preceding self-evident principle regulates all the motions of

fluids of constant density, when considered in a purely cinematical

manner. The ensuing articles of this section contain its most
usual applications.

405. Flow in a Stream. A stream is a moving fluid mass, in-

definitely extended in length, and limited transversely, and having
a continuous longitudinal motion. At any given instant, let A, A',
be the areas of any two of its transverse sections, considered as

fixed
; u, u', the mean normal velocities through them ; Q, Q', the

rates of flow through them
;
then in order that the principle of con-

tinuity may be fulfilled, those rates of flow must be equal ;
that is,

uA = u' A' = Q = Q' = constant for all cross

sections of the channel at the given instant ; (1.)

consequently,

^ = ; (2.)u A!

or, the normal velocities at a given instant at twofixed cross sections

are inversely as the areas of these sections.

406. Pipes, Channels, Currents, and Jets. When a stream of

fluid completely fills a pipe or tube, the area of each cross section

is given by the figure and dimensions of the pipe, and for similar

forms of section varies as the square of the diameter. Hence the

mean normal velocities of a stream flowing in a full pipe, at differ-

ent cross sections of the pipe, are inversely as the squares of the

diameters of those sections.

A channel partially encloses the stream flowing in it, leaving the

upper surface free ; and this description applies not only to chan-
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nels commonly so called, but to pipes partially filled. In this case

the area of a cross section of the stream depends not only on the

figure and dimensions of the channel, but on the figure and eleva-

tion of the free upper surface of the stream.

A current is a stream bounded by other portions of fluid whose
motions are different.

A jet is a stream whose surface is either free all round, or is

touched by a solid body in a small portion of its extent only.

407. A Radiating Current is a part of a stream which moves
towards or from an axis. It is evident that such a stream cannot

extend to the axis itself, but must turn aside into a different course

at some finite distance from the axis. Conceive a radiating cur-

rent to be cut by a cylindrical surface of the radius r described

about the axis, and let h be the depth, parallel to the axis, of the

portion of that surface which is traversed by the current
;
then

the mean radial component, u, of the velocity of the current at

that surface has the value,

408. A Vortex, Eddy, or whirl, is a stream which either returns

into itself, or moves in a spiral course towards or from an axis. In
the latter case two or more successive turns of the same vortex may
touch each other laterally without the intervention of any solid

partition.
409. steady Motion of a fluid relatively to a given space considered

as fixed is that in which the velocity and direction of the motion of

the fluid at eachfixed point is uniform at every instant of the time
under consideration

;
so that although the velocity and direction of

the motion of a given particle of the fluid may vary while it is

transferred from one point to another, that particle assumes, at each
fixed point at which it arrives, a certain definite velocity and
direction depending on the position of that point alone

;
which

velocity and direction are successively assumed by ^ach particle
which successively arrives at the same fixed point.
The steady motion of a stream is expressed by the two conditions,

that the area of each fixed cross section is constant, and that the
flow through each cross section is constant ; that is to say,

dA dQ

If u represents the normal velocity of a fluid moving steadily, at

a givenfixed point, then

du /0 \
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expresses the condition of steady motion. Next, let u represent the

normal velocity, not at a given fixed point, but of a given identical

particle offluid; then the variation undergone by u in an indefi-

nitely small interval of time, d t, is that arising from its being
transferred from one cross section to another, whose distance down
the stream from the former is d s = u - d t. Hence, denoting by

- d s, the indefinitely small variation of velocity which takes
d s

place from this cause, and by -~rr, the rate at which that variation

takes place, we have

d ' u _ du d s _ d u
~dT~ ~Ts'Tt

=U '

~d~s
..................W

Most of the problems respecting streams which occur in practice
have reference to steady motion.

410. In Unsteady motion, the velocity at each fixed point varies,

at a rate denoted by ;
and the total rate of variation of the

cu t

velocity of an individual particle in a stream, being found lay adding

together the rates of variation due to lapse of time and to change of

position, is expressed by

d'u _ du du ds _ du
_.

du , .

~dt
=

~dl~^~ds
'

~dt~~dJ^ 'ITs
......

1L'

411. Motion of Pistons. Let a mass of fluid of invariable

volume be enclosed in a vessel, two portions of the boundary of

which (called pistons) are moveable inwards and outwards, the rest

of the boundary being fixed. Then, if motion be transmitted

between the pistons by moving one inwards and the other outwards,
it follows, from the invariability of the volume of the enclosed fluid,

that the velocities of the two pistons at each instant will be to each

other in the inverse ratio of the areas of the respective projections

of the pistons on planes normal to their directions of motion. This

is the principle of the transmission of motion in the hydraulic press

and hydraulic crane.

The flow produced by a piston whose velocity is u, and the area

of whose projection on a plane perpendicular to the direction of its

motion is A, is given, as in other cases, by the equation

Q = uA.............................. (1.)

412. General Differential Equations of Continuity. When the

motions of a fluid of invariable density are considered in the most
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general way, the principle of continuity stated in Article 404 is

expressed symbolically in the following manner. The space as-

sumed as fixed, to which the motion of the fluid is referred, is con-

ceived to be divided into indefinitely small rectangular elementary
spaces, each having for its linear dimensions, d x, dy, dz, and for

the areas of its three pair* of faces, dy dz, dzdx, dxdy. Let

x, x + dx, be the co-ordinates of the pair of faces, dy dz ;

y,V + dy, ,> dzdx;

z,z + dz, dxdy.

Let the velocity of the particles of water at any point be resolved

into three rectangular components, u, v, w, parallel respectively to

x, y, z
}
with proper algebraical signs. Let outward flow be posi-

tive, and inward flow negative. The values of the flow for the six

faces are as follows :

Through the first face dy dz, u'dydz',

second face dydz, (u + -7 dx)dydz;

first face d z d x, vdzdx;

second face dzdx, (v + dy) dzdx;
ay

first face d x d y, wdxdy,

second face dxdy, (w + -y- dz) dxdy.
<jLZ

Adding those six parts of the flow together, and equating the

result, in virtue of the principle of continuity, to nothing, we find

the following equation :

and, striking out the common factor,

du dv dw
-

This is the general differential equation of continuity in a fluid of

invariable volume.

413. Oeneral Differential Equations of Steady Motion-- If each

particle which arrives successively at a given point assumes a velo-

city and direction of motion depending on the position of the point
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alone, and not on the lapse of time, that state of steady motion is

represented by the equations,

where u
} v, w, are the component velocities at a fixed point. Next,

instead of the velocities at a fixed point, let u, v, w, be the compo-
nent velocities of an individual particle / then in the indefinitely
short interval dt, the co-ordinates of that particle alter by the

lengths dx = udt, dy = vdt, dz = wdt'
}
and it assumes the

component velocities proper to its new position, differing from its

original velocities by quantities, which, being divided by dt, give
the rates of variation of the component velocities of an individual

viz. :

d u du ,
du

,
du

d ' v dv, d v . d v

d'w dw . dw . dw
\-v -j

(2.)

dt
~

dx dy dz'

414. Qeneral Differential Equations of Unsteady Motion. When
the motion is not steady, each of the three rates of variation in the

equations 2 of Article 413 requires the addition of a term represent-

ing the rate of variation of velocity due to lapse of time indepen-

dently of change ofpositwn, as follows :

d'u du . du . du . du
-7- =

-J--J- w -\-v-j- -\-w -=-
(1.)dt dt dx dy dz'

and similar equations for = - and 7 : the presence of the dot
d t at

denoting that the velocities are those of an individual particle, and
its absence, that they are those at a fixed point.

415. Equations of Displacement. In all the preceding Articles,

x, y, and
,
denote the co-ordinates of a real or ideal fixed point in

the space to which the motions of the fluid are referred; and the

differentials -7, &c., refer to the differences amongst the condi-
a x

tions of the fluid at different points in that space. Let f, u, ,

represent the co-ordinates of an individual particle; then the three

components of the velocity of that particle have the values
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and the three components of the rate of variation of its motion, as

denned in Article 366, are

-
~di2 ~~d

the values of
7 , -j t

and
^ , being taken from Article 413 for

cL t Ui t do

steady motion, and from Article 414 for unsteady motion.

416. A Wave is a state of unsteady motion of a mass, whether
solid or fluid, such, that the state of motion which at a given instant

of time takes place amongst the particles occupying a certain space,
is transmitted to other particles occupying a certain other space,

along a continuous course, it may be unchanged, or it may be with
modifications which still leave a certain similarity between the

motions of the particles originally affected, and of those affected in

succession.

For example, let a given fixed point be taken as the origin,
and let the particle which is at that point, at an instant of time

denoted by 0, have a certain velocity and direction of motion.

After the lapse of the time t, let another particle which is at a point

A, distant from O by the length x, have either the same velocity
and direction of motion, or a velocity and direction bearing a

definite relation to those of the original particle; the motion so

communicated having been transmitted in succession to all the

particles between and A.
The velocity of transmission or propagation of a wave, when con-

stant, is the ratio, -, of the distance between two points to the time

which elapses between the instants when the motions at those

points are similar. Let a denote that velocity ;
then the condition

of motion at any point whose distance from the origin is x, at the

instant t, depends upon, or is afunction of, a t x; which quantity,
or a quantity bearing some definite proportion to it, is called the

phase of the wave motion. Wave motion in fluids of invariable

density is regulated by the principle of continuity already stated.

417. Oscillation in a fluid, is a motion in which each individual

particle of the fluid returns over and over again to the same posi-

tion, and repeats over and over again the same motions. The

period of an oscillation is the interval of time which elapses
between the commencement of a series of movements, and the

commencement of the repetition of the same movements. The
most usual kind of oscillation in a fluid is that of a series of oscil-

latory waves, in which a certain state of motion is transmitted

onward from particle to particle, that motion being oscillatory.
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SECTION 3. Motions of Fluids of Varying Density.

418. Flow of volume and Flow of Mass. In the case of a fluid

of varying density, the volume, which in an unit of time flows

through a given area A, with a normal velocity u, is still repre-

sented, as for a fluid of constant density, by

Q = Aw;...
< (1.)

but the absolute quantity) or mass of fluid which so flows, bears no

longer a constant proportion to that volume, but is proportional
to the volume multiplied by the density. The density may be

expressed, either in units of weight per unit of volume, or in

arbitrary units suited to the particular case. Let g be the density ;

then inflow of mass may be thus expressed :

e Q = e Au (2.)

419. The Principle of Continuity, as applied to fluids of varying

density, takes the following form : theflow into or out of anyJixed
space of constant volume is that due to the variation of density alone.

To express this symbolically, let there be a fixed space of the

constant volume V, and in a given interval of time let the density
of the fluid in it, which in the first place may be supposed uniform

at each instant, change from & to 2. Then the mass of fluid which

at the beginning of the interval occupied the volume V, occupies

at the end of the interval the volume -
;
and the difference of

?2

those volumes is the volume which flows through the surface

bounding the space, outward if g2 ig less than ,, inward if 3 is

greater then ft.
Let t2 t

{
be the length of the interval of time ;

then the rate of flow of volume is expressed as follows :

VI--
Q=

Z'- tl

'

(L)

If the rate of flow is variable during the instant in question, the

above equation gives its mean value
; and in that case the exact

rate offlow of volume at a given instant is the value towards which

the result of equation 1 converges as the interval of time is inde-

finitely diminished, viz. :

Theflow of mass at the same instant is

i

2E
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Next let it "be supposed that the density of the fluid varies at

different points of the space. Then on the right-hand side of

equation 3, g is to be held to represent the mean density throughout
the space at the given instant; while on the left-hand side, ? must
be held to represent the mean density at the surface through which the

flow takes place. Let that surface be divided into parts, over each of

which the density is uniform at a given instant ;
let Q' represent the

part of the flow of volume which takes place through one of those

parts of the surface, and e' the density of the fluid so flowing, so that

Q' % is the part of the flow of mass which takes place through the part
of the surface in question; then for equation 3 is to be substituted

420. Stream. To apply the preceding principles to a stream of

fluid of varying density, let the axis of the stream be a line, straight
or curved, which traverses the centres of gravity of all the cross

sections of the stream made at right angles to that axis, and let

distances from a fixed point in that axis, measured down-stream, be

denoted by s, and the area of any cross section by A. Let s
} ,

s2,
be

the positions of two cross sections of the stream whose distance

apart along the axis is s2 Sij then the volume of the space
between those cross sections is

(i.)

Let Q! be the rate of flow of volume through the first cross section ;

Qo that through the second; u^ u2,
the corresponding mean velo-

cities normal to the respective cross sections; e the mean density of

the fluid in the space V ; ^ the mean density at the first cross section,

and & that at the second. Then equation 4 of Article 419 becomes

The rate at which theflow ofmass varies, in passing from one cross

section of the stream to another, is the limit to which the ratio

converges as the distance s2
- sl is indefinitely diminished; that is

to say,

ds ds ds

The mean normal velocity at a given cross section of a stream

having the value u = -, is subject to the equation
XX
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421. Steady Motion. In the case of steady motion in a fluid of

varying density, the density, velocity, and direction of motion at

each fixed point of the space to which the motion is referred, are

constant, and are assumed successively by each particle which arrives

at the given point. Hence in this case, equation 4 of Article 419
becomes

2-QV=0 ...........................(1.)

The case of a stream is expressed by the forms assumed by equations
3 and 4 of Article 420, viz. :

that is to say, theflow of mass is uniformfor all cross sections of the

stream; and being also constant for all instants of time, is therefore

absolutely constant.

422. pistons and Cylinders. Let a mass of fluid of variable

density be enclosed in a space whose volume is capable of being
varied by the motion of one or more pistons. Let A be the area

of the projection of a piston on a plane perpendicular to its direction

of motion; u its normal velocity, positive if outward, negative if

inward ; $
the density of the fluid in contact with it ; Y the whole

volume of fluid enclosed; e its mean density. Then equation 4
becomes

rt
_

(1.)

the last expression being introduced because
^
Y = the mass en-

closed, is constant. If the density is uniform, then

as is otherwise evident.

If the space is not completely enclosed, but has an opening whose
cross section is A", and at which the mean normal velocity of the
stream is u" (positive outward), and the density 5",

then the flow of
mass through that opening, A" u" {, is to be included in the sum-
mation at the left side of equation 1.

423. General Differential Equations. As in Article 412 and the

subsequent Articles, let u, v, and w
y
be the rectangular components

of the velocity of the fluid at any given fixed point in the space to
which the motion is referred, and dx,dy,dz, the dimensions of an
indefinitely small fixed rectangular portion of that space. Then
considering the pair of faces of that space whose common area is
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d y dz, the flow of mass in at the first face is u
? d y d z, and the

flow of mass out at the second face is (u e -} .

e

dx) dy dz; the

resultant of which pair of flows is

d' u a 7 , ,

,
g
.dxdydz.dx

Taking the corresponding resultant for the other two pairs of faces,

adding the three quantities thus found together, observing that

V = d x d y d z, and dividing by that common factor, the equation
4 of Article 419, which expresses the principle of continuity,
becomes the following :

.d-ve , d'W_ dt>" '
'

''dx dy dz
'

dt

which is -the equation of continuity for a fluid of varying density.
This equation may be otherwise expressed as follows :

fdu . dv . dw\ . ( d . d . d . d\
f (

-= + -y- + -j ) +(^T--H V -,"- + W -j- + )
a ~

j (2.)\dx dy dz) \ dx dy dz dt} *

or dividing by e,

du dv dw id

The first three terms of the last equation are identical with the
three terms of the equation of continuity for a fluid of uniform

density.
The conditions of steady imotion are the following :

-0- -0-^^-0- ^ e n- m
dt~"> dt~ ' dt > Tt

= ()
> ............ (

3
')

which conditions apply to a fixed point in space, and not to an
individual particle of fluid. The rates of variation of the component
velocities and of the density of an individual particle of fluid are

expressed as follows :

d'u du . du du du

and similar equations for r , = , and -

dt' dt '

dt
424. The Motions of Connected Bodies form the subject of the

Theory of Mechanism, to which the Fourth Part of this treatise
relates.



PART IV.

THEORY OF MECHANISM.

CHAPTER I.

DEFINITIONS AND GENERAL PRINCIPLES.

425. Theory of Pure Mechanism Defined. Machines are bodies,
or assemblages of bodies, which transmit and modify motion and
force. The word "

machine," in its widest sense, may be applied
to every material substance and system, and to the material uni-

verse itself
;
but it is usually restricted to works of human art, and

in that restricted sense it is employed in this treatise. A machine
transmits and modifies motion when it is the means of making one
motion cause another

;
as when the mechanism of a clock is the

means of making the descent of the weight cause the rotation of

the hands. A machine transmits and modifies force when it is the

means of making a given kind of physical energy perform a given
kind of work

;
as when the furnace, boiler, water, and mechanism

of a marine steam engine are the means of making the energy of

the chemical combination of fuel with oxygen perform the work of

overcoming the resistance of water to the motion of a ship. The
acts of transmitting and modifying motion, and of transmitting and

modifying force, take place together, and are connected by a cer-

tain law ;
and until lately, they were always considered together

in treatises on mechanics
;
but recently great advantage in point

of clearness has been gained by first considering separately the act

of transmitting and modifying motion. The principles which re-

gulate this function of machines constitute a branch of Cinematics,
called the theory ofpure mechanism. The principles of the theory
of pure mechanism having been first established and understood,
those of the theory of the work ofmachines, which regulate the act

of transmitting and modifying force, are much more readily de-

monstrated and apprehended than when the two departments of

the theory of machines are mingled. The establishment of the

theory of pure mechanism as an independent subject has been

mainly accomplished by the labours of Mr. "Willis, whose no-

menclature and methods are, to a great extent, followed in this

treatise.
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426. The General Problem of the theory of pure mechanism

may be stated as follows : Given t/ie mode of connection of two or

more moveable points or bodies with each oilier, and with certainfixed
bodies ; required iJie comparative motions of the moveable points or

bodies : and conversely, when the comparative motions of two or

more moveable points are given, to find their proper mode of connec-
tion.

The term "comparative motion" is to be understood as in

Articles 358, 367, 379, and 395. In those Articles, the compara-
tive motions of points belonging to one body have already been
considered. In order to constitute mechanism, two or more bodies

must be so connected that their motions depend on each other

through cinematical principles alone.

427. Frame; Moving Pieces; Connectors. The frame of a ma-
chine is a structure which supports the moving pieces, and regulates
the path or kind of motion of most of them directly. In consider-

ing the movements of machines mathematically, the frame is con-

sidered as fixed, and the motions of the moving pieces are referred

to it. The frame itself may have (as in the case of a ship or of a
locomotive engine) a motion relatively to the earth, and in that

case the motions of the moving pieces relatively to the earth are

the resultants of their motions relatively to the frame, and of the

motion of the frame relatively to the earth
;
but in all problems of

pure mechanism, and in many problems of the work of machines,
the motion of the frame relatively to the earth does not require to

be considered.

The moving pieces may be distinguished into primary and second-

ary; the former being those which are directly carried by the

frame, and the latter those which are carried by other moving
pieces. The motion of a secondary moving piece relatively to the

frame is the resultant of its motion relatively to the primary piece
which carries it, and of the motion of that primary piece relatively
to the frame.

Connectors are those secondary moving pieces, such as links, belts,

cords, and chains, which transmit motion from one moving piece
to another, when that transmission is not effected by immediate
contact.

428. Bearings are the surfaces of contact of primary moving
pieces with the frame, and of secondary moving pieces with the

pieces which carry them. Bearings guide the motions of the pieces
which they support, and their figures depend on the nature of those

motions. The bearings of a piece which has a motion of transla-

tion in a straight line, must have plane or cylindrical surfaces,

exactly straight in the direction of motion. The bearings of rotat-

ing pieces must have surfaces accurately turned to figures of revolu-
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tion, such as cylinders, spheres, conoids, and flat discs. The bearing
of a piece whose motion is helical, must be an exact screw, of a

pitch equal to that of the helical motion (Article 382). Those

parts of moving pieces which touch the bearings, should have

surfaces accurately fitting those of the bearings. They may bo

distinguished into slides, for pieces which move in straight lines,

gudgeons, journals, bushes, and pivots, for those which rotate, and

screws for those which move helically.

The accurate formation and fitting of bearing surfaces is of primary

importance to the correct and efficient working of machines. Sur-

faces of revolution are the most easy to form accurately, screws are

more difficult, and planes the most difficult of all. The success of

Mr. Whitworth in making true planes, is regarded as one of the

greatest achievements in the construction of machinery.
429. The Motions of Primary Moving Pieces are limited by the

fact, that in order that different portions of a pair of bearing sur-

faces may accurately fit each other during their relative motion,
those surfaces must be either straight, circular, or helical; from

which it follows, that the motions in question can be of three kinds

only, viz :

I. Straight translation, or shifting, which is necessarily of limited

extent, and which, if the motion of the machine is of indefinite

duration, must be reciprocating ; that is to say, must take place

alternately in opposite directions. (See Part III., Chapter II.,

Section 1.)

II. Simple rotation, or turning about a fixed axis, which motion

may be either continuous or reciprocating, being called in the

latter case oscillation. (See Part III., Chapter II., Section 2.)

III. Helical or screw-like motion, to which the same remarks

apply as to straight translation. (See Part III., Chapter II.,

Section 3, Article 382.)
430. The Motions of Secondary Moving Pieces relatively to the

pieces which carry them, are limited by the same principles which

apply to the motions of primary pieces relatively to the frame. But
the motions of secondary moving pieces relatively to the frame may
be any motions which can be compounded of straight translations

and simple rotations according to the principles already explained
in Part III., Chapter II., Section 3.

431. An Elementary Combination in mechanism consists of a

pair of primary moving pieces, so connected that one transmits

motion to the other.

The piece whose motion is the cause is called the driver ; that

whose motion is the effect, the follower. The connection between
the driver and the follower may be

I. By rolling contact of their surfaces, as in toothless wheels.



424 THEORY OF MECHANISM.

II. By sliding contact of their surfaces, as in toothed wlieels,

screws, wedges, cams, and escapements.
III. By bands or wrapping connectors, such as belts, cords, and

gearing-ctiains.
IY. By link-work, such as connecting rods, universal joints, and

clicks.

V. By reduplication of cords, as in the case of ropes and pulleys.
VI. By an intervening fluid, transmitting motion between two

pistons.
The various cases of the transmission of motion from a driver to

a follower are further classified, according as the relation between
their directions of motion is constant or changeable, and according
as the ratio of their velocities is constant or variable. This latter

principle of classification is employed by Mr. Willis as the founda-

tion of a primary division of the subject of elementary combinations

in mechanism into classes, which are subdivided according to the

mode of connection of the pieces. In the present treatise, elemen-

tary combinations will be classed primarily according to the mode
of connection.

432. Une of Connection. In every class of elementary combina-

tions,- except those in which the connection is made by reduplica-
tion of cords, or by an intervening fluid, there is at each instant

a certain straight line, called the line of connection, or line ofmutual
action of the driver and follower. In the case of rolling contact,

this is any straight line whatsoever traversing the point of contact

of the surfaces of the pieces ; in the case of sliding contact, it is a

line perpendicular to those surfaces at their point of contact
;
in

the case of wrapping connectors, it is the centre line of that part
of the connector by whose tension the motion is transmitted

;
in

the case of link-work, it is the straight line passing through the

points of attachment of the link to the driver and follower.

433. Principle of Connection. The line of connection of the

driver and follower at any instant being known, their comparative
velocities are determined by the following principle : The respec-

tive linear velocities of a point in t/ie driver, a'/id a point in the fol-

lower, each situated anywhere in the line of connection, are to each

otJier inversely as the cosines of the respective angles made by tJie paths

of the points with the line of connection. This principle might be

otherwise stated as follows : The components, along the line of con-

nection, of tJie velocities ofany two points situated in that line, are

equal.
434. Adjustments of Speed. The velocity-ratio of a driver and

its follower is sometimes made capable of being changed at will, by
means of apparatus for varying the position of their line of connec-

tion; as when a pair of rotating cones are embraced by a belt
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which can be shifted so as to connect portions of their surfaces of

different diameters.

435. A Train of mechanism consists of a series of moving pieces,
each of which is follower to that which drives it, and driver to that

which follows it.

436. Aggregate Combinations in mechanism are those by which

compound motions are given to secondary pieces.
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CHAPTER IL

ON ELEMENTAEY COMBINATIONS AND TRAINS OP MECHANISM.

SECTION 1. Rolling Contact.

437. Pitch Surfaces are those surfaces of a pair of moving pieces,
which touch each other when motion is communicated by rolling
contact. The LINE OP CONTACT is that line which at each instant

traverses all the pairs of points of the pair of pitch surfaces which
are in contact.

438. Smooth Wheels, Rollers, Smooth Backs. Of a pair of pri-

mary moving pieces in rolling contact, both may rotate, or one

may rotate and the other have a motion of sliding, or straight
translation. A rotating piece, in rolling contact, is called a smooth

wheel, and sometimes a roller ; a sliding piece may be called a
smooth rack.

439. General Conditions of Rolling Contact. The whole of the

principles which regulate the motions of a pair of pieces in rolling
contact follow from the single principle, that eachpair ofpoints in the

pitch surfaces, which are in contact at a given instant, must at that

instant be moving in the same direction with the same velocity.

The direction of motion of a point in a rotating body being per-

pendicular to a plane passing through its axis, the condition, that

each pair of points in contact with each other must move in the

same direction leads to the following consequences :

I. That when both pieces rotate, their axes, and all their points
of contact, lie in the same plane.

II. That when one piece rotates and the other slides, the axis of

the rotating piece, and all the points of contact, lie in a plane per-

pendicular to the direction of motion of the sliding piece.
The condition, that the velocities of each pair of points of con-

tact must be equal, leads to the following consequences :

III. That the angular velocities of a pair of wheels, in rolling

contact, must be inversely as the perpendicular distances of any
pair of points of contact from the respective axes.

IY. That the linear velocity of a smooth rack in rolling contact

with a wheel, is equal to the product of the angular velocity of the

wheel by the perpendicular distance from its axis to a pair of points
of contact.
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Respecting the line of contact, the above principles III. and IV.
lead to the following conclusions :

V. That for a pair of wheels with parallel axes, and for a wheel
and rack, the line of contact is straight, and parallel to the axes or

axis
;
and hence that the pitch surfaces are either plane or cylin-

drical (the term "
cylindrical" including all surfaces generated by

the motion of a straight line parallel to itself).

YI. That for a pair of wheels, with intersecting axes, the line of

contact is also straight, and traverses the point of intersection of

the axes ;
and hence that the rolling surfaces are conical, with a

common apex (the term " conical" including all surfaces generated

by the motion of a straight line which traverses a fixed point).
440. Circular Cylindrical Wheels are employed when an uniform

velocity-ratio is to be communicated between parallel axes. Figs.

187, 188, and 189, of Article 388, may be taken to represent pairs
of such wheels ; C and O, in each figure, being the parallel axes of

the wheels, and T a point in their line of contact. In
fig. 187,

both pitch surfaces are convex, the wheels are said to be in outside

gearing, and their directions of rotation are contrary. In figs. 188

and 189, the pitch surface of the larger wheel is concave, and that

of the smaller convex ; they are said to be in inside gearing, and
their directions of rotation are the same.

To represent the comparative motions of such pairs of wheels

symbolically, let

be their radii : let O = c be the line of centres, or perpendicular
distance between the axes, so that for

y

Let av a
2 ,
be the angular velocities of the wheels, and v the common

linear velocity of their pitch surfaces ; then

the sign applying to gearing.

441. A Straight Rack and Circular Wheel, which are used when
an uniform velocity-ratio is to be communicated between a sliding

piece and a turning piece, may be represented by fig. 185 of Article

385, C being the axis of the wheel, P T P the plane surface of the

rack, and T a point in their line of contact. Let r be the radius of

the wheel, a its angular velocity, and v the linear velocity of the

rack
;
then

v= r a.
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442. Bevel Wheels, whose pitch surfaces are frustra of regular
cones, are used to transmit an uniform angular velocity-ratio
between a pair of axes which intersect each other. Pig. 190 of

Article 392 will serve to illustrate this case; O A and O C being
the pair of axes, intersecting each other in O, O T the line of con-

tact, and the cones described by the revolution of O T about O A
and O C respectively being the pitch surfaces, of which narrow zones

or frustra are used in practice.
Let

,, a2j
be the angular velocities about the two axes respec-

tively; and let ^ =^ A O T, i2 = ^_ C O T, be the angles made
by those axes respectively with the line of contact

;
then from

the principle III. of Article 439 it follows, that the angular velocity-
ratio is

2 _ sin i,~ r ....... 11. )

CTJ sin i.2

Which equation serves to find the angular velocity-ratio when the

axes and the line of contact are given.

Conversely, let the angle between the axes,

^A O C = % -f i2 =j,
CL

be given, and also the ratio ;
then the position of the line of

ai

contact is given by either of the two following equations :

a.2 sinj
fw f*f\c* n\

.(2.)

sin t
1
=

sin ^o =
J (a! -f ai + 2 a

{
a.2 cosj)

}

ai sinj

Graphically, the same problem is solved as follows : On the two
axes respectively, take lengths to represent the angular velocities

of their respective wheels. Complete the parallelogram of which
those lengths are the sides, and its diagonal will be

the line of contact. As in the case of the rolling
cones of Article 393, one of a pair of bevel wheels

may be a flat disc, or a concave cone.

443. Non-Circular Wheel* are used to transmit a

variable velocity-ratio between a pair of parallel
axes. In

fig. 191, let Cb C3 , represent the axes of

such a pair of wheels; T,, T2,
a pair of points which

at a given instant touch each other in the line of

contact (which line is parallel to the axes and in

the same plane with them) ;
and Uj, U2,

another

pair of points, which touch each other at another

instant of the motion
;
and let the four points, T,,
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TV, IT,, Uo, be in one plane perpendicular to the two axes, and to

the line of contact. Then for every such set of four points, the

two following equations must be fulfilled :

arcT 1 U 1
= arcT3 IJ2 ;

and those equations show the geometrical relations which must
exist between a pair of rotating surfaces in order that they may
move in rolling contact round fixed axes.

The same conditions are expressed differentially in the following
manner : Let r

{ ,
r2,

be the radii vectores of a pair of points which
touch each other; ds^ ds.z, a pair of elementary arcs of the cross

sections T! Uu T2 TJ2, of the pitch surfaces, and c the line of centres

or distance between the axes. Then

(2.)

If one of the wheels be fixed and the other be rolled upon it, a

point in the axis of the rolling wheel describes a circle of the radius

c round the axis of the fixed wheel.

The equations 1 and 2 are made applicable to inside gearing by
putting instead of + and + instead of .

The angular velocity-ratio at a given instant has the value

(3.)

As examples of non-circular wheels, the following may be
mentioned :

I. An ellipse rotating about one focus rolls completely round in
outside gearing with an equal and similar ellipse also rotating about
one focus, the distance between the axes of rotation being equal to

the major axis of the ellipses, and the velocity-ratio varying from

1 excentricity 1 + excentricity

1 + excentricity 1 excentricity*

II. A hyperbola rotating about its farther focus, rolls in inside

gearing, through a limited arc, with an equal and similar hyperbola
rotating about its nearer focus, the distance between the axes of
rotation being equal to the axis of the hyperbolas, and the velocity-
ratio varying between

excentricity + 1

,
. .. = and unity.

excentricity 1
*
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III. Two logarithmic spirals of equal obliquity rotate in rolling

contact with each other through an indefinite angle. (For further

examples of non-circular wheels, see Professor Clerk Maxwell's

paper on Rolling Curves, Trans. Roy. Soc. Edin., vol. xvi., and

Professor "Willis's work on Mechanism.)

SECTION 2. Sliding Contact.

444. skew-Bevel wheels are employed to transmit an uniform

velocity-ratio between two axes which are neither parallel nor

Fig. 192.

Fig. 194.

Fig. 193.

intersecting. The pitch surface of a
skew-bevel wheel is a frustrum or

zone of a hyperboloid of revolution.

In fig. 192, a pair of large portions of

such hyperboloids are shown, rotat-

,f ing about axes A B, C D. In fig. 193
are shown a pair of narrow zones of

the same figures, such as are employed
in practice.
A hyperboloid of revolution is a

surface resembling a sheaf or a dice

box, generated by the rotation of a straight line round an axis from
which it is at a constant distance, and to which it is inclined at a
constant angle. If two such hyperboloids, equal or unequal, be

placed in the closest possible contact, as in fig. 192, they will touch
each other along one of the generating straight lines of each, which
will form their line of contact, and will be inclined to the axes
A B, C D, in opposite directions. The axes will neither be parallel,
nor will they intersect each other.

The motion of two such hyperboloids, rotating in contact with
each other, has sometimes been classed amongst cases of rolling

contact; but that classification is not strictly correct; for although
the component velocities of a pair of points of contact in a direction

at right angles to the line of contact are equal, still, as the axes are

neither parallel to each other nor to the line of contact, the velocities

of a pair of points of contact have components along the line of
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contact, which are unequal, and their difference constitutes a lateral

sliding.
The directions and positions of the axes being given, and the

required angular velocity-ratio, , it is required to find the obli-
a\

quities of the generating line to the two axes, and its radii vectores,

or least perpendicular distances from these axes.

In fig. 194, let A B, C D, be the two axes, and G K their common
perpendicular.
On any plane normal to the common perpendicular G K h, draw

a b
||
A B, c d

\\
C D, in which take lengths in the following pro-

portions :

a
l

: a
2

: : hp : h q;

complete the parallelogram hpeq, and draw its diagonal e hf'} the

Une of contact E H F will be parallel to that diagonal.
From p let fall p m perpendicular to h e. Then divide the

'Common perpendicular G K in the ratio given by the proportional

equation
h~e:e^m: ~mh : : GK : G~H : K~H

;

then the two segments thus found will be the least distances of

the line of contact from the axes.

The first pitch surface is generated by the rotation of the line

E H F about the axis A B with the radius vector GH = r
: ; the

second, by the rotation of the same* line about the axis C D with

the radius vector H K = r2.

To draw the hyperbola which is the longitudinal section of a
skew-bevel wheel whose generating line has a given radius vector

and obliquity, let A G B, fig. 195, re-

present the axis, G H _L A G B, the
radius vector of the generating line,

and let the straight line E G F make
with the axis an angle equal to the

obliquity of the generating line. H
will be the vertex, and E G F one of FiS- 195 -

the asymptotes, of the required hyperbola. To find any number of

points in that hyperbola, proceed as follows : Draw XWY parallel

to G H, cutting G E in W, and make XY = J (G~H2 + XW~2

).

Then will Y be a point in the hyperbola.
445. Grooved wheels. To increase the friction or adhesion

between a pair of wheels, which is the means of transmitting force

and motion from one to the other, their surfaces of contact are

sometimes formed into alternate circular ridges and grooves, con-

stituting what is called frictional gearing. Fig. 196 is a cross
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section illustrating the kind of frictional gearing invented by Mr.
Robertson. The comparative motion of a pair of wheels* thus

I ridged and grooved is nearly the same with that
I of a pair of smooth wheels in rolling contact,

V A A A / having cylindrical or conical pitch surfaces lying

V V V V midway between the tops of the ridges and bottoms
of the grooves.

Fig 196
^ie relative motion of the faces of contact of

the edges and grooves is a rotatory sliding, about
the line of contact of the ideal pitch surfaces as an instantaneous
axis.

The angle between the sides of each groove is about 40
;
and it

is stated that the mutual friction of the wheels is about once and
a-half the force with which their axes are pressed towards each other.

446. Teeth of Wheels. The most usual method of communi-

cating motion between a pair of wheels, or a wheel and a rack,
and the only method which, by preventing the possibility of the
rotation of one wheel unless accompanied by the other, insures the

preservation of a given velocity-ratio exactly, is by means of the

projections called teeth.

The pitch surface of a wheel is an ideal smooth surface, inter-

mediate between the crests of ihe teeth and the bottoms of the

spaces between them, which, by rolling contact with the pitch sur-

face of another wheel, would communicate the same velocity-ratio
that the teeth communicate by their sliding contact. In designing
wheels, the forms of the ideal pitch surfaces are first determined,
and from them are deduced the forms of the teeth.

Wheels with cylindrical pitch surfaces are called spur wheels;
those with conical pitch surfaces, bevel wheels ; and those with

hyperboloidal pitch surfaces, skew-bevel wheels.

The pitch line of a wheel, or, in circular wheels, the pitch circle,

is a transverse section of the pitch surface made by a surface per-

pendicular to it and to the axis
;
that is, in spur wheels, by a plane

perpendicular to the axis
j
in bevel wheels, by a sphere described

about the apex of the conical pitch surface
;
and in skew-bevel

wheels, by any oblate spheroid generated by the rotation of an

ellipse whose foci are the same with those of the hyperbola that

generates the pitch surface.

The pitch point of a pair of wheels is the point of contact of their

pitch lines
;
that is, the transverse section of the line of contact of

the pitch surfaces.

Similar terms are applied to racks.

That part of the acting surface of a tooth which projects beyond
the pitch surface is called the face; that which lies within the

pitch surface,
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The radius of the pitch circle of a circular wheel is called the

geometrical
radius ; that of a circle touching the crests of the teeth

is called the real radius ; and the difference between those radii,

the addendum.
447. Pitch and Number of Teeth. The distance, measured along

the pitch line, from the face of one tooth to the face of the next, is

called the PITCH.

The pitch, and the number of teeth in circular wheels, are regu-
lated by the following principles :

I. In wheels which rotate continuously for one revolution or

more, it is obviously necessary that the pitch should bs an aliquot

part of the circumference.
In wheels which reciprocate without performing a complete re-

volution, this condition is not necessary. Such wheels are called

sectors.

II. In order that a pair of wheels, or a wheel and a rack, may
work correctly together, it is in all cases essential that the pitch
should be the same in each.

III. Hence, in any pair of circular wheels which work together,
the numbers of teeth in a complete circumference are directly as

the radii, and inversely as the angular velocities.

IY. Hence also, in any pair of circular wheels which rotate

continuously for one revolution or more, the ratio of the numbers
of teeth, and its reciprocal, the angular velocity-ratio, must be ex-

pressible in whole numbers.

Y. Let n
} N, be the respective numbers of teeth in a pair of

wheels, N being the greater. Let t, T, be a pair of teeth in the

smaller and larger wheel respectively, which at a particular instant

work together. It is required to find, first, how many pairs of

teeth must pass the line of contact of the pitch surfaces before t

and T work together again (let this number be called a) secondly,
with how many different teeth of the larger wheel the tooth t will

work at different times (let this number be called
b) ;

and thirdly,
with how many different teeth of the smaller wheel the tooth T
will work at different times (let this be called c).

CASE 1. If n is a divisor of N,

(1.)

CASE 2. If the greatest common divisor of IS" and n be d
}
a num-

ber less than n
}
so that n = m d, N = M d, then

a = mN = Mrc = M.md
;
6 = M; c = m......... (2.)

CASE 3. If N and n be prime to each other,
2F
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a = Nnj b = N"; c = % (3.)

It is considered desirable by millwrights, with a view to the

preservation of the uniformity of shape of the teeth of a pair of

wheels, that each given tooth in one wheel should work with as

many different teeth in the other wheel as possible. They, there-

fore, study to make the numbers of teeth in each pair of wheels

which work together such as to be either prime to each other, or to

have their greatest common divisor as small as is possible con-

sistently with the purposes of the machine.

VI. The smallest number of teeth which it is practicable to give
to a pinion (that is, a small wheel), is regulated by the principle,

that in order that the communication of motion from one wheel to

another may be continuous, at least one pair of teeth should always
be in action and that in order to provide for the contingency of a

tooth breaking, a second pair, at least, should be in action also.

For reasons which will appear when the forms of teeth are con-

sidered, this principle gives the following as the least numbers of

teeth which can be usually employed in pinions having teeth of the
three classes of figures named below, whose properties will be ex-

plained in the sequel :

I. Involute teeth, 25.

II. Epicycloidal teeth, 12.

III. Cylindrical teeth, or staves, 6.

448. Hunting Cog. When the ratio of the angular velocities of
two wheels, being reduced to its least terms, is expressed by small

numbers, less than those which can be given to wheels in practice,
and it becomes necessary to employ multiples of those numbers by
a common multiplier, which becomes a common divisor of the
numbers of teeth in the wheels, millwrights and engine-makers
avoid the evil of frequent contact between the same pairs of teeth,

by giving one additional tooth, called a hunting cog, to the larger
of the two wheels. This expedient causes the velocity-ratio to be
not exactly but only approximately equal to that which was at first

contemplated ; and therefore it cannot be used where the exactness
of certain velocity-ratios amongst the wheels ** of importance, as
in clockwork.

449. A Train of Wheeiwork consists of a series of axes, each

having upon it two wheels, one of which is driven by a wheel on
the preceding axis, while the other drives a wheel on the following
axis.

^

If the wheels are all in outside gearing, the direction of
rotation of each axis is contrary to that of the adjoining axes. In
some cases, a single wheel upon one axis answers the purpose both
of receiving motion from a wheel on the preceding axis and giving
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motion to a wheel on the following axis. Such a wheel is called

an idle wheel : it affects the direction of rotation only, and not the

velocity-ratio.
Let the series of axes be distinguished by numbers 1, 2, 3,

&c..... m j
let the numbers of teeth in the driving wheels be

denoted by N's, each with the number of its axis affixed ; thus,

Nj, N2, &c..... N_! ; and let the numbers of teeth in the driven

or following wheels be denoted by n's, each with the number of its

axis affixed ; thus, n2, ns, &c..... nm. Then the ratio of the

angular velocity am of the mth axis to the angular velocity a of the

first axis is the product of the m l velocity-ratios of the succes-

sive elementary combinations, viz. :

&c..... nm \ /

that is to say, the velocity-ratio of the last and first axes is the

ratio of the product of the numbers of teeth in the drivers to the

product of the numbers of teeth in the followers; and it is obvious,
that so long as the same drivers and followers constitute the train,
the order in which they succeed each other does not affect the

resultant velocity-ratio.

Supposing all the wheels to be in outside gearing, then as each

elementary combination reverses the direction of rotation, and as

the number of elementary combinations, m 1, is one less than
the number of axes, m, it is evident that ifm is odd, the direction

of rotation is preserved, and if even, reversed.

It is often a question of importance to determine the numbers of

teeth in a train of wheels best suited for giving a determinate

velocity-ratio to two axes. It was shown by Young, that to do
this with the least total number of teeth, the velocity-ratio of each

elementary combination should approximate as nearly as possible
3*59. This would in many cases give too many axes; and as a

useful practical rule it may be laid down, that from 3 to 6 ought
to be the limit of the velocity-ratio of an elementary combination

in wheelwork.
T>

Let be the velocity-ratio required, reduced to its least terms,O
and let B be greater than C.

T>

If is not greater than 6, and C lies between the prescribedO
mininmm number of teeth (which may be called

t),
and its double

2
t, then one pair of wheels will answer the purpose, and B and

will themselves be the numbers required. Should B and C be

inconveniently large, they are if possible to be resolved into factors,
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and those factors, or if they are too small, multiples of them, used

for the numbers of teeth. Should B or C, or both, be at once incon-
T>

veniently large, and prime, then instead of the exact ratio
,
some

ratio approximating to that ratio, and capable of resolution into con-

venient factors, is to be found by the method of continued fractions.
T>

Should be greater than 6, the best number of elementaryO
combinations, ra 1, will lie between

and
-

......
log 6 log 3

Then, if possible, B and C themselves are to be resolved each

into w 1 factors (counting 1 as a factor), which factors, or

multiples of them, shall be not less than t, nor greater than 6 t; or

if B and C contain inconveniently large prime factors, an approxi-
mate velocity-ratio, found by the method of continued fractions, is

T>

to be substituted for as before.
\j

So far as the resultant velocity-ratio is concerned, the order of

the drivers N and of the followers n is immaterial; but to secure

equable wear of the teeth, as explained in Article 447, Principle V.,
the wheels ought to be so arranged that for each elementary com-

bination the greatest common divisor of N and n shall be either

1, or as small as possible.
450. Principle of Sliding Contact. The line of action, or of con-

nection, in the case of sliding contact of two moving pieces, is the

common perpendicular to their surfaces at the point where they
touch ; and the principle of their comparative motion is, that the

components, along that perpendicular, of the velocities of any two

points traversed by it, are equal.
CASE 1. Two shifting pieces, in sliding contact, have linear velo-

cities proportional to the secants of the angles which their directions

of motion make with their line of action.

CASE 2. Two rotating pieces, in sliding contact, have angular
velocities inversely proportional to the perpendicular distances

from their axes of rotation to their line of action, each multiplied

by the sine of the angle which the line of action makes with the

particular axis on which the perpendicular is let fall.

In fig. 197, let C^ C2, represent the axes of rotation of the two

pieces; A,, A2, two portions of their respective surfaces; and T^
Tz, a pair of points in those surfaces, which, at the instant under

consideration, are in contact with each other. Let P! P2 be the

common perpendicular of the surfaces at the pair of points Tj, T8 ;
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that is, the line of action; and let C, P,, C2 P2, be the common per-

pendiculars of the line of action and of the two axes respectively.
Then at the given instant, the components
along the line P, P2 of the velocities of the

points P,, P2, are equal. Let t,, i2, be the

angles which that line makes with the direc-

tions of the axes respectively. Let a*, a2, be
the respective angular velocities of the moving
pieces ;

then

sin ix
= aa C2 P2 sin i2 ;

consequently,

a2 Cj PI sin tj m

(1.)
i G2 P2 sini2

which is the principle stated above.

When the line of action is perpendicular in direction to both

axes, then sin ^ = sin i2 = 1
;
and equation 1 becomes

G.P!

C2 P2

* .(1 A.)

When the axes are parallel, i,
= i.2. Let I be the point where

the line of action cuts the plane of the two axes ; then the triangles

P! GI I, P2 C2 1, are similar; so that equation 1 A is equivalent to

the following :

,(1 B.)
<*i 1G2

CASE 3. A rotating piece and a shifting piece, in sliding contact,
have their comparative motion regulated by the following prin-

ciple : Let C P denote the perpendicular distance from the axis of

the rotating piece to the line of action
;

i the angle which the direc-

tion of the line of action makes with that axis; a the angular

velocity of the rotating piece; v the linear velocity of the sliding

piece ; j the angle which its direction of motion makes with the

line of action ;
then

v = a G P 'sini -secj (2.)

When the line of action is perpendicular in direction to the axis

of the rotating piece, sin i = 1 ;
and

= a -CP (2 A.)

where I C denotes the distance from the axis of the rotating piece
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to the point where the line of action cuts a perpendicular from that

axis on the direction of motion of the shifting piece.
451. Teeth of Spur-Wheels and Backs. Oeneral Principle--The

figures of the teeth of wheels are regulated by the principle, that

the teeth ofa pair of wheels shall give the same velocity-ratio by tlieir

sliding contact, which the ideal smooth pitch surfaces would give by
their rolling contact. Let B,, B2, in fig. 197, be parts of the pitch
lines (that is, of cross sections of the pitch surfaces) of a pair of

wheels with parallel axes, and I the pitch point (that is, a section
of the line of contact). Then the angular velocities which would be

given to the wheels by the rolling contact of those pitch lines are

inversely as the segments I Cj, I C2, of the line of centres; and this

also is the proportion of the angular velocities given by a pair of
surfaces in sliding contact whose line of action traverses the point
I (Article 450, case 2, equation 1 B). Hence the condition of
correct working for the teeth of wheels with parallel axes is, that

tlie line of action of the teeth sJiall at every instant traverse the line

of contact of the pitch surfaces; and the same condition obviously
applies to a rack sliding in a direction perpendicular to that of the
axis of the wheel with which it works.

452. Teeth Described by Rolling Curves. From the principle of
the preceding Article it follows, that at every instant, the position
of the point of contact Tj in the cross section of the acting surface

of a tooth (such as the line A! TJ in fig. 197), and the corresponding
position of the pitch point I in the pitch line I Bx of the wheel to

which that tooth belongs, are so related, that the line I TJ which

joins them is normal to the outline of the tooth Aj T, at the point
Tj. Now this is the relation which exists between the tracing-

point Tj, and the instantaneous axis or line of contact I, in a rolling
curve of such a figure, that being rolled upon the pitch surface BJ?

its tracing-point T! traces the outline of the tooth. (As to rolling

curves, see Articles 386, 387, 389, 390, 393, 396, 397, and Professor
Clerk Maxwell's paper there referred to).
In order that a pair of teeth may work correctly together, it is

necessary and sufficient that the instantaneous radii vectores from
the pitch point to the points of contact of the two teeth should
coincide at each instant, as expressed by the equation

Tr,; ........................... (i.)

a-nd this condition is fulfilled, iftlie outlines of the two teeth be traced

by the motion of the same tracing-point, in rolling the same rolling

curve on the same side of the pitch surfaces of the respective wheels.

Thejlank of a tooth is traced while the rolling curve rolls inside

of the pitch line; the face, while it rolls outside. Hence it is
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evident that the flanks of the teeth of the driving wheel drive the

faces of the teeth of the driven wheel; and that the faces of the
teeth of the driving wheel drive the flanks of the teeth of the
driven wheel. The former takes place while the point of contact
of the teeth is approaching the pitch point, as in fig. 197, supposing
the motion to be from Px towards Pa ;

the latter, after the point of
contact has passed, and while it is receding from, the pitch point.
The pitch point divides the path of the point of contact of the teeth
into two parts, called the path of approach and the path of recess;
and the lengths of those paths must be so adjusted, that two pairs
of teeth at least shall be in action at each instant.

It is evidently necessary that the surfaces of contact of a pair of
teeth should either be both convex, or that if one is convex and the
other concave, the concave surface should have the natter curvature.

The equations of Article 390 give the relations which exist

between the radius of curvature of a pitch line at the pitch point

(rj, the radius of curvature of the rolling curve at the same point

(r2), the radius vector of the tracing-point (r\
= I T), the angle made

by that line with the line of centres of the fixed and rolling curves

(0 = ^L T I C), and the radius of curvature of the curve traced by
the point T (^),

all at a given instant.

When a pair of tooth surfaces are both convex absolutely, that

which is a face is concave, and that which is a flank is convex,
towards the pitch point; and this is indicated by the values of

having contrary signs for the two teeth, being positive for the face

and negative for the flank. The face of a tooth is always convex

absolutely, and concave towards the pitch point, ^ being positive;
so that if it works with a concave flank, the value of for that flank

is positive also, and greater than for the face with which it works.

453. The Sliding of a Pair of Teeth on Each Other, that is, their

relative motion in a direction perpendicular to their line of action,
is found by supposing one of the wheels, such as 1, to be fixed, the

line of centres Cj C2 to rotate backwards round Cj with the angular

velocity a1} and the wheel 2 to rotate round C2 as before with the

angular velocity a2 relatively to the line of centres (\ C2, so as to

have the same motion as if its pitch surface rolled on the pitch
surface of the first wheel. Thus the relative motion of the wheels

is unchanged; but 1 is considered as fixed, and 2 has the resultant

motion given by the principles of Article 388; that is, a rotation

about the instantaneous axis I with the angular velocity % + a2.

Hence the velocity of sliding is that due to this rotation about I,

with the radius I T = r; that is to say, its value is

r (ai + a2); (1.)

so that it is greater, the farther the point of contact is from the
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line of centres ;
and at the instant when that point, passing the line of

centres, coincides with the pitch point, the velocity of sliding is null,

and the action of the teeth is, for the instant, that of rolling contact.

The roots of the teeth slide towards each other during the ap-

proach, and from each other during the recess. To find the amount
or total distance through which the sliding takes place, let t

{
be the

time occupied by the approach, and t2 that occupied by the recess ;

then the distance of sliding is

j (2.)

or in another form, if di denote an element of the change of angu-
lar position of one wheel relatively to the other, i^ the amount of

that change during the approach, and i2 during the recess, then

(a l -f- a2)
d t = d i

;
and

s= f'rdi + f rdi
(3.)JO J

(See also Article 455.)
454. The Arc of Contact on the Pitch Unes is the length of that

portion of the pitch lines which passes the pitch point during the

action of one pair of teeth ; and in order that two pairs of teeth at

least may be in action at each instant, its length should be at least

double of the pitch. It is divided into two parts, the arc of ap-

proach and the arc of recess. In order that the teeth may be of

length sufficient to give the required duration of contact, the dis-

tance moved over by the point I upon the pitch line during the

rolling of a rolling curve to describe the face and flank of a tooth,
must be in all equal to the length of the required arc of contact.

It is usual to make the arcs of approach and recess equal.
455. The Length of a Tooth may be divided into two parts,

that of the face and that of the flank. For teeth in the driving

wheel, the length of the flank depends on the arc of approach, that

of the face, on the arc of recess ; for those in the following wheel,
the length of the flank depends on the arc of recess, that of the

face, on the arc of approach.
Let q l

be the arc of approach, qa that of recess
; ,

the length of

the flank, l\ the length of the face of a tooth in the driving wheel.

Let n be the radius of curvature of the pitch line, r that ofthe rolling

curve, r the radius vector of the tracing-point, at any instant. The

angular velocity of the rolling curve relatively to the wheel is

li
dt
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the positive sign applying to rolling outside, or describing the face,
and the negative sign to rolling inside, or describing the flank.

Hence the velocity of the tracing-point at a given instant is

dt

and consequently

For the following wheel, q and q3 have to be interchanged, so that,
if rs be the radius of that wheel,

The equations 2 and 3 evidently give the means of finding the dis-

tance of sliding between a pair of teeth, in a different form from
that given in Article 453

; for that distance is

456. To inside Gearing all the preceding principles apply, ob-

serving that the radius of the greater, or concave pitch surface, is

to be considered as negative, and that in Article 453, the difference

of the angular velocities is to be taken instead of their sum.

457. Involute Teeth for Circular Wheels, being the first of the
three kinds mentioned in Article 447, are of the form of the in-

volute of a circle, of a radius less than the pitch circle in a
ratio which may be expressed by the sine of a certain angle 4,

and may be traced by the pole of a logarithmic spiral rolling on
the pitch circle, the angle made by that spiral at each point with
its own radius vector being the complement of the given angle 6.

But this mode of describing involutes of circles, being more com-

plex than the ordinary method, is mentioned merely to show that

they fall under the general description of curves described by
rolling.
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In fig. 198, let Cw C3> be the centres of two circular wheels,
whose pitch circles are Bi, B2 . Through the pitch point I draw
the intended line of action P: P2, making the angle C I P = 6 with
the line of centres. From Cu C2, draw

Cj PL = I C, sin 6,

(VP3 = rC2 sin 6,

.(1.)

perpendicular to P! P2, with which two perpendiculars as radii,

describe circles (called base circles) "Du Dg.

Suppose the base circles to be a pair of

circular pulleys, connected by means of a

cord whose course from pulley to pulley is

P! I P2 . As the line of connection of those

pulleys is the same with that of the proposed
teeth, they will rotate with the required

velocity-ratio. Now suppose a tracing-point
T to be fixed to the cord, so as to be carried

along the path of contact P
1
I P2. That

point will trace, on a plane rotating along
with the wheel 1, part of the involute of

the base circle D
t ,
and on a plane rotating

along with the wheel 2, part of the involute

of the base circle D2, and the two curves so

traced will always touch each other in the

required point of contact T, and will therefore fulfil the condition

required by Article 451.

All involute teeth of the same pitch work smoothly together.
To find the length of the path of contact on either side of the

pitch point I, it is to be observed that the distance between the

fronts of two successive teeth as measured along Pj I P
2j

is less

than the pitch in the ratio sin 0:1, and consequently that if dis-

tances not less than the pitch x sin 6 be marked off either way from

I towards P! and P2 respectively, as the extremities of the path of

contact, and if the addendum circles be described through the

points so found, there will always be at least two pairs of teeth in

action at once. In practice, it is usual to make the path of contact

somewhat longer, viz., about 2J times the pitch ; and with this

length of path and the value of & which is usual in practice, viz.,

75, the addendum is about T% of the pitch.

The teeth of a rack, to work correctly with wheels having invo-

lute teeth, should have plane surfaces, perpendicular to the line of

connection, and consequently making, with the direction of motion

of the rack, angles equal to the before-mentioned angle 6.
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458. Sliding of involute Teeth. The distance through which a

pair of involute teeth slide on each other, is found by observing
that the distance from the point of. contact of the teeth to the pitch

point is given by the equation

r = V
*

7=7"
= ?

' sin 6 ..................... (1.)
L- 1

which reduces equation 3 of Article 455 to the following :

n* .................. (2.)

This distance may also be expressed in terms of the extreme dis-

tances of the point of contact from the pitch point. Let the'se be
denoted by tv t2 ; then

t
t
= ql

sin 6 ; t2
= qz sin 6

j and s = (- + -
)

'
'

.

2

..(2 A.)
\^*j ^*2' S1H v

For inside gearing, the difference of the reciprocals of the radii of

the wheels is to be taken instead of their sum.
The preceding formulse, which are exact for involute teeth, are

approximately correct for all teeth, if & be taken to represent the
mean value of the angle C I P between the line of centres and the

line of action.

31
The usual value of 6 being 75^, sin 6 = -^ nearly.

459. The Addendum of involute Teeth, that is, their projection

beyond the pitch circle, is found by considering, that for one of the

wheels in fig. 198, such as the wheel 1, the real radius, or radius

of the addendum circle, is the hypothenuse of a right-angled tri-

angle, of which one side is the radius of the base circle C P, and the

other is P I + the portion of the path of contact beyond I. Now
(TP = rv

' sin 6 ; P I = rx . cos 6. Let t2 be the portion of the path
of contact above mentioned

(
= q2 sin

0),
and d, the addendum of

the wheel 1 ; then

(r1 + dl)
2 = r2

l
sin2 + (r1 cos 9 + t2)

2

',
............. (1.)

and for the wheel 2 the suffixes 1 and 2 are to be interchanged.
31 1

The usual value of sin 6 is about
,
and that of cos & about -.

6Z 4

The same formulae apply to teeth of any figure, if 6 be taken to

represent the extreme value of the angle C I P.

460. The Smallest Pinion with Involute Teeth of a given pitch p,
has its size fixed by the consideration that the path of contact of

the flanks of its teeth, which must not be less than p sin d, cannot
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be greater than the distance along the line of action from the pitch

point to the base circle, I P = r ' cos 6. Hence the least radius is

r = p tan 6'} (!)

which, for 6 751, gives for the radius1 r = 3 -867;?, and for the

circumference of the pitch circle, p x 3*867 x 2 K = 24-3 p'} to

which the next greater integer multiple ofp is 25 p; and therefore

twenty-five, as formerly stated, in Article 447, is the least number
of involute teeth to be employed in a pinion.

461. Epicycioidal Teeth. For tracing the figures of teeth, the

most convenient rolling curve is the circle. The path of contact

which a point in its circumference traces is identical with the circle

itself; the flanks of the teeth are internal, and their faces external

epicycloids, for wheels; and both flanks and faces are cycloids for

a rack.

Wheels of the same pitch, with epicycloidal teeth traced by the

same rolling circle, all work correctly with each other, whatsoever

may be the numbers of their teeth
; and they are said to belong to

the same set.

For a pitch circle of twice the radius of the rolling or describing
circle (as it is called), the internal epicycloid is a straight line, being
in fact a diameter of the pitch circle

;
so that the flanks of the teeth

for such a pitch circle are planes radiating from the axis. For a
smaller pitch circle, the flanks would be convex, and incurved or

under-cut, which would be inconvenient
;

therefore the smallest

wheel of a set should have its pitch circle of twice the radius of the

describing circle, so that the flanks may be either straight or concave.

In
fig. 199, let B be part of the pitch circle of a wheel, C C the

line of centres, I the pitch-point,
E, the internal, and R' the equal
external describing circles, so placed
as to touch the pitch circle and each

other at I
;

let DID' be the path
of contact, consisting of the path of

approach D I, and the path of re-

cess I D'. In order that there may
always be at least two pairs of teeth

in action, each of those arcs should

be equal to the pitch.
The angle 6, on passing the line of

centres, is 90; the least value of that

Je is 6=^ C I D =^ C' I D'.

It appears from experience that
Fig- 199- the least value of 6 should be about

60 ; therefore the arcs D I = I D' should each be one-sixth of a cir-
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eumference; therefore the circumference of the describing circle

should be six times the pitch.
It follows that the smallest pinion of a set, in which pinion the

flanks are straight, should have twelve teeth, as has already been
stated in Article 447.

462. The Addendum for Epicycloidal Teeth is found from the
formula already given in Article 459, equation 1, by putting for

6 the angle C I D, and for t2 the chord I D' = 2 r - cos ^, r being
the radius of the rolling circle. Hence

(Tl + dtf = r\ sin
8
6 + (r^r 2 rtf

- cos3 6 .......... (1.)

3 1
For the usual value of 6, 60, sin

2
d = -, and cos

8
6 = - whence

................... (2.)

462 A. The Sliding of Epicycloidal Teeth is deduced from equation
3 of Article 455, by observing, that the radius vector of the point
of contact is

(1.)

and that the extreme values of q are the arcs of approach and
recess

(2.)

whence we have

= 8 (I
- sin

6)
r*

(I
+
I) ; ................ (3.)

which, for 6 = 60, has the value

(3A->

463. Approximate Epicycloidal Teeth. Mr. Willis has shown
how to approximate to the figure of an epicycloidal tooth by means
of two circular arcs, one concave, for the flank, the other convex, for

the face, and each having for its radius, the mean radius of curva-

ture of the epicycloidal arc. Mr. Willis's formulae are deduced in

his own work from certain propositions respecting the transmission

of motion by linkwork. In the present treatise they will be

deduced from the values already given for the radii of curvature of
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epicycloids in Article 390, case 1, equation 4 : viz., let r
t
be the

radius of the pitch circle, r that of the rolling circle, e the radius

of curvature required; then

(1.)

the sign + applying to an external epicycloid, that is, to the face of

a tooth, and the sign to an internal epicycloid, that is, to the

flank of a tooth.

To find the distances of the centres of curvature of the given

point in an epicycloid from the point of contact I of the pitch circle

and rolling circle, there is to be subtracted from the radius of cur-

vature, the instantaneous radius vector, v 2 rQ cos 0; that is to say,

^z^ * r
(2.)

The value to be assumed for & is its mean value, that is, 75J; and

cos 6 -
nearly : r is nearly equal to the pitch, pj and if n be the

number of teeth in the wheel,

6 : n : : rQ : rt.

Therefore, for the proportions approved of by Mr. Willis, equation
2 becomes

being used for the face, and for the flank ; also

r=| nearly (4.)

Hence the following con-

struction. In
fig. 200, let

B C be part of the pitch
circle, A the point where a
tooth is to cross it. Set oif

=AC= . Drawradii

of the pitch circle, D B, E C.
Draw F B, C G, making angles of 75^ with those radii, in which
take
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Round F, with the radius FA, draw the circular arc AH; this

will be the face of the tooth. Round G, with the radius G A,
draw the circular arc GK ;

this will be the flank of the tooth.

To facilitate the application of this rule, Mr. Willis has published

tables ofthe values of e r, and invented an instrument called the
"
odontograph"
464. Teeth of Wheel and Trundle. A trundle, as in fig. 201,

has cylindrical pins called staves for teeth. The face of the teeth

of a wheel suitable for driving it, in outside gearing, are described

by first tracing external epicycloids by rolling the pitch circle B2 of

the trundle on the pitch circle BI of the driving wheel, with the

Fig. 201. Fig. 202.

centre of a stave for a tracing-point, as shown by the dotted lines,

and then drawing curves parallel to and within the epicycloids, at

a distance from them equal to the radius of a stave. Trundles

having only six staves will work with large wheels.

To drive a trundle in inside gearing, the outlines of the teeth of

the wheel should be curves parallel to internal epicycloids. A
peculiar case of this is represented in

fig. 202, where the radius of

the pitch circle of the trundle is exactly one-half of that of the

pitch circle of the wheel ;
the trundle has three equi-distant staves ;

and the internal epicycloids described by their centres while the

pitch circle of the trundle is rolling within that of the wheel, are

three straight lines, diameters of the wheel, making angles of 60
with each other. Hence the surfaces of the teeth of the wheel
form three straight grooves intersecting each other at the centre,
each being of a breadth equal to the diameter of a stave of the

trundle.

465. Dimensions of Teeth. Tootned wheels being in general
intended to rotate either way, the backs of the teeth are made
similar t6 the fronts. The space between two teeth, measured on
the pitch circle, is made about one-fifth part wider than the thick-

ness of the tooth on the pitch circle; that is to say,

thickness of tooth = pitch,
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/*

width of space = pitch.

The difference of of the pitch is called the back-lash.

The clearance allowed between the points of teeth and the bottoms
of the spaces between the teeth of the other wheel, is about one-

tenth of the pitch.
The thickness of a tooth is fixed according to the principles already

stated in Article 326; and the breadth is so adjusted, that when

multiplied by the pitch, the product shall contain one square inch

for each 1 60 Ibs. of force transmitted by the teeth.

466. Mr. Sans;' s Process. Mr. Sang has published an elaborate

work on the teeth of wheels, in which a process is followed differing
in some respects from any of those before described. A form is

selected for the path of the point of contact of the teeth, and from
that form the figures of the teeth are deduced. For details, the

reader is referred to Mr. Sang's work.

467. The Teeth of a Bevel-Wheel have acting surfaces of the

conical kind, generated by the motion of a line traversing the apex
of the conical pitch surface, while a point in it is carried round the

outlines of the cross section of the teeth made by a sphere described

about that apex.
The operations of describing the exact figures of the teeth of

bevel-wheels, whether by involutes or by rolling curves, are in every

respect analogous to those for describing the figures of the teeth of

spur-wheels, except that in the case of bevel-wheels, all those

operations are to be performed on the surface of a sphere described

about the apex, instead of on a plane, substituting poles for centres,

and great circles for straight lines.

In consideration of the practical difficulty, especially in the case

of large wheels, of obtaining an accurate spherical surface, and of

drawing upon it when obtained, the following approximate method,

proposed originally by Tredgold, is generally used : Let O, fig.

203, be the apex, and O C the axis of the

pitch cone of a bevel-wheel; and let the

largest pitch circle be that whose radius is

CB. Perpendicular to O B draw BA cut-

ting the axis produced in A, let the outer

rim of the pattern and of the wheel be made
a portion of the surface of the cone whose

apex is A and side A B. The narrow zone

of that cone thus employed will approach

sufficiently near to a zone of the sphere
described about O with the radius B, to be used in its stead. On
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a plane surface, with the radius A B, draw a circular arc B D ;
a

sector of that circle will represent a portion of the surface of the

cone ABC developed, or spread out flat. Describe the figures of

teeth of the required pitch, suited to the pitch circle B D, as if it

were that of a spur-wheel of the radius A B
;
those figures will be

the required cross sections of the teeth of the bevel-wheel, made by
the conical zone whose apex is A.

468. Teeth of Skew-Bevel wheels. The cross sections of the teeth

of a skew-bevel wheel at a given pitch circle are similar to those of

a bevel wheel whose pitch surface is a cone touching the hyperbo-
loidal pitch surface of the skew-bevel wheel at the given pitch

circle; and the surfaces of the teeth of the skew-bevel wheel
are generated by a straight line which moves round the outlines

of the cross section and at the same time is kept always in the

position of the generating line of a hyperboloi'dal surface similar to

the pitch-surface (see Article 444, pages 430, 431).
469. The Teeth of Non-Circular Wheel* are described by rolling

circles or other curves on the pitch surfaces, like the teeth of cir-

cular wheels; and when they are small compared with the wrheels

to which they belong, each tooth is nearly similar to the tooth of a

circular wheel having the same radius of curvature with the pitch
surface of the actual wheel at the point where the tooth is situated.

470. A Cam or Wiper is a single tooth, either rotating continu-

ously or oscillating, and driving a sliding or turning piece, either

constantly or at intervals. All the principles which have been
stated in Article 450, as being applicable to sliding contact, are

applicable to cams ;
but in designing cams, it is not usual to deter-

mine or take into consideration the form of the ideal pitch surface

which would give the same comparative motion by rolling contact

that the cam gives by sliding contact.

471. Screws, pitch. The figure of a screw is that of a convex
or concave cylinder with one or more helical projections called

threads winding round it. Convex and concave screws are dis-

tinguished technically by the respective names of male andfemale,
or external and internal; a short internal screw is called a nut; and
when a screw is not otherwise specified, external is understood.

The relation between the advance and the rotation, which com-

pose the motion of a screw working in contact with a fixed nut or

helical guide, has already been demonstrated in Article 382, equa-
tion 1

;
and the same relation exists between the rotation of a

screw about an axis fixed longitudinally relatively to the frame-

work, and the advance of a nut in which that screw rotates, the

nut being free to shift longitudinally, but not to turn. The advance

of the nut in the latter case is in the direction opposite to that of

the advance of the screw in the former case.

2o
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A screw is called right-handed or left-handed, according as its

advance in a fixed nut is accompanied

by right-handed or left-handed rotation,

when viewed by an observerfrom whom
the advance takes place. Fig. 204 re-

presents a right-handed screw, and fig.

205 a left-handed screw.

The pitch of a screw of one thread,
and the total pitch of a screw of any
number of threads, is the pitch of the

9<u T- on* helical motion of that screw, as ex-

plained in Article 382, and is the dis-

tance (marked p in
figs. 204 and 205) measured parallel to the axis

of the screw, between the corresponding points in two consecutive

turns of the same thread.

In a screw of two or more threads, the distance measured parallel
to the axis, between the corresponding points in two adjacent

threads, may be called the divided pitch.
472. Normal and Circular Pitch. When the pitch of a screw is

not otherwise specified, it is always understood to be measured

parallel to the axis. But it is sometimes convenient for particular

purposes to measure it in other directions; and for that purpose a

cylindrical pitch surface is to be conceived as described about the

axis of the screw, intermediate between the crests of the threads

and the bottoms of the grooves between them.
If a helix be now described upon the pitch cylinder, so as to

cross each turn of each thread at right angles, the distance between
two corresponding points on two successive turns of the same

thread, measured along this normal helix, may be called the normal

pitch; and when the screw has more than one thread, the normal

pitch from thread to thread may be called the normal divided pitch.
The distance from thread to thread measured on a circle described

on the pitch cylinder, and called the pitch circle, may be called the

circular pitch; for a screw of one thread it is one circumference ;

for a screw of n threads

one circumference

The following set of formulae show the relations amongst the differ-

ent modes of measuring the pitch of a screw. The pitch, properly

speaking, as originally defined, is distinguished as the axial pitch,

and is the same for all parts of the same screw : the normal and

circular pitch depend on the radius of the pitch cylinder.
Let r denote the radius of the pitch cylinder ;

nt the number of threads ;
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i, the obliquity of the threads to the pitch circles, and of ike

normal helix to the axis j

Pa > the axial ^>
-v .

-, , ., ,= pa
j

(
divided pitch j

*u

p.)

1-4
the normal

pa the circular pitch ;

Then

IV

2 TC r tan i

pa = pn
' sec i = pe

' tan ^ = ;

2 ir r ' sin i
*pn j)e

' sin i = jOa
* cos i .

n

473. Screw Gearing. A pair of convex screws, each rotating
about its axis, are used as an elementary combination, to transmit

motion by the sliding contact of their threads. Such screws are

commonly called endless screws. At the point of contact of the

screws, their threads must be parallel \
and their line of connection

is the common perpendicular to the acting surfaces of the threads

at their point of contact. Hence the following principles :

I. If the screws are both right-handed or both left-handed, the

angle between the directions of their axes is the sum of their obli-

quities : if one is right-handed and the other left-handed, that

angle is the difference of their obliquities.
II. The normal pitch, for a screw of one thread, and the normal

divided pitch, for a screw of more than one thread, must be the

same in each screw.

III. The angular velocities of the screws are inversely as their

number of threads.

474. Mooke's Gearing is a case of screw gearing, in which the

axes of the screws are parallel, one screw being right-handed and
the other left-handed, and in which, from the shortness and great
diameter of the screws, and their large num-
ber of threads, they are in fact wheels, with

teeth whose crests, instead of being parallel
to the line of contact of the pitch cylinders,
cross it obliquely, so as to be of a screw-like

"

F
.

or helical form. In wheelwork of this kind,
the contact of each pair of teeth commences at the foremost end of
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the helical front and terminates at the aftermost end
; and the

helix is of such a pitch that the contact of one pair of teeth does

not terminate until that of the next pair has commenced. The

object of this is to increase the smoothness of motion.

With the same object, Dr. Hooke invented the making of the

fronts of teeth in a series of steps. A
wheel thus formed resembles in shape a

series of equal and similar toothed discs

placed side by side, with the teeth of

each a little behind those of the preced-

ing disc. In such a wheel, let p be the
Fig. 20 /.

circular pitch, and n the number of steps.
Then the arc of contact, the addendum, and the extent of sliding,

are those due to the smaller pitch ,
while the strength of the teeth

is that due to the thickness corresponding to the entire pitch p ;
so

that the smooth action of small teeth and the strength of large
teeth are combined. Stepped teeth being more expensive and
difficult to execute than common teeth, are used for special pur-

poses only.
475. The Wheel and .Screw is an elementary combination of two

screws, whose axes are at right angles to each other, both being

right-handed or both left-handed. As the usual object of this com-
bination is to produce a change of angular velocity in a ratio

greater than can be obtained by any single pair of ordinary wheels,

t
one of the screws is commonly wheel-like, being of large diameter

*

and many-threaded, while the other is short and of few threads
;

.
and the angular velocities are inversely as the number of threads.

Fig. 208. Fig. 209.

Fig. 208 represents a side view of this combination, and fig. 209
a cross section at right angles to the axis of the smaller screw. It

has been shown by Mr. "Willis, that if each section of both screws

be made by a plane perpendicular to the axis of the large screw or

wheel, the outlines of the threads of the larger and smaller screw
should be those of the teeth of a wheel and rack respectively : BiBj,
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in fig. 208, for example, being the pitch circle of the wheel, and
B2 B2 the pitch line of the rack.

The periphery and teeth of the wheel are usually hollowed to
fit the screw, as shown at T, fig. 209.

To make the teeth or threads of a pair of screws fit correctly and
work smoothly, a hardened steel screw is made of the figure of the
smaller screw, with its thread or threads notched so as to form a

cutting tool ; the larger screw, or wheel, is cast approximately of
the required figure ;

the larger screw and the steel screw are fitted

up in their proper relative position, and made to rotate in contact
with each other by turning the steel screw, which cuts the threads
of the larger screw to their true figure.

476. The Relative Sliding of a Pair of Screws at their point of

contact is found thus : Let r{, r2, be the radii of their pitch cylin-

ders, and ii, i2, the obliquities of their threads to their pitch circles,

one of which is to be considered as negative if the screws are con-

trary-handed. Let u be the common component of the velocities

of a pair of points of contact along a line touching the pitch sur-

faces and perpendicular to the threads, at the 'pitch point, and i>

the velocity of sliding of the threads over each other. Then

u =
a,! TI sn

i
= a2 r2 sn

j

so that
/i

\

u u
" "

v '*

O>2
=

T! sin ^1

and
v = aft- cos tj + a

z
r
2 cos i

2
= u (cotan ^ + cotan i2) ..... (2.)

When the screws are contrary-handed, the difference instead of the

sum of the terms in equation 2 is to be taken.

477. oidham's Coupling. A coupling is a mode of connecting a

pair of shafts so that they shall rotate in

the same direction, with the same mean

angular velocity. If the axes of the shafts

are in the same straight line, the coupling
consists in so connecting their contiguous
ends that they shall rotate as one piece;
but if the axes are not in the same straight

line, combinations of mechanism are re-

quired. A coupling for parallel shafts

which acts by sliding contact was invented .

by Oldham, and is represented in fig. 210.

CJL,
C

2,
are the axes of the two parallel shafts ;

Dv D2 ,
two cross-

heads, facing each other, fixed on the ends of the two shafts re-

spectively ; Ep E1?
a bar, sliding in a diametral groove in the face of
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T)
l ;
E

2,
E

2,
a bar, sliding in a diametral groove in the face of D

2 ;

those bars are fixed together at A, so as to form a rigid cross. The

angular velocities of the two shafts and of the cross are all equal at

every instant. The middle point of the cross, at A, revolves in

the dotted circle described upon the line of centres Cj C9 ,
as a

diameter, twice for each turn of the shafts and cross; the instan-

taneous axis of rotation of the cross, at any instant, is at I, the

point in the circle Cj C2 , diametrically opposite to A.
Oldham's coupling may be used with advantage where the axes

of the shafts are intended to be as nearly in the same straight line

as is possible, but where there is some doubt as to the practica-

bility or permanency of their exact continuity.

SECTION 3. Connection by Bands.

478. Bands Classed. Bands, or wrapping connectors, for com-

municating motion between pulleys or drums rotating about fixed

axes, or between rotating pulleys and drums and shifting pieces,

may be thus classed :

I. JBelts, which are made of leather or of gutta percha, are flat

and thin, and require nearly cylindrical pulleys. A belt tends to

move towards that part of a pulley whose radius is greatest ; pulleys
for belts, therefore, are slightly swelled in the middle, in order

that the belt may remain on the pulley unless forcibly shifted. A
belt when in motion is shifted off a pulley, or from one pulley on.

to another of equal size alongside of it, by pressing against that

part of the belt which is moving towards the pulley.
II. Cords, made of catgut, hempen or other fibres, or wire, are

nearly cylindrical in section, and require either drums with ledges,
or grooved pulleys.

III. Chains, which are composed of links or bars jointed together,

require pulleys or drums, grooved, notched, and toothed, so as to

fit the links of the chains.

Bands for communicating continuous motion are endless.

Bands for communicating reciprocating motion have usually their

ends made fast to the pulleys or drums which they connect, and
which in this case may be sectors.

479. Principle of Connection by Bands. The line of connection

of a pair of pulleys or drums connected by means of a band, is the

central line or axis of that part of the band whose tension transmits

the motion. The principle of Article 433 being applied to this

case, leads to the following consequences :

I. For a pair of rotating pieces, let r
lt
ra ,

be the perpendiculars
let fall from their axes on the centre line of the band, %, at ,

their

angular velocities, and iv, 8,
the angles which the centre line of the
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band makes with the two axes respectively. Then the longitudi^
nal velocity of the band, that is, its component velocity in the

direction of its own centre line, is

................... (1.)

whence the angular velocity-ratio is

% rz sn ?

When the axes are parallel (which is almost always the case), ^ = %
and

The same equation holds when both axes, whether parallel or not,

are perpendicular in direction to that part of the band which trans-

mits the motion for then sin ^ = sin ?3
= 1.

II. For a rotating piece and a sliding piece, let r be the perpendi-
cular from the axis of the rotating piece on the centre line of the

band, a the angular velocity, i the angle between the directions of

the band and axis, u the longitudinal velocity of the band, j the

angle between the direction of the centre line of the band and that

of the motion of the sliding piece, and v the velocity of the sliding

piece; then
u = ra sin i = v cos,/ j

and..................... (4.)

rasini /er v

v = --r-.............................. (5.)
cos,;

When the centre line of the band is parallel to the direction of

motion of the sliding piece, and perpendicular to the direction of

the axis of the rotating piece, sin i = cos j= 1, and

v = u= ra ............................ (6.)

480. The Pitch Surface of a Pulley or Drum is a Surface to

which the line of connection is always a tangent ; that is to say,
it is a surface parallel to the acting surface of the pulley or drum,
and distant from it by half the thickness of the band.

481. circular Pulleys and Drums are used to communicate a

Fig. 211. Fig. 212.

constant velocity-ratio. In each of them, the length denoted by r
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in the equations of Article 479 is constant, and is called the effec-

tive radius, being equal to the real radius of the pulley or drum
added to half the thickness of the band.
A crossed belt connecting a pair of circular pulleys, as in fig. 211,

reverses the direction of rotation; an open belt, as in fig. 212, pre-
serves that direction.

482. The Length of an Endless Belt, connecting a pair of pulleys

whose effective radii are Cj Tj = r^ C2
T2 = r2 ,

with parallel axes

whose distance apart is C^ C2= c, is given by formulae founded on

equation 1 of Article 402, viz., L = % s + 2-ri. Each of the two

equal straight parts of the belt is evidently of the length

8= Jc
2

fa + r2)
2 for a crossed belt

; |_ r ........ \^')
s= Jo

3
fa r2)

a for an open belt
; j

rl being the greater radius, and r2 the less. Let ^ be the arc to

radius unity of the greater pulley, and ? 2 that of the less pulley,
with which the belt is in contact ; then for a crossed belt

^>(cr +
2arc-sin?l:p);

and for an open belt,(r r\ / r r\v + 2 arc . sin _! 2
J

: i2 = 1^ 2 arc sin _? :
) ;

c / \ c J

(2.)

and the introduction of those values into equation 1 of Article 402

gives the following results :

For a crossed belt,

L = 2 J<? - fa + r2)
2 + fa + ra) (

v + 2 arc sin
*** +

J J

\ G '

and for an open belt, j- (3.)_
= 2 Jf-fa-rt)

2 + * fa + r2) + 2 fa-rs) -arc sin

As the last of these equations would be troublesome to employ in

a practical application to be mentioned in the next Article, an

approximation to it, sufficiently close for practical purposes, is

obtained by considering, that if r - r2 is small compared with c,

r /
-

\^ (ri~ r Y i TI 7*2 r*~ fa
J<?

-
fa

- r2)
2= c-^ ^-

nearly, and arc sm -* = -
a C C C

nearly ; whence, for an open belt,

L nearly= 2 c + (rl + ra) +
^^

......... (3 A.)
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483. Speed-Cones (figs. 213, 214, 215, 216) arc a contrivance for

Fig. 213. Fig. 214. Fig. 215. Fig. 216.

vaiying and adjusting the velocity-ratio communicated between a

pair of parallel shafts by means of a belt, and may be either conti-

nuous cones or conoids, as in figs. 213, 214, whose velocity-ratio
can be varied gradually while they are in motion by shifting the

belt; or sets of pulleys whose radii vary by steps, as in figs. 215,

216, in which case the velocity-ratio can be changed by shifting
the belt from one pair of pulleys to another.

In order that the belt may be equally tight in every possible

position on a pair of speed-cones, the quantity L in the equations
of Article 482 must be constant.

For a crossed belt, as in figs. 213 and 215, L depends solely on
c and on r% + r2. Now c is constant, because the axes are parallel,
therefore the sum ofthe radii of the pitch circles connected in every

position of the belt is to be constant. That condition is fulfilled

by a pair of continuous cones generated by the revolution of two

straight lines inclined opposite ways to their respective axes at

equal angles, and by a set of pairs of pulleys in which the sum. of

the radii is the same for each pair.

For an open belt, the following practical rule is deduced from the

approximate equation 3 A of Article 482 :

Let the speed-cones be equal and similar conoids, as in fig. 214,
but with their large and small ends turned opposite ways. Let r^

be the radius of the large end of each, r2 that of the small end, r

that of the middle
;
and let y be the sagitta, measured perpendi-

cular to the axis, of the arc by whose revolution each of the conoids

is generated, or, in other words, the bulging of the conoids in the

middle of their length ; then

.(1.)

2 <r = 6-2832 ; but 6 may be used in most practical cases without
sensible error.
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The radii at the middle and ends being thus determined, make
the generating curve an arc either of a circle or of a parabola.

For a pair of stepped cones, as in fig. 216, let a series of differ-
ences of the radii, or values of TI r2) be assumed ; then for each

pair of pulleys, the sum of the radii is to be computed from the
difference by the formula

2 rQ being that sum when the radii are equal.

SECTION 4. Linkwork,

484. Definitions. The pieces which are connected by linkwork,
if they rotate or oscillate, are usually called cranks, beams, and
levers. The link by which they are connected is a rigid bar, which

may be straight or of any other figure ; the straight figure being
the most favourable to strength, is used when there is no special
reason to the contrary. The link is known by various names under
various circumstances, such as coupling rod, connecting rod, crank

rod, eccentric rod, &c. It is attached to the pieces which it connects

by two pins, about which it is free to turn. The effect of the link

is to maintain the distance between the centres of those pins in-

variable
; hence the line joining the centres of the pins is the line

of connection; and those centres may be called the connected points.
In a turning piece, the perpendicular let fall from its connected

point upon its axis of rotation is the arm or crank arm.
485. Principles of Connection. The whole of the equations

already given in Article 479 for bands, are applicable to linkwork.
The axes of rotation of a pair of turning pieces connected by a link

are almost always parallel, and perpendicular to the line of connec-

tion ;
in which case the angular velocity-ratio at any instant is the

reciprocal of the ratio of the common perpendiculars let fall from
the line of connection upon the respective axes of rotation (Article
479, equation 3).

486. Dead Points. If at any instant the direction of one of the

crank arms coincides with the line of connection, the common
perpendicular of the line of connection and the axis of that crank
arm vanishes, and the directional relation of the motions becomes
indeterminate. The position of the connected point of the crank
arm in question at such an instant is called a dead point. The

velocity of the other connected point at such an instant is null,
unless it also reaches a dead point at the same instant, so that the

line of connection is in the plane of the two axes of rotation, in

which case the velocity-ratio is indeterminate.
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487. Coupling of Parallel Axes. The only case in which an uni-

form angular velocity-ratio (being that of equality) is communicated

by linkwork, is that in which two or more parallel shafts (such as

those of the driving wheels of a locomotive engine) are made to

rotate with constantly equal angular velocities, by having equal

cranks, which are maintained parallel by a coupling rod of such a

length that the line of connection is equal to the distance between
the axes. The cranks pass their dead points simultaneously. To
obviate the unsteadiness of motion which this tends to cause, the

shafts are provided with a second set of cranks at right angles to

the first, connected by means of a similar coupling rod, so that one

set of cranks pass their dead points at the instant when the other

set are farthest from theirs.

488. The Comparative Motion of the Connected Points in a piece
of linkwork at a given instant is capable of determination by the

method explained in Article 384
;
that is, by finding the instanta-

neous axis of the link ; for the two connected points move inathe

same manner with two points in the link, considered as a rigid body.
If a connected point belongs to a turning piece, the direction of

its motion at a given instant is perpendicular to the plane contain-

ing the axis and crank arm of the piece. If a connected point

belongs to a shifting piece, the direction of its motion at any
instant is given, and a plane can be drawn perpendicular to that

direction.

The line of intersection of the planes perpendicular to the paths
of the two connected points at a given instant, is the instantaneous

axis of the link at that instant; and the velocities of the connected

points are directly as their distancesfrom that axis.

In drawing on a plane surface, the two planes perpendicular to

the paths of the connected points are represented by two lines

(being their sections by a plane normal to them), and the instanta-

neous axis by a point j
and should the length of the two lines

render it impracticable to produce them until they actually inter-

sect, the velocity-ratio of the connected points may be found by
.the principle, that it is equal to the ratio of the segments which a

line parallel to the line of connection cuts off from any two lines

drawn from a given point, perpendicular respectively to the paths
of the connected points.

Example I. Two Rotating Pieces with Parallel Axes
(fig. 217).

Let G!, C2, be the parallel axes of the pieces^ T
1?
T2,

their con-

nected points ; CiTj, C2 T2, their crank arms ; 1\ T2, the link. At
a given instant, let v be the velocity of T! ;

vz that of T2.

To find the ratio of those velocities, produce Q TI, C2 T2, till

they intersect in K ; K is the instantaneous axis of the link or

connecting rod, and the velocity-ratio is
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v2 : : K T, : K T .(1.)

Should K be inconveniently far off, draw any triangle with its

sides respectively parallel to Ca T,, C2 T2,
and T

l
T2 ;

the ratio of

the two sides first mentioned will be the velocity-ratio required.
For example, draw C2A parallel to C

r T,, cutting T\ T2 in A; then

C2A : C2 T,..

Fig. 218.

Example II. Rotating Piece and Sliding Piece
(fig. 218). Let

C2 be the axis of a rotating piece, and T t II the straight line along
which a sliding piece moves. Let T 1? T2,

be the connected points,

C2 T2 the crank arm of the rotating piece, and T, T2 the link or

connecting rod. The points Tj, T2,
and the line T

1 R, are supposed
to be in one plane, perpendicular to the axis C. Draw T! K per-

pendicular to T! E., intersecting C2 T2 in K ;
K is the instantaneous

axis of the link
; and the rest of the solution is the same as in

Example I.

489. An Eccentric
(fig. 219) being a circular disc keyed on a

shaft, with whose axis its centre does not co-

incide, and used to give a reciprocating motion
to a rod, is equivalent to a crank whose con-

"-A. nected point is T, the centre of the eccentric

disc, and whose crank arm is C T, the distance

of that point from the axis of the shaft, called

the eccentricity.

An eccentric may be made capable of having its eccentricity
altered by means of an adjusting screw, so as to vary the extent

of the reciprocating motion which it communicates, and which is

called the throw, or travel, or length of stroke.

490. The JLcngth of stroke of a point in a reciprocating piece is

the distance between the two ends of the path in which that point
moves. When it is connected by a link with a point in a con-

Fig. 219.
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tirmously rotating piece, the ends of the stroke of the reciprocating

point correspond with the dead points of the continuously revolving

piece (Article 486).
Let S be the length of stroke of the reciprocating piece, L the

length of the line of connection, and R the crank arm of the con-

tinuously turning piece. Then if the two ends of the stroke be in

one straight line with the axis of the crank,

S = 2R; ............................. fl.)

and if their ends be not in one straight line with that axis, then

S, L B, and L+ R, are the three sides of a triangle, having the

angle opposite S at that axis
;
so that if 6 be the supplement of the

arc between the dead points,

S-=2 (L
2+ R2

)-2 (L
2-R2

)
cos t;\

2L2 + 2R3 -S2

f
...........

(
2
-)

*
'

491. Hookc's Universal Joint
(fig. 220) is a contrivance for coup-

ling shafts whose axes intersect each other in a point.
Let O be the point of intersection

of the axes Ci, O C2, and i their

angle of inclination to each other.

The pair of shafts d, d, terminate

in a pair of forks F,, F2,
in bearings

at the extremities of which turn the

gudgeons at the ends of the arms of

a rectangular cross having its centre

at O. This cross is the link; the

connected points are the centres of

the bearings Fj, F2. At each instant

each of those points moves at right angles to the central plane of

its shaft and fork, therefore the line of intersection of the central

planes of the two forks, at any instant, is the instantaneous axis of

the cross, and the velocity-ratio of the points FI, F2 (which, as the

forks are equal, is also the angular velocity-ratio of the shafts), is

equal to the ratio of the distances of those points from that instan-

taneous axis. The mean value of that velocity-ratio is that of

equality ;
for each successive quarter turn is made by both shafts in

the same time ;
but its actual value fluctuates between the limits,

=-. when Fi is in the plane of the axes
;

= cos i when F2 is in that plane.
a,

...(L)
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Its value at intermediate instants, as well as the relation between
the positions of the shafts, are given by the following equations :

Let <p lt (ps, be the angles respectively made by the central planes of
the forks and shafts with the plane of the two axes at a given
instant; then

tan <pi tan <P2 = cos i ; \

a3 _ d $2 _ tan <Pi -j- cotan ^ > (2.)

a>\

~~

dV^ tan <P2 + cotan <p2 /

492. The Double Hooke's Joint
(fig. 221) is used to obviate the

vibratory and unsteady motion caused by the fluctuation of the

velocity-ratio indicated in the equa-*
tions of Article 491. Between the

two shafts to be connected, C^, C3,

there is introduced a short interme-

diate shaft C2, making equal angles
with Cj and C3, connected with each

221t of them by a Hooke's joint, and

having both its own forks in the same plane.
Let i be the angle of inclination of C^ and C2, and also that of

C2 and C3. Let 9,, <p2, <P3 ,
be the angles made at a given instant by

the planes of the forks of the three shafts with the plane of their

axes, and let a
ly az, as, be their angular velocities. Then

tan <pa
' tan <P3

= cos i = tan ^ tan <p2 ;

whence tan
<p3
= tan (ft ; and a.3= Oj_ ;

so that the angular velocities of the first and third shafts are equal
to each other at every instant.

493. A Click, being a reciprocating bar, acting upon a ratchet

wheel or rack, which it pushes or pulls through a certain arc at

each forward stroke, and leaves at rest at each backward stroke, is

an example of intermittent linkwork. During the forward stroke,
the action of the click is governed by the principles of linkwork;
during the backward stroke, that action ceases. A catch or pall,

turning on a fixed axis, prevents the ratchet wheel or rack from

reversing its motion.

SECTION 5. Reduplication of Cords.

494. Definitions. The combination of pieces connected by the
several plies of a cord or rope consists of a pair of cases or frames
called blocks, each containing one or more pulleys called sheaves.

One of the blocks called the fall-block, B,, is fixed; the other, or
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running-block, B2, is moveable to or from the fall-block, with which
it is connected by means of a rope of which one end is attached
either to the fall-block or to

the running-block, while the
other end, Tj, called the fall,
or tackle-fall, is free; while

the intermediate portion of

the rope passes alternately
round the pulleys in the fall-

block and running-block. The
whole combination is called a

tackle or purchase.
495. The Velocity-Ratio chief-

lyconsidered in a tackle is that

between the velocities of the

running-block, u, and of the

tackle-fall, v. That ratio is

given by equation 6 of Article

402 (which see), viz. :

Fig. 222. Fig. 223.

v = nuj. .(i.)

where n is the number of plies of rope by which the running-block
is connected with the fall-block. Thus, in fig. 222, n = 7 ; and in

fig. 223, n = 6.

496. The Velocity of Any Ply of the rope is found in the follow-

ing manner :

I. For a ply on the side of the fall-block next the tackle-fall,

such as 2, 4, 6, fig. 222, and 3, 5, fig. 223, it is to be considered

what would be the velocity of that ply if it were itself the tackle-

fall. Let that velocity be denoted by v', and let ri be the number
of plies between the ply in question and the point of attachment by
which the first ply (marked 1 in the figures) is fixed to one or other

block. Then
v' = n u (1.)

II. For a ply on the side of the fall-block farthest from the

tackle-fall, the velocity is equal and contrary to that of the next

succeeding ply, with which it is directly connected over one of the

sheaves of the fall-block.

III. If the first ply, as in
fig. 223, is attached to the fall-block,

its velocity is nothing; if to the running-block, its velocity is equal
to that of the block.

497. White's Tackle. The sheaves in a block are usually made
all of the same diameter, and turn on a fixed pin; and they have,

consequently, different angular velocities. But by making the



464 THEOKY OF MECHANISM.

diameter of each sheave proportional to the velocity, relatively to

the block, of the ply of rope which it is to .carry, the angular velo-

cities of the sheaves in one block may be rendered equal, so that

the sheaves may be made all in one piece, and may have journals

turning in fixed bearings. This is called White's Tackle, from the

inventor, and is represented in figs. 222 and 223.

SECTION 6. Hydraulic Connection.

498. The General Principle of the communication of motion

between two pistons by means of an intervening fluid of constant

density has already been stated in Article 411, viz., that the velo-

cities of the pistons are inversely as their areas, measured on planes
normal to their directions of motion.

Should the density of the fluid vary, the problem is no longer one

of pure mechanism ; because in that case, besides the communication

of motion from one piston to the other, there is an additional motion

of one or other, or both pistons, due to the change of volume of the

fluid.

499. Valres are used to regulate the communication of motion

through a fluid, by opening and shutting passages through which

the fluid flows
;
for example, a cylinder may be provided with valves

which shall cause the fluid to flow in through one passage, and

out through another. Of this use of valves, two cases may be

distinguished.
I. When the piston moves the fluid, the valves may be what is

called self-acting; that is, moved by the fluid. If there be two

passages into the cylinder, one provided with a valve opening

inwards, and the other with a valve opening outwards ;
then

during the outward stroke of the piston the former valve is opened
and the latter shut by the inward pressure of the fluid, which flows

in through the former passage ;
and during the inward stroke of

the piston, the former valve is shut and the latter opened by the

outward pressure of the fluid, which flows out through the latter

passage. This combination of cylinder, piston, and valves, consti-

tutes a pump.
II. When the fluid moves the piston, the valves must be opened

and shut by mechanism, or by hand. In this case the cylinder is

a working cylinder,
500. In the Hydraulic Press, the rapid motion of a small piston

in a pump causes the slow motion of a large piston in a working

cylinder. The pump draws water from a reservoir, and forces it

into the working cylinder ; during the outward stroke of the pump
piston, the piston of the working cylinder stands still ; during the

inward stroke of the pump piston, the piston of the working
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cylinder moves outward with a velocity as much, less than that of

the pump piston as its area is greater. When the piston of the

working cylinder has finished its outward stroke, which may be of

any length, it is permitted to be moved inwards again by opening
a valve by hand and allowing the water to escape.

501. In the Hydraulic Hoist, the slow inward motion of a large

piston drives water from a large cylinder into a smaller cylinder,
and causes a more rapid outward motion of the piston of the smaller

cylinder. "When the latter piston is to be moved inward, a valve
between the two cylinders is closed, and the valve of an outlet from
the smaller cylinder opened, by hand, so as to allow the water to

escape from the smaller cylinder. The larger cylinder is filled and
its piston moved outward, when required, by means of a pump, in
a manner resembling the action of a hydraulic press.

SECTION 7. Trains ofMechanism.

502. Trains of Elementary Combinations have been defined in

Article 435, and illustrated in the case of wheelwork, in Article

449, and in the case of a double Hooke's joint, in Article 492. The

general principle of their action is that the comparative motion of
the first driver and last follower is expressed by a ratio, which is

found by multiplying together the several velocity-ratios of the
series of elementary combinations of which the train consists, each
with the sign denoting the directional relation.

Two or more trains of mechanism may converge into one
; as when

the two pistons of a pair of steam engines, each through its own
connecting rod, act upon one crank shaft. One train of mechanism

may diverge into two or more; as when a single shaft, driven by a

prime mover, carries several pulleys, each of which drives a different

machine. The principles of comparative motion in such converging
and diverging trains are the same as in simple trains.

2 H
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CHAPTER III.

ON AGGREGATE COMBINATIONS.

503. The General Principles of aggregate combinations have

already been given in Part III., Chapter II., Section 3. The

problems to which those principles are to be applied may be divided

into two classes.

I. "Where a secondary moving piece is connected at three, or at

two points, as the case may be, with three or with two other pieces
whose motions are given ;

so that the problem is, from the motions

of three or of two points in the secondary piece, tofind its motion as a

whole, and the motion of any point in it. The solution of this pro-
blem is given in Articles 383 and 384.

II. Where a secondary piece, C, is carried by another piece, B ;

and denoting the frame of the machine by A, there are given two
out of the three motions of A, B, and C, relatively to each other,

and the third is required. The motion of C relatively to A is the

resultant of the motion of C relatively to B, and of B relatively to

A. ;
and the problem is solved by the methods already explained in

Articles 385 to 395, inclusive.

Mr. Willis distinguishes the effects of aggregate combinations

into aggregate velocities, whether linear or angular, produced in

secondary pieces by the combined action of different drivers, and

aggregate paths, being the curves, such

as cycloids and trochoids, epicycloids
and epitrochoids, described by given

points in such secondary pieces.
The following Articles give examples

of the more ordinary and useful aggre-

gate combinations.

504. Differential Windlass. In fig.

224, the axis A
t
carries two barrels of

different radii, rt being the greater, and
rz the less. A running block containing
a single pulley is hung by a rope which

passes below the pulley, and has one

end wound round the larger barrel, and

the other wound the contrary way round
When the two barrels rotate together with the

Fig. 224.

the smaller barrel.
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common angular velocity a, the division of the rope which hangs
from the larger barrel moves with the velocity a r

l}
and the divi-

sion which hangs from the smaller barrel moves in the contrary
direction with the velocity a r2 (whose direction is denoted by
the negative sign). These are also the velocities of the two points
at opposite extremities of a diameter of the pulley, where it is

touched by the two vertical divisions of the rope. The velocity of

the centre of the pulley is a mean between those two velocities ;

that is, their half-difference, because their signs are opposite j or

denoting it by v,

The instantaneous axis of the pulley may be found by the method
of Article 384, as follows : In

fig. 184 c, let A and B_be_the two

ends of the horizontal diameter of the pulley, and let AV = a rly

and BY
ft
= a r2 represent their velocities ; join VaV6 cutting A B

in O
;
this is the instantaneous axis, and its distance from the

centre or moving axis of the pulley is obviously

AB (2.)

The motion of the centre of the pulley is the same with that of a

point in a rope wound on a barrel of the radius ----. The use of
2i

the contrivance is to obtain a slow motion of the pulley without

using a small, and therefore a weak, barrel.

505. Compound Screws. (Fig. 225.) On the same axis let

there be two screws Si Su and S2 S2, of the respective pitches

Fig. 225.

Pi and p2 , pi being the greater, and let the screws in the first in-

stance be both right-handed or both left-handed. Let N^ and N2

be two nuts, fitted on the two screws respectively. When the

compound screw rotates with the angular velocity a, the nuts ap-

proach towards or recede from each other with the relative velocity,
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being that due to a screw whose pitch is the difference of the two

pitches of the compound screw. (See Article 382, equation 1.)

The object of this contrivance is to obtain the slow advance due

to a fine pitch, together with the strength of large threads.

Fig. 226 represents a compound screw in which the two screws

are contrary-handed, and the relative velocity of the nuts N_, N2,

is that due to the sum of the two pitches ; or, as these are iisually

equal, to double the pitch of each screw. This combination is used

in coupling railway carriages.

5Ua JLiiik motion. Let C be the axis of the shaft of a steam

engine, CT the crank,/the connected point (see Article 489) of the

forward eccentric (which is

suited to move the slide

valve when the engine moves

forwards), b the connected

point of the backioard eccen-

tric (which is suited to move
the slide valve when the

engine is reversed), /F the

Fig. 227. forward and b B the back-

ward eccentric rods, FB a

piece called the link, jointed to those two rods at F and B, S a

slider, which is capable of being slid to and fixed at different

positions in the link, and to which the slide valve rod is jointed.
Let the arrow represent the direction of forward rotation of the

shaft, and at the instant represented in the figure, let the piston
be at one end of its stroke. Let L L be a line showing the position
in which the crank arm of an eccentric should stand, in order that

the middle of the stroke of the slide valve should be at the same

instant with the extremity of the stroke of the piston. The angle
^___: L C/ is the angular lead or advance of the forward eccentric,

and the angle ^ L C & (usually equal to the former) the angular
lead or advance of the backward eccentric.

When S is at F, the engine is in fullforward gear, the motion

of the slide valve being governed by the forward eccentric alone.

The stroke or throw of the slide valve is 2 C/, and its lead corre-

sponds to the angle ^ L C/
When S is at B, the engine is in full backward gear, the motion

of the slide valve being governed by the backward eccentric alone.

The stroke or throw of the slide valve is 2 C b (usually = 2 C/),
and its lead corresponds to the angle ^ L C b (usually =^ L C/).
When S is at A, the engine is in mid gear, the velocity of the

valve rod at each instant being a mean between those which it

would receive from either eccentric separately.
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The lead corresponds to 90, or a quarter of a revolution. The

throw is nearly, though not exactly, = 2 C a, a being the middle
of the straight line fb.
To find exactly the motions of the slide valve for different posi-

tions of the slider S, it is best to draw a diagram to a scale, repre-

senting the positions of the eccentrics, rods, and link, for a series

of angular positions of the crank (usually dividing a revolution into

24 equal angles) ;
and the corresponding series of positions of S

when fixed at various points in the link. Several examples of

this process are given in Mr. D. K. Clark's treatise on Railway
Machinery.
A useful approximation to the motions of the valve, when the

rods are long compared with the link, is got by dividing the line

fb at s in the same proportion in which S divides F B, and con-

sidering the motion of the valve as produced by the crank C s

so that the throw is approximately 2 C s, and the lead approxi-

mately ^L L C s.

507. Parallel Motion* are jointed combinations of linkwork,

designed to guide the motion of a reciprocating piece, such as the

piston rod of a steam engine, either exactly or approximately in a

straight line, in order to avoid the friction which attends the use

of straight guides. Four kinds of parallel motion will now be
described :

I. An Exact Parallel Motion, believed to have been first proposed

by Mr. Scott Russell, is represented in fig. 228. The same parts
of the mechanism are marked with the

same letters, and different successive

positions are indicated by numerals
affixed. The lever CT turns about

the fixed centre C, and carries, jointed
to its other

end,jfche
bar or link P T Q,

in which PT = T~Q = C~T. The point
Q is jointed to a slider which slides in

guides along the straight line C Q.
From Q draw Q D J- CQ, cutting CT
produced in D ; then by Article 488, D is the instantaneous axis

of the link; and because D P
||
C Q, the motion of P, which is

J- D P, is always J- C Q ; that is to say, the point P moves in the

straight line P! C P3,
J- C Q. In a steam engine, a pair of the

combinations here shown are used, one at each side of the cylinder ;

and the pair of bars P Q are jointed at their extremities P to the

head of the piston rod. The distance through which Q slides at

each single stroke of the piston, of the length PI P3 = S, is given

by the equation
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............. (1)

and is small compared with the length of stroke of the piston.
II. An Approximate Parallel Motion, somewhat resembling the

preceding, is obtained by guiding the link P Q entirely by means
of oscillating levers, instead of by a lever and a slide. To find the

length and the position of the axis of one of those levers, c t, select

any convenient point, t, in the link P Q, and lay down on a drawing
the extreme and middle positions, ^, t2,

t3, of that point, corre-

sponding to the extreme and middle positions of the link P Q. The
centre c of a circle traversing those three points will be the required
axis of the lever, and c t will be its length ;

and if the link P Q is

guided by two such levers, the extreme and middle positions of P
will be in one straight line, and the other positions of that point

very nearly in one straight line.

III. Watt's Approximate Parallel Motion. In fig. 229, let C T,
e t, be a pair of levers, connected by a link T t, and oscillating about

Fig. 229.

the axes C, c, between the positions marked 1 and 3. Let the

middle positions of the levers, C T2,
c t2,

be parallel to each other.

It is required to find a point P in the link T t, such, that its middle

position P;,, and its extreme positions Pj, P3,
shall be in the same
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straight line perpendicular to C T2,
c t.2, and so to place the axes C, c,

on the lines C T2, c t2, that the path of P, between the positions

PJ, P2, P3,
shall be as near as possible to a straight line.

The axes C, c, are to be so placed, that the middle M of the

versed sine V T2, an(i *ne middle m of the versed sine v t2, of the

respective arcs whose equal chords TX T3 ^ ta represent the stroke,

may each be in the line of stroke M m. Then Tt and T3 will be as

far to one side of that line as T2 is to the other, and ^ and ts will

be as far to the latter side of the same line as tz is to the former
;

consequently, the two extreme positions of the link, Tx t1} T3 t3,
are

parallel to each other, and inclined to M m at the same angle in

one direction that the middle position of the link T2 a is inclined

to that line in the other direction; and the three intersections

P! P2 P3,
are at the same point on the link.

The position of the point P on the link is found by the following

proportional equation :

Tl : PT : P7

TV + t^ : TT : tv

: c~^ : CM.
.(2.)

The positions of the point P in the link, intermediate between its

middle and extreme positions, are near enough to a straight line

for practical purposes. When there are given, the axes C, c, the

line of stroke P
1
P

2
P3,

the length of stroke P
x
P3

= S, and the per-

pendicular distance M m between the middle positions of the two

levers, the following equations serve to compute the lengths of the

levers and link :

Versed sines,

"

Levers,

Link,

-

(3.)

IV. Watt's Parallel Motion modified by having the guided point
.P in the prolongation of the link T t beyond its connected points,
instead of between those points, is represented by fig. 230. In this

case, the centres of the two levers are at the same side of the link,
instead of at opposite sides, the shorter lever being the farther from
the guided point P; and the equations 2 and 3 are modified as

follows :
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Segments of the link, Tl : FT : P t

.
: ^_TV:TV:*~ .(4.)

Versed sines,

Levers,

Link,

: : CM cm : cm : CM.

O2
<^2

T Y =-=
;
T=-= ;8CM 8cm

(5.)

This parallel motion is used in some marine engines, in a position
inverted with respect to that in the figure, P being the upper, and
t the lower end of the link.

Fig. 230.

Fig. 231.

M When Watt's parallel motion (III.)

r,
is applied to steam engines with beams,
it is more usual to guide the air pump
rod than the piston rod directly by
means of the point P. The head of

the piston rod is guided by being con-

nected with that point by means of a

parallelogram of bars, shown in fig. 231.

c is the axis of motion of the beam of

the engine, c t A one arm of that beam,
C T a lever called the radius bar or

bridle rod, T t a link called the back

link. C T, c t, and T t, form the com-
bination already described (III.), and

shown in fig. 229; and the point P, found as already shown, is

guided in a verticaHine, almost exactly straight. The total length

of the beam arm, c A, is fixed by the proportion
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P* :T* : iCt : CA; (6.)

that is, t A is very nearly a third proportional to C T and c t. Draw
A B

||
T t,

and c P B intersecting it; then from the proportion 6 it

follows that A B = T t. A B is the main link, by the lower end

of which, B, the head of the piston rod is guided. B T = and
||
t~K.

is the parallel bar, by which the main and back links are connected.

C~B IC~A.

P moves sensibly in a straight line; == = -=- is a constant ratio;
c P c t

therefore B moves sensibly in a straight line parallel to that in

which P moves.

A parallelogram analogous to A B T t may also be combined with
the parallel motion IY.

508. Epicyclic Trains. The term epicydic train is used by Mr.
Willis to denote a train of wheels carried by an arm, and having
certain rotations relatively to that arm, which itself rotates. The
arm may either be driven by the wheels, or assist in driving them.
The comparative motions of the wheels and of the arm relatively to

each other and to the frame, and the aggregate paths traced by
points in the wheels, are determined by the principles of the com-

position of rotations, already explained in Articles 385 to 395.





PART V.

PRINCIPLES OF DYNAMICS.

509. Dirision of the Subject. The science of Dynamics, which
treats of the relations between the motions of bodies and the forces

acting amongst them, may be divided into two primary divisions,

according as it has reference to balanced forces and uniform motions,
or to unbalanced forces and varying motions. A secondary mode
of dividing the subject is founded on the distinction between ques-
tions respecting the motions of masses which are either insensibly

small, or which, being of sensible magnitude, have motions of trans-

lation only, questions respecting the motions of rigid bodies and

rigidly connected systems which rotate, and questions respecting
the motions of pliable bodies and of fluids. The dynamics of fluids

has received the special name of hydrodynamics. It is a branch of

mechanics so extensive in its applications, and depending so much
in its details upon special experiments, as to require a separate
work for its full exposition j nevertheless, in the present treatise

its fundamental principles will be set forth in their proper

place.
The dynamical principles of the motions of rotating rigid bodies,

of pliable bodies, and of fluids, are deduced from those of the motions

of rigid bodies having motions of simple translation, by conceiving
the bodies under consideration to be divided into indefinitely small

molecules or particles, so that the laws of the motion of each mole-

cule shall differ from those of a body having a motion of simple
translation to an extent less than any given difference. It is to

such indefinitely small molecules that the term physical point,

already mentioned in Article 7, is applied.
Hence it appears that the laws of the relations between the

motions of a so-called physical point, and the forces acting on it,

are the foundation of the science of dynamics ;
and the same laws

are applicable to a rigid body in which every point moves in the

same manner at the same instant; that is to say, which has a

motion of translation, as defined in Article 369.
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The subjects to which the principles of dynamics relate will

therefore be classed in the following manner :

I. Uniform Motion.
II. Varied Translation of Points and Eigid Bodies.

III. notations of Kigid Bodies.

IY. Motions of Pliable Bodies.

V. Motions of Fluids.

CHAPTER I.

ON UNIFORM MOTION UNDER BALANCED FORCES.

510. First r,aw of Motion. A body under the action of no force,
or of balancedforces, is either at rest, or moves uniformly. (Uniform
motion has been defined in Article 354.)

Such is the first law of motion as usually stated ;
but in that

statement is implied something more than the literal meaning of

the words ; for it is understood, that the rest or motion of the body
to which the law refers, is its rest or motion relatively to another

body which is also under the action ofno force, or of balancedforces.
Unless this implied condition be fulfilled, the law is not true.

Therefore the complete and explicit statement of the first law of

motion is as follows :

If a pair of bodies be each under the action of no force, or of
balanced forces, the motion of each of those bodies relatively to the

other is either none or uniform.
The first law of motion has been learned by experience and

observation : not directly, for the circumstances supposed in it

never occur
; but indirectly, from the fact that its consequences,

when it is taken in conjunction with other laws, are in accordance

with all the phenomena of the motions of bodies.

The first law of motion may be regarded as a consequence of the

definitions of force and of balance (Articles 12, 13) : at the same
time it is to be observed, that the framing of those definitions has

been guided by experimental knowledge.
511. Effort; Resistance; Lateral Force. Let F denote a force

applied to a moving point, and 6 the angle made by the direction

of that force with the direction of the motion of the point. Then,

by the principles of Article 57, the force F may be resolved into

two rectangular components, one along, and the other across, the

direction of motion of the point, viz. :
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The direct force, F cos 6.

The lateral force, F sin 6.

A direct force is further distinguished, according as it acts with or

against the motion of the point (that is, according as 6 is acute or

obtuse), by the name of effort, or of resistance, as the case may be.

Hence each force applied to a moving point may be thus decom-

posed :

Effort, P = F cos 6, if & is acute j
}

Resistance, E = F cos
(
-

6)
if is obtuse ;

> (1.)

Lateralforce, Q = F sin 6. )

512. The Conditions of Uniform Motion of a pair of points are,

that the forces applied to each of them shall balance each other ;

that is to say, that the lateral forces applied to each point shall

balance each other, and that the efforts applied to each point shall

balance the resistances.

The direction of a force being, as stated in Article 20, that of

the motion which it tends to produce, it is evident that the balance

of lateral forces is the condition of uniformity of direction of motion,
that is, of motion in a straight line

;
and that the balance of efforts

and resistances is the condition of uniformity of velocity.

513. Work consists in moving against resistance. The work is

said to be performed, and the resistance overcome. Work is mea-

sured by the product of the resistance into the distance through
which its point of application is moved. The unit of work com-

monly used in Britain is a resistance of one pound overcome through
a distance of one foot, and is called a,foot-pound.

514. Energy means capacityfor performing work. The energy of
an effort, or potential energy, is measured by the product of the

effort into the distance through which its point of application is

capable of being moved. The unit of energy is the same with the

unit of work.

When the point of application of an effort has been moved through
a given distance, energy is said to have been exerted to an amount

expressed by the product of the effort into the distance through
which its point of application has been moved.

515. Energy and Work of Varying Forces. If an effort has dif-

ferent magnitudes during different portions of the motion of its

point of application through a given distance, let each different

magnitude of the effort P be multiplied by the length A s of the

corresponding portion of the path of the point of application ;
the

sum
2 -PAS (1.)

is the whole energy exerted. If the effort varies by insensible
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degrees, the energy exerted is the integral or limit towards which
that sum approaches continually, as the divisions of the path are

made smaller and more numerous, and is expressed by

Yds.

Similar processes are applicable to the finding of the work per-
formed in overcoming a varying resistance. As to integration in

general, see Article 81.

516. A Dynamometer or indicator is an instrument which mea-
sures and records the energy exerted by an effort. It usually con-

sists essentially, first, of a piece of paper moving with a velocity

proportional to that of the point of application of the effort, and

having a straight line marked on it parallel to its direction of

motion, called the zero line ; and secondly, of a spring, acted upon
and bent by the effort, and carrying a pencil whose perpendicular
distance from the zero line, as regulated by the bending of the

spring, is proportional to the effort. The pencil traces on the piece
of paper a line like that in

fig.
24 of Article 81, such that its ordi-

nate EF, perpendicular to the zero line OX at a given point,

represents the effort P for the corresponding point in the path of

the point of application of the effort j and the area between tivo

ordinates, such as A C D B, represents the energy exerted, / P d s,

for the corresponding portion, A B, of the path of the point of

application of the effort.

517. The Energy and Work of Fluid Pressure may be expressed
as follows : Let A denote the projection on a plane perpendicular
to the direction ofmotion of the moving body, of that portion of the

body's surface to which the pressure is applied, p the intensity of

the pressure in units of force per unit of area (Article 86), and A s

the distance through which the body is moved in a given interval

of time ; then during that interval, the energy exerted by, or work

performed against, the fluid pressure, according as it acts with or

against the motion, is given by the formula

P AS (or R- As)=p A *s=p 'AY; (1.)

where A "V* is the volume of the space swept through by the portion
of the body's surface which is pressed upon, during the given
interval of time.

518. The Conservation of Energy, in the case of uniform motion,
means the fact, that the energy exerted is equal to tJie work performed;
and is a consequence of the first law of motion, as is shown by the

consideration of the following cases :

CASE 1. For the forces acting on a single point, the principle is



CONSERVATION OF ENERGY VIRTUAL VELOCITIES. 479

self-evident; for as the effort applied to the point balances the

resistance, the products of these forces into the distance traversed

by the point in any interval must be equal; that is,

P-A S = R-A S......................... (1.)

CASE 2. For the forces acting on any system of balanced points,
the principle must be true, because it is true for those acting on
each single point of the system. This is expressed as follows :

2'PA 5 =:2-BA S....................... (2.)

CASE 3. When a system of points are rigidly connected, so that

their relative positions do not alter, there is neither energy exerted

nor work performed by the forces which act amongst the points of
the system themselves; and therefore, from case 2 it follows, that the

principle of the conservation of energy is true of the forces acting
between the points of the system and external bodies.

Symbolically, let the efforts acting amongst the points of the

system be denoted by P,, the resistances by Rj ;
the efforts acting

between the points of the system and external bodies by P2, and
the resistances by R2 - Then by case 2,

but by the condition of rigidity,

2'Pj AS= 0; 2-]^ AS=rO;
therefore,

2'P2 AS = 2'R,2 AS...................... (3.)

CASE 4. The same principle is demonstrable in the same manner,
for the forces acting between external bodies and the points of a

system so connected, that though not absolutely rigid, they do not

vary their relative positions in the directions in which the internal

forces of the system act Such is the ideal condition in which a
train of mechanism would be, if no resistance arose from the mode
of connection of the pieces.

519. The Principle of Virtual Velocities is the name -given to the

application of the principle of the conservation of energy to the

determination of the conditions of equilibrium amongst the forces

externally applied to any connected system of points. That appli-
cation is effected in the following manner : Let F be any one of

the externally applied forces in question. The conditions of equili-
brium are those of uniform motion. Conceive the points of the

system to be moving with uniform velocities in any manner which
is consistent with the absence of all exertion of energy and perfor-
mance of work by their mutual or internal forces. Let v be the
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velocity, or any number proportional to the velocity, of the point
to which the external force F is applied, and 6 the angle between
the direction of that force and the direction of motion of its point
of application. Then from cases 3 and 4 of the principle of the

conservation of energy, it follows that the condition of equilibrium

amongst the forces F is

= 0; ........................ (1.)

attention being paid to the principle, that cos 6 is < ^ ,
. >

when & is < i , > . The same principle may be otherwise ex-

pressed thus : let v be the virtual velocity of any point to which an
effort P is applied, u the virtual velocity of any point to which a

resistance E, is applied ;
then

2-Pv = s-E,M ......................... (2.)

The principle thus expressed is called that of virtual velocities,

because the velocities denoted by v are merely velocities which the

points of the system might have.

As the proportions of the several velocities v are all that are

required in using this principle, it enables the conditions of equili-
brium of the forces applied to any body or machine to be found, so

soon as the comparative velocities of the points of application of

those forces have been determined by means of the principles of

cinematics, and of the theory of mechanism
;
and every proposition

which has been proved in Parts III. and IY. of this treatise,

respecting the comparative velocities of points in a body or in a

train of mechanism, can at once be converted into a proposition

respecting the equilibrium of forces applied to those points in given
directions.

520. Energy of Component Forces and Motions. Let the motion
A s of a point in a given interval of time make angles, *, /3, y}

with
three rectangular axes

;
then

A S ' COS a, A S ' COS
/3, A S ' COS y,

are the three components of that motion. To that point let there

be applied a force F, making with the same axes the angles <*', /3', y',

so that its rectangular components are

F cos
',
F cos

/3',
F cos /'.

Then multiplying each component of the motion by the component
of the force in its own direction, there are found the three quantities
of energy exerted,
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3? A 5 * cos at, cos '; 'I

F AS cos /3 cos /3'j
L (1.)

F A s cos y cos y'; J

and the sum of those three quantities of energy is the whole energy
exerted. Now it is well known, that

cos a cos
' + cos ft cos /3' + cos y cos y' cos Q,

& being the angle between the directions of the force and of the

motion
;
so that the addition of the three quantities of energy in

the fornmlse 1 gives for the whole energy exerted, simply

F A s cos 6,

as in former examples; and similar remarks apply to work per-
formed.

I
1

I
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CHAPTER IL

ON THE VARIED TRANSLATION OF POINTS AND RIGID BODIES.

SECTION 1. Definitions.

521. The Mass, or inertia, of a body, is a quantity proportional to

the unbalanced force which is required in order to produce a given
definite change in the motion of the body in a given interval of time.

It is known that the weight of a body, that is, the attraction

between it and the earth, at a fixed locality on the earth's surface,

acting unbalanced on the body for a fixed interval of time
(e. g. }

for a second), produces a change in the body's motion, which is the

same for all bodies whatsoever. Hence it follows, that the masses

of all bodies are proportional to their weights at a given locality on
the earth's surface.

This fact has been learned by experiment j
but it can also be

shown that it is necessary to the permanent existence of the uni-

verse ; for if the gravity of all bodies whatsoever were not propor-
tional to their respective masses, it would not produce similar and

equal changes of motion in all bodies which arrive at similar posi-
tions with respect to other bodies, and the different parts which
make up stars and systems would not accompany each other in their

motions, never departing beyond certain limits, but would be dis-

persed and reduced to chaos. Neither an imponderable body, nor
a body whose gravity, as compared with its mass, differs in the

slightest conceivable degree from that of other bodies, can belong
to the system of the universe.*

522. The Centre of Mass of a body is its centre of gravity, found
in the manner explained in Part I., Chapter V., Section 1.

523. The Momentum of a body means, the product of its mass
into its velocity relatively to some point assumed as fixed. The
momentum of a body, like its velocity, can be .resolved into com-

ponents, rectangular or otherwise, in the manner already explained
for motions in Part III., Chapter I.

524. The Resultant Momentum of a system of bodies is the re-

sultant of their separate momenta, compounded as if they were
motions or statical couples.

* See the Rev. Dr. Whewell's demonstration " that all matter gravitates."
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THEOREM. The momentum ofa system of bodies is the same as if
all their masses were concentrated at the centre of gravity of tJie sys-
tem. Conceive the velocity of each of the bodies to be resolved

into three rectangular components. Consider all the component
velocities parallel to one of the rectangular directions. These are

the rates of variation of the perpendicular distances of the bodies

from a certain plane. If the mass of each of the bodies be multi-

plied by its distance from a certain plane, the products added, and
the sum divided by the sum of the masses, the result is the distance

of the centre of gravity of the whole system from that plane ; there-

fore, if the component velocity of each of the bodies in a direction

perpendicular to that plane be multiplied by the mass of the body,
the sum of such products for all the bodies of the system will be
the product of the entire mass of the system into the velocity of its

centre of gravity in a direction perpendicular to the plane in ques-

tion; so that this product is one of the three rectangular com-

ponents of the resultant momentum of the system of bodies
;
and

the same may be proved for the other rectangular components.
Expressed symbolically, let u, v, w, be the three rectangular com-

ponents of the velocity of any mass, m, belonging to a system of

bodies, and U
Q,
V
Q,
w

,
the rectangular components of the velocity

of the centre of gravity of that system of bodies
;
then

U
Q

' 2m
V
Q

' im = 2 mv j ................... (1.)

W
Q

'

2m = s mw.
j

COROLLARY. The resultant momentum of a system of bodies rela-

tively to their common centre ofgravity is nothing ; that is to say,

2 m (u
- wc)

=
; 2m (v

- v
)
=

; )
/^

\
"

525. Variations and Deviations of Momentum are the products
of the mass of a body into the rates of variation of its velocity and
deviation of its direction, found as explained in Part III., Chapter

L, Section 3.

526. impulse is the product of an unbalanced force into the time

during which it acts unbalanced, and can be resolved and com-

pounded exactly like force. If F be a force, and d t an interval of

time during which it acts unbalanced, 3?dt is the impulse exerted

by the force during that time. The impulse of an unbalanced

force in an unit of time is the magnitude of the force itself.

527. Impulse, Accelerating, Retarding, Deflecting. Correspond-

ing to the resolution of a force applied to a moving body into effort

or resistance, as the case may be, and lateral stress, as explained in
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Article 511, there is a resolution of impulse into accelerating or

retarding impulse, which acts with or against the body's motion,
and deflecting impulse, which acts across the direction of the body's
motion. Thus if t, as before, be the angle which the unbalanced
force F makes with the body's path during an indefinitely short

interval, dt,

P d t = F cos e ' dt is accelerating impulse if 6 is acute
;

\

R d t = F cos
( *)

' d t is retarding impulse if 6 is obtuse
;
V (1.)

Qdt = ~F sin #dt is deflecting impulse. J

528. Relations between Impulse, Energy, and Work. If V be the

mean velocity of a moving body during the interval dt of the action

of the unbalanced force F, then ds = v dt is the distance described

by that body ;
and according as 6 is acute or obtuse, there is either

energy exerted on the body by the accelerating impulse to the amount

Yds= Fv cos 6
'

dtj ...................
(1.)

or work performed by the body against the retarding impulse to the

amount
R,ds =Fv cos (~-0)

' dt .................. (2.)

SECTION 2. Law of Varied Translation.

529. Second l^avr of motion. Change of momentum is propor-
tional to the impulse producing it. In this statement, as in that of

the first law of motion, Article 510, it is implied that the motion
of the moving body under consideration is referred to a fixed point
or body whose motion is uniform. In questions of applied me-

chanics, the motion of any part of the earth's surface may be treated

as uniform without sensible error in practice. The units of mass
and of force may be so adapted to each other as to make change of
momentum equal to the impulse producing it. (See Articles 531,
532.^

530. General Equations of Dynamics. To express the SCCOnd
law of motion algebraically, two methods may be followed : the
first method being to resolve the change of momentum into direct

variation and deviation, and the impulse into direct and deflecting

impulse ;
and the second method being to resolve both the change

of momentum and the impulse into components parallel to three

rectangular axes.

First method, m being the mass ot the body, v its velocity, and
r the radius of curvature of its path, it follows from Articles 361
and 362 that the rate ofdirect variation of its momentum is

dv d 2
s
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and from Articles 363 and 364, that the rate of deviation of its

momentum is

v2

m.
r

Equating these respectively to the direct and lateral impulse per
unit of time, exerted by an unbalanced force F, making an angle 6

with the direction of the body's motion, we find the two following

equations :

P or -R = Fcos^ = m -=- = m ^j ............. (!)

(2.)

The radius of curvature r is in the direction of the deviating force Q.
Second method. As in Article 366, let the velocity of the body

be resolved into three rectangular components, -y ,

-
, ; so that

(Ji t Ci t U t

the three component rates of variation of its momentum are

Also let the unbalanced force F, making the angles e, /3, y, with
the axes of co-ordinates, and its impulse per unit of time, be
resolved into three components, F,, Fv , F,. Then, we obtain

F,= F cos m ' --
j

FcoM^m^,
d?z

COS '/ = m -y-;r j

(3.)

three equations, which are substantially identical with the equa-
tions 1 and 2.

531. Mass in Terms of Weight. A body's own weight, acting
unbalanced on the body, produces velocity towards the earth,

increasing at a rate per second denoted by the symbol g, whose
numerical value is as follows : Let x denote the latitude of the

place, h its elevation above the mean level of the sea,

g^ 32*1695 feet, or 9 -8051 metres, per second;

being the value of g for a 4o
D and h = 0, and

11 = 20900000 feet, or 6370000 metres, nearly,



486 PRINCIPLES OF DYNAMICS.

being the earth's mean radius; then

g = ffl (1-0-00284 cos 2 A) (l
-

) (1.)

For latitudes exceeding 45, it is to be borne in mind that cos 2 A

is negative, and the terms containing it as a factor have their signs
reversed.

For practical purposes connected with ordinary machines, it is

sufficiently accurate to assume

g = 32-2 feet, or 9 -81 metres, per second nearly...... (2.)

If, then, a body of the weightW be acted upon by an unbalanced

force F, the change of velocity in the direction of F produced in a
second will be

m
whence W

is the expression for the mass of a body in terms of its weight,
suited to make a change of momentum equal to the impulse pro-

ducing it. m being absolutely constant for the same body, g and
W vary in the same proportion at different elevations and in

different latitudes.

532. An Absolute Unit of Force is the force which, acting during
an unit of time on an arbitrary unit of mass, produces an unit of

velocity. In Britain, the unit of time being a second (as it is else-

where), and the unit of velocity one foot per second, the unit of

mass employed is the mass whose weight in vacuo at London and
at the level of the sea is a standard avoirdupois pound.
The weight of an unit of mass, in any given locality, has for its

value, in absolute units of force, the co-efficient g. When the unit

of weight is employed as the unit of force, instead of the absolute

unit, the corresponding unit of mass becomes g times the unit just
mentioned: that is to say, in British measures, the mass of 32 ;2

Ibs.
;
or in French measures, the mass of 9*81 kilogrammes.

533. The motion of a Falling Body, under the unbalanced action

of its own weight, a sensibly uniform force, is a case of the uni-

formly varied velocity described in Article 361. In the equations
of that Article, for the rate of variation of velocity a, is to be sub-

stituted the co-efficient g, mentioned in the last Article. Then if

VQ be the velocity of the body at the beginning of an interval of

time t
y its velocity at the end of that time is
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v = v + gt, ............................ (1.)

the mean velocity during that time is

and the vertical height fallen through is

* = , + * .......................... (3.)

The preceding equations give the final velocity of the body, and the

height fallen through, each in terms of the initial velocity and the

time. To obtain the height in terms of the initial and final velo-

cities, or vice versa, equation 2 is to be multiplied by v v = g t,

the acceleration, and compared with equation 3
; giving the follow-

ing results :

.(4.)

When the body falls from a state of rest, v is to be made = ; so

that the following equations are obtained :

=">*== <
5
->

The height h in the last equation is called the height or fall due to

the velocity v; and that velocity is called the velocity due to the height
or fall h.

Should the body be at first projected vertically upwards, the

initial velocity v is to be made negative. To find the height to

which it will rise before reversing its motion and beginning to fall,

v is to be made = in the last of the equations 4 ; then

*
i? <6->

being a rise equal to the fall due to the initial velocity VQ.

534. An Unresisted Projectile, or a projectile to whose motion
there is no sensible resistance, has a motion compounded of the

vertical motion of a falling body, and of the horizontal motion due
to the horizontal component of its velocity of projection. -In

fig.

232, let represent the point from which the projectile is originally
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projected in the direction O A, making the angle X A= t with

a horizontal line X in the same vertical plane with O A. Let

horizontal distances parallel to

O X be denoted by x, and verti-

cal ordinates parallel to O Z by z
}

positive upwards, and negative
-^ downwards. In the equations of

\ vertical motion, the symbol h of

the equations of Article 533 is to

be replaced by z, because of h
Fig. 232.

an(j z ^^g pleasured in opposite
directions.

Let v be the velocity of projection. Then at the instant of pro-

jection, the components of that velocity are,

, dx , dz . A

horizontal,
-
7
- = v cos 6-

} vertical,
- = VQ sm 0;

a t u t

and after the lapse of a given time t, those components have become

(1.)

dx
-T = v cos 6 = constant;

dz

Hence the co-ordinates of the body at the end of the time t are

horizontal, x VQ cos 6
tj \

vertical, z ^ VQ sin 9
*
c *~~

~~^ |

2t )

x
and because t =

,
those co-ordinates are thus related,Vn COS 6

'JQ
COS

z = x tan 6 g
2 vl cos

3
6

or .(3.)

an equation which shows the path B C of the projectile to be a

parabola with a vertical axis, touching O A in O.

The total velocity of the projectile at a given instant, being the

resultant of the components given by equation 1, has for the value

of its square

from the last form of which is obtained the equation
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which, being compared with equation 4 of Article 533, shows that

the relation between the variation of vertical elevation, and the varia-

tion of tlie square of the resultant velocity, is the same, whether the

velocity is in a vertical, inclined, or horizontal direction. This is a

particular case of a more general principle, to be explained in the

sequel.
The resistance of the air prevents any actual projectile near the

earth's surface from moving exactly as an unresisted projectile.

The approximation of the motion of an actual projectile to that of

an unresisted projectile is the closer, the slower is the motion, and
the heavier the body, because of the resistance of the air increasing
with the velocity, and because of its proportion to the body's weight

being dependent upon that of the body's surface to its weight.
535. The motion of a Body Along an Inclined Path, under the

force of gravity alone, is regulated by the principle, that the varia-

tion of momentum in each interval of time is equal to the impulse
exerted in that interval, by that component of the body's weight
which acts along the direction of motion. If the path is straight,
the other rectangular component of the body's weight is balanced

by the resistance of the surface or other guiding body which causes

the inclined path to be described; if the path is curved, the difference

between those two forces which act across it is employed in deviat-

ing the direction of motion of the body.

Let v be the velocity of the body at any instant, ,
as before,

du t

the rate of variation of that velocity,
^ the inclination of the body's

path to the horizon, positive upwards, and negative downwards.
Then the body is acted upon in a direction along its path by a force

equal to its weight multiplied by sin 6, which is a resistance if 6 is

positive, and an effort if 6 is negative ; therefore

Tt
= -9**........................ (1.)

When the inclination of the path is uniform, this rate of varia-

tion of velocity is constant, and the body moves in the same manner
with an unresisted body moving vertically, except that each change
of velocity occupies an interval of time longer in the ratio of 1 : sin 9

for the inclined path than for the vertical path.
The motion of a body in any path on an INCLINED PLANE being

resolved into two rectangular components, one horizontal, and the
other in the direction of steepest declivity, the horizontal com-

ponent (in the absence of friction) is uniform, and the inclined
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component takes place according to the law expressed by equation
1 of this Article. Consequently, the resultant motion of the body
is that of an unresisted projectile, as described in Article 534,

except that g sin 6 is to be substituted for g.

The motions of bodies on inclined planes being slower, and there-

fore more easily observed than their vertical motions, were used by
Galileo to ascertain the laws of dynamics, which he discovered.

For a body sliding on an inclined plane without friction, the

equation connecting the velocity directly with the position of the

body is the following : f

vl vs 2 g sin 6 %'

where v is the velocity at the origin of the motion, and v the

velocity which the body has when it reaches a position whose
inclined co-ordinate relatively to the origin of the motion is z*,

positive upwards. But z' sin 6 =
z, the difference of vertical eleva-

tion of the two positions of the body; so that the variation of the

square of the velocity bears the same relation to the difference of

vertical elevation in the present case as in the case of an unresisted

projectile, or a free body moving vertically.
536. An Uniform Effort or Resistance, unbalanced, causes the

velocity of a body to vary according to the law expressed by this

equation,
dv ., .

&=**' <L>

where yis the constant ratio which the unbalanced force bears to

the weight of the moving body, positive or negative according to

the direction of the force; so that by substituting fg for g in the

equations of Article 533, those equations are transformed into the

equations of motion of the body in question, h being taken to

represent the distance traversed by it in a positive direction.

In the apparatus known by the name of its inventor, Atwood,
for illustrating the effect of uniform moving forces, this principle
is applied in order to produce motions following the same law with
those of falling bodies, but slower, by a method less liable to errors

caused by friction than that of Galileo. Two weights, P and E-, of

which P is the greater, are hung to the opposite ends of a cord

passing over a finely constructed pulley. Considering the masses
of the cord and pulley to be insensible, the weight of the mass to

be moved is P + R, and the moving force P R, being less than
the weight in the ratio, P-R
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Consequently the two weights move according to the same law with
a falling body, but slower in the ratio of fto 1.

537. A Deviating Force, which acts unbalanced in a direction

perpendicular to that of a body's motion, and changes that direc-

tion without changing the velocity of the body, is equal to the rate

of deviation of the body's momentum per unit of time, as the fol-

lowing equation expresses :

Q being the. deviating force, W the weight of the body, W -f- g its

mass, v2 its velocity, and r the radius of curvature of its path.
In the case of an unresisted projectile, already mentioned in

Article 534, the deviating force at any instant is that component
of the body's weight which acts perpendicular to its direction 9f. ,;<

motion; that is to say ^ ^^^ . ^'^ '^ *\ ?**,

The well known expression for the radius of curvature of any curve
whose co-ordinates are x and z is

.

g

g

Consequently Q r = -
, which agrees with equation 1.

In the case of projectiles, just described, and of the heavenly
bodies, deviating force is supplied by that component of the mutual
attraction of two masses which acts perpendicular to the direction

of their relative motion. In machines, deviating force is supplied

by the strength or rigidity of some body, which guides the deviating

mass, making it move in a curve.

A pair of free bodies attracting each other have both deviated

motions, the attraction of each guiding the other; and their devia-

tions of momentum are equal in equal times; that is, their devia-

tions of motion are inversely as their masses.

In a machine, each revolving body tends to press or draw the

body which guides it away from its position, in a direction from
the centre of curvature of the path of the revolving body; aad that

tendency is resisted by the strength and stiffness of the guiding
body, and of the frame with which it is connected.

538. Centrifugal Force is the force with which a revolving body
reacts on the body that guides it, and is equal and opposite to the
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deviating force with which ths guiding body acts on the revolving
body.

In fact, as has been stated in Article 12, eveiy force is an action

between two bodies
;
and deviating force and centrifugal force are

but two different names for the same force, applied to it according
as its action on the revolving body or on the guiding body is under
consideration at the time.

539. A Revolving Simple Pendulum consists

of a small mass A, suspended from a point C by
a rod or cord C A of insensibly small weight as

compared with the mass A
,
and revolving in a

circle about a vertical axis C B. The tension of

the rod is the resultant of the weight of the

mass A, acting vertically, and of its centrifugal

force, acting horizontally ;
and therefore the rod

Fig. 233. will assume such an inclination that a^

heightj^C _ weight _ gr
'"'

radius A B
~~

centrifugal force v*'"
"

''

where r = A B. Let n be the number of turns per second of the

pendulum; then

v 2 K n r;

and therefore, making B C =
7i,

=
(in the latitude of London)

0-8154 foot 9-7848 inches

"When the speed of revolution varies, the inclination of the pendu-
lum varies, so as to adjust the height to the varying speed.

540. I>< vim in- Force in Terms of Angular Velocity. If the radius
of curvature of the path of a revolving body be regarded as a sort

of arm of constant or variable length at the end of which the body
is carried, the angular velocity of that arm is given by the expres-
sion,

v
a = -.

r

Let ar be substituted for v in the value of deviating force of

Article 537, and that value becomes

Q = 5^T... ...(,)
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In the case of a body revolving with uniform velocity in a circle,

like the bob A of the revolving pendulum of Article 539, a = 2 IF n,

where n is the number of revolutions per second, so that

Q

from which equation the height of a revolving pendulum might be

deduced with the same result as in the last Article.

541. Rectangular Components of Deviating Force. First Demon-
stration. Let O in fig. 234 be the centre

of the circular path E F G H of a body
revolving in a circle with an uniform

velocity, through which centre draw

rectangular axes, X and O Y, in the

plane of revolution. Let the angle^ X O A, which at any instant the -3

radius vector of the revolving body
makes with the axis of x, be denoted

by 6. Let

A D x = r cos 6. and ) /, x
. . Ml.) Fig. 234.A B = y

- r sin 0, J

be the rectangular co-ordinates of the revolving body at any in-

stant. Let Q*, Qj,,
be the components of the deviating force,

parallel to O X and O Y respectively. Then from the obvious

proportion between the magnitudes of those components,

Q:Q,:Qy
:: r : x : y, ..................... (2.)

combined with the equation 2 of Article 540, follow the values of

those component!-
1

.,

; Q, = - ............... (3.)

Those two components have the negative sign affixed, because they

represent forces tending to diminish the co-ordinates x and y, to

which they are proportional.
Second Demonstration. The same result may be obtained, though

less simply, by the second method described in Article 530, as fol-

lows : Let intervals of time, t, be reckoned from an instant when
the revolving body is at E. Then & = a t, and the values of the

co-ordinates x and y, in terms of the time, are

x = r cos at', y = rsina ................. (4.)

The components of the velocity of the body are,
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dx . dy t= ar sin at; -~ = ar cos at, ........... (5.)at at

the velocity parallel to each co-ordinate being proportional to the

other. The components of the variation of niotion are

= a2 r cos a t = a? as;
*

\ ............. (6.)
d ŷ = O?T sin a t a2 yd?

W
which being multiplied by the mass , reproduce the components

of the deviating force as before given in equation 3.

542. Straight Oscillation is the motion performed by a body
which moves to and fro in a straight line, alternately to one side

and to the other of a central point; and in order that this motion

may take place, the body must be urged at each instant towards

the central point.
In most cases, the force so acting on the oscillating body is either

exactly or very nearly proportional to its displacement, or distance

from the central point of equilibrium ; that is to say, that force

follows the law of one of the rectangular components of the deviat-

ing force of a body revolving uniformly in a circle once for each

double oscillation of the oscillating body.
In fig. 234, let a body B, equal in weight to the body A, start

at the same instant from E, and oscillate to and fro along the dia-

meter E G-, while A revolves in the circle E F G H. Then if B is

urged towards the centre O with a force at each instant propor-
tional to its distance from that point, and given by the equation

a.)

being equal to the parallel component of the deviating force of A,
B will accompany A in its motion parallel to O X

;
both those

bodies being at each instant in the same straight line B A
||
O Y

at the distance

x = r cos a t = r cos &..................... (2.)

from : the velocity of B being at each instant equal to the par-
allel component of the velocity ofA j that is to say,

dx- arsmat = arsm0; .............. (3.)a t

and each double oscillation of B, from E to G and back again to E,
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being performed in the same time with a revolution of A ; that is

in the time ^-^-* * 3 sh-S* '

where r is the semi-amplitude of the oscillation, E = O G, Q is

the corresponding greatest magnitude of the force urging the body
towards O, being the same with the entire deviating force of A,
and n is the number of double oscillations in a second. (The
angle = a t is called the PHASE of the oscillation.)
The greatest value Q of the force which must act on B to pro-

duce n double oscillations of the semi-amplitude r in a second, is

given by the equation

Wa*r _4:v
2 Wri3 r

being similar to equation 3 of Article 540.

Revolution in a circle may be regarded as compounded of two
oscillations of equal amplitude, in directions at right angles fco each
other.

543. Elliptical Oscillations or Revolutions compounded of two

straight oscillations of equal periods, but un-

equal amplitudes, may be performed by a body
urged towards a central point by a force pro-

portional to its distance from that point. In

fig. 235, let A be the position of the body at

any instant ;
let O A = ?,

and let the force

urging the body towards O be

a.)

b being a constant. Then the rectangular com-

ponents of that force are

W6>
9

Fig. 235.

the former force being suited to maintain a straight oscillation

parallel to O X, and the latter, a straight oscillation parallel to

O Y, the period of a double oscillation in either case being the

same, viz. :

1 2*
(3.)

according to equation 4 of Article 542. Hence let xl
= E= G

be the semi-amplitude of the former straight oscillation, and yl
=
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O F = O H that of the latter ;
then at any instant the co-ordinates

of the body will be

x = Xi cos bt; y y^ sin bt ; (4.)

which equations being respectively divided by ^ and ylt
the results

squared, and the squares added together, give

.(5.)

the well known equation of an ellipse described about O as a centre

with the semi-axes x
t , ylf The components of the velocity of the

body at any instant are

dx
- = b Xi sin b t = b

dt
'

544. A Simple Oscillating Pendulum consists of an indefinitely
small weight A, fig. 236, hung by a cord or rod of in-

sensible weight A C from a point C, and swinging in a

vertical plane to and fro on either side of a central point
D vertically below C. The path of the weight or bob

is a circular arc, A D E.

The weight W of the bob, acting vertically, may be
resolved at any instant into two components, viz. :

W cos^ D C A =W BCJ

CA'

acting along C A, and balanced by the tension of the

Fig. 23G. rod or cord, and

sn C A = W

acting in the direction of a tangent to the arc, towards D, and un-
balanced. The motion of A depends on the latter force.

"When the arc A D E is small compared with the length of the

pendulumA C, it very nearly coincides with the chord ABE; and
the horizontal distance A B, to which the moving force is propor-
tional, is veiy nearly equal to the distance of the bob from D, the
central point of its oscillations. Hence the bob is very nearly in

the condition of straight oscillation described in Article 542
;
and

the time which it occupies in making a double oscillation is there-
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fore found approximately by means of equation 4 of that Article,

viz.:-

where r denotes the semi-amplitude, and Q the maximum value of

W -
-. But if the length of the pendulum, C A, be made = I,

wehl^
Q AB r

^ = max. -= =
7, nearly ;

YY \j JEL I

whence, approximately, for small arcs of oscillation,

-(!-)

-; and
n v g

ff

which being compared with equation 2 of Article 539, shows, that

the length of a simple oscillating pendulum, making a given number

of small double oscillations in a second, is sensibly equal to the height

of a revolving pendulum, making the same number of revolutions in

a second.

"When the amplitude of oscillation becomes of considerable mag-
nitude, the period of oscillation is no longer sensibly independent
of the length of the arc, but becomes longer for greater amplitudes,

according to a law which can be expressed by an elliptic function,
but which it is unnecessary to explain in this treatise. (See Le-

gendre, Traite des Fonctions elliptiques, vol. i., chap, viii.)

545. Cycloidai Pendulum. In order that the oscillations of a

simple pendulum may be exactly isochronous (or of equal duration)
for all amplitudes, the bob must oscillate in a curve, the lengths of

whose arcs, measured from its lowest point, are proportional to the

sines of their angles of declivity at their upper ends, to which sines

the moving forces at those upper ends are proportional. That this

may be the case, the radius of curvature at each point of the curve

must be proportional to the cosine of the declivity : the greatest
radius of curvature, at the lowest point of the curve, being equal to

I, as given by equation 1 of Article 544
;
and from Article 390,

case 3, equation 6, it appears that such a curve is a cycloid, traced

by a rolling circle whose radius is

>-o
=

J (1.)

2K
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It is well known that a cycloid is the involute of an equal and

similar cycloid. Hence, in fig. 237, let C F, C G, be a pair of

cycloidal cheeks, described by rolling a

circle of the radius r
Q
on a horizontal

line -traversing C ;
let C A be a flex-

ible line, fixed at C, and having a bob

at A, its length being I = 4 r = C D
= the length of each of the semi-

cycloids OF, C G-. Then as the

_ pendulum C A swings between the

Fj
.

237 cycloidal cheeks, the bob oscillates

in an arc of the cycloid F D G ;
its

double oscillations, for all amplitudes, have exactly the periodic
time given by equation 1 of Article 544, being that of a revo-

lution of a revolving pendulum of the height C D
;
and the

motion of the bob in its cycloidal path follows the law of straight
oscillations described in Article 542.

546. Residual Forces. If two bodies be acted upon at every
instant by unbalanced forces which are parallel in direction, and

proportional to the masses of the bodies in magnitude, the varia-

tions of the motions of those two bodies, relatively to a fixed body,
whether by change of velocity or by deviation, are simultaneous
and equal; so that their motion, relatively to each other, is the
same with that of a pair of bodies acted upon by no force or by
balanced forces

;
that is, according to the first law of motion, Article

510, that motion is none or uniform.

If two bodies, A and B, be acted upon by any unbalanced forces

whatsoever, and if from the force acting on B there be taken away a
force parallel to that acting on A, and proportional to the mass of

B (in other words, if with the actual force acting on B there be
combined a force equal and opposite to that which would make the
motion of B change in the same manner with that of A), then the

resultant or residual unbalanced force acting on B is that corre-

sponding to the variations of the motion o/*B relatively to A.
This is the exact statement of the case of a body near the earth's

surface. From the total attraction between the body and the earth
is to be taken away the deviating force necessary to make the body
accompany the earth's surface in its motion, by revolving in a circle

round the earth's axis once in a sidereal day (Article 352). The
residualforce is the weight of the body, "W = g m, which regulates
its motions relatively to the earth's surface. Thus the variations of

the co-efficient g in different localities of the earth's surface, at

different elevations, expressed by the formulae of Article 531, are

due partly to variations of attraction, and partly to variations of

deviating force.
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When bodies are carried in a ship or vehicle, and are free to

move with respect to it, then when the ship or vehicle varies its

motion, the bodies in question perform motions relatively to the

ship or vehicle, such as would, in the case of the uniform motion of

the ship or vehicle, be produced by the application to the bodies of

forces equal and contrary to those which would make them accom-

pany the ship or vehicle in the variations of its motion.

SECTION 3. Transformation ofEnergy.

547. The Actual Energy of a moving body relatively to a fixed

point is the product of the mass of the body into one-Jialf of the

square of its velocity, or, as Article 533 shows, the product of the

weight of the body into the Iieight due to its velocity ;
that is to say,

it is represented by
mv2 Wv2

The product m v2
,
the double of the actual energy of a body, was

formerly called its vis-viva. Actual energy, being the product of

a weight into a height, is expressed, like potential energy and work,
infoot-pounds (Article 513, 514).

548. Components of Actual Energy. The actual energy of a body
(unlike its momentum) is essentially positive, and irrespective of

direction. Let the velocity v be resolved into three components,

-^ , -~, -=-, parallel to three rectangular axes; then the quantities
cl t at Co t

of actual energy due to those three components respectively are

da? W d W dz2

But the square of the resultant velocity is the sum of the squares of

its three components, or

_~
dt2 dt2 dt2 '

therefore the actual energy of the body is simply the sum of the
actual energies due to the rectangular components of its velocity.

549. Energy of Varied Motion. THEOREM I. A deviating force

produces no change in a body's actual energy, because such force

produces change of direction only, and not of velocity; and actual

energy is irrespective of direction, and depends on velocity only.
THEOREM II. The increase of actual energy produced by an un-

balanced effort is equal to tlie potential energy exerted. This theorem
is a consequence of the second law of motion, deduced as follows :
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Let m = W H- g, be the mass of a moving body acted upon by an

effort P, and a resistance R, the effort being the greater, so that

there is an unbalanced effort P R
;
and in the first place let that

unbalanced effort be constant. Then the body is uniformly acce-

lerated ;
and if its velocity at the beginning of a given interval of

time A t is vlt and its velocity at the end of that interval v2} the

increase of the body's momentuip, is

W -^
'

'

-(v2 -V1)
= (P-K)At .................. (1.)

y

Because of the uniformity of the acceleration of the body, its mean

velocity is -^= -, and the distance traversed by it is
2

_ Vi + V*
. *>*,.

-~2~ A *'

Let both sides of equation 1 be multiplied by that mean velocity ;

the following equation is obtained :

now the first side of this equation is the increase of the bodys actual

energy, and the second is the potential energy exerted by the un-
balanced effort; and those two quantities are equal. Q. E. D.
When the unbalanced effort varies, let d s be taken to denote a

distance in which it varies less than in any given proportion, and
d v9 the change in the square of the velocity in that distance

;
then

............. (3.)

or if 8u s2,
denote the two extremities of a finite portion of the

body's path,
W'fo! fi

THEOREM III. The diminution of actual energy produced by an
unbalanced resistance is equal to the work performed in moving against
the resistance. This is a consequence of the second law of motion,
demonstrated by considering R to be greater than P in the equa-
tions of the preceding theorem

;
so that equation 1 becomes

\ m
9

equation 2 becomes
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and equation 3 and 3 A become

w_dry
2?

550. Energy Stored and Restored. A body alternately accelerated
and retarded, so as to be brought back to its original speed, per-
forms work by means of its retardation exactly equal in amount to
the potential energy exerted in producing its acceleration ; and that
amount of energy may be considered as stored during the accelera-

tion, and restored during the retardation.

551. The Transformation of Energy is a term applied to such

processes as the expenditure of potential energy in the production
of an equal amount of actual energy, and vice versa.

552. The Conservation of Energy in Varied Motion is a fact or

principle expressed by combining the Theorems II. and III. of
Article 549 with the definition of stored and restored energy of
Article 550, and may be stated as follows : in any interval of time

during a body's motion, the potential energy exerted, added to the

energy restored, is equal to the energy stored added to the work per-
formed. This principle, expressed in ^he form of a differential

equation, is as follows :

(1.)'

9

which includes equations 3 and 6 of Article 549 ; and in the form
of an integral equation,

(2.)

553. Periodical Motion. If a body moves in such a manner that
it periodically returns to its original velocity, then at the end of

each period, the entire variation of its actual energy is nothing;
and in each such period the whole potential energy exerted is equal
to the whole work performed, exactly as in the case of a body
moving uniformly (Article 518).

554. Measures of Unbalanced Force. From Articles 530 and 531,
and from Article 549, it appears that the magnitude of an un-

balanced force may be computed in two ways, either from the

change of momentum which it produces by acting for a given time,
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or by the change of energy which it produces by acting along a

given distance. Both those ways of computing are expressed in the

following equation :

'

g dt
cj

ds '

and each is a necessary consequence of the other ; yet in former

times a fallacy prevailed that they were inconsistent and contra-

dictory, and a bitter controversy long raged between their respec-
tive partizans.

555. Energy due to Oblique Force. It has already been stated

in Chapter I. of this Part, and especially in Article 520, that if an
unbalanced force F acts on a body while it moves through the dis-

tance ds, making the angle & with the direction of the force, the

product
F cos 6 'ds

represents the energy exerted, if d is acute, or the work performed,
if 6 is obtuse, during that motion. Now that product may be
treated mathematically in two ways : either as the product of F
cos 6= P (or, as the case may be, F cos (K 6)= R), the component
of the force along the direction of motion, into d s, the motion

;
or

as the product of F, the entire force, into cos & ds, the component
of the motion in the direction of the force. The former method is

that pursued in the preceding Articles
;
but occasionally the latter

may be the more convenient. For example, when the force F is

either directed towards or from a central point, or is always per-

pendicular to a given surface ; let z denote the distance of the body
at any instant from the central point, or its normal distance from
the given surface . as the case may be ;

then

dz= cos0 'ds ............................. (1.)

is the component, of the motion of the body in the direction of z.

The force F is to be treated as positive or negative according as

it tends to increase or diminish z. Then if vv v
2 ,
be the velocities

of the body, and z
l9

#
2 ,

its distances from the given point or surface

at the beginning and end of a given interval, the change of its

actual energy in that interval is

and if F is either constant, or a function of z only, the velocity of

v varies with z alone.

This principle, as applied to the force of gravity near the earth's

surface, has already been illustrated in Articles 533, 534, and 535;
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for in that case, z denotes the elevation of the body above a given

level, F = - "W (because it tends to diminish z\ and therefore

*-* m
-~2

=
i

* .. (3.)

as was formerly proved by another process.
556. A Reciprocating Force is a force which acts alternately as

an effort and as an equal and opposite resistance, according to the

direction of motion of the body. Such a force is the weight of a

body which alternately rises and falls ; or the attraction of a body
towards a point from which its distance periodically changes. Such

a force is the force F in the last Article, when it is constant, or a

function of z only ; and such is the elasticity of a perfectly elastic

body. The work which a body performs in moving against a reci-

procating force is employed in increasing its own potential .energy,

and is not lost by the body.
557. The Total Energy of a body is the sum of its potential and

actual energies. It is evident, that if at each point of the course

of a moving body its total energy, or capacity for performing work,
be added to the work which it has already performed, the sum
must be a constant quantity, and equal to the INITIAL ENERGY which
the body possessed before beginning to perform work. If a body
performs no work, its total energy is constant ; and the same is the

case if its work consists only in moving itself to a place where its

potential energy is greater, that is, moving against a reciprocating
force ; and the increase of potential energy so obtained being taken,

into account, balances the work performed in obtaining it.

Example 1. If a body whose weight isW be at a height z^ above
the ground, and be moving with the velocity vt in any direction,
its initial total energy relatively to the ground is

of which W zl is potential andW - actual. Supposing the body
^

to have moved without any resistance except such as may arise

from a component of its own weight, which is a reciprocating force,

to a different height z2 above the ground, its total energy relatively
to the ground is now

being the same in amount as before, but differently divided between
the actual and potential forms.
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Example II. Should the motion of the body be opposed by a
resistance such as friction, which is not a reciprocating force, then
the total energy in the second position of the body is diminished to

w **+ = w *>+-*<** ........ <
3
->

Example III. Let a body oscillate (as in Article 54:2) in a straight
line traversing a central point towards which the body is urged by
a force varying as the distance from the point ;

let x
t
be the semi-

amplitude of oscillation, x the displacement at any instant, Q t

the greatest value of the moving force, so that ---- is the value

for the displacement x. Then when the body is at its extreme

displacement, its actual energy is nothing ; and its total energy,
which is all potential, is

When the body is in the act of passing the central point, its poten-
tial energy is nothing, and its total energy, which is now all actual,
is in amount the same as before, viz. :

( >

VQ being the maximum velocity. At any intermediate point, the
total energy, partly actual and partly potential, is still the same,

being

where, as before, a = 2 n ; n being the number of double oscilla-

tions in a second. For the elliptic oscillations of Article 543, the

total energy of the body is at each instant the sum of the quanti-
ties of energy due to the two straight oscillations of which the

elliptic oscillation is compounded ;
and for a body revolving in a

circle, and urged towards the centre by a deviating force propor-
tional to the radius vector, the total energy relatively to the centre

is one-half actual and one-half potential, viz. :



SYSTEM OF BODIES ANGULAR MOMENTUM. 505

SECTION 4. Varied Translation of a System ofJBodies.

558. Conservation of Momentum. THEOREM. The mutual actions

of a system of bodies cannot change their resultant momentum. (Re-
sultant momentum has been defined in Article 524.) Every force

is a pair of equal and opposite actions between a pair of bodies
; in

any given interval of time it constitutes a pair of equal and oppo-
site impulses on those bodies, and produces equal and opposite
momenta. Therefore the momenta produced in a system of bodies

by their mutual actions neutralize each other, and have no result-

ant, and cannot change the resultant momentum of the system.
559. Motion of Centre of Gravity. COROLLARY. The variations

of the motion of the centre of gravity of a system of bodies are wholly

produced byforces exerted by bodies external to the system; for the

motion of the centre of gravity is that which, being multiplied by
the total mass of the system, gives the resultant momentum, and
this can be varied by external forces only.

It follows that in all dynamical questions in which the mutual
actions of a certain system of bodies are alone considered, the centre

of gravity of that system of bodies may be correctly treated as a

point whose motion is none or uniform ; because its motion cannot

be changed by the forces under consideration.

560. The Angular Momentum, relatively to a fixed point, of a

body having a motion of translation, is the product of the momen-
tum of the body into the perpendicular distance of the fixed point
from the line of direction of the motion of the body's centre of

gravity at the instant in question ;
and is obviously equal to the

product of the mass of the body into double the area swept by the

radius vector drawn from the given point to its centre of gravity
in an unit of time. Let m be the mass of the body, v its velocity,
I the length of the before-mentioned perpendicular ;

then

Wvlm v i =
g

is the angular momentum relatively to the given point.

Angular momenta are compounded and resolved like forces,

each angular momentum being represented by a line whose length
is proportional to the magnitude of the angular momentum, and
whose direction is perpendicular to the plane of the motion of the

body and of the fixed point, and such, that when the motion of the

body is viewed from the extremity of the line, the radius vector of

the body seems to have right-handed rotation. The direction of

such a line is called the axis of the angular momentum which it

represents. The resultant angular momentum of a system of bodies

is the resultant of all their angular momenta relatively to their
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common centre of gravity; and the axis of that resultant angular
momentum is called the axis of angular momentum of the system.
The term angular momentum was introduced by Mr. Hayward.

561. Angular impulse is the product of the moment of a couple
of forces (Article 29) into the time during which it acts. Let F be

the force of a couple, I its leverage, and d t the time during which

it acts, then
Flat

is angular impulse. Angular impulses are compounded and resolved

like the moments of couples.
562. Relations of Angular Impulse and Angular Momentum.

THEOREM. The variation, in a given time, of the angular momentum

ofa body, is equal to tJie angular impulse producing that variation,
and has tlie same axis. This is a consequence which is deduced
from the second law of motion in the following manner : Conceive

an unbalanced force F to be applied to a body m, and an equal,

opposite, and parallel force, to a fixed point, during the interval d t

and let I be the perpendicular distance from the fixed point to the

line of action of the first force. Then the couple in question exerts

the angular impulse
Fldt.

At the same time, the body m acquires a variation of momentum
in the direction of the force applied to it, of the amount

mdv= F dt-,

so that relatively to the fixed point, the variation of the body's

angular momentum is

rnldv = Fldt;.... a

(1.)

being equal to the angular impulse, and having the same axis.

Q. E. D.
563. Conservation of Angular momentum. THEOREM. The result-

ant angular momentum of a system of bodies cannot be changed in

magnitude, nor in the direction of its axis, by the mutual actions of
the bodies.

Considering the common centre of gravity of the system of bodies

as a fixed point, conceive that for each force with which one of the

bodies of the system is urged in virtue of the combined action of all

the other bodies upon it, there is an equal, opposite, and parallel
force applied to the common centre of gravity, so as to form a

couple. The forces with which the bodies act on each other are

equal and opposite in pairs, and their resultant is nothing; there-

fore, the resultant of the ideal forces conceived to act at the common
centre of gravity is nothing, and the supposition of these forces does
not effect the equilibrium or motion of the system. Also, the
resultant of all the couples thus formed is nothing; therefore, the
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resultant of their angular impulses is nothing; therefore, the result-

ant of the several variations of angular momentum produced by
those angular impulses is nothing; therefore, the resultant angular
momentum of the system is invariable in amount and in the direc-

tion of its axis. Q. E. D.
This theorem is sometimes called the principle of'the conservation

of areas. When applied to a system consisting of two bodies only,

it forms one of the laws discovered by Kepler, by observation of

the motions of the planets.
In considering the relative motions of a system of bodies as

depending on their mutual actions only, the axis of angular momen-
tum may be treated as &fixed direction, as already stated in Article

348. A plane perpendicular to the axis of angular momentum is

called by some writers the invariable plane. The nearest approach
to an absolutely fixed direction yet known is the invariable axis of

the discovered bodies of the solar system.
564. Actual Energy of a System of Bodies. THEOREM. The actual

energy ofa system of bodies relatively to a point external to the system,

is the sum oft/ie actual energies of the bodies relatively to their common
centre ofgravity, added to the actual energy due to the motion of the

mass of the wJwle system with a velocity equal to that which its centre

ofgravity has relatively to the external point.

Let the motion of each of the bodies, and of their common centre

of gravity, relatively to the external point, be resolved into three

rectangular components. Let m be any one of the masses, and u,

v, w, the components of its velocity relatively to the external point;
let 2 m be the mass of the whole system, and UQ,

v
,
w

,
the com-

ponents of the velocity of its centre of gravity relatively to the

external point.
Conceive the motion of each of the bodies to be resolved into two

parts; that which it has in common with tlie centre ofgravity rela-

tively to the external point, and that which it has relatively to the

centre ofgravity. The component velocities of the first part are

U
,
V

,
W

',

and those of the second part

U UQ = U'j V VQ = V*
;
W WQ = w' j

so that the components of the whole motion of the body may be

represented by

U = UQ + U'j V = VQ + V''} W = WQ + W* .

Then the actual energy of the system relatively to the external

point is

1 2 m
{(u + uj -f (v + vj+ (w + wj] ;
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which being developed, and common factors removed outside the

sign of summation, gives

i (! + ^ + ^5) 2 rti

-f- UQ
' 2 * m U1

-f- V
' 2 ' m V' + WQ

' 2 W w'

+ i 2 m (u
12 + v'

2 + /).

But in Article 524 it has been shown, that the resultant momentum
of a system of bodies relatively to their common centre of gravity
is nothing; that is to say,

2 ww' =
; 2

' mvf ;
2 m w' =

;

so that the above expression for the actual energy of the system
becomes simply

2 -m(u'
2 + v'2J[-w

f2

); (1.)

of which the first term is the actual energy of the ivhole mass of the

system due to the motion of the centre of gravity relatively to the

external point, and the second term is the sum of the actual energies

oft/ie bodies relatively to their common centre ofgravity. Q. E. I).

Those two parts of the actual energy of a system may be distin-

guished as the external and internal actual energy.
COROLLARY. The mutual actions of a system of bodies change their

internal actual energy alone.

565. Conservation of Internal Energy. LAW. The total internal

energy, actual and potential, ofa system of bodies, cannot be changed
by their mutual actions. This is a proposition made known partly

by reasoning and partly by experiment. The total internal energy
of a system is the sum of the total energies of the bodies of which
it consists relatively to their common centre of gravity. It has
been shown in Articles 549 to 557, that the total energy of a single

body can be diminished only by performing work against a resist-

ance which is not a reciprocating force : in other words, against an
irreversible or passive resistance.

Now it has been proved by experiment, that all work performed
against passive resistances is accompanied by the production of an

equal amount of energy in a different form (as when friction pro-
duces heat) ; therefore the total internal energy ofa system of bodies

cannot be changed by their mutual actions. Q. E. D.

Although this law has become known in the first instance by
experiment and observation, it can be shown to be necessary to the

permanent existence of the universe as actually constituted.

566. Collision is a pressure of inappreciably short duration be-

tween two bodies. The most usual problem in cases of collision is,

when two bodies whose masses are given move before the collision

in one straight line with given velocities, and it is required to find
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their velocities after the collision. The two bodies form a system
whose resultant momentum and internal energy are each unaltered

by the collision; but a certain fraction of the internal energy

disappears as visible motion, and appears as vibration and heat.

If the bodies are equal, similar, and perfectly elastic, that fraction

is nothing.
Let m

l}
m2,

be the masses of the two bodies, and u
lt
u2 ,

their

velocities before the collision, whose directions should be indicated

by their signs. Then the velocity of their common centre of gra-

vity is

and this is not altered by the collision; neither is the external

energy, whose amount is

............................ (2.)

The internal energy of the system of two bodies is

m
l (u,

-
ntf _j_

m2 (u2
-u$

~2~ ~2~~ ................... (3>)

When the bodies strike together, this actual internal energy is

expended in altering the figures of the bodies at and near their

surface of contact, in opposition to their elastic force. So soon as

the relative motion of the bodies has been thus stopped, the elastic

force begins to restore their figures, and drive them asunder; and
if they were equal, similar, and perfectly elastic, it would reproduce
all the energy of relative motion given by the formula 3, so

that the bodies would separate with velocities relatively to their

common centre of gravity, equal and opposite to their original
velocities relatively to that point ; that is to say, with the velocities

UQ-UH U -U2,

relatively to the common centre of gravity, and the velocities

^ = 2^0-^, v2
= 2u u.

2) .................. (4.)

relatively to the earth. But as a certain proportion, which may be
denoted by 1 &2

,
of the internal actual energy takes the forms

of internal vibration and of heat, the internal actual energy due to

visible motion after the collision is

tfm2 (u2 -u )~

~2 j

the velocities of the bodies, relatively to their common centre of

gravity, after the collision, are
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JC(UQ-U^), k (uo-ua);

and their velocities relatively to the earth are

V! = (L + &) Uo-kUi'y v2
=

(l +k)uQ Jcuz............ (6.)

Should the bodies be perfectly soft, or inelastic, k = ; in which case

Vl
= va

= uQ ; ............................ (7.)

that is, the bodies do not fly asunder, but proceed together with the

velocity of their common centre ofgravity. (See Addendum, p. 512.)
567. The Action of Unbalanced External Forces on a system of

bodies, considered as a whole, is to vary the resultant momentum
and the resultant angular momentum. It has been shown in

Article 60, that every system of forces can be reduced to a single
force and a couple. The system of forces applied to a system of

bodies is to be reduced to a single force acting through the centre

of gravity of the system, and a couple, as shown in equations 5, 6,

7, 8, of Article 60
;
then in a given interval of time, the variation

of resultant momentum of the system is equal to and in the direc-

tion of the impulse of the single resultant force, and the variation

of angular momentum is equal to the angular impulse, and about
the axis, of the resultant couple.
To express this by general equations, let the components of the

momentum of any mass m belonging to the system, whose rectan-

dx dv dz
gular co-ordinates are x, y, z, be m -=, m -~, m -=-. Then the

u t ut Cut

rates of variation of these components are j .r Aj~ 2U
dzx d2 d*z

Also, the rectangular components of the angular momentum of that

mass are

about *, m (._) ; about ,, . (_. JJ)
;

whose rates of variation are

,
- -

,
(&)

"ysf-'s?}
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Let F,, Fy,
Fz ,

be the components of the force externally applied
to a point whose co-ordinates are x, y, z. Then by the equality of

the resultant impulse to the variation of resultant momentum,

$ {*-$& '- *"" - 1 ^^
2

I

*~
ar }

and by the equality of the resultant angular impulse to the varia-

tion of the resultant angular momentum.

<*>

The use of those equations is to determine the effect of a given

system of external forces on a system of bodies when the relations

amongst the motions of those bodies are known, without taking into

consideration the internal forces acting between the bodies, which
latter forces it is sometimes difficult or impossible to determine until

the effects of the external forces have first been found.

568. Determination of the Internal Forces. When the relations

which exist between the motion of the system as a whole, that is,

its resultant momentum and angular momentum, and the motions
of the several bodies of which it consists, are fixed by cinematical

principles, then the motion of each body can be determined when
the externally applied forces are known. Then if, from the force

externally applied to each body at each instant, there is taken away
the force required to produce the change of motion of the body which
takes place at that instant, the remainder must be balanced by, and

equal and opposite to, the internal force acting on the body in ques-
tion ; and this, which is the PRINCIPLE OF D'ALEMBERT, serves to

determine the internal forces. Using the notation of the last

Article, the components of the internal force applied to a given
body of the system are

569. Residual External Forces. If the resultant external force

acting through the centre of gravity of a system of bodies be sup-
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posed to be divided into parallel components, each applied to one

of the bodies and proportional to the mass of the body to which it

is applied, such will be the system of external forces required to

make all the bodies of the system have equal and parallel motions

at each instant in common with their centre of gravity. Then if

the forces so determined be taken away from the forces actually

applied to the several bodies, the residual external forces, being
combined with the internal forces, will constitute those forces

which regulate the motions of the bodies relatively to their com-

mon centre of gravity considered as a fixed point.

ADDENDUM TO ARTICLE 566, PAGE 510.

Collision. It was formerly supposed that the disappearance of

energy after collision was wholly due to imperfect elasticity, and
that any two perfectly elastic bodies would fly asunder after col-

lision with a relative velocity equal to their relative velocity of

approach before collision. But M. de St. Yenant showed that,

except when the bodies are similar and equal, a certain quantity of

energy disappears, even in perfectly elastic bodies, in producing
internal vibrations of each body. The value of the co-efficient k,

being the ratio of the relative velocity of the recoil to that of the

approach, in the case of a pair of perfectly elastic prismatic bars,

striking each other endwise, is given as follows : let a
L
and 2

be

the lengths of the bars
; pl

and p2
their weights per unit of length ;

s
1
and s

2
the velocities of the transmission of sound (that is,

of longitudinal vibrations) along them; let - 1 ^ -^
;
and also let

s
i

s
z

s, p, ^ s9 p<> : in other words, let ^L and ^" l
: then

As to the velocity of sound, see Article 615, page 563. The

paper of M. de St. Venant is published in full in the Journal des

Mathematiques pures et appliquees, 1867 ;
and an abstract in English

of the more simple of its results in The Engineer for the 15th Feb-

ruary, 1867.
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CHAPTER IIL

ROTATIONS OF RIGID BODIES.

570. The motion of a Rigid Body, or of a body which sensibly

preserves the same figure, has already been shown in Part III.,

Chapter II., to be always capable of being resolved at each instant

into a translation and a rotation
;
and by the aid of the principles

explained in Section 3 of that chapter, the component rotation can

always be conceived to take place about an axis traversing the

centre of gravity of the body, and to be combined, if necessary,
with a translation of the whole body in a curved or straight path

along with its centre of gravity. The variations of the momen-
tum of the translation, whether in amount or in direction, are

due to the resultant force acting through the centre of gravity
of the body, and are exactly the same with those of the momen-
tum of the entire mass if it were concentrated at that centre;
the variations of the angular momentum of the rotation are

due to the resultant couple which is combined with that re-

sultant force. The variations of actual energy are due to both

causes.

When the translation of the centre of gravity of a rotating body,
and its rotation about an axis traversing that centre, are known,
the motion of every point in the body is determined by cinematical

principles, which have been explained in Part IIL, Chapter II.,

Section 3
;
so that by the aid of D'Alembert's principle (Article

568) the internal forces acting amongst the parts of the body can
be completely determined.

In the investigations of questions respecting the motions of

rigid bodies, there are certain quantities, lines, and points, de-

pending on the figures of the bodies, the mode of distribution

of their masses, and the way in which their motions are guided,
whose use facilitates the understanding of the subject and
the computation of results, and which are related to each other

by geometrical principles. These are, moments of inertia, radii

of gyration, moments of deviation, and centres of percussion.
Their geometrical relations are considered in the following sec-

tion.

2L
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SECTION 1. On Moments of Inertia, Radii of Gyration, Moments of

Deviation, and Centres of Percussion.

571. The Moment of inertia of an indefinitely small body, or
"
physical point," relatively to a given axis, is the product of the

mass of the body, or of some quantity proportional to the mass,
such as the weight, into the square of its perpendicular distance

from the axis : thus in the following equation':

I Wr2

- = r- = , (1.)

r is the perpendicular distance of the mass m, whose weight is W,
from a given axis; and the moment of inertia, according to the

unit employed, is either I, or I -- g ;
the former, when the unit is

the moment of inertia of an unit of weight at the end of an arm
whose length is unity; and the latter, when the unit is the moment
of inertia of an unit of mass at the end of the same arm. For the

purposes of applied mechanics, the former is the more convenient

unit, and will be employed in this treatise.

By an extension of the term " moment of inertia," it is applied
to the product of any quantity, such as a volume, or an area, into

the square of the distance of the point to which that quantity
relates from a given axis, as has already been exemplified in Article

95, and in the theory of resistance to bending; but in the remainder
of this treatise the term will be used in its strict sense, and accord-

ing to the unit of measure already specified; that is, in British

measures, moment of inertia will be expressed by the product of a

certain number of pounds avoirdupois into the square of a certain

number offeet.
The geometrical relations amongst moments of inertia, to which

the present section refers, are independent of the unit of measure.

572. The Moment of Inertia of a System of Physical Points, rela-

tively to a given axis, is the sum of the moments of inertia of the

several points , that is,

1 = 2 -Wr2

(1.)

573. The Moment of Inertia of a Rigid Body is the Slim of the

moments of inertia of all its parts, and is found by integration; that

is, by conceiving the body to be divided into small parts of regular

figure, multiplying the mass of each of those parts into the square
of the distance of its centre of gravity from the axis, adding the

products together, and finding the value towards which their sum

converges when the size of the small parts is indefinitely diminished.
For example, let the body be conceived to be built up of rectangular
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molecules, whose dimensions are d x, d y, and d z, the volume of

each dxdy dz, and the mass of unity of volume w. Then

1=
J j J r*wdxdydz (1.)

Hence follows the general principle which will afterwards be

illustrated in special cases, that propositions relative to the geome-
trical relations amongst the moments of inertia of systems of points
are made applicable to continuous bodies by substituting integration

for ordinary summation; that is, for example, by putting iff
for 2, and w ' d x d y d z for "W.

574. The Radius of Gyration of a body about a given axis is that

length whose square is the mean of all the squares of the distances

of the indefinitely small equal particles of the body from the axis,
and is found by dividing the moment of inertia by the mass, thus,

When symbols of integration are used, this becomes

/ / / r^w'dxdydz
e
2 =

r-fr~ ................. (2.)
/ / / w ' dx dydz

575. Components of foment of Inertia. Let the positions of the

particles of a body be referred to three rectangular axes, one of

which, O X, is that about which the moment of inertia is to be
taken. Then the square of the radius vector of any particle is

so that the moment of inertia round the axis of x is

I. = 2 W y
2 + 2 W z2 ; .................. (1.)

that is to say, the moment of inertia of a body round a given axis

may befound by adding together the sumoftlie products of the masses

of the particles, each multiplied by the square of each of its distances

from a pair of planes cutting each other at right angles in the given
axis.

In the same manner it may be shown that the moments of
inertia of the same body round the other two axes are given by the

equations

I, = 2 W z
2 + 2 W or

3

;
Tf =s-Waj' + s-W ^...(2.)
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576. Moments of Inertia Round Parallel Axes Compared.
THEOREM. The moment of inertia of a body about any given axis

is equal to its moment of inertia about an axis traversing its centre

ofgravity parallel to the given axis, added to tJie moment of inertia
about the given axis due to the whole mass of the body concentrated at

its centre ofgravity.
Take the given axis for the axis of x, and any two planes tra-

versing it at right angles to each other as the planes of x y and
z Xy then, as in the preceding Article,

I, = 2- Wy2 + 2 -AY's2
.

Let y ,
2

,
oe the perpendicular distances of the centre of gravity of

the body from the two co-ordinate planes before mentioned
;
con-

ceive a new axis to traverse that centre of gravity, parallel to the

given axis; let two co-ordinate planes parallel to the original
co-ordinate planes traverse that new axis; and let ?/, z', be the

perpendicular distances of a given particle from those new co-

ordinate planes. Then

and introducing those values of the original co-ordinates into the

value of It, we find

I, = ,
- W (y. + yj + 2 - W (z. + zj

+ 2
2/

2 W y
1 + 2 z 2 W z + 2 W (y

12

but because y' and z' are the distances of a particle from planes

traversing the centre of gravity of the body,

2 'Wy=0; 2 -W2' = 0; J&
and the preceding equation is reduced to the following :

i. = (2/0
+ *5) 2 w + 2

.w (^ + o ........... .(i.)

which expresses the theorem to be proved.
This theorem may be more briefly expressed as follows: Let

I be the moment of inertia of a body about an axis traversing its

centre of gravity in any given direction, and I the moment of

inertia of the same body about an axis parallel to the former at the

perpendicular distance r
;
then

I = rJ-2W + I ........................ (2.)

An analogous proposition for surfaces has been demonstrated in

Article 95, Theorem Y.

COROLLARY I. The radius of gyration (e) of a body about any
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axis is equal to the hypotenuse of a right-angled triangle, of which
the two legs are respectively equal to the radius of gyration of the

body about an axis traversing the centre of gravity parallel to the

given axis (en), and to the perpendicular distance between these two
axes (r ).

That is to say,

e
2 = ^ + e?............................ (3.)

COROLLARY II. The moment of inertia of a body about an axis

traversing its centre of gravity in a given direction, is less than the
moment of inertia of the same body about any other axis parallel
to the first.

COROLLARY III. The moments of inertia of a body about all

axes parallel to each other, which lie at equal distances from its

centre of gravity, are equal.
577. Combined Moments of Inertia. THEOREM. Tlw combined

moment of inertia of a rigidly connected system of bodies about a
given axis, is equal to the combined moment of inertia which the sys-
tem would have about tlie given axis, if each body were concentrated

at its own centre ofgravity, added to the sum oftJie several moments

of inertia of the bodies, about axes traversing tJieir respective centres

ofgravity, parallel to the given axis.

Let W now denote the mass of one of the bodies, I its moment
of inertia about an axis traversing its own centre of gravity parallel
to the given common axis, and r

Q
the distance of its centre of gravity

from that common axis. Then the moment of inertia of that body
about the common axis, according to Article 576, equation 2, is

Consequently, the combined moment of inertia of the system of
bodies is

E D
I = -Wr;+il,; ..................... (1.)

578. Examples of Moments of Inertia and Radii of Gyration of

homogeneous bodies of some of the more simple and ordinary
figures, are given in the following tables. In each case, the axis is

supposed to traverse the centre of gravity of the body; for the

principles of Article 576 enable any other case to be easily solved.

The axes are also supposed, in each case, to be axes ofsymmetry of
the figure of the body. In subsequent Articles, it will be shown
what relations exist between the moments of inertia of the same

body about axes traversing it in different directions.

The column headed W gives the mass of the body; that
headed I gives the moment of inertia; that headed

ej,
"the square

of the radius of gyration. The mass of an unit of volume is in

each case denoted by w.
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579. Moments of Inertia found by Division and Subtraction.-
Each of the solids mentioned in the table of the preceding Article

can be divided into two equal and symmetrical halves by a plane

perpendicular to the axis. The radius of gyration of each of those

halves is the same with that of the original solid. Each of the

solids can also be divided into four equal and symmetrical wedges
or sectors by planes traversing the axis

j
and those which are solids

of revolution can be divided into an unlimited number of such

wedges or sectors. The radius of gyration of each such sector about

the original axis, which forms its edge, is the same with that of

the original solid.

To find the radius of gyration of any such sector about an axis

parallel to its edge, the original axis, and traversing the centre of

gravity of the sector, let rQ be the distance of that centre of gravity
from the original axis, the radius of gyration of the original solid,

and
e'

the radius of gyration of the sector about the new axis in

question ;
then from Article 576, equation 3, it follows that

Example. In case 15 of Article 578, the square of the radius of

gyration of a rhombic prism about its

5
2 + c2

longitudinal axis is found to be

b and c being the two semi-diagonals.
Let

fig.
238 represent such a prism,

and let A be one end of its longitu-

dinal axis, and BAB = 2 6, CAC =
2 c, its two diagonals. Divide the prism into four equal right-

angled triangular prisms by two planes traversing the diagonals
and the longitudinal axis ;

the radius of gyration of each of those

prisms about that axis is the same with that of the original prism.

Bisect B C in D, and join AD, in which take rQ =AE = f AD =

Y+S-1 B C = -

} then E is the extremity of a longitudinal axis

traversing the centre of gravity of the triangular prism ABC, and
the radius of gyration of that prism about that new axis is given

by the equation

580. Moments of Inertia found by Transformation. The moment
of inertia and radius of gyration of a body about a given axis are

not changed by any transformation of its figure which can be

effected by shifting its particles parallel to the given axis ; and the



520 PRINCIPLES OP DYNAMICS.

radius of gyration is not altered by altering the dimensions of the

body parallel to the axis in a constant ratio
; for example, in cases

1 and 2 of Article 578, the radius of gyration of a spheroid about
its polar axis is the same with that of a sphere of the same equa-
torial radius.

If the dimensions of a body in all directions transverse to the

axis are altered in a constant ratio, the radius of gyration is altered

in the same ratio.

If the dimensions of a body transverse to its axis, in two direc-

tions perpendicular to each other, are altered in different ratios ;

for example, if the dimensions denoted by y are altered in the ratio

m, and the dimensions denoted by z in the ratio n, then the radius

of gyration e of the original body is to be conceived as the hypo-
tenuse of a right-angled triangle whose sides are, >j parallel to y,
and f parallel to z, and are given by the equations

U_ . tt _ __
> a TIT .(1.)

and the radius of gyration % of the transformed body will be the

hypotenuse of a new right-angled triangle whose sides are m n and
n ;

that is to say,

'? (2.)

This method may be exemplified by deducing the radius of gyration
of an ellipsoid about any one of its axes (Article 578, case 3) from
that of a sphere (ib.,

case
1).

581. The Centre of Percussion of a body, for a given axis, is a

point so situated, that if part of the mass of the body were concen-

trated at that point, and the remainder at the point directly oppo-
site in the given axis, the statical moment of the weight so distri-

buted (Article 42), and its moment of

inertia about the given axis, would be
the same as those of the actual body
in every position of the body.

In
fig. 239 let XX be the given

axis, and G the centre of gravity of

the body. It is evident, in the first

place, that the centre of percussion
must be somewhere in the perpenfli-
cular C G B let fall from the centre of

gravity on the given axis. Secondly,
in order that the statical moment of

Fig. 239. the whole mass, concentrated partly at

C, and partly at the centre of percus-
sion B

(still unknown), may be the same with that of the actual
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body, the centre of gravity must be unaltered by that concen-

tration of mass
;
that is to say, the masses concentrated at B and

C must be inversely as the distances of those points from G-.

Hence denoting the weights of those masses by the letters B and
C respectively, and the weight of the whole body by W, we have
the proportion

W : C : B : : BC : GB : GC ................. (1.)

Lastly, in order that the moment of inertia of the mass as supposed
to be concentrated at B and C, about the axis X X, may be the

same with that of the actual body, we must have

$ ................. (2.)

where r = G C, and ^ is the radius of gyration of the body about
an axis parallel to X X and traversing G ; and substituting for B
its value from equation 1, viz., B =Wr -^ B C, we find, for the dis-

tance of the centre of percussion from the axis,

50 = =
-jf+r,j

........................ (3.)ro ro

and for its distance from the centre of gravity,
Q

GB = BC r = ^-
5

...................... (4.)
TQ

The last equation may also be expressed in the form

GB-GC = eS; ........................ (5.)

which preserves the same value when GB and GO are inter-

changed 5
thus showing, that if a new axis parallel to the original

axis XX be made to traverse the original centre of percussion, the

new centre of percussion is the point C in the original axis.

The proportion in which the mass of the body is to be considered

as distributed between B and C takes the following form, when
each of the last three terms of the proportion 1 is multiplied by
r = GC : 44** ^ L

'

:^ .................. (6.)

The preceding solution is represented by the following geometrical

construction : Draw G D _L C G and ^ ; join C D, perpendicu-

lar to which draw D B cutting C G produced in B
;
this point is

the centre of percussion.

Also, C D =
e, the radius of gyration about XX ; and I) B is the

radius of gyration about an axis traversing B parallel to XX.
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If C E be taken = C D, E is sometimes called tlie CENTRE OF
GYRATION of the body for the axis XX.*

582. No Centre of percussion exists when the axis traverses the

centre of gravity of the body. In that case,

the statical moment of the body is nothing ;

and an equal mass, concentrated and uni-

formly distributed round the circle BBB,
whose radius is

g ,
the radius of gyration, or

at a set of symmetrically arranged points in

that circle, has the same moment of inertia

with the actual body.
583. Moments of Inertia about Inclined Axes. The object of the

present Article and the remaining Articles of this section is to

show the relations which exist amongst the moments of inertia of

a body about axes traversing a fixed point in it in different direc-

tions. The mathematical processes which it is necessary to employ
for that purpose, though not very abstruse, are somewhat complex ;

and the reader who wishes to study the more simple parts of the

subject only, may take the conclusions for granted.
It has already been shown in Article 575 that the moment of

inertia of a body about a given axis denoted by x, is given by the

equation

(1.)

in which, for the sake of brevity, 2 "W has been replaced by the

single symbol S. The fixed point being the origin of co-ordinates,
let S R3 be the sum of the products of the weight of each particle
into the square of its distance from that point ;

a sum which is

independent of the directions of the axis. Then because R2 = a;
2+

y* -f 2?, the moments of inertia of the body relatively to three rec-

tangular axes may be expressed as follows :

Further, let the three sums of the weights of the particles of the

body, each multiplied by the product of a pair of its co-ordinates,
be thus expressed :

Sy#; Szx; Sxy (3.)

These will be called moments of deviation.

Now, let three new rectangular axes of co-ordinates, denoted

by x', y', zf, traverse the same fixed point in the body; let the

angles which they make with the original axes be denoted by

* As to the centres of percussion and gyration, and other remarkable points in a

rigid body, see a memoir by M. Poinsot in Liouvillds Journal for 1857.
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A
,

A
,

A
,

xx, xy, xz,

y ,

zx, z^,zz
f

Then for any given particle, the new co-ordinates are thus expressed
in terms of the original co-ordinates :

x1 = x ' cos xx' + y
'

cosyos' + z cos zx', ............ (5.)

and analogous equations for y* and z' ; and the original co-ordinates

are thus expressed in terms of the new co-ordinates :

x = x'
' cos x x' + y' cos x j/ + z'

' cos x z'',
&c.......(6.)

The nine angles of equation 4 are connected by the relations : that

the sum of the squares of the cosines of any three angles in one

line, or in one column, is unity ; for example,

COS
2 XX' + COS 2

Xtf + COS 2 C^ = lj ................. (7.)

and that the sum of the three products of the pairs of cosines of

the angles in a pair of lines, or a pair of columns, is nothing ;
for

example,
A A A A A A

cos y x'
'

cos z x1 + cos y y'
' cos z y 4~ cos y z'

' cos z z' = 0. ...
(8.)

A relation deduced from the preceding is this, that the cosine of

each angle is equal to the difference between the binary products
of the cosines of the four angles, which are neither in the same line

nor in the same column with the first, these binary products being
taken diagonally ;

for example,

A A A A A
cos xx1 = cosyy'-cos zz1 - cos 2/^-cos zy'. ......... (9.)

and similarly for the other cosines.

Now, if for the new co-ordinates x1

, tf, z', in the six integrals,

S< Sy'
2
,
S* Sy'z', Sz'V, Stf^,

there are substituted their values in terms of the original co-ordi-

nates, as given by equation 5 for x', and analogous equations for

y' and zf, there are obtained the six expressions for those integrals
relatively to the new axes, in terms of the integrals relatively to the
original axes, and of the cosines of the nine angles between the
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new and the original axes
;
but it is unnecessary here to write those

equations at length, for they are precisely similar to the equations of

transformation in Article 106 (pages 92, 93), substituting only

Sx*, Sy
8
, Sz

2
, Syz, Szx,

for p,f, pyy, pft, pyt, pf,, pty,

and making the like substitutions in the symbols referring to the

new co-ordinates.

584. Principal Axes of Inertia. THEOREM. At each point in a

body there is a system of three rectangular axes, for which ilie moments

of deviation are each equal to nothing.

Supposing such a set of axes to exist, let co-ordinates parallel to

them be denoted by x
l} yly

zv Then the property which they are

required to have is expressed by the equations

Sy1 2r1
= 0; S

1
a?1 = 0; Sajiyi = ............... (1.)

Co-ordinates parallel to a set of axes, for which the integrals
So2

, <kc., have been determined, being denoted by x, y, z, we have

for each particle,
A A A

x = x
l cos x Xi H- yl cos x yv -j- z

l
cos x z

l ;

A A A
x

l
x = x\ cos x x

l -\- xl y^ cos x yl -+- x\ z
l
cos x

, ;

and consequently,

S x
l
x = cos x Xi S x\ + cos x

2/1
S ojj yl + cos xz

l
S z^ Xi ;

but because of the conditions expressed by the equations 1, this is

reduced to

Sa^ x = cos xx
l So;?; ....................... (2.)

and by similar reasoning it is shown that

A (
............... V

2A<
)

S X
l
Z = COS Z X

1

' S 05?. )

Now, from the equation

A A A
x

l
= x cos x x

t + y cos yxl -]r z cos z x
lt

are deduced the following values of the integrals in the equations

2, 2 A :
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S #! a: = cos x XL
. S x2 + cos y XL S x y -f- cos zxl -820;;

A A A
S a?! y = cos xx^ S x y + cos y x^ S y

2+ cos 2 ic. S y z;

S Xi z = cos # #! S 2 a; -f- cos ?/ a^ S ?/ 2 -{- cos 2 a^ S 22
.

Subtracting the equations 2 and 2 A from these, we find the fol-

lowing equations :

cos x Xi (S x' S xl) -f- cos y xl

' S a? y -\- cos 2 #j S 2 a;=
]

I

cos a; Xi S a: y + cos ?/ a^ (S y
2 S x*) + cos 2 a?! S y 2 = ; r (3.)

cos x Xi
' S 2 # + cos ?/ a?i S y 2 -f- cos 2 a:i (S 22 S xl)

= 0.
j

The elimination of the three cosines from these three equations
leads to the following cubic equation :

in which the co-efficients have the following values :

A = S x9
-f S 7/

2
-f S z

2 = S B,
2

;

B = S y
2 S z2 + S 2

2 S x2
-f S x' S y

3

S Vs ' (R 11 9>\ S <J/
2 ff( V V\2 ^ ~- (R 1* lA2

fj jj \\o y zj Q y i o z jc \ o ^ i o JL/ yj ,

It is evident that A is always positive. By considering the terms
of which B is composed, it can be shown that it is equivalent to

S (y z
f - z yj + &(zx'-x z')

2 + S (x y'-ya!)*',

x, y, z, x', y', z', being the co-ordinates of a pair of different particles,
and the particles being taken in pairs in every possible way ;

and

by considering the terms of which C is made up, it can be shown
to be equivalent to

S (x y' z" + x' y" z + x" y z' x y" z' x" y z x' y 2
r

')

2
;

in which the* letters without accents, with one accent, and with
two accents, denote the co-ordinates of a set of three different

particles, and the particles are taken in triplets in every possible

way. Hence B and C, being both sums of squares, are positive, as

well as A
;
and the cubic equation 4 has three real positive roots,

corresponding to the three rectangular axes which satisfy the con-

ditions of equation 1. These roots are the values of S xl, S y\y 82!;
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and their existence proves the existence of the three rectangular
PRINCIPAL AXES OF INERTIA. Q. E. D.
The angles which any one of the principal axes makes with the

three original axes are given by the following equations, which are

deduced from the equations 3 :

A A A
cos x xl : cos y x^ : cos z Xi

x\ S **) S x y + Syz Szx

(6.)

Similar equations, substituting yl
and z

l successively for x
i} give the

ratios of the other two sets of cosines.

From the properties of the roots of equations, it follows, that the

co-efficients of the cubic equation 4 have the following values in

terms of the integrals S orf, &c. :

A= Sxl + Stf + S*J= S R2
as before;

and hence it appears, that the functions of the six integrals S a?*, &c.,

denoted by A, B, and C, in the equations 5, are isotropic; that is,

are the same in magnitude for all directions of the rectangular axes

of x, y, and z.

585. Ellipsoid of inertia. Let the principal axes of a body, tra-

versing a given point, be now taken for axes of co-ordinates
;
and

the moments of inertia about them, called the principal moments of
inertia, being given, and denoted by Ilt I2, I3,

let it be required to

determine the moment of inertia, I, about any axis traversing the

same point, and making with the principal axes the angle , /3, y.

Let co-ordinates along this new axis be denoted by x, and along
the principal axes by x

l} yl9
zl9 as before.

It has already been shown that

cos
2 a S x\ -f cos

2
/3 Sy? + cos

2
y S ;,...(!.)

and that

I = SR1
-Sajs I1

= SRs

-SajJ; I, = S R'-SyJj
I8
= SR-S*!; ........................ (2.)

and from these equations the following is easily deduced :

I = I/- cos 2 + Ia cos
2

/3 + I3
- cos 2 y ......... (3.)
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Let a, b, c, be the three semi-axes of an ellipsoid, and s its semi-

diameter in any direction which makes the angles a, /3, y, with

those semi-axes. Then it is well known that

1 COS 2
ex, . COS

2
/3 COS 2

/ .. .

= ~~ ~ ~~>~ "

and by comparing this with equation 3 it is made evident, that if

an ellipsoid be constructed whose semi-axes are in direction the

principal axes of the body at a given point, and represent in magni-
tude the reciprocals of the square roots of the moments of inertia

about those axes respectively, as shown by the equations111 .

then will the reciprocal of the square of the semidiameter of that

ellipsoid in any direction represent the moment of inertia about an
axis traversing the origin in that direction, as expressed by the

equation

Such an ellipsoid, when described about the centre of gravity of the

body as a centre, is called by M. Poinsot the central ellipsoid.

If Ij, I2, I3, be ranged in their order of magnitude, it is evident

that the greatest of them, T
lt is the greatest moment of inertia of

the body about any axis traversing the fixed point ; that the least,

I3, is the least moment of inertia about any such axis j and that the

intermediate principal moment of inertia, L, is the least moment
of inertia about any axis traversing the fixed point perpendicular
to the axis of I3,

and the greatest moment of inertia about any axis

traversing the fixed point perpendicular to the axis of Ij.

Should two of the principal moments of inertia be equal, as

I2 = I3, the ellipsoid becomes a spheroid of revolution : all the mo-
ments of inertia about axes traversing the fixed point in the plane
of the axes of I2 and I3 are equal; and the moments of inertia about

all axes traversing the fixed point and equally inclined to the axis

of Ix are equal. In this case equation 3 becomes

I = Ii cos
2 * + L sin2

.................... (7.)

If all three principal moments of inertia are equal, the ellipsoid

becomes a sphere, and the moments of inertia are equal about all

axes traversing the fixed point.

Suppose the fixed point in the first place to be the centre of
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gravity of the body, whose weight is W, and that I0l , I^, I03 ,
are

the principal moments of inertia about rectangular axes traversing
it. Let a new fixed point be taken whose distance from the centre

of gravity is rc , in a direction making the angles , /3, y, with the

principal axes at the centre of gravity. Then with respect to a

set of rectangular axes traversing the new point parallel to the

original axes, the new moments of inertia are

I, = I02 4- W rl sin 2
/3;

. ................ (8.)

I, = I
08 +W rl sin

and there are afc the same time moments of deviation represented by

S y z = W rl cos /3 cos y ;
S z x = "W r%

' cos y cos *
j 1 /n \

S x y = W rjj cos a, cos (& ;
)

so that the principal axes at the new point are not parallel to those

at the centre of gravity, unless two at least of the direction cosines

of r are null ;
that is to say, unless the new point is in one of the

original principal axes, when all the moments of deviation vanish,
and the new axes are parallel to the original axes.

586. The Resultant Moment of ]>< riatiou about a given axis is

represented by the diagonal of a rectangular parallelogram of which
the sides represent the moments of deviation relatively to two

rectangular co-ordinate planes traversing the given axis.

Let the principal axes and moments of inertia at a given point
be known, and let three new axes of moments, denoted by x, y, z,

be taken in any three rectangular directions making angles with
the original axes denoted as in the equations of Article 583. Then
the moments of deviation in the new co-ordinate planes are

S y z = cos y x^
* cos z x^ S x\ + cos y y cos z y {

S y\

-j- cos y Zi
' cos z %i S z\, .................... (1.)

and similar equations for S z x, and S x y, mutatis mutandis. Sub-

stituting for S x\, &c., their values, S R2

L, &c., and observing that

A A A A A A
cos y #! cos z x

l + cos y y l
cos z y + cos y z

l
cos z z

l
= 0,

those equations become
A A A A

b y z = Li
' cos y x-, cos z x

l
I2

* cos y y cos c y,

13 -cos yzi -cos zzi, ..................... (2.)
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and similar equations, mutatis mutandis, for Szo;, Secy; from

which, by the aid of relations amongst the direction cosines

already stated in Article 583, the following value is found for the

resultant moment of deviation about one of the new axes, such

as x:

Kx= J [ll cos
2

xx^ + Il cos
2 x yl + II cos

2 x zl

(Ii cos
2 x Xi + 12 cos 2 x yi + I3 cos

2 x
2-j)

2

j ;

=
ij {ll cos3 35*1 + 11

' COS 2 X
2/j 4- Ijj COS

2 # 2?j I

This equation, expressed in terms of the axes of the ellipsoid of

inertia, becomes as follows :

A A A
TT _ //COS

2
030?!, COS 2

^?/! , COS* 35^ _ 1
x ~ ~~ ~~ ~~ ~

but the positive part of this expression is well known to be the

value of
t 2,

where n represents the normal let fall from the centre

of the ellipsoid of inertia upon a plane which touches the ellipsoid
at the point where it is cut by the new axis x. Hence

in which it is to be observed, that Js
2 n2

represents the length of
the tangent to the ellipsoid, from the point of contact to the foot of

the normal. Also, let 6 be the angle between the normal n and

the semidiameter 5; then Js
s ns

: w = tan
4, and

K, = I,tan*........................... (6.)

SECTION 2. On Uniform flotation.

587. The Momentum of a body rotating about its centre of gravity
is nothing, according to the principle of Article 524. As every
motion of a rigid body can be resolved into a translation, and a
rotation about its centre of gravity, the rotation will be supposed
to take place about the centre of gravity of the body throughout
this section.

588. The Angular Momentum is found in the following manner :

Let x denote the axis of rotation, and y and z any two axes fixed

in the body, perpendicular to it and to each other. Let a be the
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angular velocity of rotation. Then the velocity of any particle AY,

whose radius vector is r = J y
s + z?, is

ar =
and the angular momentum of that particle, relatively to the axis of
rotation, is

War* Wa,=_ (s
.

+y);

being the product of its moment of inertia into its angular velocity,
divided by g, because of the weights of the particles having been
used in computing the moment of inertia. Now let a line, parallel
to the radius vector of the particle, be drawn in the plane of y and
*j the distance of that line from the particle is x, and the angular
momentum of the particle relatively to that line is

W W .

ar x-= ax J y
2 + *?;

and this may be resolved into two components; one relatively to the

axis of y, W azx
9

'

and the other relatively to the axis of ,

W a xy~~
and these are equal respectively to the angular velocity divided by
the acceleration produced by gravity in a second, multiplied by the
moments of deviation of the particle in the co-ordinate planes of z x
and x y.

Hence it appears that the resultant angular momentum of the
whole body consists of three components, viz. ;

Relatively to the axis of rotation,

9
and relatively to the transverse axes,

and if lines proportional to those three components be set off upon
the three axes, the diagonal of the rectangle described upon them
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will represent in direction the axis, and in length the magnitude,
of the resultant angular momentum.

It follows that the axis of angular momentum ofa rotating body
does not coincide with the axis of rotation, unless that axis is an axis

of inertia; in which case the moments of deviation are each equal to

nothing, and the resultant angular momentum is simply the product
of the moment of inertia about the axis of rotation into the angular
velocity, divided by g.
Now let the axes of inertia be taken for axes of co-ordinates, and

let the axis of rotation make with them the angles , /3, y. Resolve
the angular velocity a about that axis into three components about
the axes of inertia

a cos
;
a cos /3 ; a cos y;

then the angular momenta due to those three components are

respectively
cb T a T a T-

li cos :- \.z cos /3 ;
- 13 cos / ;

c7 . c7 U

the resultant angular momentum is

A= -'
J{I* COS

8 * + I2
2
COS2

ft + I COS
2

y] j ..... .......(2.)

and the axis of angular momentum makes with the axes of inertia

the angles whose cosines are

a Ii cos at. aI2 cos & a I3 cos /~ ~~
Now, as already shown in Article 586, the quantity whose square
root is extracted in equation 2 is the reciprocal of the product of

the squares of the semidiameter and normal of the ellipsoid of
inertia: and by inspecting the equations of Article 586, it is

evident, that the square root itself, in equation 2 of this Article, is

the resultant of the moment of inertia and moment of deviation

proper to the axis of rotation; so that equation 2 maybe expressed
in the following form :

n being, as before, the normal, and s the semidiameter of the

ellipsoid of inertia at the point cut by the axis of rotation; for

which the moments of inertia and of deviation are I and K.

Further, the direction cosines of the axis of angular momentum,
in "the formula 3, which may otherwise be expressed as follows :
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I, cos I8 cos ft Is cos

are the direction cosines of the normal of the ellipsoid of inertia.

Hence the axis of angular momentum at any instant is in the direc-

tion of tlw normal let fall from the centre of the ellipsoid of inertia

upon a plane touching that ellipsoid at the end of that diameter which

is tJie axis of rotation; and the angular momentum itself is directly

as tlte angular velocity of rotation, and inversely as the product of the

normal and semidiameter.

The angle between the axes of rotation and of angular momentum
is the angle already denoted by 6 in Article 586, whose value is

given by the equation

By the following geometrical

construction, the preceding prin-

ciples are represented to the

eye :

In fig. 241, let be the point
about which the body rotates, and
A B C A B C its ellipsoid of

inertia, whose semi-axes have the

proportions

1 l l

.-.(7.)

Let B be the axis of rotation, whether permanent or instanta-

neous, O B being the semidiameter of the ellipsoid of inertia. Let

B, T be part of a plane touching the ellipsoid at B, and O N a
normal upon that plane from O. Then the moment of inertia, the

moment of deviation, and their resultant, the total moment, have
the following proportions :

I :K :

1

OB3 OB2 -ON 'OB
(8.)

the direction of the axis of angular momentum is ON; and its

amount is proportional to
>B -ON

589. The Actual Energy of Rotation of a body rotating about its
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centre of gravity, being the sum of the masses of its particles, each

multiplied into one-half of the square of its velocity, is found as

follows: a being the angular velocity of rotation, the linear velo-

city of any particle whose distance from the axis of rotation is r, is

v = ar;

and the actual energy of that particle, its weight being W, is

Wtt2

m WaV t

being the moment of inertia of the particle multiplied by . Hence

for the whole body the actual energy of rotation is

that is to say, actual energy bears the same relation to angular velo-

city and moment of inertia that it does to linear velocity and weight.

Referring again to fig. 241, it appears that the actual energy of

rotation is proportional to

<*_ ,0V

2g -OR2
'" "

V ''

Conceive, as in the last Article, the angular velocity a to be re-

solved into three components about the three axes of inertia

respectively, viz. :

a cos
,
a cos /3 a cos y ;

then the quantities of actual energy due to those three component
rotations are

a2
T! cos

2 * a? I8 cos
2

/3 a2
I3 cos

s
y ...

which being added together, reproduce the amount of actual energy
given in formula 2; showing that the actual energy of rotation about
a given, axis is the sum of tJie actual energies due to tJie components of
that rotation about the three axes of inertia.

590. Free Rotation is that of a body turning about its centre of

gravity under no force. The principles of the conservation of

angular momentum (Article 563), and of the conservation of in-

ternal energy (Article 565), oeing applied to free rotation, show
that it is governed by the following laws ;
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I. The direction of the axis of angular momentum isfixed.
II. The angular momentum is constant.

III. The actual energy is constant.

The first law shows, that the direction of the normal O N, fig.

241, is fixed; and consequently, that unless that normal coincides

with the axis of rotation O K, which takes place for axes of inertia

only, the axis of rotation is not a fixed direction, and is therefore

an instantaneous axis only (Articles 385 to 393). Hence the axes
of inertia are sometimes called "permanent axes of rotation"
The second and third laws are expressed by the following equa-

tions :

A = ^/(P +K2

)
= constant;

(i.)

constant.

To find how these laws regulate the changes of direction of the

instantaneous axis, eliminate the angular velocity as follows :

g A2 r + K2
I? cos2 + I* cos

2
/3 + I* cos2 y

2 E I It cos
2 + I2 cos

2
/3 + Ia cos

2
y

= constant............................ (2.)

Now, referring to fig. 241, and to equation 8 of Article 588, it

appears that I
2 + K2

oc 1 + OK2 ON2

,
and that I oc 1 ^ OB? ;

whence
J2 Tjr2

1

That is to say, the normal N is constant in length as well as fixed
in direction; and therefore a body rotating freely moves in such a

manner, that its ellipsoid of inertia always touches afixed plane (viz.,

the plane T N K), the instantaneous axis traversing the point of
contact.

The second of the equations (1.) further shows, that the angular
velocity, being given by the equation

is at each instant proportional to the semidiameter O K.
If the instantaneous axis O E. and the position of the body are

known at any instant of the rotation, the invariable plane
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and the length and direction of the fixed normal O N, are also

known.
Conceive a curve to be drawn on the ellipsoid of inertia through

all the points whose tangent planes are at the same perpendicular

distance O N" from the centre then the instantaneous axis O R
will always traverse that curve, and will always be found in the

surface of a cone of the second order fixed relatively to the axes of
inertia, whose equation is

Let this be called the rolling cone. Then the motion of the body
will be such as would be produced by the rolling of the rolling

cone upon a fixed cone generated by the motion of O R relatively

to ON.
As free rotation is of unusual occurrence in practical mechanics,

I shall refrain from applying its principles to special examples here,
and shall refer the reader to the work of M. Poinsot on Rotation,
and to a paper by Professor Clerk Maxwell in The Transactions of
ike Royal Society ofEdinburgh, vol. xxi.

591. Uniform Rotation about a Fixed Axis. When a body ro-

tates about a fixed axis traversing its centre of gravity, with an
uniform angular velocity, its actual energy is still represented, as

in the case of free rotation, by

E = - = constant; , ..................... (!)

and its angular momentum by

A--
/v/(I

2 + K2

)
= constant; ................. (2.)

y

but unless the axis of rotation is an axis of inertia, the axis of angu-
lar momentum N is no longer fixed, but revolves about the fixed

axis of rotation O R, with the angular velocity a. In order to

produce that continual change in the direction of the axis of angu-
lar momentum, a continual angular impulse, or continuously acting

couple, must be applied to the body ; and unless that couple be

applied, the axis of rotation will not remain fixed.

592. The Deviating Couple, as the couple required for the above

purpose is called, must have its axis always perpendicular to the
axis of angular momentum, otherwise it would alter the amount of

the angular momentum, contrary to the condition of uniform rota-

tion. The axis of the deviating couple must also be always per-
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pendicular to the axis of rotation, because, in order that it may not

alter the actual energy of the body (contrary to the condition of

uniform rotation), the pair of equal and opposite forces composing
it must act through points having no motion

;
that is, through

points in the axis of rotation. (In machines, the forces constitut-

ing the deviating couples are supplied by the pressures of the bear-

ings against the axles.) It appears, therefore, that the axis of the

deviating couple must always be perpendicular to the plane O K N,
which contains the axes of rotation and of angular momentum ;

and
that the pair of forces constituting it must always act in that plane,

changing their direction as the body rotates, with an angular velo-

city equal to that of the body. The direction of the deviating

couple must be such as would of itself tend to turn ON towards OR.
To determine the amount of the deviating couple, let

tf,
as before,

denote the angle R IsT. Then in the indefinitely short interval

of time d t, the direction of the axis of angular momentum is shifted

through the indefinitely small angle

a d t sin 0,

and the result differs to an indefinitely small extent from that

which would be produced by combining with the actual angular
momentum A, an angular momentum about the axis of the deviat-

ing couple represented by

-VI' + K2 ' sin 6 dt\
y

and this is the angular impulse to be supplied in the interval d t

by the deviating couple ; therefore the deviating couple is

M = A a-sin 6 = - ^/I + K8
sin

FT

but sin d = ; therefore

(1)

and if Q be the magnitude of each of the forces constituting this

couple, and I the length of the arm on which they act (being the
distance between their points of application to the axis), so that
M = QJ, then

which being compared with the expression for deviating force in

Article 537, shows that the force of a deviating couple bears the
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same relation to the angular velocity #, the moment of deviation K,
and the arm I, which a simple deviating force bears to the linear

velocity v, the weight W, and the radius vector r.

To represent these principles graphically, it is to be observed
that in fig. 241, the ratio of moment of deviation to the moment of

inertia is

K:I ::BN :ON; ....................... (3.)

and that this also expresses the ratio of the deviating couple to

double the actual energy, viz. :

The reaction of the axis of the rotating body on its bearings, equal
and opposite to the deviating couple, that is, tending to turn the

axis of those bearings towards the axis of angular momentum O N,
** is called the CENTRIFUGAL COUPLE. It is balanced, in machines,

by the strength and rigidity of the framework.
The amount and direction of the deviating couple might have

been determined by finding the resultant couple of the deviating
forces required to make each particle of the body revolve in a circle

about O .R with the common angular velocity; and the result would
have been exactly the same.

593. Energy and Work ol Couples. The energy exerted by a

couple is the product of the common magnitude of its pair of forces

into the sum of the distances through which their points of appli-
cation move in the interval of time under consideration; and as

that sum is the product of the length of the arm of the couple into

the angle through which it rotates about its axis in that time, the

energy exerted may be expressed by

Vldi = M.di = M.adt, .................. (1.)

d i being the angle of rotation about the axis of the couple in the

interval d t, with the angular velocity a. When the couple acts

against the direction of rotation, the above expression becomes

negative, and represents work performed.
If a couple be applied to a rotating body whose axis of rotation

makes an angle <p with the axis of the couple, then the energy
exerted may be found either by resolving the couple into two com-

ponents, one about the axis of rotation, which is either an accele-

rating or a resisting couple, gives rise to energy exerted or work

performed, as the case may be, and may be called the direct couple,
and the other about an axis perpendicular to the axis of rotation,
which may be called the lateral couple, or by resolving the rota-
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tion into components about the axis of the couple and about an

axis perpendicular to it, and multiplying the former component by
the couple.
The result obtained by either method is expressed by

Macos<P dt, (2.)

which represents energy exerted or work performed, according as

the couple acts with or against the rotation.

"When the direct couples applied to a rotating body are balanced,

the actual energy of the body remains constant, the potential energy
exerted in any interval of time is equal to the work performed j

that is

2,
- M cos <p = 0; (3.)

and the same law holds for the energy exerted and work performed

during each period in the motions of a body or system, whose
motions vary periodically; but it is unnecessary to enter in detail

into the consequences of these propositions, which are only a par-
ticular form of expressing a part of the general principles already

explained in Articles 518, 519, 520, and 553, further than to state

that the principle of virtual velocities (Article 520), when applied
to a system of bodies in equilibrio, capable of rotating with angular
velocities bearing given ratios to each other, takes the form,

2 Ma cos <p
= 0, (4.)

where a is either the uniform angular velocity of which the body
acted on by the couple M is capable about an axis making the

angle <P with the axis of M, or any number proportional to that

angular velocity.

SECTION 3. On Varied Rotation.

594. The I^aw of Varied Rotation is the Theorem already stated in

Article 562, of the equality of each variation of angular momentum
to the angular impulse producing it

;
a principle which has already

been applied to the finding of the deviating force required to pro-
duce uniform rotation about a fixed axis.

To express this mathematically, let x, y, z, denote three fixed

rectangular axes, with which the axis of angular momentum makes
the angles A, p, v- and let the angular momentum be resolved into

three components about those three axes,

Ax = A cos A; Ay
= A cos f*; A, = A cos t>;

also, let the unbalanced couple which acts on the body be resolved
into three rectangular components denoted by
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M,; My ; M,;

Those three equations express the relations between the vinbalanced

couple and the rate of change of the angular momentum. Those
relations may otherwise be expressed as follows : let $ be the

angle made by the axis of the unbalanced couple with the axis of

angular momentum; then the couple may be resolved into two

components, M cos *]/ and M sin
-$/,

of which the former produces variation in the amount of angular
momentum, and the latter, deviation of the axis of angular momen-
tum, according to the following laws :

= M cos *; A = M sin +; ............. (2.)

in the latter of which equations, d % denotes the angle through
which the axis of angular momentum deviates in the indefinitely
small interval dt, in the plane which contains that axis and the

axis of the couple M, and in a direction towards the latter axis.

This equation of deviation of angular momentum has in fact been

already employed in Article 592, to find the deviating couple

required in order to fix the axis of rotation, when that differs from
the axis of angular momentum.
The equations 1, or their equivalents 2, are not of themselves

sufficient to determine the variations of motion of a body rotating
without a fixed axis; for in such a body, the angular momentum
may change by a change of the direction of its axis relatively to the

body, as well as by a variation of amount, or a deviation of its axis

in absolute direction. This is expressed by putting for the angular
momentum its value in terms of the moments of inertia and devia-

tion relatively to the instantaneous axis, viz., A = - j

when the equations 1 take the following form :

g3 x = < a cos A Jl? + K2
I

;
and analogous equations for

dt ( )

<7My and^M,;. ........................ (3.)

while the equations 2 become
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It is therefore necessary to have an additional equation to complete
the data for the solution of the problem ;

and this is afforded by
the law of the conservation of energy, in virtue of which the actual

energy stored or restored by the rotating body is equal to the energy
exerted or consumed by the unbalanced couple, according as it acts

with or against the rotation, as the following equation expresses,
where <P is the angle between the axis of the unbalanced couple and
the instantaneous axis of rotation.

The equations 3 or 4, together with 5, and with the relations

between the positions of the axes of rotation and of angular
momentum demonstrated in the two preceding sections, serve to

solve the problem of varied rotation in its utmost generality, and

give rise to some exceeding complex mathematical investigations.
In the present treatise, however, it will be sufficient to show the

solution of some of the more simple cases.

595. Varied Rotation about a Fixed Axis. When a body rotates

about a fixed axis traversing its centre of gravity, and is acted upon
by a couple M, whose axis makes an angle 9 with the axis of rota-

tion, that couple is to be resolved into a direct couple, M cos <p,
about

the axis of rotation, which will be an accelerating or retarding

couple according as it acts with or against the motion, and a lateral

couple, M sin <p, which tends to deviate the axis of rotation, but is

balanced by the resistance of the bearings. The entire amount of

the couple to be resisted by the bearings at any instant is the
resultant of this lateral couple and of the centrifugal couple (Article

592), due to the deviation (if any) of the axis of angular momentum.
The effect of the direct couple in varying the angular velocity is

found by means of the law of the conservation of energy, observing
that I in this case is constant ; that is to say,

<'>

and by dividing this equation by a, and observing that adt = di,
where di is any indefinitely small angle of rotation, it is made to

assume the following forms :
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._-. Ida I ds
i lada

M- ot0=7- = -
'-779

=
-JT-; ............... (2.)-

showing that the direct couple is equal at once to the variation of

angular momentum about the fixed axis divided by the time, and to

the variation of actual energy divided by tJie angular motion.

596. Analogy of Varied Rotation and Varied Translation. When
the equation of Article 554 is compared with equation 2 of Article

595, it appears that those equations are exactly analogous to each

other, and that the former is transformed into the latter, when for

P, W, s, v,

there are respectively substituted

M cos 0, I, i, a
;

that is to say, a direct couple for a direct force, moment of inertia

for weight, angular motion for linear motion, and angular velocity
for linear velocity.

Consequently, by making those substitutions, any equation relat-

ing to the varied translation produced by a direct force, may be
transformed into a corresponding equation respecting the varied

rotation of a body about a fixed axis traversing its centre of gravity

produced by a direct couple. Examples of this principle are given
in the two following Articles.

597. Uniform Variation of angular velocity is produced by a con-

stant couple, and is analogous to the vertical motion of a heavy
body, as given in Article 533. In that Article, g is the proportion
of the moving force to the mass of the body. Let M be the couple,
and let (p = ;

that is, let the couple be altogether about the axis of

rotation- Then for g is to be substituted

which is to be considered positive when in the direction of the

initial angular velocity a
; and for h is to be substituted i. Then

equations 1 and 3 of Article 533, being transformed, give for the

angular velocity and total angular motion at the end of a given
time t

t
the expressions

Equation 4 gives
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which is also the result of applying to the present case the law of

the conservation of energy; the right hand side of the equation
being the potential energy exerted, and the left hand side the actual

energy stored.

To find through what angle a body will turn before stopping
against a constant resistance, its initial angular velocity being a

,

it is to be considered that if II is the resistance, and I its perpendi-
cular distance from the fixed axis, the resisting couple is

and tha,t a is to be made =
; whence equation 2 gives

598. Gyration about a fixed axis, or Angular Oscillation, is alter-

nate rotation to one side and to the other of a middle position.
Let a straight line be conceived to be drawn perpendicular to the
axis of the gyrating body, to serve as an index

;
let its middle posi-

tion be denoted by 0, and its angular displacement from that posi-
tion by i, positive or negative according as it is to one side or to

the other
;
and let ^ be the semi-amplitude of gyration, or extreme

displacement. To produce gyration, the body must be acted upon
by a couple directed towards the middle position ; that is, contrary
to the displacement i. In most cases which occur, the couple is

either exactly or nearly proportional to the displacement. Suppos-
ing it to be exactly proportional, let Mj be its extreme magnitude
irrespective ofsign ; then

the negative sign showing that the couple is contrary to the dis-

placement, tending to restore the body to its middle position.
It is obvious from this equation, that gyration is analogous to

straight oscillation, explained in Article 542
j and that the equa-

tions of that Article are to be transformed by substituting respec-

tively for

f.
Wa2 _ dx

r, x, Q, _, Qx, _, fl
,

. . ., ! __
,

^ ^, M
15

*

M, a, Vy
1

.

t-j l/i
-L

For brevity's sake, let the substitute for a2 be thus expressed :

*; ........................... (2-)
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then by transforming equation 4 of Article 542, it appears that the
number of double gyrations per second is

which is independent of the semi-amplitude ^ so long as MI is pro-

portional to tj, and I is constant. This constitutes isochronism, and
is the property aimed at in the balance wheels of watches, where I
is the moment of inertia of the wheel, and the couple is derived
from the elasticity of the balance spring.
The equations 2 and 3 being transformed, give for the angle and

angular velocity of displacement at any instant,

i ii cos k t ;

di I ............... (4.)a= = -k^l $mkt,u t

and the maximum couple M^ in terms of the number of double
oscillations per second n, is given by the equation

M. =***=*-< *
(5)

g g

599. A Single Force applied to a body with a fixed axis causes

the bearings of the axis to exert a pressure equal, opposite, and

parallel ;
so that if the line of action of the force traverses the fixed

axis, it is balanced ;
and if not, a couple is formed whose moment

is the product of the force into its perpendicular distance from the

axis, and whose effects are such as have been already described.

SECTION 4. Varwd Rotation and Translation Combined.

600. General Principles. All rotation of a body about an axis,
fixed or instantaneous, which does not traverse the centre of gravity
of the body, is to be considered as compounded of rotation about a

parallel axis traversing the centre of gravity, and translation of the

centre of gravity with a velocity equal to the product of the angu-
lar velocity into the distance of the centre of gravity from the

actual axis of rotation.

Consequently, every variation of the motion of a body, which
consists in a variation of the angular velocity about an axis, fixed

or instantaneous, and not traversing the centre of gravity, is to be
considered as producing a change of the momentum, which is the

product of the mass of the entire body into the velocity of its centre

of gravity, and a simultaneous change of the angular momentum
due to the rotation of the body with the given angular velocity
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about an axis traversing its centre of gravity parallel to the actual

axis of rotation
; and the force required to produce the given varia-

tion of motion will be the resultant of the force required to produce
the change of momentum, applied at the centre of gravity, and the

couple required to produce the change of angular momentum.
601. Properties of the Cenlre of Percussion. In fig. 239, Article

581, page 520, let G be the centre of gravity of a rigid body whose

weight is W, XX the axis about which, in the interval dt, a change
of angular velocity denoted by d a takes place, and G C =. r

,
the

perpendicular distance of the centre of gravity from that axis.

Then the force, in a direction perpendicular to the plane of XX
and G 0, required at G to produce the change of momentum, is

and the couple required to produce the change of angular momen-
tum due to the change of angular velocity d a about the axis

GDXX is

and the resultant of that force and couple (according 'to Article

41) is a force acting in the same plane with them, parallel and

equal to F, and in the same direction, but acting through a point
whose distance from G, in a direction opposite to G C, is

M L el

that is, the resultant of the force and couple is a single force F act-

ing through the centre ofpercussion B corresponding to the given axis.

(See Article 581, equation 4.)
Now suppose, as in Article 581, that the weight of the body is

distributed in two rigidly connected masses, one concentrated at C
and the other at B, and having their common centre of gravity
still at G. Then in producing the same change of angular velo-

city d a about the axis X C X, the momentum of C is unchanged,
while that of B undergoes the change

9 9

being the exact change of momentum already given in equation 1 ;

a consequence, indeed, of the fact, that the centre of gravity is not

changed by the concentration of the masses at B and C; and to
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produce this change of momentum in the interval d t, there is re-

quired the same force F applied at B, which has already been

found; which proves the following
THEOREM I. If the mass ofa body be conceived to be concentrated

at two rigidly connected points, one at a given axis, and the otlier at

the corresponding centre ofpercussion, so as not to alter the position of
the centre ofgravity of the body, theforce required to produce a given
change of angular velocity in the body about the given axis is tJie

same, in magnitude, direction, and line of action, with that required
to produce the corresponding change of motion in that part of tlie

mass which is conceived to be concentrated at tJie centre of percussion.
This proposition might also have been arrived at by considering
THEOREM II. If a body rotates about a given axis not traversing

its centre ofgravity, and the mass of that body be conceived to be con-

centrated at the axis of rotation and centre ofpercussion so as not to

alter the centre of gravity, tJie momentum, the angular momentum,
and the actual energy of the body are not changed by that concentra-

tion of mass.
For the centre of gravity being unchanged, the momentum ia

unchanged ;
and because (by the definition of the centre of percus-

sion) the moment of inertia about the axis of rotation is unchanged,
the angular momentum and actual energy are unchanged. Q. E. D.

COROLLARY. From Theorem I., and from equation 5 of Article

581, it follows, that the action of an impulse upon a free body at
either of the points B or C, produces a rotation about an axis tra-

versing the other point.
602. Fixed Axis. When the axis of rotation X X is fixed, an

impulse applied to the centre of percussion B, in a direction per-

pendicular to the plane B X X, simply alters the angular velocity

according to the principles explained in the last Article, without

causing any additional pressure between the axis and its bearings.
But should the force giving the impulse not traverse the centre of

percussion, or traverse it in a different direction, it is to be resolved

by the principles of statics into two components, one traversing the
centre of percussion in the required direction, and the other tra-

versing the axis of rotation; when the former will produce change
of motion, and the latter will be balanced by the resistance of the

bearings of the axis.

603. The Deviating Force of a body rotating about a fixed axis

not traversing its centre of gravity is the resultant of the deviating
force due to the revolution of the whole mass conceived as concen-
trated at its centre of gravity, found as in Article 540, combined
with the deviating couple due to the rotation of the body with the
same angular velocity about a parallel axis traversing the centre of

gravity, found as in Article 592. This resultant deviating force is
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supplied by the resistance of the bearings of the axis, and an equal
and opposite CENTRIFUGAL FORCE is exerted by the axis against the

bearings.
604. A Compound Oscillating Pendulum is a body supported by

a horizontal fixed axis, about which it is free to swing under the

action of its own weight, its centre of gravity not being in the

axis.

Now, by Article 601, Theorem II., the momentum and angular
momentum of the body are at every instant the same as if its mass

were concentrated at the axis and at the centre of oscillation in the

proportions given by Article 58Inequations 1 and 6
;
and by the

definition of the centre of oscillation, the statical moment of the

weight of the body with respect to the axis, being the couple which
causes the motion, is in every position the same as if the mass

were concentrated in these proportions ; therefore, the motion of

the body is exactly the same as if it were so concentrated ; that is

to say, it oscillates in the same time and according to the^ same

laws, with a simple oscillating pendulum as defined in Article 544,
whose length is the distance from the axis X C X to the centre of

oscillation B, as given by equation 3 of Article 581, viz. :

(1.)

Such a simple pendulum is called the equivalent simple pendulum.
It is obvious that, for a given body swinging about all possible

axes parallel to a given direction in the body, the shortest equiva-
lent simple pendulum is that whose length is the minimum value

of 3JC as given by the above equation. That minimum length

corresponds to the condition,

P '"' 7*

whence, \ ....................... (2.)

min. B C = 2,
ft:j

that is to say, the least period of oscillation of a pendulous body
takes place when the distance of its centre of gravity from its axis

is equal to the radius of gyration about a parallel axis traversing

the centre of gravity; and the length of the equivalent simple pen-
dulum is double of that radius of gyration.

If for a given direction of axis, a pair of points be so related that

each is the centre of percussion for an axis in the given direction

traversing the other (as shown by Article 581, equation 5), then

the period of oscillation about either axis is the same.

From the properties of the centre of percussion explained in this

Article, it is sometimes called the CENTRE OF OSCILLATION.
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605. Compound Revolving Pendulum. To avoid unnecessary
complexity in the theory of a compound revolving pendulum, let

the body of which it consists be of such a figure and so suspended,
that the straight line C G B

(fig. 239), traversing the point of sus-

pension C and the centre of gravity G, shall be one of the axes of

inertia, and that the moments of inertia about the other two axes
shall be equal. Then for every axis traversing the centre of gravity
at right angles to C G B, the radius of gyration is the same ; and

consequently, for every axis traversing the point of suspension C at

right angles to C G B, the centre of percussion B is the same ; and
the body moves exactly like a simple revolving pendulum of the

length C B, and height C B cos 6, if 6 is the angle which it makes
with the vertical.

It is to be borne in mind, that in order that a pendulum may
revolve according to the above law, it must have
no rotation about its longitudinal axis B G C,
but must swing as if hung by a double universal

joint at C (Article 492).
606. A Rotating Pendulum (fig. 242) is a body B

C G suspended by a point C not in the centre of N

gravity G, and rotating about a vertical axis

C X traversing the point of suspension. To
avoid needless complexity, as before, let C G,
and E G perpendicular to it in the vertical

plane of C G and C X, be two of the axes of

inertia of the pendulum. Let It be its moment :x

of inertia about G E, and I2 its moment of

inertia about G C, and ^, ft, the corresponding radii of gyration.
Let the angle X C G= *; let C G = r

; and let the weight of the

pendulum be W. Then, a being the angular velocity of rotation

about the vertical axis, it appears from Articles 592 and 586 that

the deviating couple due to rotation about a vertical axis traversing
Gis

(I, L) cos a sin a. = (g* el) cos a. sin

<7

V
g

v

to which has to be added, the couple due to the deviating force of

W revolving along with the centre of gravity G, and to the leverage
rQ cos a, being the height of C above G j that is to say,

Wa2

rl cos . sm :

9

making for the entire deviating couple

Wo,2
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and this couple has to be supplied by means of the weight of the

pendulum acting with the leverage r sin at; that is, it must be

equal to

W r sin .

Dividing by this quantity, we find

and putting for a2
its value, 4 w2 T2

,
where T is the number of turns

per second, this leads to the equation

A being the height of the equivalent simple revolving pendulum, as

given in Article 539, equation 2.

When tt,
the radius of gyration about C G, is insensibly small

compared with gu the radius of gyration about G E, h becomes

equal to the height of the simple pendulum equivalent to the pen-
dulum in the figure, when made to revolve without rotation about

C G, as in the last Article. When & = ?,, the height becomes

simply r cos *, being the same as if the whole mass were concen-

trated at the centre of gravity. This is very nearly the case in the

rotating pendulums used as GOVERNORS for prime movers, which
are in general large heavy spheres hung by slender rods.

607. The Ballistic Pendulum is used to measure the momentum
of projectiles, and the impulse of the explosion of gunpowder. To
measure the momentum of a projectile, such as a rifle ball, the

pendulum must consist of a mass of material in which the ball can

lodge, such as a block of wood, or a box full of moist clay, hung by
rods from a horizontal axis. Suppose the ball to be of the weight
5, and to move with the velocity v in a line of flight whose perpen-
dicular distance from the axis of suspension is r'. Then the angular
momentum of the ball relatively to the axis of suspension is

<>

and because the ball lodges in the pendulum, this angular momen-
tum is wholly communicated to the joint mass consisting of the

ball and the pendulum, which swings forward, carrying with it an
index that remains, and points out on a scale the extreme angular
displacement. Let this be denoted by i. Let I denote the length
of the simple pendulum equivalent to that mass, which can be
found by means of Article 544, equation 1, from the number of
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oscillations in a given time
;

let W be the joint weight of the pen-
dulum and ball, and r the distance of their common centre of

gravity from the axis; then

B=~, ............................ (2.)

is the portion of the joint weight to be treated as if concentrated

at the centre of oscillation.

Let V be the velocity of the centre of oscillation at the lowest

point of its arc of motion; this is the velocity due to the height,
/ versin i; that is to say,

and the corresponding angular momentum of the combined mass is

B ~V I

; which, being equated to the angular momentum of the ball
/

before the collision (1), gives the equation

(4.)

giving for the velocity, momentum, and actual energy of the ball,

respectively,
BVZ

(5.)

BV*
The energy of the combined mass after the collision being ,

?
and less than that of the ball before the collision in the proportion
of 6 r'

2
: B I

2

, shows, that an amount of energy denoted by

b

disappears in producing heat and molecular changes in the ball and
in the soft mass in which it is lodged.
To measure the impulse produced by the explosion of gunpowder,

the gun to be experimented on is to be fixed to and form part of

the pendulum, and a ball is to be fired from it. The gas produced by
the explosion exerts equal pressures during the same time, that is,

equal impulses, forwards against the ball, and backwards against
the gun, and the pendulum swings back through a certain angle,
which is registered by an index as before, and from which the
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maximum velocity of the centre of percussion of the pendulum can

be calculated as before by equation 3. Let r' now denote the

distance from the axis of suspension to the axis of the gun, and P
the pressure exerted by the explosive gas at any instant

;
the total

impulse exerted by the gas is / P d tj and the angular impulse

/ / P d t'} which being equated to the angular momentum pro-

duced in the pendulum, gives

BVJ

in which it is to be observed, that B does not now include the

weight of the balL The impulse exerted by the powder is therefore

and the velocity of the ball b on leaving the gun is consequently

The energy exerted by the exploding powder is

of which the portions communicated to the ball and to the pendulum
are indicated by the two terms, being in the ratio

&v2 :BY2 ::BZ2
:6r'2

.................... (11.)

In the preceding calculations, the momentum and energy pro-
duced in the explosive gases themselves are not considered; but it

is very doubtful whether any attempt to take them into account,

hypothetical as it must be, adds to the practical correctness of the

result. As a probable approximation, the following may be em-

ployed : Let w be the weight of powder used. Divide this into

two parts proportional to b and B, viz. :

1) w , B w
and + B'

consider the smaller part to move with half the velocity of B, and
the larger with half the velocity of b

;
that is to say, in equations

7, 8, and 9, put,
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instead of B,

i - -in?
and instead of 6,

The equation 10, hi its original form, will still show the actual

energies of the pendulum and of the ball, and their sum
;
but that

sum will be exclusive of the energy exerted in giving motion to the

explosive gases themselves.

The ballistic pendulum was invented by Robins, celebrated for

his investigations on gunnery.
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CHAPTER IV.

MOTIONS OF PLIABLE BODIES.

COS. Nature of the Subject; Vibration. The motion of each par-
ticle ofa pliable body may always be resolved into three components :

that which it has in common with the centre of gravity of the body,

being the motion due to translation of the whole body; that which
it has about the centre of gravity of the body, being the motion due
to rotation of the whole body; and a third component, being the

motion due to alterations of the volume and figure of the body and
of its parts. This third component is alone to be considered in the

present chapter.
The cinematical branch of the present subject, that is to say,

the branch which comprehends the relations amongst the displace-
ments of the particles in a strained solid from their free positions,
and the strains or disfigurements of its parts accompanying such

displacements, has already been treated of generally in Articles

248, 249, 250, 260, and 261 ; with reference to bending, in part of

293, part of 300, 301, part of 303, part of 304, part of 307, part of

309, part of 312, and part of 319; with reference to twisting, in

part of 321 and part of 322; and again with reference to bending,
in part of Article 340.

The dynamical branch of the subject has been, to a certain extent

anticipated in Article 244, where resilience is defined
;
in Article

252, where potential energy of elasticity is defined ;* in Articles 266
and 269, which relate to the resilience of a stretched bar and the
effect of a sudden pull; in Article 305, which relates to the resilience

ofa beam; in Article 306, which relates to the effect of a suddenly
applied transverse load ; and in Article 323, which relates to the
resilience ofan axle.

The motions due to strains amongst the particles of pliable bodies

being all of limited extent, and consisting in changes of the dis-

placement of each particle from the position which it would occupy
in a state of equilibrium, which displacement is limited and gene-
rally small, are of the kind called VIBRATIONS, and are more or less

* In Article 252, the first employment of this function is correctly ascribed to Mr.

Green; but it is right also to mention, that its use was independently discovered by
M. Clapeyron.
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analogous to the oscillations already treated of in Articles 542 and
543.

The complete theory of vibration embraces all the phenomena of

the production and transmission of sound, and all those of the pro-

pagation of light, as well as those of the visible and tangible vibra-

tions of bodies. Many of its branches are foreign to the objects of
this treatise; and therefore in the present chapter there will be

given only an outline of the general principles of the theory of

vibration, and an explanation of such of its applications as are of

importance in practical mechanics.

609. isochronous vibrations of an elastic body are those in which
each particle of the body performs a complete oscillation in the
same period of time, so that all the particles return to the same
relative situations at the end of each equal period of time, and that
whether the oscillations are of greater or of less amplitude. Iso-

chronous vibrations being communicated to the ear produce the
sensation of a sound of uniform pitch, or musical tone. In order
that oscillations of different amplitudes may be performed by equal
masses in the same time, it is evidently necessary that the forces

under which they are performed should be proportional, and directly

opposed, to tlie displacements at each instant. This is the CONDITION
OF ISOCHRONISM, and has already been illustrated in Articles 542,

543, 544, 545, and 557, Example III., for the case of a single par-
ticle acted on by a single force, and in Article 598 for the analogous
case of a gyrating rigid body, where angular is substituted for linear

displacement, and a couple for a force. To express that condition

by an equation suited to the present class of questions, let "W -f- g
be the mass of a particle,

5 its displacement from its position of

equilibrium at any given instant, F an unbalanced force by which
it is urged directly towards that position, and a2 a numerical con-

stant, expressed as a square for reasons which will presently appear;
then the condition of isochronism is expressed as follows :

an equation identical with equation 1 of Article 542
;
while from

equation 4 of the same Article it appears that the number of double
oscillations per second is expressed by

a=
A 7T

and the period of a double oscillation by L
(2.)

1 2*
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All the equations of Article 542 and Article 557, Example III.,

are made applicable to the present case, by substituting respectively
for

QorQ,, Q,, rorajz, x,

F,, F, &
S, respectively,

where Fj represents the maximum force, corresponding to Sj, the

maximum displacement, or semi-amplitude; consequently, if in

order to make the formulae more general we represent by t any
instant of time at which the particle reaches the extremity of an

oscillation, we have
8 = \ cos a

(t
t
) ;

"j

-= - a \ sin a (t
- 1

).
(

' '

CL t J

When the restoring force corresponding to a given displacement
is known, the constant a2

is computed by the formula

in which the negative sign denotes, that although F being contrary
'to 8 in direction, their quotient is implicitly negative, it is to have

that negativity reversed and to be treated as positive.
The equations 2 and 4 show, that the square of tJie number of

oscillations made by a particle in a second, is inversely as the mass of
the particle, and directly as the ratio of the restoringforce to the dis-

placement.
610. Vibrations of a Mass held by a Ught Spring. The deflection

of a straight spring or elastic beam under any load is given by the

equations of Article 303 for those cases in which it is sensibly pro-

portional to the load.

The position of equilibrium of the spring, if not affected by a

lateral transverse load (for example, if it is placed vertically), may-
be straight ; or if there be a permanent transverse load, that posi-
tion may be more or less deflected. In either case, the production
of an independent deflection, &, of the point for which deflection?

are computed by the formulae, to one side or to the other of the

position of equilibrium, provided the limits of perfect elasticity are

not exceeded, causes the spring to exert a restoring force F, whose
value is found by applying to this case equation 4 of Article 303;
that is to say,

n"'<?

= /S for brevity's sake ;

in whichfmay be called the stiffness of the. spring.

(1.)
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Now suppose that there is attached to the point of the spring for

which 8 is calculated, a massW -f- g, in comparison with which the

mass of the spring is inappreciably small. Then if that mass be

drawn to one side or to the other of the position of equilibrium, and

left free to vibrate, the spring will make it vibrate according to the

law already explained in Article 609 , putting for the constant a

the value

If the mass gyrates about a fixed axis traversing its centre of

gravity, let I denote the distance from that axis to the point upon
which the spring acts ;

then in the equations of motion, substitu-

tions are to be made according to the principles of Article 598,

when the above equation becomes

If the mass oscillates about a fixed axis not traversing its centre

of gravity, the above equation is still applicable, when the proper
value is put for the moment of inertia I.

The restoring couple F I for a gyrating body may be supplied by
the resistance of a rod or wire to torsion

;
in which case/7 is to be

taken to represent the ratio of the moment of torsion to the angle
of torsion, which, for a cylindrical rod or wire, is given in Article

322, case 2, equation 4, viz. :

fl
M * Ch*

tA\fl - =-' ........................ 4 -

x being the length, and h the diameter of the rod or wire, and C
the co-efficient of transverse elasticity of the material.

By the aid of the principles here explained, experiments on the

numbers of vibrations per second made by springs and wires loaded

with masses great in proportion to the masses of the springs and

wires, may be used to determine the co-efficients of elasticity E
andC.

611. Superposition of Small Motions. If the restoring force of

a particle for vibrations in a given direction be opposite and pro-

portional to the displacement, and if the same be the case for one

or more other directions of vibration, then for a displacement
which is the resultant of two or more displacements in the given
directions, the force acting on the particle will evidently be the

resultant of the separate forces corresponding to the component
displacements, and the velocity the resultant of the component
velocities.
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This is called the principle of the SUPERPOSITION OF SMALL
MOTIONS.

If the co-efficient a of Article 609 is the same for the different

directions of the component displacements, the component vibra-

tions will not only be isochronous in themselves, but isochronous

with each other, or simultaneous, and so also will be the resultant

vibration. This has already been sufficiently illustrated in Articles

542 and 543, where circular and elliptic oscillations are treated as

compounded of a pair of straight oscillations in directions perpen-
dicular to each other. Such, for example, is the oscillation of a

mass placed at the end of a spring whose stiffness is the same for

all directions of deflection.

If the co-efficient a has different values for the different direc-

tions of the component vibrations, they will no longer be isochronous

with each other; the resultant restoring force will not at every
instant act directly towards the position of equilibrium, and the

resultant vibration will take place in a complex curve which may
have a great variety of figures. For example, let a mass W -f- g be

fixed at the end of a spring whose cross section is a rectangle of

unequal dimensions, so that its stiffness is different for displace-
ments in the directions of two rectangular axes, denoted by x and

y. Let fx, fy,
be the two values of the stiffness of the spring for

those two directions of displacement ;
and let % and m denote com-

ponent displacements in those two directions respectively, and ^
and

!
their maximum values or semi-amplitudes. Then the equa-

tions of motion of fche mass are the following :

w
where

and t
0it

and t
0>y

are two arbitrary constants. Thus the numbers in

a second of the two series of component vibrations, viz.,

are proportional to the square roots of the stiffnesses of the spring
in the directions of the two rectangular axes; that is, they are

proportional to its thicknesses in these two directions respectively.
If nx and n

f
are commensurable, the path of the vibrating mass

is a closed curve
; for example, to take the simplest case, if nf =

2 n
y)

that path is such a curve as is represented in
fig.

243. If nf
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V)

and n
y
are incommensurable, the path is of indefinite length ;

but

in every case it is wholly inscribed within the rectangle whose

sides are the amplitudes 2 &, 2 v
lt
of the component vibrations.

612. Vibrations not Isochronous can only x
be expressed mathematically by conceiving
them to be compounded of a number of

superposed vibrations, each isochronous in

itself, but not isochronous with each other,

as in the last example of the preceding

Article; and the forces under which such

vibrations take place are in like manner to

be conceived to be resolved into component F
.

243
forces, each proportional to a parallel com-

ponent of the displacement. The art of resolving displacements of

any kind whatsoever into components, each of which separately
satisfies the conditions of isochronism, is a mathematical process
which it will not be necessary to exemplify in this treatise.

613. Vibrations of an Elastic Body in General The general

equations of the vibration of an elastic body are found by the aid

of D'Alembert's principle (Article 568), by conceiving the body to

be divided into indefinitely small rectangular or other regularly

shaped molecules, and equating the components of the rate of varia-

tion of momentum of each molecule to the corresponding com-

ponents of the restoring force caused by the internal stresses,

which restoring force, for each molecule, is at each instant equal and

opposite to the share belonging to that molecule, ofa distributed ex-

ternal load that would, in a state of equilibrium, produce the actual

state of disfigurement of the body at the instant. The condition of

isochronism is expressed by making each restoring force propor-
tional and opposite to the displacement of the molecule to which it

is applied ;
and the displacements, velocities, and forces for vibra-

tions not isochronous are expressed by sums of series of corre-

sponding quantities for isochronous vibrations.

By the application of D'Alembert's principle as stated above,

every equation concerning the equilibrium of an elastic body under
external forces distributed amongst its molecules can be converted
into a corresponding equation concerning its vibration.

Example I. General Differential Equations. In Article 116,
illustrated by fig. 58, are given the equations of internal equili-
brium (2.) of an elastic solid for a rectangular molecule dx dy dz,

expressing the three components of the external force per unit of
volume of that molecule, in terms of the equal and opposite com-

ponents of the internal forces arising from the variations of the
six elementary stresses, pulls being considered as positive, and
thrusts as negative. Those equations are converted into general
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equations of vibration of the same molecule by substituting, at the

right-hand sides of the three equations respectively,

for 0,

w d* w

w,

w
. d*(

~g'~di*

(I-)

W
where is the mass per unit of volume, and |, >?, ,

are the three

components of the displacement of the moleculefrom its position of
equilibrium.
To make use of the three equations thus obtained, each of the

six elementary stresses is to be expressed in terms of the six ele-

mentary strains multiplied by the proper co-efficients of elasticity of

the substance (Article 253); then each of the six elementary strains

is to be expressed as in Article 250, by means of the differential

co-efficients of the three component displacements g, *j, ,
and thus

the three original equations are converted into three linear differen-
tial, equations of the second order in i, >?,

and
, by the integration

of which, with due regard to the circumstances of each particular

problem, all questions respecting vibration are solved. It is un-

necessary here to enter into details respecting those integrations.
The most complete compendium of the processes which they in-

volve and the results to which they lead, is contained in M. Lame's

Legons sur VElasticite des Corps solides.

Example II. Case ofan Axis of Vibration. In figs. 244 and 245,

Fig. 244.

Fig. 245.

S S ard the lines parallel to it represent a series of planes
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parallel to each other, and let the mode of vibration of the particles
of the body be such, that all the particles in any one of those planes
have equal displacements in parallel directions at the same instant.

A straight line O X, perpendicular to all those surfaces, may be

called an axis of vibration. Let the displacement of each particle,
denoted at any instant by o, take place in a direction making an

angle & with O X, in the plane of x y ; so that its component dis-

placements are

In the condition of equilibrium, conceive a square prism to extend

along the axis X, as in
fig. 244, and to be divided into cubical

molecules, each of the volume dxdy dz, and mass d x dy d z.

\y

At a given instant in the state of vibration, let those molecules be

displaced in the manner shown in fig. 245, the displacement of each

point in each molecule depending, according to some law yet to be

determined, upon the lapse of time and upon the distance, when in

a state of equilibrium, of the plane of equal displacement containing
it from 0, which distance is denoted by #; that is, let

I = function of
(t, x)........................ (3.)

Then it is evident, that each molecule, originally cubical, becomes

directly strained and distorted; the direct strain along x (an elonga-
tion if positive) being represented at any instant by

...................... (4.)dx dx

and the distortion, in the plane of x y, by

v = = sin 4
(5.)c?c dx

The vibrating substance will be supposed to be isotropic as to

elasticity, according to the definition given in Article 256, A being
its direct and C its transverse elasticity. Then at a given plane of

equal displacement, and at a given instant, there is a direct stress

(tension being positive) of the intensity

and a tangential stress of the intensity

~ ~ d W
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and applying to these data the reasoning of the preceding example,
we find that the components of the moving force, per unit of volume,

acting on a given molecule, at a given instant, are as follows :

d*

Longitudinal, Q,= A -T-T, = -

transverse, Qy
= C -=-.-

t
= C -=

a
sin 6-

}

so that if we make

g A gC

(8.)

2 ' ^ - (\w , z^: C .........It/.)W W

we find for the equations of vibration,

longitudinal, -;
= a?

-jAi (10.)

d*m -d3
* n . .

transverse. ~v-5 r=c2 -T (11.)a r dx-

The general integral of those two equations is given by the pair of

equations,

where (p, ^, x, , represent anyfunctions whatsoever. But to obtain

definite results, which can be used in calculation, the conditions of

isochronism are to be applied ;
and they lead to the following con-

sequences :

First, in order that vibrations may be isochronous, the restoring
force must act along the direction of vibration

;
that is, we must

have

Q, : Qy
: : cos I : sin t-

3 (13.)

and because for every known substance, A and C are unequal, this

condition can only be fulfilled when either cos t or sin 6 is nothing ;

that is to say, in an isotropic substance, isochronous vibrations are

eitJier wholly longitudinal, or wholly transverse.

Secondly, the moving force acting on a particle must be propor-
tional and opposite to its displacement ; a condition expressed for

longitudinal and transverse vibrations respectively, by
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where b* and b'
s are two arbitrary positive constants. The most

convenient way of expressing those constants, for reasons which
will afterwards appear, is the following :

b = b' = r

A and A' being arbitrary lengths. Then it is easily seen, that to

satisfy the equations 14 and 15, the displacements must be expressed
as follows :

i^-cos-^-cos^-^; (16.)

Q ,_ O _ .,

Yl = ^ COS ^- (# #'
)

COS -

(t
t'Q) (17.)

i> ^u x x
'> BO* ^'0? ^o> and ^o being arbitrary constants, having values

depending on the circumstances of each particular problem. These
constants have the following meanings :

^! and >?!
are the maximum semi-amplitudes of vibration.

and
,
are the periodic times of a complete oscillation.

1 K a J!i ir c

A and A' are the distances (for the longitudinal and transverse

vibrations respectively) between a pair of planes in which the

particles are in the same phase of vibration at the same instant ;

such as the planes A and E in figs. 244, 245.

Nodal planes are planes in which the particles have no displace-
A A'

ment, x x
,
or x a/

, being an odd multiple of or . Their
4 4

A A'

distance apart is or -
(A, C, and E, in the figures).

Ventral planes are those of maximum displacement, x #
,
or

A A'

x X'Q, being a multiple of or (B and D in the figures). They

lie midway between the nodal planes.
The following quantities for isochronous vibrations are deduced

from equations 16 and 17 : For longitudinal vibrations,

velocity of ( d%
A A A

(18.)
d% 2* , . 2*, x

2, .

'

direct strain, = ?! sin (x XQ)
cos

(t
1

).

For transverse vibrations,
2o
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velocity of ) dn 2 KG ST. . 2*c ,. .,.

aparticlejj-^-
"'- 003^^-^)- 8111 -^ ('-');

\ (19.)
dw 2 w . 2 T , . x 2 T c ,

Distortion, -=-= r vi
' sin

(a;
x ) cos (t t

).a# A A A

Vibrations may exist in which the displacements, strains, velocities,

and forces, are the resultants of combinations of isochronous vibra-

tions, having any number of different sets of arbitrary constants, and

having only in common the co-efficients a and c.

The results of the preceding investigation, so far as they relate to

longitudinal vibrations, are applicable to fluids as well as to solids.

Transverse vibrations are impossible in fluids, because in them there

is no transverse elasticity.

614. Wares of Vibration consist in the transmission of a vibra-

tory state from particle to particle through a body. Let OX denote

the direction in which the vibratory state is transmitted, being, as

in the last Article and its figures, an axis of vibration, or line per-

pendicular to a series of surfaces of simultaneous and equal displace-

ment, which surfaces do not now remain stationary, but advance
from particle to particle with a velocity called the velocity of trans-

mission or ofpropagation. With respect to wave motion in general,
it has already been explained in Article 416, that the condition of

motion of any particle, whose distance from the origin is x
t

is

expressed by a functipn of at x, where t is the time elapsed from
a given instant, and a the velocity of transmission. Applying this

to the displacements in longitudinal and transverse vibrations re-

spectively, we find the equations

where a and c are the velocities of transmission of longitudinal and
transverse vibrations respectively. Now the equations 1 have

already been shown in Article 613 to be forms of the integrals of

the general equations of vibratory motion, a and c having the values

there given, viz. :

(2.)

which accordingly are the respective velocities of transmission of

waves of longitudinal and transverse vibration in a medium whose

weight per unit of volume is w, and its direct and transverse elas-

ticities A and C. In a fluid, for which C = 0, the transmission of

waves of transverse vibration is impossible.
It may here be observed, that it is essential to the exactness of
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the values given above for the velocities of the transmission of

waves, that the surfaces of simultaneous displacement (called some-
times wave-surfaces) should also be surfaces of equal amplitude of
vibration. If the amplitude varies at different points of the same
wave-surface, the velocity of transmission becomes less than that

given by the equations 2, according to a law which it is unnecessary
here to explain in detail.

615. Telocity of Sound.' Longitudinal vibrations, being those
which can be transmitted through all substances, solid -and fluid,
are the ordinary means of transmitting sound

; so that the velocity
of sound in a given medium is the co-efficient a in the equations 2
of Article 614 j being the velocity which a body would acquire in

falling from the height A -^ 2 w ; that is, a height equal to half the

length of a prism of the substance of the base unity, whose weight
is equal to the co-efficient of longitudinal elasticity.
The velocity of sound, as determined by experiment, is,

In water, at 61 Fahr... .. 4,708 feet per second ;

In dry air, at 32 Fahr. ... 1,092

In air and other gases, the velocity of sound depends on the pres-

sure, density, and temperature in the following manner : When a

nearly perfect gas has its density changed, and is kept at a constant

temperature, the pressure varies nearly in proportion to the density

simply. But with every change of density which takes place under
circumstances such that the gas cannot gain- or lose heat by con-

duction, a variation of temperature occurs depending on the change
of density in such a manner, that the pressure, instead of varying
simply as the density, varies as a power of the density higher than
the first. Let y denote the index of that power, p the pressure,
and w the density of the gas ;

then

PKW, (1.)

so that the co-efficient of elasticity A has the following value :

A dp - yp (9\A- = -= (2.1aw w

The value of the index y for air is

</ = 1408; (3.)

it is nearly the same for oxygen, hydrogen, carbonic oxide, and
other nearly perfect gases; but has smaller values for carbonic acid,

sulphurous acid, and other gases which deviate considerably from
the perfectly gaseous condition.

Now, if p be taken in pounds on the square foot, and w in
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pounds per cubic foot, and if T be the temperature of the air in

degrees of Fahrenheit (see Article 122),

- *- ..................

and for gases nearly perfect in general, if p represent one atmo-

sphere that is, 21164 Ibs. per square foot, and w the weight of a
cubic foot of the gas at 32 Fahrenheit, and under that pressure,

T + 461-2

whence the velocity of sound in a nearly perfect gas is

and in air

616. Impact and Pressure; Pile Driving. The impact or blow
of a body which has acquired momentum by the action of a certain

force during a greater time, is used to overcome a greater force

during a less time; as when the ram of a pile engine, having
acquired momentum by the action of its weight during a short but

sensible interval of time, overcomes the resistance of a pile to being
driven, many times greater than the weight of the ram, and during
an interval too short to be measured.

If the ratio of the times could be ascertained, the ratio of the

forces could be inferred from it
;
but as one of the times is always

insensibly short, the ratio of the forces has to be computed from
the spaces through which they act, by considering how the energy
of the blow is distributed.

Let "W be the weight of the ram
; h, the height from which it

falls. Then
W7*

is the energy of the blow.

That energy is employed
1. In compressing the ram ;

2. In compressing the pile ;

3. In giving actual energy of motion to the ram and pile;
4. In driving the pile against the resistance of the ground.
The compression of the ram is inappreciable in practice ;

and so

also are the velocities of the ram and pile after the collision. The
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second and fourth ways of expending the energy have therefore

alone to be considered.

Let R be the effective resistance of the ground ; that is, its total

resistance less the weights of the pile and ram. Let S be the area of

the head of the pile, and P the pressure exerted at any instant

between it and the ram. At first, P is nothing ;
it increases as the

pile becomes compressed, until at length it becomes equal to R ;

then the compression of the pile ceases
;

it begins to penetrate into

the ground, and continues to do so until the energy of the blow is
T>

all expended. The mean value of P is -5 . The distance through

which it is overcome in compressing the pile is the compression due
T? T

to its maximum value, viz., ^TET? where E is the modulus of elasti-
jit O

city of the pile, and L the length of a post, which, if uniformly

compressed throughout its length, would be as much shortened as

the pile. Considering that the pile is held in a great measure by
friction against its sides, L may be made equal to half its length.

Then the work performed in compressing the pile is ~
; and

the work performed in driving it deeper is E, x, where x is the

depth through which it is driven by a blow
;
and equating these to

the energy of the blow, we find

fm + * x.....................W
When x has been ascertained by observation, K is found by solving
a quadratic equation, viz.,

Piles are in general driven till R amounts to between 2,000 and

3,000 Ibs. per square inch of the area of head S, and are loaded
with from 200 to 1,000 Ibs. per square inch

; so that the factor of

safety is from 10 to 3.

The overcoming of any resistance by blows is analogous to the

example here given, which is extracted, and somewhat modified,
from a section by Mr. Airy in Dr. Whewell's treatise on Mechanics.
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CHAPTER V.

MOTIONS OF FLUIDS.

617. Division of the Subject. The principles of dynamics, as

applied to fluids, so far as small and rapid changes of dnsity are

concerned, have already been discussed under the head of vibratory
motions. Now the only changes of density which occur during
the motions of liquids are small and rapid ; so that in the present

chapter those motions of liquids are alone to be considered in which
the density is constant, and whose cineniatical principles have been
treated of in Part III., Chapter III., Section 2. In the motions of

gases, great and continuous changes of density occur, such as those

whose cinematical principles have been treated of in section 3 of

the chapter already referred to
;
and the dynamical laws of motions

affected by such changes have still to be considered. One mode of
'

division, therefore, of hydrodynamics, is founded on the distinction

between the motions of liquids, regarded as of constant density, and
those of gases.

Another mode of division is founded on the distinction between
motions not sensibly affected by friction, and those which are so

affected. The motions of fluids not sensibly affected by friction,

and therefore governed by pressure and weight only, take place

according to laws which are exactly known ;
so that any difficulty

which exists in tracing their consequences, in particular cases, arises

from mathematical intricacy alone. The laws of the friction of

fluids, on the other hand, are only known approximately and

empirically; and the mode of operation of that force amongst the

particles of a fluid is not yet thoroughly understood; so that the

solution of a particular problem has often to be deduced, not from
first principles representing the condensed results of all experience,
but from experiments of a special class, suited to the problem under
consideration.

The laws of the mutual impulses exerted between masses of fluid

and solid surfaces require to be considered separately.
The following is the division of the subject of this chapter :

I. Motions of Liquids under Gravity and Pressure alone.

II. Motions of Gases under Gravity and Pressure alone.

III. Motions of Liquids affected by Friction.

IV. Motions of Gases affected by Friction.

V. Mutual Impulses of Fluid Masses and Solid Surfaces.
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SECTION 1. Motions of Liquids without Friction.

618. General Equations. In Articles 414 and 415 have been

given the three general equations, by which the rates of variation

of the components of the velocity of an individual particle of liquid
are expressed in terms of those of the velocity at a point given in

position; and in Article 412 has been given the equation of con-

tinuity which connects the components of the latter velocity with
each other. To obtain the general dynamical equations of the

motion of a liquid, the first three equations are to be converted into

expressions for the rates of variation of the components of the mo-
mentum of a particle, and the results equated to the unbalanced
forces which act upon it.

Let d x d y d z denote the volume of a rectangular molecule, and

p the intensity of the pressure of the liquid at a point whose co-

ordinates are x, y, z. Let z be vertical, and positive downwards.
w being used to denote one of the components of the velocity at a

point, the symbol g
will now be employed to denote the weight of

an unit ofvolume. Then the forces by which the molecule is acted

upon are

along x,
-~ .dxdydz'y along y, -^-

' dxdy dz',

/ dp
along*, e

-

Let the rates of variation of the components of the momentum of

the molecule be found by multiplying the three rates of variation

of the components of the velocity in Article 415, equation 2, each by
*

;
then equating these respectively to the three forces in

g
equation 1 above, dividing by d x d y d z, so as to reduce the equa-
tion to the unit of volume, and then by f, so as to reduce them to

the unit of weight, the following results are obtained :

dp 1 d2
% 1 ( du

,
du . du . du\

~^t 'die ~dy ~dz]
3

dp 1 d2
YI 1 f d v

,
d v

,
dv . dv\^

?dy~ g dtz
~
g\ dt dx dy d z )

dp 1 d2
1 ( dw

,
dw . dw . dw

Combining with those three equations of motion the equation of

continuity, viz. :
-
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du dv dw_
d^+d^+d^-

we have the data for solving all dynamical questions as to liquids
without friction. These equations are adapted to the case of steady
motion by making

du dv dw

as in Article 413.

619. Dynamic Head. The quotient is what is called the height,

or head, due to the pressure; that is, the height of a column of the

liquid, of the uniform specific gravity ,
whose weight per unit of

base would be equal to the pressure p. Now as the vertical ordinate

z is measured positively downwards from a datum horizontal plane,
ez is the weight of a column of liquid per unit of base extending
down from that plane to a particle under consideration

; p g z is

the difference between the intensity of the actual pressure at that

particle and the pressure due to its depth below the datum hori-

zontal plane; and

*-*= *.............................. (I-)

is the height or head due to that difference of intensity, being what
will be termed the dynamic Jtead. When z is measured positively

upwards from a datum horizontal plane, its sign is to be changed j

so that the expression for the dynamic head in that case becomes

(2.)

620. General Dynamic Equations in Terms of Dynamic Head.
If instead of the rates of variation of the pressure in the equations
2 of Article 618, there are substituted their values in terms of the

dynamic head, those equations take the following forms :

dh I d2
% I ( du . du . du . du\= \ -f- u r V r~ W r

'

dx~ g dt2 g\dt^ dx^ d ij dz)>

dh 1 d2
YI 1 ( dv dv d v d v\

dy~ g dt 1 g\dt dx dy dz j
'

dh 1 d2
\ ( dw dw . dw dw

621. Law of Dynnmic Ilend for Steady Motion. From these

equations is deduced the following consequence, in the case of
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steady motion, in which there is no variation of the dynamic head
at a particle, except that arising from the change of position of the

particle. _

Let V be the velocity of a given particle. Its value, in terms of
its rectangular components, is given by the equation

which, being divided by 2 g, gives the height due to the velocity;
so that the variation of that height, in a given indefinitely short
interval of time, is

!+?".*j}+i(.*|W,dt dt* dt at2
/

dh d % . d h d n , dh a

2g (t \dt
'

(2.)

This principle might otherwise be stated thus : In steady motion,
the sum of the height due to the velocity of a particle and of its

dynamic head is constant, or symbolically

V 2

jj

--
\- h = constant....................... (3.)

This equation applies to the particles which successively occupy the
same fixed point, as well as to each individual particle.

622. The Total Energy of a particle of a moving liquid without
friction is expressed by multiplying the expression in equation 3 of

the last Article by the weight of the particle W, thus :

W V2

iii which - is the actual energy of the particle, and W h is its

potential energy; because, from the last Article it appears, that byW V2

the diminution ofW h, may be increased by an equal amount,A 9
and vice versa; so that the dynamic head of a particle is its potential

energy per unit of weight. In the case of steady motion, the total

energy of each particle is constant
;
and the total energy of each of

the equal particles which successively occupy the same position is

the same.

In the case of unsteady motion of a liquid mass, the total internal

energy of the entire mass is constant; that is, if the centre of

gravity of the mass, or a point either fixed or moving uniformly,
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with respect to that centre of gravity, is takeii as the fixed point to

which the motions of all the particles are referred, the following

equation is fulfilled :

2-W l. + h\oT
J JjQ~ dxdydz= constant. ..(2.)

623. The Free Surface of a moving liquid mass, being that which

is in contact with the air only, is characterized by the pressure

being uniform all over it, and equal to that of the atmosphere.
Let pi be the atmospheric pressure, zl the vertical ordinate, mea-

sured positively upwards from a given horizontal plane, of any point
in the free surface of the liquid, and hi the dynamic head at the

same point; then it appears from Article 619, equation 2, that for

that surface,

hi Zi = == constant .(1.)
e

624. A Surface of Equal Pressure is characterized by an analo-

gous equation,
/vy

h-z= = constant; (1.)

and all surfaces of equal pressure fulfil the differential equation,

dh= dz'} (2.)

which, for steady motion, becomes

.(3.)

expressing that the variations of actual energy are those due to the
variations of level simply.

625. Motion iu Plane Layers is a state which is either exactly
or approximately realized in many ordinary cases of liquid motion ;

Fig. 246. Fig. 247.

and the assumption of which is often used as a first approximation
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to the solution of various questions in hydraulics. It consists in

the motions of all the particles in one

plane being parallel to each other, per-

pendicular to the plane, and equal in

velocity. It is illustrated by the three

figures 246, 247, and 248, each of which

represents a reservoir containing liquid

up to the elevation OZ1
= zl above a given

datum, and discharging the liquid from

an orifice A at the smaller elevation OZ F
.

94g
= z . The liquid moves exactly or nearly
in plane layers at the upper surface Ax

and at the orifice A .

Let these symbols denote the areas of the upper surface and of the

issuing stream respectively.
Let Q denote the rate of flow per second, ^ the velocity of descent

of the liquid at the upper surface, v its velocity of outflow from the

orifice; then, according to Article 405, the equation of continuity is

-Q;

The pressures at the upper surface and at the orifice respectively
are each equal to the atmospheric pressure ; hence the difference of

dynamic head is simply the difference of elevation ; that is to say,

therefore, according to Article 621, equations 2 and 3,

vl-vl \

This gives for the velocity of outflow,

v =V jnrM
from which can be computed the rate of flow or discharge by means
of equation 1.

The general equation of motion, for every part of the vessel or

channel at which the motion takes place in plane layers, is, accord-

ing to Article 621, equation 3,
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The motion may be considered to take place in plane layers at any

part of the channel whose sides are nearly straight and parallel,

such as A2 in fig. 246, whose elevation above the datum is zr To

find the dynamic head, and thence the pressure, at this intermediate

section of the channel, the velocity through it is to be computed by
the formula

whence the dynamic head relatively to the datum O is obtained by
the equation

(6.)

and thence the pressure by the formula

ft
= e(/*2-^ ............................ (7.)

When a large vessel discharges liquid through a small orifice, the

ratio
5

is often so small a fraction, that it may be neglected in

AJ
equations 2 and 3.

626. The Contracted Veiu is the name given to a portion of a jet
of fluid at a short distance from an orifice in a plate, which is

smaller in diameter and in area than the orifice, owing to a sponta-
neous contraction which the jet undergoes after leaving the orifice.

The area of the narrowed part of the contracted vein is in every
case to be considered as the virtual or effective outlet, and used for

A in the equations of the last Article.

The ratio of the area of the contracted vein, or effective orifice,

to that of the actual orifice, is called the co-efficient of contraction.

For sharp edged orifices in thin plates, it has different values for

different figures and proportions of the orifice, ranging from about

0-58 to O7, and being on an average about |.
It diminishes some-

what for great pressures, and for dynamic heads of six feet and

upwards may be taken at about 0-6. The most elaborate table of

those co-efficients is that of Poncelet and Lesbros.

For orifices with edges that are not sharp and thin, the discharge
is modified sensibly by friction.

627. Vertical Orifices of discharge, whose vertical dimensions are

not small in comparison with their depths below the upper surface

of the reservoir, are treated as having a mean velocity of discharge

through their contracted veins due to the mean value of the square
root of the dynamic head for the several parts of the orifice. For

example, let y be the horizontal breadth of an orifice at any given
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elevation z above the datum, z' the elevation of the lower, and z"

that of the upper edge of the orifice, so that

'..(I.)

is its effective area, -c being the co-efficient of contraction. Then
that orifice is to be treated as if its depth below the upper surface

At were
-' '

/ox
(2.)

and the formulae of Article 625 applied accordingly. For a rectan-

gular orifice for which y is constant, this gives

o
O

and if it is a TiotaA, or a rectangular orifice extending to the upper
surface, so that z" z

1}

(4.)

628. Surfaces of Equal Head, which for steady motion are also

SURFACES OF EQUAL VELOCITY, are ideal surfaces traversing a fluid

mass, at each of which the dynamic head is uniform. Their posi-

tions are related to the direction, velocity, curvature, and variation

of velocity of the fluid motion in the following manner :

In fig. 249, let H^ Hw H2 H2, represent a pair of such surfaces,

very near each other; their normal distance

apart being dn, measured forwards from H t

towards H2,
and the difference of dynamic

head at them being d h. Let A B be part of

the moving fluid, forming an elementary
stream whose velocity is V, its radius of K*

Fifr 249
curvature r, its thickness dr, and the varia-

tion of its velocity dY ;
velocities from A towards B being posi-

tive, and curvature concave towards H2 being positive. Then the

equations 2 and 3 of Article 621 give, as before,

YdY Y 2

dh', or - -\-h = constant; (1.)
9 9

and in order that the variation of head may supply the deviating

force necessary to produce the curvature of the stream A B, the

radius of curvature must be in a plane perpendicular to the surfaces

of equal head, and the following equation must be fulfilled :
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_ d r cos nr
dn

(M
dn

A
cos n r.

.(2.)

629. In a Radiating Current, flowing
towards or from an axis, as described in

Article 407, the surfaces of equal dyna-
mic head and equal velocity are cylinders
described about the axis. The equation
of continuity, 1 of Article 407, putting b

instead of h to denote the depth, parallel
to the axis, of the cylindrical space in

which the current flows, gives for the

velocity the formula

Fig. 250.
v = Q _ 00 . f

.-
r

> ...... \ '

where r is the radius of the cylindrical surface R
, fig. 250, at

which the radiating part of the current begins or ends, according
as it flows outwards or inwards. The radiating current may ex-

tend indefinitely in all directions beyond this surface, the velocity

being at any point inversely as the distance from the axis O. Let
h
Q
be the dynamic head at R ; then at any other cylindrical sur-

face of the radius O E- = r, we have the dynamic head,

A
2?

= A.+

Let hL be the limit towards which the dynamic head approxi-
mates as the distance from the axis is indefinitely increased

;
then

(3.)

630. Free circular Vortex. In the cylindrical space of fig. 250,

lying outside of the surface E,
>
let the particles of the fluid revolve

in a circular current round the axis O ;
and let the velocity of each

circular current be such, that if, owing to a slow radial movement,
particles should find their way from one circular current to another,

they would assume freely the velocities proper to the several cur-
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rents entered by them, without the action of any force but weight
and fluid pressure. This last condition is what constitutes a free

vortex, and is a condition towards which every vortex not acted

on by external forces tends, because of the tendency to the inter-

mixture of the particles of adjoining circular currents. It is ex-

pressed mathematically by

h + ~ = Aj = constant.................. (1.)

h^ will be called the maximum head.

Conceive a portion of a thin circular current of the mean radius

r, contained between two cylindrical surfaces at the indefinitely
small distance apart d r, and of the area unity, the current having
the velocity v. Then the centrifugal force of that portion of the

current is

which is equal and opposite to the deviating force

tdh;
that is to say,

- m
dr gr

............................W
v2

But by the condition of freedom in equation 1, we have -
g

h), which being substituted in equation 2, gives

dr
whence

<
3
-)

or, the velocity is inversely as the distance from the axis, exactly as

in a radiating current. Then let v be the velocity of revolution,
and h the dynamic head, at the inner boundary R of the vortex ;

we have for the general equations amongst the dynamic heads and
velocities at all points,

2g
~~

2g
~

2g y*'

2 2 j- (4.)

* = *
~
2#

= h ~
2~g ?'
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631. Free Spiral Vortex. As the equations of the motion of a

free circular vortex are exactly the same with those of a radiating

current, it follows that they also apply to a vortex in which the

motion is compounded of those two motions in any proportions,
eo long as the velocity is inversely as the distance from the axis. To
fulfil this condition, the currents of liquid must have a form that

is at every point equally inclined to the radius drawn from the

axis
;
a property of the logarithmic spiral. Let v be the velocity

of the current in a free spiral vortex at any point, and 6 the con-

stant inclination of the current to the radius vector
;
then the com-

ponent of the motion whose velocity is v cos 0, is analogous to the

motion of a radiating current, and that whose velocity is v sin 6 is

analogous to the motion of a free circular vortex.

632. A Forced Vortex is one in which the velocity of revolution

of the particles follows any law different from that of a free vor-

tex
;
but the kind of forced vortex which it is most useful to con-

sider, is one in which the particles revolve with equal angular
velocities of revolution, as if they belonged to a rotating solid

body ;
so that if r be the radius of the outer boundary of the vor-

tex, where the velocity is v
,

v =^.............................. (1.)

The equation of deviating force, 2 of Article 630, is applicable to

all vortices, forced as well as free. Introducing into it the value

of v from equation 1, above, we find,

d h vl r f9
.

z?'T*"
-

which being integrated, with the understanding that the dynamic
head is to be reckoned relatively to the axis of the vortex, gives

from which it appears, that in a rotating vortex, the dynamic Itead

at any point is the height due to the velocity, and the energy of any
particle is half actual and halfpotential.

633. A Combined Vortex consists of a free vortex without and a

forced vortex within a given cylindrical surface, such as R in fig.

250. In order that such a combined vortex may exist, the velo-

city v and the dynamic head h at the surface of junction must be

the same for the two vortices
; consequently, as the dynamic head

of the forced vortex is equal to the height due to its velocity, and
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the sum of those heights for the surface of junction is equal to the
maximum head A, of the free vortex, we have this principle : In a
combined vortex, the maximum dynamic liead is double of the dyna-
mic Jiead at the surface of junction, each being measured relatively to

the axis of the vortex; or symbolically,

To illustrate this geometrically, let a combined vortex revolve
about a vertical axis, O Z Z,, fig.

251, the upper surface of the

liquid being free, and represented
in section by D B O B D. Let
A B, A B, be the cylindrical sur-

face of junction between the free

and the forced vortices. Let
A O A be a horizontal plane,

Fig. 251.

touching the upper surface at its lowest point, which is at the

axis, and let vertical ordinates be measured from this plane. The

pressure of the atmosphere being equal at all points, may be left

out of consideration ; so that if z be the height of any point in the

surface of the vortex above A O A, we shall have simply

Then for the forced vortex,

z = .(3.)

so that B B is a paraboloid of revolution with its vertex at 0.

Make AC = 2AB = 2^ ;
this will represent h

l}
the maximum

dynamic head j and for the free vortex,

Z = II (4.)

and D B. D B, is a hyperboloid of the second order, described by
the rotation round the vertical axis of a hyperbola of the second

order, whose ordinate 7^ z, measured downwards from C Zl C, is

inversely as the square of the distance from the axis. The two
surfaces have a common tangent at B B, where they join.
The velocity of any particle in the free vortex is that due to its

depth below C C
;
that of any particle in the forced vortex is that

due to its height above A A
;
and B, where those velocities are

equal, is midway between C C and AA
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The theory of the combined vortex was made, by Professor

James Thomson of Belfast, the principle of the action of his tur-

bine or vortex water-wheel.

634. Tertical Revolution. When a mass of liquid revolves in a

vertical plane about a horizontal axis (like the water in a bucket of

an overshot wheel), its upper surface is not horizontal, but assumes
a figure depending on the deviating force required by its revo-

lution.

In fig. 252, let C represent a horizontal axis,

and B a bucket of liquid revolving round it in a

vertical circle of the radius B C, with the angular

velocity of revolution a. Let "W" be the weight of

liquid in the bucket.

Then the deviating force required is given by
the formula

Take the radius B C itself to represent the devi-

ating force, and C A vertically upwards from the axis to represent
the weight ; the height C A is given by the proportion

CA : BC : : W : BC,

that is,

(I-)

where n is the number of revolutions per second.

Now A C representing the weight, and C B the centrifugal force,

equal and opposite to the deviatingforce, the internal condition of the

liquid in the bucket, according to D'Alembert's principle, is the

same as if it were under a force represented by A B, the resultant

of these two forces ; therefore the surface of the liquid is perpendi-

cular to A B.

Now it appears from equation 1, that the height of A above
is independent of the radius of the wheel, and of every circumstance

3xcept the time of revolution ; being, in fact, the height of a revolv-

ing pendulum which revolves in the same time with the wheel.

(See Article 539.) Therefore the point A is the same for all

buckets carried by the same wheel with the same angular velocity,
and for all points in the surface of the liquid in the same bucket,
whether nearer to or farther from the axis C ; therefore the upper
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surface of the liquid in each bucket is part of a cylinder described

about a horizontal axis passing through A and parallel to C.

The theory of rolling waves may be deduced from the above

proposition. For a brief sketch of that theory, see Addendum,

SECTION 2. Motions of Gases without Friction.

635. Dynamic Head in Oases. The dynamical equations of

motion of a gas are the same with those already given in Article

618, equation 2; and in their integration, it has to be observed

that
,
the density, is no longer constant, but depends on the pres-

sure. The equations of continuity have been given in Articles 419
to 423.

In finding the DYNAMIC HEAD for a particle of a gas, instead of

there is to be taken /
,
as is evident from the general equa-

tions of fluid motion already referred to. Consequently, the dyna-
mic head for a gaseous particle, at a given elevation z above a fixed

horizontal plane, is, relatively to that plane,

i a-)

and the putting of this value for h in all the dynamical equations

relating to liquids, transforms them into the corresponding equa-
tions for gases.

In most practical problems respecting the flow of gases, the dif-

ferences of level of different points of the gaseous mass have little

or no sensible effect on the motion j so that z may often be omitted
from the preceding formula.

In determining the value of the integral in that formula, it is to

be observed that almost all changes of velocity of gases take place
so rapidly, that the particles have no time to receive or to emit
heat to any sensible amount ; and therefore the pressure and den-

sity of each particle are related to each other according to the law

already explained in treating of the velocity of sound; that is

to say,

^oc e', ............................... (2.)

the exponent y having the values therein stated, of which the most

important is 1-408 for air. This gives for the value of the integral
in equation 1,

in which, for air,
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y 1408

Let
T = T -f 461-2 Fahr. (5.)

denote the absolute temperature of the gas, T being its temperature
on the ordinary Fahrenheit's scale

;
and let

T
O
= 493-2 Fahr

(6.)

be the absolute temperature of melting ice. Then for gases sen

sibly perfect,

p - P T
' (7\~

~^T ; l*v

from which we have the following value of the integral in terms of

the temperature :

o p

so that it is simply proportional to the absolute temperature.
It is known by the science of thermodynamics, that the above

expression is equivalent to

Jc'r; ................................ (9.)

where c' is the specific heat of the gas at constant pressure, and J is

" Joule's equivalent," or the height from which a given weight must

fall, in order to produce by friction as much heat as will raise the

temperature of an equal weight of water by one degree. For
Fahrenheit's scale,

J = 772 feet ........................... (10.)

The following are the values of and c' for certain gases and

vapours :

^ feet. C'.

po

Air, ................................... 26,214 ...... 0-238
Oxygen, .............................. 23,710

Hydrogen, ........................... 37 8 >
8 ip

Steam, ................................ 42,141* ...... 0-480
-^Ether vapour, ...................... 10,110 ...... 0-481

Bisulphuret of carbon vapour, ... 9,902 ......
"
L 57S

Carbonic acid, if a perfect gas, ... 17,264
Do., actually, ........... 17,145 ...... 0-217

" This is an ideal result, arrived at not by direct experiment, but by calculation
from the chemical composition of steam.
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The variations of pressure, volume, and absolute temperature of

a gas during rapid changes of motion, are connected by the propor-
tional equation

r cc p*~
l

oc p^~...................... (11.)

The equations in this Article are all adapted to perfect gases.

Actual gases deviate from the perfectly gaseous condition more or

less ;
but in most practical questions of hydrodynamics the equa-

tions for perfect gases may be applied to them without material

error.

636. The Equation of Continuity for a Steady Stream of Gas takes

the following form, when the laws stated in the last Article are

taken into account. The original equation, as given in Article

421, being equivalent to

Q P = A v p = constant, ................ , ...(1.)

we have to consider that, by the equations of the last Article, we
have

i _i_ i

p
oc p* cc Ty

-T
oc (h-s)

y~ l
................. (2.)

the exponents having, for air, the values

* = 0-71 ;^ = 2451 ................... (3.)

Hence the equation of continuity, in terms of the pressure, of the

absolute temperature, and of the dynamic head respectively, takes

the followin forms :

= A vp* = constant ; .................. (4.)

i_ _j_

Qr3 1 = A-vr*- 1 = constant; ............... (5.)

i i

Q (h
-
z)*~

l = A v (h
- zy~

l = constant
;
......... (6.)

637. Flow of Gas from an Orifice. Let the pressure of a gas
within a receiver be plt

and without, p2 let A be the effective area

of an orifice with thin edges ;
that is, the product of the actual area.

by a co-efficient of contraction, whose value is

0-6, nearly.

Let the receiver be so large that the velocity within it is insensible.

Let the absolute temperature and density of the gas within the

receiver be TW f1? and those of the issuing jet r2, ^2 . The latter are
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not the same with those of the still gas outside, for reasons to be

stated afterwards. Then
y-l 1

ft

and by equation 8 of Article 635, and equation 3 of Article 621,

we have for the height due to the velocity of outflow,

~ :^= /I, fl% =^ :r
*

2g y I e,

i _(P1

from which the velocity itself, and the flow of volume Q = v A at

the contracted vein, are easily computed. To find the flow of

weight, the last quantity is to be multiplied by
i i

L
y On. Tn r).

giving the following results :

es Q= v A
e2

For small differences of pressure, such that^ is nearly = 1, the
JPi

following approximate formula may be used where great accuracy
is not required :

Pl

When the motion of the jet is finally extinguished by friction,
heat is reproduced sufficient to raise the absolute temperature nearly
to its original value, TI.

637 A. maximum Flow of Gas. "When is indefinitely dimin-
Pi

ished, the velocity of outflow given by equation 2 of Article 637
increases towards the limit

// 2ygp r
l

1V t(y-l), r h
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V~~
2

~"

f : 1

whose value for air is 2-21, giving for the limiting velocity of flow

of air

2,413 feet per second x A/ (2.)V To

The flow of weight, however, as given by equation 4 of Article

637, does not continuously increase as is indefinitely diminished,

but reaches a maximum for the value

corresponding to

"1

Pl V/+ 1-

The values of these ratios for air are

(3.)

^ = 0-527 ; ? = 0-6345
;
-2 = 0-8306 ...... (4.)

Pi d
and the corresponding velocity of flow is

being less than the velocity of sound in the ratio \/ -
-r-y

: 1,

whose value for air is 0-912 ; giving for the velocity of flow of air

corresponding to the greatest flow of weight through a given orifice

from a receiver where the pressure and temperature are given,

v = 997 feet per second x A/ 7 ............ (&)

It is often convenient to express the flow of weight in the following
manner :

,,Q = ^-A,l5 ..: ..................... (7.)

in which is what is called the reduced velocity, being the velo^
ft

city of a current of a density equal to that of the gas in the receiver,
whose flow of weight would be equal to that of the actual current.
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The maximum reduced velocity corresponds to the maximum flow;
and its value is

y+l

^ = velocity of sound x
(-^TJ)

' '

.......... (8.)

whose value for air is

velocity of sound x 0-579 = 632 feet per sec. x \/ -...(9.V T

The investigations in this and the preceding Article are substan-

tially the same with those originally communicated to the Royal
Society in May, 1856, by Dr. Joule and Dr. Thomson; and the

results differ by small quantities arising mainly from those gentle-
men having taken y = 1/41, instead of 1408.

Messrs. Joule and Thomson tested the theoretical result as to

the maximum reduced velocity given in equation 9, by experiments
on the flow of air through orifices in plates of copper of 0*029,

0-053, and 0*084 of an inch in diameter, at the temperature of 57

Fahrenheit, for which =
,
and the calculated maximum

'

TQ 4:90"^

reduced velocity is 647 feet per second.

The maximum reduced velocity found by experiment was 550
feet per second, or 0-84 of that found by theory; but in calculating
the velocity from the experiments, the actual area of the orifice was

employed ; so that the difference probably arises from contraction.

The corresponding value of the ratio p2 : plt
as found by experiment,

was 0'375 instead of 0-527; a difference produced by friction.

SECTION 3. Motions of Liquids with Friction*

638. General i,an* of Fluid Friction. It is known by experi-

ment, that between a fluid, and a solid surface over which it glides,
there is exerted a resistance to their relative motion which is pro-

portional to their surface of contact, and to the density of the fluid,

and is approximately proportional to the square of the velocity of

the relative motion
;
that is, the resistance is approximately pro-

portional to the weight of a prism of the fluid, whose base is the

surface of contact, and its height the Jieight due to the relative velocity.
Let S be the surface of contact, v the velocity, ?

the weight of an
unit of volume of the fluid, and f a factor called the co-efficient of
friction; then

is the amount of the friction at the surface S.
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The co-efficient/is not absolutely constant at different velocities.

The mode of calculation employed in practice, where the velocity is

one of the unknown quantities to be determined, is to find an

approximate value of the velocity from the mean value of/; then

to compute the value of / corresponding to that approximate

velocity, and use it to compute the velocity more exactly.
The following are some of the values of the co-efficients of friction,

according to different authorities, for streams of WATER, gliding over

various surfaces
;
v being the mean velocity of the stream,, in feet per

second :

Iron pipes (Darcy). Let d = diameter of pipe in feet; then,

or for velocities that are not very small,

/ = 0-005

Iron pipes, value of/ for first approximation, 0*0064

Beds of rivers (Weisbach),.../ = a + -; a = 0-0074.

b = 0-00023 foot-

Beds of rivers, value of / for first ) ^ r
. . > 0*0076.

approximation,...........................
j

A collection of numerous formulae for fluid friction, proposed by
different authors, together with tables of the results of the best

formulae, is contained in Mr. Neville's work on hydraulics. The
formulae of many authors, though differing in appearance, are

founded on the same, or nearly the same, experimental data, being
chiefly those of Du Buat, with additions by subsequent inquirers ;

and their practical results do not materially differ. The two
formulae given above, on the authority of Darcy, for iron pipes,
are based on his experiments as recorded in his treatise du
Mouvement de VEau dans les Tuyaux.

639. internal Fluid Friction. Although the particles of fluids

have no transverse elasticity that is, no tendencv to recover a
certain figure after having been distorted it is certain that they
resist being made to slide over each other, and that there is a lateral

communication of motion amongst them
; that is, that there is a

tendency of particles which move side by side in parallel lines to
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assume the same velocity. The laws of this lateral communication
of motion, or internal friction, of fluids, are not known exactly;
but its effects are known thus far : that the energy due to differ-

ences of velocity, which it causes to disappear, is replaced by heat

in the proportion of one thermal unit of Fahrenheit's scale for 772
foot pounds of energy, and that it causes the friction of a stream

against its channel to take effect, not merely in retarding the film

of fluid which is immediately in contact with the sides of the channel,
but in retarding the whole stream, so as to reduce its motion to one

approximating to a motion in plane layers perpendicular to the axis

of the channel (Article 625).
640. Friction iii an Uniform Stream. It is this last fact which

renders possible the existence of an open stream of uniform section,

velocity, and declivity. In hydraulic calculations respecting the

resistance of this, or any other stream, the value given to the

velocity is its mean value throughout a given cross-section of the

stream A,

The greatest velocity in each cross-section of a stream takes place
at the point most distant from the rubbing surface of the channel.

Its ratio to the mean velocity is given by the following empirical
formula of Prony, where Y is the greatest velocity in feet per
second :

10-25 +

In an uniform stream, the dynamic head which would otherwise

have been expended in producing increase of actual energy, is

wholly expended in overcoming friction. Consider a portion of the

stream whose length is I, and fall z. The loss of head is equal to

the fall of the surface of the stream, according to Article 623; and
the expenditure of potential energy in a second is accordingly

Equating this to the work performed in a second in overcoming
friction, viz., v E, we find

or dividing by common factors, and by the area of section A, we
find for the value of the fall in terms of the velocity
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Let s be what is called the wetted perimeter of the cross-section of

the stream; that is, the cross-section of the rubbing surface of the

stream and channel ; then

and dividing both sides of equation 3 by I, we find for the relation

between the rate of declivity and the velocity,

(4.)

is what is called the "HYDRAULIC MEAN DEPTH" of the stream:
s

and as the friction is inversely proportional to it, it is evident that

the figure of cross-section of channel which gives the least friction

is that whose hydraulic mean depth is greatest, viz., a semicircle.

When the stability of the material limits the side-slope of the

channel to a certain angle, Mr. Neville has shown that the figure
of least friction consists of a pair of straight side-slopes of the given
inclination connected at the bottom by an arc of a circle whose
radius is the depth of liquid in the middle of the channel; or,

if a flat bottom be necessary, by a horizontal line touching that arc.

For such a channel, the hydraulic mean depth is half of the depth
of liquid in the middle of the channel.

641. Varying Stream. In a stream whose area of cross-section

varies, and in which, consequently, the mean velocity varies at

different cross-sections, the loss of dynamic head is the sum of that

expended in overcoming friction, and of that expended in producing
increased velocity, when the velocity increases, or the difference of

those two quantities when the velocity diminishes, which difference

may be positive or negative, and may represent either a loss or a

gain of head. The following method of representing this principle

symbolically is the most con-

venient for practical purposes.
In fig. 253, let the origin of co-

ordinates be taken at a point O
completely below the part of the

stream to be considered; let ho-

rizontal abscissae x be measured

against the direction of flow,

and vertical ordinates to the

surface of the stream, z, up-
FiS- 253 -

wards. Consider any indefinitely short portion of the stream whose
horizontal length is dx; in practice this may almost always be con-

sidered as equal to the actual length. The fall in that portion of
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the stream is d z, and the acceleration d v, because of v being

opposite to x. Then modifying the expression for the loss of head
due to friction in equation 3 of Article 640 to meet the present

case, and adding the loss of head due to acceleration, we find

dz . _^
g
+y "A 20"

In applying this differential equation to the solution of any parti-
cular problem, for v is to be put Q -=- A, and for A and s are to be

put their values in terms of x and z. Thus is obtained a differential

equation between x and z, and the constant quantity Q, the flow

per second. If Q is known, then it is sufficient to know the value

of z for one particular value of a?, in order to be able to determine
the integral equation between z and x. If Q is unknown, the

values of z for two particular values of x
t
or of z and (the

Cv CC

declivity), for one particular value of x, are required for the solu-

tion, which comprehends the determination of the value of Q.
642. The Friction in a Pipe Running Full produces loss of

dynamic head according to the same law with the friction in a

channel, except that the dynamic head is now the sum of the ele-

vation of the pipe above a given level, and of the height due to the

pressure within it. The differential equation which expresses this

is as follows : Let d I be the length of an indefinitely short portion
of a pipe measured in the direction of flow, s its internal circumfer-

ence, A its area of section, z its elevation above a given level, p the

pressure within it, h the dynamic head. Then the loss of head is

77 j dp vdv , sdl v2

-dh = -dz ---- = - - +/ '-sr- ......... (1.)
9 A 2g

dh
The ratio is called the virtual or hydraulic declivity, being the

rate of declivity of an open channel of the same flow, area, and

hydraulic mean depth. This may differ to any extent from the

actual declivity of the pipe, -=-=.

cL L

"When the pipe is of uniform section, d v = 0, and the first term
of the right-hand side of equation 1 vanishes.
When the section of the pipe varies, s and A are given functions

of 1. If Q is given, v = Q -=- A is also a given function of I ; and
to solve the equation completely, there is only required in addition
the value of h for one particular value of L If Q is unknown, the

values of h for two particular values of
I, or of h and for one
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particular value of
I,

are required for the solution, which compre-
hends the determination of Q.

643. Resistance of Mouthpieces. A mouthpiece is the part of a

channel or pipe immediately adjoining a reservoir. The internal

friction of the fluid on entering a mouthpiece causes a loss of head

equal to the height due to the velocity multiplied by a constant

depending on the figure of the mouthpiece, whose values for certain

figures have been found empirically ;
that is to say, let A h be the

loss of head ;
then

f being a constant.

For the mouthpiece of a cylindrical pipe, issuing from the flat

side of a reservoir, and making the angle i with a normal to the

side of the reservoir, according to Weisbach,

/ = 0-505 + 0-303 sin ^ + 0-226 sin'i.......... (2.)

644. The Resistance of Curves and Knees in pipes Causes a loss

of head equal to the height due to the velocity multiplied by a co-

efficient, whose values, according to Weisbach, are given by the

following formulae : For curves, let i be the arc to radius unity, r

the radius of curvature of the centre line of the pipe, and d its

diameter.

Then for a circular pipe,

.(i.)and for a rectangular pipe,

For knees, or sudden bends, let i be the angle made by the two por-
tions of the pipe at either side of the knee with each other; then

f = 0-9457 sin
2 1 + 2-047 sin

4

I (2.)
2i 2i

645. A Sudden Enlargement of the channel ill which a stream
of liquid flows, causes a sudden diminution of the mean velocity in

the same proportion as that in which the area of section is in-

creased. Thus, let v
l
be the velocity in the narrower portion of

the channel, and let m be the number expressing the ratio in which
the channel is suddenly enlarged: the velocity in the enlarged part
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is . Now it appears from experiment, that the actual energy

due to the velocity of the narrow stream relatively to the wide

stream, that is, to the difference vl (1
j,

is expended in over-

coming the internal fluid friction of eddies, and so producing heat;
so that there is a loss of total head, represented by

646. The General Problem of the flow of a stream with friction

is thus expressed : Let \ + ~, and h2 + ^-, be the total heads
Ag &

at the beginning and end of the stream respectively ;
then the loss

of total head is represented by

where the right-hand side of the equation represents the sum of

all the losses of head due to the friction in various parts of the

channel.

SECTION 4. Flow of Gases with Friction.

647. The General Law of the friction of gases is the same with

that of the friction of liquids as expressed by equation 1, Article

638, the value of the co-efficient/being

0-006, nearly,

for friction against the sides of the pipe or channel. 3?or a cylin-
drical mouthpiece, the co-efficient of resistance is 0-83

;
for a

conical mouthpiece diminishing from the reservoir, 0-38.

When the pressures at the beginning and end of a stream of gas

do not differ by more than of their mean amount, problems

respecting its flow may be solved approximately by means of the

above data, treating it as if it were a liquid of the density due to

the lesser pressure, as in the approximate equation of Article 637.

In seeking the exact solution of the flow of a gas with friction,
it is necessary to take into account the effect of'the friction in pro-

ducing heat, and so raising the temperature of the gas above what
it would be if there were no friction, as supposed in Section 2. In
the flow of a perfect gas with friction, if the heat produced by the

friction is not lost by conduction, the friction causes no loss of total
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head ;
so that if at the beginning and end of a stream the velocities

of a perfect gas are the same, its temperatures must also be the

same. In an imperfect gas, there is a small depression of tempera-

ture, which has been employed by Dr. Joule and Dr. Thomson as

a means of determining or verifying the laws of the deviation of

different gases from the condition of perfect gas.

SECTION 5. Mutual Impulse of Fluids and Solids.

648. Pressure of a Jet against a Fixed Surface. A jet of fluid

A, fig. 254, striking a smooth surface, is deflected so as to glide

Fig. 254. Fig. 255.

Fig. 256.

along the surface in that path B E which makes

the smallest angle with its original direction

of motion A B, and at length glances off at the

edge E in a direction tangent to the surface.

To simplify the question, the surface is sup-

posed to be curved in such a manner as to

guide the jet to glance off it in one definite direction. The fric-

tion between the jet and the surface is supposed insensible. This

being the case, as the particles of fluid in contact with the sur-

face move along it, and the only sensible force exerted between
them and the surface is perpendicular to their direction of motion,
that force cannot accelerate or retard the motion of the particles,

but can only deviate it. Let v, then, be the velocity of the par-
ticles of fluid, Q the volume discharged per second, p the density,
and /3 the angle by which the direction of motion is deflected; then

is the momentum of the quantity of fluid whose motion is deflected

per second. Also conceive an isosceles triangle whose legs are each
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equal to the velocity v, and make with each other the angle /3 ;

then the base of that triangle, whose value is

ft

2 v sin -,

represents the change of velocity undergone by each particle of

fluid ; so that the change of momentum per second is

and this also is the amount of the total pressure acting between the

fluid and the surface, in the direction of a line which is parallel to

the base of the isosceles triangle before mentioned
;
that is, which

makes equal angles in opposite directions with the original and new
directions of motion of the jet.

The force represented by F may be resolved into two compo-
nents, F, and F

y, respectively parallel and perpendicular to the

original direction of the jet. The values of the resultant and its

two components evidently bear to each other the proportions,

F : Fx : F : 2 sin
-^

: 1 -cos/3 :sin/3 ........... (2.)J

whence the components have the values,

F, = l(l-cos,3);Fy
= lsm,3......... (3.)

If the surface struck by the jet is of a symmetrical figure about
the original direction of the jet as an axis, the quantity of fluid Q
which strikes the surface in each second spreads and glides off in

various directions distributed symmetrically round the axis, and

making equal angles /3 with it
;
so that the forces exerted perpen-

dicular to the axis by the different parts of the spread and diverted

jet balance each other, and nothing remains but the sum of the

components parallel to the axis, whose value is F,, as given in the

first of the equations 3.

By substituting A v for Q, the forces may be expressed in terms
of the sectional area of the jet.
As a particular case, let the surface be a plane, as in fig. 255.

The jet, on striking the surface, spreads and glances off in all direc-

tions at right angles to its original direction, so that /3
= 90,

cos ft
=

0, and

.-t2-f ..................... (4.)
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being equal to the weight of a column of fluid whose base is the
sectional area of the jet, and its height double of the height due to
the velocity. This result is confirmed by experiment.
As another case, let the surface be a hollow hemisphere (fig. 256),

so that the jet in spreading is turned directly backwards. Then
ft 180, -cos/3 = +1, and

2 P Qv _ 2 P Av*
JP,

-
j ,.....(o.)

9 9

being equal to the weight of a column of fluid whose base is the

sectional area of the jet, and its height four times the height due
to the velocity.

649. The Pressure of a Jet against a Moving Surface is found by
substituting in the equations of the preceding Article, the motion
of the jet relatively to the surface for its motion relatively to the

earth. In this case there is energy transmitted from the jet to the

solid surface or from the solid surface to the jet; and the deter-

mination of the amount of energy so transmitted per second forms
an important part of the problem.

CASE 1. When the surface has a motion of translation parallel to

tlie original direction of the jet, let u be the velocity of that motion,

positive if it is along with the motion of the jet, and negative if

against it
;

let v
l
be the original velocity of the jet ; then v l u is

the velocity of the jet relatively to the surface. Consequently, the

component force acting between the fluid and the solid surface, in

the direction of motion of the latter, is

(1.)

representing also the equal and opposite force which must be ap-
plied to the solid to make its motion uniform

;
and the energy

transmitted per second is .

which, if u is positive, is transmitted from the fluid to the solid,
and if u is negative, from the solid to the fluid.

The energy thus transmitted per second is equal to the difference

of the actual energies of the volume Q of fluid before and after

acting on the solid. Let v2 be the velocity of the fluid after the

collision
;
this being the resultant of u, and of v

l u in tlie devi-

ated direction, its square is given by the equation

v\ = u* 4- (vr
- uf + 2 u (v,

-
u)

' cos ft

= J-2w(t;1 -w)(l-cos/8); ................. (3.)

2o
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by comparing which with equation 2 it is evident that

as has been stated.

The maximum transmission of energy from the fluid to the solid,

for a given velocity of jet, is obviously given by the velocity,

which gives

F* = g

^

'

(1 cos
/3) ; F, u = g

*/
1

(1 cos
ft).

If ft
= 90, as in fig. 255, the maximum energy transmitted is

e Q v* -r- 4
gr,

or half of the original actual energy of the fluid. If

ft = 180, as in fig. 256, the maximum energy transmitted is

C Q v\ -T- 2
gr,

or /te M?Aofe of the original actual energy of the fluid,

which, after the collision, is left at rest.

CASE 2. W/ien the surface has a motion of translation in any
direction, with the velocity u, let B D, fig. 254, represent that

direction and velocity, and B C the direction and original velocity

v, of the jet. Then D C represents the direction and velocity of

the original motion of the jet relatively to the surface. Draw
E F = D C tangent to the surface at E, where the jet glances off;
this represents the relative velocity and direction with which
the jet leaves the surface. Draw F G

||
and = B D, and join E G ;

this last line represents the direction and velocity relatively to the

earth, with which the jet leaves the surface, being the resultant of

E F and F G.

The total force exerted between the fluid and the surface might
be determined by finding the change of the momentum of the

volume of fluid Q, due either to the change of direction and velo-

city relatively to the earth, viz., from BC to EG; or to that

relatively to the surface, viz., from DC to EF. But the force

which it is most important to determine is that to which the trans-

mission of energy is due, viz., the force parallel to B D, which will

be denoted by F.,.. This force is equal to the change in one second
of the component momentum of the fluid in the direction B D.
Let = ^_ D B C, denote the angle between the direction of the

jet and that of the body's translation; then the component, in the
direction B D> of the original velocity of the jet is

V) COS '

.

\:

'
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Let w = D C be the velocity of the jet relatively to the surface ;

then
w2 = w2

-f- vl2uvi cos et .................. (6.)

Let y = supplement of ^ E F G, denote the angle which a tan-

gent to the surface at the edge where the fluid leaves it makes with

the direction of translation. Then the component, in the direction

B D, of the new velocity of the jet is

u + w cos y ]

and the change of momentum in that direction in one second is

F, = -
(vj cos etuw ' cos y) ............... (7.)

which gives for the energy transferred per second,

F, M =- U
(Vj COS et U W ' COS y) ............ (8.)

y

Let v2 be the resultant velocity of the fluid after the collision
;
then

vl = u2 + w2 + 2uwcosy .................. (9.)

and it is easily verified that

P.. ='-^3 ...................... (1 o.)

650. Pressure of a Forced Vortex Against a Wheel. In a free

vortex (Article 630, 631), because the velocity of each particle is

inversely as its distance from the axis, the angular momentum of

every particle of equal weight is the same
;
and a particle in mov-

ing nearer to or farther from the axis of the vortex, preserving its

angular momentum, requires no external force to be applied to it

in order to make it assume the motion proper to each part of the

vortex at which it arrives.

If, in a forced vortex, there is at the same time a radiating
current by which the fluid moves towards or from the axis, then by
means of solid surfaces, such as those of the vanes of a wheel, there

must be applied to the fluid in the vortex a couple sufficient in each

second to produce the requisite change of angular momentum in the

quantity of fluid which flows radially through the vortex in a

second, and the fluid will react upon the wheel with an equal and

opposite couple.

Symbolically, let rQ, rlt be the radii of the cylindrical surfaces at

which a forced vortex begins and ends ; v
,
vu the velocities of fehe
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revolving motion at these two surfaces; Q, the flow of the radial

current; then the moment of the couple exerted between the vortex

and the wheel is

(1.)

A vortex-wheel, or turbine, when working in the most favourable

manner, receives the fluid at ends of its vanes which have a velocity
of revolution equal to that of the particles of fluid in contact with
them

;
so that relatively to the wheel, the motion of the fluid is at

first radial. The fluid glances off from the vanes at their other

ends, which are of such a figure and position that they leave the

fluid behind them with only a radial motion relatively to the earth
;

so that the whole of the energy due to the revolution of the fluid is

transmitted to the wheel. That is to say, let a be the angular

velocity of the wheel
;
then we must have

9 99
The last quantity, M a, is the energy transmitted in each second

from the fluid to the wheel, which, in the case supposed, is the

whole energy due to the motion of revolution and centrifugal

pressure of the weight e Q of fluid in a rotating forced vortex, as

already shown in Article 632.

The ends of the vanes which receive the fluid should be radial,
because the motion of the fluid relatively to them is radial. The
ends of the vanes where the fluid glances off should be inclined

backwards so as to make with the radii intersecting them, an angle

given by the following equation : Let u= --- be the velocity
J *7C TI

of the radial current at the ends of the vanes now in question; then

(3-)

b being the depth of the wheel in a direction parallel to the axis.

Fig. 257 represents part of Thomson's vortex water-wheel,
designed on these principles. The water is supplied to the wheel
from a large external casing, in which it forms a free spiral vortex

;

it is directed by guide blades, C, against the outer circumference of
the wheel, where the vanes are radial, and is discharged at the
central orifice of the wheel, the inner ends of the vanes being
directed backwards at the angle 6 above described. The guide
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blades are moveable about pivots at A, in order to adjust the angle
of obliquity of the external free spiral vortex at pleasure, and so to

adapt the flow Q of the radial current to the work to be performed

Fig. 257. Fig. 258.

A vortex-wheel has been applied to steam by Mr. William
Gorman of Glasgow.

651. A Centrifugal Pump consists mainly of a vortex-wheel

which communicates motion to the water, so as to make it form a

forced vortex of the radius C K = r
, fig. 258. The water is supplied

by a radiating current proceeding outwards from the central orifice

towards the circumference. The inner ends of the vanes should

make with the radii traversing them the angle already denoted by
0, Article 650, equation 3, that they may cleave the fluid as it moves

radially outwards, without striking it, which would cause agitation,
and waste of energy in friction. The outer ends of the vanes should

be radial. Beyond the wheel, the water forms a free spiral vortex

in a casing, from which it is discharged at A through a pipe. The
surface velocity a rQ = VQ of the wheel is regulated by the total head

required, consisting of the elevation at which the water is to be

delivered, the height due to its velocity of delivery, and the head
lost in overcoming friction

; that is to say, according to the prin-

ciples of Article 630 to 633,

.(1.)

where z is the elevation of the point of delivery, V the velocity in

the discharge pipe, and 2 -f the sum of the various quantities by
which the height due to that velocity is to be multiplied to find the
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loss of head from various causes of friction. The ratio of C A to C R
= rQ is regulated by the law that in a free vortex the velocity is

inversely as the radius; that is to say,

(2.)

Guide blades in the free vortex are here unnecessary.
A blowing fan is a centrifugal pump applied to air.

652. The Pressure of a Current upon a solid body floating or

immersed in it would be equal in opposite directions, and have

nothing for its resultant, if fluids moved without friction. But
because of the energy of the diverted streams which glance from the

body being to a greater or less extent expended in fluid friction,

the pressure on the back of the solid body becomes less intense

than the pressure on the front
; and to the resultant pressure in the

direction of the current thus arising, has to be added the resultant

of the direct friction of the fluid against the surface of the solid body.
Our knowledge of the laws of the force exerted by a current

against a solid body is almost wholly empirical.
It is known that that force can be approximately represented by

a formula of this kind :

being the product of the height due to the velocity of the current,
the area A of the greatest cross-section of the solid body; the

weight of an unit of volume of the fluid, and a co-efficient k

depending on the figure of the body. The values of this co-efficient

have been found experimentally for a few figures. . The following,

according to Duchemin, are some of its values for rectangular prisms
and cylinders, placed with their axes along the current :

Let L be the length of the prism or cylinder, A its transverse area,
b and d its transverse dimensions, if a rectangular prism, or its

axes, if a cylinder. Then for

L-r- J~bd = 0, 1, 2, 3.

&= 1-864, 1-477, 1-347, 1-328.

The value headed is applicable to very thin plates.
653. The Resistance of Fluids to the motion of bodies floating or

immersed in them is subject to the same remarks which have been
made respecting the pressure of currents against solid bodies. It is

also capable in many cases of being approximately represented by
the formula
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The co-efficient k is less for a solid moving in a fluid, than for a
fluid moving past the same solid. The following values are given
chiefly on the authority of Duchemin. For prisms and cylinders,

moving in the direction of their axes, the symbols having the same

meaning as in the last Article :

(1 + '!i
7

V 96^+

= 0, 1, 2, 3; average above 3.

k = I -254, 1 -282, 1 -306, 1 -330
;

1 4.

These results are also given by the empirical formula,

& =1-254

k for a cylinder, moving sideways, about 0*77
;

for a sphere, ................ 0'51;

for a thin hollow hemisphere moving with

the hollow foremost, ..............................about 2'0;

for a prism with wedge-formed ends = k for

same prism with flat ends, x (1 cos
/3),

where ft = ^ angle of wedge (doubtful).

The following are results deduced from Mr. Bashforth's experi-
ments on elongated projectiles at velocities of from 1,300 to 1,500
feet per second (see Proceedings of the Royal Society, Feb., 1868):

c A v\
-7-'

where A is in square feet, and v in feet per second
;
and c has the

following values, according to the shape of the head of the projectile,

hemispherical, 0-0000245; oval and pointed, from 0-0000191 to

0-0000204.
From the results of observations of the engine power required to

propel various steam vessels of different sizes and figures at different

velocities, there is reason to think it probable, that when ships are
built of such figures that the water glides round their surfaces
dthout forming surge or large eddies, the principal part, if not the

only appreciable part, of the resistance, is due to the direct friction
between the water and the bottom of the ship. The opinion that
the resistance to the motion of ships which are not very bluff
consists almost wholly of friction, has been confirmed by subsequent
experiments. The co-efficient of the friction between water and
the bottom of an iron ship is nearly the same with that of water in
iron pipes. The friction varies nearly as the square of the velocity
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of rubbing between the water and the ship's bottom. That velocity
is different at different points of the ship's bottom, and bears to the

speed of the ship a ratio at each point depending on the ship's

figure and on the position of the point in question. The average

velocity of rubbing exceeds the speed of the ship; and the excess

is the greater the bluffer her shape. Thus, though a long and

sharp vessel presents a greater rubbing surface than a short and

bluff vessel of the same size, the average velocity of rubbing is less

in the longer vessel at the same speed; so that there is a certain

degree of sharpness which gives the least resistance for a given size

and speed. What that degree of sharpness is cannot yet be fixed

with any great precision ;
but in general it does not greatly differ

from that which is given by making the sum of the lengths of the

bow and stern equal to about seven times the greatest breadth.

The following formula has been found to agree well with experi-
ments on the resistance of ships : Let Gr be the mean immersed

girth ; L, the length on the water line
;

s2
,
the mean of the squares

of the sines of the angles of obliquity of the stream lines, or lines

which the particles of water follow in gliding over the ship's

bottom; let v be the velocity of the ship in feet per second, and/
a co-efficient, whose value for a clean painted iron bottom is about

-

004; then the resistance is nearly

G(1 + 4*2 + s4
)
................. (3.)

The factor, L G (1 + 4 s2 + s4
),

is called the "augmented surface."

See Civil Engineer and Architect's Journal, October, 1861; Phil.

Trans., 1862, 1863; Trans, of the Institution of Naval Architects,

1864; also Shipbuilding, Theoretical and Practical, by Watts,

Rankine, Napier, and Barnes.

Mr. Scott Russell has proved that, when the length of a ship
bears less than a certain proportion to that of the wave which

naturally travels with the same speed, there is a rapidly increasing
additional resistance. The least proper length in feet suitable for

a given speed is about fifteen-sixteenths of the square of the speed
in knots. (As to Waves, see page 631.)

654. stability of Floating Bodies In Article 120 it has been

shown, that in order that a body floating in a liquid may be in

equilibrio, the weight of liquid displaced must be equal to the

weight of the floating body, and the centre of buoyancy must be
in the same vertical line with the centre of gravity of the floating

body.
In order that the equilibrium of a floating body may be stable,

every angular displacement of the body from the position of equili-
brium must cause a deviation of the centre ofbuoyancy, relatively to a
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vertical line traversing the centre of gravity, in the direction towards
which tliefloating body heels; so that the weight of the body acting

through its centre of gravity, and the equal and opposite pressure
of the liquid acting through the centre of buoyancy, may constitute

a restoring or righting couple, tending to bring the body back to the

position of equilibrium. Should the relative deviation of the centre

of buoyancy take place in the opposite direction, a couple is pro-
duced tending to upset the body, which is accordingly unstable;
should the centre of buoyancy continue to be in the same vertical

line with the centre of gravity, the body continues to be in equili-
brio in its new position, arid its equilibrium is indifferent.

Let fig. 259 represent a cross-section of a ship, G her centre of

gravity, A B the water line,

and C the centre of buoyancy
in the position of equilibrium.
Let the ship heel through an

angle 6, and let E F be the

new water line, and D the

new centre of buoyancy; and
let the ship be kept in this

position by a couple whose
moment is known. Let W
be the weight of the ship,
and S the volume of water

displaced by her, so that W =
. e S (? being the weight of a cubic

foot of water). Through D draw a vertical line D M, cutting the

line C G, which was originally vertical, in M. The force of the

righting couple is W, and its arm is the horizontal distance from

G to the line D M; that is, G M sin Q; consequently, the moment

of the righting couple, equal and opposite to the moment of the

heeling couple, is

W -G^M-sintf (1.)

The comparative stability of a ship is proportional to the arm of the

righting couple for the same angle of heel; and that arm is propor-

tional to G M, which length thus becomes a measure of the stability
of the ship. The point M, when determined for an indefinitely
small angle of heel, is called the METACENTRE; it may be the same,
or it may be different for finite angles. When the position of M
is variable, the angle of heel to be adopted in finding it should

be the greatest which under ordinary circumstances is likely to

occur; for different ships this varies from 6 to 20.
If the metacentre is above the centre of gravity, the equilibrium

is stable; if it coincides with the centre of gravity, the equilibrium
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is indifferent; if it is below the centre of gravity, the equilibrium
is unstable.

Let H be the line of intersection of the planes of the two water

lines A B, E F. The deviation C D of the centre of buoyancy is

the same with the deviation of the centre of gravity of the mass
of water displaced, which would arise from removing the wedge
A H E into the position F H B. Let s be the volume of that

wedge, e its density, and let I denote the distance between the

centres of gravity of its two positions, A H E and F H B. Draw
G D parallel to the line joining those two centres of gravity; and,

according to Article 77, make

then is D the new centre of buoyancy.
The angle which C D makes with the horizon is in general either

exactly or very nearly = K > 8O tna* C D = M C 2 sin
, approxi-

mately. Also, the volume s is in general either exactly or nearly

proportional to 2 sin
g ; so that if c be a constant volume depend-

ing on the figure of the water line, s = c 2 sin
, approximately.

Consequently, to find the height M C of the point M above the centre

of buoyancy, and its height M G above the centre of gravity, we have
the approximate formulae,

The sign =+=. denotes that G C is to be subtracted or added according
as G is above or below C. The product I c is found approximately
in the following manner, for those cases in which the water lines
A B and E F are sensibly equal and similar figures, so that the
line H, where their planes intersect, traverses the centre of gravity
of each of those figures, and the wedges A H E, F H B, are
similar as well as equal.

Q
The product I s = I c 2 sin h is the double of the statical

J
moment of one of the wedges relatively to the line H, supposing
the density equal to unity. Let distances measured lengthways
on the line H be denoted by x; let the perpendicular distance
of any point in a water line plane bisecting the angle A H E from
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the line II be denoted by y, and let the thickness of the wedge at

the point whose co-ordinates are x and y be z = y 2 sin o. Then
we have

s = 2 sin 2' j j y'dy dx;c =
J J

ydy dx\

s = 4 sin A / / y
2 ' dy d x'}

and therefore

I c 2
I

I yt-dy dx;

being the moment of inertia of the water line plane about the axis

H. To express this in a convenient form, let b be the breadth of

the ship at the water line, at a given distance x, measured length-

ways from an assumed origin. Then

2
1 2/

2 d y = ^;
and I c = ~

J
63 dx. (5.)

As to the moments of inertia of different plane figures, see Article

95. Thus, equation 3 becomes

bs 'dx
-^r^-^^C (6.)

The theory of the stability of ships was first investigated by
Bossut, and was further developed by Atwood. The most impor-
tant contributions to that theory, of later date, have been, the

memoir of Dupin, Sur la Stabilise des Corps Flottans, a paper by
Canon Moseley in the Philosophical Transactions for 1850, and
various papers by Rawson, Froude, Merrifield, Barnes, and others.

655. Oscillations of Floating Bodies. The theory of the oscilla-

tions of ships was investigated in an approximate manner by Bossut

and other mathematicians, and was first brought into a complete
state by Moseley, in the paper already referred to. Its details

are of much complexity; and an outline of its leading principles,
and of their results in the most simple cases, is all that needs be

given in this treatise.

The oscillation of a ship may be resolved into rolling, or gyration
about a longitudinal axis, pitching, or gyration about a transverse

axis, and vertical oscillation, consisting in an alternate rising above
and sinking below the position of equilibrium. The point of chief

importance in practice is the time occupied by a rolling oscillation.

If that time is too long, the ship is deficient in stability ;
if too

short, her movements are abrupt, and tend to overstrain her.

If a ship is of such a figure that, when she rolls into a new posi-
tion of equilibrium under the action of a couple, her centre of
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gravity does not alter its level, then her rolling gyrations are per-
formed about a permanent longitudinal axis traversing her centre

of gravity, and are not accompanied by vertical oscillations, and her

moment of inertia is constant while she rolls. That condition is

fulfilled if all the water line planes, such as A B and E F, are

tangents to one sphere described about G. In what follows it will

be supposed that this condition is fulfilled, and also that the position
in the ship of the point M is sensibly constant.

According to Article 654, equation 1, the righting couple for a

given angle of heel 6 is

W GM sin 6
;

but in an approximate solution we may substitute 6 for sin 6. Let
I be the moment of inertia of the ship about her axis of rolling;
then equations 2 and 3 of Article 598 give the following value for

the time of a double gyration :

= 2xA /( -
V \gW

where R is the radius of gyration of the ship. This is the same
with the time of a double oscillation of a simple pendulum whose

length is R2 -- GH.
The researches of Mr. William Froude, first described to the

British Association in July, 1860, and afterwards laid more fully
before the Institute of Naval Architects, have shown, first, that

the same forces which tend to keep a ship upright in still water
tend to place her perpendicular to the surface of the water amongst
waves, and thus to increase rolling; secondly, that the chief cause

of excessive rolling is too near a coincidence between the periodic
time of the vessel's rolling and that of her being acted upon by
successive waves; and thirdly, that the most efficient method of

preventing excessive rolling is to adjust the moment of inertia

and the stability of a vessel, so that her periodic time of rolling
shall be longer than the period of any waves she is likely to en-

counter, taking care at the same time to leave sufficient stability
to prevent the risk of upsetting, or of heeling too far over with
a side wind.

See Trans, of the Institution of Naval Architects, passim; also

Shipbuilding, by Watts, Rankine, Napier, and Barnes. (As to

Waves, see page 631.)
656. The Action between n Fluid and a Piitton, consisting in the

transmission of energy from the one to the other, has already
been considered in a general way in Article 517. In the present
Article it will be treated more in detail.

In figs. 260 and 261, let abscissae measured parallel to the
line O S represent the spaces successively occupied by a fluid in 2*
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cylinder provided with a piston, any such space being denoted by
s

; and let ordinates measured parallel to the line O P, perpendi-

Fig. 260. Fig. 261.

cular to S, represent the intensities of the pressure exerted by
the fluid against the piston, any such intensity being denoted by p.

Let a given weight of a gaseous substance go through a succes-

sion of arbitrary changes of pressure and volume, so as to return

in the end to the condition from which it set out. Such a succes-

sion of changes is called a cycle of changes ;
it is represented by a

closed curve, such as D C E B in fig. 260, and the area of that

curve represents the energy transferred during the cycle of changes.
If the changes take place in the order D C E B, that is, if greater

pressures are exerted during the expansion of the substance than

during its compression, energy is transferred from the gas. to the

piston ;
if the changes take place in the order D B E C, that is, if

greater pressures are exerted by the substance during its compres-
sion than during its expansion, energy is transferred from the pis-

ton to the gas.

The amount of energy transferred may be expressed in two

ways. First, for any given volume O A = s, let A C = p l
and

ATB = p.2 be the greater and the less intensities of the pressure ;

then

energy transferred = / (p^ p2)ds (1.)

Secondly, for any given pressure O F = p, let F E = st and FT)
= Sj be the greater and the less of the spaces occupied ; then

energy transferred = / (^ s2) dp (2.)

which is another expression for the same quantity.

Fig. 261 represents the case in which a given weight of an elastic

substance occupying the space O E = s
t
at the pressure B = plt

is introduced into a cylinder and made to drive a piston, is then
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allowed to expand, its volume increasing to O F = s2, and its pres-

sure falling to FD = p2, according to a law represented by the

curve C D, and is lastly expelled from the cylinder at the final

pressure. In this case the energy transferred from the elastic sub-

stance to the piston is represented by

D= [

Pl

sdp = W P ; (3.)
J J>2 ^ J>2 6

area ABC

being, in fact, as the last expression shows, equal to the weight of

the elastic substance employed, W, multiplied by its loss of dyna-
mic head.

The same equation gives the energy transferred from the piston
to the elastic substance, when the latter is introduced into the

cylinder at the lower pressure and expelled at the higher.
For a perfect gas (Article 635) this expression becomes

If the fluid is discharged from the cylinder under a pressure p3

less than that at which the expansion terminates, there is to be

added to the preceding formula the term

** (P*P3) ............................ (5.)

If the fluid which acts on the piston is introduced in the state

of saturated vapour, it is discharged as a mixture of saturated

vapour at a lower pressure with more or less of liquid. In this

case, the following equations belonging to the science of thermo-

dynamics are to be used. Let p be the pressure of saturation of a

vapour, and t the corresponding boiling point of its liquid, in

degrees reckoned from the absolute zero, "274 Centigrade or 4930< 2

Fahrenheit below the melting point of ice. Then

B C 1LogJP = A
;
---;

(6.)

C 40 20

(See Edin. Philos. Jour., July, 1849
; Edin. Transac., xx; Pliuos.

Mag., Dec., 1854; NichoVs Cyclopaedia, art. "Heat, Mechanical
Action of.") The following are the values of some of the constants
in the above formulae, selected from a table in the Philosophical
Magazine for Dec., 1854, p being in Ibs. per square foot, and * in

degrees of Fahrenheit:
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Tl T>J

A LogB LogC -x r-^fi\j * \j

Water,... 8-2591 3-43642 5'59873 '344i 0-00001184

^Ether,...7'5732 3-31492 5-21706 0-006264 0*00003924

Let L be the value, in foot pounds of energy, of the latent heat

of evaporation, at the absolute temperature T, of so much fluid as

fills a cubic foot mere in the state of vapour than it does in the

state of liquid ; B the weight of that fluid
;
H the value, in foot

pounds of energy, of the latent heat of evaporation of one pound
of the fluid at the absolute temperature T

;
and J the equivalent

in foot pounds of a British thermal unit, or 772 ; then

-

(7.)

(hyp. log. 10 = 2-3026);

H -J(C-6)(r-r )

(for water, c b= 0-7) j

(for water at the temperature of

melting ice, H = 842872.)

3 c denotes the value in foot pounds of the specific heat of the

liquid, which for water is 772, and for aether, 399.

Let the suffixes 1, 2, and 3, denote the pressures and tempera-
tures respectively, of the introduction of the vapour, the end of its

expansion, and its final discharge, and quantities corresponding to

them ;
s

}
and s2 being, as before, the spaces filled by it at the begin-

ning and end of its expansion. Then

ratio of expansion, -==) - + J c DI hyp log f ; ...... (8.)
s\ -L^ ( r

\
T2 )

energy transferred, U = /

*
s dp + *2 (p2 -ps)

(
~

T2
(9.)

(10.)

These formulas are demonstrated in a paper on Thermodynamics
in the Philosophical Transactions for 1854.

The complexity of the preceding formulae renders their use incon-

venient, except with the aid of tables of the quantities p, L, and D,
for different boiling points. In the absence of such tables, the
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following formulae give approximate results for steam, where the

pressure of its admission pi is from one to twelve atmospheres :

(11.)
P*

energy transferred, TJ = f s dp -f s2 (p2
- p&)

...(12.)

The expenditure of heat in foot pounds may be computed roughly

to about
Y^ -,

when the feed water is supplied to the boiler at about

100 Fahrenheit, by the formula

Tl
H=/ sdp + npoS^, (13.)

J
P2

where nis a co-efficient whose value is, for condensing engines, 16;
for non-condensing engines, 15.

Equations 11 and 12 are applicable to non-conducting cylinders
without steam-jackets. For cylinders with steam-jackets, acting
so as to keep the steam dry, it is more accurate to substitute 16
for 9, 17 for 10, and if, 1, and iV, respectively, for iV, V, and j,

throughout the equations 11 and 12.

For the exact theory of this case, see A Manual of the Steam

Engine and oilwr Prime Movers; also, Philosophical Transactions,

1859, Part I.

The following are the ordinary formula?, which give a good
approximation when the steam is slightly moist :

V =pl
s
1 hyp. log.-? + s

2 (p2 -ps) ...(15.)
s
i

The approximate formula (13) is applicable in all cases.



PART VI.

THEORY OF MACHINES.

657. rvatnrc and Division of the Subject. In the present Part
of this work, machines are to be considered not merely as modify-

ing motion, but also as modifying force, and transmitting energy
from one body to another. The theory of machines consists chiefly
in the application of the principles of dynamics to trains of me-
chanism

;
and therefore a large portion of the present part of this

treatise will consist of references back to Part IV. and Part Y.
There are two fundamentally different ways of considering a

machine, each of which must be employed in succession, in order

to obtain a complete knowledge of its working.
I. In the first place is considered the action of the machine

during a certain period of time, with a view to the determination

of its EFFICIENCY
; that is, the ratio which the useful part of its

work bears to the whole expenditure of energy. The motion of

every ordinary machine is either uniform or periodical. Hence, as

has been shown in Article 553, the principle of the equality of

energy and work, as expressed in Article 518, is fulfilled either

constantly or periodically at the end of each period or cycle of

changes in the motion of the machine.

II. In the second place is to be considered the action of the

machine during intervals of time less than its period or cycle, if

its motion is periodic, in order to determine the law of the periodic

changes in the motions of the pieces of which the machine con-

sists, and of the periodic or reciprocating forces by which such

changes are produced (Article 556).
The first chapter of the present Part relates to the work of

machines moving uniformly or periodically, and the second chapter
to variations of motion and force in machines. In a third chapter
will be stated briefly the general principles of the action of the

more important prime movers. With respect to those machines, it

is impossible to enter fully into details within the limits of such a

treatise as the present, especially as the most important of them all,

the steam engine, depends on the laws of the phenomena of heat,
which could not be completely explained except in a special treatise.
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CHAPTER I.

WORK OF MACHINES WITH UNIFORM OR PERIODIC MOTION.

SECTION 1. General Principles.

658. Useful and tost Work The whole work performed by a

machine is distinguished into useful work, being that performed in

producing the effect for which the machine is designed, and lost

work, being that performed in producing other effects.

659. Useful and Prejudicial Resistance are overcome in perform-

ing useful work and lost work respectively.
660. The Efficiency of a machine is a fraction expressing the

ratio of the useful work to the whole work performed, which is

equal to the energy expended. The limit to the efficiency of a

machine is unity, denoting the efficiency of a perfect machine in

which no work is lost. The object of improvements in machines

is to bring their efficiency as near to unity as possible.
661. Power and Effect; Horse Power. The power of a machine

is the energy exerted, and the effect, the useful work performed, in

some interval of time of definite length.
The unit of power called conventionally a horse power, is 550

foot pounds per second, or 33,000 foot pounds per minute, or

1,980,000 foot pounds per hour. The effect is equal to the power
multiplied by the efficiency.

662. Driving Point; Train; Working Point. The driving point
is that through which the resultant effort of the prime mover
acts. The train is the series of pieces which transmit motion and
force from the driving point to the working point, through which
acts the resultant of the resistance of the useful work.

663. Points of Resistance are points in the train of mechanism

through which the resultants of prejudicial resistances act.

664. Efficiencies of Pieces of a Train. The useful Work of an
intermediate piece in a train of mechanism consists in driving the

piece which follows it, and is less than the energy exerted upon it

by the amount of the work lost in overcoming its own friction,

Hence the efficiency of such an intermediate piece is the ratio of

the work performed by it in driving the following piece, to the

energy exerted on it by the preceding piece ;
and it is evident that

the efficiency ofa machine is the product of the efficiencies of the series
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ofmoving pieces which transmit energy from tJie driving point to the

working point. The same principle applies to a train of successive

machines, each driving that which follows it.

665. Mean Efforts and Resistances. In Article 515 is given the

expression / P d s for the energy exerted by a vaiying effort whose

magnitude at any instant is P ; and a corresponding expression

/ T\,ds denotes the work performed in overcoming a variable re-

sistance. In a machine moving uniformly, let these expressions
have reference to any interval of time, and in a machine moving
periodically, to one or any whole number of periods ;

let s be the

space described by the point of application of the effort or resist-

ance in the interval in question j then / P d s -f- s or /Re?$ -=- s

is the mean effort or mean resistance as the case may be. The fluc-
tuations of the efforts and resistances above and below their mean
values concern only the variations of velocity in a machine ;

and

therefore, in the remainder of the present chapter, P and K will be
used to denote such mean values only; so that energy exerted and
work performed, whether the forces are constant or varying, will

be respectively denoted by P * and II s. By referring to Articles

517 and 593, it appears, that besides a force and a length, as

expressed above, the two factors of a quantity of energy may be a
stress and a cubic space, or a couple and an angle, as shown in

the following table :

Energy 1 f Force in pounds x distance in feet ;

or Couple in foot pounds x angular motion to

work - = - radius unity; or
in Pressure in pounds per square foot x space

foot pounds J [
described by a piston in cubic feet.

666. The General Equations of the uniform or periodical working
of a machine are obtained by introducing the distinction between
useful and lost work into the equations of the conservation of

energy. Thus, let P denote the mean effort at the driving point,
s the space described by it in a given interval of time, being a
whole number of periods or revolutions, RJ the mean useful resist-

ance, s
{
the space through which it is overcome in the same inter-

val, R> any one of the prejudicial resistances, s.2 the space through
which it is overcome ; then

.(1.)

The efficiency of the machine is expressed by
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PS

667. Equations in terms of Comparative Motions. Let 5
t

: S= n
if

8.2 : s =. n2,
&c.

,
be the ratios of the spaces described in a whole num-

ber of periods by the working point and the several points of

resistance, to the space described, in the same interval of time, by
the driving point ;

then equation 1 of Article 666 takes the follow-

ing form, which expresses the "
Principle of Virtual Velocities

"

(Article 519) as applied to machines :

P = rc1 RI + s-rc2 R2,
..................... (1.)

Thus the mean effort at the driving point is expressed in terms of

the several mean resistances, and of the comparative motions alone,
which last set of quantities are deduced from the construction of

the machine by the principles of the theory of mechanism
; so that

every proposition in Part IV., respecting the comparative motions
of the points of a machine, can at once be converted into a proposi-
tion respecting the relation between the mean effort and resistances

;

and the mean effort required to drive the machine can be deter-

mined if the resistances are known.
668. Reduction of Forces and Couples. In Calculation it is

often convenient to substitute for a force applied to a given point,
or a couple applied to a given piece, the equivalent force or couple

applied to some other point or piece ;
that is to say, the force or

couple, which, if applied to the other point or piece, would exert

equal energy, or employ equal work. The principles of this

reduction are, that the ratio of the given to the equivalent force is

the reciprocal of the ratio of the velocities of their points of appli-
cation

;
and the ratio of the given to the equivalent couple is the

reciprocal of the ratio of the angular velocities of the pieces to which

they are applied.

SECTION 2. On tJie Friction of Machines.

669. Co-efficients of Friction. The nature and laws of the fric-

tion of solid surfaces, and the meanings of co-efficients of friction

and angles of repose, have been explained in Articles 189, 190,

191, and 192. The following is a table of the angle of repose
<D, the co-efficient of friction f= tan 0, and its reciprocal 1 . f,
for the materials of mechanism, condensed from the tables of

General Morin, and other sources, and arranged in a few com-

prehensive classes. The values of those constants which are

given in the table have reference to the friction of motion. As
to the difference between that and the friction of rest, see Article
204.
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No.
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The inclination given to these ways varies from about 1 in 10

for the smallest vessels, to about 1 in 20 for the largest. The
co-efficient of friction, when the ways are well lubricated with

tallow or soft soap, is probably between -03 and -04.

672 Friction of a Sliding Piece. In fig. 262, let A represent a

sliding piece, which moves uniformly along
the straight guide B B in the direction indi-

cated by the arrow, under two forces which

may be direct or oblique, but which are re-

presented as oblique, to make the solution

general. The force F2 opposed to the motion,
is the resultant of the useful resistance or

Fig. 262 . force which A exerts on the next piece In

the train, and of the weight of A itself, and will be called the given

force. Let the angle which it makes with the guide B B be denoted

by ir The force Fj is that which drives the piece ;
the angle it

which its direction makes with the guide B B is supposed to be

known
; but its magnitude remains to be determined, as well as

the friction, which it has to overcome in addition to the useful

resistance. Let Q denote the normal pressure of A against B B,
so that fQ is the friction. Then we have the two equations of

equilibrium :

Q = Ft sin i, + Fo sin i2 ; 1

F! cos i, = F2 cos i, + /Q I .......... (1.)

= Fi/sin iL + F2 (cos i2 + /sin i2) ; J

from which are easily deduced the following equations, solving the

problem :

/sin (i, + i2)'

! 2
-

;
-

-f.
-~

-
--

: . ....
cos ^

1 f sin ^
1

' cos i
x / sm z

l

The moment of Friction of a rotating piece is the statical

moment of the friction relatively to the axis of rotation of the piece,
and is the moment of a couple consisting of the friction, and of an

equal and opposite component of the pressure exerted by the

bearings of the piece against its axle. The moment of friction,

being multiplied by the angular motion in a given time, gives the

work lost in friction in that time.

674. Friction of an Axle. After a cylindrical axle has run for

some time in contact with its bearing, the bearing becomes slightly

larger than the axle, so that the point of most intense pressure,
which is also the point of resistance, traversed by the resultant
of the friction, adapts its position to the direction of the lateral

pressure.
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Iii
fig. 263, let A AA be a transverse section of the cylindrical

axle of a rotating piece, and C its axis of rotation; let B represent
the direction and magnitude of what will be
called the given force', being the resultant

of the useful resistance, and of the weight
of the piece under consideration. Let P
represent the effort required to drive the

piece, whose line of action is known, but its

magnitude remains to be determined. Let
D be the point where the directions of P
and B intersect, and D Q the line of action

of their resultant, which resultant is equal
and opposite to Q, the pressure exerted by
the bearing against the axle, and is there-

fore inclined to the radius C Q by an angle
CQD = $, being the angle of repose, in such Fi&- 263< '

a manner as to resist the rotation, whose direction is indicated by
the arrow.

Then to find the line of pressure D Q, it is obviously sufficient to

describe about the centre C a circle B B whose radius is

fr
(1.)

r = C Q being the radius of the axle, and to draw from the known
point D a line D T Q touching that circle in T, which point of

contact is at that side of the circle which makes a force acting from

Q towards T oppose the rotation.

From T draw T B -L B, and T P -L P. Then the magnitude of

the effort P is given by the equation

P = B-Tll + TP ..................... (2.)

and that of the pressure Q by the equation

Q2 = P2 + B2 + 2 P B cos^ P D B .......... (3.)

(the last term of which becomes negative when ^ P D B is

obtuse) ;
while the friction is

and its moment

Q T sin $ = Q CT ...................... (5.)

When P and B are parallel to each other, Q is their difference

or their sum, according as they act at the same or at opposite sides

of the axle, and Q T is to be drawn parallel to them both, so that
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R T, T P, and C T, lie in one straight line, when equations 2, 4,

and 5 will still hold.

In order to diminish the lateral pressure Q, and the friction

arising from it, to the least possible amount, the mechanism should

be so arranged as to make P and R act parallel to each other at the

same side of the axle. _
In most actual cases, sin =/ : J 1 +/2

differs from tan $ =f
in a proportion too small to be of any practical importance.
The bearings of axles should be made of materials which, though

hard enough to resist the rubbing without abrasion, are not so hard

as the axle. Hence for wrought iron axles, bronze bearings are

commonly used. Bearings of cast iron, millboard, and hardwood,
such as elm, with the grain set radially, have also been used with

advantage.
675. Friction of a Pivot. A pivot is the termination of an axle,

which presses endways against a bearing called a step, or footstep.

Pivots require great hardness, and are usually made of steel.

A fiat pivot is a short cylinder of steel, having a plane circular

end for a rubbing surface. If the pressure Q be equally distributed

over that surface whose radius is r, the moment of friction is easily

found by integration to be

.

..............................

In flat pivots, the intensity of the pressure, which is given by the

equation

is usually limited to 2,240 Ibs. per square inch.

In the cup and ball pivot, the end of the shaft, and the step,

present two recesses facing each other, into which are fitted two
shallow cups of steel or hard bronze. Between the concave spherical
surfaces of those cups is placed a steel ball, being either a complete
sphere, or a lens having convex surfaces of a somewhat less radius

than the concave surfaces of the cups. The moment of friction of

this pivot is at first almost inappreciable, from the extreme small-

ness of the radius of the circles of contact of the ball and cups ;

but as they wear, that radius and the moment of friction increase.

676. Friction of a. Collar. When it is impracticable or incon-

venient to sustain the pressure which acts along a shaft by means
of a pivot at its end, that pressure is borne by means of one or more

collars, or rings projecting from the shaft, and pressing against

corresponding ring-shaped bearings, for which, in the case of shafts

of screw propellers, hardwood set with the grain endways has been
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found a good material amongst others. Let r be the external, and
r the internal radius of a collar

;
its moment of friction for the

pressure Q is given by the formula

677. Friction of Teeth. When a pair of wheels work together,
let P be the pressure exerted between each pair of their teeth which
comes into action, s the distance through which each pair of teeth

slide over each other, as found in Articles 453, 455, 458, and
462 A, and n the number of pairs of teeth which pass the line of

centres in a given interval of time. Then in that interval, the work
lost by the friction of the teeth is

fnsP .............................. (1.)

678. Friction of a Band. A flexible band, such as a cord, rope,

belt, or strap, may be used either to exert an effort or a resistance

upon a drum or pulley round which it wraps. In either case, the

tangential force, whether effort or resistance, exerted between the

band and the pulley, is their mutual friction, caused by and pro-

portional to the normal pressure between them.
In

fig. 264, let C be the axis of a pulley A B, round an arc of

which there is wrapped a band, T
t
A B T2 ;

let the outer arrow

represent the direction in which the band slides, or tends to slide,

relatively to the pulley, and the inner arrow the direction in which
the pulley slides, or tends to slide, relatively to

the band.

Let T, be the tension of the free part of the

band at that side towards which it tends to draw
the pulley, or from which the pulley tends to

draw it
;
T2 the tension of the free part at the

other side; T the tension of the band at any
intermediate point of its arc of contact with the

pulley; 6 the ratio of the length of that arc to

the radius of the pulley ;
d 6 the ratio of an

indefinitely small element of that arc to the

radius
;
E, = T, T2 ,

the total friction between
the band and the pulley ;

d R the elementary

portion of that friction due to the elementary
arc d6] /the co-efficient of friction between the materials of the

band and pulley.
Then according to a principle proved in Articles 179 and 271, it

is known that the normal pressure at the elementary arc d 6 is
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T being the mean tension of the band at that elementary arc; con-

sequently, the friction on that arc is

Now that friction is also the difference between the tensions of the

band at the two ends of the elementary arc ;
or

which equation being integrated throughout the entire arc of

contact, gives the following formulse :

'

(1.)

When a belt connecting a pair of pulleys has the tensions of its

two sides originally equal, the pulleys being at rest
;
and when the

pulleys are set in motion, so that one of them drives the other by
means of the belt

;
it is found that the advancing side of the belt

is exactly as much tightened as the returning side is slackened, so

that the mean tension remains unchanged. Its value is given by
this formula : JL-^U^-^*^

T
1
+ T2 _ e-

f +l _.

TBT ~
2 (/-!)'

^
which is useful in determining the original tension required to

enable a belt to transmit a given force between two pulleys.
If the arc of contact between the band and pulley, expressed in

turns and fractions of a turn, be denoted by n,

6=2 *n; e/=108 /..- (3.)

When the band is used to resist the motion of the pulley, it

constitutes a kind of brake called & friction strap. In this case the

rubbing surfaces of the band and pulley may either be both of iron,

or may be protected by a covering made of pieces of wood, which is

renewed from time to time as it wears out.

679. in Frictionai Gearing, described in Article 445, it appears
that when the angle of the grooves is 40, and when their surfaces

are smooth, clean, and dry, the tangential force transmitted between
the wheels is once and a-half the force with which their axes are

pressed together. This proportion is much greater than that due to

ordinary friction, and must arise partly from adhesion.

680. Friction Couplings are used to communicate rotation be-

tween pieces having the same axis, where sudden changes of force

or of velocity take place ; being so adjusted as to limit the force

transmitted within the bounds of safety. Contrivances of this kind
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are very numerous; one of the most common and most useful is

that called a pair of friction cones. . The angle made by the sides

of the cones with the axis should not be less than the angle of

repose.
681. stiffness of Ropes. Ropes offer a resistance to being bent,

and when bent to being straightened again, which arises from the
mutual friction of their fibres. It increases with the sectional area
of the rope, and is inversely proportional to the radius of the curve
into which it is bent.

The work lost in pulling a given length of rope over a pulley, is

found by multiplying the length of the rope in feet, by its stiffness

in pounds ;
that stiffness being the excess of the tension at the

leading side of the rope above that at the following side, which is

necessary to bend it into a curve fitting the pulley, and then to

straighten it again.
The following empirical formulae for the stiffness of hempen ropes

have been deduced by General Morin from the experiments of
Coulomb :

Let K be the stiffness in pounds avoirdupois ;

d, the diameter of the rope, in inches ;

n = 48 d'
z
for white ropes, 35 d 2 for tarred ropes ;

r, the effective radius of the pulley, in inches ;

T, the tension, in pounds ; then,

For white ropes, B = -(0-0012 + 0-001026 rc + 0-0012 T); ,

(I-)

For tarred ropes, R = -
(0-006 + 0-001392 rc, + 0-00168 T). J

682. Rolling Resistance of Smooth Surfaces. By the rolling of
two surfaces over each other without sliding, a resistance is caused,
which is called rolling friction. It is of the nature of a couple

resisting rotation
;

its moment is found by multiplying the normal

pressure between the rolling surfaces by an arm whose length
depends on the nature of the rolling surfaces

;
and the work lost

in an unit of time in overcoming it is the product of its moment
by the angular velocity of the rolling surfaces relatively to each
other. The following are approximate values of the arm in decimals

ofafoot :

Oak upon oak, 0-006 (Coulomb).
Lignum-vitse on oak,...., 0-004
Cast iron on cast iron, 0-002 (Tredgold).

683. The Resistance of Carriages on Roads consists of a Constant

part, and a part increasing with the velocity. According to Gene-
ral Morin, it is given approximately by the following formula :
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R = Q[ a + b(v
-

3-28)3; 0-)

where Q is the gross load, r the radius of the wheels in inclies,

v the velocity in feet per second, and a and b two constants, whose
values are a b

For good broken stone roads, -4 to -55 -024 to -026

For paved roads, -27 -0684
For the pavement of Paris, -39 -03

On gravel roads the resistance is about double, and on sandy and

gravelly soft ground, five times the resistance on good broken stone

roads.

684. Resistance of Railway Trains. In the following formulae,

which are all empirical

E denotes the weight of the engine;
the gross load drawn by it;

the velocity, in miles an hour;
r

R
the radius of curvature of the line, in miles;
the resistance in pounds;
a co-efficient of friction

;

a co-efficient for resistance due to curvature.

Then for single carriages with cylindrical wheels, at velocities up
to 12 miles an hour, according to the experiments of Lieutenant

David Rankine and the Author,

where/= 0-002; and c = 0-3. (See Experimental Inquiry on the

Use of Cylindrical Wheels on Railways, 1842.)
For an engine arid train, the following is an empirical formula

deduced from the experiments of various authors :

where /ranges from -0027 to -004, according to the state of the

line and carriages, and c from 0'3 to O'l. (See Rankine' s Manual
of Civil Engineering.)

685. Heat of Friction. The work lost in friction produces heat

in the proportion of one British thermal unit, being so much heat

as raises tht temperature of a pound of water one degree of

Fahrenheit, for every 772 foot pounds of lost work.
Excessive heating is prevented by a constant and copious supply

of a good unguent.
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CHAPTER II.

VARIED MOTIONS OP MACHINES.

686. The Centrifugal Forces and Couples exerted by the various

rotating pieces of a machine against the bearings of their axles are

to be determined by the principles of Articles 540, 592, and

603, and taken into account in determining the lateral pressures
which cause friction, and the strength of the axles and framework.

As those centrifugal forces and couples cause increased friction

and stress, and sometimes also, by reason of their continual change
of direction, produce detrimental or dangerous vibration, it is de-

sirable to reduce them to the smallest possible amount ;
and for

that purpose, unless there is some special reason to the contrary,
the axis of rotation of every piece which rotates rapidly ought to

traverse its centre of gravity, that the resultant centrifugal force

may be nothing, and ought to be an axis of inertia, that the centri-

fugal couple may be nothing. As to axes of inertia, see Article 584.

G87. Actual Energy of a Machine. To determine the entire

actual energy of a machine at a given instant, it is necessary to

know-

(1.)
The weight of each of its sliding pieces : let any one of those

weights be denoted by W;
(2.) The velocity of translation of each of those pieces at the

given instant : let v denote any one of these velocities ;

(3.)
The moment of inertia of each of its rotating pieces : let any

one of these moments be denoted by I
;

(4.) The angular velocity of each of those pieces at the given
instant

;
let a be any one of these angular velocities.

These quantities being given, the actual energy of the machine is

.....? ......... (i.)

and if the moment of inertia of each rotating piece be expressed in

the form I = W e
2

,
W being its weight and e its radius of gyra-

tion, the above expression may be put in the form,

E = /i'-.W* + 2-WYa2

)
.............. (2.)

*9
688. Reduced inertia. The figures, sizes, and connection of the
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pieces of a machine being known, the principles of the Theory of

Mechanism (Part IV.), enable the comparative motions of all its

points to be determined, and in particular, the several ratios of

their velocities to that of the driving point at any instant. Let V
be the velocity of the driving point, and for any given piece of the

machine whose weight is W, let n denote the ratio v : V if it is a

sliding piece, and the ratio f a : V if it is a turning piece. Then
the sum

2 -Ww2
.............................. (1.)

expresses the weight which, ifconcentrated at the driving point, would
have the same actual energy with the entire machine. This quantity

may be called the inertia reduced to the driving point. By Mr.

Moseley, who first introduced its consideration into mechanics, it

is called the "
co-efficient of steadiness."

The actual energy of the machine at any instant may now be

expressed by

Another mode of expressing the reduced inertia is with reference

to the driving axis. Let A represent the angular velocity, at any
instant, of the axis of the piece which first receives the motive

power ; for any shifting piece let v : A = I
;
and for any rotating

piece let a : A = n. Then the reduced moment of inertia is

-4- 2-lTj,2 -

...................... (3.)

and the actual energy at any instant,

E = - s-WZ 2 + s-Irc2 ................ (4.)

689. Fluctuation* of Speed in a machine are caused by the alter-

nate excess of the energy received above the work performed, and
oi the work performed above the energy received, which produce
an alternate increase and diminution of actual energy, according to

the law of the conservation of energy explained in Article 552.

To determine the greatest fluctuations of

speed in a machine moving periodically, take

ABC, in fig. 265, to represent the motior
of the driving point during one period; let

the effort P of the prime mover at each
instant be represented by the ordinate of the

Fig. 265. curve D G E I F
; and let the sum of the

resistances, reduced to the driving point, as in Article 6G8, at each

instant, be denoted by 11, and represented by the ordinate of the
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curve D H E K F, which cuts the former curve at the ordinates

A D, B E, C F. Then the integral

being taken for any part of the motion, gives, as in Article 549, the

excess or deficiency of energy, according as it is positive or negative.
For the entire period ABC this integral is nothing. For A B,
it denotes an excess of energy received, represented by the area

D G E H 5
and for B C, an equal excess of work performed, repre-

sented by the equal area E K F I. Let those equal quantities be

each represented by A E. Then the actual energy of the machine
attains a maximum value at B, and a minimum value at A and C,
and A E is the difference of these values.

Now let Y be the mean velocity, Yx the greatest velocity, and
Y2 the least velocity of the driving point ;

then

V2_V2

li=.Il'.,.W*= AE; ..................(1.)

which, being divided by twice the mean actual energy
'

V
i
_y2 _ A E E

gives
V

i

V
"

2E

a ratio which may be called the co-efficient offluctuation of speed.
The ratio of the periodical excess and deficiency of energy A

to the whole energy exerted in one period or revolution, \

has been determined by General Morin for steam engines under

various circumstances, and found to be from to
j,

for single

cylinder engines. For a pair of engines driving the same shaft,
with cranks at right angles to each other, the value of this ratio

is about one-fourth of its value for single cylinder engines.
690. A Fly-wheel is a wheel with a heavy rim, whose great moment

of inertia reduces the co-efficient of fluctuation of speed to a certain

fixed amount, being about in ordinary machinery, and or -^r
o2i 00 oU

in machinery for fine purposes.

Let be the intended value of the co-efficient of fluctuation ofm
speed, and A E, as before, the fluctuation of energy; then if this is
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to be provided for by the moment of inertia I of the fly-wheel alone,

let a be its mean angular velocity; then equation 2 of Article 689

is equivalent to the following :

the second of which equations gives the requisite moment of

inertia of the fly-wheel.
691. starting mid Stopping Brakes. The starting of a maqhine

consists in setting it in motion from a state of rest, and bringing it

up to its proper mean velocity. This operation requires the ex-

penditure, besides the energy required to overcome the resistance of

the machine, of an additional quantity of energy equal to the actual

energy of the machine when moving with its mean velocity, as

found according to the principles of Article 687.

If, in order to stop a machine, the effort of the prime mover is

simply suspended, the machine will continue to go until work has

been performed in overcoming its resistances equal to the actual

energy due to its speed at the time of suspending the effort of the

prime mover.
In order to stop the machine in less time than this operation

would require, the resistance may be artificially increased by means
of a brake, which may be a friction-strap, as described in Article

678, or a block pressed against the rim of a wheel, or a grooved
sector pressed against a wheel grooved as for fractional gearing

(Articles 445, 679).
Let R

t
be the ordinary resistance of the machine, reduced to tlm

rubbing surface (Article 668), R2 the friction produced by the brake,
v the velocity of the surface on which it acts at the time when it is

first applied, s the distance through which rubbing must take place
in order to stop the machine, t the time required for the same

effect, E the actual energy of the machine when the brake begins
to act. Then

= E- (R, + R2); (1.)

and because the mean velocity of rubbing during the operation of

stopping is v -
2,

t = = 2 E + r (B, + R2) (2.)
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CHAPTER IIL

ON PRIME MOVERS.

692. A Prime Mover is an engine, or combination of moving

pieces, which serves to transfer energy from those bodies which

naturally develop it, to those by means of which it is to be

employed, and to transform energy from the various forms in which

it may occur, such as chemical affinity, heat, or electricity, into the

form of mechanical energy, or energy of force and motion. The

mechanism of a prime mover comprehends all those parts by means

of which it regulates its own operations.
The useful work of a prime mover is the energy which it trans-

mits to any machine driven by it
;
and its efficiency is the ratio of

that useful work to the whole energy received by it from a natural

source of energy.
The effect or available power of a prime mover is its useful work

in some given unit of time, such as a second, a minute, an hour, a

day.
693. The Regulator of a prime mover is some piece of apparatus

by which the rate at which it receives energy from the source of

energy can be varied ;
such as the sluice or valve which adjusts the

size of the orifice for supplying water to a water-wheel, the appara-
tus for varying the surface exposed to the wind by windmill-sails,

the throttle-valve of a steam engine. In prime movers, whose

speed and power have to be varied at will, such as locomotive

engines, and winding engines for mines, the regulator is adjusted

by hand. In other cases it is adjusted by a self-acting apparatus
called a Governor usually consisting of a pair of rotating pen-

dulums, whose angle of deviation from their axis depends upon the

speed. (Article 606).
694. Prime mover* may be classed according to the forms in

which the energy is first obtained. These are

I. Muscular Strength.
II. The Motion of Fluids.

III. Heat.

IV. Electricity and Magnetism.
695. Muscular Strength. The daily effect exerted by the muscu-

lar strergth of a man or of a beast is the product of three quan-
tities: the useful resistance, the velocity with which that resistance

2s
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is overcome, and the number of units of time per day during which
work is continued. It is known that for each individual man or

animal there is a certain set of values of those three quanti-
ties which makes their product a maximum, and is therefore the

best for economy of power; and that any departure from that set of

values diminishes the daily effect.

The following table of the effects of the strength of men and
horses employed in various ways, is compiled from the works of

Poncelet and General Morin, and some other sources :
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is its effect per second. In well constructed water pressure en-

gines, 1 k varies from '66 to '8.

697. Water-wheels in General. Water may act on a wheel

either by its weight and pressure, or by its velocity; that is, either

by its potential, or by its actual energy. See Article 622.

Let Q denote the weight of water, in pounds, supplied to the

wheel in a second; h the difference of dynamic head, in feet, of the

water before and after its action on the wheel ; Vi the velocity of

the water, in feet per second, just before it begins to press on the

wheel, or supply-velocity; v2 the velocity of the water just after it

has ceased to act on the wheel, or discharge-velocity. Then the total

energy of the water, as in Article 622, is

( Q ( h+ jp- J
foot pounds per second;

the energy of the water when discharged,

v*
e Q ~j foot pounds per second;

*y
the total power of the wheel,

e Q \h+ *o~ y
f ot Pounds Per second;........ (1.)

the maximum theoretical efficiency,

the quantity

may be called the theoretical fall or head. The available efficiency
of a water-wheel falls short of the maximum theoretical efficiency

principally from the following causes : 1. The resistance of the

channel and orifices by which the water is supplied, which causes

the actual height from which the water must descend in order to

acquire the supply-velocity v to be greater than w? : 2 g. The effect

of such resistance is expressed by putting for the actualfall,

(4.)

2 '/being the co-efficient of resistance of the channel and orifices of

supply, determined according to the principles of Articles 638 to

646. 2. The escape of part of the water before it has completed
its action on the wheel. 3. The agitation and mutual friction of the
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particles of water acting on the wheel j and, 4. The friction of the

wheel. The effects of the last three causes are expressed by multi-

plying the total power and the theoretical efficiency of the wheel by
an empirically determined fractional co-efficient & ;

so that the effect

or available power is denoted by

(1 &) e QV
and the available efficiency by

(1 *).Ai

-(5.)

H
698. Classes of Water-Wheels. "Water-wheels may be classed as

follows'. Ovetr.shot-wheels and breast-wheels, undershot-wheels and

699. Overshot and Breast-Wheels. The water is Supplied to

this class of wheels at or below the summit, and acts wholly, or

partly by its weight, as it descends in the buckets. (See Article

634). Formerly the buckets used to be closed at their inner

sides, but now they are made with openings for the escape and
re-entrance of air : an invention of Mr. Fairbairn. A breast-

wheel differs from an overshot-wheel chiefly in having the water

poured into the buckets at a somewhat lower elevation as compared
with the summit of the wheel, and in being provided with a casing
or trough, called a breast, of the form of an arc of a circle, extend-

ing from the regulating sluice to the commencement of the tail-

race, and nearly fitting the periphery of the wheel, which revolves

within it. The effect of the breast is to prevent the overflow of

water from the lips of the buckets until they are over the tail-race.

The usual velocity of the periphery .of overshot and high breast-

wheels is from three to six feet per second
;
and their available

efficiency, when well designed and constructed, is from 0'7 to 0-8.

700. Undershot-Wheels are driven by the impulse of water, dis-

charged from an opening at the bottom of the reservoir with the

velocity produced by the fall, against floats or boards, as to which
see Article 649. Every such wheel has a certain velocity of
maodmum efficiency, which does not in any case differ much from
half the velocity of the water striking it. In undershot-wheels of

the old construction, the floats are flat boards in the direction

of radii of the wheel ; and the maximum theoretical efficiency is

^. The available efficiency is about 0-3. This class of wheels was
much improved by Poncelet, who curved the floats with a con-

cavity backwards, adjusting their position and figure so that the

water should be supplied to them without shock, and should drop
from them into the tail-race without any horizontal velocity. The
available efficiency of such wheels is about 0'6.
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701. A Turbine is a horizontal water-wheel with a vertical axis,

receiving and discharging water in all directions round that axis :

that is, driven by a vortex; its efficiency ranges from -6 to '8 (see

Article 650).
702. windmills are driven by the impulse of the air against

oblique surfaces called sails, rotating in a plane perpendicular to

the direction of the wind.

The best figure and proportions for windmill sails, as determined

experimentally by Smeaton, are given by the following formulae, in

which the whip means, the length of an arm, or the distance of the

tip of a sail from the axis : length of sail,
- whip : breadth at end

nearest axis, = whip : at tip,
- whip : angles made by the surface

O o

of the sail with the plane of rotation ab the end nearest the axis,
1 8 : at the tip, 7. The efficiency of a good windmill is about 0-29.

(See Smeaton on Windmills, in Tredgold's Hydraulic Tracts.)

703. The Efficiency of neat Engines is the subject of a peculiar
branch of science, Thermodynamics ; and an outline only of the

principles on which it depends can here be given.
If the number of British Fahrenheit units of heat produced by

the combustion of one pound of a given kind of fuel, be multiplied

by Joule's equivalent, 772 foot pounds, the result is the total lieat

of combustion of the fuel in question, expressed in foot pounds. For
different kinds of coal, it varies from 6,000,000 to 12,000,000 foot

rounds. This total heat is expended, in any given engine, in pro-

ducing the following effects, whose sum is equal to the heat so

expended t

1. The waste Jieat of the furnace, being from 015 to 0-6 of the
total heat, according to the construction of the furnace, and the

skill with which the combustion is regulated.

2. The necessarily rejected heat of the engine, being = - x the heat
n

received by the elastic fluid : ^ being the upper, and tz the lower
limits of absolute temperature, which is measured from the absolute

zero, 493-2 Fahrenheit below the melting point of ice.

3. The heat wasted by the engine, whether by conduction, or by
non-fulfilment of the conditions of maximum efficiency.

4. The useless work of the engine, employed in overcoming friction

and other prejudicial resistances.

5 The useful work. The efficiency of a thermodynamic engine
is improved by diminishing as far as possible the first four of these

effects, so as to increase the fifth.

The efficiency of a heat engine is the product of three factors;
viz. : the efficiency of the furnace, being the ratio of the heat
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transferred to the elastic fluid to the total heat of combustion; the

efficiency of the fluid, being the fraction of the heat received by it

which is transformed into mechanical energy ; and the efficiency of
the mechanism, being the fraction of that energy which is available

for driving machines. The maximum efficiency of the fluid between

given limits of absolute temperature is expressed by

As to the mechanical action of an elastic fluid on a piston, see

Article 656.

704. steam Engines. Formulae for the mechanical action of

steam on a piston, both exact and approximate, have been given in

Article 656, equations 6 to 13.

The efficiency of the steam lies between the limits '02 and *2 in

extreme cases, and -04 and -1 in ordinary cases.

The details of the construction and working of steam engines can
be explained in a special treatise only.
The duty of an engine is the work performed by a given quantity

of fuel, such as one pound. The duty of a pound of coal varies in

difierent classes of engines from about 100,000 to 1,900,000 foot

pounds. These are extreme results, as respects wastefulness on the

one hand, and economy on the other. In good ordinary engines,
the duty varies from 200,000 to 700,000.

705. Eiectrodyuaniic Engines, though capable of higher efficiency
than heat engines, are not so economical commercially, on account

of the greater cost of the materials consumed in them. Their theo-

retical efficiency, according to a law demonstrated by Mr. Joule, is

given by the formula

">

where yi is the strength which the electric current would have if

the machine performed no mechanical work, and y2 is *ne actual

strength of the current.

This law, and the law of the maximum efficiency of heat engines,
are particular cases of a general law which regulates all transforma-

tions of energy, and is the basis of the Science of Energetics.*

*
Edinburgh Philosophical Journal, July, 1855; Proceedings of ike Philotophical

Society of Glasgow, 1853-5.



APPENDIX.
ARTICLE 634, p, 579.

Motion of water in Waves. I. Rolling Waves. In waves
which are not accompanied by permanent translation of the

particles of water, it is known by observation that those particles
revolve in orbits situated in vertical planes which are perpen-
dicular to the ridges and furrows of the waves, and parallel to

their direction of advance ; also, that each revolving particle
moves forward while on the crest of a wave, downward when on
the back slope, backward when in the trough, and upward when
on the front slope. The length of a wave is the distance, in the

direction of advance, from crest to crest ;
the height is equal to

the vertical diameter of the orbit of a surface particle. Each

particle makes one revolution while the wave advances through
a wave-length ; the interval of time thus occupied is called the

period. Let L denote the wave-length, T the period, a the

velocity of advance ; then a = j and also, mean velocity of

revolution of a particle
= circumference of orbit -=- T.

The orbits of the particles are approximately elliptic, with

the longer axis horizontal. In going from the surface to-

wards the bottom, the

dimensions of the orbits

are found to diminish, the

vertical axis diminishing
faster than the horizontal

axis, as shown at A, B, C, ^^<
in fig. A. At the bottom

""" *-<

the particles move bacl?
f
p

and forward in a straight

line, as at D. Fig. A.
The deeper the water

is, as compared with the length of a wave, the more nearly equal
are the two axes of the orbit of a surface particle ;

and in water

whose depth is half a wave-length and upwards, those axes are

sensibly equal, and the orbit of a surface particle sensibly

circular.

II. Relation between Figure of Surface and Velocity of Advance.

In fig. 252, page 578, let C be the centre, and C B the radius

of the circular orbit of a particle. Lay off C A vertically up-

wards, of a length equal to that of the equivalent pendulum (that

is, the pendulum whose period is T) viz.,

T2 T2
(seconds) (n

4 *2
~
0-815 foot nearly

"
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Then we have gravity : centrifugal force : : A C : C B
;
and A B

represents (as in Article 634, page 578) the resultant of gravity
and centrifugal force ;

so that a surface of uniform pressure

traversing B is normal to A B. The upper surface of the wave
is such a surface ; and in order to fulfil that condition its profile
must be a trochoid traced by the point B while a circle of the radius

C A rolls on the under side of a horizontal straight line traversing
A. The length of such a wave, and its velocity of advance, are

given by the following equations :

L = 2 * C A- =
(in feet) 5-12 T2

; ............ (2.)
2i1F

a = ^ = |? =
(in feet per second) 5-12 T............... (3.)

1 ^ ar

When the orbits of the surface particles are elliptic, let m be the

ratio in which the vertical axis is less than the horizontal axis.

Then it is evident that in order that the surface of the wave

may still be everywhere normal to the resultant of gravity and

re-action, we must have

(in feet) 5-12 w T2
; .................. (4.)

2

=(m feet per second) 5-12 m T............ (5.)

III. Delation between Velocity of Advance and Depth of Uniform,
Disturbance. Let h be the height of a wave j that is, the vertical

diameter of the orbit of a surface particle. Then, in an inde-

finitely short interval of time, the front slope of the wave ad-

vances through the distance a d t, and the volume of water
contained between the original and new positions of the front

slope, per unit of breadth, is h a d t. In the same interval of

time there passes into the space vertically below the front slope,

per unit of breadth, the volume of water 2 u c d t, where u is the
forward velocity of a surface particle at the crest,

- u the equal
backward velocity of a surface particle in the trough, and c a

depth which may be called the depth of uniform disturbance,
because it is equal to the mean depth of a canal in which the
volume of water displaced per second would be equal to that dis-

placed per second in the actual wave, if the horizontal velocity
of disturbance were the same from surface to bottom. Equating
the two volumes just given, we have h a - 2 u c ; but u can b<
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shown to be = g h -f- 2 a ; therefore c = a2 -f-
</. Hence the velocity

of advance of a wave of any figure in which the volume dis-

placed horizontally per second is equivalent to that due to a
horizontal velocity of disturbance equal to the surface velocity
down to the depth c, is given by the equation

(6.)

For waves rolling in deep water, without interference by external

forces, it can be shown that the diameters of the orbits of par-
z

tides at different depths vary proportionally to e e
\
where z is

the depth of the centre of the orbit of the particle in question
below the centre of the orbit of a surface particle.

In water of the depth k, let L -f- 2; = b
',
then it can be shown

/* _*\ /* _*\
that at the surface, m = \e

b - e *J -r- \e
b + e b

); that c = mb'}

and that the horizontal and vertical diameters of an orbit vary
* z z- * kz z k

respectively as e
b + e

b
,
and as e

b - e
6 In very deep

water, m sensibly = 1, and c = b.

In very shallow water the horizontal disturbance is sensibly
uniform from the surface to the bottom, so that c represents the

actual depth ;
and the vertical disturbance is sensibly propor-

tional to the height above the bottom.

IV. Waves of Translation are those which are accompanied by
a permanent travelling of the particles of water, and are said to

be positive or negative according as that travelling is forward or

backward. Their motions may be expressed by taking two
different quantities, u' and u", to denote respectively the for-

ward velocity of a particle at the crest of a wave, and the back-

ward velocity of a particle in the trough ; when the velocity of

advance will be given by the formula

(7-)

V. Authorities on Waves. Weber's Wellenlehre ; Scott Russell,
in Reports of the British Association, 1844

; Airy, On Tides and
Waves; Stokes, Cambridge Transactions, 1842, 1850; Earnshaw,
Ib., 1845

; Froude, Trans, of the Institution of Naval Architects,

1862 ; Rankine, Philos. Trans., 1863
; Do., Philos. Mag., Novem-

ber, 1864
; Do., Proceedings of the Royal Society, 1868

; Watts,
Rankine, Napier, and Barnes, On Shipbuilding ; Thomas Steven-

son, On Harbours ; Caligny, Liouville's Journal, June and July,
1866 ; Cialdi, Sul Moto Ondoso del Mare.
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308 A.* Continuous Girders. The fundamental principle of the

theory of continuous girders, with the load distributed in any
manner, is the "Theorem of Three Moments," due originally to

Clapeyron and Bresse and improved by Heppel (See Bresse,

Mecanique Appliquee, Part III., and the Proceedings of the Royal
Society for 1869).
The subject is treated of in Art. 178 of the tenth edition of

Civil Engineering. The following demonstration, with deduced

formulae, is abstracted from a paper communicated by Mr. Mans-
field Merriman, C.E., to the Philosophical Magazine, September,
1875.

The elastic curve (Art. 319) has the following equation :-^

d2 M

The equation for any particular case is obtained by sub-

stituting the values of M and I (constant) in terms of x, and

integrating twice.

Let I be length of first span, I' of second. Let M ,
M1?

M
2 ,
be

the moments at three points of support. Let "W be a single con-

centrated load at a distance a from support 0, and W' at a

distance a 1

from 1.

Since equilibrium prevails, we have for a section between W
and 1, the equation

-a)^M = 0, ........... ,...(1.)

making x = I, M becomes Mw and

F =
M

i
-M1

+ W(^a) = Mo-M1 + w(1 _,
);
.....Lib

k being any fraction. Insert now the value of M in the differ-

ential equation of the curve, and integrate it twice : t the tangent
of the angle which the curve at the origin makes with the axis

of abscissa is the constant in the first integration, and zero in

the second.

The required equation is

y =t x + 3M x*-Vx* + W(x-a)* ........ (II.)

Substituting the value of F in terms of M , Mj, and W, making
x l

t and a = k l\ y = Q, and we obtain

* See Article 308, p. 338.
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Now in the value of ~- make x = lj -^-
becomes ^, the tangent

at 1, and we obtain

6 El ^ =M 1+ 2 M
l I-W P(k-&). . .........(III.)

If the origin be taken at 1, we obtain an equation analagous
to ().

6 EI *!= - 2 MI j'-M2 r +w r* (2 k-z &2+&3), (nr.)

where k denotes
j,-,

and is not necessarily the same in the two
I

expressions.
We thus obtain the Theorem of Three Moments for concentrated

loads

For many loads 2 has to be prefixed to the terms involving W
and W. For uniformly distributed loads w and w' per unit of

length,weplaceSW = fw d (M)and 2W =
jw'd(k l'\ integrating

between the required limits. If the loads extend over the whole

span, the first integral is taken between k I = and kl = l, the

second between k I' = 0, and k I' = I'. Then

M 1+ 2 M! (l + l
f

) +M8 r = J w I
s + J w J'3, ., .....(V.)

which is the theorem as first deduced by Clapeyron,
The following are the formulae deduced by Mr. Merriman
CASE 1. Ends resting freely upon abutments.

Let the girder consist of any number of unequal spans, the

rth only being loaded. Let s = the number of spans, and ^, 12,

&c., their lengths; 1 being the first ands + 1 the last support,
the index n will refer to any support. A single load in the rth

span is called W, and its distance from the rth support k lr or a.

Referring to (IV.) it is seen there are two functions ofW and

k lr of frequent occurrence. Denoting these by A and B for the

supports r and r + 1.

A = ( i2 w II (2 k - 3 k2 + #*) d k 1 for an uniform load whose ends
J

.^ j-

are distant k r and &a /r from

B =
J

2 w ^ (^
- ^8

)
d kt

the support r.
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From the equations of moments, and the solution of these

equations by the method of indeterminate co-efficients, the two

following equations are derived. When n < r + I :^-

r1,

^ ti + lj
........... (1.)

also

When n > r

M, =df^ n + 9
--

j
'' r

,
+ :

yr
....... (2.)

C, _ i _ a T * i^*_ i + V
The values of the quantities c, d are

o-
^ I -I

<?4
= - 2 c3

^3 - c2^ d4 = 2 <f3 -^
!-=-? - 4jy^

4 4 * - 3 - 3

Let the shearing stress in the span lr,
at? a point infinitely near

to the rth support, be denoted by Fr,
and to the r + 1th support

by F'r > then

. Mr M,.^! ffor the right hand shear at the rth
r "

~~^~
a
t support, ....

Mr + ! Mr . J for the left hand shear at the r + 1thr + ! r .

= ~~
support,

_, Mw Mn+ ! f for the right hand shear at all supports
w==

J^~

~
\ except rf .

_Mw
-Mw _! f for the left hand shear at all supports-

" - J
~

;n _ 1 ( except r + 1, ^ .

then the reaction at any support is

Let M and F denote the moment and shearing force at any
section; then
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M =Mr
- Fr x +W (x

-
a) for a section betweenW and

"j

the following support : > (6.)M =MM Fn x for any other section, j

F =W - Fr for a section between W and the r + 1th
^

support, V (7.)
F = FM for any other section,

Equations (6) and (7) refer to a concentrated load ;
for an uniform

load forW substitute / w d a.

CASE 2. One endfree and the otherfixed horizontally.
In the application of the above formulae {!) to (7) to this case,

make I,
=

0, and let s 1 be the number of spans.
CASE 3. Both endsfixed horizontally.
In the above formulae make ^ = and lt = 0, and let 8 2 be the

number of spans.
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The diagram annexed shows the form and proportions adopted
by Professor Rankine for reservoir-walls of great height.

tJRDINATES TO OUTER FACE
iT 1"-40' FEET

FUST.

^ *.. W|-.. 1

00.154.FT
^it80 \_ 12.128 \_

rT-
xi

For detailed description see The Engineer for January 5,

1872 (a reprint of this paper is embodied in the Rankine
Memorial Volume of Selected Papers).
The Unes of resistance lie within, or near to, the middle third

of the fjiickness of the wall. The outer and inner faces are

logarithmic curves. It is desirable to give such walls a curva-

ture in plan convex towards the reservoir, to counteract the

tendency of the wall to being bent by the pressure of the water
into a curved shape, concave towards the water.



APPENDIX. 639

The following notes on American Bridge Practice are taken
from The Transactions of the American Society of Civil Engineers,
Vol. VIII. :

"American bridges are generally built up from the following
individual members, most, if not all the mechanical work upon
them being done in the shop. 1st. Chord and web eye-bars j

round, square, or flat bars, with a head at each end, formed by
some process of forging. These are tension members. 2nd.

Lateral, diagonal, and counter rods. 3rd. Floor-beam hangers.
4th. Pins. 5th. Lateral struts. 6th. Posts. 7th. Top chord
sections. The last three being columns formed by rivetting

together various rolled forms ; plates, angles, channels, I beams,
Ac. Some are square-ended, others pin-connected. These are

compression members. 8th. Floor-beams and stringers. These
consist either of rolled beams, rivetted plate girders^ or occa-

sionally of latticed or trussed girders. The proportion of depth
to span in American bridges is from one-fifth to one-seventh.

" In top chords, posts^ and struts the strains are calculated

by a modification of Rankine's formula, as follows :

8000
p = *or square-end compression members.

+
4000072

8000
p ^ for compression members with one pm and one square
1 +

30000,*
end '

8000
p for compression members with pin bearings.
+
20000 r2

where p = the allowed compression per square inch of cross

section.

I = the length of compression member, in inches.

r = the least radius of gyration of the section, in inches."

ARTICLE 240, p. 215.

The correctness of the value for wind pressure, as adopted by
Professor Rankine, has been lately proved in the severe storms
which have visited this country, a recent committee of enquiry
having fixed this pressure on bridge surfaces at 56 Ibs. per square
foot.
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CONTINUOUS BRAKES FOR RAILWAY TRAINS. The use of

brake power is now considerably extended in railway traffic,

and instead of the brakes being only applied on tender and

guard's van, the application has been extended to the carriages

composing the train. Yery considerable resistance is thus

obtained, and consequent cessation of motion at a much earlier

period. Various forms of continuous brake have been tried

recently, and the results of the experiments are familiar to

engineers. Some of the various forms are the screw-brake, chain-

brake, vacuum-brake, hydraulic-brake, and compressed-air-brake,
in all of which, by means of mechanism extending below the

carriages and actuated by the engine-driver or guard, the whole

or part of the wheels of the train can be braked. In the first

two methods, rigid or flexible bodies are employed to transmit

the power required, whilst, in the others, the same object is

accomplished through the medium of fluids. In the hydraulic-

brake, water at a high pressure from a pump on the engine is

conveyed by a pipe ; in the vacuum-brake the air is removed,
and in the air-brake the air is forced under pressure to the

points required. In the automatic arrangements, whether of air

or vacuum, there are reservoirs. It has been found desirable to

adopt reservoirs or vessels having pistons immediately in connec-

tion with the brake blocks, the object in the automatic arrange-
ments being to keep up a certain condition in the chambers,
whether of pressure or vacuum, by which, if destroyed either

intentionally or accidentally (as through the breakage of a pipe),
the braking action may at once take place.

In some cases 1J seconds is sufficient to apply the brakes, and
fast trains can be stopped in about 300 yards.

ARTICLE 271, p. 289.

Boilers are now largely made of steel, and when iron is used

in the shell, the flues and ends are sometimes made of steel.

Iron rivets, however, appear to be still in favour, as the shearing

strength of mild steel appears less in proportion to tensile

strength than in the case of iron. The tensile strength of

steel boiler plates is about 29 tons per square inch, and the

elastic limit appears to be about half of that. Punching out the

rivet holes weakens the metal about 30 per cent. This loss,

however, may be restored by annealing. Drilling the rivet

holes does not affect the strength, and is the usual method

adopted. Some advantage should arise, so far as steaming pro-

perties are concerned through the use of steel, as lighter sections

can be used for the plates.
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The Pulsometer Pump, recently introduced for engineering
work, is a steam pump with few or no moving parts, the
water is forced to the height of delivery by the direct action of

the steam, the supply being raised by the condensation of the
same steam. The action is regulated by a ball valve at the

upper part, and clack valves at the lower part, of the working
chamber.

ARTICLE 346, p. 377.

Steel is now largely used for rails, boiler and ship plates, &c.,
and combines great strength with ductility, the ultimate tensile

strength varying from 27 to 33 tons per square inch, with an

elongation of about 20 per cent. The limit of elasticity is about
one-half of the ultimate or breaking strength.
The Board of Trade allows 6 tons per square inch as the

safe working strength for bridge structures.

It appears that by the use of steel in the construction of ships
a saving of weight of about 16 per cent, is obtained.

Some peculiarities exist as to the behaviour of steel, and care

must be taken both in the working of it from the ingot into

plates, and in the workshop or yard, one special point being,
that it should not be worked at a " black heat," or about 550 F.

The steel referred to is known as " Mild Steel" or "
Ingot Metal,"

and safety in working lies above or below this temperature.
The question as to the comparative wear of iron and steel by
corrosion seems still undecided, but so far no practical difference

has been observed.

Steel rails and tires are now used for railway traffic, and articles

of cast steel can now be manufactured possessing considerable

strength and ductility.

ARTICLE 653, p. 598.

Of late years much experimental information has been obtained

as to the resistance of both vessels and their models, Mr. Froude,
of Torquay, having determined the relations which exist between
the ship and her model. Again, trials of the same vessel, at

different speeds, have shown clearly that the law of resistance

varies for different speeds. This subject is one of much im-

portance, especially in connection with new and untried forms of

vessels, and has already received much advancement from ex-

perimental research.*

* For authorities on this subject, see Transactions of the Institution oj

Engineers and Shipbuilders in Scotland, and Transactions of the Institute oj
Naval Architects.

2T
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SECTION 6, p. 464.

Hydraulic pressure is now largely used for engineering work,
such as rivetting, flanging, punching, shearing, &c., and for the
motive power for moving heavy loads, such as swing bridges,

cranes, &c. By the introduction of flexible pipes and portable

rivetting machines, hydraulic rivetting can be performed on

bridges and ships. To accomplish this a. high pressure is used,

varying from 700 to- 1,500 Ibs. per square inch, and this is

obtained by means of an "
accumulator," or cylinder containing a

loaded piston, against which water is pumped in by a steam

engine. This water under pressure being connected with the die

of, say, a rivetting machine, is free to exert its pressure on the

opening of the connecting valve, and a fall of the loaded

plunger taking place at same time the rivet is closed up. This

powerful closing pressure is very serviceable when a number of

plates are to be bound together, as is the case for some of the

keels of our large steam vessels.

ARTICLE 637, p. 581.

In a Report on Safety Valves,* drawn up by a Committee, of

which Professor Rankine was a member, but whose decease

happened prior to the completion of the experiments which
were being carried out, it is stated that the weight of steam
in pounds discharged per minute per square inch of opening,
with square-edged entrance, corresponds very nearly with three-

fourths of the absolute pressure in the boiler, the range being
from 25-37 Ibs. to 100 Ibs. per square inch. And the requisite
area for a safety valve is shown to be

4 x square feet of fire-gratea = .

Pi

where a = area of orifice in square inches, and pl
= the absolute

pressure.

ARTICLE 626, p. 572,

The Editor appends the following investigation by the late

Professor Rankine of the value of the theoretical co-efficient ot

contraction in a jet of water issuing from a large cistern with a

pipe going into it. The investigation was laid before the Pro-

fessor's Class of Civil Engineering and Mechanics in Glasgow
University, Session 1866-67.

* See Transactions of the Institution of Engineers and Shipbuilders in Scot-

land, vol. xviii.
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Let a, s= area of orifice in feet.

v = velocity of outflow in feet per second.

c a v = number of cubic feet per second.

D = weight of a cubic foot of water,

then, D c a v = weight of flow per second.

Now, the reaction or backward pressure exerted against the

. Dcav2
. . Dv2

reservoir =- ; the pressure in the reservoir =
-^ ; multi-

y ^y
plying the latter expression by a, and equating, we have

Gas Engines have now been introduced with success, espe-

cially for the lighter classes of work. These engines have the

great advantage of being easily managed, as the starting and

stopping of them only entails the opening or shutting of the

tap regulating the gas supply. The action in the cylinder is

an explosive one, the explosion taking place at certain intervals

of the revolutions, a heavy fly-wheel being added to store up
the excess of energy over work done when the explosion takes

place.

ARTICLE 684, p. 620.

From recent experiments made with trains brought to rest

simply by their own resistance, it appears that the latter amounts
to about 9J Ibs. per ton of weight, or J per cent.

The effect of handbrakes as applied to tender and guards' vans
was found to be about 2J per cent, of the weight. A train going
about 45 miles per hour could be stopped in 1,000 yds., or at

60 miles per hour in about 1 mile. With the continuous brake

system, as much as 10 per cent, of the train weight can be
obtained as a retarding force, and a train travelling 60 miles

per hour can be stopped in 400 yards. Brake-blocks are of cast-

iron, steel, or wood.
Some difference of opinion appears as to the effect of skidding

the wheels
;
no doubt, greater wear and tear is caused when the

wheels are skidded.

ARTICLE 704, p. 630.

In Compound Engines as now used for marine and also land

purposes, the consumpt of coal is less than 2 Ibs. per indicated
horse power, or probably about If lb., being a duty of over

1,000,000 foot-pounds.
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The economy of the marine engine is largely due to high pres-
sure steam, about 90 Ibs. per square inch being now often

carried, to surface condensation, and the large ratio of expansion
obtained by the compound system where the steam passes from
one cylinder into one or two others, before reaching the con-

denser; our best engines, however, are only yielding an efficiency
of from about % to about ^. This appears to be made up more
or less as follows :

Efficiency of furnace and boiler, ^ ; efficiency of the

steam, -f$ ; or total efficiency -^ x -$ = about | ; again, if we
take the efficiency of the propeller as -3^, we shall have about

Jg- as the final efficiency.

DIMENSIONS AND STABILITY OF THE OUTER SHELL OF THE
GREAT CHIMNEY .OF ST. ROLLOX.

Greatest pres-

Divisions of Heights above

Chimney. Ground.
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454 feet. Extra height of 20 feet of ornamental iron work since

added, and connected with the lightning conductor.

Outside diameter at foundations, 50 feet ; outside diameter at

surface of ground, 32 feet
; outside diameter at top of cope, 12

feet 8 inches. The sides have a straight batter. The thickness
varies from 7 bricks at base to 1J brick at top.
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TABLE OP THE RESISTANCE OP MATERIALS TO STRETCHING AND
TEARING BY A DIRECT PULL, in pounds avoirdupois per square
inch.

Tenacity,
or Resistance to

Tearing.

Modulus of

Elasticity,
or Resistance to

Stretching.

MATERIALS.

STONES, NATURAL AND ARTIFICIAL :

Ceteit,}
28oto 3co

Glass, 9,400 8,000,000

glate ./ 9,6 o 13,000,000

I
to 12,800 to 16,000,000

Mortar, ordinary, 50

METALS :

Brass, cast, 18,000 9,170,000
wire, 49,o.00 14,230,000

Bronze or Gun Metal (Copper 8, ) ,

rj^ j\ ( 3^,000 9,900,000

Copper, cast, 19,000
sheet, 30,000
bolts, 36,000
wire, 60,000 17,000,000

Iron, cast, various qualities, ( J *%&
average, 16,500 17,000,000

Iron, wrought, plates, 5 1,000

joints, double rivetted, 35,7

single rivetted, fc8,600

^ bars and bolts, < ^ >7o'ooo I

29,ooOjO00

hoop, best-best, 64,000

1 25,300,000

wire-ropes, ^.. 90,000 15,000,000
Lead, sheet, 3,300 720,000

Steel bars, j
IOO

>
000 29,000,000

( to 130,000 to 42,000,000
Steel plates, average, 80,000
Tin, cast, , 4,600
Zinc, 7,000 to 8,000
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MATERIALS.

TIMBER AND OTHER ORGANIC FIBRE:

Acacia, false. See " Locust."

Ash (Fraxinus excelsior),
Bamboo (Bambusa arundinacea),
Beech (Fagus sylvatica),
Birch (Betula alba),
Box (Buxus sempervirens),
CedarofLebanon(CedrusLibani),

Chestnut (Castanea Vesca),

Tenacity,
or Resistance to

Tearing.

I7,OOO

6,300

11,500

15,000

20,000

11,400

{10,000
)

to 13,000]

(
Ulmus campestris),

Fir : Bed Pine (Pinus sylvestris),

Spruce (A bies excelsa),

Larch (Larix Europcea),

Hoxen Yam, about

Hazel (Corylus Avellana),

Hempen Bopes, from 12,000 to 16,000

Hide, Ox, undressed,
Hornbeam (Carpinus Betulus), . . .

Lancewood (Guatteria virgata),...

Leather, Ox,
'

Lignum-Yitse (Guaiacum offici- \

nale), /
Locust (Robinia Pseudo-Acacia),

Mahogany (Swietenia Mahagoni),

Maple (A cer campestris),

Oak, European (Quercus sessili-

id Quercus pedunculata),

I

Bed (Quercus )

14,000

12,000
to 14,000

12,400

9,000
to 10,000

25,000

18,000

6,300

20,000

23,400

4,200

1 1,80O

l6,OOO
f 8,000 )

(
to 21,800 J

10,600
( 10,000

(
to 19,800

Modulus of

Elasticity,
or Resistance to

Stretching.

I,6oo,OOO

1,350,000

1,645,000

486,000

1,140,000

7OO,000
to 1,340,000

1,460,000
to 1,900,000

1,400,000
to 1,800,000

900,000
to 1,360,000

American

rubra), ,

Silk Fibre,

Sycamore(J. cerPseudo-Platanus),
Teak, Indian (Tectona grandis),

African, (?)

Whalebone,
Yew (Taxus baccata),

10,250

52,000

13,000

15,000

21,000

7,700

8,OOO

24,300

1,255,000

1,200,000
to 1,750,000

2,150,000

1,300,000

1,040,000

2,400,000

2,300,000
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II.

TABLE OF THE RESISTANCE OP MATERIALS TO SHEARING AND

DISTORTION, in pounds avoirdupois per square inch.

_ . , Transverse
Resistance

Elasticity,
MATERIALS. to

or Resistance to

METALS: Shearing. Distortion.

Brass, wire-drawn, ....................... 5j33>o
Copper, ................................... 6,200,000

Iron, cast, ................................. 27,700 2,850,000

TIMBER :

Fir: Red Pine, ......................... 5 to 800

Spruoe, ............................. 600

Larch, .............................. 970 to 1,700

Oak, ....................................... 2,300 82,000
Ash and Elm, ........................... 1,400 76,000

III.

TABLE OF THE RESISTANCE OF MATERIALS TO CRUSHING BY A
DIRECT THRUST, in pounds avoirdupois per square inch.

MATERIALS. to

Crushing.

STONES, NATURAL AND ARTIFICIAL:

Brick, weak red, 550 to 800

strong red, 1,100

fire, 1,700

Chalk, 330
Granite, 5,5oo to 11,000

Limestone, marble, 5^5

granular, 4,000 to 4,500

Sandstone, strong, 5>5

ordinary, 3,300 to 4,400

weak, 2,200
Rubble masonry, about four-tenths of cut stone.

METALS :

Brass, cast, 10,300

Iron, cast, various qualities, 82,000 to 145,000

average, 112,000

wrought, about 36,000 to 40,000
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Resistance
MATERIALS. to

Crashing.

TIMBER,* Dry, crushed along the grain :

Ash, ............................. .... ................. 9,000
Beech, ................................................ 9,360
Birch, ................................................ 6,400
Blue-Gum (Eucalyptus Globulus), .............. 8,800
Box, ..................... . ............................ 10,300
Bullet-tree (Achras Sideroxylori), ............... 14,000
Cabacalli, ........................................... 9,900
Cedar of Lebanon, ................................. 5,86o

Ebony, West Indian (Brya Ebenus), .......... 19,000
Elm, .................................................. 10,300
Fir: Red Pine, ............................... ..... 5,375 to 6,200

Ameiic&nYellowJ?iii.e(Pinusvariabilis),

Hornbeam, ......... . ............................... 7>3oo

Lignum-Yitse, .............. ........................ 9>9oo

Mahogany, .......................................... 8,200
Mora (Mora excelsa), .......................... .... 9>9oo
Oak, British, ....................................... 10,000

Dantzic, ....................................... 7,700
American Red, .............................. 6",ooo

Teak, Indian, .................................... ... 12,000
Water-Gum (Tristania nerifolia), ............. 1 1,000

IV,

TABLE OF THE RESISTANCE OP MATERIALS TO BREAKING ACROSS,
in pounds avoirdupois per square inch.

MATERIALS. or

Modulus of Rupture.*
STONES:

Sandstone, .. 1,100 to 2,360
Slate, .. ...,. 5,000

* The resistances stated are for .dry timber. Green timber is much weaker, having
sometimes only half the strength of dry timber against crushing.

f The modulus of rupture is eighteen times the load which is required to break a bar
of one inch square, supported at two points one foot apart, and loaded in the middle
between the points of support.
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Resistance to breaking,
MATERIALS. or

Modulus of Rupture.
METALS:

Iron, cast, open-work beams, average, 17,000
solid rectangular bars, var. qualities, 33,000 to 43,500

average, 40,000

wrought, plate beams, 42,000

TIMBER :

Ash, ..^ 12,000 to 14,000

Beech, , 9,000 to 12,000

Birch, 11,700

Blue-Gum, 16,000 to 20,000

Bullet-tree, ...., 15,900 to 22,000

Cabacalli, 15,000 to 16,000
Cedar of Lebanon, 7,400
Chestnut, 10,660
Cowrie (JDammara australis), 11,000

Ebony, "West Indian, 27,000
Elm, 6,000 to 9,700
Fir: Red Pine, 7,100 to 9,540

Spruce, 9,900 to 12,300

Larch, 5,000 to 10,000
Greenheart (Nectandra Rodicei), 16,500 to 27,500

Lancewood, *7,35o

Lignum-Yitse, 12,000

Locust, 11,200

Mahogany, Honduras, 11,500

Spanish, 7,600

Mora, , 22,000

Oak, British and Russian, 10,000 to 13,600

Dantzic, , 8,700
American Red, 10,600

I*
00

,

11
, 13,3

baul, , 16,300 to 20,700
Sycamore, , 9,600
Teak, Indian, 12,000 to 19,000

African, 14,980
Tonka (Dipt&ryx odorata), 22,000
Water-Gum, 17,460
Willow (Salix, various species), 6,600
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VI.

TABLE OF SPECIFIC GRAVITIES OF MATERIALS.

Weight of a cubic

GASES, at 32 Fahr., and under the pressure of one foot in

atmosphere, of 2116-4 H>. on tne square foot: lb- avoirdupois

Air., 0-080728
Carbonic Acid, 0-12344

Hydrogen, 0-005592

Oxygen, .. 0-089256

Nitrogen, ....... 0-078596
Steam (ideal), 0*05022
-<Ether vapour (ideal), 0-2093

Bisulphuret-of-carbon vapour (ideal), r.. 0*2137
Olefiant gas, 0-0795

Weight of a cubic Specific
foot in gravity,

lb. avoirdupois. pure water = 1.

LIQUIDS at 32 Fahr. (except Water,
which is taken at 39 -4 Fahr.):

Water, pure, at 39 '4, 62-425 i-ooo

sea, ordinary, 64-05 1-026

Alcohol, pure, 49*38 0-791

proof spirit, 57'i8 0-916

^Ether, 44*7 0-716

Mercury, 848-75 I3'596

Naphtha, 52*94 0-848

Oil, linseed, 58-68 0-940

,, olive, 57-12 0-915

whale, 57-62 0-923
of turpentine, 54'S 1 0-870

Petroleum, L 54'8i 0-878

SOLID MINERAL SUBSTANCES, non-metallic :

Basalt,., 187-3 3'

Brick, 125 to 135 2 to 2-167

Brickwork, 112 1*8

Chalk, 117 to 174 1-87 to 2-78

Clay, 120 1-92

Coal, anthracite, 100 1-602

bituminous, 77-4 to 89-9 1*24 to 1*44

Coke, 62-43 to 103-6 I'oo to 1-66

Felspar, 162-3 2-6

Flint, 164-2 2-63
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Weight of a cable Specific
foot in gravity,

Ib. avoirdupois. pure water= 1.

SOLID MINERAL SUBSTANCES continued.

Glass, crown, average,. 156 2-5

flint, 187 3-0

green, 169 27
Plate> 169 27

Granite, 164 to 172 2-631x5276
Gypsum, 143-6 2-3
Limestone (including marble),.. 169 to 175 27 to 2-8

magnesian, 178 2*86

Marl, 100 to 119 1-6 to 1-9

Masonry,. 116 to 144 1-85 to 2-3

Mortar, 109 175
Mud, 102 1-63

Quartz, 165 2-65
Sand (damp), 118 1-9

(dry), 88-6^ 1-42

Sandstone, average, 144 2 -3

various kinds, 130^0157 2-08 to 2-52
Shale, 162 2-6

Slate, 175 to 181 2-8 to 2-9

Trap, 170 272

METALS, solid:

Brass, cast, 487 to 524-4 7-8 to 8-4

wire, 533 8-54
Bronze, 524 8-4

Copper, cast, 537 8-6

sheet, 549 8-8

hammered, 556 8-9
Gold, Ii86toi224 19 to 19-6
Iron, cast, various, 434 to 456 6-95^7-3

average, 444 7-n
Iron, wrought, various, 474 to 487 7-6 to 7-8

average, 480 7-69
kead, 712 n-4
Platinum, 1311 to 1373 21 to 22
Silver, 655 10-5

487 to 493 7-8 to 7-9
456 to 468 7'3to7'5
424 to 449 6-8 to 7-2
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TIMBER:*

Ash,
Bamboo,
Beech,

Birch,

Blue-Gum,
Box,
Bullet-tree,

Cabacalli,
Cedar of Lebanon,
Chestnut,

Cowrie,

Ebony, West Indian,

Elm,
Fir: Red Pine,

Spruce,
American Yellow Pine,.

Larch,

Greenheart,

Hawthorn, ,

Hazel,

Holly,

Hornbeam,
Laburnum, ,

Lancewood, ,

Larch. See "Fir."

Lignum-Vitse,
Locust,

Mahogany, Honduras,
Spanish, ,

Maple,
Mora,
Oak, European,

American Bed,
Poon,
Saul,

Sycamore,
Teak, Indian,

African,

Tonka,
Water-Gum,
Willow,

Yew,

Weight of a cubic

foot in

Ib. avoirdupois.

47

25

43
44*4

52'5
60

65-3

56-2

30*4

33'4

36-2

74*5

34

30 to 44
30 to 44

29
31 t 35

62-5

57

54
47
47

57

42 to 63

41 to 83
44
35
53
49
57

43 to 62

37
41 to 55

61

62 to 66

62-5

25

Specific

gravity,

pure water= 1.

0753
0-4

0-69

0711
0-843

0-96

1-046

0-9

0-486

o-579
i-i93

o'544

0*48 to 07
0-48 to 07

0-46

0-5 to 0-56
I '00 1

0-91
0-86

076
076
0-92

0*675 to I'OI

0-65 to 1-33

071
0-56

0-85

079
0-92

0-69 to 0-99

0-87

0-58

0*96

0-66 to 0-88

0-98

0-99 to i -06

i-ooi

0-4
0-8

* The Timber in every case is supposed to be dry.
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ABSOLUTE Unit of Force, 486.

Abutments of Arches, 261.

Open and Hollow, 263.

Stability of, 226, 235.

Strength of, 268.

Accelerating Effect of Gravity, 485.

Force, 490.

Impulse, 483.

Acceleration, 386.

Accumulator, 641.

Actual Energy, 499, 507.

of a Machine, 621.

of Rotation, 532.

Adhesion, 209.

Aggregate Combinations, 466.
Air Apparent Weight of Bodies in,

123.

Expansion of, 123.

Velocity of Sound in, 563.

Weight of, 123, 652.

Angle of Repose, 210.

of Rotation, 391.

of Rupture, 204, 259.

of Torsion, 356.

Angular Impulse, 506.

,, Momentum, 505, 529.

Velocity, 391, 492.
Arch Abutments of, 261.

, Angle, Joint, and Point of Rupture
of, 259.

Circular Linear, 183, 200.

Clustered, 263.

Distorted, 202.

Distorted Elliptic Linear, 186.

-Elliptic Linear, 184.

Geostatic approximate, 196, 207.

Hydrostatic, 190, 207, 353.

Iron-ribbed, 376.

Line of Pressures in, 257.

Linear or Equilibrated Rib, 162,
175, 182.

Linear for Normal Pressure, 189.

Piers of, 263.

Pointed, 203.

-Skew, 261.

Stability of, 226, 257.

Stereostatic, 198.

-Strength of, 268.

Arch-Total Thrust of, 203, 260.
Areas Conservation of, 507.

Measurement of, 58.

Atmospheric Pressure, 69.

Authorities on Waves, 633.

Axes Conjugate, 77, 79.
of Elasticity, 278.

of Inertia, 524, 526.
of Stress, 93, 98.

Axis Fixed, 545.

Instantaneous, 397.
of Angular Momentum, 505, 529.
of Rotation, 390.

Axle Friction of, 614.

Resilience of, 357.

Strength of, 353.
Torsion of, 356.

with Crank Strength of, 358.

BALANCE, 15.

of any System of Forces, 41.

of Couples, 21.

of Floating Bodies, 120.
of Fluids, 116.

of Forces in One Line, 19.

of Inclined Forces, 35.

of Parallel Forces, 21, 25.

of Stress and Weight, 112.
of Structures, 129.

Balanced Forces Motion under, 476.
Ballistic Pendulum, 548.
Bands Friction of, 617.

,, in Mechanism, 454.

Bars Strength of Iron and Steel, 377.

Beams, 133.

Allowance for Weight of, 346.

Cast-iron, 318.

Deflection under any Load, 328.

Direct Vertical Stress in, 342.

Expansion and Contraction of,
348.

'

fixed at both ends 332.

Limiting Length of, 347.
Lines of Principal Stress in, 341.

j,
of Uniform Strength, 320.

originally Curved, 348.

Partially loaded, 344.

Proof Deflection of, 322.
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Beams Proportion of Depth to Span of,

327.

Resilience of, 330.

Shearing Stress in, 338, 342.

-Sloping, 348.

Strength of, 307, 315, 318, 634.

Bearings, 422.

Belts, 288, 454.

Bending Moment of, 308.

,,
Resistance to, 307.

Bevel-wheels, 428, 448.

Blocks Stability of a series of, 230.

and Tackle, 462.

Bodies, 13.

Boiler Stays, 296.

Boilers Strength of, 289, 296, 299, 306,
640.

Bond in Brickwork, 222.

,, Masonry, 222.

Bowstring Girder, 369.

Bracing of Frames, 142.

Brakes, 242, 624, 640, 643.

Breaking across Resistance to, 307.

Breast-wheel, 628.

Brickwork, 222, 226, 242.

Bridges, 149, 153, 263, 344, 639.

Suspension, 149, 171, 286,
370.

Buckling, 302.

Bulging, 302.

Buoyancy, 120.

Centre of, 121, 601.

Buttresses^ 228, 235.

CABLES Strength of, 288.

Cam, 449.

Cast-iron Beams, 318.

Strength of, 362, 646.

Catenary, 177.

Cells Strength of, 364.
Centre of Buoyancy, 121, 601.

of Gravity, 49, 180, 505.
of Mass, 482.
of Oscillation, 546.
of Parallel Forces, 31.
of Percussion, 520, 544.
of Pressure, 71, 76, 125, 227.
of Resistance, 131.

Centrifugal Couple, 537, 621.

Force, 387, 491, 546.

Pump, 597,
Chains Equilibrium of, 162.

for Pulleys, 454.
Channel Flow in, 411.

Chimneys-Stability of, 228, 235, 240,

Cinematics, 15, 421. <*

,, Principles of, 379.

Click, 462.

Coefficient of Contraction, 572, 642.

Coefficient of Elasticity, 277, 279.

of Friction, 210, 612.

of Pliability, 277, 279.

Collapsing Resistance to, 306.
Collar Friction of, 616.

Collision, 508.

Columns Strength of, 360, 638.

Comparative Motion, 384, 389.

Components, 19, 37, 381.

Composition of Couples, Forces, Motions,

23, 381.

Compound Engines, 642, 643.

Screws, 467.

Compressibility of Liquids, 271.

Compression Resistance to, 302.

Cones Speed, 457.

Conjugate Axes, 79.

Stress, 85.

Connected Bodies Motions of, 420, 421.

Connecting Rods Strength of, 363.

Conservation of Angular Momentum, or

of Areas, 506.

of Energy, 478, 501, 508.

,,
of Momentum, 505.

Continuity Equations of in Gases, 417.

Equations of in Liquids,

411, 413.
Continuous Brakes, 640, 643.

Girders, 338, 634.

Contracted Vein, 572.
Contraction Coefficient of, 572, 642.

Cord Equilibrium of, 162.

Motion of, 408.

Cords, 454.

Reduplication of, 462.

Counterforts, 255.

Couples Centrifugal, 537.

Deviating, 535.

Energy and Work of, 537.

Polygon of, 25.

Reduction of, 612.

Statical Theory of, 21,
with Inclined Axes, 24.

with Parallel Axes, 21.

Coupling Friction, 618.

Hooke's, 461.

Oldham's, 453.

of Parallel Axes, 459.

Crank and Axle Motion of, 458.

,, Strength of, 358.

Cross-breaking Resistance to, 314.

Crushing by Bending Resistance to, 360.

Direct Resistance to, 302,
Table of, 648.

Cup and Ball Pivot, 616.

Current, 412.

,, Pressure of on a Solid Body,
598.

Radiating, 412, 574.

Cycloid, 398.
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Cjcloidal Pendulum, 497.

Cylinders Strength of, 289, 294.

DAMS Stability of, 235, 243.

Day Mean Solar, 382.

Sidereal, 380, 381.

Dead Points, 458.

Deflection of Beam, 312, 322, 328.

Deviating Couple, 535.

Force, 491, 492, 545.

Deviation (of Motion) Moment of, 528.

Uniform, 387.

Varying, 388.
Differential Windlass, 466.

Differentiation, 386.

Direction Fixed and nearly fixed, 379.

Distributed Forces, 48.

Domes Stability of, 265.

Driving Point, 610.

Drums in Mechanism, 455.

Ductility, 273, 376.

Duty of Engines, 630.

Dynamic Head, 568, 579.

Dynamics, 15.

General Equations of, 484.

Principles of, 475.

Dynamometer, 478.

EARTH Friction of, 211.

,, Foundations, 219.

Pressure of, 218, 249, 277.

Stability of, 212.

Table of Examples of; 221.

Eccentric Motion of, 460.

Eddy, 412.

Effect of a Machine, 610.

Efficiency, 609, 610.
of Heat Engine, 629, 644.

ofWaterwheels, 628.

of Windmills, 629.

Effort, 476, 611.

Elastic Curve, 349.

Force, 270.

Elasticity Coefficients of, 277.

Fluid, 270.

Liquid, 271.
Modulus of, 279, 646.

Potential Energy of, 277.

Theory of, 270, 275.

Electro-dynamic Engine Efficiency of,

630.

Elementary Combinations, 465.

Ellipsoid of Inertia, 526.

Energy, 477.

Actual, 499, 507.

,, Actual of a Rotating Body,
532.

Components of, 480, 499.

Conservation of Motion being
Uniform, 478.

Energy Conservation of -in Varied

Motion, 501, 508.

Initial, 503.

of Couples, 537.

Potential, 477.

Total, 503, 569.
Transformation of, 499.

Engines, 625, 643.

Epicycloid, 401.

Epicycloid al Teeth, 444.

Epitrochoid, 401.

Equilibrated Arch, 162, 175, 182.

Equilibrium of forces, 25, 43.

of Structures, 129.

Stable and Unstable, 128.

Expansion of Air, 123, 606.

of Metals, Stones, Briok, Glass,

Timber, 349.

of Steam, 606.
of Water, 125.

Extrados of Arch, 173.

FACTORS of Safety, 274, 362, 365.

Fall, or Head, 627.

Falling Body, 485, 486.
Fan Blowing, 598.
First Law of Motion, 476.
Fixed Direction, 379.

Point, 14, 381.
Flexure Moment of, 311.

,, Resistance of, 312.

Floating Bodies, 120, 600.

Oscillation of, 603,
Floats of Waterwheels, 628.
Flow of Fluids, 417.

of Liquid, 410.
Flues Strength of, 306.

Fluid, 100.

Elasticity of, 285.

Equilibrium of, 116.
Flow of, 417.

Impulse of on a Solid Surface,
591.

M Motion of, 410, 566.

,, Pressure of, 99.

, Resistance, 598.

Fly-wheel, 623.

Foot-pound, 477.

Force, 15, 17.

Absolute Unit of, 486.

.,, Centrifugal, 387, 491.

Deviating 491, 492, 595.

,, Distributed, 48.

Reciprocating, 503.

Representation of, 19.

,, -T-Unbalanced Measures of, 001.
Forces Action of on a System of Bodiei,

510.

Parallelogram of, 35.

-Parallelepiped of, 37.

2U
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Forces Polygon of, 86.

Reduction of, 612.

Residual, 498, 61L
Resolution of, 37.

Foundation, 129.

Foundations Earth, 219, 255.

Fracture, 272.

Frames Bracing of, 142.

Equilibrium and Stability of,

132.

of two Bars, 136.

}> Polygonal, 139.

Resistance of at a Section,
150.

,, Triangular, 137.

Free Rotation, 533.

Surface, 570.

Friction, 209.

Coefficient of, 210, 612.

Couplings, 618.
Heat of 620.

Internal, 377.

Moment of, 614.

of Gas, 590.

of Liquids, 584.

of Machines, 612, 614.

of Solid Bodies Law of, 209.

Strap, 618.

Tables of, 211, 613.
Frictional Gearing, 618.

Stability, 209.

Tenacity, 222.

Furnace Waste Heat of, 629.

GAS, 13.

Action of on a Piston, 604.

Dynamic Head in, 579.

Engine, 642.

Equation of Continuity in, 581.

Flow of from an Orifice, 581, 642.

Flow of with Friction, 590.
Motion of, 566.

Motion of without Friction, 579.

Geostatic Arch, 196.

Girder Bowstring, 369.

Cellular, 367.

Compound, 366.

, Half-lattice, 153, 369.

, Lattice, 160, 369.

Plate, 366.

,, Stiffening for Suspension Bridges,
370.

Tubular, 366, 367.

Warren, 153.

Governor, 548, 625.

Gravity Accelerating Effect of, 485.
Centre of, 15, 49, 61, 180.

Motion under, 485, 486.

Specific, 49, 124.

Specific Table of, 652.

Grease, 613.

Groined Vaults, 262.

Gyration, 515, 542.

Radius of, 515.
Table of Radii of, 518.

HEAD Dynamic of Gas, 579.

,,
of Liquid, 568, 627.

,, Equal Surfaces of, 573.
Headers in Masonry, 223.
Heat Engine Efficiency of, 629.

Heat of Friction, 620.

of Steam, 607.

Specific of Gases at Constant

Pressure, 580.

Height due to Velocity, 487.
Helical Motion, 394.

Hool-3's Double Joint, 462.

Gearing, 451.

Law, 275.

Universal Joint, 461.

Hoop-tension, 290.

Horse-power, 610.

Horse Work of, 626.

Hunting Cog, 434.

Hydraulic Hoist, 465.

Mean Depth, 587.

Press, 462.

Rivetting, 642.

Hydraulics, 585.

Hydrodynamics, 475, 566.

Hydrostatics Principles of, 100, 112.

117.

Hydrostatic Arch, 190, 206, 353.

IMMERSED Body Pressure on, 122.

,,
Plane Pressure on, 125.

Impact, 564.

Impulse, 483.

Angular, 506.

between Solids and Fluids,
591.

., and Momentum Law of, 484.

Inclined Plane, 489.

Indicator, 478.

Inertia, or Mass, 482.

Axes of, 524.

Ellipsoid of, 526, 532.

Moment of, 77, 514, 518.

Reduced, 621.

Inside Gearing, 441.

Instantaneous Axis, 397, 404, 467.

Integrals Approximate Computation of,

58, 386.

Intensity of Distributed Force, 48.

of Pressure, 69.

of Stress, 68.

Internal Equilibrium of Stress and Weight,
112.

Internal Stress, 280.
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Intrados of Arch, 173.

Isochronous Vibration, 553.

Isotropic Solid, 278.

JET Impul'se of, 591.

Joints of a Structure, 129, 131.

,,
of Masonry, 211.

,,
of Rupture, 259.

KEYS Friction of, 226.

LATERAL Force, 476.

Lattice Girder, 153, 160.

Least Resistance Principle of, 215.

Leather Strength of, 288.

Length Measure of, 13, 14.

Lever, 26.

Line, 13.

Linear Arch, 162, 182, 189, 203, 258.

Link Motion, 468.

Linkwork in Mechanism, 424, 458.

Liquid, 13.

Dynamic Head of, 568.

Equilibrium of, 118.

Flow of from an Orifice, 570.

Flow of in a Pipe, 411, 588.

Flow of in a Stream, 586.

Free Surface of, 570.

Motion of, 410.
Motion of in Plane Layers,
570.

Jf
Motion of with Friction, 584.

Surface of Equal Pressure in,

570.

without Friction Motion of, 567.

MACHINES, 5, 15, 421.
Actual Energy of, 621.

Pieces of, 422.

Reduced Inertia of, 621.

Theory of, 609.

n Varied Motion of, 621.

J} Work of with Uniform or

Periodic Motion, 610.

Man Work of, 626.

Masonry and Brickwork Bond of, 222.

-Frictionof,2ll,
222.

Stability of, 230.

Mass, 482, 484, 485.

Centre of, 482.

Matter, 13.

Measures Comparative Table of British

and French, 651.
of Length, 13, 14.

of Stress, 69.

of Time, 381.
of Velocity, 382.
of Weight, 18.

Mechanical Equivalent of Heat, 620,

Mechanics Applied, 13.

Dissertation on, 1.

Mechanism Aggregate Combinations in,

425, 466,
Elementary Combinations in.

423, 426.

Principle of Connection in,

424.

Theory of, 421.

Mercury Weight of, 69.

Metacentre, 601.

Modulus of Elasticity, 279, 646.

of Kesilience, 287.

of Rupture, 316, 649.
Moment Bending, 307.

of a Couple, 22.

,, of Deviation, 528.
of Flexure, 311.

,, ot Friction, 614.

,, of Inertia, 514.

,, of Inertia of a Surface, 77.

, ,
ofInertia-Tables of, 82, 229, 518.
of Stability, 233.
of Stress, 73.

of Tomon, 353.

Statical, 27, 29.

Momentum, 482.

,, Angular, 505, 529.

,, Conservation of, 505.

and Impulse Law of, 484.

of a Rotating Body, 529.

Motion, 14.

Comparative, 384, 389.

Component and Resultant, 381,
383.

First Law of, 476.

Friction of, 226, 612.

of a System of Bodies, 505.
of Fluids Dynamics of 475, 566.
of Gases, 417.

n of Liquids, 410, 566.

of Pliable Bodies and Fluids, 408.
of Pliable Bodies Dynamics of,

552.

of Points, 379.

of Points Varied, 385.

of Rigid Bodies, 390.

Second Law of, 484.

Uniform Dynamical Princi-

ples of, 476.

VariedDynamical Principles

of, 482.
Muscular Strength Work of, 625.

NEUTRAL axis, 73.

Notch Flow through, 573.

OIL, 613.
Oldham's Coupling, 453.

Orifice Flow through, 571.
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Oscillation, 416.

^-Angular, 542.

Centre of, 546.

Elliptical, 495.

Straight, 494.

Oscillating Pendulum, 496, 546.

Overshot Wheel, 628.

PARABOLA Formulae relating to, 165.

Parallel Forces, 25.

Motion, 469.

Projection, 45, 61, 127.

Pendulum Ballistic, 548.

Compound Oscillating, 546.

,, Compound Revolving, 547.

Cycloidal, 497.

Rotating, 547.

Simple Oscillating, 496.

Simple Revolving, 492.

Percussion Centre of, 520, 644.

Periodical Motion of Machines, 501.

Pieces of a Structure, 129.

Piers Stability of, 228.

of Arches, 263.

Open and Hollow, 263.

Pile-driving, 564.

Pillars Strength of Long, 360, 639.

Strength of Short, 302.

Pinion, 434, 443.

Pinnacle on a Buttress, 239.

Pipes Flow in, 411, 588.

Friction in, 585, 588.

Resistance caused by Sudden En-

largement in, 589.

Resistance of Curves and Knees

in, 589.

Resistance of Mouthpieces of,

589.

Strength of, 289.

Piston, 413.

Action of a Fluid upon, 604.

Piston Rods Strength of, 363.

Pitch, 394, 433, 449.

Surface, 426, 454.
Pivot Friction of, 616.

Plasticity, 272.

Plate-iron Girders, 365, 366.

Joints, 299.
Plates Strength of Iron and Steel, 377,

641.

Pliability, 273.

Coefficients of, 277.
Point -Fixed. 14, 381.

Motions of, 379.

Physical, 13, 475.
Pointed Arch, 203.
Posts Timber Strength of, 365.
Potential Energy, 477.

of Elasticity, S77.
Pound Standard, 18.

Power, 610.

Preliminary Dissertation, 1.

Press Hydraulic, 464.

Strength of, 290.

Pressure, 20, 69, 564.

,,
between Rubbing Surfaces, 615.
in a Sloping Solid Mass, 126.

Internal, 289.

of Earth, 218, 249, 277.

,,
of Fluids, 99.

Prime Movers, 609, 625.

Principle of D'Alembert, 511.

Projectiles, 487, 491, 599.

Projection Parallel, 45, 61, 127.
Proof Strength, 273, 274.

Pulsometer Pump, 641.

Pull, 69.

Pulleys and Belts, 454.

and Cords, 462.

Speed, 457.

Pump Centrifugal, 597.

Pulsometer, 641.

Rods Strength of, 297.

RACK Motion of, 427.

Teeth of, 438.

Radiating Current, 574.

Radius of Gyration, 515.

Vector, 392.

Railways Resistance on, 620.

Reciprocating Force, 503.

Reduced Inertia, 621.

Reduction of Forces and Couples in Ma-
chines to the Driving Point, 612.

Regulator of a Prime Mover, 625.

Repose Angle of, 210.

Reservoir Walls Stability of, 243, 638.

Resilience, 273.

of Axle, 357.

of Beam, 330.

of Tie-bar, 287.

Resistance, 476.

Centre of, 131.

Line of, 131.

of Carriages on Roads, 619.

of Fluids, 598.

of Machines, 610.

of Materials, 273, 646.

of Railway Trains and En-

gines, 620, 643.

of Rolling, 619.

of Ships, .598, 641.

Point of, 610.

Resolution of Forces, 37.

of Internal Stress, 82.

Rest, 14.

Friction of, 226, 612.

Resultant, 18.

Momentum, 482.

of any System of Forces, 41.
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Reiultant of Couples, 23, 24.

of Inclined Forces, 35.
of Motions, 381.

of Parallel Forces, 26, 28, 30.

of Stress, 70.

of Weight, 49.

Retaining Walls, 227, 249, 638.

Retardation, 386.

Revetements, 227, 249.

Revolving Simple Pendulum, 492.

Rib Arch, 182.

Ribbed Arches, 376.

Rigid Body Action of a Single Force on,
543.
Motion of, 390, 394, 513.

Rigidity or Stiffness, 271.

of a Truss, 144.

Supposition of Perfect, 18.

Rivets Strength of, 299.

Rivetted Joints Strength of, 289, 299.

Rivetting Hydraulic, 642.

Roads Resistance of, 619. *

Rolling Cones, 405, 535.

Contact in Mechanism, 426.

Load, 332.

of Cylinder on Cylinder, 400.
of Cylinder on Plane, 398.

of Plane on Cylinder, 398.

of Ships, 604.

Resistance, 619.

Roof, 142, 145.

Ropes Stiffness of, 619.

Strength of, 288.

Rotating Body Comparative Motion of

Points in, 393.

Relative Motion of a
Pair of Points in, 392.

Rotation, 390.

,, Actual Energy of, 532.
and Force Analogy of, 405.

Angular Velocity of, 391.

Axis of, 390.

,, Combined with Translation, 394.

,, Comparative Motionsin Com-

pound, 406.

,, Compound, 399.

,, Dynamical Principles of, 513.

Free, 533.

Instantaneous Axis of, 397,
543.

Uniform, 535.

Varied, 406, 538.

Varied Combined with

Translation, 543.

Rupture Modulus of, 316, 649.

Angle of, 204, 259.
Point of, 204, 259.

SAFETY Factors of, 274, 641.

Valvw, 642.

Screw-like Motion, 894.

,, Gearing, 451.

Screws Compound, 467.

Friction of, 226.

in Mechanism, 449.

Second Law of Motion, 484.

Sections Method of Applied to Frame-

work, 150.

Set. 271.

Shafts and Axles Strength of, 353.

Shear, 69, 87.

Shearing Force in Beams, 307.

,, Resistance to, 298;
Stress in Beams, 338.

Table of, 648.

Shifting or Translation, 390.

Ship Resistance, 599, 641.
Shrunk Rings, 294.

Skew Arches, 261.

Bevel Wheels, 430, 449.

Sliding Contact in Mechanism, 436.

Solid, 13.

Sound Velocity of, 563.

Spandril Wall, '257.

Specific Gravity, 42, 124, 652.

Speed-cones, 457.

Speed Fluctuations of, 622.

Spheres Strength of, 290.

Spiral, 398.

Stability, 128.

Frictional, 230.

of Floating Bodies, 600.
of Structures, 130, 131.

Standard Measure of Length, 14.

,,
Measure of Weiglit, 18.

Starting of Machines, 624.

Statics, 15.

Principles of, 17.

Stays, 133, 136.

Steady Motion of a Gas, 419.
of a Liquid, 412, 414.

Steam Action of, 606.

Boilers, 289.

Engine Efficiency of, 629, 630, 643.
Steel Strength of, 377, 631, 641, 646.
Stereostatic Arch, 198.

Stiffness, 130, 270, 273.
of Beams, 322.

Stopping of Machines, 624.

Strain, 272.

and Stress Relations between,
280.

-Ellipse of, 280.

Resolution and Composition of.

275.

Stream Friction of, 586.

Hydraulic Mean Depth of, 587.

Lines, 600.

of Gas, 417.

of Liquid, 411, 586.
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Stream Varying, 587.

Strength, 130, 270.

of Abutments and Vaults, 268.

of Axles, 353, 358.

of Beams, 30 /, 315.

of Boilers, Pipes, and Cylinders,

'289, 299, 306.

of Bolts, Pins, Keys, and Rivets,
299.

of Iron and Steel, 377,640, 646.

of Iron Effects of Repeated
Melting on, 376.

of Leathern Belts, 288.

of Long Pillars and Struts, 360,
639.

of Masonry and Brickwork, 268,
302.

of Pump-rods, 298.
of Ropes and Cables, 288.
of Short Pillars, 304.

of Spheres. 290, 295.
of Teeth, 359.

of Tie -bar, 286.

of Tubes and Flues, 306.

Proof, 273.

Tables of, 377, 646.

Transver se, 315.

Ultimate, 273.

Stress, 68.

and Strain Relations between,
280.

Internal, 82.

Stretchers in Masonry, 223.

Stretching Resistance to, 286.

Stroke Length of in Mechanism, 460.

Structures, 15.

,, Theory of, 129.

Transformation of, 129.

Struts, 133.

Strength of, 302, 360, 365.

VVrought-iron, 364.

Superposition of Small Motions, 555.

Surface, 13.

Suspension Bridge, 149, 165, 168, 171.

Stiffened, 370.

M Strength of, 288, 301.

,,
with Sloping Rods, 171.

with Vertical Rods, 168.

System of Bodies Motion of, 505.

TABLES of Bending Moments, 310, 311.

of Coefficient of Friction. 211,
613.

,, of Compressibilty of Liquids,

of Expansion by Heat, 349.
of Factors of Safety, 274, 356.

of Figures of Beams, 321.

,,
of French and British Measures,
651,

Tables of Measures of Velocity, 382.
of Moments of Inertia, 82, 229.
518.

of Shearing Forces, 310, 311.
of Specific Gravities, 652.
of Stability of Earth, 221.
of Strength of Iron Pillars, 363.

,, of Materials, 274,
288, 646-650.

of Work of Men and Horses, 626.

Tangential Stress, 69, 87.

Tearing Resistance to, 286.
Tables of Resistance to, 288, 289,

377, C46.

Teeth of Wheels, 432.

,, Dimensions of, 447.

Epicycloidal, 444.
Friction of, 617.
Form of, 438.

Involute, 441.
of Bevel Wheels, 448.
of Wheel and Trundle, 447.

Pitch and Number of, 432.

Strength of, 359.

Temperature Effects of, 376.

Tenacity, 2S6.

Tension, 69.

Testing Strength, 273.

Theory and Practice in Mechanics Har-

mony of, 1, 10.

Thrust, 69.

Tie, 132.

Flexible, 169.

,, Strength of, 286.
Timber Struts, 365.

Ties, 301.

Time Measure of, 881.
Torsion Moment of, 353.

Toughness, 273.

Towers Stability of, 240.
Trains of Mechanism, 465.

,, Efficiency of, 610.

Epicyclic, 473.

of Wheels, 434.

Transformation, 66, 127.

,,
of Cords and Chains, 180.

of Energy, 501.

of Frames, 162.

of Stress, 92.

of Structures in Masonry,
332, 268.

Translation or Shifting, 390.

Varied, 482.

Transverse Strength, 315.

Table of, 649.

Trochoid, 398.

Trundle, 447.

Truss, 144.

Compound, 148.

Trussing Secondary, 146.
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Tunnels, 264.

Turbine, 595, 628, 629.

Turning, 390.

Twisting and Bending, 358.

Moment, 353.

UNBALANCED Force Measures of, 501.

Undershot Wheel, 628.

Unguents, 613.

Uniform Deviation, 387.

Effort or Resistance Effect of,

490.

Motion, 382.

Motion under Balanced Forces,
476.

Velocity, 382.

Unit of Force, 18, 486.
of Length, 14.

of Specific Gravity, 49.

of Time, 381.

Universal Joint, 461.

Double, 462.

Unsteady Motion of Fluid, 413, 415.

VANES Impulse of Liquid on, 593.
Varied Rotation, 538.

Vaults Groined, 262.

Stability of, 226.

Velocity, 382.
'

Angular, 391.
of Sound. 563.

Ratio, 463.

Uniform, 382.

Uniformly-varied, 388.

Jf Varied, 385.

Varied Rate of Variation of,

387.

Velocities Virtual, 479.

Vibration, 552.

,, Isochronous, 553.

,, Not Isochronous, 557.
of Elastic Body, 557.

Virtual Velocities, 479.
Viscous Liquid, 273.

Vis-viva, 499.

Volume, 13.

Vortex, 412, 574.

Action of on Wheel, 595, 629.

Combined, 576.

Forced, 576.

., Free Circular, 574.
Free Spiral, 576.

Vortex Wheel, 596.

WALLS Retaining, 227, 249.

Stability of, 226, 638.

Warren Girder, 153.

Water Apparent Weight of Bodies im-

mersed in, 125.

Expansion of, 125.

Flow of, 585.

Pipes, 289, 585.
Pressure Engine, 626.

Velocity ot Sound in, 563.

Weight of, 125.

Water-wheel, 578, 627.

A ction of Vortex on, 595,
629.

Efficiency of, 627.

Impulse of Water on
Floats of, 593.

Waves Motion in, 416, 579, 631.
of Vibration, 562.

Wedges Friction of, 226.

Weight, 49, 485.

Apparent of Body immersed
in Fluid, 123.
Measures of, 18, 651.

Table of; 652.

Weir, 243.

Wheel and Screw, 452.
Wheels Bevel, 428, 448.

Grooved, 431.
Motion of, 426.

Non-circular, 428, 449.

Skew-bevel, 430, 449.

Teeth of, 432.
Train of, 434.

White's Tackle, 463.
Wind Action of on Towers and Chim-

neys, 240.

Pressure of, 240, 639.
Windlass Differential, 466.

Windmills, 629.

Wiper or Cam, 449.

Work, 477.

of Machines, 610.
Useful and Lost, 610.

Working Point, 611.

,, Stress, 274.

Wrenching Resistance to, 353.

Wrought -iron Strength of, 362, 377, 646.

YARD Standard, 14,

BILL AND BAIN, PRJDJTEBS, GLASGOW,







UNIVERSITY OF CALIFORNIA LIBRARY
BERKELEY

Return to desk from which borrowed.

This book is DUE on the last date stamped below.

? 5 1C.:0'

LD 21-100m-9,'48(B399 816)476



THE UNIVERSITY OF CALIFORNIA LIBRARY




