

M ANUA．L

OF
 CONCHOLOGY：
 Structural and Systematic．

WITII ILLUSTRATIONS OF THE SPECIES．

BI GEORGE W．TRYON，JR．

Conservator of the Conchological Section of the Academy of Natural Soiencis uf Phlladelphia．

VOL．VII．

TEREBRID Æ，CANCELLARIID $\notin, ~ S T R O M B I D$ 平，CYPR厌ID， OVULIDE，CASSIDIDE，DOLIID氏．

PHILADELPHIA：

Published by the Author，
academy of Natural Sciences，Cor．19th \＆Race Sts．
1885.

Wm. P. Kildare, Printer, 334 \&- i36 Sansom St., Phila.

MANUAL OF CONCHOLOGY.

Family TEREBRIDE.
Shell long, solid, narrow, many-whorled, whorls flattened, suture superficial; the aperture small, notched in front, columella without plaits. Operculum horny, annular, with apical nucleus.

Animal having the foot rounded in front, elongated behind; head rather large, with short, small tentacles furnished with eyes. at their tips; between the tentacles extends anteriorly a rather long cylindrical trunk. Teeth subulate, arcuate, in two lateral rows (1.0 .1) ; Pl. 12, fig. 40.

The family is now restricted to the single genus Terebra (augershells), including about 170 living species; the genus Pusionella, formerly referred to Terebridæe, being now included in the Pleurotomidæ. Troschel, however (Gebiss der Schnecken, ii, 28), found so much difference in the mouth-parts of the few species of Terebridx examined by him, that he would have separated them into three families, notwithstanding the close relationship of their shells, had he not been deterred by the paucity of material for study. His three types are as follows :-

1. The month-mass at the end of the proboscis furnished with arrow-like teetl, as in Conus, and a poison-gland.

Hastula cærulescens.
2. No teeth, no venom-gland.

Acus muscaria.
3. The mouth contains a true radula, supported by a lingual cartilage, with two rows of side-teeth; no renom-gland.

IJyurella duplicata. Pl. 12, fig. 40.
Finally in examining a specimen of T. subulata (representative of the restricted group Terebra), Troschel only obtained negative results; seeing no teeth, although the poison-gland was present.

About 25 fossil species are known, commencing with the Eocene. Conrad's genera Pyramitra, Cælatura and Terebrifusus, referred ly him to Terebridæ, are not members of the group.

The geographical distribution of Terebra is tropical and subtropical, and the species appear to be inhabitants of shallow water principally; indeed, none have occurred, so far. at great depths.

Gray, in 1834 (Zool. Proceedings, 59). enumerates 42 species, excluding those subsequently referred to Bullia; half of these were first described in his paper. He thius groups them:-
I. Whorls with a posterior spiral sulcus, inner lip thin, concare. 30 species.
II. Whorls with posterior spiral sulcus, inner lip thickened, subelerated. i species.
III. Whorls without posterior sulcus. 5 species.

Kiener's monograph in his "Coquilles vivantes," contains 35 species.

Hinds described many species in the Zoological Proceedings for 1843 , and he monographed the genus in Sowerby's Thesaurus Conclyyliorum (i. p. 147 bis to 190, Pl. 41 to 45); enumerating and figuring 109 species.

Hinds remarks that " The only sectional dirision of the genus that has been attempted, is that of Mr. Gray in the above Proceedings. This division is three-fold; the two first of these depend on the presence of the peculiar girdling or division of the whorls, and which is very conspicuous in many species, but practically I fail to carry it out in detail. Some species also are so excessively variable in this character, that M. Kiener has described T. castanea as having girdled whorls, but has figured it withont them. The latter writer has not attempted any grouping of the species in his monograph, and as he has done so in most cases, we may venture to infer that he did not see room for it here.
" It cannot be denied that among the numerous species are several shells which, taken by themselves, would furnish good grounds for sectional or even subgeneric divisions. And if we take T. maculata as the proper generic type, then T. lanceata,
T. armillata and T. commaculata, seem to offer strong points of difference, and good grounds for sectional heads. But, with every wish to establish some such divisions, I have found it impracticable so to group the species that there shall be little or no doubt which section they belong to ; and unless this object is attained, I do not see any use in a division; science would not be benefitted merely by selecting the salient points and strong grounds of the exceptions, and leaving the crowd to follow as they may."
H. and A. Adams, in their "Genera of Recent Mollusca," include in the family Terebridæ the two subfamilies Terebrinæ and Pusiouelline (the shells composing the latter are now considered a group of the family Pleurotomidæ).

They divide the subfamily Terebrine into two genera:-
Acus, Humplirey. Animal with eyes on the tips of the tentacles. Whorls without posterior band; aperture emarginate anteriorly, not produced into a canal ; columella simple.incurved, not tortuous; outer lip simple, acute, without anterior sinus.
A. maculata, Linn.

Terebra, Adanson. Eyes at the outer bases of the tentacles. Whorls with spiral groove forming a posterior band; aperture very small, canaliculated; columella tortnous; outer lip anteriorly sinuous.
T. bobylonia, Lam.

These characters of the shell shade off into each other by gradual transitions, so that they afford no good grounds of division, and the position of the eyes is at the tips of the tentacles in all the species that have been examined. The eyes were erroneously figured by Quoy and Gaimard, in T. subulata, at the base of the tentacles, and this supposed peculiarity Messrs. Adams have made one of the points of distinction between their two genera. In the figure of the animal of T. subulata, in Gould's Mohl. U. S. Expl. Exped., the eyes are correctly placed.

In the genus Acus, Messrs. Adams' have the following sub-genera:-

Abretta, H. and A. Adams. Whorls longitudinally ribbed; columella simple, straight, produced. A. cerethina. Lam.

Hastula, H. and A. Adams. Whorls smooth; columella simple, straight. produced anteriorly. A. albula, Menke.

Etrifta, H. and A. Adams. Turreted, snbfusiform, smooth; whorls nodosely plicate, the last rather ventricose; columella
spirally twisted, forming a false umbilicus, pervious to the apex of the spire, much produced anteriorly; aperture somewhat effuse. A. aciculata, Lam.

Under Terebra, they admit the subgenus:-
Myurella, Hinds. Whorls furnished posteriorly with a tuberculated zone, anteriorly transversely sculptured, or, very rarely, smooth; columella tortuous and produced anteriorly.
T. affinis, Gray.

To complete the group of subgenera proposed in Terebridæ, I here add :-

Impages, Smith. Shell subulate, whorls entire, more or less longitudinally striate or punctate, suture indistinctly separated, with a narrow callous band above it. This name is substituted for Leiodomus, Gray, not Swainson; Swainson's group beionging to Bullia. The character usually (but not always) obtains in the typical T. cærulescens, but in the other species quoted by Mr. Smith as members of this group it is mostly absent.
M. Deshayes, in 1857, described a number of new species in the "Journal de Conchyliologie," and in 3859 he published, in Zool. Proc. London, "A General Review of the Genus Terebra, and a Description of New Species." Excluding doubtful and unidentified forms, 221 species are enumerated, of which 90 are described by this author.

In the systematic arrangement of the species Deshayes mainly follows H. and A. Adams, thus (I add characteristic examples) :

First Division. (Acus, Humphrey.)

A. Shell buecinoid. (S. G. Euryta, Ad.). T. aciculata, Lam.
B. Shell elongated, subulate.
T. Senegalensis, Lam.
C. Shell subulate, whorls flattened, usually striate at the suture. a. Aperture narrow.

1. Finely striate at the suture. T. cuspidata, Hinds.
2. Plications continuous from whorl to whorl.
T. concinna, Desh.
b. Aperture dilated at the base.
3. Whorls smooth or finely striate. T. cærulescens, Lam.
4. Plications continuous from whorl to whorl.
T. strigilata, Linn.
D. Shell having the aperture oblong, narrow, the whorls numerons, grooved, plicated or cancellated. (Myurella, Hinds.)
a. A spiral groove nearly equally dividing the whorls.
T. duplicata, Lam.
b. Sutural portion (or band) narrow. T. dislocata, Say.

Second Division. (Terebra, Adams.)
(No subdivisions).
I'. oculata, Lam.
Reeve, who monographed Terebra in 1860, in his "Conchologia lconica," admits 155 species; a considerable reduction on the number enumerated by Deshayes, nearly half of whose species are here made synonyms, after examining their types in the Cumingian Collection. Mr. Reeve says: "M. Deshayes was induced to undertake the investigation of the genus under circumstances hardly favorable to the proper discrimination of the species. Specimens were transmitted to him in Paris, from the Cumingian Collection, and his means of comparison with the types of Mr. 'Hinds' species being necessarily limited, many that were already named were described by him as new, and many were described by him as now that a more extended series of specimens would have shown to be merely varicties. Out of 221 species cited by Deshayes, in his recent memoir, I have before me the original types and series of types of 214 . All the figures of this monograph are drawn from the types themselves, and no subsequently described species is quoted as a synonym, except as resulting from an actual comparison with the types." Mr. Reeve's monograph is certainly worked up with more than usual care and judgment; nevertheless, he has made some erroneous identifications, as will be apparent in the course of the following pages.

In the present monograph, notwithstanding the additional speeies described and figured since 1860 , the synonymy is much enlarged, and the admitted species reduced to about 120 ; exclusive of about 50 species, described but not figured, and therefore not susceptible of identification.

Agreeing with Mr. Hinds that the species of Terebra cannot be advantageously divided into subgenera (with the exception of Euryta), 1 have essayed a classification by sections and sub-
sections which will perhaps assist in grouping the species, although the presence of transitional forms makes the boundaries rather vague.

Genus TEREBRA, Adanson.
A. Whorls smooth, with or without a smooth sutural band, defined by a sulcus.
B. Shell with plicate or tuberculate band below the sutures, defined by a suleus.

* Whorls plicate.
** Whorls smooth.
** Cylindrically many-whorled; whorls with revolving sculpture, with or without less prominent longitudinal striæ.
C. No sutural band; whorls closely plicate or striate next the suture, elsewhere plicate or smooth.

Subgenus Euryta, Adams.

Genus TEREBR Λ, A danson.
A. Whorts smooth, with or without a smooth sutural band defined by a sulcus.
'I. crenulata, Linn. Pl. 1, figs. 1, 2, 6.
Whorls obtusely noduled below the sutures; carneous creamcolor, streaked with chestunt irregular lines between the norlules, and with three revolving rows of small chestnit spots below, two of which appear on the spire-whorls. Length, $3-5$ inches. Indian Ocean-Central Polynesia.
T. fimbriata, Deshayes (fig. 2) is a variety only, retaining the juvenile characters shown by the upper whorls of this and other smooth species of Terebra, namely, longitudinal plications and a strongly marked sutural band. T. interlineata, Desh. (fig. 6), is another example of the long persistence of jurenile characters, and may be equally referred here.
T. tiarella, Desh. Pl. 12, figs. 38, 39.

First few whorls plicate, the rest smooth, with spiral impressed strie, sutural margin a little swollen and conspicuously nodulous; fulvous fawn or chocolate-colored. Length, 28-33 mill.

Cape of Good Hope.
T. dimidiata, Linn. Pl. 1, figs. 13, 4.

Reddish orange, banded with oblong spots on a white ground, sutural band orange-red; upper whorls longitudinally plicate, lower ones smooth. Length, 3.5-5 inches.

Singapore, Fhilippines, Central Polynesia.
T. splendens, Desh. (fig. 4), from the China Sea, appears to be a small variety, the figure being natural size.
T. maculata, Linn. . Pl. 1, figs. 9, 10.

Flesh-white, broadly bancled with fawn-color, the bands often broken up into oblong, close markings, with a band of longitudinal black-purple strigations next the sutures, and below it a second much smaller band of spots or hieroglyphic markings ; carly whorls often longitudinally plicate; balance smooth.

Length, $4 \cdot 5-6.5$ inches.
Moluccas, Australia, Philippines-Central Polynesia.
Sometimes a spiral impressed line divides off as a sutural band, the upper row of strigations.

The Polynesians eat the animal, and use the shell shaped to a chisel in making canoes.
T. muscaria, Lam. Pl. 1, fig. 12.

Yellowish white, with a row of oblong bright chestnut spots on a sutural band, and two (on the body-whorl three) similar rows below it ; the spots are smaller and more widely separated than in the preceding species, and the form of the shell is narrower. Length, 3-6 inches.

Japan, Philippines-Central Polynesia.
Mr. Tapparone-Canefri's variety callichloros is founded on a narrow, brightly colored specimen figured by Qnoy in the Voy. Astrolabe; there is no good reason for giving it a name.
T. consors, Hinds. Pl. 3, figs. 32-34.

Shell smooth, the sutural band distinct and obsoletely plieate; whitish, with light chestnut obliquely longitudinal flames, interrupted on the periphery of the last whorl, below which they sometimes coalesce into a broad revolving band.

Length, 2.75 inches.
Society Islands.
T. virginea, Desh. (fig. 33), and T. glabra, Desh. (fig. 34), are both described from worn specimens in which the coloring is no
longer very apparent, although Reeve has discovered traces of it upon the types.
T. subulata, Linn. Pl. 1, fig. 3; Pl. 3, fig. 35.

Light flesh-color or yellowish, with two spiral series (on the last whorl three), of quadrangular distant chestuut or chocolate spots; upper whorls longitudinally plicate, and with a sutural band; in the later whorls this band is lost, but sometimes the whorls are somewhat swollen just beneath the sutures, although the impressed line defining the band is obsolete; surface smooth, or with impressed (sometimes minutely punctate) revolving lines. Length, 4-6 inches.

Japan, Moluccas, Philippines, Society Islands, etc.
Var. consobrina, Desh. Pl. 3, fig. 35.
More conically subulate than the type, with the spots smaller, the surface distantly encircled by punctate grooves, a sutural band slightly indicated.

Red Sea.
Barely distinguishable as a varicty.
T. tigrina, Gmelin. Pl. 1, fig. 11.

Shell white, with a single row of chestnut spots just above the sutures, two rows on the last whorl, of which the lower one, near the base, is smaller; surface smooth, an unornamented band below the sutmres is defined by an impressed line.

Length, 2-3 inches.
Sandwich Islands, Central Polynesia.
Reeve's locality, West Indies, is crroneous.
T. oculata, Lam. Pl. 2, fig. 20 ; Pl. 3, fig. 36.

Orange-brown, with a row of large white spots just below the sutures, and a second row below the middle of the body-whorl; whorls somewhat constricted in the middle.

Length, 3•5-5 inches.
Moluccas-Viti Islands.
According to Reeve, who has seen the type, T. nebulosa, Lorois (fig. 36), is the young of the species; the name being preoccupied, Deshayes changed it to T. Loroisii.
T. Argus, Hinds. Pl. 2, fig. 24.

Earlier whorls with a sutural band; whitish, with three rows of regularly disposed oval light fawn-colored spots, four rows on the body-whorl. Length, 3-4.5 inches. Marquesas, Tahiti.

This is T. nebulosa, Kiener, not Sowerby.
T. robusta, Hinds. Pl. 2, figs. 16, 17, 25.

Shell stout, with rugose growth-lines, earlier whorls plicate and with a sutural band; whitish, with longitudinal chestnut flammules, interrupted by a central white line so as to form two spiral series, with an additional basal series on the body-whorl.

Length, $4-5.5$ inches. W. Coast of Central America.
T. Loroisi, Guerin (not Desh.) = this species, and T. incomparabilis, Desh., is prolably a young individual. T. lingualis, Hinds (fig. 17), is also not fully grown, and is a narrow variety in which the juvenile characters persist longer than usual. T. insignis, Desh. (fig. 25) $=$ it.
T. chlorata, Lam. Pl. 11, fig. 21.

Shell smooth, whorls somewhat flattened, finely crenate to wards the apex, sutural band defined by a superficial groove; yellowish white, with longitudinal splashes of milky chocolate on and below the band, and two interrupted bands of spots of the same color upon the body-whorl. Length, 3-4 inches.

Malacca, Seychelles, Mauritius, Sandwich Is.
T. Knorri, Gray, is a synonym.
T. albida, Gray: Pl. 12, fig. 29.

Whorls smootl, with a sutural band separated by a narrow depression; ivory-white, sometimes faintly stained with rustcolor. Length, 2 inches.

Austrulia.
T. flammea, Lamarck. Pl. 2, fig. 26.

Shell somewhat more slender than the preceding species, the oblique growth-lines ridge-like; usually a shallow broad groove in the middle of the whorls; with occasional impressed spiral lines, of which one which divides the space above the central groove is more prominent; yellowish white, interruptedly strigate with chestunt, often forming two interrupted bands on the spire whorls and three on the body-whorl.

Length, $3 \cdot 5-5$ inches. Indian Ocean, China Sea, Madagascar.
T. ornata, Gray. Pl. 2, fig. 28.

Shell stout, sutures crenulated towards the apex, with a welldefined sutural bacd; yellowish white, with three spiral series of regular chestnut spots, four on the body-whorl.

Length, 4.5 inches.
T. formosa, Desh. Pl. 2, fig. 27.

Shell rather slender, with a somewhat swollen sutural band not clearly separated from the whorls by an impressed line; upper whorls longitudinally plicate; yellowish white, with small chestnut spots on the band, and larger longitudinal markings below it, a third inferior series on the body-whorl.

Length, $2 \cdot 75$ inches.
Panama.
Described from a single specimen, and is possibly a young varicty of Tr robusta.
T. strigata, Sowb. Pl. 2, fig. 29.

Whorls divided by a median groove, the upper ones plicate; yellowish white, longitudinally striped with chestnut.

Length, 3.5-5.5 inches.
Panama, Realejo.
Reeve gives Philippines (Cuming) and Moluecas as additional localitis-which need confirmation. It is T. elongata, Wood, T. zebra, Kiener, and 'T'. flammea, Lesson.
T. cerethina, Lam. PI. 2, fig. 30. 14.

Upper whorls densely plicate, lower ones becoming smooth, with a sutural band bounded by an indistinct impressed line; flesh-white, rather closely longitudinally strigate with Hesh-color or orange, crossed by several distant narrow revolving lines of the same color. Length, Q-3 inches.

Philippines to Society Is.
T. pulchra, Hinds (fig. 14), is a synonym.
T. lanceata, Linn. Pl. 11. fig. 10.

Whorls smooth, Hattened, a little swollen below the sutures, earlier whorls plicated : white, crossed by narrow chestnut longitudinal streaks, interrupted at the periphery of the body-whorl by a white band. Length, 2-2.5 mill.

I'aheiti, Moluccas, Muuritius.
T. penicillata, Hinds. Pl. 11, fig. 11.

Stouter with more convex whorls than the preceding species, the longitudinal chestnut lines crowder, much more numerous than in T. lanceata. Length, 2 inches.

Seychelles, Mauritius.
Kiener figured both this and the succeeding varieties as T. lanceata, and von Martens, in his "Conchology of Mauritius," has recently so considered them : my material does not support this view ; yet their substantial identity is not improbable.

Var. venosa, Hinds. Pl. 11, figs. 12, 13.
White, banded with light chocolate, with chestnut longitudinal lines; first whorls plicate, the others smooth, divided at the upper part by a row of punctures; sometimes all the whorls are plicate. Length, $1-1.5$ inches.

Indian Ocean.
Reeve remarks that "when plicately ribbed throughout, the shell, like the granulated rarieties of Cones, is smaller than when it is smooth." One of these small, plicated shells has been described by Desliayes as T. Crossei (fig. 13). When the shell is plicate upon the lower whorls it appears to be the result of the impression of the chestnut streaks, which form the interstices of the plicæ.
T. Brazieri, Angas. Pl. 11, fig. 14.

Narrow, smooth, first whorls plicate, the others somewhat tumid or very shortly obsoletely plicate below the sutures; whitish, promiscuously longitudinally veined with chestnut, the strigations more numerous on the upper part of the whorls; body-whorl with a white band on the periphery, and below it a row of chestnut spots, sometimes coalescing into a chestnut band. Length, $1-1.5$ inches.

New South Wales, Tasmania.
This is, perhaps, a variety of T. lanceata.
T. circumonncta, Deshayes. Pl. 11, figs. 8, 9.

White, with a few irregular yellowish streaks; whorls flatly convex, with four to six equidistant, pricked, linear revolving groores. Length, 40 mill.

Red Sea (Deshayes) ; Port Curtis, Australia (Stutchbury).
Reeve's figure (fig. 9) does not agree well with his description, nor with the figure given hy Deshayes.
B. Shell with plicate or tuberculate band below the sutures, defined by a sulcus.

* Whorls plicate.
T. Affinis, Gray. Pl. 2, figs. 22, 18.

Whorls with distinct subsutural band. covered with flat longitudinal ribs, separated by narrow impressed, often punctate lines; flesh-color, sparingly mottled with light chocolate or chestnut oblong markings and with a few distant revolving lines of the same color. Length, $1 \cdot 5-2 \cdot 25$ inches.

Philippines, Seychelles, Viti Isles.
It is T. eburnea, Hinds (fig. 18), T. striata, Quoy, T. pertusa, Kiener, var.
T. Variegata, Gray. Pl. 2, figs. 15, 19, 21, 23; Pl. 1, figs. 5, 7, 8 ; Pl. 3, figs. 31, 37, 38.
Spirally grooved, more or less longitudinally plicate on the upper, sometimes on all the whorls, sometimes becoming granular at the intersections of the sculpture, a swollen callous band below the sutures; whitish, marked with chestnat between the plications of the band, strigated with chestnut below it, with a central white band on the body-whorl, beneath which is a second series of strigations. Length, $2 \cdot 5-3 \cdot 25$ inches.

Mazatlan, Guaymas, Lower and Southern C'alifornia, Panama, Galapagos Is.. Cliina Sea, W. Africa.
T. armillata, Hinds (figs. 21, 23), T. Hupei, Lorois (fig. 5), T. aspera, Hinds (fig. 7), T. Petiveriana, Desh. (fig. 31), and T. glauca. Hinds (fig. 19), are synonyms. The following unfigured species, described by P. P. Carpenter, and which are smaller than the type, being but little over an inch in length. may constitute a minor variety. They occur at Mazatlan and extend nortliwards to Sonthern California: T. albocincta. T. Hindsi. T. subnodosa, T. rufocinerea; 'I'. simplex, from Sta. Barbara and S. I'edro, Cal. Tery probably the more northern distribution of this form of an essentially tropical genus will account for the smaller size of the specimens occurring on the California Coast; they are precisely like T. variegata of the same size and number of whols, but seem not to grow larger.

To the above numerous synonyms from the West Coast of America are to be adderl T. allicostata, Adams and Reeve (fig.
8), from China Sea, and T. Africana, Gray, T. intertincta, Hinds (fig. 37), and T. marginata, Desh. (fig. 38). from West Africa. There can be little doubt of the identity of these species with T. variegata, and of the extensive distribution thus indicated-it is paralleled in other species of the genus as will be seen hereafter.
T. Gouldi, Desh. Pl. 3, fig. 39.

Whorls with a subsutural, nodulous band, closely longitudinally plicate below it ; yellowish white, two-banded with very pale chestnut, three bands on the body-whorl.

Length, 2.5 inches. Sandwich Islands.
T. aciculina, Kiener, var. (t. 7, f. 13 a), is probably a young shell of this species.
T. concinna, Desh. Pl. 12, figs. 37, 32.

Longitudinally finely plicated throughout, with a sutural band defined by a groove; yellowish flesh-color, the ribs lighter, with a row of chestnut spots below the suture. Length, 40 mill.

Japan.
T. Dillwyni, Desh. (fig. 32), is a synonym. Reeve erroneously made T. concinna a synonym of T. strigilata. Linn., and Pease changed the name to T. dicisa on account of Buccinum concinnum, Dillwyn.
T. marmorata, Desh. Pl. 12, fig. 34.

Longitudinally plicate, pricked in spiral series in the interstices, the upper and more profound row indicating a sutural band ; whitish, somewhat tessellated with large chestnut blotches, darker-spotted on the sutural margin, with a white band on the periphery of the body-whorl. Length, $1 \cdot 25-1 \cdot 5$ inches. Port Curtis, Australia (Stutchbury).
T. badia, Desh. Pl. 3, fig. 40.

Chocolate-colored, including the interior: longitudinally plicated, including a subsutural band, body-whorl somewhat ventricose, with several spiral granular strixe on the lower part.

Length, 2.5 mill.
China.
It is T. castanea, Hinds, not Kiener ; altered by Deshayes as above, and by Reeve to T. ligneola.
T. Senegalensis, Lam. Pl. 3, figs. 41-45; Pl. 12, fig. 33.

Shell with a subsutural band, surface varying fiom nearly smooth, showing only longitudinal flexuous growth-stria, to longitudinally plicate; yellowish white, more or less interruptedly three-banded with pale or dark chestnut or chocolate, four or five bands on the body-whorl; sometimes the darker coloring suffuses the entire surface. Length, 3-4 inches.

Senegal, etc., West Africa.
It is T. striatula, Lam., T. fuscomaculata, Sowb. ; probably T. pugio, Gmel., T. festiva, Desh. (fig. 45), T. speciosa, Desh. T. raphanula, Lam. (Pl. 12, fig. 33), said to occur at Amboina, has the markings somewhat tessellately arranged; a good series of specimens easily comect it with the typical coloring.
'T. cingula, Kiener. Pl. 12, figs. 27, 28.
First whorls plicately ridged, the rest smooth, with a more or less defined sutural band; light fawn-color, encircled by two or three rows of chestnut blotches, forming interrupted bands.

Length, 3 inches.
Senegal (Kiener) ; St. Christopher, W. I. (Miller).
Closely allied to, and perhaps only a variety of, the preceding species. It is T. fatua, Hinds (fig. 28), the latter being simply more faded in coloring.
T. pura, Deshayes. Pl. 12, fig. 30.

Whitish, shining ; obsoletely banded at the suture by an impressed groove, obliquely longitudinally plaited, plaits rather distant, thin, gradually fading towards the aperture.

Length, $2 \cdot 5$ inches.
Zanzibar.
T. trochlea, Desh. Pl. 12, fig. 35.

Longitudinally plicate, a depressed sutural band separated by a broad, profound suleus, from the rest of the whorl, which is convex, this band is nodulous, the nodules becoming evanescent on the last whorl; maculate and flammulate with chestnut and white. Length, 65 mill.

Zanzibar.
T. Dussumieri, Kiener. Pl. 3, figs. 46-48.

Closely narrowly longitudinally plicate, the ridges becoming partially obsolete on a subsutural band; pale chestnut with a
white band below the middle of the whorls, and whitish on and just below the band. Length, $3-4$ inches.

China, Jopan.
Too closely allied to T. duplicala, Lam. The white band, however, is rather broader, the plications narower, sharp-edged and partially obsolete on the band-which is somewhat concave. T. evoluta, Deshayes (fig. 47), described from a single specimen in the Cumingian Collection, appears to be only a slight variation of the typical form ; another variety is T. Bernardii, Desh. (fig. 48).
T. duplicata, Limm. Pl. 4, figs. 49-51.

Flatly longitudinally ribhed, divided by an impressed line helow the sutures, forming a sutural band grayish or hlushwhite to chestnut or chocolate, with a single narrow median white band. Length, $2 \cdot 5-3 \cdot 5$ inches.

Moluccas, Singapore, Zanzibar. Madagascar, China to Viti Istands, etc.
T. Reevei, Deshayes (fig. 50), is a colorless example.

Var. Lanarckif, Kiener. Fig. 51.
The white band filleted with chestnut or purplish spots in a single somewhat distant series.
T. anomala, Gray. Pl. 12, fig. 36.

Smooth. polisheri, whorls plicate above, divided by an impressed, punctate line near the suture; cinercous or fawn-color, lighter on the sutural band, with a whitish band on the periphery. Length, 1.5 inches.

Singapore, 7 fins. (Cuming).
Reeve confounded this species with the shell which he erroneously refers to aciculina, Lam., and which must stand as aciculina, Reeve-Lamarck's shell being a synonym of T. cinerea, Born. The present species is readily distinguished by its sutural band.
T. spectabhis, Hinds. Pl. 4. figs. 52-57.

Ribs distant, thin, subnodulons above and below a deep groove which divides off a suturai band; leaden or chestnut2
brown, usually nearly white on the sutural band, and with a central white band on the body-whorl. Length, $1 \cdot 25-2$ inches.

Guinea (Humphreys); Sumatra (Cuming);
Tasmania (Woods).
T. Jukesii, Desh. (fig. 54), appears to me to be a synonym; as are also T. addita, Desh. (fig. 55), T. geminata, Desh. (unfigured), probably T. Kieneri, Desh. (fig. 56), and T. gracilis, Reeve, not Gray (fig. 57).
T. longiscata, Desh. Pl. 4, fig. 58.

With a sutural band defined ly a groove, strongly plicately ribbed, the ribs rather angular, the interstices with elevated revolving striæ; livid fuscous gray. Length, 27 mill.

Philippines (Cuming).
T. ustulata, Desh. Pl. 4, fig. 59.

Sutural band depressed, longitudinally ribbed; pale chestnut or whitish, the depressed band and lower half of the body-whorl darker brown. Length, 32-38 mill.

Tasmania.
In coloring and form somewhat like the next species.
'T. gemmulata, Kiencr. Pl. 4, figs. 61, 62.
Shell longitudinally, narrowly, distantly plicate, plica curved, terminating in nodules below the groove of the sutural band, the band also bearing a single row of nodules ; yellowish white, the lower row of nodules white, with a rather broad white band on the middle of the body-whorl, below which the whorl is smooth and chestnut-colored. Length, 45 mill.

Chili.
Reeve, who saw the original specimen of the unfigured T. Chilensis, Desh., adds it to the synonymy. Very probably T. Patagonia, d'Orb. (fig. 62), should be added as a colorless specimen.
T. dislocata, Say. Pl. 4, figs. 63-67, 69; Pl. 12, fig. 31.

Longitudinally plicate, spirally grooved; sometimes the grooves are only perceptible between the plicre, in others they decussate the latter into granules ; sutural band nodulous ; columella recurved, ridged; gray, brownish white or light yellowish, with usually a white-banded periphery. Length, 25-35 mill.

North Carolina to West Indies.
The certain synonyms are T. rudis, Gray (fig. 69), T. Petiti.

Kiener (fig. 64), and T. Souleyeti, Dcsh. (fig. 65). I think it probable that T'. larvæformis, Hinds (figs. 66, 67), of the West Coast of Central America, should also be here referred; I cannot detect any specific differences. T. Sowerbyana, Desh. (Pl. 12, fig. 31), from West Africa, appears to be also identical.
T. Mariesi, E. A. Smith. Pl. 4, fig. 68.

Longitudinally costate, with traces of spiral lines, the costæ ending in tubercles below the also tuberculate sutural band; yellowish brown, variegated with reddish brown.

Length, 45 mill.

> Japan.

Very closely allied to the preceding species, but narrower. The aperture appears to be imperfect in the specimen figured.
T. Jeffreysir, E. A. Smith. Pl. 4, fig. 60.

Longitudinal riblets about 20 , fine, oblique, decussated by spiral strix, about 5 on a whorl, the two uppermost strix widest apart forming two nodulous bands next the suture ; yellowish, dotted with light brown between the two series of nodiules, and streaked with the same color beneath, body-whorl with a pale central zone. Length, 25 mill.

Japan.

This, the preceding and following species, should probably be united.
T. subtextilis, Smith. Pl. 4, fig. 70.

White; with about twenty coste, and ten spiral strix, three of the latter upon the nodulous sutural band. Length, 37 mill.

Japan.
See remarks under preceding species.
T. bifrons, Hinds. Pl. 4, fig. 71.

Fawn-brown, obscurely rufous-banded ; whorls somewhat convex, encircled with four rows of pale granules, last whorl manygrained ; sutural band only faintly indicated by a concavity, instead of a groove. Length, 2 inches.

Japan.
T. amena, Deshayes. Pl. 5, fig. 73.

Turreted, rather narrow; yellowish, with red spots on the
sutural band; longitudinally closely plicate, spirally linearly grooved, the sutural band separated by a pricked groove.

Length, 35 mill.

> China (Desh.) ; N. Caledonia (Brazier).
T. blanda, Desh. Pl. 5, fig. 72.

Shell transparent white, dotted with chestnut on the sutural band, apex purple; no revolving sculpture; aperture somewhat fusiformly produced below. Length, 30 mill.

Japan.
T. pulchella, Deshayes. Pl. $5, \mathrm{fig} .74$.

Light fellowish brown, stained with rust-color, with a white peripheral band; whorls concave, arcuately plaited, without spiral strix, subsutural groove crenate. Length, 43 mill.

China.
T. textilis, Hinds. Pl. 5, figs. 75, 76.

Yellowish white; closely plicated, with fine spiral lines, with two bands of plicæ below the suture. Length, 35 mill.

> Japan ; St.r. Macassar ; Sanduich Islands.
T. nodularis, Desh. (fig. 76), is a synonym.
T. celata, Adams and Reeve. Pl. 5, fig. 77.

Surface sharply granulated by longitudinal and spiral sculpture; transparent white. Length, 41 mill.

China.
Has the form of the preceding species, from which it is, perhaps, insufliciently distinguished by the non-development of the inferior band of tubereles.
T. torquata, Ads. and Reeve. Pl. 5, fig. 78.

Longitudinal plicæ narrow, raised, interstices spirally striatelatticed; next the suture are two nodulous bands, separated by a sulcus, the periphery is subangulated and slightly nodulous on the angle, between this and the sutural band the surface is somewhat concare; fawn-colored, the sculpture lighter, a white band below the periphery. Length, 44 mill.
.Tapan.
A very distinct, beantiful species.
T. bicincta, Hinds. Pl. 5, fig. 79.

White ; with thin longitudinal plicæ, and no spiral sculpture;
sutural band tuberculate, and with the plier below it cut into a couple of revolving rows of tubercles. Length, 28 mill.

Habitat unknown.
Described from a unique specimen in the Cumingian Collection.
T. copula, Hinds. Pl. 5, fig. 80.

Chestnut or olive-brown, plieations paler, sutural band with oblique ehestnut spots; no revolving seulpture; periphery with two indistinct narrow white bands. Length, 35 mill.

Guinea.
T. exigua, Desh. Pl. 5, fig. 89.

Shell ehestnut or chocolate-brown, strongly latticed hy close sculpture; sutural band distinctly marked ; aperture rather produeed below. Length, $15-18$ mill.
E. Coast of Australia; Andaman Is.
T. venilla, 'Tenison-Woods. Pl. 5, fig. 88.

Yellowish white, zoned with a pale chestut line; whorls subcoronate, with narrow oblique eurved plications, and more or less indistinct fine spiral strix; subsutural area divided by a punctate groove. Length, 42 mill.

Port Jackison, N. S. Wales.
'T. roseata, Adams and Reeve. Pl. 5, fig. 90.
Interstices of the ribs linearly grooved, sutural band defined by a punctate groove; columella laminated, twisted; rose-color.

Length, 28 mill.
Soolo and China Sea.
T. Swainsoni, Deshayes. Pl. 5, fig. 81.

Light roseate, nearly white on the sutural band, the interstices of the ribs smonth, or obseurely striate, polished.

Length, 20-32 mill.
Sandwich Islands.
Possibly identical with the preceding species. Pease has described a variety inflexa. The same author has described (but not figured) a T. sulcata, which he says may prove to be a distant form of T. Swainsoni.
'I'. elata, Hinds. Pl. 5, fig. 82.
Spirally linearly grooved between the longitudinal plications, the beaded sutural band separated by a well-impressed groove;
chestnut-white or brownish white, with a darker band below the peripliery. Length, 23 mill.

Panama and Bay of Montija, Cent. Am.
T. cancellata, Quoy. Pl. 5, figs. 83, 84, 86 ; Pl. 6, figs. 92-97, $100-3,6$.
Yellowish white, orange, chestnut or ehocolate-color, the nodulous sutural band white, often with a white band below the periphery; plications close, ronnded, curved, the narrow interstices closely striate; margins of aperture as well as the interior often stained with a darker color. Length, 44 mill.

Moluccas, Philippines, Viti Isles, Sandwich Isles.
M. Deshayes, supposing that the figure in the Thes. Conch. (fig. 83) does not represent this species, has called it T. umdatella. T.livida, Reeve (fig. 86), appears to me to be a form of this speeies; it comes from the Philippines. T. subangulata, Desh. (fig. 92), described from a single specimen, also probably belongs here.

A slight variety is T. columellaris, Hinds (fig. 93), of which T. areolata, Adams and Reeve (fig. 94) is probably a synonymas stated by Reeve, although Deshayes considers the two forms distinct.

I add as synonyms T. flavescens, Desh. (fig. 95) ; T. approximata, Desh. (fig. 96), which has ruder coarser sculpture, and is a stonter shell ; T. flava, Gray (fig. 6), an immature shell ; T. lutescens, E. A. Smith (fig. 97), founded on Sowerby's figure of ' T. flava in the Thes. Conch., which Mr. Smith considers specifically distinct from the figure in Reeves Iconica; T. puncticulata, Deslı. (fig. 100) ; T. Peasei, Deshayes (unfigured); T. Hindsi, Desh. (fig. 1) ; T. Bruguieri, Desh. (fig. 2) ; and T. difficilis, Desh. (fig. 3.)
T. undulata, Gray. Pl. 6, figs. 4, 8 .

Ribs rather large, rounded, close, with spiral strix on the narrow interstices, sutural band well-marked, forming a slight, nodulous shoulder to the whorls; yellowish or orange, the interstices deeper-colored, appearing as though longitndinally strigate, bund white, sometimes white-banded on the periphery; aperture rather narrow, the lips often stained with orange-red.

Length, 41 mill.
Viti Islands, I'hilippines.
Perhaps a variety of the preceding. T. picta, Hinds (fig. 8),
is probably a synonym. T. cinctella, Desh., an unfigured species, is added by Reeve.
T. pertusa, Born. Pl. 6, figs. 5, 7.

Longitudinally finely plicate, interstices punctate spirally; orange-brown, the interstices of the tubereles on the sutural band chocolate. Length, 3 inches.

Darnley Isl., Australia.
T. Bermonti, Lorois (fig. 7), is a synonym. It is said to inhabit Tahiti.
T. nebulosa, Sowb. Pl. 6, fig. 9.

Longitudinal ribs rounded obtuse, close, curved, interstices spirally grooved, sutural band defined by a punctate groove; longitudinally clouded with reddish orange and white, with a white band on the periphery. Length, 3 inches. Zanzibar. T. alveolata, Hinds. Pl. 5, fig. 87.

Longitudinal plice curved, the interstices spirally striate; flesh-color, stained with orange-brown, with a row of alternate chestnut and white spots on the sutural band, and another on the white-banded periphery. Length, 37 mill.

Straits of Malacca; Japan.

Var. Gotoensis, Smith. Pl. 5, figs. 85, 91.
Sculpture said to be finer than in T. alveolata, the band on the periphery unspotted. From Japan. It is very doubtful whether to these forms ought not to be united T. ameena, Desh.
T. polygyrata, Desh. Pl. 7, fig. 10.

Closely ribbed, interstices linearly grooved, sutural band defined by a pricked groove; fulvous orange, white at the sutures, with a white band on the periphery. Length, 13 mill.

Philippines (Cuming) ; Japan (Smith).
A small shell with numerous whorls, perhaps not distinct from T. cancellata.
T. polygonia, Reeve. Pl. 7, fig. 15.

Strongly varicosely ribbed, ribs rather distant, interstices concare, spirally linearly grooved, sutural band distinet; fulvous brown. Length, 10 mill .

Hab. unknown (Taylor Coll.).
I am not acquainted with this species.
T. radula, Hinds. Pl. 7. fig. 1%.

Sutural band and whorls strongly tuberculated by decussating sculpture; reddish chestunt, white at the suture, with a white periphery-band. I ength, 40 mill.

Puerto Portrero, W. Coast of Central America,
13 fins. (Cuming).
Described from a unique specimen in the Cumingian Collection.
'T. varicosa, Hinds. Pl. 7, fig. 12.
Varicosely distantly ribbed, interstices striately grooved; whorls convex, constricted around the upper part, sutural band smooth or tuberculate ; olive-brown, chocolate or white, banded on the periphery. Length, 28 mill.

Gulf of Papagayo, $\mathbf{W}^{\boldsymbol{T}}$. Coast of Central America, mud, at 23 fms. (Hinds).
T. tuberculosa, Minds. Pl. 7, fig. 31.

Shell rather thin, transparent ash, livid purple towards the apex, obscurely red-spotted next the suture; whorls slopingly flattened, conspicuously tuberculate on the sutural band, then smooth, and finally longitudinally tuberculated, forming an angulated periphery. Length, 2 inches.

Panama (Cuming) ; San Blas (Hinds).
T. plicata, Gray. Pl. 7, fig. 20.

Yellowish flesh-color; whorls slopingly flattencel, the last swollen, longitudinally thinly plicated, spirally very finely prickly-grooved, sutural band distinct. Length, 2 inches. Guayuquil, 7 fms., sandy mud (Cuming).
Appears to be distinguished chiefly by its stout form.
T. specillata, Minds. I'l. 7. fig. 18.

Latticed by longitudinal and spiral seulpture, whitish, with a few large chestmut maculations; sutural margin irregularly chestnut-spotted. Length, 2 inches.

San IBlas, IT. Coast of Mexico.
Tery closely allied to T. disiocata, Say, and to T. cancellata, Quoy, which are possibly identical.
T. conslersa, Hinds. Pl. 7, fig. 13.

Whitish, irregularly chestuut-spotted on the sutural band,
and chestnut-banderl at the base; plications thin, the interstices closely striate spirally. Length, 1 inch. Philippines.
T. fictilis, Hinds. Pl. 7, figs. 14, 11.

Whitish, purple-ash below the periphery, the latter appearing as a narrow band at the base of the spire-whorls.

Length, 15 mill. Australia.
A beantiful little species, well ristinguished by its contrasted coloring. T' bicolor, Angas (fig. 11), is a synonym.
T. Taylori, Reeve. Pl. 7, fig. 22.

Rather stout towards the base, purple ash-color, livid, obscurely banded; sutural band yellowish. Length, 26 mill. Torres Straits, Australia.
The form is swollen below, resembling the preceding species.
T. morbida, Reeve. Pl. 7, fig. 23.

Stoutly, closely plieate, the sutural band broadly defined by a groove; purplish flesh-color, eneircled by faint red spots.

Length, 15 mill.
Hab. unknown.
The spots do not appear upon Reeve's figure. The type specimen was in the Taylor Collection.
T. brevicula, Desh. Pl. 7, fig. 24.

Sutural band swollen, scarcely erenated, defined by a broad coneave depression, below it the body-whorl is slopingly convex, somewhat angulated on the periphery, where it is somewhat distantly plicately tubereulated; lead-color, white-banded at the suture and on the periphery, the latter filleted with chestunt on both margins. Length, 23 mill.

Tasmania.
T. protexta, Conrad. Pl. 6, fig. 98.

Whorls rather convex, with curved, sharp, mumerous small plieations, the interstices smooth or very minutely spirally striate, a sutural band is sometimes obseurely indicated, but is usually absent; chocolate, or dark brownish white, chocolate within the aperture. Length, 18-25 mill.

West Coast of Florida.
T. concava, Say. Pl. 7, figs. 25, 26.

Shell white; with a prominent row of nodules below the suture, and a less prominent row above it, the last forming a
peripheral row on the last whorl ; between these two the surface is concave, obsoletely ribbed and finely spirally striated.

Length, 20 mill.
So. Carolina.
T. frigata, Hinds (fig. 26), is probably a synonym; it is aseribed to Africa (Gray), and Galapagos Is. (Cuming): both localities need confirmation.
** Whorls smooth.
T. corrugata, Lam. Pl. 7, figs. 21, 28, 32.

Fulvous cream or ash-color, with two or three bands of chestuut spots ; sutural band often lighter-colored, with small chestnut spots, tuberculate. Length, $2 \cdot 25-3$ inches.

Loanda, W. Africa.
The synonyms are I'. regina, Deslı. (fig. 28), T. bitorquata, Desh. (fig. 32 ', and T. punctata, Gray.
T. tesseldata, Gray. Pl. 7, figs. 27, 19.

Shell whitish, with two rows of oblong ehestnut or chocolate spots; whorls concavely flattened, decussated by fine ridges, the spiral ones stronger, suture bordered by two tuberculated bands.

Length, 35 mill.
Marquesas (Hinds).
The description is drawn up from T. ligata, Hinds (fig. 19), which appears to be the typical form. T. tessellata, Gray, no locality, is from a single speeimen in the British Museum; the whorls are said to be smooth, but the resemblance to Hinds' species, over which it has priority of description, is striking. T. decorata, Desh. Pl. 7, tig. 16.

Whitish, with two series (on the body-whorl three) of chestnut quadrangular spots; whorls smooth, longitudinally striated, marginal band tuberculated. Lengtl, 28 mill.

Pidang, Sumatra.
Reeve figures this species under the name of T. tessellata, Gray, which has a double band of tubereles.
T. instrio, Desh. Pl. 7, fig. 29.

Yellowish, with waved longitudinal chestnut stripes, interrupted at the periphery; longitudinally striate, the striæ becoming plications upon the sutural band, where the surface is variegated with chestnut lines. Length, 45 mill.

Hab. unknown.
** Cylindrically many whorled, whoris with revolving sculpture, with or without less prominent longitudinal strix.
T. myuros, Lam. Pl. 7, fig. 30.

Whorls flattened, closely scabrously latticed with striæ, the revolving striæ much the most prominent, above with two obliquely plicate sutural bands, the inferior one of which is often more or less obsolete ; light yellowish brown, usually longitudinally striped with broad chestnut maculations.

Length, 4-5 inches.

Moluccas, New Ireland.

This may be T. strigilata, Gmel., in part, and is possibly also T. commaculata, Gmel. T. scabrella, Lam., is undoubtedly a synonym.
T. pretiosa, Reeve. Pl. 8, figs. 33, 34.

Whorls convexly flattened, arcuately striated by growth-lines, the interstices latticed, double-banded and tuberculated below the suture ; yellowish, with broad chestnut longitudinal blotches.

Length, $5 \cdot 5$ inches.
China.
I think that T. lima, Deshayes (fig. 34), from same locality, is identical.
T. cingulifera, Lam. Pl. 8, figs. 35-38.

Shell smooth, distantly spirally superficially grooved, grooves often minutely punctate, the upper groove a little deeper, indicating a sutural band, upon which the growth-lines become oblique and subplicate; yellowish flesh-color.

Length, $3 \cdot 25$ inches.
Philippines, New Ireland, Viti Islands, China.
The synonyms are T. Chinensis, Desh. (unfigured), T. columnaris, Desh. (unfigured), T. pallida, Desh. (fig. 36), T. crenifera, Desh. (unfigured), T. punctatostriata, Gray (unfigured), and T. punctulata, Sowb. (unfigured). T. lævigata, Gray (fig. 37), is a rather narrow form, and T. obsoleta, Desh. (fig. 38), is a wider specimen than usual, with a very faint indication of a brown band near the base.

T. Tricolor, Sowb. Pl. 8, fig. 39.

Shell smooth, yellowish flesh-color with three distant orange-
red revolving lines, one of them defining a sutural band, which is often white. Length, 2 inches.

Friendly Islands.
Closely related to both the preceding and following specieswhich may need to be mited when we know more about them. T. treniolata, Quoy, is a synonym.
T. Babylonia, Lamarck. Pl. 8, figs. 40, 41.

Flesh-red, overlaid more or less with white ; smooth or spirally striated, with distant grooves, hecoming closer at the base of the borly-whorl, the groores often darker-colored; aperture orange-brown. Length, 25 inches.

China, Viti Islands.
T. Deshayesii, Reeve (fig. 41), is a synonym.
T. straminea, Gray. Pl. 8, figs. 42-45, 47, 48.

- Yellowish brown or livid ash-color, the upper sutural band generally lighter-colored; surface crossed by revolving grooves and stria, the latter sometimes granulated by the intersection of growth-lines, the former rather distant; with two sutural bands. the upper one swollen, the inferior one much smaller, and hoth covered by oblique plications. Length, 2.5 inches.

Phitippines, China.
Will probably prove to be a variety of the preceding species. It is 'T'. Balylonia, var., of Kiener, T. circinala, Desh. (fig. 44), T. acuta, Desh. (fig 45), and T. monilis, Quoy (figs. 47, 48).
T. Cumingir, Desh. Pl. 8, fig. 49.

Sharply granosely cancellated throughont, with two tuberculated bands next the suture, the lower one much the smallest; straw-colored. Length, $3 \cdot 75$ inches.

China.
Probably only a variety of the preceding species.
'T. fenestrata, Hinds. Pl. 8, fig. 46.
Strongly latticed throughout, with a erenated sutural band; transparent fulyous or fulvous brown. Length, 35 mill .

IIab. unknown.
'This shell does not appear to have any marked specific character.
T. L̈̈bbeckeana, Dunker. ill. 8, fig. 50.

Whitish, tinged with light yellowish brown, with a wide, faint band of the latter color; subgranose by rather faint intersecting striæ; sutural band slightly separated by a groove.

Length, 75 mill.

Japan.

T. succinea, Hinds. Pl. 8. fig. 51.

Whorls doubly banded below the suture, orange-red with two distant rows of small chestnut spots; closely arcuately wrinkled.

Length, $3 \cdot 75$ inches.

Philippines.

Dr. von Martens (Mauritius, 231) makes this a synonym of T. monilis, Quoy, to which it does not appear to me to be very closely related.
T. Fortunei, Deshayes. Pl. 8, fig. 52.

White, with slightly conrex whorls, strongly longitudinally ribbed, the interstices latticed with spiral ridges, sutures deep, below them a band indicated by a pricked spiral groove.

Length, 69 mill.

China Sea.

A muique shell in the Cumingian Collection.
T. serotina, Ads. and Reeve. Pl. 8, fig. 53.

Light brown, whorls spirally striately ridged, with two bands of nodules below the suture, the upper band the largest.

Length, 2 inches.
Japan.
T. funiculata, Hinds. Pl. 9, fig. 60.

Shell light chestnut-brown, sharply and closely spirally ridged, the two ridges nearest the suture wider. Length, 2 inches. Marquesas Islands (Cuming).
T. Archimedis, Desh. (unfigured), is a symonym according to Reeve.
T. albomarginata, Desh. Pl. 9, fig. 54.

Whorls flat, bright orange, upper part white, divided by a groove, each side of which is crenated, below the groove spirally ridged, the interstices pricked. Length, 1.75 inches.

China. T. Exinila, Desli. Pl. 9, fig. 55.

Yellowish white, the sutural band dotted with orange-chestunt
and somewhat noduled ; below the band are three granular ridges with pricked interstices; lower part of body-whorl striate.

Length, $1 \cdot 75$ inches.
Hab. unknown.
Described from a unique specimen.
T. amanda, Hinds. Pl. 9, fig. 61.

Orange-colored, with two white bands of tubercles below the suture, balance of the surface punctate, grooved. Length, 1 inch. Straits of Macassar.
Described from two immature specimens. Perhaps $=T$. straminea, Gray.
T. triseriata, Gray. Pl. 9, figs. $56,57$.

Fulvous white or straw-color, narrow, whorls numerous, flatly concave, spirally ridged, sometimes decussated by longitudinal sculpture, with two bands of nodules below the suture, and a single smaller row on the periphery of the last whorl.

Length, 2-4 inches.
Philippines (Cuming), Port Curtis, Australia (Stutchbury).
The latter locality is for T. prrlonga; Desh. (fig. 57), which does not appear to me to differ.
C. No sutural band, closely striate or plicate next the suture; balance of whorl smooth or plicate.
T. cerrulescens, Lam. Pl. 10, figs. $75-77$; Pl. 9 , fig. 66.

Shell smooth, without infra-sutural band, but usually with a narrow callous deposit forming a more or less defined band above the narrow sutural groove; whitish, spotted or clouded with chocolate below the suture, the clouds sometimes forming a wide band, or covering the upper half of the body-whorl, or even extending to the base; when well covered with chocolate there is often a lighter band upon the periphery.

Length, $1 \cdot 5-2 \cdot 5$ inches.
Australia; Philippines; Polynesia; Mauritius; Red Sea.
The whorls are flattened, and searcely impressed at the sutures. This species is the type of Mr. E. A. Smith's subgenus Impages, characterized by the callous deposit above the sutures; but this peculiarity is not even constant in this species, and is rare or not
developed in the other species which Mr. Smith refers to the group.

It is T. niveum and T. edentulum, of Gmelin, T. bifasciatum, Dillw., T. fusca, Martyn (in part), T. Otaiensis, Lesson, T. hecticum, Linn. (teste Hanley). You Martens calls Kiener's fig. 12 d var. flammulata; another variety is T. nimbosa, Hinds, from the Red Sea (fig. 66).
T. cinerea, Born. Pl. 9, figs. 67, 58, 59, 62-65, 68-74; Pl. 10, fig. 78.
Shell smooth, but closely, minutely longitudinally plicated beneath the sutures; yellowish ash-color, lighter upon the sutural plications-where there are sometimes light chestnut spots arranged in a single series, usually faintly whitish-banded at the periphery ; aperture light chestunt-color, showing the light band.

Length, $1 \cdot 5-2 \cdot 25$ inches.
W. Africa, West Indies, Japan, Philippines, Polynesia.

The distribution of this species is nearly world-wide in warm seas. I have endeavored in rain to find distinguishing characteristics for the species which, under various names bave been assigned to distant localities, but I am compelled to follow Reeve in classing them all as synonyms. This large synonymy includes T. Jamaicensis, C. B. Ad. (fig. 58) ; T. strigilata, var., Gmel.: T. stylata, Hinds (fig. 59), from Philippines ; T. laurina, Hinds (fig. 63), from W. Africa ; T'. castanea, Kiener (fig. 68), also from W. Africa; T. aciculima, Lam. (not of Reere or Hinds) ; T. micans, Hinds (fig. 64), Reeve, in part-some of his figures representing T. cuspidata, Hinds ; T. Adansoni, Desh. (unfigured, but; said by Reeve, who saw the type, to $=$ micans); T. apicina, Desh. (fig. 69), from Singapore; T. dispar, Desh. (fig. 70); T. Philippiana, Desh. (fig. 62), Philippines ; T. bacillus, Desh. (figs. 65, 71), Sandwich Isles, and T. lactea, Desh. (fig. 72), a colorless state of the same; T. acuminata, Gray (fig. 73) ; T. Salleana, Deshayes (fig. 78), Mexico, Haiti ; and T. parva, Baird (fig. 74), from New Caledonia. The figure of the last-named species does not show the superior plications, but the text describes them.

Yar. cuspidata, Hinds. Pl. 10, figs. 80, 79.
Whitish or tinged with light yellow, the light band on the
periphery searcely distinguishable, but below it a narrow chestnnt band.

West Coast of Africa.
T. Traillii, Desh. (fig. 79), from the Indian Ocean, is a very similar shell, and may comnect this variety with the type.
T. aciculina, Recre. Pl. 10, figs. 81, 82.

Shell evenly plicate, the plice small, short, or usually covering the entire shell ; aperture peculiarly broadly dilated at the base ; usually chocolate or ash-color, white-banded at the suture, and on the periphery of the body-whorl, the interstices of the plications reddish chestnut on the margins of the bands, as if faseicnlated; sometimes the general color is pale, almost white, deepened here and there, especially below the peripheral white band, so as to appear like a colored band ; interior chestnot-red, white-banded. Length, $1 \cdot 5$ inch.

Singapore, Manilla, Marquesas, Sandwich Isles.
Usually distinguished by color, longer plications, broad base, smaller size, from the preceding species. Reeve has figured and described it as T. aciculina, Lam., but Mr. E. A. Smith has shown that Lamarck's species is really I' cinerea, Born. Hinds, on the other hand, has referred the present species to T'. cinerea, for which he figures it. Mr. Smith has thought fit to impose a new name, T. confusa, which appears to me to be quite umecessary, as, even if the name aciculina cannot be used, as of Reeve, not Lamarck, there is another, older name given to the species, T. inconstans, Hinds (fig. 82). I prefer to retain aciculina, beeause the species is universally known under that name. The unfigured T'. Matheroniana, Dcsh., was referred by Reeve, in his Iconica, both to this species and to 'T'. strigilata, but in his index he removes it from the synonymy of the latter. Pease considers it a synonym of strigilata, and not of aciculina, and Smith believes it to be a distinet species. In the absenee of a figure, I have no means of arriving at a judgment upon the matter, further than that the description appears to apply best to 'T'. strigilata. 'I'. anomala, Gray, was here referred by lieeve, but it differs in having a sutural band, defined by a groove.
T. luctuosa, Hinds. Pl. 10, fig. 83.

Shell narrowly subulate, smooth, with fine spiral strix under
the lens, puckered at the sutures into close, small longitudinal plications; deep chocolate-colored, including the interior of the aperture. Length, $1 \cdot 25-1 \cdot 75$ inches.

Gulf of Nicoya to Mazatlan, W. Coast of N. America.
Reeve makes this a synonym of T. cinerea, Born; but it is more subulate, the color uniform, the plications smaller, closer, longer and more waved. None of the specimens before me show any bands.
T. strigilata, Limn. Pl. 10, figs. 84, 85, 88.

Shęl highly polished, regularly flatly longitudinally plicate, the plicæ usually extending below the middle of the body-whorl; fawn or ash-color, white-banded at the suture, with a row of square chestnut spots on the band ; body-whorl white-banded at the periphery and darker-colored below the band; aperture rather narrowed below ; chestnut, with a median white band.

Length, $1 \cdot 25-1 \cdot 75$ inches.
Polynesia, Sandwich Islands.
A narrower, more cylindrical species than T. cinerea, from which it differs also in its regular, longer, coarser plications, and brighter coloring. It has several synonyms: T. strigilata (striatula), Kiener, in part, T. Argenvillei, Desh. (unfigured), T. acumen, Desh. (unfigured), T. modesta, Desh. (unfigured), mouth of the Indus; all made synonyms by Reeve, who examined the types; T. concinna, Dillwyn (not Deshayes), T. Verreauxi, Desh. (fig. 85), T. Matheroniana, Deshayes (see remarks p. 32). T. lepida, Hinds (fig. 88), must also be added, although Hinds thought it sufficiently distinguished by the absence of a white sutural band, and by its sharper plications.
T. lauta, Pease. Pl. 10, fig. 91.

Suhcylindrical, longitudinally, straightly plicate, the plicæ regular, sharp, extending across the whorls, the interstices with a single row of punctures near the suture; leaden gray to orange-brown, polished, banded with yellow, bearing a row of chestnut spots at the suture, with a pale peripheral band, beneath which the body-whorl is chestunt-colored.

Length, 1 inch.

Sandwich Jslanc's.

Figured from a type-specimen. It may be only a strong
variety of T. strigilata. but has sharp plications and the line of punctures which indicate a sutural space, although no division is defined upon the ribs.
T. hastata, Gmelin. Pl. 10, fig. 87 ; Pl. 9, fig. 86 ; Pl. 10, figs. $89,90,94,95,92$.

Elongately cylindrical, somewhat acuminated towards the apex; closely plicated, forming crenulated sutures, the plica sometimes on the upper part of the whorls only, sometimes covering the whorls to the base; whitish, two- or three-banded with fawn-color to orange-brown, the bands sometimes broken up into large blotches; the entire surface occasionally uniform orange-brown. Length, 1-1•2 inches.

West Indies; West Africa.
T. costata, Menke (mnfigured) is a synonym; as is also the West African 1. Knockeri, Smith (fig. 86.)

Var. albula, Menke. Pl. 10, figs. 89, 90, 94, 95.
Shell narrower in proportion to its length, more subulate, the plications short.

> Australia, Philippines, Straits of Malacca.

As the specimens usually occur this variety presents sufficient distinctness of form for specific rank, but sometimes the West Indian shells are found exactly like it. Reeve, who does not even make a varietal distinction, inclurles also the unfigured T. crassula, T. bipartita, and T. incolor of Deshayes, and as he has examined the types, he is probably correct. T. casta, Hinds (fig. 90°, and T. mera, Hinds (figs. 94,95) are synonyms.

Tar. solida, Deshayes. Pl. 10, fig. 92.
The plications are described as only indicated by impressed strix on the last whorl, which is encircled by three translucently yellowish lines.

> Japan.

Reere adds that the shell is tessellately enameled throughout with square opaque white blotches on a fawn-cream color surface; which appears to me to be but an exaggerated way of describing the characteristics exhibited by the figure.
T. nitida, Hinds. Pl. 10, figs. 93, 96.

Shell narrowly subulate, whitish or fawn-color, coarsely plicate, the plice narrow, the interstices with a single row of punctures below the sutures. Length, 1 inch.

Marquesas Is.; Australia.
T. plicatella, Desh. (fig. 96), is a synonym.
T. caliginosa, Desh. Pl. 10, fig. 97.

Shell slender, varicosely ribbed; dark chocolate.
Length, $1 \cdot 25$ inches.
Philippines.
Founded on a single specimen in the Cumingian Collection. It may $=$ the preceding, but punctured interspaces are neither figured nor described.

Dr. von Martens refers here the unfigured T. Kirki, Itutton, of New Zealand.
T. violascens, Hinds. Pl. 10, fig. 98.

Slenderly turreted, whorls flatly convex, ohliquely flexuosely plicated ; spirally striate in the interstices, suture rather deeply impressed; whitish, pale violaceous or yellowish, brown-stained at the suture. Length, 83 inch.

Philippines.
Reeve remarks that Hinds' original figure in the "Thesaurns" is inaccurate, representing a sutural band-of which there are no indieations on any of the specimens.
T. tantllea, E. A. Smith. Pl. 11, fig, 4.

Longitudinally areuately ribbed, subtuberculate at the sutures; yellowish, with a sutural chestnut band, and another on the periphery of the last whorl. Length, 6.5 mill .

Japan.
Mr. Smith makes his T. pumilio (unfigured) a synonyon of the above. It appears to me to be too closely related to the next species.
T. tenera, Hincls. Pl. 10, fig. 99.

Distantly, strongly varicosely ribbed, interstices coneare, shining; yellowish brown, chestnut-banded at the sutures and on the periphery. Length, 8 mill.

Ceslon, Straits of Malacca.
T. tristis, Deshayes. Pl. 10, fig. 100.

Whorls convex, plicately ribbed ; yellowish white with a chestnut band at the suture, and another at the periphery.

Length, 18 mill.
Japan.
The unfigured T. Anlarclica, Smith, is referred here by Mr. Gillies, who makes it a New Zealand shell; he also adds to the synonymy T. Kirki, Hutton-which Dr. von Martens refers to T. caliginosa, Reeve.
T. Assimilis, Angas. Pl. 11, fig. 1.

Whorls somewhat convex, broadly arcuately ribbed, ribs ceasing at the periphery of the last whorl; yellowish brown, chestnut-banded at the suture, lower part of body-whorl chestnut.

Length, 11 mill.
Port Jackson, Australia.
T. pygmea, Hinds. Pl. 11, fig. 2.

Shell solid, closely ribbed; yellowish brown, chestnut-banded at the sutures and on the periphery. Length, 7 mill.

Strails of Malacca, 17 fathoms, mud (Hinds).
T. nana, Deshayes. Pl. 11, fig. 3.

Yellowish white, with two interrupted bands of chestuut spots, one of them visible on the spire, distantly ribbed, the ribs gradually disappearing. Length, 10 mill.

Mouth of the Indus.
T. Metcalfei, Reeve. Pl. 11, fig. 5.

Shell cylindrically oblong, whitish, faintly tinged with pale white-dotted orange flames, red-dotted at the sutural margin; whorls convex, the first ribbed, ribs soon fading.

Length, 12 mill.
West Indies?
Described from a single specimen collected by Rev. L. Guilding.
T. obesa, Hinds. Pl. 11, fig. 6.

Cylindrically subulate, whorls convex, the first ribbed, ribs soon disappearing; shining white, with longitudinal orange blotches, interrupted by a white band on the periphery.

Length, 12 mill.
Hab. unknown.
T. plumbea, Quoy. Pl. 11, fig. t.

Longitudinally plicate, plications straight; fawn or lead-color, white-banded at the suture; sometimes a white band at the periphery of the last whorl, below which the color is darker.

Length, 1 inch.

> Moluccas, Philippines, China, Australia.

The unfigured T. Bourguignati, Desh., is referred here by Reeve.
T. Lischkeana, Dunker. Pl. 12, fig. 22.

Distantly costate throughout, with an obsolete sutural band, barely defined by a narrow sulcus, and punctations in the interstices of the ribs; yellowish, banded with chestnut.

Length, 34 mill.
Japan.
Comects this group with those species having a sutural band, and is evidently closely related to Tr. plumbea, etc.

Subgenus Euryta, H. and A. Adams.

T. aciculata, Lam. Pl. 11, figs. 15-17.

Spire and upper part of body-whorl plicate and shelving, usually doubly nodose, the two rows separated by a sulcus on the middle of the shelf, sometimes the lower row of nodules are developed into spines, lower part of body-whorl with revolving striæ; white, or broadly or narrowly banded with chocolate, or uniform chocolate, or with close zigzag longitudinal markings.

Length, $75-1$ inch.

> Mazatlan, Cape St. Lucas, Panama, West Indies,
> ? W. Coast of Africa, ? Mediterranean Sea.

The American localities are certain, but the several records of Mediterranean specimens refer to beach-worn shells, and it is probable that they were introduced accidentally, and that the species does not live there. The figures will show how variable the shell is in its sculpture and coloring. It is by no means certain that it is really the species intended by Lamarck, although it is thus generally identified; neither is its generic position
fixed; as von Martuns remarks (Don Bism., 27) it may very well be a Columbella

It is Bucc. pulchellum, Calcara; Mitra Limnei, Eichwald; Buce. Linnei, Pilr.; T. C'osentini, I'hil.; I'. nodosoplicala, Dunker.
T. fulciliata, Phil. Pl. 11, figs. 18-20.

Narrowly fusiform, spire acuminated, whorls plicate above, but not shouldered, with lightly marked, rather distant spiral strix; whitish, with zigzag longitudinal chestnut lines.

Length, 14 mill.
Mazatlan, Acapulco, L. Califormia.
T. arguta, Gould, and T. rustica, Hinds (figs. 19, 20), are symonyms; the coloring of the latter is often seen in the species, as well as orange-brown and even clear white without markings. Another usual state has the upper half of the whorls white, the lower half of the body-whorl only showing the lightning-streaks of chestnut.
'I'. Ňascondes, Hinds. Pl. 12, fig. 23.
Whorls varicosely ribbed, spirally minutely striated ; pinkish ash, banded with lead-color, margin below the suture white.

Length, 13.5 mill.
Red Sea (Lord Mountnorris).
Appears to he closely allierl to the preceding species. I have not seen it.
'I'. trilineata, Adams and Angas. Pl. 12, fig. 24.
Thin, slender, with long, narrow aperture, distantly plicate and encircled with thread-like lines; yellowish white, with longitudinal pale undulating chestunt markings, a series of chestnut spots near the suture, and on the hody-whorl three revolving chestunt lines, one of which appears also on the spire.

Length, 14 mill.
New South W'ales, Australia.
T. Angasi, Tryon. Pl. 12, figs. 25, 26.

Olivelliform, with small, rather close plications, disappearing on the upper part of the body-whorl; whitish, shining, with three
fulvous bands upon which are longitudinal light chestnut zigzag markings. Length, 10-12 mill.

Rapid Bay, So. Australia; N. S. Wales.
Described by Adams and Angas under the name of Euryta pulchella, preoccupied in Terebra by Deshayes. T. Brazieri, Angas (fig. 26), appears to be only a slightly differently colored specimen. Angas has himself preoccupied this specific name in Terebra.

Unfigured and Undetermined Species of Terebra.

Buccinum acus, Gmel. (Acus sartoria, Martini); B. succinctum, Gmel.; B. obliquum, Gmel.: B. chalybeum, Gmel.; B. sinuatum, Linn.; B. proximatum. Linn.; B. hecticum, Gmel.; B. Geminum, Linn.; B. monile, Linn.; B. murinum, Linn. (= Triton?). Most of these are Terebre, but indeterminable.
T. elegans, Kiister ; T. costata, Kiister; T. Sandwizensis (?). T. lineolata, Sowb.; T. granulosa, Lam.; T. polita, Gray; T. Buccinulum, Desh.; T. Buccinoidea, Blainv.; T. lineolata, Chemn., are all species of Bullia.
T. nubeculata, Sowb.; T. cancellata, Gray; T. alba, Gray.

The following are described (but not figured) by Mr. E. A. Smith:-
T. fuscobasis, T. MacAndrewi, T. Persica, T. Pellyi, T. tricincta, T. cognata, T. fuscocincta (all from the Persian Gulf); T. rufopunctata (Hab. unknoun) ; T. bathyraphe, T. albozonata, T. melanacme, T. Japonica, T. granulosa ($=$ T. pustulosa), T. Adamsi (all from Japan); T. Brasiliensis (Rio Janeiro); T. Australis and T. turrita (N. Australia); T. Capensis (Cape of Good Hope); T. miranda (Malacca); T. MacGillivrayi (Λ^{\top}. Guinea!; T. Fejiensis and T. paucistriata (Fiji Islands); T. Belcieri = Guayaquilensis (Guayaquil); T. Grayi (for T. gracilis, Gray), 'T. concolor, T. contracta, T. similis (habitats unknown).
W. H. Pease has described:-
T. suffesa, T. sculptilis, T. Rosacea, T. assimilis ($=$ T. contigua), T. propinqua, T. costellifera (all Sandwich Islands).
T. Donkeri, Desh. (T. eburnea, Dunker, not Hinds), Hab.? T. continua, Desh., Hab.? Reeve's figure does not correspond with the description.
T. Belcheri, Phil.; T. subdivisa, Phil.; T. decussata, Phil. (hab. unknown).
T. tuberosa, Hinds, Hab.? The figure appears to represent a Cerithium with imperfect aperture.
T. Beddoner, Petterd.

Tasmania.
T. bipartita, Gould (Hakodadi); T. prolixa, Gld. (China).
T. levis, Gray. Worn and indeterminable.
T. pachyzona, Mörch.

Real Llejos.
T. Lauretane, Tenison-Woods. Port Jacleson, Australia.

INDEX AND SYNONYMY.

TEREBRID庣.

page.
Abretia, H. and A. Adams. Genera Recent Moll., i, 225, 1853, 5
Aciculata (Terebra), Lam. Anim. s. Vert., x, p. 175, 37
Aciculatum (Buccinum), Gmelin, p. 3503, No. 145.$=$ Terebra cerithina, Lam.Aciculina (Terebra), var., Kien. Ic., pl. 7, f. $13 a$.$=\mathrm{T}$. Gouldii,15
Aciculina (Terebra), Lam. (not Reeve or Hinds). An. s. Vert., vii, 287. = T. cinerea, Born, 31
Aciculina ('Terebra), Reeve (not Lam.) Con. Ic., xii, f. 121 d, var. c. and f. 32
Acumen (Terebra), Desh. Proc. Zool. Soc., 1859, p. 287. $=$ T. strigilata, Linn. 33
Acuminata (Terebra), Gray. Reeve, Icon., f. 143. $=\mathrm{T}$. cinerea, Born, 31
Acus, Humphrey. Mus. Calonn., 1797. = Subula, Schum. 5
Acus (Buccinum), Gmelin. Syst. Nat., p. 3502, No. 141, 39
Acuta (Terebra), Desh. Jour. Conch., 1857, p. 100, pl. iv, f. 4-5. = T. straminea, Gray, 28
Adamsii (Terebra), E. A. Smith. Amn. Mag. N. H., 1873, xi, p. 264, 39
Adansonii (Terebra). Desh. Proc. Zool. Soc., 1859, p. 291. $=$ T. cinerea, Born, 31
Addita (Terebra), Desh. Jour. Conch., 1859, p. 293. $=$ T. spectabilis, Hinds. 18
Affinis (Terebra), Gray. Proc. Zool. Soc., 1834, p. 60, 14
Africana (Terebra). Gray. Griffiths' ed. Cuv., t. 23, f. 5. $=$ T. variegata, Gray, 15
Alba (Terebra), Gray. Proc. Zool. Soc., 1834, p. 60, 39
Albicostata (Terebra), Adams and Reeve. Zool. Voy. Samar., p. 30, pl. 10, f. 21 (1848). = T. variegata, Gray, 14
Albida (Terebra), Gray. Proc. Zool. Soc., 1834, p. 63, 11
Albocincta (Myurella), Carpt. Cat. Maz. Moll., p. 384, No. 450. = Terebra variegata, Gray, 14
Albomarginata (Terebra), Desh. Proc. Zool. Soc., 1859, p. 314, 29
PAGE.
Albozonata (Terebra), E. A. Smith. Ann. Mag. N. H., 1875, 415 ; 1877, xix, p. 226, 39
Albula (Terebra), Menke. Moll. Nov. Holl., p. 30. $=\mathrm{T}$. hastata, Gmelin, var. 34
Alveolata (Terebra . Hinds. Proc. Zool. Soc., 1843, p. 151, 23
Amanda (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 154, 30
Amæna ('Terebra), Desh. Jour. Conch., 1859, p. 297, 19
Angasi (Terebra), Tryon, 38
Anomala (Terebra), Gray. Proc. Zool. Soc., 1834, p. 62, 17
Antaretica (Abretia), E. A. Smith. Ann. Mag. Nat. Hist.,
xi, 270, 1873 ; Gillies, Trans. N. Zeal. Inst., xiv, 169.$=\mathrm{T}$. tristis, Desh.36
Apicina (Terebra), Desh. Proc. Zool. Soc., 1859, p. 284.$=\mathrm{T}$. cinerea, Born,31
Approximata ('Terebra), Desh. Proc. Zool. Soc., 1859, p. 299. = T. cancellata, Quoy, 22
A rchimedis (Terelura), Desh. Proc. Zool. Soc., 1859, p. 314. = T. funiculata, Hinds, 29
Areolata (Terebra), Adams and Reeve. Voy. Samar., p. 30 , pl. x, f. $23 .=$ 'I. colnmellaris, Hinds, 22
Areolitus (Vertagus), Link. Reere, C. Ic., t. iii, f. 9.$=$ 'Ierebra muscaria, Lam.
Argenvillei ('Terebra', Desh. Proc. Zool. Soc., 1859, p. 286.$=$ T. strigilata, Linn.33
Argus (Terebra', Hinds. Proc. Zool. Soc., 1843, p. 160, 11
Arenta ('Terebra), Gould. Proc. Bost. Soc. N. H., vii, p. $330 .=$ T'. fulgurata, Phil. 38
Armillata ('Terebra), Hinds. Proc. Zool. Soc., 1843, p. 154. $=$ 'I. variegata, (irar, 14
Aspera ('lerebra), Hinds. Proc. Zool. Soc., 1843, p. 154. $=$ T. variegata, Gray, 14
Assimilis (Terebra) Angas. Proc. Z/ool. Soc., 1867, p. 3, pl. 13, f. 8, 36
Assimilis (Terebra), Pease. Am. Jour. Conch., v, p. 67, 1869. = 'T. contigna, Pease. Anı. J. Conch., vii, p. 20 , 39
Australe (Buccinum), Sowb. Gray, Zool. Proc., 168, 1843. = Bullia Tahitensis, Gmel. Man., vol. iv.
Australis (Terebra), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. ${ }^{6} 4$, 39
Babylonia, var. (Terebra), Kien. Coq. viv., pl. 14, f. 35 a. = T. straminea, Gray, 28
Babylonia (Terelıra), Lam. Anim. s. Vert., vol. x, p. 24:3, 2 S
Bacillus (Terebra), Desh. Proc. Zool. Soc., 1859, p. 285. $=$ 'I. cinerea, Born, 31
Badia (Terebria), Desh. Proc. Zool. Soc., 1859, p. 300, 15
PAGE.
Bathyrhaphe (Terebra), E. A. Smith. Ann. Mag. N. H., xv, 415,$1875 ; 1877$, xix, p. 226, 39
Beddomei (Terebra), Petterd. .Jour. of Conch., ir, 142, 1884, 40
Belcheri (Terebra), Philippi. Zeit. f. Mal., 1851, p. 123, 40
Belcheri (Myurella), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. $267 .=$ M. Guayaquilensis, Smith. 39
Bermonti (Terebra), Lorois. J. C., 2d ser., ii, 389, 1857. $=$ T. pertusa, Born. 23
Bernardii ('Terebra), Desh. Jour. de Conch., 1857, p. 84, pl. iv, f. 10. = T. Dussumieri, Kien. 17
Bicincta ('Terebra), Hinds. Proc. Zool. Soc., 1843, p. 150, 20
Bicolor (Acus), Angas. Proc. Zool. Soc., 1867, p. 111, pl. 13, f. 7. = T. fictilis, Hinds, 25
Bifasciatum (Buccinum), Dillwyn. Cat., ii, p. 651, No. 155. = Terebra cærulescens, 31
Bifrons (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 155, 19
Bipartita (Terebra), Desh. Proc. Kool. Soc., 1859, p. 284. = T. hastata, Gmelin, 34
Bipartita (Terebra), Gould. Proc. Bost. Soc., vol. vii, p. 330 40
Bitorquata (Terebra), Desh. Proc. Zool. Soc., 1859, p. 313. $=$ T. corrıgata, Lam. 26
Blanda (Terebra), Desh. Proc. Zool. Soc., 1859, p. 298, 20
Bourguignati (Terebra), Desh. Proc. Zool. Soc., 1859, p. 288. = 'T. plumbea, Quoy and Gaimard, 37
Brasiliensis. (Abretia), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. 271 , 39
Brazieri (Euryta), Angas. Proc. Z. S., 1875, p. 390, t. xlv, f. 5,5 a, 39
Brazieri (Terebra), Angas. Zool. Proc., 1871, p. 16, pl. 1, f. 15 , 13
Brevicula ('Terebra), Desh. Proc. Zool. Soc., 1852, p. 296, 25
Bruguieri (Terebra), Desh. Proc. Zool. Soc., 1859, p. 297. $=$ T. cancellata, Quoy, 22
Buccinoidea (Terebra), Blainville. Desh., Zool. Proc., 316, 1859. = Bullia, Manual, iv, 39
Buccinulum (Terebra), Desh. Jour. Conch., 1857, p. 92, pl. v, f. 12. = Bullia turrita, Gray. Manual, iv, 14 , 39
Cælata (Terebra), Adams and Reeve. Moll. Toy. Samar., 30. pl. x, f. 22, 20
Calatura, Comrad. Am. Jour. Conch., i, 28, 4
Carulescens (Terebra), Lam. Anim. s. Vert., x, p. 245, 30
Caliginosa (Terebra), Desh. Proc. Zool. Soc., 1859, p. 287, 35
Callichloros (Terebra muscaria, var.), Tapparone-Canefri.Ann. Mus. Civ. Genoa, viii, 326,9
PAGE.
Cancellata (Terebra), Gray. Proc. Zool. Soc., 1834, p. 62, 39
Cancellata (Terebra), Quoy and Gaimard. Voy. de l'Ast. Moll., vol. ii, 471 , pl. 36, f. 27-28, 22Candidum (Buccinum), Born. Mus., p. 263, t. 10, f. 8.$=$ Terebra crenulata, Linn.8
Capen+is (Myurella), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. 269 , 39
Carnea (Terebra), Perry, v. 16, f. 1. = T. dimidiata, Linn. 9
Casta (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 156. $=$ 'T. hastata, Gmelin, var. albula, 34
Castanea (Terebra), Hinds (not Kien.). Thes. Con., i, p. 161, pl. 43, f. $59 .=$ T'. badia, Desh. 15
Castanea ('Terebra), Kien. Coq. viv., pl. 7, f. 14.
$=$ T. cærulescens, Lam. 31
Cerithina (Terebra), Lam. Anim. s. Vert., v, vii, p. 288 12
Chalybeum (Buccinum), Gmelin. Syst. Nat., p. 3504, No. 158, 39
Chalybens (Terebra), Martini. Conch. Cab. = T. duplicata, Linn. 17
Chileusis (Terebra), Desh. Pro. Zoo. Soc., 1859, p. 295. $=$ T. gemmulata, Kien. 18
Chinensis (Terebra), Desh. Zool. Proc., 309, 1859.$=\mathrm{T}$. cingulifera, Lam.27
Chlorata (Terebra), Lam. Anim. s. Vert., vol. x, p. 246, 11
Cinctella (Terebra), Desh. Zool. Proc., 305, 1859.$=$ T. molulata, Gray,23
Cinerea (Terebra), Born. Mus. Vind., p. 267, pl. 10, f. 11 and 1%, 31
Cinerea (Terebra), Hinds (not Born). Thes. Conch., i, pl. 45, f. $130 .=\mathrm{T}$ aciculina, Reeve, 32
Cingula (Terebra), Kiener. Ic. coq. viv., p. 28, pl. 8, fig. 16, 16
Cingulifera (Terebra), Lam. Anim. sans Vert., x, p. 247, 27
Circinata ('Terebra), Desh. Jour. Conch., 1857, p. 99, pl. iv, f. $6-7 .=$ T. straminea, Gray, 28
Circumeincta (Terebra), Desh. Jour. Conch., 1857, p. 77, pl. iii, fig. . 9 , 13
Cognata (Myurella), E. A. Smith. Ann. Mag. N. H., 1877, xix, p. 229, 39
Colnmellaris (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 151. = T. cancellata, Quoy, var. 22
Columnaris (Terebra), Desh. Proc. Zool. Soc., 1859, p. 310. $=$ 'T. cingulifera, Lam. 27
Commaculifera (Terebra), Gmelin. Syst. Nat., p. 3502. = 'I'. myuros, Lam. 27
Concava ('Terebra), Say. Jour. Phila. Acad., v, 207, 1826, 25
Concinna (Terebra), Desh. J. C., 1857, p. 99, pl. 3, f. 10 15

Concinnum (Buccinum), Dillwyn. Cat., p. 647. $=$ Terebra strigilata, Linn.33
Concolor (Terebra), E. A. Smith. Ann. Mag. N. H., I873, xi, p. 265 , 39
Confusa (Terebra), Smith. Ann. Mag. N. H., 1877, p. 229, xix. = T. aciculina, Reeve, 32
Consobrina (Terebra), Desh. Proc. Zool. Soc., 1859, p. 308. $=$ T. subulata, Linn 10
Consors (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 150. 9
Conspersa (Terebra), Hinds. Proc. Zool. Soc., p. 153, 24
Contigua (Terebra), Pease. Am. Jour. Concl., vii, p. 20, 39
Continua (Terebra), Desh. Proc. Zool. Soc., 1859, p. 286, 40
Contracta (Myurella), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. 263, 39
Copula (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 151, 21
Corrugata, var. junior (Terebra), Kien. Ic. coq., p. 25, note, pl. 13, f. $31 a$. = T. bitorquata, Desh. 26
Corrugata (Terebra), Lam. Anim. s. Vert., x, p. 244, 26
Cosentini (Terehra), Phil. Enum. Moll. Sicil., i, p. 227, pl. 11, f. 29. $=$ T. aciculata, Lam. 38
Costata (Terebra, Kiister. Desh., Zool. Proc., 317, 1859, 39
Costata (Terebra), Menke. Syn. Mus., p. 84. $=$ T. hastata. Gmelin, 34
Costellifera (J'erebra), Pease. Am. Jour. Conch., v, p. 66, 1869, 39
Crassula (Terebra), Desh. Proc. Zool. Soc., 1859, p. 282. $=\mathrm{T}$. hastata, Gmelin, 34
Crenifera (Terebra), Desh. Proc. Zool. Soc., 1859, p. 298. $=$ T. cingulifera, Lam. 27
Crenulata ('Terebra), Linn. Syst. Nat., p. 1205, 8
Crossei (Terebra), Desh. Proc. Zool. Soc., 1859, p. 289. $=$ T. venosa, Hinds, 13
Cumingii ('Terebra), Desh. Proc. Zool. Soc.. 1859, p. 311 ; Jour. Conch., 1857, p. 66, pl. iii, f. 1, 28
Cuspidata ('Terebra), Hinds. Proc. Zool. Soc., 1843, p. 157. $=$ T. cinerea, Born, var. 31
Decorata (T'erebra), Desh. Jour. Conch., 1857, p. 75, pl. iv, f. 13, 26
Decussata (Terebra), Philippi. Zeit. f. Mal., 1851, p. 124, 40
Deshayesii (Terebra), Reeve. Conch. Ic., f. 45, 1860.$=$ T. Babylonia, Lam.28
Difficilis (Terebra), Desh. Proc. Zool. Soc., 1859, p. 304. $=$ T. cancellata, Quoy, 22
Dillwynii (Terebra), Desh. Zool. Proc., 279, 1859. $=$ 'J'. concinna, Desh. 15
PAGE.
Dimidiata ('Terebra), Linn. Syst. Nat., 1206, 9
Dislocata (Terebra), Say. Jour. Ac. N. S. Phil., ii, p. 236, 18
Dispar (Terebra), Desh. Proc. Zool. Soc., 1859, p. 284.$=$ T. cinerea, Born,31
Divisa (Terebra), Pease. Am. Jour. Conch., iv, 124, 1868, 15
Dunkeri (Terebra), Desh. Proc. Zool. Soc., 1859, p. 285, 40
Duplicata ('Terebra), Linn. Syst. Nat., p. 1206, 17
Duplicata, var. 3 (Terebra), Gmelin, p. 3501.
$=$ T. pertusa, Born.
Dussumieri (Terebra), Kien. Icon. coq. viv., p. 31, pl. 8, f. 17, 16
Eburnea ('l'erebra), Dunker. Zeit. f. Mal., 1853, p. 96. $=$ 'T. Dunkeri, Desh. 40
Eburnea ('Terebra), Hinds. Proc. Zool. Soc., 1843, p. 153. $=$ 'T. aflinis, Gray, 14
Edentulum (Buccinum). Gmelin, p. 3505, No. 155. $=$ Terebra cærulescens, Lam. 31
Elata (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 15f, 21
Elegans (Terebra), Kiister. Chemn., 2d ed., p. 31. Desh., Zool. Proc., 317, 1859. 39
Elongata (Terebra), Wood. Index Suppl. (pl. 13, f. 25 ?). $=$ 'I'. strigata, Sow. 12
Euryta, H. and A. Adams. Genera Recent Moll., i, 225, 1853, 37
Evoluta (Terebra), Desh. Proc. Zool. Soc., 1859, p. 292. $=$ 'T. Dussumieri, Kiener, 17
Exigua ('Terebra), Deslı. Proc. Zool. Soc., 1859, p. 301, 21
Eximia (Terebra), Desh. Proc. Zool. Soc., 1859, p. 314, 29
Fatua (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 150.$=$ T. cingula, Kien.16
Faval, Adanson. Hist. Nat. Senegal. $=$ T'erebra Senegalensis, Lam. 16
Fejiensis (Myurella), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. 266 39
Felinnm (Buccinum), Dillwyn. Cat. Shells, p. 644. $=$ Terebra tigrina, Gmelin, 10
Fenestrata (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 153, 28
Ferrugineum (Buccinum), Born. Mus., p. 263, t. 10, f. 7.$=$ Terebra dimidiata, Linn.9
Festiva (Terebra), Desh. Jour. Conch., 1857, p. 74, pl. iii, f. 4. = T. Senegalensis, Lam. 16
Fictilis (Terebra), Hinds. Thes. Conch., pl. 45, f. 109, 110 , 25
Fimbriata (Terebra), Desh. Jour. de Conch., 1857, p. 71, pl. 5, f. $1 .=$ T. crenulata, Linn. 8
PAGE.
Flammea (Terebra), Lam. Anim. s. Vert., x, p. 239, 11
Flammea (Terebra), Lesson. Ill. de Zool., t. 48. $=$ T. strigata, Sowb. 12
Flammulata (Terebra), Martens. Mauritins, 1880, p. 230, pl. 20, f. $5 . \quad=$ T. cærulescens, Lam., var. 31
Flava ('Terebra), Gray. Proc. Zool. Soc., 1834, p. 60. $=$ 'I'. cancellata, Quoy, 22
Flavescens (Terebra), Desh. Proc. Zool. Soc., 1859, p. 299. $=\mathrm{T}$. cancellata, Qnoy, 22
Formosa (Terebra), Desh. Jour. de Conch., 1857, p 65, pl. iii, fig. 6 12
Fortunei (Terebra), Desh. Jour. de Conch., 1857, p. 79, pl. iv, f. 1, 29
Frigata (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 162. = T. concava, Say, 26
Fulgmata (Terebra), Phil. Zeit. für Mal., 1846, p. 53, and 1847, p. 181, 38
Funiculata (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 153, 29
Fusca (Limax), Martyn (part). Univ. Conch., iv, pl. 121, f. on left. = Terebra cærulescens, Lam. 37
Fusca (Terebra), Perry. Conchology, t. 16, f. 3. $=$ T. subulata, Limn. 10
Fuscobasis (Myurella), Smith. Ann. Mag. N. H., 1877, xix, p. 227, 39
Fuscocincta (Myurella), Smith. Amm. Mag. N. H., 1877, xix, p. 228, 39
Fuscomaculata (Terebra), Sowb. 'Lank. Cat., p. 23. $=$ T. Scnegalensis, Lam. 16
Geminata (Terebra), Desh. Proc. Zool. Soc., 1859, p. 296. $=$ T. spectabilis, Hinds 18
Geminnm (Buccinum), Limn. Mantissa, 550. Undeter- mined. 39
Gemmulata (Terebra). Kicner. Ic. coq. viv., p. 15, pl. 5, f. 11 and $11 a$, 18
Glabra (Terebra), Deshayes. Jour. Conch., 1857, pl. v, f. 13, p. 101. = T. consors, Hinds, 9
Glauca (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 150. = T. variegata, Gray, 14
Gotoensis (T'erebra), Smith. Proc. Zool. Soc., 1879, p. 183, pl. xix, f. 1 and $1 a$. = T. alveolata, Hinds, var. 23
Gouldi (Terebra), Desh. Proc. Zool. Soc., 1859, p. 278, 15
Gracilis (Terebra), Gray. Proc. Zool. Soc., 1834, p. 61. $=$ T. Grayi, Smith, 39
Gracilis (Terebra), Reeve (not Gray). Conch. Icon., f. 131. = T. spectabilis, Hinds, 18
PAGE.
Granulosa (Terebra), Lam. Anim. s. Vert., v. vii, p. 291. $=$ Bullia, Manual, iv, 39
Granulosa (Myurella), E. A. Smith. Ann. Mag. N. H., 1873, p. $2 \rho 8$ (xi). = Terebra pustulosa, Smith, 39
Grayi (Terebra), Smith. Ann. Mag. N. H., 1877, xix, p. 227, 39
Guayaquilensis (Myurella), Smith. P. Z. S., 1880, p. 481, 39
Guttatum (Epitonium), Bolten. Mus. Bolt. $=$ Terebra oculata, Lam. 10
Hastata (Terebra), Gmelin. Syst. Nat., p. 3502, 34
Hastula, H. and A. Adams. Genera Recent Moll., i, 225, 1853, 5
Hecticum (Buccinum), Chemn. (not Linn). $=$ Terebra dimidiata, Linm. 9
Heetieum (Buceinum), Gmelin. Desh., Zool. Proc., 318, 1859. Undetermined, 39
Hecticum (Buccinum), Linn. Hanley, Linn. Conch., 260. $=$ Terebra cærulescens, Lam. 31
Hindsi ('T. Myurella), Carpt. Cat. Maz. Moll., p. 385, No. 451. = Terebra variegata, Gray, 14
Hindsi (Terebra), Desh. (not Carpt.). Jour. Conch., 1857, p. 81, pl. v, f. $5 .=$ T. cancellata, Quoy, 22
Histrio (Terebra), Desh. Proc. Zool. Soc., 1859, p. 308; Jour. Conch., 1857 , p. 76 , pl. iv, f. 11 26
Hupei (Terebra), Lorois. Jour. de Conch., 2 d ser., ii, p. 388 (1857), pl. xii, f. 1. = 'T. variegata, Gray, 14
Inpages, E. A. Smith. Amm. and Mag., xi, 1873, p. 263, 6
Incomparabilis (Terebra), Desh. Proc. Zool. Soc., 1859, p. 307. = T. robusta, Hinds, 11
Incolor (Terebra), Desh. Proc. Zool. Soc., 1859, p. 283. $=\mathrm{T}$, hastata, Gmelin, 34
Inconstans (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 156. $=$ T. aciculina, Lam. 32
Inflexa (Terebra Swainsoni, var.), Pease. A. J. C., v, pp. 64,86 , 21
Insignis ('Terebra), Desh. Jour. Conch., 1857, p. 70, pl. iii, fig. 2. $=$ T. lingıalis. Hinds, 11
Interlineata (Terebra), Desh. Pro. Zoo. Soc., 1859, p. 277. $=$ T. crenulata, Limu. 8
Intertincta ('Terebra), Hinds. Proe. Zool. Soc., 1843. p. 155. $=$ T. variegata, Gray, 14
Jamaicensis (Terebra), C. B. Adams. Contr. Conch., p. 58. $=$ T. cinerea, Born, 31
Japonica (Terebra), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. 265, 39
Jeffreysii (Terebra), Smith. Proc. Zool. Soc., 1879, p. 184, pl. xix, f. 2, 19
Jukesii (Terebra), Desh. Jour. Conch., 1857, p. 95, pl. vi, f. $9 . \quad$ T. spectabilis, Hinds, 18
Kieneri (Terebra), Desh. Pro. Zool. Soc., I859, p. 294.$=$ T. spectabilis, Hinds,18
Kirki (Terebra), Hutton. Cat. Mar. Moll. N. Zeal., 27 ;Manual, Moll. N. Zeal., 42. = T. caliginosa, Reeve.$=$ T.tristis, Desh. Gillies, Trans, N. Zeal. Inst., xiv. 169. 35, 36Knockeri (Terebra), E. A. Smith. P. Z. S., 1871, p. 730, t.75, f. 7. = T. hastata, Gmel.34
Knorri (Terebra), Gray. Proc. Zool. Soc., 1834, p. 59. $=$ T. chlorata, Lam. 11Lactea (Terebra), Desh. Proc. Zool. Soc., 1859, p. 285.$=$ T. cinerea, Born,31
Lævigata ('Terebra), Gray. Pro. Zoo. Soc., 1834, p. 61. $=$ T. cingulifera, Lam., var. 27
Lævis (Terebra), Gray. Proc. Zool. Soc., 1834, p. 61 ; Desh., Zool. Proc, 1859, 318, 40
Lamarckii (Terebra), Kien. Ic. coq. viv., p. 30, t. 9, f. 19. $=$ T. duplicata, Linn. 17
Lanceata (Terebra), Kien. Coq. viv., pl. 10, f. 22 b.$=\mathrm{T}$. venosa, Hinds,13
Lanceata (Terebra), Linn. Syst. Nat., p. 1206. 12
Lanceolata (Terebra), Lam. Gray in Zool. Proc., 63, 1834.Undetermined.
Larvæformis (Terebra), Hinds. Proc. Zool, Soc., 1843, 155.$?=$ 'T. dislocata, Say,19
Lauretanæ (Terebra), Woods. Proc. Linn. Soc. N. S. W., ii, 262, 40
Laurina (Terebra), Hinds. Proc. Zool. Soc., 1843 , p. 152. $=\mathrm{T}$. cinerea, Born, 31
Lauta ('Terebra), Pease. Am. Jour. Conch., v, p. 66, 1869, 33
Leiodomus, Gray (not Swainson). Synopsis Brit. Museum. $=$ Impages, Smith, 30
Lepida (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 158. $=$ T. strigilata, Linn. 33
Ligata (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 153. = T. tessellata, Gray. 26
Ligneola (Terebra), Reeve. Conch. Ic., 25. = T. badia, Desh. 15
Lima (Terebra), Desh, Jour. de Conch., 1857, p. 69, pl. iii, fig. 2, 27
PAGE.
Lineolata (Terebra), Chemalı, iv, t. 155, t. 1463 ; Wood, Index Suppl. (P. Z. S., 1843, p. 168). = Bullia vittata, Manual, ir, 39
Lineolata (Terebra), Sow. Tank. Cat. App., p. 23. = Bullia Bellangeri, Kr., Mannal, iv, 39
Lingualis ('Ferebra), Hinds. Proc. Zool. Soc., 1843, p. 153. = T. robusta, Hinds, var. 11
Linuei (Mitra), Eichwald. Fauna Casp.-Caucas., 245. $=$ Terebra aciculata, Lam. 38
Linnei (Buccinum), Payraudeau. Cat. Mol. Isl. Corse, 1826, p. 161, pl. 8, f. 10, 11, 12. Terebra aciculata, Lam. 38
Lischkeana (Terebra), Dkr. Mal. Blatt., xxir, p. 74, 37
Livida (Terebra), Reeve. Conch. Ic., 116, 1860. $=$ T. cancellata, Quoy, var. 22
Loebbeckeara ('Terebra), Dkr. Mal. Blatt., xxiv, p. 74, 29
Longiscata (Terebra), Desh. Proc., Zool. Soc., 1859, p. 294, 18
Loroisii (Terebra), Desh. Proc. Zool. Soc., 1859, p. 313.
$=\mathrm{T}$. oculata, Lam. 10
Loroisii (Terebra), Guer. Mag. de Zool., 1854, p. 218, pl. 4, f. $5 .=$ 'T. robusta, Hinds, 11
Luctuosa (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 157, 32
Lutescens (Terebra), E. A. Smith. Anu. Mag., xi, 1873, p. 263. = T. cancellata, Quoy, 22
Macgillivrayi (Myurella), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. 267, 39
MacAndrewii (Terebra), Smith. Ann. Mag. N. H., 1877, xix, p. 228, 39
Maculata, var. β (Terebra), Gmelin, p. 3499, No. 130. $=$ T. chlorata, Lam. 11
Maculata (Terebra), Linn. Syst. Nat., p. 1205, 9
Maculata (Terebra), Perry. Conchology, t. 16, f. 2.$=$ T. crenulata, Linn.9
Marginata (Terebra), Desh. Jour. Conch., 1857, p. 86, pl. iv, f. 8. = T. variegata, Gray, 15
Mariesi Terebra), E. A. Smith. Proc. Zool. Soc., 1880, p. 480 , pl. xlviii, f. 5 , 19
Marmorata (Terebra), Desh. Proc. Zool. Soc., 1859, p. 279, 15
Matheroniana (Terebra), Desh. Proc. Zool. Soc., 1859, p.287. = T. acicnlina, Lam., Reeve, Icon. = T. strigi-lata, Linn., Pease, Am. J. C., iv, p. 123. Good. sp.,Smith, Ann. Mag. N. H., 1873, p. 263, . . . 32, 33Melanacme (Terebra), Smith. Ann. Mag. N. H., 1875, 415 ;1877, xix, p. 224,39
Mera (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 158. $=$ T. hastata, Gmelin, var. albnla, 34
PAGE.
Metcalfei (Terebra), Reeve. Conch. Ic., 139, 1860, 36
Micans (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 181. $=\mathrm{T}$. cinerea, Born, 31
Miranda (Myurella), E. A. Smith. Ann. Mag. N. H., 1873, p. 267, 39
Modesta (Terebra), Desh. Proc. Zool. Soc., 1859, p. 288. $=$ T. strigilata, Linn. 33
Monile (Buccinum), Linn. Mantissa, 550. Undetermined, 39
Monilis (Terebra), Quoy and Gaim. Voy. de l'Astrol., ii, p. 467 , pl. 36, f. 21 and 22 , 28
Morbida ('Terebra), Reeve. Conch. Ic., 133, 1860 , 25
Murinum (Buccinum), Linn. Syst. Nat., ed. 12, p. 1206. Undetermined, 39
Muscaria, var. (Terebra), Kien. Coq. viv., pl. 3, f. 4 b. $=$ T. tigrina, Gmelin, 10
Muscaria ('Terebra), Lam. Anim. s. Vert., vol. x, p. 241, 9
Myurella, Hinds. Sowb., Thes. Conch., i, 171, 1844, 56
Myuros"(Terebra), Lam. Anim. s. Vert., x, p. 247 , 27
Nana (Terebra), Desh. Proc. Zool. Soc., 1859, p. 291, 36
Nassoides (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 158, 38
Nebulosa (Terebra), Kien. (not Sow.). Ic. coq. viv., 23, t. 10, f. 22. = T. Argus, Hinds, 17
Nebulosa (Terebra), Lorois. Jour. Conch., 1858, p. 90, pl. 1, f. $4 .=$ T. Loroisii, Deshayes, 10
Nebulosa ('Terebra), Sowerby. Tank. Cat. App., p. 25, 23
Nimbosa (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 151. $=\mathrm{T}$. cærulescens, Lam., var. 31
Nitida (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 152, 35
Niveum (Buccinum), Gmelin. Linn., ed xiii, p. 3504.$=$ Terebra cærulescens, Lam.31
Nodosoplicata (Terebra), Dunk. Zeit. f. Mal., 1853, p. 110. = 'T. aciculata, Lam. 38
Nodularis (Terebra), Desh. Proc. Zool. Soc., 1859, p. 296. $=$ T. textilis, Hinds, 20
Nubeculata (Terebra), Sowb. Tank. Cat. App., p. 25. Desh., Zool. Proc., 319, 1859, 39
Obesa (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 158, 36
Obliquum (Buccinum), Gmel. Syst. Nat., p. 3504 , No. 157 , 39
Obsoleta (Terebra), Desh. Proc. Zool. Soc., 1859, p. 310. $=$ T. cingulifera, Lam., var., 27
Oculata (Terebra), Lam. Anim. s. Vert, x, p. 242 10
Ornata (Terebra), Gray. Proc. Zool. Soc., 1834, p. 62, 12
Ornatum (Buccinum), Martyn. Univ. Conch.= Terebra oculata, Lam.10
Otaitensis (Tercbra), Lesson. Voy. Coq., ii, pt. 1, p. 407. $=$ Var. of 'T. cærulescens. Lam. 131
Pachyzona (Terebra), Mörch. Mal. Blatt., vii, p. 105, 40
Pallida (Terebra), Desh. Jour. Conch., 1857, p. 87, pl. iv, f. $3 .=$ T. cingulifera, Lam. 27
Parva (Terebra), Baird. Cruise Curaçoa, Brenchley, 435, pl. 37, f. 5-6. = T. cinerca, Born, 31
Patagonica (Terebra), d’Orb. Voy. Amer. mer., pl. 62, f. l. $=$ 'T. gemmulata, Kieu. 18
Paucistriata (Myurella), E. A. Smith. Ann. Mag. N. H., 1873. xi, p. 269 39
Peasii (Terebra), Desh. Proc. Zool. Soc., 1859, p. 302. $=$ 'T. cancellata, Quoy, 22
Pellyi (Terebra), E. A. Smith. Ann. Mag. N. H., 1877, xix, p. 226, 39
Penicillata (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 157, 13
Persica (Terebra), E. A. Smith. Ann. Mag. N. H., 1877, xix, p. 225, 39
Pertusa (Terebra), Born. Mus., p. 267, pl. 10, f. 13, 23
Pertusa (Terebra), Kien. Ic. coq. viv. var., t. 11, f. $24 b$. $=$ T. affinis, Gray, 14
Pertusa (Terebra), Kien. (part). Ic. coq. viv. var., t. 11, f. $24 c .=$ T. cancellata, Quoy, 22
Petitii ('Terebra), Kien. Coq. viv., p. 37, t. 13, f. 32.$=$ T. dislocata, Say, .18
Petiveriana (Terebra), Desh. Jour. Conch., 1857, pl. v, f. 10, p. 85. = T. variegata, Gray, 14
Philippiana (Terebra), Desh. Proc. Zool. Soc., 1859, p. 289. $=$ T. cinerea, Born, 31
Picta ('Terebra), Hinds. Proc. Zool. Soc., 1843, p. 156. $=$ T. undulata, Gray, 22
Plicata (Terebra), Gray. Proc. Zool. Soc., 1834, p. 61, 24
Plicatella (Terebra), Desh. Jour. Conch., 1857, p. 96, pl. iii, f. 5. = T. nitida, Hinds, 35
Plumbea (Terebra), Quoy and Gaimard. Moll. Voy. Astr., p. 470 , pl. 36 , f. 29,30 , 37
Polita (Terebra), Gray. Proc. Zool. Soc., 1834, p. 63. $=$ Bullia, Manual, iv, 39
Polygonia (Terebra), Reeve. Conch. Ic., 154, 1860 , 23
Polygyrata (Terebra), Desh. Proc. Zool. Soc., 1859, p. 301, 23
Prælonga (Terebra), Desh. Proc. Zool. Soc., 1859, p. 315. $=$ T. triseriata, Gray, 30
Pretiosa (Terebra), Reeve. Pro. Zoo. Soc., 184.2, p. 200, 27
Prolixa (Terebra), Gould. Proc. Bost. Soc. N. H., vii, p. 330, 40PAGE.
Propinqua (Terebra), Pease. Am. Jour. Conch., v, p. 66, 1869, 39
Protexta ('Terebra), Conrad. Proc. Philad. Acad., iii, 26, 1843, 25
Proximatum (Buccinum), Linn. Gray, Zool. Proc., 168, 1843. Undetermined, 39
Pugio (Buccinum), Gmelin. Syst. Nat., 3505, No. 163. $=$ Terebra Senegalensis? (young), 16
Pulchella (Euryta), Ad. and Ang. Zool. Proc., 1863, p. 418, pl. 37, f. 14. = T. Angasi, Tryon, 39
Pulchella (Terebra), Desh. Jour. Conch., 1857, p. 94, pl. v, f. 4 , 20
Pulchellum (Buccinum), Calcara. Cenni Moll. Sicil., t. 4, f. 33. = Terebra aciculata, Lam 37
Pulchra (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 151.$=$ T. cerithina, Lam.12
Pumilio (Terebra), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. 269. = T. tantilla, Smith, 35
Punctata (Tcrebra), Gray. Proc. Zool. Soc., 1834, p. 61. = T. corrugata, Lam. 26
Punctatostriata (Terebra), Gray. Proc. Zool. Soc., 1834, p. 61. = T. cingulifera, Lan. 27
Puncticulata (Terebra), Desh. Proc. Zool. Soc., 1859, p. 280. = T. cancellata, Quoy, 22
Punctulata (Terebra), Sowb. Tank. Cat. App., p. 24. $=$ T. cingulifera, Lam. 27
Pura (Terebra), Desh. Jour. Conch., 1857, p. 82, pl. v, f. 8, 16
Pustulosa (Terebra), E. A. Smith. P. Z. S., 1879, p. 185, 39
Pygmæa (Terebra), Hinds. Proc. Zocl. Soc., 1843, p. 158, 30
Pyramitra, Conrad. Am. Jeur. Conch., i, 28, 1865, 4
Radula (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 155; 24
Raphanula (Terebra), Lam. Anim. s. Vert., x, p. 246,$=$ T. Senegalensis, Lam.16
Reevei (Terebra), Desh. Jour. Conch., 1857, p. 88, pl. iv, f. 14. = T. duplicata, Linn. 17
Regina (Terebra), Desh. Jour. Conch., 1857, p. 67, pl. iii, f. 7. $=$ T. corrugata, Lam. 26
Robusta (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 149, 11
Rosacea ('Terebra), Pease. Am. Jour. Conch., v, p. 65, 1869, 39
Roseata (Terebra), Adams and Reeve. Moll. Voy. Sam., p. 30, pl. x, fig. 24, 21
Rudis (Tercbra), Gray. Proc. Zool. Soc., 1834, p. 60. = 'T. dislocata, Say, 18
Rufocinerea (Terebra), Carpenter. Mazat. Cat., 386. $=$ T. variegata, Gray, 14
page.
Rufopunctata (Hastula), Smith. Ann. Mag. N. H., xix, p. 229, 1877, 39
Rustica (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 158. = T. fulgurata, Phil. 38
Sallcana (Terebra), Desh. Proc. Zool. Soc., 1859, p. 287. $=$ T. cinerea, Born, 31
Sandwizensis (Terebra) - ? Hinds. Thes. Conch., 186, 39
Sartoria (Acus), Martini, t. 4, f. 1451.$=$ Buccinum acus, Gmel. .39
Scabrella (Terebra), Lam. An. s. Vert., 2d ed., x, p. 248. Note. = T. myuros, Lam. 27
S'culptilis (Terebra), Pease. Am. Jour. Conch., v, p. 65, 1869 39
Senegalensis (Terebra), Lam. Anim. s. Vert., x, p. 244, 16
Serotina ('Terebra), Adams and Reeve. Moll. Voy. Samar., p. 30, pl. 10, f. 20, 29
Similis ('Terebra), E. A. Smith. Ann. Mag. N. H., 1873, xi, p. 265, 39
Simplex (Myurclla), Carpenter. Anı. Mag., 1865, xv, p. 395, 14
Sinuatum (Buccinum), Linn. Gray, Zool. Proc., 168, 1843. Undetermined, 39
Solida (Terebra), Desh. Jour. Conch., 1857, p. 78, pl. iii, f. 11. = T. hastata, Gmel., var. 34
Souleyeti (Terebra), Desh. Proc. Zool. Soc., 1859, p. 303. $=$ T. dislocata, Say, 19
Sowerbyana (Terebra), Desh. Jour. Conch., 1857, p. 93, pl. iii, fig. $8 .=$ T. dislocata, Say, 19
Specillata (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 155, 24
Speciosa (Terebra), Desh. Proc. Zool. Soc., 1859, p. 279. $=$ T. Senegalensis, Lam 16
Spectabilis (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 150, 17
Spicatus (Limax), Martyn. Univ. Conch., 1784, pl. 121. $=$ Terebra duplicata, Linn. 17
Splendens (Terebra), Desh. Jour. Conch., 1857, p. 73, pl. v, fig. 11. = T. dimidiata, Linn. 9
Straminea (Terebra), Gray. Proc. Zool. Soc., 1834, p. 62, 29
Striata ('Terebra), Gray. Proc. Zool. Soc., 1834, p. 60.$=$ T. Babylonia, Lam.28
Striata (Terebra), Quoy (not Basterot). Voy. de l'Astr., p. 468, t. 36, f. $23,24 .=$ T. affinis, Gray. 14
Striatula (Terebra), Kien. Ic. coq. viv. $=$ T. strigilata, Linn. 33
Striatula (Terebra), Lam. Anim. sans Vert., v. vii, p. 288. $=$ T. Senegalensis, Lam. 16
AGE.
Strigata (Terebra), Sowerby. Tank. Cat. App., p. 25, 12
Strigilata (Tercbra), var., Kiener. Ic. viv., p. 29, f. $18 a, b, c$. $=$ 'T. aciculina, Reeve, 32
Strigilata (Terebra), Linn. Syst. Nat., p. 1206, 33
Strigilatum (Buccinum), Gmelin. Syst. Nat.= Terebra myuros, Lam.27
Strigilatum, var. (Buccinum), Gmel., p. 3501. = Terebra cinerea, Born, 31
Stylata (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 152. $=\mathrm{T}$. cinerea, Born, 31
Subangulata (Terebra), Desh. Proc. Zool. Soc., 1859, p. 300. $=$ T. cancellata, Quoy, 22
Subdivisa (Terebra), Philippi. Zeit. f. Mal., 1851, p, 96, 40
Subnodosa (Myurella), Carpt. Cat. Maz. Moll., p. 386, No. 452 . = Terebra variegata, Gray, 14
Subtextilis (Terebra), Smith. Proc. Zool. Soc., 1879, p. 185, t. xix, f. 3, 19
Subula, Schumacher. Essai nov. Gen., 233, 1817. = Acus, Humphrey, 5
Subulata (Terebra), Linn. Syst. Nat., 1205, 10
Subulata (Terebra), Linn. Enc. Méth.
$=$ T. muscaria, Lam. 9
Succinctum (Buccinum), Gmel. Syst. Nat., p. 3502, 39
Succinea (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 149, 29
Suffusa (Terebra), Pease. Am. Jour. Conch., v. p. 65, 1869, 39
Sulcata (Terebra), Pease. Am. Jour. Conch., v, p. 67. $?=\mathrm{T}$. Swainsoni, Desh., var. 21
Swainsoni (Terebra), Desh. Proc. Zool. Soc., 1859, p. 299, 21
Trniolata (Terebra), Quoy. Voy. de l'Astrol., p. 466, t. 36, f. 25,26 . T. tricolor, Sow. 28
Tahitensis (Tercbra), Gray. Proc. Zool. Soc., 1834, p. 63. $=$ Bullia Tahitensis, Gmel. Manual, vol. iv, 39
Tantilla (Terebra), E. A. Smith Ann. Mag. N. Hist., 1873, xi, p. 270. Proc Zool. Soc., 185, 1879. 35
Taylori (Terebra), Reeve. Conch. Ic., 124, 1860 , 25
Tenera (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 158, 35
Terebra, Adanson. Hist. Nat. Senegal, 49, 1757, 5, 3
'Terebrarius, Dum. Zool. Anal., 166, 1806.
$=$ Terebra, Adanson, 3
Terebrifusus, Conr. Am. Jour. Conch., i, 28, 1865, 4
Terebrum, Montfort. Conch. Syst., ii, 430, 1810. = Terebra, Adanson, 3
Tessellata (Terebra), Gray. Proc. Zool. Soc., 1834, p. 61, 26
Tessellata (Terebra), Reeve. Conch. Icon., sp. 88, 1860. $=$ T. decorata, Desh. 26
PAGE.
Textilis (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 156, 20
Tiarella (Terebra), Desh. Jour. Conch., 1857, p. 91, pl. v, fig. 7 , 8
Tigrina (T'erebra), Gmelin. Syct. Nat., p. 2602, 10
Torquata (Terebra), Adams and Reeve. Moll. Voy. Sam., 30, pl. 10, f. 13, 20
Trajana (Acus columna), Humphreys. Mus. Calonn., p. 31, No. $865 .=$ Terebra maculata, Linn. 9
Traillii (Terebra), Desh. Proc. Zool. Soc., 1859, p. 285. $=\mathrm{T}$. cinerea, Born, var. 32
Tricincta (Terebra), E. A. Smith. Ann. Mag. N. H., 1877, p. 225, xix, 39
Tricolor ('Terebra), Sowb. Tank. Cat. App., p. 24, 27
Trilineata (Euryta), Ad. and Ang. P. Z. S., 1863, p. 418, pl. xxxvii, f. 13, 38
Triseriata ('Terebra), Gray. Proc. Zool. Soc., 1834, p. 61, 30
Tristis (Terebra), Desh. Proc. Zool. Soc., 1859, p. 306 , 36
Trochlea (Terebra), Desh. Jour. de Conch., 1857, p. 89, pl. v, fig. 6, 16
Tuberculosa (Terchra), Hinds. Proc. Zool. Soc., 1843, p. 154, 24
Tuberosa ('Terebra), Hinds. Proc. Zool. Soc., 1843, p. 152 ; Thes. Conch., 183, t. 45, f. 99, 40
Turrita (Myurella), E. A. Smith. Ann. Mag. N. H., 1873, p. 266 (xi), 40
Undata (T'erebra), Defrance. Dict. des Scien. Nat. = T. pertusa, Born, 23
Undatella (Terebra), Desh. Proc. Zool. Soc., 1859, p. 300. $=$ T. cancellata, Quoy and Gaimard, 22
Undulata (Terebra), Gray. Proc. Zool. Soc., 1834, p. 60, 22
Ustulata ('Terebra), Desh. Jour. Conch., 1857, p. 97, pl. iii, f. 12 , 18
Varia (Terebra), Meuschen. Mus. Gronov. $=$ T. oculata, Lam. 10
Taricosa (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 152, 24
Varicosum (Buccinum), Gmelin, p. 3505, No. 165. = Terebra crenulata, var., Linn. 8
Variegata ('Terebra), Gray. Proc. Zool. Soc., 1834, p. 61, 14
Varium (Buccinum), Martyn. Univ. Conch.$=$ Terebra subulata, Linn.10
Venilia (Terebra), Woods. Proc. Linn. Soc. N. S. Wales, 1879, vol. iv, p. 23, pl. 4, f. 2 and $2 a$. 21
Venosa ('Terebra), Hinds. Proc. Zool. Soc., 1843, p. 157. $=$ T. penicillata, Hds., var. 13
Verreauxi ('Terebra), Desh. Jour. Concl., 1857, p. 95, pl. v, f. 3. = T. strigilata, Linn. 33
Violascens (Terebra), Hinds. Proc. Zool. Soc., 1843, p. 154, 35Virginea (Terebra), Deshayes. Jour. Conch., 1857, p. 83,pl. iv, f. 12. = T. consors, Hinds,9
Vittata (Terebra), Lam. Enc. Méth., pl. 402, f. $4 a-b$. $=$ Bullia, Manual, vol. iv, 39
Zebra (Terebra), Kien. Ic. coq. viv., p. 5, pl. 3, fig. 5. $=$ T. strigata, Sowb., 12
REFERENCE TO PLATES.
TEREBRIDÆ.
Plate 1.
FIGURE.PAGE.

1. Terebra crenulata, Limn. Sowb., Thes. Conch., f. 18, 8
2. Terebra fimbriata, Desh. (= crenulata). Jour. de Conch., 2d ser., ii, t. 5, f. 1, 8
3. Terebra subulata, Lam. Thes. Conch., f. 39, 10
4. Terebra splendens, Desh. (= dimidiata). Jour. de Conch., $2 d$ ser., ii, t. 5 , f. 11, 9
5. Terebra Hupei, Lorois (= variegata). Ibid., t. 12, f. 1, 14
6. Terebra interlineata, Desh. $(=$ crenulata!. Reeve, Conch. Icon., f. 51, 8
7. Terebra aspera, Hinds (= variegata). Thes. Conch., f. 44, 14
8. Terebra albicostata, Ad. and Reeve (=variegata). Voy. Samarang, t. 10, f. 21, 14
9. Terebra maculata, Linn. Sowb., Thes., f. 33, 9
10. Terebra maculata, Linn. Kiener, Terebra, t. 1, f. 1, 9
11. Terebra tigrina, Gmel. Sowb., Thes. Coneh., f. 30, 10
12. Terebra musearia, Lam. Sowb., Thes., f. 41, 9
13. Terebra dimidiata, Linn. Sowb., Thes., f. 8, 9
Plate 2.
14. Terebra pulchra, Hinds (= cerethina). Thes. Conch., f. 129, 12
15. Terebra variegata, Gray. Thes. Conch., f. 53, 14
16. Terebra robusta. Hinds. Ibid., f. 35, 11
17. Terebra lingualis, Hinds (= robusta). Reeve, Icon., f. 15, 11
18. Terebra eburnea, Hinds (=aftinis). Thes. Conch., f. 123, 14
FIGURE. PAGE.
19. Terebra glauca, Hinds (= variegata). Sowb., Thes., f. 85, 14
20. Terebra oculata, Lam. Sowb., Thes., f. 31, 10
21, 23. Terebra armillata, Hinds (= variegata). Reeve, Icon., f. $72, b, a$, 14
21. Terebra affinis, Gray. Thes., f. 78, 14
22. Terebra Argus, Hinds. Sowb., Thes., f. 64, 11
23. Terebra insignis, Desh. (= robusta). Jour. de Conch., 2d ser., ii, t. 3, f. 2 1]
24. Terebra flammea, Lam. Thes. Conch., f. 36, 11
25. Terebra formosa, Desh. Reeve, Icon., f. 49, 12
26. Terebra ornata, Gray. Reeve, Conch. Icon., f. 14, 12
27. Terebra strigata, Sowb. Thes., f. 10, 12
28. Terebra cerethina, Kiener. Iconog., t. 11, f. 25, 12
Plate 3.
29. Terebra Petiveriana, Desh. (= variegata). Jour. de Conch., 2 d ser., ii, t. 5, f. 10 , 14
30. Terebra consors, Hinds. Sowb., Thes. Conch., f. 26, 9
31. Terebra virginea, Desh. (= consors). Jour. de Conch., $2 d$ ser., ii, t. 4, f. 12, 9
32. Terebra glabra, Desh. (= consors). Ibid., t. 5, f. 13, 9
33. Terebra consobrina, Desh. (= subulata, var.). Reeve, Icon., f. 23, 10
34. Terebra nebulosa, Lorois (=oculata). Jour. de Conch., 2d ser., iii, t. 1, f. 4, 10
35. Terebra intertincta, IIinds (= variegata). Sowb., Thes. Conch., f. 81, 14
36. Terebra marginata, Desh. (= variegata). Jour. de Conch., 2d ser., ii, t. 4, f. 8, 14
37. Terebra Gonldi, Desh. Reeve, Conch. Icon., f. 24, 15
38. Terebra ligneola (= badia). Reeve, Icon., f. 25 , 15
41-44. Terebra Senegalensis, Lam. Sowb., Thes. Conch., f. 12-15, 16
39. Terebra festiva, Desh. ($=$ Senegalensis). Jour. de Conch., 2 d ser., ii, t. 3, f. 4 , 16
40. Terebra Dussumieri, Kiener. Sowb., Thes., f. 9, 16
41. Terebra evoluta, Desh. (= Dissumieri). Reeve, Icon., f. 55, 16
42. Terebra Bernardii, Desh. (Dussumieri). Reeve, Icon., f. 56 , 16
Plate 4.
43. Terebra duplicata, Linn. Reeve, Terebra, f. $3 a$, 17
44. Terebra Reevei, Desh. (=duplicata). Jour. de Conch., 2d ser., ii, t. 4, f. 14, 17
IGURE. PAGE.
45. Terebra duplicata, var. Lamarcki. Reeve, Terebra, f. $3 b$, 17
52, 53. Terebra spectabilis, Hinds. Sowb., Thes., f. 88, 89, 17
46. Terebra Jukesii, Desh. ($=$ spectabilis). Reeve, Icon., f. 97 , 17
47. Terebra addita, Desh. (= spectabilis). Reeve, Icon., f. 94 , 17
48. Terebra Kieneri, Desh. (=spectabilis). Reeve, Terebra, f. 110 , 17
49. Terebra gracilis, Reeve (=spectabilis). Reeve, Terebra, f. 131, 17
50. Terebra longiscata, Desh. Reeve, Icon., f. 103, 18
51. Terebra ustulata, Desh. Jour. de Conch., 2d ser., ii, t. 3, f. 12, 18
52. Terebra Jeffreysii, Smith. Zool. Proc., t. 19,f. 2, 1879, 19
53. Terebra gemmulata, Kiener. Sowb., Thes., f. 92, 18
54. Terebra Patagonica, d'Orb. (= gemmulata). Voy. Am. Mérid., t. 62, f. 1, 18
55. Terebra dislocata, Say. Reeve, Icon., f. 32, 18
56. Terebra Petiti, Kiener (= dislocata). Kiener, Terebra, t. 13, f. 32, 18
57. Terebra Souleyeti, Desh. (= dislocata). Reeve, Icon., f. 78, 18
66, 67. Terebra larvæformis, Hinds (= dislocata). Sowb., Thes., f. 47, 46, 18
58. Terebra Mariesi, E. A. Smith. Zool. Proc., t. 48, f. 5, 1880, 19
59. Terebra rudis, Gray (=dislocata). Sowb., Thes.,f. 60, 18
60. Terebra subtextilis, Smith. Zool. Proc., t. 19, f. 3, 1879, 19
61. Terebra bifrons, Hinds. Thes. Conch., f. 57, i 9
Plate 5.
62. Terebra blanda, Desh. Reeve, Icon., f. 117, 20
63. Terebra amœna, Desh. Reeve, Icon., f. 80, 19
64. Terebra pulchella, Desh. Jour. de Conch., 2d ser., ii, t. $5, \mathrm{f} .4$, 20
65. Terebra textilis, Hinds. Reeve, Icon., f. 130, 20
66. Terebra nodularis, Desh. (= textilis). Reeve, Terebra, f. 105 , 20
67. Terebra cælata, Ads. and Reeve. Reeve, Icon., f. 64, 20
68. Terebra torquata, Ads. and Reeve. Toy. Samarang, t. 10, f. 13, 20
69. Terebra bicincta. Hinds. Sowb., Thes., f. 72, 20
70. Terebra copula, Hinds. Reeve, Icon., f. $92 b$ 21
71. 'Terebra Swainsoni, Desh. Reeve, Icon., f. 118, 21
72. Terebra elata, Hinds. Reeve, Icon., f. 128, 21
figure. PAGE.
73. Terebra cancellata, Quoy. Thes. Conch., f. 80, 22
74. Terebra cancellata, Quoy. Reeve, Terebra, f. $58 b$, 22
85, 91. Terebra Gotoensis, Smith. Zool. Proc., t. 19, f. $1 a, 1,1879$, 23
75. Terebra livida, Reeve ($=$ cancellata). Icon., f. 116, 22
76. Terebra alreolata, Hinds. Sowb., Thes., f. 120, 23
77. Terebra venilia, Tenison-Woods. Specimen, 21
78. Terebra exigua, Desh. Reeve, Icon., t. xxvi, f. 84, 21
79. Terebra roseata, Ads. and Reeve. Reeve, Icon., f. 104 , 21
Plate 6.
80. Terebra subangulata, Desh. (= cancellata). Reeve, Icon., f. 87, 22
81. Terebra colımellaris, Hinds (= cancellata, var.). Rve., Icon., f. 113. 22
82. Terebra areolata, Ads. and Rve. (= cancellata, var.). Voy. Samarang, t. 10, f. 23, 22
83. Terebra flavescens, Desh. (= cancellata). Conch. Icon., f. 59 , 22
84. Terebra approximata, Desh. ($=$ cancellata). Reeve, Conch. Icon., f. 83, 22
85. Terebra lutescens, Smith (= cancellata). Thes. Conch., f. 75 , 22
86. Terebra protexta, Conrad. Specimen, 25
87. Terebra plumbea, Quoy. Conch. Icon., f. 111, 37
88. Terebra puncticulata, Desh. (= cancellata). Reeve, Icon., f. 99 22
89. Terebra Hindsii, Desh. (= cancellata). Jour. de Conch., 2d ser., ii, t. 5, f. 5, 22
90. Terebra Bruguieri, Desh. (=rancellata). Rve., f. 82,. 22
91. Terebra difficilis, Desh. (= cancellata). Conch. Icon., f. 86 , 22
92. Terebra undulata, Gray. Reeve, Conch. Icon., f. 84, 22
93. Terebra pertusa, Born. Sowb., Thes., f. 43, 23
94. Terebra flava, Gray (= cancellata). Conch. Icon., f. 126; 22
95. Terebra Bermondii, Lorois ($=$ pertusa). Jour. de Conch., 2 d ser., ii, t. 12, f. 2, 23
96. Terebra picta, Hinds ($=$ undulatil). Conch. Icon., f. 112 b, 22
97. Terebra nebulosa, Sowb. Thes. Conch., f. 51, 23
Plate 7.
98. Terebra polygyrata, Desh. Conch. Icon., f. 146, 23
99. Terebra bicolor, Angas (= fictilis). Zool. Proc., t. 13, f. 7, 1867, 24
100. Terebra varicosa, Hinds. Conch. Icon., f. 120, 24
FIGURE. PAGE.
101. Terebra conspersa, Hinds. Thes. Conch., f. 74, 24
102. Terebra fictilis, Hinds. Thes. Conch., f. 109, 24
103. Terebra polygonia, Reeve. Conch. Icon., f. 154, 23
104. Terebra decorata, Desh. Jour. de Conch., 2d ser., ii, t. $4, \mathrm{f} .13$, 26
105. Terebra radula, Hinds. Thes. Conch., f. 95, 24
106. Terebra specillata, Hinds. Thes. Conch., f. 116 , 24
107. Terebra ligata, Hinds (= tessellata). Sowb., Thes., f. 118 , 26
108. Tcrebra plicata, Gray. Thes., f. 61, 24
109. Terebra corrugata, Lam. Thes. Conch., f. 62, 26
110. Terebra Taylori, Reeve. Conch. Icon., f. 124 , 25
111. Terebra morłida, Reeve. Conch. Icon., f. 133, 25
112. Terebra brevicula, Reeve. Conch. Icon., f. 119 25
113. Terebra concava, Say. Specimen, 25
114. Terebra frigata, Hinds ($=$ concava). Thes. Conch., f. 71, 25
115. Terebra tessellata, Gray. Thes. Conch., f. 124, 26
116. Terebra regina, Desh. (= corrugata). Jour. de Conch., 2 d ser., ii, t. 3, f. 7 , 26
117. Terebra histrio, Desh. Ibid., t. 4, f. 11, 26
118. Terebra myuros, Lam. Sowb., 'Thes., f. 37, 27
119. Terebra tuberculosa, Hinds. Conch. Icon., f. 61, 24
120. Terebra corrugata, var. bitorquata, Desh. Kiener, Iconog., t. 13, f. $31 a$, 26
Plate 8.
121. Terebra pretiosa, Reeve. Conch. Icon., f. $30 a$, 27
122. Terebra lima, Desh. (= pretiosa, Rve.). Jour de Conch., $2 d$ ser., ii, t. 4, f. 2, 27
123. Terebra cingulifera, Lam. Sowb., Thes. Conch., f. 24 , 27
124. Terebra pallida, Desh. (= cingulifera). Jour. de Conclı., $2 d$ ser., ii, t. 4, f. 3, 27
125. Terebra lævigata, Gray (==cingulifera). Thes. Conch., f. 93, 27
126. Terebra obsoleta, Desh. (= cingulifera). Reeve, Icon., f. 107 , 27
127. Terebra tricolor, Sowb. Thes. Conch., f. 82, 27
128. Terebra babylonica, Lam. Sowb., Thes. Conch., f. 67 , 28
129. Terebra Deshayesii, Reeve ($=$ babylonica). Reeve, Icon., f. 45, 28
42, 43. Terebra straminea, Gray. Sowb., Thes. Conch., f. 22,23 , 28
130. Terebra circinata, Desh. (=straminea). Jour. de Conch., $2(1$ ser., ii, t. 4, f. 6, 28
131. Terebra acuta, Desh. (= straminea). Ibicl., t. 4, f. 4, 28
figure. PAGE.
132. Terebra fenestrata, Hinds. Reeve, Icon., f. 114, 28
47, 48. Terebra monilis, Quoy (= straminea). Thes. Conch., f. 65, 66, 28
133. Terebra Cumingii, Desh. Jour. de Conch., 2d ser., ii, t. 3, f. 1, 28
134. Terebra Löbbeckiana, Dunker. Moll. Mar. Japon., t. 5, f. 17 , 29
135. Terebra succinea, Hinds. Sowb., Thes. Couch., f. 40, 29
136. Terebra Fortunei, Desh. Reeve, Icon., f. 53, 29
137. Terebra serotina, Ads. and Reeve. Conch. Icon., f. 66, 29
Plate 9.
138. Terebra albomarginata, Desh. Conch. Icon., f. 65, 29
139. Terebra eximia, Desh. Reeve, Conch. Icon., f. 106 , 29
140. Terebra triseriata, Gray. Sowb., Thes. Conch., f. 119, 30
141. Terebra prælonga, Desh. (= triseriata). Conch. Icon., f. 28, 30
142. Terebra Jamaicensis, C. B. Ad. (= cinerea). Specimen, 31
143. Terebra stylata, Hinds (= cinerea). Thes. Conch., f. 79, 31
144. Terebra funiculata, Hinds. Sowb., Thes. Conch., f. 63, 29
145. Terebra amanda, Hinds. Thes. Conch., f. 100, 30
146. Terebra Philippiana, Desh. (= cinerea). Conch. Ieon., f. 153, 31
147. Terebra laurina, Hinds ($=$ cinerea). Thes. Conch., f. 27 , 31
148. Terebra micans, Hinds ($=$ cinerea). Thes. Conch., f. 125, 31
149. Terebra bacillus, Desh. (= cinerea). Conch. Ieon., f. 134 a, 31
150. Terebra nimbosa, Hinds (= cærulescens, var.). Conch. Icon., f. 37, 30
151. Terebra cinerea, Born. Reeve, Conch., Icon., f. 35 31
152. Terebra castanea, Kiener (= cinerea, var.). Kiener, leonog., t. 7, f. 14, 31
153. Terebra apicina, Desh. (=cinerea). Conch. Icon., f. 136 a, 31
154. Terebra dispar, Desh. ($=$ cinerea). Reeve, Conch. Icon., f. 137, 31
155. Terebra bacillus, Desh. (= cinerea). Reeve, Icon., f. 134 b, 31
156. Terebra lactea, Desh. ($=$ cinerea). Reeve, Conch. Icon.. f. $13+c$, 31
157. Terebra acuminata, Gray (=cinerea). Reeve, Conch. Icon., f. 143, 31
158. Terebra parva, Baird ($=$ cinerea). Voy. Curaçoa, t. 37, f. 6 , 31

Plate 10.

FIGURE. page.
75-77. Terebra cærulescens, Lam. Kiener, Icon., t. 6, f. 12, 30
78. Terebra Salleana, Desh. ($=$ cinerea). Conch. Icon., f. 129, 31
79. Terebra Traillii, Desh. (== cinerea, var. cuspidata). Conch. Icon., f. 142, 31
80. Terebra cuspidata, Hinds ($=$ cinerea, var.). Thes. Conch., f. 128, 31
81. Terebra cinerea, Hinds (= aciculina). Thes. Conch., f. 130, 32
82. Terebra inconstans, Hinds (= aciculina). Conch. Icon., f. 121 b, 32
83. Terebra luctuosa, Hinds. Sowb., Thes. Conch., f. 121, 32
84. Terebra strigilata, Limn. Sowb., Thes. Conch., f. 122, 33
85. Terebra Verreauxi, Desh. ($=$ strigilata). Jour. de Conch., 2d ser., ii, t. 5, f. 3, 33
86. Terebra Knockeri, Smith (= hastata). Zool. Proc., t. 75, f. 7, 1871, 34
87. Terebra hastata, Gmelin. Sowb., Thes., f. 87, 34
88. Terebra lepida, Hinds (=strigilata). Sowb., Thes., f. 102, 33
89. Terebra albula, Menke (= hastata, var.). Thes. Conch., f. 126, 34
90. Terebra casta, Hinds (= hastata, var.). Thes. Conch., f. 84 , 34
91. Terebra lanta, Pease. Specimen, 33
92. Terebra solida, Desh. (= hastata, var.). Jour. de Conch., 2d ser., ii, t. 3, f. 11, 34
93. Terebra nitida, Hinds. Sowb., Thes. Conch., f. 103, 35
94, 95. Terebra mera, Hinds ($=$ hastata, var.). Thes. Conch., f. 108, 114 , 34
96. Terebra plicatella, Desh. (= nitida). Jour. de Conch., $2 d$ ser., ii, t. 3 , f. 5, 35
97. Terebra caliginosa, Desh. Reeve, Conch. Icon., f. 100, 35
98. Terebra violascens, Hinds. Reeve, Conch. Icon., f. 125, 35
99. Terebra tenera, Hinds. Reeve, Conch. Icon., f. 148, 35
100. Terebra tristis, Desh. Reeve, Conch. Icon., f. 102, 36
Plate 11.

1. Terebra assimilis, Angas. Zool. Proc., 1867, t. 13, f. 8, 36
2. Terebra pygmæa, Hincls. Reeve, Conch. Icon., f. 149, 36
3. Terebra nana, Desh. Reeve, Conch. Icon., f. 138. 36
4. Terebra tantilla, Smith. Zool. Proc., t. 19, f. 4, 1879, 35
5. Terebra Metcalfei, Reeve. Conch. Icon., f. 139, 36
6. Terebra obesa, Hinds. Reeve, Conch. Icon., f. 140 , 36
7. Terebra plumbea, Quoy. Sowb., Thes. Conch., f. 70, 37
figure. page.
8. Terebra circumcincta, Desh. JJour. de Conch., 2d ser.,ii, t. 3 , f. 9 ,13
9. Terebra circumcincta, Desh. Reeve, Conch. Icon., f. 70, 13
10. Terebra lanceata, Linn. Sowb., Thes. Conch., f. 52, 12
11. Terebra penicillata, Hinds. Reeve, Icon., f. 98, 13
12. Terebra venosa, IIinds (= penicillata). Reeve, Icon., f. $95 b$, 13
13. Tercbra Crossei, Desh. (== venosa). Conch. Icon., f. $95 a$, 13
14. Terebra Brazieri, Angas. Zool. Proc., 1871, t. 1, f. 15, 13
15. Terebra aciculata, Lam. Reeve, Icon., f. 150, 37
16, 17. Terebra Cosentini, Plil. (= aciculata). Reeve, Icon., f. $152 a, b$, 37
16. Terebra fulgurata, Phil. Reeve, Conch. Icon., f. 151,. 38
19, 20. Terebra rustica, Hinds ($=$ fulgurata). Conch. Icon., f. $147 a, b$, 38
17. Terebra chlorata, Lam. Reeve, Icon., f. 11, 11
Plate 12.
18. Terebra Lischkeana, Dunker. Moll. Mar. Jap., t. 5, f. 14, 37
19. Terebra nassoicles, Reeve. Conch. Icon., f. 144, 38
20. Terebra trilineata, Ad. and Angas. Zool. Proc., t. 37, f. 13,1863 , 38
21. Terebra pulchella, Ad. and Angas ($=$ Angasi). Ibid., t. 37 , f. 14, 38
22. Terebra Brazieri, Angas (= pulchella). Zool. Proc., t. 45 , f. 5,1875 38
23. Terebra cingula, Kiener. Iconog., t. 8, f. 16, 16
2s. Terebra fatua, Hinds ($=$ cingula). Sowb., Thes. Conch., f. 28, 16
24. Terebra albida, Gray. Thes. Conch., f. 56, 11
25. Terebra pura, Desh. Jour. de Conch., 2 d ser., ii, t. 5, f. 8, 16
26. Terebra Sowerbyana, Desh. (= dislocata). Conch. Icon., f. 63, 18
27. Terebra Dillwynii, Desh. (= concinna). Conch. Icon., f. 74, 15
28. Terebra raphanula, Lam. ($=$ Senegalensis). Conch. Icon., f. 77, 16
29. Terebra marmorata, Desh. Reeve, Icon., f. $91 b$, 15
30. Terebra trochlea, Desh. Jour. de Conch., ひd ser., ii, t. 5, f. 6 , 16
31. Terebra anomala, Gray. Sowb., Thes. Conch., f. 97, 17
32. Terebra concinna, Desh. Jour. de Conch., 2 d ser., ii, t. 3, f. 10 , 15
38, 39. Terebra tiarella, Desh. Reeve, Icon., f. $109 a, b$, 8
33. Terebra duplicata, var. Lamarckii. Dentition. Troschel, Gebiss, ii, pt. i, f. 2, f. 13, 3

Family CANCELLARIIDA.

In the "Structural and Systematic Conchology," ii, 180, I have given diagnoses of the family, of the genera Cancellaria and Admete, and of the several subgenera. The latter, as far as the recent groups are concerned, are the same as given by H. and A. Adams in their "Genera of Recent Mollusca," a classification mainly original with those authors. Several fossil subgenera are also described and illustrated in my above-named work, and need not be reproduced here; among the present illustrations, however, will be found one of a lingual tooth of Admete, as a type of the dentition of the family (Pl. 7).

As is frequently the case with the subgenera of Messrs. Adams, the study of extensive suites of species of Cancellariidæ proves these to possess little value for classification. Dr. Paul Fischer in his excellent "Manuel de Conchyliologie" has recognized this fact, and has reduced several of these subgenera of Messrs. Adams to the rank of sections.

Fischer proposes the following classification :
Subgenus Cancellaria, s. stricto. Shell cancellated, aperture oval, canal very short; columellar plications nearly central, strong, oblique (C. cancellata, Linn.).

Sections, I. Euclia. Shell smooth (C. solida, Sowb.). II. Narona. Shell cancellated, basal canal rather long (C. Mitroxformis, Sowb.). III. Massyla. Shell fusiform, retracted in front (C. corrugata, Hinds).

Subgenus Merica, H. and A. Adams. Shell oval, whorls reticulated; aperture oval, lip not contracted in front, columella obliquely truncate at the base, imperforate (C. melanostoma, Sowb.). The subgenus Apriera only differs by its thicker lip and more spreading columellar callosity (C. tessellata, Sowb.).

Subgenus Trigonostoma, Blainv. Shell widely umbilicated, whorls angulated, aperture trigonal, lip not contracted in front (C. trigonostoma, Desh. . The genus T'urbinopsis, Conrad, differs from Trigonostoma in having a single basal plication of the columella.

Subgenus Admete, Kroyer. Shell oval, thin, diaphanous, with epidermis, spire sharp, last whorl slightly ventricose ; aperture oval, feebly sinuated in front, columella obliquely truncate, subplicate in front, lip sharp (A. viridula, Fabr.).

Subgenus A dmetopsis, Meck. Anterior plication of the colnmella more elevated than the posterior one; lip thick; shell otherwise resembling Admete (A. gregaria, Meek).

In the present work I have ranged all the groups under one genus Cancellaria, regarding Admete as the only recent subgenus. The typical Cancellariz are thus classified :

Section Cancellaria ($=$ S. G. Cancellaria and Merica of Fischer).

Subsections Euclia; Merica (including Massyla ánd Aphera); Narona.

Section Trigonostoma ($=\mathrm{S}$. G. Trigonostoma of Fischer).
Descriptions of the animals of Cancellaria Spengleriana, C. cancellata, and Admete viridula, will be found under those speeies in my text.

Serenty-eight recent species are enumerated by Messrs. Adams; thirty by Kiener (Coq. vivantes) ; sixty-eight by Sowerby (Thesaurus Conchyliorum); eighty-three by Reeve (Conchologica Iconica) ; Crosse ("Etude sur le genre Cancel laire," Jour. de Conch., 220, 1861) has ninety-three recent and eighty-one fossil species. Kobelt has commenced a monograph of the genus in Kiister's Conchylien. Cabinet ; only a few pages and figures have as yet appeared.

One hundred and seventy-four specific names enter into the present work, of which seventy-seven are recognized as valid species, twenty-three are classed as doubtful and unidentified; the balance are considered synonyms.

> Genus CANCELLARIA. Lam.

Section Canceliaria, s. stricto.
C. Cassidiformis, Sowb. Pl. 1, fig. 1.

Orange-fulvous or flesh-color, often indistinctly light-banded on the middle of the body-whorl. Length, $1 \cdot 5-2 \cdot 5$ inches.

Panama to Gulf of Mexico.
C. Spengleriana, Desh. Pl. 1, figs. $2,3,4,5$.

Whorls spirally linearly grooved; yellow-brown, tinged with chestnut, particularly on the shoulder, body-whorl often lightbanded in the middle. Length, $1 \cdot 5-2 \cdot 25$ inclies.

China, Japan, Philippines, Australia.
The synonyms are C. Tritonis, Sowb. (fig. 3), and C. undulata, Sowb. (figs. 4, 5). The latter has usually been considered a distinct species, but in a series of specimens the differential characters merge.

The animal is thus described by Mr. Arthur Adams: "Tentacles broad, flat, triangularly subulate, wide apart, separated by the base of the retractile proboscis. The eyes are small and black, and are placed on slight tubercles at the outer bases of the tentacles. The mantle is furnished with a small siphonal fold. The foot is large, that, truncate in front, with short sideangles, and acuminate and produced behind.
"The tentacles of this species are rendered dark nearly as far as the eyes by close-set small red-brown dots; the siphonal fold of the mantle is sparsely spotted with the same; both dorsum and sole of the foot are reticulate with red-brown lines, and dotted with the same color.
"The animal is very shy, rarely showing more than the tips of the tentacles beyond the front edge of the shell. It has the power of considerably extending the fore part of the foot, using it as an exploring organ " (Ann. Mag. N. Hist., 3d ser., xiii, 143).
C. Buccinoides, Sowb. Pl. 1, figs. 6-8.

Flesh-color to dark chocolate, frequently white-banded on the middle of the body-whorl; rudely decussated by longitudinal and spiral ribs, the intersections often nodulous.

Length, 1.5-2 inches.
West Coast of Central America.
C. corrosa, Reeve. Pl. J, fig. 9.

Whorls latticed by longitudinal and spiral ridges, the intersections prickly, narrowly umbilicated. Light fulvous.

Length, 23 mill.
China Seas.
This was originally described by Adams as C. clathrata, a name preocoupied by Lamarck.
C. nodulifera, Sowb. Pl. 1, fig. 10, 11.

Yellowish or orange-brown, often with a narrow white band towards the base ; plaits very small. Length, $1 \cdot 75-2$ inches.

Japan.
This is C. imperialis, Michelin (fig. 11).
C. Cumingiana, Petit. Pl. 1, fig. 12 ; Pl. 2, fig. 13.

Orange-brown; undulately obsoletely thick-ribbed longitudinally, spirally ridged and grooved. Length, $1 \cdot 25-1 \cdot 75$ inches. Payta, Peru.
An interesting dwarf form with thick shell is figured by Crosse (fig. 13); it apparently connects this with the next species.
C. obtusa, Desh. Pl. 2, fig. 14.

Longitudinally somewhat obsoletely plicate, regularly spirally grooved and ridged ; yellowish fawn-color. Length, 28 mill.

Hab. unknown.
The unique specimen formed part of the Cumingian Collec. tion. Mörch has evidently mistaken its characters in referring it to C. solida, Sowb. See remark under preceding species.
C. Semperiana, Crosse. Pl. 2, fig. 15.

Flesh-brown, faintly light banded at the periphery and base; the longitudinal costre small, distant and somewhat irregular.

Length, 37 mill.
New Caledonia.
Crosse compares it to C. undulata ($=$ Spengleriana, var.), but it appears to be sufficiently distinct.
C. Granósa, Sowb. Pl. 2, fig. 16.

Slightly shouldered, clathrate and granose; orange-fawn to chestnut-color. Length, 34 mill.

Southeast and South Coast of Australia.
C. obesa, Sowb. Pl. 2, figs. 17-19.

Whorls spirally flat-ribbed and grooved, the sculpture fading out on the body-whorl of adult shells, the earlier whorls decus-
sated by fine longitudinal ribs; columellar plaits very prominent; orange-brown, often indistinctly bifasciate with a lighter tint.

Length, 1-5-2.25 inches.
West Coast of Central America, northwards to Gulf of California.
The synonyms are C. ovata, Sowb. (fig. 18), and C.acuminata, Sowb. (fig. 19). The latter figure shows a more exserted spire, but there are intermediate forms connecting the three.
C. urceolata, Hinds. Pl. 2, fig. 20.

Slightly, narrowly shouldered; fulvous straw-color to orangebrown. Length, 34 mill.

West Coast of Central America to Mazatlan.
Appears to differ from the preceding species mainly by the development of fold-like ribs, which traverse the body-whorl as well as the spire.
C. candida, Sowb. Pl. 2, fig. 21.

Whorls slightly round-shouldered at the suture; yellowish white. Length, 32 mill.

Polynesia.
C. Australis, Sowb. Pl. 2, fig. 22.

Whorls rounded, decussated by close-set oblique longitudinal ribs, and spiral ridges; plaits three, moderate; yellowish white. Length, 23 mill.

New South Wales.
C. albida, Hinds. Pl. 2, fig. 23.

Whorls slantingly shouldered, reticulated by corded ridges; whitish ; columella with the two superior plaits prominent.

Length, 31 mill.
West Coast of Central America.
C. Gemmulata, Sowb. Pl. 2, fig. 24.

Globosely ovate, solid, whorls scarcely angulated above; plaits three, subequal, moderate ; whitish. Lengtl, 1 inch.

West Coast of Central America.
C. reticulata, Linn. Pl. 2, figs. 25, 26.

Whorls spirally grooved and ribbed, the ribs low, flat, alternately narrower and wider, crossed by less prominent obliquely longitudinal ribs, sometimes forming obtuse granulations at the
intersections; sometimes the longitudinal ribs are more distant, or give place to undulations, which are more prominent near the suture; plaits two, strong, raised, narrow ; yellowish white, banded and variegated with rust-brown. Length, $1 \cdot 5-2 \cdot 5$ inches. West Indies, Florida.
I think that C. Eburnæformis, Reeve (fig. 26), described without locality, is only a rather sinooth form of this species.
C. decussata, Sowb. Pl. 2, figs. 27, 28.

Cancellated by narrow, prominent, corcled ridges; columella with three moderate plaits; fawn-color to reddish brown.

Length 1.5 inches.
Wrest Coast of Central America.
C. ventricosa, Hinds (fig. 28) is a synonym.
C. indentata, Sowb. Pl. 2, fig. 29 ; Pl. 3, figs. 30, 32.

Somewhat squarely oblong, narrowly shouldered, scarcely umbilicated, latticerl by longitudinal and spiral narrow, raised ridges; plaits two, prominent ; deep orange-brown.

Length, $1 \cdot 25$ inches.
Panama.
C. cremata, Hinds (fig. 29), appears to be a variety; Reeve has described it or a similar form as C. affinis (fig. 32). This latter agrees well with the description of an unfigured species described also under the name of C. affinis, by Prof. C. B. Adams, and obtained by him at Panama.
C. Grayi, Tryon. Pl. 3, fig. 33.

Spire exserted; rudely decussated with rough ridges and spiral striæ; reddish brown, the body-whorl obscurely twobanded with white; columella with three moderately strong plaits. Length, 1.75 inches.

Baclayon, Island of Bohol, Philippines;
17 fms . (Cuming).
Confounded by Sowerby with C. asperella, Lamarck, an error repeated by Reeve. I have named it after Dr. J. E. Gray, one of the earlier monographers of the genus Cancellaria.
C. cancellata, Linn. Pl. 3, fig. 34.

Cancellated by distant, narrow, prominent ribs, occasionally varicose, and thread-like spiral ridges ; whitish, with two chest-
nut bands on the body-whorl, one of which is frequently partly visible on the spire. Length, $1-1.5$ inches.

Mediterranean Sea; W. Coast of Africa.
Weinkauff (Jour. de Conch., iii ser., iv, 13), gives some interesting particulars of the habits and appearance of this animal. He says that it lives upon a sandy bottom, almost completely deprived of marine plants, although Deshayes supposed it to be phytophagous; it was mostly obtained at a depth of 25 to 30 feet, although some were found in shallower water. The animal can develop itself until the head and neck are as long as the shell, and the foot longer. Its movements are slow. A quantity of fine sand adheres to the foot, so that when the animal retires into its shell the aperture appears as though filled with sand, The exterior of the shell is also corered with fine sand, requiring a brush to remove it, and indicating possibly a burrowing habit.
C. stmilis, Sowb. Pl. 3, fig. 35.

Very narrowly umbilicated; strongly, narrowly, distantly ridged, cancellated by spiral closer ridges; occasionally varicose ; whitish, tinged with chestnut, usually imperfectly narrowly twobanded with chestnut. Length, 1-1.25 inches.

Senegal.
A thicker, more globose and smaller species than the preceding, of which it is made a synonym by Weinkanff (Conch. Mittelm., ii, 171).
C. pulchra, Sowb. Pl. 3, fig. 36.

Umbilicus wide; shell slightly shouldered and coronated, spinosely cancellated; whitish, banded and lineated with chestnut. Length, $1 \cdot 25$ inches.

St. Elena, W. Columbia (sandy, $8-10 \mathrm{fms}$.), Cuming.
C. chrysostoma, Sowb. Pl. 3, figs. 38, 37, 39.

Whorls but slightly angled above, ludely decussated by thick ribs and revolving ridges; whitish, sparingly dotted and lineated with chestnut; the umbilical ridge bears a single series of chestnut spots, and the narrow shoulder is sometimes chestnuttinged; columella, and sometimes the margin of the outer lip. orange-color. Length, $1-1 \cdot 25$ inches.

Panama and S't. Elena, Cent. America.

Var. hemastoma, Sowb. Figs. 37, 39.
Rudely angled above, with regular distant thick rounded ribs, decussated by spiral ridges; yellowish white, blotched and banded with chestnut; columella and margin of aperture orange-red. Length, $1-1 \cdot 25$ inches.

Galapagos $I \therefore$. (sandy, $10-16 \mathrm{fms}$.$) , Cuming.$
The ribs are smaller and more distant thon in the typical shell. Some specimens are entirely white.
C. rugosa, Lam. PI. 3, fig. 40.

Solid, imperforate, whorls obtusely angled above; distantly ribbed, and spirally ridged; pale straw-color or whitish, tinged with light chestnut, especially on the shonlder, and sometimes chestnut-banded; columella spreading, white.

Length, $\cdot 75-1$ ineh.
West Indies.
The locality "China," given by Reeve and others, is erroneons.

C. Unalashiensis, Dall. Pl. 3, fig. 41.

Whorls 6, somewhat turreted, with strong revolving ridges, decussated on the spire, and upper portion of the body-whorl hy longitudinal riblets, the intersections of the riblets and ridges nodulous; white, with traces of a nut-brown epidermis.

Length, 75 inch.
Unalashka, Aleutian Is. (30-60 fins., stony mud). C. circumcincta, Dall. Pl. 3, fig. 42 :

Whorls 6, thin and delicate, slightly shonldered, erossed by very faint irregular longitudinal riblets, most evident on the apical whorls, and evanescent on the body-whorl, sculptured with strong revolving ridges, slightly granulated on the upper whorls; outer lip thin and delicate, the sculpture of the exterior showing through; columella with two or three very faint plicæ; rose-pink, strongest on the ridges. Length, 82 incl.

Popoff Strait, Shumagin Islands ($10 \mathrm{fms} .$, stony mud).
Perhaps would be better referred to the S. G. Admete.
C. turrita, Sowb. Pl. 3, fig. 43.

Stightly shouldered; columella with three small folds; fleshcolor. Length, 28 mill .

Habitat unknown.
C. parva, Philippi. Pl. 3, fig. 44.

Subimperforate, columella biplicate, outer lip plicate within; white (bleached). Length, 11 mill.

Coast of Atacama, Chili.
C. minima, Reeve. Pl. 3, fig. 45.

Obliquely ribbed, ribs obtusely noduled at the upper part, interstices neatly cancellated, columella obsoletely two-plaited; white, sometimes brownish. Length, 4.5 mill.

Hab. unknown.
C. pusilla, H. Adams. Pl. 3, fig. 46.

Whorls 5, whitish; longitudinally obtusely nodulosely plicate, with remote spiral threads; aperture scarcely canaliculate below; outer lip lirate within, columella with two plice.

Length, 6 mill.
Canary Islands.
I have not seen the species ; the figure scarcely represents a typical Cancellaria.
C. Japonica, E. A. Smith. Pl. 3, fig. 47.

White, thickish; whorls 7, divided by a deep suture, longitudinally 13 -ribbed and spirally lirate, 6 or 7 liræ on the penultimate and 12 on the last whorl ; columella with two small plaits.

Length, 12 mill.
Japan.
Subsection Euclia, H. and A. Adams.
C. solida, Sowb. Pl. 3, figs. 48, 49.

Imperforate, solid, smooth, earlier whorls decussately ridged, body-whorl broadly shallow-grooved below ; columella with two somewhat prominent plaits; orange-fawn color, interior white.

Length, $1 \cdot 25-1 \cdot 5$ inches.
Panama, Real Llejos, Central America.
It is C. obtusa of Kiener, not Lamarck. C. bulbulus, Sowb. (fig. 49), appears to me to be a not fully developed large specimen.
C. pyrum, Adams and Reeve. Pl. 3, fig. 50.

Solid, imperforate,spire very short, slightly immersed, strongly cancellated, last whorl smooth, striated at the base; columella broadly callous above, granosely wrinkled at the base, plaits three,
the uppermost sharp and prominent; fulvous brown, lighter within the aperture. Length, 1.5 inches.

China Sea.
I have not seen this species, but the figure is too close to C. bulbulus.
C. lactea, Desh. Pl. 3, fig. 51.

White, smooth, thin, translucent, colnmella three-plaited; cream-colored. Length, 22 mill.

Hab. unknown.
C. levigata, Sowb. Pl. 3, fig. 52.

Rather solid, whorls narrowly obtusely angled at the upper part, obsoletely plicate on the spire and angle, otherwise smooth ; whitish, obscurely tinged with flesh-brown, blotehed with chestnut on the shoulder; plaits three, prominent.

Length, 1-1-25 inches.
New South Wales.
Possibly identical with the preceding species.

> Subsection Merica, H. and A. Adams.
C. asperella, Lam. Pl. 4, figs. $53,50-52,54$; Pl. 3, fig. 53.

Thick, imperforate, everywhere granosely reticulated, very narrowly angulated at the suture; whitish, banded with orangebrown or entirely brown or chocolate-colored; columella threeplaited. Length, $1 \cdot 25-1 \cdot 75$ inches.

China, Japan, Philippines.
A variety of this species was first described by Sowerby as C. elegans (fig. 53), a name preoccupied by Deshayes for a fossil species of the Paris basin, aud therefore changed by Crosse to C. Reeveana ; however, C. Sinensis, Reeve (fig. 50), representing a not fully developed shell, has priority over the latter name. Kobelt has described vars. subsinensis (fig. 5l), with less impressed suture, and laticosta (fig. 52), with more distant ribs and umbilical region more strongly defined. Another variety, connecting the form Sinensis with the type is C. melanostoma, Sowb. (fig. 54).
C. bifasclata, Desh. Pl. 4, fig. 55.

Whorls very narrowly shouldered, densely decussated; orangebrown, with two whitish bands. Length, $1 \cdot 25-1 \cdot 5$ inches.

Straits of Macassar.
C. Purpuriformis, Tal. Pl. 4, fig. 56.

Longitudinally obsoletely plicate, spirally linearly grooved; brownish white. Length, $\cdot 75$ inch.

Hab. unknown.
C. corrugata, Hinds. Pl. 4, fig. 57.

Oblong pear-shaped, imperforate, longitudinally obsoletely wrinkled, decussated with spiral impressed lines; aperture ridged within, columella two-plaited; fulvous olive.

Length, $2: 2$ mill.

> Bay of Guayaquil.

This is the type of the S. G. Massyla, H. and A. Adams. but it may as well go in this group, the distinctive characters being of little value.
C. tessellata, Sowb. Pl. 4, figs. 58-60.

Whorls granosely decussated; whitish, banded and sometimes tessellated with chestnut. Length, 1 inch.

West Coast of Central America, 7-10 fms., sandy mud (Cuming); La Paz, Gulf of California (Stearns).
The type of S. G. Aphera, H. and A. Adams, but having no good characters by which to separate it from the present group.

Subsection Narona, H. and A. Arlams.

C. clavatula, Sowb. Pl. 4, fig. 61.

Obtusely longitudinally ribbed, here and there irregularly varicose, spirally striated; columella two-plaited; chestnutcolor, narrowly white-banded at the shoulder angle and on the middle of the body-whorl. Length, $25-35$ mill.

Panama.
C. uniplicata, Sowb. Pl. 4, figs. 62, 63.

Spire turreted, whorls concavely shouldered, closely decussated by nodulous ridges, the spiral ones forming a serrated outer lip; columella one- or obscurely two-plaited; chestnut or chocolate-color, interior purplish chocolate.

Length, $1 \cdot 25-1 \cdot 75$ inches.
Panama.
C. Mitræformis, Sowb. (fig. 62), is identical; Mr. Crosse changed its name to C. Sowerbyi, becanse the former name is preoccupied by Brocchi for a fossil species.
C. teniata, Sowb. Pl. 4, fig. 64.

Turreted, whorls narrowly, flatly shouldered, longitudinally narrowly ribbed, faintly spirally ridged ; columella two-plaited; reddish brown, with darker spiral lines. Length, 15-20 mill.

Hab. unknown.
Scarcely a member of the group.
C. elata, Hinds. Pl. 4, fig. 65.

Strongly ribbed, spirally ridged; .columella three-plaited; brownish yellow. Length, 16 mill.

Panama (30 fms.), Hinds.
C. Cooperi, Gabb. Pl. 4, fig. 66.

Shell turreted, with shouldered whorls, the angle of the shoulder slightly coronated by the terminations of narrow, distant longitudinal ribs, the interstices closely spirally striate; columellar plications small; yellowish brown, darker on the shoulder, with rather regular narrow spiral chestnut lines.

Length, $2 \cdot 5$ to nearly 4 inches.
Monterey and San Diego, Cal.
The largest species of the genus. It is perhaps identical with C. tæniata, Sowb.; that is, supposing the latter to be a young specimen. I owe to R. E. C. Stearns, Esq., the opportunity of figuring the type. He has also sent me a drawing of a very large specimen in the Hermann Collection, San Francisco.
C. macrospira, Ads. and Reeve. Pl. 4, fig. 67.

Occasionally varicose, decussately finely ridged, suture excavated; whitish, semipellucid. Length, 1 inch.

Borneo; China Sea.
C. coronata, Scacchi. Pl. 4, fig. 68.

Turreted, excavated below the suture, longitudinally distantly costate, ribs projecting at the shoulder angle, spirally striate.

Length, 75 inch.
Mediterranean Sea.
Described as a fossil species, but recently recorded by Dr. J. Gwyn Jeffreys as living in the Mediterranean. C. varicosa, Phil., is a synonym.
C. Angast, Crosse. Pl. 4, fig. 69.

Imperforate, thin, subscalariform, flat-shouldered, with a carina at the angle, another carina below the middle of the body-whorl,
narrowly distantly longitudinally ribbed, spirally striate ; lip not lirate within, columella biplicate; whitish. Length, 15 mill.

Habitat unknown.

Section Trigonostona, Blainville.

C. piscatoria, Gmelin. Pl. 4, fig. 70.

Coarsely reticulated by longitudinal and spiral ridges and prickly at the interstices, shoulder smooth; white tinged with light chestnut or brown, and usually showing a central white band ; interior of aperture orange-brown, with the white band.

Length, $1-1 \times 25$ inches.
West Coast of Africa.
A peculiarity of this species is the single plait situated about the middle of the inner lip. It is C. nodulosa, Lam.
C. spirata, Lam. Pl. 4, fig. 71 ; Pl. 5, fig. 72.

Whorls deeply excavated aromnd the suture, smooth, longitudinally ribbed near the apex, superficially spirally grooved on the body-whorl; aperture closely ridged within, columella with three plaits; light yellowish brown or yellowish white with a band or orange-brown spots encircling the shoulder angle.

Length, 1 inch.
So. Australia, Tasmania.
C. excavata, Sowb. (fig. 72), is a light-colored rariety. The species has much the form of a miniature Eburna Australis.
C. foveolata, Sowb. Pl. 5, figs. 73, 74.

Turriculated, whorls slantingly excavated at the sutures, forming a sharp keel, smonth, or distantly obsoletely longitudinally ribbed; flesh-brown, blotehed with orange-brown about the keel, sometimes with an interrupted light central chestnut band; sometimes lineated with chestnut. Length, $12-20$ mill. Cape of Good Hope.
C. semidisjuncta, Sowb. Pl. 5, fig. 75.

Broadly umbilicated, the excavation defined by a sharp angle, whorls broadly exeavately angled at the suture; spirally ridged and grooved, the ridges and grooves divided by striæ, obsoletely distantly longitudiually ribbed ; columella two-plaited; yellowish
white, tinged with light chestnut, especially upon the ribswhich thus become more apparent. Length, $75-1$ inch.

> Cagayan, Isl. of Mindanao, Philippines, sandy mud, 25 fins. (Cuming).
C. tubercllosa, Sowb. Pl. 5, figs. 76-78.

Deeply umbilicated, concavely shouldered around the suture, which is coronated with blunt tubercles at the angle, below it are two or three somewhat equidistant spiral rows of tubercles, with spiral strix in the interspaces; colnmella obliquely produced below, with two small plaits; yellowish white, tubercles often tinged with chestnut, forming somewhat interrupted narrow bands. Length, $1 \cdot 25-1 \cdot 5$ inches.

Iquiqui, Peru, 7 fms . (Cuming) ; Gulf of Nicoya,
Central America, 12 fms. (Cuming).
The latter locality is that of C. bullata, Sowb. (fig. 78), which is certainly a synonym.
C. trigonostona, Lam. Pl. 5, fig. 79.

Scalariform, the angles of the shoulder and of the wide umbulical excavation both spinose, obsoletely longitudinally ribbed, spirally ridged; flesh-color, sometimes lineated with chestnut. Length, 35 mill.
?Ceylon ; ? Moluccas.
A very rare shell, first described by Lamarck as a Delphinula.
C. goniostoma, Sowerby. Pl. 5, figs. 80-85.

Excavately shouldered, widely umbilicated, distantly strongly ribbed, the ribs crossing the shoulder to the suture, rather coarsely spirally ridged, the intersections often bluntly nodose ; aperture ridged within, colnmella two- or obscurely threeplaited ; yellow, yellowish brown, or light chocolate-color, interruptedly lineated spirally with chestnut. Length, $1-1 \cdot 4$ inches.

West Coast of Central America, northward to Mazatlan.
The following are synonyms: C. brevis, Sowb. (fig. 82), a small, worn specimen ; C. costata, Gray =C. rigida, Sowb. (figs. 83-85), said to come from the mouth of the Gambia, by Sowerby, but referred by Reeve, on the authority of Cuming, to Puerto Portrero, Central America.
C. bicolor, Hinds. Pl. 5, fig. 86 ; Pl. 6, figs. $89,90$.

Shouldered, longitudinally distantly costate, crossed at regular distances by slightly elevated lines; aperture ridged within, columella triplicate; umbilicus large; yellowish white, banded or clouded or nearly covered with chestmut or chocolate.

Straits of Macassar (Hinds); Philippines (Cuming).
Hinds' figure (fig. 86) represents a shell only half an inch long, yet in his description he states that the species is larger than C. rigida, Sowb. The figures given by Reeve and Sowerby are much larger than that of Hinds, and may not represent the same species. Hinds' figure much resembles C. costifera, Sowb. ; the others are nearly related to C. goniostoma, Sowb.
C. Stimpsonit, Calkins. Pl. 5, fig. 87.

Whorls shouldered, the angle nodulous, surface below it corered with irregular nodules, which do not appear to be developed in the lines of longitudinal ribs, but rather from revolving sculpture ; columella with two plaits, whitish.

Length, 17 mill.
Cape Sable, Florida (Calkins).
C. antiquata, Hinds. Pl. 5, fig. 88.

Broadly excarated below the suture, widely and deeply umbilicated, keeled and spinose at the shoulder and umbilicus; the spines being the terminations of sharply plicate ribs; otherwise smooth; columella rather obsoletely biplicate; blush or yellowish white. Lengti, 75 inch.

New Guinea, 22 fms., coarse sand (Hinds).
S. scalarina, Lam. Pl. 6, fig. 91.

Umbilicated, distantly ribbed, spirally finely striate; yellowish white, more or less clonded with light chestnut, with frequently a central white band. Length, $1-1 \cdot 25$ inches.

> Isle of France.

Sowerby and Reeve have figured the next species for this.
C. Thomastana, Crosse. Pi. 6, figs. 92-94.

Scarcely umbilicated, turreted, whorls excavated at the suture, border sharply spinosely keeled, obliquely, narrowly, distantly
ribbed; columellar plaits three, small; fulvous fawn-color, with a central white band. Length, 28 mill.
? West Indies: China; Japan.
This is the C. scalarina of Sowerby and Reeve; its West Indian locality is very doubtful, and I think it not unlikely that it will prove to be a variety of C. scalarina after all. C. Mangelioides, Reeve (fig. 94), is a depanperate shell which may well be referred here; if identical, its name will have precedence. Another synonym is C. Bocageana, Crosse and Debeaux (fig. 92), a Chinese species, which Lischke considers identical.
C. scalariformis, Lam. Pl. 6, fig. 95.

Narrowly umbilicated, flat shouldered, distantly narrowly ribbed, the ribs crossing the shoulder, closely spirally striate ; columella two-plaited ; chestnut ash-color. Length, 1 inch.

East Indies.
This species is omitted from the monographs of Sowerby and Reeve. Kiener thinks that Sowerby's C. costifera and C. articularis are varieties of it; to these might be added several others, if the species were well determined-which I am afraid it is not.
C. crispata, Sowl). Pl. 6, fig. 96.

Imperforate, whorls narrowly angled above, obliquely longitudinally thick-ribbed, ribs projecting at the shoulder angle, decussated with spiral striæ; whitish, with chestnut-brown bands and lines. Length, 1 inch.

Philippines (Cuming); Red Sea (Tapparone-Canefri).
Allied to the next species, from which it is chiefly distinguished by its very thick ribs and want of umbilicus.
C. Crenifera, Sowb. Pl. 6, figs. 97-99.

Deeply umbilicated, whorls flatly excavated at the suture, obliquely ribbed, the ribs spinosely hooked above the shoulder angle, spirally crenately ridged ; columella three-plaited, aperture ridged within; livid fawn-color or yellowish white, often white-banded in the middle. Length, 1 inch.

Philippines; Indian Archipelago.
This and several other allied species are probably only varieties of C. scalarina, Lam. C. lamellosa, Hinds (fig. 98)
and C. servala, Reeve (fig. 99), are synonyms. The latter name being preoccupied by Bronn for a fossil species, Semper changed it to C. Crossei.
C. nystrix, Reeve. Pl. 6, fig. 100.

Imperforate, globosely ovate, whorls narrowly shouldered, obliquely, longitudinally, closely ribbed, ribs erect, narrow, prickly serrated l,y spiral lines, shoulder angle spiny; whitish, faintly tinged with livid brown ; columellar plaits three; irregular, interior of aperture red-lined. Length, 1 inch.

Mauritius.
C. obliquata, Lam. Pl. 6, fig. 1.

Globosely ovate, ventricose, narrowly deeply umbilicated; whorls excavately shouldered, obliquely thinly ribbed, the ribs slightly prickly at the shonlder angle, spirally elevately striated, the intersections slightly nodulous ; yellowish white, stained and spotted with chestnut. Length, 1 inch.

Plilippines, Zanzibar.

This shell probably lasses into C. scalata, Sowb., a form with more exserted spire ; Sowerby's figure 82 , intended for C. obliquata, represents one of these transition forms.
C. scalata, Sowb. Pl. 6, figs. 3-9; Pl. 7, fig. 11.

Narrowly umbilicated, excavately shouldered, nodulous thronghout by the intersection of longitudinal close ribs and spiral elevated lines; yellowish white to chestnut-color.

Length, $1-1 \cdot 25$ inches.
Red Sea, Ceylon, Mauritius, Moluccas, New Caledonia.
Differs (not sufficiently) in form principally, from the preceding species, the body-whorl being less ventricose and the spire longer. C. textilis, Kiener (fig. 3), C. articularis, Sowb. (fig. 4), C. contabulata, Sowb. (fig. 5), C. pusilla, Sowb. $=$ young C. contabulata (fig. 6), C. Forestieri, Montr. (fig. 7), and C. Rougeyroni, Souv. (fig. 11), from New Caledonia, are synonyms. C. Montrouzieri, Souverb. (fig. 8), is mainly distinguished from the last named, by the shoulder being biplanate and carinate at the angle; I believe it to be a merely accidental variety; it is also New Caledonian. C.tenuis, A. Adams (fig. 9), appears to be founded on a not fully grown individual of the normal form.
C. Wilmeri, Sowb. Pl. 7, fig. 10.

Turriculated, the shoulder narrowly excavated, nodosely closely cancellated; columella triplicate; dark chestnut-color, faintly banded with white on the middle of the body-whorl.

Length, 11 mill.
Andaman Islands.
Has a longer spire than the precerling species.
C. costifera, Sowerby. Pl. 7, figs. 12, 13.

Umbilicus narrow, whorls somewhat flatly shouldered, the angle bluntly spinose; ribs elevated, compressed ; distant revolving sculpture faint or obsolete; columella triplicate; yellowish brown to chocolate-colored, with narrow red revolving lines.

Length, $5-1$ inch.
Philippines, New Caledonia.
The painting and wide spaces between the ribs, and want of prominent spiral sculpture are the distinctive features of this species. C. Souverbiei, Crosse (fig. 13), is a synonym; it comes from New Caledonia.
C. Lamberti, Souverbie. Pl. 7, fig. 14.

Umbilicus moderate, ribs distant, spirally subcostulate; dirty white. Length, 13 mill.

New Caledonia.
The umbilicus and spiral séulpture are more developed than in C. costifera, to which the species is very closely allied. The specimens before me, as well as those from which the original description was made, are not in a fresh state.
C. nitida, A. Adams. Pl. 7, fig. 16.

Superficially umbilicated, narrowly angled at the suture, ribs compressed and very prominent, sharp, with the interstices sinnoth; fleshy white. Length, 9 mill.

Philippines.
C. Terreauxil, Kiener. Pl. 7 , fig. 15, 17.

Narrowly, deeply umbilicated, obtusely angled near the suture, rudely nodosely ribbed, and spirally ridged; orange-brown.

Length, 11 mill.
Habitat unknown.
C. coctilis, Reeve (fig. 17) appears to be the same species, not fully grown.
C. Littorineformis, Sowb. Pl. 17, fig. 18.

Rather thin, deeply umbilicated, whorls narrowly angled above, thinly decussately striated thronghont. Length, 1 inch. Ceylon. C. Sempellucida, Ads. and Reeve. Pl. 7, figs. 19, 20.

Ovately ventricose, rather thin, minutely umbilicated, suture deeply impressel, whorls somewhat round-shouldered, longitudinally obliquely plicate, spirally finely ridged ; aperture ovate, attenuated at the base, smooth within, columella three-plaited; fulvous, subpellucid. Length, 12-15 mill.

Sooloo Sea.
The plications are sometimes more or less obsolete on the back; it appears to form a passage to Admete.
C. funiculata, Hinds. Pl. 7, figs. 21, 22.

Umbilicated, excavated at the suture, round-shouldered; ribs compressed, distant, crossed by delicate spiral ridges and alternate raised lines; transparent white, tinged with orange-brown.

Length, $\cdot 75$ inch.

$$
\begin{aligned}
& \text { ? Magdalena } \text { Bay, L. California; } \\
& \text { sandy mud, } 7 \mathrm{fms} \text {. (Hinds). }
\end{aligned}
$$

A single specimen is reported to have been obtained at the above locality, which, as well as the following, may be erroneous. C. lyrata, Ads. and Reeve (fig. 22), to which Mr. Arthur Adams assigns the locality, China Sea, is evidently the same species.

Unfigured and Unidentified Species of Cancellaria.

C. Tasmanica, Tenison-Woods.
C. Trailili, Hutton.
C. Mitroides, Fischer (Mus. Demidofl).
C. multiplicata, Lesson.
C. nassa, Roissy.
C. asperula, Desh.
C. decussata, Nyst.

Tasmania.
New Zealand. Hab. unknown. Hab. unknown. Hab. unknown. Hab. unknown. Hab. unknown.

This species is probably poorly figured ; it has been overlooked by previous monographers. Possibly it equals C. bifasciata, Desh.
C. pygmea, C. B. Adams. Panama.
C. Cander, d'Orb $=$ Phos Guadeloupensis, Petit (Manual, iii, 219).
C. tenera, Phil
C. modesta, Carpenter.
C. imbricata, Watsoln.
C. Fisciert, A. Adams.
C. crenulata, A. Adams.

Hab. unknown.
Vancouver's Island.
Off Cape of Good Hope.
Strait of Corea. China Sea.

Subgenus Admete, Kroyer.

C. viridula, Fabr. Pl. 7, figs. 23-28.

Very thin, whitish, yellowish or greenish white, or very light brown, suture rather deeply impressed, whorls rounded, wrinkled costate above, encircled throughout with equidistant raised lines; columella obliquely truncate and minutely triplicate, onter lip smooth within.

Length, 12-15 mill. (var. grandis, 15-30 mill).
Massachusetts Bay, Maine, Gulf of St. Laurence, Labrador, Iceland, Arctic Norway, White Sea, Spitzbergen, Behring's Strait, N. Japan.
A circumpolar species, inhabiting from shore to 690 fathoms (dredged). It is extinct in the British seas.

Jeffreys thus describes the animal :-
"Body milk-white; head furnished with a long and prominent veil; tentacles contractile, thread-shaped, rather long and slender, smooth, with blunt tips, diverging at an angle of 45°; eyes placed on the top of short stalks, at the outer base of the tentacles, with which the eye stalks are united; foot large, triangular and long, squarish and double-edged in front, and bluntly pointed behind, edges uneven; pallial fold (lining the basal groove of the shell) very short and thick. No operculum. Active ; crawls out of the water. It emits a greenish liquid on being touched with a camel's-hair brush."

It is C. subangulosa of Wood's "Crag Mollusca;" C. crispa. Mïller; C. Buccinoides, Conthouy (=C. Coulhouyi, Jay) ; C. costellifera, Sowb.

Like many other circumboreal species, the shell varies con-
siderably in its characters; two forms of it have been described as varieties by Leche.
Var. undata, Leche (fig. 27).
Var. Levior, Leche (fig. $28=$ var. grandis, Mörch).
Var. elongata, Leche (fig. 25).
Var. distincta, Leche (fig. 26).
C. arctica, Middendorff. Pl. 7, fig. 29.

Whorls encircled by rounded ribs, the interstices with close zigzag longitudinal strix. Length, 30 mill.

Behring's Strait.
C. tabulata, Sowb. Pl. 7, fig. 30.

Whorls narrowly tabulate, granular from decussating ribs; white, under a brownish epidermis; columella minutely plicate.

Length, 22 mill.
Arctic Ocean.
C. Limnfiformis, E. A. Smith. Pl. 7, fig. 31.

Smooth, thin, diaphanous, whorls 3. Length, 2.5 mill.
Kerguelen Island.
Mr. Smith writes of this species that it has the appearance of a minute Limnea with the columella truncated a little below the middle. "Although this is a very curious form for an Admete, I am not acquainted with any other genus which it more resembles. The character of the truncation of the columella is similar, and the absence of an operculum is also congeneric. From the fewness of the whorls and the thinness of the shell it may be conjectured to be but the young of some larger species. This may be the case, but at present I am unable to identify it as the fry of any genus with which I am acquainted."

Unfigured Species.

C. borealis, A. Adams.

Melville Island.
C. Australis and C. Schythei, Philippi.
C. costata, Calcara.
C. uvata and globularis, E. A. Smith.
C. undatocostata, Verkrüzen.
C. specularis and C. carinata, Watson. St. of Magellan. Sicily. Japan. Arctic Norway. Kerguelen Is.

INDEX AND SYNONYMY.

CANCELLARIIDÆ.

PAGE.
Abnormis (Cancellaria), Gray. Adams, Gen., i, p. 278, Mörch, Moll. Spitzbergen, No. 35. $?=$ Admete viridula, var. grandis. 84
Acuminata (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p.53. = C. obesa, Sowb.69
Admete, Kroyer. Möller, Naturhist. Tidskr, iv, 88 ; Index Moll. Gronl., 1842. = S. G. of Cancellaria, (66, 84
Admetopsis, Meek. Amm. Rep. Gcol. Surr. Terr., 509, 18ヶ3. = Section of Admete, 65
Aftinis (Cancellaria), C. B. Adams. Panama Shells, 132, 1852. $?=$ C. indentata, Sowb. 70
Affinis (Cancellaria), Reeve. Conch. Ic., 39, 1856. $=\mathrm{C}$. indentata, Sowb. 70
Albida (Cancellaria), Hinds. Proc. Zool. Soc., 1843, p. 47, 69
Angasi (Cancellaria), Crosse. Jour. de Conch., 3d ser., iii, p. 6t, pl. ii, f. 8, 1863, 76
Antiruata (Cancellaria), Hinds. Moll. Toy. Sulphur, p. 43, p. 12, f. 17 and 18, 79
Aphera, H. and A. Adams. Genera, i. 277, 1853. = Merica, 65, 75
Arctica (Cancellaria), Midd. Bitr. v, ii, pl. 9, f. 11, 12 and 15. (= Trichotropis, Dall. Proc. U. S. Nat. Mus. vii, 525, 1885), 85
Articularis (Cancellaria), Sowb. Conch. Ill., sp. 34, f. 32. $=$ C. scalata, Sowb. 81
Asperella (C'ancellaria), Lam. Anim.s. Vert., ix, p. 402 , 74
Asperella, var. (Cancellaria), Desh. in Lam., Hist. Nat. ed. 2. Bd. ix. p. 402 , (not Lain.) $=$ C. Sinensis, Reeve, 74
Asperella (Cancellaria), Sowb. (not Lam.) Thes. Conch., f. 38. = C. Grayi, Tryon, 70
Asperula (Cancellaria), Desh. Enc. Meth., p. 187, No. 17, 83
Australis (Cancellaria), Philippi. Mal. Blatt., 1857, p. 164, Crosse, J. C., 3 d ser. iii, p. 68 , 85
Australis (Cancellaria), Sowb. Conch. 111., sp. 24, f. 23, 69
Bicolor (Cancellaria), Hinds. Voy. Sulph. Moll., p. 43, pl. 12 , f. 13, 14, 79
Bifasciata (Cancellaria), Desh. Enc. Meth. Vers., ii, p. 181, 74,83
PAGE.
Bocageana (Cancellaria), Crosse and Debeaux. J. C., 1863, p. 63, $77,263 .=$ C. Thomasiana, Crosse, 80
Borealis (Cancellaria), A. Adans. Proc. Zool. Soc., 1855, p. 122, 85
Brevis (Cancellaria), Sowerby. Proc. Zool. Soc., 1832, f. 52. = C. goniostoma, Sowb. 78
Biccinoides (Cancellaria), Couthouy. Bost. J. Nat. Hist., ii, p. 105, pl. 3, f. $3 .=$ C. viridula. Fab. 84
Buccinoides (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 54, 67
Bulbulus (Cancellaria), Sowb. Proc. Zool Soc., 1832, p. 55, $=$ C. solida, Sowb. 73
Bullata (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 51. = C. tuberculosa, Sowb. 78
Cancellaria. Lam. Prodr., 1799, 65
Cancellata (Cancellaria), Linn. Syst. Nat., 12 th ed., p. 1191, 70
Candei (Cancellaria), d'Orb. Moll. Cuba, ii, p. 129, t. 21 ,
f. 23-25. = Phos, 84
Candida (Cancellaria), Sowb. Conch. Ill., sp. 2, f. 1 69
Carinata (Cancellaria), Watson. Jour. Limn. Soc., xvi, p. 327, 85
Cassidiformis (Cancellaria), Sowb. Proc. Zool. Soc., 1832 , p. 53 , 66
Chrysostoma (Cancellaria), Sowb. Proc. Zool Soc., 1832, p. 54, 71
Circumcincta (Cancellaria), Dall. Proc. Cal. Ac., v, p. 59, pl. ii. f. 2, 72
Clathrata (Cancellaria), Adanms. Proc. Zool. Soc., 1855, p. 123. = C. corrosa, Reeve, 67
Clavatula (Cancellaria), Sowb. Proc. Zool. Soc., ln32, p. 52, 75
Coctilis (Cancellaria), Reeve. Conch. Ic., 79, 1856. $=$ C. Verreauxii, Kiener, 82
Contabulata (C'ancellaria), Sowb. Conch. Ill., f. 28. $=$ C. scalata, Sowb. 81
Cooperii (Cancellaria), Gabb. Proc. Cal. Ac. N. S.. vol. iii, p. 186, 76
Coronata (Cancellaria), Scacchi. Notiz., 34, t. 1, f. 15, 76
Corrosa (Cancellaria), Reeve. Conch. Ic., 64, 1856, 67
Corrugata (Cancellaria), Hinds. Proc. Zool. Soc, 1843, p. 48. 75
Costata (Cancellaria), Calcara. Aradas and Benoit, Conch. viv. marina, 259, 85
Costata (Cancellaria), Gray. Sowb., Conch. Ill., f. 42.$=$ C. goniostoma, Sowh.78
PAGE.
Costellifera (Cancellaria), Sowb. Hancock, Ann. and Mag., 1864. = C. viridula, Fab. 84
Costifera (Cancellaria', Sowerby. Conch. Ill., sp. 33, f. 31, 80,82
Couthouyi (Cancellaria), Jay. Catalogne, 1839.
$=$ C. viridula, Fab. 84
Cremata (Cancellaria), Hinds. Proc. Zool. Soc., 1843, p. 48. = C. indentata, sowb. 70
Crenifera (Cancellaria), Sowb. Conch. Ill., fig. 29, 80
Crenulata (Cancellaria', A. Aclams. Proc. Zool. Soc., 1855, p. 124 , 84
Crispa (Admete), Moller. Ind Moll. Gronl., p. 15. $=$ Cancellaria viridula, F:ub. 84
Crispa (Cancellaria), Sowb. Conch. Illus., p. 12, f. 30. $=$ C. Crispata, Sowh. 80
Crispata (Cancellaria). Sowb. Thes. Conch., pl. 96, f. 89, 80
Crossei (Cancellaria), Semper. Palæont. Untersuch., 91;Crosse. Jour. de Conch., $3 d$ ser. iii, 61.$=$ C. crenifera, Sowb.81
Cumingiana (Cancellaria), Petit. Guer. Mag. \%ool. 68
Cumingii (Cancellaria). Sowb. Adams, Gen., vol. i, p. 277.
$?=$ C. Cumingiana, Petit, 68
Decussata (Cancellaria), Nyst. Bull. Ac. Bıux., 1838, v, p. $115, \mathrm{pl} . \mathrm{i}$, f. 5, 83
Distincta (Admete viridula, var.), Leche. K. Sv. Vet. Akad. Handl., xvi, 48, 85
Eburnæformis (Cancellaria), Reeve. Conch. Ic., 21, 1856. $=$ C. reticulata, Linn. 70
Elata (Cancellaria), Hinds. Moll. Voy. Sulph., p. 42, pl. 12, f. 3 and 4, 76
Elegans (Cancellaria), Sowb. Gen. Shells, f. 3. = C. asperella, Lam. 74
Elongata (Aclmete viridula, var.), Leche. K. Sv. Vet. Akad. Handl., xvi, 48, 85
Euclia, H. and A. Arlams. Genera, i, 277, 1853. $=$ Subsection of Cancellaria, 65, 73
Excarata (Cancellaria), Sowh. Proc. Zool. Soc., 1848, p. 137. = C. spirata, Lam. 77
Fischeri (Cancellaria): A. Adams. Ann. Mag., 1860, 3d ser., vol. v, p. 411, 84
Forestieri (Cancellaria), Montr. J. C., 3d ser., iii, 161, t. 5, f. $7,1863 .=1$. scalata, 81
Page.
Foveolata (Cancellaria), Sowb. Proc. Zool. Soc., 1848, p. 137, 77
Funiculata (Cancellaria), Hinds. Voy. Sulph., p. 43, pl. 12, f. 5 and 6 , 83
Gemmulata (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 55, 69
Globularis (Admete), E. A. Smith. Ann. Mag. Nat. Hist., 4 th ser., xv, p. 426, 85
Goniostoma (Cancellaria), Sowerby. Proc. Zool. Soc., 1832, p. 51, 78
Graudis (Admete viridula, var.), Mörch. Moll. Spitzbergen, No. 3 y , 84
Granosa (Cancellaria), Angas. Zool. Proc., 208, 1867. $=$ C. undulatil, Sowb. Brazier, Proc. Linu. Soc. N. S. W., viii, $2 \geqslant 6$. 67
Granosa (Cancellaris), Sowb. Conch. Ill., f. 16 and 17, 68
Grayi (Cancellaria), Tryon, 70
Hæmastoma (Cancellaria), Sowb. Proc. Zool. Soc., 1832, f. 54. = C. chrysostoma, Sowb., var. 72
Hystrix (Cancellaria), Reeve. Conch. Ic., 67, 1856, 81
Imbricata (Cancellaria), Watson. Linn. Soc. Jour. Zool., xvi, p. 325. 84
Imperialis (Cancellaria), Michelin. Guer. Mag., pl. 16, 1832. $=$ C. nodulifera, Sowb. 68
Indentata (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 54, 70
Indentata, vilr. (Cancellaria), Sowb. wThes. Conclı, f. 80. $=$ C. aftinis, Reeve, 70
Japonica (Cancellaria), E. A. Smith. Proc. Zool. Soc., 1879, p. 216 , pl. xx, f. 54, 73
Lactea (Cancellaria), Desh. Encyc. Meth., p. 180, 74
Lævigata (Cancellaria), Sowb. Conch. Ill., f. 24, 74
Lavior (Admete viridula, var.), Leche. K. Sv. Vet. Akad. Handl.. xvi, 48, 85
Lamberti (C'ancellaria), Souv. J. C., iii ser., $x, 428,1870$, 82
Lamellosa (Cancellaria), Hinds. Voy. Sulph. Moll., p. 43, pl. 12, f. 15 and $16 .=$ C. crenifera, Sowb., 80
Laticosta, var. (Cancellaria), Kohelt. Küster, 7, taf. 2, f. ${ }^{7-9 .}=$ Var. C. Sinensis, Reere, 74
Limnæiformis (Admetc), E. A. Smith. Trans. Roy. Soc., vol. 168, p. 172. pl. 9. f. 4, 85
Littorinæformis Cancellaria), Sowb. Conch. Ill.. f. 14. 83
Lyrata Cancellaria). Adams and Reeve. Toy: Samar., 42, pl. x. f. $4 .=$ C. funiculata, Hinds. 8.3
Macrospira (Cancellaria), Adams and Reeve. Toy. Sama- rang, pl. 10, f. :2. 76
Mangellioides (Cancellaria), Reeve. Conch. Ic., 69, 1856. $?=$ C. Thomasiana. Crosse. S0
Massyla. H. and A. Adams. Genera, i, 27S. 1853. = Merica. (i5, i5
Melanostoma (Cancellaria). Sowb. Proc. Zool. Soc., 1845, p. 137. = C'. asperella. Lam., var. 74
Merica. H. and A. Aclams. Genera, i, ご., 1853. $=$ Subsection of Cancellaria. 65 if
Middendorthiana (Admete), Dall. Proc. U. S. Nat. Mus.,(Mal. Ross.) not Fab.
Minima (Cancellaria). Reeve. Conch. Ic., $77,1856$. 73
Mitreformis (Cancellaria). Sowb. Proc. Zool. Soc., $1 \leq 32$, p. 51. = C. uniplicata, Sowb. 75
Mitroides (Cancellaria). Fischer. Mus. Demidoff. 83
Modesta (Cancellaria). Carpenter. Aun. Mag. N. H., 3d -er. xv. p. 32. 84
Montrouzieri (Cancellaria), Souv. J. C., iii ser.. p. 163 , 1863, t. 5, f. s. = C. scalata, Sowb. 81
Multiplicata (Cancellaria), Lesson. Rev. Zool. Cuv. Soc., 1541, p. 37, 83
Narona, H. and A. Adams. Genera, i, 277. 185. $=$ Subsection of Cancellaria. 65, 75
Nassa (Cancellaria). Roissy. Buffon, Moll.. V. 6, p. 13, No. 3 Seba.. 53. f. 42), 83
Nitida (Cancellaria). A. Adams. Proc. Zool. Soc., 1855, p. 123. 82
Nodosa (Nassa). Martini. = Cancellaria piscatoria. Gmelin, 77
Nodulifera (Cancellaria), Sowb. Tank. Cat. App., p. 15, 1825. f, 8
Nodulosa (Cancellaria). Lam. Anim. s. Tert., vii, 113. $=$ C. piscatoria. Gmelin. 77
Obesa (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 52, 68
Obliquata (Cancellaria). Lam. Anim.s. Tert., ix, p. 408, 81

Ohlonga (Cancellaria), Sowb. Conch. Tank. Cat. App., p.
$15 .=$ C. bifasciata, Desh.
Obtusa (Cancellaria). Desh. Enc. Meth. Ters., vol. ii. p. 187. 68
Obtusa (Cancellaria), Kiener (mon Lam.). Iconog., t. 3,
f. 2. = C. solida. Sowb.

Orata (Admete). E. A. Smith. Ann. Mag. Nat. Hist., xr,
$426,1875$.
Orata (Cancellaria), Menke. Zeit. Mal., 181, 1850. $?=$ C. urceolata, Hinds.
Orata (Cancellaria). Somb. Proc. Zool. Soc., 1832, f. 53.
$=$ C. obesa, Somb.
Parra (Cancellaria). Philippi. Reise Wueste Atacama. p. 187. pl. vii, f. 18, 1860,73

Piscatoria (Cancellaria), Gmelin. Syst. Nat., p. 34915, No.
116,
Pulchra (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 50, 71
Purpuriformis (Cancellaria), Talenciennes. Kiener. Iconog.. pl. i, f. 4.
Pusilla (Cancellaria), A. Adams. Proc. Zool. Soc., 1869. p.
274. pl. xix, f. 12.
Pusilla (Cancellaria), Sowb. Thes., pl. 93, f. 19. $=$ C. contabulata. Sowb. (young), . . . 81
Pygmæa (Cancellaria), C. B. Adams. Pan. Shells, No. 160, 84
Pyrum (Cancellaria), Adams and Reere. Vọ. Samarang. pl. x, f. 16.$i 3$

Reeveana (Cancellaria), Crosse. Jour. Conch., ix, p. 237, 1861. = C. asperella, Lam. it

Reticulata (Cancellaria). Linn. Syst. Nat.. 12th ed., p. 1190. 69
Rigida (Cancellaria), Sowb. Proc. Zool. Soc.. 1832. p. 53. =C. goniostoma. Sowb.75

Rosea (Cancellaria), Beck. Sowb.. Thes., 453. = C. obliquata, Lam.81
Rongerroni (Cancellaria), Sour. J. C., 3d ser., x. 427. 1870. $=$ C. scalata, Sowb. 81
Rugosa (Cancellaria). Lam. Anim. s. Vert., ix, p. 40 72
Scabriculus (Murex). Linn. = Cancellaria cancellata. Linn. 70Scalare (Buccinum). Gmelin. Sist. Sat.$=$ Canceilaria scalarina. Lam.80
Scalariformis (Cancellaria). Lam. Anim. sans Tert., vii, 113, S0
Scalarina (Cancellaria), Lam. A nim. s. Vert.. ix. p. 403. 79
Scalarina (Cancellaria). Somb. et Reeve non Lam.). $=\mathrm{C}$. Thomasiana, Crosse. 50
PAGE.
Scalata (Cancellaria), Sowb. Conch. Ill., f. 27, 81
Schythei (Cancellaria), Philippi. Mal. Blatt., 1857, p. 164, 85
Semidisjuncta (Cancellaria), Sowb. Proc. Zool. Soc., 1848, p. 137, 77
Semipellucida (Cancellaria), Adams et Recve. Voy. Samar. Moll., p. 42, pl. 10, f. 3, 83
Semperiana (Cancellaria), Crosse. J. C., 3d ser., iii, p. 65, pl. ii, f. 7, 1863, (;8
Serrata (Cancellaria), Rceve. Conch. Ic., 63, 1856. $=$ C. Crossei, Semper, 81
Similaris (Cancellaria), Reeve. Conch. Ic., f. 10. $=$ C. similis, Sowb. 71
Similis (Cancellaria), Sowb. Conch. Ill., No. 42, f. 38, 71
Sinensis (Cancellaria), Reeve. Conch. Ic., 35, 1856. $=$ C. asperella, Lam., var. 74
Solida (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 52, 73
Sonverbiei (Cancellaria, Crosse. Jomr. de Conch, 272, t. 9, f. 5,1868 . = C. costifera, Sowb. 82
Sowerbyi (Cancellaria), Crosse. Jour. de Conch., 3d ser., i, 242 . C C umiplicata, Sowb. 75
Specularis (Cancellaria), Watson. Jour. Limn. Soc., xvi, p. 325, 85
Spengleriana (Cancellaria), Desh. Enc. Meth. Vers., vol. ii, p. 185 , 67
Spirata (Cancellaria), Lam. An. s. Vert., ix, p. 408, 77
Stimpsonii (Cancellaria), Calkins. Proc. Daven. Ac. N. S., 1878 , p. 250, pl. 8, f. 4-5, 79
Striata (Galea), Klein. = Cancellaria reticulata, Lim. 69
Subangulosa (Cancellaria), Wood. Crag Moll., i, p. 66, t. vii, f. 20. = C. viridula, Fab. 84
Subsinensis (Cancellaria). Kobelt. Kiister, Can. 7, Taf. 2, f. 3. = Var. of C. Sinensis, Reeve, 74
Tabulata (Admete), Sowb. Proc. Zool. Soc., 1875, 128, pl. 24, f. 3, 85
Tæuiata (Cancellaria), Sowb. Proc. Zool. Soc., 1848, p. 137, 76
Tasmanica (Cancellaria), 'I'. Woods. Proc. Roy. Soc. Tas., 1875, p. 150, 83
Tenera (Cancellaria), Phil. Menke, Zeit., 1848, p. 24, No. 94, 84
Tennis (Cancellaria), A. Adams. Proc. Zool. Soc., 1855, p. 123. = C. scalata, Sowb. 81
Tessellata (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 51, 75
Textilis (Cancellaria), Kiener. Coq. Viv., pl. 7, f. 1.$=$ C. scalata, Sowb.81
PAGE.
Thomasiana (Cancellaria), Crosse. Jour. Conch., vol. ix, p. 231, 1861, 79
Trailli (Cancellaria), Hutton. Marine Moll. N. Zeal., p. 26, 83
'Trigonostoma, Blainv. Manuel de Malacol., 1825.
= Section of Cancellaria, 65, 77
'Trigonostoma (Cancellaria), Lam. An. s. Vert, ix, p. 88, 78
Tritonis (Cancellaria), Sowb. Coneh. Ill., f. 15. $=$ C. Spengleriana, Desh. 67
Tuberculata (Cancellaria), Sowb. Thes. Conch., pl. 457. $=$ C. tuberculosa, Sowb. 78
Tuberculosa (Cancellaria), Sowb. Proc. Zool. Soc., 1832, p. 51, 78
Turbinopsis, Conrad. Jour. Acad. Nat. Sc., n. s., iv, 289, 1860, 65
Turrita (Cancellaria), Sowb. Proc. Zool. Soc., 1873, p. 721, t. lix, f. 12, 72
Unalashkensis (Cancellaria), Dall. Proc. Cal. Ac., v, p. 58, pl. ii, f. 1, 72
Undata (Admete viridula, var.), Leche. Kongl. Sv. Vet. Akad. Hand., Bd. 16, No. 2, p. 47. $=$ Cancellaria viridula, Fab., var. 85
Undato-costata (Admete), Verkriizen. Jahrb., ii, p. 237, 85
Undulata (Cancellaria), Sowb. Proc. Zool. Soc., 1848, p. 136. Brazier, Proc. Linn. Soc. N. S. Wales, viii, 226. $=$ C. Spengleriana, Desh. 67
Uniplicata (Cancellaria), Sowb. Proc. Zool. Soc., 1832, 75
Urceolata (Cancellaria), Hinds. Voy. Sulph. Moll., 41, pl. 12, f. 7-8, 69
Varicosa (Cancellaria), Phil. Moll. Sicil., i, 201, 18:36; ii, $177,1844 .=$ C. coronata, Sc. 76
Ventricosa (Cancellaria), Hinds. Proc. Zool. Soc., 1843, p. 47. =C. decusata, Sowb. 70
Verreanxii, (Cancellaria) Kiener. Leonog, pl. 8, f. 3, 82
Viridula (Cancellaria), O. Fab. Fauna Groenl., 402 ; Jeffreys, Ann. Mag. N. H., xix, 322, 1877, 84
Wilmeri (Cancellaria), Sowb. I'roc. Zool. Soc., 1881, p. 637, pl. lvi, f. 2, 82

REFERENCE TO PLATES.

CANCELLARIID庣.

Plate 1.

FigURE page.

1. Cancellaria Cassidiformis, Sowb. Sowb., Thes. Conch., f. 15 , 66
2. Cancellaria Spengleriana, Deslı. Sowb., Thes. Conch., f. 29, 67
3. Cancellaria Tritonis, Sowb. ($=$ Spengleriana). Thes. Conch., f. 15, 67
4, 5. Cancellaria undulata, Sowb. Thes. Conch., f. 12, 79, 67
6, 7. Cancellaria Buccinoides, Sowb. Thes. Conch., f. 10, 11. 67
4. Cancellaria Buccinoides, Sowb. Reeve, Conch. Icon., t. $18, \mathrm{f} .15 \mathrm{~d}$. 67
5. Cancellaria corrosa, Reeve. Reeve, Iton., f. 64 b, 67
6. Cancellaria nodulifera, Sowb. Thes. Conch., f. 57 , 68
7. Cancellaria imperialis, Michelin (= norlulifera). Gue- rin's Magazine, t. 16, 1832, 68
8. Cancellaria Cumingiana, Petit. Reeve, Icon., f. $1 a$, 68
Plate 2.
9. Cancellaria Cumingiana, Petit. Jour. de Conch., xi, t. 2, f. 9, 65
10. Cancellaria obtusa, Desh. Conch. Icon., f. $37 a$, 68
11. Cancellaria Semperiana, Crosse. Jour. de Conch., xi, t. 2, f. 7, 68
12. Cancellaria granosa, Sowb. Sowb., Conch. Illust., f. 17, 68
13. Cancellaria obesa, Sowb. Reeve, Conch. Icon., f. 7, 68
14. Cancellaria orata, Sowb. (=obesa). Thes. Conch., f. 2 , 69
15. Cancellaria acmminata, Sowb. ($=$ obesa). Thes. Conch., f. 1 , 69
16. Cancellaria urceolata, Hinds. Reeve, Conch. Icon., f. $23 b$, 69
17. Cancellaria candida, Sowb. Reeve, Conch. Icon., f. 46 b, 69
18. Cancellaria australis, Sowb. Thes. Conch., f. 73, 69
19. Cancellaria albida, Hinds, Reeve, Conch. Icon., f. $45 b$, 69
20. Cancellaria gemmulata, Sowb. Reeve, Conch. Icon., f. $48 b$, 69
figure. PAGE.
21. Cancellaria reticulata, Linn. Thes. Conch., f. 17, 69
22. Cancellaria Eburnaformis, Rve. (= reticulata). Conch. Icon., f. $21 a$, 70
23. Cancellaria decussata, Sowb. Reeve, Conch. Icon., f. $22 a$, 70
24. Cancellaria ventricosa, Hinds ($=$ decussata) Reeve. Conch. Icon., f. $47 a$, 70
25. Cancellaria cremata, IInds ($=$ indentata). Thes. Concl., f. 80 , 70
Plate 3.
26. Cancellaria indentata, Sowb. Reeve, Conch. Icon., f. $41 b$, 70
27. Cancellaria affinis, Reeve (=indentata). Conch. Icon., f. $39 a$. 70
28. Cancellaria asperella, Sowb. (=Grayi). Thes. Conch., f. 38 , 70
29. Cancellaria cancellata, Linn. Reeve, Conch. Icon., f. $13 b$, 70
30. Cancellaria similis, Sowb. Reeve, Conch. Icon., f. $10 b$, 71
31. Cancellaria pulchra, Sowb. Thes. Conch., f. 41, 71
37, 39. Cancellaria hæmastoma, Sowb. (= chrysostoma, var.). Thes. Conch., f. 55, 53, 72
32. Cancellaria chrysostuma, Sowb. Thes Conch., f. 39, 71
33. Cancellaria rıgosa, Lam. Sowb., Thes. Conch., f. 44, 72
34. Cancellaria Unalashkensis, Dall. Calif. Proc., v, t. 2, f. 1, 72
35. Cancellaria circumcincta, Dall. Calif. Proc., v, t. 2, f. 2, 72
36. Cancellaria turrita, Sowb. Zool. Proc., t. 69, f. 12, 1873, 72
37. Cancellaria parra, Phil. Philippi, Reise Atacama, t. 7, f. 18, 73
38. Cancellaria minima, Reeve. Conch. Icon., f. $77 a$, 73
39. Cancellaria pusilla, A. Ad. Zool. Proc., t. 19, f. 12, 1869, 73
40. Cancellaria Japonica, Smith. Zool. Proc., t. 20, f. 54, 1879, 73
41. Cancellaria solida, Sowb. Thes. Conch., f. 4, 73
42. Cancellaria bulbulus, Sowb. (= solida). Thes. Concli., f. 64. 73
43. Cancellaria pyrum, Ads. and Reeve. Voy. Samarang, t. 10 , f. 16, 73
44. Cancellaria lactea, Desh. Reeve, Conch. Icon., f. 8:2, 74
45. Cancellaria lavigata, Sowb. Reeve, Conch. Icon., f. $34 a$, 74
46. Cancellaria elegans, Sowb. $(=$ Sinensis $)$ Reere, Conch. Icon., f. $12 a$, 74
figure. Phate 4. PAGE.
47. Cancellaria Sinensis, Reeve (= asperella, var.). Conch. Icon., f. $35 b$, 74
48. Cancellaria subsinensis ($=$ Sinensis, var.). Kiister, Monog., t. 2, f. 3, 74
49. Cancellaria laticosta ($=$ Sinensis, var.). Kiister, t. 2, f. 7 , 74
50. Cancellaria asperella, Lam. Sowb., Thes. Conch., f. 74, 74
51. Cancellaria melanostoma. Sowb. (=asperella, var.). Reeve, Conch. Icon., f. $26 b$, 74
52. Cancellaria oblonga, Sowb. (= bifasciata). Thes. Conch., f. 25, 74
53. Cancellaria Purpuriformis, Val. Reeve, Conclı. Icon., f. $76 b$, 75
54. Cancellaria corrugata, Hinds. Reeve, Conch. Icon., f. 72 b, 75
58, 59. Cancellaria tessellata, Sowb. Reeve, Conch. Icon., f. $70 a, b$, 75
55. Cancellaria tessellata, Sowb Thes. Conch., f. 32, 75
56. Cancellaria clavatula, Sowb. Reeve, Conch. Icon., f. $52 b$, 75
62, 63. Cancellaria Mitræformis, Sowb. (= uniplicata). Thes. Conch, f. 24, 35, 75
(i4. Cancellaria teniata, Sowb. Thes. Conch., f. 75, 76
(5j. Cancellaria elata, Hinds. Voy. Sulphur, t. 12, f. 4, 76
6if. Cancellaria Cooperi, Gabb. Specimen, 76
57. Cancellaria macrospira, Adams and Reeve. Reeve, Conch. Icon., f. $50 b$. 76
58. Cancellaria coronata, Scacchi. Philippi, Moll. Sicil., ii, t. 25, f. 27 , 76
59. Cancellaria Augasi, Crosse. Jour. ,le Conch., t. 2, f. 8, 1863 , 76
60. Cancellaria piscatoria, Ginel. Sowb., Thes. Conch., f. 33 77
61. Cancellaria spirata, Lam. Reeve, Conch. Icon., f. 56 (1 , 77
Plate 5.
62. Cancellaria excavata, Sowb. (=spirata). Reeve, Conch. Icon., f. $53 a$, 77
63. Cancellaria foveolata, Sowb. Reeve, Conch. Icon., f. $71 a$, 77
64. Cancellaria foveolata, Sowb. Thes. Conch., f. 30, 77
65. Cancellaria semidisjuncta, Sowb. Thes. Concl., f. 63, 77
66. Cancellaria tuberculosa, Sowb. 'Thes. Conch., f. 52, 78
67. Cancellaria tuberculosa, Sowb. Kiener, Iconog., t. 1, f. 2 , 78
FIGURE, PAGE.
68. Cancellaria bullata, Sowb. (= tuberculosa). Thes. Conch., f. 56, 78
69. Cancellaria trigonostoma, Lam. Reeve, Conch. Icon.. f. $51 b$, 78
70. Can ellaria goniostoma, Sowb. Thes. Conch., f. 40, 78
71. Cancellaria goniostoma, Sowb. Reeve, Icon., f. $32 a$, 78
72. Cancellaria brevis, Sowb. (= goniostoma!. Thes. Conch., f. 21, 78
83, 84. Cancellaria costata, Gray (=goniostoma). Thes. Conch., f. 61, 60, 78
73. Cancellaria rigida, Sowb. (=goniostoma). Conch. Icon., f. 33 b, 78
74. Cancellaria bicolor, Hinds. Voy. Sulphur, t. 12, f. 14, 79
75. Cancellaria Stimpsoni. Calkins, Shells of Florida, 79
76. Cancellaria antiquata, Hinds. Reeve, Conch. Icon., f. $74 b$, 79
Plate 6.
89, 90. Cancellaria bicolor, Hinds. Sowb., Thes. Conch., f. 49,50 , 79
77. Cancellaria scalarina, Lam. Kiener, Iconog., t. 5, f. 3, 79
78. Cancellaria scalarina, Sowb. ($=$ Thomasiana). Conch. Icon., f. 25 b, 79
79. Cancellaria Bocageana, C. \& D. ($=$ Thomasiana). Jour. de Conch., t. 9, f. 3, 1863 , 79
80. Cancellaria Mangelioides, Reeve (= Thomasiana). Conch. Icon., f. 69 b , 79
81. Cancellaria scalariformis, Lam. Kiener, Iconog., t. 5, f. 4 , 80
82. Cancellaria crispata, Sowb. Reeve, Conch. Icon., f. 43 b, 80
83. Cancellaria crenife: a , Sowh. Thes. Conch., f. 84, 80
84. Cancellaria lamellosa, Hinds (=crenifera). Reeve, Conch. Icon., f. 65 b, 80
85. Cancellaria serrata, Reeve ($=$ crenifera). Conch. Icon., f. $63 a$, 80
86. Cancellaria hystrix, Reeve. Conch. Icon., f. $67 b$, 81
87. Cancellaria obliquata, Lam. Rceve, Conch. Icon., f. $61 a$, 81
88. Cancellaria scalata, Sowb. Reeve, Conch. Icon., f. $19 a$, 81
89. Cancellaria textilis, Kiener ($=$ scalata) Ibid., f. 28 b, 81
90. Cancellaria articularis, Sowb. ($=$ scalata. Thes. Conch., f. 91, 81
91. Cancellaria contabulata, Sowb. (=scalata). Reeve, Conch. Icon., f. $42 a$, 81
92. Cancellaria pusilla, Sowb. ($=$ scalata, juv.). Thes. Conch., f. 19, 81
FIGURE. FAGE.
93. Cancellaria Forestieri, Souverb. (=scalata). Jour. de Conch., t. 5, f. 7, 1863, 81
94. Cancellaria Montrouzieri, Souverb. ($=$ scalata). Ibid., t. 5 , f. 8 , 81
95. Cancellaria tenuis, A. Ad. (= scalata). Reeve, Conch. Icon., f. 75 a, 81
Plate 7.
10 Cancellaria Wilmeri, Sowb. Zool. Proc., t. 56, f. 2, 1881, 82
96. Cancellaria Rougeyroni, Souverb. (=scalata). Jour'. de Conch., t. 14. f. 1, 1870, 81
97. Cancellaria costifera, Sowb. Thes. Conch., f. 66, 82
98. Cancellaria Sourerhiei, Crosse ($=$ costifera). Jour. de Conch., t. 9, f. 5, 1868, 82
99. Cancellaria Lamberti, Souverb. Jour. de Conch., t. 14, f. 2, 1870, 82
100. Cancellaria Verreauxi, Kiener. Conch. Ieon., f. $59 b$, 82
101. Cancellaria nitida, Ads. Reeve, Conch. Icon., f. $78 b$, 82
102. Cancellaria coctilis, Reeve ($=$ Verreanxi). Ibid., f. 79 b 82
103. Cancellaria Littoriniformis, Sowb. Ibid., f. $62 b$, 83
19, 20. Cancellaria semipellucida. Ibid., f. $73 a, b$, 83
104. Cancellaria funiculata, Hinds. Toy. Sulphur., t. 12,f. 6, 83
105. Cancellaria lyrat:, Acl. and Reeve ($=$ funiculata). Voy. Samarang, t. 10, f. 4 , 84
106. Admete viridula, Fabr. Reeve, Cancellaria. f. 85, 84
107. Admete Couthouyi, Jay (= viridula). Ibid., f. 86, 84
-25. Admete viridula, var. elongata. Leche, K. Vet. Akad. Handl., xvi, t. I, f. $13 a$, 84
108. Admete virichula, var. distincta. L’eche, Ibid., t. 1, f. 14a, 84
109. Admete viridula, var. undata. Middendorff, Beitr. Mal. Ross., t. 10, f. 4, 85
110. Admete viridula, var. lævior, Leche. Middendorff, Ibid., t. 10, f. 2, 85
111. Admete arctica, Middendorff. Middendorff, Ibid., t. 9, f. 12, 85
112. Admete tabulata, Sowb. Zool. Proc., t. 24, f. 3, 1875, 85
113. Admete Lymuæiformis, Smith. Trans. Roy. Soc., clxviii, t. 9, f. 4, 85
114. Admete viridula, Fabr. H. and A. Adams, Genera, t. 29, f. 5 , 85
115. Admete crispa (=viridula). Fischer. Man. de Conch., p. 595, 65

Family $S T R O M B I D A$.

Shell imperforate, usually solid, with turriculated spire, and more or less dilated or winged lip; the lip frequently digitated, with usually a sinus near the base for the protrusion of the head of the animal ; aperture mostly canaliculated at each extremity, the columella callous, without plaits. Opereulum corneons, small, generally unguiculate, sometimes oval, with apical nucleus.

Animal with sessile or pedunculated eyes, slender tentacles, contractile annulated proboscis, short siphon, varying foot. Dentition tenioglossate.

Corresponds with the family Alata of Lamarck.

Subfamilies.

Subfamily Strombine. Animal furnished with large eyes, placed on thick cylindrical peduncles; the iris highly colored, often in concentric zones, tentacles slender, rising from the middle of the eye-peduncles; foot narrow, adapted for leaping rather than walking; siphon very short, not extending heyond the anterior canal of the shell ; mantle with an extension laying in the posterior canal ; penis long, narrow, with a hook-like or bifurcated extremity. Dentition. Central tooth multicuspid, short; laterals, one on each side, subtrigonal, with crenulated margins ; marginals falciform, narrow, sharp-pointed, with finely denticulated margin (Pl. 1, fig. 1).

Shell with expanded, entire, or shortly digitated lip, with an anterior marginal sinus, and usually a posterior prolongation; aperture canaliculated anteriorly and posteriorly. Operculum narrow, unguiculate.

Subfamily Aporriance. Eyes small, sessile at the outer bases of the narrow, subulated tentacles; foot rather small, oblong, adapted for walking. Opereulum suboval. Dentition : central tooth subquadrangular, the edge multicuspid; laterals transverse, with entire margire marginals elongated, narrow, curved, sharp, with entire margins (Pl. 11, fig. 25).

Shell with turriculated spire, the lip much dilated, usually digitated, with an incomplete canal or notch in front.

Differs from Strombine in the form and adaptation of the foot and in the dentition; the shell differs in the absence (in most of the genera) of a labial sinus, but is closely related with the Pterocera of the Strombinæ, and a little remotely with the Cerithiidæ.

Subfamily Strutholariine. 'Tentacles slender, rather short, with the eyes on short pedicels at their external bases; foot oval, adapted for swimming; proboscis long; siphon scarcely perceptible. Operculum shortly unguiculate. Dentition: $5 \cdot 1 \cdot 1 \cdot 1 \cdot 5$; central tooth subquadrangular, with multicuspid edge, the laterals oblong, multicuspid; marginals falciform. sharp, narrow, with crenulated margins (Pl .12 , fig. 42).

Sliell bucciniform, the aperture angular, shortly subcanaliculated below ; lip thickened, sinuous, entire; columella thickened, polished. subtruncate below.

Symopsis of Genera.

The Strombidx ahound in fossil forms, some of them of very bizarre appearance ; as these are all described and illustrated in the "Structural and Systematic Conchology," they will be simply named here, with references to that work.

Subfamily Strombinæ.

Genus STROMBUS, Linn.. 1758.
Shell ovate, turreted or subfusiform, often tuberculated or spinose, imperforate, covered by a thin, horny epidermis, solid; aperture long, narrow, emarginate or with a short canal in front, canaliculated or chanmeled posteriorly; outer lip usually dilated, thickened, often lobed, with a sinus near the front; columellar lip simple, callous. Operculum narrowly unguiculate, the margins denticulated, or mgose. In the foung, the lip of the shell is not expanded, so that it appears something like a Conus.

Section I. Strombes (sensu stricto). Lip with entire margin, widely expanded, not prolonged upon the spire behind; inner lip not restricted or defined. S. gigas, Linn.

Section II. Euprotomus, Gill, em., 1869. Lip widely expanded, ascending the spire, the outer margin folded in and thickened, the posterior margin subrligitate or plain. S. laciniatus, Chemn.

Section IlI. Monodactylus, Klein, 1753. Lip with a posterior, narrow, much produced lobe. S. Pacificus, Swainson.

Section IV. Gallinula, Klein, 1753. Lip somewhat dilated, not digitate, frequently descending the spire behind; inner lip restricted, defined. S. succinctus, Linn

Section V. Canarium, Schum., 1817. Lip not dilated, posterior canal short or obsoletc. S. urceus, Linn.

Section VI. Cononurex, Bayle, 1884. Shell cone-shaped, with slort spire, aperture narrow, with subparallel lips, the outer lip not dilated. S. Luhuanus, Linn.

Section VII. Oncoma. Mayer, 1874. Fossil, Eocene of Europe. S. and S. Conch., ii, 190.

Subgenus Pugnellus, Conrad, 1860.
Fossil only, Cretaceous U. S. S. and S. Conchology, ii, 190, t. 60 , f. 71, 72.

Section Gymarus, Gabb, 1868. Fossil. S. and S. Conch., ii, 190, t. 60, f. 73.

Subgenus Pereirea, Crosse, 1867.
Fossil only. Miocene of Spain and Portugal. S. and S. Conch., ii. 194, t. 60, f. 87.

1 Genus PTEROCERA, Lamarck, 1799.
Outer edge of the mantle digitated. Operculum as in Strombus. Shell ovate, spire turriculated, aperture narrow, elongated, outer lip much expanded, tubularly digitate, with a sinus near the base, a long, straight or curved anterior canal, and a posterior canal ascending and sometimes surpassing the spire.

The young shell, like Strombus, is conifofm, with the outer lip straight and simple; the claws or digitations being gradually formed with the growth of the shell. At first they are short, open canals, and afterwards close and become solid.

Section I. Pterocera (sensu stricto). Anterior canal straight or curved to the right, posterior canal ascending the spire.

Subsection I. (Heptadactylus, Klein). Lips smooth, digitations not numerous. P. lambis, Linn.

Subsection II. (Millipes, Klein). Lips rugose or corrugated, digitations more numerous. P. scorpio, Linn.

Section II. Harpago, Klein, 1753. Anterior and posterior canals both curved to the left, the latter at first crossing the shell transversely. P. rugosa, Sowb.

Subgenus Phyllocheilus, Gabb, 1868.
(Melaptera, Piette, 1876). Fossil only. S. and S. Conch., ii, 191, t. 60 , f. 74.

Sulogenus Harpagodes, Gill. 1869.
Jurassic and Cretaceons. S. and S. Conch., ii, 195, t. 60, f. 93.

1 Genus ROSTELLARIA, Lamarck, 1799.

Animal similar to Strombus. Operculum not serrated on the edge. Shell fusiform with elevated spire, whorls numerous, smooth, or slightly ribbed; aperture continued into a narrow, usually long, straight or slightly curved anterior canal, and a shorter posterior canal ascending the spire, outer lip thickened, not much expanded, shortly digitated in the typical gromp. The (restricted) Rostellarias belong to the present epoch or extend at most only into the more recent tertiaries; but a number of fossil groups are usually considered as belonging to the genus. R. curta, Sowb.
? Section Mitrefusus, Bellardi, 1871. Miocene. Structural and Syst. Conch., ii, 128, t. 47, f. 80 . This has been considered a member of the family Fusidæ, but Dr. Fischer calls attention to its close resemblance to a young Rostellaria.

Sulogenus Rimella, Agassiz, 1840.

Shell cancellated, anterior canal short, posterior canal rather long, applied to the spire ; lip but little dilated, usually rugose, and having an exterior rib, not digitated. R. crispata, Sowb.

The few recent species belong to the Philippine Island fauna; there are also Cretaceous and Tertiary species.
? Section Isopleura, Meek, 1864. A cretaceous group, having no posterior canal, and perhaps not belonging to this family. S . and S. Conchology, ii, 192, t. 60, f. 76.
? Section Strombolaria, Gregorio, 1880. An eocene fossil which seems to possess the essential characters of Isopleura; it
is ribbed longitudinally, occasionally raricose, and without posterior canal. R. crucis, Bayan.

Scetion Cyclomolops, Gabb, 1868. Eocene. S. and S. Conch., ii, 192, t. 60, f. 77.

Subgenus Hippochrenes, Montfort, 1810.

Eocene of Europe and America. S. and S. Conch., ii, 191, t. 60 , f. 75.

Section Orthaulax, Gabb, 1873. Tertiary. S. and S. Conch., ii, 192.

Scetion Leiorhinus, Gabb, 1860. Eocene, Ala. S. and S. Concli., ii, 191, t. 60, f. 92.

Section Calyptrophorus, Conrad, 1857. Eocene, U. S.; Cretaceous, India. S. and S. Conch., ii, 192, t. 60, f. 78.

Subgenus Pterodonta, d’Orbigny, 1851.
Cretaceons. S. and S. Conchology, ii, 190, t. 88, f. 56.
§ Genus TEREBELLUM, Klein, 1753.
Anterior part of foot very small, posterior part oral, compressed; eyes on the ends of peduncles; no tentacles; siphon rudimentary ; mantle with a posterior filiform appendage, laying in the sutural canal. Opereulum small, narrow, digitated.

Shell elongate, subcylindrical, spire rather short, apex obtuse; aperture narrow, broadly notched in front; lip simple, columella truncated.

Section I. Terebellum (sensu stricto). Shell smooth, spire rather short, with channeled suture. T. subulatum, Linn.

Section II. Terebellopsie, Leymerie, 1844. Nummulitic. S. and S. Conch., ii, 193, t. 60, f. 81.

Section III. Seraphs, Montfort, 1810. Spire concealed under a callous covering. Eocene. T. convolutum, Lam.

Section IV. Mauryna, Gregorio, 1880. Surface longitudinally folded. Nummulitic. T. plicatum, d'Arch.

Subfamily Aporrhainæ.

Genus APORRHAIS, Dillwyn, 1823.
Shell fusiform, spire tmreted, with a short canal in front, and a posterior canal running up the spire; onter lip of adult expanded.
thickencd, and 2-3 digitated, the digitations continued as carinæ on the back of the shell. A. pes-pelecani, Lam. 4 recent species, N. Atlantic Ocean ; fossil, Jurassic-.

Section I. Aporrhais (sensu stricto). Lip bi- or tri-digitate, posterior digitation canaliform, rumning up the spire, the extremity free.

Section II. Arrhoges, Gabb, 1868. Shell with expanded, simple lip, with a posterior, obtuse, lobe-like extension, the anterior sinus nearly obsolete : anterior canal short and obtuse ; posterior canal very short. A. occidentalis, Beck.

Section III. Gonioculla, Gabb, 1868 (Alipes, Conrad, 1865, withont description). Eocene. S. and S. Conch., ii, 193, t. 60, f. 82 .

Section IV. Ceratosiphon, Gill, 1870. Cretaceous. S. and S. Conch., ii, 196, t. 60, f. 94.

Section V. Cyphosolenus, Piette. 1876. Jurassic. L. c., ii, 193.

Section VI. Tessarolax, Gabb, 1864. Cretaceous. L. c., ii, 195, t. 60 , f. 89.

Section VII. Pterocerella, Meek. Cretaceous. L. c., ii, 195, t. 60, f. 90 .

Section VIII. Lispodesthes, White, 1875. Cretaceous. L.c., ii, 194 , t. 60 , f. 86.

Section IX. Helicaulax, Gabb, 1868. Cretaceous. L. c., ii, 194, t, 60 , f. 85.

Section X. Dinorphosoma, Gardner, 1875. Cretaceous. L. c., ii, 194.

Section XI. Monocyphus, Pictte, 1876. Lip palmated, widely separated from the spire and canal, with an anterior sinus; anterior canal short. Jurassic. A. camellus, Piette. (Brachystoma, Gardner, 1876, appears to be founded on an imperfect Aporrhais, having a very long spire. B. angulare, Seeley. Gault).

Genus DIARTEMA, Piette, 1864.

Shell Ranelliform, with continuous varices on each side of the spire; lip thick, dilated with a simple or slightly undulating margin, and a slight anterior sinus ; anterior canal short, straight, posterior canal small. Jurassic.

Section Cyphotifer, Piette, 1876. Jurassic. S. and S. Conch., ii, 195.

Genus ALARIA, Morris and Lycett, 1850.
Jurassic. S. and S. Conch., ii, 195, t. 60, f. 91.
Section I. Alaria (sensu stricto). Varicose.
Section II. Dicroloma, Gabh, 168. No varices, lip two- or three-digitate. Jurassic, Cretaceous. S. and S. Conch., ii, 194, t. 60 , f. 88.

Section III. Anchura, Conrad, 1860. L. c., ii, 194, t. 60 , f. 84 ,
Subgenus Diempterus, Piette, 1876.
Jurassic. Structural and Syst. Conchology, ii, 19 j.
Subgenis Spinigera, d'Orb., 1850.
Jurassic. Structural and Syst. Conch., ii. 192, t. 60, f. 79, 80.

Subfamily Struthiolariinæ.

Genus STRUTHIOLARIA, Lam., 1812.
Animal with the outer mantle-margin simple, tentacles cylindrical ; eye pedicels short, adnate with the tentacles externally; foot broad and short. Operculum short, claw-shaped, with an apical projection.

Shell imperforate, oval oblong; spire turreted; aperture truncated in front; lip entire, thickened, sinwous, prominent in the middle, inner lip callous, expanded. Southern Seas. S. nodulosu, Mart.

Section I. Struthiolaria (sensu striclo).
Section II. Pelicaria, Gray, 1857. Spire of adult covered with enamel ; outer lip sinuous, thin. S. scutulata, Mart.

Section III. Loxotrema, Gabb, 1878. S. and S. Conch., ii, 196, t. 60 , f. 95.
? Section IV. Dolophanes, Gabb, 1872. L. c., ii, 196.

Subfamily Strombinæ.

\Varangle Genus STROMBUS, Linn., 1758.
The Strombs are powerful, active mollusks, having extraordinary visual powers for gastropods, the eyes being large, with the iris usually colored in concentric zones. Their foot is not adapted for ordinary locomotion, but enables the animal to progress in a series of awkward leaps, and even to right itself by a somersault if placed on its back. The strong teeth and thick quadrangular corneous jaws indicate carnivorous habits, yet the animal is supposed to feed only on dead flesh.

Upon the eyes of Strombus, see an excellent paper by Dr. Paul Fischer, Jour. de Conch., 213, 1861.

They usually inhabit shallow waters, and occur plentifully. The distribution is tropical, and rather restricted for some of the species, whilst others have a very extensive range-as might be expected for the whole gronp considering that the larva is a free swimming animal provided with six ciliated arms (Macdonald, Linn. Trans., xxiii, 72).

Strombus has existed since eretaceous times, and is represented as late as the quarternary of the Mediterranean region, althongh not now living in that sea. The fossil forms belonging to the fimily far exceed in number those now existing, besides showing a variability contrasting with the fixed and readily distinguished characters of most of the recent species.

Strombus gigas, the largest species is still eaten at the island of Barbadoes, and numerous ancient weapons and implements made from its shell have been dug up on that island and elsewhere. It is a common mantel, hearth and garden ornament in the coast portions of the United States. In England it is extensively used in the manufacture of the finer kinds of porcelain; 300,000 have been imported into Liverpool in one year, chiefly for this purpose. It sometimes produces a beantiful pink pearl; but in jewelry it is principally used for carving into cameos for brooches, a purpose for which it is well fitted by the different colored layers of which its shell is composed.
"The perfect development of the large, fine, pedunculated eyes of Strombus, together with its very elongated, powerful, muscular foot and body, and claw-shaped, stout, jagged, hormy
operculum, constifute it one of the most active and intelligent of mollusks. It is, in fact, a most sprightly and energetic animal, and often served to amuse me by its extraordinary leaps and endeavors to escape, planting firmly its powerful narrow operculum against any resisting substance, insinuating it under the edge of its shell, and by a vigorons effort, throwing itself forwards, carrying its great heavy shell with it, and rolling along in a serics of jumps, in a most singular and grotesque manner " (Arthur Adams, Narrative Voy. Samarang, ii, 493).

The classification herein adopted for the subfamily differs but little from that of Messrs. Adams' Genera of Recent Mollnsca. The fossil groups hare been carefully studied by the late Wm. M. Gabb, in his "Attempt at a Revision of the familics Strombidæ and Aporrhaidæ," published in the American Journal of Conchology, 1868.

The monographs of the recent species of Strombus include the magnificent folio, "Illustrations Conchyliologiques" of Chenu, Reeve's "Iconica," Kiener's "Coquilles Vivantes," Sowerby's "Thesaurus," and Kiister's "Conchylien Cabinet." Reeve's monograph, the most recent of these, was published in 1851, and contains 56 species. That the thirty-three ycars since that period, usually so prolific in conchological discovery, have failed to add materially to the number of species, is a significant fact, taken in convection with the ancient history of the family.

Section I. Strombus (sensu stricto).

S. gigas, Linn. Pl. 1, figs. 2-4.

Epidermis light yellowish brown, beneath which the color is farn-white, interior polished, rose-color. Length, 9-12 inches.

West Indies, Florida, N. South America.
Chisels and other implements manufactured of this shell are found in the Florida shell-mounds. It lives in 2-3 fathoms water, on sand; eats Sphrrococcus confervoides, Agard. The young shell (fig. 4) is S. lucifer, Linn.
S. Goliath, Chemn. Pl. 1, fig. 5.

Whorls spirally grooved in donble rows, plicately tubercled
round the upper part, tubercles rounded, obtuse; orangebrown, aperture similar in color, becoming deeper within.

Length, 8-10 inches.
West Indies.
A rare shell, closely related to, perhaps a variety of S. gigas.
S. Galeatus, Swainson. Pl. 1, fig. 6.

Yellowish white, under an olive-brown epidermis; aperture whitish, the lip and columella tinged with orange-brown.

Length, 8-10 inches.
Panama to Mazatlan, Acapulco.
It is S. galea, Wood, and S. crenatus, Sowb.
S. costatus, Gmelin. Pl. 1, figs. $7,8$.

Indistinctly banded and marbled with chestnut and white under a yellowish-brown epidermis; aperture whitish, tinged with light orange or pink. Length, 5-6 inches.

West Indies.
Better known under the subsequently published name of S. accipritrinus, Lam. S. inermis, Swains. (fig. 8), is merely a state of the species with less-developed spines. S. latus, Ginel. (==dilatatus, Lam., not Swains.) is probably the same form.
S. bubonius, Lam. Pl. 2, fig. 11.

Spire with coarse impressed spiral striæ, shortly tuberculate at the sutures; body-whorl with a shoulder-row of short spines or tubercles, with usually two somewhat obsolete inferior rows of knobs, and coarse revolving riblets; orange-brown or pinkbrown, marbled with white, under a brown epidermis, aperture white, tinged with light brown on the lips and columella.

Length, 4 inches.
Senegal and Cape Verd Islands.
It is S. fasciatus, Gmelin, not Born, S. coronatus, Defrance. It is a fossil of the Mediterranean region.
S. integer, Swainson. Pl. 2, fig. 12.

Shell ventricose, solid, white; spire elongated, conical ; last whorl nodulose behind; lip thick, rounded, white.

The above is the originat description, and reference is made to Lister, pl. 856. This represents an immature shell, rather difficult to identify, and which all the monographers have agreed to
consider a doubtful species. Prof. Mörch, however, considers it a good species and says: "In 1869 I obtained from Mr. Landauer at Frankfurt, a specimen from a French collection marked 'S'. inermis, Florides,' exactly correspouding to Lister's figure. It is the only one I recollect to have seen." Mal. Blatt., xxis, 17
S. pugilis, Linı. Pl. 2, figs. 13-15 ; Pl. 1, figs. 9, 10.

Spire and lower part of lody-whorl spirally striate, the spirewhorls and shoulder of body-whorl sharply spinose; deep orange-brown, covered by a thin epidermis, with an indistinct median lighter band; aperture and wide columellar callus orange or carnelian-red, or sometimes purple towards the base of the lip. Length, 8 inches.

So. Carolina-West Indies, Brazil.
There are varieties with the spines horizontally (fig. 14) and vertically (fig. 15) compressed.
Var. alatle, Gmelin. Figs. 9, 10.
Spire nodulous, not spinose, borly-whorl also without spines, the shoulder indistinctly nodulous or smooth; color yellowish white and dark chestnut, marbled or disposed in zigzags, sometimes light-banded in the middle; epidermis thin, aperture and columella deep orange to carnelian, more or less tinged with dark purple.

The above describes a typical example of this variety, and its characters are usually sufficiently permanent for its distinction, eren as a species; but intermediates between it and S. pugilis so completely connect the two, that those who have had the best opportunities for studying them, consider them synonymous. S. pyrulatus, Lam. (fig. 10), is identical with S. alatus. S. dubius, Sowb. (tig. 16) is a young shell.
S. grachior, Sowb. Pl. 2, fig. 1i.

Pale yellowish or orange, with a thin epidermis, sometimes faintly white-banded in the middle ; aperture whitish, or pinkwhite, the lip often margined with orange. Length, 3 inches.

Panama to Mazatlan; La Paz, L. California.
Ligliter in color, thinner, smoother (scarcely striate on the spire), with closer, smaller, shorter spines than S. pugilis; yet eidently derived from the same parent stock.
S. canarium, Linn. Pl. 2, figs. 18-20; Pl. 3, fig. 21.

Densely longitudinally marked with zigzag alternate white and chestnut lines; aperture white. Length, 2-2.5 inches.

Red Sea, Indian Ocean, Philippines.
It is S. Vanicorensis, Quoy.
Tar. Isabella, Lam. Figs. 20, 21.
Yellowish or orange-brown, not lineated ; sometimes obscurely donbly broad-handed with light chocolate.

The banded state is S. trniata, Quoy (fig. 21). Occasionally a specimen occurs combining the coloring of type and variety.
S. granulates, Griy. Pl. 3, fig. 22.

Spire-whorls each with a single, body-whorl with three rows of modules; white, with interrupted zigzag markings and maculations of chestnut, aperture white, the outer lip granulated within the margin, inner lip yellowish brown. Length, $3 \cdot 5$ inches.

Panama to Mazatlan; Galapagos Is.
Section II. Euprotonus, Gill.
S. lentiginosus, Linn. Pl. 3, figs. 23, 24.

White, maculated and coarsely reticulated with chocolate, chestnut or grayish brown, often with several indistinct bands of spots; aperture yellowish white, often blushred or orangebrown farther within, onter lip smooth, much thickened on the edge and crossed by broad yellowish brown or chestnut bands. Length, $3-4$ inches.

Philippines, New Caledonia to Viti Islands; Zanzibar.
Not the most characteristic species of the section, but I commence with it bceanse of its relationship in form with s. granulatus-which I have placed at the end of Section I.
S. papleio (Chemn.), Dillwyn. Pl. 3, fig. 25.

Shell moduled throughout in revolving rows, and coarsely spirally striate and granose, strongly tuberculated on the shoulder and spire; whitish, blotched and lineated with chestnut; columella caruelian-tinted; aperture purplish or nearly black with revolving, irregular, close narrow threads; outer lip thick-margined, with chestnut broad cross-bands.

Length, 2-3 inches. Philippines; Zanzibar.
It is S. exustus, Swainson, and S. adustus. Swainson, of Reeve.
S. laciniatus (Chemn.), Dillwyin. Pl. 3, fig. 26.

Whitish, marbled in a zigzag manner with chestnut, indistinetly light-banded beneath the markings; margin of outer lip thickened, crossed by broad chestnut bands; aperture yellowish or orange-white, becoming rich dark crimson within.

Length, 4 inches.
Moluccas, Philippines, New Caledonia to Viti Islands.
S. cristatus, Lam., is a synonym.
S. latissinus, Linn. Pl. 3, fig. 27.

Orange-brown, irregularly longitudinally strigate with chestnut, with white maculations, forming several revolving bands; aperture flesh-white; outer lip broadly inflected with orangebrown hands crossing the margin. Length, 6-8 inches.

Amboina, Japan, Philippines, Viti Is.
S. alata, Sehum., is a synonym.
S. ponderosus, Phil. Pl. 3, fig. 28.

Obsoletely spirally ribbed and striate, nearly smooth, spire nodulous; whitish, variously longitudinally shaded, striped and spotted with chestnut, and tinted with light violaceous, especially on the eallous expansion of the inner lip; aperture and columella pale carnelian, inflected margin of outer lip broadly chestnut-banded. Length, 5-6 inches.

New Caledonia (Brazier); Society Islands (Schmeltz). S. Thersites, Gray, is a synonym.
S. taurus, Reeve. Pl. 4, fig. 34.

Yellowish white, maculated and strigated in a zigzag manner with yellowish chestmut, expansion of columeliar lip bright orange-brown, interior of aperture purple-tinted, margin of outer lip with light chestnut square spots. Length, 35 inches. Admiralty Islunds.
"This remarkable shell," says Reeve, "is curionsly intermediate in its generic characters between Strombus and Pterocera. In detail of pattern and senlpture it resembles S.laciniatus, but there is a large central oblique tubercle on the back, and the lip is thickened into two very large ortuse oblong tubereles, the upper part being produced into troo deeided Pterocera claws.
one of which is prolonged in a curved manner to the extent of an inch and a half. The specimen has rather the appearance of being malformed; but notwithstanding this seeming irregularity of growth, there is no doubt whatever of its being specifically distinct from any hitherto deseribed form."

Section III. Monodactyles, Klein.

S. Peruvianus, Swainson. Pl. 3, fig. 29.

Whorls spirally ribbed, obtusely angled and tuberculated on the shoulder, middle tubercle on the back very prominent; yellowish chestnut, sometimes a little tessellated, aperture and columella yellowish or orange-brown, deepening in the interior to a deep orange-red. Length, 5-7 inches.

Peru to W. Columbia.
In old specimens the interior of the onter lip is often radiately ridget.
S. tricornis, Lam. Pl. 3, figs. $30,31$.

Nearly smonth, rery obsoletely spirally ribbed, the shoulder and spire tuberculated, dorsal tuberele of body-whorl long, laterally compressed, very prominent, two other dorsal tubercles also somewhat enlarged; whitish closely irregulally lineated with oranye-chestnut ; aperture blush-white or rosy.

Length, 4.5 inches.
Red Sea, Isle of Bourbon, Seychelles, Philippines.
Is a smaller, lighter species than the preceding, with the lip more narrowly produced into a lobe behind, interior always smooth, spire longer, aperture light violaceous instead of orangered. It is not West Indian, as supposed by Sowerby. It is S. orientalis, Johmston, and S. pertinax, Dnclos.
S. bituberculatus, Lam. Pl. 4, figs. 32, 33.

Grayish white, marbled and banded with chestnut or chocolate, aperture yellowish white, deepening to rose-color.

Length, 3 inches.
West Indies; N. South America.
It is S. lobatus, Swainson, S. quadiatus, Perry, S. raninus, Gmelin. The latter name has priority, of comse, but I prefer to retain the name under which the species has become so wellknown.
S. gallus, Linn. Pl. 4, figs. 35, 36.

Yellowish white, clouded and maculated with chestnut ; aperture whitish, more or less tinged with orange-brown.

Length, 4-6 inches.
West Indies.
Reeve and some earlier authors have given the Red Sea as locality for this species, which is an error; probably originally caused by confounding it with S. tricornis.
S. auris-Diane, Linn. Pl. 4, figs. 37, 38.

Shell varying from nearly smooth to roughly nodulous, the nodules developed here and there upon revolving rounded ribs, spire-whorls and upper part of body-whorl angulated and nodose on the angle, callus of the inner lip far-spreading, sometimes mounting the spire to near its apex, interior of outer lip with posterior radiating ridges; orange-brown or light chestnut, speckled and marbled with white, polished; lip and columella callus whitish, more or less tinged and deepening within the aperture to bright carnelian. Length, 3 inches.

Indian Ocean, Mauritius, Philippines to Society Islands.

The synonyms include S. Lamarckii, Gray; S. guttatus, Martini ; S. striatogranosus, Mörch. Attempts lave been made to separate the smoother form as S. guttatus, Mart., but any considerable collection embracing specimens from several localities will demonstrate its identity with the more nodose forms.

Var. melanostomus, Swainson. Fig. 38.
Shell tinged with black or burnt chocolate color, on the margin of the lip. and its posterior lobe, and on the posterior part (or sometimes covering the whole) of the columellar callus.

S. Pacificus, Swainson. Pl. 4, figs. 39, 40.

Shell with revolving rounded ribs and nodules, and angulated whorls, nodulous on the angle, as in the preceding specieswhich it also resembles in exterior coloration, but the spire is longer, more convex, and the body-whorl narrower. The aperture differs in the lip being radiately ridged throughout instead of at the posterior end only; in the typical form the interior and
columella-callus are yellowish, or ochre-brown, darker between the radiating ridges, tinged on the callus with dark chocolate.

Length, 3 inches.
Japan, Australia, Society Islands.
This is S. Novæ-Zelandiæ, Chemn., S. acutus, Perry, S. aratrum, Mörch, S. Chemnitzii, Pfr.
Var. Australis, Sowb. Fig. 40.
Barely distinguishable by its usually shorter lobe, the interstices of the lip ridges not darker colored, and the margin of the lip as well as part of the columellar callus painted deep chocolate.

Section IV. Gallinula, Klein.
S. vittatus, Linn. Pl. 4, figs. 41-44.

Body-whorl usually smooth, sometimes rudely longitudinally plicate in continuation of the ribs of the spire; there is a smooth sutural band, more or less defined by a groove below it; whitish clouded or reticulated with light yellowish or chestnut, often with several revolving lands of darker reticulations; aperture white. Length, 3-4 inches.

Indian Ocean, China, Philippines.
S. turritus, Lam. (fig. 43), is a slender form, with the spire more drawn out, and the lip not so much expanded ; S. sulcatus, Cliemn. (fig. 44) is probably only a malformed specimen of this species.
S. Listeri, Th. Gray. Pl. 4, fig. 45.

Differs from the preceding species in the lobe-like posterior expansion of the lip and its large anterior sinus, in the inner face of the lip being smooth instead of radiately ridged, in the absence of the sutural band, and in its much larger size.

Length, 6 inches.
Ceylon.
It may be a monstrosity of S. vittatus, but until we have further evidence on the subject it had better be regarded as a distinct species. It was known to Lister, who figured it (Pl. 855) nearly two centuries before Sowerby's publication of it as S. mirabilis, in 1870. Gray's deseription of it in 1852, although in a periodical of wide circulation, appears to have been entirely overlooked.
S. Campbelli, Gray. Pl. 5, fig. 46.

Resembling S. vittatus in coloration, but with shorter spire, the sutural band closely plicate, instead of smooth as in vittatus; body-whorl smooth, except the revolving grooves at the base.

Length, 2-2•5 inches.
North and East Australia.
Perhaps ouly a variety of S. vittatu..
S. dilatatus, Swainson. Pl. 5, fig. 47.

Spire finely longitudinally plicate, all the whorls with close spiral striæ, no sutural band, interior of lip radiately ridged; yellowish brown or light chestnut, with somewhat obscure whitish macnlations, and narrow bands, interstices of the ribs on the inside of the lip, dark chestnut or purplish.

Length, 2-25 inches.
Zanzibar, New Caledonia, Japan.
Reeve changed the name to S. Swainsoni, on account of S. dilatatus, Lam.-but the latter is a synonym of S. bubonius, Linn. The shell figured by Lischke for S. Japonicus appears to me $\mathrm{to}=$ this species.

S. Japonicus, Reeve. Pl. 5, fig. 48.

Longitudinally finely ribbed towards the apex, everywhere closely regularly spirally grooved, upper part of whorls slantingly concave, with the angle obscurely nodose; whitish, stained and variegated with chestnut, encircled with narrow white zones sagittately marked with chestnut; interior white, lip radiately ridged. Length, $2 \cdot 25$ inches.

Japan.
Closely allied to the preceding species, but is narrower, with longer spire, the whorls are concavely shouldered, etc.
S. columba, Lamarck. Pl. 5, figs. 49, 50.

Closely spirally grooved, spire longitudinally closely ribbed, whorls concavely, slantingly shouldered, the angle tuberculated; variegated and banded with orange-brown and white, columella and interior of outer lip both closely ridged, and stained deep chestnut. Length, 2 inches.
? Red Sea, Zanzibar, Philippines, Pelew Is.
Differs from S. dilatatus by its ridged inner lip, angulated,
nodulous whorls, by the outer lip being more produced behind, with a narrew, deep sinus anteriorly. S. orosminus, Duclos (fig. 50), is a variety with uncolored aperture.
S. Labiosus, Gray. Pl. 5, fig. 51.

Spire closely longitudinally ribbed, whorls subangulated and nodose at the angle, everywhere closely spirally grooved, lip strongly winged, and excavated above, ascending the spire but little, radiately ridged within, inner lip smooth; yellowish brown, interior white, interstices of ridges within the lip often deep chestnut. Length, 2 inches.

Australia, Philippines.
S. deformis, Gray. Pl. 5, fig. 52.

Sculpture same as in preceding species, the shell thinner, the lip not so lobular behind, and decidedly ascending the spire; coloring as usmal in this group, marbled and tesscllated with orange-brown and white, with faint, marbled bands.

Length, 2-2.5 inches.
Red Sea, Philippines, Australia.
Notwithstanding the differences above pointed out, I have some doubts of the distinctness of this and the preceding species.
S. marginatus, Linn. Pl. 5, figs. 53, 54.

Distinguished at once by its short, conical spire and sharply angulated whorls, the angle closely minutely nodulous, the whorls everywhere spirally grooved, interior of outer lip ridged; marbled with orange-chestnut and white, with some narrow white bands covered by chestnut markings, aperture white. Length, 2 inches.

China, Philippines, Formosa.
S. robustus, Sowb. (fig. 54), is a synonym.
S. epidromis, Linn. Pl. 5, fig. 55.

Body-whorl smooth, spirally grooved below; yellowish white, minutely marbled and freckled with light orange-brown ; aperture smooth within, white. Length, $2 \cdot 5-3$ inches.

China, Philippines, New Caledonia.
S. succinctus, Linn. Pl. 6, figs. 56,57.

Upper part of spire minutely longitudinally plicate, spirally closely grooved, body-whorl smooth, spirally grooved towards
the base, with a hump or nodule on the back, near the suture; yellowish white and orange-brown in longitudinal irregular zigzag lines, with several narrow white bands crossed by brown markings, interior white, radiately ridged within the outer lip.

Length, 2 inches.

Indian Ocean, Philippines.

Var. septimus, Duclos. Fig. 57.
Spire more exserted, showing a closely nodulous angle on the whorls, body-whorl less distinctly or not at all humped on the back, lip more expanded at the shoulder.

S. fusiformis, Sowb. Pl. 6, fig. 58.

Smooth, spirally grooved at base and behind the outer lip, spire occasionally varicose, narrowly margined below the suture; imner lip callous, narrow, ridged across, interior of outer lip radiately ridged; lip exteriorly thickened, scarcely expanded; interruptedly marbled and banded with orange-brown and white, aperture white or tinged with dark chestnut.

Length, 1.5 inches.
? Red Sea, Australia.
S. variablile, Swainson. Pl. 6, figs. 59-61.

Spire plicate, the whorls angulated and nodose on the angle, the plicæ on the body-whorl short, body-whorl narrowly grooved at the base, lip smooth within ; white, or yellowish with orangechestnut zigzag markings, and four narrow white bands, also crossed by the markings, or yellowish white, with chestnut bands, aperture white, columellar lip, sometimes with a central chocolate blotch. Length, 2 inches.

Zanzibar, Philippines, Australia, Samoa Is., etc.
S. atherius, Duclos (fig. 61), is a synonym.
S. mininus, Linn Pl. 6, fig. 62.

External coloring and sculpture same as in the preceding species, but usually smaller, the imner lip narrow, thickly callous, running up the spire as far as the outer lip, from which it is separated by a narrow chamel; interior white, deepening within to golden yellow. Length, $1 \cdot 25-1 \cdot 5$ inches.

Philippines, Viti Is.
I have considerable doubt whether the distinctive characters are sufficiently reliable to separate this from the preceding species.
S. Sibbaldi, Sowb. Pl. 6, figs. 63, 64.

Whorls angulated, spirally grooved, angle nodulous, concave above it, body-whorl swollen, lips of aperture ridged ; zigzagged with orange-brown over a yellowish surface and lighter bands, aperture white, the columellar lip partially stained deep chestnut. Length, $1 \cdot 5$ inches.

Indian Ocean.

S. deformis, Kiener (in part) and Duclos (fig. 64), to which Tapparone-Canefri has given the name of S. Kieneri, is a synonym.

$$
\text { Section V. Canarrum, Schum., } 1817 .
$$

S. urceus, Linn. Pl. 6, figs. 65-67.

Shell smooth, with tuberculated shoulder-angle, narrowly spirally grooved at the base; whitish or yellowish, banded and speckled with chestnut, often tinged with chocolate at the base; interior of outer lip (and often the upper part of the callous narrow inner lip) radiately ridged; lip, aperture and columella deep orange-brown, or chestuut, or more usually deep chocolate or black. Length, 1•75-2.5 inches.

Indian Ocean, Philippines, Australia.
This is S. ustulatum, Schum., S. incisus. Wood, S. anatellus, Duclos (fig. 67).
S. dentatus, Linn. Pl. 6, figs. 68-70; Pl. 7, figs. 67-72.

Whorls strongly plicate, the plicæ usually hecoming obsolete about the middle of the body-whorl, forming tubereles where they cross the angle of the shoulder; closely spirally striate, but the striæ usually obsolete about the middle cf the bodywhorl ; columellar lip narrowly callous and with the interior of the outer lip radiately ridged; whitish to yellowish brown, generally speckled and banded with gray, light olive, orange or chestunt; columellar lip and interior orange-brown to purplechocolate. Length, $1 \cdot 5$ inches.

Red Sea to Philippines,
New Caledonia-Viti Islands, Mauritius.
The sculpture, like the coloring varies; sometimes the body whorl is smooth below the strong shoulder-tubercles, sometimes these are not so strong, and contiuue below as flexuous plica-
tions-and these plications are distant or close, varying in number.
S. plicatus, Lam. (Pl. 7, fig. 70), and S. olydius, Duclos (Pl. 6, fig. 68), are synonyms.

The difference between this species and S. urceus is so slight, and there is so much variation in the shells, that it is very doubtful whether their separation can be maintained; several distinguished modern conchologists have united them.
Var. erythrinus, Chemn. Figs. 69, 71.
Shell smaller and marrower, the spire generally more exserted; the swollen outer border of the aperture is usually darker than the rest of the extericr surface. Length, $1-1.5$ inches.

Red Sea, Australia.
S. elegans, Sowb. (fig. 71), is a synonym of this variety.

Var. rugosus, Sowb. Fig. 72.
Ribs and spiral sculpture both strong, extending over the body-whorl, which is rugose thronghout.

Corea to Polynesia.
S. corrugatus, Ads. and Reeve, is a synonym.

Var. pulchellus, Reeve. Fig. 70.
Shell wider, the outer lip well expanded, particularly behind, forming a rather broad shoulder; surface very rugose, usually with a second inferior band of small tubercles on the body-whorl.
Length, 1-1.25 inches.

Philippines.

L. floridus, Lam. Pl. 7, fig̣s. 73-76, 80, 83.

Whorls smooth or obsoletely spirally striate, grooved at the base of the body-whorl; spire short, composed of roundshouldered whorls, obtusely tuberculate; body-whorl with usually only two or three compressed tubercles on the back, at the shoulder, columella and interior closely ridged; white and yellowish, brown or chocolate variegated in interrupted bands, maculations and spots; aperture and columellar lip white, with the ridges colored pink or chocolate. Length, $1-1.5$ inches.

> Zanzibar, Japan, Australia to Viti Islands.

Sometimes the surface color is almost eutirely yellowish brown, chestnut or chocolate.

The synonyms are S. flammeus (Link), Mörch, S. mulabilis,

Swainson, S. flosculosus, Mörch, S. gibberulus, Meuschen (not Linn.), and S. epimellus, Duclos (figs. 80, 83), the latter somewhat singularly marked with color.
S. hemastoma, Sowb. Pl. 7, fig. 78.

Closely longitudinally ribbed throughout, and occasionally varicose, shoulder tuberculated, closely spirally striated, aperture and columella ridged; pinkish or yellowish white, indistinctly maculated, columellar lip and interior deep orange-red or chestnut. Length, 15-18 mill.

Mauritius.
S. Heflif. Rousseau. Pl. 7, fig. 79.

Broadly oval, regularly ribbed, crossed hy spiral strix, 'columellar lip and interior closely ridged; yellowish brown, interior and columeila purplish. Length, 1 inch.

Zanzibar.
Reeve supposed this to be a possible variety or monstrosity of S. hæmastoma.
S. SCALARiformis, Duclos. Pl. 7, fig. 81.

Sculptured and colored like the preceding species, but differing widely in form. Length, 23 mill.

China.
I know nothing about this or the preceding species, except from the original descriptions and figures.
S. fasciates, Boin. Pl. 7, figs. 82, 77.

Whorls nearly smooth, sharply tuberculated at the shoulder; whitish, often delicately freckled with pale yellowish brown, with revolving rows of dark chestnut or chocolate sagittate characters; interior orange-red. Length, $1 \cdot 5-2 \cdot 25$ inches.

Red Sea, Indian Ocean, Philippines?
The synonymy includes S. polyfasciatus, Chemn., S. Persious, Swianson. S. subulatus, Herbst, S. flavigula. Meuschen, and S. lineatus. Lam. S. ismarius, Duclos (fig. 77), appears to be a specimen (perhaps old and worn) in which the markings are indistinct.
S. Macllates, Nuttall. Pl. 7. fig. 84.

Shell smooth, slightly finely spirally striate on the spire and upper part of body-whorl; the latter narrowly grooved at the base; white clouded and maculated with chestnut and chocolate,
or yellow or orange-brown, maculater with darker shades, and with a maculated white band ; aperture white.

Length, $75-1 \cdot 25$ inches.
Sanduich, Paumotus and Friendly Islands.
Well characterized by its form, swollen posteriorly and not tuberculate.
S. gibberulus. Linn. Pl. 8, fig. 85.

Shell gibbous, smooth. spire occasionally varicose, body-whorl grooved at the base; columella smooth, interior of aperture radiately striate; mottled and hieroglyphically marked with yellowish brown and white, the markings often arranged in a few or numerous interrupted revolving bands: aperture tinged violaceous, scarlet, dark purplish brown, etc.

Length, $1 \cdot 5-2.5$ inches.
Zanzibar, Natal, Red Sea, Indian Ocean, Mauritius, Philippines, New Guinea, Viti Islands. Parmotus. etc.
The synonymy includes S. Mauritianus, Issel, and var. rhodostomus, Mörch.
S. bulbelus, Sowb. Pl. S, fig. Sf.

Smooth, sulcate at the base ; marbled, freckled and sometimes interruptedly banded with chestuut and white, the white often tinged with light violaceous, aperture and columella dark purplish chocolate. Length, $1 \cdot 5-1 \cdot 75$ inches.

Philippines to Titi lslands.
S. terebellatcs, Sowb. Pl. S, fig. 8 i .

Smooth, obsoletely grooved at the base, outer lip radiately ridged within : yellowish white, with clonds and zigzag markings of orange-brown or chestnut, interior ridges chestnut.

Length. 1-5-1.75 inches.
Philippines to Viti Islands.
S. Samar (Chemn.), Dillw. Pl. \&, fig. 88.

Smooth, polished, plicate, obsoletely groored at the base. margin of lip tridentate anteriorly. interior of aperture radiately ridged: marbled and speckled with orange-brown or chestnut and white. interior tinged with purplish chocolate.

Length, $1 \because 5$ inches.
Philippines, Australia, Socrety. Is., Paumotus Is.
The synonrmy includes S. tridentatus, Lam., S.: Samarensis,

Reeve. Some anthorities identify this species with S. dentatus, Linn.; I have otherwise interpreted the latter.
S. Cailliaudi, Jay. Manual, vi, Pl. 34, fig. 18.

Shell spirally striate, chocolate-brown, interior of aperture tinged with the same color. Length, 40 mill.

Hab. unknown.
Probably a young Strombus, although described as a Conus. I am not able to irlentify it. I have figured it in the sixth volume of this work, as above.

Section VI. Conomurex, Bayle, 1884.

S. Mauritianus, Lain. Pl. 8, figs. 89, 90.

White, with chestnut or chocolate longitudinal interrupted zigzag lines and spots, arranged in revolving bands, aperture ridged within, carnelian or rose-red. Length, $2-2 \cdot 5$ inches.

Mauritius.
S. cylindricus, Swainson, and S. coniformis, Sowb. (fig. 90), are synonyms; the latter retaining obtuse nodules which generally are only seen upon young specimens.
S. Luhuanus, Linn. Pl. 8, figs. 91, 92.

Shell often covered with a dark epidermis, under which the markings are the same as in the preceding species, the columella very dark chocolate or nearly black. Length, 2-2.5 inches. Phelippines, Australia, New Guinea, Viti Is., etc.
No differences of form which have been pointed out as distinguishing this and the preceding species, hold good when an extensive suite is examined; the only real distinction is the narrow black deposit overlaying the colnmella in S. Luhuanus, of which S. Mauritianus never appears to show even a trace. I figure a very curions anomalons growth of this shell (fig. 92), preserved in the Mnseum of the University of Ghent.
S. labrosus and S. lævilabris of Menke, are synonyms.

Unidentified Species of Strombus.

S. tubercularis, S. pusillus, S. Peruanus, S. elatus, S. crassiLabrlin, all of Anton.

No locality.
S. qlabratus, Sowb. = Nassa obliqua, Kiener. Manual. iv, 27.
S. cancellatus, Pease. Sandwich Islands.

- Genus P'TEROCERA, Lam., 1799.

Properly speaking there is only a difference of convenience between this species and Strombus; that is, no important structural differences are involverl. Pterocera is a stromb having the outer lip on the shell prolonged into long digitate processes resulting from similar digitations of the mantle-margin of the animal. Certain of the strombs, those of the section Euprotomus, for instance, have a tendency to digitation, yet do not hridge the gap between the two groups. The Pteroceri as thus defined, consist of ten species, rather constant in character, confined, as to reeent distribution, to the tropical seas of the Indo-Pacific, Australian and Polynesian provinces, and not certainly found in a fossil state.

The genus has been carefully reviewed by Prof. Theo. Gill (Am. Jour. Conch., v, 120), and I have followed him mainly in the synonymy, and descriptions. As will be seen by referring to p. 101 of this monograph, I have adopted two sections for the genus Pterocera; these correspond to genera in Prof. Gill's arrangement, the last containing two speeies (S. chiragra and S. rugosa), whilst the first is synoptically tabulated by him as follows :
I. Lijs smooth (my Subsection 1. Heptadactylus).

I a. Body-whorl tuberculated at the angle.
Lip reflected ; columella with eallus diffused, P. lambis.
Lip inflected; columella with callus stratified, $\quad P$. crocata.
I b. Body-whorl unarmed at angle, P. bryonia.
1I. Lips rugose (my Subsection II. Millipes).
II a. Interealary rligitations none.
Posterior digitation with a basal lobe, P. scorpio. Posterior digitation simple, II b. Intercalary digitations developed.
Posterior digitation simple,
P. pseudoscorpio.
P. millepeda.
l'osterior digitation with a basal lobe
Labral digitations eight; labral wrinkles very distinct, P. elongata.

Labral digitations ten; labral wrinkles faint, P. violacea.
The Pterocerx have been monog:aphed also by Reeve, Sowerby and Kiener.

Section I. Pterocera (sensu stricto).

Subsection I. Heptadactylus, Klein.
P. lambis, Linn. Pl. 8, figs. 1-3.

Angular fasciole or revolving rib carinated on spire, on the body-whorl provided with two enlarged, compressed tubercles; inner lip with the callus spreading; onter lip with the margin (normally) somewhat reflected, with the digitations bending ontward and rather small, and with the antesinual lobe molulated; lips and aperture whitish or yellowish brown, becoming more or less sanguincous within. Length, fi-8 inches.

Indian Ocean, Zanzibar, Philippines, Ne'w Guinea,
Society Islands, etc.
P. aurantia, Lam. Pl. 9, fig. 5.

Angular fasciole carinated on spire. and on the last whorl armed with two enlaroed tubercles; inner lip with the callus somewhat restricted, folded near the aperture; onter lip with its margin somewhat inflected, the digitations successively more recurved, and the antesinual lobe tridentate; lips more or less orange or saffron-colored. Length, 5-6 inches.

Philippines, Mauritius, etc.
P. crocata, Link, has priority, but it is unnecessary to displace a well-established name in favor of a recently resurrected one, published very obscurely.
P. bryonia, Gmelin. Pl. 8, fig. 4 ; Pl. 9, fig. 8.

Angle coronated or tuberculated on spire, unarmed on the last whorl : inner lip with diffused callus, outer lip with erect margin, with six moderate digitations, and with the antesinual lobe little undulated ; lips whitish or lurid. Length, $10-15$ inches.

Red Sea, Indian Ocean. Mauritius, Japan, Philippines, Australia, Society Islands.
The synonymy includes P. truncata, Lam., Pyrula Bengalina, Grat. (juvenile), P. Sebæ, Val., and P. Sowerbyi, Mörch. Mörch has distinguished the two latter as species, but they do not present any claim to even varictal rank; not only is the species very variable within its usually recognized limits, but certain specimens before me indicate a transition to P. lambis.

Subsection II. Millipes, Klein, 1753.
P. scorpio, Linn. Pl. 9, fig. 6.

Labrum with a prominent internal transverse white ridge in front of the concavity of the clorsal tubercle ; laterally inflected, ribbed between the spines, and with a dentated margin; the spines nodose, and the posterior one auriformly lobed at the left base; apertmre olange-rerl, the transverse ridges within the outer lip and on the inner lip whitish, their interstices purple or nearly black. Length, 5-6 inches.

Indian Ocean, Philippines.
It is P. nodosa, Swains.
P. pseudoscorpio, Lam. Pl. 9, fig. 7.

Labrum with no distinct internal ridge behind, and with the coneavity of the tubercle mostly in adrance of the columellar fold; moderately inflected, with single dentiform lobes between the angular and median, and median and postsinual digitations; the latter obsoletely or not at all nodose, and the posterior withont basal lobe. Color as in preceding species.

Length, 6-7.5 inches. Zanzibar, Indian Ocean.
P. millepeda, Linm. Pl. 9, fig. 9.

Digitations separated by secondary ones intercalated at the right margin ; angle armed with four cigitations, the uppermost (rarely absent) being an intercalated one; posterior digitation simple; laterals, especially the primary, much recurved; wrinkles on the lips moderately developed, interstices not so deeply colored as in the preceding species. Length, 5-6 inches.

Indian Ocean, Mauritius, N. Guinea, Philippines.
P. elongata, Swainson. Pl. 9, fig. 10.

Angle armed with the three normal digitations; posterior digitation furnished with a lobe at its left hase; lateral digitations straight; lips with well-developed wrinkles; color as in preceding species. Length, 5-6 inches.

Indian Ocean.
P. crocea, Sowb., is a synonym.
P. violacea, Swains. Pl. 9, fig. 11.

Angle armed with three digitations; a posterior and an
anterior median fasciole in place of the normal single fasciole; posterior digitation with an elongated lobe at its left base; lateral digitations straight or little curved; all the digitations open, channeled; wrinkles within the labrum prominent, on the labium faint, often obsolete anteriorly; aperture whitish or orange-stained, violaceous only within the throat.

Length, 4-5 inches.
Indian Ocean, Zanzibar.

Undetermined Species.

P. Yoldif, Mörch.

Hab. unknown.
P. robustá, Swains. Hab. unknown.

Section II. Harpago, Klein, 1753.
P. chiragra, Linn. Pl. 10, fig. 13.

Angular fasciole or revolving rib tuberculated, the others almost unarmed, the antesinual with a compressed tubercle near the base of the digitation; lips rosaceous, with faint wrinkles; sutural digitation with a canal open at base, the outer border being bent outwards and attached above the angle of the bodywhorl, on which the digitation is chiefly bent and accumbent.

Length, 6-10 inches.
Indian Ocean, Philippines, N. Caledonia, Polynesia.
P. Kochii, Freyer, is a synonym.
P. bugosa, Sowerby. Pl. 10, fig. 12.

Revolving fascioles except the sutural and anterior with pronsinent tubercles; lips with very prominent, often white wrinkles strongly contrasting with the deep purplish or blackish groundcolor; basal posterior digitation with its canal closed by the reflection of its margins, and accumbent on the middle of the spire. Length, 5-7 inches.

Zanzibar, Society Islands, etc.
Probably only a variety of the preceding species. It is P. chiragra, Lam., in part, and P. arthritica, Mörch.
"Rostellaria has all the habits of the Strombidæ, progressing by means of its powerful and elastic foot which it places under the shell in a bent position, when suddenly, by a muscular effort, it straightens that organ, and rolls and leaps over and over. It is, however, far more timid and suspicious than Strombus, which has a bold disposition. On the low sandy beach, near the mouth of the Lundu River, in Borneo, dead shells of Rostellaria rectirostris are numerous, but generally in very imperfect condition. At the small fishing village of Samahitan I inspected a large heap of these shells, which the Malays had brought together for the purpose of turning them into lime. On inquiring of these poor fishermen whether it were possible to obtain them in a living state, we were informed that they never procured them in their nets, but that they lived in deep water at a considerable distance from the shore. The animal of Rostellaria fissa does not differ from that of Strombus, and is of a dull brown color, varied with lighter brown. It is, however, one of the most lively among mollusks, jumping several inches, and throwing itself about with the most astonishing activity. It has none of the extreme timidity of the former mentioned species."-Arthur Adams, Narrat. Voy. Samarang, ii, 492.
R. curvirostris, Lam. Pl. 10, figs. $14-16$; Pl. 11, fig. 26.

Upper portion of the spire longitudinally plicate, the rest of the shell smooth ; lower part of lip-margin, six- or seven-dentate; yellowish brown, aperture white. Length, 6-8 inches.

Red Sea, Moluccas.
R. magna, Schröter, has considerable priority of publication, but I decline to depose a very well-known name in its favor. It is R. dentula, Perry, R. brevirostra, Schum., and R. fusus, Gmelin, not Linn.

Var. curta, Sowb. Fig. 15.
The canal straight.
Var. luteostoma, Angas. Fig. 16.
A perture golden yellow, lip-margin with five digitations, canal curved.
R. fusus, Linn. Pl. 10, fig. 17 ; Pl. 11, fig. 21.

Much more slender than the preceding species, the spire and canal longer, lip-margin toothed thronghout, with five or six, strong, wel'-marked short digitations; yellowish brown, aperture white. Lengtl, ($6-8$ inches.

China.
It is R. clavus, Gmel., R. rectirostris, Lam., R. subulata, Schım., R. unicornis, Dillw.

Var. melanochellus, A. Ad. Fig. 21.
Lip between the digitations, and sometimes the interior of the aperture stained purple-black.
R. Powisif, Petit. Pl. 11, fig. 22.

Closely spirally ridged, the interstices longitudinally striate, canal short, lip-margin five-toothed, exteriorly thickened, yellowish, or orange-brown, aperture white. Length, $2-2 \cdot 5$ inches.

China.
A somewhat rare shell; a specimen was sold a few years ago for 200 franes (Jour. de Conch., 228, 1877).
R. FISSA, Dillw. Pl. 11, fig. 23.

This shell, figured by Chemnitz, has not been found in any European collection, and nothing is known of its locality. It is R. Favanni, Pfr., and R. serrata, Perry.
R. delicatula, Nevill.

Thin, translucent, pale ochraceous brown, lineated on the last whorl with four narrow white bands each of which terminates in one of the four digitate processes of the lip, canal shorter than in the other specics, first three or four whorls smooth, the next three or four faintly but regularly spirally striated, the strix becoming obsolete on the last two whorls, except at the base of the body-whorl. L. 76 mill., of canal 6.5 mill.

Arracan, dredged in deep water.
Unfigured and unknown to me except by the original description published four years ago.
R. Martinil, Marrat. Pl. 11, fig. 24.

Whorls with close punctate revolving striæ throughout, bi-
sulcate near the suture; lip five- or six-dentate; orange-brown, obscurely livid-banded near the suture. Length, $6 \cdot 25$ inches.

Philippines.
Two specimens known.
Subgenus Rimella, Agassiz, 1840.
R. cancellata, Lam. Pl. 10, figs. 18, 20.

Whorls cancellated, occasionally varicose, posterior canal produced upon the spire, which it ascends in a curved line, interior of outer lip dentate; pale yellowish brown, indistinctly banded with pale chestnut. Length, $1-1 \cdot 25$ inches.

Philippines.

R. crispata, Sowb. Pl. 10, fig. 19.

Shell cancellated by rather sharp narrow ribs, and revolving riblets, occasionally varicose; posterior canal short, curved strongly to the right ; yellowish white, pale chestnut-banded.

Length, 1 inch.
Philippines, China.
Distinguished from R. cancellata by its more ventricose form, and short posterior canal.
R. speciosa, H. and A. Adams.

Shell reticulated, more lanceolate than R. cancellata, not ensing anteriorly in a recurved beak, with the varix of the outer lip plain externally, and with the posterior canal of the aperture faintly developed and only extending as far as the penultimate whorl. Length, 1 inch.

Hab. unknown.
An unfigured species. Is it R. crispata?
R. Tyleri, H. and A. Adams.

Cancellated, posterior canal extending to the third whorl and curved, outer lip corrugately plicate within, with an anterior, conspicuous, sharp tooth; yellowish with four chestnut bands.

Length, 21 mill.
China Sea.
Unfigured.

Genus TEREBELLUM, Klein, 1753.

Mr. Arthur Adams, in his Narrative of the Voyage of the "Samarang," makes the following remarks upon this mollusk:
"In its habits the animal of the Terebellum is exceedingly shy and timid, retracting its body into the shell on the slightest alarm. It will remain stationary for a long time, moving its tentacles about cautiously in every direction, when, suddenly, it will roll over with its shell, and continue again perfectly quiet. They appear to have all the muscular energy, vivacity, and, donbtless, predatory boldness possessed by the Strombi, which they also resemble in their perfectly organized eyes, and quickness of vision. Mr. Cuming informs me that he has seen them leap several inches from the ground, exactly as I have seen the animal of Strombus gibberulus. On one occasion, a beautiful specimen was lost to the above-mentioned enthusiastic collector, by the animal suddenly leaping into the water, as he was holding and admiring it in the palm of his hand. Those I kept in confinement died in a few days, and appear to be of a more delicate constitution than the hardy Strombus. There appears to be a very trifling muscular comection between the animal and its shell.
"From my observations on the animal of Terebellum, I should imagine the spotted variety to be perfectly distinct as a species. In this, which may be called T. maculosum, the proboscis is of a whitish-brown color, reddish towarls the tip; the body is of an opaque pearly white, the mantle transparent; the foot semipellucid white; the ocular peduncles are mottled with dark red, and the pupil black. The front of the mantle, edging the anterior part of the shell, is colored with a black line, forming its margin.
"In the common species, T. subulatum, the eye-peduncles are punctulated with red-brown, as is likewise the upper and under part of the fore-portion of the body. The body is opaque pearly white, with three large, irregular-shaped red-brown blotches on the fore-part. The under surface of the foot is light brown, with a white cross-like marking of a deeper brown. Doubtless, when the animal of the variety covered with zigzag markings shall have been discovered, it will also be found to be specifically distinct."

A difference in the color-markings of the animal has precisely the same value as if upon its shell, and the variations of the latter, in the present instance, are so unstable as to preclude the possibility of separating species, with sufficiently distinctive characteristies. The genus has but one recent representative, the species described below. It is related to the Strombs throngh Strombus terebellatus.
T. subulatum, Lam. Pl. 11, figs. 27-30.

Shell smooth, shining, suture linearly grooved, enamelled; yellowish white, with chestnut or chocolate dots, freckles or zigzag lines, often somewhat indistinctly banded.

Length, 2-3 inches.
Indian Ocean, Java, China Sea, Philippines, New Caledonia, Viti Is., Mauritius.
It is Bulla terebellum, Linn., T. punctatum, Chenm., T. maculosum, Ads., etc.

Subfamily Aporrhainæ.
Genus APORRHAIS, Dillwyn, 1823.
Section 1. Aporrhais (sensu stricto).
A. pes-pelecani, Linn. Pl. 12, fig. 31.

Yellowish white to light brown. Length, 2 inches.
Seas of Europe, Iceland.
This is the Cochlea pentadactylus of Pliny, Vespertilio spinosa of Seba, and R.quadrifidus, Da Costa. Jeffreys says of it (Brit. Conch., iv, 251): "Habitat: Coralline zone (oceasionally the deepsea zone also) on all our coasts. This common shell has been recorded from the upper miocene, pliocene, and almost every newer tertiary and quaternary deposit in Europe, from the sealevel to 1360 feet above it. It is shy, slow, and awkward in its movements, twisting abont its long neck and foot in order to gain a creeping posture. Among other fanciful names given to this odd-looking shell, are 'blobber-lipt Edinburgh whilk' of Petiver, 'aile de chauve-sauris femelle' or 'patte d'oye' of D'A vila, and ' Zamarugola' of the Venetians, by the poorer class of which people the animal was-perhaps is still-eaten. Ae-
corring to Mr. Couch, Solaster papposus also reckons it an agreeable kind of food; when the soft portion has been digested, the empty shell is rejected, and becomes the habitation of a Sipunculus, which narrows the too capacious entrance with agglutinated sand. Specimens from deep water are smaller than those from the coast. The top of old but living sliells which had lost their upper story, is sometimes closed by a semispiral plug or septum of new shelly matter; the apex is very seldom perfect in full-grown specimens. When the outer lip is complete the subsequent growth takes place by adding fresh layers inside, so that the age of the individual is probably shown by the number of such layers. In immature specimens the commencement of the pterygoid or wing-like flap of the outer lip is defined by a bit of enamel along the mouth, which likewise lines the canal at the base as well as the upper process of the flap. Still younger specimens, before any sign of the flap appears, have the outer lip flexuous, with a wide and deep sinns at the upper part, and a long straight canal at the base. In this stage of growth they strongly resemble Fusi. The fry form a short cylinder. Monstrosities are not uncommon, especially in the shape and relative size of the digitated processes; the basal point, however, is always formed like a spear-head. ""

According to Mörch Chiropteron semilunare of Sars is probably the larval stage of A porrhais.
A. Serresiants, Michand. Pl. 12, fig. 32.

Whitish, or light yellowish brown. Differs from the preceding species by its long posterior and anterior canals, and by the onter lip being three-spined. Length, 2 inches.

Europe, from Norway to the Mediterranean Sea.
Perhaps more generally known uncler the name of A. pescarbonis, Brong., which is, however, a wrong identification, the latter being a fossil and different species. Dr. Gwyn Jeffreys gave it the name of A. Macandrex.
A. Senegalensis, Gray. (Unfigured.)

Senegal.
The (insufficient) description inclicates close affinity or identity with A. pes-pelicani.

Section II. Arrhoges, Gabb, 1868.
A. occidentalis, Beck. Pl. 12, fig. 33.

The longitudinal ribs of the spire, and absence of tuberculated angles on the whorls, as well as the entire but greatly expanded lip, will readily distinguish this species. Length, $2-2 \cdot 5$ inches. Labrador, Newfoundland.

Subfamil!, Struthiolariinæ.

Genus STRUTHIOLARIA, Lam., 1812.
The synonymy of the few species of this New Zealandic genus was very much involved until 1876-7, when the Marchioness Paulucei (Bull. Soc. Mal. Ital., ii, iii), critically studied them and gave them essentially the nomenclature which follows.

Section I. Struthiolaria (s. stricto).
S. papulosa, Martyn. Pl. 12, fig. 34.

Whorls strongly nodose on the angle ; yellowish brown, indistinctly longitudinally chestnut-striped. Length, 3 inches.

New Zealand.
This is Murex stramineus, Gmelin; S. nodulosa, Lam. ; S. papillosa, Gray ; S. coronarium, Soland.; S. nodosa, Gray.
S. vermis, Mart. Pl. 12, figs. $35,36$.

Shoulder obtuse, obsoletely nodose, suture somewhat excavated. Length, $1 \cdot 75$ inches.

New Zealand.
The synonyms are S. australis, Gmelin ; S. scutulata, Hutton; S. inermis, Sowb.

Var. crenulata, Lam. Fig. 35.
The sutural channel deeper, the numerous nodules of the shoulder-angle small but more distinct. S. canaliculata, Speng., is a synonym.
S. gigas, Sowb. Pl. 12, figs. $37,38$.

Less sharply angled, the nodules smaller, the suture slightly channeled, the striæ alternately larger and smaller, the lip more solidly thickened than in S. papulosa. Very like a gigantic S.
vermis, and appearing to connect that species with S. papulosa. These three will probably prove to be varieties only of a single species.

New Zealand.

S. sulcata, Jonas (fig. 38) is simply an individual having the revolving sulci stronger than usual, with the shoulder and its nodules almost obsolete. Its locality, China. is, of course erroneous. The specific name has priority over gigas, but besides the fact that it has been overlooked by all the monographers, the specimen upon which the description is based, although recognizable as this species, is not normal in its characters.

Section II. Pelicaria, Gray, 1857.

S. scutulata, Martyn. Pl. 12, figs. 39, 40.

Yellowish fawn-color, longitudinally more or less streaked with a darker shade; sutures callous. Length, $1 \cdot 5-2$ inches.

New Zealand.
S. oblita, Sowb., is a synonym.
S. mirableis, Smith. Pl. 12, fig. 41.

Shell thin, white, under a very thin, deciduous olivaceous white epidermis, spire and upper part of body-whorl sharply cancellate, on the lower part of the body-whorl the longitudinal ribs become obsolete. Length, 42 mill.

Kerguelen Islands.
Has the aspect of a Buccinum, but the operculum, animal, and the dentition especially, show it to be a true Struthiolaria, Kerguelen has representatives of other New Zealand genera, showing similar variation in being more fragile. S. costulata, von Martens, is a synonym; it was published only about three weeks after Mr. Smith's name.
S. microscopia, Gray. This is a species of Sinusigera.

INDEX AND SYNONYMY.

STROMBIDÆ.

pagr.Accinctus (Strombus), Born. Mus. Cies. Vind.$=$ S. succinctus, Linn.116Accipiter (Strombus), Dillw. Cat., p. 665.$=$ S. accipitrinus, Lam.108
Accipitrinus (Strombus), Lam. An. s. Vert., ix, p. 687. $=\mathrm{S}$. costatus, Gmelin, 108
Acutus (Strombus), Perry. Conch., pl. 12, f. 2.$=\mathrm{S}$. Pacificus, Swains.114
Adustus (Strombus), Chemu. Conclı.,x, pl. 156, f. 1487-1404,$=$ S. melanostomus, Swains.113
Adustus (Strombus), Swains. Reeve, Icon., f. 29.$=$ S. papilio, Chemn.110
Alaria, Morris and Lycett. Moll. Gr. Oolite, i, 1850, 105
Alata (Pterocera), Schum. Essai nor. gen., 1817.
$=$ Strombus latissimus, Linn. 111
Alatus (Strombus', Gmelin, p. 3513, No. 14.
$=\mathrm{S}$. pugilis, Linn., var. 109
Alipes, Conrad. Am. Jour. Conch., i, 1865.
$=$ Gonochila, Gabb, 104
Anatellus (Strombus), Duclos. Chenu, Illust. Conch., 5,
t. 4 , f. 11, 12; t. 21, f. 8, 9 . $=$ S. urceus, Linn. 118
Anchura, Conrad. Jour. Philad. Acad. [2], iv, 1860, 105
A porrhainæ (Subfamily), 99
Aporrhais. Dillw. Philos. Trans., ii, 395, 1823, 103,131
Aratrum (Monocondylæa), Mörch. Cat. Yoldi, p. 62,$=$ Strombus Pacificus, Swain.114
A rrhoges, Gabb. Am. Jour. Conch., iv, 144, 1868, 104, 133Arthritica (Pterocera), Mörch. Cat. Yoldi, p. 60.$=\mathrm{P}$. rugosa, Sowb.126Athenius (Strombus), Duclos. Chenu, Illust. Conch., t. 11,f. 1,2 . $=$ S. variabilis, $S w n$.117
Aurantia (Pterocera), Lam. An. s. Vert. (Desh. ed.), ix,p. 675,124
Auris-Dianæ (Strombus), Limn. Syst. Nat., edit. xii, 1209, 113
PAGE.
Australis (Strombus), Sowb. 'Thes. Conch., pl. 39, f. 96, 97. $=$ S. Pacificus, Swn., var. 114
Australis (Struthiolaria), Gmel. Syst. Nat., 13th ed., 3542. $=$ S. vermis, Martyn. 133
Bengalina (Pyrula), Grat., 1840. = Pterocera bryonia, Gmel. 124
Bituberculatus (Strombus), Lam. An. s. Vert., ix, p. 690. 112
Brachystoma, Garlner. Geol. Mag. [2], iii, 1876, 104
Brevirostra (Rostellaria), Schum. Nouv. Syst., 223, 1817. $=$ R. curvirostris, Lam. 127
Bryonia (Pterocera), Gmelin. Syst. Nat., p. 3520, 124
Bubonius (Strombus), Lam. An. s. Vert., ix, p. 692, 108
Bulbulus (Strombus), Sowb. Proc. Zool. Soc., 1842, p. 144. 121
Cailliaudii (Conus), Jay. Ann. Lyc. N. Y., iv, p. 169, pl. x, f. $8 a b, 1846$, 122
Calyptrophorus, Conrad, 1757. Gabb, Am. Jour. Conch., iv, 142 , 103
Camelus (Strombus), Chemn. Conch. Cab., x, t. 155, f. 1478. $=$ Pterocera lambis, Linn. 124
Campbelli (Strombus), Gray. Griff. An. Kingd., pl. 25, 115
Campbelli (Strombus), Kiister. Conch. Cab., 2d ed., p. 69, t. 15, f. $2 .=$ S. deformis, Gray, 116
Canaliculata (Struthiolaria), Spengler. Naturf., 24, 1782. $=\mathrm{S}$. crenulata, Lam. 133
Canarium (Strombus), Linn. Syst. Nat., p. 1211 110
Canarium, Schum. Essai nov. gen., 219, 1817, . . 101, 118
Cancellata (Rimella), Lam. An. s. Vert. (Desh. ed.), ix, p. 710, 129
Cancellatus (Strombus), Pease. Proc. Zool. Soc., 1860, p. 398, 122
Ceratosiphon, Gill. Am. Jour. Conch., v, 139, 1869, 104
Chemnitzii (Strombus), Pfr. Krit. Reg., p. 2. $=\mathrm{S}$. Pacificus, Swain. 114
Chenopus, Philippi. Enum. Moll. Sicil., i, 214, 1836. $=$ Aporrhais, Dillw. 103
Chiragra (Pterocera), Linn. Syst. Nat., 12th ed., p. 1207, 126
Chiragra (Pterocera), part, Lam. Hist. N., An. s. Vert., ed. $2, \mathrm{ix}, 675 .=$ P.rugosa, Sowb. 126
Chiropteron, Sars. 132
Clavos (Strombus), Gmelin. Syst. Nat. $=$ Rostellaria fusus, Linn. 128
Columba (Strombus), Lam. An. s. Vert., ix, p. 702, 115
Coniformis (Strombus), Sowb. Thes., t. 7, f. 55-61. $=\mathrm{S}$. Mauritianus, var. 278, 122
Conomurex, Bayle. Fischer, Manuel de Conch., 617. 101 122
Cornutus (Strombus), Perry. Conch., t. xi, f. 4. $=$ S. pugilis, Linn. 109
Coronarium (Buccinum), Soland. Catal. Portl. Mus. $=$ S. papulosa, Mart. 133
Coronata (Strombus), Defrance. $=\mathrm{S}$. bubonius, Lam. 108
Corrugatus (Strombus), Ad. and Reeve. Voy. Samarang, p. 35, t. 10, f. 19. =S. rugosus, Sowb. 119
Costatus (Strombus), Gmelin, p. $35 \fallingdotseq 0$, 108
Costulata (Struthiolaria), Martens. Ber. Ges. Nat. Freunde, Berlin, 1875 , p. $66 .=\mathrm{S}$. mirabilis, Smith, 134
Crassilabrum (Strombus), Anton. Verz., 87, 2820, 1839 , 122
Crenatus (Strombus), Sowb. Tank. Cat. App., p. 19. $=\mathrm{S}$. galeatus, Swain. 108
Crenulata (Struthiolaria), Lam. An. s. Vert., vii, p. 148. $=$ S. vermis, Mart., var. 133
Crispata (Rimella), Sowb. Thes. Conch., p. 26, pl. 8, f. 62, 63, 129
Cristatus (Strombus), Lam. An. s. Vert., ix, p. 691. $=$ S. laciniatus, Chemn. 111
Crocata (Pterocera), Link. Verz. Nat. Samml. Rostock? $=\mathrm{P}$. aurantia, Lam. 124
Crocea (Pterocera), Sowb. Thes., t. 11, f. 4. $=$ P. elongata, Swain. 125
Cuphotifer, Piette, 1876, 105
Curta (Rostellaria), Sowb. Proc. Zool. Soc., 1842. $=$ R. curvirostris, Lam., var. 127
Curvirostris (Rostellaria), Lam. An. s. Vert. (Desh. ed.) ix, p. 654, 127
Cyclomolops, Gabb. Am. Jour. Conch., iv, 142, 1868, 103
Cylindricus (Strombus), Swain. Zool. Ill., pl. 53, f. 1, 2. $=$ S. Mauritianus, Lam. 122
Cyphosolenus, Piette, 1876, 104
Cyphotifer, Piette, 1876, 105
Decumana (Cornuta), Rump. Anıb. Rarit, p. 110, t. 35, f. D, t. 36 , f. $G .=$ Pterocera lambis, Linn. 124
Deformis (Strombus), Gray. Griff. An. Kingd., pl. 25, 116
Deformis (Strombus), Kiener (non Gray ;- Ic. Coq., p. 58, t. 32, f. $2 .=$ S. Sibbaldi. Sowb. 118
Delicatula (Rostellaria), Geof. Nevill, Jour. As. Soc. Beng., 1881. 262, 128
Dentatus (Strombus), Kien., t. 19, f. 2 (non Wood). $=\mathrm{S}$. terebellatus, Sowb. 121
Dentatus (Strombus), Linn. Syst. Nat., p. 1213, 118
Dentula (Rostellaria), Perry. Conch., t. 10, f. 3. $=$ R. curvirostris, Lam. 127
Diartema, Piette, 1864, 104
pagk.
Dicroloma, Gabb. Am. Jour. Conch., iv, 146, t. 14, f. 16-17, 1868, 105
Diempterns, l'ictte, 1876, 105
Dilatatus (Strombus), Lam. An. s. Vert., ix, p. 792. $=$ S. costatus, Gmel., var. inermis. 108
Dilatatus (Strombus), Swains. Zool. Illust., 115
Dimorphosoma, Gardner. Geol. Mag. [ii], ii, 1875, 104
Dolophanes, Gabb. Trans. Am. Philos. Soc., xv, 234, 1872, 105
Drepanocheilus, Meek. Check List. Invert. Foss., 35, 1864. $=$ Anchura, Con. Gabb, A. J. C., iv, 145 , 105
Dubius (Strombus), Sowb. Thes. Conch., t. 9, f. 30. $=$ S. alatus, Gmel., jur. 109
Elatus (Strombus). Anton. Verz., 85, 2799, 122
Elegans (Strombus), Sowb. Thes. Conch., t. 7, f. 43, 48. $=\mathrm{S}$. dentatus, L., var. erythrinus, 119
Elongata (Pterocera ', Swains. Ex. Conch. App. p. 32, 125
Epidromis (Strombus), Linn. Syst. Nat., p. 1211, 116
Epimelhus (Strombus), Duclos. Chemn., p. 3, pl. 16, f. 11, 12 ; pl. 22, f. $5,6 .=$ S. floridus, Lam. 120
Erythrinus (Strombus). Chemn., xi, 146, t. 195 a, f. 1874-75. $=\mathrm{S}$. dentatus, Liun., var. 119
Euprotomns, Gill. Aim. Jour. Conch., v, 131, 1869, . 100, 110
Expansa (Strombus), Martini. Concil. Cab., iii, p. 111, t.79, f. 821. = S. epidromis, Linn.116
Exustus (Strombus), Swain. Zool. Ill., i, pl. 134, f. 1. $=$ S. papilio, Chemı. 110
Fasciatus (Strombus), Born. Mus. Caes. Vind., p. 278, 120
Fasciatus (Strombus), Gmel., p. 3510. $=$ S. bubonius, Lam 108
Faranni (Rostellaria), Pfeiffer. Crit. Register, 106, 1840.
$=$ R. fissa, Dillw.128
Fissa (Rostellaria), Dillw. Desc. Cat., 656, 1815, 128
Fissurella (Rostellaria), Sowb. Thes., pl. 8, f. 64, 65 (non
Limn.). = Rimella cancellata, Lam. 129
Flammens (Strombus), Link. Beschreib. Mus. Rostock, 1807; Mörch, Yoldi Cat., pt. i, $63 .=\mathrm{S}$ floridus, Lam. 119
Flavignla (Alata), Meuschen. Mus. Gevers., p. 338. $=$ Strombus fasciatus, Born, 120
Floridus (Strombus), Lam. An. s. Vert., ix, p. 707, 119
Flosculosus (Strombus), Mörch. Cat. Conch. Yoldi, part 1 a, p. $63 .=$ S. floriclus, Lam. 119
Fusiformis (Strombus), Sowb. Thes., pl. 9, f. 91, 92, 117
Fusus (Rostellaria), Gmelin. Syst. Nat., 3506. $=$ R. curvirostris, Lam. 127
Fusus (Rostellaria), Linn. Syst. Nat. (12 ed.), p. 1207 , 128
PAGE.
Galea (Strombus), Wood. Ind. Test. Supp. Lam., 4, f. 13, 1828. = S. galeatus, Swain. 108
Galeatus (Strombus), Swain. Phil. Mag., 1823, p. 401, 108
Gallinula, Klein. 'I'ent., 56, 1753 , 101, 114
Gallus (Strombus), Linn. Syst. Nat., p. 1209, 113
Gibberulus (Strombus), Linn. Syst. Nat., p. 1210 , 121
Gibberulus Strombus), Meuschen (non Linn.). Mörch, Yoldi Cat., 63. =S. floridus, Lam. 120
Gigas (Strombus), Linn. Syst. Nat., p. 1210, 107
Gigas (Struthiolaria), Sowb. Thes. Conch., pl. 5, f. 17, 133
Glabratus (Strombus), Sowb. Thes. Conch., pl. 8, f. 66, 67. = Nassa obliqua, Kr. 122
Gladius, Klein. Tent. Ostrac., 59, 1753. $=$ Rostellaria, Lam. 102
Goliath (Strombus), Chemu. Conch. Cab., xi, pl. 195, 107
Goniocheila, Gabb. Am. Jour. Conch., iv, 144, 1868, 104
Gracilior (Strombus), Sowb. Tank. Cat., p. 20, $10 y$
Granulatus (Strombus), Gray. Wood, Ind. Test. Suppl., t. 4, f. 21 , 110
Guttatus (Strombus), Mart. Conch. Cab., iii, p. 126, pl. 84, f. 840 . $=$ S. anris-Dianæ, Yiun. 113
Gymnarus, Gabb., Am. Jour. Conch., iv, 139, 1868, 101
Hæmastoma (Strombus), Sowb. Thes., pl. 7, f. 51, 120
Halia, Risso. Manual, vi. Placed in Struthiolarinæ byGabb, A. J. C., iv, 147.
Harpago, Klein. Tent. Meth. Ostrac., 1753, p. 79, 126
Harpagodes, Gill. Am. Jour. Conch., v, 138, 1869, 102
Helicanlax, Gabb. Am. Jour. Conch., iv, 145, t. 14, f. 15, 1868. 104
Hellii (Strombus), Rousscau. Kien. Iconog., t. 13, f. 2, 120
Heptadactylus (Alata), Mart. Conch. Cab., iii, p. 150, t. 36, f. $\times 55$, t. 90, f. $884 .=$ Pterocera lambis, Linn. 124
Heptadactylus, Klein. Ostrac., 99, 1753, 101, 124
Hippochrenes, Montf. Conch. Syst., ii, 522, 1810, 103
Incisus (Strombus), Wood. Ind. Test. Supp.
$=\mathrm{S}$. urceus, Gmel. 118
Inermis (Strombus), Swains. Exot. Conch., p. 36. S. costatus, Gm., var. 108
Inermis (Struthiolaria), Sowb. 'Thes. Conch., p. 23, pl. 5, f. 12, 13 and $19 .=$ S. vermis, Mart. 133
Integer (Strombus), Swain. Gray, Desc. Cat., June, 1832,p. 2,108
Isabella (Strombus), Lam. An. s. Vert., ix, p. 700. $=\mathrm{S}$. canarium, Linn., var. 110
page.
Ismarius (Strombus), Duclos. Chenu, Conch. Illust., 5, t. 7 , f. $1-2 .=$ S. fasciatus, Born, 120
Isopleura, Meek. Check List Invert. Foss., 36, 1864, 102
Japonicus (Strombus), Reeve. Conch. Icon., 42, 1851, 115
Japonicus (Strombus), Reeve. Lischke, Jap. Meeresconch. Suppl., 30, t. 5, f. 7. $=$ S. rilatatus, Swains. 115
Kieneri (Strombus), Tapparone-Canefri. Ann. Mus. Civ. Genoa, viii, $346 .=$ S. Sibbaldi, Sowb. 118
Kochii (Pterocera), Freyer. Sitz. der K. Akad. der Wiss. Vien.. xv, p. 22, 1852. = P. chiragra, Linn. 126
Labiosus (Strombus), Gray. Wood, Ind. Test. Suppl., t. 4, 116
Labrosus (Strombus), Menke. Verzeichniss, No. 1209 ;
Mörch, Mal. Blatt., xviii, 127. = S. Luhuanus, L. 122
Laciniatus (Strombus), Chemn. Conch. Cab., x, t. 158, f. 1506-7 ; Dillwyn, Desc. Cat., ii, 663, 111
Levilabris (Strombus), Menke. Syn., p. 71. $=$ S. Luhuanus, Linn. 122
Lamarckii (Strombus , Gray. Sowb. Thes. Conch., 35.
$=$ S. auris-Dianx, Limn. 113
Lambis (Pterocera), Limn. Syst. Nat. (12th ed.), p. 1208, 124
Latissimus (Strombus), Linn. Syst. Nat., p. 1211, 111
Latus (Strombus). Gmel., p. 3520.
$=$ S. costatus, Gmel., var. inermis, 108
Leiorhinus, Gabb. Jour. Pliilata. Acad [2], iv, 1860 , 103
Lentiginosus (Strombus), Linn. Syst. Nat., p. 1208, 110
Lineatus (Strombus), Lam. An. s. Vert., ix, p. 708.$=\mathrm{S}$. fasciatus, Born,120
Lispodesthes, White. Rep. Geol. 100th Merid., iv, 191, 1875, 104
Listeri (Strombus), T. Gray. Ann. and Mag. N. H., x, p. 430, 1852, 114
Lituratus (Strombus), Menke. Terzeichniss, No. 1205 ; Mörch, Mal. Blatt. xviii, $127 .=$ S. variabilis, Šwains. 117
Lobatus (Strombus), Swains. Zool. Ill., t. 3, pl. 153. $=$ S. bituberculatus, Lam. 112
Longus (Turbo), Jonston. Hist. Nat., t. 11.
= Rostellaria curvirostris, Lam. 127
Loxotrema, Gabb. Am. Jour. Conch., iv, 147, 1868 , 105
Lucifer (Strombus), Linn. Syst. Nat., x, n. 414 ; xii, n. 503. $=$ S. gigas, Linn. 107
Luhuanus (Strombus), Linn. Syst. Nat., p. 1209, 122
Luteostoma (Rostellaria), Angas. Proc. Zool. Soc., 1878 , p. 313 , pl. xviii, f. $8-9 .=$ R. curvirostris, Lam., var. 12.7

Macandreæ (Aporrhais), Jeffreys. Brit. Conch., iv, p. 252 ; v, t. lxxx, f. 2. = A. Serresianus, Mich. Jeffreys, Proc. Roy. Soc., xxv, 189,
Maculatus (Strombus), Nuttall. Sowb. Thes., pl. 7, f. 53, . 120
Maculosum ('Terebellum), Ad. Narr. Voy. Samarang, vol. ii, 358. = T. subulatum, Lam.131

Magna (Rostellaria), Schröter. Conch. Cab., x, p. 38, 1788. $=\mathrm{R}$. curvirostris, Lam.

127
Marginatus (Strombus), Linn. Syst. Nat., p. 1209, . . 116
Marmoreus (Murex), Jonston. Hist. Nat., pl. 2, f. 3. $=$ Strombus pugilus, Linn.

109
Martinii (Rostellaria), Marrat. Jour. of Conch., i, p. 244, pl. 1 .

128
Mauritianus (Strombus), Issel. Malak. Mar. Rosso., p. 130. $=\mathrm{S}$. gibberulus, Linn.121

Mauritianus (Strombus), Lam. An. s. Vert., ix, p. 699, . 12:
Mauryna, Gregorio, 1880. Fischer, Man. de Conch., 673, . 103
Melanocheilus (Rostellaria), A. Ad. Proc. Zool. Soc., 1854, p. $42 .=$ R. fusus, Linn., var. 128

Melanostomus (Strombus), Swains. Ex. Conch., p. 10, t. 47. = S. auris-Dianæ, Linn., var. 113
Melaptera, Piette, $1876 .=$ Phyllocheilus, Gabb, . 102
Microscopica (Struthiolaria), Gray. Zool. Beechey. Voy., p. 108,134

Milleperla (Pterocera), Limm. Syst. Nat. (12th ed.), p. 1208, 125
Millipes, Klein. Ostrac., 99, 1753, 101, 125
Minimus (Strombus), Linn. Mantissa., p. 549, . . . 117
Mirabilis (Strombus), Sowb. Proc. Zool. Soc., 1870, p. 25 7, pl. xıi, f. $4 .=$ S. Listeri, Gray, 114
Mirabilis (Struthiolaria), Smith. Ann. Mag. N. H., 4th ser.,
xvi, 1. 67.1875 ; 'Trans. Roy. Soc., 168, p. 170, pl. ix, f. 3, 134
Mitræfusus, Bellardi. Moll. foss. Piem., 1871, . . . 102
Monucyphus, Piette, 1876, 104
Monodactylus, Klein. Ostrac , 98, 1753, . . . 101, 112
Multipes (Pterocera), Desh. Lamarck, ©d. 2, ix, 67%. $=P$. violacea, Swains.125
Mutabilis (Strombus), Swain. Zool. Illus., t. 71, f. 1. $=\mathrm{S}$. floridus, Lam. 119
Nebulosum (Terebellum), Blainv. Dufo., Ann. Sc. Nat., 1840, p. 178. = 'T'. subulatum, Lam. 131
Norlosa (Pterocera), Swains. Brog., Enc. Meth., pl. 410 , 2. $=P$. scorpio, Linn. 125
Norlosa (Struthiolaria), Gray, in Yates' N. Zėal., p. 308. = S. papulosa, Mart. 133PAGE.
Nodulosa (Struthiolaria), Lam. An. s. Vert., 2d ed., ix, p. $534 .=$ S. papulosa, Martyn, 133
Norr.Zelandiæ (Strombus), Chemn., x, pl. 156, f. 1485- 1486. S. Pacificus, Swains. 114
Novem-dactylis instructus (Pterocera), Chem. Conch. Cab., $\mathrm{x}, \mathrm{p} .207$, pl. 155, f. 1479-1480. = P. elongata, Swains., 125
Oblita (Struthiolaria), Sowb. Tank. Cat., App., p. xviii, $=$ S. scutulata, Mart. 134
Occidentalis (A por 133
Olydius (Strombus), Duclos. Chenu, Illast. Conch., 4, t. $\dot{5}$, f. 7. $=$ S. dentatus, Limn. 119
Oncoma, Marer. Bull. Soc. Geol. France, [3], iv, 1876 , 101
Orientalis (Strombus). Jonston. Nat. Hist., pl. 11, f. 2 ; Chenu, Jll. Conch., t. 18, f. 1, 2. $=$ S. tricomis, Lam. 112
Orosminus (Strombus), Duclos. Chenu, Conch. Illus., 6, t. $10, \mathrm{f} .10,11 .=\mathrm{S}$. columbı, Linn. 115
Orthaulax, Gahb. Trans. Amer. Philos. Soc., xv, 234, 1873, 103
Pacificus (Strombus , Swains. Ex. Conch., p. 10, t. 17. 113
Papilio (Strombus), Chemn. Conch. Cab., x, t. 158, f. 1510 and 1511 ; Dillwyn., Desc. Cat., ii, 661. 110
Papillosa (Struthiolaria), Gray. Guide Moll. B. Mus., p. 76. $=$ s. papulosa, Mart. 133
Papulosa (Struthiolaria), part, Desh. An. s. Vert. $=\mathrm{S}$. gigas, Sowb. 133
Papulosa (Struthiolaria). Martyn. Univ. Conch., 1784.pl. 54, 133
Pelicaria, Gray. Guide to the Moll. B. Mus., p. i7, 1857. 105,134
Pentadactylus (Cochlea), Pliny. $=$ Aporrhais pes-pelicani, Linn. 131
Pereiræa, Crosse. Jour. de Conch., xv, 464, 1867, 101
Perissoptera, Tato. Geol. and Nat. Hist. Repertory, 1860. $=$ Anchura, Con. Gabb, A. J. C., iv, 145 , 105
Persicus (Strombus), Swain. Zool. Ill., pl. 53. $=\mathrm{S}$. fasciatus, Born. 120
Pertinax (Strombus), Duclos. Chenu, Illus. Conch., lō, t. 29, f. $1,2 .=$ S. tricornis, Lam. 112
Peruanus (? Strombus), Anton. Verz. 85; No. 2810, 1839, 122
Peruvianus (Strombus), Swain. Zool. Illns., pl. 39. Kobelt, 50. Reeve, 6. Sow., 110. Kiener, viii and xxxiv, f. l, var. 112
Pes-carbonis (Aporrhais), Forbes and Hanley (non Broug.). Brit. Moll. = Rostellaria Serressiana, Mich. 132
Pes-pelicani (Rostellaria), Linn. Syst. Nat. (12th ed.), p. 1207, 131

PAGE.

Pes-struthiocameli (Murex), Chemn. Conch. Cab., x, f.
$\quad 1520-1521 .=$ S. papulosa, Martyn, . . . 133
Phyllocheilus, Gabb. Am. Jour. Conch., iv, 140, 1868, . 102
Platyoptera, Conrad. Proc. Phila. Acad., 257, 1855. $=$ Rostellaria, Lam.

102
Plicatus (Strombus), Lam. An. s. Vert., ix. p. 706, . . 119
Polydactylus (Alata), Mart. Conch. Cat., iii, p. 160, pl. 88, f. 861-8tie. = Pterocera millipeda, Linn.

125
Polyfasciatus (Strombus), Chemn. Conch. Cab., x, t. 155,
f. $1483-84 .=$ S. fasciatus, Born.
Ponderosus (Strombus), Philippi. Abb. i, taf. 2, 3, . . 111
Powisii (Rostellaria), Petit. Mag. de Zool., 1842, pl. 53, . 128
Pseudo-scorpio (Pterocera), Lam. An.s Vert. (Desh. ed), ix, p. 674,

125
Pterocera, Lamarck. Prorlr., 1799, 101, 123
Pterocerella, Meek. Check List Invert. Foss., 36, 1864, . 104
Pterodonta, d’Orb. Pal. Franc. Terr. Crét., ii, 320, . . 103
Pusilis (Strombus), Limn. Syst. Nat.. p. 1207, . . . 109
Pugnellus, Conrad. Jour. Plilad. Acad. [2], iv, 1860, . 1fl
Pulchellus (Strombus), Reeve. Conch. Ic., 52, 1851. $=\mathrm{S}$. rentatus, Linn., var.

119
Punctatum (Terebellnm), Chemn. Conch. Cab., x, 124.
$=$ T. subulatum, Lam.
. . . 131
l'urpurascens (Pterocera), Swains. Sowb., Thes., 43. $=$ P. violacea, Swains. 125
P'usillus (Strombus), Anton. Verz., 86, No. 2812, 1839, . 122
Pyramis, Bolten. Mus. Bolt., 1798.
$=$ Strombus, Linn., juv. 100
l'yrulatus (Strombus), Lam. An s. Vert., ix, p. 696.
$=$ S. alatus, Gm. $. ~ . ~ . ~$ 09
Quadratus (Strombus), Perry. Conch., t. xii, f. I.
$=$ S. bituberenlatus, Lam. . . 112
Quadrifidus (Rostellaria), Da Costa. Brit. Shells.
$=$ Aporrhais pes.pelicani, Linh. 131
Radians (Strombus), Duclos. Chenu, Illust. Conch., 5, t. 4, f. 15.16 . $=$ S. urceus, Linn118

Raninus (Strombus), Gmel. Syst. Nat., p. 3511. $=\mathrm{S}$. hituberculatus, Lam.
Rectirostris (Rostellaria), Lam. An. s. Vert. (Desh. ed.),
p. $1655 .=$ R. fusus, Limn. . . . 128
Rhodostomus (Strombus gibberulus, var.), Mörch. Decken, Reisen, iii, I, 64. = S. gibberiilus, Linn.
Rimella, Agassiz. Sowb., Min. Conch. ed. Germ., 137, 1840,
PAGE.
Robusta (Pterocera), Swains. Ex. Conch., p. 32, 1833, 126
Robustus (Strombus). Sow. Proc. Zool. Soc., 1874, p. 599, pl. 72, f. $3,3 a=$ S. marginatus, Linn. 116
Rostellaria, Lam. Prodr., 1799, 102, 127
Rostellum, Montfort. Conch. Syst., ii, 518, 1810. $=$ Rostellaria, Lam., 1799, 102
Rugosa (Pterocera), Sorrb. Thes. Conch.. pt.2, t. 11, f. 9, 10, 126Rugosus (Strombus), Sowb Tank. Cat. App., p. 20.$=$ S. dentatus, Linn., var.119
Rüppellii (Strombus), Reeve. Conch. Ic., 13, 1850. $=\mathrm{S}$. dentatus, var. erythrinus, 119
Samar (Strombus), C'hemn. Conch. Cab., x, t. 157, f. 1503 ; Dillw. Cat.. ii, 674, 121
Samarensis (Strombus), Reeve. Conch. Ic., xix, f. 53. $=$ S. Samar, Chemn. 121
Scalariformis (Strombus), Duclos. Mag. Zool., p. 27, t. 27, 1833. 120
Scorpio (Pterocera), Linn. Syst. Nat., 12th ed., p. 1208, 125
Scutulata (Struthiolaria), Hutton. Cat. Mar. Mol. N. Z., Jour. de Conch . 25. 1872. $=$ S. vermis, Martyn, 133
Scutulata (Struthiolaria), Martyn. Univ. Conch., pl. 55. 134
Sebæ (Pterocera', Viten. Kiener, Iconog., t. 2, t. 4, f. 2. $=\mathrm{P}$. bryonia, Gmelin, 124
Semilunare (Chiropteron), Sars. Beskrivelser og Jag 1835, t. 14, f. 38 ; Mïrch, Ann. Mag. N. H., 1865, xvi, p. 78. ? = Larva of Aporrhais, 132
Senegalensis (Aporrhais), Gray: Ann. and Mag. N. H., 1838, i, p. 27. 132
Septimus (Strombus), Duclos. Chenu, Ill. Conch., 7, t. 13, f. 9,$10 ;$ t. 15 , f. $11 ;$ t. 26, f. $2 .=$ S. succinctus, L., var. 117Scraphs, Montfort. Conch. Syst., ii, 374, 1810.$=$ Terebellum, Klein, Sect.103
Serrata (Rostellaria), Perry. Conch., t. 11, f. 2. $=\mathrm{R}$. fissa, Dillw. 128
Serresianus (Aporrhais), Mich. Bul. Soc. Linn. Bord., 2, p. 120, f. 3-4. 1828, 132
Sibbaldi (Strombus), Sowb. Thes., t. 7, f. 10-11. 118
Sloanii (Strombus), Leach. Miscel., pl. 22, f. 1. $=\mathrm{S}$. pugilis, Linu., var. 109
Sowerbyi (Pterocera), Möreh. Jour. de Conch., 18i2, p. 131. $=\mathrm{P}$. bryonia, Gmel. 124
Speciosa (Rimella), H. and A. Ad. Proc. Zool. Soc., 1863, p. 428, 129
Spinigera, d'Orb., 1850. Gabb, A. J. C., iv, 141, 105PAGE.
Spinosa (Vespertilio). Seba. Mus. $=$ Rostellaria pes-pelicani, Linn. 131
Stramineus (Murex), Gmelin. Linn., Syst. Nat., 13 th ed. $=$ S. papulosa, Martyn, 133
Striatogranosus (Strombus), Mörch. Martens, Mauritius, 277. = S. auris-Dianæ, Linn. 113
Strombidæ (Family), 99
Strombidea, Swainson. Malacol., 140, 310, 1840. $=$ Canarium, Schum. 101
Strombinæ (Subfamily), 99
Strombolaria, Gregorio, 1880, 102
Strombus, Linn. Syst. Nat., 742, 1758. 100,106
Struthiolaria, Lamarck. Extr. d'un Cours, 1812. 105,133
Struthiolariinæ, 100
Subulata (Rostellaria), Schum. Essai Nouv. Syst. $=\mathrm{R}$. fusus, Linn. 128
Subulatum (Terebellum), Lam. An. sans Vert. (edit. Desh.), x, 584, 131
Subulatus (Strombus), Herbst. Hist. Verm., t. 48, f. 8. $=\mathrm{S}$. fasciatus, Born. 120
Succinctus (Strombus), Linn. Syst. Nat., p. 1212, 116
Sulcata (Struthiolaria), Jonas. Arch. f. Nat., 1839, i, p. 342,pl. ix, f. 5. = S. gigas, Sowb. .134
Sulcatus (Strombus), Anton. Verz, 85, No. 2798. $=$ S. alatus, Gm. 109
Sulcatus (Strombus), Chem. Couch. Cab., xi, t. 195, f. 1870-71. = S. vittatus, Linn. 114
Swainsonii (Strombus), Reeve. Conch. Ic., 28. $=\mathrm{S}$. dilatatus, Swain. 115
Tæniata (Strombus), Quoy. Toy. Astr., ii, t. 5l. f. 14-15. $=$ S. Isabella, Lam. 110
Tankervillii (Strombus), Swains. Teste Reere, Icon., f. 26. $=$ S. columba, Lam. 115
Taurus (Strombus), Reeve. Proc. Zool. Soc., 1857, p. 207, t. 37, f. 3, 111
Terebellatus (Strombus), Sowb. Thes., pl. 9, f. 84, 85, 121
Terebellopsis, Leymerie. Bull. Soc. Geol., 1844, 103
Terebellum, Klein. Tent. Ostrac., 3S, 1753, 103, 130
Terebellum (Bulla), Linn. Sy̌st. Nat., p. 1185.$=$ Terebellum punctatum, Chemn.131
Tessarolax, Gabb. Geol. Survey Cal., 1864, 104
Thersites (Strombus), Gray. Sow., Thes., pl. 10, f. 109, $=$ S. ponderosus, Phil. 111
Tricornis (Strombus), Lam. An. s. Vert., ix, p. 689, 112
PAGE.
Tridactylus, Gardner. Geol. Mag., 1875. $=$ Dicroloma, Gabb. 105
Tridentatus (Strombus), Lam. An. s. Vert., ix, p. 704. $=$ S. Samar, Chem. 120
Troglodytes (Strombus), Lam. An. s. Vert., ix, p. 703. $=\mathrm{S}$. minimus, Linn 117
Truncata (Pterocera), Lam. An. s. Vert., vii, p. 195. $=\mathrm{P}$. bryonia, Gm. 124
Tubercularis (Strombus), Anton. Verz., 86, No. 2813, 1839, 122
Turritus (Strombus), Lam. An. s. Vert., ix, p. 706. $=$ Var. S. vittatus, Limn. 114
Tyleri (Rimella), H. and A. Adams. Proc. Zool. Soc., 1863, p. 428, 129
Undulatus (Strombus), Chemn. Kuster, t. 4b, f. 3-4. $=\mathrm{S}$. alatus, Gm 109
Unicornis (Strombus), Dillw. Desc. Cat. $=$ Rostellaria fusus, Limn. 128
Urceus (Strombns), Limn. Syst. Nat., p. 1212, 118
Urceus (Strombus), var. Schreiber's Conch., i, p. 187.$=$ S. dentatus, Limn.118
Ustulatum (Canarium), Schum. Nouv. Syst., p. 219, 1817. $=$ Strombus urceus, Linn. 118
Vanicorensis (Strombus), Quoy. Voy. Astr., t. 51, f. 7-9. $=$ S. canarium, Linn. 110
Variabilis (Strombus), Swains. Zool. Ill., i, t. 10, 117
Ventricosus (Fusus), Humph. Mus. Calonn., p. 35. $=$ Rostellaria curvirostris, Lam. 127
Vermis (Struthiolaria), Martyn. Univ. Conch., pl. 53, 133
Vermis (Struthiolaria), Reeve. Conch. Icon., f. 4. $=$ S. gigas, Sowb. 133
Violacea (Pterocera), Swains. Exot. Conch. App., 33, 125
Vittatus (Strombus), Linn. Syst. Nat., p. 1211, 114
Yoldii (Pterocera), Mörch. Yoldi Cat., p. 60, 1852, 126

REFERENCE TO PLATES.

STROMBIDÆ.

Plate 1.

figure PAGE.

1. Strombus floridus, Lam. Dentition. Fischer, Manuel de Conch., f. 428 , p. 669 , 99
2. Strombus gigas, Linn. Chenu, Manuel de Conch., i, f. 1570 , 107
3. Strombus gigas, Linn. Sowb., Thes. Conch., f. 117, 107
4. Strombus gigas, juv. Kiener, Icon., t. 33, f. l, 107
5. Strombus Goliath, Chemn. Sowb., Thes. Conch. f. 118, 107
6. Strombus galeatus, Swains. 'Thes. Conch., f. 114 , 108
7. Strombus accipitriuus, Lam. ($=$ costatus). Reeve, Conch. Icon., f. 12, 108
8. Strombus inermis, Swains. ($=$ costatus). Sowb., Thes. Conch., f. 118, 108
9. Strombus alatus ($=$ pugilis, var.). Sowb., Thes. Conch., f. 75 , 109
10. Strombus pyrulatus, Lam. (= alatus). Thes. Conch., f. 72 , 109Plate 2.
11. Strombus bubonius, Lam. Reeve, Icon., f. 27 , 108
12. Strombus integer, Swains. Lister. Hist. Conch., t. 856, 108
13. Strombus pugilis, Linn. Sowb., Thes., f. 74, 109
14. Strombus pugilis, Linn. Sowb., Genera, t. 10, f. 2, 109
15. Strombus pugilis, Linn. Chenn, Manual, f. 1582 , 109
16. Strombins dubius, Sowb. (= pugilis). Thes. Conch., f. 80 , 109
17. Strombus gracilior, Sowb. Thes. Conch., f. 73, 109
18. Strombus canarium, Linn. Kiener, Icon., t. 29, f. 1 a, 110
19. Strombus canarium, Linn. Quoy, Voy. Astrol., t. 51, f. 10 , 110
20. Strombus Isabella, Lam. (= canarium, var.). Kiener, Iconog. .t. 25, f. 2, 110

Plate 3.

figure. page.21. Strombus tæniata, Quoy (= Isabella). Voy. Astrol.,t. 51, f. 14,110
22. Strombus granulatus, Gray. Reeve, Conch. Icon., f. $32 a$, 110
23. Strombus lentiginosus, Linn. Sowb., Thes. Conch., f. 79 110
24. Strombus lentiginosus, Lim. Kiener, lcon., t. 18, f. 1, 110
25. Strombus papilio, Dillw. Sowb., Thes. Conch., f. 44 , 110
26. Strombus laciniatus, Dillw. Reeve. Conch. Icon., f. 25, 111
27. Strombus latissimus, Limu. Sowb., Thes. Conch., f. 112, 111
28. Strombus Thersites, Gray (=ponderosus, Phil.). Sowb., Thes. Conch.. f. 109, 111
29. Strombus Peruvianus, Lam. Chenu, Manuel, f. 1587, 112
30, 31. Strombus tricornis, Lam. Kiener, Iconog., t. 7; t. 33, f. 3 112
Plate 4.
32. Strombus lobatus, Swn. ($=$ bituberculatus, Lam.). Thes. Conch., f. 76, 112
33. Strombus bituberculatus, Lam. Reeve, Conch. Icon., f. $30 b$, 112
34. Strombus taurus, Reeve. Zool. Proc., t. 37, f. 3, 1857, 111
35. Strombus gallus, Linn. Reeve, Conch. Icon., f. 18, 113
36. Strombus gallus, Limn. Kiener, Iconog., t. 33, f. 2, 113
37. Strombus auris-Dianæ, Linn. Sowb., Thes. Conch., f. 88, 113
38. Strombus melanostoma, Swn. (= auris-Diauæ; var.), Thes. Conch., f. 89 , 113
39. Strombus Paciticus, Swn. Sowb., Thes. Conch., f. 86, 113
40. Strombus anstralis, Sowb. (=Pacificus, Swn.). Thes. Conch, f. 97, 114
41-43. Strombus vittatus, Linn. Thes. Conch., f. 28, 29, 30, 114
44. Strombus sulcatus, Chemn. (=vittatus, Linn.). Küster, Monog., t. 13. f. 8, 114
45. Strombus mirabilis, Sowb. ($=$ Listeri, T. Gray). Zool. Proc., t. 21, f. 4, 1870, 114
Plate 5.
46. Strombus Campbelli, Gray. Reeve, Conch. Icon., f. 45, 1 115
47. Strombus Swainsoni, Rve. (=dilatatus, Swn.). Conch.Icon., f. 28 b,115
48. Strombus Japonicus, Reeve. Conch. Icon., f. 42 , 115
49. Strombus columba, Lam. Reeve, Icon., f. $26 b$, 115
50. Strombus orosminus, Duclos (= columba). Chenu, Conch. Illust., t. 10, f. 11, 11.5
FIGURE. page.
51. Strombus labiosus, Gray. Reeve, Conch. Icon., f. 50, 116
52. Strombus deformis, Gray. Conch. Icon., f. $55 b$, 116
53. Strombus marginatus, Linn. Reeve, Conch. Icon., f. 49 , 116
54. Strombus robustus, Sowb. (= marginatus). Zool.Proc., t. 72, f. 5 a, 1874,116
55. Strombus epidromis, Linn. Kiener, Iconog., t. 26, f. 1, 116
Plate 6.
56. Strombus succinctus, Linn. Conch. Icon., f. 43, 116
57. Strombus septimus, Duclos (=succinctus, var.). Chenu, Conch. Illust., t. 13, f. 9, 117
58. Strombus fusiformis, Sowb. Kiener, Iconog., t. 28, f. 2, 117
59, 60. Strombus variabilis, Swn. Reeve, Icon., f. $21 c, a$, 117
61. Strombus athenius, Duclos ($=$ variabilis). Chenu, Illust., t. 11, f. 2, 117
62. Strombus troglodytes, Lam. ($=$ minimus, L.). Kiener, Iconog., t. 31, f. 2, 117
63. Strombus Sibbaldi, Sowb. Reeve, Conch. Icon., f. 48, 118
64. Strombus deformis, Kiener ($=$ Sibbaldi). Kiener, Iconog., t. 32, f. 2, 118
65, 66. Strombus urceus, Linn. Conch. Icon., f. $24 b, c$, 118
67. Strombus anatellus, Ducl. ($=$ urceus). Chenu, Conch., Illust., t. 21, f. 9, 118
65. Strombus olydius, Ducl. (= dentatus). Chenu, Illust, t. 5, f. 7 , 118
69. Strombus Rüppelli, Reeve (= erythrimus). Conch. Icon., f. $13 a$, 119
70. Strombus pulchellus, Reeve (三dentatus, var.). Conch. Icon., f. 52, 119
Plate 7.
67. Strombus radians, Ducl. ($=$ dentatus). Chenu, Conch. Illus., t. 4, f. 16 , 118
68. Strombus dentatus, Linn. Conch. Icon., f. 17 , 118
69. Strombus dentatus, Limu. Chenu, Conch. Illus., t. 5, f. 6 , 118
70. Strombis plicatus, Lam. Kiener, Iconog., t. 31, f. I. 119
71. Strombus elegans, Sowl). (=erythrinus). Reeve, Conch. Icon., f. 41 a, 119
72. Strombus corrugatus, Ad. and Reeve ($=$ dentatus, var.). Toy. Samarang, t. 10, f. 19, 119
73. Strombus floridus, Lam. Reeve, Conch. Icon., f. $11 a$, 119
74. Strombus floridus, Lam. Kiener, Iconog., t. 32, f. 1,$1 c, 1 a$,119
figure. PAGE.
77. Strombus ismarius, Ducl. (=f fasciatus). Chenu, Conch. Illust., t. 7, f. 2, 120
78. Strombus hæmastoma, Sowb. Reeve, Conch. Icon., f. $5 b$, 120
79. Strombus hellii, Rousseau. Kiener, Iconog., t. 13, f. 2 120
80. Strombus epimellus, Ducl. (=floridus). Chenu, Illus., t. 16, f. 12 , 119
81. Strombus scalariformis, Ducl. Kiener, Iconog., t. 14, f. 3, 120
82. Strombus fasciatus, Born. Kiener, Iconog., t. 30, f. 1, 120
83. Strombus epimellus, Ducl. ($=$ floridus). Chenu, Conch. Illust., t. 22, f.' 6, 119
84. Strombus maculatus, Nuttall. Reeve, Conch. Icon., f. 23 , 120
Plate 8.
85. Strombus gibberulus, Linn. Kiener, Iconog., t. 28, f. 1, 121
86. Strombus bulbulus, Sowb. Reeve, Conch. Icon., f. 8 a, 121
87. Strombus terebcllatus, Sowh. Conch. Icon., f. $10 a$, 121
88. Strombus Samar, Chemn. Reeve, Conch. Icon., f. 53 b, 121
89. Strombus Mauritianus, Lam. Sowb., Thes. Conch., f. 59 , 122
90. Strombus coniformis, Sowb. ($=$ Mauritianus). Thes. Conch., f. 55, 122
91. Strombus Luhuanus, Linn. Thes. Conch., f. 54, 122
92. Strombus Luhuanus, monstrosity. Amn. Soc. Mal. Belgique, x, t. 2, f. 1. 122
1, 2. Pterocera lambis, Linn. Thes. Conch.. f. 5, 7, 124
3. Pterocera lambis, Linn., juv. Kiener, Iconog., t. 9, f. 2 , 124
4. Pterocera truncata, Lam. (= bryonia), Gmel.). Ibid., t. 1, f. 1, 124
Piate 9.
5. Pterocera aurantia, Lam. Kiener, Iconog., t. 7, 124
6. Pterocera scorpio, Linn. Reeve, Icon., f. 3, 125
7. Pterocera pseudoscorpio, Lam. Reeve, Icon., f. 4 125
8. Pterocera truncata, Lam. (= bryonia), Gmel.). Thes. Conch., f. 13, 124
9. Pterocera millepeda, Linn. Kiener, Iconog., t. 9, f. 1, 125
10. Pterocera elongata, Swainson. Chenu, Manuel, f. 1617, 125
11. Pterocera multipes (=violacea, Swn.). Chenu, Manuel, f. 1614 , 125

Plate 10.

figure. page.
12. Pterocera chiragra, Chenu (= rugosa, Sowb.), Chenu, Manuel, f. 1612, 126
13. Pterocera chiragra, Linn. Sowb., Thes. Conch., f. 12, 126
14. Rostellaria curvirostris, Lam. Thes. Conch., t. 5, f. 9, 127
15. Rostellaria curta, Sowb. ($=$ curvirostris, var.). Thes. Conch., t. 5, f. 7 , 127
16. Rostellaria luteostoma, Angas (= curvirostris, var.). Zool. Proc., t. 18, f. 8, 1878, 127
17. Rostellaria rectirostris, Lam. ($=$ fusus, Linn). Thes. Conch., t. 5, f. 8 , 128
18. Rimella fissurella (= cancellata). Thes. Conch., t. 8, f. 65 , 129
19. Rimella crispata, Sowb. Thes. Conch., t. 8, f. 62. 129
20. Rimella cancellata, Lam. Reeve, Rostellaria, f. 10 b, 129
Plate 11.
21. Rostellaria rectirostris, var. melanostoma, Sowb. Thes. Conch., t. 5, f. 10 , 128
22. Rostellaria Powisii, Petit. Recve, Icon., f. $4 b$, 128
23. Rostellaria Favannii, Pfr. (= fissa, Dillw.). Kiener, Iconog., t. 3, f. 2. 128
24. Rostellaria Martinii, Marrat. Jour. of Conch., i, t. 1, 128
25. Aporrhais pes-pelicani, Linn. Troschel, Gebiss, i, t. 17, f. 3 , 99
26. Rostellaria curvirostris, Lam., juv. Thes. Conch., t. 5, f. 11, 127
27. Terebellum subulatum, Lam. Voy. Samarang, t. 9, f. 6, 131
28-30. Terebellum subulatum, Lam. Reere, Icon., f. 1, b. $9, \mathrm{f}$. 131
Plate 12.
31. Aporrhais pes-pelicani, Linn. Reeve, Rostellaria, f. $3 a$, 131
32. Aporrhais pes-carbonis, Rve. (=Servesianus). Ibid., f. $1 b$, 132
33. A porrhais occidentalis, Beck. Ibid., f. $6 b$, 133
34. Struthiolaria straminea, Sowb. (=papulosa). Thes. Conch., t. 5, f. 18. 133
35. Struthiolaria crenulata, Lam. (= vermis, var.). Kiener, Iconog., t. 2, f. 3, 133
36. Struthiolaria inermis, Sowb. (=vermis). Thes. Conch., f. 12 , 133
37. Struthiolaria gigas, Sowb. Thes. Conch., t. 5, f. 17. 133
figure. PAGE.
38. Struthiolaria sulcata, Jonas ($=$ gigas). Archiv fiir Naturg., t. 9, f. 5, 1839, 134
39, 40. Struthiolaria oblita, Sowb. (= scutulata). Thes. Conch., f. 15, 14, 134
41. Struthiolaria mirabilis, Smith. Trans. Roy. Soc., clxviii, t. 9, f. 3, ? 134
42. Struthiolaria costulata, Martens. Fischer, Man. de Conch., f. 442, 99

MONOGRAPH OF THE FAMILY CYPR $\mathbb{E I D} \mathbb{E}$.

Prepared expressly for the "Manual of Conchology,"

BY S. ${ }^{\text {RAYMOND ROBERTS, }}$
Member of the Conchological Section of the Academy of Natural Sciences of Philadelphia.

Family C YPReid E.
 (Cowries.)

Animal having tentacles usually long and stout, the eyes situated on a thickened portion about one-third the distance from the base; mantle produced into two lobes capable of covering the shell, and furnished with warts, or forked or pointed filaments, sometimes papillose as in Trivia.

Head obtuse, cylindrical; siphon broad, short, sometimes fringed at the edge or bordered with papillæ similar to those on the mantle; foot large, simple, oblong-orate, in ample folds, more or less acuminated at the extremities, sometimes truncate in front; in Trivia it extends posteriorly far beyond the shell and terminates obtusely.

Color of mantle extremely variable; foot, head and siphon usually pale orange.

Individuals bisexual ; male organ very large.
Lingual riband rather long, with seven series of teeth, arranged $3 \cdot 1 \cdot 3$, each row being composed of one broad quadrate uncinated rachidian tooth tlanked on each side by three hooked laterals (P1. 15, fig. 8; Pl. 20, tig. 41). Jaw corneous (Pl. 20, fig. 64).

No operculum.
Shell ovate, varying from cylindrical to pyriform, sometimes ribbed or pustulate, but mostly smooth and possessing a high
polish and brilliant coloring; spire nearly, if not entirely, covered by the body-whorl which envelops it; aperture nearly central, narrow and longitudinal; lip and columella more or less toothed the entire length ; occasionally, but rarely, withont teeth.

The young shell differs in being Bulla-shaped; the columella is smooth, the onter lip thin, and the color diffused in hands or waved lines. As the animal grows, the lip and columella thicken, teeth begin to develop and the shell becomes more solid. The two unequal lobes of the mantle extend one from either side of the aperture, and meet upon the dorsal surface of the shell, producing at the point of, contact what is known as the " dorsal line" or "sulcus." The function of the mantle is to deposit the calcareous substance which forms the richly colored enamel of the shell.

The cowries are shy and move slowly; they inhabit the warm seas of the tropics, though a few species occur farther north, notably Trivia Europra, which has been found on the coast of Norway, and is abundant on the shores of Great Britain, ranging from the verge of low-water to as deep as fifty fathoms. The highest northern station on the west coast of America, at which any representation of the Cyprridre has been detected, is Bodega Head, Cal., in lat. about 38° north (Stearns).

They feed largely upon coral animals. Those found on some of the islands near New South Wales are usually seen lying upon deep beds of dead shells of the genus Pectunculus. Fossil, the Cypræidæ commenced in the Cretaceous, and have augmented in the number of species to the present time. One species is reported from the Upper Jurassic of Sicily. From the fact that in many species of Cyprea small shells are found fully adult, while larger examples appear less matured, theories about casting or dissolving and renewing the shell at different periods of the animal's existence have been advanced by several eminent authorities. Bruguière first expressed this opinion. His belief was that the animal left its shell to form a new one, after the manner of crabs. Lamarek coincided with this view, but Deshayes doubted the ability of the animal to secrete a new shell complete in all parts, after it had reached an advanced condition of existence, and considered the difference in size was
due to local influences. In 1844 Lient. J. B. Hankey, of the English Nary, in a letter to Lovell Reeve, stated that he saw the cowry dissolve its shell and in a short time secrete a thin layer of glutinous matter, which in a few days attained the consistency of shellac, its form being that of the Cymba. In consequence of this extreme fragility, he was not able to preserve any of the specimens.

Unfortmately this observer does not say anything regarding the interior structure of the renewed shell, neither has there been any new light thrown upon this important matter by later writers, and the only literature referring to the subject is that the substance of which is here given.

While the statement of Lieut. Hankey is strong evidence, and it is a recognized fact that the cowry, like many other mollusks, does dissolve away portions of the interior structure of its shell when more room is wanted, yet I am not prepared to fully accept his statement, but rather faror the views expressed by Deshayes and attribute the difference in size to local causes. Possibly the larger shells may be those of the female.

The cowries are generally the first to attract the attention of the amateur, mainly on account of their rich and brilliant coloring ; and examples of the commoner species, principally C. tigris, manufactured into a great variety of articles, are to be found in many households. The natives of the Orient, especially those belonging to the South Pacific Islands, use them largely for: personal adormment. In Intia they are used as trimmings to rarious trappings for elephants and horses. The Cyprea moneta, or money-cowry, sometimes called the "prop shell," passes current almost exclusively in some parts of Africa. For this purpose many tons have been slipped from the Indian Ocean, where the shell occurs abundantly. Mr. John C. Hertz has published a memoir in the "Transactions of the Geographical Society of Hamburg," on the use and diflusion of the cowry shell as a medium of exchange. His father dispatched a vessel to the Maldive Islands in 1844, for a cargo of cowries to be sold to merchants for use in the West African trade. Not finding as many shells there as they had anticipated, they completed their cargo with the larger and less valuable species of Zanzibar, where the cowries are burned into lime. Several cargoes of cowries were sent annually to Whydah and Lagos, where they
were exchanged with the slave-traders for the Spanish doubloons they received from the sale of slaves. The Hamburg shipcaptains dispatched this money home from Cape Town. The cowry-trade continued to extend as the slave-trade flourished, till Brazil took measures to prevent the introduction of African slaves. Simultaneously with the extinction of the slave-trade began the introduction of palm-oil, and a new trade, in which that product took the place of the Spanish doubloons, that grew as the use of palm-oil was extended. It flourished greatly during the Crimean War, when the Black Sea tallow was excluded from the markets. With it also flourished the trade in cowries, which thus appears to be connected with so many historical events that, considered from that point of view, it may be regarded as in some sort a measure of historical developmenta view which received another exemplification in 1859, when England blockarled the coast of Dahomey, and the trade in cowries was stopped. In 1845 the Sultan of Bornoo reformed his currency, and introduced Spanish doubloons in place of the cotton-cloth that had hitherto served as money, with cowries, at the rate of four thousand to the dollar, for small change. A large demand for cowries sprang up, and the trade in them was stimulated to such an excess that the market was glutted, and it afterward languished for several years. The present demand is quite lively. The cowry-shell is used as currency principally in the countries near the Niger, except in Ashantee, where gold-dust is the medium of exchange. North of Ashantee, gold-dust and the gera or cola-mnt (Sterculia acuminata) are used with cowries, a load of sixty pounds of the nuts being considered equivalent in value to about fifteen thousand cowries. The shells have been used as a medium of exchange from a high antiquity. Marco Polo found them circulating in Yunnan in the thirteenth century; and they have been discovered in prehistoric graves in the Baltic countries. Dr. Ruschenberger, U. S. N., says they are not used as money in the Maldive Islands.

On the authority of Mr. P. L. Simmonds, in "The Commercial Products of the Sea," a young wife in Africa costs from 60,000 to 100,000 shells, while an ordinary one may be had for 20,000 , valuing the shells at abont 4000 to the dollar. It is also

- stated that a house built by an English gentleman, in Cuttack, was paid for in cowries, sixteen millions being used.

In order to give some idea of the prices paid for the rarer species of Cyprea, it is reliably stated that the second specimen of C. umbilicata sent home by the collector, Mr. Roland Gunn, of New South Wales, was sold for $£ 30$. Good specimens can now be had for about $\$ 2.50$ each.

A specimen of C. guttata, of which the Philadelphia Academy of Natural Sciences possesses a fine example, was sold at auction a few years ago, and cost the purchaser $£ 42$. This species is still extremely rare. Other species range in price from $\$ 2.50$ to $\$ 25.00$ each : notwithstanding this, a good collection of the species can be obtained at a cost not exceeding $\$ 25.00$.

A number of monographs and catalogues of the Cypreidæ have been published, the most important being the following :-

Gray. J. E.-Zoological Journal, 1824 to 1829. A monograph, including 113 species, some of which are figured.

Descriptive Catalogne of Shells, 1832, in which are enumerated and described 121 species.
Sowerby, G. B.-Conchological Illustrations, 1837. Colored figures of 143 species, a number of which are described.
Kiener, L. C.-Coquilles vivantes (no date). A monograph including 145 species with colored figures.
Reeve, Lovell.-Conchologia Iconica, 1845. Monograph with colored figures of 154 species.
Roberts,S. R.-Catalogue and Synonymy of Porcellanidæ. Amer. Jour. Conchology, r, 1869.

The species, 197 in all, are alphabetically arranged with the synonymy and bibliography fully indicated. The names proposed by authors prior to Linnæus, when binomial, are here recognized.
Sowerby, G. B., Jr.-Thesaurus Conchyliorum, 1870. Monograph, including 189 species, with colored figures.
Weinkauff, H. C.-In the Systematisches Conchilien-Cabinet of Kuister, 1881, 185 species are described and figured, the notes added to some of the descriptions being often quite comprehensive. This author also enumerates the species, with par-
tial synonymy and bibliography in the "Jahrbuicher der Dentschen Malakozoologischen Gesellschaft" for the same year.

According to Woodward, 97 fossil species have been determined.

The subdivision of the Cypraeide into groups, is attended with considerable difficulty, inasmuch as many of the species which appear distinct when the types only of each are compared, are found to be closely connected by intermediate forms. For instance, take the series of shells of which C. staphylxa and C. polita are the extreme examples:

The former is dark in color, pustulate, and the teeth extent entirely over the base of the shell, in the form of ridges, while the latter is cream-tinted, perfectly smooth, the teeth being confined to the margin of the aperture except for a short distance at the extremities of the columella, and I du not hesitate to place it in the same group with the beautiful C. Listeri, Gray. Yet it is possible to conneet them. The same may be said of many other well-recognized antipodal species. Again, local causes have produced variations in well-known species and these have received new names, thereby swelling the synonymy. This is noticeable in the case of the New Caledonian forms which frequently occur rostrate and show a tendency to melanism. Quite in contrast is this with the pale coloring exhibited in numerous Sandwich Islands specimens of other well-known species. It has been observed that the pale coloring peculiar to the shells from the latter locality, is confined to the Cyprieidie.

Of the New Caledonian forms, over forty species are found at Mauritius, and Dr. Jousseanme rematks as a consequence that this representation in so widely separated and completely isolated localities is not in accordance with the views of the advocates of geographical provinces.

Varions classifications have been proposed, the most prominent being those of Gray, H. and A. Adams, Sowerby, Troschel, Weinkauff, and Jousseaume.

Dr. Gray recognized six genera: Cypraa, Luponia, Cypreovula, Trivia, Erato, Ovulum; subdividing the first into subgenera Cyprea, Aricia, Naria. His descriptions are as follows:
I. Cypræa.

Subgenus Cyprea-Front of columella broad, deeply impressed ; shell mostly smooth.
Subgenus Aricia-Front of columella flat or nearly so, back of shell smooth.
Subgenus Naria-Front of columella narrow, dilated into a sharp toothed ridge; shell smooth.
II. Luponia-Shell like cowry, but front end of the columellar lip crossed by several irregular ridges without any distinet margiual one; internally narrow, flat, shell pearshaped, smooth or ribbed.
III. Cypreovula-Like cowry, but front end of columella covered with legular cross-rilos like rest of base, internally produced into an acute toothed ridge, shell pearshaped and ribbed.
IV. Trivia-Like Cypreovula, but front of columella internally concave, ribbed, shell subglobular, cross-ribbed.
(Lrato and Ovulum are now excluded from this family.)
The Messrs. Adams modified these groups and added others, as follows:

Cyprea, representing the cylindrical forms, with Naria as a subgenus.
Aricia, shells with flattened base.
Luponia; Cypreovula; Trivia, with Pustularia as a subgenus for pustulate forms ; and Epona.

Under this arrangement, Carneola would be entitled to a place in Aricia as well as in Cyprea.

Sowerby in "Thesaurus Conchyliorum" makes two divisions:
A. Cyprax, proper. Columella ending in a lobe and plait.
B. Cypraa, subgenus Trivia. Columella without distinct lobe or plait.
He attempts to arrange the species in the order of their nearest allies.

Dr. Troschel named two families: Cypraacea, Triviacea, basing his subdivisions upon differences in dentition; lout as these differences do not agree with those of the general characters of the shell, they need not be further considered. The first
family he subdivided into sections Cyprea, Aricia, Pustularia, and the last into Trivia and Erato. He further subdivided, Uyprea into Talparia, Tigris, Lyncina and Mauritia; and Aricia into Erronea, Erosaria and Monetaria. Erato having been monographed by Mr. Tryon with his "Margincllidæ," leaves but one section in the second family.

Weinkanff, in 1881, proposed seven divisions, viz.: Cyprea, Aricia, Luponia, Ocellaria, I'ustularia, Epona, Cypræovula. He makes Trivia a subgenus and endeavors to show how these subdivisions run into each other. While this arrangement coincides somewhat with that of Messrs. Adims, the author makes the restriction that what are called genera and subgenera, with him are simply sections to which he las subjoined the Adams' names.

He very properly remarks that Pustularia is more nearly related to Cyprea than to Trivia; and follows Sowerby in separating Ocellaria, holding that the eye-markings and, still more, the impressions upon the sides of the shell are of sufficient consequence to allow this group a separate place.

In a study of the Cypreidæ, published in the "Bull. de Soc. Zool. France," for 1884, Dr. F. Jousseaume proposes to subdivide the family into thirty-six generic groups, twenty-five of which are new to science, the remaining eleven being adaptations of those of previous authors, as follows :-

Bernaya, Jouss. (Fossil). Type B. (Cyp.) media, Desh.
Gisortia, Jouss. Types (r. (Ovula) gisortiana, Val.; G. (Cyp.) mus, Linn.

Mandolina, Bayle MSS. (Fossil). Type M. (Cyp.) gibbosa, Borson.

Zoila, Jouss. Type Z. (Cyp.) Scotti, Brod.
Mauxiena, Jonss. Type M. (Cyp.) Mauritiana, Lim.
Trona, Jouss. Type T. (Cyp.) stercoraria, Limn.
Umbilia, Jouss. Ty pe U. (Cyp.) umbilicata, Sowb.
Vulgusella, Jouss. Type V. (Cyp.) tigris, Linn. C. lynx, Linn., is here included.

Arabica, Jouss. Type A. (Cyp.) Arabica, Linn.
Cypraa, Linn. Type Cyp. cervus, Linn.

Porcellana, Klein. Type P. (Cyp.) argus, Linn.
Luria, Jouss. Type L. (Cyp.) lurida, Limn.
Luponia, Gray. Type L. (Cyp.) Algoensis, Gray.
Cypreovula, Gray. Type C. Capensis, Gray.
Zonaria, Jouss. Type Z. (Cyp.) zonata, Chem.
Adusta, Jouss. Type A. (Cyp.) adusta, Chem. = C. onyx, Linn.

Erronea, Troschel. Type E. (Cyp.) errones, Limn.
Stolida, Jouss. Type S. (Cyp.) stolida, Linn.
Cribraria, Jouss. Type C. (Cyp.) cribaria, Linn.
Naria, Gray. Type N. (Cyp.) irrorata, Sol.
Basterotia, Bayle MSS. (Fossil). Type B. (Cyp.) leporina, Lam.
Ponda, Jouss. Type P. (Cyp.) achatina, Sol. $=$ ventriculus, Lam.
Monetaria, Troschel. Type MI. (Cyp.) moneta, Linn.
Erosaria, Troschel. Type E. (Cyp.) erosa, Linn.
Staphylcea, Jouss. Type S. (Cyp.) staphylrea, Linn.
Tessellata, Jouss. Type T. (Cyp.), tessellata, Swn.
Ipsa, Jouss. Type I. (Cyp.) Childreni, Gray.
Cypredia Swainson (Fossil). Types C. (Cyp.) cancellata, Swn.; C. Adamsoni, Gray.

Pustularia, Swainson. Type P. (Cyp.) cicercula, Linn.
Nuclearia, Jouss. Type N. (Cyp.) nucleus, Linn.
Jenneria, Jouss. Type J. (Cyp.) pustulata, Lam.
Pustula, Jouss. Type P. (Cyp.) radians, Lam.
Triviella, Jouss. Type T. (Cyp.) oniscus, Lam.
Trivia, Gray. Type T. Europæa. Mont.
Niveria, Jouss. Type N. (Trivia) nivea, Gray.
Trivirostra, Jouss. Type T. (Trivia) scabriuscula, Gray $=T$. oryza, Lam.

No objection can be raised to any plan of gromping that will aid the student in his study of this family, but when it comes to giving each group a title, as has been clone in this instance, there is an unnecessary swelling of the already too large list of generic names.

In my eatalogue, published in 1869, I followed the Messrs. Adams, with the addition of the genus Gaskoinia, proposed by
me for a group of shells of which the Cyp. edentula, Gray, is the only example at present known.

With regard to Erato, although its animal possesses much in common with that of Trivia, particularly in the dentition (if correctly figured), yet I agree with Mr. Tryon that " the balance of characters seems to indicate a rather closer relationship " with Marginella, where he has placed it. At any rate, the genus is already monographed in this work, vol. v, p. 7.

Besides these, the following fossil genera have been established: Cypræorbis and Sulcoeyprea, named by Conrad, but not deseriber, and Cypredia, Swainson. Pseudocassis, Pietet, erroneonsly referred as a synonym to Gaskoinia, Roberts, in Tryon's Structural and Systematic Conchology, scarcely belongs to the family.

The following arrangement is suggested after careful study as being that best attainable by me, but on account of the great variability of form and other characters, I am convinced that no scheme of classification can be presented that will positively determine the position of all the species. In using the subgeneric terms here given, I do not recognize in them any systematic value except in the case of Trivia, which is sufliciently well characterized to entitle it to the position of a subgenus.

Genus CYPR EA, Limn.

Section 1. Shell cylindrical, or nearly so. Group A. Not margined.

* Spotted, teeth brown-tinted.
** Not spotted, teeth whitish.
Group B. Margined.
* Margins not spotted.
** Margins spotted, teeth small.
Seetion II. (Aricia, Gray, pars.)
Shell ovate, thick, margined with flattened base.
Group A. Shell smooth.
* Not spotted.
** Dorsal surface spotted.
*** Spots extending over the base.
Group B. Shell sometimes nodose or tuberculated.

Section III. (Luponia, Gray, pars.)
Shell pyriform or pyriformly ovate, usually spotted.
Group A. Shell smooth, not margined.

* More or less ventricose or inflated.
** More or less oblong or sub-pyriform.
Group B. Shell smooth, margined.
* Margins not pitted.
** Margins more or less pitted, dorsal spots usually ocellated.
Group C. (Caskoinia, Roberts.) Shell smooth, edentulate.
Group D. (Cypreovula, Gray.) Shell ribbed transversely.
Group E. (Pustularia, Swn.) Shell pustulate or norlulous.
Section IV. (Epona, H. and A. Adams.)
Shell globose, back either smooth or with elevated tubercles, extremities produced.

Subgemus Trivia, Gray.

Shell subglobular, cross-ribbed, front of columella internally concave, ribbed.

Group A. Shell generally thin, aperture wide, outer lip narrow, margined.
Group B. Shell thick, usually margined, aperture narrow and more or less central.
a. Having a dorsal impression.

* Shell white.
** Shell usually pinkish, spotted.
*** Shell brownish.
b. Having no dorsal impression.
* Shell white.
** Shell pinkish, sometimes spotted.
*** Shell brown.

The material of this monograph has been prepared under some disadrantages, during the few odd hours of leisure occurring in an active mercantile life ; this will explain, if it does not excuse its errors and omissions. The anthor takes this opportunity to acknowledge valuable aid rendered by a number of conchological friends at home and abroad, while prosecuting this labor of love.

Genus CYPR.AA, Lim.
Section I. Shell cylindrical or nearly so.
Group A. Not margined.

* Spotted, teeth brown-tinted.
C. argus, Linn. Pl. 1, figs. 1, 2.

Pale brown, back three-banded, covered with numerous brown rings, base ornamented with four large dark chestnut spots, two on each side of the aperture. Length, $2 \cdot 5-4$ inches.

Indian Ocean, New Caledonia, New Hebrides.
C. cervus, Linn. Pl. 2, figs. 11, 12.

Shell more or less inflated; brown, ornamented with numerous somewhat small white spots, base usually dark brown.

Length, 2-6 inches.
Panama.
Reported from the West Indies as well as the west coast of America, by several authors, but the true locality seems still in doubt. Prof. Miirch, while including it in his West Indian Cyprieas, says he has seen no specimen with authentie locality.

The young cervus is transversely radiated with four bluish lead-colored bands.
C. exantiema, Limn. Pl. 1, figs. 3, 4, 5; Pl. 2, figs. 13, 14.

Differs from the preceding in being less inflated, more elongate and solid. It is of heavier growth, the spots are usually larger and are ringed. Length, 3-4 inches.

West Indies, Florida; Panama to Mazatlan (var. cervinetta).
One specimen of this shell was found at Fort Maeon, N. Carolina. Previous monographers have generally given this species an East Indian habitat; it is decidedly West Indian, while C. cervus probably belongs to the West Coast of America. This view coincides with that of Prof. Möreh.
C. cervinetta, Kiener (figs. 3, 13, 14) is a small variety, more eylindrieal and of a deeper hue, the teeth on the columella are also of a richer dark brown. It belongs to the Panama and Mazatlan regions, and appears to be the West Coast representative of C. exanthema.
C. scurra, Chemn. Pl. 2, figs. 19, 20, 21.

Ashy blue, obscurely banded, and covered with an open network of brown, sides brownish, sprinkled with smoky black spots; teeth fine, aperture narrow. Length, $1 \cdot 25-2$ inches.

Anna I.; Australia.
C. testudinaria, Lime. Pl. 1, figs. 9, 10.

Milky brown, back clouded and spotted with fulvous and chestnut-brown, and profusely sprinkled with minute white scurf-like specks, base flesh-colored, teeth white.

Length, 4-6 inches.
Ceylon; New Caledonia (rare).
In the young shell there are several bands of interrupted chestnut-brown blotches, more or less obscure; they begin to change in the second stage of growth, and disappear entirely in the third.
** Not spotted, teeth whitish.
C. Isabella, Limn. Pl. 1, figs. 6, 7.

Ashy fulvous, obscurely three-banded, marked longitudinally with inky black dashes, extremities saffron-red, base white, teeth very fine and numerous. Length, $\cdot 75-1 \cdot 5$ inches.

Indian and Pacific Oceans.

C. controversa, Gray, first described as a species, was afterwards identified by its author as a variety of Isabella.
C. lurid, Linn. Pl. 3, figs. 22, 23.

Bluish olive, obscurely banded, base whitish, extremities stained on each side with a rich blackish-brown blotch.

Length, 1-2 inches.
Mediterranean Sea.
Fossil in the conglomerate of Santiago, C. Nerd.
C. pulchra, Gray. Pl. 2, figs. 17, 18.

Differs from the above in having a narrower aperture and much smaller teeth, which are nearly obsolete and tinted brownish, the base is ruddy olive. Length, about 2 inches.

Red Sea.
This species was first called pulchella by Dr. Gray, but on finding the name preoccupied, he changed it to pulchra.
C. Cinerea, Gmel. Pl. 2, figs. 15, 16.

Ash-brown, sometimes longitudinally painted with jet-black dashes, sides flesh-tinged and similarly painted, base cream-white, interstices between the teeth generally pinkish flesh-color.

Length, $1-1 \cdot 75$ inches.
Hest Indies.
Fossil, common in the Pliocene clay beds of Costa Rica (W. M. Gabb).

C. clara, Gask Pl. 1, fig. 8.

Very closely allied to, if not identical with the above. The main difference lies in the teeth, which are smaller.

Length, about $1 \frac{1}{4}$ inches.
Hab. ?
C. Reevei, Gray. Pl. 3, figs. 24, 25.

Differs from C.cincrea, Gmel., in being bluish lavender in color, with the extremities delicately tinted pink. The shells usually present an undeveloped appearance.

Length, abont 1.5 inches.
Sivan R., Australia.
Group B. Margined.

* Margins not spotted.
C. carneola, Linn. Pl. 3, figs. 26-30.

Pale flesh-color, ormamented with four, occasionally five, bands of a deeper tint; base and sides pale fulvous; teeth and interstices deep purple. Animal red. Length, $1-3$ inches.

Pacific and Indian Oceams.
This species is extremely variable both in size and shape, and some specimens are quite like the group in which the C. arenosa has been placed. Mr. Sowerby, in Thes. Conch. Cypreidx, calls attention to a variety in which the teeth are not purple-tinted. This is probably the C. Loebbeckeana of Weinkauff (figs. 29, 30), but Weinkauff says of his species, that in addition to this, there is also the absence of the bands of color on the back, whilst Sowerby's figure indicates their presence. Very large specimens of C. carneola, from the Isle of Pines, have been confounded by non-scientific collectors with C. aurantium, Martyn.

Fossil, the species is common in the clay beds of Costa Rica (Gabb).
C. talpa, Linn. Pl. 3, figs. 31-33.

Pale yellow, obscurely two- or three-banded, extremities, sides and base blackish brown ; interstices of the teeth whitish. The animal is black. Length, 2-3 inches.

Pacific and Indian Oceans.
The young shell is entirely yellow, with brown-tinged bands; the rich basal coating of dark enamel is the last deposit in its formation.
C. exusta, Sowl). Pl. 3, figs. 34, 35 .

Differs from the preceding in being more pyriform, the teeth are finer and merely marginal in the outer lip. Its aperture is also much narrower. Length, 2-3 inches.

> Red Sea.
C. interrupta, Gray. Pl. 3, figs. 36, 37 ; Pl. 4, figs. 38, 39.

Shell slightly umbilieated, back freckled with olive-green, and ornamented with three bands of square dark olive spots, sides and base white, teeth small. Length, $\cdot 5-75$ inch.

Ceylon.

C. rhinoceros, Souv. (Pl. 4, figs. 38, 39), is an abnormal variety from New Caledonia, in which there is a callous swelling of the anterior terminal deposit.
C. quadrimaculata, Gray. Pl. 4, figs. 40, 41, 42.

Attenuately beaked at each end, back minutely freekled with olive-brown, extremities ormamented with a blackish-brown spot on each side, hase white. Length, about ${ }^{\prime} 75$ inch.

Borneo, Indian Ocean.
C. pallidula, Gask. (fig. 42), is a small variety without the spotted beaks.

> ** Margins spotted, teeth small.
C. irrorata, Sol. Pl. 4, figs. 50, 51.

Pale purplish blue, obscurely banded, copiously sprinkled with fulvous-brown spots which are darker in color at the sides, extremities sometimes spotted light brown.

Length, about 5 inch.
C. Goodalli, Gray. Pl. 4, figs. 43, 44.

Delicate snowy white, conspicuously stained with a large, irregular orange-brown blotch. Length, 5 inch.

Lord Hood's I., Paumotus.
C. fuscomaculata, Pease. Pl. 20, fig. 47.

Differs from the preceding in having the extremities painted with a large conspicuous dark chestmut-brown spot on each side. These are never absent even in specimens most weathered.

Length, $\cdot 37-5$ inch.
I. Apaian.
C. Adeline, Roberts. Pl. 4, figs. 46, 47.

More depressed than C. Goodalli, and the canary-colored base is more flattened, back bluish. The marginal spots extend somewhat over the base. Length, 5 inch.

Hab. ?
This shell was described and figured by Sowerby in Thes. Conch. as C. fuscomaculata, Gray MSS. Pease having preoceupied the name, I have changed it as above.

This species seems to be the comneeting link between C. Goodalli, and C. contaminata.
C. contaminata, Gray. Pl. 4, figs. $48,49$.

Pale purple, ornamented with a large chestnut blotch, base orange, a few of the marginal spofs extend over the base.
Length, $5-6$ inch.

Indian and Pacific Oceans.

C. fimbriata, Gmel. Pl. 5, figs. 76-78.

Pale slate-color, minutely freckled with olive-brown, and ornamented with a brown central band which sometimes appears double, and at other times as an indistinct blotch; extremities conspicuonsly stained with violet, the marginal spots are not numerous and extend somewhat over the base, which is whitish.

Length, $\cdot 5-1$ inch.
Indian Ocean, Australia, Paumotus.
A species which is extremely variable in size, but always distinguishable by the violet painting of the extremities. The young shell is dull pink and the central band is more marked.
C. meronon, Gray. Pl. 5, figs. 74, 75.

Resembles somewhat the small varieties of C. fimbriata. It is however, marrower and the teeth are very minute. The back is three-banded, the bands being composed of waved orange-brown lines. Length, 4 inch.

Loyalty I., New Caledonia, Philippines, Mauritius.
C. macela, Adams. Pl. 4, figs. 71, 72.

Shell more pyriform than C. fimbriata, the teeth are coarser, the marginal spots are uniformly larger, and the painting of the extremities is brownish purple, even in small and worn specimens. It is closely allied to the larger forms of C. fimbriata.

Length, $\cdot 6-\cdot 9$ inch.
Japan, Australia.
C. felina, Gmel. Pl. 4, figs. 52-55, 59, 60.

Greenish blue, freckled all over with olive, sides and base yellowish, spots on the sides large and black, teeth strong.

Length, $\cdot 5-75$ inch. Indian and Pacific Oceans.
Var. "a," C. wrsellus, Gmel. (figs. 54,55), is smaller, the base is whitish and more flattened.

Tar. "b," C. fabula, Kiener (figs. 59, 60), shell shortened, gibbons, back elevated.

The animal of C. felina is pale, black-dotted.
C. hirundo, Limn. Pl. 4, figs. 56, 57.

The olive freckles of the preceding are here supplanted by minute brown dots, and the extremities are painted with blackishbrown spots; base white, teeth conspicuous.

Length, $\cdot 6-8$ inch. New Caledonia, Australia, Indian 0. C. Oweni, Sowb. Pl. 4, figs, 45, 58, 68-70; Pl. 5, fig. 73.

Shell generally broader, and more margined than C. hirundo, marginal dots more numerous; the teeth are smaller and extend more over the base of the shell.

From a careful comparison of specimens of this shell with those of C. Menkeana, Desh. (Pl. 4, figs. 69, 70, from Deshayes ; Pl. 4, fig. 58 ; Pl. 5, fig. 73. from Sowerby), both of which were received from Mr. Sowerlyy, I do not hesitate to place the latter as a synonym. The only noticeable difference is in the marginal dots, which in Menkeana sometimes rim together,
giving a solid brown appearance. Specimens of C. Oweni, received from Mr. J. F. Bailey, of Melbourne, Victoria, are rather elongate, yellowish, and have a faded appearance, but decorticated shells are fawn-color.
C. neglecta, Sowb. Pl. 4, figs. 61, 62, 63, 66, 67.

Differs from C. hirundo, in the teeth, which are smaller, more numerous, and extend over the base of the shell. The back is usually ornamented with a brown blotch.

Length, $\cdot 5-75$ inch. Australia, Mauritius.
C. coffea, Sowb. (tigs. 66, 67) is a small variety, the teeth of which continue over the dorsal margin of the posterior extremity.
C. cylindrica, Boin. Pl. 5, figs. 79, 80, 81.

Bluish, freckled with minute fulvous-chestnut specks, and a large misshapen central blotch ; extremities painted on each side with a conspicuous blackish-chestunt spot; the marginal dots are very few in number, and are confined to the left side; aperture anteriorly dilated, onter tecth large, inner fine, and elongated partially across the base ; teeth and base whitish.

Length, $1 \cdot \underline{-}-1 \cdot 5$ inches.

> Ceylon, Australia, New Caledonia.
C. subcylindrica, Sowb. (fig. 81), is a more ovate variety, with teeth less strong, those on the columella being confined to its margin; the marginal dots are nearly obsolete.
C. tabescens, Sol. Pl. 5 , figs. $82,83,84$.

Whitish, fieckled with pale yellowish brown, three-banded with semilunar spots of a little deeper shade. Spire depressed, teeth and base whitish. Length, $7-1.5$ inches. New Caledonia, Loyalty Is., Australia. C. teres, Gmel. Pl. 5, figs. $86,87$.

The gradation is fine from the more slender forms of C. tabescens. to this species, but the more sudden bend of the aperture, more produced extremities and the increased number of teeth are sufficient to distinguish it. Lengtl, $\cdot 75-\cdot 9$ inch.

Ceylon.
Weinkauff, believing that the C. tabescens of anthors is the true C.teres, Gmel., has named this species C. subteres.
C. caurica, Linn. Pl. 5, figs. $88,89,90$.

Whitish, mottled with minute yellowish-brown specks, sides whitish to pale orange, ornamented here and there with dark conspicuous spots, base orange tinged with gray, teeth very strong, whitish, extending partially over the base on each side.

Length, $9 \div 1 \cdot 8$ inches.

Indian and Pacific Oceans.

A most abundant species; varying from long and rounded forms, with thin sides, to those short and depressed, with thickened sides. The dorsal surface is frequently ormamented with a reddish-brown spot. A blackish-brown variety from New Caledonia is the C. obscura, Rossiter.

C. cruenta, Gmel. Pl. 6, fig. 97.

Differs from the preceding in the delicate dorsal coloring, which is interrupted by more or less distinct white spots of unequal size ; the side spots are purple and the interstices of the teeth bright red; the teeth on the columella are usually confined more to the margin of the aperture. Length, $8-1 \cdot 8$ inches.

Indian Occan, N. S. Wales.

C. stolida, Linn. Pl. 5, tigs. 91, 92, 85 ; Pl. 6, fig. 7.

Bluish, painted with minute chestnut dots, with a large brown central square spot connected with half-square spots of the same color at each corner, base paler blue, teeth and extremities dark orange, the teeth extend somewhat over the base, marginal dots very small. Length, $1 \cdot 1-1 \cdot 5$ inches.

Ceylon, Borneo, Sanduich Is. (?), N. Caledonia.
C. brevidentata, Sowb. (fig. 85), is a variety in which the teeth are short, rounded and fewer in number; they are confined to the margin of the aperture, and are, not tinted; the dorsal appearance is like incompletely colored specimens of stolida.
C. Crossei, Maric (Pl. 6, fig. 7), is another variety in which the extremities are greatly produced and curve upward; the central spot of the typical stolida is here extended into a band and the whole shell has the distorted appearance so peculiar to many of the species from New Caledonia. The teeth are large, white and extend over the base of the shell.
C. Erythreensis, Beck. Pl. 5, figs. 93, 94.

Differs from C. stolida in the absence of the four corner lateral spots, the colorless teeth, the narrower and more tapering form, and the uniform smallness of the shell.

Length, $\cdot 65-85$ inch.
Red Sea.
C. chrysalis, Kien. Pl. 4, figs. 64, 65.

Canary, obscurely banded, with extremities tinted deep orange, teeth very fine; no spots or other markings on the shell. Length, $\cdot 65$ inch.

Habitat?
Believed to be the young form of some other species. I do not know this species, nor can I get any further information than that derived from Kiener.

Section II. (Aricia, Gray, pars) Shell orate, thick, margined, with flattened base.

Group A. Shell smooth.

* Not spotted.
C. ventriculus, Lam. Pl. 6, figs. $95,96$.

Shell rather angulated, back bluish white, ornamented with four carnelian bands, sides dark chestnut, tinged above with red, smoky white beneath, with a number of very fine striæ rising on the margin ; base livid white. Length, $1 \cdot 8-2 \cdot 2$ inches.

Annaa I., Pacific O.
The younger shell is pale fulvous, encircled with four carnelian bands, and the adult is a truly solid mass of enamel.
C. arenosa, Gray. Pl. 6, figs. 1, 2.

Base more convex than the preceding, the back has a similar ornamentation, but the inargins are ash-brown, arenaceously striated above, and the base is ivory-white; teeth fine and numerons. Length, $1 \cdot 1-1 \cdot 5$ inches.

Annaa I., Central Pacific.
The young shell is pale brown, with four carnelian bands.
C. sulcidentata, Gray. Pl. 6, figs. 3, 4.

Differs from C. arenosa in the teeth, the interstices of which are deeply excavated, the colors are duller and the base is smoky
white; some specimens are of a bright yellow color, with the bands dark buff. Length, 1.8 inches.

Australia, South Seas, Sandwich Is.
C. tessellata, Swi. Pl. 6, figs. 5, 6.

Back yellowish brown, with three broad bands, sides tessellated with square brown and white spots, the two upper spots on both sides chestnut; base variegated brown and white. teeth small, numerous and tinged orange. Length, $1 \cdot 2$ inches.

New Zealand, Sandwich Is. (?)
** Dorsal surface spotted.

C. Mauritiana, Linn. Pl. 7, figs. 8, 9, 10, 11.

Back humped, brown, covered with light brown or white spots of irregular size, sides and base dark brown, almost black; teeth prominent, margin angulated. Length, $2 \cdot 3-4$ inches.

Samoa, New Caledonia, Borneo, Ceylon.
The young shell (fig. 11) is first fulvous-brown, with bands of a yellowish hue arranged in waves, later the waves become massed, leaving the yellow in triangular flame-like spots; the margins do not thicken and become angulate until after the development of the teeth.

This mollusk must possess great muscular power, for its shell is the heariest and most solid of the genus.
C. caput-serpentis, Linn. Pl. 6, figs. 98-100; Pl. 23, fig. 59.

Reddish or blackish brown ; the spots on the back having the appearance of snow-white specks of unequal size; extremities tipped with white; base grayish white, teeth conspicuous, white.

Length, $95-1 \cdot 35$ inches.
Indian and Pacific Oceans.
The young shell (fig. 100) is ashy blue, with a single, rather broad central band. A more elongate variety (P1. 23, fig. 59) of a uniformly darker color and with margins less angular, has been wrongly identified by authors as the C.caput-anguis, Phil. Compared with caput-serpentis, Pease says it is smaller in size, and the spots are smaller, but specimens labeled caput-anguis and sent to the Philada. Acad. Nat. Sciences by Mr. Brazier, who collected them at Ballenger River, N. S. W., are fully as large as the typical form. The animal of C. caput-serpentis is brown, tentacula red-spotted.
$*_{*}^{*}$ Spots extending over the base.
C. mappa, Lim. Pl. 7, figs. 12-14; Pl. 8, fig. 17.

Back violet-brown, arranged in longitudinal lines of a hieroglyphic character, dorsal line whitish and peculiarly branched; sides and base whitish to pink, teeth satfiron-red, numerous, and confined to the interior of the aperture; base sometimes ornamented on the colmmellar side with a violet blotch.

Length, 2:3-3•4 inches.
New Caledonia, Jara, Indian O.
C. nigricans, Montr. (Pl. 8, tig. 17), is a rostrate variety from New Caledonia, the dorsal surface of which is black.

Length, $3 \cdot 85$ inches.
C. Arabica, Limn. Pl. 8, figs. 18, 19, 23, 24.

Back livid brown, with a line ormamentation similar to C. mappa, the dorsal line is straight and the spots more numerous, those on the sides being dark-brown, base tinged brownish; teeth reddish brown ; extremities blackislı. Length, $1 \cdot 6-3$ inches.

Samoa, New Caledonia, Australia, Indian Ocean.
Young shell bluish, banded with brown waves. Animal blackbrown, with a yellow edge to the foot. C. eglantina, Ducl. (fig. 24), is a grayish variety with white spots, improperly eredited to California.

An oblong, rostrate, dark-brown or nearly black form, with black spots and a whitish base and beaks, found at New Caledonit, has been incorrectly identified as eglantina. For this variety I propose the name niger (fig. 23).
C. reticl lata, Martym. Pl. 8, figs. 20-22.

Diflers from C. Arabica, its nearest ally, in being broader and laving more thickened sides, the dorsal spots are more crowded and sometimes run together, presenting a clonded surface; base dull milky-white to bluish, the columellar side ornamented with a dark reddish hrown blotch near the middle of the shell ; teeth stronger than those of C. Arabica, but similarly colored; aperture wider. Length, $1 \cdot 4-3$ inches.

Indian and Pacific Oceans.
This species sometimes very closely resembles the preceding. It can, however, be distinguished by the increased number of the
spots, and the comparative absence of the hieroglyphic markings so peculiar to the typical C. Arabica.

The young shell is very much like that of Arabica. The small variety, C. intermedia, Gray (fig. 20), differs in having a creamy-white base without the brown blotch, it being ornamented instead with numerous small brown spots that extend over the margins; the dorsal spots are much smaller. Length, $1-1 \cdot 8$ inches.

By an error of the printer the illustration of fig. 20 is marked $\frac{2}{3}$ natural size. The figures should be erased.
C. histrio, Meusch. Pl. 8, figs. 25, 26.

More pyriform than C. reticulata, sides less thickened, base white, without the brown-bloteh ornamentation.

Length, $2 \cdot 5-3$ inches.
Tonga Tabou; Indian Ocean.
Although some monographers have placed this with the synonomy of C. reticulata, yet I have always been able to separate the two. There is, however, a close relationship between Arabica, reticulata and histrio, but not more so than is to be found in many other groups belonging to this interesting family.
C. arabicula, Lam. Pl. 9, figs. 35, 36 .

Bluish green, very closely reticulately painted with brown; margins reddish brown and spotted with black, extremities produced angularly, base whitish, teeth fine, deeply cut.

Length, $9-1 \cdot 2$ inches. Acapulco ; Gulf of California (Stearns).
C. gemmula, Weink. Pl. 7, figs. 15, 16 .

Grayish yellow, longitudinally closely lined with chestnutbrown; margins like those of the preceding species.

Length, about • 8 inch.
Red Sea.
Weinkauff says of this species that.it.presents on the dorsal surface, the appearance of C. Arabica in miniature, while its base resembles arabicula.
C. stercoraria, Linn. Pl. 9, figs. 27, 28.

Greenish blue, the brown spots frequently running together,
giving the back a clouded appearance; sides and base brown; teeth whitish. Length, $1 \cdot 8-3 \cdot 2$ inches.

West Africa.
Young shell ashy brown, banded. When the shell presents a humped appearance on the back, it forms the C. rattus, Lam., which can hardly be said to be even a variety, since the young shells of stercoraria are all more or less humper.
C. Scotti, Brod. Pl. 9, figs. 29, 30.

Pale ashy blue, clouded with yellowish brown; sides and base very dark brown ; aperture narrow ; teeth small, nearly obsolete on the columellar side. Length, $2 \cdot 8-3 \cdot 5$ inches.

N'est Australia.
A peculiar oblong boat-shaped shell with the extremities produced and curved upwards.
C. thersites, Gask. Pl. 9, figs. 31, 32.

Shorter and more gibbous than C. Scotti, teeth on the outer lip moch stronger; the colors are deeper and the dorsal spots are more clonded; hase near the aperture white.

Length, $2.75-3$ inches.
South Australia.
Specimens of this ricilly-colored shell have been found painted almost jet-black.
C. marginata, Gask. Pl. 9, figs. 33, 34.

Yery light brown, some of the dorsal spots ruming together, giving an irregular lined appearance. Length, $2 \cdot 25$ inches.

Australia.
This shell has such an immature look that it is most likely the young of C. thersites. It is very rare.
C. decipiens, E. A. Smith. Pl. 10, figs. 39, 40.

Smaller than C. thersites; back higher and more humped, base flatter and of a rich orange-red color, which extends over the sides of the shell ; hody-whorl within the aperture, white.

Length, $2 \cdot 25$ inches.
North Australia.
C. venusta, Sowb. Pl. 10, figs. $44,45$.

Cream-color with a cinnamon tinge, variegated with rather large orange-brown spots of irregular size, and irregularly dis-
tributed, the cinnamon tinge slightly deeper at the extremities, base white ; teeth thick and faint purplish white.

Length, 3 inches.

Dampier's Is., West Australia.

This shell, which Dr. J. C. Cox has lately published under the name C. Thatcheri, was fully described in the Annals and Mag. Nat. Hist., xix, 1849 , by Mr. G. B. Sowerby, notwithstanding the statement in Thes. Conch. that "no publication strictly socalled " of C. venusta, "can now be proved." The species is very rare.

Group B. Shell sometimes nodose or tuberculated.

C. ulus, Linn. Pl. 10, figs. $41,42,43$.

Shell oval, marbled with olive-brown, especially near the sides, which are but faintly margined; dorsal line pale, and bordered with brown spots, which are sometimes seattered over the dorsal surface; posterior extremity ornamented with a large brown spot, base ash-brown, teeth brown, nearly obsolete on the columella, which is stained dark brown. Lengtlı, 1.25-1.75 inches. Atlantic O., Mediterranean.
Fossil near Plaisantin.
The name C. bicornis (fig. 43) has been suggested for the nodose examples.

Foung shell, rentricose, pale ash-brown, and longitudinally peculiarly waved.
C. heucostoma, Gask. Pl. 10, figs. 37, 38.

Differs from C. mus in being more solid; the dorsal line is branched, and the spots on the sides are more numerous and distinct, the base is white and the teeth are nearly obsolete.

Length, 2 inches.
Mocha, Arabia.
C. moneta, Limm. Pl. 10, fig. 46 ; Pl. 11, figs. 51-54; Pl. 23, figs. 60-69.

Color varying from white to deep yellow, back sometimes encircled with a faint orange or red ring, margins very thick, base tuberculated to smooth, teeth obtuse.

Length, $\cdot 6-1 \cdot 5$ inches.
C. icterina, Lam. (Pl. 23, fig. 62), is a smooth, elongate variety.
C. Barthelemyi, Bernardi (Pl. 11, figs. 53,54), is a distorted variety from New Caledonia. Length, 1.45 inches.
C. ethnographica, Rochebr. (Pl. 23, fig. 63), is a small tuberculated form, ornamented with a yellow ring.
C. mercatorium, Rochebr. (Pl. 10, fig. 46 ; Pl. 11, fig. 52), is dirty yellowish, lightly olive-tinted, and not so strongly tuberculated.
C. atava, Rochebr. (Pl. 23, figs. 64, 65), is a small example of C. mercatorium.
C. pleuronectes, Rochebr. (Pl. 23, figs. 66, 67), resembles somewhat the C. icterina.
C. vestimenti, Rochebr., is another name for the distorted variety Barthelemyi.
C. camelorum, Rochebr. (Pl. 23, fig. 68), is a small smooth oval form, which Dr. Rochebrme says he has collected alive in large quantities on the West Coast of Africa.
C. plumaria, Rochebr. (Pl. 23, fig. 69), is a narrow-banded form, credited to the Sandwich Is. It appears to be a less developed atava.

Dr. Rochebrune, in a monograph of the mollusks of Cape Verd Is., says he has fished C. moneta alive at Senegal.

The species is found fossil in the conglomerate of Santiago, C. Verd.
C. annulus, Linn. Pl. 11, figs. 57-61; Pl. 23, figs. 70-72.

Sinooth, smoky white; dorsal surface ornamented with a deep orange ring, which encircles a bluish or grayish centre; teeth strong, base smooth. Length, $\cdot 45-1 \cdot 2$ inches.

Indian and Pacrfic Oceans.
Fossil in the Tertiary of Southern Europe. Dr. Layard found specimens in the ruins of Nimrod, which had the appearance of having been used for adornment.
C. Noumëensis, Marie (fig. 59), is a New Caledonian variety
having double orange lines on the dorsal surface. Length, $1 \cdot 2$ inches.
C. Hamyi, Rochehr. (Pl. 23, fig. 70), is a rosy white, yellowishtinted and spotted shell from Zanzibar; it is probably a small annulus. The spots referred to are not shown on the figure given by Dr. Rochebrune, but appear on that of annulus.
C. Harmandiana, Rochebr., is well represented by figs. 60, 61.
C. Perrieri, Rochebr. (Pl. 23, figs. 71, 72), is one of those forms comnecting annulus with obvelata.

In the report of the Voyage of the Samarang, Mr. Arthur Adams says that while at Singapore, he observed the fry of C. annulus (fig. 58) adhering to the mantle and other parts of the animal in conglomerated masses of minute transparent shells, which, when placed in a watch-ghass of salt water, became disintegrated, and detached inclividuals were observed quitting the rest and moving in rapid gyrations by means of two winged membranous expansions. When at rest they returned to the mass or adhered to the edge of the watch-glass.

This and the following species are probably only varicties of C. moneta, but the differences are usually so well marked that they can be easily separated. The museum of the Acad. Nat. Sciences of Philadelphia, however, contains a series of these shells showing how they pass from one to another in regular gradation.

Dr. Rochebrune, who has studied this group with a view to differentiation (Monograph of the genus Monetaria, Bull. Soc. Malac., France, 1884), has selected a certain number of these transitory forms for speeifie description, the names of which have been given above; it would be easy to multiply them to almost any extent.
C. obvelata, Lam. Pl. 11, figs. 55, 56.

Sides thickened and puffed out, giving the dorsal surface an oval, intrenched appearance; back blue, teeth very strong.

Length, $\cdot 6-1$ inch.

New Caledonia, Samoa, Australia.

Section III. (Luponix, Gray, pars.) Shell pyriform or pyriformly ovate, usually spotted. Group A. Shell smooth, not margined. * More or less ventricose or inflated.
C. Aurantium, Martym. Pl. 11, fig. 48.

Shell unspotted, back, teeth and interstices bright orange, hase, sides and extremities white. Length, $3 \cdot 6$ inches.

Fiji Is., Solomon Is., Loyalty Is.
The large and finely colored specimens come from the Loyalty Is., while those from the Fijis are smaller. This species, though an old one, is yet quite rare; good specimens costing abont $\$ 10.00$ each. The highest order of dignity among the Friendly Islanders, is typified by the permission to wear this shell as an ornament.
C. princeps, Gray. Pl. 11, fig. 47.

Yellowish, tinged with rose-purple, fainter towards the base, profusely painted in the middle with wared yellowish-brown hieroglyphic markings, clouded on each side with a large rhomboidal dark-clouded blotch; extremities adorned with three irregular concentric brown lines, the middle of which is the strongest, on the posterior extremity are several finer light brown concentric stria; sides ornamented with blue and brown spots, more or less distinct; base and teeth white.

Length, $3 \cdot 9$ inches.
Persian Gulf, New Guinea.
Though one of the oldest, this species is still of the greatest rarity, and for a long time the British Museum possessed the only specimen known to exist. Lately Dr. J. C. Cox, of Sydney, N. S. W., has secured a fine example, which he states was found on the sonthern shore of New Guinea.
C. Tigris, Limn. Pl. 11, figs. 49,$50 ;$ Pl. 15, fig. 8, (Dentition).

Whitish or yellowish, sometimes clouded with chestrut-brown, promiscuonsly painted with rather large blackish blue clouded spots; base white; teeth large, sometimes bifurcate.

Length, $2 \cdot 5-4 \cdot 3$ inches.
Indian and Pacific Oceans.
Young shell (fig. 50) chestnut to whitish, ornamented with
interrupted bands or zigzag rusty-brown flashes. In its growth, this species exhibits a curions variety in the style of coloring. It is first chestnat, the color then breans up into close-set waved blotches, then a coating of white follows, upon which is deposited a series of zigzag flames. There is a second layer of white enamel which nearly obscures these zigzag markings, and a number of dark spots are deposited. These are again overspread by a third white coating intermixed with numerous rich black and brown spots. The soft parts adhere so firmly to the shell that they cannot be removed until decomposition has taken place.
C. pantilerina, Soland. Pl. 12, figs. 62, 63.

Whitish to chestnut-red, profusely adorned with small blackish-brown spots, which sometimes run together, sides and base whitish, aperture gaping anteriorly, teeth small.

Length, $2-3$ inches.
Red Sea.
The last coating of enamel is sometimes dark reddish brown. Younger shell ashy green, mottled with red and yellow.
C. umbilicata, Sowb. Pl. 12, figs. 65, 66.

Differs from the preceding in being more depressed anteriorly, the extremities are more prodnced and beaked, and the aperture is more sinuous; spire deeply umbilicated, teeth brownishtinted ; dorsal spots light brown. Length, 3 to $3 \cdot 6$ inches.

New South Wales.
Dr. J. C. Cox, in Proc. Linn. Soc. N. S. W., for 1879 , reported an almost pure white variety from Circular Head, N. S. W., for which he proposed the varietal name alba.
C. Leucodon, Brod. Pl. 12, figs. 69, 70.

Reddish or yellowish brown, sprinkled here and there with rather large round white spots, base pale brown, marked transrersely with fine stria, teeth white, strong on both sides.

Length, $3 \cdot 4$ inches.
Habitat?
The only specimen known is in the British Musenm. The broad teeth and deeply undereut interstices are very like those of C. sulcidentata.
C. vitellus, Linn. Pl. 13, figs. 72, 73.

Fulvons bay-color sprinkled with snow-white spots of various sizes, sides olive-brown, arenaceous, striated, base and teeth whitish. Length, $1 \cdot 2-2 \cdot 7$ inches.

Indian Ocean, Australia, New Caledonia.
Young shell olive-ash, obscurely banded, unspotted. This species is strongly characterized by the sand-like stria of the sides.
C. nivosa, Brod. Pl. 12, figs. 67, 68.

Differs from the preceding in its more oblong form, more irregular and confused arrangement of spots, and entire absence of the sand-like strix; the teeth and base are yellowish white, and the pale brown color of the back extends around the sides of the shell. Length, about 2.4 inches.

Mauritius.
C. Broderipir, Gray. Pl. 12, fig. 64.

Differs from C. nivosa in being more ovate and delicately tinted rose-pink. The aperture is wider and the teeth longer.

Length, 3 inches.
Madagascar.
A beautiful species of great rarity.
C. camelopardalis, l'erry. Pl. 13, fig. 76.

Differs from C. vitellus in the absence of the sand-like strise; the interstices between the columellar teeth are stained purpleblack, the extremities are prominent, and the sides are white and sometimes slightly margined. Length, $1 \cdot 7-2$ inches.

Rerl Sea.
C. Barclayt, Reeve. Pl. 12, fig. 71; Pl. 13, fig. 82.

White, profusely ornamented with orange-buff dots of different degrees of tone, extremities and teeth bright orange; teeth strongly developed, those on outer lip extending over the base.

Length, $1 \cdot 05$ inches. I. Diego Garcia, Mauritius.
A deep-water species.

> ** More or less oblong or subpyriform.
C. spadicea, Siwn. Pl. 13, figs. 78.

Chestnut-brown, clouded towards the sides with burnt brown, sides pinkish white, base and teeth white. Length, $1 \cdot 3-2$ inches. Sta. Barbara-S. Diego, Cal.
C. onyx, Linn. Pl. 13, figs. .77, 79, 80, 81.

Whitish, with two obscure zones; extremities, base and sides jet-tlack, edged above with orange-brown. Length, $1 \cdot 1-2$ inches. Ceylon, Japan, Philippine Is.
This species presents three distinct varieties of coloring. In addition to the above, there are the uniformly orange-eream and the chestnut-brown painting, the extremities, base and sides in each case being of a deeper shade.
C. pyrum, Gmel. Pl. 13, figs. 83-85.

Yellowish, four-banded, richly marbled with chestnut-brown, sides brownish or deep orange-red, faintly spotted, base and extremities orange, teeth whitish. Length, $1 \cdot 4-2$ inches.

Mediterranean Sea, Atlantic Coast of S. Europe and Africa. Oceurs fossil under the name of C. porcellus, Broce.
The C. Petiiiana, Crosse and Fischer (figs. 85), credited to Senegal, appears to be a dwarfed variety of pyrum.
C. Pliysis, Brocchi. Pl. 13, figs. 74, 75.

Differs from the preceding in having a whitish base and more minnte teeth; the back is confusedly painted with reddish and yellowish dashes. Length, $1 \cdot 2$ inches.

Sicily.
Fossil in the Pliocene as C. pyrula, Mich.
C. Lynx, Limn. Pl. 14, figs. 86, 87, 98.

Whitish to brownish, profusely spotted and clouded with fulvous-brown and blue, interspersed with unequal dark blackishbrown spots; sides, teeth and base whitish, interstices between the teeth bright blood-red. Length, $85-2 \cdot 4$ inches.

Indian O., Australia, New Caledonia, Red Sea.
Young shell white, faintly banded and profusely spotted with light brown.

An extremely variable species, sometimes slightly margined, The distorted variety (fig. 98), from New Caledonia, has been named C. Calerlonica by Mr. H. Crosse.
C. errones, Linn. Pl. 14, figs. 88, 89, 7.

Bluish green, faintly banded, freckled with minute light-brown specks; sometimes painted in the centre with a large chestnut blotch; antcrior extremity occasionally ornamented on each
side with a brown spot, sides white to yellowish, sometimes slightly margined, base whitish. Length, $\cdot 8-1 \cdot 35$ inches. China, Australia, N. Caledonia, Indian 0.
C. Sophine, Brazier. Pl. 14, figs. 3, 4.

Closely allied to C. errones, from which it differs in being bright orange between the teeth, base fulvous-yellow. Length, 1 inch. San Christoval I. C. Coxi, Brazier. Pl. 14, figs. $96,97$.

Light orange-yellow, or cream-color, ornamented with two faint yellowish-white bands, teeth thick, yellowish white.

Length, 83 inch.
Dupuch's I., N. W. Australia.
Appears to be a young shell.
C. subviridis, Reeve. Pl. 14, figs. 99, 100.

Differs from C. errones, in being more pyriform, and strongly umbilicated at the spire. It is sometimes slightly margined.

Length, $1 \cdot 4-2 \cdot 5$ inches.
Australia, New Caledonia.
The largest specimens are reported from New Caledonia.
C. pallida, Gray. Pl. 14, figs. 90, 91.

Greenish yellow, minutely freckled with brown, sides spotted here and there with chestnut, base whitish; dorsal surface sometimes ornamented with a chestnut blotch. Length, $8-1$ inch.

Japan.
C. pulchella, Swn. Pl. 14, figs. 92, 93.

Whitish, minutely dotted with fulvous specks, with two hands of semilumar blotches, or a large irregular chestnut-brown splash, teeth and ridges red. Length, 1.5 inches.

China.
An elegant, pear-shaped shell, well characterized by the peculiar extension of columellar teeth in ridges across the base.
C. Pyriformis, Gialy. Pl. 14, figs. 5, 6, 94, 95.
'The anterior extremity is not so attennated as in C. pulchella, and the teeth on the outer lip are white; those on the columella are red, but do not cxtend so far over the base as in C. pulchella.

Length, $1 \cdot 3$ inches.
Australia, Borneo, Ceylon.
The variety Smithi, Sowlo. (figs. 94,95), is smaller; the back
looks like C. macula, but the teeth, which on the inner lip are reddish brown, have the peculiar appearance of those of C. pyriformis.
C. Walkeri, Gray. Pl. 15, figs. $10,14,15 ;$ Pl. 17 , fig. 68 ; Pl. 14 , figs. $1,2$.
Bluish white, three-banded, freckled with minute yellowish brown specks, sides yellowish, brown-spotted, base and interstices between the teeth purple-violet, teeth small, those ou the inner lip numerons. Length, $\cdot 75-1 \cdot 2$ inches.

Australia (rare), New Caledonia, New Guinea.
Mr. John Brazier believes this to be a deep-water species.
The variety Bregeriana, Crosse (Pl. 15, figs. 14, 15), has an orange-red base and the extremities are spotted, margins besprinkled with fine white specks, imbedded in the enamel similar to those in C. testudinaria.

C'. amabilis, Jousseaume (Pl. 14, figs. 1, 2), is a variety, the extremities of which are more produced and somewhat recmred, the bands are narrower, and the marginal spots fewer in number, the purple tinting is confined to the inner lip. Length, 75 inch.

The figure here given is copied from a drawing lindly communicated by Dr. Jousseamme.

> Group B. Shell smooth, margined.
> * Margins not pitted.
C. nigropunctata, Gray. Pl. 15 , figs. 18, 19.

Bluish, freckled with pale fulvous-brown, sides closely clotted with black, base yellowish, teeth sharply cut.

Length, 1-35-1.55 inches. Galapagos Is. C. Sowerbyi, Kien. Pl. 15, fig. 9.

Whitish, obscurely fomr-banded, closely painted with unequal chestnut-brown spots, sides and base brownish yellow, sides and extremities dotted blackish brown, teeth whitish.

Length, $1 \cdot 2-1 \cdot 6$ inches. Gulf of California.
The C. ferruginosa of the same author is an inferior example of this species.

This species has been incorrectly eredited to the Gambia R., W. Africa, and the Cape Verd Is.
C. lentiginosa, Gray. Pl. 15, figs. 20, 21.

Bluish white, with three obscure bands of waved blotches, freckled with yellowish- or reddish-brown spots, extremities blackish brown ; tecth large, somewhat distant; base whitish.

Length, $1 \cdot 3-1 \cdot 45$ inches.
Ceylon.
C. zonata, Chemn, Pl. 15, figs. 22, 23, 11.

Bluish or greenish, zoned across the middle with more or less distinct waved spots, marbled fulvous-brown, sides and base smoky brown, spotted with black, extremities painted black on both sides; teeth strong. Length, $\cdot 95-1 \cdot 3$ inches.

Mouth of the Gambia River.
C. nebulosa, Kiener (fig. 11), is a variety having a white base; the dorsal surface has a weathered appearance, and the marginal spots are pale reddish brown.
C. picta, Gray. Pl. 15, figs. $30,31$.

Distinguished from the preceding, to which it is closely allied, by its angular form and depressed base; the teeth are not so strong, those on the inner lip being small and confined to the inside of the aperture. Length, $1-1 \cdot 3$ inches.

Gambia; Cape Verd Is.
C. Sanguinolenta, Gmel. Pl. 15, fig. 16, 17.

Ashy purple, freckled with olive or light brown, and ornamented with a central brown blotch, sides and base purplish white, covered with purple spots; columellar teeth confined to the inside of the aperture. Length, 1 inch.

Gambia. C. Xanthodon, Gray. Pl. 15, figs. 24, 25.

Bluish, dotted with minute orange specks, sides orange, spotted with brown ; teeth and base fulvous yellow.

Length, 1•2-1.4 inches.
Australia.
Mr. John Brazier believes this to be a deep-water species; some of his specimens are nearly jet-black, with a dark olive interior.
C. punctulata, Gray. Pl. 15, figs. 28, 29.

Pale bluish, freckled with chestnut-brown, sides salmon-yellow,
sometimes smoky and şotted with blackish brown; base white; teeth strong. Length, $\cdot 8-1 \cdot 2$ inches.

Mazatlan-Panama.
C. undata, Lam. I'l. 16, fig. 33.

Rich plum to chestnut, ormamented with two or more zigzag zones of white; sides and base white, dotted with brown; anterior extremity edged dark chestnut.

Length, •65-1 2 inches.
Philippines, Mauritius.
C. ziczac, Linn. Pl. 15, figs. 12, 13.

Whitish, ornamented with longitudinal zigzag yellow lines, sides and base yellow, spotted with reddish brown, the spots forming a circle around the posterior extremity.

Length, $\cdot 55-1$ inch.

Mozambique, Ceylon.

There is a variety of this well-known species in which the zigzag lines resolve themselves into distinct bands.
C. lutea, Gronovius. Pl. 16, figs. 35, 36.

Yellowish or brownish, profusely dotted with brown; base somewhat like that of C. ziczac. Length, ${ }^{7} 75-1$ inch.

New Caledonia, Australia.
Younger shell olive-brown, faintly spotted, with two narrow milky blue zones. The fully matured shell was named C. Humphreysi by Dr. Gray.

C. Asellus, Limn. Pl. 16, fig. 34.

Ivory-white, ornamented with three broad bands of reddish or chocolate-brown ; sides and base white. Length, $\cdot 55-1$ inch.

Australia, Samoa, Red Sea (?).
The young shell is entirely encircled by the characteristic dark bands.
C. clandestina, Lini. Pl. 16, figs. 37-40, 61.

Pinkish cream to pale bluish, faintly banded, oruamented with extremely faint reddish-brown hair-lines, converging here and there to a point; sides and base white ; teeth strong.

Length, $\cdot 5-75$ inch.
Ceylon, Japan, Australia.
C. candida, Pease (figs. 39,40), is a pure white variety. C.

Artuffeli, Jouss. (fig. 61), is apparently another variety, of a yellowish-brown color, without the characteristic faint hair-lines. Future investigation may prove this to be a distinct species.
C. Saule, Gask. Pl. 16, figs. 41, 42.

Light fawn, dotted with a few small chestnut-brown spots, with larger ones on the margin, and a large blotch of the same color on the back; base light reddish yellow to whitish; beaks and interstices between the teeth more or less orange; teeth prominent. Length, 87 inch.

Bay of Manilla.
According to Brazier, found also in the Torres Straits at 6 fathoms.
C. Gracilis, Gask. Pl. 16, figs. $43,44$.

Differs from the preceding in being more pyriform, the central blotch is wanting, as are also the smaller dorsal spots, the base is sparsely dotted with reddish brown, the teeth are finer and there is an absence of color between them. Length, $\cdot 65-\cdot 85$ inch. Isl. Bourbon; China Sea (?).
C. punctata, Limn. Pl. 16, figs. 51, 52; Pl. 15, figs. 26, $27,32$.

Whitish to cream-color, spotted with brown, teeth and extremities golden yellow. Length, $55-9$ inch.

Isl. Bourbon; Philippines; Borneo.
C. stercus-muscarum, Lam. (Pl. 15, figs. 26, 27), is a variety having finer spots and smaller teeth, which are colorless, those on the inner lip being confined more to the margin of the aperture.
C. trizonata, Sowb. (Pl. 15, fig. 32), is a more cylindrical variety having a zoned appearance.
C. angustata, Gmel. Pl. 16 , figs. $47,48,45,46$.

Yellowish or chocolate-brown, sides whitish, marked with large chestnut-brown spots, extremities painted on cach side with a chestnut-brown spot, base whitish to reddish, teeth small.

Length, 1-1 2 inches.
So. Australia.
C. Comptoni, Gray (figs. 45,46), is a variety with a convex, pale or nut-brown base.
C. declivis, Sowb. Pl. 16, fig. 53.

Creamy white, freckled with brownish, giving the shell the appearance of having been dusted over with capsicum pepper. Marginal spots few in number, dorsal line broad, base similar to C. angustuta. Length, $\cdot 9-1 \cdot 2$ inches,

Portland, Victoria.
Referring to C. angustata, Dr. Gray says: "When complete, the back of the shell is pale whitish brown, with a broad subcentral dorsal line, and minutely freekled with brown specks." As this description corresponds closely with that of declivis, it is quite possible that the two species are identical.
C. piperita, Soland. Pl. 16, figs. 49, 50, 58.

Pale chestnut-brown, obscurely minutely dotted and ornamented with four narrow interrupted bands, base white, teeth small, sides brown-spotted. Length, $65-1$ inch.

Australia.
The variety bicolor, Gask. (fig. 58), is usually three-banded, and presents sometimes a zigzag appearance, occasioned by the coalescence of the central bands. Worn shell, pale flesh-color.
C. pulicaria, Reeve. Pl. 16, figs. 59, 60.

Differs from the preceding in being more cylindrical, the bands are more broken up into spots, and the dots on the back are more conspicuous. Length, $\cdot 65-1$ inch.

Australia. C. Algoensis, Gray. Pl. 16, figs. 56, 57.

Yellowish, sides and back dotted with reddish brown, base white, teeth on outer lip strong, those on inner lip nodular, aperture rather wide. Length, $1-1 \cdot 2$ inches.

Algoa Bay.
C. fusco-dentata, Gray. Pl. 16, figs. 54, 55.

Dirty drab, covered with rufous-brown close spots, like those on C. errones, but larger, and more suffused; teeth brown, rugose, ridged across the base. Length, $1 \cdot 4-1 \cdot 6$ inches.

Cape of Good Hope.
Young shell somewhat ribbed across the back.
C. similis, Gray. Pl. 16 , figs. 62,63 ; Pl. 17 , fig. 69.

Yellowish to rich chestnut-brown, covered with blotches of a deeper shade, teeth orange, those on the outer lip strong and
elongated across the base, the inner ones small and confined to the aperture. Length, $1 \cdot 4-1 \cdot 85$ inches.

> Cape of Good Hope.

This shell in a perfect condition is the C. castanea, Higgins (Pl. 17, fig. 69). The specimens usually found in collections, however, are of a yellowish color and are withont any dorsal ornamention except around the spire, where it is sometimes brownisl.
** Margins more or less pilted, dorsal spots usually ocellated.
C. cribraria, Limm. Pl. 17, figs. 71, 72.

Yellowish brown, dorsal spots round, white, sides and base white, teeth numerous, those on the inner lip confined to the interior of the aperture. Length, $\cdot 7-1 \cdot 1$ inches.

Ceylon, New Caledonia, New Ireland.
Mr. Rossiter, of New South Wales, reported having ohtained specimens of a blackish-brown color, showing but few of the white spots, and 1.5 inches long.

Although this species may be sạid to possess no marginal spots, yet out of a large number of specimens examined I have found one with a slight indication of their presence.
C. fallax, E. A. Smith, is an unfigured variety, credited to West Australia. It differs from the normal shell in being larger, more pyriform, white spots smaller and less clearly defined; they appear to blend into the fawn-color of the dorsum, which is paler than in C. cribraria.
C. cribellum, Gask. Pl. 17, figs. 66, 67.

Smaller and more cylindrical than C. cribraria, extremities more obtuse, aperture wider, margins spotterl. Length, ${ }^{7} 7$ inch. Mauritius. C. Coxeni, Cox. Pl. 17, figs. 64, 65.

Differs from C. cribraria, in the dorsal ornamentation, which is in irregular elongated dark chestnut markings, teeth coarser and prominently produced a little more than half-way across the base. Length, 92 inch.

Solomon Islands.
C. esontropia, Ducl. Pl. 17, figs. 76, 77, 75.

Yellowish to light brown, spotted with white, margins deli-
cately dotted with reddish-brown, the dots extending somewhat over the base. Length, $\cdot 70-1$ inch.

Philippines, Sandwich Is.
Sowerby calls the pale yellow variety from the Sandwich Islands C. Peasei (fig. 75).
C. Gaskoini, Reeve. Pl. 17, figs. 73, 74.

Yellowish, ornamented with small white eyes, encircled with pale brown rings, sides dotted with chestnut, base white, teeth strong. Length, $\cdot 6-\cdot 8$ inch.

Hab. ?
C. Cumingi, Gray. Pl. 17, fig. 78, 79, 70.

Differs from the preceding in being more attenuately drawn out anteriorly, extremities produced, teeth extremely minute, especially those on the inner lip. Length, $\cdot 4-8$ inch.

Society Is.
C. compta, Pease (fig. 70), is a variety in which the spots on the back are not ocellated, and the dorsal line is flexuose.
C. Becki, Gask. Pl. 17, figs. $86,87$.

Yellow, spotted with large and small white eyes, the large ones pupilled with chestnut, sides dotted with chestnut; leeth small, those on the outer lip strong and tinted with chestnutbrown. Length, 5 inch.
C. Macandrei, Sowb. Pl. 17, figs. 88, 89.

Probably only a variety of the preceding. Length, 7 inch. Red Sea.
C. margarita, Sol. Pl. 17 , figs. 81, 82.

Pale straw-color, white-spotted, base white unspotted, teeth very minute, extending into the aperture near the extremities in fine ridges. Length, $\cdot 4-6$ inch.

Annaa I.
A very delicate little shell, posscssing some few characters which belong to Section IV; its general affinities are here.
C. Guttata, Gray. Pl. 17 , figs. $83,84$.

Yellowish or reddish brown, sprinkled with white spots of various sizes; the teeth extend across the base and over the
sides in bright saffron-red ridges which are somewhat irregular, and are here and there forked. Length, $2 \cdot \oint$ inches.

Neu Britain, N. S. Wales (Hobson), lied Sea (Jickeli).
An extremely rare and beantiful species, of which the Acad. Nat. Sciences Philada. possesses a tine specimen, the gift of the late Dr. Thos. B. Wilson.
C. Lamarchi, Gray. Pl. 18, figs. 96, 97.

Yellow, varying from orange to greenish, profusely covered with white spots, the larger of which are sometimes ocellated; sides marked with reddish-brown spots. and the cxtremities with lines; base white, teeth strong. Length, $1 \cdot 2-1 \cdot 7$ inches.

Indian and Pacific Oceans.
C. mliaris. Gmel. Pl. 17, fig. S0.

Differs from the preceding in being narrower, the dorsal spots are smaller and never ocellated, and the sides are white.

Length, $1 \cdot 2-1 \cdot 5$ inches.
.Fapan, N. S. Wales.
C. eburnea. Barmes. Pl. 17, fig. 85.

Differs from C. Lamarcki, Gray, in being pure irory-white.
Length, $1.5-1.9$ inches.
Philippines.
C. turdus, Lam. I'l. 18, fig. 91.

Whitish, sprinkled with small reddish-brown dots, those on the anterior extremity appearing sometimes as dashes, base white, and rather tlattened. Length, $\cdot 7-1 \cdot 5$ inches.

Persian Gulf.
Sowerhy in Thes. Conch. Monog. Cypraeidae, calls attention to an elongated varicty for which he suggests the name pyriformis. C. erosa, Limn. Pl. 18, figs. $90,100,1$.

Pale bluish to citron-yellow, thickly covered with white specks, and sprinkled with ocellated brownish ones; sides white, stained in the middle with a square brownish-black spot; extremities ridged with chestmut-brown; teeth strong, outer ones extending across the base and frequently over the side, base white, somctimes spotted and streaked with chestnut-bromn.

Length. • $8-1 \cdot 8$ inches.
Indian and Pacific Oceans.
An abundant and extremely variable species, which sometimes occurs rery much flattened; the large brownish black square spots on the sides are peculiarly characteristic.
C. ocellata, Linn. Pl. 18, figs. 92, 93.

Reddish yellow, profusely covered with white spots, some of which are ocellated, with black sides and base whitish, dotter with brown; teeth strong, those on outer lip tinged with brownish at the base. Length, $\cdot \mathfrak{\beta}-1 \cdot 2$ inches.

Ceylon.
There appear to be two forms of this well-marked species, the one broad, with swollen sides, and the other more elongate and slender.
C. Listeri, Gray. Pl. 18, figs. 94, 95.

Pale olive, ornamented with white spots, some of which are ringed with brown, sides and base delieately tinted with violet, dashed and dotted with purple, teeth numerous, rather strong.

Length, $\cdot 7 \cdot-1 \cdot 2$ inches.

Philippines.

C. poraria, Linn. Pl. 18, figs. 2, 3.

Brownish purple, ornamented with white spots, most of which are encircled with brownish rings, sides and base violet, teetn white. Length, $\cdot 7-9$ inch.

> Fiji Is., Australia, New Caledonia.

Some of the specimens from New Caledonia are dark purple, and destitute of white spots (Brazier). According to W. H. Pease, this species occurs semi-fossil in the Sandwich Islands.
C. alblginosa, Mawe. Pl. 18, figs. 98, 99.

Differs from the preceding in being more elongate, the extremities are rather more prodnced, and the marginal pittings almost obsolete, nearly all the dorsal spots are ocellated, and the base is white, violet-tinged at the margin. Length, $\cdot 8-1 \cdot 2$ inches.

Gulf of California. C. bicallosa, Gray. Pl. 18, figs. 5, 6, 4,7 .

Uniformly reddish saffron, back variously clouded and mottled with chestnut, extremities furnished with a more or less conspicnous callus, teeth strong. Length, 1•2-1•4 inches.
I. St. Vincent, W. I.
C. ingloria, Crosse (fig. 4). credited to A frica, is a rather more inflated variety, with extremities not quite so produced, and margins less pitted, but the general coloring of the shell is similar.

The var. Aubreyana, Jouss. (fig. 7), is larger and still more
inflated, the colors are paler, there is an absence of the pittings, and a partial obliteration of the callosities. Length, 1.9 inches. By an error of the printer, the illustration of C. ingloria is marked $\frac{2}{3}$ natural size-these figures should have been placed beside C. Aubreyana.

C. helvola, Linn. Pl. 19, figs. 8, 9.

Pale bluish or olive-brown, ornamented with white and brown spots, sides and base saffron-red, color darker above the edge; extremities violet; teeth strong, partially elongated across the base. Length, $\cdot 55-1 \cdot 1$ inches.

Indian and Pacific Oceans.
Specimens from Mauritius are very deep in color, and the extremities are rich purple, while those from the Sandwich Islands are often pale yellow, faintly spotted, with a whitish base and extremities. Young shell pale bluish, faintly banded, teeth brownish.
C. citrina, Gray. Pl. 19, figs. 10, 11.

Differs from C. helvola in its more delicate coloring; the dorsal surface is uniformly olive-brown, and the extremities are deep orange ; teeth fine, mumerous. Length, $\cdot 75-1$ inch.

Ceylon ; Mauritius ; N. W. Australia (Bailey). C. polita, Roberts. Pl. 19, figs. 12, 13.

Creamy white, thickly covered with minute white spots, pittings orange, particularly those on the extremities; base ivorywhite, teeth small, more or less tinted with yellowish, those on the columellar side confined to the aperture, except for a short distance from each end. Length, $\cdot 55-1$ inch.

Sandwich Islands.

Younger shell, bright citron ; when the last coating of enamel is being deposited it has a half clouded appearance. Closely allied to the following.
C. semiplota, Mighels. Pl. 19, figs. 37, 36, 31.

Light brown with numerous minute white spots ; base tumid, white, aperture yellowish, narrow. Length, $\cdot 3-4$ inch.

Oahu.
Mr. Mighels described the immature shell as C. spadix (fig. 36). C. Annæ, Roberts (fig. 31), is a broad flattened variety,
rather more solid, and of a grayish white color. A little shell figured by Sowerby in Thes. Conch., as C. fimbriatula, appears to be a fair illustration of C. semiplota.
C. Thomasi, Crosse. .Pl. 19, figs. 14, 15.

Yellowish brown, spotted whitish and brownish, base white; teeth small, those on the columella rather obscure.

Length, $\cdot 7$ inch.
Hab. ?
C. spurca, Limn. Pl. 19, figs. 16, 17.

Dirty white, clouded and spotted with yellowish brown, pits brown, base white to pale yellowish brown; teeth strong.

Length, $\cdot 75-1 \cdot 25$ inches.
Mediterranean Sea, E. Atlantic 0 .
Fossil in the Pleistocene. This species is reported as occurring in Australia, but specimens sent to Philadelphia so labeled, proved to be C. flaveola, Lim., and C. cernica, Sowb.
C. flaveola, Linn. Pl. 19, figs. 22, 20, 21.

Yellowish brown, profusely ornamenterl with white spots of various sizes, which sometimes have a bluish cast; margins stained and dotted with blackish brown, base white, teeth somewhat elongated. Length, $\cdot 8-1 \cdot 2$ inches.

> Japan, Australia.

The variety labrolineata, Gask., is of a pale stone-color, with teeth smaller and more numerous. No illustration of this variety having been given, and not having had the privilege of seeing specimens of C. flaveola at the time, I was led into the error of describing it as C. Helenæ (figs. 20, 21).
C. Cernica, Sowb. Pl. 19, figs. 23, 24.

Yellow, dorsal spots white, numerous, those on the margins reddish-brown, extending around the extremities, which, together with the base, are white ; outer teeth strong. Length, $75-1$ inch. Mauritius.
Closely allied to C. flaveola, Limn.
C. gangranosa, Soland. Pl. 19, figs. 18, 19, 25-28.

Differs from C. Alaveola, Linn., in having in addition to the white dorsal spots, which are very small, occasional brown eyes
sprinkled over the surface; the marginal spots are nearly obsolete, and the under side of both extremities is stained orange.

Length, $\cdot 6-1$ inch.
Ceylon, China.
C. Boivini, Kiener (figs. 25, 26), is a milky-white variety with white extremities, usually presenting a worn appearance. C. Reentsi, Dunker (figs. 27, 28), is another form with the dorsal surface lined transversely, and the extremities spotted with reddish-brown; it looks like a young shell.

Group C. (Gaskoinia, Roberts.) Shell smooth, edentulate.
C. edentula, Sowh. Pl. 19, figs. 29, 30.

Shorter and more inflated than C. Algoensis, from which it is distinguished by the absence of teeth. Length, 1 inch.

Southern Africa.
Group 1). (Cyprxovula, Gray.) Shell ribbed transversely.
C. Adamsoni, Gray. Pl. 19, figs. 32, 33.

White, conspicuously blotehed with orange-brown.
Length, $\cdot 5-\cdot 7$ inch.

Philippines, I. Bourbon.

C. Capensis, Gray. Pl. 19 , figs. $34,35$.

Yellowish or reddish brown, deeply umbilicated, the ridges extend over the base of the shell. Length, $1-1 \cdot 4$ inches. Cape of Good Hope.

Group E. (Pustularia, Sion.) Shell pustulate or nodulous.
C. staphylea, Limn. Pl. 20, figs. 39-44.

Grayish to brownish, pustules whitish, small, numerous; extremities tipped with reddish brown, base dirty white to brown, teeth extended across the base on each side.

Length, $\cdot 5-9$ inch.

Indian and Pacific Oceans.

Toung shell usuaily brown, without pustules. C. interstincta, Wood (figs. $42,43,44$), is a whitish or brownish variety with larger and less numerous pustules, which are sometimes partially obsolete, the teeth are coarser, darker in color, and do not always extend entirely across the base.

In his description of C. limacina, Lamarek refers to two figures, the one from Lister being a well-marked C. staphylæa, while the other corresponds to C. interstincta.
C. pustulata, Lam. Pl. 20, fig. $45,46,52$.

Lead-color, covered with transverse striæ, and armed with numerous prominent reddish pimples, those in the middle being the largest; base chocolate, teeth extending across the base in conspicuous ridges, ribs whitish. Length, $\cdot 5-\cdot 9$ inch.

Panama, Mazatlan.
Younger shell (fig. 52) with the back cancellated but destitute of pimples, which do not appear until the teeth have become considerably developed.
C. nucleus, Linn. Pl. 20, figs. 48, 49.

Whitish, nodules dull brown, the lateral ones united together by fine ridges. Length, $\cdot 55-75$ inch.

Indian and Pacific Oceans.
C. Madagascariensis, Gmel. Pl. 20, figs. 65, 66 ; Pl. 19 , fig. 38.

Larger and much more depressed than the preceding, pustules larger and less numerous; the ridges on the onter lip are alternately larger and smaller. Length, $1-1 \cdot \%$ inches.

Madagascar; Sandwich Is. (Pease).
C. granulata, Pease (Pl. 19, fig. 38) is a younger example of this species; in it, the basal ridges are fewer, and do not extend to the margin, but usually become obsolete as they approach it ; in some specimens the dorsal ridges are also wanting.

Section IV. (Epona, H. and A. Ad.) Shell globose, back either smooth or with elevated tubercles, extremities produced.
C. annulata, Gray. Pl. 20, figs. 50, 51.

Ivory-white, smooth, irregularly painted with round yellow spots, encircled with rings of a deeper tint, teeth very minnte, base white. Length, ${ }^{\circ} 6$ inch.

Mauritius, Philippines.
C. cicercula, Limn. Pl. 20, figs. 55-58, 61, 62.

Yellowish, granulose, irregularly blotched with brown, sides
dotted with brown, base conspicuously painted with four chestnut spots, teeth usually elongated across the base.

Length, $\cdot 5-\cdot 9$ inch.
Mauritius, Borneo, New Caledonia.
This species sometimes presents an unusually humped appearance, the basal spots being often obsolete and the extremities greatly produced; such shells are mostly whitish and strongly granulose, with the dorsal line well marked.

I can see no reason for separating either C. Lienardi (figs. 57, 58), or C. tricornis (figs. 61, 62), both of which were described by Dr. Jousseaume ; a careful examination of specimens of these received from Mauritius, showing scarcely a varietal difference.

Dr. Jousseaume himself admits that Lienardi is the veritable cicercula.
C. globulus, Linn. Pl. 20, figs. 59, 60.

Very closely allied to C cicercula; the main difference lies in its more oblong form ; the dorsal line is absent, as are also the granulations and the chestnut spots. Length, 8 inch.

Mauritius, Borneo, New Caledonia.
I believe future investigation will prove the identity of this with C. cicercula.
C. Childreni, Gray. Pl. 20, figs. 53, 54.

Pale yellowish brown, transversely ribbed throughout, ribs a shade darker, extremities carinately winged beneath, teeth minute. Length, $5-6$ inch.

Annaa I., Bormeo, New Caledonia.
This is the only species at present known possessing the peculiar winged projections at the base of the extremities.

Subgenus Trivia, Gray.
Shell subglobular, cross-ribbed, front of columella internally concave, ribbed.
Group A. Shell generally thin, aperture wide, outer lip narrow, margined.
T. oniscus, Lam. Pl. 21, figs. 67, 68.

Brownish or pinkish flesh-color, base whitish, ribs bifurcated or wrinkled, dorsal line broad, smooth, flat.

Length, $\cdot 75-\cdot 9$ inch.
T. ovulata, Lam. Pl. 21, figs. 69, 70.

Differs from the preceding in being smooth throughout; the teeth on the inner lip are very small. Length, $\cdot 7-9$ inch.

Cape of Good Hope. T. costata, Gmel. Pl. 21, figs. 71, 72.

Differs from C. onisous in having rather finer ribs, and in the absence of a dorsal impression. Length, $\cdot 6-\cdot 7$ inch.

West Indies (Krebs), Cape of Good Hope (?)
This species was described by Gray as T. carnea, and by Wood as C. rosea.
T. vesicularis, Gask. Pl. 21, figs. 73, 74.

Much smaller than C. oniscus, dorsal strix finer, more numerous and regular ; no dorsal impression. Length, 5 inch.

Cape of Good Hope.
Group B. Shell thick, usually margined, aperture narrow and more or less central.
a. Having a dorsal impression.

* Shell white.
T. sulcata, Gask. Pl. 21, figs. 75, 76.

Ventricose, ribs coarse, prominent, spire perceptible, inner lip ending posteriorly in a sharp edge. Length, $\cdot 45$ inch.

Manilla.
T. cicatrosa, Sowb. Pl. 21, figs. 77, 78.

Subglobose, outer lip expanded posteriorly, dorsal impression short and very deep. Length, $\cdot 3$ inch.

Hab. (?)
T. nivea, Gray. Pl. 21, figs. 80, 81.

Globose, extremities very obtuse, ribs narrow, wrinkled.
Length, •35- 45 inch.
There has been some confusion regarding this species, caused partly by the name " nivea" having been first given by Dr. Gray to a shell which was afterwards recognized as a white variety of C.turdus. Later he adopted the same name from Solander MSS. for what the eminent conchologist Gaskoin, as well as myself, believed to be Lamarck's oryza; but the characters given, and
the different distribution are sufficient to separate the two, and I follow later monographers by adopting T. nivea.

This species is the T. scabriuscula, Kien., not Gray.
T. oryza, Lam. Pl. 21, figs. 82, 83, 79.

Ovate, extremities produced, ribs fine, dorsal impression loug. Length, $30-45$ inch.

Sandwich Is., Australia, Philippines.
Dr. Dunker in "Mal. Blatt." for 1861 , refers to a small variety from the Red Sea, having only a faint dorsal sulcus.
T. scabriuscula, Gray (fig. 79) is a variety characterized by rather more produced rostrated extremities and a shorter dorsal impression.
T. oryza is as peculiarly East Indian as T. nivea is West Indian.
T. Grando, Gask. I'l. 21, figs. 86, 87.

Smaller and more globose than the preceding, ribs extremely fine and delicate, aperture rather wide, spire prominent.

Length, $\cdot 26$ inch.
Manilla.
'T. insecta, Mighels. I'l. 21, figs. 84, 85.
Elongate ovate, subrostrate, ribs very tine, back depressed, dorsal sulcus long. Length, $\cdot 1-2$ inch.

Sandwich Islands, Australia.
Kiener called this species C'. hordacea.
T. vitrea, Gask. Pl. 21, figs. 88, 89.

Globose, aperture rather narrow, and slightly curved inwards, ribs coarse, texture pellucid. Length, $\cdot 25$ inch.

Philippines.
Weinkauff thinks this species and T. sulcata belong together. T. globosa, Gray. Pl. 21, figs. 92, 93.

Round like a pea, aperture very narrow, dorsal impression sharply cut and reaching to the extremities. Length, $\cdot 1-\cdot 2$ inch.

West Indies ; Sandwich Is.; Australia.
Described by Kiener as T. pilula and by Mighels as T. sphærula.

Weinkauff separates T. pilula, giving this name to the shell
from the Pacific region, and retains T. globosa for the West Indian form, but I have not been able to separate the two.
T. subrostrata, var. alba, Krebs, is most likely T. globosa; the two species are very similar in form.
T. pauchlirata, Sowb. Pl. 21, figs 98, 99.

Orate, ribs coarse, dorsal impression conspicuous.
Length, $\cdot 25$ inch.
Hab. (?)

> ** Shell usually pinkish, spotted.
th T. pediculus, Linn. Pl. 21, figs. 9t-97.
Fleshy white marbled with pale brown, especially towards the sides, margin ridged, dorsal spots black, ribs coarse, nodular, interior of columella white. Length, $\cdot 25-65$ inch.

Florida, West Indies.
A species presenting considerable variation.
T. labiosa, Gask. (fig. 97), is a variety in which the marginal ridge is exaggerated; the ribs are fewer in number and of a whitish color, while in T. cimex, H. Owen (fig. 96), there is an increased tendency to crenulation in the dorsal ribs, and an amalgamation of the dark spots on the right side into one blotch.

Fossil, T. pediculus occurs in the Pliocene clay beds of Costa Rica (W. M. Gabb).
$\sqrt{ }$ T. surfusa, Gray. Pl. 21, figs. 1, 2, 100.
O blong ovate, ribs fine, promiscuously variegated and sprinkled with brown, extremities pink, base whitish. Length, $\cdot 3-5$ inch. West Indies.
Described by Duclos, under the name T. Armandina.
T'. pullata, H. Owen (fig. 100), presents the peculiarity of the spots being amalgamated into a single tint.
T. Pacifica, Giay. Pl. 21, figs. 3, 4.

More attenuated than the preceding, with more produced extremities; the ribs are finer and the dorsal spots alternate on each side of the sulcus. Length, $\cdot 3-4$ inch.

Gulf of California (Stearns), Acapulco, Galapagos Is.
T. quadripunctata, Gray. Pl. 22, figs. 5, 6.

Rotundly ovate, back ornamented with four conspicuous red
dots, two on each side of the dorsal groove, alternating one with the other; ribs fine. Length, $\cdot 20-35$ inch.

The T. rotunda, Kiener.
West Indies, Florida.
T. exigua, Gray. Pl. 22, figs. $9,10,17$.

Ovate, extremities produced, beaked, white, stained and variegated with bright rose, ribs fine. Length, $\cdot 15-\cdot 2$ inch.

Sandwich Islands, New Caledonia.
A most beautiful little shell, described also by Duelos, as T. tremeza, and by Dr. Gould, as T. gemmula.
T. corrugata, Pease (fig. 17), differs in having fewer and stronger ribs; the pink color is not so persistent, some of the specimens being pure white.

> ***Shell brownish.
T. radians, Lam. Pl. 22, figs. $13,14,11,12$.

Rotundly ovate, sides dilated, dorsal impression broad, nodose on each side, the ribs diverging from the nodules, back stained with a dark bloteh, base depressed. Length, $\cdot 65-\cdot 8$ inch.

Lower California, Ecuador.
T. rota, Weinkanff (figs. 11, 12), is a distant variety with a color more diffused and nearer T. Solandri.
T. Solandri, Gray. Pl. 22, figs. 15, 16.

More rounded at the base than the preceding, from which it can be easily distinguished by its minute row of outer teeth, there being an intermediate one between each of those terminating the ribs. Length, $\cdot 55-80$ inch.

Santa Barbara, Cal.-Acapulco.
'न. costis-punctata, Gask. Pl. 22, figs. 7, 8.
Closely allied to T. radians. Its color is that of the ordinary T. pediculus, the ribs are spotted, and the dorsal groove is narrow, the base is romeded. Length, $\cdot 6$ inch.

Hab. (?)
T. Californica, Gray. Pl. 22, figs. 18, 19, 20, 37.

Ovate, rather globose; ribs distant, dorsal impression faint, whitish; teeth whitish. Length, $35-55$ inch. California.

The animal is vivid orange-scarlet, reddish brown at the end of the proboscis. When the mantle is extended over the back of the shell its color is neutralized by the purple of the latter. T. depauperata, Sowb. (fig. 37), was described from a worn specimen.
T. Maugeri, Gray. Pl. 22, figs. 23, 24.

Pyriformly ovate, fulvous rose-color, closely ribbed, ribs somewhat flexnose, dorsal line narrow, lack obscurely stained with a large faint brown blotch, right side pink.

Length, about 7 inch.
Galapagos Is.
T. pisum, Gask. Pl. 22, figs. 29, 30.

Spheroidal, light fawn, ribs large, prominent ; aperture rather wide, extremities slightly produced, dorsal impression long.

Length, about 45 inch.
Ceylon.
T. sanguinea, Gray. Pl. 22, figs. 21, 22.

Ovate, purple-brown, back stained in the middle with a bloodred spot, whitish at each end, rils whitish, dorsal impression almost obsolete. Length, $35-5$ inch.

California-Ecuador.
Described by Dufresne as T. lathyrus.
T. fusca, Gray. Pl. 22, figs. $35,36$.

Smaller, narrower and more produced than the preceding, ribs finer and of the same color as the shell.

Length, $\cdot 15-\cdot 30$ inch.
Galapagos Is.
T. subrostrata, Ġray. Pl. 22, figs. 38, 39.

Globose, dark chocolate-brown, extremities slightly beaked, dorsal line well marked. Length, $\cdot 15-3$ inch.

West Indies.
Locality given in Mazatlan Catalogue by Dr. Carpenter is improbable. As before stated, the white variety of this species mentioned in Krels' Catalogue is most likely T'. globosa, Gray.

$$
\begin{aligned}
& \text { b. Having no dorsal impression. } \\
& \text { * Shell white. }
\end{aligned}
$$

T. candidula, Gask. Pl. 22, figs. 33, 34.

Globosely ovate, ribs strong, rather conspicuons.
Length, $\cdot 25$ inch.
Canary Is., Azores, Spanish Coast (Hidalgo), Mexico.
Credited also to several Pacific localities, the correctness of which is somewhat doubtful.

This species was almost simultaneonsly described by Duclos as T. olorina, and by Beek as T. approximans.
'T. producta, Gask. Pl. 22, figs. 25, 26.
Ovate, sides a little dilated, extremities peculiarly produced, ribs fine. Length, 5 inch.

Borneo; Agulhas Bank, S. Africa; Australia.
T. pellucidula, Gask. Pl. 22, figs. 31, 32.

Ovate, extremities produced, ribs very fine, aperture narrow and nearly straight. Length, $\cdot 18-\cdot 3$ inch.

Pacific Ocean.
T. Brevissima, Sowb. Pl. 21, figs. 90, 91.

Differs from T. globosa, which it closely resembles, in having no dorsal impression. Length, 22 inch.

Hab. (?)
** Shell pinkish, sometimes spotted.
T. rubinicolor, Gask. Pl. 22, figs. 27, 28.

Orate, extremities obtusely produced and tinged rose-red, ribs fine. Length, $\cdot 25-4$ inch.

Ceylon, Borneo.
T. affinis, Marrat. Pl. 23, figs. 40, 41.

Oblong-ovate, pale, with indications of color, extremities produced, broad, ribs rather coarse. Length, 3 inch.

Hab. (?)
The type specimens were found in a dealer's stock of West Indian shells, but as no collectors have reported it from that locality, and as the shell closely resembles T'. Pacifica, except in the absence of any dorsal impression, I am inclined to think it belongs to a Pacific fanna.
'I'. rubescens, Gray. Pl. 23, figs. $42,43$.
Globosely orate, pale pinkish or reddish, ribs fine.
Length, $3-4$ inch.
Galapagos I.
Somewhat of the form of T. candidula, Gask.
T. Formosa, Gask. Pl. 23, figs. 44-47.

Globose, thin, rather inflated; whitish, delicately suffused with rose, ribs and teeth numerous, fine. . Length, about 5 inch. Cape of Good Hope.
T. multitirata, Sowb. (figs. 46,47), credited to the Adriatic,
the author says was first figured for T. formosa. It resembles a more adult shell than our illustration of the latter, copied from Thes. Conch., and is quite likely the same.

Dr. Weinkauff believes T. formosa to be close to T. Europæa, Mont., if not identical.
T. Europea, Montagu. Pl. 23, figs. 48-51.

Ovate, flesh-color, tinged with fulvous, sparingly spotted with brown, closely ribbed, base white. Length, $\cdot 3-5$ inch.

Mediterranean Sea to Norway.
Found fossil to the Miocene, it being common in the Red Crag.
The fossil form was described as T'. sphæriculata by Lam., and T. coccinelloides by Sowb.

While the shell of T. Europæa is plain, the animal presents a striking contrast, it being predominantly yellow, brown and pink; the mantle is very large and more or less studded with wart-like processes of a pale orange-brown with white or yellow papillæ, occasionally variegated by red spots and a few purplish blotches.

It is found on stony and coral ground from low-water mark to 100 fathoms.

According to Dr. J. Gryn Jeffreys, the northern specimens are usually unspotted, while those found south are smaller and more frequently spotted.
T. arctica, Montagu, is the unspotted form ; T. bullata, of the same author, represents the young shell (fig. 50). Bulla diaphana, Montagn (fig. 51), is a very young example of the same; so is the Bulla candida, Macgillivray. The species was also described by Lamarck as T. coccinella, and by Sars as T. Norvegica, while Risso gave it the name T. Mediterranea.

The late Cias. Kingsley, Canon of Westminster, in a letter to his friend H. P. Gosse, January 3d, 1854, says: "I have seen T. Europæa during the last few days suspend itself from the under side of low-tide rocks by a glutinous thread an inch or more in length, and when in captivity float on the surface by means of a similar thread attached to a glutinous bubble."(Life of Chas. Kingsley.)
T. Napolina, Duclos. Pl. 23, fig. 52.

Much narrower and more produced than the preceding, its ribs are rather finer and more convergent; its color is a dingy white, and it has only two spots, one at each end of the dorsum.

Length, • $35-\cdot 45$ inch.
Senegal, N.W. Australia.
Credited also to St. Vincent, Cape Verd, by M. de Cessac. Described by Gaskoin as T. obscura.
T. Australis, Lam. Pl. 23, figs. 53, 54.

Oblong-ovate, rather thin, irregularly painted with light brown blotches, ribs fine, nearly obsolete on the back, extremities tinted with rose, base white. Length, $\cdot 4-75$ inch.

New South Wales.
Common at this locality, living in from 10 to 15 fms.
*** Shell brown.
T. pulex, Soland. Pl. 23, figs. 55, 56.

Ovate, ribs fine, smooth or obsolete on the back, sides and base white. Length, 3 ineh.

Azores, Mediterranean Sea.
Fossil in the Pleistocene.
T. pulla, Gask. Pl. 23, figs. 57, 58.

Orate, extremities slightly produced, ribs fine.
Length, $\cdot 25$ inch.
Galapagos Is., Gulf of California (Stearns).
Is probably the Trivia mentioned in the Mazatlan Catalogue as being T? subrostrata.

Unidentified Species of Cypræidx.

C. caput-anguis, Philippi.

An unfigured species without known locality, less than onehalf inch in length, brown between the teeth, and white-spotted at the extremities. Said to present a dorsal surface similar to C. caput-serpentis, Linn., which has led authors to incorrectly place it in the synonomy of that speeies.
C. parvula, Philippi.

Another unfigured species, locality unknown; said to belong to the group containing C. fimbriata, Gmel.
C. castanea, Anderson.

Shell ovate, ventricose, chestnut-brown, with two wide obscure lands, margins thickened, white spotted with brown, aperture at extremities rosy red.

Hab. ?
C. trigonella, Duff.

Shell oval, a little inflated, aperture narrow, dorsal surface crimson-reddish, margin white, spotted with blackish brown.

New Holland.
Trivia acutidentata, Gask.
Ovate globular, dull white with a faint dorsal impression, ribs rather thick, prominent but not crowded, columellar side more gibbous than the outer, teeth more numerous on the lip than on the columella.

Bay of Guayaquil.
Its nearest ally in shape is T. exigua.
The original type of this species was accidentally broken by Mr. Gaskoin after description, and the fragments preserved in the collection of Miss Sanl are too incomplete for recognition.

INDEX AND SYNONYMY.

CYPRÆIDÆ.

```
Achatidea (Cypræa), Gray. C. Ill., f. 179, 1837.
\(=\) C. physis, Brocchi.
Achatina (Cypræa), Sol. MSS. Dillw. Cat., i, p. \(446,1817\). \(=\) C. ventriculus, Lam.
Acicularis (Cypræa), Gmel. Syst. Nat., p. 3421, 1790. \(=\mathrm{C}\). spurca, Linn.
Acutidentata (Trivia), Gask. Zool. Proc., p. 201, 1835. Unidentified, 207
```

Adamsoni (Cyprea), Gray. Desc. Cat. Cyp., p. 7, 1832, . 196
Adelinæ (Cypræa), Roberts, 168
Adusta, Jouss. Bull. de Soc. Zool. France, ix, p. 93, 1884, . 161
Adusta (Cypræa), Chem. Conch. Cab., x, p. 106, pl. 145, f. $1341,1790=$ C. onyx, Linn.

Aflinis (Cyprea), Gmel. Syst. Nat., p. 3420, 1790. $=$ C. globulus, Linn.
Aflinis (Trivia), Marratt (non Gmel.) Ann. Mag. N. H., xx, p. 215, 1867,

Albella (Cypræa), Lam. An. sans Vert., vii, p. 404, 1822. $=\mathrm{C}$. caput-serpentis, Linn.
Albida (Cyprea), Gmel. Syst. Nat., p. 3404, 1790. $=$ C. cinerea, Gmel.
Albuginosa (Cypræa), Mawe. Zool. Jour., i, p. 510, pl. 7, 12, f. 2, 1824,
Alga (Cypræa), Perry. Conch., pl. 23, f. 1, 1811. = C. mappa, Linu.
Algoensis (Cypræa), Gray. Zool. Jour., i, p. 498. 1824, . 189
A mabilis (Cypræa), Jouss. Le Naturaliste, p. 349, 1881. $=$ C. Walkeri, Gray, .

185
Ambigua (Cypræa), Gmel. Syst. Nat., p. 3409. $=$ C. tigris, jr., Linn.
Amethystea (Cypræa), Linn. Syst. Nat., 1174, 1767. $=$ C. Arabica, Linn.
Angustata (Cypræa), Gmel. Syst. Nat., p. 342I, 1790, . 188

Ama (Cyprea), Roberts. Am. Jour. Conch., iv, p. 250, pl. 15, f. 4-6, 1868. = C. semiplota, Migh. . . . 194
Annulata (Cypraa), Gray: Zool. Jonr., ir, p. 88, 1829, . 197
Amulus (Cypraa), Linn. Syst. Nat., p. 1179, 1767, . . 178
Annulus (Cypraa), Limm. Fry of, 179
Aperta (Trivia), Swn. Zool. Jour., iii, p. 571, 1828.
$=$ C. oniscus, Lam.
Approximans (Trivia), Beck. Zool. Proc., p. 201, 1835. $=$ C. candidula, Gask.

203
Arabica, Jouss. Bull. de Soc. Zool. France, ix, p. 90, 1884, 160
Arabica (Cyprea), Linn. Syst. Nat., p. 1173, 1767, . . 174
Arabicula (Cypraza), Lam. An. sans Vert., vii, p. 399, 1822, 175
Arctica ('Trivia), Sol. MSS. 'Test. Brit., i, p. 201, 1803. $=$ C. Europæa, Mont.

205
Arenosa (Cyprea), Gray. Zool. Jour., i, p. 147, pl. 7, 12, f. 6,1824 , 166

172
A: irus (Cyprea), Linn. Syst. Nat., p. 1173 (12th ed.), 1767,164
Argus (Porcellana), Rumph. Amb. Rarit., pl. 38, f. D, 1705. $=$ C. Argus, Linn.
Aricia, Gray. Desc. Cat. Cyp., p. 7, 1832, . . 159, 162, 172
Arlequina (Cypraa), Chemn. Conch. Cab., x, p. 145, f. 1346-7, 1790. $=$ C. histrio, Meusch.
Armandina ('Trivia), Duclos. Coq. Viv., p. 140, pl. 46, f. 2. = 'T. suflusa, Gray,
Artuffeli, Jouss. Bull. Soc. Zool. France, ix, p. 81, 1876. $=$ C. clandestina, Linn.
A selli (Porcellana), Rumph. Amb. Rarit., t. 39, f. M, 1705. $=$ C. asellus, Linn.
Asellus (Cyprea), Linn. Syst. Nat., p. 1178, 1767, . . 187
Atara (Monetaria), Rochebr. Bull de Soc. Malac. France, p. 83 , pl. 1, f. 4, $1884 .=$ C. moneta, Limn.

Atheroma (Cypræa), Meusch. Mus. Gevers, p. 402, 1787. $=$ C. cervos, Linn.
Atomaria (Cyprea), Gmel. Syst. Nat., p. 3412, 1790. $=$ C. punctata, Linn.
Aubreyana (Cypræa), Jouss. Revue et Mag. Zool., p. 348, pl. 18, f. $1-\dot{3}, 1869$. = C. bicallosa, Gray,
Aurantium (Cyprea), Martyn. Univ. C., ii, f. 59, 1782, . 180
Aurora Solandri (Cyprea), Chemn. Conch. Cab., xi, pl. 180, f. $1737,1738,1795 .=$ C. amrantium, Mart.

Australis (Trivia), Lam. An. sans Vert., vii, p. 404, 1822, 206
Autumnalis (Cypraa), Perry. Conch., pl. 21, f. 2, 1811. $=$ C. mus, Linn.

Badia (Cyprea), Gmel. Syst. Nat., p. 3414, 1790, midentified.

Bandata (Cypræa), Perry. Conch., pl. 20, f. 2, 1811. $=$ C. arabica, jr., Linn.
 Barclayi (Cyprea), Reeve. Zool. Proc., p. 208, pl. 38, f. 4, 1857,

Barthelemyi (Cyprea), Bernardi. Jour. de Conch., p. 48, pl. 1, 1861. = C. moneta, Linn.
Basterotia, Bayle MSS. Bull. de Soc. Zool. France, ix, p. 95, 1884,
Becki (Cypræa), Gask. Zool. Proc., p. 205, 1835, . . 191
Bernaya, Jouss. Bull. de Soc. Zool. France, ix, p. 88, 1884, 1 (60
Bicallosa (Cyprea), Gray. C. Ill., sp. 50, f. 10, 1837, . . 193
Bicolor (Cyprea), Gask. Zool. Proc., p. 92, 1848. $=$ C. piperita, Sol.

189
Bicomis (Cyprea), Sowh. Thes. Conch. Cyp., Index, 1870. = C. mus, Linn.
Bifasciata (Cyproa), Gmel. Syst. Nat. p. 3405. $=$ ('. exanthema, Linn.
Boivini (Cyprea), Kien. Coq. Tiv., p. 66, pl. 18, f. 2. $=$ C. gangrenosa, Sol

196
Bregeriana (Cypræa), Crosse. Jour. de Conch., xvi, p. 277, 1868 ; xvii, pl. 1, f. 2, 1869. =C. Walkeri, Gray, . 185
Brevidentata (Cypræa), Sowb. Thes. Conch. Cyp., No. 30, f. $325,326,1870=$ C. stolida, var.

Brevissima (Trivia), Sowb. Thes. Conch. Cyp., No. 168, f. 523, 524, 1870,

204
Brocchi (Cyprea), Desh. An. sans Vert., x, p. 575, 1844. $=$ C. annulus, fossil.
Broderipi (Cyprea), Gray. Desc. Cat., p. 3, No. 18, 1832, . 182
Bullata (Cyprea), Pultney. Test. Brit. i, p. 202, pl. 6, f. 1, 1803. = Trivia Europæa, Mont.

205
Caledonica (Cyprea), Crosse. Jour. de Conch., xvii, p. 41, pl. 1, f. 1, 1869 . C C. lynx, Linn.183

Californica (Trivia), Gray. Zool. Jour., iii, p. 365, 1827, . 202
Camelopardalis (Cyprea), Perry. Conch., pl. 19, f. 5, 1811.-182
Camelorum (Monetaria), Rochebr. Bull. Soc. Malac. France, p. 86 , t. 1, f. $7,1884 .=$ C. moneta, Linn.

178
Cancellata (Cypræa), Gmel. Syst. Nat., p. 3414, 1790. Unidentified.
Candida (Bulla), Macgill. Moll. Aberd., pp. 68, 188, 1843. $=$ 'T. Europæa, Mont. Z.
andida (Cypræa), Pse. Zool. Proc., p. $515,1865^{\circ}$.
$=$ C. clandestina, var. 187
Candidula (Trivia), Gask. Zool. Proc., p. 200, 1835,... . 203
Capensis (Cypræovula), Gray. Zool. Jour., iii, p. 573, 1828, 196

Caput-anguis (Cyprea), Philippi. Menke and Pfr., p. 24, 1849, 173, 206
Caput-serpentis (Cyprea), Limn. Syst. Nat., p. 1175, 1767, 173
Carnea (T'rivia), Gray. Zool. Jour., iii, p. 569, 1828. $=$ Trivia costata, Gmel.

199
Carneola (Cyprea), Linn. Syst. Nat., p. 1174, 1767, . . 166
Carneola (Cyprea), Martyn (non Linn.). Univ. C., pl. 14, 1782. = C. ventriculus, Lam.

Carneola (Porcellana), Rumph. Amb. Rarit., pl. 38, f. K, 1705. = C. carneola, Limn.

Castanea (Cyprea), Anderson. Archiv für Nat., ii, p. 271 , 1837. Unidentified, .

Castanea (Cyprea), Higgins. Zool. Proc., p. 178, pl. 14, f. 1, 1868. = C. similis, Gray,
Caurica (Cyprea), Linn. Syst. Nat., p. 1179, 1767, . . 171
Canteriata (Cyprea), Chemn. Conch. Cab., x, pl. 144, f. 1332, 1788. = C. stercoraria, Lim.
Cernica (Cyprea), Sowb. Thes. Conch. Cyp., No. 132, f. 238-240, 1870,
Cervina (Cyprea), Lam. An. sims Vert., vii, p. 375, 1822. $=$ C. cervus, Linn.
Cervinetta (Cypræa), Kien. Coq. Viv., p. 74, pl. 6, f. 1, 2. $=\mathrm{C}$. exanthema, Linn.
Cervus (Cyprea), Limn. Mantissa, p. 548, 1771, . . 164
Chalcedonia (Cyprea), Perry. Conch., pl. 19, f. 6, 1811. $=$ C. helvola, Linn.
Childreni (Cypræa); Gray. Zool. Jour., i, p. 518, 1824, . 198
Chinensis (Cyprea), Gmel. Syst. Nat. p. 3421, 1790. $=$ C. lynx, Limn.
Chrysalis (Cyprea), Kien. Coq. Viv., p. 92, pl. 54, f. 4, . 172
Chrysostoma (Cyprea), Brazier. $=$ C. Sophia, ibicl., Proc. Zool. Soc. N. S. W., p. 445, 1880.
Cicatrosa (Trivia), Sowb. Thes. Conch. Cyp., No. 160, f. $458,459,1870$,
Cicereula (Cypraea), Linn. Syst. Nat., p. 1181, 1767, . . 197
Cimex (Trivia), H. Owen. Sowb., Thes. Conch. Cyp., index, 1870. = T. pediculus, Linn.

Cincta (Cypræa), Sol. MSS. Zool. Jour., i, p. 446, 1824. $=$ C. cinerea, Gmel.
Cinerea (Cyprea), Gmel. Syst. Nat., p. 3402, 1790.
Cinnamomæa (Cypræa), Oliv. Zool. Adriat., p. 134. $=$ C. pyrum, Gmel.
Citrina (Cyprea), Gray (non Kiener). Zool. Jour., i, p. 509, 1824,
Citrina. (Cyprea), Kien. (as of Gray). Coq. Viv., p. 70, pl. 43, f. $4 .=$ C. helvola, Linn.

Clandestina (Cyprrea), Lim. Syst. Nat., p. 1177, 1767, . 187
Clara (Cyprea), Gask. Zool. Proc., p. 13,1851,. . . 166
Coccinella, Leach. Adams' Genera, i, p. 268, 1858.
= Trivia, Gray.
Coccinella (Trivia), Lam. An. sans Vert., vii, p. 404, 1822.
$=$ T. Europrea, Mont.
205
Coceinelloicles (Trivia), Sowb. Min. Conch., t. 378, f. 1. = T. Emroprea, Mont., fossil, 205
Corula (Cyprea), Perry. Conch., pl. 22, f. 8, 1811. $=$ C. moneta, Linn.
Coffea (Cypræa), Sowb. Thes. Conch. Cyp., No. 26, f. 359, 360, 1870. = C. neglecta, Sowb.
Comma (Cyprea), Perry. Conch., pl. 21, f. 5, 1811. $=$ C. cribraria, Linn.
Commixta, Mawe. Wood, Index Supp., f. 11, 1828. $=$ C. Intea, Gronor.
Compta (Cyprea), Pse. Zool. Proc., p. 189, pl. 51, f. 1, 1860. = C. Cumingi, Gray,

Comptoni (Cyprea), Gray. Juke's Voy., ii, p. 356, t. 1, f. 3, 1847. = C. angustata, Gray, .

Concava (Cyprea), H. Owen. Sowh., Thes. Cyp., f. 318, 319, 1870. = Distorted C. caurica, Limn.

Conoidea (Cypræa), Gmel. Syst. Nat., p. 3414, 1790. $=$ Oniscia tuberculosa.
Conspurcata (Cyprea), Gmel. Syst. Nit., p. 3405, 1790. $=$ C. stercoraria, Limn.
Contaminata (Cyprea), Gray. Desc. Cat. Cyp., p. 11, 1832, 168
Contrastriata (Cyprea), Perry. Conclı., pl. 20, f. 3, 1811. $=$ C. carneola, Limn.
Controversa (Cyprea), Gray. Zool. Jour., i, p. 144 ; iv, p. 71. = C. isabella, Linn.

Corrosa (Cyprea), Gron. Zooph., p. 129, 1783. $=$ C. cauriea, Linn.
Corrugata (Trivia), Pse. Am. Jour. Conch., iv, p. 95, pl. $11, \mathrm{f} .14,15,1868$ = T. exigua, Gray, 202
Costata (Trivia), Gmel. Syst. Nat., p. 3418,1790 , . 199
Costispunctata ('Trivia), Gask. MSS. Sowb. Thes. Cyp., No. 148 , f. $452,453,1870$,202

Coxeni (Cypraa), Cox. Zool. Proc., p. 568, pl. 48, f. 10, 1873,
Coxi (Cypræa), Brazier. Zool. Proc., p. 617, pl. 44, f. 3, 1872,
Crassa (Cyprea), Gmel. Syst. Nat., p. 3421, 1788.
$=$ C. carneola, Linn.
Crebricostata ('Trivia), Sowb. Thes. Cyp., p. 51, 1870. $=\mathrm{T}$. formosa, Gask.
Cribellum (Cypræa), Gask. Zool. Proc., p. 22, 1849 , 190
Cribraria, Jouss. Bull. de Soc. Zool., France, ix, p. 94, 1884, 161

- Cribraria (Cyprea), Limn. Syst. Nat., p. 1178, 1767, 190
Crossei (Cyprrea), Marie. Jour. de Conch., xvii, p. 16, μ,1, f. 3, $1869 .=$ C. stolida, Linn.171
Cruenta (Cyprea), Gmel. Syst. Nat., p. 3420, 1790 , 171
Cumingi (Cypræa), Gray. Desc. Cat. Cyp., No. 41, 1832, 191
Cylindrica (Cyprea), Born. Mus., p. 184, pl. 8, f. 10, 1780 , 170
Cylindrica (Cyprea), Wood. Cat., pl. 17, f. 17, 1828.
$=$ C. tabescens, Sol.
Cypraa, Linn. Syst. Nat., p. 1172, 1767, . . . 159, 160
Cypreacea (Fam.). Troschel. Gebiss, i, p. 201, 1863, 159
Cypredia, Swn. Malac., p. 325, 1840.
$=$ Luponia, Gray, 161, 162
Cypræidæ (Fam.), 153
Cypræinæ (Sub-Fam.), Swn. Malac., 324, 1840.
Cypreorbis (Sub-Gen.), Conrad. Amer. Jour. Conch., i, p.31, 1865 (Fossil),162
Cypræorula, Gray. 196
Cypriarius, Dumèsil. Zool. Anal., p. 16t; 1806.= Cypræa, Linn.
Dama (Cyprea), Humph. Cal. Cat., No. 118, 1779. $=$ C. vitellus, Linn.
Dama (Cyprea), Perry. Conch., pl. 23, f. 3, 1811. $=$ C. nivosa, Brod.
Decipiens (Cyprea), E. A. Smith. \%ool. Proc., p. 482, pl. 48, f. 8, 1880,176
Declivis (Cypraa), Sowb. Thes Conch. Cyp., No. 103, f.287, 328*, 329*, 1870,189Dentex (Cyprea), Humplı. Cal. Cat., No. 11 f, 1779.$=$ C. caurica, Linn.
Depauperata (Trivia), Sowb. C. Ill., sp. 130, f. 49, 1837. = 'I. Californica, Gray,202
Derosa (Cyprea), Gmel. Syst. Nat., p. 3416, 1790. $=$ C. caurica, Linn.
Derosa (Cyprea), Risso. Hist. Nat. de l’Europe Merid., iv, p. 238. = C. helvola, Linn.
Diaphana (Bulla), Montagu. Test. Brit., p. 205, t. 7, 1. 8, 1808. = T. Europra, Mont.
Diluculum (Cyprea), R re. Icon., pl. 14, sp. 65, 1845. = C. undata, Lam.
Dracana (Cypraza), Born. Mns., p. 189, 1780. $=$ C. caurica, Limn.
Dubia (Cyprea), Gmel. Syst. Nat., p. 3405. $=$ C. exanthema, Linn.
PAGE.
Eburnea (Cyprea), Barnes. Ann. Lyc. N. H., i, p. 133, pl. 9,f. 2,1824 ,192
Eburnea (Cypræa), König. Zool. Jour., iv, p. 72, 1828.$=$ C. cinerea (Fossil).
Edentula (Cyprea), Sowb. C. Ill.. sp. 102, f. 26*, 1837, 196
Eglantina (Cypraea), Ducl. Guer. Mag., p. 28, 1833.
$=$ C. arabica, Linn. 174
Eglantina (Cyprea), Sowb. (as of Duclos). = C. niger,Roberts. = C. arabica,174
Elongata (Cyprea), Perry. Conch., pl. 22, f. 5, 1811.$=$ C. caurica, Limn.
Epona, H. and A. Adams. Genera Recent Mollusca, i, p.269,1858 , 163,197Erato, Risso. Eur. Merid., iv, 1826. Now referred toMarginellidæ,162
Erosa (Cyprea), Linn. Syst. Nat., p. 1179, 1767, 192Erosaria, Trosch. Gebiss i, l. 210, 1863.$=$ Aricia, Gray,160,161Erronea, Trosch. Geliss i, p. $210,1863$.$=$ Aricia, Gray, 160,161
Erronea (Cyprea), Gmel. Syst. Nat., p. 3411, 1790.
$=$ C. errones, Linn.
Errones (Cyprata), Linn. Syst. Nat., p. 1178, 1767, 183
Erythrea, Barrelier. Icon., 1714. = Cyprea, Linn.Erythreensis (Cyprea), Beck MSS. Reeve, Icon., pl. 14,sp. 63,1845 ,172
Esontropia (Cyprea), Ducl. Mag. Zool., p. 26, 1833, 190
Ethmographica (Monetaria); Rocheb. Bull. Soc. Malac. France, p. 78, pl. 1, f. 2, 1884. = C. moneta, Linn. 178Europa (Trivia), Montagu. Test. Brit. Supp., p. 88,1808 ,154, 205
Exanthema (Cyprea), Linn. Syst. Nat., p. 1172, 1767, 164
Exigua (Trivia), Gray. Desc. Cat. Cyp., p. 15, 1832, 202
Eximia (Cypræa), Sowb. Zool. Proc., p. 124, 1849. Fossil.Close to C. umbilicata, Sowb.
Exusta (Cyprea), Sowb. C. Ill., sp. 25, f. 2*, 1837, 167
Fabula (Cyprea), Kien. Coq. Viv., p. 97, pl. 54, f. 3.$=$ C. felina, Gmel.169
Fallax (Cyprea), E. A. Smith. Ann. Mag. N. H., 5th series,viii, p. 441. = C. cribraria, Linn.190
Fasciata (Cyprea), Chemn. Conch. Cab., x, pl. 144, f. 1334,1788. = C. stercoraria, Linn.
Fasciata (Cyprea), Perry. Conch., pl. 22, f. 9, 1811. $=$ C. erosa, Linn.
Felina (Cyprea). Gmel. Syst. Nat., p. 3412, 1790,169

Feminea (Cypræa), Gmel. Syst. Nat., p. 3409, 1790. $=$ C. tigris, Linn.
Ferruginea (Cyprea), Humph. Cal. Cat., No. 113, 1779. $=$ C. stolida, Lim.
Ferruginosa (Cyprea), Combes' MSS. Zool. Jour., i, 385, 1824. = C. errones, Limn.

Ferruginosa (Cypræa), Gmel. Syst. Nat., p. 3403, 1790. $=$ C. erosa, Linn.
Ferruginosa (Cyprea), Kien. Coq. Viv., p. 37, pl. 56, f. 3. $=\mathbf{C}$. Sowerbyi, Kien.
Fimbriata (Cypræa), Gmel. Syst. Nat., p. 3420, 1790, . 168
Fimbriatula (Cyprrea), Sowb. Thes. Conch. Cyp., No. 138, f. $518,1870 .=$ C. semiplota, Mighels,

Flammea (Cypræa), Gmel. Syst. Nat., p. 3408, 1790.
$=$ C. tigris, Linn.
Flaveola (Cypræa), Born. (non Linn.). Mus., p. 190, 1778. $=$ C. pyrum, Gmel.
Flaveola (Cypræa), Lam. (non Linn.). An. sans Vert., vii, p. $394,1822 .=$ C. spurea, Limn.

Flaveola (Cyprea), Limn. Syst. Nat., p. 1179, 1767, . . 195
Formosa (Trivia), Gask. Zool. Proc., p 198, 1835, . . 204
Fragilis (Cypræa), Born. Mus., p. 179, pl. 8, f. $6,1780$. $=$ C. Manritiana, Linn.
Fragilis (Cypræa), Linn. Syst. Nat., 1175, 1767. $=$ C. Arabica, jr., Linn.
Friendi (Cyprea), Gray. Desc. Cat. Cyp., 1. 5, 1832. $=$ C. Scotti, Brod.
Fuliginosa (Cyprea), Perry, Conch., pl. 22, f. 1. $=$ C. Mauritiana, Linn.
Fulva (Cyprea), Gmel. Syst. Nat., p 3413, 1790. $=$ C. pyrum, Gmel.
Fusca (Trivia), Gray. Desc. Cat. Cyp., p. 15, 1832, . . 203
Fusco-dentata (Cypræa), Gray. Zool. Jour., i, j. 499, 1824, 189
Fuscomaculata (Cypræa), Gray MSS. (non Pease). Sowb., Thes. Cyp., No. 90 , f. $372,373,1870$.
= C. Adelinæ, Roberts, 168
Fuscomaculata (Cyprrea), Pse. Zool. Proc., p. 515, 1865, . 168
Gangrænosa (Cypræa), Sol. MSS. Dilw. Cat., i, p. 465, 1817, 195
Gaskoinia, Roberts. Cat. Porcellanida, p. 201, Amer. Jour. Conch., v, 1869, 161, 163, 196
Gaskoini (Cyprea), Reeve. Zool. Proc., p. 23, 1846, . . 191
Gaskoini (Trivia), Roberts. Cat. Porcellanidre, p. 206, Am. Jour. Conch., v, $1869 .=$ 'T. suleata, Gask.
Gemmosa (Cyprea), Perry. ('onch., pl. 23, f. 5, 1811.
$=$ C. nucleus, Linn
page.
Gemmula (Trivia), Gld. Proc. Bost. Soc., ii, p. 27, 1845. $=$ T. exigua, Gray,202
Gemmula (Cyprea), Weink. M. Ch. ed., ii, pl. 16, f. 1, 9,1881,175
Gibba (Cyprea), Gmel. Syst. Nat., p. 3403, 1790. $=$ C. stercoraria, Limm.
Gisortia, Jouss. Bull. de Soc. Zool. France, ix, p. 88, 1884, 160
Globosa (Trivia), Gray. Desc. Cat. Cyp., p. 14, 1832, 200
Globuli (Porcellana), Rumph. Amb. Rarit., pl. 39, f. L, 1705. $=\mathrm{C}$. globulus, Linn.
Globulus (Cyprea), Linn. Syst. Nat., p. 1181, 1767, . . 198
Goodali (Cypraa), Gray. Desc. Cat. Cyp., p. 10, 1832, . 168
Gracilis (Cyprea), Gask. Zool. Proc., p. 93, 1848, . . 188
Grando (Trivia), Gask. Zool. Proc., p. 96, 1848, . . 200
Grando (Trivia), Ducl. Potiez, Gal. des Moll., i, p. 481, 1838. Fossil. Probably grando, Gask.
Granulata (Cyprea), Pse. Zool. Proc., p. 278, 1862. $=$ C. Madagascariensis, Gmel.
Granulata (Cypraa), Humph. Cal. Cat., p. 105, 1779. $=$ C. stapbylæa, Limm.
Grayi (Cyprea), Kien. Coq. Viv., p. 20, pl. 26, f. 3. $=$ C. physis, Brocehi.
Grummulus (Cypraa), Humph. Cal. Cat., No. 112, 1779. $=$ C. stercoraria, Linn.
Guttata (Cypraea), Gmel. Syst. Nat., p. 3402 , reference to Mart. Conch., i, pl. 25, f. $252,253 .=$ C. guttata, Gray.
Guttata (Cyprea), Gmel., p. 3402, reference to Lister, pl. 676, f. 23. = C. tigris, Limm.
Guttata (Cyprea), Gray, Zool. Jour., i, p. 511, 1824, 157, 191
Guttata (Cyprea), Lam. (non Gray). Ann. du Mus., xv, p. 453, 1810. = C. pantherina, Sol.
Guttata (Porcellana), Rumph. Amb. Rarit., pl. 38, f. A, 1705. = C. tigris, Linn.
Hamyi (Monetaria), Rochebr. Bull. Soc. Malac. France, p. 88, t. 2, f. 5, 1884. = C. annulus, Linn.
Harmandiana (Monetaria), Rochebr. Bull. Soc. Malac. France, p. 90, t. 2, f. 4. = C. ammlus, Linn. . . . 179
Helenæ (Cyprra), Roberts. Am. Jour. Conch., iv, p. 250, pl. 15, f. 7, 10, 1868. $=$ C. flaveola, Linn., var. labrolineata, Gask. . . . 195
Helvola (Cypraea), Linn. Syst. Nat., p. 1180, 1767, . . 194
Hirundo (Cypræa). Linn. Syst. Nat. p. 1178, 1767, . . 169
IIistrio (Cyprea), Mensch. Mus. Gevers, p. 404, 1787, . 175
Hordacea ('Trivia), Kien. Coq. Viv., p. 149, pl. 54, f. 5. $=$ 'I. insecta, Mighels,200

Humphreysi (Cyprea), Gray. Zool. Jour., i, p. 489, 1824. $=$ C. lutea, Gronov.

187
Icterina (Cypræa), Lam. An. sans Vert., vii, p. 387, 1822. $=$ C. moneta, Linn.

178
Indica (Cypræa), Gmel. Syst. Nat., p 3412, 1790. $=$ C. scurra, Chemn,
Ingloria (Cyprea), Crosse. Jour. de Conch., xxvi, p. 166, 1l. 3, f. 2, $1878 .=$ C. bicallosa, Gray,

193
Insecta (Trivja), Mighels. Proc. Bost. Soc., ii, p. 24, 1845, 200
Intermedia (Cypræa), Gray. Zool. Jour., i, p. 77, 1824. $=$ C. reticulata, Mart.175

Intermedia (Trivia), Kien. Coq. Tiv., pl. 54, f. 1. $=$ 'I'. scabriuscula, Gray = T. oryza, Lam.
Interrupta (Cypræa), Gray. Zool. Jour., i, p. 376, 1824, . 167
Interstincta, (Cyprea), Wood. Index Supp., pl. 3, f. 9, 1828. $=$ C. staphylaa, Linn.
Ipsa, Jouss. Bull. de Soc. Zool. France, ix, p. 97, 1884. . 161
Irescens (Cyprra), Sowb. Thes. Conch. Cyp. Index, 1870. $=$ C. macula, Arl.
Iriua (Cyprea), Kien. Coq. Viv., p. 35, pl. 56, f. 2. $=$ C. nigropunctata, Gray.
Irrorata (Cyprea), Sol. MSS. Zool. Jour., iv, p. 80, 1828, 167
Isabella (Cypraa), Lim. Syst. Nat., p. 1177, 1767, . . 165
Isabella Porcellana), Kumph. Amb. Rarit., pl. 39, f. G, 1705. $=$ C. Isabella, Limı.

Jenneria, Jouss. Bull. de Soc. Zool. France, ix, p. 98, 1884, 161
Jenningsia (Cyprea), Perry. Conch., pl. 19, f, 4, 1811. $=$ C. guttata, Gray.

Kiinthi (Cyprea), Audouin. Savigny, Desc. de l'Egypt, ed. ii, vol. 22, p. 190, pl. 6, f. 27, 1828. = C. lurida, Linn.

Labiolineata (Cyprea), Sowb. (as of Gask.). Thes. Conch. Cyp., f. 231, 1870. = C. gangrenosa, Sol.
Labiosa (Trivia), Gask. Zool. Proc., p. 202, 1835. $=$ T. pediculus, Linn.
Labrolineata (Cypraa), Gask. Zool. Proc., p. 97, 1848. $=$ C. flaveola, Linn.

195
Lacrymalis (Cyprea), Menke. Synop., p. 83, 1828. $=$ Trivia pulex, Sol.
Lactea (Cypræa), Wood. Supp., pl. 3, f. 2, 1838. $=$ C. eburnea, Barmes.
Lamarcki (Cyprea), Gray. Zool. Jour., i, p. 506, 1824, . 192

Lathyrus (Cyprea), Dufr. Blainv., Dict. Sci. Nat., xliii, p. $25,1826 .=$ C. sanguinea, Gray, 203

Lentiginosa (Cyprra), Gray. Zool. Jour., i, p. 489, pl. 7, 12 , f. 1,1824 ,
Leopardalis (Cypraa), Humph. Cat. Call. No. 130, 1779.
$=$ C. tigris, Linn.
Leucodon (Cypriea), Brod. Zool. Jour., iv, p. 163, pl. 6, 1828, .

181
Leucogaster (Cyprea), Gmel. Syst. Nat., p. 3413, 1790. $=$ C. lurida, Linn.
Lencopis (Cyprea), Shaw. Misc., xv, pl. 619. $=$ C. exanthema, Linn.
Leucostoma (Cyprea), Gask. Zool. Proc., p. 25, 1843,
177
Leucostoma (Cyprea), Gmel. Syst. Nat., p. 3413, 1790. $=$ C. lynx, Linn.
Lienardi (Cyprea), Jouss. Revue et Mag. Zool., p. 11, pl. 1, f. 1,2, i874. $=$ C. cicercula, Linn.

198
Limacina (Cyprea), Lam. An. sans Vert., vii, p. 400, 1822. = C. staphylæa, Linn.

197
Lincata (Cyprea), Gmel. Syst. Nat., p. $3413,1790$. $=$ C. ziczac, Linn.
Listeri (Cyprea), Gray. Zool Jour., i, p. 507, 1824, . . 193
Livida (Cypræa). Gmel. Syst. Nat., p. 3403, 1790. $=$ C. cincrea, Gmel.
Loebbeckiana (Cyprea), Weink. M. Ch., ii, p. 82, pl. 24, f. 2, 3,1881. = C. carneola, Lim.

166
Lota (Cypræa), Linn. Syst. Nat., p. $1175,1759$. $=$ C. spurca, Linn.
Luponia, Gray. Desc. Cat. Cyp., p. 12, 1832, 159, 160, 163, 180
Luria, Jouss. Bull. de Soc. Zool. France, ix, p. 92, 1884, . 161
Lurida (Cyprea), Linn. Syst. Nat., p. 1175, 1767, . . 165
Lutea (Cypræa), Gronov. Zoophylac. fasc., 3, pl. 19, f. 17, 1781, .

187
Lyucina, Trosch. Geloiss, i, p. 208, 1863.
$=$ Cypræa, Linn.
160
Lynx (Cypræa), Linn. Syst. Nat., p. 1176, 1767, . . 183
Macandrei (Cypræa), Sowb. Thes. Conch. Cyp., No. 129*, f. $537,538,1870$,

Macula (Cypræa), A. Ad. Zool. Proc., p. 206, 1867, . . 169
Maculata (Cypræa), Barnes. Ann. Lyc. N. H., i, p. 132, 1824. = C. reticulata, Martyn.
Maculata (Cypræa), Gray. Zool. Jour., i, p. 389, 1824. $=$ C. zonata, Chem.
Maculata (Cypræa), Perry. Conch., pl. 20, f. 5, 1811.
$=$ C. angustata, Gray.Maculosa (Cyprrea), Gmel. Syst. Nat., p. 3412, 1790.$=$ C. pyrum, Gmel.
Madagascariensis (Cyprea), Gmel. Syst. Nat., p. 3419, 1790,
Mandolina, Bayle MSS. Bull. de Soc. Zool. France, ix, p. 89, 1884, 160
Mappa (Cyprea), Linn. Syst. Nat., p. 1173, 1767, 174
Margarita (Cypræa), Sol. MSS. Zool. Jour., iv, p. 87, 1828, 191
Marginata (Cypraa), Gask. Zool. Proc., p. 91, 1848, 176
Marmorata (Cyprea), Blainv. Dict. Sci. Nat., xliii, p. 26,1826. = C. carneola, Limn.
Mangeri (Trivia), Gray. Desc. Cat. Cyp., p. 13, 1832, 203
Manritia, 'Troschel. Gebiss, i, p. 208, 1863.
= Cypræa, Linn. 160
Mauritiana (Cypræa), Linn. Syst. Nat., p. 1176, 1767, 173
Manxiena, Jouss. Bull. cle Soc. Zool. France, ix, p. 89, 1884, 160
Mediterranea (Trivia), Risso. Eur. Merid., p. 239, 1826.$=$ T. Europæa, Mont.205
Melanostoma (Cyprea), Leathes. Tank. Cat. App., p. 31,1825. $=$ C. camelopardalis, Perry.
Menkeana (Cypræa), Desh. Conch. I. Remion, p. 139, pl.13, f. 21, 2 $2,1863 .=$ C. Oweni, Sowb.169
Mercatorium (Monetaria), Rochebr. Bull. Soc. Malac.France, p. 80, pl. 1, f. 3, $1884 .=$ C. moneta, Linn. . 178
Miciodon (Cyprrea), Gr:uy. Zool. Jour., iv, p. 71, 1828, 169
Miliaris (Cyprea), Gmel. Syst. Nat., p. 3420, 1790, 192Minima (Cyprea), Dunker. Index Moll., p. 30, ıl. 4, f. 5,6, 1853. = C. lurida, Lim.
Misella (Cyprea), Perry. Conch., pl. 23, f. 6, 1811. = C. ziczac, Linn.
Modesta (Cypræa), H. Owen. Sowb., Thes. Cyp., f. 512, 1870. = C. Menkeana, Desh. =C. Oweni, Sowb.
Moneta (Cyprea). Linn. Syst. Nat., p. 1178, 1767, . 155, 177
Monetaria (Subgenus), Troschel. Gebiss, i, p. 212, 1863. $=$ Aricia, Gray,

$$
160,161
$$

Moniliaris (Cypræa), Lam. An. sans Vert., vii, p. 396, 1822. $=$ C. clandestina, Linn.
Montosa (Porcellana), Rumph. Amb. Rarit., p. 114, pl. 38, f. B, 1705 . C. mappa, Lim.
Morbillosa (Cypræa), Sol. MSS. Dillw., Cat., p. 461. 1817. $=$ C. cruenta, Gmel.
Multilirata (Trivia), Sowb. Thes. Conch. Cyp., f. 427, 428, $521,522,1870 .=\mathrm{T}$. formosa, Gask.
Mus (Cypræa), Linn. Syst. Nat., p. 1176, 1767, 177
Napolina (Trivia), Ducl. Coq. Viv., p. 144, pl. 53, f. 3, 206
Naria, Gray. Desc. Cat. Cyp., p. 12, 1832, 159,161

Nel)ulosa (Cypræa), Gmel. (non Kiener). Syst. Nat., p. $3413,1790 .=$ C. stercoraria, Linn.
Nebulosa (Cypraa), Kien. Coq. Viv., p. 63, pl. 32, f. 3. $=$ C. zonata, Chem.

186
Nebulosa (Cypræa), Sowb. (as of Kien.). Thes. Conch. Cyp., f. 354, 355, 1870.
\doteq C. Petitiana, Crosse and $\mathrm{F} .=$ C. pyrum, Gmel., var.
Neglecta (Cyprea), Sowb. Conch. Ill., sp. 66, f. 12*, 1837, 170
Niger (Cyprea), Roberts =C. eglantina, Sowb. (non Duclos), Thes. Conch.,f. 282,283,1870. =C. arabica, Linn., 174
Nigricans (Cyprea), Montrouzier. Jour. de Conch., p. 220, pl. 8, f. 5, pl. 9 , f. 3, $1875 .=$ C. mappa, Limn.

174
Nigropunctata (Cypraa), Gray. Zool. Jour., iv, p. 81, 1828, 185
Nivea (Cypraa), Gray (non sol.). Zool. Jour., i, p. 420, $511,1824 . \quad$ Proc. Kool. Soc., p. 98, 1848. $=$ C. turdus, Lam.
Nivea (Trivia), Gray. Desc. Cat. Cyp., p. 15, 1832, . . 199
Nivea (Cyprat), Mawe. Wood, Index Suppl., f. 12, 1828. = C. lutea, Gronov.
Nivea (Cyprrea), Sol. Dillw. Cat., i, p. 466, 1817. $=$ Trivia nirea. Gray.
Niveria (Genus), Jouss. Bull. de Soc. Zool. France, ix, p. 100, 1884.
Nivosa (Cyprea), Brod. Zool. Jour., iii, p. 84, pl. 4, f. 1, 1827,
Norvegica (Trivia), Sars. $=$ T. Emropæa, Mont. . . 205
Notata (Cyprea), Gill. Ann. Lyc. N. H., vi, p. 255, pl. 9, f. $1-3,1858 .=$ C. macula, Ad.

Noumeënsis (Cyprea), Marie. Jour. de Conch., xvii, p. 18, pl. 2, f. 6, $1869 .=$ C. annulus, Linn.
Nuclearia (Genns), Jouss. Bull. de Soc. Zool. France, ix, p. 98,1884 ,

Nucleus (Cyprea), Linn. Syst. Nat., p. 1181, 1767, . . 197
Nymphæa (Cyprea), Ducl. - ? = C. onyx, Linn.
Oblonga (Cyprra), Gmel. Syst. Nat., p. 3416, 1790. $=$ C. errones, Linn.
Obscura (Trivia), Gask. Zool. Proc., p. 94, 1848. $=$ T. napolina, Ducl. 206
Obscura (Cyprea), Rossiter. Proc. Linn. Soc. N. S. W., p. 821, 1881. = C. cauri('a, Linn. 171
Obtusa (Cypræa), Perry. Conch., pl. 19, f. 1, 1811. $=$ C. pantherina, Sol.
Obvelata (Cypræa), Lam. An. sans Tert., vii, p. 401, 1822, 179
Ocellaria (Section), Weink. Jahrb. Malak., 1881, . . 160
Ocellata (Cyprea), Limn. Syst. Nat., 1. 1180, 1767, . . 193

Ochroleuca (Cypræa), Gmel. Syst. Nat., p. 3413. $=$ Ovulum verrucosum, Linn.
Oculata (Cyprea), Gmel. Syst. Nat., p. 3403, 1790.
$=$ C. cervus, Linn.
Olivacea (Cyprrea), Gmel. Syst. Nat., p. 3408, 1790. $=$ C. stercoraria, Linn.
Olivacea (Cypræa), Lam. An. sans Vert., vii, p. 392, 1822. $=$ C. errones, Linn.
Olorina (Cyprea), Ducl. Zool. Proc., 1835, p. 201. = Trivia candidula, Gask.
Omscus ('Trivia), Lam. Ann. du Mus., xvi, p. 103, 1810, . 198
Onyx (Cyprea), Linn. Syst. Nat., p. 1177, 1767, . . 183
Oryza (T'rivia), Lam. Aun. du Mus., xvi, p. 104, 1810, . 200
Otaheitensis (Cyprea), Sch. et Wag., p. 108, pl. 228, f. 4029-30, 1829. = C. carneola, Linn.
Ovata (Cyprea), Gmel. Syst. Nat., p. 3405, 1790. $=$ C. errones, Linn.
Ovata (Cypræa), Perry. Concl., pl. 21, f. 3, 1811. $=$ C. turdus, Lam.
Ovulata (Trivia), Lam. An. sans Vert., vii, p. 398, 1822, . 199
Ovum (Cyprea), Gmel. Syst. Nat., p. 3412, 1790. $=$ C. errones, Linn.
Oweni (Cyprea), Sowb. C. Ill., sp. 64, f. 12**, 1837, . 169
Pacifica (Trivia), Gray. Desc, Cat. Cyp., p. 15, 1832, . 201
Pallida (Cyprea), Gray. Zool. Jour., i, p. 287, 1824, . . 184
Pallidula (Cyprea), Gask. Zool. Proc., p. 97, 1848. = C. quadrimaculata, Gray. 167
Pantherina (Cyprea), Sol. MSS. Dillw. Cat., i, p. 449, 1817, 181
Pardalina (Cyprea), Dunker. Zeit. für Malak., p. 126, 1852. Probably C. turdus, Lam., var.
Pardalis (Cyprea), Shaw. Nat. Misc., vi, pl. 193. $=$ C. tigris, Linn.
Parvula (Cyprea), Philippi. Zeit. für Malak., p. 24, 1849. Unidentified,
Paucilirata (Trivia), Sowb. Thes. Conell. Cyp., No. 175*, f. 502, 526, 1870,
Peasei (Cyprea), Sowb. Thes. Conch. Cyp., No. 113, f. 167, 168, 1870. $=$ C. esontropia, Ducl.
Pediculus (Trivia), Linn. Syst. Nat., p. 1180, 1767, . . 201
Pediculus (Trivia), Linn. (in part). Syst. Nat., p. 1180, 1767. = T. oryza, Lam.

Pediculus (Trivia), Mont. Test. Brit., i, p. 200, 1803. $=$ T. Europra, Mont.
Pediculus (Cyprea), Rumph. Amb. Rarit., pl. 39, f. P, 1705. = Trivia oryza, Lam.
Page.
Pellucidula (Trivia). Gask. Zool. Proc., p. 23, 1846, 204
Peribolus, Adans. Moll. Hist. Nat. Senegal, 1757.$=$ Cypræa, Linn.
Perrieri (Monetaria), Rochebr. Bull. Soc. Malac. France, p. 92, t. 2, f. $6 .=$ C. annulus, Linn. 179
Petitiana (Cypræa), Crosse and F. Jour. de Conch., xx, p. 213, 1872. = C. pyrum, Gmel. 183
Physis (Cypræa), Brocchi (in ret. foss.). Conch. foss. Subapp., ii, p. 284, pl. 2, f. 3, 1814, 183
Picta (Cypræa), Gray. Zool. Jour., i, p. 389, pl. 7, 12, f.10, 1824,186
Picturata (Trivia), Mörch. Mal. Blatt., xxiv, p. 49, 1877.$=$ T. pediculus, Linn.
Pilula (Trivia), Kien. Coq. Viv., p. 151, pl. 54, f. 2.$=$ T. globosa, Gray,200
Piperita (Cyprea), Sol. MSS. Zool. Jour., i, p. 498, 1824, 189
Pisum (Trivia), Gask. Zool. Proc., p. 24, 1816, 203
Pleuronectes (Monctaria), Rochebr. Bull. de Soc. Malac. France, p. 85, t. 1, f. 5, 1884. = C. moneta, Linn. 178
Plumaria (Monetaria), Rochebr. Bull. de Soc. Malac. France, p. 87, t. 2, f. 2, $1884 .=$ C. moneta, Linn. 178Plumbea (Cyprrea), Gmel. Syst. Nat., p. 3403, 1790.$=\mathrm{C}$. exanthema, Linn.
Polita (Cyprea), Roberts. Am. Jour. Conch., iv, p. 70, pl.
15, f. 1-3, 1868, 194
Ponda, Jouss. Bull. de Soc. Zool. France, ix, p. 95, 1884, 161
Poraria (Cyprea), Limn. Syst. Nat., p. 1180, 1767 , 193
Poraria (Cyprea), Mart. (non Linn.) Conch., i, p. 394, pl.30 , f. $324,325,1768 .=$ C. gangrænosa, Sol.Porcellana, Klein. Tenta. Cochel., p. 83, 1753.$=$ Cypræa, Linn.161
Porcellanidæ (Family), Roberts. Catalogue in Am. Jour.Conch., v, $1869 .=$ Cypræide, Linn.
Porcellus (Cypræa), Broc. Conch. Foss. Subap., ii, p. 283,t. 2, f. 2, $1814 .=$ C. pyrum., Gmel., fossil,183
Princeps (Cypræa), Gray. Zool. Jour., i, p. 75, 1824, 180
Producta (Trivia), Gask. Zool. Proc., 1835, p. 200, 1848, 204
Pseudo-cassis (Genus), Pictet. Pal. Suisse, ser. iii, pt. 2, 361, 1863 162
Pulchella (Cyprea), Gray. Zool. Jour., i, p. 143, 1824. $=$ C. pulchra, Gray, ibid, p. 380, 165
Pulchella (Cyprea), Swn. Phil. Mag., lxi, p. 376, 1823, 184
Pulchra (Cyprea), Gray. Zool. Jour., i, p. 380, pl. 7, 12, f. 9, 165
Pulex (Trivia), Sol. MSS. Zool. Jour., iii, p. 368, 1827, 206
Pulicaria (Cypræa), Reeve. Zool. Proc., p. 23, 1846, 189
Pulla (Trivia), Gask. Zool. Proc., 1846, p. 24; 1848, p. 97, 206

Pulla (Cyprea), Gmel. Syst. Nat., p. 3412, 1790. $=$ C. onyx, Linn.
Pullata (Trivia), H. Owen MSS. Sowb., Thes. Conch. Cyp. Index, f. $446,447,1870 .=$ T. suffusa, Gray, . . . 201
Punctata (Cypræa), Linn. Mantissa, p. 548, 1771, . . 188
Punctulata (Cypræa), Gray. Zool. Jour., i, p. 387, 1824,. . 186
Punctulata (Cypræa), Gmel. Syst. Nat., p. 3404, 1790. $=$ C. cylindrica, Linn.
Purpurascens (Cypræa), Swn. Phil. Mag., lxi, p. 376, 1823. $=$ C. sanguinolenta, Gmel.
Purpurascens (Cyprea), Gmel. Syst. Nat., p. 3404, 1790. $=$ C. cinerea, Gmel.
Purpurata (Cypræa), Sol. MSS. Dillw. Cat., i, p. 445, 1817. =C. sanguinolenta, Gmel.
Pusilla (Cypræa), Gmel. Syst. Nat., p. 3421, 1790. $=$ C. clandestina, Linn.
Pustularia, Swainson. Malacology, p. 324, 1840, 159, 161, 163, 196
Pustulata (Cypre), Lam. An. du Mus., xv, p. 101, 1810, . 197
Pusula, Jouss. Bull. de Soc. Zool. France, ix, p. 99, 1884, . 161
Pyriformis (Cyprea), Gray. Zool. Jour., i, p. 371, 1824, . 184
Pyriformis (Cypræa), Sowb. Thes. Conch. Cyp., f. 284, 1880. = C. turdus, Lam. 192

Pyrula (Cypræa), Mich. (non Lam.). Fossil. Mioc. It. Sept., p. 329. = C. physis, Broc., fossil,

Pyrum (Cyprea), Gmel. Syst. Nat., p. 3411, 1790, . . 183
Quadrimaculata (Cypraa), Gray. Zool. Jour., i, p. 376, 1824, 167
Quadripunctata (Trivia), Gray. Zool. Jour., iii, p. 368, 1827, 201
Radians (Trivia), Lam. An. sans Tert., vii, p. 402, 1822, . 202
Rattus (Cypræa), Lam. An. sans Vert., vii, p. 380, 1822. $=$ C. stercoraria, Linn.
Reentsi (Cyprea), Dkr. Menke and Pfr., 18552, p. 189, and Nov. Conch., pl. 9, f. 3, 4, 1858. = C. gangrenosa, Sol., 196
Reevei (Cyprea), Gray. C. Ill., sp. 15 *, f. 52, 1837, . . 166
Regina (Cyprea), Chemn. Conch. Cab., x, p. 101, i788. $=$ C. Manritiana, Linn.
Regina (Cyprea), Gmel. Syst. Nat., p. 3406, 1790. $=$ C. Manritiana, Linn.
Reticulata (Cyprea), Martyn. Univ. C., pl. 15, 1782,
Reticulum (Cyprea), Gmel. Syst. Nat., p. 3407, 1790. $=$ C. caput-serpentis, Linn.
Rhinoceros (Cyprea), Souv. Jour. de Conch., p. 156, pl. 5, f. $1,1865 .=$ C. interrupta, Gray,

Rosea (Trivia), Ducl. Potiez, Gall. des Moll., p. 477, 1838. $=$ T. Australis, Lam.

Rosea (Cyprea), Wood. Index Supp., pl. 3, f. 15, 1828.
$=$ Trivia costata. Gmel. 199
page.

Rota (Trivia), Weink. M. Ch., ii, t. 38, f. 13, 16, 1881. $=$ T. radians, Lam. 202
Rotunda (Trivia), Kien. Coof. Viv., p. 141, pl. 53, f. 2. $=$ T. quadripunctata, Gray, 202
Rubescens (Trivia), Gray. Zool. Proc., p. 185, 1832, . 204
Rubiginosa (Cyprea), G̈mel. Syst. Nat., p. 3420, 1790. $=$ C. stolida, Linn.
Rubinicolor (Trivia), Gask. Zool. Proc., p. 200, 1835, . 204
Rufa (Cyprea), Lam. An. sans Vert., vii, p. 388, 1822. $=$ C. pyrum, Gmel.
Rufescens (Cyprea), Gmel. Syst. Nat., p. 3404. $=$ C. cinerea, Gmel.

Salita (Porcellana), Rumph. Amb. Rarit., pl. 38, f. L, 1705. $=\mathrm{C}$. vitellus, Linn.
Sandwichensis (Trivia), Sowb. Thes. Cyp. Index, 1870. $=$ T. scabriuscula, Gray.
Sanguinea (Trivia), Gray. Desc. Cat. Cyp., p. 14, 1832, . 203
Sanguinolenta (Cypraa), Gmel. Syst. Nat., 1. $3406,1790,186$
Saulæ (Cyprea), Gask. Zool. Proc., p. 23, 1843, . . 188
Scabiosa (Cyprea), Hmmph. Cat. Call., No. 103, 1779. $=\mathrm{C}$. gangreenosa, Sol.
Scabrinscula (Trivia), Gray. Zool. Jour., iii, p. 364, 1827. $=$ T. oryza, Lam.200

Scabriuscula (Trivia), Kien. (non Gray). Coq. Viv., pl. 43, f. 3. = T. nivea. Gray

Scottii (Cyprea), Brod. Zool. Jour., r, p. 330, pl. 14, 1831, 176
Scurra (Cyprea), Chemn. Conch. Cab., x, p. 103, pl. 144, f. 1338, 1788 ,

Semiplota (Cyprea), Mighels. Proc. Bost. Soc., ii, p. 24, 1848,194

Siciliana (Cyprea), Salis. Reisen Neapol., i, p. 364, 1793. = C. pyrum, Gmel.
Similis (Cyprea). Gray. Zool. Miscel., p. 36, . . 189
Similis (Cyprea), Gmel. Syst. Nat., p. 3421, 1790. $=\mathrm{C}$. erosa, Limn.
Smithi (Cyprea), Sowb. Zool. Proc., 1881, p. 638, pl. 56, f. 8. = C. pyriformis, Gray

Solandri (Trivia). Gray. C. İl., sp. 128, f. 43, 1837, . . 202
Sophix (Cyprea), Brazier. Proc. Limn. Soc. N. S. W., i, 1. 7, 1875,.

184
Sordida (Cyprea), Lam. An. sans Vert., vii, p. 387, 1822. $=$ C. cinerea, Gmel.
Sowerbyi (Cyprea), Kien. Coq. Viv., p. 38, pl. 7, f. 3, . 185

PAGE.
Sowerbyi (Cypraa), Anton. Verzeich. der Conch., p. 97 , 1839. = C. carneda. Linn.

Sowerbyi (Cypraa), Gray. Desc. Cat. Cyp., p. 9, 1832. $=$ C. neglecta, Sowb.
Spadicea (Cypræa), Swn. Phil. Mag., 1xi, p. 376, 1823, . 182
Spadix (Cyprea), Mighels. Proc. Bust. Soc., ii, p. 25, 1848. $=$ C. semiplota, Mighels, .
Sphericulata (Trivia), Lam. Am. dı Mus.. No. 14, 1810. $=$ T. Emopra, Mont., fossil,

205
Spherula (Trivia), Mighels. Proc. Bost. Soc., ii, p. 24, 1848. $=$ 'T. globosa, Gray, .
Spurca (Cyprea), Linn. Syst. Nat. p. 1179, 1767, . . 195
Spurea (Cyprea), Linn., var. flaveola, Sowb. Thes. Cyp., f. $121,1870 .=$ C. Cernica, Sowb., pars.

Squalina (Cyprrea), Gmel. Syst. Nat., p. 3420, 1790. $=$ C. lynx, Linn.
Staphrlea, Jouss. Bull. de Soc. Zool. France, ix, p. 96, 1884, 1 fil
Staphylaa (Cyprea), Linn. Syst. Nat., p. 1181, 1767, . 196
Stellata (Cypraa), Perry. Conch., pl. 22, f. 2, 1811. $=$ C. erosa, Linn.
Stellata (Cypuraa), Gmel. Syst. Nat., p. 3413, 1790.
$=$ C. cinerea, Gmel.
Stellata (Cyprra), Humph. Cal. Cat., No. 107, 1779. = C. belvola, Lim.
Stercoraria (Cyprea), Linn. Syst. Nat., p. 1174, 1767, . 175
Sterens-muscarum (Cyprea), Lam. An. sans Vert., vii, p. 396. 1822. = C. punctata, Linn. 188

Stolicla, Jouss. Bull. de Soc. Zool. France, ix, p. 94, 1884, 161
Stolida (Cypræa), Gmel. Syst. Nat., p. 3416, 1790. $=$ C. caurica, Limn.
Stolida (Cyprea), Linn. Syst. Nat., p. 1180, 1767. . . 171
Striata (Cypraea), Gmel. Syst. Nat., 1. 3421, 1790. Probably C. staphylæa, Linn.
Subcylindrica (Cyprrea), Sowb. Thes. Conch. Cyp., No. 21, f. $269,270,1870 .=$ C. cylindrica, Bor'n.

170
Subflara (Cyprea), Gmel. Syst. Nat., p. 3413, 1790. $=$ C. errones, Linn.
Subfuscula (Cyprea), Martyn. Univ. Conch., pl. 96, 1782. $=$ C. vitellus, Linn.
Subrostrata (Trivia), Gray. Zool. Jour., iii, p. 363, 1827, . 203
Subrostrata (Cyprea), Gray. Zool. Jour., i, p. 369, 1824. Fossil, undetermined.
Subteres (Cypræa), Weink. M. Ch., ii, pl. 8, f. 4 ; pl. 13, f. $1,4,1881 .=$ C. teres, Gmel.

170
Subviridis (Cyprea), Rve. Icon., pl. 12, sp. 48, 1845, . 184

Succincta (Cyprea), Linn. Syst. Nat., p. 1177, 1767. $=$ C. onyx, Lim.
Suffusa (Trivia), Gray. Desc. Cat. Cyp., p. 16. 1832, . . 201
Sulcata (Trivia), Dillw. (non Gask.). Cat., i, p. 466, 1817. $=$ T. pediculus, Linn.
Sulcata (Trivia), Gask. Zool. Proc., p. 95, 1848,
199
Sulcidentata (Cyprea), Gray. Zool. Jour., i, p. 148, 1824, . 172
Sulcocyprea, Conrad. Am. Jour. Conch., i, p. 31, 1865. = Cypreovula, Gray, 162
Surinamensis, (Cyprea), Perry. Conch., pl. 20, f. 4, 1811. $=$ C. nebulosa, Kien. = C. zonata, Chem.

Tabescens (Cyprea), Sol. MSS. Dillw. Cat., i. p. 463, 1817, 170
Talpa (Cyprea), Humph. Cal. Cat., No. 135, 1779. $=\mathrm{C}$. testudinaria, Linn.
Talpa (Cyprea), Lim. Syst. Nat., p. 1174, 1767, . . 167
Talpa (Porcellana), Rumph. Amb. Rarit., pl. 38, f. i, 1705. = C. talpa, Linn.
Talparia, Trosch. Gebiss. i, p. 206, 1863, 160
Teres (Cyprea). Gmel. Syst. Nat., p. 3405, 1790, . . 170
Teres (Cyprea), Wood. Index (Hanley's ed.), f. 17, 1856. Unidentified.
Tesselliata, Jouss. Bull. de Soc. Zool. France, ix, p. 97, 1884,
Tessellata (Cyprea), Swn. Zool. Jour., i, p. 150, 1824, . 173
Testudinaria (Cyprea), Limn. Syst. Nat., p. 1173, 1767, . 165
Testudinosa (Cypreza), Perry. Conch., pl. 22, f. 7, 1811. = C. testudinaria, Limn.
Thatcheri (Cyprea), Cox. Zool. Proc., 1869, p. 358, pl. 26, f. $1 .=$ C. venusta. Sowb.

Thersites (Cyprea), Gask. Zool. Proc., p. 90, 1848, . . 176
Thomasi (Cyprea), Crosse. Jour. de Conch., xiii, p. 57, pl. 6, f. 3, 1865,
Tigrina (Cyprea), Gmel. Syst. Nat., p. 3404, 1790. $=$ C. tigris, Lim.
Tigrina (Cyprea), Lam. (non Gmel.). An. sans Vert., vii, p. 383. 1822. = C. pantherina, Sol.

Tigris (Subgenus), Trosch. Gebiss, i, p. 207, 1863, . . 160
Tigris (Cyprea), Limn. Syst. Nat., p. 1176, 1767,
Translucens (Cyprea), Gmel. Syst. Nat., p. 3404, 1790.
$=\mathrm{C}$. cinerea, Gmel.
Tremeza (Trivia), Ducl. Mag. de Zool., pl. 25, 1833.

$$
=\text { T. exigua, Gray, }
$$202

Tricornis (Cyprea), Jouss. Revue et Mag. Zool., p. 9, pl. 1 , f. $3,4,1874$. $=$ C cicercula, Linn.198

Trifasciata (Cypræa), Gmel. Syst. Nat., 3405, 1790.
$=$ C. Mauritiana, Limn.
Trigonella (Cyprea), Dufr. Blainr., Dict. Sci. Nat., xliii, p. 25, 1826. Unidentified,
Triticea (Trivia), Dufr. Blainv., Dict., xliii, p. 25, 1826. $=$ T. costata, Gmel.
Trivia, Gray. Desc. Cat. Cyp., p. 13, 1832, 159, 161, 163, 198
Triviacea, Țroschel. Gebiss, i, 1863, 159
Triviella, Jouss. Bull. de Soc. Zool. France, ix, p. 99, 1884, 161
Trivirostra, Jouss. Bull. de Soc. Zool. France, ix, p. 100, 1884. 161
Trizonata (Cyprea), Sowb. Thes. Conch. Cyp., No. 951, f. 361, 362, 1880. = C. punctata, Linu.188

Trona (Genus), Jouss. Bull. de Soc. Zool. France, ix, p. 89, 1884,

160
Turbinata (Cyprea), Gmel. Syst. Nat., p. 3404, 1790.
=C. Mauritiana, Limn.
Turdus (Cyprea), Lam. An. sans Vert., vii, p. 392, 1822, 192
Umbilia, Jouss. Bull. de Soc. Zool. France, ix, p. 90, 1884, 160
Umbilicata (Cyprea), Sowb. Tank. Cat. App., p. 30, pl. 7, 1825,

157, 181
Undata (Cyprea), Lam. An. sans Vert., vii, p. 393, 1822, 187
Undulata (Cyprea), Gmel. Syst. Nat., 3406, 1790. = C. Mauritiana, Linn.
Undulata (Cyprea), Wood (non Gmel.). Supp., p. 97 , pl. 17, f. 16, 1828. $=$ C. ziczac, Linn.
Unifasciata (Cyprea), Mighels. Proc. Bost. Soc., ii, p. 25, 1848. = C. fimbriata, Gmel.

Ursellus (Cyprea), Gmel. Syst. Nat., p. 3411, 1790. $=$ C. felina, Gmel.
Ursellus (Cyprea), Perry. Conch., pl. 19, f. 2, 1811. $=$ C. hirundo, Linn. (?)

Talentia (Cyprea), Perry. Conch., pl. 23, f. 2, 1811. $=$ C. princeps, Gray.
Vanelli (Cyprea), Limn. Syst. Nat., p. 1175, 1767. = C. lynx, Linn.
Variolæ (Porcellana), Rumph. Amb. Rarit., pl. 38, f. O, 1705. = C. cruenta, Gmel.

Variolaria (Cyprea), Lam. An. sans Vert., vii, p. 387, 1822. $=$ C. cruenta, Gmel.
Variolosa (Cyprea), Gmel. Syst. Nat., p. 3413. $=$ C. pyrum, Gmel.
Ventriculus (Cyprea), Lam. An. du Mus., xvi, p. 452, 1810, 172
Venusta (Cypræa), Sowb. Ann. Mag. N. H.,xix, p. 346, 1847, 176

Venusta (Cyprea), Gask. MSS. Sowb., Thes. Conch. Cyp., p. 19,1870 = C. venusta, Sowb.

Yesicularis (Cypraea), Gask. Zool. Proc., p. 203, 1835, . 199
Vestimenti (Monetaria), Rochebr. Bull. Soc. Malac. France, p. 81, t. 1, f. 6, 1884. = C. moneta, Lim.

178
Vinosa (Cyprea), Gmel. Syst. Nat., p. 3421, 1790.
$=\mathrm{C}$. pantherina, Sol.
Vitellus (Cypræa), Linn. Syst. Nat., p. 1176, 1767, . . 182
Vitrea (Trivia), Gask. Zool. Proc., p. 95, 184S, . . . 200
Vulgusella, Jouss. Bull. de Soc. Zool. France, ix, p. 90, 1884, 160
Walkeri (Cypraa), Gray. Desc. Cat., p. 11, 1832, . . 185
Xanthodon (Cyprea), Gray. Desc. Cat., p. 10, 1832,. . 186
Zebra (Cyprea), Limn. Syst. Nat., p. 1174. $=\mathrm{C}$. exanthema, Linn.
Ziczac (Cypraa), Limn. Syst. Nat., p. 1177, 1767, . . 187
Ziczac (Cypraa), Dillw. (non Linn.). Wood Index (Hanley ed.), f. 33, $1856 .=1$. undata, Lam.
Zoila, Jonss. Bull. de Soc. Zool. France, ix, p. 89, 1884, . 160
Zonarit, Jouss. Bull. de Soc. Zool. France, ix, p. 92, 1884, 161
Zonaria (Cyprea), Gmel. Syst. Nat., p. 3414, 1788.
$=$ C. zonata, Chemn.
Zonata (Cyprea), Chemn. Conch. Cab., x, pl. 145, f. 1342, 1788,186

REFERENCE TO PLATES.

CYPRÆIDÆ.

Plate 1.

FIGURE. PAGE.
1, 2. Cyprea Argus, Limn. Sowb., Thes. Cyp., 14, 15, 164
3. Cypræa cervinetta, Kien. ($=$ exanthema). Icon., t. 6, f. 2 , 164
4, 5. Cyprea exanthema, Linn. Sowb., Thes. Conch., f. 182, 183, 164
6, 7. Cyprea Isabella, Linn. Sowb, Thes. Conch. Cyp., f. 16, 17, 165
8. Cypriea Clara, Gask. Sowb., Thes. Conch. Cyp., f. 91*, 166
9, 10. Cyprea testudinaria, Linn. Sowb., Thes., f. 83, 84, 165
Plate 2.
11, 12. Cyprea cervus, Limm. Sowb., Thes. Conch., f. 89*, 90^{*} 164
13, 14. Cyprea cervinetta, Kien. (=exanthema, var.). Icon., t. 6, f. 1, 164
15, 16. Cyprea cinerea, Gmel. Sowb.,Thes., f. 92*, 93, 166
17, 18. Cyprea pulehra, Gray. Sowb., Thes. Cyp., f. 62, 63, 165
19, 20, 21. Cypræa scurra, Chem. Sowb., Thes. Conch., f. $53,54,55$, 165
Plate 3.
22, 23. Cyprea lurida, Linn. Sowb., Thes., f. 64, 65, 165
24, 25. Cyprea Reevei, Gray. Sowb., Thes. Cyp., f. 40, 41 , 166
26, 27, 28. Cypræa carneola, Linn. Kien., Icon., t. 37, f. 3, t. 1, f. 2, 166
29, 30. Cyprea Lebbeckeana, Weinkanff (= carneola). Kiister, t. 24, f. 2, 3, 166
31, 32, 33. Cyprea talpa, Linn. Sowb., Thes., f. 74, 75, 76, 167
34, 35. Cyprea exusta, Sowb. Thes. Coneh., f. 77. 78, 167
36, 37. Cyprea interrupta, Gray. Sowb., Thes., f. 271, 272, 167

Plate 4.

figure. page.
38, 39. Cyprea rhinoceros, Souv. (= interrupta). Jour.de Conch., 1865, t. 5, f. 1, 167
40, 41. Cyprea quarlimiculata, Gray. Sowb., Thes.Conch., f. 276,277 ,16
42. Cypræa palliclula, Gask. (=quadrimaculata). Sowb., Thes., f. 275 , 167
43, 44. Cyprea Goodalli, Gray. Sowb., Thes. Cyp., f. 309, 310, 168
45. Cypraa Oweni, Sowb. Specimen, 169
46, 47. Cyprea Adeline, Roberts (=fuscomaculata, Gray, non Pease). Sowb. Thes., f. 372, 373, 168
48, 49. Cyprea contaminata, Gray. Sowb., Thes., f. 331, 332, 168
50, 51. Cyprea irrorata, Soland. Sowb., Thes. Cyp., f. 304 , 305 , 167
52, 53. Cyprea felina, Gmel. Sowb., Thes. Conch., f. 392, 395 , 169
54, 55. Cyprea ursellus, Gmel. (= felina). Kien., Icon., t. 33, f. 4 , 169
56, 57. Cyprea hirundo, Liun. Sowb., Thes. Conch., f. 382,383 , 169
58. Cypraa Menkeana, Desh. (= Oweni). Sowb., Thes., f. 333 , 169
59, 60. Cyprea fabula, Kien. (二felina). Icon., t. 54, f. 3, 169
61, 62, 63. Cypræa neglecta, Sowb. Thes. Conch., f. 375, 377, 378, 170
64, 65. Cypræa chrysalis, Kien. Icon., t. 54, f. 4, 172
66, 67. Cypræa coffea, Sowb. (= neglecta). Thes. Conch., f. 359,360 , 170
68. Cypræa Oweni, Sowb. Thes. Conch. Cyp., f. 367, 169
69, 70. Cyprea Menkeana, Desh. ($=$ Oweni). Conch. I. Reunion, t. 13, f. 21, 22, 169
71, 72. Cypræa macula, Adams. Sowb., Thes., f. 380, 381, 169
Plate 5.
73. Cypræa Menkeana, Desh. (=Oweni). Thes. Conch., f. 333. (Duplicated figure), 169
74, 75. Cyprea microdon, Gray. Sowb., Thes. Conch. Cyp., f. 385,386 , 169
76, 77, 78. Cyprea fimbriata, Gmel. Sowb., Thes. Conch., f. $389,390,391$, 168
79, 80. Cyprea cylindrica, Born. Sowb., Thes., f. 266, 267, 170
81. Cypræa subcylindrica, Sowb. (= cylindrica). Thes. Conch., f. 269, 170
PIGURE. PAGE.
82, 83, 84. Cypræa tabescens, Sol. Sowb., Thes. Conch., f. $261,263,264$, 170
85. Cyprea brevidentata, Sowb. (二 stolida). Thes. Cyp., f. 326, 171
86, 87. Cyprea teres, Gmel. Sowb., Thes. Cyp., f. 259, 260, 170
88, 89, 90. Cyprea caurica, Linn. Sowb., Thes. Conch., f. $188,189,191$, 171
91, 92. Cypræa stolida, Linn. Sowb., Thes. Conch., f. 327, 328 , 171
93, 94. Cyprea Erythreensis, Beck. Sowb., Thes. Conch., f. 323,324 , 172
Plate 6.
95, 96. Cypræa ventriculus. Lam. Sowb., Thes. Cyp..f. 3, 4, 172
97. Cypræa cruenta, Gmel. Sowb., Thes. Conch., f. 187, 171
98, 99, 100. Cyprea caput-serpentis, Linn. Sowb., Thes.,f., $72,73,539$173
1, 2. Cyprea, arenosa, Gray. Sowb., Thes. Cyp., f. 9, 10, 172
3, 4. Cypræa sulcidentata, Gray. Sowb., Thes, f. 21, 22, 172
5, 6. Cyprea tessellata, Swn. Sowb., Thes. Cyp.. f. 99, 100 , 173
7. Cyprea Crossei, Marie (=stolida). Jour. de Conch., 1869, t. l, f. 3, 171
Plate 7.
8. Cypræa Mauritiana, Linn. Voy. Astrolabe, t. 48, f. 2, 173
9, 10. Cyprea Mauritiana, Linn. Sowb., Thes., f. 51, 52, 173
11. Cypræa Mauritiana (jr.). Linn. Reeve, Icon., f. $1 a$, 173
12, 13, 14. Cypræa mappa, Linn. Sowb., Thes. Cyp., f. 26, 27, 28 , 174
15, 16. Cypræa gemmnla, Weink. Kiister, M. Ch., t. 16, f. 1, 175
Plate 8.
17. Cypræa nigricans, Mont. ($=$ mappa). Jour. de Conch., 1875, t. 9, f. 3, 174
18, 19. Cypræa Arabica, Linn. Sowb., Thes. Cyp., f. 60, 61, 174
20. Cypræa intermedia, Gray (= reticulata), Sowb. Thes. Cyp., f. 68 (full size), 175
21, 22. Cypræa reticulata, Martyn. Thes. Conch., f. 66, 67, 174
23. Cypræa niger, Roberts (Arabica, var.). Thes. Conch.,f. 282,174
24. Cyprea eglantina, Ducl. (= Arabica). Guer. Mag., 1833 , t. 28 , 174
2ñ, 26. Cypræa histrio, Meusch. Sowb., Thes. Conch., f. 57, 58, 175

Plate 9.

FIGURE. PAGE.
27, 28. Cyprea stercoraria, Limn. Sowb., Thes. Conch., f. 97, 98, 175
29, 30. Cypræa Scotti, Brod. Sowb., Thes. Cyp., f. 47. 48, 176
31, 32. Cyprea thersites, Gask. Thes. Conch., f. 49, 50, 176
33, 34. Cyprea marginata, Gask. Thes. Conch., f. 45, 46, 176
35, 36. Cyprea arabicula, Lam. Reeve, Icon., f. $60 a, b$, 175
Plate 10.
37, 38. Cypræa leucostoma, Gask. Sowb., Thes. Cyp., f. 36, 37, 177
39, 40. Cyprea decipiens, E. A. Smith. Zool. Proc., 1880, t. 48 , f. $8,8 a$, 176
41, 42. Cyprea mus, Lim. Thes. Conch. Cyp., f. 29, 30, 177
43. Cyprea bicornis (? mus), Sowb. Thes. Conch., f. 321 , 177
44, 45. Cyprea venusta, Sowb. Zool. Proc., 1869, t. 26, f. $1,1 a$, 176
46. Cypraa moneta, Limn. Sowb., Thes. Cyp., f. 245, 177
Plate 11.
47. Cyprea princeps, Gray. Sowb., Thes. Conch.. f. 2, 180
48. Cyprea aurantium, Martyn. Sowb., Thes. Cyp., f. 8, 180
49, 50. Cyprea tigris, Linn. Reeve, Icon., f. $12 a, b$, 180
51, 52. Cyprea moneta, Linn. Sowb., Thes., f. 246, 247, 177
53, 54. Cyprea Barthelemyi, Bern. ($=$ moneta, Linn.).Jour. de Conch., 1861, t. 1, f. 3, 4,178
55,56 . Cyprea obvelata, Lam. Sowb, Thes. Cyp., f. 254 , 255 179
57. Cypræa annulus, Linn. Toy. Astrolabe, t. 48, f. 14, 178
58. Cypræa annulus (fry). Voy. Samarang, t. 5, f. $4 a$, 179
59. Cyprea Noumeënsis, Marie (=amulus). Jour. de Conch., 1869 , t. 2, f. 6 , 178
60, 61. Cyprea annulus, Linn. Sowb., Thes. Conch., 252, 253, 178
Plate 12.
62, 63. Cypræa pantherina, Sol. Sowb., Thes. Conch., f. 69, 70 , 181
64. Cyprea Broderipi, Gray. Sowb., Thes. Conch., f. 88 182
65, 66. Cyprea umbilicata, Sowb. Sowb., Thes. Cyp., f. 43, 44, 181
67, 68. Cyprea nivosa, Brod. Thes. Conch. Cyp., f. 89, 90, 182
69, 70. Cyprea leucodon, Brod. Thes. Conch. Cyp., f. 19, 20, 181
71. Cypraa Barclayi, Reeve. Zool. Proc., 1857, pl.38, f. 4, b, 182

Plate 13.

FIGURE. PAGE.
72, 73. Cypræa vitellus, Linn. Sowb., Thes. Cyp., f. 32, 33, 182
74, 75. Cyprea physis, Brocchi. Sowb., Thes. Cyp., f. 200, 201, 183
76. Cyprea camelopardalis, Perry. Thes. Conch., f. 34, 182
77, 79, 80, 81. Cyprea onyx, Linn. Thes. Conch. Cyp., f. 208, 212, 211, 209, 183
78. Cyprea spadicea, Swn. Thes. Conch. Cyp., f. 82, 182
82. Cyprea Barclayi, Reeve. Zool. Proc., 1857, pl. 38, f. $4 a$, 182
83, 84. Cyprea pyrum, Gmel. Sowb., Thes., f. 202, 203, 183
85. Cyprea Petitiana, C. and F. (= pyrum). Jour. de Conch., t. 11, f. 6, 183
Plate 14.
86, 87. Cypræa lynx, Linn. Sowb., Thes. Cyp., f. 86*, 87*, 183
80, 89, 7. Cyprea errones, Linn. Sowb., Thes. Cyp., f. 156, 157, 158, 183
90, 91. Cyprea pallida, Gray. Sowb., Thes. Cyp., f. 159, 160, 184
92, 93. Cypræa pulchella, Swn. Thes. Conch. Cyp., f. 148, 149 , 184
94, 95. Cyprea Smithi, Sowb. ($=$ pyriformis, var.). Zool. Proc., 1881, f. 8, 184
96, 97. Cyprea Coxi, Braz. Zool. Proc., 1872, t. 44, f. 3, 3 a, 184
98. Cyprea Caledonica, Crosse (=lynx, var.). Jour. de Conch., 1869, t. 1, f. 1, 183
99, 100. Cypræa subviridis, Reeve. Sowb., Thes. Conch., f. 177, 178, 184
1, 2. Cyprea amabilis, Jouss. (= Walkeri, var.), From sketch by author, 185
3, 4. Cypræa Sophiæ, Brazier. Specimen, 184
5, 6. Cyprea pyriformis, Gray. Sowb., Thes. Cyp., f. 145, 146, 184
Plate 15.
8. Cypræa tigris, Linn. Lingual dentition. Trosch., Gebiss, t. 17, f. 6, 153
9. Cyprea Sowerbyi, Kien. Recve, Icon., f. 40, 185
10. Cyprea Walkeri, Gray. Sowb., Thes. Conch., f. 123, 185
11. Cyprea nebulosa, Kiener (= zonata, var.). Sowb.,
Thes. Cyp., f. 198 186
12, 13. Cyprea ziczac, Linn. Sowb., Thes. Cyp., f. 135, 136, 187
FIGURE. PAGE.
14, 15. Cypræa Bregeriana, Crosse (= Walkeri, var.).J. C., 1869, t. 1, f. 2,185
16, 17. Cyprea sanguinolenta, Gmel. Sowb., Thes. Conch., f. 194,195 , 186
18, 19. Cypræa nigropunctata, Gray. Sowb., Thes. Cyp., f. 94,95 , 185
20, 21. Cypræa lentiginosa, Gray. Sowb., Thes. Cyp., f. 152,153 , 186
22, 23. Cypræa zonata, Chem. Sowb., Thes. Conch., f. 126, 127, 186
24, 25. Cypræa xanthodon, Gray. Sowb., Thes. Cyp., f. 196, 197, 186
26, 27. Cypræa stercus-muscarum, Lam. (=punctata, var.). Sowb., Thes., f. 364, 365, 188
28, 29. Cypræa punctulata, Gray. Sowb., Thes. Cyp., f. 154,155 , 186
30,31. Cypræa picta, Gray. Sowb., Thes. Conch. Cyp., f. 179,180 , 186
32. Cyprea trizonata, Sowb. (= punctata, var.). Thes., f. 361 , 188
Plate 16.
33. Cyprea undata, Lam. Sowb., Thes. Cyp., f. 131, 187
34. Cypræa asellus, Linn. Sowb., Thes. Cyp., f. 207, 187
35, 36. Cypræa lutea, Gronov. Sowb., Thes. Conch., f.142, 143,187
37, 38. Cypræa clandestina, Linn. Sowb., Thes. Cyp., f. 139, 141, 187
39, 40. Cypræa candida, Pease ($=$ clandestina). Am. Jour. Conch., iv, pl. 11, f. 12, 187
41, 42. Cypræa Sanlæ, Gask. Sowb., Thes., f. 85, 86, 188
43, 44. Cyprea gracilis, Gask. Sowb., Thes. Cyp., f. 315, 316, 188
45, 46. Cyprea Comptoni, Gray ($=$ angustata). Sowb., Thes., f. 294, 295, 188
47, 48. Cypræa angustata, Gmel. Sowb., Thes. Conch., f. 296, 297, 188
49, 50. Cypræa piperita, Sol. Sowb., Thes. Cyp., f. 285, 286. 189
51, 52. Cypræa punctata, Linn. Sowb., Thes. Cyp., f. 279, 280, 188
53. Cypræa declivis, Sowb. Thes. Conch. Cyp., f. 328*, 189
54,55 . Cypræa fuscodentata, Gray. Sowb., Thes., f. 298, 299 189
56, 57. Cypræa Algoensis, Gray. Sowb., Thes. Cyp., f. 311,312, 189
FIGURE.PAGE.
58. Cyprea bicolor, Gask. (= piperita). Sowb., Thes. f. 289 189
59, 60. Cypræa pulicaria, Rve. Sowb., Thes. Cyp., f. 290, 291, 189
61. Cyprea Artuffeli, Jouss. (= clandestina, var.). Sowb., Thes., f. 327* 188
62, 63. Cyprea similis, Gray. Sowb., Thes. Cyp., f. 300, 301 , 189
Plate 17.
64, 65. Cypræa Coxeni, Cox. Zool. Proc., 1873, t. 48, f. 10, 190
66,67. Cypræa cribellum, Gask. Sowb., Thes. Cyp., f. 165,166190
68. Cypræa Walkeri, Gray. Sowb., Thes. Conch., f. 125, 185
69. Cypræa castanea, Higgins ($=$ similis). Zool. Proc., 1868, t. 14, f. 1, 190
70. Cyprea compta, Pease ($=$ Cumingi, var.). Zool. Proc., 1860, t. 51, f. 1, 191
71, 72. Cypræa cribraria, Linn. Sowb., Thes. Conch., f. 163, 164, 190
73, 74. Cypræa Gaskoini, Reeve. Sowb., Thes. Cyp., f. 352, 353, 191
75. Cypræa Peasei, Sowb. (= esontropia). Sowb., Thes., f. 167 , 191
76, 77. Cypræa esontropia, Ducl. Sowb., Thes. Cyp., f. 169, 170, 190
78, 79. Cypræa Cumingi, Gray. Sowb., Thes. Conch., f. 349, 350, 191
80. Cyprea miliaris, Gmel. Sowb., Thes. Cyp., f. 109 192
81, 82. Cypræa margarita, Sol. Sowb., Thes. Cyp., f. 337, 338 , 191
83, 84. Cypræa guttata, Gray. Sowb., Thes. Conch., f. 104, 105, 191
85. Cypræa eburnea, Barnes. Sowb., Thes. Conch., f. 108, 192
86, 87. Cypræa Becki, Gask. Sowb., Thes. Cyp., f. 341, 342 , 191
88, 89. Cypræa Macandrei, Sowb. Thes. Conch. Cyp., f. 537,538 , 191
Plate 18.
90, 100, 1. Cypræa erosa, Linn. Sowb., Thes. Cyp., f. 111, 112,115 192
91. Cypræa turdus, Lam. Sowb., Thes. Cyp., f. 128, 19.2
92, 93. Cypræa ocellata, Linn. Sowb., Thes. Conch., f. 102, 103, 193
FIGURE. PAGE.
94, 95. Cypræa Listeri, Gray. Sowb., Thes. Conch., f.241,242 193
96, 97. Cypræa Lamarcki, Gray. Sowb., Thes. Conch.Суp., f. 106, 107,192
98, 99. Cypræa albuginosa, Mawe. Sowb., Thes. Cyp., f. 256,257, 193
2, 3. Cypræa poraria, Linn. Sowb., Thes. Cyp., f. 236, 237, 193
7. Cyprea Aubreyana, Jouss. ($=$ bicallosa), ($\frac{2}{3}$ natural size). Rev. et Mag. Zool. 1869, t. 18, f. 1, 193
5, 6. Cypræa bicallosa, Gray. Sowb., 'Thes. Conch., f. 220, 221, 193
4. Cypræa ingloria, Crosse (= bicallosa), full size. Jour. de Conch., 1878, t. 3, f. $2 a$, 193
Plate 19.
8, 9. Cypræa helvola, Limn. Sowb., Thes. Conch., f. 214, 215, 194
10, 11. Cypræa citrina, Gray. Sowb., Thes. Conch., f. 218, 219 194
12, 13. Cyprea polita, Roberts. Am. Jour. Conch., 1868, t. 15, f. 1,3 , 194
14, 15. Cyprea Thomasi, Crosse. Jour. de Conch., 1865, t. 6, f. 3 , 195
16, 17. Cyprea spurca, Linn. Sowb., Thes. Cyp., f. 118, 119 195
18, 19. Cypraa gangranosa, Sol. Sowb., Thes. Conch., f. 234, 235, 195
20, 21. Cypræa Helenæ, Roberts ($=$ labrolineata, Gask. = flaveola). Am. Jour. Conch., 1868, t. 15, f. 8, 9, 195
22. Cypræa flaveola, Limn. Reeve, Icon., f. 95, 195
23, 24. Cypræa Cernica, Sowb. Thes. Conch. Cyp., f. 239, 240 , 195
25, 26. Cyprea Boivini, Kien. (= gangrænosa, Sol.). Coq. Viv., t. 18, f. 2, 196
27, 28. Cyprea Reentsi, Dunker ($=$ gangrænosa). Novit. Conch., f. 3 , 196
29, 30. Cypræa (Gaskoinia) edentula, Sowb. Reeve, Icon., f. 85 , 196
31. Cypræa Annæ, Roberts (= semiplota). Amer. Jour. Conch., 1868, t. 15, f. 4, 194
32, 33. Cypræa (Cypræovula) Adamsoni, Gray. Sowb., Thes. Cyp., f. 401, 402, 196
34, 35. Cypræa (Cypræovila) Capensis, Gray. Sowb., Thes. Conch., f. 306, 308, 196
36. Cypræa spadix, Mighels (= semiplota). Specimen, 194
FIGURE. PAGE.
37. Cypræa semiplota, Mighels. Specimen, 194
38. Cyprea (Pustularia) granulata, Pease ($=$ Madagas- cariensis). Specimen, 197
Plate 20.
39, 40. Cypræa (Pustularia) staphylæa, Linn. Sowb., Thes., f. 228, 229, 196
41. Cypræa (Pustularia) staphylæa, Linn. Dentition. Trosch., Gebiss, i, t. 17, f. 18, 153
42, 43, 44. Cyprea (Pustularia) interstincta, Wood (= staphylæa). Sowb., Thes., f. 223, 224, 227, 196
45, 46. Cypraea (Pustularia) pustulata, Lam. Sowb., Thes. Cyp., f. 396, 397, 197
47. Cypraa fuscomaculata, Pease. Amer. Jour. Conch., 1868, t. 11, f. 11 , 168
48, 49. Cyprea (Pustularia) nucleus, Linn. Sowb., Thes. Conch., f. 399, 400 , 197
50, 51. Cyprea (Epona) annulata, Gray. Sowb., Thes. Cyp., f. 339, 340, 197
52. Cypræa (Pustularia) pustulata, young shell. Sowb. Thes. Conch., f. 398, 197
53, 54. Cyprea (Epona) Childreni, Gray. Sowb., Thes. Cyp., f. 403, 404, 198
55, 56. Cyprea (Epona) cicercnla, Linn. Sowb., Thes. Conch., f. 345, 346 , 197
57, 58. Cypræa (Epona) Lienardi, Jouss. (= C. cicercula). Mag. de Zool., 1874, t. 1, f. 1, 2, 198
59, 60. Cypræa (Epona) globulus, Linn. Sowb., Thes. Cyp., f. 347, 348, 198
61, 62. Cypræa (Epona) tricornis, Jouss. ($=$ C. cicercula). Mag. de Zool., 1874, t. 1, f. 3, 4, 198
63. Cypræa ('Trivia) Europæa, Montagu. Dentition. Trosch., Gebiss, i, t. 18, f. 4.
64. Cypræa ('Trivia) Europæa, Montagu. Portion of jaw. Trosch., Gebiss, i, t. 18, f. 3, 153
65, 66. Cypræa (Pustularia) Madagascariensis, Gmel. Sowb., Thes. Cyp., f. 406, 407, 197
Plate 21.
67, 68. Cypræa (Trivia) oniscus, Lam. Sowb., Thes. Cyp., f. 416,417 , 198
69, 70. Cypræa (Trivia) ovulata, Lam. Sowb., Thes. Conch., f. 410, 411, 199
71, 72. Cypræa (Trivia) costata, Gmel. Sowb., Thes. Cyp., f. 414,415 , 199
FIGURE. PAGE.
73, 74. Cypraa (Trivia) vesicularis, Gask. Sowb., Thes. Conch., f. 412, 413, 199
75, 76. Cypræa ('Trivia) sulcata, Gask. Sowb., Thes. Cyp., f. 454,455 , 199
77, 78. Cyprea (Trivia) cicatrosa, Sowb. Thes. Monog. Cyp., f. 458, 459, 199
79. Cyprea (Trivia) scabriuscula, Gray (二oryza). Sowb., Thes. Conch., f. 472 , 200
80, 81. Cyprea (Trivia) nivea, Gray. Sowb., Thes. Cyp., f. 468,469 , 199
82, 83. Cyprea (Trivia) oryza, Lam. Sowb., Thes. Cyp., f. 474,475 , 200
84, 85. Cyprea (Trivia) insecta, Mighels. Sowb., Thes. Conch., f. 478, 479, 200
86, 87. Cypraea (Trivia) grando, Gask. Sowb., Thes. Conch., f. $470,47 \mathrm{I}$, 200
88, 89. Cyprea (Trivia) vitrea, Gask. Sowb., Thes. Cyp., f. 456,457 , 200
90, 91. Cyprea ('Trivia) brevissima, Sowb. Thes. Conch. Cyp., f. 523, 524, 204
92, 93. Cyprea (Trivia) globosa, Gray. Sowb., Thes. Cyp.. f. 466, 467, 200
94, 95. Cypræa (Trivia) pedicnlus, Linn. Sowb., Thes. Сур., f. 429, 431, 201
96. Cyprae (Trivia) cimex, H. Owen (=pediculus). Sowb., Thes. Cyp., f. 436, 201
97. Cypræa (Trivia) labiosa, Gask. (= pediculus). Sowb., Thes. Cyp., f. 435, 201
98, 99. Cyprea (Trivia) paucilirata, Sowb. Thes. Conch. Сур., f. 502, 526, 201
100. Cypræa (Trivia) pullata, H. Owen ($=$ suffusa). Sowb., Thes. Cyp., f. 446 , 201
1, 2. Cyprea (Trivia) suffusa, Gray. Sowb., Thes. Conch., f. 444,445 , 20 I
3, 4. Cypræa (Trivia) Pacifica, Gray. Sowb., Thes. Cyp., î. 441,442 , 201
Plate 22.
5, 6. Cyprea (Trivia) quadripunctata, Gray. Sowb., Thes. Conch., f. 460,461 , 201
7, 8. Cyprea (Trivia) costis-punctata, Gask. Sowb., Thes. Cyp.. f. 452, 453, 202
9, 10. Cypræa (Trivia) exigua, Gray. Sowh., Thes. Conch., f. 510, 511, 202
11, 12. Cypræa (Trivia) rota, Weink. (=radians). Küster, M. Cb., t. 38 , f. 13,16 , 202
figure. PAGE
13, 14. Cypræa (Trivia) radians, Lam. Sowb., Thes. Conch., f. 420,422 , 202
15, 16. Cyprea ('Trivia) Solandri, Gray. Sowb., Thes. - Cyp., f. 418, 419, 202
17. Cyprea (Trivia) corrugata, Pease (= exigua). Amer. Jour. Conch., 1868, t. 11, f. 14, 202
18, 19. Cypræa (Trivia) Californica, Gray. Sowb., Thes. Conch. f. 425,426 202
20. Cyprea (Trivia) Californica, Gray. Animal. Am. Naturalist, vi, p. 733, f 146 , 202
21, 22. Cypræa ('Trivia) sanguinea, Gray. Sowb., Thes. Cyp., f. 483, 485, 203
23, 24. Cyprea (Trivia) Maugeri, Gray. Sowb., Thes. Conch., f. 450, 451, 203
25, 26. Cypræa (Trivia) producta, Gask. Sowb., Thes. Cyp., f. 495, 496, 204
27, 28. Cypræa (Trivia) rubinicolor', Gask. Sowb., Thes. Conch., f. 500,501 , 204
29, 30. Cypræa (Trivia) pisum, Gask. Sowb., Thes. Cyp., 448, 449 , 203
31, 32. Cypræa (Trivia) pellucidula, Gask. Sowb., Thes. Cyp. f. 498,499 , 204
33, 34. Cypræa ('Trivia) candidula, Gask. Sowb., Thes. Conch., f. 508, 509, 203
35, 36. Cyprea (Trivia) fusca, Gray. Sowb., Thes. Conch., f. 487,488 203
37. Cypræa (Trivia) depauperata, Sowb. (= Californica). Thes. Cyp., f. 423 , 202
38, 39. Cyprrea (Trivia) subrostrata, Gray. Sowb., Thes. Conch., f. 480,481 , 203
Plate 23.
40, 41. Cypræa (Trivia) affinis, Marratt. Sowb., Thes. Cyp., f. 464, 465 , 204
42, 43. Cyprea (Trivia) rubescens, Gray. Sowb., Thes. Conch., f. 506,507 , 204
44, 45. Cypræa (Trivia) formosa, Gask. Sowb., Thes. Conch., f. 518*, 519, 204
46, 47. Cyprea (Trivia) multilirata, Sowb. Sowb., Thes. Cyp., f. 427, 521, 204
48, 49. Cypræa (Trivia) Europæa, Mont. Sowb., Thes. Cyp., f. 503, 504, 205
50, 51. Cyprea ('Trivia) Europaa, Mont. (Young Shells).
Sowb., Thes., f. 527, 528, 205
52. Cyprea (Trivia) napolina, Ducl. Sowb., Thes. Conch., f. 505 206
FIGURE. PAGE.
53, 54. Cypræa (Trivia) Australis, Lam. Sowb., Thes. Conch., f. 439, 440 206
55, 56. Cypræa (Trivia) pulex, Sol. Sowb., Thes. Cyp., f. 493,494 206
57, 58. Cypræa (Trivia) pulla, Gask. Sowb., Thes. Cyp., f. 490,491 , 206
59. Cypraa, caput-anguis, Phil., of anthors ($=$ C. caput- serpentis). Specimen, 173
60, 61. Cyprea (Monetaria) Harmandiana, Rochebr. (=moneta). Bull. Soc. Malac. Fr., t. 1, f. 1, 177
62. Cypræa (Monctaria)icterina, Lam. (=moneta). Kiener, Icon., t. 34, f. 3, 178
63. Cypraa (Monetaria) ethnographica, Rochebr. (=mo- neta). Bull. Soc. Malac. Fr., t. 1, f. 2, 178
64, 65. Cyprea (Monetaria) atava, Rochebr. (= moneta).Bull. Soc. Malac. Fr., t. 1, f. 4,178
66,67. Cypræa (Monetaria) pleuronectes, Rochebr. (=moneta). Bull. Soc. Malac. Fr., t. 1, f. 5, 178
68. Cyprea (Monetaria) camelorum, Rochebr. (=moneta). Bull. Soc. Malac. Fr., t. 1, f. 7, 178
69. Cypræa (Monetaria) plumaria, Rochebr. (= moneta). Bull. Soc. Malac. Fr., t. 2, f. 2, 178
70. Cyprea (Monetaria) Hamyi, Rochebr. ($=$ ammus). Bull. Soc. Malac. Fr., t. 2, f. 5, 179
71, 72. Cyprea (Monetaria)Perrieri, Rochebr. (三annulus).Bull. Soc. Malac. Fr., t. 2, f. 6,179

Shell small, limpet-like, irregular, with a short spire which becomes concealed with the growth, the surface radiately ribbed when young; mouth large and wide, subeanaliculated in front, the lips irregular, simple in the adult, the inner one callonsly excarated, no opereulum.

Animal with small foot, mantle-margin thickened, not refleated over the shell, siphon not produced, eyes sessile at the external base of the tentacles. Dentition $3 \cdot 1 \cdot 3$, the central tooth subquadrangular, multicospidate, the laterals transverse, multicuspidate, the marginals long and narrow, with three profound digitations ; exterior to the marginals is a small supplementary plate (Pl. 1, fig. 1).

Young shells have the regular form of Trivia (to which the dentition approximates), with a plicate columella and dentate lip, but its parasitic habits (on polyps) cause subsequent irregular growth, so that its relationships were for a long period very uncertain. The dentition fixes its place between Cypræidæ and Ovulidæ.

Genus PEDICULARIA, Swainson, 1840.

Characters, those of the family. Very few species are known, but the geographical range of the genus is world-wide in warm seas. Fossil, miocene of Sicily.

The subgenus Dentiora, Pease, 1864 , which is founded on a shell three and a half millimetres in length, is probably a jurenile Pedicularia ; it is said to be ovate, with subinflected lip, which is lirate, the columella plane or excavated, ridged above, compressed below and sharply dentate, the onter surfaee spirally subgranosely striated. Thyreus, Phil., is a synonym of Pedicularia.

Famly I'EDICULARIIDAE.

Genus PEDICULARIA, Swainson, 1840.
P. Sicula, Swainson. Pl. 1, figs. 2, 3.

Adult irregular, more or less compressed at the sides, having a limpet-like appearance, and modified as to ontline by the surface upon which it lives; the spiral lines of the young shell
are usually persistent on a portion of the back of the adult; whitish, tinged with brown within. Length, 10 mill.

Sicily, Isle of Hyeres, Prance ; on polyps.
Thyreus paradorus, Phil., and probably Gadinia lateralis, Requien, are synonyms.
P. Californica, Newcomb. Pl. 1, fig. 4.

Depressly globose, crimson-colored, minutely transrersely striated, above romded, below broadly rounded; lip expanded, semicircular ; columella thick, dilated within, straight; aperture elongately subovate ; extremities broadly notched.

Length, 10 mill. Southern California, on coral.

P. Japonica, Dill. Pl. 1, fig. 5.

Elongated, sinuated ; whitish, irregularly suffused with rosepink, apex yellowish pink, interior darker, livid pink; externally rather coarsely grooved and striated; apex somewhat mammillated, vertex umbilicated; columella straight, inconspicuous; lateral margins much produced, concave, effuse, extremities narrow, canaliculate. Length, $\cdot 5$ inch.

Niphon, Japan, 60 fms., on Gorgonia.
Is more coarsely striate than P. Pacifica, and umbilicated, also differing in color. P. Califormica is shorter and more globose, with a thicker columella.

P. Pacifica, Pease. Pl. 1, figs. i, 7.

Rather solik, oblong, much contracted in the middle, irregular in shape; radiately ornamented with elevated granulose strise, decussated by concentric strix; apex straight, involute, immersed; wholly of either reddish, violet, purple or yellowish color. Length, 8 mill.

Ins. Apaian.
Smaller than the next species, the apex oblique and not contracted in the middle.
P. elegantissima, Desh. Pl. 1, figs. 8, 9.

Ovate oblong, very convex on the back, elegantly transversely striate, apex umbilicate; rivid violaceous. Length, 6 mill. Isle of Bourbon, Mauritius.
P. Lienurdi, Rolillard, is a synonym.
P. decussata, Gonld. (Unfigured). Off Coast of Georgia. P. albida, Dall. (Unfigured). West Indies. I'. (Dfntiora) rubida, Pease. (Unligured). Sandwich Islands.

Family OTULID E.

Shell related closely to the Cypreidæ in general form, but differing in being involute in all stages of growth, whilst the Cowries exhibit a short spire when young, whieh becomes involute and more or less concealed by the enlargement of the hody-whorl with advancing age; there is no epidermis, and the poreellanous surface is usually smooth (sometimes lightly spirally striate), sometimes gibbous, or transversely smbearinated, whitish or not richly culured; extremities more or less beakerl, canaliculated or emarginated ; aperture the entire length of the shell, rather marrow, the inner lip smooth, the onter lip usmally toothed or plicate, sometimes smooth, inflexed. Operculum none. Animal covering the shell with its mantle-lobes after the manner of Cypraa, but the heal furmished with a contractile snont rather than a retractile proboseis. Dentition $3 \cdot l \cdot 3$, the central tooth being subtriangular, with several cusps, the laterals falciform, with dentate margin, the marginals subflabelliform with finely pectinated margins (Pl. 1, fig. 10).

\neq Genus OVULA, Bruguiere, 1789.

The characters are those of the family. H. and A. Adams, in their "Genera of Recent Mollnsca," have characterized a few genera which it is convenient to retain, giving them the lower rank of subgenera, howerer, as the main feature distinguishing them is the greater or less extension of the rostrated extremities, a character of somewhat gradual development through the series. The typieal group, which Messrs. Adams have distinguished as Amphiperas, Gronov., has a Cypreiform shell, ovoid, rentricose, with but slightly rostrated extremities. The animal has a large foot and the mantle-margin is simple. O. ovum, Linn.

There are fifty recent species, distributed throughout the world, in warm latitudes only. A few cretaceons species have been clescribed; all of which, with a single exception (O. antiquata, d'Orb., Cret. of India), are either Cypreas or doubtful. The genus is moderately represented in the tertiary.

The genus Simmia, Risso, is eharacterized by its sharp onter lip, and is still retained by anthors, althongh, as first shown by
myself ($A \mathrm{~m}$. Jour. Concli., i, 95), and afterwards confirmed by the late Dr. J. Gwrn Jeffreys and others, the animal, under favorable circumstances, sometimes completes its shell by the addition of a thickened lip, when the distinction from the typical group disappears. Ordinarily Simmia has the sharp lip and it may be considered a case of arrested growth, paralleled by that of Planorbis tricolvis-which only in northern waters takes on its expanded lip along with more rigorons growth and larger size.

$$
\text { Subgenus Cyphoma, Bolten, } 1798 .
$$

Back of shell with a median transverse obtuse ridge, lip smoothish or feebly crenulated. O. gibbosa, Linn.

Ultimus, Montfort, and Carinea, Swainson, are synonyms.

Subgenus Tolva, Bolten, 1798.

Shell ventricose in the middle, hoth extremities prolonged into canals, aperture narrow, lip inflected and margined exteriorly, without teeth, no columellar plication.

Mantle-margin with glandular tubercles, foot narrow, folded lengthwise on itself, adapted for creeping on the narrow, rounded branches of gorgonix and corals-on which it is supposed to feed.

Birostra, Swains., and Radius, Montf., are synonyms.
Subgenus Neosimina, Fischer, 1884.
Shell resembling in form the preceding group, but the extremities less prolonged, the colnmella furnished behind with an oblique callons plication. The labits of the amimal appear to be the same as Volva.

? Subgenus Critue, Gould, 1860.

Shell ovuliform, rostrated at the extremities, aperture narrow, arcuated; onter lip simple, base with transverse ridges passing into the aperture and makiug teeth on the columellar lip. Animal with a long foot, truncate anteriorly, obtuse posteriorly, tentacles broad, short, triangular, with minute eyes at their exterior base. Described from a single minute species obtained by Stimpson in the China Sea. It is probably a juvenile, and must remain a doubtful group until rediscovered-the types having been destroyed.

Subgenis Calpurnus, Montfort. 1810.
Shell gibbous, subcarinated across the back, with at either extremity a clorsal tubercle encircled by a groove, outer lip dentate on the margin.

Animal having a large foot, the mantle not tulierculate and corering only a portion of the back of the shell.

A pparently rather closely related to Cyprea, but the dentition being unknown, its definite place remains uncertain.

In addition to the above, the following fossil forms have been described :-

Transovula, Gregorio, 1880. Shell oval, slightly rostrated, lip denticulated, columellar margin crenulated. O. Schefferi, Eocene of Sicily.

Dianeza, Deshayes, 1865. Shell elongated, mucronated behind, lip sharp, aperture oblong, hardly narrowed in front. O. media, Desh. Eocene, Paris basin. Somewhat resembles Terebellum.

Gisortia, Jousseanme, 1884. Described as a group of Cypreidæ, but placed doubtfully under Ovula by Fischer. It includes recent as well as Eocene species, and I think its affinities most decidedly with Cyprea, rather than with Orula.

Several monographs of Ovula have been published :-
L. C. Kiener. Coquilles vivantes, 23 species.
G. B. Sowerby. Thesaurus Conchyliorum, ii, 1855, 48 species. Lovell Reeve. Conchologia Iconica, 1865, 66 species.
H. C. Weinkanfr. In Kiister's Conchylien Cabinet, 72 species.

Also catalogues by:-
S. R. Roberts. Am. Jour. Conch., 1865, 72 species.
II. C. Weinkanff. Jahrb. Malak. Gesell.. 1882,66 species.

The differences between Ovnla and Cyprea are carefully indicated in a paper by Prof. Theodore Gill, entitled "On the relations of the Amphiperasidie," Am. Jour. Conch., vi, 183.

Genus OVULA, Brug., 1789.
 Typical Group.

O. ovim, Linn. Pl. 1, figs. 11, 12.

White, hrownish red within the apertmre. Length, $2 \cdot 5-4 \cdot 5$ inches.
East Afrira, Indian Ocean, Iapan, Society Is., etc.
The animal is hackish, the mantle beset with short filaments. It is O. oriformis, Lam. (fig. 12) and O. alba, Schum. In full dress many of the Pacific Islanders are decked ont with large white Ovnlum shells, appender to the waist, elbows, and ankles. Throughout the islands inhabited by the crisp-haired Papuan race, a large species of Ovulum of a very pure white color, resembling porcelain is employed with great effect by the natives in decorating their honses, temples and canoes.-Simmonds, Commercial Products of the Sea.
O. torthis, Martyin. Pl. 2, figs. 19, 20.

Smaller and more angularly ventricose than the preeeding species; white the interior of the aperture rose-color.

Length, 2 inches. Zanzibar, Moluccas, Friendly Is.
The synonyms are O. imperialis, Dillw.; O. columba, Schub. and Wagn.; O. angulosa, Lam.; (). costellata, Lam.; O. ovum, var. β, Gmel.
O. marginata, Sowb. Pl. 1, figs. $13,14,15$; Pl. 2, figs. 21, 22.

Rather thin, semitransparent, white, encireled with an orange line at the margin, very obseurely decussated, interior milkwhite. Lemgth, 21-30 mill.

Hongkong.
Described without locality. O. Sinensis, Sowh. (figs. 21, 22), from Hongkong, appears to be merely a larger shell of the same species. O. brovis, Reeve (not Sowerby) and Wemkauff (fig. 15), is probably identical; the back seems to be angulated in this latter species, or else lightly marked with narrow bands.
O. patula, Pemant. Pl. 1, figs. 1 fi -18.

White, thin, semitransparent, a little produced at the extremities, with very fine revolving striæ, almost microscopic, lipmargin rarely thickened in English specimens, more usually thickened and slightly dentate in Mediterranean examples; columella with a posterior callous fold when adult.

Length, 1 inch.
Europe.

Fig. 17 represents the typical O. putula; figs. 16,18 , the 0 . Adriatica, Sowb. Additional synonyms are Bulla virginea, Cantr., and O Nicaensis, Risso.

The typical O. patula is the type of the genus Simnia, Risso, a badly characterized group (see p. 243).
O. lactea, Lam. Pl. 2, figs. 23-28.

Rather solid, white, back finely transversely ribbed, with several more or less distinct angles. Length, 20-25 mill. East Africa, Mauritius, Japan, Philippines, N. Coledonia.
O. semistriata, Pease (figs. 25, 26), from central Polynesia, appars to be only a variety having the stria a little stronger, obsolete on the middle of the back. The type is a smaller and more solid shell, but I have before me anthentic specimens which are larger, less solid and with the angles of O. lactea.
O. cristallina, Kiener (figs. 27. 28), is smaller and narrower than the O. lactea, but may be only a variety thereof. The species has not heen identified by any anthor, and the habitat is unknown.
O. pudica A. Ad. Pl. 2, figs. 29-31.

Pinkish white. smooth; columella plicate below, callously ridged above. Length, 18 mill.
N. Caledonia.
O. Caledonica, Crosse (fig. 31), appears to be a synonym.
O. nubeculata, Ad. and Reeve. Pl. 2, figs. 41, 42.

Pinkish, with three clouded pink-brown bands.
Length, 18 mill.
Isl. of Basilan.
May be only a banded variety of the preceding species.
O. pyriformis, Sowb. Pl. 2, figs. 43-45.

Yellowish white or pinkish, with three clonded darker bands, extremities a little produced. Length, 21 mill.

Australia, Japan.
Distinguished (perhaps not sufficiently) from the preceding species by its more pyriform contom and produced extremities. Reeve's figure (fig. 45), probably from a worn specimen, has no bands.
O. brevis, Sowh. Pl. 2, figs. 32, 33.

Thin, globosely inflated, whitish or purplish white, colnmella plicate in front, with a callous ridge behind, and a comecting longitulinal deposit. Length, 12 mill.

Australia.
The figures given by Reeve and Weinkanff do not represent this species, but O. marginata.

The shell is somewhat closely related to O. margarita, Sowb.
O. margirita, Sowb. Pl. 2, figs. 34-40.

White, extremities somewhat beaked. Length, 10-13 mill. Singapore, Japan, Philippines, Australia.
Less inflated, narrower, with more beaked extremities than O. brevis. O. bulla, Ad. and Reeve (figs. 36, 37), is a little heavier form. and O. umbilicata, Sowb. (figs. 38, 39), appears to be not quite adult; they do not seem to have any really distinctive characters. O. oroidea, H. Ad. (fig. 40 , from the Red Sea, is only known by a short description and a figure of the base of the shell; I do not find distinctive characters in either.
O. binaculata, A. Ad. Pl. 2, figs. 46, 47 .

Livid white, obsoletely three-banded, back transversely striate, extremities of aperture stained with red within.

Length, 13 mill.
New Caledonia.
O. carnea, Poiret Pl. 2, figs. 48-52.

Yellowish, reddish or violet flesh-color, transversely striated, with frequently several angles or planes on the back, extremities heaked, somewhat produced, lip thick-margined, finely dentate, columella excarated helow, with a callons ridge abore, extremities of apertme often pink-tinged. Length, 12-15 mill.

Mediterranean Sea.
O. lactea and O. triticea, Costa, are synonyms; O. triticea, Lam., remains a somewhat doubtful species, the figures given by Kiener and Sowerby resembling O. rhodia, Ads., whilst those of Reeve (figs. 51,52) and Kïster are like carnea. Reeve's figure of O. carnea looks more like O. rhorlia. The locality of O. triticea is supposed to be West Coast of Africa. Dunker identifics a Japanese shell with it, but he has used Sowerby's figures for comparison. O. lepida, Dillw., is a synonym of triticea.
O. rifodia, A. Ad. Pl. 3, figs. 53, 54.

Shell rather narrow, produced at the extremities, flesh pink; columella excavated below, with a conspicuous white callus above, lip whitish. Length, 13 mill.

Japan.
See remarks inder preceding species.
O. fruticum, A. Ad. Pl. 3, figs. 55, 56.

Shell smooth, broadly handed with pinkish flesh-color, lip thick, varicose, extremities rotundately emarginated, columella calloasly ridged above and below, strongly one-plaited.

Length, 10 mill.
Malacca.
I am not acquainted with this species.
O. pyrulina, A. Afl. Pl. 3, figs. 57, 58.

Pear-shaped, constricted and produced at the extremities, back rather gibbons in the middle; columella callously ridged above, lip moderately plicate; yellowish-or livid-white. Length, 12 mill. New Caledonia.
0 concinna, Ad. and Reeve. Pl. 3, figs. 59, 60, 74.
Angularly prominently gibbous in the middle, constricted at the extremities; white, or fleshy-white. Length, 9 mill.

Philippines, Japan.
O. Cumingií, Mörch (fig. 74), is a synonym.
O. punctata, Duclos. Pl. 3, figs. 61-64, 73.

Rather solid, transversely striate, whitish, with three rows of orange or carneons spots. Length, $10-11$ mill.

China, Japan, Philippines, Australia, Isl. Bourbon.
O. alabaster, Reeve (fig. 64), has the spots very faint.

Tar. pulchella. H. Ad. (fig. 73).
The spots connected longitudinally by waved bands of color. One of Sowerby's figures of punctata represents this varietr.

Mauritius.
O. Adaysi, Reeve. Pl. 3, figs. 65, 66.

Ovate, inflatel, whitish; back rather elevated in the middle, transversely incisely striated; extremities rather oltuse; lip
moderately thickened ; aperture curved, rather broarl, columella scarcely plicated. Length, 8 mill.

New Caledonia.
A delicate, rather inflated bubble-shaped shell, elaborately sculptured with engraved striæ. The foregoing is Reeve's diagnosis, the species being mknown to me. It is O. marginata of A. Ad., not Sowerby, and changed by Reeve as above.
O. bullata, Acl. and Reeve. Pl. 3, figs. 67-io.

Pinkish or purplish or yellowish white, somewhat gibbous on the back-which is smooth or transversely incisely striated; lip strongly margined, flesh-brown, somewhat squarely produced at the extremities. Length, 8 mill.

Singapore, Japan, New Culedonia.
O. scitula, Ads. (figs. 69,70), is a synonym.
O. striatula, Sowerby. Pl. 3, figs. 75-80.

Back strongly angularly gibbous in the micldle, attenuately produeed at the extremities, striate or smooth; lip strongly margined ; pinkish- or yellowish-white. Length, 10 mill.

Straits of Malacca, Loo Choo Is., Philippines, Japan.
I unite with this 0. dorsuosum, Hinds (figs. 77, 78), and O. dentata, Ad. and Reeve (figs. 79, 80). The following species is also probably a symonym.
O. frumentum, Sowerby. Pl. 3, figs. 71. 72.

Smaller than the preceding, of which it may be a variety; the form is similar, but the back does not show the angle, although evidently gibbous. Length, 6 mill.

Hab. unknown.
Subgenus Cyphoma, Bolten, 1798.
O. gibbosa, Linn. Pl. 3, figs. 81, 82.

Rather thick, smooth. polished; pale straw-color or whitish, stained on the sides with fawn-color; extremities obtuse; lip callonsly margined, scarcely dentate. Length, $1-1 \cdot 25$ inches. Florida, West Indies.
Lamarck probably confomded O. intermedia, Sowb., with this species in giving Brazil as habitat, and Cuming in referring it to Panam: very likely mistook the next species for it. It is O. pharetra of Perry and O. dorsata, Bolten.
O. emarginata, Sowh. Pl. 3, figs. 83, 84.

Flesh-white or whitish, the rirlge sharper than in the preceding species and white, lip heavily margined, also white, extremities rostrate, narower. Length, l meh.

Panama.
The back is often finely transversely striate.
O. intermedia, Sowerby: Pl. 3, figs. 85, 86.

Rather solid, smooth, polished, whitish or tinged with yellowish brown ; hack gihbous, with faint indication of a transverse ridge or angle, and often showing a still fainter anterior one; extremities narrowly produced; lip strongly margined, scarcely dentate ; eolumella with a callous posterior plication.

Length, $1-1 \cdot 5$ inches.
Brazil, West Indies.
Smaller specimens show the angle very plainly; sometimes in these it is conspicuously sh:rp. The shell comects this group with Neosimnia in such manner that it is difficult to decide where it ought to be placed. O. olionga of Martini, and O. spelta, Dillwyn, are synonyms.
O. obtusa, Sowb. Pl. 3, figs. 87-89.

Yellowish- or pinkish-white, obtusely angulated on the back, extremities produced, lip callonsly margined. Length, 16 mill. China, Japan.
Something like a miniature (). intermedia. O. Indica, Reeve, (fig. 89), from Bombay, appears to be a minor form.
O. Trailli, A. Arl. Pl. 3, figs. 90, 91.

Flesh-colored, smooth, back strongly angularly gibbons, extremities narrowly prodnced. Length, 11 mill.

Malacca. O. formosa, Adams and Reeve. Pl. 4, figs. 15, 16.

Gibhons, slightly angulated across the back, transversely striate, purplish orange, the extremities orange-tipped ; aperture narrow, but little widened below, the columella callons above, the outer lip-margin conspicuously dentate. Length, 12 mill.

Borneo, Japan.
O. Semperi, Weinkauff. I'l. 4, figs. 17, 18 ; Pl. 5, fig. 19.

Purplish yellow or orange-red, the margin orange-red ; back
angulated above the middle, lip conspicuously dentate, columella dentate above. Lengtl, 13 mill.

Borneo, Viti Isles.
The aperture is wider below, the angle of the back more posterior than in the preeerling species, of which it may nevertheless be only a variety. It is O. hordacea of Sowerby and Reeve, not Lamarck.

Subgenus Volva, Bolten, 1798.
O. volva, Linn. Pl. 4, figs. 94, 95.

Pinkish or lrownish flesh-color, back transversely ineisely striated, extremities with raised strice, lip thickly margined, nearly smooth, interior flesh-colored or brownish.

Length, 3-5 inches.
China, Philippines, Japan.
O. longirostra, Sowb. Pl. 4, figs. 92, 93.

Yellowish white, moderately gibhously angled in the middle, lip callonsly reflected. Length, 1•75-2.5 inches.

> Isl. of Bourbon.
O. recurva, Adams and Reeve. Pl. 4; figs. 96, 97.

White, transversely minutely striated, gibbously angled in the middle, lip callously margined. Length, 2. mill.

China, Japan.
Possibly a minor variety of O. longirostra.
O. gracilis, Ads. and Reeve. Pl. 4, figs. 98, 99.

Pale fulvons, maculated with red next the margin of the thickened lip. Length, 11 mill.

East Coast of Borneo.
O. Pifliplinarum, Sowb. Pl. 4, figs. 100-9.

Livid flesh-color, rather thin, thickened margin of lip yellowish white. Length, $\cdot 75-1.25$ inches.

> Philippines, Japan, Australia.

With this species I unite as synonyms O. Carpenteri, Dunker (fig. 2) ; O. Angasi, A. Ad. (figs. 3, 4), and O. depressa, Sowl. (fig. 5), with its variety rosea, Rositer, from Australia; O. subreflexa. Ad. and Reeve (figs. 6, 7); O. deflexa, Sowh. (fig. 8), and the Jipanese O. Adamsii, Dunker (fig. 9), which differs in no appreciable degree from Angasi.
O. birostris, Lim. Pl. 4, figs. 10-14.

Reddish flesh-color, sometimes pale-banded in the middle, smooth, shining, thickened lip-margin yellowish white.

Length, $1 \cdot 5$ inches.

Singapore, Japan, Philippines.

Larger, and wider in proportion than the last species; yet I doubt their distinctuess. The synonymy includes O. brevirostris, Schum.; O: aperta, Sowb. (fig. 12), a young shell, and O. rosea, A. Ad. (figs. 13, 14).
O. lanceolata, Sowb. Pl. 5, figs. 20, 21.

Narrowly compressed, back densely transversely striated, extremities rather blunt; orange-pink; lip and columella callously involute, aperture very narrow. Length, 21 mill.

Philipines.
O. coarctata, Adams and lieeve. Pl. 5, fig. 22.

Elongated, ventricose in the middle, fulvous, back transversely minutely striated, extremities contracted, colmmella rather depressed. Length, 7 mill.

Straits of Sunda.
This may possibly be a minor variety of the preceding species, which it closely resembles in form.
O. acicularis, Lim. Pl. 5, figs. 23-25.

Yellowish to purplish, thin, smooth, narrow, extremities rather bluntly produced, lip thinly margined, with a callous margin on the columella. Length, 15 mill.

West Indies, South Carolina, Florida.
It is O. secale of Dillwyn's Catalogue.

$$
\text { Sulogenus Neosimnia, Fischer, } 1884 .
$$

O. Sowerbyana, Weinkauff. Pl. 5, figs. 26, 27.

Somewhat rentricose, short beaked, rosy flesh-color, sometimes obscurely banded, rather thin, lip-margin thickened, smoothish, yellowish. Length, 1-1•25 inches.

South Sea.
This is O. spelta of Sowerly and Reeve, not Lamarek.
O. secalis, Sowh. Pl. 5, figs. 28-30.

Purplish white, extremities rather blunt, lip-margin yellowish white. Length, 15 mi!l.

Eastern Seas, Friendly Isles.
The distinction between this and the preceding species is so slight that I think they will prove identical. O. seminulum, Sowerby (fig. 30), from Friendly Islands, is a synonym.
O. Borbonica, Desh. Pl. 5, fig. 31.

Rosy white, ventricose in the middle, thin, translucent, transversely striate, aperture very narrow. Length, 7 mill. Isle of Buurbon.
I am not acquainter with this species.
O. acuminata, Ad. and Reere.

Rather stont, yellowish white, lip thickened. Length, 8 mill. East Indies, Japan.
Perhaps a small variety of the preceding species.
O. spelta, Linn. Pl. 5, figs. 32, 33.

Whitish or flesh-color, smooth, polished, aperture rather wide anteriorly, lip-margin and extremities of shell callously thickened. Length, 15-20 mill.

Mediterramean Sea, Canary Is.
This is not O. spelta of Sowb. and Reeve (see Sowerbyana, above). The synonyiny includes O. hordacea, Costar ; O. purpurea, Risso, and O. Leathesi of Wood's Crag Mollusca.
O. hordacea, Lamarck. Pl. 5, figs. 34-38.

Yellowish red to purplish, smooth, extremities obtuse.
Length, 12 mill.
Corast of Africa? Philippines.
Differs subgenerically from the species which Sowerby and Reeve have figured under this name, and which Weinkauff calls O. Semperi. O. formicaria, Nowb. (figs. 37,38), may be includerl.
O. uniplicata, Sowb. Pl. 5, figs. 39-50.

Yellowish white to purplish, rather thin, transversely very minutely incised, or smooth, pohshed; narrow, with the extrem-
ities bluntly produced; lip narrow margined; posterior plication prominent. Length, $15-18$ mill.

> North Carolina to West Indies, Brazil, Panama to Califormia (Var.)

In this species the color of its shell changes to correspond with that of the gorgonia on which it feeds, cither yellowish white or purple. The synonymy includes O. Antillarum, Reeve (fig. 41); O. Canadiensis, Mörch; O. Carolinensis. Mörch; O. subrostrata, Sowb. (fig. 42); O. arcuata, Reeve (fig. 43). The following species occurring on the West Coast of America are added, as I can find no distinctive characters. It may be remarked, however, that so far as I am able to judge from the figures and numerous specimens, these West Coast representatives are always dark purple with a lighter purple lip-margin-coloring which somewhat rarely obtains with the East Coast individuals; on this account they may be grouped under the best known, but not earliest name, as :-

Tar. variabilis, C. B. Adams (fig. 44).
With this I include O. Californica, Reeve (fig. 45); O. æqualis, Sowb. (fig. 46), O. livida, lieeve (fig. 47); O. rufa, Sowb. (fig. 48; O. inflexa, Sowb. (fig. 49), and O. Loebbeckeana, Weink. (fig. 5(1), which probably does not come from Vancouver's Island.
O. Avena, Sowb. Pl. 5, figs. 51-55.

Light purplish or rosy, wider than the preceding species, the extremities shorter, often orange-tipped, lip-margin rosy-white.

Length, 12-20 mill.
Panama to Monterey, Cal.
The synonyms are O. similis, Sowb. (figs. 52,53), perhaps O. neglecta, C. B. Ad. (fig. 54), and O. Vidleri, Sowb. (fig. 55).

Subgenns Crithe, Gould, 1860.
O. atomaria, Gould.

Very minute, glossy white. somewhat acute at the extremities, with a delicate groove at the summit ; aperture very narrow, and uniformly so; rostrum short, slightly recurved; ventral laminæ directly transverse, abont eight in number, as they pass into the aperture, giving the appearance of coarse denticles on the pillar.

Animal citron-colored, viscera slate-colored, eyes reddish black, very small. L. 5 mill., diam. 3 mill.

China Seas (Stimpson).
Unfigured, and the specimens destroyed by fire.
Sulogenus Calpurnus, Montfort, 1810.
O. verrucosa, Limn. Pl. 5, figs. 56-58.

White, with fine incised transverse strix, extremities rosy tipped. Length, $1 \cdot 25$ inches.

East Africa, Indian Ocean, Philippines, N Caledonia.

Unfigured and Doubtful Species.
O. bullata. Gonld (sp. name preoceupied). Hab. unknown.
O. alba and O. nigerrima, Dufo.
O. (Cyphoma) elongata, A. Ad. Seychelles. Japan.
O. (Birostra) MeCoyi, Tenison-Woods. Australia.
O. gallinacea and O. corrugata, Hinds. = Erato, Manual, v, 10,11 .

Famhy DOLIIDAE.

Shell thin, ventricose, ovate or sulghobose, spire short, the body-whorl very large, with revolving ribs or decussated. No operculum in the adult.

Animal very large ; the mantle dilated; head wide, bearing two elongated distant tentacles, dilated at the hase, and having eyes near the base ; proboscis cylindrical, greatly developed, extensible and flexible; font lobed and dilated in front, with a horizontal groove.

Dentition. Central tooth short, wide, with an elongated central and some shorter lateral cusps, lateral and first marginal with simple or denticulated margin, sharp-pointed, outer marginal tooth sharp, simple (Pl. 1, fig. 1). Jaw (Pl. 1, fig. 2).

Some species at least, of Macgillivrayia, are known to be the larva of Dolium. They have four tentacles, and the foot is provided with a float resembling Ianthina; the shell has a thin, corneous operculum, afterwards lost.

The family resembles Cassididæ rather closely, but differs by the want of varices on the shell and the absence of an operculum; but the subgenus Malea of this family, having a ringent mouth, has much analogy with Cyprecassis of the Cassididæ, Which, according to Stutchbury, is equally deprived of an operculum. The family Oocorythidæ, containing a single species, may he placed between the two ; it is in shell characters essentially an operculate Dolium. Prof. Mïrch and others place the Tritonidx in intimate relation with the foregoing families on account of a similar dentition ; and Moirch points out that certain species of Triton possess the revolving ribs and somewhat of the form of Dolium. Oocorys itself is thought by Fischer to be somewhat closely allied with Tritonidx. The relations of Triton with Murex are also evident. Thus it is that transition forms, and complex relationships every where baflle the naturalist who attempts to classify in a lineal series. The shells are mostly of quite large size, and the species are few in number, inhabiting warm seas; fossil, a cretaceous form is known, with some tertiary species.

Synopsis of Genera.

Genus DOLIUM, Lam., 1801.

Slell thin, ventricose, globosely oval; spire short, whorls with spiral depressed ribs; mouth very large, the lip crenulated, sillonated within, columella canaliculated, anterior end of aperture not produced obliquely, widely sillonated.

A bout fifteen species occur in the seas of China, Philippines, Australia, Mediterranean, West Indies, etc.

The section Perdix, Montfort, 1810, has been used for the separation of species with open umbilicus and (so-called) simple lip, but the gradual gradation from this form to those with closed umbilicus, and more strongly crenulated lip appears to deprive the group of any real value. Another section, Doliopsis (preoccupied by Conrad), has been proposed by Monterosato for a single Mediterranean species, imperforate, with expanded denticulated lip.

Subgenus Doliopsis, Comrad, 1865.
The figure of the type has a short canal, and appears intermediate between Dolium and Pyrula. Two Oregon fossils subsequently referred to the group by Conrad are very sumilar to recent Dolium.

Doliopsis quinquecosta, Conrad (Pl. 5, fig. 32). Eocene, Miss.
Subgenus Malea, Val., 1833.
Form of Dolium, but the lip thickened, somewhat reflected and strongly denticulated the imer lip with two calloused plicate prominences. Cadium, Link, 1807, is said to equal this group.

The animal differs from Dolium by its foot being less dilated in front, not angular laterally, and by its branchiæ, which are nearly equal.

Genus l'YRULA, Lamarck, 1799.
Shell imperforate, thin, pear-shaped, spirally ribbed, or decussated, terminating anteriorly in a morlerate, open canal; spire very short; lip thin, smooth on the margin. No operculum. Dentition (Pl. 6, fig. 38).

Animal with a very large foot, truncated in front, produced at the front angles, acuminated behind; head and neck narrow
and long, tentacle- - ubulate, with eyes at their exterior hase; mantle-lobes large, reflected over the shell; siphon very long and narrow.

A few species inhabit the West lulies, Panama, Indian Ocean, Philippines, etc. The genns appeared in the cretaceous, and became widely spread in the tertiary remains being found in North and South America, Emrope and Asia.

The generic name has been made to include a number of groups, such as Hemifusus, Melongena, etc., which have but little in common with the present genus. The type cited by Lamarck is Bulla ficus, Limn., which fixes its pertinence to the genus now moder consideration, and degrades to the synonymy such names as Ficus, Klein, Ficula, Swains., and Sycotypus, H. and A. Adams, not Browne.

Mr. Arthur Adams writes:-
"The employment of the dredge gave me an opportunity of here first observing the animal of Ficula, which very much resembles that of Dolium in the large, thin, flattened foot, rounded in front, with two shirp, angular, lateral processes, and extended and acuminated behind ; in the long, recurved siphon, and slender, tapering tentacula; in having a long, extensile and retractile proboscis; in the position of the organs of vision ; and in the general shape, structure, and lightness of the shell; while the singular fact of the mantle covering the sides of the shell, would seem to approximate it to Calpurnus, Ovulum, Marginella and the Cowries.
"Although exceedingly timid and sensitive, the Ficula is a ver! lively animal, when observed in its native waters, crawling along with considerable velocity, and, owing probably to the lightness of its shell, able to ascend with facility the sides of a glass ressel, which beld it captive. The proboscis is rarely exserted when the animal is in motion; but the long, tapering tentacles are stretched out to their full extent, and the siphon is directed more frequently forwards than over the back of the animal. The animal of Ficula ficoides is light, marbled violet, and the hearl and tentacles are white; six white, opaque spots are arranged round the upper surface of the edge of the foot; the rest of the body is light delicate pink, with marlled markings of a darker pink.
"In another species which I observed, and of which I also made a drawing (the Ficula lovigata, Reeve), the mantle is bright pink, mottled with white and deeper pink, the under surface of the rentral dise being of a dark-ehocolate color, with yellow, seattered spots; the head and neck are pink, and also colored with yellow spots.
"The Ficula shells, seen in cabinets, convey but a poor idea of these handsome mollnsks, olserverl in the living state, crawling rapidly along, bearing their light, elegantly formed shells, easily and gracefully, with their siphons erect, their foot expanded, like a broad flattened dise, and their bodies ormamented with delicate colors, beautifully marbled, and moving their long, flat heads, and peering about with their large, black eyes, in a manner which is surprising, when one considers the position these animals occupy in the scale of creation, and that but a very small share of intelligence is, in general, supposed to be the lot of most mollnsea."-Narrat. Voy. Samarang, ii, 358.

$$
\text { Subgenns Ptrchosyca, Gabb, } 1876 .
$$

Shell shaped like Pyrula; inner lip with one anterior very oblique fold.
P.inornata, Gabb. Cretaceous, Georgia (Fig'd S. \& S. Conch., t. 62, f. 39).

Dr. Fischer thinks it allied to Liostoma.
Subgenus Ficulopsis, Stoliczka, 1867.
Pyriform, attenuated in front, inflated behind; spire very short; surface spirally and transversely striate or costulate ; columella thick, angulated, plicate.
P. Pondicherriensis, Forhes. Cretaceous, So. India (Fig'd S. \& S. Conch., t. 62, f. 38).

The family has been monographed by Reeve, Kiener and Kiister (Conchylien Cabinet). Kobelt has also published a catalogue of the species of Dolium in Jahrb. Mal. Gesell., ii, 263, and Hanley another, in Proc. Zool. Soc. London, 491, 1859. Sowerby monographed Fieula in the Thesaurus, iv, 1880, and Kobelt eatalogued it in the Jahrbuicher, 359, 1875, and published a monograph in Küster's Conch. Cab., 18 i 4.

+ Genus DOLIUM, Lam., 1801.
D. Galea, Linn. Pl. 1, fig. 3.

Thin, narrowly umbilicated, spire short, with sunken sutures; whorls seven, spirally ribbel, the ribs flatly convex, close-set, often with an intervening rirge on the upper portion of the whorls; columella somewhat twisted; pale fulvous, inner margin of lip stamed with chocolate-brown. upper part of columella and the apex of the spire often chocolate also. Length, 8-9 inches.

Mediterranean Sea, Beaufort, N. C., to West Indies, Brazil.
D. tenue, Menke, is the juvenile shell; it is also Buccinum olearium, Linn. (not D. olearium, Brug.). Mörch has described another jurenile as D. Antillarum. Gregorio has recently described three varieties (spirintrorsum, terdina and epidermata) from the vicinity of Palermo.
D. metanostoma, Jay. Pl. 1, figs. 4, 5 .

Ribs about half the number of those of D. galea, and much broader, with narrow intervening smaller ridges and grooves; fulvous white, colmmellar callus and a broad interior margin of the outer lip both stained dark chocolate-brown. Length, 9 inches. Elizabeth Reef. So. Pacific O. (Brazier);

Friendly Islands (Jay) ; Hawaiian Islands (Pease).
The shell which Reeve (fig. 5) has figured for this species appears to be more nearly allied to the preceding, but possibly the ribs are variable in number according to the size of the shell. Pease saw a specimen 35 inches in circumference, and says that those measuring 24 inches are usual. As Brazier refers to Reeve's figure it is very likely that he has mistaken the species; as has also Kïster, who copies the figure in Reeve. The true melanostoma may = the succeeding species, and if so, has priority of publication.
D. luteostoma, Kïster. Pl. 1, fig. 6; Pl. 2, fig. 7.

Body-whorl with fifteen to eighteen revolving, wide ribs and narrow interstices, the latter learing small ribs, paired on the upper part of the whorl; yellowish brown, variegated with chestnut maculations ; interior of aperture deep yellowish brown.

Length, 7-8 inches.
Japan.
The description is made from D. Japonicum, Dunker (fig. 7),
which appears to he the usual fresh state of the species. Kuister's earlier diagnosis was prepared from a faded or varietal form in which the maculations have disappeared or are but feebly shown. One of the figmres (t. 63, f. 1) given by Kuister for D. variegatum, appears to represent this species; which is certainly very closely allied to D. melanostoma.

D. variegatum, Lam. Pl. 3, figs. 13, 14.

Umbilicated, whorls 7, the last bearing fifteen to eighteen spiral ribs, the interstices nearly as wide, the upper ones bearing an intermediate smaller rib; whitish, maculated with chestnut on the ribs, often with one or two ribs more yellowish in color, upon which there are no maculations. Spire more elevated, and suture less impressed than in the preceding species.

Length, 4-9 inches.
North Australia.
D. Kieneri, Phil., is a synonym.

Var. Chinense, Dillwyn. Fig. 14.
Smaller, of lighter structure and more contracted growth, most of the interstices of the eighteen to twenty ribs bearing a smaller rib. Fine specimens are usually alternately banded spirally with light yellow and whitish, the rilis of the latter only showing chestnut macnlations.

China.
This is D. australe of Möreh.
D. oleariun, Brug. Pl. 2, figs. 8-11.

Spirally broadly ribbed, with very narrow, shallow interstices ; fulvous chestnut maculated with white; suture deep.

Length, :3-5 inches.
Indian Ocean, Philippines.
A very frequent state of this species has the surface woru so that the grooves are indicated more by darker spiral lines than by their very shallow depression.

Var. Cumingif, Hanley. Pl. 2, fig. 9.
Kibs more numerous and, with the groove, more distinct, whorls not so deep-sutured, maculations interrupted with spiral, longitudinally lineated bands.

Philippines.
Var. Deshayesif, Reeve. Pl. 2, fig. 10.
Suture slighty impressed; pale fulvous chestunt, painted
with bands of rather distant conspicuous white spots, shaded with brown.

Philippines.
My specimens indicate the pertinence of these forms to D. olearium. Bulla canaliculata, Linn., is the young shell, as determined by Hanley, from the type.

Yar. Testardi, Montr. Pl. 2, fig. 11.
Ribs about twenty-three, with distinct narrow intermediate grooves; pale fulvous, longitudinally clouded with darker color. -

New Caledonia. D. zonatum, Green. Pl. 3. fig. 17.

Yellowish chestnut-color, ribs with an intermediate ridge, which is divided into three ridges between the upper ribs.

Length, 4-7 inches.
China, Japan.
Allied to D. galea, but differs in the intermediate ridges. D. crenuiatum, Phil., is a synonym.
D. Crosseanum, Monterosato. Pl. 2, fig. 12.

Yellowish brown; with thirty-six ribs, the interstices with from one to three liræ; lip brownish flesh-color.

Length, 81 mill.
Near Palermo, Sicily.
I cannot count nearly thirty-six ribs on the figure of the unique example of this species, and I am very much disposed to believe it a synonym of the preceding, and that it has accidentally become mixed with Mediterranean shells.
D. Fasciatum, Brug. Pl. 3, fig. 16 .

Interstices of the ribs withont ridges; white, five-banded with chestnut. Length, $4-5$ inches.

Philippines, China, Japan.
D. sulcosum, Dillw., is a synonym.
D. costatum, Menke. Pl. 4, figs. 19-22; Pl. 3, fig. 18.

Ribs distant, prominent. nine to thirteen or fourteen in number, the interstices broader, smooth, or faintly ridged in the middle; yellowish white, flesh-color or brownish.

Length, 3•5-6 inches.

It is D. fasciatum, var., of Kiener (fig. 19) ; D. lactescens, Martyn; D. latesulcatum, Martini ; D.ampullaceum, l'hil. (fig.20).

Var. maculatum, Lam. Pl. 4, fig. 21.
The costie, nine to eleven in number, maculated somewhat regularly with chestnut. This has been regarded as a distinct species, but a series before me connects the two ; intermediates also connect this variety with

Var. fimbriatum, Sowerby. Pl. 4, fig. 22; Pl. 3, fig. 18.
The ribs usually vary in number from twelve to fonrteen, tessellated with chestnut. The name is derived from the fimbriated margin of the outer lip, bat this is common to all the varieties when fully grown.

Senegal, Manilla, Japan.
If these two rarieties had not been recognized very generally as distinct species, I would not have separated them as even varietal forms, as their features want constancy. D. cassis (Bolten), Mörch; Buccinum dolium, Limı; D. minjac, Adanson, and D. tessellatum, Encyc. Meth... are names given to the two varieties, but not readily assignable to either separately. The Senegal locality is given on the authority of Adanson. D. Lischkeanum, Küster (fig. 18 , is a full synonyn of var. fimbriatum, as are probably the unfigured D. Reevei, Hanley, and possibly D. Favannei (likewise unfigured) of the same author, and D. marginatum, P'hilippi (unfigured).
D. perdix, Linn. Pl. 3, fig. 15 ; Pl. 4, figษ. 23-25.

Shell thin, inflated, with about twenty low ribs, and rather narrow shallow intervening grooves; fulvous brown or light reddish bay, more or less plentifully marked with whitish lunate -pots or maculations. Length, 5-9 inches

> Indian Ocean. Mauritius, Polynesia,
> West Africa, West Indies, Brazil.

There can be no donbt of the immense distribution of this species. Dr. Jacoh Green, many years ago described a shell as D. plumatum which has been supposed to be the West Indian D. perdix, and Prof. Mïrch has called it D. pennatum; it has no distinctive features. Other synonyms are Perdix reticulatus, Montfort; Dolium rufum, Blains: Fischer has described and
figured embryonic and young shells, in Jour. de Conch., 147, 1863 (figs. 23, 24) ; they were diagnosed by Prof. C. B. Adams, in error, as Helix sulphurea.

Subgenus Malea, Tal., 1833.
D. pomum, Linn. Pl. 5, fig. 26.

Ribs low, about twelve in number, with shallow interstices; columella plicate, excavated in the middle, lip thickened within and plicate; fulvous bay, clouded and maculated with white.

Length, 3 inches.
Red Sea, Indian Ocean, Philippines, Society Islands.
This shell is Cassis labrosa, Martini.
D. Ringens, Swainson. Pl. 5, fig. 27.

Globose, rather thick, with about sixteen spiral ribs, the interstices sometimes obscurely single ridged; columella plicate, excarated in the middle; onter lip wide-margined and dentate; light fulvous, obscurely maculated with white when young.

Length, 4-8 inches.
Peru, Panama, Mazatlan.
The synonymy includes D. dentatum, Barmes; D. crassilabris anil D. latilabris, Val.; D. personatum and D. plicosum, Menke.

> Unfigured Species of Dolium.
I. Bairdif, Verrill and Smith. Dredged living off Martha's Vineyard, and off Delaware Bay, U. S.
D. amphora, Philippi.
D. Dunkeri. Hanley. (.Juvenile.)

Hab. unknown.
Natal.
D. Albin, Conrarl. (Allied to D. perdix.) Hab. unknown.

Genus PYRULA, Lam., 1799.
P. reticulata, Lam. Pl. 5, fig. 28; Pl. 6, fig. 33.

Cancellated by rather close, sharp, small longitudinal and spiral ridges, the latter often alternately larger and smaller; yellowish, clouded with light brown, with abont five obscure whitish bands bearing chestunt maculations. Length, $2 \cdot 5-3 \cdot 5$ inches.

Indian Ocean, East Indies, Japan.
Sowerly has in error figured this species as P. decussata, Wood. It is P. ficoides, Lam. (fig. 28); P. clathrata, Rousseau (fig. 33); I. firtior, Mörch (assigned to West Indies in error).
P. decussata, Wood. Pl. 6, fig. 34.

Spiral ribs small, distant, the wide interstices with three or four revolving threads, of which the middle one is usually more prominent; closely longitudinally ridged, interrupted by the spiral ribs; yellowish brown, maculated with chestont on the rilos. Length, 3-5 inches.

Panama to Cape St. Lucas, L. Cal.
A common and beautiful species. of which a short, swollen variety was described by Sowerby as P. ventricosa. Reeve gives no habitat, and in the Thesaurns, where it is figured in error as I^{\prime}. reticulata, it is assigued to the Indian Ocean.
P. papyratia, Say. Pl. 6, fig. 35.

Shell slimmer than P. reticulata, similarly but more delicately sculptured ; brownish white. or blush white, deeper brown within the aperture, sometimes faintly longitudinally strigate with yellowish brown. but always without maculations.

Length, 3-4 inches.
Beaufort, N. C., to West Indies.
A common species on our Southern Coast. It is not figured either in Reeve's Iconia or the Thesaurus, but Sowerby figures it in his "Genera of Shells " in error for P '. reticulata, Lam. It is P. gracilis, Phil.
P. ficus, Linn. Pl. 5, tig. 29; Pl. 6. figs. 36, 37.

Abbreviately 1 yriform, closely, minutely, spirally flat-ribberl, longitudinal scnlpture minute, scarcely visible; whitish, interruptedly macnlated and clouded with faint chestnut, interrupted by several faint white spiral bands upon which there are darker chestunt maculations; interior brownish or purplish.

Length, 3-4 inches.
Red Sea, Indian Ocean, Singapore.
Reeve changed the name to lavigata, because Linnaus included P. reticulata in his original description.
Tar. pellucida, Desh. Pl. 6, fig. 37.
Orange-brown, with five or six equidistant spiral series of small distant chestunt spots, somewhat regularly arranged.

P Dussumeri, Valenc. Pl. 5, fig. 30.
Narrowly pyriform, encircled by numerous small spiral flat-
topped ridges, and nearly equal interspaces, the latter longitudimally striate ; pale fawn-color, with undulating, longitudinal darker streaks. Length, $3-6$ inches.

China.
P. elongata, Gray, is probably a synonym.
P. tessellata, Kobelt. Pl. 5, fig. 31.

Pyriform, spire subimmersed, clathrate; whitish, regularly distantly spotted with chestnut in spiral series.

Length, $1 \cdot 5-1.75$ inches.

> Rosemary Is., Australia.

A heautiful species, of which a fine series is before me.

Family OOCORYTHIDA, Fischer, 1884.

Shell bucciniform, aperture semioval, lip varicose externally, columella obliquely truncate at base. Operculum corneons, paucispiral.

Animal with broad head and large, sharp tentacles, no eyes, siphon short, foot short and wide, obtuse behind, with an anterior marginal excision, branchiæ very unequal. Dentition $2 \cdot 1 \cdot 1 \cdot 1 \cdot 2$, the central tooth multicuspid, the laterals multicuspid, arcuated, the marginals simple and sharp (Pl. 6, fig. 39). Appears to connect Dolium with the Linatella group of Triton.

Genus OOCORYS, Fischer, 1884.

Characters those of the family. Benthodolium, Verrill and Sinith, is a synonym.
O. sulcata, Fischer. Pl. 6, figs. 42, 40, 41.

Shell ventricose, thin, spirally closely seulptured, with growthlines crossing both ribs and interspaces; epidermis thin, brownishyellow, not hairy; color white and translucent beneath the epitermis, inner lip thinly callous. Length, 45 mill.

Deep Sea, off Southern Coast of New England.
Off West Africa and Azores, from 1258 to 4000 mètres.
Benthodolium abyssorum, Verrill and Sinith (figs. 40,41), is a synonym.

Family CASSIDIDA.

Shell solid. subglobular or triangular, with short spire; whorls sometimes varicose; aperture terminating anteriorly in a short, recurved canal; columella callous, spread out, usually plicate; outer lip-margin thickened, dentate within.

Operculum corneous, concentrie, elongated, semilunar, the mucleus at the centre of the inner margin (Pl. 1, fig. 43).

Animal with large head, eyes at the exterior base of the tentacles, proboscis cylindrieal, extensible, mantle and foot large. Dentition (Pl. 1, fig. 44). The Cassides are active and voracions, living in sandy localities and preying on bivalve mollusks. The varices of the shell persist in its interior.

Synopsis of Genera.

Genus CASSIS (Klein, 1753), Lamarck, 1799.
Shell usually rather solid and thick, with the last whorl very large, often varicose ; aperture longitudinal, narrow; outer lip with a thickened, reflected margin, and dentate within; inner lip rugosely plicate. On the use of species of Cassis in cameo cutting, see Structural and Systematic ('onchology, ii, 200. About twenty-five species are known, inhabiting warm seas. The genus first appeared in the tertiary.

Section 1. Cassis (sensu stricto $=$ Goniogalea, Mörch, 1857).
Spire short, mouth narrow, dentate, lip externally margined, columella plicate. C. Madagascariensis, Lam.

Section II. Levenia, Gray, 1847.
Shell oval, subcylindrical, spire short, eonic ; aperture narrow, contracted in the middle, columellar lip plicate thronghout, outer lip without external rib, dentate, inflected above. C. coarctata, Gray.

Section III. Cyprecassis, Stutchbury, 1837.
Shell ovate, spire short ; mouth narrow, subcanaliculate behind, columella plicate its entire length; varices none or obsolete. ? No opercuhum. C. rufa, Lim.

Subgemus Semicassis (Klein, 1753), Mörch, 1852.
Spire moderate, sharp; shell oval with revolving sulci; lip
reflected, plicate; columella obliquely plicate. C. saburon, Adanson.

Cassidea, Swains., is referred to this group.
Section I. Semicassis (sensu stricto).
Section II. Bezoardica, Schum., 1817.
Shell varicose, angular behind, oval, with moderate spire; outer lip often spinously dentated in front. C. glauca, Linn. Phalium, Link, is another name for this section.

Section 1II. Casmaria, H. and A. Adams, 1853.
Shell smooth or longitudinally subplicate, spire moderate; inner lip smooth, callons; outer lip margined, smooth or slightly crenulated on the inner edge. C' pyrum, Lam.

Genus CASSIDARIA, Lam., 1812.

Shell nodulous, not varicose, ovate or oval-oblong, somewhat attenuated in front to a moderate, reflected, subascending canal; inner lip more or less siread over the body-whorl, tuberculated or plicate, outer lip reflecterl, ribbed, plicate within. Operculum corneous, the apex median and marginal, outer edge sinuous.

Animal similar to Cassis.
The few species are Mediterranean and West Indian. The genus appeared in the cretaceous period, and reached its maximum in the tertiary. Murio, Montfort, 1810; Echinora, Schnm., 1817; Galeodaria, Conrad, 1865, and Galeodea, Link, 1807, are synonyms. C. echinophora, Linn.

Subgenus Sconsia, Gray, 1847.
Shell oval-fusiform, with revolving strix, and a single longitudinal varix opposite the aperture ; aperture long, canal short and slightly reflected; inner lip regularly plicate; outer lip rather thick, subreflected, plicate within. Animal and operculum unknown. A single recent, and some cretaceous and tertiary species. C. striata, Lam.

Gemus ONISCIA, Sowerby, 1824.
Shell cylindrica!, with short, conical spire and canal reflected at the base, surface tuberculated, mouth linear, lip reflected, thickened and plicate within, columella plicate.

These little shells are known by their transversely ribbed
nodulous whorls, and prominent, recurved siphonal canal ; when fresh the surface is covered with a fine velvety epidermis. Morum, Bolten, 1798 ; Ersina, Gray, and Lambidium, Link, are synonyms.

The fers species occur in the West Indies, Galapagos, China, etc. It is found in the eocene of Europe and miocene of N. America.

Section I. Oniscia (sensu stricto). O. oniscus, Linn. Plesioniscia, Fischer, 1884, shonld be considered synonymons.

Section II. Oniscidia, Swainson, 1840. O. cancellata, Sowb.

Genns PACHYBATHRON, Gaskoin, 1853.
Shell small, subcylindrical, longitudinally striated; spire very short, but with sharp apex ; aperture narrow, very long, the inner lip spread over the body-whorl and transversely plicate, the outer lip thickened and denticnlated within. 2 sp. West Indies. P. marginelloideum, Gask.

Some conchologists place this group in the family Marginellidx ; the dentition is unknown.

Genus CASSIS (Klein, 1753), Lamarek, 1799.
Section I. Cassis, sensu stricto.
C. cornuta, Linn. Pl. 2, fig. 49 ; Pl. 1, figs. $45,46$.

Honey-combed between the revolving ridges, with three spiral rows of distant compressed tubercles-those of the shoulder the most prominent; yellowish white, more or less tinged with yellowish brown, varices and belts sometimes brown-spotted; columellar and lip expansion much produced and rounded behind, yellowish cream-color, orange-brown within the aperture and between the teeth, which are whitish. Length, $8-12$ inches.

Indian Ocean, Tranquebar, Mauritius, Japan, Philippines; West Indies.
Conrad distinguishes the West Indian specimens under the name of C. labiata, Chemn., as being more oblong, with the lip more widely expanded posteriorly into a flattened plane; the suite of specimens before me does not confirm this distinction.

Other synonyms are C. Amboinensis, Petiver, and Buccinum brevirostrum, Petiver.
C. cameo, Stimpson. Pl. 2, fig. 50.

This fine speeies las the same ground-coloring as C. cormuta, hat may be recognized at once by the interstices of the teeth and ridges on the lip and colmmella being deep chocolate-brown. The outer surface is irr gularly spirally ridged like C. cornuta, but is not honey-combed. Length, $7-10$ inches.

Beaufort, N. C., to West Indies.
First described by Lamarek as C. Madagascariensis, but there is no evidence that it inhabits oriental waters.
C. tuberosa, Limn. Pl. 2, fig. 51.

Triangularly ovate, spirally ridged, and very closely longitudinally minutely plicate-striate, with three rows of distant spiral tubercles; yellowish brown. thickly marbled and spotted with chestnut and chocolate color, enameled face of columella, and onter lip flesh-white, the furmer chocolate between the plicæ, with a bright chocolate stain in the centre, the latter with chocolate transverse blotches. Length, 6-8 inches.

Beaufort, N. C., to West Indies, Brazil.
Said to have been collected by Cuming, at the Philippine Islands, and I have a specimen before me stated to have been obtained in Japan; yet these eastern localities must be considered very doubtful. It is Bucc. striatum, Gronov.; C. undulata, Humph. ; C. rotundata, Perry.
C. flaminea, Limn. Pl. 1, figs. 47, 48.

Oblong-oval, with three or four spiral rows of distant, large, obtuse tnbercles, spire, and body-whorl, usually at the base only, distinctly rudely longitudinally ridged; cream-colored, clonded and crescent-marked with chestnut and chocolate; these markings are often apparent on the face, which is stained with chocolate in the middle and between the ridges, interstices of teeth on the onter lip also chocolate-stained, lip sometimes banded across.

Length, $4-6$ inches.
West Indies.
This species las also, like some of its predecessors been ascribed to East Indian localities-probably in error.
C. spinosa, Gronov. Pl. 4, fig. 62.

Shonlder with small, short, rather close spinous tubercles, occasionally slightly indicated in two or three rows on the bodywhorl, which else is smooth, or marked by rugose growth-lines ; above the shoulder are one or two necklace-like rows of small tubercles, appearing on the spire-whorls also; fleshy or orangewhite, with obscure whitish bands, hearing lmate, shaded chocolate spots; shell rather thin, the columellar callus transparent, showing the color-markings beneath it. Length, $4-8$ inches.

West Africa, Australia.
The synonyms are C. Rumphii, C. tessellata and C. maculosa, of Gmelin, and C. fasciata, Brug.
C. fimbriata, Quoy. Pl. 3, fig. 55.

More strongly longitudinally ridged by growth-lines than the preceding species; it has the same shoulder-row of spines, but has none above, whilst below, on the body-whorl are two rows of rather prominent rude tubercles; Hesh-white, marbled with light chocolate, with several distant rows of intermpted chocolate or chestnut lines; the latter show through the columellar callus, and the onter lip is chocolate-banded. Length, $3-4 \cdot 5$ inches.

Australia.
C. bicarinata, Jonas, is a synonym.

Section II. Levenia, Gray, 1847.
C. coarctata, Gray. Pl. 2, fig. 52.

Shell with three or four spiral rows of obtuse tubercles, and intermediate spiral ridges, which are sometimes broken up into gramules; whitish, thickly marbled and spotted with chestunt; columellar callus thin above, showing the color-markings beneath, helow stained with orange-brown, as is also the toothed lip-margin.

Length, $2 \cdot 5-3 \cdot 5$ inches.
Galapagos Is., Panama.
Distingnished at once by its onter lip, without external varix or expansion, and contracted above.

Section III. Cyprecassis, Stutchbury, 1837.
C. tenuis, Gray. Pl. 2, fig. 53.

Rather thin, whorls nodulous on the shoulder, smooth, or indistinctly nodose in spiral series below, spirally regularly
grooved, grooves usually in pairs, the interstices obsoletely longitudinally ridger, strongly so at the base; whitish, thickly clouded and streaked with orange-brown or chestnut, often with four somewhat obscure bands of brown, with white lunate spots; columellar callus transparent above, orange-brown below, lip banded across with orange-brown. Length, 3-5 inches.

Galapagos Is.
When young, this species has a lip somewhat approximating to C. coarctata; when adult it is fully reflected. It is C. Massenir, Kiener.
C. testiculus, Linn. Pl. 2, fig. 54 ; Pl. 4, fig. 63.

Shell strongly longitudinally ridged, the ridges cut by regular spiral grooves; Hesh-color, spotted with chocolate upon the interspaces of the grooves; columella plicate its whole length, outer lip strongly dentate, both yellowish white, the first shaded with orange-brown below, the latter cross-banded with orangebrown, external lip-margin marked with dark chocolate.

Length, 2-3 inches.
West Indies.
C. crumena, Brug. Pl. 3, tig. 56.

Spiral sulcations obsolete, upper part of body-whorl with one or two rows of low tubercles.

West Africa, Cape Verd Is., West Indies.
Is probably a variety only of C. testiculus.
C. bufa, Limn. Pl. 3, figs. 57, 58.

Shell cowry-shaped, very thick, with three or four spiral rows of prominent nodules, and incised lines between them, decussater by longitudinal ridges; whitish or purplish flesh-color, stained and marbled with orange-red or chocolate ; both lips very thick, yellowish or sahmon-colored, orange-red to chocolate in the interstices of the ridges. Length, 5-7 iuches.

Indian Ocean, Mauritius, Japan.
It is Buccinum pennatum and B. ventricosum, of Gmelin ; B. pullum, of Born ; the first and last-named for the juvenile shell.

Subgenus Semicassis (Klein, 1753), Mörch, 1852.

Section I. Typical.

C. sulcosa, Bruguiere. Pl. 4, fig. 64-67; Pl. 3, figs. 59, fil.

Whorls, usually without varices, but often with rugose or tuberculate growth-lines, especially on the spire and upper part of body-whorl, equidistantly spirally groved; yellowish white, longitudinatly streaked with light chestnut, sometimes the streaks are interrupted, forming spiral bands of tessellations; columella rugose and granulate, outer lip plicate-dentate, often enormonsly thickened. Length, $3-4$ inches.

Dlediterranean S'ea, Iortugal. W. Coast of Africa, West Indies, Brazil, W. Coast N. America
from Panama to Guaymas.
A somewhat rariable species as to form and sculpture, giving rise to several specific names-some of which I have retained in a varietal sense, although these forms grade one into another. The typical sulcosa has a somewhat elevated spire, the whorls well-rounded above. It, as well as the varieties, occurs at all the localities for the species. It is C. undulata and C. gibba, Gmelin; C. decussata, Pennant; and Brugnomia pulchella, Jettireys, is probably the fry. Possibly Buccinum malum, B. cepa and B. globulus, Bolten, are also synonyms.

Var. inflata, Shaw. Pl. 4, fig. 65.
Somewhat thimer and more inflated than the type, often singly varicose, the lip not so much thickened, coloring more generally in tessellations, frequently one-varicose.

This variety is the usual form of the West Indies, although it occasionally occurs in Mediterranean specimens. It is C. granulusa, Brng. ; C. tessellata, Pfr.; C. trifasciata, Gmelin ; C. lavigata, Menke; C. cicatricosa, Gronov.; C. gramulata, Born ; C. ventricosa, Mart.
Yar. abbreviata, Lam. Pl. 3, figs. 61, 59; Pl. 4, figs. 66, 67 ; Pl. 5, fig. 71.
Spire shorter, the upper part of the whorls nodulous and somewhat angular.

This variety is very characteristic of specime nis from the West Coast of North America, lut it also occurs in the West Indies
and Europe. It is C. granulosa, var., and C. lactea (fig. 59), Kiener ; C. inflata, var. β. of Reeve; C. minuta, Menke; C. bilineata, Gmelin, and C. centiquadrata, Val.
C. recurvirostrum, Wood (figs. 66, 67), said to come from Australia, varies between this variety and var. inflata.

Var. levilabiata, Gregorio. Unfigured. Mediterranean.
C. semigranosa, Wood. Pl. 3, fig. 60.

Upper portion of whorls granose, lower part obsoletely spirally grooved, outer lip smooth within, eolumella oblicquely plicate below ; whitish or flesh-color, often stained with fulvous rust-eolor. Length, 2 inches.

So. Australia, Tasmania.
C. Canaliculata, Bruguiere. Pl. 5, figs. 72, 73.

Suture broadly, deeply chameled, whorls withont varices, spirally engraved, columella plicately ridged below, lip toothed within ; whitish or flesh-colorel, with four rows of light chestnut tessellations, often obsolete. Length, $1 \cdot 5-2$ inches.

Ceylon, Philippines.
C. saburon, Adanson. Pl. 5, figs. 74-78.

Shell with pretty close, engraved spiral grooves, lip irregularly dentate within ; columella rugosely ridged below ; flesh or brownish white, with four or five spiral rows of square chestnut spots, sometimes obsolete. Length, 2 inches.

Mediterranean Sea, Atlantic Coast of Spain to Senegal.
It is C. pomum, Wagner ; C. mucleus, Küster ; C. reticulata, Bellardi ; C. striatella and C. incrassata, Grateloup; C. texta, Bronn. ; and C. dilucii, C. inflata and C. striata, Serres.
Var. pila, Reeve. Pl. 5, fig. 75.
Appears to differ only in being thinner, and usually smaller.
China, Philippines, Australin.
Var. Japonica, Reeve. Pl. 5, figs. 76, 77.
Very like the type, but usually varicose, the interstices of the grooves, espeeially on the spire and upper part of the bodywhorl somewhat granular. Length, $2-2 \cdot 5$ inches.

Japan.
C. Pfeifferi, Hidalgo (fig. 7i), is a not musual form of this variety, with somewhat depressed spire and deep sutare.

Var. Bisulcata, Schub. et Wagn. Pl. 5, fig. 78.
Thin and swollen like var. pila, with the granular spire of var. Japonica, the shoulder of the body-whorl with a couple of strong, shallow groores.

Philippines.

$$
\text { Section II. Bezoardica, Schum., } 1817 .
$$

C. Glauch, Limn. Pl. 6, figs. 79, 80.

Whorls smoothish, malleated angulated above, the angle defined by a row of short spincs, upper whorls decussated, last whorl onc-raricose; columella plicately wrinkled below; outer lip toothed within, four-spined at the base; livid glaucous, sometimes indistinctly banded, lips cream-color to orange-brown, interior light chestnut-color. Length, 3-4 inches.

Singapore, Philippines.
This was re-named by Schumacher Bezoardica vulgaris.
C. coronulata, Sowerby. Pl. 6, fig. 81.

Smooth, not malleated, spinous processes of the base of the lip only faintly indicated; color yellowish flesh, irregularly, undulately banded longitudinally, and regularly so spirally with light chestnut, the interscctions of the bands forming darkercolored tessellations. Length, $2 \cdot 5-3 \cdot 5$ inches.

Japan, Philippines, Australia.
Is possibly a well-marked variety only of the last species. C. exarata, Reeve. Pl. 6, figs. 82, 83.

Whorls one-varicose, smooth, regularly spirally grooved, slantingly shouldered, shoulder and spire nodulous; whitish, with five rows of square chestnut spots. Length, 3 inches.

Isl. Bourbon (Deshayes).
C. areola, Linn. Pl. 6, fig. 84.

Whorls one-varicose, obtusely concavely shouldered, smooth, shining, spire decussated, body-whorl with incised lines towards the base; lip toothed within, columella rugosely plicate below; whitish or purplish flesh-color, five-banded with large squarelunate chestnut or chocolate spots. Length, $2.5-3.5$ inches.

Indian Ocean, Philippines, N. S. Wales. C. strigata, Gmelin. Pl. 7, fig. 85.

Whorls encircled thronghout, or only at the base by engraved lines, one-varicose, striated and decussated on the spire and
shoulder of the body-whorl ; yellowish white, with longitudinal streaks of chestnut. Length, $3-3.5$ inches.

Moluccas, China, Japan, Philippines.
The synonyms are C.zebra, Lam.; C. undata, Desh.; C. areola, var., Brug.; C. rugosa, Gmelin.
C. plicata, Lim. Pl. 7, fig. 86.

Spire and shoulder of borly-whorl decussated, rest of bodywhorl longitudinally plicate, encircled by engraved lines, usually obsolete except towards the base, one-varicose; whitish, longitudinally undulately strigate with pale chestnut, the varices with chestnut maculations; interior chestnut-brown.

Length, $2 \cdot 5-3$ inches.
Moluccas.
It is C. plicaria, Lam.; C. fimbria, Gmel.
C. decussata, Lam. Pl. 7. figs. 8 it, 88 .

Decussated throughont by elevated longitudinal strix, and engraved spiral lines, one varicose, the varices spinons on the shoulder; yellowish flesh-color, with longitudinal streaks or quadrate spots of chestnut. Length, 2 inches.

Habitat?

Unites the coloring of C. areola and C. strigata with the form of C.plicata; varies from either in the sculpture, and spinous varices, from the two former in form.

Section III. Casmaria, H. and A. Adams, 1853.
C. vibex, Linn. Pl. 7, figs 89-91.

Shell smooth, without varices, lip four-spined at the base; fleshy ash-color, olscurely banded, and painted longitudinally with light chestnut flames continued from darker sutural markings; lip tessellated with chocolate externally ; sometimes the body-whorl is encircled by indistinct series of short chocolate lines; interior orange-brown. Length, $2-3$ inches.

Mauritius, Philippines, Society Islands, Paumotus.
Var. erivacea, Linn. Pl. ì, fig. 90.
Shell thicker, smaller, with a tuberculate shoulder and plications descending below them.

The synonyms include Buc. nodulosum, Gmel., and B. biarmatum, Dillw.

Var. Kalosmodix, Melvill. Pl. 7, fig. 91.
Smooth as in typical vibex, hut withont the spines at the base of the outer lip. The shell is obscurely three-banded, with numerous longitudinal chestnut stripes, which become darker in crossing the bands, and arise from darker sutural flames; lip externally tessellated with brown. Length, $3 \cdot 75$ inches.

C. torquata, Reeve. Pl. 7, figs. 92, 93.

Smaller and wider than C. vibex, the volutions less oblique, smooth, without varices; lip sparsely spinose throughout; fleshcolor, with a row of square chestnut spots at the suture and another near the base, back of lip tessellated with chestuut.

Length, $1 \cdot 35-1 \cdot 75$ inches.
Port Jackson, Australia.
This is perhaps only an extreme variety of C. vibex; like that species, it has a spinose-shouldered variety.
C. achatina, Lam. Pl. 8, figs. 94-98; Pl. 9, fig. 7.

Smooth, without varices; flesh-colored, longitudinally flamed with dark chestnut, often with narrow spiral bands of chestnut and white articulations; lip dentated throughout, or only below, externally handed with chocolate. Length, 2.5 inches.

Cape of Good Hope (Cuming) ; Mauritius;
Australia, N. Zealand, Philippines.
C. turyida, Reeve (fig. 95), is a slight variety liaving a lighter shell, and which has not the articulations sometimes found on the type.
Var. pyrum, Lam. Pl. 8, figs. 96 -98; Pl. 9, fig. 7.
Smooth, often thick, with a superior line of more or less prominent nodules; these, when well developed, sometimes define a regular shoulder, and in such cases there are often inferior lines of less developed nodules; coloring much as in the type, the revolving bands of maculations usually more prominent, the longitudinal streaks less so.

Australia, Mauritius, Natal, Cape Verd Is. (Dunker).
This holds the same relationship to C. achatina that the var. erinacea does to the typical vibex.

The synonyms are C. paucirugis, Menke (fig. 7) ; C. zelanica, Lam.; C. striata, Hutton, and C. nivea, Brazier (fig. 98), a white variety.
C. Sopila, Brazier. Pl. 8, fig. 99.

Globosely inflaterl, rather solid, tabulately shouldered, spirally engraved, more distinctly so at the base; white, with several rows of distant, large chestnut blotches.

Length, $2 \cdot 75$ inches.

N. S. Wales, Australia.

C. glabrata, Dunker. Pl. 9, fig. 8 .

Rather thin, without varices, smooth; white, with rare light chestnut flames at the suture. Length, $2 \cdot 75$ inches.

Zanzibar.
Appears to be sufliciently distinguished by its narrow form, elevated spire, coloring, and especially the absence of brown maculations on the lip varix.

Unfigured Species of Cassis.
C. doliata, Val.
C. corrugata, Swainsoll.
C. vana, Tenison-Woods.
C. Thomsoni, Brazier.
C. umbilicata, Pease.
('. vexillum, Kiener.
C. globulus, Menke.
C. scrubiculata, C. tenuilabris, C. muricata, Menke. Java. Genus CASSIDARIA, Lam., 1812.
C. elienophora, Linn. Pl. 9, figs. 9-11.

Globosely ovate, with five or six spiral tuberculated ribs on the body-whorl, and two or three smaller spiral ridges between each rib; light fulvous white, more or less stained with rusty brown; lip dentate within, and with the columellar callus white, interior of aperture rusty brown. Length, $2 \cdot 5-4 \cdot 25$ inches. Mediterranean Sea.
Varieties occur with two to four rows of tubercles, thus connecting it more closely with C. Tyrrhena, which has no tubercles-or, at most, a single superior row-and in which the revolving riblets are subequal, numerons and cord-like.

It is Buccinum rugosum, Linn, a variety with a single nodose band; C. depressa, Phil. (fig. 10), a variety with the prominent ribs not tuberculate ; C. tuberculosa, Schum.; C. Tyrrhena, Sowb.

Genera ; B. nodosum, Dillw.; B. strigosum, Gmelin ; Pyrula provincialis, Martin (fig. 11), is an abnormal form. The operculum differs from that of Cassis in not having radiating ridges.
C. Coronador, Crosse. Pl. !, figs. 12, 13.

Globose oval, rather thin, with rather close spiral riblets, two or three of which are a little more prominent than the others, and distantly tubereulate; yellowish brown, lip, columellar callus and interior whitish. Length, 4 inches.

Matanzas, Cuba.
A single specimen only is known. Mr. Crosse has described it as a Cassis, although recognizing its resemblance to C. echinophora.
C. Deshayesil, Duval. Pl. 9, fig. 6.

Orate ventricose, strongly shouldered, longitudinally plicate, spirally sulcate, tuberculate on the shoulder; violaceous brown, with chestnut lines and spots; spire acute, mucronate ; aperture white, lip dentate within, columella rugose above and below.

Length, 32 mill.

> W. C'oast of Africa.

The unfigured C. acuta, Gray, may be the same species.
C. Tyrrhena, Latil. Pl. 10, fig. 14.

Pear-shaped, thin, regularly corded with ridges with nearly equal interstices, sometimes an obscure shonkler is defined by a tuberculated ridge, yellowish brown; lip obsoletely plicate, and with the columellar callus, white. Length, $3-5 \cdot 5$ inches.

Mediterranean Sea, Allantic Coast of France and Spain.
Is supposed by some conchologists to be a varicty only of C.echinophora. It is Buccinum ochroleucum, Gmel.

Sulogenus Sconsia, Gray, 1847.
C. striata, Lam. Pl. 10, figs. $15,16$.

Closely spirally thread-striate, decussated into nodules above and on the spire by rugose growth-lines, lip and columella both strongly plicate thronghout; whitish or brownish, showing a few light chestnut quadrangular spots on the upper part of the columellar callus. Length, $2-2 \cdot 5$ inches. West Indies.
C. lævigata, Sowb., and C. sublævigata, Guppy, are fossil representatives of this shell.
C. Grayi, A. Ad. (lig. 16), is said to be thinner and more ventricose, more finely grooved, the spire less acute, outer lip not so much thickened and inflexed, and plicate, not crenate internally. I suspect that it is a synonym ; and probably the next species is at most only a variety.
C. Barbudensis, Higgins and Marrat. Pl. 10, fig. 17.

Ovate, light yellowish brown, with longitudinal light chestnut flames; indistinctly spirally striate, decussated towards the lip and varix. Differs from C. striata in the plications of the inner lip being confined to the anterior portion, in the striations, which are not crenulated above, and in its flamed color pattern.

Length, 2.75 inches.

> Isl. of Barbuda, W. I.

A single empty shell dredged in fifteen fathoms. Possibly ouly a variety of C. striata.

Genus ONISCIA, Sowb., 1824.
Section 1. Oniscia, sensu stricto.
O. oniscus, Linn. Pl. 10, figs. 18, 19.

With three spiral, tuberculated ribs, and a number of spiral raised lines between them, the ribs cut by revolving impressed lines; columellar eallus minutely tuberculate, outer lip denticulated within; whitish, dotted and spotted with chestnut or chocolate, the dots sometimes approaching blue-black, lip white.

Length, 1-1.25 inches.
West Indies.
O. triseriata, and perhaps O. quadriseriata, Menke, are synonyms.

Yar. Lamarcki, Desh. Pl. 10, fig. 19.
Columellar callus rose-pink, the granules upon it white, outer lip often peppered with chestnut spots.

It is Cyprea conoidea of Scopoli.
O. tuberculosa, Sowb. Pl. 4, figs. 68, 69.

Whorls encircled by five rows of large blunt tubercles and mumerous intermediate ridges ; columellar lip finely granulated, outer lip somewhat contracted in the middle, dentate within;
marbled and reticulated with ehestunt or chocolate and white, interior white or sometimes bright saffron-colored.

Length, $1 \cdot 25-1 \cdot 5$ inches.
Galapagos Is., Mazatlan, La Paz, L. C.
O. xanthostoma, A. Ad., is a synonym, being the variety with ycllow aperture.
O. Strombiformis, Reeve. Pl. 4, fig. 70.

Spire elevated, pointed, whorls angulated above, eneireled by numerous narrow nodulous ridges; columellar lip minutely gramulated, outer lip ridged within, with a short interrupted rib in the interstices; white, dotted and spotted with chestmut, lips white. Length, 22 mill.

West Indies.

I have not seen this species.
Section II. Oniscidia, Swainson, 1840.
O. Dennisoni, Reeve. Pl. 10, fig. 20.

Whorls angulated above, longitudimally compressly plicated, crossed and cut into short spines by numerous revolving riblets; columellar lip minutely granulated, outer lip irregularly dentieulately ridged; whitish, obscurely three- or four-banded with chestnnt, lips orange-red, with the granules and plications whitish. Length, 2 inches.

Guadeloupe, W. I. (Bean).
I find no other authority for the habitat of this very beautifnl species.
O. cancellata, Sowb. I'l. 10, fig. 21.

Whorls romnded above, longitudinally narrowly plicated, decussated by regular equidistant revolving riblets, the interstices spinose; whitish or brownish white, three-landed with light chestnut, aperture white. Length, $1 \cdot 5-2 \cdot 5$ inches.

China.
O. exquisita, Ad. and Reeve. Pl. S, fig. 100.

Whorls shouldered, enciroled by rows of papillary tubereles, with intervening ridges; whitish, sparingly dotted, and behind the lip three-spotted with orange-brown, lips pink, the grannles and plications white. Length, 1.5 inches.

Sooloo Sea; Australia.
O. ponderosa, Hanley (Pl. 10, fig. 22), is a synonym.

Unfigured Species of Oniscia.
O. grandis, A. Ad. (perhaps =exquisita). China Sea.
O. citilala, Watson. Té Islands, W. of Papua.
O. Lanakckit, Lesson. Australia.

Genus PaCHYBATHRON, Gaskoin, 185:3.
P. Cassidiforme, Gaskoin. Pl. S, figs. 1-3.

White, with three ash-colored bands, longitudinally plicately striate, whorls ridged around the suture. Length, 6 mill.

Is. of St. Vinceni, Bonaire, Curaçoa, West Indies.
P. Marginelloideum, Gaskoin. Pl. 8, figs. 4, 5.

Yellowish white, with three or four spiral rows of chestnutcolored sagittate markings; whorls smooth at the suture, chestmut margined. Length, 5 mill.

West Indies.
In Chenu's "Manuel" the names of the species illustrated have been transposed.

INDEX AND SYNONYMY.

PEDICULARIIDA, OVULID A, DOLIID ※, CASSIDIDA.

PAGE.
Abbreviata (Cassis), Lam. An. s. Vert., x, p. 30. $=$ C. sulcosa, Born., var. 274
Abyssorum (Benthodolium), Verrill and Smith. Trans. Comm. Acad., vi, 177, 1884. = Oocorys sulcata, Fischer, 267
A chatina (Cassis), Lam. An. s. Vert., x, p. 33, 278
Acicularis (Ovula). Lam. An. du Mus., xvi, p. 102, 253
Acuminata (Ovula), Ad. and Reeve. Voy. Sam., p. 21, pl. 6, f. 1, 1850, 254
Acuta (Cassidaria), Gray. Zool. Beechey's Voy., p. 121, 280
Arlamsi (Ovula), Reeve. Conch. Ic., 24, 1865, 249
Adamsii (Volva), Dunk. Mal. Blatt., xxiv, p. 75, 1877.$=$ C. Plilippinarum, Sowb.252
Adriatica (Ovula), Sowb. Thes., ii, p. 470, pl. 99, f. 13-14. $=$ O. patula, Peunant, 246
Nqualis (Ovula), Sowb. Proc. Zool. Soc., 1832, p. 174. $=0$. variabilis, C. B. Ad. 255
Alabaster (Ovula), Reeve. Conch. Ic., 23, 1865. $=$ O. punctata, Duclos, 249
Alba (Cassis), Perry. Conch., t. 33,.f. 2. $=$ C. flammea, Limm.Alba (Orula), Schum. Nouv. Syst., p. 258, 1817.= O. ovum, Limu.246
Albida (Pedicularia), Dall. Bull. Mus. Comp. Zool., ix, 39, 1881, 242
Album (Dolium), Conrad. Proc. A. N. S. Phila., 1854, p. 31, 265
Alhum (Ovulum), Dufo. Ann. Sci. Nat., 1840, p. 186, 256
Amboinensis (Cassis), Petiv. Gaz., t. 151, f. 14. $=$ C. cornuta, Linn. 271
Amphiperas, Gronov. Zoophı, 293, 1781. = Ovula, Brug.
Amphora (Dolium), Phil. Abb., iii, p. 12, 265
Ampullaceum (Dolium), Phil. Zeit. Mal.,1845, 147 ; Abbild., iii, t. $2,1849 .=$ D. costatum, Menke, 264
Angasi (Ovula), A. Ad., MS. Reeve, Conch. Ic., No. 43, 1865. $=0$. Philippinarum, Sowb. 252

PAGE.
Angulosa (Ornla), Lam. An. s. Vert., vii, 367 . $=$ O. tortilis, Mart.
Antillarum (Dolium), Mörclı. Mal. Blatt., xxir, p. 41. $=$ D. galea, Liun. 261
Antillarum (Ov̌ula), Reeve. Conclı. Ic., (it, 1865. $=$ O. uniplicata, Sowb. 255
Aperta (Ornla), Sowb. Thes., ii, p. 478, pl. 101, f. $106,107$. $=$ O. birostris, Linn. 253
Arcuata (Ovnla), Reeve. Conch. Ie., 58, 1865. $=$ O. miplicata, Sowb. 255
Areola (Cassidea), var., Brug. = Cassis strigata, Gmel. . 277
Areola (Cassis), Limm. Syst. Nat., ed. 12, p. 1199, . 276
Areolata (Bezourdica), Schum. Nouv. Sy'st., p. 248, 1817. = Cassis areola, Limn.
Atomaria (Crithe), Gould. Bost. Proc., vii, 385, 1860, . 255
Australe (Dolium), Mörch. Cat. Yoldi. $=$ D. C'hinense, Dillw. 262
Avena (Ovula), Sowb. Proc. Zool. Soc., 1832, p. 173 ; Conch. Ill., p. 17 , 255

Bairdii (Dolium, Terrill and Smith. An. Jonr. Se., 3 d ser., xxii, p. 299, 1881 ; Trans. Comn. Acad., v, 515 ; Proc. Nat. Mus., 329,1882 ,265

Barbudensis (Cassidaria), Higgins and Marrat. Liv. Mus., Rep. i, pl. l, f. 1 ; Proc. Lit. and I'hil. Soc. Liverpool, xxxi, fll,

281
Benthodolium, Terrill. Trans. Comn. Acad., vi, $177,1884$. = Oocorys, Fischer,

267
Bezoardica, Schum. Essai Nouv. Gen., 248, 1817, . 269, 276
Biarmatum (Buccinum), Dill. Cat., t. 2, p. 599. $=$ Cassis ribex, L., var. erinacea, 277
Bicarinata (Cassis), Jonas. - Arch. f. Naturg., 1839, i, p. 343, t. 10 , f. $2 .=$ C.fimbriata, Quoy, 272

Bilineatum (Buecinum), Gmel. P. 3476, No. 23. $=$ Cassis sulcosa, Brug., val'. 275
Bimaculata (Ovula), A. Ad. Proc. Zool. Soc., 1854, 131, . 248
Binovoluta, Schliit. Verz., 24, $1838 .=$ Cyphoma, Bolt.
Birostra, Swainson. Malacol., 325,1840. = Radius, Montf.
Birostris (Ovula), Linn. Syst. Nat., p. 1182,1767, . 253
Bisulcata (Cassis), Schub. and Wagner. Forts., xii, t. 22.3 , f. $3081,3082 .=$ C. saburon, Adans, var. . . . 276

Borbonica (Ovula), I esh. Moll. Remion, p. 136, pl. 13, f. 18-20, 1863, 254
Brevirostris (Ovila), Sclum. Nouv. Syst., p. 259, 1817. $=$ U. birostris, Limu.2.5
page.
Brevirostrum (Buccinum), Petıv. Gaz., t. 151, f. 9.= Cassis cornuta, Lim.271
Brevis (Ovula), Sowb. Thes., ii, p. 169, pl. 101, f. 70, 71, 248Brevis (Ovula), Recve. Icon, sp. 5 (not of Sowb.), 1862.$=$ O. marginata, Sowb.
Brugnonia, Jeffreys. Ann. Mag. Nat. IIist., xi, 399, xii, 67,1883. $?=$ Cassis, fry
Bulla (Ovula), Ad. and Reeve. Voy. Sam., p. 21, pl. 6, f. 5, 1850. = O. margarita, Sowb. 248
Bullata (Ovula), Ad. and Reeve. Voy. Sam., p. 23, pl. 6, f. 13,1850 , 250
Bullata (Ovula), Gould. Proc. Bost. Soc., vii, p. 385, 256
Cadimm, Link. Rost. Samml., iii, 113, 1807. = Malea, Val. 258
Calerlonica (Ovula), H. Crosse. Jour. de Conch., 1871, p.$206 ; 1872$, p. 62. = O. pudica, A. Ad.247
Californica (Orula), Reeve. Conch. Ic., 50, 1865. $=$ O. variabilis, Ad. 255
Californica (Pedicularia), Newcomb. Calif. Proc., iii, 121, 1864 ; iv, 322 , t. 1, f. 9 , 242
Calpurna, Fleming. Brit An., 331, 1828. =Simnia, Risso.
? Calpurnus, Montfort. Conch. Syst., ii, 638, 1810, . 245,256
Cameo (Cassis), Stimps. Sillim., Am. Journ., 1860, p. 443, 271
Canadiensis (Amphiperas), Mörch. Weink., Jahrb. Mal.Gesell., 178, 1882. = Ovula uniplicat., Sowb.255
Canaliculata (Bulla), Limı. Syst. Nat., ell. x ; Hanley, Proc. Zool. Soc., 489, 1859. = Dolium olearium, Brug. 263
Canaliculata (Cassis), Brug. Dict. No. 7, 275
Cancellata (Oniscia), Sowb. Genera of Shells, 270, 282Carinea, Swains. Malacol., $326,1840=$ Cyphoma, Bolten.
Carnea (Orula), I'oiret. Voy. en Barlo, ii, p. 21, 1789, 248
Carolinensis (Ovula), Mörch. Mal. Blätt., xxiv, 54, 1877.$=$ O. miplicata, Sowb.255
Carpenteri (Yolva), Dkr. Mal. Bliatt., xxiv, 75, 1877.$=0$. Philippinarum, Sowb.252
Casmaria, H. and A. Adams. Genera, i, 21f, 1853, . 269, 277
Cassidaria, Lam. Extr. d'un Cours, 1812, - $268,269,279$
Cassidea (Pars), Bruguiere. Encyc. Meth., 1, 414, 1789.$=$ Cassis, Lam.Cassidea, Link. Rost. Samml., iii, 111, 1807.$=$ Cyprecassis, Stutchb.
Cassidea, Swainson. Malacol., 66, 299, 1840.$=$ Semicassis, Mördi,269
Cassidiforme (Pachybathon), Gask. Ann. Mag. N. Il., 1853, p. 2, t. 12 , f. $1-3$, 283

Cassidiformis (Pachybathron), Chenu. Manuel, f. 1142. $=\mathrm{P}$. Marginelloidemm, Gask.
Cassis (Dolium), Bolten. Mörch, Cat. Yoldi, p. 111. $=\mathrm{D}$. fimbriatum, Sowb.
Cassis (Klein, 1753), Lamarck. Prodr., 1799, . . 268, 270
Centiquadrata Cassis), Valen. Yoy. Humb, and Bonp., p. 183, No. 320. = C. sulcosa, var. abbreviata, Lam. . 275
Cepa (Buccinum), Bolt. Mus., No. 372.
$=$ Cassis sulcosa, Brug.
Cepa (Dolium), Martini. Conch. Cat., iii, p. 401, pl. 117, f. 1076 and 1077. = D. olearinm, Brug.
Chinense (Dolium), Dillw. Cat., p. 585. $=$ D. variegatum, Lam., var. 262
Cicatricosa (Cassis). Gronov. Zooph., Fasc. 3, p. 303 ; Meusch., 1778, n. 1158 = C. sulcosa, Brug. . . . 274
Cithara (Oniscia), B. Watson. Jour. Limn. Soc., xv, 266, . 283
Clathrata (Ficus), Roussean. Chenn, Ill. Conch, iii, pl. 2, f. 3 . $=$ Pyrula reticulata, Lam.

Coarctata (Cassis), Gray. Wood, Ind. Test. Supl., t. 4, f. 5 ,

272
Coarctata (Ovula), Acl. and Reeve. Toy. Samarang, f. 2, p21, pl. 6,
Coccineus (Calpurnus), Ad. Reeve, Icon., sp. 21.
$=$ Ovula concinna, All, and Reeve.
Columba (Ovula), Sch. et Wag. Suppl., 40, 43, $40,44$. $=$ O. tortilis, Mart.246

Concinna (Orula), Ad. and Reeve. Yoy. Sam., p. 22, pl. 6 f. 8,1850 ,

Conoidea (C'yprea), Scopoli. Delic. Insulr., 1786, t. 24, f. 3. $=$ Oniscia Lamarcki, Desh.

281
Cormuta (Cassis), Lim. Syst. Nat., ecl. 12. p. 1198, . . 270
Coronadoi (Cassis), Crosse. Jour. Conch., xii, 1867, p. 64, t. iv, r, f. 1 .

280
Coronulata (Cassis), Sowb. Tank. Cat. App., p. 20, . . 276
Corrugata (Cassis), Swainson. Exotic Conchology, p. 35, . 279
Corrugatum (Ovulum), Hinds. Moll. Yoy. Sul., pl. 16, f. 5, 6. = Erato. Manual Conch., v, 11, . . . 256

Costatum (Dolium), Menke. Syn. Meth., 1828, . . 263
Costellata (Ovula), Lam. An. du Mus., xvi, p. 110, 1810. $=0$. Lortilis, Mart.

246
Crassilabris (Dolium), Val. Humbs and Bonpl., livr. 14. $=$ D. ringens. Swains.
Crenulatum (Dolium), Phil. Zeit. Mal., 1845, p. 148; Abb., t. 1, f. 1. = D. zonatum, Green,

Cristallina (Ovula), Kien. Conq. viv., 14, pl. iv, f. 3, . . 247
Crithe, Gould. Bost. Proc., vii, ;84, 18fi0, . . . 254,255
PAGE.
Crosseanum (Dolium), Allery de Mont. J. C., xvii, p. 228, t. 12, f. 1. 1869, 263
Crumena (Cassis), Brug. Dict., No. 12, 273
Cumingii (Dolium), Hanley. Reeve, Conch. Icon., sp. 13, 1849. = D. olearium, Brug., var. 262
Cumingi (Ovula), Mörch. Cat. Kjerulf, p. 30, t. 1, f. 11,
1850. = O. concinna, Ad. and Reeve, 249
Cyphoma, Bolten. Mus., 1798 , 250
Cypræcassis, Stutchbury. Loudon's Mag. N. Il., N. S., 1, 214, 1837, . . 268 , 272
Cypraella, Swains. Malacol., 325,1840 .= Calpurnus, Montf.
Decussata (Cassis), Lim. Syst. Nat., cd. 12, p. 1199, 277
Decussata (Pedicularia), Gquld. Bost. Proc., v, 126, 1855, 242
Decussata (Pyrula), Wood. Ind. Test. Supp. 265, 266
Decussatum (Bucciuum), Pennt. Brit. Shells, t. 79, f. 2. $=$ Cassis sulcosa, Brug., var. 274
Deflexa (Orula), Sowb. Proc. Zool. Soc., 1848, p. 136. $=0$. Philippinarum, Sowb. 252
Dennisoni (Oniscia), Reeve. Proc. Zool. Soc., 1842, p. 21, 282
Dentata (Ovula), Ad. and Reeve. Voy. Sam., p. 21, pl. 6, f. 4, 1850. = O. striatula, Sowb. 250
Dentatum (Dolimm), Barnes. Ann. N. Y. Lycem, i, p. 135, pl. ix, f. $3 .=$ D. ringens, Swains. 265
Dentiora, Pease. Proc. Zool. Soc., 240, 1862. $=$ Pedicularia, Swains. 241
Depressa (Cassidaria), Philippi. Enum. Moll. Sic., pt. ii, pl. 27, f. 3. = C. echinophora, Linn. 279
Depressa (Ovula), Sowb. Proc. Zool. Soc., 1875, p. 128, pl. xxiv, f. $1 .=0$. Philippinarum, Sowb. 252
Deshayesii (Cassidaria), Duval. Rev. Zool. Soc. Cuv., 1841, p. 278; Jour. de Conch., 70, t. 1, f. 9, 1863, 280
Deshayesii (Dolium), Reerc. Conch. Ic., sp. 15, 1849, 262
Diameza, Deshayes. Foss. bassin de l'aris, iii, 572, t. 105, f. $9-10,1865$, 245
Diluvii (Cassis), Serres (fossil). $=$ C. saburon, Ad. 275
Doliata (Cassis), Tal. Toy. Humb. and Boupl., p. 183, No. 320, 279
Doliicla, 256, 257
Doliopsis, Conrad. Am. Jour. Conch., i, 141, 150, 1865, 258
Doliopsis, Monterosato, 1872, 258
Dolium, Lam. Syst. an., 79, 1801. 258, 261
Dolimm (Buccinum), Linn. (Mörch). = D. maculatum, 264
Dorsata (Cyphoma), Bolt. Mus., 1. 15, n. 254. $=$ Ovula gibhosa, Lim. 250

PAGE.

Dorsuosa (Orula), Hinds. Voy. Sulphur, p. 47, pl. 16, f. 3, 4, 1844. = O. striatula, Sowb.

250
Dunkeri (Dolium), Hanley. Proc. Zool. Soc., 1859, p. 431, 265
Dussumieri (Pyrula), Valenciennes. Kien., Coq. Viv., p. 25, pl. 11,

266
Echinophora (Cassidaria), Linn. Syst. Nat., ed. x, p. 735, 269
Echinora, Schum. Essai nouv. gen., 249, 1817. $=$ Cassidaria, Lam. .

269, 279
Elegantissima (Pedicularia), Desh. Moll. Reunion, 50, t. 6, f. 23-26, 1863,

Elongata (Ficula), Gray. Zool. Beech., p. 115. $?=$ Pyrula Dussumieri, Val. 267
Elongatum (Cyphoma), A. Ad. Proc. Linn. Soc., vii, p. 96, 256
Emarginata (Orula), Sowb. Spec. C., pt. 1, p. 7, f. 54, 55, 1830 ,

251
Epidermata (Dolium galea, var.), de Gregorio. Bull. Soc. Mal. Ital., x, 115, 1884,

261
Erinacea (Cassis), Limn. Syst. Nat., erl. 12, p. 1199. $=$ C. vibex, var. Linn.

277
Ersina, Gray. Proc. Zool. Soc., 137, 1847. = Oniscia, Sowb. 270
Exarata (Cassis), Reeve. Conch. Icon., sp. 32, 1848. . . 276
Exquisita (Oniscia), Ad. and Reeve. Toy. Samarang, p. 35, pl. 5, f. $3 a-b$, 282

Fasciata (Cassis), Brug. Dict. No. 14. = C. spinosa, Gronv. 272
Fasciatum (Dolium), Brug. Dict. No. 5, 263
Fasciatum (Dolium), var., Kien., t. 4, f. 6. $=$ D. costatum. Menke. Küster, 2, 。

264
Farannei (Dolium), Hanley. Proc. Zool. Soc., 1859, p. 430.
$?=$ D. costatum, Menke, var. fimbriatum,
264
Ficoides (Pyrula), Lam. An. s. Vert., vol. ix, p. 511.
$=P$. reticulata, Lam.

- 65

Ficula, Swainson. Malacol., S5, 307, 1840. = Pyrula, Lam. 259
Ficulopsis, Stoliczka. Pal. Indica, 84, 1867. . . . 260
Ficus, Klein (in part). Ostrac., 78, 1753. = Pyrula, Lam. 259
Ficus (Pyrula), Limn. Syst. Nat., 12th ed., p. 118t, . . 266
Fimbria (Buccinum), Gmel. Syst. Nat., p. 3479.
$=$ Cassis plicata, Linn.
277
Fimbriata (Cassis), Quoy and Gaim. Voy. Astr, p. 596, t. 42 , f. 7-8, 272

Fimbriatum (Dolium), Sowb. Genera, f. ., . . . 264
Flammea (Cassis), Limm. Syst. Nat., ed. 12, p. $1199 ;$ Kiener, 2,
Formicaria (Ovula), Sowb. Sp. Conch., pt. 1, p. 8, f. 39, 1830. = O. hordacea, Lam.
PAge.
Formosa (Ovula), Acl. and Reeve. Toy. Samarang, p. 22, pl. 6, f. 6, 251
Fortior (Ficus), Mörch. Mal. Blatt., xxiv, 43. $=\mathrm{P}$. reticulata, Lam. 265
Fromentum (Ovala), Sowb. Spec. Conch., pt. 1, p. 7, f. 37, 1830, 250
Fruticum (Ovula), Aı., MS. Reeve, Conch. Ic., No. 16, 1865, 249
Galea (Dolium), Limn. Șist. Nat., p. 1197, 263
Galeodaria, Conrail. Am. Jour. Conch., i, 2 ($; 1865$. $=$ Cassidaria, Lam. 269
Galeorlea (Link), H. and A. Adams. Genera, i, 216, 1853. = Cassidaria, Lam. 269
Gallinaceum (Ovulum), Hinds. Voy. Suiphur, p. 47, pl. 16, f. $1-2 .=$ Eiato. Manual Concli., v, 10, 256
Gibha (Cassis), Gmel. Syst. Nat., 3476, n. 24. = C. sulcosa, Brug. 274
Gibbosa (Ovinla), Limı. Syst. Nat., 1. 1183, 1767, . 244, 250
? Gisortia, Jousseaume Bull. Soc. Zool. France, 88, 1884, 245
Glabrata (Cassis), Immk. Menke, Zeit., 1852, p. 62; Novit.,1). 35 , t. 11, f. 1, 2,$27!$
Glanca (Cassis), Limn. Nyst. Nat., 12 ed., p. 1200 , 269, 276
Gilobulus (Cassis), Bolt. Mus., 1798, p. 22, 11. 371.
? = C. sulcosa, Brug. 274
Globulus Cassis), Menke. Syn., edit. 1, No. 807, 1828. = Desmoulea ventricosa, Lam. Mörch., Mal. Blatt., xviii, 126 , 279
Goniogalea, Mörch. Cat. Srensen, 21, 1857.$=$ Cassis, Lam.
Gracilis (Orula), Ad. and Reeve. Toy. Sam., p. 22, pl. 6, f. 11, 1848, 252
Gracilis (Pyrula), Philippi. Zeits. für Malak., v, 1848, p. 97. = P. papyratia, Say, 266
Grandis (Oniscia), A. Aıl. Proc. Zool. Soc., 1853, p. 185, 283
Grammata (Cassis), Born. Index, 17i8, p. 239. $=\mathrm{C}$. sulcosa, Brug., var. 274
Granulosa (Cassis), Brug. Dict., No. 5. $=$ C. sulcosa, Born, 274
Gramulosa, var. (Cassis), Kien., t. 16, f. 34. $=\mathrm{C}$. sulcosa, Born, var. abbreviata, 275
Grayi (Sconsia), A. Arlams. Zool. Proc., 136, 1854. ? = C. striata, Lam. 281
Hordacea (Ovula), Costa. Arad. et Ben., Moll. Sicil., 303. $=$ O. spelta, Linn. 254

Hordacea (Ovula), Lam. (non Reeve nec Sowb.). Ann. du
Mus., Xvi, p. 112,1810 , . . . 254
Hordaceum (Ovula). Sowb. Spec. Conch., p. 10, f. 53. $=$ O. Semperi, Weink. 252

Imperialis (Ovulum), Dill. Cat., p. 473, 1815. $=0$. tortilis, Mart. 246
Incrassata (Cassis), Grat. = C. saburon, Ad. . . . 275
Indica (Ovula), Reeve. Conch. Ic., 47, 1865. $=$ O. obtusa, var., Sowb. 251
Intlata (Cassis), 3. Reeve. Conch. Ic., f. $22 a, b$. $=$ C. sulcosa, var. abbreviata, Lam.

275
Inflata (Cassis), Serres. (Fossil.) = C. saburon, Ad.
Inflata (Cassis), Shaw. Nat. Misc., v, 22, pl. 959, 1789.
$=\mathrm{C}$. sulcosa, Born, var.
Inflexum (Orulum), Sowb. Proc. Zool. Soc., 1832, p. 173 ; Conch. Ill., p. $18 .=$ O. variabilis, C. B. Ad.255

Intermedia (Ovula), Sowb. Spec. Conch., pt. 1, p. 9, f. 32, 33 , 250, 251

Japonica (Cassis). Reeve. Conch. Ic., fig. 23, 1848.
$=$ C. saburon, Adanson, var.
275
Japonica (Perlicularia), Dall. Am. Jour. Conch., vii, 121, t. 16, f. 12, 1871,

Japonicum (Dolium), Dunk. Novit. Conch., t. 35, 36.
$=$ D. luteostomum, Kiist. 261
Kalosmodix (Cassis), Melvill. Jour. of Conch., vol. iv, 43, 1883. = C. vibex, Linn., var.

278
Kieneri (Dolium), Phil. Abb. Nener Conch., iii, p. 36.
$=$ D. variegata, Lam. 262
Labiata (Cassis), Chem. Conch. Cab., xi, p. 71, t. 184, 185 ;
Conrad, Jour. Acad. Philad., 2d ser., i, 211.
$=$ C. cornuta, Linn.
Labrosa (Cassis), Mart. Conch. Cat., ii, t. 36, f. $370,371$. $=$ Dolium pomum, Linn. 265
Lactea (Bulla), Costa. Arad. et Benoit, Moll. Sicil., 302. $=$ Orula carnea, Poir.248

Lactea (Cassis), Kien. Coq. viv., t. 16, f. 35. $=$ C. sulcosa, abbreviata, Lam.
Lactea (Ovula), Lam. An. s. Yert., vii, 368,1822 , . 247
Lactescens (Dolium), Mart. Unir. Conch., teste Kobelt, Jahrb., ii, 264. = D. costatum, Menke.
Lævigata (Cassis), Menke. Syn., 1828, p. 87. $=$ C. sulcosa, Brug.
PAGE.
Lævigata (Ficula), Reeve. Conch. Ic., pl. i, f. 4.$=$ Pyrula ficus, Linn.250Lævigata (Sconsia), Sowb. Geol. Jour., vi, p. 47, t. x, f. 2.$=$ S. striata, Lam.280
Lamarckii (Cassidaria), Lesson. Rev. Zool., 1840, p. 212, 282
Lamarckii (Oniscia), Desh. An. s. Vert., x, p. 12.
$=$ Oniscia oniscns, Linn. 281
Lambiclinm, Link. Rost. Samml., iii, 112, 1807. $=$ Oniscia, Sowl. 270
Lanceolata (Orula), Nowb. Proc. Zool. Soc., 1848, p. 135, $\underline{9} 53$
Lateralis (Garlinia), Requien. Moll. Corse, 39.$?=$ Pedicularia, Sicula, Swains.242Latesulcatumi (Dolium), Mart. Conch. Cab., iii, p. 396,f. 1072, 1082. = D. costatum, Menke, 264Latilabris (Dolium), Val. Hamb. and Bonpl., livr. 14.$=\mathrm{I}$. ringens, Swain.265
Leathesi (Ovmla), Woorl. Crag Moll., p. 14, t. 2, f. 1. 254
Lepida (Ovula), Dill. Cat., p. 474, 1815. = O. triticea, Lam. 248
Levenia, Gray. Proc. Zool. Soc., 137, 1847, 272Levilabiata (Cassis undulata, var.), de Gregorio. Bull. Soc.Mal. Ital., $x, 113,1884 .=$ C. sulcosi, Born., var. . . 275Lienardi (Pedicularia), Robillard. Trans. Roy. Soc. Maur.,v, 1871. ? = P. elegantissima, Desh.,242
Lischkeanum (1)olium), Kiister. Conch. Cab., 71. t. 62, f. 1.$=\mathrm{D}$. ('ostatum, var. fimbriatum, Sowb.264
Livida Ovula), Reeve. Conch. Ic., 63, 1865. $=$ O. varialilis, C. B. Ad. $\mathfrak{9} 55$Lobbeckeana (Ovula). Weink. Kiist., 197, t. 50, f.. 6, 7, 1881.$=0$. variahilis, C. B. All.255Longirostrata (Ovula), Sowh. Spec. C., pt. 1, f. 46, t. 48,1830,252
Luteostomum (I)olium), Kiuster. Conch. Cab., 66, t. 58, f. 2, 261Macgillivrayia, Forbes (in part). Voy. Rattlesnake App.,383. 1851. = Larval condition of Dolium.
Maculatum, Dolinm), Lam. Inim. sans Vert., Edit. Desh., $\mathrm{x}, \mathrm{p} .140$. $=$ D. costatum, Menke, var. 264
Maculosa (Buccinum), Gmelin. Syst. Nat., iii, 78. $=$ Cassis spinosa, Gronov. 272
Madagascariensis (Cassis), Lim. Edit. Desh., x, p. 20.$=$ C. cameo, Stimpson,268
Malea, Valenciennes. Zool. Voy. Humboldt, ii, 324,1833, 258, 265
Malnm (Cassis ', Bolt. Mus., p. 22:, N. 370.$=$ Cassis sulcosa, Brug.274
Margarita (Orula), Sowb. Thes., ii, ̧. 469, pl. 101, f. 93, 94, 248

PAGE.
Marginata (Ovula), Arl. (non Sowb.). Proc. Zool. Soc., 1854, p 130. = Amphiperas Adamsii, Reeve,
Marginata (Orula), Sowh. Spec. C., pt. 1, p. 5, f. 15, 16, 1830, 24 ;
Marginatum (Dolium), Phil. Zeit. Mal., 1845, p. 147.
$=\mathrm{D}$. fimbriatum, Sowb.
264
Marginelloiteum (Pachylathron), Chenu. Man., f. 1141.
$=$ P. Cassidiformis, Gask.
Marginelloideum (Pachybathron), Gask. Amm. and ilag., 1853,1 . 2, t. 12, f. 4-6, 270 , 283
Marmoreum (Dolimn), Schriiter. Index to Mart. $=\mathrm{D}$. olearinm, Linn.
Massenie (Cassis), Kien. Iconog, t. S, f. 14.

$$
=\text { C. tenuis, Gray, } 273
$$

McCoyi (Birostra), Tenison-Woods. Trans. Roy. Soc. Victoria, xiv, 56,1878,

256
Melamostoma (Dolimm), Jay Cat., 1839, p. 124, t. S, 9 ; Brazier,
Zool. Proc., 585,1871 ; Pease, Am. Jour. Coneh., vii, 23, 261
Minjac (Dolimm), Jdanson. Seneg., t. 7, f. 6. $=\mathrm{D}$. fimbriatum, Sowb.264

Minuta (Cassis), Menke. Syn., 1828; Mörch, Mal. Blatt., xviii, 126. = Young C. sulcosa, var. ahbreviata, Lam. . 275
Morio, Montfort. Conch. Syst., ii, $478,1810$. = Cassidaria, Lam.269
Mormm, Bolten Mus, 1798. = Oniscia, Sowb. 270
Muricata (Cassis), Menke. Synopsis, 86, 1828, 279

Nana (Cassis), Tenison-Woods. Proc. Limn. S. N. S. W., iv, p. 108,279
Neglecta (Ovula), (. B. Ad. Am. Lyc. N. H., r, p. 255, 1850. = O. avena, Sowb. 255
Neosimnia, Fischer. Manual de Conch, 664, 1884, . 244, 253
Nicaensis (Orula), Risso. Enr. Merid, iv, p. 235, f. 150.$=0$. patula, Penu.247
Nigerinum (Ovilum), Dnfo. Ann. Sc. Nat., 1840, p. 186, 256Nivea (Cassis), Brazier. Proc Kool. Soc., 1872, p. 616, pl.xliv, f. $1 .=$ C. achatina, var. pyrum,278
Nodosum (Buccinum), Dillw. Cat. 2, p. 586, mr. 10. $=$ Cassidaria echinophora, Lam. 280
Nodulosum (Bucciumm), Gmel. Syst. Nat., p. 347!).$=$ Cassis vibex, Linn., var. erinacea, Linn.277
Nodosus (Rhomboides), Ietiv. Gazophyl., t. 48, f. 16.$=$ Oniscia Strombiformis, licere.

Nubeculata (Ovula), Ad. and Reeve. Voy. Samarang, p. 23, pl. 6, f. 12, 1850 ,247
Nucleus (Cassis), Kiist. Mart., Ch. ii, t. 52, f. 3, 4. $=$ C. saburon, Ad. 275
page.
Oblonga (Bulla), Mart. Conch. Cab., 1, f. 215, 216.$=$ Ovula intermedia, Sowb.251
Obtusa (Orulat), Nowb. Spec. Conch., pt. 1, p. 8, f. 34, 1830, 251
Ochrolencum (Buccinum), Gmelin. Syst. Nat., p. 3477.
= Cassidaria Tyrrhena, Lam. 280
Olearium (Dolium), Brug. Dict. No. 1 (non Linn). 262
Olearium (Buccinum), Linn. Syst. Nat., ed. xii, p. 1196.
$=$ Dolimm galea, Limn. 261
Oniscia, Sowb. Genera of Shells, 1824. . . 269, 270, 281
Oniscidia, Swainson. Mal., 70, 299, 1840. . . . 270 , 282
Oniscus (Oniscia), Linn. Syst. Nat., p. 1210. 270, 281
Oocorys, Fischer. Jour. de Conch., 3 ser., xxiii, 392, 1884. 267
Otus, Risso. Hist. i, 122, 1826. = Pyrula, Lam.
Oviformis (Ovula), Lam. Ann. du Mus., xvi, 110, 1811.
$=0$. ovum, Linn.246
Oroidea (Orula), H. Ad. Proc. Zool, Soc., 1872, p. 10, t. 3, f. 4. 248
Ovula, Bruguiere. Enc. Meth., $1, x v, 1789$. 243, 246
Ovulidæ. 243
Ovulum, Sowerby. Zool. Jour., iv, 145, 1828.$=$ Ovula, Brug.
Ovum (Ovula), var. β, Gmel. Syst. Nat. Ed., xiii, p. 3422.$=0$. tortilis, Martyn.
Ovum (Ovula), Linn. Syst. Nat., p. 1181, 1767.246
Pachybathron, Gaskoin. Ann. Mag. N. Hist., xi, 356,1853. 270,283
Pacifica (l'educularia), Pease. Proc. Zool. Soc., 516, 1865 ;Am. Jour. Conch., iv, 96, 1868.242
Papyratia (Pyrula), Say. Jour. Philad. Acad., ii, 238, 1822. 266
Paradoxus (Thyreus), Philippi. Moll. Sicil., ii, 92, 1844.
$=$ Pedicularia Sicula, Swains. 242
Patula (Ovula), Pennant. Bıit. Zool., iv, p. 117, pl. 70, f.85, 1777.246
Pancirugis (Cassis), Menke. Moll. Nov. Holl., sp. p. 23, No. IU7. = C. achatina, var. pyrum. 278
Pedicularia, Swainson. Malacol., 245, 357, 1840 , 241
Pellucidus (Ficus), Deshayes. Jour. de Conelı., 1856, p. 184,pl. 6, f. 1, 2. $=$ Pyrula ficus, var. Limn. .266
Pennata (Cochlea), Rumph., t. 27, f. 6.
= Dolinm perdix, Linn.
Pennatum (Buccinum), Gmel. Linn., p. 3476 , No. 21.$=$ Cassis rufa, Limn., juv.273
Pennatum (Dolium), Mörch. Cat. Yoldi, 2058. $=$ D. perdix, Linn. 264
Perdix, Montfort. Conch. Syst., ii, 447, 1810, 258
Perdix (Dolimm), Lim. Syst. Nat., p. 1197, 264
Personatum (Dolium), Mke. Syn., ed. 2, 1830.
= J. ringens, Swains265
Pfeifferi (Cassis), Hidalgo. Jour. Conch., 1871, p. 226; 1872, p. 143, t. 7, f. $2 .=$ C. saburou, var. Japoniea. 275
Phalinm, Link. Rost. Samml., iii, 112, 1807. = Bezoardica, Sclimm., 1817. 269
Pharetria (Ovula), Perry. Conch., t. 53, f. 2.
$=$ O. gibbosa, Limn. 250
Philippinarum (Ovula), Sowb. Proc. Zool. Soc., 1848, p. 136, 252
Pila (Cassis), Reeve. Conelı. Ic., sp. 21, 1848. $=$ C. saburon, Ad. 275
Plesioniscia, Fischer. Man. de Conch., 660, 1884. $=$ Oniscia, Sowb. 270
Plicaria (Cassiz, Lam. An. s. Vert., x, 25. = C. plicata, Limn. 277
Plicata (Cassis), Limn. Syst. Nat., ed. 12, p. 1198, 277
Plicosum (Dolium), Mke. Zeit. fiir Mal., 1845.
$=$ D. ringens, Swains. 265
Plumatum (Dolium1), Green. Trans. Alb. Inst., i, 132. $=$ D. perdix, Linn. 264
Pomum (Cassis), Wagn. Concl. Cab. Forts., xii, t. 223, f. 3084 and $3085 .=$ C. saburon, Ad. 275
Pomum (Dolium), Linn. Sỵst. Nat., p. 1197, 265
Ponderosa (Oniscia), Hanley. Proc. Zool. Soc., 1858, p. 225,pl. xlii, f. $9,10 .=$ O. exquisita, Ad. and Reeve.282Provincialis (Pyrula), Martin. Jour. de Coneh., ii, p. 249,pl. 8, fig. 4, 1851. = Abnormal Cassidaria echinophora,Linn.280
Ptyehosyca, Gabb. Proc: Philad. Acad., 294, 1876, 260
Pudica (Ovula), 1. Ad. Proc. Zool. Soe., 1854, p. 131, 247
P'nlchella (Brugnonia), Jeff. Ann. Mag., xi, 399; xii, 67, 1883. ? = Cassis sulcosa (fry), Brug. 274
Pulehellus (Ampliperas), H. Acl. P. Z. S., 1873, p. 206, pl. 23 , f. $5 .=0$. punctata, Duclos, var. 249
Pullum (Buccinum), Born. Mus. C. V., p. 245.$=$ Cassis rufa, Limu., juv.273
Punctata (Ovula), Iuclos. Mag. de Zool., 1830, p. 7, pl. 7, f. 1, 249
Purpurea (Ovula), Risso. Eur. Merid., iv, p. 235, 1826.$=0$. spelta, Limn.254
Pyriformis (Ovula), Sowls. Spee. C., pt. 1, p. 5, f. 21-23, 1830, 247
Proula, Lamarek. Prodr., 1799, 258
Pyrulina (Orula), A九. Proc. Zool. Soc. 1854, p. 131, 249, 265
Pyrum (Cassis), Lam. An.s. Vert., p. 33.$=$ C. pyrum, Lam., var.278
PAGE.
Quadriseriata (Oniscia), Menke. Syn., p. 145. $?=$ O. oniscus, Lim. 281
()uinquecosta (Doliopsis), Conrad. Am. Jour. Conch., i, 141, I865, 258
Radius, Montfort. Conch. Syst., ii, 626, 1810.$=$ Volva, Bolt.$244,2.52$
Recurva (Ovula), Ad. and Reeve. Voy. Sam., p. 21, pl. 6, f. :', 1848, 252
Recurvirostrum (Cassis), Wood. Ind. Test., t. 22, f. 30, 275
Reevei (Dolium), Hanley. Zool. Proc., 493, 1859.
$?=\mathrm{D}$. costatum, Menke., var. fimbriatum, 264
leticulata (Cassis), Bell (fossil). = C. saburon. Ad. 275
leticulata (Pyrula), Lam. An. s. Vert., vol. ix, p. 510 265
Reticulata (Pyrula), Sowb. Genera of Shells, f. l. $=$ Pyrula papyratia, Say, 266
Reticulatus (Perclix), Montf., ii, p. 447. $=$ Dolium perdix, Lim. 264
Rlıodia (Ovula), A. Ad. Proc. Zool. Soc., 1854, p. 130, 248, 249
Ringens (Dolium), Swains. Sowb., Tank. Cat., p. 21, 265
Rosea (Ovula), A. Ad. Proc. Zool. Soc., p. 130, 1854. $=0$. birostris, Limn. 253
Rosea (Ovulum depressum, var.), liossiter. Proc. Linn. Soc. N. S. W., vii, 323, 1882. = O. Philippinarum, Sowb. 252
Rubida (Dentiora), Pease. Iroc. Zool. Soc., 240, 1862, 242
Rotundata (Cassis), Perry. Conch., t. 33, f. 1.$=$ C. tuberosa, Linn.271
liufa (Cassis), Linn. Syst. Nat., ed. 12, p. 1198 , 268, 273
Rufa (Orula), Sowb. Proc. Zool. Soc., 1832, p. 173 ; Conch. Ill., p. 17. = O. variabilis, C. B. Ad. 255
Kufum (Dolium), Blainv. Dic. Sc. Nat. livr., p. 503. $=\mathrm{D}$. perdix, Linn., var. 264
Rugosum (Buccinum), Gmelin. Syst. Nat., p. 3476, nr. 127. $=$ C. strigata, Gmel. 277
Rugosum (Buccinum), Liun. Mantissa, 549. = Cassidaria echinophora, Limn. 279
Rumphii (Buccinum), Gmelin. Syst. Nat., 3476. $=$ Cassis spinosa, Gronv. 272
Saburon (Cassis), Adanson. Seneg., t. 7, f. 8, 275
Scitula (Ovula), A. Ad. Proc. Zool. Soc., 1854, p. 131. $=$ O. bullata, Ad. and Reeve, 250
Sconsia, Gray. Zool. Proc., 137, 1847, 269, 280
Scrobiculata (Cassis), Menke. Synopsis, 86, 1828, 279
Scymnia, Leach. Risso, 438 ; Adams' Genera.$=$ Simnia, Risso.
Secale (Bulla), Dill. Cat., i, p. $474,1815$.= Ovila acicularis, Lam.253
Secalis (Ovinla), Sowb. Spec. Conch., pt. i, f. 36, 1830, 254Semicassis (Klein, 1753), Mörch. Yoldi Cat., 112, 1852,268, 269, 274
Semigranosa (Cassis), Wood̉. Ind. Test., pl. 4, f. 2. 275
Seminulum (Ovula), Sowb. Spec. Conch., pt. i, f. 40, p. 8 , 1830. = O. secalis, Sowb. 254
Semiporcellana, Da Costa. Elem., 176, 297, 1776.$=$ Ovilum, Brug.
Semistriata (Orula), Pease. Am. Jour. Conch., iv, p. 96, pl. 11, f. 16, also P. Z. S., 1862, p. 241. $=$ O. lactea, Lam., var.247
Semperi (Ovula), Weink. Kiister, p. 190, t. 48 , f. 14,15 ,1882, 251
Sicula (Pedicularia), Swainson. 'Treatise, 245, 1840,254
Similis (Orula), Sowlo. Proc. Zool. Soc., p. 136, 1848. $=$ O. arena, Sowb. 255
Simmia, Leach. Risso, Hist. Nat., iv, 235, 1826. = Ovulum, Brug. 243
Sinensis (Ovula), Sow. P. Z. S., 1874, p. 599, pl. lxxii, f. 1, 246
Sophia (Cassis), Brazier. Proc. Zool. Soc., 1872, p. 617 ,pl. xliv, f. 2.279
Sowerbyana (Ovola), Weink. Kiister, 202, t. 51, f. 10-11, 1881, 253
Spelta (Bulla), Dill., 2, p. 775, 9, 1815. $=$ Ovula intermedia, Sowb. 251
Spelta (Uvula), Linn. Syst. Nat., p. 1182, 1767, 254
Spelta (Ovula), Sowb. (non Lim.). Spec. Conch., p. 2, f. 43. 1830. = O. Sowerbyana, Weink. 253
Spinosa (Cassis), Gronov. Zooph., p. 302, t. 19, f. 9, 1781, 272
Spirintrorsum (Dolium galea, var.), de Gregorio. Bull. Soc. Mal. Ital., x, 114, 1884, 261
Striata (Cassidaria), Lam. An. s. Vert., x, p. 10 ; Gabb, Proc. Phil. Acad., 361, 1875, 280
Striata (Cassis) Hutton. Cat. Mar. Moll. N. Zeal., 8. = C. pyrum, Lam., juv. 278
Striata (Cassis), Serres (fossil). = C. saburon, Ad. 275
Striatella (Cassis), Grat. (fossil). = C. saburon, Ad. 275
Striatella (Ovula), Sowb. Spec. C., pt. i, p. 7, pl. 38, 1830 , 250
Striatum (Buccinum), Gronov. Zoopliyl., p. 302, t. 19, f. 18. $=$ Cassis tuberosa, Linn. 271
Strigata (Cassis), Gmel. Syst. Nat., p. 3477, 276
Strigosum (Buccinum), Gmelin. Syst. Nat., p. 3472. = Cassiclaria echinophora, Lam. 280PAGE.Strombiformis (Oniscia), Reeve. Proc. Zool. Soc., 1842,p. 91,282
Sublavigata (Sconsia). Guppy. Geol. Jour., xxii, p. 287,pl. 19 , f. 10 . = S. striata, Lam. 280Subreflexa (Ovula), Ad. and Reeve. Voy. Sam., p. 22, pl.f, f. $10=0$. Philippinarum, Sowb.252
Subrostrata (Ovila), Sowb. Proc. Zool. Soc., p. 136, 1848.$=$ O. uniplicata, Sowb.
Sulcata (Oocorys), Fischer. Jour. de Conch., 3 ser., xxiii, 392, 1884, 267
Sulcosa (Cassis), Brug. Dict., No. 6, 274
Sulcosum (Buccinum), Dillw. Cat., 2, p. 584, nr. 5. = Dolium fasciatum, Brug. 263
Sulphurea (Helix), Ad. Contr. Concl., 33, 41, 98. = Fry of Dolium perdix, L. 265
Sycotypus, H. and A. Adams. Genera, i, 198, 1853. = Pyrula, Lam. 259
Symnia (Risso), Kiener. Iconog. Ovulum, 24.$=$ Simnia, Leach.
Syninia (Risso), Deshayes. Anim. s. Vert., x, 474, 1844.$=$ Simnia, Leach.
Tardina (Dolium galea, var.), de Gregorio. Bull. Soc. Mal. Ital., x, 114, 1884, 261
Tenue (Dolium), Menke. Syn., el. ii, p. 143, 1830. $=$ D. galea, Linn. 261
Tennilabris (Cassis), Menke Synopsis, p. 87, 1828, 279
'Ienuis (Cassis), Gray. Wood, Ind. Test. Supp., t. 4, f. 5, 272
Tessellata (Cassis), Gmelin. Syst. Nat., p. 3476.
$=$ C. spinosa, Gronv. 272
Tessellata (Cassis), Pfr. Register, p. viii. $=$ C. sulcosa, Born, var. inflata, 274
Tessellata (Pyrula), Kobelt. Kiister, Conch. Cab. Pyrula, t. 2, f. 3, 1874, 267
Tesellatum (Dolimen). Encycl., t. 403, f. $3 a$ and b.Pars $=$ D. fimbriatum, Sowb.Pars $=$ D. maculatum, Lam.264
Testardi (Dolium), Montr. Jour. C., 1863, p. 75 and 166,t. 5, f. $6 .=$ D. olearium, Limn., var.263
Testiculus (Cassis), Limn. Syst. Nat., ed. 12, p. 1199 , 273
'Texta (Cassis), Brom. (fossil). = C. saburon, Ad. 275
Thomsoni (Cassis), Brazier. Proc. Limn. Soc. N. S. W., i, 279
'Thyreus, Philippi. Moll. Sicil., ii, 92, 1844.= Pedicularia, Swains.241
Torquata (Cassis), Reeve. Conch. Ie., sp. 1, 1848 278
'Tortilis (Ovula), Martyn. Univ. Conch., pl. 60, 1782, 246
Trailli (Ovula), A. Ad. Proc. Zool. Soc., p. 222, 1855, 251PAGE.
Transovula, Gregorio, 1880,
Trifasciata (Buccinum), Gmelin. Syst. Nat., p. 3477, nr. 30. $=$ Cassis sulcosa, var. inflata, Shaw, 274
Triseriata (Oniscia), Menke. Syn., p. 64. $=$ O. oniscus, Linn 281
Triticea (Bulla), Costa. Arad. et Benoit, Moll. Sicil., 302. $==$ Orila carnea, Poir. 248
Triticea (Ovila), Lam. An. du Mus., xvi, p. 111, 1810, 248
Tuberculosa (Cassidaria), Schumacher. Nouv. Syst., p.
$246 .=\mathrm{C}$. echinophora, Brıg. 279
Tuberculosa (Ouiscia), Sowb. Gen. Shells, Oniscia, p. 2, 291
Tuberosa (Cassis), Limn. Syst. Nat., ed. 12, p. 1198, 271
Turgida (Cassis), Reeve. Conch. Ic., f. 25, 1848. = C. achatina, Lam. 278
Tyrrhena (Cassidaria), Lam. An. s. Vert., vol. vii, p. 8, 280
Tyrrhena (Cassidaria), Sowb. Gen. Shells, f. 2. = C. echinophora, Lam. $27!$
Ultimus, Montfort. Concl. Syst., ii, 642, 1810.

- Cyphoma, Bolten
Umbilicata (Cassis), Pease. Proc. Zool. Soc., 1860, p. 436,279
Umbilicata (Ovula), Sowb. Proc. Zool. Soc., p. 135, 1848.$=$ O. margarita, Sowb.248Undata (Cassis), Desh. Lam., Hist. Nat., ed. ii, Bcl. 10,S. 28 , Note. $=$ C. strigata, Gmelin.277Undulata (Cassis), Humphr., p. 19, n. 317.$=$ C. tuberosa, Lim.271
Undulata (Cassis), Gmel. Syst. Nat. = C. sulcosa, Brug. 274
Uniplicata (Ovula), Sowb. Proc. Zool. Soc., p. 135, 1848, 2.54Variabilis (Ovula), C. B. Ad. Ann. Lyc. N. H., v, p. 255,1850,255
Variegatum (Dolium), Kiister. Conclı. Cabinet, t. 63, f. 1. $=$ D. luteostomum, Kiist. 262Variegatum (Dolium), Lam. An. s. Vert., edit. Deshayes, x,p. 143,262
Ventricosum (Buccinum), Gmelin, p. 3476, ur. 25. $=$ Cassis rufa, Linu. 273
Ventricosa (Cassis), Mart., 2, 1771, f. 344-45. = C. sulcata, Brug. 274
Ventricosa (Ficula), Sowb. Tank. C'at., xvii. $=$ Pyrula decussata, Wood. 266
Verrucosa (Ovula), Linn. Syst. Nat., p. 1182, $-96$$=$ Texilla rexillum, Chenu, Manucl, ii, 181.279page.
Vibex (Cassis), Linn. Syst. Nat., ed. 12, p. 1199, 277
Vidleri (Ovulum), Sowb. Proc. Zool. Soc., 1881, p. li3々, pl. lvi, f. 1. = O. arena, Sowb. 255
Virginea (Bulla), Cantraine. = Orula Adriatica, Sowb. 247
Volva, Bolten. Mus., 1798, 244, 252
Volva, Fleming. Hist. Brit. Anim., 331, 1828.
$=$ Simnia, Risso.
Tolva (Ovula), Linn. Syst. Nat. p. 1182, 1767, 252
Vulgaris (Bezoardica), Schum. Nouv. Syst., p. 248, 1817.$=$ Cassis glanca, L.276
Xanthostoma (Oniscia), A. Ad. Proc. Zool. Soc., 1853, p. 174. $=$ O. tuberculosum, Sowb. 282
Kebra (Cassis), Lam. An. s. Vert., x, p. 28. $=$ C. strigata, Gmel. 277
Zelanica (Cassis), Lam. An. s. Vert., x, p. 33.$=$ C. pyrum, Lam.278
Zonatum (Dolium), Green. Trans. Alb. Inst., i, p. 131, pl. 4, 26.3

REFERENCE TO PLATES.

OYULIDE, DOLIIDA AND CASSSIDIDE.

OVULIDÆ.

Plate 1.

FIGURE.PaGE.

1. P'edicularia Sicula, Swainson. Dentition. Fischer's Manual, pt. 7, f. 425, 241
2, 3. Pedicularia Sicula, Swains. Adams' Genera, t. 29, f. $3,3 a$, 241
2. Pedicularia Californica, Newc. Proc. Cal. Acad., ir, t. 1, f. 9 , 242
3. Pedicularia Japonica, Dall. Am. Jour. Conch., vii, t. 16 , f. 12, 242
6, 7. Pedicularia Pacifica, Pease. Am. Jour. Conch., ir, t. 11, f. 17, 18, 242
8, 9. Pedicularia elegantissima, Desh. Moll. Remnion, t. f, f. 23,24 242
4. Ornla gibbosa, Lim. Dentition. Fischer's Man. de Conch., pt. 7, f. 420 , 243
5. Ovula ovum, Linn. Somb., Thes. Conch, f. 2, 246
6. Ovula oviformis, Lam. (=orum). Kiener, Iconog., t. 1, 246
13, 14. Ovula marginata, Sowb. Thes. Conch., f. 9, 10, 246
7. Ovula brevis, Rve. (= marginata). Conch. Icon., f. 5 b, 246
16, 18. Orula Adriatica, Sowb. (= patula). Thes. Conch.,f. 13, 14,247
8. Ovula patula, Pemant. Reeve, Conch. Icon., f. 30 a, 246
Plate 2.
19, 20. Ovula tortilis. Martyn. Sowb., Thes. Conch., f. 4, 5, 246
21, 22. Ovula Sinensis, Nowb. (= marginata). Zool. Proc.,t. 72, f 1, 187t,246
23, 24. Ovula lactea, Lam. Reeve, Conch. Icon., f. 1, 247
FIGURE. PAGE.
25, 26. Ovula semistriata, Pease (=lactea). Am. Jour. Conch., iv, t. 11, f. 16, 247
27, 28. Ovula cristallina, Kiener (= lactea). Kiener, Iconog., t. 4, f. 3, 247
29, 30. Ovula pudica, A. Ad. Reeve, Conch. Ieon., f. fi, 247
9. Ovula Caledonica, Crosse ($=$ pudiea). Jour. de Conch., t. 2, f. 1, 1872, 247
32, 33. Ovula brevis, Sowb. Thes. Conch., f. 70, 71, 248
34,35 . Ovula margarita, Sowb. Ibid., f. 93, 94, 248
36, 37. Orula bulla, Acl. and Rve. (= margarita). Conch. Icon., f. 20, 248
38, 39. Ovula umbilieata, Sowb. (=margarita). Reere, Ibid., f. 14, 248
10. Ovila ovoidea, H. Ad. (= margarita). Zool. Proe., t. 3, f. 4, 1872, 248
41, 42. Ovnla mubeculata, Ad. and Reeve. Conch. Icon., f. 12 , 247
43, 44. Ornla pyriformis, Sowb. 'Thes. Conch., f. 72, 7.3, 247
11. Ovula pyriformis, Sowb. Reeve, Conch. Icon., f. 9 a. 247
46, 47. Ovula bimaculatil, A. Ad. Reere, Conch. Icon., f. 11, 248
48-50. Ovnla carnea, Poiret. Sowb., Thes. Conch., f: 74-76, 248
51-52. Orula triticea, Lam. ($=$ carnea). Reeve, Coneh.
Icon., f. 51, 52, 248
Plate 3.
53,54 . Ovnla rhodia, A. Ad. Reeve, Conch. Icon., f. $18 a, b$, 249
55, 56. Ovula fruticum, A. Ad. Reeve, Ibid., f. $16 a, b$ 249
57, 58. Ovila pyrulina, A. Ad. Reeve, Ibid., f. $19 a, b$ 249
59, 60. Ovula concinna, Ad. and Reeve. Reeve, Ibid., f. $21 a, b$, 249
61-63. Ovula punctata, Duclos. Sowb.. Thes. Conch., f. 90-92, 249
12. Ovula alabaster, Reeve ($=$ punctata). Conch. Ieon., f. 23 b, 249
65, 66. Ovula Adamsi, Reeve. Ibid., f. $24 a, b$, 249
67, , 8 . Ovula bullata, Ad. and Reeve. Ibid., f. $26 a, b$, 250
69, 70. Ovula seitula, Adams. (= bullata). Reeve, Ibid., f. $29 a, b$, 250
71, 72. Ovula frumentum, Sowb. Reeve, Ibid., f. $25 a, b$, 250
13. Ovula pulehella, H. Ad. (= punctata, var.). Zool. Proc., t. 23, f. 5, 1873. 249
14. Orula Cnmingi, Mörch ($=$ concinna). Mörch, Cat. Kjerulf., t. 1, f. 11, 249

FIGURE.

Page.
75, 76. Orula striatula, Sowerby. Reeve, Concli. Icon., f: $28 a, b$, 250
77, 78. Orula dorsnosum, Hinds. (= striatula). Ibid., f. $27 a, b$, 250
79, 80. Orula dentata, Ad. and Reeve (=striatula). Ibid., f. $36 a, b$, 250
81, 82. Ovula gibbosa, Linn. Reeve, Ibid., f. $32 a, b$, 250
83. 84. Ovula emarginata, Sowb. Reeve, Ilid., f. $34 a . b$, 251
85, s6. Orula intermedia, Sowb. Ibid., f. $33 a, b$, 251
87, 88. Orula obtusa, Sowb. Thes. Conch., f. 22, 23, 251
89 Ovula Indica, Reeve (= obtusa, var.). Conch. Icon., f. $47 b$, 251
90, 91. Ovula Trailli, A. Ad. Reeve, lbid., f. $38 a, b$, 251
Plate 4.
92, 93. Orula longirostra, Sowb. Reeve, Conch. Icon., f. $40 a, c$, 252
94, 95. Orula volva, Limu. Thes Conch., f. 67, 252
96, 97. Orula recurva, Ads. and Reeve. Conch. Icon., f. $5 \ddagger a, b$, 252
98, 99. Orula gracilis, Ads. and Reeve. Ibid., f. $61 a, b$, 252
100, 1. Ovula Philippinarum, Sowb. Reeve, Ibid., f. $46 a, b$, -52
2. Orula Carpenteri, Dunker (= Philippinarum). Moll. Maris Japon., t. 13, f. 1, 252
3, 4. Ovula Angasi, A. Ad. (=Plilippinarmm). Conch. Icon., f. $48 a, b$, 252
5. Ovula depressa, Sowb. (=Philippinarum). Zool. Proc., t. 24, f. 1, i875, 252
6, 7. Orula subreflexa, Ad and Reeve ($=$ Philippinarum). Conch. Icon., f. $55 a, b$, 252
8. Ovula deflexa, Sowl). (= Philippinarum). Ibid., f. 56 b, 252
9. Orula Adamsii, Dunker (= Philippinarum). Moll. Ma- ris Japon., t. 13, f. 3 , 253
10, 11. Orula birostris, Limn. Reeve, Conch. Icon., f. $45 a, b$, 253
12. Orula aperta, Sowb. (= birostris). Thes. Couch., f.' 107. 253
13, 14. Ovula rosea, A. Ad. (= birostris). Reeve, Conch. Icon., f. $44 a, b$, 253
15, 16. Ovula formosa, Ad. and Reeve. Ibid., f. $39 a, b$, 251
17, 18. Ovula hordacea (=Semperi, Weink.). Reere, Ibid., f. $37, a, b$, 251
Plate 5.
19. Orula hordacea (=Semperi, Weink). Thes, Conch., f. 112 , 251
20, 21. Ovula lanceolata, Sowb. Reeve, Conch. Icon., f. $59, a, b$, 253
FIGURE. PAGE.
22. Ovula coarctata, Ad. and Reeve. Ibid., f. $57 a$, 253
23. Ovula acicularis, Lam. Sowb., Thes. Couch., f. 43, 253
24, 25. Ovula acicularis, Lim. Reeve, Conch. Icon., f. 53 a, b, 253
26. Ovila spelta (=Sowerbyana, Weink.). Ibid., f. $42, b$, 253
27. Ovula spelta (=-Sowerbyana, Weink.). Sowb., Thes. Couch., f. 63, 253
28, 29. Orula secalis, Sowb. Ibid., f. 26, 27. 254
30. Ovula seminulum, Sowb. (=secalis). Conch. Icon., f. $48 a$, 254
31. Ovula Borbonica, Deshayes. Moll. Reunion, t. 13, f. 18, 254
32, 33. Ovula spelta, Lim. Kiener, Coq. viv., t. 5, f. 4, 254
$3 t-36$. Ovula hordacea, Lam. Ibid., t. 6, f. fi, 254
37, 38, Orula formicaria, Sowb. (=hordacea). Conch. Icon., f. $52 a, b$, 254
39. Ovula uniplicata, Sowb. Reeve, Ibid., f. 51 a, 254
40. Ovula uniplicata, Sowb. 'Thes. C'onch., f. 31, 254
41. Orula Antillarmm, Reeve (=miplicata). Conch. Icon., f. $64 a$, 254
42. Orula subrostrata, Sowb. (-muiplicata). Thes. Conch., f. 39 , 255
43. Ovula arcuata, Reeve (=uniplicata). Conch. Icou., f. $58 b, 255$, 255
44. Orula variahilis, C. B. А才. (=miplicata, var.). Kiis- ter, Conch. Cab , t. 53, f. 2, 255
45. Ovila Californica, Reeve ($=$ uniplicata, var.). Conch. Icon., f. $50 b, 255$, 255
46. Orula aequalis, Sowb. (=uniplicata, var.). Conch. Ill. Cypræa, f. 61, -55
47. Ovula livida, Reeve (= miplicata, var.). Conch. Icon., f. 6.36 255
48. Orula rufi, Sowb. (=miplicata, var.). Couch. Ill. Cy- præa, f. 58 255
49. Orula inflexa, Sowb. (=uniplicata, var.). Ibicl., f. fo, 255
50. Orula Löbbeckeana, Weink (=uniplicata, var.). Küs- ter, Conclı. Cab., t. 50, f. 7 , 255
51. Orula avena, Sowb. Conch. Ill. Cyprea, f. 59 255
52. Ovula similis, Sowh. (=avena). Thes, Conch., f. 29, 255
53. Ovula similis (=avena). Reeve, Conch. Icon., f. 49 a, 255
54. Ovula neglecta, C. B. Ad. (二avena). Reeve, Ibid., f. $62 u$, 255
55. Orula Vidleri, Sowb. (=avena). Zool. Proc., t. 56, f. 1, 1881. 255
56, 57. Ovula verrucosa, Lim. Sowb., Thes. Conch., f. 78, 79, 256
58. Ovula rerrucosa, Limu. Quoy, Voy. Astrol, t. 47, f. 8, 250

DOLIIDÆ.

Plate 1.

Figure. PAGE.

1. Dolium perdix, Linn. Dentition. Troschel, Gebiss Schneck., t. 19, f. 3, 257
2. Dolium perdix, Linn. Jaw. Ibid., t. 19, f. 1, 257
3. Dolium galea, Linn. Kiener, Iconog., t. 2, f. 2, 261
4. Dolium melanostoma, Jay. Jay's Cat., 3d edit., t. 9, 261
5. Dolium melanostoma, Jay. Reeve, Conch. Icon., f. 2, 261
6. Dolium luteostoma, Kiister. Conch. Cab., t. 58, 261
Plate 2.
7. Dolium Japonicum, Dunker (= luteostoma). Dunker, Novitates Conch., t. 35, 261
8. Dollum olearimm, Brug. Kiener, Iconog., t. 1, f. I a, 262
9. Dolium Cumingii, Hanley ($=$ olearium). Conch. Icon., f. 3 , 262
10. Dolium Deshayesii, Reeve (=olearium, var.). Conch. Icon., f. 13 a, 262
11. Dolium Testardi, Mörch (=olearium, var.). Jour. de Conch., t. 5, f. 6, 1863, 262
12. Dolium Crosseanum, Monterosato. Ibid., t. 12, f. 1, 1869 263
Plate 3.
13. Dolium variegatum, Lam. Reeve, Conch. Icon., f. 7 b, 262
14. Dolium Chinense, Dillw. ($=$ variegatım). Reeve, Conch. Icon., f. 10 b, 262
15. Dolium perdix, Linn. Reeve, Conch. Icon., f. 9, 264
16. Dolium fasciatum, Brug. Kiener, Iconog., t. 3, f. 5, 263
17. Dolium zonatum, Green. Reeve, Conch. Icon., f. $12 a$, 263
18. Dolium Lischkeanum, Kiister ($=$ costatum, var. fimbri- atum). Conch. ('ab., t. 62, f.' 1, 264
Plate 4.
19. Dolium fasciatum, var. (= costatum). Kiener, Iconog., t. 4, f. 6 , 263
20. Dolium ampullaceum, Phil. ($=$ costatum, Menke). Neuer Conch., iii, t. 2, 263
21. Dolium maculatum, Lam. (= costatum, var.). Kiener, Iconog., t. 3, f. 4 , 264
22. Dolium fimbriatum, Sowb. (= costatum, var.). Conch.
Icon., f. 3 b, 264
FIGURE. PAGE.
23, 24. Dolium perdix, Linu. Embryo and young. Fischer, Jour. de Conch., t. 6, f. 7, 1863, 264
23. Dolium perdix, Linn. Qnoy, Voy. Astrol., t. 41, f. 1, 264
Plate 5.
24. Dolinm pomum, Linn. Reeve, Conch., Icon., f. 6, 265
25. Dolinm crassilabris, Val. (= ringens). Kiener, Icon., t. 4, f. 7, • • • • • • •
26. Pyrula ficoides, Lam. (= reticulata, Lam.), Ibid., Py- rula, t. 13, f. 2, 265
27. Pyrula ficus, Linn. Aclams, Toy. Samarang, t. 9, f. 4, 266
28. Pyrula Dussumieri, Tal. Reeve, Icon., Ficula, f. 2, 266
29. Pyrula tessellata, Kobelt. Kiister, Pyrula, t. 2, f. 3, 267
30. Doliopsis quinquecosta, Conr. Am. Jour. Conch., i, t. 10 , f. 15 , 258
Plate 6.
31. Pyrula clathrata Rouss. (= reticulata). Chenu, Ill. Coneh., t. 2, f. 3, 265
32. Pyrula rentricosa, Sowb. (= decussaata). Kiener, Pyrula, t. 12, f. 2, 266
33. Pyrula reticulata, Lam. (= papyratia). Sowb., Gen. Shells, Pyrula, f. 1, 266
34. Pyrula ficus, Linu. Sowb., Thes. Conch., ir, t. 423, f. 4, 266
35. Pyrula pellucida, Desh. (=fieus, var.). Jour. de Conch., $2 d$ ser., i, t. 6, f. 1, 266
36. Pyrula ficoides, Lam. ($=$ reticulata). Dentition. Troschel, Gebiss Schneck., t. 20, f. 12, 298
39-41. Oocorys abyssorum, Terrill and Smith ($=$ suleata). Trans. Conn. Acad., vi, t. 31, f. 12, 267
37. Oocorys sulcata, Fischer. Manuel de Conch., pt. 8, f. 536 , 267

CASSIDIDÆ.

Plate 1.

FIGURE. PAGE.
43. Operculnm of Cassis. Fischer's Mannel, pt. 7, f. 413, . 26844. Cassis saburon, Adans. Dentition, Fischer's Manuel,pt. 7, f. 412,$\underline{2} 68$
45, 46. Cassis cornnta, Linn. Kiener, Iconog., t. 2, f. 3, 270
47, 48. Cassis flammea, Linn. Ibid., t. 3, f. 5, 271
Plate 2.
49. Cassis cornuta, Linn. Reeve, Icon., f. 2, 270
50. Cassis cameo, Stimpson. Tryon, Am. Mar. Conch., t. 8, f. 67, 271
51. Cassis tuberosa, Linn. Reeve, Conch. Icon., f. 7, 271
52. Cassis coarctata, Gray. Reeve, Conch. Icon., f. 14 272
53. Cassis tenuis, Gray. Reeve, Conch. Icon., f. 13 c. 272
54. Cassis testicnlus, Linn. Kiener, Iconog., t. 9, f. 17, 273
Plate 3.
55. Cassis fimbriata, Quoy. Kiener, Iconog., t. 4, f. 6, 272
5 (i. Cassis crımena, Brng. Reeve, Icon., f. 10 a, 273
57, 58. Cassis rufa, Linn. Kiener, Iconog., t. 7, f. 12. 273
59. Cassis lactea, Kiener ($=$ sulcosa, var. abbreviata). Ibid., t. 16, f. 35 , 274
60. Cassis semigranosa, Wood. Reeve, Conch. Icon., f. 3, 275
61. Cassis abbreviata, Lam. (=sulcosa, Brug.). Ibid., f. 18 a, 274
Plate 4.
62. Cassis spinosa, Gronov. Reeve, Conch. Icon., f. $9 b$, 272
63. Cassis testiculus, Linn. Kiener, Iconog., t. 9, f. 17, 273
64. Cassis sulcosa, Brug. Reeve, Conch. Icon., f. 30, 274
65. Cassis inflata, Shaw ($=$ sulcosa, var.). Ibid., f. 22 274
66, 67. Cassis recurvirostrum, Wood (= sulcosa, var.). Ibicl., f. $16 a, b$, 274
68, 69. Oniscia tuberculosa. Sowb. Ibid., f. 5 b, 281
70. Oniscia Strombiformis, Reeve. Ibid., f. 2, 282

Plate 5.

71. Cassis abbreviata, Lam. (= sulcosa, Br.). Reeve, Conch. Icon., f. 18 b, 274
72. Cassis canaliculata, Brug. Ibid., f. 8, 275
73. Cassis canaliculata, Brug. Kiener, Iconog., t. 14, f. 28, 275
figure. PAGE.
74. Cassis saburon, Adtuns. Reeve, Conch. Icon., f. $11 a$, 275
75. Cassis pila, Reeve ($=$ saburon, rar.). Ibid., f. 21, 275
76. Cassis Japonica, Reeve ($=$ saburon, var.). Ibid., f. 23. 275
77. Cassis Pfeifferi, Hidalgo ($=$ saburon, var.). Jour. de Conch., t. 7, f. 2, 1872 , 275.
78. Cassis bisulcata, Schub. et W:ign. (- saburon, var.). Recve, Conch. Icon., f. li b, 275
Plate fi.
79. Cassis glanca, Linn. Reeve, Conch. Lcon., f. 33, 276
s0. Cassis glanca, Lime Quoy, Toy. Astrol, t. 43, f. 9, 276
80. Cassis coronulata, Sowb. Reeve, Conch. Icon., f. 31, 276
82, 83. Cassis exarata, Reere. Conch. Icon., f. 32, 276
81. Cassis areola, Linn. Kiener, Ironog., t. 10, f. 19, 276
l'hate 7.
82. Cassis zebra, Lam. (=strigata). Kiener, Iconog., t. 10, f. 18. 276
83. Cassis plicaria, Lam. (三plicata). Ilid., t. 6, f. 11, 277
87, 88. Cassis decussata, Lam. Recre, Conch. Icon., f. $4 b, c$, 277
84. Cassis ribex, Linn. Ibid., f. 15 l, 277
85. Cassis vibex. var. crinacea, Limn. Ibicl., f. 15 d, 277
86. Cassis vibex, valr. kalasmorlix, Melvill. Author's drawing, 278
92, 93. Cassis torquata, lieere. Conch. Icon., f. lb, c, 278
Plate 8.
87. C'assis achatina. Lam. Reeve. Conch. Lcon., f. 28 b, 278
88. Cassis turgida, Reeve ($=$ achatina). Ibid, f. $25 c$, 278
96, 97. Cassis pyrum, Lam. ($=$ achatina, var.). Ibid., f. $29 a, b$, 278
89. Cassis nivea, Brazier (= achatina, var. pyrum). Proc. Zool. Soc., t. 44, f. 1, 1872, 278
90. Cassis Sophia, Brazier. Ibid., t. 44, f. 2, 1872 , 279
91. Oniscia exquisita, Ad. and Reeve. Reeve, Conch. Icon., f. 3 , 282
1-3. Pachybathron Cassidiforme, Gaskoin. Ann. Mag. Nat. Hist., t. 12, f. 1-3, 1853 , 283
4,5. Pachybathron Marginelloideum, Gaskoin. Ibid., t. 12, f. 4, fi, 1853, 283

Plate 9.

FIGURE. PAGE.
6. Cassidaria Deshayesii, Dnval. Jour. de Conch., t. 1, f. 9,1863 280
7. Cassis pancirugis, Mke. ($=$ achatina, var. byrum). Reeve, Conch. Icen., f. 19 a, 278
8. Cassis glabrata, Dunker. Novit. Conch., t. 11, f. 1, 279
9. Cassidaria echinophora, Linn. Kiener, Iconog., t. 1, f. 2 , 279
10. Cassidaria echinophora, Linn. Kiister, Conch. Cab., t. 54 , f. 5 , 279
11. Cassidaria provincialis, Martin (=echinophora, mon- str.). Jour. de Conch., ii, t. 8, f. 4, 279
12, 13. Cassidaria Coronadoi, Crosse. Jomr. de Conch., t. 4, f. 1; t. 5 , f. 1, 1867, 280
Plate 10.
14. Cassidaria Tyrrhena, Lam. Kiener, Iconog., t. 1, f. 1, 280
15. Cassidaria striata, Lam. Ibid., t. 2, f. 3, 280
16. Cassidaria Grayi, A. Ad. (= striata, Lam.). Zool. Proc., 1854, t. 28, f. 6, 280
17. Cassidaria Barbudensis, Higgins and Marrat. Proc. Lit. Philos. Soc. Liverponl, xxxi, t. 1, f. 1, 281
18. Oniscia oniscus, Linn. Kiister, Conch. Cab., t. 55, f. 5 , 281
19. Oniscia Lamarckii, Desh. (= oniscus, var.). Reeve, Conch. Icon., f. 1 281
20. Oniscia Demisoni, Reere. Ibicl., f. 6, 282
21. Oniscia cancellata, sowb. Ibid., f. 4 , 282
22. Oniscia ponderosa, Hanley (=exquisita). Zool. Proc., 1858 , t. 42 , f. 10 , 282

TEREBRIDA.
PLATE 4.

86

- 2

8
4
4
4

22

TEREBRIDAE.

最 8 8 8 8 8 8

TA

TEREBRID.E.

PLATE 9

TEREBRIDA.

PLATE 10.

 ©

$c=0$
TEREBRIDAE.
PLATE 11.

16

ω

23
等

CANCELLARIIDAE.

PLATE 2.

1

97.

4.

PLATE 4.

STROMBIDAE.

PLATE 6.

STROMBID盾.
PLATE 9.

PLATE 1.

- 1

7

9

-

CYPRAIDA.

 8
8
8
8
8
36

28

36

35

CYPRAEIDAE

38

40

52

 59

71

69

41

PLATE 4.

53

CYPREID鹿,
PLATE 5.

74

90

92

[^0]

93

I
I

CYPR ÆID Æ.

97

PLATE 6.

6

100

99

CYPR $\nrightarrow I D A$.

CYPRAEIDA.

$$
-1=
$$

CYPRAEIDE.
PLATE 13.

CYPRAID狌.

PLATE 19.

CYPRAEID 压。

67

73

86

PLATE 3.

81

?

CASSIDID画。

PLATE 4.

DOLIID※.
PLATE 5 .

[^0]:

